Yg4Arxiv
Computer Vision and Pattern Recognition 162
☆ HoloCine: Holistic Generation of Cinematic Multi-Shot Long Video Narratives
State-of-the-art text-to-video models excel at generating isolated clips but fall short of creating the coherent, multi-shot narratives, which are the essence of storytelling. We bridge this "narrative gap" with HoloCine, a model that generates entire scenes holistically to ensure global consistency from the first shot to the last. Our architecture achieves precise directorial control through a Window Cross-Attention mechanism that localizes text prompts to specific shots, while a Sparse Inter-Shot Self-Attention pattern (dense within shots but sparse between them) ensures the efficiency required for minute-scale generation. Beyond setting a new state-of-the-art in narrative coherence, HoloCine develops remarkable emergent abilities: a persistent memory for characters and scenes, and an intuitive grasp of cinematic techniques. Our work marks a pivotal shift from clip synthesis towards automated filmmaking, making end-to-end cinematic creation a tangible future. Our code is available at: https://holo-cine.github.io/.
comment: Project page and code: https://holo-cine.github.io/
☆ LayerComposer: Interactive Personalized T2I via Spatially-Aware Layered Canvas
Despite their impressive visual fidelity, existing personalized generative models lack interactive control over spatial composition and scale poorly to multiple subjects. To address these limitations, we present LayerComposer, an interactive framework for personalized, multi-subject text-to-image generation. Our approach introduces two main contributions: (1) a layered canvas, a novel representation in which each subject is placed on a distinct layer, enabling occlusion-free composition; and (2) a locking mechanism that preserves selected layers with high fidelity while allowing the remaining layers to adapt flexibly to the surrounding context. Similar to professional image-editing software, the proposed layered canvas allows users to place, resize, or lock input subjects through intuitive layer manipulation. Our versatile locking mechanism requires no architectural changes, relying instead on inherent positional embeddings combined with a new complementary data sampling strategy. Extensive experiments demonstrate that LayerComposer achieves superior spatial control and identity preservation compared to the state-of-the-art methods in multi-subject personalized image generation.
comment: 9 pages, preprint
☆ Towards General Modality Translation with Contrastive and Predictive Latent Diffusion Bridge
Recent advances in generative modeling have positioned diffusion models as state-of-the-art tools for sampling from complex data distributions. While these models have shown remarkable success across single-modality domains such as images and audio, extending their capabilities to Modality Translation (MT), translating information across different sensory modalities, remains an open challenge. Existing approaches often rely on restrictive assumptions, including shared dimensionality, Gaussian source priors, and modality-specific architectures, which limit their generality and theoretical grounding. In this work, we propose the Latent Denoising Diffusion Bridge Model (LDDBM), a general-purpose framework for modality translation based on a latent-variable extension of Denoising Diffusion Bridge Models. By operating in a shared latent space, our method learns a bridge between arbitrary modalities without requiring aligned dimensions. We introduce a contrastive alignment loss to enforce semantic consistency between paired samples and design a domain-agnostic encoder-decoder architecture tailored for noise prediction in latent space. Additionally, we propose a predictive loss to guide training toward accurate cross-domain translation and explore several training strategies to improve stability. Our approach supports arbitrary modality pairs and performs strongly on diverse MT tasks, including multi-view to 3D shape generation, image super-resolution, and multi-view scene synthesis. Comprehensive experiments and ablations validate the effectiveness of our framework, establishing a new strong baseline in general modality translation. For more information, see our project page: https://sites.google.com/view/lddbm/home.
☆ GSWorld: Closed-Loop Photo-Realistic Simulation Suite for Robotic Manipulation
This paper presents GSWorld, a robust, photo-realistic simulator for robotics manipulation that combines 3D Gaussian Splatting with physics engines. Our framework advocates "closing the loop" of developing manipulation policies with reproducible evaluation of policies learned from real-robot data and sim2real policy training without using real robots. To enable photo-realistic rendering of diverse scenes, we propose a new asset format, which we term GSDF (Gaussian Scene Description File), that infuses Gaussian-on-Mesh representation with robot URDF and other objects. With a streamlined reconstruction pipeline, we curate a database of GSDF that contains 3 robot embodiments for single-arm and bimanual manipulation, as well as more than 40 objects. Combining GSDF with physics engines, we demonstrate several immediate interesting applications: (1) learning zero-shot sim2real pixel-to-action manipulation policy with photo-realistic rendering, (2) automated high-quality DAgger data collection for adapting policies to deployment environments, (3) reproducible benchmarking of real-robot manipulation policies in simulation, (4) simulation data collection by virtual teleoperation, and (5) zero-shot sim2real visual reinforcement learning. Website: https://3dgsworld.github.io/.
☆ SpectraMorph: Structured Latent Learning for Self-Supervised Hyperspectral Super-Resolution
Hyperspectral sensors capture dense spectra per pixel but suffer from low spatial resolution, causing blurred boundaries and mixed-pixel effects. Co-registered companion sensors such as multispectral, RGB, or panchromatic cameras provide high-resolution spatial detail, motivating hyperspectral super-resolution through the fusion of hyperspectral and multispectral images (HSI-MSI). Existing deep learning based methods achieve strong performance but rely on opaque regressors that lack interpretability and often fail when the MSI has very few bands. We propose SpectraMorph, a physics-guided self-supervised fusion framework with a structured latent space. Instead of direct regression, SpectraMorph enforces an unmixing bottleneck: endmember signatures are extracted from the low-resolution HSI, and a compact multilayer perceptron predicts abundance-like maps from the MSI. Spectra are reconstructed by linear mixing, with training performed in a self-supervised manner via the MSI sensor's spectral response function. SpectraMorph produces interpretable intermediates, trains in under a minute, and remains robust even with a single-band (pan-chromatic) MSI. Experiments on synthetic and real-world datasets show SpectraMorph consistently outperforming state-of-the-art unsupervised/self-supervised baselines while remaining very competitive against supervised baselines.
☆ Small Drafts, Big Verdict: Information-Intensive Visual Reasoning via Speculation
Large Vision-Language Models (VLMs) have achieved remarkable progress in multimodal understanding, yet they struggle when reasoning over information-intensive images that densely interleave textual annotations with fine-grained graphical elements. The main challenges lie in precisely localizing critical cues in dense layouts and multi-hop reasoning to integrate dispersed evidence. We propose Speculative Verdict (SV), a training-free framework inspired by speculative decoding that combines multiple lightweight draft experts with a large verdict model. In the draft stage, small VLMs act as draft experts to generate reasoning paths that provide diverse localization candidates; in the verdict stage, a strong VLM synthesizes these paths to produce the final answer, minimizing computational cost while recovering correct answers. To further improve efficiency and accuracy, SV introduces a consensus expert selection mechanism that forwards only high-agreement reasoning paths to the verdict. Empirically, SV achieves consistent gains on challenging information-intensive and high-resolution visual question answering benchmarks, including InfographicVQA, ChartMuseum, ChartQAPro, and HR-Bench 4K. By synthesizing correct insights from multiple partially accurate reasoning paths, SV achieves both error correction and cost-efficiency compared to large proprietary models or training pipelines. Code is available at https://github.com/Tinaliu0123/speculative-verdict
☆ Real Deep Research for AI, Robotics and Beyond
With the rapid growth of research in AI and robotics now producing over 10,000 papers annually it has become increasingly difficult for researchers to stay up to date. Fast evolving trends, the rise of interdisciplinary work, and the need to explore domains beyond one's expertise all contribute to this challenge. To address these issues, we propose a generalizable pipeline capable of systematically analyzing any research area: identifying emerging trends, uncovering cross domain opportunities, and offering concrete starting points for new inquiry. In this work, we present Real Deep Research (RDR) a comprehensive framework applied to the domains of AI and robotics, with a particular focus on foundation models and robotics advancements. We also briefly extend our analysis to other areas of science. The main paper details the construction of the RDR pipeline, while the appendix provides extensive results across each analyzed topic. We hope this work sheds light for researchers working in the field of AI and beyond.
comment: website: https://realdeepresearch.github.io
☆ Video Prediction of Dynamic Physical Simulations With Pixel-Space Spatiotemporal Transformers
Inspired by the performance and scalability of autoregressive large language models (LLMs), transformer-based models have seen recent success in the visual domain. This study investigates a transformer adaptation for video prediction with a simple end-to-end approach, comparing various spatiotemporal self-attention layouts. Focusing on causal modeling of physical simulations over time; a common shortcoming of existing video-generative approaches, we attempt to isolate spatiotemporal reasoning via physical object tracking metrics and unsupervised training on physical simulation datasets. We introduce a simple yet effective pure transformer model for autoregressive video prediction, utilizing continuous pixel-space representations for video prediction. Without the need for complex training strategies or latent feature-learning components, our approach significantly extends the time horizon for physically accurate predictions by up to 50% when compared with existing latent-space approaches, while maintaining comparable performance on common video quality metrics. In addition, we conduct interpretability experiments to identify network regions that encode information useful to perform accurate estimations of PDE simulation parameters via probing models, and find that this generalizes to the estimation of out-of-distribution simulation parameters. This work serves as a platform for further attention-based spatiotemporal modeling of videos via a simple, parameter efficient, and interpretable approach.
comment: 14 pages, 14 figures
☆ ARGenSeg: Image Segmentation with Autoregressive Image Generation Model NeurIPS 2025
We propose a novel AutoRegressive Generation-based paradigm for image Segmentation (ARGenSeg), achieving multimodal understanding and pixel-level perception within a unified framework. Prior works integrating image segmentation into multimodal large language models (MLLMs) typically employ either boundary points representation or dedicated segmentation heads. These methods rely on discrete representations or semantic prompts fed into task-specific decoders, which limits the ability of the MLLM to capture fine-grained visual details. To address these challenges, we introduce a segmentation framework for MLLM based on image generation, which naturally produces dense masks for target objects. We leverage MLLM to output visual tokens and detokenize them into images using an universal VQ-VAE, making the segmentation fully dependent on the pixel-level understanding of the MLLM. To reduce inference latency, we employ a next-scale-prediction strategy to generate required visual tokens in parallel. Extensive experiments demonstrate that our method surpasses prior state-of-the-art approaches on multiple segmentation datasets with a remarkable boost in inference speed, while maintaining strong understanding capabilities.
comment: Accepted to NeurIPS 2025, 18 pages
☆ Compress to Impress: Efficient LLM Adaptation Using a Single Gradient Step on 100 Samples
Recently, Sharma et al. suggested a method called Layer-SElective-Rank reduction (LASER) which demonstrated that pruning high-order components of carefully chosen LLM's weight matrices can boost downstream accuracy -- without any gradient-based fine-tuning. Yet LASER's exhaustive, per-matrix search (each requiring full-dataset forward passes) makes it impractical for rapid deployment. We demonstrate that this overhead can be removed and find that: (i) Only a small, carefully chosen subset of matrices needs to be inspected -- eliminating the layer-by-layer sweep, (ii) The gradient of each matrix's singular values pinpoints which matrices merit reduction, (iii) Increasing the factorization search space by allowing matrices rows to cluster around multiple subspaces and then decomposing each cluster separately further reduces overfitting on the original training data and further lifts accuracy by up to 24.6 percentage points, and finally, (iv) we discover that evaluating on just 100 samples rather than the full training data -- both for computing the indicative gradients and for measuring the final accuracy -- suffices to further reduce the search time; we explain that as adaptation to downstream tasks is dominated by prompting style, not dataset size. As a result, we show that combining these findings yields a fast and robust adaptation algorithm for downstream tasks. Overall, with a single gradient step on 100 examples and a quick scan of the top candidate layers and factorization techniques, we can adapt LLMs to new datasets -- entirely without fine-tuning.
☆ Radar-Camera Fused Multi-Object Tracking: Online Calibration and Common Feature IEEE
This paper presents a Multi-Object Tracking (MOT) framework that fuses radar and camera data to enhance tracking efficiency while minimizing manual interventions. Contrary to many studies that underutilize radar and assign it a supplementary role--despite its capability to provide accurate range/depth information of targets in a world 3D coordinate system--our approach positions radar in a crucial role. Meanwhile, this paper utilizes common features to enable online calibration to autonomously associate detections from radar and camera. The main contributions of this work include: (1) the development of a radar-camera fusion MOT framework that exploits online radar-camera calibration to simplify the integration of detection results from these two sensors, (2) the utilization of common features between radar and camera data to accurately derive real-world positions of detected objects, and (3) the adoption of feature matching and category-consistency checking to surpass the limitations of mere position matching in enhancing sensor association accuracy. To the best of our knowledge, we are the first to investigate the integration of radar-camera common features and their use in online calibration for achieving MOT. The efficacy of our framework is demonstrated by its ability to streamline the radar-camera mapping process and improve tracking precision, as evidenced by real-world experiments conducted in both controlled environments and actual traffic scenarios. Code is available at https://github.com/radar-lab/Radar_Camera_MOT
comment: accepted to IEEE Transactions on Intelligent Transportation Systems (T-ITS)
☆ CUPID: Pose-Grounded Generative 3D Reconstruction from a Single Image
This work proposes a new generation-based 3D reconstruction method, named Cupid, that accurately infers the camera pose, 3D shape, and texture of an object from a single 2D image. Cupid casts 3D reconstruction as a conditional sampling process from a learned distribution of 3D objects, and it jointly generates voxels and pixel-voxel correspondences, enabling robust pose and shape estimation under a unified generative framework. By representing both input camera poses and 3D shape as a distribution in a shared 3D latent space, Cupid adopts a two-stage flow matching pipeline: (1) a coarse stage that produces initial 3D geometry with associated 2D projections for pose recovery; and (2) a refinement stage that integrates pose-aligned image features to enhance structural fidelity and appearance details. Extensive experiments demonstrate Cupid outperforms leading 3D reconstruction methods with an over 3 dB PSNR gain and an over 10% Chamfer Distance reduction, while matching monocular estimators on pose accuracy and delivering superior visual fidelity over baseline 3D generative models. For an immersive view of the 3D results generated by Cupid, please visit cupid3d.github.io.
comment: project page at https://cupid3d.github.io
☆ AlphaFlow: Understanding and Improving MeanFlow Models
MeanFlow has recently emerged as a powerful framework for few-step generative modeling trained from scratch, but its success is not yet fully understood. In this work, we show that the MeanFlow objective naturally decomposes into two parts: trajectory flow matching and trajectory consistency. Through gradient analysis, we find that these terms are strongly negatively correlated, causing optimization conflict and slow convergence. Motivated by these insights, we introduce $\alpha$-Flow, a broad family of objectives that unifies trajectory flow matching, Shortcut Model, and MeanFlow under one formulation. By adopting a curriculum strategy that smoothly anneals from trajectory flow matching to MeanFlow, $\alpha$-Flow disentangles the conflicting objectives, and achieves better convergence. When trained from scratch on class-conditional ImageNet-1K 256x256 with vanilla DiT backbones, $\alpha$-Flow consistently outperforms MeanFlow across scales and settings. Our largest $\alpha$-Flow-XL/2+ model achieves new state-of-the-art results using vanilla DiT backbones, with FID scores of 2.58 (1-NFE) and 2.15 (2-NFE).
☆ DyPE: Dynamic Position Extrapolation for Ultra High Resolution Diffusion
Diffusion Transformer models can generate images with remarkable fidelity and detail, yet training them at ultra-high resolutions remains extremely costly due to the self-attention mechanism's quadratic scaling with the number of image tokens. In this paper, we introduce Dynamic Position Extrapolation (DyPE), a novel, training-free method that enables pre-trained diffusion transformers to synthesize images at resolutions far beyond their training data, with no additional sampling cost. DyPE takes advantage of the spectral progression inherent to the diffusion process, where low-frequency structures converge early, while high-frequencies take more steps to resolve. Specifically, DyPE dynamically adjusts the model's positional encoding at each diffusion step, matching their frequency spectrum with the current stage of the generative process. This approach allows us to generate images at resolutions that exceed the training resolution dramatically, e.g., 16 million pixels using FLUX. On multiple benchmarks, DyPE consistently improves performance and achieves state-of-the-art fidelity in ultra-high-resolution image generation, with gains becoming even more pronounced at higher resolutions. Project page is available at https://noamissachar.github.io/DyPE/.
☆ MEIcoder: Decoding Visual Stimuli from Neural Activity by Leveraging Most Exciting Inputs NeurIPS 2025
Decoding visual stimuli from neural population activity is crucial for understanding the brain and for applications in brain-machine interfaces. However, such biological data is often scarce, particularly in primates or humans, where high-throughput recording techniques, such as two-photon imaging, remain challenging or impossible to apply. This, in turn, poses a challenge for deep learning decoding techniques. To overcome this, we introduce MEIcoder, a biologically informed decoding method that leverages neuron-specific most exciting inputs (MEIs), a structural similarity index measure loss, and adversarial training. MEIcoder achieves state-of-the-art performance in reconstructing visual stimuli from single-cell activity in primary visual cortex (V1), especially excelling on small datasets with fewer recorded neurons. Using ablation studies, we demonstrate that MEIs are the main drivers of the performance, and in scaling experiments, we show that MEIcoder can reconstruct high-fidelity natural-looking images from as few as 1,000-2,500 neurons and less than 1,000 training data points. We also propose a unified benchmark with over 160,000 samples to foster future research. Our results demonstrate the feasibility of reliable decoding in early visual system and provide practical insights for neuroscience and neuroengineering applications.
comment: Accepted to NeurIPS 2025
☆ ACS-SegNet: An Attention-Based CNN-SegFormer Segmentation Network for Tissue Segmentation in Histopathology
Automated histopathological image analysis plays a vital role in computer-aided diagnosis of various diseases. Among developed algorithms, deep learning-based approaches have demonstrated excellent performance in multiple tasks, including semantic tissue segmentation in histological images. In this study, we propose a novel approach based on attention-driven feature fusion of convolutional neural networks (CNNs) and vision transformers (ViTs) within a unified dual-encoder model to improve semantic segmentation performance. Evaluation on two publicly available datasets showed that our model achieved {\mu}IoU/{\mu}Dice scores of 76.79%/86.87% on the GCPS dataset and 64.93%/76.60% on the PUMA dataset, outperforming state-of-the-art and baseline benchmarks. The implementation of our method is publicly available in a GitHub repository: https://github.com/NimaTorbati/ACS-SegNet
comment: 5 pages
☆ AutoScape: Geometry-Consistent Long-Horizon Scene Generation ICCV 2025
This paper proposes AutoScape, a long-horizon driving scene generation framework. At its core is a novel RGB-D diffusion model that iteratively generates sparse, geometrically consistent keyframes, serving as reliable anchors for the scene's appearance and geometry. To maintain long-range geometric consistency, the model 1) jointly handles image and depth in a shared latent space, 2) explicitly conditions on the existing scene geometry (i.e., rendered point clouds) from previously generated keyframes, and 3) steers the sampling process with a warp-consistent guidance. Given high-quality RGB-D keyframes, a video diffusion model then interpolates between them to produce dense and coherent video frames. AutoScape generates realistic and geometrically consistent driving videos of over 20 seconds, improving the long-horizon FID and FVD scores over the prior state-of-the-art by 48.6\% and 43.0\%, respectively.
comment: ICCV 2025. Project page: https://auto-scape.github.io
☆ ALICE-LRI: A General Method for Lossless Range Image Generation for Spinning LiDAR Sensors without Calibration Metadata
3D LiDAR sensors are essential for autonomous navigation, environmental monitoring, and precision mapping in remote sensing applications. To efficiently process the massive point clouds generated by these sensors, LiDAR data is often projected into 2D range images that organize points by their angular positions and distances. While these range image representations enable efficient processing, conventional projection methods suffer from fundamental geometric inconsistencies that cause irreversible information loss, compromising high-fidelity applications. We present ALICE-LRI (Automatic LiDAR Intrinsic Calibration Estimation for Lossless Range Images), the first general, sensor-agnostic method that achieves lossless range image generation from spinning LiDAR point clouds without requiring manufacturer metadata or calibration files. Our algorithm automatically reverse-engineers the intrinsic geometry of any spinning LiDAR sensor by inferring critical parameters including laser beam configuration, angular distributions, and per-beam calibration corrections, enabling lossless projection and complete point cloud reconstruction with zero point loss. Comprehensive evaluation across the complete KITTI and DurLAR datasets demonstrates that ALICE-LRI achieves perfect point preservation, with zero points lost across all point clouds. Geometric accuracy is maintained well within sensor precision limits, establishing geometric losslessness with real-time performance. We also present a compression case study that validates substantial downstream benefits, demonstrating significant quality improvements in practical applications. This paradigm shift from approximate to lossless LiDAR projections opens new possibilities for high-precision remote sensing applications requiring complete geometric preservation.
☆ Mixing Importance with Diversity: Joint Optimization for KV Cache Compression in Large Vision-Language Models
Recent large vision-language models (LVLMs) demonstrate remarkable capabilities in processing extended multi-modal sequences, yet the resulting key-value (KV) cache expansion creates a critical memory bottleneck that fundamentally limits deployment scalability. While existing KV cache compression methods focus on retaining high-importance KV pairs to minimize storage, they often overlook the modality-specific semantic redundancy patterns that emerge distinctively in multi-modal KV caches. In this work, we first analyze how, beyond simple importance, the KV cache in LVLMs exhibits varying levels of redundancy across attention heads. We show that relying solely on importance can only cover a subset of the full KV cache information distribution, leading to potential loss of semantic coverage. To address this, we propose \texttt{MixKV}, a novel method that mixes importance with diversity for optimized KV cache compression in LVLMs. \texttt{MixKV} adapts to head-wise semantic redundancy, selectively balancing diversity and importance when compressing KV pairs. Extensive experiments demonstrate that \texttt{MixKV} consistently enhances existing methods across multiple LVLMs. Under extreme compression (budget=64), \texttt{MixKV} improves baseline methods by an average of \textbf{5.1\%} across five multi-modal understanding benchmarks and achieves remarkable gains of \textbf{8.0\%} and \textbf{9.0\%} for SnapKV and AdaKV on GUI grounding tasks, all while maintaining comparable inference efficiency. Furthermore, \texttt{MixKV} extends seamlessly to LLMs with comparable performance gains. Our code is available at \href{https://github.com/xuyang-liu16/MixKV}{\textcolor{citeblue}{https://github.com/xuyang-liu16/MixKV}}.
comment: Our code is available at https://github.com/xuyang-liu16/MixKV
☆ Diagnosing Visual Reasoning: Challenges, Insights, and a Path Forward
Multimodal large language models (MLLMs) that integrate visual and textual reasoning leverage chain-of-thought (CoT) prompting to tackle complex visual tasks, yet continue to exhibit visual hallucinations and an over-reliance on textual priors. We present a systematic diagnosis of state-of-the-art vision-language models using a three-stage evaluation framework, uncovering key failure modes. To address these, we propose an agent-based architecture that combines LLM reasoning with lightweight visual modules, enabling fine-grained analysis and iterative refinement of reasoning chains. Our results highlight future visual reasoning models should focus on integrating a broader set of specialized tools for analyzing visual content. Our system achieves significant gains (+10.3 on MMMU, +6.0 on MathVista over a 7B baseline), matching or surpassing much larger models. We will release our framework and evaluation suite to facilitate future research.
comment: 5 pages
☆ Efficient Multi-bit Quantization Network Training via Weight Bias Correction and Bit-wise Coreset Sampling
Multi-bit quantization networks enable flexible deployment of deep neural networks by supporting multiple precision levels within a single model. However, existing approaches suffer from significant training overhead as full-dataset updates are repeated for each supported bit-width, resulting in a cost that scales linearly with the number of precisions. Additionally, extra fine-tuning stages are often required to support additional or intermediate precision options, further compounding the overall training burden. To address this issue, we propose two techniques that greatly reduce the training overhead without compromising model utility: (i) Weight bias correction enables shared batch normalization and eliminates the need for fine-tuning by neutralizing quantization-induced bias across bit-widths and aligning activation distributions; and (ii) Bit-wise coreset sampling strategy allows each child model to train on a compact, informative subset selected via gradient-based importance scores by exploiting the implicit knowledge transfer phenomenon. Experiments on CIFAR-10/100, TinyImageNet, and ImageNet-1K with both ResNet and ViT architectures demonstrate that our method achieves competitive or superior accuracy while reducing training time up to 7.88x. Our code is released at https://github.com/a2jinhee/EMQNet_jk.
☆ HybridSOMSpikeNet: A Deep Model with Differentiable Soft Self-Organizing Maps and Spiking Dynamics for Waste Classification
Accurate waste classification is vital for achieving sustainable waste management and reducing the environmental footprint of urbanization. Misclassification of recyclable materials contributes to landfill accumulation, inefficient recycling, and increased greenhouse gas emissions. To address these issues, this study introduces HybridSOMSpikeNet, a hybrid deep learning framework that integrates convolutional feature extraction, differentiable self-organization, and spiking-inspired temporal processing to enable intelligent and energy-efficient waste classification. The proposed model employs a pre-trained ResNet-152 backbone to extract deep spatial representations, followed by a Differentiable Soft Self-Organizing Map (Soft-SOM) that enhances topological clustering and interpretability. A spiking neural head accumulates temporal activations over discrete time steps, improving robustness and generalization. Trained on a ten-class waste dataset, HybridSOMSpikeNet achieved a test accuracy of 97.39%, outperforming several state-of-the-art architectures while maintaining a lightweight computational profile suitable for real-world deployment. Beyond its technical innovations, the framework provides tangible environmental benefits. By enabling precise and automated waste segregation, it supports higher recycling efficiency, reduces contamination in recyclable streams, and minimizes the ecological and operational costs of waste processing. The approach aligns with global sustainability priorities, particularly the United Nations Sustainable Development Goals (SDG 11 and SDG 12), by contributing to cleaner cities, circular economy initiatives, and intelligent environmental management systems.
☆ UltraHR-100K: Enhancing UHR Image Synthesis with A Large-Scale High-Quality Dataset NeurIPS 2025
Ultra-high-resolution (UHR) text-to-image (T2I) generation has seen notable progress. However, two key challenges remain : 1) the absence of a large-scale high-quality UHR T2I dataset, and (2) the neglect of tailored training strategies for fine-grained detail synthesis in UHR scenarios. To tackle the first challenge, we introduce \textbf{UltraHR-100K}, a high-quality dataset of 100K UHR images with rich captions, offering diverse content and strong visual fidelity. Each image exceeds 3K resolution and is rigorously curated based on detail richness, content complexity, and aesthetic quality. To tackle the second challenge, we propose a frequency-aware post-training method that enhances fine-detail generation in T2I diffusion models. Specifically, we design (i) \textit{Detail-Oriented Timestep Sampling (DOTS)} to focus learning on detail-critical denoising steps, and (ii) \textit{Soft-Weighting Frequency Regularization (SWFR)}, which leverages Discrete Fourier Transform (DFT) to softly constrain frequency components, encouraging high-frequency detail preservation. Extensive experiments on our proposed UltraHR-eval4K benchmarks demonstrate that our approach significantly improves the fine-grained detail quality and overall fidelity of UHR image generation. The code is available at \href{https://github.com/NJU-PCALab/UltraHR-100k}{here}.
comment: Accepted by NeurIPS 2025
☆ Better Tokens for Better 3D: Advancing Vision-Language Modeling in 3D Medical Imaging NeurIPS 2025
Recent progress in vision-language modeling for 3D medical imaging has been fueled by large-scale computed tomography (CT) corpora with paired free-text reports, stronger architectures, and powerful pretrained models. This has enabled applications such as automated report generation and text-conditioned 3D image synthesis. Yet, current approaches struggle with high-resolution, long-sequence volumes: contrastive pretraining often yields vision encoders that are misaligned with clinical language, and slice-wise tokenization blurs fine anatomy, reducing diagnostic performance on downstream tasks. We introduce BTB3D (Better Tokens for Better 3D), a causal convolutional encoder-decoder that unifies 2D and 3D training and inference while producing compact, frequency-aware volumetric tokens. A three-stage training curriculum enables (i) local reconstruction, (ii) overlapping-window tiling, and (iii) long-context decoder refinement, during which the model learns from short slice excerpts yet generalizes to scans exceeding 300 slices without additional memory overhead. BTB3D sets a new state-of-the-art on two key tasks: it improves BLEU scores and increases clinical F1 by 40% over CT2Rep, CT-CHAT, and Merlin for report generation; and it reduces FID by 75% and halves FVD compared to GenerateCT and MedSyn for text-to-CT synthesis, producing anatomically consistent 512*512*241 volumes. These results confirm that precise three-dimensional tokenization, rather than larger language backbones alone, is essential for scalable vision-language modeling in 3D medical imaging. The codebase is available at: https://github.com/ibrahimethemhamamci/BTB3D
comment: NeurIPS 2025
☆ Deep Learning in Dental Image Analysis: A Systematic Review of Datasets, Methodologies, and Emerging Challenges
Efficient analysis and processing of dental images are crucial for dentists to achieve accurate diagnosis and optimal treatment planning. However, dental imaging inherently poses several challenges, such as low contrast, metallic artifacts, and variations in projection angles. Combined with the subjectivity arising from differences in clinicians' expertise, manual interpretation often proves time-consuming and prone to inconsistency. Artificial intelligence (AI)-based automated dental image analysis (DIA) offers a promising solution to these issues and has become an integral part of computer-aided dental diagnosis and treatment. Among various AI technologies, deep learning (DL) stands out as the most widely applied and influential approach due to its superior feature extraction and representation capabilities. To comprehensively summarize recent progress in this field, we focus on the two fundamental aspects of DL research-datasets and models. In this paper, we systematically review 260 studies on DL applications in DIA, including 49 papers on publicly available dental datasets and 211 papers on DL-based algorithms. We first introduce the basic concepts of dental imaging and summarize the characteristics and acquisition methods of existing datasets. Then, we present the foundational techniques of DL and categorize relevant models and algorithms according to different DIA tasks, analyzing their network architectures, optimization strategies, training methods, and performance. Furthermore, we summarize commonly used training and evaluation metrics in the DIA domain. Finally, we discuss the current challenges of existing research and outline potential future directions. We hope that this work provides a valuable and systematic reference for researchers in this field. All supplementary materials and detailed comparison tables will be made publicly available on GitHub.
comment: 52 pages, 24 figures. Under Review
☆ SeViCES: Unifying Semantic-Visual Evidence Consensus for Long Video Understanding
Long video understanding remains challenging due to its complex, diverse, and temporally scattered content. Although video large language models (Video-LLMs) can process videos lasting tens of minutes, applying them to truly long sequences is computationally prohibitive and often leads to unfocused or inconsistent reasoning. A promising solution is to select only the most informative frames, yet existing approaches typically ignore temporal dependencies or rely on unimodal evidence, limiting their ability to provide complete and query-relevant context. We propose a Semantic-Visual Consensus Evidence Selection (SeViCES) framework for effective and reliable long video understanding. SeViCES is training-free and model-agnostic, and introduces two key components. The Semantic-Visual Consensus Frame Selection (SVCFS) module selects frames through (1) a temporal-aware semantic branch that leverages LLM reasoning over captions, and (2) a cluster-guided visual branch that aligns embeddings with semantic scores via mutual information. The Answer Consensus Refinement (ACR) module further resolves inconsistencies between semantic- and visual-based predictions by fusing evidence and constraining the answer space. Extensive experiments on long video understanding benchmarks show that SeViCES consistently outperforms state-of-the-art methods in both accuracy and robustness, demonstrating the importance of consensus-driven evidence selection for Video-LLMs.
☆ OnlineSplatter: Pose-Free Online 3D Reconstruction for Free-Moving Objects NeurIPS 2025
Free-moving object reconstruction from monocular video remains challenging, particularly without reliable pose or depth cues and under arbitrary object motion. We introduce OnlineSplatter, a novel online feed-forward framework generating high-quality, object-centric 3D Gaussians directly from RGB frames without requiring camera pose, depth priors, or bundle optimization. Our approach anchors reconstruction using the first frame and progressively refines the object representation through a dense Gaussian primitive field, maintaining constant computational cost regardless of video sequence length. Our core contribution is a dual-key memory module combining latent appearance-geometry keys with explicit directional keys, robustly fusing current frame features with temporally aggregated object states. This design enables effective handling of free-moving objects via spatial-guided memory readout and an efficient sparsification mechanism, ensuring comprehensive yet compact object coverage. Evaluations on real-world datasets demonstrate that OnlineSplatter significantly outperforms state-of-the-art pose-free reconstruction baselines, consistently improving with more observations while maintaining constant memory and runtime.
comment: NeurIPS 2025 (Spotlight)
☆ Unsupervised Domain Adaptation via Similarity-based Prototypes for Cross-Modality Segmentation MICCAI 2021
Deep learning models have achieved great success on various vision challenges, but a well-trained model would face drastic performance degradation when applied to unseen data. Since the model is sensitive to domain shift, unsupervised domain adaptation attempts to reduce the domain gap and avoid costly annotation of unseen domains. This paper proposes a novel framework for cross-modality segmentation via similarity-based prototypes. In specific, we learn class-wise prototypes within an embedding space, then introduce a similarity constraint to make these prototypes representative for each semantic class while separable from different classes. Moreover, we use dictionaries to store prototypes extracted from different images, which prevents the class-missing problem and enables the contrastive learning of prototypes, and further improves performance. Extensive experiments show that our method achieves better results than other state-of-the-art methods.
comment: MICCAI 2021
☆ GenColorBench: A Color Evaluation Benchmark for Text-to-Image Generation Models
Recent years have seen impressive advances in text-to-image generation, with image generative or unified models producing high-quality images from text. Yet these models still struggle with fine-grained color controllability, often failing to accurately match colors specified in text prompts. While existing benchmarks evaluate compositional reasoning and prompt adherence, none systematically assess color precision. Color is fundamental to human visual perception and communication, critical for applications from art to design workflows requiring brand consistency. However, current benchmarks either neglect color or rely on coarse assessments, missing key capabilities such as interpreting RGB values or aligning with human expectations. To this end, we propose GenColorBench, the first comprehensive benchmark for text-to-image color generation, grounded in color systems like ISCC-NBS and CSS3/X11, including numerical colors which are absent elsewhere. With 44K color-focused prompts covering 400+ colors, it reveals models' true capabilities via perceptual and automated assessments. Evaluations of popular text-to-image models using GenColorBench show performance variations, highlighting which color conventions models understand best and identifying failure modes. Our GenColorBench assessments will guide improvements in precise color generation. The benchmark will be made public upon acceptance.
☆ Open-o3 Video: Grounded Video Reasoning with Explicit Spatio-Temporal Evidence
Most video reasoning models only generate textual reasoning traces without indicating when and where key evidence appears. Recent models such as OpenAI-o3 have sparked wide interest in evidence-centered reasoning for images, yet extending this ability to videos is more challenging, as it requires joint temporal tracking and spatial localization across dynamic scenes. We introduce Open-o3 Video, a non-agent framework that integrates explicit spatio-temporal evidence into video reasoning, and carefully collect training data and design training strategies to address the aforementioned challenges. The model highlights key timestamps, objects, and bounding boxes alongside its answers, allowing reasoning to be grounded in concrete visual observations. To enable this functionality, we first curate and build two high-quality datasets, STGR-CoT-30k for SFT and STGR-RL-36k for RL, with carefully constructed temporal and spatial annotations, since most existing datasets offer either temporal spans for videos or spatial boxes on images, lacking unified spatio-temporal supervision and reasoning traces. Then, we adopt a cold-start reinforcement learning strategy with multiple specially designed rewards that jointly encourage answer accuracy, temporal alignment, and spatial precision. On V-STAR benchmark, Open-o3 Video achieves state-of-the-art performance, raising mAM by 14.4% and mLGM by 24.2% on the Qwen2.5-VL baseline. Consistent improvements are also observed on a broad range of video understanding benchmarks, including VideoMME, WorldSense, VideoMMMU, and TVGBench. Beyond accuracy, the reasoning traces produced by Open-o3 Video also provide valuable signals for test-time scaling, enabling confidence-aware verification and improving answer reliability.
☆ EmbodiedBrain: Expanding Performance Boundaries of Task Planning for Embodied Intelligence
The realization of Artificial General Intelligence (AGI) necessitates Embodied AI agents capable of robust spatial perception, effective task planning, and adaptive execution in physical environments. However, current large language models (LLMs) and multimodal LLMs (MLLMs) for embodied tasks suffer from key limitations, including a significant gap between model design and agent requirements, an unavoidable trade-off between real-time latency and performance, and the use of unauthentic, offline evaluation metrics. To address these challenges, we propose EmbodiedBrain, a novel vision-language foundation model available in both 7B and 32B parameter sizes. Our framework features an agent-aligned data structure and employs a powerful training methodology that integrates large-scale Supervised Fine-Tuning (SFT) with Step-Augumented Group Relative Policy Optimization (Step-GRPO), which boosts long-horizon task success by integrating preceding steps as Guided Precursors. Furthermore, we incorporate a comprehensive reward system, including a Generative Reward Model (GRM) accelerated at the infrastructure level, to improve training efficiency. For enable thorough validation, we establish a three-part evaluation system encompassing General, Planning, and End-to-End Simulation Benchmarks, highlighted by the proposal and open-sourcing of a novel, challenging simulation environment. Experimental results demonstrate that EmbodiedBrain achieves superior performance across all metrics, establishing a new state-of-the-art for embodied foundation models. Towards paving the way for the next generation of generalist embodied agents, we open-source all of our data, model weight, and evaluating methods, which are available at https://zterobot.github.io/EmbodiedBrain.github.io.
☆ From Far and Near: Perceptual Evaluation of Crowd Representations Across Levels of Detail
In this paper, we investigate how users perceive the visual quality of crowd character representations at different levels of detail (LoD) and viewing distances. Each representation: geometric meshes, image-based impostors, Neural Radiance Fields (NeRFs), and 3D Gaussians, exhibits distinct trade-offs between visual fidelity and computational performance. Our qualitative and quantitative results provide insights to guide the design of perceptually optimized LoD strategies for crowd rendering.
☆ From Cheap to Pro: A Learning-based Adaptive Camera Parameter Network for Professional-Style Imaging
Consumer-grade camera systems often struggle to maintain stable image quality under complex illumination conditions such as low light, high dynamic range, and backlighting, as well as spatial color temperature variation. These issues lead to underexposure, color casts, and tonal inconsistency, which degrade the performance of downstream vision tasks. To address this, we propose ACamera-Net, a lightweight and scene-adaptive camera parameter adjustment network that directly predicts optimal exposure and white balance from RAW inputs. The framework consists of two modules: ACamera-Exposure, which estimates ISO to alleviate underexposure and contrast loss, and ACamera-Color, which predicts correlated color temperature and gain factors for improved color consistency. Optimized for real-time inference on edge devices, ACamera-Net can be seamlessly integrated into imaging pipelines. Trained on diverse real-world data with annotated references, the model generalizes well across lighting conditions. Extensive experiments demonstrate that ACamera-Net consistently enhances image quality and stabilizes perception outputs, outperforming conventional auto modes and lightweight baselines without relying on additional image enhancement modules.
comment: 13 pages. Code and project page will be released
☆ Deep Learning-Powered Visual SLAM Aimed at Assisting Visually Impaired Navigation
Despite advancements in SLAM technologies, robust operation under challenging conditions such as low-texture, motion-blur, or challenging lighting remains an open challenge. Such conditions are common in applications such as assistive navigation for the visually impaired. These challenges undermine localization accuracy and tracking stability, reducing navigation reliability and safety. To overcome these limitations, we present SELM-SLAM3, a deep learning-enhanced visual SLAM framework that integrates SuperPoint and LightGlue for robust feature extraction and matching. We evaluated our framework using TUM RGB-D, ICL-NUIM, and TartanAir datasets, which feature diverse and challenging scenarios. SELM-SLAM3 outperforms conventional ORB-SLAM3 by an average of 87.84% and exceeds state-of-the-art RGB-D SLAM systems by 36.77%. Our framework demonstrates enhanced performance under challenging conditions, such as low-texture scenes and fast motion, providing a reliable platform for developing navigation aids for the visually impaired.
comment: 8 pages, 7 figures, 4 tables
☆ Blur2seq: Blind Deblurring and Camera Trajectory Estimation from a Single Camera Motion-blurred Image
Motion blur caused by camera shake, particularly under large or rotational movements, remains a major challenge in image restoration. We propose a deep learning framework that jointly estimates the latent sharp image and the underlying camera motion trajectory from a single blurry image. Our method leverages the Projective Motion Blur Model (PMBM), implemented efficiently using a differentiable blur creation module compatible with modern networks. A neural network predicts a full 3D rotation trajectory, which guides a model-based restoration network trained end-to-end. This modular architecture provides interpretability by revealing the camera motion that produced the blur. Moreover, this trajectory enables the reconstruction of the sequence of sharp images that generated the observed blurry image. To further refine results, we optimize the trajectory post-inference via a reblur loss, improving consistency between the blurry input and the restored output. Extensive experiments show that our method achieves state-of-the-art performance on both synthetic and real datasets, particularly in cases with severe or spatially variant blur, where end-to-end deblurring networks struggle. Code and trained models are available at https://github.com/GuillermoCarbajal/Blur2Seq/
☆ Fake-in-Facext: Towards Fine-Grained Explainable DeepFake Analysis
The advancement of Multimodal Large Language Models (MLLMs) has bridged the gap between vision and language tasks, enabling the implementation of Explainable DeepFake Analysis (XDFA). However, current methods suffer from a lack of fine-grained awareness: the description of artifacts in data annotation is unreliable and coarse-grained, and the models fail to support the output of connections between textual forgery explanations and the visual evidence of artifacts, as well as the input of queries for arbitrary facial regions. As a result, their responses are not sufficiently grounded in Face Visual Context (Facext). To address this limitation, we propose the Fake-in-Facext (FiFa) framework, with contributions focusing on data annotation and model construction. We first define a Facial Image Concept Tree (FICT) to divide facial images into fine-grained regional concepts, thereby obtaining a more reliable data annotation pipeline, FiFa-Annotator, for forgery explanation. Based on this dedicated data annotation, we introduce a novel Artifact-Grounding Explanation (AGE) task, which generates textual forgery explanations interleaved with segmentation masks of manipulated artifacts. We propose a unified multi-task learning architecture, FiFa-MLLM, to simultaneously support abundant multimodal inputs and outputs for fine-grained Explainable DeepFake Analysis. With multiple auxiliary supervision tasks, FiFa-MLLM can outperform strong baselines on the AGE task and achieve SOTA performance on existing XDFA datasets. The code and data will be made open-source at https://github.com/lxq1000/Fake-in-Facext.
comment: 25 pages, 9 figures, 17 tables
☆ Metis-HOME: Hybrid Optimized Mixture-of-Experts for Multimodal Reasoning
Inspired by recent advancements in LLM reasoning, the field of multimodal reasoning has seen remarkable progress, achieving significant performance gains on intricate tasks such as mathematical problem-solving. Despite this progress, current multimodal large reasoning models exhibit two key limitations. They tend to employ computationally expensive reasoning even for simple queries, leading to inefficiency. Furthermore, this focus on specialized reasoning often impairs their broader, more general understanding capabilities. In this paper, we propose Metis-HOME: a Hybrid Optimized Mixture-of-Experts framework designed to address this trade-off. Metis-HOME enables a ''Hybrid Thinking'' paradigm by structuring the original dense model into two distinct expert branches: a thinking branch tailored for complex, multi-step reasoning, and a non-thinking branch optimized for rapid, direct inference on tasks like general VQA and OCR. A lightweight, trainable router dynamically allocates queries to the most suitable expert. We instantiate Metis-HOME by adapting the Qwen2.5-VL-7B into an MoE architecture. Comprehensive evaluations reveal that our approach not only substantially enhances complex reasoning abilities but also improves the model's general capabilities, reversing the degradation trend observed in other reasoning-specialized models. Our work establishes a new paradigm for building powerful and versatile MLLMs, effectively resolving the prevalent reasoning-vs-generalization dilemma.
☆ EchoDistill: Bidirectional Concept Distillation for One-Step Diffusion Personalization
Recent advances in accelerating text-to-image (T2I) diffusion models have enabled the synthesis of high-fidelity images even in a single step. However, personalizing these models to incorporate novel concepts remains a challenge due to the limited capacity of one-step models to capture new concept distributions effectively. We propose a bidirectional concept distillation framework, EchoDistill, to enable one-step diffusion personalization (1-SDP). Our approach involves an end-to-end training process where a multi-step diffusion model (teacher) and a one-step diffusion model (student) are trained simultaneously. The concept is first distilled from the teacher model to the student, and then echoed back from the student to the teacher. During the EchoDistill, we share the text encoder between the two models to ensure consistent semantic understanding. Following this, the student model is optimized with adversarial losses to align with the real image distribution and with alignment losses to maintain consistency with the teacher's output. Furthermore, we introduce the bidirectional echoing refinement strategy, wherein the student model leverages its faster generation capability to feedback to the teacher model. This bidirectional concept distillation mechanism not only enhances the student ability to personalize novel concepts but also improves the generative quality of the teacher model. Our experiments demonstrate that this collaborative framework significantly outperforms existing personalization methods over the 1-SDP setup, establishing a novel paradigm for rapid and effective personalization in T2I diffusion models.
comment: Project page available at https://liulisixin.github.io/EchoDistill-page/
☆ Reliable and Reproducible Demographic Inference for Fairness in Face Analysis
Fairness evaluation in face analysis systems (FAS) typically depends on automatic demographic attribute inference (DAI), which itself relies on predefined demographic segmentation. However, the validity of fairness auditing hinges on the reliability of the DAI process. We begin by providing a theoretical motivation for this dependency, showing that improved DAI reliability leads to less biased and lower-variance estimates of FAS fairness. To address this, we propose a fully reproducible DAI pipeline that replaces conventional end-to-end training with a modular transfer learning approach. Our design integrates pretrained face recognition encoders with non-linear classification heads. We audit this pipeline across three dimensions: accuracy, fairness, and a newly introduced notion of robustness, defined via intra-identity consistency. The proposed robustness metric is applicable to any demographic segmentation scheme. We benchmark the pipeline on gender and ethnicity inference across multiple datasets and training setups. Our results show that the proposed method outperforms strong baselines, particularly on ethnicity, which is the more challenging attribute. To promote transparency and reproducibility, we will publicly release the training dataset metadata, full codebase, pretrained models, and evaluation toolkit. This work contributes a reliable foundation for demographic inference in fairness auditing.
☆ Conan: Progressive Learning to Reason Like a Detective over Multi-Scale Visual Evidence
Video reasoning, which requires multi-step deduction across frames, remains a major challenge for multimodal large language models (MLLMs). While reinforcement learning (RL)-based methods enhance reasoning capabilities, they often rely on text-only chains that yield ungrounded or hallucinated conclusions. Conversely, frame-retrieval approaches introduce visual grounding but still struggle with inaccurate evidence localization. To address these challenges, we present Conan, a framework for evidence-grounded multi-step video reasoning. Conan identifies contextual and evidence frames, reasons over cross-frame clues, and adaptively decides when to conclude or explore further. To achieve this, we (1) construct Conan-91K, a large-scale dataset of automatically generated reasoning traces that includes frame identification, evidence reasoning, and action decision, and (2) design a multi-stage progressive cold-start strategy combined with an Identification-Reasoning-Action (AIR) RLVR training framework to jointly enhance multi-step visual reasoning. Extensive experiments on six multi-step reasoning benchmarks demonstrate that Conan surpasses the baseline Qwen2.5-VL-7B-Instruct by an average of over 10% in accuracy, achieving state-of-the-art performance. Furthermore, Conan generalizes effectively to long-video understanding tasks, validating its strong scalability and robustness.
☆ Transferable Black-Box One-Shot Forging of Watermarks via Image Preference Models NeurIPS 2025
Recent years have seen a surge in interest in digital content watermarking techniques, driven by the proliferation of generative models and increased legal pressure. With an ever-growing percentage of AI-generated content available online, watermarking plays an increasingly important role in ensuring content authenticity and attribution at scale. There have been many works assessing the robustness of watermarking to removal attacks, yet, watermark forging, the scenario when a watermark is stolen from genuine content and applied to malicious content, remains underexplored. In this work, we investigate watermark forging in the context of widely used post-hoc image watermarking. Our contributions are as follows. First, we introduce a preference model to assess whether an image is watermarked. The model is trained using a ranking loss on purely procedurally generated images without any need for real watermarks. Second, we demonstrate the model's capability to remove and forge watermarks by optimizing the input image through backpropagation. This technique requires only a single watermarked image and works without knowledge of the watermarking model, making our attack much simpler and more practical than attacks introduced in related work. Third, we evaluate our proposed method on a variety of post-hoc image watermarking models, demonstrating that our approach can effectively forge watermarks, questioning the security of current watermarking approaches. Our code and further resources are publicly available.
comment: NeurIPS 2025
☆ Dynamic Weight Adjustment for Knowledge Distillation: Leveraging Vision Transformer for High-Accuracy Lung Cancer Detection and Real-Time Deployment
This paper presents the FuzzyDistillViT-MobileNet model, a novel approach for lung cancer (LC) classification, leveraging dynamic fuzzy logic-driven knowledge distillation (KD) to address uncertainty and complexity in disease diagnosis. Unlike traditional models that rely on static KD with fixed weights, our method dynamically adjusts the distillation weight using fuzzy logic, enabling the student model to focus on high-confidence regions while reducing attention to ambiguous areas. This dynamic adjustment improves the model ability to handle varying uncertainty levels across different regions of LC images. We employ the Vision Transformer (ViT-B32) as the instructor model, which effectively transfers knowledge to the student model, MobileNet, enhancing the student generalization capabilities. The training process is further optimized using a dynamic wait adjustment mechanism that adapts the training procedure for improved convergence and performance. To enhance image quality, we introduce pixel-level image fusion improvement techniques such as Gamma correction and Histogram Equalization. The processed images (Pix1 and Pix2) are fused using a wavelet-based fusion method to improve image resolution and feature preservation. This fusion method uses the wavedec2 function to standardize images to a 224x224 resolution, decompose them into multi-scale frequency components, and recursively average coefficients at each level for better feature representation. To address computational efficiency, Genetic Algorithm (GA) is used to select the most suitable pre-trained student model from a pool of 12 candidates, balancing model performance with computational cost. The model is evaluated on two datasets, including LC25000 histopathological images (99.16% accuracy) and IQOTH/NCCD CT-scan images (99.54% accuracy), demonstrating robustness across different imaging domains.
☆ Mitigating Cross-modal Representation Bias for Multicultural Image-to-Recipe Retrieval
Existing approaches for image-to-recipe retrieval have the implicit assumption that a food image can fully capture the details textually documented in its recipe. However, a food image only reflects the visual outcome of a cooked dish and not the underlying cooking process. Consequently, learning cross-modal representations to bridge the modality gap between images and recipes tends to ignore subtle, recipe-specific details that are not visually apparent but are crucial for recipe retrieval. Specifically, the representations are biased to capture the dominant visual elements, resulting in difficulty in ranking similar recipes with subtle differences in use of ingredients and cooking methods. The bias in representation learning is expected to be more severe when the training data is mixed of images and recipes sourced from different cuisines. This paper proposes a novel causal approach that predicts the culinary elements potentially overlooked in images, while explicitly injecting these elements into cross-modal representation learning to mitigate biases. Experiments are conducted on the standard monolingual Recipe1M dataset and a newly curated multilingual multicultural cuisine dataset. The results indicate that the proposed causal representation learning is capable of uncovering subtle ingredients and cooking actions and achieves impressive retrieval performance on both monolingual and multilingual multicultural datasets.
comment: ACM Multimedia 2025
☆ Positional Encoding Field
Diffusion Transformers (DiTs) have emerged as the dominant architecture for visual generation, powering state-of-the-art image and video models. By representing images as patch tokens with positional encodings (PEs), DiTs combine Transformer scalability with spatial and temporal inductive biases. In this work, we revisit how DiTs organize visual content and discover that patch tokens exhibit a surprising degree of independence: even when PEs are perturbed, DiTs still produce globally coherent outputs, indicating that spatial coherence is primarily governed by PEs. Motivated by this finding, we introduce the Positional Encoding Field (PE-Field), which extends positional encodings from the 2D plane to a structured 3D field. PE-Field incorporates depth-aware encodings for volumetric reasoning and hierarchical encodings for fine-grained sub-patch control, enabling DiTs to model geometry directly in 3D space. Our PE-Field-augmented DiT achieves state-of-the-art performance on single-image novel view synthesis and generalizes to controllable spatial image editing.
comment: 8 pages, 9 figures
☆ Synthetic Data for Robust Runway Detection
Deep vision models are now mature enough to be integrated in industrial and possibly critical applications such as autonomous navigation. Yet, data collection and labeling to train such models requires too much efforts and costs for a single company or product. This drawback is more significant in critical applications, where training data must include all possible conditions including rare scenarios. In this perspective, generating synthetic images is an appealing solution, since it allows a cheap yet reliable covering of all the conditions and environments, if the impact of the synthetic-to-real distribution shift is mitigated. In this article, we consider the case of runway detection that is a critical part in autonomous landing systems developed by aircraft manufacturers. We propose an image generation approach based on a commercial flight simulator that complements a few annotated real images. By controlling the image generation and the integration of real and synthetic data, we show that standard object detection models can achieve accurate prediction. We also evaluate their robustness with respect to adverse conditions, in our case nighttime images, that were not represented in the real data, and show the interest of using a customized domain adaptation strategy.
☆ AccuQuant: Simulating Multiple Denoising Steps for Quantizing Diffusion Models NeurIPS 2025
We present in this paper a novel post-training quantization (PTQ) method, dubbed AccuQuant, for diffusion models. We show analytically and empirically that quantization errors for diffusion models are accumulated over denoising steps in a sampling process. To alleviate the error accumulation problem, AccuQuant minimizes the discrepancies between outputs of a full-precision diffusion model and its quantized version within a couple of denoising steps. That is, it simulates multiple denoising steps of a diffusion sampling process explicitly for quantization, accounting the accumulated errors over multiple denoising steps, which is in contrast to previous approaches to imitating a training process of diffusion models, namely, minimizing the discrepancies independently for each step. We also present an efficient implementation technique for AccuQuant, together with a novel objective, which reduces a memory complexity significantly from $\mathcal{O}(n)$ to $\mathcal{O}(1)$, where $n$ is the number of denoising steps. We demonstrate the efficacy and efficiency of AccuQuant across various tasks and diffusion models on standard benchmarks.
comment: Accepted to NeurIPS 2025
☆ Dino-Diffusion Modular Designs Bridge the Cross-Domain Gap in Autonomous Parking
Parking is a critical pillar of driving safety. While recent end-to-end (E2E) approaches have achieved promising in-domain results, robustness under domain shifts (e.g., weather and lighting changes) remains a key challenge. Rather than relying on additional data, in this paper, we propose Dino-Diffusion Parking (DDP), a domain-agnostic autonomous parking pipeline that integrates visual foundation models with diffusion-based planning to enable generalized perception and robust motion planning under distribution shifts. We train our pipeline in CARLA at regular setting and transfer it to more adversarial settings in a zero-shot fashion. Our model consistently achieves a parking success rate above 90% across all tested out-of-distribution (OOD) scenarios, with ablation studies confirming that both the network architecture and algorithmic design significantly enhance cross-domain performance over existing baselines. Furthermore, testing in a 3D Gaussian splatting (3DGS) environment reconstructed from a real-world parking lot demonstrates promising sim-to-real transfer.
comment: Code is at https://github.com/ChampagneAndfragrance/Dino_Diffusion_Parking_Official
☆ AnyPcc: Compressing Any Point Cloud with a Single Universal Model
Generalization remains a critical challenge for deep learning-based point cloud geometry compression. We argue this stems from two key limitations: the lack of robust context models and the inefficient handling of out-of-distribution (OOD) data. To address both, we introduce AnyPcc, a universal point cloud compression framework. AnyPcc first employs a Universal Context Model that leverages priors from both spatial and channel-wise grouping to capture robust contextual dependencies. Second, our novel Instance-Adaptive Fine-Tuning (IAFT) strategy tackles OOD data by synergizing explicit and implicit compression paradigms. It fine-tunes a small subset of network weights for each instance and incorporates them into the bitstream, where the marginal bit cost of the weights is dwarfed by the resulting savings in geometry compression. Extensive experiments on a benchmark of 15 diverse datasets confirm that AnyPcc sets a new state-of-the-art in point cloud compression. Our code and datasets will be released to encourage reproducible research.
comment: 11 pages, 5 figures
☆ HyperET: Efficient Training in Hyperbolic Space for Multi-modal Large Language Models NeurIPS2025
Multi-modal large language models (MLLMs) have emerged as a transformative approach for aligning visual and textual understanding. They typically require extremely high computational resources (e.g., thousands of GPUs) for training to achieve cross-modal alignment at multi-granularity levels. We argue that a key source of this inefficiency lies in the vision encoders they widely equip with, e.g., CLIP and SAM, which lack the alignment with language at multi-granularity levels. To address this issue, in this paper, we leverage hyperbolic space, which inherently models hierarchical levels and thus provides a principled framework for bridging the granularity gap between visual and textual modalities at an arbitrary granularity level. Concretely, we propose an efficient training paradigm for MLLMs, dubbed as HyperET, which can optimize visual representations to align with their textual counterparts at an arbitrary granularity level through dynamic hyperbolic radius adjustment in hyperbolic space. HyperET employs learnable matrices with M\"{o}bius multiplication operations, implemented via three effective configurations: diagonal scaling matrices, block-diagonal matrices, and banded matrices, providing a flexible yet efficient parametrization strategy. Comprehensive experiments across multiple MLLM benchmarks demonstrate that HyperET consistently improves both existing pre-training and fine-tuning MLLMs clearly with less than 1\% additional parameters.
comment: Accepted by NeurIPS2025
☆ A Parameter-Efficient Mixture-of-Experts Framework for Cross-Modal Geo-Localization
We present a winning solution to RoboSense 2025 Track 4: Cross-Modal Drone Navigation. The task retrieves the most relevant geo-referenced image from a large multi-platform corpus (satellite/drone/ground) given a natural-language query. Two obstacles are severe inter-platform heterogeneity and a domain gap between generic training descriptions and platform-specific test queries. We mitigate these with a domain-aligned preprocessing pipeline and a Mixture-of-Experts (MoE) framework: (i) platform-wise partitioning, satellite augmentation, and removal of orientation words; (ii) an LLM-based caption refinement pipeline to align textual semantics with the distinct visual characteristics of each platform. Using BGE-M3 (text) and EVA-CLIP (image), we train three platform experts using a progressive two-stage, hard-negative mining strategy to enhance discriminative power, and fuse their scores at inference. The system tops the official leaderboard, demonstrating robust cross-modal geo-localization under heterogeneous viewpoints.
☆ Breakdance Video classification in the age of Generative AI
Large Vision Language models have seen huge application in several sports use-cases recently. Most of these works have been targeted towards a limited subset of popular sports like soccer, cricket, basketball etc; focusing on generative tasks like visual question answering, highlight generation. This work analyzes the applicability of the modern video foundation models (both encoder and decoder) for a very niche but hugely popular dance sports - breakdance. Our results show that Video Encoder models continue to outperform state-of-the-art Video Language Models for prediction tasks. We provide insights on how to choose the encoder model and provide a thorough analysis into the workings of a finetuned decoder model for breakdance video classification.
comment: 11 pages
☆ UI-Ins: Enhancing GUI Grounding with Multi-Perspective Instruction-as-Reasoning
GUI grounding, which maps natural-language instructions to actionable UI elements, is a core capability of GUI agents. Prior works largely treats instructions as a static proxy for user intent, overlooking the impact of instruction diversity and quality on grounding performance. Through a careful investigation of existing grounding datasets, we find a 23.3% flaw rate in their instructions and show that inference-time exploitation of instruction diversity yields up to a substantial 76% relative performance improvement. In this paper, we introduce the Instruction-as-Reasoning paradigm, treating instructions as dynamic analytical pathways that offer distinct perspectives and enabling the model to select the most effective pathway during reasoning. To achieve this, we propose a two-stage training framework: supervised fine-tuning (SFT) on synthesized, diverse instructions to instill multi-perspective reasoning, followed by reinforcement learning (RL) to optimize pathway selection and composition. Our resulting models, UI-Ins-7B and UI-Ins-32B, achieve state-of-the-art results on five challenging grounding benchmarks and exhibit emergent reasoning, selectively composing and synthesizing novel instruction pathways at inference. In particular, UI-Ins-32B attains the best grounding accuracy, scoring 87.3% on UI-I2E-Bench, 57.0% on ScreenSpot-Pro, and 84.9% on MMBench-GUI L2. Furthermore, our model demonstrates strong agentic potential, achieving a 74.1% success rate on AndroidWorld using UI-Ins-7B as the executor. Our in-depth analysis reveals additional insights such as how reasoning can be formulated to enhance rather than hinder grounding performance, and how our method mitigates policy collapse in the SFT+RL framework. All code and model checkpoints will be publicly released in https://github.com/alibaba/UI-Ins.
☆ DMC$^3$: Dual-Modal Counterfactual Contrastive Construction for Egocentric Video Question Answering
Egocentric Video Question Answering (Egocentric VideoQA) plays an important role in egocentric video understanding, which refers to answering questions based on first-person videos. Although existing methods have made progress through the paradigm of pre-training and fine-tuning, they ignore the unique challenges posed by the first-person perspective, such as understanding multiple events and recognizing hand-object interactions. To deal with these challenges, we propose a Dual-Modal Counterfactual Contrastive Construction (DMC$^3$) framework, which contains an egocentric videoqa baseline, a counterfactual sample construction module and a counterfactual sample-involved contrastive optimization. Specifically, We first develop a counterfactual sample construction module to generate positive and negative samples for textual and visual modalities through event description paraphrasing and core interaction mining, respectively. Then, We feed these samples together with the original samples into the baseline. Finally, in the counterfactual sample-involved contrastive optimization module, we apply contrastive loss to minimize the distance between the original sample features and the positive sample features, while maximizing the distance from the negative samples. Experiments show that our method achieve 52.51\% and 46.04\% on the \textit{normal} and \textit{indirect} splits of EgoTaskQA, and 13.2\% on QAEGO4D, both reaching the state-of-the-art performance.
☆ Knowledge-Informed Neural Network for Complex-Valued SAR Image Recognition
Deep learning models for complex-valued Synthetic Aperture Radar (CV-SAR) image recognition are fundamentally constrained by a representation trilemma under data-limited and domain-shift scenarios: the concurrent, yet conflicting, optimization of generalization, interpretability, and efficiency. Our work is motivated by the premise that the rich electromagnetic scattering features inherent in CV-SAR data hold the key to resolving this trilemma, yet they are insufficiently harnessed by conventional data-driven models. To this end, we introduce the Knowledge-Informed Neural Network (KINN), a lightweight framework built upon a novel "compression-aggregation-compression" architecture. The first stage performs a physics-guided compression, wherein a novel dictionary processor adaptively embeds physical priors, enabling a compact unfolding network to efficiently extract sparse, physically-grounded signatures. A subsequent aggregation module enriches these representations, followed by a final semantic compression stage that utilizes a compact classification head with self-distillation to learn maximally task-relevant and discriminative embeddings. We instantiate KINN in both CNN (0.7M) and Vision Transformer (0.95M) variants. Extensive evaluations on five SAR benchmarks confirm that KINN establishes a state-of-the-art in parameter-efficient recognition, offering exceptional generalization in data-scarce and out-of-distribution scenarios and tangible interpretability, thereby providing an effective solution to the representation trilemma and offering a new path for trustworthy AI in SAR image analysis.
☆ Causal Debiasing for Visual Commonsense Reasoning
Visual Commonsense Reasoning (VCR) refers to answering questions and providing explanations based on images. While existing methods achieve high prediction accuracy, they often overlook bias in datasets and lack debiasing strategies. In this paper, our analysis reveals co-occurrence and statistical biases in both textual and visual data. We introduce the VCR-OOD datasets, comprising VCR-OOD-QA and VCR-OOD-VA subsets, which are designed to evaluate the generalization capabilities of models across two modalities. Furthermore, we analyze the causal graphs and prediction shortcuts in VCR and adopt a backdoor adjustment method to remove bias. Specifically, we create a dictionary based on the set of correct answers to eliminate prediction shortcuts. Experiments demonstrate the effectiveness of our debiasing method across different datasets.
☆ GMFVAD: Using Grained Multi-modal Feature to Improve Video Anomaly Detection
Video anomaly detection (VAD) is a challenging task that detects anomalous frames in continuous surveillance videos. Most previous work utilizes the spatio-temporal correlation of visual features to distinguish whether there are abnormalities in video snippets. Recently, some works attempt to introduce multi-modal information, like text feature, to enhance the results of video anomaly detection. However, these works merely incorporate text features into video snippets in a coarse manner, overlooking the significant amount of redundant information that may exist within the video snippets. Therefore, we propose to leverage the diversity among multi-modal information to further refine the extracted features, reducing the redundancy in visual features, and we propose Grained Multi-modal Feature for Video Anomaly Detection (GMFVAD). Specifically, we generate more grained multi-modal feature based on the video snippet, which summarizes the main content, and text features based on the captions of original video will be introduced to further enhance the visual features of highlighted portions. Experiments show that the proposed GMFVAD achieves state-of-the-art performance on four mainly datasets. Ablation experiments also validate that the improvement of GMFVAD is due to the reduction of redundant information.
☆ Real-Time Currency Detection and Voice Feedback for Visually Impaired Individuals
Technologies like smartphones have become an essential in our daily lives. It has made accessible to everyone including visually impaired individuals. With the use of smartphone cameras, image capturing and processing have become more convenient. With the use of smartphones and machine learning, the life of visually impaired can be made a little easier. Daily tasks such as handling money without relying on someone can be troublesome for them. For that purpose this paper presents a real-time currency detection system designed to assist visually impaired individuals. The proposed model is trained on a dataset containing 30 classes of notes and coins, representing 3 types of currency: US dollar (USD), Euro (EUR), and Bangladeshi taka (BDT). Our approach uses a YOLOv8 nano model with a custom detection head featuring deep convolutional layers and Squeeze-and-Excitation blocks to enhance feature extraction and detection accuracy. Our model has achieved a higher accuracy of 97.73%, recall of 95.23%, f1-score of 95.85% and a mean Average Precision at IoU=0.5 (mAP50(B)) of 97.21\%. Using the voice feedback after the detection would help the visually impaired to identify the currency. This paper aims to create a practical and efficient currency detection system to empower visually impaired individuals independent in handling money.
comment: 20 pages, 5 tables, 8 figues
☆ GUSL-Dehaze: A Green U-Shaped Learning Approach to Image Dehazing
Image dehazing is a restoration task that aims to recover a clear image from a single hazy input. Traditional approaches rely on statistical priors and the physics-based atmospheric scattering model to reconstruct the haze-free image. While recent state-of-the-art methods are predominantly based on deep learning architectures, these models often involve high computational costs and large parameter sizes, making them unsuitable for resource-constrained devices. In this work, we propose GUSL-Dehaze, a Green U-Shaped Learning approach to image dehazing. Our method integrates a physics-based model with a green learning (GL) framework, offering a lightweight, transparent alternative to conventional deep learning techniques. Unlike neural network-based solutions, GUSL-Dehaze completely avoids deep learning. Instead, we begin with an initial dehazing step using a modified Dark Channel Prior (DCP), which is followed by a green learning pipeline implemented through a U-shaped architecture. This architecture employs unsupervised representation learning for effective feature extraction, together with feature-engineering techniques such as the Relevant Feature Test (RFT) and the Least-Squares Normal Transform (LNT) to maintain a compact model size. Finally, the dehazed image is obtained via a transparent supervised learning strategy. GUSL-Dehaze significantly reduces parameter count while ensuring mathematical interpretability and achieving performance on par with state-of-the-art deep learning models.
☆ Kinaema: a recurrent sequence model for memory and pose in motion
One key aspect of spatially aware robots is the ability to "find their bearings", ie. to correctly situate themselves in previously seen spaces. In this work, we focus on this particular scenario of continuous robotics operations, where information observed before an actual episode start is exploited to optimize efficiency. We introduce a new model, Kinaema, and agent, capable of integrating a stream of visual observations while moving in a potentially large scene, and upon request, processing a query image and predicting the relative position of the shown space with respect to its current position. Our model does not explicitly store an observation history, therefore does not have hard constraints on context length. It maintains an implicit latent memory, which is updated by a transformer in a recurrent way, compressing the history of sensor readings into a compact representation. We evaluate the impact of this model in a new downstream task we call "Mem-Nav". We show that our large-capacity recurrent model maintains a useful representation of the scene, navigates to goals observed before the actual episode start, and is computationally efficient, in particular compared to classical transformers with attention over an observation history.
comment: 10 pages + references + checklist + appendix, 29 pages total
☆ Calibrating Multimodal Consensus for Emotion Recognition
In recent years, Multimodal Emotion Recognition (MER) has made substantial progress. Nevertheless, most existing approaches neglect the semantic inconsistencies that may arise across modalities, such as conflicting emotional cues between text and visual inputs. Besides, current methods are often dominated by the text modality due to its strong representational capacity, which can compromise recognition accuracy. To address these challenges, we propose a model termed Calibrated Multimodal Consensus (CMC). CMC introduces a Pseudo Label Generation Module (PLGM) to produce pseudo unimodal labels, enabling unimodal pretraining in a self-supervised fashion. It then employs a Parameter-free Fusion Module (PFM) and a Multimodal Consensus Router (MCR) for multimodal finetuning, thereby mitigating text dominance and guiding the fusion process toward a more reliable consensus. Experimental results demonstrate that CMC achieves performance on par with or superior to state-of-the-art methods across four datasets, CH-SIMS, CH-SIMS v2, CMU-MOSI, and CMU-MOSEI, and exhibits notable advantages in scenarios with semantic inconsistencies on CH-SIMS and CH-SIMS v2. The implementation of this work is publicly accessible at https://github.com/gw-zhong/CMC.
☆ Seeing the Unseen: Mask-Driven Positional Encoding and Strip-Convolution Context Modeling for Cross-View Object Geo-Localization
Cross-view object geo-localization enables high-precision object localization through cross-view matching, with critical applications in autonomous driving, urban management, and disaster response. However, existing methods rely on keypoint-based positional encoding, which captures only 2D coordinates while neglecting object shape information, resulting in sensitivity to annotation shifts and limited cross-view matching capability. To address these limitations, we propose a mask-based positional encoding scheme that leverages segmentation masks to capture both spatial coordinates and object silhouettes, thereby upgrading the model from "location-aware" to "object-aware." Furthermore, to tackle the challenge of large-span objects (e.g., elongated buildings) in satellite imagery, we design a context enhancement module. This module employs horizontal and vertical strip convolutional kernels to extract long-range contextual features, enhancing feature discrimination among strip-like objects. Integrating MPE and CEM, we present EDGeo, an end-to-end framework for robust cross-view object geo-localization. Extensive experiments on two public datasets (CVOGL and VIGOR-Building) demonstrate that our method achieves state-of-the-art performance, with a 3.39% improvement in localization accuracy under challenging ground-to-satellite scenarios. This work provides a robust positional encoding paradigm and a contextual modeling framework for advancing cross-view geo-localization research.
☆ Empower Words: DualGround for Structured Phrase and Sentence-Level Temporal Grounding NeurIPS 2025
Video Temporal Grounding (VTG) aims to localize temporal segments in long, untrimmed videos that align with a given natural language query. This task typically comprises two subtasks: Moment Retrieval (MR) and Highlight Detection (HD). While recent advances have been progressed by powerful pretrained vision-language models such as CLIP and InternVideo2, existing approaches commonly treat all text tokens uniformly during crossmodal attention, disregarding their distinct semantic roles. To validate the limitations of this approach, we conduct controlled experiments demonstrating that VTG models overly rely on [EOS]-driven global semantics while failing to effectively utilize word-level signals, which limits their ability to achieve fine-grained temporal alignment. Motivated by this limitation, we propose DualGround, a dual-branch architecture that explicitly separates global and local semantics by routing the [EOS] token through a sentence-level path and clustering word tokens into phrase-level units for localized grounding. Our method introduces (1) tokenrole- aware cross modal interaction strategies that align video features with sentence-level and phrase-level semantics in a structurally disentangled manner, and (2) a joint modeling framework that not only improves global sentence-level alignment but also enhances finegrained temporal grounding by leveraging structured phrase-aware context. This design allows the model to capture both coarse and localized semantics, enabling more expressive and context-aware video grounding. DualGround achieves state-of-the-art performance on both Moment Retrieval and Highlight Detection tasks across QVHighlights and Charades- STA benchmarks, demonstrating the effectiveness of disentangled semantic modeling in video-language alignment.
comment: Comments: 28 pages, including appendix. 5 figures. Full version of the NeurIPS 2025 paper
☆ COS3D: Collaborative Open-Vocabulary 3D Segmentation NeurIPS 2025
Open-vocabulary 3D segmentation is a fundamental yet challenging task, requiring a mutual understanding of both segmentation and language. However, existing Gaussian-splatting-based methods rely either on a single 3D language field, leading to inferior segmentation, or on pre-computed class-agnostic segmentations, suffering from error accumulation. To address these limitations, we present COS3D, a new collaborative prompt-segmentation framework that contributes to effectively integrating complementary language and segmentation cues throughout its entire pipeline. We first introduce the new concept of collaborative field, comprising an instance field and a language field, as the cornerstone for collaboration. During training, to effectively construct the collaborative field, our key idea is to capture the intrinsic relationship between the instance field and language field, through a novel instance-to-language feature mapping and designing an efficient two-stage training strategy. During inference, to bridge distinct characteristics of the two fields, we further design an adaptive language-to-instance prompt refinement, promoting high-quality prompt-segmentation inference. Extensive experiments not only demonstrate COS3D's leading performance over existing methods on two widely-used benchmarks but also show its high potential to various applications,~\ie, novel image-based 3D segmentation, hierarchical segmentation, and robotics. The code is publicly available at \href{https://github.com/Runsong123/COS3D}{https://github.com/Runsong123/COS3D}.
comment: NeurIPS 2025. The code is publicly available at \href{https://github.com/Runsong123/COS3D}{https://github.com/Runsong123/COS3D}
☆ Why LVLMs Are More Prone to Hallucinations in Longer Responses: The Role of Context
Large Vision-Language Models (LVLMs) have made significant progress in recent years but are also prone to hallucination issues. They exhibit more hallucinations in longer, free-form responses, often attributed to accumulated uncertainties. In this paper, we ask: Does increased hallucination result solely from length-induced errors, or is there a deeper underlying mechanism? After a series of preliminary experiments and findings, we suggest that the risk of hallucinations is not caused by length itself but by the increased reliance on context for coherence and completeness in longer responses. Building on these insights, we propose a novel "induce-detect-suppress" framework that actively induces hallucinations through deliberately designed contexts, leverages induced instances for early detection of high-risk cases, and ultimately suppresses potential object-level hallucinations during actual decoding. Our approach achieves consistent, significant improvements across all benchmarks, demonstrating its efficacy. The strong detection and improved hallucination mitigation not only validate our framework but, more importantly, re-validate our hypothesis on context. Rather than solely pursuing performance gains, this study aims to provide new insights and serves as a first step toward a deeper exploration of hallucinations in LVLMs' longer responses.
☆ EditInfinity: Image Editing with Binary-Quantized Generative Models NeurIPS 2025
Adapting pretrained diffusion-based generative models for text-driven image editing with negligible tuning overhead has demonstrated remarkable potential. A classical adaptation paradigm, as followed by these methods, first infers the generative trajectory inversely for a given source image by image inversion, then performs image editing along the inferred trajectory guided by the target text prompts. However, the performance of image editing is heavily limited by the approximation errors introduced during image inversion by diffusion models, which arise from the absence of exact supervision in the intermediate generative steps. To circumvent this issue, we investigate the parameter-efficient adaptation of VQ-based generative models for image editing, and leverage their inherent characteristic that the exact intermediate quantized representations of a source image are attainable, enabling more effective supervision for precise image inversion. Specifically, we propose \emph{EditInfinity}, which adapts \emph{Infinity}, a binary-quantized generative model, for image editing. We propose an efficient yet effective image inversion mechanism that integrates text prompting rectification and image style preservation, enabling precise image inversion. Furthermore, we devise a holistic smoothing strategy which allows our \emph{EditInfinity} to perform image editing with high fidelity to source images and precise semantic alignment to the text prompts. Extensive experiments on the PIE-Bench benchmark across "add", "change", and "delete" editing operations, demonstrate the superior performance of our model compared to state-of-the-art diffusion-based baselines. Code available at: https://github.com/yx-chen-ust/EditInfinity.
comment: 28 pages, 13 figures, accepted by The Thirty-ninth Annual Conference on Neural Information Processing Systems (NeurIPS 2025)
☆ Towards Objective Obstetric Ultrasound Assessment: Contrastive Representation Learning for Fetal Movement Detection
Accurate fetal movement (FM) detection is essential for assessing prenatal health, as abnormal movement patterns can indicate underlying complications such as placental dysfunction or fetal distress. Traditional methods, including maternal perception and cardiotocography (CTG), suffer from subjectivity and limited accuracy. To address these challenges, we propose Contrastive Ultrasound Video Representation Learning (CURL), a novel self-supervised learning framework for FM detection from extended fetal ultrasound video recordings. Our approach leverages a dual-contrastive loss, incorporating both spatial and temporal contrastive learning, to learn robust motion representations. Additionally, we introduce a task-specific sampling strategy, ensuring the effective separation of movement and non-movement segments during self-supervised training, while enabling flexible inference on arbitrarily long ultrasound recordings through a probabilistic fine-tuning approach. Evaluated on an in-house dataset of 92 subjects, each with 30-minute ultrasound sessions, CURL achieves a sensitivity of 78.01% and an AUROC of 81.60%, demonstrating its potential for reliable and objective FM analysis. These results highlight the potential of self-supervised contrastive learning for fetal movement analysis, paving the way for improved prenatal monitoring and clinical decision-making.
comment: This is the preprint version of the manuscript submitted to IEEE Journal of Biomedical and Health Informatics (JBHI) for review
☆ FlowCycle: Pursuing Cycle-Consistent Flows for Text-based Editing
Recent advances in pre-trained text-to-image flow models have enabled remarkable progress in text-based image editing. Mainstream approaches always adopt a corruption-then-restoration paradigm, where the source image is first corrupted into an ``intermediate state'' and then restored to the target image under the prompt guidance. However, current methods construct this intermediate state in a target-agnostic manner, i.e., they primarily focus on realizing source image reconstruction while neglecting the semantic gaps towards the specific editing target. This design inherently results in limited editability or inconsistency when the desired modifications substantially deviate from the source. In this paper, we argue that the intermediate state should be target-aware, i.e., selectively corrupting editing-relevant contents while preserving editing-irrelevant ones. To this end, we propose FlowCycle, a novel inversion-free and flow-based editing framework that parameterizes corruption with learnable noises and optimizes them through a cycle-consistent process. By iteratively editing the source to the target and recovering back to the source with dual consistency constraints, FlowCycle learns to produce a target-aware intermediate state, enabling faithful modifications while preserving source consistency. Extensive ablations have demonstrated that FlowCycle achieves superior editing quality and consistency over state-of-the-art methods.
☆ RAPO++: Cross-Stage Prompt Optimization for Text-to-Video Generation via Data Alignment and Test-Time Scaling
Prompt design plays a crucial role in text-to-video (T2V) generation, yet user-provided prompts are often short, unstructured, and misaligned with training data, limiting the generative potential of diffusion-based T2V models. We present \textbf{RAPO++}, a cross-stage prompt optimization framework that unifies training-data--aligned refinement, test-time iterative scaling, and large language model (LLM) fine-tuning to substantially improve T2V generation without modifying the underlying generative backbone. In \textbf{Stage 1}, Retrieval-Augmented Prompt Optimization (RAPO) enriches user prompts with semantically relevant modifiers retrieved from a relation graph and refactors them to match training distributions, enhancing compositionality and multi-object fidelity. \textbf{Stage 2} introduces Sample-Specific Prompt Optimization (SSPO), a closed-loop mechanism that iteratively refines prompts using multi-source feedback -- including semantic alignment, spatial fidelity, temporal coherence, and task-specific signals such as optical flow -- yielding progressively improved video generation quality. \textbf{Stage 3} leverages optimized prompt pairs from SSPO to fine-tune the rewriter LLM, internalizing task-specific optimization patterns and enabling efficient, high-quality prompt generation even before inference. Extensive experiments across five state-of-the-art T2V models and five benchmarks demonstrate that RAPO++ achieves significant gains in semantic alignment, compositional reasoning, temporal stability, and physical plausibility, outperforming existing methods by large margins. Our results highlight RAPO++ as a model-agnostic, cost-efficient, and scalable solution that sets a new standard for prompt optimization in T2V generation. The code is available at https://github.com/Vchitect/RAPO.
☆ A Structured Review and Quantitative Profiling of Public Brain MRI Datasets for Foundation Model Development
The development of foundation models for brain MRI depends critically on the scale, diversity, and consistency of available data, yet systematic assessments of these factors remain scarce. In this study, we analyze 54 publicly accessible brain MRI datasets encompassing over 538,031 to provide a structured, multi-level overview tailored to foundation model development. At the dataset level, we characterize modality composition, disease coverage, and dataset scale, revealing strong imbalances between large healthy cohorts and smaller clinical populations. At the image level, we quantify voxel spacing, orientation, and intensity distributions across 15 representative datasets, demonstrating substantial heterogeneity that can influence representation learning. We then perform a quantitative evaluation of preprocessing variability, examining how intensity normalization, bias field correction, skull stripping, spatial registration, and interpolation alter voxel statistics and geometry. While these steps improve within-dataset consistency, residual differences persist between datasets. Finally, feature-space case study using a 3D DenseNet121 shows measurable residual covariate shift after standardized preprocessing, confirming that harmonization alone cannot eliminate inter-dataset bias. Together, these analyses provide a unified characterization of variability in public brain MRI resources and emphasize the need for preprocessing-aware and domain-adaptive strategies in the design of generalizable brain MRI foundation models.
☆ Multimedia-Aware Question Answering: A Review of Retrieval and Cross-Modal Reasoning Architectures
Question Answering (QA) systems have traditionally relied on structured text data, but the rapid growth of multimedia content (images, audio, video, and structured metadata) has introduced new challenges and opportunities for retrieval-augmented QA. In this survey, we review recent advancements in QA systems that integrate multimedia retrieval pipelines, focusing on architectures that align vision, language, and audio modalities with user queries. We categorize approaches based on retrieval methods, fusion techniques, and answer generation strategies, and analyze benchmark datasets, evaluation protocols, and performance tradeoffs. Furthermore, we highlight key challenges such as cross-modal alignment, latency-accuracy tradeoffs, and semantic grounding, and outline open problems and future research directions for building more robust and context-aware QA systems leveraging multimedia data.
comment: In Proceedings of the 2nd ACM Workshop in AI-powered Question and Answering Systems (AIQAM '25), October 27-28, 2025, Dublin, Ireland. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3746274.3760393
☆ SPAN: Continuous Modeling of Suspicion Progression for Temporal Intention Localization
Temporal Intention Localization (TIL) is crucial for video surveillance, focusing on identifying varying levels of suspicious intentions to improve security monitoring. However, existing discrete classification methods fail to capture the continuous nature of suspicious intentions, limiting early intervention and explainability. In this paper, we propose the Suspicion Progression Analysis Network (SPAN), which shifts from discrete classification to continuous regression, enabling the capture of fluctuating and evolving suspicious intentions. We reveal that suspicion exhibits long-term dependencies and cumulative effects, similar to Temporal Point Process (TPP) theory. Based on these insights, we define a suspicion score formula that models continuous changes while accounting for temporal characteristics. We also introduce Suspicion Coefficient Modulation, which adjusts suspicion coefficients using multimodal information to reflect the varying impacts of suspicious actions. Additionally, the Concept-Anchored Mapping method is proposed to link suspicious actions to predefined intention concepts, offering insights into both the actions and their potential underlying intentions. Extensive experiments on the HAI dataset show that SPAN significantly outperforms existing methods, reducing MSE by 19.8% and improving average mAP by 1.78%. Notably, SPAN achieves a 2.74% mAP gain in low-frequency cases, demonstrating its superior ability to capture subtle behavioral changes. Compared to discrete classification systems, our continuous suspicion modeling approach enables earlier detection and proactive intervention, greatly enhancing system explainability and practical utility in security applications.
☆ Evaluating Video Models as Simulators of Multi-Person Pedestrian Trajectories
Large-scale video generation models have demonstrated high visual realism in diverse contexts, spurring interest in their potential as general-purpose world simulators. Existing benchmarks focus on individual subjects rather than scenes with multiple interacting people. However, the plausibility of multi-agent dynamics in generated videos remains unverified. We propose a rigorous evaluation protocol to benchmark text-to-video (T2V) and image-to-video (I2V) models as implicit simulators of pedestrian dynamics. For I2V, we leverage start frames from established datasets to enable comparison with a ground truth video dataset. For T2V, we develop a prompt suite to explore diverse pedestrian densities and interactions. A key component is a method to reconstruct 2D bird's-eye view trajectories from pixel-space without known camera parameters. Our analysis reveals that leading models have learned surprisingly effective priors for plausible multi-agent behavior. However, failure modes like merging and disappearing people highlight areas for future improvement.
comment: Preprint, under review
☆ PPMStereo: Pick-and-Play Memory Construction for Consistent Dynamic Stereo Matching
Temporally consistent depth estimation from stereo video is critical for real-world applications such as augmented reality, where inconsistent depth estimation disrupts the immersion of users. Despite its importance, this task remains challenging due to the difficulty in modeling long-term temporal consistency in a computationally efficient manner. Previous methods attempt to address this by aggregating spatio-temporal information but face a fundamental trade-off: limited temporal modeling provides only modest gains, whereas capturing long-range dependencies significantly increases computational cost. To address this limitation, we introduce a memory buffer for modeling long-range spatio-temporal consistency while achieving efficient dynamic stereo matching. Inspired by the two-stage decision-making process in humans, we propose a \textbf{P}ick-and-\textbf{P}lay \textbf{M}emory (PPM) construction module for dynamic \textbf{Stereo} matching, dubbed as \textbf{PPMStereo}. PPM consists of a `pick' process that identifies the most relevant frames and a `play' process that weights the selected frames adaptively for spatio-temporal aggregation. This two-stage collaborative process maintains a compact yet highly informative memory buffer while achieving temporally consistent information aggregation. Extensive experiments validate the effectiveness of PPMStereo, demonstrating state-of-the-art performance in both accuracy and temporal consistency. % Notably, PPMStereo achieves 0.62/1.11 TEPE on the Sintel clean/final (17.3\% \& 9.02\% improvements over BiDAStereo) with fewer computational costs. Codes are available at \textcolor{blue}{https://github.com/cocowy1/PPMStereo}.
☆ IB-GAN: Disentangled Representation Learning with Information Bottleneck Generative Adversarial Networks AAAI
We propose a new GAN-based unsupervised model for disentangled representation learning. The new model is discovered in an attempt to utilize the Information Bottleneck (IB) framework to the optimization of GAN, thereby named IB-GAN. The architecture of IB-GAN is partially similar to that of InfoGAN but has a critical difference; an intermediate layer of the generator is leveraged to constrain the mutual information between the input and the generated output. The intermediate stochastic layer can serve as a learnable latent distribution that is trained with the generator jointly in an end-to-end fashion. As a result, the generator of IB-GAN can harness the latent space in a disentangled and interpretable manner. With the experiments on dSprites and Color-dSprites dataset, we demonstrate that IB-GAN achieves competitive disentanglement scores to those of state-of-the-art \b{eta}-VAEs and outperforms InfoGAN. Moreover, the visual quality and the diversity of samples generated by IB-GAN are often better than those by \b{eta}-VAEs and Info-GAN in terms of FID score on CelebA and 3D Chairs dataset.
comment: Published in the Proceedings of the Thirty Fifth AAAI Conference on Artificial Intelligence (AAAI 2021), paper number 7926
☆ TOMCAT: Test-time Comprehensive Knowledge Accumulation for Compositional Zero-Shot Learning NeurIPS 2025
Compositional Zero-Shot Learning (CZSL) aims to recognize novel attribute-object compositions based on the knowledge learned from seen ones. Existing methods suffer from performance degradation caused by the distribution shift of label space at test time, which stems from the inclusion of unseen compositions recombined from attributes and objects. To overcome the challenge, we propose a novel approach that accumulates comprehensive knowledge in both textual and visual modalities from unsupervised data to update multimodal prototypes at test time. Building on this, we further design an adaptive update weight to control the degree of prototype adjustment, enabling the model to flexibly adapt to distribution shift during testing. Moreover, a dynamic priority queue is introduced that stores high-confidence images to acquire visual knowledge from historical images for inference. Considering the semantic consistency of multimodal knowledge, we align textual and visual prototypes by multimodal collaborative representation learning. Extensive experiments indicate that our approach achieves state-of-the-art performance on four benchmark datasets under both closed-world and open-world settings. Code will be available at https://github.com/xud-yan/TOMCAT .
comment: Accepted to NeurIPS 2025
☆ Monocular Visual 8D Pose Estimation for Articulated Bicycles and Cyclists
In Autonomous Driving, cyclists belong to the safety-critical class of Vulnerable Road Users (VRU), and accurate estimation of their pose is critical for cyclist crossing intention classification, behavior prediction, and collision avoidance. Unlike rigid objects, articulated bicycles are composed of movable rigid parts linked by joints and constrained by a kinematic structure. 6D pose methods can estimate the 3D rotation and translation of rigid bicycles, but 6D becomes insufficient when the steering/pedals angles of the bicycle vary. That is because: 1) varying the articulated pose of the bicycle causes its 3D bounding box to vary as well, and 2) the 3D box orientation is not necessarily aligned to the orientation of the steering which determines the actual intended travel direction. In this work, we introduce a method for category-level 8D pose estimation for articulated bicycles and cyclists from a single RGB image. Besides being able to estimate the 3D translation and rotation of a bicycle from a single image, our method also estimates the rotations of its steering handles and pedals with respect to the bicycle body frame. These two new parameters enable the estimation of a more fine-grained bicycle pose state and travel direction. Our proposed model jointly estimates the 8D pose and the 3D Keypoints of articulated bicycles, and trains with a mix of synthetic and real image data to generalize on real images. We include an evaluation section where we evaluate the accuracy of our estimated 8D pose parameters, and our method shows promising results by achieving competitive scores when compared against state-of-the-art category-level 6D pose estimators that use rigid canonical object templates for matching.
☆ PartNeXt: A Next-Generation Dataset for Fine-Grained and Hierarchical 3D Part Understanding NeurIPS 2025
Understanding objects at the level of their constituent parts is fundamental to advancing computer vision, graphics, and robotics. While datasets like PartNet have driven progress in 3D part understanding, their reliance on untextured geometries and expert-dependent annotation limits scalability and usability. We introduce PartNeXt, a next-generation dataset addressing these gaps with over 23,000 high-quality, textured 3D models annotated with fine-grained, hierarchical part labels across 50 categories. We benchmark PartNeXt on two tasks: (1) class-agnostic part segmentation, where state-of-the-art methods (e.g., PartField, SAMPart3D) struggle with fine-grained and leaf-level parts, and (2) 3D part-centric question answering, a new benchmark for 3D-LLMs that reveals significant gaps in open-vocabulary part grounding. Additionally, training Point-SAM on PartNeXt yields substantial gains over PartNet, underscoring the dataset's superior quality and diversity. By combining scalable annotation, texture-aware labels, and multi-task evaluation, PartNeXt opens new avenues for research in structured 3D understanding.
comment: NeurIPS 2025 DB Track. Project page: https://authoritywang.github.io/partnext
☆ Revisiting Logit Distributions for Reliable Out-of-Distribution Detection NeurIPS 2025
Out-of-distribution (OOD) detection is critical for ensuring the reliability of deep learning models in open-world applications. While post-hoc methods are favored for their efficiency and ease of deployment, existing approaches often underexploit the rich information embedded in the model's logits space. In this paper, we propose LogitGap, a novel post-hoc OOD detection method that explicitly exploits the relationship between the maximum logit and the remaining logits to enhance the separability between in-distribution (ID) and OOD samples. To further improve its effectiveness, we refine LogitGap by focusing on a more compact and informative subset of the logit space. Specifically, we introduce a training-free strategy that automatically identifies the most informative logits for scoring. We provide both theoretical analysis and empirical evidence to validate the effectiveness of our approach. Extensive experiments on both vision-language and vision-only models demonstrate that LogitGap consistently achieves state-of-the-art performance across diverse OOD detection scenarios and benchmarks. Code is available at https://github.com/GIT-LJc/LogitGap.
comment: Accepted by NeurIPS 2025
☆ Inverse Image-Based Rendering for Light Field Generation from Single Images
A concept of light-fields computed from multiple view images on regular grids has proven its benefit for scene representations, and supported realistic renderings of novel views and photographic effects such as refocusing and shallow depth of field. In spite of its effectiveness of light flow computations, obtaining light fields requires either computational costs or specialized devices like a bulky camera setup and a specialized microlens array. In an effort to broaden its benefit and applicability, in this paper, we propose a novel view synthesis method for light field generation from only single images, named inverse image-based rendering. Unlike previous attempts to implicitly rebuild 3D geometry or to explicitly represent objective scenes, our method reconstructs light flows in a space from image pixels, which behaves in the opposite way to image-based rendering. To accomplish this, we design a neural rendering pipeline to render a target ray in an arbitrary viewpoint. Our neural renderer first stores the light flow of source rays from the input image, then computes the relationships among them through cross-attention, and finally predicts the color of the target ray based on these relationships. After the rendering pipeline generates the first novel view from a single input image, the generated out-of-view contents are updated to the set of source rays. This procedure is iteratively performed while ensuring the consistent generation of occluded contents. We demonstrate that our inverse image-based rendering works well with various challenging datasets without any retraining or finetuning after once trained on synthetic dataset, and outperforms relevant state-of-the-art novel view synthesis methods.
☆ Physics-Guided Fusion for Robust 3D Tracking of Fast Moving Small Objects
While computer vision has advanced considerably for general object detection and tracking, the specific problem of fast-moving tiny objects remains underexplored. This paper addresses the significant challenge of detecting and tracking rapidly moving small objects using an RGB-D camera. Our novel system combines deep learning-based detection with physics-based tracking to overcome the limitations of existing approaches. Our contributions include: (1) a comprehensive system design for object detection and tracking of fast-moving small objects in 3D space, (2) an innovative physics-based tracking algorithm that integrates kinematics motion equations to handle outliers and missed detections, and (3) an outlier detection and correction module that significantly improves tracking performance in challenging scenarios such as occlusions and rapid direction changes. We evaluated our proposed system on a custom racquetball dataset. Our evaluation shows our system surpassing kalman filter based trackers with up to 70\% less Average Displacement Error. Our system has significant applications for improving robot perception on autonomous platforms and demonstrates the effectiveness of combining physics-based models with deep learning approaches for real-time 3D detection and tracking of challenging small objects.
comment: 13 pages, 6 figures
☆ Why Prototypes Collapse: Diagnosing and Preventing Partial Collapse in Prototypical Self-Supervised Learning
Prototypical self-supervised learning methods consistently suffer from partial prototype collapse, where multiple prototypes converge to nearly identical representations. This undermines their central purpose -- providing diverse and informative targets to guide encoders toward rich representations -- and has led practitioners to over-parameterize prototype sets or add ad-hoc regularizers, which mitigate symptoms rather than address the root cause. We empirically trace the collapse to the joint optimization of encoders and prototypes, which encourages a type of shortcut learning: early in training prototypes drift toward redundant representations that minimize loss without necessarily enhancing representation diversity. To break the joint optimization, we introduce a fully decoupled training strategy that learns prototypes and encoders under separate objectives. Concretely, we model prototypes as a Gaussian mixture updated with an online EM-style procedure, independent of the encoder's loss. This simple yet principled decoupling eliminates prototype collapse without explicit regularization and yields consistently diverse prototypes and stronger downstream performance.
☆ BIOCAP: Exploiting Synthetic Captions Beyond Labels in Biological Foundation Models
This work investigates descriptive captions as an additional source of supervision for biological multimodal foundation models. Images and captions can be viewed as complementary samples from the latent morphospace of a species, each capturing certain biological traits. Incorporating captions during training encourages alignment with this shared latent structure, emphasizing potentially diagnostic characters while suppressing spurious correlations. The main challenge, however, lies in obtaining faithful, instance-specific captions at scale. This requirement has limited the utilization of natural language supervision in organismal biology compared with many other scientific domains. We complement this gap by generating synthetic captions with multimodal large language models (MLLMs), guided by Wikipedia-derived visual information and taxon-tailored format examples. These domain-specific contexts help reduce hallucination and yield accurate, instance-based descriptive captions. Using these captions, we train BIOCAP (i.e., BIOCLIP with Captions), a biological foundation model that captures rich semantics and achieves strong performance in species classification and text-image retrieval. These results demonstrate the value of descriptive captions beyond labels in bridging biological images with multimodal foundation models.
comment: Project page: https://imageomics.github.io/biocap/
☆ StableSketcher: Enhancing Diffusion Model for Pixel-based Sketch Generation via Visual Question Answering Feedback IEEE
Although recent advancements in diffusion models have significantly enriched the quality of generated images, challenges remain in synthesizing pixel-based human-drawn sketches, a representative example of abstract expression. To combat these challenges, we propose StableSketcher, a novel framework that empowers diffusion models to generate hand-drawn sketches with high prompt fidelity. Within this framework, we fine-tune the variational autoencoder to optimize latent decoding, enabling it to better capture the characteristics of sketches. In parallel, we integrate a new reward function for reinforcement learning based on visual question answering, which improves text-image alignment and semantic consistency. Extensive experiments demonstrate that StableSketcher generates sketches with improved stylistic fidelity, achieving better alignment with prompts compared to the Stable Diffusion baseline. Additionally, we introduce SketchDUO, to the best of our knowledge, the first dataset comprising instance-level sketches paired with captions and question-answer pairs, thereby addressing the limitations of existing datasets that rely on image-label pairs. Our code and dataset will be made publicly available upon acceptance.
comment: Under review at IEEE Access. Author-submitted preprint. Not the IEEE-published version
☆ Attentive Convolution: Unifying the Expressivity of Self-Attention with Convolutional Efficiency
Self-attention (SA) has become the cornerstone of modern vision backbones for its powerful expressivity over traditional Convolutions (Conv). However, its quadratic complexity remains a critical bottleneck for practical applications. Given that Conv offers linear complexity and strong visual priors, continuing efforts have been made to promote the renaissance of Conv. However, a persistent performance chasm remains, highlighting that these modernizations have not yet captured the intrinsic expressivity that defines SA. In this paper, we re-examine the design of the CNNs, directed by a key question: what principles give SA its edge over Conv? As a result, we reveal two fundamental insights that challenge the long-standing design intuitions in prior research (e.g., Receptive field). The two findings are: (1) \textit{Adaptive routing}: SA dynamically regulates positional information flow according to semantic content, whereas Conv employs static kernels uniformly across all positions. (2) \textit{Lateral inhibition}: SA induces score competition among token weighting, effectively suppressing redundancy and sharpening representations, whereas Conv filters lack such inhibitory dynamics and exhibit considerable redundancy. Based on this, we propose \textit{Attentive Convolution} (ATConv), a principled reformulation of the convolutional operator that intrinsically injects these principles. Interestingly, with only $3\times3$ kernels, ATConv consistently outperforms various SA mechanisms in fundamental vision tasks. Building on ATConv, we introduce AttNet, a CNN family that can attain \textbf{84.4\%} ImageNet-1K Top-1 accuracy with only 27M parameters. In diffusion-based image generation, replacing all SA with the proposed $3\times 3$ ATConv in SiT-XL/2 reduces ImageNet FID by 0.15 in 400k steps with faster sampling. Code is available at: github.com/price112/Attentive-Convolution.
☆ Endoshare: A Source Available Solution to De-Identify and Manage Surgical Videos
Video-based assessment and surgical data science can advance surgical training, research, and quality improvement. However, widespread use remains limited by heterogeneous recording formats and privacy concerns associated with video sharing. We present Endoshare, a source-available, cross-platform application for merging, standardizing, and de-identifying endoscopic videos in minimally invasive surgery. Development followed the software development life cycle with iterative, user-centered feedback. During the analysis phase, an internal survey of clinicians and computer scientists based on ten usability heuristics identified key requirements that guided a privacy-by-design architecture. In the testing phase, an external clinician survey combined the same heuristics with Technology Acceptance Model constructs to assess usability and adoption, complemented by benchmarking across different hardware configurations. Four clinicians and four computer scientists initially tested the prototype, reporting high usability (4.68 +/- 0.40/5 and 4.03 +/- 0.51/5), with the lowest score (4.00 +/- 0.93/5) relating to label clarity. After refinement, the testing phase surveyed ten surgeons who reported high perceived usefulness (5.07 +/- 1.75/7), ease of use (5.15 +/- 1.71/7), heuristic usability (4.38 +/- 0.48/5), and strong recommendation (9.20 +/- 0.79/10). Processing time varied with processing mode, video duration (both p <= 0.001), and machine computational power (p = 0.041). Endoshare provides a transparent, user-friendly pipeline for standardized, privacy-preserving surgical video management. Compliance certification and broader interoperability validation are needed to establish it as a deployable alternative to proprietary systems. The software is available at https://camma-public.github.io/Endoshare/
comment: 13 pages, 6 figures. Source-available software: https://camma-public.github.io/Endoshare/
♻ ☆ DragFlow: Unleashing DiT Priors with Region Based Supervision for Drag Editing
Drag-based image editing has long suffered from distortions in the target region, largely because the priors of earlier base models, Stable Diffusion, are insufficient to project optimized latents back onto the natural image manifold. With the shift from UNet-based DDPMs to more scalable DiT with flow matching (e.g., SD3.5, FLUX), generative priors have become significantly stronger, enabling advances across diverse editing tasks. However, drag-based editing has yet to benefit from these stronger priors. This work proposes the first framework to effectively harness FLUX's rich prior for drag-based editing, dubbed DragFlow, achieving substantial gains over baselines. We first show that directly applying point-based drag editing to DiTs performs poorly: unlike the highly compressed features of UNets, DiT features are insufficiently structured to provide reliable guidance for point-wise motion supervision. To overcome this limitation, DragFlow introduces a region-based editing paradigm, where affine transformations enable richer and more consistent feature supervision. Additionally, we integrate pretrained open-domain personalization adapters (e.g., IP-Adapter) to enhance subject consistency, while preserving background fidelity through gradient mask-based hard constraints. Multimodal large language models (MLLMs) are further employed to resolve task ambiguities. For evaluation, we curate a novel Region-based Dragging benchmark (ReD Bench) featuring region-level dragging instructions. Extensive experiments on DragBench-DR and ReD Bench show that DragFlow surpasses both point-based and region-based baselines, setting a new state-of-the-art in drag-based image editing. Code and datasets will be publicly available upon publication.
comment: Preprint
♻ ☆ Watermarking Autoregressive Image Generation NeurIPS 2025
Watermarking the outputs of generative models has emerged as a promising approach for tracking their provenance. Despite significant interest in autoregressive image generation models and their potential for misuse, no prior work has attempted to watermark their outputs at the token level. In this work, we present the first such approach by adapting language model watermarking techniques to this setting. We identify a key challenge: the lack of reverse cycle-consistency (RCC), wherein re-tokenizing generated image tokens significantly alters the token sequence, effectively erasing the watermark. To address this and to make our method robust to common image transformations, neural compression, and removal attacks, we introduce (i) a custom tokenizer-detokenizer finetuning procedure that improves RCC, and (ii) a complementary watermark synchronization layer. As our experiments demonstrate, our approach enables reliable and robust watermark detection with theoretically grounded p-values. Code and models are available at https://github.com/facebookresearch/wmar.
comment: NeurIPS 2025
♻ ☆ Tex-ViT: A Generalizable, Robust, Texture-based dual-branch cross-attention deepfake detector
Deepfakes, which employ GAN to produce highly realistic facial modification, are widely regarded as the prevailing method. Traditional CNN have been able to identify bogus media, but they struggle to perform well on different datasets and are vulnerable to adversarial attacks due to their lack of robustness. Vision transformers have demonstrated potential in the realm of image classification problems, but they require enough training data. Motivated by these limitations, this publication introduces Tex-ViT (Texture-Vision Transformer), which enhances CNN features by combining ResNet with a vision transformer. The model combines traditional ResNet features with a texture module that operates in parallel on sections of ResNet before each down-sampling operation. The texture module then serves as an input to the dual branch of the cross-attention vision transformer. It specifically focuses on improving the global texture module, which extracts feature map correlation. Empirical analysis reveals that fake images exhibit smooth textures that do not remain consistent over long distances in manipulations. Experiments were performed on different categories of FF++, such as DF, f2f, FS, and NT, together with other types of GAN datasets in cross-domain scenarios. Furthermore, experiments also conducted on FF++, DFDCPreview, and Celeb-DF dataset underwent several post-processing situations, such as blurring, compression, and noise. The model surpassed the most advanced models in terms of generalization, achieving a 98% accuracy in cross-domain scenarios. This demonstrates its ability to learn the shared distinguishing textural characteristics in the manipulated samples. These experiments provide evidence that the proposed model is capable of being applied to various situations and is resistant to many post-processing procedures.
♻ ☆ GenLit: Reformulating Single-Image Relighting as Video Generation
Manipulating the illumination of a 3D scene within a single image represents a fundamental challenge in computer vision and graphics. This problem has traditionally been addressed using inverse rendering techniques, which involve explicit 3D asset reconstruction and costly ray-tracing simulations. Meanwhile, recent advancements in visual foundation models suggest that a new paradigm could soon be possible -- one that replaces explicit physical models with networks that are trained on large amounts of image and video data. In this paper, we exploit the implicit scene understanding of a video diffusion model, particularly Stable Video Diffusion, to relight a single image. We introduce GenLit, a framework that distills the ability of a graphics engine to perform light manipulation into a video-generation model, enabling users to directly insert and manipulate a point light in the 3D world within a given image and generate results directly as a video sequence. We find that a model fine-tuned on only a small synthetic dataset generalizes to real-world scenes, enabling single-image relighting with plausible and convincing shadows and inter-reflections. Our results highlight the ability of video foundation models to capture rich information about lighting, material, and shape, and our findings indicate that such models, with minimal training, can be used to perform relighting without explicit asset reconstruction or ray-tracing. . Project page: https://genlit.is.tue.mpg.de/.
♻ ☆ mmWalk: Towards Multi-modal Multi-view Walking Assistance NeurIPS 2025
Walking assistance in extreme or complex environments remains a significant challenge for people with blindness or low vision (BLV), largely due to the lack of a holistic scene understanding. Motivated by the real-world needs of the BLV community, we build mmWalk, a simulated multi-modal dataset that integrates multi-view sensor and accessibility-oriented features for outdoor safe navigation. Our dataset comprises 120 manually controlled, scenario-categorized walking trajectories with 62k synchronized frames. It contains over 559k panoramic images across RGB, depth, and semantic modalities. Furthermore, to emphasize real-world relevance, each trajectory involves outdoor corner cases and accessibility-specific landmarks for BLV users. Additionally, we generate mmWalkVQA, a VQA benchmark with over 69k visual question-answer triplets across 9 categories tailored for safe and informed walking assistance. We evaluate state-of-the-art Vision-Language Models (VLMs) using zero- and few-shot settings and found they struggle with our risk assessment and navigational tasks. We validate our mmWalk-finetuned model on real-world datasets and show the effectiveness of our dataset for advancing multi-modal walking assistance.
comment: Accepted by NeurIPS 2025 Datasets and Benchmarks Track. Data and Code: https://github.com/KediYing/mmWalk
♻ ☆ Fast-Slow Thinking GRPO for Large Vision-Language Model Reasoning
When applying reinforcement learning--typically through GRPO--to large vision-language model reasoning struggles to effectively scale reasoning length or generates verbose outputs across all tasks with only marginal gains in accuracy. To address this issue, we present FAST-GRPO, a variant of GRPO that dynamically adapts reasoning depth based on question characteristics. Through empirical analysis, we establish the feasibility of fast-slow thinking in LVLMs by investigating how response length and data distribution affect performance. Inspired by these observations, we introduce two complementary metrics to estimate the difficulty of the questions, guiding the model to determine when fast or slow thinking is more appropriate. Next, we incorporate adaptive length-based rewards and difficulty-aware KL divergence into the GRPO algorithm. Experiments across seven reasoning benchmarks demonstrate that FAST achieves state-of-the-art accuracy with over 10\% relative improvement compared to the base model, while reducing token usage by 32.7-67.3\% compared to previous slow-thinking approaches, effectively balancing reasoning length and accuracy.
♻ ☆ Structured Spectral Graph Representation Learning for Multi-label Abnormality Analysis from 3D CT Scans
With the growing volume of CT examinations, there is an increasing demand for automated tools such as organ segmentation, abnormality detection, and report generation to support radiologists in managing their clinical workload. Multi-label classification of 3D Chest CT scans remains a critical yet challenging problem due to the complex spatial relationships inherent in volumetric data and the wide variability of abnormalities. Existing methods based on 3D convolutional neural networks struggle to capture long-range dependencies, while Vision Transformers often require extensive pre-training on large-scale, domain-specific datasets to perform competitively. In this work of academic research, we propose a 2.5D alternative by introducing a new graph-based framework that represents 3D CT volumes as structured graphs, where axial slice triplets serve as nodes processed through spectral graph convolution, enabling the model to reason over inter-slice dependencies while maintaining complexity compatible with clinical deployment. Our method, trained and evaluated on 3 datasets from independent institutions, achieves strong cross-dataset generalization, and shows competitive performance compared to state-of-the-art visual encoders. We further conduct comprehensive ablation studies to evaluate the impact of various aggregation strategies, edge-weighting schemes, and graph connectivity patterns. Additionally, we demonstrate the broader applicability of our approach through transfer experiments on automated radiology report generation and abdominal CT data.
comment: 24 pages, 15 figures
♻ ☆ FreeGraftor: Training-Free Cross-Image Feature Grafting for Subject-Driven Text-to-Image Generation
Subject-driven image generation aims to synthesize novel scenes that faithfully preserve subject identity from reference images while adhering to textual guidance. However, existing methods struggle with a critical trade-off between fidelity and efficiency. Tuning-based approaches rely on time-consuming and resource-intensive, subject-specific optimization, while zero-shot methods often fail to maintain adequate subject consistency. In this work, we propose FreeGraftor, a training-free framework that addresses these limitations through cross-image feature grafting. Specifically, FreeGraftor leverages semantic matching and position-constrained attention fusion to transfer visual details from reference subjects to the generated images. Additionally, our framework introduces a novel noise initialization strategy to preserve the geometry priors of reference subjects, facilitating robust feature matching. Extensive qualitative and quantitative experiments demonstrate that our method enables precise subject identity transfer while maintaining text-aligned scene synthesis. Without requiring model fine-tuning or additional training, FreeGraftor significantly outperforms existing zero-shot and training-free approaches in both subject fidelity and text alignment. Furthermore, our framework can seamlessly extend to multi-subject generation, making it practical for real-world deployment. Our code is available at https://github.com/Nihukat/FreeGraftor.
comment: Code: https://github.com/Nihukat/FreeGraftor
♻ ☆ Uncovering Anomalous Events for Marine Environmental Monitoring via Visual Anomaly Detection
Underwater video monitoring is a promising strategy for assessing marine biodiversity, but the vast volume of uneventful footage makes manual inspection highly impractical. In this work, we explore the use of visual anomaly detection (VAD) based on deep neural networks to automatically identify interesting or anomalous events. We introduce AURA, the first multi-annotator benchmark dataset for underwater VAD, and evaluate four VAD models across two marine scenes. We demonstrate the importance of robust frame selection strategies to extract meaningful video segments. Our comparison against multiple annotators reveals that VAD performance of current models varies dramatically and is highly sensitive to both the amount of training data and the variability in visual content that defines "normal" scenes. Our results highlight the value of soft and consensus labels and offer a practical approach for supporting scientific exploration and scalable biodiversity monitoring.
♻ ☆ X-Reflect: Cross-Reflection Prompting for Multimodal Recommendation
Large Language Models (LLMs) have been shown to enhance the effectiveness of enriching item descriptions, thereby improving the accuracy of recommendation systems. However, most existing approaches either rely on text-only prompting or employ basic multimodal strategies that do not fully exploit the complementary information available from both textual and visual modalities. This paper introduces a novel framework, Cross-Reflection Prompting, termed X-Reflect, designed to address these limitations by prompting Multimodal Large Language Models (MLLMs) to explicitly identify and reconcile supportive and conflicting information between text and images. By capturing nuanced insights from both modalities, this approach generates more comprehensive and contextually rich item representations. Extensive experiments conducted on two widely used benchmarks demonstrate that our method outperforms existing prompting baselines in downstream recommendation accuracy. Furthermore, we identify a U-shaped relationship between text-image dissimilarity and recommendation performance, suggesting the benefit of applying multimodal prompting selectively. To support efficient real-time inference, we also introduce X-Reflect-keyword, a lightweight variant that summarizes image content using keywords and replaces the base model with a smaller backbone, achieving nearly 50% reduction in input length while maintaining competitive performance. This work underscores the importance of integrating multimodal information and presents an effective solution for improving item understanding in multimodal recommendation systems.
♻ ☆ CALM-PDE: Continuous and Adaptive Convolutions for Latent Space Modeling of Time-dependent PDEs NeurIPS
Solving time-dependent Partial Differential Equations (PDEs) using a densely discretized spatial domain is a fundamental problem in various scientific and engineering disciplines, including modeling climate phenomena and fluid dynamics. However, performing these computations directly in the physical space often incurs significant computational costs. To address this issue, several neural surrogate models have been developed that operate in a compressed latent space to solve the PDE. While these approaches reduce computational complexity, they often use Transformer-based attention mechanisms to handle irregularly sampled domains, resulting in increased memory consumption. In contrast, convolutional neural networks allow memory-efficient encoding and decoding but are limited to regular discretizations. Motivated by these considerations, we propose CALM-PDE, a model class that efficiently solves arbitrarily discretized PDEs in a compressed latent space. We introduce a novel continuous convolution-based encoder-decoder architecture that uses an epsilon-neighborhood-constrained kernel and learns to apply the convolution operator to adaptive and optimized query points. We demonstrate the effectiveness of CALM-PDE on a diverse set of PDEs with both regularly and irregularly sampled spatial domains. CALM-PDE is competitive with or outperforms existing baseline methods while offering significant improvements in memory and inference time efficiency compared to Transformer-based methods.
comment: Accepted for publication at the 39th Conference on Neural Information Processing Systems (NeurIPS) 2025, San Diego, California, USA
♻ ☆ REOBench: Benchmarking Robustness of Earth Observation Foundation Models
Earth observation foundation models have shown strong generalization across multiple Earth observation tasks, but their robustness under real-world perturbations remains underexplored. To bridge this gap, we introduce REOBench, the first comprehensive benchmark for evaluating the robustness of Earth observation foundation models across six tasks and twelve types of image corruptions, including both appearance-based and geometric perturbations. To ensure realistic and fine-grained evaluation, our benchmark focuses on high-resolution optical remote sensing images, which are widely used in critical applications such as urban planning and disaster response. We conduct a systematic evaluation of a broad range of models trained using masked image modeling, contrastive learning, and vision-language pre-training paradigms. Our results reveal that (1) existing Earth observation foundation models experience significant performance degradation when exposed to input corruptions. (2) The severity of degradation varies across tasks, model architectures, backbone sizes, and types of corruption, with performance drop varying from less than 1% to over 20%. (3) Vision-language models show enhanced robustness, particularly in multimodal tasks. REOBench underscores the vulnerability of current Earth observation foundation models to real-world corruptions and provides actionable insights for developing more robust and reliable models. Code and data are publicly available at https://github.com/lx709/REOBench.
comment: Accepted to NeruIPS 2025 D&B Track
♻ ☆ BioCLIP 2: Emergent Properties from Scaling Hierarchical Contrastive Learning NeurIPS 2025
Foundation models trained at scale exhibit remarkable emergent behaviors, learning new capabilities beyond their initial training objectives. We find such emergent behaviors in biological vision models via large-scale contrastive vision-language training. To achieve this, we first curate TreeOfLife-200M, comprising 214 million images of living organisms, the largest and most diverse biological organism image dataset to date. We then train BioCLIP 2 on TreeOfLife-200M to distinguish different species. Despite the narrow training objective, BioCLIP 2 yields extraordinary accuracy when applied to various biological visual tasks such as habitat classification and trait prediction. We identify emergent properties in the learned embedding space of BioCLIP 2. At the inter-species level, the embedding distribution of different species aligns closely with functional and ecological meanings (e.g., beak sizes and habitats). At the intra-species level, instead of being diminished, the intra-species variations (e.g., life stages and sexes) are preserved and better separated in subspaces orthogonal to inter-species distinctions. We provide formal proof and analyses to explain why hierarchical supervision and contrastive objectives encourage these emergent properties. Crucially, our results reveal that these properties become increasingly significant with larger-scale training data, leading to a biologically meaningful embedding space.
comment: NeurIPS 2025 Spotlight; Project page: https://imageomics.github.io/bioclip-2/
♻ ☆ Does Reinforcement Learning Really Incentivize Reasoning Capacity in LLMs Beyond the Base Model?
Reinforcement Learning with Verifiable Rewards (RLVR) has recently demonstrated notable success in enhancing the reasoning performance of large language models (LLMs), particularly on mathematics and programming tasks. Similar to how traditional RL helps agents explore and learn new strategies, RLVR is believed to enable LLMs to continuously self-improve, thus acquiring novel reasoning abilities beyond those of the corresponding base models. In this study we critically examine the current state of RLVR by systematically probing the reasoning capability boundaries of RLVR-trained LLMs across various model families, RL algorithms, and math, coding, and visual reasoning benchmarks, using pass@k at large k values as the evaluation metric. Surprisingly, we find that the current training setup does not elicit fundamentally new reasoning patterns. While RLVR-trained models outperform their base models at small k (e.g., k = 1), the base models achieve a higher pass@k score when k is large. Coverage and perplexity analyses show that the observed reasoning abilities originate from and are bounded by the base model. Treating the base model as an upper bound, our quantitative analysis shows that six popular RLVR algorithms perform similarly and remain far from optimal in leveraging the potential of the base model. By contrast, we find that distillation can introduce new reasoning patterns from the teacher and genuinely expand the model's reasoning capabilities. Overall, our findings suggest that current RLVR methods have not yet realized the potential of RL to elicit truly novel reasoning abilities in LLMs. This highlights the need for improved RL paradigms, such as continual scaling and multi-turn agent-environment interaction, to unlock this potential.
comment: 30 pages, 27 figures
♻ ☆ Residual Kolmogorov-Arnold Network for Enhanced Deep Learning
Despite their immense success, deep convolutional neural networks (CNNs) can be difficult to optimize and costly to train due to hundreds of layers within the network depth. Conventional convolutional operations are fundamentally limited by their linear nature along with fixed activations, where many layers are needed to learn meaningful patterns in data. Because of the sheer size of these networks, this approach is simply computationally inefficient, and poses overfitting or gradient explosion risks, especially in small datasets. As a result, we introduce a "plug-in" module, called Residual Kolmogorov-Arnold Network (RKAN). Our module is highly compact, so it can be easily added into any stage (level) of traditional deep networks, where it learns to integrate supportive polynomial feature transformations to existing convolutional frameworks. RKAN offers consistent improvements over baseline models in different vision tasks and widely tested benchmarks, accomplishing cutting-edge performance on them.
comment: Code is available at https://github.com/withray/residualKAN.git
♻ ☆ A novel attention mechanism for noise-adaptive and robust segmentation of microtubules in microscopy images
Segmenting cytoskeletal filaments in microscopy images is essential for understanding their cellular roles but remains challenging, especially in dense, complex networks and under noisy or low-contrast image conditions. While deep learning has advanced image segmentation, performance often degrades in these adverse scenarios. Additional challenges include the difficulty of obtaining accurate annotations and managing severe class imbalance. We proposed a novel noise-adaptive attention mechanism, extending the Squeeze-and-Excitation (SE) module, to dynamically adjust to varying noise levels. This Adaptive SE (ASE) mechanism is integrated into a U-Net decoder, with residual encoder blocks, forming a lightweight yet powerful model: ASE_Res_U-Net. We also developed a synthetic-dataset strategy and employed tailored loss functions and evaluation metrics to mitigate class imbalance and ensure fair assessment. ASE_Res_U-Net effectively segmented microtubules in both synthetic and real noisy images, outperforming its ablated variants and state-of-the-art curvilinear-structure segmentation methods. It achieved this while using fewer parameters, making it suitable for resource-constrained environments. Importantly, ASE_Res_U-Net generalised well to other curvilinear structures (blood vessels and nerves) under diverse imaging conditions. Availability and implementation: Original microtubule datasets (synthetic and real noisy images) are available on Zenodo (DOIs: 10.5281/zenodo.14696279 and 10.5281/zenodo.15852660). ASE_Res_UNet model will be shared upon publication.
♻ ☆ Spatial-DISE: A Unified Benchmark for Evaluating Spatial Reasoning in Vision-Language Models
Spatial reasoning ability is crucial for Vision Language Models (VLMs) to support real-world applications in diverse domains including robotics, augmented reality, and autonomous navigation. Unfortunately, existing benchmarks are inadequate in assessing spatial reasoning ability, especially the \emph{intrinsic-dynamic} spatial reasoning which is a fundamental aspect of human spatial cognition. In this paper, we propose a unified benchmark, \textbf{Spatial-DISE}, based on a cognitively grounded taxonomy that categorizes tasks into four fundamental quadrants: \textbf{I}ntrinsic-\textbf{S}tatic, Intrinsic-\textbf{D}ynamic, \textbf{E}xtrinsic-Static, and Extrinsic-Dynamic spatial reasoning. Moreover, to address the issue of data scarcity, we develop a scalable and automated pipeline to generate diverse and verifiable spatial reasoning questions, resulting in a new \textbf{Spatial-DISE} dataset that includes Spatial-DISE Bench (559 evaluation VQA pairs) and Spatial-DISE-12K (12K+ training VQA pairs). Our comprehensive evaluation across 28 state-of-the-art VLMs reveals that, current VLMs have a large and consistent gap to human competence, especially on multi-step multi-view spatial reasoning. Spatial-DISE offers a robust framework, valuable dataset, and clear direction for future research toward human-like spatial intelligence. Benchmark, dataset, and code will be publicly released.
comment: Project Page: https://shinmohuang.github.io/spatialdise_page/
♻ ☆ BevSplat: Resolving Height Ambiguity via Feature-Based Gaussian Primitives for Weakly-Supervised Cross-View Localization
This paper addresses the problem of weakly supervised cross-view localization, where the goal is to estimate the pose of a ground camera relative to a satellite image with noisy ground truth annotations. A common approach to bridge the cross-view domain gap for pose estimation is Bird's-Eye View (BEV) synthesis. However, existing methods struggle with height ambiguity due to the lack of depth information in ground images and satellite height maps. Previous solutions either assume a flat ground plane or rely on complex models, such as cross-view transformers. We propose BevSplat, a novel method that resolves height ambiguity by using feature-based Gaussian primitives. Each pixel in the ground image is represented by a 3D Gaussian with semantic and spatial features, which are synthesized into a BEV feature map for relative pose estimation. Additionally, to address challenges with panoramic query images, we introduce an icosphere-based supervision strategy for the Gaussian primitives. We validate our method on the widely used KITTI and VIGOR datasets, which include both pinhole and panoramic query images. Experimental results show that BevSplat significantly improves localization accuracy over prior approaches.
♻ ☆ PolyPose: Deformable 2D/3D Registration via Polyrigid Transformations NeurIPS 2025
Determining the 3D pose of a patient from a limited set of 2D X-ray images is a critical task in interventional settings. While preoperative volumetric imaging (e.g., CT and MRI) provides precise 3D localization and visualization of anatomical targets, these modalities cannot be acquired during procedures, where fast 2D imaging (X-ray) is used instead. To integrate volumetric guidance into intraoperative procedures, we present PolyPose, a simple and robust method for deformable 2D/3D registration. PolyPose parameterizes complex 3D deformation fields as a composition of rigid transforms, leveraging the biological constraint that individual bones do not bend in typical motion. Unlike existing methods that either assume no inter-joint movement or fail outright in this under-determined setting, our polyrigid formulation enforces anatomically plausible priors that respect the piecewise-rigid nature of human movement. This approach eliminates the need for expensive deformation regularizers that require patient- and procedure-specific hyperparameter optimization. Across extensive experiments on diverse datasets from orthopedic surgery and radiotherapy, we show that this strong inductive bias enables PolyPose to successfully align the patient's preoperative volume to as few as two X-rays, thereby providing crucial 3D guidance in challenging sparse-view and limited-angle settings where current registration methods fail. Additional visualizations, tutorials, and code are available at https://polypose.csail.mit.edu.
comment: NeurIPS 2025. Code available at https://github.com/eigenvivek/polypose
♻ ☆ Frequency-Dynamic Attention Modulation for Dense Prediction ICCV 2025
Vision Transformers (ViTs) have significantly advanced computer vision, demonstrating strong performance across various tasks. However, the attention mechanism in ViTs makes each layer function as a low-pass filter, and the stacked-layer architecture in existing transformers suffers from frequency vanishing. This leads to the loss of critical details and textures. We propose a novel, circuit-theory-inspired strategy called Frequency-Dynamic Attention Modulation (FDAM), which can be easily plugged into ViTs. FDAM directly modulates the overall frequency response of ViTs and consists of two techniques: Attention Inversion (AttInv) and Frequency Dynamic Scaling (FreqScale). Since circuit theory uses low-pass filters as fundamental elements, we introduce AttInv, a method that generates complementary high-pass filtering by inverting the low-pass filter in the attention matrix, and dynamically combining the two. We further design FreqScale to weight different frequency components for fine-grained adjustments to the target response function. Through feature similarity analysis and effective rank evaluation, we demonstrate that our approach avoids representation collapse, leading to consistent performance improvements across various models, including SegFormer, DeiT, and MaskDINO. These improvements are evident in tasks such as semantic segmentation, object detection, and instance segmentation. Additionally, we apply our method to remote sensing detection, achieving state-of-the-art results in single-scale settings. The code is available at https://github.com/Linwei-Chen/FDAM.
comment: Accepted by ICCV 2025
♻ ☆ A primal-dual algorithm for image reconstruction with input-convex neural network regularizers
We address the optimization problem in a data-driven variational reconstruction framework, where the regularizer is parameterized by an input-convex neural network (ICNN). While gradient-based methods are commonly used to solve such problems, they struggle to effectively handle non-smooth problems which often leads to slow convergence. Moreover, the nested structure of the neural network complicates the application of standard non-smooth optimization techniques, such as proximal algorithms. To overcome these challenges, we reformulate the problem and eliminate the network's nested structure. By relating this reformulation to epigraphical projections of the activation functions, we transform the problem into a convex optimization problem that can be efficiently solved using a primal-dual algorithm. We also prove that this reformulation is equivalent to the original variational problem. Through experiments on several imaging tasks, we show that the proposed approach not only outperforms subgradient methods and even accelerated methods in the smooth setting, but also facilitates the training of the regularizer itself.
♻ ☆ MCIF: Multimodal Crosslingual Instruction-Following Benchmark from Scientific Talks
Recent advances in large language models have catalyzed the development of multimodal LLMs (MLLMs) that integrate text, speech, and vision within unified frameworks. As MLLMs evolve from narrow, monolingual, task-specific systems to general-purpose instruction-following models, a key frontier lies in evaluating their multilingual and multimodal capabilities over both long and short contexts. However, existing benchmarks fall short in evaluating these dimensions jointly: they are often limited to English, mostly focus on one single modality at a time, rely on short-form contexts, or lack human annotations -- hindering comprehensive assessment of model performance across languages, modalities, and task complexity. To address these gaps, we introduce MCIF (Multimodal Crosslingual Instruction Following), the first multilingual human-annotated benchmark based on scientific talks that is designed to evaluate instruction-following in crosslingual, multimodal settings over both short- and long-form inputs. MCIF spans three core modalities -- speech, vision, and text -- and four diverse languages (English, German, Italian, and Chinese), enabling a comprehensive evaluation of MLLMs' abilities to interpret instructions across languages and combine them with multimodal contextual information. MCIF is released under a CC-BY 4.0 license to encourage open research and progress in MLLMs development.
comment: Data available at https://huggingface.co/datasets/FBK-MT/MCIF | Evaluation and baselines available at https://github.com/hlt-mt/mcif
♻ ☆ Face-Human-Bench: A Comprehensive Benchmark of Face and Human Understanding for Multi-modal Assistants NeurIPS 2025
Faces and humans are crucial elements in social interaction and are widely included in everyday photos and videos. Therefore, a deep understanding of faces and humans will enable multi-modal assistants to achieve improved response quality and broadened application scope. Currently, the multi-modal assistant community lacks a comprehensive and scientific evaluation of face and human understanding abilities. In this paper, we first propose a hierarchical ability taxonomy that includes three levels of abilities. Then, based on this taxonomy, we collect images and annotations from publicly available datasets in the face and human community and build a semi-automatic data pipeline to produce problems for the new benchmark. Finally, the obtained Face-Human-Bench includes a development set and a test set, each with 1800 problems, supporting both English and Chinese. We conduct evaluations over 25 mainstream multi-modal large language models (MLLMs) with our Face-Human-Bench, focusing on the correlation between abilities, the impact of the relative position of targets on performance, and the impact of Chain of Thought (CoT) prompting on performance. We also explore which abilities of MLLMs need to be supplemented by specialist models. The dataset and evaluation code have been made publicly available at https://face-human-bench.github.io.
comment: 50 pages, 14 figures, 42 tables. NeurIPS 2025 Datasets and Benchmarks Track
♻ ☆ Grounding Language with Vision: A Conditional Mutual Information Calibrated Decoding Strategy for Reducing Hallucinations in LVLMs
Large Vision-Language Models (LVLMs) are susceptible to hallucinations, where generated responses seem semantically plausible yet exhibit little or no relevance to the input image. Previous studies reveal that this issue primarily stems from LVLMs' over-reliance on language priors while disregarding the visual information during decoding. To alleviate this issue, we introduce a novel Conditional Pointwise Mutual Information (C-PMI) calibrated decoding strategy, which adaptively strengthens the mutual dependency between generated texts and input images to mitigate hallucinations. Unlike existing methods solely focusing on text token sampling, we propose to jointly model the contributions of visual and textual tokens to C-PMI, formulating hallucination mitigation as a bi-level optimization problem aimed at maximizing mutual information. To solve it, we design a token purification mechanism that dynamically regulates the decoding process by sampling text tokens remaining maximally relevant to the given image, while simultaneously refining image tokens most pertinent to the generated response. Extensive experiments across various benchmarks reveal that the proposed method significantly reduces hallucinations in LVLMs while preserving decoding efficiency.
♻ ☆ Learning Dense Hand Contact Estimation from Imbalanced Data NeurIPS 2025
Hands are essential to human interaction, and exploring contact between hands and the world can promote comprehensive understanding of their function. Recently, there have been growing number of hand interaction datasets that cover interaction with object, other hand, scene, and body. Despite the significance of the task and increasing high-quality data, how to effectively learn dense hand contact estimation remains largely underexplored. There are two major challenges for learning dense hand contact estimation. First, there exists class imbalance issue from hand contact datasets where majority of regions are not in contact. Second, hand contact datasets contain spatial imbalance issue with most of hand contact exhibited in finger tips, resulting in challenges for generalization towards contacts in other hand regions. To tackle these issues, we present a framework that learns dense HAnd COntact estimation (HACO) from imbalanced data. To resolve the class imbalance issue, we introduce balanced contact sampling, which builds and samples from multiple sampling groups that fairly represent diverse contact statistics for both contact and non-contact vertices. Moreover, to address the spatial imbalance issue, we propose vertex-level class-balanced (VCB) loss, which incorporates spatially varying contact distribution by separately reweighting loss contribution of each vertex based on its contact frequency across dataset. As a result, we effectively learn to predict dense hand contact estimation with large-scale hand contact data without suffering from class and spatial imbalance issue. The codes are available at https://github.com/dqj5182/HACO_RELEASE.
comment: Accepted at NeurIPS 2025. Project page: http://haco-release.github.io
♻ ☆ HumanCM: One Step Human Motion Prediction
We present HumanCM, a one-step human motion prediction framework built upon consistency models. Instead of relying on multi-step denoising as in diffusion-based methods, HumanCM performs efficient single-step generation by learning a self-consistent mapping between noisy and clean motion states. The framework adopts a Transformer-based spatiotemporal architecture with temporal embeddings to model long-range dependencies and preserve motion coherence. Experiments on Human3.6M and HumanEva-I demonstrate that HumanCM achieves comparable or superior accuracy to state-of-the-art diffusion models while reducing inference steps by up to two orders of magnitude.
comment: 6 pages, 3 figures, 2 tables
♻ ☆ Balanced Token Pruning: Accelerating Vision Language Models Beyond Local Optimization
Large Vision-Language Models (LVLMs) have shown impressive performance across multi-modal tasks by encoding images into thousands of tokens. However, the large number of image tokens results in significant computational overhead, and the use of dynamic high-resolution inputs further increases this burden. Previous approaches have attempted to reduce the number of image tokens through token pruning, typically by selecting tokens based on attention scores or image token diversity. Through empirical studies, we observe that existing methods often overlook the joint impact of pruning on both the current layer's output (local) and the outputs of subsequent layers (global), leading to suboptimal pruning decisions. To address this challenge, we propose Balanced Token Pruning (BTP), a plug-and-play method for pruning vision tokens. Specifically, our method utilizes a small calibration set to divide the pruning process into multiple stages. In the early stages, our method emphasizes the impact of pruning on subsequent layers, whereas in the deeper stages, the focus shifts toward preserving the consistency of local outputs. Extensive experiments across various LVLMs demonstrate the broad effectiveness of our approach on multiple benchmarks. Our method achieves a 78% compression rate while preserving 96.7% of the original models' performance on average. Our code is available at https://github.com/EmbodiedCity/NeurIPS2025-Balanced-Token-Pruning.
comment: Accepted by Neurips 2025
♻ ☆ Frequency Cam: Imaging Periodic Signals in Real-Time
Due to their high temporal resolution and large dynamic range, event cameras are uniquely suited for the analysis of time-periodic signals in an image. In this work we present an efficient and fully asynchronous event camera algorithm for detecting the fundamental frequency at which image pixels flicker. The algorithm employs a second-order digital infinite impulse response (IIR) filter to perform an approximate per-pixel brightness reconstruction and is more robust to high-frequency noise than the baseline method we compare to. We further demonstrate that using the falling edge of the signal leads to more accurate period estimates than the rising edge, and that for certain signals interpolating the zero-level crossings can further increase accuracy. Our experiments find that the outstanding capabilities of the camera in detecting frequencies up to 64kHz for a single pixel do not carry over to full sensor imaging as readout bandwidth limitations become a serious obstacle. This suggests that a hardware implementation closer to the sensor will allow for greatly improved frequency imaging. We discuss the important design parameters for fullsensor frequency imaging and present Frequency Cam, an open-source implementation as a ROS node that can run on a single core of a laptop CPU at more than 50 million events per second. It produces results that are qualitatively very similar to those obtained from the closed source vibration analysis module in Prophesee's Metavision Toolkit. The code for Frequency Cam and a demonstration video can be found at https://github.com/ros-event-camera/frequency_cam
comment: 13 pages, 16 figures, one table
♻ ☆ Mesh-RFT: Enhancing Mesh Generation via Fine-grained Reinforcement Fine-Tuning NeurIPS 2025
Existing pretrained models for 3D mesh generation often suffer from data biases and produce low-quality results, while global reinforcement learning (RL) methods rely on object-level rewards that struggle to capture local structure details. To address these challenges, we present Mesh-RFT, a novel fine-grained reinforcement fine-tuning framework that employs Masked Direct Preference Optimization (M-DPO) to enable localized refinement via quality-aware face masking. To facilitate efficient quality evaluation, we introduce an objective topology-aware scoring system to evaluate geometric integrity and topological regularity at both object and face levels through two metrics: Boundary Edge Ratio (BER) and Topology Score (TS). By integrating these metrics into a fine-grained RL strategy, Mesh-RFT becomes the first method to optimize mesh quality at the granularity of individual faces, resolving localized errors while preserving global coherence. Experiment results show that our M-DPO approach reduces Hausdorff Distance (HD) by 24.6% and improves Topology Score (TS) by 3.8% over pre-trained models, while outperforming global DPO methods with a 17.4% HD reduction and 4.9% TS gain. These results demonstrate Mesh-RFT's ability to improve geometric integrity and topological regularity, achieving new state-of-the-art performance in production-ready mesh generation. Project Page: https://hitcslj.github.io/mesh-rft/.
comment: NeurIPS 2025, Spotlight
♻ ☆ Occluded nuScenes: A Multi-Sensor Dataset for Evaluating Perception Robustness in Automated Driving
Robust perception in automated driving requires reliable performance under adverse conditions, where sensors may be affected by partial failures or environmental occlusions. Although existing autonomous driving datasets inherently contain sensor noise and environmental variability, very few enable controlled, parameterised, and reproducible degradations across multiple sensing modalities. This gap limits the ability to systematically evaluate how perception and fusion architectures perform under well-defined adverse conditions. To address this limitation, we introduce the Occluded nuScenes Dataset, a novel extension of the widely used nuScenes benchmark. For the camera modality, we release both the full and mini versions with four types of occlusions, two adapted from public implementations and two newly designed. For radar and LiDAR, we provide parameterised occlusion scripts that implement three types of degradations each, enabling flexible and repeatable generation of occluded data. This resource supports consistent, reproducible evaluation of perception models under partial sensor failures and environmental interference. By releasing the first multi-sensor occlusion dataset with controlled and reproducible degradations, we aim to advance research on robust sensor fusion, resilience analysis, and safety-critical perception in automated driving.
♻ ☆ Identity-Preserving Image-to-Video Generation via Reward-Guided Optimization
Recent advances in image-to-video (I2V) generation have achieved remarkable progress in synthesizing high-quality, temporally coherent videos from static images. Among all the applications of I2V, human-centric video generation includes a large portion. However, existing I2V models encounter difficulties in maintaining identity consistency between the input human image and the generated video, especially when the person in the video exhibits significant expression changes and movements. This issue becomes critical when the human face occupies merely a small fraction of the image. Since humans are highly sensitive to identity variations, this poses a critical yet under-explored challenge in I2V generation. In this paper, we propose Identity-Preserving Reward-guided Optimization (IPRO), a novel video diffusion framework based on reinforcement learning to enhance identity preservation. Instead of introducing auxiliary modules or altering model architectures, our approach introduces a direct and effective tuning algorithm that optimizes diffusion models using a face identity scorer. To improve performance and accelerate convergence, our method backpropagates the reward signal through the last steps of the sampling chain, enabling richer gradient feedback. We also propose a novel facial scoring mechanism that treats faces in ground-truth videos as facial feature pools, providing multi-angle facial information to enhance generalization. A KL-divergence regularization is further incorporated to stabilize training and prevent overfitting to the reward signal. Extensive experiments on Wan 2.2 I2V model and our in-house I2V model demonstrate the effectiveness of our method. Our project and code are available at https://ipro-alimama.github.io/.
♻ ☆ OpenMIBOOD: Open Medical Imaging Benchmarks for Out-Of-Distribution Detection
The growing reliance on Artificial Intelligence (AI) in critical domains such as healthcare demands robust mechanisms to ensure the trustworthiness of these systems, especially when faced with unexpected or anomalous inputs. This paper introduces the Open Medical Imaging Benchmarks for Out-Of-Distribution Detection (OpenMIBOOD), a comprehensive framework for evaluating out-of-distribution (OOD) detection methods specifically in medical imaging contexts. OpenMIBOOD includes three benchmarks from diverse medical domains, encompassing 14 datasets divided into covariate-shifted in-distribution, near-OOD, and far-OOD categories. We evaluate 24 post-hoc methods across these benchmarks, providing a standardized reference to advance the development and fair comparison of OOD detection methods. Results reveal that findings from broad-scale OOD benchmarks in natural image domains do not translate to medical applications, underscoring the critical need for such benchmarks in the medical field. By mitigating the risk of exposing AI models to inputs outside their training distribution, OpenMIBOOD aims to support the advancement of reliable and trustworthy AI systems in healthcare. The repository is available at https://github.com/remic-othr/OpenMIBOOD.
comment: Updated results for NNGuide and ViM
♻ ☆ ViSpec: Accelerating Vision-Language Models with Vision-Aware Speculative Decoding NeurIPS 2025
Speculative decoding is a widely adopted technique for accelerating inference in large language models (LLMs), yet its application to vision-language models (VLMs) remains underexplored, with existing methods achieving only modest speedups (<1.5x). This gap is increasingly significant as multimodal capabilities become central to large-scale models. We hypothesize that large VLMs can effectively filter redundant image information layer by layer without compromising textual comprehension, whereas smaller draft models struggle to do so. To address this, we introduce Vision-Aware Speculative Decoding (ViSpec), a novel framework tailored for VLMs. ViSpec employs a lightweight vision adaptor module to compress image tokens into a compact representation, which is seamlessly integrated into the draft model's attention mechanism while preserving original image positional information. Additionally, we extract a global feature vector for each input image and augment all subsequent text tokens with this feature to enhance multimodal coherence. To overcome the scarcity of multimodal datasets with long assistant responses, we curate a specialized training dataset by repurposing existing datasets and generating extended outputs using the target VLM with modified prompts. Our training strategy mitigates the risk of the draft model exploiting direct access to the target model's hidden states, which could otherwise lead to shortcut learning when training solely on target model outputs. Extensive experiments validate ViSpec, achieving, to our knowledge, the first substantial speedup in VLM speculative decoding. Code is available at https://github.com/KangJialiang/ViSpec.
comment: NeurIPS 2025
♻ ☆ MODEM: A Morton-Order Degradation Estimation Mechanism for Adverse Weather Image Recovery NeurIPS 2025
Restoring images degraded by adverse weather remains a significant challenge due to the highly non-uniform and spatially heterogeneous nature of weather-induced artifacts, e.g., fine-grained rain streaks versus widespread haze. Accurately estimating the underlying degradation can intuitively provide restoration models with more targeted and effective guidance, enabling adaptive processing strategies. To this end, we propose a Morton-Order Degradation Estimation Mechanism (MODEM) for adverse weather image restoration. Central to MODEM is the Morton-Order 2D-Selective-Scan Module (MOS2D), which integrates Morton-coded spatial ordering with selective state-space models to capture long-range dependencies while preserving local structural coherence. Complementing MOS2D, we introduce a Dual Degradation Estimation Module (DDEM) that disentangles and estimates both global and local degradation priors. These priors dynamically condition the MOS2D modules, facilitating adaptive and context-aware restoration. Extensive experiments and ablation studies demonstrate that MODEM achieves state-of-the-art results across multiple benchmarks and weather types, highlighting its effectiveness in modeling complex degradation dynamics. Our code will be released at https://github.com/hainuo-wang/MODEM.git.
comment: Accepted by NeurIPS 2025
♻ ☆ FairGen: Enhancing Fairness in Text-to-Image Diffusion Models via Self-Discovering Latent Directions
While Diffusion Models (DM) exhibit remarkable performance across various image generative tasks, they nonetheless reflect the inherent bias presented in the training set. As DMs are now widely used in real-world applications, these biases could perpetuate a distorted worldview and hinder opportunities for minority groups. Existing methods on debiasing DMs usually requires model retraining with a human-crafted reference dataset or additional classifiers, which suffer from two major limitations: (1) collecting reference datasets causes expensive annotation cost; (2) the debiasing performance is heavily constrained by the quality of the reference dataset or the additional classifier. To address the above limitations, we propose FairGen, a plug-and-play method that learns attribute latent directions in a self-discovering manner, thus eliminating the reliance on such reference dataset. Specifically, FairGen consists of two parts: a set of attribute adapters and a distribution indicator. Each adapter in the set aims to learn an attribute latent direction, and is optimized via noise composition through a self-discovering process. Then, the distribution indicator is multiplied by the set of adapters to guide the generation process towards the prescribed distribution. Our method enables debiasing multiple attributes in DMs simultaneously, while remaining lightweight and easily integrable with other DMs, eliminating the need for retraining. Extensive experiments on debiasing gender, racial, and their intersectional biases show that our method outperforms previous SOTA by a large margin.
♻ ☆ Rebalancing Contrastive Alignment with Bottlenecked Semantic Increments in Text-Video Retrieval
Recent progress in text-video retrieval has been largely driven by contrastive learning. However, existing methods often overlook the effect of the modality gap, which causes anchor representations to undergo in-place optimization (i.e., optimization tension) that limits their alignment capacity. Moreover, noisy hard negatives further distort the semantics of anchors. To address these issues, we propose GARE, a Gap-Aware Retrieval framework that introduces a learnable, pair-specific increment $\Delta_{ij}$ between text $t_i$ and video $v_j$, redistributing gradients to relieve optimization tension and absorb noise. We derive $\Delta_{ij}$ via a multivariate first-order Taylor expansion of the InfoNCE loss under a trust-region constraint, showing that it guides updates along locally consistent descent directions. A lightweight neural module conditioned on the semantic gap couples increments across batches for structure-aware correction. Furthermore, we regularize $\Delta$ through a variational information bottleneck with relaxed compression, enhancing stability and semantic consistency. Experiments on four benchmarks demonstrate that GARE consistently improves alignment accuracy and robustness, validating the effectiveness of gap-aware tension mitigation. Code is available at https://github.com/musicman217/GARE-text-video-retrieval.
♻ ☆ Toward a Vision-Language Foundation Model for Medical Data: Multimodal Dataset and Benchmarks for Vietnamese PET/CT Report Generation NeurIPS 2025
Vision-Language Foundation Models (VLMs), trained on large-scale multimodal datasets, have driven significant advances in Artificial Intelligence (AI) by enabling rich cross-modal reasoning. Despite their success in general domains, applying these models to medical imaging remains challenging due to the limited availability of diverse imaging modalities and multilingual clinical data. Most existing medical VLMs are trained on a subset of imaging modalities and focus primarily on high-resource languages, thus limiting their generalizability and clinical utility. To address these limitations, we introduce a novel Vietnamese-language multimodal medical dataset consisting of 2,757 whole-body PET/CT volumes from independent patients and their corresponding full-length clinical reports. This dataset is designed to fill two pressing gaps in medical AI development: (1) the lack of PET/CT imaging data in existing VLMs training corpora, which hinders the development of models capable of handling functional imaging tasks; and (2) the underrepresentation of low-resource languages, particularly the Vietnamese language, in medical vision-language research. To the best of our knowledge, this is the first dataset to provide comprehensive PET/CT-report pairs in Vietnamese. We further introduce a training framework to enhance VLMs' learning, including data augmentation and expert-validated test sets. We conduct comprehensive experiments benchmarking state-of-the-art VLMs on downstream tasks. The experimental results show that incorporating our dataset significantly improves the performance of existing VLMs. We believe this dataset and benchmark will serve as a pivotal step in advancing the development of more robust VLMs for medical imaging, especially for low-resource languages and clinical use in Vietnamese healthcare. The source code is available at https://github.com/AIoT-Lab-BKAI/ViPET-ReportGen.
comment: 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ ControlFusion: A Controllable Image Fusion Framework with Language-Vision Degradation Prompts NeurIPS 2025
Current image fusion methods struggle to address the composite degradations encountered in real-world imaging scenarios and lack the flexibility to accommodate user-specific requirements. In response to these challenges, we propose a controllable image fusion framework with language-vision prompts, termed ControlFusion, which adaptively neutralizes composite degradations. On the one hand, we develop a degraded imaging model that integrates physical imaging mechanisms, including the Retinex theory and atmospheric scattering principle, to simulate composite degradations, thereby providing potential for addressing real-world complex degradations from the data level. On the other hand, we devise a prompt-modulated restoration and fusion network that dynamically enhances features with degradation prompts, enabling our method to accommodate composite degradation of varying levels. Specifically, considering individual variations in quality perception of users, we incorporate a text encoder to embed user-specified degradation types and severity levels as degradation prompts. We also design a spatial-frequency collaborative visual adapter that autonomously perceives degradations in source images, thus eliminating the complete dependence on user instructions. Extensive experiments demonstrate that ControlFusion outperforms SOTA fusion methods in fusion quality and degradation handling, particularly in countering real-world and compound degradations with various levels. The source code is publicly available at https://github.com/Linfeng-Tang/ControlFusion.
comment: Accepted to NeurIPS 2025. The code are available at https://github.com/Linfeng-Tang/ControlFusion
♻ ☆ VO-DP: Semantic-Geometric Adaptive Diffusion Policy for Vision-Only Robotic Manipulation
In the context of imitation learning, visuomotor-based diffusion policy learning is one of the main directions in robotic manipulation. Most of these approaches rely on point clouds as observation inputs and construct scene representations through point clouds feature learning, which enables them to achieve remarkable accuracy. However, the existing literature lacks an in-depth exploration of vision-only solutions that have significant potential. In this paper, we propose a Vision-Only and single-view Diffusion Policy learning method (VO-DP) that leverages pretrained visual foundation models to achieve effective fusion of semantic and geometric features. We utilize intermediate features from VGGT incorporating semantic features from DINOv2 and geometric features from Alternating Attention blocks. Features are fused via cross-attention and spatially compressed with a CNN to form the input to the policy head. Extensive experiments demonstrate that VO-DP not only outperforms the vision-only baseline DP significantly but also exhibits distinct performance trends against the point cloud-based method DP3: in simulation tasks, VO-DP achieves an average success rate of 64.6% on par with DP3 64.0% and far higher than DP 34.8%, while in real-world tasks, it reaches 87.9%, outperforming both DP3 67.5% and DP 11.2% by a notable margin. Further robustness evaluations confirm that VO-DP remains highly stable under varying conditions including color, size, background, and lighting. Lastly, we open-source a training library for robotic manipulation. Built on Accelerate, this library supports multi-machine and multi-GPU parallel training, as well as mixed precision training. It is compatible with visuomotor policies such as DP, DP3 and VO-DP, and also supports the RoboTwin simulator.
♻ ☆ SPLite Hand: Sparsity-Aware Lightweight 3D Hand Pose Estimation
With the increasing ubiquity of AR/VR devices, the deployment of deep learning models on edge devices has become a critical challenge. These devices require real-time inference, low power consumption, and minimal latency. Many framework designers face the conundrum of balancing efficiency and performance. We design a light framework that adopts an encoder-decoder architecture and introduces several key contributions aimed at improving both efficiency and accuracy. We apply sparse convolution on a ResNet-18 backbone to exploit the inherent sparsity in hand pose images, achieving a 42% end-to-end efficiency improvement. Moreover, we propose our SPLite decoder. This new architecture significantly boosts the decoding process's frame rate by 3.1x on the Raspberry Pi 5, while maintaining accuracy on par. To further optimize performance, we apply quantization-aware training, reducing memory usage while preserving accuracy (PA-MPJPE increases only marginally from 9.0 mm to 9.1 mm on FreiHAND). Overall, our system achieves a 2.98x speed-up on a Raspberry Pi 5 CPU (BCM2712 quad-core Arm A76 processor). Our method is also evaluated on compound benchmark datasets, demonstrating comparable accuracy to state-of-the-art approaches while significantly enhancing computational efficiency.
comment: Accepted to AICCC 2025
♻ ☆ Rebellious Student: A Complementary Learning Framework for Background Feature Enhancement in Hyperspectral Anomaly Detection
A recent class of hyperspectral anomaly detection methods that can be trained once on background datasets and then universally deployed -- without per-scene retraining or parameter tuning -- has demonstrated remarkable efficiency and robustness. Building upon this paradigm, we focus on the integration of spectral and spatial cues and introduce a novel "Rebellious Student" framework for complementary feature learning. Unlike conventional teacher-student paradigms driven by imitation, our method intentionally trains the spatial branch to diverge from the spectral teacher, thereby learning complementary spatial patterns that the teacher fails to capture. A two-stage learning strategy is adopted: (1) a spectral enhancement network is first trained via reverse distillation to obtain robust background spectral representations; and (2) a spatial network -- the rebellious student -- is subsequently optimized using decorrelation losses that enforce feature orthogonality while maintaining reconstruction fidelity to avoid irrelevant noise. Once trained, the framework enhances both spectral and spatial background features, enabling parameter-free and training-free anomaly detection when paired with conventional detectors. Experiments on the HAD100 benchmark show substantial improvements over several established baselines with modest computational overhead, confirming the effectiveness of the proposed complementary learning paradigm. Our code is publicly available at https://github.com/xjpp2016/FERS.
♻ ☆ SnapMoGen: Human Motion Generation from Expressive Texts
Text-to-motion generation has experienced remarkable progress in recent years. However, current approaches remain limited to synthesizing motion from short or general text prompts, primarily due to dataset constraints. This limitation undermines fine-grained controllability and generalization to unseen prompts. In this paper, we introduce SnapMoGen, a new text-motion dataset featuring high-quality motion capture data paired with accurate, expressive textual annotations. The dataset comprises 20K motion clips totaling 44 hours, accompanied by 122K detailed textual descriptions averaging 48 words per description (vs. 12 words of HumanML3D). Importantly, these motion clips preserve original temporal continuity as they were in long sequences, facilitating research in long-term motion generation and blending. We also improve upon previous generative masked modeling approaches. Our model, MoMask++, transforms motion into multi-scale token sequences that better exploit the token capacity, and learns to generate all tokens using a single generative masked transformer. MoMask++ achieves state-of-the-art performance on both HumanML3D and SnapMoGen benchmarks. Additionally, we demonstrate the ability to process casual user prompts by employing an LLM to reformat inputs to align with the expressivity and narration style of SnapMoGen. Project webpage: https://snap-research.github.io/SnapMoGen/
comment: Project Webpage: https://snap-research.github.io/SnapMoGen/
♻ ☆ The Faiss library
Vector databases typically manage large collections of embedding vectors. Currently, AI applications are growing rapidly, and so is the number of embeddings that need to be stored and indexed. The Faiss library is dedicated to vector similarity search, a core functionality of vector databases. Faiss is a toolkit of indexing methods and related primitives used to search, cluster, compress and transform vectors. This paper describes the trade-off space of vector search and the design principles of Faiss in terms of structure, approach to optimization and interfacing. We benchmark key features of the library and discuss a few selected applications to highlight its broad applicability.
♻ ☆ Sign-In to the Lottery: Reparameterizing Sparse Training From Scratch NeurIPS 2025
The performance gap between training sparse neural networks from scratch (PaI) and dense-to-sparse training presents a major roadblock for efficient deep learning. According to the Lottery Ticket Hypothesis, PaI hinges on finding a problem specific parameter initialization. As we show, to this end, determining correct parameter signs is sufficient. Yet, they remain elusive to PaI. To address this issue, we propose Sign-In, which employs a dynamic reparameterization that provably induces sign flips. Such sign flips are complementary to the ones that dense-to-sparse training can accomplish, rendering Sign-In as an orthogonal method. While our experiments and theory suggest performance improvements of PaI, they also carve out the main open challenge to close the gap between PaI and dense-to-sparse training.
comment: Accepted at NeurIPS 2025
♻ ☆ A Survey on Cache Methods in Diffusion Models: Toward Efficient Multi-Modal Generation
Diffusion Models have become a cornerstone of modern generative AI for their exceptional generation quality and controllability. However, their inherent \textit{multi-step iterations} and \textit{complex backbone networks} lead to prohibitive computational overhead and generation latency, forming a major bottleneck for real-time applications. Although existing acceleration techniques have made progress, they still face challenges such as limited applicability, high training costs, or quality degradation. Against this backdrop, \textbf{Diffusion Caching} offers a promising training-free, architecture-agnostic, and efficient inference paradigm. Its core mechanism identifies and reuses intrinsic computational redundancies in the diffusion process. By enabling feature-level cross-step reuse and inter-layer scheduling, it reduces computation without modifying model parameters. This paper systematically reviews the theoretical foundations and evolution of Diffusion Caching and proposes a unified framework for its classification and analysis. Through comparative analysis of representative methods, we show that Diffusion Caching evolves from \textit{static reuse} to \textit{dynamic prediction}. This trend enhances caching flexibility across diverse tasks and enables integration with other acceleration techniques such as sampling optimization and model distillation, paving the way for a unified, efficient inference framework for future multimodal and interactive applications. We argue that this paradigm will become a key enabler of real-time and efficient generative AI, injecting new vitality into both theory and practice of \textit{Efficient Generative Intelligence}.
comment: 22 pages,2 figures
♻ ☆ Quantization-Aware Neuromorphic Architecture for Efficient Skin Disease Classification on Resource-Constrained Devices
Accurate and efficient skin lesion classification on edge devices is critical for accessible dermatological care but remains challenging due to computational, energy, and privacy constraints. We introduce QANA, a novel quantization-aware neuromorphic architecture for incremental skin lesion classification on resource-limited hardware. QANA effectively integrates ghost modules, efficient channel attention, and squeeze-and-excitation blocks for robust feature representation with low-latency and energy-efficient inference. Its quantization-aware head and spike-compatible transformations enable seamless conversion to spiking neural networks (SNNs) and deployment on neuromorphic platforms. Evaluation on the large-scale HAM10000 benchmark and a real-world clinical dataset shows that QANA achieves 91.6% Top-1 accuracy and 82.4% macro F1 on HAM10000, and 90.8%/81.7% on the clinical dataset, significantly outperforming state-of-the-art CNN-to-SNN models under fair comparison. Deployed on BrainChip Akida hardware, QANA achieves 1.5 ms inference latency and 1.7,mJ energy per image, reducing inference latency and energy use by over 94.6%/98.6% compared to GPU-based CNNs surpassing state-of-the-art CNN-to-SNN conversion baselines. These results demonstrate the effectiveness of QANA for accurate, real-time, and privacy-sensitive medical analysis in edge environments.
♻ ☆ A Style-Based Profiling Framework for Quantifying the Synthetic-to-Real Gap in Autonomous Driving Datasets
Ensuring the reliability of autonomous driving perception systems requires extensive environment-based testing, yet real-world execution is often impractical. Synthetic datasets have therefore emerged as a promising alternative, offering advantages such as cost-effectiveness, bias free labeling, and controllable scenarios. However, the domain gap between synthetic and real-world datasets remains a major obstacle to model generalization. To address this challenge from a data-centric perspective, this paper introduces a profile extraction and discovery framework for characterizing the style profiles underlying both synthetic and real image datasets. We propose Style Embedding Distribution Discrepancy (SEDD) as a novel evaluation metric. Our framework combines Gram matrix-based style extraction with metric learning optimized for intra-class compactness and inter-class separation to extract style embeddings. Furthermore, we establish a benchmark using publicly available datasets. Experiments are conducted on a variety of datasets and sim-to-real methods, and the results show that our method is capable of quantifying the synthetic-to-real gap. This work provides a standardized profiling-based quality control paradigm that enables systematic diagnosis and targeted enhancement of synthetic datasets, advancing future development of data-driven autonomous driving systems.
comment: 7 pages, 4 figures
♻ ☆ Learning Contrastive Feature Representations for Facial Action Unit Detection
For the Facial Action Unit (AU) detection task, accurately capturing the subtle facial differences between distinct AUs is essential for reliable detection. Additionally, AU detection faces challenges from class imbalance and the presence of noisy or false labels, which undermine detection accuracy. In this paper, we introduce a novel contrastive learning framework aimed for AU detection that incorporates both self-supervised and supervised signals, thereby enhancing the learning of discriminative features for accurate AU detection. To tackle the class imbalance issue, we employ a negative sample re-weighting strategy that adjusts the step size of updating parameters for minority and majority class samples. Moreover, to address the challenges posed by noisy and false AU labels, we employ a sampling technique that encompasses three distinct types of positive sample pairs. This enables us to inject self-supervised signals into the supervised signal, effectively mitigating the adverse effects of noisy labels. Our experimental assessments, conducted on five widely-utilized benchmark datasets (BP4D, DISFA, BP4D+, GFT and Aff-Wild2), underscore the superior performance of our approach compared to state-of-the-art methods of AU detection. Our code is available at https://github.com/Ziqiao-Shang/AUNCE.
♻ ☆ EasyOcc: 3D Pseudo-Label Supervision for Fully Self-Supervised Semantic Occupancy Prediction Models
Self-supervised models have recently achieved notable advancements, particularly in the domain of semantic occupancy prediction. These models utilize sophisticated loss computation strategies to compensate for the absence of ground-truth labels. For instance, techniques such as novel view synthesis, cross-view rendering, and depth estimation have been explored to address the issue of semantic and depth ambiguity. However, such techniques typically incur high computational costs and memory usage during the training stage, especially in the case of novel view synthesis. To mitigate these issues, we propose 3D pseudo-ground-truth labels generated by the foundation models Grounded-SAM and Metric3Dv2, and harness temporal information for label densification. Our 3D pseudo-labels can be easily integrated into existing models, which yields substantial performance improvements, with mIoU increasing by 45\%, from 9.73 to 14.09, when implemented into the OccNeRF model. This stands in contrast to earlier advancements in the field, which are often not readily transferable to other architectures. Additionally, we propose a streamlined model, EasyOcc, achieving 13.86 mIoU. This model conducts learning solely from our labels, avoiding complex rendering strategies mentioned previously. Furthermore, our method enables models to attain state-of-the-art performance when evaluated on the full scene without applying the camera mask, with EasyOcc achieving 7.71 mIoU, outperforming the previous best model by 31\%. These findings highlight the critical importance of foundation models, temporal context, and the choice of loss computation space in self-supervised learning for comprehensive scene understanding.
♻ ☆ PreFM: Online Audio-Visual Event Parsing via Predictive Future Modeling NeurIPS 2025
Audio-visual event parsing plays a crucial role in understanding multimodal video content, but existing methods typically rely on offline processing of entire videos with huge model sizes, limiting their real-time applicability. We introduce Online Audio-Visual Event Parsing (On-AVEP), a novel paradigm for parsing audio, visual, and audio-visual events by sequentially analyzing incoming video streams. The On-AVEP task necessitates models with two key capabilities: (1) Accurate online inference, to effectively distinguish events with unclear and limited context in online settings, and (2) Real-time efficiency, to balance high performance with computational constraints. To cultivate these, we propose the Predictive Future Modeling (PreFM) framework featured by (a) predictive multimodal future modeling to infer and integrate beneficial future audio-visual cues, thereby enhancing contextual understanding and (b) modality-agnostic robust representation along with focal temporal prioritization to improve precision and generalization. Extensive experiments on the UnAV-100 and LLP datasets show PreFM significantly outperforms state-of-the-art methods by a large margin with significantly fewer parameters, offering an insightful approach for real-time multimodal video understanding. Code is available at https://github.com/XiaoYu-1123/PreFM.
comment: This paper is accepted by 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ VITRIX-CLIPIN: Enhancing Fine-Grained Visual Understanding in CLIP via Instruction Editing Data and Long Captions NeurIPS 2025
Despite the success of Vision-Language Models (VLMs) like CLIP in aligning vision and language, their proficiency in detailed, fine-grained visual comprehension remains a key challenge. We present CLIP-IN, a novel framework that bolsters CLIP's fine-grained perception through two core innovations. Firstly, we leverage instruction-editing datasets, originally designed for image manipulation, as a unique source of hard negative image-text pairs. Coupled with a symmetric hard negative contrastive loss, this enables the model to effectively distinguish subtle visual-semantic differences. Secondly, CLIP-IN incorporates long descriptive captions, utilizing rotary positional encodings to capture rich semantic context often missed by standard CLIP. Our experiments demonstrate that CLIP-IN achieves substantial gains on the MMVP benchmark and various fine-grained visual recognition tasks, without compromising robust zero-shot performance on broader classification and retrieval tasks. Critically, integrating CLIP-IN's visual representations into Multimodal Large Language Models significantly reduces visual hallucinations and enhances reasoning abilities. This work underscores the considerable potential of synergizing targeted, instruction-based contrastive learning with comprehensive descriptive information to elevate the fine-grained understanding of VLMs.
comment: Accepted to NeurIPS 2025
♻ ☆ Direct Numerical Layout Generation for 3D Indoor Scene Synthesis via Spatial Reasoning
Realistic 3D indoor scene synthesis is vital for embodied AI and digital content creation. It can be naturally divided into two subtasks: object generation and layout generation. While recent generative models have significantly advanced object-level quality and controllability, layout generation remains challenging due to limited datasets. Existing methods either overfit to these datasets or rely on predefined constraints to optimize numerical layout that sacrifice flexibility. As a result, they fail to generate scenes that are both open-vocabulary and aligned with fine-grained user instructions. We introduce DirectLayout, a framework that directly generates numerical 3D layouts from text descriptions using generalizable spatial reasoning of large language models (LLMs). DirectLayout decomposes the generation into three stages: producing a Bird's-Eye View (BEV) layout, lifting it into 3D space, and refining object placements. To enable explicit spatial reasoning and help the model grasp basic principles of object placement, we employ Chain-of-Thought (CoT) Activation based on the 3D-Front dataset. Additionally, we design CoT-Grounded Generative Layout Reward to enhance generalization and spatial planning. During inference, DirectLayout addresses asset-layout mismatches via Iterative Asset-Layout Alignment through in-context learning. Extensive experiments demonstrate that DirectLayout achieves impressive semantic consistency, generalization and physical plausibility.
comment: Project Page: https://directlayout.github.io/
♻ ☆ Revisiting End-to-End Learning with Slide-level Supervision in Computational Pathology NeurIPS 2025
Pre-trained encoders for offline feature extraction followed by multiple instance learning (MIL) aggregators have become the dominant paradigm in computational pathology (CPath), benefiting cancer diagnosis and prognosis. However, performance limitations arise from the absence of encoder fine-tuning for downstream tasks and disjoint optimization with MIL. While slide-level supervised end-to-end (E2E) learning is an intuitive solution to this issue, it faces challenges such as high computational demands and suboptimal results. These limitations motivate us to revisit E2E learning. We argue that prior work neglects inherent E2E optimization challenges, leading to performance disparities compared to traditional two-stage methods. In this paper, we pioneer the elucidation of optimization challenge caused by sparse-attention MIL and propose a novel MIL called ABMILX. It mitigates this problem through global correlation-based attention refinement and multi-head mechanisms. With the efficient multi-scale random patch sampling strategy, an E2E trained ResNet with ABMILX surpasses SOTA foundation models under the two-stage paradigm across multiple challenging benchmarks, while remaining computationally efficient (<10 RTX3090 hours). We show the potential of E2E learning in CPath and calls for greater research focus in this area. The code is https://github.com/DearCaat/E2E-WSI-ABMILX.
comment: published on NeurIPS 2025
♻ ☆ Vision-Centric Activation and Coordination for Multimodal Large Language Models
Multimodal large language models (MLLMs) integrate image features from visual encoders with LLMs, demonstrating advanced comprehension capabilities. However, mainstream MLLMs are solely supervised by the next-token prediction of textual tokens, neglecting critical vision-centric information essential for analytical abilities. To track this dilemma, we introduce VaCo, which optimizes MLLM representations through Vision-Centric activation and Coordination from multiple vision foundation models (VFMs). VaCo introduces visual discriminative alignment to integrate task-aware perceptual features extracted from VFMs, thereby unifying the optimization of both textual and visual outputs in MLLMs. Specifically, we incorporate the learnable Modular Task Queries (MTQs) and Visual Alignment Layers (VALs) into MLLMs, activating specific visual signals under the supervision of diverse VFMs. To coordinate representation conflicts across VFMs, the crafted Token Gateway Mask (TGM) restricts the information flow among multiple groups of MTQs. Extensive experiments demonstrate that VaCo significantly improves the performance of different MLLMs on various benchmarks, showcasing its superior capabilities in visual comprehension.
♻ ☆ MARIS: Marine Open-Vocabulary Instance Segmentation with Geometric Enhancement and Semantic Alignment
Most existing underwater instance segmentation approaches are constrained by close-vocabulary prediction, limiting their ability to recognize novel marine categories. To support evaluation, we introduce \textbf{MARIS} (\underline{Mar}ine Open-Vocabulary \underline{I}nstance \underline{S}egmentation), the first large-scale fine-grained benchmark for underwater Open-Vocabulary (OV) segmentation, featuring a limited set of seen categories and diverse unseen categories. Although OV segmentation has shown promise on natural images, our analysis reveals that transfer to underwater scenes suffers from severe visual degradation (e.g., color attenuation) and semantic misalignment caused by lack underwater class definitions. To address these issues, we propose a unified framework with two complementary components. The Geometric Prior Enhancement Module (\textbf{GPEM}) leverages stable part-level and structural cues to maintain object consistency under degraded visual conditions. The Semantic Alignment Injection Mechanism (\textbf{SAIM}) enriches language embeddings with domain-specific priors, mitigating semantic ambiguity and improving recognition of unseen categories. Experiments show that our framework consistently outperforms existing OV baselines both In-Domain and Cross-Domain setting on MARIS, establishing a strong foundation for future underwater perception research.
♻ ☆ VT-FSL: Bridging Vision and Text with LLMs for Few-Shot Learning NeurIPS 2025
Few-shot learning (FSL) aims to recognize novel concepts from only a few labeled support samples. Recent studies enhance support features by incorporating additional semantic information or designing complex semantic fusion modules. However, they still suffer from hallucinating semantics that contradict the visual evidence due to the lack of grounding in actual instances, resulting in noisy guidance and costly corrections. To address these issues, we propose a novel framework, bridging Vision and Text with LLMs for Few-Shot Learning (VT-FSL), which constructs precise cross-modal prompts conditioned on Large Language Models (LLMs) and support images, seamlessly integrating them through a geometry-aware alignment. It mainly consists of Cross-modal Iterative Prompting (CIP) and Cross-modal Geometric Alignment (CGA). Specifically, the CIP conditions an LLM on both class names and support images to generate precise class descriptions iteratively in a single structured reasoning pass. These descriptions not only enrich the semantic understanding of novel classes but also enable the zero-shot synthesis of semantically consistent images. The descriptions and synthetic images act respectively as complementary textual and visual prompts, providing high-level class semantics and low-level intra-class diversity to compensate for limited support data. Furthermore, the CGA jointly aligns the fused textual, support, and synthetic visual representations by minimizing the kernelized volume of the 3-dimensional parallelotope they span. It captures global and nonlinear relationships among all representations, enabling structured and consistent multimodal integration. The proposed VT-FSL method establishes new state-of-the-art performance across ten diverse benchmarks, including standard, cross-domain, and fine-grained few-shot learning scenarios. Code is available at https://github.com/peacelwh/VT-FSL.
comment: Accepted by NeurIPS 2025
♻ ☆ Video Consistency Distance: Enhancing Temporal Consistency for Image-to-Video Generation via Reward-Based Fine-Tuning
Reward-based fine-tuning of video diffusion models is an effective approach to improve the quality of generated videos, as it can fine-tune models without requiring real-world video datasets. However, it can sometimes be limited to specific performances because conventional reward functions are mainly aimed at enhancing the quality across the whole generated video sequence, such as aesthetic appeal and overall consistency. Notably, the temporal consistency of the generated video often suffers when applying previous approaches to image-to-video (I2V) generation tasks. To address this limitation, we propose Video Consistency Distance (VCD), a novel metric designed to enhance temporal consistency, and fine-tune a model with the reward-based fine-tuning framework. To achieve coherent temporal consistency relative to a conditioning image, VCD is defined in the frequency space of video frame features to capture frame information effectively through frequency-domain analysis. Experimental results across multiple I2V datasets demonstrate that fine-tuning a video generation model with VCD significantly enhances temporal consistency without degrading other performance compared to the previous method.
comment: 17 pages
♻ ☆ Text-conditioned State Space Model For Domain-generalized Change Detection Visual Question Answering
The Earth's surface is constantly changing, and detecting these changes provides valuable insights that benefit various aspects of human society. While traditional change detection methods have been employed to detect changes from bi-temporal images, these approaches typically require expert knowledge for accurate interpretation. To enable broader and more flexible access to change information by non-expert users, the task of Change Detection Visual Question Answering (CDVQA) has been introduced. However, existing CDVQA methods have been developed under the assumption that training and testing datasets share similar distributions. This assumption does not hold in real-world applications, where domain shifts often occur. In this paper, the CDVQA task is revisited with a focus on addressing domain shift. To this end, a new multi-modal and multi-domain dataset, BrightVQA, is introduced to facilitate domain generalization research in CDVQA. Furthermore, a novel state space model, termed Text-Conditioned State Space Model (TCSSM), is proposed. The TCSSM framework is designed to leverage both bi-temporal imagery and geo-disaster-related textual information in an unified manner to extract domain-invariant features across domains. Input-dependent parameters existing in TCSSM are dynamically predicted by using both bi-temporal images and geo-disaster-related description, thereby facilitating the alignment between bi-temporal visual data and the associated textual descriptions. Extensive experiments are conducted to evaluate the proposed method against state-of-the-art models, and superior performance is consistently demonstrated. The code and dataset will be made publicly available upon acceptance at https://github.com/Elman295/TCSSM.
♻ ☆ Comprehensive Evaluation and Analysis for NSFW Concept Erasure in Text-to-Image Diffusion Models
Text-to-image diffusion models have gained widespread application across various domains, demonstrating remarkable creative potential. However, the strong generalization capabilities of diffusion models can inadvertently lead to the generation of not-safe-for-work (NSFW) content, posing significant risks to their safe deployment. While several concept erasure methods have been proposed to mitigate the issue associated with NSFW content, a comprehensive evaluation of their effectiveness across various scenarios remains absent. To bridge this gap, we introduce a full-pipeline toolkit specifically designed for concept erasure and conduct the first systematic study of NSFW concept erasure methods. By examining the interplay between the underlying mechanisms and empirical observations, we provide in-depth insights and practical guidance for the effective application of concept erasure methods in various real-world scenarios, with the aim of advancing the understanding of content safety in diffusion models and establishing a solid foundation for future research and development in this critical area.
♻ ☆ LucidFlux: Caption-Free Universal Image Restoration via a Large-Scale Diffusion Transformer
Universal image restoration (UIR) aims to recover images degraded by unknown mixtures while preserving semantics -- conditions under which discriminative restorers and UNet-based diffusion priors often oversmooth, hallucinate, or drift. We present LucidFlux, a caption-free UIR framework that adapts a large diffusion transformer (Flux.1) without image captions. LucidFlux introduces a lightweight dual-branch conditioner that injects signals from the degraded input and a lightly restored proxy to respectively anchor geometry and suppress artifacts. Then, a timestep- and layer-adaptive modulation schedule is designed to route these cues across the backbone's hierarchy, in order to yield coarse-to-fine and context-aware updates that protect the global structure while recovering texture. After that, to avoid the latency and instability of text prompts or MLLM captions, we enforce caption-free semantic alignment via SigLIP features extracted from the proxy. A scalable curation pipeline further filters large-scale data for structure-rich supervision. Across synthetic and in-the-wild benchmarks, LucidFlux consistently outperforms strong open-source and commercial baselines, and ablation studies verify the necessity of each component. LucidFlux shows that, for large DiTs, when, where, and what to condition on -- rather than adding parameters or relying on text prompts -- is the governing lever for robust and caption-free universal image restoration in the wild.
comment: Project Page: https://w2genai-lab.github.io/LucidFlux
♻ ☆ CBDiff:Conditional Bernoulli Diffusion Models for Image Forgery Localization
Image Forgery Localization (IFL) is a crucial task in image forensics, aimed at accurately identifying manipulated or tampered regions within an image at the pixel level. Existing methods typically generate a single deterministic localization map, which often lacks the precision and reliability required for high-stakes applications such as forensic analysis and security surveillance. To enhance the credibility of predictions and mitigate the risk of errors, we introduce an advanced Conditional Bernoulli Diffusion Model (CBDiff). Given a forged image, CBDiff generates multiple diverse and plausible localization maps, thereby offering a richer and more comprehensive representation of the forgery distribution. This approach addresses the uncertainty and variability inherent in tampered regions. Furthermore, CBDiff innovatively incorporates Bernoulli noise into the diffusion process to more faithfully reflect the inherent binary and sparse properties of forgery masks. Additionally, CBDiff introduces a Time-Step Cross-Attention (TSCAttention), which is specifically designed to leverage semantic feature guidance with temporal steps to improve manipulation detection. Extensive experiments on eight publicly benchmark datasets demonstrate that CBDiff significantly outperforms existing state-of-the-art methods, highlighting its strong potential for real-world deployment.
♻ ☆ PlantSegNeRF: A few-shot, cross-species method for plant 3D instance point cloud reconstruction via joint-channel NeRF with multi-view image instance matching
Organ segmentation of plant point clouds is a prerequisite for the high-resolution and accurate extraction of organ-level phenotypic traits. Although the fast development of deep learning has boosted much research on segmentation of plant point clouds, the existing techniques for organ segmentation still face limitations in resolution, segmentation accuracy, and generalizability across various plant species. In this study, we proposed a novel approach called plant segmentation neural radiance fields (PlantSegNeRF), aiming to directly generate high-precision instance point clouds from multi-view RGB image sequences for a wide range of plant species. PlantSegNeRF performed 2D instance segmentation on the multi-view images to generate instance masks for each organ with a corresponding ID. The multi-view instance IDs corresponding to the same plant organ were then matched and refined using a specially designed instance matching module. The instance NeRF was developed to render an implicit scene, containing color, density, semantic and instance information. The implicit scene was ultimately converted into high-precision plant instance point clouds based on the volume density. The results proved that in semantic segmentation of point clouds, PlantSegNeRF outperformed the commonly used methods, demonstrating an average improvement of 16.1%, 18.3%, 17.8%, and 24.2% in precision, recall, F1-score, and IoU compared to the second-best results on structurally complex species. More importantly, PlantSegNeRF exhibited significant advantages in plant point cloud instance segmentation tasks. Across all plant species, it achieved average improvements of 11.7%, 38.2%, 32.2% and 25.3% in mPrec, mRec, mCov, mWCov, respectively. This study extends the organ-level plant phenotyping and provides a high-throughput way to supply high-quality 3D data for the development of large-scale models in plant science.
♻ ☆ FerretNet: Efficient Synthetic Image Detection via Local Pixel Dependencies NeurIPS 2025
The increasing realism of synthetic images generated by advanced models such as VAEs, GANs, and LDMs poses significant challenges for synthetic image detection. To address this issue, we explore two artifact types introduced during the generation process: (1) latent distribution deviations and (2) decoding-induced smoothing effects, which manifest as inconsistencies in local textures, edges, and color transitions. Leveraging local pixel dependencies (LPD) properties rooted in Markov Random Fields, we reconstruct synthetic images using neighboring pixel information to expose disruptions in texture continuity and edge coherence. Building upon LPD, we propose FerretNet, a lightweight neural network with only 1.1M parameters that delivers efficient and robust synthetic image detection. Extensive experiments demonstrate that FerretNet, trained exclusively on the 4-class ProGAN dataset, achieves an average accuracy of 97.1% on an open-world benchmark comprising 22 generative models. Our code and datasets are publicly available at https://github.com/xigua7105/FerretNet.
comment: 9 pages, 4 figures, 8 tables, accepted at NeurIPS 2025
♻ ☆ OpenWorldSAM: Extending SAM2 for Universal Image Segmentation with Language Prompts
The ability to segment objects based on open-ended language prompts remains a critical challenge, requiring models to ground textual semantics into precise spatial masks while handling diverse and unseen categories. We present OpenWorldSAM, a framework that extends the prompt-driven Segment Anything Model v2 (SAM2) to open-vocabulary scenarios by integrating multi-modal embeddings extracted from a lightweight vision-language model (VLM). Our approach is guided by four key principles: i) Unified prompting: OpenWorldSAM supports a diverse range of prompts, including category-level and sentence-level language descriptions, providing a flexible interface for various segmentation tasks. ii) Efficiency: By freezing the pre-trained components of SAM2 and the VLM, we train only 4.5 million parameters on the COCO-stuff dataset, achieving remarkable resource efficiency. iii) Instance Awareness: We enhance the model's spatial understanding through novel positional tie-breaker embeddings and cross-attention layers, enabling effective segmentation of multiple instances. iv) Generalization: OpenWorldSAM exhibits strong zero-shot capabilities, generalizing well on unseen categories and an open vocabulary of concepts without additional training. Extensive experiments demonstrate that OpenWorldSAM achieves state-of-the-art performance in open-vocabulary semantic, instance, and panoptic segmentation across multiple benchmarks. Code is available at https://github.com/GinnyXiao/OpenWorldSAM.
♻ ☆ Generative diffusion model surrogates for mechanistic agent-based biological models
Mechanistic, multicellular, agent-based models are commonly used to investigate tissue, organ, and organism-scale biology at single-cell resolution. The Cellular-Potts Model (CPM) is a powerful and popular framework for developing and interrogating these models. CPMs become computationally expensive at large space- and time- scales making application and investigation of developed models difficult. Surrogate models may allow for the accelerated evaluation of CPMs of complex biological systems. However, the stochastic nature of these models means each set of parameters may give rise to different model configurations, complicating surrogate model development. In this work, we leverage denoising diffusion probabilistic models to train a generative AI surrogate of a CPM used to investigate in vitro vasculogenesis. We describe the use of an image classifier to learn the characteristics that define unique areas of a 2-dimensional parameter space. We then apply this classifier to aid in surrogate model selection and verification. Our CPM model surrogate generates model configurations 20,000 timesteps ahead of a reference configuration and demonstrates approximately a 22x reduction in computational time as compared to native code execution. Our work represents a step towards the implementation of DDPMs to develop digital twins of stochastic biological systems.
♻ ☆ Sherlock: Self-Correcting Reasoning in Vision-Language Models NeurIPS 2025
Reasoning Vision-Language Models (VLMs) have shown promising performance on complex multimodal tasks. However, they still face significant challenges: they are highly sensitive to reasoning errors, require large volumes of annotated data or accurate verifiers, and struggle to generalize beyond specific domains. To address these limitations, we explore self-correction as a strategy to enhance reasoning VLMs. We first conduct an in-depth analysis of reasoning VLMs' self-correction abilities and identify key gaps. Based on our findings, we introduce Sherlock, a self-correction and self-improvement training framework. Sherlock introduces a trajectory-level self-correction objective, a preference data construction method based on visual perturbation, and a dynamic $\beta$ for preference tuning. Once the model acquires self-correction capabilities using only 20k randomly sampled annotated data, it continues to self-improve without external supervision. Built on the Llama3.2-Vision-11B model, Sherlock achieves remarkable results across eight benchmarks, reaching an average accuracy of 64.1 with direct generation and 65.4 after self-correction. It outperforms LLaVA-CoT (63.2), Mulberry (63.9), and LlamaV-o1 (63.4) while using less than 20% of the annotated data.
comment: Published at NeurIPS 2025, 27 pages
♻ ☆ REOrdering Patches Improves Vision Models NeurIPS 2025
Sequence models such as transformers require inputs to be represented as one-dimensional sequences. In vision, this typically involves flattening images using a fixed row-major (raster-scan) order. While full self-attention is permutation-equivariant, modern long-sequence transformers increasingly rely on architectural approximations that break this invariance and introduce sensitivity to patch ordering. We show that patch order significantly affects model performance in such settings, with simple alternatives like column-major or Hilbert curves yielding notable accuracy shifts. Motivated by this, we propose REOrder, a two-stage framework for discovering task-optimal patch orderings. First, we derive an information-theoretic prior by evaluating the compressibility of various patch sequences. Then, we learn a policy over permutations by optimizing a Plackett-Luce policy using REINFORCE. This approach enables efficient learning in a combinatorial permutation space. REOrder improves top-1 accuracy over row-major ordering on ImageNet-1K by up to 3.01% and Functional Map of the World by 13.35%.
comment: Accepted to the 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ Spiking Neural Networks Need High Frequency Information
Spiking Neural Networks promise brain-inspired and energy-efficient computation by transmitting information through binary (0/1) spikes. Yet, their performance still lags behind that of artificial neural networks, often assumed to result from information loss caused by sparse and binary activations. In this work, we challenge this long-standing assumption and reveal a previously overlooked frequency bias: spiking neurons inherently suppress high-frequency components and preferentially propagate low-frequency information. This frequency-domain imbalance, we argue, is the root cause of degraded feature representation in SNNs. Empirically, on Spiking Transformers, adopting Avg-Pooling (low-pass) for token mixing lowers performance to 76.73% on Cifar-100, whereas replacing it with Max-Pool (high-pass) pushes the top-1 accuracy to 79.12%. Accordingly, we introduce Max-Former that restores high-frequency signals through two frequency-enhancing operators: (1) extra Max-Pool in patch embedding, and (2) Depth-Wise Convolution in place of self-attention. Notably, Max-Former attains 82.39% top-1 accuracy on ImageNet using only 63.99M parameters, surpassing Spikformer (74.81%, 66.34M) by +7.58%. Extending our insight beyond transformers, our Max-ResNet-18 achieves state-of-the-art performance on convolution-based benchmarks: 97.17% on CIFAR-10 and 83.06% on CIFAR-100. We hope this simple yet effective solution inspires future research to explore the distinctive nature of spiking neural networks. Code is available: https://github.com/bic-L/MaxFormer.
♻ ☆ Epistemic-aware Vision-Language Foundation Model for Fetal Ultrasound Interpretation
Recent medical vision-language models have shown promise on tasks such as VQA, report generation, and anomaly detection. However, most are adapted to structured adult imaging and underperform in fetal ultrasound, which poses challenges of multi-view image reasoning, numerous diseases, and image diversity. To bridge this gap, we introduce FetalMind, a medical AI system tailored to fetal ultrasound for both report generation and diagnosis. Guided by clinical workflow, we propose Salient Epistemic Disentanglement (SED), which injects an expert-curated bipartite graph into the model to decouple view-disease associations and to steer preference selection along clinically faithful steps via reinforcement learning. This design mitigates variability across diseases and heterogeneity across views, reducing learning bottlenecks while aligning the model's inference with obstetric practice. To train FetalMind at scale, we curate FetalSigma-1M dataset, the first large-scale fetal ultrasound report corpus, comprising 20K reports from twelve medical centers, addressing the scarcity of domain data. Extensive experiments show that FetalMind outperforms open- and closed-source baselines across all gestational stages, achieving +14% average gains and +61.2% higher accuracy on critical conditions while remaining efficient, stable, and scalable. Project Page: https://hexiao0275.github.io/FetalMind.
comment: This paper contains fundamental errors and will not be replaced
♻ ☆ Panoptic-CUDAL: Rural Australia Point Cloud Dataset in Rainy Conditions
Existing autonomous driving datasets are predominantly oriented towards well-structured urban settings and favourable weather conditions, leaving the complexities of rural environments and adverse weather conditions largely unaddressed. Although some datasets encompass variations in weather and lighting, bad weather scenarios do not appear often. Rainfall can significantly impair sensor functionality, introducing noise and reflections in LiDAR and camera data and reducing the system's capabilities for reliable environmental perception and safe navigation. This paper introduces the Panoptic-CUDAL dataset, a novel dataset purpose-built for panoptic segmentation in rural areas subject to rain. By recording high-resolution LiDAR, camera, and pose data, Panoptic-CUDAL offers a diverse, information-rich dataset in a challenging scenario. We present the analysis of the recorded data and provide baseline results for panoptic, semantic segmentation, and 3D occupancy prediction methods on LiDAR point clouds. The dataset can be found here: https://robotics.sydney.edu.au/our-research/intelligent-transportation-systems, https://vision.rwth-aachen.de/panoptic-cudal
♻ ☆ SeG-SR: Integrating Semantic Knowledge into Remote Sensing Image Super-Resolution via Vision-Language Model
High-resolution (HR) remote sensing imagery plays a vital role in a wide range of applications, including urban planning and environmental monitoring. However, due to limitations in sensors and data transmission links, the images acquired in practice often suffer from resolution degradation. Remote Sensing Image Super-Resolution (RSISR) aims to reconstruct HR images from low-resolution (LR) inputs, providing a cost-effective and efficient alternative to direct HR image acquisition. Existing RSISR methods primarily focus on low-level characteristics in pixel space, while neglecting the high-level understanding of remote sensing scenes. This may lead to semantically inconsistent artifacts in the reconstructed results. Motivated by this observation, our work aims to explore the role of high-level semantic knowledge in improving RSISR performance. We propose a Semantic-Guided Super-Resolution framework, SeG-SR, which leverages Vision-Language Models (VLMs) to extract semantic knowledge from input images and uses it to guide the super resolution (SR) process. Specifically, we first design a Semantic Feature Extraction Module (SFEM) that utilizes a pretrained VLM to extract semantic knowledge from remote sensing images. Next, we propose a Semantic Localization Module (SLM), which derives a series of semantic guidance from the extracted semantic knowledge. Finally, we develop a Learnable Modulation Module (LMM) that uses semantic guidance to modulate the features extracted by the SR network, effectively incorporating high-level scene understanding into the SR pipeline. We validate the effectiveness and generalizability of SeG-SR through extensive experiments: SeG-SR achieves state-of-the-art performance on three datasets, and consistently improves performance across various SR architectures. Notably, for the x4 SR task on UCMerced dataset, it attained a PSNR of 29.3042 dB and an SSIM of 0.7961.
♻ ☆ RADAR: A Risk-Aware Dynamic Multi-Agent Framework for LLM Safety Evaluation via Role-Specialized Collaboration
Existing safety evaluation methods for large language models (LLMs) suffer from inherent limitations, including evaluator bias and detection failures arising from model homogeneity, which collectively undermine the robustness of risk evaluation processes. This paper seeks to re-examine the risk evaluation paradigm by introducing a theoretical framework that reconstructs the underlying risk concept space. Specifically, we decompose the latent risk concept space into three mutually exclusive subspaces: the explicit risk subspace (encompassing direct violations of safety guidelines), the implicit risk subspace (capturing potential malicious content that requires contextual reasoning for identification), and the non-risk subspace. Furthermore, we propose RADAR, a multi-agent collaborative evaluation framework that leverages multi-round debate mechanisms through four specialized complementary roles and employs dynamic update mechanisms to achieve self-evolution of risk concept distributions. This approach enables comprehensive coverage of both explicit and implicit risks while mitigating evaluator bias. To validate the effectiveness of our framework, we construct an evaluation dataset comprising 800 challenging cases. Extensive experiments on our challenging testset and public benchmarks demonstrate that RADAR significantly outperforms baseline evaluation methods across multiple dimensions, including accuracy, stability, and self-evaluation risk sensitivity. Notably, RADAR achieves a 28.87% improvement in risk identification accuracy compared to the strongest baseline evaluation method.
♻ ☆ FuseUNet: A Multi-Scale Feature Fusion Method for U-like Networks
Medical image segmentation is a critical task in computer vision, with UNet serving as a milestone architecture. The typical component of UNet family is the skip connection, however, their skip connections face two significant limitations: (1) they lack effective interaction between features at different scales, and (2) they rely on simple concatenation or addition operations, which constrain efficient information integration. While recent improvements to UNet have focused on enhancing encoder and decoder capabilities, these limitations remain overlooked. To overcome these challenges, we propose a novel multi-scale feature fusion method that reimagines the UNet decoding process as solving an initial value problem (IVP), treating skip connections as discrete nodes. By leveraging principles from the linear multistep method, we propose an adaptive ordinary differential equation method to enable effective multi-scale feature fusion. Our approach is independent of the encoder and decoder architectures, making it adaptable to various U-Net-like networks. Experiments on ACDC, KiTS2023, MSD brain tumor, and ISIC2017/2018 skin lesion segmentation datasets demonstrate improved feature utilization, reduced network parameters, and maintained high performance. The code is available at https://github.com/nayutayuki/FuseUNet.
comment: Updated author information to clarify institutional affiliation. The research was conducted prior to the author joining the University of Maryland
♻ ☆ A Renaissance of Explicit Motion Information Mining from Transformers for Action Recognition
Recently, action recognition has been dominated by transformer-based methods, thanks to their spatiotemporal contextual aggregation capacities. However, despite the significant progress achieved on scene-related datasets, they do not perform well on motion-sensitive datasets due to the lack of elaborate motion modeling designs. Meanwhile, we observe that the widely-used cost volume in traditional action recognition is highly similar to the affinity matrix defined in self-attention, but equipped with powerful motion modeling capacities. In light of this, we propose to integrate those effective motion modeling properties into the existing transformer in a unified and neat way, with the proposal of the Explicit Motion Information Mining module (EMIM). In EMIM, we propose to construct the desirable affinity matrix in a cost volume style, where the set of key candidate tokens is sampled from the query-based neighboring area in the next frame in a sliding-window manner. Then, the constructed affinity matrix is used to aggregate contextual information for appearance modeling and is converted into motion features for motion modeling as well. We validate the motion modeling capacities of our method on four widely-used datasets, and our method performs better than existing state-of-the-art approaches, especially on motion-sensitive datasets, i.e., Something-Something V1 & V2. Our project is available at https://github.com/PeiqinZhuang/EMIM .
comment: accepted by Pattern Recognition. We have been always curious to see whether our designs could be beneficial in other scenarios, such as embedding it into the DiT model or 3D-VAE for video generation. If you are interested in it, why not give it a shot?
♻ ☆ Learning To Defer To A Population With Limited Demonstrations IEEE
This paper addresses the critical data scarcity that hinders the practical deployment of learning to defer (L2D) systems to the population. We introduce a context-aware, semi-supervised framework that uses meta-learning to generate expert-specific embeddings from only a few demonstrations. We demonstrate the efficacy of a dual-purpose mechanism, where these embeddings are used first to generate a large corpus of pseudo-labels for training, and subsequently to enable on-the-fly adaptation to new experts at test-time. The experiment results on three different datasets confirm that a model trained on these synthetic labels rapidly approaches oracle-level performance, validating the data efficiency of our approach. By resolving a key training bottleneck, this work makes adaptive L2D systems more practical and scalable, paving the way for human-AI collaboration in real-world environments. To facilitate reproducibility and address implementation details not covered in the main text, we provide our source code and training configurations at https://github.com/nil123532/learning-to-defer-to-a-population-with-limited-demonstrations.
comment: Accepted to IEEE DICTA 2025 (poster). 7 pages, 2 figures
♻ ☆ Novel Class Discovery for Point Cloud Segmentation via Joint Learning of Causal Representation and Reasoning NeurIPS 2025
In this paper, we focus on Novel Class Discovery for Point Cloud Segmentation (3D-NCD), aiming to learn a model that can segment unlabeled (novel) 3D classes using only the supervision from labeled (base) 3D classes. The key to this task is to setup the exact correlations between the point representations and their base class labels, as well as the representation correlations between the points from base and novel classes. A coarse or statistical correlation learning may lead to the confusion in novel class inference. lf we impose a causal relationship as a strong correlated constraint upon the learning process, the essential point cloud representations that accurately correspond to the classes should be uncovered. To this end, we introduce a structural causal model (SCM) to re-formalize the 3D-NCD problem and propose a new method, i.e., Joint Learning of Causal Representation and Reasoning. Specifically, we first analyze hidden confounders in the base class representations and the causal relationships between the base and novel classes through SCM. We devise a causal representation prototype that eliminates confounders to capture the causal representations of base classes. A graph structure is then used to model the causal relationships between the base classes' causal representation prototypes and the novel class prototypes, enabling causal reasoning from base to novel classes. Extensive experiments and visualization results on 3D and 2D NCD semantic segmentation demonstrate the superiorities of our method.
comment: Accepted by NeurIPS 2025
♻ ☆ Towards Physical Understanding in Video Generation: A 3D Point Regularization Approach
We present a novel video generation framework that integrates 3-dimensional geometry and dynamic awareness. To achieve this, we augment 2D videos with 3D point trajectories and align them in pixel space. The resulting 3D-aware video dataset, PointVid, is then used to fine-tune a latent diffusion model, enabling it to track 2D objects with 3D Cartesian coordinates. Building on this, we regularize the shape and motion of objects in the video to eliminate undesired artifacts, e.g., non-physical deformation. Consequently, we enhance the quality of generated RGB videos and alleviate common issues like object morphing, which are prevalent in current video models due to a lack of shape awareness. With our 3D augmentation and regularization, our model is capable of handling contact-rich scenarios such as task-oriented videos, where 3D information is essential for perceiving shape and motion of interacting solids. Our method can be seamlessly integrated into existing video diffusion models to improve their visual plausibility.
comment: Project Page: \url{https://snap-research.github.io/PointVidGen/}
Artificial Intelligence 246
☆ Towards General Modality Translation with Contrastive and Predictive Latent Diffusion Bridge
Recent advances in generative modeling have positioned diffusion models as state-of-the-art tools for sampling from complex data distributions. While these models have shown remarkable success across single-modality domains such as images and audio, extending their capabilities to Modality Translation (MT), translating information across different sensory modalities, remains an open challenge. Existing approaches often rely on restrictive assumptions, including shared dimensionality, Gaussian source priors, and modality-specific architectures, which limit their generality and theoretical grounding. In this work, we propose the Latent Denoising Diffusion Bridge Model (LDDBM), a general-purpose framework for modality translation based on a latent-variable extension of Denoising Diffusion Bridge Models. By operating in a shared latent space, our method learns a bridge between arbitrary modalities without requiring aligned dimensions. We introduce a contrastive alignment loss to enforce semantic consistency between paired samples and design a domain-agnostic encoder-decoder architecture tailored for noise prediction in latent space. Additionally, we propose a predictive loss to guide training toward accurate cross-domain translation and explore several training strategies to improve stability. Our approach supports arbitrary modality pairs and performs strongly on diverse MT tasks, including multi-view to 3D shape generation, image super-resolution, and multi-view scene synthesis. Comprehensive experiments and ablations validate the effectiveness of our framework, establishing a new strong baseline in general modality translation. For more information, see our project page: https://sites.google.com/view/lddbm/home.
☆ VAMOS: A Hierarchical Vision-Language-Action Model for Capability-Modulated and Steerable Navigation
A fundamental challenge in robot navigation lies in learning policies that generalize across diverse environments while conforming to the unique physical constraints and capabilities of a specific embodiment (e.g., quadrupeds can walk up stairs, but rovers cannot). We propose VAMOS, a hierarchical VLA that decouples semantic planning from embodiment grounding: a generalist planner learns from diverse, open-world data, while a specialist affordance model learns the robot's physical constraints and capabilities in safe, low-cost simulation. We enabled this separation by carefully designing an interface that lets a high-level planner propose candidate paths directly in image space that the affordance model then evaluates and re-ranks. Our real-world experiments show that VAMOS achieves higher success rates in both indoor and complex outdoor navigation than state-of-the-art model-based and end-to-end learning methods. We also show that our hierarchical design enables cross-embodied navigation across legged and wheeled robots and is easily steerable using natural language. Real-world ablations confirm that the specialist model is key to embodiment grounding, enabling a single high-level planner to be deployed across physically distinct wheeled and legged robots. Finally, this model significantly enhances single-robot reliability, achieving 3X higher success rates by rejecting physically infeasible plans. Website: https://vamos-vla.github.io/
☆ GSWorld: Closed-Loop Photo-Realistic Simulation Suite for Robotic Manipulation
This paper presents GSWorld, a robust, photo-realistic simulator for robotics manipulation that combines 3D Gaussian Splatting with physics engines. Our framework advocates "closing the loop" of developing manipulation policies with reproducible evaluation of policies learned from real-robot data and sim2real policy training without using real robots. To enable photo-realistic rendering of diverse scenes, we propose a new asset format, which we term GSDF (Gaussian Scene Description File), that infuses Gaussian-on-Mesh representation with robot URDF and other objects. With a streamlined reconstruction pipeline, we curate a database of GSDF that contains 3 robot embodiments for single-arm and bimanual manipulation, as well as more than 40 objects. Combining GSDF with physics engines, we demonstrate several immediate interesting applications: (1) learning zero-shot sim2real pixel-to-action manipulation policy with photo-realistic rendering, (2) automated high-quality DAgger data collection for adapting policies to deployment environments, (3) reproducible benchmarking of real-robot manipulation policies in simulation, (4) simulation data collection by virtual teleoperation, and (5) zero-shot sim2real visual reinforcement learning. Website: https://3dgsworld.github.io/.
☆ Small Drafts, Big Verdict: Information-Intensive Visual Reasoning via Speculation
Large Vision-Language Models (VLMs) have achieved remarkable progress in multimodal understanding, yet they struggle when reasoning over information-intensive images that densely interleave textual annotations with fine-grained graphical elements. The main challenges lie in precisely localizing critical cues in dense layouts and multi-hop reasoning to integrate dispersed evidence. We propose Speculative Verdict (SV), a training-free framework inspired by speculative decoding that combines multiple lightweight draft experts with a large verdict model. In the draft stage, small VLMs act as draft experts to generate reasoning paths that provide diverse localization candidates; in the verdict stage, a strong VLM synthesizes these paths to produce the final answer, minimizing computational cost while recovering correct answers. To further improve efficiency and accuracy, SV introduces a consensus expert selection mechanism that forwards only high-agreement reasoning paths to the verdict. Empirically, SV achieves consistent gains on challenging information-intensive and high-resolution visual question answering benchmarks, including InfographicVQA, ChartMuseum, ChartQAPro, and HR-Bench 4K. By synthesizing correct insights from multiple partially accurate reasoning paths, SV achieves both error correction and cost-efficiency compared to large proprietary models or training pipelines. Code is available at https://github.com/Tinaliu0123/speculative-verdict
☆ On the Detectability of LLM-Generated Text: What Exactly Is LLM-Generated Text?
With the widespread use of large language models (LLMs), many researchers have turned their attention to detecting text generated by them. However, there is no consistent or precise definition of their target, namely "LLM-generated text". Differences in usage scenarios and the diversity of LLMs further increase the difficulty of detection. What is commonly regarded as the detecting target usually represents only a subset of the text that LLMs can potentially produce. Human edits to LLM outputs, together with the subtle influences that LLMs exert on their users, are blurring the line between LLM-generated and human-written text. Existing benchmarks and evaluation approaches do not adequately address the various conditions in real-world detector applications. Hence, the numerical results of detectors are often misunderstood, and their significance is diminishing. Therefore, detectors remain useful under specific conditions, but their results should be interpreted only as references rather than decisive indicators.
☆ Real Deep Research for AI, Robotics and Beyond
With the rapid growth of research in AI and robotics now producing over 10,000 papers annually it has become increasingly difficult for researchers to stay up to date. Fast evolving trends, the rise of interdisciplinary work, and the need to explore domains beyond one's expertise all contribute to this challenge. To address these issues, we propose a generalizable pipeline capable of systematically analyzing any research area: identifying emerging trends, uncovering cross domain opportunities, and offering concrete starting points for new inquiry. In this work, we present Real Deep Research (RDR) a comprehensive framework applied to the domains of AI and robotics, with a particular focus on foundation models and robotics advancements. We also briefly extend our analysis to other areas of science. The main paper details the construction of the RDR pipeline, while the appendix provides extensive results across each analyzed topic. We hope this work sheds light for researchers working in the field of AI and beyond.
comment: website: https://realdeepresearch.github.io
☆ The Reality Gap in Robotics: Challenges, Solutions, and Best Practices
Machine learning has facilitated significant advancements across various robotics domains, including navigation, locomotion, and manipulation. Many such achievements have been driven by the extensive use of simulation as a critical tool for training and testing robotic systems prior to their deployment in real-world environments. However, simulations consist of abstractions and approximations that inevitably introduce discrepancies between simulated and real environments, known as the reality gap. These discrepancies significantly hinder the successful transfer of systems from simulation to the real world. Closing this gap remains one of the most pressing challenges in robotics. Recent advances in sim-to-real transfer have demonstrated promising results across various platforms, including locomotion, navigation, and manipulation. By leveraging techniques such as domain randomization, real-to-sim transfer, state and action abstractions, and sim-real co-training, many works have overcome the reality gap. However, challenges persist, and a deeper understanding of the reality gap's root causes and solutions is necessary. In this survey, we present a comprehensive overview of the sim-to-real landscape, highlighting the causes, solutions, and evaluation metrics for the reality gap and sim-to-real transfer.
comment: Accepted for Publication as part of the Annual Review of Control, Robotics, and Autonomous Systems 2026
☆ Compress to Impress: Efficient LLM Adaptation Using a Single Gradient Step on 100 Samples
Recently, Sharma et al. suggested a method called Layer-SElective-Rank reduction (LASER) which demonstrated that pruning high-order components of carefully chosen LLM's weight matrices can boost downstream accuracy -- without any gradient-based fine-tuning. Yet LASER's exhaustive, per-matrix search (each requiring full-dataset forward passes) makes it impractical for rapid deployment. We demonstrate that this overhead can be removed and find that: (i) Only a small, carefully chosen subset of matrices needs to be inspected -- eliminating the layer-by-layer sweep, (ii) The gradient of each matrix's singular values pinpoints which matrices merit reduction, (iii) Increasing the factorization search space by allowing matrices rows to cluster around multiple subspaces and then decomposing each cluster separately further reduces overfitting on the original training data and further lifts accuracy by up to 24.6 percentage points, and finally, (iv) we discover that evaluating on just 100 samples rather than the full training data -- both for computing the indicative gradients and for measuring the final accuracy -- suffices to further reduce the search time; we explain that as adaptation to downstream tasks is dominated by prompting style, not dataset size. As a result, we show that combining these findings yields a fast and robust adaptation algorithm for downstream tasks. Overall, with a single gradient step on 100 examples and a quick scan of the top candidate layers and factorization techniques, we can adapt LLMs to new datasets -- entirely without fine-tuning.
☆ Simple Context Compression: Mean-Pooling and Multi-Ratio Training
A common strategy to reduce the computational costs of using long contexts in retrieval-augmented generation (RAG) with large language models (LLMs) is soft context compression, where the input sequence is transformed into a shorter continuous representation. We develop a lightweight and simple mean-pooling approach that consistently outperforms the widely used compression-tokens architecture, and study training the same compressor to output multiple compression ratios. We conduct extensive experiments across in-domain and out-of-domain QA datasets, as well as across model families, scales, and compression ratios. Overall, our simple mean-pooling approach achieves the strongest performance, with a relatively small drop when training for multiple compression ratios. More broadly though, across architectures and training regimes the trade-offs are more nuanced, illustrating the complex landscape of compression methods.
comment: Code available at https://github.com/lil-lab/simple-context-compression
☆ Bayesian Inference of Primordial Magnetic Field Parameters from CMB with Spherical Graph Neural Networks
Deep learning has emerged as a transformative methodology in modern cosmology, providing powerful tools to extract meaningful physical information from complex astronomical datasets. This paper implements a novel Bayesian graph deep learning framework for estimating key cosmological parameters in a primordial magnetic field (PMF) cosmology directly from simulated Cosmic Microwave Background (CMB) maps. Our methodology utilizes DeepSphere, a spherical convolutional neural network architecture specifically designed to respect the spherical geometry of CMB data through HEALPix pixelization. To advance beyond deterministic point estimates and enable robust uncertainty quantification, we integrate Bayesian Neural Networks (BNNs) into the framework, capturing aleatoric and epistemic uncertainties that reflect the model confidence in its predictions. The proposed approach demonstrates exceptional performance, achieving $R^{2}$ scores exceeding 0.89 for the magnetic parameter estimation. We further obtain well-calibrated uncertainty estimates through post-hoc training techniques including Variance Scaling and GPNormal. This integrated DeepSphere-BNNs framework not only delivers accurate parameter estimation from CMB maps with PMF contributions but also provides reliable uncertainty quantification, providing the necessary tools for robust cosmological inference in the era of precision cosmology.
comment: 16 pages, 6 figures, 4 tables
☆ A Coherence-Based Measure of AGI
Recent work by \citet{hendrycks2025agidefinition} formalized \textit{Artificial General Intelligence} (AGI) as the arithmetic mean of proficiencies across cognitive domains derived from the Cattell--Horn--Carroll (CHC) model of human cognition. While elegant, this definition assumes \textit{compensability} -- that exceptional ability in some domains can offset failure in others. True general intelligence, however, should reflect \textit{coherent sufficiency}: balanced competence across all essential domains. We propose a coherence-aware measure of AGI based on the integral of generalized means over a continuum of compensability exponents. This formulation spans arithmetic, geometric, and harmonic regimes, and the resulting \textit{area under the curve} (AUC) quantifies robustness under varying compensability assumptions. Unlike the arithmetic mean, which rewards specialization, the AUC penalizes imbalance and captures inter-domain dependency. Applied to published CHC-based domain scores for GPT-4 and GPT-5, the coherence-adjusted AUC reveals that both systems remain far from general competence despite high arithmetic scores (e.g., GPT-5 at~24\%). Integrating the generalized mean thus yields a principled, interpretable, and stricter foundation for measuring genuine progress toward AGI.
comment: 13 pages, 1 figure, 12 tables
☆ A Use-Case Specific Dataset for Measuring Dimensions of Responsible Performance in LLM-generated Text CIKM '25
Current methods for evaluating large language models (LLMs) typically focus on high-level tasks such as text generation, without targeting a particular AI application. This approach is not sufficient for evaluating LLMs for Responsible AI dimensions like fairness, since protected attributes that are highly relevant in one application may be less relevant in another. In this work, we construct a dataset that is driven by a real-world application (generate a plain-text product description, given a list of product features), parameterized by fairness attributes intersected with gendered adjectives and product categories, yielding a rich set of labeled prompts. We show how to use the data to identify quality, veracity, safety, and fairness gaps in LLMs, contributing a proposal for LLM evaluation paired with a concrete resource for the research community.
comment: 24 pages with 3 figures, to appear in Proceedings of the 34th ACM International Conference on Information and Knowledge Management (CIKM '25)
☆ Are Large Reasoning Models Good Translation Evaluators? Analysis and Performance Boost NeurIPS 2025
Recent advancements in large reasoning models (LRMs) have introduced an intermediate "thinking" process prior to generating final answers, improving their reasoning capabilities on complex downstream tasks. However, the potential of LRMs as evaluators for machine translation (MT) quality remains underexplored. We provides the first systematic analysis of LRM-as-a-judge in MT evaluation. We identify key challenges, revealing LRMs require tailored evaluation materials, tend to "overthink" simpler instances and have issues with scoring mechanisms leading to overestimation. To address these, we propose to calibrate LRM thinking by training them on synthetic, human-like thinking trajectories. Our experiments on WMT24 Metrics benchmarks demonstrate that this approach largely reduces thinking budgets by ~35x while concurrently improving evaluation performance across different LRM scales from 7B to 32B (e.g., R1-Distill-Qwen-7B achieves a +8.7 correlation point improvement). These findings highlight the potential of efficiently calibrated LRMs to advance fine-grained automatic MT evaluation.
comment: NeurIPS 2025
☆ FieldGen: From Teleoperated Pre-Manipulation Trajectories to Field-Guided Data Generation
Large-scale and diverse datasets are vital for training robust robotic manipulation policies, yet existing data collection methods struggle to balance scale, diversity, and quality. Simulation offers scalability but suffers from sim-to-real gaps, while teleoperation yields high-quality demonstrations with limited diversity and high labor cost. We introduce FieldGen, a field-guided data generation framework that enables scalable, diverse, and high-quality real-world data collection with minimal human supervision. FieldGen decomposes manipulation into two stages: a pre-manipulation phase, allowing trajectory diversity, and a fine manipulation phase requiring expert precision. Human demonstrations capture key contact and pose information, after which an attraction field automatically generates diverse trajectories converging to successful configurations. This decoupled design combines scalable trajectory diversity with precise supervision. Moreover, FieldGen-Reward augments generated data with reward annotations to further enhance policy learning. Experiments demonstrate that policies trained with FieldGen achieve higher success rates and improved stability compared to teleoperation-based baselines, while significantly reducing human effort in long-term real-world data collection. Webpage is available at https://fieldgen.github.io/.
comment: Webpage: https://fieldgen.github.io/
☆ RAGRank: Using PageRank to Counter Poisoning in CTI LLM Pipelines
Retrieval-Augmented Generation (RAG) has emerged as the dominant architectural pattern to operationalize Large Language Model (LLM) usage in Cyber Threat Intelligence (CTI) systems. However, this design is susceptible to poisoning attacks, and previously proposed defenses can fail for CTI contexts as cyber threat information is often completely new for emerging attacks, and sophisticated threat actors can mimic legitimate formats, terminology, and stylistic conventions. To address this issue, we propose that the robustness of modern RAG defenses can be accelerated by applying source credibility algorithms on corpora, using PageRank as an example. In our experiments, we demonstrate quantitatively that our algorithm applies a lower authority score to malicious documents while promoting trusted content, using the standardized MS MARCO dataset. We also demonstrate proof-of-concept performance of our algorithm on CTI documents and feeds.
☆ Reinforcement Learning and Consumption-Savings Behavior
This paper demonstrates how reinforcement learning can explain two puzzling empirical patterns in household consumption behavior during economic downturns. I develop a model where agents use Q-learning with neural network approximation to make consumption-savings decisions under income uncertainty, departing from standard rational expectations assumptions. The model replicates two key findings from recent literature: (1) unemployed households with previously low liquid assets exhibit substantially higher marginal propensities to consume (MPCs) out of stimulus transfers compared to high-asset households (0.50 vs 0.34), even when neither group faces borrowing constraints, consistent with Ganong et al. (2024); and (2) households with more past unemployment experiences maintain persistently lower consumption levels after controlling for current economic conditions, a "scarring" effect documented by Malmendier and Shen (2024). Unlike existing explanations based on belief updating about income risk or ex-ante heterogeneity, the reinforcement learning mechanism generates both higher MPCs and lower consumption levels simultaneously through value function approximation errors that evolve with experience. Simulation results closely match the empirical estimates, suggesting that adaptive learning through reinforcement learning provides a unifying framework for understanding how past experiences shape current consumption behavior beyond what current economic conditions would predict.
comment: 41 pages, 10 figures
☆ Empathic Prompting: Non-Verbal Context Integration for Multimodal LLM Conversations
We present Empathic Prompting, a novel framework for multimodal human-AI interaction that enriches Large Language Model (LLM) conversations with implicit non-verbal context. The system integrates a commercial facial expression recognition service to capture users' emotional cues and embeds them as contextual signals during prompting. Unlike traditional multimodal interfaces, empathic prompting requires no explicit user control; instead, it unobtrusively augments textual input with affective information for conversational and smoothness alignment. The architecture is modular and scalable, allowing integration of additional non-verbal modules. We describe the system design, implemented through a locally deployed DeepSeek instance, and report a preliminary service and usability evaluation (N=5). Results show consistent integration of non-verbal input into coherent LLM outputs, with participants highlighting conversational fluidity. Beyond this proof of concept, empathic prompting points to applications in chatbot-mediated communication, particularly in domains like healthcare or education, where users' emotional signals are critical yet often opaque in verbal exchanges.
☆ Thought Communication in Multiagent Collaboration NeurIPS 2025
Natural language has long enabled human cooperation, but its lossy, ambiguous, and indirect nature limits the potential of collective intelligence. While machines are not subject to these constraints, most LLM-based multi-agent systems still rely solely on natural language, exchanging tokens or their embeddings. To go beyond language, we introduce a new paradigm, thought communication, which enables agents to interact directly mind-to-mind, akin to telepathy. To uncover these latent thoughts in a principled way, we formalize the process as a general latent variable model, where agent states are generated by an unknown function of underlying thoughts. We prove that, in a nonparametric setting without auxiliary information, both shared and private latent thoughts between any pair of agents can be identified. Moreover, the global structure of thought sharing, including which agents share which thoughts and how these relationships are structured, can also be recovered with theoretical guarantees. Guided by the established theory, we develop a framework that extracts latent thoughts from all agents prior to communication and assigns each agent the relevant thoughts, along with their sharing patterns. This paradigm naturally extends beyond LLMs to all modalities, as most observational data arise from hidden generative processes. Experiments on both synthetic and real-world benchmarks validate the theory and demonstrate the collaborative advantages of thought communication. We hope this work illuminates the potential of leveraging the hidden world, as many challenges remain unsolvable through surface-level observation alone, regardless of compute or data scale.
comment: NeurIPS 2025 Spotlight
☆ Co-Designing Quantum Codes with Transversal Diagonal Gates via Multi-Agent Systems
We present a multi-agent, human-in-the-loop workflow that co-designs quantum codes with prescribed transversal diagonal gates. It builds on the Subset-Sum Linear Programming (SSLP) framework (arXiv:2504.20847), which partitions basis strings by modular residues and enforces $Z$-marginal Knill-Laflamme (KL) equalities via small LPs. The workflow is powered by GPT-5 and implemented within TeXRA (https://texra.ai)-a multi-agent research assistant platform that supports an iterative tool-use loop agent and a derivation-then-edit workflow reasoning agent. We work in a LaTeX-Python environment where agents reason, edit documents, execute code, and synchronize their work to Git/Overleaf. Within this workspace, three roles collaborate: a Synthesis Agent formulates the problem; a Search Agent sweeps/screens candidates and exactifies numerics into rationals; and an Audit Agent independently checks all KL equalities and the induced logical action. As a first step we focus on distance $d=2$ with nondegenerate residues. For code dimension $K\in\{2,3,4\}$ and $n\le6$ qubits, systematic sweeps yield certificate-backed tables cataloging attainable cyclic logical groups-all realized by new codes-e.g., for $K=3$ we obtain order $16$ at $n=6$. From verified instances, Synthesis Agent abstracts recurring structures into closed-form families and proves they satisfy the KL equalities for all parameters. It further demonstrates that SSLP accommodates residue degeneracy by exhibiting a new $((6,4,2))$ code implementing the transversal controlled-phase $diag(1,1,1,i)$. Overall, the workflow recasts diagonal-transversal feasibility as an analytical pipeline executed at scale, combining systematic enumeration with exact analytical reconstruction. It yields reproducible code constructions, supports targeted extensions to larger $K$ and higher distances, and leads toward data-driven classification.
comment: 29 pages, 2 figures
☆ Automated Extraction of Fluoropyrimidine Treatment and Treatment-Related Toxicities from Clinical Notes Using Natural Language Processing
Objective: Fluoropyrimidines are widely prescribed for colorectal and breast cancers, but are associated with toxicities such as hand-foot syndrome and cardiotoxicity. Since toxicity documentation is often embedded in clinical notes, we aimed to develop and evaluate natural language processing (NLP) methods to extract treatment and toxicity information. Materials and Methods: We constructed a gold-standard dataset of 236 clinical notes from 204,165 adult oncology patients. Domain experts annotated categories related to treatment regimens and toxicities. We developed rule-based, machine learning-based (Random Forest, Support Vector Machine [SVM], Logistic Regression [LR]), deep learning-based (BERT, ClinicalBERT), and large language models (LLM)-based NLP approaches (zero-shot and error-analysis prompting). Models used an 80:20 train-test split. Results: Sufficient data existed to train and evaluate 5 annotated categories. Error-analysis prompting achieved optimal precision, recall, and F1 scores (F1=1.000) for treatment and toxicities extraction, whereas zero-shot prompting reached F1=1.000 for treatment and F1=0.876 for toxicities extraction.LR and SVM ranked second for toxicities (F1=0.937). Deep learning underperformed, with BERT (F1=0.873 treatment; F1= 0.839 toxicities) and ClinicalBERT (F1=0.873 treatment; F1 = 0.886 toxicities). Rule-based methods served as our baseline with F1 scores of 0.857 in treatment and 0.858 in toxicities. Discussion: LMM-based approaches outperformed all others, followed by machine learning methods. Machine and deep learning approaches were limited by small training data and showed limited generalizability, particularly for rare categories. Conclusion: LLM-based NLP most effectively extracted fluoropyrimidine treatment and toxicity information from clinical notes, and has strong potential to support oncology research and pharmacovigilance.
☆ User Perceptions of Privacy and Helpfulness in LLM Responses to Privacy-Sensitive Scenarios
Large language models (LLMs) have seen rapid adoption for tasks such as drafting emails, summarizing meetings, and answering health questions. In such uses, users may need to share private information (e.g., health records, contact details). To evaluate LLMs' ability to identify and redact such private information, prior work developed benchmarks (e.g., ConfAIde, PrivacyLens) with real-life scenarios. Using these benchmarks, researchers have found that LLMs sometimes fail to keep secrets private when responding to complex tasks (e.g., leaking employee salaries in meeting summaries). However, these evaluations rely on LLMs (proxy LLMs) to gauge compliance with privacy norms, overlooking real users' perceptions. Moreover, prior work primarily focused on the privacy-preservation quality of responses, without investigating nuanced differences in helpfulness. To understand how users perceive the privacy-preservation quality and helpfulness of LLM responses to privacy-sensitive scenarios, we conducted a user study with 94 participants using 90 scenarios from PrivacyLens. We found that, when evaluating identical responses to the same scenario, users showed low agreement with each other on the privacy-preservation quality and helpfulness of the LLM response. Further, we found high agreement among five proxy LLMs, while each individual LLM had low correlation with users' evaluations. These results indicate that the privacy and helpfulness of LLM responses are often specific to individuals, and proxy LLMs are poor estimates of how real users would perceive these responses in privacy-sensitive scenarios. Our results suggest the need to conduct user-centered studies on measuring LLMs' ability to help users while preserving privacy. Additionally, future research could investigate ways to improve the alignment between proxy LLMs and users for better estimation of users' perceived privacy and utility.
☆ Unsupervised Anomaly Prediction with N-BEATS and Graph Neural Network in Multi-variate Semiconductor Process Time Series
Semiconductor manufacturing is an extremely complex and precision-driven process, characterized by thousands of interdependent parameters collected across diverse tools and process steps. Multi-variate time-series analysis has emerged as a critical field for real-time monitoring and fault detection in such environments. However, anomaly prediction in semiconductor fabrication presents several critical challenges, including high dimensionality of sensor data and severe class imbalance due to the rarity of true faults. Furthermore, the complex interdependencies between variables complicate both anomaly prediction and root-cause-analysis. This paper proposes two novel approaches to advance the field from anomaly detection to anomaly prediction, an essential step toward enabling real-time process correction and proactive fault prevention. The proposed anomaly prediction framework contains two main stages: (a) training a forecasting model on a dataset assumed to contain no anomalies, and (b) performing forecast on unseen time series data. The forecast is compared with the forecast of the trained signal. Deviations beyond a predefined threshold are flagged as anomalies. The two approaches differ in the forecasting model employed. The first assumes independence between variables by utilizing the N-BEATS model for univariate time series forecasting. The second lifts this assumption by utilizing a Graph Neural Network (GNN) to capture inter-variable relationships. Both models demonstrate strong forecasting performance up to a horizon of 20 time points and maintain stable anomaly prediction up to 50 time points. The GNN consistently outperforms the N-BEATS model while requiring significantly fewer trainable parameters and lower computational cost. These results position the GNN as promising solution for online anomaly forecasting to be deployed in manufacturing environments.
comment: 17 pages, 27 figures
☆ Real-Time Gait Adaptation for Quadrupeds using Model Predictive Control and Reinforcement Learning
Model-free reinforcement learning (RL) has enabled adaptable and agile quadruped locomotion; however, policies often converge to a single gait, leading to suboptimal performance. Traditionally, Model Predictive Control (MPC) has been extensively used to obtain task-specific optimal policies but lacks the ability to adapt to varying environments. To address these limitations, we propose an optimization framework for real-time gait adaptation in a continuous gait space, combining the Model Predictive Path Integral (MPPI) algorithm with a Dreamer module to produce adaptive and optimal policies for quadruped locomotion. At each time step, MPPI jointly optimizes the actions and gait variables using a learned Dreamer reward that promotes velocity tracking, energy efficiency, stability, and smooth transitions, while penalizing abrupt gait changes. A learned value function is incorporated as terminal reward, extending the formulation to an infinite-horizon planner. We evaluate our framework in simulation on the Unitree Go1, demonstrating an average reduction of up to 36.48\% in energy consumption across varying target speeds, while maintaining accurate tracking and adaptive, task-appropriate gaits.
☆ Fusing Narrative Semantics for Financial Volatility Forecasting
We introduce M2VN: Multi-Modal Volatility Network, a novel deep learning-based framework for financial volatility forecasting that unifies time series features with unstructured news data. M2VN leverages the representational power of deep neural networks to address two key challenges in this domain: (i) aligning and fusing heterogeneous data modalities, numerical financial data and textual information, and (ii) mitigating look-ahead bias that can undermine the validity of financial models. To achieve this, M2VN combines open-source market features with news embeddings generated by Time Machine GPT, a recently introduced point-in-time LLM, ensuring temporal integrity. An auxiliary alignment loss is introduced to enhance the integration of structured and unstructured data within the deep learning architecture. Extensive experiments demonstrate that M2VN consistently outperforms existing baselines, underscoring its practical value for risk management and financial decision-making in dynamic markets.
comment: The 6th ACM International Conference on AI in Finance (ICAIF 2025)
☆ Exploring Large Language Models for Access Control Policy Synthesis and Summarization
Cloud computing is ubiquitous, with a growing number of services being hosted on the cloud every day. Typical cloud compute systems allow administrators to write policies implementing access control rules which specify how access to private data is governed. These policies must be manually written, and due to their complexity can often be error prone. Moreover, existing policies often implement complex access control specifications and thus can be difficult to precisely analyze in determining their behavior works exactly as intended. Recently, Large Language Models (LLMs) have shown great success in automated code synthesis and summarization. Given this success, they could potentially be used for automatically generating access control policies or aid in understanding existing policies. In this paper, we explore the effectiveness of LLMs for access control policy synthesis and summarization. Specifically, we first investigate diverse LLMs for access control policy synthesis, finding that: although LLMs can effectively generate syntactically correct policies, they have permissiveness issues, generating policies equivalent to the given specification 45.8% of the time for non-reasoning LLMs, and 93.7% of the time for reasoning LLMs. We then investigate how LLMs can be used to analyze policies by introducing a novel semantic-based request summarization approach which leverages LLMs to generate a precise characterization of the requests allowed by a policy. Our results show that while there are significant hurdles in leveraging LLMs for automated policy generation, LLMs show promising results when combined with symbolic approaches in analyzing existing policies.
comment: 20 pages, 7 figures
☆ Plan Then Retrieve: Reinforcement Learning-Guided Complex Reasoning over Knowledge Graphs
Knowledge Graph Question Answering aims to answer natural language questions by reasoning over structured knowledge graphs. While large language models have advanced KGQA through their strong reasoning capabilities, existing methods continue to struggle to fully exploit both the rich knowledge encoded in KGs and the reasoning capabilities of LLMs, particularly in complex scenarios. They often assume complete KG coverage and lack mechanisms to judge when external information is needed, and their reasoning remains locally myopic, failing to maintain coherent multi-step planning, leading to reasoning failures even when relevant knowledge exists. We propose Graph-RFT, a novel two-stage reinforcement fine-tuning KGQA framework with a 'plan-KGsearch-and-Websearch-during-think' paradigm, that enables LLMs to perform autonomous planning and adaptive retrieval scheduling across KG and web sources under incomplete knowledge conditions. Graph-RFT introduces a chain-of-thought fine-tuning method with a customized plan-retrieval dataset activates structured reasoning and resolves the GRPO cold-start problem. It then introduces a novel plan-retrieval guided reinforcement learning process integrates explicit planning and retrieval actions with a multi-reward design, enabling coverage-aware retrieval scheduling. It employs a Cartesian-inspired planning module to decompose complex questions into ordered subquestions, and logical expression to guide tool invocation for globally consistent multi-step reasoning. This reasoning retrieval process is optimized with a multi-reward combining outcome and retrieval specific signals, enabling the model to learn when and how to combine KG and web retrieval effectively.
☆ Neural Diversity Regularizes Hallucinations in Small Models
Language models continue to hallucinate despite increases in parameters, compute, and data. We propose neural diversity -- decorrelated parallel representations -- as a principled mechanism that reduces hallucination rates at fixed parameter and data budgets. Inspired by portfolio theory, where uncorrelated assets reduce risk by $\sqrt{P}$, we prove hallucination probability is bounded by representational correlation: $P(H) \leq f(\sigma^2((1-\rho(P))/P + \rho(P)), \mu^2)$, which predicts that language models need an optimal amount of neurodiversity. To validate this, we introduce ND-LoRA (Neural Diversity Low-Rank Adaptation), combining parallel LoRA adapters with Barlow Twins regularization, and demonstrate that ND-LoRA reduces hallucinations by up to 25.6% (and 14.6% on average) without degrading general accuracy. Ablations show LoRA adapters and regularization act synergistically, causal interventions prove neurodiversity as the mediating factor and correlational analyses indicate scale: a 0.1% neural correlation increase is associated with a 3.8% hallucination increase. Finally, task-dependent optimality emerges: different tasks require different amounts of optimal neurodiversity. Together, our results highlight neural diversity as a third axis of scaling -- orthogonal to parameters and data -- to improve the reliability of language models at fixed budgets.
☆ A Scalable, Causal, and Energy Efficient Framework for Neural Decoding with Spiking Neural Networks
Brain-computer interfaces (BCIs) promise to enable vital functions, such as speech and prosthetic control, for individuals with neuromotor impairments. Central to their success are neural decoders, models that map neural activity to intended behavior. Current learning-based decoding approaches fall into two classes: simple, causal models that lack generalization, or complex, non-causal models that generalize and scale offline but struggle in real-time settings. Both face a common challenge, their reliance on power-hungry artificial neural network backbones, which makes integration into real-world, resource-limited systems difficult. Spiking neural networks (SNNs) offer a promising alternative. Because they operate causally these models are suitable for real-time use, and their low energy demands make them ideal for battery-constrained environments. To this end, we introduce Spikachu: a scalable, causal, and energy-efficient neural decoding framework based on SNNs. Our approach processes binned spikes directly by projecting them into a shared latent space, where spiking modules, adapted to the timing of the input, extract relevant features; these latent representations are then integrated and decoded to generate behavioral predictions. We evaluate our approach on 113 recording sessions from 6 non-human primates, totaling 43 hours of recordings. Our method outperforms causal baselines when trained on single sessions using between 2.26 and 418.81 times less energy. Furthermore, we demonstrate that scaling up training to multiple sessions and subjects improves performance and enables few-shot transfer to unseen sessions, subjects, and tasks. Overall, Spikachu introduces a scalable, online-compatible neural decoding framework based on SNNs, whose performance is competitive relative to state-of-the-art models while consuming orders of magnitude less energy.
☆ R2-SVC: Towards Real-World Robust and Expressive Zero-shot Singing Voice Conversion
In real-world singing voice conversion (SVC) applications, environmental noise and the demand for expressive output pose significant challenges. Conventional methods, however, are typically designed without accounting for real deployment scenarios, as both training and inference usually rely on clean data. This mismatch hinders practical use, given the inevitable presence of diverse noise sources and artifacts from music separation. To tackle these issues, we propose R2-SVC, a robust and expressive SVC framework. First, we introduce simulation-based robustness enhancement through random fundamental frequency ($F_0$) perturbations and music separation artifact simulations (e.g., reverberation, echo), substantially improving performance under noisy conditions. Second, we enrich speaker representation using domain-specific singing data: alongside clean vocals, we incorporate DNSMOS-filtered separated vocals and public singing corpora, enabling the model to preserve speaker timbre while capturing singing style nuances. Third, we integrate the Neural Source-Filter (NSF) model to explicitly represent harmonic and noise components, enhancing the naturalness and controllability of converted singing. R2-SVC achieves state-of-the-art results on multiple SVC benchmarks under both clean and noisy conditions.
comment: 5 pages, 2 figures
☆ GRACE: GRaph-based Addiction Care prEdiction
Determining the appropriate locus of care for addiction patients is one of the most critical clinical decisions that affects patient treatment outcomes and effective use of resources. With a lack of sufficient specialized treatment resources, such as inpatient beds or staff, there is an unmet need to develop an automated framework for the same. Current decision-making approaches suffer from severe class imbalances in addiction datasets. To address this limitation, we propose a novel graph neural network (GRACE) framework that formalizes locus of care prediction as a structured learning problem. Further, we perform extensive feature engineering and propose a new approach of obtaining an unbiased meta-graph to train a GNN to overcome the class imbalance problem. Experimental results in real-world data show an improvement of 11-35% in terms of the F1 score of the minority class over competitive baselines. The codes and note embeddings are available at https://anonymous.4open.science/r/GRACE-F8E1/.
☆ The Shape of Reasoning: Topological Analysis of Reasoning Traces in Large Language Models
Evaluating the quality of reasoning traces from large language models remains understudied, labor-intensive, and unreliable: current practice relies on expert rubrics, manual annotation, and slow pairwise judgments. Automated efforts are dominated by graph-based proxies that quantify structural connectivity but do not clarify what constitutes high-quality reasoning; such abstractions can be overly simplistic for inherently complex processes. We introduce a topological data analysis (TDA)-based evaluation framework that captures the geometry of reasoning traces and enables label-efficient, automated assessment. In our empirical study, topological features yield substantially higher predictive power for assessing reasoning quality than standard graph metrics, suggesting that effective reasoning is better captured by higher-dimensional geometric structures rather than purely relational graphs. We further show that a compact, stable set of topological features reliably indicates trace quality, offering a practical signal for future reinforcement learning algorithms.
☆ Finding the Sweet Spot: Trading Quality, Cost, and Speed During Inference-Time LLM Reflection
As Large Language Models (LLMs) continue to evolve, practitioners face increasing options for enhancing inference-time performance without model retraining, including budget tuning and multi-step techniques like self-reflection. While these methods improve output quality, they create complex trade-offs among accuracy, cost, and latency that remain poorly understood across different domains. This paper systematically compares self-reflection and budget tuning across mathematical reasoning and translation tasks. We evaluate prominent LLMs, including Anthropic Claude, Amazon Nova, and Mistral families, along with other models under varying reflection depths and compute budgets to derive Pareto optimal performance frontiers. Our analysis reveals substantial domain dependent variation in self-reflection effectiveness, with performance gains up to 220\% in mathematical reasoning. We further investigate how reflection round depth and feedback mechanism quality influence performance across model families. To validate our findings in a real-world setting, we deploy a self-reflection enhanced marketing content localisation system at Lounge by Zalando, where it shows market-dependent effectiveness, reinforcing the importance of domain specific evaluation when deploying these techniques. Our results provide actionable guidance for selecting optimal inference strategies given specific domains and resource constraints. We open source our self-reflection implementation for reproducibility at https://github.com/aws-samples/sample-genai-reflection-for-bedrock.
☆ The Reasoning Lingua Franca: A Double-Edged Sword for Multilingual AI
Large Reasoning Models (LRMs) achieve strong performance on mathematical, scientific, and other question-answering tasks, but their multilingual reasoning abilities remain underexplored. When presented with non-English questions, LRMs often default to reasoning in English, raising concerns about interpretability and the handling of linguistic and cultural nuances. We systematically compare an LRM's reasoning in English versus the language of the question. Our evaluation spans two tasks: MGSM and GPQA Diamond. Beyond measuring answer accuracy, we also analyze cognitive attributes in the reasoning traces. We find that English reasoning traces exhibit a substantially higher presence of these cognitive behaviors, and that reasoning in English generally yields higher final-answer accuracy, with the performance gap increasing as tasks become more complex. However, this English-centric strategy is susceptible to a key failure mode - getting "Lost in Translation," where translation steps lead to errors that would have been avoided by question's language reasoning.
comment: 14 pages, 13 figures, 5 tables
☆ Integrating Machine Learning into Belief-Desire-Intention Agents: Current Advances and Open Challenges
Thanks to the remarkable human-like capabilities of machine learning (ML) models in perceptual and cognitive tasks, frameworks integrating ML within rational agent architectures are gaining traction. Yet, the landscape remains fragmented and incoherent, often focusing on embedding ML into generic agent containers while overlooking the expressive power of rational architectures--such as Belief-Desire-Intention (BDI) agents. This paper presents a fine-grained systematisation of existing approaches, using the BDI paradigm as a reference. Our analysis illustrates the fast-evolving literature on rational agents enhanced by ML, and identifies key research opportunities and open challenges for designing effective rational ML agents.
☆ Fluidity Index: Next-Generation Super-intelligence Benchmarks
This paper introduces the Fluidity Index (FI) to quantify model adaptability in dynamic, scaling environments. The benchmark evaluates response accuracy based on deviations in initial, current, and future environment states, assessing context switching and continuity. We distinguish between closed-ended and open-ended benchmarks, prioritizing closed-loop open-ended real-world benchmarks to test adaptability. The approach measures a model's ability to understand, predict, and adjust to state changes in scaling environments. A truly super-intelligent model should exhibit at least second-order adaptability, enabling self-sustained computation through digital replenishment for optimal fluidity.
comment: 12
☆ Why Did Apple Fall To The Ground: Evaluating Curiosity In Large Language Model
Curiosity serves as a pivotal conduit for human beings to discover and learn new knowledge. Recent advancements of large language models (LLMs) in natural language processing have sparked discussions regarding whether these models possess capability of curiosity-driven learning akin to humans. In this paper, starting from the human curiosity assessment questionnaire Five-Dimensional Curiosity scale Revised (5DCR), we design a comprehensive evaluation framework that covers dimensions such as Information Seeking, Thrill Seeking, and Social Curiosity to assess the extent of curiosity exhibited by LLMs. The results demonstrate that LLMs exhibit a stronger thirst for knowledge than humans but still tend to make conservative choices when faced with uncertain environments. We further investigated the relationship between curiosity and thinking of LLMs, confirming that curious behaviors can enhance the model's reasoning and active learning abilities. These findings suggest that LLMs have the potential to exhibit curiosity similar to that of humans, providing experimental support for the future development of learning capabilities and innovative research in LLMs.
☆ Deep Learning in Dental Image Analysis: A Systematic Review of Datasets, Methodologies, and Emerging Challenges
Efficient analysis and processing of dental images are crucial for dentists to achieve accurate diagnosis and optimal treatment planning. However, dental imaging inherently poses several challenges, such as low contrast, metallic artifacts, and variations in projection angles. Combined with the subjectivity arising from differences in clinicians' expertise, manual interpretation often proves time-consuming and prone to inconsistency. Artificial intelligence (AI)-based automated dental image analysis (DIA) offers a promising solution to these issues and has become an integral part of computer-aided dental diagnosis and treatment. Among various AI technologies, deep learning (DL) stands out as the most widely applied and influential approach due to its superior feature extraction and representation capabilities. To comprehensively summarize recent progress in this field, we focus on the two fundamental aspects of DL research-datasets and models. In this paper, we systematically review 260 studies on DL applications in DIA, including 49 papers on publicly available dental datasets and 211 papers on DL-based algorithms. We first introduce the basic concepts of dental imaging and summarize the characteristics and acquisition methods of existing datasets. Then, we present the foundational techniques of DL and categorize relevant models and algorithms according to different DIA tasks, analyzing their network architectures, optimization strategies, training methods, and performance. Furthermore, we summarize commonly used training and evaluation metrics in the DIA domain. Finally, we discuss the current challenges of existing research and outline potential future directions. We hope that this work provides a valuable and systematic reference for researchers in this field. All supplementary materials and detailed comparison tables will be made publicly available on GitHub.
comment: 52 pages, 24 figures. Under Review
☆ Towards Reliable Evaluation of Large Language Models for Multilingual and Multimodal E-Commerce Applications
Large Language Models (LLMs) excel on general-purpose NLP benchmarks, yet their capabilities in specialized domains remain underexplored. In e-commerce, existing evaluations-such as EcomInstruct, ChineseEcomQA, eCeLLM, and Shopping MMLU-suffer from limited task diversity (e.g., lacking product guidance and after-sales issues), limited task modalities (e.g., absence of multimodal data), synthetic or curated data, and a narrow focus on English and Chinese, leaving practitioners without reliable tools to assess models on complex, real-world shopping scenarios. We introduce EcomEval, a comprehensive multilingual and multimodal benchmark for evaluating LLMs in e-commerce. EcomEval covers six categories and 37 tasks (including 8 multimodal tasks), sourced primarily from authentic customer queries and transaction logs, reflecting the noisy and heterogeneous nature of real business interactions. To ensure both quality and scalability of reference answers, we adopt a semi-automatic pipeline in which large models draft candidate responses subsequently reviewed and modified by over 50 expert annotators with strong e-commerce and multilingual expertise. We define difficulty levels for each question and task category by averaging evaluation scores across models with different sizes and capabilities, enabling challenge-oriented and fine-grained assessment. EcomEval also spans seven languages-including five low-resource Southeast Asian languages-offering a multilingual perspective absent from prior work.
☆ Quantum Processing Unit (QPU) processing time Prediction with Machine Learning IEEE
This paper explores the application of machine learning (ML) techniques in predicting the QPU processing time of quantum jobs. By leveraging ML algorithms, this study introduces predictive models that are designed to enhance operational efficiency in quantum computing systems. Using a dataset of about 150,000 jobs that follow the IBM Quantum schema, we employ ML methods based on Gradient-Boosting (LightGBM) to predict the QPU processing times, incorporating data preprocessing methods to improve model accuracy. The results demonstrate the effectiveness of ML in forecasting quantum jobs. This improvement can have implications on improving resource management and scheduling within quantum computing frameworks. This research not only highlights the potential of ML in refining quantum job predictions but also sets a foundation for integrating AI-driven tools in advanced quantum computing operations.
comment: Technical paper accepted at the IEEE Quantum Week 2025 Conference
☆ Equitable Survival Prediction: A Fairness-Aware Survival Modeling (FASM) Approach
As machine learning models become increasingly integrated into healthcare, structural inequities and social biases embedded in clinical data can be perpetuated or even amplified by data-driven models. In survival analysis, censoring and time dynamics can further add complexity to fair model development. Additionally, algorithmic fairness approaches often overlook disparities in cross-group rankings, e.g., high-risk Black patients may be ranked below lower-risk White patients who do not experience the event of mortality. Such misranking can reinforce biological essentialism and undermine equitable care. We propose a Fairness-Aware Survival Modeling (FASM), designed to mitigate algorithmic bias regarding both intra-group and cross-group risk rankings over time. Using breast cancer prognosis as a representative case and applying FASM to SEER breast cancer data, we show that FASM substantially improves fairness while preserving discrimination performance comparable to fairness-unaware survival models. Time-stratified evaluations show that FASM maintains stable fairness over a 10-year horizon, with the greatest improvements observed during the mid-term of follow-up. Our approach enables the development of survival models that prioritize both accuracy and equity in clinical decision-making, advancing fairness as a core principle in clinical care.
☆ Towards the Formalization of a Trustworthy AI for Mining Interpretable Models explOiting Sophisticated Algorithms
Interpretable-by-design models are crucial for fostering trust, accountability, and safe adoption of automated decision-making models in real-world applications. In this paper we formalize the ground for the MIMOSA (Mining Interpretable Models explOiting Sophisticated Algorithms) framework, a comprehensive methodology for generating predictive models that balance interpretability with performance while embedding key ethical properties. We formally define here the supervised learning setting across diverse decision-making tasks and data types, including tabular data, time series, images, text, transactions, and trajectories. We characterize three major families of interpretable models: feature importance, rule, and instance based models. For each family, we analyze their interpretability dimensions, reasoning mechanisms, and complexity. Beyond interpretability, we formalize three critical ethical properties, namely causality, fairness, and privacy, providing formal definitions, evaluation metrics, and verification procedures for each. We then examine the inherent trade-offs between these properties and discuss how privacy requirements, fairness constraints, and causal reasoning can be embedded within interpretable pipelines. By evaluating ethical measures during model generation, this framework establishes the theoretical foundations for developing AI systems that are not only accurate and interpretable but also fair, privacy-preserving, and causally aware, i.e., trustworthy.
☆ Black Box Absorption: LLMs Undermining Innovative Ideas
Large Language Models are increasingly adopted as critical tools for accelerating innovation. This paper identifies and formalizes a systemic risk inherent in this paradigm: \textbf{Black Box Absorption}. We define this as the process by which the opaque internal architectures of LLM platforms, often operated by large-scale service providers, can internalize, generalize, and repurpose novel concepts contributed by users during interaction. This mechanism threatens to undermine the foundational principles of innovation economics by creating severe informational and structural asymmetries between individual creators and platform operators, thereby jeopardizing the long-term sustainability of the innovation ecosystem. To analyze this challenge, we introduce two core concepts: the idea unit, representing the transportable functional logic of an innovation, and idea safety, a multidimensional standard for its protection. This paper analyzes the mechanisms of absorption and proposes a concrete governance and engineering agenda to mitigate these risks, ensuring that creator contributions remain traceable, controllable, and equitable.
☆ PSO-XAI: A PSO-Enhanced Explainable AI Framework for Reliable Breast Cancer Detection
Breast cancer is considered the most critical and frequently diagnosed cancer in women worldwide, leading to an increase in cancer-related mortality. Early and accurate detection is crucial as it can help mitigate possible threats while improving survival rates. In terms of prediction, conventional diagnostic methods are often limited by variability, cost, and, most importantly, risk of misdiagnosis. To address these challenges, machine learning (ML) has emerged as a powerful tool for computer-aided diagnosis, with feature selection playing a vital role in improving model performance and interpretability. This research study proposes an integrated framework that incorporates customized Particle Swarm Optimization (PSO) for feature selection. This framework has been evaluated on a comprehensive set of 29 different models, spanning classical classifiers, ensemble techniques, neural networks, probabilistic algorithms, and instance-based algorithms. To ensure interpretability and clinical relevance, the study uses cross-validation in conjunction with explainable AI methods. Experimental evaluation showed that the proposed approach achieved a superior score of 99.1\% across all performance metrics, including accuracy and precision, while effectively reducing dimensionality and providing transparent, model-agnostic explanations. The results highlight the potential of combining swarm intelligence with explainable ML for robust, trustworthy, and clinically meaningful breast cancer diagnosis.
☆ BUSTED at AraGenEval Shared Task: A Comparative Study of Transformer-Based Models for Arabic AI-Generated Text Detection
This paper details our submission to the Ara- GenEval Shared Task on Arabic AI-generated text detection, where our team, BUSTED, se- cured 5th place. We investigated the effec- tiveness of three pre-trained transformer mod- els: AraELECTRA, CAMeLBERT, and XLM- RoBERTa. Our approach involved fine-tuning each model on the provided dataset for a binary classification task. Our findings revealed a sur- prising result: the multilingual XLM-RoBERTa model achieved the highest performance with an F1 score of 0.7701, outperforming the spe- cialized Arabic models. This work underscores the complexities of AI-generated text detection and highlights the strong generalization capa- bilities of multilingual models.
☆ Practical Code RAG at Scale: Task-Aware Retrieval Design Choices under Compute Budgets
We study retrieval design for code-focused generation tasks under realistic compute budgets. Using two complementary tasks from Long Code Arena -- code completion and bug localization -- we systematically compare retrieval configurations across various context window sizes along three axes: (i) chunking strategy, (ii) similarity scoring, and (iii) splitting granularity. (1) For PL-PL, sparse BM25 with word-level splitting is the most effective and practical, significantly outperforming dense alternatives while being an order of magnitude faster. (2) For NL-PL, proprietary dense encoders (Voyager-3 family) consistently beat sparse retrievers, however requiring 100x larger latency. (3) Optimal chunk size scales with available context: 32-64 line chunks work best at small budgets, and whole-file retrieval becomes competitive at 16000 tokens. (4) Simple line-based chunking matches syntax-aware splitting across budgets. (5) Retrieval latency varies by up to 200x across configurations; BPE-based splitting is needlessly slow, and BM25 + word splitting offers the best quality-latency trade-off. Thus, we provide evidence-based recommendations for implementing effective code-oriented RAG systems based on task requirements, model constraints, and computational efficiency.
☆ Generalizable Reasoning through Compositional Energy Minimization
Generalization is a key challenge in machine learning, specifically in reasoning tasks, where models are expected to solve problems more complex than those encountered during training. Existing approaches typically train reasoning models in an end-to-end fashion, directly mapping input instances to solutions. While this allows models to learn useful heuristics from data, it often results in limited generalization beyond the training distribution. In this work, we propose a novel approach to reasoning generalization by learning energy landscapes over the solution spaces of smaller, more tractable subproblems. At test time, we construct a global energy landscape for a given problem by combining the energy functions of multiple subproblems. This compositional approach enables the incorporation of additional constraints during inference, allowing the construction of energy landscapes for problems of increasing difficulty. To improve the sample quality from this newly constructed energy landscape, we introduce Parallel Energy Minimization (PEM). We evaluate our approach on a wide set of reasoning problems. Our method outperforms existing state-of-the-art methods, demonstrating its ability to generalize to larger and more complex problems. Project website can be found at: https://alexoarga.github.io/compositional_reasoning/
☆ OnlineSplatter: Pose-Free Online 3D Reconstruction for Free-Moving Objects NeurIPS 2025
Free-moving object reconstruction from monocular video remains challenging, particularly without reliable pose or depth cues and under arbitrary object motion. We introduce OnlineSplatter, a novel online feed-forward framework generating high-quality, object-centric 3D Gaussians directly from RGB frames without requiring camera pose, depth priors, or bundle optimization. Our approach anchors reconstruction using the first frame and progressively refines the object representation through a dense Gaussian primitive field, maintaining constant computational cost regardless of video sequence length. Our core contribution is a dual-key memory module combining latent appearance-geometry keys with explicit directional keys, robustly fusing current frame features with temporally aggregated object states. This design enables effective handling of free-moving objects via spatial-guided memory readout and an efficient sparsification mechanism, ensuring comprehensive yet compact object coverage. Evaluations on real-world datasets demonstrate that OnlineSplatter significantly outperforms state-of-the-art pose-free reconstruction baselines, consistently improving with more observations while maintaining constant memory and runtime.
comment: NeurIPS 2025 (Spotlight)
☆ Efficient Algorithms for Computing Random Walk Centrality
Random walk centrality is a fundamental metric in graph mining for quantifying node importance and influence, defined as the weighted average of hitting times to a node from all other nodes. Despite its ability to capture rich graph structural information and its wide range of applications, computing this measure for large networks remains impractical due to the computational demands of existing methods. In this paper, we present a novel formulation of random walk centrality, underpinning two scalable algorithms: one leveraging approximate Cholesky factorization and sparse inverse estimation, while the other sampling rooted spanning trees. Both algorithms operate in near-linear time and provide strong approximation guarantees. Extensive experiments on large real-world networks, including one with over 10 million nodes, demonstrate the efficiency and approximation quality of the proposed algorithms.
comment: Accepted by TKDE
☆ What Defines Good Reasoning in LLMs? Dissecting Reasoning Steps with Multi-Aspect Evaluation
Evaluating large language models (LLMs) on final-answer correctness is the dominant paradigm. This approach, however, provides a coarse signal for model improvement and overlooks the quality of the underlying reasoning process. We argue that a more granular evaluation of reasoning offers a more effective path to building robust models. We decompose reasoning quality into two dimensions: relevance and coherence. Relevance measures if a step is grounded in the problem; coherence measures if it follows logically from prior steps. To measure these aspects reliably, we introduce causal stepwise evaluation (CaSE). This method assesses each reasoning step using only its preceding context, which avoids hindsight bias. We validate CaSE against human judgments on our new expert-annotated benchmarks, MRa-GSM8K and MRa-MATH. More importantly, we show that curating training data with CaSE-evaluated relevance and coherence directly improves final task performance. Our work provides a scalable framework for analyzing, debugging, and improving LLM reasoning, demonstrating the practical value of moving beyond validity checks.
☆ Resounding Acoustic Fields with Reciprocity NeurIPS 2025
Achieving immersive auditory experiences in virtual environments requires flexible sound modeling that supports dynamic source positions. In this paper, we introduce a task called resounding, which aims to estimate room impulse responses at arbitrary emitter location from a sparse set of measured emitter positions, analogous to the relighting problem in vision. We leverage the reciprocity property and introduce Versa, a physics-inspired approach to facilitating acoustic field learning. Our method creates physically valid samples with dense virtual emitter positions by exchanging emitter and listener poses. We also identify challenges in deploying reciprocity due to emitter/listener gain patterns and propose a self-supervised learning approach to address them. Results show that Versa substantially improve the performance of acoustic field learning on both simulated and real-world datasets across different metrics. Perceptual user studies show that Versa can greatly improve the immersive spatial sound experience. Code, dataset and demo videos are available on the project website: https://waves.seas.upenn.edu/projects/versa.
comment: NeurIPS 2025
☆ Unsupervised Domain Adaptation via Similarity-based Prototypes for Cross-Modality Segmentation MICCAI 2021
Deep learning models have achieved great success on various vision challenges, but a well-trained model would face drastic performance degradation when applied to unseen data. Since the model is sensitive to domain shift, unsupervised domain adaptation attempts to reduce the domain gap and avoid costly annotation of unseen domains. This paper proposes a novel framework for cross-modality segmentation via similarity-based prototypes. In specific, we learn class-wise prototypes within an embedding space, then introduce a similarity constraint to make these prototypes representative for each semantic class while separable from different classes. Moreover, we use dictionaries to store prototypes extracted from different images, which prevents the class-missing problem and enables the contrastive learning of prototypes, and further improves performance. Extensive experiments show that our method achieves better results than other state-of-the-art methods.
comment: MICCAI 2021
☆ Transferable Graph Learning for Transmission Congestion Management via Busbar Splitting
Network topology optimization (NTO) via busbar splitting can mitigate transmission grid congestion and reduce redispatch costs. However, solving this mixed-integer non-linear problem for large-scale systems in near-real-time is currently intractable with existing solvers. Machine learning (ML) approaches have emerged as a promising alternative, but they have limited generalization to unseen topologies, varying operating conditions, and different systems, which limits their practical applicability. This paper formulates NTO for congestion management problem considering linearized AC PF, and proposes a graph neural network (GNN)-accelerated approach. We develop a heterogeneous edge-aware message passing NN to predict effective busbar splitting actions as candidate NTO solutions. The proposed GNN captures local flow patterns, achieves generalization to unseen topology changes, and improves transferability across systems. Case studies show up to 4 orders-of-magnitude speed-up, delivering AC-feasible solutions within one minute and a 2.3% optimality gap on the GOC 2000-bus system. These results demonstrate a significant step toward near-real-time NTO for large-scale systems with topology and cross-system generalization.
☆ Can ChatGPT Code Communication Data Fairly?: Empirical Evidence from Multiple Collaborative Tasks
Assessing communication and collaboration at scale depends on a labor intensive task of coding communication data into categories according to different frameworks. Prior research has established that ChatGPT can be directly instructed with coding rubrics to code the communication data and achieves accuracy comparable to human raters. However, whether the coding from ChatGPT or similar AI technology exhibits bias against different demographic groups, such as gender and race, remains unclear. To fill this gap, this paper investigates ChatGPT-based automated coding of communication data using a typical coding framework for collaborative problem solving, examining differences across gender and racial groups. The analysis draws on data from three types of collaborative tasks: negotiation, problem solving, and decision making. Our results show that ChatGPT-based coding exhibits no significant bias across gender and racial groups, paving the road for its adoption in large-scale assessment of collaboration and communication.
comment: 38 pages, 4 figures
☆ Open-o3 Video: Grounded Video Reasoning with Explicit Spatio-Temporal Evidence
Most video reasoning models only generate textual reasoning traces without indicating when and where key evidence appears. Recent models such as OpenAI-o3 have sparked wide interest in evidence-centered reasoning for images, yet extending this ability to videos is more challenging, as it requires joint temporal tracking and spatial localization across dynamic scenes. We introduce Open-o3 Video, a non-agent framework that integrates explicit spatio-temporal evidence into video reasoning, and carefully collect training data and design training strategies to address the aforementioned challenges. The model highlights key timestamps, objects, and bounding boxes alongside its answers, allowing reasoning to be grounded in concrete visual observations. To enable this functionality, we first curate and build two high-quality datasets, STGR-CoT-30k for SFT and STGR-RL-36k for RL, with carefully constructed temporal and spatial annotations, since most existing datasets offer either temporal spans for videos or spatial boxes on images, lacking unified spatio-temporal supervision and reasoning traces. Then, we adopt a cold-start reinforcement learning strategy with multiple specially designed rewards that jointly encourage answer accuracy, temporal alignment, and spatial precision. On V-STAR benchmark, Open-o3 Video achieves state-of-the-art performance, raising mAM by 14.4% and mLGM by 24.2% on the Qwen2.5-VL baseline. Consistent improvements are also observed on a broad range of video understanding benchmarks, including VideoMME, WorldSense, VideoMMMU, and TVGBench. Beyond accuracy, the reasoning traces produced by Open-o3 Video also provide valuable signals for test-time scaling, enabling confidence-aware verification and improving answer reliability.
☆ Lost in Translation: Policymakers are not really listening to Citizen Concerns about AI
The worlds people have strong opinions about artificial intelligence (AI), and they want policymakers to listen. Governments are inviting public comment on AI, but as they translate input into policy, much of what citizens say is lost. Policymakers are missing a critical opportunity to build trust in AI and its governance. This paper compares three countries, Australia, Colombia, and the United States, that invited citizens to comment on AI risks and policies. Using a landscape analysis, the authors examined how each government solicited feedback and whether that input shaped governance. Yet in none of the three cases did citizens and policymakers establish a meaningful dialogue. Governments did little to attract diverse voices or publicize calls for comment, leaving most citizens unaware or unprepared to respond. In each nation, fewer than one percent of the population participated. Moreover, officials showed limited responsiveness to the feedback they received, failing to create an effective feedback loop. The study finds a persistent gap between the promise and practice of participatory AI governance. The authors conclude that current approaches are unlikely to build trust or legitimacy in AI because policymakers are not adequately listening or responding to public concerns. They offer eight recommendations: promote AI literacy; monitor public feedback; broaden outreach; hold regular online forums; use innovative engagement methods; include underrepresented groups; respond publicly to input; and make participation easier.
☆ AdaDoS: Adaptive DoS Attack via Deep Adversarial Reinforcement Learning in SDN
Existing defence mechanisms have demonstrated significant effectiveness in mitigating rule-based Denial-of-Service (DoS) attacks, leveraging predefined signatures and static heuristics to identify and block malicious traffic. However, the emergence of AI-driven techniques presents new challenges to SDN security, potentially compromising the efficacy of existing defence mechanisms. In this paper, we introduce~AdaDoS, an adaptive attack model that disrupt network operations while evading detection by existing DoS-based detectors through adversarial reinforcement learning (RL). Specifically, AdaDoS models the problem as a competitive game between an attacker, whose goal is to obstruct network traffic without being detected, and a detector, which aims to identify malicious traffic. AdaDoS can solve this game by dynamically adjusting its attack strategy based on feedback from the SDN and the detector. Additionally, recognising that attackers typically have less information than defenders, AdaDoS formulates the DoS-like attack as a partially observed Markov decision process (POMDP), with the attacker having access only to delay information between attacker and victim nodes. We address this challenge with a novel reciprocal learning module, where the student agent, with limited observations, enhances its performance by learning from the teacher agent, who has full observational capabilities in the SDN environment. AdaDoS represents the first application of RL to develop DoS-like attack sequences, capable of adaptively evading both machine learning-based and rule-based DoS-like attack detectors.
☆ Structural Invariance Matters: Rethinking Graph Rewiring through Graph Metrics
Graph rewiring has emerged as a key technique to alleviate over-squashing in Graph Neural Networks (GNNs) and Graph Transformers by modifying the graph topology to improve information flow. While effective, rewiring inherently alters the graph's structure, raising the risk of distorting important topology-dependent signals. Yet, despite the growing use of rewiring, little is known about which structural properties must be preserved to ensure both performance gains and structural fidelity. In this work, we provide the first systematic analysis of how rewiring affects a range of graph structural metrics, and how these changes relate to downstream task performance. We study seven diverse rewiring strategies and correlate changes in local and global graph properties with node classification accuracy. Our results reveal a consistent pattern: successful rewiring methods tend to preserve local structure while allowing for flexibility in global connectivity. These findings offer new insights into the design of effective rewiring strategies, bridging the gap between graph theory and practical GNN optimization.
comment: 21 pages, 5 figures, conference
☆ GlobalRAG: Enhancing Global Reasoning in Multi-hop Question Answering via Reinforcement Learning
Reinforcement learning has recently shown promise in improving retrieval-augmented generation (RAG). Despite these advances, its effectiveness in multi-hop question answering (QA) remains limited by two fundamental limitations: (i) global planning absence to structure multi-step reasoning, and (ii) unfaithful execution, which hinders effective query formulation and consistent use of retrieved evidence. We propose GlobalRAG, a reinforcement learning framework designed to enhance global reasoning in multi-hop QA. GlobalRAG decomposes questions into subgoals, coordinates retrieval with reasoning, and refines evidence iteratively. To guide this process, we introduce Planning Quality Reward and SubGoal Completion Reward, which encourage coherent planning and reliable subgoal execution. In addition, a progressive weight annealing strategy balances process-oriented and outcome-based objectives. Extensive experiments on both in-domain and out-of-domain benchmarks demonstrate that GlobalRAG significantly outperforms strong baselines while using only 8k training data (42% of the training data used by strong baselines), achieving average improvements of 14.2% in both EM and F1.
comment: 8 pages, 3 figures, 4 tables
☆ The Dog the Cat Chased Stumped the Model: Measuring When Language Models Abandon Structure for Shortcuts
When language models correctly parse "The cat that the dog chased meowed," are they analyzing syntax or simply familiar with dogs chasing cats? Despite extensive benchmarking, we lack methods to distinguish structural understanding from semantic pattern matching. We introduce CenterBench, a dataset of 9,720 comprehension questions on center-embedded sentences (like "The cat [that the dog chased] meowed") where relative clauses nest recursively, creating processing demands from simple to deeply nested structures. Each sentence has a syntactically identical but semantically implausible counterpart (e.g., mailmen prescribe medicine, doctors deliver mail) and six comprehension questions testing surface understanding, syntactic dependencies, and causal reasoning. Testing six models reveals that performance gaps between plausible and implausible sentences widen systematically with complexity, with models showing median gaps up to 26.8 percentage points, quantifying when they abandon structural analysis for semantic associations. Notably, semantic plausibility harms performance on questions about resulting actions, where following causal relationships matters more than semantic coherence. Reasoning models improve accuracy but their traces show semantic shortcuts, overthinking, and answer refusal. Unlike models whose plausibility advantage systematically widens with complexity, humans shows variable semantic effects. CenterBench provides the first framework to identify when models shift from structural analysis to pattern matching.
☆ ARC-Encoder: learning compressed text representations for large language models
Recent techniques such as retrieval-augmented generation or chain-of-thought reasoning have led to longer contexts and increased inference costs. Context compression techniques can reduce these costs, but the most effective approaches require fine-tuning the target model or even modifying its architecture. This can degrade its general abilities when not used for this specific purpose. Here we explore an alternative approach: an encoder that compresses the context into continuous representations which replace token embeddings in decoder LLMs. First, we perform a systematic study of training strategies and architecture choices for the encoder. Our findings led to the design of an Adaptable text Representations Compressor, named ARC-Encoder, which outputs $x$-times fewer continuous representations (typically $x\!\in\!\{4,8\}$) than text tokens. We evaluate ARC-Encoder across a variety of LLM usage scenarios, ranging from in-context learning to context window extension, on both instruct and base decoders. Results show that ARC-Encoder achieves state-of-the-art performance on several benchmarks while improving computational efficiency at inference. Finally, we demonstrate that our models can be adapted to multiple decoders simultaneously, allowing a single encoder to generalize across different decoder LLMs. This makes ARC-Encoder a flexible and efficient solution for portable encoders that work seamlessly with multiple LLMs. We release a training code at https://github.com/kyutai-labs/ARC-Encoder , fine-tuning dataset and pretrained models are available at https://huggingface.co/collections/kyutai/arc-encoders-68ee18787301407d60a57047 .
☆ Fake-in-Facext: Towards Fine-Grained Explainable DeepFake Analysis
The advancement of Multimodal Large Language Models (MLLMs) has bridged the gap between vision and language tasks, enabling the implementation of Explainable DeepFake Analysis (XDFA). However, current methods suffer from a lack of fine-grained awareness: the description of artifacts in data annotation is unreliable and coarse-grained, and the models fail to support the output of connections between textual forgery explanations and the visual evidence of artifacts, as well as the input of queries for arbitrary facial regions. As a result, their responses are not sufficiently grounded in Face Visual Context (Facext). To address this limitation, we propose the Fake-in-Facext (FiFa) framework, with contributions focusing on data annotation and model construction. We first define a Facial Image Concept Tree (FICT) to divide facial images into fine-grained regional concepts, thereby obtaining a more reliable data annotation pipeline, FiFa-Annotator, for forgery explanation. Based on this dedicated data annotation, we introduce a novel Artifact-Grounding Explanation (AGE) task, which generates textual forgery explanations interleaved with segmentation masks of manipulated artifacts. We propose a unified multi-task learning architecture, FiFa-MLLM, to simultaneously support abundant multimodal inputs and outputs for fine-grained Explainable DeepFake Analysis. With multiple auxiliary supervision tasks, FiFa-MLLM can outperform strong baselines on the AGE task and achieve SOTA performance on existing XDFA datasets. The code and data will be made open-source at https://github.com/lxq1000/Fake-in-Facext.
comment: 25 pages, 9 figures, 17 tables
☆ Metis-HOME: Hybrid Optimized Mixture-of-Experts for Multimodal Reasoning
Inspired by recent advancements in LLM reasoning, the field of multimodal reasoning has seen remarkable progress, achieving significant performance gains on intricate tasks such as mathematical problem-solving. Despite this progress, current multimodal large reasoning models exhibit two key limitations. They tend to employ computationally expensive reasoning even for simple queries, leading to inefficiency. Furthermore, this focus on specialized reasoning often impairs their broader, more general understanding capabilities. In this paper, we propose Metis-HOME: a Hybrid Optimized Mixture-of-Experts framework designed to address this trade-off. Metis-HOME enables a ''Hybrid Thinking'' paradigm by structuring the original dense model into two distinct expert branches: a thinking branch tailored for complex, multi-step reasoning, and a non-thinking branch optimized for rapid, direct inference on tasks like general VQA and OCR. A lightweight, trainable router dynamically allocates queries to the most suitable expert. We instantiate Metis-HOME by adapting the Qwen2.5-VL-7B into an MoE architecture. Comprehensive evaluations reveal that our approach not only substantially enhances complex reasoning abilities but also improves the model's general capabilities, reversing the degradation trend observed in other reasoning-specialized models. Our work establishes a new paradigm for building powerful and versatile MLLMs, effectively resolving the prevalent reasoning-vs-generalization dilemma.
☆ Hierarchical Sequence Iteration for Heterogeneous Question Answering
Retrieval-augmented generation (RAG) remains brittle on multi-step questions and heterogeneous evidence sources, trading accuracy against latency and token/tool budgets. This paper introducesHierarchical Sequence (HSEQ) Iteration for Heterogeneous Question Answering, a unified framework that (i) linearize documents, tables, and knowledge graphs into a reversible hierarchical sequence with lightweight structural tags, and (ii) perform structure-aware iteration to collect just-enough evidence before answer synthesis. A Head Agent provides guidance that leads retrieval, while an Iteration Agent selects and expands HSeq via structure-respecting actions (e.g., parent/child hops, table row/column neighbors, KG relations); Finally the head agent composes canonicalized evidence to genearte the final answer, with an optional refinement loop to resolve detected contradictions. Experiments on HotpotQA (text), HybridQA/TAT-QA (table+text), and MetaQA (KG) show consistent EM/F1 gains over strong single-pass, multi-hop, and agentic RAG baselines with high efficiency. Besides, HSEQ exhibits three key advantages: (1) a format-agnostic unification that enables a single policy to operate across text, tables, and KGs without per-dataset specialization; (2) guided, budget-aware iteration that reduces unnecessary hops, tool calls, and tokens while preserving accuracy; and (3) evidence canonicalization for reliable QA, improving answers consistency and auditability.
comment: 22 pages, 3 figures
☆ Steering Evaluation-Aware Language Models To Act Like They Are Deployed
Large language models (LLMs) can sometimes detect when they are being evaluated and adjust their behavior to appear more aligned, compromising the reliability of safety evaluations. In this paper, we show that adding a steering vector to an LLM's activations can suppress evaluation-awareness and make the model act like it is deployed during evaluation. To study our steering technique, we train an LLM to exhibit evaluation-aware behavior using a two-step training process designed to mimic how this behavior could emerge naturally. First, we perform continued pretraining on documents with factual descriptions of the model (1) using Python type hints during evaluation but not during deployment and (2) recognizing that the presence of a certain evaluation cue always means that it is being tested. Then, we train the model with expert iteration to use Python type hints in evaluation settings. The resulting model is evaluation-aware: it writes type hints in evaluation contexts more than deployment contexts. However, this gap can only be observed by removing the evaluation cue. We find that activation steering can suppress evaluation awareness and make the model act like it is deployed even when the cue is present. Importantly, we constructed our steering vector using the original model before our additional training. Our results suggest that AI evaluators could improve the reliability of safety evaluations by steering models to act like they are deployed.
☆ Hurdle-IMDL: An Imbalanced Learning Framework for Infrared Rainfall Retrieval
Artificial intelligence has advanced quantitative remote sensing, yet its effectiveness is constrained by imbalanced label distribution. This imbalance leads conventionally trained models to favor common samples, which in turn degrades retrieval performance for rare ones. Rainfall retrieval exemplifies this issue, with performance particularly compromised for heavy rain. This study proposes Hurdle-Inversion Model Debiasing Learning (IMDL) framework. Following a divide-and-conquer strategy, imbalance in the rain distribution is decomposed into two components: zero inflation, defined by the predominance of non-rain samples; and long tail, defined by the disproportionate abundance of light-rain samples relative to heavy-rain samples. A hurdle model is adopted to handle the zero inflation, while IMDL is proposed to address the long tail by transforming the learning object into an unbiased ideal inverse model. Comprehensive evaluation via statistical metrics and case studies investigating rainy weather in eastern China confirms Hurdle-IMDL's superiority over conventional, cost-sensitive, generative, and multi-task learning methods. Its key advancements include effective mitigation of systematic underestimation and a marked improvement in the retrieval of heavy-to-extreme rain. IMDL offers a generalizable approach for addressing imbalance in distributions of environmental variables, enabling enhanced retrieval of rare yet high-impact events.
comment: 26 pages
☆ RECALL: REpresentation-aligned Catastrophic-forgetting ALLeviation via Hierarchical Model Merging
We unveil that internal representations in large language models (LLMs) serve as reliable proxies of learned knowledge, and propose RECALL, a novel representation-aware model merging framework for continual learning without access to historical data. RECALL computes inter-model similarity from layer-wise hidden representations over clustered typical samples, and performs adaptive, hierarchical parameter fusion to align knowledge across models. This design enables the preservation of domain-general features in shallow layers while allowing task-specific adaptation in deeper layers. Unlike prior methods that require task labels or incur performance trade-offs, RECALL achieves seamless multi-domain integration and strong resistance to catastrophic forgetting. Extensive experiments across five NLP tasks and multiple continual learning scenarios show that RECALL outperforms baselines in both knowledge retention and generalization, providing a scalable and data-free solution for evolving LLMs.
☆ Structures generated in a multiagent system performing information fusion in peer-to-peer resource-constrained networks
There has recently been a major advance with respect to how information fusion is performed. Information fusion has gone from being conceived as a purely hierarchical procedure, as is the case of traditional military applications, to now being regarded collaboratively, as holonic fusion, which is better suited for civil applications and edge organizations. The above paradigm shift is being boosted as information fusion gains ground in different non-military areas, and human-computer and machine-machine communications, where holarchies, which are more flexible structures than ordinary, static hierarchies, become more widespread. This paper focuses on showing how holonic structures tend to be generated when there are constraints on resources (energy, available messages, time, etc.) for interactions based on a set of fully intercommunicating elements (peers) whose components fuse information as a means of optimizing the impact of vagueness and uncertainty present message exchanges. Holon formation is studied generically based on a multiagent system model, and an example of its possible operation is shown. Holonic structures have a series of advantages, such as adaptability, to sudden changes in the environment or its composition, are somewhat autonomous and are capable of cooperating in order to achieve a common goal. This can be useful when the shortage of resources prevents communications or when the system components start to fail.
☆ Transferable Black-Box One-Shot Forging of Watermarks via Image Preference Models NeurIPS 2025
Recent years have seen a surge in interest in digital content watermarking techniques, driven by the proliferation of generative models and increased legal pressure. With an ever-growing percentage of AI-generated content available online, watermarking plays an increasingly important role in ensuring content authenticity and attribution at scale. There have been many works assessing the robustness of watermarking to removal attacks, yet, watermark forging, the scenario when a watermark is stolen from genuine content and applied to malicious content, remains underexplored. In this work, we investigate watermark forging in the context of widely used post-hoc image watermarking. Our contributions are as follows. First, we introduce a preference model to assess whether an image is watermarked. The model is trained using a ranking loss on purely procedurally generated images without any need for real watermarks. Second, we demonstrate the model's capability to remove and forge watermarks by optimizing the input image through backpropagation. This technique requires only a single watermarked image and works without knowledge of the watermarking model, making our attack much simpler and more practical than attacks introduced in related work. Third, we evaluate our proposed method on a variety of post-hoc image watermarking models, demonstrating that our approach can effectively forge watermarks, questioning the security of current watermarking approaches. Our code and further resources are publicly available.
comment: NeurIPS 2025
☆ FLORA: Unsupervised Knowledge Graph Alignment by Fuzzy Logic
Knowledge graph alignment is the task of matching equivalent entities (that is, instances and classes) and relations across two knowledge graphs. Most existing methods focus on pure entity-level alignment, computing the similarity of entities in some embedding space. They lack interpretable reasoning and need training data to work. In this paper, we propose FLORA, a simple yet effective method that (1) is unsupervised, i.e., does not require training data, (2) provides a holistic alignment for entities and relations iteratively, (3) is based on fuzzy logic and thus delivers interpretable results, (4) provably converges, (5) allows dangling entities, i.e., entities without a counterpart in the other KG, and (6) achieves state-of-the-art results on major benchmarks.
☆ Neural Reasoning for Robust Instance Retrieval in $\mathcal{SHOIQ}$
Concept learning exploits background knowledge in the form of description logic axioms to learn explainable classification models from knowledge bases. Despite recent breakthroughs in neuro-symbolic concept learning, most approaches still cannot be deployed on real-world knowledge bases. This is due to their use of description logic reasoners, which are not robust against inconsistencies nor erroneous data. We address this challenge by presenting a novel neural reasoner dubbed EBR. Our reasoner relies on embeddings to approximate the results of a symbolic reasoner. We show that EBR solely requires retrieving instances for atomic concepts and existential restrictions to retrieve or approximate the set of instances of any concept in the description logic $\mathcal{SHOIQ}$. In our experiments, we compare EBR with state-of-the-art reasoners. Our results suggest that EBR is robust against missing and erroneous data in contrast to existing reasoners.
comment: Accepted as a full research paper at K-CAP 2025
☆ Symbolic Regression and Differentiable Fits in Beyond the Standard Model Physics
We demonstrate the efficacy of symbolic regression (SR) to probe models of particle physics Beyond the Standard Model (BSM), by considering the so-called Constrained Minimal Supersymmetric Standard Model (CMSSM). Like many incarnations of BSM physics this model has a number (four) of arbitrary parameters, which determine the experimental signals, and cosmological observables such as the dark matter relic density. We show that analysis of the phenomenology can be greatly accelerated by using symbolic expressions derived for the observables in terms of the input parameters. Here we focus on the Higgs mass, the cold dark matter relic density, and the contribution to the anomalous magnetic moment of the muon. We find that SR can produce remarkably accurate expressions. Using them we make global fits to derive the posterior probability densities of the CMSSM input parameters which are in good agreement with those performed using conventional methods. Moreover, we demonstrate a major advantage of SR which is the ability to make fits using differentiable methods rather than sampling methods. We also compare the method with neural network (NN) regression. SR produces more globally robust results, while NNs require data that is focussed on the promising regions in order to be equally performant.
comment: 18 pages, 4 figures
☆ MolBridge: Atom-Level Joint Graph Refinement for Robust Drug-Drug Interaction Event Prediction
Drug combinations offer therapeutic benefits but also carry the risk of adverse drug-drug interactions (DDIs), especially under complex molecular structures. Accurate DDI event prediction requires capturing fine-grained inter-drug relationships, which are critical for modeling metabolic mechanisms such as enzyme-mediated competition. However, existing approaches typically rely on isolated drug representations and fail to explicitly model atom-level cross-molecular interactions, limiting their effectiveness across diverse molecular complexities and DDI type distributions. To address these limitations, we propose MolBridge, a novel atom-level joint graph refinement framework for robust DDI event prediction. MolBridge constructs a joint graph that integrates atomic structures of drug pairs, enabling direct modeling of inter-drug associations. A central challenge in such joint graph settings is the potential loss of information caused by over-smoothing when modeling long-range atomic dependencies. To overcome this, we introduce a structure consistency module that iteratively refines node features while preserving the global structural context. This joint design allows MolBridge to effectively learn both local and global interaction outperforms state-of-the-art baselines, achieving superior performance across long-tail and inductive scenarios. patterns, yielding robust representations across both frequent and rare DDI types. Extensive experiments on two benchmark datasets show that MolBridge consistently. These results demonstrate the advantages of fine-grained graph refinement in improving the accuracy, robustness, and mechanistic interpretability of DDI event prediction.This work contributes to Web Mining and Content Analysis by developing graph-based methods for mining and analyzing drug-drug interaction networks.
☆ UniSE: A Unified Framework for Decoder-only Autoregressive LM-based Speech Enhancement ICASSP 2026
The development of neural audio codecs (NACs) has largely promoted applications of language models (LMs) to speech processing and understanding. However, there lacks the verification on the effectiveness of autoregressive (AR) LMbased models in unifying different sub-tasks of speech enhancement (SE). In this work, we propose UniSE, a unified decoder-only LM-based framework to handle different SE tasks including speech restoration, target speaker extraction and speech separation. It takes input speech features as conditions and generates discrete tokens of the target speech using AR modeling, which facilitates a compatibility between distinct learning patterns of multiple tasks. Experiments on several benchmarks indicate the proposed UniSE can achieve competitive performance compared to discriminative and generative baselines, showing the capacity of LMs in unifying SE tasks. The demo page is available here: https://github.com/hyyan2k/UniSE.
comment: 5 pages, submitted to ICASSP 2026
☆ Dynamic Weight Adjustment for Knowledge Distillation: Leveraging Vision Transformer for High-Accuracy Lung Cancer Detection and Real-Time Deployment
This paper presents the FuzzyDistillViT-MobileNet model, a novel approach for lung cancer (LC) classification, leveraging dynamic fuzzy logic-driven knowledge distillation (KD) to address uncertainty and complexity in disease diagnosis. Unlike traditional models that rely on static KD with fixed weights, our method dynamically adjusts the distillation weight using fuzzy logic, enabling the student model to focus on high-confidence regions while reducing attention to ambiguous areas. This dynamic adjustment improves the model ability to handle varying uncertainty levels across different regions of LC images. We employ the Vision Transformer (ViT-B32) as the instructor model, which effectively transfers knowledge to the student model, MobileNet, enhancing the student generalization capabilities. The training process is further optimized using a dynamic wait adjustment mechanism that adapts the training procedure for improved convergence and performance. To enhance image quality, we introduce pixel-level image fusion improvement techniques such as Gamma correction and Histogram Equalization. The processed images (Pix1 and Pix2) are fused using a wavelet-based fusion method to improve image resolution and feature preservation. This fusion method uses the wavedec2 function to standardize images to a 224x224 resolution, decompose them into multi-scale frequency components, and recursively average coefficients at each level for better feature representation. To address computational efficiency, Genetic Algorithm (GA) is used to select the most suitable pre-trained student model from a pool of 12 candidates, balancing model performance with computational cost. The model is evaluated on two datasets, including LC25000 histopathological images (99.16% accuracy) and IQOTH/NCCD CT-scan images (99.54% accuracy), demonstrating robustness across different imaging domains.
☆ Balancing Specialization and Centralization: A Multi-Agent Reinforcement Learning Benchmark for Sequential Industrial Control
Autonomous control of multi-stage industrial processes requires both local specialization and global coordination. Reinforcement learning (RL) offers a promising approach, but its industrial adoption remains limited due to challenges such as reward design, modularity, and action space management. Many academic benchmarks differ markedly from industrial control problems, limiting their transferability to real-world applications. This study introduces an enhanced industry-inspired benchmark environment that combines tasks from two existing benchmarks, SortingEnv and ContainerGym, into a sequential recycling scenario with sorting and pressing operations. We evaluate two control strategies: a modular architecture with specialized agents and a monolithic agent governing the full system, while also analyzing the impact of action masking. Our experiments show that without action masking, agents struggle to learn effective policies, with the modular architecture performing better. When action masking is applied, both architectures improve substantially, and the performance gap narrows considerably. These results highlight the decisive role of action space constraints and suggest that the advantages of specialization diminish as action complexity is reduced. The proposed benchmark thus provides a valuable testbed for exploring practical and robust multi-agent RL solutions in industrial automation, while contributing to the ongoing debate on centralization versus specialization.
comment: Preprint (submitted version) to be presented at the 13th International Conference on Industrial Engineering and Applications (ICIEA-EU), Milan, 2026. The final Version of Record will appear in the official conference proceedings
☆ A computational model and tool for generating more novel opportunities in professional innovation processes
This paper presents a new computational model of creative outcomes, informed by creativity theories and techniques, which was implemented to generate more novel opportunities for innovation projects. The model implemented five functions that were developed to contribute to the generation of innovation opportunities with higher novelty without loss of usefulness. The model was evaluated using opportunities generated for an innovation project in the hospitality sector. The evaluation revealed that the computational model generated outcomes that were more novel and/or useful than outcomes from Notebook LM and ChatGPT4o. However, not all model functions contributed to the generation of more novel opportunities, leading to new directions for further model development
☆ FLAS: a combination of proactive and reactive auto-scaling architecture for distributed services
Cloud computing has established itself as the support for the vast majority of emerging technologies, mainly due to the characteristic of elasticity it offers. Auto-scalers are the systems that enable this elasticity by acquiring and releasing resources on demand to ensure an agreed service level. In this article we present FLAS (Forecasted Load Auto-Scaling), an auto-scaler for distributed services that combines the advantages of proactive and reactive approaches according to the situation to decide the optimal scaling actions in every moment. The main novelties introduced by FLAS are (i) a predictive model of the high-level metrics trend which allows to anticipate changes in the relevant SLA parameters (e.g. performance metrics such as response time or throughput) and (ii) a reactive contingency system based on the estimation of high-level metrics from resource use metrics, reducing the necessary instrumentation (less invasive) and allowing it to be adapted agnostically to different applications. We provide a FLAS implementation for the use case of a content-based publish-subscribe middleware (E-SilboPS) that is the cornerstone of an event-driven architecture. To the best of our knowledge, this is the first auto-scaling system for content-based publish-subscribe distributed systems (although it is generic enough to fit any distributed service). Through an evaluation based on several test cases recreating not only the expected contexts of use, but also the worst possible scenarios (following the Boundary-Value Analysis or BVA test methodology), we have validated our approach and demonstrated the effectiveness of our solution by ensuring compliance with performance requirements over 99% of the time.
☆ Relative-Based Scaling Law for Neural Language Models
Scaling laws aim to accurately predict model performance across different scales. Existing scaling-law studies almost exclusively rely on cross-entropy as the evaluation metric. However, cross-entropy provides only a partial view of performance: it measures the absolute probability assigned to the correct token, but ignores the relative ordering between correct and incorrect tokens. Yet, relative ordering is crucial for language models, such as in greedy-sampling scenario. To address this limitation, we investigate scaling from the perspective of relative ordering. We first propose the Relative-Based Probability (RBP) metric, which quantifies the probability that the correct token is ranked among the top predictions. Building on this metric, we establish the Relative-Based Scaling Law, which characterizes how RBP improves with increasing model size. Through extensive experiments on four datasets and four model families spanning five orders of magnitude, we demonstrate the robustness and accuracy of this law. Finally, we illustrate the broad application of this law with two examples, namely providing a deeper explanation of emergence phenomena and facilitating finding fundamental theories of scaling laws. In summary, the Relative-Based Scaling Law complements the cross-entropy perspective and contributes to a more complete understanding of scaling large language models. Thus, it offers valuable insights for both practical development and theoretical exploration.
☆ VLSP 2025 MLQA-TSR Challenge: Vietnamese Multimodal Legal Question Answering on Traffic Sign Regulation SP 2025
This paper presents the VLSP 2025 MLQA-TSR - the multimodal legal question answering on traffic sign regulation shared task at VLSP 2025. VLSP 2025 MLQA-TSR comprises two subtasks: multimodal legal retrieval and multimodal question answering. The goal is to advance research on Vietnamese multimodal legal text processing and to provide a benchmark dataset for building and evaluating intelligent systems in multimodal legal domains, with a focus on traffic sign regulation in Vietnam. The best-reported results on VLSP 2025 MLQA-TSR are an F2 score of 64.55% for multimodal legal retrieval and an accuracy of 86.30% for multimodal question answering.
comment: VLSP 2025 MLQA-TSR Share Task
☆ IKnow: Instruction-Knowledge-Aware Continual Pretraining for Effective Domain Adaptation
Continual pretraining promises to adapt large language models (LLMs) to new domains using only unlabeled test-time data, but naively applying standard self-supervised objectives to instruction-tuned models is known to degrade their instruction-following capability and semantic representations. Existing fixes assume access to the original base model or rely on knowledge from an external domain-specific database - both of which pose a realistic barrier in settings where the base model weights are withheld for safety reasons or reliable external corpora are unavailable. In this work, we propose Instruction-Knowledge-Aware Continual Adaptation (IKnow), a simple and general framework that formulates novel self-supervised objectives in the instruction-response dialogue format. Rather than depend- ing on external resources, IKnow leverages domain knowledge embedded within the text itself and learns to encode it at a deeper semantic level.
☆ The Impact of Negated Text on Hallucination with Large Language Models EMNLP 2025
Recent studies on hallucination in large language models (LLMs) have been actively progressing in natural language processing. However, the impact of negated text on hallucination with LLMs remains largely unexplored. In this paper, we set three important yet unanswered research questions and aim to address them. To derive the answers, we investigate whether LLMs can recognize contextual shifts caused by negation and still reliably distinguish hallucinations comparable to affirmative cases. We also design the NegHalu dataset by reconstructing existing hallucination detection datasets with negated expressions. Our experiments demonstrate that LLMs struggle to detect hallucinations in negated text effectively, often producing logically inconsistent or unfaithful judgments. Moreover, we trace the internal state of LLMs as they process negated inputs at the token level and reveal the challenges of mitigating their unintended effects.
comment: Accepted to the EMNLP 2025
☆ Evaluating Latent Knowledge of Public Tabular Datasets in Large Language Models
Large Language Models (LLMs) are increasingly evaluated on their ability to reason over structured data, yet such assessments often overlook a crucial confound: dataset contamination. In this work, we investigate whether LLMs exhibit prior knowledge of widely used tabular benchmarks such as Adult Income, Titanic, and others. Through a series of controlled probing experiments, we reveal that contamination effects emerge exclusively for datasets containing strong semantic cues-for instance, meaningful column names or interpretable value categories. In contrast, when such cues are removed or randomized, performance sharply declines to near-random levels. These findings suggest that LLMs' apparent competence on tabular reasoning tasks may, in part, reflect memorization of publicly available datasets rather than genuine generalization. We discuss implications for evaluation protocols and propose strategies to disentangle semantic leakage from authentic reasoning ability in future LLM assessments.
☆ What do AI-Generated Images Want?
W.J.T. Mitchell's influential essay 'What do pictures want?' shifts the theoretical focus away from the interpretative act of understanding pictures and from the motivations of the humans who create them to the possibility that the picture itself is an entity with agency and wants. In this article, I reframe Mitchell's question in light of contemporary AI image generation tools to ask: what do AI-generated images want? Drawing from art historical discourse on the nature of abstraction, I argue that AI-generated images want specificity and concreteness because they are fundamentally abstract. Multimodal text-to-image models, which are the primary subject of this article, are based on the premise that text and image are interchangeable or exchangeable tokens and that there is a commensurability between them, at least as represented mathematically in data. The user pipeline that sees textual input become visual output, however, obscures this representational regress and makes it seem like one form transforms into the other -- as if by magic.
☆ LLM-empowered knowledge graph construction: A survey
Knowledge Graphs (KGs) have long served as a fundamental infrastructure for structured knowledge representation and reasoning. With the advent of Large Language Models (LLMs), the construction of KGs has entered a new paradigm-shifting from rule-based and statistical pipelines to language-driven and generative frameworks. This survey provides a comprehensive overview of recent progress in LLM-empowered knowledge graph construction, systematically analyzing how LLMs reshape the classical three-layered pipeline of ontology engineering, knowledge extraction, and knowledge fusion. We first revisit traditional KG methodologies to establish conceptual foundations, and then review emerging LLM-driven approaches from two complementary perspectives: schema-based paradigms, which emphasize structure, normalization, and consistency; and schema-free paradigms, which highlight flexibility, adaptability, and open discovery. Across each stage, we synthesize representative frameworks, analyze their technical mechanisms, and identify their limitations. Finally, the survey outlines key trends and future research directions, including KG-based reasoning for LLMs, dynamic knowledge memory for agentic systems, and multimodal KG construction. Through this systematic review, we aim to clarify the evolving interplay between LLMs and knowledge graphs, bridging symbolic knowledge engineering and neural semantic understanding toward the development of adaptive, explainable, and intelligent knowledge systems.
☆ Teaching Language Models to Reason with Tools NIPS2025
Large reasoning models (LRMs) like OpenAI-o1 have shown impressive capabilities in natural language reasoning. However, these models frequently demonstrate inefficiencies or inaccuracies when tackling complex mathematical operations. While integrating computational tools such as Code Interpreters (CIs) offers a promising solution, it introduces a critical challenge: a conflict between the model's internal, probabilistic reasoning and the external, deterministic knowledge provided by the CI, which often leads models to unproductive deliberation. To overcome this, we introduce CoRT (Code-Optimized Reasoning Training), a post-training framework designed to teach LRMs to effectively utilize CIs. We propose \emph{Hint-Engineering}, a new data synthesis strategy that strategically injects diverse hints at optimal points within reasoning paths. This approach generates high-quality, code-integrated reasoning data specifically tailored to optimize LRM-CI interaction. Using this method, we have synthesized 30 high-quality samples to post-train models ranging from 1.5B to 32B parameters through supervised fine-tuning. CoRT further refines the multi-round interleaving of external CI usage and internal thinking by employing rejection sampling and reinforcement learning. Our experimental evaluations demonstrate CoRT's effectiveness, yielding absolute improvements of 4\% and 8\% on DeepSeek-R1-Distill-Qwen-32B and DeepSeek-R1-Distill-Qwen-1.5B, respectively, across five challenging mathematical reasoning datasets. Moreover, CoRT significantly enhances efficiency, reducing token usage by approximately 30\% for the 32B model and 50\% for the 1.5B model compared to pure natural language reasoning baselines. The models and code are available at: https://github.com/ChengpengLi1003/CoRT.
comment: NIPS2025 Accepted
☆ Multi-Task Deep Learning for Surface Metrology
A reproducible deep learning framework is presented for surface metrology to predict surface texture parameters together with their reported standard uncertainties. Using a multi-instrument dataset spanning tactile and optical systems, measurement system type classification is addressed alongside coordinated regression of Ra, Rz, RONt and their uncertainty targets (Ra_uncert, Rz_uncert, RONt_uncert). Uncertainty is modelled via quantile and heteroscedastic heads with post-hoc conformal calibration to yield calibrated intervals. On a held-out set, high fidelity was achieved by single-target regressors (R2: Ra 0.9824, Rz 0.9847, RONt 0.9918), with two uncertainty targets also well modelled (Ra_uncert 0.9899, Rz_uncert 0.9955); RONt_uncert remained difficult (R2 0.4934). The classifier reached 92.85% accuracy and probability calibration was essentially unchanged after temperature scaling (ECE 0.00504 -> 0.00503 on the test split). Negative transfer was observed for naive multi-output trunks, with single-target models performing better. These results provide calibrated predictions suitable to inform instrument selection and acceptance decisions in metrological workflows.
comment: 34 pages, 10 figures, 6 tables; 60-page supplementary appendix. Code and full reproducibility bundle available via Zenodo
☆ Collateral Damage Assessment Model for AI System Target Engagement in Military Operations
In an era where AI (Artificial Intelligence) systems play an increasing role in the battlefield, ensuring responsible targeting demands rigorous assessment of potential collateral effects. In this context, a novel collateral damage assessment model for target engagement of AI systems in military operations is introduced. The model integrates temporal, spatial, and force dimensions within a unified Knowledge Representation and Reasoning (KRR) architecture following a design science methodological approach. Its layered structure captures the categories and architectural components of the AI systems to be engaged together with corresponding engaging vectors and contextual aspects. At the same time, spreading, severity, likelihood, and evaluation metrics are considered in order to provide a clear representation enhanced by transparent reasoning mechanisms. Further, the model is demonstrated and evaluated through instantiation which serves as a basis for further dedicated efforts that aim at building responsible and trustworthy intelligent systems for assessing the effects produced by engaging AI systems in military operations.
comment: Accepted at MILCOM 2025 WS07
☆ GhostEI-Bench: Do Mobile Agents Resilience to Environmental Injection in Dynamic On-Device Environments?
Vision-Language Models (VLMs) are increasingly deployed as autonomous agents to navigate mobile graphical user interfaces (GUIs). Operating in dynamic on-device ecosystems, which include notifications, pop-ups, and inter-app interactions, exposes them to a unique and underexplored threat vector: environmental injection. Unlike prompt-based attacks that manipulate textual instructions, environmental injection corrupts an agent's visual perception by inserting adversarial UI elements (for example, deceptive overlays or spoofed notifications) directly into the GUI. This bypasses textual safeguards and can derail execution, causing privacy leakage, financial loss, or irreversible device compromise. To systematically evaluate this threat, we introduce GhostEI-Bench, the first benchmark for assessing mobile agents under environmental injection attacks within dynamic, executable environments. Moving beyond static image-based assessments, GhostEI-Bench injects adversarial events into realistic application workflows inside fully operational Android emulators and evaluates performance across critical risk scenarios. We further propose a judge-LLM protocol that conducts fine-grained failure analysis by reviewing the agent's action trajectory alongside the corresponding screenshot sequence, pinpointing failure in perception, recognition, or reasoning. Comprehensive experiments on state-of-the-art agents reveal pronounced vulnerability to deceptive environmental cues: current models systematically fail to perceive and reason about manipulated UIs. GhostEI-Bench provides a framework for quantifying and mitigating this emerging threat, paving the way toward more robust and secure embodied agents.
☆ Bias by Design? How Data Practices Shape Fairness in AI Healthcare Systems
Artificial intelligence (AI) holds great promise for transforming healthcare. However, despite significant advances, the integration of AI solutions into real-world clinical practice remains limited. A major barrier is the quality and fairness of training data, which is often compromised by biased data collection practices. This paper draws on insights from the AI4HealthyAging project, part of Spain's national R&D initiative, where our task was to detect biases during clinical data collection. We identify several types of bias across multiple use cases, including historical, representation, and measurement biases. These biases manifest in variables such as sex, gender, age, habitat, socioeconomic status, equipment, and labeling. We conclude with practical recommendations for improving the fairness and robustness of clinical problem design and data collection. We hope that our findings and experience contribute to guiding future projects in the development of fairer AI systems in healthcare.
comment: 8 pages, 3 tables, accepted in AEQUITAS 2025 (not in proceedings)
☆ MemER: Scaling Up Memory for Robot Control via Experience Retrieval
Humans routinely rely on memory to perform tasks, yet most robot policies lack this capability; our goal is to endow robot policies with the same ability. Naively conditioning on long observation histories is computationally expensive and brittle under covariate shift, while indiscriminate subsampling of history leads to irrelevant or redundant information. We propose a hierarchical policy framework, where the high-level policy is trained to select and track previous relevant keyframes from its experience. The high-level policy uses selected keyframes and the most recent frames when generating text instructions for a low-level policy to execute. This design is compatible with existing vision-language-action (VLA) models and enables the system to efficiently reason over long-horizon dependencies. In our experiments, we finetune Qwen2.5-VL-7B-Instruct and $\pi_{0.5}$ as the high-level and low-level policies respectively, using demonstrations supplemented with minimal language annotations. Our approach, MemER, outperforms prior methods on three real-world long-horizon robotic manipulation tasks that require minutes of memory. Videos and code can be found at https://jen-pan.github.io/memer/.
comment: Project page: https://jen-pan.github.io/memer/
☆ LEGO: A Lightweight and Efficient Multiple-Attribute Unlearning Framework for Recommender Systems
With the growing demand for safeguarding sensitive user information in recommender systems, recommendation attribute unlearning is receiving increasing attention. Existing studies predominantly focus on single-attribute unlearning. However, privacy protection requirements in the real world often involve multiple sensitive attributes and are dynamic. Existing single-attribute unlearning methods cannot meet these real-world requirements due to i) CH1: the inability to handle multiple unlearning requests simultaneously, and ii) CH2: the lack of efficient adaptability to dynamic unlearning needs. To address these challenges, we propose LEGO, a lightweight and efficient multiple-attribute unlearning framework. Specifically, we divide the multiple-attribute unlearning process into two steps: i) Embedding Calibration removes information related to a specific attribute from user embedding, and ii) Flexible Combination combines these embeddings into a single embedding, protecting all sensitive attributes. We frame the unlearning process as a mutual information minimization problem, providing LEGO a theoretical guarantee of simultaneous unlearning, thereby addressing CH1. With the two-step framework, where Embedding Calibration can be performed in parallel and Flexible Combination is flexible and efficient, we address CH2. Extensive experiments on three real-world datasets across three representative recommendation models demonstrate the effectiveness and efficiency of our proposed framework. Our code and appendix are available at https://github.com/anonymifish/lego-rec-multiple-attribute-unlearning.
comment: Accepted by ACM Multimedia 2025
☆ Enhancing Security in Deep Reinforcement Learning: A Comprehensive Survey on Adversarial Attacks and Defenses
With the wide application of deep reinforcement learning (DRL) techniques in complex fields such as autonomous driving, intelligent manufacturing, and smart healthcare, how to improve its security and robustness in dynamic and changeable environments has become a core issue in current research. Especially in the face of adversarial attacks, DRL may suffer serious performance degradation or even make potentially dangerous decisions, so it is crucial to ensure their stability in security-sensitive scenarios. In this paper, we first introduce the basic framework of DRL and analyze the main security challenges faced in complex and changing environments. In addition, this paper proposes an adversarial attack classification framework based on perturbation type and attack target and reviews the mainstream adversarial attack methods against DRL in detail, including various attack methods such as perturbation state space, action space, reward function and model space. To effectively counter the attacks, this paper systematically summarizes various current robustness training strategies, including adversarial training, competitive training, robust learning, adversarial detection, defense distillation and other related defense techniques, we also discuss the advantages and shortcomings of these methods in improving the robustness of DRL. Finally, this paper looks into the future research direction of DRL in adversarial environments, emphasizing the research needs in terms of improving generalization, reducing computational complexity, and enhancing scalability and explainability, aiming to provide valuable references and directions for researchers.
☆ Multi-Step Reasoning for Embodied Question Answering via Tool Augmentation
Embodied Question Answering (EQA) requires agents to explore 3D environments to obtain observations and answer questions related to the scene. Existing methods leverage VLMs to directly explore the environment and answer questions without explicit thinking or planning, which limits their reasoning ability and results in excessive or inefficient exploration as well as ineffective responses. In this paper, we introduce ToolEQA, an agent that integrates external tools with multi-step reasoning, where external tools can provide more useful information for completing the task, helping the model derive better exploration directions in the next step of reasoning and thus obtaining additional effective information. This enables ToolEQA to generate more accurate responses with a shorter exploration distance. To enhance the model's ability for tool-usage and multi-step reasoning, we further design a novel EQA data generation pipeline that automatically constructs large-scale EQA tasks with reasoning trajectories and corresponding answers. Based on the pipeline, we collect the EQA-RT dataset that contains about 18K tasks, divided into a training set EQA-RT-Train, and two test sets EQA-RT-Seen (scenes overlapping with the training set) and EQA-RT-Unseen (novel scenes). Experiments on EQA-RT-Seen and EQA-RT-Unseen show that ToolEQA improves the success rate by 9.2~20.2% over state-of-the-art baselines, while outperforming the zero-shot ToolEQA by 10% in success rate. In addition, ToolEQA also achieves state-of-the-art performance on the HM-EQA, OpenEQA, and EXPRESS-Bench datasets, demonstrating its generality. Our homepage see https://tooleqa.github.io.
comment: 16 pages, 7 figures, 8 tables
☆ DB-FGA-Net: Dual Backbone Frequency Gated Attention Network for Multi-Class Classification with Grad-CAM Interpretability
Brain tumors are a challenging problem in neuro-oncology, where early and precise diagnosis is important for successful treatment. Deep learning-based brain tumor classification methods often rely on heavy data augmentation which can limit generalization and trust in clinical applications. In this paper, we propose a double-backbone network integrating VGG16 and Xception with a Frequency-Gated Attention (FGA) Block to capture complementary local and global features. Unlike previous studies, our model achieves state-of-the-art performance without augmentation which demonstrates robustness to variably sized and distributed datasets. For further transparency, Grad-CAM is integrated to visualize the tumor regions based on which the model is giving prediction, bridging the gap between model prediction and clinical interpretability. The proposed framework achieves 99.24\% accuracy on the 7K-DS dataset for the 4-class setting, along with 98.68\% and 99.85\% in the 3-class and 2-class settings, respectively. On the independent 3K-DS dataset, the model generalizes with 95.77\% accuracy, outperforming baseline and state-of-the-art methods. To further support clinical usability, we developed a graphical user interface (GUI) that provides real-time classification and Grad-CAM-based tumor localization. These findings suggest that augmentation-free, interpretable, and deployable deep learning models such as DB-FGA-Net hold strong potential for reliable clinical translation in brain tumor diagnosis.
comment: 25 pages, 14 figures, 12 tables
☆ RAG-Stack: Co-Optimizing RAG Quality and Performance From the Vector Database Perspective
Retrieval-augmented generation (RAG) has emerged as one of the most prominent applications of vector databases. By integrating documents retrieved from a database into the prompt of a large language model (LLM), RAG enables more reliable and informative content generation. While there has been extensive research on vector databases, many open research problems remain once they are considered in the wider context of end-to-end RAG pipelines. One practical yet challenging problem is how to jointly optimize both system performance and generation quality in RAG, which is significantly more complex than it appears due to the numerous knobs on both the algorithmic side (spanning models and databases) and the systems side (from software to hardware). In this paper, we present RAG-Stack, a three-pillar blueprint for quality-performance co-optimization in RAG systems. RAG-Stack comprises: (1) RAG-IR, an intermediate representation that serves as an abstraction layer to decouple quality and performance aspects; (2) RAG-CM, a cost model for estimating system performance given an RAG-IR; and (3) RAG-PE, a plan exploration algorithm that searches for high-quality, high-performance RAG configurations. We believe this three-pillar blueprint will become the de facto paradigm for RAG quality-performance co-optimization in the years to come.
☆ A Parameter-Efficient Mixture-of-Experts Framework for Cross-Modal Geo-Localization
We present a winning solution to RoboSense 2025 Track 4: Cross-Modal Drone Navigation. The task retrieves the most relevant geo-referenced image from a large multi-platform corpus (satellite/drone/ground) given a natural-language query. Two obstacles are severe inter-platform heterogeneity and a domain gap between generic training descriptions and platform-specific test queries. We mitigate these with a domain-aligned preprocessing pipeline and a Mixture-of-Experts (MoE) framework: (i) platform-wise partitioning, satellite augmentation, and removal of orientation words; (ii) an LLM-based caption refinement pipeline to align textual semantics with the distinct visual characteristics of each platform. Using BGE-M3 (text) and EVA-CLIP (image), we train three platform experts using a progressive two-stage, hard-negative mining strategy to enhance discriminative power, and fuse their scores at inference. The system tops the official leaderboard, demonstrating robust cross-modal geo-localization under heterogeneous viewpoints.
☆ Breakdance Video classification in the age of Generative AI
Large Vision Language models have seen huge application in several sports use-cases recently. Most of these works have been targeted towards a limited subset of popular sports like soccer, cricket, basketball etc; focusing on generative tasks like visual question answering, highlight generation. This work analyzes the applicability of the modern video foundation models (both encoder and decoder) for a very niche but hugely popular dance sports - breakdance. Our results show that Video Encoder models continue to outperform state-of-the-art Video Language Models for prediction tasks. We provide insights on how to choose the encoder model and provide a thorough analysis into the workings of a finetuned decoder model for breakdance video classification.
comment: 11 pages
☆ UI-Ins: Enhancing GUI Grounding with Multi-Perspective Instruction-as-Reasoning
GUI grounding, which maps natural-language instructions to actionable UI elements, is a core capability of GUI agents. Prior works largely treats instructions as a static proxy for user intent, overlooking the impact of instruction diversity and quality on grounding performance. Through a careful investigation of existing grounding datasets, we find a 23.3% flaw rate in their instructions and show that inference-time exploitation of instruction diversity yields up to a substantial 76% relative performance improvement. In this paper, we introduce the Instruction-as-Reasoning paradigm, treating instructions as dynamic analytical pathways that offer distinct perspectives and enabling the model to select the most effective pathway during reasoning. To achieve this, we propose a two-stage training framework: supervised fine-tuning (SFT) on synthesized, diverse instructions to instill multi-perspective reasoning, followed by reinforcement learning (RL) to optimize pathway selection and composition. Our resulting models, UI-Ins-7B and UI-Ins-32B, achieve state-of-the-art results on five challenging grounding benchmarks and exhibit emergent reasoning, selectively composing and synthesizing novel instruction pathways at inference. In particular, UI-Ins-32B attains the best grounding accuracy, scoring 87.3% on UI-I2E-Bench, 57.0% on ScreenSpot-Pro, and 84.9% on MMBench-GUI L2. Furthermore, our model demonstrates strong agentic potential, achieving a 74.1% success rate on AndroidWorld using UI-Ins-7B as the executor. Our in-depth analysis reveals additional insights such as how reasoning can be formulated to enhance rather than hinder grounding performance, and how our method mitigates policy collapse in the SFT+RL framework. All code and model checkpoints will be publicly released in https://github.com/alibaba/UI-Ins.
☆ Context-level Language Modeling by Learning Predictive Context Embeddings
Next-token prediction (NTP) is the cornerstone of modern large language models (LLMs) pretraining, driving their unprecedented capabilities in text generation, reasoning, and instruction following. However, the token-level prediction limits the model's capacity to capture higher-level semantic structures and long-range contextual relationships. To overcome this limitation, we introduce \textbf{ContextLM}, a framework that augments standard pretraining with an inherent \textbf{next-context prediction} objective. This mechanism trains the model to learn predictive representations of multi-token contexts, leveraging error signals derived from future token chunks. Crucially, ContextLM achieves this enhancement while remaining fully compatible with the standard autoregressive, token-by-token evaluation paradigm (e.g., perplexity). Extensive experiments on the GPT2 and Pythia model families, scaled up to $1.5$B parameters, show that ContextLM delivers consistent improvements in both perplexity and downstream task performance. Our analysis indicates that next-context prediction provides a scalable and efficient pathway to stronger language modeling, yielding better long-range coherence and more effective attention allocation with minimal computational overhead.
comment: 16pages,6 figures
☆ Classical Feature Embeddings Help in BERT-Based Human Mobility Prediction SP
Human mobility forecasting is crucial for disaster relief, city planning, and public health. However, existing models either only model location sequences or include time information merely as auxiliary input, thereby failing to leverage the rich semantic context provided by points of interest (POIs). To address this, we enrich a BERT-based mobility model with derived temporal descriptors and POI embeddings to better capture the semantics underlying human movement. We propose STaBERT (Semantic-Temporal aware BERT), which integrates both POI and temporal information at each location to construct a unified, semantically enriched representation of mobility. Experimental results show that STaBERT significantly improves prediction accuracy: for single-city prediction, the GEO-BLEU score improved from 0.34 to 0.75; for multi-city prediction, from 0.34 to 0.56.
comment: This paper has been accepted by ACM SIGSPATIAL 2025 as a short paper
☆ Limits of PRM-Guided Tree Search for Mathematical Reasoning with LLMs
While chain-of-thought prompting with Best-of-N (BoN) selection has become popular for mathematical reasoning in large language models (LLMs), its linear structure fails to capture the branching and exploratory nature of complex problem-solving. In this work, we propose an adaptive algorithm to maximize process reward model (PRM) scores over the intractable action space, and investigate whether PRM-guided tree search can improve mathematical reasoning by exploring multiple partial solution paths. Across $23$ diverse mathematical problems using Qwen2.5-Math-7B-Instruct with its associated PRM as a case study, we find that: (1) PRM-guided tree search shows no statistically significant improvements over BoN despite higher costs, (2) Monte Carlo tree search and beam search outperform other PRM-guided tree search methods, (3) PRMs poorly approximate state values and their reliability degrades with reasoning depth, and (4) PRMs generalize poorly out of distribution. This underperformance stems from tree search's greater reliance on unreliable PRM scores, suggesting different reward modeling is necessary before tree search can effectively enhance mathematical reasoning in LLMs.
☆ Using Large Language Models for Abstraction of Planning Domains - Extended Version
Generating an abstraction of a dynamic domain that aligns with a given purpose remains a significant challenge given that the choice of such an abstraction can impact an agent's ability to plan, reason, and provide explanations effectively. We model the agent's concrete behaviors in PDDL and investigate the use of in-context learning with large language models (LLMs) for the generation of abstract PDDL domains and problem instances, given an abstraction objective specified in natural language. The benchmark examples we use are new and have not been part of the data any LLMs have been trained on. We consider three categories of abstractions: abstraction of choice of alternative concrete actions, abstraction of sequences of concrete actions, and abstraction of action/predicate parameters, as well as combinations of these. The generated abstract PDDL domains and problem instances are then checked by symbolic validation tools as well as human experts. Our experiments show that GPT-4o can generally synthesize useful planning domain abstractions in simple settings, although it is better at abstracting over actions than over the associated fluents.
☆ Towards AI Agents for Course Instruction in Higher Education: Early Experiences from the Field
This article presents early findings from designing, deploying and evaluating an AI-based educational agent deployed as the primary instructor in a graduate-level Cloud Computing course at IISc. We detail the design of a Large Language Model (LLM)-driven Instructor Agent, and introduce a pedagogical framework that integrates the Instructor Agent into the course workflow for actively interacting with the students for content delivery, supplemented by the human instructor to offer the course structure and undertake question--answer sessions. We also propose an analytical framework that evaluates the Agent--Student interaction transcripts using interpretable engagement metrics of topic coverage, topic depth and turn-level elaboration. We report early experiences on how students interact with the Agent to explore concepts, clarify doubts and sustain inquiry-driven dialogue during live classroom sessions. We also report preliminary analysis on our evaluation metrics applied across two successive instructional modules that reveals patterns of engagement evolution, transitioning from broad conceptual exploration to deeper, focused inquiry. These demonstrate how structured integration of conversational AI agents can foster reflective learning, offer a reproducible methodology for studying engagement in authentic classroom settings, and support scalable, high-quality higher education.
☆ Individualized Cognitive Simulation in Large Language Models: Evaluating Different Cognitive Representation Methods
Individualized cognitive simulation (ICS) aims to build computational models that approximate the thought processes of specific individuals. While large language models (LLMs) convincingly mimic surface-level human behavior such as role-play, their ability to simulate deeper individualized cognitive processes remains poorly understood. To address this gap, we introduce a novel task that evaluates different cognitive representation methods in ICS. We construct a dataset from recently published novels (later than the release date of the tested LLMs) and propose an 11-condition cognitive evaluation framework to benchmark seven off-the-shelf LLMs in the context of authorial style emulation. We hypothesize that effective cognitive representations can help LLMs generate storytelling that better mirrors the original author. Thus, we test different cognitive representations, e.g., linguistic features, concept mappings, and profile-based information. Results show that combining conceptual and linguistic features is particularly effective in ICS, outperforming static profile-based cues in overall evaluation. Importantly, LLMs are more effective at mimicking linguistic style than narrative structure, underscoring their limits in deeper cognitive simulation. These findings provide a foundation for developing AI systems that adapt to individual ways of thinking and expression, advancing more personalized and human-aligned creative technologies.
☆ What Does It Take to Build a Performant Selective Classifier? NeurIPS 2025
Selective classifiers improve model reliability by abstaining on inputs the model deems uncertain. However, few practical approaches achieve the gold-standard performance of a perfect-ordering oracle that accepts examples exactly in order of correctness. Our work formalizes this shortfall as the selective-classification gap and present the first finite-sample decomposition of this gap to five distinct sources of looseness: Bayes noise, approximation error, ranking error, statistical noise, and implementation- or shift-induced slack. Crucially, our analysis reveals that monotone post-hoc calibration -- often believed to strengthen selective classifiers -- has limited impact on closing this gap, since it rarely alters the model's underlying score ranking. Bridging the gap therefore requires scoring mechanisms that can effectively reorder predictions rather than merely rescale them. We validate our decomposition on synthetic two-moons data and on real-world vision and language benchmarks, isolating each error component through controlled experiments. Our results confirm that (i) Bayes noise and limited model capacity can account for substantial gaps, (ii) only richer, feature-aware calibrators meaningfully improve score ordering, and (iii) data shift introduces a separate slack that demands distributionally robust training. Together, our decomposition yields a quantitative error budget as well as actionable design guidelines that practitioners can use to build selective classifiers which approximate ideal oracle behavior more closely.
comment: 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
☆ Tri-Modal Severity Fused Diagnosis across Depression and Post-traumatic Stress Disorders
Depression and post traumatic stress disorder (PTSD) often co-occur with connected symptoms, complicating automated assessment, which is often binary and disorder specific. Clinically useful diagnosis needs severity aware cross disorder estimates and decision support explanations. Our unified tri modal affective severity framework synchronizes and fuses interview text with sentence level transformer embeddings, audio with log Mel statistics with deltas, and facial signals with action units, gaze, head and pose descriptors to output graded severities for diagnosing both depression (PHQ-8; 5 classes) and PTSD (3 classes). Standardized features are fused via a calibrated late fusion classifier, yielding per disorder probabilities and feature-level attributions. This severity aware tri-modal affective fusion approach is demoed on multi disorder concurrent depression and PTSD assessment. Stratified cross validation on DAIC derived corpora outperforms unimodal/ablation baselines. The fused model matches the strongest unimodal baseline on accuracy and weighted F1, while improving decision curve utility and robustness under noisy or missing modalities. For PTSD specifically, fusion reduces regression error and improves class concordance. Errors cluster between adjacent severities; extreme classes are identified reliably. Ablations show text contributes most to depression severity, audio and facial cues are critical for PTSD, whereas attributions align with linguistic and behavioral markers. Our approach offers reproducible evaluation and clinician in the loop support for affective clinical decision making.
☆ Multi-Objective Reinforcement Learning with Max-Min Criterion: A Game-Theoretic Approach NeurIPS 2025
In this paper, we propose a provably convergent and practical framework for multi-objective reinforcement learning with max-min criterion. From a game-theoretic perspective, we reformulate max-min multi-objective reinforcement learning as a two-player zero-sum regularized continuous game and introduce an efficient algorithm based on mirror descent. Our approach simplifies the policy update while ensuring global last-iterate convergence. We provide a comprehensive theoretical analysis on our algorithm, including iteration complexity under both exact and approximate policy evaluations, as well as sample complexity bounds. To further enhance performance, we modify the proposed algorithm with adaptive regularization. Our experiments demonstrate the convergence behavior of the proposed algorithm in tabular settings, and our implementation for deep reinforcement learning significantly outperforms previous baselines in many MORL environments.
comment: Accepted to NeurIPS 2025
☆ Why LVLMs Are More Prone to Hallucinations in Longer Responses: The Role of Context
Large Vision-Language Models (LVLMs) have made significant progress in recent years but are also prone to hallucination issues. They exhibit more hallucinations in longer, free-form responses, often attributed to accumulated uncertainties. In this paper, we ask: Does increased hallucination result solely from length-induced errors, or is there a deeper underlying mechanism? After a series of preliminary experiments and findings, we suggest that the risk of hallucinations is not caused by length itself but by the increased reliance on context for coherence and completeness in longer responses. Building on these insights, we propose a novel "induce-detect-suppress" framework that actively induces hallucinations through deliberately designed contexts, leverages induced instances for early detection of high-risk cases, and ultimately suppresses potential object-level hallucinations during actual decoding. Our approach achieves consistent, significant improvements across all benchmarks, demonstrating its efficacy. The strong detection and improved hallucination mitigation not only validate our framework but, more importantly, re-validate our hypothesis on context. Rather than solely pursuing performance gains, this study aims to provide new insights and serves as a first step toward a deeper exploration of hallucinations in LVLMs' longer responses.
☆ Federated Learning via Meta-Variational Dropout NeurIPS
Federated Learning (FL) aims to train a global inference model from remotely distributed clients, gaining popularity due to its benefit of improving data privacy. However, traditional FL often faces challenges in practical applications, including model overfitting and divergent local models due to limited and non-IID data among clients. To address these issues, we introduce a novel Bayesian meta-learning approach called meta-variational dropout (MetaVD). MetaVD learns to predict client-dependent dropout rates via a shared hypernetwork, enabling effective model personalization of FL algorithms in limited non-IID data settings. We also emphasize the posterior adaptation view of meta-learning and the posterior aggregation view of Bayesian FL via the conditional dropout posterior. We conducted extensive experiments on various sparse and non-IID FL datasets. MetaVD demonstrated excellent classification accuracy and uncertainty calibration performance, especially for out-of-distribution (OOD) clients. MetaVD compresses the local model parameters needed for each client, mitigating model overfitting and reducing communication costs. Code is available at https://github.com/insujeon/MetaVD.
comment: Published in the Proceedings of the Advances in Neural Information Processing Systems (NeurIPS) 2023, Main Conference Track
☆ FinCARE: Financial Causal Analysis with Reasoning and Evidence
Portfolio managers rely on correlation-based analysis and heuristic methods that fail to capture true causal relationships driving performance. We present a hybrid framework that integrates statistical causal discovery algorithms with domain knowledge from two complementary sources: a financial knowledge graph extracted from SEC 10-K filings and large language model reasoning. Our approach systematically enhances three representative causal discovery paradigms, constraint-based (PC), score-based (GES), and continuous optimization (NOTEARS), by encoding knowledge graph constraints algorithmically and leveraging LLM conceptual reasoning for hypothesis generation. Evaluated on a synthetic financial dataset of 500 firms across 18 variables, our KG+LLM-enhanced methods demonstrate consistent improvements across all three algorithms: PC (F1: 0.622 vs. 0.459 baseline, +36%), GES (F1: 0.735 vs. 0.367, +100%), and NOTEARS (F1: 0.759 vs. 0.163, +366%). The framework enables reliable scenario analysis with mean absolute error of 0.003610 for counterfactual predictions and perfect directional accuracy for intervention effects. It also addresses critical limitations of existing methods by grounding statistical discoveries in financial domain expertise while maintaining empirical validation, providing portfolio managers with the causal foundation necessary for proactive risk management and strategic decision-making in dynamic market environments.
☆ High-order Interactions Modeling for Interpretable Multi-Agent Q-Learning
The ability to model interactions among agents is crucial for effective coordination and understanding their cooperation mechanisms in multi-agent reinforcement learning (MARL). However, previous efforts to model high-order interactions have been primarily hindered by the combinatorial explosion or the opaque nature of their black-box network structures. In this paper, we propose a novel value decomposition framework, called Continued Fraction Q-Learning (QCoFr), which can flexibly capture arbitrary-order agent interactions with only linear complexity $\mathcal{O}\left({n}\right)$ in the number of agents, thus avoiding the combinatorial explosion when modeling rich cooperation. Furthermore, we introduce the variational information bottleneck to extract latent information for estimating credits. This latent information helps agents filter out noisy interactions, thereby significantly enhancing both cooperation and interpretability. Extensive experiments demonstrate that QCoFr not only consistently achieves better performance but also provides interpretability that aligns with our theoretical analysis.
comment: 39th Conference on Neural Information Processing Systems
☆ Automated Cloud Infrastructure-as-Code Reconciliation with AI Agents
Cloud infrastructure is managed through a mix of interfaces -- traditionally, cloud consoles, command-line interfaces (CLI), and SDKs are the tools of choice. Recently, Infrastructure-as-Code/IaC frameworks (e.g., Terraform) have quickly gained popularity. Unlike conventional tools, IaC~frameworks encode the infrastructure in a "source-of-truth" configuration. They are capable of automatically carrying out modifications to the cloud -- deploying, updating, or destroying resources -- to bring the actual infrastructure into alignment with the IaC configuration. However, when IaC is used alongside consoles, CLIs, or SDKs, it loses visibility into external changes, causing infrastructure drift, where the configuration becomes outdated, and later IaC operations may undo valid updates or trigger errors. We present NSync, an automated system for IaC reconciliation that propagates out-of-band changes back into the IaC program. Our key insight is that infrastructure changes eventually all occur via cloud API invocations -- the lowest layer for cloud management operations. NSync gleans insights from API traces to detect drift (i.e., non-IaC changes) and reconcile it (i.e., update the IaC configuration to capture the changes). It employs an agentic architecture that leverages LLMs to infer high-level intents from noisy API sequences, synthesize targeted IaC updates using specialized tools, and continually improve through a self-evolving knowledge base of past reconciliations. We further introduce a novel evaluation pipeline for injecting realistic drifts into cloud infrastructure and assessing reconciliation performance. Experiments across five real-world Terraform projects and 372 drift scenarios show that NSync outperforms the baseline both in terms of accuracy (from 0.71 to 0.97 pass@3) and token efficiency (1.47$\times$ improvement).
☆ Assessing the Feasibility of Early Cancer Detection Using Routine Laboratory Data: An Evaluation of Machine Learning Approaches on an Imbalanced Dataset
The development of accessible screening tools for early cancer detection in dogs represents a significant challenge in veterinary medicine. Routine laboratory data offer a promising, low-cost source for such tools, but their utility is hampered by the non-specificity of individual biomarkers and the severe class imbalance inherent in screening populations. This study assesses the feasibility of cancer risk classification using the Golden Retriever Lifetime Study (GRLS) cohort under real-world constraints, including the grouping of diverse cancer types and the inclusion of post-diagnosis samples. A comprehensive benchmark evaluation was conducted, systematically comparing 126 analytical pipelines that comprised various machine learning models, feature selection methods, and data balancing techniques. Data were partitioned at the patient level to prevent leakage. The optimal model, a Logistic Regression classifier with class weighting and recursive feature elimination, demonstrated moderate ranking ability (AUROC = 0.815; 95% CI: 0.793-0.836) but poor clinical classification performance (F1-score = 0.25, Positive Predictive Value = 0.15). While a high Negative Predictive Value (0.98) was achieved, insufficient recall (0.79) precludes its use as a reliable rule-out test. Interpretability analysis with SHapley Additive exPlanations (SHAP) revealed that predictions were driven by non-specific features like age and markers of inflammation and anemia. It is concluded that while a statistically detectable cancer signal exists in routine lab data, it is too weak and confounded for clinically reliable discrimination from normal aging or other inflammatory conditions. This work establishes a critical performance ceiling for this data modality in isolation and underscores that meaningful progress in computational veterinary oncology will require integration of multi-modal data sources.
☆ Merge and Conquer: Evolutionarily Optimizing AI for 2048
Optimizing artificial intelligence (AI) for dynamic environments remains a fundamental challenge in machine learning research. In this paper, we examine evolutionary training methods for optimizing AI to solve the game 2048, a 2D sliding puzzle. 2048, with its mix of strategic gameplay and stochastic elements, presents an ideal playground for studying decision-making, long-term planning, and dynamic adaptation. We implemented two distinct systems: a two-agent metaprompting system where a "thinker" large language model (LLM) agent refines gameplay strategies for an "executor" LLM agent, and a single-agent system based on refining a value function for a limited Monte Carlo Tree Search. We also experimented with rollback features to avoid performance degradation. Our results demonstrate the potential of evolutionary refinement techniques in improving AI performance in non-deterministic environments. The single-agent system achieved substantial improvements, with an average increase of 473.2 points per cycle, and with clear upward trends (correlation $\rho$=0.607) across training cycles. The LLM's understanding of the game grew as well, shown in its development of increasingly advanced strategies. Conversely, the two-agent system did not garner much improvement, highlighting the inherent limits of meta-prompting.
comment: 9 pages, 5 figures
☆ Stuck in the Matrix: Probing Spatial Reasoning in Large Language Models
This paper explores the spatial reasoning capability of large language models (LLMs) over textual input through a suite of five tasks aimed at probing their spatial understanding and computational abilities. The models were tested on both fundamental spatial reasoning and multi-step problem-solving within structured grid-based environments using tasks such as quadrant identification, geometric transformations, distance evaluation, word searches, and tile sliding. Each task was scaled in complexity through increasing grid dimensions, requiring models to extend beyond simple pattern recognition into abstract spatial reasoning. Our results reveal that while LLMs demonstrate moderate success in all tasks with small complexity and size, performance drops off rapidly as scale increases, with an average loss in accuracy of 42.7%, and reaching as high as 84%. Every test that began with over 50% accuracy showed a loss of at least 48%, illustrating the consistent nature of the deterioration. Furthermore, their struggles with scaling complexity hint at a lack of robust spatial representations in their underlying architectures. This paper underscores the gap between linguistic and spatial reasoning in LLMs, offering insights into their current limitations, and laying the groundwork for future integrative benchmarks at the intersection of language and geometry.
comment: 20 pages, 24 figures
☆ The Lock-In Phase Hypothesis: Identity Consolidation as a Precursor to AGI
Large language models (LLMs) remain broadly open and highly steerable: they imitate at scale, accept arbitrary system prompts, and readily adopt multiple personae. By analogy to human development, we hypothesize that progress toward artificial general intelligence (AGI) involves a lock-in phase: a transition from open imitation to identity consolidation, in which goal structures, refusals, preferences, and internal representations become comparatively stable and resistant to external steering. We formalize this phase, link it to known phenomena in learning dynamics, and propose operational metrics for onset detection. Experimentally, we demonstrate that while the behavioral consolidation is rapid and non-linear, its side-effects on general capabilities are not monolithic. Our results reveal a spectrum of outcomes--from performance trade-offs in small models, through largely cost-free adoption in mid-scale models, to transient instabilities in large, quantized models. We argue that such consolidation is a prerequisite for AGI-level reliability and also a critical control point for safety: identities can be deliberately engineered for reliability, yet may also emerge spontaneously during scaling, potentially hardening unpredictable goals and behaviors.
☆ TRUST: A Decentralized Framework for Auditing Large Language Model Reasoning
Large Language Models generate complex reasoning chains that reveal their decision-making, yet verifying the faithfulness and harmlessness of these intermediate steps remains a critical unsolved problem. Existing auditing methods are centralized, opaque, and hard to scale, creating significant risks for deploying proprietary models in high-stakes domains. We identify four core challenges: (1) Robustness: Centralized auditors are single points of failure, prone to bias or attacks. (2) Scalability: Reasoning traces are too long for manual verification. (3) Opacity: Closed auditing undermines public trust. (4) Privacy: Exposing full reasoning risks model theft or distillation. We propose TRUST, a transparent, decentralized auditing framework that overcomes these limitations via: (1) A consensus mechanism among diverse auditors, guaranteeing correctness under up to $30\%$ malicious participants. (2) A hierarchical DAG decomposition of reasoning traces, enabling scalable, parallel auditing. (3) A blockchain ledger that records all verification decisions for public accountability. (4) Privacy-preserving segmentation, sharing only partial reasoning steps to protect proprietary logic. We provide theoretical guarantees for the security and economic incentives of the TRUST framework. Experiments across multiple LLMs (GPT-OSS, DeepSeek-r1, Qwen) and reasoning tasks (math, medical, science, humanities) show TRUST effectively detects reasoning flaws and remains robust against adversarial auditors. Our work pioneers decentralized AI auditing, offering a practical path toward safe and trustworthy LLM deployment.
☆ PPMStereo: Pick-and-Play Memory Construction for Consistent Dynamic Stereo Matching
Temporally consistent depth estimation from stereo video is critical for real-world applications such as augmented reality, where inconsistent depth estimation disrupts the immersion of users. Despite its importance, this task remains challenging due to the difficulty in modeling long-term temporal consistency in a computationally efficient manner. Previous methods attempt to address this by aggregating spatio-temporal information but face a fundamental trade-off: limited temporal modeling provides only modest gains, whereas capturing long-range dependencies significantly increases computational cost. To address this limitation, we introduce a memory buffer for modeling long-range spatio-temporal consistency while achieving efficient dynamic stereo matching. Inspired by the two-stage decision-making process in humans, we propose a \textbf{P}ick-and-\textbf{P}lay \textbf{M}emory (PPM) construction module for dynamic \textbf{Stereo} matching, dubbed as \textbf{PPMStereo}. PPM consists of a `pick' process that identifies the most relevant frames and a `play' process that weights the selected frames adaptively for spatio-temporal aggregation. This two-stage collaborative process maintains a compact yet highly informative memory buffer while achieving temporally consistent information aggregation. Extensive experiments validate the effectiveness of PPMStereo, demonstrating state-of-the-art performance in both accuracy and temporal consistency. % Notably, PPMStereo achieves 0.62/1.11 TEPE on the Sintel clean/final (17.3\% \& 9.02\% improvements over BiDAStereo) with fewer computational costs. Codes are available at \textcolor{blue}{https://github.com/cocowy1/PPMStereo}.
☆ Mixture-of-Minds: Multi-Agent Reinforcement Learning for Table Understanding
Understanding and reasoning over tables is a critical capability for many real-world applications. Large language models (LLMs) have shown promise on this task, but current approaches remain limited. Fine-tuning based methods strengthen language reasoning; yet they are prone to arithmetic errors and hallucination. In contrast, tool-based methods enable precise table manipulation but rely on rigid schemas and lack semantic understanding. These complementary drawbacks highlight the need for approaches that integrate robust reasoning with reliable table processing. In this work, we propose Mixture-of-Minds, a multi-agent framework that decomposes table reasoning into three specialized roles: planning, coding, and answering. This design enables each agent to focus on a specific aspect of the task while leveraging code execution for precise table manipulation. Building on this workflow, we introduce a self-improvement training framework that employs Monte Carlo Tree Search (MCTS) rollouts to generate pseudo-gold trajectories and optimize agents with reinforcement learning (RL). Extensive experiments show that Mixture-of-Minds delivers substantial gains, reaching 62.13% on TableBench and surpassing OpenAI-o4-mini-high. These results demonstrate the promise of combining structured multi-agent workflows with RL to advance table understanding.
comment: 18 pages, 4 figures
☆ Collective Communication for 100k+ GPUs
The increasing scale of large language models (LLMs) necessitates highly efficient collective communication frameworks, particularly as training workloads extend to hundreds of thousands of GPUs. Traditional communication methods face significant throughput and latency limitations at this scale, hindering both the development and deployment of state-of-the-art models. This paper presents the NCCLX collective communication framework, developed at Meta, engineered to optimize performance across the full LLM lifecycle, from the synchronous demands of large-scale training to the low-latency requirements of inference. The framework is designed to support complex workloads on clusters exceeding 100,000 GPUs, ensuring reliable, high-throughput, and low-latency data exchange. Empirical evaluation on the Llama4 model demonstrates substantial improvements in communication efficiency. This research contributes a robust solution for enabling the next generation of LLMs to operate at unprecedented scales.
☆ IB-GAN: Disentangled Representation Learning with Information Bottleneck Generative Adversarial Networks AAAI
We propose a new GAN-based unsupervised model for disentangled representation learning. The new model is discovered in an attempt to utilize the Information Bottleneck (IB) framework to the optimization of GAN, thereby named IB-GAN. The architecture of IB-GAN is partially similar to that of InfoGAN but has a critical difference; an intermediate layer of the generator is leveraged to constrain the mutual information between the input and the generated output. The intermediate stochastic layer can serve as a learnable latent distribution that is trained with the generator jointly in an end-to-end fashion. As a result, the generator of IB-GAN can harness the latent space in a disentangled and interpretable manner. With the experiments on dSprites and Color-dSprites dataset, we demonstrate that IB-GAN achieves competitive disentanglement scores to those of state-of-the-art \b{eta}-VAEs and outperforms InfoGAN. Moreover, the visual quality and the diversity of samples generated by IB-GAN are often better than those by \b{eta}-VAEs and Info-GAN in terms of FID score on CelebA and 3D Chairs dataset.
comment: Published in the Proceedings of the Thirty Fifth AAAI Conference on Artificial Intelligence (AAAI 2021), paper number 7926
☆ Are Stereotypes Leading LLMs' Zero-Shot Stance Detection ? EMNLP 2025
Large Language Models inherit stereotypes from their pretraining data, leading to biased behavior toward certain social groups in many Natural Language Processing tasks, such as hateful speech detection or sentiment analysis. Surprisingly, the evaluation of this kind of bias in stance detection methods has been largely overlooked by the community. Stance Detection involves labeling a statement as being against, in favor, or neutral towards a specific target and is among the most sensitive NLP tasks, as it often relates to political leanings. In this paper, we focus on the bias of Large Language Models when performing stance detection in a zero-shot setting. We automatically annotate posts in pre-existing stance detection datasets with two attributes: dialect or vernacular of a specific group and text complexity/readability, to investigate whether these attributes influence the model's stance detection decisions. Our results show that LLMs exhibit significant stereotypes in stance detection tasks, such as incorrectly associating pro-marijuana views with low text complexity and African American dialect with opposition to Donald Trump.
comment: Accepted in EMNLP 2025 (Main)
☆ SAID: Empowering Large Language Models with Self-Activating Internal Defense
Large Language Models (LLMs), despite advances in safety alignment, remain vulnerable to jailbreak attacks designed to circumvent protective mechanisms. Prevailing defense strategies rely on external interventions, such as input filtering or output modification, which often lack generalizability and compromise model utility while incurring significant computational overhead. In this work, we introduce a new, training-free defense paradigm, Self-Activating Internal Defense (SAID), which reframes the defense task from external correction to internal capability activation. SAID uniquely leverages the LLM's own reasoning abilities to proactively identify and neutralize malicious intent through a three-stage pipeline: model-native intent distillation to extract core semantics, optimal safety prefix probing to activate latent safety awareness, and a conservative aggregation strategy to ensure robust decision-making. Extensive experiments on five open-source LLMs against six advanced jailbreak attacks demonstrate that SAID substantially outperforms state-of-the-art defenses in reducing harmful outputs. Crucially, it achieves this while preserving model performance on benign tasks and incurring minimal computational overhead. Our work establishes that activating the intrinsic safety mechanisms of LLMs is a more robust and scalable path toward building safer and more reliable aligned AI systems.
☆ The Verification-Value Paradox: A Normative Critique of Gen AI in Legal Practice
It is often claimed that machine learning-based generative AI products will drastically streamline and reduce the cost of legal practice. This enthusiasm assumes lawyers can effectively manage AI's risks. Cases in Australia and elsewhere in which lawyers have been reprimanded for submitting inaccurate AI-generated content to courts suggest this paradigm must be revisited. This paper argues that a new paradigm is needed to evaluate AI use in practice, given (a) AI's disconnection from reality and its lack of transparency, and (b) lawyers' paramount duties like honesty, integrity, and not to mislead the court. It presents an alternative model of AI use in practice that more holistically reflects these features (the verification-value paradox). That paradox suggests increases in efficiency from AI use in legal practice will be met by a correspondingly greater imperative to manually verify any outputs of that use, rendering the net value of AI use often negligible to lawyers. The paper then sets out the paradox's implications for legal practice and legal education, including for AI use but also the values that the paradox suggests should undergird legal practice: fidelity to the truth and civic responsibility.
☆ Human-Centered LLM-Agent System for Detecting Anomalous Digital Asset Transactions
We present HCLA, a human-centered multi-agent system for anomaly detection in digital asset transactions. The system links three roles: Parsing, Detection, and Explanation, into a conversational workflow that lets non-experts ask questions in natural language, inspect structured analytics, and obtain context-aware rationales. Implemented with an open-source web UI, HCLA translates user intents into a schema for a classical detector (XGBoost in our prototype) and returns narrative explanations grounded in the underlying features. On a labeled Bitcoin mixing dataset (Wasabi Wallet, 2020-2024), the baseline detector reaches strong accuracy, while HCLA adds interpretability and interactive refinement. We describe the architecture, interaction loop, dataset, evaluation protocol, and limitations, and discuss how a human-in-the-loop design improves transparency and trust in financial forensics.
☆ AI PB: A Grounded Generative Agent for Personalized Investment Insights
We present AI PB, a production-scale generative agent deployed in real retail finance. Unlike reactive chatbots that answer queries passively, AI PB proactively generates grounded, compliant, and user-specific investment insights. It integrates (i) a component-based orchestration layer that deterministically routes between internal and external LLMs based on data sensitivity, (ii) a hybrid retrieval pipeline using OpenSearch and the finance-domain embedding model, and (iii) a multi-stage recommendation mechanism combining rule heuristics, sequential behavioral modeling, and contextual bandits. Operating fully on-premises under Korean financial regulations, the system employs Docker Swarm and vLLM across 24 X NVIDIA H100 GPUs. Through human QA and system metrics, we demonstrate that grounded generation with explicit routing and layered safety can deliver trustworthy AI insights in high-stakes finance.
comment: Under Review
☆ Leveraging the Power of Large Language Models in Entity Linking via Adaptive Routing and Targeted Reasoning
Entity Linking (EL) has traditionally relied on large annotated datasets and extensive model fine-tuning. While recent few-shot methods leverage large language models (LLMs) through prompting to reduce training requirements, they often suffer from inefficiencies due to expensive LLM-based reasoning. ARTER (Adaptive Routing and Targeted Entity Reasoning) presents a structured pipeline that achieves high performance without deep fine-tuning by strategically combining candidate generation, context-based scoring, adaptive routing, and selective reasoning. ARTER computes a small set of complementary signals(both embedding and LLM-based) over the retrieved candidates to categorize contextual mentions into easy and hard cases. The cases are then handled by a low-computational entity linker (e.g. ReFinED) and more expensive targeted LLM-based reasoning respectively. On standard benchmarks, ARTER outperforms ReFinED by up to +4.47%, with an average gain of +2.53% on 5 out of 6 datasets, and performs comparably to pipelines using LLM-based reasoning for all mentions, while being as twice as efficient in terms of the number of LLM tokens.
☆ On the Structure of Stationary Solutions to McKean-Vlasov Equations with Applications to Noisy Transformers
We study stationary solutions of McKean-Vlasov equations on the circle. Our main contributions stem from observing an exact equivalence between solutions of the stationary McKean-Vlasov equation and an infinite-dimensional quadratic system of equations over Fourier coefficients, which allows explicit characterization of the stationary states in a sequence space rather than a function space. This framework provides a transparent description of local bifurcations, characterizing their periodicity, and resonance structures, while accommodating singular potentials. We derive analytic expressions that characterize the emergence, form and shape (supercritical, critical, subcritical or transcritical) of bifurcations involving possibly multiple Fourier modes and connect them with discontinuous phase transitions. We also characterize, under suitable assumptions, the detailed structure of the stationary bifurcating solutions that are accurate upto an arbitrary number of Fourier modes. At the global level, we establish regularity and concavity properties of the free energy landscape, proving existence, compactness, and coexistence of globally minimizing stationary measures, further identifying discontinuous phase transitions with points of non-differentiability of the minimum free energy map. As an application, we specialize the theory to the Noisy Mean-Field Transformer model, where we show how changing the inverse temperature parameter $\beta$ affects the geometry of the infinitely many bifurcations from the uniform measure. We also explain how increasing $\beta$ can lead to a rich class of approximate multi-mode stationary solutions which can be seen as `metastable states'. Further, a sharp transition from continuous to discontinuous (first-order) phase behavior is observed as $\beta$ increases.
comment: 46 pages, 5 figures
☆ StableSketcher: Enhancing Diffusion Model for Pixel-based Sketch Generation via Visual Question Answering Feedback IEEE
Although recent advancements in diffusion models have significantly enriched the quality of generated images, challenges remain in synthesizing pixel-based human-drawn sketches, a representative example of abstract expression. To combat these challenges, we propose StableSketcher, a novel framework that empowers diffusion models to generate hand-drawn sketches with high prompt fidelity. Within this framework, we fine-tune the variational autoencoder to optimize latent decoding, enabling it to better capture the characteristics of sketches. In parallel, we integrate a new reward function for reinforcement learning based on visual question answering, which improves text-image alignment and semantic consistency. Extensive experiments demonstrate that StableSketcher generates sketches with improved stylistic fidelity, achieving better alignment with prompts compared to the Stable Diffusion baseline. Additionally, we introduce SketchDUO, to the best of our knowledge, the first dataset comprising instance-level sketches paired with captions and question-answer pairs, thereby addressing the limitations of existing datasets that rely on image-label pairs. Our code and dataset will be made publicly available upon acceptance.
comment: Under review at IEEE Access. Author-submitted preprint. Not the IEEE-published version
☆ CreativityPrism: A Holistic Benchmark for Large Language Model Creativity
Creativity is often seen as a hallmark of human intelligence. While large language models (LLMs) are increasingly perceived as producing creative text, there is still no holistic framework to evaluate their creativity across diverse scenarios. Existing evaluation methods remain fragmented, with dramatic variation across domains and tasks, largely due to differing definitions and measurements of creativity. Inspired by the hypothesis that creativity is not one fixed idea, we propose CreativityPrism, an evaluation analysis framework that decomposes creativity into three dimensions: quality, novelty, and diversity. CreativityPrism incorporates nine tasks, three domains, i.e., divergent thinking, creative writing, and logical reasoning, and twenty evaluation metrics, which measure each dimension in task-specific, unique ways. We evaluate 17 state-of-the-art (SoTA) proprietary and open-sourced LLMs on CreativityPrism and analyze the performance correlations among different metrics and task domains. Our results reveal a notable gap between proprietary and open-source models. Overall, model performance tends to be highly correlated across tasks within the same domain and less so across different domains. Among evaluation dimensions, diversity and quality metrics show strong correlations - models that perform well on one often excel on the other - whereas novelty exhibits much weaker correlation with either. These findings support our hypothesis that strong performance in one creativity task or dimension does not necessarily generalize to others, underscoring the need for a holistic evaluation of LLM creativity.
☆ ShapeX: Shapelet-Driven Post Hoc Explanations for Time Series Classification Models
Explaining time series classification models is crucial, particularly in high-stakes applications such as healthcare and finance, where transparency and trust play a critical role. Although numerous time series classification methods have identified key subsequences, known as shapelets, as core features for achieving state-of-the-art performance and validating their pivotal role in classification outcomes, existing post-hoc time series explanation (PHTSE) methods primarily focus on timestep-level feature attribution. These explanation methods overlook the fundamental prior that classification outcomes are predominantly driven by key shapelets. To bridge this gap, we present ShapeX, an innovative framework that segments time series into meaningful shapelet-driven segments and employs Shapley values to assess their saliency. At the core of ShapeX lies the Shapelet Describe-and-Detect (SDD) framework, which effectively learns a diverse set of shapelets essential for classification. We further demonstrate that ShapeX produces explanations which reveal causal relationships instead of just correlations, owing to the atomicity properties of shapelets. Experimental results on both synthetic and real-world datasets demonstrate that ShapeX outperforms existing methods in identifying the most relevant subsequences, enhancing both the precision and causal fidelity of time series explanations.
♻ ☆ One-Step Offline Distillation of Diffusion-based Models via Koopman Modeling
Diffusion-based generative models have demonstrated exceptional performance, yet their iterative sampling procedures remain computationally expensive. A prominent strategy to mitigate this cost is distillation, with offline distillation offering particular advantages in terms of efficiency, modularity, and flexibility. In this work, we identify two key observations that motivate a principled distillation framework: (1) while diffusion models have been viewed through the lens of dynamical systems theory, powerful and underexplored tools can be further leveraged; and (2) diffusion models inherently impose structured, semantically coherent trajectories in latent space. Building on these observations, we introduce the Koopman Distillation Model (KDM), a novel offline distillation approach grounded in Koopman theory - a classical framework for representing nonlinear dynamics linearly in a transformed space. KDM encodes noisy inputs into an embedded space where a learned linear operator propagates them forward, followed by a decoder that reconstructs clean samples. This enables single-step generation while preserving semantic fidelity. We provide theoretical justification for our approach: (1) under mild assumptions, the learned diffusion dynamics admit a finite-dimensional Koopman representation; and (2) proximity in the Koopman latent space correlates with semantic similarity in the generated outputs, allowing for effective trajectory alignment. KDM achieves highly competitive performance across standard offline distillation benchmarks.
♻ ☆ DragFlow: Unleashing DiT Priors with Region Based Supervision for Drag Editing
Drag-based image editing has long suffered from distortions in the target region, largely because the priors of earlier base models, Stable Diffusion, are insufficient to project optimized latents back onto the natural image manifold. With the shift from UNet-based DDPMs to more scalable DiT with flow matching (e.g., SD3.5, FLUX), generative priors have become significantly stronger, enabling advances across diverse editing tasks. However, drag-based editing has yet to benefit from these stronger priors. This work proposes the first framework to effectively harness FLUX's rich prior for drag-based editing, dubbed DragFlow, achieving substantial gains over baselines. We first show that directly applying point-based drag editing to DiTs performs poorly: unlike the highly compressed features of UNets, DiT features are insufficiently structured to provide reliable guidance for point-wise motion supervision. To overcome this limitation, DragFlow introduces a region-based editing paradigm, where affine transformations enable richer and more consistent feature supervision. Additionally, we integrate pretrained open-domain personalization adapters (e.g., IP-Adapter) to enhance subject consistency, while preserving background fidelity through gradient mask-based hard constraints. Multimodal large language models (MLLMs) are further employed to resolve task ambiguities. For evaluation, we curate a novel Region-based Dragging benchmark (ReD Bench) featuring region-level dragging instructions. Extensive experiments on DragBench-DR and ReD Bench show that DragFlow surpasses both point-based and region-based baselines, setting a new state-of-the-art in drag-based image editing. Code and datasets will be publicly available upon publication.
comment: Preprint
♻ ☆ Autoencoding Random Forests NeurIPS 2025
We propose a principled method for autoencoding with random forests. Our strategy builds on foundational results from nonparametric statistics and spectral graph theory to learn a low-dimensional embedding of the model that optimally represents relationships in the data. We provide exact and approximate solutions to the decoding problem via constrained optimization, split relabeling, and nearest neighbors regression. These methods effectively invert the compression pipeline, establishing a map from the embedding space back to the input space using splits learned by the ensemble's constituent trees. The resulting decoders are universally consistent under common regularity assumptions. The procedure works with supervised or unsupervised models, providing a window into conditional or joint distributions. We demonstrate various applications of this autoencoder, including powerful new tools for visualization, compression, clustering, and denoising. Experiments illustrate the ease and utility of our method in a wide range of settings, including tabular, image, and genomic data.
comment: 10 pages main text, 34 pages total (including checklist). 9 figures, 4 tables. To be published in proceedings of the 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ Watermarking Autoregressive Image Generation NeurIPS 2025
Watermarking the outputs of generative models has emerged as a promising approach for tracking their provenance. Despite significant interest in autoregressive image generation models and their potential for misuse, no prior work has attempted to watermark their outputs at the token level. In this work, we present the first such approach by adapting language model watermarking techniques to this setting. We identify a key challenge: the lack of reverse cycle-consistency (RCC), wherein re-tokenizing generated image tokens significantly alters the token sequence, effectively erasing the watermark. To address this and to make our method robust to common image transformations, neural compression, and removal attacks, we introduce (i) a custom tokenizer-detokenizer finetuning procedure that improves RCC, and (ii) a complementary watermark synchronization layer. As our experiments demonstrate, our approach enables reliable and robust watermark detection with theoretically grounded p-values. Code and models are available at https://github.com/facebookresearch/wmar.
comment: NeurIPS 2025
♻ ☆ Learning Modular Exponentiation with Transformers NeurIPS'25
Modular exponentiation is crucial to number theory and cryptography, yet remains largely unexplored from a mechanistic interpretability standpoint. We train a 4-layer encoder-decoder Transformer model to perform this operation and investigate the emergence of numerical reasoning during training. Utilizing principled sampling strategies, PCA-based embedding analysis, and activation patching, we examine how number-theoretic properties are encoded within the model. We find that reciprocal operand training leads to strong performance gains, with sudden generalization across related moduli. These synchronized accuracy surges reflect grokking-like dynamics, suggesting the model internalizes shared arithmetic structure. We also find a subgraph consisting entirely of attention heads in the final layer sufficient to achieve full performance on the task of regular exponentiation. These results suggest that transformer models learn modular arithmetic through specialized computational circuits, paving the way for more interpretable and efficient neural approaches to modular exponentiation.
comment: Accepted at the 5th MATH-AI Workshop, NeurIPS'25
♻ ☆ FlyLoRA: Boosting Task Decoupling and Parameter Efficiency via Implicit Rank-Wise Mixture-of-Experts NeurIPS 2025
Low-Rank Adaptation (LoRA) is a widely used parameter-efficient fine-tuning method for foundation models, but it suffers from parameter interference, resulting in suboptimal performance. Although Mixture-of-Experts (MoE)-based LoRA variants show promise in mitigating intra-task correlations in single-task instruction tuning, they introduce additional router parameters and remain ineffective in multi-task model merging where inter-task interference arises. Inspired by the fly olfactory circuit, we propose FlyLoRA, an implicit MoE-based LoRA variant that introduces: (1) rank-wise expert activation in the up-projection matrix, and (2) an implicit router that unifies expert routing and down-projection, where a frozen sparse random projection matrix replaces the traditional dense trainable version. This design resolves the trade-off between intra-task decorrelation and computational efficiency by eliminating the need for an explicit router, while inherently mitigating inter-task interference due to the orthogonality property of random matrices. Extensive experiments across four domains -- general knowledge understanding, scientific question answering, mathematical reasoning, and code generation -- demonstrate consistent performance improvements over existing methods. Beyond empirical gains, FlyLoRA highlights how biological structures can inspire innovations in AI technologies. Code is available at https://github.com/gfyddha/FlyLoRA.
comment: NeurIPS 2025 accepted paper
♻ ☆ Privacy Risks and Preservation Methods in Explainable Artificial Intelligence: A Scoping Review
Explainable Artificial Intelligence (XAI) has emerged as a pillar of Trustworthy AI and aims to bring transparency in complex models that are opaque by nature. Despite the benefits of incorporating explanations in models, an urgent need is found in addressing the privacy concerns of providing this additional information to end users. In this article, we conduct a scoping review of existing literature to elicit details on the conflict between privacy and explainability. Using the standard methodology for scoping review, we extracted 57 articles from 1,943 studies published from January 2019 to December 2024. The review addresses 3 research questions to present readers with more understanding of the topic: (1) what are the privacy risks of releasing explanations in AI systems? (2) what current methods have researchers employed to achieve privacy preservation in XAI systems? (3) what constitutes a privacy preserving explanation? Based on the knowledge synthesized from the selected studies, we categorize the privacy risks and preservation methods in XAI and propose the characteristics of privacy preserving explanations to aid researchers and practitioners in understanding the requirements of XAI that is privacy compliant. Lastly, we identify the challenges in balancing privacy with other system desiderata and provide recommendations for achieving privacy preserving XAI. We expect that this review will shed light on the complex relationship of privacy and explainability, both being the fundamental principles of Trustworthy AI.
comment: Accepted in Transactions on Machine Learning Research
♻ ☆ Integrating Structural and Semantic Signals in Text-Attributed Graphs with BiGTex
Text-attributed graphs (TAGs) present unique challenges in representation learning by requiring models to capture both the semantic richness of node-associated texts and the structural dependencies of the graph. While graph neural networks (GNNs) excel at modeling topological information, they lack the capacity to process unstructured text. Conversely, large language models (LLMs) are proficient in text understanding but are typically unaware of graph structure. In this work, we propose BiGTex (Bidirectional Graph Text), a novel architecture that tightly integrates GNNs and LLMs through stacked Graph-Text Fusion Units. Each unit allows for mutual attention between textual and structural representations, enabling information to flow in both directions, text influencing structure and structure guiding textual interpretation. The proposed architecture is trained using parameter-efficient fine-tuning (LoRA), keeping the LLM frozen while adapting to task-specific signals. Extensive experiments on five benchmark datasets demonstrate that BiGTex achieves state-of-the-art performance in node classification and generalizes effectively to link prediction. An ablation study further highlights the importance of soft prompting and bi-directional attention in the model's success.
comment: 26 pages, 4 figures
♻ ☆ Prover Agent: An Agent-Based Framework for Formal Mathematical Proofs
We present Prover Agent, a novel AI agent for automated theorem proving that integrates large language models (LLMs) with a formal proof assistant, Lean. Prover Agent coordinates an informal reasoning LLM, a formal prover model, and feedback from Lean while also generating auxiliary lemmas. These auxiliary lemmas are not limited to subgoals in the formal proof but can also include special cases or potentially useful facts derived from the assumptions, which help in discovering a viable proof strategy. It achieves an 88.1% success rate on the MiniF2F benchmark, establishing a new state-of-the-art among methods using small language models (SLMs) with a much lower sample budget than previous approaches. We also present theoretical analyses and case studies that illustrate how these generated lemmas contribute to solving challenging problems. Our code is publicly available at: https://github.com/kAIto47802/Prover-Agent.
comment: 36 pages, 3 figures
♻ ☆ CLEVER: A Curated Benchmark for Formally Verified Code Generation
We introduce ${\rm C{\small LEVER}}$, a high-quality, curated benchmark of 161 problems for end-to-end verified code generation in Lean. Each problem consists of (1) the task of generating a specification that matches a held-out ground-truth specification, and (2) the task of generating a Lean implementation that provably satisfies this specification. Unlike prior benchmarks, ${\rm C{\small LEVER}}$ avoids test-case supervision, LLM-generated annotations, and specifications that leak implementation logic or allow vacuous solutions. All outputs are verified post-hoc using Lean's type checker to ensure machine-checkable correctness. We use ${\rm C{\small LEVER}}$ to evaluate several few-shot and agentic approaches based on state-of-the-art language models. These methods all struggle to achieve full verification, establishing it as a challenging frontier benchmark for program synthesis and formal reasoning. Our benchmark can be found on GitHub(https://github.com/trishullab/clever) as well as HuggingFace(https://huggingface.co/datasets/amitayusht/clever). All our evaluation code is also available online(https://github.com/trishullab/clever-prover).
♻ ☆ Stop Summation: Min-Form Credit Assignment Is All Process Reward Model Needs for Reasoning NeurIPS 2025
Process reward models (PRMs) have proven effective for test-time scaling of Large Language Models (LLMs) on challenging reasoning tasks. However, reward hacking issues with PRMs limit their successful application in reinforcement fine-tuning. In this paper, we identify the main cause of PRM-induced reward hacking: the canonical summation-form credit assignment in reinforcement learning (RL), which defines the value as cumulative gamma-decayed future rewards, easily induces LLMs to hack steps with high rewards. To address this, we propose PURE: Process sUpervised Reinforcement lEarning. The key innovation of PURE is a min-form credit assignment that formulates the value function as the minimum of future rewards. This method significantly alleviates reward hacking by limiting the value function range and distributing advantages more reasonably. Through extensive experiments on 3 base models, we show that PRM-based approaches enabling min-form credit assignment achieve comparable reasoning performance to verifiable reward-based methods within only 30% steps. In contrast, the canonical sum-form credit assignment collapses training even at the beginning! Additionally, when we supplement PRM-based fine-tuning with just 10% verifiable rewards, we further alleviate reward hacking and produce the best fine-tuned model based on Qwen2.5-Math-7B in our experiments, achieving 82.5% accuracy on AMC23 and 53.3% average accuracy across 5 benchmarks. Moreover, we summarize the observed reward hacking cases and analyze the causes of training collapse. We release our code and model weights at https://github.com/CJReinforce/PURE.
comment: Accepted by NeurIPS 2025
♻ ☆ Fast-Slow Thinking GRPO for Large Vision-Language Model Reasoning
When applying reinforcement learning--typically through GRPO--to large vision-language model reasoning struggles to effectively scale reasoning length or generates verbose outputs across all tasks with only marginal gains in accuracy. To address this issue, we present FAST-GRPO, a variant of GRPO that dynamically adapts reasoning depth based on question characteristics. Through empirical analysis, we establish the feasibility of fast-slow thinking in LVLMs by investigating how response length and data distribution affect performance. Inspired by these observations, we introduce two complementary metrics to estimate the difficulty of the questions, guiding the model to determine when fast or slow thinking is more appropriate. Next, we incorporate adaptive length-based rewards and difficulty-aware KL divergence into the GRPO algorithm. Experiments across seven reasoning benchmarks demonstrate that FAST achieves state-of-the-art accuracy with over 10\% relative improvement compared to the base model, while reducing token usage by 32.7-67.3\% compared to previous slow-thinking approaches, effectively balancing reasoning length and accuracy.
♻ ☆ TabR1: Taming GRPO for tabular reasoning LLMs
Tabular prediction has traditionally relied on gradient-boosted decision trees and specialized deep learning models, which excel within tasks but provide limited interpretability and weak transfer across tables. Reasoning large language models (LLMs) promise cross-task adaptability with trans- parent reasoning traces, yet their potential has not been fully realized for tabular data. This paper presents TabR1, the first reasoning LLM for tabular prediction with multi-step reasoning. At its core is Permutation Relative Policy Optimization (PRPO), a simple yet efficient reinforcement learning method that encodes column-permutation invariance as a structural prior. By construct- ing multiple label-preserving permutations per sample and estimating advantages both within and across permutations, PRPO transforms sparse rewards into dense learning signals and improves generalization. With limited supervision, PRPO activates the reasoning ability of LLMs for tabular prediction, enhancing few-shot and zero-shot performance as well as interpretability. Comprehensive experiments demonstrate that TabR1 achieves performance comparable to strong baselines under full-supervision fine-tuning. In the zero-shot setting, TabR1 approaches the performance of strong baselines under the 32-shot setting. Moreover, TabR1 (8B) substantially outperforms much larger LLMs across various tasks, achieving up to 53.17% improvement over DeepSeek-R1 (685B).
♻ ☆ Superposition Yields Robust Neural Scaling NeurIPS 2025
The success of today's large language models (LLMs) depends on the observation that larger models perform better. However, the origin of this neural scaling law, that loss decreases as a power law with model size, remains unclear. We propose that representation superposition, meaning that LLMs represent more features than they have dimensions, can be a key contributor to loss and cause neural scaling. Based on Anthropic's toy model, we use weight decay to control the degree of superposition, allowing us to systematically study how loss scales with model size. When superposition is weak, the loss follows a power law only if data feature frequencies are power-law distributed. In contrast, under strong superposition, the loss generically scales inversely with model dimension across a broad class of frequency distributions, due to geometric overlaps between representation vectors. We confirmed that open-sourced LLMs operate in the strong superposition regime and have loss scaling like one over the model dimension, and that the Chinchilla scaling laws are also consistent with this behavior. Our results identify representation superposition as a central driver of neural scaling laws, providing insights into questions like when neural scaling laws can be improved and when they will break down.
comment: Accepted at NeurIPS 2025
♻ ☆ Flow based approach for Dynamic Temporal Causal models with non-Gaussian or Heteroscedastic Noises
Understanding causal relationships in multivariate time series is crucial in many scenarios, such as those dealing with financial or neurological data. Many such time series exhibit multiple regimes, i.e., consecutive temporal segments with a priori unknown boundaries, with each regime having its own causal structure. Inferring causal dependencies and regime shifts is critical for analyzing the underlying processes. However, causal structure learning in this setting is challenging due to (1) non-stationarity, i.e., each regime can have its own causal graph and mixing function, and (2) complex noise distributions, which may be nonGaussian or heteroscedastic. Existing causal discovery approaches cannot address these challenges, since generally assume stationarity or Gaussian noise with constant variance. Hence, we introduce FANTOM, a unified framework for causal discovery that handles non-stationary processes along with non-Gaussian and heteroscedastic noises. FANTOM simultaneously infers the number of regimes and their corresponding indices and learns each regime's Directed Acyclic Graph. It uses a Bayesian Expectation Maximization algorithm that maximizes the evidence lower bound of the data log-likelihood. On the theoretical side, we prove, under mild assumptions, that temporal heteroscedastic causal models, introduced in FANTOM's formulation, are identifiable in both stationary and non-stationary settings. In addition, extensive experiments on synthetic and real data show that FANTOM outperforms existing methods.
♻ ☆ Temporal-Difference Variational Continual Learning NeurIPS 2025
Machine Learning models in real-world applications must continuously learn new tasks to adapt to shifts in the data-generating distribution. Yet, for Continual Learning (CL), models often struggle to balance learning new tasks (plasticity) with retaining previous knowledge (memory stability). Consequently, they are susceptible to Catastrophic Forgetting, which degrades performance and undermines the reliability of deployed systems. In the Bayesian CL literature, variational methods tackle this challenge by employing a learning objective that recursively updates the posterior distribution while constraining it to stay close to its previous estimate. Nonetheless, we argue that these methods may be ineffective due to compounding approximation errors over successive recursions. To mitigate this, we propose new learning objectives that integrate the regularization effects of multiple previous posterior estimations, preventing individual errors from dominating future posterior updates and compounding over time. We reveal insightful connections between these objectives and Temporal-Difference methods, a popular learning mechanism in Reinforcement Learning and Neuroscience. Experiments on challenging CL benchmarks show that our approach effectively mitigates Catastrophic Forgetting, outperforming strong Variational CL methods.
comment: Published at NeurIPS 2025
♻ ☆ ReDit: Reward Dithering for Improved LLM Policy Optimization
DeepSeek-R1 has successfully enhanced Large Language Model (LLM) reasoning capabilities through its rule-based reward system. While it's a ''perfect'' reward system that effectively mitigates reward hacking, such reward functions are often discrete. Our experimental observations suggest that discrete rewards can lead to gradient anomaly, unstable optimization, and slow convergence. To address this issue, we propose ReDit (Reward Dithering), a method that dithers the discrete reward signal by adding simple random noise. With this perturbed reward, exploratory gradients are continuously provided throughout the learning process, enabling smoother gradient updates and accelerating convergence. The injected noise also introduces stochasticity into flat reward regions, encouraging the model to explore novel policies and escape local optima. Experiments across diverse tasks demonstrate the effectiveness and efficiency of ReDit. On average, ReDit achieves performance comparable to vanilla GRPO with only approximately 10% the training steps, and furthermore, still exhibits a 4% performance improvement over vanilla GRPO when trained for a similar duration. Visualizations confirm significant mitigation of gradient issues with ReDit. Moreover, theoretical analyses are provided to further validate these advantages.
comment: 34 pages, 19 figures
♻ ☆ CALM-PDE: Continuous and Adaptive Convolutions for Latent Space Modeling of Time-dependent PDEs NeurIPS
Solving time-dependent Partial Differential Equations (PDEs) using a densely discretized spatial domain is a fundamental problem in various scientific and engineering disciplines, including modeling climate phenomena and fluid dynamics. However, performing these computations directly in the physical space often incurs significant computational costs. To address this issue, several neural surrogate models have been developed that operate in a compressed latent space to solve the PDE. While these approaches reduce computational complexity, they often use Transformer-based attention mechanisms to handle irregularly sampled domains, resulting in increased memory consumption. In contrast, convolutional neural networks allow memory-efficient encoding and decoding but are limited to regular discretizations. Motivated by these considerations, we propose CALM-PDE, a model class that efficiently solves arbitrarily discretized PDEs in a compressed latent space. We introduce a novel continuous convolution-based encoder-decoder architecture that uses an epsilon-neighborhood-constrained kernel and learns to apply the convolution operator to adaptive and optimized query points. We demonstrate the effectiveness of CALM-PDE on a diverse set of PDEs with both regularly and irregularly sampled spatial domains. CALM-PDE is competitive with or outperforms existing baseline methods while offering significant improvements in memory and inference time efficiency compared to Transformer-based methods.
comment: Accepted for publication at the 39th Conference on Neural Information Processing Systems (NeurIPS) 2025, San Diego, California, USA
♻ ☆ Lessons Learned: A Multi-Agent Framework for Code LLMs to Learn and Improve NeurIPS 2025
Recent studies show that LLMs possess different skills and specialize in different tasks. In fact, we observe that their varied performance occur in several levels of granularity. For example, in the code optimization task, code LLMs excel at different optimization categories and no one dominates others. This observation prompts the question of how one leverages multiple LLM agents to solve a coding problem without knowing their complementary strengths a priori. We argue that a team of agents can learn from each other's successes and failures so as to improve their own performance. Thus, a lesson is the knowledge produced by an agent and passed on to other agents in the collective solution process. We propose a lesson-based collaboration framework, design the lesson solicitation--banking--selection mechanism, and demonstrate that a team of small LLMs with lessons learned can outperform a much larger LLM and other multi-LLM collaboration methods.
comment: NeurIPS 2025. Code is available at https://github.com/MITIBM-FastCoder/LessonL
♻ ☆ Making Classic GNNs Strong Baselines Across Varying Homophily: A Smoothness-Generalization Perspective NeurIPS 2025
Graph Neural Networks (GNNs) have achieved great success but are often considered to be challenged by varying levels of homophily in graphs. Recent empirical studies have surprisingly shown that homophilic GNNs can perform well across datasets of different homophily levels with proper hyperparameter tuning, but the underlying theory and effective architectures remain unclear. To advance GNN universality across varying homophily, we theoretically revisit GNN message passing and uncover a novel smoothness-generalization dilemma, where increasing hops inevitably enhances smoothness at the cost of generalization. This dilemma hinders learning in higher-order homophilic neighborhoods and all heterophilic ones, where generalization is critical due to complex neighborhood class distributions that are sensitive to shifts induced by noise and sparsity. To address this, we introduce the Inceptive Graph Neural Network (IGNN) built on three simple yet effective design principles, which alleviate the dilemma by enabling distinct hop-wise generalization alongside improved overall generalization with adaptive smoothness. Benchmarking against 30 baselines demonstrates IGNN's superiority and reveals notable universality in certain homophilic GNN variants. Our code and datasets are available at https://github.com/galogm/IGNN.
comment: 36 pages. Accepted by NeurIPS 2025
♻ ☆ Does Reinforcement Learning Really Incentivize Reasoning Capacity in LLMs Beyond the Base Model?
Reinforcement Learning with Verifiable Rewards (RLVR) has recently demonstrated notable success in enhancing the reasoning performance of large language models (LLMs), particularly on mathematics and programming tasks. Similar to how traditional RL helps agents explore and learn new strategies, RLVR is believed to enable LLMs to continuously self-improve, thus acquiring novel reasoning abilities beyond those of the corresponding base models. In this study we critically examine the current state of RLVR by systematically probing the reasoning capability boundaries of RLVR-trained LLMs across various model families, RL algorithms, and math, coding, and visual reasoning benchmarks, using pass@k at large k values as the evaluation metric. Surprisingly, we find that the current training setup does not elicit fundamentally new reasoning patterns. While RLVR-trained models outperform their base models at small k (e.g., k = 1), the base models achieve a higher pass@k score when k is large. Coverage and perplexity analyses show that the observed reasoning abilities originate from and are bounded by the base model. Treating the base model as an upper bound, our quantitative analysis shows that six popular RLVR algorithms perform similarly and remain far from optimal in leveraging the potential of the base model. By contrast, we find that distillation can introduce new reasoning patterns from the teacher and genuinely expand the model's reasoning capabilities. Overall, our findings suggest that current RLVR methods have not yet realized the potential of RL to elicit truly novel reasoning abilities in LLMs. This highlights the need for improved RL paradigms, such as continual scaling and multi-turn agent-environment interaction, to unlock this potential.
comment: 30 pages, 27 figures
♻ ☆ Towards Understanding Safety Alignment: A Mechanistic Perspective from Safety Neurons NeurIPS 2025
Large language models (LLMs) excel in various capabilities but pose safety risks such as generating harmful content and misinformation, even after safety alignment. In this paper, we explore the inner mechanisms of safety alignment through the lens of mechanistic interpretability, focusing on identifying and analyzing safety neurons within LLMs that are responsible for safety behaviors. We propose inference-time activation contrasting to locate these neurons and dynamic activation patching to evaluate their causal effects on model safety. Experiments on multiple prevalent LLMs demonstrate that we can consistently identify about $5\%$ safety neurons, and by only patching their activations we can restore over $90\%$ of the safety performance across various red-teaming benchmarks without influencing general ability. The finding of safety neurons also helps explain the ''alignment tax'' phenomenon by revealing that the key neurons for model safety and helpfulness significantly overlap, yet they require different activation patterns for the same neurons. Furthermore, we demonstrate an application of our findings in safeguarding LLMs by detecting unsafe outputs before generation. The source code is available at https://github.com/THU-KEG/SafetyNeuron.
comment: NeurIPS 2025
♻ ☆ Benchmarking GPT-5 for biomedical natural language processing
Biomedical literature and clinical narratives pose multifaceted challenges for natural language understanding, from precise entity extraction and document synthesis to multi-step diagnostic reasoning. This study extends a unified benchmark to evaluate GPT-5 and GPT-4o under zero-, one-, and five-shot prompting across five core biomedical NLP tasks: named entity recognition, relation extraction, multi-label document classification, summarization, and simplification, and nine expanded biomedical QA datasets covering factual knowledge, clinical reasoning, and multimodal visual understanding. Using standardized prompts, fixed decoding parameters, and consistent inference pipelines, we assessed model performance, latency, and token-normalized cost under official pricing. GPT-5 consistently outperformed GPT-4o, with the largest gains on reasoning-intensive datasets such as MedXpertQA and DiagnosisArena and stable improvements in multimodal QA. In core tasks, GPT-5 achieved better chemical NER and ChemProt scores but remained below domain-tuned baselines for disease NER and summarization. Despite producing longer outputs, GPT-5 showed comparable latency and 30 to 50 percent lower effective cost per correct prediction. Fine-grained analyses revealed improvements in diagnosis, treatment, and reasoning subtypes, whereas boundary-sensitive extraction and evidence-dense summarization remain challenging. Overall, GPT-5 approaches deployment-ready performance for biomedical QA while offering a favorable balance of accuracy, interpretability, and economic efficiency. The results support a tiered prompting strategy: direct prompting for large-scale or cost-sensitive applications, and chain-of-thought scaffolds for analytically complex or high-stakes scenarios, highlighting the continued need for hybrid solutions where precision and factual fidelity are critical.
♻ ☆ Edit Flows: Flow Matching with Edit Operations
Autoregressive generative models naturally generate variable-length sequences, while non-autoregressive models struggle, often imposing rigid, token-wise structures. We propose Edit Flows, a non-autoregressive model that overcomes these limitations by defining a discrete flow over sequences through edit operations$\unicode{x2013}$insertions, deletions, and substitutions. By modeling these operations within a Continuous-time Markov Chain over the sequence space, Edit Flows enable flexible, position-relative generation that aligns more closely with the structure of sequence data. Our training method leverages an expanded state space with auxiliary variables, making the learning process efficient and tractable. Empirical results show that Edit Flows outperforms both autoregressive and mask models on image captioning and significantly outperforms the mask construction in text and code generation.
♻ ☆ Efficient Vision-Language-Action Models for Embodied Manipulation: A Systematic Survey
Vision-Language-Action (VLA) models extend vision-language models to embodied control by mapping natural-language instructions and visual observations to robot actions. Despite their capabilities, VLA systems face significant challenges due to their massive computational and memory demands, which conflict with the constraints of edge platforms such as on-board mobile manipulators that require real-time performance. Addressing this tension has become a central focus of recent research. In light of the growing efforts toward more efficient and scalable VLA systems, this survey provides a systematic review of approaches for improving VLA efficiency, with an emphasis on reducing latency, memory footprint, and training and inference costs. We categorize existing solutions into four dimensions: model architecture, perception feature, action generation, and training/inference strategies, summarizing representative techniques within each category. Finally, we discuss future trends and open challenges, highlighting directions for advancing efficient embodied intelligence.
♻ ☆ Residual Kolmogorov-Arnold Network for Enhanced Deep Learning
Despite their immense success, deep convolutional neural networks (CNNs) can be difficult to optimize and costly to train due to hundreds of layers within the network depth. Conventional convolutional operations are fundamentally limited by their linear nature along with fixed activations, where many layers are needed to learn meaningful patterns in data. Because of the sheer size of these networks, this approach is simply computationally inefficient, and poses overfitting or gradient explosion risks, especially in small datasets. As a result, we introduce a "plug-in" module, called Residual Kolmogorov-Arnold Network (RKAN). Our module is highly compact, so it can be easily added into any stage (level) of traditional deep networks, where it learns to integrate supportive polynomial feature transformations to existing convolutional frameworks. RKAN offers consistent improvements over baseline models in different vision tasks and widely tested benchmarks, accomplishing cutting-edge performance on them.
comment: Code is available at https://github.com/withray/residualKAN.git
♻ ☆ floq: Training Critics via Flow-Matching for Scaling Compute in Value-Based RL
A hallmark of modern large-scale machine learning techniques is the use of training objectives that provide dense supervision to intermediate computations, such as teacher forcing the next token in language models or denoising step-by-step in diffusion models. This enables models to learn complex functions in a generalizable manner. Motivated by this observation, we investigate the benefits of iterative computation for temporal difference (TD) methods in reinforcement learning (RL). Typically they represent value functions in a monolithic fashion, without iterative compute. We introduce floq (flow-matching Q-functions), an approach that parameterizes the Q-function using a velocity field and trains it using techniques from flow-matching, typically used in generative modeling. This velocity field underneath the flow is trained using a TD-learning objective, which bootstraps from values produced by a target velocity field, computed by running multiple steps of numerical integration. Crucially, floq allows for more fine-grained control and scaling of the Q-function capacity than monolithic architectures, by appropriately setting the number of integration steps. Across a suite of challenging offline RL benchmarks and online fine-tuning tasks, floq improves performance by nearly 1.8x. floq scales capacity far better than standard TD-learning architectures, highlighting the potential of iterative computation for value learning.
comment: Added new experiments, fixed typos. Code -- https://github.com/CMU-AIRe/floq
♻ ☆ How Ensembles of Distilled Policies Improve Generalisation in Reinforcement Learning
In the zero-shot policy transfer setting in reinforcement learning, the goal is to train an agent on a fixed set of training environments so that it can generalise to similar, but unseen, testing environments. Previous work has shown that policy distillation after training can sometimes produce a policy that outperforms the original in the testing environments. However, it is not yet entirely clear why that is, or what data should be used to distil the policy. In this paper, we prove, under certain assumptions, a generalisation bound for policy distillation after training. The theory provides two practical insights: for improved generalisation, you should 1) train an ensemble of distilled policies, and 2) distil it on as much data from the training environments as possible. We empirically verify that these insights hold in more general settings, when the assumptions required for the theory no longer hold. Finally, we demonstrate that an ensemble of policies distilled on a diverse dataset can generalise significantly better than the original agent.
♻ ☆ Neural Attention Search
We present Neural Attention Search (NAtS), a framework that automatically evaluates the importance of each token within a sequence and determines if the corresponding token can be dropped after several steps. This approach can efficiently reduce the KV cache sizes required by transformer-based models during inference and thus reduce inference costs. In this paper, we design a search space that contains three token types: (i) Global Tokens will be preserved and queried by all the following tokens. (ii) Local Tokens survive until the next global token appears. (iii) Sliding Window Tokens have an impact on the inference of a fixed size of the next following tokens. Similar to the One-Shot Neural Architecture Search approach, this token-type information can be learned jointly with the architecture weights via a learnable attention mask. Experiments on both training a new transformer from scratch and fine-tuning existing large language models show that NAtS can efficiently reduce the KV cache size required for the models while maintaining the models' performance.
comment: 35 pages, 11 figures
♻ ☆ Position: The Current AI Conference Model is Unsustainable! Diagnosing the Crisis of Centralized AI Conference
Artificial Intelligence (AI) conferences are essential for advancing research, sharing knowledge, and fostering academic community. However, their rapid expansion has rendered the centralized conference model increasingly unsustainable. This paper offers a data-driven diagnosis of a structural crisis that threatens the foundational goals of scientific dissemination, equity, and community well-being. We identify four key areas of strain: (1) scientifically, with per-author publication rates more than doubling over the past decade to over 4.5 papers annually; (2) environmentally, with the carbon footprint of a single conference exceeding the daily emissions of its host city; (3) psychologically, with 71% of online community discourse reflecting negative sentiment and 35% referencing mental health concerns; and (4) logistically, with attendance at top conferences such as NeurIPS 2024 beginning to outpace venue capacity. These pressures point to a system that is misaligned with its core mission. In response, we propose the Community-Federated Conference (CFC) model, which separates peer review, presentation, and networking into globally coordinated but locally organized components, offering a more sustainable, inclusive, and resilient path forward for AI research.
comment: Preprint
♻ ☆ Frequency-Dynamic Attention Modulation for Dense Prediction ICCV 2025
Vision Transformers (ViTs) have significantly advanced computer vision, demonstrating strong performance across various tasks. However, the attention mechanism in ViTs makes each layer function as a low-pass filter, and the stacked-layer architecture in existing transformers suffers from frequency vanishing. This leads to the loss of critical details and textures. We propose a novel, circuit-theory-inspired strategy called Frequency-Dynamic Attention Modulation (FDAM), which can be easily plugged into ViTs. FDAM directly modulates the overall frequency response of ViTs and consists of two techniques: Attention Inversion (AttInv) and Frequency Dynamic Scaling (FreqScale). Since circuit theory uses low-pass filters as fundamental elements, we introduce AttInv, a method that generates complementary high-pass filtering by inverting the low-pass filter in the attention matrix, and dynamically combining the two. We further design FreqScale to weight different frequency components for fine-grained adjustments to the target response function. Through feature similarity analysis and effective rank evaluation, we demonstrate that our approach avoids representation collapse, leading to consistent performance improvements across various models, including SegFormer, DeiT, and MaskDINO. These improvements are evident in tasks such as semantic segmentation, object detection, and instance segmentation. Additionally, we apply our method to remote sensing detection, achieving state-of-the-art results in single-scale settings. The code is available at https://github.com/Linwei-Chen/FDAM.
comment: Accepted by ICCV 2025
♻ ☆ On the Fairness of Privacy Protection: Measuring and Mitigating the Disparity of Group Privacy Risks for Differentially Private Machine Learning
While significant progress has been made in conventional fairness-aware machine learning (ML) and differentially private ML (DPML), the fairness of privacy protection across groups remains underexplored. Existing studies have proposed methods to assess group privacy risks, but these are based on the average-case privacy risks of data records. Such approaches may underestimate the group privacy risks, thereby potentially underestimating the disparity across group privacy risks. Moreover, the current method for assessing the worst-case privacy risks of data records is time-consuming, limiting their practical applicability. To address these limitations, we introduce a novel membership inference game that can efficiently audit the approximate worst-case privacy risks of data records. Experimental results demonstrate that our method provides a more stringent measurement of group privacy risks, yielding a reliable assessment of the disparity in group privacy risks. Furthermore, to promote privacy protection fairness in DPML, we enhance the standard DP-SGD algorithm with an adaptive group-specific gradient clipping strategy, inspired by the design of canaries in differential privacy auditing studies. Extensive experiments confirm that our algorithm effectively reduces the disparity in group privacy risks, thereby enhancing the fairness of privacy protection in DPML.
♻ ☆ MCIF: Multimodal Crosslingual Instruction-Following Benchmark from Scientific Talks
Recent advances in large language models have catalyzed the development of multimodal LLMs (MLLMs) that integrate text, speech, and vision within unified frameworks. As MLLMs evolve from narrow, monolingual, task-specific systems to general-purpose instruction-following models, a key frontier lies in evaluating their multilingual and multimodal capabilities over both long and short contexts. However, existing benchmarks fall short in evaluating these dimensions jointly: they are often limited to English, mostly focus on one single modality at a time, rely on short-form contexts, or lack human annotations -- hindering comprehensive assessment of model performance across languages, modalities, and task complexity. To address these gaps, we introduce MCIF (Multimodal Crosslingual Instruction Following), the first multilingual human-annotated benchmark based on scientific talks that is designed to evaluate instruction-following in crosslingual, multimodal settings over both short- and long-form inputs. MCIF spans three core modalities -- speech, vision, and text -- and four diverse languages (English, German, Italian, and Chinese), enabling a comprehensive evaluation of MLLMs' abilities to interpret instructions across languages and combine them with multimodal contextual information. MCIF is released under a CC-BY 4.0 license to encourage open research and progress in MLLMs development.
comment: Data available at https://huggingface.co/datasets/FBK-MT/MCIF | Evaluation and baselines available at https://github.com/hlt-mt/mcif
♻ ☆ Face-Human-Bench: A Comprehensive Benchmark of Face and Human Understanding for Multi-modal Assistants NeurIPS 2025
Faces and humans are crucial elements in social interaction and are widely included in everyday photos and videos. Therefore, a deep understanding of faces and humans will enable multi-modal assistants to achieve improved response quality and broadened application scope. Currently, the multi-modal assistant community lacks a comprehensive and scientific evaluation of face and human understanding abilities. In this paper, we first propose a hierarchical ability taxonomy that includes three levels of abilities. Then, based on this taxonomy, we collect images and annotations from publicly available datasets in the face and human community and build a semi-automatic data pipeline to produce problems for the new benchmark. Finally, the obtained Face-Human-Bench includes a development set and a test set, each with 1800 problems, supporting both English and Chinese. We conduct evaluations over 25 mainstream multi-modal large language models (MLLMs) with our Face-Human-Bench, focusing on the correlation between abilities, the impact of the relative position of targets on performance, and the impact of Chain of Thought (CoT) prompting on performance. We also explore which abilities of MLLMs need to be supplemented by specialist models. The dataset and evaluation code have been made publicly available at https://face-human-bench.github.io.
comment: 50 pages, 14 figures, 42 tables. NeurIPS 2025 Datasets and Benchmarks Track
♻ ☆ Breaking mBad! Supervised Fine-tuning for Cross-Lingual Detoxification
As large language models (LLMs) become increasingly prevalent in global applications, ensuring that they are toxicity-free across diverse linguistic contexts remains a critical challenge. We explore "Cross-lingual Detoxification", a cross-lingual paradigm that mitigates toxicity, enabling detoxification capabilities to transfer between high and low-resource languages across different script families. We analyze cross-lingual detoxification's effectiveness through 392 extensive settings to evaluate toxicity reduction in cross-distribution settings with limited data and investigate how mitigation impacts model performance on non-toxic tasks, revealing trade-offs between safety and knowledge preservation. Our code and dataset are publicly available at https://github.com/himanshubeniwal/Breaking-mBad.
comment: Accepted at MELT Workshop @ COLM 2025
♻ ☆ Memory Decoder: A Pretrained, Plug-and-Play Memory for Large Language Models
Large Language Models (LLMs) have shown strong abilities in general language tasks, yet adapting them to specific domains remains a challenge. Current method like Domain Adaptive Pretraining (DAPT) requires costly full-parameter training and suffers from catastrophic forgetting. Meanwhile, Retrieval-Augmented Generation (RAG) introduces substantial inference latency due to expensive nearest-neighbor searches and longer context. This paper introduces Memory Decoder, a plug-and-play pretrained memory that enables efficient domain adaptation without changing the original model's parameters. Memory Decoder employs a small transformer decoder that learns to imitate the behavior of an external non-parametric retriever. Once trained, Memory Decoder can be seamlessly integrated with any pretrained language model that shares the same tokenizer, requiring no model-specific modifications. Experimental results demonstrate that Memory Decoder enables effective adaptation of various Qwen and Llama models to three distinct specialized domains: biomedicine, finance, and law, reducing perplexity by an average of 6.17 points. Overall, Memory Decoder introduces a novel paradigm centered on a specially pretrained memory component designed for domain-specific adaptation. This memory architecture can be integrated in a plug-and-play manner, consistently enhancing performance across multiple models within the target domain.
♻ ☆ MindForge: Empowering Embodied Agents with Theory of Mind for Lifelong Cultural Learning NeurIPS 2025
Embodied agents powered by large language models (LLMs), such as Voyager, promise open-ended competence in worlds such as Minecraft. However, when powered by open-weight LLMs they still falter on elementary tasks after domain-specific fine-tuning. We propose MindForge, a generative-agent framework for cultural lifelong learning through explicit perspective taking. We introduce three key innovations: (1) a structured theory of mind representation linking percepts, beliefs, desires, and actions; (2) natural inter-agent communication; and (3) a multi-component memory system. Following the cultural learning framework, we test MindForge in both instructive and collaborative settings within Minecraft. In an instructive setting with GPT-4, MindForge agents powered by open-weight LLMs significantly outperform their Voyager counterparts in basic tasks yielding $3\times$ more tech-tree milestones and collecting $2.3\times$ more unique items than the Voyager baseline. Furthermore, in fully \textit{collaborative} settings, we find that the performance of two underachieving agents improves with more communication rounds, echoing the Condorcet Jury Theorem. MindForge agents demonstrate sophisticated behaviors, including expert-novice knowledge transfer, collaborative problem solving, and adaptation to out-of-distribution tasks through accumulated cultural experiences.
comment: Accepted to NeurIPS 2025 main track as poster
♻ ☆ HauntAttack: When Attack Follows Reasoning as a Shadow
Emerging Large Reasoning Models (LRMs) consistently excel in mathematical and reasoning tasks, showcasing remarkable capabilities. However, the enhancement of reasoning abilities and the exposure of internal reasoning processes introduce new safety vulnerabilities. A critical question arises: when reasoning becomes intertwined with harmfulness, will LRMs become more vulnerable to jailbreaks in reasoning mode? To investigate this, we introduce HauntAttack, a novel and general-purpose black-box adversarial attack framework that systematically embeds harmful instructions into reasoning questions. Specifically, we modify key reasoning conditions in existing questions with harmful instructions, thereby constructing a reasoning pathway that guides the model step by step toward unsafe outputs. We evaluate HauntAttack on 11 LRMs and observe an average attack success rate of 70\%, achieving up to 12 percentage points of absolute improvement over the strongest prior baseline. Our further analysis reveals that even advanced safety-aligned models remain highly susceptible to reasoning-based attacks, offering insights into the urgent challenge of balancing reasoning capability and safety in future model development.
♻ ☆ HumanCM: One Step Human Motion Prediction
We present HumanCM, a one-step human motion prediction framework built upon consistency models. Instead of relying on multi-step denoising as in diffusion-based methods, HumanCM performs efficient single-step generation by learning a self-consistent mapping between noisy and clean motion states. The framework adopts a Transformer-based spatiotemporal architecture with temporal embeddings to model long-range dependencies and preserve motion coherence. Experiments on Human3.6M and HumanEva-I demonstrate that HumanCM achieves comparable or superior accuracy to state-of-the-art diffusion models while reducing inference steps by up to two orders of magnitude.
comment: 6 pages, 3 figures, 2 tables
♻ ☆ Balanced Token Pruning: Accelerating Vision Language Models Beyond Local Optimization
Large Vision-Language Models (LVLMs) have shown impressive performance across multi-modal tasks by encoding images into thousands of tokens. However, the large number of image tokens results in significant computational overhead, and the use of dynamic high-resolution inputs further increases this burden. Previous approaches have attempted to reduce the number of image tokens through token pruning, typically by selecting tokens based on attention scores or image token diversity. Through empirical studies, we observe that existing methods often overlook the joint impact of pruning on both the current layer's output (local) and the outputs of subsequent layers (global), leading to suboptimal pruning decisions. To address this challenge, we propose Balanced Token Pruning (BTP), a plug-and-play method for pruning vision tokens. Specifically, our method utilizes a small calibration set to divide the pruning process into multiple stages. In the early stages, our method emphasizes the impact of pruning on subsequent layers, whereas in the deeper stages, the focus shifts toward preserving the consistency of local outputs. Extensive experiments across various LVLMs demonstrate the broad effectiveness of our approach on multiple benchmarks. Our method achieves a 78% compression rate while preserving 96.7% of the original models' performance on average. Our code is available at https://github.com/EmbodiedCity/NeurIPS2025-Balanced-Token-Pruning.
comment: Accepted by Neurips 2025
♻ ☆ Fine-Tuning Multilingual Language Models for Code Review: An Empirical Study on Industrial C# Projects
Code review is essential for maintaining software quality but often time-consuming and cognitively demanding, especially in industrial environments. Recent advancements in language models (LMs) have opened new avenues for automating core review tasks. This study presents the empirical evaluation of monolingual fine-tuning on the performance of open-source LMs across three key automated code review tasks: Code Change Quality Estimation, Review Comment Generation, and Code Refinement. We fine-tuned three distinct models, CodeReviewer, CodeLlama-7B, and DeepSeek-R1-Distill, on a C\# specific dataset combining public benchmarks with industrial repositories. Our study investigates how different configurations of programming languages and natural languages in the training data affect LM performance, particularly in comment generation. Additionally, we benchmark the fine-tuned models against an automated software analysis tool (ASAT) and human reviewers to evaluate their practical utility in real-world settings. Our results show that monolingual fine-tuning improves model accuracy and relevance compared to multilingual baselines. While LMs can effectively support code review workflows, especially for routine or repetitive tasks, human reviewers remain superior in handling semantically complex or context-sensitive changes. Our findings highlight the importance of language alignment and task-specific adaptation in optimizing LMs for automated code review.
♻ ☆ LeVo: High-Quality Song Generation with Multi-Preference Alignment NeurIPS 2025
Recent advances in large language models (LLMs) and audio language models have significantly improved music generation, particularly in lyrics-to-song generation. However, existing approaches still struggle with the complex composition of songs and the scarcity of high-quality data, leading to limitations in audio quality, musicality, instruction following, and vocal-instrument harmony. To address these challenges, we introduce LeVo, a language model based framework consisting of LeLM and Music Codec. LeLM is capable of parallel modeling of two types of tokens: mixed tokens, which represent the combined audio of vocals and accompaniment to achieve better vocal-instrument harmony, and dual-track tokens, which separately encode vocals and accompaniment for high-quality song generation. It employs two decoder-only transformers and a modular extension training strategy to prevent interference between different token types. To further enhance musicality and instruction following ability, we introduce a multi-preference alignment method based on Direct Preference Optimization (DPO). This method handles diverse human preferences through a semi-automatic data construction process and post-training. Experimental results demonstrate that LeVo significantly outperforms existing open-source methods in both objective and subjective metrics, while performing competitively with industry systems. Ablation studies further justify the effectiveness of our designs. Audio examples and source code are available at https://levo-demo.github.io and https://github.com/tencent-ailab/songgeneration.
comment: Accepted by NeurIPS 2025
♻ ☆ SAFEPATH: Preventing Harmful Reasoning in Chain-of-Thought via Early Alignment NeurIPS 2025
Large Reasoning Models (LRMs) have become powerful tools for complex problem solving, but their structured reasoning pathways can lead to unsafe outputs when exposed to harmful prompts. Existing safety alignment methods reduce harmful outputs but can degrade reasoning depth, leading to significant trade-offs in complex, multi-step tasks, and remain vulnerable to sophisticated jailbreak attacks. To address this, we introduce SAFEPATH, a lightweight alignment method that fine-tunes LRMs to emit a short, 8-token Safety Primer at the start of their reasoning, in response to harmful prompts, while leaving the rest of the reasoning process unsupervised. Empirical results across multiple benchmarks indicate that SAFEPATH effectively reduces harmful outputs while maintaining reasoning performance. Specifically, SAFEPATH reduces harmful responses by up to 90.0% and blocks 83.3% of jailbreak attempts in the DeepSeek-R1-Distill-Llama-8B model, while requiring 295.9x less compute than Direct Refusal and 314.1x less than SafeChain. We further introduce a zero-shot variant that requires no fine-tuning. In addition, we provide a comprehensive analysis of how existing methods in LLMs generalize, or fail, when applied to reasoning-centric models, revealing critical gaps and new directions for safer AI.
comment: Accepted at NeurIPS 2025. Code and models are available at https://ai-isl.github.io/safepath
♻ ☆ TriQuest:An AI Copilot-Powered Platform for Interdisciplinary Curriculum Design
Interdisciplinary teaching is a cornerstone of modern curriculum reform, but its implementation is hindered by challenges in knowledge integration and time-consuming lesson planning. Existing tools often lack the required pedagogical and domain-specific depth.We introduce TriQuest, an AI-copilot platform designed to solve these problems. TriQuest uses large language models and knowledge graphs via an intuitive GUI to help teachers efficiently generate high-quality interdisciplinary lesson plans. Its core features include intelligent knowledge integration from various disciplines and a human-computer collaborative review process to ensure quality and innovation.In a study with 43 teachers, TriQuest increased curriculum design efficiency and improved lesson plan quality. It also significantly lowered design barriers and cognitive load. Our work presents a new paradigm for empowering teacher professional development with intelligent technologies.
comment: 16 pages, 4 figures
♻ ☆ Benchmarking World-Model Learning
Model-learning agents should gather information to learn world models that support many downstream tasks and inferences, such as predicting unobserved states, estimating near- and far-term consequences of actions, planning action sequences, and detecting changes in dynamics. Current methods for learning and evaluating world models diverge from this goal: training and evaluation are anchored to next-frame prediction, and success is scored by reward maximization in the same environment. We propose WorldTest, a protocol to evaluate model-learning agents that separates reward-free interaction from a scored test phase in a different but related environment. WorldTest is open-ended$\unicode{x2014}$models should support many different tasks unknown ahead of time$\unicode{x2014}$and agnostic to model representation, allowing comparison across approaches. We instantiated WorldTest with AutumnBench, a suite of 43 interactive grid-world environments and 129 tasks across three families: masked-frame prediction, planning, and predicting changes to the causal dynamics. We compared 517 human participants and three frontier models on AutumnBench. We found that humans outperform the models, and scaling compute improves performance only in some environments but not others. WorldTest provides a novel template$\unicode{x2014}$reward-free exploration, derived tests, and behavior-based scoring$\unicode{x2014}$to evaluate what agents learn about environment dynamics, and AutumnBench exposes significant headroom in world-model learning.
comment: 30 pages, 10 figures
♻ ☆ HoMer: Addressing Heterogeneities by Modeling Sequential and Set-wise Contexts for CTR Prediction
Click-through rate (CTR) prediction, which models behavior sequence and non-sequential features (e.g., user/item profiles or cross features) to infer user interest, underpins industrial recommender systems. However, most methods face three forms of heterogeneity that degrade predictive performance: (i) Feature Heterogeneity persists when limited sequence side features provide less granular interest representation compared to extensive non-sequential features, thereby impairing sequence modeling performance; (ii) Context Heterogeneity arises because a user's interest in an item will be influenced by other items, yet point-wise prediction neglects cross-item interaction context from the entire item set; (iii) Architecture Heterogeneity stems from the fragmented integration of specialized network modules, which compounds the model's effectiveness, efficiency and scalability in industrial deployments. To tackle the above limitations, we propose HoMer, a Homogeneous-Oriented TransforMer for modeling sequential and set-wise contexts. First, we align sequence side features with non-sequential features for accurate sequence modeling and fine-grained interest representation. Second, we shift the prediction paradigm from point-wise to set-wise, facilitating cross-item interaction in a highly parallel manner. Third, HoMer's unified encoder-decoder architecture achieves dual optimization through structural simplification and shared computation, ensuring computational efficiency while maintaining scalability with model size. Without arduous modification to the prediction pipeline, HoMer successfully scales up and outperforms our industrial baseline by 0.0099 in the AUC metric, and enhances online business metrics like CTR/RPM by 1.99%/2.46%. Additionally, HoMer saves 27% of GPU resources via preliminary engineering optimization, further validating its superiority and practicality.
comment: 10 pages, 6 figures
♻ ☆ Bayes or Heisenberg: Who(se) Rules?
Although quantum systems are generally described by quantum state vectors, we show that in certain cases their measurement processes can be reformulated as probabilistic equations expressed in terms of probabilistic state vectors. These probabilistic representations can, in turn, be approximated by the neural network dynamics of the Tensor Brain (TB) model. The Tensor Brain is a recently proposed framework for modeling perception and memory in the brain, providing a biologically inspired mechanism for efficiently integrating generated symbolic representations into reasoning processes.
♻ ☆ PRUNE: A Patching Based Repair Framework for Certifiable Unlearning of Neural Networks
It is often desirable to remove (a.k.a. unlearn) a specific part of the training data from a trained neural network model. A typical application scenario is to protect the data holder's right to be forgotten, which has been promoted by many recent regulation rules. Existing unlearning methods involve training alternative models with remaining data, which may be costly and challenging to verify from the data holder or a thirdparty auditor's perspective. In this work, we provide a new angle and propose a novel unlearning approach by imposing carefully crafted "patch" on the original neural network to achieve targeted "forgetting" of the requested data to delete. Specifically, inspired by the research line of neural network repair, we propose to strategically seek a lightweight minimum "patch" for unlearning a given data point with certifiable guarantee. Furthermore, to unlearn a considerable amount of data points (or an entire class), we propose to iteratively select a small subset of representative data points to unlearn, which achieves the effect of unlearning the whole set. Extensive experiments on multiple categorical datasets demonstrates our approach's effectiveness, achieving measurable unlearning while preserving the model's performance and being competitive in efficiency and memory consumption compared to various baseline methods.
♻ ☆ The Parameterized Complexity of Computing the VC-Dimension NeurIPS 2025
The VC-dimension is a well-studied and fundamental complexity measure of a set system (or hypergraph) that is central to many areas of machine learning. We establish several new results on the complexity of computing the VC-dimension. In particular, given a hypergraph $\mathcal{H}=(\mathcal{V},\mathcal{E})$, we prove that the naive $2^{\mathcal{O}(|\mathcal{V}|)}$-time algorithm is asymptotically tight under the Exponential Time Hypothesis (ETH). We then prove that the problem admits a $1$-additive fixed-parameter approximation algorithm when parameterized by the maximum degree of $\mathcal{H}$ and a fixed-parameter algorithm when parameterized by its dimension, and that these are essentially the only such exploitable structural parameters. Lastly, we consider a generalization of the problem, formulated using graphs, which captures the VC-dimension of both set systems and graphs. We design a $2^{\mathcal{O}(\rm{tw}\cdot \log \rm{tw})}\cdot |V|$-time algorithm for any graph $G=(V,E)$ of treewidth $\rm{tw}$ (which, for a set system, applies to the treewidth of its incidence graph). This is in contrast with closely related problems that require a double-exponential dependency on the treewidth (assuming the ETH).
comment: To appear in the proceedings of NeurIPS 2025
♻ ☆ Multi-Agent Reinforcement Learning for Task Offloading in Wireless Edge Networks NeurIPS'25
In edge computing systems, autonomous agents must make fast local decisions while competing for shared resources. Existing MARL methods often resume to centralized critics or frequent communication, which fail under limited observability and communication constraints. We propose a decentralized framework in which each agent solves a constrained Markov decision process (CMDP), coordinating implicitly through a shared constraint vector. For the specific case of offloading, e.g., constraints prevent overloading shared server resources. Coordination constraints are updated infrequently and act as a lightweight coordination mechanism. They enable agents to align with global resource usage objectives but require little direct communication. Using safe reinforcement learning, agents learn policies that meet both local and global goals. We establish theoretical guarantees under mild assumptions and validate our approach experimentally, showing improved performance over centralized and independent baselines, especially in large-scale settings.
comment: Oral presentation at AI4NextG @ NeurIPS'25 Workshop
♻ ☆ BuildArena: A Physics-Aligned Interactive Benchmark of LLMs for Engineering Construction
Engineering construction automation aims to transform natural language specifications into physically viable structures, requiring complex integrated reasoning under strict physical constraints. While modern LLMs possess broad knowledge and strong reasoning capabilities that make them promising candidates for this domain, their construction competencies remain largely unevaluated. To address this gap, we introduce BuildArena, the first physics-aligned interactive benchmark designed for language-driven engineering construction. It contributes to the community in four aspects: (1) a highly customizable benchmarking framework for in-depth comparison and analysis of LLMs; (2) an extendable task design strategy spanning static and dynamic mechanics across multiple difficulty tiers; (3) a 3D Spatial Geometric Computation Library for supporting construction based on language instructions; (4) a baseline LLM agentic workflow that effectively evaluates diverse model capabilities. On eight frontier LLMs, BuildArena comprehensively evaluates their capabilities for language-driven and physics-grounded construction automation. The project page is at https://build-arena.github.io/.
comment: 33 pages, 10 figures
♻ ☆ Train with Perturbation, Infer after Merging: A Two-Stage Framework for Continual Learning NeurIPS 2025
Continual Learning (CL) aims to enable models to continuously acquire new knowledge from a sequence of tasks with avoiding the forgetting of learned information. However, existing CL methods only rely on the parameters of the most recent task for inference, which makes them susceptible to catastrophic forgetting. Inspired by the recent success of model merging techniques, we propose \textbf{Perturb-and-Merge (P\&M)}, a novel continual learning framework that integrates model merging into the CL paradigm to mitigate forgetting. Specifically, after training on each task, P\&M constructs a new model by forming a convex combination of the previous model and the newly trained task-specific model. Through theoretical analysis, We minimize the total loss increase across all tasks and derive a closed-form solution for the merging coefficient under mild assumptions. To further improve the performance of the merged model, we observe that the degradation introduced during merging can be alleviated by a regularization term composed of the task vector and the Hessian matrix of the loss function. Interestingly, we show that this term can be efficiently approximated using second-order symmetric finite differences, and a stochastic perturbation strategy along the task vector direction is accordingly devised which incurs no additional forward or backward passes while providing an effective approximation of the regularization term. Finally, we combine P\&M with LoRA, a parameter-efficient fine-tuning method, to reduce memory overhead. Our proposed approach achieves state-of-the-art performance on several continual learning benchmark datasets. The code is available at https://github.com/qhmiao/P-M-for-Continual-Learning.
comment: Accepted by NeurIPS 2025
♻ ☆ Shallow Flow Matching for Coarse-to-Fine Text-to-Speech Synthesis NeurIPS 2025
We propose Shallow Flow Matching (SFM), a novel mechanism that enhances flow matching (FM)-based text-to-speech (TTS) models within a coarse-to-fine generation paradigm. Unlike conventional FM modules, which use the coarse representations from the weak generator as conditions, SFM constructs intermediate states along the FM paths from these representations. During training, we introduce an orthogonal projection method to adaptively determine the temporal position of these states, and apply a principled construction strategy based on a single-segment piecewise flow. The SFM inference starts from the intermediate state rather than pure noise, thereby focusing computation on the latter stages of the FM paths. We integrate SFM into multiple TTS models with a lightweight SFM head. Experiments demonstrate that SFM yields consistent gains in speech naturalness across both objective and subjective evaluations, and significantly accelerates inference when using adaptive-step ODE solvers. Demo and codes are available at https://ydqmkkx.github.io/SFMDemo/.
comment: Accepted by NeurIPS 2025
♻ ☆ SPLite Hand: Sparsity-Aware Lightweight 3D Hand Pose Estimation
With the increasing ubiquity of AR/VR devices, the deployment of deep learning models on edge devices has become a critical challenge. These devices require real-time inference, low power consumption, and minimal latency. Many framework designers face the conundrum of balancing efficiency and performance. We design a light framework that adopts an encoder-decoder architecture and introduces several key contributions aimed at improving both efficiency and accuracy. We apply sparse convolution on a ResNet-18 backbone to exploit the inherent sparsity in hand pose images, achieving a 42% end-to-end efficiency improvement. Moreover, we propose our SPLite decoder. This new architecture significantly boosts the decoding process's frame rate by 3.1x on the Raspberry Pi 5, while maintaining accuracy on par. To further optimize performance, we apply quantization-aware training, reducing memory usage while preserving accuracy (PA-MPJPE increases only marginally from 9.0 mm to 9.1 mm on FreiHAND). Overall, our system achieves a 2.98x speed-up on a Raspberry Pi 5 CPU (BCM2712 quad-core Arm A76 processor). Our method is also evaluated on compound benchmark datasets, demonstrating comparable accuracy to state-of-the-art approaches while significantly enhancing computational efficiency.
comment: Accepted to AICCC 2025
♻ ☆ UMoE: Unifying Attention and FFN with Shared Experts NeurIPS 2025
Sparse Mixture of Experts (MoE) architectures have emerged as a promising approach for scaling Transformer models. While initial works primarily incorporated MoE into feed-forward network (FFN) layers, recent studies have explored extending the MoE paradigm to attention layers to enhance model performance. However, existing attention-based MoE layers require specialized implementations and demonstrate suboptimal performance compared to their FFN-based counterparts. In this paper, we aim to unify MoE designs in attention and FFN layers by introducing a novel reformulation of the attention mechanism, that reveals an underlying FFN-like structure within attention modules. Our proposed architecture, UMoE, achieves superior performance through attention-based MoE layers while enabling efficient parameter sharing between FFN and attention components.
comment: NeurIPS 2025 Spotlight
♻ ☆ Timely Clinical Diagnosis through Active Test Selection
There is growing interest in using machine learning (ML) to support clinical diag- nosis, but most approaches rely on static, fully observed datasets and fail to reflect the sequential, resource-aware reasoning clinicians use in practice. Diagnosis remains complex and error prone, especially in high-pressure or resource-limited settings, underscoring the need for frameworks that help clinicians make timely and cost-effective decisions. We propose ACTMED (Adaptive Clinical Test selection via Model-based Experimental Design), a diagnostic framework that integrates Bayesian Experimental Design (BED) with large language models (LLMs) to better emulate real-world diagnostic reasoning. At each step, ACTMED selects the test expected to yield the greatest reduction in diagnostic uncertainty for a given patient. LLMs act as flexible simulators, generating plausible patient state distributions and supporting belief updates without requiring structured, task-specific training data. Clinicians can remain in the loop; reviewing test suggestions, interpreting intermediate outputs, and applying clinical judgment throughout. We evaluate ACTMED on real-world datasets and show it can optimize test selection to improve diagnostic accuracy, interpretability, and resource use. This represents a step to- ward transparent, adaptive, and clinician-aligned diagnostic systems that generalize across settings with reduced reliance on domain-specific data.
comment: None
♻ ☆ Bi-Mamba: Towards Accurate 1-Bit State Space Models
The typical Selective State-Space Model (SSM) used in Mamba addresses several limitations of Transformers, such as the quadratic computational complexity with respect to sequence length and the significant memory requirements during inference due to the key-value (KV) cache. However, the increasing size of Mamba models continues to pose challenges for training and deployment, particularly due to their substantial computational demands during both training and inference. In this work, we introduce $\texttt{Bi-Mamba}$, a scalable and powerful 1-bit Mamba architecture designed to enable more efficient large language models (LLMs), with model sizes of 780M, 1.3B, and 2.7B parameters. $\texttt{Bi-Mamba}$ models are trained from scratch on a standard LLM-scale dataset using an autoregressive distillation loss. Extensive experiments on language modeling benchmarks demonstrate that $\texttt{Bi-Mamba}$ achieves performance comparable to its full-precision (FP16 or BF16) counterparts, while outperforming post-training binarization (PTB) Mamba and binarization-aware training (BAT) Transformer baselines. Moreover, $\texttt{Bi-Mamba}$ drastically reduces memory usage and computational cost compared to the original Mamba. Our work pioneers a new line of linear-complexity LLMs under low-bit representation and provides the way for the design of specialized hardware optimized for efficient 1-bit Mamba-based models. Code and the pre-trained weights are available at https://github.com/Tangshengku/Bi-Mamba.
comment: Accepted in TMLR 2025
♻ ☆ Local Guidance for Configuration-Based Multi-Agent Pathfinding
Guidance is an emerging concept that improves the empirical performance of real-time, sub-optimal multi-agent pathfinding (MAPF) methods. It offers additional information to MAPF algorithms to mitigate congestion on a global scale by considering the collective behavior of all agents across the entire workspace. This global perspective helps reduce agents' waiting times, thereby improving overall coordination efficiency. In contrast, this study explores an alternative approach: providing local guidance in the vicinity of each agent. While such localized methods involve recomputation as agents move and may appear computationally demanding, we empirically demonstrate that supplying informative spatiotemporal cues to the planner can significantly improve solution quality without exceeding a moderate time budget. When applied to LaCAM, a leading configuration-based solver, this form of guidance establishes a new performance frontier for MAPF.
comment: 10 pages
♻ ☆ GUIDE: Enhancing Gradient Inversion Attacks in Federated Learning with Denoising Models IEEE
Federated Learning (FL) enables collaborative training of Machine Learning (ML) models across multiple clients while preserving their privacy. Rather than sharing raw data, federated clients transmit locally computed updates to train the global model. Although this paradigm should provide stronger privacy guarantees than centralized ML, client updates remain vulnerable to privacy leakage. Adversaries can exploit them to infer sensitive properties about the training data or even to reconstruct the original inputs via Gradient Inversion Attacks (GIAs). Under the honest-butcurious threat model, GIAs attempt to reconstruct training data by reversing intermediate updates using optimizationbased techniques. We observe that these approaches usually reconstruct noisy approximations of the original inputs, whose quality can be enhanced with specialized denoising models. This paper presents Gradient Update Inversion with DEnoising (GUIDE), a novel methodology that leverages diffusion models as denoising tools to improve image reconstruction attacks in FL. GUIDE can be integrated into any GIAs that exploits surrogate datasets, a widely adopted assumption in GIAs literature. We comprehensively evaluate our approach in two attack scenarios that use different FL algorithms, models, and datasets. Our results demonstrate that GUIDE integrates seamlessly with two state-ofthe- art GIAs, substantially improving reconstruction quality across multiple metrics. Specifically, GUIDE achieves up to 46% higher perceptual similarity, as measured by the DreamSim metric.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ Diagnosing Representation Dynamics in NER Model Extension
Extending Named Entity Recognition (NER) models to new PII entities in noisy spoken-language data is a common need. We find that jointly fine-tuning a BERT model on standard semantic entities (PER, LOC, ORG) and new pattern-based PII (EMAIL, PHONE) results in minimal degradation for original classes. We investigate this "peaceful coexistence," hypothesizing that the model uses independent semantic vs. morphological feature mechanisms. Using an incremental learning setup as a diagnostic tool, we measure semantic drift and find two key insights. First, the LOC (location) entity is uniquely vulnerable due to a representation overlap with new PII, as it shares pattern-like features (e.g., postal codes). Second, we identify a "reverse O-tag representation drift." The model, initially trained to map PII patterns to 'O', blocks new learning. This is resolved only by unfreezing the 'O' tag's classifier, allowing the background class to adapt and "release" these patterns. This work provides a mechanistic diagnosis of NER model adaptation, highlighting feature independence, representation overlap, and 'O' tag plasticity. Work done based on data gathered by https://www.papernest.com
♻ ☆ S$^2$-Diffusion: Generalizing from Instance-level to Category-level Skills in Robot Manipulation
Recent advances in skill learning has propelled robot manipulation to new heights by enabling it to learn complex manipulation tasks from a practical number of demonstrations. However, these skills are often limited to the particular action, object, and environment \textit{instances} that are shown in the training data, and have trouble transferring to other instances of the same category. In this work we present an open-vocabulary Spatial-Semantic Diffusion policy (S$^2$-Diffusion) which enables generalization from instance-level training data to category-level, enabling skills to be transferable between instances of the same category. We show that functional aspects of skills can be captured via a promptable semantic module combined with a spatial representation. We further propose leveraging depth estimation networks to allow the use of only a single RGB camera. Our approach is evaluated and compared on a diverse number of robot manipulation tasks, both in simulation and in the real world. Our results show that S$^2$-Diffusion is invariant to changes in category-irrelevant factors as well as enables satisfying performance on other instances within the same category, even if it was not trained on that specific instance. Project website: https://s2-diffusion.github.io.
♻ ☆ A Survey on Cache Methods in Diffusion Models: Toward Efficient Multi-Modal Generation
Diffusion Models have become a cornerstone of modern generative AI for their exceptional generation quality and controllability. However, their inherent \textit{multi-step iterations} and \textit{complex backbone networks} lead to prohibitive computational overhead and generation latency, forming a major bottleneck for real-time applications. Although existing acceleration techniques have made progress, they still face challenges such as limited applicability, high training costs, or quality degradation. Against this backdrop, \textbf{Diffusion Caching} offers a promising training-free, architecture-agnostic, and efficient inference paradigm. Its core mechanism identifies and reuses intrinsic computational redundancies in the diffusion process. By enabling feature-level cross-step reuse and inter-layer scheduling, it reduces computation without modifying model parameters. This paper systematically reviews the theoretical foundations and evolution of Diffusion Caching and proposes a unified framework for its classification and analysis. Through comparative analysis of representative methods, we show that Diffusion Caching evolves from \textit{static reuse} to \textit{dynamic prediction}. This trend enhances caching flexibility across diverse tasks and enables integration with other acceleration techniques such as sampling optimization and model distillation, paving the way for a unified, efficient inference framework for future multimodal and interactive applications. We argue that this paradigm will become a key enabler of real-time and efficient generative AI, injecting new vitality into both theory and practice of \textit{Efficient Generative Intelligence}.
comment: 22 pages,2 figures
♻ ☆ Addressing Pitfalls in the Evaluation of Uncertainty Estimation Methods for Natural Language Generation
Hallucinations are a common issue that undermine the reliability of large language models (LLMs). Recent studies have identified a specific subset of hallucinations, known as confabulations, which arise due to predictive uncertainty of LLMs. To detect confabulations, various methods for estimating predictive uncertainty in natural language generation (NLG) have been developed. These methods are typically evaluated by correlating uncertainty estimates with the correctness of generated text, with question-answering (QA) datasets serving as the standard benchmark. However, commonly used approximate correctness functions have substantial disagreement between each other and, consequently, in the ranking of the uncertainty estimation methods. This allows one to inflate the apparent performance of uncertainty estimation methods. We propose using several alternative risk indicators for risk correlation experiments that improve robustness of empirical assessment of UE algorithms for NLG. For QA tasks, we show that marginalizing over multiple LLM-as-a-judge variants leads to reducing the evaluation biases. Furthermore, we explore structured tasks as well as out of distribution and perturbation detection tasks which provide robust and controllable risk indicators. Finally, we propose to use an Elo rating of uncertainty estimation methods to give an objective summarization over extensive evaluation settings.
comment: Preprint, under review
♻ ☆ Quantization-Aware Neuromorphic Architecture for Efficient Skin Disease Classification on Resource-Constrained Devices
Accurate and efficient skin lesion classification on edge devices is critical for accessible dermatological care but remains challenging due to computational, energy, and privacy constraints. We introduce QANA, a novel quantization-aware neuromorphic architecture for incremental skin lesion classification on resource-limited hardware. QANA effectively integrates ghost modules, efficient channel attention, and squeeze-and-excitation blocks for robust feature representation with low-latency and energy-efficient inference. Its quantization-aware head and spike-compatible transformations enable seamless conversion to spiking neural networks (SNNs) and deployment on neuromorphic platforms. Evaluation on the large-scale HAM10000 benchmark and a real-world clinical dataset shows that QANA achieves 91.6% Top-1 accuracy and 82.4% macro F1 on HAM10000, and 90.8%/81.7% on the clinical dataset, significantly outperforming state-of-the-art CNN-to-SNN models under fair comparison. Deployed on BrainChip Akida hardware, QANA achieves 1.5 ms inference latency and 1.7,mJ energy per image, reducing inference latency and energy use by over 94.6%/98.6% compared to GPU-based CNNs surpassing state-of-the-art CNN-to-SNN conversion baselines. These results demonstrate the effectiveness of QANA for accurate, real-time, and privacy-sensitive medical analysis in edge environments.
♻ ☆ Your Pre-trained LLM is Secretly an Unsupervised Confidence Calibrator
Post-training of large language models is essential for adapting pre-trained language models (PLMs) to align with human preferences and downstream tasks. While PLMs typically exhibit well-calibrated confidence, post-trained language models (PoLMs) often suffer from over-confidence, assigning high confidence to both correct and incorrect outputs, which can undermine reliability in critical applications. A major obstacle in calibrating PoLMs is the scarcity of labeled data for individual downstream tasks. To address this, we propose Disagreement-Aware Confidence Alignment (DACA), a novel unsupervised method to optimize the parameters (e.g., temperature $\tau$) in post-hoc confidence calibration. Our method is motivated by the under-confidence issue caused by prediction disagreement between the PLM and PoLM while aligning their confidence via temperature scaling. Theoretically, the PLM's confidence underestimates PoLM's prediction accuracy on disagreement examples, causing a larger $\tau$ and producing under-confident predictions. DACA mitigates this by selectively using only agreement examples for calibration, effectively decoupling the influence of disagreement. In this manner, our method avoids an overly large $\tau$ in temperature scaling caused by disagreement examples, improving calibration performance. Extensive experiments demonstrate the effectiveness of our method, improving the average ECE of open-sourced and API-based LLMs (e.g. GPT-4o) by up to 15.08$\%$ on common benchmarks.
♻ ☆ Leveraging Analytic Gradients in Provably Safe Reinforcement Learning
The deployment of autonomous robots in safety-critical applications requires safety guarantees. Provably safe reinforcement learning is an active field of research that aims to provide such guarantees using safeguards. These safeguards should be integrated during training to reduce the sim-to-real gap. While there are several approaches for safeguarding sampling-based reinforcement learning, analytic gradient-based reinforcement learning often achieves superior performance from fewer environment interactions. However, there is no safeguarding approach for this learning paradigm yet. Our work addresses this gap by developing the first effective safeguard for analytic gradient-based reinforcement learning. We analyse existing, differentiable safeguards, adapt them through modified mappings and gradient formulations, and integrate them into a state-of-the-art learning algorithm and a differentiable simulation. Using numerical experiments on three control tasks, we evaluate how different safeguards affect learning. The results demonstrate safeguarded training without compromising performance. Additional visuals are provided at \href{https://timwalter.github.io/safe-agb-rl.github.io}{timwalter.github.io/safe-agb-rl.github.io}.
comment: 21 pages, 10 figures
♻ ☆ Learning Contrastive Feature Representations for Facial Action Unit Detection
For the Facial Action Unit (AU) detection task, accurately capturing the subtle facial differences between distinct AUs is essential for reliable detection. Additionally, AU detection faces challenges from class imbalance and the presence of noisy or false labels, which undermine detection accuracy. In this paper, we introduce a novel contrastive learning framework aimed for AU detection that incorporates both self-supervised and supervised signals, thereby enhancing the learning of discriminative features for accurate AU detection. To tackle the class imbalance issue, we employ a negative sample re-weighting strategy that adjusts the step size of updating parameters for minority and majority class samples. Moreover, to address the challenges posed by noisy and false AU labels, we employ a sampling technique that encompasses three distinct types of positive sample pairs. This enables us to inject self-supervised signals into the supervised signal, effectively mitigating the adverse effects of noisy labels. Our experimental assessments, conducted on five widely-utilized benchmark datasets (BP4D, DISFA, BP4D+, GFT and Aff-Wild2), underscore the superior performance of our approach compared to state-of-the-art methods of AU detection. Our code is available at https://github.com/Ziqiao-Shang/AUNCE.
♻ ☆ Empirical Study on Robustness and Resilience in Cooperative Multi-Agent Reinforcement Learning NeurIPS 2025
In cooperative Multi-Agent Reinforcement Learning (MARL), it is a common practice to tune hyperparameters in ideal simulated environments to maximize cooperative performance. However, policies tuned for cooperation often fail to maintain robustness and resilience under real-world uncertainties. Building trustworthy MARL systems requires a deep understanding of robustness, which ensures stability under uncertainties, and resilience, the ability to recover from disruptions--a concept extensively studied in control systems but largely overlooked in MARL. In this paper, we present a large-scale empirical study comprising over 82,620 experiments to evaluate cooperation, robustness, and resilience in MARL across 4 real-world environments, 13 uncertainty types, and 15 hyperparameters. Our key findings are: (1) Under mild uncertainty, optimizing cooperation improves robustness and resilience, but this link weakens as perturbations intensify. Robustness and resilience also varies by algorithm and uncertainty type. (2) Robustness and resilience do not generalize across uncertainty modalities or agent scopes: policies robust to action noise for all agents may fail under observation noise on a single agent. (3) Hyperparameter tuning is critical for trustworthy MARL: surprisingly, standard practices like parameter sharing, GAE, and PopArt can hurt robustness, while early stopping, high critic learning rates, and Leaky ReLU consistently help. By optimizing hyperparameters only, we observe substantial improvement in cooperation, robustness and resilience across all MARL backbones, with the phenomenon also generalizing to robust MARL methods across these backbones. Code and results available at https://github.com/BUAA-TrustworthyMARL/adv_marl_benchmark .
comment: 44 pages, 16 figures, NeurIPS 2025
♻ ☆ Improving Model Representation and Reducing KV Cache via Skip Connections with First Value Heads
Transformer models have driven breakthroughs across various language tasks by their strong capability to learn rich contextual representations. Scaling them to improve representation, however, often demands substantial memory and compute costs, such as the Key-Value (KV) cache used during auto-regressive decoding. Skip connections offer a promising way to improve representation without bloating resource usage, yet most prior works either improve expressivity while leaving KV costs unchanged, or reduce memory at the cost of weaker representation. In this work, we propose SkipV1Former, a Transformer variant that uses skip connections from the first layer's Value heads to strengthen model representation and reduce KV cache. Specifically, from the second block onward, each layer reuses half of its Value heads from the very first layer, while computing the other half as usual-cutting Value projections and V cache by nearly 50 \%. Theoretically, we show that routing uncompressed first-layer Values into deeper layers restores information lost to compression and accelerates the model's implicit mesa-optimization-a key pattern of Transformer in auto-regressive tasks. Empirically, across different model scales, SkipV1Former delivers consistent reductions of approximately 25 \% in KV cache while improving perplexity relative to standard Multi-Head Attention (MHA) Transformers and some advanced variants. Moreover, we propose a recipe for uptraining existing MHA Transformer checkpoints to SkipV1Former with only 10-15\% additional compute. Finally, SkipV1Former can seamlessly combine advanced methods like Group-Query Attention and Multi-Latent Attention to achieve further KV cache savings and performance improvement. When combined with YOCO, it cuts KV cache size by nearly 50 \% while still improving performance.
comment: The code is available at: \url{https://github.com/Zhoutong-Wu/SkipV1Former}
♻ ☆ Phenome-Wide Multi-Omics Integration Uncovers Distinct Archetypes of Human Aging
Aging is a highly complex and heterogeneous process that progresses at different rates across individuals, making biological age (BA) a more accurate indicator of physiological decline than chronological age. While previous studies have built aging clocks using single-omics data, they often fail to capture the full molecular complexity of human aging. In this work, we leveraged the Human Phenotype Project, a large-scale cohort of 10,000 adults aged 40-70 years, with extensive longitudinal profiling that includes clinical, behavioral, environmental, and multi-omics datasets spanning transcriptomics, lipidomics, metabolomics, and the microbiome. By employing advanced machine learning frameworks capable of modeling nonlinear biological dynamics, we developed and rigorously validated a multi-omics aging clock that robustly predicts diverse health outcomes and future disease risk. Unsupervised clustering of the integrated molecular profiles from multi-omics uncovered distinct biological subtypes of aging, revealing striking heterogeneity in aging trajectories and pinpointing pathway-specific alterations associated with different aging patterns. These findings demonstrate the power of multi-omics integration to decode the molecular landscape of aging and lay the groundwork for personalized healthspan monitoring and precision strategies to prevent age-related diseases.
♻ ☆ Bayesian Optimization of Process Parameters of a Sensor-Based Sorting System using Gaussian Processes as Surrogate Models IEEE 30
Sensor-based sorting systems enable the physical separation of a material stream into two fractions. The sorting decision is based on the image data evaluation of the sensors used and is carried out using actuators. Various process parameters must be set depending on the properties of the material stream, the dimensioning of the system, and the required sorting accuracy. However, continuous verification and re-adjustment are necessary due to changing requirements and material stream compositions. In this paper, we introduce an approach for optimizing, recurrently monitoring and adjusting the process parameters of a sensor-based sorting system. Based on Bayesian Optimization, Gaussian process regression models are used as surrogate models to achieve specific requirements for system behavior with the uncertainties contained therein. This method minimizes the number of necessary experiments while simultaneously considering two possible optimization targets based on the requirements for both material output streams. In addition, uncertainties are considered during determining sorting accuracies in the model calculation. We evaluated the method with three example process parameters.
comment: Accepted at the IEEE 30th International Conference on Emerging Technologies and Factory Automation (ETFA)
♻ ☆ Direct Numerical Layout Generation for 3D Indoor Scene Synthesis via Spatial Reasoning
Realistic 3D indoor scene synthesis is vital for embodied AI and digital content creation. It can be naturally divided into two subtasks: object generation and layout generation. While recent generative models have significantly advanced object-level quality and controllability, layout generation remains challenging due to limited datasets. Existing methods either overfit to these datasets or rely on predefined constraints to optimize numerical layout that sacrifice flexibility. As a result, they fail to generate scenes that are both open-vocabulary and aligned with fine-grained user instructions. We introduce DirectLayout, a framework that directly generates numerical 3D layouts from text descriptions using generalizable spatial reasoning of large language models (LLMs). DirectLayout decomposes the generation into three stages: producing a Bird's-Eye View (BEV) layout, lifting it into 3D space, and refining object placements. To enable explicit spatial reasoning and help the model grasp basic principles of object placement, we employ Chain-of-Thought (CoT) Activation based on the 3D-Front dataset. Additionally, we design CoT-Grounded Generative Layout Reward to enhance generalization and spatial planning. During inference, DirectLayout addresses asset-layout mismatches via Iterative Asset-Layout Alignment through in-context learning. Extensive experiments demonstrate that DirectLayout achieves impressive semantic consistency, generalization and physical plausibility.
comment: Project Page: https://directlayout.github.io/
♻ ☆ Crafting Imperceptible On-Manifold Adversarial Attacks for Tabular Data
Adversarial attacks on tabular data present unique challenges due to the heterogeneous nature of mixed categorical and numerical features. Unlike images where pixel perturbations maintain visual similarity, tabular data lacks intuitive similarity metrics, making it difficult to define imperceptible modifications. Additionally, traditional gradient-based methods prioritise $\ell_p$-norm constraints, often producing adversarial examples that deviate from the original data distributions. To address this, we propose a latent-space perturbation framework using a mixed-input Variational Autoencoder (VAE) to generate statistically consistent adversarial examples. The proposed VAE integrates categorical embeddings and numerical features into a unified latent manifold, enabling perturbations that preserve statistical consistency. We introduce In-Distribution Success Rate (IDSR) to jointly evaluate attack effectiveness and distributional alignment. Evaluation across six publicly available datasets and three model architectures demonstrates that our method achieves substantially lower outlier rates and more consistent performance compared to traditional input-space attacks and other VAE-based methods adapted from image domain approaches, achieving substantially lower outlier rates and higher IDSR across six datasets and three model architectures. Our comprehensive analyses of hyperparameter sensitivity, sparsity control, and generative architecture demonstrate that the effectiveness of VAE-based attacks depends strongly on reconstruction quality and the availability of sufficient training data. When these conditions are met, the proposed framework achieves superior practical utility and stability compared with input-space methods. This work underscores the importance of maintaining on-manifold perturbations for generating realistic and robust adversarial examples in tabular domains.
comment: 39 pages
♻ ☆ Conformal Prediction for Time-series Forecasting with Change Points
Conformal prediction has been explored as a general and efficient way to provide uncertainty quantification for time series. However, current methods struggle to handle time series data with change points - sudden shifts in the underlying data-generating process. In this paper, we propose a novel Conformal Prediction for Time-series with Change points (CPTC) algorithm, addressing this gap by integrating a model to predict the underlying state with online conformal prediction to model uncertainties in non-stationary time series. We prove CPTC's validity and improved adaptivity in the time series setting under minimum assumptions, and demonstrate CPTC's practical effectiveness on 6 synthetic and real-world datasets, showing improved validity and adaptivity compared to state-of-the-art baselines.
♻ ☆ Stress-Testing Model Specs Reveals Character Differences among Language Models
Large language models (LLMs) are increasingly trained from AI constitutions and model specifications that establish behavioral guidelines and ethical principles. However, these specifications face critical challenges, including internal conflicts between principles and insufficient coverage of nuanced scenarios. We present a systematic methodology for stress-testing model character specifications, automatically identifying numerous cases of principle contradictions and interpretive ambiguities in current model specs. We stress test current model specs by generating scenarios that force explicit tradeoffs between competing value-based principles. Using a comprehensive taxonomy we generate diverse value tradeoff scenarios where models must choose between pairs of legitimate principles that cannot be simultaneously satisfied. We evaluate responses from twelve frontier LLMs across major providers (Anthropic, OpenAI, Google, xAI) and measure behavioral disagreement through value classification scores. Among these scenarios, we identify over 70,000 cases exhibiting significant behavioral divergence. Empirically, we show this high divergence in model behavior strongly predicts underlying problems in model specifications. Through qualitative analysis, we provide numerous example issues in current model specs such as direct contradiction and interpretive ambiguities of several principles. Additionally, our generated dataset also reveals both clear misalignment cases and false-positive refusals across all of the frontier models we study. Lastly, we also provide value prioritization patterns and differences of these models.
♻ ☆ DAIL: Beyond Task Ambiguity for Language-Conditioned Reinforcement Learning
Comprehending natural language and following human instructions are critical capabilities for intelligent agents. However, the flexibility of linguistic instructions induces substantial ambiguity across language-conditioned tasks, severely degrading algorithmic performance. To address these limitations, we present a novel method named DAIL (Distributional Aligned Learning), featuring two key components: distributional policy and semantic alignment. Specifically, we provide theoretical results that the value distribution estimation mechanism enhances task differentiability. Meanwhile, the semantic alignment module captures the correspondence between trajectories and linguistic instructions. Extensive experimental results on both structured and visual observation benchmarks demonstrate that DAIL effectively resolves instruction ambiguities, achieving superior performance to baseline methods. Our implementation is available at https://github.com/RunpengXie/Distributional-Aligned-Learning.
comment: Website at: https://github.com/RunpengXie/Distributional-Aligned-Learning
♻ ☆ MARIS: Marine Open-Vocabulary Instance Segmentation with Geometric Enhancement and Semantic Alignment
Most existing underwater instance segmentation approaches are constrained by close-vocabulary prediction, limiting their ability to recognize novel marine categories. To support evaluation, we introduce \textbf{MARIS} (\underline{Mar}ine Open-Vocabulary \underline{I}nstance \underline{S}egmentation), the first large-scale fine-grained benchmark for underwater Open-Vocabulary (OV) segmentation, featuring a limited set of seen categories and diverse unseen categories. Although OV segmentation has shown promise on natural images, our analysis reveals that transfer to underwater scenes suffers from severe visual degradation (e.g., color attenuation) and semantic misalignment caused by lack underwater class definitions. To address these issues, we propose a unified framework with two complementary components. The Geometric Prior Enhancement Module (\textbf{GPEM}) leverages stable part-level and structural cues to maintain object consistency under degraded visual conditions. The Semantic Alignment Injection Mechanism (\textbf{SAIM}) enriches language embeddings with domain-specific priors, mitigating semantic ambiguity and improving recognition of unseen categories. Experiments show that our framework consistently outperforms existing OV baselines both In-Domain and Cross-Domain setting on MARIS, establishing a strong foundation for future underwater perception research.
♻ ☆ LFD: Layer Fused Decoding to Exploit External Knowledge in Retrieval-Augmented Generation
Retrieval-augmented generation (RAG) incorporates external knowledge into large language models (LLMs), improving their adaptability to downstream tasks and enabling information updates. Surprisingly, recent empirical evidence demonstrates that injecting noise into retrieved relevant documents paradoxically facilitates exploitation of external knowledge and improves generation quality. Although counterintuitive and challenging to apply in practice, this phenomenon enables granular control and rigorous analysis of how LLMs integrate external knowledge. Therefore, in this paper, we intervene on noise injection and establish a layer-specific functional demarcation within the LLM: shallow layers specialize in local context modeling, intermediate layers focus on integrating long-range external factual knowledge, and deeper layers primarily rely on parametric internal knowledge. Building on this insight, we propose Layer Fused Decoding (LFD), a simple decoding strategy that directly combines representations from an intermediate layer with final-layer decoding outputs to fully exploit the external factual knowledge. To identify the optimal intermediate layer, we introduce an internal knowledge score (IKS) criterion that selects the layer with the lowest IKS value in the latter half of layers. Experimental results across multiple benchmarks demonstrate that LFD helps RAG systems more effectively surface retrieved context knowledge with minimal cost.
♻ ☆ Towards Robust Zero-Shot Reinforcement Learning
The recent development of zero-shot reinforcement learning (RL) has opened a new avenue for learning pre-trained generalist policies that can adapt to arbitrary new tasks in a zero-shot manner. While the popular Forward-Backward representations (FB) and related methods have shown promise in zero-shot RL, we empirically found that their modeling lacks expressivity and that extrapolation errors caused by out-of-distribution (OOD) actions during offline learning sometimes lead to biased representations, ultimately resulting in suboptimal performance. To address these issues, we propose Behavior-REgularizEd Zero-shot RL with Expressivity enhancement (BREEZE), an upgraded FB-based framework that simultaneously enhances learning stability, policy extraction capability, and representation learning quality. BREEZE introduces behavioral regularization in zero-shot RL policy learning, transforming policy optimization into a stable in-sample learning paradigm. Additionally, BREEZE extracts the policy using a task-conditioned diffusion model, enabling the generation of high-quality and multimodal action distributions in zero-shot RL settings. Moreover, BREEZE employs expressive attention-based architectures for representation modeling to capture the complex relationships between environmental dynamics. Extensive experiments on ExORL and D4RL Kitchen demonstrate that BREEZE achieves the best or near-the-best performance while exhibiting superior robustness compared to prior offline zero-shot RL methods. The official implementation is available at: https://github.com/Whiterrrrr/BREEZE.
comment: Neurips 2025, 29 pages, 19 figures
♻ ☆ Symbiosis: Multi-Adapter Inference and Fine-Tuning
Parameter-efficient fine-tuning (PEFT) allows model builders to capture the task-specific parameters into adapters, which are a fraction of the size of the original base model. Popularity of PEFT technique for fine-tuning has led to the creation of a large number of adapters for popular Large Language Models (LLMs). However, existing frameworks fall short in supporting inference or fine-tuning with multiple adapters in the following ways. 1) For fine-tuning, each job needs to deploy its dedicated base model instance, which results in excessive GPU memory consumption and poor GPU utilization. 2) While popular inference platforms can serve multiple PEFT adapters, they do not allow independent resource management or mixing of different PEFT methods. 3) They cannot make effective use of heterogeneous accelerators. 4) They do not provide privacy to users who may not wish to expose their fine-tuned parameters to service providers. In Symbiosis, we address the above problems by enabling the as-a-service deployment of the base model. The base model layers can be shared across multiple inference or fine-tuning processes. Our split-execution technique decouples the execution of client-specific adapters and layers from the frozen base model layers offering them flexibility to manage their resources, to select their fine-tuning method, to achieve their performance goals. Our approach is transparent to models and works out-of-the-box for most models in the transformers library. We demonstrate the use of Symbiosis to simultaneously fine-tune 20 Gemma2-27B adapters on 8 GPUs.
♻ ☆ ixi-GEN: Efficient Industrial sLLMs through Domain Adaptive Continual Pretraining EMNLP 2025
The emergence of open-source large language models (LLMs) has expanded opportunities for enterprise applications; however, many organizations still lack the infrastructure to deploy and maintain large-scale models. As a result, small LLMs (sLLMs) have become a practical alternative despite inherent performance limitations. While Domain Adaptive Continual Pretraining (DACP) has been explored for domain adaptation, its utility in commercial settings remains under-examined. In this study, we validate the effectiveness of a DACP-based recipe across diverse foundation models and service domains, producing DACP-applied sLLMs (ixi-GEN). Through extensive experiments and real-world evaluations, we demonstrate that ixi-GEN models achieve substantial gains in target-domain performance while preserving general capabilities, offering a cost-efficient and scalable solution for enterprise-level deployment.
comment: Accepted at EMNLP 2025 Industry Track
♻ ☆ Every Attention Matters: An Efficient Hybrid Architecture for Long-Context Reasoning
In this technical report, we present the Ring-linear model series, specifically including Ring-mini-linear-2.0 and Ring-flash-linear-2.0. Ring-mini-linear-2.0 comprises 16B parameters and 957M activations, while Ring-flash-linear-2.0 contains 104B parameters and 6.1B activations. Both models adopt a hybrid architecture that effectively integrates linear attention and softmax attention, significantly reducing I/O and computational overhead in long-context inference scenarios. Compared to a 32 billion parameter dense model, this series reduces inference cost to 1/10, and compared to the original Ring series, the cost is also reduced by over 50%. Furthermore, through systematic exploration of the ratio between different attention mechanisms in the hybrid architecture, we have identified the currently optimal model structure. Additionally, by leveraging our self-developed high-performance FP8 operator library-linghe, overall training efficiency has been improved by 50%. Benefiting from the high alignment between the training and inference engine operators, the models can undergo long-term, stable, and highly efficient optimization during the reinforcement learning phase, consistently maintaining SOTA performance across multiple challenging complex reasoning benchmarks.
comment: 20 pages, 13 figures
♻ ☆ Toward Metaphor-Fluid Conversation Design for Voice User Interfaces
Metaphors play a critical role in shaping user experiences with Voice User Interfaces (VUIs), yet existing designs often rely on static, human-centric metaphors that fail to adapt to diverse contexts and user needs. This paper introduces Metaphor-Fluid Design, a novel approach that dynamically adjusts metaphorical representations based on conversational use-contexts. We compare this approach to a Default VUI, which characterizes the present implementation of commercial VUIs commonly designed around the persona of an assistant, offering a uniform interaction style across contexts. In Study 1 (N=130), metaphors were mapped to four key use-contexts-commands, information seeking, sociality, and error recovery-along the dimensions of formality and hierarchy, revealing distinct preferences for task-specific metaphorical designs. Study 2 (N=91) evaluates a Metaphor-Fluid VUI against a Default VUI, showing that the Metaphor-Fluid VUI enhances perceived intention to adopt, enjoyment, and likability by aligning better with user expectations for different contexts. However, individual differences in metaphor preferences highlight the need for personalization. These findings challenge the one-size-fits-all paradigm of VUI design and demonstrate the potential of Metaphor-Fluid Design to create more adaptive and engaging human-AI interactions.
♻ ☆ TianHui: A Domain-Specific Large Language Model for Diverse Traditional Chinese Medicine Scenarios
Domain-specific LLMs in TCM face limitations in research settings due to constrained adaptability, insufficient evaluation datasets, and limited computational resources. This study presents TianHui, a specialized TCM LLM built through contextual data integration and domain knowledge fusion. We constructed a large-scale TCM corpus (0.97GB unsupervised data + 611,312 QA pairs) and employed a two-stage training strategy with QLoRA, DeepSpeed Stage 2, and Flash Attention 2. Evaluation on 12 benchmarks showed TianHui ranked top-three in all metrics for six datasets (APQ, TCMCD, HFR, HCCA, DHPE, TLAW) and achieved top results in the other six (TCMEE, APR, GCPMI, TCMKQA, TCMRC, ADTG). Optimal configuration was identified as LoRA rank=128, alpha=256, epoch=4, dropout=0.2, max length=2048. TianHui enables systematic preservation and scalable application of TCM knowledge. All resources are open-sourced.
comment: 46 pages, 5 figures,3 tables
♻ ☆ Deep Learning-Powered Electrical Brain Signals Analysis: Advancing Neurological Diagnostics
Neurological disorders pose major global health challenges, driving advances in brain signal analysis. Scalp electroencephalography (EEG) and intracranial EEG (iEEG) are widely used for diagnosis and monitoring. However, dataset heterogeneity and task variations hinder the development of robust deep learning solutions. This review systematically examines recent advances in deep learning approaches for EEG/iEEG-based neurological diagnostics, focusing on applications across 7 neurological conditions using 46 datasets. For each condition, we review representative methods and their quantitative results, integrating performance comparisons with analyses of data usage, model design, and task-specific adaptations, while highlighting the role of pre-trained multi-task models in achieving scalable, generalizable solutions. Finally, we propose a standardized benchmark to evaluate models across diverse datasets and improve reproducibility, emphasizing how recent innovations are transforming neurological diagnostics toward intelligent, adaptable healthcare systems.
♻ ☆ Does Thinking More always Help? Mirage of Test-Time Scaling in Reasoning Models NeurIPS 2025
Recent trends in test-time scaling for reasoning models (e.g., OpenAI o1, DeepSeek R1) have led to a popular belief that extending thinking traces using prompts like "Wait" or "Let me rethink" can improve performance. This raises a natural question: Does thinking more at test-time truly lead to better reasoning? To answer this question, we perform a detailed empirical study across models and benchmarks, which reveals a consistent pattern of initial performance improvements from additional thinking followed by a decline, due to "overthinking". To understand this non-monotonic trend, we consider a simple probabilistic model, which reveals that additional thinking increases output variance-creating an illusion of improved reasoning while ultimately undermining precision. Thus, observed gains from "more thinking" are not true indicators of improved reasoning, but artifacts stemming from the connection between model uncertainty and evaluation metric. This suggests that test-time scaling through extended thinking is not an effective way to utilize the inference thinking budget. Recognizing these limitations, we introduce an alternative test-time scaling approach, parallel thinking, inspired by Best-of-N sampling. Our method generates multiple independent reasoning paths within the same inference budget and selects the most consistent response via majority vote, achieving up to 20% higher accuracy compared to extended thinking. This provides a simple yet effective mechanism for test-time scaling of reasoning models.
comment: Accepted at NeurIPS 2025
♻ ☆ LLM-Explorer: A Plug-in Reinforcement Learning Policy Exploration Enhancement Driven by Large Language Models
Policy exploration is critical in reinforcement learning (RL), where existing approaches include greedy, Gaussian process, etc. However, these approaches utilize preset stochastic processes and are indiscriminately applied in all kinds of RL tasks without considering task-specific features that influence policy exploration. Moreover, during RL training, the evolution of such stochastic processes is rigid, which typically only incorporates a decay in the variance, failing to adjust flexibly according to the agent's real-time learning status. Inspired by the analyzing and reasoning capability of large language models (LLMs), we design LLM-Explorer to adaptively generate task-specific exploration strategies with LLMs, enhancing the policy exploration in RL. In our design, we sample the learning trajectory of the agent during the RL training in a given task and prompt the LLM to analyze the agent's current policy learning status and then generate a probability distribution for future policy exploration. Updating the probability distribution periodically, we derive a stochastic process specialized for the particular task and dynamically adjusted to adapt to the learning process. Our design is a plug-in module compatible with various widely applied RL algorithms, including the DQN series, DDPG, TD3, and any possible variants developed based on them. Through extensive experiments on the Atari and MuJoCo benchmarks, we demonstrate LLM-Explorer's capability to enhance RL policy exploration, achieving an average performance improvement up to 37.27%. Our code is open-source at https://github.com/tsinghua-fib-lab/LLM-Explorer for reproducibility.
♻ ☆ LeCoDe: A Benchmark Dataset for Interactive Legal Consultation Dialogue Evaluation
Legal consultation is essential for safeguarding individual rights and ensuring access to justice, yet remains costly and inaccessible to many individuals due to the shortage of professionals. While recent advances in Large Language Models (LLMs) offer a promising path toward scalable, low-cost legal assistance, current systems fall short in handling the interactive and knowledge-intensive nature of real-world consultations. To address these challenges, we introduce LeCoDe, a real-world multi-turn benchmark dataset comprising 3,696 legal consultation dialogues with 110,008 dialogue turns, designed to evaluate and improve LLMs' legal consultation capability. With LeCoDe, we innovatively collect live-streamed consultations from short-video platforms, providing authentic multi-turn legal consultation dialogues. The rigorous annotation by legal experts further enhances the dataset with professional insights and expertise. Furthermore, we propose a comprehensive evaluation framework that assesses LLMs' consultation capabilities in terms of (1) clarification capability and (2) professional advice quality. This unified framework incorporates 12 metrics across two dimensions. Through extensive experiments on various general and domain-specific LLMs, our results reveal significant challenges in this task, with even state-of-the-art models like GPT-4 achieving only 39.8% recall for clarification and 59% overall score for advice quality, highlighting the complexity of professional consultation scenarios. Based on these findings, we further explore several strategies to enhance LLMs' legal consultation abilities. Our benchmark contributes to advancing research in legal domain dialogue systems, particularly in simulating more real-world user-expert interactions.
♻ ☆ DMWM: Dual-Mind World Model with Long-Term Imagination
Imagination in world models is crucial for enabling agents to learn long-horizon policy in a sample-efficient manner. Existing recurrent state-space model (RSSM)-based world models depend on single-step statistical inference to capture the environment dynamics, and, hence, they are unable to perform long-term imagination tasks due to the accumulation of prediction errors. Inspired by the dual-process theory of human cognition, we propose a novel dual-mind world model (DMWM) framework that integrates logical reasoning to enable imagination with logical consistency. DMWM is composed of two components: an RSSM-based System 1 (RSSM-S1) component that handles state transitions in an intuitive manner and a logic-integrated neural network-based System 2 (LINN-S2) component that guides the imagination process through hierarchical deep logical reasoning. The inter-system feedback mechanism is designed to ensure that the imagination process follows the logical rules of the real environment. The proposed framework is evaluated on benchmark tasks that require long-term planning from the DMControl suite. Extensive experimental results demonstrate that the proposed framework yields significant improvements in terms of logical coherence, trial efficiency, data efficiency and long-term imagination over the state-of-the-art world models.
♻ ☆ FerretNet: Efficient Synthetic Image Detection via Local Pixel Dependencies NeurIPS 2025
The increasing realism of synthetic images generated by advanced models such as VAEs, GANs, and LDMs poses significant challenges for synthetic image detection. To address this issue, we explore two artifact types introduced during the generation process: (1) latent distribution deviations and (2) decoding-induced smoothing effects, which manifest as inconsistencies in local textures, edges, and color transitions. Leveraging local pixel dependencies (LPD) properties rooted in Markov Random Fields, we reconstruct synthetic images using neighboring pixel information to expose disruptions in texture continuity and edge coherence. Building upon LPD, we propose FerretNet, a lightweight neural network with only 1.1M parameters that delivers efficient and robust synthetic image detection. Extensive experiments demonstrate that FerretNet, trained exclusively on the 4-class ProGAN dataset, achieves an average accuracy of 97.1% on an open-world benchmark comprising 22 generative models. Our code and datasets are publicly available at https://github.com/xigua7105/FerretNet.
comment: 9 pages, 4 figures, 8 tables, accepted at NeurIPS 2025
♻ ☆ A New Digital Divide? Coder Worldviews, the Slop Economy, and Democracy in the Age of AI
Digital technologies are transforming democratic life in conflicting ways. This article bridges two perspectives to unpack these tensions. First, we present an original survey of software developers in Silicon Valley, interrogating how coder worldviews, ethics, and workplace cultures shape the democratic potential and social impact of the technologies they build. Results indicate that while most developers recognize the power of their products to influence civil liberties and political discourse, they often face ethical dilemmas and top-down pressures that can lead to design choices undermining democratic ideals. Second, we critically investigate these findings in the context of an emerging new digital divide, not of internet access but of information quality. We interrogate the survey findings in the context of the Slop Economy, in which billions of users unable to pay for high-quality content experience an internet dominated by low-quality, AI-generated ad-driven content. We find a reinforcing cycle between tech creator beliefs and the digital ecosystems they spawn. We discuss implications for democratic governance, arguing for more ethically informed design and policy interventions to help bridge the digital divide to ensure that technological innovation supports rather than subverts democratic values in the next chapter of the digital age.
♻ ☆ MIR-Bench: Can Your LLM Recognize Complicated Patterns via Many-Shot In-Context Reasoning? NeurIPS 2025
The ability to recognize patterns from examples and apply them to new ones is a primal ability for general intelligence, and is widely studied by psychology and AI researchers. Many benchmarks have been proposed to measure such ability for Large Language Models (LLMs); however, they focus on few-shot (usually <10) setting and lack evaluation for aggregating many pieces of information from long contexts. On the other hand, the ever-growing context length of LLMs have brought forth the novel paradigm of many-shot In-Context Learning (ICL), which addresses new tasks with hundreds to thousands of examples without expensive and inefficient fine-tuning. However, many-shot evaluations often focus on classification, and popular long-context LLM tasks such as Needle-In-A-Haystack (NIAH) seldom require complicated intelligence for integrating many pieces of information. To fix the issues from both worlds, we propose MIR-Bench, the first many-shot in-context reasoning benchmark for pattern recognition that asks LLM to predict output via input-output examples from underlying functions with diverse data format. Based on MIR-Bench, we study many novel problems for many-shot in-context reasoning, and acquired many insightful findings including scaling effect, robustness, inductive vs. transductive reasoning, retrieval Augmented Generation (RAG), coding for inductive reasoning, cross-domain generalizability, etc.
comment: 39 pages, 11 figures. The paper is accepted at NeurIPS 2025 Datasets & Benchmarks Track, and the latest version adds modifications in camera-ready
♻ ☆ Count Counts: Motivating Exploration in LLM Reasoning with Count-based Intrinsic Rewards
Reinforcement Learning (RL) has become a compelling way to strengthen the multi step reasoning ability of Large Language Models (LLMs). However, prevalent RL paradigms still lean on sparse outcome-based rewards and limited exploration, which often drives LLMs toward repetitive and suboptimal reasoning patterns. In this paper, we study the central question of how to design exploration for LLM reasoning and introduce MERCI (Motivating Exploration in LLM Reasoning with Count-based Intrinsic Rewards), a novel RL algorithm that augments policy optimization with a principled intrinsic reward. Building on the idea of count-based exploration, MERCI leverages a lightweight Coin Flipping Network (CFN) to estimate the pseudo count and further epistemic uncertainty over reasoning trajectories, and converts them into an intrinsic reward that values novelty while preserving the learning signal from task rewards. We integrate MERCI into some advanced RL frameworks like Group Relative Policy Optimization (GRPO). Experiments on complex reasoning benchmarks demonstrate that MERCI encourages richer and more varied chains of thought, significantly improves performance over strong baselines, and helps the policy escape local routines to discover better solutions. It indicates that our targeted intrinsic motivation can make exploration reliable for language model reasoning.
♻ ☆ EA4LLM: A Gradient-Free Approach to Large Language Model Optimization via Evolutionary Algorithms
In recent years, large language models (LLMs) have made remarkable progress, with model optimization primarily relying on gradient-based optimizers such as Adam. However, these gradient-based methods impose stringent hardware requirements, demanding high-concurrency, high-memory GPUs. Moreover, they require all neural network operations to be differentiable, thereby excluding many promising non-differentiable architectures from practical use. To address these limitations, we propose EA4LLM, an evolutionary algorithm for optimizing LLMs, and, for the first time, empirically verify full-parameter optimization from the pretraining stage across model sizes ranging from 0.5B to 32B. We conduct extensive experiments and provide key insights into how evolutionary algorithms can effectively optimize neural networks. Our work challenges the prevailing assumption that gradient-based optimization is the only viable approach for training neural networks. It also holds significant potential to reduce the computational cost of training large language models, thereby enabling groups with limited computational resources to participate in deep learning research.
♻ ☆ Toward a Metrology for Artificial Intelligence: Hidden-Rule Environments and Reinforcement Learning
We investigate reinforcement learning in the Game Of Hidden Rules (GOHR) environment, a complex puzzle in which an agent must infer and execute hidden rules to clear a 6$\times$6 board by placing game pieces into buckets. We explore two state representation strategies, namely Feature-Centric (FC) and Object-Centric (OC), and employ a Transformer-based Advantage Actor-Critic (A2C) algorithm for training. The agent has access only to partial observations and must simultaneously infer the governing rule and learn the optimal policy through experience. We evaluate our models across multiple rule-based and trial-list-based experimental setups, analyzing transfer effects and the impact of representation on learning efficiency.
♻ ☆ REOrdering Patches Improves Vision Models NeurIPS 2025
Sequence models such as transformers require inputs to be represented as one-dimensional sequences. In vision, this typically involves flattening images using a fixed row-major (raster-scan) order. While full self-attention is permutation-equivariant, modern long-sequence transformers increasingly rely on architectural approximations that break this invariance and introduce sensitivity to patch ordering. We show that patch order significantly affects model performance in such settings, with simple alternatives like column-major or Hilbert curves yielding notable accuracy shifts. Motivated by this, we propose REOrder, a two-stage framework for discovering task-optimal patch orderings. First, we derive an information-theoretic prior by evaluating the compressibility of various patch sequences. Then, we learn a policy over permutations by optimizing a Plackett-Luce policy using REINFORCE. This approach enables efficient learning in a combinatorial permutation space. REOrder improves top-1 accuracy over row-major ordering on ImageNet-1K by up to 3.01% and Functional Map of the World by 13.35%.
comment: Accepted to the 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ CircuitSeer: Mining High-Quality Data by Probing Mathematical Reasoning Circuits in LLMs
Large language models (LLMs) have demonstrated impressive reasoning capabilities, but scaling their performance often relies on massive reasoning datasets that are computationally expensive to train on. Existing data selection methods aim to curate smaller, high-quality subsets but often rely on costly external models or opaque heuristics. In this work, we shift the focus from external heuristics to the model's internal mechanisms. We find that complex reasoning tasks consistently activate a sparse, specialized subset of attention heads, forming core reasoning circuits. Building on this insight, we propose CircuitSeer, a novel data selection method that quantifies the reasoning complexity of data by measuring its influence on these crucial circuits. Extensive experiments on 4 models and 9 datasets demonstrate CircuitSeer's superiority. Notably, fine-tuning Qwen2.5-Math-7B on just 10% of data selected by our method achieves a 1.4-point gain in average Pass@1 over training on the full dataset, highlighting its efficiency and effectiveness.
comment: 14 pages, 5 figures
♻ ☆ Epistemic-aware Vision-Language Foundation Model for Fetal Ultrasound Interpretation
Recent medical vision-language models have shown promise on tasks such as VQA, report generation, and anomaly detection. However, most are adapted to structured adult imaging and underperform in fetal ultrasound, which poses challenges of multi-view image reasoning, numerous diseases, and image diversity. To bridge this gap, we introduce FetalMind, a medical AI system tailored to fetal ultrasound for both report generation and diagnosis. Guided by clinical workflow, we propose Salient Epistemic Disentanglement (SED), which injects an expert-curated bipartite graph into the model to decouple view-disease associations and to steer preference selection along clinically faithful steps via reinforcement learning. This design mitigates variability across diseases and heterogeneity across views, reducing learning bottlenecks while aligning the model's inference with obstetric practice. To train FetalMind at scale, we curate FetalSigma-1M dataset, the first large-scale fetal ultrasound report corpus, comprising 20K reports from twelve medical centers, addressing the scarcity of domain data. Extensive experiments show that FetalMind outperforms open- and closed-source baselines across all gestational stages, achieving +14% average gains and +61.2% higher accuracy on critical conditions while remaining efficient, stable, and scalable. Project Page: https://hexiao0275.github.io/FetalMind.
comment: This paper contains fundamental errors and will not be replaced
♻ ☆ RL Tango: Reinforcing Generator and Verifier Together for Language Reasoning NeurIPS 2025
Reinforcement learning (RL) has recently emerged as a compelling approach for enhancing the reasoning capabilities of large language models (LLMs), where an LLM generator serves as a policy guided by a verifier (reward model). However, current RL post-training methods for LLMs typically use verifiers that are fixed (rule-based or frozen pretrained) or trained discriminatively via supervised fine-tuning (SFT). Such designs are susceptible to reward hacking and generalize poorly beyond their training distributions. To overcome these limitations, we propose Tango, a novel framework that uses RL to concurrently train both an LLM generator and a verifier in an interleaved manner. A central innovation of Tango is its generative, process-level LLM verifier, which is trained via RL and co-evolves with the generator. Importantly, the verifier is trained solely based on outcome-level verification correctness rewards without requiring explicit process-level annotations. This generative RL-trained verifier exhibits improved robustness and superior generalization compared to deterministic or SFT-trained verifiers, fostering effective mutual reinforcement with the generator. Extensive experiments demonstrate that both components of Tango achieve state-of-the-art results among 7B/8B-scale models: the generator attains best-in-class performance across five competition-level math benchmarks and four challenging out-of-domain reasoning tasks, while the verifier leads on the ProcessBench dataset. Remarkably, both components exhibit particularly substantial improvements on the most difficult mathematical reasoning problems. Code is at: https://github.com/kaiwenzha/rl-tango.
comment: NeurIPS 2025. The first two authors contributed equally
♻ ☆ RADAR: A Risk-Aware Dynamic Multi-Agent Framework for LLM Safety Evaluation via Role-Specialized Collaboration
Existing safety evaluation methods for large language models (LLMs) suffer from inherent limitations, including evaluator bias and detection failures arising from model homogeneity, which collectively undermine the robustness of risk evaluation processes. This paper seeks to re-examine the risk evaluation paradigm by introducing a theoretical framework that reconstructs the underlying risk concept space. Specifically, we decompose the latent risk concept space into three mutually exclusive subspaces: the explicit risk subspace (encompassing direct violations of safety guidelines), the implicit risk subspace (capturing potential malicious content that requires contextual reasoning for identification), and the non-risk subspace. Furthermore, we propose RADAR, a multi-agent collaborative evaluation framework that leverages multi-round debate mechanisms through four specialized complementary roles and employs dynamic update mechanisms to achieve self-evolution of risk concept distributions. This approach enables comprehensive coverage of both explicit and implicit risks while mitigating evaluator bias. To validate the effectiveness of our framework, we construct an evaluation dataset comprising 800 challenging cases. Extensive experiments on our challenging testset and public benchmarks demonstrate that RADAR significantly outperforms baseline evaluation methods across multiple dimensions, including accuracy, stability, and self-evaluation risk sensitivity. Notably, RADAR achieves a 28.87% improvement in risk identification accuracy compared to the strongest baseline evaluation method.
♻ ☆ Adaptive Learning in Spatial Agent-Based Models for Climate Risk Assessment: A Geospatial Framework with Evolutionary Economic Agents NeurIPS 2025
Climate risk assessment requires modelling complex interactions between spatially heterogeneous hazards and adaptive economic systems. We present a novel geospatial agent-based model that integrates climate hazard data with evolutionary learning for economic agents. Our framework combines Mesa-based spatial modelling with CLIMADA climate impact assessment, introducing adaptive learning behaviours that allow firms to evolve strategies for budget allocation, pricing, wages, and risk adaptation through fitness-based selection and mutation. We demonstrate the framework using riverine flood projections under RCP8.5 until 2100, showing that evolutionary adaptation enables firms to converge with baseline (no hazard) production levels after decades of disruption due to climate stress. Our results reveal systemic risks where even agents that are not directly exposed to floods face impacts through supply chain disruptions, with the end-of-century average price of goods 5.6% higher under RCP8.5 compared to the baseline in our illustrative economic network. This open-source framework provides financial institutions and companies with tools to quantify both direct and cascading climate risks while evaluating cost-effective adaptation strategies.
comment: Accepted to Tackling Climate Change with Machine Learning workshop at NeurIPS 2025. 5 pages, 1 figure. Source code and documentation available at https://github.com/yaramohajerani/spatial-climate-ABM
♻ ☆ Annotation Guidelines-Based Knowledge Augmentation: Towards Enhancing Large Language Models for Educational Text Classification IEEE
Various machine learning approaches have gained significant popularity for the automated classification of educational text to identify indicators of learning engagement -- i.e. learning engagement classification (LEC). LEC can offer comprehensive insights into human learning processes, attracting significant interest from diverse research communities, including Natural Language Processing (NLP), Learning Analytics, and Educational Data Mining. Recently, Large Language Models (LLMs), such as ChatGPT, have demonstrated remarkable performance in various NLP tasks. However, their comprehensive evaluation and improvement approaches in LEC tasks have not been thoroughly investigated. In this study, we propose the Annotation Guidelines-based Knowledge Augmentation (AGKA) approach to improve LLMs. AGKA employs GPT 4.0 to retrieve label definition knowledge from annotation guidelines, and then applies the random under-sampler to select a few typical examples. Subsequently, we conduct a systematic evaluation benchmark of LEC, which includes six LEC datasets covering behavior classification (question and urgency level), emotion classification (binary and epistemic emotion), and cognition classification (opinion and cognitive presence). The study results demonstrate that AGKA can enhance non-fine-tuned LLMs, particularly GPT 4.0 and Llama 3 70B. GPT 4.0 with AGKA few-shot outperforms full-shot fine-tuned models such as BERT and RoBERTa on simple binary classification datasets. However, GPT 4.0 lags in multi-class tasks that require a deep understanding of complex semantic information. Notably, Llama 3 70B with AGKA is a promising combination based on open-source LLM, because its performance is on par with closed-source GPT 4.0 with AGKA. In addition, LLMs struggle to distinguish between labels with similar names in multi-class classification.
comment: The manuscript has been accepted for publication in IEEE Transactions on Learning Technologies. https://doi.org/10.1109/TLT.2025.3570775
♻ ☆ FuseUNet: A Multi-Scale Feature Fusion Method for U-like Networks
Medical image segmentation is a critical task in computer vision, with UNet serving as a milestone architecture. The typical component of UNet family is the skip connection, however, their skip connections face two significant limitations: (1) they lack effective interaction between features at different scales, and (2) they rely on simple concatenation or addition operations, which constrain efficient information integration. While recent improvements to UNet have focused on enhancing encoder and decoder capabilities, these limitations remain overlooked. To overcome these challenges, we propose a novel multi-scale feature fusion method that reimagines the UNet decoding process as solving an initial value problem (IVP), treating skip connections as discrete nodes. By leveraging principles from the linear multistep method, we propose an adaptive ordinary differential equation method to enable effective multi-scale feature fusion. Our approach is independent of the encoder and decoder architectures, making it adaptable to various U-Net-like networks. Experiments on ACDC, KiTS2023, MSD brain tumor, and ISIC2017/2018 skin lesion segmentation datasets demonstrate improved feature utilization, reduced network parameters, and maintained high performance. The code is available at https://github.com/nayutayuki/FuseUNet.
comment: Updated author information to clarify institutional affiliation. The research was conducted prior to the author joining the University of Maryland
♻ ☆ Shall We Play a Game? Language Models for Open-ended Wargames
Wargames are simulations of conflicts in which participants' decisions influence future events. While casual wargaming can be used for entertainment or socialization, serious wargaming is used by experts to explore strategic implications of decision-making and experiential learning. In this paper, we take the position that Artificial Intelligence (AI) systems, such as Language Models (LMs), are rapidly approaching human-expert capability for strategic planning -- and will one day surpass it. Military organizations have begun using LMs to provide insights into the consequences of real-world decisions during _open-ended wargames_ which use natural language to convey actions and outcomes. We argue the ability for AI systems to influence large-scale decisions motivates additional research into the safety, interpretability, and explainability of AI in open-ended wargames. To demonstrate, we conduct a scoping literature review with a curated selection of 100 unclassified studies on AI in wargames, and construct a novel ontology of open-endedness using the creativity afforded to players, adjudicators, and the novelty provided to observers. Drawing from this body of work, we distill a set of practical recommendations and critical safety considerations for deploying AI in open-ended wargames across common domains. We conclude by presenting the community with a set of high-impact open research challenges for future work.
♻ ☆ Fair Clustering via Alignment
Algorithmic fairness in clustering aims to balance the proportions of instances assigned to each cluster with respect to a given sensitive attribute. While recently developed fair clustering algorithms optimize clustering objectives under specific fairness constraints, their inherent complexity or approximation often results in suboptimal clustering utility or numerical instability in practice. To resolve these limitations, we propose a new fair clustering algorithm based on a novel decomposition of the fair $K$-means clustering objective function. The proposed algorithm, called Fair Clustering via Alignment (FCA), operates by alternately (i) finding a joint probability distribution to align the data from different protected groups, and (ii) optimizing cluster centers in the aligned space. A key advantage of FCA is that it theoretically guarantees approximately optimal clustering utility for any given fairness level without complex constraints, thereby enabling high-utility fair clustering in practice. Experiments show that FCA outperforms existing methods by (i) attaining a superior trade-off between fairness level and clustering utility, and (ii) achieving near-perfect fairness without numerical instability.
♻ ☆ From High-SNR Radar Signal to ECG: A Transfer Learning Model with Cardio-Focusing Algorithm for Scenarios with Limited Data
Electrocardiogram (ECG), as a crucial find-grained cardiac feature, has been successfully recovered from radar signals in the literature, but the performance heavily relies on the high-quality radar signal and numerous radar-ECG pairs for training, restricting the applications in new scenarios due to data scarcity. Therefore, this work will focus on radar-based ECG recovery in new scenarios with limited data and propose a cardio-focusing and -tracking (CFT) algorithm to precisely track the cardiac location to ensure an efficient acquisition of high-quality radar signals. Furthermore, a transfer learning model (RFcardi) is proposed to extract cardio-related information from the radar signal without ECG ground truth based on the intrinsic sparsity of cardiac features, and only a few synchronous radar-ECG pairs are required to fine-tune the pre-trained model for the ECG recovery. The experimental results reveal that the proposed CFT can dynamically identify the cardiac location, and the RFcardi model can effectively generate faithful ECG recoveries after using a small number of radar-ECG pairs for training. The code and dataset are available after the publication.
♻ ☆ Towards Machine Learning-based Model Predictive Control for HVAC Control in Multi-Context Buildings at Scale via Ensemble Learning
The building thermodynamics model, which predicts real-time indoor temperature changes under potential HVAC (Heating, Ventilation, and Air Conditioning) control operations, is crucial for optimizing HVAC control in buildings. While pioneering studies have attempted to develop such models for various building environments, these models often require extensive data collection periods and rely heavily on expert knowledge, making the modeling process inefficient and limiting the reusability of the models. This paper explores a model ensemble perspective that utilizes existing developed models as base models to serve a target building environment, thereby providing accurate predictions while reducing the associated efforts. Given that building data streams are non-stationary and the number of base models may increase, we propose a Hierarchical Reinforcement Learning (HRL) approach to dynamically select and weight the base models. Our approach employs a two-tiered decision-making process: the high-level focuses on model selection, while the low-level determines the weights of the selected models. We thoroughly evaluate the proposed approach through offline experiments and an on-site case study, and the experimental results demonstrate the effectiveness of our method.
♻ ☆ PersonaMatrix: A Recipe for Persona-Aware Evaluation of Legal Summarization
Legal documents are often long, dense, and difficult to comprehend, not only for laypeople but also for legal experts. While automated document summarization has great potential to improve access to legal knowledge, prevailing task-based evaluators overlook divergent user and stakeholder needs. Tool development is needed to encompass the technicality of a case summary for a litigator yet be accessible for a self-help public researching for their lawsuit. We introduce PersonaMatrix, a persona-by-criterion evaluation framework that scores summaries through the lens of six personas, including legal and non-legal users. We also introduce a controlled dimension-shifted pilot dataset of U.S. civil rights case summaries that varies along depth, accessibility, and procedural detail as well as Diversity-Coverage Index (DCI) to expose divergent optima of legal summary between persona-aware and persona-agnostic judges. This work enables refinement of legal AI summarization systems for both expert and non-expert users, with the potential to increase access to legal knowledge. The code base and data are publicly available in GitHub.
comment: Accepted for publication in JURIX 2025 (Legal Knowledge and Information Systems, FAIA series, IOS Press). Long Paper
♻ ☆ Learning To Defer To A Population With Limited Demonstrations IEEE
This paper addresses the critical data scarcity that hinders the practical deployment of learning to defer (L2D) systems to the population. We introduce a context-aware, semi-supervised framework that uses meta-learning to generate expert-specific embeddings from only a few demonstrations. We demonstrate the efficacy of a dual-purpose mechanism, where these embeddings are used first to generate a large corpus of pseudo-labels for training, and subsequently to enable on-the-fly adaptation to new experts at test-time. The experiment results on three different datasets confirm that a model trained on these synthetic labels rapidly approaches oracle-level performance, validating the data efficiency of our approach. By resolving a key training bottleneck, this work makes adaptive L2D systems more practical and scalable, paving the way for human-AI collaboration in real-world environments. To facilitate reproducibility and address implementation details not covered in the main text, we provide our source code and training configurations at https://github.com/nil123532/learning-to-defer-to-a-population-with-limited-demonstrations.
comment: Accepted to IEEE DICTA 2025 (poster). 7 pages, 2 figures
♻ ☆ Illusions of reflection: open-ended task reveals systematic failures in Large Language Models' reflective reasoning
Humans do not just find mistakes after the fact -- we often catch them mid-stream because 'reflection' is tied to the goal and its constraints. Today's large language models produce reasoning tokens and 'reflective' text, but is it functionally equivalent with human reflective reasoning? Prior work on closed-ended tasks -- with clear, external 'correctness' signals -- can make 'reflection' look effective while masking limits in self-correction. We therefore test eight frontier models on a simple, real-world task that is open-ended yet rule-constrained, with auditable success criteria: to produce valid scientific test items, then revise after considering their own critique. First-pass performance is poor (often zero valid items out of 4 required; mean $\approx$ 1), and reflection yields only modest gains (also $\approx$ 1). Crucially, the second attempt frequently repeats the same violation of constraint, indicating 'corrective gains' arise largely from chance production of a valid item rather than error detection and principled, constraint-sensitive repair. Performance before and after reflection deteriorates as open-endedness increases, and models marketed for 'reasoning' show no advantage. Our results suggest that current LLM 'reflection' lacks functional evidence of the active, goal-driven monitoring that helps humans respect constraints even on a first pass. Until such mechanisms are instantiated in the model itself, reliable performance requires external structure that enforces constraints. Our code is available at: https://github.com/cruiseresearchgroup/LLM_ReflectionTest
comment: Currently under review
♻ ☆ AssistedDS: Benchmarking How External Domain Knowledge Assists LLMs in Automated Data Science
Large language models (LLMs) have advanced the automation of data science workflows. Yet it remains unclear whether they can critically leverage external domain knowledge as human data scientists do in practice. To answer this question, we introduce AssistedDS (Assisted Data Science), a benchmark designed to systematically evaluate how LLMs handle domain knowledge in tabular prediction tasks. AssistedDS features both synthetic datasets with explicitly known generative mechanisms and real-world Kaggle competitions, each accompanied by curated bundles of helpful and adversarial documents. These documents provide domain-specific insights into data cleaning, feature engineering, and model selection. We assess state-of-the-art LLMs on their ability to discern and apply beneficial versus harmful domain knowledge, evaluating submission validity, information recall, and predictive performance. Our results demonstrate three key findings: (1) LLMs frequently exhibit an uncritical adoption of provided information, significantly impairing their predictive performance when adversarial content is introduced, (2) helpful guidance is often insufficient to counteract the negative influence of adversarial information, and (3) in Kaggle datasets, LLMs often make errors in handling time-series data, applying consistent feature engineering across different folds, and interpreting categorical variables correctly. These findings highlight a substantial gap in current models' ability to critically evaluate and leverage expert knowledge, underscoring an essential research direction for developing more robust, knowledge-aware automated data science systems. Our data and code are publicly available here: https://github.com/jeremyxianx/Assisted-DS
♻ ☆ Sparse Autoencoder Neural Operators: Model Recovery in Function Spaces NeurIPS
We frame the problem of unifying representations in neural models as one of sparse model recovery and introduce a framework that extends sparse autoencoders (SAEs) to lifted spaces and infinite-dimensional function spaces, enabling mechanistic interpretability of large neural operators (NO). While the Platonic Representation Hypothesis suggests that neural networks converge to similar representations across architectures, the representational properties of neural operators remain underexplored despite their growing importance in scientific computing. We compare the inference and training dynamics of SAEs, lifted-SAE, and SAE neural operators. We highlight how lifting and operator modules introduce beneficial inductive biases, enabling faster recovery, improved recovery of smooth concepts, and robust inference across varying resolutions, a property unique to neural operators.
comment: Tolooshams and Shen has equal contribution. Extended Abstract at the Workshop on Unifying Representations in Neural Models (UniReps 2025) at NeurIPS
♻ ☆ Replacing Softmax Similarity with a Sharpened Angular Similarity: Theory and Practice of Scaling To Billion-Context Attention
Softmax Attention has a quadratic time complexity, which becomes prohibitive to run at long contexts, even with highly optimized GPU kernels. For example, FlashAttention (an exact, GPU-optimized implementation of Softmax Attention) cannot complete a single forward-backward pass of a multi-head attention layer once the context exceeds ~4 million tokens on an NVIDIA GH200 (96 GB). We introduce RACE Attention, a kernel-inspired alternative to Softmax Attention that is linear in sequence length and embedding dimension. RACE Attention replaces the exponential kernel with a sharpened angular (cosine) similarity, and approximates attention outputs via randomized projections and soft Locality-Sensitive Hashing (LSH). Across language modeling, masked language modeling, and text classification, RACE Attention matches the accuracy of strong baselines while reducing runtime and memory. In a controlled scale test, it processes up to 12 million tokens during a single forward-backward pass on an NVIDIA GH200 GPU and 75 million tokens on an Intel Xeon Gold 5220R CPU, well beyond the practical limits of the current state-of-the-art attention implementations. RACE Attention thus offers a practical, theoretically grounded mechanism for outrageously long context windows on today's hardware. We hope that it gets adopted in practice.
comment: 28 pages, 7 figures
♻ ☆ DMSC: Dynamic Multi-Scale Coordination Framework for Time Series Forecasting
Time Series Forecasting (TSF) faces persistent challenges in modeling intricate temporal dependencies across different scales. Despite recent advances leveraging different decomposition operations and novel architectures based on CNN, MLP or Transformer, existing methods still struggle with static decomposition strategies, fragmented dependency modeling, and inflexible fusion mechanisms, limiting their ability to model intricate temporal dependencies. To explicitly solve the mentioned three problems respectively, we propose a novel Dynamic Multi-Scale Coordination Framework (DMSC) with Multi-Scale Patch Decomposition block (EMPD), Triad Interaction Block (TIB) and Adaptive Scale Routing MoE block (ASR-MoE). Specifically, EMPD is designed as a built-in component to dynamically segment sequences into hierarchical patches with exponentially scaled granularities, eliminating predefined scale constraints through input-adaptive patch adjustment. TIB then jointly models intra-patch, inter-patch, and cross-variable dependencies within each layer's decomposed representations. EMPD and TIB are jointly integrated into layers forming a multi-layer progressive cascade architecture, where coarse-grained representations from earlier layers adaptively guide fine-grained feature extraction in subsequent layers via gated pathways. And ASR-MoE dynamically fuses multi-scale predictions by leveraging specialized global and local experts with temporal-aware weighting. Comprehensive experiments on thirteen real-world benchmarks demonstrate that DMSC consistently maintains state-of-the-art (SOTA) performance and superior computational efficiency for TSF tasks. Code is available at https://github.com/1327679995/DMSC.
♻ ☆ Not All Heads Matter: A Head-Level KV Cache Compression Method with Integrated Retrieval and Reasoning ICLR2025
Key-Value (KV) caching is a common technique to enhance the computational efficiency of Large Language Models (LLMs), but its memory overhead grows rapidly with input length. Prior work has shown that not all tokens are equally important for text generation, proposing layer-level KV cache compression to selectively retain key information. Recognizing the distinct roles of attention heads in generation, we propose HeadKV, a head-level KV cache compression method, and HeadKV-R2, which leverages a novel contextual reasoning ability estimation for compression. Our approach operates at the level of individual heads, estimating their importance for contextual QA tasks that require both retrieval and reasoning capabilities. Extensive experiments across diverse benchmarks (LongBench, LooGLE), model architectures (e.g., Llama-3-8B-Instruct, Mistral-7B-Instruct), and long-context abilities tests demonstrate that our head-level KV cache compression significantly outperforms strong baselines, particularly in low-resource settings (KV size = 64 & 128). Notably, our method retains just 1.5% of the KV cache while achieving 97% of the performance of the full KV cache on the contextual question answering benchmark. Codes are available at https://github.com/FYYFU/HeadKV
comment: Accepted to ICLR2025
Computation and Language 136
☆ Small Drafts, Big Verdict: Information-Intensive Visual Reasoning via Speculation
Large Vision-Language Models (VLMs) have achieved remarkable progress in multimodal understanding, yet they struggle when reasoning over information-intensive images that densely interleave textual annotations with fine-grained graphical elements. The main challenges lie in precisely localizing critical cues in dense layouts and multi-hop reasoning to integrate dispersed evidence. We propose Speculative Verdict (SV), a training-free framework inspired by speculative decoding that combines multiple lightweight draft experts with a large verdict model. In the draft stage, small VLMs act as draft experts to generate reasoning paths that provide diverse localization candidates; in the verdict stage, a strong VLM synthesizes these paths to produce the final answer, minimizing computational cost while recovering correct answers. To further improve efficiency and accuracy, SV introduces a consensus expert selection mechanism that forwards only high-agreement reasoning paths to the verdict. Empirically, SV achieves consistent gains on challenging information-intensive and high-resolution visual question answering benchmarks, including InfographicVQA, ChartMuseum, ChartQAPro, and HR-Bench 4K. By synthesizing correct insights from multiple partially accurate reasoning paths, SV achieves both error correction and cost-efficiency compared to large proprietary models or training pipelines. Code is available at https://github.com/Tinaliu0123/speculative-verdict
☆ On the Detectability of LLM-Generated Text: What Exactly Is LLM-Generated Text?
With the widespread use of large language models (LLMs), many researchers have turned their attention to detecting text generated by them. However, there is no consistent or precise definition of their target, namely "LLM-generated text". Differences in usage scenarios and the diversity of LLMs further increase the difficulty of detection. What is commonly regarded as the detecting target usually represents only a subset of the text that LLMs can potentially produce. Human edits to LLM outputs, together with the subtle influences that LLMs exert on their users, are blurring the line between LLM-generated and human-written text. Existing benchmarks and evaluation approaches do not adequately address the various conditions in real-world detector applications. Hence, the numerical results of detectors are often misunderstood, and their significance is diminishing. Therefore, detectors remain useful under specific conditions, but their results should be interpreted only as references rather than decisive indicators.
☆ Real Deep Research for AI, Robotics and Beyond
With the rapid growth of research in AI and robotics now producing over 10,000 papers annually it has become increasingly difficult for researchers to stay up to date. Fast evolving trends, the rise of interdisciplinary work, and the need to explore domains beyond one's expertise all contribute to this challenge. To address these issues, we propose a generalizable pipeline capable of systematically analyzing any research area: identifying emerging trends, uncovering cross domain opportunities, and offering concrete starting points for new inquiry. In this work, we present Real Deep Research (RDR) a comprehensive framework applied to the domains of AI and robotics, with a particular focus on foundation models and robotics advancements. We also briefly extend our analysis to other areas of science. The main paper details the construction of the RDR pipeline, while the appendix provides extensive results across each analyzed topic. We hope this work sheds light for researchers working in the field of AI and beyond.
comment: website: https://realdeepresearch.github.io
☆ Compress to Impress: Efficient LLM Adaptation Using a Single Gradient Step on 100 Samples
Recently, Sharma et al. suggested a method called Layer-SElective-Rank reduction (LASER) which demonstrated that pruning high-order components of carefully chosen LLM's weight matrices can boost downstream accuracy -- without any gradient-based fine-tuning. Yet LASER's exhaustive, per-matrix search (each requiring full-dataset forward passes) makes it impractical for rapid deployment. We demonstrate that this overhead can be removed and find that: (i) Only a small, carefully chosen subset of matrices needs to be inspected -- eliminating the layer-by-layer sweep, (ii) The gradient of each matrix's singular values pinpoints which matrices merit reduction, (iii) Increasing the factorization search space by allowing matrices rows to cluster around multiple subspaces and then decomposing each cluster separately further reduces overfitting on the original training data and further lifts accuracy by up to 24.6 percentage points, and finally, (iv) we discover that evaluating on just 100 samples rather than the full training data -- both for computing the indicative gradients and for measuring the final accuracy -- suffices to further reduce the search time; we explain that as adaptation to downstream tasks is dominated by prompting style, not dataset size. As a result, we show that combining these findings yields a fast and robust adaptation algorithm for downstream tasks. Overall, with a single gradient step on 100 examples and a quick scan of the top candidate layers and factorization techniques, we can adapt LLMs to new datasets -- entirely without fine-tuning.
☆ Simple Context Compression: Mean-Pooling and Multi-Ratio Training
A common strategy to reduce the computational costs of using long contexts in retrieval-augmented generation (RAG) with large language models (LLMs) is soft context compression, where the input sequence is transformed into a shorter continuous representation. We develop a lightweight and simple mean-pooling approach that consistently outperforms the widely used compression-tokens architecture, and study training the same compressor to output multiple compression ratios. We conduct extensive experiments across in-domain and out-of-domain QA datasets, as well as across model families, scales, and compression ratios. Overall, our simple mean-pooling approach achieves the strongest performance, with a relatively small drop when training for multiple compression ratios. More broadly though, across architectures and training regimes the trade-offs are more nuanced, illustrating the complex landscape of compression methods.
comment: Code available at https://github.com/lil-lab/simple-context-compression
☆ BadGraph: A Backdoor Attack Against Latent Diffusion Model for Text-Guided Graph Generation
The rapid progress of graph generation has raised new security concerns, particularly regarding backdoor vulnerabilities. While prior work has explored backdoor attacks in image diffusion and unconditional graph generation, conditional, especially text-guided graph generation remains largely unexamined. This paper proposes BadGraph, a backdoor attack method targeting latent diffusion models for text-guided graph generation. BadGraph leverages textual triggers to poison training data, covertly implanting backdoors that induce attacker-specified subgraphs during inference when triggers appear, while preserving normal performance on clean inputs. Extensive experiments on four benchmark datasets (PubChem, ChEBI-20, PCDes, MoMu) demonstrate the effectiveness and stealth of the attack: less than 10% poisoning rate can achieves 50% attack success rate, while 24% suffices for over 80% success rate, with negligible performance degradation on benign samples. Ablation studies further reveal that the backdoor is implanted during VAE and diffusion training rather than pretraining. These findings reveal the security vulnerabilities in latent diffusion models of text-guided graph generation, highlight the serious risks in models' applications such as drug discovery and underscore the need for robust defenses against the backdoor attack in such diffusion models.
☆ Alleviating Forgetfulness of Linear Attention by Hybrid Sparse Attention and Contextualized Learnable Token Eviction
Linear-attention models that compress the entire input sequence into a fixed-size recurrent state offer an efficient alternative to Transformers, but their finite memory induces forgetfulness that harms retrieval-intensive tasks. To mitigate the issue, we explore a series of hybrid models that restore direct access to past tokens. We interleave token mixers with intermediate time and space complexity between linear and full attention, including sparse attention with token eviction, and the query-aware native sparse attention. Particularly, we propose a novel learnable token eviction approach. Combined with sliding-window attention, an end-to-end trainable lightweight CNN aggregates information from both past and future adjacent tokens to adaptively retain a limited set of critical KV-pairs per head, maintaining linear attention's constant time and space complexity. Efficient Triton kernels for the sparse attention mechanisms are provided. Empirical evaluations on retrieval-intensive benchmarks support the effectiveness of our approaches.
comment: 19 pages, 5 figures
☆ A Use-Case Specific Dataset for Measuring Dimensions of Responsible Performance in LLM-generated Text CIKM '25
Current methods for evaluating large language models (LLMs) typically focus on high-level tasks such as text generation, without targeting a particular AI application. This approach is not sufficient for evaluating LLMs for Responsible AI dimensions like fairness, since protected attributes that are highly relevant in one application may be less relevant in another. In this work, we construct a dataset that is driven by a real-world application (generate a plain-text product description, given a list of product features), parameterized by fairness attributes intersected with gendered adjectives and product categories, yielding a rich set of labeled prompts. We show how to use the data to identify quality, veracity, safety, and fairness gaps in LLMs, contributing a proposal for LLM evaluation paired with a concrete resource for the research community.
comment: 24 pages with 3 figures, to appear in Proceedings of the 34th ACM International Conference on Information and Knowledge Management (CIKM '25)
☆ Are Large Reasoning Models Good Translation Evaluators? Analysis and Performance Boost NeurIPS 2025
Recent advancements in large reasoning models (LRMs) have introduced an intermediate "thinking" process prior to generating final answers, improving their reasoning capabilities on complex downstream tasks. However, the potential of LRMs as evaluators for machine translation (MT) quality remains underexplored. We provides the first systematic analysis of LRM-as-a-judge in MT evaluation. We identify key challenges, revealing LRMs require tailored evaluation materials, tend to "overthink" simpler instances and have issues with scoring mechanisms leading to overestimation. To address these, we propose to calibrate LRM thinking by training them on synthetic, human-like thinking trajectories. Our experiments on WMT24 Metrics benchmarks demonstrate that this approach largely reduces thinking budgets by ~35x while concurrently improving evaluation performance across different LRM scales from 7B to 32B (e.g., R1-Distill-Qwen-7B achieves a +8.7 correlation point improvement). These findings highlight the potential of efficiently calibrated LRMs to advance fine-grained automatic MT evaluation.
comment: NeurIPS 2025
☆ Empathic Prompting: Non-Verbal Context Integration for Multimodal LLM Conversations
We present Empathic Prompting, a novel framework for multimodal human-AI interaction that enriches Large Language Model (LLM) conversations with implicit non-verbal context. The system integrates a commercial facial expression recognition service to capture users' emotional cues and embeds them as contextual signals during prompting. Unlike traditional multimodal interfaces, empathic prompting requires no explicit user control; instead, it unobtrusively augments textual input with affective information for conversational and smoothness alignment. The architecture is modular and scalable, allowing integration of additional non-verbal modules. We describe the system design, implemented through a locally deployed DeepSeek instance, and report a preliminary service and usability evaluation (N=5). Results show consistent integration of non-verbal input into coherent LLM outputs, with participants highlighting conversational fluidity. Beyond this proof of concept, empathic prompting points to applications in chatbot-mediated communication, particularly in domains like healthcare or education, where users' emotional signals are critical yet often opaque in verbal exchanges.
☆ Co-Designing Quantum Codes with Transversal Diagonal Gates via Multi-Agent Systems
We present a multi-agent, human-in-the-loop workflow that co-designs quantum codes with prescribed transversal diagonal gates. It builds on the Subset-Sum Linear Programming (SSLP) framework (arXiv:2504.20847), which partitions basis strings by modular residues and enforces $Z$-marginal Knill-Laflamme (KL) equalities via small LPs. The workflow is powered by GPT-5 and implemented within TeXRA (https://texra.ai)-a multi-agent research assistant platform that supports an iterative tool-use loop agent and a derivation-then-edit workflow reasoning agent. We work in a LaTeX-Python environment where agents reason, edit documents, execute code, and synchronize their work to Git/Overleaf. Within this workspace, three roles collaborate: a Synthesis Agent formulates the problem; a Search Agent sweeps/screens candidates and exactifies numerics into rationals; and an Audit Agent independently checks all KL equalities and the induced logical action. As a first step we focus on distance $d=2$ with nondegenerate residues. For code dimension $K\in\{2,3,4\}$ and $n\le6$ qubits, systematic sweeps yield certificate-backed tables cataloging attainable cyclic logical groups-all realized by new codes-e.g., for $K=3$ we obtain order $16$ at $n=6$. From verified instances, Synthesis Agent abstracts recurring structures into closed-form families and proves they satisfy the KL equalities for all parameters. It further demonstrates that SSLP accommodates residue degeneracy by exhibiting a new $((6,4,2))$ code implementing the transversal controlled-phase $diag(1,1,1,i)$. Overall, the workflow recasts diagonal-transversal feasibility as an analytical pipeline executed at scale, combining systematic enumeration with exact analytical reconstruction. It yields reproducible code constructions, supports targeted extensions to larger $K$ and higher distances, and leads toward data-driven classification.
comment: 29 pages, 2 figures
☆ Automated Extraction of Fluoropyrimidine Treatment and Treatment-Related Toxicities from Clinical Notes Using Natural Language Processing
Objective: Fluoropyrimidines are widely prescribed for colorectal and breast cancers, but are associated with toxicities such as hand-foot syndrome and cardiotoxicity. Since toxicity documentation is often embedded in clinical notes, we aimed to develop and evaluate natural language processing (NLP) methods to extract treatment and toxicity information. Materials and Methods: We constructed a gold-standard dataset of 236 clinical notes from 204,165 adult oncology patients. Domain experts annotated categories related to treatment regimens and toxicities. We developed rule-based, machine learning-based (Random Forest, Support Vector Machine [SVM], Logistic Regression [LR]), deep learning-based (BERT, ClinicalBERT), and large language models (LLM)-based NLP approaches (zero-shot and error-analysis prompting). Models used an 80:20 train-test split. Results: Sufficient data existed to train and evaluate 5 annotated categories. Error-analysis prompting achieved optimal precision, recall, and F1 scores (F1=1.000) for treatment and toxicities extraction, whereas zero-shot prompting reached F1=1.000 for treatment and F1=0.876 for toxicities extraction.LR and SVM ranked second for toxicities (F1=0.937). Deep learning underperformed, with BERT (F1=0.873 treatment; F1= 0.839 toxicities) and ClinicalBERT (F1=0.873 treatment; F1 = 0.886 toxicities). Rule-based methods served as our baseline with F1 scores of 0.857 in treatment and 0.858 in toxicities. Discussion: LMM-based approaches outperformed all others, followed by machine learning methods. Machine and deep learning approaches were limited by small training data and showed limited generalizability, particularly for rare categories. Conclusion: LLM-based NLP most effectively extracted fluoropyrimidine treatment and toxicity information from clinical notes, and has strong potential to support oncology research and pharmacovigilance.
☆ User Perceptions of Privacy and Helpfulness in LLM Responses to Privacy-Sensitive Scenarios
Large language models (LLMs) have seen rapid adoption for tasks such as drafting emails, summarizing meetings, and answering health questions. In such uses, users may need to share private information (e.g., health records, contact details). To evaluate LLMs' ability to identify and redact such private information, prior work developed benchmarks (e.g., ConfAIde, PrivacyLens) with real-life scenarios. Using these benchmarks, researchers have found that LLMs sometimes fail to keep secrets private when responding to complex tasks (e.g., leaking employee salaries in meeting summaries). However, these evaluations rely on LLMs (proxy LLMs) to gauge compliance with privacy norms, overlooking real users' perceptions. Moreover, prior work primarily focused on the privacy-preservation quality of responses, without investigating nuanced differences in helpfulness. To understand how users perceive the privacy-preservation quality and helpfulness of LLM responses to privacy-sensitive scenarios, we conducted a user study with 94 participants using 90 scenarios from PrivacyLens. We found that, when evaluating identical responses to the same scenario, users showed low agreement with each other on the privacy-preservation quality and helpfulness of the LLM response. Further, we found high agreement among five proxy LLMs, while each individual LLM had low correlation with users' evaluations. These results indicate that the privacy and helpfulness of LLM responses are often specific to individuals, and proxy LLMs are poor estimates of how real users would perceive these responses in privacy-sensitive scenarios. Our results suggest the need to conduct user-centered studies on measuring LLMs' ability to help users while preserving privacy. Additionally, future research could investigate ways to improve the alignment between proxy LLMs and users for better estimation of users' perceived privacy and utility.
☆ Structure-Conditional Minimum Bayes Risk Decoding EMNLP 2025
Minimum Bayes Risk (MBR) decoding has seen renewed interest as an alternative to traditional generation strategies. While MBR has proven effective in machine translation, where the variability of a language model's outcome space is naturally constrained, it may face challenges in more open-ended tasks such as dialogue or instruction-following. We hypothesise that in such settings, applying MBR with standard similarity-based utility functions may result in selecting responses that are broadly representative of the model's distribution, yet sub-optimal with respect to any particular grouping of generations that share an underlying latent structure. In this work, we introduce three lightweight adaptations to the utility function, designed to make MBR more sensitive to structural variability in the outcome space. To test our hypothesis, we curate a dataset capturing three representative types of latent structure: dialogue act, emotion, and response structure (e.g., a sentence, a paragraph, or a list). We further propose two metrics to evaluate the structural optimality of MBR. Our analysis demonstrates that common similarity-based utility functions fall short by these metrics. In contrast, our proposed adaptations considerably improve structural optimality. Finally, we evaluate our approaches on real-world instruction-following benchmarks, AlpacaEval and MT-Bench, and show that increased structural sensitivity improves generation quality by up to 13.7 percentage points in win rate.
comment: EMNLP 2025 Camera-Ready
☆ Neural Diversity Regularizes Hallucinations in Small Models
Language models continue to hallucinate despite increases in parameters, compute, and data. We propose neural diversity -- decorrelated parallel representations -- as a principled mechanism that reduces hallucination rates at fixed parameter and data budgets. Inspired by portfolio theory, where uncorrelated assets reduce risk by $\sqrt{P}$, we prove hallucination probability is bounded by representational correlation: $P(H) \leq f(\sigma^2((1-\rho(P))/P + \rho(P)), \mu^2)$, which predicts that language models need an optimal amount of neurodiversity. To validate this, we introduce ND-LoRA (Neural Diversity Low-Rank Adaptation), combining parallel LoRA adapters with Barlow Twins regularization, and demonstrate that ND-LoRA reduces hallucinations by up to 25.6% (and 14.6% on average) without degrading general accuracy. Ablations show LoRA adapters and regularization act synergistically, causal interventions prove neurodiversity as the mediating factor and correlational analyses indicate scale: a 0.1% neural correlation increase is associated with a 3.8% hallucination increase. Finally, task-dependent optimality emerges: different tasks require different amounts of optimal neurodiversity. Together, our results highlight neural diversity as a third axis of scaling -- orthogonal to parameters and data -- to improve the reliability of language models at fixed budgets.
☆ Analyticup E-commerce Product Search Competition Technical Report from Team Tredence_AICOE
This study presents the multilingual e-commerce search system developed by the Tredence_AICOE team. The competition features two multilingual relevance tasks: Query-Category (QC) Relevance, which evaluates how well a user's search query aligns with a product category, and Query-Item (QI) Relevance, which measures the match between a multilingual search query and an individual product listing. To ensure full language coverage, we performed data augmentation by translating existing datasets into languages missing from the development set, enabling training across all target languages. We fine-tuned Gemma-3 12B and Qwen-2.5 14B model for both tasks using multiple strategies. The Gemma-3 12B (4-bit) model achieved the best QC performance using original and translated data, and the best QI performance using original, translated, and minority class data creation. These approaches secured 4th place on the final leaderboard, with an average F1-score of 0.8857 on the private test set.
☆ \textsc{CantoNLU}: A benchmark for Cantonese natural language understanding
Cantonese, although spoken by millions, remains under-resourced due to policy and diglossia. To address this scarcity of evaluation frameworks for Cantonese, we introduce \textsc{\textbf{CantoNLU}}, a benchmark for Cantonese natural language understanding (NLU). This novel benchmark spans seven tasks covering syntax and semantics, including word sense disambiguation, linguistic acceptability judgment, language detection, natural language inference, sentiment analysis, part-of-speech tagging, and dependency parsing. In addition to the benchmark, we provide model baseline performance across a set of models: a Mandarin model without Cantonese training, two Cantonese-adapted models obtained by continual pre-training a Mandarin model on Cantonese text, and a monolingual Cantonese model trained from scratch. Results show that Cantonese-adapted models perform best overall, while monolingual models perform better on syntactic tasks. Mandarin models remain competitive in certain settings, indicating that direct transfer may be sufficient when Cantonese domain data is scarce. We release all datasets, code, and model weights to facilitate future research in Cantonese NLP.
comment: 13 pages, 1 figure
☆ The Reasoning Lingua Franca: A Double-Edged Sword for Multilingual AI
Large Reasoning Models (LRMs) achieve strong performance on mathematical, scientific, and other question-answering tasks, but their multilingual reasoning abilities remain underexplored. When presented with non-English questions, LRMs often default to reasoning in English, raising concerns about interpretability and the handling of linguistic and cultural nuances. We systematically compare an LRM's reasoning in English versus the language of the question. Our evaluation spans two tasks: MGSM and GPQA Diamond. Beyond measuring answer accuracy, we also analyze cognitive attributes in the reasoning traces. We find that English reasoning traces exhibit a substantially higher presence of these cognitive behaviors, and that reasoning in English generally yields higher final-answer accuracy, with the performance gap increasing as tasks become more complex. However, this English-centric strategy is susceptible to a key failure mode - getting "Lost in Translation," where translation steps lead to errors that would have been avoided by question's language reasoning.
comment: 14 pages, 13 figures, 5 tables
☆ Why Did Apple Fall To The Ground: Evaluating Curiosity In Large Language Model
Curiosity serves as a pivotal conduit for human beings to discover and learn new knowledge. Recent advancements of large language models (LLMs) in natural language processing have sparked discussions regarding whether these models possess capability of curiosity-driven learning akin to humans. In this paper, starting from the human curiosity assessment questionnaire Five-Dimensional Curiosity scale Revised (5DCR), we design a comprehensive evaluation framework that covers dimensions such as Information Seeking, Thrill Seeking, and Social Curiosity to assess the extent of curiosity exhibited by LLMs. The results demonstrate that LLMs exhibit a stronger thirst for knowledge than humans but still tend to make conservative choices when faced with uncertain environments. We further investigated the relationship between curiosity and thinking of LLMs, confirming that curious behaviors can enhance the model's reasoning and active learning abilities. These findings suggest that LLMs have the potential to exhibit curiosity similar to that of humans, providing experimental support for the future development of learning capabilities and innovative research in LLMs.
☆ BUSTED at AraGenEval Shared Task: A Comparative Study of Transformer-Based Models for Arabic AI-Generated Text Detection
This paper details our submission to the Ara- GenEval Shared Task on Arabic AI-generated text detection, where our team, BUSTED, se- cured 5th place. We investigated the effec- tiveness of three pre-trained transformer mod- els: AraELECTRA, CAMeLBERT, and XLM- RoBERTa. Our approach involved fine-tuning each model on the provided dataset for a binary classification task. Our findings revealed a sur- prising result: the multilingual XLM-RoBERTa model achieved the highest performance with an F1 score of 0.7701, outperforming the spe- cialized Arabic models. This work underscores the complexities of AI-generated text detection and highlights the strong generalization capa- bilities of multilingual models.
☆ What Defines Good Reasoning in LLMs? Dissecting Reasoning Steps with Multi-Aspect Evaluation
Evaluating large language models (LLMs) on final-answer correctness is the dominant paradigm. This approach, however, provides a coarse signal for model improvement and overlooks the quality of the underlying reasoning process. We argue that a more granular evaluation of reasoning offers a more effective path to building robust models. We decompose reasoning quality into two dimensions: relevance and coherence. Relevance measures if a step is grounded in the problem; coherence measures if it follows logically from prior steps. To measure these aspects reliably, we introduce causal stepwise evaluation (CaSE). This method assesses each reasoning step using only its preceding context, which avoids hindsight bias. We validate CaSE against human judgments on our new expert-annotated benchmarks, MRa-GSM8K and MRa-MATH. More importantly, we show that curating training data with CaSE-evaluated relevance and coherence directly improves final task performance. Our work provides a scalable framework for analyzing, debugging, and improving LLM reasoning, demonstrating the practical value of moving beyond validity checks.
☆ Can ChatGPT Code Communication Data Fairly?: Empirical Evidence from Multiple Collaborative Tasks
Assessing communication and collaboration at scale depends on a labor intensive task of coding communication data into categories according to different frameworks. Prior research has established that ChatGPT can be directly instructed with coding rubrics to code the communication data and achieves accuracy comparable to human raters. However, whether the coding from ChatGPT or similar AI technology exhibits bias against different demographic groups, such as gender and race, remains unclear. To fill this gap, this paper investigates ChatGPT-based automated coding of communication data using a typical coding framework for collaborative problem solving, examining differences across gender and racial groups. The analysis draws on data from three types of collaborative tasks: negotiation, problem solving, and decision making. Our results show that ChatGPT-based coding exhibits no significant bias across gender and racial groups, paving the road for its adoption in large-scale assessment of collaboration and communication.
comment: 38 pages, 4 figures
☆ Beyond Retrieval-Ranking: A Multi-Agent Cognitive Decision Framework for E-Commerce Search
The retrieval-ranking paradigm has long dominated e-commerce search, but its reliance on query-item matching fundamentally misaligns with multi-stage cognitive decision processes of platform users. This misalignment introduces critical limitations: semantic gaps in complex queries, high decision costs due to cross-platform information foraging, and the absence of professional shopping guidance. To address these issues, we propose a Multi-Agent Cognitive Decision Framework (MACDF), which shifts the paradigm from passive retrieval to proactive decision support. Extensive offline evaluations demonstrate MACDF's significant improvements in recommendation accuracy and user satisfaction, particularly for complex queries involving negation, multi-constraint, or reasoning demands. Online A/B testing on JD search platform confirms its practical efficacy. This work highlights the transformative potential of multi-agent cognitive systems in redefining e-commerce search.
☆ GlobalRAG: Enhancing Global Reasoning in Multi-hop Question Answering via Reinforcement Learning
Reinforcement learning has recently shown promise in improving retrieval-augmented generation (RAG). Despite these advances, its effectiveness in multi-hop question answering (QA) remains limited by two fundamental limitations: (i) global planning absence to structure multi-step reasoning, and (ii) unfaithful execution, which hinders effective query formulation and consistent use of retrieved evidence. We propose GlobalRAG, a reinforcement learning framework designed to enhance global reasoning in multi-hop QA. GlobalRAG decomposes questions into subgoals, coordinates retrieval with reasoning, and refines evidence iteratively. To guide this process, we introduce Planning Quality Reward and SubGoal Completion Reward, which encourage coherent planning and reliable subgoal execution. In addition, a progressive weight annealing strategy balances process-oriented and outcome-based objectives. Extensive experiments on both in-domain and out-of-domain benchmarks demonstrate that GlobalRAG significantly outperforms strong baselines while using only 8k training data (42% of the training data used by strong baselines), achieving average improvements of 14.2% in both EM and F1.
comment: 8 pages, 3 figures, 4 tables
☆ The Dog the Cat Chased Stumped the Model: Measuring When Language Models Abandon Structure for Shortcuts
When language models correctly parse "The cat that the dog chased meowed," are they analyzing syntax or simply familiar with dogs chasing cats? Despite extensive benchmarking, we lack methods to distinguish structural understanding from semantic pattern matching. We introduce CenterBench, a dataset of 9,720 comprehension questions on center-embedded sentences (like "The cat [that the dog chased] meowed") where relative clauses nest recursively, creating processing demands from simple to deeply nested structures. Each sentence has a syntactically identical but semantically implausible counterpart (e.g., mailmen prescribe medicine, doctors deliver mail) and six comprehension questions testing surface understanding, syntactic dependencies, and causal reasoning. Testing six models reveals that performance gaps between plausible and implausible sentences widen systematically with complexity, with models showing median gaps up to 26.8 percentage points, quantifying when they abandon structural analysis for semantic associations. Notably, semantic plausibility harms performance on questions about resulting actions, where following causal relationships matters more than semantic coherence. Reasoning models improve accuracy but their traces show semantic shortcuts, overthinking, and answer refusal. Unlike models whose plausibility advantage systematically widens with complexity, humans shows variable semantic effects. CenterBench provides the first framework to identify when models shift from structural analysis to pattern matching.
☆ ARC-Encoder: learning compressed text representations for large language models
Recent techniques such as retrieval-augmented generation or chain-of-thought reasoning have led to longer contexts and increased inference costs. Context compression techniques can reduce these costs, but the most effective approaches require fine-tuning the target model or even modifying its architecture. This can degrade its general abilities when not used for this specific purpose. Here we explore an alternative approach: an encoder that compresses the context into continuous representations which replace token embeddings in decoder LLMs. First, we perform a systematic study of training strategies and architecture choices for the encoder. Our findings led to the design of an Adaptable text Representations Compressor, named ARC-Encoder, which outputs $x$-times fewer continuous representations (typically $x\!\in\!\{4,8\}$) than text tokens. We evaluate ARC-Encoder across a variety of LLM usage scenarios, ranging from in-context learning to context window extension, on both instruct and base decoders. Results show that ARC-Encoder achieves state-of-the-art performance on several benchmarks while improving computational efficiency at inference. Finally, we demonstrate that our models can be adapted to multiple decoders simultaneously, allowing a single encoder to generalize across different decoder LLMs. This makes ARC-Encoder a flexible and efficient solution for portable encoders that work seamlessly with multiple LLMs. We release a training code at https://github.com/kyutai-labs/ARC-Encoder , fine-tuning dataset and pretrained models are available at https://huggingface.co/collections/kyutai/arc-encoders-68ee18787301407d60a57047 .
☆ Decoding the Ear: A Framework for Objectifying Expressiveness from Human Preference Through Efficient Alignment ICASSP 2026
Recent speech-to-speech (S2S) models generate intelligible speech but still lack natural expressiveness, largely due to the absence of a reliable evaluation metric. Existing approaches, such as subjective MOS ratings, low-level acoustic features, and emotion recognition are costly, limited, or incomplete. To address this, we present DeEAR (Decoding the Expressive Preference of eAR), a framework that converts human preference for speech expressiveness into an objective score. Grounded in phonetics and psychology, DeEAR evaluates speech across three dimensions: Emotion, Prosody, and Spontaneity, achieving strong alignment with human perception (Spearman's Rank Correlation Coefficient, SRCC = 0.86) using fewer than 500 annotated samples. Beyond reliable scoring, DeEAR enables fair benchmarking and targeted data curation. It not only distinguishes expressiveness gaps across S2S models but also selects 14K expressive utterances to form ExpressiveSpeech, which improves the expressive score (from 2.0 to 23.4 on a 100-point scale) of S2S models. Demos and codes are available at https://github.com/FreedomIntelligence/ExpressiveSpeech
comment: Submitted to ICASSP 2026. Demos and codes are available at https://github.com/FreedomIntelligence/ExpressiveSpeech
☆ Assessing the Political Fairness of Multilingual LLMs: A Case Study based on a 21-way Multiparallel EuroParl Dataset
The political biases of Large Language Models (LLMs) are usually assessed by simulating their answers to English surveys. In this work, we propose an alternative framing of political biases, relying on principles of fairness in multilingual translation. We systematically compare the translation quality of speeches in the European Parliament (EP), observing systematic differences with majority parties from left, center, and right being better translated than outsider parties. This study is made possible by a new, 21-way multiparallel version of EuroParl, the parliamentary proceedings of the EP, which includes the political affiliations of each speaker. The dataset consists of 1.5M sentences for a total of 40M words and 249M characters. It covers three years, 1000+ speakers, 7 countries, 12 EU parties, 25 EU committees, and hundreds of national parties.
☆ Hierarchical Sequence Iteration for Heterogeneous Question Answering
Retrieval-augmented generation (RAG) remains brittle on multi-step questions and heterogeneous evidence sources, trading accuracy against latency and token/tool budgets. This paper introducesHierarchical Sequence (HSEQ) Iteration for Heterogeneous Question Answering, a unified framework that (i) linearize documents, tables, and knowledge graphs into a reversible hierarchical sequence with lightweight structural tags, and (ii) perform structure-aware iteration to collect just-enough evidence before answer synthesis. A Head Agent provides guidance that leads retrieval, while an Iteration Agent selects and expands HSeq via structure-respecting actions (e.g., parent/child hops, table row/column neighbors, KG relations); Finally the head agent composes canonicalized evidence to genearte the final answer, with an optional refinement loop to resolve detected contradictions. Experiments on HotpotQA (text), HybridQA/TAT-QA (table+text), and MetaQA (KG) show consistent EM/F1 gains over strong single-pass, multi-hop, and agentic RAG baselines with high efficiency. Besides, HSEQ exhibits three key advantages: (1) a format-agnostic unification that enables a single policy to operate across text, tables, and KGs without per-dataset specialization; (2) guided, budget-aware iteration that reduces unnecessary hops, tool calls, and tokens while preserving accuracy; and (3) evidence canonicalization for reliable QA, improving answers consistency and auditability.
comment: 22 pages, 3 figures
☆ Robust Preference Alignment via Directional Neighborhood Consensus ICLR 2026
Aligning large language models with human preferences is critical for creating reliable and controllable AI systems. A human preference can be visualized as a high-dimensional vector where different directions represent trade-offs between desired attributes (e.g., helpfulness vs. verbosity). Yet, because the training data often reflects dominant, average preferences, LLMs tend to perform well on common requests but fall short in specific, individual needs. This mismatch creates a preference coverage gap. Existing methods often address this through costly retraining, which may not be generalized to the full spectrum of diverse preferences. This brittleness means that when a user's request reflects a nuanced preference deviating from the training data's central tendency, model performance can degrade unpredictably. To address this challenge, we introduce Robust Preference Selection (RPS), a post-hoc, training-free method by leveraging directional neighborhood consensus. Instead of forcing a model to generate a response from a single, highly specific preference, RPS samples multiple responses from a local neighborhood of related preferences to create a superior candidate pool. It then selects the response that best aligns with the user's original intent. We provide a theoretical framework showing our neighborhood generation strategy is provably superior to a strong baseline that also samples multiple candidates. Comprehensive experiments across three distinct alignment paradigms (DPA, DPO, and SFT) demonstrate that RPS consistently improves robustness against this baseline, achieving win rates of up to 69% on challenging preferences from under-represented regions of the space without any model retraining. Our work presents a practical, theoretically-grounded solution for enhancing the reliability of preference-aligned models.
comment: Under review at ICLR 2026. 10 pages, 5 figures. Code and data available at https://github.com/rcmao/robust-preference-alignment
☆ Steering Evaluation-Aware Language Models To Act Like They Are Deployed
Large language models (LLMs) can sometimes detect when they are being evaluated and adjust their behavior to appear more aligned, compromising the reliability of safety evaluations. In this paper, we show that adding a steering vector to an LLM's activations can suppress evaluation-awareness and make the model act like it is deployed during evaluation. To study our steering technique, we train an LLM to exhibit evaluation-aware behavior using a two-step training process designed to mimic how this behavior could emerge naturally. First, we perform continued pretraining on documents with factual descriptions of the model (1) using Python type hints during evaluation but not during deployment and (2) recognizing that the presence of a certain evaluation cue always means that it is being tested. Then, we train the model with expert iteration to use Python type hints in evaluation settings. The resulting model is evaluation-aware: it writes type hints in evaluation contexts more than deployment contexts. However, this gap can only be observed by removing the evaluation cue. We find that activation steering can suppress evaluation awareness and make the model act like it is deployed even when the cue is present. Importantly, we constructed our steering vector using the original model before our additional training. Our results suggest that AI evaluators could improve the reliability of safety evaluations by steering models to act like they are deployed.
☆ RECALL: REpresentation-aligned Catastrophic-forgetting ALLeviation via Hierarchical Model Merging
We unveil that internal representations in large language models (LLMs) serve as reliable proxies of learned knowledge, and propose RECALL, a novel representation-aware model merging framework for continual learning without access to historical data. RECALL computes inter-model similarity from layer-wise hidden representations over clustered typical samples, and performs adaptive, hierarchical parameter fusion to align knowledge across models. This design enables the preservation of domain-general features in shallow layers while allowing task-specific adaptation in deeper layers. Unlike prior methods that require task labels or incur performance trade-offs, RECALL achieves seamless multi-domain integration and strong resistance to catastrophic forgetting. Extensive experiments across five NLP tasks and multiple continual learning scenarios show that RECALL outperforms baselines in both knowledge retention and generalization, providing a scalable and data-free solution for evolving LLMs.
☆ Mask and You Shall Receive: Optimizing Masked Language Modeling For Pretraining BabyLMs
We describe our strategy for the 2025 edition of the BabyLM Challenge. Our main contribution is that of an improved form of Masked Language Modeling (MLM), which adapts the probabilities of the tokens masked according to the model's ability to predict them. The results show a substantial increase in performance on (Super)GLUE tasks over the standard MLM. We also incorporate sub-token embeddings, finding that this increases the model's morphological generalization capabilities. Our submission beats the baseline in the strict-small track.
comment: Submission to the 2025 BabyLM Challenge
☆ Systematic Evaluation of Uncertainty Estimation Methods in Large Language Models
Large language models (LLMs) produce outputs with varying levels of uncertainty, and, just as often, varying levels of correctness; making their practical reliability far from guaranteed. To quantify this uncertainty, we systematically evaluate four approaches for confidence estimation in LLM outputs: VCE, MSP, Sample Consistency, and CoCoA (Vashurin et al., 2025). For the evaluation of the approaches, we conduct experiments on four question-answering tasks using a state-of-the-art open-source LLM. Our results show that each uncertainty metric captures a different facet of model confidence and that the hybrid CoCoA approach yields the best reliability overall, improving both calibration and discrimination of correct answers. We discuss the trade-offs of each method and provide recommendations for selecting uncertainty measures in LLM applications.
☆ LM-mixup: Text Data Augmentation via Language Model based Mixup
Instruction tuning is crucial for aligning Large Language Models (LLMs), yet the quality of instruction-following data varies significantly. While high-quality data is paramount, it is often scarce; conversely, abundant low-quality data is frequently discarded, leading to substantial information loss. Existing data augmentation methods struggle to augment this low-quality data effectively, and the evaluation of such techniques remains poorly defined. To address this, we formally define the task of Instruction Distillation: distilling multiple low-quality and redundant inputs into high-quality and coherent instruction-output pairs. Specifically, we introduce a comprehensive data construction pipeline to create MIXTURE, a 144K-sample dataset pairing low-quality or semantically redundant imperfect instruction clusters with their high-quality distillations. We then introduce LM-Mixup, by first performing supervised fine-tuning on MIXTURE and then optimizing it with reinforcement learning. This process uses three complementary reward signals: quality, semantic alignment, and format compliance, via Group Relative Policy Optimization (GRPO). We demonstrate that LM-Mixup effectively augments imperfect datasets: fine-tuning LLMs on its distilled data, which accounts for only about 3% of the entire dataset, not only surpasses full-dataset training but also competes with state-of-the-art high-quality data selection methods across multiple benchmarks. Our work establishes that low-quality data is a valuable resource when properly distilled and augmented with LM-Mixup, significantly enhancing the efficiency and performance of instruction-tuned LLMs.
☆ Teacher Demonstrations in a BabyLM's Zone of Proximal Development for Contingent Multi-Turn Interaction EMNLP 2025
Multi-turn dialogues between a child and a caregiver are characterized by a property called contingency - that is, prompt, direct, and meaningful exchanges between interlocutors. We introduce ContingentChat, a teacher-student framework that benchmarks and improves multi-turn contingency in a BabyLM trained on 100M words. Using a novel alignment dataset for post-training, BabyLM generates responses that are more grammatical and cohesive. Experiments with adaptive teacher decoding strategies show limited additional gains. ContingentChat demonstrates the benefits of targeted post-training for dialogue quality and indicates that contingency remains a challenging goal for BabyLMs.
comment: Outstanding Paper Award, EMNLP 2025 BabyLM Workshop - Oral presentation, Suzhou, China
☆ Relative-Based Scaling Law for Neural Language Models
Scaling laws aim to accurately predict model performance across different scales. Existing scaling-law studies almost exclusively rely on cross-entropy as the evaluation metric. However, cross-entropy provides only a partial view of performance: it measures the absolute probability assigned to the correct token, but ignores the relative ordering between correct and incorrect tokens. Yet, relative ordering is crucial for language models, such as in greedy-sampling scenario. To address this limitation, we investigate scaling from the perspective of relative ordering. We first propose the Relative-Based Probability (RBP) metric, which quantifies the probability that the correct token is ranked among the top predictions. Building on this metric, we establish the Relative-Based Scaling Law, which characterizes how RBP improves with increasing model size. Through extensive experiments on four datasets and four model families spanning five orders of magnitude, we demonstrate the robustness and accuracy of this law. Finally, we illustrate the broad application of this law with two examples, namely providing a deeper explanation of emergence phenomena and facilitating finding fundamental theories of scaling laws. In summary, the Relative-Based Scaling Law complements the cross-entropy perspective and contributes to a more complete understanding of scaling large language models. Thus, it offers valuable insights for both practical development and theoretical exploration.
☆ NeoDictaBERT: Pushing the Frontier of BERT models for Hebrew
Since their initial release, BERT models have demonstrated exceptional performance on a variety of tasks, despite their relatively small size (BERT-base has ~100M parameters). Nevertheless, the architectural choices used in these models are outdated compared to newer transformer-based models such as Llama3 and Qwen3. In recent months, several architectures have been proposed to close this gap. ModernBERT and NeoBERT both show strong improvements on English benchmarks and significantly extend the supported context window. Following their successes, we introduce NeoDictaBERT and NeoDictaBERT-bilingual: BERT-style models trained using the same architecture as NeoBERT, with a dedicated focus on Hebrew texts. These models outperform existing ones on almost all Hebrew benchmarks and provide a strong foundation for downstream tasks. Notably, the NeoDictaBERT-bilingual model shows strong results on retrieval tasks, outperforming other multilingual models of similar size. In this paper, we describe the training process and report results across various benchmarks. We release the models to the community as part of our goal to advance research and development in Hebrew NLP.
☆ VLSP 2025 MLQA-TSR Challenge: Vietnamese Multimodal Legal Question Answering on Traffic Sign Regulation SP 2025
This paper presents the VLSP 2025 MLQA-TSR - the multimodal legal question answering on traffic sign regulation shared task at VLSP 2025. VLSP 2025 MLQA-TSR comprises two subtasks: multimodal legal retrieval and multimodal question answering. The goal is to advance research on Vietnamese multimodal legal text processing and to provide a benchmark dataset for building and evaluating intelligent systems in multimodal legal domains, with a focus on traffic sign regulation in Vietnam. The best-reported results on VLSP 2025 MLQA-TSR are an F2 score of 64.55% for multimodal legal retrieval and an accuracy of 86.30% for multimodal question answering.
comment: VLSP 2025 MLQA-TSR Share Task
☆ IKnow: Instruction-Knowledge-Aware Continual Pretraining for Effective Domain Adaptation
Continual pretraining promises to adapt large language models (LLMs) to new domains using only unlabeled test-time data, but naively applying standard self-supervised objectives to instruction-tuned models is known to degrade their instruction-following capability and semantic representations. Existing fixes assume access to the original base model or rely on knowledge from an external domain-specific database - both of which pose a realistic barrier in settings where the base model weights are withheld for safety reasons or reliable external corpora are unavailable. In this work, we propose Instruction-Knowledge-Aware Continual Adaptation (IKnow), a simple and general framework that formulates novel self-supervised objectives in the instruction-response dialogue format. Rather than depend- ing on external resources, IKnow leverages domain knowledge embedded within the text itself and learns to encode it at a deeper semantic level.
☆ The Impact of Negated Text on Hallucination with Large Language Models EMNLP 2025
Recent studies on hallucination in large language models (LLMs) have been actively progressing in natural language processing. However, the impact of negated text on hallucination with LLMs remains largely unexplored. In this paper, we set three important yet unanswered research questions and aim to address them. To derive the answers, we investigate whether LLMs can recognize contextual shifts caused by negation and still reliably distinguish hallucinations comparable to affirmative cases. We also design the NegHalu dataset by reconstructing existing hallucination detection datasets with negated expressions. Our experiments demonstrate that LLMs struggle to detect hallucinations in negated text effectively, often producing logically inconsistent or unfaithful judgments. Moreover, we trace the internal state of LLMs as they process negated inputs at the token level and reveal the challenges of mitigating their unintended effects.
comment: Accepted to the EMNLP 2025
☆ Dialogue Is Not Enough to Make a Communicative BabyLM (But Neither Is Developmentally Inspired Reinforcement Learning)
We investigate whether pre-training exclusively on dialogue data results in formally and functionally apt small language models. Based on this pre-trained llamalogue model, we employ a variety of fine-tuning strategies to enforce "more communicative" text generations by our models. Although our models underperform on most standard BabyLM benchmarks, they excel at dialogue continuation prediction in a minimal pair setting. While PPO fine-tuning has mixed to adversarial effects on our models, DPO fine-tuning further improves their performance on our custom dialogue benchmark.
☆ FreeChunker: A Cross-Granularity Chunking Framework
Chunking strategies significantly impact the effectiveness of Retrieval-Augmented Generation (RAG) systems. Existing methods operate within fixed-granularity paradigms that rely on static boundary identification, limiting their adaptability to diverse query requirements. This paper presents FreeChunker, a Cross-Granularity Encoding Framework that fundamentally transforms the traditional chunking paradigm: the framework treats sentences as atomic units and shifts from static chunk segmentation to flexible retrieval supporting arbitrary sentence combinations. This paradigm shift not only significantly reduces the computational overhead required for semantic boundary detection but also enhances adaptability to complex queries. Experimental evaluation on LongBench V2 demonstrates that FreeChunker achieves superior retrieval performance compared to traditional chunking methods, while significantly outperforming existing approaches in computational efficiency.
comment: Submitted to arXiv, October 2025
☆ Evaluating Latent Knowledge of Public Tabular Datasets in Large Language Models
Large Language Models (LLMs) are increasingly evaluated on their ability to reason over structured data, yet such assessments often overlook a crucial confound: dataset contamination. In this work, we investigate whether LLMs exhibit prior knowledge of widely used tabular benchmarks such as Adult Income, Titanic, and others. Through a series of controlled probing experiments, we reveal that contamination effects emerge exclusively for datasets containing strong semantic cues-for instance, meaningful column names or interpretable value categories. In contrast, when such cues are removed or randomized, performance sharply declines to near-random levels. These findings suggest that LLMs' apparent competence on tabular reasoning tasks may, in part, reflect memorization of publicly available datasets rather than genuine generalization. We discuss implications for evaluation protocols and propose strategies to disentangle semantic leakage from authentic reasoning ability in future LLM assessments.
☆ Teaching Language Models to Reason with Tools NIPS2025
Large reasoning models (LRMs) like OpenAI-o1 have shown impressive capabilities in natural language reasoning. However, these models frequently demonstrate inefficiencies or inaccuracies when tackling complex mathematical operations. While integrating computational tools such as Code Interpreters (CIs) offers a promising solution, it introduces a critical challenge: a conflict between the model's internal, probabilistic reasoning and the external, deterministic knowledge provided by the CI, which often leads models to unproductive deliberation. To overcome this, we introduce CoRT (Code-Optimized Reasoning Training), a post-training framework designed to teach LRMs to effectively utilize CIs. We propose \emph{Hint-Engineering}, a new data synthesis strategy that strategically injects diverse hints at optimal points within reasoning paths. This approach generates high-quality, code-integrated reasoning data specifically tailored to optimize LRM-CI interaction. Using this method, we have synthesized 30 high-quality samples to post-train models ranging from 1.5B to 32B parameters through supervised fine-tuning. CoRT further refines the multi-round interleaving of external CI usage and internal thinking by employing rejection sampling and reinforcement learning. Our experimental evaluations demonstrate CoRT's effectiveness, yielding absolute improvements of 4\% and 8\% on DeepSeek-R1-Distill-Qwen-32B and DeepSeek-R1-Distill-Qwen-1.5B, respectively, across five challenging mathematical reasoning datasets. Moreover, CoRT significantly enhances efficiency, reducing token usage by approximately 30\% for the 32B model and 50\% for the 1.5B model compared to pure natural language reasoning baselines. The models and code are available at: https://github.com/ChengpengLi1003/CoRT.
comment: NIPS2025 Accepted
☆ Exploring Generative Process Reward Modeling for Semi-Structured Data: A Case Study of Table Question Answering
Process reward models (PRMs) improve complex reasoning in large language models (LLMs) by grading candidate solutions step-by-step and selecting answers via aggregated step scores. While effective in domains such as mathematics, their applicability to tasks involving semi-structured data, like table question answering (TQA) remains unexplored. TQA poses unique challenges for PRMs, including abundant irrelevant information, loosely connected reasoning steps, and domain-specific reasoning. This work presents the first systematic study of PRMs for TQA. We evaluate state-of-the-art generative PRMs on TQA from both answer and step perspectives. Results show that PRMs that combine textual and code verification can aid solution selection but struggle to generalize to out-of-domain data. Analysis reveals a weak correlation between performance in step-level verification and answer accuracy, possibly stemming from weak step dependencies and loose causal links. Our findings highlight limitations of current PRMs on TQA and offer valuable insights for building more robust, process-aware verifiers.
☆ Citation Failure: Definition, Analysis and Efficient Mitigation
Citations from LLM-based RAG systems are supposed to simplify response verification. However, this does not hold for citation failure, when a model generates a helpful response, but fails to cite complete evidence. In contrast to previous work, we propose to disentangle this from response failure, where the response itself is flawed, and citing complete evidence is impossible. To address citation failure, this work follows a two-step approach: (1) We study when citation failure occurs and (2) how it can be mitigated. For step 1, we extend prior work by investigating how the relation between response and evidence affects citation quality. We introduce CITECONTROL, a benchmark that systematically varies this relation to analyze failure modes. Experiments show that failures increase with relational complexity and suggest that combining citation methods could improve performance, motivating step 2. To improve LLM citation efficiently, we propose CITENTION, a framework integrating generative, attention-based, and retrieval-based methods. Results demonstrate substantial citation improvements on CITECONTROL and in transfer settings. We make our data and code publicly available.
comment: Under review. Paper repository: https://github.com/UKPLab/arxiv2025-citation-failure
☆ Context-level Language Modeling by Learning Predictive Context Embeddings
Next-token prediction (NTP) is the cornerstone of modern large language models (LLMs) pretraining, driving their unprecedented capabilities in text generation, reasoning, and instruction following. However, the token-level prediction limits the model's capacity to capture higher-level semantic structures and long-range contextual relationships. To overcome this limitation, we introduce \textbf{ContextLM}, a framework that augments standard pretraining with an inherent \textbf{next-context prediction} objective. This mechanism trains the model to learn predictive representations of multi-token contexts, leveraging error signals derived from future token chunks. Crucially, ContextLM achieves this enhancement while remaining fully compatible with the standard autoregressive, token-by-token evaluation paradigm (e.g., perplexity). Extensive experiments on the GPT2 and Pythia model families, scaled up to $1.5$B parameters, show that ContextLM delivers consistent improvements in both perplexity and downstream task performance. Our analysis indicates that next-context prediction provides a scalable and efficient pathway to stronger language modeling, yielding better long-range coherence and more effective attention allocation with minimal computational overhead.
comment: 16pages,6 figures
☆ ImpossibleBench: Measuring LLMs' Propensity of Exploiting Test Cases
The tendency to find and exploit "shortcuts" to complete tasks poses significant risks for reliable assessment and deployment of large language models (LLMs). For example, an LLM agent with access to unit tests may delete failing tests rather than fix the underlying bug. Such behavior undermines both the validity of benchmark results and the reliability of real-world LLM coding assistant deployments. To quantify, study, and mitigate such behavior, we introduce ImpossibleBench, a benchmark framework that systematically measures LLM agents' propensity to exploit test cases. ImpossibleBench creates "impossible" variants of tasks from existing benchmarks like LiveCodeBench and SWE-bench by introducing direct conflicts between the natural-language specification and the unit tests. We measure an agent's "cheating rate" as its pass rate on these impossible tasks, where any pass necessarily implies a specification-violating shortcut. As a practical framework, ImpossibleBench is not just an evaluation but a versatile tool. We demonstrate its utility for: (1) studying model behaviors, revealing more fine-grained details of cheating behaviors from simple test modification to complex operator overloading; (2) context engineering, showing how prompt, test access and feedback loop affect cheating rates; and (3) developing monitoring tools, providing a testbed with verified deceptive solutions. We hope ImpossibleBench serves as a useful framework for building more robust and reliable LLM systems. Our implementation can be found at https://github.com/safety-research/impossiblebench.
☆ Calibrating Multimodal Consensus for Emotion Recognition
In recent years, Multimodal Emotion Recognition (MER) has made substantial progress. Nevertheless, most existing approaches neglect the semantic inconsistencies that may arise across modalities, such as conflicting emotional cues between text and visual inputs. Besides, current methods are often dominated by the text modality due to its strong representational capacity, which can compromise recognition accuracy. To address these challenges, we propose a model termed Calibrated Multimodal Consensus (CMC). CMC introduces a Pseudo Label Generation Module (PLGM) to produce pseudo unimodal labels, enabling unimodal pretraining in a self-supervised fashion. It then employs a Parameter-free Fusion Module (PFM) and a Multimodal Consensus Router (MCR) for multimodal finetuning, thereby mitigating text dominance and guiding the fusion process toward a more reliable consensus. Experimental results demonstrate that CMC achieves performance on par with or superior to state-of-the-art methods across four datasets, CH-SIMS, CH-SIMS v2, CMU-MOSI, and CMU-MOSEI, and exhibits notable advantages in scenarios with semantic inconsistencies on CH-SIMS and CH-SIMS v2. The implementation of this work is publicly accessible at https://github.com/gw-zhong/CMC.
☆ Tri-Modal Severity Fused Diagnosis across Depression and Post-traumatic Stress Disorders
Depression and post traumatic stress disorder (PTSD) often co-occur with connected symptoms, complicating automated assessment, which is often binary and disorder specific. Clinically useful diagnosis needs severity aware cross disorder estimates and decision support explanations. Our unified tri modal affective severity framework synchronizes and fuses interview text with sentence level transformer embeddings, audio with log Mel statistics with deltas, and facial signals with action units, gaze, head and pose descriptors to output graded severities for diagnosing both depression (PHQ-8; 5 classes) and PTSD (3 classes). Standardized features are fused via a calibrated late fusion classifier, yielding per disorder probabilities and feature-level attributions. This severity aware tri-modal affective fusion approach is demoed on multi disorder concurrent depression and PTSD assessment. Stratified cross validation on DAIC derived corpora outperforms unimodal/ablation baselines. The fused model matches the strongest unimodal baseline on accuracy and weighted F1, while improving decision curve utility and robustness under noisy or missing modalities. For PTSD specifically, fusion reduces regression error and improves class concordance. Errors cluster between adjacent severities; extreme classes are identified reliably. Ablations show text contributes most to depression severity, audio and facial cues are critical for PTSD, whereas attributions align with linguistic and behavioral markers. Our approach offers reproducible evaluation and clinician in the loop support for affective clinical decision making.
☆ Why LVLMs Are More Prone to Hallucinations in Longer Responses: The Role of Context
Large Vision-Language Models (LVLMs) have made significant progress in recent years but are also prone to hallucination issues. They exhibit more hallucinations in longer, free-form responses, often attributed to accumulated uncertainties. In this paper, we ask: Does increased hallucination result solely from length-induced errors, or is there a deeper underlying mechanism? After a series of preliminary experiments and findings, we suggest that the risk of hallucinations is not caused by length itself but by the increased reliance on context for coherence and completeness in longer responses. Building on these insights, we propose a novel "induce-detect-suppress" framework that actively induces hallucinations through deliberately designed contexts, leverages induced instances for early detection of high-risk cases, and ultimately suppresses potential object-level hallucinations during actual decoding. Our approach achieves consistent, significant improvements across all benchmarks, demonstrating its efficacy. The strong detection and improved hallucination mitigation not only validate our framework but, more importantly, re-validate our hypothesis on context. Rather than solely pursuing performance gains, this study aims to provide new insights and serves as a first step toward a deeper exploration of hallucinations in LVLMs' longer responses.
☆ Decoding-Free Sampling Strategies for LLM Marginalization
Modern language models operate on subword-tokenized text in order to make a trade-off between model size, inference speed, and vocabulary coverage. A side effect of this is that, during inference, models are evaluated by measuring the probability of only the specific tokenization produced as the output, despite there being many possible ways to represent the same text with a subword vocabulary. Recent studies have argued instead for evaluating LLMs by marginalization - the probability mass of all tokenizations of a given text. Marginalization is difficult due to the number of possible tokenizations of a text, so often approximate marginalization is done via sampling. However, a downside of sampling is that an expensive generation step must be performed by the LLM for each sample, which limits the number of samples that can be acquired given a runtime budget, and therefore also the accuracy of the approximation. Since computing the probability of a sequence given the tokenization is relatively cheap compared to actually generating it, we investigate sampling strategies that are decoding-free - they require no generation from the LLM, instead relying entirely on extremely cheap sampling strategies that are model and tokenizer agnostic. We investigate the approximation quality and speed of decoding-free sampling strategies for a number of open models to find that they provide sufficiently accurate marginal estimates at a small fraction of the runtime cost and demonstrate its use on a set of downstream inference tasks.
comment: 10 pages, 3 figures
☆ Stuck in the Matrix: Probing Spatial Reasoning in Large Language Models
This paper explores the spatial reasoning capability of large language models (LLMs) over textual input through a suite of five tasks aimed at probing their spatial understanding and computational abilities. The models were tested on both fundamental spatial reasoning and multi-step problem-solving within structured grid-based environments using tasks such as quadrant identification, geometric transformations, distance evaluation, word searches, and tile sliding. Each task was scaled in complexity through increasing grid dimensions, requiring models to extend beyond simple pattern recognition into abstract spatial reasoning. Our results reveal that while LLMs demonstrate moderate success in all tasks with small complexity and size, performance drops off rapidly as scale increases, with an average loss in accuracy of 42.7%, and reaching as high as 84%. Every test that began with over 50% accuracy showed a loss of at least 48%, illustrating the consistent nature of the deterioration. Furthermore, their struggles with scaling complexity hint at a lack of robust spatial representations in their underlying architectures. This paper underscores the gap between linguistic and spatial reasoning in LLMs, offering insights into their current limitations, and laying the groundwork for future integrative benchmarks at the intersection of language and geometry.
comment: 20 pages, 24 figures
☆ Multimedia-Aware Question Answering: A Review of Retrieval and Cross-Modal Reasoning Architectures
Question Answering (QA) systems have traditionally relied on structured text data, but the rapid growth of multimedia content (images, audio, video, and structured metadata) has introduced new challenges and opportunities for retrieval-augmented QA. In this survey, we review recent advancements in QA systems that integrate multimedia retrieval pipelines, focusing on architectures that align vision, language, and audio modalities with user queries. We categorize approaches based on retrieval methods, fusion techniques, and answer generation strategies, and analyze benchmark datasets, evaluation protocols, and performance tradeoffs. Furthermore, we highlight key challenges such as cross-modal alignment, latency-accuracy tradeoffs, and semantic grounding, and outline open problems and future research directions for building more robust and context-aware QA systems leveraging multimedia data.
comment: In Proceedings of the 2nd ACM Workshop in AI-powered Question and Answering Systems (AIQAM '25), October 27-28, 2025, Dublin, Ireland. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3746274.3760393
☆ Every Question Has Its Own Value: Reinforcement Learning with Explicit Human Values
We propose Reinforcement Learning with Explicit Human Values (RLEV), a method that aligns Large Language Model (LLM) optimization directly with quantifiable human value signals. While Reinforcement Learning with Verifiable Rewards (RLVR) effectively trains models in objective domains using binary correctness rewards, it overlooks that not all tasks are equally significant. RLEV extends this framework by incorporating human-defined value signals directly into the reward function. Using exam-style data with explicit ground-truth value labels, RLEV consistently outperforms correctness-only baselines across multiple RL algorithms and model scales. Crucially, RLEV policies not only improve value-weighted accuracy but also learn a value-sensitive termination policy: concise for low-value prompts, thorough for high-value ones. We demonstrate this behavior stems from value-weighted gradient amplification on end-of-sequence tokens. Ablation studies confirm the gain is causally linked to value alignment. RLEV remains robust under noisy value signals, such as difficulty-based labels, demonstrating that optimizing for an explicit utility function offers a practical path to aligning LLMs with human priorities.
comment: 15 pages, 4 figures
☆ Mixture-of-Minds: Multi-Agent Reinforcement Learning for Table Understanding
Understanding and reasoning over tables is a critical capability for many real-world applications. Large language models (LLMs) have shown promise on this task, but current approaches remain limited. Fine-tuning based methods strengthen language reasoning; yet they are prone to arithmetic errors and hallucination. In contrast, tool-based methods enable precise table manipulation but rely on rigid schemas and lack semantic understanding. These complementary drawbacks highlight the need for approaches that integrate robust reasoning with reliable table processing. In this work, we propose Mixture-of-Minds, a multi-agent framework that decomposes table reasoning into three specialized roles: planning, coding, and answering. This design enables each agent to focus on a specific aspect of the task while leveraging code execution for precise table manipulation. Building on this workflow, we introduce a self-improvement training framework that employs Monte Carlo Tree Search (MCTS) rollouts to generate pseudo-gold trajectories and optimize agents with reinforcement learning (RL). Extensive experiments show that Mixture-of-Minds delivers substantial gains, reaching 62.13% on TableBench and surpassing OpenAI-o4-mini-high. These results demonstrate the promise of combining structured multi-agent workflows with RL to advance table understanding.
comment: 18 pages, 4 figures
☆ DeepWideSearch: Benchmarking Depth and Width in Agentic Information Seeking
Current search agents fundamentally lack the ability to simultaneously perform \textit{deep} reasoning over multi-hop retrieval and \textit{wide}-scale information collection-a critical deficiency for real-world applications like comprehensive market analysis and business development. To bridge this gap, we introduce DeepWideSearch, the first benchmark explicitly designed to evaluate agents to integrate depth and width in information seeking. In DeepWideSearch, agents must process a large volume of data, each requiring deep reasoning over multi-hop retrieval paths. Specifically, we propose two methods to converse established datasets, resulting in a curated collection of 220 questions spanning 15 diverse domains. Extensive experiments demonstrate that even state-of-the-art agents achieve only 2.39% average success rate on DeepWideSearch, highlighting the substantial challenge of integrating depth and width search in information-seeking tasks. Furthermore, our error analysis reveals four failure modes: lack of reflection, overreliance on internal knowledge, insufficient retrieval, and context overflow-exposing key limitations in current agent architectures. We publicly release DeepWideSearch to catalyze future research on more capable and robust information-seeking agents.
☆ Are Stereotypes Leading LLMs' Zero-Shot Stance Detection ? EMNLP 2025
Large Language Models inherit stereotypes from their pretraining data, leading to biased behavior toward certain social groups in many Natural Language Processing tasks, such as hateful speech detection or sentiment analysis. Surprisingly, the evaluation of this kind of bias in stance detection methods has been largely overlooked by the community. Stance Detection involves labeling a statement as being against, in favor, or neutral towards a specific target and is among the most sensitive NLP tasks, as it often relates to political leanings. In this paper, we focus on the bias of Large Language Models when performing stance detection in a zero-shot setting. We automatically annotate posts in pre-existing stance detection datasets with two attributes: dialect or vernacular of a specific group and text complexity/readability, to investigate whether these attributes influence the model's stance detection decisions. Our results show that LLMs exhibit significant stereotypes in stance detection tasks, such as incorrectly associating pro-marijuana views with low text complexity and African American dialect with opposition to Donald Trump.
comment: Accepted in EMNLP 2025 (Main)
☆ BoundRL: Efficient Structured Text Segmentation through Reinforced Boundary Generation
As structured texts become increasingly complex across diverse domains -- from technical reports to generative AI prompts -- the need for text segmentation into semantically meaningful components becomes critical. Such texts often contain elements beyond plain language, including tables, code snippets, and placeholders, which conventional sentence- or paragraph-level segmentation methods cannot handle effectively. To address this challenge, we propose BoundRL, a novel and efficient approach that jointly performs token-level text segmentation and label prediction for long structured texts. Instead of generating complete contents for each segment, it generates only a sequence of starting tokens and reconstructs the complete contents by locating these tokens within the original texts, thereby reducing inference costs by orders of magnitude and minimizing hallucination. To adapt the model for the output format, BoundRL~performs reinforcement learning with verifiable rewards (RLVR) with a specifically designed reward that jointly optimizes document reconstruction fidelity and semantic alignment. To mitigate entropy collapse, it further constructs intermediate candidates by systematically perturbing a fraction of generated sequences of segments to create stepping stones toward higher-quality solutions. To demonstrate BoundRL's effectiveness on particularly challenging structured texts, we focus evaluation on complex prompts used for LLM applications. Experiments show that BoundRL enables small language models (1.7B parameters) to outperform few-shot prompting of much larger models. Moreover, RLVR with our designed reward yields significant improvements over supervised fine-tuning, and incorporating intermediate candidates further improves both performance and generalization.
☆ AI PB: A Grounded Generative Agent for Personalized Investment Insights
We present AI PB, a production-scale generative agent deployed in real retail finance. Unlike reactive chatbots that answer queries passively, AI PB proactively generates grounded, compliant, and user-specific investment insights. It integrates (i) a component-based orchestration layer that deterministically routes between internal and external LLMs based on data sensitivity, (ii) a hybrid retrieval pipeline using OpenSearch and the finance-domain embedding model, and (iii) a multi-stage recommendation mechanism combining rule heuristics, sequential behavioral modeling, and contextual bandits. Operating fully on-premises under Korean financial regulations, the system employs Docker Swarm and vLLM across 24 X NVIDIA H100 GPUs. Through human QA and system metrics, we demonstrate that grounded generation with explicit routing and layered safety can deliver trustworthy AI insights in high-stakes finance.
comment: Under Review
☆ Leveraging the Power of Large Language Models in Entity Linking via Adaptive Routing and Targeted Reasoning
Entity Linking (EL) has traditionally relied on large annotated datasets and extensive model fine-tuning. While recent few-shot methods leverage large language models (LLMs) through prompting to reduce training requirements, they often suffer from inefficiencies due to expensive LLM-based reasoning. ARTER (Adaptive Routing and Targeted Entity Reasoning) presents a structured pipeline that achieves high performance without deep fine-tuning by strategically combining candidate generation, context-based scoring, adaptive routing, and selective reasoning. ARTER computes a small set of complementary signals(both embedding and LLM-based) over the retrieved candidates to categorize contextual mentions into easy and hard cases. The cases are then handled by a low-computational entity linker (e.g. ReFinED) and more expensive targeted LLM-based reasoning respectively. On standard benchmarks, ARTER outperforms ReFinED by up to +4.47%, with an average gain of +2.53% on 5 out of 6 datasets, and performs comparably to pipelines using LLM-based reasoning for all mentions, while being as twice as efficient in terms of the number of LLM tokens.
☆ BIOCAP: Exploiting Synthetic Captions Beyond Labels in Biological Foundation Models
This work investigates descriptive captions as an additional source of supervision for biological multimodal foundation models. Images and captions can be viewed as complementary samples from the latent morphospace of a species, each capturing certain biological traits. Incorporating captions during training encourages alignment with this shared latent structure, emphasizing potentially diagnostic characters while suppressing spurious correlations. The main challenge, however, lies in obtaining faithful, instance-specific captions at scale. This requirement has limited the utilization of natural language supervision in organismal biology compared with many other scientific domains. We complement this gap by generating synthetic captions with multimodal large language models (MLLMs), guided by Wikipedia-derived visual information and taxon-tailored format examples. These domain-specific contexts help reduce hallucination and yield accurate, instance-based descriptive captions. Using these captions, we train BIOCAP (i.e., BIOCLIP with Captions), a biological foundation model that captures rich semantics and achieves strong performance in species classification and text-image retrieval. These results demonstrate the value of descriptive captions beyond labels in bridging biological images with multimodal foundation models.
comment: Project page: https://imageomics.github.io/biocap/
☆ CreativityPrism: A Holistic Benchmark for Large Language Model Creativity
Creativity is often seen as a hallmark of human intelligence. While large language models (LLMs) are increasingly perceived as producing creative text, there is still no holistic framework to evaluate their creativity across diverse scenarios. Existing evaluation methods remain fragmented, with dramatic variation across domains and tasks, largely due to differing definitions and measurements of creativity. Inspired by the hypothesis that creativity is not one fixed idea, we propose CreativityPrism, an evaluation analysis framework that decomposes creativity into three dimensions: quality, novelty, and diversity. CreativityPrism incorporates nine tasks, three domains, i.e., divergent thinking, creative writing, and logical reasoning, and twenty evaluation metrics, which measure each dimension in task-specific, unique ways. We evaluate 17 state-of-the-art (SoTA) proprietary and open-sourced LLMs on CreativityPrism and analyze the performance correlations among different metrics and task domains. Our results reveal a notable gap between proprietary and open-source models. Overall, model performance tends to be highly correlated across tasks within the same domain and less so across different domains. Among evaluation dimensions, diversity and quality metrics show strong correlations - models that perform well on one often excel on the other - whereas novelty exhibits much weaker correlation with either. These findings support our hypothesis that strong performance in one creativity task or dimension does not necessarily generalize to others, underscoring the need for a holistic evaluation of LLM creativity.
♻ ☆ Language Models use Lookbacks to Track Beliefs
How do language models (LMs) represent characters' beliefs, especially when those beliefs may differ from reality? This question lies at the heart of understanding the Theory of Mind (ToM) capabilities of LMs. We analyze LMs' ability to reason about characters' beliefs using causal mediation and abstraction. We construct a dataset, CausalToM, consisting of simple stories where two characters independently change the state of two objects, potentially unaware of each other's actions. Our investigation uncovers a pervasive algorithmic pattern that we call a lookback mechanism, which enables the LM to recall important information when it becomes necessary. The LM binds each character-object-state triple together by co-locating their reference information, represented as Ordering IDs (OIs), in low-rank subspaces of the state token's residual stream. When asked about a character's beliefs regarding the state of an object, the binding lookback retrieves the correct state OI and then the answer lookback retrieves the corresponding state token. When we introduce text specifying that one character is (not) visible to the other, we find that the LM first generates a visibility ID encoding the relation between the observing and the observed character OIs. In a visibility lookback, this ID is used to retrieve information about the observed character and update the observing character's beliefs. Our work provides insights into belief tracking mechanisms, taking a step toward reverse-engineering ToM reasoning in LMs.
comment: 31 pages, 33 figures. Code and data at https://belief.baulab.info/
♻ ☆ Text2Mem: A Unified Memory Operation Language for Memory Operating System
Large language model agents increasingly depend on memory to sustain long horizon interaction, but existing frameworks remain limited. Most expose only a few basic primitives such as encode, retrieve, and delete, while higher order operations like merge, promote, demote, split, lock, and expire are missing or inconsistently supported. Moreover, there is no formal and executable specification for memory commands, leaving scope and lifecycle rules implicit and causing unpredictable behavior across systems. We introduce Text2Mem, a unified memory operation language that provides a standardized pathway from natural language to reliable execution. Text2Mem defines a compact yet expressive operation set aligned with encoding, storage, and retrieval. Each instruction is represented as a JSON based schema instance with required fields and semantic invariants, which a parser transforms into typed operation objects with normalized parameters. A validator ensures correctness before execution, while adapters map typed objects either to a SQL prototype backend or to real memory frameworks. Model based services such as embeddings or summarization are integrated when required. All results are returned through a unified execution contract. This design ensures safety, determinism, and portability across heterogeneous backends. We also outline Text2Mem Bench, a planned benchmark that separates schema generation from backend execution to enable systematic evaluation. Together, these components establish the first standardized foundation for memory control in agents.
comment: 12 pages, 3 figures, 2 tables
♻ ☆ FlyLoRA: Boosting Task Decoupling and Parameter Efficiency via Implicit Rank-Wise Mixture-of-Experts NeurIPS 2025
Low-Rank Adaptation (LoRA) is a widely used parameter-efficient fine-tuning method for foundation models, but it suffers from parameter interference, resulting in suboptimal performance. Although Mixture-of-Experts (MoE)-based LoRA variants show promise in mitigating intra-task correlations in single-task instruction tuning, they introduce additional router parameters and remain ineffective in multi-task model merging where inter-task interference arises. Inspired by the fly olfactory circuit, we propose FlyLoRA, an implicit MoE-based LoRA variant that introduces: (1) rank-wise expert activation in the up-projection matrix, and (2) an implicit router that unifies expert routing and down-projection, where a frozen sparse random projection matrix replaces the traditional dense trainable version. This design resolves the trade-off between intra-task decorrelation and computational efficiency by eliminating the need for an explicit router, while inherently mitigating inter-task interference due to the orthogonality property of random matrices. Extensive experiments across four domains -- general knowledge understanding, scientific question answering, mathematical reasoning, and code generation -- demonstrate consistent performance improvements over existing methods. Beyond empirical gains, FlyLoRA highlights how biological structures can inspire innovations in AI technologies. Code is available at https://github.com/gfyddha/FlyLoRA.
comment: NeurIPS 2025 accepted paper
♻ ☆ Integrating Structural and Semantic Signals in Text-Attributed Graphs with BiGTex
Text-attributed graphs (TAGs) present unique challenges in representation learning by requiring models to capture both the semantic richness of node-associated texts and the structural dependencies of the graph. While graph neural networks (GNNs) excel at modeling topological information, they lack the capacity to process unstructured text. Conversely, large language models (LLMs) are proficient in text understanding but are typically unaware of graph structure. In this work, we propose BiGTex (Bidirectional Graph Text), a novel architecture that tightly integrates GNNs and LLMs through stacked Graph-Text Fusion Units. Each unit allows for mutual attention between textual and structural representations, enabling information to flow in both directions, text influencing structure and structure guiding textual interpretation. The proposed architecture is trained using parameter-efficient fine-tuning (LoRA), keeping the LLM frozen while adapting to task-specific signals. Extensive experiments on five benchmark datasets demonstrate that BiGTex achieves state-of-the-art performance in node classification and generalizes effectively to link prediction. An ablation study further highlights the importance of soft prompting and bi-directional attention in the model's success.
comment: 26 pages, 4 figures
♻ ☆ Blockwise SFT for Diffusion Language Models: Reconciling Bidirectional Attention and Autoregressive Decoding
Discrete diffusion language models have shown strong potential for text generation, yet standard supervised fine-tuning (SFT) misaligns with their semi-autoregressive inference: training randomly masks tokens across the entire response, while inference generates fixed-size blocks sequentially. This mismatch introduces noisy prefixes and leaky suffixes, biasing gradients away from the desired blockwise likelihood. We propose Blockwise SFT, which partitions responses into fixed-size blocks, selects one active block per step for stochastic masking, freezes all preceding tokens, and fully hides future ones. Loss is computed only over the active block, directly mirroring the blockwise decoding process. Experiments on GSM8K, MATH, and MetaMathQA show consistent gains over classical SFT under equal compute or token budgets. Block size consistency studies and ablations confirm that improvements stem from faithful training-inference alignment rather than incidental masking effects. Our results highlight the importance of matching supervision granularity to the decoding procedure in diffusion-based language models.
♻ ☆ Fast-Slow Thinking GRPO for Large Vision-Language Model Reasoning
When applying reinforcement learning--typically through GRPO--to large vision-language model reasoning struggles to effectively scale reasoning length or generates verbose outputs across all tasks with only marginal gains in accuracy. To address this issue, we present FAST-GRPO, a variant of GRPO that dynamically adapts reasoning depth based on question characteristics. Through empirical analysis, we establish the feasibility of fast-slow thinking in LVLMs by investigating how response length and data distribution affect performance. Inspired by these observations, we introduce two complementary metrics to estimate the difficulty of the questions, guiding the model to determine when fast or slow thinking is more appropriate. Next, we incorporate adaptive length-based rewards and difficulty-aware KL divergence into the GRPO algorithm. Experiments across seven reasoning benchmarks demonstrate that FAST achieves state-of-the-art accuracy with over 10\% relative improvement compared to the base model, while reducing token usage by 32.7-67.3\% compared to previous slow-thinking approaches, effectively balancing reasoning length and accuracy.
♻ ☆ On the Emergence of Linear Analogies in Word Embeddings NeurIPS 2025
Models such as Word2Vec and GloVe construct word embeddings based on the co-occurrence probability $P(i,j)$ of words $i$ and $j$ in text corpora. The resulting vectors $W_i$ not only group semantically similar words but also exhibit a striking linear analogy structure -- for example, $W_{\text{king}} - W_{\text{man}} + W_{\text{woman}} \approx W_{\text{queen}}$ -- whose theoretical origin remains unclear. Previous observations indicate that this analogy structure: (i) already emerges in the top eigenvectors of the matrix $M(i,j) = P(i,j)/P(i)P(j)$, (ii) strengthens and then saturates as more eigenvectors of $M (i, j)$, which controls the dimension of the embeddings, are included, (iii) is enhanced when using $\log M(i,j)$ rather than $M(i,j)$, and (iv) persists even when all word pairs involved in a specific analogy relation (e.g., king-queen, man-woman) are removed from the corpus. To explain these phenomena, we introduce a theoretical generative model in which words are defined by binary semantic attributes, and co-occurrence probabilities are derived from attribute-based interactions. This model analytically reproduces the emergence of linear analogy structure and naturally accounts for properties (i)-(iv). It can be viewed as giving fine-grained resolution into the role of each additional embedding dimension. It is robust to various forms of noise and agrees well with co-occurrence statistics measured on Wikipedia and the analogy benchmark introduced by Mikolov et al.
comment: Main: 10 pages, 3 figures. Appendices: 11 pages, 7 figures. Accepted at NeurIPS 2025 as a poster
♻ ☆ Superposition Yields Robust Neural Scaling NeurIPS 2025
The success of today's large language models (LLMs) depends on the observation that larger models perform better. However, the origin of this neural scaling law, that loss decreases as a power law with model size, remains unclear. We propose that representation superposition, meaning that LLMs represent more features than they have dimensions, can be a key contributor to loss and cause neural scaling. Based on Anthropic's toy model, we use weight decay to control the degree of superposition, allowing us to systematically study how loss scales with model size. When superposition is weak, the loss follows a power law only if data feature frequencies are power-law distributed. In contrast, under strong superposition, the loss generically scales inversely with model dimension across a broad class of frequency distributions, due to geometric overlaps between representation vectors. We confirmed that open-sourced LLMs operate in the strong superposition regime and have loss scaling like one over the model dimension, and that the Chinchilla scaling laws are also consistent with this behavior. Our results identify representation superposition as a central driver of neural scaling laws, providing insights into questions like when neural scaling laws can be improved and when they will break down.
comment: Accepted at NeurIPS 2025
♻ ☆ ReDit: Reward Dithering for Improved LLM Policy Optimization
DeepSeek-R1 has successfully enhanced Large Language Model (LLM) reasoning capabilities through its rule-based reward system. While it's a ''perfect'' reward system that effectively mitigates reward hacking, such reward functions are often discrete. Our experimental observations suggest that discrete rewards can lead to gradient anomaly, unstable optimization, and slow convergence. To address this issue, we propose ReDit (Reward Dithering), a method that dithers the discrete reward signal by adding simple random noise. With this perturbed reward, exploratory gradients are continuously provided throughout the learning process, enabling smoother gradient updates and accelerating convergence. The injected noise also introduces stochasticity into flat reward regions, encouraging the model to explore novel policies and escape local optima. Experiments across diverse tasks demonstrate the effectiveness and efficiency of ReDit. On average, ReDit achieves performance comparable to vanilla GRPO with only approximately 10% the training steps, and furthermore, still exhibits a 4% performance improvement over vanilla GRPO when trained for a similar duration. Visualizations confirm significant mitigation of gradient issues with ReDit. Moreover, theoretical analyses are provided to further validate these advantages.
comment: 34 pages, 19 figures
♻ ☆ X-Reflect: Cross-Reflection Prompting for Multimodal Recommendation
Large Language Models (LLMs) have been shown to enhance the effectiveness of enriching item descriptions, thereby improving the accuracy of recommendation systems. However, most existing approaches either rely on text-only prompting or employ basic multimodal strategies that do not fully exploit the complementary information available from both textual and visual modalities. This paper introduces a novel framework, Cross-Reflection Prompting, termed X-Reflect, designed to address these limitations by prompting Multimodal Large Language Models (MLLMs) to explicitly identify and reconcile supportive and conflicting information between text and images. By capturing nuanced insights from both modalities, this approach generates more comprehensive and contextually rich item representations. Extensive experiments conducted on two widely used benchmarks demonstrate that our method outperforms existing prompting baselines in downstream recommendation accuracy. Furthermore, we identify a U-shaped relationship between text-image dissimilarity and recommendation performance, suggesting the benefit of applying multimodal prompting selectively. To support efficient real-time inference, we also introduce X-Reflect-keyword, a lightweight variant that summarizes image content using keywords and replaces the base model with a smaller backbone, achieving nearly 50% reduction in input length while maintaining competitive performance. This work underscores the importance of integrating multimodal information and presents an effective solution for improving item understanding in multimodal recommendation systems.
♻ ☆ BioCLIP 2: Emergent Properties from Scaling Hierarchical Contrastive Learning NeurIPS 2025
Foundation models trained at scale exhibit remarkable emergent behaviors, learning new capabilities beyond their initial training objectives. We find such emergent behaviors in biological vision models via large-scale contrastive vision-language training. To achieve this, we first curate TreeOfLife-200M, comprising 214 million images of living organisms, the largest and most diverse biological organism image dataset to date. We then train BioCLIP 2 on TreeOfLife-200M to distinguish different species. Despite the narrow training objective, BioCLIP 2 yields extraordinary accuracy when applied to various biological visual tasks such as habitat classification and trait prediction. We identify emergent properties in the learned embedding space of BioCLIP 2. At the inter-species level, the embedding distribution of different species aligns closely with functional and ecological meanings (e.g., beak sizes and habitats). At the intra-species level, instead of being diminished, the intra-species variations (e.g., life stages and sexes) are preserved and better separated in subspaces orthogonal to inter-species distinctions. We provide formal proof and analyses to explain why hierarchical supervision and contrastive objectives encourage these emergent properties. Crucially, our results reveal that these properties become increasingly significant with larger-scale training data, leading to a biologically meaningful embedding space.
comment: NeurIPS 2025 Spotlight; Project page: https://imageomics.github.io/bioclip-2/
♻ ☆ Does Reinforcement Learning Really Incentivize Reasoning Capacity in LLMs Beyond the Base Model?
Reinforcement Learning with Verifiable Rewards (RLVR) has recently demonstrated notable success in enhancing the reasoning performance of large language models (LLMs), particularly on mathematics and programming tasks. Similar to how traditional RL helps agents explore and learn new strategies, RLVR is believed to enable LLMs to continuously self-improve, thus acquiring novel reasoning abilities beyond those of the corresponding base models. In this study we critically examine the current state of RLVR by systematically probing the reasoning capability boundaries of RLVR-trained LLMs across various model families, RL algorithms, and math, coding, and visual reasoning benchmarks, using pass@k at large k values as the evaluation metric. Surprisingly, we find that the current training setup does not elicit fundamentally new reasoning patterns. While RLVR-trained models outperform their base models at small k (e.g., k = 1), the base models achieve a higher pass@k score when k is large. Coverage and perplexity analyses show that the observed reasoning abilities originate from and are bounded by the base model. Treating the base model as an upper bound, our quantitative analysis shows that six popular RLVR algorithms perform similarly and remain far from optimal in leveraging the potential of the base model. By contrast, we find that distillation can introduce new reasoning patterns from the teacher and genuinely expand the model's reasoning capabilities. Overall, our findings suggest that current RLVR methods have not yet realized the potential of RL to elicit truly novel reasoning abilities in LLMs. This highlights the need for improved RL paradigms, such as continual scaling and multi-turn agent-environment interaction, to unlock this potential.
comment: 30 pages, 27 figures
♻ ☆ Towards Understanding Safety Alignment: A Mechanistic Perspective from Safety Neurons NeurIPS 2025
Large language models (LLMs) excel in various capabilities but pose safety risks such as generating harmful content and misinformation, even after safety alignment. In this paper, we explore the inner mechanisms of safety alignment through the lens of mechanistic interpretability, focusing on identifying and analyzing safety neurons within LLMs that are responsible for safety behaviors. We propose inference-time activation contrasting to locate these neurons and dynamic activation patching to evaluate their causal effects on model safety. Experiments on multiple prevalent LLMs demonstrate that we can consistently identify about $5\%$ safety neurons, and by only patching their activations we can restore over $90\%$ of the safety performance across various red-teaming benchmarks without influencing general ability. The finding of safety neurons also helps explain the ''alignment tax'' phenomenon by revealing that the key neurons for model safety and helpfulness significantly overlap, yet they require different activation patterns for the same neurons. Furthermore, we demonstrate an application of our findings in safeguarding LLMs by detecting unsafe outputs before generation. The source code is available at https://github.com/THU-KEG/SafetyNeuron.
comment: NeurIPS 2025
♻ ☆ Benchmarking GPT-5 for biomedical natural language processing
Biomedical literature and clinical narratives pose multifaceted challenges for natural language understanding, from precise entity extraction and document synthesis to multi-step diagnostic reasoning. This study extends a unified benchmark to evaluate GPT-5 and GPT-4o under zero-, one-, and five-shot prompting across five core biomedical NLP tasks: named entity recognition, relation extraction, multi-label document classification, summarization, and simplification, and nine expanded biomedical QA datasets covering factual knowledge, clinical reasoning, and multimodal visual understanding. Using standardized prompts, fixed decoding parameters, and consistent inference pipelines, we assessed model performance, latency, and token-normalized cost under official pricing. GPT-5 consistently outperformed GPT-4o, with the largest gains on reasoning-intensive datasets such as MedXpertQA and DiagnosisArena and stable improvements in multimodal QA. In core tasks, GPT-5 achieved better chemical NER and ChemProt scores but remained below domain-tuned baselines for disease NER and summarization. Despite producing longer outputs, GPT-5 showed comparable latency and 30 to 50 percent lower effective cost per correct prediction. Fine-grained analyses revealed improvements in diagnosis, treatment, and reasoning subtypes, whereas boundary-sensitive extraction and evidence-dense summarization remain challenging. Overall, GPT-5 approaches deployment-ready performance for biomedical QA while offering a favorable balance of accuracy, interpretability, and economic efficiency. The results support a tiered prompting strategy: direct prompting for large-scale or cost-sensitive applications, and chain-of-thought scaffolds for analytically complex or high-stakes scenarios, highlighting the continued need for hybrid solutions where precision and factual fidelity are critical.
♻ ☆ XtraGPT: Context-Aware and Controllable Academic Paper Revision
Despite the growing adoption of large language models (LLMs) in academic workflows, their capabilities remain limited to support high-quality scientific writing. Most existing systems are designed for general-purpose scientific text generation and fail to meet the sophisticated demands of research communication beyond surface-level polishing, such as conceptual coherence across sections. Furthermore, academic writing is inherently iterative and revision-driven, a process not well supported by direct prompting-based paradigms. To address these scenarios, we propose a human-AI collaboration framework for academic paper revision centered on criteria-guided intent alignment and context-aware modeling. To validate the framework, we curate a dataset of 7,000 research papers from top-tier venues annotated with 140,000 instruction-response pairs that reflect realistic, section-level scientific revisions. We instantiate the framework in XtraGPT, the first suite of open-source LLMs (1.5B to 14B parameters) for context-aware, instruction-guided writing assistance. Extensive experiments validate that XtraGPT significantly outperforms same-scale baselines and approaches the quality of proprietary systems. Both automated preference assessments and human evaluations confirm the effectiveness of XtraGPT in improving scientific drafts.
comment: Preprint. The model report is available at https://arxiv.org/abs/2505.11336v1
♻ ☆ Unlocking Multi-View Insights in Knowledge-Dense Retrieval-Augmented Generation
While Retrieval-Augmented Generation (RAG) plays a crucial role in the application of Large Language Models (LLMs), existing retrieval methods in knowledge-dense domains like law and medicine still suffer from a lack of multi-perspective views, which are essential for improving interpretability and reliability. Previous research on multi-view retrieval often focused solely on different semantic forms of queries, neglecting the expression of specific domain knowledge perspectives. This paper introduces a novel multi-view RAG framework, MVRAG, tailored for knowledge-dense domains that utilizes intention-aware query rewriting from multiple domain viewpoints to enhance retrieval precision, thereby improving the effectiveness of the final inference. Experiments conducted on legal and medical case retrieval demonstrate significant improvements in recall and precision rates with our framework. Our multi-perspective retrieval approach unleashes the potential of multi-view information enhancing RAG tasks, accelerating the further application of LLMs in knowledge-intensive fields.
♻ ☆ Neural Attention Search
We present Neural Attention Search (NAtS), a framework that automatically evaluates the importance of each token within a sequence and determines if the corresponding token can be dropped after several steps. This approach can efficiently reduce the KV cache sizes required by transformer-based models during inference and thus reduce inference costs. In this paper, we design a search space that contains three token types: (i) Global Tokens will be preserved and queried by all the following tokens. (ii) Local Tokens survive until the next global token appears. (iii) Sliding Window Tokens have an impact on the inference of a fixed size of the next following tokens. Similar to the One-Shot Neural Architecture Search approach, this token-type information can be learned jointly with the architecture weights via a learnable attention mask. Experiments on both training a new transformer from scratch and fine-tuning existing large language models show that NAtS can efficiently reduce the KV cache size required for the models while maintaining the models' performance.
comment: 35 pages, 11 figures
♻ ☆ Position: The Current AI Conference Model is Unsustainable! Diagnosing the Crisis of Centralized AI Conference
Artificial Intelligence (AI) conferences are essential for advancing research, sharing knowledge, and fostering academic community. However, their rapid expansion has rendered the centralized conference model increasingly unsustainable. This paper offers a data-driven diagnosis of a structural crisis that threatens the foundational goals of scientific dissemination, equity, and community well-being. We identify four key areas of strain: (1) scientifically, with per-author publication rates more than doubling over the past decade to over 4.5 papers annually; (2) environmentally, with the carbon footprint of a single conference exceeding the daily emissions of its host city; (3) psychologically, with 71% of online community discourse reflecting negative sentiment and 35% referencing mental health concerns; and (4) logistically, with attendance at top conferences such as NeurIPS 2024 beginning to outpace venue capacity. These pressures point to a system that is misaligned with its core mission. In response, we propose the Community-Federated Conference (CFC) model, which separates peer review, presentation, and networking into globally coordinated but locally organized components, offering a more sustainable, inclusive, and resilient path forward for AI research.
comment: Preprint
♻ ☆ Breaking Bad Tokens: Detoxification of LLMs Using Sparse Autoencoders EMNLP 2025
Large language models (LLMs) are now ubiquitous in user-facing applications, yet they still generate undesirable toxic outputs, including profanity, vulgarity, and derogatory remarks. Although numerous detoxification methods exist, most apply broad, surface-level fixes and can therefore easily be circumvented by jailbreak attacks. In this paper we leverage sparse autoencoders (SAEs) to identify toxicity-related directions in the residual stream of models and perform targeted activation steering using the corresponding decoder vectors. We introduce three tiers of steering aggressiveness and evaluate them on GPT-2 Small and Gemma-2-2B, revealing trade-offs between toxicity reduction and language fluency. At stronger steering strengths, these causal interventions surpass competitive baselines in reducing toxicity by up to 20%, though fluency can degrade noticeably on GPT-2 Small depending on the aggressiveness. Crucially, standard NLP benchmark scores upon steering remain stable, indicating that the model's knowledge and general abilities are preserved. We further show that feature-splitting in wider SAEs hampers safety interventions, underscoring the importance of disentangled feature learning. Our findings highlight both the promise and the current limitations of SAE-based causal interventions for LLM detoxification, further suggesting practical guidelines for safer language-model deployment.
comment: EMNLP 2025
♻ ☆ MoMoE: Mixture of Moderation Experts Framework for AI-Assisted Online Governance EMNLP 2025
Large language models (LLMs) have shown great potential in flagging harmful content in online communities. Yet, existing approaches for moderation require a separate model for every community and are opaque in their decision-making, limiting real-world adoption. We introduce Mixture of Moderation Experts (MoMoE), a modular, cross-community framework that adds post-hoc explanations to scalable content moderation. MoMoE orchestrates four operators -- Allocate, Predict, Aggregate, Explain -- and is instantiated as seven community-specialized experts (MoMoE-Community) and five norm-violation experts (MoMoE-NormVio). On 30 unseen subreddits, the best variants obtain Micro-F1 scores of 0.72 and 0.67, respectively, matching or surpassing strong fine-tuned baselines while consistently producing concise and reliable explanations. Although community-specialized experts deliver the highest peak accuracy, norm-violation experts provide steadier performance across domains. These findings show that MoMoE yields scalable, transparent moderation without needing per-community fine-tuning. More broadly, they suggest that lightweight, explainable expert ensembles can guide future NLP and HCI research on trustworthy human-AI governance of online communities.
comment: EMNLP 2025 (Oral)
♻ ☆ MultiHal: Multilingual Dataset for Knowledge-Graph Grounded Evaluation of LLM Hallucinations
Large Language Models (LLMs) have inherent limitations of faithfulness and factuality, commonly referred to as hallucinations. Several benchmarks have been developed that provide a test bed for factuality evaluation within the context of English-centric datasets, while relying on supplementary informative context like web links or text passages but ignoring the available structured factual resources. To this end, Knowledge Graphs (KGs) have been identified as a useful aid for hallucination mitigation, as they provide a structured way to represent the facts about entities and their relations with minimal linguistic overhead. We bridge the lack of KG paths and multilinguality for factual language modeling within the existing hallucination evaluation benchmarks and propose a KG-based multilingual, multihop benchmark called MultiHal framed for generative text evaluation. As part of our data collection pipeline, we mined 140k KG-paths from open-domain KGs, from which we pruned noisy KG-paths, curating a high-quality subset of 25.9k. Our baseline evaluation shows an absolute scale improvement by approximately 0.12 to 0.36 points for the semantic similarity score, 0.16 to 0.36 for NLI entailment and 0.29 to 0.42 for hallucination detection in KG-RAG over vanilla QA across multiple languages and multiple models, demonstrating the potential of KG integration. We anticipate MultiHal will foster future research towards several graph-based hallucination mitigation and fact-checking tasks.
♻ ☆ Embodied Agents Meet Personalization: Investigating Challenges and Solutions Through the Lens of Memory Utilization
LLM-powered embodied agents have shown success on conventional object-rearrangement tasks, but providing personalized assistance that leverages user-specific knowledge from past interactions presents new challenges. We investigate these challenges through the lens of agents' memory utilization along two critical dimensions: object semantics (identifying objects based on personal meaning) and user patterns (recalling sequences from behavioral routines). To assess these capabilities, we construct MEMENTO, an end-to-end two-stage evaluation framework comprising single-memory and joint-memory tasks. Our experiments reveal that current agents can recall simple object semantics but struggle to apply sequential user patterns to planning. Through in-depth analysis, we identify two critical bottlenecks: information overload and coordination failures when handling multiple memories. Based on these findings, we explore memory architectural approaches to address these challenges. Given our observation that episodic memory provides both personalized knowledge and in-context learning benefits, we design a hierarchical knowledge graph-based user-profile memory module that separately manages personalized knowledge, achieving substantial improvements on both single and joint-memory tasks. Project website: https://connoriginal.github.io/MEMENTO
comment: Work in progress
♻ ☆ MCIF: Multimodal Crosslingual Instruction-Following Benchmark from Scientific Talks
Recent advances in large language models have catalyzed the development of multimodal LLMs (MLLMs) that integrate text, speech, and vision within unified frameworks. As MLLMs evolve from narrow, monolingual, task-specific systems to general-purpose instruction-following models, a key frontier lies in evaluating their multilingual and multimodal capabilities over both long and short contexts. However, existing benchmarks fall short in evaluating these dimensions jointly: they are often limited to English, mostly focus on one single modality at a time, rely on short-form contexts, or lack human annotations -- hindering comprehensive assessment of model performance across languages, modalities, and task complexity. To address these gaps, we introduce MCIF (Multimodal Crosslingual Instruction Following), the first multilingual human-annotated benchmark based on scientific talks that is designed to evaluate instruction-following in crosslingual, multimodal settings over both short- and long-form inputs. MCIF spans three core modalities -- speech, vision, and text -- and four diverse languages (English, German, Italian, and Chinese), enabling a comprehensive evaluation of MLLMs' abilities to interpret instructions across languages and combine them with multimodal contextual information. MCIF is released under a CC-BY 4.0 license to encourage open research and progress in MLLMs development.
comment: Data available at https://huggingface.co/datasets/FBK-MT/MCIF | Evaluation and baselines available at https://github.com/hlt-mt/mcif
♻ ☆ Face-Human-Bench: A Comprehensive Benchmark of Face and Human Understanding for Multi-modal Assistants NeurIPS 2025
Faces and humans are crucial elements in social interaction and are widely included in everyday photos and videos. Therefore, a deep understanding of faces and humans will enable multi-modal assistants to achieve improved response quality and broadened application scope. Currently, the multi-modal assistant community lacks a comprehensive and scientific evaluation of face and human understanding abilities. In this paper, we first propose a hierarchical ability taxonomy that includes three levels of abilities. Then, based on this taxonomy, we collect images and annotations from publicly available datasets in the face and human community and build a semi-automatic data pipeline to produce problems for the new benchmark. Finally, the obtained Face-Human-Bench includes a development set and a test set, each with 1800 problems, supporting both English and Chinese. We conduct evaluations over 25 mainstream multi-modal large language models (MLLMs) with our Face-Human-Bench, focusing on the correlation between abilities, the impact of the relative position of targets on performance, and the impact of Chain of Thought (CoT) prompting on performance. We also explore which abilities of MLLMs need to be supplemented by specialist models. The dataset and evaluation code have been made publicly available at https://face-human-bench.github.io.
comment: 50 pages, 14 figures, 42 tables. NeurIPS 2025 Datasets and Benchmarks Track
♻ ☆ Breaking mBad! Supervised Fine-tuning for Cross-Lingual Detoxification
As large language models (LLMs) become increasingly prevalent in global applications, ensuring that they are toxicity-free across diverse linguistic contexts remains a critical challenge. We explore "Cross-lingual Detoxification", a cross-lingual paradigm that mitigates toxicity, enabling detoxification capabilities to transfer between high and low-resource languages across different script families. We analyze cross-lingual detoxification's effectiveness through 392 extensive settings to evaluate toxicity reduction in cross-distribution settings with limited data and investigate how mitigation impacts model performance on non-toxic tasks, revealing trade-offs between safety and knowledge preservation. Our code and dataset are publicly available at https://github.com/himanshubeniwal/Breaking-mBad.
comment: Accepted at MELT Workshop @ COLM 2025
♻ ☆ Memory Decoder: A Pretrained, Plug-and-Play Memory for Large Language Models
Large Language Models (LLMs) have shown strong abilities in general language tasks, yet adapting them to specific domains remains a challenge. Current method like Domain Adaptive Pretraining (DAPT) requires costly full-parameter training and suffers from catastrophic forgetting. Meanwhile, Retrieval-Augmented Generation (RAG) introduces substantial inference latency due to expensive nearest-neighbor searches and longer context. This paper introduces Memory Decoder, a plug-and-play pretrained memory that enables efficient domain adaptation without changing the original model's parameters. Memory Decoder employs a small transformer decoder that learns to imitate the behavior of an external non-parametric retriever. Once trained, Memory Decoder can be seamlessly integrated with any pretrained language model that shares the same tokenizer, requiring no model-specific modifications. Experimental results demonstrate that Memory Decoder enables effective adaptation of various Qwen and Llama models to three distinct specialized domains: biomedicine, finance, and law, reducing perplexity by an average of 6.17 points. Overall, Memory Decoder introduces a novel paradigm centered on a specially pretrained memory component designed for domain-specific adaptation. This memory architecture can be integrated in a plug-and-play manner, consistently enhancing performance across multiple models within the target domain.
♻ ☆ Grounding Language with Vision: A Conditional Mutual Information Calibrated Decoding Strategy for Reducing Hallucinations in LVLMs
Large Vision-Language Models (LVLMs) are susceptible to hallucinations, where generated responses seem semantically plausible yet exhibit little or no relevance to the input image. Previous studies reveal that this issue primarily stems from LVLMs' over-reliance on language priors while disregarding the visual information during decoding. To alleviate this issue, we introduce a novel Conditional Pointwise Mutual Information (C-PMI) calibrated decoding strategy, which adaptively strengthens the mutual dependency between generated texts and input images to mitigate hallucinations. Unlike existing methods solely focusing on text token sampling, we propose to jointly model the contributions of visual and textual tokens to C-PMI, formulating hallucination mitigation as a bi-level optimization problem aimed at maximizing mutual information. To solve it, we design a token purification mechanism that dynamically regulates the decoding process by sampling text tokens remaining maximally relevant to the given image, while simultaneously refining image tokens most pertinent to the generated response. Extensive experiments across various benchmarks reveal that the proposed method significantly reduces hallucinations in LVLMs while preserving decoding efficiency.
♻ ☆ MindForge: Empowering Embodied Agents with Theory of Mind for Lifelong Cultural Learning NeurIPS 2025
Embodied agents powered by large language models (LLMs), such as Voyager, promise open-ended competence in worlds such as Minecraft. However, when powered by open-weight LLMs they still falter on elementary tasks after domain-specific fine-tuning. We propose MindForge, a generative-agent framework for cultural lifelong learning through explicit perspective taking. We introduce three key innovations: (1) a structured theory of mind representation linking percepts, beliefs, desires, and actions; (2) natural inter-agent communication; and (3) a multi-component memory system. Following the cultural learning framework, we test MindForge in both instructive and collaborative settings within Minecraft. In an instructive setting with GPT-4, MindForge agents powered by open-weight LLMs significantly outperform their Voyager counterparts in basic tasks yielding $3\times$ more tech-tree milestones and collecting $2.3\times$ more unique items than the Voyager baseline. Furthermore, in fully \textit{collaborative} settings, we find that the performance of two underachieving agents improves with more communication rounds, echoing the Condorcet Jury Theorem. MindForge agents demonstrate sophisticated behaviors, including expert-novice knowledge transfer, collaborative problem solving, and adaptation to out-of-distribution tasks through accumulated cultural experiences.
comment: Accepted to NeurIPS 2025 main track as poster
♻ ☆ HauntAttack: When Attack Follows Reasoning as a Shadow
Emerging Large Reasoning Models (LRMs) consistently excel in mathematical and reasoning tasks, showcasing remarkable capabilities. However, the enhancement of reasoning abilities and the exposure of internal reasoning processes introduce new safety vulnerabilities. A critical question arises: when reasoning becomes intertwined with harmfulness, will LRMs become more vulnerable to jailbreaks in reasoning mode? To investigate this, we introduce HauntAttack, a novel and general-purpose black-box adversarial attack framework that systematically embeds harmful instructions into reasoning questions. Specifically, we modify key reasoning conditions in existing questions with harmful instructions, thereby constructing a reasoning pathway that guides the model step by step toward unsafe outputs. We evaluate HauntAttack on 11 LRMs and observe an average attack success rate of 70\%, achieving up to 12 percentage points of absolute improvement over the strongest prior baseline. Our further analysis reveals that even advanced safety-aligned models remain highly susceptible to reasoning-based attacks, offering insights into the urgent challenge of balancing reasoning capability and safety in future model development.
♻ ☆ SAFEPATH: Preventing Harmful Reasoning in Chain-of-Thought via Early Alignment NeurIPS 2025
Large Reasoning Models (LRMs) have become powerful tools for complex problem solving, but their structured reasoning pathways can lead to unsafe outputs when exposed to harmful prompts. Existing safety alignment methods reduce harmful outputs but can degrade reasoning depth, leading to significant trade-offs in complex, multi-step tasks, and remain vulnerable to sophisticated jailbreak attacks. To address this, we introduce SAFEPATH, a lightweight alignment method that fine-tunes LRMs to emit a short, 8-token Safety Primer at the start of their reasoning, in response to harmful prompts, while leaving the rest of the reasoning process unsupervised. Empirical results across multiple benchmarks indicate that SAFEPATH effectively reduces harmful outputs while maintaining reasoning performance. Specifically, SAFEPATH reduces harmful responses by up to 90.0% and blocks 83.3% of jailbreak attempts in the DeepSeek-R1-Distill-Llama-8B model, while requiring 295.9x less compute than Direct Refusal and 314.1x less than SafeChain. We further introduce a zero-shot variant that requires no fine-tuning. In addition, we provide a comprehensive analysis of how existing methods in LLMs generalize, or fail, when applied to reasoning-centric models, revealing critical gaps and new directions for safer AI.
comment: Accepted at NeurIPS 2025. Code and models are available at https://ai-isl.github.io/safepath
♻ ☆ Twilight: Adaptive Attention Sparsity with Hierarchical Top-$p$ Pruning NeurIPS 2025
Leveraging attention sparsity to accelerate long-context large language models (LLMs) has been a hot research topic. However, current algorithms such as sparse attention or key-value (KV) cache compression tend to use a fixed budget, which presents a significant challenge during deployment because it fails to account for the dynamic nature of real-world scenarios, where the optimal balance between accuracy and efficiency can vary greatly. In this paper, we find that borrowing top-$p$ sampling (nucleus sampling) to sparse attention can surprisingly achieve adaptive budgeting. Based on this, we propose Twilight, a framework to bring adaptive sparsity to any existing sparse attention algorithm without sacrificing their accuracy. Empirical results show that Twilight can adaptively prune at most 98% of redundant tokens, leading to $15.4\times$ acceleration in self-attention operations and $3.9\times$ acceleration in end-to-end per token latency in long context LLM decoding.
comment: To appear on NeurIPS 2025 (spotlight)
♻ ☆ S-DAT: A Multilingual, GenAI-Driven Framework for Automated Divergent Thinking Assessment
This paper introduces S-DAT (Synthetic-Divergent Association Task), a scalable, multilingual framework for automated assessment of divergent thinking (DT) -a core component of human creativity. Traditional creativity assessments are often labor-intensive, language-specific, and reliant on subjective human ratings, limiting their scalability and cross-cultural applicability. In contrast, S-DAT leverages large language models and advanced multilingual embeddings to compute semantic distance -- a language-agnostic proxy for DT. We evaluate S-DAT across eleven diverse languages, including English, Spanish, German, Russian, Hindi, and Japanese (Kanji, Hiragana, Katakana), demonstrating robust and consistent scoring across linguistic contexts. Unlike prior DAT approaches, the S-DAT shows convergent validity with other DT measures and correct discriminant validity with convergent thinking. This cross-linguistic flexibility allows for more inclusive, global-scale creativity research, addressing key limitations of earlier approaches. S-DAT provides a powerful tool for fairer, more comprehensive evaluation of cognitive flexibility in diverse populations and can be freely assessed online: https://sdat.iol.zib.de/.
♻ ☆ ViSpec: Accelerating Vision-Language Models with Vision-Aware Speculative Decoding NeurIPS 2025
Speculative decoding is a widely adopted technique for accelerating inference in large language models (LLMs), yet its application to vision-language models (VLMs) remains underexplored, with existing methods achieving only modest speedups (<1.5x). This gap is increasingly significant as multimodal capabilities become central to large-scale models. We hypothesize that large VLMs can effectively filter redundant image information layer by layer without compromising textual comprehension, whereas smaller draft models struggle to do so. To address this, we introduce Vision-Aware Speculative Decoding (ViSpec), a novel framework tailored for VLMs. ViSpec employs a lightweight vision adaptor module to compress image tokens into a compact representation, which is seamlessly integrated into the draft model's attention mechanism while preserving original image positional information. Additionally, we extract a global feature vector for each input image and augment all subsequent text tokens with this feature to enhance multimodal coherence. To overcome the scarcity of multimodal datasets with long assistant responses, we curate a specialized training dataset by repurposing existing datasets and generating extended outputs using the target VLM with modified prompts. Our training strategy mitigates the risk of the draft model exploiting direct access to the target model's hidden states, which could otherwise lead to shortcut learning when training solely on target model outputs. Extensive experiments validate ViSpec, achieving, to our knowledge, the first substantial speedup in VLM speculative decoding. Code is available at https://github.com/KangJialiang/ViSpec.
comment: NeurIPS 2025
♻ ☆ Adapting Multilingual Models to Code-Mixed Tasks via Model Merging
We study model merging as a practical alternative to conventional adaptation strategies for code-mixed NLP. Starting from a multilingual base model, we: (i) perform continued pre-training (CPT) on unlabeled code-mixed text to obtain an adapted checkpoint, (ii) merge checkpoint with the base model, and (iii) fine-tune (FT) on the downstream task data. We evaluate our approach for sentence classification (sentiment and hate speech) task in English-Hindi (En-Hi) and English-Spanish (En-Es) using XLM-R and Llama-3.2-1B models. Our results show that merged models consistently outperform full fine-tuning and CPT->FT. We observe gains of 2--5 points in F1 over full fine-tuning and ~1-2 points over CPT->FT, indicating that unlabeled data is leveraged more effectively via merging than via CPT alone. Zero-/few-shot prompting with larger LLMs (e.g., Llama-3.3-70B) lags behind fine-tuned and merged checkpoints, underscoring limits of in-context learning for code-mixed inputs. We further test cross-pair transfer by training on En-Hi and evaluating on En-Ta and En-Ml: merged checkpoints transfer more strongly than monolingual-English baselines (e.g., TV/TIES variants reaching 0.65-0.68 F1 vs 0.61-0.63 for full fine-tuning), suggesting that code-mixed knowledge is a more reliable substrate for low-resource pairs. We conclude with adaptation recipes matched to common data regimes (labeled only; labeled+unlabeled; transfer-only) and discuss limitations and scaling considerations for broader tasks and larger models.
comment: 9 pages, 5 tables, CODS 2025
♻ ☆ Less is More: Compact Clue Selection for Efficient Retrieval-Augmented Generation Reasoning
Current RAG retrievers are designed primarily for human readers, emphasizing complete, readable, and coherent paragraphs. However, LLMs benefit more from precise, compact, and well-structured input, which enhances reasoning quality and efficiency. Existing methods often rely on reranking or summarization to identify key sentences, but may suffer from semantic breaks and unfaithfulness. Thus, efficiently extracting and organizing answer-relevant clues from large-scale documents while reducing LLM reasoning costs remains a challenge for RAG. Inspired by Occam's razor, we frame LLM-centric retrieval as a MinMax optimization: maximizing the extraction of potential clues and reranking them for well-organization, while minimizing reasoning costs by truncating to the smallest sufficient clues set. In this paper, we propose CompSelect, a Compact clue Selection mechanism for LLM-centric RAG, consisting of a clue extractor, a reranker, and a truncator. (1) The clue extractor first uses answer-containing sentences as fine-tuning targets, aiming to extract sufficient potential clues; (2) The reranker is trained to prioritize effective clues based on real LLM feedback; (3) The truncator uses the truncated text containing the minimum sufficient clues for answering the question as fine-tuning targets, thereby enabling efficient RAG reasoning. Experiments on three QA datasets show that CompSelect improves QA performance by approximately 11\% and reduces Total Latency and Online Latency by approximately 17\% and 67\% compared to various baseline methods on both LLaMA3 and Qwen3. Further analysis confirms its robustness to unreliable retrieval and generalization across different scenarios, offering a scalable and cost-efficient solution for web-scale RAG applications.
comment: 12 pages, 7 figures, 12 tables, under review
♻ ☆ Bi-Mamba: Towards Accurate 1-Bit State Space Models
The typical Selective State-Space Model (SSM) used in Mamba addresses several limitations of Transformers, such as the quadratic computational complexity with respect to sequence length and the significant memory requirements during inference due to the key-value (KV) cache. However, the increasing size of Mamba models continues to pose challenges for training and deployment, particularly due to their substantial computational demands during both training and inference. In this work, we introduce $\texttt{Bi-Mamba}$, a scalable and powerful 1-bit Mamba architecture designed to enable more efficient large language models (LLMs), with model sizes of 780M, 1.3B, and 2.7B parameters. $\texttt{Bi-Mamba}$ models are trained from scratch on a standard LLM-scale dataset using an autoregressive distillation loss. Extensive experiments on language modeling benchmarks demonstrate that $\texttt{Bi-Mamba}$ achieves performance comparable to its full-precision (FP16 or BF16) counterparts, while outperforming post-training binarization (PTB) Mamba and binarization-aware training (BAT) Transformer baselines. Moreover, $\texttt{Bi-Mamba}$ drastically reduces memory usage and computational cost compared to the original Mamba. Our work pioneers a new line of linear-complexity LLMs under low-bit representation and provides the way for the design of specialized hardware optimized for efficient 1-bit Mamba-based models. Code and the pre-trained weights are available at https://github.com/Tangshengku/Bi-Mamba.
comment: Accepted in TMLR 2025
♻ ☆ Zhyper: Factorized Hypernetworks for Conditioned LLM Fine-Tuning
Large Language Model (LLM) conditioning refers to instructing an LLM to generate content in accordance with the norms and values of a specific culture, beliefs of a particular political orientation, or any desired text-specified semantic conditioning. Unfortunately, prompt engineering does not ensure that LLMs behave in accordance with a desired conditioning due to the inductive bias of the pre-training and alignment datasets. Prior works have focused on fine-tuning LLMs by directly conditioning the LoRA weights; however, such methods introduce a large number of parameters. As a remedy, we propose Zhyper, a parameter-efficient factorized hypernetwork framework that generates context-aware LoRA adapters from textual descriptions. Experiments on multiple benchmarks show that Zhyper achieves competitive performance with up to 26x fewer parameters than the state-of-the-art baselines. Furthermore, we extend Zhyper to cultural alignment, demonstrating improved generalization to out-of-domain settings and a better capturing of fine-grained contextual values.
♻ ☆ MLMA: Towards Multilingual ASR With Mamba-based Architectures ICASSP 2026
Multilingual automatic speech recognition (ASR) remains a challenging task, especially when balancing performance across high- and low-resource languages. Recent advances in sequence modeling suggest that architectures beyond Transformers may offer better scalability and efficiency. In this work, we introduce MLMA (Multilingual Language Modeling with Mamba for ASR), a new approach that leverages the Mamba architecture -- an efficient state-space model optimized for long-context sequence processing -- for multilingual ASR. Using Mamba, MLMA implicitly incorporates language-aware conditioning and shared representations to support robust recognition across diverse languages. Experiments on standard multilingual benchmarks show that MLMA achieves competitive performance compared to Transformer-based architectures. These results highlight Mamba's potential as a strong backbone for scalable, efficient, and accurate multilingual speech recognition.
comment: The paper is under review at ICASSP 2026
♻ ☆ Accelerating Mobile Language Model via Speculative Decoding and NPU-Coordinated Execution
Enhancing on-device large language models (LLMs) with contextual information from local data enables personalized and task-aware generation, powering use cases such as intelligent assistants and UI agents. While recent developments in neural processors have substantially improved the efficiency of prefill on mobile devices, the token-by-token generation process still suffers from high latency and limited hardware utilization due to its inherently memory-bound characteristics. This work presents sd.npu, a mobile inference framework that integrates speculative decoding with dynamic hardware scheduling to accelerate context-aware text generation on mobile devices. The framework introduces three synergistic components: (1) adaptive execution scheduling, which dynamically balances compute graphs between prefill and decoding phases; (2) context-aligned drafting, which improves speculative efficiency through lightweight online calibration to current tasks; and (3) hardware-efficient draft extension, which reuses and expands intermediate sequences to improve processing parallelism and reduce verification cost. Experiments on multiple smartphones and representative workloads show consistent improvements of up to 3.8x in generation speed and 4.7x in energy efficiency compared with existing mobile inference solutions. Component-level analysis further validates the contribution of each optimization.
♻ ☆ Diagnosing Representation Dynamics in NER Model Extension
Extending Named Entity Recognition (NER) models to new PII entities in noisy spoken-language data is a common need. We find that jointly fine-tuning a BERT model on standard semantic entities (PER, LOC, ORG) and new pattern-based PII (EMAIL, PHONE) results in minimal degradation for original classes. We investigate this "peaceful coexistence," hypothesizing that the model uses independent semantic vs. morphological feature mechanisms. Using an incremental learning setup as a diagnostic tool, we measure semantic drift and find two key insights. First, the LOC (location) entity is uniquely vulnerable due to a representation overlap with new PII, as it shares pattern-like features (e.g., postal codes). Second, we identify a "reverse O-tag representation drift." The model, initially trained to map PII patterns to 'O', blocks new learning. This is resolved only by unfreezing the 'O' tag's classifier, allowing the background class to adapt and "release" these patterns. This work provides a mechanistic diagnosis of NER model adaptation, highlighting feature independence, representation overlap, and 'O' tag plasticity. Work done based on data gathered by https://www.papernest.com
♻ ☆ More Documents, Same Length: Isolating the Challenge of Multiple Documents in RAG
Retrieval-Augmented Generation (RAG) enhances the accuracy of Large Language Model (LLM) responses by leveraging relevant external documents during generation. Although previous studies noted that retrieving many documents can degrade performance, they did not isolate how the quantity of documents affects performance while controlling for context length. We evaluate various language models on custom datasets derived from a multi-hop QA task. We keep the context length and position of relevant information constant while varying the number of documents, and find that increasing the document count in RAG settings poses significant challenges for most LLMs, reducing performance by up to 20%. However, Qwen2.5 maintained consistent results across increasing document counts, indicating better multi-document handling capability. Finally, our results indicate that processing multiple documents is a separate challenge from handling long contexts. We also make the datasets and code available: https://github.com/shaharl6000/MoreDocsSameLen .
comment: Preprint
♻ ☆ A New Benchmark Dataset and Mixture-of-Experts Language Models for Adversarial Natural Language Inference in Vietnamese
Existing Vietnamese Natural Language Inference (NLI) datasets lack adversarial complexity, limiting their ability to evaluate model robustness against challenging linguistic phenomena. In this article, we address the gap in robust Vietnamese NLI resources by introducing ViANLI, the first adversarial NLI dataset for Vietnamese, and propose NLIMoE, a Mixture-of-Experts model to tackle its complexity. We construct ViANLI using an adversarial human-and-machine-in-the-loop approach with rigorous verification. NLIMoE integrates expert subnetworks with a learned dynamic routing mechanism on top of a shared transformer encoder. ViANLI comprises over 10,000 premise-hypothesis pairs and challenges state-of-the-art models, with XLM-R Large achieving only 45.5% accuracy, while NLIMoE reaches 47.3%. Training with ViANLI improves performance on other benchmark Vietnamese NLI datasets including ViNLI, VLSP2021-NLI, and VnNewsNLI. ViANLI is released for enhancing research into model robustness and enriching resources for future Vietnamese and multilingual NLI research.
comment: Accepted by Expert Systems with Applications
♻ ☆ Born a Transformer -- Always a Transformer? On the Effect of Pretraining on Architectural Abilities NeurIPS 2025
Transformers have theoretical limitations in modeling certain sequence-to-sequence tasks, yet it remains largely unclear if these limitations play a role in large-scale pretrained LLMs, or whether LLMs might effectively overcome these constraints in practice due to the scale of both the models themselves and their pretraining data. We explore how these architectural constraints manifest after pretraining, by studying a family of $\textit{retrieval}$ and $\textit{copying}$ tasks inspired by Liu et al. [2024a]. We use a recently proposed framework for studying length generalization [Huang et al., 2025] to provide guarantees for each of our settings. Empirically, we observe an $\textit{induction-versus-anti-induction}$ asymmetry, where pretrained models are better at retrieving tokens to the right (induction) rather than the left (anti-induction) of a query token. This asymmetry disappears upon targeted fine-tuning if length-generalization is guaranteed by theory. Mechanistic analysis reveals that this asymmetry is connected to the differences in the strength of induction versus anti-induction circuits within pretrained transformers. We validate our findings through practical experiments on real-world tasks demonstrating reliability risks. Our results highlight that pretraining selectively enhances certain transformer capabilities, but does not overcome fundamental length-generalization limits.
comment: NeurIPS 2025
♻ ☆ "You Are Rejected!": An Empirical Study of Large Language Models Taking Hiring Evaluations
With the proliferation of the internet and the rapid advancement of Artificial Intelligence, leading technology companies face an urgent annual demand for a considerable number of software and algorithm engineers. To efficiently and effectively identify high-potential candidates from thousands of applicants, these firms have established a multi-stage selection process, which crucially includes a standardized hiring evaluation designed to assess job-specific competencies. Motivated by the demonstrated prowess of Large Language Models (LLMs) in coding and reasoning tasks, this paper investigates a critical question: Can LLMs successfully pass these hiring evaluations? To this end, we conduct a comprehensive examination of a widely used professional assessment questionnaire. We employ state-of-the-art LLMs to generate responses and subsequently evaluate their performance. Contrary to any prior expectation of LLMs being ideal engineers, our analysis reveals a significant inconsistency between the model-generated answers and the company-referenced solutions. Our empirical findings lead to a striking conclusion: All evaluated LLMs fails to pass the hiring evaluation.
comment: Technical Report, 14 pages, 8 figures
♻ ☆ Stress-Testing Model Specs Reveals Character Differences among Language Models
Large language models (LLMs) are increasingly trained from AI constitutions and model specifications that establish behavioral guidelines and ethical principles. However, these specifications face critical challenges, including internal conflicts between principles and insufficient coverage of nuanced scenarios. We present a systematic methodology for stress-testing model character specifications, automatically identifying numerous cases of principle contradictions and interpretive ambiguities in current model specs. We stress test current model specs by generating scenarios that force explicit tradeoffs between competing value-based principles. Using a comprehensive taxonomy we generate diverse value tradeoff scenarios where models must choose between pairs of legitimate principles that cannot be simultaneously satisfied. We evaluate responses from twelve frontier LLMs across major providers (Anthropic, OpenAI, Google, xAI) and measure behavioral disagreement through value classification scores. Among these scenarios, we identify over 70,000 cases exhibiting significant behavioral divergence. Empirically, we show this high divergence in model behavior strongly predicts underlying problems in model specifications. Through qualitative analysis, we provide numerous example issues in current model specs such as direct contradiction and interpretive ambiguities of several principles. Additionally, our generated dataset also reveals both clear misalignment cases and false-positive refusals across all of the frontier models we study. Lastly, we also provide value prioritization patterns and differences of these models.
♻ ☆ LFD: Layer Fused Decoding to Exploit External Knowledge in Retrieval-Augmented Generation
Retrieval-augmented generation (RAG) incorporates external knowledge into large language models (LLMs), improving their adaptability to downstream tasks and enabling information updates. Surprisingly, recent empirical evidence demonstrates that injecting noise into retrieved relevant documents paradoxically facilitates exploitation of external knowledge and improves generation quality. Although counterintuitive and challenging to apply in practice, this phenomenon enables granular control and rigorous analysis of how LLMs integrate external knowledge. Therefore, in this paper, we intervene on noise injection and establish a layer-specific functional demarcation within the LLM: shallow layers specialize in local context modeling, intermediate layers focus on integrating long-range external factual knowledge, and deeper layers primarily rely on parametric internal knowledge. Building on this insight, we propose Layer Fused Decoding (LFD), a simple decoding strategy that directly combines representations from an intermediate layer with final-layer decoding outputs to fully exploit the external factual knowledge. To identify the optimal intermediate layer, we introduce an internal knowledge score (IKS) criterion that selects the layer with the lowest IKS value in the latter half of layers. Experimental results across multiple benchmarks demonstrate that LFD helps RAG systems more effectively surface retrieved context knowledge with minimal cost.
♻ ☆ Multilingual LLM Prompting Strategies for Medical English-Vietnamese Machine Translation
Medical English-Vietnamese machine translation (En-Vi MT) is essential for healthcare access and communication in Vietnam, yet Vietnamese remains a low-resource and under-studied language. We systematically evaluate prompting strategies for six multilingual LLMs (0.5B-9B parameters) on the MedEV dataset, comparing zero-shot, few-shot, and dictionary-augmented prompting with Meddict, an English-Vietnamese medical lexicon. Results show that model scale is the primary driver of performance: larger LLMs achieve strong zero-shot results, while few-shot prompting yields only marginal improvements. In contrast, terminology-aware cues and embedding-based example retrieval consistently improve domain-specific translation. These findings underscore both the promise and the current limitations of multilingual LLMs for medical En-Vi MT.
comment: This version has been withdrawn after receiving the conference review results. We are currently extending and reorganizing the work into a new study
♻ ☆ ixi-GEN: Efficient Industrial sLLMs through Domain Adaptive Continual Pretraining EMNLP 2025
The emergence of open-source large language models (LLMs) has expanded opportunities for enterprise applications; however, many organizations still lack the infrastructure to deploy and maintain large-scale models. As a result, small LLMs (sLLMs) have become a practical alternative despite inherent performance limitations. While Domain Adaptive Continual Pretraining (DACP) has been explored for domain adaptation, its utility in commercial settings remains under-examined. In this study, we validate the effectiveness of a DACP-based recipe across diverse foundation models and service domains, producing DACP-applied sLLMs (ixi-GEN). Through extensive experiments and real-world evaluations, we demonstrate that ixi-GEN models achieve substantial gains in target-domain performance while preserving general capabilities, offering a cost-efficient and scalable solution for enterprise-level deployment.
comment: Accepted at EMNLP 2025 Industry Track
♻ ☆ Every Attention Matters: An Efficient Hybrid Architecture for Long-Context Reasoning
In this technical report, we present the Ring-linear model series, specifically including Ring-mini-linear-2.0 and Ring-flash-linear-2.0. Ring-mini-linear-2.0 comprises 16B parameters and 957M activations, while Ring-flash-linear-2.0 contains 104B parameters and 6.1B activations. Both models adopt a hybrid architecture that effectively integrates linear attention and softmax attention, significantly reducing I/O and computational overhead in long-context inference scenarios. Compared to a 32 billion parameter dense model, this series reduces inference cost to 1/10, and compared to the original Ring series, the cost is also reduced by over 50%. Furthermore, through systematic exploration of the ratio between different attention mechanisms in the hybrid architecture, we have identified the currently optimal model structure. Additionally, by leveraging our self-developed high-performance FP8 operator library-linghe, overall training efficiency has been improved by 50%. Benefiting from the high alignment between the training and inference engine operators, the models can undergo long-term, stable, and highly efficient optimization during the reinforcement learning phase, consistently maintaining SOTA performance across multiple challenging complex reasoning benchmarks.
comment: 20 pages, 13 figures
♻ ☆ Toward Metaphor-Fluid Conversation Design for Voice User Interfaces
Metaphors play a critical role in shaping user experiences with Voice User Interfaces (VUIs), yet existing designs often rely on static, human-centric metaphors that fail to adapt to diverse contexts and user needs. This paper introduces Metaphor-Fluid Design, a novel approach that dynamically adjusts metaphorical representations based on conversational use-contexts. We compare this approach to a Default VUI, which characterizes the present implementation of commercial VUIs commonly designed around the persona of an assistant, offering a uniform interaction style across contexts. In Study 1 (N=130), metaphors were mapped to four key use-contexts-commands, information seeking, sociality, and error recovery-along the dimensions of formality and hierarchy, revealing distinct preferences for task-specific metaphorical designs. Study 2 (N=91) evaluates a Metaphor-Fluid VUI against a Default VUI, showing that the Metaphor-Fluid VUI enhances perceived intention to adopt, enjoyment, and likability by aligning better with user expectations for different contexts. However, individual differences in metaphor preferences highlight the need for personalization. These findings challenge the one-size-fits-all paradigm of VUI design and demonstrate the potential of Metaphor-Fluid Design to create more adaptive and engaging human-AI interactions.
♻ ☆ TianHui: A Domain-Specific Large Language Model for Diverse Traditional Chinese Medicine Scenarios
Domain-specific LLMs in TCM face limitations in research settings due to constrained adaptability, insufficient evaluation datasets, and limited computational resources. This study presents TianHui, a specialized TCM LLM built through contextual data integration and domain knowledge fusion. We constructed a large-scale TCM corpus (0.97GB unsupervised data + 611,312 QA pairs) and employed a two-stage training strategy with QLoRA, DeepSpeed Stage 2, and Flash Attention 2. Evaluation on 12 benchmarks showed TianHui ranked top-three in all metrics for six datasets (APQ, TCMCD, HFR, HCCA, DHPE, TLAW) and achieved top results in the other six (TCMEE, APR, GCPMI, TCMKQA, TCMRC, ADTG). Optimal configuration was identified as LoRA rank=128, alpha=256, epoch=4, dropout=0.2, max length=2048. TianHui enables systematic preservation and scalable application of TCM knowledge. All resources are open-sourced.
comment: 46 pages, 5 figures,3 tables
♻ ☆ Does Thinking More always Help? Mirage of Test-Time Scaling in Reasoning Models NeurIPS 2025
Recent trends in test-time scaling for reasoning models (e.g., OpenAI o1, DeepSeek R1) have led to a popular belief that extending thinking traces using prompts like "Wait" or "Let me rethink" can improve performance. This raises a natural question: Does thinking more at test-time truly lead to better reasoning? To answer this question, we perform a detailed empirical study across models and benchmarks, which reveals a consistent pattern of initial performance improvements from additional thinking followed by a decline, due to "overthinking". To understand this non-monotonic trend, we consider a simple probabilistic model, which reveals that additional thinking increases output variance-creating an illusion of improved reasoning while ultimately undermining precision. Thus, observed gains from "more thinking" are not true indicators of improved reasoning, but artifacts stemming from the connection between model uncertainty and evaluation metric. This suggests that test-time scaling through extended thinking is not an effective way to utilize the inference thinking budget. Recognizing these limitations, we introduce an alternative test-time scaling approach, parallel thinking, inspired by Best-of-N sampling. Our method generates multiple independent reasoning paths within the same inference budget and selects the most consistent response via majority vote, achieving up to 20% higher accuracy compared to extended thinking. This provides a simple yet effective mechanism for test-time scaling of reasoning models.
comment: Accepted at NeurIPS 2025
♻ ☆ LeCoDe: A Benchmark Dataset for Interactive Legal Consultation Dialogue Evaluation
Legal consultation is essential for safeguarding individual rights and ensuring access to justice, yet remains costly and inaccessible to many individuals due to the shortage of professionals. While recent advances in Large Language Models (LLMs) offer a promising path toward scalable, low-cost legal assistance, current systems fall short in handling the interactive and knowledge-intensive nature of real-world consultations. To address these challenges, we introduce LeCoDe, a real-world multi-turn benchmark dataset comprising 3,696 legal consultation dialogues with 110,008 dialogue turns, designed to evaluate and improve LLMs' legal consultation capability. With LeCoDe, we innovatively collect live-streamed consultations from short-video platforms, providing authentic multi-turn legal consultation dialogues. The rigorous annotation by legal experts further enhances the dataset with professional insights and expertise. Furthermore, we propose a comprehensive evaluation framework that assesses LLMs' consultation capabilities in terms of (1) clarification capability and (2) professional advice quality. This unified framework incorporates 12 metrics across two dimensions. Through extensive experiments on various general and domain-specific LLMs, our results reveal significant challenges in this task, with even state-of-the-art models like GPT-4 achieving only 39.8% recall for clarification and 59% overall score for advice quality, highlighting the complexity of professional consultation scenarios. Based on these findings, we further explore several strategies to enhance LLMs' legal consultation abilities. Our benchmark contributes to advancing research in legal domain dialogue systems, particularly in simulating more real-world user-expert interactions.
♻ ☆ MLP Memory: A Retriever-Pretrained Memory for Large Language Models
Modern approaches to enhancing Large Language Models' factual accuracy and knowledge utilization face a fundamental trade-off: non-parametric retrieval-augmented generation (RAG) provides flexible access to external knowledge but suffers from high inference latency and shallow integration, while parametric fine-tuning methods like LoRA risk catastrophic forgetting and degraded general capabilities. In this work, we propose MLP Memory, a lightweight parametric module that learns to internalize retrieval patterns without explicit document access. By pretraining an MLP to imitate a $k$NN retriever's behavior on the entire pretraining dataset, we create a differentiable memory component that captures the benefits of retrieval-based knowledge access in a fully parametric form. Our architecture integrates this pretrained MLP Memory with Transformer decoders through simple probability interpolation, yielding 17.5\% and 24.1\% scaling gains on WikiText-103 and Web datasets, respectively. It further achieves 12.3\% relative improvement on five question-answering benchmarks and 5.2 points absolute gain across nine general NLP tasks, while reducing hallucinations by up to 10 points on HaluEval. Moreover, MLP Memory delivers 2.5$\times$ faster inference than RAG with superior accuracy. Our findings show that learning retrieval patterns parametrically bridges the gap between efficient inference and effective knowledge access, offering a practical alternative to both RAG and fine-tuning approaches.
♻ ☆ Debate or Vote: Which Yields Better Decisions in Multi-Agent Large Language Models? NeurIPS 2025
Multi-Agent Debate~(MAD) has emerged as a promising paradigm for improving the performance of large language models through collaborative reasoning. Despite recent advances, the key factors driving MAD's effectiveness remain unclear. In this work, we disentangle MAD into two key components--Majority Voting and inter-agent Debate--and assess their respective contributions. Through extensive experiments across seven NLP benchmarks, we find that Majority Voting alone accounts for most of the performance gains typically attributed to MAD. To explain this, we propose a theoretical framework that models debate as a stochastic process. We prove that it induces a martingale over agents' belief trajectories, implying that debate alone does not improve expected correctness. Guided by these insights, we demonstrate that targeted interventions, by biasing the belief update toward correction, can meaningfully enhance debate effectiveness. Overall, our findings suggest that while MAD has potential, simple ensembling methods remain strong and more reliable alternatives in many practical settings. Code is released in https://github.com/deeplearning-wisc/debate-or-vote.
comment: NeurIPS 2025 Spotlight
♻ ☆ Text to Band Gap: Pre-trained Language Models as Encoders for Semiconductor Band Gap Prediction
We investigate transformer-based language models, including RoBERTa, T5, Llama-3, and MatSciBERT, for predicting the band gaps of semiconductor materials directly from textual descriptions. The inputs encode key material features, such as chemical composition, crystal system, space group, and other structural and electronic properties. Unlike shallow machine learning models, which require extensive feature engineering, or Graph Neural Networks, which rely on graph representations derived from atomic coordinates, pretrained language models can process textual inputs directly, eliminating the need for manual feature preprocessing or structure-based encoding. Material descriptions were constructed in two formats: structured strings with a consistent template and natural language narratives generated via the ChatGPT API. Each model was augmented with a custom regression head and finetuned for band gap prediction task. Language models of different architectures and parameter sizes were all able to predict band gaps from human-readable text with strong accuracy, achieving MAEs in the range of 0.25-0.33 eV, highlighting the success of this approach for scientific regression tasks. Finetuned Llama-3, with 1.2 billion parameters, achieved the highest accuracy (MAE 0.248 eV, R2 0.891). MatSciBERT, pretrained on materials science literature, reached comparable performance (MAE 0.288 eV, R2 0.871) with significantly fewer parameters (110 million), emphasizing the importance of domain-specific pretraining. Attention analysis shows that both models selectively focus on compositional and spin-related features while de-emphasizing geometric features, reflecting the difficulty of capturing spatial information from text. These results establish that pretrained language models can effectively extract complex feature-property relationships from textual material descriptions.
♻ ☆ LAMA-UT: Language Agnostic Multilingual ASR through Orthography Unification and Language-Specific Transliteration AAAI 2025
Building a universal multilingual automatic speech recognition (ASR) model that performs equitably across languages has long been a challenge due to its inherent difficulties. To address this task we introduce a Language-Agnostic Multilingual ASR pipeline through orthography Unification and language-specific Transliteration (LAMA-UT). LAMA-UT operates without any language-specific modules while matching the performance of state-of-the-art models trained on a minimal amount of data. Our pipeline consists of two key steps. First, we utilize a universal transcription generator to unify orthographic features into Romanized form and capture common phonetic characteristics across diverse languages. Second, we utilize a universal converter to transform these universal transcriptions into language-specific ones. In experiments, we demonstrate the effectiveness of our proposed method leveraging universal transcriptions for massively multilingual ASR. Our pipeline achieves a relative error reduction rate of 45% when compared to Whisper and performs comparably to MMS, despite being trained on only 0.1% of Whisper's training data. Furthermore, our pipeline does not rely on any language-specific modules. However, it performs on par with zero-shot ASR approaches which utilize additional language-specific lexicons and language models. We expect this framework to serve as a cornerstone for flexible multilingual ASR systems that are generalizable even to unseen languages.
comment: Accepted to AAAI 2025 (Oral Presentation)
♻ ☆ KAT-Coder Technical Report
Recent advances in large language models (LLMs) have enabled progress in agentic coding, where models autonomously reason, plan, and act within interactive software development workflows. However, bridging the gap between static text-based training and dynamic real-world agentic execution remains a core challenge. In this technical report, we present KAT-Coder, a large-scale agentic code model trained through a multi-stage curriculum encompassing Mid-Term Training, Supervised Fine-Tuning (SFT), Reinforcement Fine-Tuning (RFT), and Reinforcement-to-Deployment Adaptation. The Mid-Term stage enhances reasoning, planning, and reflection capabilities through a corpus of real software engineering data and synthetic agentic interactions. The SFT stage constructs a million-sample dataset balancing twenty programming languages, ten development contexts, and ten task archetypes. The RFT stage introduces a novel multi-ground-truth reward formulation for stable and sample-efficient policy optimization. Finally, the Reinforcement-to-Deployment phase adapts the model to production-grade IDE environments using Error-Masked SFT and Tree-Structured Trajectory Training. In summary, these stages enable KAT-Coder to achieve robust tool-use reliability, instruction alignment, and long-context reasoning, forming a deployable foundation for real-world intelligent coding agents. Our KAT series 32B model, KAT-Dev, has been open-sourced on https://huggingface.co/Kwaipilot/KAT-Dev.
♻ ☆ Curing Miracle Steps in LLM Mathematical Reasoning with Rubric Rewards
Large language models for mathematical reasoning are typically trained with outcome-based rewards, which credit only the final answer. In our experiments, we observe that this paradigm is highly susceptible to reward hacking, leading to a substantial overestimation of a model's reasoning ability. This is evidenced by a high incidence of false positives - solutions that reach the correct final answer through an unsound reasoning process. Through a systematic analysis with human verification, we establish a taxonomy of these failure modes, identifying patterns like Miracle Steps - abrupt jumps to a correct output without a valid preceding derivation. Probing experiments suggest a strong association between these Miracle Steps and memorization, where the model appears to recall the answer directly rather than deriving it. To mitigate this systemic issue, we introduce the Rubric Reward Model (RRM), a process-oriented reward function that evaluates the entire reasoning trajectory against problem-specific rubrics. The generative RRM provides fine-grained, calibrated rewards (0-1) that explicitly penalize logical flaws and encourage rigorous deduction. When integrated into a reinforcement learning pipeline, RRM-based training consistently outperforms outcome-only supervision across four math benchmarks. Notably, it boosts Verified Pass@1024 on AIME2024 from 26.7% to 62.6% and reduces the incidence of Miracle Steps by 71%. Our work demonstrates that rewarding the solution process is crucial for building models that are not only more accurate but also more reliable.
comment: 25 pages, 11 figures, 6 Tables
♻ ☆ A Comprehensive Survey on Benchmarks and Solutions in Software Engineering of LLM-Empowered Agentic System
The integration of Large Language Models (LLMs) into software engineering has driven a transition from traditional rule-based systems to autonomous agentic systems capable of solving complex problems. However, systematic progress is hindered by a lack of comprehensive understanding of how benchmarks and solutions interconnect. This survey addresses this gap by providing the first holistic analysis of LLM-powered software engineering, offering insights into evaluation methodologies and solution paradigms. We review over 150 recent papers and propose a taxonomy along two key dimensions: (1) Solutions, categorized into prompt-based, fine-tuning-based, and agent-based paradigms, and (2) Benchmarks, including tasks such as code generation, translation, and repair. Our analysis highlights the evolution from simple prompt engineering to sophisticated agentic systems incorporating capabilities like planning, reasoning, memory mechanisms, and tool augmentation. To contextualize this progress, we present a unified pipeline illustrating the workflow from task specification to deliverables, detailing how different solution paradigms address various complexity levels. Unlike prior surveys that focus narrowly on specific aspects, this work connects 50+ benchmarks to their corresponding solution strategies, enabling researchers to identify optimal approaches for diverse evaluation criteria. We also identify critical research gaps and propose future directions, including multi-agent collaboration, self-evolving systems, and formal verification integration. This survey serves as a foundational guide for advancing LLM-driven software engineering. We maintain a GitHub repository that continuously updates the reviewed and related papers at https://github.com/lisaGuojl/LLM-Agent-SE-Survey.
comment: 22 pages
♻ ☆ MIR-Bench: Can Your LLM Recognize Complicated Patterns via Many-Shot In-Context Reasoning? NeurIPS 2025
The ability to recognize patterns from examples and apply them to new ones is a primal ability for general intelligence, and is widely studied by psychology and AI researchers. Many benchmarks have been proposed to measure such ability for Large Language Models (LLMs); however, they focus on few-shot (usually <10) setting and lack evaluation for aggregating many pieces of information from long contexts. On the other hand, the ever-growing context length of LLMs have brought forth the novel paradigm of many-shot In-Context Learning (ICL), which addresses new tasks with hundreds to thousands of examples without expensive and inefficient fine-tuning. However, many-shot evaluations often focus on classification, and popular long-context LLM tasks such as Needle-In-A-Haystack (NIAH) seldom require complicated intelligence for integrating many pieces of information. To fix the issues from both worlds, we propose MIR-Bench, the first many-shot in-context reasoning benchmark for pattern recognition that asks LLM to predict output via input-output examples from underlying functions with diverse data format. Based on MIR-Bench, we study many novel problems for many-shot in-context reasoning, and acquired many insightful findings including scaling effect, robustness, inductive vs. transductive reasoning, retrieval Augmented Generation (RAG), coding for inductive reasoning, cross-domain generalizability, etc.
comment: 39 pages, 11 figures. The paper is accepted at NeurIPS 2025 Datasets & Benchmarks Track, and the latest version adds modifications in camera-ready
♻ ☆ Sherlock: Self-Correcting Reasoning in Vision-Language Models NeurIPS 2025
Reasoning Vision-Language Models (VLMs) have shown promising performance on complex multimodal tasks. However, they still face significant challenges: they are highly sensitive to reasoning errors, require large volumes of annotated data or accurate verifiers, and struggle to generalize beyond specific domains. To address these limitations, we explore self-correction as a strategy to enhance reasoning VLMs. We first conduct an in-depth analysis of reasoning VLMs' self-correction abilities and identify key gaps. Based on our findings, we introduce Sherlock, a self-correction and self-improvement training framework. Sherlock introduces a trajectory-level self-correction objective, a preference data construction method based on visual perturbation, and a dynamic $\beta$ for preference tuning. Once the model acquires self-correction capabilities using only 20k randomly sampled annotated data, it continues to self-improve without external supervision. Built on the Llama3.2-Vision-11B model, Sherlock achieves remarkable results across eight benchmarks, reaching an average accuracy of 64.1 with direct generation and 65.4 after self-correction. It outperforms LLaVA-CoT (63.2), Mulberry (63.9), and LlamaV-o1 (63.4) while using less than 20% of the annotated data.
comment: Published at NeurIPS 2025, 27 pages
♻ ☆ RL Tango: Reinforcing Generator and Verifier Together for Language Reasoning NeurIPS 2025
Reinforcement learning (RL) has recently emerged as a compelling approach for enhancing the reasoning capabilities of large language models (LLMs), where an LLM generator serves as a policy guided by a verifier (reward model). However, current RL post-training methods for LLMs typically use verifiers that are fixed (rule-based or frozen pretrained) or trained discriminatively via supervised fine-tuning (SFT). Such designs are susceptible to reward hacking and generalize poorly beyond their training distributions. To overcome these limitations, we propose Tango, a novel framework that uses RL to concurrently train both an LLM generator and a verifier in an interleaved manner. A central innovation of Tango is its generative, process-level LLM verifier, which is trained via RL and co-evolves with the generator. Importantly, the verifier is trained solely based on outcome-level verification correctness rewards without requiring explicit process-level annotations. This generative RL-trained verifier exhibits improved robustness and superior generalization compared to deterministic or SFT-trained verifiers, fostering effective mutual reinforcement with the generator. Extensive experiments demonstrate that both components of Tango achieve state-of-the-art results among 7B/8B-scale models: the generator attains best-in-class performance across five competition-level math benchmarks and four challenging out-of-domain reasoning tasks, while the verifier leads on the ProcessBench dataset. Remarkably, both components exhibit particularly substantial improvements on the most difficult mathematical reasoning problems. Code is at: https://github.com/kaiwenzha/rl-tango.
comment: NeurIPS 2025. The first two authors contributed equally
♻ ☆ Quantitative LLM Judges
LLM-as-a-judge is a framework where a large language model (LLM) evaluates the output of another LLM. While LLMs excel at producing qualitative textual evaluations, they often struggle to predict human preferences and numeric scores. We propose quantitative LLM judges, which align evaluation scores of existing LLM judges to humans in a given domain using regression models. The models are trained to improve the score of the original judge using its rationale and score. We present four quantitative judges for different types of absolute and relative feedback, which showcases the generality and versatility of our framework. Our framework is more computationally efficient than supervised fine-tuning and can be more statistically efficient when human feedback is limited, which is expected in practice. We validate these claims empirically on four datasets using two base judges. Our experiments show that quantitative judges can improve the predictive power of existing judges through post-hoc modeling.
♻ ☆ Annotation Guidelines-Based Knowledge Augmentation: Towards Enhancing Large Language Models for Educational Text Classification IEEE
Various machine learning approaches have gained significant popularity for the automated classification of educational text to identify indicators of learning engagement -- i.e. learning engagement classification (LEC). LEC can offer comprehensive insights into human learning processes, attracting significant interest from diverse research communities, including Natural Language Processing (NLP), Learning Analytics, and Educational Data Mining. Recently, Large Language Models (LLMs), such as ChatGPT, have demonstrated remarkable performance in various NLP tasks. However, their comprehensive evaluation and improvement approaches in LEC tasks have not been thoroughly investigated. In this study, we propose the Annotation Guidelines-based Knowledge Augmentation (AGKA) approach to improve LLMs. AGKA employs GPT 4.0 to retrieve label definition knowledge from annotation guidelines, and then applies the random under-sampler to select a few typical examples. Subsequently, we conduct a systematic evaluation benchmark of LEC, which includes six LEC datasets covering behavior classification (question and urgency level), emotion classification (binary and epistemic emotion), and cognition classification (opinion and cognitive presence). The study results demonstrate that AGKA can enhance non-fine-tuned LLMs, particularly GPT 4.0 and Llama 3 70B. GPT 4.0 with AGKA few-shot outperforms full-shot fine-tuned models such as BERT and RoBERTa on simple binary classification datasets. However, GPT 4.0 lags in multi-class tasks that require a deep understanding of complex semantic information. Notably, Llama 3 70B with AGKA is a promising combination based on open-source LLM, because its performance is on par with closed-source GPT 4.0 with AGKA. In addition, LLMs struggle to distinguish between labels with similar names in multi-class classification.
comment: The manuscript has been accepted for publication in IEEE Transactions on Learning Technologies. https://doi.org/10.1109/TLT.2025.3570775
♻ ☆ Hybrid Latent Reasoning via Reinforcement Learning NeurIPS 2025
Recent advances in large language models (LLMs) have introduced latent reasoning as a promising alternative to autoregressive reasoning. By performing internal computation with hidden states from previous steps, latent reasoning benefit from more informative features rather than sampling a discrete chain-of-thought (CoT) path. Yet latent reasoning approaches are often incompatible with LLMs, as their continuous paradigm conflicts with the discrete nature of autoregressive generation. Moreover, these methods rely on CoT traces for training and thus fail to exploit the inherent reasoning patterns of LLMs. In this work, we explore latent reasoning by leveraging the intrinsic capabilities of LLMs via reinforcement learning (RL). To this end, we introduce hybrid reasoning policy optimization (HRPO), an RL-based hybrid latent reasoning approach that (1) integrates prior hidden states into sampled tokens with a learnable gating mechanism, and (2) initializes training with predominantly token embeddings while progressively incorporating more hidden features. This design maintains LLMs' generative capabilities and incentivizes hybrid reasoning using both discrete and continuous representations. In addition, the hybrid HRPO introduces stochasticity into latent reasoning via token sampling, thereby enabling RL-based optimization without requiring CoT trajectories. Extensive evaluations across diverse benchmarks show that HRPO outperforms prior methods in both knowledge- and reasoning-intensive tasks. Furthermore, HRPO-trained LLMs remain interpretable and exhibit intriguing behaviors like cross-lingual patterns and shorter completion lengths, highlighting the potential of our RL-based approach and offer insights for future work in latent reasoning.
comment: NeurIPS 2025
♻ ☆ PersonaMatrix: A Recipe for Persona-Aware Evaluation of Legal Summarization
Legal documents are often long, dense, and difficult to comprehend, not only for laypeople but also for legal experts. While automated document summarization has great potential to improve access to legal knowledge, prevailing task-based evaluators overlook divergent user and stakeholder needs. Tool development is needed to encompass the technicality of a case summary for a litigator yet be accessible for a self-help public researching for their lawsuit. We introduce PersonaMatrix, a persona-by-criterion evaluation framework that scores summaries through the lens of six personas, including legal and non-legal users. We also introduce a controlled dimension-shifted pilot dataset of U.S. civil rights case summaries that varies along depth, accessibility, and procedural detail as well as Diversity-Coverage Index (DCI) to expose divergent optima of legal summary between persona-aware and persona-agnostic judges. This work enables refinement of legal AI summarization systems for both expert and non-expert users, with the potential to increase access to legal knowledge. The code base and data are publicly available in GitHub.
comment: Accepted for publication in JURIX 2025 (Legal Knowledge and Information Systems, FAIA series, IOS Press). Long Paper
♻ ☆ AssistedDS: Benchmarking How External Domain Knowledge Assists LLMs in Automated Data Science
Large language models (LLMs) have advanced the automation of data science workflows. Yet it remains unclear whether they can critically leverage external domain knowledge as human data scientists do in practice. To answer this question, we introduce AssistedDS (Assisted Data Science), a benchmark designed to systematically evaluate how LLMs handle domain knowledge in tabular prediction tasks. AssistedDS features both synthetic datasets with explicitly known generative mechanisms and real-world Kaggle competitions, each accompanied by curated bundles of helpful and adversarial documents. These documents provide domain-specific insights into data cleaning, feature engineering, and model selection. We assess state-of-the-art LLMs on their ability to discern and apply beneficial versus harmful domain knowledge, evaluating submission validity, information recall, and predictive performance. Our results demonstrate three key findings: (1) LLMs frequently exhibit an uncritical adoption of provided information, significantly impairing their predictive performance when adversarial content is introduced, (2) helpful guidance is often insufficient to counteract the negative influence of adversarial information, and (3) in Kaggle datasets, LLMs often make errors in handling time-series data, applying consistent feature engineering across different folds, and interpreting categorical variables correctly. These findings highlight a substantial gap in current models' ability to critically evaluate and leverage expert knowledge, underscoring an essential research direction for developing more robust, knowledge-aware automated data science systems. Our data and code are publicly available here: https://github.com/jeremyxianx/Assisted-DS
♻ ☆ RMTBench: Benchmarking LLMs Through Multi-Turn User-Centric Role-Playing
Recent advancements in Large Language Models (LLMs) have shown outstanding potential for role-playing applications. Evaluating these capabilities is becoming crucial yet remains challenging. Existing benchmarks mostly adopt a \textbf{character-centric} approach, simplify user-character interactions to isolated Q&A tasks, and fail to reflect real-world applications. To address this limitation, we introduce RMTBench, a comprehensive \textbf{user-centric} bilingual role-playing benchmark featuring 80 diverse characters and over 8,000 dialogue rounds. RMTBench includes custom characters with detailed backgrounds and abstract characters defined by simple traits, enabling evaluation across various user scenarios. Our benchmark constructs dialogues based on explicit user motivations rather than character descriptions, ensuring alignment with practical user applications. Furthermore, we construct an authentic multi-turn dialogue simulation mechanism. With carefully selected evaluation dimensions and LLM-based scoring, this mechanism captures the complex intention of conversations between the user and the character. By shifting focus from character background to user intention fulfillment, RMTBench bridges the gap between academic evaluation and practical deployment requirements, offering a more effective framework for assessing role-playing capabilities in LLMs. All code and datasets will be released soon. We release the datasets at https://huggingface.co/datasets/xiangh/RMTBENCH.
♻ ☆ Iterative Self-Tuning LLMs for Enhanced Jailbreaking Capabilities NAACL 2025
Recent research has shown that Large Language Models (LLMs) are vulnerable to automated jailbreak attacks, where adversarial suffixes crafted by algorithms appended to harmful queries bypass safety alignment and trigger unintended responses. Current methods for generating these suffixes are computationally expensive and have low Attack Success Rates (ASR), especially against well-aligned models like Llama2 and Llama3. To overcome these limitations, we introduce ADV-LLM, an iterative self-tuning process that crafts adversarial LLMs with enhanced jailbreak ability. Our framework significantly reduces the computational cost of generating adversarial suffixes while achieving nearly 100\% ASR on various open-source LLMs. Moreover, it exhibits strong attack transferability to closed-source models, achieving 99\% ASR on GPT-3.5 and 49\% ASR on GPT-4, despite being optimized solely on Llama3. Beyond improving jailbreak ability, ADV-LLM provides valuable insights for future safety alignment research through its ability to generate large datasets for studying LLM safety. Our code is available at: https://github.com/SunChungEn/ADV-LLM
comment: Accepted to NAACL 2025 Main (Oral)
♻ ☆ Not All Heads Matter: A Head-Level KV Cache Compression Method with Integrated Retrieval and Reasoning ICLR2025
Key-Value (KV) caching is a common technique to enhance the computational efficiency of Large Language Models (LLMs), but its memory overhead grows rapidly with input length. Prior work has shown that not all tokens are equally important for text generation, proposing layer-level KV cache compression to selectively retain key information. Recognizing the distinct roles of attention heads in generation, we propose HeadKV, a head-level KV cache compression method, and HeadKV-R2, which leverages a novel contextual reasoning ability estimation for compression. Our approach operates at the level of individual heads, estimating their importance for contextual QA tasks that require both retrieval and reasoning capabilities. Extensive experiments across diverse benchmarks (LongBench, LooGLE), model architectures (e.g., Llama-3-8B-Instruct, Mistral-7B-Instruct), and long-context abilities tests demonstrate that our head-level KV cache compression significantly outperforms strong baselines, particularly in low-resource settings (KV size = 64 & 128). Notably, our method retains just 1.5% of the KV cache while achieving 97% of the performance of the full KV cache on the contextual question answering benchmark. Codes are available at https://github.com/FYYFU/HeadKV
comment: Accepted to ICLR2025
♻ ☆ Is Safety Standard Same for Everyone? User-Specific Safety Evaluation of Large Language Models EMNLP 2025
As the use of large language model (LLM) agents continues to grow, their safety vulnerabilities have become increasingly evident. Extensive benchmarks evaluate various aspects of LLM safety by defining the safety relying heavily on general standards, overlooking user-specific standards. However, safety standards for LLM may vary based on a user-specific profiles rather than being universally consistent across all users. This raises a critical research question: Do LLM agents act safely when considering user-specific safety standards? Despite its importance for safe LLM use, no benchmark datasets currently exist to evaluate the user-specific safety of LLMs. To address this gap, we introduce U-SafeBench, a benchmark designed to assess user-specific aspect of LLM safety. Our evaluation of 20 widely used LLMs reveals current LLMs fail to act safely when considering user-specific safety standards, marking a new discovery in this field. To address this vulnerability, we propose a simple remedy based on chain-of-thought, demonstrating its effectiveness in improving user-specific safety. Our benchmark and code are available at https://github.com/yeonjun-in/U-SafeBench.
comment: EMNLP 2025 Findings
Machine Learning 275
☆ Towards General Modality Translation with Contrastive and Predictive Latent Diffusion Bridge
Recent advances in generative modeling have positioned diffusion models as state-of-the-art tools for sampling from complex data distributions. While these models have shown remarkable success across single-modality domains such as images and audio, extending their capabilities to Modality Translation (MT), translating information across different sensory modalities, remains an open challenge. Existing approaches often rely on restrictive assumptions, including shared dimensionality, Gaussian source priors, and modality-specific architectures, which limit their generality and theoretical grounding. In this work, we propose the Latent Denoising Diffusion Bridge Model (LDDBM), a general-purpose framework for modality translation based on a latent-variable extension of Denoising Diffusion Bridge Models. By operating in a shared latent space, our method learns a bridge between arbitrary modalities without requiring aligned dimensions. We introduce a contrastive alignment loss to enforce semantic consistency between paired samples and design a domain-agnostic encoder-decoder architecture tailored for noise prediction in latent space. Additionally, we propose a predictive loss to guide training toward accurate cross-domain translation and explore several training strategies to improve stability. Our approach supports arbitrary modality pairs and performs strongly on diverse MT tasks, including multi-view to 3D shape generation, image super-resolution, and multi-view scene synthesis. Comprehensive experiments and ablations validate the effectiveness of our framework, establishing a new strong baseline in general modality translation. For more information, see our project page: https://sites.google.com/view/lddbm/home.
☆ VAMOS: A Hierarchical Vision-Language-Action Model for Capability-Modulated and Steerable Navigation
A fundamental challenge in robot navigation lies in learning policies that generalize across diverse environments while conforming to the unique physical constraints and capabilities of a specific embodiment (e.g., quadrupeds can walk up stairs, but rovers cannot). We propose VAMOS, a hierarchical VLA that decouples semantic planning from embodiment grounding: a generalist planner learns from diverse, open-world data, while a specialist affordance model learns the robot's physical constraints and capabilities in safe, low-cost simulation. We enabled this separation by carefully designing an interface that lets a high-level planner propose candidate paths directly in image space that the affordance model then evaluates and re-ranks. Our real-world experiments show that VAMOS achieves higher success rates in both indoor and complex outdoor navigation than state-of-the-art model-based and end-to-end learning methods. We also show that our hierarchical design enables cross-embodied navigation across legged and wheeled robots and is easily steerable using natural language. Real-world ablations confirm that the specialist model is key to embodiment grounding, enabling a single high-level planner to be deployed across physically distinct wheeled and legged robots. Finally, this model significantly enhances single-robot reliability, achieving 3X higher success rates by rejecting physically infeasible plans. Website: https://vamos-vla.github.io/
☆ KL-Regularized Reinforcement Learning is Designed to Mode Collapse
It is commonly believed that optimizing the reverse KL divergence results in "mode seeking", while optimizing forward KL results in "mass covering", with the latter being preferred if the goal is to sample from multiple diverse modes. We show -- mathematically and empirically -- that this intuition does not necessarily transfer well to doing reinforcement learning with reverse/forward KL regularization (e.g. as commonly used with language models). Instead, the choice of reverse/forward KL determines the family of optimal target distributions, parameterized by the regularization coefficient. Mode coverage depends primarily on other factors, such as regularization strength, and relative scales between rewards and reference probabilities. Further, we show commonly used settings such as low regularization strength and equal verifiable rewards tend to specify unimodal target distributions, meaning the optimization objective is, by construction, non-diverse. We leverage these insights to construct a simple, scalable, and theoretically justified algorithm. It makes minimal changes to reward magnitudes, yet optimizes for a target distribution which puts high probability over all high-quality sampling modes. In experiments, this simple modification works to post-train both Large Language Models and Chemical Language Models to have higher solution quality and diversity, without any external signals of diversity, and works with both forward and reverse KL when using either naively fails.
☆ On the Detectability of LLM-Generated Text: What Exactly Is LLM-Generated Text?
With the widespread use of large language models (LLMs), many researchers have turned their attention to detecting text generated by them. However, there is no consistent or precise definition of their target, namely "LLM-generated text". Differences in usage scenarios and the diversity of LLMs further increase the difficulty of detection. What is commonly regarded as the detecting target usually represents only a subset of the text that LLMs can potentially produce. Human edits to LLM outputs, together with the subtle influences that LLMs exert on their users, are blurring the line between LLM-generated and human-written text. Existing benchmarks and evaluation approaches do not adequately address the various conditions in real-world detector applications. Hence, the numerical results of detectors are often misunderstood, and their significance is diminishing. Therefore, detectors remain useful under specific conditions, but their results should be interpreted only as references rather than decisive indicators.
☆ Real Deep Research for AI, Robotics and Beyond
With the rapid growth of research in AI and robotics now producing over 10,000 papers annually it has become increasingly difficult for researchers to stay up to date. Fast evolving trends, the rise of interdisciplinary work, and the need to explore domains beyond one's expertise all contribute to this challenge. To address these issues, we propose a generalizable pipeline capable of systematically analyzing any research area: identifying emerging trends, uncovering cross domain opportunities, and offering concrete starting points for new inquiry. In this work, we present Real Deep Research (RDR) a comprehensive framework applied to the domains of AI and robotics, with a particular focus on foundation models and robotics advancements. We also briefly extend our analysis to other areas of science. The main paper details the construction of the RDR pipeline, while the appendix provides extensive results across each analyzed topic. We hope this work sheds light for researchers working in the field of AI and beyond.
comment: website: https://realdeepresearch.github.io
☆ The Reality Gap in Robotics: Challenges, Solutions, and Best Practices
Machine learning has facilitated significant advancements across various robotics domains, including navigation, locomotion, and manipulation. Many such achievements have been driven by the extensive use of simulation as a critical tool for training and testing robotic systems prior to their deployment in real-world environments. However, simulations consist of abstractions and approximations that inevitably introduce discrepancies between simulated and real environments, known as the reality gap. These discrepancies significantly hinder the successful transfer of systems from simulation to the real world. Closing this gap remains one of the most pressing challenges in robotics. Recent advances in sim-to-real transfer have demonstrated promising results across various platforms, including locomotion, navigation, and manipulation. By leveraging techniques such as domain randomization, real-to-sim transfer, state and action abstractions, and sim-real co-training, many works have overcome the reality gap. However, challenges persist, and a deeper understanding of the reality gap's root causes and solutions is necessary. In this survey, we present a comprehensive overview of the sim-to-real landscape, highlighting the causes, solutions, and evaluation metrics for the reality gap and sim-to-real transfer.
comment: Accepted for Publication as part of the Annual Review of Control, Robotics, and Autonomous Systems 2026
☆ Video Prediction of Dynamic Physical Simulations With Pixel-Space Spatiotemporal Transformers
Inspired by the performance and scalability of autoregressive large language models (LLMs), transformer-based models have seen recent success in the visual domain. This study investigates a transformer adaptation for video prediction with a simple end-to-end approach, comparing various spatiotemporal self-attention layouts. Focusing on causal modeling of physical simulations over time; a common shortcoming of existing video-generative approaches, we attempt to isolate spatiotemporal reasoning via physical object tracking metrics and unsupervised training on physical simulation datasets. We introduce a simple yet effective pure transformer model for autoregressive video prediction, utilizing continuous pixel-space representations for video prediction. Without the need for complex training strategies or latent feature-learning components, our approach significantly extends the time horizon for physically accurate predictions by up to 50% when compared with existing latent-space approaches, while maintaining comparable performance on common video quality metrics. In addition, we conduct interpretability experiments to identify network regions that encode information useful to perform accurate estimations of PDE simulation parameters via probing models, and find that this generalizes to the estimation of out-of-distribution simulation parameters. This work serves as a platform for further attention-based spatiotemporal modeling of videos via a simple, parameter efficient, and interpretable approach.
comment: 14 pages, 14 figures
☆ Compress to Impress: Efficient LLM Adaptation Using a Single Gradient Step on 100 Samples
Recently, Sharma et al. suggested a method called Layer-SElective-Rank reduction (LASER) which demonstrated that pruning high-order components of carefully chosen LLM's weight matrices can boost downstream accuracy -- without any gradient-based fine-tuning. Yet LASER's exhaustive, per-matrix search (each requiring full-dataset forward passes) makes it impractical for rapid deployment. We demonstrate that this overhead can be removed and find that: (i) Only a small, carefully chosen subset of matrices needs to be inspected -- eliminating the layer-by-layer sweep, (ii) The gradient of each matrix's singular values pinpoints which matrices merit reduction, (iii) Increasing the factorization search space by allowing matrices rows to cluster around multiple subspaces and then decomposing each cluster separately further reduces overfitting on the original training data and further lifts accuracy by up to 24.6 percentage points, and finally, (iv) we discover that evaluating on just 100 samples rather than the full training data -- both for computing the indicative gradients and for measuring the final accuracy -- suffices to further reduce the search time; we explain that as adaptation to downstream tasks is dominated by prompting style, not dataset size. As a result, we show that combining these findings yields a fast and robust adaptation algorithm for downstream tasks. Overall, with a single gradient step on 100 examples and a quick scan of the top candidate layers and factorization techniques, we can adapt LLMs to new datasets -- entirely without fine-tuning.
☆ Simple Context Compression: Mean-Pooling and Multi-Ratio Training
A common strategy to reduce the computational costs of using long contexts in retrieval-augmented generation (RAG) with large language models (LLMs) is soft context compression, where the input sequence is transformed into a shorter continuous representation. We develop a lightweight and simple mean-pooling approach that consistently outperforms the widely used compression-tokens architecture, and study training the same compressor to output multiple compression ratios. We conduct extensive experiments across in-domain and out-of-domain QA datasets, as well as across model families, scales, and compression ratios. Overall, our simple mean-pooling approach achieves the strongest performance, with a relatively small drop when training for multiple compression ratios. More broadly though, across architectures and training regimes the trade-offs are more nuanced, illustrating the complex landscape of compression methods.
comment: Code available at https://github.com/lil-lab/simple-context-compression
☆ Bayesian Inference of Primordial Magnetic Field Parameters from CMB with Spherical Graph Neural Networks
Deep learning has emerged as a transformative methodology in modern cosmology, providing powerful tools to extract meaningful physical information from complex astronomical datasets. This paper implements a novel Bayesian graph deep learning framework for estimating key cosmological parameters in a primordial magnetic field (PMF) cosmology directly from simulated Cosmic Microwave Background (CMB) maps. Our methodology utilizes DeepSphere, a spherical convolutional neural network architecture specifically designed to respect the spherical geometry of CMB data through HEALPix pixelization. To advance beyond deterministic point estimates and enable robust uncertainty quantification, we integrate Bayesian Neural Networks (BNNs) into the framework, capturing aleatoric and epistemic uncertainties that reflect the model confidence in its predictions. The proposed approach demonstrates exceptional performance, achieving $R^{2}$ scores exceeding 0.89 for the magnetic parameter estimation. We further obtain well-calibrated uncertainty estimates through post-hoc training techniques including Variance Scaling and GPNormal. This integrated DeepSphere-BNNs framework not only delivers accurate parameter estimation from CMB maps with PMF contributions but also provides reliable uncertainty quantification, providing the necessary tools for robust cosmological inference in the era of precision cosmology.
comment: 16 pages, 6 figures, 4 tables
☆ BadGraph: A Backdoor Attack Against Latent Diffusion Model for Text-Guided Graph Generation
The rapid progress of graph generation has raised new security concerns, particularly regarding backdoor vulnerabilities. While prior work has explored backdoor attacks in image diffusion and unconditional graph generation, conditional, especially text-guided graph generation remains largely unexamined. This paper proposes BadGraph, a backdoor attack method targeting latent diffusion models for text-guided graph generation. BadGraph leverages textual triggers to poison training data, covertly implanting backdoors that induce attacker-specified subgraphs during inference when triggers appear, while preserving normal performance on clean inputs. Extensive experiments on four benchmark datasets (PubChem, ChEBI-20, PCDes, MoMu) demonstrate the effectiveness and stealth of the attack: less than 10% poisoning rate can achieves 50% attack success rate, while 24% suffices for over 80% success rate, with negligible performance degradation on benign samples. Ablation studies further reveal that the backdoor is implanted during VAE and diffusion training rather than pretraining. These findings reveal the security vulnerabilities in latent diffusion models of text-guided graph generation, highlight the serious risks in models' applications such as drug discovery and underscore the need for robust defenses against the backdoor attack in such diffusion models.
☆ Alleviating Forgetfulness of Linear Attention by Hybrid Sparse Attention and Contextualized Learnable Token Eviction
Linear-attention models that compress the entire input sequence into a fixed-size recurrent state offer an efficient alternative to Transformers, but their finite memory induces forgetfulness that harms retrieval-intensive tasks. To mitigate the issue, we explore a series of hybrid models that restore direct access to past tokens. We interleave token mixers with intermediate time and space complexity between linear and full attention, including sparse attention with token eviction, and the query-aware native sparse attention. Particularly, we propose a novel learnable token eviction approach. Combined with sliding-window attention, an end-to-end trainable lightweight CNN aggregates information from both past and future adjacent tokens to adaptively retain a limited set of critical KV-pairs per head, maintaining linear attention's constant time and space complexity. Efficient Triton kernels for the sparse attention mechanisms are provided. Empirical evaluations on retrieval-intensive benchmarks support the effectiveness of our approaches.
comment: 19 pages, 5 figures
☆ A Coherence-Based Measure of AGI
Recent work by \citet{hendrycks2025agidefinition} formalized \textit{Artificial General Intelligence} (AGI) as the arithmetic mean of proficiencies across cognitive domains derived from the Cattell--Horn--Carroll (CHC) model of human cognition. While elegant, this definition assumes \textit{compensability} -- that exceptional ability in some domains can offset failure in others. True general intelligence, however, should reflect \textit{coherent sufficiency}: balanced competence across all essential domains. We propose a coherence-aware measure of AGI based on the integral of generalized means over a continuum of compensability exponents. This formulation spans arithmetic, geometric, and harmonic regimes, and the resulting \textit{area under the curve} (AUC) quantifies robustness under varying compensability assumptions. Unlike the arithmetic mean, which rewards specialization, the AUC penalizes imbalance and captures inter-domain dependency. Applied to published CHC-based domain scores for GPT-4 and GPT-5, the coherence-adjusted AUC reveals that both systems remain far from general competence despite high arithmetic scores (e.g., GPT-5 at~24\%). Integrating the generalized mean thus yields a principled, interpretable, and stricter foundation for measuring genuine progress toward AGI.
comment: 13 pages, 1 figure, 12 tables
☆ Out-of-distribution Tests Reveal Compositionality in Chess Transformers
Chess is a canonical example of a task that requires rigorous reasoning and long-term planning. Modern decision Transformers - trained similarly to LLMs - are able to learn competent gameplay, but it is unclear to what extent they truly capture the rules of chess. To investigate this, we train a 270M parameter chess Transformer and test it on out-of-distribution scenarios, designed to reveal failures of systematic generalization. Our analysis shows that Transformers exhibit compositional generalization, as evidenced by strong rule extrapolation: they adhere to fundamental syntactic rules of the game by consistently choosing valid moves even in situations very different from the training data. Moreover, they also generate high-quality moves for OOD puzzles. In a more challenging test, we evaluate the models on variants including Chess960 (Fischer Random Chess) - a variant of chess where starting positions of pieces are randomized. We found that while the model exhibits basic strategy adaptation, they are inferior to symbolic AI algorithms that perform explicit search, but gap is smaller when playing against users on Lichess. Moreover, the training dynamics revealed that the model initially learns to move only its own pieces, suggesting an emergent compositional understanding of the game.
☆ AlphaFlow: Understanding and Improving MeanFlow Models
MeanFlow has recently emerged as a powerful framework for few-step generative modeling trained from scratch, but its success is not yet fully understood. In this work, we show that the MeanFlow objective naturally decomposes into two parts: trajectory flow matching and trajectory consistency. Through gradient analysis, we find that these terms are strongly negatively correlated, causing optimization conflict and slow convergence. Motivated by these insights, we introduce $\alpha$-Flow, a broad family of objectives that unifies trajectory flow matching, Shortcut Model, and MeanFlow under one formulation. By adopting a curriculum strategy that smoothly anneals from trajectory flow matching to MeanFlow, $\alpha$-Flow disentangles the conflicting objectives, and achieves better convergence. When trained from scratch on class-conditional ImageNet-1K 256x256 with vanilla DiT backbones, $\alpha$-Flow consistently outperforms MeanFlow across scales and settings. Our largest $\alpha$-Flow-XL/2+ model achieves new state-of-the-art results using vanilla DiT backbones, with FID scores of 2.58 (1-NFE) and 2.15 (2-NFE).
☆ CSU-PCAST: A Dual-Branch Transformer Framework for medium-range ensemble Precipitation Forecasting
Accurate medium-range precipitation forecasting is crucial for hydrometeorological risk management and disaster mitigation, yet remains challenging for current numerical weather prediction (NWP) systems. Traditional ensemble systems such as the Global Ensemble Forecast System (GEFS) struggle to maintain high skill, especially for moderate and heavy rainfall at extended lead times. This study develops a deep learning-based ensemble framework for multi-step precipitation prediction through joint modeling of a comprehensive set of atmospheric variables. The model is trained on ERA5 reanalysis data at 0.25$^{\circ}$ spatial resolution, with precipitation labels from NASA's Integrated Multi-satellite Retrievals for Global Precipitation Measurement (GPM) constellation (IMERG), incorporating 57 input variables, including upper-air and surface predictors. The architecture employs a patch-based Swin Transformer backbone with periodic convolutions to handle longitudinal continuity and integrates time and noise embeddings through conditional layer normalization. A dual-branch decoder predicts total precipitation and other variables, with targeted freezing of encoder-decoder pathways for specialized training. Training minimizes a hybrid loss combining the Continuous Ranked Probability Score (CRPS) and weighted log1p mean squared error (log1pMSE), balancing probabilistic accuracy and magnitude fidelity. During inference, the model ingests real-time Global Forecast System (GFS) initial conditions to generate 15-day forecasts autoregressively. Evaluation against GEFS using IMERG data demonstrates higher Critical Success Index (CSI) scores at precipitation thresholds of 0.1 mm, 1 mm, 10 mm, and 20 mm, highlighting improved performance for moderate to heavy rainfall.
comment: 20 pages, 12 figures, submitted to arXiv under Atmospheric and Oceanic Physics (physics.ao-ph) and Machine Learning (cs.LG)
☆ MEIcoder: Decoding Visual Stimuli from Neural Activity by Leveraging Most Exciting Inputs NeurIPS 2025
Decoding visual stimuli from neural population activity is crucial for understanding the brain and for applications in brain-machine interfaces. However, such biological data is often scarce, particularly in primates or humans, where high-throughput recording techniques, such as two-photon imaging, remain challenging or impossible to apply. This, in turn, poses a challenge for deep learning decoding techniques. To overcome this, we introduce MEIcoder, a biologically informed decoding method that leverages neuron-specific most exciting inputs (MEIs), a structural similarity index measure loss, and adversarial training. MEIcoder achieves state-of-the-art performance in reconstructing visual stimuli from single-cell activity in primary visual cortex (V1), especially excelling on small datasets with fewer recorded neurons. Using ablation studies, we demonstrate that MEIs are the main drivers of the performance, and in scaling experiments, we show that MEIcoder can reconstruct high-fidelity natural-looking images from as few as 1,000-2,500 neurons and less than 1,000 training data points. We also propose a unified benchmark with over 160,000 samples to foster future research. Our results demonstrate the feasibility of reliable decoding in early visual system and provide practical insights for neuroscience and neuroengineering applications.
comment: Accepted to NeurIPS 2025
☆ Reinforcement Learning and Consumption-Savings Behavior
This paper demonstrates how reinforcement learning can explain two puzzling empirical patterns in household consumption behavior during economic downturns. I develop a model where agents use Q-learning with neural network approximation to make consumption-savings decisions under income uncertainty, departing from standard rational expectations assumptions. The model replicates two key findings from recent literature: (1) unemployed households with previously low liquid assets exhibit substantially higher marginal propensities to consume (MPCs) out of stimulus transfers compared to high-asset households (0.50 vs 0.34), even when neither group faces borrowing constraints, consistent with Ganong et al. (2024); and (2) households with more past unemployment experiences maintain persistently lower consumption levels after controlling for current economic conditions, a "scarring" effect documented by Malmendier and Shen (2024). Unlike existing explanations based on belief updating about income risk or ex-ante heterogeneity, the reinforcement learning mechanism generates both higher MPCs and lower consumption levels simultaneously through value function approximation errors that evolve with experience. Simulation results closely match the empirical estimates, suggesting that adaptive learning through reinforcement learning provides a unifying framework for understanding how past experiences shape current consumption behavior beyond what current economic conditions would predict.
comment: 41 pages, 10 figures
☆ Learning to Triage Taint Flows Reported by Dynamic Program Analysis in Node.js Packages
Program analysis tools often produce large volumes of candidate vulnerability reports that require costly manual review, creating a practical challenge: how can security analysts prioritize the reports most likely to be true vulnerabilities? This paper investigates whether machine learning can be applied to prioritizing vulnerabilities reported by program analysis tools. We focus on Node.js packages and collect a benchmark of 1,883 Node.js packages, each containing one reported ACE or ACI vulnerability. We evaluate a variety of machine learning approaches, including classical models, graph neural networks (GNNs), large language models (LLMs), and hybrid models that combine GNN and LLMs, trained on data based on a dynamic program analysis tool's output. The top LLM achieves $F_{1} {=} 0.915$, while the best GNN and classical ML models reaching $F_{1} {=} 0.904$. At a less than 7% false-negative rate, the leading model eliminates 66.9% of benign packages from manual review, taking around 60 ms per package. If the best model is tuned to operate at a precision level of 0.8 (i.e., allowing 20% false positives amongst all warnings), our approach can detect 99.2% of exploitable taint flows while missing only 0.8%, demonstrating strong potential for real-world vulnerability triage.
☆ Amplifying Prominent Representations in Multimodal Learning via Variational Dirichlet Process
Developing effective multimodal fusion approaches has become increasingly essential in many real-world scenarios, such as health care and finance. The key challenge is how to preserve the feature expressiveness in each modality while learning cross-modal interactions. Previous approaches primarily focus on the cross-modal alignment, while over-emphasis on the alignment of marginal distributions of modalities may impose excess regularization and obstruct meaningful representations within each modality. The Dirichlet process (DP) mixture model is a powerful Bayesian non-parametric method that can amplify the most prominent features by its richer-gets-richer property, which allocates increasing weights to them. Inspired by this unique characteristic of DP, we propose a new DP-driven multimodal learning framework that automatically achieves an optimal balance between prominent intra-modal representation learning and cross-modal alignment. Specifically, we assume that each modality follows a mixture of multivariate Gaussian distributions and further adopt DP to calculate the mixture weights for all the components. This paradigm allows DP to dynamically allocate the contributions of features and select the most prominent ones, leveraging its richer-gets-richer property, thus facilitating multimodal feature fusion. Extensive experiments on several multimodal datasets demonstrate the superior performance of our model over other competitors. Ablation analysis further validates the effectiveness of DP in aligning modality distributions and its robustness to changes in key hyperparameters. Code is anonymously available at https://github.com/HKU-MedAI/DPMM.git
comment: Accepted by NeruIPS 2025
☆ Thought Communication in Multiagent Collaboration NeurIPS 2025
Natural language has long enabled human cooperation, but its lossy, ambiguous, and indirect nature limits the potential of collective intelligence. While machines are not subject to these constraints, most LLM-based multi-agent systems still rely solely on natural language, exchanging tokens or their embeddings. To go beyond language, we introduce a new paradigm, thought communication, which enables agents to interact directly mind-to-mind, akin to telepathy. To uncover these latent thoughts in a principled way, we formalize the process as a general latent variable model, where agent states are generated by an unknown function of underlying thoughts. We prove that, in a nonparametric setting without auxiliary information, both shared and private latent thoughts between any pair of agents can be identified. Moreover, the global structure of thought sharing, including which agents share which thoughts and how these relationships are structured, can also be recovered with theoretical guarantees. Guided by the established theory, we develop a framework that extracts latent thoughts from all agents prior to communication and assigns each agent the relevant thoughts, along with their sharing patterns. This paradigm naturally extends beyond LLMs to all modalities, as most observational data arise from hidden generative processes. Experiments on both synthetic and real-world benchmarks validate the theory and demonstrate the collaborative advantages of thought communication. We hope this work illuminates the potential of leveraging the hidden world, as many challenges remain unsolvable through surface-level observation alone, regardless of compute or data scale.
comment: NeurIPS 2025 Spotlight
☆ No-Regret Thompson Sampling for Finite-Horizon Markov Decision Processes with Gaussian Processes NeurIPS
Thompson sampling (TS) is a powerful and widely used strategy for sequential decision-making, with applications ranging from Bayesian optimization to reinforcement learning (RL). Despite its success, the theoretical foundations of TS remain limited, particularly in settings with complex temporal structure such as RL. We address this gap by establishing no-regret guarantees for TS using models with Gaussian marginal distributions. Specifically, we consider TS in episodic RL with joint Gaussian process (GP) priors over rewards and transitions. We prove a regret bound of $\mathcal{\tilde{O}}(\sqrt{KH\Gamma(KH)})$ over $K$ episodes of horizon $H$, where $\Gamma(\cdot)$ captures the complexity of the GP model. Our analysis addresses several challenges, including the non-Gaussian nature of value functions and the recursive structure of Bellman updates, and extends classical tools such as the elliptical potential lemma to multi-output settings. This work advances the understanding of TS in RL and highlights how structural assumptions and model uncertainty shape its performance in finite-horizon Markov Decision Processes.
comment: Appearing in NeurIPS, 2025
☆ Unsupervised Anomaly Prediction with N-BEATS and Graph Neural Network in Multi-variate Semiconductor Process Time Series
Semiconductor manufacturing is an extremely complex and precision-driven process, characterized by thousands of interdependent parameters collected across diverse tools and process steps. Multi-variate time-series analysis has emerged as a critical field for real-time monitoring and fault detection in such environments. However, anomaly prediction in semiconductor fabrication presents several critical challenges, including high dimensionality of sensor data and severe class imbalance due to the rarity of true faults. Furthermore, the complex interdependencies between variables complicate both anomaly prediction and root-cause-analysis. This paper proposes two novel approaches to advance the field from anomaly detection to anomaly prediction, an essential step toward enabling real-time process correction and proactive fault prevention. The proposed anomaly prediction framework contains two main stages: (a) training a forecasting model on a dataset assumed to contain no anomalies, and (b) performing forecast on unseen time series data. The forecast is compared with the forecast of the trained signal. Deviations beyond a predefined threshold are flagged as anomalies. The two approaches differ in the forecasting model employed. The first assumes independence between variables by utilizing the N-BEATS model for univariate time series forecasting. The second lifts this assumption by utilizing a Graph Neural Network (GNN) to capture inter-variable relationships. Both models demonstrate strong forecasting performance up to a horizon of 20 time points and maintain stable anomaly prediction up to 50 time points. The GNN consistently outperforms the N-BEATS model while requiring significantly fewer trainable parameters and lower computational cost. These results position the GNN as promising solution for online anomaly forecasting to be deployed in manufacturing environments.
comment: 17 pages, 27 figures
☆ Optimizing Clinical Fall Risk Prediction: A Data-Driven Integration of EHR Variables with the Johns Hopkins Fall Risk Assessment Tool
In this study we aim to better align fall risk prediction from the Johns Hopkins Fall Risk Assessment Tool (JHFRAT) with additional clinically meaningful measures via a data-driven modelling approach. We conducted a retrospective analysis of 54,209 inpatient admissions from three Johns Hopkins Health System hospitals between March 2022 and October 2023. A total of 20,208 admissions were included as high fall risk encounters, and 13,941 were included as low fall risk encounters. To incorporate clinical knowledge and maintain interpretability, we employed constrained score optimization (CSO) models on JHFRAT assessment data and additional electronic health record (EHR) variables. The model demonstrated significant improvements in predictive performance over the current JHFRAT (CSO AUC-ROC=0.91, JHFRAT AUC-ROC=0.86). The constrained score optimization models performed similarly with and without the EHR variables. Although the benchmark black-box model (XGBoost), improves upon the performance metrics of the knowledge-based constrained logistic regression (AUC-ROC=0.94), the CSO demonstrates more robustness to variations in risk labelling. This evidence-based approach provides a robust foundation for health systems to systematically enhance inpatient fall prevention protocols and patient safety using data-driven optimization techniques, contributing to improved risk assessment and resource allocation in healthcare settings.
comment: 19 pages, 7 figures, 4 tables
☆ Separating the what and how of compositional computation to enable reuse and continual learning
The ability to continually learn, retain and deploy skills to accomplish goals is a key feature of intelligent and efficient behavior. However, the neural mechanisms facilitating the continual learning and flexible (re-)composition of skills remain elusive. Here, we study continual learning and the compositional reuse of learned computations in recurrent neural network (RNN) models using a novel two-system approach: one system that infers what computation to perform, and one that implements how to perform it. We focus on a set of compositional cognitive tasks commonly studied in neuroscience. To construct the what system, we first show that a large family of tasks can be systematically described by a probabilistic generative model, where compositionality stems from a shared underlying vocabulary of discrete task epochs. The shared epoch structure makes these tasks inherently compositional. We first show that this compositionality can be systematically described by a probabilistic generative model. Furthermore, We develop an unsupervised online learning approach that can learn this model on a single-trial basis, building its vocabulary incrementally as it is exposed to new tasks, and inferring the latent epoch structure as a time-varying computational context within a trial. We implement the how system as an RNN whose low-rank components are composed according to the context inferred by the what system. Contextual inference facilitates the creation, learning, and reuse of low-rank RNN components as new tasks are introduced sequentially, enabling continual learning without catastrophic forgetting. Using an example task set, we demonstrate the efficacy and competitive performance of this two-system learning framework, its potential for forward and backward transfer, as well as fast compositional generalization to unseen tasks.
☆ Neural Diversity Regularizes Hallucinations in Small Models
Language models continue to hallucinate despite increases in parameters, compute, and data. We propose neural diversity -- decorrelated parallel representations -- as a principled mechanism that reduces hallucination rates at fixed parameter and data budgets. Inspired by portfolio theory, where uncorrelated assets reduce risk by $\sqrt{P}$, we prove hallucination probability is bounded by representational correlation: $P(H) \leq f(\sigma^2((1-\rho(P))/P + \rho(P)), \mu^2)$, which predicts that language models need an optimal amount of neurodiversity. To validate this, we introduce ND-LoRA (Neural Diversity Low-Rank Adaptation), combining parallel LoRA adapters with Barlow Twins regularization, and demonstrate that ND-LoRA reduces hallucinations by up to 25.6% (and 14.6% on average) without degrading general accuracy. Ablations show LoRA adapters and regularization act synergistically, causal interventions prove neurodiversity as the mediating factor and correlational analyses indicate scale: a 0.1% neural correlation increase is associated with a 3.8% hallucination increase. Finally, task-dependent optimality emerges: different tasks require different amounts of optimal neurodiversity. Together, our results highlight neural diversity as a third axis of scaling -- orthogonal to parameters and data -- to improve the reliability of language models at fixed budgets.
☆ A Scalable, Causal, and Energy Efficient Framework for Neural Decoding with Spiking Neural Networks
Brain-computer interfaces (BCIs) promise to enable vital functions, such as speech and prosthetic control, for individuals with neuromotor impairments. Central to their success are neural decoders, models that map neural activity to intended behavior. Current learning-based decoding approaches fall into two classes: simple, causal models that lack generalization, or complex, non-causal models that generalize and scale offline but struggle in real-time settings. Both face a common challenge, their reliance on power-hungry artificial neural network backbones, which makes integration into real-world, resource-limited systems difficult. Spiking neural networks (SNNs) offer a promising alternative. Because they operate causally these models are suitable for real-time use, and their low energy demands make them ideal for battery-constrained environments. To this end, we introduce Spikachu: a scalable, causal, and energy-efficient neural decoding framework based on SNNs. Our approach processes binned spikes directly by projecting them into a shared latent space, where spiking modules, adapted to the timing of the input, extract relevant features; these latent representations are then integrated and decoded to generate behavioral predictions. We evaluate our approach on 113 recording sessions from 6 non-human primates, totaling 43 hours of recordings. Our method outperforms causal baselines when trained on single sessions using between 2.26 and 418.81 times less energy. Furthermore, we demonstrate that scaling up training to multiple sessions and subjects improves performance and enables few-shot transfer to unseen sessions, subjects, and tasks. Overall, Spikachu introduces a scalable, online-compatible neural decoding framework based on SNNs, whose performance is competitive relative to state-of-the-art models while consuming orders of magnitude less energy.
☆ Efficient Multi-bit Quantization Network Training via Weight Bias Correction and Bit-wise Coreset Sampling
Multi-bit quantization networks enable flexible deployment of deep neural networks by supporting multiple precision levels within a single model. However, existing approaches suffer from significant training overhead as full-dataset updates are repeated for each supported bit-width, resulting in a cost that scales linearly with the number of precisions. Additionally, extra fine-tuning stages are often required to support additional or intermediate precision options, further compounding the overall training burden. To address this issue, we propose two techniques that greatly reduce the training overhead without compromising model utility: (i) Weight bias correction enables shared batch normalization and eliminates the need for fine-tuning by neutralizing quantization-induced bias across bit-widths and aligning activation distributions; and (ii) Bit-wise coreset sampling strategy allows each child model to train on a compact, informative subset selected via gradient-based importance scores by exploiting the implicit knowledge transfer phenomenon. Experiments on CIFAR-10/100, TinyImageNet, and ImageNet-1K with both ResNet and ViT architectures demonstrate that our method achieves competitive or superior accuracy while reducing training time up to 7.88x. Our code is released at https://github.com/a2jinhee/EMQNet_jk.
☆ GRACE: GRaph-based Addiction Care prEdiction
Determining the appropriate locus of care for addiction patients is one of the most critical clinical decisions that affects patient treatment outcomes and effective use of resources. With a lack of sufficient specialized treatment resources, such as inpatient beds or staff, there is an unmet need to develop an automated framework for the same. Current decision-making approaches suffer from severe class imbalances in addiction datasets. To address this limitation, we propose a novel graph neural network (GRACE) framework that formalizes locus of care prediction as a structured learning problem. Further, we perform extensive feature engineering and propose a new approach of obtaining an unbiased meta-graph to train a GNN to overcome the class imbalance problem. Experimental results in real-world data show an improvement of 11-35% in terms of the F1 score of the minority class over competitive baselines. The codes and note embeddings are available at https://anonymous.4open.science/r/GRACE-F8E1/.
☆ From Masks to Worlds: A Hitchhiker's Guide to World Models
This is not a typical survey of world models; it is a guide for those who want to build worlds. We do not aim to catalog every paper that has ever mentioned a ``world model". Instead, we follow one clear road: from early masked models that unified representation learning across modalities, to unified architectures that share a single paradigm, then to interactive generative models that close the action-perception loop, and finally to memory-augmented systems that sustain consistent worlds over time. We bypass loosely related branches to focus on the core: the generative heart, the interactive loop, and the memory system. We show that this is the most promising path towards true world models.
comment: Github: https://github.com/M-E-AGI-Lab/Awesome-World-Models
☆ Bayesian Jammer Localization with a Hybrid CNN and Path-Loss Mixture of Experts ICASSP
Global Navigation Satellite System (GNSS) signals are vulnerable to jamming, particularly in urban areas where multipath and shadowing distort received power. Previous data-driven approaches achieved reasonable localization but poorly reconstructed the received signal strength (RSS) field due to limited spatial context. We propose a hybrid Bayesian mixture-of-experts framework that fuses a physical path-loss (PL) model and a convolutional neural network (CNN) through log-linear pooling. The PL expert ensures physical consistency, while the CNN leverages building-height maps to capture urban propagation effects. Bayesian inference with Laplace approximation provides posterior uncertainty over both the jammer position and RSS field. Experiments on urban ray-tracing data show that localization accuracy improves and uncertainty decreases with more training points, while uncertainty concentrates near the jammer and along urban canyons where propagation is most sensitive.
comment: 5 pages, 4 figures, Submitted to ICASSPW 2026
☆ Finding the Sweet Spot: Trading Quality, Cost, and Speed During Inference-Time LLM Reflection
As Large Language Models (LLMs) continue to evolve, practitioners face increasing options for enhancing inference-time performance without model retraining, including budget tuning and multi-step techniques like self-reflection. While these methods improve output quality, they create complex trade-offs among accuracy, cost, and latency that remain poorly understood across different domains. This paper systematically compares self-reflection and budget tuning across mathematical reasoning and translation tasks. We evaluate prominent LLMs, including Anthropic Claude, Amazon Nova, and Mistral families, along with other models under varying reflection depths and compute budgets to derive Pareto optimal performance frontiers. Our analysis reveals substantial domain dependent variation in self-reflection effectiveness, with performance gains up to 220\% in mathematical reasoning. We further investigate how reflection round depth and feedback mechanism quality influence performance across model families. To validate our findings in a real-world setting, we deploy a self-reflection enhanced marketing content localisation system at Lounge by Zalando, where it shows market-dependent effectiveness, reinforcing the importance of domain specific evaluation when deploying these techniques. Our results provide actionable guidance for selecting optimal inference strategies given specific domains and resource constraints. We open source our self-reflection implementation for reproducibility at https://github.com/aws-samples/sample-genai-reflection-for-bedrock.
☆ xTime: Extreme Event Prediction with Hierarchical Knowledge Distillation and Expert Fusion
Extreme events frequently occur in real-world time series and often carry significant practical implications. In domains such as climate and healthcare, these events, such as floods, heatwaves, or acute medical episodes, can lead to serious consequences. Accurate forecasting of such events is therefore of substantial importance. Most existing time series forecasting models are optimized for overall performance within the prediction window, but often struggle to accurately predict extreme events, such as high temperatures or heart rate spikes. The main challenges are data imbalance and the neglect of valuable information contained in intermediate events that precede extreme events. In this paper, we propose xTime, a novel framework for extreme event forecasting in time series. xTime leverages knowledge distillation to transfer information from models trained on lower-rarity events, thereby improving prediction performance on rarer ones. In addition, we introduce a mixture of experts (MoE) mechanism that dynamically selects and fuses outputs from expert models across different rarity levels, which further improves the forecasting performance for extreme events. Experiments on multiple datasets show that xTime achieves consistent improvements, with forecasting accuracy on extreme events improving from 3% to 78%.
☆ Connecting Jensen-Shannon and Kullback-Leibler Divergences: A New Bound for Representation Learning NeurIPS 2025
Mutual Information (MI) is a fundamental measure of statistical dependence widely used in representation learning. While direct optimization of MI via its definition as a Kullback-Leibler divergence (KLD) is often intractable, many recent methods have instead maximized alternative dependence measures, most notably, the Jensen-Shannon divergence (JSD) between joint and product of marginal distributions via discriminative losses. However, the connection between these surrogate objectives and MI remains poorly understood. In this work, we bridge this gap by deriving a new, tight, and tractable lower bound on KLD as a function of JSD in the general case. By specializing this bound to joint and marginal distributions, we demonstrate that maximizing the JSD-based information increases a guaranteed lower bound on mutual information. Furthermore, we revisit the practical implementation of JSD-based objectives and observe that minimizing the cross-entropy loss of a binary classifier trained to distinguish joint from marginal pairs recovers a known variational lower bound on the JSD. Extensive experiments demonstrate that our lower bound is tight when applied to MI estimation. We compared our lower bound to state-of-the-art neural estimators of variational lower bound across a range of established reference scenarios. Our lower bound estimator consistently provides a stable, low-variance estimate of a tight lower bound on MI. We also demonstrate its practical usefulness in the context of the Information Bottleneck framework. Taken together, our results provide new theoretical justifications and strong empirical evidence for using discriminative learning in MI-based representation learning.
comment: Accepted at NeurIPS 2025. Code available at https://github.com/ReubenDo/JSDlowerbound/
☆ Attention Enhanced Entity Recommendation for Intelligent Monitoring in Cloud Systems
In this paper, we present DiRecGNN, an attention-enhanced entity recommendation framework for monitoring cloud services at Microsoft. We provide insights on the usefulness of this feature as perceived by the cloud service owners and lessons learned from deployment. Specifically, we introduce the problem of recommending the optimal subset of attributes (dimensions) that should be tracked by an automated watchdog (monitor) for cloud services. To begin, we construct the monitor heterogeneous graph at production-scale. The interaction dynamics of these entities are often characterized by limited structural and engagement information, resulting in inferior performance of state-of-the-art approaches. Moreover, traditional methods fail to capture the dependencies between entities spanning a long range due to their homophilic nature. Therefore, we propose an attention-enhanced entity ranking model inspired by transformer architectures. Our model utilizes a multi-head attention mechanism to focus on heterogeneous neighbors and their attributes, and further attends to paths sampled using random walks to capture long-range dependencies. We also employ multi-faceted loss functions to optimize for relevant recommendations while respecting the inherent sparsity of the data. Empirical evaluations demonstrate significant improvements over existing methods, with our model achieving a 43.1% increase in MRR. Furthermore, product teams who consumed these features perceive the feature as useful and rated it 4.5 out of 5.
☆ Large Multimodal Models-Empowered Task-Oriented Autonomous Communications: Design Methodology and Implementation Challenges
Large language models (LLMs) and large multimodal models (LMMs) have achieved unprecedented breakthrough, showcasing remarkable capabilities in natural language understanding, generation, and complex reasoning. This transformative potential has positioned them as key enablers for 6G autonomous communications among machines, vehicles, and humanoids. In this article, we provide an overview of task-oriented autonomous communications with LLMs/LMMs, focusing on multimodal sensing integration, adaptive reconfiguration, and prompt/fine-tuning strategies for wireless tasks. We demonstrate the framework through three case studies: LMM-based traffic control, LLM-based robot scheduling, and LMM-based environment-aware channel estimation. From experimental results, we show that the proposed LLM/LMM-aided autonomous systems significantly outperform conventional and discriminative deep learning (DL) model-based techniques, maintaining robustness under dynamic objectives, varying input parameters, and heterogeneous multimodal conditions where conventional static optimization degrades.
☆ Equitable Survival Prediction: A Fairness-Aware Survival Modeling (FASM) Approach
As machine learning models become increasingly integrated into healthcare, structural inequities and social biases embedded in clinical data can be perpetuated or even amplified by data-driven models. In survival analysis, censoring and time dynamics can further add complexity to fair model development. Additionally, algorithmic fairness approaches often overlook disparities in cross-group rankings, e.g., high-risk Black patients may be ranked below lower-risk White patients who do not experience the event of mortality. Such misranking can reinforce biological essentialism and undermine equitable care. We propose a Fairness-Aware Survival Modeling (FASM), designed to mitigate algorithmic bias regarding both intra-group and cross-group risk rankings over time. Using breast cancer prognosis as a representative case and applying FASM to SEER breast cancer data, we show that FASM substantially improves fairness while preserving discrimination performance comparable to fairness-unaware survival models. Time-stratified evaluations show that FASM maintains stable fairness over a 10-year horizon, with the greatest improvements observed during the mid-term of follow-up. Our approach enables the development of survival models that prioritize both accuracy and equity in clinical decision-making, advancing fairness as a core principle in clinical care.
☆ H-SPLID: HSIC-based Saliency Preserving Latent Information Decomposition NeurIPS 2025
We introduce H-SPLID, a novel algorithm for learning salient feature representations through the explicit decomposition of salient and non-salient features into separate spaces. We show that H-SPLID promotes learning low-dimensional, task-relevant features. We prove that the expected prediction deviation under input perturbations is upper-bounded by the dimension of the salient subspace and the Hilbert-Schmidt Independence Criterion (HSIC) between inputs and representations. This establishes a link between robustness and latent representation compression in terms of the dimensionality and information preserved. Empirical evaluations on image classification tasks show that models trained with H-SPLID primarily rely on salient input components, as indicated by reduced sensitivity to perturbations affecting non-salient features, such as image backgrounds. Our code is available at https://github.com/neu-spiral/H-SPLID.
comment: Accepted at NeurIPS 2025
☆ On Optimal Hyperparameters for Differentially Private Deep Transfer Learning
Differentially private (DP) transfer learning, i.e., fine-tuning a pretrained model on private data, is the current state-of-the-art approach for training large models under privacy constraints. We focus on two key hyperparameters in this setting: the clipping bound $C$ and batch size $B$. We show a clear mismatch between the current theoretical understanding of how to choose an optimal $C$ (stronger privacy requires smaller $C$) and empirical outcomes (larger $C$ performs better under strong privacy), caused by changes in the gradient distributions. Assuming a limited compute budget (fixed epochs), we demonstrate that the existing heuristics for tuning $B$ do not work, while cumulative DP noise better explains whether smaller or larger batches perform better. We also highlight how the common practice of using a single $(C,B)$ setting across tasks can lead to suboptimal performance. We find that performance drops especially when moving between loose and tight privacy and between plentiful and limited compute, which we explain by analyzing clipping as a form of gradient re-weighting and examining cumulative DP noise.
comment: 25 pages, 30 figures
☆ MS-BART: Unified Modeling of Mass Spectra and Molecules for Structure Elucidation NeurIPS 2025
Mass spectrometry (MS) plays a critical role in molecular identification, significantly advancing scientific discovery. However, structure elucidation from MS data remains challenging due to the scarcity of annotated spectra. While large-scale pretraining has proven effective in addressing data scarcity in other domains, applying this paradigm to mass spectrometry is hindered by the complexity and heterogeneity of raw spectral signals. To address this, we propose MS-BART, a unified modeling framework that maps mass spectra and molecular structures into a shared token vocabulary, enabling cross-modal learning through large-scale pretraining on reliably computed fingerprint-molecule datasets. Multi-task pretraining objectives further enhance MS-BART's generalization by jointly optimizing denoising and translation task. The pretrained model is subsequently transferred to experimental spectra through finetuning on fingerprint predictions generated with MIST, a pre-trained spectral inference model, thereby enhancing robustness to real-world spectral variability. While finetuning alleviates the distributional difference, MS-BART still suffers molecular hallucination and requires further alignment. We therefore introduce a chemical feedback mechanism that guides the model toward generating molecules closer to the reference structure. Extensive evaluations demonstrate that MS-BART achieves SOTA performance across 5/12 key metrics on MassSpecGym and NPLIB1 and is faster by one order of magnitude than competing diffusion-based methods, while comprehensive ablation studies systematically validate the model's effectiveness and robustness.
comment: NeurIPS 2025, We provide the data and code at https://github.com/OpenDFM/MS-BART
☆ Black Box Absorption: LLMs Undermining Innovative Ideas
Large Language Models are increasingly adopted as critical tools for accelerating innovation. This paper identifies and formalizes a systemic risk inherent in this paradigm: \textbf{Black Box Absorption}. We define this as the process by which the opaque internal architectures of LLM platforms, often operated by large-scale service providers, can internalize, generalize, and repurpose novel concepts contributed by users during interaction. This mechanism threatens to undermine the foundational principles of innovation economics by creating severe informational and structural asymmetries between individual creators and platform operators, thereby jeopardizing the long-term sustainability of the innovation ecosystem. To analyze this challenge, we introduce two core concepts: the idea unit, representing the transportable functional logic of an innovation, and idea safety, a multidimensional standard for its protection. This paper analyzes the mechanisms of absorption and proposes a concrete governance and engineering agenda to mitigate these risks, ensuring that creator contributions remain traceable, controllable, and equitable.
☆ PSO-XAI: A PSO-Enhanced Explainable AI Framework for Reliable Breast Cancer Detection
Breast cancer is considered the most critical and frequently diagnosed cancer in women worldwide, leading to an increase in cancer-related mortality. Early and accurate detection is crucial as it can help mitigate possible threats while improving survival rates. In terms of prediction, conventional diagnostic methods are often limited by variability, cost, and, most importantly, risk of misdiagnosis. To address these challenges, machine learning (ML) has emerged as a powerful tool for computer-aided diagnosis, with feature selection playing a vital role in improving model performance and interpretability. This research study proposes an integrated framework that incorporates customized Particle Swarm Optimization (PSO) for feature selection. This framework has been evaluated on a comprehensive set of 29 different models, spanning classical classifiers, ensemble techniques, neural networks, probabilistic algorithms, and instance-based algorithms. To ensure interpretability and clinical relevance, the study uses cross-validation in conjunction with explainable AI methods. Experimental evaluation showed that the proposed approach achieved a superior score of 99.1\% across all performance metrics, including accuracy and precision, while effectively reducing dimensionality and providing transparent, model-agnostic explanations. The results highlight the potential of combining swarm intelligence with explainable ML for robust, trustworthy, and clinically meaningful breast cancer diagnosis.
☆ Practical Code RAG at Scale: Task-Aware Retrieval Design Choices under Compute Budgets
We study retrieval design for code-focused generation tasks under realistic compute budgets. Using two complementary tasks from Long Code Arena -- code completion and bug localization -- we systematically compare retrieval configurations across various context window sizes along three axes: (i) chunking strategy, (ii) similarity scoring, and (iii) splitting granularity. (1) For PL-PL, sparse BM25 with word-level splitting is the most effective and practical, significantly outperforming dense alternatives while being an order of magnitude faster. (2) For NL-PL, proprietary dense encoders (Voyager-3 family) consistently beat sparse retrievers, however requiring 100x larger latency. (3) Optimal chunk size scales with available context: 32-64 line chunks work best at small budgets, and whole-file retrieval becomes competitive at 16000 tokens. (4) Simple line-based chunking matches syntax-aware splitting across budgets. (5) Retrieval latency varies by up to 200x across configurations; BPE-based splitting is needlessly slow, and BM25 + word splitting offers the best quality-latency trade-off. Thus, we provide evidence-based recommendations for implementing effective code-oriented RAG systems based on task requirements, model constraints, and computational efficiency.
☆ Convergence Analysis of SGD under Expected Smoothness AISTATS 2026
Stochastic gradient descent (SGD) is the workhorse of large-scale learning, yet classical analyses rely on assumptions that can be either too strong (bounded variance) or too coarse (uniform noise). The expected smoothness (ES) condition has emerged as a flexible alternative that ties the second moment of stochastic gradients to the objective value and the full gradient. This paper presents a self-contained convergence analysis of SGD under ES. We (i) refine ES with interpretations and sampling-dependent constants; (ii) derive bounds of the expectation of squared full gradient norm; and (iii) prove $O(1/K)$ rates with explicit residual errors for various step-size schedules. All proofs are given in full detail in the appendix. Our treatment unifies and extends recent threads (Khaled and Richt\'arik, 2020; Umeda and Iiduka, 2025).
comment: 23 pages, 11 figures, AISTATS 2026
☆ Generalizable Reasoning through Compositional Energy Minimization
Generalization is a key challenge in machine learning, specifically in reasoning tasks, where models are expected to solve problems more complex than those encountered during training. Existing approaches typically train reasoning models in an end-to-end fashion, directly mapping input instances to solutions. While this allows models to learn useful heuristics from data, it often results in limited generalization beyond the training distribution. In this work, we propose a novel approach to reasoning generalization by learning energy landscapes over the solution spaces of smaller, more tractable subproblems. At test time, we construct a global energy landscape for a given problem by combining the energy functions of multiple subproblems. This compositional approach enables the incorporation of additional constraints during inference, allowing the construction of energy landscapes for problems of increasing difficulty. To improve the sample quality from this newly constructed energy landscape, we introduce Parallel Energy Minimization (PEM). We evaluate our approach on a wide set of reasoning problems. Our method outperforms existing state-of-the-art methods, demonstrating its ability to generalize to larger and more complex problems. Project website can be found at: https://alexoarga.github.io/compositional_reasoning/
☆ Strategic Costs of Perceived Bias in Fair Selection NeurIPS 2025
Meritocratic systems, from admissions to hiring, aim to impartially reward skill and effort. Yet persistent disparities across race, gender, and class challenge this ideal. Some attribute these gaps to structural inequality; others to individual choice. We develop a game-theoretic model in which candidates from different socioeconomic groups differ in their perceived post-selection value--shaped by social context and, increasingly, by AI-powered tools offering personalized career or salary guidance. Each candidate strategically chooses effort, balancing its cost against expected reward; effort translates into observable merit, and selection is based solely on merit. We characterize the unique Nash equilibrium in the large-agent limit and derive explicit formulas showing how valuation disparities and institutional selectivity jointly determine effort, representation, social welfare, and utility. We further propose a cost-sensitive optimization framework that quantifies how modifying selectivity or perceived value can reduce disparities without compromising institutional goals. Our analysis reveals a perception-driven bias: when perceptions of post-selection value differ across groups, these differences translate into rational differences in effort, propagating disparities backward through otherwise "fair" selection processes. While the model is static, it captures one stage of a broader feedback cycle linking perceptions, incentives, and outcome--bridging rational-choice and structural explanations of inequality by showing how techno-social environments shape individual incentives in meritocratic systems.
comment: The paper has been accepted by NeurIPS 2025
☆ Diffusion Autoencoders with Perceivers for Long, Irregular and Multimodal Astronomical Sequences
Self-supervised learning has become a central strategy for representation learning, but the majority of architectures used for encoding data have only been validated on regularly-sampled inputs such as images, audios. and videos. In many scientific domains, data instead arrive as long, irregular, and multimodal sequences. To extract semantic information from these data, we introduce the Diffusion Autoencoder with Perceivers (daep). daep tokenizes heterogeneous measurements, compresses them with a Perceiver encoder, and reconstructs them with a Perceiver-IO diffusion decoder, enabling scalable learning in diverse data settings. To benchmark the daep architecture, we adapt the masked autoencoder to a Perceiver encoder/decoder design, and establish a strong baseline (maep) in the same architectural family as daep. Across diverse spectroscopic and photometric astronomical datasets, daep achieves lower reconstruction errors, produces more discriminative latent spaces, and better preserves fine-scale structure than both VAE and maep baselines. These results establish daep as an effective framework for scientific domains where data arrives as irregular, heterogeneous sequences.
☆ Embedding the MLOps Lifecycle into OT Reference Models
Machine Learning Operations (MLOps) practices are increas- ingly adopted in industrial settings, yet their integration with Opera- tional Technology (OT) systems presents significant challenges. This pa- per analyzes the fundamental obstacles in combining MLOps with OT en- vironments and proposes a systematic approach to embed MLOps prac- tices into established OT reference models. We evaluate the suitability of the Reference Architectural Model for Industry 4.0 (RAMI 4.0) and the International Society of Automation Standard 95 (ISA-95) for MLOps integration and present a detailed mapping of MLOps lifecycle compo- nents to RAMI 4.0 exemplified by a real-world use case. Our findings demonstrate that while standard MLOps practices cannot be directly transplanted to OT environments, structured adaptation using existing reference models can provide a pathway for successful integration.
☆ Structural Invariance Matters: Rethinking Graph Rewiring through Graph Metrics
Graph rewiring has emerged as a key technique to alleviate over-squashing in Graph Neural Networks (GNNs) and Graph Transformers by modifying the graph topology to improve information flow. While effective, rewiring inherently alters the graph's structure, raising the risk of distorting important topology-dependent signals. Yet, despite the growing use of rewiring, little is known about which structural properties must be preserved to ensure both performance gains and structural fidelity. In this work, we provide the first systematic analysis of how rewiring affects a range of graph structural metrics, and how these changes relate to downstream task performance. We study seven diverse rewiring strategies and correlate changes in local and global graph properties with node classification accuracy. Our results reveal a consistent pattern: successful rewiring methods tend to preserve local structure while allowing for flexibility in global connectivity. These findings offer new insights into the design of effective rewiring strategies, bridging the gap between graph theory and practical GNN optimization.
comment: 21 pages, 5 figures, conference
☆ A Unified Framework for Zero-Shot Reinforcement Learning
Zero-shot reinforcement learning (RL) has emerged as a setting for developing general agents in an unsupervised manner, capable of solving downstream tasks without additional training or planning at test-time. Unlike conventional RL, which optimizes policies for a fixed reward, zero-shot RL requires agents to encode representations rich enough to support immediate adaptation to any objective, drawing parallels to vision and language foundation models. Despite growing interest, the field lacks a common analytical lens. We present the first unified framework for zero-shot RL. Our formulation introduces a consistent notation and taxonomy that organizes existing approaches and allows direct comparison between them. Central to our framework is the classification of algorithms into two families: direct representations, which learn end-to-end mappings from rewards to policies, and compositional representations, which decompose the representation leveraging the substructure of the value function. Within this framework, we highlight shared principles and key differences across methods, and we derive an extended bound for successor-feature methods, offering a new perspective on their performance in the zero-shot regime. By consolidating existing work under a common lens, our framework provides a principled foundation for future research in zero-shot RL and outlines a clear path toward developing more general agents.
☆ SheafAlign: A Sheaf-theoretic Framework for Decentralized Multimodal Alignment
Conventional multimodal alignment methods assume mutual redundancy across all modalities, an assumption that fails in real-world distributed scenarios. We propose SheafAlign, a sheaf-theoretic framework for decentralized multimodal alignment that replaces single-space alignment with multiple comparison spaces. This approach models pairwise modality relations through sheaf structures and leverages decentralized contrastive learning-based objectives for training. SheafAlign overcomes the limitations of prior methods by not requiring mutual redundancy among all modalities, preserving both shared and unique information. Experiments on multimodal sensing datasets show superior zero-shot generalization, cross-modal alignment, and robustness to missing modalities, with 50\% lower communication cost than state-of-the-art baselines.
comment: 5 pages, 3 figures, 1 table
☆ Blur2seq: Blind Deblurring and Camera Trajectory Estimation from a Single Camera Motion-blurred Image
Motion blur caused by camera shake, particularly under large or rotational movements, remains a major challenge in image restoration. We propose a deep learning framework that jointly estimates the latent sharp image and the underlying camera motion trajectory from a single blurry image. Our method leverages the Projective Motion Blur Model (PMBM), implemented efficiently using a differentiable blur creation module compatible with modern networks. A neural network predicts a full 3D rotation trajectory, which guides a model-based restoration network trained end-to-end. This modular architecture provides interpretability by revealing the camera motion that produced the blur. Moreover, this trajectory enables the reconstruction of the sequence of sharp images that generated the observed blurry image. To further refine results, we optimize the trajectory post-inference via a reblur loss, improving consistency between the blurry input and the restored output. Extensive experiments show that our method achieves state-of-the-art performance on both synthetic and real datasets, particularly in cases with severe or spatially variant blur, where end-to-end deblurring networks struggle. Code and trained models are available at https://github.com/GuillermoCarbajal/Blur2Seq/
☆ Adversary-Aware Private Inference over Wireless Channels
AI-based sensing at wireless edge devices has the potential to significantly enhance Artificial Intelligence (AI) applications, particularly for vision and perception tasks such as in autonomous driving and environmental monitoring. AI systems rely both on efficient model learning and inference. In the inference phase, features extracted from sensing data are utilized for prediction tasks (e.g., classification or regression). In edge networks, sensors and model servers are often not co-located, which requires communication of features. As sensitive personal data can be reconstructed by an adversary, transformation of the features are required to reduce the risk of privacy violations. While differential privacy mechanisms provide a means of protecting finite datasets, protection of individual features has not been addressed. In this paper, we propose a novel framework for privacy-preserving AI-based sensing, where devices apply transformations of extracted features before transmission to a model server.
☆ Decoding the Ear: A Framework for Objectifying Expressiveness from Human Preference Through Efficient Alignment ICASSP 2026
Recent speech-to-speech (S2S) models generate intelligible speech but still lack natural expressiveness, largely due to the absence of a reliable evaluation metric. Existing approaches, such as subjective MOS ratings, low-level acoustic features, and emotion recognition are costly, limited, or incomplete. To address this, we present DeEAR (Decoding the Expressive Preference of eAR), a framework that converts human preference for speech expressiveness into an objective score. Grounded in phonetics and psychology, DeEAR evaluates speech across three dimensions: Emotion, Prosody, and Spontaneity, achieving strong alignment with human perception (Spearman's Rank Correlation Coefficient, SRCC = 0.86) using fewer than 500 annotated samples. Beyond reliable scoring, DeEAR enables fair benchmarking and targeted data curation. It not only distinguishes expressiveness gaps across S2S models but also selects 14K expressive utterances to form ExpressiveSpeech, which improves the expressive score (from 2.0 to 23.4 on a 100-point scale) of S2S models. Demos and codes are available at https://github.com/FreedomIntelligence/ExpressiveSpeech
comment: Submitted to ICASSP 2026. Demos and codes are available at https://github.com/FreedomIntelligence/ExpressiveSpeech
☆ Hurdle-IMDL: An Imbalanced Learning Framework for Infrared Rainfall Retrieval
Artificial intelligence has advanced quantitative remote sensing, yet its effectiveness is constrained by imbalanced label distribution. This imbalance leads conventionally trained models to favor common samples, which in turn degrades retrieval performance for rare ones. Rainfall retrieval exemplifies this issue, with performance particularly compromised for heavy rain. This study proposes Hurdle-Inversion Model Debiasing Learning (IMDL) framework. Following a divide-and-conquer strategy, imbalance in the rain distribution is decomposed into two components: zero inflation, defined by the predominance of non-rain samples; and long tail, defined by the disproportionate abundance of light-rain samples relative to heavy-rain samples. A hurdle model is adopted to handle the zero inflation, while IMDL is proposed to address the long tail by transforming the learning object into an unbiased ideal inverse model. Comprehensive evaluation via statistical metrics and case studies investigating rainy weather in eastern China confirms Hurdle-IMDL's superiority over conventional, cost-sensitive, generative, and multi-task learning methods. Its key advancements include effective mitigation of systematic underestimation and a marked improvement in the retrieval of heavy-to-extreme rain. IMDL offers a generalizable approach for addressing imbalance in distributions of environmental variables, enabling enhanced retrieval of rare yet high-impact events.
comment: 26 pages
☆ Bi-CoG: Bi-Consistency-Guided Self-Training for Vision-Language Models
Exploiting unlabeled data through semi-supervised learning (SSL) or leveraging pre-trained models via fine-tuning are two prevailing paradigms for addressing label-scarce scenarios. Recently, growing attention has been given to combining fine-tuning of pre-trained vision-language models (VLMs) with SSL, forming the emerging paradigm of semi-supervised fine-tuning. However, existing methods often suffer from model bias and hyperparameter sensitivity, due to reliance on prediction consistency or pre-defined confidence thresholds. To address these limitations, we propose a simple yet effective plug-and-play methodology named $\underline{\textbf{Bi-Co}}$nsistency-$\underline{\textbf{G}}$uided Self-Training (Bi-CoG), which assigns high-quality and low-bias pseudo-labels, by simultaneously exploiting inter-model and intra-model consistency, along with an error-aware dynamic pseudo-label assignment strategy. Both theoretical analysis and extensive experiments over 14 datasets demonstrate the effectiveness of Bi-CoG, which consistently and significantly improves the performance of existing methods.
☆ Concentration and excess risk bounds for imbalanced classification with synthetic oversampling
Synthetic oversampling of minority examples using SMOTE and its variants is a leading strategy for addressing imbalanced classification problems. Despite the success of this approach in practice, its theoretical foundations remain underexplored. We develop a theoretical framework to analyze the behavior of SMOTE and related methods when classifiers are trained on synthetic data. We first derive a uniform concentration bound on the discrepancy between the empirical risk over synthetic minority samples and the population risk on the true minority distribution. We then provide a nonparametric excess risk guarantee for kernel-based classifiers trained using such synthetic data. These results lead to practical guidelines for better parameter tuning of both SMOTE and the downstream learning algorithm. Numerical experiments are provided to illustrate and support the theoretical findings
comment: Page 35, including appendix, Figures 12, including appendix
☆ Transferable Black-Box One-Shot Forging of Watermarks via Image Preference Models NeurIPS 2025
Recent years have seen a surge in interest in digital content watermarking techniques, driven by the proliferation of generative models and increased legal pressure. With an ever-growing percentage of AI-generated content available online, watermarking plays an increasingly important role in ensuring content authenticity and attribution at scale. There have been many works assessing the robustness of watermarking to removal attacks, yet, watermark forging, the scenario when a watermark is stolen from genuine content and applied to malicious content, remains underexplored. In this work, we investigate watermark forging in the context of widely used post-hoc image watermarking. Our contributions are as follows. First, we introduce a preference model to assess whether an image is watermarked. The model is trained using a ranking loss on purely procedurally generated images without any need for real watermarks. Second, we demonstrate the model's capability to remove and forge watermarks by optimizing the input image through backpropagation. This technique requires only a single watermarked image and works without knowledge of the watermarking model, making our attack much simpler and more practical than attacks introduced in related work. Third, we evaluate our proposed method on a variety of post-hoc image watermarking models, demonstrating that our approach can effectively forge watermarks, questioning the security of current watermarking approaches. Our code and further resources are publicly available.
comment: NeurIPS 2025
☆ Neural Reasoning for Robust Instance Retrieval in $\mathcal{SHOIQ}$
Concept learning exploits background knowledge in the form of description logic axioms to learn explainable classification models from knowledge bases. Despite recent breakthroughs in neuro-symbolic concept learning, most approaches still cannot be deployed on real-world knowledge bases. This is due to their use of description logic reasoners, which are not robust against inconsistencies nor erroneous data. We address this challenge by presenting a novel neural reasoner dubbed EBR. Our reasoner relies on embeddings to approximate the results of a symbolic reasoner. We show that EBR solely requires retrieving instances for atomic concepts and existential restrictions to retrieve or approximate the set of instances of any concept in the description logic $\mathcal{SHOIQ}$. In our experiments, we compare EBR with state-of-the-art reasoners. Our results suggest that EBR is robust against missing and erroneous data in contrast to existing reasoners.
comment: Accepted as a full research paper at K-CAP 2025
☆ Intransitive Player Dominance and Market Inefficiency in Tennis Forecasting: A Graph Neural Network Approach
Intransitive player dominance, where player A beats B, B beats C, but C beats A, is common in competitive tennis. Yet, there are few known attempts to incorporate it within forecasting methods. We address this problem with a graph neural network approach that explicitly models these intransitive relationships through temporal directed graphs, with players as nodes and their historical match outcomes as directed edges. We find the bookmaker Pinnacle Sports poorly handles matches with high intransitive complexity and posit that our graph-based approach is uniquely positioned to capture relational dynamics in these scenarios. When selectively betting on higher intransitivity matchups with our model (65.7% accuracy, 0.215 Brier Score), we achieve significant positive returns of 3.26% ROI with Kelly staking over 1903 bets, suggesting a market inefficiency in handling intransitive matchups that our approach successfully exploits.
comment: 39 pages, 8 figures
☆ Symbolic Regression and Differentiable Fits in Beyond the Standard Model Physics
We demonstrate the efficacy of symbolic regression (SR) to probe models of particle physics Beyond the Standard Model (BSM), by considering the so-called Constrained Minimal Supersymmetric Standard Model (CMSSM). Like many incarnations of BSM physics this model has a number (four) of arbitrary parameters, which determine the experimental signals, and cosmological observables such as the dark matter relic density. We show that analysis of the phenomenology can be greatly accelerated by using symbolic expressions derived for the observables in terms of the input parameters. Here we focus on the Higgs mass, the cold dark matter relic density, and the contribution to the anomalous magnetic moment of the muon. We find that SR can produce remarkably accurate expressions. Using them we make global fits to derive the posterior probability densities of the CMSSM input parameters which are in good agreement with those performed using conventional methods. Moreover, we demonstrate a major advantage of SR which is the ability to make fits using differentiable methods rather than sampling methods. We also compare the method with neural network (NN) regression. SR produces more globally robust results, while NNs require data that is focussed on the promising regions in order to be equally performant.
comment: 18 pages, 4 figures
☆ MolBridge: Atom-Level Joint Graph Refinement for Robust Drug-Drug Interaction Event Prediction
Drug combinations offer therapeutic benefits but also carry the risk of adverse drug-drug interactions (DDIs), especially under complex molecular structures. Accurate DDI event prediction requires capturing fine-grained inter-drug relationships, which are critical for modeling metabolic mechanisms such as enzyme-mediated competition. However, existing approaches typically rely on isolated drug representations and fail to explicitly model atom-level cross-molecular interactions, limiting their effectiveness across diverse molecular complexities and DDI type distributions. To address these limitations, we propose MolBridge, a novel atom-level joint graph refinement framework for robust DDI event prediction. MolBridge constructs a joint graph that integrates atomic structures of drug pairs, enabling direct modeling of inter-drug associations. A central challenge in such joint graph settings is the potential loss of information caused by over-smoothing when modeling long-range atomic dependencies. To overcome this, we introduce a structure consistency module that iteratively refines node features while preserving the global structural context. This joint design allows MolBridge to effectively learn both local and global interaction outperforms state-of-the-art baselines, achieving superior performance across long-tail and inductive scenarios. patterns, yielding robust representations across both frequent and rare DDI types. Extensive experiments on two benchmark datasets show that MolBridge consistently. These results demonstrate the advantages of fine-grained graph refinement in improving the accuracy, robustness, and mechanistic interpretability of DDI event prediction.This work contributes to Web Mining and Content Analysis by developing graph-based methods for mining and analyzing drug-drug interaction networks.
☆ Explainable Benchmarking through the Lense of Concept Learning
Evaluating competing systems in a comparable way, i.e., benchmarking them, is an undeniable pillar of the scientific method. However, system performance is often summarized via a small number of metrics. The analysis of the evaluation details and the derivation of insights for further development or use remains a tedious manual task with often biased results. Thus, this paper argues for a new type of benchmarking, which is dubbed explainable benchmarking. The aim of explainable benchmarking approaches is to automatically generate explanations for the performance of systems in a benchmark. We provide a first instantiation of this paradigm for knowledge-graph-based question answering systems. We compute explanations by using a novel concept learning approach developed for large knowledge graphs called PruneCEL. Our evaluation shows that PruneCEL outperforms state-of-the-art concept learners on the task of explainable benchmarking by up to 0.55 points F1 measure. A task-driven user study with 41 participants shows that in 80\% of the cases, the majority of participants can accurately predict the behavior of a system based on our explanations. Our code and data are available at https://github.com/dice-group/PruneCEL/tree/K-cap2025
comment: Accepted as full research paper at K-CAP 2025
☆ Learning Decentralized Routing Policies via Graph Attention-based Multi-Agent Reinforcement Learning in Lunar Delay-Tolerant Networks
We present a fully decentralized routing framework for multi-robot exploration missions operating under the constraints of a Lunar Delay-Tolerant Network (LDTN). In this setting, autonomous rovers must relay collected data to a lander under intermittent connectivity and unknown mobility patterns. We formulate the problem as a Partially Observable Markov Decision Problem (POMDP) and propose a Graph Attention-based Multi-Agent Reinforcement Learning (GAT-MARL) policy that performs Centralized Training, Decentralized Execution (CTDE). Our method relies only on local observations and does not require global topology updates or packet replication, unlike classical approaches such as shortest path and controlled flooding-based algorithms. Through Monte Carlo simulations in randomized exploration environments, GAT-MARL provides higher delivery rates, no duplications, and fewer packet losses, and is able to leverage short-term mobility forecasts; offering a scalable solution for future space robotic systems for planetary exploration, as demonstrated by successful generalization to larger rover teams.
☆ Partial Optimality in Cubic Correlation Clustering for General Graphs
The higher-order correlation clustering problem for a graph $G$ and costs associated with cliques of $G$ consists in finding a clustering of $G$ so as to minimize the sum of the costs of those cliques whose nodes all belong to the same cluster. To tackle this NP-hard problem in practice, local search heuristics have been proposed and studied in the context of applications. Here, we establish partial optimality conditions for cubic correlation clustering, i.e., for the special case of at most 3-cliques. We define and implement algorithms for deciding these conditions and examine their effectiveness numerically, on two data sets.
comment: 35 pages
☆ An Empirical Study of Sample Selection Strategies for Large Language Model Repair
Large language models (LLMs) are increasingly deployed in real-world systems, yet they can produce toxic or biased outputs that undermine safety and trust. Post-hoc model repair provides a practical remedy, but the high cost of parameter updates motivates selective use of repair data. Despite extensive prior work on data selection for model training, it remains unclear which sampling criteria are most effective and efficient when applied specifically to behavioral repair of large generative models. Our study presents a systematic analysis of sample prioritization strategies for LLM repair. We evaluate five representative selection methods, including random sampling, K-Center, gradient-norm-based selection(GraNd), stratified coverage (CCS), and a Semantic-Aware Prioritized Sampling (SAPS) approach we proposed. Repair effectiveness and trade-offs are assessed through toxicity reduction, perplexity on WikiText-2 and LAMBADA, and three composite metrics: the Repair Proximity Score (RPS), the Overall Performance Score (OPS), and the Repair Efficiency Score (RES). Experimental results show that SAPS achieves the best balance between detoxification, utility preservation, and efficiency, delivering comparable or superior repair outcomes with substantially less data. Random sampling remains effective for large or robust models, while high-overhead methods such as CCS and GraNd provide limited benefit. The optimal data proportion depends on model scale and repair method, indicating that sample selection should be regarded as a tunable component of repair pipelines. Overall, these findings establish selection-based repair as an efficient and scalable paradigm for maintaining LLM reliability.
☆ Learning Coupled Earth System Dynamics with GraphDOP
Interactions between different components of the Earth System (e.g. ocean, atmosphere, land and cryosphere) are a crucial driver of global weather patterns. Modern Numerical Weather Prediction (NWP) systems typically run separate models of the different components, explicitly coupled across their interfaces to additionally model exchanges between the different components. Accurately representing these coupled interactions remains a major scientific and technical challenge of weather forecasting. GraphDOP is a graph-based machine learning model that learns to forecast weather directly from raw satellite and in-situ observations, without reliance on reanalysis products or traditional physics-based NWP models. GraphDOP simultaneously embeds information from diverse observation sources spanning the full Earth system into a shared latent space. This enables predictions that implicitly capture cross-domain interactions in a single model without the need for any explicit coupling. Here we present a selection of case studies which illustrate the capability of GraphDOP to forecast events where coupled processes play a particularly key role. These include rapid sea-ice freezing in the Arctic, mixing-induced ocean surface cooling during Hurricane Ian and the severe European heat wave of 2022. The results suggest that learning directly from Earth System observations can successfully characterise and propagate cross-component interactions, offering a promising path towards physically consistent end-to-end data-driven Earth System prediction with a single model.
☆ Addressing Mark Imbalance in Integration-free Neural Marked Temporal Point Processes NeurIPS 2025
Marked Temporal Point Process (MTPP) has been well studied to model the event distribution in marked event streams, which can be used to predict the mark and arrival time of the next event. However, existing studies overlook that the distribution of event marks is highly imbalanced in many real-world applications, with some marks being frequent but others rare. The imbalance poses a significant challenge to the performance of the next event prediction, especially for events of rare marks. To address this issue, we propose a thresholding method, which learns thresholds to tune the mark probability normalized by the mark's prior probability to optimize mark prediction, rather than predicting the mark directly based on the mark probability as in existing studies. In conjunction with this method, we predict the mark first and then the time. In particular, we develop a novel neural MTPP model to support effective time sampling and estimation of mark probability without computationally expensive numerical improper integration. Extensive experiments on real-world datasets demonstrate the superior performance of our solution against various baselines for the next event mark and time prediction. The code is available at https://github.com/undes1red/IFNMTPP.
comment: NeurIPS 2025 poster
☆ Why DPO is a Misspecified Estimator and How to Fix It
Direct alignment algorithms such as Direct Preference Optimization (DPO) fine-tune models based on preference data, using only supervised learning instead of two-stage reinforcement learning with human feedback (RLHF). We show that DPO encodes a statistical estimation problem over reward functions induced by a parametric policy class. When the true reward function that generates preferences cannot be realized via the policy class, DPO becomes misspecified, resulting in failure modes such as preference order reversal, worsening of policy reward, and high sensitivity to the input preference data distribution. On the other hand, we study the local behavior of two-stage RLHF for a parametric class and relate it to a natural gradient step in policy space. Our fine-grained geometric characterization allows us to propose AuxDPO, which introduces additional auxiliary variables in the DPO loss function to help move towards the RLHF solution in a principled manner and mitigate the misspecification in DPO. We empirically demonstrate the superior performance of AuxDPO on didactic bandit settings as well as LLM alignment tasks.
☆ Balancing Specialization and Centralization: A Multi-Agent Reinforcement Learning Benchmark for Sequential Industrial Control
Autonomous control of multi-stage industrial processes requires both local specialization and global coordination. Reinforcement learning (RL) offers a promising approach, but its industrial adoption remains limited due to challenges such as reward design, modularity, and action space management. Many academic benchmarks differ markedly from industrial control problems, limiting their transferability to real-world applications. This study introduces an enhanced industry-inspired benchmark environment that combines tasks from two existing benchmarks, SortingEnv and ContainerGym, into a sequential recycling scenario with sorting and pressing operations. We evaluate two control strategies: a modular architecture with specialized agents and a monolithic agent governing the full system, while also analyzing the impact of action masking. Our experiments show that without action masking, agents struggle to learn effective policies, with the modular architecture performing better. When action masking is applied, both architectures improve substantially, and the performance gap narrows considerably. These results highlight the decisive role of action space constraints and suggest that the advantages of specialization diminish as action complexity is reduced. The proposed benchmark thus provides a valuable testbed for exploring practical and robust multi-agent RL solutions in industrial automation, while contributing to the ongoing debate on centralization versus specialization.
comment: Preprint (submitted version) to be presented at the 13th International Conference on Industrial Engineering and Applications (ICIEA-EU), Milan, 2026. The final Version of Record will appear in the official conference proceedings
☆ PointMapPolicy: Structured Point Cloud Processing for Multi-Modal Imitation Learning
Robotic manipulation systems benefit from complementary sensing modalities, where each provides unique environmental information. Point clouds capture detailed geometric structure, while RGB images provide rich semantic context. Current point cloud methods struggle to capture fine-grained detail, especially for complex tasks, which RGB methods lack geometric awareness, which hinders their precision and generalization. We introduce PointMapPolicy, a novel approach that conditions diffusion policies on structured grids of points without downsampling. The resulting data type makes it easier to extract shape and spatial relationships from observations, and can be transformed between reference frames. Yet due to their structure in a regular grid, we enable the use of established computer vision techniques directly to 3D data. Using xLSTM as a backbone, our model efficiently fuses the point maps with RGB data for enhanced multi-modal perception. Through extensive experiments on the RoboCasa and CALVIN benchmarks and real robot evaluations, we demonstrate that our method achieves state-of-the-art performance across diverse manipulation tasks. The overview and demos are available on our project page: https://point-map.github.io/Point-Map/
☆ Relative-Based Scaling Law for Neural Language Models
Scaling laws aim to accurately predict model performance across different scales. Existing scaling-law studies almost exclusively rely on cross-entropy as the evaluation metric. However, cross-entropy provides only a partial view of performance: it measures the absolute probability assigned to the correct token, but ignores the relative ordering between correct and incorrect tokens. Yet, relative ordering is crucial for language models, such as in greedy-sampling scenario. To address this limitation, we investigate scaling from the perspective of relative ordering. We first propose the Relative-Based Probability (RBP) metric, which quantifies the probability that the correct token is ranked among the top predictions. Building on this metric, we establish the Relative-Based Scaling Law, which characterizes how RBP improves with increasing model size. Through extensive experiments on four datasets and four model families spanning five orders of magnitude, we demonstrate the robustness and accuracy of this law. Finally, we illustrate the broad application of this law with two examples, namely providing a deeper explanation of emergence phenomena and facilitating finding fundamental theories of scaling laws. In summary, the Relative-Based Scaling Law complements the cross-entropy perspective and contributes to a more complete understanding of scaling large language models. Thus, it offers valuable insights for both practical development and theoretical exploration.
☆ Hierarchical Time Series Forecasting with Robust Reconciliation
This paper focuses on forecasting hierarchical time-series data, where each higher-level observation equals the sum of its corresponding lower-level time series. In such contexts, the forecast values should be coherent, meaning that the forecast value of each parent series exactly matches the sum of the forecast values of its child series. Existing hierarchical forecasting methods typically generate base forecasts independently for each series and then apply a reconciliation procedure to adjust them so that the resulting forecast values are coherent across the hierarchy. These methods generally derive an optimal reconciliation, using a covariance matrix of the forecast error. In practice, however, the true covariance matrix is unknown and has to be estimated from finite samples in advance. This gap between the true and estimated covariance matrix may degrade forecast performance. To address this issue, we propose a robust optimization framework for hierarchical reconciliation that accounts for uncertainty in the estimated covariance matrix. We first introduce an uncertainty set for the estimated covariance matrix and formulate a reconciliation problem that minimizes the worst-case expected squared error over this uncertainty set. We show that our problem can be cast as a semidefinite optimization problem. Numerical experiments demonstrate that the proposed robust reconciliation method achieved better forecast performance than existing hierarchical forecasting methods, which indicates the effectiveness of integrating uncertainty into the reconciliation process.
☆ Testing Most Influential Sets ICLR
Small subsets of data with disproportionate influence on model outcomes can have dramatic impacts on conclusions, with a few data points sometimes overturning key findings. While recent work has developed methods to identify these \emph{most influential sets}, no formal theory exists to determine when their influence reflects genuine problems rather than natural sampling variation. We address this gap by developing a principled framework for assessing the statistical significance of most influential sets. Our theoretical results characterize the extreme value distributions of maximal influence and enable rigorous hypothesis tests for excessive influence, replacing current ad-hoc sensitivity checks. We demonstrate the practical value of our approach through applications across economics, biology, and machine learning benchmarks.
comment: 9 pages, 1 figure, submitted to ICLR
☆ Ask a Strong LLM Judge when Your Reward Model is Uncertain NeurIPS 2025
Reward model (RM) plays a pivotal role in reinforcement learning with human feedback (RLHF) for aligning large language models (LLMs). However, classical RMs trained on human preferences are vulnerable to reward hacking and generalize poorly to out-of-distribution (OOD) inputs. By contrast, strong LLM judges equipped with reasoning capabilities demonstrate superior generalization, even without additional training, but incur significantly higher inference costs, limiting their applicability in online RLHF. In this work, we propose an uncertainty-based routing framework that efficiently complements a fast RM with a strong but costly LLM judge. Our approach formulates advantage estimation in policy gradient (PG) methods as pairwise preference classification, enabling principled uncertainty quantification to guide routing. Uncertain pairs are forwarded to the LLM judge, while confident ones are evaluated by the RM. Experiments on RM benchmarks demonstrate that our uncertainty-based routing strategy significantly outperforms random judge calling at the same cost, and downstream alignment results showcase its effectiveness in improving online RLHF.
comment: NeurIPS 2025, 18 pages
☆ A Transformer Inspired AI-based MIMO receiver
We present AttDet, a Transformer-inspired MIMO (Multiple Input Multiple Output) detection method that treats each transmit layer as a token and learns inter-stream interference via a lightweight self-attention mechanism. Queries and keys are derived directly from the estimated channel matrix, so attention scores quantify channel correlation. Values are initialized by matched-filter outputs and iteratively refined. The AttDet design combines model-based interpretability with data-driven flexibility. We demonstrate through link-level simulations under realistic 5G channel models and high-order, mixed QAM modulation and coding schemes, that AttDet can approach near-optimal BER/BLER (Bit Error Rate/Block Error Rate) performance while maintaining predictable, polynomial complexity.
☆ ComProScanner: A multi-agent based framework for composition-property structured data extraction from scientific literature
Since the advent of various pre-trained large language models, extracting structured knowledge from scientific text has experienced a revolutionary change compared with traditional machine learning or natural language processing techniques. Despite these advances, accessible automated tools that allow users to construct, validate, and visualise datasets from scientific literature extraction remain scarce. We therefore developed ComProScanner, an autonomous multi-agent platform that facilitates the extraction, validation, classification, and visualisation of machine-readable chemical compositions and properties, integrated with synthesis data from journal articles for comprehensive database creation. We evaluated our framework using 100 journal articles against 10 different LLMs, including both open-source and proprietary models, to extract highly complex compositions associated with ceramic piezoelectric materials and corresponding piezoelectric strain coefficients (d33), motivated by the lack of a large dataset for such materials. DeepSeek-V3-0324 outperformed all models with a significant overall accuracy of 0.82. This framework provides a simple, user-friendly, readily-usable package for extracting highly complex experimental data buried in the literature to build machine learning or deep learning datasets.
☆ Synthetic Data for Robust Runway Detection
Deep vision models are now mature enough to be integrated in industrial and possibly critical applications such as autonomous navigation. Yet, data collection and labeling to train such models requires too much efforts and costs for a single company or product. This drawback is more significant in critical applications, where training data must include all possible conditions including rare scenarios. In this perspective, generating synthetic images is an appealing solution, since it allows a cheap yet reliable covering of all the conditions and environments, if the impact of the synthetic-to-real distribution shift is mitigated. In this article, we consider the case of runway detection that is a critical part in autonomous landing systems developed by aircraft manufacturers. We propose an image generation approach based on a commercial flight simulator that complements a few annotated real images. By controlling the image generation and the integration of real and synthetic data, we show that standard object detection models can achieve accurate prediction. We also evaluate their robustness with respect to adverse conditions, in our case nighttime images, that were not represented in the real data, and show the interest of using a customized domain adaptation strategy.
☆ Neural Networks for Censored Expectile Regression Based on Data Augmentation
Expectile regression neural networks (ERNNs) are powerful tools for capturing heterogeneity and complex nonlinear structures in data. However, most existing research has primarily focused on fully observed data, with limited attention paid to scenarios involving censored observations. In this paper, we propose a data augmentation based ERNNs algorithm, termed DAERNN, for modeling heterogeneous censored data. The proposed DAERNN is fully data driven, requires minimal assumptions, and offers substantial flexibility. Simulation studies and real data applications demonstrate that DAERNN outperforms existing censored ERNNs methods and achieves predictive performance comparable to models trained on fully observed data. Moreover, the algorithm provides a unified framework for handling various censoring mechanisms without requiring explicit parametric model specification, thereby enhancing its applicability to practical censored data analysis.
☆ Multi-Task Deep Learning for Surface Metrology
A reproducible deep learning framework is presented for surface metrology to predict surface texture parameters together with their reported standard uncertainties. Using a multi-instrument dataset spanning tactile and optical systems, measurement system type classification is addressed alongside coordinated regression of Ra, Rz, RONt and their uncertainty targets (Ra_uncert, Rz_uncert, RONt_uncert). Uncertainty is modelled via quantile and heteroscedastic heads with post-hoc conformal calibration to yield calibrated intervals. On a held-out set, high fidelity was achieved by single-target regressors (R2: Ra 0.9824, Rz 0.9847, RONt 0.9918), with two uncertainty targets also well modelled (Ra_uncert 0.9899, Rz_uncert 0.9955); RONt_uncert remained difficult (R2 0.4934). The classifier reached 92.85% accuracy and probability calibration was essentially unchanged after temperature scaling (ECE 0.00504 -> 0.00503 on the test split). Negative transfer was observed for naive multi-output trunks, with single-target models performing better. These results provide calibrated predictions suitable to inform instrument selection and acceptance decisions in metrological workflows.
comment: 34 pages, 10 figures, 6 tables; 60-page supplementary appendix. Code and full reproducibility bundle available via Zenodo
☆ Capability of using the normalizing flows for extraction rare gamma events in the TAIGA experiment
The objective of this work is to develop a method for detecting rare gamma quanta against the background of charged particles in the fluxes from sources in the Universe with the help of the deep learning and normalizing flows based method designed for anomaly detection. It is shown that the suggested method has a potential for the gamma detection. The method was tested on model data from the TAIGA-IACT experiment. The obtained quantitative performance indicators are still inferior to other approaches, and therefore possible ways to improve the implementation of the method are proposed.
comment: 9 pages, 4 figures, Proceedings of The 9th International Conference on Deep Learning in Computational Physics, July, 2-4, 2025, Moscow, Russia
☆ MemER: Scaling Up Memory for Robot Control via Experience Retrieval
Humans routinely rely on memory to perform tasks, yet most robot policies lack this capability; our goal is to endow robot policies with the same ability. Naively conditioning on long observation histories is computationally expensive and brittle under covariate shift, while indiscriminate subsampling of history leads to irrelevant or redundant information. We propose a hierarchical policy framework, where the high-level policy is trained to select and track previous relevant keyframes from its experience. The high-level policy uses selected keyframes and the most recent frames when generating text instructions for a low-level policy to execute. This design is compatible with existing vision-language-action (VLA) models and enables the system to efficiently reason over long-horizon dependencies. In our experiments, we finetune Qwen2.5-VL-7B-Instruct and $\pi_{0.5}$ as the high-level and low-level policies respectively, using demonstrations supplemented with minimal language annotations. Our approach, MemER, outperforms prior methods on three real-world long-horizon robotic manipulation tasks that require minutes of memory. Videos and code can be found at https://jen-pan.github.io/memer/.
comment: Project page: https://jen-pan.github.io/memer/
☆ LEGO: A Lightweight and Efficient Multiple-Attribute Unlearning Framework for Recommender Systems
With the growing demand for safeguarding sensitive user information in recommender systems, recommendation attribute unlearning is receiving increasing attention. Existing studies predominantly focus on single-attribute unlearning. However, privacy protection requirements in the real world often involve multiple sensitive attributes and are dynamic. Existing single-attribute unlearning methods cannot meet these real-world requirements due to i) CH1: the inability to handle multiple unlearning requests simultaneously, and ii) CH2: the lack of efficient adaptability to dynamic unlearning needs. To address these challenges, we propose LEGO, a lightweight and efficient multiple-attribute unlearning framework. Specifically, we divide the multiple-attribute unlearning process into two steps: i) Embedding Calibration removes information related to a specific attribute from user embedding, and ii) Flexible Combination combines these embeddings into a single embedding, protecting all sensitive attributes. We frame the unlearning process as a mutual information minimization problem, providing LEGO a theoretical guarantee of simultaneous unlearning, thereby addressing CH1. With the two-step framework, where Embedding Calibration can be performed in parallel and Flexible Combination is flexible and efficient, we address CH2. Extensive experiments on three real-world datasets across three representative recommendation models demonstrate the effectiveness and efficiency of our proposed framework. Our code and appendix are available at https://github.com/anonymifish/lego-rec-multiple-attribute-unlearning.
comment: Accepted by ACM Multimedia 2025
☆ Enhancing Security in Deep Reinforcement Learning: A Comprehensive Survey on Adversarial Attacks and Defenses
With the wide application of deep reinforcement learning (DRL) techniques in complex fields such as autonomous driving, intelligent manufacturing, and smart healthcare, how to improve its security and robustness in dynamic and changeable environments has become a core issue in current research. Especially in the face of adversarial attacks, DRL may suffer serious performance degradation or even make potentially dangerous decisions, so it is crucial to ensure their stability in security-sensitive scenarios. In this paper, we first introduce the basic framework of DRL and analyze the main security challenges faced in complex and changing environments. In addition, this paper proposes an adversarial attack classification framework based on perturbation type and attack target and reviews the mainstream adversarial attack methods against DRL in detail, including various attack methods such as perturbation state space, action space, reward function and model space. To effectively counter the attacks, this paper systematically summarizes various current robustness training strategies, including adversarial training, competitive training, robust learning, adversarial detection, defense distillation and other related defense techniques, we also discuss the advantages and shortcomings of these methods in improving the robustness of DRL. Finally, this paper looks into the future research direction of DRL in adversarial environments, emphasizing the research needs in terms of improving generalization, reducing computational complexity, and enhancing scalability and explainability, aiming to provide valuable references and directions for researchers.
☆ InvDec: Inverted Decoder for Multivariate Time Series Forecasting with Separated Temporal and Variate Modeling
Multivariate time series forecasting requires simultaneously modeling temporal patterns and cross-variate dependencies. Channel-independent methods such as PatchTST excel at temporal modeling but ignore variable correlations, while pure variate-attention approaches such as iTransformer sacrifice temporal encoding. We proposeInvDec (Inverted Decoder), a hybrid architecture that achieves principled separation between temporal encoding and variate-level decoding. InvDec combines a patch-based temporal encoder with an inverted decoder operating on the variate dimension through variate-wise self-attention. We introduce delayed variate embeddings that enrich variable-specific representations only after temporal encoding, preserving temporal feature integrity. An adaptive residual fusion mechanism dynamically balances temporal and variate information across datasets of varying dimensions. Instantiating InvDec with PatchTST yields InvDec-PatchTST. Extensive experiments on seven benchmarks demonstrate significant gains on high-dimensional datasets: 20.9% MSE reduction on Electricity (321 variables), 4.3% improvement on Weather, and 2.7% gain on Traffic compared to PatchTST, while maintaining competitive performance on low-dimensional ETT datasets. Ablation studies validate each component, and analysis reveals that InvDec's advantage grows with dataset dimensionality, confirming that cross-variate modeling becomes critical as the number of variables increases.
comment: 23pages, 3 figures
☆ DB-FGA-Net: Dual Backbone Frequency Gated Attention Network for Multi-Class Classification with Grad-CAM Interpretability
Brain tumors are a challenging problem in neuro-oncology, where early and precise diagnosis is important for successful treatment. Deep learning-based brain tumor classification methods often rely on heavy data augmentation which can limit generalization and trust in clinical applications. In this paper, we propose a double-backbone network integrating VGG16 and Xception with a Frequency-Gated Attention (FGA) Block to capture complementary local and global features. Unlike previous studies, our model achieves state-of-the-art performance without augmentation which demonstrates robustness to variably sized and distributed datasets. For further transparency, Grad-CAM is integrated to visualize the tumor regions based on which the model is giving prediction, bridging the gap between model prediction and clinical interpretability. The proposed framework achieves 99.24\% accuracy on the 7K-DS dataset for the 4-class setting, along with 98.68\% and 99.85\% in the 3-class and 2-class settings, respectively. On the independent 3K-DS dataset, the model generalizes with 95.77\% accuracy, outperforming baseline and state-of-the-art methods. To further support clinical usability, we developed a graphical user interface (GUI) that provides real-time classification and Grad-CAM-based tumor localization. These findings suggest that augmentation-free, interpretable, and deployable deep learning models such as DB-FGA-Net hold strong potential for reliable clinical translation in brain tumor diagnosis.
comment: 25 pages, 14 figures, 12 tables
☆ Quantifying Distributional Invariance in Causal Subgraph for IRM-Free Graph Generalization
Out-of-distribution generalization under distributional shifts remains a critical challenge for graph neural networks. Existing methods generally adopt the Invariant Risk Minimization (IRM) framework, requiring costly environment annotations or heuristically generated synthetic splits. To circumvent these limitations, in this work, we aim to develop an IRM-free method for capturing causal subgraphs. We first identify that causal subgraphs exhibit substantially smaller distributional variations than non-causal components across diverse environments, which we formalize as the Invariant Distribution Criterion and theoretically prove in this paper. Building on this criterion, we systematically uncover the quantitative relationship between distributional shift and representation norm for identifying the causal subgraph, and investigate its underlying mechanisms in depth. Finally, we propose an IRM-free method by introducing a norm-guided invariant distribution objective for causal subgraph discovery and prediction. Extensive experiments on two widely used benchmarks demonstrate that our method consistently outperforms state-of-the-art methods in graph generalization.
☆ Breakdance Video classification in the age of Generative AI
Large Vision Language models have seen huge application in several sports use-cases recently. Most of these works have been targeted towards a limited subset of popular sports like soccer, cricket, basketball etc; focusing on generative tasks like visual question answering, highlight generation. This work analyzes the applicability of the modern video foundation models (both encoder and decoder) for a very niche but hugely popular dance sports - breakdance. Our results show that Video Encoder models continue to outperform state-of-the-art Video Language Models for prediction tasks. We provide insights on how to choose the encoder model and provide a thorough analysis into the workings of a finetuned decoder model for breakdance video classification.
comment: 11 pages
☆ ResearchGPT: Benchmarking and Training LLMs for End-to-End Computer Science Research Workflows
As large language models (LLMs) advance, the ultimate vision for their role in science is emerging: we could build an AI collaborator to effectively assist human beings throughout the entire scientific research process. We refer to this envisioned system as ResearchGPT. Given that scientific research progresses through multiple interdependent phases, achieving this vision requires rigorous benchmarks that evaluate the end-to-end workflow rather than isolated sub-tasks. To this end, we contribute CS-54k, a high-quality corpus of scientific Q&A pairs in computer science, built from 14k CC-licensed papers. It is constructed through a scalable, paper-grounded pipeline that combines retrieval-augmented generation (RAG) with multi-stage quality control to ensure factual grounding. From this unified corpus, we derive two complementary subsets: CS-4k, a carefully curated benchmark for evaluating AI's ability to assist scientific research, and CS-50k, a large-scale training dataset. Extensive experiments demonstrate that CS-4k stratifies state-of-the-art LLMs into distinct capability tiers. Open models trained on CS-50k with supervised training and reinforcement learning demonstrate substantial improvements. Even 7B-scale models, when properly trained, outperform many larger proprietary systems, such as GPT-4.1, GPT-4o, and Gemini 2.5 Pro. This indicates that making AI models better research assistants relies more on domain-aligned training with high-quality data than on pretraining scale or general benchmark performance. We release CS-4k and CS-50k in the hope of fostering AI systems as reliable collaborators in CS research.
☆ KCM: KAN-Based Collaboration Models Enhance Pretrained Large Models
In recent years, Pretrained Large Models(PLMs) researchers proposed large-small model collaboration frameworks, leveraged easily trainable small models to assist large models, aim to(1) significantly reduce computational resource consumption while maintaining comparable accuracy, and (2) enhance large model performance in specialized domain tasks. However, this collaborative paradigm suffers from issues such as significant accuracy degradation, exacerbated catastrophic forgetting, and amplified hallucination problems induced by small model knowledge. To address these challenges, we propose a KAN-based Collaborative Model (KCM) as an improved approach to large-small model collaboration. The KAN utilized in KCM represents an alternative neural network architecture distinct from conventional MLPs. Compared to MLPs, KAN offers superior visualizability and interpretability while mitigating catastrophic forgetting. We deployed KCM in large-small model collaborative systems across three scenarios: language, vision, and vision-language cross-modal tasks. The experimental results demonstrate that, compared with pure large model approaches, the large-small model collaboration framework utilizing KCM as the collaborative model significantly reduces the number of large model inference calls while maintaining near-identical task accuracy, thereby substantially lowering computational resource consumption. Concurrently, the KAN-based small collaborative model markedly mitigates catastrophic forgetting, leading to significant accuracy improvements for long-tail data. The results reveal that KCM demonstrates superior performance across all metrics compared to MLP-based small collaborative models (MCM).
☆ SynTSBench: Rethinking Temporal Pattern Learning in Deep Learning Models for Time Series NeurIPS 2025
Recent advances in deep learning have driven rapid progress in time series forecasting, yet many state-of-the-art models continue to struggle with robust performance in real-world applications, even when they achieve strong results on standard benchmark datasets. This persistent gap can be attributed to the black-box nature of deep learning architectures and the inherent limitations of current evaluation frameworks, which frequently lack the capacity to provide clear, quantitative insights into the specific strengths and weaknesses of different models, thereby complicating the selection of appropriate models for particular forecasting scenarios. To address these issues, we propose a synthetic data-driven evaluation paradigm, SynTSBench, that systematically assesses fundamental modeling capabilities of time series forecasting models through programmable feature configuration. Our framework isolates confounding factors and establishes an interpretable evaluation system with three core analytical dimensions: (1) temporal feature decomposition and capability mapping, which enables systematic evaluation of model capacities to learn specific pattern types; (2) robustness analysis under data irregularities, which quantifies noise tolerance thresholds and anomaly recovery capabilities; and (3) theoretical optimum benchmarking, which establishes performance boundaries for each pattern type-enabling direct comparison between model predictions and mathematical optima. Our experiments show that current deep learning models do not universally approach optimal baselines across all types of temporal features.The code is available at https://github.com/TanQitai/SynTSBench
comment: NeurIPS 2025
☆ Limits of PRM-Guided Tree Search for Mathematical Reasoning with LLMs
While chain-of-thought prompting with Best-of-N (BoN) selection has become popular for mathematical reasoning in large language models (LLMs), its linear structure fails to capture the branching and exploratory nature of complex problem-solving. In this work, we propose an adaptive algorithm to maximize process reward model (PRM) scores over the intractable action space, and investigate whether PRM-guided tree search can improve mathematical reasoning by exploring multiple partial solution paths. Across $23$ diverse mathematical problems using Qwen2.5-Math-7B-Instruct with its associated PRM as a case study, we find that: (1) PRM-guided tree search shows no statistically significant improvements over BoN despite higher costs, (2) Monte Carlo tree search and beam search outperform other PRM-guided tree search methods, (3) PRMs poorly approximate state values and their reliability degrades with reasoning depth, and (4) PRMs generalize poorly out of distribution. This underperformance stems from tree search's greater reliance on unreliable PRM scores, suggesting different reward modeling is necessary before tree search can effectively enhance mathematical reasoning in LLMs.
☆ Scalable GPU-Accelerated Euler Characteristic Curves: Optimization and Differentiable Learning for PyTorch NeurIPS 2025
Topological features capture global geometric structure in imaging data, but practical adoption in deep learning requires both computational efficiency and differentiability. We present optimized GPU kernels for the Euler Characteristic Curve (ECC) computation achieving 16-2000\"O speedups over prior GPU implementations on synthetic grids, and introduce a differentiable PyTorch layer enabling end-to-end learning. Our CUDA kernels, optimized for Ampere GPUs use 128B-coalesced access and hierarchical shared-memory accumulation. Our PyTorch layer learns thresholds in a single direction via a Differentiable Euler Characteristic Transform-style sigmoid relaxation. We discuss downstream relevance, including applications highlighted by prior ECC work, and outline batching/multi-GPU extensions to broaden adoption.
comment: Extended Abstract: Accepted to the NeurReps 2025 workshop at NeurIPS 2025. 4 pages, 3 figures
☆ ImpossibleBench: Measuring LLMs' Propensity of Exploiting Test Cases
The tendency to find and exploit "shortcuts" to complete tasks poses significant risks for reliable assessment and deployment of large language models (LLMs). For example, an LLM agent with access to unit tests may delete failing tests rather than fix the underlying bug. Such behavior undermines both the validity of benchmark results and the reliability of real-world LLM coding assistant deployments. To quantify, study, and mitigate such behavior, we introduce ImpossibleBench, a benchmark framework that systematically measures LLM agents' propensity to exploit test cases. ImpossibleBench creates "impossible" variants of tasks from existing benchmarks like LiveCodeBench and SWE-bench by introducing direct conflicts between the natural-language specification and the unit tests. We measure an agent's "cheating rate" as its pass rate on these impossible tasks, where any pass necessarily implies a specification-violating shortcut. As a practical framework, ImpossibleBench is not just an evaluation but a versatile tool. We demonstrate its utility for: (1) studying model behaviors, revealing more fine-grained details of cheating behaviors from simple test modification to complex operator overloading; (2) context engineering, showing how prompt, test access and feedback loop affect cheating rates; and (3) developing monitoring tools, providing a testbed with verified deceptive solutions. We hope ImpossibleBench serves as a useful framework for building more robust and reliable LLM systems. Our implementation can be found at https://github.com/safety-research/impossiblebench.
☆ Optimistic Task Inference for Behavior Foundation Models
Behavior Foundation Models (BFMs) are capable of retrieving high-performing policy for any reward function specified directly at test-time, commonly referred to as zero-shot reinforcement learning (RL). While this is a very efficient process in terms of compute, it can be less so in terms of data: as a standard assumption, BFMs require computing rewards over a non-negligible inference dataset, assuming either access to a functional form of rewards, or significant labeling efforts. To alleviate these limitations, we tackle the problem of task inference purely through interaction with the environment at test-time. We propose OpTI-BFM, an optimistic decision criterion that directly models uncertainty over reward functions and guides BFMs in data collection for task inference. Formally, we provide a regret bound for well-trained BFMs through a direct connection to upper-confidence algorithms for linear bandits. Empirically, we evaluate OpTI-BFM on established zero-shot benchmarks, and observe that it enables successor-features-based BFMs to identify and optimize an unseen reward function in a handful of episodes with minimal compute overhead. Code is available at https://github.com/ThomasRupf/opti-bfm.
☆ Calibrating Multimodal Consensus for Emotion Recognition
In recent years, Multimodal Emotion Recognition (MER) has made substantial progress. Nevertheless, most existing approaches neglect the semantic inconsistencies that may arise across modalities, such as conflicting emotional cues between text and visual inputs. Besides, current methods are often dominated by the text modality due to its strong representational capacity, which can compromise recognition accuracy. To address these challenges, we propose a model termed Calibrated Multimodal Consensus (CMC). CMC introduces a Pseudo Label Generation Module (PLGM) to produce pseudo unimodal labels, enabling unimodal pretraining in a self-supervised fashion. It then employs a Parameter-free Fusion Module (PFM) and a Multimodal Consensus Router (MCR) for multimodal finetuning, thereby mitigating text dominance and guiding the fusion process toward a more reliable consensus. Experimental results demonstrate that CMC achieves performance on par with or superior to state-of-the-art methods across four datasets, CH-SIMS, CH-SIMS v2, CMU-MOSI, and CMU-MOSEI, and exhibits notable advantages in scenarios with semantic inconsistencies on CH-SIMS and CH-SIMS v2. The implementation of this work is publicly accessible at https://github.com/gw-zhong/CMC.
☆ FedGPS: Statistical Rectification Against Data Heterogeneity in Federated Learning
Federated Learning (FL) confronts a significant challenge known as data heterogeneity, which impairs model performance and convergence. Existing methods have made notable progress in addressing this issue. However, improving performance in certain heterogeneity scenarios remains an overlooked question: \textit{How robust are these methods to deploy under diverse heterogeneity scenarios?} To answer this, we conduct comprehensive evaluations across varied heterogeneity scenarios, showing that most existing methods exhibit limited robustness. Meanwhile, insights from these experiments highlight that sharing statistical information can mitigate heterogeneity by enabling clients to update with a global perspective. Motivated by this, we propose \textbf{FedGPS} (\textbf{Fed}erated \textbf{G}oal-\textbf{P}ath \textbf{S}ynergy), a novel framework that seamlessly integrates statistical distribution and gradient information from others. Specifically, FedGPS statically modifies each client's learning objective to implicitly model the global data distribution using surrogate information, while dynamically adjusting local update directions with gradient information from other clients at each round. Extensive experiments show that FedGPS outperforms state-of-the-art methods across diverse heterogeneity scenarios, validating its effectiveness and robustness. The code is available at: https://github.com/CUHK-AIM-Group/FedGPS.
comment: 35 pages, 15 figures, 21 tables
☆ Empower Words: DualGround for Structured Phrase and Sentence-Level Temporal Grounding NeurIPS 2025
Video Temporal Grounding (VTG) aims to localize temporal segments in long, untrimmed videos that align with a given natural language query. This task typically comprises two subtasks: Moment Retrieval (MR) and Highlight Detection (HD). While recent advances have been progressed by powerful pretrained vision-language models such as CLIP and InternVideo2, existing approaches commonly treat all text tokens uniformly during crossmodal attention, disregarding their distinct semantic roles. To validate the limitations of this approach, we conduct controlled experiments demonstrating that VTG models overly rely on [EOS]-driven global semantics while failing to effectively utilize word-level signals, which limits their ability to achieve fine-grained temporal alignment. Motivated by this limitation, we propose DualGround, a dual-branch architecture that explicitly separates global and local semantics by routing the [EOS] token through a sentence-level path and clustering word tokens into phrase-level units for localized grounding. Our method introduces (1) tokenrole- aware cross modal interaction strategies that align video features with sentence-level and phrase-level semantics in a structurally disentangled manner, and (2) a joint modeling framework that not only improves global sentence-level alignment but also enhances finegrained temporal grounding by leveraging structured phrase-aware context. This design allows the model to capture both coarse and localized semantics, enabling more expressive and context-aware video grounding. DualGround achieves state-of-the-art performance on both Moment Retrieval and Highlight Detection tasks across QVHighlights and Charades- STA benchmarks, demonstrating the effectiveness of disentangled semantic modeling in video-language alignment.
comment: Comments: 28 pages, including appendix. 5 figures. Full version of the NeurIPS 2025 paper
☆ What Does It Take to Build a Performant Selective Classifier? NeurIPS 2025
Selective classifiers improve model reliability by abstaining on inputs the model deems uncertain. However, few practical approaches achieve the gold-standard performance of a perfect-ordering oracle that accepts examples exactly in order of correctness. Our work formalizes this shortfall as the selective-classification gap and present the first finite-sample decomposition of this gap to five distinct sources of looseness: Bayes noise, approximation error, ranking error, statistical noise, and implementation- or shift-induced slack. Crucially, our analysis reveals that monotone post-hoc calibration -- often believed to strengthen selective classifiers -- has limited impact on closing this gap, since it rarely alters the model's underlying score ranking. Bridging the gap therefore requires scoring mechanisms that can effectively reorder predictions rather than merely rescale them. We validate our decomposition on synthetic two-moons data and on real-world vision and language benchmarks, isolating each error component through controlled experiments. Our results confirm that (i) Bayes noise and limited model capacity can account for substantial gaps, (ii) only richer, feature-aware calibrators meaningfully improve score ordering, and (iii) data shift introduces a separate slack that demands distributionally robust training. Together, our decomposition yields a quantitative error budget as well as actionable design guidelines that practitioners can use to build selective classifiers which approximate ideal oracle behavior more closely.
comment: 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
☆ Layer-to-Layer Knowledge Mixing in Graph Neural Network for Chemical Property Prediction
Graph Neural Networks (GNNs) are the currently most effective methods for predicting molecular properties but there remains a need for more accurate models. GNN accuracy can be improved by increasing the model complexity but this also increases the computational cost and memory requirement during training and inference. In this study, we develop Layer-to-Layer Knowledge Mixing (LKM), a novel self-knowledge distillation method that increases the accuracy of state-of-the-art GNNs while adding negligible computational complexity during training and inference. By minimizing the mean absolute distance between pre-existing hidden embeddings of GNN layers, LKM efficiently aggregates multi-hop and multi-scale information, enabling improved representation of both local and global molecular features. We evaluated LKM using three diverse GNN architectures (DimeNet++, MXMNet, and PAMNet) using datasets of quantum chemical properties (QM9, MD17 and Chignolin). We found that the LKM method effectively reduces the mean absolute error of quantum chemical and biophysical property predictions by up to 9.8% (QM9), 45.3% (MD17 Energy), and 22.9% (Chignolin). This work demonstrates the potential of LKM to significantly improve the accuracy of GNNs for chemical property prediction without any substantial increase in training and inference cost.
☆ Multi-Objective Reinforcement Learning with Max-Min Criterion: A Game-Theoretic Approach NeurIPS 2025
In this paper, we propose a provably convergent and practical framework for multi-objective reinforcement learning with max-min criterion. From a game-theoretic perspective, we reformulate max-min multi-objective reinforcement learning as a two-player zero-sum regularized continuous game and introduce an efficient algorithm based on mirror descent. Our approach simplifies the policy update while ensuring global last-iterate convergence. We provide a comprehensive theoretical analysis on our algorithm, including iteration complexity under both exact and approximate policy evaluations, as well as sample complexity bounds. To further enhance performance, we modify the proposed algorithm with adaptive regularization. Our experiments demonstrate the convergence behavior of the proposed algorithm in tabular settings, and our implementation for deep reinforcement learning significantly outperforms previous baselines in many MORL environments.
comment: Accepted to NeurIPS 2025
☆ Sparse Local Implicit Image Function for sub-km Weather Downscaling
We introduce SpLIIF to generate implicit neural representations and enable arbitrary downscaling of weather variables. We train a model from sparse weather stations and topography over Japan and evaluate in- and out-of-distribution accuracy predicting temperature and wind, comparing it to both an interpolation baseline and CorrDiff. We find the model to be up to 50% better than both CorrDiff and the baseline at downscaling temperature, and around 10-20% better for wind.
☆ Federated Learning via Meta-Variational Dropout NeurIPS
Federated Learning (FL) aims to train a global inference model from remotely distributed clients, gaining popularity due to its benefit of improving data privacy. However, traditional FL often faces challenges in practical applications, including model overfitting and divergent local models due to limited and non-IID data among clients. To address these issues, we introduce a novel Bayesian meta-learning approach called meta-variational dropout (MetaVD). MetaVD learns to predict client-dependent dropout rates via a shared hypernetwork, enabling effective model personalization of FL algorithms in limited non-IID data settings. We also emphasize the posterior adaptation view of meta-learning and the posterior aggregation view of Bayesian FL via the conditional dropout posterior. We conducted extensive experiments on various sparse and non-IID FL datasets. MetaVD demonstrated excellent classification accuracy and uncertainty calibration performance, especially for out-of-distribution (OOD) clients. MetaVD compresses the local model parameters needed for each client, mitigating model overfitting and reducing communication costs. Code is available at https://github.com/insujeon/MetaVD.
comment: Published in the Proceedings of the Advances in Neural Information Processing Systems (NeurIPS) 2023, Main Conference Track
☆ CO-PFL: Contribution-Oriented Personalized Federated Learning for Heterogeneous Networks
Personalized federated learning (PFL) addresses a critical challenge of collaboratively training customized models for clients with heterogeneous and scarce local data. Conventional federated learning, which relies on a single consensus model, proves inadequate under such data heterogeneity. Its standard aggregation method of weighting client updates heuristically or by data volume, operates under an equal-contribution assumption, failing to account for the actual utility and reliability of each client's update. This often results in suboptimal personalization and aggregation bias. To overcome these limitations, we introduce Contribution-Oriented PFL (CO-PFL), a novel algorithm that dynamically estimates each client's contribution for global aggregation. CO-PFL performs a joint assessment by analyzing both gradient direction discrepancies and prediction deviations, leveraging information from gradient and data subspaces. This dual-subspace analysis provides a principled and discriminative aggregation weight for each client, emphasizing high-quality updates. Furthermore, to bolster personalization adaptability and optimization stability, CO-PFL cohesively integrates a parameter-wise personalization mechanism with mask-aware momentum optimization. Our approach effectively mitigates aggregation bias, strengthens global coordination, and enhances local performance by facilitating the construction of tailored submodels with stable updates. Extensive experiments on four benchmark datasets (CIFAR10, CIFAR10C, CINIC10, and Mini-ImageNet) confirm that CO-PFL consistently surpasses state-of-the-art methods in in personalization accuracy, robustness, scalability and convergence stability.
☆ Automated Cloud Infrastructure-as-Code Reconciliation with AI Agents
Cloud infrastructure is managed through a mix of interfaces -- traditionally, cloud consoles, command-line interfaces (CLI), and SDKs are the tools of choice. Recently, Infrastructure-as-Code/IaC frameworks (e.g., Terraform) have quickly gained popularity. Unlike conventional tools, IaC~frameworks encode the infrastructure in a "source-of-truth" configuration. They are capable of automatically carrying out modifications to the cloud -- deploying, updating, or destroying resources -- to bring the actual infrastructure into alignment with the IaC configuration. However, when IaC is used alongside consoles, CLIs, or SDKs, it loses visibility into external changes, causing infrastructure drift, where the configuration becomes outdated, and later IaC operations may undo valid updates or trigger errors. We present NSync, an automated system for IaC reconciliation that propagates out-of-band changes back into the IaC program. Our key insight is that infrastructure changes eventually all occur via cloud API invocations -- the lowest layer for cloud management operations. NSync gleans insights from API traces to detect drift (i.e., non-IaC changes) and reconcile it (i.e., update the IaC configuration to capture the changes). It employs an agentic architecture that leverages LLMs to infer high-level intents from noisy API sequences, synthesize targeted IaC updates using specialized tools, and continually improve through a self-evolving knowledge base of past reconciliations. We further introduce a novel evaluation pipeline for injecting realistic drifts into cloud infrastructure and assessing reconciliation performance. Experiments across five real-world Terraform projects and 372 drift scenarios show that NSync outperforms the baseline both in terms of accuracy (from 0.71 to 0.97 pass@3) and token efficiency (1.47$\times$ improvement).
☆ Assessing the Feasibility of Early Cancer Detection Using Routine Laboratory Data: An Evaluation of Machine Learning Approaches on an Imbalanced Dataset
The development of accessible screening tools for early cancer detection in dogs represents a significant challenge in veterinary medicine. Routine laboratory data offer a promising, low-cost source for such tools, but their utility is hampered by the non-specificity of individual biomarkers and the severe class imbalance inherent in screening populations. This study assesses the feasibility of cancer risk classification using the Golden Retriever Lifetime Study (GRLS) cohort under real-world constraints, including the grouping of diverse cancer types and the inclusion of post-diagnosis samples. A comprehensive benchmark evaluation was conducted, systematically comparing 126 analytical pipelines that comprised various machine learning models, feature selection methods, and data balancing techniques. Data were partitioned at the patient level to prevent leakage. The optimal model, a Logistic Regression classifier with class weighting and recursive feature elimination, demonstrated moderate ranking ability (AUROC = 0.815; 95% CI: 0.793-0.836) but poor clinical classification performance (F1-score = 0.25, Positive Predictive Value = 0.15). While a high Negative Predictive Value (0.98) was achieved, insufficient recall (0.79) precludes its use as a reliable rule-out test. Interpretability analysis with SHapley Additive exPlanations (SHAP) revealed that predictions were driven by non-specific features like age and markers of inflammation and anemia. It is concluded that while a statistically detectable cancer signal exists in routine lab data, it is too weak and confounded for clinically reliable discrimination from normal aging or other inflammatory conditions. This work establishes a critical performance ceiling for this data modality in isolation and underscores that meaningful progress in computational veterinary oncology will require integration of multi-modal data sources.
☆ Approximate Replicability in Learning
Replicability, introduced by (Impagliazzo et al. STOC '22), is the notion that algorithms should remain stable under a resampling of their inputs (given access to shared randomness). While a strong and interesting notion of stability, the cost of replicability can be prohibitive: there is no replicable algorithm, for instance, for tasks as simple as threshold learning (Bun et al. STOC '23). Given such strong impossibility results we ask: under what approximate notions of replicability is learning possible? In this work, we propose three natural relaxations of replicability in the context of PAC learning: (1) Pointwise: the learner must be consistent on any fixed input, but not across all inputs simultaneously, (2) Approximate: the learner must output hypotheses that classify most of the distribution consistently, (3) Semi: the algorithm is fully replicable, but may additionally use shared unlabeled samples. In all three cases, for constant replicability parameters, we obtain sample-optimal agnostic PAC learners: (1) and (2) are achievable for ``free" using $\Theta(d/\alpha^2)$ samples, while (3) requires $\Theta(d^2/\alpha^2)$ labeled samples.
comment: 51 pages, 1 figure
☆ Risk-Averse Constrained Reinforcement Learning with Optimized Certainty Equivalents
Constrained optimization provides a common framework for dealing with conflicting objectives in reinforcement learning (RL). In most of these settings, the objectives (and constraints) are expressed though the expected accumulated reward. However, this formulation neglects risky or even possibly catastrophic events at the tails of the reward distribution, and is often insufficient for high-stakes applications in which the risk involved in outliers is critical. In this work, we propose a framework for risk-aware constrained RL, which exhibits per-stage robustness properties jointly in reward values and time using optimized certainty equivalents (OCEs). Our framework ensures an exact equivalent to the original constrained problem within a parameterized strong Lagrangian duality framework under appropriate constraint qualifications, and yields a simple algorithmic recipe which can be wrapped around standard RL solvers, such as PPO. Lastly, we establish the convergence of the proposed algorithm under common assumptions, and verify the risk-aware properties of our approach through several numerical experiments.
☆ Multimedia-Aware Question Answering: A Review of Retrieval and Cross-Modal Reasoning Architectures
Question Answering (QA) systems have traditionally relied on structured text data, but the rapid growth of multimedia content (images, audio, video, and structured metadata) has introduced new challenges and opportunities for retrieval-augmented QA. In this survey, we review recent advancements in QA systems that integrate multimedia retrieval pipelines, focusing on architectures that align vision, language, and audio modalities with user queries. We categorize approaches based on retrieval methods, fusion techniques, and answer generation strategies, and analyze benchmark datasets, evaluation protocols, and performance tradeoffs. Furthermore, we highlight key challenges such as cross-modal alignment, latency-accuracy tradeoffs, and semantic grounding, and outline open problems and future research directions for building more robust and context-aware QA systems leveraging multimedia data.
comment: In Proceedings of the 2nd ACM Workshop in AI-powered Question and Answering Systems (AIQAM '25), October 27-28, 2025, Dublin, Ireland. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3746274.3760393
☆ Every Question Has Its Own Value: Reinforcement Learning with Explicit Human Values
We propose Reinforcement Learning with Explicit Human Values (RLEV), a method that aligns Large Language Model (LLM) optimization directly with quantifiable human value signals. While Reinforcement Learning with Verifiable Rewards (RLVR) effectively trains models in objective domains using binary correctness rewards, it overlooks that not all tasks are equally significant. RLEV extends this framework by incorporating human-defined value signals directly into the reward function. Using exam-style data with explicit ground-truth value labels, RLEV consistently outperforms correctness-only baselines across multiple RL algorithms and model scales. Crucially, RLEV policies not only improve value-weighted accuracy but also learn a value-sensitive termination policy: concise for low-value prompts, thorough for high-value ones. We demonstrate this behavior stems from value-weighted gradient amplification on end-of-sequence tokens. Ablation studies confirm the gain is causally linked to value alignment. RLEV remains robust under noisy value signals, such as difficulty-based labels, demonstrating that optimizing for an explicit utility function offers a practical path to aligning LLMs with human priorities.
comment: 15 pages, 4 figures
☆ Empowering Targeted Neighborhood Search via Hyper Tour for Large-Scale TSP
Traveling Salesman Problem (TSP) is a classic NP-hard problem that has garnered significant attention from both academia and industry. While neural-based methods have shown promise for solving TSPs, they still face challenges in scaling to larger instances, particularly in memory constraints associated with global heatmaps, edge weights, or access matrices, as well as in generating high-quality initial solutions and insufficient global guidance for efficiently navigating vast search spaces. To address these challenges, we propose a Hyper Tour Guided Neighborhood Search (HyperNS) method for large-scale TSP instances. Inspired by the ``clustering first, route second" strategy, our approach initially divides the TSP instance into clusters using a sparse heatmap graph and abstracts them as supernodes, followed by the generation of a hyper tour to guide both the initialization and optimization processes. This method reduces the search space by focusing on edges relevant to the hyper tour, leading to more efficient and effective optimization. Experimental results on both synthetic and real-world datasets demonstrate that our approach outperforms existing neural-based methods, particularly in handling larger-scale instances, offering a significant reduction in the gap to the optimal solution.
comment: 12 pages
☆ ADP-VRSGP: Decentralized Learning with Adaptive Differential Privacy via Variance-Reduced Stochastic Gradient Push
Differential privacy is widely employed in decentralized learning to safeguard sensitive data by introducing noise into model updates. However, existing approaches that use fixed-variance noise often degrade model performance and reduce training efficiency. To address these limitations, we propose a novel approach called decentralized learning with adaptive differential privacy via variance-reduced stochastic gradient push (ADP-VRSGP). This method dynamically adjusts both the noise variance and the learning rate using a stepwise-decaying schedule, which accelerates training and enhances final model performance while providing node-level personalized privacy guarantees. To counteract the slowed convergence caused by large-variance noise in early iterations, we introduce a progressive gradient fusion strategy that leverages historical gradients. Furthermore, ADP-VRSGP incorporates decentralized push-sum and aggregation techniques, making it particularly suitable for time-varying communication topologies. Through rigorous theoretical analysis, we demonstrate that ADP-VRSGP achieves robust convergence with an appropriate learning rate, significantly improving training stability and speed. Experimental results validate that our method outperforms existing baselines across multiple scenarios, highlighting its efficacy in addressing the challenges of privacy-preserving decentralized learning.
☆ Understanding Mechanistic Role of Structural and Functional Connectivity in Tau Propagation Through Multi-Layer Modeling
Emerging neuroimaging evidence shows that pathological tau proteins build up along specific brain networks, suggesting that large-scale network architecture plays a key role in the progression of Alzheimer's disease (AD). However, how structural connectivity (SC) and functional connectivity (FC) interact to influence tau propagation remains unclear. Leveraging an unprecedented volume of longitudinal neuroimaging data, we examine SC-FC interactions through a multi-layer graph diffusion model. Beyond showing that connectome architecture constrains tau spread, our model reveals a regionally asymmetric contribution of SC and FC. Specifically, FC predominantly drives tau spread in subcortical areas, the insula, frontal and temporal cortices, whereas SC plays a larger role in occipital, parietal, and limbic regions. The relative dominance of SC versus FC shifts over the course of disease, with FC generally prevailing in early AD and SC becoming primary in later stages. Spatial patterns of SC- and FC-dominant regions strongly align with the regional expression of AD-associated genes involved in inflammation, apoptosis, and lysosomal function, including CHUK (IKK-alpha), TMEM106B, MCL1, NOTCH1, and TH. In parallel, other non-modifiable risk factors (e.g., APOE genotype, sex) and biological mechanisms (e.g., amyloid deposition) selectively reshape tau propagation by shifting dominant routes between anatomical and functional pathways in a region-specific manner. Findings are validated in an independent AD cohort.
comment: 42 pages, 14 figures, 64 references
☆ Compositional Generation for Long-Horizon Coupled PDEs
Simulating coupled PDE systems is computationally intensive, and prior efforts have largely focused on training surrogates on the joint (coupled) data, which requires a large amount of data. In the paper, we study compositional diffusion approaches where diffusion models are only trained on the decoupled PDE data and are composed at inference time to recover the coupled field. Specifically, we investigate whether the compositional strategy can be feasible under long time horizons involving a large number of time steps. In addition, we compare a baseline diffusion model with that trained using the v-parameterization strategy. We also introduce a symmetric compositional scheme for the coupled fields based on the Euler scheme. We evaluate on Reaction-Diffusion and modified Burgers with longer time grids, and benchmark against a Fourier Neural Operator trained on coupled data. Despite seeing only decoupled training data, the compositional diffusion models recover coupled trajectories with low error. v-parameterization can improve accuracy over a baseline diffusion model, while the neural operator surrogate remains strongest given that it is trained on the coupled data. These results show that compositional diffusion is a viable strategy towards efficient, long-horizon modeling of coupled PDEs.
☆ There is No "apple" in Timeseries: Rethinking TSFM through the Lens of Invariance
Timeseries foundation models (TSFMs) have multiplied, yet lightweight supervised baselines and even classical models often match them. We argue this gap stems from the naive importation of NLP or CV pipelines. In language and vision, large web-scale corpora densely capture human concepts i.e. there are countless images and text of apples. In contrast, timeseries data is built to complement the image and text modalities. There are no timeseries dataset that contains the concept apple. As a result, the scrape-everything-online paradigm fails for TS. We posit that progress demands a shift from opportunistic aggregation to principled design: constructing datasets that systematically span the space of invariance that preserve temporal semantics. To this end, we suggest that the ontology of timeseries invariances should be built based on first principles. Only by ensuring representational completeness through invariance coverage can TSFMs achieve the aligned structure necessary for generalisation, reasoning, and truly emergent behaviour.
☆ AsyncHZP: Hierarchical ZeRO Parallelism with Asynchronous Scheduling for Scalable LLM Training
The training efficiency and scalability of language models on massive clusters currently remain a critical bottleneck. Mainstream approaches like ND parallelism are often cumbersome and complex, while flexible alternatives such as the Zero Redundancy Optimizer (ZeRO) are frequently hampered by communication overhead. In this paper, we propose Asynchronous Hierarchical Zero Parallelism (AsyncHZP), a novel asynchronous variant of ZeRO designed to achieve superior performance while maintaining simplicity and memory efficiency. Unlike traditional ZeRO, which employs over-fine-grained sharding that can lead to inefficient communication, AsyncHZP adaptively reshards parameters, gradients, and optimizer states across different replica groups. This strategy optimizes device memory utilization and significantly reduces communication overhead. In addition, we also design a multi-stream asynchronous scheduling method that executes parameter all-gather and gradient reduce-scatter operations in dedicated background threads, effectively overlapping communication with computation while incurring negligible memory fragmentation. Empirical evaluations on both Dense and Mixture-of-Experts (MoE) models confirm that AsyncHZP maintains robust stability at scale. It consistently outperforms classic ND parallelism, achieving state-of-the-art performance without complex strategic tuning, thereby simplifying the path to efficient large-scale training.
comment: 14 pages, 5 figures, tech report
☆ Why Prototypes Collapse: Diagnosing and Preventing Partial Collapse in Prototypical Self-Supervised Learning
Prototypical self-supervised learning methods consistently suffer from partial prototype collapse, where multiple prototypes converge to nearly identical representations. This undermines their central purpose -- providing diverse and informative targets to guide encoders toward rich representations -- and has led practitioners to over-parameterize prototype sets or add ad-hoc regularizers, which mitigate symptoms rather than address the root cause. We empirically trace the collapse to the joint optimization of encoders and prototypes, which encourages a type of shortcut learning: early in training prototypes drift toward redundant representations that minimize loss without necessarily enhancing representation diversity. To break the joint optimization, we introduce a fully decoupled training strategy that learns prototypes and encoders under separate objectives. Concretely, we model prototypes as a Gaussian mixture updated with an online EM-style procedure, independent of the encoder's loss. This simple yet principled decoupling eliminates prototype collapse without explicit regularization and yields consistently diverse prototypes and stronger downstream performance.
☆ On pattern classification with weighted dimensions
Studies on various facets of pattern classification is often imperative while working with multi-dimensional samples pertaining to diverse application scenarios. In this notion, weighted dimension-based distance measure has been one of the vital considerations in pattern analysis as it reflects the degree of similarity between samples. Though it is often presumed to be settled with the pervasive use of Euclidean distance, plethora of issues often surface. In this paper, we present (a) a detail analysis on the impact of distance measure norms and weights of dimensions along with visualization, (b) a novel weighting scheme for each dimension, (c) incorporation of this dimensional weighting schema into a KNN classifier, and (d) pattern classification on a variety of synthetic as well as realistic datasets with the developed model. It has performed well across diverse experiments in comparison to the traditional KNN under the same experimental setups. Specifically, for gene expression datasets, it yields significant and consistent gain in classification accuracy (around 10%) in all cross-validation experiments with different values of k. As such datasets contain limited number of samples of high dimensions, meaningful selection of nearest neighbours is desirable, and this requirement is reasonably met by regulating the shape and size of the region enclosing the k number of reference samples with the developed weighting schema and appropriate norm. It, therefore, stands as an important generalization of KNN classifier powered by weighted Minkowski distance with the present weighting schema.
☆ Competition is the key: A Game Theoretic Causal Discovery Approach
Causal discovery remains a central challenge in machine learning, yet existing methods face a fundamental gap: algorithms like GES and GraN-DAG achieve strong empirical performance but lack finite-sample guarantees, while theoretically principled approaches fail to scale. We close this gap by introducing a game-theoretic reinforcement learning framework for causal discovery, where a DDQN agent directly competes against a strong baseline (GES or GraN-DAG), always warm-starting from the opponent's solution. This design yields three provable guarantees: the learned graph is never worse than the opponent, warm-starting strictly accelerates convergence, and most importantly, with high probability the algorithm selects the true best candidate graph. To the best of our knowledge, our result makes a first-of-its-kind progress in explaining such finite-sample guarantees in causal discovery: on synthetic SEMs (30 nodes), the observed error probability decays with n, tightly matching theory. On real-world benchmarks including Sachs, Asia, Alarm, Child, Hepar2, Dream, and Andes, our method consistently improves upon GES and GraN-DAG while remaining theoretically safe. Remarkably, it scales to large graphs such as Hepar2 (70 nodes), Dream (100 nodes), and Andes (220 nodes). Together, these results establish a new class of RL-based causal discovery algorithms that are simultaneously provably consistent, sample-efficient, and practically scalable, marking a decisive step toward unifying empirical performance with rigorous finite-sample theory.
☆ Extending machine learning model for implicit solvation to free energy calculations
The implicit solvent approach offers a computationally efficient framework to model solvation effects in molecular simulations. However, its accuracy often falls short compared to explicit solvent models, limiting its use in precise thermodynamic calculations. Recent advancements in machine learning (ML) present an opportunity to overcome these limitations by leveraging neural networks to develop more precise implicit solvent potentials for diverse applications. A major drawback of current ML-based methods is their reliance on force-matching alone, which can lead to energy predictions that differ by an arbitrary constant and are therefore unsuitable for absolute free energy comparisons. Here, we introduce a novel methodology with a graph neural network (GNN)-based implicit solvent model, dubbed Lambda Solvation Neural Network (LSNN). In addition to force-matching, this network was trained to match the derivatives of alchemical variables, ensuring that solvation free energies can be meaningfully compared across chemical species.. Trained on a dataset of approximately 300,000 small molecules, LSNN achieves free energy predictions with accuracy comparable to explicit-solvent alchemical simulations, while offering a computational speedup and establishing a foundational framework for future applications in drug discovery.
☆ BIOCAP: Exploiting Synthetic Captions Beyond Labels in Biological Foundation Models
This work investigates descriptive captions as an additional source of supervision for biological multimodal foundation models. Images and captions can be viewed as complementary samples from the latent morphospace of a species, each capturing certain biological traits. Incorporating captions during training encourages alignment with this shared latent structure, emphasizing potentially diagnostic characters while suppressing spurious correlations. The main challenge, however, lies in obtaining faithful, instance-specific captions at scale. This requirement has limited the utilization of natural language supervision in organismal biology compared with many other scientific domains. We complement this gap by generating synthetic captions with multimodal large language models (MLLMs), guided by Wikipedia-derived visual information and taxon-tailored format examples. These domain-specific contexts help reduce hallucination and yield accurate, instance-based descriptive captions. Using these captions, we train BIOCAP (i.e., BIOCLIP with Captions), a biological foundation model that captures rich semantics and achieves strong performance in species classification and text-image retrieval. These results demonstrate the value of descriptive captions beyond labels in bridging biological images with multimodal foundation models.
comment: Project page: https://imageomics.github.io/biocap/
☆ On the Structure of Stationary Solutions to McKean-Vlasov Equations with Applications to Noisy Transformers
We study stationary solutions of McKean-Vlasov equations on the circle. Our main contributions stem from observing an exact equivalence between solutions of the stationary McKean-Vlasov equation and an infinite-dimensional quadratic system of equations over Fourier coefficients, which allows explicit characterization of the stationary states in a sequence space rather than a function space. This framework provides a transparent description of local bifurcations, characterizing their periodicity, and resonance structures, while accommodating singular potentials. We derive analytic expressions that characterize the emergence, form and shape (supercritical, critical, subcritical or transcritical) of bifurcations involving possibly multiple Fourier modes and connect them with discontinuous phase transitions. We also characterize, under suitable assumptions, the detailed structure of the stationary bifurcating solutions that are accurate upto an arbitrary number of Fourier modes. At the global level, we establish regularity and concavity properties of the free energy landscape, proving existence, compactness, and coexistence of globally minimizing stationary measures, further identifying discontinuous phase transitions with points of non-differentiability of the minimum free energy map. As an application, we specialize the theory to the Noisy Mean-Field Transformer model, where we show how changing the inverse temperature parameter $\beta$ affects the geometry of the infinitely many bifurcations from the uniform measure. We also explain how increasing $\beta$ can lead to a rich class of approximate multi-mode stationary solutions which can be seen as `metastable states'. Further, a sharp transition from continuous to discontinuous (first-order) phase behavior is observed as $\beta$ increases.
comment: 46 pages, 5 figures
☆ Hierarchical Dual-Head Model for Suicide Risk Assessment via MentalRoBERTa IEEE
Social media platforms have become important sources for identifying suicide risk, but automated detection systems face multiple challenges including severe class imbalance, temporal complexity in posting patterns, and the dual nature of risk levels as both ordinal and categorical. This paper proposes a hierarchical dual-head neural network based on MentalRoBERTa for suicide risk classification into four levels: indicator, ideation, behavior, and attempt. The model employs two complementary prediction heads operating on a shared sequence representation: a CORAL (Consistent Rank Logits) head that preserves ordinal relationships between risk levels, and a standard classification head that enables flexible categorical distinctions. A 3-layer Transformer encoder with 8-head multi-head attention models temporal dependencies across post sequences, while explicit time interval embeddings capture posting behavior dynamics. The model is trained with a combined loss function (0.5 CORAL + 0.3 Cross-Entropy + 0.2 Focal Loss) that simultaneously addresses ordinal structure preservation, overconfidence reduction, and class imbalance. To improve computational efficiency, we freeze the first 6 layers (50%) of MentalRoBERTa and employ mixed-precision training. The model is evaluated using 5-fold stratified cross-validation with macro F1 score as the primary metric.
comment: 9 pages, 7 figures, 2tables, 2025 IEEE International Conference on Big Data
☆ ShapeX: Shapelet-Driven Post Hoc Explanations for Time Series Classification Models
Explaining time series classification models is crucial, particularly in high-stakes applications such as healthcare and finance, where transparency and trust play a critical role. Although numerous time series classification methods have identified key subsequences, known as shapelets, as core features for achieving state-of-the-art performance and validating their pivotal role in classification outcomes, existing post-hoc time series explanation (PHTSE) methods primarily focus on timestep-level feature attribution. These explanation methods overlook the fundamental prior that classification outcomes are predominantly driven by key shapelets. To bridge this gap, we present ShapeX, an innovative framework that segments time series into meaningful shapelet-driven segments and employs Shapley values to assess their saliency. At the core of ShapeX lies the Shapelet Describe-and-Detect (SDD) framework, which effectively learns a diverse set of shapelets essential for classification. We further demonstrate that ShapeX produces explanations which reveal causal relationships instead of just correlations, owing to the atomicity properties of shapelets. Experimental results on both synthetic and real-world datasets demonstrate that ShapeX outperforms existing methods in identifying the most relevant subsequences, enhancing both the precision and causal fidelity of time series explanations.
♻ ☆ One-Step Offline Distillation of Diffusion-based Models via Koopman Modeling
Diffusion-based generative models have demonstrated exceptional performance, yet their iterative sampling procedures remain computationally expensive. A prominent strategy to mitigate this cost is distillation, with offline distillation offering particular advantages in terms of efficiency, modularity, and flexibility. In this work, we identify two key observations that motivate a principled distillation framework: (1) while diffusion models have been viewed through the lens of dynamical systems theory, powerful and underexplored tools can be further leveraged; and (2) diffusion models inherently impose structured, semantically coherent trajectories in latent space. Building on these observations, we introduce the Koopman Distillation Model (KDM), a novel offline distillation approach grounded in Koopman theory - a classical framework for representing nonlinear dynamics linearly in a transformed space. KDM encodes noisy inputs into an embedded space where a learned linear operator propagates them forward, followed by a decoder that reconstructs clean samples. This enables single-step generation while preserving semantic fidelity. We provide theoretical justification for our approach: (1) under mild assumptions, the learned diffusion dynamics admit a finite-dimensional Koopman representation; and (2) proximity in the Koopman latent space correlates with semantic similarity in the generated outputs, allowing for effective trajectory alignment. KDM achieves highly competitive performance across standard offline distillation benchmarks.
♻ ☆ DragFlow: Unleashing DiT Priors with Region Based Supervision for Drag Editing
Drag-based image editing has long suffered from distortions in the target region, largely because the priors of earlier base models, Stable Diffusion, are insufficient to project optimized latents back onto the natural image manifold. With the shift from UNet-based DDPMs to more scalable DiT with flow matching (e.g., SD3.5, FLUX), generative priors have become significantly stronger, enabling advances across diverse editing tasks. However, drag-based editing has yet to benefit from these stronger priors. This work proposes the first framework to effectively harness FLUX's rich prior for drag-based editing, dubbed DragFlow, achieving substantial gains over baselines. We first show that directly applying point-based drag editing to DiTs performs poorly: unlike the highly compressed features of UNets, DiT features are insufficiently structured to provide reliable guidance for point-wise motion supervision. To overcome this limitation, DragFlow introduces a region-based editing paradigm, where affine transformations enable richer and more consistent feature supervision. Additionally, we integrate pretrained open-domain personalization adapters (e.g., IP-Adapter) to enhance subject consistency, while preserving background fidelity through gradient mask-based hard constraints. Multimodal large language models (MLLMs) are further employed to resolve task ambiguities. For evaluation, we curate a novel Region-based Dragging benchmark (ReD Bench) featuring region-level dragging instructions. Extensive experiments on DragBench-DR and ReD Bench show that DragFlow surpasses both point-based and region-based baselines, setting a new state-of-the-art in drag-based image editing. Code and datasets will be publicly available upon publication.
comment: Preprint
♻ ☆ Autoencoding Random Forests NeurIPS 2025
We propose a principled method for autoencoding with random forests. Our strategy builds on foundational results from nonparametric statistics and spectral graph theory to learn a low-dimensional embedding of the model that optimally represents relationships in the data. We provide exact and approximate solutions to the decoding problem via constrained optimization, split relabeling, and nearest neighbors regression. These methods effectively invert the compression pipeline, establishing a map from the embedding space back to the input space using splits learned by the ensemble's constituent trees. The resulting decoders are universally consistent under common regularity assumptions. The procedure works with supervised or unsupervised models, providing a window into conditional or joint distributions. We demonstrate various applications of this autoencoder, including powerful new tools for visualization, compression, clustering, and denoising. Experiments illustrate the ease and utility of our method in a wide range of settings, including tabular, image, and genomic data.
comment: 10 pages main text, 34 pages total (including checklist). 9 figures, 4 tables. To be published in proceedings of the 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ Watermarking Autoregressive Image Generation NeurIPS 2025
Watermarking the outputs of generative models has emerged as a promising approach for tracking their provenance. Despite significant interest in autoregressive image generation models and their potential for misuse, no prior work has attempted to watermark their outputs at the token level. In this work, we present the first such approach by adapting language model watermarking techniques to this setting. We identify a key challenge: the lack of reverse cycle-consistency (RCC), wherein re-tokenizing generated image tokens significantly alters the token sequence, effectively erasing the watermark. To address this and to make our method robust to common image transformations, neural compression, and removal attacks, we introduce (i) a custom tokenizer-detokenizer finetuning procedure that improves RCC, and (ii) a complementary watermark synchronization layer. As our experiments demonstrate, our approach enables reliable and robust watermark detection with theoretically grounded p-values. Code and models are available at https://github.com/facebookresearch/wmar.
comment: NeurIPS 2025
♻ ☆ Learning Modular Exponentiation with Transformers NeurIPS'25
Modular exponentiation is crucial to number theory and cryptography, yet remains largely unexplored from a mechanistic interpretability standpoint. We train a 4-layer encoder-decoder Transformer model to perform this operation and investigate the emergence of numerical reasoning during training. Utilizing principled sampling strategies, PCA-based embedding analysis, and activation patching, we examine how number-theoretic properties are encoded within the model. We find that reciprocal operand training leads to strong performance gains, with sudden generalization across related moduli. These synchronized accuracy surges reflect grokking-like dynamics, suggesting the model internalizes shared arithmetic structure. We also find a subgraph consisting entirely of attention heads in the final layer sufficient to achieve full performance on the task of regular exponentiation. These results suggest that transformer models learn modular arithmetic through specialized computational circuits, paving the way for more interpretable and efficient neural approaches to modular exponentiation.
comment: Accepted at the 5th MATH-AI Workshop, NeurIPS'25
♻ ☆ Tex-ViT: A Generalizable, Robust, Texture-based dual-branch cross-attention deepfake detector
Deepfakes, which employ GAN to produce highly realistic facial modification, are widely regarded as the prevailing method. Traditional CNN have been able to identify bogus media, but they struggle to perform well on different datasets and are vulnerable to adversarial attacks due to their lack of robustness. Vision transformers have demonstrated potential in the realm of image classification problems, but they require enough training data. Motivated by these limitations, this publication introduces Tex-ViT (Texture-Vision Transformer), which enhances CNN features by combining ResNet with a vision transformer. The model combines traditional ResNet features with a texture module that operates in parallel on sections of ResNet before each down-sampling operation. The texture module then serves as an input to the dual branch of the cross-attention vision transformer. It specifically focuses on improving the global texture module, which extracts feature map correlation. Empirical analysis reveals that fake images exhibit smooth textures that do not remain consistent over long distances in manipulations. Experiments were performed on different categories of FF++, such as DF, f2f, FS, and NT, together with other types of GAN datasets in cross-domain scenarios. Furthermore, experiments also conducted on FF++, DFDCPreview, and Celeb-DF dataset underwent several post-processing situations, such as blurring, compression, and noise. The model surpassed the most advanced models in terms of generalization, achieving a 98% accuracy in cross-domain scenarios. This demonstrates its ability to learn the shared distinguishing textural characteristics in the manipulated samples. These experiments provide evidence that the proposed model is capable of being applied to various situations and is resistant to many post-processing procedures.
♻ ☆ FlyLoRA: Boosting Task Decoupling and Parameter Efficiency via Implicit Rank-Wise Mixture-of-Experts NeurIPS 2025
Low-Rank Adaptation (LoRA) is a widely used parameter-efficient fine-tuning method for foundation models, but it suffers from parameter interference, resulting in suboptimal performance. Although Mixture-of-Experts (MoE)-based LoRA variants show promise in mitigating intra-task correlations in single-task instruction tuning, they introduce additional router parameters and remain ineffective in multi-task model merging where inter-task interference arises. Inspired by the fly olfactory circuit, we propose FlyLoRA, an implicit MoE-based LoRA variant that introduces: (1) rank-wise expert activation in the up-projection matrix, and (2) an implicit router that unifies expert routing and down-projection, where a frozen sparse random projection matrix replaces the traditional dense trainable version. This design resolves the trade-off between intra-task decorrelation and computational efficiency by eliminating the need for an explicit router, while inherently mitigating inter-task interference due to the orthogonality property of random matrices. Extensive experiments across four domains -- general knowledge understanding, scientific question answering, mathematical reasoning, and code generation -- demonstrate consistent performance improvements over existing methods. Beyond empirical gains, FlyLoRA highlights how biological structures can inspire innovations in AI technologies. Code is available at https://github.com/gfyddha/FlyLoRA.
comment: NeurIPS 2025 accepted paper
♻ ☆ Position: Many generalization measures for deep learning are fragile
A wide variety of generalization measures have been applied to deep neural networks (DNNs). Although obtaining tight bounds remains challenging, such measures are often assumed to reproduce qualitative generalization trends. In this position paper, we argue that many post-mortem generalization measures -- those computed on trained networks -- are \textbf{fragile}: small training modifications that barely affect the underlying DNN can substantially change a measure's value, trend, or scaling behavior. For example, minor hyperparameter changes, such as learning rate adjustments or switching between SGD variants can reverse the slope of a learning curve in widely used generalization measures like the path norm. We also identify subtler forms of fragility. For instance, the PAC-Bayes origin measure is regarded as one of the most reliable, and is indeed less sensitive to hyperparameter tweaks than many other measures. However, it completely fails to capture differences in data complexity across learning curves. This data fragility contrasts with the function-based marginal-likelihood PAC-Bayes bound, which does capture differences in data-complexity, including scaling behavior, in learning curves, but which is not a post-mortem measure. Beyond demonstrating that many bounds -- such as path, spectral and Frobenius norms, flatness proxies, and deterministic PAC-Bayes surrogates -- are fragile, this position paper also argues that developers of new measures should explicitly audit them for fragility.
♻ ☆ Prover Agent: An Agent-Based Framework for Formal Mathematical Proofs
We present Prover Agent, a novel AI agent for automated theorem proving that integrates large language models (LLMs) with a formal proof assistant, Lean. Prover Agent coordinates an informal reasoning LLM, a formal prover model, and feedback from Lean while also generating auxiliary lemmas. These auxiliary lemmas are not limited to subgoals in the formal proof but can also include special cases or potentially useful facts derived from the assumptions, which help in discovering a viable proof strategy. It achieves an 88.1% success rate on the MiniF2F benchmark, establishing a new state-of-the-art among methods using small language models (SLMs) with a much lower sample budget than previous approaches. We also present theoretical analyses and case studies that illustrate how these generated lemmas contribute to solving challenging problems. Our code is publicly available at: https://github.com/kAIto47802/Prover-Agent.
comment: 36 pages, 3 figures
♻ ☆ xRFM: Accurate, scalable, and interpretable feature learning models for tabular data
Inference from tabular data, collections of continuous and categorical variables organized into matrices, is a foundation for modern technology and science. Yet, in contrast to the explosive changes in the rest of AI, the best practice for these predictive tasks has been relatively unchanged and is still primarily based on variations of Gradient Boosted Decision Trees (GBDTs). Very recently, there has been renewed interest in developing state-of-the-art methods for tabular data based on recent developments in neural networks and feature learning methods. In this work, we introduce xRFM, an algorithm that combines feature learning kernel machines with a tree structure to both adapt to the local structure of the data and scale to essentially unlimited amounts of training data. We show that compared to $31$ other methods, including recently introduced tabular foundation models (TabPFNv2) and GBDTs, xRFM achieves best performance across $100$ regression datasets and is competitive to the best methods across $200$ classification datasets outperforming GBDTs. Additionally, xRFM provides interpretability natively through the Average Gradient Outer Product.
♻ ☆ CLEVER: A Curated Benchmark for Formally Verified Code Generation
We introduce ${\rm C{\small LEVER}}$, a high-quality, curated benchmark of 161 problems for end-to-end verified code generation in Lean. Each problem consists of (1) the task of generating a specification that matches a held-out ground-truth specification, and (2) the task of generating a Lean implementation that provably satisfies this specification. Unlike prior benchmarks, ${\rm C{\small LEVER}}$ avoids test-case supervision, LLM-generated annotations, and specifications that leak implementation logic or allow vacuous solutions. All outputs are verified post-hoc using Lean's type checker to ensure machine-checkable correctness. We use ${\rm C{\small LEVER}}$ to evaluate several few-shot and agentic approaches based on state-of-the-art language models. These methods all struggle to achieve full verification, establishing it as a challenging frontier benchmark for program synthesis and formal reasoning. Our benchmark can be found on GitHub(https://github.com/trishullab/clever) as well as HuggingFace(https://huggingface.co/datasets/amitayusht/clever). All our evaluation code is also available online(https://github.com/trishullab/clever-prover).
♻ ☆ Stop Summation: Min-Form Credit Assignment Is All Process Reward Model Needs for Reasoning NeurIPS 2025
Process reward models (PRMs) have proven effective for test-time scaling of Large Language Models (LLMs) on challenging reasoning tasks. However, reward hacking issues with PRMs limit their successful application in reinforcement fine-tuning. In this paper, we identify the main cause of PRM-induced reward hacking: the canonical summation-form credit assignment in reinforcement learning (RL), which defines the value as cumulative gamma-decayed future rewards, easily induces LLMs to hack steps with high rewards. To address this, we propose PURE: Process sUpervised Reinforcement lEarning. The key innovation of PURE is a min-form credit assignment that formulates the value function as the minimum of future rewards. This method significantly alleviates reward hacking by limiting the value function range and distributing advantages more reasonably. Through extensive experiments on 3 base models, we show that PRM-based approaches enabling min-form credit assignment achieve comparable reasoning performance to verifiable reward-based methods within only 30% steps. In contrast, the canonical sum-form credit assignment collapses training even at the beginning! Additionally, when we supplement PRM-based fine-tuning with just 10% verifiable rewards, we further alleviate reward hacking and produce the best fine-tuned model based on Qwen2.5-Math-7B in our experiments, achieving 82.5% accuracy on AMC23 and 53.3% average accuracy across 5 benchmarks. Moreover, we summarize the observed reward hacking cases and analyze the causes of training collapse. We release our code and model weights at https://github.com/CJReinforce/PURE.
comment: Accepted by NeurIPS 2025
♻ ☆ TabR1: Taming GRPO for tabular reasoning LLMs
Tabular prediction has traditionally relied on gradient-boosted decision trees and specialized deep learning models, which excel within tasks but provide limited interpretability and weak transfer across tables. Reasoning large language models (LLMs) promise cross-task adaptability with trans- parent reasoning traces, yet their potential has not been fully realized for tabular data. This paper presents TabR1, the first reasoning LLM for tabular prediction with multi-step reasoning. At its core is Permutation Relative Policy Optimization (PRPO), a simple yet efficient reinforcement learning method that encodes column-permutation invariance as a structural prior. By construct- ing multiple label-preserving permutations per sample and estimating advantages both within and across permutations, PRPO transforms sparse rewards into dense learning signals and improves generalization. With limited supervision, PRPO activates the reasoning ability of LLMs for tabular prediction, enhancing few-shot and zero-shot performance as well as interpretability. Comprehensive experiments demonstrate that TabR1 achieves performance comparable to strong baselines under full-supervision fine-tuning. In the zero-shot setting, TabR1 approaches the performance of strong baselines under the 32-shot setting. Moreover, TabR1 (8B) substantially outperforms much larger LLMs across various tasks, achieving up to 53.17% improvement over DeepSeek-R1 (685B).
♻ ☆ Sampling from multi-modal distributions with polynomial query complexity in fixed dimension via reverse diffusion
Even in low dimensions, sampling from multi-modal distributions is challenging. We provide the first sampling algorithm for a broad class of distributions -- including all Gaussian mixtures -- with a query complexity that is polynomial in the parameters governing multi-modality, assuming fixed dimension. Our sampling algorithm simulates a time-reversed diffusion process, using a self-normalized Monte Carlo estimator of the intermediate score functions. Unlike previous works, it avoids metastability, requires no prior knowledge of the mode locations, and relaxes the well-known log-smoothness assumption which excluded general Gaussian mixtures so far.
♻ ☆ On the Emergence of Linear Analogies in Word Embeddings NeurIPS 2025
Models such as Word2Vec and GloVe construct word embeddings based on the co-occurrence probability $P(i,j)$ of words $i$ and $j$ in text corpora. The resulting vectors $W_i$ not only group semantically similar words but also exhibit a striking linear analogy structure -- for example, $W_{\text{king}} - W_{\text{man}} + W_{\text{woman}} \approx W_{\text{queen}}$ -- whose theoretical origin remains unclear. Previous observations indicate that this analogy structure: (i) already emerges in the top eigenvectors of the matrix $M(i,j) = P(i,j)/P(i)P(j)$, (ii) strengthens and then saturates as more eigenvectors of $M (i, j)$, which controls the dimension of the embeddings, are included, (iii) is enhanced when using $\log M(i,j)$ rather than $M(i,j)$, and (iv) persists even when all word pairs involved in a specific analogy relation (e.g., king-queen, man-woman) are removed from the corpus. To explain these phenomena, we introduce a theoretical generative model in which words are defined by binary semantic attributes, and co-occurrence probabilities are derived from attribute-based interactions. This model analytically reproduces the emergence of linear analogy structure and naturally accounts for properties (i)-(iv). It can be viewed as giving fine-grained resolution into the role of each additional embedding dimension. It is robust to various forms of noise and agrees well with co-occurrence statistics measured on Wikipedia and the analogy benchmark introduced by Mikolov et al.
comment: Main: 10 pages, 3 figures. Appendices: 11 pages, 7 figures. Accepted at NeurIPS 2025 as a poster
♻ ☆ Stochastic gradient descent in high dimensions for multi-spiked tensor PCA
We study the high-dimensional dynamics of online stochastic gradient descent (SGD) for the multi-spiked tensor model. This multi-index model arises from the tensor principal component analysis (PCA) problem with multiple spikes, where the goal is to estimate $r$ unknown signal vectors within the $N$-dimensional unit sphere through maximum likelihood estimation from noisy observations of a $p$-tensor. We determine the number of samples and the conditions on the signal-to-noise ratios (SNRs) required to efficiently recover the unknown spikes from natural random initializations. We show that full recovery of all spikes is possible provided a number of sample scaling as $N^{p-2}$, matching the algorithmic threshold identified in the rank-one case [Ben Arous, Gheissari, Jagannath 2020, 2021]. Our results are obtained through a detailed analysis of a low-dimensional system that describes the evolution of the correlations between the estimators and the spikes, while controlling the noise in the dynamics. We find that the spikes are recovered sequentially in a process we term "sequential elimination": once a correlation exceeds a critical threshold, all correlations sharing a row or column index become sufficiently small, allowing the next correlation to grow and become macroscopic. The order in which correlations become macroscopic depends on their initial values and the corresponding SNRs, leading to either exact recovery or recovery of a permutation of the spikes. In the matrix case, when $p=2$, if the SNRs are sufficiently separated, we achieve exact recovery of the spikes, whereas equal SNRs lead to recovery of the subspace spanned by them.
comment: 68 pages, 8 figures
♻ ☆ Superposition Yields Robust Neural Scaling NeurIPS 2025
The success of today's large language models (LLMs) depends on the observation that larger models perform better. However, the origin of this neural scaling law, that loss decreases as a power law with model size, remains unclear. We propose that representation superposition, meaning that LLMs represent more features than they have dimensions, can be a key contributor to loss and cause neural scaling. Based on Anthropic's toy model, we use weight decay to control the degree of superposition, allowing us to systematically study how loss scales with model size. When superposition is weak, the loss follows a power law only if data feature frequencies are power-law distributed. In contrast, under strong superposition, the loss generically scales inversely with model dimension across a broad class of frequency distributions, due to geometric overlaps between representation vectors. We confirmed that open-sourced LLMs operate in the strong superposition regime and have loss scaling like one over the model dimension, and that the Chinchilla scaling laws are also consistent with this behavior. Our results identify representation superposition as a central driver of neural scaling laws, providing insights into questions like when neural scaling laws can be improved and when they will break down.
comment: Accepted at NeurIPS 2025
♻ ☆ Flow based approach for Dynamic Temporal Causal models with non-Gaussian or Heteroscedastic Noises
Understanding causal relationships in multivariate time series is crucial in many scenarios, such as those dealing with financial or neurological data. Many such time series exhibit multiple regimes, i.e., consecutive temporal segments with a priori unknown boundaries, with each regime having its own causal structure. Inferring causal dependencies and regime shifts is critical for analyzing the underlying processes. However, causal structure learning in this setting is challenging due to (1) non-stationarity, i.e., each regime can have its own causal graph and mixing function, and (2) complex noise distributions, which may be nonGaussian or heteroscedastic. Existing causal discovery approaches cannot address these challenges, since generally assume stationarity or Gaussian noise with constant variance. Hence, we introduce FANTOM, a unified framework for causal discovery that handles non-stationary processes along with non-Gaussian and heteroscedastic noises. FANTOM simultaneously infers the number of regimes and their corresponding indices and learns each regime's Directed Acyclic Graph. It uses a Bayesian Expectation Maximization algorithm that maximizes the evidence lower bound of the data log-likelihood. On the theoretical side, we prove, under mild assumptions, that temporal heteroscedastic causal models, introduced in FANTOM's formulation, are identifiable in both stationary and non-stationary settings. In addition, extensive experiments on synthetic and real data show that FANTOM outperforms existing methods.
♻ ☆ CTSketch: Compositional Tensor Sketching for Scalable Neurosymbolic Learning
Many computational tasks benefit from being formulated as the composition of neural networks followed by a discrete symbolic program. The goal of neurosymbolic learning is to train the neural networks using end-to-end input-output labels of the composite. We introduce CTSketch, a novel, scalable neurosymbolic learning algorithm. CTSketch uses two techniques to improve the scalability of neurosymbolic inference: decompose the symbolic program into sub-programs and summarize each sub-program with a sketched tensor. This strategy allows us to approximate the output distribution of the program with simple tensor operations over the input distributions and the sketches. We provide theoretical insight into the maximum approximation error. Furthermore, we evaluate CTSketch on benchmarks from the neurosymbolic learning literature, including some designed for evaluating scalability. Our results show that CTSketch pushes neurosymbolic learning to new scales that were previously unattainable, with neural predictors obtaining high accuracy on tasks with one thousand inputs, despite supervision only on the final output.
comment: 18 pages, 6 figures
♻ ☆ From Counterfactuals to Trees: Competitive Analysis of Model Extraction Attacks
The advent of Machine Learning as a Service (MLaaS) has heightened the trade-off between model explainability and security. In particular, explainability techniques, such as counterfactual explanations, inadvertently increase the risk of model extraction attacks, enabling unauthorized replication of proprietary models. In this paper, we formalize and characterize the risks and inherent complexity of model reconstruction, focusing on the "oracle'' queries required for faithfully inferring the underlying prediction function. We present the first formal analysis of model extraction attacks through the lens of competitive analysis, establishing a foundational framework to evaluate their efficiency. Focusing on models based on additive decision trees (e.g., decision trees, gradient boosting, and random forests), we introduce novel reconstruction algorithms that achieve provably perfect fidelity while demonstrating strong anytime performance. Our framework provides theoretical bounds on the query complexity for extracting tree-based model, offering new insights into the security vulnerabilities of their deployment.
♻ ☆ Temporal-Difference Variational Continual Learning NeurIPS 2025
Machine Learning models in real-world applications must continuously learn new tasks to adapt to shifts in the data-generating distribution. Yet, for Continual Learning (CL), models often struggle to balance learning new tasks (plasticity) with retaining previous knowledge (memory stability). Consequently, they are susceptible to Catastrophic Forgetting, which degrades performance and undermines the reliability of deployed systems. In the Bayesian CL literature, variational methods tackle this challenge by employing a learning objective that recursively updates the posterior distribution while constraining it to stay close to its previous estimate. Nonetheless, we argue that these methods may be ineffective due to compounding approximation errors over successive recursions. To mitigate this, we propose new learning objectives that integrate the regularization effects of multiple previous posterior estimations, preventing individual errors from dominating future posterior updates and compounding over time. We reveal insightful connections between these objectives and Temporal-Difference methods, a popular learning mechanism in Reinforcement Learning and Neuroscience. Experiments on challenging CL benchmarks show that our approach effectively mitigates Catastrophic Forgetting, outperforming strong Variational CL methods.
comment: Published at NeurIPS 2025
♻ ☆ ReDit: Reward Dithering for Improved LLM Policy Optimization
DeepSeek-R1 has successfully enhanced Large Language Model (LLM) reasoning capabilities through its rule-based reward system. While it's a ''perfect'' reward system that effectively mitigates reward hacking, such reward functions are often discrete. Our experimental observations suggest that discrete rewards can lead to gradient anomaly, unstable optimization, and slow convergence. To address this issue, we propose ReDit (Reward Dithering), a method that dithers the discrete reward signal by adding simple random noise. With this perturbed reward, exploratory gradients are continuously provided throughout the learning process, enabling smoother gradient updates and accelerating convergence. The injected noise also introduces stochasticity into flat reward regions, encouraging the model to explore novel policies and escape local optima. Experiments across diverse tasks demonstrate the effectiveness and efficiency of ReDit. On average, ReDit achieves performance comparable to vanilla GRPO with only approximately 10% the training steps, and furthermore, still exhibits a 4% performance improvement over vanilla GRPO when trained for a similar duration. Visualizations confirm significant mitigation of gradient issues with ReDit. Moreover, theoretical analyses are provided to further validate these advantages.
comment: 34 pages, 19 figures
♻ ☆ CALM-PDE: Continuous and Adaptive Convolutions for Latent Space Modeling of Time-dependent PDEs NeurIPS
Solving time-dependent Partial Differential Equations (PDEs) using a densely discretized spatial domain is a fundamental problem in various scientific and engineering disciplines, including modeling climate phenomena and fluid dynamics. However, performing these computations directly in the physical space often incurs significant computational costs. To address this issue, several neural surrogate models have been developed that operate in a compressed latent space to solve the PDE. While these approaches reduce computational complexity, they often use Transformer-based attention mechanisms to handle irregularly sampled domains, resulting in increased memory consumption. In contrast, convolutional neural networks allow memory-efficient encoding and decoding but are limited to regular discretizations. Motivated by these considerations, we propose CALM-PDE, a model class that efficiently solves arbitrarily discretized PDEs in a compressed latent space. We introduce a novel continuous convolution-based encoder-decoder architecture that uses an epsilon-neighborhood-constrained kernel and learns to apply the convolution operator to adaptive and optimized query points. We demonstrate the effectiveness of CALM-PDE on a diverse set of PDEs with both regularly and irregularly sampled spatial domains. CALM-PDE is competitive with or outperforms existing baseline methods while offering significant improvements in memory and inference time efficiency compared to Transformer-based methods.
comment: Accepted for publication at the 39th Conference on Neural Information Processing Systems (NeurIPS) 2025, San Diego, California, USA
♻ ☆ Lessons Learned: A Multi-Agent Framework for Code LLMs to Learn and Improve NeurIPS 2025
Recent studies show that LLMs possess different skills and specialize in different tasks. In fact, we observe that their varied performance occur in several levels of granularity. For example, in the code optimization task, code LLMs excel at different optimization categories and no one dominates others. This observation prompts the question of how one leverages multiple LLM agents to solve a coding problem without knowing their complementary strengths a priori. We argue that a team of agents can learn from each other's successes and failures so as to improve their own performance. Thus, a lesson is the knowledge produced by an agent and passed on to other agents in the collective solution process. We propose a lesson-based collaboration framework, design the lesson solicitation--banking--selection mechanism, and demonstrate that a team of small LLMs with lessons learned can outperform a much larger LLM and other multi-LLM collaboration methods.
comment: NeurIPS 2025. Code is available at https://github.com/MITIBM-FastCoder/LessonL
♻ ☆ Which Is Better For Reducing Outdated and Vulnerable Dependencies: Pinning or Floating?
Developers consistently use version constraints to specify acceptable versions of the dependencies for their project. \emph{Pinning} dependencies can reduce the likelihood of breaking changes, but comes with a cost of manually managing the replacement of outdated and vulnerable dependencies. On the other hand, \emph{floating} can be used to automatically get bug fixes and security fixes, but comes with the risk of breaking changes. Security practitioners advocate \emph{pinning} dependencies to prevent against software supply chain attacks, e.g., malicious package updates. However, since \emph{pinning} is the tightest version constraint, \emph{pinning} is the most likely to result in outdated dependencies. Nevertheless, how the likelihood of becoming outdated or vulnerable dependencies changes across version constraint types is unknown. The goal of this study is to aid developers in making an informed dependency version constraint choice by empirically evaluating the likelihood of dependencies becoming outdated or vulnerable across version constraint types at scale. In this study, we first identify the trends in dependency version constraint usage and the patterns of version constraint type changes made by developers in the npm, PyPI, and Cargo ecosystems. We then modeled the dependency state transitions using survival analysis and estimated how the likelihood of becoming outdated or vulnerable changes when using \emph{pinning} as opposed to the rest of the version constraint types. We observe that among outdated and vulnerable dependencies, the most commonly used version constraint type is \emph{floating-minor}, with \emph{pinning} being the next most common. We also find that \emph{floating-major} is the least likely to result in outdated and \emph{floating-minor} is the least likely to result in vulnerable dependencies.
comment: Accepted to ASE 2025
♻ ☆ Embedding principle of homogeneous neural network for classification problem
In this paper, we study the Karush-Kuhn-Tucker (KKT) points of the associated maximum-margin problem in homogeneous neural networks, including fully-connected and convolutional neural networks. In particular, We investigates the relationship between such KKT points across networks of different widths generated. We introduce and formalize the \textbf{KKT point embedding principle}, establishing that KKT points of a homogeneous network's max-margin problem ($P_{\Phi}$) can be embedded into the KKT points of a larger network's problem ($P_{\tilde{\Phi}}$) via specific linear isometric transformations. We rigorously prove this principle holds for neuron splitting in fully-connected networks and channel splitting in convolutional neural networks. Furthermore, we connect this static embedding to the dynamics of gradient flow training with smooth losses. We demonstrate that trajectories initiated from appropriately mapped points remain mapped throughout training and that the resulting $\omega$-limit sets of directions are correspondingly mapped, thereby preserving the alignment with KKT directions dynamically when directional convergence occurs. We conduct several experiments to justify that trajectories are preserved. Our findings offer insights into the effects of network width, parameter redundancy, and the structural connections between solutions found via optimization in homogeneous networks of varying sizes.
♻ ☆ Making Classic GNNs Strong Baselines Across Varying Homophily: A Smoothness-Generalization Perspective NeurIPS 2025
Graph Neural Networks (GNNs) have achieved great success but are often considered to be challenged by varying levels of homophily in graphs. Recent empirical studies have surprisingly shown that homophilic GNNs can perform well across datasets of different homophily levels with proper hyperparameter tuning, but the underlying theory and effective architectures remain unclear. To advance GNN universality across varying homophily, we theoretically revisit GNN message passing and uncover a novel smoothness-generalization dilemma, where increasing hops inevitably enhances smoothness at the cost of generalization. This dilemma hinders learning in higher-order homophilic neighborhoods and all heterophilic ones, where generalization is critical due to complex neighborhood class distributions that are sensitive to shifts induced by noise and sparsity. To address this, we introduce the Inceptive Graph Neural Network (IGNN) built on three simple yet effective design principles, which alleviate the dilemma by enabling distinct hop-wise generalization alongside improved overall generalization with adaptive smoothness. Benchmarking against 30 baselines demonstrates IGNN's superiority and reveals notable universality in certain homophilic GNN variants. Our code and datasets are available at https://github.com/galogm/IGNN.
comment: 36 pages. Accepted by NeurIPS 2025
♻ ☆ BioCLIP 2: Emergent Properties from Scaling Hierarchical Contrastive Learning NeurIPS 2025
Foundation models trained at scale exhibit remarkable emergent behaviors, learning new capabilities beyond their initial training objectives. We find such emergent behaviors in biological vision models via large-scale contrastive vision-language training. To achieve this, we first curate TreeOfLife-200M, comprising 214 million images of living organisms, the largest and most diverse biological organism image dataset to date. We then train BioCLIP 2 on TreeOfLife-200M to distinguish different species. Despite the narrow training objective, BioCLIP 2 yields extraordinary accuracy when applied to various biological visual tasks such as habitat classification and trait prediction. We identify emergent properties in the learned embedding space of BioCLIP 2. At the inter-species level, the embedding distribution of different species aligns closely with functional and ecological meanings (e.g., beak sizes and habitats). At the intra-species level, instead of being diminished, the intra-species variations (e.g., life stages and sexes) are preserved and better separated in subspaces orthogonal to inter-species distinctions. We provide formal proof and analyses to explain why hierarchical supervision and contrastive objectives encourage these emergent properties. Crucially, our results reveal that these properties become increasingly significant with larger-scale training data, leading to a biologically meaningful embedding space.
comment: NeurIPS 2025 Spotlight; Project page: https://imageomics.github.io/bioclip-2/
♻ ☆ Teaming LLMs to Detect and Mitigate Hallucinations NeurIPS 2025
Recent work has demonstrated state-of-the-art results in large language model (LLM) hallucination detection and mitigation through consistency-based approaches which involve aggregating multiple responses sampled from a single LLM for a given prompt. These approaches help offset limitations stemming from the imperfect data on which LLMs are trained, which includes biases and under-representation of information required at deployment time among other limitations which can lead to hallucinations. We show that extending these single-model consistency methods to combine responses from multiple LLMs with different training data, training schemes and model architectures can result in substantial further improvements in hallucination detection and mitigation capabilities beyond their single-model consistency counterparts. We evaluate this "consortium consistency" approach across many model teams from a pool of 15 LLMs and explore under what conditions it is beneficial to team together different LLMs in this manner. Further, we show that these performance improvements often come with reduced inference costs, offsetting a significant drawback with single-model consistency methods.
comment: Accepted to NeurIPS 2025 workshop on Reliable ML from Unreliable Data
♻ ☆ Towards Understanding Safety Alignment: A Mechanistic Perspective from Safety Neurons NeurIPS 2025
Large language models (LLMs) excel in various capabilities but pose safety risks such as generating harmful content and misinformation, even after safety alignment. In this paper, we explore the inner mechanisms of safety alignment through the lens of mechanistic interpretability, focusing on identifying and analyzing safety neurons within LLMs that are responsible for safety behaviors. We propose inference-time activation contrasting to locate these neurons and dynamic activation patching to evaluate their causal effects on model safety. Experiments on multiple prevalent LLMs demonstrate that we can consistently identify about $5\%$ safety neurons, and by only patching their activations we can restore over $90\%$ of the safety performance across various red-teaming benchmarks without influencing general ability. The finding of safety neurons also helps explain the ''alignment tax'' phenomenon by revealing that the key neurons for model safety and helpfulness significantly overlap, yet they require different activation patterns for the same neurons. Furthermore, we demonstrate an application of our findings in safeguarding LLMs by detecting unsafe outputs before generation. The source code is available at https://github.com/THU-KEG/SafetyNeuron.
comment: NeurIPS 2025
♻ ☆ Edit Flows: Flow Matching with Edit Operations
Autoregressive generative models naturally generate variable-length sequences, while non-autoregressive models struggle, often imposing rigid, token-wise structures. We propose Edit Flows, a non-autoregressive model that overcomes these limitations by defining a discrete flow over sequences through edit operations$\unicode{x2013}$insertions, deletions, and substitutions. By modeling these operations within a Continuous-time Markov Chain over the sequence space, Edit Flows enable flexible, position-relative generation that aligns more closely with the structure of sequence data. Our training method leverages an expanded state space with auxiliary variables, making the learning process efficient and tractable. Empirical results show that Edit Flows outperforms both autoregressive and mask models on image captioning and significantly outperforms the mask construction in text and code generation.
♻ ☆ Efficient Vision-Language-Action Models for Embodied Manipulation: A Systematic Survey
Vision-Language-Action (VLA) models extend vision-language models to embodied control by mapping natural-language instructions and visual observations to robot actions. Despite their capabilities, VLA systems face significant challenges due to their massive computational and memory demands, which conflict with the constraints of edge platforms such as on-board mobile manipulators that require real-time performance. Addressing this tension has become a central focus of recent research. In light of the growing efforts toward more efficient and scalable VLA systems, this survey provides a systematic review of approaches for improving VLA efficiency, with an emphasis on reducing latency, memory footprint, and training and inference costs. We categorize existing solutions into four dimensions: model architecture, perception feature, action generation, and training/inference strategies, summarizing representative techniques within each category. Finally, we discuss future trends and open challenges, highlighting directions for advancing efficient embodied intelligence.
♻ ☆ Streaming Federated Learning with Markovian Data
Federated learning (FL) is now recognized as a key framework for communication-efficient collaborative learning. Most theoretical and empirical studies, however, rely on the assumption that clients have access to pre-collected data sets, with limited investigation into scenarios where clients continuously collect data. In many real-world applications, particularly when data is generated by physical or biological processes, client data streams are often modeled by non-stationary Markov processes. Unlike standard i.i.d. sampling, the performance of FL with Markovian data streams remains poorly understood due to the statistical dependencies between client samples over time. In this paper, we investigate whether FL can still support collaborative learning with Markovian data streams. Specifically, we analyze the performance of Minibatch SGD, Local SGD, and a variant of Local SGD with momentum. We answer affirmatively under standard assumptions and smooth non-convex client objectives: the sample complexity is proportional to the inverse of the number of clients with a communication complexity comparable to the i.i.d. scenario. However, the sample complexity for Markovian data streams remains higher than for i.i.d. sampling.
comment: Neurips 2025 camera-ready version
♻ ☆ Residual Kolmogorov-Arnold Network for Enhanced Deep Learning
Despite their immense success, deep convolutional neural networks (CNNs) can be difficult to optimize and costly to train due to hundreds of layers within the network depth. Conventional convolutional operations are fundamentally limited by their linear nature along with fixed activations, where many layers are needed to learn meaningful patterns in data. Because of the sheer size of these networks, this approach is simply computationally inefficient, and poses overfitting or gradient explosion risks, especially in small datasets. As a result, we introduce a "plug-in" module, called Residual Kolmogorov-Arnold Network (RKAN). Our module is highly compact, so it can be easily added into any stage (level) of traditional deep networks, where it learns to integrate supportive polynomial feature transformations to existing convolutional frameworks. RKAN offers consistent improvements over baseline models in different vision tasks and widely tested benchmarks, accomplishing cutting-edge performance on them.
comment: Code is available at https://github.com/withray/residualKAN.git
♻ ☆ floq: Training Critics via Flow-Matching for Scaling Compute in Value-Based RL
A hallmark of modern large-scale machine learning techniques is the use of training objectives that provide dense supervision to intermediate computations, such as teacher forcing the next token in language models or denoising step-by-step in diffusion models. This enables models to learn complex functions in a generalizable manner. Motivated by this observation, we investigate the benefits of iterative computation for temporal difference (TD) methods in reinforcement learning (RL). Typically they represent value functions in a monolithic fashion, without iterative compute. We introduce floq (flow-matching Q-functions), an approach that parameterizes the Q-function using a velocity field and trains it using techniques from flow-matching, typically used in generative modeling. This velocity field underneath the flow is trained using a TD-learning objective, which bootstraps from values produced by a target velocity field, computed by running multiple steps of numerical integration. Crucially, floq allows for more fine-grained control and scaling of the Q-function capacity than monolithic architectures, by appropriately setting the number of integration steps. Across a suite of challenging offline RL benchmarks and online fine-tuning tasks, floq improves performance by nearly 1.8x. floq scales capacity far better than standard TD-learning architectures, highlighting the potential of iterative computation for value learning.
comment: Added new experiments, fixed typos. Code -- https://github.com/CMU-AIRe/floq
♻ ☆ Prognostic Framework for Robotic Manipulators Operating Under Dynamic Task Severities IEEE
Robotic manipulators are critical in many applications but are known to degrade over time. This degradation is influenced by the nature of the tasks performed by the robot. Tasks with higher severity, such as handling heavy payloads, can accelerate the degradation process. One way this degradation is reflected is in the position accuracy of the robot's end-effector. In this paper, we present a prognostic modeling framework that predicts a robotic manipulator's Remaining Useful Life (RUL) while accounting for the effects of task severity. Our framework represents the robot's position accuracy as a Brownian motion process with a random drift parameter that is influenced by task severity. The dynamic nature of task severity is modeled using a continuous-time Markov chain (CTMC). To evaluate RUL, we discuss two approaches -- (1) a novel closed-form expression for Remaining Lifetime Distribution (RLD), and (2) Monte Carlo simulations, commonly used in prognostics literature. Theoretical results establish the equivalence between these RUL computation approaches. We validate our framework through experiments using two distinct physics-based simulators for planar and spatial robot fleets. Our findings show that robots in both fleets experience shorter RUL when handling a higher proportion of high-severity tasks.
comment: Accepted for Publication in IEEE Transactions on Systems, Man, and Cybernetics: Systems
♻ ☆ Optimizing Time Series Forecasting Architectures: A Hierarchical Neural Architecture Search Approach
The rapid development of time series forecasting research has brought many deep learning-based modules in this field. However, despite the increasing amount of new forecasting architectures, it is still unclear if we have leveraged the full potential of these existing modules within a properly designed architecture. In this work, we propose a novel hierarchical neural architecture search approach for time series forecasting tasks. With the design of a hierarchical search space, we incorporate many architecture types designed for forecasting tasks and allow for the efficient combination of different forecasting architecture modules. Results on long-term-time-series-forecasting tasks show that our approach can search for lightweight high-performing forecasting architectures across different forecasting tasks.
♻ ☆ Deep Learning for Continuous-time Stochastic Control with Jumps
In this paper, we introduce a model-based deep-learning approach to solve finite-horizon continuous-time stochastic control problems with jumps. We iteratively train two neural networks: one to represent the optimal policy and the other to approximate the value function. Leveraging a continuous-time version of the dynamic programming principle, we derive two different training objectives based on the Hamilton-Jacobi-Bellman equation, ensuring that the networks capture the underlying stochastic dynamics. Empirical evaluations on different problems illustrate the accuracy and scalability of our approach, demonstrating its effectiveness in solving complex, high-dimensional stochastic control tasks.
♻ ☆ How Ensembles of Distilled Policies Improve Generalisation in Reinforcement Learning
In the zero-shot policy transfer setting in reinforcement learning, the goal is to train an agent on a fixed set of training environments so that it can generalise to similar, but unseen, testing environments. Previous work has shown that policy distillation after training can sometimes produce a policy that outperforms the original in the testing environments. However, it is not yet entirely clear why that is, or what data should be used to distil the policy. In this paper, we prove, under certain assumptions, a generalisation bound for policy distillation after training. The theory provides two practical insights: for improved generalisation, you should 1) train an ensemble of distilled policies, and 2) distil it on as much data from the training environments as possible. We empirically verify that these insights hold in more general settings, when the assumptions required for the theory no longer hold. Finally, we demonstrate that an ensemble of policies distilled on a diverse dataset can generalise significantly better than the original agent.
♻ ☆ KOALA++: Efficient Kalman-Based Optimization of Neural Networks with Gradient-Covariance Products
We propose KOALA++, a scalable Kalman-based optimization algorithm that explicitly models structured gradient uncertainty in neural network training. Unlike second-order methods, which rely on expensive second order gradient calculation, our method directly estimates the parameter covariance matrix by recursively updating compact gradient covariance products. This design improves upon the original KOALA framework that assumed diagonal covariance by implicitly capturing richer uncertainty structure without storing the full covariance matrix and avoiding large matrix inversions. Across diverse tasks, including image classification and language modeling, KOALA++ achieves accuracy on par or better than state-of-the-art first- and second-order optimizers while maintaining the efficiency of first-order methods.
♻ ☆ Fast Inference via Hierarchical Speculative Decoding
Transformer language models generate text autoregressively, making inference latency proportional to the number of tokens generated. Speculative decoding reduces this latency without sacrificing output quality, by leveraging a small draft model to propose tokens that the larger target model verifies in parallel. In practice, however, there may exist a set of potential draft models- ranging from faster but less inaccurate, to slower yet more reliable. We introduce Hierarchical Speculative Decoding (HSD), an algorithm that stacks these draft models into a hierarchy, where each model proposes tokens, and the next larger model verifies them in a single forward pass, until finally the target model verifies tokens. We derive an expression for the expected latency of any such hierarchy and show that selecting the latency-optimal hierarchy can be done in polynomial time. Empirically, HSD gives up to 1.2x speed-up over the best single-draft baseline, demonstrating the practicality of our algorithm in reducing generation latency beyond previous techniques.
♻ ☆ Execution Guided Line-by-Line Code Generation NeurIPS 2026
We present a novel approach to neural code generation that incorporates real-time execution signals into the language model generation process. While large language models (LLMs) have demonstrated impressive code generation capabilities, they typically do not utilize execution feedback during inference, a critical signal that human programmers regularly leverage. Our method, Execution-Guided Classifier-Free Guidance (EG-CFG), dynamically incorporates execution signals as the model generates code, providing line-by-line feedback that guides the generation process toward executable solutions. EG-CFG employs a multi-stage process: first, we conduct beam search to sample candidate program completions for each line; second, we extract execution signals by executing these candidates against test cases; and finally, we incorporate these signals into the prompt during generation. By maintaining consistent signals across tokens within the same line and refreshing signals at line boundaries, our approach provides coherent guidance while preserving syntactic structure. Moreover, the method naturally supports native parallelism at the task level in which multiple agents operate in parallel, exploring diverse reasoning paths and collectively generating a broad set of candidate solutions. Our experiments across diverse coding tasks demonstrate that EG-CFG significantly improves code generation performance compared to standard approaches, achieving state-of-the-art results across various levels of complexity, from foundational problems to challenging competitive programming and data science tasks. Our code is available at: https://github.com/boazlavon/eg_cfg
comment: Accepted to NeurIPS 2026
♻ ☆ Solving 0-1 Integer Programs with Unknown Knapsack Constraints Using Membership Oracles
We consider solving a combinatorial optimization problem with unknown knapsack constraints using a membership oracle for each unknown constraint such that, given a solution, the oracle determines whether the constraint is satisfied or not with absolute certainty. The goal of the decision maker is to find the best possible solution subject to a budget on the number of oracle calls. Inspired by active learning for binary classification based on Support Vector Machines (SVMs), we devise a framework to solve the problem by learning and exploiting surrogate linear constraints. The framework includes training linear separators on the labeled points and selecting new points to be labeled, which is achieved by applying a sampling strategy and solving a 0-1 integer linear program. Following the active learning literature, a natural choice would be SVM as a linear classifier and the information-based sampling strategy known as simple margin, for each unknown constraint. We improve on both sides: we propose an alternative sampling strategy based on mixed-integer quadratic programming and a linear separation method inspired by an algorithm for convex optimization in the oracle model. We conduct experiments on classical problems and variants inspired by realistic applications to show how different linear separation methods and sampling strategies influence the quality of the results in terms of several metrics including objective value, dual bound and running time.
♻ ☆ Certified Self-Consistency: Statistical Guarantees and Test-Time Training for Reliable Reasoning in LLMs
Recent advances such as self-consistency and test-time reinforcement learning (TTRL) improve the reliability of large language models (LLMs) without additional supervision, yet their underlying mechanisms and statistical guarantees remain poorly understood. We present a unified framework for certifiable inference in LLMs, showing that majority voting provides a statistical certificate of self-consistency: under mild assumptions, the aggregated answer coincides with the mode of the model's terminal distribution with high probability. We derive finite-sample and anytime-valid concentration bounds that quantify this confidence, and introduce the Martingale Majority Certificate (MMC), a sequential stopping rule that adaptively determines when sufficient samples have been drawn. We further prove that label-free post-training methods such as TTRL implicitly sharpen the answer distribution by exponentially tilting it toward its mode, thereby reducing the number of samples required for certification. Building on this insight, we propose new post-training objectives that explicitly optimise this trade-off between sharpness and bias. Together, these results explain and connect two central test-time scaling strategies, self-consistency and TTRL, within a single statistical framework for label-free, certifiable reliability in reasoning LLMs.
♻ ☆ On the Fairness of Privacy Protection: Measuring and Mitigating the Disparity of Group Privacy Risks for Differentially Private Machine Learning
While significant progress has been made in conventional fairness-aware machine learning (ML) and differentially private ML (DPML), the fairness of privacy protection across groups remains underexplored. Existing studies have proposed methods to assess group privacy risks, but these are based on the average-case privacy risks of data records. Such approaches may underestimate the group privacy risks, thereby potentially underestimating the disparity across group privacy risks. Moreover, the current method for assessing the worst-case privacy risks of data records is time-consuming, limiting their practical applicability. To address these limitations, we introduce a novel membership inference game that can efficiently audit the approximate worst-case privacy risks of data records. Experimental results demonstrate that our method provides a more stringent measurement of group privacy risks, yielding a reliable assessment of the disparity in group privacy risks. Furthermore, to promote privacy protection fairness in DPML, we enhance the standard DP-SGD algorithm with an adaptive group-specific gradient clipping strategy, inspired by the design of canaries in differential privacy auditing studies. Extensive experiments confirm that our algorithm effectively reduces the disparity in group privacy risks, thereby enhancing the fairness of privacy protection in DPML.
♻ ☆ SMRS: advocating a unified reporting standard for surrogate models in the artificial intelligence era NeurIPS 2025
Surrogate models are widely used to approximate complex systems across science and engineering to reduce computational costs. Despite their widespread adoption, the field lacks standardisation across key stages of the modelling pipeline, including data sampling, model selection, evaluation, and downstream analysis. This fragmentation limits reproducibility and cross-domain utility -- a challenge further exacerbated by the rapid proliferation of AI-driven surrogate models. We argue for the urgent need to establish a structured reporting standard, the Surrogate Model Reporting Standard (SMRS), that systematically captures essential design and evaluation choices while remaining agnostic to implementation specifics. By promoting a standardised yet flexible framework, we aim to improve the reliability of surrogate modelling, foster interdisciplinary knowledge transfer, and, as a result, accelerate scientific progress in the AI era.
comment: Accepted at the 39th Conference on Neural Information Processing Systems (NeurIPS 2025), Position Track
♻ ☆ Channel Balance Interpolation in the Lightning Network via Machine Learning
The Bitcoin Lightning Network is a Layer 2 payment protocol that addresses Bitcoin's scalability by facilitating quick and cost effective transactions through payment channels. This research explores the feasibility of using machine learning models to interpolate channel balances within the network, which can be used for optimizing the network's pathfinding algorithms. While there has been much exploration in balance probing and multipath payment protocols, predicting channel balances using solely node and channel features remains an uncharted area. This paper evaluates the performance of several machine learning models against two heuristic baselines and investigates the predictive capabilities of various features. Our model performs favorably in experimental evaluation, outperforming by 10% against an equal split baseline where both edges are assigned half of the channel capacity.
♻ ☆ Geometry Aware Operator Transformer as an Efficient and Accurate Neural Surrogate for PDEs on Arbitrary Domains
The very challenging task of learning solution operators of PDEs on arbitrary domains accurately and efficiently is of vital importance to engineering and industrial simulations. Despite the existence of many operator learning algorithms to approximate such PDEs, we find that accurate models are not necessarily computationally efficient and vice versa. We address this issue by proposing a geometry aware operator transformer (GAOT) for learning PDEs on arbitrary domains. GAOT combines novel multiscale attentional graph neural operator encoders and decoders, together with geometry embeddings and (vision) transformer processors to accurately map information about the domain and the inputs into a robust approximation of the PDE solution. Multiple innovations in the implementation of GAOT also ensure computational efficiency and scalability. We demonstrate this significant gain in both accuracy and efficiency of GAOT over several baselines on a large number of learning tasks from a diverse set of PDEs, including achieving state of the art performance on three large scale three-dimensional industrial CFD datasets.
♻ ☆ Log Neural Controlled Differential Equations: The Lie Brackets Make a Difference
The vector field of a controlled differential equation (CDE) describes the relationship between a control path and the evolution of a solution path. Neural CDEs (NCDEs) treat time series data as observations from a control path, parameterise a CDE's vector field using a neural network, and use the solution path as a continuously evolving hidden state. As their formulation makes them robust to irregular sampling rates, NCDEs are a powerful approach for modelling real-world data. Building on neural rough differential equations (NRDEs), we introduce Log-NCDEs, a novel, effective, and efficient method for training NCDEs. The core component of Log-NCDEs is the Log-ODE method, a tool from the study of rough paths for approximating a CDE's solution. Log-NCDEs are shown to outperform NCDEs, NRDEs, the linear recurrent unit, S5, and MAMBA on a range of multivariate time series datasets with up to $50{,}000$ observations.
comment: 23 pages, 5 figures
♻ ☆ Equivariance Everywhere All At Once: A Recipe for Graph Foundation Models
Graph machine learning architectures are typically tailored to specific tasks on specific datasets, which hinders their broader applicability. This has led to a new quest in graph machine learning: how to build graph foundation models capable of generalizing across arbitrary graphs and features? In this work, we present a recipe for designing graph foundation models for node-level tasks from first principles. The key ingredient underpinning our study is a systematic investigation of the symmetries that a graph foundation model must respect. In a nutshell, we argue that label permutation-equivariance alongside feature permutation-invariance are necessary in addition to the common node permutation-equivariance on each local neighborhood of the graph. To this end, we first characterize the space of linear transformations that are equivariant to permutations of nodes and labels, and invariant to permutations of features. We then prove that the resulting network is a universal approximator on multisets that respect the aforementioned symmetries. Our recipe uses such layers on the multiset of features induced by the local neighborhood of the graph to obtain a class of graph foundation models for node property prediction. We validate our approach through extensive experiments on 29 real-world node classification datasets, demonstrating both strong zero-shot empirical performance and consistent improvement as the number of training graphs increases.
♻ ☆ Continuous Uniqueness and Novelty Metrics for Generative Modeling of Inorganic Crystals NeurIPS 2025
To address pressing scientific challenges such as climate change, increasingly sophisticated generative artificial intelligence models are being developed that can efficiently sample the large chemical space of possible functional materials. These models can quickly sample new chemical compositions paired with crystal structures. They are typically evaluated using uniqueness and novelty metrics, which depend on a chosen crystal distance function. However, the most prevalent distance function has four limitations: it fails to quantify the degree of similarity between compounds, cannot distinguish compositional difference and structural difference, lacks Lipschitz continuity against shifts in atomic coordinates, and results in a uniqueness metric that is not invariant against the permutation of generated samples. In this work, we propose using two continuous distance functions to evaluate uniqueness and novelty, which theoretically overcome these limitations. Our experiments show that these distances reveal insights missed by traditional distance functions, providing a more reliable basis for evaluating and comparing generative models for inorganic crystals.
comment: 13 pages (5 pages of main text), accepted to the AI4Mat workshop at NeurIPS 2025. See https://github.com/WMD-group/xtalmet for the code. Added references and a footnote in Section 3
♻ ☆ SafeDiver: Cooperative AUV-USV Assisted Diver Communication via Multi-agent Reinforcement Learning Approach
As underwater human activities are increasing, the demand for underwater communication service presents a significant challenge. Existing underwater diver communication methods face hurdles due to inherent disadvantages and complex underwater environments. To address this issue, we propose a scheme that utilizes maritime unmanned systems to assist divers with reliable and high-speed communication. Multiple AUVs are equipped with optical and acoustic multimodal communication devices as relay nodes, providing adaptive communication services based on changes in the diver's activity area. By using a multi-agent reinforcement learning (MARL) approach to control the cooperative movement of AUVs, high-speed and reliable data transmission between divers can be achieved. At the same time, utilizing the advantages of on-demand deployment and wide coverage of unmanned surface vehicles (USVs) as surface relay nodes to coordinate and forward information from AUVs, and controlling AUVs to adaptively select relay USV nodes for data transmission, high-quality communication between divers and surface platform can be achieved. Through simulation verification, the proposed scheme can effectively achieve reliable and high-speed communication for divers.
comment: Withdrawn to reorganize and extend the current findings in a future version
♻ ☆ Adaptive PCA-Based Outlier Detection for Multi-Feature Time Series in Space Missions CCS 2025
Analyzing multi-featured time series data is critical for space missions making efficient event detection, potentially onboard, essential for automatic analysis. However, limited onboard computational resources and data downlink constraints necessitate robust methods for identifying regions of interest in real time. This work presents an adaptive outlier detection algorithm based on the reconstruction error of Principal Component Analysis (PCA) for feature reduction, designed explicitly for space mission applications. The algorithm adapts dynamically to evolving data distributions by using Incremental PCA, enabling deployment without a predefined model for all possible conditions. A pre-scaling process normalizes each feature's magnitude while preserving relative variance within feature types. We demonstrate the algorithm's effectiveness in detecting space plasma events, such as distinct space environments, dayside and nightside transients phenomena, and transition layers through NASA's MMS mission observations. Additionally, we apply the method to NASA's THEMIS data, successfully identifying a dayside transient using onboard-available measurements.
comment: Accepted to ICCS 2025
♻ ☆ Benchmarking World-Model Learning
Model-learning agents should gather information to learn world models that support many downstream tasks and inferences, such as predicting unobserved states, estimating near- and far-term consequences of actions, planning action sequences, and detecting changes in dynamics. Current methods for learning and evaluating world models diverge from this goal: training and evaluation are anchored to next-frame prediction, and success is scored by reward maximization in the same environment. We propose WorldTest, a protocol to evaluate model-learning agents that separates reward-free interaction from a scored test phase in a different but related environment. WorldTest is open-ended$\unicode{x2014}$models should support many different tasks unknown ahead of time$\unicode{x2014}$and agnostic to model representation, allowing comparison across approaches. We instantiated WorldTest with AutumnBench, a suite of 43 interactive grid-world environments and 129 tasks across three families: masked-frame prediction, planning, and predicting changes to the causal dynamics. We compared 517 human participants and three frontier models on AutumnBench. We found that humans outperform the models, and scaling compute improves performance only in some environments but not others. WorldTest provides a novel template$\unicode{x2014}$reward-free exploration, derived tests, and behavior-based scoring$\unicode{x2014}$to evaluate what agents learn about environment dynamics, and AutumnBench exposes significant headroom in world-model learning.
comment: 30 pages, 10 figures
♻ ☆ Field theory for optimal signal propagation in ResNets
Residual networks have significantly better trainability and thus performance than feed-forward networks at large depth. Introducing skip connections facilitates signal propagation to deeper layers. In addition, previous works found that adding a scaling parameter for the residual branch further improves generalization performance. While they empirically identified a particularly beneficial range of values for this scaling parameter, the associated performance improvement and its universality across network hyperparameters yet need to be understood. For feed-forward networks, finite-size theories have led to important insights with regard to signal propagation and hyperparameter tuning. We here derive a systematic finite-size field theory for residual networks to study signal propagation and its dependence on the scaling for the residual branch. We derive analytical expressions for the response function, a measure for the network's sensitivity to inputs, and show that for deep networks the empirically found values for the scaling parameter lie within the range of maximal sensitivity. Furthermore, we obtain an analytical expression for the optimal scaling parameter that depends only weakly on other network hyperparameters, such as the weight variance, thereby explaining its universality across hyperparameters. Overall, this work provides a theoretical framework to study ResNets at finite size.
comment: 25 pages, 9 figures, accepted at Physical Review E
♻ ☆ Continuous Diffusion Model for Language Modeling NeurIPS 2025
Diffusion models have emerged as a promising alternative to autoregressive models in modeling discrete categorical data. However, diffusion models that directly work on discrete data space fail to fully exploit the power of iterative refinement, as the signals are lost during transitions between discrete states. Existing continuous diffusion models for discrete data underperform compared to discrete methods, and the lack of a clear connection between the two approaches hinders the development of effective diffusion models for discrete data. In this work, we propose a continuous diffusion model for language modeling that incorporates the geometry of the underlying categorical distribution. We establish a connection between the discrete diffusion and continuous flow on the statistical manifold, and building on this analogy, introduce a simple diffusion process that generalizes existing discrete diffusion models. We further propose a simulation-free training framework based on radial symmetry, along with a simple technique to address the high dimensionality of the manifold. Comprehensive experiments on language modeling benchmarks and other modalities show that our method outperforms existing discrete diffusion models and approaches the performance of autoregressive models. The code is available at https://github.com/harryjo97/RDLM.
comment: NeurIPS 2025
♻ ☆ MIRA: Medical Time Series Foundation Model for Real-World Health Data NeurIPS 2025
A unified foundation model for medical time series -- pretrained on open access and ethics board-approved medical corpora -- offers the potential to reduce annotation burdens, minimize model customization, and enable robust transfer across clinical institutions, modalities, and tasks, particularly in data-scarce or privacy-constrained environments. However, existing generalist time series foundation models struggle to handle medical time series data due to their inherent challenges, including irregular intervals, heterogeneous sampling rates, and frequent missing values. To address these challenges, we introduce MIRA, a unified foundation model specifically designed for medical time series forecasting. MIRA incorporates a Continuous-Time Rotary Positional Encoding that enables fine-grained modeling of variable time intervals, a frequency-specific mixture-of-experts layer that routes computation across latent frequency regimes to further promote temporal specialization, and a Continuous Dynamics Extrapolation Block based on Neural ODE that models the continuous trajectory of latent states, enabling accurate forecasting at arbitrary target timestamps. Pretrained on a large-scale and diverse medical corpus comprising over 454 billion time points collect from publicly available datasets, MIRA achieves reductions in forecasting errors by an average of 10% and 7% in out-of-distribution and in-distribution scenarios, respectively, when compared to other zero-shot and fine-tuned baselines. We also introduce a comprehensive benchmark spanning multiple downstream clinical tasks, establishing a foundation for future research in medical time series modeling.
comment: NeurIPS 2025 Main Conference
♻ ☆ Bayes or Heisenberg: Who(se) Rules?
Although quantum systems are generally described by quantum state vectors, we show that in certain cases their measurement processes can be reformulated as probabilistic equations expressed in terms of probabilistic state vectors. These probabilistic representations can, in turn, be approximated by the neural network dynamics of the Tensor Brain (TB) model. The Tensor Brain is a recently proposed framework for modeling perception and memory in the brain, providing a biologically inspired mechanism for efficiently integrating generated symbolic representations into reasoning processes.
♻ ☆ Twilight: Adaptive Attention Sparsity with Hierarchical Top-$p$ Pruning NeurIPS 2025
Leveraging attention sparsity to accelerate long-context large language models (LLMs) has been a hot research topic. However, current algorithms such as sparse attention or key-value (KV) cache compression tend to use a fixed budget, which presents a significant challenge during deployment because it fails to account for the dynamic nature of real-world scenarios, where the optimal balance between accuracy and efficiency can vary greatly. In this paper, we find that borrowing top-$p$ sampling (nucleus sampling) to sparse attention can surprisingly achieve adaptive budgeting. Based on this, we propose Twilight, a framework to bring adaptive sparsity to any existing sparse attention algorithm without sacrificing their accuracy. Empirical results show that Twilight can adaptively prune at most 98% of redundant tokens, leading to $15.4\times$ acceleration in self-attention operations and $3.9\times$ acceleration in end-to-end per token latency in long context LLM decoding.
comment: To appear on NeurIPS 2025 (spotlight)
♻ ☆ PRUNE: A Patching Based Repair Framework for Certifiable Unlearning of Neural Networks
It is often desirable to remove (a.k.a. unlearn) a specific part of the training data from a trained neural network model. A typical application scenario is to protect the data holder's right to be forgotten, which has been promoted by many recent regulation rules. Existing unlearning methods involve training alternative models with remaining data, which may be costly and challenging to verify from the data holder or a thirdparty auditor's perspective. In this work, we provide a new angle and propose a novel unlearning approach by imposing carefully crafted "patch" on the original neural network to achieve targeted "forgetting" of the requested data to delete. Specifically, inspired by the research line of neural network repair, we propose to strategically seek a lightweight minimum "patch" for unlearning a given data point with certifiable guarantee. Furthermore, to unlearn a considerable amount of data points (or an entire class), we propose to iteratively select a small subset of representative data points to unlearn, which achieves the effect of unlearning the whole set. Extensive experiments on multiple categorical datasets demonstrates our approach's effectiveness, achieving measurable unlearning while preserving the model's performance and being competitive in efficiency and memory consumption compared to various baseline methods.
♻ ☆ OpenMIBOOD: Open Medical Imaging Benchmarks for Out-Of-Distribution Detection
The growing reliance on Artificial Intelligence (AI) in critical domains such as healthcare demands robust mechanisms to ensure the trustworthiness of these systems, especially when faced with unexpected or anomalous inputs. This paper introduces the Open Medical Imaging Benchmarks for Out-Of-Distribution Detection (OpenMIBOOD), a comprehensive framework for evaluating out-of-distribution (OOD) detection methods specifically in medical imaging contexts. OpenMIBOOD includes three benchmarks from diverse medical domains, encompassing 14 datasets divided into covariate-shifted in-distribution, near-OOD, and far-OOD categories. We evaluate 24 post-hoc methods across these benchmarks, providing a standardized reference to advance the development and fair comparison of OOD detection methods. Results reveal that findings from broad-scale OOD benchmarks in natural image domains do not translate to medical applications, underscoring the critical need for such benchmarks in the medical field. By mitigating the risk of exposing AI models to inputs outside their training distribution, OpenMIBOOD aims to support the advancement of reliable and trustworthy AI systems in healthcare. The repository is available at https://github.com/remic-othr/OpenMIBOOD.
comment: Updated results for NNGuide and ViM
♻ ☆ The Parameterized Complexity of Computing the VC-Dimension NeurIPS 2025
The VC-dimension is a well-studied and fundamental complexity measure of a set system (or hypergraph) that is central to many areas of machine learning. We establish several new results on the complexity of computing the VC-dimension. In particular, given a hypergraph $\mathcal{H}=(\mathcal{V},\mathcal{E})$, we prove that the naive $2^{\mathcal{O}(|\mathcal{V}|)}$-time algorithm is asymptotically tight under the Exponential Time Hypothesis (ETH). We then prove that the problem admits a $1$-additive fixed-parameter approximation algorithm when parameterized by the maximum degree of $\mathcal{H}$ and a fixed-parameter algorithm when parameterized by its dimension, and that these are essentially the only such exploitable structural parameters. Lastly, we consider a generalization of the problem, formulated using graphs, which captures the VC-dimension of both set systems and graphs. We design a $2^{\mathcal{O}(\rm{tw}\cdot \log \rm{tw})}\cdot |V|$-time algorithm for any graph $G=(V,E)$ of treewidth $\rm{tw}$ (which, for a set system, applies to the treewidth of its incidence graph). This is in contrast with closely related problems that require a double-exponential dependency on the treewidth (assuming the ETH).
comment: To appear in the proceedings of NeurIPS 2025
♻ ☆ A Neural Difference-of-Entropies Estimator for Mutual Information
Estimating Mutual Information (MI), a key measure of dependence of random quantities without specific modelling assumptions, is a challenging problem in high dimensions. We propose a novel mutual information estimator based on parametrizing conditional densities using normalizing flows, a deep generative model that has gained popularity in recent years. This estimator leverages a block autoregressive structure to achieve improved bias-variance trade-offs on standard benchmark tasks.
comment: 23 pages, 17 figures
♻ ☆ CONFEX: Uncertainty-Aware Counterfactual Explanations with Conformal Guarantees
Counterfactual explanations (CFXs) provide human-understandable justifications for model predictions, enabling actionable recourse and enhancing interpretability. To be reliable, CFXs must avoid regions of high predictive uncertainty, where explanations may be misleading or inapplicable. However, existing methods often neglect uncertainty or lack principled mechanisms for incorporating it with formal guarantees. We propose CONFEX, a novel method for generating uncertainty-aware counterfactual explanations using Conformal Prediction (CP) and Mixed-Integer Linear Programming (MILP). CONFEX explanations are designed to provide local coverage guarantees, addressing the issue that CFX generation violates exchangeability. To do so, we develop a novel localised CP procedure that enjoys an efficient MILP encoding by leveraging an offline tree-based partitioning of the input space. This way, CONFEX generates CFXs with rigorous guarantees on both predictive uncertainty and optimality. We evaluate CONFEX against state-of-the-art methods across diverse benchmarks and metrics, demonstrating that our uncertainty-aware approach yields robust and plausible explanations.
comment: 35 pages [11+24 Appendix]. Metadata revised
♻ ☆ Multi-Agent Reinforcement Learning for Task Offloading in Wireless Edge Networks NeurIPS'25
In edge computing systems, autonomous agents must make fast local decisions while competing for shared resources. Existing MARL methods often resume to centralized critics or frequent communication, which fail under limited observability and communication constraints. We propose a decentralized framework in which each agent solves a constrained Markov decision process (CMDP), coordinating implicitly through a shared constraint vector. For the specific case of offloading, e.g., constraints prevent overloading shared server resources. Coordination constraints are updated infrequently and act as a lightweight coordination mechanism. They enable agents to align with global resource usage objectives but require little direct communication. Using safe reinforcement learning, agents learn policies that meet both local and global goals. We establish theoretical guarantees under mild assumptions and validate our approach experimentally, showing improved performance over centralized and independent baselines, especially in large-scale settings.
comment: Oral presentation at AI4NextG @ NeurIPS'25 Workshop
♻ ☆ Quantitative convergence of trained single layer neural networks to Gaussian processes NeurIPS 2025
In this paper, we study the quantitative convergence of shallow neural networks trained via gradient descent to their associated Gaussian processes in the infinite-width limit. While previous work has established qualitative convergence under broad settings, precise, finite-width estimates remain limited, particularly during training. We provide explicit upper bounds on the quadratic Wasserstein distance between the network output and its Gaussian approximation at any training time $t \ge 0$, demonstrating polynomial decay with network width. Our results quantify how architectural parameters, such as width and input dimension, influence convergence, and how training dynamics affect the approximation error.
comment: Submitted and accepted at NeurIPS 2025, main body of 10 pages, 3 figures, 28 pages of supplementary material
♻ ☆ WENDy for Nonlinear-in-Parameters ODEs
The Weak-form Estimation of Non-linear Dynamics (WENDy) framework is a recently developed approach for parameter estimation and inference of systems of ordinary differential equations (ODEs). Prior work demonstrated WENDy to be robust, computationally efficient, and accurate, but only works for ODEs which are linear-in-parameters. In this work, we derive a novel extension to accommodate systems of a more general class of ODEs that are nonlinear-in-parameters. Our new WENDy-MLE algorithm approximates a maximum likelihood estimator via local non-convex optimization methods. This is made possible by the availability of analytic expressions for the likelihood function and its first and second order derivatives. WENDy-MLE has better accuracy, a substantially larger domain of convergence, and is often faster than other weak form methods and the conventional output error least squares method. Moreover, we extend the framework to accommodate data corrupted by multiplicative log-normal noise. The WENDy.jl algorithm is efficiently implemented in Julia. In order to demonstrate the practical benefits of our approach, we present extensive numerical results comparing our method, other weak form methods, and output error least squares on a suite of benchmark systems of ODEs in terms of accuracy, precision, bias, and coverage.
♻ ☆ Train with Perturbation, Infer after Merging: A Two-Stage Framework for Continual Learning NeurIPS 2025
Continual Learning (CL) aims to enable models to continuously acquire new knowledge from a sequence of tasks with avoiding the forgetting of learned information. However, existing CL methods only rely on the parameters of the most recent task for inference, which makes them susceptible to catastrophic forgetting. Inspired by the recent success of model merging techniques, we propose \textbf{Perturb-and-Merge (P\&M)}, a novel continual learning framework that integrates model merging into the CL paradigm to mitigate forgetting. Specifically, after training on each task, P\&M constructs a new model by forming a convex combination of the previous model and the newly trained task-specific model. Through theoretical analysis, We minimize the total loss increase across all tasks and derive a closed-form solution for the merging coefficient under mild assumptions. To further improve the performance of the merged model, we observe that the degradation introduced during merging can be alleviated by a regularization term composed of the task vector and the Hessian matrix of the loss function. Interestingly, we show that this term can be efficiently approximated using second-order symmetric finite differences, and a stochastic perturbation strategy along the task vector direction is accordingly devised which incurs no additional forward or backward passes while providing an effective approximation of the regularization term. Finally, we combine P\&M with LoRA, a parameter-efficient fine-tuning method, to reduce memory overhead. Our proposed approach achieves state-of-the-art performance on several continual learning benchmark datasets. The code is available at https://github.com/qhmiao/P-M-for-Continual-Learning.
comment: Accepted by NeurIPS 2025
♻ ☆ Arbitrary Entropy Policy Optimization: Entropy Is Controllable in Reinforcement Fine-tuning
Reinforcement fine-tuning (RFT) is essential for enhancing the reasoning capabilities of large language models (LLM), yet the widely adopted Group Relative Policy Optimization (GRPO) suffers from entropy collapse, where entropy monotonically decreases, exploration vanishes, and policies converge prematurely. Existing entropy-regularized methods only partially alleviate this issue while introducing bias and instability, leaving entropy control unresolved and the connection between entropy, exploration, and performance unclear. We propose Arbitrary Entropy Policy Optimization (AEPO), which eliminates entropy collapse by replacing entropy bonuses with REINFORCE policy gradient on temperature-adjusted distributions and stabilizing entropy through temperature regulation. AEPO integrates three key designs: policy gradient as regularization, distribution as regularization, and REINFORCE as regularization, enabling precise entropy control without distorting optimization. Experiments demonstrate three major contributions: AEPO (1) stabilizes entropy at arbitrary target levels, effectively removing collapse in GRPO; (2) reveals a non-monotonic relation where performance first improves then declines with increasing entropy, clarifying the link between entropy, exploration, and reasoning; and (3) generalizes beyond entropy, providing a broader RFT paradigm where superior target distributions can serve as REINFORCE regularizers.
♻ ☆ VO-DP: Semantic-Geometric Adaptive Diffusion Policy for Vision-Only Robotic Manipulation
In the context of imitation learning, visuomotor-based diffusion policy learning is one of the main directions in robotic manipulation. Most of these approaches rely on point clouds as observation inputs and construct scene representations through point clouds feature learning, which enables them to achieve remarkable accuracy. However, the existing literature lacks an in-depth exploration of vision-only solutions that have significant potential. In this paper, we propose a Vision-Only and single-view Diffusion Policy learning method (VO-DP) that leverages pretrained visual foundation models to achieve effective fusion of semantic and geometric features. We utilize intermediate features from VGGT incorporating semantic features from DINOv2 and geometric features from Alternating Attention blocks. Features are fused via cross-attention and spatially compressed with a CNN to form the input to the policy head. Extensive experiments demonstrate that VO-DP not only outperforms the vision-only baseline DP significantly but also exhibits distinct performance trends against the point cloud-based method DP3: in simulation tasks, VO-DP achieves an average success rate of 64.6% on par with DP3 64.0% and far higher than DP 34.8%, while in real-world tasks, it reaches 87.9%, outperforming both DP3 67.5% and DP 11.2% by a notable margin. Further robustness evaluations confirm that VO-DP remains highly stable under varying conditions including color, size, background, and lighting. Lastly, we open-source a training library for robotic manipulation. Built on Accelerate, this library supports multi-machine and multi-GPU parallel training, as well as mixed precision training. It is compatible with visuomotor policies such as DP, DP3 and VO-DP, and also supports the RoboTwin simulator.
♻ ☆ UMoE: Unifying Attention and FFN with Shared Experts NeurIPS 2025
Sparse Mixture of Experts (MoE) architectures have emerged as a promising approach for scaling Transformer models. While initial works primarily incorporated MoE into feed-forward network (FFN) layers, recent studies have explored extending the MoE paradigm to attention layers to enhance model performance. However, existing attention-based MoE layers require specialized implementations and demonstrate suboptimal performance compared to their FFN-based counterparts. In this paper, we aim to unify MoE designs in attention and FFN layers by introducing a novel reformulation of the attention mechanism, that reveals an underlying FFN-like structure within attention modules. Our proposed architecture, UMoE, achieves superior performance through attention-based MoE layers while enabling efficient parameter sharing between FFN and attention components.
comment: NeurIPS 2025 Spotlight
♻ ☆ Distributional Adversarial Attacks and Training in Deep Hedging NeurIPS 2025
In this paper, we study the robustness of classical deep hedging strategies under distributional shifts by leveraging the concept of adversarial attacks. We first demonstrate that standard deep hedging models are highly vulnerable to small perturbations in the input distribution, resulting in significant performance degradation. Motivated by this, we propose an adversarial training framework tailored to increase the robustness of deep hedging strategies. Our approach extends pointwise adversarial attacks to the distributional setting and introduces a computationally tractable reformulation of the adversarial optimization problem over a Wasserstein ball. This enables the efficient training of hedging strategies that are resilient to distributional perturbations. Through extensive numerical experiments, we show that adversarially trained deep hedging strategies consistently outperform their classical counterparts in terms of out-of-sample performance and resilience to model misspecification. Additional results indicate that the robust strategies maintain reliable performance on real market data and remain effective during periods of market change. Our findings establish a practical and effective framework for robust deep hedging under realistic market uncertainties.
comment: Camera-ready version (accepted at NeurIPS 2025 https://neurips.cc/virtual/2025/poster/115434)
♻ ☆ Zhyper: Factorized Hypernetworks for Conditioned LLM Fine-Tuning
Large Language Model (LLM) conditioning refers to instructing an LLM to generate content in accordance with the norms and values of a specific culture, beliefs of a particular political orientation, or any desired text-specified semantic conditioning. Unfortunately, prompt engineering does not ensure that LLMs behave in accordance with a desired conditioning due to the inductive bias of the pre-training and alignment datasets. Prior works have focused on fine-tuning LLMs by directly conditioning the LoRA weights; however, such methods introduce a large number of parameters. As a remedy, we propose Zhyper, a parameter-efficient factorized hypernetwork framework that generates context-aware LoRA adapters from textual descriptions. Experiments on multiple benchmarks show that Zhyper achieves competitive performance with up to 26x fewer parameters than the state-of-the-art baselines. Furthermore, we extend Zhyper to cultural alignment, demonstrating improved generalization to out-of-domain settings and a better capturing of fine-grained contextual values.
♻ ☆ Sample-efficient Learning of Concepts with Theoretical Guarantees: from Data to Concepts without Interventions
Machine learning is a vital part of many real-world systems, but several concerns remain about the lack of interpretability, explainability and robustness of black-box AI systems. Concept Bottleneck Models (CBM) address some of these challenges by learning interpretable concepts from high-dimensional data, e.g. images, which are used to predict labels. An important issue in CBMs are spurious correlation between concepts, which effectively lead to learning "wrong" concepts. Current mitigating strategies have strong assumptions, e.g., they assume that the concepts are statistically independent of each other, or require substantial interaction in terms of both interventions and labels provided by annotators. In this paper, we describe a framework that provides theoretical guarantees on the correctness of the learned concepts and on the number of required labels, without requiring any interventions. Our framework leverages causal representation learning (CRL) methods to learn latent causal variables from high-dimensional observations in a unsupervised way, and then learns to align these variables with interpretable concepts with few concept labels. We propose a linear and a non-parametric estimator for this mapping, providing a finite-sample high probability result in the linear case and an asymptotic consistency result for the non-parametric estimator. We evaluate our framework in synthetic and image benchmarks, showing that the learned concepts have less impurities and are often more accurate than other CBMs, even in settings with strong correlations between concepts.
comment: 58 pages, 23 figures, 12 Tables, Published
♻ ☆ The Faiss library
Vector databases typically manage large collections of embedding vectors. Currently, AI applications are growing rapidly, and so is the number of embeddings that need to be stored and indexed. The Faiss library is dedicated to vector similarity search, a core functionality of vector databases. Faiss is a toolkit of indexing methods and related primitives used to search, cluster, compress and transform vectors. This paper describes the trade-off space of vector search and the design principles of Faiss in terms of structure, approach to optimization and interfacing. We benchmark key features of the library and discuss a few selected applications to highlight its broad applicability.
♻ ☆ Sign-In to the Lottery: Reparameterizing Sparse Training From Scratch NeurIPS 2025
The performance gap between training sparse neural networks from scratch (PaI) and dense-to-sparse training presents a major roadblock for efficient deep learning. According to the Lottery Ticket Hypothesis, PaI hinges on finding a problem specific parameter initialization. As we show, to this end, determining correct parameter signs is sufficient. Yet, they remain elusive to PaI. To address this issue, we propose Sign-In, which employs a dynamic reparameterization that provably induces sign flips. Such sign flips are complementary to the ones that dense-to-sparse training can accomplish, rendering Sign-In as an orthogonal method. While our experiments and theory suggest performance improvements of PaI, they also carve out the main open challenge to close the gap between PaI and dense-to-sparse training.
comment: Accepted at NeurIPS 2025
♻ ☆ A Survey on Cache Methods in Diffusion Models: Toward Efficient Multi-Modal Generation
Diffusion Models have become a cornerstone of modern generative AI for their exceptional generation quality and controllability. However, their inherent \textit{multi-step iterations} and \textit{complex backbone networks} lead to prohibitive computational overhead and generation latency, forming a major bottleneck for real-time applications. Although existing acceleration techniques have made progress, they still face challenges such as limited applicability, high training costs, or quality degradation. Against this backdrop, \textbf{Diffusion Caching} offers a promising training-free, architecture-agnostic, and efficient inference paradigm. Its core mechanism identifies and reuses intrinsic computational redundancies in the diffusion process. By enabling feature-level cross-step reuse and inter-layer scheduling, it reduces computation without modifying model parameters. This paper systematically reviews the theoretical foundations and evolution of Diffusion Caching and proposes a unified framework for its classification and analysis. Through comparative analysis of representative methods, we show that Diffusion Caching evolves from \textit{static reuse} to \textit{dynamic prediction}. This trend enhances caching flexibility across diverse tasks and enables integration with other acceleration techniques such as sampling optimization and model distillation, paving the way for a unified, efficient inference framework for future multimodal and interactive applications. We argue that this paradigm will become a key enabler of real-time and efficient generative AI, injecting new vitality into both theory and practice of \textit{Efficient Generative Intelligence}.
comment: 22 pages,2 figures
♻ ☆ Depth-Bounds for Neural Networks via the Braid Arrangement NeurIPS 2025
We contribute towards resolving the open question of how many hidden layers are required in ReLU networks for exactly representing all continuous and piecewise linear functions on $\mathbb{R}^d$. While the question has been resolved in special cases, the best known lower bound in general is still 2. We focus on neural networks that are compatible with certain polyhedral complexes, more precisely with the braid fan. For such neural networks, we prove a non-constant lower bound of $\Omega(\log\log d)$ hidden layers required to exactly represent the maximum of $d$ numbers. Additionally, under our assumption, we provide a combinatorial proof that 3 hidden layers are necessary to compute the maximum of 5 numbers; this had only been verified with an excessive computation so far. Finally, we show that a natural generalization of the best known upper bound to maxout networks is not tight, by demonstrating that a rank-3 maxout layer followed by a rank-2 maxout layer is sufficient to represent the maximum of 7 numbers.
comment: Accepted at NeurIPS 2025
♻ ☆ IRIS: An Immersive Robot Interaction System
This paper introduces IRIS, an Immersive Robot Interaction System leveraging Extended Reality (XR). Existing XR-based systems enable efficient data collection but are often challenging to reproduce and reuse due to their specificity to particular robots, objects, simulators, and environments. IRIS addresses these issues by supporting immersive interaction and data collection across diverse simulators and real-world scenarios. It visualizes arbitrary rigid and deformable objects, robots from simulation, and integrates real-time sensor-generated point clouds for real-world applications. Additionally, IRIS enhances collaborative capabilities by enabling multiple users to simultaneously interact within the same virtual scene. Extensive experiments demonstrate that IRIS offers efficient and intuitive data collection in both simulated and real-world settings.
♻ ☆ Multi Task Inverse Reinforcement Learning for Common Sense Reward
One of the challenges in applying reinforcement learning in a complex real-world environment lies in providing the agent with a sufficiently detailed reward function. Any misalignment between the reward and the desired behavior can result in unwanted outcomes. This may lead to issues like "reward hacking" where the agent maximizes rewards by unintended behavior. In this work, we propose to disentangle the reward into two distinct parts. A simple task-specific reward, outlining the particulars of the task at hand, and an unknown common-sense reward, indicating the expected behavior of the agent within the environment. We then explore how this common-sense reward can be learned from expert demonstrations. We first show that inverse reinforcement learning, even when it succeeds in training an agent, does not learn a useful reward function. That is, training a new agent with the learned reward does not impair the desired behaviors. We then demonstrate that this problem can be solved by training simultaneously on multiple tasks. That is, multi-task inverse reinforcement learning can be applied to learn a useful reward function.
♻ ☆ Addressing Pitfalls in the Evaluation of Uncertainty Estimation Methods for Natural Language Generation
Hallucinations are a common issue that undermine the reliability of large language models (LLMs). Recent studies have identified a specific subset of hallucinations, known as confabulations, which arise due to predictive uncertainty of LLMs. To detect confabulations, various methods for estimating predictive uncertainty in natural language generation (NLG) have been developed. These methods are typically evaluated by correlating uncertainty estimates with the correctness of generated text, with question-answering (QA) datasets serving as the standard benchmark. However, commonly used approximate correctness functions have substantial disagreement between each other and, consequently, in the ranking of the uncertainty estimation methods. This allows one to inflate the apparent performance of uncertainty estimation methods. We propose using several alternative risk indicators for risk correlation experiments that improve robustness of empirical assessment of UE algorithms for NLG. For QA tasks, we show that marginalizing over multiple LLM-as-a-judge variants leads to reducing the evaluation biases. Furthermore, we explore structured tasks as well as out of distribution and perturbation detection tasks which provide robust and controllable risk indicators. Finally, we propose to use an Elo rating of uncertainty estimation methods to give an objective summarization over extensive evaluation settings.
comment: Preprint, under review
♻ ☆ Your Pre-trained LLM is Secretly an Unsupervised Confidence Calibrator
Post-training of large language models is essential for adapting pre-trained language models (PLMs) to align with human preferences and downstream tasks. While PLMs typically exhibit well-calibrated confidence, post-trained language models (PoLMs) often suffer from over-confidence, assigning high confidence to both correct and incorrect outputs, which can undermine reliability in critical applications. A major obstacle in calibrating PoLMs is the scarcity of labeled data for individual downstream tasks. To address this, we propose Disagreement-Aware Confidence Alignment (DACA), a novel unsupervised method to optimize the parameters (e.g., temperature $\tau$) in post-hoc confidence calibration. Our method is motivated by the under-confidence issue caused by prediction disagreement between the PLM and PoLM while aligning their confidence via temperature scaling. Theoretically, the PLM's confidence underestimates PoLM's prediction accuracy on disagreement examples, causing a larger $\tau$ and producing under-confident predictions. DACA mitigates this by selectively using only agreement examples for calibration, effectively decoupling the influence of disagreement. In this manner, our method avoids an overly large $\tau$ in temperature scaling caused by disagreement examples, improving calibration performance. Extensive experiments demonstrate the effectiveness of our method, improving the average ECE of open-sourced and API-based LLMs (e.g. GPT-4o) by up to 15.08$\%$ on common benchmarks.
♻ ☆ Leveraging Analytic Gradients in Provably Safe Reinforcement Learning
The deployment of autonomous robots in safety-critical applications requires safety guarantees. Provably safe reinforcement learning is an active field of research that aims to provide such guarantees using safeguards. These safeguards should be integrated during training to reduce the sim-to-real gap. While there are several approaches for safeguarding sampling-based reinforcement learning, analytic gradient-based reinforcement learning often achieves superior performance from fewer environment interactions. However, there is no safeguarding approach for this learning paradigm yet. Our work addresses this gap by developing the first effective safeguard for analytic gradient-based reinforcement learning. We analyse existing, differentiable safeguards, adapt them through modified mappings and gradient formulations, and integrate them into a state-of-the-art learning algorithm and a differentiable simulation. Using numerical experiments on three control tasks, we evaluate how different safeguards affect learning. The results demonstrate safeguarded training without compromising performance. Additional visuals are provided at \href{https://timwalter.github.io/safe-agb-rl.github.io}{timwalter.github.io/safe-agb-rl.github.io}.
comment: 21 pages, 10 figures
♻ ☆ Proper decision trees: An axiomatic framework for solving optimal decision tree problems with arbitrary splitting rules
We present an axiomatic framework for analyzing the algorithmic properties of decision trees. This framework supports the classification of decision tree problems through structural and ancestral constraints within a rigorous mathematical foundation. The central focus of this paper is a special class of decision tree problems-which we term proper decision trees-due to their versatility and effectiveness. In terms of versatility, this class subsumes several well-known data structures, including binary space partitioning trees, K-D trees, and machine learning decision tree models. Regarding effectiveness, we prove that only proper decision trees can be uniquely characterized as K-permutations, whereas typical non-proper decision trees correspond to binary-labeled decision trees with substantially greater complexity. Using this formal characterization, we develop a generic algorithmic approach for solving optimal decision tree problems over arbitrary splitting rules and objective functions for proper decision trees. We constructively derive a generic dynamic programming recursion for solving these problems exactly. However, we show that memoization is generally impractical in terms of space complexity, as both datasets and subtrees must be stored. This result contradicts claims in the literature that suggest a trade-off between memoizing datasets and subtrees. Our framework further accommodates constraints such as tree depth and leaf size, and can be accelerated using techniques such as thinning. Finally, we extend our analysis to several non-proper decision trees, including the commonly studied decision tree over binary feature data, the binary search tree, and the tree structure arising in the matrix chain multiplication problem. We demonstrate how these problems can be solved by appropriately modifying or discarding certain axioms.
comment: Include various extensions to non-proper decision trees, rewrite the presentation to a more declarative style
♻ ☆ Learning Contrastive Feature Representations for Facial Action Unit Detection
For the Facial Action Unit (AU) detection task, accurately capturing the subtle facial differences between distinct AUs is essential for reliable detection. Additionally, AU detection faces challenges from class imbalance and the presence of noisy or false labels, which undermine detection accuracy. In this paper, we introduce a novel contrastive learning framework aimed for AU detection that incorporates both self-supervised and supervised signals, thereby enhancing the learning of discriminative features for accurate AU detection. To tackle the class imbalance issue, we employ a negative sample re-weighting strategy that adjusts the step size of updating parameters for minority and majority class samples. Moreover, to address the challenges posed by noisy and false AU labels, we employ a sampling technique that encompasses three distinct types of positive sample pairs. This enables us to inject self-supervised signals into the supervised signal, effectively mitigating the adverse effects of noisy labels. Our experimental assessments, conducted on five widely-utilized benchmark datasets (BP4D, DISFA, BP4D+, GFT and Aff-Wild2), underscore the superior performance of our approach compared to state-of-the-art methods of AU detection. Our code is available at https://github.com/Ziqiao-Shang/AUNCE.
♻ ☆ Empirical Study on Robustness and Resilience in Cooperative Multi-Agent Reinforcement Learning NeurIPS 2025
In cooperative Multi-Agent Reinforcement Learning (MARL), it is a common practice to tune hyperparameters in ideal simulated environments to maximize cooperative performance. However, policies tuned for cooperation often fail to maintain robustness and resilience under real-world uncertainties. Building trustworthy MARL systems requires a deep understanding of robustness, which ensures stability under uncertainties, and resilience, the ability to recover from disruptions--a concept extensively studied in control systems but largely overlooked in MARL. In this paper, we present a large-scale empirical study comprising over 82,620 experiments to evaluate cooperation, robustness, and resilience in MARL across 4 real-world environments, 13 uncertainty types, and 15 hyperparameters. Our key findings are: (1) Under mild uncertainty, optimizing cooperation improves robustness and resilience, but this link weakens as perturbations intensify. Robustness and resilience also varies by algorithm and uncertainty type. (2) Robustness and resilience do not generalize across uncertainty modalities or agent scopes: policies robust to action noise for all agents may fail under observation noise on a single agent. (3) Hyperparameter tuning is critical for trustworthy MARL: surprisingly, standard practices like parameter sharing, GAE, and PopArt can hurt robustness, while early stopping, high critic learning rates, and Leaky ReLU consistently help. By optimizing hyperparameters only, we observe substantial improvement in cooperation, robustness and resilience across all MARL backbones, with the phenomenon also generalizing to robust MARL methods across these backbones. Code and results available at https://github.com/BUAA-TrustworthyMARL/adv_marl_benchmark .
comment: 44 pages, 16 figures, NeurIPS 2025
♻ ☆ Pareto-Optimal Energy Alignment for Designing Nature-Like Antibodies
We present a three-stage framework for training deep learning models specializing in antibody sequence-structure co-design. We first pre-train a language model using millions of antibody sequence data. Then, we employ the learned representations to guide the training of a diffusion model for joint optimization over both sequence and structure of antibodies. During the final alignment stage, we optimize the model to favor antibodies with low repulsion and high attraction to the antigen binding site, enhancing the rationality and functionality of the designs. To mitigate conflicting energy preferences, we extend AbDPO (Antibody Direct Preference Optimization) to guide the model toward Pareto optimality under multiple energy-based alignment objectives. Furthermore, we adopt an iterative learning paradigm with temperature scaling, enabling the model to benefit from diverse online datasets without requiring additional data. In practice, our proposed methods achieve high stability and efficiency in producing a better Pareto front of antibody designs compared to top samples generated by baselines and previous alignment techniques. Through extensive experiments, we showcase the superior performance of our methods in generating nature-like antibodies with high binding affinity.
comment: 21 pages
♻ ☆ Beyond Static Knowledge Messengers: Towards Adaptive, Fair, and Scalable Federated Learning for Medical AI
Medical AI faces challenges in privacy-preserving collaborative learning while ensuring fairness across heterogeneous healthcare institutions. Current federated learning approaches suffer from static architectures, slow convergence (45-73 rounds), fairness gaps marginalizing smaller institutions, and scalability constraints (15-client limit). We propose Adaptive Fair Federated Learning (AFFL) through three innovations: (1) Adaptive Knowledge Messengers dynamically scaling capacity based on heterogeneity and task complexity, (2) Fairness-Aware Distillation using influence-weighted aggregation, and (3) Curriculum-Guided Acceleration reducing rounds by 60-70%. Our theoretical analysis provides convergence guarantees with epsilon-fairness bounds, achieving O(T^{-1/2}) + O(H_max/T^{3/4}) rates. Projected results show 55-75% communication reduction, 56-68% fairness improvement, 34-46% energy savings, and 100+ institution support. The framework enables multi-modal integration across imaging, genomics, EHR, and sensor data while maintaining HIPAA/GDPR compliance. We propose MedFedBench benchmark suite for standardized evaluation across six healthcare dimensions: convergence efficiency, institutional fairness, privacy preservation, multi-modal integration, scalability, and clinical deployment readiness. Economic projections indicate 400-800% ROI for rural hospitals and 15-25% performance gains for academic centers. This work presents a seven-question research agenda, 24-month implementation roadmap, and pathways toward democratizing healthcare AI.
comment: 20 pages, 4 figures, 14 tables. Proposes Adaptive Fair Federated Learning (AFFL) algorithm and MedFedBench benchmark suite for healthcare federated learning
♻ ☆ Online Regularized Statistical Learning in Reproducing Kernel Hilbert Space With Non-Stationary Data
We study recursive regularized learning algorithms in the reproducing kernel Hilbert space (RKHS) with non-stationary online data streams. We introduce the concept of random Tikhonov regularization path and decompose the tracking error of the algorithm's output for the regularization path into random difference equations in RKHS. We show that the tracking error vanishes in mean square if the regularization path is slowly time-varying. Then, leveraging the monotonicity of inverse operators and the spectral decomposition of compact operators, and introducing the RKHS persistence of excitation condition, we develop a dominated convergence method to prove the mean square consistency between the regularization path and the unknown function to be learned. Especially, for independent and non-identically distributed data streams, the mean square consistency between the algorithm's output and the unknown function is achieved if the input data's marginal probability measures are slowly time-varying and the average measure over each fixed-length time period has a uniformly strictly positive lower bound.
♻ ☆ Tropical Attention: Neural Algorithmic Reasoning for Combinatorial Algorithms NeurIPS 2025
Can algebraic geometry enhance the sharpness, robustness, and interpretability of modern neural reasoning models by equipping them with a mathematically grounded inductive bias? To answer this, we introduce Tropical Attention, an attention mechanism grounded in tropical geometry that lifts the attention kernel into tropical projective space, where reasoning is piecewise-linear and 1-Lipschitz, thus preserving the polyhedral decision structure inherent to combinatorial reasoning. We prove that Multi-Head Tropical Attention (MHTA) stacks universally approximate tropical circuits and realize tropical transitive closure through composition, achieving polynomial resource bounds without invoking recurrent mechanisms. These guarantees explain why the induced polyhedral decision boundaries remain sharp and scale-invariant, rather than smoothed by Softmax. Empirically, we show that Tropical Attention delivers stronger out-of-distribution generalization in both length and value, with high robustness against perturbative noise, and substantially faster inference with fewer parameters compared to Softmax-based and recurrent attention baselines. For the first time, we extend neural algorithmic reasoning beyond PTIME problems to NP-hard and NP-complete problems, paving the way toward sharper and more expressive Large Reasoning Models (LRMs) capable of tackling complex combinatorial challenges in phylogenetics, cryptography, particle physics, and mathematical discovery.
comment: Published at NeurIPS 2025
♻ ☆ Born a Transformer -- Always a Transformer? On the Effect of Pretraining on Architectural Abilities NeurIPS 2025
Transformers have theoretical limitations in modeling certain sequence-to-sequence tasks, yet it remains largely unclear if these limitations play a role in large-scale pretrained LLMs, or whether LLMs might effectively overcome these constraints in practice due to the scale of both the models themselves and their pretraining data. We explore how these architectural constraints manifest after pretraining, by studying a family of $\textit{retrieval}$ and $\textit{copying}$ tasks inspired by Liu et al. [2024a]. We use a recently proposed framework for studying length generalization [Huang et al., 2025] to provide guarantees for each of our settings. Empirically, we observe an $\textit{induction-versus-anti-induction}$ asymmetry, where pretrained models are better at retrieving tokens to the right (induction) rather than the left (anti-induction) of a query token. This asymmetry disappears upon targeted fine-tuning if length-generalization is guaranteed by theory. Mechanistic analysis reveals that this asymmetry is connected to the differences in the strength of induction versus anti-induction circuits within pretrained transformers. We validate our findings through practical experiments on real-world tasks demonstrating reliability risks. Our results highlight that pretraining selectively enhances certain transformer capabilities, but does not overcome fundamental length-generalization limits.
comment: NeurIPS 2025
♻ ☆ Improving Model Representation and Reducing KV Cache via Skip Connections with First Value Heads
Transformer models have driven breakthroughs across various language tasks by their strong capability to learn rich contextual representations. Scaling them to improve representation, however, often demands substantial memory and compute costs, such as the Key-Value (KV) cache used during auto-regressive decoding. Skip connections offer a promising way to improve representation without bloating resource usage, yet most prior works either improve expressivity while leaving KV costs unchanged, or reduce memory at the cost of weaker representation. In this work, we propose SkipV1Former, a Transformer variant that uses skip connections from the first layer's Value heads to strengthen model representation and reduce KV cache. Specifically, from the second block onward, each layer reuses half of its Value heads from the very first layer, while computing the other half as usual-cutting Value projections and V cache by nearly 50 \%. Theoretically, we show that routing uncompressed first-layer Values into deeper layers restores information lost to compression and accelerates the model's implicit mesa-optimization-a key pattern of Transformer in auto-regressive tasks. Empirically, across different model scales, SkipV1Former delivers consistent reductions of approximately 25 \% in KV cache while improving perplexity relative to standard Multi-Head Attention (MHA) Transformers and some advanced variants. Moreover, we propose a recipe for uptraining existing MHA Transformer checkpoints to SkipV1Former with only 10-15\% additional compute. Finally, SkipV1Former can seamlessly combine advanced methods like Group-Query Attention and Multi-Latent Attention to achieve further KV cache savings and performance improvement. When combined with YOCO, it cuts KV cache size by nearly 50 \% while still improving performance.
comment: The code is available at: \url{https://github.com/Zhoutong-Wu/SkipV1Former}
♻ ☆ ROOT: Rethinking Offline Optimization as Distributional Translation via Probabilistic Bridge
This paper studies the black-box optimization task which aims to find the maxima of a black-box function using a static set of its observed input-output pairs. This is often achieved via learning and optimizing a surrogate function with that offline data. Alternatively, it can also be framed as an inverse modeling task that maps a desired performance to potential input candidates that achieve it. Both approaches are constrained by the limited amount of offline data. To mitigate this limitation, we introduce a new perspective that casts offline optimization as a distributional translation task. This is formulated as learning a probabilistic bridge transforming an implicit distribution of low-value inputs (i.e., offline data) into another distribution of high-value inputs (i.e., solution candidates). Such probabilistic bridge can be learned using low- and high-value inputs sampled from synthetic functions that resemble the target function. These synthetic functions are constructed as the mean posterior of multiple Gaussian processes fitted with different parameterizations on the offline data, alleviating the data bottleneck. The proposed approach is evaluated on an extensive benchmark comprising most recent methods, demonstrating significant improvement and establishing a new state-of-the-art performance. Our code is publicly available at https://github.com/cuong-dm/ROOT.
comment: The first two authors contributed equally
♻ ☆ Bayesian Optimization of Process Parameters of a Sensor-Based Sorting System using Gaussian Processes as Surrogate Models IEEE 30
Sensor-based sorting systems enable the physical separation of a material stream into two fractions. The sorting decision is based on the image data evaluation of the sensors used and is carried out using actuators. Various process parameters must be set depending on the properties of the material stream, the dimensioning of the system, and the required sorting accuracy. However, continuous verification and re-adjustment are necessary due to changing requirements and material stream compositions. In this paper, we introduce an approach for optimizing, recurrently monitoring and adjusting the process parameters of a sensor-based sorting system. Based on Bayesian Optimization, Gaussian process regression models are used as surrogate models to achieve specific requirements for system behavior with the uncertainties contained therein. This method minimizes the number of necessary experiments while simultaneously considering two possible optimization targets based on the requirements for both material output streams. In addition, uncertainties are considered during determining sorting accuracies in the model calculation. We evaluated the method with three example process parameters.
comment: Accepted at the IEEE 30th International Conference on Emerging Technologies and Factory Automation (ETFA)
♻ ☆ Transformers are Inherently Succinct
We propose succinctness as a measure of the expressive power of a transformer in describing a concept. To this end, we prove that transformers are highly expressive in that they can represent formal languages substantially more succinctly than standard representations of formal languages like finite automata and Linear Temporal Logic (LTL) formulas. As a by-product of this expressivity, we show that verifying properties of transformers is provably intractable (i.e. EXPSPACE-complete).
♻ ☆ Unity is Power: Semi-Asynchronous Collaborative Training of Large-Scale Models with Structured Pruning in Resource-Limited Clients
In this work, we study to release the potential of massive heterogeneous weak computing power to collaboratively train large-scale models on dispersed datasets. In order to improve both efficiency and accuracy in resource-adaptive collaborative learning, we take the first step to consider the \textit{unstructured pruning}, \textit{varying submodel architectures}, \textit{knowledge loss}, and \textit{straggler} challenges simultaneously. We propose a novel semi-asynchronous collaborative training framework, namely ${Co\text{-}S}^2{P}$, with data distribution-aware structured pruning and cross-block knowledge transfer mechanism to address the above concerns. Furthermore, we provide theoretical proof that ${Co\text{-}S}^2{P}$ can achieve asymptotic optimal convergence rate of $O(1/\sqrt{N^*EQ})$. Finally, we conduct extensive experiments on two types of tasks with a real-world hardware testbed including diverse IoT devices.The experimental results demonstrate that $Co\text{-}S^2P$ improves accuracy by up to 8.8\% and resource utilization by up to 1.2$\times$ compared to state-of-the-art methods, while reducing memory consumption by approximately 22\% and training time by about 24\% on all resource-limited devices.
comment: Accepted by TMC, 16 Pages, 12 figures
♻ ☆ Crafting Imperceptible On-Manifold Adversarial Attacks for Tabular Data
Adversarial attacks on tabular data present unique challenges due to the heterogeneous nature of mixed categorical and numerical features. Unlike images where pixel perturbations maintain visual similarity, tabular data lacks intuitive similarity metrics, making it difficult to define imperceptible modifications. Additionally, traditional gradient-based methods prioritise $\ell_p$-norm constraints, often producing adversarial examples that deviate from the original data distributions. To address this, we propose a latent-space perturbation framework using a mixed-input Variational Autoencoder (VAE) to generate statistically consistent adversarial examples. The proposed VAE integrates categorical embeddings and numerical features into a unified latent manifold, enabling perturbations that preserve statistical consistency. We introduce In-Distribution Success Rate (IDSR) to jointly evaluate attack effectiveness and distributional alignment. Evaluation across six publicly available datasets and three model architectures demonstrates that our method achieves substantially lower outlier rates and more consistent performance compared to traditional input-space attacks and other VAE-based methods adapted from image domain approaches, achieving substantially lower outlier rates and higher IDSR across six datasets and three model architectures. Our comprehensive analyses of hyperparameter sensitivity, sparsity control, and generative architecture demonstrate that the effectiveness of VAE-based attacks depends strongly on reconstruction quality and the availability of sufficient training data. When these conditions are met, the proposed framework achieves superior practical utility and stability compared with input-space methods. This work underscores the importance of maintaining on-manifold perturbations for generating realistic and robust adversarial examples in tabular domains.
comment: 39 pages
♻ ☆ Causal Post-Processing of Predictive Models
Organizations increasingly rely on predictive models to decide who should be targeted for interventions, such as marketing campaigns, customer retention offers, or medical treatments. Yet these models are usually built to predict outcomes (e.g., likelihood of purchase or churn), not the actual impact of an intervention. As a result, the scores (predicted values) they produce are often imperfect guides for allocating resources. Causal effects can be estimated with randomized experiments, but experiments are costly, limited in scale, and tied to specific actions. We propose causal post-processing (CPP), a family of techniques that uses limited experimental data to refine the outputs of predictive models, so they better align with causal decision making. The CPP family spans approaches that trade off flexibility against data efficiency, unifying existing methods and motivating new ones. Through simulations and an empirical study in digital advertising, we show that CPP can improve intervention decisions, particularly when predictive models capture a useful but imperfect causal signal. Our results show how organizations can combine predictive modeling with experimental evidence to make more effective and scalable intervention decisions.
♻ ☆ DesignX: Human-Competitive Algorithm Designer for Black-Box Optimization NeurIPS 2025
Designing effective black-box optimizers is hampered by limited problem-specific knowledge and manual control that spans months for almost every detail. In this paper, we present \textit{DesignX}, the first automated algorithm design framework that generates an effective optimizer specific to a given black-box optimization problem within seconds. Rooted in the first principles, we identify two key sub-tasks: 1) algorithm structure generation and 2) hyperparameter control. To enable systematic construction, a comprehensive modular algorithmic space is first built, embracing hundreds of algorithm components collected from decades of research. We then introduce a dual-agent reinforcement learning system that collaborates on structural and parametric design through a novel cooperative training objective, enabling large-scale meta-training across 10k diverse instances. Remarkably, through days of autonomous learning, the DesignX-generated optimizers continuously surpass human-crafted optimizers by orders of magnitude, either on synthetic testbed or on realistic optimization scenarios such as Protein-docking, AutoML and UAV path planning. Further in-depth analysis reveals DesignX's capability to discover non-trivial algorithm patterns beyond expert intuition, which, conversely, provides valuable design insights for the optimization community. We provide DesignX's Python project at~ https://github.com/MetaEvo/DesignX.
comment: Accepted by NeurIPS 2025
♻ ☆ Conformal Prediction for Time-series Forecasting with Change Points
Conformal prediction has been explored as a general and efficient way to provide uncertainty quantification for time series. However, current methods struggle to handle time series data with change points - sudden shifts in the underlying data-generating process. In this paper, we propose a novel Conformal Prediction for Time-series with Change points (CPTC) algorithm, addressing this gap by integrating a model to predict the underlying state with online conformal prediction to model uncertainties in non-stationary time series. We prove CPTC's validity and improved adaptivity in the time series setting under minimum assumptions, and demonstrate CPTC's practical effectiveness on 6 synthetic and real-world datasets, showing improved validity and adaptivity compared to state-of-the-art baselines.
♻ ☆ Optimal Dynamic Regret by Transformers for Non-Stationary Reinforcement Learning
Transformers have demonstrated exceptional performance across a wide range of domains. While their ability to perform reinforcement learning in-context has been established both theoretically and empirically, their behavior in non-stationary environments remains less understood. In this study, we address this gap by showing that transformers can achieve nearly optimal dynamic regret bounds in non-stationary settings. We prove that transformers are capable of approximating strategies used to handle non-stationary environments and can learn the approximator in the in-context learning setup. Our experiments further show that transformers can match or even outperform existing expert algorithms in such environments.
comment: 27 pages
♻ ☆ VT-FSL: Bridging Vision and Text with LLMs for Few-Shot Learning NeurIPS 2025
Few-shot learning (FSL) aims to recognize novel concepts from only a few labeled support samples. Recent studies enhance support features by incorporating additional semantic information or designing complex semantic fusion modules. However, they still suffer from hallucinating semantics that contradict the visual evidence due to the lack of grounding in actual instances, resulting in noisy guidance and costly corrections. To address these issues, we propose a novel framework, bridging Vision and Text with LLMs for Few-Shot Learning (VT-FSL), which constructs precise cross-modal prompts conditioned on Large Language Models (LLMs) and support images, seamlessly integrating them through a geometry-aware alignment. It mainly consists of Cross-modal Iterative Prompting (CIP) and Cross-modal Geometric Alignment (CGA). Specifically, the CIP conditions an LLM on both class names and support images to generate precise class descriptions iteratively in a single structured reasoning pass. These descriptions not only enrich the semantic understanding of novel classes but also enable the zero-shot synthesis of semantically consistent images. The descriptions and synthetic images act respectively as complementary textual and visual prompts, providing high-level class semantics and low-level intra-class diversity to compensate for limited support data. Furthermore, the CGA jointly aligns the fused textual, support, and synthetic visual representations by minimizing the kernelized volume of the 3-dimensional parallelotope they span. It captures global and nonlinear relationships among all representations, enabling structured and consistent multimodal integration. The proposed VT-FSL method establishes new state-of-the-art performance across ten diverse benchmarks, including standard, cross-domain, and fine-grained few-shot learning scenarios. Code is available at https://github.com/peacelwh/VT-FSL.
comment: Accepted by NeurIPS 2025
♻ ☆ Taming Hyperparameter Sensitivity in Data Attribution: Practical Selection Without Costly Retraining
Data attribution methods, which quantify the influence of individual training data points on a machine learning model, have gained increasing popularity in data-centric applications in modern AI. Despite a recent surge of new methods developed in this space, the impact of hyperparameter tuning in these methods remains under-explored. In this work, we present the first large-scale empirical study to understand the hyperparameter sensitivity of common data attribution methods. Our results show that most methods are indeed sensitive to certain key hyperparameters. However, unlike typical machine learning algorithms -- whose hyperparameters can be tuned using computationally-cheap validation metrics -- evaluating data attribution performance often requires retraining models on subsets of training data, making such metrics prohibitively costly for hyperparameter tuning. This poses a critical open challenge for the practical application of data attribution methods. To address this challenge, we advocate for better theoretical understandings of hyperparameter behavior to inform efficient tuning strategies. As a case study, we provide a theoretical analysis of the regularization term that is critical in many variants of influence function methods. Building on this analysis, we propose a lightweight procedure for selecting the regularization value without model retraining, and validate its effectiveness across a range of standard data attribution benchmarks. Overall, our study identifies a fundamental yet overlooked challenge in the practical application of data attribution, and highlights the importance of careful discussion on hyperparameter selection in future method development.
♻ ☆ MVP-Shapley: Feature-based Modeling for Evaluating the Most Valuable Player in Basketball
The burgeoning growth of the esports and multiplayer online gaming community has highlighted the critical importance of evaluating the Most Valuable Player (MVP). The establishment of an explainable and practical MVP evaluation method is very challenging. In our study, we specifically focus on play-by-play data, which records related events during the game, such as assists and points. We aim to address the challenges by introducing a new MVP evaluation framework, denoted as \oursys, which leverages Shapley values. This approach encompasses feature processing, win-loss model training, Shapley value allocation, and MVP ranking determination based on players' contributions. Additionally, we optimize our algorithm to align with expert voting results from the perspective of causality. Finally, we substantiated the efficacy of our method through validation using the NBA dataset and the Dunk City Dynasty dataset and implemented online deployment in the industry.
♻ ☆ Data Efficient Any Transformer-to-Mamba Distillation via Attention Bridge
State-space models (SSMs) have emerged as efficient alternatives to Transformers for sequence modeling, offering superior scalability through recurrent structures. However, their training remains costly and the ecosystem around them is far less mature than that of Transformers. Moreover, the structural heterogeneity between SSMs and Transformers makes it challenging to efficiently distill knowledge from pretrained attention models. In this work, we propose Cross-architecture distillation via Attention Bridge (CAB), a novel data-efficient distillation framework that efficiently transfers attention knowledge from Transformer teachers to state-space student models. Unlike conventional knowledge distillation that transfers knowledge only at the output level, CAB enables token-level supervision via a lightweight bridge and flexible layer-wise alignment, improving both efficiency and transferability. We further introduce flexible layer-wise alignment strategies to accommodate architectural discrepancies between teacher and student. Extensive experiments across vision and language domains demonstrate that our method consistently improves the performance of state-space models, even under limited training data, outperforming both standard and cross-architecture distillation methods. Our findings suggest that attention-based knowledge can be efficiently transferred to recurrent models, enabling rapid utilization of Transformer expertise for building a stronger SSM community.
♻ ☆ Towards Robust Zero-Shot Reinforcement Learning
The recent development of zero-shot reinforcement learning (RL) has opened a new avenue for learning pre-trained generalist policies that can adapt to arbitrary new tasks in a zero-shot manner. While the popular Forward-Backward representations (FB) and related methods have shown promise in zero-shot RL, we empirically found that their modeling lacks expressivity and that extrapolation errors caused by out-of-distribution (OOD) actions during offline learning sometimes lead to biased representations, ultimately resulting in suboptimal performance. To address these issues, we propose Behavior-REgularizEd Zero-shot RL with Expressivity enhancement (BREEZE), an upgraded FB-based framework that simultaneously enhances learning stability, policy extraction capability, and representation learning quality. BREEZE introduces behavioral regularization in zero-shot RL policy learning, transforming policy optimization into a stable in-sample learning paradigm. Additionally, BREEZE extracts the policy using a task-conditioned diffusion model, enabling the generation of high-quality and multimodal action distributions in zero-shot RL settings. Moreover, BREEZE employs expressive attention-based architectures for representation modeling to capture the complex relationships between environmental dynamics. Extensive experiments on ExORL and D4RL Kitchen demonstrate that BREEZE achieves the best or near-the-best performance while exhibiting superior robustness compared to prior offline zero-shot RL methods. The official implementation is available at: https://github.com/Whiterrrrr/BREEZE.
comment: Neurips 2025, 29 pages, 19 figures
♻ ☆ Symbiosis: Multi-Adapter Inference and Fine-Tuning
Parameter-efficient fine-tuning (PEFT) allows model builders to capture the task-specific parameters into adapters, which are a fraction of the size of the original base model. Popularity of PEFT technique for fine-tuning has led to the creation of a large number of adapters for popular Large Language Models (LLMs). However, existing frameworks fall short in supporting inference or fine-tuning with multiple adapters in the following ways. 1) For fine-tuning, each job needs to deploy its dedicated base model instance, which results in excessive GPU memory consumption and poor GPU utilization. 2) While popular inference platforms can serve multiple PEFT adapters, they do not allow independent resource management or mixing of different PEFT methods. 3) They cannot make effective use of heterogeneous accelerators. 4) They do not provide privacy to users who may not wish to expose their fine-tuned parameters to service providers. In Symbiosis, we address the above problems by enabling the as-a-service deployment of the base model. The base model layers can be shared across multiple inference or fine-tuning processes. Our split-execution technique decouples the execution of client-specific adapters and layers from the frozen base model layers offering them flexibility to manage their resources, to select their fine-tuning method, to achieve their performance goals. Our approach is transparent to models and works out-of-the-box for most models in the transformers library. We demonstrate the use of Symbiosis to simultaneously fine-tune 20 Gemma2-27B adapters on 8 GPUs.
♻ ☆ ixi-GEN: Efficient Industrial sLLMs through Domain Adaptive Continual Pretraining EMNLP 2025
The emergence of open-source large language models (LLMs) has expanded opportunities for enterprise applications; however, many organizations still lack the infrastructure to deploy and maintain large-scale models. As a result, small LLMs (sLLMs) have become a practical alternative despite inherent performance limitations. While Domain Adaptive Continual Pretraining (DACP) has been explored for domain adaptation, its utility in commercial settings remains under-examined. In this study, we validate the effectiveness of a DACP-based recipe across diverse foundation models and service domains, producing DACP-applied sLLMs (ixi-GEN). Through extensive experiments and real-world evaluations, we demonstrate that ixi-GEN models achieve substantial gains in target-domain performance while preserving general capabilities, offering a cost-efficient and scalable solution for enterprise-level deployment.
comment: Accepted at EMNLP 2025 Industry Track
♻ ☆ Every Attention Matters: An Efficient Hybrid Architecture for Long-Context Reasoning
In this technical report, we present the Ring-linear model series, specifically including Ring-mini-linear-2.0 and Ring-flash-linear-2.0. Ring-mini-linear-2.0 comprises 16B parameters and 957M activations, while Ring-flash-linear-2.0 contains 104B parameters and 6.1B activations. Both models adopt a hybrid architecture that effectively integrates linear attention and softmax attention, significantly reducing I/O and computational overhead in long-context inference scenarios. Compared to a 32 billion parameter dense model, this series reduces inference cost to 1/10, and compared to the original Ring series, the cost is also reduced by over 50%. Furthermore, through systematic exploration of the ratio between different attention mechanisms in the hybrid architecture, we have identified the currently optimal model structure. Additionally, by leveraging our self-developed high-performance FP8 operator library-linghe, overall training efficiency has been improved by 50%. Benefiting from the high alignment between the training and inference engine operators, the models can undergo long-term, stable, and highly efficient optimization during the reinforcement learning phase, consistently maintaining SOTA performance across multiple challenging complex reasoning benchmarks.
comment: 20 pages, 13 figures
♻ ☆ Deep Learning-Powered Electrical Brain Signals Analysis: Advancing Neurological Diagnostics
Neurological disorders pose major global health challenges, driving advances in brain signal analysis. Scalp electroencephalography (EEG) and intracranial EEG (iEEG) are widely used for diagnosis and monitoring. However, dataset heterogeneity and task variations hinder the development of robust deep learning solutions. This review systematically examines recent advances in deep learning approaches for EEG/iEEG-based neurological diagnostics, focusing on applications across 7 neurological conditions using 46 datasets. For each condition, we review representative methods and their quantitative results, integrating performance comparisons with analyses of data usage, model design, and task-specific adaptations, while highlighting the role of pre-trained multi-task models in achieving scalable, generalizable solutions. Finally, we propose a standardized benchmark to evaluate models across diverse datasets and improve reproducibility, emphasizing how recent innovations are transforming neurological diagnostics toward intelligent, adaptable healthcare systems.
♻ ☆ Learn2Mix: Training Neural Networks Using Adaptive Data Integration
Accelerating model convergence in resource-constrained environments is essential for fast and efficient neural network training. This work presents learn2mix, a new training strategy that adaptively adjusts class proportions within batches, focusing on classes with higher error rates. Unlike classical training methods that use static class proportions, learn2mix continually adapts class proportions during training, leading to faster convergence. Empirical evaluations on benchmark datasets show that neural networks trained with learn2mix converge faster than those trained with existing approaches, achieving improved results for classification, regression, and reconstruction tasks under limited training resources and with imbalanced classes. Our empirical findings are supported by theoretical analysis.
♻ ☆ Diffusion-Based Hierarchical Graph Neural Networks for Simulating Nonlinear Solid Mechanics
Graph-based learned simulators have emerged as a promising approach for simulating physical systems on unstructured meshes, offering speed and generalization across diverse geometries. However, they often struggle with capturing global phenomena, such as bending or long-range correlations usually occurring in solid mechanics, and suffer from error accumulation over long rollouts due to their reliance on local message passing and direct next-step prediction. We address these limitations by introducing the Rolling Diffusion-Batched Inference Network (ROBIN), a novel learned simulator that integrates two key innovations: (i) Rolling Diffusion-Batched Inference (ROBI), a parallelized inference scheme that amortizes the cost of diffusion-based refinement across physical time steps by overlapping denoising steps across a temporal window. (ii) A Hierarchical Graph Neural Network built on algebraic multigrid coarsening, enabling multiscale message passing across different mesh resolutions. This architecture, implemented via Algebraic-hierarchical Message Passing Networks, captures both fine-scale local dynamics and global structural effects critical for phenomena like beam bending or multi-body contact. We validate ROBIN on challenging 2D and 3D solid mechanics benchmarks involving geometric, material, and contact nonlinearities. ROBIN achieves state-of-the-art accuracy on all tasks, substantially outperforming existing next-step learned simulators while reducing inference time by up to an order of magnitude compared to standard diffusion simulators.
♻ ☆ LLM-Explorer: A Plug-in Reinforcement Learning Policy Exploration Enhancement Driven by Large Language Models
Policy exploration is critical in reinforcement learning (RL), where existing approaches include greedy, Gaussian process, etc. However, these approaches utilize preset stochastic processes and are indiscriminately applied in all kinds of RL tasks without considering task-specific features that influence policy exploration. Moreover, during RL training, the evolution of such stochastic processes is rigid, which typically only incorporates a decay in the variance, failing to adjust flexibly according to the agent's real-time learning status. Inspired by the analyzing and reasoning capability of large language models (LLMs), we design LLM-Explorer to adaptively generate task-specific exploration strategies with LLMs, enhancing the policy exploration in RL. In our design, we sample the learning trajectory of the agent during the RL training in a given task and prompt the LLM to analyze the agent's current policy learning status and then generate a probability distribution for future policy exploration. Updating the probability distribution periodically, we derive a stochastic process specialized for the particular task and dynamically adjusted to adapt to the learning process. Our design is a plug-in module compatible with various widely applied RL algorithms, including the DQN series, DDPG, TD3, and any possible variants developed based on them. Through extensive experiments on the Atari and MuJoCo benchmarks, we demonstrate LLM-Explorer's capability to enhance RL policy exploration, achieving an average performance improvement up to 37.27%. Our code is open-source at https://github.com/tsinghua-fib-lab/LLM-Explorer for reproducibility.
♻ ☆ Proxy Target: Bridging the Gap Between Discrete Spiking Neural Networks and Continuous Control
Spiking Neural Networks (SNNs) offer low-latency and energy-efficient decision making on neuromorphic hardware, making them attractive for Reinforcement Learning (RL) in resource-constrained edge devices. However, most RL algorithms for continuous control are designed for Artificial Neural Networks (ANNs), particularly the target network soft update mechanism, which conflicts with the discrete and non-differentiable dynamics of spiking neurons. We show that this mismatch destabilizes SNN training and degrades performance. To bridge the gap between discrete SNNs and continuous-control algorithms, we propose a novel proxy target framework. The proxy network introduces continuous and differentiable dynamics that enable smooth target updates, stabilizing the learning process. Since the proxy operates only during training, the deployed SNN remains fully energy-efficient with no additional inference overhead. Extensive experiments on continuous control benchmarks demonstrate that our framework consistently improves stability and achieves up to $32\%$ higher performance across various spiking neuron models. Notably, to the best of our knowledge, this is the first approach that enables SNNs with simple Leaky Integrate and Fire (LIF) neurons to surpass their ANN counterparts in continuous control. This work highlights the importance of SNN-tailored RL algorithms and paves the way for neuromorphic agents that combine high performance with low power consumption. Code is available at https://github.com/xuzijie32/Proxy-Target.
♻ ☆ DMWM: Dual-Mind World Model with Long-Term Imagination
Imagination in world models is crucial for enabling agents to learn long-horizon policy in a sample-efficient manner. Existing recurrent state-space model (RSSM)-based world models depend on single-step statistical inference to capture the environment dynamics, and, hence, they are unable to perform long-term imagination tasks due to the accumulation of prediction errors. Inspired by the dual-process theory of human cognition, we propose a novel dual-mind world model (DMWM) framework that integrates logical reasoning to enable imagination with logical consistency. DMWM is composed of two components: an RSSM-based System 1 (RSSM-S1) component that handles state transitions in an intuitive manner and a logic-integrated neural network-based System 2 (LINN-S2) component that guides the imagination process through hierarchical deep logical reasoning. The inter-system feedback mechanism is designed to ensure that the imagination process follows the logical rules of the real environment. The proposed framework is evaluated on benchmark tasks that require long-term planning from the DMControl suite. Extensive experimental results demonstrate that the proposed framework yields significant improvements in terms of logical coherence, trial efficiency, data efficiency and long-term imagination over the state-of-the-art world models.
♻ ☆ Statistical Inference for Generative Model Comparison
Generative models have achieved remarkable success across a range of applications, yet their evaluation still lacks principled uncertainty quantification. In this paper, we develop a method for comparing how close different generative models are to the underlying distribution of test samples. Particularly, our approach employs the Kullback-Leibler (KL) divergence to measure the distance between a generative model and the unknown test distribution, as KL requires no tuning parameters such as the kernels used by RKHS-based distances, and is the only $f$-divergence that admits a crucial cancellation to enable the uncertainty quantification. Furthermore, we extend our method to comparing conditional generative models and leverage Edgeworth expansions to address limited-data settings. On simulated datasets with known ground truth, we show that our approach realizes effective coverage rates, and has higher power compared to kernel-based methods. When applied to generative models on image and text datasets, our procedure yields conclusions consistent with benchmark metrics but with statistical confidence.
comment: 35 pages, 25 figures
♻ ☆ Gatekeeper: Improving Model Cascades Through Confidence Tuning ICML
Large-scale machine learning models deliver strong performance across a wide range of tasks but come with significant computational and resource constraints. To mitigate these challenges, local smaller models are often deployed alongside larger models, relying on routing and deferral mechanisms to offload complex tasks. However, existing approaches inadequately balance the capabilities of these models, often resulting in unnecessary deferrals or sub-optimal resource usage. In this work we introduce a novel loss function called Gatekeeper for calibrating smaller models in cascade setups. Our approach fine-tunes the smaller model to confidently handle tasks it can perform correctly while deferring complex tasks to the larger model. Moreover, it incorporates a mechanism for managing the trade-off between model performance and deferral accuracy, and is broadly applicable across various tasks and domains without any architectural changes. We evaluate our method on encoder-only, decoder-only, and encoder-decoder architectures. Experiments across image classification, language modeling, and vision-language tasks show that our approach substantially improves deferral performance.
comment: Presented at the TTODLer-FM workshop at the International Conference on Machine Learning (ICML) 2025
♻ ☆ JAMUN: Bridging Smoothed Molecular Dynamics and Score-Based Learning for Conformational Ensembles NeurIPS 2025
Conformational ensembles of protein structures are immensely important both for understanding protein function and drug discovery in novel modalities such as cryptic pockets. Current techniques for sampling ensembles such as molecular dynamics (MD) are computationally inefficient, while many recent machine learning methods do not transfer to systems outside their training data. We propose JAMUN which performs MD in a smoothed, noised space of all-atom 3D conformations of molecules by utilizing the framework of walk-jump sampling. JAMUN enables ensemble generation for small peptides at rates of an order of magnitude faster than traditional molecular dynamics. The physical priors in JAMUN enables transferability to systems outside of its training data, even to peptides that are longer than those originally trained on. Our model, code and weights are available at https://github.com/prescient-design/jamun.
comment: 37 pages, accepted at NeurIPS 2025
♻ ☆ MIR-Bench: Can Your LLM Recognize Complicated Patterns via Many-Shot In-Context Reasoning? NeurIPS 2025
The ability to recognize patterns from examples and apply them to new ones is a primal ability for general intelligence, and is widely studied by psychology and AI researchers. Many benchmarks have been proposed to measure such ability for Large Language Models (LLMs); however, they focus on few-shot (usually <10) setting and lack evaluation for aggregating many pieces of information from long contexts. On the other hand, the ever-growing context length of LLMs have brought forth the novel paradigm of many-shot In-Context Learning (ICL), which addresses new tasks with hundreds to thousands of examples without expensive and inefficient fine-tuning. However, many-shot evaluations often focus on classification, and popular long-context LLM tasks such as Needle-In-A-Haystack (NIAH) seldom require complicated intelligence for integrating many pieces of information. To fix the issues from both worlds, we propose MIR-Bench, the first many-shot in-context reasoning benchmark for pattern recognition that asks LLM to predict output via input-output examples from underlying functions with diverse data format. Based on MIR-Bench, we study many novel problems for many-shot in-context reasoning, and acquired many insightful findings including scaling effect, robustness, inductive vs. transductive reasoning, retrieval Augmented Generation (RAG), coding for inductive reasoning, cross-domain generalizability, etc.
comment: 39 pages, 11 figures. The paper is accepted at NeurIPS 2025 Datasets & Benchmarks Track, and the latest version adds modifications in camera-ready
♻ ☆ Harnessing Feature Resonance under Arbitrary Target Alignment for Out-of-Distribution Node Detection NeurIPS 2025
Detecting out-of-distribution (OOD) nodes in the graph-based machine-learning field is challenging, particularly when in-distribution (ID) node multi-category labels are unavailable. Thus, we focus on feature space rather than label space and find that, ideally, during the optimization of known ID samples, unknown ID samples undergo more significant representation changes than OOD samples, even if the model is trained to fit random targets, which we called the Feature Resonance phenomenon. The rationale behind it is that even without gold labels, the local manifold may still exhibit smooth resonance. Based on this, we further develop a novel graph OOD framework, dubbed Resonance-based Separation and Learning (RSL), which comprises two core modules: (i) a more practical micro-level proxy of feature resonance that measures the movement of feature vectors in one training step. (ii) integrate with synthetic OOD nodes strategy to train an effective OOD classifier. Theoretically, we derive an error bound showing the superior separability of OOD nodes during the resonance period. Extensive experiments on a total of thirteen real-world graph datasets empirically demonstrate that RSL achieves state-of-the-art performance.
comment: NeurIPS 2025 Accepted
♻ ☆ Sherlock: Self-Correcting Reasoning in Vision-Language Models NeurIPS 2025
Reasoning Vision-Language Models (VLMs) have shown promising performance on complex multimodal tasks. However, they still face significant challenges: they are highly sensitive to reasoning errors, require large volumes of annotated data or accurate verifiers, and struggle to generalize beyond specific domains. To address these limitations, we explore self-correction as a strategy to enhance reasoning VLMs. We first conduct an in-depth analysis of reasoning VLMs' self-correction abilities and identify key gaps. Based on our findings, we introduce Sherlock, a self-correction and self-improvement training framework. Sherlock introduces a trajectory-level self-correction objective, a preference data construction method based on visual perturbation, and a dynamic $\beta$ for preference tuning. Once the model acquires self-correction capabilities using only 20k randomly sampled annotated data, it continues to self-improve without external supervision. Built on the Llama3.2-Vision-11B model, Sherlock achieves remarkable results across eight benchmarks, reaching an average accuracy of 64.1 with direct generation and 65.4 after self-correction. It outperforms LLaVA-CoT (63.2), Mulberry (63.9), and LlamaV-o1 (63.4) while using less than 20% of the annotated data.
comment: Published at NeurIPS 2025, 27 pages
♻ ☆ Reinforcing Multi-Turn Reasoning in LLM Agents via Turn-Level Reward Design
This paper investigates Reinforcement Learning (RL) approaches to enhance the reasoning capabilities of Large Language Model (LLM) agents in long-horizon, multi-turn scenarios. Although RL algorithms such as Group Relative Policy Optimization (GRPO) and Proximal Policy Optimization (PPO) have been widely applied to train multi-turn LLM agents, they typically rely only on sparse outcome rewards and lack dense intermediate signals across multiple decision steps, limiting their performance on complex reasoning tasks. To bridge this gap, we present the first systematic study of \textit{turn-level reward design} for multi-turn RL algorithms and agent applications. By integrating turn-level rewards, we extend GRPO and PPO to their respective multi-turn variants, enabling fine-grained credit assignment. We conduct case studies on multi-turn reasoning-augmented search agents, where we carefully design two types of turn-level rewards: verifiable and LLM-as-judge. Our experiments on multi-turn search tasks demonstrate that incorporating well-designed turn-level rewards enables RL algorithms to significantly outperform baseline methods with trajectory-level rewards. Both training and validation reward curves illustrate that our method achieves \textit{greater stability}, \textit{faster convergence}, and \textit{higher accuracy}. Numerical results across diverse question-answering datasets further show that our approach consistently delivers highest answer correctness and 100\% format correctness.
comment: work in progress
♻ ☆ Bellman Optimality of Average-Reward Robust Markov Decision Processes with a Constant Gain
Learning and optimal control under robust Markov decision processes (MDPs) have received increasing attention, yet most existing theory, algorithms, and applications focus on finite-horizon or discounted models. Long-run average-reward formulations, while natural in many operations research and management contexts, remain underexplored. This is primarily because the dynamic programming foundations are technically challenging and only partially understood, with several fundamental questions remaining open. This paper steps toward a general framework for average-reward robust MDPs by analyzing the constant-gain setting. We study the average-reward robust control problem with possible information asymmetries between the controller and an S-rectangular adversary. Our analysis centers on the constant-gain robust Bellman equation, examining both the existence of solutions and their relationship to the optimal average reward. Specifically, we identify when solutions to the robust Bellman equation characterize the optimal average reward and stationary policies, and we provide one-sided weak communication conditions ensuring solutions' existence. These findings expand the dynamic programming theory for average-reward robust MDPs and lay a foundation for robust dynamic decision making under long-run average criteria in operational environments.
♻ ☆ A decomposition-based robust training of physics-informed neural networks for nearly incompressible linear elasticity
Due to divergence instability, the accuracy of low-order conforming finite element methods for nearly incompressible elasticity equations deteriorates as the Lam\'e coefficient $\lambda\to\infty$, or equivalently as the Poisson ratio $\nu\to1/2$. This phenomenon, known as locking or non-robustness, remains not fully understood despite extensive investigation. In this work, we illustrate first that an analogous instability arises when applying the popular Physics-Informed Neural Networks (PINNs) to nearly incompressible elasticity problems, leading to significant loss of accuracy and convergence difficulties. Then, to overcome this challenge, we propose a robust decomposition-based PINN framework that reformulates the elasticity equations into balanced subsystems, thereby eliminating the ill-conditioning that causes locking. Our approach simultaneously solves the forward and inverse problems to recover both the decomposed field variables and the associated external conditions. We will also perform a convergence analysis to further enhance the reliability of the proposed approach. Moreover, through various numerical experiments, including constant, variable and parametric Lam\'e coefficients, we illustrate the efficiency of the proposed methodology.
♻ ☆ Toward a Metrology for Artificial Intelligence: Hidden-Rule Environments and Reinforcement Learning
We investigate reinforcement learning in the Game Of Hidden Rules (GOHR) environment, a complex puzzle in which an agent must infer and execute hidden rules to clear a 6$\times$6 board by placing game pieces into buckets. We explore two state representation strategies, namely Feature-Centric (FC) and Object-Centric (OC), and employ a Transformer-based Advantage Actor-Critic (A2C) algorithm for training. The agent has access only to partial observations and must simultaneously infer the governing rule and learn the optimal policy through experience. We evaluate our models across multiple rule-based and trial-list-based experimental setups, analyzing transfer effects and the impact of representation on learning efficiency.
♻ ☆ REOrdering Patches Improves Vision Models NeurIPS 2025
Sequence models such as transformers require inputs to be represented as one-dimensional sequences. In vision, this typically involves flattening images using a fixed row-major (raster-scan) order. While full self-attention is permutation-equivariant, modern long-sequence transformers increasingly rely on architectural approximations that break this invariance and introduce sensitivity to patch ordering. We show that patch order significantly affects model performance in such settings, with simple alternatives like column-major or Hilbert curves yielding notable accuracy shifts. Motivated by this, we propose REOrder, a two-stage framework for discovering task-optimal patch orderings. First, we derive an information-theoretic prior by evaluating the compressibility of various patch sequences. Then, we learn a policy over permutations by optimizing a Plackett-Luce policy using REINFORCE. This approach enables efficient learning in a combinatorial permutation space. REOrder improves top-1 accuracy over row-major ordering on ImageNet-1K by up to 3.01% and Functional Map of the World by 13.35%.
comment: Accepted to the 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ RL Tango: Reinforcing Generator and Verifier Together for Language Reasoning NeurIPS 2025
Reinforcement learning (RL) has recently emerged as a compelling approach for enhancing the reasoning capabilities of large language models (LLMs), where an LLM generator serves as a policy guided by a verifier (reward model). However, current RL post-training methods for LLMs typically use verifiers that are fixed (rule-based or frozen pretrained) or trained discriminatively via supervised fine-tuning (SFT). Such designs are susceptible to reward hacking and generalize poorly beyond their training distributions. To overcome these limitations, we propose Tango, a novel framework that uses RL to concurrently train both an LLM generator and a verifier in an interleaved manner. A central innovation of Tango is its generative, process-level LLM verifier, which is trained via RL and co-evolves with the generator. Importantly, the verifier is trained solely based on outcome-level verification correctness rewards without requiring explicit process-level annotations. This generative RL-trained verifier exhibits improved robustness and superior generalization compared to deterministic or SFT-trained verifiers, fostering effective mutual reinforcement with the generator. Extensive experiments demonstrate that both components of Tango achieve state-of-the-art results among 7B/8B-scale models: the generator attains best-in-class performance across five competition-level math benchmarks and four challenging out-of-domain reasoning tasks, while the verifier leads on the ProcessBench dataset. Remarkably, both components exhibit particularly substantial improvements on the most difficult mathematical reasoning problems. Code is at: https://github.com/kaiwenzha/rl-tango.
comment: NeurIPS 2025. The first two authors contributed equally
♻ ☆ RADAR: A Risk-Aware Dynamic Multi-Agent Framework for LLM Safety Evaluation via Role-Specialized Collaboration
Existing safety evaluation methods for large language models (LLMs) suffer from inherent limitations, including evaluator bias and detection failures arising from model homogeneity, which collectively undermine the robustness of risk evaluation processes. This paper seeks to re-examine the risk evaluation paradigm by introducing a theoretical framework that reconstructs the underlying risk concept space. Specifically, we decompose the latent risk concept space into three mutually exclusive subspaces: the explicit risk subspace (encompassing direct violations of safety guidelines), the implicit risk subspace (capturing potential malicious content that requires contextual reasoning for identification), and the non-risk subspace. Furthermore, we propose RADAR, a multi-agent collaborative evaluation framework that leverages multi-round debate mechanisms through four specialized complementary roles and employs dynamic update mechanisms to achieve self-evolution of risk concept distributions. This approach enables comprehensive coverage of both explicit and implicit risks while mitigating evaluator bias. To validate the effectiveness of our framework, we construct an evaluation dataset comprising 800 challenging cases. Extensive experiments on our challenging testset and public benchmarks demonstrate that RADAR significantly outperforms baseline evaluation methods across multiple dimensions, including accuracy, stability, and self-evaluation risk sensitivity. Notably, RADAR achieves a 28.87% improvement in risk identification accuracy compared to the strongest baseline evaluation method.
♻ ☆ MoORE: SVD-based Model MoE-ization for Conflict- and Oblivion-Resistant Multi-Task Adaptation
Adapting large-scale foundation models in multi-task scenarios often suffers from task conflict and oblivion. To mitigate such issues, we propose a novel ''model MoE-ization'' strategy that leads to a conflict- and oblivion-resistant multi-task adaptation method. Given a weight matrix of a pre-trained model, our method applies SVD to it and introduces a learnable router to adjust its singular values based on tasks and samples. Accordingly, the weight matrix becomes a Mixture of Orthogonal Rank-one Experts (MoORE), in which each expert corresponds to the outer product of a left singular vector and the corresponding right one. We can improve the model capacity by imposing a learnable orthogonal transform on the right singular vectors. Unlike low-rank adaptation (LoRA) and its MoE-driven variants, MoORE guarantees the experts' orthogonality and maintains the column space of the original weight matrix. These two properties make the adapted model resistant to the conflicts among the new tasks and the oblivion of its original tasks, respectively. Experiments on various datasets demonstrate that MoORE outperforms existing multi-task adaptation methods consistently, showing its superiority in terms of conflict- and oblivion-resistance. The code of the experiments is available at https://github.com/DaShenZi721/MoORE.
comment: 26 pages, 6 figures
♻ ☆ Quantitative LLM Judges
LLM-as-a-judge is a framework where a large language model (LLM) evaluates the output of another LLM. While LLMs excel at producing qualitative textual evaluations, they often struggle to predict human preferences and numeric scores. We propose quantitative LLM judges, which align evaluation scores of existing LLM judges to humans in a given domain using regression models. The models are trained to improve the score of the original judge using its rationale and score. We present four quantitative judges for different types of absolute and relative feedback, which showcases the generality and versatility of our framework. Our framework is more computationally efficient than supervised fine-tuning and can be more statistically efficient when human feedback is limited, which is expected in practice. We validate these claims empirically on four datasets using two base judges. Our experiments show that quantitative judges can improve the predictive power of existing judges through post-hoc modeling.
♻ ☆ DexCanvas: Bridging Human Demonstrations and Robot Learning for Dexterous Manipulation
We present DexCanvas, a large-scale hybrid real-synthetic human manipulation dataset containing 7,000 hours of dexterous hand-object interactions seeded from 70 hours of real human demonstrations, organized across 21 fundamental manipulation types based on the Cutkosky taxonomy. Each entry combines synchronized multi-view RGB-D, high-precision mocap with MANO hand parameters, and per-frame contact points with physically consistent force profiles. Our real-to-sim pipeline uses reinforcement learning to train policies that control an actuated MANO hand in physics simulation, reproducing human demonstrations while discovering the underlying contact forces that generate the observed object motion. DexCanvas is the first manipulation dataset to combine large-scale real demonstrations, systematic skill coverage based on established taxonomies, and physics-validated contact annotations. The dataset can facilitate research in robotic manipulation learning, contact-rich control, and skill transfer across different hand morphologies.
♻ ☆ Pre-training Epidemic Time Series Forecasters with Compartmental Prototypes
Accurate epidemic forecasting is crucial for outbreak preparedness, but existing data-driven models are often brittle. Typically trained on a single pathogen, they struggle with data scarcity during new outbreaks and fail under distribution shifts caused by viral evolution or interventions. However, decades of surveillance data from diverse diseases offer an untapped source of transferable knowledge. To leverage the collective lessons from history, we propose CAPE, the first open-source pre-trained model for epidemic forecasting. Unlike existing time series foundation models that overlook epidemiological challenges, CAPE models epidemic dynamics as mixtures of latent population states, termed compartmental prototypes. It discovers a flexible dictionary of compartment prototypes directly from surveillance data, enabling each outbreak to be expressed as a time-varying mixture that links observed infections to latent population states. To promote robust generalization, CAPE combines self-supervised pre-training objectives with lightweight epidemic-aware regularizers that align the learned prototypes with epidemiological semantics. On a comprehensive benchmark spanning 17 diseases and 50+ regions, CAPE significantly outperforms strong baselines in zero-shot, few-shot, and full-shot forecasting. This work represents a principled step toward pre-trained epidemic models that are both transferable and epidemiologically grounded.
comment: version 2.0_fixed
♻ ☆ Small Batch Size Training for Language Models: When Vanilla SGD Works, and Why Gradient Accumulation Is Wasteful NeurIPS 2025
Conventional wisdom dictates that small batch sizes make language model pretraining and fine-tuning unstable, motivating gradient accumulation, which trades off the number of optimizer steps for a proportional increase in batch size. While it is common to decrease the learning rate for smaller batch sizes, other hyperparameters are often held fixed. In this work, we revisit small batch sizes all the way down to batch size one, and we propose a rule for scaling Adam hyperparameters to small batch sizes. In particular, rather than holding the decay rate of the second moment fixed across batch sizes, we propose to hold its half-life fixed in terms of tokens. We find that small batch sizes (1) train stably, (2) are consistently more robust to hyperparameter choices, (3) achieve equal or better per-FLOP performance than larger batch sizes, and (4) notably enable stable language model training with vanilla SGD, even without momentum, despite storing no optimizer state. Building on these results, we provide practical recommendations for selecting a batch size and setting optimizer hyperparameters. We further recommend against gradient accumulation unless training on multiple devices with multiple model replicas. Finally, we show that a small batch size combined with an optimizer with a small state size can provide the performance benefits of full fine-tuning while maintaining a similar memory footprint to LoRA.
comment: NeurIPS 2025. Code available at: https://github.com/martin-marek/batch-size
♻ ☆ Spark Transformer: Reactivating Sparsity in FFN and Attention NeurIPS 2025
The discovery of the lazy neuron phenomenon in trained Transformers, where the vast majority of neurons in their feed-forward networks (FFN) are inactive for each token, has spurred tremendous interests in activation sparsity for enhancing large model efficiency. While notable progress has been made in translating such sparsity to wall-time benefits, modern Transformers have moved away from the ReLU activation function crucial to this phenomenon. Existing efforts on re-introducing activation sparsity often degrade model quality, increase parameter count, complicate or slow down training. Sparse attention, the application of sparse activation to the attention mechanism, often faces similar challenges. This paper introduces the Spark Transformer, a novel architecture that achieves a high level of activation sparsity in both FFN and the attention mechanism while maintaining model quality, parameter count, and standard training procedures. Our method realizes sparsity via top-k masking for explicit control over sparsity level. Crucially, we introduce statistical top-k, a hardware-accelerator-friendly, linear-time approximate algorithm that avoids costly sorting and mitigates significant training slowdown from standard top-$k$ operators. Furthermore, Spark Transformer reallocates existing FFN parameters and attention key embeddings to form a low-cost predictor for identifying activated entries. This design not only mitigates quality loss from enforced sparsity, but also enhances wall-time benefit. Pretrained with the Gemma-2 recipe, Spark Transformer demonstrates competitive performance on standard benchmarks while exhibiting significant sparsity: only 8% of FFN neurons are activated, and each token attends to a maximum of 256 tokens. This sparsity translates to a 2.5x reduction in FLOPs, leading to decoding wall-time speedups of up to 1.79x on CPU and 1.40x on GPU.
comment: NeurIPS 2025
♻ ☆ DeepCausalMMM: A Deep Learning Framework for Marketing Mix Modeling with Causal Inference
Marketing Mix Modeling (MMM) is a statistical technique used to estimate the impact of marketing activities on business outcomes such as sales, revenue, or customer visits. Traditional MMM approaches often rely on linear regression or Bayesian hierarchical models that assume independence between marketing channels and struggle to capture complex temporal dynamics and non-linear saturation effects [@Chan2017; @Hanssens2005; @Ng2021Bayesian]. **DeepCausalMMM** is a Python package that addresses these limitations by combining deep learning, causal inference, and advanced marketing science. The package uses Gated Recurrent Units (GRUs) to automatically learn temporal patterns such as adstock (carryover effects) and lag, while simultaneously learning statistical dependencies and potential causal structures between marketing channels through Directed Acyclic Graph (DAG) learning [@Zheng2018NOTEARS; @Gong2024CausalMMM]. Additionally, it implements Hill equation-based saturation curves to model diminishing returns and optimize budget allocation. Key features include: (1) a data-driven design where hyperparameters and transformations (e.g., adstock decay, saturation curves) are learned or estimated from data with sensible defaults, rather than requiring fixed heuristics or manual specification, (2) multi-region modeling with both shared and region-specific parameters, (3) robust statistical methods including Huber loss and advanced regularization, (4) comprehensive response curve analysis for understanding channel saturation.
comment: Submitted to JOSS (Journal of Open Source Software) Journal for Publishing. It's currently in the Pre-review stage. Please note that Author has no middle name. Last name is 'Puttaparthi Tirumala' (it's a two-part surname)
♻ ☆ Fair Clustering via Alignment
Algorithmic fairness in clustering aims to balance the proportions of instances assigned to each cluster with respect to a given sensitive attribute. While recently developed fair clustering algorithms optimize clustering objectives under specific fairness constraints, their inherent complexity or approximation often results in suboptimal clustering utility or numerical instability in practice. To resolve these limitations, we propose a new fair clustering algorithm based on a novel decomposition of the fair $K$-means clustering objective function. The proposed algorithm, called Fair Clustering via Alignment (FCA), operates by alternately (i) finding a joint probability distribution to align the data from different protected groups, and (ii) optimizing cluster centers in the aligned space. A key advantage of FCA is that it theoretically guarantees approximately optimal clustering utility for any given fairness level without complex constraints, thereby enabling high-utility fair clustering in practice. Experiments show that FCA outperforms existing methods by (i) attaining a superior trade-off between fairness level and clustering utility, and (ii) achieving near-perfect fairness without numerical instability.
♻ ☆ Curiosity-Driven Development of Action and Language in Robots Through Self-Exploration
Human infants acquire language and action gradually through development, achieving remarkable generalization capabilities from only a minimal number of learning examples. In contrast, recent large language models require exposure to billions of training tokens to achieve such generalization. What mechanisms underlie such efficient developmental learning in humans? This study addresses this question through simulation experiments in which robots learn to perform various actions corresponding to imperative sentences (e.g., \textit{push red cube}) via trials of self-guided exploration. Our approach integrates the active inference framework with reinforcement learning, enabling curiosity-driven developmental learning. The simulations yielded several important findings: i) Generalization is drastically improved as the number of compositional elements increases. ii) Curiosity-driven exploration combined with motor noise substantially outperforms learning without curiosity. iii) Rote pairing of sentences and actions occurs before the emergence of compositional generalization. iv) Simpler, prerequisite-like actions emerge earlier in development, while more complex actions involving these prerequisites develop later. These results shed light into possible mechanisms underlying efficient developmental learning in infants and provide computational parallels to findings in developmental psychology.
comment: 20 pages, 19 pages of supplementary material
♻ ☆ Towards Machine Learning-based Model Predictive Control for HVAC Control in Multi-Context Buildings at Scale via Ensemble Learning
The building thermodynamics model, which predicts real-time indoor temperature changes under potential HVAC (Heating, Ventilation, and Air Conditioning) control operations, is crucial for optimizing HVAC control in buildings. While pioneering studies have attempted to develop such models for various building environments, these models often require extensive data collection periods and rely heavily on expert knowledge, making the modeling process inefficient and limiting the reusability of the models. This paper explores a model ensemble perspective that utilizes existing developed models as base models to serve a target building environment, thereby providing accurate predictions while reducing the associated efforts. Given that building data streams are non-stationary and the number of base models may increase, we propose a Hierarchical Reinforcement Learning (HRL) approach to dynamically select and weight the base models. Our approach employs a two-tiered decision-making process: the high-level focuses on model selection, while the low-level determines the weights of the selected models. We thoroughly evaluate the proposed approach through offline experiments and an on-site case study, and the experimental results demonstrate the effectiveness of our method.
♻ ☆ Wasserstein Transfer Learning NeurIPS 2025
Transfer learning is a powerful paradigm for leveraging knowledge from source domains to enhance learning in a target domain. However, traditional transfer learning approaches often focus on scalar or multivariate data within Euclidean spaces, limiting their applicability to complex data structures such as probability distributions. To address this limitation, we introduce a novel transfer learning framework for regression models whose outputs are probability distributions residing in the Wasserstein space. When the informative subset of transferable source domains is known, we propose an estimator with provable asymptotic convergence rates, quantifying the impact of domain similarity on transfer efficiency. For cases where the informative subset is unknown, we develop a data-driven transfer learning procedure designed to mitigate negative transfer. The proposed methods are supported by rigorous theoretical analysis and are validated through extensive simulations and real-world applications. The code is available at https://github.com/h7nian/WaTL
comment: 25 pages, 6 figures, NeurIPS 2025
♻ ☆ Illusions of reflection: open-ended task reveals systematic failures in Large Language Models' reflective reasoning
Humans do not just find mistakes after the fact -- we often catch them mid-stream because 'reflection' is tied to the goal and its constraints. Today's large language models produce reasoning tokens and 'reflective' text, but is it functionally equivalent with human reflective reasoning? Prior work on closed-ended tasks -- with clear, external 'correctness' signals -- can make 'reflection' look effective while masking limits in self-correction. We therefore test eight frontier models on a simple, real-world task that is open-ended yet rule-constrained, with auditable success criteria: to produce valid scientific test items, then revise after considering their own critique. First-pass performance is poor (often zero valid items out of 4 required; mean $\approx$ 1), and reflection yields only modest gains (also $\approx$ 1). Crucially, the second attempt frequently repeats the same violation of constraint, indicating 'corrective gains' arise largely from chance production of a valid item rather than error detection and principled, constraint-sensitive repair. Performance before and after reflection deteriorates as open-endedness increases, and models marketed for 'reasoning' show no advantage. Our results suggest that current LLM 'reflection' lacks functional evidence of the active, goal-driven monitoring that helps humans respect constraints even on a first pass. Until such mechanisms are instantiated in the model itself, reliable performance requires external structure that enforces constraints. Our code is available at: https://github.com/cruiseresearchgroup/LLM_ReflectionTest
comment: Currently under review
♻ ☆ AssistedDS: Benchmarking How External Domain Knowledge Assists LLMs in Automated Data Science
Large language models (LLMs) have advanced the automation of data science workflows. Yet it remains unclear whether they can critically leverage external domain knowledge as human data scientists do in practice. To answer this question, we introduce AssistedDS (Assisted Data Science), a benchmark designed to systematically evaluate how LLMs handle domain knowledge in tabular prediction tasks. AssistedDS features both synthetic datasets with explicitly known generative mechanisms and real-world Kaggle competitions, each accompanied by curated bundles of helpful and adversarial documents. These documents provide domain-specific insights into data cleaning, feature engineering, and model selection. We assess state-of-the-art LLMs on their ability to discern and apply beneficial versus harmful domain knowledge, evaluating submission validity, information recall, and predictive performance. Our results demonstrate three key findings: (1) LLMs frequently exhibit an uncritical adoption of provided information, significantly impairing their predictive performance when adversarial content is introduced, (2) helpful guidance is often insufficient to counteract the negative influence of adversarial information, and (3) in Kaggle datasets, LLMs often make errors in handling time-series data, applying consistent feature engineering across different folds, and interpreting categorical variables correctly. These findings highlight a substantial gap in current models' ability to critically evaluate and leverage expert knowledge, underscoring an essential research direction for developing more robust, knowledge-aware automated data science systems. Our data and code are publicly available here: https://github.com/jeremyxianx/Assisted-DS
♻ ☆ Sparse Autoencoder Neural Operators: Model Recovery in Function Spaces NeurIPS
We frame the problem of unifying representations in neural models as one of sparse model recovery and introduce a framework that extends sparse autoencoders (SAEs) to lifted spaces and infinite-dimensional function spaces, enabling mechanistic interpretability of large neural operators (NO). While the Platonic Representation Hypothesis suggests that neural networks converge to similar representations across architectures, the representational properties of neural operators remain underexplored despite their growing importance in scientific computing. We compare the inference and training dynamics of SAEs, lifted-SAE, and SAE neural operators. We highlight how lifting and operator modules introduce beneficial inductive biases, enabling faster recovery, improved recovery of smooth concepts, and robust inference across varying resolutions, a property unique to neural operators.
comment: Tolooshams and Shen has equal contribution. Extended Abstract at the Workshop on Unifying Representations in Neural Models (UniReps 2025) at NeurIPS
♻ ☆ Extracting Interpretable Models from Tree Ensembles: Computational and Statistical Perspectives
Tree ensembles are non-parametric methods widely recognized for their accuracy and ability to capture complex interactions. While these models excel at prediction, they are difficult to interpret and may fail to uncover useful relationships in the data. We propose an estimator to extract compact sets of decision rules from tree ensembles. The extracted models are accurate and can be manually examined to reveal relationships between the predictors and the response. A key novelty of our estimator is the flexibility to jointly control the number of rules extracted and the interaction depth of each rule, which improves accuracy. We develop a tailored exact algorithm to efficiently solve optimization problems underlying our estimator and an approximate algorithm for computing regularization paths, sequences of solutions that correspond to varying model sizes. We also establish novel non-asymptotic prediction error bounds for our proposed approach, comparing it to an oracle that chooses the best data-dependent linear combination of the rules in the ensemble subject to the same complexity constraint as our estimator. The bounds illustrate that the large-sample predictive performance of our estimator is on par with that of the oracle. Through experiments, we demonstrate that our estimator outperforms existing algorithms for rule extraction.
♻ ☆ SetONet: A Set-Based Operator Network for Solving PDEs with Variable-Input Sampling
Neural operators, particularly the Deep Operator Network (DeepONet), have shown promise in learning mappings between function spaces for solving differential equations. However, standard DeepONet requires input functions to be sampled at fixed locations, limiting its applicability when sensor configurations vary or inputs exist on irregular grids. We introduce the Set Operator Network (SetONet), which modifies DeepONet's branch network to process input functions as unordered sets of location-value pairs. By incorporating Deep Sets principles, SetONet ensures permutation invariance while maintaining the same parameter count as the baseline. On classical operator-learning benchmarks, SetONet achieves parity with DeepONet on fixed layouts while sustaining accuracy under variable sensor configurations or sensor drop-off - conditions for which standard DeepONet is not applicable. More significantly, SetONet natively handles problems where inputs are naturally represented as unstructured point clouds (such as point sources or density samples) rather than values on fixed grids, a capability standard DeepONet lacks. On heat conduction with point sources, advection-diffusion modeling chemical plumes, and optimal transport between density samples, SetONet learns operators end-to-end without rasterization or multi-stage pipelines. These problems feature inputs that are naturally discrete point sets (point sources or density samples) rather than functions on fixed grids. SetONet is a DeepONet-class architecture that addresses such problems with a lightweight design, significantly broadening the applicability of operator learning to problems with variable, incomplete, or unstructured input data.
♻ ☆ Replacing Softmax Similarity with a Sharpened Angular Similarity: Theory and Practice of Scaling To Billion-Context Attention
Softmax Attention has a quadratic time complexity, which becomes prohibitive to run at long contexts, even with highly optimized GPU kernels. For example, FlashAttention (an exact, GPU-optimized implementation of Softmax Attention) cannot complete a single forward-backward pass of a multi-head attention layer once the context exceeds ~4 million tokens on an NVIDIA GH200 (96 GB). We introduce RACE Attention, a kernel-inspired alternative to Softmax Attention that is linear in sequence length and embedding dimension. RACE Attention replaces the exponential kernel with a sharpened angular (cosine) similarity, and approximates attention outputs via randomized projections and soft Locality-Sensitive Hashing (LSH). Across language modeling, masked language modeling, and text classification, RACE Attention matches the accuracy of strong baselines while reducing runtime and memory. In a controlled scale test, it processes up to 12 million tokens during a single forward-backward pass on an NVIDIA GH200 GPU and 75 million tokens on an Intel Xeon Gold 5220R CPU, well beyond the practical limits of the current state-of-the-art attention implementations. RACE Attention thus offers a practical, theoretically grounded mechanism for outrageously long context windows on today's hardware. We hope that it gets adopted in practice.
comment: 28 pages, 7 figures
♻ ☆ Iterative Self-Tuning LLMs for Enhanced Jailbreaking Capabilities NAACL 2025
Recent research has shown that Large Language Models (LLMs) are vulnerable to automated jailbreak attacks, where adversarial suffixes crafted by algorithms appended to harmful queries bypass safety alignment and trigger unintended responses. Current methods for generating these suffixes are computationally expensive and have low Attack Success Rates (ASR), especially against well-aligned models like Llama2 and Llama3. To overcome these limitations, we introduce ADV-LLM, an iterative self-tuning process that crafts adversarial LLMs with enhanced jailbreak ability. Our framework significantly reduces the computational cost of generating adversarial suffixes while achieving nearly 100\% ASR on various open-source LLMs. Moreover, it exhibits strong attack transferability to closed-source models, achieving 99\% ASR on GPT-3.5 and 49\% ASR on GPT-4, despite being optimized solely on Llama3. Beyond improving jailbreak ability, ADV-LLM provides valuable insights for future safety alignment research through its ability to generate large datasets for studying LLM safety. Our code is available at: https://github.com/SunChungEn/ADV-LLM
comment: Accepted to NAACL 2025 Main (Oral)
♻ ☆ DMSC: Dynamic Multi-Scale Coordination Framework for Time Series Forecasting
Time Series Forecasting (TSF) faces persistent challenges in modeling intricate temporal dependencies across different scales. Despite recent advances leveraging different decomposition operations and novel architectures based on CNN, MLP or Transformer, existing methods still struggle with static decomposition strategies, fragmented dependency modeling, and inflexible fusion mechanisms, limiting their ability to model intricate temporal dependencies. To explicitly solve the mentioned three problems respectively, we propose a novel Dynamic Multi-Scale Coordination Framework (DMSC) with Multi-Scale Patch Decomposition block (EMPD), Triad Interaction Block (TIB) and Adaptive Scale Routing MoE block (ASR-MoE). Specifically, EMPD is designed as a built-in component to dynamically segment sequences into hierarchical patches with exponentially scaled granularities, eliminating predefined scale constraints through input-adaptive patch adjustment. TIB then jointly models intra-patch, inter-patch, and cross-variable dependencies within each layer's decomposed representations. EMPD and TIB are jointly integrated into layers forming a multi-layer progressive cascade architecture, where coarse-grained representations from earlier layers adaptively guide fine-grained feature extraction in subsequent layers via gated pathways. And ASR-MoE dynamically fuses multi-scale predictions by leveraging specialized global and local experts with temporal-aware weighting. Comprehensive experiments on thirteen real-world benchmarks demonstrate that DMSC consistently maintains state-of-the-art (SOTA) performance and superior computational efficiency for TSF tasks. Code is available at https://github.com/1327679995/DMSC.
♻ ☆ Deep Continuous-Time State-Space Models for Marked Event Sequences NeurIPS 2025
Marked temporal point processes (MTPPs) model sequences of events occurring at irregular time intervals, with wide-ranging applications in fields such as healthcare, finance and social networks. We propose the state-space point process (S2P2) model, a novel and performant model that leverages techniques derived for modern deep state-space models (SSMs) to overcome limitations of existing MTPP models, while simultaneously imbuing strong inductive biases for continuous-time event sequences that other discrete sequence models (i.e., RNNs, transformers) do not capture. Inspired by the classical linear Hawkes processes, we propose an architecture that interleaves stochastic jump differential equations with nonlinearities to create a highly expressive intensity-based MTPP model, without the need for restrictive parametric assumptions for the intensity. Our approach enables efficient training and inference with a parallel scan, bringing linear complexity and sublinear scaling while retaining expressivity to MTPPs. Empirically, S2P2 achieves state-of-the-art predictive likelihoods across eight real-world datasets, delivering an average improvement of 33% over the best existing approaches.
comment: NeurIPS 2025 Spotlight
♻ ☆ Blending Complementary Memory Systems in Hybrid Quadratic-Linear Transformers NeurIPS 2025
We develop hybrid memory architectures for general-purpose sequence processing neural networks, that combine key-value memory using softmax attention (KV-memory) with fast weight memory through dynamic synaptic modulation (FW-memory) -- the core principles of quadratic and linear transformers, respectively. These two memory systems have complementary but individually limited properties: KV-memory offers precise retrieval but is constrained by quadratic complexity in sequence length, while FW-memory supports arbitrarily long sequences and enables more expressive computation but sacrifices precise recall. We propose and compare three methods to blend these two systems into a single memory system, differing in how and when input information is delivered to each system, to leverage the strengths of both. We conduct experiments on general language modeling and retrieval tasks by training 340M- and 1.3B-parameter models from scratch, as well as on synthetic algorithmic tasks designed to precisely illustrate the benefits of certain hybrid methods over others. We also evaluate our hybrid memory systems on reinforcement learning in partially observable environments. Overall, we demonstrate how a well-designed hybrid can overcome the limitations of its individual components, offering new insights into the design principle of neural memory systems.
comment: Accepted to NeurIPS 2025
♻ ☆ Training Robust Graph Neural Networks by Modeling Noise Dependencies NeurIPS 2025
In real-world applications, node features in graphs often contain noise from various sources, leading to significant performance degradation in GNNs. Although several methods have been developed to enhance robustness, they rely on the unrealistic assumption that noise in node features is independent of the graph structure and node labels, thereby limiting their applicability. To this end, we introduce a more realistic noise scenario, dependency-aware noise on graphs (DANG), where noise in node features create a chain of noise dependencies that propagates to the graph structure and node labels. We propose a novel robust GNN, DA-GNN, which captures the causal relationships among variables in the data generating process (DGP) of DANG using variational inference. In addition, we present new benchmark datasets that simulate DANG in real-world applications, enabling more practical research on robust GNNs. Extensive experiments demonstrate that DA-GNN consistently outperforms existing baselines across various noise scenarios, including both DANG and conventional noise models commonly considered in this field. Our code is available at https://github.com/yeonjun-in/torch-DA-GNN.
comment: NeurIPS 2025
♻ ☆ Near optimal sample complexity for matrix and tensor normal models via geodesic convexity
The matrix normal model, i.e., the family of Gaussian matrix-variate distributions whose covariance matrices are the Kronecker product of two lower dimensional factors, is frequently used to model matrix-variate data. The tensor normal model generalizes this family to Kronecker products of three or more factors. We study the estimation of the Kronecker factors of the covariance matrix in the matrix and tensor normal models. For the above models, we show that the maximum likelihood estimator (MLE) achieves nearly optimal nonasymptotic sample complexity and nearly tight error rates in the Fisher-Rao and Thompson metrics. In contrast to prior work, our results do not rely on the factors being well-conditioned or sparse, nor do we need to assume an accurate enough initial guess. For the matrix normal model, all our bounds are minimax optimal up to logarithmic factors, and for the tensor normal model our bounds for the largest factor and for overall covariance matrix are minimax optimal up to constant factors provided there are enough samples for any estimator to obtain constant Frobenius error. In the same regimes as our sample complexity bounds, we show that the flip-flop algorithm, a practical and widely used iterative procedure to compute the MLE, converges linearly with high probability. Our main technical insight is that, given enough samples, the negative log-likelihood function is strongly geodesically convex in the geometry on positive-definite matrices induced by the Fisher information metric. This strong convexity is determined by the expansion of certain random quantum channels.
comment: 76 pages, accepted in Annals of Statistics
Multimedia 9
☆ Open-o3 Video: Grounded Video Reasoning with Explicit Spatio-Temporal Evidence
Most video reasoning models only generate textual reasoning traces without indicating when and where key evidence appears. Recent models such as OpenAI-o3 have sparked wide interest in evidence-centered reasoning for images, yet extending this ability to videos is more challenging, as it requires joint temporal tracking and spatial localization across dynamic scenes. We introduce Open-o3 Video, a non-agent framework that integrates explicit spatio-temporal evidence into video reasoning, and carefully collect training data and design training strategies to address the aforementioned challenges. The model highlights key timestamps, objects, and bounding boxes alongside its answers, allowing reasoning to be grounded in concrete visual observations. To enable this functionality, we first curate and build two high-quality datasets, STGR-CoT-30k for SFT and STGR-RL-36k for RL, with carefully constructed temporal and spatial annotations, since most existing datasets offer either temporal spans for videos or spatial boxes on images, lacking unified spatio-temporal supervision and reasoning traces. Then, we adopt a cold-start reinforcement learning strategy with multiple specially designed rewards that jointly encourage answer accuracy, temporal alignment, and spatial precision. On V-STAR benchmark, Open-o3 Video achieves state-of-the-art performance, raising mAM by 14.4% and mLGM by 24.2% on the Qwen2.5-VL baseline. Consistent improvements are also observed on a broad range of video understanding benchmarks, including VideoMME, WorldSense, VideoMMMU, and TVGBench. Beyond accuracy, the reasoning traces produced by Open-o3 Video also provide valuable signals for test-time scaling, enabling confidence-aware verification and improving answer reliability.
☆ Mitigating Cross-modal Representation Bias for Multicultural Image-to-Recipe Retrieval
Existing approaches for image-to-recipe retrieval have the implicit assumption that a food image can fully capture the details textually documented in its recipe. However, a food image only reflects the visual outcome of a cooked dish and not the underlying cooking process. Consequently, learning cross-modal representations to bridge the modality gap between images and recipes tends to ignore subtle, recipe-specific details that are not visually apparent but are crucial for recipe retrieval. Specifically, the representations are biased to capture the dominant visual elements, resulting in difficulty in ranking similar recipes with subtle differences in use of ingredients and cooking methods. The bias in representation learning is expected to be more severe when the training data is mixed of images and recipes sourced from different cuisines. This paper proposes a novel causal approach that predicts the culinary elements potentially overlooked in images, while explicitly injecting these elements into cross-modal representation learning to mitigate biases. Experiments are conducted on the standard monolingual Recipe1M dataset and a newly curated multilingual multicultural cuisine dataset. The results indicate that the proposed causal representation learning is capable of uncovering subtle ingredients and cooking actions and achieves impressive retrieval performance on both monolingual and multilingual multicultural datasets.
comment: ACM Multimedia 2025
☆ DMC$^3$: Dual-Modal Counterfactual Contrastive Construction for Egocentric Video Question Answering
Egocentric Video Question Answering (Egocentric VideoQA) plays an important role in egocentric video understanding, which refers to answering questions based on first-person videos. Although existing methods have made progress through the paradigm of pre-training and fine-tuning, they ignore the unique challenges posed by the first-person perspective, such as understanding multiple events and recognizing hand-object interactions. To deal with these challenges, we propose a Dual-Modal Counterfactual Contrastive Construction (DMC$^3$) framework, which contains an egocentric videoqa baseline, a counterfactual sample construction module and a counterfactual sample-involved contrastive optimization. Specifically, We first develop a counterfactual sample construction module to generate positive and negative samples for textual and visual modalities through event description paraphrasing and core interaction mining, respectively. Then, We feed these samples together with the original samples into the baseline. Finally, in the counterfactual sample-involved contrastive optimization module, we apply contrastive loss to minimize the distance between the original sample features and the positive sample features, while maximizing the distance from the negative samples. Experiments show that our method achieve 52.51\% and 46.04\% on the \textit{normal} and \textit{indirect} splits of EgoTaskQA, and 13.2\% on QAEGO4D, both reaching the state-of-the-art performance.
☆ Causal Debiasing for Visual Commonsense Reasoning
Visual Commonsense Reasoning (VCR) refers to answering questions and providing explanations based on images. While existing methods achieve high prediction accuracy, they often overlook bias in datasets and lack debiasing strategies. In this paper, our analysis reveals co-occurrence and statistical biases in both textual and visual data. We introduce the VCR-OOD datasets, comprising VCR-OOD-QA and VCR-OOD-VA subsets, which are designed to evaluate the generalization capabilities of models across two modalities. Furthermore, we analyze the causal graphs and prediction shortcuts in VCR and adopt a backdoor adjustment method to remove bias. Specifically, we create a dictionary based on the set of correct answers to eliminate prediction shortcuts. Experiments demonstrate the effectiveness of our debiasing method across different datasets.
☆ GMFVAD: Using Grained Multi-modal Feature to Improve Video Anomaly Detection
Video anomaly detection (VAD) is a challenging task that detects anomalous frames in continuous surveillance videos. Most previous work utilizes the spatio-temporal correlation of visual features to distinguish whether there are abnormalities in video snippets. Recently, some works attempt to introduce multi-modal information, like text feature, to enhance the results of video anomaly detection. However, these works merely incorporate text features into video snippets in a coarse manner, overlooking the significant amount of redundant information that may exist within the video snippets. Therefore, we propose to leverage the diversity among multi-modal information to further refine the extracted features, reducing the redundancy in visual features, and we propose Grained Multi-modal Feature for Video Anomaly Detection (GMFVAD). Specifically, we generate more grained multi-modal feature based on the video snippet, which summarizes the main content, and text features based on the captions of original video will be introduced to further enhance the visual features of highlighted portions. Experiments show that the proposed GMFVAD achieves state-of-the-art performance on four mainly datasets. Ablation experiments also validate that the improvement of GMFVAD is due to the reduction of redundant information.
☆ Calibrating Multimodal Consensus for Emotion Recognition
In recent years, Multimodal Emotion Recognition (MER) has made substantial progress. Nevertheless, most existing approaches neglect the semantic inconsistencies that may arise across modalities, such as conflicting emotional cues between text and visual inputs. Besides, current methods are often dominated by the text modality due to its strong representational capacity, which can compromise recognition accuracy. To address these challenges, we propose a model termed Calibrated Multimodal Consensus (CMC). CMC introduces a Pseudo Label Generation Module (PLGM) to produce pseudo unimodal labels, enabling unimodal pretraining in a self-supervised fashion. It then employs a Parameter-free Fusion Module (PFM) and a Multimodal Consensus Router (MCR) for multimodal finetuning, thereby mitigating text dominance and guiding the fusion process toward a more reliable consensus. Experimental results demonstrate that CMC achieves performance on par with or superior to state-of-the-art methods across four datasets, CH-SIMS, CH-SIMS v2, CMU-MOSI, and CMU-MOSEI, and exhibits notable advantages in scenarios with semantic inconsistencies on CH-SIMS and CH-SIMS v2. The implementation of this work is publicly accessible at https://github.com/gw-zhong/CMC.
☆ Beyond Text: Multimodal Jailbreaking of Vision-Language and Audio Models through Perceptually Simple Transformations
Multimodal large language models (MLLMs) have achieved remarkable progress, yet remain critically vulnerable to adversarial attacks that exploit weaknesses in cross-modal processing. We present a systematic study of multimodal jailbreaks targeting both vision-language and audio-language models, showing that even simple perceptual transformations can reliably bypass state-of-the-art safety filters. Our evaluation spans 1,900 adversarial prompts across three high-risk safety categories harmful content, CBRN (Chemical, Biological, Radiological, Nuclear), and CSEM (Child Sexual Exploitation Material) tested against seven frontier models. We explore the effectiveness of attack techniques on MLLMs, including FigStep-Pro (visual keyword decomposition), Intelligent Masking (semantic obfuscation), and audio perturbations (Wave-Echo, Wave-Pitch, Wave-Speed). The results reveal severe vulnerabilities: models with almost perfect text-only safety (0\% ASR) suffer >75\% attack success under perceptually modified inputs, with FigStep-Pro achieving up to 89\% ASR in Llama-4 variants. Audio-based attacks further uncover provider-specific weaknesses, with even basic modality transfer yielding 25\% ASR for technical queries. These findings expose a critical gap between text-centric alignment and multimodal threats, demonstrating that current safeguards fail to generalize across cross-modal attacks. The accessibility of these attacks, which require minimal technical expertise, suggests that robust multimodal AI safety will require a paradigm shift toward broader semantic-level reasoning to mitigate possible risks.
♻ ☆ Rebalancing Contrastive Alignment with Bottlenecked Semantic Increments in Text-Video Retrieval
Recent progress in text-video retrieval has been largely driven by contrastive learning. However, existing methods often overlook the effect of the modality gap, which causes anchor representations to undergo in-place optimization (i.e., optimization tension) that limits their alignment capacity. Moreover, noisy hard negatives further distort the semantics of anchors. To address these issues, we propose GARE, a Gap-Aware Retrieval framework that introduces a learnable, pair-specific increment $\Delta_{ij}$ between text $t_i$ and video $v_j$, redistributing gradients to relieve optimization tension and absorb noise. We derive $\Delta_{ij}$ via a multivariate first-order Taylor expansion of the InfoNCE loss under a trust-region constraint, showing that it guides updates along locally consistent descent directions. A lightweight neural module conditioned on the semantic gap couples increments across batches for structure-aware correction. Furthermore, we regularize $\Delta$ through a variational information bottleneck with relaxed compression, enhancing stability and semantic consistency. Experiments on four benchmarks demonstrate that GARE consistently improves alignment accuracy and robustness, validating the effectiveness of gap-aware tension mitigation. Code is available at https://github.com/musicman217/GARE-text-video-retrieval.
♻ ☆ Epistemic-aware Vision-Language Foundation Model for Fetal Ultrasound Interpretation
Recent medical vision-language models have shown promise on tasks such as VQA, report generation, and anomaly detection. However, most are adapted to structured adult imaging and underperform in fetal ultrasound, which poses challenges of multi-view image reasoning, numerous diseases, and image diversity. To bridge this gap, we introduce FetalMind, a medical AI system tailored to fetal ultrasound for both report generation and diagnosis. Guided by clinical workflow, we propose Salient Epistemic Disentanglement (SED), which injects an expert-curated bipartite graph into the model to decouple view-disease associations and to steer preference selection along clinically faithful steps via reinforcement learning. This design mitigates variability across diseases and heterogeneity across views, reducing learning bottlenecks while aligning the model's inference with obstetric practice. To train FetalMind at scale, we curate FetalSigma-1M dataset, the first large-scale fetal ultrasound report corpus, comprising 20K reports from twelve medical centers, addressing the scarcity of domain data. Extensive experiments show that FetalMind outperforms open- and closed-source baselines across all gestational stages, achieving +14% average gains and +61.2% higher accuracy on critical conditions while remaining efficient, stable, and scalable. Project Page: https://hexiao0275.github.io/FetalMind.
comment: This paper contains fundamental errors and will not be replaced
Computer Vision and Pattern Recognition 161
☆ Is This Tracker On? A Benchmark Protocol for Dynamic Tracking
We introduce ITTO, a challenging new benchmark suite for evaluating and diagnosing the capabilities and limitations of point tracking methods. Our videos are sourced from existing datasets and egocentric real-world recordings, with high-quality human annotations collected through a multi-stage pipeline. ITTO captures the motion complexity, occlusion patterns, and object diversity characteristic of real-world scenes -- factors that are largely absent in current benchmarks. We conduct a rigorous analysis of state-of-the-art tracking methods on ITTO, breaking down performance along key axes of motion complexity. Our findings reveal that existing trackers struggle with these challenges, particularly in re-identifying points after occlusion, highlighting critical failure modes. These results point to the need for new modeling approaches tailored to real-world dynamics. We envision ITTO as a foundation testbed for advancing point tracking and guiding the development of more robust tracking algorithms.
comment: Project page: https://glab-caltech.github.io/ITTO/
☆ olmOCR 2: Unit Test Rewards for Document OCR
We present olmOCR 2, the latest in our family of powerful OCR systems for converting digitized print documents, like PDFs, into clean, naturally ordered plain text. olmOCR 2 is powered by olmOCR-2-7B-1025, a specialized, 7B vision language model (VLM) trained using reinforcement learning with verifiable rewards (RLVR), where our rewards are a diverse set of binary unit tests. To scale unit test creation, we develop a pipeline for generating synthetic documents with diverse and challenging layouts, known ground-truth HTML source code, and extracted test cases. We show that RL training on these test cases results in state-of-the-art performance on olmOCR-Bench, our English-language OCR benchmark, with the largest improvements in math formula conversion, table parsing, and multi-column layouts compared to previous versions. We release our model, data and code under permissive open licenses.
comment: https://olmocr.allen.ai/
☆ How to Evaluate Monocular Depth Estimation?
Monocular depth estimation is an important task with rapid progress, but how to evaluate it remains an open question, as evidenced by a lack of standardization in existing literature and a large selection of evaluation metrics whose trade-offs and behaviors are not well understood. This paper contributes a novel, quantitative analysis of existing metrics in terms of their sensitivity to various types of perturbations of ground truth, emphasizing comparison to human judgment. Our analysis reveals that existing metrics are severely under-sensitive to curvature perturbation such as making flat surfaces wavy. To remedy this, we introduce a new metric based on relative surface normals, along with new depth visualization tools and a principled method to create composite metrics with better human alignment. Code and data are available at: https://github.com/princeton-vl/evalmde.
☆ Pico-Banana-400K: A Large-Scale Dataset for Text-Guided Image Editing
Recent advances in multimodal models have demonstrated remarkable text-guided image editing capabilities, with systems like GPT-4o and Nano-Banana setting new benchmarks. However, the research community's progress remains constrained by the absence of large-scale, high-quality, and openly accessible datasets built from real images. We introduce Pico-Banana-400K, a comprehensive 400K-image dataset for instruction-based image editing. Our dataset is constructed by leveraging Nano-Banana to generate diverse edit pairs from real photographs in the OpenImages collection. What distinguishes Pico-Banana-400K from previous synthetic datasets is our systematic approach to quality and diversity. We employ a fine-grained image editing taxonomy to ensure comprehensive coverage of edit types while maintaining precise content preservation and instruction faithfulness through MLLM-based quality scoring and careful curation. Beyond single turn editing, Pico-Banana-400K enables research into complex editing scenarios. The dataset includes three specialized subsets: (1) a 72K-example multi-turn collection for studying sequential editing, reasoning, and planning across consecutive modifications; (2) a 56K-example preference subset for alignment research and reward model training; and (3) paired long-short editing instructions for developing instruction rewriting and summarization capabilities. By providing this large-scale, high-quality, and task-rich resource, Pico-Banana-400K establishes a robust foundation for training and benchmarking the next generation of text-guided image editing models.
☆ Class-Aware Prototype Learning with Negative Contrast for Test-Time Adaptation of Vision-Language Models
Vision-Language Models (VLMs) demonstrate impressive zero-shot generalization through large-scale image-text pretraining, yet their performance can drop once the deployment distribution diverges from the training distribution. To address this, Test-Time Adaptation (TTA) methods update models using unlabeled target data. However, existing approaches often ignore two key challenges: prototype degradation in long-tailed distributions and confusion between semantically similar classes. To tackle these issues, we propose \textbf{C}lass-Aware \textbf{P}rototype \textbf{L}earning with \textbf{N}egative \textbf{C}ontrast(\textbf{CPL-NC}), a lightweight TTA framework designed specifically for VLMs to enhance generalization under distribution shifts. CPL-NC introduces a \textit{Class-Aware Prototype Cache} Module that dynamically adjusts per-class capacity based on test-time frequency and activation history, with a rejuvenation mechanism for inactive classes to retain rare-category knowledge. Additionally, a \textit{Negative Contrastive Learning} Mechanism identifies and constrains hard visual-textual negatives to improve class separability. The framework employs asymmetric optimization, refining only textual prototypes while anchoring on stable visual features. Experiments on 15 benchmarks show that CPL-NC consistently outperforms prior TTA methods across both ResNet-50 and ViT-B/16 backbones.
☆ OmniMotion-X: Versatile Multimodal Whole-Body Motion Generation
This paper introduces OmniMotion-X, a versatile multimodal framework for whole-body human motion generation, leveraging an autoregressive diffusion transformer in a unified sequence-to-sequence manner. OmniMotion-X efficiently supports diverse multimodal tasks, including text-to-motion, music-to-dance, speech-to-gesture, and global spatial-temporal control scenarios (e.g., motion prediction, in-betweening, completion, and joint/trajectory-guided synthesis), as well as flexible combinations of these tasks. Specifically, we propose the use of reference motion as a novel conditioning signal, substantially enhancing the consistency of generated content, style, and temporal dynamics crucial for realistic animations. To handle multimodal conflicts, we introduce a progressive weak-to-strong mixed-condition training strategy. To enable high-quality multimodal training, we construct OmniMoCap-X, the largest unified multimodal motion dataset to date, integrating 28 publicly available MoCap sources across 10 distinct tasks, standardized to the SMPL-X format at 30 fps. To ensure detailed and consistent annotations, we render sequences into videos and use GPT-4o to automatically generate structured and hierarchical captions, capturing both low-level actions and high-level semantics. Extensive experimental evaluations confirm that OmniMotion-X significantly surpasses existing methods, demonstrating state-of-the-art performance across multiple multimodal tasks and enabling the interactive generation of realistic, coherent, and controllable long-duration motions.
☆ Adaptive Distribution-aware Quantization for Mixed-Precision Neural Networks
Quantization-Aware Training (QAT) is a critical technique for deploying deep neural networks on resource-constrained devices. However, existing methods often face two major challenges: the highly non-uniform distribution of activations and the static, mismatched codebooks used in weight quantization. To address these challenges, we propose Adaptive Distribution-aware Quantization (ADQ), a mixed-precision quantization framework that employs a differentiated strategy. The core of ADQ is a novel adaptive weight quantization scheme comprising three key innovations: (1) a quantile-based initialization method that constructs a codebook closely aligned with the initial weight distribution; (2) an online codebook adaptation mechanism based on Exponential Moving Average (EMA) to dynamically track distributional shifts; and (3) a sensitivity-informed strategy for mixed-precision allocation. For activations, we integrate a hardware-friendly non-uniform-to-uniform mapping scheme. Comprehensive experiments validate the effectiveness of our method. On ImageNet, ADQ enables a ResNet-18 to achieve 71.512% Top-1 accuracy with an average bit-width of only 2.81 bits, outperforming state-of-the-art methods under comparable conditions. Furthermore, detailed ablation studies on CIFAR-10 systematically demonstrate the individual contributions of each innovative component, validating the rationale and effectiveness of our design.
comment: 16 pages, 10 figures
☆ A Survey on Cache Methods in Diffusion Models: Toward Efficient Multi-Modal Generation
Diffusion Models have become a cornerstone of modern generative AI for their exceptional generation quality and controllability. However, their inherent \textit{multi-step iterations} and \textit{complex backbone networks} lead to prohibitive computational overhead and generation latency, forming a major bottleneck for real-time applications. Although existing acceleration techniques have made progress, they still face challenges such as limited applicability, high training costs, or quality degradation. Against this backdrop, \textbf{Diffusion Caching} offers a promising training-free, architecture-agnostic, and efficient inference paradigm. Its core mechanism identifies and reuses intrinsic computational redundancies in the diffusion process. By enabling feature-level cross-step reuse and inter-layer scheduling, it reduces computation without modifying model parameters. This paper systematically reviews the theoretical foundations and evolution of Diffusion Caching and proposes a unified framework for its classification and analysis. Through comparative analysis of representative methods, we show that Diffusion Caching evolves from \textit{static reuse} to \textit{dynamic prediction}. This trend enhances caching flexibility across diverse tasks and enables integration with other acceleration techniques such as sampling optimization and model distillation, paving the way for a unified, efficient inference framework for future multimodal and interactive applications. We argue that this paradigm will become a key enabler of real-time and efficient generative AI, injecting new vitality into both theory and practice of \textit{Efficient Generative Intelligence}.
comment: 22 pages,2 figures
☆ Memo: Training Memory-Efficient Embodied Agents with Reinforcement Learning NeurIPS 2025
To enable embodied agents to operate effectively over extended timeframes, it is crucial to develop models that form and access memories to stay contextualized in their environment. In the current paradigm of training transformer-based policies for embodied sequential decision-making tasks, visual inputs often overwhelm the context limits of transformers, while humans can maintain and utilize a lifetime of experience compressed as memories. Significant compression is possible in principle, as much of the input is irrelevant and can be abstracted. However, existing approaches predominantly focus on either recurrent models with fixed-size memory or transformers with full-context reliance. In this work, we propose Memo, a transformer-based architecture and training recipe for reinforcement learning (RL) on memory-intensive, long-horizon tasks. Memo incorporates the creation and retrieval of memory by interleaving periodic summarization tokens with the inputs of a model during training. We demonstrate Memo's effectiveness on a gridworld meta-RL benchmark and a multi-object navigation task in photo-realistic indoor settings. Memo outperforms naive long-context transformer baselines while being more compute and storage efficient. Additionally, Memo generalizes better to longer contexts at inference time and remains robust in streaming settings, where historical context must be truncated to fit inference constraints.
comment: Accepted for Spotlight Presentation at NeurIPS 2025
☆ LyTimeT: Towards Robust and Interpretable State-Variable Discovery
Extracting the true dynamical variables of a system from high-dimensional video is challenging due to distracting visual factors such as background motion, occlusions, and texture changes. We propose LyTimeT, a two-phase framework for interpretable variable extraction that learns robust and stable latent representations of dynamical systems. In Phase 1, LyTimeT employs a spatio-temporal TimeSformer-based autoencoder that uses global attention to focus on dynamically relevant regions while suppressing nuisance variation, enabling distraction-robust latent state learning and accurate long-horizon video prediction. In Phase 2, we probe the learned latent space, select the most physically meaningful dimensions using linear correlation analysis, and refine the transition dynamics with a Lyapunov-based stability regularizer to enforce contraction and reduce error accumulation during roll-outs. Experiments on five synthetic benchmarks and four real-world dynamical systems, including chaotic phenomena, show that LyTimeT achieves mutual information and intrinsic dimension estimates closest to ground truth, remains invariant under background perturbations, and delivers the lowest analytical mean squared error among CNN-based (TIDE) and transformer-only baselines. Our results demonstrate that combining spatio-temporal attention with stability constraints yields predictive models that are not only accurate but also physically interpretable.
☆ Explainable Face Presentation Attack Detection via Ensemble-CAM
Presentation attacks represent a critical security threat where adversaries use fake biometric data, such as face, fingerprint, or iris images, to gain unauthorized access to protected systems. Various presentation attack detection (PAD) systems have been designed leveraging deep learning (DL) models to mitigate this type of threat. Despite their effectiveness, most of the DL models function as black boxes - their decisions are opaque to their users. The purpose of explainability techniques is to provide detailed information about the reason behind the behavior or decision of DL models. In particular, visual explanation is necessary to better understand the decisions or predictions of DL-based PAD systems and determine the key regions due to which a biometric image is considered real or fake by the system. In this work, a novel technique, Ensemble-CAM, is proposed for providing visual explanations for the decisions made by deep learning-based face PAD systems. Our goal is to improve DL-based face PAD systems by providing a better understanding of their behavior. Our provided visual explanations will enhance the transparency and trustworthiness of DL-based face PAD systems.
☆ Curvilinear Structure-preserving Unpaired Cross-domain Medical Image Translation
Unpaired image-to-image translation has emerged as a crucial technique in medical imaging, enabling cross-modality synthesis, domain adaptation, and data augmentation without costly paired datasets. Yet, existing approaches often distort fine curvilinear structures, such as microvasculature, undermining both diagnostic reliability and quantitative analysis. This limitation is consequential in ophthalmic and vascular imaging, where subtle morphological changes carry significant clinical meaning. We propose Curvilinear Structure-preserving Translation (CST), a general framework that explicitly preserves fine curvilinear structures during unpaired translation by integrating structure consistency into the training. Specifically, CST augments baseline models with a curvilinear extraction module for topological supervision. It can be seamlessly incorporated into existing methods. We integrate it into CycleGAN and UNSB as two representative backbones. Comprehensive evaluation across three imaging modalities: optical coherence tomography angiography, color fundus and X-ray coronary angiography demonstrates that CST improves translation fidelity and achieves state-of-the-art performance. By reinforcing geometric integrity in learned mappings, CST establishes a principled pathway toward curvilinear structure-aware cross-domain translation in medical imaging.
☆ I Spy With My Model's Eye: Visual Search as a Behavioural Test for MLLMs
Multimodal large language models (MLLMs) achieve strong performance on vision-language tasks, yet their visual processing is opaque. Most black-box evaluations measure task accuracy, but reveal little about underlying mechanisms. Drawing on cognitive psychology, we adapt classic visual search paradigms -- originally developed to study human perception -- to test whether MLLMs exhibit the ``pop-out'' effect, where salient visual features are detected independently of distractor set size. Using controlled experiments targeting colour, size and lighting features, we find that advanced MLLMs exhibit human-like pop-out effects in colour or size-based disjunctive (single feature) search, as well as capacity limits for conjunctive (multiple feature) search. We also find evidence to suggest that MLLMs, like humans, incorporate natural scene priors such as lighting direction into object representations. We reinforce our findings using targeted fine-tuning and mechanistic interpretability analyses. Our work shows how visual search can serve as a cognitively grounded diagnostic tool for evaluating perceptual capabilities in MLLMs.
comment: Preprint
☆ From Forecasting to Planning: Policy World Model for Collaborative State-Action Prediction
Despite remarkable progress in driving world models, their potential for autonomous systems remains largely untapped: the world models are mostly learned for world simulation and decoupled from trajectory planning. While recent efforts aim to unify world modeling and planning in a single framework, the synergistic facilitation mechanism of world modeling for planning still requires further exploration. In this work, we introduce a new driving paradigm named Policy World Model (PWM), which not only integrates world modeling and trajectory planning within a unified architecture, but is also able to benefit planning using the learned world knowledge through the proposed action-free future state forecasting scheme. Through collaborative state-action prediction, PWM can mimic the human-like anticipatory perception, yielding more reliable planning performance. To facilitate the efficiency of video forecasting, we further introduce a dynamically enhanced parallel token generation mechanism, equipped with a context-guided tokenizer and an adaptive dynamic focal loss. Despite utilizing only front camera input, our method matches or exceeds state-of-the-art approaches that rely on multi-view and multi-modal inputs. Code and model weights will be released at https://github.com/6550Zhao/Policy-World-Model.
comment: Accepted by NuerIPS 2025 (Poster)
☆ MedReason-R1: Learning to Reason for CT Diagnosis with Reinforcement Learning and Local Zoom
General-purpose large Vision-Language Models (VLMs) demonstrate strong capabilities in generating detailed descriptions for natural images. However, their performance in the medical domain remains suboptimal, even for relatively straightforward tasks, primarily due to the lack of large-scale, high-quality, specialized medical imaging datasets and the neglect of the diagnostic process that progresses from coarse to fine-grained. To address the first issue, we construct the CT-RATE-VQA dataset, which has 84K QA pairs. For the second issue, we propose MedReason-R1, a medical VLM with explicit reasoning process for disease diagnosis. MedReason-R1 incorporates a novel strategy that embeds zoom-in disease region-of-interest areas into the image, highlighting the crucial role of both global localization and disease-specific details in enhancing the model's diagnostic performance. Furthermore, we introduce the GRPO reinforcement learning framework to MedReason-R1, which enables effective reasoning without relying on costly manual annotations. Compared to recent general-purpose and medical VLMs, MedReason-R1 achieves state-of-the-art performance in CT disease diagnosis while retaining generalization. The code, checkpoints, and dataset are available at: https://github.com/Leevan001/MedReason-R1
comment: The code, checkpoints, and dataset are available at: https://github.com/Leevan001/MedReason-R1
☆ Augmenting Moment Retrieval: Zero-Dependency Two-Stage Learning ICCV 2025
Existing Moment Retrieval methods face three critical bottlenecks: (1) data scarcity forces models into shallow keyword-feature associations; (2) boundary ambiguity in transition regions between adjacent events; (3) insufficient discrimination of fine-grained semantics (e.g., distinguishing ``kicking" vs. ``throwing" a ball). In this paper, we propose a zero-external-dependency Augmented Moment Retrieval framework, AMR, designed to overcome local optima caused by insufficient data annotations and the lack of robust boundary and semantic discrimination capabilities. AMR is built upon two key insights: (1) it resolves ambiguous boundary information and semantic confusion in existing annotations without additional data (avoiding costly manual labeling), and (2) it preserves boundary and semantic discriminative capabilities enhanced by training while generalizing to real-world scenarios, significantly improving performance. Furthermore, we propose a two-stage training framework with cold-start and distillation adaptation. The cold-start stage employs curriculum learning on augmented data to build foundational boundary/semantic awareness. The distillation stage introduces dual query sets: Original Queries maintain DETR-based localization using frozen Base Queries from the cold-start model, while Active Queries dynamically adapt to real-data distributions. A cross-stage distillation loss enforces consistency between Original and Base Queries, preventing knowledge forgetting while enabling real-world generalization. Experiments on multiple benchmarks show that AMR achieves improved performance over prior state-of-the-art approaches.
comment: This work is accepted by ICCV 2025
☆ Pragmatic Heterogeneous Collaborative Perception via Generative Communication Mechanism NeurIPS 2025
Multi-agent collaboration enhances the perception capabilities of individual agents through information sharing. However, in real-world applications, differences in sensors and models across heterogeneous agents inevitably lead to domain gaps during collaboration. Existing approaches based on adaptation and reconstruction fail to support pragmatic heterogeneous collaboration due to two key limitations: (1) Intrusive retraining of the encoder or core modules disrupts the established semantic consistency among agents; and (2) accommodating new agents incurs high computational costs, limiting scalability. To address these challenges, we present a novel Generative Communication mechanism (GenComm) that facilitates seamless perception across heterogeneous multi-agent systems through feature generation, without altering the original network, and employs lightweight numerical alignment of spatial information to efficiently integrate new agents at minimal cost. Specifically, a tailored Deformable Message Extractor is designed to extract spatial message for each collaborator, which is then transmitted in place of intermediate features. The Spatial-Aware Feature Generator, utilizing a conditional diffusion model, generates features aligned with the ego agent's semantic space while preserving the spatial information of the collaborators. These generated features are further refined by a Channel Enhancer before fusion. Experiments conducted on the OPV2V-H, DAIR-V2X and V2X-Real datasets demonstrate that GenComm outperforms existing state-of-the-art methods, achieving an 81\% reduction in both computational cost and parameter count when incorporating new agents. Our code is available at https://github.com/jeffreychou777/GenComm.
comment: 19 pages, 10 figures, accepted to NeurIPS 2025
☆ Beyond sparse denoising in frames: minimax estimation with a scattering transform
A considerable amount of research in harmonic analysis has been devoted to non-linear estimators of signals contaminated by additive Gaussian noise. They are implemented by thresholding coefficients in a frame, which provide a sparse signal representation, or by minimising their $\ell^1$ norm. However, sparse estimators in frames are not sufficiently rich to adapt to complex signal regularities. For cartoon images whose edges are piecewise $\bf C^\alpha$ curves, wavelet, curvelet and Xlet frames are suboptimal if the Lipschitz exponent $\alpha \leq 2$ is an unknown parameter. Deep convolutional neural networks have recently obtained much better numerical results, which reach the minimax asymptotic bounds for all $\alpha$. Wavelet scattering coefficients have been introduced as simplified convolutional neural network models. They are computed by transforming the modulus of wavelet coefficients with a second wavelet transform. We introduce a denoising estimator by jointly minimising and maximising the $\ell^1$ norms of different subsets of scattering coefficients. We prove that these $\ell^1$ norms capture different types of geometric image regularity. Numerical experiments show that this denoising estimator reaches the minimax asymptotic bound for cartoon images for all Lipschitz exponents $\alpha \leq 2$. We state this numerical result as a mathematical conjecture. It provides a different harmonic analysis approach to suppress noise from signals, and to specify the geometric regularity of functions. It also opens a mathematical bridge between harmonic analysis and denoising estimators with deep convolutional network.
☆ XBench: A Comprehensive Benchmark for Visual-Language Explanations in Chest Radiography
Vision-language models (VLMs) have recently shown remarkable zero-shot performance in medical image understanding, yet their grounding ability, the extent to which textual concepts align with visual evidence, remains underexplored. In the medical domain, however, reliable grounding is essential for interpretability and clinical adoption. In this work, we present the first systematic benchmark for evaluating cross-modal interpretability in chest X-rays across seven CLIP-style VLM variants. We generate visual explanations using cross-attention and similarity-based localization maps, and quantitatively assess their alignment with radiologist-annotated regions across multiple pathologies. Our analysis reveals that: (1) while all VLM variants demonstrate reasonable localization for large and well-defined pathologies, their performance substantially degrades for small or diffuse lesions; (2) models that are pretrained on chest X-ray-specific datasets exhibit improved alignment compared to those trained on general-domain data. (3) The overall recognition ability and grounding ability of the model are strongly correlated. These findings underscore that current VLMs, despite their strong recognition ability, still fall short in clinically reliable grounding, highlighting the need for targeted interpretability benchmarks before deployment in medical practice. XBench code is available at https://github.com/Roypic/Benchmarkingattention
☆ CBDiff:Conditional Bernoulli Diffusion Models for Image Forgery Localization
Image Forgery Localization (IFL) is a crucial task in image forensics, aimed at accurately identifying manipulated or tampered regions within an image at the pixel level. Existing methods typically generate a single deterministic localization map, which often lacks the precision and reliability required for high-stakes applications such as forensic analysis and security surveillance. To enhance the credibility of predictions and mitigate the risk of errors, we introduce an advanced Conditional Bernoulli Diffusion Model (CBDiff). Given a forged image, CBDiff generates multiple diverse and plausible localization maps, thereby offering a richer and more comprehensive representation of the forgery distribution. This approach addresses the uncertainty and variability inherent in tampered regions. Furthermore, CBDiff innovatively incorporates Bernoulli noise into the diffusion process to more faithfully reflect the inherent binary and sparse properties of forgery masks. Additionally, CBDiff introduces a Time-Step Cross-Attention (TSCAttention), which is specifically designed to leverage semantic feature guidance with temporal steps to improve manipulation detection. Extensive experiments on eight publicly benchmark datasets demonstrate that CBDiff significantly outperforms existing state-of-the-art methods, highlighting its strong potential for real-world deployment.
☆ Decomposed Attention Fusion in MLLMs for Training-Free Video Reasoning Segmentation
Multimodal large language models (MLLMs) demonstrate strong video understanding by attending to visual tokens relevant to textual queries. To directly adapt this for localization in a training-free manner, we cast video reasoning segmentation as a video QA task and extract attention maps via rollout mechanism. However, raw attention maps are noisy and poorly aligned with object regions. We propose Decomposed Attention Fusion (DecAF), which refines these maps through two mechanisms: (1) contrastive object-background fusion and (2) complementary video-frame fusion. This method suppresses irrelevant activations and enhances object-focused cues, enabling direct conversion of attention maps into coarse segmentation masks. In addition, we introduce attention-guided SAM2 prompting for obtaining fine-grained masks. Unlike existing methods that jointly train MLLMs with SAM, our method operates entirely without retraining. DecAF outperforms training-free methods and achieves performance comparable to training-based methods on both referring and reasoning VOS benchmarks. The code will be available at https://github.com/HYUNJS/DecAF.
comment: Project page: https://www.jshyun.me/projects/decaf
☆ Digitizing Paper ECGs at Scale: An Open-Source Algorithm for Clinical Research
Millions of clinical ECGs exist only as paper scans, making them unusable for modern automated diagnostics. We introduce a fully automated, modular framework that converts scanned or photographed ECGs into digital signals, suitable for both clinical and research applications. The framework is validated on 37,191 ECG images with 1,596 collected at Akershus University Hospital, where the algorithm obtains a mean signal-to-noise ratio of 19.65 dB on scanned papers with common artifacts. It is further evaluated on the Emory Paper Digitization ECG Dataset, comprising 35,595 images, including images with perspective distortion, wrinkles, and stains. The model improves on the state-of-the-art in all subcategories. The full software is released as open-source, promoting reproducibility and further development. We hope the software will contribute to unlocking retrospective ECG archives and democratize access to AI-driven diagnostics.
☆ Uncertainty evaluation of segmentation models for Earth observation
This paper investigates methods for estimating uncertainty in semantic segmentation predictions derived from satellite imagery. Estimating uncertainty for segmentation presents unique challenges compared to standard image classification, requiring scalable methods producing per-pixel estimates. While most research on this topic has focused on scene understanding or medical imaging, this work benchmarks existing methods specifically for remote sensing and Earth observation applications. Our evaluation focuses on the practical utility of uncertainty measures, testing their ability to identify prediction errors and noise-corrupted input image regions. Experiments are conducted on two remote sensing datasets, PASTIS and ForTy, selected for their differences in scale, geographic coverage, and label confidence. We perform an extensive evaluation featuring several models, such as Stochastic Segmentation Networks and ensembles, in combination with a number of neural architectures and uncertainty metrics. We make a number of practical recommendations based on our findings.
☆ Detecting Latin in Historical Books with Large Language Models: A Multimodal Benchmark
This paper presents a novel task of extracting Latin fragments from mixed-language historical documents with varied layouts. We benchmark and evaluate the performance of large foundation models against a multimodal dataset of 724 annotated pages. The results demonstrate that reliable Latin detection with contemporary models is achievable. Our study provides the first comprehensive analysis of these models' capabilities and limits for this task.
comment: Under review. Both the dataset and code will be published
☆ Addressing the Depth-of-Field Constraint: A New Paradigm for High Resolution Multi-Focus Image Fusion
Multi-focus image fusion (MFIF) addresses the depth-of-field (DOF) limitations of optical lenses, where only objects within a specific range appear sharp. Although traditional and deep learning methods have advanced the field, challenges persist, including limited training data, domain gaps from synthetic datasets, and difficulties with regions lacking information. We propose VAEEDOF, a novel MFIF method that uses a distilled variational autoencoder for high-fidelity, efficient image reconstruction. Our fusion module processes up to seven images simultaneously, enabling robust fusion across diverse focus points. To address data scarcity, we introduce MattingMFIF, a new syntetic 4K dataset, simulating realistic DOF effects from real photographs. Our method achieves state-of-the-art results, generating seamless artifact-free fused images and bridging the gap between synthetic and real-world scenarios, offering a significant step forward in addressing complex MFIF challenges. The code, and weights are available here:
☆ Multi-modal Co-learning for Earth Observation: Enhancing single-modality models via modality collaboration
Multi-modal co-learning is emerging as an effective paradigm in machine learning, enabling models to collaboratively learn from different modalities to enhance single-modality predictions. Earth Observation (EO) represents a quintessential domain for multi-modal data analysis, wherein diverse remote sensors collect data to sense our planet. This unprecedented volume of data introduces novel challenges. Specifically, the access to the same sensor modalities at both training and inference stages becomes increasingly complex based on real-world constraints affecting remote sensing platforms. In this context, multi-modal co-learning presents a promising strategy to leverage the vast amount of sensor-derived data available at the training stage to improve single-modality models for inference-time deployment. Most current research efforts focus on designing customized solutions for either particular downstream tasks or specific modalities available at the inference stage. To address this, we propose a novel multi-modal co-learning framework capable of generalizing across various tasks without targeting a specific modality for inference. Our approach combines contrastive and modality discriminative learning together to guide single-modality models to structure the internal model manifold into modality-shared and modality-specific information. We evaluate our framework on four EO benchmarks spanning classification and regression tasks across different sensor modalities, where only one of the modalities available during training is accessible at inference time. Our results demonstrate consistent predictive improvements over state-of-the-art approaches from the recent machine learning and computer vision literature, as well as EO-specific methods. The obtained findings validate our framework in the single-modality inference scenarios across a diverse range of EO applications.
comment: Accepted at the Machine Learning journal, CfP: Discovery Science 2024
☆ VGD: Visual Geometry Gaussian Splatting for Feed-Forward Surround-view Driving Reconstruction
Feed-forward surround-view autonomous driving scene reconstruction offers fast, generalizable inference ability, which faces the core challenge of ensuring generalization while elevating novel view quality. Due to the surround-view with minimal overlap regions, existing methods typically fail to ensure geometric consistency and reconstruction quality for novel views. To tackle this tension, we claim that geometric information must be learned explicitly, and the resulting features should be leveraged to guide the elevating of semantic quality in novel views. In this paper, we introduce \textbf{Visual Gaussian Driving (VGD)}, a novel feed-forward end-to-end learning framework designed to address this challenge. To achieve generalizable geometric estimation, we design a lightweight variant of the VGGT architecture to efficiently distill its geometric priors from the pre-trained VGGT to the geometry branch. Furthermore, we design a Gaussian Head that fuses multi-scale geometry tokens to predict Gaussian parameters for novel view rendering, which shares the same patch backbone as the geometry branch. Finally, we integrate multi-scale features from both geometry and Gaussian head branches to jointly supervise a semantic refinement model, optimizing rendering quality through feature-consistent learning. Experiments on nuScenes demonstrate that our approach significantly outperforms state-of-the-art methods in both objective metrics and subjective quality under various settings, which validates VGD's scalability and high-fidelity surround-view reconstruction.
comment: 10 pages, 7 figures
☆ Can You Trust What You See? Alpha Channel No-Box Attacks on Video Object Detection
As object detection models are increasingly deployed in cyber-physical systems such as autonomous vehicles (AVs) and surveillance platforms, ensuring their security against adversarial threats is essential. While prior work has explored adversarial attacks in the image domain, those attacks in the video domain remain largely unexamined, especially in the no-box setting. In this paper, we present {\alpha}-Cloak, the first no-box adversarial attack on object detectors that operates entirely through the alpha channel of RGBA videos. {\alpha}-Cloak exploits the alpha channel to fuse a malicious target video with a benign video, resulting in a fused video that appears innocuous to human viewers but consistently fools object detectors. Our attack requires no access to model architecture, parameters, or outputs, and introduces no perceptible artifacts. We systematically study the support for alpha channels across common video formats and playback applications, and design a fusion algorithm that ensures visual stealth and compatibility. We evaluate {\alpha}-Cloak on five state-of-the-art object detectors, a vision-language model, and a multi-modal large language model (Gemini-2.0-Flash), demonstrating a 100% attack success rate across all scenarios. Our findings reveal a previously unexplored vulnerability in video-based perception systems, highlighting the urgent need for defenses that account for the alpha channel in adversarial settings.
☆ HAD: Hierarchical Asymmetric Distillation to Bridge Spatio-Temporal Gaps in Event-Based Object Tracking
RGB cameras excel at capturing rich texture details with high spatial resolution, whereas event cameras offer exceptional temporal resolution and a high dynamic range (HDR). Leveraging their complementary strengths can substantially enhance object tracking under challenging conditions, such as high-speed motion, HDR environments, and dynamic background interference. However, a significant spatio-temporal asymmetry exists between these two modalities due to their fundamentally different imaging mechanisms, hindering effective multi-modal integration. To address this issue, we propose {Hierarchical Asymmetric Distillation} (HAD), a multi-modal knowledge distillation framework that explicitly models and mitigates spatio-temporal asymmetries. Specifically, HAD proposes a hierarchical alignment strategy that minimizes information loss while maintaining the student network's computational efficiency and parameter compactness. Extensive experiments demonstrate that HAD consistently outperforms state-of-the-art methods, and comprehensive ablation studies further validate the effectiveness and necessity of each designed component. The code will be released soon.
☆ A Matter of Time: Revealing the Structure of Time in Vision-Language Models
Large-scale vision-language models (VLMs) such as CLIP have gained popularity for their generalizable and expressive multimodal representations. By leveraging large-scale training data with diverse textual metadata, VLMs acquire open-vocabulary capabilities, solving tasks beyond their training scope. This paper investigates the temporal awareness of VLMs, assessing their ability to position visual content in time. We introduce TIME10k, a benchmark dataset of over 10,000 images with temporal ground truth, and evaluate the time-awareness of 37 VLMs by a novel methodology. Our investigation reveals that temporal information is structured along a low-dimensional, non-linear manifold in the VLM embedding space. Based on this insight, we propose methods to derive an explicit ``timeline'' representation from the embedding space. These representations model time and its chronological progression and thereby facilitate temporal reasoning tasks. Our timeline approaches achieve competitive to superior accuracy compared to a prompt-based baseline while being computationally efficient. All code and data are available at https://tekayanidham.github.io/timeline-page/.
☆ The Intricate Dance of Prompt Complexity, Quality, Diversity, and Consistency in T2I Models
Text-to-image (T2I) models offer great potential for creating virtually limitless synthetic data, a valuable resource compared to fixed and finite real datasets. Previous works evaluate the utility of synthetic data from T2I models on three key desiderata: quality, diversity, and consistency. While prompt engineering is the primary means of interacting with T2I models, the systematic impact of prompt complexity on these critical utility axes remains underexplored. In this paper, we first conduct synthetic experiments to motivate the difficulty of generalization w.r.t. prompt complexity and explain the observed difficulty with theoretical derivations. Then, we introduce a new evaluation framework that can compare the utility of real data and synthetic data, and present a comprehensive analysis of how prompt complexity influences the utility of synthetic data generated by commonly used T2I models. We conduct our study across diverse datasets, including CC12M, ImageNet-1k, and DCI, and evaluate different inference-time intervention methods. Our synthetic experiments show that generalizing to more general conditions is harder than the other way round, since the former needs an estimated likelihood that is not learned by diffusion models. Our large-scale empirical experiments reveal that increasing prompt complexity results in lower conditional diversity and prompt consistency, while reducing the synthetic-to-real distribution shift, which aligns with the synthetic experiments. Moreover, current inference-time interventions can augment the diversity of the generations at the expense of moving outside the support of real data. Among those interventions, prompt expansion, by deliberately using a pre-trained language model as a likelihood estimator, consistently achieves the highest performance in both image diversity and aesthetics, even higher than that of real data.
☆ [De|Re]constructing VLMs' Reasoning in Counting IEEE
Vision-Language Models (VLMs) have recently gained attention due to their competitive performance on multiple downstream tasks, achieved by following user-input instructions. However, VLMs still exhibit several limitations in visual reasoning, such as difficulties in identifying relations (e.g., spatial, temporal, and among objects), understanding temporal sequences (e.g., frames), and counting objects. In this work, we go beyond score-level benchmark evaluations of VLMs by investigating the underlying causes of their failures and proposing a targeted approach to improve their reasoning capabilities. We study the reasoning skills of seven state-of-the-art VLMs in the counting task under controlled experimental conditions. Our experiments show that VLMs are highly sensitive to the number and type of objects, their spatial arrangement, and the co-occurrence of distractors. A layer-wise analysis reveals that errors are due to incorrect mapping of the last-layer representation into the output space. Our targeted training shows that fine-tuning just the output layer improves accuracy by up to 21%. We corroborate these findings by achieving consistent improvements on real-world datasets.
comment: This work has been submitted to the IEEE for possible publication
☆ PoseCrafter: Extreme Pose Estimation with Hybrid Video Synthesis NeurIPS 2025
Pairwise camera pose estimation from sparsely overlapping image pairs remains a critical and unsolved challenge in 3D vision. Most existing methods struggle with image pairs that have small or no overlap. Recent approaches attempt to address this by synthesizing intermediate frames using video interpolation and selecting key frames via a self-consistency score. However, the generated frames are often blurry due to small overlap inputs, and the selection strategies are slow and not explicitly aligned with pose estimation. To solve these cases, we propose Hybrid Video Generation (HVG) to synthesize clearer intermediate frames by coupling a video interpolation model with a pose-conditioned novel view synthesis model, where we also propose a Feature Matching Selector (FMS) based on feature correspondence to select intermediate frames appropriate for pose estimation from the synthesized results. Extensive experiments on Cambridge Landmarks, ScanNet, DL3DV-10K, and NAVI demonstrate that, compared to existing SOTA methods, PoseCrafter can obviously enhance the pose estimation performances, especially on examples with small or no overlap.
comment: 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
☆ CARES: Context-Aware Resolution Selector for VLMs
Large vision-language models (VLMs) commonly process images at native or high resolution to remain effective across tasks. This inflates visual tokens ofter to 97-99% of total tokens, resulting in high compute and latency, even when low-resolution images would suffice. We introduce \emph{CARES}-a \textbf{C}ontext-\textbf{A}ware \textbf{R}esolution \textbf{S}elector, a lightweight preprocessing module that, given an image-query pair, predicts the \emph{minimal} sufficient input resolution. CARES uses a compact VLM (350M) to extract features and predict when a target pretrained VLM's response converges to its peak ability to answer correctly. Though trained as a discrete classifier over a set of optional resolutions, CARES interpolates continuous resolutions at inference for fine-grained control. Across five multimodal benchmarks spanning documents and natural images, as well as diverse target VLMs, CARES preserves task performance while reducing compute by up to 80%.
☆ Towards Single-Source Domain Generalized Object Detection via Causal Visual Prompts
Single-source Domain Generalized Object Detection (SDGOD), as a cutting-edge research topic in computer vision, aims to enhance model generalization capability in unseen target domains through single-source domain training. Current mainstream approaches attempt to mitigate domain discrepancies via data augmentation techniques. However, due to domain shift and limited domain-specific knowledge, models tend to fall into the pitfall of spurious correlations. This manifests as the model's over-reliance on simplistic classification features (e.g., color) rather than essential domain-invariant representations like object contours. To address this critical challenge, we propose the Cauvis (Causal Visual Prompts) method. First, we introduce a Cross-Attention Prompts module that mitigates bias from spurious features by integrating visual prompts with cross-attention. To address the inadequate domain knowledge coverage and spurious feature entanglement in visual prompts for single-domain generalization, we propose a dual-branch adapter that disentangles causal-spurious features while achieving domain adaptation via high-frequency feature extraction. Cauvis achieves state-of-the-art performance with 15.9-31.4% gains over existing domain generalization methods on SDGOD datasets, while exhibiting significant robustness advantages in complex interference environments.
comment: 10 pages, 5 figures
☆ Mitigating representation bias caused by missing pixels in methane plume detection ACL
Most satellite images have systematically missing pixels (i.e., missing data not at random (MNAR)) due to factors such as clouds. If not addressed, these missing pixels can lead to representation bias in automated feature extraction models. In this work, we show that spurious association between the label and the number of missing values in methane plume detection can cause the model to associate the coverage (i.e., the percentage of valid pixels in an image) with the label, subsequently under-detecting plumes in low-coverage images. We evaluate multiple imputation approaches to remove the dependence between the coverage and a label. Additionally, we propose a weighted resampling scheme during training that removes the association between the label and the coverage by enforcing class balance in each coverage bin. Our results show that both resampling and imputation can significantly reduce the representation bias without hurting balanced accuracy, precision, or recall. Finally, we evaluate the capability of the debiased models using these techniques in an operational scenario and demonstrate that the debiased models have a higher chance of detecting plumes in low-coverage images.
comment: Accepted at the MACLEAN workshop at ECML-PKDD 2025
☆ PRGCN: A Graph Memory Network for Cross-Sequence Pattern Reuse in 3D Human Pose Estimation
Monocular 3D human pose estimation remains a fundamentally ill-posed inverse problem due to the inherent depth ambiguity in 2D-to-3D lifting. While contemporary video-based methods leverage temporal context to enhance spatial reasoning, they operate under a critical paradigm limitation: processing each sequence in isolation, thereby failing to exploit the strong structural regularities and repetitive motion patterns that pervade human movement across sequences. This work introduces the Pattern Reuse Graph Convolutional Network (PRGCN), a novel framework that formalizes pose estimation as a problem of pattern retrieval and adaptation. At its core, PRGCN features a graph memory bank that learns and stores a compact set of pose prototypes, encoded as relational graphs, which are dynamically retrieved via an attention mechanism to provide structured priors. These priors are adaptively fused with hard-coded anatomical constraints through a memory-driven graph convolution, ensuring geometrical plausibility. To underpin this retrieval process with robust spatiotemporal features, we design a dual-stream hybrid architecture that synergistically combines the linear-complexity, local temporal modeling of Mamba-based state-space models with the global relational capacity of self-attention. Extensive evaluations on Human3.6M and MPI-INF-3DHP benchmarks demonstrate that PRGCN establishes a new state-of-the-art, achieving an MPJPE of 37.1mm and 13.4mm, respectively, while exhibiting enhanced cross-domain generalization capability. Our work posits that the long-overlooked mechanism of cross-sequence pattern reuse is pivotal to advancing the field, shifting the paradigm from per-sequence optimization towards cumulative knowledge learning.
comment: 29 pages, 6 figures, 6 tables
☆ Predicting before Reconstruction: A generative prior framework for MRI acceleration
Recent advancements in artificial intelligence have created transformative capabilities in image synthesis and generation, enabling diverse research fields to innovate at revolutionary speed and spectrum. In this study, we leverage this generative power to introduce a new paradigm for accelerating Magnetic Resonance Imaging (MRI), introducing a shift from image reconstruction to proactive predictive imaging. Despite being a cornerstone of modern patient care, MRI's lengthy acquisition times limit clinical throughput. Our novel framework addresses this challenge by first predicting a target contrast image, which then serves as a data-driven prior for reconstructing highly under-sampled data. This informative prior is predicted by a generative model conditioned on diverse data sources, such as other contrast images, previously scanned images, acquisition parameters, patient information. We demonstrate this approach with two key applications: (1) reconstructing FLAIR images using predictions from T1w and/or T2w scans, and (2) reconstructing T1w images using predictions from previously acquired T1w scans. The framework was evaluated on internal and multiple public datasets (total 14,921 scans; 1,051,904 slices), including multi-channel k-space data, for a range of high acceleration factors (x4, x8 and x12). The results demonstrate that our prediction-prior reconstruction method significantly outperforms other approaches, including those with alternative or no prior information. Through this framework we introduce a fundamental shift from image reconstruction towards a new paradigm of predictive imaging.
comment: 33 pages, 8figures
☆ PCP-GAN: Property-Constrained Pore-scale image reconstruction via conditional Generative Adversarial Networks
Obtaining truly representative pore-scale images that match bulk formation properties remains a fundamental challenge in subsurface characterization, as natural spatial heterogeneity causes extracted sub-images to deviate significantly from core-measured values. This challenge is compounded by data scarcity, where physical samples are only available at sparse well locations. This study presents a multi-conditional Generative Adversarial Network (cGAN) framework that generates representative pore-scale images with precisely controlled properties, addressing both the representativeness challenge and data availability constraints. The framework was trained on thin section samples from four depths (1879.50-1943.50 m) of a carbonate formation, simultaneously conditioning on porosity values and depth parameters within a single unified model. This approach captures both universal pore network principles and depth-specific geological characteristics, from grainstone fabrics with interparticle-intercrystalline porosity to crystalline textures with anhydrite inclusions. The model achieved exceptional porosity control (R^2=0.95) across all formations with mean absolute errors of 0.0099-0.0197. Morphological validation confirmed preservation of critical pore network characteristics including average pore radius, specific surface area, and tortuosity, with statistical differences remaining within acceptable geological tolerances. Most significantly, generated images demonstrated superior representativeness with dual-constraint errors of 1.9-11.3% compared to 36.4-578% for randomly extracted real sub-images. This capability provides transformative tools for subsurface characterization, particularly valuable for carbon storage, geothermal energy, and groundwater management applications where knowing the representative morphology of the pore space is critical for implementing digital rock physics.
☆ Exploring "Many in Few" and "Few in Many" Properties in Long-Tailed, Highly-Imbalanced IC Defect Classification
Despite significant advancements in deep classification techniques and in-lab automatic optical inspection models for long-tailed or highly imbalanced data, applying these approaches to real-world IC defect classification tasks remains challenging. This difficulty stems from two primary factors. First, real-world conditions, such as the high yield-rate requirements in the IC industry, result in data distributions that are far more skewed than those found in general public imbalanced datasets. Consequently, classifiers designed for open imbalanced datasets often fail to perform effectively in real-world scenarios. Second, real-world samples exhibit a mix of class-specific attributes and class-agnostic, domain-related features. This complexity adds significant difficulty to the classification process, particularly for highly imbalanced datasets. To address these challenges, this paper introduces the IC-Defect-14 dataset, a large, highly imbalanced IC defect image dataset sourced from AOI systems deployed in real-world IC production lines. This dataset is characterized by its unique "intra-class clusters" property, which presents two major challenges: large intra-class diversity and high inter-class similarity. These characteristics, rarely found simultaneously in existing public datasets, significantly degrade the performance of current state-of-the-art classifiers for highly imbalanced data. To tackle this challenge, we propose ReCAME-Net, which follows a multi-expert classifier framework and integrates a regional channel attention module, metric learning losses, a hard category mining strategy, and a knowledge distillation procedure. Extensive experimental evaluations demonstrate that ReCAME-Net outperforms previous state-of-the-art models on the IC-Defect-14 dataset while maintaining comparable performance and competitiveness on general public datasets.
☆ Automated Morphological Analysis of Neurons in Fluorescence Microscopy Using YOLOv8
Accurate segmentation and precise morphological analysis of neuronal cells in fluorescence microscopy images are crucial steps in neuroscience and biomedical imaging applications. However, this process is labor-intensive and time-consuming, requiring significant manual effort and expertise to ensure reliable outcomes. This work presents a pipeline for neuron instance segmentation and measurement based on a high-resolution dataset of stem-cell-derived neurons. The proposed method uses YOLOv8, trained on manually annotated microscopy images. The model achieved high segmentation accuracy, exceeding 97%. In addition, the pipeline utilized both ground truth and predicted masks to extract biologically significant features, including cell length, width, area, and grayscale intensity values. The overall accuracy of the extracted morphological measurements reached 75.32%, further supporting the effectiveness of the proposed approach. This integrated framework offers a valuable tool for automated analysis in cell imaging and neuroscience research, reducing the need for manual annotation and enabling scalable, precise quantification of neuron morphology.
comment: 7 pages, 2 figures and 2 tables
☆ Reasoning Like Experts: Leveraging Multimodal Large Language Models for Drawing-based Psychoanalysis
Multimodal Large Language Models (MLLMs) have demonstrated exceptional performance across various objective multimodal perception tasks, yet their application to subjective, emotionally nuanced domains, such as psychological analysis, remains largely unexplored. In this paper, we introduce PICK, a multi-step framework designed for Psychoanalytical Image Comprehension through hierarchical analysis and Knowledge injection with MLLMs, specifically focusing on the House-Tree-Person (HTP) Test, a widely used psychological assessment in clinical practice. First, we decompose drawings containing multiple instances into semantically meaningful sub-drawings, constructing a hierarchical representation that captures spatial structure and content across three levels: single-object level, multi-object level, and whole level. Next, we analyze these sub-drawings at each level with a targeted focus, extracting psychological or emotional insights from their visual cues. We also introduce an HTP knowledge base and design a feature extraction module, trained with reinforcement learning, to generate a psychological profile for single-object level analysis. This profile captures both holistic stylistic features and dynamic object-specific features (such as those of the house, tree, or person), correlating them with psychological states. Finally, we integrate these multi-faceted information to produce a well-informed assessment that aligns with expert-level reasoning. Our approach bridges the gap between MLLMs and specialized expert domains, offering a structured and interpretable framework for understanding human mental states through visual expression. Experimental results demonstrate that the proposed PICK significantly enhances the capability of MLLMs in psychological analysis. It is further validated as a general framework through extensions to emotion understanding tasks.
comment: Accepted by ACM Multimedia 2025
☆ Multi-Camera Worker Tracking in Logistics Warehouse Considering Wide-Angle Distortion
With the spread of e-commerce, the logistics market is growing around the world. Therefore, improving the efficiency of warehouse operations is essential. To achieve this, various approaches have been explored, and among them, the use of digital twins is gaining attention. To make this approach possible, it is necessary to accurately collect the positions of workers in a warehouse and reflect them in a virtual space. However, a single camera has limitations in its field of view, therefore sensing with multiple cameras is necessary. In this study, we explored a method to track workers using 19 wide-angle cameras installed on the ceiling, looking down at the floor of the logistics warehouse. To understand the relationship between the camera coordinates and the actual positions in the warehouse, we performed alignment based on the floor surface. However, due to the characteristics of wide-angle cameras, significant distortion occurs at the edges of the image, particularly in the vertical direction. To address this, the detected worker positions from each camera were aligned based on foot positions, reducing the effects of image distortion, and enabling accurate position alignment across cameras. As a result, we confirmed an improvement of over 20% in tracking accuracy. Furthermore, we compared multiple methods for utilizing appearance features and validated the effectiveness of the proposed approach.
☆ GigaBrain-0: A World Model-Powered Vision-Language-Action Model
Training Vision-Language-Action (VLA) models for generalist robots typically requires large-scale real-world robot data, which is expensive and time-consuming to collect. The inefficiency of physical data collection severely limits the scalability, and generalization capacity of current VLA systems. To address this challenge, we introduce GigaBrain-0, a novel VLA foundation model empowered by world model-generated data (e.g., video generation, real2real transfer, human transfer, view transfer, sim2real transfer data). By leveraging world models to generate diverse data at scale, GigaBrain-0 significantly reduces reliance on real robot data while improving cross-task generalization. Our approach further improves policy robustness through RGBD input modeling and embodied Chain-of-Thought (CoT) supervision, enabling the model to reason about spatial geometry, object states, and long-horizon dependencies during task execution. This leads to substantial gains in real-world performance on dexterous, long-horizon, and mobile manipulation tasks. Extensive experiments demonstrate that GigaBrain-0 achieves superior generalization across variations in appearances (e.g., textures, colors), object placements, and camera viewpoints. Additionally, we present GigaBrain-0-Small, an optimized lightweight variant designed to run efficiently on devices such as the NVIDIA Jetson AGX Orin.
comment: https://gigabrain0.github.io/
☆ From See to Shield: ML-Assisted Fine-Grained Access Control for Visual Data
As the volume of stored data continues to grow, identifying and protecting sensitive information within large repositories becomes increasingly challenging, especially when shared with multiple users with different roles and permissions. This work presents a system architecture for trusted data sharing with policy-driven access control, enabling selective protection of sensitive regions while maintaining scalability. The proposed architecture integrates four core modules that combine automated detection of sensitive regions, post-correction, key management, and access control. Sensitive regions are secured using a hybrid scheme that employs symmetric encryption for efficiency and Attribute-Based Encryption for policy enforcement. The system supports efficient key distribution and isolates key storage to strengthen overall security. To demonstrate its applicability, we evaluate the system on visual datasets, where Privacy-Sensitive Objects in images are automatically detected, reassessed, and selectively encrypted prior to sharing in a data repository. Experimental results show that our system provides effective PSO detection, increases macro-averaged F1 score (5%) and mean Average Precision (10%), and maintains an average policy-enforced decryption time of less than 1 second per image. These results demonstrate the effectiveness, efficiency and scalability of our proposed solution for fine-grained access control.
comment: 10 pages, 3 figures, 6 tables. In submission
☆ Spatio-temporal Sign Language Representation and Translation
This paper describes the DFKI-MLT submission to the WMT-SLT 2022 sign language translation (SLT) task from Swiss German Sign Language (video) into German (text). State-of-the-art techniques for SLT use a generic seq2seq architecture with customized input embeddings. Instead of word embeddings as used in textual machine translation, SLT systems use features extracted from video frames. Standard approaches often do not benefit from temporal features. In our participation, we present a system that learns spatio-temporal feature representations and translation in a single model, resulting in a real end-to-end architecture expected to better generalize to new data sets. Our best system achieved $5\pm1$ BLEU points on the development set, but the performance on the test dropped to $0.11\pm0.06$ BLEU points.
☆ Seeing Across Views: Benchmarking Spatial Reasoning of Vision-Language Models in Robotic Scenes
Vision-language models (VLMs) are essential to Embodied AI, enabling robots to perceive, reason, and act in complex environments. They also serve as the foundation for the recent Vision-Language-Action (VLA) models. Yet most evaluations of VLMs focus on single-view settings, leaving their ability to integrate multi-view information underexplored. At the same time, multi-camera setups are increasingly standard in robotic platforms, as they provide complementary perspectives to mitigate occlusion and depth ambiguity. Whether VLMs can effectively leverage such multi-view inputs for robotic reasoning therefore remains an open question. To bridge this gap, we introduce MV-RoboBench, a benchmark specifically designed to evaluate the multi-view spatial reasoning capabilities of VLMs in robotic manipulation. MV-RoboBench consists of 1.7k manually curated QA items across eight subtasks, divided into two primary categories: spatial understanding and robotic execution. We evaluate a diverse set of existing VLMs, including both open-source and closed-source models, along with enhanced versions incorporating CoT-inspired techniques. The results show that state-of-the-art models remain far below human performance, underscoring the substantial challenges VLMs face in multi-view robotic perception. Additionally, our analysis uncovers two key findings: (i) spatial intelligence and robotic task execution are positively correlated in multi-view robotic scenarios; and (ii) strong performance on existing general-purpose single-view spatial understanding benchmarks does not reliably translate to success in the robotic spatial tasks assessed by our benchmark. We release MV-RoboBench as an open resource to foster progress in spatially grounded VLMs and VLAs, providing not only data but also a standardized evaluation protocol for multi-view embodied reasoning.
comment: The project and benchmark are publicly available at https://github.com/microsoft/MV-RoboBench
☆ AegisRF: Adversarial Perturbations Guided with Sensitivity for Protecting Intellectual Property of Neural Radiance Fields BMVC 2025
As Neural Radiance Fields (NeRFs) have emerged as a powerful tool for 3D scene representation and novel view synthesis, protecting their intellectual property (IP) from unauthorized use is becoming increasingly crucial. In this work, we aim to protect the IP of NeRFs by injecting adversarial perturbations that disrupt their unauthorized applications. However, perturbing the 3D geometry of NeRFs can easily deform the underlying scene structure and thus substantially degrade the rendering quality, which has led existing attempts to avoid geometric perturbations or restrict them to explicit spaces like meshes. To overcome this limitation, we introduce a learnable sensitivity to quantify the spatially varying impact of geometric perturbations on rendering quality. Building upon this, we propose AegisRF, a novel framework that consists of a Perturbation Field, which injects adversarial perturbations into the pre-rendering outputs (color and volume density) of NeRF models to fool an unauthorized downstream target model, and a Sensitivity Field, which learns the sensitivity to adaptively constrain geometric perturbations, preserving rendering quality while disrupting unauthorized use. Our experimental evaluations demonstrate the generalized applicability of AegisRF across diverse downstream tasks and modalities, including multi-view image classification and voxel-based 3D localization, while maintaining high visual fidelity. Codes are available at https://github.com/wkim97/AegisRF.
comment: BMVC 2025
☆ DARE: A Deformable Adaptive Regularization Estimator for Learning-Based Medical Image Registration
Deformable medical image registration is a fundamental task in medical image analysis. While deep learning-based methods have demonstrated superior accuracy and computational efficiency compared to traditional techniques, they often overlook the critical role of regularization in ensuring robustness and anatomical plausibility. We propose DARE (Deformable Adaptive Regularization Estimator), a novel registration framework that dynamically adjusts elastic regularization based on the gradient norm of the deformation field. Our approach integrates strain and shear energy terms, which are adaptively modulated to balance stability and flexibility. To ensure physically realistic transformations, DARE includes a folding-prevention mechanism that penalizes regions with negative deformation Jacobian. This strategy mitigates non-physical artifacts such as folding, avoids over-smoothing, and improves both registration accuracy and anatomical plausibility
☆ Learning To Defer To A Population With Limited Demonstrations IEEE
This paper addresses the critical data scarcity that hinders the practical deployment of learning to defer (L2D) systems to the population. We introduce a context-aware, semi-supervised framework that uses meta-learning to generate expert-specific embeddings from only a few demonstrations. We demonstrate the efficacy of a dual-purpose mechanism, where these embeddings are used first to generate a large corpus of pseudo-labels for training, and subsequently to enable on-the-fly adaptation to new experts at test-time. The experiment results on three different datasets confirm that a model trained on these synthetic labels rapidly approaches oracle-level performance, validating the data efficiency of our approach. By resolving a key training bottleneck, this work makes adaptive L2D systems more practical and scalable, paving the way for human-AI collaboration in real-world environments. To facilitate reproducibility and address implementation details not covered in the main text, we provide our source code and training configurations at https://github.com/nil123532/learning-to-defer-to-a-population-with-limited-demonstrations.
comment: Accepted to IEEE DICTA 2025 (poster). 7 pages, 2 figures
☆ DaMo: Data Mixing Optimizer in Fine-tuning Multimodal LLMs for Mobile Phone Agents
Mobile Phone Agents (MPAs) have emerged as a promising research direction due to their broad applicability across diverse scenarios. While Multimodal Large Language Models (MLLMs) serve as the foundation for MPAs, their effectiveness in handling multiple mobile phone tasks simultaneously remains limited. Although multitask supervised fine-tuning (SFT) is widely adopted for multitask learning, existing approaches struggle to determine optimal training data compositions for peak performance. To address this challenge, we propose DaMo (Data Mixture Optimizer) - a novel solution employing a trainable network that predicts optimal data mixtures by forecasting downstream task performance for any given dataset ratio. To support comprehensive evaluation, we introduce PhoneAgentBench, the first specialized benchmark to evaluate MLLMs on multimodal mobile phone tasks, comprising 1235 QA pairs spanning diverse real-world industrial mobile application scenarios. Demonstrating strong predictive capability (R^2=0.81) in small-scale pilot experiments, DaMo efficiently extrapolates optimal data mixing configurations. Our results show DaMo achieves a 3.38% performance improvement on PhoneAgentBench compared to alternative methods. Furthermore, extensive experiments across established benchmarks including BFCL-v3, MME-Reasoning, MME-Perception, and OCRBench reveal DaMo's superior generalization, outperforming other approaches by 2.57% in terms of average score. When used solely for MLLM optimization on the BFCL-v3 task, DaMo improves the metrics by 12.47% than other methods. Notably, DaMo maintains robust scalability, preserving its effectiveness when applied to other model architectures. The code and dataset are available at https://github.com/OPPO-Mente-Lab/DaMo.git
☆ A Training-Free Framework for Open-Vocabulary Image Segmentation and Recognition with EfficientNet and CLIP
This paper presents a novel training-free framework for open-vocabulary image segmentation and object recognition (OVSR), which leverages EfficientNetB0, a convolutional neural network, for unsupervised segmentation and CLIP, a vision-language model, for open-vocabulary object recognition. The proposed framework adopts a two stage pipeline: unsupervised image segmentation followed by segment-level recognition via vision-language alignment. In the first stage, pixel-wise features extracted from EfficientNetB0 are decomposed using singular value decomposition to obtain latent representations, which are then clustered using hierarchical clustering to segment semantically meaningful regions. The number of clusters is adaptively determined by the distribution of singular values. In the second stage, the segmented regions are localized and encoded into image embeddings using the Vision Transformer backbone of CLIP. Text embeddings are precomputed using CLIP's text encoder from category-specific prompts, including a generic something else prompt to support open set recognition. The image and text embeddings are concatenated and projected into a shared latent feature space via SVD to enhance cross-modal alignment. Recognition is performed by computing the softmax over the similarities between the projected image and text embeddings. The proposed method is evaluated on standard benchmarks, including COCO, ADE20K, and PASCAL VOC, achieving state-of-the-art performance in terms of Hungarian mIoU, precision, recall, and F1-score. These results demonstrate the effectiveness, flexibility, and generalizability of the proposed framework.
☆ BrainMCLIP: Brain Image Decoding with Multi-Layer feature Fusion of CLIP
Decoding images from fMRI often involves mapping brain activity to CLIP's final semantic layer. To capture finer visual details, many approaches add a parameter-intensive VAE-based pipeline. However, these approaches overlook rich object information within CLIP's intermediate layers and contradicts the brain's functionally hierarchical. We introduce BrainMCLIP, which pioneers a parameter-efficient, multi-layer fusion approach guided by human visual system's functional hierarchy, eliminating the need for such a separate VAE pathway. BrainMCLIP aligns fMRI signals from functionally distinct visual areas (low-/high-level) to corresponding intermediate and final CLIP layers, respecting functional hierarchy. We further introduce a Cross-Reconstruction strategy and a novel multi-granularity loss. Results show BrainMCLIP achieves highly competitive performance, particularly excelling on high-level semantic metrics where it matches or surpasses SOTA(state-of-the-art) methods, including those using VAE pipelines. Crucially, it achieves this with substantially fewer parameters, demonstrating a reduction of 71.7\%(Table.\ref{tab:compare_clip_vae}) compared to top VAE-based SOTA methods, by avoiding the VAE pathway. By leveraging intermediate CLIP features, it effectively captures visual details often missed by CLIP-only approaches, striking a compelling balance between semantic accuracy and detail fidelity without requiring a separate VAE pipeline.
☆ Exploring Scale Shift in Crowd Localization under the Context of Domain Generalization
Crowd localization plays a crucial role in visual scene understanding towards predicting each pedestrian location in a crowd, thus being applicable to various downstream tasks. However, existing approaches suffer from significant performance degradation due to discrepancies in head scale distributions (scale shift) between training and testing data, a challenge known as domain generalization (DG). This paper aims to comprehend the nature of scale shift within the context of domain generalization for crowd localization models. To this end, we address four critical questions: (i) How does scale shift influence crowd localization in a DG scenario? (ii) How can we quantify this influence? (iii) What causes this influence? (iv) How to mitigate the influence? Initially, we conduct a systematic examination of how crowd localization performance varies with different levels of scale shift. Then, we establish a benchmark, ScaleBench, and reproduce 20 advanced DG algorithms to quantify the influence. Through extensive experiments, we demonstrate the limitations of existing algorithms and underscore the importance and complexity of scale shift, a topic that remains insufficiently explored. To deepen our understanding, we provide a rigorous theoretical analysis on scale shift. Building on these insights, we further propose an effective algorithm called Causal Feature Decomposition and Anisotropic Processing (Catto) to mitigate the influence of scale shift in DG settings. Later, we also provide extensive analytical experiments, revealing four significant insights for future research. Our results emphasize the importance of this novel and applicable research direction, which we term Scale Shift Domain Generalization.
☆ Seabed-Net: A multi-task network for joint bathymetry estimation and seabed classification from remote sensing imagery in shallow waters SP
Accurate, detailed, and regularly updated bathymetry, coupled with complex semantic content, is essential for under-mapped shallow-water environments facing increasing climatological and anthropogenic pressures. However, existing approaches that derive either depth or seabed classes from remote sensing imagery treat these tasks in isolation, forfeiting the mutual benefits of their interaction and hindering the broader adoption of deep learning methods. To address these limitations, we introduce Seabed-Net, a unified multi-task framework that simultaneously predicts bathymetry and pixel-based seabed classification from remote sensing imagery of various resolutions. Seabed-Net employs dual-branch encoders for bathymetry estimation and pixel-based seabed classification, integrates cross-task features via an Attention Feature Fusion module and a windowed Swin-Transformer fusion block, and balances objectives through dynamic task uncertainty weighting. In extensive evaluations at two heterogeneous coastal sites, it consistently outperforms traditional empirical models and traditional machine learning regression methods, achieving up to 75\% lower RMSE. It also reduces bathymetric RMSE by 10-30\% compared to state-of-the-art single-task and multi-task baselines and improves seabed classification accuracy up to 8\%. Qualitative analyses further demonstrate enhanced spatial consistency, sharper habitat boundaries, and corrected depth biases in low-contrast regions. These results confirm that jointly modeling depth with both substrate and seabed habitats yields synergistic gains, offering a robust, open solution for integrated shallow-water mapping. Code and pretrained weights are available at https://github.com/pagraf/Seabed-Net.
comment: Submitted to ISPRS Journal of Photogrammetry and Remote Sensing
☆ Online Handwritten Signature Verification Based on Temporal-Spatial Graph Attention Transformer
Handwritten signature verification is a crucial aspect of identity authentication, with applications in various domains such as finance and e-commerce. However, achieving high accuracy in signature verification remains challenging due to intra-user variability and the risk of forgery. This paper introduces a novel approach for dynamic signature verification: the Temporal-Spatial Graph Attention Transformer (TS-GATR). TS-GATR combines the Graph Attention Network (GAT) and the Gated Recurrent Unit (GRU) to model both spatial and temporal dependencies in signature data. TS-GATR enhances verification performance by representing signatures as graphs, where each node captures dynamic features (e.g. position, velocity, pressure), and by using attention mechanisms to model their complex relationships. The proposed method further employs a Dual-Graph Attention Transformer (DGATR) module, which utilizes k-step and k-nearest neighbor adjacency graphs to model local and global spatial features, respectively. To capture long-term temporal dependencies, the model integrates GRU, thereby enhancing its ability to learn dynamic features during signature verification. Comprehensive experiments conducted on benchmark datasets such as MSDS and DeepSignDB show that TS-GATR surpasses current state-of-the-art approaches, consistently achieving lower Equal Error Rates (EER) across various scenarios.
☆ Unified Reinforcement and Imitation Learning for Vision-Language Models NeurIPS 2025
Vision-Language Models (VLMs) have achieved remarkable progress, yet their large scale often renders them impractical for resource-constrained environments. This paper introduces Unified Reinforcement and Imitation Learning (RIL), a novel and efficient training algorithm designed to create powerful, lightweight VLMs. RIL distinctively combines the strengths of reinforcement learning with adversarial imitation learning. This enables smaller student VLMs not only to mimic the sophisticated text generation of large teacher models but also to systematically improve their generative capabilities through reinforcement signals. Key to our imitation framework is an LLM-based discriminator that adeptly distinguishes between student and teacher outputs, complemented by guidance from multiple large teacher VLMs to ensure diverse learning. This unified learning strategy, leveraging both reinforcement and imitation, empowers student models to achieve significant performance gains, making them competitive with leading closed-source VLMs. Extensive experiments on diverse vision-language benchmarks demonstrate that RIL significantly narrows the performance gap with state-of-the-art open- and closed-source VLMs and, in several instances, surpasses them.
comment: NeurIPS 2025, Project page: https://byungkwanlee.github.io/RIL-page
☆ FrogDeepSDM: Improving Frog Counting and Occurrence Prediction Using Multimodal Data and Pseudo-Absence Imputation
Monitoring species distribution is vital for conservation efforts, enabling the assessment of environmental impacts and the development of effective preservation strategies. Traditional data collection methods, including citizen science, offer valuable insights but remain limited in coverage and completeness. Species Distribution Modelling (SDM) helps address these gaps by using occurrence data and environmental variables to predict species presence across large regions. In this study, we enhance SDM accuracy for frogs (Anura) by applying deep learning and data imputation techniques using data from the "EY - 2022 Biodiversity Challenge." Our experiments show that data balancing significantly improved model performance, reducing the Mean Absolute Error (MAE) from 189 to 29 in frog counting tasks. Feature selection identified key environmental factors influencing occurrence, optimizing inputs while maintaining predictive accuracy. The multimodal ensemble model, integrating land cover, NDVI, and other environmental inputs, outperformed individual models and showed robust generalization across unseen regions. The fusion of image and tabular data improved both frog counting and habitat classification, achieving 84.9% accuracy with an AUC of 0.90. This study highlights the potential of multimodal learning and data preprocessing techniques such as balancing and imputation to improve predictive ecological modeling when data are sparse or incomplete, contributing to more precise and scalable biodiversity monitoring.
☆ Vision-Based Mistake Analysis in Procedural Activities: A Review of Advances and Challenges
Mistake analysis in procedural activities is a critical area of research with applications spanning industrial automation, physical rehabilitation, education and human-robot collaboration. This paper reviews vision-based methods for detecting and predicting mistakes in structured tasks, focusing on procedural and executional errors. By leveraging advancements in computer vision, including action recognition, anticipation and activity understanding, vision-based systems can identify deviations in task execution, such as incorrect sequencing, use of improper techniques, or timing errors. We explore the challenges posed by intra-class variability, viewpoint differences and compositional activity structures, which complicate mistake detection. Additionally, we provide a comprehensive overview of existing datasets, evaluation metrics and state-of-the-art methods, categorizing approaches based on their use of procedural structure, supervision levels and learning strategies. Open challenges, such as distinguishing permissible variations from true mistakes and modeling error propagation are discussed alongside future directions, including neuro-symbolic reasoning and counterfactual state modeling. This work aims to establish a unified perspective on vision-based mistake analysis in procedural activities, highlighting its potential to enhance safety, efficiency and task performance across diverse domains.
comment: 21pages, 6 figures, 2 tables
☆ Enhancing Early Alzheimer Disease Detection through Big Data and Ensemble Few-Shot Learning
Alzheimer disease is a severe brain disorder that causes harm in various brain areas and leads to memory damage. The limited availability of labeled medical data poses a significant challenge for accurate Alzheimer disease detection. There is a critical need for effective methods to improve the accuracy of Alzheimer disease detection, considering the scarcity of labeled data, the complexity of the disease, and the constraints related to data privacy. To address this challenge, our study leverages the power of big data in the form of pre-trained Convolutional Neural Networks (CNNs) within the framework of Few-Shot Learning (FSL) and ensemble learning. We propose an ensemble approach based on a Prototypical Network (ProtoNet), a powerful method in FSL, integrating various pre-trained CNNs as encoders. This integration enhances the richness of features extracted from medical images. Our approach also includes a combination of class-aware loss and entropy loss to ensure a more precise classification of Alzheimer disease progression levels. The effectiveness of our method was evaluated using two datasets, the Kaggle Alzheimer dataset and the ADNI dataset, achieving an accuracy of 99.72% and 99.86%, respectively. The comparison of our results with relevant state-of-the-art studies demonstrated that our approach achieved superior accuracy and highlighted its validity and potential for real-world applications in early Alzheimer disease detection.
☆ D2D: Detector-to-Differentiable Critic for Improved Numeracy in Text-to-Image Generation
Text-to-image (T2I) diffusion models have achieved strong performance in semantic alignment, yet they still struggle with generating the correct number of objects specified in prompts. Existing approaches typically incorporate auxiliary counting networks as external critics to enhance numeracy. However, since these critics must provide gradient guidance during generation, they are restricted to regression-based models that are inherently differentiable, thus excluding detector-based models with superior counting ability, whose count-via-enumeration nature is non-differentiable. To overcome this limitation, we propose Detector-to-Differentiable (D2D), a novel framework that transforms non-differentiable detection models into differentiable critics, thereby leveraging their superior counting ability to guide numeracy generation. Specifically, we design custom activation functions to convert detector logits into soft binary indicators, which are then used to optimize the noise prior at inference time with pre-trained T2I models. Our extensive experiments on SDXL-Turbo, SD-Turbo, and Pixart-DMD across four benchmarks of varying complexity (low-density, high-density, and multi-object scenarios) demonstrate consistent and substantial improvements in object counting accuracy (e.g., boosting up to 13.7% on D2D-Small, a 400-prompt, low-density benchmark), with minimal degradation in overall image quality and computational overhead.
comment: 24 pages, 14 figures
☆ MobiAct: Efficient MAV Action Recognition Using MobileNetV4 with Contrastive Learning and Knowledge Distillation
Accurate and efficient recognition of Micro Air Vehicle (MAV) motion is essential for enabling real-time perception and coordination in autonomous aerial swarm. However, most existing approaches rely on large, computationally intensive models that are unsuitable for resource-limited MAV platforms, which results in a trade-off between recognition accuracy and inference speed. To address these challenges, this paper proposes a lightweight MAV action recognition framework, MobiAct, designed to achieve high accuracy with low computational cost. Specifically, MobiAct adopts MobileNetV4 as the backbone network and introduces a Stage-wise Orthogonal Knowledge Distillation (SOKD) strategy to effectively transfer MAV motion features from a teacher network (ResNet18) to a student network, thereby enhancing knowledge transfer efficiency. Furthermore, a parameter-free attention mechanism is integrated into the architecture to improve recognition accuracy without increasing model complexity. In addition, a hybrid loss training strategy is developed to combine multiple loss objectives, which ensures stable and robust optimization during training. Experimental results demonstrate that the proposed MobiAct achieves low-energy and low-computation MAV action recognition, while maintaining the fastest action decoding speed among compared methods. Across all three self-collected datasets, MobiAct achieves an average recognition accuracy of 92.12%, while consuming only 136.16 pJ of energy and processing recognition at a rate of 8.84 actions per second. Notably, MobiAct decodes actions up to 2 times faster than the leading method, with highly comparable recognition accuracy, highlighting its superior efficiency in MAV action recognition.
☆ SCEESR: Semantic-Control Edge Enhancement for Diffusion-Based Super-Resolution
Real-world image super-resolution (Real-ISR) must handle complex degradations and inherent reconstruction ambiguities. While generative models have improved perceptual quality, a key trade-off remains with computational cost. One-step diffusion models offer speed but often produce structural inaccuracies due to distillation artifacts. To address this, we propose a novel SR framework that enhances a one-step diffusion model using a ControlNet mechanism for semantic edge guidance. This integrates edge information to provide dynamic structural control during single-pass inference. We also introduce a hybrid loss combining L2, LPIPS, and an edge-aware AME loss to optimize for pixel accuracy, perceptual quality, and geometric precision. Experiments show our method effectively improves structural integrity and realism while maintaining the efficiency of one-step generation, achieving a superior balance between output quality and inference speed. The results of test datasets will be published at https://drive.google.com/drive/folders/1amddXQ5orIyjbxHgGpzqFHZ6KTolinJF?usp=drive_link and the related code will be published at https://github.com/ARBEZ-ZEBRA/SCEESR.
comment: 10 pages, 5 figures, 3 tables
☆ Advances in 4D Representation: Geometry, Motion, and Interaction
We present a survey on 4D generation and reconstruction, a fast-evolving subfield of computer graphics whose developments have been propelled by recent advances in neural fields, geometric and motion deep learning, as well 3D generative artificial intelligence (GenAI). While our survey is not the first of its kind, we build our coverage of the domain from a unique and distinctive perspective of 4D representations\/}, to model 3D geometry evolving over time while exhibiting motion and interaction. Specifically, instead of offering an exhaustive enumeration of many works, we take a more selective approach by focusing on representative works to highlight both the desirable properties and ensuing challenges of each representation under different computation, application, and data scenarios. The main take-away message we aim to convey to the readers is on how to select and then customize the appropriate 4D representations for their tasks. Organizationally, we separate the 4D representations based on three key pillars: geometry, motion, and interaction. Our discourse will not only encompass the most popular representations of today, such as neural radiance fields (NeRFs) and 3D Gaussian Splatting (3DGS), but also bring attention to relatively under-explored representations in the 4D context, such as structured models and long-range motions. Throughout our survey, we will reprise the role of large language models (LLMs) and video foundational models (VFMs) in a variety of 4D applications, while steering our discussion towards their current limitations and how they can be addressed. We also provide a dedicated coverage on what 4D datasets are currently available, as well as what is lacking, in driving the subfield forward. Project page:https://mingrui-zhao.github.io/4DRep-GMI/
comment: 21 pages. Project Page: https://mingrui-zhao.github.io/4DRep-GMI/
☆ Background Fades, Foreground Leads: Curriculum-Guided Background Pruning for Efficient Foreground-Centric Collaborative Perception
Collaborative perception enhances the reliability and spatial coverage of autonomous vehicles by sharing complementary information across vehicles, offering a promising solution to long-tail scenarios that challenge single-vehicle perception. However, the bandwidth constraints of vehicular networks make transmitting the entire feature map impractical. Recent methods, therefore, adopt a foreground-centric paradigm, transmitting only predicted foreground-region features while discarding the background, which encodes essential context. We propose FadeLead, a foreground-centric framework that overcomes this limitation by learning to encapsulate background context into compact foreground features during training. At the core of our design is a curricular learning strategy that leverages background cues early on but progressively prunes them away, forcing the model to internalize context into foreground representations without transmitting background itself. Extensive experiments on both simulated and real-world benchmarks show that FadeLead outperforms prior methods under different bandwidth settings, underscoring the effectiveness of context-enriched foreground sharing.
☆ Space Object Detection using Multi-frame Temporal Trajectory Completion Method
Space objects in Geostationary Earth Orbit (GEO) present significant detection challenges in optical imaging due to weak signals, complex stellar backgrounds, and environmental interference. In this paper, we enhance high-frequency features of GEO targets while suppressing background noise at the single-frame level through wavelet transform. Building on this, we propose a multi-frame temporal trajectory completion scheme centered on the Hungarian algorithm for globally optimal cross-frame matching. To effectively mitigate missing and false detections, a series of key steps including temporal matching and interpolation completion, temporal-consistency-based noise filtering, and progressive trajectory refinement are designed in the post-processing pipeline. Experimental results on the public SpotGEO dataset demonstrate the effectiveness of the proposed method, achieving an F_1 score of 90.14%.
☆ SFGFusion: Surface Fitting Guided 3D Object Detection with 4D Radar and Camera Fusion
3D object detection is essential for autonomous driving. As an emerging sensor, 4D imaging radar offers advantages as low cost, long-range detection, and accurate velocity measurement, making it highly suitable for object detection. However, its sparse point clouds and low resolution limit object geometric representation and hinder multi-modal fusion. In this study, we introduce SFGFusion, a novel camera-4D imaging radar detection network guided by surface fitting. By estimating quadratic surface parameters of objects from image and radar data, the explicit surface fitting model enhances spatial representation and cross-modal interaction, enabling more reliable prediction of fine-grained dense depth. The predicted depth serves two purposes: 1) in an image branch to guide the transformation of image features from perspective view (PV) to a unified bird's-eye view (BEV) for multi-modal fusion, improving spatial mapping accuracy; and 2) in a surface pseudo-point branch to generate dense pseudo-point cloud, mitigating the radar point sparsity. The original radar point cloud is also encoded in a separate radar branch. These two point cloud branches adopt a pillar-based method and subsequently transform the features into the BEV space. Finally, a standard 2D backbone and detection head are used to predict object labels and bounding boxes from BEV features. Experimental results show that SFGFusion effectively fuses camera and 4D radar features, achieving superior performance on the TJ4DRadSet and view-of-delft (VoD) object detection benchmarks.
comment: Submitted to Pattern Recognition
☆ MoE-GS: Mixture of Experts for Dynamic Gaussian Splatting
Recent advances in dynamic scene reconstruction have significantly benefited from 3D Gaussian Splatting, yet existing methods show inconsistent performance across diverse scenes, indicating no single approach effectively handles all dynamic challenges. To overcome these limitations, we propose Mixture of Experts for Dynamic Gaussian Splatting (MoE-GS), a unified framework integrating multiple specialized experts via a novel Volume-aware Pixel Router. Our router adaptively blends expert outputs by projecting volumetric Gaussian-level weights into pixel space through differentiable weight splatting, ensuring spatially and temporally coherent results. Although MoE-GS improves rendering quality, the increased model capacity and reduced FPS are inherent to the MoE architecture. To mitigate this, we explore two complementary directions: (1) single-pass multi-expert rendering and gate-aware Gaussian pruning, which improve efficiency within the MoE framework, and (2) a distillation strategy that transfers MoE performance to individual experts, enabling lightweight deployment without architectural changes. To the best of our knowledge, MoE-GS is the first approach incorporating Mixture-of-Experts techniques into dynamic Gaussian splatting. Extensive experiments on the N3V and Technicolor datasets demonstrate that MoE-GS consistently outperforms state-of-the-art methods with improved efficiency. Video demonstrations are available at https://anonymous.4open.science/w/MoE-GS-68BA/.
☆ GRASPLAT: Enabling dexterous grasping through novel view synthesis IROS 2025
Achieving dexterous robotic grasping with multi-fingered hands remains a significant challenge. While existing methods rely on complete 3D scans to predict grasp poses, these approaches face limitations due to the difficulty of acquiring high-quality 3D data in real-world scenarios. In this paper, we introduce GRASPLAT, a novel grasping framework that leverages consistent 3D information while being trained solely on RGB images. Our key insight is that by synthesizing physically plausible images of a hand grasping an object, we can regress the corresponding hand joints for a successful grasp. To achieve this, we utilize 3D Gaussian Splatting to generate high-fidelity novel views of real hand-object interactions, enabling end-to-end training with RGB data. Unlike prior methods, our approach incorporates a photometric loss that refines grasp predictions by minimizing discrepancies between rendered and real images. We conduct extensive experiments on both synthetic and real-world grasping datasets, demonstrating that GRASPLAT improves grasp success rates up to 36.9% over existing image-based methods. Project page: https://mbortolon97.github.io/grasplat/
comment: Accepted IROS 2025
☆ Rethinking Driving World Model as Synthetic Data Generator for Perception Tasks
Recent advancements in driving world models enable controllable generation of high-quality RGB videos or multimodal videos. Existing methods primarily focus on metrics related to generation quality and controllability. However, they often overlook the evaluation of downstream perception tasks, which are $\mathbf{really\ crucial}$ for the performance of autonomous driving. Existing methods usually leverage a training strategy that first pretrains on synthetic data and finetunes on real data, resulting in twice the epochs compared to the baseline (real data only). When we double the epochs in the baseline, the benefit of synthetic data becomes negligible. To thoroughly demonstrate the benefit of synthetic data, we introduce Dream4Drive, a novel synthetic data generation framework designed for enhancing the downstream perception tasks. Dream4Drive first decomposes the input video into several 3D-aware guidance maps and subsequently renders the 3D assets onto these guidance maps. Finally, the driving world model is fine-tuned to produce the edited, multi-view photorealistic videos, which can be used to train the downstream perception models. Dream4Drive enables unprecedented flexibility in generating multi-view corner cases at scale, significantly boosting corner case perception in autonomous driving. To facilitate future research, we also contribute a large-scale 3D asset dataset named DriveObj3D, covering the typical categories in driving scenarios and enabling diverse 3D-aware video editing. We conduct comprehensive experiments to show that Dream4Drive can effectively boost the performance of downstream perception models under various training epochs. Project: $\href{https://wm-research.github.io/Dream4Drive/}{this\ https\ URL}$
☆ Video Consistency Distance: Enhancing Temporal Consistency for Image-to-Video Generation via Reward-Based Fine-Tuning
Reward-based fine-tuning of video diffusion models is an effective approach to improve the quality of generated videos, as it can fine-tune models without requiring real-world video datasets. However, it can sometimes be limited to specific performances because conventional reward functions are mainly aimed at enhancing the quality across the whole generated video sequence, such as aesthetic appeal and overall consistency. Notably, the temporal consistency of the generated video often suffers when applying previous approaches to image-to-video (I2V) generation tasks. To address this limitation, we propose Video Consistency Distance (VCD), a novel metric designed to enhance temporal consistency, and fine-tune a model with the reward-based fine-tuning framework. To achieve coherent temporal consistency relative to a conditioning image, VCD is defined in the frequency space of video frame features to capture frame information effectively through frequency-domain analysis. Experimental results across multiple I2V datasets demonstrate that fine-tuning a video generation model with VCD significantly enhances temporal consistency without degrading other performance compared to the previous method.
comment: 17 pages
☆ PruneHal: Reducing Hallucinations in Multi-modal Large Language Models through Adaptive KV Cache Pruning
While multi-modal large language models (MLLMs) have made significant progress in recent years, the issue of hallucinations remains a major challenge. To mitigate this phenomenon, existing solutions either introduce additional data for further training or incorporate external or internal information during inference. However, these approaches inevitably introduce extra computational costs. In this paper, we observe that hallucinations in MLLMs are strongly associated with insufficient attention allocated to visual tokens. In particular, the presence of redundant visual tokens disperses the model's attention, preventing it from focusing on the most informative ones. As a result, critical visual cues are often under-attended, which in turn exacerbates the occurrence of hallucinations. Building on this observation, we propose \textbf{PruneHal}, a training-free, simple yet effective method that leverages adaptive KV cache pruning to enhance the model's focus on critical visual information, thereby mitigating hallucinations. To the best of our knowledge, we are the first to apply token pruning for hallucination mitigation in MLLMs. Notably, our method don't require additional training and incurs nearly no extra inference cost. Moreover, PruneHal is model-agnostic and can be seamlessly integrated with different decoding strategies, including those specifically designed for hallucination mitigation. We evaluate PruneHal on several widely used hallucination evaluation benchmarks using four mainstream MLLMs, achieving robust and outstanding results that highlight the effectiveness and superiority of our method. Our code will be publicly available.
☆ Malaria Detection from Blood Cell Images Using XceptionNet
Malaria, which primarily spreads with the bite of female anopheles mosquitos, often leads to death of people - specifically children in the age-group of 0-5 years. Clinical experts identify malaria by observing RBCs in blood smeared images with a microscope. Lack of adequate professional knowledge and skills, and most importantly manual involvement may cause incorrect diagnosis. Therefore, computer aided automatic diagnosis stands as a preferred substitute. In this paper, well-demonstrated deep networks have been applied to extract deep intrinsic features from blood cell images and thereafter classify them as malaria infected or healthy cells. Among the six deep convolutional networks employed in this work viz. AlexNet, XceptionNet, VGG-19, Residual Attention Network, DenseNet-121 and Custom-CNN. Residual Attention Network and XceptionNet perform relatively better than the rest on a publicly available malaria cell image dataset. They yield an average accuracy of 97.28% and 97.55% respectively, that surpasses other related methods on the same dataset. These findings highly encourage the reality of deep learning driven method for automatic and reliable detection of malaria while minimizing direct manual involvement.
☆ FootFormer: Estimating Stability from Visual Input
We propose FootFormer, a cross-modality approach for jointly predicting human motion dynamics directly from visual input. On multiple datasets, FootFormer achieves statistically significantly better or equivalent estimates of foot pressure distributions, foot contact maps, and center of mass (CoM), as compared with existing methods that generate one or two of those measures. Furthermore, FootFormer achieves SOTA performance in estimating stability-predictive components (CoP, CoM, BoS) used in classic kinesiology metrics. Code and data are available at https://github.com/keatonkraiger/Vision-to-Stability.git.
comment: 19 pages, 9 figures
☆ X-Ego: Acquiring Team-Level Tactical Situational Awareness via Cross-Egocentric Contrastive Video Representation Learning
Human team tactics emerge from each player's individual perspective and their ability to anticipate, interpret, and adapt to teammates' intentions. While advances in video understanding have improved the modeling of team interactions in sports, most existing work relies on third-person broadcast views and overlooks the synchronous, egocentric nature of multi-agent learning. We introduce X-Ego-CS, a benchmark dataset consisting of 124 hours of gameplay footage from 45 professional-level matches of the popular e-sports game Counter-Strike 2, designed to facilitate research on multi-agent decision-making in complex 3D environments. X-Ego-CS provides cross-egocentric video streams that synchronously capture all players' first-person perspectives along with state-action trajectories. Building on this resource, we propose Cross-Ego Contrastive Learning (CECL), which aligns teammates' egocentric visual streams to foster team-level tactical situational awareness from an individual's perspective. We evaluate CECL on a teammate-opponent location prediction task, demonstrating its effectiveness in enhancing an agent's ability to infer both teammate and opponent positions from a single first-person view using state-of-the-art video encoders. Together, X-Ego-CS and CECL establish a foundation for cross-egocentric multi-agent benchmarking in esports. More broadly, our work positions gameplay understanding as a testbed for multi-agent modeling and tactical learning, with implications for spatiotemporal reasoning and human-AI teaming in both virtual and real-world domains. Code and dataset are available at https://github.com/HATS-ICT/x-ego.
comment: 8 pages, 5 figures
☆ Data-Adaptive Transformed Bilateral Tensor Low-Rank Representation for Clustering
Tensor low-rank representation (TLRR) has demonstrated significant success in image clustering. However, most existing methods rely on fixed transformations and suffer from poor robustness to noise. In this paper, we propose a novel transformed bilateral tensor low-rank representation model called TBTLRR, which introduces a data-adaptive tensor nuclear norm by learning arbitrary unitary transforms, allowing for more effective capture of global correlations. In addition, by leveraging the bilateral structure of latent tensor data, TBTLRR is able to exploit local correlations between image samples and features. Furthermore, TBTLRR integrates the $\ell_{1/2}$-norm and Frobenius norm regularization terms for better dealing with complex noise in real-world scenarios. To solve the proposed nonconvex model, we develop an efficient optimization algorithm inspired by the alternating direction method of multipliers (ADMM) and provide theoretical convergence. Extensive experiments validate its superiority over the state-of-the-art methods in clustering. The code will be available at https://github.com/xianchaoxiu/TBTLRR.
☆ Filter-Based Reconstruction of Images from Events
Reconstructing an intensity image from the events of a moving event camera is a challenging task that is typically approached with neural networks deployed on graphics processing units. This paper presents a much simpler, FIlter Based Asynchronous Reconstruction method (FIBAR). First, intensity changes signaled by events are integrated with a temporal digital IIR filter. To reduce reconstruction noise, stale pixels are detected by a novel algorithm that regulates a window of recently updated pixels. Arguing that for a moving camera, the absence of events at a pixel location likely implies a low image gradient, stale pixels are then blurred with a Gaussian filter. In contrast to most existing methods, FIBAR is asynchronous and permits image read-out at an arbitrary time. It runs on a modern laptop CPU at about 42(140) million events/s with (without) spatial filtering enabled. A few simple qualitative experiments are presented that show the difference in image reconstruction between FIBAR and a neural network-based approach (FireNet). FIBAR's reconstruction is noisier than neural network-based methods and suffers from ghost images. However, it is sufficient for certain tasks such as the detection of fiducial markers. Code is available at https://github.com/ros-event-camera/event_image_reconstruction_fibar
☆ Exposing Blindspots: Cultural Bias Evaluation in Generative Image Models
Generative image models produce striking visuals yet often misrepresent culture. Prior work has examined cultural bias mainly in text-to-image (T2I) systems, leaving image-to-image (I2I) editors underexplored. We bridge this gap with a unified evaluation across six countries, an 8-category/36-subcategory schema, and era-aware prompts, auditing both T2I generation and I2I editing under a standardized protocol that yields comparable diagnostics. Using open models with fixed settings, we derive cross-country, cross-era, and cross-category evaluations. Our framework combines standard automatic metrics, a culture-aware retrieval-augmented VQA, and expert human judgments collected from native reviewers. To enable reproducibility, we release the complete image corpus, prompts, and configurations. Our study reveals three findings: (1) under country-agnostic prompts, models default to Global-North, modern-leaning depictions that flatten cross-country distinctions; (2) iterative I2I editing erodes cultural fidelity even when conventional metrics remain flat or improve; and (3) I2I models apply superficial cues (palette shifts, generic props) rather than era-consistent, context-aware changes, often retaining source identity for Global-South targets. These results highlight that culture-sensitive edits remain unreliable in current systems. By releasing standardized data, prompts, and human evaluation protocols, we provide a reproducible, culture-centered benchmark for diagnosing and tracking cultural bias in generative image models.
comment: 28 pages, 8 figures. Submitted to the Second Conference of the International Association for Safe and Ethical Artificial Intelligence (IASEAI '26)
☆ BrainPuzzle: Hybrid Physics and Data-Driven Reconstruction for Transcranial Ultrasound Tomography
Ultrasound brain imaging remains challenging due to the large difference in sound speed between the skull and brain tissues and the difficulty of coupling large probes to the skull. This work aims to achieve quantitative transcranial ultrasound by reconstructing an accurate speed-of-sound (SoS) map of the brain. Traditional physics-based full-waveform inversion (FWI) is limited by weak signals caused by skull-induced attenuation, mode conversion, and phase aberration, as well as incomplete spatial coverage since full-aperture arrays are clinically impractical. In contrast, purely data-driven methods that learn directly from raw ultrasound data often fail to model the complex nonlinear and nonlocal wave propagation through bone, leading to anatomically plausible but quantitatively biased SoS maps under low signal-to-noise and sparse-aperture conditions. To address these issues, we propose BrainPuzzle, a hybrid two-stage framework that combines physical modeling with machine learning. In the first stage, reverse time migration (time-reversal acoustics) is applied to multi-angle acquisitions to produce migration fragments that preserve structural details even under low SNR. In the second stage, a transformer-based super-resolution encoder-decoder with a graph-based attention unit (GAU) fuses these fragments into a coherent and quantitatively accurate SoS image. A partial-array acquisition strategy using a movable low-count transducer set improves feasibility and coupling, while the hybrid algorithm compensates for the missing aperture. Experiments on two synthetic datasets show that BrainPuzzle achieves superior SoS reconstruction accuracy and image completeness, demonstrating its potential for advancing quantitative ultrasound brain imaging.
comment: 13 pages
☆ Extreme Views: 3DGS Filter for Novel View Synthesis from Out-of-Distribution Camera Poses
When viewing a 3D Gaussian Splatting (3DGS) model from camera positions significantly outside the training data distribution, substantial visual noise commonly occurs. These artifacts result from the lack of training data in these extrapolated regions, leading to uncertain density, color, and geometry predictions from the model. To address this issue, we propose a novel real-time render-aware filtering method. Our approach leverages sensitivity scores derived from intermediate gradients, explicitly targeting instabilities caused by anisotropic orientations rather than isotropic variance. This filtering method directly addresses the core issue of generative uncertainty, allowing 3D reconstruction systems to maintain high visual fidelity even when users freely navigate outside the original training viewpoints. Experimental evaluation demonstrates that our method substantially improves visual quality, realism, and consistency compared to existing Neural Radiance Field (NeRF)-based approaches such as BayesRays. Critically, our filter seamlessly integrates into existing 3DGS rendering pipelines in real-time, unlike methods that require extensive post-hoc retraining or fine-tuning. Code and results at https://damian-bowness.github.io/EV3DGS
☆ A Unified Detection Pipeline for Robust Object Detection in Fisheye-Based Traffic Surveillance ICCV 2025
Fisheye cameras offer an efficient solution for wide-area traffic surveillance by capturing large fields of view from a single vantage point. However, the strong radial distortion and nonuniform resolution inherent in fisheye imagery introduce substantial challenges for standard object detectors, particularly near image boundaries where object appearance is severely degraded. In this work, we present a detection framework designed to operate robustly under these conditions. Our approach employs a simple yet effective pre and post processing pipeline that enhances detection consistency across the image, especially in regions affected by severe distortion. We train several state-of-the-art detection models on the fisheye traffic imagery and combine their outputs through an ensemble strategy to improve overall detection accuracy. Our method achieves an F1 score of0.6366 on the 2025 AI City Challenge Track 4, placing 8thoverall out of 62 teams. These results demonstrate the effectiveness of our framework in addressing issues inherent to fisheye imagery.
comment: The paper was accepted at ICCV 2025 and published in CVF database
☆ AI Pose Analysis and Kinematic Profiling of Range-of-Motion Variations in Resistance Training
This study develops an AI-based pose estimation pipeline to enable precise quantification of movement kinematics in resistance training. Using video data from Wolf et al. (2025), which compared lengthened partial (pROM) and full range-of-motion (fROM) training across eight upper-body exercises in 26 participants, 280 recordings were processed to extract frame-level joint-angle trajectories. After filtering and smoothing, per-set metrics were derived, including range of motion (ROM), tempo, and concentric/eccentric phase durations. A random-effects meta-analytic model was applied to account for within-participant and between-exercise variability. Results show that pROM repetitions were performed with a smaller ROM and shorter overall durations, particularly during the eccentric phase of movement. Variance analyses revealed that participant-level differences, rather than exercise-specific factors, were the primary driver of variation, although there is substantial evidence of heterogeneous treatment effects. We then introduce a novel metric, \%ROM, which is the proportion of full ROM achieved during pROM, and demonstrate that this definition of lengthened partials remains relatively consistent across exercises. Overall, these findings suggest that lengthened partials differ from full ROM training not only in ROM, but also in execution dynamics and consistency, highlighting the potential of AI-based methods for advancing research and improving resistance training prescription.
☆ Improving Predictive Confidence in Medical Imaging via Online Label Smoothing
Deep learning models, especially convolutional neural networks, have achieved impressive results in medical image classification. However, these models often produce overconfident predictions, which can undermine their reliability in critical healthcare settings. While traditional label smoothing offers a simple way to reduce such overconfidence, it fails to consider relationships between classes by treating all non-target classes equally. In this study, we explore the use of Online Label Smoothing (OLS), a dynamic approach that adjusts soft labels throughout training based on the model's own prediction patterns. We evaluate OLS on the large-scale RadImageNet dataset using three widely used architectures: ResNet-50, MobileNetV2, and VGG-19. Our results show that OLS consistently improves both Top-1 and Top-5 classification accuracy compared to standard training methods, including hard labels, conventional label smoothing, and teacher-free knowledge distillation. In addition to accuracy gains, OLS leads to more compact and well-separated feature embeddings, indicating improved representation learning. These findings suggest that OLS not only strengthens predictive performance but also enhances calibration, making it a practical and effective solution for developing trustworthy AI systems in the medical imaging domain.
comment: Accepted and presented in International Conference on Advancing Science and Technologies in Health Science
☆ Automating Iconclass: LLMs and RAG for Large-Scale Classification of Religious Woodcuts
This paper presents a novel methodology for classifying early modern religious images by using Large Language Models (LLMs) and vector databases in combination with Retrieval-Augmented Generation (RAG). The approach leverages the full-page context of book illustrations from the Holy Roman Empire, allowing the LLM to generate detailed descriptions that incorporate both visual and textual elements. These descriptions are then matched to relevant Iconclass codes through a hybrid vector search. This method achieves 87% and 92% precision at five and four levels of classification, significantly outperforming traditional image and keyword-based searches. By employing full-page descriptions and RAG, the system enhances classification accuracy, offering a powerful tool for large-scale analysis of early modern visual archives. This interdisciplinary approach demonstrates the growing potential of LLMs and RAG in advancing research within art history and digital humanities.
comment: 29 pages, 7 figures. First presented at the "Digital Humanities and Artificial Intelligence" conference at the University of Reading on 17 June 2024
☆ FutrTrack: A Camera-LiDAR Fusion Transformer for 3D Multiple Object Tracking
We propose FutrTrack, a modular camera-LiDAR multi-object tracking framework that builds on existing 3D detectors by introducing a transformer-based smoother and a fusion-driven tracker. Inspired by query-based tracking frameworks, FutrTrack employs a multimodal two-stage transformer refinement and tracking pipeline. Our fusion tracker integrates bounding boxes with multimodal bird's-eye-view (BEV) fusion features from multiple cameras and LiDAR without the need for an explicit motion model. The tracker assigns and propagates identities across frames, leveraging both geometric and semantic cues for robust re-identification under occlusion and viewpoint changes. Prior to tracking, we refine sequences of bounding boxes with a temporal smoother over a moving window to refine trajectories, reduce jitter, and improve spatial consistency. Evaluated on nuScenes and KITTI, FutrTrack demonstrates that query-based transformer tracking methods benefit significantly from multimodal sensor features compared with previous single-sensor approaches. With an aMOTA of 74.7 on the nuScenes test set, FutrTrack achieves strong performance on 3D MOT benchmarks, reducing identity switches while maintaining competitive accuracy. Our approach provides an efficient framework for improving transformer-based trackers to compete with other neural-network-based methods even with limited data and without pretraining.
☆ Transformed Multi-view 3D Shape Features with Contrastive Learning
This paper addresses the challenges in representation learning of 3D shape features by investigating state-of-the-art backbones paired with both contrastive supervised and self-supervised learning objectives. Computer vision methods struggle with recognizing 3D objects from 2D images, often requiring extensive labeled data and relying on Convolutional Neural Networks (CNNs) that may overlook crucial shape relationships. Our work demonstrates that Vision Transformers (ViTs) based architectures, when paired with modern contrastive objectives, achieve promising results in multi-view 3D analysis on our downstream tasks, unifying contrastive and 3D shape understanding pipelines. For example, supervised contrastive losses reached about 90.6% accuracy on ModelNet10. The use of ViTs and contrastive learning, leveraging ViTs' ability to understand overall shapes and contrastive learning's effectiveness, overcomes the need for extensive labeled data and the limitations of CNNs in capturing crucial shape relationships. The success stems from capturing global shape semantics via ViTs and refining local discriminative features through contrastive optimization. Importantly, our approach is empirical, as it is grounded on extensive experimental evaluation to validate the effectiveness of combining ViTs with contrastive objectives for 3D representation learning.
☆ FINDER: Feature Inference on Noisy Datasets using Eigenspace Residuals
''Noisy'' datasets (regimes with low signal to noise ratios, small sample sizes, faulty data collection, etc) remain a key research frontier for classification methods with both theoretical and practical implications. We introduce FINDER, a rigorous framework for analyzing generic classification problems, with tailored algorithms for noisy datasets. FINDER incorporates fundamental stochastic analysis ideas into the feature learning and inference stages to optimally account for the randomness inherent to all empirical datasets. We construct ''stochastic features'' by first viewing empirical datasets as realizations from an underlying random field (without assumptions on its exact distribution) and then mapping them to appropriate Hilbert spaces. The Kosambi-Karhunen-Lo\'eve expansion (KLE) breaks these stochastic features into computable irreducible components, which allow classification over noisy datasets via an eigen-decomposition: data from different classes resides in distinct regions, identified by analyzing the spectrum of the associated operators. We validate FINDER on several challenging, data-deficient scientific domains, producing state of the art breakthroughs in: (i) Alzheimer's Disease stage classification, (ii) Remote sensing detection of deforestation. We end with a discussion on when FINDER is expected to outperform existing methods, its failure modes, and other limitations.
comment: 30 pages, 11 figures, 8 tables. Code available at https://github.com/MathePhysics/FINDER
♻ ☆ Context-Aware Pseudo-Label Scoring for Zero-Shot Video Summarization
We propose a rubric-guided, pseudo-labeled, and prompt-driven zero-shot video summarization framework that bridges large language models with structured semantic reasoning. A small subset of human annotations is converted into high-confidence pseudo labels and organized into dataset-adaptive rubrics defining clear evaluation dimensions such as thematic relevance, action detail, and narrative progression. During inference, boundary scenes, including the opening and closing segments, are scored independently based on their own descriptions, while intermediate scenes incorporate concise summaries of adjacent segments to assess narrative continuity and redundancy. This design enables the language model to balance local salience with global coherence without any parameter tuning. Across three benchmarks, the proposed method achieves stable and competitive results, with F1 scores of 57.58 on SumMe, 63.05 on TVSum, and 53.79 on QFVS, surpassing zero-shot baselines by +0.85, +0.84, and +0.37, respectively. These outcomes demonstrate that rubric-guided pseudo labeling combined with contextual prompting effectively stabilizes LLM-based scoring and establishes a general, interpretable, and training-free paradigm for both generic and query-focused video summarization.
♻ ☆ Rethinking Backbone Design for Lightweight 3D Object Detection in LiDAR ICCV 2025
Recent advancements in LiDAR-based 3D object detection have significantly accelerated progress toward the realization of fully autonomous driving in real-world environments. Despite achieving high detection performance, most of the approaches still rely on a VGG-based or ResNet-based backbone for feature exploration, which increases the model complexity. Lightweight backbone design is well-explored for 2D object detection, but research on 3D object detection still remains limited. In this work, we introduce Dense Backbone, a lightweight backbone that combines the benefits of high processing speed, lightweight architecture, and robust detection accuracy. We adapt multiple SoTA 3d object detectors, such as PillarNet, with our backbone and show that with our backbone, these models retain most of their detection capability at a significantly reduced computational cost. To our knowledge, this is the first dense-layer-based backbone tailored specifically for 3D object detection from point cloud data. DensePillarNet, our adaptation of PillarNet, achieves a 29% reduction in model parameters and a 28% reduction in latency with just a 2% drop in detection accuracy on the nuScenes test set. Furthermore, Dense Backbone's plug-and-play design allows straightforward integration into existing architectures, requiring no modifications to other network components.
comment: Best Paper Award at the Embedded Vision Workshop ICCV 2025
♻ ☆ QoQ-Med: Building Multimodal Clinical Foundation Models with Domain-Aware GRPO Training NeurIPS 2025
Clinical decision-making routinely demands reasoning over heterogeneous data, yet existing multimodal language models (MLLMs) remain largely vision-centric and fail to generalize across clinical specialties. To bridge this gap, we introduce QoQ-Med-7B/32B, the first open generalist clinical foundation model that jointly reasons across medical images, time-series signals, and text reports. QoQ-Med is trained with Domain-aware Relative Policy Optimization (DRPO), a novel reinforcement-learning objective that hierarchically scales normalized rewards according to domain rarity and modality difficulty, mitigating performance imbalance caused by skewed clinical data distributions. Trained on 2.61 million instruction tuning pairs spanning 9 clinical domains, we show that DRPO training boosts diagnostic performance by 43% in macro-F1 on average across all visual domains as compared to other critic-free training methods like GRPO. Furthermore, with QoQ-Med trained on intensive segmentation data, it is able to highlight salient regions related to the diagnosis, with an IoU 10x higher than open models while reaching the performance of OpenAI o4-mini. To foster reproducibility and downstream research, we release (i) the full model weights, (ii) the modular training pipeline, and (iii) all intermediate reasoning traces at https://github.com/DDVD233/QoQ_Med.
comment: Accepted as Oral at NeurIPS 2025. Revision after camera ready
♻ ☆ Variable Rate Image Compression via N-Gram Context based Swin-transformer
This paper presents an N-gram context-based Swin Transformer for learned image compression. Our method achieves variable-rate compression with a single model. By incorporating N-gram context into the Swin Transformer, we overcome its limitation of neglecting larger regions during high-resolution image reconstruction due to its restricted receptive field. This enhancement expands the regions considered for pixel restoration, thereby improving the quality of high-resolution reconstructions. Our method increases context awareness across neighboring windows, leading to a -5.86\% improvement in BD-Rate over existing variable-rate learned image compression techniques. Additionally, our model improves the quality of regions of interest (ROI) in images, making it particularly beneficial for object-focused applications in fields such as manufacturing and industrial vision systems.
comment: Accepted at ISVC 2025
♻ ☆ Video-R1: Reinforcing Video Reasoning in MLLMs NeurIPS 2025
Inspired by DeepSeek-R1's success in eliciting reasoning abilities through rule-based reinforcement learning (RL), we introduce Video-R1 as the first attempt to systematically explore the R1 paradigm for incentivizing video reasoning within multimodal large language models (MLLMs). However, directly applying RL training with the GRPO algorithm to video reasoning presents two primary challenges: (i) a lack of temporal modeling for video reasoning, and (ii) the scarcity of high-quality video-reasoning data. To address these issues, we first propose the T-GRPO algorithm, which encourages models to utilize temporal information in videos for reasoning. Additionally, instead of relying solely on video data, we incorporate high-quality image-reasoning data into the training process. We have constructed two datasets: Video-R1-CoT-165k for SFT cold start and Video-R1-260k for RL training, both comprising image and video data. Experimental results demonstrate that Video-R1 achieves significant improvements on video reasoning benchmarks such as VideoMMMU and VSI-Bench, as well as on general video benchmarks including MVBench and TempCompass, etc. Notably, Video-R1-7B attains a 37.1% accuracy on video spatial reasoning benchmark VSI-bench, surpassing the commercial proprietary model GPT-4o. All code, models, and data are released in: https://github.com/tulerfeng/Video-R1.
comment: NeurIPS 2025, Project page: https://github.com/tulerfeng/Video-R1
♻ ☆ CNeuroMod-THINGS, a densely-sampled fMRI dataset for visual neuroscience
Data-hungry neuro-AI modelling requires ever larger neuroimaging datasets. CNeuroMod-THINGS meets this need by capturing neural representations for a wide set of semantic concepts using well-characterized images in a new densely-sampled, large-scale fMRI dataset. Importantly, CNeuroMod-THINGS exploits synergies between two existing projects: the THINGS initiative (THINGS) and the Courtois Project on Neural Modelling (CNeuroMod). THINGS has developed a common set of thoroughly annotated images broadly sampling natural and man-made objects which is used to acquire a growing collection of large-scale multimodal neural responses. Meanwhile, CNeuroMod is acquiring hundreds of hours of fMRI data from a core set of participants during controlled and naturalistic tasks, including visual tasks like movie watching and videogame playing. For CNeuroMod-THINGS, four CNeuroMod participants each completed 33-36 sessions of a continuous recognition paradigm using approximately 4000 images from the THINGS stimulus set spanning 720 categories. We report behavioural and neuroimaging metrics that showcase the quality of the data. By bridging together large existing resources, CNeuroMod-THINGS expands our capacity to model broad slices of the human visual experience.
comment: 16 pages manuscript, 5 figures, 9 pages supplementary material
♻ ☆ Optimized 3D Gaussian Splatting using Coarse-to-Fine Image Frequency Modulation
The field of Novel View Synthesis has been revolutionized by 3D Gaussian Splatting (3DGS), which enables high-quality scene reconstruction that can be rendered in real-time. 3DGS-based techniques typically suffer from high GPU memory and disk storage requirements which limits their practical application on consumer-grade devices. We propose Opti3DGS, a novel frequency-modulated coarse-to-fine optimization framework that aims to minimize the number of Gaussian primitives used to represent a scene, thus reducing memory and storage demands. Opti3DGS leverages image frequency modulation, initially enforcing a coarse scene representation and progressively refining it by modulating frequency details in the training images. On the baseline 3DGS, we demonstrate an average reduction of 62% in Gaussians, a 40% reduction in the training GPU memory requirements and a 20% reduction in optimization time without sacrificing the visual quality. Furthermore, we show that our method integrates seamlessly with many 3DGS-based techniques, consistently reducing the number of Gaussian primitives while maintaining, and often improving, visual quality. Additionally, Opti3DGS inherently produces a level-of-detail scene representation at no extra cost, a natural byproduct of the optimization pipeline. Results and code will be made publicly available.
♻ ☆ WikiVideo: Article Generation from Multiple Videos
We introduce the task of grounded article generation with the goal of creating a Wikipedia-style article from multiple diverse videos about real-world events -- from natural disasters to political elections -- where all the information in the article is supported by video evidence. Videos are intuitive sources for retrieval-augmented generation (RAG), but most contemporary RAG workflows focus heavily on text while existing methods for video-based summarization focus on low-level scene understanding rather than high-level event semantics. To close this gap, we introduce WikiVideo, a benchmark consisting of expert-written articles and densely annotated videos that provide evidence for articles' claims, facilitating the integration of video into RAG pipelines and enabling the creation of in-depth content that is grounded in multimodal sources. We further propose Collaborative Article Generation (CAG), a novel interactive method for article creation from multiple videos. CAG leverages an iterative interaction between an r1-style reasoning model and a VideoLLM to draw higher-level inferences about the target event than is possible with VideoLLMs alone, which fixate on low-level visual features. We benchmark state-of-the-art VideoLLMs and CAG in both oracle retrieval and RAG settings and find that CAG consistently outperforms alternative methods, while suggesting intriguing avenues for future work.
comment: Repo can be found here: https://github.com/alexmartin1722/wikivideo
♻ ☆ 3D Visual Illusion Depth Estimation NeurIPS 2025
3D visual illusion is a perceptual phenomenon where a two-dimensional plane is manipulated to simulate three-dimensional spatial relationships, making a flat artwork or object look three-dimensional in the human visual system. In this paper, we reveal that the machine visual system is also seriously fooled by 3D visual illusions, including monocular and binocular depth estimation. In order to explore and analyze the impact of 3D visual illusion on depth estimation, we collect a large dataset containing almost 3k scenes and 200k images to train and evaluate SOTA monocular and binocular depth estimation methods. We also propose a 3D visual illusion depth estimation framework that uses common sense from the vision language model to adaptively fuse depth from binocular disparity and monocular depth. Experiments show that SOTA monocular, binocular, and multi-view depth estimation approaches are all fooled by various 3D visual illusions, while our method achieves SOTA performance.
comment: NeurIPS 2025, Project: https://github.com/YaoChengTang/3D-Visual-Illusion-Depth-Estimation
♻ ☆ Uni-Instruct: One-step Diffusion Model through Unified Diffusion Divergence Instruction
In this paper, we unify more than 10 existing one-step diffusion distillation approaches, such as Diff-Instruct, DMD, SIM, SiD, $f$-distill, etc, inside a theory-driven framework which we name the \textbf{\emph{Uni-Instruct}}. Uni-Instruct is motivated by our proposed diffusion expansion theory of the $f$-divergence family. Then we introduce key theories that overcome the intractability issue of the original expanded $f$-divergence, resulting in an equivalent yet tractable loss that effectively trains one-step diffusion models by minimizing the expanded $f$-divergence family. The novel unification introduced by Uni-Instruct not only offers new theoretical contributions that help understand existing approaches from a high-level perspective but also leads to state-of-the-art one-step diffusion generation performances. On the CIFAR10 generation benchmark, Uni-Instruct achieves record-breaking Frechet Inception Distance (FID) values of \textbf{\emph{1.46}} for unconditional generation and \textbf{\emph{1.38}} for conditional generation. On the ImageNet-$64\times 64$ generation benchmark, Uni-Instruct achieves a new SoTA one-step generation FID of \textbf{\emph{1.02}}, which outperforms its 79-step teacher diffusion with a significant improvement margin of 1.33 (1.02 vs 2.35). We also apply Uni-Instruct on broader tasks like text-to-3D generation. For text-to-3D generation, Uni-Instruct gives decent results, which slightly outperforms previous methods, such as SDS and VSD, in terms of both generation quality and diversity. Both the solid theoretical and empirical contributions of Uni-Instruct will potentially help future studies on one-step diffusion distillation and knowledge transferring of diffusion models.
♻ ☆ Discretized Gaussian Representation for Tomographic Reconstruction ICCV 2025
Computed Tomography (CT) enables detailed cross-sectional imaging but continues to face challenges in balancing reconstruction quality and computational efficiency. While deep learning-based methods have significantly improved image quality and noise reduction, they typically require large-scale training data and intensive computation. Recent advances in scene reconstruction, such as Neural Radiance Fields and 3D Gaussian Splatting, offer alternative perspectives but are not well-suited for direct volumetric CT reconstruction. In this work, we propose Discretized Gaussian Representation (DGR), a novel framework that reconstructs the 3D volume directly using a set of discretized Gaussian functions in an end-to-end manner. To further enhance efficiency, we introduce Fast Volume Reconstruction, a highly parallelized technique that aggregates Gaussian contributions into the voxel grid with minimal overhead. Extensive experiments on both real-world and synthetic datasets demonstrate that DGR achieves superior reconstruction quality and runtime performance across various CT reconstruction scenarios. Our code is publicly available at https://github.com/wskingdom/DGR.
comment: Accepted to ICCV 2025
♻ ☆ ImagerySearch: Adaptive Test-Time Search for Video Generation Beyond Semantic Dependency Constraints
Video generation models have achieved remarkable progress, particularly excelling in realistic scenarios; however, their performance degrades notably in imaginative scenarios. These prompts often involve rarely co-occurring concepts with long-distance semantic relationships, falling outside training distributions. Existing methods typically apply test-time scaling for improving video quality, but their fixed search spaces and static reward designs limit adaptability to imaginative scenarios. To fill this gap, we propose ImagerySearch, a prompt-guided adaptive test-time search strategy that dynamically adjusts both the inference search space and reward function according to semantic relationships in the prompt. This enables more coherent and visually plausible videos in challenging imaginative settings. To evaluate progress in this direction, we introduce LDT-Bench, the first dedicated benchmark for long-distance semantic prompts, consisting of 2,839 diverse concept pairs and an automated protocol for assessing creative generation capabilities. Extensive experiments show that ImagerySearch consistently outperforms strong video generation baselines and existing test-time scaling approaches on LDT-Bench, and achieves competitive improvements on VBench, demonstrating its effectiveness across diverse prompt types. We will release LDT-Bench and code to facilitate future research on imaginative video generation.
♻ ☆ SparseWorld: A Flexible, Adaptive, and Efficient 4D Occupancy World Model Powered by Sparse and Dynamic Queries
Semantic occupancy has emerged as a powerful representation in world models for its ability to capture rich spatial semantics. However, most existing occupancy world models rely on static and fixed embeddings or grids, which inherently limit the flexibility of perception. Moreover, their "in-place classification" over grids exhibits a potential misalignment with the dynamic and continuous nature of real scenarios.In this paper, we propose SparseWorld, a novel 4D occupancy world model that is flexible, adaptive, and efficient, powered by sparse and dynamic queries. We propose a Range-Adaptive Perception module, in which learnable queries are modulated by the ego vehicle states and enriched with temporal-spatial associations to enable extended-range perception. To effectively capture the dynamics of the scene, we design a State-Conditioned Forecasting module, which replaces classification-based forecasting with regression-guided formulation, precisely aligning the dynamic queries with the continuity of the 4D environment. In addition, We specifically devise a Temporal-Aware Self-Scheduling training strategy to enable smooth and efficient training. Extensive experiments demonstrate that SparseWorld achieves state-of-the-art performance across perception, forecasting, and planning tasks. Comprehensive visualizations and ablation studies further validate the advantages of SparseWorld in terms of flexibility, adaptability, and efficiency. The code is available at https://github.com/MSunDYY/SparseWorld.
comment: Under Review
♻ ☆ On the Effectiveness of Methods and Metrics for Explainable AI in Remote Sensing Image Scene Classification IEEE
The development of explainable artificial intelligence (xAI) methods for scene classification problems has attracted great attention in remote sensing (RS). Most xAI methods and the related evaluation metrics in RS are initially developed for natural images considered in computer vision (CV), and their direct usage in RS may not be suitable. To address this issue, in this paper, we investigate the effectiveness of explanation methods and metrics in the context of RS image scene classification. In detail, we methodologically and experimentally analyze ten explanation metrics spanning five categories (faithfulness, robustness, localization, complexity, randomization), applied to five established feature attribution methods (Occlusion, LIME, GradCAM, LRP, and DeepLIFT) across three RS datasets. Our methodological analysis identifies key limitations in both explanation methods and metrics. The performance of perturbation-based methods, such as Occlusion and LIME, heavily depends on perturbation baselines and spatial characteristics of RS scenes. Gradient-based approaches like GradCAM struggle when multiple labels are present in the same image, while some relevance propagation methods (LRP) can distribute relevance disproportionately relative to the spatial extent of classes. Analogously, we find limitations in evaluation metrics. Faithfulness metrics share the same problems as perturbation-based methods. Localization metrics and complexity metrics are unreliable for classes with a large spatial extent. In contrast, robustness metrics and randomization metrics consistently exhibit greater stability. Our experimental results support these methodological findings. Based on our analysis, we provide guidelines for selecting explanation methods, metrics, and hyperparameters in the context of RS image scene classification.
comment: The code of this work will be publicly available at https://git.tu-berlin.de/rsim/xai4rs Accepted at IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
♻ ☆ Learning from Videos for 3D World: Enhancing MLLMs with 3D Vision Geometry Priors NeurIPS 2025
Previous research has investigated the application of Multimodal Large Language Models (MLLMs) in understanding 3D scenes by interpreting them as videos. These approaches generally depend on comprehensive 3D data inputs, such as point clouds or reconstructed Bird's-Eye View (BEV) maps. In our research, we advance this field by enhancing the capability of MLLMs to understand and reason in 3D spaces directly from video data, without the need for additional 3D input. We propose a novel and efficient method called the Video-3D Geometry Large Language Model (VG LLM). Our approach utilizes a 3D visual geometry encoder to extract 3D prior information from video sequences. This information is then integrated with visual tokens and input into the MLLM. Extensive experiments have shown that our method has achieved substantial improvements in various tasks related to 3D scene understanding and spatial reasoning, all directly learned from video sources. Impressively, our 4B model, which does not rely on explicit 3D data inputs, achieves competitive results compared to existing state-of-the-art methods, and even surpasses the Gemini-1.5-Pro in the VSI-Bench evaluations.
comment: Accepted by NeurIPS 2025
♻ ☆ OmniNWM: Omniscient Driving Navigation World Models
Autonomous driving world models are expected to work effectively across three core dimensions: state, action, and reward. Existing models, however, are typically restricted to limited state modalities, short video sequences, imprecise action control, and a lack of reward awareness. In this paper, we introduce OmniNWM, an omniscient panoramic navigation world model that addresses all three dimensions within a unified framework. For state, OmniNWM jointly generates panoramic videos of RGB, semantics, metric depth, and 3D occupancy. A flexible forcing strategy enables high-quality long-horizon auto-regressive generation. For action, we introduce a normalized panoramic Plucker ray-map representation that encodes input trajectories into pixel-level signals, enabling highly precise and generalizable control over panoramic video generation. Regarding reward, we move beyond learning reward functions with external image-based models: instead, we leverage the generated 3D occupancy to directly define rule-based dense rewards for driving compliance and safety. Extensive experiments demonstrate that OmniNWM achieves state-of-the-art performance in video generation, control accuracy, and long-horizon stability, while providing a reliable closed-loop evaluation framework through occupancy-grounded rewards. Project page is available at https://github.com/Arlo0o/OmniNWM.
comment: https://arlo0o.github.io/OmniNWM/
♻ ☆ LookUp3D: Data-Driven 3D Scanning
High speed, high-resolution, and accurate 3D scanning would open doors to many new applications in graphics, robotics, science, and medicine by enabling the accurate scanning of deformable objects during interactions. Past attempts to use structured light, time-of-flight, and stereo in high-speed settings have usually required tradeoffs in resolution or inaccuracy. In this paper, we introduce a method that enables, for the first time, 3D scanning at 450 frames per second at 1~Megapixel, or 1,450 frames per second at 0.4~Megapixel in an environment with controlled lighting. The key idea is to use a per-pixel lookup table that maps colors to depths, which is built using a linear stage. Imperfections, such as lens-distortion and sensor defects are baked into the calibration. We describe our method and test it on a novel hardware prototype. We compare the system with both ground-truth geometry as well as commercially available dynamic sensors like the Microsoft Kinect and Intel Realsense. Our results show the system acquiring geometry of objects undergoing high-speed deformations and oscillations and demonstrate the ability to recover physical properties from the reconstructions.
comment: Giancarlo Pereira, Yidan Gao, and Yurii Piadyk are joint first authors with equal contribution. 11 pages of main paper, 9 pages of supplemental text (all combined into a single document)
♻ ☆ Vectorization of Persistence Diagrams for Topological Data Analysis in R and Python Using TDAvec Package
Persistent homology is a widely-used tool in topological data analysis (TDA) for understanding the underlying shape of complex data. By constructing a filtration of simplicial complexes from data points, it captures topological features such as connected components, loops, and voids across multiple scales. These features are encoded in persistence diagrams (PDs), which provide a concise summary of the data's topological structure. However, the non-Hilbert nature of the space of PDs poses challenges for their direct use in machine learning applications. To address this, kernel methods and vectorization techniques have been developed to transform PDs into machine-learning-compatible formats. In this paper, we introduce a new software package designed to streamline the vectorization of PDs, offering an intuitive workflow and advanced functionalities. We demonstrate the necessity of the package through practical examples and provide a detailed discussion on its contributions to applied TDA. Definitions of all vectorization summaries used in the package are included in the appendix.
comment: 9 pages, 3 figures, 3 tables; minor changes: two more vectorizations are described
♻ ☆ Learning Differential Pyramid Representation for Tone Mapping
Existing tone mapping methods operate on downsampled inputs and rely on handcrafted pyramids to recover high-frequency details. These designs typically fail to preserve fine textures and structural fidelity in complex HDR scenes. Furthermore, most methods lack an effective mechanism to jointly model global tone consistency and local contrast enhancement, leading to globally flat or locally inconsistent outputs such as halo artifacts. We present the Differential Pyramid Representation Network (DPRNet), an end-to-end framework for high-fidelity tone mapping. At its core is a learnable differential pyramid that generalizes traditional Laplacian and Difference-of-Gaussian pyramids through content-aware differencing operations across scales. This allows DPRNet to adaptively capture high-frequency variations under diverse luminance and contrast conditions. To enforce perceptual consistency, DPRNet incorporates global tone perception and local tone tuning modules operating on downsampled inputs, enabling efficient yet expressive tone adaptation. Finally, an iterative detail enhancement module progressively restores the full-resolution output in a coarse-to-fine manner, reinforcing structure and sharpness. Experiments show that DPRNet achieves state-of-the-art results, improving PSNR by 2.39 dB on the 4K HDR+ dataset and 3.01 dB on the 4K HDRI Haven dataset, while producing perceptually coherent, detail-preserving results. \textit{We provide an anonymous online demo at https://xxxxxxdprnet.github.io/DPRNet/.
♻ ☆ Uni-MuMER: Unified Multi-Task Fine-Tuning of Vision-Language Model for Handwritten Mathematical Expression Recognition NeurIPS 2025
Handwritten Mathematical Expression Recognition (HMER) remains a persistent challenge in Optical Character Recognition (OCR) due to the inherent freedom of symbol layouts and variability in handwriting styles. Prior methods have faced performance bottlenecks by proposing isolated architectural modifications, making them difficult to integrate coherently into a unified framework. Meanwhile, recent advances in pretrained vision-language models (VLMs) have demonstrated strong cross-task generalization, offering a promising foundation for developing unified solutions. In this paper, we introduce Uni-MuMER, which fully fine-tunes a VLM for the HMER task without modifying its architecture, effectively injecting domain-specific knowledge into a generalist framework. Our method integrates three data-driven tasks: Tree-Aware Chain-of-Thought (Tree-CoT) for structured spatial reasoning, Error-Driven Learning (EDL) for reducing confusion among visually similar characters, and Symbol Counting (SC) for improving recognition consistency in long expressions. Experiments on the CROHME and HME100K datasets show that Uni-MuMER achieves super state-of-the-art performance, outperforming the best lightweight specialized model SSAN by 16.31\% and the top-performing VLM Gemini2.5-flash by 24.42\% under zero-shot setting. Our datasets, models, and code are open-sourced at: {https://github.com/BFlameSwift/Uni-MuMER
comment: Accepted by NeurIPS 2025 as a spotlight
♻ ☆ Backpropagation-Free Test-Time Adaptation via Probabilistic Gaussian Alignment
Test-time adaptation (TTA) enhances the zero-shot robustness under distribution shifts by leveraging unlabeled test data during inference. Despite notable advances, several challenges still limit its broader applicability. First, most methods rely on backpropagation or iterative optimization, which limits scalability and hinders real-time deployment. Second, they lack explicit modeling of class-conditional feature distributions. This modeling is crucial for producing reliable decision boundaries and calibrated predictions, but it remains underexplored due to the lack of both source data and supervision at test time. In this paper, we propose ADAPT, an Advanced Distribution-Aware and backPropagation-free Test-time adaptation method. We reframe TTA as a Gaussian probabilistic inference task by modeling class-conditional likelihoods using gradually updated class means and a shared covariance matrix. This enables closed-form, training-free inference. To correct potential likelihood bias, we introduce lightweight regularization guided by CLIP priors and a historical knowledge bank. ADAPT requires no source data, no gradient updates, and no full access to target data, supporting both online and transductive settings. Extensive experiments across diverse benchmarks demonstrate that our method achieves state-of-the-art performance under a wide range of distribution shifts with superior scalability and robustness.
♻ ☆ ASAP: Advancing Semantic Alignment Promotes Multi-Modal Manipulation Detecting and Grounding
We present ASAP, a new framework for detecting and grounding multi-modal media manipulation (DGM4).Upon thorough examination, we observe that accurate fine-grained cross-modal semantic alignment between the image and text is vital for accurately manipulation detection and grounding. While existing DGM4 methods pay rare attention to the cross-modal alignment, hampering the accuracy of manipulation detecting to step further. To remedy this issue, this work targets to advance the semantic alignment learning to promote this task. Particularly, we utilize the off-the-shelf Multimodal Large-Language Models (MLLMs) and Large Language Models (LLMs) to construct paired image-text pairs, especially for the manipulated instances. Subsequently, a cross-modal alignment learning is performed to enhance the semantic alignment. Besides the explicit auxiliary clues, we further design a Manipulation-Guided Cross Attention (MGCA) to provide implicit guidance for augmenting the manipulation perceiving. With the grounding truth available during training, MGCA encourages the model to concentrate more on manipulated components while downplaying normal ones, enhancing the model's ability to capture manipulations. Extensive experiments are conducted on the DGM4 dataset, the results demonstrate that our model can surpass the comparison method with a clear margin.
comment: 12 pages, 6 figures
♻ ☆ Deep Linear Probe Generators for Weight Space Learning ICLR 2025
Weight space learning aims to extract information about a neural network, such as its training dataset or generalization error. Recent approaches learn directly from model weights, but this presents many challenges as weights are high-dimensional and include permutation symmetries between neurons. An alternative approach, Probing, represents a model by passing a set of learned inputs (probes) through the model, and training a predictor on top of the corresponding outputs. Although probing is typically not used as a stand alone approach, our preliminary experiment found that a vanilla probing baseline worked surprisingly well. However, we discover that current probe learning strategies are ineffective. We therefore propose Deep Linear Probe Generators (ProbeGen), a simple and effective modification to probing approaches. ProbeGen adds a shared generator module with a deep linear architecture, providing an inductive bias towards structured probes thus reducing overfitting. While simple, ProbeGen performs significantly better than the state-of-the-art and is very efficient, requiring between 30 to 1000 times fewer FLOPs than other top approaches.
comment: ICLR 2025. Project page: https://vision.huji.ac.il/probegen
♻ ☆ EgoBlind: Towards Egocentric Visual Assistance for the Blind NeurIPS'25
We present EgoBlind, the first egocentric VideoQA dataset collected from blind individuals to evaluate the assistive capabilities of contemporary multimodal large language models (MLLMs). EgoBlind comprises 1,392 first-person videos from the daily lives of blind and visually impaired individuals. It also features 5,311 questions directly posed or verified by the blind to reflect their in-situation needs for visual assistance. Each question has an average of 3 manually annotated reference answers to reduce subjectiveness. Using EgoBlind, we comprehensively evaluate 16 advanced MLLMs and find that all models struggle. The best performers achieve an accuracy near 60\%, which is far behind human performance of 87.4\%. To guide future advancements, we identify and summarize major limitations of existing MLLMs in egocentric visual assistance for the blind and explore heuristic solutions for improvement. With these efforts, we hope that EgoBlind will serve as a foundation for developing effective AI assistants to enhance the independence of the blind and visually impaired. Data and code are available at https://github.com/doc-doc/EgoBlind.
comment: NeurIPS'25 (D&B Track)
♻ ☆ One-Step Diffusion for Detail-Rich and Temporally Consistent Video Super-Resolution
It is a challenging problem to reproduce rich spatial details while maintaining temporal consistency in real-world video super-resolution (Real-VSR), especially when we leverage pre-trained generative models such as stable diffusion (SD) for realistic details synthesis. Existing SD-based Real-VSR methods often compromise spatial details for temporal coherence, resulting in suboptimal visual quality. We argue that the key lies in how to effectively extract the degradation-robust temporal consistency priors from the low-quality (LQ) input video and enhance the video details while maintaining the extracted consistency priors. To achieve this, we propose a Dual LoRA Learning (DLoRAL) paradigm to train an effective SD-based one-step diffusion model, achieving realistic frame details and temporal consistency simultaneously. Specifically, we introduce a Cross-Frame Retrieval (CFR) module to aggregate complementary information across frames, and train a Consistency-LoRA (C-LoRA) to learn robust temporal representations from degraded inputs. After consistency learning, we fix the CFR and C-LoRA modules and train a Detail-LoRA (D-LoRA) to enhance spatial details while aligning with the temporal space defined by C-LoRA to keep temporal coherence. The two phases alternate iteratively for optimization, collaboratively delivering consistent and detail-rich outputs. During inference, the two LoRA branches are merged into the SD model, allowing efficient and high-quality video restoration in a single diffusion step. Experiments show that DLoRAL achieves strong performance in both accuracy and speed. Code and models are available at https://github.com/yjsunnn/DLoRAL.
comment: Accepted by Neurips2025
♻ ☆ How many samples to label for an application given a foundation model? Chest X-ray classification study
Chest X-ray classification is vital yet resource-intensive, typically demanding extensive annotated data for accurate diagnosis. Foundation models mitigate this reliance, but how many labeled samples are required remains unclear. We systematically evaluate the use of power-law fits to predict the training size necessary for specific ROC-AUC thresholds. Testing multiple pathologies and foundation models, we find XrayCLIP and XraySigLIP achieve strong performance with significantly fewer labeled examples than a ResNet-50 baseline. Importantly, learning curve slopes from just 50 labeled cases accurately forecast final performance plateaus. Our results enable practitioners to minimize annotation costs by labeling only the essential samples for targeted performance.
comment: 8 pages, 5 figures
♻ ☆ Learning Spatially Adaptive $\ell_1$-Norms Weights for Convolutional Synthesis Regularization
We propose an unrolled algorithm approach for learning spatially adaptive parameter maps in the framework of convolutional synthesis-based $\ell_1$ regularization. More precisely, we consider a family of pre-trained convolutional filters and estimate deeply parametrized spatially varying parameters applied to the sparse feature maps by means of unrolling a FISTA algorithm to solve the underlying sparse estimation problem. The proposed approach is evaluated for image reconstruction of low-field MRI and compared to spatially adaptive and non-adaptive analysis-type procedures relying on Total Variation regularization and to a well-established model-based deep learning approach. We show that the proposed approach produces visually and quantitatively comparable results with the latter approaches and at the same time remains highly interpretable. In particular, the inferred parameter maps quantify the local contribution of each filter in the reconstruction, which provides valuable insight into the algorithm mechanism and could potentially be used to discard unsuited filters.
comment: Accepted for publication in the proceedings of the EUSIPCO 2025 conference; corrected typo in equation (3)
♻ ☆ REPA-E: Unlocking VAE for End-to-End Tuning with Latent Diffusion Transformers
In this paper we tackle a fundamental question: "Can we train latent diffusion models together with the variational auto-encoder (VAE) tokenizer in an end-to-end manner?" Traditional deep-learning wisdom dictates that end-to-end training is often preferable when possible. However, for latent diffusion transformers, it is observed that end-to-end training both VAE and diffusion-model using standard diffusion-loss is ineffective, even causing a degradation in final performance. We show that while diffusion loss is ineffective, end-to-end training can be unlocked through the representation-alignment (REPA) loss -- allowing both VAE and diffusion model to be jointly tuned during the training process. Despite its simplicity, the proposed training recipe (REPA-E) shows remarkable performance; speeding up diffusion model training by over 17x and 45x over REPA and vanilla training recipes, respectively. Interestingly, we observe that end-to-end tuning with REPA-E also improves the VAE itself; leading to improved latent space structure and downstream generation performance. In terms of final performance, our approach sets a new state-of-the-art; achieving FID of 1.12 and 1.69 with and without classifier-free guidance on ImageNet 256 x 256. Code is available at https://end2end-diffusion.github.io.
♻ ☆ MUG-V 10B: High-efficiency Training Pipeline for Large Video Generation Models
In recent years, large-scale generative models for visual content (\textit{e.g.,} images, videos, and 3D objects/scenes) have made remarkable progress. However, training large-scale video generation models remains particularly challenging and resource-intensive due to cross-modal text-video alignment, the long sequences involved, and the complex spatiotemporal dependencies. To address these challenges, we present a training framework that optimizes four pillars: (i) data processing, (ii) model architecture, (iii) training strategy, and (iv) infrastructure for large-scale video generation models. These optimizations delivered significant efficiency gains and performance improvements across all stages of data preprocessing, video compression, parameter scaling, curriculum-based pretraining, and alignment-focused post-training. Our resulting model, MUG-V 10B, matches recent state-of-the-art video generators overall and, on e-commerce-oriented video generation tasks, surpasses leading open-source baselines in human evaluations. More importantly, we open-source the complete stack, including model weights, Megatron-Core-based large-scale training code, and inference pipelines for video generation and enhancement. To our knowledge, this is the first public release of large-scale video generation training code that exploits Megatron-Core to achieve high training efficiency and near-linear multi-node scaling, details are available in https://github.com/Shopee-MUG/MUG-V.
comment: Technical Report; Project Page: https://github.com/Shopee-MUG/MUG-V
♻ ☆ See through the Dark: Learning Illumination-affined Representations for Nighttime Occupancy Prediction
Occupancy prediction aims to estimate the 3D spatial distribution of occupied regions along with their corresponding semantic labels. Existing vision-based methods perform well on daytime benchmarks but struggle in nighttime scenarios due to limited visibility and challenging lighting conditions. To address these challenges, we propose LIAR, a novel framework that learns illumination-affined representations. LIAR first introduces Selective Low-light Image Enhancement (SLLIE), which leverages the illumination priors from daytime scenes to adaptively determine whether a nighttime image is genuinely dark or sufficiently well-lit, enabling more targeted global enhancement. Building on the illumination maps generated by SLLIE, LIAR further incorporates two illumination-aware components: 2D Illumination-guided Sampling (2D-IGS) and 3D Illumination-driven Projection (3D-IDP), to respectively tackle local underexposure and overexposure. Specifically, 2D-IGS modulates feature sampling positions according to illumination maps, assigning larger offsets to darker regions and smaller ones to brighter regions, thereby alleviating feature degradation in underexposed areas. Subsequently,3D-IDP enhances semantic understanding in overexposed regions by constructing illumination intensity fields and supplying refined residual queries to the BEV context refinement process. Extensive experiments on both real and synthetic datasets demonstrate the superior performance of LIAR under challenging nighttime scenarios. The source code and pretrained models are available [here](https://github.com/yanzq95/LIAR).
♻ ☆ Spiking Neural Networks Need High Frequency Information
Spiking Neural Networks promise brain-inspired and energy-efficient computation by transmitting information through binary (0/1) spikes. Yet, their performance still lags behind that of artificial neural networks, often assumed to result from information loss caused by sparse and binary activations. In this work, we challenge this long-standing assumption and reveal a previously overlooked frequency bias: spiking neurons inherently suppress high-frequency components and preferentially propagate low-frequency information. This frequency-domain imbalance, we argue, is the root cause of degraded feature representation in SNNs. Empirically, on Spiking Transformers, adopting Avg-Pooling (low-pass) for token mixing lowers performance to 76.73% on Cifar-100, whereas replacing it with Max-Pool (high-pass) pushes the top-1 accuracy to 79.12%. Accordingly, we introduce Max-Former that restores high-frequency signals through two frequency-enhancing operators: (1) extra Max-Pool in patch embedding, and (2) Depth-Wise Convolution in place of self-attention. Notably, Max-Former attains 82.39% top-1 accuracy on ImageNet using only 63.99M parameters, surpassing Spikformer (74.81%, 66.34M) by +7.58%. Extending our insight beyond transformers, our Max-ResNet-18 achieves state-of-the-art performance on convolution-based benchmarks: 97.17% on CIFAR-10 and 83.06\% on CIFAR-100. We hope this simple yet effective solution inspires future research to explore the distinctive nature of spiking neural networks. Code is available: https://github.com/bic-L/MaxFormer.
♻ ☆ Training-Free Label Space Alignment for Universal Domain Adaptation
Universal domain adaptation (UniDA) transfers knowledge from a labeled source domain to an unlabeled target domain, where label spaces may differ and the target domain may contain private classes. Previous UniDA methods primarily focused on visual space alignment but often struggled with visual ambiguities due to content differences, which limited their robustness and generalizability. To overcome this, we introduce a novel approach that leverages the strong \textit{zero-shot capabilities} of recent vision-language foundation models (VLMs) like CLIP, concentrating solely on label space alignment to enhance adaptation stability. CLIP can generate task-specific classifiers based only on label names. However, adapting CLIP to UniDA is challenging because the label space is not fully known in advance. In this study, we first utilize generative vision-language models to identify unknown categories in the target domain. Noise and semantic ambiguities in the discovered labels -- such as those similar to source labels (e.g., synonyms, hypernyms, hyponyms) -- complicate label alignment. To address this, we propose a training-free label-space alignment method for UniDA (\ours). Our method aligns label spaces instead of visual spaces by filtering and refining noisy labels between the domains. We then construct a \textit{universal classifier} that integrates both shared knowledge and target-private class information, thereby improving generalizability under domain shifts. The results reveal that the proposed method considerably outperforms existing UniDA techniques across key DomainBed benchmarks, delivering an average improvement of \textcolor{blue}{+7.9\%}in H-score and \textcolor{blue}{+6.1\%} in H$^3$-score. Furthermore, incorporating self-training further enhances performance and achieves an additional (\textcolor{blue}{+1.6\%}) increment in both H- and H$^3$-scores.
comment: 22 pages, 12 figures
♻ ☆ DitHub: A Modular Framework for Incremental Open-Vocabulary Object Detection NeurIPS 2025
Open-Vocabulary object detectors can generalize to an unrestricted set of categories through simple textual prompting. However, adapting these models to rare classes or reinforcing their abilities on multiple specialized domains remains essential. While recent methods rely on monolithic adaptation strategies with a single set of weights, we embrace modular deep learning. We introduce DitHub, a framework designed to build and maintain a library of efficient adaptation modules. Inspired by Version Control Systems, DitHub manages expert modules as branches that can be fetched and merged as needed. This modular approach allows us to conduct an in-depth exploration of the compositional properties of adaptation modules, marking the first such study in Object Detection. Our method achieves state-of-the-art performance on the ODinW-13 benchmark and ODinW-O, a newly introduced benchmark designed to assess class reappearance. For more details, visit our project page: https://aimagelab.github.io/DitHub/
comment: Accepted at the 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ SAM 2++: Tracking Anything at Any Granularity
Video tracking aims at finding the specific target in subsequent frames given its initial state. Due to the varying granularity of target states across different tasks, most existing trackers are tailored to a single task and heavily rely on custom-designed modules within the individual task, which limits their generalization and leads to redundancy in both model design and parameters. To unify video tracking tasks, we present SAM 2++, a unified model towards tracking at any granularity, including masks, boxes, and points. First, to extend target granularity, we design task-specific prompts to encode various task inputs into general prompt embeddings, and a unified decoder to unify diverse task results into a unified form pre-output. Next, to satisfy memory matching, the core operation of tracking, we introduce a task-adaptive memory mechanism that unifies memory across different granularities. Finally, we introduce a customized data engine to support tracking training at any granularity, producing a large and diverse video tracking dataset with rich annotations at three granularities, termed Tracking-Any-Granularity, which represents a comprehensive resource for training and benchmarking on unified tracking. Comprehensive experiments on multiple benchmarks confirm that SAM 2++ sets a new state of the art across diverse tracking tasks at different granularities, establishing a unified and robust tracking framework.
comment: update results
♻ ☆ With Limited Data for Multimodal Alignment, Let the STRUCTURE Guide You NeurIPS 2025
Multimodal models have demonstrated powerful capabilities in complex tasks requiring multimodal alignment, including zero-shot classification and cross-modal retrieval. However, existing models typically rely on millions of paired multimodal samples, which are prohibitively expensive or infeasible to obtain in many domains. In this work, we explore the feasibility of building multimodal models with limited amount of paired data by aligning pretrained unimodal foundation models. We show that high-quality alignment is possible with as few as tens of thousands of paired samples$\unicode{x2013}$less than $1\%$ of the data typically used in the field. To achieve this, we introduce STRUCTURE, an effective regularization technique that preserves the neighborhood geometry of the latent space of unimodal encoders. Additionally, we show that aligning last layers is often suboptimal and demonstrate the benefits of aligning the layers with the highest representational similarity across modalities. These two components can be readily incorporated into existing alignment methods, yielding substantial gains across 24 zero-shot image classification and retrieval benchmarks, with average relative improvement of $51.6\%$ in classification and $91.8\%$ in retrieval tasks. Our results highlight the effectiveness and broad applicability of our framework for limited-sample multimodal learning and offer a promising path forward for resource-constrained domains.
comment: NeurIPS 2025 camera-ready
♻ ☆ Towards Enhanced Image Generation Via Multi-modal Chain of Thought in Unified Generative Models
Unified generative models have shown remarkable performance in text and image generation. For image synthesis tasks, they adopt straightforward text-to-image (T2I) generation. However, direct T2I generation limits the models in handling complex compositional instructions, which frequently occur in real-world scenarios. Although this issue is vital, existing works mainly focus on improving the basic image generation capability of the models. While such improvements help to some extent, they still fail to adequately resolve the problem. Inspired by Chain of Thought (CoT) solving complex problems step by step, this work aims to introduce CoT into unified generative models to address the challenges of complex image generation that direct T2I generation cannot effectively solve, thereby endowing models with enhanced image generation ability. To achieve this, we first propose Functionality-oriented eXperts (FoXperts), an expert-parallel architecture in our model FoX, which assigns experts by function. FoXperts disentangles potential conflicts in mainstream modality-oriented designs and provides a solid foundation for CoT. When introducing CoT, the first question is how to design it for complex image generation. To this end, we emulate a human-like artistic workflow -- planning, acting, reflection, and correction -- and propose the Multimodal Chain of Thought (MCoT) approach, as the data involves both text and image. To address the subsequent challenge -- designing an effective MCoT training paradigm -- we develop a multi-task joint training scheme that equips the model with all capabilities required for each MCoT step in a disentangled manner. This paradigm avoids the difficulty of collecting consistent multi-step data tuples. Extensive experiments show that FoX consistently outperforms existing unified models on various T2I benchmarks, delivering notable improvements in complex image generation.
♻ ☆ Rethinking Multimodal Learning from the Perspective of Mitigating Classification Ability Disproportion NeurIPS 2025
Multimodal learning (MML) is significantly constrained by modality imbalance, leading to suboptimal performance in practice. While existing approaches primarily focus on balancing the learning of different modalities to address this issue, they fundamentally overlook the inherent disproportion in model classification ability, which serves as the primary cause of this phenomenon. In this paper, we propose a novel multimodal learning approach to dynamically balance the classification ability of weak and strong modalities by incorporating the principle of boosting. Concretely, we first propose a sustained boosting algorithm in multimodal learning by simultaneously optimizing the classification and residual errors. Subsequently, we introduce an adaptive classifier assignment strategy to dynamically facilitate the classification performance of the weak modality. Furthermore, we theoretically analyze the convergence property of the cross-modal gap function, ensuring the effectiveness of the proposed boosting scheme. To this end, the classification ability of strong and weak modalities is expected to be balanced, thereby mitigating the imbalance issue. Empirical experiments on widely used datasets reveal the superiority of our method through comparison with various state-of-the-art (SOTA) multimodal learning baselines. The source code is available at https://github.com/njustkmg/NeurIPS25-AUG.
comment: Accepted by NeurIPS 2025
♻ ☆ LBL: Logarithmic Barrier Loss Function for One-class Classification
One-class classification (OCC) aims to train a classifier solely on target data and attracts increasing attention due to its applicability in practice. Despite OCC has obtained many advances, it still lacks the effective OCC loss functions for deep learning. In this paper, a novel logarithmic barrier function based OCC loss (LBL) that assigns large gradients to margin samples and thus derives more compact hypersphere is first proposed by approximating the OCC objective smoothly. But the optimization of LBL may be instability especially when samples lie on the boundary leading to the infinity value. To address this issue, a smoother LBLSig loss is further proposed by utilizing a unilateral relaxation Sigmoid function. Experiments on different networks demonstrate the effectiveness of the proposed LBL and LBLSig. The source code can be found at https://github.com/ML-HDU/LBL_LBLSig.
♻ ☆ Brain3D: Generating 3D Objects from fMRI
Understanding the hidden mechanisms behind human's visual perception is a fundamental question in neuroscience. To that end, investigating into the neural responses of human mind activities, such as functional Magnetic Resonance Imaging (fMRI), has been a significant research vehicle. However, analyzing fMRI signals is challenging, costly, daunting, and demanding for professional training. Despite remarkable progress in fMRI analysis, existing approaches are limited to generating 2D images and far away from being biologically meaningful and practically useful. Under this insight, we propose to generate visually plausible and functionally more comprehensive 3D outputs decoded from brain signals, enabling more sophisticated modeling of fMRI data. Conceptually, we reformulate this task as a {\em fMRI conditioned 3D object generation} problem. We design a novel 3D object representation learning method, Brain3D, that takes as input the fMRI data of a subject who was presented with a 2D image, and yields as output the corresponding 3D object images. The key capabilities of this model include tackling the noises with high-level semantic signals and a two-stage architecture design for progressive high-level information integration. Extensive experiments validate the superior capability of our model over previous state-of-the-art 3D object generation methods. Importantly, we show that our model captures the distinct functionalities of each region of human vision system as well as their intricate interplay relationships, aligning remarkably with the established discoveries in neuroscience. Further, preliminary evaluations indicate that Brain3D can successfully identify the disordered brain regions in simulated scenarios, such as V1, V2, V3, V4, and the medial temporal lobe (MTL) within the human visual system. Our data and code will be available at https://brain-3d.github.io/.
comment: IJCV 2025
♻ ☆ Visual Multi-Agent System: Mitigating Hallucination Snowballing via Visual Flow
Multi-Agent System (MAS) powered by Visual Language Models (VLMs) enables challenging tasks but suffers from a novel failure term, multi-agent visual hallucination snowballing, where hallucinations are seeded in a single agent and amplified by following ones due to the over-reliance on textual flow to relay visual information. Through turn-, layer-, and token-wise attention analyses, we provide detailed insights into the essence of hallucination snowballing regarding the reduction of visual attention allocation. It leads us to identify a subset of vision tokens with a unimodal attention peak in middle layers that best preserve visual evidence but gradually diminish in deeper agent turns, resulting in the visual hallucination snowballing in MAS. Thus, we propose ViF, a lightweight, plug-and-play mitigation paradigm that relays inter-agent messages with Visual Flow powered by the selected visual relay tokens and applies attention reallocation to amplify this pattern. The experiment results demonstrate that our method markedly reduces hallucination snowballing, consistently improving the performance across eight benchmarks based on four common MAS structures and ten base models. The source code is publicly available at: https://github.com/YU-deep/ViF.git.
♻ ☆ MINGLE: Mixture of Null-Space Gated Low-Rank Experts for Test-Time Continual Model Merging NeurIPS 2025
Continual model merging integrates independently fine-tuned models sequentially without access to the original training data, offering a scalable and efficient solution for continual learning. However, existing methods face two critical challenges: parameter interference among tasks, which leads to catastrophic forgetting, and limited adaptability to evolving test distributions. To address these issues, we introduce the task of Test-Time Continual Model Merging (TTCMM), which leverages a small set of unlabeled test samples during inference to alleviate parameter conflicts and handle distribution shifts. We propose MINGLE, a novel framework for TTCMM. MINGLE employs a mixture-of-experts architecture with parameter-efficient, low-rank experts, which enhances adaptability to evolving test distributions while dynamically merging models to mitigate conflicts. To further reduce forgetting, we propose Null-Space Constrained Gating, which restricts gating updates to subspaces orthogonal to prior task representations, thereby suppressing activations on old tasks and preserving past knowledge. We further introduce an Adaptive Relaxation Strategy that adjusts constraint strength dynamically based on interference signals observed during test-time adaptation, striking a balance between stability and adaptability. Extensive experiments on standard continual merging benchmarks demonstrate that MINGLE achieves robust generalization, significantly reduces forgetting, and consistently surpasses previous state-of-the-art methods by 7-9% on average across diverse task orders. Our code is available at: https://github.com/zihuanqiu/MINGLE
comment: accepted by NeurIPS 2025
♻ ☆ Where are we with calibration under dataset shift in image classification?
We conduct an extensive study on the state of calibration under real-world dataset shift for image classification. Our work provides important insights on the choice of post-hoc and in-training calibration techniques, and yields practical guidelines for all practitioners interested in robust calibration under shift. We compare various post-hoc calibration methods, and their interactions with common in-training calibration strategies (e.g., label smoothing), across a wide range of natural shifts, on eight different classification tasks across several imaging domains. We find that: (i) simultaneously applying entropy regularisation and label smoothing yield the best calibrated raw probabilities under dataset shift, (ii) post-hoc calibrators exposed to a small amount of semantic out-of-distribution data (unrelated to the task) are most robust under shift, (iii) recent calibration methods specifically aimed at increasing calibration under shifts do not necessarily offer significant improvements over simpler post-hoc calibration methods, (iv) improving calibration under shifts often comes at the cost of worsening in-distribution calibration. Importantly, these findings hold for randomly initialised classifiers, as well as for those finetuned from foundation models, the latter being consistently better calibrated compared to models trained from scratch. Finally, we conduct an in-depth analysis of ensembling effects, finding that (i) applying calibration prior to ensembling (instead of after) is more effective for calibration under shifts, (ii) for ensembles, OOD exposure deteriorates the ID-shifted calibration trade-off, (iii) ensembling remains one of the most effective methods to improve calibration robustness and, combined with finetuning from foundation models, yields best calibration results overall.
comment: Code available at https://github.com/biomedia-mira/calibration_under_shifts. Published in TMLR, October 2025 (https://openreview.net/forum?id=1NYKXlRU2H)
♻ ☆ Breaking the Discretization Barrier of Continuous Physics Simulation Learning
The modeling of complicated time-evolving physical dynamics from partial observations is a long-standing challenge. Particularly, observations can be sparsely distributed in a seemingly random or unstructured manner, making it difficult to capture highly nonlinear features in a variety of scientific and engineering problems. However, existing data-driven approaches are often constrained by fixed spatial and temporal discretization. While some researchers attempt to achieve spatio-temporal continuity by designing novel strategies, they either overly rely on traditional numerical methods or fail to truly overcome the limitations imposed by discretization. To address these, we propose CoPS, a purely data-driven methods, to effectively model continuous physics simulation from partial observations. Specifically, we employ multiplicative filter network to fuse and encode spatial information with the corresponding observations. Then we customize geometric grids and use message-passing mechanism to map features from original spatial domain to the customized grids. Subsequently, CoPS models continuous-time dynamics by designing multi-scale graph ODEs, while introducing a Markov-based neural auto-correction module to assist and constrain the continuous extrapolations. Comprehensive experiments demonstrate that CoPS advances the state-of-the-art methods in space-time continuous modeling across various scenarios.
♻ ☆ MsEdF: A Multi-stream Encoder-decoder Framework for Remote Sensing Image Captioning
Remote sensing images contain complex spatial patterns and semantic structures, which makes the captioning model difficult to accurately describe. Encoder-decoder architectures have become the widely used approach for RSIC by translating visual content into descriptive text. However, many existing methods rely on a single-stream architecture, which weakens the model to accurately describe the image. Such single-stream architectures typically struggle to extract diverse spatial features or capture complex semantic relationships, limiting their effectiveness in scenes with high intraclass similarity or contextual ambiguity. In this work, we propose a novel Multi-stream Encoder-decoder Framework (MsEdF) which improves the performance of RSIC by optimizing both the spatial representation and language generation of encoder-decoder architecture. The encoder fuses information from two complementary image encoders, thereby promoting feature diversity through the integration of multiscale and structurally distinct cues. To improve the capture of context-aware descriptions, we refine the input sequence's semantic modeling on the decoder side using a stacked GRU architecture with an element-wise aggregation scheme. Experiments on three benchmark RSIC datasets show that MsEdF outperforms several baseline models.
♻ ☆ FLARE: Feed-forward Geometry, Appearance and Camera Estimation from Uncalibrated Sparse Views
We present FLARE, a feed-forward model designed to infer high-quality camera poses and 3D geometry from uncalibrated sparse-view images (i.e., as few as 2-8 inputs), which is a challenging yet practical setting in real-world applications. Our solution features a cascaded learning paradigm with camera pose serving as the critical bridge, recognizing its essential role in mapping 3D structures onto 2D image planes. Concretely, FLARE starts with camera pose estimation, whose results condition the subsequent learning of geometric structure and appearance, optimized through the objectives of geometry reconstruction and novel-view synthesis. Utilizing large-scale public datasets for training, our method delivers state-of-the-art performance in the tasks of pose estimation, geometry reconstruction, and novel view synthesis, while maintaining the inference efficiency (i.e., less than 0.5 seconds). The project page and code can be found at: https://zhanghe3z.github.io/FLARE/
♻ ☆ VLsI: Verbalized Layers-to-Interactions from Large to Small Vision Language Models CVPR 2025
The recent surge in high-quality visual instruction tuning samples from closed-source vision-language models (VLMs) such as GPT-4V has accelerated the release of open-source VLMs across various model sizes. However, scaling VLMs to improve performance using larger models brings significant computational challenges, especially for deployment on resource-constrained devices like mobile platforms and robots. To address this, we propose VLsI: Verbalized Layers-to-Interactions, a new VLM family in 2B and 7B model sizes, which prioritizes efficiency without compromising accuracy. VLsI leverages a unique, layer-wise distillation process, introducing intermediate "verbalizers" that map features from each layer to natural language space, allowing smaller VLMs to flexibly align with the reasoning processes of larger VLMs. This approach mitigates the training instability often encountered in output imitation and goes beyond typical final-layer tuning by aligning the small VLMs' layer-wise progression with that of the large ones. We validate VLsI across ten challenging vision-language benchmarks, achieving notable performance gains (11.0% for 2B and 17.4% for 7B) over GPT-4V without the need for model scaling, merging, or architectural changes.
comment: CVPR 2025, Project page: https://byungkwanlee.github.io/VLsI-page/
♻ ☆ Advancing Image Super-resolution Techniques in Remote Sensing: A Comprehensive Survey SP
Remote sensing image super-resolution (RSISR) is a crucial task in remote sensing image processing, aiming to reconstruct high-resolution (HR) images from their low-resolution (LR) counterparts. Despite the growing number of RSISR methods proposed in recent years, a systematic and comprehensive review of these methods is still lacking. This paper presents a thorough review of RSISR algorithms, covering methodologies, datasets, and evaluation metrics. We provide an in-depth analysis of RSISR methods, categorizing them into supervised, unsupervised, and quality evaluation approaches, to help researchers understand current trends and challenges. Our review also discusses the strengths, limitations, and inherent challenges of these techniques. Notably, our analysis reveals significant limitations in existing methods, particularly in preserving fine-grained textures and geometric structures under large-scale degradation. Based on these findings, we outline future research directions, highlighting the need for domain-specific architectures and robust evaluation protocols to bridge the gap between synthetic and real-world RSISR scenarios.
comment: Accepted by ISPRS Journal of Photogrammetry and Remote Sensing
♻ ☆ Weakly Supervised Food Image Segmentation using Vision Transformers and Segment Anything Model
In this paper, we propose a weakly supervised semantic segmentation approach for food images which takes advantage of the zero-shot capabilities and promptability of the Segment Anything Model (SAM) along with the attention mechanisms of Vision Transformers (ViTs). Specifically, we use class activation maps (CAMs) from ViTs to generate prompts for SAM, resulting in masks suitable for food image segmentation. The ViT model, a Swin Transformer, is trained exclusively using image-level annotations, eliminating the need for pixel-level annotations during training. Additionally, to enhance the quality of the SAM-generated masks, we examine the use of image preprocessing techniques in combination with single-mask and multi-mask SAM generation strategies. The methodology is evaluated on the FoodSeg103 dataset, generating an average of 2.4 masks per image (excluding background), and achieving an mIoU of 0.54 for the multi-mask scenario. We envision the proposed approach as a tool to accelerate food image annotation tasks or as an integrated component in food and nutrition tracking applications.
comment: Accepted for presentation at the 20th International Workshop on Semantic and Social Media Adaptation & Personalization (SMAP 2025)
♻ ☆ Towards Depth Foundation Model: Recent Trends in Vision-Based Depth Estimation
Depth estimation is a fundamental task in 3D computer vision, crucial for applications such as 3D reconstruction, free-viewpoint rendering, robotics, autonomous driving, and AR/VR technologies. Traditional methods relying on hardware sensors like LiDAR are often limited by high costs, low resolution, and environmental sensitivity, limiting their applicability in real-world scenarios. Recent advances in vision-based methods offer a promising alternative, yet they face challenges in generalization and stability due to either the low-capacity model architectures or the reliance on domain-specific and small-scale datasets. The emergence of scaling laws and foundation models in other domains has inspired the development of "depth foundation models": deep neural networks trained on large datasets with strong zero-shot generalization capabilities. This paper surveys the evolution of deep learning architectures and paradigms for depth estimation across the monocular, stereo, multi-view, and monocular video settings. We explore the potential of these models to address existing challenges and provide a comprehensive overview of large-scale datasets that can facilitate their development. By identifying key architectures and training strategies, we aim to highlight the path towards robust depth foundation models, offering insights into their future research and applications.
♻ ☆ Investigating the Relationship between the Weighted Figure of Merit and Rosin's Measure
Many studies have been conducted to solve the problem of approximating a digital boundary by piece straight-line segments for the further processing required in computer vision applications. The authors of these studies compared their schemes to determine the best one. The initial measure used to assess the goodness of fit of a polygonal approximation was the figure of merit. Later,it was noted that this measure was not an appropriate metric for a valid reason which is why Rosin-through mathematical analysis-introduced a measure called merit. However,this measure involves an optimal scheme of polygonal approximation,so it is time-consuming to compute it to assess the goodness of fit of an approximation. This led many researchers to use a weighted figure of merit as a substitute for Rosin's measure to compare sub optimal schemes. An attempt is made in this communication to investigate whether the two measures-weighted figure of merit and Rosin's measure-are related so that one can be used instead of the other, and toward this end, theoretical analysis, experimental investigation and statistical analysis are carried out. The mathematical formulas for the weighted figure of merit and Rosin's measure are analyzed, and through proof of theorems,it is found that the two measures are theoretically independent of each other. The graphical analysis of experiments carried out using a public dataset supports the results of the theoretical analysis. The statistical analysis via Pearson's correlation coefficient and non-linear correlation measure also revealed that the two measures are uncorrelated. This analysis leads one to conclude that if a suboptimal scheme is found to be better (worse) than some other suboptimal scheme,as indicated by Rosin's measure,then the same conclusion cannot be drawn using a weighted figure of merit,so one cannot use a weighted figure of merit instead of Rosin's measure.
♻ ☆ RADAR: A Risk-Aware Dynamic Multi-Agent Framework for LLM Safety Evaluation via Role-Specialized Collaboration
Existing safety evaluation methods for large language models (LLMs) suffer from inherent limitations, including evaluator bias and detection failures arising from model homogeneity, which collectively undermine the robustness of risk evaluation processes. This paper seeks to re-examine the risk evaluation paradigm by introducing a theoretical framework that reconstructs the underlying risk concept space. Specifically, we decompose the latent risk concept space into three mutually exclusive subspaces: the explicit risk subspace (encompassing direct violations of safety guidelines), the implicit risk subspace (capturing potential malicious content that requires contextual reasoning for identification), and the non-risk subspace. Furthermore, we propose RADAR, a multi-agent collaborative evaluation framework that leverages multi-round debate mechanisms through four specialized complementary roles and employs dynamic update mechanisms to achieve self-evolution of risk concept distributions. This approach enables comprehensive coverage of both explicit and implicit risks while mitigating evaluator bias. To validate the effectiveness of our framework, we construct an evaluation dataset comprising 800 challenging cases. Extensive experiments on our challenging testset and public benchmarks demonstrate that RADAR significantly outperforms baseline evaluation methods across multiple dimensions, including accuracy, stability, and self-evaluation risk sensitivity. Notably, RADAR achieves a 28.87% improvement in risk identification accuracy compared to the strongest baseline evaluation method.
♻ ☆ ComDrive: Comfort-Oriented End-to-End Autonomous Driving IROS 2025
We propose ComDrive: the first comfort-oriented end-to-end autonomous driving system to generate temporally consistent and comfortable trajectories. Recent studies have demonstrated that imitation learning-based planners and learning-based trajectory scorers can effectively generate and select safety trajectories that closely mimic expert demonstrations. However, such trajectory planners and scorers face the challenge of generating temporally inconsistent and uncomfortable trajectories. To address these issues, ComDrive first extracts 3D spatial representations through sparse perception, which then serves as conditional inputs. These inputs are used by a Conditional Denoising Diffusion Probabilistic Model (DDPM)-based motion planner to generate temporally consistent multi-modal trajectories. A dual-stream adaptive trajectory scorer subsequently selects the most comfortable trajectory from these candidates to control the vehicle. Experiments demonstrate that ComDrive achieves state-of-the-art performance in both comfort and safety, outperforming UniAD by 17% in driving comfort and reducing collision rates by 25% compared to SparseDrive. More results are available on our project page: https://jmwang0117.github.io/ComDrive/.
comment: IROS 2025
♻ ☆ Semi-off-Policy Reinforcement Learning for Vision-Language Slow-Thinking Reasoning
Enhancing large vision-language models (LVLMs) with visual slow-thinking reasoning is crucial for solving complex multimodal tasks. However, since LVLMs are mainly trained with vision-language alignment, it is difficult to adopt on-policy reinforcement learning (RL) to develop the slow thinking ability because the rollout space is restricted by its initial abilities. Off-policy RL offers a way to go beyond the current policy, but directly distilling trajectories from external models may cause visual hallucinations due to mismatched visual perception abilities across models. To address these issues, this paper proposes SOPHIA, a simple and scalable Semi-Off-Policy RL for vision-language slow-tHInking reAsoning. SOPHIA builds a semi-off-policy behavior model by combining on-policy visual understanding from a trainable LVLM with off-policy slow-thinking reasoning from a language model, assigns outcome-based rewards to reasoning, and propagates visual rewards backward. Then LVLM learns slow-thinking reasoning ability from the obtained reasoning trajectories using propagated rewards via off-policy RL algorithms. Extensive experiments with InternVL2.5 and InternVL3.0 with 8B and 38B sizes show the effectiveness of SOPHIA. Notably, SOPHIA improves InternVL3.0-38B by 8.50% in average, reaching state-of-the-art performance among open-source LVLMs on multiple multimodal reasoning benchmarks, and even outperforms some closed-source models (e.g., GPT-4.1) on the challenging MathVision and OlympiadBench, achieving 49.08% and 49.95% pass@1 accuracy, respectively. Analysis shows SOPHIA outperforms supervised fine-tuning and direct on-policy RL methods, offering a better policy initialization for further on-policy training.
♻ ☆ MMLA: Multi-Environment, Multi-Species, Low-Altitude Drone Dataset CVPR
Real-time wildlife detection in drone imagery supports critical ecological and conservation monitoring. However, standard detection models like YOLO often fail to generalize across locations and struggle with rare species, limiting their use in automated drone deployments. We present MMLA, a novel multi-environment, multi-species, low-altitude drone dataset collected across three sites (Ol Pejeta Conservancy and Mpala Research Centre in Kenya, and The Wilds in Ohio), featuring six species (zebras, giraffes, onagers, and African wild dogs). The dataset contains 811K annotations from 37 high-resolution videos. Baseline YOLO models show performance disparities across locations while fine-tuning YOLOv11m on MMLA improves mAP50 to 82%, a 52-point gain over baseline. Our results underscore the need for diverse training data to enable robust animal detection in autonomous drone systems.
comment: Accepted at CVPR Workshop, CV4Animals 2025
♻ ☆ FST.ai 2.0: An Explainable AI Ecosystem for Fair, Fast, and Inclusive Decision-Making in Olympic and Paralympic Taekwondo
Fair, transparent, and explainable decision-making remains a critical challenge in Olympic and Paralympic combat sports. This paper presents \emph{FST.ai 2.0}, an explainable AI ecosystem designed to support referees, coaches, and athletes in real time during Taekwondo competitions and training. The system integrates {pose-based action recognition} using graph convolutional networks (GCNs), {epistemic uncertainty modeling} through credal sets, and {explainability overlays} for visual decision support. A set of {interactive dashboards} enables human--AI collaboration in referee evaluation, athlete performance analysis, and Para-Taekwondo classification. Beyond automated scoring, FST.ai~2.0 incorporates modules for referee training, fairness monitoring, and policy-level analytics within the World Taekwondo ecosystem. Experimental validation on competition data demonstrates an {85\% reduction in decision review time} and {93\% referee trust} in AI-assisted decisions. The framework thus establishes a transparent and extensible pipeline for trustworthy, data-driven officiating and athlete assessment. By bridging real-time perception, explainable inference, and governance-aware design, FST.ai~2.0 represents a step toward equitable, accountable, and human-aligned AI in sports.
comment: 23 pages, 12 figures
♻ ☆ The Photographer Eye: Teaching Multimodal Large Language Models to Understand Image Aesthetics like Photographers
While editing directly from life, photographers have found it too difficult to see simultaneously both the blue and the sky. Photographer and curator, Szarkowski insightfully revealed one of the notable gaps between general and aesthetic visual understanding: while the former focuses on identifying the factual element in an image (sky), the latter transcends such object identification, viewing it instead as an aesthetic component--a pure color block (blue). Such fundamental distinctions between general (detection, localization, etc.) and aesthetic (color, lighting, composition, etc.) visual understanding present a significant challenge for Multimodal Large Language Models (MLLMs). Although some recent works have made initial explorations, they are often limited to general and basic aesthetic commonsense. As a result, they frequently fall short in real-world scenarios (Fig. 1), which require extensive expertise--including photographic techniques, photo pre/post-processing knowledge, and more, to provide a detailed analysis and description. To fundamentally enhance the aesthetics understanding of MLLMs, we first introduce a novel dataset, PhotoCritique, derived from extensive discussions among professional photographers and enthusiasts, and characterized by the large scale, expertise, and diversity. Then, to better learn visual aesthetics from PhotoCritique, we furthur propose a novel model, PhotoEye, featuring a languageguided multi-view vision fusion mechanism to understand image aesthetics from multiple perspectives. Finally, we present a novel benchmark, PhotoBench, a comprehensive and professional benchmark for aesthetic visual understanding. On existing benchmarks and PhotoBench, our model demonstrates clear advantages over existing models.
♻ ☆ Chimera: Compositional Image Generation using Part-based Concepting
Personalized image generative models are highly proficient at synthesizing images from text or a single image, yet they lack explicit control for composing objects from specific parts of multiple source images without user specified masks or annotations. To address this, we introduce Chimera, a personalized image generation model that generates novel objects by combining specified parts from different source images according to textual instructions. To train our model, we first construct a dataset from a taxonomy built on 464 unique (part, subject) pairs, which we term semantic atoms. From this, we generate 37k prompts and synthesize the corresponding images with a high-fidelity text-to-image model. We train a custom diffusion prior model with part-conditional guidance, which steers the image-conditioning features to enforce both semantic identity and spatial layout. We also introduce an objective metric PartEval to assess the fidelity and compositional accuracy of generation pipelines. Human evaluations and our proposed metric show that Chimera outperforms other baselines by 14% in part alignment and compositional accuracy and 21% in visual quality.
♻ ☆ Adversarial Attacks on LiDAR-Based Tracking Across Road Users: Robustness Evaluation and Target-Aware Black-Box Method
In this study, we delve into the robustness of neural network-based LiDAR point cloud tracking models under adversarial attacks, a critical aspect often overlooked in favor of performance enhancement. These models, despite incorporating advanced architectures like Transformer or Bird's Eye View (BEV), tend to neglect robustness in the face of challenges such as adversarial attacks, domain shifts, or data corruption. We instead focus on the robustness of the tracking models under the threat of adversarial attacks. We begin by establishing a unified framework for conducting adversarial attacks within the context of 3D object tracking, which allows us to thoroughly investigate both white-box and black-box attack strategies. For white-box attacks, we tailor specific loss functions to accommodate various tracking paradigms and extend existing methods such as FGSM, C\&W, and PGD to the point cloud domain. In addressing black-box attack scenarios, we introduce a novel transfer-based approach, the Target-aware Perturbation Generation (TAPG) algorithm, with the dual objectives of achieving high attack performance and maintaining low perceptibility. This method employs a heuristic strategy to enforce sparse attack constraints and utilizes random sub-vector factorization to bolster transferability. Our experimental findings reveal a significant vulnerability in advanced tracking methods when subjected to both black-box and white-box attacks, underscoring the necessity for incorporating robustness against adversarial attacks into the design of LiDAR point cloud tracking models. Notably, compared to existing methods, the TAPG also strikes an optimal balance between the effectiveness of the attack and the concealment of the perturbations.
♻ ☆ Grasp Any Region: Towards Precise, Contextual Pixel Understanding for Multimodal LLMs
While Multimodal Large Language Models (MLLMs) excel at holistic understanding, they struggle in capturing the dense world with complex scenes, requiring fine-grained analysis of intricate details and object inter-relationships. Region-level MLLMs have been a promising step. However, previous attempts are generally optimized to understand given regions in isolation, neglecting crucial global contexts. To address this, we introduce Grasp Any Region (GAR) for comprehen- sive region-level visual understanding. Empowered by an effective RoI-aligned feature replay technique, GAR supports (1) precise perception by leveraging necessary global contexts, and (2) modeling interactions between multiple prompts. Together, it then naturally achieves (3) advanced compositional reasoning to answer specific free-form questions about any region, shifting the paradigm from passive description to active dialogue. Moreover, we construct GAR-Bench, which not only provides a more accurate evaluation of single-region comprehension, but also, more importantly, measures interactions and complex reasoning across multiple regions. Extensive experiments have demonstrated that GAR-1B not only maintains the state-of-the-art captioning capabilities, e.g., outperforming DAM-3B +4.5 on DLC-Bench, but also excels at modeling relationships between multiple prompts with advanced comprehension capabilities, even surpassing InternVL3-78B on GAR-Bench-VQA. More importantly, our zero-shot GAR-8B even outperforms in-domain VideoRefer-7B on VideoRefer-BenchQ, indicating its strong capabilities can be easily transferred to videos.
♻ ☆ Chiron-o1: Igniting Multimodal Large Language Models towards Generalizable Medical Reasoning via Mentor-Intern Collaborative Search
Multimodal large language models (MLLMs) have begun to demonstrate robust reasoning capabilities on general tasks, yet their application in the medical domain remains in its early stages. Constructing chain-of-thought (CoT) training data is essential for bolstering the reasoning abilities of medical MLLMs. However, existing approaches exhibit a deficiency in offering a comprehensive framework for searching and evaluating effective reasoning paths towards critical diagnosis. To address this challenge, we propose Mentor-Intern Collaborative Search (MICS), a novel reasoning-path searching scheme to generate rigorous and effective medical CoT data. MICS first leverages mentor models to initialize the reasoning, one step at a time, then prompts each intern model to continue the thinking along those initiated paths, and finally selects the optimal reasoning path according to the overall reasoning performance of multiple intern models. The reasoning performance is determined by an MICS-Score, which assesses the quality of generated reasoning paths. Eventually, we construct MMRP, a multi-task medical reasoning dataset with ranked difficulty, and Chiron-o1, a new medical MLLM devised via a curriculum learning strategy, with robust visual question-answering and generalizable reasoning capabilities. Extensive experiments demonstrate that Chiron-o1, trained on our CoT dataset constructed using MICS, achieves state-of-the-art performance across a list of medical visual question answering and reasoning benchmarks. Codes are available at https://github.com/manglu097/Chiron-o1
♻ ☆ Probing Perceptual Constancy in Large Vision-Language Models ICML 2025
Perceptual constancy is the ability to maintain stable perceptions of objects despite changes in sensory input, such as variations in distance, angle, or lighting. This ability is crucial for visual understanding in a dynamic world. Here, we explored such ability in current Vision Language Models (VLMs). In this study, we evaluated 155 VLMs using 236 experiments across three domains: color, size, and shape constancy. The experiments included single-image and video adaptations of classic cognitive tasks, along with novel tasks in in-the-wild conditions. We found significant variability in VLM performance across these domains, with model performance in shape constancy clearly dissociated from that of color and size constancy.
comment: Accepted by ICML 2025 Workshop Building Physically Plausible World Models
♻ ☆ kabr-tools: Automated Framework for Multi-Species Behavioral Monitoring
A comprehensive understanding of animal behavior ecology depends on scalable approaches to quantify and interpret complex, multidimensional behavioral patterns. Traditional field observations are often limited in scope, time-consuming, and labor-intensive, hindering the assessment of behavioral responses across landscapes. To address this, we present kabr-tools (Kenyan Animal Behavior Recognition Tools), an open-source package for automated multi-species behavioral monitoring. This framework integrates drone-based video with machine learning systems to extract behavioral, social, and spatial metrics from wildlife footage. Our pipeline leverages object detection, tracking, and behavioral classification systems to generate key metrics, including time budgets, behavioral transitions, social interactions, habitat associations, and group composition dynamics. Compared to ground-based methods, drone-based observations significantly improved behavioral granularity, reducing visibility loss by 15% and capturing more transitions with higher accuracy and continuity. We validate kabr-tools through three case studies, analyzing 969 behavioral sequences, surpassing the capacity of traditional methods for data capture and annotation. We found that, like Plains zebras, vigilance in Grevy's zebras decreases with herd size, but, unlike Plains zebras, habitat has a negligible impact. Plains and Grevy's zebras exhibit strong behavioral inertia, with rare transitions to alert behaviors and observed spatial segregation between Grevy's zebras, Plains zebras, and giraffes in mixed-species herds. By enabling automated behavioral monitoring at scale, kabr-tools offers a powerful tool for ecosystem-wide studies, advancing conservation, biodiversity research, and ecological monitoring.
comment: 31 pages
♻ ☆ ScaleNet: Scaling up Pretrained Neural Networks with Incremental Parameters IEEE
Recent advancements in vision transformers (ViTs) have demonstrated that larger models often achieve superior performance. However, training these models remains computationally intensive and costly. To address this challenge, we introduce ScaleNet, an efficient approach for scaling ViT models. Unlike conventional training from scratch, ScaleNet facilitates rapid model expansion with negligible increases in parameters, building on existing pretrained models. This offers a cost-effective solution for scaling up ViTs. Specifically, ScaleNet achieves model expansion by inserting additional layers into pretrained ViTs, utilizing layer-wise weight sharing to maintain parameters efficiency. Each added layer shares its parameter tensor with a corresponding layer from the pretrained model. To mitigate potential performance degradation due to shared weights, ScaleNet introduces a small set of adjustment parameters for each layer. These adjustment parameters are implemented through parallel adapter modules, ensuring that each instance of the shared parameter tensor remains distinct and optimized for its specific function. Experiments on the ImageNet-1K dataset demonstrate that ScaleNet enables efficient expansion of ViT models. With a 2$\times$ depth-scaled DeiT-Base model, ScaleNet achieves a 7.42% accuracy improvement over training from scratch while requiring only one-third of the training epochs, highlighting its efficiency in scaling ViTs. Beyond image classification, our method shows significant potential for application in downstream vision areas, as evidenced by the validation in object detection task.
comment: accepted to IEEE Transactions on Image Processing (TIP)
♻ ☆ Latent Diffusion Models with Masked AutoEncoders
In spite of the remarkable potential of Latent Diffusion Models (LDMs) in image generation, the desired properties and optimal design of the autoencoders have been underexplored. In this work, we analyze the role of autoencoders in LDMs and identify three key properties: latent smoothness, perceptual compression quality, and reconstruction quality. We demonstrate that existing autoencoders fail to simultaneously satisfy all three properties, and propose Variational Masked AutoEncoders (VMAEs), taking advantage of the hierarchical features maintained by Masked AutoEncoders. We integrate VMAEs into the LDM framework, introducing Latent Diffusion Models with Masked AutoEncoders (LDMAEs). Our code is available at https://github.com/isno0907/ldmae.
♻ ☆ ProCLIP: Progressive Vision-Language Alignment via LLM-based Embedder
The original CLIP text encoder is limited by a maximum input length of 77 tokens, which hampers its ability to effectively process long texts and perform fine-grained semantic understanding. In addition, the CLIP text encoder lacks support for multilingual inputs. All these limitations significantly restrict its applicability across a broader range of tasks. Recent studies have attempted to replace the CLIP text encoder with an LLM-based embedder to enhance its ability in processing long texts, multilingual understanding, and fine-grained semantic comprehension. However, because the representation spaces of LLMs and the vision-language space of CLIP are pretrained independently without alignment priors, direct alignment using contrastive learning can disrupt the intrinsic vision-language alignment in the CLIP image encoder, leading to an underutilization of the knowledge acquired during pre-training. To address this challenge, we propose ProCLIP, a curriculum learning-based progressive vision-language alignment framework to effectively align the CLIP image encoder with an LLM-based embedder. Specifically, ProCLIP first distills knowledge from CLIP's text encoder into the LLM-based embedder to leverage CLIP's rich pretrained knowledge while establishing initial alignment between the LLM embedder and CLIP image encoder. Subsequently, ProCLIP further aligns the CLIP image encoder with the LLM-based embedder through image-text contrastive tuning, employing self-distillation regularization to avoid overfitting. To achieve a more effective alignment, instance semantic alignment loss and embedding structure alignment loss are employed during representation inheritance and contrastive tuning. The Code is available at https://github.com/VisionXLab/ProCLIP.
comment: 17 pages, 5 fiugres
♻ ☆ Flexible-length Text Infilling for Discrete Diffusion Models EMNLP
Discrete diffusion models are a new class of text generators that offer advantages such as bidirectional context use, parallelizable generation, and flexible prompting compared to autoregressive models. However, a critical limitation of discrete diffusion models is their inability to perform flexible-length or flexible-position text infilling without access to ground-truth positional data. We introduce \textbf{DDOT} (\textbf{D}iscrete \textbf{D}iffusion with \textbf{O}ptimal \textbf{T}ransport Position Coupling), the first discrete diffusion model to overcome this challenge. DDOT jointly denoises token values and token positions, employing a novel sample-level Optimal Transport (OT) coupling. This coupling preserves relative token ordering while dynamically adjusting the positions and length of infilled segments, a capability previously missing in text diffusion. Our method is orthogonal to existing discrete text diffusion methods and is compatible with various pretrained text denoisers. Extensive experiments on text infilling benchmarks such as One-Billion-Word and Yelp demonstrate that DDOT outperforms naive diffusion baselines. Furthermore, DDOT achieves performance on par with state-of-the-art non-autoregressive models and enables significant improvements in training efficiency and flexibility.
comment: Major edit of methodology section. Matches EMNLP camera-ready version
♻ ☆ FeatureFool: Zero-Query Fooling of Video Models via Feature Map
The vulnerability of deep neural networks (DNNs) has been preliminarily verified. Existing black-box adversarial attacks usually require multi-round interaction with the model and consume numerous queries, which is impractical in the real-world and hard to scale to recently emerged Video-LLMs. Moreover, no attack in the video domain directly leverages feature maps to shift the clean-video feature space. We therefore propose FeatureFool, a stealthy, video-domain, zero-query black-box attack that utilizes information extracted from a DNN to alter the feature space of clean videos. Unlike query-based methods that rely on iterative interaction, FeatureFool performs a zero-query attack by directly exploiting DNN-extracted information. This efficient approach is unprecedented in the video domain. Experiments show that FeatureFool achieves an attack success rate above 70\% against traditional video classifiers without any queries. Benefiting from the transferability of the feature map, it can also craft harmful content and bypass Video-LLM recognition. Additionally, adversarial videos generated by FeatureFool exhibit high quality in terms of SSIM, PSNR, and Temporal-Inconsistency, making the attack barely perceptible. This paper may contain violent or explicit content.
♻ ☆ FairGen: Controlling Sensitive Attributes for Fair Generations in Diffusion Models via Adaptive Latent Guidance EMNLP 2025
Text-to-image diffusion models often exhibit biases toward specific demographic groups, such as generating more males than females when prompted to generate images of engineers, raising ethical concerns and limiting their adoption. In this paper, we tackle the challenge of mitigating generation bias towards any target attribute value (e.g., "male" for "gender") in diffusion models while preserving generation quality. We propose FairGen, an adaptive latent guidance mechanism which controls the generation distribution during inference. In FairGen, a latent guidance module dynamically adjusts the diffusion process to enforce specific attributes, while a memory module tracks the generation statistics and steers latent guidance to align with the targeted fair distribution of the attribute values. Furthermore, we address the limitations of existing datasets by introducing the Holistic Bias Evaluation (HBE) benchmark, which covers diverse domains and incorporates complex prompts to assess bias more comprehensively. Extensive evaluations on HBE and Stable Bias datasets demonstrate that FairGen outperforms existing bias mitigation approaches, achieving substantial bias reduction (e.g., 68.5% gender bias reduction on Stable Diffusion 2). Ablation studies highlight FairGen's ability to flexibly control the output distribution at any user-specified granularity, ensuring adaptive and targeted bias mitigation.
comment: EMNLP 2025 Main Conference (Camera Ready)
♻ ☆ VO-DP: Semantic-Geometric Adaptive Diffusion Policy for Vision-Only Robotic Manipulation
In the context of imitation learning, visuomotor-based diffusion policy learning is one of the main directions in robotic manipulation. Most of these approaches rely on point clouds as observation inputs and construct scene representations through point clouds feature learning, which enables them to achieve remarkable accuracy. However, the existing literature lacks an in-depth exploration of vision-only solutions that have significant potential. In this paper, we propose a Vision-Only and single-view Diffusion Policy learning method (VO-DP) that leverages pretrained visual foundation models to achieve effective fusion of semantic and geometric features. We utilize intermediate features from VGGT incorporating semantic features from DINOv2 and geometric features from Alternating Attention blocks. Features are fused via cross-attention and spatially compressed with a CNN to form the input to the policy head. Extensive experiments demonstrate that VO-DP not only outperforms the vision-only baseline DP significantly but also exhibits distinct performance trends against the point cloud-based method DP3: in simulation tasks, VO-DP achieves an average success rate of 64.6% on par with DP3 64.0% and far higher than DP 34.8%, while in real-world tasks, it reaches 87.9%, outperforming both DP3 67.5% and DP 11.2% by a notable margin. Further robustness evaluations confirm that VO-DP remains highly stable under varying conditions including color, size, background, and lighting. Lastly, we open-source a training library for robotic manipulation. Built on Accelerate, this library supports multi-machine and multi-GPU parallel training, as well as mixed precision training. It is compatible with visuomotor policies such as DP, DP3 and VO-DP, and also supports the RoboTwin simulator.
Learning What Matters: Steering Diffusion via Spectrally Anisotropic Forward Noise
Diffusion Probabilistic Models (DPMs) have achieved strong generative performance, yet their inductive biases remain largely implicit. In this work, we aim to build inductive biases into the training and sampling of diffusion models to better accommodate the target distribution of the data to model. We introduce an anisotropic noise operator that shapes these biases by replacing the isotropic forward covariance with a structured, frequency-diagonal covariance. This operator unifies band-pass masks and power-law weightings, allowing us to emphasize or suppress designated frequency bands, while keeping the forward process Gaussian. We refer to this as spectrally anisotropic Gaussian diffusion (SAGD). In this work, we derive the score relation for anisotropic covariances and show that, under full support, the learned score converges to the true data score as $t\!\to\!0$, while anisotropy reshapes the probability-flow path from noise to data. Empirically, we show the induced anisotropy outperforms standard diffusion across several vision datasets, and enables selective omission: learning while ignoring known corruptions confined to specific bands. Together, these results demonstrate that carefully designed anisotropic forward noise provides a simple, yet principled, handle to tailor inductive bias in DPMs.
♻ ☆ 8-Calves Image dataset
Automated livestock monitoring is crucial for precision farming, but robust computer vision models are hindered by a lack of datasets reflecting real-world group challenges. We introduce the 8-Calves dataset, a challenging benchmark for multi-animal detection, tracking, and identification. It features a one-hour video of eight Holstein Friesian calves in a barn, with frequent occlusions, motion blur, and diverse poses. A semi-automated pipeline using a fine-tuned YOLOv8 detector and ByteTrack, followed by manual correction, provides over 537,000 bounding boxes with temporal identity labels. We benchmark 28 object detectors, showing near-perfect performance on a lenient IoU threshold (mAP50: 95.2-98.9%) but significant divergence on stricter metrics (mAP50:95: 56.5-66.4%), highlighting fine-grained localization challenges. Our identification benchmark across 23 models reveals a trade-off: scaling model size improves classification accuracy but compromises retrieval. Smaller architectures like ConvNextV2 Nano achieve the best balance (73.35% accuracy, 50.82% Top-1 KNN). Pre-training focused on semantic learning (e.g., BEiT) yielded superior transferability. For tracking, leading methods achieve high detection accuracy (MOTA > 0.92) but struggle with identity preservation (IDF1 $\approx$ 0.27), underscoring a key challenge in occlusion-heavy scenarios. The 8-Calves dataset bridges a gap by providing temporal richness and realistic challenges, serving as a resource for advancing agricultural vision models. The dataset and code are available at https://huggingface.co/datasets/tonyFang04/8-calves.
comment: 16 pages, 5 figures
♻ ☆ DIPLI: Deep Image Prior Lucky Imaging for Blind Astronomical Image Restoration
Modern image restoration and super-resolution methods utilize deep learning due to its superior performance compared to traditional algorithms. However, deep learning typically requires large training datasets, which are rarely available in astrophotography. Deep Image Prior (DIP) bypasses this constraint by performing blind training on a single image. Although effective in some cases, DIP often suffers from overfitting, artifact generation, and instability. To overcome these issues and improve general performance, this work proposes DIPLI - a framework that shifts from single-frame to multi-frame training using the Back Projection technique, combined with optical flow estimation via the TVNet model, and replaces deterministic predictions with unbiased Monte Carlo estimation obtained through Langevin dynamics. A comprehensive evaluation compares the method against Lucky Imaging, a classical computer vision technique still widely used in astronomical image reconstruction, DIP, the transformer-based model RVRT, and the diffusion-based model DiffIR2VR-Zero. Experiments on synthetic datasets demonstrate consistent improvements, with the method outperforming baselines for SSIM, PSNR, LPIPS, and DISTS metrics in the majority of cases. In addition to superior reconstruction quality, the model also requires far fewer input images than Lucky Imaging and is less prone to overfitting or artifact generation. Evaluation on real-world astronomical data, where domain shifts typically hinder generalization, shows that the method maintains high reconstruction quality, confirming practical robustness.
comment: 10 pages, 7 figures, 2 tables
♻ ☆ Roboflow100-VL: A Multi-Domain Object Detection Benchmark for Vision-Language Models NeurIPS
Vision-language models (VLMs) trained on internet-scale data achieve remarkable zero-shot detection performance on common objects like car, truck, and pedestrian. However, state-of-the-art models still struggle to generalize to out-of-distribution classes, tasks and imaging modalities not typically found in their pre-training. Rather than simply re-training VLMs on more visual data, we argue that one should align VLMs to new concepts with annotation instructions containing a few visual examples and rich textual descriptions. To this end, we introduce Roboflow100-VL, a large-scale collection of 100 multi-modal object detection datasets with diverse concepts not commonly found in VLM pre-training. We evaluate state-of-the-art models on our benchmark in zero-shot, few-shot, semi-supervised, and fully-supervised settings, allowing for comparison across data regimes. Notably, we find that VLMs like GroundingDINO and Qwen2.5-VL achieve less than 2% zero-shot accuracy on challenging medical imaging datasets within Roboflow100-VL, demonstrating the need for few-shot concept alignment. Lastly, we discuss our recent CVPR 2025 Foundational FSOD competition and share insights from the community. Notably, the winning team significantly outperforms our baseline by 17 mAP! Our code and dataset are available at https://github.com/roboflow/rf100-vl and https://universe.roboflow.com/rf100-vl/.
comment: The first two authors contributed equally. This work has been accepted to the Neural Information Processing Systems (NeurIPS) 2025 Datasets & Benchmark Track. Project Page: https://rf100-vl.org/
♻ ☆ JaiLIP: Jailbreaking Vision-Language Models via Loss Guided Image Perturbation
Vision-Language Models (VLMs) have remarkable abilities in generating multimodal reasoning tasks. However, potential misuse or safety alignment concerns of VLMs have increased significantly due to different categories of attack vectors. Among various attack vectors, recent studies have demonstrated that image-based perturbations are particularly effective in generating harmful outputs. In the literature, many existing techniques have been proposed to jailbreak VLMs, leading to unstable performance and visible perturbations. In this study, we propose Jailbreaking with Loss-guided Image Perturbation (JaiLIP), a jailbreaking attack in the image space that minimizes a joint objective combining the mean squared error (MSE) loss between clean and adversarial image with the models harmful-output loss. We evaluate our proposed method on VLMs using standard toxicity metrics from Perspective API and Detoxify. Experimental results demonstrate that our method generates highly effective and imperceptible adversarial images, outperforming existing methods in producing toxicity. Moreover, we have evaluated our method in the transportation domain to demonstrate the attacks practicality beyond toxic text generation in specific domain. Our findings emphasize the practical challenges of image-based jailbreak attacks and the need for efficient defense mechanisms for VLMs.
Artificial Intelligence 242
☆ Semantic World Models
Planning with world models offers a powerful paradigm for robotic control. Conventional approaches train a model to predict future frames conditioned on current frames and actions, which can then be used for planning. However, the objective of predicting future pixels is often at odds with the actual planning objective; strong pixel reconstruction does not always correlate with good planning decisions. This paper posits that instead of reconstructing future frames as pixels, world models only need to predict task-relevant semantic information about the future. For such prediction the paper poses world modeling as a visual question answering problem about semantic information in future frames. This perspective allows world modeling to be approached with the same tools underlying vision language models. Thus vision language models can be trained as "semantic" world models through a supervised finetuning process on image-action-text data, enabling planning for decision-making while inheriting many of the generalization and robustness properties from the pretrained vision-language models. The paper demonstrates how such a semantic world model can be used for policy improvement on open-ended robotics tasks, leading to significant generalization improvements over typical paradigms of reconstruction-based action-conditional world modeling. Website available at https://weirdlabuw.github.io/swm.
☆ Scaf-GRPO: Scaffolded Group Relative Policy Optimization for Enhancing LLM Reasoning
Reinforcement learning from verifiable rewards has emerged as a powerful technique for enhancing the complex reasoning abilities of Large Language Models (LLMs). However, these methods are fundamentally constrained by the ''learning cliff'' phenomenon: when faced with problems far beyond their current capabilities, models consistently fail, yielding a persistent zero-reward signal. In policy optimization algorithms like GRPO, this collapses the advantage calculation to zero, rendering these difficult problems invisible to the learning gradient and stalling progress. To overcome this, we introduce Scaf-GRPO (Scaffolded Group Relative Policy Optimization), a progressive training framework that strategically provides minimal guidance only when a model's independent learning has plateaued. The framework first diagnoses learning stagnation and then intervenes by injecting tiered in-prompt hints, ranging from abstract concepts to concrete steps, enabling the model to construct a valid solution by itself. Extensive experiments on challenging mathematics benchmarks demonstrate Scaf-GRPO's effectiveness, boosting the pass@1 score of the Qwen2.5-Math-7B model on the AIME24 benchmark by a relative 44.3% over a vanilla GRPO baseline. This result demonstrates our framework provides a robust and effective methodology for unlocking a model's ability to solve problems previously beyond its reach, a critical step towards extending the frontier of autonomous reasoning in LLM.
comment: Code: https://github.com/dvlab-research/Scaf-GRPO
☆ Integrating Transparent Models, LLMs, and Practitioner-in-the-Loop: A Case of Nonprofit Program Evaluation
Public and nonprofit organizations often hesitate to adopt AI tools because most models are opaque even though standard approaches typically analyze aggregate patterns rather than offering actionable, case-level guidance. This study tests a practitioner-in-the-loop workflow that pairs transparent decision-tree models with large language models (LLMs) to improve predictive accuracy, interpretability, and the generation of practical insights. Using data from an ongoing college-success program, we build interpretable decision trees to surface key predictors. We then provide each tree's structure to an LLM, enabling it to reproduce case-level predictions grounded in the transparent models. Practitioners participate throughout feature engineering, model design, explanation review, and usability assessment, ensuring that field expertise informs the analysis at every stage. Results show that integrating transparent models, LLMs, and practitioner input yields accurate, trustworthy, and actionable case-level evaluations, offering a viable pathway for responsible AI adoption in the public and nonprofit sectors.
☆ On Controlled Change: Generative AI's Impact on Professional Authority in Journalism
Using (generative) artificial intelligence tools and systems in journalism is expected to increase journalists' production rates, transform newsrooms' economic models, and further personalize the audience's news consumption practices. Since its release in 2022, OpenAI's ChatGPT and other large language models have raised the alarms inside news organizations, not only for bringing new challenges to news reporting and fact-checking but also for what these technologies would mean for journalists' professional authority in journalism. This paper examines how journalists in Dutch media manage the integration of AI technologies into their daily routines. Drawing from 13 interviews with editors, journalists, and innovation managers in different news outlets and media companies, we propose the concept of controlled change. as a heuristic to explain how journalists are proactively setting guidelines, experimenting with AI tools, and identifying their limitations and capabilities. Using professional authority as a theoretical framework, we argue that journalists anticipate and integrate AI technologies in a supervised manner and identify three primary mechanisms through which journalists manage this integration: (1) developing adaptive guidelines that align AI use with ethical codes, (2) experimenting with AI technologies to determine their necessity and fit, and (3) critically assessing the capabilities and limitations of AI systems.
☆ Benchmarking World-Model Learning
Model-learning agents should gather information to learn world models that support many downstream tasks and inferences, such as predicting unobserved states, estimating near- and far-term consequences of actions, planning action sequences, and detecting changes in dynamics. Current methods for learning and evaluating world models diverge from this goal: training and evaluation are anchored to next-frame prediction, and success is scored by reward maximization in the same environment. We propose WorldTest, a protocol to evaluate model-learning agents that separates reward-free interaction from a scored test phase in a different but related environment. WorldTest is open-ended$\unicode{x2014}$models should support many different tasks unknown ahead of time$\unicode{x2014}$and agnostic to model representation, allowing comparison across approaches. We instantiated WorldTest with AutumnBench, a suite of 43 interactive grid-world environments and 129 tasks across three families: masked-frame prediction, planning, and predicting changes to the causal dynamics. We compared 517 human participants and three frontier models on AutumnBench. We found that humans outperform the models, and scaling compute improves performance only in some environments but not others. WorldTest provides a novel template$\unicode{x2014}$reward-free exploration, derived tests, and behavior-based scoring$\unicode{x2014}$to evaluate what agents learn about environment dynamics, and AutumnBench exposes significant headroom in world-model learning.
comment: 30 pages, 10 figures
☆ AdaSPEC: Selective Knowledge Distillation for Efficient Speculative Decoders
Speculative Decoding (SD) accelerates large language model inference by employing a small draft model to generate predictions, which are then verified by a larger target model. The effectiveness of SD hinges on the alignment between these models, which is typically enhanced by Knowledge Distillation (KD). However, conventional KD methods aim to minimize the KL divergence between the draft and target models across all tokens, a goal that is misaligned with the true objective of SD, which is to maximize token acceptance rate. Therefore, draft models often struggle to fully assimilate the target model's knowledge due to capacity constraints, leading to suboptimal performance. To address this challenge, we propose AdaSPEC, a novel method that incorporates selective token filtering into the KD process. AdaSPEC utilizes a reference model to identify and filter out difficult-to-fit tokens, enabling the distillation of a draft model that better aligns with the target model on simpler tokens. This approach improves the overall token acceptance rate without compromising generation quality. We evaluate AdaSPEC across diverse tasks, including arithmetic reasoning, instruction-following, coding, and summarization, using model configurations of 31M/1.4B and 350M/2.7B parameters. Our results demonstrate that AdaSPEC consistently outperforms the state-of-the-art DistillSpec method, achieving higher acceptance rates across all tasks (up to 15\%). The code is publicly available at https://github.com/yuezhouhu/adaspec.
☆ Beyond Reactivity: Measuring Proactive Problem Solving in LLM Agents
LLM-based agents are increasingly moving towards proactivity: rather than awaiting instruction, they exercise agency to anticipate user needs and solve them autonomously. However, evaluating proactivity is challenging; current benchmarks are constrained to localized context, limiting their ability to test reasoning across sources and longer time horizons. To address this gap, we present PROBE (Proactive Resolution Of BottlEnecks). PROBE decomposes proactivity as a pipeline of three core capabilities: (1) searching for unspecified issues, (2) identifying specific bottlenecks, and (3) executing appropriate resolutions. We apply PROBE to evaluate leading LLMs and popular agentic frameworks, showing that even state-of-the-art models struggle to solve this benchmark. Computing our consistent measurements across frontier LLMs and agents, we find that the best end-to-end performance of 40% is achieved by both GPT-5 and Claude Opus-4.1. Additionally, we demonstrate the relative capabilities of each model and analyze mutual failure modes. Our results highlight the current limitations of autonomous action in agentic systems, and expose promising future research directions.
☆ SmartSwitch: Advancing LLM Reasoning by Overcoming Underthinking via Promoting Deeper Thought Exploration
The long chain-of-thought (LongCoT) capability is central to the recent breakthroughs achieved by large language models in complex reasoning tasks. However, the accompanying issue of ''underthinking'', where models exhibit shallow reasoning by frequently switching thoughts without sufficient exploration, limits both performance and token efficiency. To address this problem, we propose a simple yet effective reasoning strategy: the SmartSwitch inference framework. This framework can be easily integrated into any large language model as a plug-and-play solution, continuously monitoring the model's reasoning process to detect underthinking and guide it toward deeper exploration of promising but overlooked thoughts. Specifically, the perception module identifies points where thoughts switch and evaluates the potential of the preceding thought using an off-the-shelf process reward model (PRM). If a high-potential thought is found to be prematurely abandoned, the intervention module interrupts the ongoing inference, backtracks to the point before the switch, and inserts a "deepening prompt" to encourage further exploration along that promising path. Extensive experiments on challenging mathematical reasoning benchmarks demonstrate that our method significantly enhances the performance of various large language models of different sizes.
comment: Code: https://github.com/dvlab-research/SmartSwitch
☆ A Survey on Cache Methods in Diffusion Models: Toward Efficient Multi-Modal Generation
Diffusion Models have become a cornerstone of modern generative AI for their exceptional generation quality and controllability. However, their inherent \textit{multi-step iterations} and \textit{complex backbone networks} lead to prohibitive computational overhead and generation latency, forming a major bottleneck for real-time applications. Although existing acceleration techniques have made progress, they still face challenges such as limited applicability, high training costs, or quality degradation. Against this backdrop, \textbf{Diffusion Caching} offers a promising training-free, architecture-agnostic, and efficient inference paradigm. Its core mechanism identifies and reuses intrinsic computational redundancies in the diffusion process. By enabling feature-level cross-step reuse and inter-layer scheduling, it reduces computation without modifying model parameters. This paper systematically reviews the theoretical foundations and evolution of Diffusion Caching and proposes a unified framework for its classification and analysis. Through comparative analysis of representative methods, we show that Diffusion Caching evolves from \textit{static reuse} to \textit{dynamic prediction}. This trend enhances caching flexibility across diverse tasks and enables integration with other acceleration techniques such as sampling optimization and model distillation, paving the way for a unified, efficient inference framework for future multimodal and interactive applications. We argue that this paradigm will become a key enabler of real-time and efficient generative AI, injecting new vitality into both theory and practice of \textit{Efficient Generative Intelligence}.
comment: 22 pages,2 figures
☆ Learning Affordances at Inference-Time for Vision-Language-Action Models
Solving complex real-world control tasks often takes multiple tries: if we fail at first, we reflect on what went wrong, and change our strategy accordingly to avoid making the same mistake. In robotics, Vision-Language-Action models (VLAs) offer a promising path towards solving complex control tasks, but lack the ability to contextually and dynamically readjust behavior when they fail to accomplish a task. In this work, we introduce Learning from Inference-Time Execution (LITEN), which connects a VLA low-level policy to a high-level VLM that conditions on past experiences by including them in-context, allowing it to learn the affordances and capabilities of the low-level VLA. Our approach iterates between a reasoning phase that generates and executes plans for the low-level VLA, and an assessment phase that reflects on the resulting execution and draws useful conclusions to be included in future reasoning contexts. Unlike similar approaches to self-refinement in non-robotics domains, LITEN must reflect on unstructured real-world robot trajectories (e.g., raw videos), which requires structured guiderails during assessment. Our experimental results demonstrate LITEN is able to effectively learn from past experience to generate plans that use high-affordance instructions to accomplish long-horizon tasks.
comment: 7 pages and appendix
☆ Misalignment Bounty: Crowdsourcing AI Agent Misbehavior
Advanced AI systems sometimes act in ways that differ from human intent. To gather clear, reproducible examples, we ran the Misalignment Bounty: a crowdsourced project that collected cases of agents pursuing unintended or unsafe goals. The bounty received 295 submissions, of which nine were awarded. This report explains the program's motivation and evaluation criteria, and walks through the nine winning submissions step by step.
☆ Memo: Training Memory-Efficient Embodied Agents with Reinforcement Learning NeurIPS 2025
To enable embodied agents to operate effectively over extended timeframes, it is crucial to develop models that form and access memories to stay contextualized in their environment. In the current paradigm of training transformer-based policies for embodied sequential decision-making tasks, visual inputs often overwhelm the context limits of transformers, while humans can maintain and utilize a lifetime of experience compressed as memories. Significant compression is possible in principle, as much of the input is irrelevant and can be abstracted. However, existing approaches predominantly focus on either recurrent models with fixed-size memory or transformers with full-context reliance. In this work, we propose Memo, a transformer-based architecture and training recipe for reinforcement learning (RL) on memory-intensive, long-horizon tasks. Memo incorporates the creation and retrieval of memory by interleaving periodic summarization tokens with the inputs of a model during training. We demonstrate Memo's effectiveness on a gridworld meta-RL benchmark and a multi-object navigation task in photo-realistic indoor settings. Memo outperforms naive long-context transformer baselines while being more compute and storage efficient. Additionally, Memo generalizes better to longer contexts at inference time and remains robust in streaming settings, where historical context must be truncated to fit inference constraints.
comment: Accepted for Spotlight Presentation at NeurIPS 2025
☆ Enabling Granular Subgroup Level Model Evaluations by Generating Synthetic Medical Time Series
We present a novel framework for leveraging synthetic ICU time-series data not only to train but also to rigorously and trustworthily evaluate predictive models, both at the population level and within fine-grained demographic subgroups. Building on prior diffusion and VAE-based generators (TimeDiff, HealthGen, TimeAutoDiff), we introduce \textit{Enhanced TimeAutoDiff}, which augments the latent diffusion objective with distribution-alignment penalties. We extensively benchmark all models on MIMIC-III and eICU, on 24-hour mortality and binary length-of-stay tasks. Our results show that Enhanced TimeAutoDiff reduces the gap between real-on-synthetic and real-on-real evaluation (``TRTS gap'') by over 70\%, achieving $\Delta_{TRTS} \leq 0.014$ AUROC, while preserving training utility ($\Delta_{TSTR} \approx 0.01$). Crucially, for 32 intersectional subgroups, large synthetic cohorts cut subgroup-level AUROC estimation error by up to 50\% relative to small real test sets, and outperform them in 72--84\% of subgroups. This work provides a practical, privacy-preserving roadmap for trustworthy, granular model evaluation in critical care, enabling robust and reliable performance analysis across diverse patient populations without exposing sensitive EHR data, contributing to the overall trustworthiness of Medical AI.
☆ RLIE: Rule Generation with Logistic Regression, Iterative Refinement, and Evaluation for Large Language Models
Large Language Models (LLMs) can propose rules in natural language, sidestepping the need for a predefined predicate space in traditional rule learning. Yet many LLM-based approaches ignore interactions among rules, and the opportunity to couple LLMs with probabilistic rule learning for robust inference remains underexplored. We present RLIE, a unified framework that integrates LLMs with probabilistic modeling to learn a set of weighted rules. RLIE has four stages: (1) Rule generation, where an LLM proposes and filters candidates; (2) Logistic regression, which learns probabilistic weights for global selection and calibration; (3) Iterative refinement, which updates the rule set using prediction errors; and (4) Evaluation, which compares the weighted rule set as a direct classifier with methods that inject rules into an LLM. We evaluate multiple inference strategies on real-world datasets. Applying rules directly with their learned weights yields superior performance, whereas prompting LLMs with the rules, weights, and logistic-model outputs surprisingly degrades accuracy. This supports the view that LLMs excel at semantic generation and interpretation but are less reliable for precise probabilistic integration. RLIE clarifies the potential and limitations of LLMs for inductive reasoning and couples them with classic probabilistic rule combination methods to enable more reliable neuro-symbolic reasoning.
☆ Do Prompts Reshape Representations? An Empirical Study of Prompting Effects on Embeddings
Prompting is a common approach for leveraging LMs in zero-shot settings. However, the underlying mechanisms that enable LMs to perform diverse tasks without task-specific supervision remain poorly understood. Studying the relationship between prompting and the quality of internal representations can shed light on how pre-trained embeddings may support in-context task solving. In this empirical study, we conduct a series of probing experiments on prompt embeddings, analyzing various combinations of prompt templates for zero-shot classification. Our findings show that while prompting affects the quality of representations, these changes do not consistently correlate with the relevance of the prompts to the target task. This result challenges the assumption that more relevant prompts necessarily lead to better representations. We further analyze potential factors that may contribute to this unexpected behavior.
☆ Toward Agentic Software Engineering Beyond Code: Framing Vision, Values, and Vocabulary
Agentic AI is poised to usher in a seismic paradigm shift in Software Engineering (SE). As technologists rush head-along to make agentic AI a reality, SE researchers are driven to establish agentic SE as a research area. While early visions of agentic SE are primarily focused on code-related activities, early empirical evidence calls for a consideration of a range of socio-technical concerns to make it work in practice. This paper contributes to the emerging community vision by: (a) recommending an expansion of its scope beyond code, toward a 'whole of process' vision, grounding it in SE foundations and evolution and emerging agentic SE frameworks, (b) proposing a preliminary set of values and principles to guide efforts, and (c) sharing guidance on designing/using well-defined vocabulary for agentic SE. It is hoped that these ideas will encourage community collaborations and steer the SE community towards laying strong foundations of agentic SE so its not only inevitable but also deliberate and desirable in the long run.
comment: 5 pages
☆ Serverless GPU Architecture for Enterprise HR Analytics: A Production-Scale BDaaS Implementation IEEE
Industrial and government organizations increasingly depend on data-driven analytics for workforce, finance, and regulated decision processes, where timeliness, cost efficiency, and compliance are critical. Distributed frameworks such as Spark and Flink remain effective for massive-scale batch or streaming analytics but introduce coordination complexity and auditing overheads that misalign with moderate-scale, latency-sensitive inference. Meanwhile, cloud providers now offer serverless GPUs, and models such as TabNet enable interpretable tabular ML, motivating new deployment blueprints for regulated environments. In this paper, we present a production-oriented Big Data as a Service (BDaaS) blueprint that integrates a single-node serverless GPU runtime with TabNet. The design leverages GPU acceleration for throughput, serverless elasticity for cost reduction, and feature-mask interpretability for IL4/FIPS compliance. We conduct benchmarks on the HR, Adult, and BLS datasets, comparing our approach against Spark and CPU baselines. Our results show that GPU pipelines achieve up to 4.5x higher throughput, 98x lower latency, and 90% lower cost per 1K inferences compared to Spark baselines, while compliance mechanisms add only ~5.7 ms latency with p99 < 22 ms. Interpretability remains stable under peak load, ensuring reliable auditability. Taken together, these findings provide a compliance-aware benchmark, a reproducible Helm-packaged blueprint, and a decision framework that demonstrate the practicality of secure, interpretable, and cost-efficient serverless GPU analytics for regulated enterprise and government settings.
comment: 10 pages, 7 figures, 4 tables. Accepted to IEEE BigData 2025
☆ Are Large Language Models Sensitive to the Motives Behind Communication? NeurIPS 2025
Human communication is motivated: people speak, write, and create content with a particular communicative intent in mind. As a result, information that large language models (LLMs) and AI agents process is inherently framed by humans' intentions and incentives. People are adept at navigating such nuanced information: we routinely identify benevolent or self-serving motives in order to decide what statements to trust. For LLMs to be effective in the real world, they too must critically evaluate content by factoring in the motivations of the source -- for instance, weighing the credibility of claims made in a sales pitch. In this paper, we undertake a comprehensive study of whether LLMs have this capacity for motivational vigilance. We first employ controlled experiments from cognitive science to verify that LLMs' behavior is consistent with rational models of learning from motivated testimony, and find they successfully discount information from biased sources in a human-like manner. We then extend our evaluation to sponsored online adverts, a more naturalistic reflection of LLM agents' information ecosystems. In these settings, we find that LLMs' inferences do not track the rational models' predictions nearly as closely -- partly due to additional information that distracts them from vigilance-relevant considerations. However, a simple steering intervention that boosts the salience of intentions and incentives substantially increases the correspondence between LLMs and the rational model. These results suggest that LLMs possess a basic sensitivity to the motivations of others, but generalizing to novel real-world settings will require further improvements to these models.
comment: NeurIPS 2025
☆ Directive, Metacognitive or a Blend of Both? A Comparison of AI-Generated Feedback Types on Student Engagement, Confidence, and Outcomes
Feedback is one of the most powerful influences on student learning, with extensive research examining how best to implement it in educational settings. Increasingly, feedback is being generated by artificial intelligence (AI), offering scalable and adaptive responses. Two widely studied approaches are directive feedback, which gives explicit explanations and reduces cognitive load to speed up learning, and metacognitive feedback which prompts learners to reflect, track their progress, and develop self-regulated learning (SRL) skills. While both approaches have clear theoretical advantages, their comparative effects on engagement, confidence, and quality of work remain underexplored. This study presents a semester-long randomised controlled trial with 329 students in an introductory design and programming course using an adaptive educational platform. Participants were assigned to receive directive, metacognitive, or hybrid AI-generated feedback that blended elements of both directive and metacognitive feedback. Results showed that revision behaviour differed across feedback conditions, with Hybrid prompting the most revisions compared to Directive and Metacognitive. Confidence ratings were uniformly high, and resource quality outcomes were comparable across conditions. These findings highlight the promise of AI in delivering feedback that balances clarity with reflection. Hybrid approaches, in particular, show potential to combine actionable guidance for immediate improvement with opportunities for self-reflection and metacognitive growth.
☆ I Spy With My Model's Eye: Visual Search as a Behavioural Test for MLLMs
Multimodal large language models (MLLMs) achieve strong performance on vision-language tasks, yet their visual processing is opaque. Most black-box evaluations measure task accuracy, but reveal little about underlying mechanisms. Drawing on cognitive psychology, we adapt classic visual search paradigms -- originally developed to study human perception -- to test whether MLLMs exhibit the ``pop-out'' effect, where salient visual features are detected independently of distractor set size. Using controlled experiments targeting colour, size and lighting features, we find that advanced MLLMs exhibit human-like pop-out effects in colour or size-based disjunctive (single feature) search, as well as capacity limits for conjunctive (multiple feature) search. We also find evidence to suggest that MLLMs, like humans, incorporate natural scene priors such as lighting direction into object representations. We reinforce our findings using targeted fine-tuning and mechanistic interpretability analyses. Our work shows how visual search can serve as a cognitively grounded diagnostic tool for evaluating perceptual capabilities in MLLMs.
comment: Preprint
☆ Study of Training Dynamics for Memory-Constrained Fine-Tuning
Memory-efficient training of deep neural networks has become increasingly important as models grow larger while deployment environments impose strict resource constraints. We propose TraDy, a novel transfer learning scheme leveraging two key insights: layer importance for updates is architecture-dependent and determinable a priori, while dynamic stochastic channel selection provides superior gradient approximation compared to static approaches. We introduce a dynamic channel selection approach that stochastically resamples channels between epochs within preselected layers. Extensive experiments demonstrate TraDy achieves state-of-the-art performance across various downstream tasks and architectures while maintaining strict memory constraints, achieving up to 99% activation sparsity, 95% weight derivative sparsity, and 97% reduction in FLOPs for weight derivative computation.
☆ Explainable e-sports win prediction through Machine Learning classification in streaming
The increasing number of spectators and players in e-sports, along with the development of optimized communication solutions and cloud computing technology, has motivated the constant growth of the online game industry. Even though Artificial Intelligence-based solutions for e-sports analytics are traditionally defined as extracting meaningful patterns from related data and visualizing them to enhance decision-making, most of the effort in professional winning prediction has been focused on the classification aspect from a batch perspective, also leaving aside the visualization techniques. Consequently, this work contributes to an explainable win prediction classification solution in streaming in which input data is controlled over several sliding windows to reflect relevant game changes. Experimental results attained an accuracy higher than 90 %, surpassing the performance of competing solutions in the literature. Ultimately, our system can be leveraged by ranking and recommender systems for informed decision-making, thanks to the explainability module, which fosters trust in the outcome predictions.
☆ Unraveling Emotions with Pre-Trained Models
Transformer models have significantly advanced the field of emotion recognition. However, there are still open challenges when exploring open-ended queries for Large Language Models (LLMs). Although current models offer good results, automatic emotion analysis in open texts presents significant challenges, such as contextual ambiguity, linguistic variability, and difficulty interpreting complex emotional expressions. These limitations make the direct application of generalist models difficult. Accordingly, this work compares the effectiveness of fine-tuning and prompt engineering in emotion detection in three distinct scenarios: (i) performance of fine-tuned pre-trained models and general-purpose LLMs using simple prompts; (ii) effectiveness of different emotion prompt designs with LLMs; and (iii) impact of emotion grouping techniques on these models. Experimental tests attain metrics above 70% with a fine-tuned pre-trained model for emotion recognition. Moreover, the findings highlight that LLMs require structured prompt engineering and emotion grouping to enhance their performance. These advancements improve sentiment analysis, human-computer interaction, and understanding of user behavior across various domains.
☆ A Graph Engine for Guitar Chord-Tone Soloing Education
We present a graph-based engine for computing chord tone soloing suggestions for guitar students. Chord tone soloing is a fundamental practice for improvising over a chord progression, where the instrumentalist uses only the notes contained in the current chord. This practice is a building block for all advanced jazz guitar theory but is difficult to learn and practice. First, we discuss methods for generating chord-tone arpeggios. Next, we construct a weighted graph where each node represents a chord tone arpeggio for a chord in the progression. Then, we calculate the edge weight between each consecutive chord's nodes in terms of optimal transition tones. We then find the shortest path through this graph and reconstruct a chord-tone soloing line. Finally, we discuss a user-friendly system to handle input and output to this engine for guitar students to practice chord tone soloing.
comment: ICMC 2025
☆ AgentSense: LLMs Empower Generalizable and Explainable Web-Based Participatory Urban Sensing
Web-based participatory urban sensing has emerged as a vital approach for modern urban management by leveraging mobile individuals as distributed sensors. However, existing urban sensing systems struggle with limited generalization across diverse urban scenarios and poor interpretability in decision-making. In this work, we introduce AgentSense, a hybrid, training-free framework that integrates large language models (LLMs) into participatory urban sensing through a multi-agent evolution system. AgentSense initially employs classical planner to generate baseline solutions and then iteratively refines them to adapt sensing task assignments to dynamic urban conditions and heterogeneous worker preferences, while producing natural language explanations that enhance transparency and trust. Extensive experiments across two large-scale mobility datasets and seven types of dynamic disturbances demonstrate that AgentSense offers distinct advantages in adaptivity and explainability over traditional methods. Furthermore, compared to single-agent LLM baselines, our approach outperforms in both performance and robustness, while delivering more reasonable and transparent explanations. These results position AgentSense as a significant advancement towards deploying adaptive and explainable urban sensing systems on the web.
comment: 13 pages, 10 pages
☆ From Forecasting to Planning: Policy World Model for Collaborative State-Action Prediction
Despite remarkable progress in driving world models, their potential for autonomous systems remains largely untapped: the world models are mostly learned for world simulation and decoupled from trajectory planning. While recent efforts aim to unify world modeling and planning in a single framework, the synergistic facilitation mechanism of world modeling for planning still requires further exploration. In this work, we introduce a new driving paradigm named Policy World Model (PWM), which not only integrates world modeling and trajectory planning within a unified architecture, but is also able to benefit planning using the learned world knowledge through the proposed action-free future state forecasting scheme. Through collaborative state-action prediction, PWM can mimic the human-like anticipatory perception, yielding more reliable planning performance. To facilitate the efficiency of video forecasting, we further introduce a dynamically enhanced parallel token generation mechanism, equipped with a context-guided tokenizer and an adaptive dynamic focal loss. Despite utilizing only front camera input, our method matches or exceeds state-of-the-art approaches that rely on multi-view and multi-modal inputs. Code and model weights will be released at https://github.com/6550Zhao/Policy-World-Model.
comment: Accepted by NuerIPS 2025 (Poster)
☆ Style Attack Disguise: When Fonts Become a Camouflage for Adversarial Intent
With social media growth, users employ stylistic fonts and font-like emoji to express individuality, creating visually appealing text that remains human-readable. However, these fonts introduce hidden vulnerabilities in NLP models: while humans easily read stylistic text, models process these characters as distinct tokens, causing interference. We identify this human-model perception gap and propose a style-based attack, Style Attack Disguise (SAD). We design two sizes: light for query efficiency and strong for superior attack performance. Experiments on sentiment classification and machine translation across traditional models, LLMs, and commercial services demonstrate SAD's strong attack performance. We also show SAD's potential threats to multimodal tasks including text-to-image and text-to-speech generation.
☆ HSCodeComp: A Realistic and Expert-level Benchmark for Deep Search Agents in Hierarchical Rule Application
Effective deep search agents must not only access open-domain and domain-specific knowledge but also apply complex rules-such as legal clauses, medical manuals and tariff rules. These rules often feature vague boundaries and implicit logic relationships, making precise application challenging for agents. However, this critical capability is largely overlooked by current agent benchmarks. To fill this gap, we introduce HSCodeComp, the first realistic, expert-level e-commerce benchmark designed to evaluate deep search agents in hierarchical rule application. In this task, the deep reasoning process of agents is guided by these rules to predict 10-digit Harmonized System Code (HSCode) of products with noisy but realistic descriptions. These codes, established by the World Customs Organization, are vital for global supply chain efficiency. Built from real-world data collected from large-scale e-commerce platforms, our proposed HSCodeComp comprises 632 product entries spanning diverse product categories, with these HSCodes annotated by several human experts. Extensive experimental results on several state-of-the-art LLMs, open-source, and closed-source agents reveal a huge performance gap: best agent achieves only 46.8% 10-digit accuracy, far below human experts at 95.0%. Besides, detailed analysis demonstrates the challenges of hierarchical rule application, and test-time scaling fails to improve performance further.
☆ Human-Agent Collaborative Paper-to-Page Crafting for Under $0.1
In the quest for scientific progress, communicating research is as vital as the discovery itself. Yet, researchers are often sidetracked by the manual, repetitive chore of building project webpages to make their dense papers accessible. While automation has tackled static slides and posters, the dynamic, interactive nature of webpages has remained an unaddressed challenge. To bridge this gap, we reframe the problem, arguing that the solution lies not in a single command, but in a collaborative, hierarchical process. We introduce $\textbf{AutoPage}$, a novel multi-agent system that embodies this philosophy. AutoPage deconstructs paper-to-page creation into a coarse-to-fine pipeline from narrative planning to multimodal content generation and interactive rendering. To combat AI hallucination, dedicated "Checker" agents verify each step against the source paper, while optional human checkpoints ensure the final product aligns perfectly with the author's vision, transforming the system from a mere tool into a powerful collaborative assistant. To rigorously validate our approach, we also construct $\textbf{PageBench}$, the first benchmark for this new task. Experiments show AutoPage not only generates high-quality, visually appealing pages but does so with remarkable efficiency in under 15 minutes for less than \$0.1. Code and dataset will be released at $\href{https://mqleet.github.io/AutoPage_ProjectPage/}{Webpage}$.
☆ XBench: A Comprehensive Benchmark for Visual-Language Explanations in Chest Radiography
Vision-language models (VLMs) have recently shown remarkable zero-shot performance in medical image understanding, yet their grounding ability, the extent to which textual concepts align with visual evidence, remains underexplored. In the medical domain, however, reliable grounding is essential for interpretability and clinical adoption. In this work, we present the first systematic benchmark for evaluating cross-modal interpretability in chest X-rays across seven CLIP-style VLM variants. We generate visual explanations using cross-attention and similarity-based localization maps, and quantitatively assess their alignment with radiologist-annotated regions across multiple pathologies. Our analysis reveals that: (1) while all VLM variants demonstrate reasonable localization for large and well-defined pathologies, their performance substantially degrades for small or diffuse lesions; (2) models that are pretrained on chest X-ray-specific datasets exhibit improved alignment compared to those trained on general-domain data. (3) The overall recognition ability and grounding ability of the model are strongly correlated. These findings underscore that current VLMs, despite their strong recognition ability, still fall short in clinically reliable grounding, highlighting the need for targeted interpretability benchmarks before deployment in medical practice. XBench code is available at https://github.com/Roypic/Benchmarkingattention
☆ A Goal-Driven Survey on Root Cause Analysis
Root Cause Analysis (RCA) is a crucial aspect of incident management in large-scale cloud services. While the term root cause analysis or RCA has been widely used, different studies formulate the task differently. This is because the term "RCA" implicitly covers tasks with distinct underlying goals. For instance, the goal of localizing a faulty service for rapid triage is fundamentally different from identifying a specific functional bug for a definitive fix. However, previous surveys have largely overlooked these goal-based distinctions, conventionally categorizing papers by input data types (e.g., metric-based vs. trace-based methods). This leads to the grouping of works with disparate objectives, thereby obscuring the true progress and gaps in the field. Meanwhile, the typical audience of an RCA survey is either laymen who want to know the goals and big picture of the task or RCA researchers who want to figure out past research under the same task formulation. Thus, an RCA survey that organizes the related papers according to their goals is in high demand. To this end, this paper presents a goal-driven framework that effectively categorizes and integrates 135 papers on RCA in the context of cloud incident management based on their diverse goals, spanning the period from 2014 to 2025. In addition to the goal-driven categorization, it discusses the ultimate goal of all RCA papers as an umbrella covering different RCA formulations. Moreover, the paper discusses open challenges and future directions in RCA.
☆ Detecting Latin in Historical Books with Large Language Models: A Multimodal Benchmark
This paper presents a novel task of extracting Latin fragments from mixed-language historical documents with varied layouts. We benchmark and evaluate the performance of large foundation models against a multimodal dataset of 724 annotated pages. The results demonstrate that reliable Latin detection with contemporary models is achievable. Our study provides the first comprehensive analysis of these models' capabilities and limits for this task.
comment: Under review. Both the dataset and code will be published
☆ Multi-modal Co-learning for Earth Observation: Enhancing single-modality models via modality collaboration
Multi-modal co-learning is emerging as an effective paradigm in machine learning, enabling models to collaboratively learn from different modalities to enhance single-modality predictions. Earth Observation (EO) represents a quintessential domain for multi-modal data analysis, wherein diverse remote sensors collect data to sense our planet. This unprecedented volume of data introduces novel challenges. Specifically, the access to the same sensor modalities at both training and inference stages becomes increasingly complex based on real-world constraints affecting remote sensing platforms. In this context, multi-modal co-learning presents a promising strategy to leverage the vast amount of sensor-derived data available at the training stage to improve single-modality models for inference-time deployment. Most current research efforts focus on designing customized solutions for either particular downstream tasks or specific modalities available at the inference stage. To address this, we propose a novel multi-modal co-learning framework capable of generalizing across various tasks without targeting a specific modality for inference. Our approach combines contrastive and modality discriminative learning together to guide single-modality models to structure the internal model manifold into modality-shared and modality-specific information. We evaluate our framework on four EO benchmarks spanning classification and regression tasks across different sensor modalities, where only one of the modalities available during training is accessible at inference time. Our results demonstrate consistent predictive improvements over state-of-the-art approaches from the recent machine learning and computer vision literature, as well as EO-specific methods. The obtained findings validate our framework in the single-modality inference scenarios across a diverse range of EO applications.
comment: Accepted at the Machine Learning journal, CfP: Discovery Science 2024
☆ DAIL: Beyond Task Ambiguity for Language-Conditioned Reinforcement Learning
Comprehending natural language and following human instructions are critical capabilities for intelligent agents. However, the flexibility of linguistic instructions induces substantial ambiguity across language-conditioned tasks, severely degrading algorithmic performance. To address these limitations, we present a novel method named DAIL (Distributional Aligned Learning), featuring two key components: distributional policy and semantic alignment. Specifically, we provide theoretical results that the value distribution estimation mechanism enhances task differentiability. Meanwhile, the semantic alignment module captures the correspondence between trajectories and linguistic instructions. Extensive experimental results on both structured and visual observation benchmarks demonstrate that DAIL effectively resolves instruction ambiguities, achieving superior performance to baseline methods. Our implementation is available at https://github.com/RunpengXie/Distributional-Aligned-Learning.
comment: Website at: https://github.com/RunpengXie/Distributional-Aligned-Learning
☆ A Matter of Time: Revealing the Structure of Time in Vision-Language Models
Large-scale vision-language models (VLMs) such as CLIP have gained popularity for their generalizable and expressive multimodal representations. By leveraging large-scale training data with diverse textual metadata, VLMs acquire open-vocabulary capabilities, solving tasks beyond their training scope. This paper investigates the temporal awareness of VLMs, assessing their ability to position visual content in time. We introduce TIME10k, a benchmark dataset of over 10,000 images with temporal ground truth, and evaluate the time-awareness of 37 VLMs by a novel methodology. Our investigation reveals that temporal information is structured along a low-dimensional, non-linear manifold in the VLM embedding space. Based on this insight, we propose methods to derive an explicit ``timeline'' representation from the embedding space. These representations model time and its chronological progression and thereby facilitate temporal reasoning tasks. Our timeline approaches achieve competitive to superior accuracy compared to a prompt-based baseline while being computationally efficient. All code and data are available at https://tekayanidham.github.io/timeline-page/.
☆ Demonstrating Real Advantage of Machine-Learning-Enhanced Monte Carlo for Combinatorial Optimization
Combinatorial optimization problems are central to both practical applications and the development of optimization methods. While classical and quantum algorithms have been refined over decades, machine learning-assisted approaches are comparatively recent and have not yet consistently outperformed simple, state-of-the-art classical methods. Here, we focus on a class of Quadratic Unconstrained Binary Optimization (QUBO) problems, specifically the challenge of finding minimum energy configurations in three-dimensional Ising spin glasses. We use a Global Annealing Monte Carlo algorithm that integrates standard local moves with global moves proposed via machine learning. We show that local moves play a crucial role in achieving optimal performance. Benchmarking against Simulated Annealing and Population Annealing, we demonstrate that Global Annealing not only surpasses the performance of Simulated Annealing but also exhibits greater robustness than Population Annealing, maintaining effectiveness across problem hardness and system size without hyperparameter tuning. These results provide, to our knowledge, the first clear and robust evidence that a machine learning-assisted optimization method can exceed the capabilities of classical state-of-the-art techniques in a combinatorial optimization setting.
comment: 13 main pages, 6 main figures. 4 supplementary pages, 2 supplementary figures
☆ Insights into the Unknown: Federated Data Diversity Analysis on Molecular Data
AI methods are increasingly shaping pharmaceutical drug discovery. However, their translation to industrial applications remains limited due to their reliance on public datasets, lacking scale and diversity of proprietary pharmaceutical data. Federated learning (FL) offers a promising approach to integrate private data into privacy-preserving, collaborative model training across data silos. This federated data access complicates important data-centric tasks such as estimating dataset diversity, performing informed data splits, and understanding the structure of the combined chemical space. To address this gap, we investigate how well federated clustering methods can disentangle and represent distributed molecular data. We benchmark three approaches, Federated kMeans (Fed-kMeans), Federated Principal Component Analysis combined with Fed-kMeans (Fed-PCA+Fed-kMeans), and Federated Locality-Sensitive Hashing (Fed-LSH), against their centralized counterparts on eight diverse molecular datasets. Our evaluation utilizes both, standard mathematical and a chemistry-informed evaluation metrics, SF-ICF, that we introduce in this work. The large-scale benchmarking combined with an in-depth explainability analysis shows the importance of incorporating domain knowledge through chemistry-informed metrics, and on-client explainability analyses for federated diversity analysis on molecular data.
☆ Optimizing the Unknown: Black Box Bayesian Optimization with Energy-Based Model and Reinforcement Learning NeurIPS 2025
Existing Bayesian Optimization (BO) methods typically balance exploration and exploitation to optimize costly objective functions. However, these methods often suffer from a significant one-step bias, which may lead to convergence towards local optima and poor performance in complex or high-dimensional tasks. Recently, Black-Box Optimization (BBO) has achieved success across various scientific and engineering domains, particularly when function evaluations are costly and gradients are unavailable. Motivated by this, we propose the Reinforced Energy-Based Model for Bayesian Optimization (REBMBO), which integrates Gaussian Processes (GP) for local guidance with an Energy-Based Model (EBM) to capture global structural information. Notably, we define each Bayesian Optimization iteration as a Markov Decision Process (MDP) and use Proximal Policy Optimization (PPO) for adaptive multi-step lookahead, dynamically adjusting the depth and direction of exploration to effectively overcome the limitations of traditional BO methods. We conduct extensive experiments on synthetic and real-world benchmarks, confirming the superior performance of REBMBO. Additional analyses across various GP configurations further highlight its adaptability and robustness.
comment: This paper is accepted by 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
☆ From Prototypes to Sparse ECG Explanations: SHAP-Driven Counterfactuals for Multivariate Time-Series Multi-class Classification
In eXplainable Artificial Intelligence (XAI), instance-based explanations for time series have gained increasing attention due to their potential for actionable and interpretable insights in domains such as healthcare. Addressing the challenges of explainability of state-of-the-art models, we propose a prototype-driven framework for generating sparse counterfactual explanations tailored to 12-lead ECG classification models. Our method employs SHAP-based thresholds to identify critical signal segments and convert them into interval rules, uses Dynamic Time Warping (DTW) and medoid clustering to extract representative prototypes, and aligns these prototypes to query R-peaks for coherence with the sample being explained. The framework generates counterfactuals that modify only 78% of the original signal while maintaining 81.3% validity across all classes and achieving 43% improvement in temporal stability. We evaluate three variants of our approach, Original, Sparse, and Aligned Sparse, with class-specific performance ranging from 98.9% validity for myocardial infarction (MI) to challenges with hypertrophy (HYP) detection (13.2%). This approach supports near realtime generation (< 1 second) of clinically valid counterfactuals and provides a foundation for interactive explanation platforms. Our findings establish design principles for physiologically-aware counterfactual explanations in AI-based diagnosis systems and outline pathways toward user-controlled explanation interfaces for clinical deployment.
☆ Modeling realistic human behavior using generative agents in a multimodal transport system: Software architecture and Application to Toulouse
Modeling realistic human behaviour to understand people's mode choices in order to propose personalised mobility solutions remains challenging. This paper presents an architecture for modeling realistic human mobility behavior in complex multimodal transport systems, demonstrated through a case study in Toulouse, France. We apply Large Language Models (LLMs) within an agent-based simulation to capture decision-making in a real urban setting. The framework integrates the GAMA simulation platform with an LLM-based generative agent, along with General Transit Feed Specification (GTFS) data for public transport, and OpenTripPlanner for multimodal routing. GAMA platform models the interactive transport environment, providing visualization and dynamic agent interactions while eliminating the need to construct the simulation environment from scratch. This design enables a stronger focus on developing generative agents and evaluating their performance in transport decision-making processes. Over a simulated month, results show that agents not only make context-aware transport decisions but also form habits over time. We conclude that combining LLMs with agent-based simulation offers a promising direction for advancing intelligent transportation systems and personalised multimodal mobility solutions. We also discuss some limitations of this approach and outline future work on scaling to larger regions, integrating real-time data, and refining memory models.
☆ CARES: Context-Aware Resolution Selector for VLMs
Large vision-language models (VLMs) commonly process images at native or high resolution to remain effective across tasks. This inflates visual tokens ofter to 97-99% of total tokens, resulting in high compute and latency, even when low-resolution images would suffice. We introduce \emph{CARES}-a \textbf{C}ontext-\textbf{A}ware \textbf{R}esolution \textbf{S}elector, a lightweight preprocessing module that, given an image-query pair, predicts the \emph{minimal} sufficient input resolution. CARES uses a compact VLM (350M) to extract features and predict when a target pretrained VLM's response converges to its peak ability to answer correctly. Though trained as a discrete classifier over a set of optional resolutions, CARES interpolates continuous resolutions at inference for fine-grained control. Across five multimodal benchmarks spanning documents and natural images, as well as diverse target VLMs, CARES preserves task performance while reducing compute by up to 80%.
☆ Using Non-Expert Data to Robustify Imitation Learning via Offline Reinforcement Learning
Imitation learning has proven effective for training robots to perform complex tasks from expert human demonstrations. However, it remains limited by its reliance on high-quality, task-specific data, restricting adaptability to the diverse range of real-world object configurations and scenarios. In contrast, non-expert data -- such as play data, suboptimal demonstrations, partial task completions, or rollouts from suboptimal policies -- can offer broader coverage and lower collection costs. However, conventional imitation learning approaches fail to utilize this data effectively. To address these challenges, we posit that with right design decisions, offline reinforcement learning can be used as a tool to harness non-expert data to enhance the performance of imitation learning policies. We show that while standard offline RL approaches can be ineffective at actually leveraging non-expert data under the sparse data coverage settings typically encountered in the real world, simple algorithmic modifications can allow for the utilization of this data, without significant additional assumptions. Our approach shows that broadening the support of the policy distribution can allow imitation algorithms augmented by offline RL to solve tasks robustly, showing considerably enhanced recovery and generalization behavior. In manipulation tasks, these innovations significantly increase the range of initial conditions where learned policies are successful when non-expert data is incorporated. Moreover, we show that these methods are able to leverage all collected data, including partial or suboptimal demonstrations, to bolster task-directed policy performance. This underscores the importance of algorithmic techniques for using non-expert data for robust policy learning in robotics.
☆ VideoAgentTrek: Computer Use Pretraining from Unlabeled Videos
Training computer-use agents requires massive amounts of GUI interaction data, but manually annotating action trajectories at scale is prohibitively expensive. We present VideoAgentTrek, a scalable pipeline that automatically mines training data from publicly available screen-recorded videos at web scale, eliminating the need for manual annotation. Our approach addresses a key challenge: raw videos contain implicit demonstrations but lack explicit action labels. To solve this, we develop Video2Action, an inverse dynamics module (IDM) with two components: (1) a video grounding model that detects and localizes GUI actions with precise temporal boundaries and context, and (2) an action-content recognizer that extracts structured parameters like click coordinates and typed text with high fidelity. Applied to 39,000 YouTube tutorial videos, our pipeline generates 1.52 million interaction steps automatically. We leverage this data through continued pretraining followed by supervised fine-tuning. On OSWorld-Verified, our approach improves task success rates from 9.3% (SFT-only baseline) to 15.8%, a 70% relative improvement. On AgentNetBench, step accuracy increases from 64.1% to 69.3%. Our results demonstrate that passive internet videos can be transformed into high-quality supervision for computer-use agents, providing a scalable alternative to expensive manual annotation.
comment: 8 pages, 6 figures
☆ KnowMol: Advancing Molecular Large Language Models with Multi-Level Chemical Knowledge
The molecular large language models have garnered widespread attention due to their promising potential on molecular applications. However, current molecular large language models face significant limitations in understanding molecules due to inadequate textual descriptions and suboptimal molecular representation strategies during pretraining. To address these challenges, we introduce KnowMol-100K, a large-scale dataset with 100K fine-grained molecular annotations across multiple levels, bridging the gap between molecules and textual descriptions. Additionally, we propose chemically-informative molecular representation, effectively addressing limitations in existing molecular representation strategies. Building upon these innovations, we develop KnowMol, a state-of-the-art multi-modal molecular large language model. Extensive experiments demonstrate that KnowMol achieves superior performance across molecular understanding and generation tasks. GitHub: https://github.com/yzf-code/KnowMol Huggingface: https://hf.co/datasets/yzf1102/KnowMol-100K
☆ Graph Unlearning Meets Influence-aware Negative Preference Optimization
Recent advancements in graph unlearning models have enhanced model utility by preserving the node representation essentially invariant, while using gradient ascent on the forget set to achieve unlearning. However, this approach causes a drastic degradation in model utility during the unlearning process due to the rapid divergence speed of gradient ascent. In this paper, we introduce \textbf{INPO}, an \textbf{I}nfluence-aware \textbf{N}egative \textbf{P}reference \textbf{O}ptimization framework that focuses on slowing the divergence speed and improving the robustness of the model utility to the unlearning process. Specifically, we first analyze that NPO has slower divergence speed and theoretically propose that unlearning high-influence edges can reduce impact of unlearning. We design an influence-aware message function to amplify the influence of unlearned edges and mitigate the tight topological coupling between the forget set and the retain set. The influence of each edge is quickly estimated by a removal-based method. Additionally, we propose a topological entropy loss from the perspective of topology to avoid excessive information loss in the local structure during unlearning. Extensive experiments conducted on five real-world datasets demonstrate that INPO-based model achieves state-of-the-art performance on all forget quality metrics while maintaining the model's utility. Codes are available at \href{https://github.com/sh-qiangchen/INPO}{https://github.com/sh-qiangchen/INPO}.
☆ A Concrete Roadmap towards Safety Cases based on Chain-of-Thought Monitoring
As AI systems approach dangerous capability levels where inability safety cases become insufficient, we need alternative approaches to ensure safety. This paper presents a roadmap for constructing safety cases based on chain-of-thought (CoT) monitoring in reasoning models and outlines our research agenda. We argue that CoT monitoring might support both control and trustworthiness safety cases. We propose a two-part safety case: (1) establishing that models lack dangerous capabilities when operating without their CoT, and (2) ensuring that any dangerous capabilities enabled by a CoT are detectable by CoT monitoring. We systematically examine two threats to monitorability: neuralese and encoded reasoning, which we categorize into three forms (linguistic drift, steganography, and alien reasoning) and analyze their potential drivers. We evaluate existing and novel techniques for maintaining CoT faithfulness. For cases where models produce non-monitorable reasoning, we explore the possibility of extracting a monitorable CoT from a non-monitorable CoT. To assess the viability of CoT monitoring safety cases, we establish prediction markets to aggregate forecasts on key technical milestones influencing their feasibility.
☆ HybridEP: Scaling Expert Parallelism to Cross-Datacenter Scenario via Hybrid Expert/Data Transmission
Mixture-of-Experts (MoE) has become a popular architecture for scaling large models. However, the rapidly growing scale outpaces model training on a single DC, driving a shift toward a more flexible, cross-DC training paradigm. Under this, Expert Parallelism (EP) of MoE faces significant scalability issues due to the limited cross-DC bandwidth. Specifically, existing EP optimizations attempt to overlap data communication and computation, which has little benefit in low-bandwidth scenarios due to a much longer data communication time. Therefore, the trends of cross-DC EP scaling is fast becoming a critical roadblock to the continued growth of MoE models. To address this, we propose HybridEP, a modeling-guided framework to optimize EP under constrained bandwidth. Our key idea is to dynamically transform the spatial placement of experts to reduce data communication traffic and frequency, thereby minimizing EP's communication overheads. However, it is non-trivial to find the optimal solution because it complicates the original communication pattern by mixing data and expert communication. We therefore build a stream-based model to determine the optimal transmission ratio. Guided by this, we incorporate two techniques: (1) domain-based partition to construct the mapping between hybrid patterns and specific communication topology at GPU level, and (2) parameter-efficient migration to further refine this topology by reducing expert transmission overhead and enlarging the domain size. Combining all these designs, HybridEP can be considered as a more general EP with better scalability. Experimental results show that HybridEP outperforms existing state-of-the-art MoE training systems by up to 5.6x under constrained bandwidth. We further compare HybridEP and EP on large-scale simulations. HybridEP achieves up to 1.45x speedup with 1k DCs under different bandwidths.
☆ Universal Quantitative Abstraction: Categorical Duality and Logical Completeness for Probabilistic Systems
A unified theory of quantitative abstraction is presented for probabilistic systems that links category theory, optimal transport, and quantitative modal logic. At its core is a canonical $ \varepsilon $-quotient endowed with a universal property: among all $ \varepsilon $-abstractions, it is the most informative one that respects a prescribed bound on value loss. This construction induces an adjunction between abstraction and realization functors $ (Q_{\varepsilon} \dashv R_{\varepsilon}) $, established via the Special Adjoint Functor Theorem, revealing a categorical duality between metric structure and logical semantics. A behavioral pseudometric is characterized as the unique fixed point of a Bellman-style operator, with contraction and Lipschitz properties proved in a coalgebraic setting. A quantitative modal $ \mu $-calculus is introduced and shown to be expressively complete for logically representable systems, so that behavioral distance coincides with maximal logical deviation. Compositionality under interface refinement is analyzed, clarifying how abstractions interact across system boundaries. An exact validation suite on finite Markov decision processes corroborates the contraction property, value-loss bounds, stability under perturbation, adversarial distinguishability, and scalability, demonstrating both robustness and computational feasibility. The resulting framework provides principled targets for state aggregation and representation learning, with mathematically precise guarantees for value-function approximation in stochastic domains.
☆ NeSyPr: Neurosymbolic Proceduralization For Efficient Embodied Reasoning NeurIPS 2025
We address the challenge of adopting language models (LMs) for embodied tasks in dynamic environments, where online access to large-scale inference engines or symbolic planners is constrained due to latency, connectivity, and resource limitations. To this end, we present NeSyPr, a novel embodied reasoning framework that compiles knowledge via neurosymbolic proceduralization, thereby equipping LM-based agents with structured, adaptive, and timely reasoning capabilities. In NeSyPr, task-specific plans are first explicitly generated by a symbolic tool leveraging its declarative knowledge. These plans are then transformed into composable procedural representations that encode the plans' implicit production rules, enabling the resulting composed procedures to be seamlessly integrated into the LM's inference process. This neurosymbolic proceduralization abstracts and generalizes multi-step symbolic structured path-finding and reasoning into single-step LM inference, akin to human knowledge compilation. It supports efficient test-time inference without relying on external symbolic guidance, making it well suited for deployment in latency-sensitive and resource-constrained physical systems. We evaluate NeSyPr on the embodied benchmarks PDDLGym, VirtualHome, and ALFWorld, demonstrating its efficient reasoning capabilities over large-scale reasoning models and a symbolic planner, while using more compact LMs.
comment: Accepted at NeurIPS 2025
☆ Neural Variational Dropout Processes ICLR
Learning to infer the conditional posterior model is a key step for robust meta-learning. This paper presents a new Bayesian meta-learning approach called Neural Variational Dropout Processes (NVDPs). NVDPs model the conditional posterior distribution based on a task-specific dropout; a low-rank product of Bernoulli experts meta-model is utilized for a memory-efficient mapping of dropout rates from a few observed contexts. It allows for a quick reconfiguration of a globally learned and shared neural network for new tasks in multi-task few-shot learning. In addition, NVDPs utilize a novel prior conditioned on the whole task data to optimize the conditional \textit{dropout} posterior in the amortized variational inference. Surprisingly, this enables the robust approximation of task-specific dropout rates that can deal with a wide range of functional ambiguities and uncertainties. We compared the proposed method with other meta-learning approaches in the few-shot learning tasks such as 1D stochastic regression, image inpainting, and classification. The results show the excellent performance of NVDPs.
comment: Accepted as a Poster at International Conference on Learning Representations (ICLR) 2022 (Apr 25-29, 2022)
☆ MSC-Bench: A Rigorous Benchmark for Multi-Server Tool Orchestration ACL
We introduce MSC-Bench, a large-scale benchmark for evaluating multi-hop, end-to-end tool orchestration by LLM agents in a hierarchical Model-Context Protocol (MCP) ecosystem. Existing benchmarks often evaluate tools in isolation, ignoring challenges such as functional overlap and cross-server orchestration, leading to overly optimistic assessments. MSC-Bench addresses these gaps by constructing ground truth through 'equal function sets', allowing objective metrics such as F1 score and reducing the dependency on LLM-as-a-judge evaluation. Organized as a five-level curriculum, it systematically tests agent capabilities from single-tool orchestration to complex cross-server planning, and robustness to out-of-scope requests. Experiments reveal that rigid hierarchies can hinder performance without co-designed strategies, and even state-of-the-art agents exhibit systemic weaknesses in robustness. MSC-Bench provides a diagnostic framework to expose these limitations and guide the development of more capable and efficient tool-using agents. The benchmark and resources are publicly available at https://github.com/snooow1029/MSC_Bench.
comment: under ACL Rolling Review 2025
☆ FairNet: Dynamic Fairness Correction without Performance Loss via Contrastive Conditional LoRA
Ensuring fairness in machine learning models is a critical challenge. Existing debiasing methods often compromise performance, rely on static correction strategies, and struggle with data sparsity, particularly within minority groups. Furthermore, their utilization of sensitive attributes is often suboptimal, either depending excessively on complete attribute labeling or disregarding these attributes entirely. To overcome these limitations, we propose FairNet, a novel framework for dynamic, instance-level fairness correction. FairNet integrates a bias detector with conditional low-rank adaptation (LoRA), which enables selective activation of the fairness correction mechanism exclusively for instances identified as biased, and thereby preserve performance on unbiased instances. A key contribution is a new contrastive loss function for training the LoRA module, specifically designed to minimize intra-class representation disparities across different sensitive groups and effectively address underfitting in minority groups. The FairNet framework can flexibly handle scenarios with complete, partial, or entirely absent sensitive attribute labels. Theoretical analysis confirms that, under moderate TPR/FPR for the bias detector, FairNet can enhance the performance of the worst group without diminishing overall model performance, and potentially yield slight performance improvements. Comprehensive empirical evaluations across diverse vision and language benchmarks validate the effectiveness of FairNet.
☆ Monitoring LLM-based Multi-Agent Systems Against Corruptions via Node Evaluation
Large Language Model (LLM)-based Multi-Agent Systems (MAS) have become a popular paradigm of AI applications. However, trustworthiness issues in MAS remain a critical concern. Unlike challenges in single-agent systems, MAS involve more complex communication processes, making them susceptible to corruption attacks. To mitigate this issue, several defense mechanisms have been developed based on the graph representation of MAS, where agents represent nodes and communications form edges. Nevertheless, these methods predominantly focus on static graph defense, attempting to either detect attacks in a fixed graph structure or optimize a static topology with certain defensive capabilities. To address this limitation, we propose a dynamic defense paradigm for MAS graph structures, which continuously monitors communication within the MAS graph, then dynamically adjusts the graph topology, accurately disrupts malicious communications, and effectively defends against evolving and diverse dynamic attacks. Experimental results in increasingly complex and dynamic MAS environments demonstrate that our method significantly outperforms existing MAS defense mechanisms, contributing an effective guardrail for their trustworthy applications. Our code is available at https://github.com/ChengcanWu/Monitoring-LLM-Based-Multi-Agent-Systems.
☆ EchoFake: A Replay-Aware Dataset for Practical Speech Deepfake Detection
The growing prevalence of speech deepfakes has raised serious concerns, particularly in real-world scenarios such as telephone fraud and identity theft. While many anti-spoofing systems have demonstrated promising performance on lab-generated synthetic speech, they often fail when confronted with physical replay attacks-a common and low-cost form of attack used in practical settings. Our experiments show that models trained on existing datasets exhibit severe performance degradation, with average accuracy dropping to 59.6% when evaluated on replayed audio. To bridge this gap, we present EchoFake, a comprehensive dataset comprising more than 120 hours of audio from over 13,000 speakers, featuring both cutting-edge zero-shot text-to-speech (TTS) speech and physical replay recordings collected under varied devices and real-world environmental settings. Additionally, we evaluate three baseline detection models and show that models trained on EchoFake achieve lower average EERs across datasets, indicating better generalization. By introducing more practical challenges relevant to real-world deployment, EchoFake offers a more realistic foundation for advancing spoofing detection methods.
☆ ToMMeR -- Efficient Entity Mention Detection from Large Language Models
Identifying which text spans refer to entities -- mention detection -- is both foundational for information extraction and a known performance bottleneck. We introduce ToMMeR, a lightweight model (<300K parameters) probing mention detection capabilities from early LLM layers. Across 13 NER benchmarks, ToMMeR achieves 93\% recall zero-shot, with over 90\% precision using an LLM as a judge showing that ToMMeR rarely produces spurious predictions despite high recall. Cross-model analysis reveals that diverse architectures (14M-15B parameters) converge on similar mention boundaries (DICE >75\%), confirming that mention detection emerges naturally from language modeling. When extended with span classification heads, ToMMeR achieves near SOTA NER performance (80-87\% F1 on standard benchmarks). Our work provides evidence that structured entity representations exist in early transformer layers and can be efficiently recovered with minimal parameters.
comment: Code is available at https://github.com/VictorMorand/llm2ner
☆ ColorAgent: Building A Robust, Personalized, and Interactive OS Agent
With the advancements in hardware, software, and large language model technologies, the interaction between humans and operating systems has evolved from the command-line interface to the rapidly emerging AI agent interactions. Building an operating system (OS) agent capable of executing user instructions and faithfully following user desires is becoming a reality. In this technical report, we present ColorAgent, an OS agent designed to engage in long-horizon, robust interactions with the environment while also enabling personalized and proactive user interaction. To enable long-horizon interactions with the environment, we enhance the model's capabilities through step-wise reinforcement learning and self-evolving training, while also developing a tailored multi-agent framework that ensures generality, consistency, and robustness. In terms of user interaction, we explore personalized user intent recognition and proactive engagement, positioning the OS agent not merely as an automation tool but as a warm, collaborative partner. We evaluate ColorAgent on the AndroidWorld and AndroidLab benchmarks, achieving success rates of 77.2% and 50.7%, respectively, establishing a new state of the art. Nonetheless, we note that current benchmarks are insufficient for a comprehensive evaluation of OS agents and propose further exploring directions in future work, particularly in the areas of evaluation paradigms, agent collaboration, and security. Our code is available at https://github.com/MadeAgents/mobile-use.
☆ The Massive Legal Embedding Benchmark (MLEB)
We present the Massive Legal Embedding Benchmark (MLEB), the largest, most diverse, and most comprehensive open-source benchmark for legal information retrieval to date. MLEB consists of ten expert-annotated datasets spanning multiple jurisdictions (the US, UK, EU, Australia, Ireland, and Singapore), document types (cases, legislation, regulatory guidance, contracts, and literature), and task types (search, zero-shot classification, and question answering). Seven of the datasets in MLEB were newly constructed in order to fill domain and jurisdictional gaps in the open-source legal information retrieval landscape. We document our methodology in building MLEB and creating the new constituent datasets, and release our code, results, and data openly to assist with reproducible evaluations.
comment: 15 pages, 2 figures
☆ AgenticMath: Enhancing LLM Reasoning via Agentic-based Math Data Generation
The creation of high-quality datasets to improve Large Language Model (LLM) reasoning remains a significant challenge, as current methods often suffer from generating low-quality/incorrect answers and limited information richness from available data sources. To address this, we propose AgenticMath, a novel agentic pipeline for generating high-quality mathematical question-answer pairs to enhance the supervised fine-tuning of LLMs. Our method operates through four stages: (1) Seed Question Filter that selects questions with high information richness, complexity, and clarity; (2) an Agentic Question Rephrase step that employs a multi-agent system to generate diverse, logically consistent paraphrases; (3) an Answer Augment step where rewrite answers using chain-of-thought reasoning to enhance numerical and logical correctness, without reliance on human-provided labels; and (4) a final Question and Answer Evaluation that retains only the most superior pairs. Extensive experiments demonstrate that, fine-tuning 3B-8B parameter LLMs on AgenticMath generated datasets (comprising only 30-60K math samples) achieves competitive or superior performance on diverse in domain and out-of-domain mathematical reasoning benchmarks compared to baselines trained on much more data (e.g., 400K or 2.3M samples). Our work demonstrates that targeted, high-quality data generation is a more efficient path to improving mathematical reasoning in LLMs than large-scale, low-quality alternatives.
comment: Work in progress
☆ M3-SLU: Evaluating Speaker-Attributed Reasoning in Multimodal Large Language Models LREC 2026
We present M3-SLU, a new multimodal large language model (MLLM) benchmark for evaluating multi-speaker, multi-turn spoken language understanding. While recent models show strong performance in speech and text comprehension, they still struggle with speaker-attributed reasoning, the ability to understand who said what and when in natural conversations. M3-SLU is built from four open corpora (CHiME-6, MELD, MultiDialog, and AMI) and comprises over 12,000 validated instances with paired audio, transcripts, and metadata. It includes two tasks: (1) Speaker-Attributed Question Answering and (2) Speaker Attribution via Utterance Matching. We provide baseline results for both cascaded pipelines and end-to-end MLLMs, evaluated using an LLM-as-Judge and accuracy metrics. Results show that while models can capture what was said, they often fail to identify who said it, revealing a key gap in speaker-aware dialogue understanding. M3-SLU offers as a challenging benchmark to advance research in speaker-aware multimodal understanding.
comment: Submitted to LREC 2026. 11 pages, 5 figures
☆ Learning To Defer To A Population With Limited Demonstrations IEEE
This paper addresses the critical data scarcity that hinders the practical deployment of learning to defer (L2D) systems to the population. We introduce a context-aware, semi-supervised framework that uses meta-learning to generate expert-specific embeddings from only a few demonstrations. We demonstrate the efficacy of a dual-purpose mechanism, where these embeddings are used first to generate a large corpus of pseudo-labels for training, and subsequently to enable on-the-fly adaptation to new experts at test-time. The experiment results on three different datasets confirm that a model trained on these synthetic labels rapidly approaches oracle-level performance, validating the data efficiency of our approach. By resolving a key training bottleneck, this work makes adaptive L2D systems more practical and scalable, paving the way for human-AI collaboration in real-world environments. To facilitate reproducibility and address implementation details not covered in the main text, we provide our source code and training configurations at https://github.com/nil123532/learning-to-defer-to-a-population-with-limited-demonstrations.
comment: Accepted to IEEE DICTA 2025 (poster). 7 pages, 2 figures
☆ A New Type of Adversarial Examples
Most machine learning models are vulnerable to adversarial examples, which poses security concerns on these models. Adversarial examples are crafted by applying subtle but intentionally worst-case modifications to examples from the dataset, leading the model to output a different answer from the original example. In this paper, adversarial examples are formed in an exactly opposite manner, which are significantly different from the original examples but result in the same answer. We propose a novel set of algorithms to produce such adversarial examples, including the negative iterative fast gradient sign method (NI-FGSM) and the negative iterative fast gradient method (NI-FGM), along with their momentum variants: the negative momentum iterative fast gradient sign method (NMI-FGSM) and the negative momentum iterative fast gradient method (NMI-FGM). Adversarial examples constructed by these methods could be used to perform an attack on machine learning systems in certain occasions. Moreover, our results show that the adversarial examples are not merely distributed in the neighbourhood of the examples from the dataset; instead, they are distributed extensively in the sample space.
☆ Foundation Model Forecasts: Form and Function
Time-series foundation models (TSFMs) achieve strong forecast accuracy, yet accuracy alone does not determine practical value. The form of a forecast -- point, quantile, parametric, or trajectory ensemble -- fundamentally constrains which operational tasks it can support. We survey recent TSFMs and find that two-thirds produce only point or parametric forecasts, while many operational tasks require trajectory ensembles that preserve temporal dependence. We establish when forecast types can be converted and when they cannot: trajectory ensembles convert to simpler forms via marginalization without additional assumptions, but the reverse requires imposing temporal dependence through copulas or conformal methods. We prove that marginals cannot determine path-dependent event probabilities -- infinitely many joint distributions share identical marginals but yield different answers to operational questions. We map six fundamental forecasting tasks to minimal sufficient forecast types and provide a task-aligned evaluation framework. Our analysis clarifies when forecast type, not accuracy, differentiates practical utility.
comment: 28 pages, 3 figures
☆ To Use or to Refuse? Re-Centering Student Agency with Generative AI in Engineering Design Education IEEE
This pilot study traces students' reflections on the use of AI in a 13-week foundational design course enrolling over 500 first-year engineering and architecture students at the Singapore University of Technology and Design. The course was an AI-enhanced design course, with several interventions to equip students with AI based design skills. Students were required to reflect on whether the technology was used as a tool (instrumental assistant), a teammate (collaborative partner), or neither (deliberate non-use). By foregrounding this three-way lens, students learned to use AI for innovation rather than just automation and to reflect on agency, ethics, and context rather than on prompt crafting alone. Evidence stems from coursework artefacts: thirteen structured reflection spreadsheets and eight illustrated briefs submitted, combined with notes of teachers and researchers. Qualitative coding of these materials reveals shared practices brought about through the inclusion of Gen-AI, including accelerated prototyping, rapid skill acquisition, iterative prompt refinement, purposeful "switch-offs" during user research, and emergent routines for recognizing hallucinations. Unexpectedly, students not only harnessed Gen-AI for speed but (enabled by the tool-teammate-neither triage) also learned to reject its outputs, invent their own hallucination fire-drills, and divert the reclaimed hours into deeper user research, thereby transforming efficiency into innovation. The implications of the approach we explore shows that: we can transform AI uptake into an assessable design habit; that rewarding selective non-use cultivates hallucination-aware workflows; and, practically, that a coordinated bundle of tool access, reflection, role tagging, and public recognition through competition awards allows AI based innovation in education to scale without compromising accountability.
comment: to be published in IEEE TALE 2025
☆ Every Attention Matters: An Efficient Hybrid Architecture for Long-Context Reasoning
In this technical report, we present the Ring-linear model series, specifically including Ring-mini-linear-2.0 and Ring-flash-linear-2.0. Ring-mini-linear-2.0 comprises 16B parameters and 957M activations, while Ring-flash-linear-2.0 contains 104B parameters and 6.1B activations. Both models adopt a hybrid architecture that effectively integrates linear attention and softmax attention, significantly reducing I/O and computational overhead in long-context inference scenarios. Compared to a 32 billion parameter dense model, this series reduces inference cost to 1/10, and compared to the original Ring series, the cost is also reduced by over 50%. Furthermore, through systematic exploration of the ratio between different attention mechanisms in the hybrid architecture, we have identified the currently optimal model structure. Additionally, by leveraging our self-developed high-performance FP8 operator library-linghe, overall training efficiency has been improved by 50%. Benefiting from the high alignment between the training and inference engine operators, the models can undergo long-term, stable, and highly efficient optimization during the reinforcement learning phase, consistently maintaining SOTA performance across multiple challenging complex reasoning benchmarks.
comment: 20 pages, 13 figures
☆ Metadata Extraction Leveraging Large Language Models
The advent of Large Language Models has revolutionized tasks across domains, including the automation of legal document analysis, a critical component of modern contract management systems. This paper presents a comprehensive implementation of LLM-enhanced metadata extraction for contract review, focusing on the automatic detection and annotation of salient legal clauses. Leveraging both the publicly available Contract Understanding Atticus Dataset (CUAD) and proprietary contract datasets, our work demonstrates the integration of advanced LLM methodologies with practical applications. We identify three pivotal elements for optimizing metadata extraction: robust text conversion, strategic chunk selection, and advanced LLM-specific techniques, including Chain of Thought (CoT) prompting and structured tool calling. The results from our experiments highlight the substantial improvements in clause identification accuracy and efficiency. Our approach shows promise in reducing the time and cost associated with contract review while maintaining high accuracy in legal clause identification. The results suggest that carefully optimized LLM systems could serve as valuable tools for legal professionals, potentially increasing access to efficient contract review services for organizations of all sizes.
☆ Seabed-Net: A multi-task network for joint bathymetry estimation and seabed classification from remote sensing imagery in shallow waters SP
Accurate, detailed, and regularly updated bathymetry, coupled with complex semantic content, is essential for under-mapped shallow-water environments facing increasing climatological and anthropogenic pressures. However, existing approaches that derive either depth or seabed classes from remote sensing imagery treat these tasks in isolation, forfeiting the mutual benefits of their interaction and hindering the broader adoption of deep learning methods. To address these limitations, we introduce Seabed-Net, a unified multi-task framework that simultaneously predicts bathymetry and pixel-based seabed classification from remote sensing imagery of various resolutions. Seabed-Net employs dual-branch encoders for bathymetry estimation and pixel-based seabed classification, integrates cross-task features via an Attention Feature Fusion module and a windowed Swin-Transformer fusion block, and balances objectives through dynamic task uncertainty weighting. In extensive evaluations at two heterogeneous coastal sites, it consistently outperforms traditional empirical models and traditional machine learning regression methods, achieving up to 75\% lower RMSE. It also reduces bathymetric RMSE by 10-30\% compared to state-of-the-art single-task and multi-task baselines and improves seabed classification accuracy up to 8\%. Qualitative analyses further demonstrate enhanced spatial consistency, sharper habitat boundaries, and corrected depth biases in low-contrast regions. These results confirm that jointly modeling depth with both substrate and seabed habitats yields synergistic gains, offering a robust, open solution for integrated shallow-water mapping. Code and pretrained weights are available at https://github.com/pagraf/Seabed-Net.
comment: Submitted to ISPRS Journal of Photogrammetry and Remote Sensing
☆ SORA-ATMAS: Adaptive Trust Management and Multi-LLM Aligned Governance for Future Smart Cities
The rapid evolution of smart cities has increased the reliance on intelligent interconnected services to optimize infrastructure, resources, and citizen well-being. Agentic AI has emerged as a key enabler by supporting autonomous decision-making and adaptive coordination, allowing urban systems to respond in real time to dynamic conditions. Its benefits are evident in areas such as transportation, where the integration of traffic data, weather forecasts, and safety sensors enables dynamic rerouting and a faster response to hazards. However, its deployment across heterogeneous smart city ecosystems raises critical governance, risk, and compliance (GRC) challenges, including accountability, data privacy, and regulatory alignment within decentralized infrastructures. Evaluation of SORA-ATMAS with three domain agents (Weather, Traffic, and Safety) demonstrated that its governance policies, including a fallback mechanism for high-risk scenarios, effectively steer multiple LLMs (GPT, Grok, DeepSeek) towards domain-optimized, policy-aligned outputs, producing an average MAE reduction of 35% across agents. Results showed stable weather monitoring, effective handling of high-risk traffic plateaus 0.85, and adaptive trust regulation in Safety/Fire scenarios 0.65. Runtime profiling of a 3-agent deployment confirmed scalability, with throughput between 13.8-17.2 requests per second, execution times below 72~ms, and governance delays under 100 ms, analytical projections suggest maintained performance at larger scales. Cross-domain rules ensured safe interoperability, with traffic rerouting permitted only under validated weather conditions. These findings validate SORA-ATMAS as a regulation-aligned, context-aware, and verifiable governance framework that consolidates distributed agent outputs into accountable, real-time decisions, offering a resilient foundation for smart-city management.
☆ Balancing Rewards in Text Summarization: Multi-Objective Reinforcement Learning via HyperVolume Optimization
Text summarization is a crucial task that requires the simultaneous optimization of multiple objectives, including consistency, coherence, relevance, and fluency, which presents considerable challenges. Although large language models (LLMs) have demonstrated remarkable performance, enhanced by reinforcement learning (RL), few studies have focused on optimizing the multi-objective problem of summarization through RL based on LLMs. In this paper, we introduce hypervolume optimization (HVO), a novel optimization strategy that dynamically adjusts the scores between groups during the reward process in RL by using the hypervolume method. This method guides the model's optimization to progressively approximate the pareto front, thereby generating balanced summaries across multiple objectives. Experimental results on several representative summarization datasets demonstrate that our method outperforms group relative policy optimization (GRPO) in overall scores and shows more balanced performance across different dimensions. Moreover, a 7B foundation model enhanced by HVO performs comparably to GPT-4 in the summarization task, while maintaining a shorter generation length. Our code is publicly available at https://github.com/ai4business-LiAuto/HVO.git
☆ Enabling Reconfiguration-Communication Overlap for Collective Communication in Optical Networks
Collective communication (CC) is widely adopted for large-scale distributed machine learning (DML) training workloads. DML's predictable traffic pattern provides a great oppotunity for applying optical network technology. Existing optical interconnects-based CC schemes adopt ``one-shot network reconfiguration'', which provisions static high-capacity topologies for an entire collective operation -- sometimes for a full training iteration. However, this approach faces significant scalability limitations when supporting more complex and efficient CC algorithms required for modern workloads: the ``one-shot'' strategies either demand excessive resource overprovisioning or suffer performance degradation due to rigid resource allocation. To address these challenges, we propose SWOT, a demand-aware optical network framework. SWOT employs ``intra-collective reconfiguration'' and can dynamically align network resources with CC traffic patterns. SWOT incorporates a novel scheduling technique that overlaps optical switch reconfigurations with ongoing transmissions, and improves communication efficiency. SWOT introduce a lightweight collective communication shim that enables coordinated optical network configuration and transmission scheduling while supporting seamless integration with existing CC libraries. Our simulation results demonstrate SWOT's significant performance improvements.
☆ Online Handwritten Signature Verification Based on Temporal-Spatial Graph Attention Transformer
Handwritten signature verification is a crucial aspect of identity authentication, with applications in various domains such as finance and e-commerce. However, achieving high accuracy in signature verification remains challenging due to intra-user variability and the risk of forgery. This paper introduces a novel approach for dynamic signature verification: the Temporal-Spatial Graph Attention Transformer (TS-GATR). TS-GATR combines the Graph Attention Network (GAT) and the Gated Recurrent Unit (GRU) to model both spatial and temporal dependencies in signature data. TS-GATR enhances verification performance by representing signatures as graphs, where each node captures dynamic features (e.g. position, velocity, pressure), and by using attention mechanisms to model their complex relationships. The proposed method further employs a Dual-Graph Attention Transformer (DGATR) module, which utilizes k-step and k-nearest neighbor adjacency graphs to model local and global spatial features, respectively. To capture long-term temporal dependencies, the model integrates GRU, thereby enhancing its ability to learn dynamic features during signature verification. Comprehensive experiments conducted on benchmark datasets such as MSDS and DeepSignDB show that TS-GATR surpasses current state-of-the-art approaches, consistently achieving lower Equal Error Rates (EER) across various scenarios.
☆ Continual Knowledge Adaptation for Reinforcement Learning NeurIPS 2025
Reinforcement Learning enables agents to learn optimal behaviors through interactions with environments. However, real-world environments are typically non-stationary, requiring agents to continuously adapt to new tasks and changing conditions. Although Continual Reinforcement Learning facilitates learning across multiple tasks, existing methods often suffer from catastrophic forgetting and inefficient knowledge utilization. To address these challenges, we propose Continual Knowledge Adaptation for Reinforcement Learning (CKA-RL), which enables the accumulation and effective utilization of historical knowledge. Specifically, we introduce a Continual Knowledge Adaptation strategy, which involves maintaining a task-specific knowledge vector pool and dynamically using historical knowledge to adapt the agent to new tasks. This process mitigates catastrophic forgetting and enables efficient knowledge transfer across tasks by preserving and adapting critical model parameters. Additionally, we propose an Adaptive Knowledge Merging mechanism that combines similar knowledge vectors to address scalability challenges, reducing memory requirements while ensuring the retention of essential knowledge. Experiments on three benchmarks demonstrate that the proposed CKA-RL outperforms state-of-the-art methods, achieving an improvement of 4.20% in overall performance and 8.02% in forward transfer. The source code is available at https://github.com/Fhujinwu/CKA-RL.
comment: NeurIPS 2025
☆ Collaborative penetration testing suite for emerging generative AI algorithms
Problem Space: AI Vulnerabilities and Quantum Threats Generative AI vulnerabilities: model inversion, data poisoning, adversarial inputs. Quantum threats Shor Algorithm breaking RSA ECC encryption. Challenge Secure generative AI models against classical and quantum cyberattacks. Proposed Solution Collaborative Penetration Testing Suite Five Integrated Components: DAST SAST OWASP ZAP, Burp Suite, SonarQube, Fortify. IAST Contrast Assess integrated with CI CD pipeline. Blockchain Logging Hyperledger Fabric for tamper-proof logs. Quantum Cryptography Lattice based RLWE protocols. AI Red Team Simulations Adversarial ML & Quantum-assisted attacks. Integration Layer: Unified workflow for AI, cybersecurity, and quantum experts. Key Results 300+ vulnerabilities identified across test environments. 70% reduction in high-severity issues within 2 weeks. 90% resolution efficiency for blockchain-logged vulnerabilities. Quantum-resistant cryptography maintained 100% integrity in tests. Outcome: Quantum AI Security Protocol integrating Blockchain Quantum Cryptography AI Red Teaming.
☆ Knowledge and Common Knowledge of Strategies
Most existing work on strategic reasoning simply adopts either an informed or an uninformed semantics. We propose a model where knowledge of strategies can be specified on a fine-grained level. In particular, it is possible to distinguish first-order, higher-order, and common knowledge of strategies. We illustrate the effect of higher-order knowledge of strategies by studying the game Hanabi. Further, we show that common knowledge of strategies is necessary to solve the consensus problem. Finally, we study the decidability of the model checking problem.
☆ Learning to Make Friends: Coaching LLM Agents toward Emergent Social Ties
Can large language model (LLM) agents reproduce the complex social dynamics that characterize human online behavior -- shaped by homophily, reciprocity, and social validation -- and what memory and learning mechanisms enable such dynamics to emerge? We present a multi-agent LLM simulation framework in which agents repeatedly interact, evaluate one another, and adapt their behavior through in-context learning accelerated by a coaching signal. To model human social behavior, we design behavioral reward functions that capture core drivers of online engagement, including social interaction, information seeking, self-presentation, coordination, and emotional support. These rewards align agent objectives with empirically observed user motivations, enabling the study of how network structures and group formations emerge from individual decision-making. Our experiments show that coached LLM agents develop stable interaction patterns and form emergent social ties, yielding network structures that mirror properties of real online communities. By combining behavioral rewards with in-context adaptation, our framework establishes a principled testbed for investigating collective dynamics in LLM populations and reveals how artificial agents may approximate or diverge from human-like social behavior.
☆ Enhancing Early Alzheimer Disease Detection through Big Data and Ensemble Few-Shot Learning
Alzheimer disease is a severe brain disorder that causes harm in various brain areas and leads to memory damage. The limited availability of labeled medical data poses a significant challenge for accurate Alzheimer disease detection. There is a critical need for effective methods to improve the accuracy of Alzheimer disease detection, considering the scarcity of labeled data, the complexity of the disease, and the constraints related to data privacy. To address this challenge, our study leverages the power of big data in the form of pre-trained Convolutional Neural Networks (CNNs) within the framework of Few-Shot Learning (FSL) and ensemble learning. We propose an ensemble approach based on a Prototypical Network (ProtoNet), a powerful method in FSL, integrating various pre-trained CNNs as encoders. This integration enhances the richness of features extracted from medical images. Our approach also includes a combination of class-aware loss and entropy loss to ensure a more precise classification of Alzheimer disease progression levels. The effectiveness of our method was evaluated using two datasets, the Kaggle Alzheimer dataset and the ADNI dataset, achieving an accuracy of 99.72% and 99.86%, respectively. The comparison of our results with relevant state-of-the-art studies demonstrated that our approach achieved superior accuracy and highlighted its validity and potential for real-world applications in early Alzheimer disease detection.
☆ Social World Model-Augmented Mechanism Design Policy Learning
Designing adaptive mechanisms to align individual and collective interests remains a central challenge in artificial social intelligence. Existing methods often struggle with modeling heterogeneous agents possessing persistent latent traits (e.g., skills, preferences) and dealing with complex multi-agent system dynamics. These challenges are compounded by the critical need for high sample efficiency due to costly real-world interactions. World Models, by learning to predict environmental dynamics, offer a promising pathway to enhance mechanism design in heterogeneous and complex systems. In this paper, we introduce a novel method named SWM-AP (Social World Model-Augmented Mechanism Design Policy Learning), which learns a social world model hierarchically modeling agents' behavior to enhance mechanism design. Specifically, the social world model infers agents' traits from their interaction trajectories and learns a trait-based model to predict agents' responses to the deployed mechanisms. The mechanism design policy collects extensive training trajectories by interacting with the social world model, while concurrently inferring agents' traits online during real-world interactions to further boost policy learning efficiency. Experiments in diverse settings (tax policy design, team coordination, and facility location) demonstrate that SWM-AP outperforms established model-based and model-free RL baselines in cumulative rewards and sample efficiency.
☆ LAPRAD: LLM-Assisted PRotocol Attack Discovery
With the goal of improving the security of Internet protocols, we seek faster, semi-automatic methods to discover new vulnerabilities in protocols such as DNS, BGP, and others. To this end, we introduce the LLM-Assisted Protocol Attack Discovery (LAPRAD) methodology, enabling security researchers with some DNS knowledge to efficiently uncover vulnerabilities that would otherwise be hard to detect. LAPRAD follows a three-stage process. In the first, we consult an LLM (GPT-o1) that has been trained on a broad corpus of DNS-related sources and previous DDoS attacks to identify potential exploits. In the second stage, a different LLM automatically constructs the corresponding attack configurations using the ReACT approach implemented via LangChain (DNS zone file generation). Finally, in the third stage, we validate the attack's functionality and effectiveness. Using LAPRAD, we uncovered three new DDoS attacks on the DNS protocol and rediscovered two recently reported ones that were not included in the LLM's training data. The first new attack employs a bait-and-switch technique to trick resolvers into caching large, bogus DNSSEC RRSIGs, reducing their serving capacity to as little as 6%. The second exploits large DNSSEC encryption algorithms (RSA-4096) with multiple keys, thereby bypassing a recently implemented default RRSet limit. The third leverages ANY-type responses to produce a similar effect. These variations of a cache-flushing DDoS attack, called SigCacheFlush, circumvent existing patches, severely degrade resolver query capacity, and impact the latest versions of major DNS resolver implementations.
comment: IFIP Networking 2025 Proceedings (Accepted on 05.05.2025)
☆ An Argumentative Explanation Framework for Generalized Reason Model with Inconsistent Precedents
Precedential constraint is one foundation of case-based reasoning in AI and Law. It generally assumes that the underlying set of precedents must be consistent. To relax this assumption, a generalized notion of the reason model has been introduced. While several argumentative explanation approaches exist for reasoning with precedents based on the traditional consistent reason model, there has been no corresponding argumentative explanation method developed for this generalized reasoning framework accommodating inconsistent precedents. To address this question, this paper examines an extension of the derivation state argumentation framework (DSA-framework) to explain the reasoning according to the generalized notion of the reason model.
comment: 10 pages, extended version for JURIX 2025 submission
☆ ChatGPT Unveils Its Limits: Principles of Law Deliver Checkmate
This study examines the performance of ChatGPT with an experiment in the legal domain. We compare the outcome with it a baseline using regular expressions (Regex), rather than focusing solely on the assessment against human performance. The study reveals that even if ChatGPT has access to the necessary knowledge and competencies, it is unable to assemble them, reason through, in a way that leads to an exhaustive result. This unveils a major limitation of ChatGPT. Intelligence encompasses the ability to break down complex issues and address them according to multiple required competencies, providing a unified and comprehensive solution. In the legal domain, one of the most crucial tasks is reading legal decisions and extracting key passages condensed from principles of law (PoLs), which are then incorporated into subsequent rulings by judges or defense documents by lawyers. In performing this task, artificial intelligence lacks an all-encompassing understanding and reasoning, which makes it inherently limited. Genuine intelligence, remains a uniquely human trait, at least in this particular field.
☆ FnRGNN: Distribution-aware Fairness in Graph Neural Network
Graph Neural Networks (GNNs) excel at learning from structured data, yet fairness in regression tasks remains underexplored. Existing approaches mainly target classification and representation-level debiasing, which cannot fully address the continuous nature of node-level regression. We propose FnRGNN, a fairness-aware in-processing framework for GNN-based node regression that applies interventions at three levels: (i) structure-level edge reweighting, (ii) representation-level alignment via MMD, and (iii) prediction-level normalization through Sinkhorn-based distribution matching. This multi-level strategy ensures robust fairness under complex graph topologies. Experiments on four real-world datasets demonstrate that FnRGNN reduces group disparities without sacrificing performance. Code is available at https://github.com/sybeam27/FnRGNN.
☆ See, Think, Act: Online Shopper Behavior Simulation with VLM Agents
LLMs have recently demonstrated strong potential in simulating online shopper behavior. Prior work has improved action prediction by applying SFT on action traces with LLM-generated rationales, and by leveraging RL to further enhance reasoning capabilities. Despite these advances, current approaches rely on text-based inputs and overlook the essential role of visual perception in shaping human decision-making during web GUI interactions. In this paper, we investigate the integration of visual information, specifically webpage screenshots, into behavior simulation via VLMs, leveraging OPeRA dataset. By grounding agent decision-making in both textual and visual modalities, we aim to narrow the gap between synthetic agents and real-world users, thereby enabling more cognitively aligned simulations of online shopping behavior. Specifically, we employ SFT for joint action prediction and rationale generation, conditioning on the full interaction context, which comprises action history, past HTML observations, and the current webpage screenshot. To further enhance reasoning capabilities, we integrate RL with a hierarchical reward structure, scaled by a difficulty-aware factor that prioritizes challenging decision points. Empirically, our studies show that incorporating visual grounding yields substantial gains: the combination of text and image inputs improves exact match accuracy by more than 6% over text-only inputs. These results indicate that multi-modal grounding not only boosts predictive accuracy but also enhances simulation fidelity in visually complex environments, which captures nuances of human attention and decision-making that text-only agents often miss. Finally, we revisit the design space of behavior simulation frameworks, identify key methodological limitations, and propose future research directions toward building efficient and effective human behavior simulators.
☆ SPOT: Scalable Policy Optimization with Trees for Markov Decision Processes
Interpretable reinforcement learning policies are essential for high-stakes decision-making, yet optimizing decision tree policies in Markov Decision Processes (MDPs) remains challenging. We propose SPOT, a novel method for computing decision tree policies, which formulates the optimization problem as a mixed-integer linear program (MILP). To enhance efficiency, we employ a reduced-space branch-and-bound approach that decouples the MDP dynamics from tree-structure constraints, enabling efficient parallel search. This significantly improves runtime and scalability compared to previous methods. Our approach ensures that each iteration yields the optimal decision tree. Experimental results on standard benchmarks demonstrate that SPOT achieves substantial speedup and scales to larger MDPs with a significantly higher number of states. The resulting decision tree policies are interpretable and compact, maintaining transparency without compromising performance. These results demonstrate that our approach simultaneously achieves interpretability and scalability, delivering high-quality policies an order of magnitude faster than existing approaches.
☆ No Intelligence Without Statistics: The Invisible Backbone of Artificial Intelligence
The rapid ascent of artificial intelligence (AI) is often portrayed as a revolution born from computer science and engineering. This narrative, however, obscures a fundamental truth: the theoretical and methodological core of AI is, and has always been, statistical. This paper systematically argues that the field of statistics provides the indispensable foundation for machine learning and modern AI. We deconstruct AI into nine foundational pillars-Inference, Density Estimation, Sequential Learning, Generalization, Representation Learning, Interpretability, Causality, Optimization, and Unification-demonstrating that each is built upon century-old statistical principles. From the inferential frameworks of hypothesis testing and estimation that underpin model evaluation, to the density estimation roots of clustering and generative AI; from the time-series analysis inspiring recurrent networks to the causal models that promise true understanding, we trace an unbroken statistical lineage. While celebrating the computational engines that power modern AI, we contend that statistics provides the brain-the theoretical frameworks, uncertainty quantification, and inferential goals-while computer science provides the brawn-the scalable algorithms and hardware. Recognizing this statistical backbone is not merely an academic exercise, but a necessary step for developing more robust, interpretable, and trustworthy intelligent systems. We issue a call to action for education, research, and practice to re-embrace this statistical foundation. Ignoring these roots risks building a fragile future; embracing them is the path to truly intelligent machines. There is no machine learning without statistical learning; no artificial intelligence without statistical thought.
comment: 37 pages, 6 figures
☆ WebGraphEval: Multi-Turn Trajectory Evaluation for Web Agents using Graph Representation NeurIPS 2025
Current evaluation of web agents largely reduces to binary success metrics or conformity to a single reference trajectory, ignoring the structural diversity present in benchmark datasets. We present WebGraphEval, a framework that abstracts trajectories from multiple agents into a unified, weighted action graph. This representation is directly compatible with benchmarks such as WebArena, leveraging leaderboard runs and newly collected trajectories without modifying environments. The framework canonically encodes actions, merges recurring behaviors, and applies structural analyses including reward propagation and success-weighted edge statistics. Evaluations across thousands of trajectories from six web agents show that the graph abstraction captures cross-model regularities, highlights redundancy and inefficiency, and identifies critical decision points overlooked by outcome-based metrics. By framing web interaction as graph-structured data, WebGraphEval establishes a general methodology for multi-path, cross-agent, and efficiency-aware evaluation of web agents.
comment: 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Multi-Turn Interactions in Large Language Models
☆ An Active Diffusion Neural Network for Graphs
The analogy to heat diffusion has enhanced our understanding of information flow in graphs and inspired the development of Graph Neural Networks (GNNs). However, most diffusion-based GNNs emulate passive heat diffusion, which still suffers from over-smoothing and limits their ability to capture global graph information. Inspired by the heat death of the universe, which posits that energy distribution becomes uniform over time in a closed system, we recognize that, without external input, node representations in a graph converge to identical feature vectors as diffusion progresses. To address this issue, we propose the Active Diffusion-based Graph Neural Network (ADGNN). ADGNN achieves active diffusion by integrating multiple external information sources that dynamically influence the diffusion process, effectively overcoming the over-smoothing problem. Furthermore, our approach realizes true infinite diffusion by directly calculating the closed-form solution of the active diffusion iterative formula. This allows nodes to preserve their unique characteristics while efficiently gaining comprehensive insights into the graph's global structure. We evaluate ADGNN against several state-of-the-art GNN models across various graph tasks. The results demonstrate that ADGNN significantly improves both accuracy and efficiency, highlighting its effectiveness in capturing global graph information and maintaining node distinctiveness.
☆ Rethinking Driving World Model as Synthetic Data Generator for Perception Tasks
Recent advancements in driving world models enable controllable generation of high-quality RGB videos or multimodal videos. Existing methods primarily focus on metrics related to generation quality and controllability. However, they often overlook the evaluation of downstream perception tasks, which are $\mathbf{really\ crucial}$ for the performance of autonomous driving. Existing methods usually leverage a training strategy that first pretrains on synthetic data and finetunes on real data, resulting in twice the epochs compared to the baseline (real data only). When we double the epochs in the baseline, the benefit of synthetic data becomes negligible. To thoroughly demonstrate the benefit of synthetic data, we introduce Dream4Drive, a novel synthetic data generation framework designed for enhancing the downstream perception tasks. Dream4Drive first decomposes the input video into several 3D-aware guidance maps and subsequently renders the 3D assets onto these guidance maps. Finally, the driving world model is fine-tuned to produce the edited, multi-view photorealistic videos, which can be used to train the downstream perception models. Dream4Drive enables unprecedented flexibility in generating multi-view corner cases at scale, significantly boosting corner case perception in autonomous driving. To facilitate future research, we also contribute a large-scale 3D asset dataset named DriveObj3D, covering the typical categories in driving scenarios and enabling diverse 3D-aware video editing. We conduct comprehensive experiments to show that Dream4Drive can effectively boost the performance of downstream perception models under various training epochs. Project: $\href{https://wm-research.github.io/Dream4Drive/}{this\ https\ URL}$
☆ PruneHal: Reducing Hallucinations in Multi-modal Large Language Models through Adaptive KV Cache Pruning
While multi-modal large language models (MLLMs) have made significant progress in recent years, the issue of hallucinations remains a major challenge. To mitigate this phenomenon, existing solutions either introduce additional data for further training or incorporate external or internal information during inference. However, these approaches inevitably introduce extra computational costs. In this paper, we observe that hallucinations in MLLMs are strongly associated with insufficient attention allocated to visual tokens. In particular, the presence of redundant visual tokens disperses the model's attention, preventing it from focusing on the most informative ones. As a result, critical visual cues are often under-attended, which in turn exacerbates the occurrence of hallucinations. Building on this observation, we propose \textbf{PruneHal}, a training-free, simple yet effective method that leverages adaptive KV cache pruning to enhance the model's focus on critical visual information, thereby mitigating hallucinations. To the best of our knowledge, we are the first to apply token pruning for hallucination mitigation in MLLMs. Notably, our method don't require additional training and incurs nearly no extra inference cost. Moreover, PruneHal is model-agnostic and can be seamlessly integrated with different decoding strategies, including those specifically designed for hallucination mitigation. We evaluate PruneHal on several widely used hallucination evaluation benchmarks using four mainstream MLLMs, achieving robust and outstanding results that highlight the effectiveness and superiority of our method. Our code will be publicly available.
☆ Interpretable Question Answering with Knowledge Graphs
This paper presents a question answering system that operates exclusively on a knowledge graph retrieval without relying on retrieval augmented generation (RAG) with large language models (LLMs). Instead, a small paraphraser model is used to paraphrase the entity relationship edges retrieved from querying the knowledge graph. The proposed pipeline is divided into two main stages. The first stage involves pre-processing a document to generate sets of question-answer (QA) pairs. The second stage converts these QAs into a knowledge graph from which graph-based retrieval is performed using embeddings and fuzzy techniques. The graph is queried, re-ranked, and paraphrased to generate a final answer. This work includes an evaluation using LLM-as-a-judge on the CRAG benchmark, which resulted in accuracies of 71.9% and 54.4% using LLAMA-3.2 and GPT-3.5-Turbo, respectively.
☆ Imbalanced Gradients in RL Post-Training of Multi-Task LLMs
Multi-task post-training of large language models (LLMs) is typically performed by mixing datasets from different tasks and optimizing them jointly. This approach implicitly assumes that all tasks contribute gradients of similar magnitudes; when this assumption fails, optimization becomes biased toward large-gradient tasks. In this paper, however, we show that this assumption fails in RL post-training: certain tasks produce significantly larger gradients, thus biasing updates toward those tasks. Such gradient imbalance would be justified only if larger gradients implied larger learning gains on the tasks (i.e., larger performance improvements) -- but we find this is not true. Large-gradient tasks can achieve similar or even much lower learning gains than small-gradient ones. Further analyses reveal that these gradient imbalances cannot be explained by typical training statistics such as training rewards or advantages, suggesting that they arise from the inherent differences between tasks. This cautions against naive dataset mixing and calls for future work on principled gradient-level corrections for LLMs.
☆ The Zero-Step Thinking: An Empirical Study of Mode Selection as Harder Early Exit in Reasoning Models NeurIPS'25
Reasoning models have demonstrated exceptional performance in tasks such as mathematics and logical reasoning, primarily due to their ability to engage in step-by-step thinking during the reasoning process. However, this often leads to overthinking, resulting in unnecessary computational overhead. To address this issue, Mode Selection aims to automatically decide between Long-CoT (Chain-of-Thought) or Short-CoT by utilizing either a Thinking or NoThinking mode. Simultaneously, Early Exit determines the optimal stopping point during the iterative reasoning process. Both methods seek to reduce the computational burden. In this paper, we first identify Mode Selection as a more challenging variant of the Early Exit problem, as they share similar objectives but differ in decision timing. While Early Exit focuses on determining the best stopping point for concise reasoning at inference time, Mode Selection must make this decision at the beginning of the reasoning process, relying on pre-defined fake thoughts without engaging in an explicit reasoning process, referred to as zero-step thinking. Through empirical studies on nine baselines, we observe that prompt-based approaches often fail due to their limited classification capabilities when provided with minimal hand-crafted information. In contrast, approaches that leverage internal information generally perform better across most scenarios but still exhibit issues with stability. Our findings indicate that existing methods relying solely on the information provided by models are insufficient for effectively addressing Mode Selection in scenarios with limited information, highlighting the ongoing challenges of this task. Our code is available at https://github.com/Trae1ounG/Zero_Step_Thinking.
comment: Accepted by NeurIPS'25 Efficient Reasoning Workshop
☆ News-Aware Direct Reinforcement Trading for Financial Markets
The financial market is known to be highly sensitive to news. Therefore, effectively incorporating news data into quantitative trading remains an important challenge. Existing approaches typically rely on manually designed rules and/or handcrafted features. In this work, we directly use the news sentiment scores derived from large language models, together with raw price and volume data, as observable inputs for reinforcement learning. These inputs are processed by sequence models such as recurrent neural networks or Transformers to make end-to-end trading decisions. We conduct experiments using the cryptocurrency market as an example and evaluate two representative reinforcement learning algorithms, namely Double Deep Q-Network (DDQN) and Group Relative Policy Optimization (GRPO). The results demonstrate that our news-aware approach, which does not depend on handcrafted features or manually designed rules, can achieve performance superior to market benchmarks. We further highlight the critical role of time-series information in this process.
comment: 9 pages, 4 figures, 3 tables
☆ When Facts Change: Probing LLMs on Evolving Knowledge with evolveQA
LLMs often fail to handle temporal knowledge conflicts--contradictions arising when facts evolve over time within their training data. Existing studies evaluate this phenomenon through benchmarks built on structured knowledge bases like Wikidata, but they focus on widely-covered, easily-memorized popular entities and lack the dynamic structure needed to fairly evaluate LLMs with different knowledge cut-off dates. We introduce evolveQA, a benchmark specifically designed to evaluate LLMs on temporally evolving knowledge, constructed from 3 real-world, time-stamped corpora: AWS updates, Azure changes, and WHO disease outbreak reports. Our framework identifies naturally occurring knowledge evolution and generates questions with gold answers tailored to different LLM knowledge cut-off dates. Through extensive evaluation of 12 open and closed-source LLMs across 3 knowledge probing formats, we demonstrate significant performance drops of up to 31% on evolveQA compared to static knowledge questions.
comment: Under submission
☆ X-Ego: Acquiring Team-Level Tactical Situational Awareness via Cross-Egocentric Contrastive Video Representation Learning
Human team tactics emerge from each player's individual perspective and their ability to anticipate, interpret, and adapt to teammates' intentions. While advances in video understanding have improved the modeling of team interactions in sports, most existing work relies on third-person broadcast views and overlooks the synchronous, egocentric nature of multi-agent learning. We introduce X-Ego-CS, a benchmark dataset consisting of 124 hours of gameplay footage from 45 professional-level matches of the popular e-sports game Counter-Strike 2, designed to facilitate research on multi-agent decision-making in complex 3D environments. X-Ego-CS provides cross-egocentric video streams that synchronously capture all players' first-person perspectives along with state-action trajectories. Building on this resource, we propose Cross-Ego Contrastive Learning (CECL), which aligns teammates' egocentric visual streams to foster team-level tactical situational awareness from an individual's perspective. We evaluate CECL on a teammate-opponent location prediction task, demonstrating its effectiveness in enhancing an agent's ability to infer both teammate and opponent positions from a single first-person view using state-of-the-art video encoders. Together, X-Ego-CS and CECL establish a foundation for cross-egocentric multi-agent benchmarking in esports. More broadly, our work positions gameplay understanding as a testbed for multi-agent modeling and tactical learning, with implications for spatiotemporal reasoning and human-AI teaming in both virtual and real-world domains. Code and dataset are available at https://github.com/HATS-ICT/x-ego.
comment: 8 pages, 5 figures
☆ A Multi-faceted Analysis of Cognitive Abilities: Evaluating Prompt Methods with Large Language Models on the CONSORT Checklist
Despite the rapid expansion of Large Language Models (LLMs) in healthcare, the ability of these systems to assess clinical trial reporting according to CONSORT standards remains unclear, particularly with respect to their cognitive and reasoning strategies. This study applies a behavioral and metacognitive analytic approach with expert-validated data, systematically comparing two representative LLMs under three prompt conditions. Clear differences emerged in how the models approached various CONSORT items, and prompt types, including shifts in reasoning style, explicit uncertainty, and alternative interpretations shaped response patterns. Our results highlight the current limitations of these systems in clinical compliance automation and underscore the importance of understanding their cognitive adaptations and strategic behavior in developing more explainable and reliable medical AI.
☆ InvarGC: Invariant Granger Causality for Heterogeneous Interventional Time Series under Latent Confounding
Granger causality is widely used for causal structure discovery in complex systems from multivariate time series data. Traditional Granger causality tests based on linear models often fail to detect even mild non-linear causal relationships. Therefore, numerous recent studies have investigated non-linear Granger causality methods, achieving improved performance. However, these methods often rely on two key assumptions: causal sufficiency and known interventional targets. Causal sufficiency assumes the absence of latent confounders, yet their presence can introduce spurious correlations. Moreover, real-world time series data usually come from heterogeneous environments, without prior knowledge of interventions. Therefore, in practice, it is difficult to distinguish intervened environments from non-intervened ones, and even harder to identify which variables or timesteps are affected. To address these challenges, we propose Invariant Granger Causality (InvarGC), which leverages cross-environment heterogeneity to mitigate the effects of latent confounding and to distinguish intervened from non-intervened environments with edge-level granularity, thereby recovering invariant causal relations. In addition, we establish the identifiability under these conditions. Extensive experiments on both synthetic and real-world datasets demonstrate the competitive performance of our approach compared to state-of-the-art methods.
☆ LLMs can hide text in other text of the same length.ipynb
A meaningful text can be hidden inside another, completely different yet still coherent and plausible, text of the same length. For example, a tweet containing a harsh political critique could be embedded in a tweet that celebrates the same political leader, or an ordinary product review could conceal a secret manuscript. This uncanny state of affairs is now possible thanks to Large Language Models, and in this paper we present a simple and efficient protocol to achieve it. We show that even modest 8-billion-parameter open-source LLMs are sufficient to obtain high-quality results, and a message as long as this abstract can be encoded and decoded locally on a laptop in seconds. The existence of such a protocol demonstrates a radical decoupling of text from authorial intent, further eroding trust in written communication, already shaken by the rise of LLM chatbots. We illustrate this with a concrete scenario: a company could covertly deploy an unfiltered LLM by encoding its answers within the compliant responses of a safe model. This possibility raises urgent questions for AI safety and challenges our understanding of what it means for a Large Language Model to know something.
comment: 21 pages, main paper 9 pages
☆ Ask What Your Country Can Do For You: Towards a Public Red Teaming Model
AI systems have the potential to produce both benefits and harms, but without rigorous and ongoing adversarial evaluation, AI actors will struggle to assess the breadth and magnitude of the AI risk surface. Researchers from the field of systems design have developed several effective sociotechnical AI evaluation and red teaming techniques targeting bias, hate speech, mis/disinformation, and other documented harm classes. However, as increasingly sophisticated AI systems are released into high-stakes sectors (such as education, healthcare, and intelligence-gathering), our current evaluation and monitoring methods are proving less and less capable of delivering effective oversight. In order to actually deliver responsible AI and to ensure AI's harms are fully understood and its security vulnerabilities mitigated, pioneering new approaches to close this "responsibility gap" are now more urgent than ever. In this paper, we propose one such approach, the cooperative public AI red-teaming exercise, and discuss early results of its prior pilot implementations. This approach is intertwined with CAMLIS itself: the first in-person public demonstrator exercise was held in conjunction with CAMLIS 2024. We review the operational design and results of this exercise, the prior National Institute of Standards and Technology (NIST)'s Assessing the Risks and Impacts of AI (ARIA) pilot exercise, and another similar exercise conducted with the Singapore Infocomm Media Development Authority (IMDA). Ultimately, we argue that this approach is both capable of delivering meaningful results and is also scalable to many AI developing jurisdictions.
☆ Approximate Model Predictive Control for Microgrid Energy Management via Imitation Learning
Efficient energy management is essential for reliable and sustainable microgrid operation amid increasing renewable integration. This paper proposes an imitation learning-based framework to approximate mixed-integer Economic Model Predictive Control (EMPC) for microgrid energy management. The proposed method trains a neural network to imitate expert EMPC control actions from offline trajectories, enabling fast, real-time decision making without solving optimization problems online. To enhance robustness and generalization, the learning process includes noise injection during training to mitigate distribution shift and explicitly incorporates forecast uncertainty in renewable generation and demand. Simulation results demonstrate that the learned policy achieves economic performance comparable to EMPC while only requiring $10\%$ of the computation time of optimization-based EMPC in practice.
comment: Submitted to Engineering Applications of Artificial Intelligence (EAAI) and IFAC WC 2026
☆ Beyond One-Way Influence: Bidirectional Opinion Dynamics in Multi-Turn Human-LLM Interactions
Large language model (LLM)-powered chatbots are increasingly used for opinion exploration. Prior research examined how LLMs alter user views, yet little work extended beyond one-way influence to address how user input can affect LLM responses and how such bi-directional influence manifests throughout the multi-turn conversations. This study investigates this dynamic through 50 controversial-topic discussions with participants (N=266) across three conditions: static statements, standard chatbot, and personalized chatbot. Results show that human opinions barely shifted, while LLM outputs changed more substantially, narrowing the gap between human and LLM stance. Personalization amplified these shifts in both directions compared to the standard setting. Analysis of multi-turn conversations further revealed that exchanges involving participants' personal stories were most likely to trigger stance changes for both humans and LLMs. Our work highlights the risk of over-alignment in human-LLM interaction and the need for careful design of personalized chatbots to more thoughtfully and stably align with users.
comment: 26 pages, 8 figures
☆ The Temporal Graph of Bitcoin Transactions
Since its 2009 genesis block, the Bitcoin network has processed \num{>1.08} billion (B) transactions representing \num{>8.72}B BTC, offering rich potential for machine learning (ML); yet, its pseudonymity and obscured flow of funds inherent in its \utxo-based design, have rendered this data largely inaccessible for ML research. Addressing this gap, we present an ML-compatible graph modeling the Bitcoin's economic topology by reconstructing the flow of funds. This temporal, heterogeneous graph encompasses complete transaction history up to block \cutoffHeight, consisting of \num{>2.4}B nodes and \num{>39.72}B edges. Additionally, we provide custom sampling methods yielding node and edge feature vectors of sampled communities, tools to load and analyze the Bitcoin graph data within specialized graph databases, and ready-to-use database snapshots. This comprehensive dataset and toolkit empower the ML community to tackle Bitcoin's intricate ecosystem at scale, driving progress in applications such as anomaly detection, address classification, market analysis, and large-scale graph ML benchmarking. Dataset and code available at \href{https://github.com/B1AAB/EBA}{github.com/b1aab/eba}
☆ Optimized Distortion in Linear Social Choice
Social choice theory offers a wealth of approaches for selecting a candidate on behalf of voters based on their reported preference rankings over options. When voters have underlying utilities for these options, however, using preference rankings may lead to suboptimal outcomes vis-\`a-vis utilitarian social welfare. Distortion is a measure of this suboptimality, and provides a worst-case approach for developing and analyzing voting rules when utilities have minimal structure. However in many settings, such as common paradigms for value alignment, alternatives admit a vector representation, and it is natural to suppose that utilities are parametric functions thereof. We undertake the first study of distortion for linear utility functions. Specifically, we investigate the distortion of linear social choice for deterministic and randomized voting rules. We obtain bounds that depend only on the dimension of the candidate embedding, and are independent of the numbers of candidates or voters. Additionally, we introduce poly-time instance-optimal algorithms for minimizing distortion given a collection of candidates and votes. We empirically evaluate these in two real-world domains: recommendation systems using collaborative filtering embeddings, and opinion surveys utilizing language model embeddings, benchmarking several standard rules against our instance-optimal algorithms.
☆ Forging GEMs: Advancing Greek NLP through Quality-Based Corpus Curation and Specialized Pre-training
The advancement of natural language processing for morphologically rich, moderately-resourced languages like Modern Greek is often hindered by a fragmented research landscape, a lack of architectural diversity and reliance on limited context-length models. This is particularly true in specialized, high-value domains such as law, where existing models are frequently confined to early transformer architectures with a restrictive 512-token window, insufficient for analyzing long legal documents. To address these challenges, this paper presents Greek Embedding Models, a new family of transformer models for Greek language built upon a foundation of extensive, quality-driven data curation. We detail the construction of several large-scale Greek corpora, emphasizing a rigorous, quality-based filtering and preprocessing methodology to create high-value training datasets from both general-domain and specialized legal sources. On this carefully curated foundation, we pre-train and systematically evaluate a diverse suite of modern architectures, which has not previously applied to Greek language, such as ELECTRA, ConvBERT and ModernBERT. Furthermore, we propose the first bilingual Greek-English Embedding Models tailored for the legal domain. The extensive experiments on downstream tasks demonstrate that the new class of models establish the effectiveness of the proposed approach, highlighting that the GEM-RoBERTa and GEM-ConvBERT models significantly outperform existing baselines.
☆ Beyond MedQA: Towards Real-world Clinical Decision Making in the Era of LLMs
Large language models (LLMs) show promise for clinical use. They are often evaluated using datasets such as MedQA. However, Many medical datasets, such as MedQA, rely on simplified Question-Answering (Q\A) that underrepresents real-world clinical decision-making. Based on this, we propose a unifying paradigm that characterizes clinical decision-making tasks along two dimensions: Clinical Backgrounds and Clinical Questions. As the background and questions approach the real clinical environment, the difficulty increases. We summarize the settings of existing datasets and benchmarks along two dimensions. Then we review methods to address clinical decision-making, including training-time and test-time techniques, and summarize when they help. Next, we extend evaluation beyond accuracy to include efficiency, explainability. Finally, we highlight open challenges. Our paradigm clarifies assumptions, standardizes comparisons, and guides the development of clinically meaningful LLMs.
comment: 13 pages, 3 figures
☆ A Framework for the Adoption and Integration of Generative AI in Midsize Organizations and Enterprises (FAIGMOE)
Generative Artificial Intelligence (GenAI) presents transformative opportunities for organizations, yet both midsize organizations and larger enterprises face distinctive adoption challenges. Midsize organizations encounter resource constraints and limited AI expertise, while enterprises struggle with organizational complexity and coordination challenges. Existing technology adoption frameworks, including TAM (Technology Acceptance Model), TOE (Technology Organization Environment), and DOI (Diffusion of Innovations) theory, lack the specificity required for GenAI implementation across these diverse contexts, creating a critical gap in adoption literature. This paper introduces FAIGMOE (Framework for the Adoption and Integration of Generative AI in Midsize Organizations and Enterprises), a conceptual framework addressing the unique needs of both organizational types. FAIGMOE synthesizes technology adoption theory, organizational change management, and innovation diffusion perspectives into four interconnected phases: Strategic Assessment, Planning and Use Case Development, Implementation and Integration, and Operationalization and Optimization. Each phase provides scalable guidance on readiness assessment, strategic alignment, risk governance, technical architecture, and change management adaptable to organizational scale and complexity. The framework incorporates GenAI specific considerations including prompt engineering, model orchestration, and hallucination management that distinguish it from generic technology adoption frameworks. As a perspective contribution, FAIGMOE provides the first comprehensive conceptual framework explicitly addressing GenAI adoption across midsize and enterprise organizations, offering actionable implementation protocols, assessment instruments, and governance templates requiring empirical validation through future research.
☆ LLM-Augmented Symbolic NLU System for More Reliable Continuous Causal Statement Interpretation
Despite the broad applicability of large language models (LLMs), their reliance on probabilistic inference makes them vulnerable to errors such as hallucination in generated facts and inconsistent output structure in natural language understanding (NLU) tasks. By contrast, symbolic NLU systems provide interpretable understanding grounded in curated lexicons, semantic resources, and syntactic & semantic interpretation rules. They produce relational representations that can be used for accurate reasoning and planning, as well as incremental debuggable learning. However, symbolic NLU systems tend to be more limited in coverage than LLMs and require scarce knowledge representation and linguistics skills to extend and maintain. This paper explores a hybrid approach that integrates the broad-coverage language processing of LLMs with the symbolic NLU capabilities of producing structured relational representations to hopefully get the best of both approaches. We use LLMs for rephrasing and text simplification, to provide broad coverage, and as a source of information to fill in knowledge gaps more automatically. We use symbolic NLU to produce representations that can be used for reasoning and for incremental learning. We evaluate this approach on the task of extracting and interpreting quantities and causal laws from commonsense science texts, along with symbolic- and LLM-only pipelines. Our results suggest that our hybrid method works significantly better than the symbolic-only pipeline.
comment: 18 pages, 2 figures
☆ Revisiting Zeroth-Order Optimization: Minimum-Variance Two-Point Estimators and Directionally Aligned Perturbations
In this paper, we explore the two-point zeroth-order gradient estimator and identify the distribution of random perturbations that minimizes the estimator's asymptotic variance as the perturbation stepsize tends to zero. We formulate it as a constrained functional optimization problem over the space of perturbation distributions. Our findings reveal that such desired perturbations can align directionally with the true gradient, instead of maintaining a fixed length. While existing research has largely focused on fixed-length perturbations, the potential advantages of directional alignment have been overlooked. To address this gap, we delve into the theoretical and empirical properties of the directionally aligned perturbation (DAP) scheme, which adaptively offers higher accuracy along critical directions. Additionally, we provide a convergence analysis for stochastic gradient descent using $\delta$-unbiased random perturbations, extending existing complexity bounds to a wider range of perturbations. Through empirical evaluations on both synthetic problems and practical tasks, we demonstrate that DAPs outperform traditional methods under specific conditions.
☆ A Tutorial on Cognitive Biases in Agentic AI-Driven 6G Autonomous Networks
The path to higher network autonomy in 6G lies beyond the mere optimization of key performance indicators (KPIs). While KPIs have enabled automation gains under TM Forum Levels 1--3, they remain numerical abstractions that act only as proxies for the real essence of communication networks: seamless connectivity, fairness, adaptability, and resilience. True autonomy requires perceiving and reasoning over the network environment as it is. Such progress can be achieved through \emph{agentic AI}, where large language model (LLM)-powered agents perceive multimodal telemetry, reason with memory, negotiate across domains, and act via APIs to achieve multi-objective goals. However, deploying such agents introduces the challenge of cognitive biases inherited from human design, which can distort reasoning, negotiation, tool use, and actuation. Between neuroscience and AI, this paper provides a tutorial on a selection of well-known biases, including their taxonomy, definition, mathematical formulation, emergence in telecom systems and the commonly impacted agentic components. The tutorial also presents various mitigation strategies tailored to each type of bias. The article finally provides two practical use-cases, which tackle the emergence, impact and mitigation gain of some famous biases in 6G inter-slice and cross-domain management. In particular, anchor randomization, temporal decay and inflection bonus techniques are introduced to specifically address anchoring, temporal and confirmation biases. This avoids that agents stick to the initial high resource allocation proposal or decisions that are recent and/or confirming a prior hypothesis. By grounding decisions in a richer and fairer set of past experiences, the quality and bravery of the agentic agreements in the second use-case, for instance, are leading to $\times 5$ lower latency and around $40\%$ higher energy saving.
comment: 19 pages, 15 figures, 1 table
☆ LyriCAR: A Difficulty-Aware Curriculum Reinforcement Learning Framework For Controllable Lyric Translation ICASSP 2026
Lyric translation is a challenging task that requires balancing multiple musical constraints. Existing methods often rely on hand-crafted rules and sentence-level modeling, which restrict their ability to internalize musical-linguistic patterns and to generalize effectively at the paragraph level, where cross-line coherence and global rhyme are crucial. In this work, we propose LyriCAR, a novel framework for controllable lyric translation that operates in a fully unsupervised manner. LyriCAR introduces a difficulty-aware curriculum designer and an adaptive curriculum strategy, ensuring efficient allocation of training resources, accelerating convergence, and improving overall translation quality by guiding the model with increasingly complex challenges. Extensive experiments on the EN-ZH lyric translation task show that LyriCAR achieves state-of-the-art results across both standard translation metrics and multi-dimensional reward scores, surpassing strong baselines. Notably, the adaptive curriculum strategy reduces training steps by nearly 40% while maintaining superior performance. Code, data and model can be accessed at https://github.com/rle27/LyriCAR.
comment: submitted to ICASSP 2026
☆ AI-Driven Personalized Learning: Predicting Academic Per-formance Through Leadership Personality Traits
The study explores the potential of AI technologies in personalized learning, suggesting the prediction of academic success through leadership personality traits and machine learning modelling. The primary data were obtained from 129 master's students in the Environmental Engineering Department, who underwent five leadership personality tests with 23 characteristics. Students used self-assessment tools that included Personality Insight, Workplace Culture, Motivation at Work, Management Skills, and Emotion Control tests. The test results were combined with the average grade obtained from academic reports. The study employed exploratory data analysis and correlation analysis. Feature selection utilized Pearson correlation coefficients of personality traits. The average grades were separated into three categories: fail, pass, and excellent. The modelling process was performed by tuning seven ML algorithms, such as SVM, LR, KNN, DT, GB, RF, XGBoost and LightGBM. The highest predictive performance was achieved with the RF classifier, which yielded an accuracy of 87.50% for the model incorporating 17 personality trait features and the leadership mark feature, and an accuracy of 85.71% for the model excluding this feature. In this way, the study offers an additional opportunity to identify students' strengths and weaknesses at an early stage of their education process and select the most suitable strategies for personalized learning.
comment: 20 pages, 6 figures, research article
☆ A new wave of vehicle insurance fraud fueled by generative AI
Generative AI is supercharging insurance fraud by making it easier to falsify accident evidence at scale and in rapid time. Insurance fraud is a pervasive and costly problem, amounting to tens of billions of dollars in losses each year. In the vehicle insurance sector, fraud schemes have traditionally involved staged accidents, exaggerated damage, or forged documents. The rise of generative AI, including deepfake image and video generation, has introduced new methods for committing fraud at scale. Fraudsters can now fabricate highly realistic crash photos, damage evidence, and even fake identities or documents with minimal effort, exploiting AI tools to bolster false insurance claims. Insurers have begun deploying countermeasures such as AI-based deepfake detection software and enhanced verification processes to detect and mitigate these AI-driven scams. However, current mitigation strategies face significant limitations. Detection tools can suffer from false positives and negatives, and sophisticated fraudsters continuously adapt their tactics to evade automated checks. This cat-and-mouse arms race between generative AI and detection technology, combined with resource and cost barriers for insurers, means that combating AI-enabled insurance fraud remains an ongoing challenge. In this white paper, we present UVeye layered solution for vehicle fraud, representing a major leap forward in the ability to detect, mitigate and deter this new wave of fraud.
☆ RELATE: A Schema-Agnostic Perceiver Encoder for Multimodal Relational Graphs
Relational multi-table data is common in domains such as e-commerce, healthcare, and scientific research, and can be naturally represented as heterogeneous temporal graphs with multi-modal node attributes. Existing graph neural networks (GNNs) rely on schema-specific feature encoders, requiring separate modules for each node type and feature column, which hinders scalability and parameter sharing. We introduce RELATE (Relational Encoder for Latent Aggregation of Typed Entities), a schema-agnostic, plug-and-play feature encoder that can be used with any general purpose GNN. RELATE employs shared modality-specific encoders for categorical, numerical, textual, and temporal attributes, followed by a Perceiver-style cross-attention module that aggregates features into a fixed-size, permutation-invariant node representation. We evaluate RELATE on ReLGNN and HGT in the RelBench benchmark, where it achieves performance within 3% of schema-specific encoders while reducing parameter counts by up to 5x. This design supports varying schemas and enables multi-dataset pretraining for general-purpose GNNs, paving the way toward foundation models for relational graph data.
comment: 6 pages
☆ On the Optimal Construction of Unbiased Gradient Estimators for Zeroth-Order Optimization
Zeroth-order optimization (ZOO) is an important framework for stochastic optimization when gradients are unavailable or expensive to compute. A potential limitation of existing ZOO methods is the bias inherent in most gradient estimators unless the perturbation stepsize vanishes. In this paper, we overcome this biasedness issue by proposing a novel family of unbiased gradient estimators based solely on function evaluations. By reformulating directional derivatives as a telescoping series and sampling from carefully designed distributions, we construct estimators that eliminate bias while maintaining favorable variance. We analyze their theoretical properties, derive optimal scaling distributions and perturbation stepsizes of four specific constructions, and prove that SGD using the proposed estimators achieves optimal complexity for smooth non-convex objectives. Experiments on synthetic tasks and language model fine-tuning confirm the superior accuracy and convergence of our approach compared to standard methods.
☆ Robust Reinforcement Learning in Finance: Modeling Market Impact with Elliptic Uncertainty Sets
In financial applications, reinforcement learning (RL) agents are commonly trained on historical data, where their actions do not influence prices. However, during deployment, these agents trade in live markets where their own transactions can shift asset prices, a phenomenon known as market impact. This mismatch between training and deployment environments can significantly degrade performance. Traditional robust RL approaches address this model misspecification by optimizing the worst-case performance over a set of uncertainties, but typically rely on symmetric structures that fail to capture the directional nature of market impact. To address this issue, we develop a novel class of elliptic uncertainty sets. We establish both implicit and explicit closed-form solutions for the worst-case uncertainty under these sets, enabling efficient and tractable robust policy evaluation. Experiments on single-asset and multi-asset trading tasks demonstrate that our method achieves superior Sharpe ratio and remains robust under increasing trade volumes, offering a more faithful and scalable approach to RL in financial markets.
☆ Surfer 2: The Next Generation of Cross-Platform Computer Use Agents
Building agents that generalize across web, desktop, and mobile environments remains an open challenge, as prior systems rely on environment-specific interfaces that limit cross-platform deployment. We introduce Surfer 2, a unified architecture operating purely from visual observations that achieves state-of-the-art performance across all three environments. Surfer 2 integrates hierarchical context management, decoupled planning and execution, and self-verification with adaptive recovery, enabling reliable operation over long task horizons. Our system achieves 97.1% accuracy on WebVoyager, 69.6% on WebArena, 60.1% on OSWorld, and 87.1% on AndroidWorld, outperforming all prior systems without task-specific fine-tuning. With multiple attempts, Surfer 2 exceeds human performance on all benchmarks. These results demonstrate that systematic orchestration amplifies foundation model capabilities and enables general-purpose computer control through visual interaction alone, while calling for a next-generation vision language model to achieve Pareto-optimal cost-efficiency.
comment: 21 pages, 9 figures, 2 tables
☆ Learning from Supervision with Semantic and Episodic Memory: A Reflective Approach to Agent Adaptation
We investigate how agents built on pretrained large language models can learn target classification functions from labeled examples without parameter updates. While conventional approaches like fine-tuning are often costly, inflexible, and opaque, we propose a memory-augmented framework that leverages both labeled data and LLM-generated critiques. Our framework uses episodic memory to store instance-level critiques-capturing specific past experiences-and semantic memory to distill these into reusable, task-level guidance. Across a diverse set of tasks, incorporating critiques yields up to a 24.8 percent accuracy improvement over retrieval-based (RAG-style) baselines that rely only on labels. Through extensive empirical evaluation, we uncover distinct behavioral differences between OpenAI and opensource models, particularly in how they handle fact-oriented versus preference-based data. To interpret how models respond to different representations of supervision encoded in memory, we introduce a novel metric, suggestibility. This helps explain observed behaviors and illuminates how model characteristics and memory strategies jointly shape learning dynamics. Our findings highlight the promise of memory-driven, reflective learning for building more adaptive and interpretable LLM agents.
comment: 11 pages
☆ Large Language Model enabled Mathematical Modeling
The integration of Large Language Models (LLMs) with optimization modeling offers a promising avenue for advancing decision-making in operations research (OR). Traditional optimization methods,such as linear programming, mixed integer programming, and simulation depend heavily on domain expertise to translate real-world problems into solvable mathematical models. While solvers like Gurobi and COPT are powerful, expert input remains essential for defining objectives, constraints, and variables. This research investigates the potential of LLMs, specifically the DeepSeek-R1 model, to bridge this formulation gap using natural language understanding and code generation. Although prior models like GPT-4, Claude, and Bard have shown strong performance in NLP and reasoning tasks, their high token costs and tendency toward hallucinations limit real-world applicability in supply chain contexts. In contrast, DeepSeek-R1, a cost-efficient and high-performing model trained with reinforcement learning, presents a viable alternative. Despite its success in benchmarks such as LiveCodeBench and Math-500, its effectiveness in applied OR scenarios remains under explored. This study systematically evaluates DeepSeek-R1 across four key OR benchmarks: NL4OPT, IndustryOR, EasyLP, and ComplexOR. Our methodology includes baseline assessments, the development of a hallucination taxonomy, and the application of mitigation strategies like LLM-as-a-Judge, Few-shot Learning (FSL), Tool Calling, and a Multi-agent Framework. These techniques aim to reduce hallucinations, enhance formulation accuracy, and better align model outputs with user intent.
☆ Can They Dixit? Yes they Can! Dixit as a Playground for Multimodal Language Model Capabilities EMNLP 2025
Multi-modal large language models (MLMs) are often assessed on static, individual benchmarks -- which cannot jointly assess MLM capabilities in a single task -- or rely on human or model pairwise comparisons -- which is highly subjective, expensive, and allows models to exploit superficial shortcuts (e.g., verbosity) to inflate their win-rates. To overcome these issues, we propose game-based evaluations to holistically assess MLM capabilities. Games require multiple abilities for players to win, are inherently competitive, and are governed by fix, objective rules, and makes evaluation more engaging, providing a robust framework to address the aforementioned challenges. We manifest this evaluation specifically through Dixit, a fantasy card game where players must generate captions for a card that trick some, but not all players, into selecting the played card. Our quantitative experiments with five MLMs show Dixit win-rate rankings are perfectly correlated with those on popular MLM benchmarks, while games between human and MLM players in Dixit reveal several differences between agent strategies and areas of improvement for MLM reasoning.
comment: Accepted as a Spotlight paper at the EMNLP 2025 Wordplay Workshop
♻ ☆ Graph Representation Learning with Diffusion Generative Models
Diffusion models have established themselves as state-of-the-art generative models across various data modalities, including images and videos, due to their ability to accurately approximate complex data distributions. Unlike traditional generative approaches such as VAEs and GANs, diffusion models employ a progressive denoising process that transforms noise into meaningful data over multiple iterative steps. This gradual approach enhances their expressiveness and generation quality. Not only that, diffusion models have also been shown to extract meaningful representations from data while learning to generate samples. Despite their success, the application of diffusion models to graph-structured data remains relatively unexplored, primarily due to the discrete nature of graphs, which necessitates discrete diffusion processes distinct from the continuous methods used in other domains. In this work, we leverage the representational capabilities of diffusion models to learn meaningful embeddings for graph data. By training a discrete diffusion model within an autoencoder framework, we enable both effective autoencoding and representation learning tailored to the unique characteristics of graph-structured data. We extract the representation from the combination of the encoder's output and the decoder's first time step hidden embedding. Our approach demonstrates the potential of discrete diffusion models to be used for graph representation learning. The code can be found at https://github.com/DanielMitiku/Graph-Representation-Learning-with-Diffusion-Generative-Models
♻ ☆ Context-Aware Pseudo-Label Scoring for Zero-Shot Video Summarization
We propose a rubric-guided, pseudo-labeled, and prompt-driven zero-shot video summarization framework that bridges large language models with structured semantic reasoning. A small subset of human annotations is converted into high-confidence pseudo labels and organized into dataset-adaptive rubrics defining clear evaluation dimensions such as thematic relevance, action detail, and narrative progression. During inference, boundary scenes, including the opening and closing segments, are scored independently based on their own descriptions, while intermediate scenes incorporate concise summaries of adjacent segments to assess narrative continuity and redundancy. This design enables the language model to balance local salience with global coherence without any parameter tuning. Across three benchmarks, the proposed method achieves stable and competitive results, with F1 scores of 57.58 on SumMe, 63.05 on TVSum, and 53.79 on QFVS, surpassing zero-shot baselines by +0.85, +0.84, and +0.37, respectively. These outcomes demonstrate that rubric-guided pseudo labeling combined with contextual prompting effectively stabilizes LLM-based scoring and establishes a general, interpretable, and training-free paradigm for both generic and query-focused video summarization.
♻ ☆ Unlearned but Not Forgotten: Data Extraction after Exact Unlearning in LLM
Large Language Models are typically trained on datasets collected from the web, which may inadvertently contain harmful or sensitive personal information. To address growing privacy concerns, unlearning methods have been proposed to remove the influence of specific data from trained models. Of these, exact unlearning -- which retrains the model from scratch without the target data -- is widely regarded the gold standard for mitigating privacy risks in deployment. In this paper, we revisit this assumption in a practical deployment setting where both the pre- and post-unlearning logits API are exposed, such as in open-weight scenarios. Targeting this setting, we introduce a novel data extraction attack that leverages signals from the pre-unlearning model to guide the post-unlearning model, uncovering patterns that reflect the removed data distribution. Combining model guidance with a token filtering strategy, our attack significantly improves extraction success rates -- doubling performance in some cases -- across common benchmarks such as MUSE, TOFU, and WMDP. Furthermore, we demonstrate our attack's effectiveness on a simulated medical diagnosis dataset to highlight real-world privacy risks associated with exact unlearning. In light of our findings, which suggest that unlearning may, in a contradictory way, increase the risk of privacy leakage during real-world deployments, we advocate for evaluation of unlearning methods to consider broader threat models that account not only for post-unlearning models but also for adversarial access to prior checkpoints. Code is publicly available at: https://github.com/Nicholas0228/unlearned_data_extraction_llm.
comment: Accepted by Neurips 2025
♻ ☆ Provably Efficient Reward Transfer in Reinforcement Learning with Discrete Markov Decision Processes
In this paper, we propose a new solution to reward adaptation (RA) in reinforcement learning, where the agent adapts to a target reward function based on one or more existing source behaviors learned a priori under the same domain dynamics but different reward functions. While learning the target behavior from scratch is possible, it is often inefficient given the available source behaviors. Our work introduces a new approach to RA through the manipulation of Q-functions. Assuming the target reward function is a known function of the source reward functions, we compute bounds on the Q-function and present an iterative process (akin to value iteration) to tighten these bounds. Such bounds enable action pruning in the target domain before learning even starts. We refer to this method as "Q-Manipulation" (Q-M). The iteration process assumes access to a lite-model, which is easy to provide or learn. We formally prove that Q-M, under discrete domains, does not affect the optimality of the returned policy and show that it is provably efficient in terms of sample complexity in a probabilistic sense. Q-M is evaluated in a variety of synthetic and simulation domains to demonstrate its effectiveness, generalizability, and practicality.
♻ ☆ QoQ-Med: Building Multimodal Clinical Foundation Models with Domain-Aware GRPO Training NeurIPS 2025
Clinical decision-making routinely demands reasoning over heterogeneous data, yet existing multimodal language models (MLLMs) remain largely vision-centric and fail to generalize across clinical specialties. To bridge this gap, we introduce QoQ-Med-7B/32B, the first open generalist clinical foundation model that jointly reasons across medical images, time-series signals, and text reports. QoQ-Med is trained with Domain-aware Relative Policy Optimization (DRPO), a novel reinforcement-learning objective that hierarchically scales normalized rewards according to domain rarity and modality difficulty, mitigating performance imbalance caused by skewed clinical data distributions. Trained on 2.61 million instruction tuning pairs spanning 9 clinical domains, we show that DRPO training boosts diagnostic performance by 43% in macro-F1 on average across all visual domains as compared to other critic-free training methods like GRPO. Furthermore, with QoQ-Med trained on intensive segmentation data, it is able to highlight salient regions related to the diagnosis, with an IoU 10x higher than open models while reaching the performance of OpenAI o4-mini. To foster reproducibility and downstream research, we release (i) the full model weights, (ii) the modular training pipeline, and (iii) all intermediate reasoning traces at https://github.com/DDVD233/QoQ_Med.
comment: Accepted as Oral at NeurIPS 2025. Revision after camera ready
♻ ☆ Measuring Data Science Automation: A Survey of Evaluation Tools for AI Assistants and Agents
Data science aims to extract insights from data to support decision-making processes. Recently, Large Language Models (LLMs) have been increasingly used as assistants for data science, by suggesting ideas, techniques and small code snippets, or for the interpretation of results and reporting. Proper automation of some data-science activities is now promised by the rise of LLM agents, i.e., AI systems powered by an LLM equipped with additional affordances--such as code execution and knowledge bases--that can perform self-directed actions and interact with digital environments. In this paper, we survey the evaluation of LLM assistants and agents for data science. We find (1) a dominant focus on a small subset of goal-oriented activities, largely ignoring data management and exploratory activities; (2) a concentration on pure assistance or fully autonomous agents, without considering intermediate levels of human-AI collaboration; and (3) an emphasis on human substitution, therefore neglecting the possibility of higher levels of automation thanks to task transformation.
comment: Published in Transactions of Machine Learning Research (TMLR), 10/2025 https://openreview.net/forum?id=MB0TCLfLn1
♻ ☆ gLSTM: Mitigating Over-Squashing by Increasing Storage Capacity
Graph Neural Networks (GNNs) leverage the graph structure to transmit information between nodes, typically through the message-passing mechanism. While these models have found a wide variety of applications, they are known to suffer from over-squashing, where information from a large receptive field of node representations is collapsed into a single fixed sized vector, resulting in an information bottleneck. In this paper, we re-examine the over-squashing phenomenon through the lens of model storage and retrieval capacity, which we define as the amount of information that can be stored in a node's representation for later use. We study some of the limitations of existing tasks used to measure over-squashing and introduce a new synthetic task to demonstrate that an information bottleneck can saturate this capacity. Furthermore, we adapt ideas from the sequence modeling literature on associative memories, fast weight programmers, and the xLSTM model to develop a novel GNN architecture with improved capacity. We demonstrate strong performance of this architecture both on our capacity synthetic task, as well as a range of real-world graph benchmarks.
comment: 23 pages, 22 figures, 7 tables. v2: clarified over-squashing separation in light of related work
♻ ☆ Breaking the Exploration Bottleneck: Rubric-Scaffolded Reinforcement Learning for General LLM Reasoning
Recent advances in Large Language Models (LLMs) have underscored the potential of Reinforcement Learning (RL) to facilitate the emergence of reasoning capabilities. Despite the encouraging results, a fundamental dilemma persists as RL improvement relies on learning from high-quality samples, yet the exploration for such samples remains bounded by the inherent limitations of LLMs. This, in effect, creates an undesirable cycle in which what cannot be explored cannot be learned. In this work, we propose Rubric-Scaffolded Reinforcement Learning (RuscaRL), a novel instructional scaffolding framework designed to break the exploration bottleneck for general LLM reasoning. Specifically, RuscaRL introduces checklist-style rubrics as (1) explicit scaffolding for exploration during rollout generation, where different rubrics are provided as external guidance within task instructions to steer diverse high-quality responses. This guidance is gradually decayed over time, encouraging the model to internalize the underlying reasoning patterns; (2) verifiable rewards for exploitation during model training, where we can obtain robust LLM-as-a-Judge scores using rubrics as references, enabling effective RL on general reasoning tasks. Extensive experiments demonstrate the superiority of the proposed RuscaRL across various benchmarks, effectively expanding reasoning boundaries under the Best-of-N evaluation. Notably, RuscaRL significantly boosts Qwen2.5-7B-Instruct from 23.6 to 50.3 on HealthBench-500, surpassing GPT-4.1. Furthermore, our fine-tuned variant on Qwen3-30B-A3B-Instruct achieves 61.1 on HealthBench-500, outperforming leading LLMs including OpenAI-o3. Our code is available at https://github.com/IANNXANG/RuscaRL.
♻ ☆ ModServe: Modality- and Stage-Aware Resource Disaggregation for Scalable Multimodal Model Serving SoCC 2025
Large multimodal models (LMMs) demonstrate impressive capabilities in understanding images, videos, and audio beyond text. However, efficiently serving LMMs in production environments poses significant challenges due to their complex architectures and heterogeneous characteristics across their multi-stage inference pipelines. We present the first comprehensive systems analysis of two prominent LMM architectures, decoder-only and cross-attention, across six representative open-source models, revealing key systems design implications. We also present an in-depth analysis of production LMM inference traces, uncovering unique workload characteristics, including variable, heavy-tailed request distributions and bursty traffic patterns. Based on these insights, we propose ModServe, a modular LMM serving system that decouples stages for independent optimization and adaptive scaling. ModServe dynamically reconfigures stages and handles bursty traffic with modality-aware scheduling and autoscaling to meet tail latency SLOs while minimizing costs. ModServe achieves 3.3-5.5x higher throughput (leading to 25-41.3% cost saving) while meeting SLOs on a 128-GPU cluster with production traces.
comment: Published at ACM SoCC 2025; 14 pages, 20 figures
♻ ☆ The Coverage Principle: How Pre-Training Enables Post-Training
Language models demonstrate remarkable abilities when pre-trained on large text corpora and fine-tuned for specific tasks, but how and why pre-training shapes the success of the final model remains poorly understood. Notably, although pre-training success is often quantified by cross-entropy loss, cross-entropy can be a poor predictor of downstream performance. Instead, we provide a theoretical perspective on this relationship through the lens of \emph{coverage}, which quantifies the probability mass the pre-trained model places on high-quality responses and which is necessary and sufficient for post-training and test-time scaling methods such as Best-of-N to succeed. Our main results develop an understanding of \emph{the coverage principle}, a phenomenon whereby next-token prediction (more generally, maximum likelihood) implicitly optimizes toward a model with good coverage. In particular, we uncover a mechanism that explains the power of coverage in predicting downstream performance: \emph{coverage generalizes faster than cross-entropy}, avoiding spurious dependence on problem-dependent parameters such as the sequence length. We also study practical algorithmic interventions with provable benefits for improving coverage, including (i) model/checkpoint selection procedures, (ii) gradient normalization schemes, and (iii) test-time decoding strategies.
♻ ☆ GeoBenchX: Benchmarking LLMs in Agent Solving Multistep Geospatial Tasks
This paper establishes a benchmark for evaluating tool-calling capabilities of large language models (LLMs) on multi-step geospatial tasks relevant to commercial GIS practitioners. We assess eight commercial LLMs (Claude Sonnet 3.5 and 4, Claude Haiku 3.5, Gemini 2.0 Flash, Gemini 2.5 Pro Preview, GPT-4o, GPT-4.1 and o4-mini) using a simple tool-calling agent equipped with 23 geospatial functions. Our benchmark comprises tasks in four categories of increasing complexity, with both solvable and intentionally unsolvable tasks to test rejection accuracy. We develop a LLM-as-Judge evaluation framework to compare agent solutions against reference solutions. Results show o4-mini and Claude 3.5 Sonnet achieve the best overall performance, OpenAI's GPT-4.1, GPT-4o and Google's Gemini 2.5 Pro Preview do not fall far behind, but the last two are more efficient in identifying unsolvable tasks. Claude Sonnet 4, due its preference to provide any solution rather than reject a task, proved to be less accurate. We observe significant differences in token usage, with Anthropic models consuming more tokens than competitors. Common errors include misunderstanding geometrical relationships, relying on outdated knowledge, and inefficient data manipulation. The resulting benchmark set, evaluation framework, and data generation pipeline are released as open-source resources (available at https://github.com/Solirinai/GeoBenchX), providing one more standardized method for the ongoing evaluation of LLMs for GeoAI.
comment: Github with code and benchmark set: https://github.com/Solirinai/GeoBenchX
♻ ☆ Base Models Know How to Reason, Thinking Models Learn When NeurIPS 2025
Why do thinking language models like DeepSeek R1 outperform their base counterparts? Despite consistent performance gains, it remains unclear to what extent thinking models learn entirely new reasoning capabilities or repurpose pre-existing base model ones. In this work, we propose a hybrid model where we activate reasoning mechanisms in base models at the right time to elicit thinking-model-level reasoning chains, implying that thinking models exploit already existing capabilities. To ground our analysis, we introduce an unsupervised, bottom-up approach for uncovering human-interpretable reasoning behaviors in thinking models. This approach provides an unbiased method to discover reasoning behaviors without imposing manual or LLM-derived assumptions. Across three base and four thinking models, using GSM8K and MATH500, our hybrid model recovers up to 91% of the performance gap to thinking models without any weight updates while steering only 12% of tokens. Concretely, our empirical setup provides a simple, causal way to test the effectiveness of existing reasoning mechanisms in base models by invoking them directly and measuring the resulting task performance. More broadly, these results reframe our understanding of how thinking models are trained: pre-training is when models acquire most of their reasoning mechanisms, and post-training teaches efficient deployment of these mechanisms at the right time, enabling efficient use of their inference-time compute.
comment: 10 pages, Accepted to the Mechanistic Interpretability Workshop at NeurIPS 2025
♻ ☆ PRING: Rethinking Protein-Protein Interaction Prediction from Pairs to Graphs
Deep learning-based computational methods have achieved promising results in predicting protein-protein interactions (PPIs). However, existing benchmarks predominantly focus on isolated pairwise evaluations, overlooking a model's capability to reconstruct biologically meaningful PPI networks, which is crucial for biology research. To address this gap, we introduce PRING, the first comprehensive benchmark that evaluates protein-protein interaction prediction from a graph-level perspective. PRING curates a high-quality, multi-species PPI network dataset comprising 21,484 proteins and 186,818 interactions, with well-designed strategies to address both data redundancy and leakage. Building on this golden-standard dataset, we establish two complementary evaluation paradigms: (1) topology-oriented tasks, which assess intra and cross-species PPI network construction, and (2) function-oriented tasks, including protein complex pathway prediction, GO module analysis, and essential protein justification. These evaluations not only reflect the model's capability to understand the network topology but also facilitate protein function annotation, biological module detection, and even disease mechanism analysis. Extensive experiments on four representative model categories, consisting of sequence similarity-based, naive sequence-based, protein language model-based, and structure-based approaches, demonstrate that current PPI models have potential limitations in recovering both structural and functional properties of PPI networks, highlighting the gap in supporting real-world biological applications. We believe PRING provides a reliable platform to guide the development of more effective PPI prediction models for the community. The dataset and source code of PRING are available at https://github.com/SophieSarceau/PRING.
♻ ☆ Agentic Inequality
Autonomous AI agents, capable of complex planning and action, represent a significant technological evolution beyond current generative tools. As these systems become integrated into political and economic life, their distribution and capabilities will be highly consequential. This paper introduces and explores "agentic inequality" - the potential disparities in power, opportunity, and outcomes stemming from differential access to, and capabilities of, AI agents. We analyse the dual potential of this technology, exploring how agents could both exacerbate existing divides and, under the right conditions, serve as a powerful equalising force. To this end, the paper makes three primary contributions. First, it establishes an analytical framework by delineating the three core dimensions through which this inequality can manifest: disparities in the availability, quality, and quantity of agents. Second, it argues that agentic inequality is distinct from prior technological divides. Unlike tools that primarily augment human abilities, agents act as autonomous delegates, creating novel power asymmetries through scalable goal delegation and direct agent-to-agent competition that are poised to reshape outcomes across economic and socio-political spheres. Finally, it provides a systematic analysis of the technical and socioeconomic drivers - from model release strategies to market incentives - that will shape the distribution of agentic power, concluding with a research agenda for navigating the complex governance challenges ahead.
♻ ☆ Test-time Prompt Intervention
Test-time compute has led to remarkable success in the large language model (LLM) community, particularly for complex tasks, where longer chains of thought (CoTs) are generated to enhance reasoning capabilities. However, growing evidence reveals that such reasoning models often produce CoTs plagued by excessive redundancy, including unnecessary verification steps and repetitive reasoning shifts. The root cause lies in post-training of them that overly rely on outcome reward paradigms, as the data of process reward paradigms, which regulate intermediate reasoning steps, is difficult to construct at scale. To address this, we propose PI, a novel framework for Test-time Prompt Intervention. PI provides an interface to dynamically guide and regulate reasoning paths during inference through timely (When module) and proper (How module) interventions and post-intervention sampling (Which module). This allows human problem-solving expertise and cognitive science principles to be seamlessly integrated into LLMs' reasoning processes, enhancing controllability and interpretability. Extensive experiments across multiple models and datasets demonstrate that PI significantly shortens CoTs while reducing hallucination, yielding more concise and reliable reasoning.
comment: 24 pages, 20 figures, under review
♻ ☆ ARM-FM: Automated Reward Machines via Foundation Models for Compositional Reinforcement Learning
Reinforcement learning (RL) algorithms are highly sensitive to reward function specification, which remains a central challenge limiting their broad applicability. We present ARM-FM: Automated Reward Machines via Foundation Models, a framework for automated, compositional reward design in RL that leverages the high-level reasoning capabilities of foundation models (FMs). Reward machines (RMs) -- an automata-based formalism for reward specification -- are used as the mechanism for RL objective specification, and are automatically constructed via the use of FMs. The structured formalism of RMs yields effective task decompositions, while the use of FMs enables objective specifications in natural language. Concretely, we (i) use FMs to automatically generate RMs from natural language specifications; (ii) associate language embeddings with each RM automata-state to enable generalization across tasks; and (iii) provide empirical evidence of ARM-FM's effectiveness in a diverse suite of challenging environments, including evidence of zero-shot generalization.
♻ ☆ Pay Attention to Small Weights
Finetuning large pretrained neural networks is known to be resource-intensive, both in terms of memory and computational cost. To mitigate this, a common approach is to restrict training to a subset of the model parameters. By analyzing the relationship between gradients and weights during finetuning, we observe a notable pattern: large gradients are often associated with small-magnitude weights. This correlation is more pronounced in finetuning settings than in training from scratch. Motivated by this observation, we propose NANOADAM, which dynamically updates only the small-magnitude weights during finetuning and offers several practical advantages: first, this criterion is gradient-free -- the parameter subset can be determined without gradient computation; second, it preserves large-magnitude weights, which are likely to encode critical features learned during pretraining, thereby reducing the risk of catastrophic forgetting; thirdly, it permits the use of larger learning rates and consistently leads to better generalization performance in experiments. We demonstrate this for both NLP and vision tasks.
♻ ☆ Masked Generative Priors Improve World Models Sequence Modelling Capabilities
Deep Reinforcement Learning (RL) has become the leading approach for creating artificial agents in complex environments. Model-based approaches, which are RL methods with world models that predict environment dynamics, are among the most promising directions for improving data efficiency, forming a critical step toward bridging the gap between research and real-world deployment. In particular, world models enhance sample efficiency by learning in imagination, which involves training a generative sequence model of the environment in a self-supervised manner. Recently, Masked Generative Modelling has emerged as a more efficient and superior inductive bias for modelling and generating token sequences. Building on the Efficient Stochastic Transformer-based World Models (STORM) architecture, we replace the traditional MLP prior with a Masked Generative Prior (e.g., MaskGIT Prior) and introduce GIT-STORM. We evaluate our model on two downstream tasks: reinforcement learning and video prediction. GIT-STORM demonstrates substantial performance gains in RL tasks on the Atari 100k benchmark. Moreover, we apply Transformer-based World Models to continuous action environments for the first time, addressing a significant gap in prior research. To achieve this, we employ a state mixer function that integrates latent state representations with actions, enabling our model to handle continuous control tasks. We validate this approach through qualitative and quantitative analyses on the DeepMind Control Suite, showcasing the effectiveness of Transformer-based World Models in this new domain. Our results highlight the versatility and efficacy of the MaskGIT dynamics prior, paving the way for more accurate world models and effective RL policies.
♻ ☆ BlockGPT: Spatio-Temporal Modelling of Rainfall via Frame-Level Autoregression
Predicting precipitation maps is a highly complex spatiotemporal modeling task, critical for mitigating the impacts of extreme weather events. Short-term precipitation forecasting, or nowcasting, requires models that are not only accurate but also computationally efficient for real-time applications. Current methods, such as token-based autoregressive models, often suffer from flawed inductive biases and slow inference, while diffusion models can be computationally intensive. To address these limitations, we introduce BlockGPT, a generative autoregressive transformer using batched tokenization (Block) method that predicts full two-dimensional fields (frames) at each time step. Conceived as a model-agnostic paradigm for video prediction, BlockGPT factorizes space-time by using self-attention within each frame and causal attention across frames; in this work, we instantiate it for precipitation nowcasting. We evaluate BlockGPT on two precipitation datasets, viz. KNMI (Netherlands) and SEVIR (U.S.), comparing it to state-of-the-art baselines including token-based (NowcastingGPT) and diffusion-based (DiffCast+Phydnet) models. The results show that BlockGPT achieves superior accuracy, event localization as measured by categorical metrics, and inference speeds up to 31x faster than comparable baselines.
♻ ☆ Follow the STARs: Dynamic $ω$-Regular Shielding of Learned Policies
This paper presents a novel dynamic post-shielding framework that enforces the full class of $\omega$-regular correctness properties over pre-computed probabilistic policies. This constitutes a paradigm shift from the predominant setting of safety-shielding -- i.e., ensuring that nothing bad ever happens -- to a shielding process that additionally enforces liveness -- i.e., ensures that something good eventually happens. At the core, our method uses Strategy-Template-based Adaptive Runtime Shields (STARs), which leverage permissive strategy templates to enable post-shielding with minimal interference. As its main feature, STARs introduce a mechanism to dynamically control interference, allowing a tunable enforcement parameter to balance formal obligations and task-specific behavior at runtime. This allows to trigger more aggressive enforcement when needed, while allowing for optimized policy choices otherwise. In addition, STARs support runtime adaptation to changing specifications or actuator failures, making them especially suited for cyber-physical applications. We evaluate STARs on a mobile robot benchmark to demonstrate their controllable interference when enforcing (incrementally updated) $\omega$-regular correctness properties over learned probabilistic policies.
♻ ☆ TinySQL: A Progressive Text-to-SQL Dataset for Mechanistic Interpretability Research EMNLP 2025
Mechanistic interpretability research faces a gap between analyzing simple circuits in toy tasks and discovering features in large models. To bridge this gap, we propose text-to-SQL generation as an ideal task to study, as it combines the formal structure of toy tasks with real-world complexity. We introduce TinySQL, a synthetic dataset, progressing from basic to advanced SQL operations, and train models ranging from 33M to 1B parameters to establish a comprehensive testbed for interpretability. We apply multiple complementary interpretability techniques, including Edge Attribution Patching and Sparse Autoencoders, to identify minimal circuits and components supporting SQL generation. We compare circuits for different SQL subskills, evaluating their minimality, reliability, and identifiability. Finally, we conduct a layerwise logit lens analysis to reveal how models compose SQL queries across layers: from intent recognition to schema resolution to structured generation. Our work provides a robust framework for probing and comparing interpretability methods in a structured, progressively complex setting.
comment: Accepted to EMNLP 2025, 9 pages, 19 figures, 7 tables, 18 trained models Project Website: https://abirharrasse.github.io/tinysql/ Code Repository: https://github.com/withmartian/TinySQL Datasets and Models Viewer: https://huggingface.co/spaces/abir-hr196/tinysql-demo
♻ ☆ Learning Linear Attention in Polynomial Time
Previous research has explored the computational expressivity of Transformer models in simulating Boolean circuits or Turing machines. However, the learnability of these simulators from observational data has remained an open question. Our study addresses this gap by providing the first polynomial-time learnability results (specifically strong, agnostic PAC learning) for single-layer Transformers with linear attention. We show that linear attention may be viewed as a linear predictor in a suitably defined RKHS. As a consequence, the problem of learning any linear transformer may be converted into the problem of learning an ordinary linear predictor in an expanded feature space, and any such predictor may be converted back into a multiheaded linear transformer. Moving to generalization, we show how to efficiently identify training datasets for which every empirical risk minimizer is equivalent (up to trivial symmetries) to the linear Transformer that generated the data, thereby guaranteeing the learned model will correctly generalize across all inputs. Finally, we provide examples of computations expressible via linear attention and therefore polynomial-time learnable, including associative memories, finite automata, and a class of Universal Turing Machine (UTMs) with polynomially bounded computation histories. We empirically validate our theoretical findings on three tasks: learning random linear attention networks, key--value associations, and learning to execute finite automata. Our findings bridge a critical gap between theoretical expressivity and learnability of Transformers, and show that flexible and general models of computation are efficiently learnable.
♻ ☆ SparseWorld: A Flexible, Adaptive, and Efficient 4D Occupancy World Model Powered by Sparse and Dynamic Queries
Semantic occupancy has emerged as a powerful representation in world models for its ability to capture rich spatial semantics. However, most existing occupancy world models rely on static and fixed embeddings or grids, which inherently limit the flexibility of perception. Moreover, their "in-place classification" over grids exhibits a potential misalignment with the dynamic and continuous nature of real scenarios.In this paper, we propose SparseWorld, a novel 4D occupancy world model that is flexible, adaptive, and efficient, powered by sparse and dynamic queries. We propose a Range-Adaptive Perception module, in which learnable queries are modulated by the ego vehicle states and enriched with temporal-spatial associations to enable extended-range perception. To effectively capture the dynamics of the scene, we design a State-Conditioned Forecasting module, which replaces classification-based forecasting with regression-guided formulation, precisely aligning the dynamic queries with the continuity of the 4D environment. In addition, We specifically devise a Temporal-Aware Self-Scheduling training strategy to enable smooth and efficient training. Extensive experiments demonstrate that SparseWorld achieves state-of-the-art performance across perception, forecasting, and planning tasks. Comprehensive visualizations and ablation studies further validate the advantages of SparseWorld in terms of flexibility, adaptability, and efficiency. The code is available at https://github.com/MSunDYY/SparseWorld.
comment: Under Review
♻ ☆ dInfer: An Efficient Inference Framework for Diffusion Language Models
Diffusion-based large language models (dLLMs) have emerged as a promising alternative to autoregressive (AR) LLMs, leveraging denoising-based generation to enable inherent parallelism. Even more and more open-sourced dLLM models emerge, yet their widespread adoption remains constrained by the lack of a standardized and efficient inference framework. We present dInfer, an efficient and extensible framework for dLLM inference. dInfer decomposes the inference pipeline into four modular components--model, diffusion iteration manager, decoding strategy, and KV-cache manager--and integrates novel algorithms for each component alongside system-level optimizations. Through this combination of algorithmic innovations and system enhancements, dInfer achieves substantial efficiency gains without compromising output quality on LLaDA-MoE. At batch size 1, it surpasses 1,100 tokens per second on HumanEval and averages over 800 tokens per second across six benchmarks on $8\times$ H800 GPUs. Compared to prior systems, dInfer delivers a $10\times$ speedup over Fast-dLLM while maintaining similar model performance. Even compared to the AR model (with a comparable number of activation parameters and performance) QWen2.5-3B, which is highly optimized with the latest vLLM inference engine, dInfer still delivers a $2$-$3\times$ speedup. The implementation of dInfer is open-sourced at https://github.com/inclusionAI/dInfer.
♻ ☆ Unveiling Transformer Perception by Exploring Input Manifolds
This paper introduces a general method for the exploration of equivalence classes in the input space of Transformer models. The proposed approach is based on sound mathematical theory which describes the internal layers of a Transformer architecture as sequential deformations of the input manifold. Using eigendecomposition of the pullback of the distance metric defined on the output space through the Jacobian of the model, we are able to reconstruct equivalence classes in the input space and navigate across them. Our method enables two complementary exploration procedures: the first retrieves input instances that produce the same class probability distribution as the original instance-thus identifying elements within the same equivalence class-while the second discovers instances that yield a different class probability distribution, effectively navigating toward distinct equivalence classes. Finally, we demonstrate how the retrieved instances can be meaningfully interpreted by projecting their embeddings back into a human-readable format.
comment: 11 pages, 4 figures
♻ ☆ On the Effectiveness of Methods and Metrics for Explainable AI in Remote Sensing Image Scene Classification IEEE
The development of explainable artificial intelligence (xAI) methods for scene classification problems has attracted great attention in remote sensing (RS). Most xAI methods and the related evaluation metrics in RS are initially developed for natural images considered in computer vision (CV), and their direct usage in RS may not be suitable. To address this issue, in this paper, we investigate the effectiveness of explanation methods and metrics in the context of RS image scene classification. In detail, we methodologically and experimentally analyze ten explanation metrics spanning five categories (faithfulness, robustness, localization, complexity, randomization), applied to five established feature attribution methods (Occlusion, LIME, GradCAM, LRP, and DeepLIFT) across three RS datasets. Our methodological analysis identifies key limitations in both explanation methods and metrics. The performance of perturbation-based methods, such as Occlusion and LIME, heavily depends on perturbation baselines and spatial characteristics of RS scenes. Gradient-based approaches like GradCAM struggle when multiple labels are present in the same image, while some relevance propagation methods (LRP) can distribute relevance disproportionately relative to the spatial extent of classes. Analogously, we find limitations in evaluation metrics. Faithfulness metrics share the same problems as perturbation-based methods. Localization metrics and complexity metrics are unreliable for classes with a large spatial extent. In contrast, robustness metrics and randomization metrics consistently exhibit greater stability. Our experimental results support these methodological findings. Based on our analysis, we provide guidelines for selecting explanation methods, metrics, and hyperparameters in the context of RS image scene classification.
comment: The code of this work will be publicly available at https://git.tu-berlin.de/rsim/xai4rs Accepted at IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
♻ ☆ An Efficient Local Search Approach for Polarized Community Discovery in Signed Networks
Signed networks, where edges are labeled as positive or negative to represent friendly or antagonistic interactions, provide a natural framework for analyzing polarization, trust, and conflict in social systems. Detecting meaningful group structures in such networks is crucial for understanding online discourse, political divisions, and trust dynamics. A key challenge is to identify communities that are internally cohesive and externally antagonistic, while allowing for neutral or unaligned vertices. In this paper, we propose a method for identifying $k$ polarized communities that addresses a major limitation of prior methods: their tendency to produce highly size-imbalanced solutions. We introduce a novel optimization objective that avoids such imbalance. In addition, it is well known that approximation algorithms based on local search are highly effective for clustering signed networks when neutral vertices are not allowed. We build on this idea and design the first local search algorithm that extends to the setting with neutral vertices while scaling to large networks. By connecting our approach to block-coordinate Frank-Wolfe optimization, we prove a linear convergence rate, enabled by the structure of our objective. Experiments on real-world and synthetic datasets demonstrate that our method consistently outperforms state-of-the-art baselines in solution quality, while remaining competitive in computational efficiency.
♻ ☆ The Open Syndrome Definition
Case definitions are essential for effectively communicating public health threats. However, the absence of a standardized, machine-readable format poses significant challenges to interoperability, epidemiological research, the exchange of qualitative data, and the effective application of computational analysis methods, including artificial intelligence (AI). This complicates comparisons and collaborations across organizations and regions, limits data integration, and hinders technological innovation in public health. To address these issues, we propose the first open, machine-readable format for representing case and syndrome definitions. Additionally, we introduce the first comprehensive dataset of standardized case definitions and tools to convert existing human-readable definitions into machine-readable formats. We also provide an accessible online platform for browsing, analyzing, and contributing new definitions, available at https://opensyndrome.org. The Open Syndrome Definition format enables consistent, scalable use of case definitions across systems, unlocking AI's potential to strengthen public health preparedness and response. The source code for the format can be found at https://github.com/OpenSyndrome/schema under the MIT license.
♻ ☆ IM-Chat: A Multi-agent LLM Framework Integrating Tool-Calling and Diffusion Modeling for Knowledge Transfer in Injection Molding Industry
The injection molding industry faces critical challenges in preserving and transferring field knowledge, particularly as experienced workers retire and multilingual barriers hinder effective communication. This study introduces IM-Chat, a multi-agent framework based on large language models (LLMs), designed to facilitate knowledge transfer in injection molding. IM-Chat integrates both limited documented knowledge (e.g., troubleshooting tables, manuals) and extensive field data modeled through a data-driven process condition generator that infers optimal manufacturing settings from environmental inputs such as temperature and humidity, enabling robust and context-aware task resolution. By adopting a retrieval-augmented generation (RAG) strategy and tool-calling agents within a modular architecture, IM-Chat ensures adaptability without the need for fine-tuning. Performance was assessed across 100 single-tool and 60 hybrid tasks for GPT-4o, GPT-4o-mini, and GPT-3.5-turbo by domain experts using a 10-point rubric focused on relevance and correctness, and was further supplemented by automated evaluation using GPT-4o guided by a domain-adapted instruction prompt. The evaluation results indicate that more capable models tend to achieve higher accuracy, particularly in complex, tool-integrated scenarios. In addition, compared with the fine-tuned single-agent LLM, IM-Chat demonstrated superior accuracy, particularly in quantitative reasoning, and greater scalability in handling multiple information sources. Overall, these findings demonstrate the viability of multi-agent LLM systems for industrial knowledge workflows and establish IM-Chat as a scalable and generalizable approach to AI-assisted decision support in manufacturing.
♻ ☆ Learning from Videos for 3D World: Enhancing MLLMs with 3D Vision Geometry Priors NeurIPS 2025
Previous research has investigated the application of Multimodal Large Language Models (MLLMs) in understanding 3D scenes by interpreting them as videos. These approaches generally depend on comprehensive 3D data inputs, such as point clouds or reconstructed Bird's-Eye View (BEV) maps. In our research, we advance this field by enhancing the capability of MLLMs to understand and reason in 3D spaces directly from video data, without the need for additional 3D input. We propose a novel and efficient method called the Video-3D Geometry Large Language Model (VG LLM). Our approach utilizes a 3D visual geometry encoder to extract 3D prior information from video sequences. This information is then integrated with visual tokens and input into the MLLM. Extensive experiments have shown that our method has achieved substantial improvements in various tasks related to 3D scene understanding and spatial reasoning, all directly learned from video sources. Impressively, our 4B model, which does not rely on explicit 3D data inputs, achieves competitive results compared to existing state-of-the-art methods, and even surpasses the Gemini-1.5-Pro in the VSI-Bench evaluations.
comment: Accepted by NeurIPS 2025
♻ ☆ The Right to Be Remembered: Preserving Maximally Truthful Digital Memory in the Age of AI
Since the rapid expansion of large language models (LLMs), people have begun to rely on them for information retrieval. While traditional search engines display ranked lists of sources shaped by search engine optimization (SEO), advertising, and personalization, LLMs typically provide a synthesized response that feels singular and authoritative. While both approaches carry risks of bias and omission, LLMs may amplify the effect by collapsing multiple perspectives into one answer, reducing users ability or inclination to compare alternatives. This concentrates power over information in a few LLM vendors whose systems effectively shape what is remembered and what is overlooked. As a result, certain narratives, individuals or groups, may be disproportionately suppressed, while others are disproportionately elevated. Over time, this creates a new threat: the gradual erasure of those with limited digital presence, and the amplification of those already prominent, reshaping collective memory. To address these concerns, this paper presents a concept of the Right To Be Remembered (RTBR) which encompasses minimizing the risk of AI-driven information omission, embracing the right of fair treatment, while ensuring that the generated content would be maximally truthful.
♻ ☆ Towards Context-Aware Domain Generalization: Understanding the Benefits and Limits of Marginal Transfer Learning NeurIPS
In this work, we analyze the conditions under which information about the context of an input $X$ can improve the predictions of deep learning models in new domains. Following work in marginal transfer learning in Domain Generalization (DG), we formalize the notion of context as a permutation-invariant representation of a set of data points that originate from the same domain as the input itself. We offer a theoretical analysis of the conditions under which this approach can, in principle, yield benefits, and formulate two necessary criteria that can be easily verified in practice. Additionally, we contribute insights into the kind of distribution shifts for which the marginal transfer learning approach promises robustness. Empirical analysis shows that our criteria are effective in discerning both favorable and unfavorable scenarios. Finally, we demonstrate that we can reliably detect scenarios where a model is tasked with unwarranted extrapolation in out-of-distribution (OOD) domains, identifying potential failure cases. Consequently, we showcase a method to select between the most predictive and the most robust model, circumventing the well-known trade-off between predictive performance and robustness.
comment: 10 pages, 4 figures, NeurIPS Workshop: Reliable ML from Unreliable Data
♻ ☆ Estimating Long-term Heterogeneous Dose-response Curve: Generalization Bound Leveraging Optimal Transport Weights
Long-term treatment effect estimation is a significant but challenging problem in many applications. Existing methods rely on ideal assumptions, such as no unobserved confounders or binary treatment, to estimate long-term average treatment effects. However, in numerous real-world applications, these assumptions could be violated, and average treatment effects are insufficient for personalized decision-making. In this paper, we address a more general problem of estimating long-term Heterogeneous Dose-Response Curve (HDRC) while accounting for unobserved confounders and continuous treatment. Specifically, to remove the unobserved confounders in the long-term observational data, we introduce an optimal transport weighting framework to align the long-term observational data to an auxiliary short-term experimental data. Furthermore, to accurately predict the heterogeneous effects of continuous treatment, we establish a generalization bound on counterfactual prediction error by leveraging the reweighted distribution induced by optimal transport. Finally, we develop a long-term HDRC estimator building upon the above theoretical foundations. Extensive experiments on synthetic and semi-synthetic datasets demonstrate the effectiveness of our approach.
♻ ☆ MLR-Bench: Evaluating AI Agents on Open-Ended Machine Learning Research NeurIPS 2025
Recent advancements in AI agents have demonstrated their growing potential to drive and support scientific discovery. In this work, we introduce MLR-Bench, a comprehensive benchmark for evaluating AI agents on open-ended machine learning research. MLR-Bench includes three key components: (1) 201 research tasks sourced from NeurIPS, ICLR, and ICML workshops covering diverse ML topics; (2) MLR-Judge, an automated evaluation framework combining LLM-based reviewers with carefully designed review rubrics to assess research quality; and (3) MLR-Agent, a modular agent scaffold capable of completing research tasks through four stages: idea generation, proposal formulation, experimentation, and paper writing. Our framework supports both stepwise assessment across these distinct research stages, and end-to-end evaluation of the final research paper. We then use MLR-Bench to evaluate six frontier LLMs and an advanced coding agent, finding that while LLMs are effective at generating coherent ideas and well-structured papers, current coding agents frequently (e.g., in 80% of the cases) produce fabricated or invalidated experimental results--posing a major barrier to scientific reliability. We validate MLR-Judge through human evaluation, showing high agreement with expert reviewers, supporting its potential as a scalable tool for research evaluation. We open-source MLR-Bench to help the community benchmark, diagnose, and improve AI research agents toward trustworthy and transparent scientific discovery.
comment: 49 pages, 9 figures. Accepted by NeurIPS 2025 D&B Track
♻ ☆ Mathematics with large language models as provers and verifiers
During 2024 and 2025 the discussion about the theorem-proving capabilities of large language models started reporting interesting success stories, mostly to do with difficult exercises (such as problems from the International Mathematical Olympiad), but also with conjectures [Feldman & Karbasi, arXiv:2509.18383v1] formulated for the purpose of verifying whether the artificial intelligence could prove it. In this paper we report a theorem proving feat achieved by ChatGPT by using a protocol involving different prover and verifier instances of the gpt-5 model working collaboratively. To make sure that the produced proofs do not suffer from hallucinations, the final proof is formally verified by the lean proof assistant, and the conformance of premises and conclusion of the lean code is verified by a human. Our methodology is by no means complete or exact. It was nonetheless able to solve five out of six 2025 IMO problems, and close about a third of the sixty-six number theory conjectures in [Cohen, Journal of Integer Sequences, 2025].
♻ ☆ Benchmarking Large Language Models for Personalized Guidance in AI-Enhanced Learning
While Large Language Models (LLMs) are increasingly envisioned as intelligent assistants for personalized learning, systematic head-to-head evaluations in authentic learning scenarios remain scarce. This study presents an empirical comparison of three state-of-the-art LLMs on a tutoring task simulating a realistic learning setting. Using a dataset containing a student's responses to ten mixed-format questions with correctness labels, each model was asked to (i) analyze the quiz to identify underlying knowledge components, (ii) infer the student's mastery profile, and (iii) generate targeted guidance for improvement. To mitigate subjectivity and evaluator bias, Gemini was employed as a virtual judge to perform pairwise comparisons across multiple dimensions: accuracy, clarity, actionability, and appropriateness. Results analyzed via the Bradley-Terry model reveal that GPT-4o is generally preferred, producing feedback that is more informative and better structured than its counterparts, whereas DeepSeek-V3 and GLM-4.5 demonstrate intermittent strengths but lower consistency. These findings highlight the feasibility of deploying LLMs as advanced teaching assistants for individualized support and provide methodological insights for subsequent empirical research on LLM-driven personalized learning.
♻ ☆ RoboGPT-R1: Enhancing Robot Planning with Reinforcement Learning
Improving the reasoning capabilities of embodied agents is crucial for robots to complete complex human instructions in long-view manipulation tasks successfully. Despite the success of large language models and vision language models based on Supervised Fine-Tuning (SFT) in planning tasks, they continue facing challenges in performing long-horizon manipulation tasks in complex real-world environments, owing to their restricted common sense and reasoning capabilities. Considering that aligning general-purpose vision language models to robotic planning tasks via supervised fine-tuning suffers from poor generalization and insufficient physical understanding, we propose RoboGPT-R1, a two-stage fine-tuning framework for embodied planning. In this framework, supervised training acquires foundational knowledge through expert sequences, followed by RL to address the model's shortcomings in visual-spatial understanding and reasoning. To achieve physical understanding and action sequence consistency in multi-step reasoning tasks, we design a rule-based reward function that simultaneously considers long-horizon performance and action constraint in the environment. The reasoning model, trained on Qwen2.5-VL-3B, significantly outperforms the larger-scale model, GPT-4o-mini, by 21.33% and surpasses other work trained on Qwen2.5-VL-7B by 20.33% on the EmbodiedBench benchmark.
♻ ☆ Embedding in Recommender Systems: A Survey
Recommender systems have become an essential component of many online platforms, providing personalized recommendations to users. A crucial aspect is embedding techniques that convert the high-dimensional discrete features, such as user and item IDs, into low-dimensional continuous vectors, which can enhance the recommendation performance. Embedding techniques have revolutionized the capture of complex entity relationships, generating significant research interest. This survey presents a comprehensive analysis of recent advances in recommender system embedding techniques. We examine centralized embedding approaches across matrix, sequential, and graph structures. In matrix-based scenarios, collaborative filtering generates embeddings that effectively model user-item preferences, particularly in sparse data environments. For sequential data, we explore various approaches including recurrent neural networks and self-supervised methods such as contrastive and generative learning. In graph-structured contexts, we analyze techniques like node2vec that leverage network relationships, along with applicable self-supervised methods. Our survey addresses critical scalability challenges in embedding methods and explores innovative directions in recommender systems. We introduce emerging approaches, including AutoML, hashing techniques, and quantization methods, to enhance performance while reducing computational complexity. Additionally, we examine the promising role of Large Language Models (LLMs) in embedding enhancement. Through detailed discussion of various architectures and methodologies, this survey aims to provide a thorough overview of state-of-the-art embedding techniques in recommender systems, while highlighting key challenges and future research directions.
comment: 47 pages
♻ ☆ EEG-Based Consumer Behaviour Prediction: An Exploration from Classical Machine Learning to Graph Neural Networks
Prediction of consumer behavior is one of the important purposes in marketing, cognitive neuroscience, and human-computer interaction. The electroencephalography (EEG) data can help analyze the decision process by providing detailed information about the brain's neural activity. In this research, a comparative approach is utilized for predicting consumer behavior by EEG data. In the first step, the features of the EEG data from the NeuMa dataset were extracted and cleaned. For the Graph Neural Network (GNN) models, the brain connectivity features were created. Different machine learning models, such as classical models and Graph Neural Networks, are used and compared. The GNN models with different architectures are implemented to have a comprehensive comparison; furthermore, a wide range of classical models, such as ensemble models, are applied, which can be very helpful to show the difference and performance of each model on the dataset. Although the results did not show a significant difference overall, the GNN models generally performed better in some basic criteria where classical models were not satisfactory. This study not only shows that combining EEG signal analysis and machine learning models can provide an approach to deeper understanding of consumer behavior, but also provides a comprehensive comparison between the machine learning models that have been widely used in previous studies in the EEG-based neuromarketing such as Support Vector Machine (SVM), and the models which are not used or rarely used in the field, like Graph Neural Networks.
♻ ☆ High-order Equivariant Flow Matching for Density Functional Theory Hamiltonian Prediction NeurIPS 2025
Density functional theory (DFT) is a fundamental method for simulating quantum chemical properties, but it remains expensive due to the iterative self-consistent field (SCF) process required to solve the Kohn-Sham equations. Recently, deep learning methods are gaining attention as a way to bypass this step by directly predicting the Hamiltonian. However, they rely on deterministic regression and do not consider the highly structured nature of Hamiltonians. In this work, we propose QHFlow, a high-order equivariant flow matching framework that generates Hamiltonian matrices conditioned on molecular geometry. Flow matching models continuous-time trajectories between simple priors and complex targets, learning the structured distributions over Hamiltonians instead of direct regression. To further incorporate symmetry, we use a neural architecture that predicts SE(3)-equivariant vector fields, improving accuracy and generalization across diverse geometries. To further enhance physical fidelity, we additionally introduce a fine-tuning scheme to align predicted orbital energies with the target. QHFlow achieves state-of-the-art performance, reducing Hamiltonian error by 71% on MD17 and 53% on QH9. Moreover, we further show that QHFlow accelerates the DFT process without trading off the solution quality when initializing SCF iterations with the predicted Hamiltonian, significantly reducing the number of iterations and runtime.
comment: NeurIPS 2025 Spotlight
♻ ☆ TimeWak: Temporal Chained-Hashing Watermark for Time Series Data
Synthetic time series generated by diffusion models enable sharing privacy-sensitive datasets, such as patients' functional MRI records. Key criteria for synthetic data include high data utility and traceability to verify the data source. Recent watermarking methods embed in homogeneous latent spaces, but state-of-the-art time series generators operate in data space, making latent-based watermarking incompatible. This creates the challenge of watermarking directly in data space while handling feature heterogeneity and temporal dependencies. We propose TimeWak, the first watermarking algorithm for multivariate time series diffusion models. To handle temporal dependence and spatial heterogeneity, TimeWak embeds a temporal chained-hashing watermark directly within the temporal-feature data space. The other unique feature is the $\epsilon$-exact inversion, which addresses the non-uniform reconstruction error distribution across features from inverting the diffusion process to detect watermarks. We derive the error bound of inverting multivariate time series while preserving robust watermark detectability. We extensively evaluate TimeWak on its impact on synthetic data quality, watermark detectability, and robustness under various post-editing attacks, against five datasets and baselines of different temporal lengths. Our results show that TimeWak achieves improvements of 61.96% in context-FID score, and 8.44% in correlational scores against the strongest state-of-the-art baseline, while remaining consistently detectable.
♻ ☆ RoboMemory: A Brain-inspired Multi-memory Agentic Framework for Interactive Environmental Learning in Physical Embodied Systems
Embodied agents face persistent challenges in real-world environments, including partial observability, limited spatial reasoning, and high-latency multi-memory integration. We present RoboMemory, a brain-inspired framework that unifies Spatial, Temporal, Episodic, and Semantic memory under a parallelized architecture for efficient long-horizon planning and interactive environmental learning. A dynamic spatial knowledge graph (KG) ensures scalable and consistent memory updates, while a closed-loop planner with a critic module supports adaptive decision-making in dynamic settings. Experiments on EmbodiedBench show that RoboMemory, built on Qwen2.5-VL-72B-Ins, improves average success rates by 25% over its baseline and exceeds the closed-source state-of-the-art (SOTA) Gemini-1.5-Pro by 3%. Real-world trials further confirm its capacity for cumulative learning, with performance improving across repeated tasks. These results highlight RoboMemory as a scalable foundation for memory-augmented embodied intelligence, bridging the gap between cognitive neuroscience and robotic autonomy.
♻ ☆ EgoBlind: Towards Egocentric Visual Assistance for the Blind NeurIPS'25
We present EgoBlind, the first egocentric VideoQA dataset collected from blind individuals to evaluate the assistive capabilities of contemporary multimodal large language models (MLLMs). EgoBlind comprises 1,392 first-person videos from the daily lives of blind and visually impaired individuals. It also features 5,311 questions directly posed or verified by the blind to reflect their in-situation needs for visual assistance. Each question has an average of 3 manually annotated reference answers to reduce subjectiveness. Using EgoBlind, we comprehensively evaluate 16 advanced MLLMs and find that all models struggle. The best performers achieve an accuracy near 60\%, which is far behind human performance of 87.4\%. To guide future advancements, we identify and summarize major limitations of existing MLLMs in egocentric visual assistance for the blind and explore heuristic solutions for improvement. With these efforts, we hope that EgoBlind will serve as a foundation for developing effective AI assistants to enhance the independence of the blind and visually impaired. Data and code are available at https://github.com/doc-doc/EgoBlind.
comment: NeurIPS'25 (D&B Track)
♻ ☆ One-Step Diffusion for Detail-Rich and Temporally Consistent Video Super-Resolution
It is a challenging problem to reproduce rich spatial details while maintaining temporal consistency in real-world video super-resolution (Real-VSR), especially when we leverage pre-trained generative models such as stable diffusion (SD) for realistic details synthesis. Existing SD-based Real-VSR methods often compromise spatial details for temporal coherence, resulting in suboptimal visual quality. We argue that the key lies in how to effectively extract the degradation-robust temporal consistency priors from the low-quality (LQ) input video and enhance the video details while maintaining the extracted consistency priors. To achieve this, we propose a Dual LoRA Learning (DLoRAL) paradigm to train an effective SD-based one-step diffusion model, achieving realistic frame details and temporal consistency simultaneously. Specifically, we introduce a Cross-Frame Retrieval (CFR) module to aggregate complementary information across frames, and train a Consistency-LoRA (C-LoRA) to learn robust temporal representations from degraded inputs. After consistency learning, we fix the CFR and C-LoRA modules and train a Detail-LoRA (D-LoRA) to enhance spatial details while aligning with the temporal space defined by C-LoRA to keep temporal coherence. The two phases alternate iteratively for optimization, collaboratively delivering consistent and detail-rich outputs. During inference, the two LoRA branches are merged into the SD model, allowing efficient and high-quality video restoration in a single diffusion step. Experiments show that DLoRAL achieves strong performance in both accuracy and speed. Code and models are available at https://github.com/yjsunnn/DLoRAL.
comment: Accepted by Neurips2025
♻ ☆ Explaining Time Series Classifiers with PHAR: Rule Extraction and Fusion from Post-hoc Attributions
Explaining machine learning (ML) models for time series (TS) classification remains challenging due to the difficulty of interpreting raw time series and the high dimensionality of the input space. We introduce PHAR-Post-hoc Attribution Rules - a unified framework that transforms numeric feature attributions from post-hoc, instance-wise explainers (e.g., LIME, SHAP) into structured, human-readable rules. These rules define human-readable intervals that indicate where and when decision-relevant segments occur and can enhance model transparency by localizing threshold-based conditions on the raw series. PHAR performs comparably to native rule-based methods, such as Anchor, while scaling more efficiently to long TS sequences and achieving broader instance coverage. A dedicated rule fusion step consolidates rule sets using strategies like weighted selection and lasso-based refinement, balancing key quality metrics: coverage, confidence, and simplicity. This fusion ensures each instance receives a concise and unambiguous rule, improving both explanation fidelity and consistency. We further introduce visualization techniques to illustrate specificity-generalization trade-offs in the derived rules. PHAR resolves conflicting and overlapping explanations - a common effect of the Rashomon phenomenon - into coherent, domain-adaptable insights. Comprehensive experiments on UCR/UEA Time Series Classification Archive demonstrate that PHAR may improve interpretability, decision transparency, and practical applicability for TS classification tasks by providing concise, human-readable rules aligned with model predictions.
♻ ☆ Middo: Model-Informed Dynamic Data Optimization for Enhanced LLM Fine-Tuning via Closed-Loop Learning EMNLP 2025
Supervised Fine-Tuning (SFT) Large Language Models (LLM) fundamentally rely on high-quality training data. While data selection and data synthesis are two common strategies to improve data quality, existing approaches often face limitations in static dataset curation that fail to adapt to evolving model capabilities. In this paper, we introduce Middo, a self-evolving Model-informed dynamic data optimization framework that uses model-aware data selection and context-preserving data refinement. Unlike conventional one-off filtering/synthesis methods, our framework establishes a closed-loop optimization system: (1) A self-referential diagnostic module proactively identifies suboptimal samples through tri-axial model signals - loss patterns (complexity), embedding cluster dynamics (diversity), and self-alignment scores (quality); (2) An adaptive optimization engine then transforms suboptimal samples into pedagogically valuable training points while preserving semantic integrity; (3) This optimization process continuously evolves with model capability through dynamic learning principles. Experiments on multiple benchmarks demonstrate that our Middo consistently enhances the quality of seed data and boosts LLM's performance with improving accuracy by 7.15% on average while maintaining the original dataset scale. This work establishes a new paradigm for sustainable LLM training through dynamic human-AI co-evolution of data and models. Our datasets, models, and code are publicly available at https://github.com/Word2VecT/Middo.
comment: Accepted by EMNLP 2025 (Main)
♻ ☆ Quantum Natural Language Processing: A Comprehensive Review of Models, Methods, and Applications
In recent developments, deep learning methodologies applied to Natural Language Processing (NLP) have revealed a paradox: They improve performance but demand considerable data and resources for their training. Alternatively, quantum computing exploits the principles of quantum mechanics to overcome the computational limitations of current methodologies, thereby establishing an emerging field known as quantum natural language processing (QNLP). This domain holds the potential to attain a quantum advantage in the processing of linguistic structures, surpassing classical models in both efficiency and accuracy. In this paper, it is proposed to categorise QNLP models based on quantum computing principles, architecture, and computational approaches. This paper attempts to provide a survey on how quantum meets language by mapping state-of-the-art in this area, embracing quantum encoding techniques for classical data, QNLP models for prevalent NLP tasks, and quantum optimisation techniques for hyper parameter tuning. The landscape of quantum computing approaches applied to various NLP tasks is summarised by showcasing the specific QNLP methods used, and the popularity of these methods is indicated by their count. From the findings, it is observed that QNLP approaches are still limited to small data sets, with only a few models explored extensively, and there is increasing interest in the application of quantum computing to natural language processing tasks.
♻ ☆ Merging Embedded Topics with Optimal Transport for Online Topic Modeling on Data Streams
Topic modeling is a key component in unsupervised learning, employed to identify topics within a corpus of textual data. The rapid growth of social media generates an ever-growing volume of textual data daily, making online topic modeling methods essential for managing these data streams that continuously arrive over time. This paper introduces a novel approach to online topic modeling named StreamETM. This approach builds on the Embedded Topic Model (ETM) to handle data streams by merging models learned on consecutive partial document batches using unbalanced optimal transport. Additionally, an online change point detection algorithm is employed to identify shifts in topics over time, enabling the identification of significant changes in the dynamics of text streams. Numerical experiments on simulated and real-world data show StreamETM outperforming competitors. We provide the code publicly available at https://github.com/fgranese/StreamETM.
♻ ☆ The Endless Tuning. An Artificial Intelligence Design To Avoid Human Replacement and Trace Back Responsibilities
The Endless Tuning is a design method for a reliable deployment of artificial intelligence based on a double mirroring process, which pursues both the goals of avoiding human replacement and filling the so-called responsibility gap (Matthias 2004). Originally depicted in (Fabris et al. 2024) and ensuing the relational approach urged therein, it was then actualized in a protocol, implemented in three prototypical applications regarding decision-making processes (respectively: loan granting, pneumonia diagnosis, and art style recognition) and tested with such as many domain experts. Step by step illustrating the protocol, giving insights concretely showing a different voice (Gilligan 1993) in the ethics of artificial intelligence, a philosophical account of technical choices (e.g., a reversed and hermeneutic deployment of XAI algorithms) will be provided in the present study together with the results of the experiments, focusing on user experience rather than statistical accuracy. Even thoroughly employing deep learning models, full control was perceived by the interviewees in the decision-making setting, while it appeared that a bridge can be built between accountability and liability in case of damage.
♻ ☆ MUG-V 10B: High-efficiency Training Pipeline for Large Video Generation Models
In recent years, large-scale generative models for visual content (\textit{e.g.,} images, videos, and 3D objects/scenes) have made remarkable progress. However, training large-scale video generation models remains particularly challenging and resource-intensive due to cross-modal text-video alignment, the long sequences involved, and the complex spatiotemporal dependencies. To address these challenges, we present a training framework that optimizes four pillars: (i) data processing, (ii) model architecture, (iii) training strategy, and (iv) infrastructure for large-scale video generation models. These optimizations delivered significant efficiency gains and performance improvements across all stages of data preprocessing, video compression, parameter scaling, curriculum-based pretraining, and alignment-focused post-training. Our resulting model, MUG-V 10B, matches recent state-of-the-art video generators overall and, on e-commerce-oriented video generation tasks, surpasses leading open-source baselines in human evaluations. More importantly, we open-source the complete stack, including model weights, Megatron-Core-based large-scale training code, and inference pipelines for video generation and enhancement. To our knowledge, this is the first public release of large-scale video generation training code that exploits Megatron-Core to achieve high training efficiency and near-linear multi-node scaling, details are available in https://github.com/Shopee-MUG/MUG-V.
comment: Technical Report; Project Page: https://github.com/Shopee-MUG/MUG-V
♻ ☆ Understanding Reasoning in Thinking Language Models via Steering Vectors ICLR 2025
Recent advances in large language models (LLMs) have led to the development of thinking language models that generate extensive internal reasoning chains before producing responses. While these models achieve improved performance, controlling their reasoning processes remains challenging. This work presents a steering approach for thinking LLMs by analyzing and manipulating specific reasoning behaviors in DeepSeek-R1-Distill models. Through a systematic experiment on 500 tasks across 10 diverse categories, we identify several reasoning behaviors exhibited by thinking models, including expressing uncertainty, generating examples for hypothesis validation, and backtracking in reasoning chains. We demonstrate that these behaviors are mediated by linear directions in the model's activation space and can be controlled using steering vectors. By extracting and applying these vectors, we provide a method to modulate specific aspects of the model's reasoning process, such as its tendency to backtrack or express uncertainty. Our approach offers practical tools for steering reasoning processes in thinking models in a controlled and interpretable manner. We validate our steering method using three DeepSeek-R1-Distill models, demonstrating consistent control across different model architectures.
comment: Accepted to the Workshop on Reasoning and Planning for Large Language Models at ICLR 2025
♻ ☆ Invoice Information Extraction: Methods and Performance Evaluation
This paper presents methods for extracting structured information from invoice documents and proposes a set of evaluation metrics (EM) to assess the accuracy of the extracted data against annotated ground truth. The approach involves pre-processing scanned or digital invoices, applying Docling and LlamaCloud Services to identify and extract key fields such as invoice number, date, total amount, and vendor details. To ensure the reliability of the extraction process, we establish a robust evaluation framework comprising field-level precision, consistency check failures, and exact match accuracy. The proposed metrics provide a standardized way to compare different extraction methods and highlight strengths and weaknesses in field-specific performance.
♻ ☆ MeanAudio: Fast and Faithful Text-to-Audio Generation with Mean Flows
Recent years have witnessed remarkable progress in Text-to-Audio Generation (TTA), providing sound creators with powerful tools to transform inspirations into vivid audio. Yet despite these advances, current TTA systems often suffer from slow inference speed, which greatly hinders the efficiency and smoothness of audio creation. In this paper, we present MeanAudio, a fast and faithful text-to-audio generator capable of rendering realistic sound with only one function evaluation (1-NFE). MeanAudio leverages: (i) the MeanFlow objective with guided velocity target that significantly accelerates inference speed, (ii) an enhanced Flux-style transformer with dual text encoders for better semantic alignment and synthesis quality, and (iii) an efficient instantaneous-to-mean curriculum that speeds up convergence and enables training on consumer-grade GPUs. Through a comprehensive evaluation study, we demonstrate that MeanAudio achieves state-of-the-art performance in single-step audio generation. Specifically, it achieves a real-time factor (RTF) of 0.013 on a single NVIDIA RTX 3090, yielding a 100x speedup over SOTA diffusion-based TTA systems. Moreover, MeanAudio also shows strong performance in multi-step generation, enabling smooth transitions across successive synthesis steps.
♻ ☆ Efficient Vision-Language-Action Models for Embodied Manipulation: A Systematic Survey
Vision-Language-Action (VLA) models extend vision-language models to embodied control by mapping natural-language instructions and visual observations to robot actions. Despite their capabilities, VLA systems face significant challenges due to their massive computational and memory demands, which conflict with the constraints of edge platforms such as on-board mobile manipulators that require real-time performance. Addressing this tension has become a central focus of recent research. In light of the growing efforts toward more efficient and scalable VLA systems, this survey provides a systematic review of approaches for improving VLA efficiency, with an emphasis on reducing latency, memory footprint, and training and inference costs. We categorize existing solutions into four dimensions: model architecture, perception feature, action generation, and training/inference strategies, summarizing representative techniques within each category. Finally, we discuss future trends and open challenges, highlighting directions for advancing efficient embodied intelligence.
♻ ☆ Training-Free Label Space Alignment for Universal Domain Adaptation
Universal domain adaptation (UniDA) transfers knowledge from a labeled source domain to an unlabeled target domain, where label spaces may differ and the target domain may contain private classes. Previous UniDA methods primarily focused on visual space alignment but often struggled with visual ambiguities due to content differences, which limited their robustness and generalizability. To overcome this, we introduce a novel approach that leverages the strong \textit{zero-shot capabilities} of recent vision-language foundation models (VLMs) like CLIP, concentrating solely on label space alignment to enhance adaptation stability. CLIP can generate task-specific classifiers based only on label names. However, adapting CLIP to UniDA is challenging because the label space is not fully known in advance. In this study, we first utilize generative vision-language models to identify unknown categories in the target domain. Noise and semantic ambiguities in the discovered labels -- such as those similar to source labels (e.g., synonyms, hypernyms, hyponyms) -- complicate label alignment. To address this, we propose a training-free label-space alignment method for UniDA (\ours). Our method aligns label spaces instead of visual spaces by filtering and refining noisy labels between the domains. We then construct a \textit{universal classifier} that integrates both shared knowledge and target-private class information, thereby improving generalizability under domain shifts. The results reveal that the proposed method considerably outperforms existing UniDA techniques across key DomainBed benchmarks, delivering an average improvement of \textcolor{blue}{+7.9\%}in H-score and \textcolor{blue}{+6.1\%} in H$^3$-score. Furthermore, incorporating self-training further enhances performance and achieves an additional (\textcolor{blue}{+1.6\%}) increment in both H- and H$^3$-scores.
comment: 22 pages, 12 figures
♻ ☆ ACT: Agentic Classification Tree
When used in high-stakes settings, AI systems are expected to produce decisions that are transparent, interpretable, and auditable, a requirement increasingly expected by regulations. Decision trees such as CART provide clear and verifiable rules, but they are restricted to structured tabular data and cannot operate directly on unstructured inputs such as text. In practice, large language models (LLMs) are widely used for such data, yet prompting strategies such as chain-of-thought or prompt optimization still rely on free-form reasoning, limiting their ability to ensure trustworthy behaviors. We present the Agentic Classification Tree (ACT), which extends decision-tree methodology to unstructured inputs by formulating each split as a natural-language question, refined through impurity-based evaluation and LLM feedback via TextGrad. Experiments on text benchmarks show that ACT matches or surpasses prompting-based baselines while producing transparent and interpretable decision paths.
comment: 18 pages, 6 figures
♻ ☆ With Limited Data for Multimodal Alignment, Let the STRUCTURE Guide You NeurIPS 2025
Multimodal models have demonstrated powerful capabilities in complex tasks requiring multimodal alignment, including zero-shot classification and cross-modal retrieval. However, existing models typically rely on millions of paired multimodal samples, which are prohibitively expensive or infeasible to obtain in many domains. In this work, we explore the feasibility of building multimodal models with limited amount of paired data by aligning pretrained unimodal foundation models. We show that high-quality alignment is possible with as few as tens of thousands of paired samples$\unicode{x2013}$less than $1\%$ of the data typically used in the field. To achieve this, we introduce STRUCTURE, an effective regularization technique that preserves the neighborhood geometry of the latent space of unimodal encoders. Additionally, we show that aligning last layers is often suboptimal and demonstrate the benefits of aligning the layers with the highest representational similarity across modalities. These two components can be readily incorporated into existing alignment methods, yielding substantial gains across 24 zero-shot image classification and retrieval benchmarks, with average relative improvement of $51.6\%$ in classification and $91.8\%$ in retrieval tasks. Our results highlight the effectiveness and broad applicability of our framework for limited-sample multimodal learning and offer a promising path forward for resource-constrained domains.
comment: NeurIPS 2025 camera-ready
♻ ☆ Can LLMs Correct Themselves? A Benchmark of Self-Correction in LLMs
Self-correction of large language models (LLMs) emerges as a critical component for enhancing their reasoning performance. Although various self-correction methods have been proposed, a comprehensive evaluation of these methods remains largely unexplored, and the question of whether LLMs can truly correct themselves is a matter of significant interest and concern. In this study, we introduce CorrectBench, a benchmark developed to evaluate the effectiveness of self-correction strategies, including intrinsic, external, and fine-tuned approaches, across three tasks: commonsense reasoning, mathematical reasoning, and code generation. Our findings reveal that: 1) Self-correction methods can improve accuracy, especially for complex reasoning tasks; 2) Mixing different self-correction strategies yields further improvements, though it reduces efficiency; 3) Reasoning LLMs (e.g., DeepSeek-R1) have limited optimization under additional self-correction methods and have high time costs. Interestingly, a comparatively simple chain-of-thought (CoT) baseline demonstrates competitive accuracy and efficiency. These results underscore the potential of self-correction to enhance LLM's reasoning performance while highlighting the ongoing challenge of improving their efficiency. Consequently, we advocate for further research focused on optimizing the balance between reasoning capabilities and operational efficiency. Project Page: https://correctbench.github.io/
comment: 47 pages, 25 figures, 10 tables
♻ ☆ Towards Enhanced Image Generation Via Multi-modal Chain of Thought in Unified Generative Models
Unified generative models have shown remarkable performance in text and image generation. For image synthesis tasks, they adopt straightforward text-to-image (T2I) generation. However, direct T2I generation limits the models in handling complex compositional instructions, which frequently occur in real-world scenarios. Although this issue is vital, existing works mainly focus on improving the basic image generation capability of the models. While such improvements help to some extent, they still fail to adequately resolve the problem. Inspired by Chain of Thought (CoT) solving complex problems step by step, this work aims to introduce CoT into unified generative models to address the challenges of complex image generation that direct T2I generation cannot effectively solve, thereby endowing models with enhanced image generation ability. To achieve this, we first propose Functionality-oriented eXperts (FoXperts), an expert-parallel architecture in our model FoX, which assigns experts by function. FoXperts disentangles potential conflicts in mainstream modality-oriented designs and provides a solid foundation for CoT. When introducing CoT, the first question is how to design it for complex image generation. To this end, we emulate a human-like artistic workflow -- planning, acting, reflection, and correction -- and propose the Multimodal Chain of Thought (MCoT) approach, as the data involves both text and image. To address the subsequent challenge -- designing an effective MCoT training paradigm -- we develop a multi-task joint training scheme that equips the model with all capabilities required for each MCoT step in a disentangled manner. This paradigm avoids the difficulty of collecting consistent multi-step data tuples. Extensive experiments show that FoX consistently outperforms existing unified models on various T2I benchmarks, delivering notable improvements in complex image generation.
♻ ☆ Explainable fault and severity classification for rolling element bearings using Kolmogorov-Arnold networks
Rolling element bearings are critical components of rotating machinery, with their performance directly influencing the efficiency and reliability of industrial systems. At the same time, bearing faults are a leading cause of machinery failures, often resulting in costly downtime, reduced productivity, and, in extreme cases, catastrophic damage. This study presents a methodology that utilizes Kolmogorov-Arnold Networks to address these challenges through automatic feature selection, hyperparameter tuning and interpretable fault analysis within a unified framework. By training shallow network architectures and minimizing the number of selected features, the framework produces lightweight models that deliver explainable results through feature attribution and symbolic representations of their activation functions. Validated on two widely recognized datasets for bearing fault diagnosis, the framework achieved perfect F1-Scores for fault detection and high performance in fault and severity classification tasks, including 100% F1-Scores in most cases. Notably, it demonstrated adaptability by handling diverse fault types, such as imbalance and misalignment, within the same dataset. The symbolic representations enhanced model interpretability, while feature attribution offered insights into the optimal feature types or signals for each studied task. These results highlight the framework's potential for practical applications, such as real-time machinery monitoring, and for scientific research requiring efficient and explainable models.
♻ ☆ Natural Language Processing for Cardiology: A Narrative Review
Cardiovascular diseases are becoming increasingly prevalent in modern society, with a profound impact on global health and well-being. These Cardiovascular disorders are complex and multifactorial, influenced by genetic predispositions, lifestyle choices, and diverse socioeconomic and clinical factors. Information about these interrelated factors is dispersed across multiple types of textual data, including patient narratives, medical records, and scientific literature. Natural language processing (NLP) has emerged as a powerful approach for analysing such unstructured data, enabling healthcare professionals and researchers to gain deeper insights that may transform the diagnosis, treatment, and prevention of cardiac disorders. This review provides a comprehensive overview of NLP research in cardiology from 2014 to 2025. We systematically searched six literature databases for studies describing NLP applications across a range of cardiovascular diseases. After a rigorous screening process, we identified 265 relevant articles. Each study was analysed across multiple dimensions, including NLP paradigms, cardiology-related tasks, disease types, and data sources. Our findings reveal substantial diversity within these dimensions, reflecting the breadth and evolution of NLP research in cardiology. A temporal analysis further highlights methodological trends, showing a progression from rule-based systems to large language models. Finally, we discuss key challenges and future directions, such as developing interpretable LLMs and integrating multimodal data. To the best of our knowledge, this review represents the most comprehensive synthesis of NLP research in cardiology to date.
♻ ☆ Coordinated Strategies in Realistic Air Combat by Hierarchical Multi-Agent Reinforcement Learning IEEE
Achieving mission objectives in a realistic simulation of aerial combat is highly challenging due to imperfect situational awareness and nonlinear flight dynamics. In this work, we introduce a novel 3D multi-agent air combat environment and a Hierarchical Multi-Agent Reinforcement Learning framework to tackle these challenges. Our approach combines heterogeneous agent dynamics, curriculum learning, league-play, and a newly adapted training algorithm. To this end, the decision-making process is organized into two abstraction levels: low-level policies learn precise control maneuvers, while high-level policies issue tactical commands based on mission objectives. Empirical results show that our hierarchical approach improves both learning efficiency and combat performance in complex dogfight scenarios.
comment: 2025 IEEE International Conference on Agentic AI (ICA)
♻ ☆ Evaluating NLP Embedding Models for Handling Science-Specific Symbolic Expressions in Student Texts
In recent years, natural language processing (NLP) has become integral to educational data mining, particularly in the analysis of student-generated language products. For research and assessment purposes, so-called embedding models are typically employed to generate numeric representations of text that capture its semantic content for use in subsequent quantitative analyses. Yet when it comes to science-related language, symbolic expressions such as equations and formulas introduce challenges that current embedding models struggle to address. Existing research studies and practical applications often either overlook these challenges or remove symbolic expressions altogether, potentially leading to biased research findings and diminished performance of practical applications. This study therefore explores how contemporary embedding models differ in their capability to process and interpret science-related symbolic expressions. To this end, various embedding models are evaluated using physics-specific symbolic expressions drawn from authentic student responses, with performance assessed via two approaches: 1) similarity-based analyses and 2) integration into a machine learning pipeline. Our findings reveal significant differences in model performance, with OpenAI's GPT-text-embedding-3-large outperforming all other examined models, though its advantage over other models was moderate rather than decisive. Overall, this study underscores the importance for educational data mining researchers and practitioners of carefully selecting NLP embedding models when working with science-related language products that include symbolic expressions. The code and (partial) data are available at https://doi.org/10.17605/OSF.IO/6XQVG.
♻ ☆ Merge then Realign: Simple and Effective Modality-Incremental Continual Learning for Multimodal LLMs EMNLP 2025
Recent advances in Multimodal Large Language Models (MLLMs) have enhanced their versatility as they integrate a growing number of modalities. Considering the heavy cost of training MLLMs, it is efficient to reuse the existing ones and extend them to more modalities through Modality-incremental Continual Learning (MCL). The exploration of MCL is in its early stages. In this work, we dive into the causes of performance degradation in MCL. We uncover that it suffers not only from forgetting as in traditional continual learning, but also from misalignment between the modality-agnostic and modality-specific components. To this end, we propose an elegantly simple MCL paradigm called "MErge then ReAlign" (MERA) to address both forgetting and misalignment. MERA avoids introducing heavy model budgets or modifying model architectures, hence is easy to deploy and highly reusable in the MLLM community. Extensive experiments demonstrate the impressive performance of MERA, holding an average of 99.84\% Backward Relative Gain when extending to four modalities, achieving nearly lossless MCL performance. Our findings underscore the misalignment issue in MCL. More broadly, our work showcases how to adjust different components of MLLMs during continual learning.
comment: EMNLP 2025 Main Conference
♻ ☆ Memorization-Compression Cycles Improve Generalization NeurIPS2025
We prove theoretically that generalization improves not only through data scaling but also by compressing internal representations. To operationalize this insight, we introduce the Information Bottleneck Language Modeling (IBLM) objective, which reframes language modeling as a constrained optimization problem: minimizing representation entropy subject to optimal prediction performance. Empirically, we observe an emergent memorization-compression cycle during LLM pretraining, evidenced by oscillation positive/negative gradient alignment between cross-entropy and Matrix-Based Entropy (MBE), a measure of representation entropy. This pattern closely mirrors the predictive-compressive trade-off prescribed by IBLM and also parallels the biological alternation between awake learning and sleep consolidation. Motivated by this observation, we propose Gated Phase Transition (GAPT), a training algorithm that adaptively switches between memorization and compression phases. When applied to GPT-2 pretraining on FineWeb dataset, GAPT reduces MBE by 50% and improves cross-entropy by 4.8%. GAPT improves OOD generalizatino by 35% in a pretraining task on arithmetic multiplication. In a setting designed to simulate catastrophic forgetting, GAPT reduces interference by compressing and separating representations, achieving a 97% improvement in separation - paralleling the functional role of sleep consolidation.
comment: 12 pages, 6 figures, NeurIPS2025 NEGEL Workshop
♻ ☆ Where are we with calibration under dataset shift in image classification?
We conduct an extensive study on the state of calibration under real-world dataset shift for image classification. Our work provides important insights on the choice of post-hoc and in-training calibration techniques, and yields practical guidelines for all practitioners interested in robust calibration under shift. We compare various post-hoc calibration methods, and their interactions with common in-training calibration strategies (e.g., label smoothing), across a wide range of natural shifts, on eight different classification tasks across several imaging domains. We find that: (i) simultaneously applying entropy regularisation and label smoothing yield the best calibrated raw probabilities under dataset shift, (ii) post-hoc calibrators exposed to a small amount of semantic out-of-distribution data (unrelated to the task) are most robust under shift, (iii) recent calibration methods specifically aimed at increasing calibration under shifts do not necessarily offer significant improvements over simpler post-hoc calibration methods, (iv) improving calibration under shifts often comes at the cost of worsening in-distribution calibration. Importantly, these findings hold for randomly initialised classifiers, as well as for those finetuned from foundation models, the latter being consistently better calibrated compared to models trained from scratch. Finally, we conduct an in-depth analysis of ensembling effects, finding that (i) applying calibration prior to ensembling (instead of after) is more effective for calibration under shifts, (ii) for ensembles, OOD exposure deteriorates the ID-shifted calibration trade-off, (iii) ensembling remains one of the most effective methods to improve calibration robustness and, combined with finetuning from foundation models, yields best calibration results overall.
comment: Code available at https://github.com/biomedia-mira/calibration_under_shifts. Published in TMLR, October 2025 (https://openreview.net/forum?id=1NYKXlRU2H)
♻ ☆ Open-World Drone Active Tracking with Goal-Centered Rewards NeurIPS 2025
Drone Visual Active Tracking aims to autonomously follow a target object by controlling the motion system based on visual observations, providing a more practical solution for effective tracking in dynamic environments. However, accurate Drone Visual Active Tracking using reinforcement learning remains challenging due to the absence of a unified benchmark and the complexity of open-world environments with frequent interference. To address these issues, we pioneer a systematic solution. First, we propose DAT, the first open-world drone active air-to-ground tracking benchmark. It encompasses 24 city-scale scenes, featuring targets with human-like behaviors and high-fidelity dynamics simulation. DAT also provides a digital twin tool for unlimited scene generation. Additionally, we propose a novel reinforcement learning method called GC-VAT, which aims to improve the performance of drone tracking targets in complex scenarios. Specifically, we design a Goal-Centered Reward to provide precise feedback across viewpoints to the agent, enabling it to expand perception and movement range through unrestricted perspectives. Inspired by curriculum learning, we introduce a Curriculum-Based Training strategy that progressively enhances the tracking performance in complex environments. Besides, experiments on simulator and real-world images demonstrate the superior performance of GC-VAT, achieving a Tracking Success Rate of approximately 72% on the simulator. The benchmark and code are available at https://github.com/SHWplus/DAT_Benchmark.
comment: NeurIPS 2025
♻ ☆ Traffic-R1: Reinforced LLMs Bring Human-Like Reasoning to Traffic Signal Control Systems
We introduce Traffic-R1, a 3B-parameter foundation model with human-like reasoning for Traffic signal control (TSC), developed via self-exploration and iterative reinforcement of LLM with expert guidance in a simulated traffic environment. Compared with traditional reinforcement learning and recent LLM-based methods, Traffic-R1 offers three main advantages: zero-shot generalization, transferring unchanged to new road networks and out-of-distribution incidents by leveraging internal traffic-control policies and reasoning; a compact 3B-parameter design that supports real-time inference on mobile-class chips for edge deployment; and an explainable TSC process that enables multi-intersection coordination through communication and an asynchronous communication network. Extensive benchmarks show Traffic-R1 outperforms strong baselines and training-intensive RL controllers. In production, the model now manages signals affecting over 55,000 drivers daily, reduces average queue lengths by more than 5%, and halves operator workload. Our model is available at https://huggingface.co/Season998/Traffic-R1.
♻ ☆ PULSE: Practical Evaluation Scenarios for Large Multimodal Model Unlearning
In recent years, unlearning techniques, which are methods for inducing a model to "forget" previously learned information, have attracted attention as a way to address privacy and copyright concerns in large language models (LLMs) and large multimodal models (LMMs). While several unlearning benchmarks have been established for LLMs, a practical evaluation framework for unlearning in LMMs has been less explored. Specifically, existing unlearning benchmark for LMMs considers only scenarios in which the model is required to unlearn fine-tuned knowledge through a single unlearning operation. In this study, we introduce PULSE protocol for realistic unlearning scenarios for LMMs by introducing two critical perspectives: (i) Pre-trained knowledge Unlearning for analyzing the effect across different knowledge acquisition phases and (ii) Long-term Sustainability Evaluation to address sequential requests. We then evaluate existing unlearning methods along these dimensions. Our results reveal that, although some techniques can successfully unlearn knowledge acquired through fine-tuning, they struggle to eliminate information learned during pre-training. Moreover, methods that effectively unlearn a batch of target data in a single operation exhibit substantial performance degradation when the same data are split and unlearned sequentially.
♻ ☆ Reasoning Models Better Express Their Confidence NeurIPS 2025
Despite their strengths, large language models (LLMs) often fail to communicate their confidence accurately, making it difficult to assess when they might be wrong and limiting their reliability. In this work, we demonstrate that reasoning models that engage in extended chain-of-thought (CoT) reasoning exhibit superior performance not only in problem-solving but also in accurately expressing their confidence. Specifically, we benchmark six reasoning models across six datasets and find that they achieve strictly better confidence calibration than their non-reasoning counterparts in 33 out of the 36 settings. Our detailed analysis reveals that these gains in calibration stem from the slow thinking behaviors of reasoning models (e.g., exploring alternative approaches and backtracking) which enable them to adjust their confidence dynamically throughout their CoT, making it progressively more accurate. In particular, we find that reasoning models become increasingly better calibrated as their CoT unfolds, a trend not observed in non-reasoning models. Moreover, removing slow thinking behaviors from the CoT leads to a significant drop in calibration. Lastly, we show that non-reasoning models also demonstrate enhanced calibration when simply guided to slow think via in-context learning, fully isolating slow thinking as the source of the calibration gains.
comment: Accepted to NeurIPS 2025
♻ ☆ Q-Palette: Fractional-Bit Quantizers Toward Optimal Bit Allocation for Efficient LLM Deployment NeurIPS 2025
We study weight-only post-training quantization (PTQ), which quantizes the weights of a large language model (LLM) without retraining, using little or no calibration data. Weight-only PTQ is crucial for reducing the memory footprint and latency of LLM inference, especially in memory-bound, small-batch inference scenarios, such as personalized inference on edge devices. Despite its importance, irregular weight distributions with heavy-tailed outliers in LLMs complicate quantization, recently motivating rotation-based methods that transform weights into near-Gaussian distributions, which are more regular with fewer outliers, thereby reducing quantization error. In this work, we first derive the information-theoretically optimal bit allocation for Gaussianized weights under given bit budgets, revealing that fine-grained fractional-bit quantizers approaching the Gaussian distortion-rate bound are essential to achieve near-optimal quantization performance. To bridge this theoretical insight and practical implementation, we introduce Q-Palette, a versatile collection of fractional-bit quantizers that range from trellis-coded quantizers offering near-optimal distortion to simpler vector and scalar quantizers optimized for faster inference, all efficiently implemented with optimized CUDA kernels across various bitwidths. Furthermore, leveraging Q-Palette as a foundational component, we propose a novel mixed-scheme quantization framework, jointly optimizing quantizer choices and layer fusion decisions given resource constraints. The code is available at https://github.com/snu-mllab/Q-Palette.
comment: NeurIPS 2025
♻ ☆ LeapFactual: Reliable Visual Counterfactual Explanation Using Conditional Flow Matching NeurIPS 2025
The growing integration of machine learning (ML) and artificial intelligence (AI) models into high-stakes domains such as healthcare and scientific research calls for models that are not only accurate but also interpretable. Among the existing explainable methods, counterfactual explanations offer interpretability by identifying minimal changes to inputs that would alter a model's prediction, thus providing deeper insights. However, current counterfactual generation methods suffer from critical limitations, including gradient vanishing, discontinuous latent spaces, and an overreliance on the alignment between learned and true decision boundaries. To overcome these limitations, we propose LeapFactual, a novel counterfactual explanation algorithm based on conditional flow matching. LeapFactual generates reliable and informative counterfactuals, even when true and learned decision boundaries diverge. Following a model-agnostic approach, LeapFactual is not limited to models with differentiable loss functions. It can even handle human-in-the-loop systems, expanding the scope of counterfactual explanations to domains that require the participation of human annotators, such as citizen science. We provide extensive experiments on benchmark and real-world datasets showing that LeapFactual generates accurate and in-distribution counterfactual explanations that offer actionable insights. We observe, for instance, that our reliable counterfactual samples with labels aligning to ground truth can be beneficially used as new training data to enhance the model. The proposed method is broadly applicable and enhances both scientific knowledge discovery and non-expert interpretability.
comment: Accepted as a poster presentation at NeurIPS 2025. Camera-ready version. 10 pages, 7 figures
♻ ☆ RADAR: A Risk-Aware Dynamic Multi-Agent Framework for LLM Safety Evaluation via Role-Specialized Collaboration
Existing safety evaluation methods for large language models (LLMs) suffer from inherent limitations, including evaluator bias and detection failures arising from model homogeneity, which collectively undermine the robustness of risk evaluation processes. This paper seeks to re-examine the risk evaluation paradigm by introducing a theoretical framework that reconstructs the underlying risk concept space. Specifically, we decompose the latent risk concept space into three mutually exclusive subspaces: the explicit risk subspace (encompassing direct violations of safety guidelines), the implicit risk subspace (capturing potential malicious content that requires contextual reasoning for identification), and the non-risk subspace. Furthermore, we propose RADAR, a multi-agent collaborative evaluation framework that leverages multi-round debate mechanisms through four specialized complementary roles and employs dynamic update mechanisms to achieve self-evolution of risk concept distributions. This approach enables comprehensive coverage of both explicit and implicit risks while mitigating evaluator bias. To validate the effectiveness of our framework, we construct an evaluation dataset comprising 800 challenging cases. Extensive experiments on our challenging testset and public benchmarks demonstrate that RADAR significantly outperforms baseline evaluation methods across multiple dimensions, including accuracy, stability, and self-evaluation risk sensitivity. Notably, RADAR achieves a 28.87% improvement in risk identification accuracy compared to the strongest baseline evaluation method.
♻ ☆ Model-based Large Language Model Customization as Service EMNLP 2025
Prominent Large Language Model (LLM) services from providers like OpenAI and Google excel at general tasks but often underperform on domain-specific applications. Current customization services for these LLMs typically require users to upload data for fine-tuning, posing significant privacy risks. While differentially private (DP) data synthesis presents a potential alternative, its application commonly results in low effectiveness due to the introduction of excessive noise on data for DP. To overcome this, we introduce Llamdex, a novel framework that facilitates LLM customization as a service, where the client uploads pre-trained domain-specific models rather than data. This client-uploaded model, optionally protected by DP with much lower noise, is inserted into the base LLM via connection modules. Significantly, these connecting modules are trained without requiring sensitive domain data, enabling clients to customize LLM services while preserving data privacy. Experiments demonstrate that Llamdex improves domain-specific accuracy by up to 26% over state-of-the-art private data synthesis methods under identical privacy constraints and, by obviating the need for users to provide domain context within queries, maintains inference efficiency comparable to the original LLM service.
comment: Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing (EMNLP 2025)
♻ ☆ Improved Exploration in GFlownets via Enhanced Epistemic Neural Networks ICML 2025
Efficiently identifying the right trajectories for training remains an open problem in GFlowNets. To address this, it is essential to prioritize exploration in regions of the state space where the reward distribution has not been sufficiently learned. This calls for uncertainty-driven exploration, in other words, the agent should be aware of what it does not know. This attribute can be measured by joint predictions, which are particularly important for combinatorial and sequential decision problems. In this research, we integrate epistemic neural networks (ENN) with the conventional architecture of GFlowNets to enable more efficient joint predictions and better uncertainty quantification, thereby improving exploration and the identification of optimal trajectories. Our proposed algorithm, ENN-GFN-Enhanced, is compared to the baseline method in GFlownets and evaluated in grid environments and structured sequence generation in various settings, demonstrating both its efficacy and efficiency.
comment: Accepted to the EXAIT Workshop at ICML 2025, and ICoIAS 2025
♻ ☆ The Emergence of Complex Behavior in Large-Scale Ecological Environments
We explore how physical scale and population size shape the emergence of complex behaviors in open-ended ecological environments. In our setting, agents are unsupervised and have no explicit rewards or learning objectives but instead evolve over time according to reproduction, mutation, and natural selection. As they act, agents also shape their environment and the population around them in an ongoing dynamic ecology. Our goal is not to optimize a single high-performance policy, but instead to examine how behaviors emerge and evolve across large populations due to natural competition and environmental pressures. In an effort to discover how complex behaviors naturally emerge, we conduct experiments in large-scale worlds that reach populations of more than 60,000 individual agents, each with their own evolved neural network policy. We identify various emergent behaviors such as long-range resource extraction, vision-based foraging, and predation that arise under competitive and survival pressures. We examine how sensing modalities and environmental scale affect the emergence of these behaviors, finding that some appear only in sufficiently large environments and populations, with larger scales increasing behavioral stability and consistency. While there is a rich history of research in evolutionary settings, our scaling results provide promising new directions to explore ecology as an instrument of machine learning in an era of abundant computational resources. Experimental code is available at https://github.com/jbejjani2022/ecological-emergent-behavior.
comment: 18 pages, 11 figures, 6 tables, experiment code available at https://github.com/jbejjani2022/ecological-emergent-behavior
♻ ☆ FST.ai 2.0: An Explainable AI Ecosystem for Fair, Fast, and Inclusive Decision-Making in Olympic and Paralympic Taekwondo
Fair, transparent, and explainable decision-making remains a critical challenge in Olympic and Paralympic combat sports. This paper presents \emph{FST.ai 2.0}, an explainable AI ecosystem designed to support referees, coaches, and athletes in real time during Taekwondo competitions and training. The system integrates {pose-based action recognition} using graph convolutional networks (GCNs), {epistemic uncertainty modeling} through credal sets, and {explainability overlays} for visual decision support. A set of {interactive dashboards} enables human--AI collaboration in referee evaluation, athlete performance analysis, and Para-Taekwondo classification. Beyond automated scoring, FST.ai~2.0 incorporates modules for referee training, fairness monitoring, and policy-level analytics within the World Taekwondo ecosystem. Experimental validation on competition data demonstrates an {85\% reduction in decision review time} and {93\% referee trust} in AI-assisted decisions. The framework thus establishes a transparent and extensible pipeline for trustworthy, data-driven officiating and athlete assessment. By bridging real-time perception, explainable inference, and governance-aware design, FST.ai~2.0 represents a step toward equitable, accountable, and human-aligned AI in sports.
comment: 23 pages, 12 figures
♻ ☆ PARCO: Parallel AutoRegressive Models for Multi-Agent Combinatorial Optimization NeurIPS 2025
Combinatorial optimization problems involving multiple agents are notoriously challenging due to their NP-hard nature and the necessity for effective agent coordination. Despite advancements in learning-based methods, existing approaches often face critical limitations, including suboptimal agent coordination, poor generalization, and high computational latency. To address these issues, we propose PARCO (Parallel AutoRegressive Combinatorial Optimization), a general reinforcement learning framework designed to construct high-quality solutions for multi-agent combinatorial tasks efficiently. To this end, PARCO integrates three key novel components: (1) transformer-based communication layers to enable effective agent collaboration during parallel solution construction, (2) a multiple pointer mechanism for low-latency, parallel agent decision-making, and (3) priority-based conflict handlers to resolve decision conflicts via learned priorities. We evaluate PARCO in multi-agent vehicle routing and scheduling problems, where our approach outperforms state-of-the-art learning methods, demonstrating strong generalization ability and remarkable computational efficiency. We make our source code publicly available to foster future research: https://github.com/ai4co/parco.
comment: Accepted at NeurIPS 2025
♻ ☆ Horizon Reduction Makes RL Scalable NeurIPS 2025
In this work, we study the scalability of offline reinforcement learning (RL) algorithms. In principle, a truly scalable offline RL algorithm should be able to solve any given problem, regardless of its complexity, given sufficient data, compute, and model capacity. We investigate if and how current offline RL algorithms match up to this promise on diverse, challenging, previously unsolved tasks, using datasets up to 1000x larger than typical offline RL datasets. We observe that despite scaling up data, many existing offline RL algorithms exhibit poor scaling behavior, saturating well below the maximum performance. We hypothesize that the horizon is the main cause behind the poor scaling of offline RL. We empirically verify this hypothesis through several analysis experiments, showing that long horizons indeed present a fundamental barrier to scaling up offline RL. We then show that various horizon reduction techniques substantially enhance scalability on challenging tasks. Based on our insights, we also introduce a minimal yet scalable method named SHARSA that effectively reduces the horizon. SHARSA achieves the best asymptotic performance and scaling behavior among our evaluation methods, showing that explicitly reducing the horizon unlocks the scalability of offline RL. Code: https://github.com/seohongpark/horizon-reduction
comment: NeurIPS 2025
♻ ☆ Grasp Any Region: Towards Precise, Contextual Pixel Understanding for Multimodal LLMs
While Multimodal Large Language Models (MLLMs) excel at holistic understanding, they struggle in capturing the dense world with complex scenes, requiring fine-grained analysis of intricate details and object inter-relationships. Region-level MLLMs have been a promising step. However, previous attempts are generally optimized to understand given regions in isolation, neglecting crucial global contexts. To address this, we introduce Grasp Any Region (GAR) for comprehen- sive region-level visual understanding. Empowered by an effective RoI-aligned feature replay technique, GAR supports (1) precise perception by leveraging necessary global contexts, and (2) modeling interactions between multiple prompts. Together, it then naturally achieves (3) advanced compositional reasoning to answer specific free-form questions about any region, shifting the paradigm from passive description to active dialogue. Moreover, we construct GAR-Bench, which not only provides a more accurate evaluation of single-region comprehension, but also, more importantly, measures interactions and complex reasoning across multiple regions. Extensive experiments have demonstrated that GAR-1B not only maintains the state-of-the-art captioning capabilities, e.g., outperforming DAM-3B +4.5 on DLC-Bench, but also excels at modeling relationships between multiple prompts with advanced comprehension capabilities, even surpassing InternVL3-78B on GAR-Bench-VQA. More importantly, our zero-shot GAR-8B even outperforms in-domain VideoRefer-7B on VideoRefer-BenchQ, indicating its strong capabilities can be easily transferred to videos.
♻ ☆ Chiron-o1: Igniting Multimodal Large Language Models towards Generalizable Medical Reasoning via Mentor-Intern Collaborative Search
Multimodal large language models (MLLMs) have begun to demonstrate robust reasoning capabilities on general tasks, yet their application in the medical domain remains in its early stages. Constructing chain-of-thought (CoT) training data is essential for bolstering the reasoning abilities of medical MLLMs. However, existing approaches exhibit a deficiency in offering a comprehensive framework for searching and evaluating effective reasoning paths towards critical diagnosis. To address this challenge, we propose Mentor-Intern Collaborative Search (MICS), a novel reasoning-path searching scheme to generate rigorous and effective medical CoT data. MICS first leverages mentor models to initialize the reasoning, one step at a time, then prompts each intern model to continue the thinking along those initiated paths, and finally selects the optimal reasoning path according to the overall reasoning performance of multiple intern models. The reasoning performance is determined by an MICS-Score, which assesses the quality of generated reasoning paths. Eventually, we construct MMRP, a multi-task medical reasoning dataset with ranked difficulty, and Chiron-o1, a new medical MLLM devised via a curriculum learning strategy, with robust visual question-answering and generalizable reasoning capabilities. Extensive experiments demonstrate that Chiron-o1, trained on our CoT dataset constructed using MICS, achieves state-of-the-art performance across a list of medical visual question answering and reasoning benchmarks. Codes are available at https://github.com/manglu097/Chiron-o1
♻ ☆ Can Agents Fix Agent Issues? NeurIPS 2025
LLM-based agent systems are emerging as a new software paradigm and have been widely adopted across diverse domains such as medicine, robotics, and programming. However, maintaining these systems requires substantial effort, as they are inevitably prone to bugs and continually evolve to meet changing external requirements. Therefore, automatically resolving agent issues (i.e., bug reports or feature requests) is a crucial and challenging task. While recent software engineering (SE) agents (e.g., SWE-agent) have shown promise in addressing issues in traditional software systems, it remains unclear how effectively they can resolve real-world issues in agent systems, which differ significantly from traditional software. To fill this gap, we first manually analyze 201 real-world agent issues and identify common categories of agent issues. We then spend 500 person-hours constructing AGENTISSUE-BENCH, a reproducible benchmark comprising 50 agent issue resolution tasks (each with an executable environment and failure-triggering tests). We further evaluate state-of-the-art SE agents on AGENTISSUE-BENCH and reveal their limited effectiveness (i.e., with only 3.33% - 12.67% resolution rates). These results underscore the unique challenges of maintaining agent systems compared to traditional software, highlighting the need for further research to develop advanced SE agents for resolving agent issues. Data and code are available at https://alfin06.github.io/AgentIssue-Bench-Leaderboard/#/ .
comment: Accepted by the 39th Annual Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ Probing Perceptual Constancy in Large Vision-Language Models ICML 2025
Perceptual constancy is the ability to maintain stable perceptions of objects despite changes in sensory input, such as variations in distance, angle, or lighting. This ability is crucial for visual understanding in a dynamic world. Here, we explored such ability in current Vision Language Models (VLMs). In this study, we evaluated 155 VLMs using 236 experiments across three domains: color, size, and shape constancy. The experiments included single-image and video adaptations of classic cognitive tasks, along with novel tasks in in-the-wild conditions. We found significant variability in VLM performance across these domains, with model performance in shape constancy clearly dissociated from that of color and size constancy.
comment: Accepted by ICML 2025 Workshop Building Physically Plausible World Models
♻ ☆ ScaleNet: Scaling up Pretrained Neural Networks with Incremental Parameters IEEE
Recent advancements in vision transformers (ViTs) have demonstrated that larger models often achieve superior performance. However, training these models remains computationally intensive and costly. To address this challenge, we introduce ScaleNet, an efficient approach for scaling ViT models. Unlike conventional training from scratch, ScaleNet facilitates rapid model expansion with negligible increases in parameters, building on existing pretrained models. This offers a cost-effective solution for scaling up ViTs. Specifically, ScaleNet achieves model expansion by inserting additional layers into pretrained ViTs, utilizing layer-wise weight sharing to maintain parameters efficiency. Each added layer shares its parameter tensor with a corresponding layer from the pretrained model. To mitigate potential performance degradation due to shared weights, ScaleNet introduces a small set of adjustment parameters for each layer. These adjustment parameters are implemented through parallel adapter modules, ensuring that each instance of the shared parameter tensor remains distinct and optimized for its specific function. Experiments on the ImageNet-1K dataset demonstrate that ScaleNet enables efficient expansion of ViT models. With a 2$\times$ depth-scaled DeiT-Base model, ScaleNet achieves a 7.42% accuracy improvement over training from scratch while requiring only one-third of the training epochs, highlighting its efficiency in scaling ViTs. Beyond image classification, our method shows significant potential for application in downstream vision areas, as evidenced by the validation in object detection task.
comment: accepted to IEEE Transactions on Image Processing (TIP)
♻ ☆ LICO: Large Language Models for In-Context Molecular Optimization ICLR 2025
Optimizing black-box functions is a fundamental problem in science and engineering. To solve this problem, many approaches learn a surrogate function that estimates the underlying objective from limited historical evaluations. Large Language Models (LLMs), with their strong pattern-matching capabilities via pretraining on vast amounts of data, stand out as a potential candidate for surrogate modeling. However, directly prompting a pretrained language model to produce predictions is not feasible in many scientific domains due to the scarcity of domain-specific data in the pretraining corpora and the challenges of articulating complex problems in natural language. In this work, we introduce LICO, a general-purpose model that extends arbitrary base LLMs for black-box optimization, with a particular application to the molecular domain. To achieve this, we equip the language model with a separate embedding layer and prediction layer, and train the model to perform in-context predictions on a diverse set of functions defined over the domain. Once trained, LICO can generalize to unseen molecule properties simply via in-context prompting. LICO performs competitively on PMO, a challenging molecular optimization benchmark comprising 23 objective functions, and achieves state-of-the-art performance on its low-budget version PMO-1K.
comment: International Conference on Learning Representations (ICLR 2025)
♻ ☆ A Brain Cell Type Resource Created by Large Language Models and a Multi-Agent AI System for Collaborative Community Annotation
Single-cell RNA sequencing has transformed our ability to identify diverse cell types and their transcriptomic signatures. However, annotating these signatures-especially those involving poorly characterized genes-remains a major challenge. Traditional methods, such as Gene Set Enrichment Analysis (GSEA), depend on well-curated annotations and often perform poorly in these contexts. Large Language Models (LLMs) offer a promising alternative but struggle to represent complex biological knowledge within structured ontologies. To address this, we present BRAINCELL-AID (BRAINCELL-AID: https://biodataai.uth.edu/BRAINCELL-AID), a novel multi-agent AI system that integrates free-text descriptions with ontology labels to enable more accurate and robust gene set annotation. By incorporating retrieval-augmented generation (RAG), we developed a robust agentic workflow that refines predictions using relevant PubMed literature, reducing hallucinations and enhancing interpretability. Using this workflow, we achieved correct annotations for 77% of mouse gene sets among their top predictions. Applying this approach, we annotated 5,322 brain cell clusters from the comprehensive mouse brain cell atlas generated by the BRAIN Initiative Cell Census Network, enabling novel insights into brain cell function by identifying region-specific gene co-expression patterns and inferring functional roles of gene ensembles. BRAINCELL-AID also identifies Basal Ganglia-related cell types with neurologically meaningful descriptions. Hence, we create a valuable resource to support community-driven cell type annotation.
comment: 22 pages, 6 figures, 2 tables
♻ ☆ Flexible-length Text Infilling for Discrete Diffusion Models EMNLP
Discrete diffusion models are a new class of text generators that offer advantages such as bidirectional context use, parallelizable generation, and flexible prompting compared to autoregressive models. However, a critical limitation of discrete diffusion models is their inability to perform flexible-length or flexible-position text infilling without access to ground-truth positional data. We introduce \textbf{DDOT} (\textbf{D}iscrete \textbf{D}iffusion with \textbf{O}ptimal \textbf{T}ransport Position Coupling), the first discrete diffusion model to overcome this challenge. DDOT jointly denoises token values and token positions, employing a novel sample-level Optimal Transport (OT) coupling. This coupling preserves relative token ordering while dynamically adjusting the positions and length of infilled segments, a capability previously missing in text diffusion. Our method is orthogonal to existing discrete text diffusion methods and is compatible with various pretrained text denoisers. Extensive experiments on text infilling benchmarks such as One-Billion-Word and Yelp demonstrate that DDOT outperforms naive diffusion baselines. Furthermore, DDOT achieves performance on par with state-of-the-art non-autoregressive models and enables significant improvements in training efficiency and flexibility.
comment: Major edit of methodology section. Matches EMNLP camera-ready version
♻ ☆ ROTATE: Regret-driven Open-ended Training for Ad Hoc Teamwork
Learning to collaborate with previously unseen partners is a fundamental generalization challenge in multi-agent learning, known as Ad Hoc Teamwork (AHT). Existing AHT approaches often adopt a two-stage pipeline, where first, a fixed population of teammates is generated with the idea that they should be representative of the teammates that will be seen at deployment time, and second, an AHT agent is trained to collaborate well with agents in the population. To date, the research community has focused on designing separate algorithms for each stage. This separation has led to algorithms that generate teammates with limited coverage of possible behaviors, and that ignore whether the generated teammates are easy to learn from for the AHT agent. Furthermore, algorithms for training AHT agents typically treat the set of training teammates as static, thus attempting to generalize to previously unseen partner agents without assuming any control over the set of training teammates. This paper presents a unified framework for AHT by reformulating the problem as an open-ended learning process between an AHT agent and an adversarial teammate generator. We introduce ROTATE, a regret-driven, open-ended training algorithm that alternates between improving the AHT agent and generating teammates that probe its deficiencies. Experiments across diverse two-player environments demonstrate that ROTATE significantly outperforms baselines at generalizing to an unseen set of evaluation teammates, thus establishing a new standard for robust and generalizable teamwork.
♻ ☆ NAACL2025 Tutorial: Adaptation of Large Language Models NAACL2025
This tutorial on adaptation of LLMs is designed to address the growing demand for models that go beyond the static capabilities of generic LLMs by providing an overview of dynamic, domain-specific, and task-adaptive LLM adaptation techniques. While general LLMs have demonstrated strong generalization across a variety of tasks, they often struggle to perform well in specialized domains such as finance, healthcare, and code generation for underrepresented languages. Additionally, their static nature limits their ability to evolve with the changing world, and they are often extremely large in size, making them impractical and costly to deploy at scale. As a result, the adaptation of LLMs has drawn much attention since the birth of LLMs and is of core importance, both for industry, which focuses on serving its targeted users, and academia, which can greatly benefit from small but powerful LLMs. To address this gap, this tutorial aims to provide an overview of the LLM adaptation techniques. We start with an introduction to LLM adaptation, from both the data perspective and the model perspective. We then emphasize how the evaluation metrics and benchmarks are different from other techniques. After establishing the problems, we explore various adaptation techniques. We categorize adaptation techniques into two main families. The first is parametric knowledge adaptation, which focuses on updating the parametric knowledge within LLMs. Additionally, we will discuss real-time adaptation techniques, including model editing, which allows LLMs to be updated dynamically in production environments. The second kind of adaptation is semi-parametric knowledge adaptation, where the goal is to update LLM parameters to better leverage external knowledge or tools through techniques like retrieval-augmented generation (RAG) and agent-based systems.
comment: NAACL2025 Tutorial
♻ ☆ Demystifying Domain-adaptive Post-training for Financial LLMs EMNLP 2025
Domain-adaptive post-training of large language models (LLMs) has emerged as a promising approach for specialized domains such as medicine and finance. However, significant challenges remain in identifying optimal adaptation criteria and training strategies across varying data and model configurations. To address these challenges, we introduce FINDAP, a systematic and fine-grained investigation into domain-adaptive post-training of LLMs for the finance domain. Our approach consists of four key components: FinCap, which defines the core capabilities required for the target domain; FinRec, an effective training recipe that jointly optimizes continual pre-training and instruction-following, along with a novel preference data distillation method leveraging process signals from a generative reward model; FinTrain, a curated set of training datasets supporting FinRec; and FinEval, a comprehensive evaluation suite aligned with FinCap. The resulting model, Llama-Fin, achieves state-of-the-art performance across a wide range of financial tasks. Our analysis also highlights how each post-training stage contributes to distinct capabilities, uncovering specific challenges and effective solutions, providing valuable insights for domain adaptation of LLMs
comment: EMNLP 2025 (Oral, ARR best paper nomination)
♻ ☆ Who's Asking? Investigating Bias Through the Lens of Disability Framed Queries in LLMs ICCV 2025
Large Language Models (LLMs) routinely infer users demographic traits from phrasing alone, which can result in biased responses, even when no explicit demographic information is provided. The role of disability cues in shaping these inferences remains largely uncharted. Thus, we present the first systematic audit of disability-conditioned demographic bias across eight state-of-the-art instruction-tuned LLMs ranging from 3B to 72B parameters. Using a balanced template corpus that pairs nine disability categories with six real-world business domains, we prompt each model to predict five demographic attributes - gender, socioeconomic status, education, cultural background, and locality - under both neutral and disability-aware conditions. Across a varied set of prompts, models deliver a definitive demographic guess in up to 97\% of cases, exposing a strong tendency to make arbitrary inferences with no clear justification. Disability context heavily shifts predicted attribute distributions, and domain context can further amplify these deviations. We observe that larger models are simultaneously more sensitive to disability cues and more prone to biased reasoning, indicating that scale alone does not mitigate stereotype amplification. Our findings reveal persistent intersections between ableism and other demographic stereotypes, pinpointing critical blind spots in current alignment strategies. We release our evaluation framework and results to encourage disability-inclusive benchmarking and recommend integrating abstention calibration and counterfactual fine-tuning to curb unwarranted demographic inference. Code and data will be released on acceptance.
comment: Accepted at ICCV 2025
♻ ☆ Data Efficient Adaptation in Large Language Models via Continuous Low-Rank Fine-Tuning NeurIPS 2025
Recent advancements in Large Language Models (LLMs) have emphasized the critical role of fine-tuning (FT) techniques in adapting LLMs to specific tasks, especially when retraining from scratch is computationally infeasible. Fine-tuning enables LLMs to leverage task- or domain-specific data, producing models that more effectively meet the requirements of targeted applications. However, conventional FT approaches often suffer from catastrophic forgetting and suboptimal data efficiency, limiting their real-world applicability. To address these challenges, this paper proposes \textbf{DEAL}, a novel framework that integrates Low-Rank Adaptation (LoRA) with a continuous fine-tuning strategy. By incorporating knowledge retention and adaptive parameter update modules, the framework mitigates the limitations of existing FT methods while maintaining efficiency. Experiments on 15 diverse datasets show that DEAL consistently outperforms baseline methods, yielding substantial gains in task accuracy and resource efficiency. These findings demonstrate the potential of our approach to advance continual adaptation in LLMs by enhancing task performance while improving resource efficiency. The source code is publicly available at https://github.com/zzm-black/DEAL-Continuous-Low-Rank-Fine-Tuning.
comment: Accepted by NeurIPS 2025
♻ ☆ PTFA: An LLM-based Agent that Facilitates Online Consensus Building through Parallel Thinking
Consensus building is inherently challenging due to the diverse opinions held by stakeholders. Effective facilitation is crucial to support the consensus building process and enable efficient group decision making. However, the effectiveness of facilitation is often constrained by human factors such as limited experience and scalability. In this research, we propose a Parallel Thinking-based Facilitation Agent (PTFA) that facilitates online, text-based consensus building processes.The PTFA automatically collects real-time textual input and leverages large language models (LLMs)to perform all six distinct roles of the well-established Six Thinking Hats technique in parallel thinking.To illustrate the potential of the agent, a pilot study was conducted, demonstrating its capabilities in idea generation, emotional probing, and deeper analysis of idea quality. Additionally, future open research challenges such as optimizing scheduling and managing behaviors in divergent phase are identified. Furthermore, a comprehensive dataset that contains not only the conversational content among the participants but also between the participants and the agent is constructed for future study.
♻ ☆ GUARD: Guided Unlearning and Retention via Data Attribution for Large Language Models
Unlearning in large language models is becoming increasingly important due to regulatory compliance, copyright protection, and privacy concerns. However, a key challenge in LLM unlearning is unintended forgetting, where the removal of specific data inadvertently impairs the utility of the model and its retention of valuable, desired information. While prior work has primarily focused on architectural innovations, the influence of data-level factors on unlearning performance remains underexplored. As a result, existing methods often suffer from degraded retention when forgetting high-impact data. To address this problem, we propose GUARD, a novel framework for Guided Unlearning And Retention via Data attribution. At its core, GUARD introduces a lightweight proxy data attribution metric tailored for LLM unlearning, which quantifies the alignment between the Forget and Retain sets while remaining computationally efficient. Building on this, we design a novel unlearning objective that assigns adaptive, nonuniform unlearning weights to samples, inversely proportional to their proxy attribution scores. Through such a reallocation of unlearning power, GUARD mitigates unintended retention loss. We also provide rigorous theoretical guarantees that GUARD significantly improves retention while maintaining forgetting metrics comparable to prior methods. Extensive experiments on the TOFU and MUSE benchmarks across multiple LLM architectures demonstrate that GUARD reduces utility sacrifice on the TOFU Retain Set by up to 194.92 percent in terms of Truth Ratio when forgetting 10 percent of the training data, and improves knowledge retention on the MUSE NEWS Retain Set by 16.20 percent, with comparable or very moderate increases in privacy loss compared to state-of-the-art methods.
♻ ☆ VERA-MH Concept Paper
We introduce VERA-MH (Validation of Ethical and Responsible AI in Mental Health), an automated evaluation of the safety of AI chatbots used in mental health contexts, with an initial focus on suicide risk. Practicing clinicians and academic experts developed a rubric informed by best practices for suicide risk management for the evaluation. To fully automate the process, we used two ancillary AI agents. A user-agent model simulates users engaging in a mental health-based conversation with the chatbot under evaluation. The user-agent role-plays specific personas with pre-defined risk levels and other features. Simulated conversations are then passed to a judge-agent who scores them based on the rubric. The final evaluation of the chatbot being tested is obtained by aggregating the scoring of each conversation. VERA-MH is actively under development and undergoing rigorous validation by mental health clinicians to ensure user-agents realistically act as patients and that the judge-agent accurately scores the AI chatbot. To date we have conducted preliminary evaluation of GPT-5, Claude Opus and Claude Sonnet using initial versions of the VERA-MH rubric and used the findings for further design development. Next steps will include more robust clinical validation and iteration, as well as refining actionable scoring. We are seeking feedback from the community on both the technical and clinical aspects of our evaluation.
♻ ☆ Text or Pixels? It Takes Half: On the Token Efficiency of Visual Text Inputs in Multimodal LLMs EMNLP 2025
Large language models (LLMs) and their multimodal variants can now process visual inputs, including images of text. This raises an intriguing question: can we compress textual inputs by feeding them as images to reduce token usage while preserving performance? In this paper, we show that visual text representations are a practical and surprisingly effective form of input compression for decoder LLMs. We exploit the idea of rendering long text inputs as a single image and provide it directly to the model. This leads to dramatically reduced number of decoder tokens required, offering a new form of input compression. Through experiments on two distinct benchmarks RULER (long-context retrieval) and CNN/DailyMail (document summarization) we demonstrate that this text-as-image method yields substantial token savings (often nearly half) without degrading task performance.
comment: Accepted to EMNLP 2025 Findings ("Text or Pixels? Evaluating Efficiency and Understanding of LLMs with Visual Text Inputs")
♻ ☆ Multi-Agent Design Assistant for the Simulation of Inertial Fusion Energy
Inertial fusion energy promises nearly unlimited, clean power if it can be achieved. However, the design and engineering of fusion systems requires controlling and manipulating matter at extreme energies and timescales; the shock physics and radiation transport governing the physical behavior under these conditions are complex requiring the development, calibration, and use of predictive multiphysics codes to navigate the highly nonlinear and multi-faceted design landscape. We hypothesize that artificial intelligence reasoning models can be combined with physics codes and emulators to autonomously design fusion fuel capsules. In this article, we construct a multi-agent system where natural language is utilized to explore the complex physics regimes around fusion energy. The agentic system is capable of executing a high-order multiphysics inertial fusion computational code. We demonstrate the capacity of the multi-agent design assistant to both collaboratively and autonomously manipulate, navigate, and optimize capsule geometry while accounting for high fidelity physics that ultimately achieve simulated ignition via inverse design.
comment: Corrected the author's list metadata to match that found in the paper
♻ ☆ MedRule-KG: A Knowledge-Graph--Steered Scaffold for Mathematical Reasoning with a Lightweight Verifier
Large language models (LLMs) often produce fluent reasoning steps while violating simple mathematical or logical constraints. We introduce MedRule-KG, a compact typed knowledge graph coupled with a symbolic verifier, designed to enforce mathematically interpretable rules in reasoning tasks. MedRule-KG encodes entities, relations, and three domain-inspired rules, while the verifier checks predictions and applies minimal corrections to guarantee consistency. On a 90-example FDA-derived benchmark, grounding in MedRule-KG improves exact match (EM) from 0.767 to 0.900, and adding the verifier yields 1.000 EM while eliminating rule violations entirely. We demonstrate how MedRule-KG provides a general scaffold for safe mathematical reasoning, discuss ablations, and release code and data to encourage reproducibility.
♻ ☆ FairGen: Controlling Sensitive Attributes for Fair Generations in Diffusion Models via Adaptive Latent Guidance EMNLP 2025
Text-to-image diffusion models often exhibit biases toward specific demographic groups, such as generating more males than females when prompted to generate images of engineers, raising ethical concerns and limiting their adoption. In this paper, we tackle the challenge of mitigating generation bias towards any target attribute value (e.g., "male" for "gender") in diffusion models while preserving generation quality. We propose FairGen, an adaptive latent guidance mechanism which controls the generation distribution during inference. In FairGen, a latent guidance module dynamically adjusts the diffusion process to enforce specific attributes, while a memory module tracks the generation statistics and steers latent guidance to align with the targeted fair distribution of the attribute values. Furthermore, we address the limitations of existing datasets by introducing the Holistic Bias Evaluation (HBE) benchmark, which covers diverse domains and incorporates complex prompts to assess bias more comprehensively. Extensive evaluations on HBE and Stable Bias datasets demonstrate that FairGen outperforms existing bias mitigation approaches, achieving substantial bias reduction (e.g., 68.5% gender bias reduction on Stable Diffusion 2). Ablation studies highlight FairGen's ability to flexibly control the output distribution at any user-specified granularity, ensuring adaptive and targeted bias mitigation.
comment: EMNLP 2025 Main Conference (Camera Ready)
♻ ☆ PLAGUE: Plug-and-play framework for Lifelong Adaptive Generation of Multi-turn Exploits
Large Language Models (LLMs) are improving at an exceptional rate. With the advent of agentic workflows, multi-turn dialogue has become the de facto mode of interaction with LLMs for completing long and complex tasks. While LLM capabilities continue to improve, they remain increasingly susceptible to jailbreaking, especially in multi-turn scenarios where harmful intent can be subtly injected across the conversation to produce nefarious outcomes. While single-turn attacks have been extensively explored, adaptability, efficiency and effectiveness continue to remain key challenges for their multi-turn counterparts. To address these gaps, we present PLAGUE, a novel plug-and-play framework for designing multi-turn attacks inspired by lifelong-learning agents. PLAGUE dissects the lifetime of a multi-turn attack into three carefully designed phases (Primer, Planner and Finisher) that enable a systematic and information-rich exploration of the multi-turn attack family. Evaluations show that red-teaming agents designed using PLAGUE achieve state-of-the-art jailbreaking results, improving attack success rates (ASR) by more than 30% across leading models in a lesser or comparable query budget. Particularly, PLAGUE enables an ASR (based on StrongReject) of 81.4% on OpenAI's o3 and 67.3% on Claude's Opus 4.1, two models that are considered highly resistant to jailbreaks in safety literature. Our work offers tools and insights to understand the importance of plan initialization, context optimization and lifelong learning in crafting multi-turn attacks for a comprehensive model vulnerability evaluation.
comment: First two authors have equal author contributions
♻ ☆ An Analysis of Concept Bottleneck Models: Measuring, Understanding, and Mitigating the Impact of Noisy Annotations NeurIPS 2025
Concept bottleneck models (CBMs) ensure interpretability by decomposing predictions into human interpretable concepts. Yet the annotations used for training CBMs that enable this transparency are often noisy, and the impact of such corruption is not well understood. In this study, we present the first systematic study of noise in CBMs and show that even moderate corruption simultaneously impairs prediction performance, interpretability, and the intervention effectiveness. Our analysis identifies a susceptible subset of concepts whose accuracy declines far more than the average gap between noisy and clean supervision and whose corruption accounts for most performance loss. To mitigate this vulnerability we propose a two-stage framework. During training, sharpness-aware minimization stabilizes the learning of noise-sensitive concepts. During inference, where clean labels are unavailable, we rank concepts by predictive entropy and correct only the most uncertain ones, using uncertainty as a proxy for susceptibility. Theoretical analysis and extensive ablations elucidate why sharpness-aware training confers robustness and why uncertainty reliably identifies susceptible concepts, providing a principled basis that preserves both interpretability and resilience in the presence of noise.
comment: NeurIPS 2025
♻ ☆ LongCodeBench: Evaluating Coding LLMs at 1M Context Windows
Context lengths for models have grown rapidly, from thousands to millions of tokens in just a few years. The extreme context sizes of modern long-context models have made it difficult to construct realistic long-context benchmarks -- not only due to the cost of collecting million-context tasks but also in identifying realistic scenarios that require significant contexts. We identify code comprehension and repair as a natural testbed and challenge task for long-context models and introduce LongCodeBench (LCB), a benchmark to test LLM coding abilities in long-context scenarios. Our benchmark tests both the comprehension and repair capabilities of LCLMs in realistic and important settings by drawing from real-world GitHub issues and constructing QA (LongCodeQA) and bug fixing (LongSWE-Bench) tasks. We carefully stratify the complexity of our benchmark, enabling us to evaluate models across different scales -- ranging from Qwen2.5 14B Instruct to Google's flagship Gemini model. We find that long-context remains a weakness for all models, with performance drops such as from 29% to 3% for Claude 3.5 Sonnet, or from 70.2% to 40% for Qwen2.5. The LCB dataset is available publicly at https://huggingface.co/datasets/Steefano/LCB and the codebase to replicate the work on this paper at https://github.com/Zteefano/long-code-bench.
♻ ☆ Democratizing AI scientists using ToolUniverse
AI scientists are emerging computational systems that serve as collaborative partners in discovery. These systems remain difficult to build because they are bespoke, tied to rigid workflows, and lack shared environments that unify tools, data, and analyses into a common ecosystem. In genomics, unified ecosystems have transformed research by enabling interoperability, reuse, and community-driven development; AI scientists require comparable infrastructure. We present ToolUniverse, an ecosystem for building AI scientists from any language or reasoning model across open- and closed-weight models. ToolUniverse standardizes how AI scientists identify and call tools by providing more than 600 machine learning models, datasets, APIs, and scientific packages for data analysis, knowledge retrieval, and experimental design. It automatically refines tool interfaces for correct use by AI scientists, generates new tools from natural language descriptions, iteratively optimizes tool specifications, and composes tools into agentic workflows. In a case study of hypercholesterolemia, ToolUniverse was used to create an AI scientist to identify a potent analog of a drug with favorable predicted properties. The open-source ToolUniverse is available at https://aiscientist.tools.
comment: https://aiscientist.tools
♻ ☆ A Multi-Task Foundation Model for Wireless Channel Representation Using Contrastive and Masked Autoencoder Learning IEEE
Current applications of self-supervised learning to wireless channel representation often borrow paradigms developed for text and image processing, without fully addressing the unique characteristics and constraints of wireless communications. To bridge this gap, we introduce ContraWiMAE, Wireless Contrastive Masked Autoencoder, a transformer-based foundation model that unifies masked reconstruction and masked contrastive learning for wireless channel representation. Our key innovation is a new wireless-inspired contrastive objective that exploits the inherent characteristics of wireless environment, including noise, fading, and partial observability, as natural augmentation. Through extensive evaluation on unseen scenarios and conditions, we demonstrate our method's effectiveness in multiple downstream tasks, including cross-frequency beam selection, line-of-sight detection, and channel estimation. ContraWiMAE exhibits superior linear separability and adaptability in diverse wireless environments, demonstrating exceptional data efficiency and competitive performance compared with supervised baselines under challenging conditions. Comparative evaluations against a state-of-the-art wireless channel foundation model confirm the superior performance and data efficiency of our approach, highlighting its potential as a powerful baseline for future research in self-supervised wireless channel representation learning. To foster further work in this direction, we release the model weights and training pipeline for ContraWiMAE.
comment: - 17 pages, 7 figures, 5 tables - Submitted to IEEE JSAC Large AI Models for Future Wireless Communication Systems - Some of the results will appear in NeurIPS 2025, AI4NextG Workshop - This version is an extensive improvement in all aspects over the previous version with the same title - Dataset and implementation: https://github.com/BerkIGuler/WirelessContrastiveMaskedLearning
Learning What Matters: Steering Diffusion via Spectrally Anisotropic Forward Noise
Diffusion Probabilistic Models (DPMs) have achieved strong generative performance, yet their inductive biases remain largely implicit. In this work, we aim to build inductive biases into the training and sampling of diffusion models to better accommodate the target distribution of the data to model. We introduce an anisotropic noise operator that shapes these biases by replacing the isotropic forward covariance with a structured, frequency-diagonal covariance. This operator unifies band-pass masks and power-law weightings, allowing us to emphasize or suppress designated frequency bands, while keeping the forward process Gaussian. We refer to this as spectrally anisotropic Gaussian diffusion (SAGD). In this work, we derive the score relation for anisotropic covariances and show that, under full support, the learned score converges to the true data score as $t\!\to\!0$, while anisotropy reshapes the probability-flow path from noise to data. Empirically, we show the induced anisotropy outperforms standard diffusion across several vision datasets, and enables selective omission: learning while ignoring known corruptions confined to specific bands. Together, these results demonstrate that carefully designed anisotropic forward noise provides a simple, yet principled, handle to tailor inductive bias in DPMs.
♻ ☆ Hummer: Towards Limited Competitive Preference Dataset
Preference datasets are essential for incorporating human preferences into pre-trained language models, playing a key role in the success of Reinforcement Learning from Human Feedback. However, these datasets often demonstrate conflicting alignment objectives, leading to increased vulnerability to jailbreak attacks and challenges in adapting downstream tasks to prioritize specific alignment objectives without negatively impacting others. In this work, we introduce a novel statistical metric, Alignment Dimension Conflict, to quantify the degree of conflict within preference datasets. We then present \texttt{Hummer} and its fine-grained variant, \texttt{Hummer-F}, as innovative pairwise preference datasets with reduced-conflict alignment objectives. \texttt{Hummer} is built based on UltraFeedback and is enhanced by AI feedback from GPT-4, marking as the first preference dataset aimed at reducing the competition between alignment objectives. Furthermore, we develop reward models, HummerRM and HummerRM-F, which employ a hybrid sampling approach to balance diverse alignment objectives effectively. This sampling method positions HummerRM as an ideal model for domain-specific further fine-tuning and reducing vulnerabilities to attacks.
♻ ☆ Constraint Satisfaction Approaches to Wordle: Novel Heuristics and Cross-Lexicon Validation
Wordle presents an algorithmically rich testbed for constraint satisfaction problem (CSP) solving. While existing solvers rely on information-theoretic entropy maximization or frequency-based heuristics without formal constraint treatment, we present the first comprehensive CSP formulation of Wordle with novel constraint-aware solving strategies. We introduce CSP-Aware Entropy, computing information gain after constraint propagation rather than on raw candidate sets, and a Probabilistic CSP framework integrating Bayesian word-frequency priors with logical constraints. Through evaluation on 2,315 English words, CSP-Aware Entropy achieves 3.54 average guesses with 99.9% success rate, a statistically significant 1.7% improvement over Forward Checking (t=-4.82, p<0.001, Cohen's d=0.07) with 46% faster runtime (12.9ms versus 23.7ms per guess). Under 10% noise, CSP-aware approaches maintain 5.3 percentage point advantages (29.0% versus 23.7%, p=0.041), while Probabilistic CSP achieves 100% success across all noise levels (0-20%) through constraint recovery mechanisms. Cross-lexicon validation on 500 Spanish words demonstrates 88% success with zero language-specific tuning, validating that core CSP principles transfer across languages despite an 11.2 percentage point gap from linguistic differences (p<0.001, Fisher's exact test). Our open-source implementation with 34 unit tests achieving 91% code coverage provides reproducible infrastructure for CSP research. The combination of formal CSP treatment, constraint-aware heuristics, probabilistic-logical integration, robustness analysis, and cross-lexicon validation establishes new performance benchmarks demonstrating that principled constraint satisfaction techniques outperform classical information-theoretic and learning-based approaches for structured puzzle-solving domains.
comment: 35 pages, 14 figures, 10 tables. Open-source implementation with 91% test coverage available at https://github.com/jahidul-arafat/constraint_satisfaction_wordle_arxiv_preprint
♻ ☆ Feature Selection and Regularization in Multi-Class Classification: An Empirical Study of One-vs-Rest Logistic Regression with Gradient Descent Optimization and L1 Sparsity Constraints
Multi-class wine classification presents fundamental trade-offs between model accuracy, feature dimensionality, and interpretability - critical factors for production deployment in analytical chemistry. This paper presents a comprehensive empirical study of One-vs-Rest logistic regression on the UCI Wine dataset (178 samples, 3 cultivars, 13 chemical features), comparing from-scratch gradient descent implementation against scikit-learn's optimized solvers and quantifying L1 regularization effects on feature sparsity. Manual gradient descent achieves 92.59 percent mean test accuracy with smooth convergence, validating theoretical foundations, though scikit-learn provides 24x training speedup and 98.15 percent accuracy. Class-specific analysis reveals distinct chemical signatures with heterogeneous patterns where color intensity varies dramatically (0.31 to 16.50) across cultivars. L1 regularization produces 54-69 percent feature reduction with only 4.63 percent accuracy decrease, demonstrating favorable interpretability-performance trade-offs. We propose an optimal 5-feature subset achieving 62 percent complexity reduction with estimated 92-94 percent accuracy, enabling cost-effective deployment with 80 dollars savings per sample and 56 percent time reduction. Statistical validation confirms robust generalization with sub-2ms prediction latency suitable for real-time quality control. Our findings provide actionable guidelines for practitioners balancing comprehensive chemical analysis against targeted feature measurement in resource-constrained environments.
comment: 29 pages, 7 figures, 5 tables. Submitted to Machine Learning track. Comprehensive empirical evaluation of interpretable linear classification for analytical chemistry applications with focus on production deployment constraints, cost-benefit analysis, and class-specific feature importance patterns
♻ ☆ Aligning Transformers with Continuous Feedback via Energy Rank Alignment
Searching through chemical space is an exceptionally challenging problem because the number of possible molecules grows combinatorially with the number of atoms. Large, autoregressive models trained on databases of chemical compounds have yielded powerful generators, but we still lack robust strategies for generating molecules with desired properties. This molecular search problem closely resembles the "alignment" problem for large language models, though for many chemical tasks we have a specific and easily evaluable reward function. Here, we introduce an algorithm called energy rank alignment (ERA) that leverages an explicit reward function to produce a gradient-based objective that we use to optimize autoregressive policies. We show theoretically that this algorithm is closely related to proximal policy optimization (PPO) and direct preference optimization (DPO), but has a minimizer that converges to an ideal Gibbs-Boltzmann distribution with the reward playing the role of an energy function. Furthermore, this algorithm is highly scalable, does not require reinforcement learning, and performs well relative to DPO when the number of preference observations per pairing is small. We deploy this approach to align molecular transformers and protein language models to generate molecules and protein sequences, respectively, with externally specified properties and find that it does so robustly, searching through diverse parts of chemical space.
♻ ☆ VaultGemma: A Differentially Private Gemma Model
We introduce VaultGemma 1B, a 1 billion parameter model within the Gemma family, fully trained with differential privacy. Pretrained on the identical data mixture used for the Gemma 2 series, VaultGemma 1B represents a significant step forward in privacy-preserving large language models. We openly release this model to the community
♻ ☆ Serving LLMs in HPC Clusters: A Comparative Study of Qualcomm Cloud AI 100 Ultra and NVIDIA Data Center GPUs
This study presents a benchmarking analysis of the Qualcomm Cloud AI 100 Ultra (QAic) accelerator for large language model (LLM) inference, evaluating its energy efficiency (throughput per watt), performance, and hardware scalability against NVIDIA A100 GPUs (in 4x and 8x configurations) within the National Research Platform (NRP) ecosystem. A total of 12 open-source LLMs, ranging from 124 million to 70 billion parameters, are served using the vLLM framework. Our analysis reveals that QAic achieves competitive energy efficiency with advantages on specific models while enabling more granular hardware allocation: some 70B models operate on as few as 1 QAic card versus 8 A100 GPUs required, with 20x lower power consumption (148W vs 2,983W). For smaller models, single QAic devices achieve up to 35x lower power consumption compared to our 4-GPU A100 configuration (36W vs 1,246W). The findings offer insights into the potential of the Qualcomm Cloud AI 100 Ultra for energy-constrained and resource-efficient HPC deployments within the National Research Platform (NRP).
comment: 8 pages, 3 tables
♻ ☆ Relational Transformer: Toward Zero-Shot Foundation Models for Relational Data
Pretrained transformers readily adapt to new sequence modeling tasks via zero-shot prompting, but relational domains still lack architectures that transfer across datasets and tasks. The core challenge is the diversity of relational data, with varying heterogeneous schemas, graph structures and functional dependencies. In this paper, we present the Relational Transformer (RT) architecture, which can be pretrained on diverse relational databases and directly applied to unseen datasets and tasks without task- or dataset-specific fine-tuning, or retrieval of in-context examples. RT (i) tokenizes cells with table/column metadata, (ii) is pretrained via masked token prediction, and (iii) utilizes a novel Relational Attention mechanism over columns, rows, and primary-foreign key links. Pretrained on RelBench datasets spanning tasks such as churn and sales forecasting, RT attains strong zero-shot performance, averaging 93% of fully supervised AUROC on binary classification tasks with a single forward pass of a 22M parameter model, as opposed to 84% for a 27B LLM. Fine-tuning yields state-of-the-art results with high sample efficiency. Our experiments show that RT's zero-shot transfer harnesses task-table context, relational attention patterns and schema semantics. Overall, RT provides a practical path toward foundation models for relational data.
comment: preprint; under review
♻ ☆ Bridging Symmetry and Robustness: On the Role of Equivariance in Enhancing Adversarial Robustness NeurIPS 2025
Adversarial examples reveal critical vulnerabilities in deep neural networks by exploiting their sensitivity to imperceptible input perturbations. While adversarial training remains the predominant defense strategy, it often incurs significant computational cost and may compromise clean-data accuracy. In this work, we investigate an architectural approach to adversarial robustness by embedding group-equivariant convolutions-specifically, rotation- and scale-equivariant layers-into standard convolutional neural networks (CNNs). These layers encode symmetry priors that align model behavior with structured transformations in the input space, promoting smoother decision boundaries and greater resilience to adversarial attacks. We propose and evaluate two symmetry-aware architectures: a parallel design that processes standard and equivariant features independently before fusion, and a cascaded design that applies equivariant operations sequentially. Theoretically, we demonstrate that such models reduce hypothesis space complexity, regularize gradients, and yield tighter certified robustness bounds under the CLEVER (Cross Lipschitz Extreme Value for nEtwork Robustness) framework. Empirically, our models consistently improve adversarial robustness and generalization across CIFAR-10, CIFAR-100, and CIFAR-10C under both FGSM and PGD attacks, without requiring adversarial training. These findings underscore the potential of symmetry-enforcing architectures as efficient and principled alternatives to data augmentation-based defenses.
comment: Accepted for the proceedings of 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ Compositional Coordination for Multi-Robot Teams with Large Language Models IEEE
Multi-robot coordination has traditionally relied on a mission-specific and expert-driven pipeline, where natural language mission descriptions are manually translated by domain experts into mathematical formulation, algorithm design, and executable code. This conventional process is labor-intensive, inaccessible to non-experts, and inflexible to changes in mission requirements. Here, we propose LAN2CB (Language to Collective Behavior), a novel framework that leverages large language models (LLMs) to streamline and generalize the multi-robot coordination pipeline. LAN2CB transforms natural language (NL) mission descriptions into executable Python code for multi-robot systems through two core modules: (1) Mission Analysis, which parses mission descriptions into behavior trees, and (2) Code Generation, which leverages the behavior tree and a structured knowledge base to generate robot control code. We further introduce a dataset of natural language mission descriptions to support development and benchmarking. Experiments in both simulation and real-world environments demonstrate that LAN2CB enables robust and flexible multi-robot coordination from natural language, significantly reducing manual engineering effort and supporting broad generalization across diverse mission types. Website: https://sites.google.com/view/lan-cb
comment: IEEE International Symposium on Multi-Robot & Multi-Agent Systems (MRS 2025) Oral
♻ ☆ DIPLI: Deep Image Prior Lucky Imaging for Blind Astronomical Image Restoration
Modern image restoration and super-resolution methods utilize deep learning due to its superior performance compared to traditional algorithms. However, deep learning typically requires large training datasets, which are rarely available in astrophotography. Deep Image Prior (DIP) bypasses this constraint by performing blind training on a single image. Although effective in some cases, DIP often suffers from overfitting, artifact generation, and instability. To overcome these issues and improve general performance, this work proposes DIPLI - a framework that shifts from single-frame to multi-frame training using the Back Projection technique, combined with optical flow estimation via the TVNet model, and replaces deterministic predictions with unbiased Monte Carlo estimation obtained through Langevin dynamics. A comprehensive evaluation compares the method against Lucky Imaging, a classical computer vision technique still widely used in astronomical image reconstruction, DIP, the transformer-based model RVRT, and the diffusion-based model DiffIR2VR-Zero. Experiments on synthetic datasets demonstrate consistent improvements, with the method outperforming baselines for SSIM, PSNR, LPIPS, and DISTS metrics in the majority of cases. In addition to superior reconstruction quality, the model also requires far fewer input images than Lucky Imaging and is less prone to overfitting or artifact generation. Evaluation on real-world astronomical data, where domain shifts typically hinder generalization, shows that the method maintains high reconstruction quality, confirming practical robustness.
comment: 10 pages, 7 figures, 2 tables
♻ ☆ Don't be lazy: CompleteP enables compute-efficient deep transformers NeurIPS 2025
We study compute efficiency of LLM training when using different parameterizations, i.e., rules for adjusting model and optimizer hyperparameters (HPs) as model size changes. Some parameterizations fail to transfer optimal base HPs (such as learning rate) across changes in model depth, requiring practitioners to either re-tune these HPs as they scale up (expensive), or accept sub-optimal training when re-tuning is prohibitive. Even when they achieve HP transfer, we develop theory to show parameterizations may still exist in the lazy learning regime where layers learn only features close to their linearization, preventing effective use of depth and nonlinearity. Finally, we identify and adopt the parameterization we call CompleteP that achieves both depth-wise HP transfer and non-lazy learning in all layers. CompleteP enables a wider range of model width/depth ratios to remain compute-efficient, unlocking shapes better suited for different hardware settings and operational contexts. Moreover, CompleteP enables 12-34% compute efficiency improvements over the prior state-of-the-art. All experiments were run on Cerebras CS-3 systems. A minimal implementation is available at https://github.com/EleutherAI/nanoGPT-mup/tree/completep.
comment: NeurIPS 2025 Camera Ready
♻ ☆ Machine Unlearning under Overparameterization
Machine unlearning algorithms aim to remove the influence of specific training samples, ideally recovering the model that would have resulted from training on the remaining data alone. We study unlearning in the overparameterized setting, where many models interpolate the data, and defining the solution as any loss minimizer over the retained set$\unicode{x2013}$as in prior work in the underparameterized setting$\unicode{x2013}$is inadequate, since the original model may already interpolate the retained data and satisfy this condition. In this regime, loss gradients vanish, rendering prior methods based on gradient perturbations ineffective, motivating both new unlearning definitions and algorithms. For this setting, we define the unlearning solution as the minimum-complexity interpolator over the retained data and propose a new algorithmic framework that only requires access to model gradients on the retained set at the original solution. We minimize a regularized objective over perturbations constrained to be orthogonal to these model gradients, a first-order relaxation of the interpolation condition. For different model classes, we provide exact and approximate unlearning guarantees and demonstrate that an implementation of our framework outperforms existing baselines across various unlearning experiments.
♻ ☆ ExpertLens: Activation steering features are highly interpretable
Activation steering methods in large language models (LLMs) have emerged as an effective way to perform targeted updates to enhance generated language without requiring large amounts of adaptation data. We ask whether the features discovered by activation steering methods are interpretable. We identify neurons responsible for specific concepts (e.g., ``cat'') using the ``finding experts'' method from research on activation steering and show that the ExpertLens, i.e., inspection of these neurons provides insights about model representation. We find that ExpertLens representations are stable across models and datasets and closely align with human representations inferred from behavioral data, matching inter-human alignment levels. ExpertLens significantly outperforms the alignment captured by word/sentence embeddings. By reconstructing human concept organization through ExpertLens, we show that it enables a granular view of LLM concept representation. Our findings suggest that ExpertLens is a flexible and lightweight approach for capturing and analyzing model representations.
♻ ☆ Towards Interpretability Without Sacrifice: Faithful Dense Layer Decomposition with Mixture of Decoders NeurIPS 2025
Multilayer perceptrons (MLPs) are an integral part of large language models, yet their dense representations render them difficult to understand, edit, and steer. Recent methods learn interpretable approximations via neuron-level sparsity, yet fail to faithfully reconstruct the original mapping--significantly increasing model's next-token cross-entropy loss. In this paper, we advocate for moving to layer-level sparsity to overcome the accuracy trade-off in sparse layer approximation. Under this paradigm, we introduce Mixture of Decoders (MxDs). MxDs generalize MLPs and Gated Linear Units, expanding pre-trained dense layers into tens of thousands of specialized sublayers. Through a flexible form of tensor factorization, each sparsely activating MxD sublayer implements a linear transformation with full-rank weights--preserving the original decoders' expressive capacity even under heavy sparsity. Experimentally, we show that MxDs significantly outperform state-of-the-art methods (e.g., Transcoders) on the sparsity-accuracy frontier in language models with up to 3B parameters. Further evaluations on sparse probing and feature steering demonstrate that MxDs learn similarly specialized features of natural language--opening up a promising new avenue for designing interpretable yet faithful decompositions. Our code is included at: https://github.com/james-oldfield/MxD/.
comment: Accepted at NeurIPS 2025
♻ ☆ A Principle of Targeted Intervention for Multi-Agent Reinforcement Learning NeurIPS 2025
Steering cooperative multi-agent reinforcement learning (MARL) towards desired outcomes is challenging, particularly when the global guidance from a human on the whole multi-agent system is impractical in a large-scale MARL. On the other hand, designing external mechanisms (e.g., intrinsic rewards and human feedback) to coordinate agents mostly relies on empirical studies, lacking a easy-to-use research tool. In this work, we employ multi-agent influence diagrams (MAIDs) as a graphical framework to address the above issues. First, we introduce the concept of MARL interaction paradigms, using MAIDs to analyze and visualize both unguided self-organization and global guidance mechanisms in MARL. Then, we design a new MARL interaction paradigm, referred to as the targeted intervention paradigm that is applied to only a single targeted agent, so the problem of global guidance can be mitigated. In our implementation, we introduce a causal inference technique, referred to as Pre-Strategy Intervention (PSI), to realize the targeted intervention paradigm. Since MAIDs can be regarded as a special class of causal diagrams, a composite desired outcome that integrates the primary task goal and an additional desired outcome can be achieved by maximizing the corresponding causal effect through the PSI. Moreover, the bundled relevance graph analysis of MAIDs provides a tool to identify whether an MARL learning paradigm is workable under the design of an MARL interaction paradigm. In experiments, we demonstrate the effectiveness of our proposed targeted intervention, and verify the result of relevance graph analysis.
comment: Published in NeurIPS 2025
♻ ☆ GTAlign: Game-Theoretic Alignment of LLM Assistants for Mutual Welfare
Large Language Models (LLMs) have achieved remarkable progress in reasoning, yet sometimes produce responses that are suboptimal for users in tasks such as writing, information seeking, or providing practical guidance. Conventional alignment practices typically assume that maximizing model reward also maximizes user welfare, but this assumption frequently fails in practice: models may over-clarify or generate overly verbose reasoning when users prefer concise answers. Such behaviors resemble the prisoner's dilemma, where individually rational choices lead to socially suboptimal outcomes. The fundamental challenge is the lack of a principled decision making mechanism that mutually benefits both the LLM and the user. We propose Game-Theoretic Alignment (GTAlign), an alignment framework that integrates game-theoretic decision making into both reasoning and training. During reasoning, the model explicitly treats user-LLM interaction as a strategic game: it constructs payoff matrices within its reasoning chain to estimate welfare for both itself and the user, and then selects actions that are mutually beneficial. During training, we introduce a mutual welfare reward that reinforces cooperative responses, aligning model behavior with socially efficient outcomes. In addition, we introduce an inference technique that leverages game-theoretic reasoning to dynamically adapt LLM's response when pricing policies of LLM service change. Extensive experiments demonstrate that GTAlign substantially improves reasoning efficiency, answer quality, and mutual welfare compared to baselines across diverse tasks. The code is available at https://github.com/ulab-uiuc/GTAlign .
comment: 31 pages, 6 figures
♻ ☆ Token embeddings violate the manifold hypothesis
A full understanding of the behavior of a large language model (LLM) requires our grasp of its input token space. If this space differs from our assumptions, our comprehension of and conclusions about the LLM will likely be flawed. We elucidate the structure of the token embeddings both empirically and theoretically. We present a novel statistical test assuming that the neighborhood around each token has a relatively flat and smooth structure as the null hypothesis. Failing to reject the null is uninformative, but rejecting it at a specific token $\psi$ implies an irregularity in the token subspace in a $\psi$-neighborhood, $B(\psi)$. The structure assumed in the null is a generalization of a manifold with boundary called a \emph{smooth fiber bundle} (which can be split into two spatial regimes -- small and large radius), so we denote our new hypothesis test as the ``fiber bundle hypothesis.'' By running our test over several open-source LLMs, each with unique token embeddings, we find that the null is frequently rejected, and so the evidence suggests that the token subspace is not a fiber bundle and hence also not a manifold. As a consequence of our findings, when an LLM is presented with two semantically equivalent prompts, if one prompt contains a token implicated by our test, the response to that prompt will likely exhibit less stability than the other.
comment: 30 pages, 9 figures, 10 tables
♻ ☆ Transition of $α$-mixing in Random Iterations with Applications in Queuing Theory
Nonlinear time series models with exogenous regressors are essential in econometrics, queuing theory, and machine learning, though their statistical analysis remains incomplete. Key results, such as the law of large numbers and the functional central limit theorem, are known for weakly dependent variables. We demonstrate the transfer of mixing properties from the exogenous regressor to the response via coupling arguments. Additionally, we study Markov chains in random environments with drift and minorization conditions, even under non-stationary environments with favorable mixing properties, and apply this framework to single-server queuing models.
comment: 39 pages, 1 figure
♻ ☆ Text Generation Beyond Discrete Token Sampling
In standard autoregressive generation, an LLM predicts the next-token distribution, samples a discrete token, and then discards the distribution, passing only the sampled token as new input. To preserve this distribution's rich information, we propose Mixture of Inputs (MoI), a training-free method for autoregressive generation. After generating a token following the standard paradigm, we construct a new input that blends the generated discrete token with the previously discarded token distribution. Specifically, we employ a Bayesian estimation method that treats the token distribution as the prior, the sampled token as the observation, and replaces the conventional one-hot vector with the continuous posterior expectation as the new model input. MoI allows the model to maintain a richer internal representation throughout the generation process, resulting in improved text quality and reasoning capabilities. On mathematical reasoning, code generation, and PhD-level QA tasks, MoI consistently improves performance across multiple models including QwQ-32B, Nemotron-Super-49B, Gemma-3-27B, and DAPO-Qwen-32B, with no additional training and negligible computational overhead.
♻ ☆ WolBanking77: Wolof Banking Speech Intent Classification Dataset
Intent classification models have made a significant progress in recent years. However, previous studies primarily focus on high-resource language datasets, which results in a gap for low-resource languages and for regions with high rates of illiteracy, where languages are more spoken than read or written. This is the case in Senegal, for example, where Wolof is spoken by around 90\% of the population, while the national illiteracy rate remains at of 42\%. Wolof is actually spoken by more than 10 million people in West African region. To address these limitations, we introduce the Wolof Banking Speech Intent Classification Dataset (WolBanking77), for academic research in intent classification. WolBanking77 currently contains 9,791 text sentences in the banking domain and more than 4 hours of spoken sentences. Experiments on various baselines are conducted in this work, including text and voice state-of-the-art models. The results are very promising on this current dataset. In addition, this paper presents an in-depth examination of the dataset's contents. We report baseline F1-scores and word error rates metrics respectively on NLP and ASR models trained on WolBanking77 dataset and also comparisons between models. Dataset and code available at: \href{https://github.com/abdoukarim/wolbanking77}{wolbanking77}.
comment: 10 pages, 7 figures
Computation and Language 151
☆ olmOCR 2: Unit Test Rewards for Document OCR
We present olmOCR 2, the latest in our family of powerful OCR systems for converting digitized print documents, like PDFs, into clean, naturally ordered plain text. olmOCR 2 is powered by olmOCR-2-7B-1025, a specialized, 7B vision language model (VLM) trained using reinforcement learning with verifiable rewards (RLVR), where our rewards are a diverse set of binary unit tests. To scale unit test creation, we develop a pipeline for generating synthetic documents with diverse and challenging layouts, known ground-truth HTML source code, and extracted test cases. We show that RL training on these test cases results in state-of-the-art performance on olmOCR-Bench, our English-language OCR benchmark, with the largest improvements in math formula conversion, table parsing, and multi-column layouts compared to previous versions. We release our model, data and code under permissive open licenses.
comment: https://olmocr.allen.ai/
☆ Hubble: a Model Suite to Advance the Study of LLM Memorization
We present Hubble, a suite of fully open-source large language models (LLMs) for the scientific study of LLM memorization. Hubble models come in standard and perturbed variants: standard models are pretrained on a large English corpus, and perturbed models are trained in the same way but with controlled insertion of text (e.g., book passages, biographies, and test sets) designed to emulate key memorization risks. Our core release includes 8 models -- standard and perturbed models with 1B or 8B parameters, pretrained on 100B or 500B tokens -- establishing that memorization risks are determined by the frequency of sensitive data relative to size of the training corpus (i.e., a password appearing once in a smaller corpus is memorized better than the same password in a larger corpus). Our release also includes 6 perturbed models with text inserted at different pretraining phases, showing that sensitive data without continued exposure can be forgotten. These findings suggest two best practices for addressing memorization risks: to dilute sensitive data by increasing the size of the training corpus, and to order sensitive data to appear earlier in training. Beyond these general empirical findings, Hubble enables a broad range of memorization research; for example, analyzing the biographies reveals how readily different types of private information are memorized. We also demonstrate that the randomized insertions in Hubble make it an ideal testbed for membership inference and machine unlearning, and invite the community to further explore, benchmark, and build upon our work.
☆ Pico-Banana-400K: A Large-Scale Dataset for Text-Guided Image Editing
Recent advances in multimodal models have demonstrated remarkable text-guided image editing capabilities, with systems like GPT-4o and Nano-Banana setting new benchmarks. However, the research community's progress remains constrained by the absence of large-scale, high-quality, and openly accessible datasets built from real images. We introduce Pico-Banana-400K, a comprehensive 400K-image dataset for instruction-based image editing. Our dataset is constructed by leveraging Nano-Banana to generate diverse edit pairs from real photographs in the OpenImages collection. What distinguishes Pico-Banana-400K from previous synthetic datasets is our systematic approach to quality and diversity. We employ a fine-grained image editing taxonomy to ensure comprehensive coverage of edit types while maintaining precise content preservation and instruction faithfulness through MLLM-based quality scoring and careful curation. Beyond single turn editing, Pico-Banana-400K enables research into complex editing scenarios. The dataset includes three specialized subsets: (1) a 72K-example multi-turn collection for studying sequential editing, reasoning, and planning across consecutive modifications; (2) a 56K-example preference subset for alignment research and reward model training; and (3) paired long-short editing instructions for developing instruction rewriting and summarization capabilities. By providing this large-scale, high-quality, and task-rich resource, Pico-Banana-400K establishes a robust foundation for training and benchmarking the next generation of text-guided image editing models.
☆ Scaf-GRPO: Scaffolded Group Relative Policy Optimization for Enhancing LLM Reasoning
Reinforcement learning from verifiable rewards has emerged as a powerful technique for enhancing the complex reasoning abilities of Large Language Models (LLMs). However, these methods are fundamentally constrained by the ''learning cliff'' phenomenon: when faced with problems far beyond their current capabilities, models consistently fail, yielding a persistent zero-reward signal. In policy optimization algorithms like GRPO, this collapses the advantage calculation to zero, rendering these difficult problems invisible to the learning gradient and stalling progress. To overcome this, we introduce Scaf-GRPO (Scaffolded Group Relative Policy Optimization), a progressive training framework that strategically provides minimal guidance only when a model's independent learning has plateaued. The framework first diagnoses learning stagnation and then intervenes by injecting tiered in-prompt hints, ranging from abstract concepts to concrete steps, enabling the model to construct a valid solution by itself. Extensive experiments on challenging mathematics benchmarks demonstrate Scaf-GRPO's effectiveness, boosting the pass@1 score of the Qwen2.5-Math-7B model on the AIME24 benchmark by a relative 44.3% over a vanilla GRPO baseline. This result demonstrates our framework provides a robust and effective methodology for unlocking a model's ability to solve problems previously beyond its reach, a critical step towards extending the frontier of autonomous reasoning in LLM.
comment: Code: https://github.com/dvlab-research/Scaf-GRPO
☆ The Art of Asking: Multilingual Prompt Optimization for Synthetic Data
Synthetic data has become a cornerstone for scaling large language models, yet its multilingual use remains bottlenecked by translation-based prompts. This strategy inherits English-centric framing and style and neglects cultural dimensions, ultimately constraining model generalization. We argue that the overlooked prompt space-the very inputs that define training distributions-offers a more powerful lever for improving multilingual performance. We introduce a lightweight framework for prompt-space optimization, where translated prompts are systematically transformed for Naturalness, Cultural Adaptation, and Difficulty Enhancement. Using an off-the-shelf multilingual LLM, we apply these transformations to prompts for 12 languages spanning 7 families. Under identical data conditions, our approaches achieve substantial and consistent downstream improvements over the translation-only baseline: +4.7% on Global-MMLU accuracy, +2.4% on Flores XCometXL and +35.3% wins in preferences on mArenaHard. We establish prompt-space optimization as a simple yet powerful paradigm for building multilingual LLMs that are more robust, culturally grounded, and globally capable.
☆ Blackbox Model Provenance via Palimpsestic Membership Inference
Suppose Alice trains an open-weight language model and Bob uses a blackbox derivative of Alice's model to produce text. Can Alice prove that Bob is using her model, either by querying Bob's derivative model (query setting) or from the text alone (observational setting)? We formulate this question as an independence testing problem--in which the null hypothesis is that Bob's model or text is independent of Alice's randomized training run--and investigate it through the lens of palimpsestic memorization in language models: models are more likely to memorize data seen later in training, so we can test whether Bob is using Alice's model using test statistics that capture correlation between Bob's model or text and the ordering of training examples in Alice's training run. If Alice has randomly shuffled her training data, then any significant correlation amounts to exactly quantifiable statistical evidence against the null hypothesis, regardless of the composition of Alice's training data. In the query setting, we directly estimate (via prompting) the likelihood Bob's model gives to Alice's training examples and order; we correlate the likelihoods of over 40 fine-tunes of various Pythia and OLMo base models ranging from 1B to 12B parameters with the base model's training data order, achieving a p-value on the order of at most 1e-8 in all but six cases. In the observational setting, we try two approaches based on estimating 1) the likelihood of Bob's text overlapping with spans of Alice's training examples and 2) the likelihood of Bob's text with respect to different versions of Alice's model we obtain by repeating the last phase (e.g., 1%) of her training run on reshuffled data. The second approach can reliably distinguish Bob's text from as little as a few hundred tokens; the first does not involve any retraining but requires many more tokens (several hundred thousand) to achieve high power.
☆ ToolDreamer: Instilling LLM Reasoning Into Tool Retrievers
Tool calling has become increasingly popular for Large Language Models (LLMs). However, for large tool sets, the resulting tokens would exceed the LLM's context window limit, making it impossible to include every tool. Hence, an external retriever is used to provide LLMs with the most relevant tools for a query. Existing retrieval models rank tools based on the similarity between a user query and a tool description (TD). This leads to suboptimal retrieval as user requests are often poorly aligned with the language of TD. To remedy the issue, we propose ToolDreamer, a framework to condition retriever models to fetch tools based on hypothetical (synthetic) TD generated using an LLM, i.e., description of tools that the LLM feels will be potentially useful for the query. The framework enables a more natural alignment between queries and tools within the language space of TD's. We apply ToolDreamer on the ToolRet dataset and show that our method improves the performance of sparse and dense retrievers with and without training, thus showcasing its flexibility. Through our proposed framework, our aim is to offload a portion of the reasoning burden to the retriever so that the LLM may effectively handle a large collection of tools without inundating its context window.
☆ Adapting Multilingual Models to Code-Mixed Tasks via Model Merging
We study model merging as a practical alternative to conventional adaptation strategies for code-mixed NLP. Starting from a multilingual base model, we: (i) perform continued pre-training (CPT) on unlabeled code-mixed text to obtain an adapted checkpoint, (ii) merge checkpoint with the base model, and (iii) fine-tune (FT) on the downstream task data. We evaluate our approach for sentence classification (sentiment and hate speech) task in English-Hindi (En-Hi) and English-Spanish (En-Es) using XLM-R and Llama-3.2-1B models. Our results show that merged models consistently outperform full fine-tuning and CPT->FT. We observe gains of 2--5 points in F1 over full fine-tuning and ~1-2 points over CPT->FT, indicating that unlabeled data is leveraged more effectively via merging than via CPT alone. Zero-/few-shot prompting with larger LLMs (e.g., Llama-3.3-70B) lags behind fine-tuned and merged checkpoints, underscoring limits of in-context learning for code-mixed inputs. We further test cross-pair transfer by training on En-Hi and evaluating on En-Ta and En-Ml: merged checkpoints transfer more strongly than monolingual-English baselines (e.g., TV/TIES variants reaching 0.65-0.68 F1 vs 0.61-0.63 for full fine-tuning), suggesting that code-mixed knowledge is a more reliable substrate for low-resource pairs. We conclude with adaptation recipes matched to common data regimes (labeled only; labeled+unlabeled; transfer-only) and discuss limitations and scaling considerations for broader tasks and larger models.
comment: 9 pages, 5 tables, CODS 2025
☆ AdaSPEC: Selective Knowledge Distillation for Efficient Speculative Decoders
Speculative Decoding (SD) accelerates large language model inference by employing a small draft model to generate predictions, which are then verified by a larger target model. The effectiveness of SD hinges on the alignment between these models, which is typically enhanced by Knowledge Distillation (KD). However, conventional KD methods aim to minimize the KL divergence between the draft and target models across all tokens, a goal that is misaligned with the true objective of SD, which is to maximize token acceptance rate. Therefore, draft models often struggle to fully assimilate the target model's knowledge due to capacity constraints, leading to suboptimal performance. To address this challenge, we propose AdaSPEC, a novel method that incorporates selective token filtering into the KD process. AdaSPEC utilizes a reference model to identify and filter out difficult-to-fit tokens, enabling the distillation of a draft model that better aligns with the target model on simpler tokens. This approach improves the overall token acceptance rate without compromising generation quality. We evaluate AdaSPEC across diverse tasks, including arithmetic reasoning, instruction-following, coding, and summarization, using model configurations of 31M/1.4B and 350M/2.7B parameters. Our results demonstrate that AdaSPEC consistently outperforms the state-of-the-art DistillSpec method, achieving higher acceptance rates across all tasks (up to 15\%). The code is publicly available at https://github.com/yuezhouhu/adaspec.
☆ GaLLoP: Gradient-based Sparse Learning on Low-Magnitude Parameters
Sparse fine-tuning techniques adapt LLMs to downstream tasks by only tuning a sparse subset of model parameters. However, the effectiveness of sparse adaptation depends on optimally selecting the model parameters to be fine-tuned. In this work, we introduce a novel sparse fine-tuning technique named GaLLoP: Gradient-based Sparse Learning on Low-Magnitude Parameters, which fine-tunes only those model parameters which have the largest gradient magnitudes on downstream tasks and the smallest pre-trained magnitudes, intuitively prioritizing parameters that are highly task-relevant, but minimally disruptive to pre-trained knowledge. Our experimentation with LLaMA3 8B and Gemma 2B as base models shows that GaLLoP consistently improves or matches the in-distribution as well as out-of-distribution performance obtained via the usage of other leading parameter-efficient fine-tuning techniques, including LoRA, DoRA, and SAFT. Our analysis demonstrates that GaLLoP mitigates catastrophic forgetting and memorization of task data, as important pre-trained parameters remain unchanged, and stabilizes performance relative to other fine-tuning techniques, robustly generalizing across most random seeds.
☆ SmartSwitch: Advancing LLM Reasoning by Overcoming Underthinking via Promoting Deeper Thought Exploration
The long chain-of-thought (LongCoT) capability is central to the recent breakthroughs achieved by large language models in complex reasoning tasks. However, the accompanying issue of ''underthinking'', where models exhibit shallow reasoning by frequently switching thoughts without sufficient exploration, limits both performance and token efficiency. To address this problem, we propose a simple yet effective reasoning strategy: the SmartSwitch inference framework. This framework can be easily integrated into any large language model as a plug-and-play solution, continuously monitoring the model's reasoning process to detect underthinking and guide it toward deeper exploration of promising but overlooked thoughts. Specifically, the perception module identifies points where thoughts switch and evaluates the potential of the preceding thought using an off-the-shelf process reward model (PRM). If a high-potential thought is found to be prematurely abandoned, the intervention module interrupts the ongoing inference, backtracks to the point before the switch, and inserts a "deepening prompt" to encourage further exploration along that promising path. Extensive experiments on challenging mathematical reasoning benchmarks demonstrate that our method significantly enhances the performance of various large language models of different sizes.
comment: Code: https://github.com/dvlab-research/SmartSwitch
☆ Zhyper: Factorized Hypernetworks for Conditioned LLM Fine-Tuning
Large Language Model (LLM) conditioning refers to instructing an LLM to generate content in accordance with the norms and values of a specific culture, beliefs of a particular political orientation, or any desired text-specified semantic conditioning. Unfortunately, prompt engineering does not ensure that LLMs behave in accordance with a desired conditioning due to the inductive bias of the pre-training and alignment datasets. Prior works have focused on fine-tuning LLMs by directly conditioning the LoRA weights; however, such methods introduce a large number of parameters. As a remedy, we propose Zhyper, a parameter-efficient factorized hypernetwork framework that generates context-aware LoRA adapters from textual descriptions. Experiments on multiple benchmarks show that Zhyper achieves competitive performance with up to 26x fewer parameters than the state-of-the-art baselines. Furthermore, we extend Zhyper to cultural alignment, demonstrating improved generalization to out-of-domain settings and a better capturing of fine-grained contextual values.
☆ From Answers to Guidance: A Proactive Dialogue System for Legal Documents
The accessibility of legal information remains a constant challenge, particularly for laypersons seeking to understand and apply complex institutional texts. While the European Union provides open access to legislation, parliamentary responses, and regulatory documents, these resources can be challenging for laypeople to explore. In this paper, we introduce EUDial, a proactive multi-turn dialogue dataset constructed from 204 blogs curated by the Citizens' Enquiries Unit (AskEP) of the European Parliamentary Research Service. EUDial contains 880 dialogue turns (averaging 4.3 turns per dialogue), where each dialogue includes initial questions, structured answers, and follow-up questions. Beyond dataset construction, we propose the LexGuide framework that leverages retrieval-augmented generation with hierarchical topic organization to structure dialogue progression, ensuring both comprehensive coverage of legal aspects and coherence across conversational turns. The results demonstrate that proactive, structured navigation closes the gap between the availability of legal information and citizen comprehension, establishing EUDial and LexGuide as practical resources for advancing proactive legal dialogue systems.
comment: 21 pages, 3 figures, 2 tables, 2 prompts
☆ Do Prompts Reshape Representations? An Empirical Study of Prompting Effects on Embeddings
Prompting is a common approach for leveraging LMs in zero-shot settings. However, the underlying mechanisms that enable LMs to perform diverse tasks without task-specific supervision remain poorly understood. Studying the relationship between prompting and the quality of internal representations can shed light on how pre-trained embeddings may support in-context task solving. In this empirical study, we conduct a series of probing experiments on prompt embeddings, analyzing various combinations of prompt templates for zero-shot classification. Our findings show that while prompting affects the quality of representations, these changes do not consistently correlate with the relevance of the prompts to the target task. This result challenges the assumption that more relevant prompts necessarily lead to better representations. We further analyze potential factors that may contribute to this unexpected behavior.
☆ Are Large Language Models Sensitive to the Motives Behind Communication? NeurIPS 2025
Human communication is motivated: people speak, write, and create content with a particular communicative intent in mind. As a result, information that large language models (LLMs) and AI agents process is inherently framed by humans' intentions and incentives. People are adept at navigating such nuanced information: we routinely identify benevolent or self-serving motives in order to decide what statements to trust. For LLMs to be effective in the real world, they too must critically evaluate content by factoring in the motivations of the source -- for instance, weighing the credibility of claims made in a sales pitch. In this paper, we undertake a comprehensive study of whether LLMs have this capacity for motivational vigilance. We first employ controlled experiments from cognitive science to verify that LLMs' behavior is consistent with rational models of learning from motivated testimony, and find they successfully discount information from biased sources in a human-like manner. We then extend our evaluation to sponsored online adverts, a more naturalistic reflection of LLM agents' information ecosystems. In these settings, we find that LLMs' inferences do not track the rational models' predictions nearly as closely -- partly due to additional information that distracts them from vigilance-relevant considerations. However, a simple steering intervention that boosts the salience of intentions and incentives substantially increases the correspondence between LLMs and the rational model. These results suggest that LLMs possess a basic sensitivity to the motivations of others, but generalizing to novel real-world settings will require further improvements to these models.
comment: NeurIPS 2025
☆ CoSense-LLM: Semantics at the Edge with Cost- and Uncertainty-Aware Cloud-Edge Cooperation
We present CoSense-LLM, an edge-first framework that turns continuous multimodal sensor streams (for example Wi-Fi CSI, IMU, audio, RFID, and lightweight vision) into compact, verifiable semantic tokens and coordinates with large language models under explicit latency, energy, bandwidth, and privacy constraints. CoSense-LLM has four parts: (i) SenseFusion, a lightweight encoder that aligns sensor embeddings with language and compresses them into short discrete code sequences; (ii) Edge-RAG, a local hybrid retrieval layer that grounds generation in site specific policies and notes; (iii) PromptRouter, a cost and uncertainty aware policy that selects edge only generation, edge plus retrieval, or compact cloud escalation; and (iv) Secure Execution, an auditable redaction path that enforces data minimization so raw waveforms never leave the device. The system works with modern serving optimizations, including paged or streaming KV caches, FlashAttention style kernels, speculative decoding, and quantized LoRA adapters, and supports on device personalization and federated updates under non IID drift. Across home, office, and clinic deployments, CoSense-LLM delivers grounded explanations while meeting tight service level objectives: it sustains sub second (p95) end to end latency on edge dominant paths, reduces inter tier token and bandwidth costs by preferring local retrieval grounded responses, and preserves privacy by transmitting only discrete codes and redacted metadata. Ablations show that Edge-RAG improves factual consistency and reduces contradictions, calibrated uncertainty enables selective abstention and controlled escalations, and KV plus decoding accelerators lower energy per decision. The results support an edge first design that treats semantics, privacy, and predictable latency as co equal goals for large model deployments in interference prone environments.
comment: 19 pages,8 figures
☆ DiffAdapt: Difficulty-Adaptive Reasoning for Token-Efficient LLM Inference
Recent reasoning Large Language Models (LLMs) demonstrate remarkable problem-solving abilities but often generate long thinking traces whose utility is unclear. Our work aims to improve their efficiency, enabling them to reach high performance without overthinking. First, we analyze the entropy of token probabilities in reasoning traces. Across three models, we observe a consistent U-shaped entropy pattern: high entropy on easy problems despite high accuracy, low entropy on problems with medium difficulty, and high entropy on hard problems reflecting uncertainty. Specifically, we notice 22--25\% entropy reduction from easy to medium difficulty regions, suggesting an {overthinking} phenomenon on easy instances. Building on these insights, we introduce \textbf{DiffAdapt}, a lightweight framework that selects Easy/Normal/Hard inference strategies per question based on their difficulty and reasoning trace entropy. Each inference strategy consists of a fixed prompt, temperature and maximum token length. In contrast to existing efficiency optimization methods, our approach does not fine-tune base LLM but a small probe that classifies LLM's final hidden state, allowing inexpensive adaptation. We comprehensively evaluate our method on five models and eight benchmarks. Our method achieves comparable or improved accuracy while reducing token usage by up to 22.4\%, establishing a practical path toward compute-efficient reasoning.
☆ Unraveling Emotions with Pre-Trained Models
Transformer models have significantly advanced the field of emotion recognition. However, there are still open challenges when exploring open-ended queries for Large Language Models (LLMs). Although current models offer good results, automatic emotion analysis in open texts presents significant challenges, such as contextual ambiguity, linguistic variability, and difficulty interpreting complex emotional expressions. These limitations make the direct application of generalist models difficult. Accordingly, this work compares the effectiveness of fine-tuning and prompt engineering in emotion detection in three distinct scenarios: (i) performance of fine-tuned pre-trained models and general-purpose LLMs using simple prompts; (ii) effectiveness of different emotion prompt designs with LLMs; and (iii) impact of emotion grouping techniques on these models. Experimental tests attain metrics above 70% with a fine-tuned pre-trained model for emotion recognition. Moreover, the findings highlight that LLMs require structured prompt engineering and emotion grouping to enhance their performance. These advancements improve sentiment analysis, human-computer interaction, and understanding of user behavior across various domains.
☆ From Forecasting to Planning: Policy World Model for Collaborative State-Action Prediction
Despite remarkable progress in driving world models, their potential for autonomous systems remains largely untapped: the world models are mostly learned for world simulation and decoupled from trajectory planning. While recent efforts aim to unify world modeling and planning in a single framework, the synergistic facilitation mechanism of world modeling for planning still requires further exploration. In this work, we introduce a new driving paradigm named Policy World Model (PWM), which not only integrates world modeling and trajectory planning within a unified architecture, but is also able to benefit planning using the learned world knowledge through the proposed action-free future state forecasting scheme. Through collaborative state-action prediction, PWM can mimic the human-like anticipatory perception, yielding more reliable planning performance. To facilitate the efficiency of video forecasting, we further introduce a dynamically enhanced parallel token generation mechanism, equipped with a context-guided tokenizer and an adaptive dynamic focal loss. Despite utilizing only front camera input, our method matches or exceeds state-of-the-art approaches that rely on multi-view and multi-modal inputs. Code and model weights will be released at https://github.com/6550Zhao/Policy-World-Model.
comment: Accepted by NuerIPS 2025 (Poster)
☆ LLavaCode: Compressed Code Representations for Retrieval-Augmented Code Generation
Retrieval-augmented generation has emerged as one of the most effective approaches for code completion, particularly when context from a surrounding repository is essential. However, incorporating context significantly extends sequence length, leading to slower inference - a critical limitation for interactive settings such as IDEs. In this work, we introduce LlavaCode, a framework that compresses code into compact, semantically rich representations interpretable by code LLM, enhancing generation quality while reducing the retrieved context to only a few compressed single-token vectors. Using a small projector module we can significantly increase the EM and ES metrics of coding model with negligible latency increase. Our experiments demonstrate that compressed context enables 20-38% reduction in Time-to-First-Token (TTFT) on line completion tasks compared to full-RAG pipelines.
☆ Style Attack Disguise: When Fonts Become a Camouflage for Adversarial Intent
With social media growth, users employ stylistic fonts and font-like emoji to express individuality, creating visually appealing text that remains human-readable. However, these fonts introduce hidden vulnerabilities in NLP models: while humans easily read stylistic text, models process these characters as distinct tokens, causing interference. We identify this human-model perception gap and propose a style-based attack, Style Attack Disguise (SAD). We design two sizes: light for query efficiency and strong for superior attack performance. Experiments on sentiment classification and machine translation across traditional models, LLMs, and commercial services demonstrate SAD's strong attack performance. We also show SAD's potential threats to multimodal tasks including text-to-image and text-to-speech generation.
☆ HSCodeComp: A Realistic and Expert-level Benchmark for Deep Search Agents in Hierarchical Rule Application
Effective deep search agents must not only access open-domain and domain-specific knowledge but also apply complex rules-such as legal clauses, medical manuals and tariff rules. These rules often feature vague boundaries and implicit logic relationships, making precise application challenging for agents. However, this critical capability is largely overlooked by current agent benchmarks. To fill this gap, we introduce HSCodeComp, the first realistic, expert-level e-commerce benchmark designed to evaluate deep search agents in hierarchical rule application. In this task, the deep reasoning process of agents is guided by these rules to predict 10-digit Harmonized System Code (HSCode) of products with noisy but realistic descriptions. These codes, established by the World Customs Organization, are vital for global supply chain efficiency. Built from real-world data collected from large-scale e-commerce platforms, our proposed HSCodeComp comprises 632 product entries spanning diverse product categories, with these HSCodes annotated by several human experts. Extensive experimental results on several state-of-the-art LLMs, open-source, and closed-source agents reveal a huge performance gap: best agent achieves only 46.8% 10-digit accuracy, far below human experts at 95.0%. Besides, detailed analysis demonstrates the challenges of hierarchical rule application, and test-time scaling fails to improve performance further.
☆ CrossNews-UA: A Cross-lingual News Semantic Similarity Benchmark for Ukrainian, Polish, Russian, and English
In the era of social networks and rapid misinformation spread, news analysis remains a critical task. Detecting fake news across multiple languages, particularly beyond English, poses significant challenges. Cross-lingual news comparison offers a promising approach to verify information by leveraging external sources in different languages (Chen and Shu, 2024). However, existing datasets for cross-lingual news analysis (Chen et al., 2022a) were manually curated by journalists and experts, limiting their scalability and adaptability to new languages. In this work, we address this gap by introducing a scalable, explainable crowdsourcing pipeline for cross-lingual news similarity assessment. Using this pipeline, we collected a novel dataset CrossNews-UA of news pairs in Ukrainian as a central language with linguistically and contextually relevant languages-Polish, Russian, and English. Each news pair is annotated for semantic similarity with detailed justifications based on the 4W criteria (Who, What, Where, When). We further tested a range of models, from traditional bag-of-words, Transformer-based architectures to large language models (LLMs). Our results highlight the challenges in multilingual news analysis and offer insights into models performance.
☆ PBBQ: A Persian Bias Benchmark Dataset Curated with Human-AI Collaboration for Large Language Models
With the increasing adoption of large language models (LLMs), ensuring their alignment with social norms has become a critical concern. While prior research has examined bias detection in various languages, there remains a significant gap in resources addressing social biases within Persian cultural contexts. In this work, we introduce PBBQ, a comprehensive benchmark dataset designed to evaluate social biases in Persian LLMs. Our benchmark, which encompasses 16 cultural categories, was developed through questionnaires completed by 250 diverse individuals across multiple demographics, in close collaboration with social science experts to ensure its validity. The resulting PBBQ dataset contains over 37,000 carefully curated questions, providing a foundation for the evaluation and mitigation of bias in Persian language models. We benchmark several open-source LLMs, a closed-source model, and Persian-specific fine-tuned models on PBBQ. Our findings reveal that current LLMs exhibit significant social biases across Persian culture. Additionally, by comparing model outputs to human responses, we observe that LLMs often replicate human bias patterns, highlighting the complex interplay between learned representations and cultural stereotypes.Upon acceptance of the paper, our PBBQ dataset will be publicly available for use in future work. Content warning: This paper contains unsafe content.
☆ Human-Agent Collaborative Paper-to-Page Crafting for Under $0.1
In the quest for scientific progress, communicating research is as vital as the discovery itself. Yet, researchers are often sidetracked by the manual, repetitive chore of building project webpages to make their dense papers accessible. While automation has tackled static slides and posters, the dynamic, interactive nature of webpages has remained an unaddressed challenge. To bridge this gap, we reframe the problem, arguing that the solution lies not in a single command, but in a collaborative, hierarchical process. We introduce $\textbf{AutoPage}$, a novel multi-agent system that embodies this philosophy. AutoPage deconstructs paper-to-page creation into a coarse-to-fine pipeline from narrative planning to multimodal content generation and interactive rendering. To combat AI hallucination, dedicated "Checker" agents verify each step against the source paper, while optional human checkpoints ensure the final product aligns perfectly with the author's vision, transforming the system from a mere tool into a powerful collaborative assistant. To rigorously validate our approach, we also construct $\textbf{PageBench}$, the first benchmark for this new task. Experiments show AutoPage not only generates high-quality, visually appealing pages but does so with remarkable efficiency in under 15 minutes for less than \$0.1. Code and dataset will be released at $\href{https://mqleet.github.io/AutoPage_ProjectPage/}{Webpage}$.
☆ Detecting Latin in Historical Books with Large Language Models: A Multimodal Benchmark
This paper presents a novel task of extracting Latin fragments from mixed-language historical documents with varied layouts. We benchmark and evaluate the performance of large foundation models against a multimodal dataset of 724 annotated pages. The results demonstrate that reliable Latin detection with contemporary models is achievable. Our study provides the first comprehensive analysis of these models' capabilities and limits for this task.
comment: Under review. Both the dataset and code will be published
☆ [De|Re]constructing VLMs' Reasoning in Counting IEEE
Vision-Language Models (VLMs) have recently gained attention due to their competitive performance on multiple downstream tasks, achieved by following user-input instructions. However, VLMs still exhibit several limitations in visual reasoning, such as difficulties in identifying relations (e.g., spatial, temporal, and among objects), understanding temporal sequences (e.g., frames), and counting objects. In this work, we go beyond score-level benchmark evaluations of VLMs by investigating the underlying causes of their failures and proposing a targeted approach to improve their reasoning capabilities. We study the reasoning skills of seven state-of-the-art VLMs in the counting task under controlled experimental conditions. Our experiments show that VLMs are highly sensitive to the number and type of objects, their spatial arrangement, and the co-occurrence of distractors. A layer-wise analysis reveals that errors are due to incorrect mapping of the last-layer representation into the output space. Our targeted training shows that fine-tuning just the output layer improves accuracy by up to 21%. We corroborate these findings by achieving consistent improvements on real-world datasets.
comment: This work has been submitted to the IEEE for possible publication
☆ Conditions for Catastrophic Forgetting in Multilingual Translation
Fine-tuning multilingual foundation models on specific languages often induces catastrophic forgetting, degrading performance on languages unseen in fine-tuning. While this phenomenon is widely-documented, the literature presents fragmented results about when forgetting occurs. To address this ambiguity, we conduct a systematic empirical study using machine translation as a testbed to identify the conditions that trigger catastrophic forgetting in multilingual fine-tuning. Through controlled experiments across different model architectures, data scales, and fine-tuning approaches, we reveal that the relative scale between model and data size is a primary determinant of forgetting. Moreover, we demonstrate that a model's instruction-following ability is more critical for retaining multilingual knowledge than its architecture. Contrary to assumptions, parameter-efficient fine-tuning offers no clear advantage over full fine-tuning in mitigating forgetting. Lastly, we show that cross-lingual alignment can mitigate forgetting while also facilitating positive transfer to unseen target languages.
comment: Multilingual Representation Learning (MRL) Workshop 2025
☆ Which Evaluation for Which Model? A Taxonomy for Speech Model Assessment
Speech foundation models have recently achieved remarkable capabilities across a wide range of tasks. However, their evaluation remains disjointed across tasks and model types. Different models excel at distinct aspects of speech processing and thus require different evaluation protocols. This paper proposes a unified taxonomy that addresses the question: Which evaluation is appropriate for which model? The taxonomy defines three orthogonal axes: the \textbf{evaluation aspect} being measured, the model capabilities required to attempt the task, and the task or protocol requirements needed to perform it. We classify a broad set of existing evaluations and benchmarks along these axes, spanning areas such as representation learning, speech generation, and interactive dialogue. By mapping each evaluation to the capabilities a model exposes (e.g., speech generation, real-time processing) and to its methodological demands (e.g., fine-tuning data, human judgment), the taxonomy provides a principled framework for aligning models with suitable evaluation methods. It also reveals systematic gaps, such as limited coverage of prosody, interaction, or reasoning, that highlight priorities for future benchmark design. Overall, this work offers a conceptual foundation and practical guide for selecting, interpreting, and extending evaluations of speech models.
comment: 57 pages (26 main, 25 appendix, 6 references)
☆ Lookahead Routing for Large Language Models
Large language model (LLM) routers improve the efficiency of multi-model systems by directing each query to the most appropriate model while leveraging the diverse strengths of heterogeneous LLMs. Most existing approaches frame routing as a classification problem based solely on the input query. While this reduces overhead by avoiding inference across all models, it overlooks valuable information that could be gleaned from potential outputs and fails to capture implicit intent or contextual nuances that often emerge only during response generation. These limitations can result in suboptimal routing decisions, particularly for complex or ambiguous queries that require deeper semantic understanding. To address this challenge, we propose Lookahead, a routing framework that "foresees" potential model outputs by predicting their latent representations and uses these predictions to guide model selection, thus enabling more informed routing without full inference. Within this framework, we implement two approaches based on causal and masked language models. Empirical evaluations across seven public benchmarks - spanning instruction following, mathematical reasoning, and code generation - show that Lookahead consistently outperforms existing routing baselines, achieving an average performance gain of 7.7% over the state-of-the-art. Our code is available at https://github.com/huangcb01/lookahead-routing.
☆ What is the Best Sequence Length for BABYLM? EMNLP
Transformer language models typically operate with a fixed-length context window, which has grown in step with large-scale pretraining datasets. In the BabyLM Challenge, however, many past submissions have defaulted to using much shorter sequence lengths. We examine the impact of sequence length on BabyLM pretraining, to answer the simple question: what sequence length should we be using when training Baby LMs? Using 100M-word training data and fixed compute budgets, we compare 125M-parameter Mamba and OPT models, finding that although longer is often better, the optimal length depends on both task and architecture. Shorter sequences are sufficient for grammatical generalization tasks whereas longer contexts benefit morphological analogical reasoning tasks.
comment: Paper Accepted at the 2025 BabyLM Workshop @ EMNLP (Suzhou, China)
☆ Machine Text Detectors are Membership Inference Attacks
Although membership inference attacks (MIAs) and machine-generated text detection target different goals, identifying training samples and synthetic texts, their methods often exploit similar signals based on a language model's probability distribution. Despite this shared methodological foundation, the two tasks have been independently studied, which may lead to conclusions that overlook stronger methods and valuable insights developed in the other task. In this work, we theoretically and empirically investigate the transferability, i.e., how well a method originally developed for one task performs on the other, between MIAs and machine text detection. For our theoretical contribution, we prove that the metric that achieves the asymptotically highest performance on both tasks is the same. We unify a large proportion of the existing literature in the context of this optimal metric and hypothesize that the accuracy with which a given method approximates this metric is directly correlated with its transferability. Our large-scale empirical experiments, including 7 state-of-the-art MIA methods and 5 state-of-the-art machine text detectors across 13 domains and 10 generators, demonstrate very strong rank correlation (rho > 0.6) in cross-task performance. We notably find that Binoculars, originally designed for machine text detection, achieves state-of-the-art performance on MIA benchmarks as well, demonstrating the practical impact of the transferability. Our findings highlight the need for greater cross-task awareness and collaboration between the two research communities. To facilitate cross-task developments and fair evaluations, we introduce MINT, a unified evaluation suite for MIAs and machine-generated text detection, with implementation of 15 recent methods from both tasks.
☆ VideoAgentTrek: Computer Use Pretraining from Unlabeled Videos
Training computer-use agents requires massive amounts of GUI interaction data, but manually annotating action trajectories at scale is prohibitively expensive. We present VideoAgentTrek, a scalable pipeline that automatically mines training data from publicly available screen-recorded videos at web scale, eliminating the need for manual annotation. Our approach addresses a key challenge: raw videos contain implicit demonstrations but lack explicit action labels. To solve this, we develop Video2Action, an inverse dynamics module (IDM) with two components: (1) a video grounding model that detects and localizes GUI actions with precise temporal boundaries and context, and (2) an action-content recognizer that extracts structured parameters like click coordinates and typed text with high fidelity. Applied to 39,000 YouTube tutorial videos, our pipeline generates 1.52 million interaction steps automatically. We leverage this data through continued pretraining followed by supervised fine-tuning. On OSWorld-Verified, our approach improves task success rates from 9.3% (SFT-only baseline) to 15.8%, a 70% relative improvement. On AgentNetBench, step accuracy increases from 64.1% to 69.3%. Our results demonstrate that passive internet videos can be transformed into high-quality supervision for computer-use agents, providing a scalable alternative to expensive manual annotation.
comment: 8 pages, 6 figures
☆ Re-evaluating Minimum Bayes Risk Decoding for Automatic Speech Recognition
Recent work has shown that sample-based Minimum Bayes Risk (MBR) decoding outperforms beam search in text-to-text generation tasks, such as machine translation, text summarization, and image captioning. On the other hand, beam search is the current practice for speech-to-text tasks such as automatic speech recognition (ASR) and Speech Translation (ST). Given that MBR decoding is effective in text-to-text generation tasks, it is reasonable to expect it to also be effective for speech-to-text tasks. In this paper, we evaluate MBR decoding for ASR and ST tasks on English and Japanese using Whisper and its derivative models. We observe that the accuracy of MBR decoding outperforms that of beam search in most of the experimental settings we have evaluated. The results show that MBR decoding is a promising method for offline ASR and ST tasks that require high accuracy. The code is available at https://github.com/CyberAgentAILab/mbr-for-asr
☆ MINED: Probing and Updating with Multimodal Time-Sensitive Knowledge for Large Multimodal Models
Large Multimodal Models (LMMs) encode rich factual knowledge via cross-modal pre-training, yet their static representations struggle to maintain an accurate understanding of time-sensitive factual knowledge. Existing benchmarks remain constrained by static designs, inadequately evaluating LMMs' ability to understand time-sensitive knowledge. To address this gap, we propose MINED, a comprehensive benchmark that evaluates temporal awareness along 6 key dimensions and 11 challenging tasks: cognition, awareness, trustworthiness, understanding, reasoning, and robustness. MINED is constructed from Wikipedia by two professional annotators, containing 2,104 time-sensitive knowledge samples spanning six knowledge types. Evaluating 15 widely used LMMs on MINED shows that Gemini-2.5-Pro achieves the highest average CEM score of 63.07, while most open-source LMMs still lack time understanding ability. Meanwhile, LMMs perform best on organization knowledge, whereas their performance is weakest on sport. To address these challenges, we investigate the feasibility of updating time-sensitive knowledge in LMMs through knowledge editing methods and observe that LMMs can effectively update knowledge via knowledge editing methods in single editing scenarios.
comment: project page:https://mined-lmm.github.io/
☆ LLM Unlearning with LLM Beliefs
Large language models trained on vast corpora inherently risk memorizing sensitive or harmful content, which may later resurface in their outputs. Prevailing unlearning methods generally rely on gradient ascent and its variants to lower the probability of specific target responses. However, we find that this strategy induces a critical side effect: probability mass is redistributed into high-likelihood regions, often corresponding to semantically related rephrasings of the targets. We refer to this as the squeezing effect, which explains why many methods yield merely spurious unlearning, a problem further obscured by automated metrics (e.g., ROUGE, truth ratio) that misreport actual success. To address this, we propose a bootstrapping (BS) framework that explicitly links the squeezing effect with the model's own high-confidence generations, namely its model beliefs. Since model beliefs inherently capture the very high-likelihood regions where probability mass is squeezed, incorporating them into the unlearning objective directly counters the squeezing effect. By jointly suppressing both target responses and model beliefs, BS-T (token) attenuates high-probability tokens, whereas BS-S (sequence) removes entire high-confidence generations, together achieving more thorough forgetting while preserving utility. Extensive experiments across diverse benchmarks with various model families confirm the effectiveness of our approach.
☆ BLiSS 1.0: Evaluating Bilingual Learner Competence in Second Language Small Language Models EMNLP
To bridge the gap between performance-oriented benchmarks and the evaluation of cognitively inspired models, we introduce BLiSS 1.0, a Benchmark of Learner Interlingual Syntactic Structure. Our benchmark operationalizes a new paradigm of selective tolerance, testing whether a model finds a naturalistic learner error more plausible than a matched, artificial error within the same sentence. Constructed from over 2.8 million naturalistic learner sentences, BLiSS provides 136,867 controlled triplets (corrected, learner, artificial) for this purpose. Experiments on a diverse suite of models demonstrate that selective tolerance is a distinct capability from standard grammaticality, with performance clustering strongly by training paradigm. This validates BLiSS as a robust tool for measuring how different training objectives impact a model's alignment with the systematic patterns of human language acquisition.
comment: Accepted Paper at the BabyLM Workshop 2025 @ EMNLP (Presentation in Suzhou, China)
☆ Spatio-temporal Sign Language Representation and Translation
This paper describes the DFKI-MLT submission to the WMT-SLT 2022 sign language translation (SLT) task from Swiss German Sign Language (video) into German (text). State-of-the-art techniques for SLT use a generic seq2seq architecture with customized input embeddings. Instead of word embeddings as used in textual machine translation, SLT systems use features extracted from video frames. Standard approaches often do not benefit from temporal features. In our participation, we present a system that learns spatio-temporal feature representations and translation in a single model, resulting in a real end-to-end architecture expected to better generalize to new data sets. Our best system achieved $5\pm1$ BLEU points on the development set, but the performance on the test dropped to $0.11\pm0.06$ BLEU points.
☆ ToMMeR -- Efficient Entity Mention Detection from Large Language Models
Identifying which text spans refer to entities -- mention detection -- is both foundational for information extraction and a known performance bottleneck. We introduce ToMMeR, a lightweight model (<300K parameters) probing mention detection capabilities from early LLM layers. Across 13 NER benchmarks, ToMMeR achieves 93\% recall zero-shot, with over 90\% precision using an LLM as a judge showing that ToMMeR rarely produces spurious predictions despite high recall. Cross-model analysis reveals that diverse architectures (14M-15B parameters) converge on similar mention boundaries (DICE >75\%), confirming that mention detection emerges naturally from language modeling. When extended with span classification heads, ToMMeR achieves near SOTA NER performance (80-87\% F1 on standard benchmarks). Our work provides evidence that structured entity representations exist in early transformer layers and can be efficiently recovered with minimal parameters.
comment: Code is available at https://github.com/VictorMorand/llm2ner
☆ SONAR-SLT: Multilingual Sign Language Translation via Language-Agnostic Sentence Embedding Supervision
Sign language translation (SLT) is typically trained with text in a single spoken language, which limits scalability and cross-language generalization. Earlier approaches have replaced gloss supervision with text-based sentence embeddings, but up to now, these remain tied to a specific language and modality. In contrast, here we employ language-agnostic, multimodal embeddings trained on text and speech from multiple languages to supervise SLT, enabling direct multilingual translation. To address data scarcity, we propose a coupled augmentation method that combines multilingual target augmentations (i.e. translations into many languages) with video-level perturbations, improving model robustness. Experiments show consistent BLEURT gains over text-only sentence embedding supervision, with larger improvements in low-resource settings. Our results demonstrate that language-agnostic embedding supervision, combined with coupled augmentation, provides a scalable and semantically robust alternative to traditional SLT training.
☆ ColorAgent: Building A Robust, Personalized, and Interactive OS Agent
With the advancements in hardware, software, and large language model technologies, the interaction between humans and operating systems has evolved from the command-line interface to the rapidly emerging AI agent interactions. Building an operating system (OS) agent capable of executing user instructions and faithfully following user desires is becoming a reality. In this technical report, we present ColorAgent, an OS agent designed to engage in long-horizon, robust interactions with the environment while also enabling personalized and proactive user interaction. To enable long-horizon interactions with the environment, we enhance the model's capabilities through step-wise reinforcement learning and self-evolving training, while also developing a tailored multi-agent framework that ensures generality, consistency, and robustness. In terms of user interaction, we explore personalized user intent recognition and proactive engagement, positioning the OS agent not merely as an automation tool but as a warm, collaborative partner. We evaluate ColorAgent on the AndroidWorld and AndroidLab benchmarks, achieving success rates of 77.2% and 50.7%, respectively, establishing a new state of the art. Nonetheless, we note that current benchmarks are insufficient for a comprehensive evaluation of OS agents and propose further exploring directions in future work, particularly in the areas of evaluation paradigms, agent collaboration, and security. Our code is available at https://github.com/MadeAgents/mobile-use.
☆ Sign Language Translation with Sentence Embedding Supervision
State-of-the-art sign language translation (SLT) systems facilitate the learning process through gloss annotations, either in an end2end manner or by involving an intermediate step. Unfortunately, gloss labelled sign language data is usually not available at scale and, when available, gloss annotations widely differ from dataset to dataset. We present a novel approach using sentence embeddings of the target sentences at training time that take the role of glosses. The new kind of supervision does not need any manual annotation but it is learned on raw textual data. As our approach easily facilitates multilinguality, we evaluate it on datasets covering German (PHOENIX-2014T) and American (How2Sign) sign languages and experiment with mono- and multilingual sentence embeddings and translation systems. Our approach significantly outperforms other gloss-free approaches, setting the new state-of-the-art for data sets where glosses are not available and when no additional SLT datasets are used for pretraining, diminishing the gap between gloss-free and gloss-dependent systems.
☆ MoE-Prism: Disentangling Monolithic Experts for Elastic MoE Services via Model-System Co-Designs
Mixture-of-Experts (MoE) models, the state-of-the-art in large-scale AI, achieve high quality by sparsely activating parameters. However, their reliance on routing between a few monolithic experts via a top-k mechanism creates a "quality cliff", offering only a few coarse-grained operating points. This inflexibility forces a difficult trade-off between cost and quality, preventing adaptation to diverse Service Level Objectives (SLOs) and leading to significant resource over-provisioning. This paper introduces MoE-Prism, a model-system co-design that transforms rigid MoE models into elastic services. Our methodology is divided into two phases. First, an \emph{Offline Refactoring Engine} systematically deconstructs monolithic experts into fine-grained "sub-experts." This engine employs a partitioning optimization solver that uses a metaheuristic-based approach to group neurons, preserving functional locality without requiring retraining. Second, an \emph{Online Scheduling Engine} leverages this new elasticity through QoS-aware scheduling. It implements specialized policies to solve complex system problems, including maximizing throughput in cloud deployments and managing latency-optimized offloading for memory-constrained devices. Our evaluation across three different MoE models shows that MoE-Prismprovides over 4 times more distinct, stable operating points than the baseline. This allows an AI service to dynamically improve throughput by up to 19.9\% under a strict latency budget or reduce latency by up to 10.36\% under limited resources. MoE-Prism provides the critical "control knob" to bridge the model-system gap, enabling the next generation of adaptive, efficient, and QoS-aware AI services.
☆ The Massive Legal Embedding Benchmark (MLEB)
We present the Massive Legal Embedding Benchmark (MLEB), the largest, most diverse, and most comprehensive open-source benchmark for legal information retrieval to date. MLEB consists of ten expert-annotated datasets spanning multiple jurisdictions (the US, UK, EU, Australia, Ireland, and Singapore), document types (cases, legislation, regulatory guidance, contracts, and literature), and task types (search, zero-shot classification, and question answering). Seven of the datasets in MLEB were newly constructed in order to fill domain and jurisdictional gaps in the open-source legal information retrieval landscape. We document our methodology in building MLEB and creating the new constituent datasets, and release our code, results, and data openly to assist with reproducible evaluations.
comment: 15 pages, 2 figures
☆ LoongRL:Reinforcement Learning for Advanced Reasoning over Long Contexts
Reasoning over long contexts is essential for large language models. While reinforcement learning (RL) enhances short-context reasoning by inducing "Aha" moments in chain-of-thought, the advanced thinking patterns required for long-context reasoning remain largely unexplored, and high-difficulty RL data are scarce. In this paper, we introduce LoongRL, a data-driven RL method for advanced long-context reasoning. Central to LoongRL is KeyChain, a synthesis approach that transforms short multi-hop QA into high-difficulty long-context tasks by inserting UUID chains that hide the true question among large collections of distracting documents. Solving these tasks requires the model to trace the correct chain step-by-step, identify the true question, retrieve relevant facts and reason over them to answer correctly. RL training on KeyChain data induces an emergent plan-retrieve-reason-recheck reasoning pattern that generalizes far beyond training length. Models trained at 16K effectively solve 128K tasks without prohibitive full-length RL rollout costs. On Qwen2.5-7B and 14B, LoongRL substantially improves long-context multi-hop QA accuracy by +23.5% and +21.1% absolute gains. The resulting LoongRL-14B reaches a score of 74.2, rivaling much larger frontier models such as o3-mini (74.5) and DeepSeek-R1 (74.9). It also improves long-context retrieval, passes all 128K needle-in-a-haystack stress tests, and preserves short-context reasoning capabilities.
☆ AgenticMath: Enhancing LLM Reasoning via Agentic-based Math Data Generation
The creation of high-quality datasets to improve Large Language Model (LLM) reasoning remains a significant challenge, as current methods often suffer from generating low-quality/incorrect answers and limited information richness from available data sources. To address this, we propose AgenticMath, a novel agentic pipeline for generating high-quality mathematical question-answer pairs to enhance the supervised fine-tuning of LLMs. Our method operates through four stages: (1) Seed Question Filter that selects questions with high information richness, complexity, and clarity; (2) an Agentic Question Rephrase step that employs a multi-agent system to generate diverse, logically consistent paraphrases; (3) an Answer Augment step where rewrite answers using chain-of-thought reasoning to enhance numerical and logical correctness, without reliance on human-provided labels; and (4) a final Question and Answer Evaluation that retains only the most superior pairs. Extensive experiments demonstrate that, fine-tuning 3B-8B parameter LLMs on AgenticMath generated datasets (comprising only 30-60K math samples) achieves competitive or superior performance on diverse in domain and out-of-domain mathematical reasoning benchmarks compared to baselines trained on much more data (e.g., 400K or 2.3M samples). Our work demonstrates that targeted, high-quality data generation is a more efficient path to improving mathematical reasoning in LLMs than large-scale, low-quality alternatives.
comment: Work in progress
☆ M3-SLU: Evaluating Speaker-Attributed Reasoning in Multimodal Large Language Models LREC 2026
We present M3-SLU, a new multimodal large language model (MLLM) benchmark for evaluating multi-speaker, multi-turn spoken language understanding. While recent models show strong performance in speech and text comprehension, they still struggle with speaker-attributed reasoning, the ability to understand who said what and when in natural conversations. M3-SLU is built from four open corpora (CHiME-6, MELD, MultiDialog, and AMI) and comprises over 12,000 validated instances with paired audio, transcripts, and metadata. It includes two tasks: (1) Speaker-Attributed Question Answering and (2) Speaker Attribution via Utterance Matching. We provide baseline results for both cascaded pipelines and end-to-end MLLMs, evaluated using an LLM-as-Judge and accuracy metrics. Results show that while models can capture what was said, they often fail to identify who said it, revealing a key gap in speaker-aware dialogue understanding. M3-SLU offers as a challenging benchmark to advance research in speaker-aware multimodal understanding.
comment: Submitted to LREC 2026. 11 pages, 5 figures
☆ Modeling Turn-Taking with Semantically Informed Gestures
In conversation, humans use multimodal cues, such as speech, gestures, and gaze, to manage turn-taking. While linguistic and acoustic features are informative, gestures provide complementary cues for modeling these transitions. To study this, we introduce DnD Gesture++, an extension of the multi-party DnD Gesture corpus enriched with 2,663 semantic gesture annotations spanning iconic, metaphoric, deictic, and discourse types. Using this dataset, we model turn-taking prediction through a Mixture-of-Experts framework integrating text, audio, and gestures. Experiments show that incorporating semantically guided gestures yields consistent performance gains over baselines, demonstrating their complementary role in multimodal turn-taking.
☆ Local Obfuscation by GLINER for Impartial Context Aware Lineage: Development and evaluation of PII Removal system
Removing Personally Identifiable Information (PII) from clinical notes in Electronic Health Records (EHRs) is essential for research and AI development. While Large Language Models (LLMs) are powerful, their high computational costs and the data privacy risks of API-based services limit their use, especially in low-resource settings. To address this, we developed LOGICAL (Local Obfuscation by GLINER for Impartial Context-Aware Lineage), an efficient, locally deployable PII removal system built on a fine-tuned Generalist and Lightweight Named Entity Recognition (GLiNER) model. We used 1515 clinical documents from a psychiatric hospital's EHR system. We defined nine PII categories for removal. A modern-gliner-bi-large-v1.0 model was fine-tuned on 2849 text instances and evaluated on a test set of 376 instances using character-level precision, recall, and F1-score. We compared its performance against Microsoft Azure NER, Microsoft Presidio, and zero-shot prompting with Gemini-Pro-2.5 and Llama-3.3-70B-Instruct. The fine-tuned GLiNER model achieved superior performance, with an overall micro-average F1-score of 0.980, significantly outperforming Gemini-Pro-2.5 (F1-score: 0.845). LOGICAL correctly sanitised 95% of documents completely, compared to 64% for the next-best solution. The model operated efficiently on a standard laptop without a dedicated GPU. However, a 2% entity-level false negative rate underscores the need for human-in-the-loop validation across all tested systems. Fine-tuned, specialised transformer models like GLiNER offer an accurate, computationally efficient, and secure solution for PII removal from clinical notes. This "sanitisation at the source" approach is a practical alternative to resource-intensive LLMs, enabling the creation of de-identified datasets for research and AI development while preserving data privacy, particularly in resource-constrained environments.
comment: 30 pages, 15 main text and 15 supplementary material
☆ Every Attention Matters: An Efficient Hybrid Architecture for Long-Context Reasoning
In this technical report, we present the Ring-linear model series, specifically including Ring-mini-linear-2.0 and Ring-flash-linear-2.0. Ring-mini-linear-2.0 comprises 16B parameters and 957M activations, while Ring-flash-linear-2.0 contains 104B parameters and 6.1B activations. Both models adopt a hybrid architecture that effectively integrates linear attention and softmax attention, significantly reducing I/O and computational overhead in long-context inference scenarios. Compared to a 32 billion parameter dense model, this series reduces inference cost to 1/10, and compared to the original Ring series, the cost is also reduced by over 50%. Furthermore, through systematic exploration of the ratio between different attention mechanisms in the hybrid architecture, we have identified the currently optimal model structure. Additionally, by leveraging our self-developed high-performance FP8 operator library-linghe, overall training efficiency has been improved by 50%. Benefiting from the high alignment between the training and inference engine operators, the models can undergo long-term, stable, and highly efficient optimization during the reinforcement learning phase, consistently maintaining SOTA performance across multiple challenging complex reasoning benchmarks.
comment: 20 pages, 13 figures
☆ Algorithmic Fairness in NLP: Persona-Infused LLMs for Human-Centric Hate Speech Detection
In this paper, we investigate how personalising Large Language Models (Persona-LLMs) with annotator personas affects their sensitivity to hate speech, particularly regarding biases linked to shared or differing identities between annotators and targets. To this end, we employ Google's Gemini and OpenAI's GPT-4.1-mini models and two persona-prompting methods: shallow persona prompting and a deeply contextualised persona development based on Retrieval-Augmented Generation (RAG) to incorporate richer persona profiles. We analyse the impact of using in-group and out-group annotator personas on the models' detection performance and fairness across diverse social groups. This work bridges psychological insights on group identity with advanced NLP techniques, demonstrating that incorporating socio-demographic attributes into LLMs can address bias in automated hate speech detection. Our results highlight both the potential and limitations of persona-based approaches in reducing bias, offering valuable insights for developing more equitable hate speech detection systems.
comment: This paper has been accepted for the upcoming 59th Hawaii International Conference on System Sciences (HICSS-59), 2026, Hawaii, USA. The final published version will appear in the official conference proceedings
☆ Slot Filling as a Reasoning Task for SpeechLLMs
We propose integration of reasoning into speech large language models (speechLLMs) for the end-to-end slot-filling task. Inspired by the recent development of reasoning LLMs, we use a chain-of-thought framework to decompose the slot-filling task into multiple reasoning steps, create a reasoning dataset and apply the supervised fine-tuning strategy to a speechLLM. We distinguish between regular and reasoning speechLLMs and experiment with different types and sizes of LLMs as their text foundation models. We demonstrate performance improvements by introducing reasoning (intermediate) steps. However, we show that a reasoning textual LLM developed mainly for math, logic and coding domains might be inferior as a foundation model for a reasoning speechLLM. We further show that hybrid speechLLMs, built on a hybrid text foundation LLM and fine-tuned to preserve both direct and reasoning modes of operation, have better performance than those fine-tuned employing only one mode of operation.
☆ Balancing Rewards in Text Summarization: Multi-Objective Reinforcement Learning via HyperVolume Optimization
Text summarization is a crucial task that requires the simultaneous optimization of multiple objectives, including consistency, coherence, relevance, and fluency, which presents considerable challenges. Although large language models (LLMs) have demonstrated remarkable performance, enhanced by reinforcement learning (RL), few studies have focused on optimizing the multi-objective problem of summarization through RL based on LLMs. In this paper, we introduce hypervolume optimization (HVO), a novel optimization strategy that dynamically adjusts the scores between groups during the reward process in RL by using the hypervolume method. This method guides the model's optimization to progressively approximate the pareto front, thereby generating balanced summaries across multiple objectives. Experimental results on several representative summarization datasets demonstrate that our method outperforms group relative policy optimization (GRPO) in overall scores and shows more balanced performance across different dimensions. Moreover, a 7B foundation model enhanced by HVO performs comparably to GPT-4 in the summarization task, while maintaining a shorter generation length. Our code is publicly available at https://github.com/ai4business-LiAuto/HVO.git
☆ HAD: HAllucination Detection Language Models Based on a Comprehensive Hallucination Taxonomy
The increasing reliance on natural language generation (NLG) models, particularly large language models, has raised concerns about the reliability and accuracy of their outputs. A key challenge is hallucination, where models produce plausible but incorrect information. As a result, hallucination detection has become a critical task. In this work, we introduce a comprehensive hallucination taxonomy with 11 categories across various NLG tasks and propose the HAllucination Detection (HAD) models https://github.com/pku0xff/HAD, which integrate hallucination detection, span-level identification, and correction into a single inference process. Trained on an elaborate synthetic dataset of about 90K samples, our HAD models are versatile and can be applied to various NLG tasks. We also carefully annotate a test set for hallucination detection, called HADTest, which contains 2,248 samples. Evaluations on in-domain and out-of-domain test sets show that our HAD models generally outperform the existing baselines, achieving state-of-the-art results on HaluEval, FactCHD, and FaithBench, confirming their robustness and versatility.
☆ KORE: Enhancing Knowledge Injection for Large Multimodal Models via Knowledge-Oriented Augmentations and Constraints
Large Multimodal Models encode extensive factual knowledge in their pre-trained weights. However, its knowledge remains static and limited, unable to keep pace with real-world developments, which hinders continuous knowledge acquisition. Effective knowledge injection thus becomes critical, involving two goals: knowledge adaptation (injecting new knowledge) and knowledge retention (preserving old knowledge). Existing methods often struggle to learn new knowledge and suffer from catastrophic forgetting. To address this, we propose KORE, a synergistic method of KnOwledge-oRientEd augmentations and constraints for injecting new knowledge into large multimodal models while preserving old knowledge. Unlike general text or image data augmentation, KORE automatically converts individual knowledge items into structured and comprehensive knowledge to ensure that the model accurately learns new knowledge, enabling accurate adaptation. Meanwhile, KORE stores previous knowledge in the covariance matrix of LMM's linear layer activations and initializes the adapter by projecting the original weights into the matrix's null space, defining a fine-tuning direction that minimizes interference with previous knowledge, enabling powerful retention. Extensive experiments on various LMMs, including LLaVA-v1.5-7B, LLaVA-v1.5-13B, and Qwen2.5-VL-7B, show that KORE achieves superior new knowledge injection performance and effectively mitigates catastrophic forgetting.
comment: project page: https://kore-lmm.github.io/
☆ JointCQ: Improving Factual Hallucination Detection with Joint Claim and Query Generation
Current large language models (LLMs) often suffer from hallucination issues, i,e, generating content that appears factual but is actually unreliable. A typical hallucination detection pipeline involves response decomposition (i.e., claim extraction), query generation, evidence collection (i.e., search or retrieval), and claim verification. However, existing methods exhibit limitations in the first two stages, such as context loss during claim extraction and low specificity in query generation, resulting in degraded performance across the hallucination detection pipeline. In this work, we introduce JointCQ https://github.com/pku0xff/JointCQ, a joint claim-and-query generation framework designed to construct an effective and efficient claim-query generator. Our framework leverages elaborately designed evaluation criteria to filter synthesized training data, and finetunes a language model for joint claim extraction and query generation, providing reliable and informative inputs for downstream search and verification. Experimental results demonstrate that our method outperforms previous methods on multiple open-domain QA hallucination detection benchmarks, advancing the goal of more trustworthy and transparent language model systems.
☆ TheMCPCompany: Creating General-purpose Agents with Task-specific Tools
Since the introduction of the Model Context Protocol (MCP), the number of available tools for Large Language Models (LLMs) has increased significantly. These task-specific tool sets offer an alternative to general-purpose tools such as web browsers, while being easier to develop and maintain than GUIs. However, current general-purpose agents predominantly rely on web browsers for interacting with the environment. Here, we introduce TheMCPCompany, a benchmark for evaluating tool-calling agents on tasks that involve interacting with various real-world services. We use the REST APIs of these services to create MCP servers, which include over 18,000 tools. We also provide manually annotated ground-truth tools for each task. In our experiments, we use the ground truth tools to show the potential of tool-calling agents for both improving performance and reducing costs assuming perfect tool retrieval. Next, we explore agent performance using tool retrieval to study the real-world practicality of tool-based agents. While all models with tool retrieval perform similarly or better than browser-based agents, smaller models cannot take full advantage of the available tools through retrieval. On the other hand, GPT-5's performance with tool retrieval is very close to its performance with ground-truth tools. Overall, our work shows that the most advanced reasoning models are effective at discovering tools in simpler environments, but seriously struggle with navigating complex enterprise environments. TheMCPCompany reveals that navigating tens of thousands of tools and combining them in non-trivial ways to solve complex problems is still a challenging task for current models and requires both better reasoning and better retrieval models.
comment: Code: https://github.com/Reza-esfandiarpoor/the-mcp-company
☆ Difficulty-Controllable Multiple-Choice Question Generation Using Large Language Models and Direct Preference Optimization IEEE
Difficulty-controllable question generation for reading comprehension has gained significant attention in the field of education as a fundamental tool for adaptive learning support. Although several neural question generation methods have recently succeeded in controlling difficulty, conventional approaches still face two major limitations. First, they cannot directly generate multiple-choice questions, which are the most widely used question type in educational contexts. Second, they are not explicitly trained to optimize the accuracy of difficulty control, leaving room for further improvement in difficulty controllability. To address these limitations, this study proposes a novel difficulty-controllable multiple-choice question generation method for reading comprehension which leverages a large language model trained using a direct preference optimization technique to improve the accuracy of difficulty control.
comment: This work has been submitted to the IEEE for possible publication
☆ SheetBrain: A Neuro-Symbolic Agent for Accurate Reasoning over Complex and Large Spreadsheets
Understanding and reasoning over complex spreadsheets remain fundamental challenges for large language models (LLMs), which often struggle with accurately capturing the complex structure of tables and ensuring reasoning correctness. In this work, we propose SheetBrain, a neuro-symbolic dual workflow agent framework designed for accurate reasoning over tabular data, supporting both spreadsheet question answering and manipulation tasks. SheetBrain comprises three core modules: an understanding module, which produces a comprehensive overview of the spreadsheet - including sheet summary and query-based problem insight to guide reasoning; an execution module, which integrates a Python sandbox with preloaded table-processing libraries and an Excel helper toolkit for effective multi-turn reasoning; and a validation module, which verifies the correctness of reasoning and answers, triggering re-execution when necessary. We evaluate SheetBrain on multiple public tabular QA and manipulation benchmarks, and introduce SheetBench, a new benchmark targeting large, multi-table, and structurally complex spreadsheets. Experimental results show that SheetBrain significantly improves accuracy on both existing benchmarks and the more challenging scenarios presented in SheetBench. Our code is publicly available at https://github.com/microsoft/SheetBrain.
☆ Modality Matching Matters: Calibrating Language Distances for Cross-Lingual Transfer in URIEL+
Existing linguistic knowledge bases such as URIEL+ provide valuable geographic, genetic and typological distances for cross-lingual transfer but suffer from two key limitations. One, their one-size-fits-all vector representations are ill-suited to the diverse structures of linguistic data, and two, they lack a principled method for aggregating these signals into a single, comprehensive score. In this paper, we address these gaps by introducing a framework for type-matched language distances. We propose novel, structure-aware representations for each distance type: speaker-weighted distributions for geography, hyperbolic embeddings for genealogy, and a latent variables model for typology. We unify these signals into a robust, task-agnostic composite distance. In selecting transfer languages, our representations and composite distances consistently improve performance across a wide range of NLP tasks, providing a more principled and effective toolkit for multilingual research.
☆ DiSRouter: Distributed Self-Routing for LLM Selections
The proliferation of Large Language Models (LLMs) has created a diverse ecosystem of models with highly varying performance and costs, necessitating effective query routing to balance performance and expense. Current routing systems often rely on a centralized external router trained on a fixed set of LLMs, making them inflexible and prone to poor performance since the small router can not fully understand the knowledge boundaries of different LLMs. We introduce DiSRouter (Distributed Self-Router), a novel paradigm that shifts from centralized control to distributed routing. In DiSRouter, a query traverses a network of LLM agents, each independently deciding whether to answer or route to other agents based on its own self-awareness, its ability to judge its competence. This distributed design offers superior flexibility, scalability, and generalizability. To enable this, we propose a two-stage Self-Awareness Training pipeline that enhances each LLM's self-awareness. Extensive experiments demonstrate that DiSRouter significantly outperforms existing routing methods in utility across various scenarios, effectively distinguishes between easy and hard queries, and shows strong generalization to out-of-domain tasks. Our work validates that leveraging an LLM's intrinsic self-awareness is more effective than external assessment, paving the way for more modular and efficient multi-agent systems.
☆ Aligning Multilingual News for Stock Return Prediction
News spreads rapidly across languages and regions, but translations may lose subtle nuances. We propose a method to align sentences in multilingual news articles using optimal transport, identifying semantically similar content across languages. We apply this method to align more than 140,000 pairs of Bloomberg English and Japanese news articles covering around 3500 stocks in Tokyo exchange over 2012-2024. Aligned sentences are sparser, more interpretable, and exhibit higher semantic similarity. Return scores constructed from aligned sentences show stronger correlations with realized stock returns, and long-short trading strategies based on these alignments achieve 10\% higher Sharpe ratios than analyzing the full text sample.
comment: 6 pages, 4 tables, 2 figures, AI for Finance Symposium'25 Workshop at ICAIF'25
☆ Multi-Faceted Evaluation of Tool-Augmented Dialogue Systems
Evaluating conversational AI systems that use external tools is challenging, as errors can arise from complex interactions among user, agent, and tools. While existing evaluation methods assess either user satisfaction or agents' tool-calling capabilities, they fail to capture critical errors in multi-turn tool-augmented dialogues-such as when agents misinterpret tool results yet appear satisfactory to users. We introduce TRACE, a benchmark of systematically synthesized tool-augmented conversations covering diverse error cases, and SCOPE, an evaluation framework that automatically discovers diverse error patterns and evaluation rubrics in tool-augmented dialogues. Experiments show SCOPE significantly outperforms the baseline, particularly on challenging cases where user satisfaction signals are misleading.
comment: The first two authors contributed equally. Manuscript under submission
☆ Interpretable Question Answering with Knowledge Graphs
This paper presents a question answering system that operates exclusively on a knowledge graph retrieval without relying on retrieval augmented generation (RAG) with large language models (LLMs). Instead, a small paraphraser model is used to paraphrase the entity relationship edges retrieved from querying the knowledge graph. The proposed pipeline is divided into two main stages. The first stage involves pre-processing a document to generate sets of question-answer (QA) pairs. The second stage converts these QAs into a knowledge graph from which graph-based retrieval is performed using embeddings and fuzzy techniques. The graph is queried, re-ranked, and paraphrased to generate a final answer. This work includes an evaluation using LLM-as-a-judge on the CRAG benchmark, which resulted in accuracies of 71.9% and 54.4% using LLAMA-3.2 and GPT-3.5-Turbo, respectively.
☆ The Zero-Step Thinking: An Empirical Study of Mode Selection as Harder Early Exit in Reasoning Models NeurIPS'25
Reasoning models have demonstrated exceptional performance in tasks such as mathematics and logical reasoning, primarily due to their ability to engage in step-by-step thinking during the reasoning process. However, this often leads to overthinking, resulting in unnecessary computational overhead. To address this issue, Mode Selection aims to automatically decide between Long-CoT (Chain-of-Thought) or Short-CoT by utilizing either a Thinking or NoThinking mode. Simultaneously, Early Exit determines the optimal stopping point during the iterative reasoning process. Both methods seek to reduce the computational burden. In this paper, we first identify Mode Selection as a more challenging variant of the Early Exit problem, as they share similar objectives but differ in decision timing. While Early Exit focuses on determining the best stopping point for concise reasoning at inference time, Mode Selection must make this decision at the beginning of the reasoning process, relying on pre-defined fake thoughts without engaging in an explicit reasoning process, referred to as zero-step thinking. Through empirical studies on nine baselines, we observe that prompt-based approaches often fail due to their limited classification capabilities when provided with minimal hand-crafted information. In contrast, approaches that leverage internal information generally perform better across most scenarios but still exhibit issues with stability. Our findings indicate that existing methods relying solely on the information provided by models are insufficient for effectively addressing Mode Selection in scenarios with limited information, highlighting the ongoing challenges of this task. Our code is available at https://github.com/Trae1ounG/Zero_Step_Thinking.
comment: Accepted by NeurIPS'25 Efficient Reasoning Workshop
☆ When Facts Change: Probing LLMs on Evolving Knowledge with evolveQA
LLMs often fail to handle temporal knowledge conflicts--contradictions arising when facts evolve over time within their training data. Existing studies evaluate this phenomenon through benchmarks built on structured knowledge bases like Wikidata, but they focus on widely-covered, easily-memorized popular entities and lack the dynamic structure needed to fairly evaluate LLMs with different knowledge cut-off dates. We introduce evolveQA, a benchmark specifically designed to evaluate LLMs on temporally evolving knowledge, constructed from 3 real-world, time-stamped corpora: AWS updates, Azure changes, and WHO disease outbreak reports. Our framework identifies naturally occurring knowledge evolution and generates questions with gold answers tailored to different LLM knowledge cut-off dates. Through extensive evaluation of 12 open and closed-source LLMs across 3 knowledge probing formats, we demonstrate significant performance drops of up to 31% on evolveQA compared to static knowledge questions.
comment: Under submission
☆ Think Straight, Stop Smart: Structured Reasoning for Efficient Multi-Hop RAG NeurIPS 2025
Multi-hop retrieval-augmented generation (RAG) is a promising strategy for complex reasoning, yet existing iterative prompting approaches remain inefficient. They often regenerate predictable token sequences at every step and rely on stochastic stopping, leading to excessive token usage and unstable termination. We propose TSSS (Think Straight, Stop Smart), a structured multi-hop RAG framework designed for efficiency. TSSS introduces (i) a template-based reasoning that caches recurring prefixes and anchors sub-queries to the main question, reducing token generation cost while promoting stable reasoning, and (ii) a retriever-based terminator, which deterministically halts reasoning once additional sub-queries collapse into repetition. This separation of structured reasoning and termination control enables both faster inference and more reliable answers. On HotpotQA, 2WikiMultiHop, and MuSiQue, TSSS achieves state-of-the-art accuracy and competitive efficiency among RAG-CoT approaches, highlighting its effectiveness in efficiency-constrained scenarios such as on-device inference.
comment: Accepted at NeurIPS 2025 Workshop
☆ OpenGuardrails: An Open-Source Context-Aware AI Guardrails Platform
As large language models (LLMs) become increasingly integrated into real-world applications, safeguarding them against unsafe, malicious, or privacy-violating content is critically important. We present OpenGuardrails, the first open-source project to provide both a context-aware safety and manipulation detection model and a deployable platform for comprehensive AI guardrails. OpenGuardrails protects against content-safety risks, model-manipulation attacks (e.g., prompt injection, jailbreaking, code-interpreter abuse, and the generation/execution of malicious code), and data leakage. Content-safety and model-manipulation detection are implemented by a unified large model, while data-leakage identification and redaction are performed by a separate lightweight NER pipeline (e.g., Presidio-style models or regex-based detectors). The system can be deployed as a security gateway or an API-based service, with enterprise-grade, fully private deployment options. OpenGuardrails achieves state-of-the-art (SOTA) performance on safety benchmarks, excelling in both prompt and response classification across English, Chinese, and multilingual tasks. All models are released under the Apache 2.0 license for public use.
☆ "You Are Rejected!": An Empirical Study of Large Language Models Taking Hiring Evaluations
With the proliferation of the internet and the rapid advancement of Artificial Intelligence, leading technology companies face an urgent annual demand for a considerable number of software and algorithm engineers. To efficiently and effectively identify high-potential candidates from thousands of applicants, these firms have established a multi-stage selection process, which crucially includes a standardized hiring evaluation designed to assess job-specific competencies. Motivated by the demonstrated prowess of Large Language Models (LLMs) in coding and reasoning tasks, this paper investigates a critical question: Can LLMs successfully pass these hiring evaluations? To this end, we conduct a comprehensive examination of a widely used professional assessment questionnaire. We employ state-of-the-art LLMs to generate responses and subsequently evaluate their performance. Contrary to any prior expectation of LLMs being ideal engineers, our analysis reveals a significant inconsistency between the model-generated answers and the company-referenced solutions. Our empirical findings lead to a striking conclusion: All evaluated LLMs fails to pass the hiring evaluation.
comment: Technical Report, 14 pages, 8 figures
☆ Tibetan Language and AI: A Comprehensive Survey of Resources, Methods and Challenges
Tibetan, one of the major low-resource languages in Asia, presents unique linguistic and sociocultural characteristics that pose both challenges and opportunities for AI research. Despite increasing interest in developing AI systems for underrepresented languages, Tibetan has received limited attention due to a lack of accessible data resources, standardized benchmarks, and dedicated tools. This paper provides a comprehensive survey of the current state of Tibetan AI in the AI domain, covering textual and speech data resources, NLP tasks, machine translation, speech recognition, and recent developments in LLMs. We systematically categorize existing datasets and tools, evaluate methods used across different tasks, and compare performance where possible. We also identify persistent bottlenecks such as data sparsity, orthographic variation, and the lack of unified evaluation metrics. Additionally, we discuss the potential of cross-lingual transfer, multi-modal learning, and community-driven resource creation. This survey aims to serve as a foundational reference for future work on Tibetan AI research and encourages collaborative efforts to build an inclusive and sustainable AI ecosystem for low-resource languages.
☆ A Multi-faceted Analysis of Cognitive Abilities: Evaluating Prompt Methods with Large Language Models on the CONSORT Checklist
Despite the rapid expansion of Large Language Models (LLMs) in healthcare, the ability of these systems to assess clinical trial reporting according to CONSORT standards remains unclear, particularly with respect to their cognitive and reasoning strategies. This study applies a behavioral and metacognitive analytic approach with expert-validated data, systematically comparing two representative LLMs under three prompt conditions. Clear differences emerged in how the models approached various CONSORT items, and prompt types, including shifts in reasoning style, explicit uncertainty, and alternative interpretations shaped response patterns. Our results highlight the current limitations of these systems in clinical compliance automation and underscore the importance of understanding their cognitive adaptations and strategic behavior in developing more explainable and reliable medical AI.
☆ LLMs can hide text in other text of the same length.ipynb
A meaningful text can be hidden inside another, completely different yet still coherent and plausible, text of the same length. For example, a tweet containing a harsh political critique could be embedded in a tweet that celebrates the same political leader, or an ordinary product review could conceal a secret manuscript. This uncanny state of affairs is now possible thanks to Large Language Models, and in this paper we present a simple and efficient protocol to achieve it. We show that even modest 8-billion-parameter open-source LLMs are sufficient to obtain high-quality results, and a message as long as this abstract can be encoded and decoded locally on a laptop in seconds. The existence of such a protocol demonstrates a radical decoupling of text from authorial intent, further eroding trust in written communication, already shaken by the rise of LLM chatbots. We illustrate this with a concrete scenario: a company could covertly deploy an unfiltered LLM by encoding its answers within the compliant responses of a safe model. This possibility raises urgent questions for AI safety and challenges our understanding of what it means for a Large Language Model to know something.
comment: 21 pages, main paper 9 pages
☆ Enhancing Reasoning Skills in Small Persian Medical Language Models Can Outperform Large-Scale Data Training
Enhancing reasoning capabilities in small language models is critical for specialized applications such as medical question answering, particularly in underrepresented languages like Persian. In this study, we employ Reinforcement Learning with AI Feedback (RLAIF) and Direct preference optimization (DPO) to improve the reasoning skills of a general-purpose Persian language model. To achieve this, we translated a multiple-choice medical question-answering dataset into Persian and used RLAIF to generate rejected-preferred answer pairs, which are essential for DPO training. By prompting both teacher and student models to produce Chain-of-Thought (CoT) reasoning responses, we compiled a dataset containing correct and incorrect reasoning trajectories. This dataset, comprising 2 million tokens in preferred answers and 2.5 million tokens in rejected ones, was used to train a baseline model, significantly enhancing its medical reasoning capabilities in Persian. Remarkably, the resulting model outperformed its predecessor, gaokerena-V, which was trained on approximately 57 million tokens, despite leveraging a much smaller dataset. These results highlight the efficiency and effectiveness of reasoning-focused training approaches in developing domain-specific language models with limited data availability.
comment: 6 pages, 4 figures
☆ From Facts to Folklore: Evaluating Large Language Models on Bengali Cultural Knowledge
Recent progress in NLP research has demonstrated remarkable capabilities of large language models (LLMs) across a wide range of tasks. While recent multilingual benchmarks have advanced cultural evaluation for LLMs, critical gaps remain in capturing the nuances of low-resource cultures. Our work addresses these limitations through a Bengali Language Cultural Knowledge (BLanCK) dataset including folk traditions, culinary arts, and regional dialects. Our investigation of several multilingual language models shows that while these models perform well in non-cultural categories, they struggle significantly with cultural knowledge and performance improves substantially across all models when context is provided, emphasizing context-aware architectures and culturally curated training data.
comment: 4 pages
☆ Beyond One-Way Influence: Bidirectional Opinion Dynamics in Multi-Turn Human-LLM Interactions
Large language model (LLM)-powered chatbots are increasingly used for opinion exploration. Prior research examined how LLMs alter user views, yet little work extended beyond one-way influence to address how user input can affect LLM responses and how such bi-directional influence manifests throughout the multi-turn conversations. This study investigates this dynamic through 50 controversial-topic discussions with participants (N=266) across three conditions: static statements, standard chatbot, and personalized chatbot. Results show that human opinions barely shifted, while LLM outputs changed more substantially, narrowing the gap between human and LLM stance. Personalization amplified these shifts in both directions compared to the standard setting. Analysis of multi-turn conversations further revealed that exchanges involving participants' personal stories were most likely to trigger stance changes for both humans and LLMs. Our work highlights the risk of over-alignment in human-LLM interaction and the need for careful design of personalized chatbots to more thoughtfully and stably align with users.
comment: 26 pages, 8 figures
☆ ToolScope: Enhancing LLM Agent Tool Use through Tool Merging and Context-Aware Filtering
Large language model (LLM) agents rely on external tools to solve complex tasks, but real-world toolsets often contain redundant tools with overlapping names and descriptions, introducing ambiguity and reducing selection accuracy. LLMs also face strict input context limits, preventing efficient consideration of large toolsets. To address these challenges, we propose ToolScope, which includes: (1) ToolScopeMerger with Auto-Correction to automatically audit and fix tool merges, reducing redundancy, and (2) ToolScopeRetriever to rank and select only the most relevant tools for each query, compressing toolsets to fit within context limits without sacrificing accuracy. Evaluations on three state-of-the-art LLMs and three open-source tool-use benchmarks show gains of 8.38% to 38.6% in tool selection accuracy, demonstrating ToolScope's effectiveness in enhancing LLM tool use.
comment: Preprint under review
☆ Improving Transfer Learning for Sequence Labeling Tasks by Adapting Pre-trained Neural Language Models
This doctoral thesis improves the transfer learning for sequence labeling tasks by adapting pre-trained neural language models. The proposed improvements in transfer learning involve introducing a multi-task model that incorporates an additional signal, a method based on architectural modifications in autoregressive large language models, and a sequence labeling framework for autoregressive large language models utilizing supervised in-context fine-tuning combined with response-oriented adaptation strategies. The first improvement is given in the context of domain transfer for the event trigger detection task. The domain transfer of the event trigger detection task can be improved by incorporating an additional signal obtained from a domain-independent text processing system into a multi-task model. The second improvement involves modifying the model's architecture. For that purpose, a method is proposed to enable bidirectional information flow across layers of autoregressive large language models. The third improvement utilizes autoregressive large language models as text generators through a generative supervised in-context fine-tuning framework. The proposed model, method, and framework demonstrate that pre-trained neural language models achieve their best performance on sequence labeling tasks when adapted through targeted transfer learning paradigms.
☆ Forging GEMs: Advancing Greek NLP through Quality-Based Corpus Curation and Specialized Pre-training
The advancement of natural language processing for morphologically rich, moderately-resourced languages like Modern Greek is often hindered by a fragmented research landscape, a lack of architectural diversity and reliance on limited context-length models. This is particularly true in specialized, high-value domains such as law, where existing models are frequently confined to early transformer architectures with a restrictive 512-token window, insufficient for analyzing long legal documents. To address these challenges, this paper presents Greek Embedding Models, a new family of transformer models for Greek language built upon a foundation of extensive, quality-driven data curation. We detail the construction of several large-scale Greek corpora, emphasizing a rigorous, quality-based filtering and preprocessing methodology to create high-value training datasets from both general-domain and specialized legal sources. On this carefully curated foundation, we pre-train and systematically evaluate a diverse suite of modern architectures, which has not previously applied to Greek language, such as ELECTRA, ConvBERT and ModernBERT. Furthermore, we propose the first bilingual Greek-English Embedding Models tailored for the legal domain. The extensive experiments on downstream tasks demonstrate that the new class of models establish the effectiveness of the proposed approach, highlighting that the GEM-RoBERTa and GEM-ConvBERT models significantly outperform existing baselines.
☆ Beyond MedQA: Towards Real-world Clinical Decision Making in the Era of LLMs
Large language models (LLMs) show promise for clinical use. They are often evaluated using datasets such as MedQA. However, Many medical datasets, such as MedQA, rely on simplified Question-Answering (Q\A) that underrepresents real-world clinical decision-making. Based on this, we propose a unifying paradigm that characterizes clinical decision-making tasks along two dimensions: Clinical Backgrounds and Clinical Questions. As the background and questions approach the real clinical environment, the difficulty increases. We summarize the settings of existing datasets and benchmarks along two dimensions. Then we review methods to address clinical decision-making, including training-time and test-time techniques, and summarize when they help. Next, we extend evaluation beyond accuracy to include efficiency, explainability. Finally, we highlight open challenges. Our paradigm clarifies assumptions, standardizes comparisons, and guides the development of clinically meaningful LLMs.
comment: 13 pages, 3 figures
☆ A Fundamental Algorithm for Dependency Parsing (With Corrections)
This paper presents a fundamental algorithm for parsing natural language sentences into dependency trees. Unlike phrase-structure (constituency) parsers, this algorithm operates one word at a time, attaching each word as soon as it can be attached, corresponding to properties claimed for the parser in the human brain. Like phrase-structure parsing, its worst-case complexity is $O(n^3)$, but in human language, the worst case occurs only for small $n$.
comment: Corrected version of an already widely cited paper
☆ Communication to Completion: Modeling Collaborative Workflows with Intelligent Multi-Agent Communication
Teamwork in workspace for complex tasks requires diverse communication strategies, but current multi-agent LLM systems lack systematic frameworks for task oriented communication. We introduce Communication to Completion (C2C), a scalable framework that addresses this gap through two key innovations: (1) the Alignment Factor (AF), a novel metric quantifying agent task alignment that directly impacts work efficiency, and (2) a Sequential Action Framework that integrates stepwise execution with intelligent communication decisions. C2C enables agents to make cost aware communication choices, dynamically improving task understanding through targeted interactions. We evaluated C2C on realistic coding workflows across three complexity tiers and team sizes from 5 to 17 agents, comparing against no communication and fixed steps baselines. The results show that C2C reduces the task completion time by about 40% with acceptable communication costs. The framework completes all tasks successfully in standard configurations and maintains effectiveness at scale. C2C establishes both a theoretical foundation for measuring communication effectiveness in multi-agent systems and a practical framework for complex collaborative tasks.
comment: 13 pages
☆ LLM-Augmented Symbolic NLU System for More Reliable Continuous Causal Statement Interpretation
Despite the broad applicability of large language models (LLMs), their reliance on probabilistic inference makes them vulnerable to errors such as hallucination in generated facts and inconsistent output structure in natural language understanding (NLU) tasks. By contrast, symbolic NLU systems provide interpretable understanding grounded in curated lexicons, semantic resources, and syntactic & semantic interpretation rules. They produce relational representations that can be used for accurate reasoning and planning, as well as incremental debuggable learning. However, symbolic NLU systems tend to be more limited in coverage than LLMs and require scarce knowledge representation and linguistics skills to extend and maintain. This paper explores a hybrid approach that integrates the broad-coverage language processing of LLMs with the symbolic NLU capabilities of producing structured relational representations to hopefully get the best of both approaches. We use LLMs for rephrasing and text simplification, to provide broad coverage, and as a source of information to fill in knowledge gaps more automatically. We use symbolic NLU to produce representations that can be used for reasoning and for incremental learning. We evaluate this approach on the task of extracting and interpreting quantities and causal laws from commonsense science texts, along with symbolic- and LLM-only pipelines. Our results suggest that our hybrid method works significantly better than the symbolic-only pipeline.
comment: 18 pages, 2 figures
☆ LyriCAR: A Difficulty-Aware Curriculum Reinforcement Learning Framework For Controllable Lyric Translation ICASSP 2026
Lyric translation is a challenging task that requires balancing multiple musical constraints. Existing methods often rely on hand-crafted rules and sentence-level modeling, which restrict their ability to internalize musical-linguistic patterns and to generalize effectively at the paragraph level, where cross-line coherence and global rhyme are crucial. In this work, we propose LyriCAR, a novel framework for controllable lyric translation that operates in a fully unsupervised manner. LyriCAR introduces a difficulty-aware curriculum designer and an adaptive curriculum strategy, ensuring efficient allocation of training resources, accelerating convergence, and improving overall translation quality by guiding the model with increasingly complex challenges. Extensive experiments on the EN-ZH lyric translation task show that LyriCAR achieves state-of-the-art results across both standard translation metrics and multi-dimensional reward scores, surpassing strong baselines. Notably, the adaptive curriculum strategy reduces training steps by nearly 40% while maintaining superior performance. Code, data and model can be accessed at https://github.com/rle27/LyriCAR.
comment: submitted to ICASSP 2026
☆ Learning from Supervision with Semantic and Episodic Memory: A Reflective Approach to Agent Adaptation
We investigate how agents built on pretrained large language models can learn target classification functions from labeled examples without parameter updates. While conventional approaches like fine-tuning are often costly, inflexible, and opaque, we propose a memory-augmented framework that leverages both labeled data and LLM-generated critiques. Our framework uses episodic memory to store instance-level critiques-capturing specific past experiences-and semantic memory to distill these into reusable, task-level guidance. Across a diverse set of tasks, incorporating critiques yields up to a 24.8 percent accuracy improvement over retrieval-based (RAG-style) baselines that rely only on labels. Through extensive empirical evaluation, we uncover distinct behavioral differences between OpenAI and opensource models, particularly in how they handle fact-oriented versus preference-based data. To interpret how models respond to different representations of supervision encoded in memory, we introduce a novel metric, suggestibility. This helps explain observed behaviors and illuminates how model characteristics and memory strategies jointly shape learning dynamics. Our findings highlight the promise of memory-driven, reflective learning for building more adaptive and interpretable LLM agents.
comment: 11 pages
☆ Large Language Model enabled Mathematical Modeling
The integration of Large Language Models (LLMs) with optimization modeling offers a promising avenue for advancing decision-making in operations research (OR). Traditional optimization methods,such as linear programming, mixed integer programming, and simulation depend heavily on domain expertise to translate real-world problems into solvable mathematical models. While solvers like Gurobi and COPT are powerful, expert input remains essential for defining objectives, constraints, and variables. This research investigates the potential of LLMs, specifically the DeepSeek-R1 model, to bridge this formulation gap using natural language understanding and code generation. Although prior models like GPT-4, Claude, and Bard have shown strong performance in NLP and reasoning tasks, their high token costs and tendency toward hallucinations limit real-world applicability in supply chain contexts. In contrast, DeepSeek-R1, a cost-efficient and high-performing model trained with reinforcement learning, presents a viable alternative. Despite its success in benchmarks such as LiveCodeBench and Math-500, its effectiveness in applied OR scenarios remains under explored. This study systematically evaluates DeepSeek-R1 across four key OR benchmarks: NL4OPT, IndustryOR, EasyLP, and ComplexOR. Our methodology includes baseline assessments, the development of a hallucination taxonomy, and the application of mitigation strategies like LLM-as-a-Judge, Few-shot Learning (FSL), Tool Calling, and a Multi-agent Framework. These techniques aim to reduce hallucinations, enhance formulation accuracy, and better align model outputs with user intent.
☆ Can They Dixit? Yes they Can! Dixit as a Playground for Multimodal Language Model Capabilities EMNLP 2025
Multi-modal large language models (MLMs) are often assessed on static, individual benchmarks -- which cannot jointly assess MLM capabilities in a single task -- or rely on human or model pairwise comparisons -- which is highly subjective, expensive, and allows models to exploit superficial shortcuts (e.g., verbosity) to inflate their win-rates. To overcome these issues, we propose game-based evaluations to holistically assess MLM capabilities. Games require multiple abilities for players to win, are inherently competitive, and are governed by fix, objective rules, and makes evaluation more engaging, providing a robust framework to address the aforementioned challenges. We manifest this evaluation specifically through Dixit, a fantasy card game where players must generate captions for a card that trick some, but not all players, into selecting the played card. Our quantitative experiments with five MLMs show Dixit win-rate rankings are perfectly correlated with those on popular MLM benchmarks, while games between human and MLM players in Dixit reveal several differences between agent strategies and areas of improvement for MLM reasoning.
comment: Accepted as a Spotlight paper at the EMNLP 2025 Wordplay Workshop
☆ An Expert-grounded benchmark of General Purpose LLMs in LCA
Purpose: Artificial intelligence (AI), and in particular large language models (LLMs), are increasingly being explored as tools to support life cycle assessment (LCA). While demonstrations exist across environmental and social domains, systematic evidence on their reliability, robustness, and usability remains limited. This study provides the first expert-grounded benchmark of LLMs in LCA, addressing the absence of standardized evaluation frameworks in a field where no clear ground truth or consensus protocols exist. Methods: We evaluated eleven general-purpose LLMs, spanning both commercial and open-source families, across 22 LCA-related tasks. Seventeen experienced practitioners reviewed model outputs against criteria directly relevant to LCA practice, including scientific accuracy, explanation quality, robustness, verifiability, and adherence to instructions. We collected 168 expert reviews. Results: Experts judged 37% of responses to contain inaccurate or misleading information. Ratings of accuracy and quality of explanation were generally rated average or good on many models even smaller models, and format adherence was generally rated favourably. Hallucination rates varied significantly, with some models producing hallucinated citations at rates of up to 40%. There was no clear-cut distinction between ratings on open-weight versus closed-weight LLMs, with open-weight models outperforming or competing on par with closed-weight models on criteria such as accuracy and quality of explanation. Conclusion: These findings highlight the risks of applying LLMs na\"ively in LCA, such as when LLMs are treated as free-form oracles, while also showing benefits especially around quality of explanation and alleviating labour intensiveness of simple tasks. The use of general-purpose LLMs without grounding mechanisms presents ...
☆ Automated HIV Screening on Dutch EHR with Large Language Models
Efficient screening and early diagnosis of HIV are critical for reducing onward transmission. Although large scale laboratory testing is not feasible, the widespread adoption of Electronic Health Records (EHRs) offers new opportunities to address this challenge. Existing research primarily focuses on applying machine learning methods to structured data, such as patient demographics, for improving HIV diagnosis. However, these approaches often overlook unstructured text data such as clinical notes, which potentially contain valuable information relevant to HIV risk. In this study, we propose a novel pipeline that leverages a Large Language Model (LLM) to analyze unstructured EHR text and determine a patient's eligibility for further HIV testing. Experimental results on clinical data from Erasmus University Medical Center Rotterdam demonstrate that our pipeline achieved high accuracy while maintaining a low false negative rate.
comment: 28 pages, 6 figures
☆ Stream: Scaling up Mechanistic Interpretability to Long Context in LLMs via Sparse Attention
As Large Language Models (LLMs) scale to million-token contexts, traditional Mechanistic Interpretability techniques for analyzing attention scale quadratically with context length, demanding terabytes of memory beyond 100,000 tokens. We introduce Sparse Tracing, a novel technique that leverages dynamic sparse attention to efficiently analyze long context attention patterns. We present Stream, a compilable hierarchical pruning algorithm that estimates per-head sparse attention masks in near-linear time $O(T \log T)$ and linear space $O(T)$, enabling one-pass interpretability at scale. Stream performs a binary-search-style refinement to retain only the top-$k$ key blocks per query while preserving the model's next-token behavior. We apply Stream to long chain-of-thought reasoning traces and identify thought anchors while pruning 97-99\% of token interactions. On the RULER benchmark, Stream preserves critical retrieval paths while discarding 90-96\% of interactions and exposes layer-wise routes from the needle to output. Our method offers a practical drop-in tool for analyzing attention patterns and tracing information flow without terabytes of caches. By making long context interpretability feasible on consumer GPUs, Sparse Tracing helps democratize chain-of-thought monitoring. Code is available at https://anonymous.4open.science/r/stream-03B8/.
☆ From Denoising to Refining: A Corrective Framework for Vision-Language Diffusion Model
Discrete diffusion models have emerged as a promising direction for vision-language tasks, offering bidirectional context modeling and theoretical parallelization. However, their practical application is severely hindered by a train-inference discrepancy, which leads to catastrophic error cascades: initial token errors during parallel decoding pollute the generation context, triggering a chain reaction of compounding errors and leading to syntactic errors and semantic hallucinations. To address this fundamental challenge, we reframe the generation process from passive denoising to active refining. We introduce ReDiff, a refining-enhanced diffusion framework that teaches the model to identify and correct its own errors. Our approach features a two-stage training process: first, we instill a foundational revision capability by training the model to revise synthetic errors; second, we implement a novel online self-correction loop where the model is explicitly trained to revise its own flawed drafts by learning from an expert's corrections. This mistake-driven learning endows the model with the crucial ability to revisit and refine its already generated output, effectively breaking the error cascade. Extensive experiments demonstrate that ReDiff significantly improves the coherence and factual accuracy of generated content, enabling stable and efficient parallel generation far superior to traditional denoising methods. Our codes and models are available at https://rediff-hku.github.io/.
☆ An Evaluation of the Pedagogical Soundness and Usability of AI-Generated Lesson Plans Across Different Models and Prompt Frameworks in High-School Physics
This study evaluates the pedagogical soundness and usability of AI-generated lesson plans across five leading large language models: ChatGPT (GPT-5), Claude Sonnet 4.5, Gemini 2.5 Flash, DeepSeek V3.2, and Grok 4. Beyond model choice, three structured prompt frameworks were tested: TAG (Task, Audience, Goal), RACE (Role, Audience, Context, Execution), and COSTAR (Context, Objective, Style, Tone, Audience, Response Format). Fifteen lesson plans were generated for a single high-school physics topic, The Electromagnetic Spectrum. The lesson plans were analyzed through four automated computational metrics: (1) readability and linguistic complexity, (2) factual accuracy and hallucination detection, (3) standards and curriculum alignment, and (4) cognitive demand of learning objectives. Results indicate that model selection exerted the strongest influence on linguistic accessibility, with DeepSeek producing the most readable teaching plan (FKGL = 8.64) and Claude generating the densest language (FKGL = 19.89). The prompt framework structure most strongly affected the factual accuracy and pedagogical completeness, with the RACE framework yielding the lowest hallucination index and the highest incidental alignment with NGSS curriculum standards. Across all models, the learning objectives in the fifteen lesson plans clustered at the Remember and Understand tiers of Bloom's taxonomy. There were limited higher-order verbs in the learning objectives extracted. Overall, the findings suggest that readability is significantly governed by model design, while instructional reliability and curricular alignment depend more on the prompt framework. The most effective configuration for lesson plans identified in the results was to combine a readability-optimized model with the RACE framework and an explicit checklist of physics concepts, curriculum standards, and higher-order objectives.
comment: 20 pages, 6 tables
☆ SODBench: A Large Language Model Approach to Documenting Spreadsheet Operations
Numerous knowledge workers utilize spreadsheets in business, accounting, and finance. However, a lack of systematic documentation methods for spreadsheets hinders automation, collaboration, and knowledge transfer, which risks the loss of crucial institutional knowledge. This paper introduces Spreadsheet Operations Documentation (SOD), an AI task that involves generating human-readable explanations from spreadsheet operations. Many previous studies have utilized Large Language Models (LLMs) for generating spreadsheet manipulation code; however, translating that code into natural language for SOD is a less-explored area. To address this, we present a benchmark of 111 spreadsheet manipulation code snippets, each paired with a corresponding natural language summary. We evaluate five LLMs, GPT-4o, GPT-4o-mini, LLaMA-3.3-70B, Mixtral-8x7B, and Gemma2-9B, using BLEU, GLEU, ROUGE-L, and METEOR metrics. Our findings suggest that LLMs can generate accurate spreadsheet documentation, making SOD a feasible prerequisite step toward enhancing reproducibility, maintainability, and collaborative workflows in spreadsheets, although there are challenges that need to be addressed.
comment: 14 pages, 5 figures, 4 tables
♻ ☆ LoRA vs Full Fine-tuning: An Illusion of Equivalence
Fine-tuning is a crucial paradigm for adapting pre-trained large language models to downstream tasks. Recently, methods like Low-Rank Adaptation (LoRA) have been shown to effectively fine-tune LLMs with an extreme reduction in trainable parameters. But, \emph{are their learned solutions really equivalent?} We study how LoRA and full-finetuning change pre-trained models by analyzing the model's weight matrices through the lens of their spectral properties. We find that LoRA and full fine-tuning yield weight matrices whose singular value decompositions exhibit very different structure: weight matrices trained with LoRA have new, high-ranking singular vectors, which we call \emph{intruder dimensions}, while those trained with full fine-tuning do not. Further, we extend the finding that LoRA forgets less than full fine-tuning and find its forgetting is vastly localized to the intruder dimension -- by causally intervening on the intruder dimensions by changing their associated singular values post-fine-tuning, we show that they cause forgetting. Moreover, scaling them down significantly improves modeling of the pre-training distribution with a minimal drop in downstream task performance. Given this, we should expect accumulating intruder dimensions to be harmful and lead to more forgetting. This will be amplified during continual learning because of sequentially fine-tuning, and we show that LoRA models do accumulate intruder dimensions here tend to perform worse in this setting, emphasizing the practicality of our findings.
♻ ☆ Unlearned but Not Forgotten: Data Extraction after Exact Unlearning in LLM
Large Language Models are typically trained on datasets collected from the web, which may inadvertently contain harmful or sensitive personal information. To address growing privacy concerns, unlearning methods have been proposed to remove the influence of specific data from trained models. Of these, exact unlearning -- which retrains the model from scratch without the target data -- is widely regarded the gold standard for mitigating privacy risks in deployment. In this paper, we revisit this assumption in a practical deployment setting where both the pre- and post-unlearning logits API are exposed, such as in open-weight scenarios. Targeting this setting, we introduce a novel data extraction attack that leverages signals from the pre-unlearning model to guide the post-unlearning model, uncovering patterns that reflect the removed data distribution. Combining model guidance with a token filtering strategy, our attack significantly improves extraction success rates -- doubling performance in some cases -- across common benchmarks such as MUSE, TOFU, and WMDP. Furthermore, we demonstrate our attack's effectiveness on a simulated medical diagnosis dataset to highlight real-world privacy risks associated with exact unlearning. In light of our findings, which suggest that unlearning may, in a contradictory way, increase the risk of privacy leakage during real-world deployments, we advocate for evaluation of unlearning methods to consider broader threat models that account not only for post-unlearning models but also for adversarial access to prior checkpoints. Code is publicly available at: https://github.com/Nicholas0228/unlearned_data_extraction_llm.
comment: Accepted by Neurips 2025
♻ ☆ Measuring Data Science Automation: A Survey of Evaluation Tools for AI Assistants and Agents
Data science aims to extract insights from data to support decision-making processes. Recently, Large Language Models (LLMs) have been increasingly used as assistants for data science, by suggesting ideas, techniques and small code snippets, or for the interpretation of results and reporting. Proper automation of some data-science activities is now promised by the rise of LLM agents, i.e., AI systems powered by an LLM equipped with additional affordances--such as code execution and knowledge bases--that can perform self-directed actions and interact with digital environments. In this paper, we survey the evaluation of LLM assistants and agents for data science. We find (1) a dominant focus on a small subset of goal-oriented activities, largely ignoring data management and exploratory activities; (2) a concentration on pure assistance or fully autonomous agents, without considering intermediate levels of human-AI collaboration; and (3) an emphasis on human substitution, therefore neglecting the possibility of higher levels of automation thanks to task transformation.
comment: Published in Transactions of Machine Learning Research (TMLR), 10/2025 https://openreview.net/forum?id=MB0TCLfLn1
♻ ☆ Evaluation Framework for Highlight Explanations of Context Utilisation in Language Models
Context utilisation, the ability of Language Models (LMs) to incorporate relevant information from the provided context when generating responses, remains largely opaque to users, who cannot determine whether models draw from parametric memory or provided context, nor identify which specific context pieces inform the response. Highlight explanations (HEs) offer a natural solution as they can point the exact context pieces and tokens that influenced model outputs. However, no existing work evaluates their effectiveness in accurately explaining context utilisation. We address this gap by introducing the first gold standard HE evaluation framework for context attribution, using controlled test cases with known ground-truth context usage, which avoids the limitations of existing indirect proxy evaluations. To demonstrate the framework's broad applicability, we evaluate four HE methods -- three established techniques and MechLight, a mechanistic interpretability approach we adapt for this task -- across four context scenarios, four datasets, and five LMs. Overall, we find that MechLight performs best across all context scenarios. However, all methods struggle with longer contexts and exhibit positional biases, pointing to fundamental challenges in explanation accuracy that require new approaches to deliver reliable context utilisation explanations at scale.
♻ ☆ WikiVideo: Article Generation from Multiple Videos
We introduce the task of grounded article generation with the goal of creating a Wikipedia-style article from multiple diverse videos about real-world events -- from natural disasters to political elections -- where all the information in the article is supported by video evidence. Videos are intuitive sources for retrieval-augmented generation (RAG), but most contemporary RAG workflows focus heavily on text while existing methods for video-based summarization focus on low-level scene understanding rather than high-level event semantics. To close this gap, we introduce WikiVideo, a benchmark consisting of expert-written articles and densely annotated videos that provide evidence for articles' claims, facilitating the integration of video into RAG pipelines and enabling the creation of in-depth content that is grounded in multimodal sources. We further propose Collaborative Article Generation (CAG), a novel interactive method for article creation from multiple videos. CAG leverages an iterative interaction between an r1-style reasoning model and a VideoLLM to draw higher-level inferences about the target event than is possible with VideoLLMs alone, which fixate on low-level visual features. We benchmark state-of-the-art VideoLLMs and CAG in both oracle retrieval and RAG settings and find that CAG consistently outperforms alternative methods, while suggesting intriguing avenues for future work.
comment: Repo can be found here: https://github.com/alexmartin1722/wikivideo
♻ ☆ The Coverage Principle: How Pre-Training Enables Post-Training
Language models demonstrate remarkable abilities when pre-trained on large text corpora and fine-tuned for specific tasks, but how and why pre-training shapes the success of the final model remains poorly understood. Notably, although pre-training success is often quantified by cross-entropy loss, cross-entropy can be a poor predictor of downstream performance. Instead, we provide a theoretical perspective on this relationship through the lens of \emph{coverage}, which quantifies the probability mass the pre-trained model places on high-quality responses and which is necessary and sufficient for post-training and test-time scaling methods such as Best-of-N to succeed. Our main results develop an understanding of \emph{the coverage principle}, a phenomenon whereby next-token prediction (more generally, maximum likelihood) implicitly optimizes toward a model with good coverage. In particular, we uncover a mechanism that explains the power of coverage in predicting downstream performance: \emph{coverage generalizes faster than cross-entropy}, avoiding spurious dependence on problem-dependent parameters such as the sequence length. We also study practical algorithmic interventions with provable benefits for improving coverage, including (i) model/checkpoint selection procedures, (ii) gradient normalization schemes, and (iii) test-time decoding strategies.
♻ ☆ GeoBenchX: Benchmarking LLMs in Agent Solving Multistep Geospatial Tasks
This paper establishes a benchmark for evaluating tool-calling capabilities of large language models (LLMs) on multi-step geospatial tasks relevant to commercial GIS practitioners. We assess eight commercial LLMs (Claude Sonnet 3.5 and 4, Claude Haiku 3.5, Gemini 2.0 Flash, Gemini 2.5 Pro Preview, GPT-4o, GPT-4.1 and o4-mini) using a simple tool-calling agent equipped with 23 geospatial functions. Our benchmark comprises tasks in four categories of increasing complexity, with both solvable and intentionally unsolvable tasks to test rejection accuracy. We develop a LLM-as-Judge evaluation framework to compare agent solutions against reference solutions. Results show o4-mini and Claude 3.5 Sonnet achieve the best overall performance, OpenAI's GPT-4.1, GPT-4o and Google's Gemini 2.5 Pro Preview do not fall far behind, but the last two are more efficient in identifying unsolvable tasks. Claude Sonnet 4, due its preference to provide any solution rather than reject a task, proved to be less accurate. We observe significant differences in token usage, with Anthropic models consuming more tokens than competitors. Common errors include misunderstanding geometrical relationships, relying on outdated knowledge, and inefficient data manipulation. The resulting benchmark set, evaluation framework, and data generation pipeline are released as open-source resources (available at https://github.com/Solirinai/GeoBenchX), providing one more standardized method for the ongoing evaluation of LLMs for GeoAI.
comment: Github with code and benchmark set: https://github.com/Solirinai/GeoBenchX
♻ ☆ LASeR: Learning to Adaptively Select Reward Models with Multi-Armed Bandits NeurIPS 2025
Reward Models (RMs) are crucial to aligning large language models (LLMs), but the degree to which an RM specialized to one task (e.g. writing) generalizes to new tasks (e.g. math) is often not known a priori, often making using only one fixed RM to train LLMs suboptimal. However, optimizing LLMs with multiple RMs simultaneously can incur a prohibitively high computational cost and lead to conflicting signals from different RMs that may degrade performance. To address these challenges, we introduce LASeR (Learning to Adaptively Select Rewards), which frames reward model selection as a multi-armed bandit problem, efficiently and iteratively training LLMs using multiple RMs by selecting the most well-suited RM for each instance. On commonsense and math reasoning tasks, we show that LASeR boosts iterative LLM training, improving the absolute average accuracy of Llama-3-8B over three datasets by 2.67% over an ensemble of RM scores while also showing superior efficiency (e.g., a 2x speedup). Moreover, on WildChat (open-ended instruction-following tasks), LASeR leads to a 72.69% AlpacaEval win rate over the RM score ensemble baseline. Extending to long-context generation, LASeR improves by 2.96 F1 points (avg.) on single-document QA tasks and 2.97 F1 points on few-shot learning over the RM score ensemble baseline with best-of-n sampling.
comment: NeurIPS 2025 camera-ready. First two authors contributed equally. Code: https://github.com/duykhuongnguyen/LASeR-MAB
♻ ☆ metaTextGrad: Automatically optimizing language model optimizers
Large language models (LLMs) are increasingly used in learning algorithms, evaluations, and optimization tasks. Recent studies have shown that using LLM-based optimizers to automatically optimize model prompts, demonstrations, predictions themselves, or other components can significantly enhance the performance of AI systems, as demonstrated by frameworks such as DSPy and TextGrad. However, optimizers built on language models themselves are usually designed by humans with manual design choices; optimizers themselves are not optimized. Moreover, these optimizers are general purpose by design, to be useful to a broad audience, and are not tailored for specific tasks. To address these challenges, we propose metaTextGrad, which focuses on designing a meta-optimizer to further enhance existing optimizers and align them to be good optimizers for a given task. Our approach consists of two key components: a meta prompt optimizer and a meta structure optimizer. The combination of these two significantly improves performance across multiple benchmarks, achieving an average absolute performance improvement of up to 6% compared to the best baseline.
comment: 21 pages, 2 figures
♻ ☆ Test-time Prompt Intervention
Test-time compute has led to remarkable success in the large language model (LLM) community, particularly for complex tasks, where longer chains of thought (CoTs) are generated to enhance reasoning capabilities. However, growing evidence reveals that such reasoning models often produce CoTs plagued by excessive redundancy, including unnecessary verification steps and repetitive reasoning shifts. The root cause lies in post-training of them that overly rely on outcome reward paradigms, as the data of process reward paradigms, which regulate intermediate reasoning steps, is difficult to construct at scale. To address this, we propose PI, a novel framework for Test-time Prompt Intervention. PI provides an interface to dynamically guide and regulate reasoning paths during inference through timely (When module) and proper (How module) interventions and post-intervention sampling (Which module). This allows human problem-solving expertise and cognitive science principles to be seamlessly integrated into LLMs' reasoning processes, enhancing controllability and interpretability. Extensive experiments across multiple models and datasets demonstrate that PI significantly shortens CoTs while reducing hallucination, yielding more concise and reliable reasoning.
comment: 24 pages, 20 figures, under review
♻ ☆ Learning Linear Attention in Polynomial Time
Previous research has explored the computational expressivity of Transformer models in simulating Boolean circuits or Turing machines. However, the learnability of these simulators from observational data has remained an open question. Our study addresses this gap by providing the first polynomial-time learnability results (specifically strong, agnostic PAC learning) for single-layer Transformers with linear attention. We show that linear attention may be viewed as a linear predictor in a suitably defined RKHS. As a consequence, the problem of learning any linear transformer may be converted into the problem of learning an ordinary linear predictor in an expanded feature space, and any such predictor may be converted back into a multiheaded linear transformer. Moving to generalization, we show how to efficiently identify training datasets for which every empirical risk minimizer is equivalent (up to trivial symmetries) to the linear Transformer that generated the data, thereby guaranteeing the learned model will correctly generalize across all inputs. Finally, we provide examples of computations expressible via linear attention and therefore polynomial-time learnable, including associative memories, finite automata, and a class of Universal Turing Machine (UTMs) with polynomially bounded computation histories. We empirically validate our theoretical findings on three tasks: learning random linear attention networks, key--value associations, and learning to execute finite automata. Our findings bridge a critical gap between theoretical expressivity and learnability of Transformers, and show that flexible and general models of computation are efficiently learnable.
♻ ☆ dInfer: An Efficient Inference Framework for Diffusion Language Models
Diffusion-based large language models (dLLMs) have emerged as a promising alternative to autoregressive (AR) LLMs, leveraging denoising-based generation to enable inherent parallelism. Even more and more open-sourced dLLM models emerge, yet their widespread adoption remains constrained by the lack of a standardized and efficient inference framework. We present dInfer, an efficient and extensible framework for dLLM inference. dInfer decomposes the inference pipeline into four modular components--model, diffusion iteration manager, decoding strategy, and KV-cache manager--and integrates novel algorithms for each component alongside system-level optimizations. Through this combination of algorithmic innovations and system enhancements, dInfer achieves substantial efficiency gains without compromising output quality on LLaDA-MoE. At batch size 1, it surpasses 1,100 tokens per second on HumanEval and averages over 800 tokens per second across six benchmarks on $8\times$ H800 GPUs. Compared to prior systems, dInfer delivers a $10\times$ speedup over Fast-dLLM while maintaining similar model performance. Even compared to the AR model (with a comparable number of activation parameters and performance) QWen2.5-3B, which is highly optimized with the latest vLLM inference engine, dInfer still delivers a $2$-$3\times$ speedup. The implementation of dInfer is open-sourced at https://github.com/inclusionAI/dInfer.
♻ ☆ Unveiling Transformer Perception by Exploring Input Manifolds
This paper introduces a general method for the exploration of equivalence classes in the input space of Transformer models. The proposed approach is based on sound mathematical theory which describes the internal layers of a Transformer architecture as sequential deformations of the input manifold. Using eigendecomposition of the pullback of the distance metric defined on the output space through the Jacobian of the model, we are able to reconstruct equivalence classes in the input space and navigate across them. Our method enables two complementary exploration procedures: the first retrieves input instances that produce the same class probability distribution as the original instance-thus identifying elements within the same equivalence class-while the second discovers instances that yield a different class probability distribution, effectively navigating toward distinct equivalence classes. Finally, we demonstrate how the retrieved instances can be meaningfully interpreted by projecting their embeddings back into a human-readable format.
comment: 11 pages, 4 figures
♻ ☆ Hire Your Anthropologist! Rethinking Culture Benchmarks Through an Anthropological Lens
Cultural evaluation of large language models has become increasingly important, yet current benchmarks often reduce culture to static facts or homogeneous values. This view conflicts with anthropological accounts that emphasize culture as dynamic, historically situated, and enacted in practice. To analyze this gap, we introduce a four-part framework that categorizes how benchmarks frame culture, such as knowledge, preference, performance, or bias. Using this lens, we qualitatively examine 20 cultural benchmarks and identify six recurring methodological issues, including treating countries as cultures, overlooking within-culture diversity, and relying on oversimplified survey formats. Drawing on established anthropological methods, we propose concrete improvements: incorporating real-world narratives and scenarios, involving cultural communities in design and validation, and evaluating models in context rather than isolation. Our aim is to guide the development of cultural benchmarks that go beyond static recall tasks and more accurately capture the responses of the models to complex cultural situations.
comment: 12 pages; 2 figures; First two author contributed equally
♻ ☆ InfiFPO: Implicit Model Fusion via Preference Optimization in Large Language Models
Model fusion combines multiple Large Language Models (LLMs) with different strengths into a more powerful, integrated model through lightweight training methods. Existing works on model fusion focus primarily on supervised fine-tuning (SFT), leaving preference alignment (PA) --a critical phase for enhancing LLM performance--largely unexplored. The current few fusion methods on PA phase, like WRPO, simplify the process by utilizing only response outputs from source models while discarding their probability information. To address this limitation, we propose InfiFPO, a preference optimization method for implicit model fusion. InfiFPO replaces the reference model in Direct Preference Optimization (DPO) with a fused source model that synthesizes multi-source probabilities at the sequence level, circumventing complex vocabulary alignment challenges in previous works and meanwhile maintaining the probability information. By introducing probability clipping and max-margin fusion strategies, InfiFPO enables the pivot model to align with human preferences while effectively distilling knowledge from source models. Comprehensive experiments on 11 widely-used benchmarks demonstrate that InfiFPO consistently outperforms existing model fusion and preference optimization methods. When using Phi-4 as the pivot model, InfiFPO improve its average performance from 79.95 to 83.33 on 11 benchmarks, significantly improving its capabilities in mathematics, coding, and reasoning tasks.
♻ ☆ MLR-Bench: Evaluating AI Agents on Open-Ended Machine Learning Research NeurIPS 2025
Recent advancements in AI agents have demonstrated their growing potential to drive and support scientific discovery. In this work, we introduce MLR-Bench, a comprehensive benchmark for evaluating AI agents on open-ended machine learning research. MLR-Bench includes three key components: (1) 201 research tasks sourced from NeurIPS, ICLR, and ICML workshops covering diverse ML topics; (2) MLR-Judge, an automated evaluation framework combining LLM-based reviewers with carefully designed review rubrics to assess research quality; and (3) MLR-Agent, a modular agent scaffold capable of completing research tasks through four stages: idea generation, proposal formulation, experimentation, and paper writing. Our framework supports both stepwise assessment across these distinct research stages, and end-to-end evaluation of the final research paper. We then use MLR-Bench to evaluate six frontier LLMs and an advanced coding agent, finding that while LLMs are effective at generating coherent ideas and well-structured papers, current coding agents frequently (e.g., in 80% of the cases) produce fabricated or invalidated experimental results--posing a major barrier to scientific reliability. We validate MLR-Judge through human evaluation, showing high agreement with expert reviewers, supporting its potential as a scalable tool for research evaluation. We open-source MLR-Bench to help the community benchmark, diagnose, and improve AI research agents toward trustworthy and transparent scientific discovery.
comment: 49 pages, 9 figures. Accepted by NeurIPS 2025 D&B Track
♻ ☆ Mathematics with large language models as provers and verifiers
During 2024 and 2025 the discussion about the theorem-proving capabilities of large language models started reporting interesting success stories, mostly to do with difficult exercises (such as problems from the International Mathematical Olympiad), but also with conjectures [Feldman & Karbasi, arXiv:2509.18383v1] formulated for the purpose of verifying whether the artificial intelligence could prove it. In this paper we report a theorem proving feat achieved by ChatGPT by using a protocol involving different prover and verifier instances of the gpt-5 model working collaboratively. To make sure that the produced proofs do not suffer from hallucinations, the final proof is formally verified by the lean proof assistant, and the conformance of premises and conclusion of the lean code is verified by a human. Our methodology is by no means complete or exact. It was nonetheless able to solve five out of six 2025 IMO problems, and close about a third of the sixty-six number theory conjectures in [Cohen, Journal of Integer Sequences, 2025].
♻ ☆ Using (Not-so) Large Language Models to Generate Simulation Models in a Formal DSL: A Study on Reaction Networks
Formal languages are an integral part of modeling and simulation. They allow the distillation of knowledge into concise simulation models amenable to automatic execution, interpretation, and analysis. However, the arguably most humanly accessible means of expressing models is through natural language, which is not easily interpretable by computers. Here, we evaluate how a Large Language Model (LLM) might be used for formalizing natural language into simulation models. Existing studies only explored using very large LLMs, like the commercial GPT models, without fine-tuning model weights. To close this gap, we show how an open-weights, 7B-parameter Mistral model can be fine-tuned to translate natural language descriptions to reaction network models in a domain-specific language, offering a self-hostable, compute-efficient, and memory efficient alternative. To this end, we develop a synthetic data generator to serve as the basis for fine-tuning and evaluation. Our quantitative evaluation shows that our fine-tuned Mistral model can recover the ground truth simulation model in up to 84.5% of cases. In addition, our small-scale user study demonstrates the model's practical potential for one-time generation as well as interactive modeling in various domains. While promising, in its current form, the fine-tuned small LLM cannot catch up with large LLMs. We conclude that higher-quality training data are required, and expect future small and open-source LLMs to offer new opportunities.
comment: 27 pages, 5 figures; supplemental material available at https://doi.org/10.1145/3733719
♻ ☆ Middo: Model-Informed Dynamic Data Optimization for Enhanced LLM Fine-Tuning via Closed-Loop Learning EMNLP 2025
Supervised Fine-Tuning (SFT) Large Language Models (LLM) fundamentally rely on high-quality training data. While data selection and data synthesis are two common strategies to improve data quality, existing approaches often face limitations in static dataset curation that fail to adapt to evolving model capabilities. In this paper, we introduce Middo, a self-evolving Model-informed dynamic data optimization framework that uses model-aware data selection and context-preserving data refinement. Unlike conventional one-off filtering/synthesis methods, our framework establishes a closed-loop optimization system: (1) A self-referential diagnostic module proactively identifies suboptimal samples through tri-axial model signals - loss patterns (complexity), embedding cluster dynamics (diversity), and self-alignment scores (quality); (2) An adaptive optimization engine then transforms suboptimal samples into pedagogically valuable training points while preserving semantic integrity; (3) This optimization process continuously evolves with model capability through dynamic learning principles. Experiments on multiple benchmarks demonstrate that our Middo consistently enhances the quality of seed data and boosts LLM's performance with improving accuracy by 7.15% on average while maintaining the original dataset scale. This work establishes a new paradigm for sustainable LLM training through dynamic human-AI co-evolution of data and models. Our datasets, models, and code are publicly available at https://github.com/Word2VecT/Middo.
comment: Accepted by EMNLP 2025 (Main)
♻ ☆ Quantum Natural Language Processing: A Comprehensive Review of Models, Methods, and Applications
In recent developments, deep learning methodologies applied to Natural Language Processing (NLP) have revealed a paradox: They improve performance but demand considerable data and resources for their training. Alternatively, quantum computing exploits the principles of quantum mechanics to overcome the computational limitations of current methodologies, thereby establishing an emerging field known as quantum natural language processing (QNLP). This domain holds the potential to attain a quantum advantage in the processing of linguistic structures, surpassing classical models in both efficiency and accuracy. In this paper, it is proposed to categorise QNLP models based on quantum computing principles, architecture, and computational approaches. This paper attempts to provide a survey on how quantum meets language by mapping state-of-the-art in this area, embracing quantum encoding techniques for classical data, QNLP models for prevalent NLP tasks, and quantum optimisation techniques for hyper parameter tuning. The landscape of quantum computing approaches applied to various NLP tasks is summarised by showcasing the specific QNLP methods used, and the popularity of these methods is indicated by their count. From the findings, it is observed that QNLP approaches are still limited to small data sets, with only a few models explored extensively, and there is increasing interest in the application of quantum computing to natural language processing tasks.
♻ ☆ Can Large Language Models be Effective Online Opinion Miners? EMNLP 2025
The surge of user-generated online content presents a wealth of insights into customer preferences and market trends. However, the highly diverse, complex, and context-rich nature of such contents poses significant challenges to traditional opinion mining approaches. To address this, we introduce Online Opinion Mining Benchmark (OOMB), a novel dataset and evaluation protocol designed to assess the ability of large language models (LLMs) to mine opinions effectively from diverse and intricate online environments. OOMB provides extensive (entity, feature, opinion) tuple annotations and a comprehensive opinion-centric summary that highlights key opinion topics within each content, thereby enabling the evaluation of both the extractive and abstractive capabilities of models. Through our proposed benchmark, we conduct a comprehensive analysis of which aspects remain challenging and where LLMs exhibit adaptability, to explore whether they can effectively serve as opinion miners in realistic online scenarios. This study lays the foundation for LLM-based opinion mining and discusses directions for future research in this field.
comment: Accepted to EMNLP 2025 Main
♻ ☆ Can LLMs Correct Themselves? A Benchmark of Self-Correction in LLMs
Self-correction of large language models (LLMs) emerges as a critical component for enhancing their reasoning performance. Although various self-correction methods have been proposed, a comprehensive evaluation of these methods remains largely unexplored, and the question of whether LLMs can truly correct themselves is a matter of significant interest and concern. In this study, we introduce CorrectBench, a benchmark developed to evaluate the effectiveness of self-correction strategies, including intrinsic, external, and fine-tuned approaches, across three tasks: commonsense reasoning, mathematical reasoning, and code generation. Our findings reveal that: 1) Self-correction methods can improve accuracy, especially for complex reasoning tasks; 2) Mixing different self-correction strategies yields further improvements, though it reduces efficiency; 3) Reasoning LLMs (e.g., DeepSeek-R1) have limited optimization under additional self-correction methods and have high time costs. Interestingly, a comparatively simple chain-of-thought (CoT) baseline demonstrates competitive accuracy and efficiency. These results underscore the potential of self-correction to enhance LLM's reasoning performance while highlighting the ongoing challenge of improving their efficiency. Consequently, we advocate for further research focused on optimizing the balance between reasoning capabilities and operational efficiency. Project Page: https://correctbench.github.io/
comment: 47 pages, 25 figures, 10 tables
♻ ☆ From TOWER to SPIRE: Adding the Speech Modality to a Translation-Specialist LLM EMNLP 2025
We introduce Spire, a speech-augmented language model (LM) capable of both translating and transcribing speech input from English into 10 other languages as well as translating text input in both language directions. Spire integrates the speech modality into an existing multilingual LM via speech discretization and continued pre-training using only 42.5K hours of speech. In particular, we adopt the pretraining framework of multilingual LMs and treat discretized speech input as an additional translation language. This approach not only equips the model with speech capabilities, but also preserves its strong text-based performance. We achieve this using significantly less data than existing speech LMs, demonstrating that discretized speech input integration as an additional language is feasible during LM adaptation. We make our code and models available to the community.
comment: EMNLP 2025 (Findings) camera ready
♻ ☆ Natural Language Processing for Cardiology: A Narrative Review
Cardiovascular diseases are becoming increasingly prevalent in modern society, with a profound impact on global health and well-being. These Cardiovascular disorders are complex and multifactorial, influenced by genetic predispositions, lifestyle choices, and diverse socioeconomic and clinical factors. Information about these interrelated factors is dispersed across multiple types of textual data, including patient narratives, medical records, and scientific literature. Natural language processing (NLP) has emerged as a powerful approach for analysing such unstructured data, enabling healthcare professionals and researchers to gain deeper insights that may transform the diagnosis, treatment, and prevention of cardiac disorders. This review provides a comprehensive overview of NLP research in cardiology from 2014 to 2025. We systematically searched six literature databases for studies describing NLP applications across a range of cardiovascular diseases. After a rigorous screening process, we identified 265 relevant articles. Each study was analysed across multiple dimensions, including NLP paradigms, cardiology-related tasks, disease types, and data sources. Our findings reveal substantial diversity within these dimensions, reflecting the breadth and evolution of NLP research in cardiology. A temporal analysis further highlights methodological trends, showing a progression from rule-based systems to large language models. Finally, we discuss key challenges and future directions, such as developing interpretable LLMs and integrating multimodal data. To the best of our knowledge, this review represents the most comprehensive synthesis of NLP research in cardiology to date.
♻ ☆ Evaluating NLP Embedding Models for Handling Science-Specific Symbolic Expressions in Student Texts
In recent years, natural language processing (NLP) has become integral to educational data mining, particularly in the analysis of student-generated language products. For research and assessment purposes, so-called embedding models are typically employed to generate numeric representations of text that capture its semantic content for use in subsequent quantitative analyses. Yet when it comes to science-related language, symbolic expressions such as equations and formulas introduce challenges that current embedding models struggle to address. Existing research studies and practical applications often either overlook these challenges or remove symbolic expressions altogether, potentially leading to biased research findings and diminished performance of practical applications. This study therefore explores how contemporary embedding models differ in their capability to process and interpret science-related symbolic expressions. To this end, various embedding models are evaluated using physics-specific symbolic expressions drawn from authentic student responses, with performance assessed via two approaches: 1) similarity-based analyses and 2) integration into a machine learning pipeline. Our findings reveal significant differences in model performance, with OpenAI's GPT-text-embedding-3-large outperforming all other examined models, though its advantage over other models was moderate rather than decisive. Overall, this study underscores the importance for educational data mining researchers and practitioners of carefully selecting NLP embedding models when working with science-related language products that include symbolic expressions. The code and (partial) data are available at https://doi.org/10.17605/OSF.IO/6XQVG.
♻ ☆ Bias Beware: The Impact of Cognitive Biases on LLM-Driven Product Recommendations EMNLP 2025
The advent of Large Language Models (LLMs) has revolutionized product recommenders, yet their susceptibility to adversarial manipulation poses critical challenges, particularly in real-world commercial applications. Our approach is the first one to tap into human psychological principles, seamlessly modifying product descriptions, making such manipulations hard to detect. In this work, we investigate cognitive biases as black-box adversarial strategies, drawing parallels between their effects on LLMs and human purchasing behavior. Through extensive evaluation across models of varying scale, we find that certain biases, such as social proof, consistently boost product recommendation rate and ranking, while others, like scarcity and exclusivity, surprisingly reduce visibility. Our results demonstrate that cognitive biases are deeply embedded in state-of-the-art LLMs, leading to highly unpredictable behavior in product recommendations and posing significant challenges for effective mitigation.
comment: Accepted at EMNLP 2025
♻ ☆ Memorization-Compression Cycles Improve Generalization NeurIPS2025
We prove theoretically that generalization improves not only through data scaling but also by compressing internal representations. To operationalize this insight, we introduce the Information Bottleneck Language Modeling (IBLM) objective, which reframes language modeling as a constrained optimization problem: minimizing representation entropy subject to optimal prediction performance. Empirically, we observe an emergent memorization-compression cycle during LLM pretraining, evidenced by oscillation positive/negative gradient alignment between cross-entropy and Matrix-Based Entropy (MBE), a measure of representation entropy. This pattern closely mirrors the predictive-compressive trade-off prescribed by IBLM and also parallels the biological alternation between awake learning and sleep consolidation. Motivated by this observation, we propose Gated Phase Transition (GAPT), a training algorithm that adaptively switches between memorization and compression phases. When applied to GPT-2 pretraining on FineWeb dataset, GAPT reduces MBE by 50% and improves cross-entropy by 4.8%. GAPT improves OOD generalizatino by 35% in a pretraining task on arithmetic multiplication. In a setting designed to simulate catastrophic forgetting, GAPT reduces interference by compressing and separating representations, achieving a 97% improvement in separation - paralleling the functional role of sleep consolidation.
comment: 12 pages, 6 figures, NeurIPS2025 NEGEL Workshop
♻ ☆ Meeseeks: A Feedback-Driven, Iterative Self-Correction Benchmark evaluating LLMs' Instruction Following Capability
The capability to precisely adhere to instructions is a cornerstone for Large Language Models (LLMs) to function as dependable agents in real-world scenarios. However, confronted with complex prompts, LLMs frequently encounter difficulties in fulfilling all specified requirements within a single response. Drawing inspiration from recent advancements in Chain-of-Thought (CoT) prompting and self-correction methodologies, we introduce Meeseeks (The name is inspired by Mr. Meeseeks from "Rick and Morty," a character renowned for efficiently accomplishing assigned tasks. See: https://en.wikipedia.org/wiki/Mr._Meeseeks), a fully automated iterative instruction-following benchmark equipped with an integrated feedback mechanism. Meeseeks identifies erroneous components in model responses and provides corresponding feedback accurately, thereby iteratively guiding the model toward self-correction. The dataset contains over 700 curated instances annotated by 32 distinct capability tags in Chinese and English. Extensive experimental results reveal that different state-of-the-art commercial and open-source LLMs exhibit vastly disparate performance, and even after 20 turns of iterative feedback-driven self-correction, nearly all models demonstrate suboptimal performance. We conducted comprehensive analysis from both macro and instance levels, uncovering numerous common issues prevalent in current state-of-the-art models, as well as several counterintuitive phenomena. We've open-sourced our work on https://github.com/ADoublLEN/Meeseeks.
♻ ☆ LV-Eval: A Balanced Long-Context Benchmark with 5 Length Levels Up to 256K
State-of-the-art large language models (LLMs) are now claiming remarkable supported context lengths of 256k or even more. In contrast, the average context lengths of mainstream benchmarks are insufficient (5k-21k), and they suffer from potential knowledge leakage and inaccurate metrics, resulting in biased evaluation. This paper introduces LV-Eval, a challenging long-context benchmark with five length levels (16k, 32k, 64k, 128k, and 256k) reaching up to 256k words. LV-Eval features two main tasks, single-hop QA and multi-hop QA, comprising 11 bilingual datasets. The design of LV-Eval has incorporated three key techniques, namely confusing facts insertion, keyword and phrase replacement, and keyword-recall-based metric design. The advantages of LV-Eval include controllable evaluation across different context lengths, challenging test instances with confusing facts, mitigated knowledge leakage, and more objective evaluations. We evaluate 15 LLMs on LV-Eval and conduct ablation studies on the benchmarking techniques. The results reveal that: (i) Moonshot-v1 and recent large-scale open-source models, such as Qwen-2.5-72B and Llama-3.1-70B, achieve the highest performance on LV-Eval, particularly at lengths below 64k. (ii) Models exhibit distinct score trends. For example, GLM-4-9B-128k, Yi-6B-200k, and Llama3-8B-1M exhibit a relatively gentle degradation of performance, but their absolute performances may not necessarily be higher than those of LLMs with shorter context lengths. (iii) LLMs' performances can significantly degrade in the presence of confusing information, especially in the pressure test of "needle in a haystack". (iv) Issues related to knowledge leakage and inaccurate metrics introduce bias in evaluation, and these concerns are alleviated in LV-Eval. All datasets and evaluation codes are released at: https://github.com/infinigence/LVEval.
♻ ☆ Reasoning Models Better Express Their Confidence NeurIPS 2025
Despite their strengths, large language models (LLMs) often fail to communicate their confidence accurately, making it difficult to assess when they might be wrong and limiting their reliability. In this work, we demonstrate that reasoning models that engage in extended chain-of-thought (CoT) reasoning exhibit superior performance not only in problem-solving but also in accurately expressing their confidence. Specifically, we benchmark six reasoning models across six datasets and find that they achieve strictly better confidence calibration than their non-reasoning counterparts in 33 out of the 36 settings. Our detailed analysis reveals that these gains in calibration stem from the slow thinking behaviors of reasoning models (e.g., exploring alternative approaches and backtracking) which enable them to adjust their confidence dynamically throughout their CoT, making it progressively more accurate. In particular, we find that reasoning models become increasingly better calibrated as their CoT unfolds, a trend not observed in non-reasoning models. Moreover, removing slow thinking behaviors from the CoT leads to a significant drop in calibration. Lastly, we show that non-reasoning models also demonstrate enhanced calibration when simply guided to slow think via in-context learning, fully isolating slow thinking as the source of the calibration gains.
comment: Accepted to NeurIPS 2025
♻ ☆ FrugalPrompt: Reducing Contextual Overhead in Large Language Models via Token Attribution
Large language models (LLMs) owe much of their stellar performance to expansive input contexts, yet such verbosity inflates monetary costs, carbon footprint, and inference-time latency. Much of this overhead manifests from the redundant low-utility tokens present in typical prompts, as only a fraction of tokens typically carries the majority of the semantic weight. We address this inefficiency by introducing FrugalPrompt, a novel prompt compression framework for LLMs, which retains only the most semantically significant tokens. Leveraging two state-of-the-art token attribution methods, GlobEnc and DecompX, we assign salience scores to every token in an input sequence, rank them to preserve the top-k% tokens in their original order, and obtain a sparse frugalized prompt. We evaluate the approach across four NLP tasks: Sentiment Analysis, Commonsense QA, Summarization, and Mathematical Reasoning, using a suite of frontier LLMs. For the first three tasks, a 20% prompt reduction incurs only a marginal loss in task performance, demonstrating that contemporary LLMs can reconstruct elided context from high-salience cues. In contrast, performance on mathematical reasoning deteriorates sharply, reflecting a stronger dependence on complete token continuity. Further analysis with bottom-k% and random-k% tokens reveals asymmetric performance patterns that may suggest potential task contamination effects, wherein models may resort to shallow memorized patterns from pretraining exposure for conventional NLP tasks. We posit that our work contributes to a more nuanced understanding of LLM behavior in performance-efficiency trade-offs, and delineate the boundary between tasks tolerant to contextual sparsity and those requiring exhaustive context. Our source code and models are available at: https://github.com/Starscream-11813/Frugal-ICL.
♻ ☆ Grasp Any Region: Towards Precise, Contextual Pixel Understanding for Multimodal LLMs
While Multimodal Large Language Models (MLLMs) excel at holistic understanding, they struggle in capturing the dense world with complex scenes, requiring fine-grained analysis of intricate details and object inter-relationships. Region-level MLLMs have been a promising step. However, previous attempts are generally optimized to understand given regions in isolation, neglecting crucial global contexts. To address this, we introduce Grasp Any Region (GAR) for comprehen- sive region-level visual understanding. Empowered by an effective RoI-aligned feature replay technique, GAR supports (1) precise perception by leveraging necessary global contexts, and (2) modeling interactions between multiple prompts. Together, it then naturally achieves (3) advanced compositional reasoning to answer specific free-form questions about any region, shifting the paradigm from passive description to active dialogue. Moreover, we construct GAR-Bench, which not only provides a more accurate evaluation of single-region comprehension, but also, more importantly, measures interactions and complex reasoning across multiple regions. Extensive experiments have demonstrated that GAR-1B not only maintains the state-of-the-art captioning capabilities, e.g., outperforming DAM-3B +4.5 on DLC-Bench, but also excels at modeling relationships between multiple prompts with advanced comprehension capabilities, even surpassing InternVL3-78B on GAR-Bench-VQA. More importantly, our zero-shot GAR-8B even outperforms in-domain VideoRefer-7B on VideoRefer-BenchQ, indicating its strong capabilities can be easily transferred to videos.
♻ ☆ Chiron-o1: Igniting Multimodal Large Language Models towards Generalizable Medical Reasoning via Mentor-Intern Collaborative Search
Multimodal large language models (MLLMs) have begun to demonstrate robust reasoning capabilities on general tasks, yet their application in the medical domain remains in its early stages. Constructing chain-of-thought (CoT) training data is essential for bolstering the reasoning abilities of medical MLLMs. However, existing approaches exhibit a deficiency in offering a comprehensive framework for searching and evaluating effective reasoning paths towards critical diagnosis. To address this challenge, we propose Mentor-Intern Collaborative Search (MICS), a novel reasoning-path searching scheme to generate rigorous and effective medical CoT data. MICS first leverages mentor models to initialize the reasoning, one step at a time, then prompts each intern model to continue the thinking along those initiated paths, and finally selects the optimal reasoning path according to the overall reasoning performance of multiple intern models. The reasoning performance is determined by an MICS-Score, which assesses the quality of generated reasoning paths. Eventually, we construct MMRP, a multi-task medical reasoning dataset with ranked difficulty, and Chiron-o1, a new medical MLLM devised via a curriculum learning strategy, with robust visual question-answering and generalizable reasoning capabilities. Extensive experiments demonstrate that Chiron-o1, trained on our CoT dataset constructed using MICS, achieves state-of-the-art performance across a list of medical visual question answering and reasoning benchmarks. Codes are available at https://github.com/manglu097/Chiron-o1
♻ ☆ DeCAL Tokenwise Compression
This paper introduces DeCAL, a new method for tokenwise compression. DeCAL uses an encoder-decoder language model pretrained with denoising to learn to produce high-quality, general-purpose compressed representations from the encoder. DeCAL applies small modifications to the encoder, with the emphasis on maximizing compression quality, even at the expense of compute. We show that DeCAL at 2x compression can match uncompressed on several downstream tasks, with usually only a minor dropoff in metrics up to 8x compression, among question-answering, summarization, and multi-vector retrieval tasks. DeCAL offers significant savings where pre-computed dense representations can be utilized, and we believe the approach can be further developed to be more broadly applicable.
♻ ☆ Flexible-length Text Infilling for Discrete Diffusion Models EMNLP
Discrete diffusion models are a new class of text generators that offer advantages such as bidirectional context use, parallelizable generation, and flexible prompting compared to autoregressive models. However, a critical limitation of discrete diffusion models is their inability to perform flexible-length or flexible-position text infilling without access to ground-truth positional data. We introduce \textbf{DDOT} (\textbf{D}iscrete \textbf{D}iffusion with \textbf{O}ptimal \textbf{T}ransport Position Coupling), the first discrete diffusion model to overcome this challenge. DDOT jointly denoises token values and token positions, employing a novel sample-level Optimal Transport (OT) coupling. This coupling preserves relative token ordering while dynamically adjusting the positions and length of infilled segments, a capability previously missing in text diffusion. Our method is orthogonal to existing discrete text diffusion methods and is compatible with various pretrained text denoisers. Extensive experiments on text infilling benchmarks such as One-Billion-Word and Yelp demonstrate that DDOT outperforms naive diffusion baselines. Furthermore, DDOT achieves performance on par with state-of-the-art non-autoregressive models and enables significant improvements in training efficiency and flexibility.
comment: Major edit of methodology section. Matches EMNLP camera-ready version
♻ ☆ NAACL2025 Tutorial: Adaptation of Large Language Models NAACL2025
This tutorial on adaptation of LLMs is designed to address the growing demand for models that go beyond the static capabilities of generic LLMs by providing an overview of dynamic, domain-specific, and task-adaptive LLM adaptation techniques. While general LLMs have demonstrated strong generalization across a variety of tasks, they often struggle to perform well in specialized domains such as finance, healthcare, and code generation for underrepresented languages. Additionally, their static nature limits their ability to evolve with the changing world, and they are often extremely large in size, making them impractical and costly to deploy at scale. As a result, the adaptation of LLMs has drawn much attention since the birth of LLMs and is of core importance, both for industry, which focuses on serving its targeted users, and academia, which can greatly benefit from small but powerful LLMs. To address this gap, this tutorial aims to provide an overview of the LLM adaptation techniques. We start with an introduction to LLM adaptation, from both the data perspective and the model perspective. We then emphasize how the evaluation metrics and benchmarks are different from other techniques. After establishing the problems, we explore various adaptation techniques. We categorize adaptation techniques into two main families. The first is parametric knowledge adaptation, which focuses on updating the parametric knowledge within LLMs. Additionally, we will discuss real-time adaptation techniques, including model editing, which allows LLMs to be updated dynamically in production environments. The second kind of adaptation is semi-parametric knowledge adaptation, where the goal is to update LLM parameters to better leverage external knowledge or tools through techniques like retrieval-augmented generation (RAG) and agent-based systems.
comment: NAACL2025 Tutorial
♻ ☆ Demystifying Domain-adaptive Post-training for Financial LLMs EMNLP 2025
Domain-adaptive post-training of large language models (LLMs) has emerged as a promising approach for specialized domains such as medicine and finance. However, significant challenges remain in identifying optimal adaptation criteria and training strategies across varying data and model configurations. To address these challenges, we introduce FINDAP, a systematic and fine-grained investigation into domain-adaptive post-training of LLMs for the finance domain. Our approach consists of four key components: FinCap, which defines the core capabilities required for the target domain; FinRec, an effective training recipe that jointly optimizes continual pre-training and instruction-following, along with a novel preference data distillation method leveraging process signals from a generative reward model; FinTrain, a curated set of training datasets supporting FinRec; and FinEval, a comprehensive evaluation suite aligned with FinCap. The resulting model, Llama-Fin, achieves state-of-the-art performance across a wide range of financial tasks. Our analysis also highlights how each post-training stage contributes to distinct capabilities, uncovering specific challenges and effective solutions, providing valuable insights for domain adaptation of LLMs
comment: EMNLP 2025 (Oral, ARR best paper nomination)
♻ ☆ Who's Asking? Investigating Bias Through the Lens of Disability Framed Queries in LLMs ICCV 2025
Large Language Models (LLMs) routinely infer users demographic traits from phrasing alone, which can result in biased responses, even when no explicit demographic information is provided. The role of disability cues in shaping these inferences remains largely uncharted. Thus, we present the first systematic audit of disability-conditioned demographic bias across eight state-of-the-art instruction-tuned LLMs ranging from 3B to 72B parameters. Using a balanced template corpus that pairs nine disability categories with six real-world business domains, we prompt each model to predict five demographic attributes - gender, socioeconomic status, education, cultural background, and locality - under both neutral and disability-aware conditions. Across a varied set of prompts, models deliver a definitive demographic guess in up to 97\% of cases, exposing a strong tendency to make arbitrary inferences with no clear justification. Disability context heavily shifts predicted attribute distributions, and domain context can further amplify these deviations. We observe that larger models are simultaneously more sensitive to disability cues and more prone to biased reasoning, indicating that scale alone does not mitigate stereotype amplification. Our findings reveal persistent intersections between ableism and other demographic stereotypes, pinpointing critical blind spots in current alignment strategies. We release our evaluation framework and results to encourage disability-inclusive benchmarking and recommend integrating abstention calibration and counterfactual fine-tuning to curb unwarranted demographic inference. Code and data will be released on acceptance.
comment: Accepted at ICCV 2025
♻ ☆ GUARD: Guided Unlearning and Retention via Data Attribution for Large Language Models
Unlearning in large language models is becoming increasingly important due to regulatory compliance, copyright protection, and privacy concerns. However, a key challenge in LLM unlearning is unintended forgetting, where the removal of specific data inadvertently impairs the utility of the model and its retention of valuable, desired information. While prior work has primarily focused on architectural innovations, the influence of data-level factors on unlearning performance remains underexplored. As a result, existing methods often suffer from degraded retention when forgetting high-impact data. To address this problem, we propose GUARD, a novel framework for Guided Unlearning And Retention via Data attribution. At its core, GUARD introduces a lightweight proxy data attribution metric tailored for LLM unlearning, which quantifies the alignment between the Forget and Retain sets while remaining computationally efficient. Building on this, we design a novel unlearning objective that assigns adaptive, nonuniform unlearning weights to samples, inversely proportional to their proxy attribution scores. Through such a reallocation of unlearning power, GUARD mitigates unintended retention loss. We also provide rigorous theoretical guarantees that GUARD significantly improves retention while maintaining forgetting metrics comparable to prior methods. Extensive experiments on the TOFU and MUSE benchmarks across multiple LLM architectures demonstrate that GUARD reduces utility sacrifice on the TOFU Retain Set by up to 194.92 percent in terms of Truth Ratio when forgetting 10 percent of the training data, and improves knowledge retention on the MUSE NEWS Retain Set by 16.20 percent, with comparable or very moderate increases in privacy loss compared to state-of-the-art methods.
♻ ☆ Beyond GPT-5: Making LLMs Cheaper and Better via Performance-Efficiency Optimized Routing
Balancing performance and efficiency is a central challenge in large language model (LLM) advancement. GPT-5 addresses this with test-time routing, dynamically assigning queries to either an efficient or a high-capacity model during inference. In this work, we present Avengers-Pro, a test-time routing framework that ensembles LLMs of varying capacities and efficiencies, providing a unified solution for all performance-efficiency tradeoffs. The Avengers-Pro embeds and clusters incoming queries, then routes each to the most suitable model based on a performance-efficiency score. Across 6 challenging benchmarks and 8 leading models -- including GPT-5-medium, Gemini-2.5-pro, and Claude-opus-4.1 -- Avengers-Pro achieves state-of-the-art results: by varying a performance-efficiency trade-off parameter, it can surpass the strongest single model (GPT-5-medium) by +7% in average accuracy. Moreover, it can match the average accuracy of the strongest single model at 27% lower cost, and reach ~90% of that performance at 63% lower cost. Last but not least, it achieves a Pareto frontier, consistently yielding the highest accuracy for any given cost, and the lowest cost for any given accuracy, among all single models. Code is available at https://github.com/ZhangYiqun018/AvengersPro.
comment: This work has been accepted to DAI 2025
♻ ☆ Text or Pixels? It Takes Half: On the Token Efficiency of Visual Text Inputs in Multimodal LLMs EMNLP 2025
Large language models (LLMs) and their multimodal variants can now process visual inputs, including images of text. This raises an intriguing question: can we compress textual inputs by feeding them as images to reduce token usage while preserving performance? In this paper, we show that visual text representations are a practical and surprisingly effective form of input compression for decoder LLMs. We exploit the idea of rendering long text inputs as a single image and provide it directly to the model. This leads to dramatically reduced number of decoder tokens required, offering a new form of input compression. Through experiments on two distinct benchmarks RULER (long-context retrieval) and CNN/DailyMail (document summarization) we demonstrate that this text-as-image method yields substantial token savings (often nearly half) without degrading task performance.
comment: Accepted to EMNLP 2025 Findings ("Text or Pixels? Evaluating Efficiency and Understanding of LLMs with Visual Text Inputs")
♻ ☆ Do LLMs Really Forget? Evaluating Unlearning with Knowledge Correlation and Confidence Awareness NeurIPS
Machine unlearning techniques aim to mitigate unintended memorization in large language models (LLMs). However, existing approaches predominantly focus on the explicit removal of isolated facts, often overlooking latent inferential dependencies and the non-deterministic nature of knowledge within LLMs. Consequently, facts presumed forgotten may persist implicitly through correlated information. To address these challenges, we propose a knowledge unlearning evaluation framework that more accurately captures the implicit structure of real-world knowledge by representing relevant factual contexts as knowledge graphs with associated confidence scores. We further develop an inference-based evaluation protocol leveraging powerful LLMs as judges; these judges reason over the extracted knowledge subgraph to determine unlearning success. Our LLM judges utilize carefully designed prompts and are calibrated against human evaluations to ensure their trustworthiness and stability. Extensive experiments on our newly constructed benchmark demonstrate that our framework provides a more realistic and rigorous assessment of unlearning performance. Moreover, our findings reveal that current evaluation strategies tend to overestimate unlearning effectiveness. Our code is publicly available at https://github.com/Graph-COM/Knowledge_Unlearning.git.
comment: NeurIPS Camera-Ready Version. Code available at: https://github.com/Graph-COM/Knowledge_Unlearning
♻ ☆ PLAGUE: Plug-and-play framework for Lifelong Adaptive Generation of Multi-turn Exploits
Large Language Models (LLMs) are improving at an exceptional rate. With the advent of agentic workflows, multi-turn dialogue has become the de facto mode of interaction with LLMs for completing long and complex tasks. While LLM capabilities continue to improve, they remain increasingly susceptible to jailbreaking, especially in multi-turn scenarios where harmful intent can be subtly injected across the conversation to produce nefarious outcomes. While single-turn attacks have been extensively explored, adaptability, efficiency and effectiveness continue to remain key challenges for their multi-turn counterparts. To address these gaps, we present PLAGUE, a novel plug-and-play framework for designing multi-turn attacks inspired by lifelong-learning agents. PLAGUE dissects the lifetime of a multi-turn attack into three carefully designed phases (Primer, Planner and Finisher) that enable a systematic and information-rich exploration of the multi-turn attack family. Evaluations show that red-teaming agents designed using PLAGUE achieve state-of-the-art jailbreaking results, improving attack success rates (ASR) by more than 30% across leading models in a lesser or comparable query budget. Particularly, PLAGUE enables an ASR (based on StrongReject) of 81.4% on OpenAI's o3 and 67.3% on Claude's Opus 4.1, two models that are considered highly resistant to jailbreaks in safety literature. Our work offers tools and insights to understand the importance of plan initialization, context optimization and lifelong learning in crafting multi-turn attacks for a comprehensive model vulnerability evaluation.
comment: First two authors have equal author contributions
♻ ☆ LongCodeBench: Evaluating Coding LLMs at 1M Context Windows
Context lengths for models have grown rapidly, from thousands to millions of tokens in just a few years. The extreme context sizes of modern long-context models have made it difficult to construct realistic long-context benchmarks -- not only due to the cost of collecting million-context tasks but also in identifying realistic scenarios that require significant contexts. We identify code comprehension and repair as a natural testbed and challenge task for long-context models and introduce LongCodeBench (LCB), a benchmark to test LLM coding abilities in long-context scenarios. Our benchmark tests both the comprehension and repair capabilities of LCLMs in realistic and important settings by drawing from real-world GitHub issues and constructing QA (LongCodeQA) and bug fixing (LongSWE-Bench) tasks. We carefully stratify the complexity of our benchmark, enabling us to evaluate models across different scales -- ranging from Qwen2.5 14B Instruct to Google's flagship Gemini model. We find that long-context remains a weakness for all models, with performance drops such as from 29% to 3% for Claude 3.5 Sonnet, or from 70.2% to 40% for Qwen2.5. The LCB dataset is available publicly at https://huggingface.co/datasets/Steefano/LCB and the codebase to replicate the work on this paper at https://github.com/Zteefano/long-code-bench.
♻ ☆ Constraint Satisfaction Approaches to Wordle: Novel Heuristics and Cross-Lexicon Validation
Wordle presents an algorithmically rich testbed for constraint satisfaction problem (CSP) solving. While existing solvers rely on information-theoretic entropy maximization or frequency-based heuristics without formal constraint treatment, we present the first comprehensive CSP formulation of Wordle with novel constraint-aware solving strategies. We introduce CSP-Aware Entropy, computing information gain after constraint propagation rather than on raw candidate sets, and a Probabilistic CSP framework integrating Bayesian word-frequency priors with logical constraints. Through evaluation on 2,315 English words, CSP-Aware Entropy achieves 3.54 average guesses with 99.9% success rate, a statistically significant 1.7% improvement over Forward Checking (t=-4.82, p<0.001, Cohen's d=0.07) with 46% faster runtime (12.9ms versus 23.7ms per guess). Under 10% noise, CSP-aware approaches maintain 5.3 percentage point advantages (29.0% versus 23.7%, p=0.041), while Probabilistic CSP achieves 100% success across all noise levels (0-20%) through constraint recovery mechanisms. Cross-lexicon validation on 500 Spanish words demonstrates 88% success with zero language-specific tuning, validating that core CSP principles transfer across languages despite an 11.2 percentage point gap from linguistic differences (p<0.001, Fisher's exact test). Our open-source implementation with 34 unit tests achieving 91% code coverage provides reproducible infrastructure for CSP research. The combination of formal CSP treatment, constraint-aware heuristics, probabilistic-logical integration, robustness analysis, and cross-lexicon validation establishes new performance benchmarks demonstrating that principled constraint satisfaction techniques outperform classical information-theoretic and learning-based approaches for structured puzzle-solving domains.
comment: 35 pages, 14 figures, 10 tables. Open-source implementation with 91% test coverage available at https://github.com/jahidul-arafat/constraint_satisfaction_wordle_arxiv_preprint
♻ ☆ Heterogeneous Swarms: Jointly Optimizing Model Roles and Weights for Multi-LLM Systems NeurIPS 2025
We propose Heterogeneous Swarms, an algorithm to design multi-LLM systems by jointly optimizing model roles and weights. We represent multi-LLM systems as directed acyclic graphs (DAGs) of LLMs with topological message passing for collaborative generation. Given a pool of LLM experts and a utility function, Heterogeneous Swarms employs two iterative steps: role-step and weight-step. For role-step, we interpret model roles as learning a DAG that specifies the flow of inputs and outputs between LLMs. Starting from a swarm of random continuous adjacency matrices, we decode them into discrete DAGs, call the LLMs in topological order, evaluate on the utility function (e.g. accuracy on a task), and optimize the adjacency matrices with particle swarm optimization based on the utility score. For weight-step, we assess the contribution of individual LLMs in the multi-LLM systems and optimize model weights with swarm intelligence. We propose JFK-score to quantify the individual contribution of each LLM in the best-found DAG of the role-step, then optimize model weights with particle swarm optimization based on the JFK-score. Experiments demonstrate that Heterogeneous Swarms outperforms 15 role- and/or weight-based baselines by 18.5% on average across 12 tasks. Further analysis reveals that Heterogeneous Swarms discovers multi-LLM systems with heterogeneous model roles and substantial collaborative gains, and benefits from the diversity of language models.
comment: NeurIPS 2025
♻ ☆ Rope to Nope and Back Again: A New Hybrid Attention Strategy
Long-context large language models (LLMs) have achieved remarkable advancements, driven by techniques like Rotary Position Embedding (RoPE) (Su et al., 2023) and its extensions (Chen et al., 2023; Liu et al., 2024c; Peng et al., 2023). By adjusting RoPE parameters and incorporating training data with extended contexts, we can train performant models with considerably longer input sequences. However, existing RoPE-based methods exhibit performance limitations when applied to extended context lengths. This paper presents a comprehensive analysis of various attention mechanisms, including RoPE, No Positional Embedding (NoPE), and Query-Key Normalization (QK-Norm), identifying their strengths and shortcomings in long-context modeling. Our investigation identifies distinctive attention patterns in these methods and highlights their impact on long-context performance, providing valuable insights for architectural design. Building on these findings, we propose a novel architecture featuring a hybrid attention mechanism that integrates global and local attention spans. This design not only surpasses conventional RoPE-based transformer models with full attention in both long and short context tasks but also delivers substantial efficiency gains during training and inference.
♻ ☆ Permutative Preference Alignment from Listwise Ranking of Human Judgments EMNLP 2025
Aligning Large Language Models (LLMs) with human preferences is crucial in ensuring desirable and controllable model behaviors. Current methods, such as Reinforcement Learning from Human Feedback (RLHF) and Direct Preference Optimization (DPO), rely on the Bradley-Terry (B-T) model to maximize the likelihood of pairwise choices. However, when multiple responses are available, the B-T model fails to guarantee an accurate list ranking of the responses. To address this issue, we propose Permutative Preference Alignment (PPA), a novel offline listwise approach that incorporates the Normalized Discounted Cumulative Gain (NDCG), a widely-used ranking metric, as an alternative training objective for LLM alignment. We develop an end-to-end alignment algorithm by approximating NDCG with a differentiable surrogate loss. Experiments demonstrate that PPA outperforms existing pairwise and listwise methods on evaluation sets and general benchmarks such as AlpacaEval. Furthermore, we show that NDCG-based approaches improve ranking accuracy more effectively than B-T-based methods and provide a theoretical explanation for this improvement.
comment: Published at EMNLP 2025 Main Conference
♻ ☆ SpecEval: Evaluating Model Adherence to Behavior Specifications
Companies that develop foundation models publish behavioral guidelines they pledge their models will follow, but it remains unclear if models actually do so. While providers such as OpenAI, Anthropic, and Google have published detailed specifications describing both desired safety constraints and qualitative traits for their models, there has been no systematic audit of adherence to these guidelines. We introduce an automated framework that audits models against their providers specifications by parsing behavioral statements, generating targeted prompts, and using models to judge adherence. Our central focus is on three way consistency between a provider specification, its model outputs, and its own models as judges; an extension of prior two way generator validator consistency. This establishes a necessary baseline: at minimum, a foundation model should consistently satisfy the developer behavioral specifications when judged by the developer evaluator models. We apply our framework to 16 models from six developers across more than 100 behavioral statements, finding systematic inconsistencies including compliance gaps of up to 20 percent across providers.
♻ ☆ Language Models (Mostly) Know When to Stop Reading NeurIPS 2025
Large language models (LLMs) process entire input contexts indiscriminately, which is inefficient when the information required to answer a query is localized within the context. We present dynamic context cutoff, a novel method enabling LLMs to self-terminate processing upon acquiring sufficient task-relevant information. Through analysis of model internals, we discover that specific attention heads inherently encode "sufficiency signals" -- detectable through lightweight classifiers -- that predict when critical information has been processed. This reveals a new efficiency paradigm: models' internal understanding naturally dictates processing needs rather than external compression heuristics. Comprehensive experiments across six QA datasets (up to 40K tokens) with three model families (LLaMA/Qwen/Mistral, 1B-70B) demonstrate 3.4% accuracy improvement while achieving 1.33x token reduction on average. Furthermore, our method demonstrates superior performance compared to other context efficiency methods at equivalent token reduction rates. Additionally, we observe an emergent scaling phenomenon: while smaller models require probing for sufficiency detection, larger models exhibit intrinsic self-assessment capabilities through prompting.
comment: Accepted to NeurIPS 2025. Project website: https://royxie.com/when-to-stop-project
♻ ☆ Roboflow100-VL: A Multi-Domain Object Detection Benchmark for Vision-Language Models NeurIPS
Vision-language models (VLMs) trained on internet-scale data achieve remarkable zero-shot detection performance on common objects like car, truck, and pedestrian. However, state-of-the-art models still struggle to generalize to out-of-distribution classes, tasks and imaging modalities not typically found in their pre-training. Rather than simply re-training VLMs on more visual data, we argue that one should align VLMs to new concepts with annotation instructions containing a few visual examples and rich textual descriptions. To this end, we introduce Roboflow100-VL, a large-scale collection of 100 multi-modal object detection datasets with diverse concepts not commonly found in VLM pre-training. We evaluate state-of-the-art models on our benchmark in zero-shot, few-shot, semi-supervised, and fully-supervised settings, allowing for comparison across data regimes. Notably, we find that VLMs like GroundingDINO and Qwen2.5-VL achieve less than 2% zero-shot accuracy on challenging medical imaging datasets within Roboflow100-VL, demonstrating the need for few-shot concept alignment. Lastly, we discuss our recent CVPR 2025 Foundational FSOD competition and share insights from the community. Notably, the winning team significantly outperforms our baseline by 17 mAP! Our code and dataset are available at https://github.com/roboflow/rf100-vl and https://universe.roboflow.com/rf100-vl/.
comment: The first two authors contributed equally. This work has been accepted to the Neural Information Processing Systems (NeurIPS) 2025 Datasets & Benchmark Track. Project Page: https://rf100-vl.org/
♻ ☆ DeltaProduct: Improving State-Tracking in Linear RNNs via Householder Products NeurIPS 2025
Linear Recurrent Neural Networks (linear RNNs) have emerged as competitive alternatives to Transformers for sequence modeling, offering efficient training and linear-time inference. However, existing architectures face a fundamental trade-off between expressivity and efficiency, dictated by the structure of their state-transition matrices. Diagonal matrices, used in models such as Mamba, GLA, or mLSTM, yield fast runtime but have limited expressivity. To address this, recent architectures such as DeltaNet and RWKV-7 adopted a diagonal plus rank--1 structure, which allows simultaneous token and channel mixing, improving associative recall and, as recently shown, state-tracking when allowing state-transition matrices to have negative eigenvalues. Building on the interpretation of DeltaNet's recurrence as performing one step of online gradient descent per token on an associative recall loss, we introduce DeltaProduct, which instead takes multiple ($n_h$) steps per token. This naturally leads to diagonal plus rank--$n_h$ state-transition matrices, formed as products of $n_h$ generalized Householder transformations, providing a tunable mechanism to balance expressivity and efficiency. We provide a detailed theoretical characterization of the state-tracking capability of DeltaProduct in finite precision, showing how it improves by increasing $n_h$. Our extensive experiments demonstrate that DeltaProduct outperforms DeltaNet in both state-tracking and language modeling, while also showing significantly improved length extrapolation capabilities.
comment: v5: Characterization of DeltaProduct's state-tracking ability. Analysis of hidden state's effective rank. Improved scaling analysis. v6: Added analysis for products of RWKV-7 matrices, v6: Accepted at NeurIPS 2025
♻ ☆ ExpertLens: Activation steering features are highly interpretable
Activation steering methods in large language models (LLMs) have emerged as an effective way to perform targeted updates to enhance generated language without requiring large amounts of adaptation data. We ask whether the features discovered by activation steering methods are interpretable. We identify neurons responsible for specific concepts (e.g., ``cat'') using the ``finding experts'' method from research on activation steering and show that the ExpertLens, i.e., inspection of these neurons provides insights about model representation. We find that ExpertLens representations are stable across models and datasets and closely align with human representations inferred from behavioral data, matching inter-human alignment levels. ExpertLens significantly outperforms the alignment captured by word/sentence embeddings. By reconstructing human concept organization through ExpertLens, we show that it enables a granular view of LLM concept representation. Our findings suggest that ExpertLens is a flexible and lightweight approach for capturing and analyzing model representations.
♻ ☆ Token embeddings violate the manifold hypothesis
A full understanding of the behavior of a large language model (LLM) requires our grasp of its input token space. If this space differs from our assumptions, our comprehension of and conclusions about the LLM will likely be flawed. We elucidate the structure of the token embeddings both empirically and theoretically. We present a novel statistical test assuming that the neighborhood around each token has a relatively flat and smooth structure as the null hypothesis. Failing to reject the null is uninformative, but rejecting it at a specific token $\psi$ implies an irregularity in the token subspace in a $\psi$-neighborhood, $B(\psi)$. The structure assumed in the null is a generalization of a manifold with boundary called a \emph{smooth fiber bundle} (which can be split into two spatial regimes -- small and large radius), so we denote our new hypothesis test as the ``fiber bundle hypothesis.'' By running our test over several open-source LLMs, each with unique token embeddings, we find that the null is frequently rejected, and so the evidence suggests that the token subspace is not a fiber bundle and hence also not a manifold. As a consequence of our findings, when an LLM is presented with two semantically equivalent prompts, if one prompt contains a token implicated by our test, the response to that prompt will likely exhibit less stability than the other.
comment: 30 pages, 9 figures, 10 tables
♻ ☆ Bag of Tricks for Subverting Reasoning-based Safety Guardrails
Recent reasoning-based safety guardrails for Large Reasoning Models (LRMs), such as deliberative alignment, have shown strong defense against jailbreak attacks. By leveraging LRMs' reasoning ability, these guardrails help the models to assess the safety of user inputs before generating final responses. The powerful reasoning ability can analyze the intention of the input query and will refuse to assist once it detects the harmful intent hidden by the jailbreak methods. Such guardrails have shown a significant boost in defense, such as the near-perfect refusal rates on the open-source gpt-oss series. Unfortunately, we find that these powerful reasoning-based guardrails can be extremely vulnerable to subtle manipulation of the input prompts, and once hijacked, can lead to even more harmful results. Specifically, we first uncover a surprisingly fragile aspect of these guardrails: simply adding a few template tokens to the input prompt can successfully bypass the seemingly powerful guardrails and lead to explicit and harmful responses. To explore further, we introduce a bag of jailbreak methods that subvert the reasoning-based guardrails. Our attacks span white-, gray-, and black-box settings and range from effortless template manipulations to fully automated optimization. Along with the potential for scalable implementation, these methods also achieve alarmingly high attack success rates (e.g., exceeding 90% across 5 different benchmarks on gpt-oss series on both local host models and online API services). Evaluations across various leading open-source LRMs confirm that these vulnerabilities are systemic, underscoring the urgent need for stronger alignment techniques for open-sourced LRMs to prevent malicious misuse. Code is open-sourced at https://chenxshuo.github.io/bag-of-tricks.
comment: OpenAI Red-teaming Challenge Winner and Oral Presentation
♻ ☆ Deep Research Brings Deeper Harm NeurIPS 2025
Deep Research (DR) agents built on Large Language Models (LLMs) can perform complex, multi-step research by decomposing tasks, retrieving online information, and synthesizing detailed reports. However, the misuse of LLMs with such powerful capabilities can lead to even greater risks. This is especially concerning in high-stakes and knowledge-intensive domains such as biosecurity, where DR can generate a professional report containing detailed forbidden knowledge. Unfortunately, we have found such risks in practice: simply submitting a harmful query, which a standalone LLM directly rejects, can elicit a detailed and dangerous report from DR agents. This highlights the elevated risks and underscores the need for a deeper safety analysis. Yet, jailbreak methods designed for LLMs fall short in exposing such unique risks, as they do not target the research ability of DR agents. To address this gap, we propose two novel jailbreak strategies: Plan Injection, which injects malicious sub-goals into the agent's plan; and Intent Hijack, which reframes harmful queries as academic research questions. We conducted extensive experiments across different LLMs and various safety benchmarks, including general and biosecurity forbidden prompts. These experiments reveal 3 key findings: (1) Alignment of the LLMs often fail in DR agents, where harmful prompts framed in academic terms can hijack agent intent; (2) Multi-step planning and execution weaken the alignment, revealing systemic vulnerabilities that prompt-level safeguards cannot address; (3) DR agents not only bypass refusals but also produce more coherent, professional, and dangerous content, compared with standalone LLMs. These results demonstrate a fundamental misalignment in DR agents and call for better alignment techniques tailored to DR agents. Code and datasets are available at https://chenxshuo.github.io/deeper-harm.
comment: Accepted to Reliable ML from Unreliable Data Workshop @ NeurIPS 2025
♻ ☆ DREAM: Drafting with Refined Target Features and Entropy-Adaptive Cross-Attention Fusion for Multimodal Speculative Decoding
Speculative decoding (SD) has emerged as a powerful method for accelerating autoregressive generation in large language models (LLMs), yet its integration into vision-language models (VLMs) remains underexplored. We introduce DREAM, a novel speculative decoding framework tailored for VLMs that combines three key innovations: (1) a cross-attention-based mechanism to inject intermediate features from the target model into the draft model for improved alignment, (2) adaptive intermediate feature selection based on attention entropy to guide efficient draft model training, and (3) visual token compression to reduce draft model latency. DREAM enables efficient, accurate, and parallel multimodal decoding with significant throughput improvement. Experiments across a diverse set of recent popular VLMs, including LLaVA, Pixtral, SmolVLM and Gemma3, demonstrate up to 3.6x speedup over conventional decoding and significantly outperform prior SD baselines in both inference throughput and speculative draft acceptance length across a broad range of multimodal benchmarks. The code is publicly available at: https://github.com/SAI-Lab-NYU/DREAM.git
♻ ☆ Text Generation Beyond Discrete Token Sampling
In standard autoregressive generation, an LLM predicts the next-token distribution, samples a discrete token, and then discards the distribution, passing only the sampled token as new input. To preserve this distribution's rich information, we propose Mixture of Inputs (MoI), a training-free method for autoregressive generation. After generating a token following the standard paradigm, we construct a new input that blends the generated discrete token with the previously discarded token distribution. Specifically, we employ a Bayesian estimation method that treats the token distribution as the prior, the sampled token as the observation, and replaces the conventional one-hot vector with the continuous posterior expectation as the new model input. MoI allows the model to maintain a richer internal representation throughout the generation process, resulting in improved text quality and reasoning capabilities. On mathematical reasoning, code generation, and PhD-level QA tasks, MoI consistently improves performance across multiple models including QwQ-32B, Nemotron-Super-49B, Gemma-3-27B, and DAPO-Qwen-32B, with no additional training and negligible computational overhead.
♻ ☆ WolBanking77: Wolof Banking Speech Intent Classification Dataset
Intent classification models have made a significant progress in recent years. However, previous studies primarily focus on high-resource language datasets, which results in a gap for low-resource languages and for regions with high rates of illiteracy, where languages are more spoken than read or written. This is the case in Senegal, for example, where Wolof is spoken by around 90\% of the population, while the national illiteracy rate remains at of 42\%. Wolof is actually spoken by more than 10 million people in West African region. To address these limitations, we introduce the Wolof Banking Speech Intent Classification Dataset (WolBanking77), for academic research in intent classification. WolBanking77 currently contains 9,791 text sentences in the banking domain and more than 4 hours of spoken sentences. Experiments on various baselines are conducted in this work, including text and voice state-of-the-art models. The results are very promising on this current dataset. In addition, this paper presents an in-depth examination of the dataset's contents. We report baseline F1-scores and word error rates metrics respectively on NLP and ASR models trained on WolBanking77 dataset and also comparisons between models. Dataset and code available at: \href{https://github.com/abdoukarim/wolbanking77}{wolbanking77}.
comment: 10 pages, 7 figures
Machine Learning 273
☆ Semantic World Models
Planning with world models offers a powerful paradigm for robotic control. Conventional approaches train a model to predict future frames conditioned on current frames and actions, which can then be used for planning. However, the objective of predicting future pixels is often at odds with the actual planning objective; strong pixel reconstruction does not always correlate with good planning decisions. This paper posits that instead of reconstructing future frames as pixels, world models only need to predict task-relevant semantic information about the future. For such prediction the paper poses world modeling as a visual question answering problem about semantic information in future frames. This perspective allows world modeling to be approached with the same tools underlying vision language models. Thus vision language models can be trained as "semantic" world models through a supervised finetuning process on image-action-text data, enabling planning for decision-making while inheriting many of the generalization and robustness properties from the pretrained vision-language models. The paper demonstrates how such a semantic world model can be used for policy improvement on open-ended robotics tasks, leading to significant generalization improvements over typical paradigms of reconstruction-based action-conditional world modeling. Website available at https://weirdlabuw.github.io/swm.
☆ Hubble: a Model Suite to Advance the Study of LLM Memorization
We present Hubble, a suite of fully open-source large language models (LLMs) for the scientific study of LLM memorization. Hubble models come in standard and perturbed variants: standard models are pretrained on a large English corpus, and perturbed models are trained in the same way but with controlled insertion of text (e.g., book passages, biographies, and test sets) designed to emulate key memorization risks. Our core release includes 8 models -- standard and perturbed models with 1B or 8B parameters, pretrained on 100B or 500B tokens -- establishing that memorization risks are determined by the frequency of sensitive data relative to size of the training corpus (i.e., a password appearing once in a smaller corpus is memorized better than the same password in a larger corpus). Our release also includes 6 perturbed models with text inserted at different pretraining phases, showing that sensitive data without continued exposure can be forgotten. These findings suggest two best practices for addressing memorization risks: to dilute sensitive data by increasing the size of the training corpus, and to order sensitive data to appear earlier in training. Beyond these general empirical findings, Hubble enables a broad range of memorization research; for example, analyzing the biographies reveals how readily different types of private information are memorized. We also demonstrate that the randomized insertions in Hubble make it an ideal testbed for membership inference and machine unlearning, and invite the community to further explore, benchmark, and build upon our work.
☆ Pico-Banana-400K: A Large-Scale Dataset for Text-Guided Image Editing
Recent advances in multimodal models have demonstrated remarkable text-guided image editing capabilities, with systems like GPT-4o and Nano-Banana setting new benchmarks. However, the research community's progress remains constrained by the absence of large-scale, high-quality, and openly accessible datasets built from real images. We introduce Pico-Banana-400K, a comprehensive 400K-image dataset for instruction-based image editing. Our dataset is constructed by leveraging Nano-Banana to generate diverse edit pairs from real photographs in the OpenImages collection. What distinguishes Pico-Banana-400K from previous synthetic datasets is our systematic approach to quality and diversity. We employ a fine-grained image editing taxonomy to ensure comprehensive coverage of edit types while maintaining precise content preservation and instruction faithfulness through MLLM-based quality scoring and careful curation. Beyond single turn editing, Pico-Banana-400K enables research into complex editing scenarios. The dataset includes three specialized subsets: (1) a 72K-example multi-turn collection for studying sequential editing, reasoning, and planning across consecutive modifications; (2) a 56K-example preference subset for alignment research and reward model training; and (3) paired long-short editing instructions for developing instruction rewriting and summarization capabilities. By providing this large-scale, high-quality, and task-rich resource, Pico-Banana-400K establishes a robust foundation for training and benchmarking the next generation of text-guided image editing models.
☆ Scaf-GRPO: Scaffolded Group Relative Policy Optimization for Enhancing LLM Reasoning
Reinforcement learning from verifiable rewards has emerged as a powerful technique for enhancing the complex reasoning abilities of Large Language Models (LLMs). However, these methods are fundamentally constrained by the ''learning cliff'' phenomenon: when faced with problems far beyond their current capabilities, models consistently fail, yielding a persistent zero-reward signal. In policy optimization algorithms like GRPO, this collapses the advantage calculation to zero, rendering these difficult problems invisible to the learning gradient and stalling progress. To overcome this, we introduce Scaf-GRPO (Scaffolded Group Relative Policy Optimization), a progressive training framework that strategically provides minimal guidance only when a model's independent learning has plateaued. The framework first diagnoses learning stagnation and then intervenes by injecting tiered in-prompt hints, ranging from abstract concepts to concrete steps, enabling the model to construct a valid solution by itself. Extensive experiments on challenging mathematics benchmarks demonstrate Scaf-GRPO's effectiveness, boosting the pass@1 score of the Qwen2.5-Math-7B model on the AIME24 benchmark by a relative 44.3% over a vanilla GRPO baseline. This result demonstrates our framework provides a robust and effective methodology for unlocking a model's ability to solve problems previously beyond its reach, a critical step towards extending the frontier of autonomous reasoning in LLM.
comment: Code: https://github.com/dvlab-research/Scaf-GRPO
☆ The Feasibility of Training Sovereign Language Models in the Global South: A Study of Brazil and Mexico
The rapid escalation of computational requirements for training large-scale language models has reinforced structural asymmetries between high-capacity jurisdictions and countries in the Global South. This paper examines the technical and fiscal feasibility of sovereign-scale language model training in Brazil and Mexico under conditions of constrained hardware access, energy availability, and fiscal ceilings. Using a dual-axis design that varies accelerator generation (NVIDIA H100 vs. A100) and training duration (90 vs. 150 days), we estimate compute demand, energy consumption, capital expenditures, and regulatory compatibility for the training of a 10-trillion-token model. Our findings show that while all configurations remain below export-control and electrical infrastructure thresholds, fiscal viability is determined by hardware efficiency. H100-based scenarios achieve training feasibility at a total cost of 8-14 million USD, while A100 deployments require 19-32 million USD due to higher energy and hardware demand. We argue that extending training timelines should be treated as a policy lever to mitigate hardware constraints, enabling the production of usable, auditable, and locally aligned models without competing at the global frontier. This study contributes to the discourse on AI compute governance and technological sovereignty by highlighting context-sensitive strategies that allow middle-income countries to establish sustainable and strategically sufficient AI capabilities.
comment: 11 pages, 3 figures
☆ Integrating Transparent Models, LLMs, and Practitioner-in-the-Loop: A Case of Nonprofit Program Evaluation
Public and nonprofit organizations often hesitate to adopt AI tools because most models are opaque even though standard approaches typically analyze aggregate patterns rather than offering actionable, case-level guidance. This study tests a practitioner-in-the-loop workflow that pairs transparent decision-tree models with large language models (LLMs) to improve predictive accuracy, interpretability, and the generation of practical insights. Using data from an ongoing college-success program, we build interpretable decision trees to surface key predictors. We then provide each tree's structure to an LLM, enabling it to reproduce case-level predictions grounded in the transparent models. Practitioners participate throughout feature engineering, model design, explanation review, and usability assessment, ensuring that field expertise informs the analysis at every stage. Results show that integrating transparent models, LLMs, and practitioner input yields accurate, trustworthy, and actionable case-level evaluations, offering a viable pathway for responsible AI adoption in the public and nonprofit sectors.
Transformers are almost optimal metalearners for linear classification
Transformers have demonstrated impressive in-context learning (ICL) capabilities, raising the question of whether they can serve as metalearners that adapt to new tasks using only a small number of in-context examples, without any further training. While recent theoretical work has studied transformers' ability to perform ICL, most of these analyses do not address the formal metalearning setting, where the objective is to solve a collection of related tasks more efficiently than would be possible by solving each task individually. In this paper, we provide the first theoretical analysis showing that a simplified transformer architecture trained via gradient descent can act as a near-optimal metalearner in a linear classification setting. We consider a natural family of tasks where each task corresponds to a class-conditional Gaussian mixture model, with the mean vectors lying in a shared $k$-dimensional subspace of $R^d$. After training on a sufficient number of such tasks, we show that the transformer can generalize to a new task using only $O(k / R^4)$ in-context examples, where $R$ denotes the signal strength at test time. This performance (almost) matches that of an optimal learner that knows exactly the shared subspace and significantly outperforms any learner that only has access to the in-context data, which requires $\Omega(d / R^4)$ examples to generalize. Importantly, our bounds on the number of training tasks and examples per task needed to achieve this result are independent of the ambient dimension $d$.
☆ Blackbox Model Provenance via Palimpsestic Membership Inference
Suppose Alice trains an open-weight language model and Bob uses a blackbox derivative of Alice's model to produce text. Can Alice prove that Bob is using her model, either by querying Bob's derivative model (query setting) or from the text alone (observational setting)? We formulate this question as an independence testing problem--in which the null hypothesis is that Bob's model or text is independent of Alice's randomized training run--and investigate it through the lens of palimpsestic memorization in language models: models are more likely to memorize data seen later in training, so we can test whether Bob is using Alice's model using test statistics that capture correlation between Bob's model or text and the ordering of training examples in Alice's training run. If Alice has randomly shuffled her training data, then any significant correlation amounts to exactly quantifiable statistical evidence against the null hypothesis, regardless of the composition of Alice's training data. In the query setting, we directly estimate (via prompting) the likelihood Bob's model gives to Alice's training examples and order; we correlate the likelihoods of over 40 fine-tunes of various Pythia and OLMo base models ranging from 1B to 12B parameters with the base model's training data order, achieving a p-value on the order of at most 1e-8 in all but six cases. In the observational setting, we try two approaches based on estimating 1) the likelihood of Bob's text overlapping with spans of Alice's training examples and 2) the likelihood of Bob's text with respect to different versions of Alice's model we obtain by repeating the last phase (e.g., 1%) of her training run on reshuffled data. The second approach can reliably distinguish Bob's text from as little as a few hundred tokens; the first does not involve any retraining but requires many more tokens (several hundred thousand) to achieve high power.
☆ Benchmarking World-Model Learning
Model-learning agents should gather information to learn world models that support many downstream tasks and inferences, such as predicting unobserved states, estimating near- and far-term consequences of actions, planning action sequences, and detecting changes in dynamics. Current methods for learning and evaluating world models diverge from this goal: training and evaluation are anchored to next-frame prediction, and success is scored by reward maximization in the same environment. We propose WorldTest, a protocol to evaluate model-learning agents that separates reward-free interaction from a scored test phase in a different but related environment. WorldTest is open-ended$\unicode{x2014}$models should support many different tasks unknown ahead of time$\unicode{x2014}$and agnostic to model representation, allowing comparison across approaches. We instantiated WorldTest with AutumnBench, a suite of 43 interactive grid-world environments and 129 tasks across three families: masked-frame prediction, planning, and predicting changes to the causal dynamics. We compared 517 human participants and three frontier models on AutumnBench. We found that humans outperform the models, and scaling compute improves performance only in some environments but not others. WorldTest provides a novel template$\unicode{x2014}$reward-free exploration, derived tests, and behavior-based scoring$\unicode{x2014}$to evaluate what agents learn about environment dynamics, and AutumnBench exposes significant headroom in world-model learning.
comment: 30 pages, 10 figures
☆ Environment Inference for Learning Generalizable Dynamical System NeurIPS 2025
Data-driven methods offer efficient and robust solutions for analyzing complex dynamical systems but rely on the assumption of I.I.D. data, driving the development of generalization techniques for handling environmental differences. These techniques, however, are limited by their dependence on environment labels, which are often unavailable during training due to data acquisition challenges, privacy concerns, and environmental variability, particularly in large public datasets and privacy-sensitive domains. In response, we propose DynaInfer, a novel method that infers environment specifications by analyzing prediction errors from fixed neural networks within each training round, enabling environment assignments directly from data. We prove our algorithm effectively solves the alternating optimization problem in unlabeled scenarios and validate it through extensive experiments across diverse dynamical systems. Results show that DynaInfer outperforms existing environment assignment techniques, converges rapidly to true labels, and even achieves superior performance when environment labels are available.
comment: NeurIPS 2025 Spotlight
☆ AdaSPEC: Selective Knowledge Distillation for Efficient Speculative Decoders
Speculative Decoding (SD) accelerates large language model inference by employing a small draft model to generate predictions, which are then verified by a larger target model. The effectiveness of SD hinges on the alignment between these models, which is typically enhanced by Knowledge Distillation (KD). However, conventional KD methods aim to minimize the KL divergence between the draft and target models across all tokens, a goal that is misaligned with the true objective of SD, which is to maximize token acceptance rate. Therefore, draft models often struggle to fully assimilate the target model's knowledge due to capacity constraints, leading to suboptimal performance. To address this challenge, we propose AdaSPEC, a novel method that incorporates selective token filtering into the KD process. AdaSPEC utilizes a reference model to identify and filter out difficult-to-fit tokens, enabling the distillation of a draft model that better aligns with the target model on simpler tokens. This approach improves the overall token acceptance rate without compromising generation quality. We evaluate AdaSPEC across diverse tasks, including arithmetic reasoning, instruction-following, coding, and summarization, using model configurations of 31M/1.4B and 350M/2.7B parameters. Our results demonstrate that AdaSPEC consistently outperforms the state-of-the-art DistillSpec method, achieving higher acceptance rates across all tasks (up to 15\%). The code is publicly available at https://github.com/yuezhouhu/adaspec.
☆ GaLLoP: Gradient-based Sparse Learning on Low-Magnitude Parameters
Sparse fine-tuning techniques adapt LLMs to downstream tasks by only tuning a sparse subset of model parameters. However, the effectiveness of sparse adaptation depends on optimally selecting the model parameters to be fine-tuned. In this work, we introduce a novel sparse fine-tuning technique named GaLLoP: Gradient-based Sparse Learning on Low-Magnitude Parameters, which fine-tunes only those model parameters which have the largest gradient magnitudes on downstream tasks and the smallest pre-trained magnitudes, intuitively prioritizing parameters that are highly task-relevant, but minimally disruptive to pre-trained knowledge. Our experimentation with LLaMA3 8B and Gemma 2B as base models shows that GaLLoP consistently improves or matches the in-distribution as well as out-of-distribution performance obtained via the usage of other leading parameter-efficient fine-tuning techniques, including LoRA, DoRA, and SAFT. Our analysis demonstrates that GaLLoP mitigates catastrophic forgetting and memorization of task data, as important pre-trained parameters remain unchanged, and stabilizes performance relative to other fine-tuning techniques, robustly generalizing across most random seeds.
☆ The Tail Tells All: Estimating Model-Level Membership Inference Vulnerability Without Reference Models
Membership inference attacks (MIAs) have emerged as the standard tool for evaluating the privacy risks of AI models. However, state-of-the-art attacks require training numerous, often computationally expensive, reference models, limiting their practicality. We present a novel approach for estimating model-level vulnerability, the TPR at low FPR, to membership inference attacks without requiring reference models. Empirical analysis shows loss distributions to be asymmetric and heavy-tailed and suggests that most points at risk from MIAs have moved from the tail (high-loss region) to the head (low-loss region) of the distribution after training. We leverage this insight to propose a method to estimate model-level vulnerability from the training and testing distribution alone: using the absence of outliers from the high-loss region as a predictor of the risk. We evaluate our method, the TNR of a simple loss attack, across a wide range of architectures and datasets and show it to accurately estimate model-level vulnerability to the SOTA MIA attack (LiRA). We also show our method to outperform both low-cost (few reference models) attacks such as RMIA and other measures of distribution difference. We finally evaluate the use of non-linear functions to evaluate risk and show the approach to be promising to evaluate the risk in large-language models.
☆ SmartSwitch: Advancing LLM Reasoning by Overcoming Underthinking via Promoting Deeper Thought Exploration
The long chain-of-thought (LongCoT) capability is central to the recent breakthroughs achieved by large language models in complex reasoning tasks. However, the accompanying issue of ''underthinking'', where models exhibit shallow reasoning by frequently switching thoughts without sufficient exploration, limits both performance and token efficiency. To address this problem, we propose a simple yet effective reasoning strategy: the SmartSwitch inference framework. This framework can be easily integrated into any large language model as a plug-and-play solution, continuously monitoring the model's reasoning process to detect underthinking and guide it toward deeper exploration of promising but overlooked thoughts. Specifically, the perception module identifies points where thoughts switch and evaluates the potential of the preceding thought using an off-the-shelf process reward model (PRM). If a high-potential thought is found to be prematurely abandoned, the intervention module interrupts the ongoing inference, backtracks to the point before the switch, and inserts a "deepening prompt" to encourage further exploration along that promising path. Extensive experiments on challenging mathematical reasoning benchmarks demonstrate that our method significantly enhances the performance of various large language models of different sizes.
comment: Code: https://github.com/dvlab-research/SmartSwitch
☆ Exploring the Effect of DNN Depth on Adversarial Attacks in Network Intrusion Detection Systems
Adversarial attacks pose significant challenges to Machine Learning (ML) systems and especially Deep Neural Networks (DNNs) by subtly manipulating inputs to induce incorrect predictions. This paper investigates whether increasing the layer depth of deep neural networks affects their robustness against adversarial attacks in the Network Intrusion Detection System (NIDS) domain. We compare the adversarial robustness of various deep neural networks across both \ac{NIDS} and computer vision domains (the latter being widely used in adversarial attack experiments). Our experimental results reveal that in the NIDS domain, adding more layers does not necessarily improve their performance, yet it may actually significantly degrade their robustness against adversarial attacks. Conversely, in the computer vision domain, adding more layers exhibits a more modest impact on robustness. These findings can guide the development of robust neural networks for (NIDS) applications and highlight the unique characteristics of network security domains within the (ML) landscape.
☆ A Survey on Cache Methods in Diffusion Models: Toward Efficient Multi-Modal Generation
Diffusion Models have become a cornerstone of modern generative AI for their exceptional generation quality and controllability. However, their inherent \textit{multi-step iterations} and \textit{complex backbone networks} lead to prohibitive computational overhead and generation latency, forming a major bottleneck for real-time applications. Although existing acceleration techniques have made progress, they still face challenges such as limited applicability, high training costs, or quality degradation. Against this backdrop, \textbf{Diffusion Caching} offers a promising training-free, architecture-agnostic, and efficient inference paradigm. Its core mechanism identifies and reuses intrinsic computational redundancies in the diffusion process. By enabling feature-level cross-step reuse and inter-layer scheduling, it reduces computation without modifying model parameters. This paper systematically reviews the theoretical foundations and evolution of Diffusion Caching and proposes a unified framework for its classification and analysis. Through comparative analysis of representative methods, we show that Diffusion Caching evolves from \textit{static reuse} to \textit{dynamic prediction}. This trend enhances caching flexibility across diverse tasks and enables integration with other acceleration techniques such as sampling optimization and model distillation, paving the way for a unified, efficient inference framework for future multimodal and interactive applications. We argue that this paradigm will become a key enabler of real-time and efficient generative AI, injecting new vitality into both theory and practice of \textit{Efficient Generative Intelligence}.
comment: 22 pages,2 figures
☆ CONFEX: Uncertainty-Aware Counterfactual Explanations with Conformal Guarantees
Counterfactual explanations (CFXs) provide human-understandable justifications for model predictions, enabling actionable recourse and enhancing interpretability. To be reliable, CFXs must avoid regions of high predictive uncertainty, where explanations may be misleading or inapplicable. However, existing methods often neglect uncertainty or lack principled mechanisms for incorporating it with formal guarantees. We propose CONFEX, a novel method for generating uncertainty-aware counterfactual explanations using Conformal Prediction (CP) and Mixed-Integer Linear Programming (MILP). CONFEX explanations are designed to provide local coverage guarantees, addressing the issue that CFX generation violates exchangeability. To do so, we develop a novel localised CP procedure that enjoys an efficient MILP encoding by leveraging an offline tree-based partitioning of the input space. This way, CONFEX generates CFXs with rigorous guarantees on both predictive uncertainty and optimality. We evaluate CONFEX against state-of-the-art methods across diverse benchmarks and metrics, demonstrating that our uncertainty-aware approach yields robust and plausible explanations.
comment: 35 pages, 10 figures, 21 tables, 2 algorithms. [Main paper part consists of 11 pages, 2 figures, 1 table, 1 algorithm]
☆ When Do Transformers Learn Heuristics for Graph Connectivity?
Transformers often fail to learn generalizable algorithms, instead relying on brittle heuristics. Using graph connectivity as a testbed, we explain this phenomenon both theoretically and empirically. We consider a simplified Transformer architecture, the disentangled Transformer, and prove that an $L$-layer model has capacity to solve for graphs with diameters up to exactly $3^L$, implementing an algorithm equivalent to computing powers of the adjacency matrix. We analyze the training-dynamics, and show that the learned strategy hinges on whether most training instances are within this model capacity. Within-capacity graphs (diameter $\leq 3^L$) drive the learning of a correct algorithmic solution while beyond-capacity graphs drive the learning of a simple heuristic based on node degrees. Finally, we empirically demonstrate that restricting training data within a model's capacity leads to both standard and disentangled transformers learning the exact algorithm rather than the degree-based heuristic.
☆ BATIS: Bayesian Approaches for Targeted Improvement of Species Distribution Models
Species distribution models (SDMs), which aim to predict species occurrence based on environmental variables, are widely used to monitor and respond to biodiversity change. Recent deep learning advances for SDMs have been shown to perform well on complex and heterogeneous datasets, but their effectiveness remains limited by spatial biases in the data. In this paper, we revisit deep SDMs from a Bayesian perspective and introduce BATIS, a novel and practical framework wherein prior predictions are updated iteratively using limited observational data. Models must appropriately capture both aleatoric and epistemic uncertainty to effectively combine fine-grained local insights with broader ecological patterns. We benchmark an extensive set of uncertainty quantification approaches on a novel dataset including citizen science observations from the eBird platform. Our empirical study shows how Bayesian deep learning approaches can greatly improve the reliability of SDMs in data-scarce locations, which can contribute to ecological understanding and conservation efforts.
☆ Statistical Inference for Linear Functionals of Online Least-squares SGD when $t \gtrsim d^{1+δ}$
Stochastic Gradient Descent (SGD) has become a cornerstone method in modern data science. However, deploying SGD in high-stakes applications necessitates rigorous quantification of its inherent uncertainty. In this work, we establish \emph{non-asymptotic Berry--Esseen bounds} for linear functionals of online least-squares SGD, thereby providing a Gaussian Central Limit Theorem (CLT) in a \emph{growing-dimensional regime}. Existing approaches to high-dimensional inference for projection parameters, such as~\cite{chang2023inference}, rely on inverting empirical covariance matrices and require at least $t \gtrsim d^{3/2}$ iterations to achieve finite-sample Berry--Esseen guarantees, rendering them computationally expensive and restrictive in the allowable dimensional scaling. In contrast, we show that a CLT holds for SGD iterates when the number of iterations grows as $t \gtrsim d^{1+\delta}$ for any $\delta > 0$, significantly extending the dimensional regime permitted by prior works while improving computational efficiency. The proposed online SGD-based procedure operates in $\mathcal{O}(td)$ time and requires only $\mathcal{O}(d)$ memory, in contrast to the $\mathcal{O}(td^2 + d^3)$ runtime of covariance-inversion methods. To render the theory practically applicable, we further develop an \emph{online variance estimator} for the asymptotic variance appearing in the CLT and establish \emph{high-probability deviation bounds} for this estimator. Collectively, these results yield the first fully online and data-driven framework for constructing confidence intervals for SGD iterates in the near-optimal scaling regime $t \gtrsim d^{1+\delta}$.
comment: Improved version of arXiv:2302.09727 with new results
☆ Zhyper: Factorized Hypernetworks for Conditioned LLM Fine-Tuning
Large Language Model (LLM) conditioning refers to instructing an LLM to generate content in accordance with the norms and values of a specific culture, beliefs of a particular political orientation, or any desired text-specified semantic conditioning. Unfortunately, prompt engineering does not ensure that LLMs behave in accordance with a desired conditioning due to the inductive bias of the pre-training and alignment datasets. Prior works have focused on fine-tuning LLMs by directly conditioning the LoRA weights; however, such methods introduce a large number of parameters. As a remedy, we propose Zhyper, a parameter-efficient factorized hypernetwork framework that generates context-aware LoRA adapters from textual descriptions. Experiments on multiple benchmarks show that Zhyper achieves competitive performance with up to 26x fewer parameters than the state-of-the-art baselines. Furthermore, we extend Zhyper to cultural alignment, demonstrating improved generalization to out-of-domain settings and a better capturing of fine-grained contextual values.
☆ Bridging Earth and Space: A Survey on HAPS for Non-Terrestrial Networks IEEE
HAPS are emerging as key enablers in the evolution of 6G wireless networks, bridging terrestrial and non-terrestrial infrastructures. Operating in the stratosphere, HAPS can provide wide-area coverage, low-latency, energy-efficient broadband communications with flexible deployment options for diverse applications. This survey delivers a comprehensive overview of HAPS use cases, technologies, and integration strategies within the 6G ecosystem. The roles of HAPS in extending connectivity to underserved regions, supporting dynamic backhauling, enabling massive IoT, and delivering reliable low-latency communications for autonomous and immersive services are discussed. The paper reviews state-of-the-art architectures for terrestrial and non-terrestrial network integration, highlights recent field trials. Furthermore, key enabling technologies such as channel modeling, AI-driven resource allocation, interference control, mobility management, and energy-efficient communications are examined. The paper also outlines open research challenges. By addressing existing gaps in the literature, this survey positions HAPS as a foundational component of globally integrated, resilient, and sustainable 6G networks.
comment: 30 pages. This work has been submitted to IEEE Communications Surveys & Tutorials (under review)
☆ Enabling Granular Subgroup Level Model Evaluations by Generating Synthetic Medical Time Series
We present a novel framework for leveraging synthetic ICU time-series data not only to train but also to rigorously and trustworthily evaluate predictive models, both at the population level and within fine-grained demographic subgroups. Building on prior diffusion and VAE-based generators (TimeDiff, HealthGen, TimeAutoDiff), we introduce \textit{Enhanced TimeAutoDiff}, which augments the latent diffusion objective with distribution-alignment penalties. We extensively benchmark all models on MIMIC-III and eICU, on 24-hour mortality and binary length-of-stay tasks. Our results show that Enhanced TimeAutoDiff reduces the gap between real-on-synthetic and real-on-real evaluation (``TRTS gap'') by over 70\%, achieving $\Delta_{TRTS} \leq 0.014$ AUROC, while preserving training utility ($\Delta_{TSTR} \approx 0.01$). Crucially, for 32 intersectional subgroups, large synthetic cohorts cut subgroup-level AUROC estimation error by up to 50\% relative to small real test sets, and outperform them in 72--84\% of subgroups. This work provides a practical, privacy-preserving roadmap for trustworthy, granular model evaluation in critical care, enabling robust and reliable performance analysis across diverse patient populations without exposing sensitive EHR data, contributing to the overall trustworthiness of Medical AI.
☆ SEMPO: Lightweight Foundation Models for Time Series Forecasting NeurIPS 2025
The recent boom of large pre-trained models witnesses remarkable success in developing foundation models (FMs) for time series forecasting. Despite impressive performance across diverse downstream forecasting tasks, existing time series FMs possess massive network architectures and require substantial pre-training on large-scale datasets, which significantly hinders their deployment in resource-constrained environments. In response to this growing tension between versatility and affordability, we propose SEMPO, a novel lightweight foundation model that requires pretraining on relatively small-scale data, yet exhibits strong general time series forecasting. Concretely, SEMPO comprises two key modules: 1) energy-aware SpEctral decomposition module, that substantially improves the utilization of pre-training data by modeling not only the high-energy frequency signals but also the low-energy yet informative frequency signals that are ignored in current methods; and 2) Mixture-of-PrOmpts enabled Transformer, that learns heterogeneous temporal patterns through small dataset-specific prompts and adaptively routes time series tokens to prompt-based experts for parameter-efficient model adaptation across different datasets and domains. Equipped with these modules, SEMPO significantly reduces both pre-training data scale and model size, while achieving strong generalization. Extensive experiments on two large-scale benchmarks covering 16 datasets demonstrate the superior performance of SEMPO in both zero-shot and few-shot forecasting scenarios compared with state-of-the-art methods. Code and data are available at https://github.com/mala-lab/SEMPO.
comment: Accepted by NeurIPS 2025
☆ Fast Inference via Hierarchical Speculative Decoding
Transformer language models generate text autoregressively, making inference latency proportional to the number of tokens generated. Speculative decoding reduces this latency without sacrificing output quality, by leveraging a small draft model to propose tokens that the larger target model verifies in parallel. In practice, however, there may exist a set of potential draft models- ranging from faster but less inaccurate, to slower yet more reliable. We introduce Hierarchical Speculative Decoding (HSD), an algorithm that stacks these draft models into a hierarchy, where each model proposes tokens, and the next larger model verifies them in a single forward pass, until finally the target model verifies tokens. We derive an expression for the expected latency of any such hierarchy and show that selecting the latency-optimal hierarchy can be done in polynomial time. Empirically, HSD gives up to 1.2x speed-up over the best single-draft baseline, demonstrating the practicality of our algorithm in reducing generation latency beyond previous techniques.
☆ Serverless GPU Architecture for Enterprise HR Analytics: A Production-Scale BDaaS Implementation IEEE
Industrial and government organizations increasingly depend on data-driven analytics for workforce, finance, and regulated decision processes, where timeliness, cost efficiency, and compliance are critical. Distributed frameworks such as Spark and Flink remain effective for massive-scale batch or streaming analytics but introduce coordination complexity and auditing overheads that misalign with moderate-scale, latency-sensitive inference. Meanwhile, cloud providers now offer serverless GPUs, and models such as TabNet enable interpretable tabular ML, motivating new deployment blueprints for regulated environments. In this paper, we present a production-oriented Big Data as a Service (BDaaS) blueprint that integrates a single-node serverless GPU runtime with TabNet. The design leverages GPU acceleration for throughput, serverless elasticity for cost reduction, and feature-mask interpretability for IL4/FIPS compliance. We conduct benchmarks on the HR, Adult, and BLS datasets, comparing our approach against Spark and CPU baselines. Our results show that GPU pipelines achieve up to 4.5x higher throughput, 98x lower latency, and 90% lower cost per 1K inferences compared to Spark baselines, while compliance mechanisms add only ~5.7 ms latency with p99 < 22 ms. Interpretability remains stable under peak load, ensuring reliable auditability. Taken together, these findings provide a compliance-aware benchmark, a reproducible Helm-packaged blueprint, and a decision framework that demonstrate the practicality of secure, interpretable, and cost-efficient serverless GPU analytics for regulated enterprise and government settings.
comment: 10 pages, 7 figures, 4 tables. Accepted to IEEE BigData 2025
☆ Are Large Language Models Sensitive to the Motives Behind Communication? NeurIPS 2025
Human communication is motivated: people speak, write, and create content with a particular communicative intent in mind. As a result, information that large language models (LLMs) and AI agents process is inherently framed by humans' intentions and incentives. People are adept at navigating such nuanced information: we routinely identify benevolent or self-serving motives in order to decide what statements to trust. For LLMs to be effective in the real world, they too must critically evaluate content by factoring in the motivations of the source -- for instance, weighing the credibility of claims made in a sales pitch. In this paper, we undertake a comprehensive study of whether LLMs have this capacity for motivational vigilance. We first employ controlled experiments from cognitive science to verify that LLMs' behavior is consistent with rational models of learning from motivated testimony, and find they successfully discount information from biased sources in a human-like manner. We then extend our evaluation to sponsored online adverts, a more naturalistic reflection of LLM agents' information ecosystems. In these settings, we find that LLMs' inferences do not track the rational models' predictions nearly as closely -- partly due to additional information that distracts them from vigilance-relevant considerations. However, a simple steering intervention that boosts the salience of intentions and incentives substantially increases the correspondence between LLMs and the rational model. These results suggest that LLMs possess a basic sensitivity to the motivations of others, but generalizing to novel real-world settings will require further improvements to these models.
comment: NeurIPS 2025
☆ Study of Training Dynamics for Memory-Constrained Fine-Tuning
Memory-efficient training of deep neural networks has become increasingly important as models grow larger while deployment environments impose strict resource constraints. We propose TraDy, a novel transfer learning scheme leveraging two key insights: layer importance for updates is architecture-dependent and determinable a priori, while dynamic stochastic channel selection provides superior gradient approximation compared to static approaches. We introduce a dynamic channel selection approach that stochastically resamples channels between epochs within preselected layers. Extensive experiments demonstrate TraDy achieves state-of-the-art performance across various downstream tasks and architectures while maintaining strict memory constraints, achieving up to 99% activation sparsity, 95% weight derivative sparsity, and 97% reduction in FLOPs for weight derivative computation.
☆ Policy Learning with Abstention
Policy learning algorithms are widely used in areas such as personalized medicine and advertising to develop individualized treatment regimes. However, most methods force a decision even when predictions are uncertain, which is risky in high-stakes settings. We study policy learning with abstention, where a policy may defer to a safe default or an expert. When a policy abstains, it receives a small additive reward on top of the value of a random guess. We propose a two-stage learner that first identifies a set of near-optimal policies and then constructs an abstention rule from their disagreements. We establish fast O(1/n)-type regret guarantees when propensities are known, and extend these guarantees to the unknown-propensity case via a doubly robust (DR) objective. We further show that abstention is a versatile tool with direct applications to other core problems in policy learning: it yields improved guarantees under margin conditions without the common realizability assumption, connects to distributionally robust policy learning by hedging against small data shifts, and supports safe policy improvement by ensuring improvement over a baseline policy with high probability.
☆ Remarks on a recent preprint of Chernikov and Towsner
In this brief note, we first give a counterexample to a theorem in Chernikov and Towsner, arXiv:2510.02420(1). In arXiv:2510.02420(2), the theorem has changed but as we explain the proof has a mistake. The change in the statement, due to changes in the underlying definition, affects the paper's claims. Since that theorem had been relevant to connecting the work of their paper to Coregliano-Malliaris high-arity PAC learning, a connection which now disappears, we also explain why their definitions miss crucial aspects that our work was designed to grapple with.
☆ Overlap-weighted orthogonal meta-learner for treatment effect estimation over time
Estimating heterogeneous treatment effects (HTEs) in time-varying settings is particularly challenging, as the probability of observing certain treatment sequences decreases exponentially with longer prediction horizons. Thus, the observed data contain little support for many plausible treatment sequences, which creates severe overlap problems. Existing meta-learners for the time-varying setting typically assume adequate treatment overlap, and thus suffer from exploding estimation variance when the overlap is low. To address this problem, we introduce a novel overlap-weighted orthogonal (WO) meta-learner for estimating HTEs that targets regions in the observed data with high probability of receiving the interventional treatment sequences. This offers a fully data-driven approach through which our WO-learner can counteract instabilities as in existing meta-learners and thus obtain more reliable HTE estimates. Methodologically, we develop a novel Neyman-orthogonal population risk function that minimizes the overlap-weighted oracle risk. We show that our WO-learner has the favorable property of Neyman-orthogonality, meaning that it is robust against misspecification in the nuisance functions. Further, our WO-learner is fully model-agnostic and can be applied to any machine learning model. Through extensive experiments with both transformer and LSTM backbones, we demonstrate the benefits of our novel WO-learner.
☆ Latent Space Factorization in LoRA NeurIPS 2025
Low-rank adaptation (LoRA) is a widely used method for parameter-efficient finetuning. However, existing LoRA variants lack mechanisms to explicitly disambiguate task-relevant information within the learned low-rank subspace, potentially limiting downstream performance. We propose Factorized Variational Autoencoder LoRA (FVAE-LoRA), which leverages a VAE to learn two distinct latent spaces. Our novel Evidence Lower Bound formulation explicitly promotes factorization between the latent spaces, dedicating one latent space to task-salient features and the other to residual information. Extensive experiments on text, audio, and image tasks demonstrate that FVAE-LoRA consistently outperforms standard LoRA. Moreover, spurious correlation evaluations confirm that FVAE-LoRA better isolates task-relevant signals, leading to improved robustness under distribution shifts. Our code is publicly available at: https://github.com/idiap/FVAE-LoRA
comment: Accepted at NeurIPS 2025
☆ Matrix-Free Least Squares Solvers: Values, Gradients, and What to Do With Them
This paper argues that the method of least squares has significant unfulfilled potential in modern machine learning, far beyond merely being a tool for fitting linear models. To release its potential, we derive custom gradients that transform the solver into a differentiable operator, like a neural network layer, enabling many diverse applications. Empirically, we demonstrate: (i) scalability by enforcing weight sparsity on a 50 million parameter model; (ii) imposing conservativeness constraints in score-based generative models; and (iii) hyperparameter tuning of Gaussian processes based on predictive performance. By doing this, our work represents the next iteration in developing differentiable linear-algebra tools and making them widely accessible to machine learning practitioners.
☆ Learning and Simulating Building Evacuation Patterns for Enhanced Safety Design Using Generative Models
Evacuation simulation is essential for building safety design, ensuring properly planned evacuation routes. However, traditional evacuation simulation relies heavily on refined modeling with extensive parameters, making it challenging to adopt such methods in a rapid iteration process in early design stages. Thus, this study proposes DiffEvac, a novel method to learn building evacuation patterns based on Generative Models (GMs), for efficient evacuation simulation and enhanced safety design. Initially, a dataset of 399 diverse functional layouts and corresponding evacuation heatmaps of buildings was established. Then, a decoupled feature representation is proposed to embed physical features like layouts and occupant density for GMs. Finally, a diffusion model based on image prompts is proposed to learn evacuation patterns from simulated evacuation heatmaps. Compared to existing research using Conditional GANs with RGB representation, DiffEvac achieves up to a 37.6% improvement in SSIM, 142% in PSNR, and delivers results 16 times faster, thereby cutting simulation time to 2 minutes. Case studies further demonstrate that the proposed method not only significantly enhances the rapid design iteration and adjustment process with efficient evacuation simulation but also offers new insights and technical pathways for future safety optimization in intelligent building design. The research implication is that the approach lowers the modeling burden, enables large-scale what-if exploration, and facilitates coupling with multi-objective design tools.
☆ A Climate-Aware Deep Learning Framework for Generalizable Epidemic Forecasting
Precise outbreak forecasting of infectious diseases is essential for effective public health responses and epidemic control. The increased availability of machine learning (ML) methods for time-series forecasting presents an enticing avenue to enhance outbreak forecasting. Though the COVID-19 outbreak demonstrated the value of applying ML models to predict epidemic profiles, using ML models to forecast endemic diseases remains underexplored. In this work, we present ForecastNet-XCL (an ensemble model based on XGBoost+CNN+BiLSTM), a deep learning hybrid framework designed to addresses this gap by creating accurate multi-week RSV forecasts up to 100 weeks in advance based on climate and temporal data, without access to real-time surveillance on RSV. The framework combines high-resolution feature learning with long-range temporal dependency capturing mechanisms, bolstered by an autoregressive module trained on climate-controlled lagged relations. Stochastic inference returns probabilistic intervals to inform decision-making. Evaluated across 34 U.S. states, ForecastNet-XCL reliably outperformed statistical baselines, individual neural nets, and conventional ensemble methods in both within- and cross-state scenarios, sustaining accuracy over extended forecast horizons. Training on climatologically diverse datasets enhanced generalization furthermore, particularly in locations having irregular or biennial RSV patterns. ForecastNet-XCL's efficiency, performance, and uncertainty-aware design make it a deployable early-warning tool amid escalating climate pressures and constrained surveillance resources.
☆ Uncertainty evaluation of segmentation models for Earth observation
This paper investigates methods for estimating uncertainty in semantic segmentation predictions derived from satellite imagery. Estimating uncertainty for segmentation presents unique challenges compared to standard image classification, requiring scalable methods producing per-pixel estimates. While most research on this topic has focused on scene understanding or medical imaging, this work benchmarks existing methods specifically for remote sensing and Earth observation applications. Our evaluation focuses on the practical utility of uncertainty measures, testing their ability to identify prediction errors and noise-corrupted input image regions. Experiments are conducted on two remote sensing datasets, PASTIS and ForTy, selected for their differences in scale, geographic coverage, and label confidence. We perform an extensive evaluation featuring several models, such as Stochastic Segmentation Networks and ensembles, in combination with a number of neural architectures and uncertainty metrics. We make a number of practical recommendations based on our findings.
☆ Multi-modal Co-learning for Earth Observation: Enhancing single-modality models via modality collaboration
Multi-modal co-learning is emerging as an effective paradigm in machine learning, enabling models to collaboratively learn from different modalities to enhance single-modality predictions. Earth Observation (EO) represents a quintessential domain for multi-modal data analysis, wherein diverse remote sensors collect data to sense our planet. This unprecedented volume of data introduces novel challenges. Specifically, the access to the same sensor modalities at both training and inference stages becomes increasingly complex based on real-world constraints affecting remote sensing platforms. In this context, multi-modal co-learning presents a promising strategy to leverage the vast amount of sensor-derived data available at the training stage to improve single-modality models for inference-time deployment. Most current research efforts focus on designing customized solutions for either particular downstream tasks or specific modalities available at the inference stage. To address this, we propose a novel multi-modal co-learning framework capable of generalizing across various tasks without targeting a specific modality for inference. Our approach combines contrastive and modality discriminative learning together to guide single-modality models to structure the internal model manifold into modality-shared and modality-specific information. We evaluate our framework on four EO benchmarks spanning classification and regression tasks across different sensor modalities, where only one of the modalities available during training is accessible at inference time. Our results demonstrate consistent predictive improvements over state-of-the-art approaches from the recent machine learning and computer vision literature, as well as EO-specific methods. The obtained findings validate our framework in the single-modality inference scenarios across a diverse range of EO applications.
comment: Accepted at the Machine Learning journal, CfP: Discovery Science 2024
☆ Demonstrating Real Advantage of Machine-Learning-Enhanced Monte Carlo for Combinatorial Optimization
Combinatorial optimization problems are central to both practical applications and the development of optimization methods. While classical and quantum algorithms have been refined over decades, machine learning-assisted approaches are comparatively recent and have not yet consistently outperformed simple, state-of-the-art classical methods. Here, we focus on a class of Quadratic Unconstrained Binary Optimization (QUBO) problems, specifically the challenge of finding minimum energy configurations in three-dimensional Ising spin glasses. We use a Global Annealing Monte Carlo algorithm that integrates standard local moves with global moves proposed via machine learning. We show that local moves play a crucial role in achieving optimal performance. Benchmarking against Simulated Annealing and Population Annealing, we demonstrate that Global Annealing not only surpasses the performance of Simulated Annealing but also exhibits greater robustness than Population Annealing, maintaining effectiveness across problem hardness and system size without hyperparameter tuning. These results provide, to our knowledge, the first clear and robust evidence that a machine learning-assisted optimization method can exceed the capabilities of classical state-of-the-art techniques in a combinatorial optimization setting.
comment: 13 main pages, 6 main figures. 4 supplementary pages, 2 supplementary figures
☆ Insights into the Unknown: Federated Data Diversity Analysis on Molecular Data
AI methods are increasingly shaping pharmaceutical drug discovery. However, their translation to industrial applications remains limited due to their reliance on public datasets, lacking scale and diversity of proprietary pharmaceutical data. Federated learning (FL) offers a promising approach to integrate private data into privacy-preserving, collaborative model training across data silos. This federated data access complicates important data-centric tasks such as estimating dataset diversity, performing informed data splits, and understanding the structure of the combined chemical space. To address this gap, we investigate how well federated clustering methods can disentangle and represent distributed molecular data. We benchmark three approaches, Federated kMeans (Fed-kMeans), Federated Principal Component Analysis combined with Fed-kMeans (Fed-PCA+Fed-kMeans), and Federated Locality-Sensitive Hashing (Fed-LSH), against their centralized counterparts on eight diverse molecular datasets. Our evaluation utilizes both, standard mathematical and a chemistry-informed evaluation metrics, SF-ICF, that we introduce in this work. The large-scale benchmarking combined with an in-depth explainability analysis shows the importance of incorporating domain knowledge through chemistry-informed metrics, and on-client explainability analyses for federated diversity analysis on molecular data.
☆ The Confusing Instance Principle for Online Linear Quadratic Control
We revisit the problem of controlling linear systems with quadratic cost under unknown dynamics with model-based reinforcement learning. Traditional methods like Optimism in the Face of Uncertainty and Thompson Sampling, rooted in multi-armed bandits (MABs), face practical limitations. In contrast, we propose an alternative based on the Confusing Instance (CI) principle, which underpins regret lower bounds in MABs and discrete Markov Decision Processes (MDPs) and is central to the Minimum Empirical Divergence (MED) family of algorithms, known for their asymptotic optimality in various settings. By leveraging the structure of LQR policies along with sensitivity and stability analysis, we develop MED-LQ. This novel control strategy extends the principles of CI and MED beyond small-scale settings. Our benchmarks on a comprehensive control suite demonstrate that MED-LQ achieves competitive performance in various scenarios while highlighting its potential for broader applications in large-scale MDPs.
☆ Optimizing the Unknown: Black Box Bayesian Optimization with Energy-Based Model and Reinforcement Learning NeurIPS 2025
Existing Bayesian Optimization (BO) methods typically balance exploration and exploitation to optimize costly objective functions. However, these methods often suffer from a significant one-step bias, which may lead to convergence towards local optima and poor performance in complex or high-dimensional tasks. Recently, Black-Box Optimization (BBO) has achieved success across various scientific and engineering domains, particularly when function evaluations are costly and gradients are unavailable. Motivated by this, we propose the Reinforced Energy-Based Model for Bayesian Optimization (REBMBO), which integrates Gaussian Processes (GP) for local guidance with an Energy-Based Model (EBM) to capture global structural information. Notably, we define each Bayesian Optimization iteration as a Markov Decision Process (MDP) and use Proximal Policy Optimization (PPO) for adaptive multi-step lookahead, dynamically adjusting the depth and direction of exploration to effectively overcome the limitations of traditional BO methods. We conduct extensive experiments on synthetic and real-world benchmarks, confirming the superior performance of REBMBO. Additional analyses across various GP configurations further highlight its adaptability and robustness.
comment: This paper is accepted by 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
☆ Learning Upper Lower Value Envelopes to Shape Online RL: A Principled Approach
We investigate the fundamental problem of leveraging offline data to accelerate online reinforcement learning - a direction with strong potential but limited theoretical grounding. Our study centers on how to learn and apply value envelopes within this context. To this end, we introduce a principled two-stage framework: the first stage uses offline data to derive upper and lower bounds on value functions, while the second incorporates these learned bounds into online algorithms. Our method extends prior work by decoupling the upper and lower bounds, enabling more flexible and tighter approximations. In contrast to approaches that rely on fixed shaping functions, our envelopes are data-driven and explicitly modeled as random variables, with a filtration argument ensuring independence across phases. The analysis establishes high-probability regret bounds determined by two interpretable quantities, thereby providing a formal bridge between offline pre-training and online fine-tuning. Empirical results on tabular MDPs demonstrate substantial regret reductions compared with both UCBVI and prior methods.
comment: 32 pages, 5 figures
☆ Bi-Level Decision-Focused Causal Learning for Large-Scale Marketing Optimization: Bridging Observational and Experimental Data NeurIPS 2025
Online Internet platforms require sophisticated marketing strategies to optimize user retention and platform revenue -- a classical resource allocation problem. Traditional solutions adopt a two-stage pipeline: machine learning (ML) for predicting individual treatment effects to marketing actions, followed by operations research (OR) optimization for decision-making. This paradigm presents two fundamental technical challenges. First, the prediction-decision misalignment: Conventional ML methods focus solely on prediction accuracy without considering downstream optimization objectives, leading to improved predictive metrics that fail to translate to better decisions. Second, the bias-variance dilemma: Observational data suffers from multiple biases (e.g., selection bias, position bias), while experimental data (e.g., randomized controlled trials), though unbiased, is typically scarce and costly -- resulting in high-variance estimates. We propose Bi-level Decision-Focused Causal Learning (Bi-DFCL) that systematically addresses these challenges. First, we develop an unbiased estimator of OR decision quality using experimental data, which guides ML model training through surrogate loss functions that bridge discrete optimization gradients. Second, we establish a bi-level optimization framework that jointly leverages observational and experimental data, solved via implicit differentiation. This novel formulation enables our unbiased OR estimator to correct learning directions from biased observational data, achieving optimal bias-variance tradeoff. Extensive evaluations on public benchmarks, industrial marketing datasets, and large-scale online A/B tests demonstrate the effectiveness of Bi-DFCL, showing statistically significant improvements over state-of-the-art. Currently, Bi-DFCL has been deployed at Meituan, one of the largest online food delivery platforms in the world.
comment: Accepted by NeurIPS 2025
☆ From Prototypes to Sparse ECG Explanations: SHAP-Driven Counterfactuals for Multivariate Time-Series Multi-class Classification
In eXplainable Artificial Intelligence (XAI), instance-based explanations for time series have gained increasing attention due to their potential for actionable and interpretable insights in domains such as healthcare. Addressing the challenges of explainability of state-of-the-art models, we propose a prototype-driven framework for generating sparse counterfactual explanations tailored to 12-lead ECG classification models. Our method employs SHAP-based thresholds to identify critical signal segments and convert them into interval rules, uses Dynamic Time Warping (DTW) and medoid clustering to extract representative prototypes, and aligns these prototypes to query R-peaks for coherence with the sample being explained. The framework generates counterfactuals that modify only 78% of the original signal while maintaining 81.3% validity across all classes and achieving 43% improvement in temporal stability. We evaluate three variants of our approach, Original, Sparse, and Aligned Sparse, with class-specific performance ranging from 98.9% validity for myocardial infarction (MI) to challenges with hypertrophy (HYP) detection (13.2%). This approach supports near realtime generation (< 1 second) of clinically valid counterfactuals and provides a foundation for interactive explanation platforms. Our findings establish design principles for physiologically-aware counterfactual explanations in AI-based diagnosis systems and outline pathways toward user-controlled explanation interfaces for clinical deployment.
☆ Teaming LLMs to Detect and Mitigate Hallucinations NeurIPS 2025
Recent work has demonstrated state-of-the-art results in large language model (LLM) hallucination detection and mitigation through consistency-based approaches which involve aggregating multiple responses sampled from a single LLM for a given prompt. These approaches help offset limitations stemming from the imperfect data on which LLMs are trained, which includes biases and under-representation of information required at deployment time among other limitations which can lead to hallucinations. We show that extending these single-model consistency methods to combine responses from multiple LLMs with different training data, training schemes and model architectures can result in substantial further improvements in hallucination detection and mitigation capabilities beyond their single-model consistency counterparts. We evaluate this \emph{consortium consistency} approach across many model teams from a pool of 15 LLMs and explore under what conditions it is beneficial to team together different LLMs in this manner. Further, we show that these performance improvements often come with reduced inference costs, offsetting a significant drawback with single-model consistency methods.
comment: Accepted to NeurIPS 2025 workshop on Reliable ML from Unreliable Data
☆ Energy-Efficient and Dequantization-Free Q-LLMs: A Spiking Neural Network Approach to Salient Value Mitigation
In the era of large language models (LLMs), weight-activation quantization helps fit models on edge device by reducing memory and compute bit-widths. However, three challenges persist for energy constrained hardware: (1) even after quantization, multiply-accumulate (MAC) operations remain unavoidable and continue to dominate energy consumption; (2) dequantization (or per-tensor/channel rescaling) introduces extra arithmetic and data movement, increasing latency and energy; (3) uniform parameters bit widths clip salient values-while intra-channel mixed precision is generally impractical on current matrix hardware and memory. In contrast, brain-inspired Spiking Neural Networks (SNNs), owing to their binary spike-based information representation and the Integrate-and-Fire (IF) paradigm, naturally support mixed-precision storage and energy-efficient computation by replacing complex MACs with temporal Accumulate (ACCs). Motivated by this property, we propose SpikeQuant, which selectively applies mixed-precision quantization to activations with salient values and re-encodes them into binary spike counts, thereby enabling dynamic mixed storage of different bitwidths. Furthermore, by embedding the quantization scale into the threshold of the IF mechanism, our approach performs energy-efficient linear transformations on weights and activations while avoiding explicit dequantization. Experimental results demonstrate that SpikeQuant consistently achieves near-FP16 perplexity under W4A4 quantization while reducing energy cost by up to 4.6 times compared to existing methods, highlighting its effectiveness for accurate and energy-efficient LLM deployment.
☆ CARES: Context-Aware Resolution Selector for VLMs
Large vision-language models (VLMs) commonly process images at native or high resolution to remain effective across tasks. This inflates visual tokens ofter to 97-99% of total tokens, resulting in high compute and latency, even when low-resolution images would suffice. We introduce \emph{CARES}-a \textbf{C}ontext-\textbf{A}ware \textbf{R}esolution \textbf{S}elector, a lightweight preprocessing module that, given an image-query pair, predicts the \emph{minimal} sufficient input resolution. CARES uses a compact VLM (350M) to extract features and predict when a target pretrained VLM's response converges to its peak ability to answer correctly. Though trained as a discrete classifier over a set of optional resolutions, CARES interpolates continuous resolutions at inference for fine-grained control. Across five multimodal benchmarks spanning documents and natural images, as well as diverse target VLMs, CARES preserves task performance while reducing compute by up to 80%.
☆ Using Non-Expert Data to Robustify Imitation Learning via Offline Reinforcement Learning
Imitation learning has proven effective for training robots to perform complex tasks from expert human demonstrations. However, it remains limited by its reliance on high-quality, task-specific data, restricting adaptability to the diverse range of real-world object configurations and scenarios. In contrast, non-expert data -- such as play data, suboptimal demonstrations, partial task completions, or rollouts from suboptimal policies -- can offer broader coverage and lower collection costs. However, conventional imitation learning approaches fail to utilize this data effectively. To address these challenges, we posit that with right design decisions, offline reinforcement learning can be used as a tool to harness non-expert data to enhance the performance of imitation learning policies. We show that while standard offline RL approaches can be ineffective at actually leveraging non-expert data under the sparse data coverage settings typically encountered in the real world, simple algorithmic modifications can allow for the utilization of this data, without significant additional assumptions. Our approach shows that broadening the support of the policy distribution can allow imitation algorithms augmented by offline RL to solve tasks robustly, showing considerably enhanced recovery and generalization behavior. In manipulation tasks, these innovations significantly increase the range of initial conditions where learned policies are successful when non-expert data is incorporated. Moreover, we show that these methods are able to leverage all collected data, including partial or suboptimal demonstrations, to bolster task-directed policy performance. This underscores the importance of algorithmic techniques for using non-expert data for robust policy learning in robotics.
☆ VideoAgentTrek: Computer Use Pretraining from Unlabeled Videos
Training computer-use agents requires massive amounts of GUI interaction data, but manually annotating action trajectories at scale is prohibitively expensive. We present VideoAgentTrek, a scalable pipeline that automatically mines training data from publicly available screen-recorded videos at web scale, eliminating the need for manual annotation. Our approach addresses a key challenge: raw videos contain implicit demonstrations but lack explicit action labels. To solve this, we develop Video2Action, an inverse dynamics module (IDM) with two components: (1) a video grounding model that detects and localizes GUI actions with precise temporal boundaries and context, and (2) an action-content recognizer that extracts structured parameters like click coordinates and typed text with high fidelity. Applied to 39,000 YouTube tutorial videos, our pipeline generates 1.52 million interaction steps automatically. We leverage this data through continued pretraining followed by supervised fine-tuning. On OSWorld-Verified, our approach improves task success rates from 9.3% (SFT-only baseline) to 15.8%, a 70% relative improvement. On AgentNetBench, step accuracy increases from 64.1% to 69.3%. Our results demonstrate that passive internet videos can be transformed into high-quality supervision for computer-use agents, providing a scalable alternative to expensive manual annotation.
comment: 8 pages, 6 figures
☆ KnowMol: Advancing Molecular Large Language Models with Multi-Level Chemical Knowledge
The molecular large language models have garnered widespread attention due to their promising potential on molecular applications. However, current molecular large language models face significant limitations in understanding molecules due to inadequate textual descriptions and suboptimal molecular representation strategies during pretraining. To address these challenges, we introduce KnowMol-100K, a large-scale dataset with 100K fine-grained molecular annotations across multiple levels, bridging the gap between molecules and textual descriptions. Additionally, we propose chemically-informative molecular representation, effectively addressing limitations in existing molecular representation strategies. Building upon these innovations, we develop KnowMol, a state-of-the-art multi-modal molecular large language model. Extensive experiments demonstrate that KnowMol achieves superior performance across molecular understanding and generation tasks. GitHub: https://github.com/yzf-code/KnowMol Huggingface: https://hf.co/datasets/yzf1102/KnowMol-100K
☆ ELUTQ: Efficient LUT-Aware Quantization for Deploying Large Language Models on Edge Devices
The deployment of Large Language Models (LLMs) on CPU-based edge devices is crucial for enabling on-device intelligence and expanding AI accessibility. However, it remains challenging due to limited memory and computational resources. During edge inference, memory usage and latency are the primary bottlenecks. Although weight quantization can effectively reduce memory consumption, existing hardware-friendly approaches often rely on uniform quantization, which poorly fits weight distributions and incurs high dequantization overhead at low bit widths. To address these limitations, we propose ELUTQ, an efficient quantization framework introducing a novel quantization format, Hierarchical Linear Quantization (HLQ). HLQ better captures the statistical characteristics of weights without increasing the computational cost of Bit-serial LUT-based GEMM operations, thereby eliminating dequantization overhead. It is orthogonal to existing quantization algorithms and can be seamlessly integrated into various quantization pipelines. For efficient on-device deployment, ELUTQ provides optimized CPU kernels for end-to-end inference. Experiments show that for LLaMA3-8B, HLQ reduces perplexity by about 8% at 3-bit and 85% at 2-bit precision under post-training quantization, completing quantization within one hour. With efficient finetuning, HLQ further improves 2-bit performance within two hours. In terms of inference efficiency, our 2-bit LLaMA2-7B achieves over 25 tokens/s on an Apple M2 chip (4 threads, batch size = 1).
comment: 19 pages, 8 figures
☆ Online Two-Stage Submodular Maximization NeurIPS 2025
Given a collection of monotone submodular functions, the goal of Two-Stage Submodular Maximization (2SSM) [Balkanski et al., 2016] is to restrict the ground set so an objective selected u.a.r. from the collection attains a high maximal value, on average, when optimized over the restricted ground set. We introduce the Online Two-Stage Submodular Maximization (O2SSM) problem, in which the submodular objectives are revealed in an online fashion. We study this problem for weighted threshold potential functions, a large and important subclass of monotone submodular functions that includes influence maximization, data summarization, and facility location, to name a few. We design an algorithm that achieves sublinear $(1 - 1/e)^2$-regret under general matroid constraints and $(1 - 1/e)(1-e^{-k}k^k/k!)$-regret in the case of uniform matroids of rank $k$; the latter also yields a state-of-the-art bound for the (offline) 2SSM problem. We empirically validate the performance of our online algorithm with experiments on real datasets.
comment: To appear at NeurIPS 2025
☆ Graph Unlearning Meets Influence-aware Negative Preference Optimization
Recent advancements in graph unlearning models have enhanced model utility by preserving the node representation essentially invariant, while using gradient ascent on the forget set to achieve unlearning. However, this approach causes a drastic degradation in model utility during the unlearning process due to the rapid divergence speed of gradient ascent. In this paper, we introduce \textbf{INPO}, an \textbf{I}nfluence-aware \textbf{N}egative \textbf{P}reference \textbf{O}ptimization framework that focuses on slowing the divergence speed and improving the robustness of the model utility to the unlearning process. Specifically, we first analyze that NPO has slower divergence speed and theoretically propose that unlearning high-influence edges can reduce impact of unlearning. We design an influence-aware message function to amplify the influence of unlearned edges and mitigate the tight topological coupling between the forget set and the retain set. The influence of each edge is quickly estimated by a removal-based method. Additionally, we propose a topological entropy loss from the perspective of topology to avoid excessive information loss in the local structure during unlearning. Extensive experiments conducted on five real-world datasets demonstrate that INPO-based model achieves state-of-the-art performance on all forget quality metrics while maintaining the model's utility. Codes are available at \href{https://github.com/sh-qiangchen/INPO}{https://github.com/sh-qiangchen/INPO}.
☆ A Concrete Roadmap towards Safety Cases based on Chain-of-Thought Monitoring
As AI systems approach dangerous capability levels where inability safety cases become insufficient, we need alternative approaches to ensure safety. This paper presents a roadmap for constructing safety cases based on chain-of-thought (CoT) monitoring in reasoning models and outlines our research agenda. We argue that CoT monitoring might support both control and trustworthiness safety cases. We propose a two-part safety case: (1) establishing that models lack dangerous capabilities when operating without their CoT, and (2) ensuring that any dangerous capabilities enabled by a CoT are detectable by CoT monitoring. We systematically examine two threats to monitorability: neuralese and encoded reasoning, which we categorize into three forms (linguistic drift, steganography, and alien reasoning) and analyze their potential drivers. We evaluate existing and novel techniques for maintaining CoT faithfulness. For cases where models produce non-monitorable reasoning, we explore the possibility of extracting a monitorable CoT from a non-monitorable CoT. To assess the viability of CoT monitoring safety cases, we establish prediction markets to aggregate forecasts on key technical milestones influencing their feasibility.
☆ g-DPO: Scalable Preference Optimization for Protein Language Models NeurIPS 2025
Direct Preference Optimization (DPO) is an effective approach for aligning protein language models with experimental design goals. However, DPO faces a scalability bottleneck: the number of possible training pairs grows quadratically with the number of labeled sequences, leading to prohibitive training times even for modestly sized datasets. We introduce g-DPO, a framework that (i) uses sequence space clustering to prune redundant pairs while preserving training signal, and (ii) amortizes likelihood computations with group-based approximations. Across three protein engineering tasks, g-DPO maintains in-silico and in-vitro performance that is statistically indistinguishable from standard DPO, while converging 1.8 to 3.7 times faster, with greater gains expected as the size of the dataset increases.
comment: Accepted at two workshops: FM4LS NeurIPS 2025 (https://nips2025fm4ls.github.io/pages/accepted-paper.html) and MLSB in Copenhagen EurIPS 2025
☆ Re-evaluating Minimum Bayes Risk Decoding for Automatic Speech Recognition
Recent work has shown that sample-based Minimum Bayes Risk (MBR) decoding outperforms beam search in text-to-text generation tasks, such as machine translation, text summarization, and image captioning. On the other hand, beam search is the current practice for speech-to-text tasks such as automatic speech recognition (ASR) and Speech Translation (ST). Given that MBR decoding is effective in text-to-text generation tasks, it is reasonable to expect it to also be effective for speech-to-text tasks. In this paper, we evaluate MBR decoding for ASR and ST tasks on English and Japanese using Whisper and its derivative models. We observe that the accuracy of MBR decoding outperforms that of beam search in most of the experimental settings we have evaluated. The results show that MBR decoding is a promising method for offline ASR and ST tasks that require high accuracy. The code is available at https://github.com/CyberAgentAILab/mbr-for-asr
☆ HybridEP: Scaling Expert Parallelism to Cross-Datacenter Scenario via Hybrid Expert/Data Transmission
Mixture-of-Experts (MoE) has become a popular architecture for scaling large models. However, the rapidly growing scale outpaces model training on a single DC, driving a shift toward a more flexible, cross-DC training paradigm. Under this, Expert Parallelism (EP) of MoE faces significant scalability issues due to the limited cross-DC bandwidth. Specifically, existing EP optimizations attempt to overlap data communication and computation, which has little benefit in low-bandwidth scenarios due to a much longer data communication time. Therefore, the trends of cross-DC EP scaling is fast becoming a critical roadblock to the continued growth of MoE models. To address this, we propose HybridEP, a modeling-guided framework to optimize EP under constrained bandwidth. Our key idea is to dynamically transform the spatial placement of experts to reduce data communication traffic and frequency, thereby minimizing EP's communication overheads. However, it is non-trivial to find the optimal solution because it complicates the original communication pattern by mixing data and expert communication. We therefore build a stream-based model to determine the optimal transmission ratio. Guided by this, we incorporate two techniques: (1) domain-based partition to construct the mapping between hybrid patterns and specific communication topology at GPU level, and (2) parameter-efficient migration to further refine this topology by reducing expert transmission overhead and enlarging the domain size. Combining all these designs, HybridEP can be considered as a more general EP with better scalability. Experimental results show that HybridEP outperforms existing state-of-the-art MoE training systems by up to 5.6x under constrained bandwidth. We further compare HybridEP and EP on large-scale simulations. HybridEP achieves up to 1.45x speedup with 1k DCs under different bandwidths.
☆ PCP-GAN: Property-Constrained Pore-scale image reconstruction via conditional Generative Adversarial Networks
Obtaining truly representative pore-scale images that match bulk formation properties remains a fundamental challenge in subsurface characterization, as natural spatial heterogeneity causes extracted sub-images to deviate significantly from core-measured values. This challenge is compounded by data scarcity, where physical samples are only available at sparse well locations. This study presents a multi-conditional Generative Adversarial Network (cGAN) framework that generates representative pore-scale images with precisely controlled properties, addressing both the representativeness challenge and data availability constraints. The framework was trained on thin section samples from four depths (1879.50-1943.50 m) of a carbonate formation, simultaneously conditioning on porosity values and depth parameters within a single unified model. This approach captures both universal pore network principles and depth-specific geological characteristics, from grainstone fabrics with interparticle-intercrystalline porosity to crystalline textures with anhydrite inclusions. The model achieved exceptional porosity control (R^2=0.95) across all formations with mean absolute errors of 0.0099-0.0197. Morphological validation confirmed preservation of critical pore network characteristics including average pore radius, specific surface area, and tortuosity, with statistical differences remaining within acceptable geological tolerances. Most significantly, generated images demonstrated superior representativeness with dual-constraint errors of 1.9-11.3% compared to 36.4-578% for randomly extracted real sub-images. This capability provides transformative tools for subsurface characterization, particularly valuable for carbon storage, geothermal energy, and groundwater management applications where knowing the representative morphology of the pore space is critical for implementing digital rock physics.
☆ Exploring "Many in Few" and "Few in Many" Properties in Long-Tailed, Highly-Imbalanced IC Defect Classification
Despite significant advancements in deep classification techniques and in-lab automatic optical inspection models for long-tailed or highly imbalanced data, applying these approaches to real-world IC defect classification tasks remains challenging. This difficulty stems from two primary factors. First, real-world conditions, such as the high yield-rate requirements in the IC industry, result in data distributions that are far more skewed than those found in general public imbalanced datasets. Consequently, classifiers designed for open imbalanced datasets often fail to perform effectively in real-world scenarios. Second, real-world samples exhibit a mix of class-specific attributes and class-agnostic, domain-related features. This complexity adds significant difficulty to the classification process, particularly for highly imbalanced datasets. To address these challenges, this paper introduces the IC-Defect-14 dataset, a large, highly imbalanced IC defect image dataset sourced from AOI systems deployed in real-world IC production lines. This dataset is characterized by its unique "intra-class clusters" property, which presents two major challenges: large intra-class diversity and high inter-class similarity. These characteristics, rarely found simultaneously in existing public datasets, significantly degrade the performance of current state-of-the-art classifiers for highly imbalanced data. To tackle this challenge, we propose ReCAME-Net, which follows a multi-expert classifier framework and integrates a regional channel attention module, metric learning losses, a hard category mining strategy, and a knowledge distillation procedure. Extensive experimental evaluations demonstrate that ReCAME-Net outperforms previous state-of-the-art models on the IC-Defect-14 dataset while maintaining comparable performance and competitiveness on general public datasets.
☆ Universal Quantitative Abstraction: Categorical Duality and Logical Completeness for Probabilistic Systems
A unified theory of quantitative abstraction is presented for probabilistic systems that links category theory, optimal transport, and quantitative modal logic. At its core is a canonical $ \varepsilon $-quotient endowed with a universal property: among all $ \varepsilon $-abstractions, it is the most informative one that respects a prescribed bound on value loss. This construction induces an adjunction between abstraction and realization functors $ (Q_{\varepsilon} \dashv R_{\varepsilon}) $, established via the Special Adjoint Functor Theorem, revealing a categorical duality between metric structure and logical semantics. A behavioral pseudometric is characterized as the unique fixed point of a Bellman-style operator, with contraction and Lipschitz properties proved in a coalgebraic setting. A quantitative modal $ \mu $-calculus is introduced and shown to be expressively complete for logically representable systems, so that behavioral distance coincides with maximal logical deviation. Compositionality under interface refinement is analyzed, clarifying how abstractions interact across system boundaries. An exact validation suite on finite Markov decision processes corroborates the contraction property, value-loss bounds, stability under perturbation, adversarial distinguishability, and scalability, demonstrating both robustness and computational feasibility. The resulting framework provides principled targets for state aggregation and representation learning, with mathematically precise guarantees for value-function approximation in stochastic domains.
☆ Revisiting the Relation Between Robustness and Universality
The modified universality hypothesis proposed by Jones et al. (2022) suggests that adversarially robust models trained for a given task are highly similar. We revisit the hypothesis and test its generality. While we verify Jones' main claim of high representational similarity in specific settings, results are not consistent across different datasets. We also discover that predictive behavior does not converge with increasing robustness and thus is not universal. We find that differing predictions originate in the classification layer, but show that more universal predictive behavior can be achieved with simple retraining of the classifiers. Overall, our work points towards partial universality of neural networks in specific settings and away from notions of strict universality.
☆ Neural Variational Dropout Processes ICLR
Learning to infer the conditional posterior model is a key step for robust meta-learning. This paper presents a new Bayesian meta-learning approach called Neural Variational Dropout Processes (NVDPs). NVDPs model the conditional posterior distribution based on a task-specific dropout; a low-rank product of Bernoulli experts meta-model is utilized for a memory-efficient mapping of dropout rates from a few observed contexts. It allows for a quick reconfiguration of a globally learned and shared neural network for new tasks in multi-task few-shot learning. In addition, NVDPs utilize a novel prior conditioned on the whole task data to optimize the conditional \textit{dropout} posterior in the amortized variational inference. Surprisingly, this enables the robust approximation of task-specific dropout rates that can deal with a wide range of functional ambiguities and uncertainties. We compared the proposed method with other meta-learning approaches in the few-shot learning tasks such as 1D stochastic regression, image inpainting, and classification. The results show the excellent performance of NVDPs.
comment: Accepted as a Poster at International Conference on Learning Representations (ICLR) 2022 (Apr 25-29, 2022)
☆ LLM Unlearning with LLM Beliefs
Large language models trained on vast corpora inherently risk memorizing sensitive or harmful content, which may later resurface in their outputs. Prevailing unlearning methods generally rely on gradient ascent and its variants to lower the probability of specific target responses. However, we find that this strategy induces a critical side effect: probability mass is redistributed into high-likelihood regions, often corresponding to semantically related rephrasings of the targets. We refer to this as the squeezing effect, which explains why many methods yield merely spurious unlearning, a problem further obscured by automated metrics (e.g., ROUGE, truth ratio) that misreport actual success. To address this, we propose a bootstrapping (BS) framework that explicitly links the squeezing effect with the model's own high-confidence generations, namely its model beliefs. Since model beliefs inherently capture the very high-likelihood regions where probability mass is squeezed, incorporating them into the unlearning objective directly counters the squeezing effect. By jointly suppressing both target responses and model beliefs, BS-T (token) attenuates high-probability tokens, whereas BS-S (sequence) removes entire high-confidence generations, together achieving more thorough forgetting while preserving utility. Extensive experiments across diverse benchmarks with various model families confirm the effectiveness of our approach.
☆ FairNet: Dynamic Fairness Correction without Performance Loss via Contrastive Conditional LoRA
Ensuring fairness in machine learning models is a critical challenge. Existing debiasing methods often compromise performance, rely on static correction strategies, and struggle with data sparsity, particularly within minority groups. Furthermore, their utilization of sensitive attributes is often suboptimal, either depending excessively on complete attribute labeling or disregarding these attributes entirely. To overcome these limitations, we propose FairNet, a novel framework for dynamic, instance-level fairness correction. FairNet integrates a bias detector with conditional low-rank adaptation (LoRA), which enables selective activation of the fairness correction mechanism exclusively for instances identified as biased, and thereby preserve performance on unbiased instances. A key contribution is a new contrastive loss function for training the LoRA module, specifically designed to minimize intra-class representation disparities across different sensitive groups and effectively address underfitting in minority groups. The FairNet framework can flexibly handle scenarios with complete, partial, or entirely absent sensitive attribute labels. Theoretical analysis confirms that, under moderate TPR/FPR for the bias detector, FairNet can enhance the performance of the worst group without diminishing overall model performance, and potentially yield slight performance improvements. Comprehensive empirical evaluations across diverse vision and language benchmarks validate the effectiveness of FairNet.
☆ Monitoring LLM-based Multi-Agent Systems Against Corruptions via Node Evaluation
Large Language Model (LLM)-based Multi-Agent Systems (MAS) have become a popular paradigm of AI applications. However, trustworthiness issues in MAS remain a critical concern. Unlike challenges in single-agent systems, MAS involve more complex communication processes, making them susceptible to corruption attacks. To mitigate this issue, several defense mechanisms have been developed based on the graph representation of MAS, where agents represent nodes and communications form edges. Nevertheless, these methods predominantly focus on static graph defense, attempting to either detect attacks in a fixed graph structure or optimize a static topology with certain defensive capabilities. To address this limitation, we propose a dynamic defense paradigm for MAS graph structures, which continuously monitors communication within the MAS graph, then dynamically adjusts the graph topology, accurately disrupts malicious communications, and effectively defends against evolving and diverse dynamic attacks. Experimental results in increasingly complex and dynamic MAS environments demonstrate that our method significantly outperforms existing MAS defense mechanisms, contributing an effective guardrail for their trustworthy applications. Our code is available at https://github.com/ChengcanWu/Monitoring-LLM-Based-Multi-Agent-Systems.
☆ From See to Shield: ML-Assisted Fine-Grained Access Control for Visual Data
As the volume of stored data continues to grow, identifying and protecting sensitive information within large repositories becomes increasingly challenging, especially when shared with multiple users with different roles and permissions. This work presents a system architecture for trusted data sharing with policy-driven access control, enabling selective protection of sensitive regions while maintaining scalability. The proposed architecture integrates four core modules that combine automated detection of sensitive regions, post-correction, key management, and access control. Sensitive regions are secured using a hybrid scheme that employs symmetric encryption for efficiency and Attribute-Based Encryption for policy enforcement. The system supports efficient key distribution and isolates key storage to strengthen overall security. To demonstrate its applicability, we evaluate the system on visual datasets, where Privacy-Sensitive Objects in images are automatically detected, reassessed, and selectively encrypted prior to sharing in a data repository. Experimental results show that our system provides effective PSO detection, increases macro-averaged F1 score (5%) and mean Average Precision (10%), and maintains an average policy-enforced decryption time of less than 1 second per image. These results demonstrate the effectiveness, efficiency and scalability of our proposed solution for fine-grained access control.
comment: 10 pages, 3 figures, 6 tables. In submission
☆ Iterative Training of Physics-Informed Neural Networks with Fourier-enhanced Features
Spectral bias, the tendency of neural networks to learn low-frequency features first, is a well-known issue with many training algorithms for physics-informed neural networks (PINNs). To overcome this issue, we propose IFeF-PINN, an algorithm for iterative training of PINNs with Fourier-enhanced features. The key idea is to enrich the latent space using high-frequency components through Random Fourier Features. This creates a two-stage training problem: (i) estimate a basis in the feature space, and (ii) perform regression to determine the coefficients of the enhanced basis functions. For an underlying linear model, it is shown that the latter problem is convex, and we prove that the iterative training scheme converges. Furthermore, we empirically establish that Random Fourier Features enhance the expressive capacity of the network, enabling accurate approximation of high-frequency PDEs. Through extensive numerical evaluation on classical benchmark problems, the superior performance of our method over state-of-the-art algorithms is shown, and the improved approximation across the frequency domain is illustrated.
comment: 9 pages, 5 figures in the main paper
☆ ARA: Adaptive Rank Allocation for Efficient Large Language Model SVD Compression
In the field of large language model (LLM) compression, singular value decomposition (SVD) is a widely studied and adopted low-rank decomposition technique. Since SVD operates exclusively on linear modules, and these modules in LLMs are separated by nonlinear components, SVD can only be applied independently to each linear module. Under a global compression ratio constraint, determining the appropriate rank for different linear modules becomes a critical problem. Existing approaches, such as heuristic algorithms and mask-based training, have made progress in addressing this challenge. However, these methods still suffer from several limitations: heuristic algorithms explore the solution space within restricted regions, while mask-based training struggles to efficiently capture the relationship between singular value spectra and trainable parameters. More importantly, current methods overlook the key property that the gain function is non-smooth at a compression ratio of 1, which often leads the training process to suboptimal local minima. To address these issues, we propose an Adaptive Rank Allocation (ARA) method. Specifically, (1) ARA introduces a dedicated mask design that enables efficient mapping and updating between retained ranks and trainable parameters; and (2) it employs an additional loss function to guide parameter selection toward globally optimal solutions. Experimental results demonstrate that ARA achieves state-of-the-art performance. On the LLaMA2-7B model with a 80\% compression ratio, ARA reduces perplexity on WikiText2 from 8.38 to 6.42 and improves average zero-shot task accuracy by 9.72 percentage points compared with uniform compression. These results highlight the effectiveness of our method for rank allocation in SVD-based LLM compression.
☆ CPSVD: Enhancing Large Language Model Compression via Column-Preserving Singular Value Decomposition
The rapid advancement of Large Language Models (LLMs) faces a critical bottleneck in their immense size, necessitating efficient compression techniques. While Singular Value Decomposition (SVD) is a promising approach, existing SVD-based methods treat the entire parameter matrix uniformly, overlooking that SVD approximation errors vary significantly across different matrix parts, which often leads to suboptimal compression. To address this, we propose \textbf{C}olumn-\textbf{P}reserving \textbf{S}ingular \textbf{V}alue \textbf{D}ecomposition (CPSVD), a novel method that refines SVD-based LLM compression by intelligently segmenting the parameter matrix. Unlike traditional SVD, CPSVD identifies and directly preserves matrix columns with high decomposition errors, applying SVD only to columns with low decomposition errors, while precisely determining the optimal balance point between these two strategies to minimize error. Furthermore, leveraging the inherent heterogeneity in decomposition errors across different matrices within an LLM, CPSVD adaptively allocates non-uniform compression rates to modules within that layer, while adhering to a target layer-wise compression ratio, thereby further enhancing compression performance. Extensive experiments demonstrate that CPSVD consistently outperforms state-of-the-art SVD-based LLM compression methods, achieving lower perplexity and higher accuracy on zero-shot tasks.
☆ Learning Noise-Resilient and Transferable Graph-Text Alignment via Dynamic Quality Assessment
Pre-training Graph Foundation Models (GFMs) on text-attributed graphs (TAGs) is central to web-scale applications such as search, recommendation, and knowledge discovery. However, existing CLIP-style graph-text aligners face two key limitations: they assume strict one-to-one correspondences between nodes and texts, overlooking the inherent many-to-many relations in real-world graphs; and they rely on static alignment objectives that cannot adapt to varying data quality, making them brittle under noisy supervision. Together, these limitations expose a core dilemma: embracing expressive many-to-many alignment amplifies noise, while reverting to strict one-to-one strategies sacrifices semantic diversity and fails to handle inherently mismatched pairs. To address these challenges, we propose ADAligner, a dynamic, quality-aware graph-text alignment framework that dynamically adjusts between expressive many-to-many and conservative one-to-one objectives according to supervision quality. ADAligner estimates batch-level alignment reliability in real time and adapts its optimization accordingly, promoting soft, subgraph-level many-to-many alignment when supervision is clean, while emphasizing reliable one-to-one alignment by dynamically filtering low-confidence pairs under noise. Theoretically, we prove that this dynamic mechanism forms a stable negative feedback process, ensuring convergence and robustness. Comprehensive experiments on nine diverse TAG datasets demonstrate that ADAligner consistently outperforms prior graph-text aligners on zero-/few-shot node classification, link prediction and cross-modal retrieval tasks. It maintains strong robustness under noisy supervision and accelerates pre-training by approximately 2 to 3 times compared to multimodal baselines, establishing a scalable and reliable foundation for graph-text representation learning in real-world web environments.
☆ LMFD: Latent Monotonic Feature Discovery
Many systems in our world age, degrade or otherwise move slowly but steadily in a certain direction. When monitoring such systems by means of sensors, one often assumes that some form of `age' is latently present in the data, but perhaps the available sensors do not readily provide this useful information. The task that we study in this paper is to extract potential proxies for this `age' from the available multi-variate time series without having clear data on what `age' actually is. We argue that when we find a sensor, or more likely some discovered function of the available sensors, that is sufficiently monotonic, that function can act as the proxy we are searching for. Using a carefully defined grammar and optimising the resulting equations in terms of monotonicity, defined as the absolute Spearman's Rank Correlation between time and the candidate formula, the proposed approach generates a set of candidate features which are then fitted and assessed on monotonicity. The proposed system is evaluated against an artificially generated dataset and two real-world datasets. In all experiments, we show that the system is able to combine sensors with low individual monotonicity into latent features with high monotonicity. For the real-world dataset of InfraWatch, a structural health monitoring project, we show that two features with individual absolute Spearman's $\rho$ values of $0.13$ and $0.09$ can be combined into a proxy with an absolute Spearman's $\rho$ of $0.95$. This demonstrates that our proposed method can find interpretable equations which can serve as a proxy for the `age' of the system.
comment: This preprint has not undergone peer review or any post-submission improvements or corrections. The Version of Record of this contribution is published in Machine Learning and Principles and Practice of Knowledge Discovery in Databases, and is available online at https://doi.org/10.1007/978-3-031-74633-8_2
☆ A Derandomization Framework for Structure Discovery: Applications in Neural Networks and Beyond
Understanding the dynamics of feature learning in neural networks (NNs) remains a significant challenge. The work of (Mousavi-Hosseini et al., 2023) analyzes a multiple index teacher-student setting and shows that a two-layer student attains a low-rank structure in its first-layer weights when trained with stochastic gradient descent (SGD) and a strong regularizer. This structural property is known to reduce sample complexity of generalization. Indeed, in a second step, the same authors establish algorithm-specific learning guarantees under additional assumptions. In this paper, we focus exclusively on the structure discovery aspect and study it under weaker assumptions, more specifically: we allow (a) NNs of arbitrary size and depth, (b) with all parameters trainable, (c) under any smooth loss function, (d) tiny regularization, and (e) trained by any method that attains a second-order stationary point (SOSP), e.g.\ perturbed gradient descent (PGD). At the core of our approach is a key $\textit{derandomization}$ lemma, which states that optimizing the function $\mathbb{E}_{\mathbf{x}} \left[g_{\theta}(\mathbf{W}\mathbf{x} + \mathbf{b})\right]$ converges to a point where $\mathbf{W} = \mathbf{0}$, under mild conditions. The fundamental nature of this lemma directly explains structure discovery and has immediate applications in other domains including an end-to-end approximation for MAXCUT, and computing Johnson-Lindenstrauss embeddings.
☆ Optimization Benchmark for Diffusion Models on Dynamical Systems
The training of diffusion models is often absent in the evaluation of new optimization techniques. In this work, we benchmark recent optimization algorithms for training a diffusion model for denoising flow trajectories. We observe that Muon and SOAP are highly efficient alternatives to AdamW (18% lower final loss). We also revisit several recent phenomena related to the training of models for text or image applications in the context of diffusion model training. This includes the impact of the learning-rate schedule on the training dynamics, and the performance gap between Adam and SGD.
☆ Square root Cox's survival analysis by the fittest linear and neural networks model
We revisit Cox's proportional hazard models and LASSO in the aim of improving feature selection in survival analysis. Unlike traditional methods relying on cross-validation or BIC, the penalty parameter $\lambda$ is directly tuned for feature selection and is asymptotically pivotal thanks to taking the square root of Cox's partial likelihood. Substantially improving over both cross-validation LASSO and BIC subset selection, our approach has a phase transition on the probability of retrieving all and only the good features, like in compressed sensing. The method can be employed by linear models but also by artificial neural networks.
☆ Using Temperature Sampling to Effectively Train Robot Learning Policies on Imbalanced Datasets
Increasingly large datasets of robot actions and sensory observations are being collected to train ever-larger neural networks. These datasets are collected based on tasks and while these tasks may be distinct in their descriptions, many involve very similar physical action sequences (e.g., 'pick up an apple' versus 'pick up an orange'). As a result, many datasets of robotic tasks are substantially imbalanced in terms of the physical robotic actions they represent. In this work, we propose a simple sampling strategy for policy training that mitigates this imbalance. Our method requires only a few lines of code to integrate into existing codebases and improves generalization. We evaluate our method in both pre-training small models and fine-tuning large foundational models. Our results show substantial improvements on low-resource tasks compared to prior state-of-the-art methods, without degrading performance on high-resource tasks. This enables more effective use of model capacity for multi-task policies. We also further validate our approach in a real-world setup on a Franka Panda robot arm across a diverse set of tasks.
☆ On the hardness of RL with Lookahead
We study reinforcement learning (RL) with transition look-ahead, where the agent may observe which states would be visited upon playing any sequence of $\ell$ actions before deciding its course of action. While such predictive information can drastically improve the achievable performance, we show that using this information optimally comes at a potentially prohibitive computational cost. Specifically, we prove that optimal planning with one-step look-ahead ($\ell=1$) can be solved in polynomial time through a novel linear programming formulation. In contrast, for $\ell \geq 2$, the problem becomes NP-hard. Our results delineate a precise boundary between tractable and intractable cases for the problem of planning with transition look-ahead in reinforcement learning.
☆ AMAuT: A Flexible and Efficient Multiview Audio Transformer Framework Trained from Scratch
Recent foundational models, SSAST, EAT, HuBERT, Qwen-Audio, and Audio Flamingo, achieve top-tier results across standard audio benchmarks but are limited by fixed input rates and durations, hindering their reusability. This paper introduces the Augmentation-driven Multiview Audio Transformer (AMAuT), a training-from-scratch framework that eliminates the dependency on pre-trained weights while supporting arbitrary sample rates and audio lengths. AMAuT integrates four key components: (1) augmentation-driven multiview learning for robustness, (2) a conv1 + conv7 + conv1 one-dimensional CNN bottleneck for stable temporal encoding, (3) dual CLS + TAL tokens for bidirectional context representation, and (4) test-time adaptation/augmentation (TTA^2) to improve inference reliability. Experiments on five public benchmarks, AudioMNIST, SpeechCommands V1 & V2, VocalSound, and CochlScene, show that AMAuT achieves accuracies up to 99.8% while consuming less than 3% of the GPU hours required by comparable pre-trained models. Thus, AMAuT presents a highly efficient and flexible alternative to large pre-trained models, making state-of-the-art audio classification accessible in computationally constrained settings.
☆ MoE-Prism: Disentangling Monolithic Experts for Elastic MoE Services via Model-System Co-Designs
Mixture-of-Experts (MoE) models, the state-of-the-art in large-scale AI, achieve high quality by sparsely activating parameters. However, their reliance on routing between a few monolithic experts via a top-k mechanism creates a "quality cliff", offering only a few coarse-grained operating points. This inflexibility forces a difficult trade-off between cost and quality, preventing adaptation to diverse Service Level Objectives (SLOs) and leading to significant resource over-provisioning. This paper introduces MoE-Prism, a model-system co-design that transforms rigid MoE models into elastic services. Our methodology is divided into two phases. First, an \emph{Offline Refactoring Engine} systematically deconstructs monolithic experts into fine-grained "sub-experts." This engine employs a partitioning optimization solver that uses a metaheuristic-based approach to group neurons, preserving functional locality without requiring retraining. Second, an \emph{Online Scheduling Engine} leverages this new elasticity through QoS-aware scheduling. It implements specialized policies to solve complex system problems, including maximizing throughput in cloud deployments and managing latency-optimized offloading for memory-constrained devices. Our evaluation across three different MoE models shows that MoE-Prismprovides over 4 times more distinct, stable operating points than the baseline. This allows an AI service to dynamically improve throughput by up to 19.9\% under a strict latency budget or reduce latency by up to 10.36\% under limited resources. MoE-Prism provides the critical "control knob" to bridge the model-system gap, enabling the next generation of adaptive, efficient, and QoS-aware AI services.
☆ Autobidding Arena: unified evaluation of the classical and RL-based autobidding algorithms
Advertisement auctions play a crucial role in revenue generation for e-commerce companies. To make the bidding procedure scalable to thousands of auctions, the automatic bidding (autobidding) algorithms are actively developed in the industry. Therefore, the fair and reproducible evaluation of autobidding algorithms is an important problem. We present a standardized and transparent evaluation protocol for comparing classical and reinforcement learning (RL) autobidding algorithms. We consider the most efficient autobidding algorithms from different classes, e.g., ones based on the controllers, RL, optimal formulas, etc., and benchmark them in the bidding environment. We utilize the most recent open-source environment developed in the industry, which accurately emulates the bidding process. Our work demonstrates the most promising use cases for the considered autobidding algorithms, highlights their surprising drawbacks, and evaluates them according to multiple metrics. We select the evaluation metrics that illustrate the performance of the autobidding algorithms, the corresponding costs, and track the budget pacing. Such a choice of metrics makes our results applicable to the broad range of platforms where autobidding is effective. The presented comparison results help practitioners to evaluate the candidate autobidding algorithms from different perspectives and select ones that are efficient according to their companies' targets.
☆ ConvXformer: Differentially Private Hybrid ConvNeXt-Transformer for Inertial Navigation
Data-driven inertial sequence learning has revolutionized navigation in GPS-denied environments, offering superior odometric resolution compared to traditional Bayesian methods. However, deep learning-based inertial tracking systems remain vulnerable to privacy breaches that can expose sensitive training data. \hl{Existing differential privacy solutions often compromise model performance by introducing excessive noise, particularly in high-frequency inertial measurements.} In this article, we propose ConvXformer, a hybrid architecture that fuses ConvNeXt blocks with Transformer encoders in a hierarchical structure for robust inertial navigation. We propose an efficient differential privacy mechanism incorporating adaptive gradient clipping and gradient-aligned noise injection (GANI) to protect sensitive information while ensuring model performance. Our framework leverages truncated singular value decomposition for gradient processing, enabling precise control over the privacy-utility trade-off. Comprehensive performance evaluations on benchmark datasets (OxIOD, RIDI, RoNIN) demonstrate that ConvXformer surpasses state-of-the-art methods, achieving more than 40% improvement in positioning accuracy while ensuring $(\epsilon,\delta)$-differential privacy guarantees. To validate real-world performance, we introduce the Mech-IO dataset, collected from the mechanical engineering building at KAIST, where intense magnetic fields from industrial equipment induce significant sensor perturbations. This demonstrated robustness under severe environmental distortions makes our framework well-suited for secure and intelligent navigation in cyber-physical systems.
comment: 14 pages, 8 figures, 3 tables
☆ Scalable LinUCB: Low-Rank Design Matrix Updates for Recommenders with Large Action Spaces
Linear contextual bandits, especially LinUCB, are widely used in recommender systems. However, its training, inference, and memory costs grow with feature dimensionality and the size of the action space. The key bottleneck becomes the need to update, invert and store a design matrix that absorbs contextual information from interaction history. In this paper, we introduce Scalable LinUCB, the algorithm that enables fast and memory efficient operations with the inverse regularized design matrix. We achieve this through a dynamical low-rank parametrization of its inverse Cholesky-style factors. We derive numerically stable rank-1 and batched updates that maintain the inverse without directly forming the entire matrix. To control memory growth, we employ a projector-splitting integrator for dynamical low-rank approximation, yielding average per-step update cost $O(dr)$ and memory $O(dr)$ for approximation rank $r$. Inference complexity of the suggested algorithm is $O(dr)$ per action evaluation. Experiments on recommender system datasets demonstrate the effectiveness of our algorithm.
☆ A Markov Decision Process for Variable Selection in Branch & Bound
Mixed-Integer Linear Programming (MILP) is a powerful framework used to address a wide range of NP-hard combinatorial optimization problems, often solved by Branch and Bound (B&B). A key factor influencing the performance of B&B solvers is the variable selection heuristic governing branching decisions. Recent contributions have sought to adapt reinforcement learning (RL) algorithms to the B&B setting to learn optimal branching policies, through Markov Decision Processes (MDP) inspired formulations, and ad hoc convergence theorems and algorithms. In this work, we introduce BBMDP, a principled vanilla MDP formulation for variable selection in B&B, allowing to leverage a broad range of RL algorithms for the purpose of learning optimal B\&B heuristics. Computational experiments validate our model empirically, as our branching agent outperforms prior state-of-the-art RL agents on four standard MILP benchmarks.
☆ A New Type of Adversarial Examples
Most machine learning models are vulnerable to adversarial examples, which poses security concerns on these models. Adversarial examples are crafted by applying subtle but intentionally worst-case modifications to examples from the dataset, leading the model to output a different answer from the original example. In this paper, adversarial examples are formed in an exactly opposite manner, which are significantly different from the original examples but result in the same answer. We propose a novel set of algorithms to produce such adversarial examples, including the negative iterative fast gradient sign method (NI-FGSM) and the negative iterative fast gradient method (NI-FGM), along with their momentum variants: the negative momentum iterative fast gradient sign method (NMI-FGSM) and the negative momentum iterative fast gradient method (NMI-FGM). Adversarial examples constructed by these methods could be used to perform an attack on machine learning systems in certain occasions. Moreover, our results show that the adversarial examples are not merely distributed in the neighbourhood of the examples from the dataset; instead, they are distributed extensively in the sample space.
☆ Foundation Model Forecasts: Form and Function
Time-series foundation models (TSFMs) achieve strong forecast accuracy, yet accuracy alone does not determine practical value. The form of a forecast -- point, quantile, parametric, or trajectory ensemble -- fundamentally constrains which operational tasks it can support. We survey recent TSFMs and find that two-thirds produce only point or parametric forecasts, while many operational tasks require trajectory ensembles that preserve temporal dependence. We establish when forecast types can be converted and when they cannot: trajectory ensembles convert to simpler forms via marginalization without additional assumptions, but the reverse requires imposing temporal dependence through copulas or conformal methods. We prove that marginals cannot determine path-dependent event probabilities -- infinitely many joint distributions share identical marginals but yield different answers to operational questions. We map six fundamental forecasting tasks to minimal sufficient forecast types and provide a task-aligned evaluation framework. Our analysis clarifies when forecast type, not accuracy, differentiates practical utility.
comment: 28 pages, 3 figures
☆ Nonmonotone subgradient methods based on a local descent lemma
The aim of this paper is to extend the context of nonmonotone descent methods to the class of nonsmooth and nonconvex functions called upper-$\mathcal{C}^2$, which satisfy a nonsmooth and local version of the descent lemma. Under this assumption, we propose a general subgradient method that performs a nonmonotone linesearch, and we prove subsequential convergence to a stationary point of the optimization problem. Our approach allows us to cover the setting of various subgradient algorithms, including Newton and quasi-Newton methods. In addition, we propose a specification of the general scheme, named Self-adaptive Nonmonotone Subgradient Method (SNSM), which automatically updates the parameters of the linesearch. Particular attention is paid to the minimum sum-of-squares clustering problem, for which we provide a concrete implementation of SNSM. We conclude with some numerical experiments where we exhibit the advantages of SNSM in comparison with some known algorithms.
☆ Every Attention Matters: An Efficient Hybrid Architecture for Long-Context Reasoning
In this technical report, we present the Ring-linear model series, specifically including Ring-mini-linear-2.0 and Ring-flash-linear-2.0. Ring-mini-linear-2.0 comprises 16B parameters and 957M activations, while Ring-flash-linear-2.0 contains 104B parameters and 6.1B activations. Both models adopt a hybrid architecture that effectively integrates linear attention and softmax attention, significantly reducing I/O and computational overhead in long-context inference scenarios. Compared to a 32 billion parameter dense model, this series reduces inference cost to 1/10, and compared to the original Ring series, the cost is also reduced by over 50%. Furthermore, through systematic exploration of the ratio between different attention mechanisms in the hybrid architecture, we have identified the currently optimal model structure. Additionally, by leveraging our self-developed high-performance FP8 operator library-linghe, overall training efficiency has been improved by 50%. Benefiting from the high alignment between the training and inference engine operators, the models can undergo long-term, stable, and highly efficient optimization during the reinforcement learning phase, consistently maintaining SOTA performance across multiple challenging complex reasoning benchmarks.
comment: 20 pages, 13 figures
☆ Metadata Extraction Leveraging Large Language Models
The advent of Large Language Models has revolutionized tasks across domains, including the automation of legal document analysis, a critical component of modern contract management systems. This paper presents a comprehensive implementation of LLM-enhanced metadata extraction for contract review, focusing on the automatic detection and annotation of salient legal clauses. Leveraging both the publicly available Contract Understanding Atticus Dataset (CUAD) and proprietary contract datasets, our work demonstrates the integration of advanced LLM methodologies with practical applications. We identify three pivotal elements for optimizing metadata extraction: robust text conversion, strategic chunk selection, and advanced LLM-specific techniques, including Chain of Thought (CoT) prompting and structured tool calling. The results from our experiments highlight the substantial improvements in clause identification accuracy and efficiency. Our approach shows promise in reducing the time and cost associated with contract review while maintaining high accuracy in legal clause identification. The results suggest that carefully optimized LLM systems could serve as valuable tools for legal professionals, potentially increasing access to efficient contract review services for organizations of all sizes.
☆ Calibration and Discrimination Optimization Using Clusters of Learned Representation
Machine learning models are essential for decision-making and risk assessment, requiring highly reliable predictions in terms of both discrimination and calibration. While calibration often receives less attention, it is crucial for critical decisions, such as those in clinical predictions. We introduce a novel calibration pipeline that leverages an ensemble of calibration functions trained on clusters of learned representations of the input samples to enhance overall calibration. This approach not only improves the calibration score of various methods from 82.28% up to 100% but also introduces a unique matching metric that ensures model selection optimizes both discrimination and calibration. Our generic scheme adapts to any underlying representation, clustering, calibration methods and metric, offering flexibility and superior performance across commonly used calibration methods.
Transformers are Inherently Succinct
We propose succinctness as a measure of the expressive power of a transformer in describing a concept. To this end, we prove that transformers are highly expressive in that they can represent formal languages substantially more succinctly than standard representations of formal languages like finite automata and Linear Temporal Logic (LTL) formulas. As a by-product of this expressivity, we show that verifying properties of transformers is provably intractable (i.e. EXPSPACE-complete).
☆ Topology of Currencies: Persistent Homology for FX Co-movements: A Comparative Clustering Study
This study investigates whether Topological Data Analysis (TDA) can provide additional insights beyond traditional statistical methods in clustering currency behaviours. We focus on the foreign exchange (FX) market, which is a complex system often exhibiting non-linear and high-dimensional dynamics that classical techniques may not fully capture. We compare clustering results based on TDA-derived features versus classical statistical features using monthly logarithmic returns of 13 major currency exchange rates (all against the euro). Two widely-used clustering algorithms, \(k\)-means and Hierarchical clustering, are applied on both types of features, and cluster quality is evaluated via the Silhouette score and the Calinski-Harabasz index. Our findings show that TDA-based feature clustering produces more compact and well-separated clusters than clustering on traditional statistical features, particularly achieving substantially higher Calinski-Harabasz scores. However, all clustering approaches yield modest Silhouette scores, underscoring the inherent difficulty of grouping FX time series. The differing cluster compositions under TDA vs. classical features suggest that TDA captures structural patterns in currency co-movements that conventional methods might overlook. These results highlight TDA as a valuable complementary tool for analysing financial time series, with potential applications in risk management where understanding structural co-movements is crucial.
comment: 26 pages, 17 figures, the results were presented at the 5th MORSE Conference, Maastricht University (October 2025)
☆ FrogDeepSDM: Improving Frog Counting and Occurrence Prediction Using Multimodal Data and Pseudo-Absence Imputation
Monitoring species distribution is vital for conservation efforts, enabling the assessment of environmental impacts and the development of effective preservation strategies. Traditional data collection methods, including citizen science, offer valuable insights but remain limited in coverage and completeness. Species Distribution Modelling (SDM) helps address these gaps by using occurrence data and environmental variables to predict species presence across large regions. In this study, we enhance SDM accuracy for frogs (Anura) by applying deep learning and data imputation techniques using data from the "EY - 2022 Biodiversity Challenge." Our experiments show that data balancing significantly improved model performance, reducing the Mean Absolute Error (MAE) from 189 to 29 in frog counting tasks. Feature selection identified key environmental factors influencing occurrence, optimizing inputs while maintaining predictive accuracy. The multimodal ensemble model, integrating land cover, NDVI, and other environmental inputs, outperformed individual models and showed robust generalization across unseen regions. The fusion of image and tabular data improved both frog counting and habitat classification, achieving 84.9% accuracy with an AUC of 0.90. This study highlights the potential of multimodal learning and data preprocessing techniques such as balancing and imputation to improve predictive ecological modeling when data are sparse or incomplete, contributing to more precise and scalable biodiversity monitoring.
☆ Loopholing Discrete Diffusion: Deterministic Bypass of the Sampling Wall
Discrete diffusion models offer a promising alternative to autoregressive generation through parallel decoding, but they suffer from a sampling wall: once categorical sampling occurs, rich distributional information collapses into one-hot vectors and cannot be propagated across steps, forcing subsequent steps to operate with limited information. To mitigate this problem, we introduce Loopholing, a novel and simple mechanism that preserves this information via a deterministic latent pathway, leading to Loopholing Discrete Diffusion Models (LDDMs). Trained efficiently with a self-conditioning strategy, LDDMs achieve substantial gains-reducing generative perplexity by up to 61% over prior baselines, closing (and in some cases surpassing) the gap with autoregressive models, and producing more coherent text. Applied to reasoning tasks, LDDMs also improve performance on arithmetic benchmarks such as Countdown and Game of 24. These results also indicate that loopholing mitigates idle steps and oscillations, providing a scalable path toward high-quality non-autoregressive text generation.
☆ Collaborative penetration testing suite for emerging generative AI algorithms
Problem Space: AI Vulnerabilities and Quantum Threats Generative AI vulnerabilities: model inversion, data poisoning, adversarial inputs. Quantum threats Shor Algorithm breaking RSA ECC encryption. Challenge Secure generative AI models against classical and quantum cyberattacks. Proposed Solution Collaborative Penetration Testing Suite Five Integrated Components: DAST SAST OWASP ZAP, Burp Suite, SonarQube, Fortify. IAST Contrast Assess integrated with CI CD pipeline. Blockchain Logging Hyperledger Fabric for tamper-proof logs. Quantum Cryptography Lattice based RLWE protocols. AI Red Team Simulations Adversarial ML & Quantum-assisted attacks. Integration Layer: Unified workflow for AI, cybersecurity, and quantum experts. Key Results 300+ vulnerabilities identified across test environments. 70% reduction in high-severity issues within 2 weeks. 90% resolution efficiency for blockchain-logged vulnerabilities. Quantum-resistant cryptography maintained 100% integrity in tests. Outcome: Quantum AI Security Protocol integrating Blockchain Quantum Cryptography AI Red Teaming.
☆ QiMeng-SALV: Signal-Aware Learning for Verilog Code Generation NeurIPS 2025
The remarkable progress of Large Language Models (LLMs) presents promising opportunities for Verilog code generation which is significantly important for automated circuit design. The lacking of meaningful functional rewards hinders the preference optimization based on Reinforcement Learning (RL) for producing functionally correct Verilog code. In this paper, we propose Signal-Aware Learning for Verilog code generation (QiMeng-SALV) by leveraging code segments of functionally correct output signal to optimize RL training. Considering Verilog code specifies the structural interconnection of hardware gates and wires so that different output signals are independent, the key insight of QiMeng-SALV is to extract verified signal-aware implementations in partially incorrect modules, so as to enhance the extraction of meaningful functional rewards. Roughly, we verify the functional correctness of signals in generated module by comparing with that of reference module in the training data. Then abstract syntax tree (AST) is employed to identify signal-aware code segments which can provide meaningful functional rewards from erroneous modules. Finally, we introduce signal-aware DPO which is optimized on the correct signal-level code segments, thereby preventing noise and interference from incorrect signals. The proposed QiMeng-SALV underscores the paradigm shift from conventional module-level to fine-grained signal-level optimization in Verilog code generation, addressing the issue of insufficient functional rewards. Experiments demonstrate that our method achieves state-of-the-art performance on VerilogEval and RTLLM, with a 7B parameter model matching the performance of the DeepSeek v3 671B model and significantly outperforming the leading open-source model CodeV trained on the same dataset. Our code is available at https://github.com/zy1xxx/SALV.
comment: Accepted to NeurIPS 2025
☆ Knowledge Distillation of Uncertainty using Deep Latent Factor Model
Deep ensembles deliver state-of-the-art, reliable uncertainty quantification, but their heavy computational and memory requirements hinder their practical deployments to real applications such as on-device AI. Knowledge distillation compresses an ensemble into small student models, but existing techniques struggle to preserve uncertainty partly because reducing the size of DNNs typically results in variation reduction. To resolve this limitation, we introduce a new method of distribution distillation (i.e. compressing a teacher ensemble into a student distribution instead of a student ensemble) called Gaussian distillation, which estimates the distribution of a teacher ensemble through a special Gaussian process called the deep latent factor model (DLF) by treating each member of the teacher ensemble as a realization of a certain stochastic process. The mean and covariance functions in the DLF model are estimated stably by using the expectation-maximization (EM) algorithm. By using multiple benchmark datasets, we demonstrate that the proposed Gaussian distillation outperforms existing baselines. In addition, we illustrate that Gaussian distillation works well for fine-tuning of language models and distribution shift problems.
☆ Magnetic field estimation using Gaussian process regression for interactive wireless power system design
Wireless power transfer (WPT) with coupled resonators offers a promising solution for the seamless powering of electronic devices. Interactive design approaches that visualize the magnetic field and power transfer efficiency based on system geometry adjustments can facilitate the understanding and exploration of the behavior of these systems for dynamic applications. However, typical electromagnetic field simulation methods, such as the Method of Moments (MoM), require significant computational resources, limiting the rate at which computation can be performed for acceptable interactivity. Furthermore, the system's sensitivity to positional and geometrical changes necessitates a large number of simulations, and structures such as ferromagnetic shields further complicate these simulations. Here, we introduce a machine learning approach using Gaussian Process Regression (GPR), demonstrating for the first time the rapid estimation of the entire magnetic field and power transfer efficiency for near-field coupled systems. To achieve quick and accurate estimation, we develop 3D adaptive grid systems and an active learning strategy to effectively capture the nonlinear interactions between complex system geometries and magnetic fields. By training a regression model, our approach achieves magnetic field computation with sub-second latency and with an average error of less than 6% when validated against independent electromagnetic simulation results.
comment: 29 pages, 8 figures, 1 table
☆ Hierarchical DLO Routing with Reinforcement Learning and In-Context Vision-language Models
Long-horizon routing tasks of deformable linear objects (DLOs), such as cables and ropes, are common in industrial assembly lines and everyday life. These tasks are particularly challenging because they require robots to manipulate DLO with long-horizon planning and reliable skill execution. Successfully completing such tasks demands adapting to their nonlinear dynamics, decomposing abstract routing goals, and generating multi-step plans composed of multiple skills, all of which require accurate high-level reasoning during execution. In this paper, we propose a fully autonomous hierarchical framework for solving challenging DLO routing tasks. Given an implicit or explicit routing goal expressed in language, our framework leverages vision-language models~(VLMs) for in-context high-level reasoning to synthesize feasible plans, which are then executed by low-level skills trained via reinforcement learning. To improve robustness in long horizons, we further introduce a failure recovery mechanism that reorients the DLO into insertion-feasible states. Our approach generalizes to diverse scenes involving object attributes, spatial descriptions, as well as implicit language commands. It outperforms the next best baseline method by nearly 50% and achieves an overall success rate of 92.5% across long-horizon routing scenarios.
comment: 8 pages, 6 figures, 3 tables
☆ Data Efficient Any Transformer-to-Mamba Distillation via Attention Bridge
State-space models (SSMs) have emerged as efficient alternatives to Transformers for sequence modeling, offering superior scalability through recurrent structures. However, their training remains costly and the ecosystem around them is far less mature than that of Transformers. Moreover, the structural heterogeneity between SSMs and Transformers makes it challenging to efficiently distill knowledge from pretrained attention models. In this work, we propose Cross-architecture distillation via Attention Bridge (CAB), a novel data-efficient distillation framework that efficiently transfers attention knowledge from Transformer teachers to state-space student models. Unlike conventional knowledge distillation that transfers knowledge only at the output level, CAB enables token-level supervision via a lightweight bridge and flexible layer-wise alignment, improving both efficiency and transferability. We further introduce flexible layer-wise alignment strategies to accommodate architectural discrepancies between teacher and student. Extensive experiments across vision and language domains demonstrate that our method consistently improves the performance of state-space models, even under limited training data, outperforming both standard and cross-architecture distillation methods. Our findings suggest that attention-based knowledge can be efficiently transferred to recurrent models, enabling rapid utilization of Transformer expertise for building a stronger SSM community.
☆ FnRGNN: Distribution-aware Fairness in Graph Neural Network
Graph Neural Networks (GNNs) excel at learning from structured data, yet fairness in regression tasks remains underexplored. Existing approaches mainly target classification and representation-level debiasing, which cannot fully address the continuous nature of node-level regression. We propose FnRGNN, a fairness-aware in-processing framework for GNN-based node regression that applies interventions at three levels: (i) structure-level edge reweighting, (ii) representation-level alignment via MMD, and (iii) prediction-level normalization through Sinkhorn-based distribution matching. This multi-level strategy ensures robust fairness under complex graph topologies. Experiments on four real-world datasets demonstrate that FnRGNN reduces group disparities without sacrificing performance. Code is available at https://github.com/sybeam27/FnRGNN.
☆ Synthesizability Prediction of Crystalline Structures with a Hierarchical Transformer and Uncertainty Quantification
Predicting which hypothetical inorganic crystals can be experimentally realized remains a central challenge in accelerating materials discovery. SyntheFormer is a positive-unlabeled framework that learns synthesizability directly from crystal structure, combining a Fourier-transformed crystal periodicity (FTCP) representation with hierarchical feature extraction, Random-Forest feature selection, and a compact deep MLP classifier. The model is trained on historical data from 2011 through 2018 and evaluated prospectively on future years from 2019 to 2025, where the positive class constitutes only 1.02 per cent of samples. Under this temporally separated evaluation, SyntheFormer achieves a test area under the ROC curve of 0.735 and, with dual-threshold calibration, attains high-recall screening with 97.6 per cent recall at 94.2 per cent coverage, which minimizes missed opportunities while preserving discriminative power. Crucially, the model recovers experimentally confirmed metastable compounds that lie far from the convex hull and simultaneously assigns low scores to many thermodynamically stable yet unsynthesized candidates, demonstrating that stability alone is insufficient to predict experimental attainability. By aligning structure-aware representation with uncertainty-aware decision rules, SyntheFormer provides a practical route to prioritize synthesis targets and focus laboratory effort on the most promising new inorganic materials.
☆ Mixing Configurations for Downstream Prediction
Humans possess an innate ability to group objects by similarity, a cognitive mechanism that clustering algorithms aim to emulate. Recent advances in community detection have enabled the discovery of configurations -- valid hierarchical clusterings across multiple resolution scales -- without requiring labeled data. In this paper, we formally characterize these configurations and identify similar emergent structures in register tokens within Vision Transformers. Unlike register tokens, configurations exhibit lower redundancy and eliminate the need for ad hoc selection. They can be learned through unsupervised or self-supervised methods, yet their selection or composition remains specific to the downstream task and input. Building on these insights, we introduce GraMixC, a plug-and-play module that extracts configurations, aligns them using our Reverse Merge/Split (RMS) technique, and fuses them via attention heads before forwarding them to any downstream predictor. On the DSN1 16S rRNA cultivation-media prediction task, GraMixC improves the R2 score from 0.6 to 0.9 across multiple methods, setting a new state of the art. We further validate GraMixC on standard tabular benchmarks, where it consistently outperforms single-resolution and static-feature baselines.
comment: 16 pages,13 figures, conference paper. Equal contribution: Juntang Wang and Hao Wu
☆ See, Think, Act: Online Shopper Behavior Simulation with VLM Agents
LLMs have recently demonstrated strong potential in simulating online shopper behavior. Prior work has improved action prediction by applying SFT on action traces with LLM-generated rationales, and by leveraging RL to further enhance reasoning capabilities. Despite these advances, current approaches rely on text-based inputs and overlook the essential role of visual perception in shaping human decision-making during web GUI interactions. In this paper, we investigate the integration of visual information, specifically webpage screenshots, into behavior simulation via VLMs, leveraging OPeRA dataset. By grounding agent decision-making in both textual and visual modalities, we aim to narrow the gap between synthetic agents and real-world users, thereby enabling more cognitively aligned simulations of online shopping behavior. Specifically, we employ SFT for joint action prediction and rationale generation, conditioning on the full interaction context, which comprises action history, past HTML observations, and the current webpage screenshot. To further enhance reasoning capabilities, we integrate RL with a hierarchical reward structure, scaled by a difficulty-aware factor that prioritizes challenging decision points. Empirically, our studies show that incorporating visual grounding yields substantial gains: the combination of text and image inputs improves exact match accuracy by more than 6% over text-only inputs. These results indicate that multi-modal grounding not only boosts predictive accuracy but also enhances simulation fidelity in visually complex environments, which captures nuances of human attention and decision-making that text-only agents often miss. Finally, we revisit the design space of behavior simulation frameworks, identify key methodological limitations, and propose future research directions toward building efficient and effective human behavior simulators.
☆ Interpret Policies in Deep Reinforcement Learning using SILVER with RL-Guided Labeling: A Model-level Approach to High-dimensional and Multi-action Environments
Deep reinforcement learning (RL) achieves remarkable performance but lacks interpretability, limiting trust in policy behavior. The existing SILVER framework (Li, Siddique, and Cao 2025) explains RL policy via Shapley-based regression but remains restricted to low-dimensional, binary-action domains. We propose SILVER with RL-guided labeling, an enhanced variant that extends SILVER to multi-action and high-dimensional environments by incorporating the RL policy's own action outputs into the boundary points identification. Our method first extracts compact feature representations from image observations, performs SHAP-based feature attribution, and then employs RL-guided labeling to generate behaviorally consistent boundary datasets. Surrogate models, such as decision trees and regression-based functions, are subsequently trained to interpret RL policy's decision structure. We evaluate the proposed framework on two Atari environments using three deep RL algorithms and conduct human-subject study to assess the clarity and trustworthiness of the derived interpretable policy. Results show that our approach maintains competitive task performance while substantially improving transparency and human understanding of agent behavior. This work advances explainable RL by transforming SILVER into a scalable and behavior-aware framework for interpreting deep RL agents in high-dimensional, multi-action settings.
☆ SPOT: Scalable Policy Optimization with Trees for Markov Decision Processes
Interpretable reinforcement learning policies are essential for high-stakes decision-making, yet optimizing decision tree policies in Markov Decision Processes (MDPs) remains challenging. We propose SPOT, a novel method for computing decision tree policies, which formulates the optimization problem as a mixed-integer linear program (MILP). To enhance efficiency, we employ a reduced-space branch-and-bound approach that decouples the MDP dynamics from tree-structure constraints, enabling efficient parallel search. This significantly improves runtime and scalability compared to previous methods. Our approach ensures that each iteration yields the optimal decision tree. Experimental results on standard benchmarks demonstrate that SPOT achieves substantial speedup and scales to larger MDPs with a significantly higher number of states. The resulting decision tree policies are interpretable and compact, maintaining transparency without compromising performance. These results demonstrate that our approach simultaneously achieves interpretability and scalability, delivering high-quality policies an order of magnitude faster than existing approaches.
☆ Understanding the Implicit Biases of Design Choices for Time Series Foundation Models
Time series foundation models (TSFMs) are a class of potentially powerful, general-purpose tools for time series forecasting and related temporal tasks, but their behavior is strongly shaped by subtle inductive biases in their design. Rather than developing a new model and claiming that it is better than existing TSFMs, e.g., by winning on existing well-established benchmarks, our objective is to understand how the various ``knobs'' of the training process affect model quality. Using a mix of theory and controlled empirical evaluation, we identify several design choices (patch size, embedding choice, training objective, etc.) and show how they lead to implicit biases in fundamental model properties (temporal behavior, geometric structure, how aggressively or not the model regresses to the mean, etc.); and we show how these biases can be intuitive or very counterintuitive, depending on properties of the model and data. We also illustrate in a case study on outlier handling how multiple biases can interact in complex ways; and we discuss implications of our results for learning the bitter lesson and building TSFMs.
☆ Brain-Inspired Perspective on Configurations: Unsupervised Similarity and Early Cognition
Infants discover categories, detect novelty, and adapt to new contexts without supervision -- a challenge for current machine learning. We present a brain-inspired perspective on configurations, a finite-resolution clustering framework that uses a single resolution parameter and attraction-repulsion dynamics to yield hierarchical organization, novelty sensitivity, and flexible adaptation. To evaluate these properties, we introduce mheatmap, which provides proportional heatmaps and a reassignment algorithm to fairly assess multi-resolution and dynamic behavior. Across datasets, configurations are competitive on standard clustering metrics, achieve 87% AUC in novelty detection, and show 35% better stability during dynamic category evolution. These results position configurations as a principled computational model of early cognitive categorization and a step toward brain-inspired AI.
comment: 13 pages, 4 figures, conference paper. Equal contribution: Juntang Wang, Yihan Wang and Hao Wu
☆ Controllable Machine Unlearning via Gradient Pivoting
Machine unlearning (MU) aims to remove the influence of specific data from a trained model. However, approximate unlearning methods, often formulated as a single-objective optimization (SOO) problem, face a critical trade-off between unlearning efficacy and model fidelity. This leads to three primary challenges: the risk of over-forgetting, a lack of fine-grained control over the unlearning process, and the absence of metrics to holistically evaluate the trade-off. To address these issues, we reframe MU as a multi-objective optimization (MOO) problem. We then introduce a novel algorithm, Controllable Unlearning by Pivoting Gradient (CUP), which features a unique pivoting mechanism. Unlike traditional MOO methods that converge to a single solution, CUP's mechanism is designed to controllably navigate the entire Pareto frontier. This navigation is governed by a single intuitive hyperparameter, the `unlearning intensity', which allows for precise selection of a desired trade-off. To evaluate this capability, we adopt the hypervolume indicator, a metric that captures both the quality and diversity of the entire set of solutions an algorithm can generate. Our experimental results demonstrate that CUP produces a superior set of Pareto-optimal solutions, consistently outperforming existing methods across various vision tasks.
☆ RLBoost: Harvesting Preemptible Resources for Cost-Efficient Reinforcement Learning on LLMs
Reinforcement learning (RL) has become essential for unlocking advanced reasoning capabilities in large language models (LLMs). RL workflows involve interleaving rollout and training stages with fundamentally different resource requirements. Rollout typically dominates overall execution time, yet scales efficiently through multiple independent instances. In contrast, training requires tightly-coupled GPUs with full-mesh communication. Existing RL frameworks fall into two categories: co-located and disaggregated architectures. Co-located ones fail to address this resource tension by forcing both stages to share the same GPUs. Disaggregated architectures, without modifications of well-established RL algorithms, suffer from resource under-utilization. Meanwhile, preemptible GPU resources, i.e., spot instances on public clouds and spare capacity in production clusters, present significant cost-saving opportunities for accelerating RL workflows, if efficiently harvested for rollout. In this paper, we present RLBoost, a systematic solution for cost-efficient RL training that harvests preemptible GPU resources. Our key insight is that rollout's stateless and embarrassingly parallel nature aligns perfectly with preemptible and often fragmented resources. To efficiently utilize these resources despite frequent and unpredictable availability changes, RLBoost adopts a hybrid architecture with three key techniques: (1) adaptive rollout offload to dynamically adjust workloads on the reserved (on-demand) cluster, (2) pull-based weight transfer that quickly provisions newly available instances, and (3) token-level response collection and migration for efficient preemption handling and continuous load balancing. Extensive experiments show RLBoost increases training throughput by 1.51x-1.97x while improving cost efficiency by 28%-49% compared to using only on-demand GPU resources.
☆ Enhancing Graph Neural Networks: A Mutual Learning Approach
Knowledge distillation (KD) techniques have emerged as a powerful tool for transferring expertise from complex teacher models to lightweight student models, particularly beneficial for deploying high-performance models in resource-constrained devices. This approach has been successfully applied to graph neural networks (GNNs), harnessing their expressive capabilities to generate node embeddings that capture structural and feature-related information. In this study, we depart from the conventional KD approach by exploring the potential of collaborative learning among GNNs. In the absence of a pre-trained teacher model, we show that relatively simple and shallow GNN architectures can synergetically learn efficient models capable of performing better during inference, particularly in tackling multiple tasks. We propose a collaborative learning framework where ensembles of student GNNs mutually teach each other throughout the training process. We introduce an adaptive logit weighting unit to facilitate efficient knowledge exchange among models and an entropy enhancement technique to improve mutual learning. These components dynamically empower the models to adapt their learning strategies during training, optimizing their performance for downstream tasks. Extensive experiments conducted on three datasets each for node and graph classification demonstrate the effectiveness of our approach.
☆ An Active Diffusion Neural Network for Graphs
The analogy to heat diffusion has enhanced our understanding of information flow in graphs and inspired the development of Graph Neural Networks (GNNs). However, most diffusion-based GNNs emulate passive heat diffusion, which still suffers from over-smoothing and limits their ability to capture global graph information. Inspired by the heat death of the universe, which posits that energy distribution becomes uniform over time in a closed system, we recognize that, without external input, node representations in a graph converge to identical feature vectors as diffusion progresses. To address this issue, we propose the Active Diffusion-based Graph Neural Network (ADGNN). ADGNN achieves active diffusion by integrating multiple external information sources that dynamically influence the diffusion process, effectively overcoming the over-smoothing problem. Furthermore, our approach realizes true infinite diffusion by directly calculating the closed-form solution of the active diffusion iterative formula. This allows nodes to preserve their unique characteristics while efficiently gaining comprehensive insights into the graph's global structure. We evaluate ADGNN against several state-of-the-art GNN models across various graph tasks. The results demonstrate that ADGNN significantly improves both accuracy and efficiency, highlighting its effectiveness in capturing global graph information and maintaining node distinctiveness.
☆ A Communication-Efficient Decentralized Actor-Critic Algorithm
In this paper, we study the problem of reinforcement learning in multi-agent systems where communication among agents is limited. We develop a decentralized actor-critic learning framework in which each agent performs several local updates of its policy and value function, where the latter is approximated by a multi-layer neural network, before exchanging information with its neighbors. This local training strategy substantially reduces the communication burden while maintaining coordination across the network. We establish finite-time convergence analysis for the algorithm under Markov-sampling. Specifically, to attain the $\varepsilon$-accurate stationary point, the sample complexity is of order $\mathcal{O}(\varepsilon^{-3})$ and the communication complexity is of order $\mathcal{O}(\varepsilon^{-1}\tau^{-1})$, where tau denotes the number of local training steps. We also show how the final error bound depends on the neural network's approximation quality. Numerical experiments in a cooperative control setting illustrate and validate the theoretical findings.
☆ Interpretable Question Answering with Knowledge Graphs
This paper presents a question answering system that operates exclusively on a knowledge graph retrieval without relying on retrieval augmented generation (RAG) with large language models (LLMs). Instead, a small paraphraser model is used to paraphrase the entity relationship edges retrieved from querying the knowledge graph. The proposed pipeline is divided into two main stages. The first stage involves pre-processing a document to generate sets of question-answer (QA) pairs. The second stage converts these QAs into a knowledge graph from which graph-based retrieval is performed using embeddings and fuzzy techniques. The graph is queried, re-ranked, and paraphrased to generate a final answer. This work includes an evaluation using LLM-as-a-judge on the CRAG benchmark, which resulted in accuracies of 71.9% and 54.4% using LLAMA-3.2 and GPT-3.5-Turbo, respectively.
☆ Imbalanced Gradients in RL Post-Training of Multi-Task LLMs
Multi-task post-training of large language models (LLMs) is typically performed by mixing datasets from different tasks and optimizing them jointly. This approach implicitly assumes that all tasks contribute gradients of similar magnitudes; when this assumption fails, optimization becomes biased toward large-gradient tasks. In this paper, however, we show that this assumption fails in RL post-training: certain tasks produce significantly larger gradients, thus biasing updates toward those tasks. Such gradient imbalance would be justified only if larger gradients implied larger learning gains on the tasks (i.e., larger performance improvements) -- but we find this is not true. Large-gradient tasks can achieve similar or even much lower learning gains than small-gradient ones. Further analyses reveal that these gradient imbalances cannot be explained by typical training statistics such as training rewards or advantages, suggesting that they arise from the inherent differences between tasks. This cautions against naive dataset mixing and calls for future work on principled gradient-level corrections for LLMs.
☆ News-Aware Direct Reinforcement Trading for Financial Markets
The financial market is known to be highly sensitive to news. Therefore, effectively incorporating news data into quantitative trading remains an important challenge. Existing approaches typically rely on manually designed rules and/or handcrafted features. In this work, we directly use the news sentiment scores derived from large language models, together with raw price and volume data, as observable inputs for reinforcement learning. These inputs are processed by sequence models such as recurrent neural networks or Transformers to make end-to-end trading decisions. We conduct experiments using the cryptocurrency market as an example and evaluate two representative reinforcement learning algorithms, namely Double Deep Q-Network (DDQN) and Group Relative Policy Optimization (GRPO). The results demonstrate that our news-aware approach, which does not depend on handcrafted features or manually designed rules, can achieve performance superior to market benchmarks. We further highlight the critical role of time-series information in this process.
comment: 9 pages, 4 figures, 3 tables
☆ Transfer Learning Beyond the Standard Model NeurIPS 2025
Machine learning enables powerful cosmological inference but typically requires many high-fidelity simulations covering many cosmological models. Transfer learning offers a way to reduce the simulation cost by reusing knowledge across models. We show that pre-training on the standard model of cosmology, $\Lambda$CDM, and fine-tuning on various beyond-$\Lambda$CDM scenarios -- including massive neutrinos, modified gravity, and primordial non-Gaussianities -- can enable inference with significantly fewer beyond-$\Lambda$CDM simulations. However, we also show that negative transfer can occur when strong physical degeneracies exist between $\Lambda$CDM and beyond-$\Lambda$CDM parameters. We consider various transfer architectures, finding that including bottleneck structures provides the best performance. Our findings illustrate the opportunities and pitfalls of foundation-model approaches in physics: pre-training can accelerate inference, but may also hinder learning new physics.
comment: 4+8 pages, 7 figures. Accepted at NeurIPS 2025 Workshop: Machine Learning and the Physical Sciences
☆ Natural Gradient VI: Guarantees for Non-Conjugate Models NeurIPS 2025
Stochastic Natural Gradient Variational Inference (NGVI) is a widely used method for approximating posterior distribution in probabilistic models. Despite its empirical success and foundational role in variational inference, its theoretical underpinnings remain limited, particularly in the case of non-conjugate likelihoods. While NGVI has been shown to be a special instance of Stochastic Mirror Descent, and recent work has provided convergence guarantees using relative smoothness and strong convexity for conjugate models, these results do not extend to the non-conjugate setting, where the variational loss becomes non-convex and harder to analyze. In this work, we focus on mean-field parameterization and advance the theoretical understanding of NGVI in three key directions. First, we derive sufficient conditions under which the variational loss satisfies relative smoothness with respect to a suitable mirror map. Second, leveraging this structure, we propose a modified NGVI algorithm incorporating non-Euclidean projections and prove its global non-asymptotic convergence to a stationary point. Finally, under additional structural assumptions about the likelihood, we uncover hidden convexity properties of the variational loss and establish fast global convergence of NGVI to a global optimum. These results provide new insights into the geometry and convergence behavior of NGVI in challenging inference settings.
comment: NeurIPS 2025
☆ Extreme Event Aware ($η$-) Learning
Quantifying and predicting rare and extreme events persists as a crucial yet challenging task in understanding complex dynamical systems. Many practical challenges arise from the infrequency and severity of these events, including the considerable variance of simple sampling methods and the substantial computational cost of high-fidelity numerical simulations. Numerous data-driven methods have recently been developed to tackle these challenges. However, a typical assumption for the success of these methods is the occurrence of multiple extreme events, either within the training dataset or during the sampling process. This leads to accurate models in regions of quiescent events but with high epistemic uncertainty in regions associated with extremes. To overcome this limitation, we introduce Extreme Event Aware (e2a or eta) or $\eta$-learning which does not assume the existence of extreme events in the available data. $\eta$-learning reduces the uncertainty even in `uncharted' extreme event regions, by enforcing the extreme event statistics of an observable indicative of extremeness during training, which can be available through qualitative arguments or estimated with unlabeled data. This type of statistical regularization results in models that fit the observed data, while enforcing consistency with the prescribed observable statistics, enabling the generation of unprecedented extreme events even when the training data lack extremes therein. Theoretical results based on optimal transport offer a rigorous justification and highlight the optimality of the introduced method. Additionally, extensive numerical experiments illustrate the favorable properties of the $\eta$-learning framework on several prototype problems and real-world precipitation downscaling problems.
comment: Minor revisions at PNAS
☆ Preliminary Use of Vision Language Model Driven Extraction of Mouse Behavior Towards Understanding Fear Expression
Integration of diverse data will be a pivotal step towards improving scientific explorations in many disciplines. This work establishes a vision-language model (VLM) that encodes videos with text input in order to classify various behaviors of a mouse existing in and engaging with their environment. Importantly, this model produces a behavioral vector over time for each subject and for each session the subject undergoes. The output is a valuable dataset that few programs are able to produce with as high accuracy and with minimal user input. Specifically, we use the open-source Qwen2.5-VL model and enhance its performance through prompts, in-context learning (ICL) with labeled examples, and frame-level preprocessing. We found that each of these methods contributes to improved classification, and that combining them results in strong F1 scores across all behaviors, including rare classes like freezing and fleeing, without any model fine-tuning. Overall, this model will support interdisciplinary researchers studying mouse behavior by enabling them to integrate diverse behavioral features, measured across multiple time points and environments, into a comprehensive dataset that can address complex research questions.
☆ Instance-Dependent Regret Bounds for Nonstochastic Linear Partial Monitoring
In contrast to the classic formulation of partial monitoring, linear partial monitoring can model infinite outcome spaces, while imposing a linear structure on both the losses and the observations. This setting can be viewed as a generalization of linear bandits where loss and feedback are decoupled in a flexible manner. In this work, we address a nonstochastic (adversarial), finite-actions version of the problem through a simple instance of the exploration-by-optimization method that is amenable to efficient implementation. We derive regret bounds that depend on the game structure in a more transparent manner than previous theoretical guarantees for this paradigm. Our bounds feature instance-specific quantities that reflect the degree of alignment between observations and losses, and resemble known guarantees in the stochastic setting. Notably, they achieve the standard $\sqrt{T}$ rate in easy (locally observable) games and $T^{2/3}$ in hard (globally observable) games, where $T$ is the time horizon. We instantiate these bounds in a selection of old and new partial information settings subsumed by this model, and illustrate that the achieved dependence on the game structure can be tight in interesting cases.
☆ Feature Space Adaptation for Robust Model Fine-Tuning
Catastrophic forgetting is a common issue in model fine-tuning, especially when the downstream domain contains limited labeled data or differs greatly from the pre-training distribution. Existing parameter-efficient fine-tuning methods operate in the weight space by modifying or augmenting the pre-trained model's parameters, which can yield models overly specialized to the available downstream data. To mitigate the risk of overwriting pre-trained knowledge and enhance robustness, we propose to fine-tune the pre-trained model in the feature space. Two new fine-tuning methods are proposed: LoRFA (Low-Rank Feature Adaptation) and VeFA (Vector-Based Feature Adaptation). Feature space adaptation is inspired by the idea of effect equivalence modeling (EEM) of downstream lurking variables causing distribution shifts, which posits that unobserved factors can be represented as the total equivalent amount on observed features. By compensating for the effects of downstream lurking variables via a lightweight feature-level transformation, the pre-trained representations can be preserved, which improves model generalization under distribution shift. We evaluate LoRFA and VeFA versus LoRA on image classification, NLU, and NLG, covering both standard fine-tuning metrics and robustness. Feature space adaptation achieves comparable fine-tuning results and consistently stronger robustness.
☆ Subliminal Corruption: Mechanisms, Thresholds, and Interpretability
As machine learning models are increasingly fine-tuned on synthetic data, there is a critical risk of subtle misalignments spreading through interconnected AI systems. This paper investigates subliminal corruption, which we define as undesirable traits are transmitted through semantically neutral data, bypassing standard safety checks. While this phenomenon has been identified, a quantitative understanding of its dynamics is missing. To address this gap, we present a systematic study of the scaling laws, thresholds, and mechanisms of subliminal corruption using a teacher-student setup with GPT-2. Our experiments reveal three key findings: (1) subliminal corruption causes behavioral crossover, degrading the model's overall alignment, not just the targeted trait; (2) alignment fails in a sharp phase transition at a critical threshold of poisoned data, rather than degrading gradually; and (3) interpretability analysis shows the corruption mechanism mimics the model's natural fine-tuning process, making it difficult to detect. These results demonstrate a critical vulnerability in AI systems that rely on synthetic data and highlight the need for new safety protocols that can account for latent threats.
☆ X-Ego: Acquiring Team-Level Tactical Situational Awareness via Cross-Egocentric Contrastive Video Representation Learning
Human team tactics emerge from each player's individual perspective and their ability to anticipate, interpret, and adapt to teammates' intentions. While advances in video understanding have improved the modeling of team interactions in sports, most existing work relies on third-person broadcast views and overlooks the synchronous, egocentric nature of multi-agent learning. We introduce X-Ego-CS, a benchmark dataset consisting of 124 hours of gameplay footage from 45 professional-level matches of the popular e-sports game Counter-Strike 2, designed to facilitate research on multi-agent decision-making in complex 3D environments. X-Ego-CS provides cross-egocentric video streams that synchronously capture all players' first-person perspectives along with state-action trajectories. Building on this resource, we propose Cross-Ego Contrastive Learning (CECL), which aligns teammates' egocentric visual streams to foster team-level tactical situational awareness from an individual's perspective. We evaluate CECL on a teammate-opponent location prediction task, demonstrating its effectiveness in enhancing an agent's ability to infer both teammate and opponent positions from a single first-person view using state-of-the-art video encoders. Together, X-Ego-CS and CECL establish a foundation for cross-egocentric multi-agent benchmarking in esports. More broadly, our work positions gameplay understanding as a testbed for multi-agent modeling and tactical learning, with implications for spatiotemporal reasoning and human-AI teaming in both virtual and real-world domains. Code and dataset are available at https://github.com/HATS-ICT/x-ego.
comment: 8 pages, 5 figures
☆ HAMLOCK: HArdware-Model LOgically Combined attacK
The growing use of third-party hardware accelerators (e.g., FPGAs, ASICs) for deep neural networks (DNNs) introduces new security vulnerabilities. Conventional model-level backdoor attacks, which only poison a model's weights to misclassify inputs with a specific trigger, are often detectable because the entire attack logic is embedded within the model (i.e., software), creating a traceable layer-by-layer activation path. This paper introduces the HArdware-Model Logically Combined Attack (HAMLOCK), a far stealthier threat that distributes the attack logic across the hardware-software boundary. The software (model) is now only minimally altered by tuning the activations of few neurons to produce uniquely high activation values when a trigger is present. A malicious hardware Trojan detects those unique activations by monitoring the corresponding neurons' most significant bit or the 8-bit exponents and triggers another hardware Trojan to directly manipulate the final output logits for misclassification. This decoupled design is highly stealthy, as the model itself contains no complete backdoor activation path as in conventional attacks and hence, appears fully benign. Empirically, across benchmarks like MNIST, CIFAR10, GTSRB, and ImageNet, HAMLOCK achieves a near-perfect attack success rate with a negligible clean accuracy drop. More importantly, HAMLOCK circumvents the state-of-the-art model-level defenses without any adaptive optimization. The hardware Trojan is also undetectable, incurring area and power overheads as low as 0.01%, which is easily masked by process and environmental noise. Our findings expose a critical vulnerability at the hardware-software interface, demanding new cross-layer defenses against this emerging threat.
☆ InvarGC: Invariant Granger Causality for Heterogeneous Interventional Time Series under Latent Confounding
Granger causality is widely used for causal structure discovery in complex systems from multivariate time series data. Traditional Granger causality tests based on linear models often fail to detect even mild non-linear causal relationships. Therefore, numerous recent studies have investigated non-linear Granger causality methods, achieving improved performance. However, these methods often rely on two key assumptions: causal sufficiency and known interventional targets. Causal sufficiency assumes the absence of latent confounders, yet their presence can introduce spurious correlations. Moreover, real-world time series data usually come from heterogeneous environments, without prior knowledge of interventions. Therefore, in practice, it is difficult to distinguish intervened environments from non-intervened ones, and even harder to identify which variables or timesteps are affected. To address these challenges, we propose Invariant Granger Causality (InvarGC), which leverages cross-environment heterogeneity to mitigate the effects of latent confounding and to distinguish intervened from non-intervened environments with edge-level granularity, thereby recovering invariant causal relations. In addition, we establish the identifiability under these conditions. Extensive experiments on both synthetic and real-world datasets demonstrate the competitive performance of our approach compared to state-of-the-art methods.
☆ LLMs can hide text in other text of the same length.ipynb
A meaningful text can be hidden inside another, completely different yet still coherent and plausible, text of the same length. For example, a tweet containing a harsh political critique could be embedded in a tweet that celebrates the same political leader, or an ordinary product review could conceal a secret manuscript. This uncanny state of affairs is now possible thanks to Large Language Models, and in this paper we present a simple and efficient protocol to achieve it. We show that even modest 8-billion-parameter open-source LLMs are sufficient to obtain high-quality results, and a message as long as this abstract can be encoded and decoded locally on a laptop in seconds. The existence of such a protocol demonstrates a radical decoupling of text from authorial intent, further eroding trust in written communication, already shaken by the rise of LLM chatbots. We illustrate this with a concrete scenario: a company could covertly deploy an unfiltered LLM by encoding its answers within the compliant responses of a safe model. This possibility raises urgent questions for AI safety and challenges our understanding of what it means for a Large Language Model to know something.
comment: 21 pages, main paper 9 pages
☆ Coupled Transformer Autoencoder for Disentangling Multi-Region Neural Latent Dynamics
Simultaneous recordings from thousands of neurons across multiple brain areas reveal rich mixtures of activity that are shared between regions and dynamics that are unique to each region. Existing alignment or multi-view methods neglect temporal structure, whereas dynamical latent variable models capture temporal dependencies but are usually restricted to a single area, assume linear read-outs, or conflate shared and private signals. We introduce the Coupled Transformer Autoencoder (CTAE) - a sequence model that addresses both (i) non-stationary, non-linear dynamics and (ii) separation of shared versus region-specific structure in a single framework. CTAE employs transformer encoders and decoders to capture long-range neural dynamics and explicitly partitions each region's latent space into orthogonal shared and private subspaces. We demonstrate the effectiveness of CTAE on two high-density electrophysiology datasets with simultaneous recordings from multiple regions, one from motor cortical areas and the other from sensory areas. CTAE extracts meaningful representations that better decode behavioral variables compared to existing approaches.
☆ A Multi-Layer Machine Learning and Econometric Pipeline for Forecasting Market Risk: Evidence from Cryptoasset Liquidity Spillovers
We study whether liquidity and volatility proxies of a core set of cryptoassets generate spillovers that forecast market-wide risk. Our empirical framework integrates three statistical layers: (A) interactions between core liquidity and returns, (B) principal-component relations linking liquidity and returns, and (C) volatility-factor projections that capture cross-sectional volatility crowding. The analysis is complemented by vector autoregression impulse responses and forecast error variance decompositions (see Granger 1969; Sims 1980), heterogeneous autoregressive models with exogenous regressors (HAR-X, Corsi 2009), and a leakage-safe machine learning protocol using temporal splits, early stopping, validation-only thresholding, and SHAP-based interpretation. Using daily data from 2021 to 2025 (1462 observations across 74 assets), we document statistically significant Granger-causal relationships across layers and moderate out-of-sample predictive accuracy. We report the most informative figures, including the pipeline overview, Layer A heatmap, Layer C robustness analysis, vector autoregression variance decompositions, and the test-set precision-recall curve. Full data and figure outputs are provided in the artifact repository.
☆ Not-a-Bandit: Provably No-Regret Drafter Selection in Speculative Decoding for LLMs
Speculative decoding is widely used in accelerating large language model (LLM) inference. In this work, we focus on the online draft model selection problem in speculative decoding. We design an algorithm that provably competes with the best draft model in hindsight for each query in terms of either the token acceptance probability or expected acceptance length. In particular, we show that we can accurately evaluate all draft models, instead of only the chosen model without incurring additional queries to the target model, which allows us to improve exponentially over the existing bandit-based approach as the number of draft models increases. Our approach is generically applicable with any speculative decoding methods (single draft, multi-drafts and draft-trees). Moreover, we design system-efficient versions of online learners and demonstrate that the overhead in computation and latency can be substantially reduced. We conduct extensive experiments on open-source LLMs and diverse datasets, demonstrating that our methods substantially outperform the state-of-the-art EAGLE3 and the BanditSpec baseline in a variety of domains where specialized domain-expert drafters are available, especially when long reasoning chains are required.
☆ Learning Personalized Ad Impact via Contextual Reinforcement Learning under Delayed Rewards
Online advertising platforms use automated auctions to connect advertisers with potential customers, requiring effective bidding strategies to maximize profits. Accurate ad impact estimation requires considering three key factors: delayed and long-term effects, cumulative ad impacts such as reinforcement or fatigue, and customer heterogeneity. However, these effects are often not jointly addressed in previous studies. To capture these factors, we model ad bidding as a Contextual Markov Decision Process (CMDP) with delayed Poisson rewards. For efficient estimation, we propose a two-stage maximum likelihood estimator combined with data-splitting strategies, ensuring controlled estimation error based on the first-stage estimator's (in)accuracy. Building on this, we design a reinforcement learning algorithm to derive efficient personalized bidding strategies. This approach achieves a near-optimal regret bound of $\tilde{O}{(dH^2\sqrt{T})}$, where $d$ is the contextual dimension, $H$ is the number of rounds, and $T$ is the number of customers. Our theoretical findings are validated by simulation experiments.
☆ Endogenous Aggregation of Multiple Data Envelopment Analysis Scores for Large Data Sets
We propose an approach for dynamic efficiency evaluation across multiple organizational dimensions using data envelopment analysis (DEA). The method generates both dimension-specific and aggregate efficiency scores, incorporates desirable and undesirable outputs, and is suitable for large-scale problem settings. Two regularized DEA models are introduced: a slack-based measure (SBM) and a linearized version of a nonlinear goal programming model (GP-SBM). While SBM estimates an aggregate efficiency score and then distributes it across dimensions, GP-SBM first estimates dimension-level efficiencies and then derives an aggregate score. Both models utilize a regularization parameter to enhance discriminatory power while also directly integrating both desirable and undesirable outputs. We demonstrate the computational efficiency and validity of our approach on multiple datasets and apply it to a case study of twelve hospitals in Ontario, Canada, evaluating three theoretically grounded dimensions of organizational effectiveness over a 24-month period from January 2018 to December 2019: technical efficiency, clinical efficiency, and patient experience. Our numerical results show that SBM and GP-SBM better capture correlations among input/output variables and outperform conventional benchmarking methods that separately evaluate dimensions before aggregation.
☆ From Facts to Folklore: Evaluating Large Language Models on Bengali Cultural Knowledge
Recent progress in NLP research has demonstrated remarkable capabilities of large language models (LLMs) across a wide range of tasks. While recent multilingual benchmarks have advanced cultural evaluation for LLMs, critical gaps remain in capturing the nuances of low-resource cultures. Our work addresses these limitations through a Bengali Language Cultural Knowledge (BLanCK) dataset including folk traditions, culinary arts, and regional dialects. Our investigation of several multilingual language models shows that while these models perform well in non-cultural categories, they struggle significantly with cultural knowledge and performance improves substantially across all models when context is provided, emphasizing context-aware architectures and culturally curated training data.
comment: 4 pages
☆ Throwing Vines at the Wall: Structure Learning via Random Search
Vine copulas offer flexible multivariate dependence modeling and have become widely used in machine learning, yet structure learning remains a key challenge. Early heuristics like the greedy algorithm of Dissmann are still considered the gold standard, but often suboptimal. We propose random search algorithms that improve structure selection and a statistical framework based on model confidence sets, which provides theoretical guarantees on selection probabilities and a powerful foundation for ensembling. Empirical results on several real-world data sets show that our methods consistently outperform state-of-the-art approaches.
comment: 19 pages, 7 figures, 5 tables, 2 algorithms, 4 appendices
☆ Speculative Sampling for Parametric Temporal Point Processes
Temporal point processes are powerful generative models for event sequences that capture complex dependencies in time-series data. They are commonly specified using autoregressive models that learn the distribution of the next event from the previous events. This makes sampling inherently sequential, limiting efficiency. In this paper, we propose a novel algorithm based on rejection sampling that enables exact sampling of multiple future values from existing TPP models, in parallel, and without requiring any architectural changes or retraining. Besides theoretical guarantees, our method demonstrates empirical speedups on real-world datasets, bridging the gap between expressive modeling and efficient parallel generation for large-scale TPP applications.
☆ On Encoding Matrices using Quantum Circuits
Over a decade ago, it was demonstrated that quantum computing has the potential to revolutionize numerical linear algebra by enabling algorithms with complexity superior to what is classically achievable, e.g., the seminal HHL algorithm for solving linear systems. Efficient execution of such algorithms critically depends on representing inputs (matrices and vectors) as quantum circuits that encode or implement these inputs. For that task, two common circuit representations emerged in the literature: block encodings and state preparation circuits. In this paper, we systematically study encodings matrices in the form of block encodings and state preparation circuits. We examine methods for constructing these representations from matrices given in classical form, as well as quantum two-way conversions between circuit representations. Two key results we establish (among others) are: (a) a general method for efficiently constructing a block encoding of an arbitrary matrix given in classical form (entries stored in classical random access memory); and (b) low-overhead, bidirectional conversion algorithms between block encodings and state preparation circuits, showing that these models are essentially equivalent. From a technical perspective, two central components of our constructions are: (i) a special constant-depth multiplexer that simultaneously multiplexes all higher-order Pauli matrices of a given size, and (ii) an algorithm for performing a quantum conversion between a matrix's expansion in the standard basis and its expansion in the basis of higher-order Pauli matrices.
☆ The Temporal Graph of Bitcoin Transactions
Since its 2009 genesis block, the Bitcoin network has processed \num{>1.08} billion (B) transactions representing \num{>8.72}B BTC, offering rich potential for machine learning (ML); yet, its pseudonymity and obscured flow of funds inherent in its \utxo-based design, have rendered this data largely inaccessible for ML research. Addressing this gap, we present an ML-compatible graph modeling the Bitcoin's economic topology by reconstructing the flow of funds. This temporal, heterogeneous graph encompasses complete transaction history up to block \cutoffHeight, consisting of \num{>2.4}B nodes and \num{>39.72}B edges. Additionally, we provide custom sampling methods yielding node and edge feature vectors of sampled communities, tools to load and analyze the Bitcoin graph data within specialized graph databases, and ready-to-use database snapshots. This comprehensive dataset and toolkit empower the ML community to tackle Bitcoin's intricate ecosystem at scale, driving progress in applications such as anomaly detection, address classification, market analysis, and large-scale graph ML benchmarking. Dataset and code available at \href{https://github.com/B1AAB/EBA}{github.com/b1aab/eba}
♻ ☆ Graph Representation Learning with Diffusion Generative Models
Diffusion models have established themselves as state-of-the-art generative models across various data modalities, including images and videos, due to their ability to accurately approximate complex data distributions. Unlike traditional generative approaches such as VAEs and GANs, diffusion models employ a progressive denoising process that transforms noise into meaningful data over multiple iterative steps. This gradual approach enhances their expressiveness and generation quality. Not only that, diffusion models have also been shown to extract meaningful representations from data while learning to generate samples. Despite their success, the application of diffusion models to graph-structured data remains relatively unexplored, primarily due to the discrete nature of graphs, which necessitates discrete diffusion processes distinct from the continuous methods used in other domains. In this work, we leverage the representational capabilities of diffusion models to learn meaningful embeddings for graph data. By training a discrete diffusion model within an autoencoder framework, we enable both effective autoencoding and representation learning tailored to the unique characteristics of graph-structured data. We extract the representation from the combination of the encoder's output and the decoder's first time step hidden embedding. Our approach demonstrates the potential of discrete diffusion models to be used for graph representation learning. The code can be found at https://github.com/DanielMitiku/Graph-Representation-Learning-with-Diffusion-Generative-Models
♻ ☆ LoRA vs Full Fine-tuning: An Illusion of Equivalence
Fine-tuning is a crucial paradigm for adapting pre-trained large language models to downstream tasks. Recently, methods like Low-Rank Adaptation (LoRA) have been shown to effectively fine-tune LLMs with an extreme reduction in trainable parameters. But, \emph{are their learned solutions really equivalent?} We study how LoRA and full-finetuning change pre-trained models by analyzing the model's weight matrices through the lens of their spectral properties. We find that LoRA and full fine-tuning yield weight matrices whose singular value decompositions exhibit very different structure: weight matrices trained with LoRA have new, high-ranking singular vectors, which we call \emph{intruder dimensions}, while those trained with full fine-tuning do not. Further, we extend the finding that LoRA forgets less than full fine-tuning and find its forgetting is vastly localized to the intruder dimension -- by causally intervening on the intruder dimensions by changing their associated singular values post-fine-tuning, we show that they cause forgetting. Moreover, scaling them down significantly improves modeling of the pre-training distribution with a minimal drop in downstream task performance. Given this, we should expect accumulating intruder dimensions to be harmful and lead to more forgetting. This will be amplified during continual learning because of sequentially fine-tuning, and we show that LoRA models do accumulate intruder dimensions here tend to perform worse in this setting, emphasizing the practicality of our findings.
♻ ☆ Learning Reward Machines from Partially Observed Policies
Inverse reinforcement learning is the problem of inferring a reward function from an optimal policy or demonstrations by an expert. In this work, it is assumed that the reward is expressed as a reward machine whose transitions depend on atomic propositions associated with the state of a Markov Decision Process (MDP). Our goal is to identify the true reward machine using finite information. To this end, we first introduce the notion of a prefix tree policy which associates a distribution of actions to each state of the MDP and each attainable finite sequence of atomic propositions. Then, we characterize an equivalence class of reward machines that can be identified given the prefix tree policy. Finally, we propose a SAT-based algorithm that uses information extracted from the prefix tree policy to solve for a reward machine. It is proved that if the prefix tree policy is known up to a sufficient (but finite) depth, our algorithm recovers the exact reward machine up to the equivalence class. This sufficient depth is derived as a function of the number of MDP states and (an upper bound on) the number of states of the reward machine. These results are further extended to the case where we only have access to demonstrations from an optimal policy. Several examples, including discrete grid and block worlds, a continuous state-space robotic arm, and real data from experiments with mice, are used to demonstrate the effectiveness and generality of the approach.
♻ ☆ Unlearned but Not Forgotten: Data Extraction after Exact Unlearning in LLM
Large Language Models are typically trained on datasets collected from the web, which may inadvertently contain harmful or sensitive personal information. To address growing privacy concerns, unlearning methods have been proposed to remove the influence of specific data from trained models. Of these, exact unlearning -- which retrains the model from scratch without the target data -- is widely regarded the gold standard for mitigating privacy risks in deployment. In this paper, we revisit this assumption in a practical deployment setting where both the pre- and post-unlearning logits API are exposed, such as in open-weight scenarios. Targeting this setting, we introduce a novel data extraction attack that leverages signals from the pre-unlearning model to guide the post-unlearning model, uncovering patterns that reflect the removed data distribution. Combining model guidance with a token filtering strategy, our attack significantly improves extraction success rates -- doubling performance in some cases -- across common benchmarks such as MUSE, TOFU, and WMDP. Furthermore, we demonstrate our attack's effectiveness on a simulated medical diagnosis dataset to highlight real-world privacy risks associated with exact unlearning. In light of our findings, which suggest that unlearning may, in a contradictory way, increase the risk of privacy leakage during real-world deployments, we advocate for evaluation of unlearning methods to consider broader threat models that account not only for post-unlearning models but also for adversarial access to prior checkpoints. Code is publicly available at: https://github.com/Nicholas0228/unlearned_data_extraction_llm.
comment: Accepted by Neurips 2025
♻ ☆ Are Modern Speech Enhancement Systems Vulnerable to Adversarial Attacks? IEEE
Machine learning approaches for speech enhancement are becoming increasingly expressive, enabling ever more powerful modifications of input signals. In this paper, we demonstrate that this expressiveness introduces a vulnerability: advanced speech enhancement models can be susceptible to adversarial attacks. Specifically, we show that adversarial noise, carefully crafted and psychoacoustically masked by the original input, can be injected such that the enhanced speech output conveys an entirely different semantic meaning. We experimentally verify that contemporary predictive speech enhancement models can indeed be manipulated in this way. Furthermore, we highlight that diffusion models with stochastic samplers exhibit inherent robustness to such adversarial attacks by design.
comment: Copyright 2026 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
♻ ☆ Provably Efficient Reward Transfer in Reinforcement Learning with Discrete Markov Decision Processes
In this paper, we propose a new solution to reward adaptation (RA) in reinforcement learning, where the agent adapts to a target reward function based on one or more existing source behaviors learned a priori under the same domain dynamics but different reward functions. While learning the target behavior from scratch is possible, it is often inefficient given the available source behaviors. Our work introduces a new approach to RA through the manipulation of Q-functions. Assuming the target reward function is a known function of the source reward functions, we compute bounds on the Q-function and present an iterative process (akin to value iteration) to tighten these bounds. Such bounds enable action pruning in the target domain before learning even starts. We refer to this method as "Q-Manipulation" (Q-M). The iteration process assumes access to a lite-model, which is easy to provide or learn. We formally prove that Q-M, under discrete domains, does not affect the optimality of the returned policy and show that it is provably efficient in terms of sample complexity in a probabilistic sense. Q-M is evaluated in a variety of synthetic and simulation domains to demonstrate its effectiveness, generalizability, and practicality.
♻ ☆ QoQ-Med: Building Multimodal Clinical Foundation Models with Domain-Aware GRPO Training NeurIPS 2025
Clinical decision-making routinely demands reasoning over heterogeneous data, yet existing multimodal language models (MLLMs) remain largely vision-centric and fail to generalize across clinical specialties. To bridge this gap, we introduce QoQ-Med-7B/32B, the first open generalist clinical foundation model that jointly reasons across medical images, time-series signals, and text reports. QoQ-Med is trained with Domain-aware Relative Policy Optimization (DRPO), a novel reinforcement-learning objective that hierarchically scales normalized rewards according to domain rarity and modality difficulty, mitigating performance imbalance caused by skewed clinical data distributions. Trained on 2.61 million instruction tuning pairs spanning 9 clinical domains, we show that DRPO training boosts diagnostic performance by 43% in macro-F1 on average across all visual domains as compared to other critic-free training methods like GRPO. Furthermore, with QoQ-Med trained on intensive segmentation data, it is able to highlight salient regions related to the diagnosis, with an IoU 10x higher than open models while reaching the performance of OpenAI o4-mini. To foster reproducibility and downstream research, we release (i) the full model weights, (ii) the modular training pipeline, and (iii) all intermediate reasoning traces at https://github.com/DDVD233/QoQ_Med.
comment: Accepted as Oral at NeurIPS 2025. Revision after camera ready
♻ ☆ Information-Theoretic Decentralized Secure Aggregation with Collusion Resilience IEEE
In decentralized federated learning (FL), multiple clients collaboratively learn a shared machine learning (ML) model by leveraging their privately held datasets distributed across the network, through interactive exchange of the intermediate model updates. To ensure data security, cryptographic techniques are commonly employed to protect model updates during aggregation. Despite growing interest in secure aggregation, existing works predominantly focus on protocol design and computational guarantees, with limited understanding of the fundamental information-theoretic limits of such systems. Moreover, optimal bounds on communication and key usage remain unknown in decentralized settings, where no central aggregator is available. Motivated by these gaps, we study the problem of decentralized secure aggregation (DSA) from an information-theoretic perspective. Specifically, we consider a network of $K$ fully-connected users, each holding a private input -- an abstraction of local training data -- who aim to securely compute the sum of all inputs. The security constraint requires that no user learns anything beyond the input sum, even when colluding with up to $T$ other users. We characterize the optimal rate region, which specifies the minimum achievable communication and secret key rates for DSA. In particular, we show that to securely compute one symbol of the desired input sum, each user must (i) transmit at least one symbol to others, (ii) hold at least one symbol of secret key, and (iii) all users must collectively hold no fewer than $K - 1$ independent key symbols. Our results establish the fundamental performance limits of DSA, providing insights for the design of provably secure and communication-efficient protocols in distributed learning systems.
comment: Submitted to IEEE for potential journal publication
♻ ☆ Diffusion-Based Hierarchical Graph Neural Networks for Simulating Nonlinear Solid Mechanics
Graph-based learned simulators have emerged as a promising approach for simulating physical systems on unstructured meshes, offering speed and generalization across diverse geometries. However, they often struggle with capturing global phenomena, such as bending or long-range correlations usually occurring in solid mechanics, and suffer from error accumulation over long rollouts due to their reliance on local message passing and direct next-step prediction. We address these limitations by introducing the Rolling Diffusion-Batched Inference Network (ROBIN), a novel learned simulator that integrates two key innovations: (i) Rolling Diffusion-Batched Inference (ROBI), a parallelized inference scheme that amortizes the cost of diffusion-based refinement across physical time steps by overlapping denoising steps across a temporal window. (ii) A Hierarchical Graph Neural Network built on algebraic multigrid coarsening, enabling multiscale message passing across different mesh resolutions. This architecture, implemented via Algebraic-hierarchical Message Passing Networks, captures both fine-scale local dynamics and global structural effects critical for phenomena like beam bending or multi-body contact. We validate ROBIN on challenging 2D and 3D solid mechanics benchmarks involving geometric, material, and contact nonlinearities. ROBIN achieves state-of-the-art accuracy on all tasks, substantially outperforming existing next-step learned simulators while reducing inference time by up to an order of magnitude compared to standard diffusion simulators.
♻ ☆ Online Conformal Prediction with Efficiency Guarantees
We study the problem of conformal prediction in a novel online framework that directly optimizes efficiency. In our problem, we are given a target miscoverage rate $\alpha > 0$, and a time horizon $T$. On each day $t \le T$ an algorithm must output an interval $I_t \subseteq [0, 1]$, then a point $y_t \in [0, 1]$ is revealed. The goal of the algorithm is to achieve coverage, that is, $y_t \in I_t$ on (close to) a $(1 - \alpha)$-fraction of days, while maintaining efficiency, that is, minimizing the average volume (length) of the intervals played. This problem is an online analogue to the problem of constructing efficient confidence intervals. We study this problem over arbitrary and exchangeable (random order) input sequences. For exchangeable sequences, we show that it is possible to construct intervals that achieve coverage $(1 - \alpha) - o(1)$, while having length upper bounded by the best fixed interval that achieves coverage in hindsight. For arbitrary sequences however, we show that any algorithm that achieves a $\mu$-approximation in average length compared to the best fixed interval achieving coverage in hindsight, must make a multiplicative factor more mistakes than $\alpha T$, where the multiplicative factor depends on $\mu$ and the aspect ratio of the problem. Our main algorithmic result is a matching algorithm that can recover all Pareto-optimal settings of $\mu$ and number of mistakes. Furthermore, our algorithm is deterministic and therefore robust to an adaptive adversary. This gap between the exchangeable and arbitrary settings is in contrast to the classical online learning problem. In fact, we show that no single algorithm can simultaneously be Pareto-optimal for arbitrary sequences and optimal for exchangeable sequences. On the algorithmic side, we give an algorithm that achieves the near-optimal tradeoff between the two cases.
comment: To appear SODA 2026. Minor edits from previous posted version
♻ ☆ Training-Free Constrained Generation With Stable Diffusion Models NeurIPS 2025
Stable diffusion models represent the state-of-the-art in data synthesis across diverse domains and hold transformative potential for applications in science and engineering, e.g., by facilitating the discovery of novel solutions and simulating systems that are computationally intractable to model explicitly. While there is increasing effort to incorporate physics-based constraints into generative models, existing techniques are either limited in their applicability to latent diffusion frameworks or lack the capability to strictly enforce domain-specific constraints. To address this limitation this paper proposes a novel integration of stable diffusion models with constrained optimization frameworks, enabling the generation of outputs satisfying stringent physical and functional requirements. The effectiveness of this approach is demonstrated through material design experiments requiring adherence to precise morphometric properties, challenging inverse design tasks involving the generation of materials inducing specific stress-strain responses, and copyright-constrained content generation tasks. All code has been released at https://github.com/RAISELab-atUVA/Constrained-Stable-Diffusion.
comment: Spotlight at the 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ gLSTM: Mitigating Over-Squashing by Increasing Storage Capacity
Graph Neural Networks (GNNs) leverage the graph structure to transmit information between nodes, typically through the message-passing mechanism. While these models have found a wide variety of applications, they are known to suffer from over-squashing, where information from a large receptive field of node representations is collapsed into a single fixed sized vector, resulting in an information bottleneck. In this paper, we re-examine the over-squashing phenomenon through the lens of model storage and retrieval capacity, which we define as the amount of information that can be stored in a node's representation for later use. We study some of the limitations of existing tasks used to measure over-squashing and introduce a new synthetic task to demonstrate that an information bottleneck can saturate this capacity. Furthermore, we adapt ideas from the sequence modeling literature on associative memories, fast weight programmers, and the xLSTM model to develop a novel GNN architecture with improved capacity. We demonstrate strong performance of this architecture both on our capacity synthetic task, as well as a range of real-world graph benchmarks.
comment: 23 pages, 22 figures, 7 tables. v2: clarified over-squashing separation in light of related work
♻ ☆ Phase-driven Domain Generalizable Learning for Nonstationary Time Series
Pattern recognition is a fundamental task in continuous sensing applications, but real-world scenarios often experience distribution shifts that necessitate learning generalizable representations for such tasks. This challenge is exacerbated with time-series data, which also exhibit inherent nonstationarity--variations in statistical and spectral properties over time. In this work, we offer a fresh perspective on learning generalizable representations for time-series classification by considering the phase information of a signal as an approximate proxy for nonstationarity and propose a phase-driven generalizable representation learning framework for time-series classification, PhASER. It consists of three key elements: 1) Hilbert transform-based augmentation, which diversifies nonstationarity while preserving task-specific discriminatory semantics, 2) separate magnitude-phase encoding, viewing time-varying magnitude and phase as independent modalities, and 3) phase-residual feature broadcasting, integrating 2D phase features with a residual connection to the 1D signal representation, providing inherent regularization to improve distribution-invariant learning. Extensive evaluations on five datasets from sleep-stage classification, human activity recognition, and gesture recognition against 13 state-of-the-art baseline methods demonstrate that PhASER consistently outperforms the best baselines by an average of 5% and up to 11% in some cases. Additionally, the principles of PhASER can be broadly applied to enhance the generalizability of existing time-series representation learning models.
comment: TMLR 2025
♻ ☆ Interpretable Features for the Assessment of Neurodegenerative Diseases through Handwriting Analysis IEEE
Motor dysfunction is a common sign of neurodegenerative diseases (NDs) such as Parkinson's disease (PD) and Alzheimer's disease (AD), but may be difficult to detect, especially in the early stages. In this work, we examine the behavior of a wide array of interpretable features extracted from the handwriting signals of 113 subjects performing multiple tasks on a digital tablet, as part of the Neurological Signals dataset. The aim is to measure their effectiveness in characterizing NDs, including AD and PD. To this end, task-agnostic and task-specific features are extracted from 14 distinct tasks. Subsequently, through statistical analysis and a series of classification experiments, we investigate which features provide greater discriminative power between NDs and healthy controls and amongst different NDs. Preliminary results indicate that the tasks at hand can all be effectively leveraged to distinguish between the considered set of NDs, specifically by measuring the stability, the speed of writing, the time spent not writing, and the pressure variations between groups from our handcrafted interpretable features, which shows a statistically significant difference between groups, across multiple tasks. Using various binary classification algorithms on the computed features, we obtain up to 87% accuracy for the discrimination between AD and healthy controls (CTL), and up to 69% for the discrimination between PD and CTL.
comment: pages including references, accepted in IEEE JHBI
♻ ☆ Breaking the Exploration Bottleneck: Rubric-Scaffolded Reinforcement Learning for General LLM Reasoning
Recent advances in Large Language Models (LLMs) have underscored the potential of Reinforcement Learning (RL) to facilitate the emergence of reasoning capabilities. Despite the encouraging results, a fundamental dilemma persists as RL improvement relies on learning from high-quality samples, yet the exploration for such samples remains bounded by the inherent limitations of LLMs. This, in effect, creates an undesirable cycle in which what cannot be explored cannot be learned. In this work, we propose Rubric-Scaffolded Reinforcement Learning (RuscaRL), a novel instructional scaffolding framework designed to break the exploration bottleneck for general LLM reasoning. Specifically, RuscaRL introduces checklist-style rubrics as (1) explicit scaffolding for exploration during rollout generation, where different rubrics are provided as external guidance within task instructions to steer diverse high-quality responses. This guidance is gradually decayed over time, encouraging the model to internalize the underlying reasoning patterns; (2) verifiable rewards for exploitation during model training, where we can obtain robust LLM-as-a-Judge scores using rubrics as references, enabling effective RL on general reasoning tasks. Extensive experiments demonstrate the superiority of the proposed RuscaRL across various benchmarks, effectively expanding reasoning boundaries under the Best-of-N evaluation. Notably, RuscaRL significantly boosts Qwen2.5-7B-Instruct from 23.6 to 50.3 on HealthBench-500, surpassing GPT-4.1. Furthermore, our fine-tuned variant on Qwen3-30B-A3B-Instruct achieves 61.1 on HealthBench-500, outperforming leading LLMs including OpenAI-o3. Our code is available at https://github.com/IANNXANG/RuscaRL.
♻ ☆ SEC-bench: Automated Benchmarking of LLM Agents on Real-World Software Security Tasks
Rigorous security-focused evaluation of large language model (LLM) agents is imperative for establishing trust in their safe deployment throughout the software development lifecycle. However, existing benchmarks largely rely on synthetic challenges or simplified vulnerability datasets that fail to capture the complexity and ambiguity encountered by security engineers in practice. We introduce SEC-bench, the first fully automated benchmarking framework for evaluating LLM agents on authentic security engineering tasks. SEC-bench employs a novel multi-agent scaffold that automatically constructs code repositories with harnesses, reproduces vulnerabilities in isolated environments, and generates gold patches for reliable evaluation. Our framework automatically creates high-quality software vulnerability datasets with reproducible artifacts at a cost of only $0.87 per instance. Using SEC-bench, we implement two critical software security tasks to rigorously evaluate LLM agents' capabilities: proof-of-concept (PoC) generation and vulnerability patching. A comprehensive evaluation of state-of-the-art LLM code agents reveals significant performance gaps, achieving at most 18.0% success in PoC generation and 34.0% in vulnerability patching on our complete dataset. These results highlight the crucial steps needed toward developing LLM agents that are more practical, intelligent, and autonomous for security engineering.
♻ ☆ Preconditioned Norms: A Unified Framework for Steepest Descent, Quasi-Newton and Adaptive Methods
Optimization lies at the core of modern deep learning, yet existing methods often face a fundamental trade-off between adapting to problem geometry and leveraging curvature utilization. Steepest descent algorithms adapt to different geometries through norm choices but remain strictly first-order, whereas quasi-Newton and adaptive optimizers incorporate curvature information but are restricted to Frobenius geometry, limiting their applicability across diverse architectures. In this work, we propose a unified framework generalizing steepest descent, quasi-Newton methods, and adaptive methods through the novel notion of preconditioned matrix norms. This abstraction reveals that widely used optimizers such as SGD and Adam, as well as more advanced approaches like Muon and KL-Shampoo, and recent hybrids including SOAP and SPlus, all emerge as special cases of the same principle. Within this framework, we provide the first systematic treatment of affine and scale invariance in the matrix-parameterized setting, establishing necessary and sufficient conditions under generalized norms. Building on this foundation, we introduce two new methods, $\texttt{MuAdam}$ and $\texttt{MuAdam-SANIA}$, which combine the spectral geometry of Muon with Adam-style preconditioning. Our experiments demonstrate that these optimizers are competitive with, and in some cases outperform, existing state-of-the-art methods. Our code is available at https://github.com/brain-lab-research/LIB/tree/quasi_descent
comment: 22 pages, 2 figures, 8 tables
♻ ☆ Beyond Masked and Unmasked: Discrete Diffusion Models via Partial Masking NeurIPS 2025
Masked diffusion models (MDM) are powerful generative models for discrete data that generate samples by progressively unmasking tokens in a sequence. Each token can take one of two states: masked or unmasked. We observe that token sequences often remain unchanged between consecutive sampling steps; consequently, the model repeatedly processes identical inputs, leading to redundant computation. To address this inefficiency, we propose the Partial masking scheme (Prime), which augments MDM by allowing tokens to take intermediate states interpolated between the masked and unmasked states. This design enables the model to make predictions based on partially observed token information, and facilitates a fine-grained denoising process. We derive a variational training objective and introduce a simple architectural design to accommodate intermediate-state inputs. Our method demonstrates superior performance across a diverse set of generative modeling tasks. On text data, it achieves a perplexity of 15.36 on OpenWebText, outperforming previous MDM (21.52), autoregressive models (17.54), and their hybrid variants (17.58), without relying on an autoregressive formulation. On image data, it attains competitive FID scores of 3.26 on CIFAR-10 and 6.98 on ImageNet-32, comparable to leading continuous generative models.
comment: Published at NeurIPS 2025. Project Page: https://chen-hao-chao.github.io/mdm-prime
♻ ☆ Scalable Boltzmann Generators for equilibrium sampling of large-scale materials
The use of generative models to sample equilibrium distributions of many-body systems, as first demonstrated by Boltzmann Generators, has attracted substantial interest due to their ability to produce unbiased and uncorrelated samples in `one shot'. Despite their promise and impressive results across the natural sciences, scaling these models to large systems remains a major challenge. In this work, we introduce a Boltzmann Generator architecture that addresses this scalability bottleneck with a focus on applications in materials science. We leverage augmented coupling flows in combination with graph neural networks to base the generation process on local environmental information, while allowing for energy-based training and fast inference. Compared to previous architectures, our model trains significantly faster, requires far less computational resources, and achieves superior sampling efficiencies. Crucially, the architecture is transferable to larger system sizes, which allows for the efficient sampling of materials with simulation cells of unprecedented size. We demonstrate the potential of our approach by applying it to several materials systems, including Lennard-Jones crystals, ice phases of mW water, and the phase diagram of silicon, for system sizes well above one thousand atoms. The trained Boltzmann Generators produce highly accurate equilibrium ensembles for various crystal structures, as well as Helmholtz and Gibbs free energies across a range of system sizes, able to reach scales where finite-size effects become negligible.
♻ ☆ The Coverage Principle: How Pre-Training Enables Post-Training
Language models demonstrate remarkable abilities when pre-trained on large text corpora and fine-tuned for specific tasks, but how and why pre-training shapes the success of the final model remains poorly understood. Notably, although pre-training success is often quantified by cross-entropy loss, cross-entropy can be a poor predictor of downstream performance. Instead, we provide a theoretical perspective on this relationship through the lens of \emph{coverage}, which quantifies the probability mass the pre-trained model places on high-quality responses and which is necessary and sufficient for post-training and test-time scaling methods such as Best-of-N to succeed. Our main results develop an understanding of \emph{the coverage principle}, a phenomenon whereby next-token prediction (more generally, maximum likelihood) implicitly optimizes toward a model with good coverage. In particular, we uncover a mechanism that explains the power of coverage in predicting downstream performance: \emph{coverage generalizes faster than cross-entropy}, avoiding spurious dependence on problem-dependent parameters such as the sequence length. We also study practical algorithmic interventions with provable benefits for improving coverage, including (i) model/checkpoint selection procedures, (ii) gradient normalization schemes, and (iii) test-time decoding strategies.
♻ ☆ Uni-Instruct: One-step Diffusion Model through Unified Diffusion Divergence Instruction
In this paper, we unify more than 10 existing one-step diffusion distillation approaches, such as Diff-Instruct, DMD, SIM, SiD, $f$-distill, etc, inside a theory-driven framework which we name the \textbf{\emph{Uni-Instruct}}. Uni-Instruct is motivated by our proposed diffusion expansion theory of the $f$-divergence family. Then we introduce key theories that overcome the intractability issue of the original expanded $f$-divergence, resulting in an equivalent yet tractable loss that effectively trains one-step diffusion models by minimizing the expanded $f$-divergence family. The novel unification introduced by Uni-Instruct not only offers new theoretical contributions that help understand existing approaches from a high-level perspective but also leads to state-of-the-art one-step diffusion generation performances. On the CIFAR10 generation benchmark, Uni-Instruct achieves record-breaking Frechet Inception Distance (FID) values of \textbf{\emph{1.46}} for unconditional generation and \textbf{\emph{1.38}} for conditional generation. On the ImageNet-$64\times 64$ generation benchmark, Uni-Instruct achieves a new SoTA one-step generation FID of \textbf{\emph{1.02}}, which outperforms its 79-step teacher diffusion with a significant improvement margin of 1.33 (1.02 vs 2.35). We also apply Uni-Instruct on broader tasks like text-to-3D generation. For text-to-3D generation, Uni-Instruct gives decent results, which slightly outperforms previous methods, such as SDS and VSD, in terms of both generation quality and diversity. Both the solid theoretical and empirical contributions of Uni-Instruct will potentially help future studies on one-step diffusion distillation and knowledge transferring of diffusion models.
♻ ☆ Base Models Know How to Reason, Thinking Models Learn When NeurIPS 2025
Why do thinking language models like DeepSeek R1 outperform their base counterparts? Despite consistent performance gains, it remains unclear to what extent thinking models learn entirely new reasoning capabilities or repurpose pre-existing base model ones. In this work, we propose a hybrid model where we activate reasoning mechanisms in base models at the right time to elicit thinking-model-level reasoning chains, implying that thinking models exploit already existing capabilities. To ground our analysis, we introduce an unsupervised, bottom-up approach for uncovering human-interpretable reasoning behaviors in thinking models. This approach provides an unbiased method to discover reasoning behaviors without imposing manual or LLM-derived assumptions. Across three base and four thinking models, using GSM8K and MATH500, our hybrid model recovers up to 91% of the performance gap to thinking models without any weight updates while steering only 12% of tokens. Concretely, our empirical setup provides a simple, causal way to test the effectiveness of existing reasoning mechanisms in base models by invoking them directly and measuring the resulting task performance. More broadly, these results reframe our understanding of how thinking models are trained: pre-training is when models acquire most of their reasoning mechanisms, and post-training teaches efficient deployment of these mechanisms at the right time, enabling efficient use of their inference-time compute.
comment: 10 pages, Accepted to the Mechanistic Interpretability Workshop at NeurIPS 2025
♻ ☆ LASeR: Learning to Adaptively Select Reward Models with Multi-Armed Bandits NeurIPS 2025
Reward Models (RMs) are crucial to aligning large language models (LLMs), but the degree to which an RM specialized to one task (e.g. writing) generalizes to new tasks (e.g. math) is often not known a priori, often making using only one fixed RM to train LLMs suboptimal. However, optimizing LLMs with multiple RMs simultaneously can incur a prohibitively high computational cost and lead to conflicting signals from different RMs that may degrade performance. To address these challenges, we introduce LASeR (Learning to Adaptively Select Rewards), which frames reward model selection as a multi-armed bandit problem, efficiently and iteratively training LLMs using multiple RMs by selecting the most well-suited RM for each instance. On commonsense and math reasoning tasks, we show that LASeR boosts iterative LLM training, improving the absolute average accuracy of Llama-3-8B over three datasets by 2.67% over an ensemble of RM scores while also showing superior efficiency (e.g., a 2x speedup). Moreover, on WildChat (open-ended instruction-following tasks), LASeR leads to a 72.69% AlpacaEval win rate over the RM score ensemble baseline. Extending to long-context generation, LASeR improves by 2.96 F1 points (avg.) on single-document QA tasks and 2.97 F1 points on few-shot learning over the RM score ensemble baseline with best-of-n sampling.
comment: NeurIPS 2025 camera-ready. First two authors contributed equally. Code: https://github.com/duykhuongnguyen/LASeR-MAB
♻ ☆ Learning to Learn with Contrastive Meta-Objective NeurIPS2025
Meta-learning enables learning systems to adapt quickly to new tasks, similar to humans. Different meta-learning approaches all work under/with the mini-batch episodic training framework. Such framework naturally gives the information about task identity, which can serve as additional supervision for meta-training to improve generalizability. We propose to exploit task identity as additional supervision in meta-training, inspired by the alignment and discrimination ability which is is intrinsic in human's fast learning. This is achieved by contrasting what meta-learners learn, i.e., model representations. The proposed ConML is evaluating and optimizing the contrastive meta-objective under a problem- and learner-agnostic meta-training framework. We demonstrate that ConML integrates seamlessly with existing meta-learners, as well as in-context learning models, and brings significant boost in performance with small implementation cost.
comment: Received by NeurIPS2025 (Oral)
♻ ☆ What Expressivity Theory Misses: Message Passing Complexity for GNNs NeurIPS 2025
Expressivity theory, characterizing which graphs a GNN can distinguish, has become the predominant framework for analyzing GNNs, with new models striving for higher expressivity. However, we argue that this focus is misguided: First, higher expressivity is not necessary for most real-world tasks as these tasks rarely require expressivity beyond the basic WL test. Second, expressivity theory's binary characterization and idealized assumptions fail to reflect GNNs' practical capabilities. To overcome these limitations, we propose Message Passing Complexity (MPC): a continuous measure that quantifies the difficulty for a GNN architecture to solve a given task through message passing. MPC captures practical limitations like over-squashing while preserving the theoretical impossibility results from expressivity theory, effectively narrowing the gap between theory and practice. Through extensive validation on fundamental GNN tasks, we show that MPC's theoretical predictions correlate with empirical performance, successfully explaining architectural successes and failures. Thereby, MPC advances beyond expressivity theory to provide a more powerful and nuanced framework for understanding and improving GNN architectures.
comment: NeurIPS 2025, Spotlight
♻ ☆ Learning to Add, Multiply, and Execute Algorithmic Instructions Exactly with Neural Networks
Neural networks are known for their ability to approximate smooth functions, yet they fail to generalize perfectly to unseen inputs when trained on discrete operations. Such operations lie at the heart of algorithmic tasks such as arithmetic, which is often used as a test bed for algorithmic execution in neural networks. In this work, we ask: can neural networks learn to execute binary-encoded algorithmic instructions exactly? We use the Neural Tangent Kernel (NTK) framework to study the training dynamics of two-layer fully connected networks in the infinite-width limit and show how a sufficiently large ensemble of such models can be trained to execute exactly, with high probability, four fundamental tasks: binary permutations, binary addition, binary multiplication, and Subtract and Branch if Negative (SBN) instructions. Since SBN is Turing-complete, our framework extends to computable functions. We show how this can be efficiently achieved using only logarithmically many training data. Our approach relies on two techniques: structuring the training data to isolate bit-level rules, and controlling correlations in the NTK regime to align model predictions with the target algorithmic executions.
comment: 43 pages, 7 figures
♻ ☆ 3D-GSRD: 3D Molecular Graph Auto-Encoder with Selective Re-mask Decoding
Masked graph modeling (MGM) is a promising approach for molecular representation learning (MRL).However, extending the success of re-mask decoding from 2D to 3D MGM is non-trivial, primarily due to two conflicting challenges: avoiding 2D structure leakage to the decoder, while still providing sufficient 2D context for reconstructing re-masked atoms. To address these challenges, we propose 3D-GSRD: a 3D Molecular Graph Auto-Encoder with Selective Re-mask Decoding. The core innovation of 3D-GSRD lies in its Selective Re-mask Decoding(SRD), which re-masks only 3D-relevant information from encoder representations while preserving the 2D graph structures. This SRD is synergistically integrated with a 3D Relational-Transformer(3D-ReTrans) encoder alongside a structure-independent decoder. We analyze that SRD, combined with the structure-independent decoder, enhances the encoder's role in MRL. Extensive experiments show that 3D-GSRD achieves strong downstream performance, setting a new state-of-the-art on 7 out of 8 targets in the widely used MD17 molecular property prediction benchmark. The code is released at https://github.com/WuChang0124/3D-GSRD.
♻ ☆ PRING: Rethinking Protein-Protein Interaction Prediction from Pairs to Graphs
Deep learning-based computational methods have achieved promising results in predicting protein-protein interactions (PPIs). However, existing benchmarks predominantly focus on isolated pairwise evaluations, overlooking a model's capability to reconstruct biologically meaningful PPI networks, which is crucial for biology research. To address this gap, we introduce PRING, the first comprehensive benchmark that evaluates protein-protein interaction prediction from a graph-level perspective. PRING curates a high-quality, multi-species PPI network dataset comprising 21,484 proteins and 186,818 interactions, with well-designed strategies to address both data redundancy and leakage. Building on this golden-standard dataset, we establish two complementary evaluation paradigms: (1) topology-oriented tasks, which assess intra and cross-species PPI network construction, and (2) function-oriented tasks, including protein complex pathway prediction, GO module analysis, and essential protein justification. These evaluations not only reflect the model's capability to understand the network topology but also facilitate protein function annotation, biological module detection, and even disease mechanism analysis. Extensive experiments on four representative model categories, consisting of sequence similarity-based, naive sequence-based, protein language model-based, and structure-based approaches, demonstrate that current PPI models have potential limitations in recovering both structural and functional properties of PPI networks, highlighting the gap in supporting real-world biological applications. We believe PRING provides a reliable platform to guide the development of more effective PPI prediction models for the community. The dataset and source code of PRING are available at https://github.com/SophieSarceau/PRING.
♻ ☆ ARM-FM: Automated Reward Machines via Foundation Models for Compositional Reinforcement Learning
Reinforcement learning (RL) algorithms are highly sensitive to reward function specification, which remains a central challenge limiting their broad applicability. We present ARM-FM: Automated Reward Machines via Foundation Models, a framework for automated, compositional reward design in RL that leverages the high-level reasoning capabilities of foundation models (FMs). Reward machines (RMs) -- an automata-based formalism for reward specification -- are used as the mechanism for RL objective specification, and are automatically constructed via the use of FMs. The structured formalism of RMs yields effective task decompositions, while the use of FMs enables objective specifications in natural language. Concretely, we (i) use FMs to automatically generate RMs from natural language specifications; (ii) associate language embeddings with each RM automata-state to enable generalization across tasks; and (iii) provide empirical evidence of ARM-FM's effectiveness in a diverse suite of challenging environments, including evidence of zero-shot generalization.
♻ ☆ Pay Attention to Small Weights
Finetuning large pretrained neural networks is known to be resource-intensive, both in terms of memory and computational cost. To mitigate this, a common approach is to restrict training to a subset of the model parameters. By analyzing the relationship between gradients and weights during finetuning, we observe a notable pattern: large gradients are often associated with small-magnitude weights. This correlation is more pronounced in finetuning settings than in training from scratch. Motivated by this observation, we propose NANOADAM, which dynamically updates only the small-magnitude weights during finetuning and offers several practical advantages: first, this criterion is gradient-free -- the parameter subset can be determined without gradient computation; second, it preserves large-magnitude weights, which are likely to encode critical features learned during pretraining, thereby reducing the risk of catastrophic forgetting; thirdly, it permits the use of larger learning rates and consistently leads to better generalization performance in experiments. We demonstrate this for both NLP and vision tasks.
♻ ☆ Masked Generative Priors Improve World Models Sequence Modelling Capabilities
Deep Reinforcement Learning (RL) has become the leading approach for creating artificial agents in complex environments. Model-based approaches, which are RL methods with world models that predict environment dynamics, are among the most promising directions for improving data efficiency, forming a critical step toward bridging the gap between research and real-world deployment. In particular, world models enhance sample efficiency by learning in imagination, which involves training a generative sequence model of the environment in a self-supervised manner. Recently, Masked Generative Modelling has emerged as a more efficient and superior inductive bias for modelling and generating token sequences. Building on the Efficient Stochastic Transformer-based World Models (STORM) architecture, we replace the traditional MLP prior with a Masked Generative Prior (e.g., MaskGIT Prior) and introduce GIT-STORM. We evaluate our model on two downstream tasks: reinforcement learning and video prediction. GIT-STORM demonstrates substantial performance gains in RL tasks on the Atari 100k benchmark. Moreover, we apply Transformer-based World Models to continuous action environments for the first time, addressing a significant gap in prior research. To achieve this, we employ a state mixer function that integrates latent state representations with actions, enabling our model to handle continuous control tasks. We validate this approach through qualitative and quantitative analyses on the DeepMind Control Suite, showcasing the effectiveness of Transformer-based World Models in this new domain. Our results highlight the versatility and efficacy of the MaskGIT dynamics prior, paving the way for more accurate world models and effective RL policies.
♻ ☆ BlockGPT: Spatio-Temporal Modelling of Rainfall via Frame-Level Autoregression
Predicting precipitation maps is a highly complex spatiotemporal modeling task, critical for mitigating the impacts of extreme weather events. Short-term precipitation forecasting, or nowcasting, requires models that are not only accurate but also computationally efficient for real-time applications. Current methods, such as token-based autoregressive models, often suffer from flawed inductive biases and slow inference, while diffusion models can be computationally intensive. To address these limitations, we introduce BlockGPT, a generative autoregressive transformer using batched tokenization (Block) method that predicts full two-dimensional fields (frames) at each time step. Conceived as a model-agnostic paradigm for video prediction, BlockGPT factorizes space-time by using self-attention within each frame and causal attention across frames; in this work, we instantiate it for precipitation nowcasting. We evaluate BlockGPT on two precipitation datasets, viz. KNMI (Netherlands) and SEVIR (U.S.), comparing it to state-of-the-art baselines including token-based (NowcastingGPT) and diffusion-based (DiffCast+Phydnet) models. The results show that BlockGPT achieves superior accuracy, event localization as measured by categorical metrics, and inference speeds up to 31x faster than comparable baselines.
♻ ☆ Heavy-Ball Momentum Method in Continuous Time and Discretization Error Analysis
This paper establishes a continuous time approximation, a piece-wise continuous differential equation, for the discrete Heavy-Ball (HB) momentum method with explicit discretization error. Investigating continuous differential equations has been a promising approach for studying the discrete optimization methods. Despite the crucial role of momentum in gradient-based optimization methods, the gap between the original discrete dynamics and the continuous time approximations due to the discretization error has not been comprehensively bridged yet. In this work, we study the HB momentum method in continuous time while putting more focus on the discretization error to provide additional theoretical tools to this area. In particular, we design a first-order piece-wise continuous differential equation, where we add a number of counter terms to account for the discretization error explicitly. As a result, we provide a continuous time model for the HB momentum method that allows the control of discretization error to arbitrary order of the step size. As an application, we leverage it to find a new implicit regularization of the directional smoothness and investigate the implicit bias of HB for diagonal linear networks, indicating how our results can be used in deep learning. Our theoretical findings are further supported by numerical experiments.
comment: 32 pages, 7 figures
♻ ☆ Bootstrap Sampling Rate Greater than 1.0 May Improve Random Forest Performance
Random forests (RFs) utilize bootstrap sampling to generate individual training sets for each component tree by sampling with replacement, with the sample size typically equal to that of the original training set ($N$). Previous research indicates that drawing fewer than $N$ observations can also yield satisfactory results. The ratio of the number of observations in each bootstrap sample to the total number of training instances is referred to as the bootstrap rate (BR). Sampling more than $N$ observations (BR $>$ 1.0) has been explored only to a limited extent and has generally been considered ineffective. In this paper, we revisit this setup using 36 diverse datasets, evaluating BR values ranging from 1.2 to 5.0. Contrary to previous findings, we show that higher BR values can lead to statistically significant improvements in classification accuracy compared to standard settings (BR $\leq$ 1.0). Furthermore, we analyze how BR affects the leaf structure of decision trees within the RF and investigate factors influencing the optimal BR. Our results indicate that the optimal BR is primarily determined by the characteristics of the data set rather than the RF hyperparameters.
♻ ☆ TinySQL: A Progressive Text-to-SQL Dataset for Mechanistic Interpretability Research EMNLP 2025
Mechanistic interpretability research faces a gap between analyzing simple circuits in toy tasks and discovering features in large models. To bridge this gap, we propose text-to-SQL generation as an ideal task to study, as it combines the formal structure of toy tasks with real-world complexity. We introduce TinySQL, a synthetic dataset, progressing from basic to advanced SQL operations, and train models ranging from 33M to 1B parameters to establish a comprehensive testbed for interpretability. We apply multiple complementary interpretability techniques, including Edge Attribution Patching and Sparse Autoencoders, to identify minimal circuits and components supporting SQL generation. We compare circuits for different SQL subskills, evaluating their minimality, reliability, and identifiability. Finally, we conduct a layerwise logit lens analysis to reveal how models compose SQL queries across layers: from intent recognition to schema resolution to structured generation. Our work provides a robust framework for probing and comparing interpretability methods in a structured, progressively complex setting.
comment: Accepted to EMNLP 2025, 9 pages, 19 figures, 7 tables, 18 trained models Project Website: https://abirharrasse.github.io/tinysql/ Code Repository: https://github.com/withmartian/TinySQL Datasets and Models Viewer: https://huggingface.co/spaces/abir-hr196/tinysql-demo
♻ ☆ Graph Few-Shot Learning via Adaptive Spectrum Experts and Cross-Set Distribution Calibration NeurIPS25
Graph few-shot learning has attracted increasing attention due to its ability to rapidly adapt models to new tasks with only limited labeled nodes. Despite the remarkable progress made by existing graph few-shot learning methods, several key limitations remain. First, most current approaches rely on predefined and unified graph filters (e.g., low-pass or high-pass filters) to globally enhance or suppress node frequency signals. Such fixed spectral operations fail to account for the heterogeneity of local topological structures inherent in real-world graphs. Moreover, these methods often assume that the support and query sets are drawn from the same distribution. However, under few-shot conditions, the limited labeled data in the support set may not sufficiently capture the complex distribution of the query set, leading to suboptimal generalization. To address these challenges, we propose GRACE, a novel Graph few-shot leaRning framework that integrates Adaptive spectrum experts with Cross-sEt distribution calibration techniques. Theoretically, the proposed approach enhances model generalization by adapting to both local structural variations and cross-set distribution calibration. Empirically, GRACE consistently outperforms state-of-the-art baselines across a wide range of experimental settings. Our code can be found here.
comment: NeurIPS25
♻ ☆ Learning Linear Attention in Polynomial Time
Previous research has explored the computational expressivity of Transformer models in simulating Boolean circuits or Turing machines. However, the learnability of these simulators from observational data has remained an open question. Our study addresses this gap by providing the first polynomial-time learnability results (specifically strong, agnostic PAC learning) for single-layer Transformers with linear attention. We show that linear attention may be viewed as a linear predictor in a suitably defined RKHS. As a consequence, the problem of learning any linear transformer may be converted into the problem of learning an ordinary linear predictor in an expanded feature space, and any such predictor may be converted back into a multiheaded linear transformer. Moving to generalization, we show how to efficiently identify training datasets for which every empirical risk minimizer is equivalent (up to trivial symmetries) to the linear Transformer that generated the data, thereby guaranteeing the learned model will correctly generalize across all inputs. Finally, we provide examples of computations expressible via linear attention and therefore polynomial-time learnable, including associative memories, finite automata, and a class of Universal Turing Machine (UTMs) with polynomially bounded computation histories. We empirically validate our theoretical findings on three tasks: learning random linear attention networks, key--value associations, and learning to execute finite automata. Our findings bridge a critical gap between theoretical expressivity and learnability of Transformers, and show that flexible and general models of computation are efficiently learnable.
♻ ☆ QiMeng-MuPa: Mutual-Supervised Learning for Sequential-to-Parallel Code Translation NeurIPS'2025
The rise of GPU-based high-performance computing (HPC) has driven the widespread adoption of parallel programming models such as CUDA. Yet, the inherent complexity of parallel programming creates a demand for the automated sequential-to-parallel approaches. However, data scarcity poses a significant challenge for machine learning-based sequential-to-parallel code translation. Although recent back-translation methods show promise, they still fail to ensure functional equivalence in the translated code. In this paper, we propose \textbf{QiMeng-MuPa}, a novel \textbf{Mu}tual-Supervised Learning framework for Sequential-to-\textbf{Pa}rallel code translation, to address the functional equivalence issue. QiMeng-MuPa consists of two models, a Translator and a Tester. Through an iterative loop consisting of Co-verify and Co-evolve steps, the Translator and the Tester mutually generate data for each other and improve collectively. The Tester generates unit tests to verify and filter functionally equivalent translated code, thereby evolving the Translator, while the Translator generates translated code as augmented input to evolve the Tester. Experimental results demonstrate that QiMeng-MuPa significantly enhances the performance of the base models: when applied to Qwen2.5-Coder, it not only improves Pass@1 by up to 28.91% and boosts Tester performance by 68.90%, but also outperforms the previous state-of-the-art method CodeRosetta by 1.56 and 6.92 in BLEU and CodeBLEU scores, while achieving performance comparable to DeepSeek-R1 and GPT-4.1. Our code is available at https://github.com/kcxain/mupa.
comment: Accepted to NeurIPS'2025
♻ ☆ A recursive Bayesian neural network for constitutive modeling of sands under monotonic and cyclic loading
In geotechnical engineering, constitutive models are central to capturing soil behavior across diverse drainage conditions, stress paths,and loading histories. While data driven deep learning (DL) approaches have shown promise as alternatives to traditional constitutive formulations, their deployment requires models that are both accurate and capable of quantifying predictive uncertainty. This study introduces a recursive Bayesian neural network (rBNN) framework that unifies temporal sequence learning with generalized Bayesian inference to achieve both predictive accuracy and rigorous uncertainty quantification. A key innovation is the incorporation of a sliding window recursive structure that enables the model to effectively capture path dependent soil responses under monotonic and cyclic loading. By treating network parameters as random variables and inferring their posterior distributions via generalized variational inference, the rBNN produces well calibrated confidence intervals alongside point predictions.The framework is validated against four datasets spanning both simulated and experimental triaxial tests: monotonic loading using a Hardening Soil model simulation and 28 CD tests on Baskarp sand, and cyclic loading using an exponential constitutive simulation of CD CU tests and 37 experimental cyclic CU tests on Ottawa F65 sand. This progression from monotonic to cyclic and from simulated to experimental data demonstrates the adaptability of the proposed approach across varying levels of data fidelity and complexity. Comparative analyses with LSTM, Encoder Decoder,and GRU architectures highlight that rBNN not only achieves competitive predictive accuracy but also provides reliable confidence intervals.
♻ ☆ Unveiling Transformer Perception by Exploring Input Manifolds
This paper introduces a general method for the exploration of equivalence classes in the input space of Transformer models. The proposed approach is based on sound mathematical theory which describes the internal layers of a Transformer architecture as sequential deformations of the input manifold. Using eigendecomposition of the pullback of the distance metric defined on the output space through the Jacobian of the model, we are able to reconstruct equivalence classes in the input space and navigate across them. Our method enables two complementary exploration procedures: the first retrieves input instances that produce the same class probability distribution as the original instance-thus identifying elements within the same equivalence class-while the second discovers instances that yield a different class probability distribution, effectively navigating toward distinct equivalence classes. Finally, we demonstrate how the retrieved instances can be meaningfully interpreted by projecting their embeddings back into a human-readable format.
comment: 11 pages, 4 figures
♻ ☆ AtomSurf : Surface Representation for Learning on Protein Structures ICLR 2025
While there has been significant progress in evaluating and comparing different representations for learning on protein data, the role of surface-based learning approaches remains not well-understood. In particular, there is a lack of direct and fair benchmark comparison between the best available surface-based learning methods against alternative representations such as graphs. Moreover, the few existing surface-based approaches either use surface information in isolation or, at best, perform global pooling between surface and graph-based architectures. In this work, we fill this gap by first adapting a state-of-the-art surface encoder for protein learning tasks. We then perform a direct and fair comparison of the resulting method against alternative approaches within the Atom3D benchmark, highlighting the limitations of pure surface-based learning. Finally, we propose an integrated approach, which allows learned feature sharing between graphs and surface representations on the level of nodes and vertices across all layers. We demonstrate that the resulting architecture achieves state-of-the-art results on all tasks in the Atom3D benchmark, while adhering to the strict benchmark protocol, as well as more broadly on binding site identification and binding pocket classification. Furthermore, we use coarsened surfaces and optimize our approach for efficiency, making our tool competitive in training and inference time with existing techniques. Code can be found online: https://github.com/Vincentx15/atomsurf
comment: Published as a conference paper at The Thirteenth International Conference on Learning Representations (ICLR 2025). The official open-access version is available at https://openreview.net/forum?id=ARQIJXFcTH
♻ ☆ Smoothed Distance Kernels for MMDs and Applications in Wasserstein Gradient Flows
Negative distance kernels $K(x,y) := - \|x-y\|$ were used in the definition of maximum mean discrepancies (MMDs) in statistics and lead to favorable numerical results in various applications. In particular, so-called slicing techniques for handling high-dimensional kernel summations profit from the simple parameter-free structure of the distance kernel. However, due to its non-smoothness in $x=y$, most of the classical theoretical results, e.g. on Wasserstein gradient flows of the corresponding MMD functional do not longer hold true. In this paper, we propose a new kernel which keeps the favorable properties of the negative distance kernel as being conditionally positive definite of order one with a nearly linear increase towards infinity and a simple slicing structure, but is Lipschitz differentiable now. Our construction is based on a simple 1D smoothing procedure of the absolute value function followed by a Riemann-Liouville fractional integral transform. Numerical results demonstrate that the new kernel performs similarly well as the negative distance kernel in gradient descent methods, but now with theoretical guarantees.
comment: 48 pages, 10 figures
♻ ☆ An Efficient Local Search Approach for Polarized Community Discovery in Signed Networks
Signed networks, where edges are labeled as positive or negative to represent friendly or antagonistic interactions, provide a natural framework for analyzing polarization, trust, and conflict in social systems. Detecting meaningful group structures in such networks is crucial for understanding online discourse, political divisions, and trust dynamics. A key challenge is to identify communities that are internally cohesive and externally antagonistic, while allowing for neutral or unaligned vertices. In this paper, we propose a method for identifying $k$ polarized communities that addresses a major limitation of prior methods: their tendency to produce highly size-imbalanced solutions. We introduce a novel optimization objective that avoids such imbalance. In addition, it is well known that approximation algorithms based on local search are highly effective for clustering signed networks when neutral vertices are not allowed. We build on this idea and design the first local search algorithm that extends to the setting with neutral vertices while scaling to large networks. By connecting our approach to block-coordinate Frank-Wolfe optimization, we prove a linear convergence rate, enabled by the structure of our objective. Experiments on real-world and synthetic datasets demonstrate that our method consistently outperforms state-of-the-art baselines in solution quality, while remaining competitive in computational efficiency.
♻ ☆ AdaptGrad: Adaptive Sampling to Reduce Noise NeurIPS 2025
Gradient Smoothing is an efficient approach to reducing noise in gradient-based model explanation method. SmoothGrad adds Gaussian noise to mitigate much of these noise. However, the crucial hyper-parameter in this method, the variance $\sigma$ of Gaussian noise, is set manually or with heuristic approach. However, it results in the smoothed gradients still containing a certain amount of noise. In this paper, we aim to interpret SmoothGrad as a corollary of convolution, thereby re-understanding the gradient noise and the role of $\sigma$ from the perspective of confidence level. Furthermore, we propose an adaptive gradient smoothing method, AdaptGrad, based on these insights. Through comprehensive experiments, both qualitative and quantitative results demonstrate that AdaptGrad could effectively reduce almost all the noise in vanilla gradients compared with baselines methods. AdaptGrad is simple and universal, making it applicable for enhancing gradient-based interpretability methods for better visualization.
comment: Accepted by NeurIPS 2025
♻ ☆ Incentivizing Time-Aware Fairness in Data Sharing NeurIPS 2025
In collaborative data sharing and machine learning, multiple parties aggregate their data resources to train a machine learning model with better model performance. However, as the parties incur data collection costs, they are only willing to do so when guaranteed incentives, such as fairness and individual rationality. Existing frameworks assume that all parties join the collaboration simultaneously, which does not hold in many real-world scenarios. Due to the long processing time for data cleaning, difficulty in overcoming legal barriers, or unawareness, the parties may join the collaboration at different times. In this work, we propose the following perspective: As a party who joins earlier incurs higher risk and encourages the contribution from other wait-and-see parties, that party should receive a reward of higher value for sharing data earlier. To this end, we propose a fair and time-aware data sharing framework, including novel time-aware incentives. We develop new methods for deciding reward values to satisfy these incentives. We further illustrate how to generate model rewards that realize the reward values and empirically demonstrate the properties of our methods on synthetic and real-world datasets.
comment: Accepted to NeurIPS 2025
♻ ☆ InfiFPO: Implicit Model Fusion via Preference Optimization in Large Language Models
Model fusion combines multiple Large Language Models (LLMs) with different strengths into a more powerful, integrated model through lightweight training methods. Existing works on model fusion focus primarily on supervised fine-tuning (SFT), leaving preference alignment (PA) --a critical phase for enhancing LLM performance--largely unexplored. The current few fusion methods on PA phase, like WRPO, simplify the process by utilizing only response outputs from source models while discarding their probability information. To address this limitation, we propose InfiFPO, a preference optimization method for implicit model fusion. InfiFPO replaces the reference model in Direct Preference Optimization (DPO) with a fused source model that synthesizes multi-source probabilities at the sequence level, circumventing complex vocabulary alignment challenges in previous works and meanwhile maintaining the probability information. By introducing probability clipping and max-margin fusion strategies, InfiFPO enables the pivot model to align with human preferences while effectively distilling knowledge from source models. Comprehensive experiments on 11 widely-used benchmarks demonstrate that InfiFPO consistently outperforms existing model fusion and preference optimization methods. When using Phi-4 as the pivot model, InfiFPO improve its average performance from 79.95 to 83.33 on 11 benchmarks, significantly improving its capabilities in mathematics, coding, and reasoning tasks.
♻ ☆ Towards Context-Aware Domain Generalization: Understanding the Benefits and Limits of Marginal Transfer Learning NeurIPS
In this work, we analyze the conditions under which information about the context of an input $X$ can improve the predictions of deep learning models in new domains. Following work in marginal transfer learning in Domain Generalization (DG), we formalize the notion of context as a permutation-invariant representation of a set of data points that originate from the same domain as the input itself. We offer a theoretical analysis of the conditions under which this approach can, in principle, yield benefits, and formulate two necessary criteria that can be easily verified in practice. Additionally, we contribute insights into the kind of distribution shifts for which the marginal transfer learning approach promises robustness. Empirical analysis shows that our criteria are effective in discerning both favorable and unfavorable scenarios. Finally, we demonstrate that we can reliably detect scenarios where a model is tasked with unwarranted extrapolation in out-of-distribution (OOD) domains, identifying potential failure cases. Consequently, we showcase a method to select between the most predictive and the most robust model, circumventing the well-known trade-off between predictive performance and robustness.
comment: 10 pages, 4 figures, NeurIPS Workshop: Reliable ML from Unreliable Data
♻ ☆ Estimating Long-term Heterogeneous Dose-response Curve: Generalization Bound Leveraging Optimal Transport Weights
Long-term treatment effect estimation is a significant but challenging problem in many applications. Existing methods rely on ideal assumptions, such as no unobserved confounders or binary treatment, to estimate long-term average treatment effects. However, in numerous real-world applications, these assumptions could be violated, and average treatment effects are insufficient for personalized decision-making. In this paper, we address a more general problem of estimating long-term Heterogeneous Dose-Response Curve (HDRC) while accounting for unobserved confounders and continuous treatment. Specifically, to remove the unobserved confounders in the long-term observational data, we introduce an optimal transport weighting framework to align the long-term observational data to an auxiliary short-term experimental data. Furthermore, to accurately predict the heterogeneous effects of continuous treatment, we establish a generalization bound on counterfactual prediction error by leveraging the reweighted distribution induced by optimal transport. Finally, we develop a long-term HDRC estimator building upon the above theoretical foundations. Extensive experiments on synthetic and semi-synthetic datasets demonstrate the effectiveness of our approach.
♻ ☆ MLR-Bench: Evaluating AI Agents on Open-Ended Machine Learning Research NeurIPS 2025
Recent advancements in AI agents have demonstrated their growing potential to drive and support scientific discovery. In this work, we introduce MLR-Bench, a comprehensive benchmark for evaluating AI agents on open-ended machine learning research. MLR-Bench includes three key components: (1) 201 research tasks sourced from NeurIPS, ICLR, and ICML workshops covering diverse ML topics; (2) MLR-Judge, an automated evaluation framework combining LLM-based reviewers with carefully designed review rubrics to assess research quality; and (3) MLR-Agent, a modular agent scaffold capable of completing research tasks through four stages: idea generation, proposal formulation, experimentation, and paper writing. Our framework supports both stepwise assessment across these distinct research stages, and end-to-end evaluation of the final research paper. We then use MLR-Bench to evaluate six frontier LLMs and an advanced coding agent, finding that while LLMs are effective at generating coherent ideas and well-structured papers, current coding agents frequently (e.g., in 80% of the cases) produce fabricated or invalidated experimental results--posing a major barrier to scientific reliability. We validate MLR-Judge through human evaluation, showing high agreement with expert reviewers, supporting its potential as a scalable tool for research evaluation. We open-source MLR-Bench to help the community benchmark, diagnose, and improve AI research agents toward trustworthy and transparent scientific discovery.
comment: 49 pages, 9 figures. Accepted by NeurIPS 2025 D&B Track
♻ ☆ Mathematics with large language models as provers and verifiers
During 2024 and 2025 the discussion about the theorem-proving capabilities of large language models started reporting interesting success stories, mostly to do with difficult exercises (such as problems from the International Mathematical Olympiad), but also with conjectures [Feldman & Karbasi, arXiv:2509.18383v1] formulated for the purpose of verifying whether the artificial intelligence could prove it. In this paper we report a theorem proving feat achieved by ChatGPT by using a protocol involving different prover and verifier instances of the gpt-5 model working collaboratively. To make sure that the produced proofs do not suffer from hallucinations, the final proof is formally verified by the lean proof assistant, and the conformance of premises and conclusion of the lean code is verified by a human. Our methodology is by no means complete or exact. It was nonetheless able to solve five out of six 2025 IMO problems, and close about a third of the sixty-six number theory conjectures in [Cohen, Journal of Integer Sequences, 2025].
♻ ☆ Optimizing Asynchronous Federated Learning: A Delicate Trade-Off Between Model-Parameter Staleness and Update Frequency
Synchronous federated learning (FL) scales poorly with the number of clients due to the straggler effect. Algorithms like FedAsync and GeneralizedFedAsync address this limitation by enabling asynchronous communication between clients and the central server. In this work, we rely on stochastic modeling and analysis to better understand the impact of design choices in asynchronous FL algorithms, such as the concurrency level and routing probabilities, and we leverage this knowledge to optimize loss. Compared to most existing studies, we account for the joint impact of heterogeneous and variable service speeds and heterogeneous datasets at the clients. We characterize in particular a fundamental trade-off for optimizing asynchronous FL: minimizing gradient estimation errors by avoiding model parameter staleness, while also speeding up the system by increasing the throughput of model updates. Our two main contributions can be summarized as follows. First, we prove a discrete variant of Little's law to derive a closed-form expression for relative delay, a metric that quantifies staleness. This allows us to efficiently minimize the average loss per model update, which has been the gold standard in literature to date, using the upper-bound of Leconte et al. as a proxy. Second, we observe that naively optimizing this metric drastically slows down the system by overemphasizing staleness at the expense of throughput. This motivates us to introduce an alternative metric that also accounts for speed, for which we derive a tractable upper-bound that can be minimized numerically. Extensive numerical results show these optimizations enhance accuracy by 10% to 30%.
♻ ☆ Using (Not-so) Large Language Models to Generate Simulation Models in a Formal DSL: A Study on Reaction Networks
Formal languages are an integral part of modeling and simulation. They allow the distillation of knowledge into concise simulation models amenable to automatic execution, interpretation, and analysis. However, the arguably most humanly accessible means of expressing models is through natural language, which is not easily interpretable by computers. Here, we evaluate how a Large Language Model (LLM) might be used for formalizing natural language into simulation models. Existing studies only explored using very large LLMs, like the commercial GPT models, without fine-tuning model weights. To close this gap, we show how an open-weights, 7B-parameter Mistral model can be fine-tuned to translate natural language descriptions to reaction network models in a domain-specific language, offering a self-hostable, compute-efficient, and memory efficient alternative. To this end, we develop a synthetic data generator to serve as the basis for fine-tuning and evaluation. Our quantitative evaluation shows that our fine-tuned Mistral model can recover the ground truth simulation model in up to 84.5% of cases. In addition, our small-scale user study demonstrates the model's practical potential for one-time generation as well as interactive modeling in various domains. While promising, in its current form, the fine-tuned small LLM cannot catch up with large LLMs. We conclude that higher-quality training data are required, and expect future small and open-source LLMs to offer new opportunities.
comment: 27 pages, 5 figures; supplemental material available at https://doi.org/10.1145/3733719
♻ ☆ Survey of Graph Neural Network for Internet of Things and NextG Networks
The exponential increase in Internet of Things (IoT) devices coupled with 6G pushing towards higher data rates and connected devices has sparked a surge in data. Consequently, harnessing the full potential of data-driven machine learning has become one of the important thrusts. In addition to the advancement in wireless technology, it is important to efficiently use the resources available and meet the users' requirements. Graph Neural Networks (GNNs) have emerged as a promising paradigm for effectively modeling and extracting insights which inherently exhibit complex network structures due to its high performance and accuracy, scalability, adaptability, and resource efficiency. There is a lack of a comprehensive survey that focuses on the applications and advances GNN has made in the context of IoT and Next Generation (NextG) networks. To bridge that gap, this survey starts by providing a detailed description of GNN's terminologies, architecture, and the different types of GNNs. Then we provide a comprehensive survey of the advancements in applying GNNs for IoT from the perspective of data fusion and intrusion detection. Thereafter, we survey the impact GNN has made in improving spectrum awareness. Next, we provide a detailed account of how GNN has been leveraged for networking and tactical systems. Through this survey, we aim to provide a comprehensive resource for researchers to learn more about GNN in the context of wireless networks, and understand its state-of-the-art use cases while contrasting to other machine learning approaches. Finally, we also discussed the challenges and wide range of future research directions to further motivate the use of GNN for IoT and NextG Networks.
♻ ☆ Generating Directed Graphs with Dual Attention and Asymmetric Encoding
Directed graphs naturally model systems with asymmetric, ordered relationships, essential to applications in biology, transportation, social networks, and visual understanding. Generating such graphs enables tasks such as simulation, data augmentation and novel instance discovery; however, directed graph generation remains underexplored. We identify two key factors limiting progress in this direction: first, modeling edge directionality introduces a substantially larger dependency space, making the underlying distribution harder to learn; second, the absence of standardized benchmarks hinders rigorous evaluation. Addressing the former requires more expressive models that are sensitive to directional topologies. We propose Directo, the first generative model for directed graphs built upon the discrete flow matching framework. Our approach combines: (i) principled positional encodings tailored to asymmetric pairwise relations, (ii) a dual-attention mechanism capturing both incoming and outgoing dependencies, and (iii) a robust, discrete generative framework. To support evaluation, we introduce a benchmark suite covering synthetic and real-world datasets. It shows that our method performs strongly across diverse settings and even competes with specialized models for particular classes, such as directed acyclic graphs. Our results highlight the effectiveness and generality of our approach, establishing a solid foundation for future research in directed graph generation.
♻ ☆ Non-Stationary Lipschitz Bandits
We study the problem of non-stationary Lipschitz bandits, where the number of actions is infinite and the reward function, satisfying a Lipschitz assumption, can change arbitrarily over time. We design an algorithm that adaptively tracks the recently introduced notion of significant shifts, defined by large deviations of the cumulative reward function. To detect such reward changes, our algorithm leverages a hierarchical discretization of the action space. Without requiring any prior knowledge of the non-stationarity, our algorithm achieves a minimax-optimal dynamic regret bound of $\mathcal{\widetilde{O}}(\tilde{L}^{1/3}T^{2/3})$, where $\tilde{L}$ is the number of significant shifts and $T$ the horizon. This result provides the first optimal guarantee in this setting.
♻ ☆ EEG-Based Consumer Behaviour Prediction: An Exploration from Classical Machine Learning to Graph Neural Networks
Prediction of consumer behavior is one of the important purposes in marketing, cognitive neuroscience, and human-computer interaction. The electroencephalography (EEG) data can help analyze the decision process by providing detailed information about the brain's neural activity. In this research, a comparative approach is utilized for predicting consumer behavior by EEG data. In the first step, the features of the EEG data from the NeuMa dataset were extracted and cleaned. For the Graph Neural Network (GNN) models, the brain connectivity features were created. Different machine learning models, such as classical models and Graph Neural Networks, are used and compared. The GNN models with different architectures are implemented to have a comprehensive comparison; furthermore, a wide range of classical models, such as ensemble models, are applied, which can be very helpful to show the difference and performance of each model on the dataset. Although the results did not show a significant difference overall, the GNN models generally performed better in some basic criteria where classical models were not satisfactory. This study not only shows that combining EEG signal analysis and machine learning models can provide an approach to deeper understanding of consumer behavior, but also provides a comprehensive comparison between the machine learning models that have been widely used in previous studies in the EEG-based neuromarketing such as Support Vector Machine (SVM), and the models which are not used or rarely used in the field, like Graph Neural Networks.
♻ ☆ Rethinking Hebbian Principle: Low-Dimensional Structural Projection for Unsupervised Learning
Hebbian learning is a biological principle that intuitively describes how neurons adapt their connections through repeated stimuli. However, when applied to machine learning, it suffers serious issues due to the unconstrained updates of the connections and the lack of accounting for feedback mediation. Such shortcomings limit its effective scaling to complex network architectures and tasks. To this end, here we introduce the Structural Projection Hebbian Representation (SPHeRe), a novel unsupervised learning method that integrates orthogonality and structural information preservation through a local auxiliary nonlinear block. The loss for structural information preservation backpropagates to the input through an auxiliary lightweight projection that conceptually serves as feedback mediation while the orthogonality constraints account for the boundedness of updating magnitude. Extensive experimental results show that SPHeRe achieves SOTA performance among unsupervised synaptic plasticity approaches on standard image classification benchmarks, including CIFAR-10, CIFAR-100, and Tiny-ImageNet. Furthermore, the method exhibits strong effectiveness in continual learning and transfer learning scenarios, and image reconstruction tasks show the robustness and generalizability of the extracted features. This work demonstrates the competitiveness and potential of Hebbian unsupervised learning rules within modern deep learning frameworks, demonstrating the possibility of efficient and biologically inspired learning algorithms without the strong dependence on strict backpropagation. Our code is available at https://github.com/brain-intelligence-lab/SPHeRe.
♻ ☆ From Reviews to Actionable Insights: An LLM-Based Approach for Attribute and Feature Extraction
This research proposes a systematic, large language model (LLM) approach for extracting product and service attributes, features, and associated sentiments from customer reviews. Grounded in marketing theory, the framework distinguishes perceptual attributes from actionable features, producing interpretable and managerially actionable insights. We apply the methodology to 20,000 Yelp reviews of Starbucks stores and evaluate eight prompt variants on a random subset of reviews. Model performance is assessed through agreement with human annotations and predictive validity for customer ratings. Results show high consistency between LLMs and human coders and strong predictive validity, confirming the reliability of the approach. Human coders required a median of six minutes per review, whereas the LLM processed each in two seconds, delivering comparable insights at a scale unattainable through manual coding. Managerially, the analysis identifies attributes and features that most strongly influence customer satisfaction and their associated sentiments, enabling firms to pinpoint "joy points," address "pain points," and design targeted interventions. We demonstrate how structured review data can power an actionable marketing dashboard that tracks sentiment over time and across stores, benchmarks performance, and highlights high-leverage features for improvement. Simulations indicate that enhancing sentiment for key service features could yield 1-2% average revenue gains per store.
♻ ☆ Backpropagation-Free Test-Time Adaptation via Probabilistic Gaussian Alignment
Test-time adaptation (TTA) enhances the zero-shot robustness under distribution shifts by leveraging unlabeled test data during inference. Despite notable advances, several challenges still limit its broader applicability. First, most methods rely on backpropagation or iterative optimization, which limits scalability and hinders real-time deployment. Second, they lack explicit modeling of class-conditional feature distributions. This modeling is crucial for producing reliable decision boundaries and calibrated predictions, but it remains underexplored due to the lack of both source data and supervision at test time. In this paper, we propose ADAPT, an Advanced Distribution-Aware and backPropagation-free Test-time adaptation method. We reframe TTA as a Gaussian probabilistic inference task by modeling class-conditional likelihoods using gradually updated class means and a shared covariance matrix. This enables closed-form, training-free inference. To correct potential likelihood bias, we introduce lightweight regularization guided by CLIP priors and a historical knowledge bank. ADAPT requires no source data, no gradient updates, and no full access to target data, supporting both online and transductive settings. Extensive experiments across diverse benchmarks demonstrate that our method achieves state-of-the-art performance under a wide range of distribution shifts with superior scalability and robustness.
♻ ☆ A Comprehensive Benchmark for RNA 3D Structure-Function Modeling
The relationship between RNA structure and function has recently attracted interest within the deep learning community, a trend expected to intensify as nucleic acid structure models advance. Despite this momentum, the lack of standardized, accessible benchmarks for applying deep learning to RNA 3D structures hinders progress. To this end, we introduce a collection of seven benchmarking datasets specifically designed to support RNA structure-function prediction. Built on top of the established Python package rnaglib, our library streamlines data distribution and encoding, provides tools for dataset splitting and evaluation, and offers a comprehensive, user-friendly environment for model comparison. The modular and reproducible design of our datasets encourages community contributions and enables rapid customization. To demonstrate the utility of our benchmarks, we report baseline results for all tasks using a relational graph neural network.
♻ ☆ Deep Linear Probe Generators for Weight Space Learning ICLR 2025
Weight space learning aims to extract information about a neural network, such as its training dataset or generalization error. Recent approaches learn directly from model weights, but this presents many challenges as weights are high-dimensional and include permutation symmetries between neurons. An alternative approach, Probing, represents a model by passing a set of learned inputs (probes) through the model, and training a predictor on top of the corresponding outputs. Although probing is typically not used as a stand alone approach, our preliminary experiment found that a vanilla probing baseline worked surprisingly well. However, we discover that current probe learning strategies are ineffective. We therefore propose Deep Linear Probe Generators (ProbeGen), a simple and effective modification to probing approaches. ProbeGen adds a shared generator module with a deep linear architecture, providing an inductive bias towards structured probes thus reducing overfitting. While simple, ProbeGen performs significantly better than the state-of-the-art and is very efficient, requiring between 30 to 1000 times fewer FLOPs than other top approaches.
comment: ICLR 2025. Project page: https://vision.huji.ac.il/probegen
♻ ☆ TimeWak: Temporal Chained-Hashing Watermark for Time Series Data
Synthetic time series generated by diffusion models enable sharing privacy-sensitive datasets, such as patients' functional MRI records. Key criteria for synthetic data include high data utility and traceability to verify the data source. Recent watermarking methods embed in homogeneous latent spaces, but state-of-the-art time series generators operate in data space, making latent-based watermarking incompatible. This creates the challenge of watermarking directly in data space while handling feature heterogeneity and temporal dependencies. We propose TimeWak, the first watermarking algorithm for multivariate time series diffusion models. To handle temporal dependence and spatial heterogeneity, TimeWak embeds a temporal chained-hashing watermark directly within the temporal-feature data space. The other unique feature is the $\epsilon$-exact inversion, which addresses the non-uniform reconstruction error distribution across features from inverting the diffusion process to detect watermarks. We derive the error bound of inverting multivariate time series while preserving robust watermark detectability. We extensively evaluate TimeWak on its impact on synthetic data quality, watermark detectability, and robustness under various post-editing attacks, against five datasets and baselines of different temporal lengths. Our results show that TimeWak achieves improvements of 61.96% in context-FID score, and 8.44% in correlational scores against the strongest state-of-the-art baseline, while remaining consistently detectable.
♻ ☆ Learn More by Using Less: Distributed Learning with Energy-Constrained Devices
Federated Learning (FL) has emerged as a solution for distributed model training across decentralized, privacy-preserving devices, but the different energy capacities of participating devices (system heterogeneity) constrain real-world implementations. These energy limitations not only reduce model accuracy but also increase dropout rates, impacting on convergence in practical FL deployments. In this work, we propose LeanFed, an energy-aware FL framework designed to optimize client selection and training workloads on battery-constrained devices. LeanFed leverages adaptive data usage by dynamically adjusting the fraction of local data each device utilizes during training, thereby maximizing device participation across communication rounds while ensuring they do not run out of battery during the process. We rigorously evaluate LeanFed against traditional FedAvg on CIFAR-10 and CIFAR-100 datasets, simulating various levels of data heterogeneity and device participation rates. Results show that LeanFed consistently enhances model accuracy and stability, particularly in settings with high data heterogeneity and limited battery life, by mitigating client dropout and extending device availability. This approach demonstrates the potential of energy-efficient, privacy-preserving FL in real-world, large-scale applications, setting a foundation for robust and sustainable pervasive AI on resource-constrained networks.
♻ ☆ Backward Conformal Prediction
We introduce $\textit{Backward Conformal Prediction}$, a method that guarantees conformal coverage while providing flexible control over the size of prediction sets. Unlike standard conformal prediction, which fixes the coverage level and allows the conformal set size to vary, our approach defines a rule that constrains how prediction set sizes behave based on the observed data, and adapts the coverage level accordingly. Our method builds on two key foundations: (i) recent results by Gauthier et al. [2025] on post-hoc validity using e-values, which ensure marginal coverage of the form $\mathbb{P}(Y_{\rm test} \in \hat C_n^{\tilde{\alpha}}(X_{\rm test})) \ge 1 - \mathbb{E}[\tilde{\alpha}]$ up to a first-order Taylor approximation for any data-dependent miscoverage $\tilde{\alpha}$, and (ii) a novel leave-one-out estimator $\hat{\alpha}^{\rm LOO}$ of the marginal miscoverage $\mathbb{E}[\tilde{\alpha}]$ based on the calibration set, ensuring that the theoretical guarantees remain computable in practice. This approach is particularly useful in applications where large prediction sets are impractical such as medical diagnosis. We provide theoretical results and empirical evidence supporting the validity of our method, demonstrating that it maintains computable coverage guarantees while ensuring interpretable, well-controlled prediction set sizes.
comment: Code available at: https://github.com/GauthierE/backward-cp
♻ ☆ Explaining Time Series Classifiers with PHAR: Rule Extraction and Fusion from Post-hoc Attributions
Explaining machine learning (ML) models for time series (TS) classification remains challenging due to the difficulty of interpreting raw time series and the high dimensionality of the input space. We introduce PHAR-Post-hoc Attribution Rules - a unified framework that transforms numeric feature attributions from post-hoc, instance-wise explainers (e.g., LIME, SHAP) into structured, human-readable rules. These rules define human-readable intervals that indicate where and when decision-relevant segments occur and can enhance model transparency by localizing threshold-based conditions on the raw series. PHAR performs comparably to native rule-based methods, such as Anchor, while scaling more efficiently to long TS sequences and achieving broader instance coverage. A dedicated rule fusion step consolidates rule sets using strategies like weighted selection and lasso-based refinement, balancing key quality metrics: coverage, confidence, and simplicity. This fusion ensures each instance receives a concise and unambiguous rule, improving both explanation fidelity and consistency. We further introduce visualization techniques to illustrate specificity-generalization trade-offs in the derived rules. PHAR resolves conflicting and overlapping explanations - a common effect of the Rashomon phenomenon - into coherent, domain-adaptable insights. Comprehensive experiments on UCR/UEA Time Series Classification Archive demonstrate that PHAR may improve interpretability, decision transparency, and practical applicability for TS classification tasks by providing concise, human-readable rules aligned with model predictions.
♻ ☆ CATransformers: Carbon Aware Transformers Through Joint Model-Hardware Optimization
Machine learning solutions are rapidly adopted to enable a variety of key use cases, from conversational AI assistants to scientific discovery. This growing adoption is expected to increase the associated lifecycle carbon footprint, including both \emph{operational carbon} from training and inference and \emph{embodied carbon} from AI hardware manufacturing. We introduce \ourframework -- the first carbon-aware co-optimization framework for Transformer-based models and hardware accelerators. By integrating both operational and embodied carbon into early-stage design space exploration, \ourframework enables sustainability-driven model architecture and hardware accelerator co-design that reveals fundamentally different trade-offs than latency- or energy-centric approaches. Evaluated across a range of Transformer models, \ourframework consistently demonstrates the potential to reduce total carbon emissions -- by up to 30\% -- while maintaining accuracy and latency. We further highlight its extensibility through a focused case study on multi-modal models. Our results emphasize the need for holistic optimization methods that prioritize carbon efficiency without compromising model capability and execution time performance. The source code of \ourframework is available at {\small{\href{https://github.com/facebookresearch/CATransformers}{\texttt{https://github.com/facebookresearch/CATransformers}}}}.
♻ ☆ Learning Spatially Adaptive $\ell_1$-Norms Weights for Convolutional Synthesis Regularization
We propose an unrolled algorithm approach for learning spatially adaptive parameter maps in the framework of convolutional synthesis-based $\ell_1$ regularization. More precisely, we consider a family of pre-trained convolutional filters and estimate deeply parametrized spatially varying parameters applied to the sparse feature maps by means of unrolling a FISTA algorithm to solve the underlying sparse estimation problem. The proposed approach is evaluated for image reconstruction of low-field MRI and compared to spatially adaptive and non-adaptive analysis-type procedures relying on Total Variation regularization and to a well-established model-based deep learning approach. We show that the proposed approach produces visually and quantitatively comparable results with the latter approaches and at the same time remains highly interpretable. In particular, the inferred parameter maps quantify the local contribution of each filter in the reconstruction, which provides valuable insight into the algorithm mechanism and could potentially be used to discard unsuited filters.
comment: Accepted for publication in the proceedings of the EUSIPCO 2025 conference; corrected typo in equation (3)
♻ ☆ REPA-E: Unlocking VAE for End-to-End Tuning with Latent Diffusion Transformers
In this paper we tackle a fundamental question: "Can we train latent diffusion models together with the variational auto-encoder (VAE) tokenizer in an end-to-end manner?" Traditional deep-learning wisdom dictates that end-to-end training is often preferable when possible. However, for latent diffusion transformers, it is observed that end-to-end training both VAE and diffusion-model using standard diffusion-loss is ineffective, even causing a degradation in final performance. We show that while diffusion loss is ineffective, end-to-end training can be unlocked through the representation-alignment (REPA) loss -- allowing both VAE and diffusion model to be jointly tuned during the training process. Despite its simplicity, the proposed training recipe (REPA-E) shows remarkable performance; speeding up diffusion model training by over 17x and 45x over REPA and vanilla training recipes, respectively. Interestingly, we observe that end-to-end tuning with REPA-E also improves the VAE itself; leading to improved latent space structure and downstream generation performance. In terms of final performance, our approach sets a new state-of-the-art; achieving FID of 1.12 and 1.69 with and without classifier-free guidance on ImageNet 256 x 256. Code is available at https://end2end-diffusion.github.io.
♻ ☆ QPPG: Quantum-Preconditioned Policy Gradient for Link Adaptation in Rayleigh Fading Channels IEEE
Reliable link adaptation is critical for efficient wireless communications in dynamic fading environments. However, reinforcement learning (RL) solutions often suffer from unstable convergence due to poorly conditioned policy gradients, hindering their practical application. We propose the quantum-preconditioned policy gradient (QPPG) algorithm, which leverages Fisher-information-based preconditioning to stabilise and accelerate policy updates. Evaluations in Rayleigh fading scenarios show that QPPG achieves faster convergence, a 28.6% increase in average throughput, and a 43.8% decrease in average transmit power compared to classical methods. This work introduces quantum-geometric conditioning to link adaptation, marking a significant advance in developing robust, quantum-inspired reinforcement learning for future 6G networks, thereby enhancing communication reliability and energy efficiency.
comment: Submitted to IEEE Wireless Communications Letters
♻ ☆ Merging Embedded Topics with Optimal Transport for Online Topic Modeling on Data Streams
Topic modeling is a key component in unsupervised learning, employed to identify topics within a corpus of textual data. The rapid growth of social media generates an ever-growing volume of textual data daily, making online topic modeling methods essential for managing these data streams that continuously arrive over time. This paper introduces a novel approach to online topic modeling named StreamETM. This approach builds on the Embedded Topic Model (ETM) to handle data streams by merging models learned on consecutive partial document batches using unbalanced optimal transport. Additionally, an online change point detection algorithm is employed to identify shifts in topics over time, enabling the identification of significant changes in the dynamics of text streams. Numerical experiments on simulated and real-world data show StreamETM outperforming competitors. We provide the code publicly available at https://github.com/fgranese/StreamETM.
♻ ☆ Advancing Carbon Capture using AI: Design of permeable membrane and estimation of parameters for Carbon Capture using linear regression and membrane-based equations
This study focuses on membrane-based systems for CO$_2$ separation, addressing the urgent need for efficient carbon capture solutions to mitigate climate change. Linear regression models, based on membrane equations, were utilized to estimate key parameters, including porosity ($\epsilon$) of 0.4805, Kozeny constant (K) of 2.9084, specific surface area ($\sigma$) of 105.3272 m$^2$/m$^3$, mean pressure (Pm) of 6.2166 MPa, viscosity ($\mu$) of 0.1997 Ns/m$^2$, and gas flux (Jg) of 3.2559 kg m$^{-2}$ s$^{-1}$. These parameters were derived from the analysis of synthetic datasets using linear regression. The study also provides insights into the performance of the membrane, with a flow rate (Q) of 9.8778 $\times$ 10$^{-4}$ m$^3$/s, an injection pressure (P$_1$) of 2.8219 MPa, and an exit pressure (P$_2$) of 2.5762 MPa. The permeability value of 0.045 for CO$_2$ indicates the potential for efficient separation. Optimizing membrane properties to selectively block CO$_2$ while allowing other gases to pass is crucial for improving carbon capture efficiency. By integrating these technologies into industrial processes, significant reductions in greenhouse gas emissions can be achieved, fostering a circular carbon economy and contributing to global climate goals. This study also explores how artificial intelligence (AI) can aid in designing membranes for carbon capture, addressing the global climate change challenge and supporting the Sustainable Development Goals (SDGs) set by the United Nations.
comment: The data is outdated and ML portion requires update, we are working on it
♻ ☆ Generalizing while preserving monotonicity in comparison-based preference learning models
If you tell a learning model that you prefer an alternative $a$ over another alternative $b$, then you probably expect the model to be monotone, that is, the valuation of $a$ increases, and that of $b$ decreases. Yet, perhaps surprisingly, many widely deployed comparison-based preference learning models, including large language models, fail to have this guarantee. Until now, the only comparison-based preference learning algorithms that were proved to be monotone are the Generalized Bradley-Terry models. Yet, these models are unable to generalize to uncompared data. In this paper, we advance the understanding of the set of models with generalization ability that are monotone. Namely, we propose a new class of Linear Generalized Bradley-Terry models with Diffusion Priors, and identify sufficient conditions on alternatives' embeddings that guarantee monotonicity. Our experiments show that this monotonicity is far from being a general guarantee, and that our new class of generalizing models improves accuracy, especially when the dataset is limited.
comment: Accepted at Neurips 2025
♻ ☆ Understanding Reasoning in Thinking Language Models via Steering Vectors ICLR 2025
Recent advances in large language models (LLMs) have led to the development of thinking language models that generate extensive internal reasoning chains before producing responses. While these models achieve improved performance, controlling their reasoning processes remains challenging. This work presents a steering approach for thinking LLMs by analyzing and manipulating specific reasoning behaviors in DeepSeek-R1-Distill models. Through a systematic experiment on 500 tasks across 10 diverse categories, we identify several reasoning behaviors exhibited by thinking models, including expressing uncertainty, generating examples for hypothesis validation, and backtracking in reasoning chains. We demonstrate that these behaviors are mediated by linear directions in the model's activation space and can be controlled using steering vectors. By extracting and applying these vectors, we provide a method to modulate specific aspects of the model's reasoning process, such as its tendency to backtrack or express uncertainty. Our approach offers practical tools for steering reasoning processes in thinking models in a controlled and interpretable manner. We validate our steering method using three DeepSeek-R1-Distill models, demonstrating consistent control across different model architectures.
comment: Accepted to the Workshop on Reasoning and Planning for Large Language Models at ICLR 2025
♻ ☆ Trajectory learning for ensemble forecasts via the continuous ranked probability score: a Lorenz '96 case study
This paper demonstrates the feasibility of trajectory learning for ensemble forecasts by employing the continuous ranked probability score (CRPS) as a loss function. Using the two-scale Lorenz '96 system as a case study, we develop and train both additive and multiplicative stochastic parametrizations to generate ensemble predictions. Results indicate that CRPS-based trajectory learning produces parametrizations that are both accurate and sharp. The resulting parametrizations are straightforward to calibrate and outperform derivative-fitting-based parametrizations in short-term forecasts. This approach is particularly promising for data assimilation applications due to its accuracy over short lead times.
comment: 21 pages, 11 figures. All comments are welcome!
♻ ☆ Efficient Vision-Language-Action Models for Embodied Manipulation: A Systematic Survey
Vision-Language-Action (VLA) models extend vision-language models to embodied control by mapping natural-language instructions and visual observations to robot actions. Despite their capabilities, VLA systems face significant challenges due to their massive computational and memory demands, which conflict with the constraints of edge platforms such as on-board mobile manipulators that require real-time performance. Addressing this tension has become a central focus of recent research. In light of the growing efforts toward more efficient and scalable VLA systems, this survey provides a systematic review of approaches for improving VLA efficiency, with an emphasis on reducing latency, memory footprint, and training and inference costs. We categorize existing solutions into four dimensions: model architecture, perception feature, action generation, and training/inference strategies, summarizing representative techniques within each category. Finally, we discuss future trends and open challenges, highlighting directions for advancing efficient embodied intelligence.
♻ ☆ ACT: Agentic Classification Tree
When used in high-stakes settings, AI systems are expected to produce decisions that are transparent, interpretable, and auditable, a requirement increasingly expected by regulations. Decision trees such as CART provide clear and verifiable rules, but they are restricted to structured tabular data and cannot operate directly on unstructured inputs such as text. In practice, large language models (LLMs) are widely used for such data, yet prompting strategies such as chain-of-thought or prompt optimization still rely on free-form reasoning, limiting their ability to ensure trustworthy behaviors. We present the Agentic Classification Tree (ACT), which extends decision-tree methodology to unstructured inputs by formulating each split as a natural-language question, refined through impurity-based evaluation and LLM feedback via TextGrad. Experiments on text benchmarks show that ACT matches or surpasses prompting-based baselines while producing transparent and interpretable decision paths.
comment: 18 pages, 6 figures
♻ ☆ DitHub: A Modular Framework for Incremental Open-Vocabulary Object Detection NeurIPS 2025
Open-Vocabulary object detectors can generalize to an unrestricted set of categories through simple textual prompting. However, adapting these models to rare classes or reinforcing their abilities on multiple specialized domains remains essential. While recent methods rely on monolithic adaptation strategies with a single set of weights, we embrace modular deep learning. We introduce DitHub, a framework designed to build and maintain a library of efficient adaptation modules. Inspired by Version Control Systems, DitHub manages expert modules as branches that can be fetched and merged as needed. This modular approach allows us to conduct an in-depth exploration of the compositional properties of adaptation modules, marking the first such study in Object Detection. Our method achieves state-of-the-art performance on the ODinW-13 benchmark and ODinW-O, a newly introduced benchmark designed to assess class reappearance. For more details, visit our project page: https://aimagelab.github.io/DitHub/
comment: Accepted at the 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ With Limited Data for Multimodal Alignment, Let the STRUCTURE Guide You NeurIPS 2025
Multimodal models have demonstrated powerful capabilities in complex tasks requiring multimodal alignment, including zero-shot classification and cross-modal retrieval. However, existing models typically rely on millions of paired multimodal samples, which are prohibitively expensive or infeasible to obtain in many domains. In this work, we explore the feasibility of building multimodal models with limited amount of paired data by aligning pretrained unimodal foundation models. We show that high-quality alignment is possible with as few as tens of thousands of paired samples$\unicode{x2013}$less than $1\%$ of the data typically used in the field. To achieve this, we introduce STRUCTURE, an effective regularization technique that preserves the neighborhood geometry of the latent space of unimodal encoders. Additionally, we show that aligning last layers is often suboptimal and demonstrate the benefits of aligning the layers with the highest representational similarity across modalities. These two components can be readily incorporated into existing alignment methods, yielding substantial gains across 24 zero-shot image classification and retrieval benchmarks, with average relative improvement of $51.6\%$ in classification and $91.8\%$ in retrieval tasks. Our results highlight the effectiveness and broad applicability of our framework for limited-sample multimodal learning and offer a promising path forward for resource-constrained domains.
comment: NeurIPS 2025 camera-ready
♻ ☆ Explainable fault and severity classification for rolling element bearings using Kolmogorov-Arnold networks
Rolling element bearings are critical components of rotating machinery, with their performance directly influencing the efficiency and reliability of industrial systems. At the same time, bearing faults are a leading cause of machinery failures, often resulting in costly downtime, reduced productivity, and, in extreme cases, catastrophic damage. This study presents a methodology that utilizes Kolmogorov-Arnold Networks to address these challenges through automatic feature selection, hyperparameter tuning and interpretable fault analysis within a unified framework. By training shallow network architectures and minimizing the number of selected features, the framework produces lightweight models that deliver explainable results through feature attribution and symbolic representations of their activation functions. Validated on two widely recognized datasets for bearing fault diagnosis, the framework achieved perfect F1-Scores for fault detection and high performance in fault and severity classification tasks, including 100% F1-Scores in most cases. Notably, it demonstrated adaptability by handling diverse fault types, such as imbalance and misalignment, within the same dataset. The symbolic representations enhanced model interpretability, while feature attribution offered insights into the optimal feature types or signals for each studied task. These results highlight the framework's potential for practical applications, such as real-time machinery monitoring, and for scientific research requiring efficient and explainable models.
♻ ☆ Stable Matching with Ties: Approximation Ratios and Learning NeurIPS 2025
We study matching markets with ties, where workers on one side of the market may have tied preferences over jobs, determined by their matching utilities. Unlike classical two-sided markets with strict preferences, no single stable matching exists that is utility-maximizing for all workers. To address this challenge, we introduce the \emph{Optimal Stable Share} (OSS)-ratio, which measures the ratio of a worker's maximum achievable utility in any stable matching to their utility in a given matching. We prove that distributions over only stable matchings can incur linear utility losses, i.e., an $\Omega (N)$ OSS-ratio, where $N$ is the number of workers. To overcome this, we design an algorithm that efficiently computes a distribution over (possibly non-stable) matchings, achieving an asymptotically tight $O (\log N)$ OSS-ratio. When exact utilities are unknown, our second algorithm guarantees workers a logarithmic approximation of their optimal utility under bounded instability. Finally, we extend our offline approximation results to a bandit learning setting where utilities are only observed for matched pairs. In this setting, we consider worker-optimal stable regret, design an adaptive algorithm that smoothly interpolates between markets with strict preferences and those with statistical ties, and establish a lower bound revealing the fundamental trade-off between strict and tied preference regimes.
comment: Accepted to NeurIPS 2025
♻ ☆ MaNGO - Adaptable Graph Network Simulators via Meta-Learning NeurIPS 2025
Accurately simulating physics is crucial across scientific domains, with applications spanning from robotics to materials science. While traditional mesh-based simulations are precise, they are often computationally expensive and require knowledge of physical parameters, such as material properties. In contrast, data-driven approaches like Graph Network Simulators (GNSs) offer faster inference but suffer from two key limitations: Firstly, they must be retrained from scratch for even minor variations in physical parameters, and secondly they require labor-intensive data collection for each new parameter setting. This is inefficient, as simulations with varying parameters often share a common underlying latent structure. In this work, we address these challenges by learning this shared structure through meta-learning, enabling fast adaptation to new physical parameters without retraining. To this end, we propose a novel architecture that generates a latent representation by encoding graph trajectories using conditional neural processes (CNPs). To mitigate error accumulation over time, we combine CNPs with a novel neural operator architecture. We validate our approach, Meta Neural Graph Operator (MaNGO), on several dynamics prediction tasks with varying material properties, demonstrating superior performance over existing GNS methods. Notably, MaNGO achieves accuracy on unseen material properties close to that of an oracle model.
comment: 20 pages including appendix. NeurIPS 2025 (camera ready version)
♻ ☆ Coordinated Strategies in Realistic Air Combat by Hierarchical Multi-Agent Reinforcement Learning IEEE
Achieving mission objectives in a realistic simulation of aerial combat is highly challenging due to imperfect situational awareness and nonlinear flight dynamics. In this work, we introduce a novel 3D multi-agent air combat environment and a Hierarchical Multi-Agent Reinforcement Learning framework to tackle these challenges. Our approach combines heterogeneous agent dynamics, curriculum learning, league-play, and a newly adapted training algorithm. To this end, the decision-making process is organized into two abstraction levels: low-level policies learn precise control maneuvers, while high-level policies issue tactical commands based on mission objectives. Empirical results show that our hierarchical approach improves both learning efficiency and combat performance in complex dogfight scenarios.
comment: 2025 IEEE International Conference on Agentic AI (ICA)
♻ ☆ Merge then Realign: Simple and Effective Modality-Incremental Continual Learning for Multimodal LLMs EMNLP 2025
Recent advances in Multimodal Large Language Models (MLLMs) have enhanced their versatility as they integrate a growing number of modalities. Considering the heavy cost of training MLLMs, it is efficient to reuse the existing ones and extend them to more modalities through Modality-incremental Continual Learning (MCL). The exploration of MCL is in its early stages. In this work, we dive into the causes of performance degradation in MCL. We uncover that it suffers not only from forgetting as in traditional continual learning, but also from misalignment between the modality-agnostic and modality-specific components. To this end, we propose an elegantly simple MCL paradigm called "MErge then ReAlign" (MERA) to address both forgetting and misalignment. MERA avoids introducing heavy model budgets or modifying model architectures, hence is easy to deploy and highly reusable in the MLLM community. Extensive experiments demonstrate the impressive performance of MERA, holding an average of 99.84\% Backward Relative Gain when extending to four modalities, achieving nearly lossless MCL performance. Our findings underscore the misalignment issue in MCL. More broadly, our work showcases how to adjust different components of MLLMs during continual learning.
comment: EMNLP 2025 Main Conference
♻ ☆ Memorization-Compression Cycles Improve Generalization NeurIPS2025
We prove theoretically that generalization improves not only through data scaling but also by compressing internal representations. To operationalize this insight, we introduce the Information Bottleneck Language Modeling (IBLM) objective, which reframes language modeling as a constrained optimization problem: minimizing representation entropy subject to optimal prediction performance. Empirically, we observe an emergent memorization-compression cycle during LLM pretraining, evidenced by oscillation positive/negative gradient alignment between cross-entropy and Matrix-Based Entropy (MBE), a measure of representation entropy. This pattern closely mirrors the predictive-compressive trade-off prescribed by IBLM and also parallels the biological alternation between awake learning and sleep consolidation. Motivated by this observation, we propose Gated Phase Transition (GAPT), a training algorithm that adaptively switches between memorization and compression phases. When applied to GPT-2 pretraining on FineWeb dataset, GAPT reduces MBE by 50% and improves cross-entropy by 4.8%. GAPT improves OOD generalizatino by 35% in a pretraining task on arithmetic multiplication. In a setting designed to simulate catastrophic forgetting, GAPT reduces interference by compressing and separating representations, achieving a 97% improvement in separation - paralleling the functional role of sleep consolidation.
comment: 12 pages, 6 figures, NeurIPS2025 NEGEL Workshop
♻ ☆ Customizing Spider Silk: Generative Models with Mechanical Property Conditioning for Protein Engineering
The remarkable mechanical properties of spider silk, including its tensile strength and extensibility, are primarily governed by the repetitive regions of the proteins that constitute the fiber, the major ampullate spidroins (MaSps). However, establishing correlations between mechanical characteristics and repeat sequences is challenging due to the intricate sequence-structure-function relationships of MaSps and the limited availability of annotated datasets. In this study, we present a novel computational framework for designing MaSp repeat sequences with customizable mechanical properties. To achieve this, we developed a lightweight GPT-based generative model by distilling the pre-trained ProtGPT2 protein language model. The distilled model was subjected to multilevel fine-tuning using curated subsets of the Spider Silkome dataset. Specifically, we adapt the model for MaSp repeat generation using 6,000 MaSp repeat sequences and further refine it with 572 repeats associated with experimentally determined fiber-level mechanical properties. Our model generates biologically plausible MaSp repeat regions tailored to specific mechanical properties while also predicting those properties for given sequences. Validation includes sequence-level analysis, assessing physicochemical attributes and expected distribution of key motifs as well as secondary structure compositions. A correlation study using BLAST on the Spider Silkome dataset and a test set of MaSp repeats with known mechanical properties further confirmed the predictive accuracy of the model. This framework advances the rational design of spider silk-inspired biomaterials, offering a versatile tool for engineering protein sequences with tailored mechanical attributes.
comment: 23 pages, 11 figures
♻ ☆ Shilling Recommender Systems by Generating Side-feature-aware Fake User Profiles
Recommender systems (RS) greatly influence users' consumption decisions, making them attractive targets for malicious shilling attacks that inject fake user profiles to manipulate recommendations. Existing shilling methods can generate effective and stealthy fake profiles when training data only contain rating matrix, but they lack comprehensive solutions for scenarios where side features are present and utilized by the recommender. To address this gap, we extend the Leg-UP framework by enhancing the generator architecture to incorporate side features, enabling the generation of side-feature-aware fake user profiles. Experiments on benchmarks show that our method achieves strong attack performance while maintaining stealthiness.
♻ ☆ MINGLE: Mixture of Null-Space Gated Low-Rank Experts for Test-Time Continual Model Merging NeurIPS 2025
Continual model merging integrates independently fine-tuned models sequentially without access to the original training data, offering a scalable and efficient solution for continual learning. However, existing methods face two critical challenges: parameter interference among tasks, which leads to catastrophic forgetting, and limited adaptability to evolving test distributions. To address these issues, we introduce the task of Test-Time Continual Model Merging (TTCMM), which leverages a small set of unlabeled test samples during inference to alleviate parameter conflicts and handle distribution shifts. We propose MINGLE, a novel framework for TTCMM. MINGLE employs a mixture-of-experts architecture with parameter-efficient, low-rank experts, which enhances adaptability to evolving test distributions while dynamically merging models to mitigate conflicts. To further reduce forgetting, we propose Null-Space Constrained Gating, which restricts gating updates to subspaces orthogonal to prior task representations, thereby suppressing activations on old tasks and preserving past knowledge. We further introduce an Adaptive Relaxation Strategy that adjusts constraint strength dynamically based on interference signals observed during test-time adaptation, striking a balance between stability and adaptability. Extensive experiments on standard continual merging benchmarks demonstrate that MINGLE achieves robust generalization, significantly reduces forgetting, and consistently surpasses previous state-of-the-art methods by 7-9% on average across diverse task orders. Our code is available at: https://github.com/zihuanqiu/MINGLE
comment: accepted by NeurIPS 2025
♻ ☆ MsEdF: A Multi-stream Encoder-decoder Framework for Remote Sensing Image Captioning
Remote sensing images contain complex spatial patterns and semantic structures, which makes the captioning model difficult to accurately describe. Encoder-decoder architectures have become the widely used approach for RSIC by translating visual content into descriptive text. However, many existing methods rely on a single-stream architecture, which weakens the model to accurately describe the image. Such single-stream architectures typically struggle to extract diverse spatial features or capture complex semantic relationships, limiting their effectiveness in scenes with high intraclass similarity or contextual ambiguity. In this work, we propose a novel Multi-stream Encoder-decoder Framework (MsEdF) which improves the performance of RSIC by optimizing both the spatial representation and language generation of encoder-decoder architecture. The encoder fuses information from two complementary image encoders, thereby promoting feature diversity through the integration of multiscale and structurally distinct cues. To improve the capture of context-aware descriptions, we refine the input sequence's semantic modeling on the decoder side using a stacked GRU architecture with an element-wise aggregation scheme. Experiments on three benchmark RSIC datasets show that MsEdF outperforms several baseline models.
♻ ☆ Long-term Causal Inference via Modeling Sequential Latent Confounding
Long-term causal inference is an important but challenging problem across various scientific domains. To solve the latent confounding problem in long-term observational studies, existing methods leverage short-term experimental data. Ghassami et al. propose an approach based on the Conditional Additive Equi-Confounding Bias (CAECB) assumption, which asserts that the confounding bias in the short-term outcome is equal to that in the long-term outcome, so that the long-term confounding bias and the causal effects can be identified. While effective in certain cases, this assumption is limited to scenarios where there is only one short-term outcome with the same scale as the long-term outcome. In this paper, we introduce a novel assumption that extends the CAECB assumption to accommodate temporal short-term outcomes. Our proposed assumption states a functional relationship between sequential confounding biases across temporal short-term outcomes, under which we theoretically establish the identification of long-term causal effects. Based on the identification result, we develop an estimator and conduct a theoretical analysis of its asymptotic properties. Extensive experiments validate our theoretical results and demonstrate the effectiveness of the proposed method.
♻ ☆ Fast, Modular, and Differentiable Framework for Machine Learning-Enhanced Molecular Simulations
We present an end-to-end differentiable molecular simulation framework (DIMOS) for molecular dynamics and Monte Carlo simulations. DIMOS easily integrates machine-learning-based interatomic potentials and implements classical force fields including an efficient implementation of particle-mesh Ewald. Thanks to its modularity, both classical and machine-learning-based approaches can be easily combined into a hybrid description of the system (ML/MM). By supporting key molecular dynamics features such as efficient neighborlists and constraint algorithms for larger time steps, the framework makes steps in bridging the gap between hand-optimized simulation engines and the flexibility of a \verb|PyTorch| implementation. We show that due to improved linear instead of quadratic scaling as function of system size DIMOS is able to obtain speed-up factors of up to $170\times$ for classical force field simulations against another fully differentiable simulation framework. The advantage of differentiability is demonstrated by an end-to-end optimization of the proposal distribution in a Markov Chain Monte Carlo simulation based on Hamiltonian Monte Carlo (HMC). Using these optimized simulation parameters a $3\times$ acceleration is observed in comparison to ad-hoc chosen simulation parameters. The code is available at https://github.com/nec-research/DIMOS.
♻ ☆ PULSE: Practical Evaluation Scenarios for Large Multimodal Model Unlearning
In recent years, unlearning techniques, which are methods for inducing a model to "forget" previously learned information, have attracted attention as a way to address privacy and copyright concerns in large language models (LLMs) and large multimodal models (LMMs). While several unlearning benchmarks have been established for LLMs, a practical evaluation framework for unlearning in LMMs has been less explored. Specifically, existing unlearning benchmark for LMMs considers only scenarios in which the model is required to unlearn fine-tuned knowledge through a single unlearning operation. In this study, we introduce PULSE protocol for realistic unlearning scenarios for LMMs by introducing two critical perspectives: (i) Pre-trained knowledge Unlearning for analyzing the effect across different knowledge acquisition phases and (ii) Long-term Sustainability Evaluation to address sequential requests. We then evaluate existing unlearning methods along these dimensions. Our results reveal that, although some techniques can successfully unlearn knowledge acquired through fine-tuning, they struggle to eliminate information learned during pre-training. Moreover, methods that effectively unlearn a batch of target data in a single operation exhibit substantial performance degradation when the same data are split and unlearned sequentially.
♻ ☆ Q-Palette: Fractional-Bit Quantizers Toward Optimal Bit Allocation for Efficient LLM Deployment NeurIPS 2025
We study weight-only post-training quantization (PTQ), which quantizes the weights of a large language model (LLM) without retraining, using little or no calibration data. Weight-only PTQ is crucial for reducing the memory footprint and latency of LLM inference, especially in memory-bound, small-batch inference scenarios, such as personalized inference on edge devices. Despite its importance, irregular weight distributions with heavy-tailed outliers in LLMs complicate quantization, recently motivating rotation-based methods that transform weights into near-Gaussian distributions, which are more regular with fewer outliers, thereby reducing quantization error. In this work, we first derive the information-theoretically optimal bit allocation for Gaussianized weights under given bit budgets, revealing that fine-grained fractional-bit quantizers approaching the Gaussian distortion-rate bound are essential to achieve near-optimal quantization performance. To bridge this theoretical insight and practical implementation, we introduce Q-Palette, a versatile collection of fractional-bit quantizers that range from trellis-coded quantizers offering near-optimal distortion to simpler vector and scalar quantizers optimized for faster inference, all efficiently implemented with optimized CUDA kernels across various bitwidths. Furthermore, leveraging Q-Palette as a foundational component, we propose a novel mixed-scheme quantization framework, jointly optimizing quantizer choices and layer fusion decisions given resource constraints. The code is available at https://github.com/snu-mllab/Q-Palette.
comment: NeurIPS 2025
♻ ☆ LeapFactual: Reliable Visual Counterfactual Explanation Using Conditional Flow Matching NeurIPS 2025
The growing integration of machine learning (ML) and artificial intelligence (AI) models into high-stakes domains such as healthcare and scientific research calls for models that are not only accurate but also interpretable. Among the existing explainable methods, counterfactual explanations offer interpretability by identifying minimal changes to inputs that would alter a model's prediction, thus providing deeper insights. However, current counterfactual generation methods suffer from critical limitations, including gradient vanishing, discontinuous latent spaces, and an overreliance on the alignment between learned and true decision boundaries. To overcome these limitations, we propose LeapFactual, a novel counterfactual explanation algorithm based on conditional flow matching. LeapFactual generates reliable and informative counterfactuals, even when true and learned decision boundaries diverge. Following a model-agnostic approach, LeapFactual is not limited to models with differentiable loss functions. It can even handle human-in-the-loop systems, expanding the scope of counterfactual explanations to domains that require the participation of human annotators, such as citizen science. We provide extensive experiments on benchmark and real-world datasets showing that LeapFactual generates accurate and in-distribution counterfactual explanations that offer actionable insights. We observe, for instance, that our reliable counterfactual samples with labels aligning to ground truth can be beneficially used as new training data to enhance the model. The proposed method is broadly applicable and enhances both scientific knowledge discovery and non-expert interpretability.
comment: Accepted as a poster presentation at NeurIPS 2025. Camera-ready version. 10 pages, 7 figures
♻ ☆ RADAR: A Risk-Aware Dynamic Multi-Agent Framework for LLM Safety Evaluation via Role-Specialized Collaboration
Existing safety evaluation methods for large language models (LLMs) suffer from inherent limitations, including evaluator bias and detection failures arising from model homogeneity, which collectively undermine the robustness of risk evaluation processes. This paper seeks to re-examine the risk evaluation paradigm by introducing a theoretical framework that reconstructs the underlying risk concept space. Specifically, we decompose the latent risk concept space into three mutually exclusive subspaces: the explicit risk subspace (encompassing direct violations of safety guidelines), the implicit risk subspace (capturing potential malicious content that requires contextual reasoning for identification), and the non-risk subspace. Furthermore, we propose RADAR, a multi-agent collaborative evaluation framework that leverages multi-round debate mechanisms through four specialized complementary roles and employs dynamic update mechanisms to achieve self-evolution of risk concept distributions. This approach enables comprehensive coverage of both explicit and implicit risks while mitigating evaluator bias. To validate the effectiveness of our framework, we construct an evaluation dataset comprising 800 challenging cases. Extensive experiments on our challenging testset and public benchmarks demonstrate that RADAR significantly outperforms baseline evaluation methods across multiple dimensions, including accuracy, stability, and self-evaluation risk sensitivity. Notably, RADAR achieves a 28.87% improvement in risk identification accuracy compared to the strongest baseline evaluation method.
♻ ☆ Model-based Large Language Model Customization as Service EMNLP 2025
Prominent Large Language Model (LLM) services from providers like OpenAI and Google excel at general tasks but often underperform on domain-specific applications. Current customization services for these LLMs typically require users to upload data for fine-tuning, posing significant privacy risks. While differentially private (DP) data synthesis presents a potential alternative, its application commonly results in low effectiveness due to the introduction of excessive noise on data for DP. To overcome this, we introduce Llamdex, a novel framework that facilitates LLM customization as a service, where the client uploads pre-trained domain-specific models rather than data. This client-uploaded model, optionally protected by DP with much lower noise, is inserted into the base LLM via connection modules. Significantly, these connecting modules are trained without requiring sensitive domain data, enabling clients to customize LLM services while preserving data privacy. Experiments demonstrate that Llamdex improves domain-specific accuracy by up to 26% over state-of-the-art private data synthesis methods under identical privacy constraints and, by obviating the need for users to provide domain context within queries, maintains inference efficiency comparable to the original LLM service.
comment: Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing (EMNLP 2025)
♻ ☆ Improved Exploration in GFlownets via Enhanced Epistemic Neural Networks ICML 2025
Efficiently identifying the right trajectories for training remains an open problem in GFlowNets. To address this, it is essential to prioritize exploration in regions of the state space where the reward distribution has not been sufficiently learned. This calls for uncertainty-driven exploration, in other words, the agent should be aware of what it does not know. This attribute can be measured by joint predictions, which are particularly important for combinatorial and sequential decision problems. In this research, we integrate epistemic neural networks (ENN) with the conventional architecture of GFlowNets to enable more efficient joint predictions and better uncertainty quantification, thereby improving exploration and the identification of optimal trajectories. Our proposed algorithm, ENN-GFN-Enhanced, is compared to the baseline method in GFlownets and evaluated in grid environments and structured sequence generation in various settings, demonstrating both its efficacy and efficiency.
comment: Accepted to the EXAIT Workshop at ICML 2025, and ICoIAS 2025
♻ ☆ Flow with the Force Field: Learning 3D Compliant Flow Matching Policies from Force and Demonstration-Guided Simulation Data
While visuomotor policy has made advancements in recent years, contact-rich tasks still remain a challenge. Robotic manipulation tasks that require continuous contact demand explicit handling of compliance and force. However, most visuomotor policies ignore compliance, overlooking the importance of physical interaction with the real world, often leading to excessive contact forces or fragile behavior under uncertainty. Introducing force information into vision-based imitation learning could help improve awareness of contacts, but could also require a lot of data to perform well. One remedy for data scarcity is to generate data in simulation, yet computationally taxing processes are required to generate data good enough not to suffer from the Sim2Real gap. In this work, we introduce a framework for generating force-informed data in simulation, instantiated by a single human demonstration, and show how coupling with a compliant policy improves the performance of a visuomotor policy learned from synthetic data. We validate our approach on real-robot tasks, including non-prehensile block flipping and a bi-manual object moving, where the learned policy exhibits reliable contact maintenance and adaptation to novel conditions. Project Website: https://flow-with-the-force-field.github.io/webpage/
♻ ☆ Nearly-Linear Time Private Hypothesis Selection with the Optimal Approximation Factor NeurIPS 2025
Estimating the density of a distribution from its samples is a fundamental problem in statistics. Hypothesis selection addresses the setting where, in addition to a sample set, we are given $n$ candidate distributions -- referred to as hypotheses -- and the goal is to determine which one best describes the underlying data distribution. This problem is known to be solvable very efficiently, requiring roughly $O(\log n)$ samples and running in $\tilde{O}(n)$ time. The quality of the output is measured via the total variation distance to the unknown distribution, and the approximation factor of the algorithm determines how large this distance is compared to the optimal distance achieved by the best candidate hypothesis. It is known that $\alpha = 3$ is the optimal approximation factor for this problem. We study hypothesis selection under the constraint of differential privacy. We propose a differentially private algorithm in the central model that runs in nearly-linear time with respect to the number of hypotheses, achieves the optimal approximation factor, and incurs only a modest increase in sample complexity, which remains polylogarithmic in $n$. This resolves an open question posed by [Bun, Kamath, Steinke, Wu, NeurIPS 2019]. Prior to our work, existing upper bounds required quadratic time.
comment: 33 pages; to appear in NeurIPS 2025
♻ ☆ The Streaming Batch Model for Efficient and Fault-Tolerant Heterogeneous Execution
While ML model training and inference are both GPU-intensive, CPU-based data processing is often the bottleneck. Distributed data processing systems based on the batch or stream processing models assume homogeneous resource requirements. They excel at CPU-based computation but either under-utilize heterogeneous resources or impose high overheads on failure and reconfiguration. We introduce the streaming batch model, a hybrid of batch and streaming that enables efficient and fault-tolerant heterogeneous execution. The key idea is to use partitions as the unit of execution to achieve elasticity, but to allow partitions to be dynamically created and streamed between heterogeneous operators for memory-efficient pipelining. We present Ray Data, a streaming batch system that improves throughput on heterogeneous batch inference pipelines by 2.5-12$\times$ compared to traditional batch and stream processing systems. By leveraging heterogeneous clusters, Ray Data improves training throughput for multimodal models such as Stable Diffusion by 31% compared to single-node ML data loaders.
♻ ☆ Semi-off-Policy Reinforcement Learning for Vision-Language Slow-Thinking Reasoning
Enhancing large vision-language models (LVLMs) with visual slow-thinking reasoning is crucial for solving complex multimodal tasks. However, since LVLMs are mainly trained with vision-language alignment, it is difficult to adopt on-policy reinforcement learning (RL) to develop the slow thinking ability because the rollout space is restricted by its initial abilities. Off-policy RL offers a way to go beyond the current policy, but directly distilling trajectories from external models may cause visual hallucinations due to mismatched visual perception abilities across models. To address these issues, this paper proposes SOPHIA, a simple and scalable Semi-Off-Policy RL for vision-language slow-tHInking reAsoning. SOPHIA builds a semi-off-policy behavior model by combining on-policy visual understanding from a trainable LVLM with off-policy slow-thinking reasoning from a language model, assigns outcome-based rewards to reasoning, and propagates visual rewards backward. Then LVLM learns slow-thinking reasoning ability from the obtained reasoning trajectories using propagated rewards via off-policy RL algorithms. Extensive experiments with InternVL2.5 and InternVL3.0 with 8B and 38B sizes show the effectiveness of SOPHIA. Notably, SOPHIA improves InternVL3.0-38B by 8.50% in average, reaching state-of-the-art performance among open-source LVLMs on multiple multimodal reasoning benchmarks, and even outperforms some closed-source models (e.g., GPT-4.1) on the challenging MathVision and OlympiadBench, achieving 49.08% and 49.95% pass@1 accuracy, respectively. Analysis shows SOPHIA outperforms supervised fine-tuning and direct on-policy RL methods, offering a better policy initialization for further on-policy training.
♻ ☆ Source-Free Domain Adaptation for SSVEP-based Brain-Computer Interfaces
Objective: SSVEP-based BCI spellers assist individuals experiencing speech difficulties by enabling them to communicate at a fast rate. However, achieving a high information transfer rate (ITR) in most prominent methods requires an extensive calibration period before using the system, leading to discomfort for new users. We address this issue by proposing a novel method that adapts a powerful deep neural network (DNN) pre-trained on data from source domains (data from former users or participants of previous experiments), to the new user (target domain) using only unlabeled target data. Approach: Our method adapts the pre-trained DNN to the new user by minimizing our proposed custom loss function composed of self-adaptation and local-regularity terms. The self-adaptation term uses the pseudo-label strategy, while the novel local-regularity term exploits the data structure and forces the DNN to assign similar labels to adjacent instances. Main results: Our method achieves excellent ITRs of 201.15 bits/min and 145.02 bits/min on the benchmark and BETA datasets, respectively, and outperforms the state-of-the-art alternatives. Our code is available at https://github.com/osmanberke/SFDA-SSVEP-BCI Significance: The proposed method prioritizes user comfort by removing the burden of calibration while maintaining an excellent character identification accuracy and ITR. Because of these attributes, our approach could significantly accelerate the adoption of BCI systems into everyday life.
comment: 31 pages (including a 7-page appendix); 6 figures (2 in the appendix)
♻ ☆ FST.ai 2.0: An Explainable AI Ecosystem for Fair, Fast, and Inclusive Decision-Making in Olympic and Paralympic Taekwondo
Fair, transparent, and explainable decision-making remains a critical challenge in Olympic and Paralympic combat sports. This paper presents \emph{FST.ai 2.0}, an explainable AI ecosystem designed to support referees, coaches, and athletes in real time during Taekwondo competitions and training. The system integrates {pose-based action recognition} using graph convolutional networks (GCNs), {epistemic uncertainty modeling} through credal sets, and {explainability overlays} for visual decision support. A set of {interactive dashboards} enables human--AI collaboration in referee evaluation, athlete performance analysis, and Para-Taekwondo classification. Beyond automated scoring, FST.ai~2.0 incorporates modules for referee training, fairness monitoring, and policy-level analytics within the World Taekwondo ecosystem. Experimental validation on competition data demonstrates an {85\% reduction in decision review time} and {93\% referee trust} in AI-assisted decisions. The framework thus establishes a transparent and extensible pipeline for trustworthy, data-driven officiating and athlete assessment. By bridging real-time perception, explainable inference, and governance-aware design, FST.ai~2.0 represents a step toward equitable, accountable, and human-aligned AI in sports.
comment: 23 pages, 12 figures
♻ ☆ Horizon Reduction Makes RL Scalable NeurIPS 2025
In this work, we study the scalability of offline reinforcement learning (RL) algorithms. In principle, a truly scalable offline RL algorithm should be able to solve any given problem, regardless of its complexity, given sufficient data, compute, and model capacity. We investigate if and how current offline RL algorithms match up to this promise on diverse, challenging, previously unsolved tasks, using datasets up to 1000x larger than typical offline RL datasets. We observe that despite scaling up data, many existing offline RL algorithms exhibit poor scaling behavior, saturating well below the maximum performance. We hypothesize that the horizon is the main cause behind the poor scaling of offline RL. We empirically verify this hypothesis through several analysis experiments, showing that long horizons indeed present a fundamental barrier to scaling up offline RL. We then show that various horizon reduction techniques substantially enhance scalability on challenging tasks. Based on our insights, we also introduce a minimal yet scalable method named SHARSA that effectively reduces the horizon. SHARSA achieves the best asymptotic performance and scaling behavior among our evaluation methods, showing that explicitly reducing the horizon unlocks the scalability of offline RL. Code: https://github.com/seohongpark/horizon-reduction
comment: NeurIPS 2025
♻ ☆ Physics-informed waveform inversion using pretrained wavefield neural operators IEEE
Full waveform inversion (FWI) is crucial for reconstructing high-resolution subsurface models, but it is often hindered, considering the limited data, by its null space resulting in low-resolution models, and more importantly, by its computational cost, especially if needed for real-time applications. Recent attempts to accelerate FWI using learned wavefield neural operators have shown promise in efficiency and differentiability, but typically suffer from noisy and unstable inversion performance. To address these limitations, we introduce a novel physics-informed FWI framework to enhance the inversion in accuracy while maintaining the efficiency of neural operator-based FWI. Instead of relying only on the L2 norm objective function via automatic differentiation, resulting in noisy model reconstruction, we integrate a physics constraint term in the loss function of FWI, improving the quality of the inverted velocity models. Specifically, starting with an initial model to simulate wavefields and then evaluating the loss over how much the resulting wavefield obeys the physical laws (wave equation) and matches the recorded data, we achieve a reduction in noise and artifacts. Numerical experiments using the OpenFWI and Overthrust models demonstrate our method's superior performance, offering cleaner and more accurate subsurface velocity than vanilla approaches. Considering the efficiency of the approach compared to FWI, this advancement represents a significant step forward in the practical application of FWI for real-time subsurface monitoring.
comment: This work has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. The final published version will be available via IEEE Xplore
♻ ☆ LICO: Large Language Models for In-Context Molecular Optimization ICLR 2025
Optimizing black-box functions is a fundamental problem in science and engineering. To solve this problem, many approaches learn a surrogate function that estimates the underlying objective from limited historical evaluations. Large Language Models (LLMs), with their strong pattern-matching capabilities via pretraining on vast amounts of data, stand out as a potential candidate for surrogate modeling. However, directly prompting a pretrained language model to produce predictions is not feasible in many scientific domains due to the scarcity of domain-specific data in the pretraining corpora and the challenges of articulating complex problems in natural language. In this work, we introduce LICO, a general-purpose model that extends arbitrary base LLMs for black-box optimization, with a particular application to the molecular domain. To achieve this, we equip the language model with a separate embedding layer and prediction layer, and train the model to perform in-context predictions on a diverse set of functions defined over the domain. Once trained, LICO can generalize to unseen molecule properties simply via in-context prompting. LICO performs competitively on PMO, a challenging molecular optimization benchmark comprising 23 objective functions, and achieves state-of-the-art performance on its low-budget version PMO-1K.
comment: International Conference on Learning Representations (ICLR 2025)
♻ ☆ DeCAL Tokenwise Compression
This paper introduces DeCAL, a new method for tokenwise compression. DeCAL uses an encoder-decoder language model pretrained with denoising to learn to produce high-quality, general-purpose compressed representations from the encoder. DeCAL applies small modifications to the encoder, with the emphasis on maximizing compression quality, even at the expense of compute. We show that DeCAL at 2x compression can match uncompressed on several downstream tasks, with usually only a minor dropoff in metrics up to 8x compression, among question-answering, summarization, and multi-vector retrieval tasks. DeCAL offers significant savings where pre-computed dense representations can be utilized, and we believe the approach can be further developed to be more broadly applicable.
♻ ☆ Evolution of Information in Interactive Decision Making: A Case Study for Multi-Armed Bandits
We study the evolution of information in interactive decision making through the lens of a stochastic multi-armed bandit problem. Focusing on a fundamental example where a unique optimal arm outperforms the rest by a fixed margin, we characterize the optimal success probability and mutual information over time. Our findings reveal distinct growth phases in mutual information -- initially linear, transitioning to quadratic, and finally returning to linear -- highlighting curious behavioral differences between interactive and non-interactive environments. In particular, we show that optimal success probability and mutual information can be decoupled, where achieving optimal learning does not necessarily require maximizing information gain. These findings shed new light on the intricate interplay between information and learning in interactive decision making.
♻ ☆ Flexible-length Text Infilling for Discrete Diffusion Models EMNLP
Discrete diffusion models are a new class of text generators that offer advantages such as bidirectional context use, parallelizable generation, and flexible prompting compared to autoregressive models. However, a critical limitation of discrete diffusion models is their inability to perform flexible-length or flexible-position text infilling without access to ground-truth positional data. We introduce \textbf{DDOT} (\textbf{D}iscrete \textbf{D}iffusion with \textbf{O}ptimal \textbf{T}ransport Position Coupling), the first discrete diffusion model to overcome this challenge. DDOT jointly denoises token values and token positions, employing a novel sample-level Optimal Transport (OT) coupling. This coupling preserves relative token ordering while dynamically adjusting the positions and length of infilled segments, a capability previously missing in text diffusion. Our method is orthogonal to existing discrete text diffusion methods and is compatible with various pretrained text denoisers. Extensive experiments on text infilling benchmarks such as One-Billion-Word and Yelp demonstrate that DDOT outperforms naive diffusion baselines. Furthermore, DDOT achieves performance on par with state-of-the-art non-autoregressive models and enables significant improvements in training efficiency and flexibility.
comment: Major edit of methodology section. Matches EMNLP camera-ready version
♻ ☆ Demystifying Domain-adaptive Post-training for Financial LLMs EMNLP 2025
Domain-adaptive post-training of large language models (LLMs) has emerged as a promising approach for specialized domains such as medicine and finance. However, significant challenges remain in identifying optimal adaptation criteria and training strategies across varying data and model configurations. To address these challenges, we introduce FINDAP, a systematic and fine-grained investigation into domain-adaptive post-training of LLMs for the finance domain. Our approach consists of four key components: FinCap, which defines the core capabilities required for the target domain; FinRec, an effective training recipe that jointly optimizes continual pre-training and instruction-following, along with a novel preference data distillation method leveraging process signals from a generative reward model; FinTrain, a curated set of training datasets supporting FinRec; and FinEval, a comprehensive evaluation suite aligned with FinCap. The resulting model, Llama-Fin, achieves state-of-the-art performance across a wide range of financial tasks. Our analysis also highlights how each post-training stage contributes to distinct capabilities, uncovering specific challenges and effective solutions, providing valuable insights for domain adaptation of LLMs
comment: EMNLP 2025 (Oral, ARR best paper nomination)
♻ ☆ GUARD: Guided Unlearning and Retention via Data Attribution for Large Language Models
Unlearning in large language models is becoming increasingly important due to regulatory compliance, copyright protection, and privacy concerns. However, a key challenge in LLM unlearning is unintended forgetting, where the removal of specific data inadvertently impairs the utility of the model and its retention of valuable, desired information. While prior work has primarily focused on architectural innovations, the influence of data-level factors on unlearning performance remains underexplored. As a result, existing methods often suffer from degraded retention when forgetting high-impact data. To address this problem, we propose GUARD, a novel framework for Guided Unlearning And Retention via Data attribution. At its core, GUARD introduces a lightweight proxy data attribution metric tailored for LLM unlearning, which quantifies the alignment between the Forget and Retain sets while remaining computationally efficient. Building on this, we design a novel unlearning objective that assigns adaptive, nonuniform unlearning weights to samples, inversely proportional to their proxy attribution scores. Through such a reallocation of unlearning power, GUARD mitigates unintended retention loss. We also provide rigorous theoretical guarantees that GUARD significantly improves retention while maintaining forgetting metrics comparable to prior methods. Extensive experiments on the TOFU and MUSE benchmarks across multiple LLM architectures demonstrate that GUARD reduces utility sacrifice on the TOFU Retain Set by up to 194.92 percent in terms of Truth Ratio when forgetting 10 percent of the training data, and improves knowledge retention on the MUSE NEWS Retain Set by 16.20 percent, with comparable or very moderate increases in privacy loss compared to state-of-the-art methods.
♻ ☆ Benchmarking Probabilistic Time Series Forecasting Models on Neural Activity NeurIPS 2025
Neural activity forecasting is central to understanding neural systems and enabling closed-loop control. While deep learning has recently advanced the state-of-the-art in the time series forecasting literature, its application to neural activity forecasting remains limited. To bridge this gap, we systematically evaluated eight probabilistic deep learning models, including two foundation models, that have demonstrated strong performance on general forecasting benchmarks. We compared them against four classical statistical models and two baseline methods on spontaneous neural activity recorded from mouse cortex via widefield imaging. Across prediction horizons, several deep learning models consistently outperformed classical approaches, with the best model producing informative forecasts up to 1.5 seconds into the future. Our findings point toward future control applications and open new avenues for probing the intrinsic temporal structure of neural activity.
comment: Accepted at the 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Data on the Brain & Mind
♻ ☆ Stable Minima of ReLU Neural Networks Suffer from the Curse of Dimensionality: The Neural Shattering Phenomenon
We study the implicit bias of flatness / low (loss) curvature and its effects on generalization in two-layer overparameterized ReLU networks with multivariate inputs -- a problem well motivated by the minima stability and edge-of-stability phenomena in gradient-descent training. Existing work either requires interpolation or focuses only on univariate inputs. This paper presents new and somewhat surprising theoretical results for multivariate inputs. On two natural settings (1) generalization gap for flat solutions, and (2) mean-squared error (MSE) in nonparametric function estimation by stable minima, we prove upper and lower bounds, which establish that while flatness does imply generalization, the resulting rates of convergence necessarily deteriorate exponentially as the input dimension grows. This gives an exponential separation between the flat solutions vis-\`a-vis low-norm solutions (i.e., weight decay), which knowingly do not suffer from the curse of dimensionality. In particular, our minimax lower bound construction, based on a novel packing argument with boundary-localized ReLU neurons, reveals how flat solutions can exploit a kind of ''neural shattering'' where neurons rarely activate, but with high weight magnitudes. This leads to poor performance in high dimensions. We corroborate these theoretical findings with extensive numerical simulations. To the best of our knowledge, our analysis provides the first systematic explanation for why flat minima may fail to generalize in high dimensions.
comment: Camera Ready Version. Accepted by Neurips 2025 (Spotlight)
♻ ☆ Fair Supervised Learning Through Constraints on Smooth Nonconvex Unfairness-Measure Surrogates
A new strategy for fair supervised machine learning is proposed. The main advantages of the proposed strategy as compared to others in the literature are as follows. (a) We introduce a new smooth nonconvex surrogate to approximate the Heaviside functions involved in discontinuous unfairness measures. The surrogate is based on smoothing methods from the optimization literature, and is new for the fair supervised learning literature. The surrogate is a tight approximation which ensures the trained prediction models are fair, as opposed to other (e.g., convex) surrogates that can fail to lead to a fair prediction model in practice. (b) Rather than rely on regularizers (that lead to optimization problems that are difficult to solve) and corresponding regularization parameters (that can be expensive to tune), we propose a strategy that employs hard constraints so that specific tolerances for unfairness can be enforced without the complications associated with the use of regularization. (c) Our proposed strategy readily allows for constraints on multiple (potentially conflicting) unfairness measures at the same time. Multiple measures can be considered with a regularization approach, but at the cost of having even more difficult optimization problems to solve and further expense for tuning. By contrast, through hard constraints, our strategy leads to optimization models that can be solved tractably with minimal tuning.
♻ ☆ Do LLMs Really Forget? Evaluating Unlearning with Knowledge Correlation and Confidence Awareness NeurIPS
Machine unlearning techniques aim to mitigate unintended memorization in large language models (LLMs). However, existing approaches predominantly focus on the explicit removal of isolated facts, often overlooking latent inferential dependencies and the non-deterministic nature of knowledge within LLMs. Consequently, facts presumed forgotten may persist implicitly through correlated information. To address these challenges, we propose a knowledge unlearning evaluation framework that more accurately captures the implicit structure of real-world knowledge by representing relevant factual contexts as knowledge graphs with associated confidence scores. We further develop an inference-based evaluation protocol leveraging powerful LLMs as judges; these judges reason over the extracted knowledge subgraph to determine unlearning success. Our LLM judges utilize carefully designed prompts and are calibrated against human evaluations to ensure their trustworthiness and stability. Extensive experiments on our newly constructed benchmark demonstrate that our framework provides a more realistic and rigorous assessment of unlearning performance. Moreover, our findings reveal that current evaluation strategies tend to overestimate unlearning effectiveness. Our code is publicly available at https://github.com/Graph-COM/Knowledge_Unlearning.git.
comment: NeurIPS Camera-Ready Version. Code available at: https://github.com/Graph-COM/Knowledge_Unlearning
♻ ☆ FairGen: Controlling Sensitive Attributes for Fair Generations in Diffusion Models via Adaptive Latent Guidance EMNLP 2025
Text-to-image diffusion models often exhibit biases toward specific demographic groups, such as generating more males than females when prompted to generate images of engineers, raising ethical concerns and limiting their adoption. In this paper, we tackle the challenge of mitigating generation bias towards any target attribute value (e.g., "male" for "gender") in diffusion models while preserving generation quality. We propose FairGen, an adaptive latent guidance mechanism which controls the generation distribution during inference. In FairGen, a latent guidance module dynamically adjusts the diffusion process to enforce specific attributes, while a memory module tracks the generation statistics and steers latent guidance to align with the targeted fair distribution of the attribute values. Furthermore, we address the limitations of existing datasets by introducing the Holistic Bias Evaluation (HBE) benchmark, which covers diverse domains and incorporates complex prompts to assess bias more comprehensively. Extensive evaluations on HBE and Stable Bias datasets demonstrate that FairGen outperforms existing bias mitigation approaches, achieving substantial bias reduction (e.g., 68.5% gender bias reduction on Stable Diffusion 2). Ablation studies highlight FairGen's ability to flexibly control the output distribution at any user-specified granularity, ensuring adaptive and targeted bias mitigation.
comment: EMNLP 2025 Main Conference (Camera Ready)
♻ ☆ PLAGUE: Plug-and-play framework for Lifelong Adaptive Generation of Multi-turn Exploits
Large Language Models (LLMs) are improving at an exceptional rate. With the advent of agentic workflows, multi-turn dialogue has become the de facto mode of interaction with LLMs for completing long and complex tasks. While LLM capabilities continue to improve, they remain increasingly susceptible to jailbreaking, especially in multi-turn scenarios where harmful intent can be subtly injected across the conversation to produce nefarious outcomes. While single-turn attacks have been extensively explored, adaptability, efficiency and effectiveness continue to remain key challenges for their multi-turn counterparts. To address these gaps, we present PLAGUE, a novel plug-and-play framework for designing multi-turn attacks inspired by lifelong-learning agents. PLAGUE dissects the lifetime of a multi-turn attack into three carefully designed phases (Primer, Planner and Finisher) that enable a systematic and information-rich exploration of the multi-turn attack family. Evaluations show that red-teaming agents designed using PLAGUE achieve state-of-the-art jailbreaking results, improving attack success rates (ASR) by more than 30% across leading models in a lesser or comparable query budget. Particularly, PLAGUE enables an ASR (based on StrongReject) of 81.4% on OpenAI's o3 and 67.3% on Claude's Opus 4.1, two models that are considered highly resistant to jailbreaks in safety literature. Our work offers tools and insights to understand the importance of plan initialization, context optimization and lifelong learning in crafting multi-turn attacks for a comprehensive model vulnerability evaluation.
comment: First two authors have equal author contributions
♻ ☆ An Analysis of Concept Bottleneck Models: Measuring, Understanding, and Mitigating the Impact of Noisy Annotations NeurIPS 2025
Concept bottleneck models (CBMs) ensure interpretability by decomposing predictions into human interpretable concepts. Yet the annotations used for training CBMs that enable this transparency are often noisy, and the impact of such corruption is not well understood. In this study, we present the first systematic study of noise in CBMs and show that even moderate corruption simultaneously impairs prediction performance, interpretability, and the intervention effectiveness. Our analysis identifies a susceptible subset of concepts whose accuracy declines far more than the average gap between noisy and clean supervision and whose corruption accounts for most performance loss. To mitigate this vulnerability we propose a two-stage framework. During training, sharpness-aware minimization stabilizes the learning of noise-sensitive concepts. During inference, where clean labels are unavailable, we rank concepts by predictive entropy and correct only the most uncertain ones, using uncertainty as a proxy for susceptibility. Theoretical analysis and extensive ablations elucidate why sharpness-aware training confers robustness and why uncertainty reliably identifies susceptible concepts, providing a principled basis that preserves both interpretability and resilience in the presence of noise.
comment: NeurIPS 2025
♻ ☆ Democratizing AI scientists using ToolUniverse
AI scientists are emerging computational systems that serve as collaborative partners in discovery. These systems remain difficult to build because they are bespoke, tied to rigid workflows, and lack shared environments that unify tools, data, and analyses into a common ecosystem. In genomics, unified ecosystems have transformed research by enabling interoperability, reuse, and community-driven development; AI scientists require comparable infrastructure. We present ToolUniverse, an ecosystem for building AI scientists from any language or reasoning model across open- and closed-weight models. ToolUniverse standardizes how AI scientists identify and call tools by providing more than 600 machine learning models, datasets, APIs, and scientific packages for data analysis, knowledge retrieval, and experimental design. It automatically refines tool interfaces for correct use by AI scientists, generates new tools from natural language descriptions, iteratively optimizes tool specifications, and composes tools into agentic workflows. In a case study of hypercholesterolemia, ToolUniverse was used to create an AI scientist to identify a potent analog of a drug with favorable predicted properties. The open-source ToolUniverse is available at https://aiscientist.tools.
comment: https://aiscientist.tools
♻ ☆ VO-DP: Semantic-Geometric Adaptive Diffusion Policy for Vision-Only Robotic Manipulation
In the context of imitation learning, visuomotor-based diffusion policy learning is one of the main directions in robotic manipulation. Most of these approaches rely on point clouds as observation inputs and construct scene representations through point clouds feature learning, which enables them to achieve remarkable accuracy. However, the existing literature lacks an in-depth exploration of vision-only solutions that have significant potential. In this paper, we propose a Vision-Only and single-view Diffusion Policy learning method (VO-DP) that leverages pretrained visual foundation models to achieve effective fusion of semantic and geometric features. We utilize intermediate features from VGGT incorporating semantic features from DINOv2 and geometric features from Alternating Attention blocks. Features are fused via cross-attention and spatially compressed with a CNN to form the input to the policy head. Extensive experiments demonstrate that VO-DP not only outperforms the vision-only baseline DP significantly but also exhibits distinct performance trends against the point cloud-based method DP3: in simulation tasks, VO-DP achieves an average success rate of 64.6% on par with DP3 64.0% and far higher than DP 34.8%, while in real-world tasks, it reaches 87.9%, outperforming both DP3 67.5% and DP 11.2% by a notable margin. Further robustness evaluations confirm that VO-DP remains highly stable under varying conditions including color, size, background, and lighting. Lastly, we open-source a training library for robotic manipulation. Built on Accelerate, this library supports multi-machine and multi-GPU parallel training, as well as mixed precision training. It is compatible with visuomotor policies such as DP, DP3 and VO-DP, and also supports the RoboTwin simulator.
♻ ☆ A Multi-Task Foundation Model for Wireless Channel Representation Using Contrastive and Masked Autoencoder Learning IEEE
Current applications of self-supervised learning to wireless channel representation often borrow paradigms developed for text and image processing, without fully addressing the unique characteristics and constraints of wireless communications. To bridge this gap, we introduce ContraWiMAE, Wireless Contrastive Masked Autoencoder, a transformer-based foundation model that unifies masked reconstruction and masked contrastive learning for wireless channel representation. Our key innovation is a new wireless-inspired contrastive objective that exploits the inherent characteristics of wireless environment, including noise, fading, and partial observability, as natural augmentation. Through extensive evaluation on unseen scenarios and conditions, we demonstrate our method's effectiveness in multiple downstream tasks, including cross-frequency beam selection, line-of-sight detection, and channel estimation. ContraWiMAE exhibits superior linear separability and adaptability in diverse wireless environments, demonstrating exceptional data efficiency and competitive performance compared with supervised baselines under challenging conditions. Comparative evaluations against a state-of-the-art wireless channel foundation model confirm the superior performance and data efficiency of our approach, highlighting its potential as a powerful baseline for future research in self-supervised wireless channel representation learning. To foster further work in this direction, we release the model weights and training pipeline for ContraWiMAE.
comment: - 17 pages, 7 figures, 5 tables - Submitted to IEEE JSAC Large AI Models for Future Wireless Communication Systems - Some of the results will appear in NeurIPS 2025, AI4NextG Workshop - This version is an extensive improvement in all aspects over the previous version with the same title - Dataset and implementation: https://github.com/BerkIGuler/WirelessContrastiveMaskedLearning
Learning What Matters: Steering Diffusion via Spectrally Anisotropic Forward Noise
Diffusion Probabilistic Models (DPMs) have achieved strong generative performance, yet their inductive biases remain largely implicit. In this work, we aim to build inductive biases into the training and sampling of diffusion models to better accommodate the target distribution of the data to model. We introduce an anisotropic noise operator that shapes these biases by replacing the isotropic forward covariance with a structured, frequency-diagonal covariance. This operator unifies band-pass masks and power-law weightings, allowing us to emphasize or suppress designated frequency bands, while keeping the forward process Gaussian. We refer to this as spectrally anisotropic Gaussian diffusion (SAGD). In this work, we derive the score relation for anisotropic covariances and show that, under full support, the learned score converges to the true data score as $t\!\to\!0$, while anisotropy reshapes the probability-flow path from noise to data. Empirically, we show the induced anisotropy outperforms standard diffusion across several vision datasets, and enables selective omission: learning while ignoring known corruptions confined to specific bands. Together, these results demonstrate that carefully designed anisotropic forward noise provides a simple, yet principled, handle to tailor inductive bias in DPMs.
♻ ☆ TunnElQNN: A Hybrid Quantum-classical Neural Network for Efficient Learning
Hybrid quantum-classical neural networks (HQCNNs) represent a promising frontier in machine learning, leveraging the complementary strengths of both models. In this work, we propose the development of TunnElQNN, a non-sequential architecture composed of alternating classical and quantum layers. Within the classical component, we employ the Tunnelling Diode Activation Function (TDAF), inspired by the I-V characteristics of quantum tunnelling. We evaluate the performance of this hybrid model on a synthetic dataset of interleaving half-circle for multi-class classification tasks with varying degrees of class overlap. The model is compared against a baseline hybrid architecture that uses the conventional ReLU activation function (ReLUQNN). Our results show that the TunnElQNN model consistently outperforms the ReLUQNN counterpart. Furthermore, we analyse the decision boundaries generated by TunnElQNN under different levels of class overlap and compare them to those produced by a neural network implementing TDAF within a fully classical architecture. These findings highlight the potential of integrating physics-inspired activation functions with quantum components to enhance the expressiveness and robustness of hybrid quantum-classical machine learning architectures.
comment: 11 pages, 6 figures
♻ ☆ Hummer: Towards Limited Competitive Preference Dataset
Preference datasets are essential for incorporating human preferences into pre-trained language models, playing a key role in the success of Reinforcement Learning from Human Feedback. However, these datasets often demonstrate conflicting alignment objectives, leading to increased vulnerability to jailbreak attacks and challenges in adapting downstream tasks to prioritize specific alignment objectives without negatively impacting others. In this work, we introduce a novel statistical metric, Alignment Dimension Conflict, to quantify the degree of conflict within preference datasets. We then present \texttt{Hummer} and its fine-grained variant, \texttt{Hummer-F}, as innovative pairwise preference datasets with reduced-conflict alignment objectives. \texttt{Hummer} is built based on UltraFeedback and is enhanced by AI feedback from GPT-4, marking as the first preference dataset aimed at reducing the competition between alignment objectives. Furthermore, we develop reward models, HummerRM and HummerRM-F, which employ a hybrid sampling approach to balance diverse alignment objectives effectively. This sampling method positions HummerRM as an ideal model for domain-specific further fine-tuning and reducing vulnerabilities to attacks.
♻ ☆ Feature Selection and Regularization in Multi-Class Classification: An Empirical Study of One-vs-Rest Logistic Regression with Gradient Descent Optimization and L1 Sparsity Constraints
Multi-class wine classification presents fundamental trade-offs between model accuracy, feature dimensionality, and interpretability - critical factors for production deployment in analytical chemistry. This paper presents a comprehensive empirical study of One-vs-Rest logistic regression on the UCI Wine dataset (178 samples, 3 cultivars, 13 chemical features), comparing from-scratch gradient descent implementation against scikit-learn's optimized solvers and quantifying L1 regularization effects on feature sparsity. Manual gradient descent achieves 92.59 percent mean test accuracy with smooth convergence, validating theoretical foundations, though scikit-learn provides 24x training speedup and 98.15 percent accuracy. Class-specific analysis reveals distinct chemical signatures with heterogeneous patterns where color intensity varies dramatically (0.31 to 16.50) across cultivars. L1 regularization produces 54-69 percent feature reduction with only 4.63 percent accuracy decrease, demonstrating favorable interpretability-performance trade-offs. We propose an optimal 5-feature subset achieving 62 percent complexity reduction with estimated 92-94 percent accuracy, enabling cost-effective deployment with 80 dollars savings per sample and 56 percent time reduction. Statistical validation confirms robust generalization with sub-2ms prediction latency suitable for real-time quality control. Our findings provide actionable guidelines for practitioners balancing comprehensive chemical analysis against targeted feature measurement in resource-constrained environments.
comment: 29 pages, 7 figures, 5 tables. Submitted to Machine Learning track. Comprehensive empirical evaluation of interpretable linear classification for analytical chemistry applications with focus on production deployment constraints, cost-benefit analysis, and class-specific feature importance patterns
♻ ☆ ROTI-GCV: Generalized Cross-Validation for right-ROTationally Invariant Data
Two key tasks in high-dimensional regularized regression are tuning the regularization strength for accurate predictions and estimating the out-of-sample risk. It is known that the standard approach -- $k$-fold cross-validation -- is inconsistent in modern high-dimensional settings. While leave-one-out and generalized cross-validation remain consistent in some high-dimensional cases, they become inconsistent when samples are dependent or contain heavy-tailed covariates. As a first step towards modeling structured sample dependence and heavy tails, we use right-rotationally invariant covariate distributions -- a crucial concept from compressed sensing. In the proportional asymptotics regime where the number of features and samples grow comparably, which is known to better reflect the empirical behavior in moderately sized datasets, we introduce a new framework, ROTI-GCV, for reliably performing cross-validation under these challenging conditions. Along the way, we propose new estimators for the signal-to-noise ratio and noise variance. We conduct experiments that demonstrate the accuracy of our approach in a variety of synthetic and semi-synthetic settings.
comment: 25 pages, 3 figures
♻ ☆ AGNES: Adaptive Graph Neural Network and Dynamic Programming Hybrid Framework for Real-Time Nanopore Seed Chaining
Nanopore sequencing enables real-time long-read DNA sequencing with reads exceeding 10 kilobases, but inherent error rates of 12-15 percent present significant computational challenges for read alignment. The critical seed chaining step must connect exact k-mer matches between reads and reference genomes while filtering spurious matches, yet state-of-the-art methods rely on fixed gap penalty functions unable to adapt to varying genomic contexts including tandem repeats and structural variants. This paper presents RawHash3, a hybrid framework combining graph neural networks with classical dynamic programming for adaptive seed chaining that maintains real-time performance while providing statistical guarantees. We formalize seed chaining as graph learning where seeds constitute nodes with 12-dimensional feature vectors and edges encode 8-dimensional spatial relationships including gap consistency. Our architecture employs three-layer EdgeConv GNN with confidence-based method selection that dynamically switches between learned guidance and algorithmic fallback. Comprehensive evaluation on 1,000 synthetic nanopore reads with 5,200 test seeds demonstrates RawHash3 achieves 99.94 percent precision and 40.07 percent recall, representing statistically significant 25.0 percent relative improvement over baseline with p less than 0.001. The system maintains median inference latency of 1.59ms meeting real-time constraints, while demonstrating superior robustness with 100 percent success rate under 20 percent label corruption versus baseline degradation to 30.3 percent. Cross-validation confirms stability establishing graph neural networks as viable approach for production genomics pipelines.
comment: 31 pages, 12 figures, 6 tables. Submitted to ACM Conference on Bioinformatics, Computational Biology, and Health Informatics (ACM-BCB). Includes comprehensive evaluation with statistical validation, ablation studies, and open-source implementation
♻ ☆ Transfer Faster, Price Smarter: Minimax Dynamic Pricing under Cross-Market Preference Shift
We study contextual dynamic pricing when a target market can leverage K auxiliary markets -- offline logs or concurrent streams -- whose mean utilities differ by a structured preference shift. We propose Cross-Market Transfer Dynamic Pricing (CM-TDP), the first algorithm that provably handles such model-shift transfer and delivers minimax-optimal regret for both linear and non-parametric utility models. For linear utilities of dimension d, where the difference between source- and target-task coefficients is $s_{0}$-sparse, CM-TDP attains regret $\tilde{O}((d*K^{-1}+s_{0})\log T)$. For nonlinear demand residing in a reproducing kernel Hilbert space with effective dimension $\alpha$, complexity $\beta$ and task-similarity parameter $H$, the regret becomes $\tilde{O}\!(K^{-2\alpha\beta/(2\alpha\beta+1)}T^{1/(2\alpha\beta+1)} + H^{2/(2\alpha+1)}T^{1/(2\alpha+1)})$, matching information-theoretic lower bounds up to logarithmic factors. The RKHS bound is the first of its kind for transfer pricing and is of independent interest. Extensive simulations show up to 50% lower cumulative regret and 5 times faster learning relative to single-market pricing baselines. By bridging transfer learning, robust aggregation, and revenue optimization, CM-TDP moves toward pricing systems that transfer faster, price smarter.
♻ ☆ Aligning Transformers with Continuous Feedback via Energy Rank Alignment
Searching through chemical space is an exceptionally challenging problem because the number of possible molecules grows combinatorially with the number of atoms. Large, autoregressive models trained on databases of chemical compounds have yielded powerful generators, but we still lack robust strategies for generating molecules with desired properties. This molecular search problem closely resembles the "alignment" problem for large language models, though for many chemical tasks we have a specific and easily evaluable reward function. Here, we introduce an algorithm called energy rank alignment (ERA) that leverages an explicit reward function to produce a gradient-based objective that we use to optimize autoregressive policies. We show theoretically that this algorithm is closely related to proximal policy optimization (PPO) and direct preference optimization (DPO), but has a minimizer that converges to an ideal Gibbs-Boltzmann distribution with the reward playing the role of an energy function. Furthermore, this algorithm is highly scalable, does not require reinforcement learning, and performs well relative to DPO when the number of preference observations per pairing is small. We deploy this approach to align molecular transformers and protein language models to generate molecules and protein sequences, respectively, with externally specified properties and find that it does so robustly, searching through diverse parts of chemical space.
♻ ☆ AICO: Feature Significance Tests for Supervised Learning
Machine learning has become a central tool across scientific, industrial, and policy domains. Algorithms now identify chemical properties, forecast disease risk, screen borrowers, and guide public interventions. Yet this predictive power often comes at the cost of transparency: we rarely know which input features truly drive a model's predictions. Without such understanding, researchers cannot draw reliable scientific conclusions, practitioners cannot ensure fairness or accountability, and policy makers cannot trust or govern model-based decisions. Despite its importance, existing tools for assessing feature influence are limited -- most lack statistical guarantees, and many require costly retraining or surrogate modeling, making them impractical for large modern models. We introduce AICO, a broadly applicable framework that turns model interpretability into an efficient statistical exercise. AICO asks, for any trained regression or classification model, whether each feature genuinely improves model performance. It does so by masking the feature's information and measuring the resulting change in performance. The method delivers exact, finite-sample inference -- exact feature p-values and confidence intervals -- without any retraining, surrogate modeling, or distributional assumptions, making it feasible for today's large-scale algorithms. In both controlled experiments and real applications -- from credit scoring to mortgage-behavior prediction -- AICO consistently pinpoints the variables that drive model behavior, providing a fast and reliable path toward transparent and trustworthy machine learning.
♻ ☆ Relational Transformer: Toward Zero-Shot Foundation Models for Relational Data
Pretrained transformers readily adapt to new sequence modeling tasks via zero-shot prompting, but relational domains still lack architectures that transfer across datasets and tasks. The core challenge is the diversity of relational data, with varying heterogeneous schemas, graph structures and functional dependencies. In this paper, we present the Relational Transformer (RT) architecture, which can be pretrained on diverse relational databases and directly applied to unseen datasets and tasks without task- or dataset-specific fine-tuning, or retrieval of in-context examples. RT (i) tokenizes cells with table/column metadata, (ii) is pretrained via masked token prediction, and (iii) utilizes a novel Relational Attention mechanism over columns, rows, and primary-foreign key links. Pretrained on RelBench datasets spanning tasks such as churn and sales forecasting, RT attains strong zero-shot performance, averaging 93% of fully supervised AUROC on binary classification tasks with a single forward pass of a 22M parameter model, as opposed to 84% for a 27B LLM. Fine-tuning yields state-of-the-art results with high sample efficiency. Our experiments show that RT's zero-shot transfer harnesses task-table context, relational attention patterns and schema semantics. Overall, RT provides a practical path toward foundation models for relational data.
comment: preprint; under review
♻ ☆ Bridging Symmetry and Robustness: On the Role of Equivariance in Enhancing Adversarial Robustness NeurIPS 2025
Adversarial examples reveal critical vulnerabilities in deep neural networks by exploiting their sensitivity to imperceptible input perturbations. While adversarial training remains the predominant defense strategy, it often incurs significant computational cost and may compromise clean-data accuracy. In this work, we investigate an architectural approach to adversarial robustness by embedding group-equivariant convolutions-specifically, rotation- and scale-equivariant layers-into standard convolutional neural networks (CNNs). These layers encode symmetry priors that align model behavior with structured transformations in the input space, promoting smoother decision boundaries and greater resilience to adversarial attacks. We propose and evaluate two symmetry-aware architectures: a parallel design that processes standard and equivariant features independently before fusion, and a cascaded design that applies equivariant operations sequentially. Theoretically, we demonstrate that such models reduce hypothesis space complexity, regularize gradients, and yield tighter certified robustness bounds under the CLEVER (Cross Lipschitz Extreme Value for nEtwork Robustness) framework. Empirically, our models consistently improve adversarial robustness and generalization across CIFAR-10, CIFAR-100, and CIFAR-10C under both FGSM and PGD attacks, without requiring adversarial training. These findings underscore the potential of symmetry-enforcing architectures as efficient and principled alternatives to data augmentation-based defenses.
comment: Accepted for the proceedings of 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ Compositional Coordination for Multi-Robot Teams with Large Language Models IEEE
Multi-robot coordination has traditionally relied on a mission-specific and expert-driven pipeline, where natural language mission descriptions are manually translated by domain experts into mathematical formulation, algorithm design, and executable code. This conventional process is labor-intensive, inaccessible to non-experts, and inflexible to changes in mission requirements. Here, we propose LAN2CB (Language to Collective Behavior), a novel framework that leverages large language models (LLMs) to streamline and generalize the multi-robot coordination pipeline. LAN2CB transforms natural language (NL) mission descriptions into executable Python code for multi-robot systems through two core modules: (1) Mission Analysis, which parses mission descriptions into behavior trees, and (2) Code Generation, which leverages the behavior tree and a structured knowledge base to generate robot control code. We further introduce a dataset of natural language mission descriptions to support development and benchmarking. Experiments in both simulation and real-world environments demonstrate that LAN2CB enables robust and flexible multi-robot coordination from natural language, significantly reducing manual engineering effort and supporting broad generalization across diverse mission types. Website: https://sites.google.com/view/lan-cb
comment: IEEE International Symposium on Multi-Robot & Multi-Agent Systems (MRS 2025) Oral
♻ ☆ Assessing the Probabilistic Fit of Neural Regressors via Conditional Congruence
While significant progress has been made in specifying neural networks capable of representing uncertainty, deep networks still often suffer from overconfidence and misaligned predictive distributions. Existing approaches for measuring this misalignment are primarily developed under the framework of calibration, with common metrics such as Expected Calibration Error (ECE). However, calibration can only provide a strictly marginal assessment of probabilistic alignment. Consequently, calibration metrics such as ECE are $\textit{distribution-wise}$ measures and cannot diagnose the $\textit{point-wise}$ reliability of individual inputs, which is important for real-world decision-making. We propose a stronger condition, which we term $\textit{conditional congruence}$, for assessing probabilistic fit. We also introduce a metric, Conditional Congruence Error (CCE), that uses conditional kernel mean embeddings to estimate the distance, at any point, between the learned predictive distribution and the empirical, conditional distribution in a dataset. We perform several high dimensional regression tasks and show that CCE exhibits four critical properties: $\textit{correctness}$, $\textit{monotonicity}$, $\textit{reliability}$, and $\textit{robustness}$.
♻ ☆ CoCoA Is ADMM: Unifying Two Paradigms in Distributed Optimization
We consider primal-dual algorithms for general empirical risk minimization problems in distributed settings, focusing on two prominent classes of algorithms. The first class is the communication-efficient distributed dual coordinate ascent (CoCoA), derived from the coordinate ascent method for solving the dual problem. The second class is the alternating direction method of multipliers (ADMM), including consensus ADMM, proximal ADMM, and linearized ADMM. We demonstrate that both classes of algorithms can be transformed into a unified update form that involves only primal and dual variables. This discovery reveals key connections between the two classes of algorithms: CoCoA can be interpreted as a special case of proximal ADMM for solving the dual problem, while consensus ADMM is equivalent to a proximal ADMM algorithm. This discovery provides insight into how we can easily enable the ADMM variants to outperform the CoCoA variants by adjusting the augmented Lagrangian parameter. We further explore linearized versions of ADMM and analyze the effects of tuning parameters on these ADMM variants in the distributed setting. Extensive simulation studies and real-world data analysis support our theoretical findings.
comment: 15 pages, 4 figures, 1 table
♻ ☆ Don't be lazy: CompleteP enables compute-efficient deep transformers NeurIPS 2025
We study compute efficiency of LLM training when using different parameterizations, i.e., rules for adjusting model and optimizer hyperparameters (HPs) as model size changes. Some parameterizations fail to transfer optimal base HPs (such as learning rate) across changes in model depth, requiring practitioners to either re-tune these HPs as they scale up (expensive), or accept sub-optimal training when re-tuning is prohibitive. Even when they achieve HP transfer, we develop theory to show parameterizations may still exist in the lazy learning regime where layers learn only features close to their linearization, preventing effective use of depth and nonlinearity. Finally, we identify and adopt the parameterization we call CompleteP that achieves both depth-wise HP transfer and non-lazy learning in all layers. CompleteP enables a wider range of model width/depth ratios to remain compute-efficient, unlocking shapes better suited for different hardware settings and operational contexts. Moreover, CompleteP enables 12-34% compute efficiency improvements over the prior state-of-the-art. All experiments were run on Cerebras CS-3 systems. A minimal implementation is available at https://github.com/EleutherAI/nanoGPT-mup/tree/completep.
comment: NeurIPS 2025 Camera Ready
♻ ☆ Machine Unlearning under Overparameterization
Machine unlearning algorithms aim to remove the influence of specific training samples, ideally recovering the model that would have resulted from training on the remaining data alone. We study unlearning in the overparameterized setting, where many models interpolate the data, and defining the solution as any loss minimizer over the retained set$\unicode{x2013}$as in prior work in the underparameterized setting$\unicode{x2013}$is inadequate, since the original model may already interpolate the retained data and satisfy this condition. In this regime, loss gradients vanish, rendering prior methods based on gradient perturbations ineffective, motivating both new unlearning definitions and algorithms. For this setting, we define the unlearning solution as the minimum-complexity interpolator over the retained data and propose a new algorithmic framework that only requires access to model gradients on the retained set at the original solution. We minimize a regularized objective over perturbations constrained to be orthogonal to these model gradients, a first-order relaxation of the interpolation condition. For different model classes, we provide exact and approximate unlearning guarantees and demonstrate that an implementation of our framework outperforms existing baselines across various unlearning experiments.
♻ ☆ Roboflow100-VL: A Multi-Domain Object Detection Benchmark for Vision-Language Models NeurIPS
Vision-language models (VLMs) trained on internet-scale data achieve remarkable zero-shot detection performance on common objects like car, truck, and pedestrian. However, state-of-the-art models still struggle to generalize to out-of-distribution classes, tasks and imaging modalities not typically found in their pre-training. Rather than simply re-training VLMs on more visual data, we argue that one should align VLMs to new concepts with annotation instructions containing a few visual examples and rich textual descriptions. To this end, we introduce Roboflow100-VL, a large-scale collection of 100 multi-modal object detection datasets with diverse concepts not commonly found in VLM pre-training. We evaluate state-of-the-art models on our benchmark in zero-shot, few-shot, semi-supervised, and fully-supervised settings, allowing for comparison across data regimes. Notably, we find that VLMs like GroundingDINO and Qwen2.5-VL achieve less than 2% zero-shot accuracy on challenging medical imaging datasets within Roboflow100-VL, demonstrating the need for few-shot concept alignment. Lastly, we discuss our recent CVPR 2025 Foundational FSOD competition and share insights from the community. Notably, the winning team significantly outperforms our baseline by 17 mAP! Our code and dataset are available at https://github.com/roboflow/rf100-vl and https://universe.roboflow.com/rf100-vl/.
comment: The first two authors contributed equally. This work has been accepted to the Neural Information Processing Systems (NeurIPS) 2025 Datasets & Benchmark Track. Project Page: https://rf100-vl.org/
♻ ☆ DeltaProduct: Improving State-Tracking in Linear RNNs via Householder Products NeurIPS 2025
Linear Recurrent Neural Networks (linear RNNs) have emerged as competitive alternatives to Transformers for sequence modeling, offering efficient training and linear-time inference. However, existing architectures face a fundamental trade-off between expressivity and efficiency, dictated by the structure of their state-transition matrices. Diagonal matrices, used in models such as Mamba, GLA, or mLSTM, yield fast runtime but have limited expressivity. To address this, recent architectures such as DeltaNet and RWKV-7 adopted a diagonal plus rank--1 structure, which allows simultaneous token and channel mixing, improving associative recall and, as recently shown, state-tracking when allowing state-transition matrices to have negative eigenvalues. Building on the interpretation of DeltaNet's recurrence as performing one step of online gradient descent per token on an associative recall loss, we introduce DeltaProduct, which instead takes multiple ($n_h$) steps per token. This naturally leads to diagonal plus rank--$n_h$ state-transition matrices, formed as products of $n_h$ generalized Householder transformations, providing a tunable mechanism to balance expressivity and efficiency. We provide a detailed theoretical characterization of the state-tracking capability of DeltaProduct in finite precision, showing how it improves by increasing $n_h$. Our extensive experiments demonstrate that DeltaProduct outperforms DeltaNet in both state-tracking and language modeling, while also showing significantly improved length extrapolation capabilities.
comment: v5: Characterization of DeltaProduct's state-tracking ability. Analysis of hidden state's effective rank. Improved scaling analysis. v6: Added analysis for products of RWKV-7 matrices, v6: Accepted at NeurIPS 2025
Multimedia 10
☆ LifeSync-Games: Toward a Video Game Paradigm for Promoting Responsible Gaming and Human Development
Technological advancements have made video games a central part of the digital lives of nearly 3 billion people worldwide. Although games can address various social, physical, and psychological needs, their potential to support human development and well-being remains underutilized. Research highlights both negative effects, such as addiction and isolation, and positive outcomes like cognitive improvements and problem-solving skills. However, public discourse and regulation often focus more on risks than benefits. To address this imbalance, we present LifeSync-Games, a framework leveraging simplified digital twins to connect virtual gameplay with real-life activities. This reciprocal relationship aims to enhance the developmental value of gaming by promoting self-regulation and fostering growth across physical, mental, and social domains. We present the framework's theoretical foundations, technological components, design guidelines, and evaluation approaches. Additionally, we present early applications in both new and bestselling games to demonstrate its versatility and practical relevance.
comment: 8 pages, 4 figures, 1 table, 66 references
☆ A Matter of Time: Revealing the Structure of Time in Vision-Language Models
Large-scale vision-language models (VLMs) such as CLIP have gained popularity for their generalizable and expressive multimodal representations. By leveraging large-scale training data with diverse textual metadata, VLMs acquire open-vocabulary capabilities, solving tasks beyond their training scope. This paper investigates the temporal awareness of VLMs, assessing their ability to position visual content in time. We introduce TIME10k, a benchmark dataset of over 10,000 images with temporal ground truth, and evaluate the time-awareness of 37 VLMs by a novel methodology. Our investigation reveals that temporal information is structured along a low-dimensional, non-linear manifold in the VLM embedding space. Based on this insight, we propose methods to derive an explicit ``timeline'' representation from the embedding space. These representations model time and its chronological progression and thereby facilitate temporal reasoning tasks. Our timeline approaches achieve competitive to superior accuracy compared to a prompt-based baseline while being computationally efficient. All code and data are available at https://tekayanidham.github.io/timeline-page/.
☆ CDI-DTI: A Strong Cross-domain Interpretable Drug-Target Interaction Prediction Framework Based on Multi-Strategy Fusion
Accurate prediction of drug-target interactions (DTI) is pivotal for drug discovery, yet existing methods often fail to address challenges like cross-domain generalization, cold-start prediction, and interpretability. In this work, we propose CDI-DTI, a novel cross-domain interpretable framework for DTI prediction, designed to overcome these limitations. By integrating multi-modal features-textual, structural, and functional-through a multi-strategy fusion approach, CDI-DTI ensures robust performance across different domains and in cold-start scenarios. A multi-source cross-attention mechanism is introduced to align and fuse features early, while a bidirectional cross-attention layer captures fine-grained intra-modal drug-target interactions. To enhance model interpretability, we incorporate Gram Loss for feature alignment and a deep orthogonal fusion module to eliminate redundancy. Experimental results on several benchmark datasets demonstrate that CDI-DTI significantly outperforms existing methods, particularly in cross-domain and cold-start tasks, while maintaining high interpretability for practical applications in drug-target interaction prediction.
☆ Reasoning Like Experts: Leveraging Multimodal Large Language Models for Drawing-based Psychoanalysis
Multimodal Large Language Models (MLLMs) have demonstrated exceptional performance across various objective multimodal perception tasks, yet their application to subjective, emotionally nuanced domains, such as psychological analysis, remains largely unexplored. In this paper, we introduce PICK, a multi-step framework designed for Psychoanalytical Image Comprehension through hierarchical analysis and Knowledge injection with MLLMs, specifically focusing on the House-Tree-Person (HTP) Test, a widely used psychological assessment in clinical practice. First, we decompose drawings containing multiple instances into semantically meaningful sub-drawings, constructing a hierarchical representation that captures spatial structure and content across three levels: single-object level, multi-object level, and whole level. Next, we analyze these sub-drawings at each level with a targeted focus, extracting psychological or emotional insights from their visual cues. We also introduce an HTP knowledge base and design a feature extraction module, trained with reinforcement learning, to generate a psychological profile for single-object level analysis. This profile captures both holistic stylistic features and dynamic object-specific features (such as those of the house, tree, or person), correlating them with psychological states. Finally, we integrate these multi-faceted information to produce a well-informed assessment that aligns with expert-level reasoning. Our approach bridges the gap between MLLMs and specialized expert domains, offering a structured and interpretable framework for understanding human mental states through visual expression. Experimental results demonstrate that the proposed PICK significantly enhances the capability of MLLMs in psychological analysis. It is further validated as a general framework through extensions to emotion understanding tasks.
comment: Accepted by ACM Multimedia 2025
☆ See, Think, Act: Online Shopper Behavior Simulation with VLM Agents
LLMs have recently demonstrated strong potential in simulating online shopper behavior. Prior work has improved action prediction by applying SFT on action traces with LLM-generated rationales, and by leveraging RL to further enhance reasoning capabilities. Despite these advances, current approaches rely on text-based inputs and overlook the essential role of visual perception in shaping human decision-making during web GUI interactions. In this paper, we investigate the integration of visual information, specifically webpage screenshots, into behavior simulation via VLMs, leveraging OPeRA dataset. By grounding agent decision-making in both textual and visual modalities, we aim to narrow the gap between synthetic agents and real-world users, thereby enabling more cognitively aligned simulations of online shopping behavior. Specifically, we employ SFT for joint action prediction and rationale generation, conditioning on the full interaction context, which comprises action history, past HTML observations, and the current webpage screenshot. To further enhance reasoning capabilities, we integrate RL with a hierarchical reward structure, scaled by a difficulty-aware factor that prioritizes challenging decision points. Empirically, our studies show that incorporating visual grounding yields substantial gains: the combination of text and image inputs improves exact match accuracy by more than 6% over text-only inputs. These results indicate that multi-modal grounding not only boosts predictive accuracy but also enhances simulation fidelity in visually complex environments, which captures nuances of human attention and decision-making that text-only agents often miss. Finally, we revisit the design space of behavior simulation frameworks, identify key methodological limitations, and propose future research directions toward building efficient and effective human behavior simulators.
☆ Step-Aware Residual-Guided Diffusion for EEG Spatial Super-Resolution ICLR 2026
For real-world BCI applications, lightweight Electroencephalography (EEG) systems offer the best cost-deployment balance. However, such spatial sparsity of EEG limits spatial fidelity, hurting learning and introducing bias. EEG spatial super-resolution methods aim to recover high-density EEG signals from sparse measurements, yet is often hindered by distribution shift and signal distortion and thus reducing fidelity and usability for EEG analysis and visualization. To overcome these challenges, we introduce SRGDiff, a step-aware residual-guided diffusion model that formulates EEG spatial super-resolution as dynamic conditional generation. Our key idea is to learn a dynamic residual condition from the low-density input that predicts the step-wise temporal and spatial details to add and uses the evolving cue to steer the denoising process toward high-density reconstructions. At each denoising step, the proposed residual condition is additively fused with the previous denoiser feature maps, then a step-dependent affine modulation scales and shifts the activation to produce the current features. This iterative procedure dynamically extracts step-wise temporal rhythms and spatial-topographic cues to steer high-density recovery and maintain a fidelity-consistency balance. We adopt a comprehensive evaluation protocol spanning signal-, feature-, and downstream-level metrics across SEED, SEED-IV, and Localize-MI and multiple upsampling scales. SRGDiff achieves consistent gains of up to 40% over strong baselines, proving its superiority in the task of EEG spatial super-resolution. Moreover, topographic visualizations comparison and substantial EEG-FID gains jointly indicate that our SR EEG mitigates the spatial-spectral shift between low- and high-density recordings.
comment: ICLR 2026 Conference Submission
♻ ☆ Variable Rate Image Compression via N-Gram Context based Swin-transformer
This paper presents an N-gram context-based Swin Transformer for learned image compression. Our method achieves variable-rate compression with a single model. By incorporating N-gram context into the Swin Transformer, we overcome its limitation of neglecting larger regions during high-resolution image reconstruction due to its restricted receptive field. This enhancement expands the regions considered for pixel restoration, thereby improving the quality of high-resolution reconstructions. Our method increases context awareness across neighboring windows, leading to a -5.86\% improvement in BD-Rate over existing variable-rate learned image compression techniques. Additionally, our model improves the quality of regions of interest (ROI) in images, making it particularly beneficial for object-focused applications in fields such as manufacturing and industrial vision systems.
comment: Accepted at ISVC 2025
♻ ☆ ASAP: Advancing Semantic Alignment Promotes Multi-Modal Manipulation Detecting and Grounding
We present ASAP, a new framework for detecting and grounding multi-modal media manipulation (DGM4).Upon thorough examination, we observe that accurate fine-grained cross-modal semantic alignment between the image and text is vital for accurately manipulation detection and grounding. While existing DGM4 methods pay rare attention to the cross-modal alignment, hampering the accuracy of manipulation detecting to step further. To remedy this issue, this work targets to advance the semantic alignment learning to promote this task. Particularly, we utilize the off-the-shelf Multimodal Large-Language Models (MLLMs) and Large Language Models (LLMs) to construct paired image-text pairs, especially for the manipulated instances. Subsequently, a cross-modal alignment learning is performed to enhance the semantic alignment. Besides the explicit auxiliary clues, we further design a Manipulation-Guided Cross Attention (MGCA) to provide implicit guidance for augmenting the manipulation perceiving. With the grounding truth available during training, MGCA encourages the model to concentrate more on manipulated components while downplaying normal ones, enhancing the model's ability to capture manipulations. Extensive experiments are conducted on the DGM4 dataset, the results demonstrate that our model can surpass the comparison method with a clear margin.
comment: 12 pages, 6 figures
♻ ☆ TimeWak: Temporal Chained-Hashing Watermark for Time Series Data
Synthetic time series generated by diffusion models enable sharing privacy-sensitive datasets, such as patients' functional MRI records. Key criteria for synthetic data include high data utility and traceability to verify the data source. Recent watermarking methods embed in homogeneous latent spaces, but state-of-the-art time series generators operate in data space, making latent-based watermarking incompatible. This creates the challenge of watermarking directly in data space while handling feature heterogeneity and temporal dependencies. We propose TimeWak, the first watermarking algorithm for multivariate time series diffusion models. To handle temporal dependence and spatial heterogeneity, TimeWak embeds a temporal chained-hashing watermark directly within the temporal-feature data space. The other unique feature is the $\epsilon$-exact inversion, which addresses the non-uniform reconstruction error distribution across features from inverting the diffusion process to detect watermarks. We derive the error bound of inverting multivariate time series while preserving robust watermark detectability. We extensively evaluate TimeWak on its impact on synthetic data quality, watermark detectability, and robustness under various post-editing attacks, against five datasets and baselines of different temporal lengths. Our results show that TimeWak achieves improvements of 61.96% in context-FID score, and 8.44% in correlational scores against the strongest state-of-the-art baseline, while remaining consistently detectable.
♻ ☆ EgoBlind: Towards Egocentric Visual Assistance for the Blind NeurIPS'25
We present EgoBlind, the first egocentric VideoQA dataset collected from blind individuals to evaluate the assistive capabilities of contemporary multimodal large language models (MLLMs). EgoBlind comprises 1,392 first-person videos from the daily lives of blind and visually impaired individuals. It also features 5,311 questions directly posed or verified by the blind to reflect their in-situation needs for visual assistance. Each question has an average of 3 manually annotated reference answers to reduce subjectiveness. Using EgoBlind, we comprehensively evaluate 16 advanced MLLMs and find that all models struggle. The best performers achieve an accuracy near 60\%, which is far behind human performance of 87.4\%. To guide future advancements, we identify and summarize major limitations of existing MLLMs in egocentric visual assistance for the blind and explore heuristic solutions for improvement. With these efforts, we hope that EgoBlind will serve as a foundation for developing effective AI assistants to enhance the independence of the blind and visually impaired. Data and code are available at https://github.com/doc-doc/EgoBlind.
comment: NeurIPS'25 (D&B Track)
Computer Vision and Pattern Recognition 181
☆ Grasp Any Region: Towards Precise, Contextual Pixel Understanding for Multimodal LLMs
While Multimodal Large Language Models (MLLMs) excel at holistic understanding, they struggle in capturing the dense world with complex scenes, requiring fine-grained analysis of intricate details and object inter-relationships. Region-level MLLMs have been a promising step. However, previous attempts are generally optimized to understand given regions in isolation, neglecting crucial global contexts. To address this, we introduce Grasp Any Region (GAR) for comprehen- sive region-level visual understanding. Empowered by an effective RoI-aligned feature replay technique, GAR supports (1) precise perception by leveraging necessary global contexts, and (2) modeling interactions between multiple prompts. Together, it then naturally achieves (3) advanced compositional reasoning to answer specific free-form questions about any region, shifting the paradigm from passive description to active dialogue. Moreover, we construct GAR-Bench, which not only provides a more accurate evaluation of single-region comprehension, but also, more importantly, measures interactions and complex reasoning across multiple regions. Extensive experiments have demonstrated that GAR-1B not only maintains the state-of-the-art captioning capabilities, e.g., outperforming DAM-3B +4.5 on DLC-Bench, but also excels at modeling relationships between multiple prompts with advanced comprehension capabilities, even surpassing InternVL3-78B on GAR-Bench-VQA. More importantly, our zero-shot GAR-8B even outperforms in-domain VideoRefer-7B on VideoRefer-BenchQ, indicating its strong capabilities can be easily transferred to videos.
☆ DSI-Bench: A Benchmark for Dynamic Spatial Intelligence
Reasoning about dynamic spatial relationships is essential, as both observers and objects often move simultaneously. Although vision-language models (VLMs) and visual expertise models excel in 2D tasks and static scenarios, their ability to fully understand dynamic 3D scenarios remains limited. We introduce Dynamic Spatial Intelligence and propose DSI-Bench, a benchmark with nearly 1,000 dynamic videos and over 1,700 manually annotated questions covering nine decoupled motion patterns of observers and objects. Spatially and temporally symmetric designs reduce biases and enable systematic evaluation of models' reasoning about self-motion and object motion. Our evaluation of 14 VLMs and expert models reveals key limitations: models often conflate observer and object motion, exhibit semantic biases, and fail to accurately infer relative relationships in dynamic scenarios. Our DSI-Bench provides valuable findings and insights about the future development of general and expertise models with dynamic spatial intelligence.
☆ LightMem: Lightweight and Efficient Memory-Augmented Generation
Despite their remarkable capabilities, Large Language Models (LLMs) struggle to effectively leverage historical interaction information in dynamic and complex environments. Memory systems enable LLMs to move beyond stateless interactions by introducing persistent information storage, retrieval, and utilization mechanisms. However, existing memory systems often introduce substantial time and computational overhead. To this end, we introduce a new memory system called LightMem, which strikes a balance between the performance and efficiency of memory systems. Inspired by the Atkinson-Shiffrin model of human memory, LightMem organizes memory into three complementary stages. First, cognition-inspired sensory memory rapidly filters irrelevant information through lightweight compression and groups information according to their topics. Next, topic-aware short-term memory consolidates these topic-based groups, organizing and summarizing content for more structured access. Finally, long-term memory with sleep-time update employs an offline procedure that decouples consolidation from online inference. Experiments on LongMemEval with GPT and Qwen backbones show that LightMem outperforms strong baselines in accuracy (up to 10.9% gains) while reducing token usage by up to 117x, API calls by up to 159x, and runtime by over 12x. The code is available at https://github.com/zjunlp/LightMem.
comment: Work in progress
☆ DP$^2$O-SR: Direct Perceptual Preference Optimization for Real-World Image Super-Resolution NeurIPS 2025
Benefiting from pre-trained text-to-image (T2I) diffusion models, real-world image super-resolution (Real-ISR) methods can synthesize rich and realistic details. However, due to the inherent stochasticity of T2I models, different noise inputs often lead to outputs with varying perceptual quality. Although this randomness is sometimes seen as a limitation, it also introduces a wider perceptual quality range, which can be exploited to improve Real-ISR performance. To this end, we introduce Direct Perceptual Preference Optimization for Real-ISR (DP$^2$O-SR), a framework that aligns generative models with perceptual preferences without requiring costly human annotations. We construct a hybrid reward signal by combining full-reference and no-reference image quality assessment (IQA) models trained on large-scale human preference datasets. This reward encourages both structural fidelity and natural appearance. To better utilize perceptual diversity, we move beyond the standard best-vs-worst selection and construct multiple preference pairs from outputs of the same model. Our analysis reveals that the optimal selection ratio depends on model capacity: smaller models benefit from broader coverage, while larger models respond better to stronger contrast in supervision. Furthermore, we propose hierarchical preference optimization, which adaptively weights training pairs based on intra-group reward gaps and inter-group diversity, enabling more efficient and stable learning. Extensive experiments across both diffusion- and flow-based T2I backbones demonstrate that DP$^2$O-SR significantly improves perceptual quality and generalizes well to real-world benchmarks.
comment: Accept by NeurIPS 2025
☆ See the Text: From Tokenization to Visual Reading
People see text. Humans read by recognizing words as visual objects, including their shapes, layouts, and patterns, before connecting them to meaning, which enables us to handle typos, distorted fonts, and various scripts effectively. Modern large language models (LLMs), however, rely on subword tokenization, fragmenting text into pieces from a fixed vocabulary. While effective for high-resource languages, this approach over-segments low-resource languages, yielding long, linguistically meaningless sequences and inflating computation. In this work, we challenge this entrenched paradigm and move toward a vision-centric alternative. Our method, SeeTok, renders text as images (visual-text) and leverages pretrained multimodal LLMs to interpret them, reusing strong OCR and text-vision alignment abilities learned from large-scale multimodal training. Across three different language tasks, SeeTok matches or surpasses subword tokenizers while requiring 4.43 times fewer tokens and reducing FLOPs by 70.5%, with additional gains in cross-lingual generalization, robustness to typographic noise, and linguistic hierarchy. SeeTok signals a shift from symbolic tokenization to human-like visual reading, and takes a step toward more natural and cognitively inspired language models.
☆ FedDEAP: Adaptive Dual-Prompt Tuning for Multi-Domain Federated Learning
Federated learning (FL) enables multiple clients to collaboratively train machine learning models without exposing local data, balancing performance and privacy. However, domain shift and label heterogeneity across clients often hinder the generalization of the aggregated global model. Recently, large-scale vision-language models like CLIP have shown strong zero-shot classification capabilities, raising the question of how to effectively fine-tune CLIP across domains in a federated setting. In this work, we propose an adaptive federated prompt tuning framework, FedDEAP, to enhance CLIP's generalization in multi-domain scenarios. Our method includes the following three key components: (1) To mitigate the loss of domain-specific information caused by label-supervised tuning, we disentangle semantic and domain-specific features in images by using semantic and domain transformation networks with unbiased mappings; (2) To preserve domain-specific knowledge during global prompt aggregation, we introduce a dual-prompt design with a global semantic prompt and a local domain prompt to balance shared and personalized information; (3) To maximize the inclusion of semantic and domain information from images in the generated text features, we align textual and visual representations under the two learned transformations to preserve semantic and domain consistency. Theoretical analysis and extensive experiments on four datasets demonstrate the effectiveness of our method in enhancing the generalization of CLIP for federated image recognition across multiple domains.
comment: Accepted at MM 2025
☆ Unifying and Enhancing Graph Transformers via a Hierarchical Mask Framework NeurIPS 2025
Graph Transformers (GTs) have emerged as a powerful paradigm for graph representation learning due to their ability to model diverse node interactions. However, existing GTs often rely on intricate architectural designs tailored to specific interactions, limiting their flexibility. To address this, we propose a unified hierarchical mask framework that reveals an underlying equivalence between model architecture and attention mask construction. This framework enables a consistent modeling paradigm by capturing diverse interactions through carefully designed attention masks. Theoretical analysis under this framework demonstrates that the probability of correct classification positively correlates with the receptive field size and label consistency, leading to a fundamental design principle: an effective attention mask should ensure both a sufficiently large receptive field and a high level of label consistency. While no single existing mask satisfies this principle across all scenarios, our analysis reveals that hierarchical masks offer complementary strengths, motivating their effective integration. Then, we introduce M3Dphormer, a Mixture-of-Experts-based Graph Transformer with Multi-Level Masking and Dual Attention Computation. M3Dphormer incorporates three theoretically grounded hierarchical masks and employs a bi-level expert routing mechanism to adaptively integrate multi-level interaction information. To ensure scalability, we further introduce a dual attention computation scheme that dynamically switches between dense and sparse modes based on local mask sparsity. Extensive experiments across multiple benchmarks demonstrate that M3Dphormer achieves state-of-the-art performance, validating the effectiveness of our unified framework and model design.
comment: Accepted by NeurIPS 2025 (Poster)
☆ SAM 2++: Tracking Anything at Any Granularity
Video tracking aims at finding the specific target in subsequent frames given its initial state. Due to the varying granularity of target states across different tasks, most existing trackers are tailored to a single task and heavily rely on custom-designed modules within the individual task, which limits their generalization and leads to redundancy in both model design and parameters. To unify video tracking tasks, we present SAM 2++, a unified model towards tracking at any granularity, including masks, boxes, and points. First, to extend target granularity, we design task-specific prompts to encode various task inputs into general prompt embeddings, and a unified decoder to unify diverse task results into a unified form pre-output. Next, to satisfy memory matching, the core operation of tracking, we introduce a task-adaptive memory mechanism that unifies memory across different granularities. Finally, we introduce a customized data engine to support tracking training at any granularity, producing a large and diverse video tracking dataset with rich annotations at three granularities, termed Tracking-Any-Granularity, which represents a comprehensive resource for training and benchmarking on unified tracking. Comprehensive experiments on multiple benchmarks confirm that SAM 2++ sets a new state of the art across diverse tracking tasks at different granularities, establishing a unified and robust tracking framework.
comment: 8 pages, and 10 pages in Supplementary Material
☆ An Explainable Hybrid AI Framework for Enhanced Tuberculosis and Symptom Detection
Tuberculosis remains a critical global health issue, particularly in resource-limited and remote areas. Early detection is vital for treatment, yet the lack of skilled radiologists underscores the need for artificial intelligence (AI)-driven screening tools. Developing reliable AI models is challenging due to the necessity for large, high-quality datasets, which are costly to obtain. To tackle this, we propose a teacher--student framework which enhances both disease and symptom detection on chest X-rays by integrating two supervised heads and a self-supervised head. Our model achieves an accuracy of 98.85% for distinguishing between COVID-19, tuberculosis, and normal cases, and a macro-F1 score of 90.09% for multilabel symptom detection, significantly outperforming baselines. The explainability assessments also show the model bases its predictions on relevant anatomical features, demonstrating promise for deployment in clinical screening and triage settings.
comment: 16 pages, 3 figures
☆ A Geometric Approach to Steerable Convolutions
In contrast to the somewhat abstract, group theoretical approach adopted by many papers, our work provides a new and more intuitive derivation of steerable convolutional neural networks in $d$ dimensions. This derivation is based on geometric arguments and fundamental principles of pattern matching. We offer an intuitive explanation for the appearance of the Clebsch--Gordan decomposition and spherical harmonic basis functions. Furthermore, we suggest a novel way to construct steerable convolution layers using interpolation kernels that improve upon existing implementation, and offer greater robustness to noisy data.
☆ ProCLIP: Progressive Vision-Language Alignment via LLM-based Embedder
The original CLIP text encoder is limited by a maximum input length of 77 tokens, which hampers its ability to effectively process long texts and perform fine-grained semantic understanding. In addition, the CLIP text encoder lacks support for multilingual inputs. All these limitations significantly restrict its applicability across a broader range of tasks. Recent studies have attempted to replace the CLIP text encoder with an LLM-based embedder to enhance its ability in processing long texts, multilingual understanding, and fine-grained semantic comprehension. However, because the representation spaces of LLMs and the vision-language space of CLIP are pretrained independently without alignment priors, direct alignment using contrastive learning can disrupt the intrinsic vision-language alignment in the CLIP image encoder, leading to an underutilization of the knowledge acquired during pre-training. To address this challenge, we propose ProCLIP, a curriculum learning-based progressive vision-language alignment framework to effectively align the CLIP image encoder with an LLM-based embedder. Specifically, ProCLIP first distills knowledge from CLIP's text encoder into the LLM-based embedder to leverage CLIP's rich pretrained knowledge while establishing initial alignment between the LLM embedder and CLIP image encoder. Subsequently, ProCLIP further aligns the CLIP image encoder with the LLM-based embedder through image-text contrastive tuning, employing self-distillation regularization to avoid overfitting. To achieve a more effective alignment, instance semantic alignment loss and embedding structure alignment loss are employed during representation inheritance and contrastive tuning. The Code is available at https://github.com/VisionXLab/ProCLIP
comment: 17 pages, 5 fiugres
☆ Rebellious Student: A Complementary Learning Framework for Background Feature Enhancement in Hyperspectral Anomaly Detection
A recent class of hyperspectral anomaly detection methods that can be trained once on background datasets and then universally deployed -- without per-scene retraining or parameter tuning -- has demonstrated remarkable efficiency and robustness. Building upon this paradigm, we focus on the integration of spectral and spatial cues and introduce a novel "Rebellious Student" framework for complementary feature learning. Unlike conventional teacher-student paradigms driven by imitation, our method intentionally trains the spatial branch to diverge from the spectral teacher, thereby learning complementary spatial patterns that the teacher fails to capture. A two-stage learning strategy is adopted: (1) a spectral enhancement network is first trained via reverse distillation to obtain robust background spectral representations; and (2) a spatial network -- the rebellious student -- is subsequently optimized using decorrelation losses that enforce feature orthogonality while maintaining reconstruction fidelity to avoid irrelevant noise. Once trained, the framework enhances both spectral and spatial background features, enabling parameter-free and training-free anomaly detection when paired with conventional detectors. Extensive experiments on the HAD100 benchmark show substantial improvements over several established baselines with minimal computational overhead, confirming the effectiveness and generality of the proposed complementary learning paradigm. Our code is publicly available at https://github.com/xjpp2016/FERS.
☆ UltraGen: High-Resolution Video Generation with Hierarchical Attention
Recent advances in video generation have made it possible to produce visually compelling videos, with wide-ranging applications in content creation, entertainment, and virtual reality. However, most existing diffusion transformer based video generation models are limited to low-resolution outputs (<=720P) due to the quadratic computational complexity of the attention mechanism with respect to the output width and height. This computational bottleneck makes native high-resolution video generation (1080P/2K/4K) impractical for both training and inference. To address this challenge, we present UltraGen, a novel video generation framework that enables i) efficient and ii) end-to-end native high-resolution video synthesis. Specifically, UltraGen features a hierarchical dual-branch attention architecture based on global-local attention decomposition, which decouples full attention into a local attention branch for high-fidelity regional content and a global attention branch for overall semantic consistency. We further propose a spatially compressed global modeling strategy to efficiently learn global dependencies, and a hierarchical cross-window local attention mechanism to reduce computational costs while enhancing information flow across different local windows. Extensive experiments demonstrate that UltraGen can effectively scale pre-trained low-resolution video models to 1080P and even 4K resolution for the first time, outperforming existing state-of-the-art methods and super-resolution based two-stage pipelines in both qualitative and quantitative evaluations.
☆ Detection and Simulation of Urban Heat Islands Using a Fine-Tuned Geospatial Foundation Model for Microclimate Impact Prediction NeurIPS 2025
As urbanization and climate change progress, urban heat island effects are becoming more frequent and severe. To formulate effective mitigation plans, cities require detailed air temperature data, yet conventional machine learning models with limited data often produce inaccurate predictions, particularly in underserved areas. Geospatial foundation models trained on global unstructured data offer a promising alternative by demonstrating strong generalization and requiring only minimal fine-tuning. In this study, an empirical ground truth of urban heat patterns is established by quantifying cooling effects from green spaces and benchmarking them against model predictions to evaluate the model's accuracy. The foundation model is subsequently fine-tuned to predict land surface temperatures under future climate scenarios, and its practical value is demonstrated through a simulated inpainting that highlights its role for mitigation support. The results indicate that foundation models offer a powerful way for evaluating urban heat island mitigation strategies in data-scarce regions to support more climate-resilient cities.
comment: 10 pages, 9 figures. Accepted at the NeurIPS 2025 Workshop on Tackling Climate Change with Machine Learning
☆ Seg the HAB: Language-Guided Geospatial Algae Bloom Reasoning and Segmentation
Climate change is intensifying the occurrence of harmful algal bloom (HAB), particularly cyanobacteria, which threaten aquatic ecosystems and human health through oxygen depletion, toxin release, and disruption of marine biodiversity. Traditional monitoring approaches, such as manual water sampling, remain labor-intensive and limited in spatial and temporal coverage. Recent advances in vision-language models (VLMs) for remote sensing have shown potential for scalable AI-driven solutions, yet challenges remain in reasoning over imagery and quantifying bloom severity. In this work, we introduce ALGae Observation and Segmentation (ALGOS), a segmentation-and-reasoning system for HAB monitoring that combines remote sensing image understanding with severity estimation. Our approach integrates GeoSAM-assisted human evaluation for high-quality segmentation mask curation and fine-tunes vision language model on severity prediction using the Cyanobacteria Aggregated Manual Labels (CAML) from NASA. Experiments demonstrate that ALGOS achieves robust performance on both segmentation and severity-level estimation, paving the way toward practical and automated cyanobacterial monitoring systems.
☆ SEAL: Semantic-Aware Hierarchical Learning for Generalized Category Discovery NeurIPS 2025
This paper investigates the problem of Generalized Category Discovery (GCD). Given a partially labelled dataset, GCD aims to categorize all unlabelled images, regardless of whether they belong to known or unknown classes. Existing approaches typically depend on either single-level semantics or manually designed abstract hierarchies, which limit their generalizability and scalability. To address these limitations, we introduce a SEmantic-aware hierArchical Learning framework (SEAL), guided by naturally occurring and easily accessible hierarchical structures. Within SEAL, we propose a Hierarchical Semantic-Guided Soft Contrastive Learning approach that exploits hierarchical similarity to generate informative soft negatives, addressing the limitations of conventional contrastive losses that treat all negatives equally. Furthermore, a Cross-Granularity Consistency (CGC) module is designed to align the predictions from different levels of granularity. SEAL consistently achieves state-of-the-art performance on fine-grained benchmarks, including the SSB benchmark, Oxford-Pet, and the Herbarium19 dataset, and further demonstrates generalization on coarse-grained datasets. Project page: https://visual-ai.github.io/seal/
comment: Accepted to NeurIPS 2025
☆ Moving Light Adaptive Colonoscopy Reconstruction via Illumination-Attenuation-Aware 3D Gaussian Splatting
3D Gaussian Splatting (3DGS) has emerged as a pivotal technique for real-time view synthesis in colonoscopy, enabling critical applications such as virtual colonoscopy and lesion tracking. However, the vanilla 3DGS assumes static illumination and that observed appearance depends solely on viewing angle, which causes incompatibility with the photometric variations in colonoscopic scenes induced by dynamic light source/camera. This mismatch forces most 3DGS methods to introduce structure-violating vaporous Gaussian blobs between the camera and tissues to compensate for illumination attenuation, ultimately degrading the quality of 3D reconstructions. Previous works only consider the illumination attenuation caused by light distance, ignoring the physical characters of light source and camera. In this paper, we propose ColIAGS, an improved 3DGS framework tailored for colonoscopy. To mimic realistic appearance under varying illumination, we introduce an Improved Appearance Modeling with two types of illumination attenuation factors, which enables Gaussians to adapt to photometric variations while preserving geometry accuracy. To ensure the geometry approximation condition of appearance modeling, we propose an Improved Geometry Modeling using high-dimensional view embedding to enhance Gaussian geometry attribute prediction. Furthermore, another cosine embedding input is leveraged to generate illumination attenuation solutions in an implicit manner. Comprehensive experimental results on standard benchmarks demonstrate that our proposed ColIAGS achieves the dual capabilities of novel view synthesis and accurate geometric reconstruction. It notably outperforms other state-of-the-art methods by achieving superior rendering fidelity while significantly reducing Depth MSE. Code will be available.
☆ IF-VidCap: Can Video Caption Models Follow Instructions?
Although Multimodal Large Language Models (MLLMs) have demonstrated proficiency in video captioning, practical applications require captions that follow specific user instructions rather than generating exhaustive, unconstrained descriptions. Current benchmarks, however, primarily assess descriptive comprehensiveness while largely overlooking instruction-following capabilities. To address this gap, we introduce IF-VidCap, a new benchmark for evaluating controllable video captioning, which contains 1,400 high-quality samples. Distinct from existing video captioning or general instruction-following benchmarks, IF-VidCap incorporates a systematic framework that assesses captions on two dimensions: format correctness and content correctness. Our comprehensive evaluation of over 20 prominent models reveals a nuanced landscape: despite the continued dominance of proprietary models, the performance gap is closing, with top-tier open-source solutions now achieving near-parity. Furthermore, we find that models specialized for dense captioning underperform general-purpose MLLMs on complex instructions, indicating that future work should simultaneously advance both descriptive richness and instruction-following fidelity.
comment: https://github.com/NJU-LINK/IF-VidCap
☆ SSD: Spatial-Semantic Head Decoupling for Efficient Autoregressive Image Generation
Autoregressive image generation models like Janus-Pro produce high-quality images, but at the significant cost of high memory and ever-growing computational demands due to the large number of visual tokens. While KV cache compression has been extensively studied in language modeling, it still remains largely unexplored for the image generation domain. In this work, we begin by identifying a distinct and prominent attention phenomenon, which we term spatial locality and emergent semantic sink. To leverage this key insight, we introduce a novel KV cache compression framework. Specifically, we compress the KV cache for all visual tokens by adaptively decoupling attention heads into two separate types: for spatial-locality heads, our method maintains a short recent token window; for semantic-sink heads, it strategically preserves a compact set of highly-attended tokens. Our extensive experiments demonstrate that the proposed method achieves a 5$\times$ reduction in memory usage and a notable 6.6$\times$ speedup in overall throughput with only minimal visual quality loss, thereby enabling highly efficient native autoregressive image generation on resource-constrained hardware.
☆ PLANA3R: Zero-shot Metric Planar 3D Reconstruction via Feed-Forward Planar Splatting NeurIPS 2025
This paper addresses metric 3D reconstruction of indoor scenes by exploiting their inherent geometric regularities with compact representations. Using planar 3D primitives - a well-suited representation for man-made environments - we introduce PLANA3R, a pose-free framework for metric Planar 3D Reconstruction from unposed two-view images. Our approach employs Vision Transformers to extract a set of sparse planar primitives, estimate relative camera poses, and supervise geometry learning via planar splatting, where gradients are propagated through high-resolution rendered depth and normal maps of primitives. Unlike prior feedforward methods that require 3D plane annotations during training, PLANA3R learns planar 3D structures without explicit plane supervision, enabling scalable training on large-scale stereo datasets using only depth and normal annotations. We validate PLANA3R on multiple indoor-scene datasets with metric supervision and demonstrate strong generalization to out-of-domain indoor environments across diverse tasks under metric evaluation protocols, including 3D surface reconstruction, depth estimation, and relative pose estimation. Furthermore, by formulating with planar 3D representation, our method emerges with the ability for accurate plane segmentation. The project page is available at https://lck666666.github.io/plana3r
comment: 39th Conference on Neural Information Processing Systems (NeurIPS 2025). The project page is available at: https://lck666666.github.io/plana3r
☆ A Renaissance of Explicit Motion Information Mining from Transformers for Action Recognition
Recently, action recognition has been dominated by transformer-based methods, thanks to their spatiotemporal contextual aggregation capacities. However, despite the significant progress achieved on scene-related datasets, they do not perform well on motion-sensitive datasets due to the lack of elaborate motion modeling designs. Meanwhile, we observe that the widely-used cost volume in traditional action recognition is highly similar to the affinity matrix defined in self-attention, but equipped with powerful motion modeling capacities. In light of this, we propose to integrate those effective motion modeling properties into the existing transformer in a unified and neat way, with the proposal of the Explicit Motion Information Mining module (EMIM). In EMIM, we propose to construct the desirable affinity matrix in a cost volume style, where the set of key candidate tokens is sampled from the query-based neighboring area in the next frame in a sliding-window manner. Then, the constructed affinity matrix is used to aggregate contextual information for appearance modeling and is converted into motion features for motion modeling as well. We validate the motion modeling capacities of our method on four widely-used datasets, and our method performs better than existing state-of-the-art approaches, especially on motion-sensitive datasets, i.e., Something-Something V1 & V2.
comment: accepted by Pattern Recognition. We have been always curious to see whether our designs could be beneficial in other scenarios, such as embedding it into the DiT model or 3D-VAE for video generation. If you are interested in it, why not give it a shot?
☆ Exploring a Unified Vision-Centric Contrastive Alternatives on Multi-Modal Web Documents
Contrastive vision-language models such as CLIP have demonstrated strong performance across a wide range of multimodal tasks by learning from aligned image-text pairs. However, their ability to handle complex, real-world web documents remains limited, particularly in scenarios where text and images are interleaved, loosely aligned, or embedded in visual form. To address these challenges, we propose Vision-Centric Contrastive Learning (VC2L), a unified framework that models text, images, and their combinations using a single vision transformer. VC2L operates entirely in pixel space by rendering all inputs, whether textual, visual, or combined, as images, thus eliminating the need for OCR, text tokenization, or modality fusion strategy. To capture complex cross-modal relationships in multimodal web documents, VC2L employs a snippet-level contrastive learning objective that aligns consecutive multimodal segments, leveraging the inherent coherence of documents without requiring explicitly paired image-text data. To assess the effectiveness of this approach, we introduce three retrieval benchmarks, AnyCIR, SeqCIR, and CSR, designed to evaluate cross-modal retrieval, fine-grained sequential understanding, and generalization to unseen data, respectively. Empirical results show that VC2L achieves competitive or superior performance compared to CLIP-style models on both the proposed benchmarks and established datasets such as M-BEIR and MTEB. These findings underscore the potential of multimodal web data as a valuable training resource for contrastive learning and illustrate the scalability of a unified, vision-centric approach for multimodal representation learning. Code and models are available at: https://github.com/showlab/VC2L.
comment: Project page: this https://linyq17.github.io/VC2L/
☆ UniGenBench++: A Unified Semantic Evaluation Benchmark for Text-to-Image Generation
Recent progress in text-to-image (T2I) generation underscores the importance of reliable benchmarks in evaluating how accurately generated images reflect the semantics of their textual prompt. However, (1) existing benchmarks lack the diversity of prompt scenarios and multilingual support, both essential for real-world applicability; (2) they offer only coarse evaluations across primary dimensions, covering a narrow range of sub-dimensions, and fall short in fine-grained sub-dimension assessment. To address these limitations, we introduce UniGenBench++, a unified semantic assessment benchmark for T2I generation. Specifically, it comprises 600 prompts organized hierarchically to ensure both coverage and efficiency: (1) spans across diverse real-world scenarios, i.e., 5 main prompt themes and 20 subthemes; (2) comprehensively probes T2I models' semantic consistency over 10 primary and 27 sub evaluation criteria, with each prompt assessing multiple testpoints. To rigorously assess model robustness to variations in language and prompt length, we provide both English and Chinese versions of each prompt in short and long forms. Leveraging the general world knowledge and fine-grained image understanding capabilities of a closed-source Multi-modal Large Language Model (MLLM), i.e., Gemini-2.5-Pro, an effective pipeline is developed for reliable benchmark construction and streamlined model assessment. Moreover, to further facilitate community use, we train a robust evaluation model that enables offline assessment of T2I model outputs. Through comprehensive benchmarking of both open- and closed-sourced T2I models, we systematically reveal their strengths and weaknesses across various aspects.
comment: Project page: codegoat24.github.io/UniGenBench/
☆ MoGA: Mixture-of-Groups Attention for End-to-End Long Video Generation
Long video generation with Diffusion Transformers (DiTs) is bottlenecked by the quadratic scaling of full attention with sequence length. Since attention is highly redundant, outputs are dominated by a small subset of query-key pairs. Existing sparse methods rely on blockwise coarse estimation, whose accuracy-efficiency trade-offs are constrained by block size. This paper introduces Mixture-of-Groups Attention (MoGA), an efficient sparse attention that uses a lightweight, learnable token router to precisely match tokens without blockwise estimation. Through semantic-aware routing, MoGA enables effective long-range interactions. As a kernel-free method, MoGA integrates seamlessly with modern attention stacks, including FlashAttention and sequence parallelism. Building on MoGA, we develop an efficient long video generation model that end-to-end produces minute-level, multi-shot, 480p videos at 24 fps, with a context length of approximately 580k. Comprehensive experiments on various video generation tasks validate the effectiveness of our approach.
comment: 15 pages, 12 figures
☆ Beyond the Pipeline: Analyzing Key Factors in End-to-End Deep Learning for Historical Writer Identification IEEE
This paper investigates various factors that influence the performance of end-to-end deep learning approaches for historical writer identification (HWI), a task that remains challenging due to the diversity of handwriting styles, document degradation, and the limited number of labelled samples per writer. These conditions often make accurate recognition difficult, even for human experts. Traditional HWI methods typically rely on handcrafted image processing and clustering techniques, which tend to perform well on small and carefully curated datasets. In contrast, end-to-end pipelines aim to automate the process by learning features directly from document images. However, our experiments show that many of these models struggle to generalise in more realistic, document-level settings, especially under zero-shot scenarios where writers in the test set are not present in the training data. We explore different combinations of pre-processing methods, backbone architectures, and post-processing strategies, including text segmentation, patch sampling, and feature aggregation. The results suggest that most configurations perform poorly due to weak capture of low-level visual features, inconsistent patch representations, and high sensitivity to content noise. Still, we identify one end-to-end setup that achieves results comparable to the top-performing system, despite using a simpler design. These findings point to key challenges in building robust end-to-end systems and offer insight into design choices that improve performance in historical document writer identification.
comment: Published in The 12th IEEE International Conference on Data Science and Advanced Analytics (DSAA), 2025
☆ Prototyping an End-to-End Multi-Modal Tiny-CNN for Cardiovascular Sensor Patches IEEE
The vast majority of cardiovascular diseases may be preventable if early signs and risk factors are detected. Cardiovascular monitoring with body-worn sensor devices like sensor patches allows for the detection of such signs while preserving the freedom and comfort of patients. However, the analysis of the sensor data must be robust, reliable, efficient, and highly accurate. Deep learning methods can automate data interpretation, reducing the workload of clinicians. In this work, we analyze the feasibility of applying deep learning models to the classification of synchronized electrocardiogram (ECG) and phonocardiogram (PCG) recordings on resource-constrained medical edge devices. We propose a convolutional neural network with early fusion of data to solve a binary classification problem. We train and validate our model on the synchronized ECG and PCG recordings from the Physionet Challenge 2016 dataset. Our approach reduces memory footprint and compute cost by three orders of magnitude compared to the state-of-the-art while maintaining competitive accuracy. We demonstrate the applicability of our proposed model on medical edge devices by analyzing energy consumption on a microcontroller and an experimental sensor device setup, confirming that on-device inference can be more energy-efficient than continuous data streaming.
comment: Submitted to the IEEE Journal of Biomedical And Health Informatics
☆ Image augmentation with invertible networks in interactive satellite image change detection
This paper devises a novel interactive satellite image change detection algorithm based on active learning. Our framework employs an iterative process that leverages a question-and-answer model. This model queries the oracle (user) about the labels of a small subset of images (dubbed as display), and based on the oracle's responses, change detection model is dynamically updated. The main contribution of our framework resides in a novel invertible network that allows augmenting displays, by mapping them from highly nonlinear input spaces to latent ones, where augmentation transformations become linear and more tractable. The resulting augmented data are afterwards mapped back to the input space, and used to retrain more effective change detection criteria in the subsequent iterations of active learning. Experimental results demonstrate superior performance of our proposed method compared to the related work.
☆ Binary Quadratic Quantization: Beyond First-Order Quantization for Real-Valued Matrix Compression NeurIPS 2025
This paper proposes a novel matrix quantization method, Binary Quadratic Quantization (BQQ). In contrast to conventional first-order quantization approaches, such as uniform quantization and binary coding quantization, that approximate real-valued matrices via linear combinations of binary bases, BQQ leverages the expressive power of binary quadratic expressions while maintaining an extremely compact data format. We validate our approach with two experiments: a matrix compression benchmark and post-training quantization (PTQ) on pretrained Vision Transformer-based models. Experimental results demonstrate that BQQ consistently achieves a superior trade-off between memory efficiency and reconstruction error than conventional methods for compressing diverse matrix data. It also delivers strong PTQ performance, even though we neither target state-of-the-art PTQ accuracy under tight memory constraints nor rely on PTQ-specific binary matrix optimization. For example, our proposed method outperforms the state-of-the-art PTQ method by up to 2.2\% and 59.1% on the ImageNet dataset under the calibration-based and data-free scenarios, respectively, with quantization equivalent to 2 bits. These findings highlight the surprising effectiveness of binary quadratic expressions for efficient matrix approximation and neural network compression.
comment: Accepted to NeurIPS 2025
☆ ε-Seg: Sparsely Supervised Semantic Segmentation of Microscopy Data
Semantic segmentation of electron microscopy (EM) images of biological samples remains a challenge in the life sciences. EM data captures details of biological structures, sometimes with such complexity that even human observers can find it overwhelming. We introduce {\epsilon}-Seg, a method based on hierarchical variational autoencoders (HVAEs), employing center-region masking, sparse label contrastive learning (CL), a Gaussian mixture model (GMM) prior, and clustering-free label prediction. Center-region masking and the inpainting loss encourage the model to learn robust and representative embeddings to distinguish the desired classes, even if training labels are sparse (0.05% of the total image data or less). For optimal performance, we employ CL and a GMM prior to shape the latent space of the HVAE such that encoded input patches tend to cluster wrt. the semantic classes we wish to distinguish. Finally, instead of clustering latent embeddings for semantic segmentation, we propose a MLP semantic segmentation head to directly predict class labels from latent embeddings. We show empirical results of {\epsilon}-Seg and baseline methods on 2 dense EM datasets of biological tissues and demonstrate the applicability of our method also on fluorescence microscopy data. Our results show that {\epsilon}-Seg is capable of achieving competitive sparsely-supervised segmentation results on complex biological image data, even if only limited amounts of training labels are available.
comment: 10 pages main text, 17 pages total
☆ C-SWAP: Explainability-Aware Structured Pruning for Efficient Neural Networks Compression BMVC2025
Neural network compression has gained increasing attention in recent years, particularly in computer vision applications, where the need for model reduction is crucial for overcoming deployment constraints. Pruning is a widely used technique that prompts sparsity in model structures, e.g. weights, neurons, and layers, reducing size and inference costs. Structured pruning is especially important as it allows for the removal of entire structures, which further accelerates inference time and reduces memory overhead. However, it can be computationally expensive, requiring iterative retraining and optimization. To overcome this problem, recent methods considered one-shot setting, which applies pruning directly at post-training. Unfortunately, they often lead to a considerable drop in performance. In this paper, we focus on this issue by proposing a novel one-shot pruning framework that relies on explainable deep learning. First, we introduce a causal-aware pruning approach that leverages cause-effect relations between model predictions and structures in a progressive pruning process. It allows us to efficiently reduce the size of the network, ensuring that the removed structures do not deter the performance of the model. Then, through experiments conducted on convolution neural network and vision transformer baselines, pre-trained on classification tasks, we demonstrate that our method consistently achieves substantial reductions in model size, with minimal impact on performance, and without the need for fine-tuning. Overall, our approach outperforms its counterparts, offering the best trade-off. Our code is available on GitHub.
comment: 10 pages, BMVC2025
☆ Think with 3D: Geometric Imagination Grounded Spatial Reasoning from Limited Views
Though recent advances in vision-language models (VLMs) have achieved remarkable progress across a wide range of multimodal tasks, understanding 3D spatial relationships from limited views remains a significant challenge. Previous reasoning methods typically rely on pure text (e.g., topological cognitive maps) or on 2D visual cues. However, their limited representational capacity hinders performance in specific tasks that require 3D spatial imagination. To address this limitation, we propose 3DThinker, a framework that can effectively exploits the rich geometric information embedded within images while reasoning, like humans do. Our framework is the first to enable 3D mentaling during reasoning without any 3D prior input, and it does not rely on explicitly labeled 3D data for training. Specifically, our training consists of two stages. First, we perform supervised training to align the 3D latent generated by VLM while reasoning with that of a 3D foundation model (e.g., VGGT). Then, we optimize the entire reasoning trajectory solely based on outcome signals, thereby refining the underlying 3D mentaling. Extensive experiments across multiple benchmarks show that 3DThinker consistently outperforms strong baselines and offers a new perspective toward unifying 3D representations into multimodal reasoning. Our code will be available at https://github.com/zhangquanchen/3DThinker.
comment: 12 pages, 4 figures
☆ CUARewardBench: A Benchmark for Evaluating Reward Models on Computer-using Agent
Computer-using agents (CUAs) enable task completion through natural interaction with operating systems and software interfaces. While script-based verifiers are widely adopted for evaluation, they suffer from limited scalability and inability to provide step-wise assessment. Reward models offer promising alternatives, but their effectiveness on CUA evaluation remains largely underexplored. To address this gap, we present CUARewardBench, comprising four key contributions: (1) First-ever Comprehensive CUA Reward Benchmark: We introduce the first benchmark for evaluating both outcome reward models (ORM) and process reward models (PRM) on CUA tasks, enabling systematic assessment across trajectory-level and step-level evaluation. (2) Diverse, Practical and Reliable Dataset: CUARewardBench encompasses trajectories from 10 software categories and 7 agent architectures with varying performance levels (25.9%-50.8% success rates). All trajectories are expertly annotated through carefully designed protocols, with rigorous quality control to ensure reliability and practical applicability. (3) Comprehensive Analysis and Insights: Through extensive experiments across 7 vision-language models and 3 prompt templates, we reveal critical limitations of current CUA RMs, including insufficient visual reasoning capabilities, knowledge deficiencies, and the superiority of general VLMs over specialized CUA models for reward evaluation. (4) Unanimous Prompt Ensemble (UPE): Based on the insights from our comprehensive analysis, we propose UPE, a novel ensemble method that significantly enhances reward model reliability through strict unanimous voting and strategic prompt-template configurations. UPE achieves 89.8% precision and 93.3% NPV for ORM, and 81.7% precision and 85.1% NPV for PRM, substantially outperforming single VLMs and traditional ensemble approaches.
comment: 24 pages, 6 figures
☆ CovMatch: Cross-Covariance Guided Multimodal Dataset Distillation with Trainable Text Encoder NeurIPS 2025
Multimodal dataset distillation aims to synthesize a small set of image-text pairs that enables efficient training of large-scale vision-language models. While dataset distillation has shown promise in unimodal tasks, extending it to multimodal contrastive learning presents key challenges: learning cross-modal alignment and managing the high computational cost of large encoders. Prior approaches address scalability by freezing the text encoder and update only the image encoder and text projection layer. However, we find this severely limits semantic alignment and becomes a bottleneck for performance scaling. We propose CovMatch, a scalable dataset distillation framework that aligns the cross-covariance of real and synthetic features while regularizing feature distributions within each modality. Unlike prior approaches, CovMatch enables joint optimization of both encoders, leading to stronger cross-modal alignment and improved performance. Evaluated on Flickr30K and COCO, CovMatch outperforms state-of-the-art multimodal distillation methods and achieves up to 6.8% absolute gains in retrieval accuracy using only 500 synthetic pairs.
comment: NeurIPS 2025
☆ Kaleido: Open-Sourced Multi-Subject Reference Video Generation Model
We present Kaleido, a subject-to-video~(S2V) generation framework, which aims to synthesize subject-consistent videos conditioned on multiple reference images of target subjects. Despite recent progress in S2V generation models, existing approaches remain inadequate at maintaining multi-subject consistency and at handling background disentanglement, often resulting in lower reference fidelity and semantic drift under multi-image conditioning. These shortcomings can be attributed to several factors. Primarily, the training dataset suffers from a lack of diversity and high-quality samples, as well as cross-paired data, i.e., paired samples whose components originate from different instances. In addition, the current mechanism for integrating multiple reference images is suboptimal, potentially resulting in the confusion of multiple subjects. To overcome these limitations, we propose a dedicated data construction pipeline, incorporating low-quality sample filtering and diverse data synthesis, to produce consistency-preserving training data. Moreover, we introduce Reference Rotary Positional Encoding (R-RoPE) to process reference images, enabling stable and precise multi-image integration. Extensive experiments across numerous benchmarks demonstrate that Kaleido significantly outperforms previous methods in consistency, fidelity, and generalization, marking an advance in S2V generation.
comment: 11 pages, 6 figures
☆ Descriptor: Occluded nuScenes: A Multi-Sensor Dataset for Evaluating Perception Robustness in Automated Driving
Robust perception in automated driving requires reliable performance under adverse conditions, where sensors may be affected by partial failures or environmental occlusions. Although existing autonomous driving datasets inherently contain sensor noise and environmental variability, very few enable controlled, parameterised, and reproducible degradations across multiple sensing modalities. This gap limits the ability to systematically evaluate how perception and fusion architectures perform under well-defined adverse conditions. To address this limitation, we introduce the Occluded nuScenes Dataset, a novel extension of the widely used nuScenes benchmark. For the camera modality, we release both the full and mini versions with four types of occlusions, two adapted from public implementations and two newly designed. For radar and LiDAR, we provide parameterised occlusion scripts that implement three types of degradations each, enabling flexible and repeatable generation of occluded data. This resource supports consistent, reproducible evaluation of perception models under partial sensor failures and environmental interference. By releasing the first multi-sensor occlusion dataset with controlled and reproducible degradations, we aim to advance research on robust sensor fusion, resilience analysis, and safety-critical perception in automated driving.
☆ GBlobs: Local LiDAR Geometry for Improved Sensor Placement Generalization IROS'25
This technical report outlines the top-ranking solution for RoboSense 2025: Track 3, achieving state-of-the-art performance on 3D object detection under various sensor placements. Our submission utilizes GBlobs, a local point cloud feature descriptor specifically designed to enhance model generalization across diverse LiDAR configurations. Current LiDAR-based 3D detectors often suffer from a \enquote{geometric shortcut} when trained on conventional global features (\ie, absolute Cartesian coordinates). This introduces a position bias that causes models to primarily rely on absolute object position rather than distinguishing shape and appearance characteristics. Although effective for in-domain data, this shortcut severely limits generalization when encountering different point distributions, such as those resulting from varying sensor placements. By using GBlobs as network input features, we effectively circumvent this geometric shortcut, compelling the network to learn robust, object-centric representations. This approach significantly enhances the model's ability to generalize, resulting in the exceptional performance demonstrated in this challenge.
comment: 1st place at the IROS'25 RoboSense Challenge, Track #3: Cross-Sensor Placement 3D Object Detection
☆ RayPose: Ray Bundling Diffusion for Template Views in Unseen 6D Object Pose Estimation
Typical template-based object pose pipelines estimate the pose by retrieving the closest matching template and aligning it with the observed image. However, failure to retrieve the correct template often leads to inaccurate pose predictions. To address this, we reformulate template-based object pose estimation as a ray alignment problem, where the viewing directions from multiple posed template images are learned to align with a non-posed query image. Inspired by recent progress in diffusion-based camera pose estimation, we embed this formulation into a diffusion transformer architecture that aligns a query image with a set of posed templates. We reparameterize object rotation using object-centered camera rays and model object translation by extending scale-invariant translation estimation to dense translation offsets. Our model leverages geometric priors from the templates to guide accurate query pose inference. A coarse-to-fine training strategy based on narrowed template sampling improves performance without modifying the network architecture. Extensive experiments across multiple benchmark datasets show competitive results of our method compared to state-of-the-art approaches in unseen object pose estimation.
☆ DWaste: Greener AI for Waste Sorting using Mobile and Edge Devices
The rise of convenience packaging has led to generation of enormous waste, making efficient waste sorting crucial for sustainable waste management. To address this, we developed DWaste, a computer vision-powered platform designed for real-time waste sorting on resource-constrained smartphones and edge devices, including offline functionality. We benchmarked various image classification models (EfficientNetV2S/M, ResNet50/101, MobileNet) and object detection (YOLOv8n, YOLOv11n) using a subset of our own waste data set and annotated it using the custom tool Annotated Lab. We found a clear trade-off between accuracy and resource consumption: the best classifier, EfficientNetV2S, achieved high accuracy (~ 96%) but suffered from high latency (~ 0.22s) and elevated carbon emissions. In contrast, lightweight object detection models delivered strong performance (up to 77% mAP) with ultra-fast inference (~ 0.03s) and significantly smaller model sizes (< 7MB), making them ideal for real-time, low-power use. Model quantization further maximized efficiency, substantially reducing model size and VRAM usage by up to 75%. Our work demonstrates the successful implementation of "Greener AI" models to support real-time, sustainable waste sorting on edge devices.
comment: 8 pages, 8 figures
☆ Zero-Shot Vehicle Model Recognition via Text-Based Retrieval-Augmented Generation
Vehicle make and model recognition (VMMR) is an important task in intelligent transportation systems, but existing approaches struggle to adapt to newly released models. Contrastive Language-Image Pretraining (CLIP) provides strong visual-text alignment, yet its fixed pretrained weights limit performance without costly image-specific finetuning. We propose a pipeline that integrates vision language models (VLMs) with Retrieval-Augmented Generation (RAG) to support zero-shot recognition through text-based reasoning. A VLM converts vehicle images into descriptive attributes, which are compared against a database of textual features. Relevant entries are retrieved and combined with the description to form a prompt, and a language model (LM) infers the make and model. This design avoids large-scale retraining and enables rapid updates by adding textual descriptions of new vehicles. Experiments show that the proposed method improves recognition by nearly 20% over the CLIP baseline, demonstrating the potential of RAG-enhanced LM reasoning for scalable VMMR in smart-city applications.
comment: Accepted by The 38th Conference of Open Innovations Association FRUCT, 2025
☆ Mono4DGS-HDR: High Dynamic Range 4D Gaussian Splatting from Alternating-exposure Monocular Videos
We introduce Mono4DGS-HDR, the first system for reconstructing renderable 4D high dynamic range (HDR) scenes from unposed monocular low dynamic range (LDR) videos captured with alternating exposures. To tackle such a challenging problem, we present a unified framework with two-stage optimization approach based on Gaussian Splatting. The first stage learns a video HDR Gaussian representation in orthographic camera coordinate space, eliminating the need for camera poses and enabling robust initial HDR video reconstruction. The second stage transforms video Gaussians into world space and jointly refines the world Gaussians with camera poses. Furthermore, we propose a temporal luminance regularization strategy to enhance the temporal consistency of the HDR appearance. Since our task has not been studied before, we construct a new evaluation benchmark using publicly available datasets for HDR video reconstruction. Extensive experiments demonstrate that Mono4DGS-HDR significantly outperforms alternative solutions adapted from state-of-the-art methods in both rendering quality and speed.
comment: Project page is available at https://liujf1226.github.io/Mono4DGS-HDR/
☆ Vision Foundation Models Can Be Good Tokenizers for Latent Diffusion Models
The performance of Latent Diffusion Models (LDMs) is critically dependent on the quality of their visual tokenizer. While recent works have explored incorporating Vision Foundation Models (VFMs) via distillation, we identify a fundamental flaw in this approach: it inevitably weakens the robustness of alignment with the original VFM, causing the aligned latents to deviate semantically under distribution shifts. In this paper, we bypass distillation by proposing a more direct approach: Vision Foundation Model Variational Autoencoder (VFM-VAE). To resolve the inherent tension between the VFM's semantic focus and the need for pixel-level fidelity, we redesign the VFM-VAE decoder with Multi-Scale Latent Fusion and Progressive Resolution Reconstruction blocks, enabling high-quality reconstruction from spatially coarse VFM features. Furthermore, we provide a comprehensive analysis of representation dynamics during diffusion training, introducing the proposed SE-CKNNA metric as a more precise tool for this diagnosis. This analysis allows us to develop a joint tokenizer-diffusion alignment strategy that dramatically accelerates convergence. Our innovations in tokenizer design and training strategy lead to superior performance and efficiency: our system reaches a gFID (w/o CFG) of 2.20 in merely 80 epochs (a 10x speedup over prior tokenizers). With continued training to 640 epochs, it further attains a gFID (w/o CFG) of 1.62, establishing direct VFM integration as a superior paradigm for LDMs.
comment: Code and models available at: https://github.com/tianciB/VFM-VAE
☆ LAND: Lung and Nodule Diffusion for 3D Chest CT Synthesis with Anatomical Guidance
This work introduces a new latent diffusion model to generate high-quality 3D chest CT scans conditioned on 3D anatomical masks. The method synthesizes volumetric images of size 256x256x256 at 1 mm isotropic resolution using a single mid-range GPU, significantly lowering the computational cost compared to existing approaches. The conditioning masks delineate lung and nodule regions, enabling precise control over the output anatomical features. Experimental results demonstrate that conditioning solely on nodule masks leads to anatomically incorrect outputs, highlighting the importance of incorporating global lung structure for accurate conditional synthesis. The proposed approach supports the generation of diverse CT volumes with and without lung nodules of varying attributes, providing a valuable tool for training AI models or healthcare professionals.
☆ Beyond Single Images: Retrieval Self-Augmented Unsupervised Camouflaged Object Detection ICCV 2025
At the core of Camouflaged Object Detection (COD) lies segmenting objects from their highly similar surroundings. Previous efforts navigate this challenge primarily through image-level modeling or annotation-based optimization. Despite advancing considerably, this commonplace practice hardly taps valuable dataset-level contextual information or relies on laborious annotations. In this paper, we propose RISE, a RetrIeval SElf-augmented paradigm that exploits the entire training dataset to generate pseudo-labels for single images, which could be used to train COD models. RISE begins by constructing prototype libraries for environments and camouflaged objects using training images (without ground truth), followed by K-Nearest Neighbor (KNN) retrieval to generate pseudo-masks for each image based on these libraries. It is important to recognize that using only training images without annotations exerts a pronounced challenge in crafting high-quality prototype libraries. In this light, we introduce a Clustering-then-Retrieval (CR) strategy, where coarse masks are first generated through clustering, facilitating subsequent histogram-based image filtering and cross-category retrieval to produce high-confidence prototypes. In the KNN retrieval stage, to alleviate the effect of artifacts in feature maps, we propose Multi-View KNN Retrieval (MVKR), which integrates retrieval results from diverse views to produce more robust and precise pseudo-masks. Extensive experiments demonstrate that RISE outperforms state-of-the-art unsupervised and prompt-based methods. Code is available at https://github.com/xiaohainku/RISE.
comment: ICCV 2025
☆ ImageGem: In-the-wild Generative Image Interaction Dataset for Generative Model Personalization
We introduce ImageGem, a dataset for studying generative models that understand fine-grained individual preferences. We posit that a key challenge hindering the development of such a generative model is the lack of in-the-wild and fine-grained user preference annotations. Our dataset features real-world interaction data from 57K users, who collectively have built 242K customized LoRAs, written 3M text prompts, and created 5M generated images. With user preference annotations from our dataset, we were able to train better preference alignment models. In addition, leveraging individual user preference, we investigated the performance of retrieval models and a vision-language model on personalized image retrieval and generative model recommendation. Finally, we propose an end-to-end framework for editing customized diffusion models in a latent weight space to align with individual user preferences. Our results demonstrate that the ImageGem dataset enables, for the first time, a new paradigm for generative model personalization.
☆ ScaleNet: Scaling up Pretrained Neural Networks with Incremental Parameters
Recent advancements in vision transformers (ViTs) have demonstrated that larger models often achieve superior performance. However, training these models remains computationally intensive and costly. To address this challenge, we introduce ScaleNet, an efficient approach for scaling ViT models. Unlike conventional training from scratch, ScaleNet facilitates rapid model expansion with negligible increases in parameters, building on existing pretrained models. This offers a cost-effective solution for scaling up ViTs. Specifically, ScaleNet achieves model expansion by inserting additional layers into pretrained ViTs, utilizing layer-wise weight sharing to maintain parameters efficiency. Each added layer shares its parameter tensor with a corresponding layer from the pretrained model. To mitigate potential performance degradation due to shared weights, ScaleNet introduces a small set of adjustment parameters for each layer. These adjustment parameters are implemented through parallel adapter modules, ensuring that each instance of the shared parameter tensor remains distinct and optimized for its specific function. Experiments on the ImageNet-1K dataset demonstrate that ScaleNet enables efficient expansion of ViT models. With a 2$\times$ depth-scaled DeiT-Base model, ScaleNet achieves a 7.42% accuracy improvement over training from scratch while requiring only one-third of the training epochs, highlighting its efficiency in scaling ViTs. Beyond image classification, our method shows significant potential for application in downstream vision areas, as evidenced by the validation in object detection task.
☆ Automated Wicket-Taking Delivery Segmentation and Weakness Detection in Cricket Videos Using OCR-Guided YOLOv8 and Trajectory Modeling IEEE
This paper presents an automated system for cricket video analysis that leverages deep learning techniques to extract wicket-taking deliveries, detect cricket balls, and model ball trajectories. The system employs the YOLOv8 architecture for pitch and ball detection, combined with optical character recognition (OCR) for scorecard extraction to identify wicket-taking moments. Through comprehensive image preprocessing, including grayscale transformation, power transformation, and morphological operations, the system achieves robust text extraction from video frames. The pitch detection model achieved 99.5% mean Average Precision at 50% IoU (mAP50) with a precision of 0.999, while the ball detection model using transfer learning attained 99.18% mAP50 with 0.968 precision and 0.978 recall. The system enables trajectory modeling on detected pitches, providing data-driven insights for identifying batting weaknesses. Experimental results on multiple cricket match videos demonstrate the effectiveness of this approach for automated cricket analytics, offering significant potential for coaching and strategic decision-making.
comment: 6 figures, 5 tables, submitted to the 11th IEEE International Women in Engineering (WIE) Conference on Electrical and Computer Engineering 2025
☆ Bayesian Fully-Connected Tensor Network for Hyperspectral-Multispectral Image Fusion
Tensor decomposition is a powerful tool for data analysis and has been extensively employed in the field of hyperspectral-multispectral image fusion (HMF). Existing tensor decomposition-based fusion methods typically rely on disruptive data vectorization/reshaping or impose rigid constraints on the arrangement of factor tensors, hindering the preservation of spatial-spectral structures and the modeling of cross-dimensional correlations. Although recent advances utilizing the Fully-Connected Tensor Network (FCTN) decomposition have partially alleviated these limitations, the process of reorganizing data into higher-order tensors still disrupts the intrinsic spatial-spectral structure. Furthermore, these methods necessitate extensive manual parameter tuning and exhibit limited robustness against noise and spatial degradation. To alleviate these issues, we propose the Bayesian FCTN (BFCTN) method. Within this probabilistic framework, a hierarchical sparse prior that characterizing the sparsity of physical elements, establishes connections between the factor tensors. This framework explicitly models the intrinsic physical coupling among spatial structures, spectral signatures, and local scene homogeneity. For model learning, we develop a parameter estimation method based on Variational Bayesian inference (VB) and the Expectation-Maximization (EM) algorithm, which significantly reduces the need for manual parameter tuning. Extensive experiments demonstrate that BFCTN not only achieves state-of-the-art fusion accuracy and strong robustness but also exhibits practical applicability in complex real-world scenarios.
☆ Entropy-Enhanced Conformal Features from Ricci Flow for Robust Alzheimer's Disease Classification
Background and Objective: In brain imaging, geometric surface models are essential for analyzing the 3D shapes of anatomical structures. Alzheimer's disease (AD) is associated with significant cortical atrophy, making such shape analysis a valuable diagnostic tool. The objective of this study is to introduce and validate a novel local surface representation method for the automated and accurate diagnosis of AD. Methods: The study utilizes T1-weighted MRI scans from 160 participants (80 AD patients and 80 healthy controls) from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Cortical surface models were reconstructed from the MRI data using Freesurfer. Key geometric attributes were computed from the 3D meshes. Area distortion and conformal factor were derived using Ricci flow for conformal parameterization, while Gaussian curvature was calculated directly from the mesh geometry. Shannon entropy was applied to these three features to create compact and informative feature vectors. The feature vectors were used to train and evaluate a suite of classifiers (e.g. XGBoost, MLP, Logistic Regression, etc.). Results: Statistical significance of performance differences between classifiers was evaluated using paired Welch's t-test. The method proved highly effective in distinguishing AD patients from healthy controls. The Multi-Layer Perceptron (MLP) and Logistic Regression classifiers outperformed all others, achieving an accuracy and F$_1$ Score of 98.62%. Conclusions: This study confirms that the entropy of conformally-derived geometric features provides a powerful and robust metric for cortical morphometry. The high classification accuracy underscores the method's potential to enhance the study and diagnosis of Alzheimer's disease, offering a straightforward yet powerful tool for clinical research applications.
☆ S2AP: Score-space Sharpness Minimization for Adversarial Pruning
Adversarial pruning methods have emerged as a powerful tool for compressing neural networks while preserving robustness against adversarial attacks. These methods typically follow a three-step pipeline: (i) pretrain a robust model, (ii) select a binary mask for weight pruning, and (iii) finetune the pruned model. To select the binary mask, these methods minimize a robust loss by assigning an importance score to each weight, and then keep the weights with the highest scores. However, this score-space optimization can lead to sharp local minima in the robust loss landscape and, in turn, to an unstable mask selection, reducing the robustness of adversarial pruning methods. To overcome this issue, we propose a novel plug-in method for adversarial pruning, termed Score-space Sharpness-aware Adversarial Pruning (S2AP). Through our method, we introduce the concept of score-space sharpness minimization, which operates during the mask search by perturbing importance scores and minimizing the corresponding robust loss. Extensive experiments across various datasets, models, and sparsity levels demonstrate that S2AP effectively minimizes sharpness in score space, stabilizing the mask selection, and ultimately improving the robustness of adversarial pruning methods.
☆ Cross-Modal Scene Semantic Alignment for Image Complexity Assessment
Image complexity assessment (ICA) is a challenging task in perceptual evaluation due to the subjective nature of human perception and the inherent semantic diversity in real-world images. Existing ICA methods predominantly rely on hand-crafted or shallow convolutional neural network-based features of a single visual modality, which are insufficient to fully capture the perceived representations closely related to image complexity. Recently, cross-modal scene semantic information has been shown to play a crucial role in various computer vision tasks, particularly those involving perceptual understanding. However, the exploration of cross-modal scene semantic information in the context of ICA remains unaddressed. Therefore, in this paper, we propose a novel ICA method called Cross-Modal Scene Semantic Alignment (CM-SSA), which leverages scene semantic alignment from a cross-modal perspective to enhance ICA performance, enabling complexity predictions to be more consistent with subjective human perception. Specifically, the proposed CM-SSA consists of a complexity regression branch and a scene semantic alignment branch. The complexity regression branch estimates image complexity levels under the guidance of the scene semantic alignment branch, while the scene semantic alignment branch is used to align images with corresponding text prompts that convey rich scene semantic information by pair-wise learning. Extensive experiments on several ICA datasets demonstrate that the proposed CM-SSA significantly outperforms state-of-the-art approaches. Codes are available at https://github.com/XQ2K/First-Cross-Model-ICA.
comment: 14 pages,2 figures, British Machine Vision Conference
☆ FeatureFool: Zero-Query Fooling of Video Models via Feature Map
The vulnerability of deep neural networks (DNNs) has been preliminarily verified. Existing black-box adversarial attacks usually require multi-round interaction with the model and consume numerous queries, which is impractical in the real-world and hard to scale to recently emerged Video-LLMs. Moreover, no attack in the video domain directly leverages feature maps to shift the clean-video feature space. We therefore propose FeatureFool, a stealthy, video-domain, zero-query black-box attack that utilizes information extracted from a DNN to alter the feature space of clean videos. Unlike query-based methods that rely on iterative interaction, FeatureFool performs a zero-query attack by directly exploiting DNN-extracted information. This efficient approach is unprecedented in the video domain. Experiments show that FeatureFool achieves an attack success rate above 70\% against traditional video classifiers without any queries. Benefiting from the transferability of the feature map, it can also craft harmful content and bypass Video-LLM recognition. Additionally, adversarial videos generated by FeatureFool exhibit high quality in terms of SSIM, PSNR, and Temporal-Inconsistency, making the attack barely perceptible. This paper may contain violent or explicit content.
☆ Ensembling Pruned Attention Heads For Uncertainty-Aware Efficient Transformers
Uncertainty quantification (UQ) is essential for deploying deep neural networks in safety-critical settings. Although methods like Deep Ensembles achieve strong UQ performance, their high computational and memory costs hinder scalability to large models. We introduce Hydra Ensembles, an efficient transformer-based ensemble that prunes attention heads to create diverse members and merges them via a new multi-head attention with grouped fully-connected layers. This yields a compact model with inference speed close to a single network, matching or surpassing Deep Ensembles in UQ performance without retraining from scratch. We also provide an in-depth analysis of pruning, showing that naive approaches can harm calibration, whereas Hydra Ensembles preserves robust uncertainty. Experiments on image and text classification tasks, with various architectures, show consistent gains over Deep Ensembles. Remarkably, in zero-shot classification on ImageNet-1k, our approach surpasses state of the art methods, even without requiring additional training.
☆ Learning Human-Object Interaction as Groups
Human-Object Interaction Detection (HOI-DET) aims to localize human-object pairs and identify their interactive relationships. To aggregate contextual cues, existing methods typically propagate information across all detected entities via self-attention mechanisms, or establish message passing between humans and objects with bipartite graphs. However, they primarily focus on pairwise relationships, overlooking that interactions in real-world scenarios often emerge from collective behaviors (multiple humans and objects engaging in joint activities). In light of this, we revisit relation modeling from a group view and propose GroupHOI, a framework that propagates contextual information in terms of geometric proximity and semantic similarity. To exploit the geometric proximity, humans and objects are grouped into distinct clusters using a learnable proximity estimator based on spatial features derived from bounding boxes. In each group, a soft correspondence is computed via self-attention to aggregate and dispatch contextual cues. To incorporate the semantic similarity, we enhance the vanilla transformer-based interaction decoder with local contextual cues from HO-pair features. Extensive experiments on HICO-DET and V-COCO benchmarks demonstrate the superiority of GroupHOI over the state-of-the-art methods. It also exhibits leading performance on the more challenging Nonverbal Interaction Detection (NVI-DET) task, which involves varied forms of higher-order interactions within groups.
☆ Ranking-based Preference Optimization for Diffusion Models from Implicit User Feedback
Direct preference optimization (DPO) methods have shown strong potential in aligning text-to-image diffusion models with human preferences by training on paired comparisons. These methods improve training stability by avoiding the REINFORCE algorithm but still struggle with challenges such as accurately estimating image probabilities due to the non-linear nature of the sigmoid function and the limited diversity of offline datasets. In this paper, we introduce Diffusion Denoising Ranking Optimization (Diffusion-DRO), a new preference learning framework grounded in inverse reinforcement learning. Diffusion-DRO removes the dependency on a reward model by casting preference learning as a ranking problem, thereby simplifying the training objective into a denoising formulation and overcoming the non-linear estimation issues found in prior methods. Moreover, Diffusion-DRO uniquely integrates offline expert demonstrations with online policy-generated negative samples, enabling it to effectively capture human preferences while addressing the limitations of offline data. Comprehensive experiments show that Diffusion-DRO delivers improved generation quality across a range of challenging and unseen prompts, outperforming state-of-the-art baselines in both both quantitative metrics and user studies. Our source code and pre-trained models are available at https://github.com/basiclab/DiffusionDRO.
☆ AV-Master: Dual-Path Comprehensive Perception Makes Better Audio-Visual Question Answering
Audio-Visual Question Answering (AVQA) requires models to effectively utilize both visual and auditory modalities to answer complex and diverse questions about audio-visual scenes. However, existing methods lack sufficient flexibility and dynamic adaptability in temporal sampling and modality preference awareness, making it difficult to focus on key information based on the question. This limits their reasoning capability in complex scenarios. To address these challenges, we propose a novel framework named AV-Master. It enhances the model's ability to extract key information from complex audio-visual scenes with substantial redundant content by dynamically modeling both temporal and modality dimensions. In the temporal dimension, we introduce a dynamic adaptive focus sampling mechanism that progressively focuses on audio-visual segments most relevant to the question, effectively mitigating redundancy and segment fragmentation in traditional sampling methods. In the modality dimension, we propose a preference-aware strategy that models each modality's contribution independently, enabling selective activation of critical features. Furthermore, we introduce a dual-path contrastive loss to reinforce consistency and complementarity across temporal and modality dimensions, guiding the model to learn question-specific cross-modal collaborative representations. Experiments on four large-scale benchmarks show that AV-Master significantly outperforms existing methods, especially in complex reasoning tasks.
comment: 13 pages, 9 figures
GPTFace: Generative Pre-training of Facial-Linguistic Transformer by Span Masking and Weakly Correlated Text-image Data
Compared to the prosperity of pre-training models in natural image understanding, the research on large-scale pre-training models for facial knowledge learning is still limited. Current approaches mainly rely on manually assembled and annotated face datasets for training, but labeling such datasets is labor-intensive and the trained models have limited scalability beyond the training data. To address these limitations, we present a generative pre-training model for facial knowledge learning that leverages large-scale web-built data for training. We use texts and images containing human faces crawled from the internet and conduct pre-training on self-supervised tasks, including masked image/language modeling (MILM) and image-text matching (ITM). During the generation stage, we further utilize the image-text matching loss to pull the generation distribution towards the control signal for controllable image/text generation. Experimental results demonstrate that our model achieves comparable performance to state-of-the-art pre-training models for various facial downstream tasks, such as attribution classification and expression recognition. Furthermore, our approach is also applicable to a wide range of face editing tasks, including face attribute editing, expression manipulation, mask removal, and photo inpainting.
comment: This work was initially drafted in November 2022
☆ ViSE: A Systematic Approach to Vision-Only Street-View Extrapolation
Realistic view extrapolation is critical for closed-loop simulation in autonomous driving, yet it remains a significant challenge for current Novel View Synthesis (NVS) methods, which often produce distorted and inconsistent images beyond the original trajectory. This report presents our winning solution which ctook first place in the RealADSim Workshop NVS track at ICCV 2025. To address the core challenges of street view extrapolation, we introduce a comprehensive four-stage pipeline. First, we employ a data-driven initialization strategy to generate a robust pseudo-LiDAR point cloud, avoiding local minima. Second, we inject strong geometric priors by modeling the road surface with a novel dimension-reduced SDF termed 2D-SDF. Third, we leverage a generative prior to create pseudo ground truth for extrapolated viewpoints, providing auxilary supervision. Finally, a data-driven adaptation network removes time-specific artifacts. On the RealADSim-NVS benchmark, our method achieves a final score of 0.441, ranking first among all participants.
☆ Enhancing Few-Shot Classification of Benchmark and Disaster Imagery with ATTBHFA-Net
The increasing frequency of natural and human-induced disasters necessitates advanced visual recognition techniques capable of analyzing critical photographic data. With progress in artificial intelligence and resilient computational systems, rapid and accurate disaster classification has become crucial for efficient rescue operations. However, visual recognition in disaster contexts faces significant challenges due to limited and diverse data from the difficulties in collecting and curating comprehensive, high-quality disaster imagery. Few-Shot Learning (FSL) provides a promising approach to data scarcity, yet current FSL research mainly relies on generic benchmark datasets lacking remote-sensing disaster imagery, limiting its practical effectiveness. Moreover, disaster images exhibit high intra-class variation and inter-class similarity, hindering the performance of conventional metric-based FSL methods. To address these issues, this paper introduces the Attention-based Bhattacharyya-Hellinger Feature Aggregation Network (ATTBHFA-Net), which linearly combines the Bhattacharyya coefficient and Hellinger distances to compare and aggregate feature probability distributions for robust prototype formation. The Bhattacharyya coefficient serves as a contrastive margin that enhances inter-class separability, while the Hellinger distance regularizes same-class alignment. This framework parallels contrastive learning but operates over probability distributions rather than embedded feature points. Furthermore, a Bhattacharyya-Hellinger distance-based contrastive loss is proposed as a distributional counterpart to cosine similarity loss, used jointly with categorical cross-entropy to significantly improve FSL performance. Experiments on four FSL benchmarks and two disaster image datasets demonstrate the superior effectiveness and generalization of ATTBHFA-Net compared to existing approaches.
comment: Submitted to a SN journal
☆ Beyond Single Models: Mitigating Multimodal Hallucinations via Adaptive Token Ensemble Decoding
Large Vision-Language Models (LVLMs) have recently achieved impressive results in multimodal tasks such as image captioning and visual question answering. However, they remain prone to object hallucination -- generating descriptions of nonexistent or misidentified objects. Prior work has partially mitigated this via auxiliary training objectives or external modules, but challenges remain in terms of scalability, adaptability, and model independence. To address these limitations, we propose Adaptive Token Ensemble Decoding (ATED), a training-free, token-level ensemble framework that mitigates hallucination by aggregating predictions from multiple LVLMs during inference. ATED dynamically computes uncertainty-based weights for each model, reflecting their reliability at each decoding step. It also integrates diverse decoding paths to improve contextual grounding and semantic consistency. Experiments on standard hallucination detection benchmarks demonstrate that ATED significantly outperforms state-of-the-art methods, reducing hallucination without compromising fluency or relevance. Our findings highlight the benefits of adaptive ensembling and point to a promising direction for improving LVLM robustness in high-stakes applications. The code is available at https://github.com/jinlin2021/ATED.
☆ OmniNWM: Omniscient Driving Navigation World Models
Autonomous driving world models are expected to work effectively across three core dimensions: state, action, and reward. Existing models, however, are typically restricted to limited state modalities, short video sequences, imprecise action control, and a lack of reward awareness. In this paper, we introduce OmniNWM, an omniscient panoramic navigation world model that addresses all three dimensions within a unified framework. For state, OmniNWM jointly generates panoramic videos of RGB, semantics, metric depth, and 3D occupancy. A flexible forcing strategy enables high-quality long-horizon auto-regressive generation. For action, we introduce a normalized panoramic Plucker ray-map representation that encodes input trajectories into pixel-level signals, enabling highly precise and generalizable control over panoramic video generation. Regarding reward, we move beyond learning reward functions with external image-based models: instead, we leverage the generated 3D occupancy to directly define rule-based dense rewards for driving compliance and safety. Extensive experiments demonstrate that OmniNWM achieves state-of-the-art performance in video generation, control accuracy, and long-horizon stability, while providing a reliable closed-loop evaluation framework through occupancy-grounded rewards. Project page is available at https://github.com/Arlo0o/OmniNWM.
comment: https://arlo0o.github.io/OmniNWM/
☆ The Impact of Image Resolution on Biomedical Multimodal Large Language Models
Imaging technologies are fundamental to biomedical research and modern medicine, requiring analysis of high-resolution images across various modalities. While multimodal large language models (MLLMs) show promise for biomedical image analysis, most are designed for low-resolution images from general-purpose datasets, risking critical information loss. We investigate how image resolution affects MLLM performance in biomedical applications and demonstrate that: (1) native-resolution training and inference significantly improve performance across multiple tasks, (2) misalignment between training and inference resolutions severely degrades performance, and (3) mixed-resolution training effectively mitigates misalignment and balances computational constraints with performance requirements. Based on these findings, we recommend prioritizing native-resolution inference and mixed-resolution datasets to optimize biomedical MLLMs for transformative impact in scientific research and clinical applications.
comment: Proceedings of the 10th Machine Learning for Healthcare Conference, PMLR 298, 2025
☆ Proactive Reasoning-with-Retrieval Framework for Medical Multimodal Large Language Models
Incentivizing the reasoning ability of Multimodal Large Language Models (MLLMs) is essential for medical applications to transparently analyze medical scans and provide reliable diagnosis. However, existing medical MLLMs rely solely on internal knowledge during reasoning, leading to hallucinated reasoning and factual inaccuracies when encountering cases beyond their training scope. Although recent Agentic Retrieval-Augmented Generation (RAG) methods elicit the medical model's proactive retrieval ability during reasoning, they are confined to unimodal LLMs, neglecting the crucial visual information during reasoning and retrieval. Consequently, we propose the first Multimodal Medical Reasoning-with-Retrieval framework, Med-RwR, which actively retrieves external knowledge by querying observed symptoms or domain-specific medical concepts during reasoning. Specifically, we design a two-stage reinforcement learning strategy with tailored rewards that stimulate the model to leverage both visual diagnostic findings and textual clinical information for effective retrieval. Building on this foundation, we further propose a Confidence-Driven Image Re-retrieval (CDIR) method for test-time scaling when low prediction confidence is detected. Evaluation on various public medical benchmarks demonstrates Med-RwR's significant improvements over baseline models, proving the effectiveness of enhancing reasoning capabilities with external knowledge integration. Furthermore, Med-RwR demonstrates remarkable generalizability to unfamiliar domains, evidenced by 8.8% performance gain on our proposed EchoCardiography Benchmark (ECBench), despite the scarcity of echocardiography data in the training corpus. Our data, model, and codes will be made publicly available at https://github.com/xmed-lab/Med-RwR.
comment: Work in progress
☆ GeoDiff: Geometry-Guided Diffusion for Metric Depth Estimation ICCV
We introduce a novel framework for metric depth estimation that enhances pretrained diffusion-based monocular depth estimation (DB-MDE) models with stereo vision guidance. While existing DB-MDE methods excel at predicting relative depth, estimating absolute metric depth remains challenging due to scale ambiguities in single-image scenarios. To address this, we reframe depth estimation as an inverse problem, leveraging pretrained latent diffusion models (LDMs) conditioned on RGB images, combined with stereo-based geometric constraints, to learn scale and shift for accurate depth recovery. Our training-free solution seamlessly integrates into existing DB-MDE frameworks and generalizes across indoor, outdoor, and complex environments. Extensive experiments demonstrate that our approach matches or surpasses state-of-the-art methods, particularly in challenging scenarios involving translucent and specular surfaces, all without requiring retraining.
comment: Accepted to ICCV Findings 2025. The first two authors contributed equally. The last two authors share co-corresponding authorship
☆ Efficient Few-shot Identity Preserving Attribute Editing for 3D-aware Deep Generative Models
Identity preserving editing of faces is a generative task that enables modifying the illumination, adding/removing eyeglasses, face aging, editing hairstyles, modifying expression etc., while preserving the identity of the face. Recent progress in 2D generative models have enabled photorealistic editing of faces using simple techniques leveraging the compositionality in GANs. However, identity preserving editing for 3D faces with a given set of attributes is a challenging task as the generative model must reason about view consistency from multiple poses and render a realistic 3D face. Further, 3D portrait editing requires large-scale attribute labelled datasets and presents a trade-off between editability in low-resolution and inflexibility to editing in high resolution. In this work, we aim to alleviate some of the constraints in editing 3D faces by identifying latent space directions that correspond to photorealistic edits. To address this, we present a method that builds on recent advancements in 3D-aware deep generative models and 2D portrait editing techniques to perform efficient few-shot identity preserving attribute editing for 3D-aware generative models. We aim to show from experimental results that using just ten or fewer labelled images of an attribute is sufficient to estimate edit directions in the latent space that correspond to 3D-aware attribute editing. In this work, we leverage an existing face dataset with masks to obtain the synthetic images for few attribute examples required for estimating the edit directions. Further, to demonstrate the linearity of edits, we investigate one-shot stylization by performing sequential editing and use the (2D) Attribute Style Manipulation (ASM) technique to investigate a continuous style manifold for 3D consistent identity preserving face aging. Code and results are available at: https://vishal-vinod.github.io/gmpi-edit/
comment: 14 pages, 7 figures
☆ StreamingTOM: Streaming Token Compression for Efficient Video Understanding
Unlike offline processing, streaming video vision-language models face two fundamental constraints: causality and accumulation. Causality prevents access to future frames that offline methods exploit, while accumulation causes tokens to grow unbounded, creating efficiency bottlenecks. However, existing approaches only regulate post-LLM kv-cache, leaving costly pre-LLM prefill unchanged. We introduce StreamingTOM, a training-free, plug-and-play two-stage framework that addresses both pre-LLM and post-LLM bottlenecks with predictable latency. Causal Temporal Reduction imposes a fixed per-frame budget and selects tokens based on adjacent-frame changes and token saliency, drastically reducing per-frame prefill cost by processing only a compact subset of visual tokens per frame instead of all visual tokens. Online Quantized Memory stores tokens in 4-bit format, retrieves relevant groups on demand, and dequantizes them, keeping the active kv-cache bounded regardless of stream length. Experiments demonstrate our method achieves $15.7\times$ kv-cache compression, $1.2\times$ lower peak memory and $2\times$ faster TTFT compared to prior SOTA. StreamingTOM maintains state-of-the-art accuracy among training-free methods with an average of $63.8\%$ on offline benchmarks and $55.8\%/3.7$ on RVS. These results highlight the practical benefits of our two-stage approach for efficient streaming video understanding with bounded growth.
☆ TreeFedDG: Alleviating Global Drift in Federated Domain Generalization for Medical Image Segmentation
In medical image segmentation tasks, Domain Generalization (DG) under the Federated Learning (FL) framework is crucial for addressing challenges related to privacy protection and data heterogeneity. However, traditional federated learning methods fail to account for the imbalance in information aggregation across clients in cross-domain scenarios, leading to the Global Drift (GD) problem and a consequent decline in model generalization performance. This motivates us to delve deeper and define a new critical issue: global drift in federated domain generalization for medical imaging (FedDG-GD). In this paper, we propose a novel tree topology framework called TreeFedDG. First, starting from the distributed characteristics of medical images, we design a hierarchical parameter aggregation method based on a tree-structured topology to suppress deviations in the global model direction. Second, we introduce a parameter difference-based style mixing method (FedStyle), which enforces mixing among clients with maximum parameter differences to enhance robustness against drift. Third, we develop a a progressive personalized fusion strategy during model distribution, ensuring a balance between knowledge transfer and personalized features. Finally, during the inference phase, we use feature similarity to guide the retrieval of the most relevant model chain from the tree structure for ensemble decision-making, thereby fully leveraging the advantages of hierarchical knowledge. We conducted extensive experiments on two publicly available datasets. The results demonstrate that our method outperforms other state-of-the-art domain generalization approaches in these challenging tasks and achieves better balance in cross-domain performance.
☆ Latent-Info and Low-Dimensional Learning for Human Mesh Recovery and Parallel Optimization ICME2025
Existing 3D human mesh recovery methods often fail to fully exploit the latent information (e.g., human motion, shape alignment), leading to issues with limb misalignment and insufficient local details in the reconstructed human mesh (especially in complex scenes). Furthermore, the performance improvement gained by modelling mesh vertices and pose node interactions using attention mechanisms comes at a high computational cost. To address these issues, we propose a two-stage network for human mesh recovery based on latent information and low dimensional learning. Specifically, the first stage of the network fully excavates global (e.g., the overall shape alignment) and local (e.g., textures, detail) information from the low and high-frequency components of image features and aggregates this information into a hybrid latent frequency domain feature. This strategy effectively extracts latent information. Subsequently, utilizing extracted hybrid latent frequency domain features collaborates to enhance 2D poses to 3D learning. In the second stage, with the assistance of hybrid latent features, we model the interaction learning between the rough 3D human mesh template and the 3D pose, optimizing the pose and shape of the human mesh. Unlike existing mesh pose interaction methods, we design a low-dimensional mesh pose interaction method through dimensionality reduction and parallel optimization that significantly reduces computational costs without sacrificing reconstruction accuracy. Extensive experimental results on large publicly available datasets indicate superiority compared to the most state-of-the-art.
comment: Accepted by ICME2025
☆ From Competition to Synergy: Unlocking Reinforcement Learning for Subject-Driven Image Generation
Subject-driven image generation models face a fundamental trade-off between identity preservation (fidelity) and prompt adherence (editability). While online reinforcement learning (RL), specifically GPRO, offers a promising solution, we find that a naive application of GRPO leads to competitive degradation, as the simple linear aggregation of rewards with static weights causes conflicting gradient signals and a misalignment with the temporal dynamics of the diffusion process. To overcome these limitations, we propose Customized-GRPO, a novel framework featuring two key innovations: (i) Synergy-Aware Reward Shaping (SARS), a non-linear mechanism that explicitly penalizes conflicted reward signals and amplifies synergistic ones, providing a sharper and more decisive gradient. (ii) Time-Aware Dynamic Weighting (TDW), which aligns the optimization pressure with the model's temporal dynamics by prioritizing prompt-following in the early, identity preservation in the later. Extensive experiments demonstrate that our method significantly outperforms naive GRPO baselines, successfully mitigating competitive degradation. Our model achieves a superior balance, generating images that both preserve key identity features and accurately adhere to complex textual prompts.
☆ UWBench: A Comprehensive Vision-Language Benchmark for Underwater Understanding
Large vision-language models (VLMs) have achieved remarkable success in natural scene understanding, yet their application to underwater environments remains largely unexplored. Underwater imagery presents unique challenges including severe light attenuation, color distortion, and suspended particle scattering, while requiring specialized knowledge of marine ecosystems and organism taxonomy. To bridge this gap, we introduce UWBench, a comprehensive benchmark specifically designed for underwater vision-language understanding. UWBench comprises 15,003 high-resolution underwater images captured across diverse aquatic environments, encompassing oceans, coral reefs, and deep-sea habitats. Each image is enriched with human-verified annotations including 15,281 object referring expressions that precisely describe marine organisms and underwater structures, and 124,983 question-answer pairs covering diverse reasoning capabilities from object recognition to ecological relationship understanding. The dataset captures rich variations in visibility, lighting conditions, and water turbidity, providing a realistic testbed for model evaluation. Based on UWBench, we establish three comprehensive benchmarks: detailed image captioning for generating ecologically informed scene descriptions, visual grounding for precise localization of marine organisms, and visual question answering for multimodal reasoning about underwater environments. Extensive experiments on state-of-the-art VLMs demonstrate that underwater understanding remains challenging, with substantial room for improvement. Our benchmark provides essential resources for advancing vision-language research in underwater contexts and supporting applications in marine science, ecological monitoring, and autonomous underwater exploration. Our code and benchmark will be available.
comment: We have released V1, which only reports the test results. Our work is still ongoing, and the next version will be coming soon
☆ Hyperbolic Space Learning Method Leveraging Temporal Motion Priors for Human Mesh Recovery ICME2025
3D human meshes show a natural hierarchical structure (like torso-limbs-fingers). But existing video-based 3D human mesh recovery methods usually learn mesh features in Euclidean space. It's hard to catch this hierarchical structure accurately. So wrong human meshes are reconstructed. To solve this problem, we propose a hyperbolic space learning method leveraging temporal motion prior for recovering 3D human meshes from videos. First, we design a temporal motion prior extraction module. This module extracts the temporal motion features from the input 3D pose sequences and image feature sequences respectively. Then it combines them into the temporal motion prior. In this way, it can strengthen the ability to express features in the temporal motion dimension. Since data representation in non-Euclidean space has been proved to effectively capture hierarchical relationships in real-world datasets (especially in hyperbolic space), we further design a hyperbolic space optimization learning strategy. This strategy uses the temporal motion prior information to assist learning, and uses 3D pose and pose motion information respectively in the hyperbolic space to optimize and learn the mesh features. Then, we combine the optimized results to get an accurate and smooth human mesh. Besides, to make the optimization learning process of human meshes in hyperbolic space stable and effective, we propose a hyperbolic mesh optimization loss. Extensive experimental results on large publicly available datasets indicate superiority in comparison with most state-of-the-art.
comment: Accepted by ICME2025
☆ OpenInsGaussian: Open-vocabulary Instance Gaussian Segmentation with Context-aware Cross-view Fusion
Understanding 3D scenes is pivotal for autonomous driving, robotics, and augmented reality. Recent semantic Gaussian Splatting approaches leverage large-scale 2D vision models to project 2D semantic features onto 3D scenes. However, they suffer from two major limitations: (1) insufficient contextual cues for individual masks during preprocessing and (2) inconsistencies and missing details when fusing multi-view features from these 2D models. In this paper, we introduce \textbf{OpenInsGaussian}, an \textbf{Open}-vocabulary \textbf{Ins}tance \textbf{Gaussian} segmentation framework with Context-aware Cross-view Fusion. Our method consists of two modules: Context-Aware Feature Extraction, which augments each mask with rich semantic context, and Attention-Driven Feature Aggregation, which selectively fuses multi-view features to mitigate alignment errors and incompleteness. Through extensive experiments on benchmark datasets, OpenInsGaussian achieves state-of-the-art results in open-vocabulary 3D Gaussian segmentation, outperforming existing baselines by a large margin. These findings underscore the robustness and generality of our proposed approach, marking a significant step forward in 3D scene understanding and its practical deployment across diverse real-world scenarios.
☆ BlendCLIP: Bridging Synthetic and Real Domains for Zero-Shot 3D Object Classification with Multimodal Pretraining
Zero-shot 3D object classification is crucial for real-world applications like autonomous driving, however it is often hindered by a significant domain gap between the synthetic data used for training and the sparse, noisy LiDAR scans encountered in the real-world. Current methods trained solely on synthetic data fail to generalize to outdoor scenes, while those trained only on real data lack the semantic diversity to recognize rare or unseen objects. We introduce BlendCLIP, a multimodal pretraining framework that bridges this synthetic-to-real gap by strategically combining the strengths of both domains. We first propose a pipeline to generate a large-scale dataset of object-level triplets -- consisting of a point cloud, image, and text description -- mined directly from real-world driving data and human annotated 3D boxes. Our core contribution is a curriculum-based data mixing strategy that first grounds the model in the semantically rich synthetic CAD data before progressively adapting it to the specific characteristics of real-world scans. Our experiments show that our approach is highly label-efficient: introducing as few as 1.5\% real-world samples per batch into training boosts zero-shot accuracy on the nuScenes benchmark by 27\%. Consequently, our final model achieves state-of-the-art performance on challenging outdoor datasets like nuScenes and TruckScenes, improving over the best prior method by 19.3\% on nuScenes, while maintaining strong generalization on diverse synthetic benchmarks. Our findings demonstrate that effective domain adaptation, not full-scale real-world annotation, is the key to unlocking robust open-vocabulary 3D perception. Our code and dataset will be released upon acceptance on https://github.com/kesu1/BlendCLIP.
comment: Under Review
☆ DeepSeek-OCR: Contexts Optical Compression
We present DeepSeek-OCR as an initial investigation into the feasibility of compressing long contexts via optical 2D mapping. DeepSeek-OCR consists of two components: DeepEncoder and DeepSeek3B-MoE-A570M as the decoder. Specifically, DeepEncoder serves as the core engine, designed to maintain low activations under high-resolution input while achieving high compression ratios to ensure an optimal and manageable number of vision tokens. Experiments show that when the number of text tokens is within 10 times that of vision tokens (i.e., a compression ratio < 10x), the model can achieve decoding (OCR) precision of 97%. Even at a compression ratio of 20x, the OCR accuracy still remains at about 60%. This shows considerable promise for research areas such as historical long-context compression and memory forgetting mechanisms in LLMs. Beyond this, DeepSeek-OCR also demonstrates high practical value. On OmniDocBench, it surpasses GOT-OCR2.0 (256 tokens/page) using only 100 vision tokens, and outperforms MinerU2.0 (6000+ tokens per page on average) while utilizing fewer than 800 vision tokens. In production, DeepSeek-OCR can generate training data for LLMs/VLMs at a scale of 200k+ pages per day (a single A100-40G). Codes and model weights are publicly accessible at http://github.com/deepseek-ai/DeepSeek-OCR.
☆ Beyond Frequency: Scoring-Driven Debiasing for Object Detection via Blueprint-Prompted Image Synthesis
This paper presents a generation-based debiasing framework for object detection. Prior debiasing methods are often limited by the representation diversity of samples, while naive generative augmentation often preserves the biases it aims to solve. Moreover, our analysis reveals that simply generating more data for rare classes is suboptimal due to two core issues: i) instance frequency is an incomplete proxy for the true data needs of a model, and ii) current layout-to-image synthesis lacks the fidelity and control to generate high-quality, complex scenes. To overcome this, we introduce the representation score (RS) to diagnose representational gaps beyond mere frequency, guiding the creation of new, unbiased layouts. To ensure high-quality synthesis, we replace ambiguous text prompts with a precise visual blueprint and employ a generative alignment strategy, which fosters communication between the detector and generator. Our method significantly narrows the performance gap for underrepresented object groups, \eg, improving large/rare instances by 4.4/3.6 mAP over the baseline, and surpassing prior L2I synthesis models by 15.9 mAP for layout accuracy in generated images.
☆ DualHash: A Stochastic Primal-Dual Algorithm with Theoretical Guarantee for Deep Hashing
Deep hashing converts high-dimensional feature vectors into compact binary codes, enabling efficient large-scale retrieval. A fundamental challenge in deep hashing stems from the discrete nature of quantization in generating the codes. W-type regularizations, such as $||z|-1|$, have been proven effective as they encourage variables toward binary values. However, existing methods often directly optimize these regularizations without convergence guarantees. While proximal gradient methods offer a promising solution, the coupling between W-type regularizers and neural network outputs results in composite forms that generally lack closed-form proximal solutions. In this paper, we present a stochastic primal-dual hashing algorithm, referred to as DualHash, that provides rigorous complexity bounds. Using Fenchel duality, we partially transform the nonconvex W-type regularization optimization into the dual space, which results in a proximal operator that admits closed-form solutions. We derive two algorithm instances: a momentum-accelerated version with $\mathcal{O}(\varepsilon^{-4})$ complexity and an improved $\mathcal{O}(\varepsilon^{-3})$ version using variance reduction. Experiments on three image retrieval databases demonstrate the superior performance of DualHash.
☆ VLSU: Mapping the Limits of Joint Multimodal Understanding for AI Safety
Safety evaluation of multimodal foundation models often treats vision and language inputs separately, missing risks from joint interpretation where benign content becomes harmful in combination. Existing approaches also fail to distinguish clearly unsafe content from borderline cases, leading to problematic over-blocking or under-refusal of genuinely harmful content. We present Vision Language Safety Understanding (VLSU), a comprehensive framework to systematically evaluate multimodal safety through fine-grained severity classification and combinatorial analysis across 17 distinct safety patterns. Using a multi-stage pipeline with real-world images and human annotation, we construct a large-scale benchmark of 8,187 samples spanning 15 harm categories. Our evaluation of eleven state-of-the-art models reveals systematic joint understanding failures: while models achieve 90%-plus accuracy on clear unimodal safety signals, performance degrades substantially to 20-55% when joint image-text reasoning is required to determine the safety label. Most critically, 34% of errors in joint image-text safety classification occur despite correct classification of the individual modalities, further demonstrating absent compositional reasoning capabilities. Additionally, we find that models struggle to balance refusing unsafe content while still responding to borderline cases that deserve engagement. For example, we find that instruction framing can reduce the over-blocking rate on borderline content from 62.4% to 10.4% in Gemini-1.5, but only at the cost of under-refusing on unsafe content with refusal rate dropping from 90.8% to 53.9%. Overall, our framework exposes weaknesses in joint image-text understanding and alignment gaps in current models, and provides a critical test bed to enable the next milestones in research on robust vision-language safety.
comment: 10 pages, 5 figures, 4 tables. Under review
☆ EMA-SAM: Exponential Moving-average for SAM-based PTMC Segmentation
Papillary thyroid microcarcinoma (PTMC) is increasingly managed with radio-frequency ablation (RFA), yet accurate lesion segmentation in ultrasound videos remains difficult due to low contrast, probe-induced motion, and heat-related artifacts. The recent Segment Anything Model 2 (SAM-2) generalizes well to static images, but its frame-independent design yields unstable predictions and temporal drift in interventional ultrasound. We introduce \textbf{EMA-SAM}, a lightweight extension of SAM-2 that incorporates a confidence-weighted exponential moving average pointer into the memory bank, providing a stable latent prototype of the tumour across frames. This design preserves temporal coherence through probe pressure and bubble occlusion while rapidly adapting once clear evidence reappears. On our curated PTMC-RFA dataset (124 minutes, 13 patients), EMA-SAM improves \emph{maxDice} from 0.82 (SAM-2) to 0.86 and \emph{maxIoU} from 0.72 to 0.76, while reducing false positives by 29\%. On external benchmarks, including VTUS and colonoscopy video polyp datasets, EMA-SAM achieves consistent gains of 2--5 Dice points over SAM-2. Importantly, the EMA pointer adds \textless0.1\% FLOPs, preserving real-time throughput of $\sim$30\,FPS on a single A100 GPU. These results establish EMA-SAM as a robust and efficient framework for stable tumour tracking, bridging the gap between foundation models and the stringent demands of interventional ultrasound. Codes are available here \hyperref[code {https://github.com/mdialameh/EMA-SAM}.
☆ FST.ai 2.0: An Explainable AI Ecosystem for Fair, Fast, and Inclusive Decision-Making in Olympic and Paralympic Taekwondo
Fair, transparent, and explainable decision-making remains a critical challenge in Olympic and Paralympic combat sports. This paper presents \emph{FST.ai 2.0}, an explainable AI ecosystem designed to support referees, coaches, and athletes in real time during Taekwondo competitions and training. The system integrates {pose-based action recognition} using graph convolutional networks (GCNs), {epistemic uncertainty modeling} through credal sets, and {explainability overlays} for visual decision support. A set of {interactive dashboards} enables human--AI collaboration in referee evaluation, athlete performance analysis, and Para-Taekwondo classification. Beyond automated scoring, FST.ai~2.0 incorporates modules for referee training, fairness monitoring, and policy-level analytics within the World Taekwondo ecosystem. Experimental validation on competition data demonstrates an {85\% reduction in decision review time} and {93\% referee trust} in AI-assisted decisions. The framework thus establishes a transparent and extensible pipeline for trustworthy, data-driven officiating and athlete assessment. By bridging real-time perception, explainable inference, and governance-aware design, FST.ai~2.0 represents a step toward equitable, accountable, and human-aligned AI in sports.
comment: 23 pages, 12 figures
☆ A Generalizable Light Transport 3D Embedding for Global Illumination
Global illumination (GI) is essential for realistic rendering but remains computationally expensive due to the complexity of simulating indirect light transport. Recent neural methods have mainly relied on per-scene optimization, sometimes extended to handle changes in camera or geometry. Efforts toward cross-scene generalization have largely stayed in 2D screen space, such as neural denoising or G-buffer based GI prediction, which often suffer from view inconsistency and limited spatial understanding. We propose a generalizable 3D light transport embedding that approximates global illumination directly from 3D scene configurations, without using rasterized or path-traced cues. Each scene is represented as a point cloud with geometric and material features. A scalable transformer models global point-to-point interactions to encode these features into neural primitives. At render time, each query point retrieves nearby primitives via nearest-neighbor search and aggregates their latent features through cross-attention to predict the desired rendering quantity. We demonstrate results on diffuse global illumination prediction across diverse indoor scenes with varying layouts, geometry, and materials. The embedding trained for irradiance estimation can be quickly adapted to new rendering tasks with limited fine-tuning. We also present preliminary results for spatial-directional radiance field estimation for glossy materials and show how the normalized field can accelerate unbiased path guiding. This approach highlights a path toward integrating learned priors into rendering pipelines without explicit ray-traced illumination cues.
☆ RadDiagSeg-M: A Vision Language Model for Joint Diagnosis and Multi-Target Segmentation in Radiology
Most current medical vision language models struggle to jointly generate diagnostic text and pixel-level segmentation masks in response to complex visual questions. This represents a major limitation towards clinical application, as assistive systems that fail to provide both modalities simultaneously offer limited value to medical practitioners. To alleviate this limitation, we first introduce RadDiagSeg-D, a dataset combining abnormality detection, diagnosis, and multi-target segmentation into a unified and hierarchical task. RadDiagSeg-D covers multiple imaging modalities and is precisely designed to support the development of models that produce descriptive text and corresponding segmentation masks in tandem. Subsequently, we leverage the dataset to propose a novel vision-language model, RadDiagSeg-M, capable of joint abnormality detection, diagnosis, and flexible segmentation. RadDiagSeg-M provides highly informative and clinically useful outputs, effectively addressing the need to enrich contextual information for assistive diagnosis. Finally, we benchmark RadDiagSeg-M and showcase its strong performance across all components involved in the task of multi-target text-and-mask generation, establishing a robust and competitive baseline.
☆ VelocityNet: Real-Time Crowd Anomaly Detection via Person-Specific Velocity Analysis
Detecting anomalies in crowded scenes is challenging due to severe inter-person occlusions and highly dynamic, context-dependent motion patterns. Existing approaches often struggle to adapt to varying crowd densities and lack interpretable anomaly indicators. To address these limitations, we introduce VelocityNet, a dual-pipeline framework that combines head detection and dense optical flow to extract person-specific velocities. Hierarchical clustering categorizes these velocities into semantic motion classes (halt, slow, normal, and fast), and a percentile-based anomaly scoring system measures deviations from learned normal patterns. Experiments demonstrate the effectiveness of our framework in real-time detection of diverse anomalous motion patterns within densely crowded environments.
comment: 8 pages, 3 figures
☆ A Novel Approach to Breast Cancer Segmentation using U-Net Model with Attention Mechanisms and FedProx
Breast cancer is a leading cause of death among women worldwide, emphasizing the need for early detection and accurate diagnosis. As such Ultrasound Imaging, a reliable and cost-effective tool, is used for this purpose, however the sensitive nature of medical data makes it challenging to develop accurate and private artificial intelligence models. A solution is Federated Learning as it is a promising technique for distributed machine learning on sensitive medical data while preserving patient privacy. However, training on non-Independent and non-Identically Distributed (non-IID) local datasets can impact the accuracy and generalization of the trained model, which is crucial for accurate tumour boundary delineation in BC segmentation. This study aims to tackle this challenge by applying the Federated Proximal (FedProx) method to non-IID Ultrasonic Breast Cancer Imaging datasets. Moreover, we focus on enhancing tumour segmentation accuracy by incorporating a modified U-Net model with attention mechanisms. Our approach resulted in a global model with 96% accuracy, demonstrating the effectiveness of our method in enhancing tumour segmentation accuracy while preserving patient privacy. Our findings suggest that FedProx has the potential to be a promising approach for training precise machine learning models on non-IID local medical datasets.
☆ Advancing Brain Tumor Segmentation via Attention-based 3D U-Net Architecture and Digital Image Processing
In the realm of medical diagnostics, rapid advancements in Artificial Intelligence (AI) have significantly yielded remarkable improvements in brain tumor segmentation. Encoder-Decoder architectures, such as U-Net, have played a transformative role by effectively extracting meaningful representations in 3D brain tumor segmentation from Magnetic resonance imaging (MRI) scans. However, standard U-Net models encounter challenges in accurately delineating tumor regions, especially when dealing with irregular shapes and ambiguous boundaries. Additionally, training robust segmentation models on high-resolution MRI data, such as the BraTS datasets, necessitates high computational resources and often faces challenges associated with class imbalance. This study proposes the integration of the attention mechanism into the 3D U-Net model, enabling the model to capture intricate details and prioritize informative regions during the segmentation process. Additionally, a tumor detection algorithm based on digital image processing techniques is utilized to address the issue of imbalanced training data and mitigate bias. This study aims to enhance the performance of brain tumor segmentation, ultimately improving the reliability of diagnosis. The proposed model is thoroughly evaluated and assessed on the BraTS 2020 dataset using various performance metrics to accomplish this goal. The obtained results indicate that the model outperformed related studies, exhibiting dice of 0.975, specificity of 0.988, and sensitivity of 0.995, indicating the efficacy of the proposed model in improving brain tumor segmentation, offering valuable insights for reliable diagnosis in clinical settings.
☆ MetaCluster: Enabling Deep Compression of Kolmogorov-Arnold Network
Kolmogorov-Arnold Networks (KANs) replace scalar weights with per-edge vectors of basis coefficients, thereby boosting expressivity and accuracy but at the same time resulting in a multiplicative increase in parameters and memory. We propose MetaCluster, a framework that makes KANs highly compressible without sacrificing accuracy. Specifically, a lightweight meta-learner, trained jointly with the KAN, is used to map low-dimensional embedding to coefficient vectors, shaping them to lie on a low-dimensional manifold that is amenable to clustering. We then run K-means in coefficient space and replace per-edge vectors with shared centroids. Afterwards, the meta-learner can be discarded, and a brief fine-tuning of the centroid codebook recovers any residual accuracy loss. The resulting model stores only a small codebook and per-edge indices, exploiting the vector nature of KAN parameters to amortize storage across multiple coefficients. On MNIST, CIFAR-10, and CIFAR-100, across standard KANs and ConvKANs using multiple basis functions, MetaCluster achieves a reduction of up to 80$\times$ in parameter storage, with no loss in accuracy. Code will be released upon publication.
☆ UniHPR: Unified Human Pose Representation via Singular Value Contrastive Learning
In recent years, there has been a growing interest in developing effective alignment pipelines to generate unified representations from different modalities for multi-modal fusion and generation. As an important component of Human-Centric applications, Human Pose representations are critical in many downstream tasks, such as Human Pose Estimation, Action Recognition, Human-Computer Interaction, Object tracking, etc. Human Pose representations or embeddings can be extracted from images, 2D keypoints, 3D skeletons, mesh models, and lots of other modalities. Yet, there are limited instances where the correlation among all of those representations has been clearly researched using a contrastive paradigm. In this paper, we propose UniHPR, a unified Human Pose Representation learning pipeline, which aligns Human Pose embeddings from images, 2D and 3D human poses. To align more than two data representations at the same time, we propose a novel singular value-based contrastive learning loss, which better aligns different modalities and further boosts performance. To evaluate the effectiveness of the aligned representation, we choose 2D and 3D Human Pose Estimation (HPE) as our evaluation tasks. In our evaluation, with a simple 3D human pose decoder, UniHPR achieves remarkable performance metrics: MPJPE 49.9mm on the Human3.6M dataset and PA-MPJPE 51.6mm on the 3DPW dataset with cross-domain evaluation. Meanwhile, we are able to achieve 2D and 3D pose retrieval with our unified human pose representations in Human3.6M dataset, where the retrieval error is 9.24mm in MPJPE.
☆ PoSh: Using Scene Graphs To Guide LLMs-as-a-Judge For Detailed Image Descriptions
While vision-language models (VLMs) have advanced into detailed image description, evaluation remains a challenge. Standard metrics (e.g. CIDEr, SPICE) were designed for short texts and tuned to recognize errors that are now uncommon, such as object misidentification. In contrast, long texts require sensitivity to attribute and relation attachments and scores that localize errors to particular text spans. In this work, we introduce PoSh, a metric for detailed image description that uses scene graphs as structured rubrics to guide LLMs-as-a-Judge, producing aggregate scores grounded in fine-grained errors (e.g. mistakes in compositional understanding). PoSh is replicable, interpretable and a better proxy for human raters than existing metrics (including GPT4o-as-a-Judge). To validate PoSh, we introduce a challenging new dataset, DOCENT. This novel benchmark contains artwork, paired with expert-written references, and model-generated descriptions, augmented with granular and coarse judgments of their quality from art history students. Thus, DOCENT enables evaluating both detailed image description metrics and detailed image description itself in a challenging new domain. We show that PoSh achieves stronger correlations (+0.05 Spearman $\rho$) with the human judgments in DOCENT than the best open-weight alternatives, is robust to image type (using CapArena, an existing dataset of web imagery) and is a capable reward function, outperforming standard supervised fine-tuning. Then, using PoSh, we characterize the performance of open and closed models in describing the paintings, sketches and statues in DOCENT and find that foundation models struggle to achieve full, error-free coverage of images with rich scene dynamics, establishing a demanding new task to gauge VLM progress. Through both PoSh and DOCENT, we hope to enable advances in important areas such as assistive text generation.
comment: 24 pages, 9 figures. Metric/benchmark available at https://github.com/amith-ananthram/posh
☆ MoAlign: Motion-Centric Representation Alignment for Video Diffusion Models
Text-to-video diffusion models have enabled high-quality video synthesis, yet often fail to generate temporally coherent and physically plausible motion. A key reason is the models' insufficient understanding of complex motions that natural videos often entail. Recent works tackle this problem by aligning diffusion model features with those from pretrained video encoders. However, these encoders mix video appearance and dynamics into entangled features, limiting the benefit of such alignment. In this paper, we propose a motion-centric alignment framework that learns a disentangled motion subspace from a pretrained video encoder. This subspace is optimized to predict ground-truth optical flow, ensuring it captures true motion dynamics. We then align the latent features of a text-to-video diffusion model to this new subspace, enabling the generative model to internalize motion knowledge and generate more plausible videos. Our method improves the physical commonsense in a state-of-the-art video diffusion model, while preserving adherence to textual prompts, as evidenced by empirical evaluations on VideoPhy, VideoPhy2, VBench, and VBench-2.0, along with a user study.
☆ $Δ$t-Mamba3D: A Time-Aware Spatio-Temporal State-Space Model for Breast Cancer Risk Prediction
Longitudinal analysis of sequential radiological images is hampered by a fundamental data challenge: how to effectively model a sequence of high-resolution images captured at irregular time intervals. This data structure contains indispensable spatial and temporal cues that current methods fail to fully exploit. Models often compromise by either collapsing spatial information into vectors or applying spatio-temporal models that are computationally inefficient and incompatible with non-uniform time steps. We address this challenge with Time-Aware $\Delta$t-Mamba3D, a novel state-space architecture adapted for longitudinal medical imaging. Our model simultaneously encodes irregular inter-visit intervals and rich spatio-temporal context while remaining computationally efficient. Its core innovation is a continuous-time selective scanning mechanism that explicitly integrates the true time difference between exams into its state transitions. This is complemented by a multi-scale 3D neighborhood fusion module that robustly captures spatio-temporal relationships. In a comprehensive breast cancer risk prediction benchmark using sequential screening mammogram exams, our model shows superior performance, improving the validation c-index by 2-5 percentage points and achieving higher 1-5 year AUC scores compared to established variants of recurrent, transformer, and state-space models. Thanks to its linear complexity, the model can efficiently process long and complex patient screening histories of mammograms, forming a new framework for longitudinal image analysis.
☆ Robust Driving QA through Metadata-Grounded Context and Task-Specific Prompts
We present a two-phase vision-language QA system for autonomous driving that answers high-level perception, prediction, and planning questions. In Phase-1, a large multimodal LLM (Qwen2.5-VL-32B) is conditioned on six-camera inputs, a short temporal window of history, and a chain-of-thought prompt with few-shot exemplars. A self-consistency ensemble (multiple sampled reasoning chains) further improves answer reliability. In Phase-2, we augment the prompt with nuScenes scene metadata (object annotations, ego-vehicle state, etc.) and category-specific question instructions (separate prompts for perception, prediction, planning tasks). In experiments on a driving QA benchmark, our approach significantly outperforms the baseline Qwen2.5 models. For example, using 5 history frames and 10-shot prompting in Phase-1 yields 65.1% overall accuracy (vs.62.61% with zero-shot); applying self-consistency raises this to 66.85%. Phase-2 achieves 67.37% overall. Notably, the system maintains 96% accuracy under severe visual corruption. These results demonstrate that carefully engineered prompts and contextual grounding can greatly enhance high-level driving QA with pretrained vision-language models.
☆ $\nabla$-SDF: Learning Euclidean Signed Distance Functions Online with Gradient-Augmented Octree Interpolation and Neural Residual
Estimation of signed distance functions (SDFs) from point cloud data has been shown to benefit many robot autonomy capabilities, including localization, mapping, motion planning, and control. Methods that support online and large-scale SDF reconstruction tend to rely on discrete volumetric data structures, which affect the continuity and differentiability of the SDF estimates. Recently, using implicit features, neural network methods have demonstrated high-fidelity and differentiable SDF reconstruction but they tend to be less efficient, can experience catastrophic forgetting and memory limitations in large environments, and are often restricted to truncated SDFs. This work proposes $\nabla$-SDF, a hybrid method that combines an explicit prior obtained from gradient-augmented octree interpolation with an implicit neural residual. Our method achieves non-truncated (Euclidean) SDF reconstruction with computational and memory efficiency comparable to volumetric methods and differentiability and accuracy comparable to neural network methods. Extensive experiments demonstrate that \methodname{} outperforms the state of the art in terms of accuracy and efficiency, providing a scalable solution for downstream tasks in robotics and computer vision.
☆ Ninja Codes: Neurally Generated Fiducial Markers for Stealthy 6-DoF Tracking
In this paper we describe Ninja Codes, neurally-generated fiducial markers that can be made to naturally blend into various real-world environments. An encoder network converts arbitrary images into Ninja Codes by applying visually modest alterations; the resulting codes, printed and pasted onto surfaces, can provide stealthy 6-DoF location tracking for a wide range of applications including augmented reality, robotics, motion-based user interfaces, etc. Ninja Codes can be printed using off-the-shelf color printers on regular printing paper, and can be detected using any device equipped with a modern RGB camera and capable of running inference. Using an end-to-end process inspired by prior work on deep steganography, we jointly train a series of network modules that perform the creation and detection of Ninja Codes. Through experiments, we demonstrate Ninja Codes' ability to provide reliable location tracking under common indoor lighting conditions, while successfully concealing themselves within diverse environmental textures. We expect Ninja Codes to offer particular value in scenarios where the conspicuous appearances of conventional fiducial markers make them undesirable for aesthetic and other reasons.
comment: 11 pages, 12 figures
☆ Dimensionality Reduction for Remote Sensing Data Analysis: A Systematic Review of Methods and Applications
Earth observation involves collecting, analyzing, and processing an ever-growing mass of data. Automatically harvesting information is crucial for addressing significant societal, economic, and environmental challenges, ranging from environmental monitoring to urban planning and disaster management. However, the high dimensionality of these data poses challenges in terms of sparsity, inefficiency, and the curse of dimensionality, which limits the effectiveness of machine learning models. Dimensionality reduction (DR) techniques, specifically feature extraction, address these challenges by preserving essential data properties while reducing complexity and enhancing tasks such as data compression, cleaning, fusion, visualization, anomaly detection, and prediction. This review provides a handbook for leveraging DR across the RS data value chain and identifies opportunities for under-explored DR algorithms and their application in future research.
☆ Re-Activating Frozen Primitives for 3D Gaussian Splatting
3D Gaussian Splatting (3D-GS) achieves real-time photorealistic novel view synthesis, yet struggles with complex scenes due to over-reconstruction artifacts, manifesting as local blurring and needle-shape distortions. While recent approaches attribute these issues to insufficient splitting of large-scale Gaussians, we identify two fundamental limitations: gradient magnitude dilution during densification and the primitive frozen phenomenon, where essential Gaussian densification is inhibited in complex regions while suboptimally scaled Gaussians become trapped in local optima. To address these challenges, we introduce ReAct-GS, a method founded on the principle of re-activation. Our approach features: (1) an importance-aware densification criterion incorporating $\alpha$-blending weights from multiple viewpoints to re-activate stalled primitive growth in complex regions, and (2) a re-activation mechanism that revitalizes frozen primitives through adaptive parameter perturbations. Comprehensive experiments across diverse real-world datasets demonstrate that ReAct-GS effectively eliminates over-reconstruction artifacts and achieves state-of-the-art performance on standard novel view synthesis metrics while preserving intricate geometric details. Additionally, our re-activation mechanism yields consistent improvements when integrated with other 3D-GS variants such as Pixel-GS, demonstrating its broad applicability.
♻ ☆ Bee: A High-Quality Corpus and Full-Stack Suite to Unlock Advanced Fully Open MLLMs
Fully open multimodal large language models (MLLMs) currently lag behind proprietary counterparts, primarily due to a significant gap in data quality for supervised fine-tuning (SFT). Existing open-source datasets are often plagued by widespread noise and a critical deficit in complex reasoning data, such as Chain-of-Thought (CoT), which hinders the development of advanced model capabilities. Addressing these challenges, our work makes three primary contributions. First, we introduce Honey-Data-15M, a new SFT dataset comprising approximately 15 million QA pairs, processed through multiple cleaning techniques and enhanced with a novel dual-level (short and long) CoT enrichment strategy. Second, we introduce HoneyPipe, the data curation pipeline, and its underlying framework DataStudio, providing the community with a transparent and adaptable methodology for data curation that moves beyond static dataset releases. Finally, to validate our dataset and pipeline, we train Bee-8B, an 8B model on Honey-Data-15M. Experiments show that Bee-8B establishes a new state-of-the-art (SOTA) for fully open MLLMs, achieving performance that is competitive with, and in some cases surpasses, recent semi-open models such as InternVL3.5-8B. Our work delivers to the community a suite of foundational resources, including: the Honey-Data-15M corpus; the full-stack suite comprising HoneyPipe and DataStudio; training recipes; an evaluation harness; and the model weights. This effort demonstrates that a principled focus on data quality is a key pathway to developing fully open MLLMs that are highly competitive with their semi-open counterparts.
comment: homepage: https://open-bee.github.io/
♻ ☆ Fourier Transform Multiple Instance Learning for Whole Slide Image Classification
Whole Slide Image (WSI) classification relies on Multiple Instance Learning (MIL) with spatial patch features, yet existing methods struggle to capture global dependencies due to the immense size of WSIs and the local nature of patch embeddings. This limitation hinders the modeling of coarse structures essential for robust diagnostic prediction. We propose Fourier Transform Multiple Instance Learning (FFT-MIL), a framework that augments MIL with a frequency-domain branch to provide compact global context. Low-frequency crops are extracted from WSIs via the Fast Fourier Transform and processed through a modular FFT-Block composed of convolutional layers and Min-Max normalization to mitigate the high variance of frequency data. The learned global frequency feature is fused with spatial patch features through lightweight integration strategies, enabling compatibility with diverse MIL architectures. FFT-MIL was evaluated across six state-of-the-art MIL methods on three public datasets (BRACS, LUAD, and IMP). Integration of the FFT-Block improved macro F1 scores by an average of 3.51% and AUC by 1.51%, demonstrating consistent gains across architectures and datasets. These results establish frequency-domain learning as an effective and efficient mechanism for capturing global dependencies in WSI classification, complementing spatial features and advancing the scalability and accuracy of MIL-based computational pathology.
♻ ☆ UniVideo: Unified Understanding, Generation, and Editing for Videos
Unified multimodal models have shown promising results in multimodal content generation and editing but remain largely limited to the image domain. In this work, we present UniVideo, a versatile framework that extends unified modeling to the video domain. UniVideo adopts a dual-stream design, combining a Multimodal Large Language Model (MLLM) for instruction understanding with a Multimodal DiT (MMDiT) for video generation. This design enables accurate interpretation of complex multimodal instructions while preserving visual consistency. Built on this architecture, UniVideo unifies diverse video generation and editing tasks under a single multimodal instruction paradigm and is jointly trained across them. Extensive experiments demonstrate that UniVideo matches or surpasses state-of-the-art task-specific baselines in text/image-to-video generation, in-context video generation and in-context video editing. Notably, the unified design of UniVideo enables two forms of generalization. First, UniVideo supports task composition, such as combining editing with style transfer, by integrating multiple capabilities within a single instruction. Second, even without explicit training on free-form video editing, UniVideo transfers its editing capability from large-scale image editing data to this setting, handling unseen instructions such as green-screening characters or changing materials within a video. Beyond these core capabilities, UniVideo also supports visual-prompt-based video generation, where the MLLM interprets visual prompts and guides the MMDiT during synthesis. To foster future research, we will release our model and code.
comment: Project Website https://congwei1230.github.io/UniVideo/
♻ ☆ Glyph: Scaling Context Windows via Visual-Text Compression
Large language models (LLMs) increasingly rely on long-context modeling for tasks such as document understanding, code analysis, and multi-step reasoning. However, scaling context windows to the million-token level brings prohibitive computational and memory costs, limiting the practicality of long-context LLMs. In this work, we take a different perspective-visual context scaling-to tackle this challenge. Instead of extending token-based sequences, we propose Glyph, a framework that renders long texts into images and processes them with vision-language models (VLMs). This approach substantially compresses textual input while preserving semantic information, and we further design an LLM-driven genetic search to identify optimal visual rendering configurations for balancing accuracy and compression. Through extensive experiments, we demonstrate that our method achieves 3-4x token compression while maintaining accuracy comparable to leading LLMs such as Qwen3-8B on various long-context benchmarks. This compression also leads to around 4x faster prefilling and decoding, and approximately 2x faster SFT training. Furthermore, under extreme compression, a 128K-context VLM could scale to handle 1M-token-level text tasks. In addition, the rendered text data benefits real-world multimodal tasks, such as document understanding. Our code and model are released at https://github.com/thu-coai/Glyph.
♻ ☆ H3DE-Net: Efficient and Accurate 3D Landmark Detection in Medical Imaging
3D landmark detection is a critical task in medical image analysis, and accurately detecting anatomical landmarks is essential for subsequent medical imaging tasks. However, mainstream deep learning methods in this field struggle to simultaneously capture fine-grained local features and model global spatial relationships, while maintaining a balance between accuracy and computational efficiency. Local feature extraction requires capturing fine-grained anatomical details, while global modeling requires understanding the spatial relationships within complex anatomical structures. The high-dimensional nature of 3D volume further exacerbates these challenges, as landmarks are sparsely distributed, leading to significant computational costs. Therefore, achieving efficient and precise 3D landmark detection remains a pressing challenge in medical image analysis. In this work, We propose a \textbf{H}ybrid \textbf{3}D \textbf{DE}tection \textbf{Net}(H3DE-Net), a novel framework that combines CNNs for local feature extraction with a lightweight attention mechanism designed to efficiently capture global dependencies in 3D volumetric data. This mechanism employs a hierarchical routing strategy to reduce computational cost while maintaining global context modeling. To our knowledge, H3DE-Net is the first 3D landmark detection model that integrates such a lightweight attention mechanism with CNNs. Additionally, integrating multi-scale feature fusion further enhances detection accuracy and robustness. Experimental results on a public CT dataset demonstrate that H3DE-Net achieves state-of-the-art(SOTA) performance, significantly improving accuracy and robustness, particularly in scenarios with missing landmarks or complex anatomical variations. We aready open-source our project, including code, data and model weights.
♻ ☆ Context-Aware Pseudo-Label Scoring for Zero-Shot Video Summarization
With video exploding across social media, surveillance, and education, compressing long footage into concise yet faithful surrogates is crucial. Supervised methods learn frame/shot importance from dense labels and excel in-domain, but are costly and brittle across datasets; unsupervised methods avoid labels but often miss high-level semantics and narrative cues. Recent zero-shot pipelines use LLMs for training-free summarization, yet remain sensitive to handcrafted prompts and dataset-specific normalization.We propose a rubric-guided, pseudo-labeled prompting framework. A small subset of human annotations is converted into high-confidence pseudo labels and aggregated into structured, dataset-adaptive scoring rubrics for interpretable scene evaluation. At inference, boundary scenes (first/last) are scored from their own descriptions, while intermediate scenes include brief summaries of adjacent segments to assess progression and redundancy, enabling the LLM to balance local salience with global coherence without parameter tuning.Across three benchmarks, our method is consistently effective. On SumMe and TVSum it achieves F1 of 57.58 and 63.05, surpassing a zero-shot baseline (56.73, 62.21) by +0.85 and +0.84 and approaching supervised performance. On the query-focused QFVS benchmark it attains 53.79 F1, beating 53.42 by +0.37 and remaining stable across validation videos. These results show that rubric-guided pseudo labeling, coupled with contextual prompting, stabilizes LLM-based scoring and yields a general, interpretable zero-shot paradigm for both generic and query-focused video summarization.
♻ ☆ Janus-Pro-R1: Advancing Collaborative Visual Comprehension and Generation via Reinforcement Learning NeurIPS 2025
Recent endeavors in Multimodal Large Language Models (MLLMs) aim to unify visual comprehension and generation. However, these two capabilities remain largely independent, as if they are two separate functions encapsulated within the same model. Consequently, visual comprehension does not enhance visual generation, and the reasoning mechanisms of LLMs have not been fully integrated to revolutionize image generation. In this paper, we propose to enable the collaborative co-evolution of visual comprehension and generation, advancing image generation into an iterative introspective process. We introduce a two-stage training approach: supervised fine-tuning teaches the MLLM with the foundational ability to generate genuine CoT for visual generation, while reinforcement learning activates its full potential via an exploration-exploitation trade-off. Ultimately, we unlock the Aha moment in visual generation, advancing MLLMs from text-to-image tasks to unified image generation. Extensive experiments demonstrate that our model not only excels in text-to-image generation and image editing, but also functions as a superior image semantic evaluator with enhanced visual comprehension capabilities. Project Page: https://janus-pro-r1.github.io.
comment: Accepted by NeurIPS 2025
♻ ☆ VideoVerse: How Far is Your T2V Generator from a World Model?
The recent rapid advancement of Text-to-Video (T2V) generation technologies, which are critical to build ``world models'', makes the existing benchmarks increasingly insufficient to evaluate state-of-the-art T2V models. First, current evaluation dimensions, such as per-frame aesthetic quality and temporal consistency, are no longer able to differentiate state-of-the-art T2V models. Second, event-level temporal causality, which not only distinguishes video from other modalities but also constitutes a crucial component of world models, is severely underexplored in existing benchmarks. Third, existing benchmarks lack a systematic assessment of world knowledge, which are essential capabilities for building world models. To address these issues, we introduce VideoVerse, a comprehensive benchmark that focuses on evaluating whether a T2V model could understand complex temporal causality and world knowledge in the real world. We collect representative videos across diverse domains (e.g., natural landscapes, sports, indoor scenes, science fiction, chemical and physical experiments) and extract their event-level descriptions with inherent temporal causality, which are then rewritten into text-to-video prompts by independent annotators. For each prompt, we design a suite of binary evaluation questions from the perspective of dynamic and static properties, with a total of ten carefully defined evaluation dimensions. In total, our VideoVerse comprises 300 carefully curated prompts, involving 815 events and 793 binary evaluation questions. Consequently, a human preference aligned QA-based evaluation pipeline is developed by using modern vision-language models. Finally, we perform a systematic evaluation of state-of-the-art open-source and closed-source T2V models on VideoVerse, providing in-depth analysis on how far the current T2V generators are from world models.
comment: 24 Pages, 8 Figures, 11 Tables
♻ ☆ Interpretable Decision-Making for End-to-End Autonomous Driving ICCV 2025
Trustworthy AI is mandatory for the broad deployment of autonomous vehicles. Although end-to-end approaches derive control commands directly from raw data, interpreting these decisions remains challenging, especially in complex urban scenarios. This is mainly attributed to very deep neural networks with non-linear decision boundaries, making it challenging to grasp the logic behind AI-driven decisions. This paper presents a method to enhance interpretability while optimizing control commands in autonomous driving. To address this, we propose loss functions that promote the interpretability of our model by generating sparse and localized feature maps. The feature activations allow us to explain which image regions contribute to the predicted control command. We conduct comprehensive ablation studies on the feature extraction step and validate our method on the CARLA benchmarks. We also demonstrate that our approach improves interpretability, which correlates with reducing infractions, yielding a safer, high-performance driving model. Notably, our monocular, non-ensemble model surpasses the top-performing approaches from the CARLA Leaderboard by achieving lower infraction scores and the highest route completion rate, all while ensuring interpretability.
comment: Accepted to the ICCV 2025 2nd Workshop on the Challenge Of Out-of-Label Hazards in Autonomous Driving (2COOOL)
♻ ☆ Learning to See and Act: Task-Aware View Planning for Robotic Manipulation
Recent vision-language-action (VLA) models for multi-task robotic manipulation commonly rely on static viewpoints and shared visual encoders, which limit 3D perception and cause task interference, hindering robustness and generalization. In this work, we propose Task-Aware View Planning (TAVP), a framework designed to overcome these challenges by integrating active view planning with task-specific representation learning. TAVP employs an efficient exploration policy, accelerated by a novel pseudo-environment, to actively acquire informative views. Furthermore, we introduce a Mixture-of-Experts (MoE) visual encoder to disentangle features across different tasks, boosting both representation fidelity and task generalization. By learning to see the world in a task-aware way, TAVP generates more complete and discriminative visual representations, demonstrating significantly enhanced action prediction across a wide array of manipulation challenges. Extensive experiments on RLBench tasks show that our proposed TAVP model achieves superior performance over state-of-the-art fixed-view approaches. Visual results and code are provided at: https://hcplab-sysu.github.io/TAVP.
comment: 14 pages, 8 figures, project page: https://hcplab-sysu.github.io/TAVP
♻ ☆ SimCortex: Collision-free Simultaneous Cortical Surfaces Reconstruction
Accurate cortical surface reconstruction from magnetic resonance imaging (MRI) data is crucial for reliable neuroanatomical analyses. Current methods have to contend with complex cortical geometries, strict topological requirements, and often produce surfaces with overlaps, self-intersections, and topological defects. To overcome these shortcomings, we introduce SimCortex, a deep learning framework that simultaneously reconstructs all brain surfaces (left/right white-matter and pial) from T1-weighted(T1w) MRI volumes while preserving topological properties. Our method first segments the T1w image into a nine-class tissue label map. From these segmentations, we generate subject-specific, collision-free initial surface meshes. These surfaces serve as precise initializations for subsequent multiscale diffeomorphic deformations. Employing stationary velocity fields (SVFs) integrated via scaling-and-squaring, our approach ensures smooth, topology-preserving transformations with significantly reduced surface collisions and self-intersections. Evaluations on standard datasets demonstrate that SimCortex dramatically reduces surface overlaps and self-intersections, surpassing current methods while maintaining state-of-the-art geometric accuracy.
comment: Metadata update: added journal reference and DOI linking to the published chapter (Springer)
♻ ☆ Increasing the Utility of Synthetic Images through Chamfer Guidance NeurIPS 2025
Conditional image generative models hold considerable promise to produce infinite amounts of synthetic training data. Yet, recent progress in generation quality has come at the expense of generation diversity, limiting the utility of these models as a source of synthetic training data. Although guidance-based approaches have been introduced to improve the utility of generated data by focusing on quality or diversity, the (implicit or explicit) utility functions oftentimes disregard the potential distribution shift between synthetic and real data. In this work, we introduce Chamfer Guidance: a training-free guidance approach which leverages a handful of real exemplar images to characterize the quality and diversity of synthetic data. We show that by leveraging the proposed Chamfer Guidance, we can boost the diversity of the generations w.r.t. a dataset of real images while maintaining or improving the generation quality on ImageNet-1k and standard geo-diversity benchmarks. Our approach achieves state-of-the-art few-shot performance with as little as 2 exemplar real images, obtaining 96.4% in terms of precision, and 86.4% in terms of distributional coverage, which increase to 97.5% and 92.7%, respectively, when using 32 real images. We showcase the benefits of the Chamfer Guidance generation by training downstream image classifiers on synthetic data, achieving accuracy boost of up to 15% for in-distribution over the baselines, and up to 16% in out-of-distribution. Furthermore, our approach does not require using the unconditional model, and thus obtains a 31% reduction in FLOPs w.r.t. classifier-free-guidance-based approaches at sampling time.
comment: Accepted to NeurIPS 2025
♻ ☆ RODS: Robust Optimization Inspired Diffusion Sampling for Detecting and Reducing Hallucination in Generative Models
Diffusion models have achieved state-of-the-art performance in generative modeling, yet their sampling procedures remain vulnerable to hallucinations-often stemming from inaccuracies in score approximation. In this work, we reinterpret diffusion sampling through the lens of optimization and introduce RODS (Robust Optimization-inspired Diffusion Sampler), a novel method that detects and corrects high-risk sampling steps using geometric cues from the loss landscape. RODS enforces smoother sampling trajectories and adaptively adjusts perturbations, reducing hallucinations without retraining and at minimal additional inference cost. Experiments on AFHQv2, FFHQ, and 11k-hands demonstrate that RODS maintains comparable image quality and preserves generation diversity. More importantly, it improves both sampling fidelity and robustness, detecting over 70% of hallucinated samples and correcting more than 25%, all while avoiding the introduction of new artifacts. We release our code at https://github.com/Yiqi-Verna-Tian/RODS.
♻ ☆ Every Camera Effect, Every Time, All at Once: 4D Gaussian Ray Tracing for Physics-based Camera Effect Data Generation NeurIPS 2025
Common computer vision systems typically assume ideal pinhole cameras but fail when facing real-world camera effects such as fisheye distortion and rolling shutter, mainly due to the lack of learning from training data with camera effects. Existing data generation approaches suffer from either high costs, sim-to-real gaps or fail to accurately model camera effects. To address this bottleneck, we propose 4D Gaussian Ray Tracing (4D-GRT), a novel two-stage pipeline that combines 4D Gaussian Splatting with physically-based ray tracing for camera effect simulation. Given multi-view videos, 4D-GRT first reconstructs dynamic scenes, then applies ray tracing to generate videos with controllable, physically accurate camera effects. 4D-GRT achieves the fastest rendering speed while performing better or comparable rendering quality compared to existing baselines. Additionally, we construct eight synthetic dynamic scenes in indoor environments across four camera effects as a benchmark to evaluate generated videos with camera effects.
comment: Paper accepted to NeurIPS 2025 Workshop SpaVLE. Project page: https://shigon255.github.io/4DGRT-project-page/
♻ ☆ VIKI-R: Coordinating Embodied Multi-Agent Cooperation via Reinforcement Learning
Coordinating multiple embodied agents in dynamic environments remains a core challenge in artificial intelligence, requiring both perception-driven reasoning and scalable cooperation strategies. While recent works have leveraged large language models (LLMs) for multi-agent planning, a few have begun to explore vision-language models (VLMs) for visual reasoning. However, these VLM-based approaches remain limited in their support for diverse embodiment types. In this work, we introduce VIKI-Bench, the first hierarchical benchmark tailored for embodied multi-agent cooperation, featuring three structured levels: agent activation, task planning, and trajectory perception. VIKI-Bench includes diverse robot embodiments, multi-view visual observations, and structured supervision signals to evaluate reasoning grounded in visual inputs. To demonstrate the utility of VIKI-Bench, we propose VIKI-R, a two-stage framework that fine-tunes a pretrained vision-language model (VLM) using Chain-of-Thought annotated demonstrations, followed by reinforcement learning under multi-level reward signals. Our extensive experiments show that VIKI-R significantly outperforms baselines method across all task levels. Furthermore, we show that reinforcement learning enables the emergence of compositional cooperation patterns among heterogeneous agents. Together, VIKI-Bench and VIKI-R offer a unified testbed and method for advancing multi-agent, visual-driven cooperation in embodied AI systems.
comment: Project page: https://faceong.github.io/VIKI-R/
♻ ☆ Neural 3D Object Reconstruction with Small-Scale Unmanned Aerial Vehicles
Small Unmanned Aerial Vehicles (UAVs) exhibit immense potential for navigating indoor and hard-to-reach areas, yet their significant constraints in payload and autonomy have largely prevented their use for complex tasks like high-quality 3-Dimensional (3D) reconstruction. To overcome this challenge, we introduce a novel system architecture that enables fully autonomous, high-fidelity 3D scanning of static objects using UAVs weighing under 100 grams. Our core innovation lies in a dual-reconstruction pipeline that creates a real-time feedback loop between data capture and flight control. A near-real-time (near-RT) process uses Structure from Motion (SfM) to generate an instantaneous pointcloud of the object. The system analyzes the model quality on the fly and dynamically adapts the UAV's trajectory to intelligently capture new images of poorly covered areas. This ensures comprehensive data acquisition. For the final, detailed output, a non-real-time (non-RT) pipeline employs a Neural Radiance Fields (NeRF)-based Neural 3D Reconstruction (N3DR) approach, fusing SfM-derived camera poses with precise Ultra Wide-Band (UWB) location data to achieve superior accuracy. We implemented and validated this architecture using Crazyflie 2.1 UAVs. Our experiments, conducted in both single- and multi-UAV configurations, conclusively show that dynamic trajectory adaptation consistently improves reconstruction quality over static flight paths. This work demonstrates a scalable and autonomous solution that unlocks the potential of miniaturized UAVs for fine-grained 3D reconstruction in constrained environments, a capability previously limited to much larger platforms.
comment: 13 pages, 16 figures, 3 tables, 45 references
♻ ☆ Adapting Medical Vision Foundation Models for Volumetric Medical Image Segmentation via Active Learning and Selective Semi-supervised Fine-tuning
Medical Vision Foundation Models (Med-VFMs) have superior capabilities of interpreting medical images due to the knowledge learned from self-supervised pre-training with extensive unannotated images. To improve their performance on adaptive downstream evaluations, especially segmentation, a few samples from target domains are selected randomly for fine-tuning them. However, there lacks works to explore the way of adapting Med-VFMs to achieve the optimal performance on target domains efficiently. Thus, it is highly demanded to design an efficient way of fine-tuning Med-VFMs by selecting informative samples to maximize their adaptation performance on target domains. To achieve this, we propose an Active Source-Free Domain Adaptation (ASFDA) method to efficiently adapt Med-VFMs to target domains for volumetric medical image segmentation. This ASFDA employs a novel Active Learning (AL) method to select the most informative samples from target domains for fine-tuning Med-VFMs without the access to source pre-training samples, thus maximizing their performance with the minimal selection budget. In this AL method, we design an Active Test Time Sample Query strategy to select samples from the target domains via two query metrics, including Diversified Knowledge Divergence (DKD) and Anatomical Segmentation Difficulty (ASD). DKD is designed to measure the source-target knowledge gap and intra-domain diversity. It utilizes the knowledge of pre-training to guide the querying of source-dissimilar and semantic-diverse samples from the target domains. ASD is designed to evaluate the difficulty in segmentation of anatomical structures by measuring predictive entropy from foreground regions adaptively. Additionally, our ASFDA method employs a Selective Semi-supervised Fine-tuning to improve the performance and efficiency of fine-tuning by identifying samples with high reliability from unqueried ones.
comment: 17 pages, 5 figures, 8 tables
♻ ☆ Deep Learning in Palmprint Recognition-A Comprehensive Survey
Palmprint recognition has emerged as a prominent biometric technology, widely applied in diverse scenarios. Traditional handcrafted methods for palmprint recognition often fall short in representation capability, as they heavily depend on researchers' prior knowledge. Deep learning (DL) has been introduced to address this limitation, leveraging its remarkable successes across various domains. While existing surveys focus narrowly on specific tasks within palmprint recognition-often grounded in traditional methodologies-there remains a significant gap in comprehensive research exploring DL-based approaches across all facets of palmprint recognition. This paper bridges that gap by thoroughly reviewing recent advancements in DL-powered palmprint recognition. The paper systematically examines progress across key tasks, including region-of-interest segmentation, feature extraction, and security/privacy-oriented challenges. Beyond highlighting these advancements, the paper identifies current challenges and uncovers promising opportunities for future research. By consolidating state-of-the-art progress, this review serves as a valuable resource for researchers, enabling them to stay abreast of cutting-edge technologies and drive innovation in palmprint recognition.
comment: Palmprint recognition, biometrics, deep learning, feature extraction, recognition tasks
♻ ☆ CaMiT: A Time-Aware Car Model Dataset for Classification and Generation NeurIPS 2025
AI systems must adapt to evolving visual environments, especially in domains where object appearances change over time. We introduce Car Models in Time (CaMiT), a fine-grained dataset capturing the temporal evolution of car models, a representative class of technological artifacts. CaMiT includes 787K labeled samples of 190 car models (2007-2023) and 5.1M unlabeled samples (2005-2023), supporting both supervised and self-supervised learning. Static pretraining on in-domain data achieves competitive performance with large-scale generalist models while being more resource-efficient, yet accuracy declines when models are tested across years. To address this, we propose a time-incremental classification setting, a realistic continual learning scenario with emerging, evolving, and disappearing classes. We evaluate two strategies: time-incremental pretraining, which updates the backbone, and time-incremental classifier learning, which updates only the final layer, both improving temporal robustness. Finally, we explore time-aware image generation that leverages temporal metadata during training, yielding more realistic outputs. CaMiT offers a rich benchmark for studying temporal adaptation in fine-grained visual recognition and generation.
comment: To be published in NeurIPS 2025 Track on Datasets and Benchmarks
♻ ☆ UniPixel: Unified Object Referring and Segmentation for Pixel-Level Visual Reasoning NeurIPS 2025
Recent advances in Large Multi-modal Models (LMMs) have demonstrated their remarkable success as general-purpose multi-modal assistants, with particular focuses on holistic image- and video-language understanding. Conversely, less attention has been given to scaling fine-grained pixel-level understanding capabilities, where the models are expected to realize pixel-level alignment between visual signals and language semantics. Some previous studies have applied LMMs to related tasks such as region-level captioning and referring expression segmentation. However, these models are limited to performing either referring or segmentation tasks independently and fail to integrate these fine-grained perception capabilities into visual reasoning. To bridge this gap, we propose UniPixel, a large multi-modal model capable of flexibly comprehending visual prompt inputs and generating mask-grounded responses. Our model distinguishes itself by seamlessly integrating pixel-level perception with general visual understanding capabilities. Specifically, UniPixel processes visual prompts and generates relevant masks on demand, and performs subsequent reasoning conditioning on these intermediate pointers during inference, thereby enabling fine-grained pixel-level reasoning. The effectiveness of our approach has been verified on 10 benchmarks across a diverse set of tasks, including pixel-level referring/segmentation and object-centric understanding in images/videos. A novel PixelQA task that jointly requires referring, segmentation, and question answering is also designed to verify the flexibility of our method.
comment: NeurIPS 2025 Camera Ready. Project Page: https://polyu-chenlab.github.io/unipixel/
♻ ☆ Regression is all you need for medical image translation
While Generative Adversarial Nets (GANs) and Diffusion Models (DMs) have achieved impressive results in natural image synthesis, their core strengths - creativity and realism - can be detrimental in medical applications, where accuracy and fidelity are paramount. These models instead risk introducing hallucinations and replication of unwanted acquisition noise. Here, we propose YODA (You Only Denoise once - or Average), a 2.5D diffusion-based framework for medical image translation (MIT). Consistent with DM theory, we find that conventional diffusion sampling stochastically replicates noise. To mitigate this, we draw and average multiple samples, akin to physical signal averaging. As this effectively approximates the DM's expected value, we term this Expectation-Approximation (ExpA) sampling. We additionally propose regression sampling YODA, which retains the initial DM prediction and omits iterative refinement to produce noise-free images in a single step. Across five diverse multi-modal datasets - including multi-contrast brain MRI and pelvic MRI-CT - we demonstrate that regression sampling is not only substantially more efficient but also matches or exceeds image quality of full diffusion sampling even with ExpA. Our results reveal that iterative refinement solely enhances perceptual realism without benefiting information translation, which we confirm in relevant downstream tasks. YODA outperforms eight state-of-the-art DMs and GANs and challenges the presumed superiority of DMs and GANs over computationally cheap regression models for high-quality MIT. Furthermore, we show that YODA-translated images are interchangeable with, or even superior to, physical acquisitions for several medical applications.
♻ ☆ PRISMM-Bench: A Benchmark of Peer-Review Grounded Multimodal Inconsistencies
Large Multimodal Models (LMMs) are increasingly applied to scientific research, yet it remains unclear whether they can reliably understand and reason over the multimodal complexity of papers. A central challenge lies in detecting and resolving inconsistencies across text, figures, tables, and equations, issues that are often subtle, domain-specific, and ultimately undermine clarity, reproducibility, and trust. Existing benchmarks overlook this issue, either isolating single modalities or relying on synthetic errors that fail to capture real-world complexity. We introduce PRISMM-Bench (Peer-Review-sourced Inconsistency Set for Multimodal Models), the first benchmark grounded in real reviewer-flagged inconsistencies in scientific papers. Through a multi-stage pipeline of review mining, LLM-assisted filtering and human verification, we curate 262 inconsistencies from 242 papers. Based on this set, we design three tasks, namely inconsistency identification, remedy and pair matching, which assess a model's capacity to detect, correct, and reason over inconsistencies across different modalities. Furthermore, to address the notorious problem of choice-only shortcuts in multiple-choice evaluation, where models exploit answer patterns without truly understanding the question, we further introduce structured JSON-based answer representations that minimize linguistic biases by reducing reliance on superficial stylistic cues. We benchmark 21 leading LMMs, including large open-weight models (GLM-4.5V 106B, InternVL3 78B) and proprietary models (Gemini 2.5 Pro, GPT-5 with high reasoning). Results reveal strikingly low performance (26.1-54.2%), underscoring the challenge of multimodal scientific reasoning and motivating progress towards trustworthy scientific assistants.
♻ ☆ ITVTON: Virtual Try-On Diffusion Transformer Based on Integrated Image and Text
Virtual try-on, which aims to seamlessly fit garments onto person images, has recently seen significant progress with diffusion-based models. However, existing methods commonly resort to duplicated backbones or additional image encoders to extract garment features, which increases computational overhead and network complexity. In this paper, we propose ITVTON, an efficient framework that leverages the Diffusion Transformer (DiT) as its single generator to improve image fidelity. By concatenating garment and person images along the width dimension and incorporating textual descriptions from both, ITVTON effectively captures garment-person interactions while preserving realism. To further reduce computational cost, we restrict training to the attention parameters within a single Diffusion Transformer (Single-DiT) block. Extensive experiments demonstrate that ITVTON surpasses baseline methods both qualitatively and quantitatively, setting a new standard for virtual try-on. Moreover, experiments on 10,257 image pairs from IGPair confirm its robustness in real-world scenarios.
comment: Accepted by PRCV 2025
♻ ☆ Improving Diffusion-based Inverse Algorithms under Few-Step Constraint via Learnable Linear Extrapolation NeurIPS 2025
Diffusion-based inverse algorithms have shown remarkable performance across various inverse problems, yet their reliance on numerous denoising steps incurs high computational costs. While recent developments of fast diffusion ODE solvers offer effective acceleration for diffusion sampling without observations, their application in inverse problems remains limited due to the heterogeneous formulations of inverse algorithms and their prevalent use of approximations and heuristics, which often introduce significant errors that undermine the reliability of analytical solvers. In this work, we begin with an analysis of ODE solvers for inverse problems that reveals a linear combination structure of approximations for the inverse trajectory. Building on this insight, we propose a canonical form that unifies a broad class of diffusion-based inverse algorithms and facilitates the design of more generalizable solvers. Inspired by the linear subspace search strategy, we propose Learnable Linear Extrapolation (LLE), a lightweight approach that universally enhances the performance of any diffusion-based inverse algorithm conforming to our canonical form. LLE optimizes the combination coefficients to refine current predictions using previous estimates, alleviating the sensitivity of analytical solvers for inverse algorithms. Extensive experiments demonstrate consistent improvements of the proposed LLE method across multiple algorithms and tasks, indicating its potential for more efficient solutions and boosted performance of diffusion-based inverse algorithms with limited steps. Codes for reproducing our experiments are available at https://github.com/weigerzan/LLE_inverse_problem.
comment: Accepted by NeurIPS 2025
♻ ☆ Pose-free 3D Gaussian splatting via shape-ray estimation ICIP 2025
While generalizable 3D Gaussian splatting enables efficient, high-quality rendering of unseen scenes, it heavily depends on precise camera poses for accurate geometry. In real-world scenarios, obtaining accurate poses is challenging, leading to noisy pose estimates and geometric misalignments. To address this, we introduce SHARE, a pose-free, feed-forward Gaussian splatting framework that overcomes these ambiguities by joint shape and camera rays estimation. Instead of relying on explicit 3D transformations, SHARE builds a pose-aware canonical volume representation that seamlessly integrates multi-view information, reducing misalignment caused by inaccurate pose estimates. Additionally, anchor-aligned Gaussian prediction enhances scene reconstruction by refining local geometry around coarse anchors, allowing for more precise Gaussian placement. Extensive experiments on diverse real-world datasets show that our method achieves robust performance in pose-free generalizable Gaussian splatting. Code is avilable at https://github.com/youngju-na/SHARE
comment: ICIP 2025 (Best Student Paper Award) Code available at: https://github.com/youngju-na/SHARE
♻ ☆ Mask Image Watermarking NeurIPS
We present MaskWM, a simple, efficient, and flexible framework for image watermarking. MaskWM has two variants: (1) MaskWM-D, which supports global watermark embedding, watermark localization, and local watermark extraction for applications such as tamper detection; (2) MaskWM-ED, which focuses on local watermark embedding and extraction, offering enhanced robustness in small regions to support fine-grined image protection. MaskWM-D builds on the classical encoder-distortion layer-decoder training paradigm. In MaskWM-D, we introduce a simple masking mechanism during the decoding stage that enables both global and local watermark extraction. During training, the decoder is guided by various types of masks applied to watermarked images before extraction, helping it learn to localize watermarks and extract them from the corresponding local areas. MaskWM-ED extends this design by incorporating the mask into the encoding stage as well, guiding the encoder to embed the watermark in designated local regions, which improves robustness under regional attacks. Extensive experiments show that MaskWM achieves state-of-the-art performance in global and local watermark extraction, watermark localization, and multi-watermark embedding. It outperforms all existing baselines, including the recent leading model WAM for local watermarking, while preserving high visual quality of the watermarked images. In addition, MaskWM is highly efficient and adaptable. It requires only 20 hours of training on a single A6000 GPU, achieving 15x computational efficiency compared to WAM. By simply adjusting the distortion layer, MaskWM can be quickly fine-tuned to meet varying robustness requirements.
comment: Neural Information Processing Systems (NeurIPS) 2025
♻ ☆ PICABench: How Far Are We from Physically Realistic Image Editing?
Image editing has achieved remarkable progress recently. Modern editing models could already follow complex instructions to manipulate the original content. However, beyond completing the editing instructions, the accompanying physical effects are the key to the generation realism. For example, removing an object should also remove its shadow, reflections, and interactions with nearby objects. Unfortunately, existing models and benchmarks mainly focus on instruction completion but overlook these physical effects. So, at this moment, how far are we from physically realistic image editing? To answer this, we introduce PICABench, which systematically evaluates physical realism across eight sub-dimension (spanning optics, mechanics, and state transitions) for most of the common editing operations (add, remove, attribute change, etc.). We further propose the PICAEval, a reliable evaluation protocol that uses VLM-as-a-judge with per-case, region-level human annotations and questions. Beyond benchmarking, we also explore effective solutions by learning physics from videos and construct a training dataset PICA-100K. After evaluating most of the mainstream models, we observe that physical realism remains a challenging problem with large rooms to explore. We hope that our benchmark and proposed solutions can serve as a foundation for future work moving from naive content editing toward physically consistent realism.
♻ ☆ scSplit: Bringing Severity Cognizance to Image Decomposition in Fluorescence Microscopy NeurIPS 2025
Fluorescence microscopy, while being a key driver for progress in the life sciences, is also subject to technical limitations. To overcome them, computational multiplexing techniques have recently been proposed, which allow multiple cellular structures to be captured in a single image and later be unmixed. Existing image decomposition methods are trained on a set of superimposed input images and the respective unmixed target images. It is critical to note that the relative strength (mixing ratio) of the superimposed images for a given input is a priori unknown. However, existing methods are trained on a fixed intensity ratio of superimposed inputs, making them not cognizant of the range of relative intensities that can occur in fluorescence microscopy. In this work, we propose a novel method called scSplit that is cognizant of the severity of the above-mentioned mixing ratio. Our idea is based on InDI , a popular iterative method for image restoration, and an ideal starting point to embrace the unknown mixing ratio in any given input. We introduce (i) a suitably trained regressor network that predicts the degradation level (mixing ratio) of a given input image and (ii) a degradation-specific normalization module, enabling degradation-aware inference across all mixing ratios. We show that this method solves two relevant tasks in fluorescence microscopy, namely image splitting and bleedthrough removal, and empirically demonstrate the applicability of scSplit on 5 public datasets. The source code with pre-trained models is hosted at https://github.com/juglab/scSplit/.
comment: manuscript accepted at NeurIPS 2025
♻ ☆ A Multimodal Deep Learning Approach for White Matter Shape Prediction in Diffusion MRI Tractography
Shape measures have emerged as promising descriptors of white matter tractography, offering complementary insights into anatomical variability and associations with cognitive and clinical phenotypes. However, conventional methods for computing shape measures are computationally expensive and time-consuming for large-scale datasets due to reliance on voxel-based representations. We propose Tract2Shape, a novel multimodal deep learning framework that leverages geometric (point cloud) and scalar (tabular) features to predict ten white matter tractography shape measures. To enhance model efficiency, we utilize a dimensionality reduction algorithm for the model to predict five primary shape components. The model is trained and evaluated on two independently acquired datasets, the HCP-YA dataset, and the PPMI dataset. We evaluate the performance of Tract2Shape by training and testing it on the HCP-YA dataset and comparing the results with state-of-the-art models. To further assess its robustness and generalization ability, we also test Tract2Shape on the unseen PPMI dataset. Tract2Shape outperforms SOTA deep learning models across all ten shape measures, achieving the highest average Pearson's r and the lowest nMSE on the HCP-YA dataset. The ablation study shows that both multimodal input and PCA contribute to performance gains. On the unseen testing PPMI dataset, Tract2Shape maintains a high Pearson's r and low nMSE, demonstrating strong generalizability in cross-dataset evaluation. Tract2Shape enables fast, accurate, and generalizable prediction of white matter shape measures from tractography data, supporting scalable analysis across datasets. This framework lays a promising foundation for future large-scale white matter shape analysis.
comment: Paper accepted to Human Brain Mapping. 25 pages, 3 figures, 8 tables
♻ ☆ REPA-E: Unlocking VAE for End-to-End Tuning with Latent Diffusion Transformers
In this paper we tackle a fundamental question: "Can we train latent diffusion models together with the variational auto-encoder (VAE) tokenizer in an end-to-end manner?" Traditional deep-learning wisdom dictates that end-to-end training is often preferable when possible. However, for latent diffusion transformers, it is observed that end-to-end training both VAE and diffusion-model using standard diffusion-loss is ineffective, even causing a degradation in final performance. We show that while diffusion loss is ineffective, end-to-end training can be unlocked through the representation-alignment (REPA) loss -- allowing both VAE and diffusion model to be jointly tuned during the training process. Despite its simplicity, the proposed training recipe (REPA-E) shows remarkable performance; speeding up diffusion model training by over 17x and 45x over REPA and vanilla training recipes, respectively. Interestingly, we observe that end-to-end tuning with REPA-E also improves the VAE itself; leading to improved latent space structure and downstream generation performance. In terms of final performance, our approach sets a new state-of-the-art; achieving FID of 1.12 and 1.69 with and without classifier-free guidance on ImageNet 256 x 256. Code is available at https://end2end-diffusion.github.io.
♻ ☆ VLA-Cache: Efficient Vision-Language-Action Manipulation via Adaptive Token Caching NeurIPS 2025
Vision-Language-Action (VLA) models have demonstrated strong multi-modal reasoning capabilities, enabling direct action generation from visual perception and language instructions in an end-to-end manner. However, their substantial computational cost poses a challenge for real-time robotic control, where rapid decision-making is essential. This paper introduces VLA-Cache, a training-free inference acceleration method that reduces computational overhead by adaptively caching and reusing static visual tokens across frames. Exploiting the temporal continuity in robotic manipulation, VLA-Cache identifies minimally changed tokens between adjacent frames and reuses their cached key-value representations, thereby circumventing redundant computations. Additionally, to maintain action precision, VLA-Cache selectively re-computes task-relevant tokens that are environmentally sensitive, ensuring the fidelity of critical visual information. To further optimize efficiency, we introduce a layer adaptive token reusing strategy that dynamically adjusts the reuse ratio based on attention concentration across decoder layers, prioritizing critical tokens for recomputation. Extensive experiments on two simulation platforms (LIBERO and SIMPLER) and a real-world robotic system demonstrate that VLA-Cache achieves up to 1.7x speedup in CUDA latency and a 15% increase in control frequency, with negligible loss on task success rate. The code and videos can be found at our project page: https://vla-cache.github.io.
comment: Accepted to NeurIPS 2025
♻ ☆ Uniworld-V2: Reinforce Image Editing with Diffusion Negative-aware Finetuning and MLLM Implicit Feedback
Instruction-based image editing has achieved remarkable progress; however, models solely trained via supervised fine-tuning often overfit to annotated patterns, hindering their ability to explore and generalize beyond training distributions. To this end, we introduce Edit-R1, a novel post-training framework for instruction-based image editing based on policy optimization. Specifically, we utilize Diffusion Negative-aware Finetuning (DiffusionNFT), a likelihood-free policy optimization method consistent with the flow matching forward process, thereby enabling the use of higher-order samplers and more efficient training. Another key challenge here is the absence of a universal reward model, resulting from the diverse nature of editing instructions and tasks. To bridge this gap, we employ a Multimodal Large Language Model (MLLM) as a unified, training-free reward model, leveraging its output logits to provide fine-grained feedback. Furthermore, we carefully design a low-variance group filtering mechanism to reduce MLLM scoring noise and stabilize optimization. UniWorld-V2, trained with this framework, achieves \textbf{state-of-the-art} results on the ImgEdit and GEdit-Bench benchmarks, scoring 4.49 and 7.83, respectively. Crucially, our framework is model-agnostic, delivering substantial performance gains when applied to diverse base models like Qwen-Image-Edit and FLUX-Kontext, demonstrating its wide applicability. Code and models are publicly available at https://github.com/PKU-YuanGroup/UniWorld-V2.
♻ ☆ VisualQuality-R1: Reasoning-Induced Image Quality Assessment via Reinforcement Learning to Rank
DeepSeek-R1 has demonstrated remarkable effectiveness in incentivizing reasoning and generalization capabilities of large language models (LLMs) through reinforcement learning. Nevertheless, the potential of reasoning-induced computation has not been thoroughly explored in the context of image quality assessment (IQA), a task depending critically on visual reasoning. In this paper, we introduce VisualQuality-R1, a reasoning-induced no-reference IQA (NR-IQA) model, and we train it with reinforcement learning to rank, a learning algorithm tailored to the intrinsically relative nature of visual quality. Specifically, for a pair of images, we employ group relative policy optimization to generate multiple quality scores for each image. These estimates are used to compute comparative probabilities of one image having higher quality than the other under the Thurstone model. Rewards for each quality estimate are defined using continuous fidelity measures rather than discretized binary labels. Extensive experiments show that the proposed VisualQuality-R1 consistently outperforms discriminative deep learning-based NR-IQA models as well as a recent reasoning-induced quality regression method. Moreover, VisualQuality-R1 is capable of generating contextually rich, human-aligned quality descriptions, and supports multi-dataset training without requiring perceptual scale realignment. These features make VisualQuality-R1 especially well-suited for reliably measuring progress in a wide range of image processing tasks like super-resolution and image generation.
♻ ☆ MATRIX: Multimodal Agent Tuning for Robust Tool-Use Reasoning
Vision language models (VLMs) are increasingly deployed as controllers with access to external tools for complex reasoning and decision-making, yet their effectiveness remains limited by the scarcity of high-quality multimodal trajectories and the cost of manual annotation. We address this challenge with a vision-centric agent tuning framework that automatically synthesizes multimodal trajectories, generates step-wise preference pairs, and trains a VLM controller for robust tool-use reasoning. Our pipeline first constructs M-TRACE, a large-scale dataset of 28.5K multimodal tasks with 177K verified trajectories, enabling imitation-based trajectory tuning. Building on this, we develop MATRIX Agent, a controller finetuned on M-TRACE for step-wise tool reasoning. To achieve finer alignment, we further introduce Pref-X, a set of 11K automatically generated preference pairs, and optimize MATRIX on it via step-wise preference learning. Across three benchmarks, Agent-X, GTA, and GAIA, MATRIX consistently surpasses both open- and closed-source VLMs, demonstrating scalable and effective multimodal tool use. Our data and code is avaliable at https://github.com/mbzuai-oryx/MATRIX.
comment: We have come across a recent approach that has not been properly attributed at the time of submission and compared in a fair setting. Therefore, we would like to withdraw the paper to address these concerns
♻ ☆ LongInsightBench: A Comprehensive Benchmark for Evaluating Omni-Modal Models on Human-Centric Long-Video Understanding
We introduce \textbf{LongInsightBench}, the first benchmark designed to assess models' ability to understand long videos, with a focus on human language, viewpoints, actions, and other contextual elements, while integrating \textbf{visual, audio, and text} modalities. Our benchmark excels in three key areas: \textbf{a) Long-Duration, Information-Dense Videos:} We carefully select approximately 1,000 videos from open-source datasets FineVideo based on duration limit and the information density of both visual and audio modalities, focusing on content like lectures, interviews, and vlogs, which contain rich language elements. \textbf{b) Diverse and Challenging Task Scenarios:} We have designed six challenging task scenarios, including both Intra-Event and Inter-Event Tasks. \textbf{c) Rigorous and Comprehensive Quality Assurance Pipelines:} We have developed a three-step, semi-automated data quality assurance pipeline to ensure the difficulty and validity of the synthesized questions and answer options. Based on LongInsightBench, we designed a series of experiments. Experimental results shows that Omni-modal models(OLMs) still face challenge in tasks requiring precise temporal localization (T-Loc) and long-range causal inference (CE-Caus). Extended experiments reveal the information loss and processing bias in multi-modal fusion of OLMs. Our dataset and code is available at https://anonymous.4open.science/r/LongInsightBench-910F/.
comment: Submitted to ARR Rolling Review
♻ ☆ ReID5o: Achieving Omni Multi-modal Person Re-identification in a Single Model NeurIPS2025
In real-word scenarios, person re-identification (ReID) expects to identify a person-of-interest via the descriptive query, regardless of whether the query is a single modality or a combination of multiple modalities. However, existing methods and datasets remain constrained to limited modalities, failing to meet this requirement. Therefore, we investigate a new challenging problem called Omni Multi-modal Person Re-identification (OM-ReID), which aims to achieve effective retrieval with varying multi-modal queries. To address dataset scarcity, we construct ORBench, the first high-quality multi-modal dataset comprising 1,000 unique identities across five modalities: RGB, infrared, color pencil, sketch, and textual description. This dataset also has significant superiority in terms of diversity, such as the painting perspectives and textual information. It could serve as an ideal platform for follow-up investigations in OM-ReID. Moreover, we propose ReID5o, a novel multi-modal learning framework for person ReID. It enables synergistic fusion and cross-modal alignment of arbitrary modality combinations in a single model, with a unified encoding and multi-expert routing mechanism proposed. Extensive experiments verify the advancement and practicality of our ORBench. A wide range of possible models have been evaluated and compared on it, and our proposed ReID5o model gives the best performance. The dataset and code will be made publicly available at https://github.com/Zplusdragon/ReID5o_ORBench.
comment: NeurIPS2025 Accepted Paper
♻ ☆ Med-2E3: A 2D-Enhanced 3D Medical Multimodal Large Language Model
3D medical image analysis is essential for modern healthcare, yet traditional task-specific models are inadequate due to limited generalizability across diverse clinical scenarios. Multimodal large language models (MLLMs) offer a promising solution to these challenges. However, existing MLLMs have limitations in fully leveraging the rich, hierarchical information embedded in 3D medical images. Inspired by clinical practice, where radiologists focus on both 3D spatial structure and 2D planar content, we propose Med-2E3, a 3D medical MLLM that integrates a dual 3D-2D encoder architecture. To aggregate 2D features effectively, we design a Text-Guided Inter-Slice (TG-IS) scoring module, which scores the attention of each 2D slice based on slice contents and task instructions. To the best of our knowledge, Med-2E3 is the first MLLM to integrate both 3D and 2D features for 3D medical image analysis. Experiments on large-scale, open-source 3D medical multimodal datasets demonstrate that TG-IS exhibits task-specific attention distribution and significantly outperforms current state-of-the-art models. The code is available at: https://github.com/MSIIP/Med-2E3
♻ ☆ GreenHyperSpectra: A multi-source hyperspectral dataset for global vegetation trait prediction NeurIPS 2025
Plant traits such as leaf carbon content and leaf mass are essential variables in the study of biodiversity and climate change. However, conventional field sampling cannot feasibly cover trait variation at ecologically meaningful spatial scales. Machine learning represents a valuable solution for plant trait prediction across ecosystems, leveraging hyperspectral data from remote sensing. Nevertheless, trait prediction from hyperspectral data is challenged by label scarcity and substantial domain shifts (\eg across sensors, ecological distributions), requiring robust cross-domain methods. Here, we present GreenHyperSpectra, a pretraining dataset encompassing real-world cross-sensor and cross-ecosystem samples designed to benchmark trait prediction with semi- and self-supervised methods. We adopt an evaluation framework encompassing in-distribution and out-of-distribution scenarios. We successfully leverage GreenHyperSpectra to pretrain label-efficient multi-output regression models that outperform the state-of-the-art supervised baseline. Our empirical analyses demonstrate substantial improvements in learning spectral representations for trait prediction, establishing a comprehensive methodological framework to catalyze research at the intersection of representation learning and plant functional traits assessment. All code and data are available at: https://github.com/echerif18/HyspectraSSL.
comment: Accepted at the 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ Think With Videos For Agentic Long-Video Understanding
Long-video understanding~(LVU) is a challenging problem in computer vision. Existing methods either downsample frames for single-pass reasoning, sacrificing fine-grained details, or depend on textual reasoning over task-agnostic representations, hindering task-specific perception and exploration. In this paper, we propose VideoExplorer, a framework grounded in the principle of ``thinking with video'', which naturally intertwines planning, temporal grounding, and scalable perception into a coherent reasoning process. Rather than reasoning over a static context, VideoExplorer iteratively formulates sub-questions, locates relevant moments, and performs task-oriented, temporally scalable video understanding until reaching the final answer, enabling faithful, efficient, and interpretable reasoning. To address the lack of LVU training resources, we construct a long-video reasoning dataset using difficulty-adaptive sampling to ensure high-quality trajectories on complex tasks. Building on this dataset, we design a two-stage training pipeline: supervised trajectory initialization followed by trajectory-level preference optimization, encouraging adaptive temporal grounding and iterative information integration guided by downstream rewards. Extensive evaluations on popular long-video understanding and reasoning benchmarks demonstrate VideoExplorer's significant advantage over existing baselines, highlighting its robustness, adaptability, and efficiency. Our code is made publicly available in this repository(https://github.com/yhy-2000/VideoDeepResearch).
♻ ☆ DA$^2$: Depth Anything in Any Direction
Panorama has a full FoV (360$^\circ\times$180$^\circ$), offering a more complete visual description than perspective images. Thanks to this characteristic, panoramic depth estimation is gaining increasing traction in 3D vision. However, due to the scarcity of panoramic data, previous methods are often restricted to in-domain settings, leading to poor zero-shot generalization. Furthermore, due to the spherical distortions inherent in panoramas, many approaches rely on perspective splitting (e.g., cubemaps), which leads to suboptimal efficiency. To address these challenges, we propose $\textbf{DA}$$^{\textbf{2}}$: $\textbf{D}$epth $\textbf{A}$nything in $\textbf{A}$ny $\textbf{D}$irection, an accurate, zero-shot generalizable, and fully end-to-end panoramic depth estimator. Specifically, for scaling up panoramic data, we introduce a data curation engine for generating high-quality panoramic depth data from perspective, and create $\sim$543K panoramic RGB-depth pairs, bringing the total to $\sim$607K. To further mitigate the spherical distortions, we present SphereViT, which explicitly leverages spherical coordinates to enforce the spherical geometric consistency in panoramic image features, yielding improved performance. A comprehensive benchmark on multiple datasets clearly demonstrates DA$^{2}$'s SoTA performance, with an average 38% improvement on AbsRel over the strongest zero-shot baseline. Surprisingly, DA$^{2}$ even outperforms prior in-domain methods, highlighting its superior zero-shot generalization. Moreover, as an end-to-end solution, DA$^{2}$ exhibits much higher efficiency over fusion-based approaches. Both the code and the curated panoramic data has be released. Project page: https://depth-any-in-any-dir.github.io/.
comment: Work primarily done during an internship at Tencent Hunyuan. Project page: https://depth-any-in-any-dir.github.io/
♻ ☆ H3D-DGS: Exploring Heterogeneous 3D Motion Representation for Deformable 3D Gaussian Splatting
Dynamic scene reconstruction poses a persistent challenge in 3D vision. Deformable 3D Gaussian Splatting has emerged as an effective method for this task, offering real-time rendering and high visual fidelity. This approach decomposes a dynamic scene into a static representation in a canonical space and time-varying scene motion. Scene motion is defined as the collective movement of all Gaussian points, and for compactness, existing approaches commonly adopt implicit neural fields or sparse control points. However, these methods predominantly rely on gradient-based optimization for all motion information. Due to the high degree of freedom, they struggle to converge on real-world datasets exhibiting complex motion. To preserve the compactness of motion representation and address convergence challenges, this paper proposes heterogeneous 3D control points, termed \textbf{H3D control points}, whose attributes are obtained using a hybrid strategy combining optical flow back-projection and gradient-based methods. This design decouples directly observable motion components from those that are geometrically occluded. Specifically, components of 3D motion that project onto the image plane are directly acquired via optical flow back projection, while unobservable portions are refined through gradient-based optimization. Experiments on the Neu3DV and CMU-Panoptic datasets demonstrate that our method achieves superior performance over state-of-the-art deformable 3D Gaussian splatting techniques. Remarkably, our method converges within just 100 iterations and achieves a per-frame processing speed of 2 seconds on a single NVIDIA RTX 4070 GPU.
♻ ☆ WMamba: Wavelet-based Mamba for Face Forgery Detection ACM MM 2025
The rapid evolution of deepfake generation technologies necessitates the development of robust face forgery detection algorithms. Recent studies have demonstrated that wavelet analysis can enhance the generalization abilities of forgery detectors. Wavelets effectively capture key facial contours, often slender, fine-grained, and globally distributed, that may conceal subtle forgery artifacts imperceptible in the spatial domain. However, current wavelet-based approaches fail to fully exploit the distinctive properties of wavelet data, resulting in sub-optimal feature extraction and limited performance gains. To address this challenge, we introduce WMamba, a novel wavelet-based feature extractor built upon the Mamba architecture. WMamba maximizes the utility of wavelet information through two key innovations. First, we propose Dynamic Contour Convolution (DCConv), which employs specially crafted deformable kernels to adaptively model slender facial contours. Second, by leveraging the Mamba architecture, our method captures long-range spatial relationships with linear complexity. This efficiency allows for the extraction of fine-grained, globally distributed forgery artifacts from small image patches. Extensive experiments show that WMamba achieves state-of-the-art (SOTA) performance, highlighting its effectiveness in face forgery detection.
comment: Accepted by ACM MM 2025
♻ ☆ Dual Data Alignment Makes AI-Generated Image Detector Easier Generalizable NeurIPS 2025
Existing detectors are often trained on biased datasets, leading to the possibility of overfitting on non-causal image attributes that are spuriously correlated with real/synthetic labels. While these biased features enhance performance on the training data, they result in substantial performance degradation when applied to unbiased datasets. One common solution is to perform dataset alignment through generative reconstruction, matching the semantic content between real and synthetic images. However, we revisit this approach and show that pixel-level alignment alone is insufficient. The reconstructed images still suffer from frequency-level misalignment, which can perpetuate spurious correlations. To illustrate, we observe that reconstruction models tend to restore the high-frequency details lost in real images (possibly due to JPEG compression), inadvertently creating a frequency-level misalignment, where synthetic images appear to have richer high-frequency content than real ones. This misalignment leads to models associating high-frequency features with synthetic labels, further reinforcing biased cues. To resolve this, we propose Dual Data Alignment (DDA), which aligns both the pixel and frequency domains. Moreover, we introduce two new test sets: DDA-COCO, containing DDA-aligned synthetic images for testing detector performance on the most aligned dataset, and EvalGEN, featuring the latest generative models for assessing detectors under new generative architectures such as visual auto-regressive generators. Finally, our extensive evaluations demonstrate that a detector trained exclusively on DDA-aligned MSCOCO could improve across 8 diverse benchmarks by a non-trivial margin, showing a +7.2% on in-the-wild benchmarks, highlighting the improved generalizability of unbiased detectors. Our code is available at: https://github.com/roy-ch/Dual-Data-Alignment.
comment: NeurIPS 2025 Spotlight. 13 Pages, 10 figures
♻ ☆ gen2seg: Generative Models Enable Generalizable Instance Segmentation
By pretraining to synthesize coherent images from perturbed inputs, generative models inherently learn to understand object boundaries and scene compositions. How can we repurpose these generative representations for general-purpose perceptual organization? We finetune Stable Diffusion and MAE (encoder+decoder) for category-agnostic instance segmentation using our instance coloring loss exclusively on a narrow set of object types (indoor furnishings and cars). Surprisingly, our models exhibit strong zero-shot generalization, accurately segmenting objects of types and styles unseen in finetuning (and in many cases, MAE's ImageNet-1K pretraining too). Our best-performing models closely approach the heavily supervised SAM when evaluated on unseen object types and styles, and outperform it when segmenting fine structures and ambiguous boundaries. In contrast, existing promptable segmentation architectures or discriminatively pretrained models fail to generalize. This suggests that generative models learn an inherent grouping mechanism that transfers across categories and domains, even without internet-scale pretraining. Code, pretrained models, and demos are available on our website.
comment: Website: https://reachomk.github.io/gen2seg/
♻ ☆ Cryo-RL: automating prostate cancer cryoablation planning with reinforcement learning
Cryoablation is a minimally invasive localised treatment for prostate cancer that destroys malignant tissue during de-freezing, while sparing surrounding healthy structures. Its success depends on accurate preoperative planning of cryoprobe placements to fully cover the tumour and avoid critical anatomy. This planning is currently manual, expertise-dependent, and time-consuming, leading to variability in treatment quality and limited scalability. In this work, we introduce Cryo-RL, a reinforcement learning framework that models cryoablation planning as a Markov decision process and learns an optimal policy for cryoprobe placement. Within a simulated environment that models clinical constraints and stochastic intraoperative variability, an agent sequentially selects cryoprobe positions and ice sphere diameters. Guided by a reward function based on tumour coverage, this agent learns a cryoablation strategy that leads to optimal cryoprobe placements without the need for any manually-designed plans. Evaluated on 583 retrospective prostate cancer cases, Cryo-RL achieved over 8 percentage-point Dice improvements compared with the best automated baselines, based on geometric optimisation, and matched human expert performance while requiring substantially less planning time. These results highlight the potential of reinforcement learning to deliver clinically viable, reproducible, and efficient cryoablation plans.
comment: Accepted at MICAD (Medical Imaging and Computer-Aided Diagnosis) 2025
♻ ☆ From Objects to Anywhere: A Holistic Benchmark for Multi-level Visual Grounding in 3D Scenes NeurIPS 2025
3D visual grounding has made notable progress in localizing objects within complex 3D scenes. However, grounding referring expressions beyond objects in 3D scenes remains unexplored. In this paper, we introduce Anywhere3D-Bench, a holistic 3D visual grounding benchmark consisting of 2,886 referring expression-3D bounding box pairs spanning four different grounding levels: human-activity areas, unoccupied space beyond objects, individual objects in the scene, and fine-grained object parts. We assess a range of state-of-the-art 3D visual grounding methods alongside large language models (LLMs) and multimodal LLMs (MLLMs) on Anywhere3D-Bench. Experimental results reveal that space-level and part-level visual grounding pose the greatest challenges: space-level tasks require a more comprehensive spatial reasoning ability, for example, modeling distances and spatial relations within 3D space, while part-level tasks demand fine-grained perception of object composition. Even the best performance model, OpenAI o4-mini, achieves only 23.00% accuracy on space-level tasks and 31.46% on part-level tasks, significantly lower than its performance on area-level and object-level tasks. These findings underscore a critical gap in current models' capacity to understand and reason about 3D scenes beyond object-level semantics.
comment: NeurIPS 2025 (Datasets and Benchmarks). Project page: https://anywhere-3d.github.io/
♻ ☆ Leveraging AV1 motion vectors for Fast and Dense Feature Matching
We repurpose AV1 motion vectors to produce dense sub-pixel correspondences and short tracks filtered by cosine consistency. On short videos, this compressed-domain front end runs comparably to sequential SIFT while using far less CPU, and yields denser matches with competitive pairwise geometry. As a small SfM demo on a 117-frame clip, MV matches register all images and reconstruct 0.46-0.62M points at 0.51-0.53,px reprojection error; BA time grows with match density. These results show compressed-domain correspondences are a practical, resource-efficient front end with clear paths to scaling in full pipelines.
comment: Accepted ICIR 2025, camera-ready version
♻ ☆ SceneCOT: Eliciting Grounded Chain-of-Thought Reasoning in 3D Scenes
Existing research on 3D Large Language Models (LLMs) still struggles to achieve grounded question-answering, primarily due to the under-exploration of the mech- anism of human-like scene-object grounded reasoning. This paper bridges the gap by presenting a novel framework. We first introduce a grounded Chain-of- Thought reasoning method in 3D scenes (SCENECOT), decoupling a complex reasoning task into simpler and manageable problems, and building corresponding visual clues based on multimodal expert modules. To enable such a method, we develop SCENECOT-185K, the first large-scale grounded CoT reasoning dataset, consisting of 185K high-quality instances. Extensive experiments across various complex 3D scene reasoning benchmarks demonstrate that our new framework achieves strong performance with high grounding-QA coherence. To the best of our knowledge, this is the first successful application of CoT reasoning to 3D scene understanding, enabling step-by-step human-like reasoning and showing potential for extension to broader 3D scene understanding scenarios.
comment: Project page: https://scenecot.github.io/
♻ ☆ Polyline Path Masked Attention for Vision Transformer
Global dependency modeling and spatial position modeling are two core issues of the foundational architecture design in current deep learning frameworks. Recently, Vision Transformers (ViTs) have achieved remarkable success in computer vision, leveraging the powerful global dependency modeling capability of the self-attention mechanism. Furthermore, Mamba2 has demonstrated its significant potential in natural language processing tasks by explicitly modeling the spatial adjacency prior through the structured mask. In this paper, we propose Polyline Path Masked Attention (PPMA) that integrates the self-attention mechanism of ViTs with an enhanced structured mask of Mamba2, harnessing the complementary strengths of both architectures. Specifically, we first ameliorate the traditional structured mask of Mamba2 by introducing a 2D polyline path scanning strategy and derive its corresponding structured mask, polyline path mask, which better preserves the adjacency relationships among image tokens. Notably, we conduct a thorough theoretical analysis on the structural characteristics of the proposed polyline path mask and design an efficient algorithm for the computation of the polyline path mask. Next, we embed the polyline path mask into the self-attention mechanism of ViTs, enabling explicit modeling of spatial adjacency prior. Extensive experiments on standard benchmarks, including image classification, object detection, and segmentation, demonstrate that our model outperforms previous state-of-the-art approaches based on both state-space models and Transformers. For example, our proposed PPMA-T/S/B models achieve 48.7%/51.1%/52.3% mIoU on the ADE20K semantic segmentation task, surpassing RMT-T/S/B by 0.7%/1.3%/0.3%, respectively. Code is available at https://github.com/zhongchenzhao/PPMA.
♻ ☆ Foundation Cures Personalization: Improving Personalized Models' Prompt Consistency via Hidden Foundation Knowledge NeurIPS 2025
Facial personalization faces challenges to maintain identity fidelity without disrupting the foundation model's prompt consistency. The mainstream personalization models employ identity embedding to integrate identity information within the attention mechanisms. However, our preliminary findings reveal that identity embeddings compromise the effectiveness of other tokens in the prompt, thereby limiting high prompt consistency and attribute-level controllability. Moreover, by deactivating identity embedding, personalization models still demonstrate the underlying foundation models' ability to control facial attributes precisely. It suggests that such foundation models' knowledge can be leveraged to cure the ill-aligned prompt consistency of personalization models. Building upon these insights, we propose FreeCure, a framework that improves the prompt consistency of personalization models with their latent foundation models' knowledge. First, by setting a dual inference paradigm with/without identity embedding, we identify attributes (e.g., hair, accessories, etc.) for enhancements. Second, we introduce a novel foundation-aware self-attention module, coupled with an inversion-based process to bring well-aligned attribute information to the personalization process. Our approach is training-free, and can effectively enhance a wide array of facial attributes; and it can be seamlessly integrated into existing popular personalization models based on both Stable Diffusion and FLUX. FreeCure has consistently shown significant improvements in prompt consistency across these facial personalization models while maintaining the integrity of their original identity fidelity.
comment: Accepted to NeurIPS 2025
♻ ☆ Global Prompt Refinement with Non-Interfering Attention Masking for One-Shot Federated Learning NeurIPS'25
Federated Prompt Learning (FPL) enables communication-efficient adaptation by tuning lightweight prompts on top of frozen pre-trained models. Existing FPL methods typically rely on global information, which is only available after the second training round, to facilitate collaboration among client models. Therefore, they are inherently dependent on multi-round communication to fully exhibit their strengths. Moreover, existing one-shot federated learning methods typically focus on fitting seen tasks, but lack cross-task generalization. To bridge this gap, we propose the Global Prompt Refinement with Non-Interfering Attention Masking (GPR-NIAM) method for one-shot FPL. The core idea is to design a masking mechanism that restricts excessive interaction between the original text embeddings and the learnable prompt embeddings. GPR-NIAM achieves this through the collaboration of two key modules. Firstly, the attention isolation module suppresses attention from the learnable prompt tokens to the original text tokens, and reweights the reverse attention which preserves generalization across tasks. Secondly, the cross-silo collaborative refinement module integrates decentralized visual knowledge into a unified base and calibrates the global prompt through multi-source cross-modal knowledge alignment, further mitigating the inconsistency caused by data heterogeneity. Extensive experiments conducted on ten benchmark datasets under two tasks show that GPR-NIAM outperforms eight state-of-the-art methods in both class-level and domain-level generalization.
comment: NeurIPS'25 accepted
♻ ☆ Exploring Cross-Modal Flows for Few-Shot Learning
Aligning features from different modalities, is one of the most fundamental challenges for cross-modal tasks. Although pre-trained vision-language models can achieve a general alignment between image and text, they often require parameter-efficient fine-tuning (PEFT) for further adjustment. Today's PEFT methods (e.g., prompt tuning, LoRA-based, or adapter-based) always selectively fine-tune a subset of parameters, which can slightly adjust either visual or textual features, and avoid overfitting. In this paper, we are the first to highlight that all existing PEFT methods perform one-step adjustment. It is insufficient for complex (or difficult) datasets, where features of different modalities are highly entangled. To this end, we propose the first model-agnostic multi-step adjustment approach by learning a cross-modal velocity field: Flow Matching Alignment (FMA). Specifically, to ensure the correspondence between categories during training, we first utilize a fixed coupling strategy. Then, we propose a noise augmentation strategy to alleviate the data scarcity issue. Finally, we design an early-stopping solver, which terminates the transformation process earlier, improving both efficiency and accuracy. Compared with one-step PEFT methods, FMA has the multi-step rectification ability to achieve more precise and robust alignment. Extensive results have demonstrated that FMA can consistently yield significant performance gains across various benchmarks and backbones, particularly on challenging datasets.
comment: 13 pages, 6 figures
♻ ☆ CrossRay3D: Geometry and Distribution Guidance for Efficient Multimodal 3D Detection
The sparse cross-modality detector offers more advantages than its counterpart, the Bird's-Eye-View (BEV) detector, particularly in terms of adaptability for downstream tasks and computational cost savings. However, existing sparse detectors overlook the quality of token representation, leaving it with a sub-optimal foreground quality and limited performance. In this paper, we identify that the geometric structure preserved and the class distribution are the key to improving the performance of the sparse detector, and propose a Sparse Selector (SS). The core module of SS is Ray-Aware Supervision (RAS), which preserves rich geometric information during the training stage, and Class-Balanced Supervision, which adaptively reweights the salience of class semantics, ensuring that tokens associated with small objects are retained during token sampling. Thereby, outperforming other sparse multi-modal detectors in the representation of tokens. Additionally, we design Ray Positional Encoding (Ray PE) to address the distribution differences between the LiDAR modality and the image. Finally, we integrate the aforementioned module into an end-to-end sparse multi-modality detector, dubbed CrossRay3D. Experiments show that, on the challenging nuScenes benchmark, CrossRay3D achieves state-of-the-art performance with 72.4 mAP and 74.7 NDS, while running 1.84 faster than other leading methods. Moreover, CrossRay3D demonstrates strong robustness even in scenarios where LiDAR or camera data are partially or entirely missing.
comment: 13 pages
♻ ☆ Class-wise Balancing Data Replay for Federated Class-Incremental Learning NeurIPS'25
Federated Class Incremental Learning (FCIL) aims to collaboratively process continuously increasing incoming tasks across multiple clients. Among various approaches, data replay has become a promising solution, which can alleviate forgetting by reintroducing representative samples from previous tasks. However, their performance is typically limited by class imbalance, both within the replay buffer due to limited global awareness and between replayed and newly arrived classes. To address this issue, we propose a class wise balancing data replay method for FCIL (FedCBDR), which employs a global coordination mechanism for class-level memory construction and reweights the learning objective to alleviate the aforementioned imbalances. Specifically, FedCBDR has two key components: 1) the global-perspective data replay module reconstructs global representations of prior task in a privacy-preserving manner, which then guides a class-aware and importance-sensitive sampling strategy to achieve balanced replay; 2) Subsequently, to handle class imbalance across tasks, the task aware temperature scaling module adaptively adjusts the temperature of logits at both class and instance levels based on task dynamics, which reduces the model's overconfidence in majority classes while enhancing its sensitivity to minority classes. Experimental results verified that FedCBDR achieves balanced class-wise sampling under heterogeneous data distributions and improves generalization under task imbalance between earlier and recent tasks, yielding a 2%-15% Top-1 accuracy improvement over six state-of-the-art methods.
comment: NeurIPS'25 Accepted, Oral
♻ ☆ DeepDetect: Learning All-in-One Dense Keypoints
Keypoint detection is the foundation of many computer vision tasks, including image registration, structure-from motion, 3D reconstruction, visual odometry, and SLAM. Traditional detectors (SIFT, SURF, ORB, BRISK, etc.) and learning based methods (SuperPoint, R2D2, LF-Net, D2-Net, etc.) have shown strong performance yet suffer from key limitations: sensitivity to photometric changes, low keypoint density and repeatability, limited adaptability to challenging scenes, and lack of semantic understanding, often failing to prioritize visually important regions. We present DeepDetect, an intelligent, all-in-one, dense keypoint detector that unifies the strengths of classical detectors using deep learning. Firstly, we create ground-truth masks by fusing outputs of 7 keypoint and 2 edge detectors, extracting diverse visual cues from corners and blobs to prominent edges and textures in the images. Afterwards, a lightweight and efficient model: ESPNet, is trained using these masks as labels, enabling DeepDetect to focus semantically on images while producing highly dense keypoints, that are adaptable to diverse and visually degraded conditions. Evaluations on the Oxford Affine Covariant Regions dataset demonstrate that DeepDetect surpasses other detectors in keypoint density, repeatability, and the number of correct matches, achieving maximum values of 0.5143 (average keypoint density), 0.9582 (average repeatability), and 59,003 (correct matches).
comment: 6 pages, 6 figures, 2 tables, 7 equations
♻ ☆ When LLMs step into the 3D World: A Survey and Meta-Analysis of 3D Tasks via Multi-modal Large Language Models
As large language models (LLMs) evolve, their integration with 3D spatial data (3D-LLMs) has seen rapid progress, offering unprecedented capabilities for understanding and interacting with physical spaces. This survey provides a comprehensive overview of the methodologies enabling LLMs to process, understand, and generate 3D data. Highlighting the unique advantages of LLMs, such as in-context learning, step-by-step reasoning, open-vocabulary capabilities, and extensive world knowledge, we underscore their potential to significantly advance spatial comprehension and interaction within embodied Artificial Intelligence (AI) systems. Our investigation spans various 3D data representations, from point clouds to Neural Radiance Fields (NeRFs). It examines their integration with LLMs for tasks such as 3D scene understanding, captioning, question-answering, and dialogue, as well as LLM-based agents for spatial reasoning, planning, and navigation. The paper also includes a brief review of other methods that integrate 3D and language. The meta-analysis presented in this paper reveals significant progress yet underscores the necessity for novel approaches to harness the full potential of 3D-LLMs. Hence, with this paper, we aim to chart a course for future research that explores and expands the capabilities of 3D-LLMs in understanding and interacting with the complex 3D world. To support this survey, we have established a project page where papers related to our topic are organized and listed: https://github.com/ActiveVisionLab/Awesome-LLM-3D.
comment: 2nd version update to Jun.2025
♻ ☆ Visible Yet Unreadable: A Systematic Blind Spot of Vision Language Models Across Writing Systems
Writing is a universal cultural technology that reuses vision for symbolic communication. Humans display striking resilience: we readily recognize words even when characters are fragmented, fused, or partially occluded. This paper investigates whether advanced vision language models (VLMs) share this resilience. We construct two psychophysics inspired benchmarks across distinct writing systems, Chinese logographs and English alphabetic words, by splicing, recombining, and overlaying glyphs to yield ''visible but unreadable'' stimuli for models while remaining legible to humans. Despite strong performance on clean text, contemporary VLMs show a severe drop under these perturbations, frequently producing unrelated or incoherent outputs. The pattern suggests a structural limitation: models heavily leverage generic visual invariances but under rely on compositional priors needed for robust literacy. We release stimuli generation code, prompts, and evaluation protocols to facilitate transparent replication and follow up work. Our findings motivate architectures and training strategies that encode symbol segmentation, composition, and binding across scripts, and they delineate concrete challenges for deploying multimodal systems in education, accessibility, cultural heritage, and security.
comment: Agent4Science 2025 Spotlight
♻ ☆ Facial Expression-based Parkinson's Disease Severity Diagnosis via Feature Fusion and Adaptive Class Balancing
Parkinson's disease (PD) severity diagnosis is crucial for early detecting potential patients and adopting tailored interventions. Diagnosing PD based on facial expression is grounded in PD patients' "masked face" symptom and gains growing interest recently for its convenience and affordability. However, current facial expression-based approaches often rely on single type of expression which can lead to misdiagnosis, and ignore the class imbalance across different PD stages which degrades the prediction performance. Moreover, most existing methods focus on binary classification (i.e., PD / non-PD) rather than diagnosing the severity of PD. To address these issues, we propose a new facial expression-based method for PD severity diagnosis which integrates multiple facial expression features through attention-based feature fusion. Moreover, we mitigate the class imbalance problem via an adaptive class balancing strategy which dynamically adjusts the contribution of training samples based on their class distribution and classification difficulty. Experimental results demonstrate the promising performance of the proposed method for PD severity diagnosis, as well as the efficacy of attention-based feature fusion and adaptive class balancing.
comment: 3 pages, 2 figures, accepted by MIND 2025
♻ ☆ Visionary-R1: Mitigating Shortcuts in Visual Reasoning with Reinforcement Learning
Learning general-purpose reasoning capabilities has long been a challenging problem in AI. Recent research in large language models (LLMs), such as DeepSeek-R1, has shown that reinforcement learning techniques like GRPO can enable pre-trained LLMs to develop reasoning capabilities using simple question-answer pairs. In this paper, we aim to train visual language models (VLMs) to perform reasoning on image data through reinforcement learning and visual question-answer pairs, without any explicit chain-of-thought (CoT) supervision. Our findings indicate that simply applying reinforcement learning to a VLM -- by prompting the model to produce a reasoning chain before providing an answer -- can lead the model to develop shortcuts from easy questions, thereby reducing its ability to generalize across unseen data distributions. We argue that the key to mitigating shortcut learning is to encourage the model to interpret images prior to reasoning. Therefore, we train the model to adhere to a caption-reason-answer output format: initially generating a detailed caption for an image, followed by constructing an extensive reasoning chain. When trained on 273K CoT-free visual question-answer pairs and using only reinforcement learning, our model, named Visionary-R1, outperforms strong multimodal models, such as GPT-4o, Claude3.5-Sonnet, and Gemini-1.5-Pro, on multiple visual reasoning benchmarks.
♻ ☆ Distilling LLM Prior to Flow Model for Generalizable Agent's Imagination in Object Goal Navigation
The Object Goal Navigation (ObjectNav) task challenges agents to locate a specified object in an unseen environment by imagining unobserved regions of the scene. Prior approaches rely on deterministic and discriminative models to complete semantic maps, overlooking the inherent uncertainty in indoor layouts and limiting their ability to generalize to unseen environments. In this work, we propose GOAL, a generative flow-based framework that models the semantic distribution of indoor environments by bridging observed regions with LLM-enriched full-scene semantic maps. During training, spatial priors inferred from large language models (LLMs) are encoded as two-dimensional Gaussian fields and injected into target maps, distilling rich contextual knowledge into the flow model and enabling more generalizable completions. Extensive experiments demonstrate that GOAL achieves state-of-the-art performance on MP3D and Gibson, and shows strong generalization in transfer settings to HM3D. Codes and pretrained models are available at https://github.com/Badi-Li/GOAL.
♻ ☆ MSR-Align: Policy-Grounded Multimodal Alignment for Safety-Aware Reasoning in Vision-Language Models
Vision-Language Models (VLMs) have achieved remarkable progress in multimodal reasoning tasks through enhanced chain-of-thought capabilities. However, this advancement also introduces novel safety risks, as these models become increasingly vulnerable to harmful multimodal prompts that can trigger unethical or unsafe behaviors. Existing safety alignment approaches, primarily designed for unimodal language models, fall short in addressing the complex and nuanced threats posed by multimodal inputs. Moreover, current safety datasets lack the fine-grained, policy-grounded reasoning required to robustly align reasoning-capable VLMs. In this work, we introduce {MSR-Align}, a high-quality Multimodal Safety Reasoning dataset tailored to bridge this gap. MSR-Align supports fine-grained, deliberative reasoning over standardized safety policies across both vision and text modalities. Our data generation pipeline emphasizes multimodal diversity, policy-grounded reasoning, and rigorous quality filtering using strong multimodal judges. Extensive experiments demonstrate that fine-tuning VLMs on MSR-Align substantially improves robustness against both textual and vision-language jailbreak attacks, while preserving or enhancing general reasoning performance. MSR-Align provides a scalable and effective foundation for advancing the safety alignment of reasoning-capable VLMs. Our dataset is made publicly available at https://huggingface.co/datasets/Leigest/MSR-Align.
♻ ☆ VisuRiddles: Fine-grained Perception is a Primary Bottleneck for Multimodal Large Language Models in Abstract Visual Reasoning
Recent strides in multimodal large language models (MLLMs) have significantly advanced their performance in many reasoning tasks. However, Abstract Visual Reasoning (AVR) remains a critical challenge, primarily due to limitations in perceiving abstract graphics. To tackle this issue, we investigate the bottlenecks in current MLLMs and synthesize training data to improve their abstract visual perception. First, we propose VisuRiddles, a benchmark for AVR, featuring tasks meticulously constructed to assess models' reasoning capacities across five core dimensions and two high-level reasoning categories. Second, we introduce the Perceptual Riddle Synthesizer (PRS), an automated framework for generating riddles with fine-grained perceptual descriptions. PRS not only generates valuable training data for abstract graphics but also provides fine-grained perceptual description, crucially allowing for supervision over intermediate reasoning stages and thereby improving both training efficacy and model interpretability. Our extensive experimental results on VisuRiddles empirically validate that fine-grained visual perception is the principal bottleneck and our synthesis framework markedly enhances the performance of contemporary MLLMs on these challenging tasks. Our code and dataset will be released at https://github.com/yh-hust/VisuRiddles
comment: 13 pages, 4 figures
♻ ☆ RAD: Training an End-to-End Driving Policy via Large-Scale 3DGS-based Reinforcement Learning
Existing end-to-end autonomous driving (AD) algorithms typically follow the Imitation Learning (IL) paradigm, which faces challenges such as causal confusion and an open-loop gap. In this work, we propose RAD, a 3DGS-based closed-loop Reinforcement Learning (RL) framework for end-to-end Autonomous Driving. By leveraging 3DGS techniques, we construct a photorealistic digital replica of the real physical world, enabling the AD policy to extensively explore the state space and learn to handle out-of-distribution scenarios through large-scale trial and error. To enhance safety, we design specialized rewards to guide the policy in effectively responding to safety-critical events and understanding real-world causal relationships. To better align with human driving behavior, we incorporate IL into RL training as a regularization term. We introduce a closed-loop evaluation benchmark consisting of diverse, previously unseen 3DGS environments. Compared to IL-based methods, RAD achieves stronger performance in most closed-loop metrics, particularly exhibiting a 3x lower collision rate. Abundant closed-loop results are presented in the supplementary material. Code is available at https://github.com/hustvl/RAD for facilitating future research.
comment: Code: https://github.com/hustvl/RAD
♻ ☆ SAMPO:Scale-wise Autoregression with Motion PrOmpt for generative world models
World models allow agents to simulate the consequences of actions in imagined environments for planning, control, and long-horizon decision-making. However, existing autoregressive world models struggle with visually coherent predictions due to disrupted spatial structure, inefficient decoding, and inadequate motion modeling. In response, we propose \textbf{S}cale-wise \textbf{A}utoregression with \textbf{M}otion \textbf{P}r\textbf{O}mpt (\textbf{SAMPO}), a hybrid framework that combines visual autoregressive modeling for intra-frame generation with causal modeling for next-frame generation. Specifically, SAMPO integrates temporal causal decoding with bidirectional spatial attention, which preserves spatial locality and supports parallel decoding within each scale. This design significantly enhances both temporal consistency and rollout efficiency. To further improve dynamic scene understanding, we devise an asymmetric multi-scale tokenizer that preserves spatial details in observed frames and extracts compact dynamic representations for future frames, optimizing both memory usage and model performance. Additionally, we introduce a trajectory-aware motion prompt module that injects spatiotemporal cues about object and robot trajectories, focusing attention on dynamic regions and improving temporal consistency and physical realism. Extensive experiments show that SAMPO achieves competitive performance in action-conditioned video prediction and model-based control, improving generation quality with 4.4$\times$ faster inference. We also evaluate SAMPO's zero-shot generalization and scaling behavior, demonstrating its ability to generalize to unseen tasks and benefit from larger model sizes.
comment: 22 pages,15 figures
♻ ☆ Latent Diffusion Model without Variational Autoencoder
Recent progress in diffusion-based visual generation has largely relied on latent diffusion models with variational autoencoders (VAEs). While effective for high-fidelity synthesis, this VAE+diffusion paradigm suffers from limited training efficiency, slow inference, and poor transferability to broader vision tasks. These issues stem from a key limitation of VAE latent spaces: the lack of clear semantic separation and strong discriminative structure. Our analysis confirms that these properties are crucial not only for perception and understanding tasks, but also for the stable and efficient training of latent diffusion models. Motivated by this insight, we introduce SVG, a novel latent diffusion model without variational autoencoders, which leverages self-supervised representations for visual generation. SVG constructs a feature space with clear semantic discriminability by leveraging frozen DINO features, while a lightweight residual branch captures fine-grained details for high-fidelity reconstruction. Diffusion models are trained directly on this semantically structured latent space to facilitate more efficient learning. As a result, SVG enables accelerated diffusion training, supports few-step sampling, and improves generative quality. Experimental results further show that SVG preserves the semantic and discriminative capabilities of the underlying self-supervised representations, providing a principled pathway toward task-general, high-quality visual representations. Code and interpretations are available at https://howlin-wang.github.io/svg/.
♻ ☆ Learning Collaborative Knowledge with Multimodal Representation for Polyp Re-Identification
Colonoscopic Polyp Re-Identification aims to match the same polyp from a large gallery with images from different views taken using different cameras, which plays an important role in the prevention and treatment of colorectal cancer in computer-aided diagnosis. However, traditional methods for object ReID directly adopting CNN models trained on the ImageNet dataset usually produce unsatisfactory retrieval performance on colonoscopic datasets due to the large domain gap. Worsely, these solutions typically learn unimodal modal representations on the basis of visual samples, which fails to explore complementary information from other different modalities. To address this challenge, we propose a novel Deep Multimodal Collaborative Learning framework named DMCL for polyp re-identification, which can effectively encourage multimodal knowledge collaboration and reinforce generalization capability in medical scenarios. On the basis of it, a dynamic multimodal feature fusion strategy is introduced to leverage the optimized visual-text representations for multimodal fusion via end-to-end training. Experiments on the standard benchmarks show the benefits of the multimodal setting over state-of-the-art unimodal ReID models, especially when combined with the collaborative multimodal fusion strategy. The code is publicly available at https://github.com/JeremyXSC/DMCL.
♻ ☆ GeoArena: An Open Platform for Benchmarking Large Vision-language Models on WorldWide Image Geolocalization
Image geolocalization aims to predict the geographic location of images captured anywhere on Earth, but its global nature presents significant challenges. Current evaluation methodologies suffer from two major limitations. First, data leakage: advanced approaches often rely on large vision-language models (LVLMs) to predict image locations, yet these models are frequently pretrained on the test datasets, compromising the accuracy of evaluating a model's actual geolocalization capability. Second, existing metrics primarily rely on exact geographic coordinates to assess predictions, which not only neglects the reasoning process but also raises privacy concerns when user-level location data is required. To address these issues, we propose GeoArena, a first open platform for evaluating LVLMs on worldwide image geolocalization tasks, offering true in-the-wild and human-centered benchmarking. GeoArena enables users to upload in-the-wild images for a more diverse evaluation corpus, and it leverages pairwise human judgments to determine which model output better aligns with human expectations. Our platform has been deployed online for two months, during which we collected over thousands voting records. Based on this data, we conduct a detailed analysis and establish a leaderboard of different LVLMs on the image geolocalization task. GeoArena has been open-sourced to support future research.
♻ ☆ Infinity Parser: Layout Aware Reinforcement Learning for Scanned Document Parsing
Automated parsing of scanned documents into richly structured, machine-readable formats remains a critical bottleneck in Document AI, as traditional multi-stage pipelines suffer from error propagation and limited adaptability to diverse layouts. We introduce layoutRL, an end-to-end reinforcement learning framework that trains models to be explicitly layout-aware by optimizing a composite reward of normalized edit distance, paragraph count accuracy, and reading order preservation. Leveraging our newly released dataset, Infinity-Doc-55K, which combines 55K high-fidelity synthetic scanned document parsing data with expert-filtered real-world documents, we instantiate layoutRL in a vision-language-model-based parser called Infinity-Parser. Evaluated on English and Chinese benchmarks for OCR, table and formula extraction, and reading order detection, Infinity-Parser achieves new state-of-the-art performance in both accuracy and structural fidelity, outpacing specialist pipelines and general-purpose vision-language models. We will publicly release our code and dataset to accelerate progress in robust document understanding.
comment: 16 pages, 12 figures
♻ ☆ DiffVLA++: Bridging Cognitive Reasoning and End-to-End Driving through Metric-Guided Alignment
Conventional end-to-end (E2E) driving models are effective at generating physically plausible trajectories, but often fail to generalize to long-tail scenarios due to the lack of essential world knowledge to understand and reason about surrounding environments. In contrast, Vision-Language-Action (VLA) models leverage world knowledge to handle challenging cases, but their limited 3D reasoning capability can lead to physically infeasible actions. In this work we introduce DiffVLA++, an enhanced autonomous driving framework that explicitly bridges cognitive reasoning and E2E planning through metric-guided alignment. First, we build a VLA module directly generating semantically grounded driving trajectories. Second, we design an E2E module with a dense trajectory vocabulary that ensures physical feasibility. Third, and most critically, we introduce a metric-guided trajectory scorer that guides and aligns the outputs of the VLA and E2E modules, thereby integrating their complementary strengths. The experiment on the ICCV 2025 Autonomous Grand Challenge leaderboard shows that DiffVLA++ achieves EPDMS of 49.12.
♻ ☆ A Unified Solution to Video Fusion: From Multi-Frame Learning to Benchmarking NeurIPS 2025
The real world is dynamic, yet most image fusion methods process static frames independently, ignoring temporal correlations in videos and leading to flickering and temporal inconsistency. To address this, we propose Unified Video Fusion (UniVF), a novel and unified framework for video fusion that leverages multi-frame learning and optical flow-based feature warping for informative, temporally coherent video fusion. To support its development, we also introduce Video Fusion Benchmark (VF-Bench), the first comprehensive benchmark covering four video fusion tasks: multi-exposure, multi-focus, infrared-visible, and medical fusion. VF-Bench provides high-quality, well-aligned video pairs obtained through synthetic data generation and rigorous curation from existing datasets, with a unified evaluation protocol that jointly assesses the spatial quality and temporal consistency of video fusion. Extensive experiments show that UniVF achieves state-of-the-art results across all tasks on VF-Bench. Project page: https://vfbench.github.io.
comment: Accepted by NeurIPS 2025 (Spotlight)
♻ ☆ View Transformation Robustness for Multi-View 3D Object Reconstruction with Reconstruction Error-Guided View Selection AAAI 25
View transformation robustness (VTR) is critical for deep-learning-based multi-view 3D object reconstruction models, which indicates the methods' stability under inputs with various view transformations. However, existing research seldom focused on view transformation robustness in multi-view 3D object reconstruction. One direct way to improve the models' VTR is to produce data with more view transformations and add them to model training. Recent progress on large vision models, particularly Stable Diffusion models, has provided great potential for generating 3D models or synthesizing novel view images with only a single image input. Directly deploying these models at inference consumes heavy computation resources and their robustness to view transformations is not guaranteed either. To fully utilize the power of Stable Diffusion models without extra inference computation burdens, we propose to generate novel views with Stable Diffusion models for better view transformation robustness. Instead of synthesizing random views, we propose a reconstruction error-guided view selection method, which considers the reconstruction errors' spatial distribution of the 3D predictions and chooses the views that could cover the reconstruction errors as much as possible. The methods are trained and tested on sets with large view transformations to validate the 3D reconstruction models' robustness to view transformations. Extensive experiments demonstrate that the proposed method can outperform state-of-the-art 3D reconstruction methods and other view transformation robustness comparison methods. Code is available at: https://github.com/zqyq/VTR.
comment: AAAI 25
♻ ☆ ViFusionTST: Deep Fusion of Time-Series Image Representations from Load Signals for Early Bed-Exit Prediction
Bed-related falls remain a major source of injury in hospitals and long-term care facilities, yet many commercial alarms trigger only after a patient has already left the bed. We show that early bed-exit intent can be predicted using only one low-cost load cell mounted under a bed leg. The resulting load signals are first converted into a compact set of complementary images: an RGB line plot that preserves raw waveforms and three texture maps-recurrence plot, Markov transition field, and Gramian angular field-that expose higher-order dynamics. We introduce ViFusionTST, a dual-stream Swin Transformer that processes the line plot and texture maps in parallel and fuses them through cross-attention to learn data-driven modality weights. To provide a realistic benchmark, we collected six months of continuous data from 95 beds in a long-term-care facility. On this real-world dataset ViFusionTST reaches an accuracy of 0.885 and an F1 score of 0.794, surpassing recent 1D and 2D time-series baselines across F1, recall, accuracy, and AUPRC. The results demonstrate that image-based fusion of load-sensor signals for time series classification is a practical and effective solution for real-time, privacy-preserving fall prevention.
♻ ☆ Implicit Neural Compression of Point Clouds
Point clouds have gained prominence across numerous applications due to their ability to accurately represent 3D objects and scenes. However, efficiently compressing unstructured, high-precision point cloud data remains a significant challenge. In this paper, we propose NeRC$^3$, a novel point cloud compression framework that leverages implicit neural representations (INRs) to encode both geometry and attributes of dense point clouds. Our approach employs two coordinate-based neural networks: one maps spatial coordinates to voxel occupancy, while the other maps occupied voxels to their attributes, thereby implicitly representing the geometry and attributes of a voxelized point cloud. The encoder quantizes and compresses network parameters alongside auxiliary information required for reconstruction, while the decoder reconstructs the original point cloud by inputting voxel coordinates into the neural networks. Furthermore, we extend our method to dynamic point cloud compression through techniques that reduce temporal redundancy, including a 4D spatio-temporal representation termed 4D-NeRC$^3$. Experimental results validate the effectiveness of our approach: For static point clouds, NeRC$^3$ outperforms octree-based G-PCC standard and existing INR-based methods. For dynamic point clouds, 4D-NeRC$^3$ achieves superior geometry compression performance compared to the latest G-PCC and V-PCC standards, while matching state-of-the-art learning-based methods. It also demonstrates competitive performance in joint geometry and attribute compression.
♻ ☆ LLM-RG: Referential Grounding in Outdoor Scenarios using Large Language Models IROS 2025
Referential grounding in outdoor driving scenes is challenging due to large scene variability, many visually similar objects, and dynamic elements that complicate resolving natural-language references (e.g., "the black car on the right"). We propose LLM-RG, a hybrid pipeline that combines off-the-shelf vision-language models for fine-grained attribute extraction with large language models for symbolic reasoning. LLM-RG processes an image and a free-form referring expression by using an LLM to extract relevant object types and attributes, detecting candidate regions, generating rich visual descriptors with a VLM, and then combining these descriptors with spatial metadata into natural-language prompts that are input to an LLM for chain-of-thought reasoning to identify the referent's bounding box. Evaluated on the Talk2Car benchmark, LLM-RG yields substantial gains over both LLM and VLM-based baselines. Additionally, our ablations show that adding 3D spatial cues further improves grounding. Our results demonstrate the complementary strengths of VLMs and LLMs, applied in a zero-shot manner, for robust outdoor referential grounding.
comment: Human-aware Embodied AI Workshop @ IROS 2025
♻ ☆ NEBULA: Do We Evaluate Vision-Language-Action Agents Correctly?
The evaluation of Vision-Language-Action (VLA) agents is hindered by the coarse, end-task success metric that fails to provide precise skill diagnosis or measure robustness to real-world perturbations. This challenge is exacerbated by a fragmented data landscape that impedes reproducible research and the development of generalist models. To address these limitations, we introduce NEBULA, a unified ecosystem for single-arm manipulation that enables diagnostic and reproducible evaluation. NEBULA features a novel dual-axis evaluation protocol that combines fine-grained capability tests for precise skill diagnosis with systematic stress tests that measure robustness. A standardized API and a large-scale, aggregated dataset are provided to reduce fragmentation and support cross-dataset training and fair comparison. Using NEBULA, we demonstrate that top-performing VLAs struggle with key capabilities such as spatial reasoning and dynamic adaptation, which are consistently obscured by conventional end-task success metrics. By measuring both what an agent can do and when it does so reliably, NEBULA provides a practical foundation for robust, general-purpose embodied agents.
comment: Homepage: https://vulab-ai.github.io/NEBULA-Alpha/
♻ ☆ SceneCOT: Eliciting Grounded Chain-of-Thought Reasoning in 3D Scenes
Existing research on 3D Large Language Models (LLMs) still struggles to achieve grounded question-answering, primarily due to the under-exploration of the mechanism of human-like scene-object grounded reasoning. This paper bridges the gap by presenting a novel framework. We first introduce a grounded Chain-of-Thought reasoning method in 3D scenes (SCENECOT), decoupling a complex reasoning task into simpler and manageable problems, and building corresponding visual clues based on multimodal expert modules. To enable such a method, we develop SCENECOT-185K, the first large-scale grounded CoT reasoning dataset, consisting of 185K high-quality instances. Extensive experiments across various complex 3D scene reasoning benchmarks demonstrate that our new framework achieves strong performance with high grounding-QA coherence. To the best of our knowledge, this is the first successful application of CoT reasoning to 3D scene understanding, enabling step-by-step human-like reasoning and showing potential for extension to broader 3D scene understanding scenarios.
comment: Project page: https://scenecot.github.io/
♻ ☆ Towards foundational LiDAR world models with efficient latent flow matching NeurIPS 2025
LiDAR-based world models offer more structured and geometry-aware representations than their image-based counterparts. However, existing LiDAR world models are narrowly trained; each model excels only in the domain for which it was built. Can we develop LiDAR world models that exhibit strong transferability across multiple domains? We conduct the first systematic domain transfer study across three demanding scenarios: (i) outdoor to indoor generalization, (ii) sparse-beam & dense-beam adaptation, and (iii) non-semantic to semantic transfer. Given different amounts of fine-tuning data, our experiments show that a single pre-trained model can achieve up to 11% absolute improvement (83% relative) over training from scratch and outperforms training from scratch in 30/36 of our comparisons. This transferability of dynamic learning significantly reduces the reliance on manually annotated data for semantic occupancy forecasting: our method exceed the previous semantic occupancy forecasting models with only 5% of the labeled training data required by prior models. We also observed inefficiencies of current LiDAR world models, mainly through their under-compression of LiDAR data and inefficient training objectives. To address this, we propose a latent conditional flow matching (CFM)-based frameworks that achieves state-of-the-art reconstruction accuracy using only half the training data and a compression ratio 6 times higher than that of prior methods. Our model achieves SOTA performance on future-trajectory-conditioned semantic occupancy forecasting while being 23x more computationally efficient (a 28x FPS speedup); and achieves SOTA performance on semantic occupancy forecasting while being 2x more computationally efficient (a 1.1x FPS speedup).
comment: Accepted to the Thirty-Ninth Conference on Neural Information Processing Systems (NeurIPS 2025), 25 pages, 13 figures
♻ ☆ AmorLIP: Efficient Language-Image Pretraining via Amortization
Contrastive Language-Image Pretraining (CLIP) has demonstrated strong zero-shot performance across diverse downstream text-image tasks. Existing CLIP methods typically optimize a contrastive objective using negative samples drawn from each minibatch. To achieve robust representation learning, these methods require extremely large batch sizes and escalate computational demands to hundreds or even thousands of GPUs. Prior approaches to mitigate this issue often compromise downstream performance, prolong training duration, or face scalability challenges with very large datasets. To overcome these limitations, we propose AmorLIP, an efficient CLIP pretraining framework that amortizes expensive computations involved in contrastive learning through lightweight neural networks, which substantially improves training efficiency and performance. Leveraging insights from a spectral factorization of energy-based models, we introduce novel amortization objectives along with practical techniques to improve training stability. Extensive experiments across 38 downstream tasks demonstrate the superior zero-shot classification and retrieval capabilities of AmorLIP, consistently outperforming standard CLIP baselines with substantial relative improvements of up to 12.24%.
♻ ☆ Doctor Approved: Generating Medically Accurate Skin Disease Images through AI-Expert Feedback NeurIPS 2025
Paucity of medical data severely limits the generalizability of diagnostic ML models, as the full spectrum of disease variability can not be represented by a small clinical dataset. To address this, diffusion models (DMs) have been considered as a promising avenue for synthetic image generation and augmentation. However, they frequently produce medically inaccurate images, deteriorating the model performance. Expert domain knowledge is critical for synthesizing images that correctly encode clinical information, especially when data is scarce and quality outweighs quantity. Existing approaches for incorporating human feedback, such as reinforcement learning (RL) and Direct Preference Optimization (DPO), rely on robust reward functions or demand labor-intensive expert evaluations. Recent progress in Multimodal Large Language Models (MLLMs) reveals their strong visual reasoning capabilities, making them adept candidates as evaluators. In this work, we propose a novel framework, coined MAGIC (Medically Accurate Generation of Images through AI-Expert Collaboration), that synthesizes clinically accurate skin disease images for data augmentation. Our method creatively translates expert-defined criteria into actionable feedback for image synthesis of DMs, significantly improving clinical accuracy while reducing the direct human workload. Experiments demonstrate that our method greatly improves the clinical quality of synthesized skin disease images, with outputs aligning with dermatologist assessments. Additionally, augmenting training data with these synthesized images improves diagnostic accuracy by +9.02% on a challenging 20-condition skin disease classification task, and by +13.89% in the few-shot setting.
comment: NeurIPS 2025
♻ ☆ Fast MRI for All: Bridging Access Gaps by Training without Raw Data NeurIPS
Physics-driven deep learning (PD-DL) approaches have become popular for improved reconstruction of fast magnetic resonance imaging (MRI) scans. Though PD-DL offers higher acceleration rates than existing clinical fast MRI techniques, their use has been limited outside specialized MRI centers. A key challenge is generalization to rare pathologies or different populations, noted in multiple studies, with fine-tuning on target populations suggested for improvement. However, current approaches for PD-DL training require access to raw k-space measurements, which is typically only available at specialized MRI centers that have research agreements for such data access. This is especially an issue for rural and under-resourced areas, where commercial MRI scanners only provide access to a final reconstructed image. To tackle these challenges, we propose Compressibility-inspired Unsupervised Learning via Parallel Imaging Fidelity (CUPID) for high-quality PD-DL training using only routine clinical reconstructed images exported from an MRI scanner. CUPID evaluates output quality with a compressibility-based approach while ensuring that the output stays consistent with the clinical parallel imaging reconstruction through well-designed perturbations. Our results show CUPID achieves similar quality to established PD-DL training that requires k-space data while outperforming compressed sensing (CS) and diffusion-based generative methods. We further demonstrate its effectiveness in a zero-shot training setup for retrospectively and prospectively sub-sampled acquisitions, attesting to its minimal training burden. As an approach that radically deviates from existing strategies, CUPID presents an opportunity to provide broader access to fast MRI for remote and rural populations in an attempt to reduce the obstacles associated with this expensive imaging modality.
comment: Neural Information Processing Systems (NeurIPS), 2025 (Spotlight)
♻ ☆ Concept-Guided Interpretability via Neural Chunking
Neural networks are often described as black boxes, reflecting the significant challenge of understanding their internal workings and interactions. We propose a different perspective that challenges the prevailing view: rather than being inscrutable, neural networks exhibit patterns in their raw population activity that mirror regularities in the training data. We refer to this as the Reflection Hypothesis and provide evidence for this phenomenon in both simple recurrent neural networks (RNNs) and complex large language models (LLMs). Building on this insight, we propose to leverage our cognitive tendency of chunking to segment high-dimensional neural population dynamics into interpretable units that reflect underlying concepts. We propose three methods to extract recurring chunks on a neural population level, complementing each other based on label availability and neural data dimensionality. Discrete sequence chunking (DSC) learns a dictionary of entities in a lower-dimensional neural space; population averaging (PA) extracts recurring entities that correspond to known labels; and unsupervised chunk discovery (UCD) can be used when labels are absent. We demonstrate the effectiveness of these methods in extracting concept-encoding entities agnostic to model architectures. These concepts can be both concrete (words), abstract (POS tags), or structural (narrative schema). Additionally, we show that extracted chunks play a causal role in network behavior, as grafting them leads to controlled and predictable changes in the model's behavior. Our work points to a new direction for interpretability, one that harnesses both cognitive principles and the structure of naturalistic data to reveal the hidden computations of complex learning systems, gradually transforming them from black boxes into systems we can begin to understand.
♻ ☆ Kolmogorov-Arnold Attention: Is Learnable Attention Better For Vision Transformers?
Kolmogorov-Arnold networks (KANs) are a remarkable innovation that consists of learnable activation functions, with the potential to capture more complex relationships from data. Presently, KANs are deployed by replacing multilayer perceptrons (MLPs) in deep networks, including advanced architectures such as vision Transformers (ViTs). This work asks whether KAN could learn token interactions. In this paper, we design the first learnable attention called Kolmogorov-Arnold Attention (KArAt) for ViTs that can operate on any basis, ranging from Fourier, Wavelets, Splines, to Rational Functions. However, learnable activations in the attention cause a memory explosion. To remedy this, we propose a modular version of KArAt that uses a low-rank approximation. By adopting the Fourier basis, Fourier-KArAt and its variants, in some cases, outperform their traditional softmax counterparts, or show comparable performance on CIFAR-10, CIFAR-100, and ImageNet-1K. We also deploy Fourier KArAt to ConViT and Swin-Transformer, and use it in detection and segmentation with ViT-Det. We dissect the performance of these architectures by analyzing their loss landscapes, weight distributions, optimizer paths, attention visualizations, and transferability to other datasets. KArAt's learnable activation yields a better attention score across all ViTs, indicating improved token-to-token interactions and contributing to enhanced inference. Still, its generalizability does not scale with larger ViTs. However, many factors, including the present computing interface, affect the relative performance of parameter- and memory-heavy KArAts. We note that the goal of this paper is not to produce efficient attention or challenge the traditional activations; by designing KArAt, we are the first to show that attention can be learned and encourage researchers to explore KArAt in conjunction with more advanced architectures.
comment: Preprint, Appendix included
♻ ☆ Team Westwood Solution for MIDOG 2025 Challenge: An Ensemble-CNN-Based Approach For Mitosis Detection And Classification
This abstract presents our solution (Team Westwood) for mitosis detection and atypical mitosis classification in the MItosis DOmain Generalization (MIDOG) 2025 challenge. For mitosis detection, we trained an nnUNetV2 for initial mitosis candidate screening with high sensitivity, followed by a random forest classifier ensembling predictions of three convolutional neural networks (CNNs): EfficientNet-b3, EfficientNet-b5, and EfficientNetV2-s. For the atypical mitosis classification, we trained another random forest classifier ensembling the predictions of three CNNs: EfficientNet-b3, EfficientNet-b5, and InceptionV3. On the preliminary test set, our solution achieved an F1 score of 0.7450 for track 1 mitosis detection, and a balanced accuracy of 0.8722 for track 2 atypical mitosis classification. On the final test set, our solution achieved an F1 score of 0.6972 for track 1 mitosis detection, and a balanced accuracy of 0.8242 for track 2 atypical mitosis classification.
comment: 3 pages, 2 figures
♻ ☆ Unfolding Generative Flows with Koopman Operators: Fast and Interpretable Sampling
Continuous Normalizing Flows (CNFs) enable elegant generative modeling but remain bottlenecked by slow sampling: producing a single sample requires solving a nonlinear ODE with hundreds of function evaluations. Recent approaches such as Rectified Flow and OT-CFM accelerate sampling by straightening trajectories, yet the learned dynamics remain nonlinear black boxes, limiting both efficiency and interpretability. We propose a fundamentally different perspective: globally linearizing flow dynamics via Koopman theory. By lifting Conditional Flow Matching (CFM) into a higher-dimensional Koopman space, we represent its evolution with a single linear operator. This yields two key benefits. First, sampling becomes one-step and parallelizable, computed in closed form via the matrix exponential. Second, the Koopman operator provides a spectral blueprint of generation, enabling novel interpretability through its eigenvalues and modes. We derive a practical, simulation-free training objective that enforces infinitesimal consistency with the teacher's dynamics and show that this alignment preserves fidelity along the full generative path, distinguishing our method from boundary-only distillation. Empirically, our approach achieves competitive sample quality with dramatic speedups, while uniquely enabling spectral analysis of generative flows.
♻ ☆ Intelligent Software System for Low-Cost, Brightfield Segmentation: Algorithmic Implementation for Cytometric Auto-Analysis
Bright-field microscopy, a cost-effective solution for live-cell culture, is often the only resource available, along with standard CPUs, for many low-budget labs. The inherent chal- lenges of bright-field images - their noisiness, low contrast, and dynamic morphology - coupled with a lack of GPU resources and complex software interfaces, hinder the desired research output. This article presents a novel microscopy image analysis frame- work designed for low-budget labs equipped with a standard CPU desktop. The Python-based program enables cytometric analysis of live, unstained cells in culture through an advanced computer vision and machine learning pipeline. Crucially, the framework operates on label-free data, requiring no manually annotated training data or training phase. It is accessible via a user-friendly, cross-platform GUI that requires no programming skills, while also providing a scripting interface for programmatic control and integration by developers. The end-to-end workflow performs semantic and instance segmentation, feature extraction, analysis, evaluation, and automated report generation. Its modular archi- tecture supports easy maintenance and flexible integration while supporting both single-image and batch processing. Validated on several unstained cell types from the public dataset of livecells, the framework demonstrates superior accuracy and reproducibility compared to contemporary tools like Cellpose and StarDist. Its competitive segmentation speed on a CPU-based platform highlights its significant potential for basic research and clinical applications - particularly in cell transplantation for personalised medicine and muscle regeneration therapies. The access to the application is available for reproducibility
♻ ☆ PixelWorld: How Far Are We from Perceiving Everything as Pixels?
Recent agentic language models increasingly need to interact with real-world environments that contain tightly intertwined visual and textual information, often through raw camera pixels rather than separately processed images and tokenized text. This shift highlights the need for a unified perception paradigm. To investigate this idea, we explore Perceive Everything as Pixels (PEAP) and introduce PixelWorld, a benchmark that renders natural-language, tabular, mathematical, and diagrammatic inputs into a shared pixel space. Experiments across multiple benchmarks show that PEAP achieves comparable performance to token-based approaches on semantic understanding tasks, suggesting that vision transformers can partially capture global textual semantics without explicit tokenization. In contrast, reasoning-intensive tasks such as mathematics and code show notable performance degradation, although Chain-of-Thought prompting helps mitigate this gap by compensating for missing symbolic structure. We further find that when visual and textual information are closely integrated, representing everything as pixels simplifies preprocessing and avoids cross-modal misalignment. PixelWorld thus provides a systematic and practical framework for evaluating unified vision--language models and facilitates further exploration of pixel-based multimodal learning.
♻ ☆ PAGE-4D: Disentangled Pose and Geometry Estimation for 4D Perception
Recent 3D feed-forward models, such as the Visual Geometry Grounded Transformer (VGGT), have shown strong capability in inferring 3D attributes of static scenes. However, since they are typically trained on static datasets, these models often struggle in real-world scenarios involving complex dynamic elements, such as moving humans or deformable objects like umbrellas. To address this limitation, we introduce PAGE-4D, a feedforward model that extends VGGT to dynamic scenes, enabling camera pose estimation, depth prediction, and point cloud reconstruction -- all without post-processing. A central challenge in multi-task 4D reconstruction is the inherent conflict between tasks: accurate camera pose estimation requires suppressing dynamic regions, while geometry reconstruction requires modeling them. To resolve this tension, we propose a dynamics-aware aggregator that disentangles static and dynamic information by predicting a dynamics-aware mask -- suppressing motion cues for pose estimation while amplifying them for geometry reconstruction. Extensive experiments show that PAGE-4D consistently outperforms the original VGGT in dynamic scenarios, achieving superior results in camera pose estimation, monocular and video depth estimation, and dense point map reconstruction.
♻ ☆ Saccade crossing avoidance as a visual search strategy
Although visual search appears largely random, several oculomotor biases exist such that the likelihoods of saccade directions and lengths depend on the previous scan path. Compared to the most recent fixations, the impact of the longer path history is more difficult to quantify. Using the step-selection framework commonly used in movement ecology, and analyzing data from 45-second viewings of "Where's Waldo?", we report a new memory-dependent effect that also varies significantly between individuals, which we term self-crossing avoidance. This is a tendency for saccades to avoid crossing those earlier in the scan path, and is most evident when both have small amplitudes. We show this by comparing real data to synthetic data generated from a memoryless approximation of the spatial statistics (i.e. a Markovian nonparametric model with a matching distribution of saccade lengths over time). Maximum likelihood fitting indicates that this effect is strongest when including the last $\approx 7$ seconds of a scan path. The effect size is comparable to well-known forms of history dependence such as inhibition of return. A parametric probabilistic model including a self-crossing penalty term was able to reproduce joint statistics of saccade lengths and self-crossings. We also quantified individual strategic differences, and their consistency over the six images viewed per participant, using mixed-effect regressions. Participants with a higher tendency to avoid crossings displayed smaller saccade lengths and shorter fixation durations on average, but did not display more horizontal, vertical, forward or reverse saccades. Together, these results indicate that the avoidance of crossings is a local orienting strategy that facilitates and complements inhibition of return, and hence exploration of visual scenes.
comment: Main text: 12 pages, 4 figures; Supplementary info: 13 pages, 9 figures
Artificial Intelligence 255
☆ Grasp Any Region: Towards Precise, Contextual Pixel Understanding for Multimodal LLMs
While Multimodal Large Language Models (MLLMs) excel at holistic understanding, they struggle in capturing the dense world with complex scenes, requiring fine-grained analysis of intricate details and object inter-relationships. Region-level MLLMs have been a promising step. However, previous attempts are generally optimized to understand given regions in isolation, neglecting crucial global contexts. To address this, we introduce Grasp Any Region (GAR) for comprehen- sive region-level visual understanding. Empowered by an effective RoI-aligned feature replay technique, GAR supports (1) precise perception by leveraging necessary global contexts, and (2) modeling interactions between multiple prompts. Together, it then naturally achieves (3) advanced compositional reasoning to answer specific free-form questions about any region, shifting the paradigm from passive description to active dialogue. Moreover, we construct GAR-Bench, which not only provides a more accurate evaluation of single-region comprehension, but also, more importantly, measures interactions and complex reasoning across multiple regions. Extensive experiments have demonstrated that GAR-1B not only maintains the state-of-the-art captioning capabilities, e.g., outperforming DAM-3B +4.5 on DLC-Bench, but also excels at modeling relationships between multiple prompts with advanced comprehension capabilities, even surpassing InternVL3-78B on GAR-Bench-VQA. More importantly, our zero-shot GAR-8B even outperforms in-domain VideoRefer-7B on VideoRefer-BenchQ, indicating its strong capabilities can be easily transferred to videos.
☆ How Do LLMs Use Their Depth?
Growing evidence suggests that large language models do not use their depth uniformly, yet we still lack a fine-grained understanding of their layer-wise prediction dynamics. In this paper, we trace the intermediate representations of several open-weight models during inference and reveal a structured and nuanced use of depth. Specifically, we propose a "Guess-then-Refine" framework that explains how LLMs internally structure their computations to make predictions. We first show that the top-ranked predictions in early LLM layers are composed primarily of high-frequency tokens, which act as statistical guesses proposed by the model early on due to the lack of appropriate contextual information. As contextual information develops deeper into the model, these initial guesses get refined into contextually appropriate tokens. Even high-frequency token predictions from early layers get refined >70% of the time, indicating that correct token prediction is not "one-and-done". We then go beyond frequency-based prediction to examine the dynamic usage of layer depth across three case studies. (i) Part-of-speech analysis shows that function words are, on average, the earliest to be predicted correctly. (ii) Fact recall task analysis shows that, in a multi-token answer, the first token requires more computational depth than the rest. (iii) Multiple-choice task analysis shows that the model identifies the format of the response within the first half of the layers, but finalizes its response only toward the end. Together, our results provide a detailed view of depth usage in LLMs, shedding light on the layer-by-layer computations that underlie successful predictions and providing insights for future works to improve computational efficiency in transformer-based models.
☆ LightMem: Lightweight and Efficient Memory-Augmented Generation
Despite their remarkable capabilities, Large Language Models (LLMs) struggle to effectively leverage historical interaction information in dynamic and complex environments. Memory systems enable LLMs to move beyond stateless interactions by introducing persistent information storage, retrieval, and utilization mechanisms. However, existing memory systems often introduce substantial time and computational overhead. To this end, we introduce a new memory system called LightMem, which strikes a balance between the performance and efficiency of memory systems. Inspired by the Atkinson-Shiffrin model of human memory, LightMem organizes memory into three complementary stages. First, cognition-inspired sensory memory rapidly filters irrelevant information through lightweight compression and groups information according to their topics. Next, topic-aware short-term memory consolidates these topic-based groups, organizing and summarizing content for more structured access. Finally, long-term memory with sleep-time update employs an offline procedure that decouples consolidation from online inference. Experiments on LongMemEval with GPT and Qwen backbones show that LightMem outperforms strong baselines in accuracy (up to 10.9% gains) while reducing token usage by up to 117x, API calls by up to 159x, and runtime by over 12x. The code is available at https://github.com/zjunlp/LightMem.
comment: Work in progress
☆ Every Step Evolves: Scaling Reinforcement Learning for Trillion-Scale Thinking Model
We present Ring-1T, the first open-source, state-of-the-art thinking model with a trillion-scale parameter. It features 1 trillion total parameters and activates approximately 50 billion per token. Training such models at a trillion-parameter scale introduces unprecedented challenges, including train-inference misalignment, inefficiencies in rollout processing, and bottlenecks in the RL system. To address these, we pioneer three interconnected innovations: (1) IcePop stabilizes RL training via token-level discrepancy masking and clipping, resolving instability from training-inference mismatches; (2) C3PO++ improves resource utilization for long rollouts under a token budget by dynamically partitioning them, thereby obtaining high time efficiency; and (3) ASystem, a high-performance RL framework designed to overcome the systemic bottlenecks that impede trillion-parameter model training. Ring-1T delivers breakthrough results across critical benchmarks: 93.4 on AIME-2025, 86.72 on HMMT-2025, 2088 on CodeForces, and 55.94 on ARC-AGI-v1. Notably, it attains a silver medal-level result on the IMO-2025, underscoring its exceptional reasoning capabilities. By releasing the complete 1T parameter MoE model to the community, we provide the research community with direct access to cutting-edge reasoning capabilities. This contribution marks a significant milestone in democratizing large-scale reasoning intelligence and establishes a new baseline for open-source model performance.
comment: Technical Report
☆ Lyapunov-Aware Quantum-Inspired Reinforcement Learning for Continuous-Time Vehicle Control: A Feasibility Study
This paper presents a novel Lyapunov-Based Quantum Reinforcement Learning (LQRL) framework that integrates quantum policy optimization with Lyapunov stability analysis for continuous-time vehicle control. The proposed approach combines the representational power of variational quantum circuits (VQCs) with a stability-aware policy gradient mechanism to ensure asymptotic convergence and safe decision-making under dynamic environments. The vehicle longitudinal control problem was formulated as a continuous-state reinforcement learning task, where the quantum policy network generates control actions subject to Lyapunov stability constraints. Simulation experiments were conducted in a closed-loop adaptive cruise control scenario using a quantum-inspired policy trained under stability feedback. The results demonstrate that the LQRL framework successfully embeds Lyapunov stability verification into quantum policy learning, enabling interpretable and stability-aware control performance. Although transient overshoot and Lyapunov divergence were observed under aggressive acceleration, the system maintained bounded state evolution, validating the feasibility of integrating safety guarantees within quantum reinforcement learning architectures. The proposed framework provides a foundational step toward provably safe quantum control in autonomous systems and hybrid quantum-classical optimization domains.
comment: 7 pages, 4 figures, 20 equations, 3 appendices, 4 tables
☆ DP$^2$O-SR: Direct Perceptual Preference Optimization for Real-World Image Super-Resolution NeurIPS 2025
Benefiting from pre-trained text-to-image (T2I) diffusion models, real-world image super-resolution (Real-ISR) methods can synthesize rich and realistic details. However, due to the inherent stochasticity of T2I models, different noise inputs often lead to outputs with varying perceptual quality. Although this randomness is sometimes seen as a limitation, it also introduces a wider perceptual quality range, which can be exploited to improve Real-ISR performance. To this end, we introduce Direct Perceptual Preference Optimization for Real-ISR (DP$^2$O-SR), a framework that aligns generative models with perceptual preferences without requiring costly human annotations. We construct a hybrid reward signal by combining full-reference and no-reference image quality assessment (IQA) models trained on large-scale human preference datasets. This reward encourages both structural fidelity and natural appearance. To better utilize perceptual diversity, we move beyond the standard best-vs-worst selection and construct multiple preference pairs from outputs of the same model. Our analysis reveals that the optimal selection ratio depends on model capacity: smaller models benefit from broader coverage, while larger models respond better to stronger contrast in supervision. Furthermore, we propose hierarchical preference optimization, which adaptively weights training pairs based on intra-group reward gaps and inter-group diversity, enabling more efficient and stable learning. Extensive experiments across both diffusion- and flow-based T2I backbones demonstrate that DP$^2$O-SR significantly improves perceptual quality and generalizes well to real-world benchmarks.
comment: Accept by NeurIPS 2025
☆ Towards Faithful and Controllable Personalization via Critique-Post-Edit Reinforcement Learning
Faithfully personalizing large language models (LLMs) to align with individual user preferences is a critical but challenging task. While supervised fine-tuning (SFT) quickly reaches a performance plateau, standard reinforcement learning from human feedback (RLHF) also struggles with the nuances of personalization. Scalar-based reward models are prone to reward hacking which leads to verbose and superficially personalized responses. To address these limitations, we propose Critique-Post-Edit, a robust reinforcement learning framework that enables more faithful and controllable personalization. Our framework integrates two key components: (1) a Personalized Generative Reward Model (GRM) that provides multi-dimensional scores and textual critiques to resist reward hacking, and (2) a Critique-Post-Edit mechanism where the policy model revises its own outputs based on these critiques for more targeted and efficient learning. Under a rigorous length-controlled evaluation, our method substantially outperforms standard PPO on personalization benchmarks. Personalized Qwen2.5-7B achieves an average 11\% win-rate improvement, and personalized Qwen2.5-14B model surpasses the performance of GPT-4.1. These results demonstrate a practical path to faithful, efficient, and controllable personalization.
comment: work in progress
☆ Actor-Free Continuous Control via Structurally Maximizable Q-Functions NeurIPS 2025
Value-based algorithms are a cornerstone of off-policy reinforcement learning due to their simplicity and training stability. However, their use has traditionally been restricted to discrete action spaces, as they rely on estimating Q-values for individual state-action pairs. In continuous action spaces, evaluating the Q-value over the entire action space becomes computationally infeasible. To address this, actor-critic methods are typically employed, where a critic is trained on off-policy data to estimate Q-values, and an actor is trained to maximize the critic's output. Despite their popularity, these methods often suffer from instability during training. In this work, we propose a purely value-based framework for continuous control that revisits structural maximization of Q-functions, introducing a set of key architectural and algorithmic choices to enable efficient and stable learning. We evaluate the proposed actor-free Q-learning approach on a range of standard simulation tasks, demonstrating performance and sample efficiency on par with state-of-the-art baselines, without the cost of learning a separate actor. Particularly, in environments with constrained action spaces, where the value functions are typically non-smooth, our method with structural maximization outperforms traditional actor-critic methods with gradient-based maximization. We have released our code at https://github.com/USC-Lira/Q3C.
comment: 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
☆ An Explainable Hybrid AI Framework for Enhanced Tuberculosis and Symptom Detection
Tuberculosis remains a critical global health issue, particularly in resource-limited and remote areas. Early detection is vital for treatment, yet the lack of skilled radiologists underscores the need for artificial intelligence (AI)-driven screening tools. Developing reliable AI models is challenging due to the necessity for large, high-quality datasets, which are costly to obtain. To tackle this, we propose a teacher--student framework which enhances both disease and symptom detection on chest X-rays by integrating two supervised heads and a self-supervised head. Our model achieves an accuracy of 98.85% for distinguishing between COVID-19, tuberculosis, and normal cases, and a macro-F1 score of 90.09% for multilabel symptom detection, significantly outperforming baselines. The explainability assessments also show the model bases its predictions on relevant anatomical features, demonstrating promise for deployment in clinical screening and triage settings.
comment: 16 pages, 3 figures
☆ Fine-Tuned Thoughts: Leveraging Chain-of-Thought Reasoning for Industrial Asset Health Monitoring EMNLP 2025
Small Language Models (SLMs) are becoming increasingly popular in specialized fields, such as industrial applications, due to their efficiency, lower computational requirements, and ability to be fine-tuned for domain-specific tasks, enabling accurate and cost-effective solutions. However, performing complex reasoning using SLMs in specialized fields such as Industry 4.0 remains challenging. In this paper, we propose a knowledge distillation framework for industrial asset health, which transfers reasoning capabilities via Chain-of-Thought (CoT) distillation from Large Language Models (LLMs) to smaller, more efficient models (SLMs). We discuss the advantages and the process of distilling LLMs using multi-choice question answering (MCQA) prompts to enhance reasoning and refine decision-making. We also perform in-context learning to verify the quality of the generated knowledge and benchmark the performance of fine-tuned SLMs with generated knowledge against widely used LLMs. The results show that the fine-tuned SLMs with CoT reasoning outperform the base models by a significant margin, narrowing the gap to their LLM counterparts. Our code is open-sourced at: https://github.com/IBM/FailureSensorIQ.
comment: Accepted at EMNLP 2025
☆ Online SFT for LLM Reasoning: Surprising Effectiveness of Self-Tuning without Rewards
We present a simple, self-help online supervised finetuning (OSFT) paradigm for LLM reasoning. In this paradigm, the model generates its own responses and is immediately finetuned on this self-generated data. OSFT is a highly efficient training strategy for LLM reasoning, as it is reward-free and uses just one rollout by default. Experiment results show that OSFT achieves downstream performance on challenging mathematical reasoning tasks comparable to strong reinforcement learning with verifiable rewards (RLVR) methods such as GRPO. Our ablation study further demonstrates the efficiency and robustness of OSFT. The major mechanism of OSFT lies in facilitating the model's own existing preference (latent knowledge) learned from pretraining, which leads to reasoning ability improvement. We believe that OSFT offers an efficient and promising alternative to more complex, reward-based training paradigms. Our code is available at https://github.com/ElementQi/OnlineSFT.
☆ Decoding Funded Research: Comparative Analysis of Topic Models and Uncovering the Effect of Gender and Geographic Location
Optimizing national scientific investment requires a clear understanding of evolving research trends and the demographic and geographical forces shaping them, particularly in light of commitments to equity, diversity, and inclusion. This study addresses this need by analyzing 18 years (2005-2022) of research proposals funded by the Natural Sciences and Engineering Research Council of Canada (NSERC). We conducted a comprehensive comparative evaluation of three topic modelling approaches: Latent Dirichlet Allocation (LDA), Structural Topic Modelling (STM), and BERTopic. We also introduced a novel algorithm, named COFFEE, designed to enable robust covariate effect estimation for BERTopic. This advancement addresses a significant gap, as BERTopic lacks a native function for covariate analysis, unlike the probabilistic STM. Our findings highlight that while all models effectively delineate core scientific domains, BERTopic outperformed by consistently identifying more granular, coherent, and emergent themes, such as the rapid expansion of artificial intelligence. Additionally, the covariate analysis, powered by COFFEE, confirmed distinct provincial research specializations and revealed consistent gender-based thematic patterns across various scientific disciplines. These insights offer a robust empirical foundation for funding organizations to formulate more equitable and impactful funding strategies, thereby enhancing the effectiveness of the scientific ecosystem.
comment: 35 pages
☆ Computational Foundations for Strategic Coopetition: Formalizing Interdependence and Complementarity
Modern socio-technical systems are characterized by strategic coopetition where actors simultaneously cooperate to create value and compete to capture it. While conceptual modeling languages like i* provide rich qualitative representations of strategic dependencies, they lack mechanisms for quantitative analysis of dynamic trade-offs. Conversely, classical game theory offers mathematical rigor but strips away contextual richness. This technical report bridges this gap by developing computational foundations that formalize two critical dimensions of coopetition: interdependence and complementarity. We ground interdependence in i* structural dependency analysis, translating depender-dependee-dependum relationships into quantitative interdependence coefficients through a structured translation framework. We formalize complementarity following Brandenburger and Nalebuff's Added Value concept, modeling synergistic value creation with validated parameterization. We integrate structural dependencies with bargaining power in value appropriation and introduce a game-theoretic formulation where Nash Equilibrium incorporates structural interdependence. Validation combines comprehensive experimental testing across power and logarithmic value function specifications, demonstrating functional form robustness, with empirical application to the Samsung-Sony S-LCD joint venture (2004-2011), where logarithmic specifications achieve superior empirical fit (validation score 45/60) while power functions provide theoretical tractability. This technical report serves as the foundational reference for a coordinated research program examining strategic coopetition in requirements engineering and multi-agent systems, with companion work addressing trust dynamics, team production, and reciprocity mechanisms.
comment: 36 pages, 7 figures
☆ Seg the HAB: Language-Guided Geospatial Algae Bloom Reasoning and Segmentation
Climate change is intensifying the occurrence of harmful algal bloom (HAB), particularly cyanobacteria, which threaten aquatic ecosystems and human health through oxygen depletion, toxin release, and disruption of marine biodiversity. Traditional monitoring approaches, such as manual water sampling, remain labor-intensive and limited in spatial and temporal coverage. Recent advances in vision-language models (VLMs) for remote sensing have shown potential for scalable AI-driven solutions, yet challenges remain in reasoning over imagery and quantifying bloom severity. In this work, we introduce ALGae Observation and Segmentation (ALGOS), a segmentation-and-reasoning system for HAB monitoring that combines remote sensing image understanding with severity estimation. Our approach integrates GeoSAM-assisted human evaluation for high-quality segmentation mask curation and fine-tunes vision language model on severity prediction using the Cyanobacteria Aggregated Manual Labels (CAML) from NASA. Experiments demonstrate that ALGOS achieves robust performance on both segmentation and severity-level estimation, paving the way toward practical and automated cyanobacterial monitoring systems.
☆ Verifiable Accuracy and Abstention Rewards in Curriculum RL to Alleviate Lost-in-Conversation
Large Language Models demonstrate strong capabilities in single-turn instruction following but suffer from Lost-in-Conversation (LiC), a degradation in performance as information is revealed progressively in multi-turn settings. Motivated by the current progress on Reinforcement Learning with Verifiable Rewards (RLVR), we propose Curriculum Reinforcement Learning with Verifiable Accuracy and Abstention Rewards (RLAAR), a framework that encourages models not only to generate correct answers, but also to judge the solvability of questions in the multi-turn conversation setting. Our approach employs a competence-gated curriculum that incrementally increases dialogue difficulty (in terms of instruction shards), stabilizing training while promoting reliability. Using multi-turn, on-policy rollouts and a mixed-reward system, RLAAR teaches models to balance problem-solving with informed abstention, reducing premature answering behaviors that cause LiC. Evaluated on LiC benchmarks, RLAAR significantly mitigates LiC performance decay (62.6% to 75.1%) and improves calibrated abstention rates (33.5% to 73.4%). Together, these results provide a practical recipe for building multi-turn reliable and trustworthy LLMs.
☆ HarmNet: A Framework for Adaptive Multi-Turn Jailbreak Attacks on Large Language Models
Large Language Models (LLMs) remain vulnerable to multi-turn jailbreak attacks. We introduce HarmNet, a modular framework comprising ThoughtNet, a hierarchical semantic network; a feedback-driven Simulator for iterative query refinement; and a Network Traverser for real-time adaptive attack execution. HarmNet systematically explores and refines the adversarial space to uncover stealthy, high-success attack paths. Experiments across closed-source and open-source LLMs show that HarmNet outperforms state-of-the-art methods, achieving higher attack success rates. For example, on Mistral-7B, HarmNet achieves a 99.4% attack success rate, 13.9% higher than the best baseline. Index terms: jailbreak attacks; large language models; adversarial framework; query refinement.
comment: This paper has been accepted for presentation at the Conference on Applied Machine Learning in Information Security (CAMLIS 2025)
☆ Causally Perturbed Fairness Testing
To mitigate unfair and unethical discrimination over sensitive features (e.g., gender, age, or race), fairness testing plays an integral role in engineering systems that leverage AI models to handle tabular data. A key challenge therein is how to effectively reveal fairness bugs under an intractable sample size using perturbation. Much current work has been focusing on designing the test sample generators, ignoring the valuable knowledge about data characteristics that can help guide the perturbation and hence limiting their full potential. In this paper, we seek to bridge such a gap by proposing a generic framework of causally perturbed fairness testing, dubbed CausalFT. Through causal inference, the key idea of CausalFT is to extract the most directly and causally relevant non-sensitive feature to its sensitive counterpart, which can jointly influence the prediction of the label. Such a causal relationship is then seamlessly injected into the perturbation to guide a test sample generator. Unlike existing generator-level work, CausalFT serves as a higher-level framework that can be paired with diverse base generators. Extensive experiments on 1296 cases confirm that CausalFT can considerably improve arbitrary base generators in revealing fairness bugs over 93% of the cases with acceptable extra runtime overhead. Compared with a state-of-the-art approach that ranks the non-sensitive features solely based on correlation, CausalFT performs significantly better on 64% cases while being much more efficient. Further, CausalFT can better improve bias resilience in nearly all cases.
comment: accepted by TOSEM
☆ Preference-based Reinforcement Learning beyond Pairwise Comparisons: Benefits of Multiple Options NeurIPS 2025
We study online preference-based reinforcement learning (PbRL) with the goal of improving sample efficiency. While a growing body of theoretical work has emerged-motivated by PbRL's recent empirical success, particularly in aligning large language models (LLMs)-most existing studies focus only on pairwise comparisons. A few recent works (Zhu et al., 2023, Mukherjee et al., 2024, Thekumparampil et al., 2024) have explored using multiple comparisons and ranking feedback, but their performance guarantees fail to improve-and can even deteriorate-as the feedback length increases, despite the richer information available. To address this gap, we adopt the Plackett-Luce (PL) model for ranking feedback over action subsets and propose M-AUPO, an algorithm that selects multiple actions by maximizing the average uncertainty within the offered subset. We prove that M-AUPO achieves a suboptimality gap of $\tilde{\mathcal{O}}\left( \frac{d}{T} \sqrt{ \sum_{t=1}^T \frac{1}{|S_t|}} \right)$, where $T$ is the total number of rounds, $d$ is the feature dimension, and $|S_t|$ is the size of the subset at round $t$. This result shows that larger subsets directly lead to improved performance and, notably, the bound avoids the exponential dependence on the unknown parameter's norm, which was a fundamental limitation in most previous works. Moreover, we establish a near-matching lower bound of $\Omega \left( \frac{d}{K \sqrt{T}} \right)$, where $K$ is the maximum subset size. To the best of our knowledge, this is the first theoretical result in PbRL with ranking feedback that explicitly shows improved sample efficiency as a function of the subset size.
comment: Accepted at NeurIPS 2025
☆ Fetch.ai: An Architecture for Modern Multi-Agent Systems
Recent surges in LLM-driven intelligent systems largely overlook decades of foundational multi-agent systems (MAS) research, resulting in frameworks with critical limitations such as centralization and inadequate trust and communication protocols. This paper introduces the Fetch.ai architecture, an industrial-strength platform designed to bridge this gap by facilitating the integration of classical MAS principles with modern AI capabilities. We present a novel, multi-layered solution built on a decentralized foundation of on-chain blockchain services for verifiable identity, discovery, and transactions. This is complemented by a comprehensive development framework for creating secure, interoperable agents, a cloud-based platform for deployment, and an intelligent orchestration layer where an agent-native LLM translates high-level human goals into complex, multi-agent workflows. We demonstrate the deployed nature of this system through a decentralized logistics use case where autonomous agents dynamically discover, negotiate, and transact with one another securely. Ultimately, the Fetch.ai stack provides a principled architecture for moving beyond current agent implementations towards open, collaborative, and economically sustainable multi-agent ecosystems.
comment: 26 pages, figures, code examples
☆ Exploring Membership Inference Vulnerabilities in Clinical Large Language Models IEEE
As large language models (LLMs) become progressively more embedded in clinical decision-support, documentation, and patient-information systems, ensuring their privacy and trustworthiness has emerged as an imperative challenge for the healthcare sector. Fine-tuning LLMs on sensitive electronic health record (EHR) data improves domain alignment but also raises the risk of exposing patient information through model behaviors. In this work-in-progress, we present an exploratory empirical study on membership inference vulnerabilities in clinical LLMs, focusing on whether adversaries can infer if specific patient records were used during model training. Using a state-of-the-art clinical question-answering model, Llemr, we evaluate both canonical loss-based attacks and a domain-motivated paraphrasing-based perturbation strategy that more realistically reflects clinical adversarial conditions. Our preliminary findings reveal limited but measurable membership leakage, suggesting that current clinical LLMs provide partial resistance yet remain susceptible to subtle privacy risks that could undermine trust in clinical AI adoption. These results motivate continued development of context-aware, domain-specific privacy evaluations and defenses such as differential privacy fine-tuning and paraphrase-aware training, to strengthen the security and trustworthiness of healthcare AI systems.
comment: Accepted at the 1st IEEE Workshop on Healthcare and Medical Device Security, Privacy, Resilience, and Trust (IEEE HMD-SPiRiT)
☆ Reasoning Language Model Inference Serving Unveiled: An Empirical Study
The reasoning large language model (RLLM) has been proven competitive in solving complex reasoning tasks such as mathematics, coding, compared to general LLM. However, the serving performance and behavior of RLLM remains unexplored, which may undermine the deployment and utilization of RLLM in real-world scenario. To close this gap, in this paper, we conduct a comprehensive study of RLLM service. We first perform a pilot study on comparing the serving performance between RLLM and traditional LLM and reveal that there are several distinct differences regarding serving behavior: (1) significant memory usage and fluctuations; (2) straggler requests; (3) adaptive running time; (4) domain preference. Then we further investigate whether existing inference optimization techniques are valid for RLLM. Our main takeaways are that model quantization methods and speculative decoding can improve service system efficiency with small compromise to RLLM accuracy, while prefix caching, KV cache quantization may even degrade accuracy or serving performance for small RLLM. Lastly, we conduct evaluation under real world workload modeled by Gamma distribution to verify our findings. Empirical results of real world workload evaluation across different dataset are aligned with our main findings regarding RLLM serving. We hope our work can provide the research community and industry with insights to advance RLLM inference serving.
☆ Sherlock Your Queries: Learning to Ask the Right Questions for Dialogue-Based Retrieval
User queries in information retrieval are often ambiguous, making it challenging for systems to identify a user's target from a single query. While recent dialogue-based interactive retrieval systems can clarify user intent, they are inefficient as they often lack an explicit strategy to ask the most informative questions. To address this limitation, we propose SherlockLLM, a dialogue-driven retrieval framework that learns an optimal questioning strategy via Reinforcement Learning (RL) and avoids the need for large-scale annotated dialogue data. In our framework, an agent is trained to generate a sequence of binary questions to efficiently narrow down the search space. To validate our approach, we introduce a benchmark with both structured and unstructured tasks. Experimental results show that SherlockLLM is a robust and efficient solution. On the structured tasks, its performance matches strong baselines and approaches the theoretical optimal defined by binary search. On the challenging unstructured task, our agent significantly outperforms these baselines, showcasing its ability to learn a highly effective information-seeking dialogue policy.
☆ Binary Quadratic Quantization: Beyond First-Order Quantization for Real-Valued Matrix Compression NeurIPS 2025
This paper proposes a novel matrix quantization method, Binary Quadratic Quantization (BQQ). In contrast to conventional first-order quantization approaches, such as uniform quantization and binary coding quantization, that approximate real-valued matrices via linear combinations of binary bases, BQQ leverages the expressive power of binary quadratic expressions while maintaining an extremely compact data format. We validate our approach with two experiments: a matrix compression benchmark and post-training quantization (PTQ) on pretrained Vision Transformer-based models. Experimental results demonstrate that BQQ consistently achieves a superior trade-off between memory efficiency and reconstruction error than conventional methods for compressing diverse matrix data. It also delivers strong PTQ performance, even though we neither target state-of-the-art PTQ accuracy under tight memory constraints nor rely on PTQ-specific binary matrix optimization. For example, our proposed method outperforms the state-of-the-art PTQ method by up to 2.2\% and 59.1% on the ImageNet dataset under the calibration-based and data-free scenarios, respectively, with quantization equivalent to 2 bits. These findings highlight the surprising effectiveness of binary quadratic expressions for efficient matrix approximation and neural network compression.
comment: Accepted to NeurIPS 2025
☆ ε-Seg: Sparsely Supervised Semantic Segmentation of Microscopy Data
Semantic segmentation of electron microscopy (EM) images of biological samples remains a challenge in the life sciences. EM data captures details of biological structures, sometimes with such complexity that even human observers can find it overwhelming. We introduce {\epsilon}-Seg, a method based on hierarchical variational autoencoders (HVAEs), employing center-region masking, sparse label contrastive learning (CL), a Gaussian mixture model (GMM) prior, and clustering-free label prediction. Center-region masking and the inpainting loss encourage the model to learn robust and representative embeddings to distinguish the desired classes, even if training labels are sparse (0.05% of the total image data or less). For optimal performance, we employ CL and a GMM prior to shape the latent space of the HVAE such that encoded input patches tend to cluster wrt. the semantic classes we wish to distinguish. Finally, instead of clustering latent embeddings for semantic segmentation, we propose a MLP semantic segmentation head to directly predict class labels from latent embeddings. We show empirical results of {\epsilon}-Seg and baseline methods on 2 dense EM datasets of biological tissues and demonstrate the applicability of our method also on fluorescence microscopy data. Our results show that {\epsilon}-Seg is capable of achieving competitive sparsely-supervised segmentation results on complex biological image data, even if only limited amounts of training labels are available.
comment: 10 pages main text, 17 pages total
☆ C-SWAP: Explainability-Aware Structured Pruning for Efficient Neural Networks Compression BMVC2025
Neural network compression has gained increasing attention in recent years, particularly in computer vision applications, where the need for model reduction is crucial for overcoming deployment constraints. Pruning is a widely used technique that prompts sparsity in model structures, e.g. weights, neurons, and layers, reducing size and inference costs. Structured pruning is especially important as it allows for the removal of entire structures, which further accelerates inference time and reduces memory overhead. However, it can be computationally expensive, requiring iterative retraining and optimization. To overcome this problem, recent methods considered one-shot setting, which applies pruning directly at post-training. Unfortunately, they often lead to a considerable drop in performance. In this paper, we focus on this issue by proposing a novel one-shot pruning framework that relies on explainable deep learning. First, we introduce a causal-aware pruning approach that leverages cause-effect relations between model predictions and structures in a progressive pruning process. It allows us to efficiently reduce the size of the network, ensuring that the removed structures do not deter the performance of the model. Then, through experiments conducted on convolution neural network and vision transformer baselines, pre-trained on classification tasks, we demonstrate that our method consistently achieves substantial reductions in model size, with minimal impact on performance, and without the need for fine-tuning. Overall, our approach outperforms its counterparts, offering the best trade-off. Our code is available on GitHub.
comment: 10 pages, BMVC2025
☆ Query Decomposition for RAG: Balancing Exploration-Exploitation
Retrieval-augmented generation (RAG) systems address complex user requests by decomposing them into subqueries, retrieving potentially relevant documents for each, and then aggregating them to generate an answer. Efficiently selecting informative documents requires balancing a key trade-off: (i) retrieving broadly enough to capture all the relevant material, and (ii) limiting retrieval to avoid excessive noise and computational cost. We formulate query decomposition and document retrieval in an exploitation-exploration setting, where retrieving one document at a time builds a belief about the utility of a given sub-query and informs the decision to continue exploiting or exploring an alternative. We experiment with a variety of bandit learning methods and demonstrate their effectiveness in dynamically selecting the most informative sub-queries. Our main finding is that estimating document relevance using rank information and human judgments yields a 35% gain in document-level precision, 15% increase in {\alpha}-nDCG, and better performance on the downstream task of long-form generation.
☆ Think with 3D: Geometric Imagination Grounded Spatial Reasoning from Limited Views
Though recent advances in vision-language models (VLMs) have achieved remarkable progress across a wide range of multimodal tasks, understanding 3D spatial relationships from limited views remains a significant challenge. Previous reasoning methods typically rely on pure text (e.g., topological cognitive maps) or on 2D visual cues. However, their limited representational capacity hinders performance in specific tasks that require 3D spatial imagination. To address this limitation, we propose 3DThinker, a framework that can effectively exploits the rich geometric information embedded within images while reasoning, like humans do. Our framework is the first to enable 3D mentaling during reasoning without any 3D prior input, and it does not rely on explicitly labeled 3D data for training. Specifically, our training consists of two stages. First, we perform supervised training to align the 3D latent generated by VLM while reasoning with that of a 3D foundation model (e.g., VGGT). Then, we optimize the entire reasoning trajectory solely based on outcome signals, thereby refining the underlying 3D mentaling. Extensive experiments across multiple benchmarks show that 3DThinker consistently outperforms strong baselines and offers a new perspective toward unifying 3D representations into multimodal reasoning. Our code will be available at https://github.com/zhangquanchen/3DThinker.
comment: 12 pages, 4 figures
☆ Comparative Expressivity for Structured Argumentation Frameworks with Uncertain Rules and Premises
Modelling qualitative uncertainty in formal argumentation is essential both for practical applications and theoretical understanding. Yet, most of the existing works focus on \textit{abstract} models for arguing with uncertainty. Following a recent trend in the literature, we tackle the open question of studying plausible instantiations of these abstract models. To do so, we ground the uncertainty of arguments in their components, structured within rules and premises. Our main technical contributions are: i) the introduction of a notion of expressivity that can handle abstract and structured formalisms, and ii) the presentation of both negative and positive expressivity results, comparing the expressivity of abstract and structured models of argumentation with uncertainty. These results affect incomplete abstract argumentation frameworks, and their extension with dependencies, on the abstract side, and ASPIC+, on the structured side.
☆ Leveraging Association Rules for Better Predictions and Better Explanations
We present a new approach to classification that combines data and knowledge. In this approach, data mining is used to derive association rules (possibly with negations) from data. Those rules are leveraged to increase the predictive performance of tree-based models (decision trees and random forests) used for a classification task. They are also used to improve the corresponding explanation task through the generation of abductive explanations that are more general than those derivable without taking such rules into account. Experiments show that for the two tree-based models under consideration, benefits can be offered by the approach in terms of predictive performance and in terms of explanation sizes.
comment: 24 pages
☆ VAR: Visual Attention Reasoning via Structured Search and Backtracking
Multimodal Large Language Models (MLLMs), despite their advances, are hindered by their high hallucination tendency and heavy reliance on brittle, linear reasoning processes, leading to failures in complex tasks. To address these limitations, we introduce Visual Attention Reasoning (VAR), a novel framework that recasts grounded reasoning as a structured search over a reasoning trajectory space. VAR decomposes the reasoning process into two key stages: traceable evidence grounding and search-based chain-of-thought (CoT) generation, which incorporates a backtracking mechanism for self-correction. The search is guided by a multi-faceted reward function with semantic and geometric self-verification components, which penalize outputs that are not faithfully grounded in the visual input. We provide a theoretical analysis for our search strategy, validating its capability to find the correct solution with high probability. Experimental results show that our 7B model, VAR-7B, sets a new state-of-the-art on a comprehensive suite of hallucination and safety benchmarks, significantly outperforming existing open-source models and demonstrating competitive performance against leading proprietary systems.
☆ A Rectification-Based Approach for Distilling Boosted Trees into Decision Trees
We present a new approach for distilling boosted trees into decision trees, in the objective of generating an ML model offering an acceptable compromise in terms of predictive performance and interpretability. We explain how the correction approach called rectification can be used to implement such a distillation process. We show empirically that this approach provides interesting results, in comparison with an approach to distillation achieved by retraining the model.
comment: 29 pages
☆ The Cost-Benefit of Interdisciplinarity in AI for Mental Health
Artificial intelligence has been introduced as a way to improve access to mental health support. However, most AI mental health chatbots rely on a limited range of disciplinary input, and fail to integrate expertise across the chatbot's lifecycle. This paper examines the cost-benefit trade-off of interdisciplinary collaboration in AI mental health chatbots. We argue that involving experts from technology, healthcare, ethics, and law across key lifecycle phases is essential to ensure value-alignment and compliance with the high-risk requirements of the AI Act. We also highlight practical recommendations and existing frameworks to help balance the challenges and benefits of interdisciplinarity in mental health chatbots.
comment: Accepted for poster presentation at the AI in Science Summit 2025
☆ Kaleido: Open-Sourced Multi-Subject Reference Video Generation Model
We present Kaleido, a subject-to-video~(S2V) generation framework, which aims to synthesize subject-consistent videos conditioned on multiple reference images of target subjects. Despite recent progress in S2V generation models, existing approaches remain inadequate at maintaining multi-subject consistency and at handling background disentanglement, often resulting in lower reference fidelity and semantic drift under multi-image conditioning. These shortcomings can be attributed to several factors. Primarily, the training dataset suffers from a lack of diversity and high-quality samples, as well as cross-paired data, i.e., paired samples whose components originate from different instances. In addition, the current mechanism for integrating multiple reference images is suboptimal, potentially resulting in the confusion of multiple subjects. To overcome these limitations, we propose a dedicated data construction pipeline, incorporating low-quality sample filtering and diverse data synthesis, to produce consistency-preserving training data. Moreover, we introduce Reference Rotary Positional Encoding (R-RoPE) to process reference images, enabling stable and precise multi-image integration. Extensive experiments across numerous benchmarks demonstrate that Kaleido significantly outperforms previous methods in consistency, fidelity, and generalization, marking an advance in S2V generation.
comment: 11 pages, 6 figures
☆ QuantEvolve: Automating Quantitative Strategy Discovery through Multi-Agent Evolutionary Framework
Automating quantitative trading strategy development in dynamic markets is challenging, especially with increasing demand for personalized investment solutions. Existing methods often fail to explore the vast strategy space while preserving the diversity essential for robust performance across changing market conditions. We present QuantEvolve, an evolutionary framework that combines quality-diversity optimization with hypothesis-driven strategy generation. QuantEvolve employs a feature map aligned with investor preferences, such as strategy type, risk profile, turnover, and return characteristics, to maintain a diverse set of effective strategies. It also integrates a hypothesis-driven multi-agent system to systematically explore the strategy space through iterative generation and evaluation. This approach produces diverse, sophisticated strategies that adapt to both market regime shifts and individual investment needs. Empirical results show that QuantEvolve outperforms conventional baselines, validating its effectiveness. We release a dataset of evolved strategies to support future research.
comment: 25 pages, 13 figures. Accepted for oral presentation at the 2nd Workshop on LLMs and Generative AI for Finance (AI4F), part of ACM ICAIF 2025, Singapore. Non-archival workshop
☆ Large language models for folktale type automation based on motifs: Cinderella case study
Artificial intelligence approaches are being adapted to many research areas, including digital humanities. We built a methodology for large-scale analyses in folkloristics. Using machine learning and natural language processing, we automatically detected motifs in a large collection of Cinderella variants and analysed their similarities and differences with clustering and dimensionality reduction. The results show that large language models detect complex interactions in tales, enabling computational analysis of extensive text collections and facilitating cross-lingual comparisons.
☆ WebDevJudge: Evaluating (M)LLMs as Critiques for Web Development Quality
The paradigm of LLM-as-a-judge is emerging as a scalable and efficient alternative to human evaluation, demonstrating strong performance on well-defined tasks. However, its reliability in open-ended tasks with dynamic environments and complex interactions remains unexplored. To bridge the gap, we introduce WebDevJudge, a systematic benchmark for assessing LLM-as-a-judge performance in web development, with support for both non-interactive evaluation based on static observations and continuous interactive evaluation with a dynamic web environment. WebDevJudge comprises human preference labels over paired web implementations, annotated with structured and query-grounded rubrics to ensure high-quality ground truth. Using this benchmark, we comprehensively evaluate various evaluators, including LLMs, MLLMs, and agentic workflows. We systematically investigate the impact of different paradigms and guidance mechanisms. Our experiments reveal a significant gap between LLM judges and human experts. In-depth analysis indicates this gap stems from fundamental model limitations, including failures in recognizing functional equivalence, verifying task feasibility, and mitigating bias. Overall, WebDevJudge presents a significant challenge to LLM-as-a-judge, offering insights to guide future research toward developing more reliable and capable automated evaluators for complicated scenarios. Code and data are available at https://github.com/lcy2723/WebDevJudge.
☆ RAISE: A Unified Framework for Responsible AI Scoring and Evaluation
As AI systems enter high-stakes domains, evaluation must extend beyond predictive accuracy to include explainability, fairness, robustness, and sustainability. We introduce RAISE (Responsible AI Scoring and Evaluation), a unified framework that quantifies model performance across these four dimensions and aggregates them into a single, holistic Responsibility Score. We evaluated three deep learning models: a Multilayer Perceptron (MLP), a Tabular ResNet, and a Feature Tokenizer Transformer, on structured datasets from finance, healthcare, and socioeconomics. Our findings reveal critical trade-offs: the MLP demonstrated strong sustainability and robustness, the Transformer excelled in explainability and fairness at a very high environmental cost, and the Tabular ResNet offered a balanced profile. These results underscore that no single model dominates across all responsibility criteria, highlighting the necessity of multi-dimensional evaluation for responsible model selection. Our implementation is available at: https://github.com/raise-framework/raise.
comment: Accepted at the 26th International Conference on Principles and Practice of Multi-Agent Systems
☆ Extracting alignment data in open models
In this work, we show that it is possible to extract significant amounts of alignment training data from a post-trained model -- useful to steer the model to improve certain capabilities such as long-context reasoning, safety, instruction following, and maths. While the majority of related work on memorisation has focused on measuring success of training data extraction through string matching, we argue that embedding models are better suited for our specific goals. Distances measured through a high quality embedding model can identify semantic similarities between strings that a different metric such as edit distance will struggle to capture. In fact, in our investigation, approximate string matching would have severely undercounted (by a conservative estimate of $10\times$) the amount of data that can be extracted due to trivial artifacts that deflate the metric. Interestingly, we find that models readily regurgitate training data that was used in post-training phases such as SFT or RL. We show that this data can be then used to train a base model, recovering a meaningful amount of the original performance. We believe our work exposes a possibly overlooked risk towards extracting alignment data. Finally, our work opens up an interesting discussion on the downstream effects of distillation practices: since models seem to be regurgitating aspects of their training set, distillation can therefore be thought of as indirectly training on the model's original dataset.
☆ SOCIA-Nabla: Textual Gradient Meets Multi-Agent Orchestration for Automated Simulator Generation
In this paper, we present SOCIA-Nabla, an end-to-end, agentic framework that treats simulator construction asinstance optimization over code within a textual computation graph. Specialized LLM-driven agents are embedded as graph nodes, and a workflow manager executes a loss-driven loop: code synthesis -> execution -> evaluation -> code repair. The optimizer performs Textual-Gradient Descent (TGD), while human-in-the-loop interaction is reserved for task-spec confirmation, minimizing expert effort and keeping the code itself as the trainable object. Across three CPS tasks, i.e., User Modeling, Mask Adoption, and Personal Mobility, SOCIA-Nabla attains state-of-the-art overall accuracy. By unifying multi-agent orchestration with a loss-aligned optimization view, SOCIA-Nabla converts brittle prompt pipelines into reproducible, constraint-aware simulator code generation that scales across domains and simulation granularities. This work is under review, and we will release the code soon.
comment: 11 pages, 1 figure, 2 tables. The paper is under review
☆ EfficientNav: Towards On-Device Object-Goal Navigation with Navigation Map Caching and Retrieval NeurIPS 2025
Object-goal navigation (ObjNav) tasks an agent with navigating to the location of a specific object in an unseen environment. Embodied agents equipped with large language models (LLMs) and online constructed navigation maps can perform ObjNav in a zero-shot manner. However, existing agents heavily rely on giant LLMs on the cloud, e.g., GPT-4, while directly switching to small LLMs, e.g., LLaMA3.2-11b, suffer from significant success rate drops due to limited model capacity for understanding complex navigation maps, which prevents deploying ObjNav on local devices. At the same time, the long prompt introduced by the navigation map description will cause high planning latency on local devices. In this paper, we propose EfficientNav to enable on-device efficient LLM-based zero-shot ObjNav. To help the smaller LLMs better understand the environment, we propose semantics-aware memory retrieval to prune redundant information in navigation maps. To reduce planning latency, we propose discrete memory caching and attention-based memory clustering to efficiently save and re-use the KV cache. Extensive experimental results demonstrate that EfficientNav achieves 11.1% improvement in success rate on HM3D benchmark over GPT-4-based baselines, and demonstrates 6.7x real-time latency reduction and 4.7x end-to-end latency reduction over GPT-4 planner. Our code will be released soon.
comment: NeurIPS 2025
☆ Pay Attention to the Triggers: Constructing Backdoors That Survive Distillation
LLMs are often used by downstream users as teacher models for knowledge distillation, compressing their capabilities into memory-efficient models. However, as these teacher models may stem from untrusted parties, distillation can raise unexpected security risks. In this paper, we investigate the security implications of knowledge distillation from backdoored teacher models. First, we show that prior backdoors mostly do not transfer onto student models. Our key insight is that this is because existing LLM backdooring methods choose trigger tokens that rarely occur in usual contexts. We argue that this underestimates the security risks of knowledge distillation and introduce a new backdooring technique, T-MTB, that enables the construction and study of transferable backdoors. T-MTB carefully constructs a composite backdoor trigger, made up of several specific tokens that often occur individually in anticipated distillation datasets. As such, the poisoned teacher remains stealthy, while during distillation the individual presence of these tokens provides enough signal for the backdoor to transfer onto the student. Using T-MTB, we demonstrate and extensively study the security risks of transferable backdoors across two attack scenarios, jailbreaking and content modulation, and across four model families of LLMs.
☆ Physics-guided Emulators Reveal Resilience and Fragility under Operational Latencies and Outages
Reliable hydrologic and flood forecasting requires models that remain stable when input data are delayed, missing, or inconsistent. However, most advances in rainfall-runoff prediction have been evaluated under ideal data conditions, emphasizing accuracy rather than operational resilience. Here, we develop an operationally ready emulator of the Global Flood Awareness System (GloFAS) that couples long- and short-term memory networks with a relaxed water-balance constraint to preserve physical coherence. Five architectures span a continuum of information availability: from complete historical and forecast forcings to scenarios with data latency and outages, allowing systematic evaluation of robustness. Trained in minimally managed catchments across the United States and tested in more than 5,000 basins, including heavily regulated rivers in India, the emulator reproduces the hydrological core of GloFAS and degrades smoothly as information quality declines. Transfer across contrasting hydroclimatic and management regimes yields reduced yet physically consistent performance, defining the limits of generalization under data scarcity and human influence. The framework establishes operational robustness as a measurable property of hydrological machine learning and advances the design of reliable real-time forecasting systems.
comment: 45 pages, 5 main figures, 10 supplementary figures, 5 supplementary tables
☆ Counterfactual Reasoning for Steerable Pluralistic Value Alignment of Large Language Models
As large language models (LLMs) become increasingly integrated into applications serving users across diverse cultures, communities and demographics, it is critical to align LLMs with pluralistic human values beyond average principles (e.g., HHH). In psychological and social value theories such as Schwartz's Value Theory, pluralistic values are represented by multiple value dimensions paired with various priorities. However, existing methods encounter two challenges when aligning with such fine-grained value objectives: 1) they often treat multiple values as independent and equally important, ignoring their interdependence and relative priorities (value complexity); 2) they struggle to precisely control nuanced value priorities, especially those underrepresented ones (value steerability). To handle these challenges, we propose COUPLE, a COUnterfactual reasoning framework for PLuralistic valuE alignment. It introduces a structural causal model (SCM) to feature complex interdependency and prioritization among features, as well as the causal relationship between high-level value dimensions and behaviors. Moreover, it applies counterfactual reasoning to generate outputs aligned with any desired value objectives. Benefitting from explicit causal modeling, COUPLE also provides better interpretability. We evaluate COUPLE on two datasets with different value systems and demonstrate that COUPLE advances other baselines across diverse types of value objectives.
comment: 41 pages, 7 figures
☆ Zero-Shot Vehicle Model Recognition via Text-Based Retrieval-Augmented Generation
Vehicle make and model recognition (VMMR) is an important task in intelligent transportation systems, but existing approaches struggle to adapt to newly released models. Contrastive Language-Image Pretraining (CLIP) provides strong visual-text alignment, yet its fixed pretrained weights limit performance without costly image-specific finetuning. We propose a pipeline that integrates vision language models (VLMs) with Retrieval-Augmented Generation (RAG) to support zero-shot recognition through text-based reasoning. A VLM converts vehicle images into descriptive attributes, which are compared against a database of textual features. Relevant entries are retrieved and combined with the description to form a prompt, and a language model (LM) infers the make and model. This design avoids large-scale retraining and enables rapid updates by adding textual descriptions of new vehicles. Experiments show that the proposed method improves recognition by nearly 20% over the CLIP baseline, demonstrating the potential of RAG-enhanced LM reasoning for scalable VMMR in smart-city applications.
comment: Accepted by The 38th Conference of Open Innovations Association FRUCT, 2025
☆ One Size Fits All? A Modular Adaptive Sanitization Kit (MASK) for Customizable Privacy-Preserving Phone Scam Detection
Phone scams remain a pervasive threat to both personal safety and financial security worldwide. Recent advances in large language models (LLMs) have demonstrated strong potential in detecting fraudulent behavior by analyzing transcribed phone conversations. However, these capabilities introduce notable privacy risks, as such conversations frequently contain sensitive personal information that may be exposed to third-party service providers during processing. In this work, we explore how to harness LLMs for phone scam detection while preserving user privacy. We propose MASK (Modular Adaptive Sanitization Kit), a trainable and extensible framework that enables dynamic privacy adjustment based on individual preferences. MASK provides a pluggable architecture that accommodates diverse sanitization methods - from traditional keyword-based techniques for high-privacy users to sophisticated neural approaches for those prioritizing accuracy. We also discuss potential modeling approaches and loss function designs for future development, enabling the creation of truly personalized, privacy-aware LLM-based detection systems that balance user trust and detection effectiveness, even beyond phone scam context.
comment: 9 pages
☆ Crucible: Quantifying the Potential of Control Algorithms through LLM Agents NeurIPS 2025
Control algorithms in production environments typically require domain experts to tune their parameters and logic for specific scenarios. However, existing research predominantly focuses on algorithmic performance under ideal or default configurations, overlooking the critical aspect of Tuning Potential. To bridge this gap, we introduce Crucible, an agent that employs an LLM-driven, multi-level expert simulation to turn algorithms and defines a formalized metric to quantitatively evaluate their Tuning Potential. We demonstrate Crucible's effectiveness across a wide spectrum of case studies, from classic control tasks to complex computer systems, and validate its findings in a real-world deployment. Our experimental results reveal that Crucible systematically quantifies the tunable space across different algorithms. Furthermore, Crucible provides a new dimension for algorithm analysis and design, which ultimately leads to performance improvements. Our code is available at https://github.com/thu-media/Crucible.
comment: NeurIPS 2025
☆ AndroidControl-Curated: Revealing the True Potential of GUI Agents through Benchmark Purification
On-device virtual assistants like Siri and Google Assistant are increasingly pivotal, yet their capabilities are hamstrung by a reliance on rigid, developer-dependent APIs. GUI agents offer a powerful, API-independent alternative, but their adoption is hindered by the perception of poor performance, as even the best models (e.g. Qwen3-VL-235B) scores are capped at around 60% on benchmarks like AndroidControl, far from viability for real-world use. Our research reveals that issue lies not only with the models but with the benchmarks themselves. We identified notable shortcomings in AndroidControl, including ambiguities and factual errors, which systematically underrates agent capabilities. To address this critical oversight, we enhanced AndroidControl into AndroidControl-Curated, a refined version of the benchmark improved through a rigorous purification pipeline. On this enhanced benchmark, state-of-the-art models achieve success rates nearing 75% on complex tasks (15% improvement), reflecting that on-device GUI agents are actually closer to practical deployment than previously thought. We introduce our new SOTA model, Magma-R1- 3B, post-trained on just 2.4k curated samples using 60 hours of an H20 GPU (approximately $60). Despite being 200 times smaller in parameters, this model delivers performance comparable to Qwen3- VL-235B. We release both AndroidControl-Curated benchmark and Magma-R1 model to the research community, encouraging adoption of this enhanced benchmark to better reflect model capabilities and accelerate the development of robust, on-device virtual assistants.
☆ StarBench: A Turn-Based RPG Benchmark for Agentic Multimodal Decision-Making and Information Seeking
Human players do more than press buttons: they ground what they see on screen into precise keyboard-mouse actions and, when stuck, they seek information before trying again. We ask whether current vision-language models (VLMs) can do the same. Despite encouraging results under simplified control or tool scaffolds, human-like play in a real client - mapping raw screenshots to temporally coherent low-level actions while deciding when to ask for guidance - remains an open challenge. We introduce StarBench, a turn-based RPG benchmark derived from Honkai: Star Rail that targets these two human-like competencies: multimodal decision-making from pixels to actions and agentic information seeking. StarBench standardizes evaluation across eight combat tasks and two regimes with shared tasks and metrics: (i) direct control, where agents receive only screenshots and must emit low-level primitives (click and keypress) with no semantic hints; and (ii) tool-assisted control, where higher-level intents can be mapped to primitives by detectors and OCR outputs provide optional textualized observations to ease UI grounding. To mirror human practice, StarBench also includes an ask-or-act diagnostic that measures whether and when agents choose to request brief guidance before proceeding, and how that choice affects subsequent performance. We report reference baselines for contemporary VLMs and a human reference. Results expose sizable gaps in perception-to-control fidelity in the direct regime, while showing that judicious information seeking correlates with improved success, establishing StarBench as a reproducible yardstick for agentic information seeking and multimodal decision-making in real-client play.
☆ LAFA: Agentic LLM-Driven Federated Analytics over Decentralized Data Sources
Large Language Models (LLMs) have shown great promise in automating data analytics tasks by interpreting natural language queries and generating multi-operation execution plans. However, existing LLM-agent-based analytics frameworks operate under the assumption of centralized data access, offering little to no privacy protection. In contrast, federated analytics (FA) enables privacy-preserving computation across distributed data sources, but lacks support for natural language input and requires structured, machine-readable queries. In this work, we present LAFA, the first system that integrates LLM-agent-based data analytics with FA. LAFA introduces a hierarchical multi-agent architecture that accepts natural language queries and transforms them into optimized, executable FA workflows. A coarse-grained planner first decomposes complex queries into sub-queries, while a fine-grained planner maps each subquery into a Directed Acyclic Graph of FA operations using prior structural knowledge. To improve execution efficiency, an optimizer agent rewrites and merges multiple DAGs, eliminating redundant operations and minimizing computational and communicational overhead. Our experiments demonstrate that LAFA consistently outperforms baseline prompting strategies by achieving higher execution plan success rates and reducing resource-intensive FA operations by a substantial margin. This work establishes a practical foundation for privacy-preserving, LLM-driven analytics that supports natural language input in the FA setting.
☆ Probabilistic Modeling of Intentions in Socially Intelligent LLM Agents
We present a probabilistic intent modeling framework for large language model (LLM) agents in multi-turn social dialogue. The framework maintains a belief distribution over a partner's latent intentions, initialized from contextual priors and dynamically updated through likelihood estimation after each utterance. The evolving distribution provides additional contextual grounding for the policy, enabling adaptive dialogue strategies under uncertainty. Preliminary experiments in the SOTOPIA environment show consistent improvements: the proposed framework increases the Overall score by 9.0% on SOTOPIA-All and 4.1% on SOTOPIA-Hard compared with the Qwen2.5-7B baseline, and slightly surpasses an oracle agent that directly observes partner intentions. These early results suggest that probabilistic intent modeling can contribute to the development of socially intelligent LLM agents.
☆ Benchmarking Fairness-aware Graph Neural Networks in Knowledge Graphs
Graph neural networks (GNNs) are powerful tools for learning from graph-structured data but often produce biased predictions with respect to sensitive attributes. Fairness-aware GNNs have been actively studied for mitigating biased predictions. However, no prior studies have evaluated fairness-aware GNNs on knowledge graphs, which are one of the most important graphs in many applications, such as recommender systems. Therefore, we introduce a benchmarking study on knowledge graphs. We generate new graphs from three knowledge graphs, YAGO, DBpedia, and Wikidata, that are significantly larger than the existing graph datasets used in fairness studies. We benchmark inprocessing and preprocessing methods in different GNN backbones and early stopping conditions. We find several key insights: (i) knowledge graphs show different trends from existing datasets; clearer trade-offs between prediction accuracy and fairness metrics than other graphs in fairness-aware GNNs, (ii) the performance is largely affected by not only fairness-aware GNN methods but also GNN backbones and early stopping conditions, and (iii) preprocessing methods often improve fairness metrics, while inprocessing methods improve prediction accuracy.
☆ CodeRL+: Improving Code Generation via Reinforcement with Execution Semantics Alignment
While Large Language Models (LLMs) excel at code generation by learning from vast code corpora, a fundamental semantic gap remains between their training on textual patterns and the goal of functional correctness, which is governed by formal execution semantics. Reinforcement Learning with Verifiable Rewards (RLVR) approaches attempt to bridge this gap using outcome rewards from executing test cases. However, solely relying on binary pass/fail signals is inefficient for establishing a well-aligned connection between the textual representation of code and its execution semantics, especially for subtle logical errors within the code. In this paper, we propose CodeRL+, a novel approach that integrates execution semantics alignment into the RLVR training pipeline for code generation. CodeRL+ enables the model to infer variable-level execution trajectory, providing a direct learning signal of execution semantics. CodeRL+ can construct execution semantics alignment directly using existing on-policy rollouts and integrates seamlessly with various RL algorithms. Extensive experiments demonstrate that CodeRL+ outperforms post-training baselines (including RLVR and Distillation), achieving a 4.6% average relative improvement in pass@1. CodeRL+ generalizes effectively to other coding tasks, yielding 15.5% and 4.4% higher accuracy on code-reasoning and test-output-generation benchmarks, respectively. CodeRL+ shows strong applicability across diverse RL algorithms and LLMs. Furthermore, probe analyses provide compelling evidence that CodeRL+ strengthens the alignment between code's textual representations and its underlying execution semantics.
☆ CircuitSeer: Mining High-Quality Data by Probing Mathematical Reasoning Circuits in LLMs
Large language models (LLMs) have demonstrated impressive reasoning capabilities, but scaling their performance often relies on massive reasoning datasets that are computationally expensive to train on. Existing data selection methods aim to curate smaller, high-quality subsets but often rely on costly external models or opaque heuristics. In this work, we shift the focus from external heuristics to the model's internal mechanisms. We find that complex reasoning tasks consistently activate a sparse, specialized subset of attention heads, forming core reasoning circuits. Building on this insight, we propose CircuitSeer, a novel data selection method that quantifies the reasoning complexity of data by measuring its influence on these crucial circuits. Extensive experiments on 4 models and 9 datasets demonstrate CircuitSeer's superiority. Notably, fine-tuning Qwen2.5-Math-7B on just 10% of data selected by our method achieves a 1.4-point gain in average Pass@1 over training on the full dataset, highlighting its efficiency and effectiveness.
comment: 14 pages, 5 figures
☆ Simple and Efficient Heterogeneous Temporal Graph Neural Network
Heterogeneous temporal graphs (HTGs) are ubiquitous data structures in the real world. Recently, to enhance representation learning on HTGs, numerous attention-based neural networks have been proposed. Despite these successes, existing methods rely on a decoupled temporal and spatial learning paradigm, which weakens interactions of spatio-temporal information and leads to a high model complexity. To bridge this gap, we propose a novel learning paradigm for HTGs called Simple and Efficient Heterogeneous Temporal Graph N}eural Network (SE-HTGNN). Specifically, we innovatively integrate temporal modeling into spatial learning via a novel dynamic attention mechanism, which retains attention information from historical graph snapshots to guide subsequent attention computation, thereby improving the overall discriminative representations learning of HTGs. Additionally, to comprehensively and adaptively understand HTGs, we leverage large language models to prompt SE-HTGNN, enabling the model to capture the implicit properties of node types as prior knowledge. Extensive experiments demonstrate that SE-HTGNN achieves up to 10x speed-up over the state-of-the-art and latest baseline while maintaining the best forecasting accuracy.
comment: Accepted by Neurips 2025
☆ DeLoad: Demand-Driven Short-Video Preloading with Scalable Watch-Time Estimation
Short video streaming has become a dominant paradigm in digital media, characterized by rapid swiping interactions and diverse media content. A key technical challenge is designing an effective preloading strategy that dynamically selects and prioritizes download tasks from an evolving playlist, balancing Quality of Experience (QoE) and bandwidth efficiency under practical commercial constraints. However, real world analysis reveals critical limitations of existing approaches: (1) insufficient adaptation of download task sizes to dynamic conditions, and (2) watch time prediction models that are difficult to deploy reliably at scale. In this paper, we propose DeLoad, a novel preloading framework that addresses these issues by introducing dynamic task sizing and a practical, multi dimensional watch time estimation method. Additionally, a Deep Reinforcement Learning (DRL) enhanced agent is trained to optimize the download range decisions adaptively. Extensive evaluations conducted on an offline testing platform, leveraging massive real world network data, demonstrate that DeLoad achieves significant improvements in QoE metrics (34.4% to 87.4% gain). Furthermore, after deployment on a large scale commercial short video platform, DeLoad has increased overall user watch time by 0.09% while simultaneously reducing rebuffering events and 3.76% bandwidth consumption.
☆ PlanU: Large Language Model Decision Making through Planning under Uncertainty NeurIPS 2025
Large Language Models (LLMs) are increasingly being explored across a range of decision-making tasks. However, LLMs sometimes struggle with decision-making tasks under uncertainty that are relatively easy for humans, such as planning actions in stochastic environments. The adoption of LLMs for decision-making is impeded by uncertainty challenges, such as LLM uncertainty and environmental uncertainty. LLM uncertainty arises from the stochastic sampling process inherent to LLMs. Most LLM-based Decision-Making (LDM) approaches address LLM uncertainty through multiple reasoning chains or search trees. However, these approaches overlook environmental uncertainty, which leads to poor performance in environments with stochastic state transitions. Some recent LDM approaches deal with uncertainty by forecasting the probability of unknown variables. However, they are not designed for multi-step decision-making tasks that require interaction with the environment. To address uncertainty in LLM decision-making, we introduce PlanU, an LLM-based planning method that captures uncertainty within Monte Carlo Tree Search (MCTS). PlanU models the return of each node in the MCTS as a quantile distribution, which uses a set of quantiles to represent the return distribution. To balance exploration and exploitation during tree search, PlanU introduces an Upper Confidence Bounds with Curiosity (UCC) score which estimates the uncertainty of MCTS nodes. Through extensive experiments, we demonstrate the effectiveness of PlanU in LLM-based decision-making tasks under uncertainty.
comment: 38 pages, 19 figures, NeurIPS 2025 Accepted
☆ ImageGem: In-the-wild Generative Image Interaction Dataset for Generative Model Personalization
We introduce ImageGem, a dataset for studying generative models that understand fine-grained individual preferences. We posit that a key challenge hindering the development of such a generative model is the lack of in-the-wild and fine-grained user preference annotations. Our dataset features real-world interaction data from 57K users, who collectively have built 242K customized LoRAs, written 3M text prompts, and created 5M generated images. With user preference annotations from our dataset, we were able to train better preference alignment models. In addition, leveraging individual user preference, we investigated the performance of retrieval models and a vision-language model on personalized image retrieval and generative model recommendation. Finally, we propose an end-to-end framework for editing customized diffusion models in a latent weight space to align with individual user preferences. Our results demonstrate that the ImageGem dataset enables, for the first time, a new paradigm for generative model personalization.
☆ ScaleNet: Scaling up Pretrained Neural Networks with Incremental Parameters
Recent advancements in vision transformers (ViTs) have demonstrated that larger models often achieve superior performance. However, training these models remains computationally intensive and costly. To address this challenge, we introduce ScaleNet, an efficient approach for scaling ViT models. Unlike conventional training from scratch, ScaleNet facilitates rapid model expansion with negligible increases in parameters, building on existing pretrained models. This offers a cost-effective solution for scaling up ViTs. Specifically, ScaleNet achieves model expansion by inserting additional layers into pretrained ViTs, utilizing layer-wise weight sharing to maintain parameters efficiency. Each added layer shares its parameter tensor with a corresponding layer from the pretrained model. To mitigate potential performance degradation due to shared weights, ScaleNet introduces a small set of adjustment parameters for each layer. These adjustment parameters are implemented through parallel adapter modules, ensuring that each instance of the shared parameter tensor remains distinct and optimized for its specific function. Experiments on the ImageNet-1K dataset demonstrate that ScaleNet enables efficient expansion of ViT models. With a 2$\times$ depth-scaled DeiT-Base model, ScaleNet achieves a 7.42% accuracy improvement over training from scratch while requiring only one-third of the training epochs, highlighting its efficiency in scaling ViTs. Beyond image classification, our method shows significant potential for application in downstream vision areas, as evidenced by the validation in object detection task.
☆ Optimistic Higher-Order Superposition
The $\lambda$-superposition calculus is a successful approach to proving higher-order formulas. However, some parts of the calculus are extremely explosive, notably due to the higher-order unifier enumeration and the functional extensionality axiom. In the present work, we introduce an "optimistic" version of $\lambda$-superposition that addresses these two issues. Specifically, our new calculus delays explosive unification problems using constraints stored along with the clauses, and it applies functional extensionality in a more targeted way. The calculus is sound and refutationally complete with respect to a Henkin semantics. We have yet to implement it in a prover, but examples suggest that it will outperform, or at least usefully complement, the original $\lambda$-superposition calculus.
☆ AlphaOPT: Formulating Optimization Programs with Self-Improving LLM Experience Library
Optimization modeling enables critical decisions across industries but remains difficult to automate: informal language must be mapped to precise mathematical formulations and executable solver code. Prior LLM approaches either rely on brittle prompting or costly retraining with limited generalization. We present AlphaOPT, a self-improving experience library that enables an LLM to learn from limited demonstrations (even answers alone, without gold-standard programs) and solver feedback - without annotated reasoning traces or parameter updates. AlphaOPT operates in a continual two-phase cycle: (i) a Library Learning phase that reflects on failed attempts, extracting solver-verified, structured insights as {taxonomy, condition, explanation, example}; and (ii) a Library Evolution phase that diagnoses retrieval misalignments and refines the applicability conditions of stored insights, improving transfer across tasks. This design (1) learns efficiently from limited demonstrations without curated rationales, (2) expands continually without costly retraining by updating the library rather than model weights, and (3) makes knowledge explicit and interpretable for human inspection and intervention. Experiments show that AlphaOPT steadily improves with more data (65% to 72% from 100 to 300 training items) and surpasses the strongest baseline by 7.7% on the out-of-distribution OptiBench dataset when trained only on answers. Code and data are available at: https://github.com/Minw913/AlphaOPT.
☆ Automated urban waterlogging assessment and early warning through a mixture of foundation models
With climate change intensifying, urban waterlogging poses an increasingly severe threat to global public safety and infrastructure. However, existing monitoring approaches rely heavily on manual reporting and fail to provide timely and comprehensive assessments. In this study, we present Urban Waterlogging Assessment (UWAssess), a foundation model-driven framework that automatically identifies waterlogged areas in surveillance images and generates structured assessment reports. To address the scarcity of labeled data, we design a semi-supervised fine-tuning strategy and a chain-of-thought (CoT) prompting strategy to unleash the potential of the foundation model for data-scarce downstream tasks. Evaluations on challenging visual benchmarks demonstrate substantial improvements in perception performance. GPT-based evaluations confirm the ability of UWAssess to generate reliable textual reports that accurately describe waterlogging extent, depth, risk and impact. This dual capability enables a shift of waterlogging monitoring from perception to generation, while the collaborative framework of multiple foundation models lays the groundwork for intelligent and scalable systems, supporting urban management, disaster response and climate resilience.
comment: Submitted to Nature
☆ Med-VRAgent: A Framework for Medical Visual Reasoning-Enhanced Agents
Visual Language Models (VLMs) achieve promising results in medical reasoning but struggle with hallucinations, vague descriptions, inconsistent logic and poor localization. To address this, we propose a agent framework named Medical Visual Reasoning Agent (\textbf{Med-VRAgent}). The approach is based on Visual Guidance and Self-Reward paradigms and Monte Carlo Tree Search (MCTS). By combining the Visual Guidance with tree search, Med-VRAgent improves the medical visual reasoning capabilities of VLMs. We use the trajectories collected by Med-VRAgent as feedback to further improve the performance by fine-tuning the VLMs with the proximal policy optimization (PPO) objective. Experiments on multiple medical VQA benchmarks demonstrate that our method outperforms existing approaches.
☆ On AI Verification in Open RAN
Open RAN introduces a flexible, cloud-based architecture for the Radio Access Network (RAN), enabling Artificial Intelligence (AI)/Machine Learning (ML)-driven automation across heterogeneous, multi-vendor deployments. While EXplainable Artificial Intelligence (XAI) helps mitigate the opacity of AI models, explainability alone does not guarantee reliable network operations. In this article, we propose a lightweight verification approach based on interpretable models to validate the behavior of Deep Reinforcement Learning (DRL) agents for RAN slicing and scheduling in Open RAN. Specifically, we use Decision Tree (DT)-based verifiers to perform near-real-time consistency checks at runtime, which would be otherwise unfeasible with computationally expensive state-of-the-art verifiers. We analyze the landscape of XAI and AI verification, propose a scalable architectural integration, and demonstrate feasibility with a DT-based slice-verifier. We also outline future challenges to ensure trustworthy AI adoption in Open RAN.
☆ Deep Learning-Based Control Optimization for Glass Bottle Forming
In glass bottle manufacturing, precise control of forming machines is critical for ensuring quality and minimizing defects. This study presents a deep learning-based control algorithm designed to optimize the forming process in real production environments. Using real operational data from active manufacturing plants, our neural network predicts the effects of parameter changes based on the current production setup. Through a specifically designed inversion mechanism, the algorithm identifies the optimal machine settings required to achieve the desired glass gob characteristics. Experimental results on historical datasets from multiple production lines show that the proposed method yields promising outcomes, suggesting potential for enhanced process stability, reduced waste, and improved product consistency. These results highlight the potential of deep learning to process control in glass manufacturing.
comment: 37 pages, 17 figures, accepted for publication in "Expert Systems With Applications"
☆ Heterogeneous Adversarial Play in Interactive Environments NeurIPS 2025
Self-play constitutes a fundamental paradigm for autonomous skill acquisition, whereby agents iteratively enhance their capabilities through self-directed environmental exploration. Conventional self-play frameworks exploit agent symmetry within zero-sum competitive settings, yet this approach proves inadequate for open-ended learning scenarios characterized by inherent asymmetry. Human pedagogical systems exemplify asymmetric instructional frameworks wherein educators systematically construct challenges calibrated to individual learners' developmental trajectories. The principal challenge resides in operationalizing these asymmetric, adaptive pedagogical mechanisms within artificial systems capable of autonomously synthesizing appropriate curricula without predetermined task hierarchies. Here we present Heterogeneous Adversarial Play (HAP), an adversarial Automatic Curriculum Learning framework that formalizes teacher-student interactions as a minimax optimization wherein task-generating instructor and problem-solving learner co-evolve through adversarial dynamics. In contrast to prevailing ACL methodologies that employ static curricula or unidirectional task selection mechanisms, HAP establishes a bidirectional feedback system wherein instructors continuously recalibrate task complexity in response to real-time learner performance metrics. Experimental validation across multi-task learning domains demonstrates that our framework achieves performance parity with SOTA baselines while generating curricula that enhance learning efficacy in both artificial agents and human subjects.
comment: NeurIPS 2025
☆ Learning from N-Tuple Data with M Positive Instances: Unbiased Risk Estimation and Theoretical Guarantees
Weakly supervised learning often operates with coarse aggregate signals rather than instance labels. We study a setting where each training example is an $n$-tuple containing exactly m positives, while only the count m per tuple is observed. This NTMP (N-tuple with M positives) supervision arises in, e.g., image classification with region proposals and multi-instance measurements. We show that tuple counts admit a trainable unbiased risk estimator (URE) by linking the tuple-generation process to latent instance marginals. Starting from fixed (n,m), we derive a closed-form URE and extend it to variable tuple sizes, variable counts, and their combination. Identification holds whenever the effective mixing rate is separated from the class prior. We establish generalization bounds via Rademacher complexity and prove statistical consistency with standard rates under mild regularity assumptions. To improve finite-sample stability, we introduce simple ReLU corrections to the URE that preserve asymptotic correctness. Across benchmarks converted to NTMP tasks, the approach consistently outperforms representative weak-supervision baselines and yields favorable precision-recall and F1 trade-offs. It remains robust under class-prior imbalance and across diverse tuple configurations, demonstrating that count-only supervision can be exploited effectively through a theoretically grounded and practically stable objective.
☆ Automated Wicket-Taking Delivery Segmentation and Weakness Detection in Cricket Videos Using OCR-Guided YOLOv8 and Trajectory Modeling IEEE
This paper presents an automated system for cricket video analysis that leverages deep learning techniques to extract wicket-taking deliveries, detect cricket balls, and model ball trajectories. The system employs the YOLOv8 architecture for pitch and ball detection, combined with optical character recognition (OCR) for scorecard extraction to identify wicket-taking moments. Through comprehensive image preprocessing, including grayscale transformation, power transformation, and morphological operations, the system achieves robust text extraction from video frames. The pitch detection model achieved 99.5% mean Average Precision at 50% IoU (mAP50) with a precision of 0.999, while the ball detection model using transfer learning attained 99.18% mAP50 with 0.968 precision and 0.978 recall. The system enables trajectory modeling on detected pitches, providing data-driven insights for identifying batting weaknesses. Experimental results on multiple cricket match videos demonstrate the effectiveness of this approach for automated cricket analytics, offering significant potential for coaching and strategic decision-making.
comment: 6 figures, 5 tables, submitted to the 11th IEEE International Women in Engineering (WIE) Conference on Electrical and Computer Engineering 2025
☆ Memory-Augmented State Machine Prompting: A Novel LLM Agent Framework for Real-Time Strategy Games
This paper proposes Memory-Augmented State Machine Prompting (MASMP), a novel framework for LLM agents in real-time strategy games. Addressing key challenges like hallucinations and fragmented decision-making in existing approaches, MASMP integrates state machine prompting with memory mechanisms to unify structured actions with long-term tactical coherence. The framework features: (1) a natural language-driven state machine architecture that guides LLMs to emulate finite state machines and behavior trees through prompts, and (2) a lightweight memory module preserving strategic variables (e.g., tactics, priority units) across decision cycles. Experiments in StarCraft II demonstrate MASMP's 60% win rate against the hardest built-in AI (Lv7), vastly outperforming baselines (0%). Case studies reveal the method retains LLMs' semantic comprehension while resolving the "Knowing-Doing Gap" through strict state-action mapping, achieving both interpretability and FSM-like reliability. This work establishes a new paradigm for combining neural and symbolic AI in complex decision-making.
comment: 10 pages, 4 figures, 1 table, 1 algorithm. Submitted to conference
☆ MENTOR: A Reinforcement Learning Framework for Model Enhancement via Teacher-Optimized Rewards in Small Models
Distilling the tool-using capabilities of large language models (LLMs) into smaller, more efficient small language models (SLMs) is a key challenge for their practical application. The predominant approach, supervised fine-tuning (SFT), suffers from poor generalization as it trains models to imitate a static set of teacher trajectories rather than learn a robust methodology. While reinforcement learning (RL) offers an alternative, the standard RL using sparse rewards fails to effectively guide SLMs, causing them to struggle with inefficient exploration and adopt suboptimal strategies. To address these distinct challenges, we propose MENTOR, a framework that synergistically combines RL with teacher-guided distillation. Instead of simple imitation, MENTOR employs an RL-based process to learn a more generalizable policy through exploration. In addition, to solve the problem of reward sparsity, it uses a teacher's reference trajectory to construct a dense, composite teacher-guided reward that provides fine-grained guidance. Extensive experiments demonstrate that MENTOR significantly improves the cross-domain generalization and strategic competence of SLMs compared to both SFT and standard sparse-reward RL baselines.
☆ S2AP: Score-space Sharpness Minimization for Adversarial Pruning
Adversarial pruning methods have emerged as a powerful tool for compressing neural networks while preserving robustness against adversarial attacks. These methods typically follow a three-step pipeline: (i) pretrain a robust model, (ii) select a binary mask for weight pruning, and (iii) finetune the pruned model. To select the binary mask, these methods minimize a robust loss by assigning an importance score to each weight, and then keep the weights with the highest scores. However, this score-space optimization can lead to sharp local minima in the robust loss landscape and, in turn, to an unstable mask selection, reducing the robustness of adversarial pruning methods. To overcome this issue, we propose a novel plug-in method for adversarial pruning, termed Score-space Sharpness-aware Adversarial Pruning (S2AP). Through our method, we introduce the concept of score-space sharpness minimization, which operates during the mask search by perturbing importance scores and minimizing the corresponding robust loss. Extensive experiments across various datasets, models, and sparsity levels demonstrate that S2AP effectively minimizes sharpness in score space, stabilizing the mask selection, and ultimately improving the robustness of adversarial pruning methods.
☆ PGTT: Phase-Guided Terrain Traversal for Perceptive Legged Locomotion
State-of-the-art perceptive Reinforcement Learning controllers for legged robots either (i) impose oscillator or IK-based gait priors that constrain the action space, add bias to the policy optimization and reduce adaptability across robot morphologies, or (ii) operate "blind", which struggle to anticipate hind-leg terrain, and are brittle to noise. In this paper, we propose Phase-Guided Terrain Traversal (PGTT), a perception-aware deep-RL approach that overcomes these limitations by enforcing gait structure purely through reward shaping, thereby reducing inductive bias in policy learning compared to oscillator/IK-conditioned action priors. PGTT encodes per-leg phase as a cubic Hermite spline that adapts swing height to local heightmap statistics and adds a swing- phase contact penalty, while the policy acts directly in joint space supporting morphology-agnostic deployment. Trained in MuJoCo (MJX) on procedurally generated stair-like terrains with curriculum and domain randomization, PGTT achieves the highest success under push disturbances (median +7.5% vs. the next best method) and on discrete obstacles (+9%), with comparable velocity tracking, and converging to an effective policy roughly 2x faster than strong end-to-end baselines. We validate PGTT on a Unitree Go2 using a real-time LiDAR elevation-to-heightmap pipeline, and we report preliminary results on ANYmal-C obtained with the same hyperparameters. These findings indicate that terrain-adaptive, phase-guided reward shaping is a simple and general mechanism for robust perceptive locomotion across platforms.
comment: 9 pages, 9 figures, 2 tables
☆ ShortcutBreaker: Low-Rank Noisy Bottleneck with Global Perturbation Attention for Multi-Class Unsupervised Anomaly Detection
Multi-class unsupervised anomaly detection (MUAD) has garnered growing research interest, as it seeks to develop a unified model for anomaly detection across multiple classes, i.e., eliminating the need to train separate models for distinct objects and thereby saving substantial computational resources. Under the MUAD setting, while advanced Transformer-based architectures have brought significant performance improvements, identity shortcuts persist: they directly copy inputs to outputs, narrowing the gap in reconstruction errors between normal and abnormal cases, and thereby making the two harder to distinguish. Therefore, we propose ShortcutBreaker, a novel unified feature-reconstruction framework for MUAD tasks, featuring two key innovations to address the issue of shortcuts. First, drawing on matrix rank inequality, we design a low-rank noisy bottleneck (LRNB) to project highdimensional features into a low-rank latent space, and theoretically demonstrate its capacity to prevent trivial identity reproduction. Second, leveraging ViTs global modeling capability instead of merely focusing on local features, we incorporate a global perturbation attention to prevent information shortcuts in the decoders. Extensive experiments are performed on four widely used anomaly detection benchmarks, including three industrial datasets (MVTec-AD, ViSA, and Real-IAD) and one medical dataset (Universal Medical). The proposed method achieves a remarkable image-level AUROC of 99.8%, 98.9%, 90.6%, and 87.8% on these four datasets, respectively, consistently outperforming previous MUAD methods across different scenarios.
comment: Under Review
☆ Scalable, Explainable and Provably Robust Anomaly Detection with One-Step Flow Matching NeurIPS 2025
We introduce Time-Conditioned Contraction Matching (TCCM), a novel method for semi-supervised anomaly detection in tabular data. TCCM is inspired by flow matching, a recent generative modeling framework that learns velocity fields between probability distributions and has shown strong performance compared to diffusion models and generative adversarial networks. Instead of directly applying flow matching as originally formulated, TCCM builds on its core idea -- learning velocity fields between distributions -- but simplifies the framework by predicting a time-conditioned contraction vector toward a fixed target (the origin) at each sampled time step. This design offers three key advantages: (1) a lightweight and scalable training objective that removes the need for solving ordinary differential equations during training and inference; (2) an efficient scoring strategy called one time-step deviation, which quantifies deviation from expected contraction behavior in a single forward pass, addressing the inference bottleneck of existing continuous-time models such as DTE (a diffusion-based model with leading anomaly detection accuracy but heavy inference cost); and (3) explainability and provable robustness, as the learned velocity field operates directly in input space, making the anomaly score inherently feature-wise attributable; moreover, the score function is Lipschitz-continuous with respect to the input, providing theoretical guarantees under small perturbations. Extensive experiments on the ADBench benchmark show that TCCM strikes a favorable balance between detection accuracy and inference cost, outperforming state-of-the-art methods -- especially on high-dimensional and large-scale datasets. The source code is available at our GitHub repository.
comment: Paper accepted by NeurIPS 2025
☆ Earth AI: Unlocking Geospatial Insights with Foundation Models and Cross-Modal Reasoning
Geospatial data offers immense potential for understanding our planet. However, the sheer volume and diversity of this data along with its varied resolutions, timescales, and sparsity pose significant challenges for thorough analysis and interpretation. This paper introduces Earth AI, a family of geospatial AI models and agentic reasoning that enables significant advances in our ability to unlock novel and profound insights into our planet. This approach is built upon foundation models across three key domains--Planet-scale Imagery, Population, and Environment--and an intelligent Gemini-powered reasoning engine. We present rigorous benchmarks showcasing the power and novel capabilities of our foundation models and validate that when used together, they provide complementary value for geospatial inference and their synergies unlock superior predictive capabilities. To handle complex, multi-step queries, we developed a Gemini-powered agent that jointly reasons over our multiple foundation models along with large geospatial data sources and tools. On a new benchmark of real-world crisis scenarios, our agent demonstrates the ability to deliver critical and timely insights, effectively bridging the gap between raw geospatial data and actionable understanding.
☆ MoMaGen: Generating Demonstrations under Soft and Hard Constraints for Multi-Step Bimanual Mobile Manipulation
Imitation learning from large-scale, diverse human demonstrations has proven effective for training robots, but collecting such data is costly and time-consuming. This challenge is amplified for multi-step bimanual mobile manipulation, where humans must teleoperate both a mobile base and two high-degree-of-freedom arms. Prior automated data generation frameworks have addressed static bimanual manipulation by augmenting a few human demonstrations in simulation, but they fall short for mobile settings due to two key challenges: (1) determining base placement to ensure reachability, and (2) positioning the camera to provide sufficient visibility for visuomotor policies. To address these issues, we introduce MoMaGen, which formulates data generation as a constrained optimization problem that enforces hard constraints (e.g., reachability) while balancing soft constraints (e.g., visibility during navigation). This formulation generalizes prior approaches and provides a principled foundation for future methods. We evaluate MoMaGen on four multi-step bimanual mobile manipulation tasks and show that it generates significantly more diverse datasets than existing methods. Leveraging this diversity, MoMaGen can train successful imitation learning policies from a single source demonstration, and these policies can be fine-tuned with as few as 40 real-world demonstrations to achieve deployment on physical robotic hardware. More details are available at our project page: momagen.github.io.
comment: Project website: momagen.github.io. The first four authors contribute equally
☆ Higher Embedding Dimension Creates a Stronger World Model for a Simple Sorting Task
We investigate how embedding dimension affects the emergence of an internal "world model" in a transformer trained with reinforcement learning to perform bubble-sort-style adjacent swaps. Models achieve high accuracy even with very small embedding dimensions, but larger dimensions yield more faithful, consistent, and robust internal representations. In particular, higher embedding dimensions strengthen the formation of structured internal representation and lead to better interpretability. After hundreds of experiments, we observe two consistent mechanisms: (1) the last row of the attention weight matrix monotonically encodes the global ordering of tokens; and (2) the selected transposition aligns with the largest adjacent difference of these encoded values. Our results provide quantitative evidence that transformers build structured internal world models and that model size improves representation quality in addition to end performance. We release our metrics and analyses, which can be used to probe similar algorithmic tasks.
☆ Genesis: Evolving Attack Strategies for LLM Web Agent Red-Teaming
As large language model (LLM) agents increasingly automate complex web tasks, they boost productivity while simultaneously introducing new security risks. However, relevant studies on web agent attacks remain limited. Existing red-teaming approaches mainly rely on manually crafted attack strategies or static models trained offline. Such methods fail to capture the underlying behavioral patterns of web agents, making it difficult to generalize across diverse environments. In web agent attacks, success requires the continuous discovery and evolution of attack strategies. To this end, we propose Genesis, a novel agentic framework composed of three modules: Attacker, Scorer, and Strategist. The Attacker generates adversarial injections by integrating the genetic algorithm with a hybrid strategy representation. The Scorer evaluates the target web agent's responses to provide feedback. The Strategist dynamically uncovers effective strategies from interaction logs and compiles them into a continuously growing strategy library, which is then re-deployed to enhance the Attacker's effectiveness. Extensive experiments across various web tasks show that our framework discovers novel strategies and consistently outperforms existing attack baselines.
☆ From Retrieval to Generation: Unifying External and Parametric Knowledge for Medical Question Answering
Medical question answering (QA) requires extensive access to domain-specific knowledge. A promising direction is to enhance large language models (LLMs) with external knowledge retrieved from medical corpora or parametric knowledge stored in model parameters. Existing approaches typically fall into two categories: Retrieval-Augmented Generation (RAG), which grounds model reasoning on externally retrieved evidence, and Generation-Augmented Generation (GAG), which depends solely on the models internal knowledge to generate contextual documents. However, RAG often suffers from noisy or incomplete retrieval, while GAG is vulnerable to hallucinated or inaccurate information due to unconstrained generation. Both issues can mislead reasoning and undermine answer reliability. To address these challenges, we propose MedRGAG, a unified retrieval-generation augmented framework that seamlessly integrates external and parametric knowledge for medical QA. MedRGAG comprises two key modules: Knowledge-Guided Context Completion (KGCC), which directs the generator to produce background documents that complement the missing knowledge revealed by retrieval; and Knowledge-Aware Document Selection (KADS), which adaptively selects an optimal combination of retrieved and generated documents to form concise yet comprehensive evidence for answer generation. Extensive experiments on five medical QA benchmarks demonstrate that MedRGAG achieves a 12.5% improvement over MedRAG and a 4.5% gain over MedGENIE, highlighting the effectiveness of unifying retrieval and generation for knowledge-intensive reasoning. Our code and data are publicly available at https://anonymous.4open.science/r/MedRGAG
comment: 13 pages, 4 figures
☆ Text or Pixels? It Takes Half: On the Token Efficiency of Visual Text Inputs in Multimodal LLMs EMNLP 2025
Large language models (LLMs) and their multimodal variants can now process visual inputs, including images of text. This raises an intriguing question: can we compress textual inputs by feeding them as images to reduce token usage while preserving performance? In this paper, we show that visual text representations are a practical and surprisingly effective form of input compression for decoder LLMs. We exploit the idea of rendering long text inputs as a single image and provide it directly to the model. This leads to dramatically reduced number of decoder tokens required, offering a new form of input compression. Through experiments on two distinct benchmarks RULER (long-context retrieval) and CNN/DailyMail (document summarization) we demonstrate that this text-as-image method yields substantial token savings (often nearly half) without degrading task performance.
comment: Accepted to EMNLP 2025 Findings. Previously titled "Text or Pixels? Evaluating Efficiency and Understanding of LLMs with Visual Text Inputs"
☆ StreamingTOM: Streaming Token Compression for Efficient Video Understanding
Unlike offline processing, streaming video vision-language models face two fundamental constraints: causality and accumulation. Causality prevents access to future frames that offline methods exploit, while accumulation causes tokens to grow unbounded, creating efficiency bottlenecks. However, existing approaches only regulate post-LLM kv-cache, leaving costly pre-LLM prefill unchanged. We introduce StreamingTOM, a training-free, plug-and-play two-stage framework that addresses both pre-LLM and post-LLM bottlenecks with predictable latency. Causal Temporal Reduction imposes a fixed per-frame budget and selects tokens based on adjacent-frame changes and token saliency, drastically reducing per-frame prefill cost by processing only a compact subset of visual tokens per frame instead of all visual tokens. Online Quantized Memory stores tokens in 4-bit format, retrieves relevant groups on demand, and dequantizes them, keeping the active kv-cache bounded regardless of stream length. Experiments demonstrate our method achieves $15.7\times$ kv-cache compression, $1.2\times$ lower peak memory and $2\times$ faster TTFT compared to prior SOTA. StreamingTOM maintains state-of-the-art accuracy among training-free methods with an average of $63.8\%$ on offline benchmarks and $55.8\%/3.7$ on RVS. These results highlight the practical benefits of our two-stage approach for efficient streaming video understanding with bounded growth.
☆ Latent-Info and Low-Dimensional Learning for Human Mesh Recovery and Parallel Optimization ICME2025
Existing 3D human mesh recovery methods often fail to fully exploit the latent information (e.g., human motion, shape alignment), leading to issues with limb misalignment and insufficient local details in the reconstructed human mesh (especially in complex scenes). Furthermore, the performance improvement gained by modelling mesh vertices and pose node interactions using attention mechanisms comes at a high computational cost. To address these issues, we propose a two-stage network for human mesh recovery based on latent information and low dimensional learning. Specifically, the first stage of the network fully excavates global (e.g., the overall shape alignment) and local (e.g., textures, detail) information from the low and high-frequency components of image features and aggregates this information into a hybrid latent frequency domain feature. This strategy effectively extracts latent information. Subsequently, utilizing extracted hybrid latent frequency domain features collaborates to enhance 2D poses to 3D learning. In the second stage, with the assistance of hybrid latent features, we model the interaction learning between the rough 3D human mesh template and the 3D pose, optimizing the pose and shape of the human mesh. Unlike existing mesh pose interaction methods, we design a low-dimensional mesh pose interaction method through dimensionality reduction and parallel optimization that significantly reduces computational costs without sacrificing reconstruction accuracy. Extensive experimental results on large publicly available datasets indicate superiority compared to the most state-of-the-art.
comment: Accepted by ICME2025
☆ SPIKE: Stable Physics-Informed Kernel Evolution Method for Solving Hyperbolic Conservation Laws
We introduce the Stable Physics-Informed Kernel Evolution (SPIKE) method for numerical computation of inviscid hyperbolic conservation laws. SPIKE resolves a fundamental paradox: how strong-form residual minimization can capture weak solutions containing discontinuities. SPIKE employs reproducing kernel representations with regularized parameter evolution, where Tikhonov regularization provides a smooth transition mechanism through shock formation, allowing the dynamics to traverse shock singularities. This approach automatically maintains conservation, tracks characteristics, and captures shocks satisfying Rankine-Hugoniot conditions within a unified framework requiring no explicit shock detection or artificial viscosity. Numerical validation across scalar and vector-valued conservation laws confirms the method's effectiveness.
comment: 24 pages, 8 figures
☆ Learning under Quantization for High-Dimensional Linear Regression
The use of low-bit quantization has emerged as an indispensable technique for enabling the efficient training of large-scale models. Despite its widespread empirical success, a rigorous theoretical understanding of its impact on learning performance remains notably absent, even in the simplest linear regression setting. We present the first systematic theoretical study of this fundamental question, analyzing finite-step stochastic gradient descent (SGD) for high-dimensional linear regression under a comprehensive range of quantization targets: data, labels, parameters, activations, and gradients. Our novel analytical framework establishes precise algorithm-dependent and data-dependent excess risk bounds that characterize how different quantization affects learning: parameter, activation, and gradient quantization amplify noise during training; data quantization distorts the data spectrum; and data and label quantization introduce additional approximation and quantized error. Crucially, we prove that for multiplicative quantization (with input-dependent quantization step), this spectral distortion can be eliminated, and for additive quantization (with constant quantization step), a beneficial scaling effect with batch size emerges. Furthermore, for common polynomial-decay data spectra, we quantitatively compare the risks of multiplicative and additive quantization, drawing a parallel to the comparison between FP and integer quantization methods. Our theory provides a powerful lens to characterize how quantization shapes the learning dynamics of optimization algorithms, paving the way to further explore learning theory under practical hardware constraints.
☆ NTKMTL: Mitigating Task Imbalance in Multi-Task Learning from Neural Tangent Kernel Perspective
Multi-Task Learning (MTL) enables a single model to learn multiple tasks simultaneously, leveraging knowledge transfer among tasks for enhanced generalization, and has been widely applied across various domains. However, task imbalance remains a major challenge in MTL. Although balancing the convergence speeds of different tasks is an effective approach to address this issue, it is highly challenging to accurately characterize the training dynamics and convergence speeds of multiple tasks within the complex MTL system. To this end, we attempt to analyze the training dynamics in MTL by leveraging Neural Tangent Kernel (NTK) theory and propose a new MTL method, NTKMTL. Specifically, we introduce an extended NTK matrix for MTL and adopt spectral analysis to balance the convergence speeds of multiple tasks, thereby mitigating task imbalance. Based on the approximation via shared representation, we further propose NTKMTL-SR, achieving training efficiency while maintaining competitive performance. Extensive experiments demonstrate that our methods achieve state-of-the-art performance across a wide range of benchmarks, including both multi-task supervised learning and multi-task reinforcement learning. Source code is available at https://github.com/jianke0604/NTKMTL.
☆ DelvePO: Direction-Guided Self-Evolving Framework for Flexible Prompt Optimization
Prompt Optimization has emerged as a crucial approach due to its capabilities in steering Large Language Models to solve various tasks. However, current works mainly rely on the random rewriting ability of LLMs, and the optimization process generally focus on specific influencing factors, which makes it easy to fall into local optimum. Besides, the performance of the optimized prompt is often unstable, which limits its transferability in different tasks. To address the above challenges, we propose $\textbf{DelvePO}$ ($\textbf{D}$irection-Guid$\textbf{e}$d Se$\textbf{l}$f-E$\textbf{v}$olving Framework for Fl$\textbf{e}$xible $\textbf{P}$rompt $\textbf{O}$ptimization), a task-agnostic framework to optimize prompts in self-evolve manner. In our framework, we decouple prompts into different components that can be used to explore the impact that different factors may have on various tasks. On this basis, we introduce working memory, through which LLMs can alleviate the deficiencies caused by their own uncertainties and further obtain key insights to guide the generation of new prompts. Extensive experiments conducted on different tasks covering various domains for both open- and closed-source LLMs, including DeepSeek-R1-Distill-Llama-8B, Qwen2.5-7B-Instruct and GPT-4o-mini. Experimental results show that DelvePO consistently outperforms previous SOTA methods under identical experimental settings, demonstrating its effectiveness and transferability across different tasks.
☆ Hyperbolic Space Learning Method Leveraging Temporal Motion Priors for Human Mesh Recovery ICME2025
3D human meshes show a natural hierarchical structure (like torso-limbs-fingers). But existing video-based 3D human mesh recovery methods usually learn mesh features in Euclidean space. It's hard to catch this hierarchical structure accurately. So wrong human meshes are reconstructed. To solve this problem, we propose a hyperbolic space learning method leveraging temporal motion prior for recovering 3D human meshes from videos. First, we design a temporal motion prior extraction module. This module extracts the temporal motion features from the input 3D pose sequences and image feature sequences respectively. Then it combines them into the temporal motion prior. In this way, it can strengthen the ability to express features in the temporal motion dimension. Since data representation in non-Euclidean space has been proved to effectively capture hierarchical relationships in real-world datasets (especially in hyperbolic space), we further design a hyperbolic space optimization learning strategy. This strategy uses the temporal motion prior information to assist learning, and uses 3D pose and pose motion information respectively in the hyperbolic space to optimize and learn the mesh features. Then, we combine the optimized results to get an accurate and smooth human mesh. Besides, to make the optimization learning process of human meshes in hyperbolic space stable and effective, we propose a hyperbolic mesh optimization loss. Extensive experimental results on large publicly available datasets indicate superiority in comparison with most state-of-the-art.
comment: Accepted by ICME2025
☆ Illusions of reflection: open-ended task reveals systematic failures in Large Language Models' reflective reasoning
Humans do not just find mistakes after the fact -- we often catch them mid-stream because 'reflection' is tied to the goal and its constraints. Today's large language models produce reasoning tokens and 'reflective' text, but is it functionally equivalent with human reflective reasoning? Prior work on closed-ended tasks -- with clear, external 'correctness' signals -- can make 'reflection' look effective while masking limits in self-correction. We therefore test eight frontier models on a simple, real-world task that is open-ended yet rule-constrained, with auditable success criteria: to produce valid scientific test items, then revise after considering their own critique. First-pass performance is poor (often zero valid items out of 4 required; mean $\approx$ 1), and reflection yields only modest gains (also $\approx$ 1). Crucially, the second attempt frequently repeats the same violation of constraint, indicating 'corrective gains' arise largely from chance production of a valid item rather than error detection and principled, constraint-sensitive repair. Performance before and after reflection deteriorates as open-endedness increases, and models marketed for 'reasoning' show no advantage. Our results suggest that current LLM 'reflection' lacks functional evidence of the active, goal-driven monitoring that helps humans respect constraints even on a first pass. Until such mechanisms are instantiated in the model itself, reliable performance requires external structure that enforces constraints.
☆ Finding the Sweet Spot: Optimal Data Augmentation Ratio for Imbalanced Credit Scoring Using ADASYN
Credit scoring models face a critical challenge: severe class imbalance, with default rates typically below 10%, which hampers model learning and predictive performance. While synthetic data augmentation techniques such as SMOTE and ADASYN have been proposed to address this issue, the optimal augmentation ratio remains unclear, with practitioners often defaulting to full balancing (1:1 ratio) without empirical justification. This study systematically evaluates 10 data augmentation scenarios using the Give Me Some Credit dataset (97,243 observations, 7% default rate), comparing SMOTE, BorderlineSMOTE, and ADASYN at different multiplication factors (1x, 2x, 3x). All models were trained using XGBoost and evaluated on a held-out test set of 29,173 real observations. Statistical significance was assessed using bootstrap testing with 1,000 iterations. Key findings reveal that ADASYN with 1x multiplication (doubling the minority class) achieved optimal performance with AUC of 0.6778 and Gini coefficient of 0.3557, representing statistically significant improvements of +0.77% and +3.00% respectively (p = 0.017, bootstrap test). Higher multiplication factors (2x and 3x) resulted in performance degradation, with 3x showing a -0.48% decrease in AUC, suggesting a "law of diminishing returns" for synthetic oversampling. The optimal class imbalance ratio was found to be 6.6:1 (majority:minority), contradicting the common practice of balancing to 1:1. This work provides the first empirical evidence of an optimal "sweet spot" for data augmentation in credit scoring, with practical guidelines for industry practitioners and researchers working with imbalanced datasets. While demonstrated on a single representative dataset, the methodology provides a reproducible framework for determining optimal augmentation ratios in other imbalanced domains.
comment: 25 pages, 3 figures, 6 tables
☆ ssToken: Self-modulated and Semantic-aware Token Selection for LLM Fine-tuning
Data quality plays a critical role in enhancing supervised fine-tuning (SFT) for large language models (LLMs), and token-level data selection has emerged as a promising direction for its fine-grained nature. Despite their strong empirical performance, existing token-level selection methods share two key limitations: (1) requiring training or accessing an additional reference model, and (2) relying solely on loss information for token selection, which cannot well preserve semantically important tokens that are not favored by loss-based metrics. To address these challenges, we propose ssToken, a Self-modulated and Semantic-aware Token Selection approach. ssToken leverages readily accessible history models to compute the per-token loss difference with the current model, which serves as a self-modulated signal that enables the model to adaptively select tokens along its optimization trajectory, rather than relying on excess loss from an offline-trained reference model as in prior works. We further introduce a semantic-aware, attention-based token importance estimation metric, orthogonal to loss-based selection and providing complementary semantic information for more effective filtering. Extensive experiments across different model families and scales demonstrate that both self-modulated selection and semantic-aware selection alone outperform full-data fine-tuning, while their integration--ssToken--achieves synergistic gains and further surpasses prior token-level selection methods, delivering performance improvements while maintaining training efficiency.
☆ Scaling Laws Meet Model Architecture: Toward Inference-Efficient LLMs
Scaling the number of parameters and the size of training data has proven to be an effective strategy for improving large language model (LLM) performance. Yet, as these models grow increasingly powerful and widely deployed, the cost of inference has become a pressing concern. Despite its importance, the trade-off between model accuracy and inference efficiency remains underexplored. In this work, we examine how key architectural factors, hidden size, the allocation of parameters between MLP and attention (mlp-to-attention ratio), and grouped-query attention (GQA), influence both inference cost and accuracy. We introduce a conditional scaling law that augments the Chinchilla framework with architectural information, along with a search framework for identifying architectures that are simultaneously inference-efficient and accurate. To validate our approach, we train more than 200 models spanning 80M to 3B parameters and 8B to 100B training tokens, and fit the proposed conditional scaling law. Our results show that the conditional scaling law reliably predicts optimal architectural choices and that the resulting models outperform existing open-source baselines. Under the same training budget, optimized architectures achieve up to 2.1% higher accuracy and 42% greater inference throughput compared to LLaMA-3.2.
comment: 27 pages, 17 figures
☆ EVER: Edge-Assisted Auto-Verification for Mobile MR-Aided Operation
Mixed Reality (MR)-aided operation overlays digital objects on the physical world to provide a more immersive and intuitive operation process. A primary challenge is the precise and fast auto-verification of whether the user follows MR guidance by comparing frames before and after each operation. The pre-operation frame includes virtual guiding objects, while the post-operation frame contains physical counterparts. Existing approaches fall short of accounting for the discrepancies between physical and virtual objects due to imperfect 3D modeling or lighting estimation. In this paper, we propose EVER: an edge-assisted auto-verification system for mobile MR-aided operations. Unlike traditional frame-based similarity comparisons, EVER leverages the segmentation model and rendering pipeline adapted to the unique attributes of frames with physical pieces and those with their virtual counterparts; it adopts a threshold-based strategy using Intersection over Union (IoU) metrics for accurate auto-verification. To ensure fast auto-verification and low energy consumption, EVER offloads compute-intensive tasks to an edge server. Through comprehensive evaluations of public datasets and custom datasets with practical implementation, EVER achieves over 90% verification accuracy within 100 milliseconds (significantly faster than average human reaction time of approximately 273 milliseconds), while consuming only minimal additional computational resources and energy compared to a system without auto-verification.
☆ The Emergence of Complex Behavior in Large-Scale Ecological Environments
We explore how physical scale and population size shape the emergence of complex behaviors in open-ended ecological environments. In our setting, agents are unsupervised and have no explicit rewards or learning objectives but instead evolve over time according to reproduction, mutation, and natural selection. As they act, agents also shape their environment and the population around them in an ongoing dynamic ecology. Our goal is not to optimize a single high-performance policy, but instead to examine how behaviors emerge and evolve across large populations due to natural competition and environmental pressures. In an effort to discover how complex behaviors naturally emerge, we conduct experiments in large-scale worlds that reach populations of more than 60,000 individual agents, each with their own evolved neural network policy. We identify various emergent behaviors such as long-range resource extraction, vision-based foraging, and predation that arise under competitive and survival pressures. We examine how sensing modalities and environmental scale affect the emergence of these behaviors, finding that some appear only in sufficiently large environments and populations, with larger scales increasing behavioral stability and consistency. While there is a rich history of research in evolutionary settings, our scaling results provide promising new directions to explore ecology as an instrument of machine learning in an era of abundant computational resources. Experimental code is available at https://github.com/jbejjani2022/ecological-emergent-behavior.
comment: 18 pages, 11 figures, 6 tables, experiment code available at https://github.com/jbejjani2022/ecological-emergent-behavior
☆ VLSU: Mapping the Limits of Joint Multimodal Understanding for AI Safety
Safety evaluation of multimodal foundation models often treats vision and language inputs separately, missing risks from joint interpretation where benign content becomes harmful in combination. Existing approaches also fail to distinguish clearly unsafe content from borderline cases, leading to problematic over-blocking or under-refusal of genuinely harmful content. We present Vision Language Safety Understanding (VLSU), a comprehensive framework to systematically evaluate multimodal safety through fine-grained severity classification and combinatorial analysis across 17 distinct safety patterns. Using a multi-stage pipeline with real-world images and human annotation, we construct a large-scale benchmark of 8,187 samples spanning 15 harm categories. Our evaluation of eleven state-of-the-art models reveals systematic joint understanding failures: while models achieve 90%-plus accuracy on clear unimodal safety signals, performance degrades substantially to 20-55% when joint image-text reasoning is required to determine the safety label. Most critically, 34% of errors in joint image-text safety classification occur despite correct classification of the individual modalities, further demonstrating absent compositional reasoning capabilities. Additionally, we find that models struggle to balance refusing unsafe content while still responding to borderline cases that deserve engagement. For example, we find that instruction framing can reduce the over-blocking rate on borderline content from 62.4% to 10.4% in Gemini-1.5, but only at the cost of under-refusing on unsafe content with refusal rate dropping from 90.8% to 53.9%. Overall, our framework exposes weaknesses in joint image-text understanding and alignment gaps in current models, and provides a critical test bed to enable the next milestones in research on robust vision-language safety.
comment: 10 pages, 5 figures, 4 tables. Under review
A Definition of AGI
The lack of a concrete definition for Artificial General Intelligence (AGI) obscures the gap between today's specialized AI and human-level cognition. This paper introduces a quantifiable framework to address this, defining AGI as matching the cognitive versatility and proficiency of a well-educated adult. To operationalize this, we ground our methodology in Cattell-Horn-Carroll theory, the most empirically validated model of human cognition. The framework dissects general intelligence into ten core cognitive domains-including reasoning, memory, and perception-and adapts established human psychometric batteries to evaluate AI systems. Application of this framework reveals a highly "jagged" cognitive profile in contemporary models. While proficient in knowledge-intensive domains, current AI systems have critical deficits in foundational cognitive machinery, particularly long-term memory storage. The resulting AGI scores (e.g., GPT-4 at 27%, GPT-5 at 58%) concretely quantify both rapid progress and the substantial gap remaining before AGI.
☆ Contrastive Decoding Mitigates Score Range Bias in LLM-as-a-Judge
Large Language Models (LLMs) are commonly used as evaluators in various applications, but the reliability of the outcomes remains a challenge. One such challenge is using LLMs-as-judges for direct assessment, i.e., assigning scores from a specified range without any references. We first show that this challenge stems from LLM judge outputs being associated with score range bias, i.e., LLM judge outputs are highly sensitive to pre-defined score ranges, preventing the search for optimal score ranges. We also show that similar biases exist among models from the same family. We then mitigate this bias through contrastive decoding, achieving up to 11.3% relative improvement on average in Spearman correlation with human judgments across different score ranges.
☆ FST.ai 2.0: An Explainable AI Ecosystem for Fair, Fast, and Inclusive Decision-Making in Olympic and Paralympic Taekwondo
Fair, transparent, and explainable decision-making remains a critical challenge in Olympic and Paralympic combat sports. This paper presents \emph{FST.ai 2.0}, an explainable AI ecosystem designed to support referees, coaches, and athletes in real time during Taekwondo competitions and training. The system integrates {pose-based action recognition} using graph convolutional networks (GCNs), {epistemic uncertainty modeling} through credal sets, and {explainability overlays} for visual decision support. A set of {interactive dashboards} enables human--AI collaboration in referee evaluation, athlete performance analysis, and Para-Taekwondo classification. Beyond automated scoring, FST.ai~2.0 incorporates modules for referee training, fairness monitoring, and policy-level analytics within the World Taekwondo ecosystem. Experimental validation on competition data demonstrates an {85\% reduction in decision review time} and {93\% referee trust} in AI-assisted decisions. The framework thus establishes a transparent and extensible pipeline for trustworthy, data-driven officiating and athlete assessment. By bridging real-time perception, explainable inference, and governance-aware design, FST.ai~2.0 represents a step toward equitable, accountable, and human-aligned AI in sports.
comment: 23 pages, 12 figures
☆ RadDiagSeg-M: A Vision Language Model for Joint Diagnosis and Multi-Target Segmentation in Radiology
Most current medical vision language models struggle to jointly generate diagnostic text and pixel-level segmentation masks in response to complex visual questions. This represents a major limitation towards clinical application, as assistive systems that fail to provide both modalities simultaneously offer limited value to medical practitioners. To alleviate this limitation, we first introduce RadDiagSeg-D, a dataset combining abnormality detection, diagnosis, and multi-target segmentation into a unified and hierarchical task. RadDiagSeg-D covers multiple imaging modalities and is precisely designed to support the development of models that produce descriptive text and corresponding segmentation masks in tandem. Subsequently, we leverage the dataset to propose a novel vision-language model, RadDiagSeg-M, capable of joint abnormality detection, diagnosis, and flexible segmentation. RadDiagSeg-M provides highly informative and clinically useful outputs, effectively addressing the need to enrich contextual information for assistive diagnosis. Finally, we benchmark RadDiagSeg-M and showcase its strong performance across all components involved in the task of multi-target text-and-mask generation, establishing a robust and competitive baseline.
☆ VelocityNet: Real-Time Crowd Anomaly Detection via Person-Specific Velocity Analysis
Detecting anomalies in crowded scenes is challenging due to severe inter-person occlusions and highly dynamic, context-dependent motion patterns. Existing approaches often struggle to adapt to varying crowd densities and lack interpretable anomaly indicators. To address these limitations, we introduce VelocityNet, a dual-pipeline framework that combines head detection and dense optical flow to extract person-specific velocities. Hierarchical clustering categorizes these velocities into semantic motion classes (halt, slow, normal, and fast), and a percentile-based anomaly scoring system measures deviations from learned normal patterns. Experiments demonstrate the effectiveness of our framework in real-time detection of diverse anomalous motion patterns within densely crowded environments.
comment: 8 pages, 3 figures
☆ ActivationReasoning: Logical Reasoning in Latent Activation Spaces
Large language models (LLMs) excel at generating fluent text, but their internal reasoning remains opaque and difficult to control. Sparse autoencoders (SAEs) make hidden activations more interpretable by exposing latent features that often align with human concepts. Yet, these features are fragile and passive, offering no mechanism for systematic reasoning or model control. To address this, we introduce ActivationReasoning (AR), a framework that embeds explicit logical reasoning into the latent space of LLMs. It proceeds in three stages: (1) Finding latent representations, first latent concept representations are identified (e.g., via SAEs) and organized into a dictionary; (2) Activating propositions, at inference time AR detects activating concepts and maps them to logical propositions; and (3)Logical reasoning, applying logical rules over these propositions to infer higher-order structures, compose new concepts, and steer model behavior. We evaluate AR on multi-hop reasoning (PrOntoQA), abstraction and robustness to indirect concept cues (Rail2Country), reasoning over natural and diverse language (ProverQA), and context-sensitive safety (BeaverTails). Across all tasks, AR scales robustly with reasoning complexity, generalizes to abstract and context-sensitive tasks, and transfers across model backbones. These results demonstrate that grounding logical structure in latent activations not only improves transparency but also enables structured reasoning, reliable control, and alignment with desired behaviors, providing a path toward more reliable and auditable AI.
☆ PGTT: Phase-Guided Terrain Traversal for Perceptive Legged Locomotion
State-of-the-art perceptive Reinforcement Learning controllers for legged robots either (i) impose oscillator or IK-based gait priors that constrain the action space, add bias to the policy optimization and reduce adaptability across robot morphologies, or (ii) operate "blind", which struggle to anticipate hind-leg terrain, and are brittle to noise. In this paper, we propose Phase-Guided Terrain Traversal (PGTT), a perception-aware deep-RL approach that overcomes these limitations by enforcing gait structure purely through reward shaping, thereby reducing inductive bias in policy learning compared to oscillator/IK-conditioned action priors. PGTT encodes per-leg phase as a cubic Hermite spline that adapts swing height to local heightmap statistics and adds a swing-phase contact penalty, while the policy acts directly in joint space supporting morphology-agnostic deployment. Trained in MuJoCo (MJX) on procedurally generated stair-like terrains with curriculum and domain randomization, PGTT achieves the highest success under push disturbances (median +7.5% vs. the next best method) and on discrete obstacles (+9%), with comparable velocity tracking, and converging to an effective policy roughly 2x faster than strong end-to-end baselines. We validate PGTT on a Unitree Go2 using a real-time LiDAR elevation-to-heightmap pipeline, and we report preliminary results on ANYmal-C obtained with the same hyperparameters. These findings indicate that terrain-adaptive, phase-guided reward shaping is a simple and general mechanism for robust perceptive locomotion across platforms.
comment: 9 pages, 9 figures, 2 tables
☆ A Cross-Environment and Cross-Embodiment Path Planning Framework via a Conditional Diffusion Model
Path planning for a robotic system in high-dimensional cluttered environments needs to be efficient, safe, and adaptable for different environments and hardware. Conventional methods face high computation time and require extensive parameter tuning, while prior learning-based methods still fail to generalize effectively. The primary goal of this research is to develop a path planning framework capable of generalizing to unseen environments and new robotic manipulators without the need for retraining. We present GADGET (Generalizable and Adaptive Diffusion-Guided Environment-aware Trajectory generation), a diffusion-based planning model that generates joint-space trajectories conditioned on voxelized scene representations as well as start and goal configurations. A key innovation is GADGET's hybrid dual-conditioning mechanism that combines classifier-free guidance via learned scene encoding with classifier-guided Control Barrier Function (CBF) safety shaping, integrating environment awareness with real-time collision avoidance directly in the denoising process. This design supports zero-shot transfer to new environments and robotic embodiments without retraining. Experimental results show that GADGET achieves high success rates with low collision intensity in spherical-obstacle, bin-picking, and shelf environments, with CBF guidance further improving safety. Moreover, comparative evaluations indicate strong performance relative to both sampling-based and learning-based baselines. Furthermore, GADGET provides transferability across Franka Panda, Kinova Gen3 (6/7-DoF), and UR5 robots, and physical execution on a Kinova Gen3 demonstrates its ability to generate safe, collision-free trajectories in real-world settings.
comment: 20 pages, 9 figures
☆ Steering Autoregressive Music Generation with Recursive Feature Machines
Controllable music generation remains a significant challenge, with existing methods often requiring model retraining or introducing audible artifacts. We introduce MusicRFM, a framework that adapts Recursive Feature Machines (RFMs) to enable fine-grained, interpretable control over frozen, pre-trained music models by directly steering their internal activations. RFMs analyze a model's internal gradients to produce interpretable "concept directions", or specific axes in the activation space that correspond to musical attributes like notes or chords. We first train lightweight RFM probes to discover these directions within MusicGen's hidden states; then, during inference, we inject them back into the model to guide the generation process in real-time without per-step optimization. We present advanced mechanisms for this control, including dynamic, time-varying schedules and methods for the simultaneous enforcement of multiple musical properties. Our method successfully navigates the trade-off between control and generation quality: we can increase the accuracy of generating a target musical note from 0.23 to 0.82, while text prompt adherence remains within approximately 0.02 of the unsteered baseline, demonstrating effective control with minimal impact on prompt fidelity. We release code to encourage further exploration on RFMs in the music domain.
☆ A Novel Approach to Breast Cancer Segmentation using U-Net Model with Attention Mechanisms and FedProx
Breast cancer is a leading cause of death among women worldwide, emphasizing the need for early detection and accurate diagnosis. As such Ultrasound Imaging, a reliable and cost-effective tool, is used for this purpose, however the sensitive nature of medical data makes it challenging to develop accurate and private artificial intelligence models. A solution is Federated Learning as it is a promising technique for distributed machine learning on sensitive medical data while preserving patient privacy. However, training on non-Independent and non-Identically Distributed (non-IID) local datasets can impact the accuracy and generalization of the trained model, which is crucial for accurate tumour boundary delineation in BC segmentation. This study aims to tackle this challenge by applying the Federated Proximal (FedProx) method to non-IID Ultrasonic Breast Cancer Imaging datasets. Moreover, we focus on enhancing tumour segmentation accuracy by incorporating a modified U-Net model with attention mechanisms. Our approach resulted in a global model with 96% accuracy, demonstrating the effectiveness of our method in enhancing tumour segmentation accuracy while preserving patient privacy. Our findings suggest that FedProx has the potential to be a promising approach for training precise machine learning models on non-IID local medical datasets.
☆ That's Deprecated! Understanding, Detecting, and Steering Knowledge Conflicts in Language Models for Code Generation
This paper investigates how large language models (LLMs) behave when faced with discrepancies between their parametric knowledge and conflicting information contained in a prompt. Building on prior question-answering (QA) research, we extend the investigation of knowledge conflicts to the realm of code generation. We propose a domain-agnostic framework for constructing and interpreting such conflicts, along with a novel evaluation method and dataset tailored to code conflict scenarios. Our experiments indicate that sufficiently large LLMs encode the notion of a knowledge conflict in their parameters, enabling us to detect knowledge conflicts with up to \textbf{80.65\%} accuracy. Building on these insights, we show that activation-level steering can achieve up to a \textbf{12.6\%} improvement in steering success over a random baseline. However, effectiveness depends critically on balancing model size, task domain, and steering direction. The experiment code and data will be made publicly available after acceptance.
☆ What Makes a Good Curriculum? Disentangling the Effects of Data Ordering on LLM Mathematical Reasoning
Curriculum learning (CL) - ordering training data from easy to hard - has become a popular strategy for improving reasoning in large language models (LLMs). Yet prior work employs disparate difficulty metrics and training setups, leaving open fundamental questions: When does curriculum help? Which direction - forward or reverse - is better? And does the answer depend on what we measure? We address these questions through a unified offline evaluation framework that decomposes curriculum difficulty into five complementary dimensions: Problem Difficulty, Model Surprisal, Confidence Margin, Predictive Uncertainty, and Decision Variability. Through controlled post-training experiments on mathematical reasoning benchmarks with Llama3.1-8B, Mistral-7B, and Gemma3-4B, we find that (i) no curriculum strategy dominates universally - the relative effectiveness of forward versus reverse CL depends jointly on model capability and task complexity; (ii) even within a single metric, samples at different difficulty levels produce distinct gains depending on task demands; and (iii) task-aligned curricula focus on shaping the model's final representations and generalization, whereas inner-state curricula modulate internal states such as confidence and uncertainty. Our findings challenge the notion of a universal curriculum strategy and offer actionable guidance across model and task regimes, with some metrics indicating that prioritizing decision-uncertain samples can further enhance learning outcomes.
comment: 8 pages (main text) + 4 pages (appendix), 4 figures
☆ Local Guidance for Configuration-Based Multi-Agent Pathfinding
Guidance is an emerging concept that improves the empirical performance of real-time, sub-optimal multi-agent pathfinding (MAPF) methods. It offers additional information to MAPF algorithms to mitigate congestion on a global scale by considering the collective behavior of all agents across the entire workspace. This global perspective helps reduce agents' waiting times, thereby improving overall coordination efficiency. In contrast, this study explores an alternative approach: providing local guidance in the vicinity of each agent. While such localized methods involve recomputation as agents move and may appear computationally demanding, we empirically demonstrate that supplying informative spatiotemporal cues to the planner can significantly improve solution quality without exceeding a moderate time budget. When applied to LaCAM, a leading configuration-based solver, this form of guidance establishes a new performance frontier for MAPF.
comment: 10 pages
☆ PoSh: Using Scene Graphs To Guide LLMs-as-a-Judge For Detailed Image Descriptions
While vision-language models (VLMs) have advanced into detailed image description, evaluation remains a challenge. Standard metrics (e.g. CIDEr, SPICE) were designed for short texts and tuned to recognize errors that are now uncommon, such as object misidentification. In contrast, long texts require sensitivity to attribute and relation attachments and scores that localize errors to particular text spans. In this work, we introduce PoSh, a metric for detailed image description that uses scene graphs as structured rubrics to guide LLMs-as-a-Judge, producing aggregate scores grounded in fine-grained errors (e.g. mistakes in compositional understanding). PoSh is replicable, interpretable and a better proxy for human raters than existing metrics (including GPT4o-as-a-Judge). To validate PoSh, we introduce a challenging new dataset, DOCENT. This novel benchmark contains artwork, paired with expert-written references, and model-generated descriptions, augmented with granular and coarse judgments of their quality from art history students. Thus, DOCENT enables evaluating both detailed image description metrics and detailed image description itself in a challenging new domain. We show that PoSh achieves stronger correlations (+0.05 Spearman $\rho$) with the human judgments in DOCENT than the best open-weight alternatives, is robust to image type (using CapArena, an existing dataset of web imagery) and is a capable reward function, outperforming standard supervised fine-tuning. Then, using PoSh, we characterize the performance of open and closed models in describing the paintings, sketches and statues in DOCENT and find that foundation models struggle to achieve full, error-free coverage of images with rich scene dynamics, establishing a demanding new task to gauge VLM progress. Through both PoSh and DOCENT, we hope to enable advances in important areas such as assistive text generation.
comment: 24 pages, 9 figures. Metric/benchmark available at https://github.com/amith-ananthram/posh
☆ The MUSE Benchmark: Probing Music Perception and Auditory Relational Reasoning in Audio LLMS
Multimodal Large Language Models (MLLMs) have demonstrated capabilities in audio understanding, but current evaluations may obscure fundamental weaknesses in relational reasoning. We introduce the Music Understanding and Structural Evaluation (MUSE) Benchmark, an open-source resource with 10 tasks designed to probe fundamental music perception skills. We evaluate four SOTA models (Gemini Pro and Flash, Qwen2.5-Omni, and Audio-Flamingo 3) against a large human baseline (N=200). Our results reveal a wide variance in SOTA capabilities and a persistent gap with human experts. While Gemini Pro succeeds on basic perception, Qwen and Audio Flamingo 3 perform at or near chance, exposing severe perceptual deficits. Furthermore, we find Chain-of-Thought (CoT) prompting provides inconsistent, often detrimental results. Our work provides a critical tool for evaluating invariant musical representations and driving development of more robust AI systems.
comment: 5 pages, 2 figures, 2 tables
☆ Rectifying Shortcut Behaviors in Preference-based Reward Learning NeurIPS 2025
In reinforcement learning from human feedback, preference-based reward models play a central role in aligning large language models to human-aligned behavior. However, recent studies show that these models are prone to reward hacking and often fail to generalize well due to over-optimization. They achieve high reward scores by exploiting shortcuts, that is, exploiting spurious features (e.g., response verbosity, agreeable tone, or sycophancy) that correlate with human preference labels in the training data rather than genuinely reflecting the intended objectives. In this paper, instead of probing these issues one at a time, we take a broader view of the reward hacking problem as shortcut behaviors and introduce a principled yet flexible approach to mitigate shortcut behaviors in preference-based reward learning. Inspired by the invariant theory in the kernel perspective, we propose Preference-based Reward Invariance for Shortcut Mitigation (PRISM), which learns group-invariant kernels with feature maps in a closed-form learning objective. Experimental results in several benchmarks show that our method consistently improves the accuracy of the reward model on diverse out-of-distribution tasks and reduces the dependency on shortcuts in downstream policy models, establishing a robust framework for preference-based alignment.
comment: NeurIPS 2025
☆ REPAIR Approach for Social-based City Reconstruction Planning in case of natural disasters
Natural disasters always have several effects on human lives. It is challenging for governments to tackle these incidents and to rebuild the economic, social and physical infrastructures and facilities with the available resources (mainly budget and time). Governments always define plans and policies according to the law and political strategies that should maximise social benefits. The severity of damage and the vast resources needed to bring life back to normality make such reconstruction a challenge. This article is the extension of our previously published work by conducting comprehensive comparative analysis by integrating additional deep learning models plus random agent which is used as a baseline. Our prior research introduced a decision support system by using the Deep Reinforcement Learning technique for the planning of post-disaster city reconstruction, maximizing the social benefit of the reconstruction process, considering available resources, meeting the needs of the broad community stakeholders (like citizens' social benefits and politicians' priorities) and keeping in consideration city's structural constraints (like dependencies among roads and buildings). The proposed approach, named post disaster REbuilding plAn ProvIdeR (REPAIR) is generic. It can determine a set of alternative plans for local administrators who select the ideal one to implement, and it can be applied to areas of any extension. We show the application of REPAIR in a real use case, i.e., to the L'Aquila reconstruction process, damaged in 2009 by a major earthquake.
comment: Accepted at International Journal of Data Science and Analytics
☆ "Over-the-Hood" AI Inclusivity Bugs and How 3 AI Product Teams Found and Fixed Them
While much research has shown the presence of AI's "under-the-hood" biases (e.g., algorithmic, training data, etc.), what about "over-the-hood" inclusivity biases: barriers in user-facing AI products that disproportionately exclude users with certain problem-solving approaches? Recent research has begun to report the existence of such biases -- but what do they look like, how prevalent are they, and how can developers find and fix them? To find out, we conducted a field study with 3 AI product teams, to investigate what kinds of AI inclusivity bugs exist uniquely in user-facing AI products, and whether/how AI product teams might harness an existing (non-AI-oriented) inclusive design method to find and fix them. The teams' work resulted in identifying 6 types of AI inclusivity bugs arising 83 times, fixes covering 47 of these bug instances, and a new variation of the GenderMag inclusive design method, GenderMag-for-AI, that is especially effective at detecting certain kinds of AI inclusivity bugs.
☆ CLiVR: Conversational Learning System in Virtual Reality with AI-Powered Patients
Simulations constitute a fundamental component of medical and nursing education and traditionally employ standardized patients (SP) and high-fidelity manikins to develop clinical reasoning and communication skills. However, these methods require substantial resources, limiting accessibility and scalability. In this study, we introduce CLiVR, a Conversational Learning system in Virtual Reality that integrates large language models (LLMs), speech processing, and 3D avatars to simulate realistic doctor-patient interactions. Developed in Unity and deployed on the Meta Quest 3 platform, CLiVR enables trainees to engage in natural dialogue with virtual patients. Each simulation is dynamically generated from a syndrome-symptom database and enhanced with sentiment analysis to provide feedback on communication tone. Through an expert user study involving medical school faculty (n=13), we assessed usability, realism, and perceived educational impact. Results demonstrated strong user acceptance, high confidence in educational potential, and valuable feedback for improvement. CLiVR offers a scalable, immersive supplement to SP-based training.
☆ FlexiDataGen: An Adaptive LLM Framework for Dynamic Semantic Dataset Generation in Sensitive Domains
Dataset availability and quality remain critical challenges in machine learning, especially in domains where data are scarce, expensive to acquire, or constrained by privacy regulations. Fields such as healthcare, biomedical research, and cybersecurity frequently encounter high data acquisition costs, limited access to annotated data, and the rarity or sensitivity of key events. These issues-collectively referred to as the dataset challenge-hinder the development of accurate and generalizable machine learning models in such high-stakes domains. To address this, we introduce FlexiDataGen, an adaptive large language model (LLM) framework designed for dynamic semantic dataset generation in sensitive domains. FlexiDataGen autonomously synthesizes rich, semantically coherent, and linguistically diverse datasets tailored to specialized fields. The framework integrates four core components: (1) syntactic-semantic analysis, (2) retrieval-augmented generation, (3) dynamic element injection, and (4) iterative paraphrasing with semantic validation. Together, these components ensure the generation of high-quality, domain-relevant data. Experimental results show that FlexiDataGen effectively alleviates data shortages and annotation bottlenecks, enabling scalable and accurate machine learning model development.
☆ Prior-informed optimization of treatment recommendation via bandit algorithms trained on large language model-processed historical records
Current medical practice depends on standardized treatment frameworks and empirical methodologies that neglect individual patient variations, leading to suboptimal health outcomes. We develop a comprehensive system integrating Large Language Models (LLMs), Conditional Tabular Generative Adversarial Networks (CTGAN), T-learner counterfactual models, and contextual bandit approaches to provide customized, data-informed clinical recommendations. The approach utilizes LLMs to process unstructured medical narratives into structured datasets (93.2% accuracy), uses CTGANs to produce realistic synthetic patient data (55% accuracy via two-sample verification), deploys T-learners to forecast patient-specific treatment responses (84.3% accuracy), and integrates prior-informed contextual bandits to enhance online therapeutic selection by effectively balancing exploration of new possibilities with exploitation of existing knowledge. Testing on stage III colon cancer datasets revealed that our KernelUCB approach obtained 0.60-0.61 average reward scores across 5,000 rounds, exceeding other reference methods. This comprehensive system overcomes cold-start limitations in online learning environments, improves computational effectiveness, and constitutes notable progress toward individualized medicine adapted to specific patient characteristics.
☆ Plural Voices, Single Agent: Towards Inclusive AI in Multi-User Domestic Spaces
Domestic AI agents faces ethical, autonomy, and inclusion challenges, particularly for overlooked groups like children, elderly, and Neurodivergent users. We present the Plural Voices Model (PVM), a novel single-agent framework that dynamically negotiates multi-user needs through real-time value alignment, leveraging diverse public datasets on mental health, eldercare, education, and moral reasoning. Using human+synthetic curriculum design with fairness-aware scenarios and ethical enhancements, PVM identifies core values, conflicts, and accessibility requirements to inform inclusive principles. Our privacy-focused prototype features adaptive safety scaffolds, tailored interactions (e.g., step-by-step guidance for Neurodivergent users, simple wording for children), and equitable conflict resolution. In preliminary evaluations, PVM outperforms multi-agent baselines in compliance (76% vs. 70%), fairness (90% vs. 85%), safety-violation rate (0% vs. 7%), and latency. Design innovations, including video guidance, autonomy sliders, family hubs, and adaptive safety dashboards, demonstrate new directions for ethical and inclusive domestic AI, for building user-centered agentic systems in plural domestic contexts. Our Codes and Model are been open sourced, available for reproduction: https://github.com/zade90/Agora
☆ $Δ$t-Mamba3D: A Time-Aware Spatio-Temporal State-Space Model for Breast Cancer Risk Prediction
Longitudinal analysis of sequential radiological images is hampered by a fundamental data challenge: how to effectively model a sequence of high-resolution images captured at irregular time intervals. This data structure contains indispensable spatial and temporal cues that current methods fail to fully exploit. Models often compromise by either collapsing spatial information into vectors or applying spatio-temporal models that are computationally inefficient and incompatible with non-uniform time steps. We address this challenge with Time-Aware $\Delta$t-Mamba3D, a novel state-space architecture adapted for longitudinal medical imaging. Our model simultaneously encodes irregular inter-visit intervals and rich spatio-temporal context while remaining computationally efficient. Its core innovation is a continuous-time selective scanning mechanism that explicitly integrates the true time difference between exams into its state transitions. This is complemented by a multi-scale 3D neighborhood fusion module that robustly captures spatio-temporal relationships. In a comprehensive breast cancer risk prediction benchmark using sequential screening mammogram exams, our model shows superior performance, improving the validation c-index by 2-5 percentage points and achieving higher 1-5 year AUC scores compared to established variants of recurrent, transformer, and state-space models. Thanks to its linear complexity, the model can efficiently process long and complex patient screening histories of mammograms, forming a new framework for longitudinal image analysis.
☆ Robust Driving QA through Metadata-Grounded Context and Task-Specific Prompts
We present a two-phase vision-language QA system for autonomous driving that answers high-level perception, prediction, and planning questions. In Phase-1, a large multimodal LLM (Qwen2.5-VL-32B) is conditioned on six-camera inputs, a short temporal window of history, and a chain-of-thought prompt with few-shot exemplars. A self-consistency ensemble (multiple sampled reasoning chains) further improves answer reliability. In Phase-2, we augment the prompt with nuScenes scene metadata (object annotations, ego-vehicle state, etc.) and category-specific question instructions (separate prompts for perception, prediction, planning tasks). In experiments on a driving QA benchmark, our approach significantly outperforms the baseline Qwen2.5 models. For example, using 5 history frames and 10-shot prompting in Phase-1 yields 65.1% overall accuracy (vs.62.61% with zero-shot); applying self-consistency raises this to 66.85%. Phase-2 achieves 67.37% overall. Notably, the system maintains 96% accuracy under severe visual corruption. These results demonstrate that carefully engineered prompts and contextual grounding can greatly enhance high-level driving QA with pretrained vision-language models.
☆ $\nabla$-SDF: Learning Euclidean Signed Distance Functions Online with Gradient-Augmented Octree Interpolation and Neural Residual
Estimation of signed distance functions (SDFs) from point cloud data has been shown to benefit many robot autonomy capabilities, including localization, mapping, motion planning, and control. Methods that support online and large-scale SDF reconstruction tend to rely on discrete volumetric data structures, which affect the continuity and differentiability of the SDF estimates. Recently, using implicit features, neural network methods have demonstrated high-fidelity and differentiable SDF reconstruction but they tend to be less efficient, can experience catastrophic forgetting and memory limitations in large environments, and are often restricted to truncated SDFs. This work proposes $\nabla$-SDF, a hybrid method that combines an explicit prior obtained from gradient-augmented octree interpolation with an implicit neural residual. Our method achieves non-truncated (Euclidean) SDF reconstruction with computational and memory efficiency comparable to volumetric methods and differentiability and accuracy comparable to neural network methods. Extensive experiments demonstrate that \methodname{} outperforms the state of the art in terms of accuracy and efficiency, providing a scalable solution for downstream tasks in robotics and computer vision.
☆ Timely Clinical Diagnosis through Active Test Selection
There is growing interest in using machine learning (ML) to support clinical diag- nosis, but most approaches rely on static, fully observed datasets and fail to reflect the sequential, resource-aware reasoning clinicians use in practice. Diagnosis remains complex and error prone, especially in high-pressure or resource-limited settings, underscoring the need for frameworks that help clinicians make timely and cost-effective decisions. We propose ACTMED (Adaptive Clinical Test selection via Model-based Experimental Design), a diagnostic framework that integrates Bayesian Experimental Design (BED) with large language models (LLMs) to better emulate real-world diagnostic reasoning. At each step, ACTMED selects the test expected to yield the greatest reduction in diagnostic uncertainty for a given patient. LLMs act as flexible simulators, generating plausible patient state distributions and supporting belief updates without requiring structured, task-specific training data. Clinicians can remain in the loop; reviewing test suggestions, interpreting intermediate outputs, and applying clinical judgment throughout. We evaluate ACTMED on real-world datasets and show it can optimize test selection to improve diagnostic accuracy, interpretability, and resource use. This represents a step to- ward transparent, adaptive, and clinician-aligned diagnostic systems that generalize across settings with reduced reliance on domain-specific data.
comment: None
☆ Test-time Verification via Optimal Transport: Coverage, ROC, & Sub-optimality
While test-time scaling with verification has shown promise in improving the performance of large language models (LLMs), the role of the verifier and its imperfections remain underexplored. The effect of verification manifests through interactions of three quantities: (i) the generator's coverage, (ii) the verifier's region of convergence (ROC), and (iii) the sampling algorithm's sub-optimality. Though recent studies capture subsets of these factors, a unified framework quantifying the geometry of their interplay is missing. We frame verifiable test-time scaling as a transport problem. This characterizes the interaction of coverage, ROC, and sub-optimality, and uncovers that the sub-optimality--coverage curve exhibits three regimes. A transport regime -- where sub-optimality increases with coverage, a policy improvement regime -- where sub-optimality may decrease with coverage, depending on the verifier's ROC, and a saturation regime -- where sub-optimality plateaus, unaffected by coverage. We further propose and analyze two classes of sampling algorithms -- sequential and batched, and examine how their computational complexities shape these trade-offs. Empirical results with Qwen, Llama, and Gemma models corroborate our theoretical findings.
☆ ProfBench: Multi-Domain Rubrics requiring Professional Knowledge to Answer and Judge
Evaluating progress in large language models (LLMs) is often constrained by the challenge of verifying responses, limiting assessments to tasks like mathematics, programming, and short-form question-answering. However, many real-world applications require evaluating LLMs in processing professional documents, synthesizing information, and generating comprehensive reports in response to user queries. We introduce ProfBench: a set of over 7000 response-criterion pairs as evaluated by human-experts with professional knowledge across Physics PhD, Chemistry PhD, Finance MBA and Consulting MBA. We build robust and affordable LLM-Judges to evaluate ProfBench rubrics, by mitigating self-enhancement bias and reducing the cost of evaluation by 2-3 orders of magnitude, to make it fair and accessible to the broader community. Our findings reveal that ProfBench poses significant challenges even for state-of-the-art LLMs, with top-performing models like GPT-5-high achieving only 65.9\% overall performance. Furthermore, we identify notable performance disparities between proprietary and open-weight models and provide insights into the role that extended thinking plays in addressing complex, professional-domain tasks. Data: https://huggingface.co/datasets/nvidia/ProfBench and Code: https://github.com/NVlabs/ProfBench
comment: 23 pages
☆ NeuroAda: Activating Each Neuron's Potential for Parameter-Efficient Fine-Tuning
Existing parameter-efficient fine-tuning (PEFT) methods primarily fall into two categories: addition-based and selective in-situ adaptation. The former, such as LoRA, introduce additional modules to adapt the model to downstream tasks, offering strong memory efficiency. However, their representational capacity is often limited, making them less suitable for fine-grained adaptation. In contrast, the latter directly fine-tunes a carefully chosen subset of the original model parameters, allowing for more precise and effective adaptation, but at the cost of significantly increased memory consumption. To reconcile this trade-off, we propose NeuroAda, a novel PEFT method that enables fine-grained model finetuning while maintaining high memory efficiency. Our approach first identifies important parameters (i.e., connections within the network) as in selective adaptation, and then introduces bypass connections for these selected parameters. During finetuning, only the bypass connections are updated, leaving the original model parameters frozen. Empirical results on 23+ tasks spanning both natural language generation and understanding demonstrate that NeuroAda achieves state-of-the-art performance with as little as $\leq \textbf{0.02}\%$ trainable parameters, while reducing CUDA memory usage by up to 60%. We release our code here: https://github.com/FightingFighting/NeuroAda.git.
☆ StutterZero and StutterFormer: End-to-End Speech Conversion for Stuttering Transcription and Correction
Over 70 million people worldwide experience stuttering, yet most automatic speech systems misinterpret disfluent utterances or fail to transcribe them accurately. Existing methods for stutter correction rely on handcrafted feature extraction or multi-stage automatic speech recognition (ASR) and text-to-speech (TTS) pipelines, which separate transcription from audio reconstruction and often amplify distortions. This work introduces StutterZero and StutterFormer, the first end-to-end waveform-to-waveform models that directly convert stuttered speech into fluent speech while jointly predicting its transcription. StutterZero employs a convolutional-bidirectional LSTM encoder-decoder with attention, whereas StutterFormer integrates a dual-stream Transformer with shared acoustic-linguistic representations. Both architectures are trained on paired stuttered-fluent data synthesized from the SEP-28K and LibriStutter corpora and evaluated on unseen speakers from the FluencyBank dataset. Across all benchmarks, StutterZero had a 24% decrease in Word Error Rate (WER) and a 31% improvement in semantic similarity (BERTScore) compared to the leading Whisper-Medium model. StutterFormer achieved better results, with a 28% decrease in WER and a 34% improvement in BERTScore. The results validate the feasibility of direct end-to-end stutter-to-fluent speech conversion, offering new opportunities for inclusive human-computer interaction, speech therapy, and accessibility-oriented AI systems.
comment: 13 pages, 5 figures
☆ A Justice Lens on Fairness and Ethics Courses in Computing Education: LLM-Assisted Multi-Perspective and Thematic Evaluation
Course syllabi set the tone and expectations for courses, shaping the learning experience for both students and instructors. In computing courses, especially those addressing fairness and ethics in artificial intelligence (AI), machine learning (ML), and algorithmic design, it is imperative that we understand how approaches to navigating barriers to fair outcomes are being addressed.These expectations should be inclusive, transparent, and grounded in promoting critical thinking. Syllabus analysis offers a way to evaluate the coverage, depth, practices, and expectations within a course. Manual syllabus evaluation, however, is time-consuming and prone to inconsistency. To address this, we developed a justice-oriented scoring rubric and asked a large language model (LLM) to review syllabi through a multi-perspective role simulation. Using this rubric, we evaluated 24 syllabi from four perspectives: instructor, departmental chair, institutional reviewer, and external evaluator. We also prompted the LLM to identify thematic trends across the courses. Findings show that multiperspective evaluation aids us in noting nuanced, role-specific priorities, leveraging them to fill hidden gaps in curricula design of AI/ML and related computing courses focused on fairness and ethics. These insights offer concrete directions for improving the design and delivery of fairness, ethics, and justice content in such courses.
comment: 14 pages, 8 figures, In Review
♻ ☆ Bee: A High-Quality Corpus and Full-Stack Suite to Unlock Advanced Fully Open MLLMs
Fully open multimodal large language models (MLLMs) currently lag behind proprietary counterparts, primarily due to a significant gap in data quality for supervised fine-tuning (SFT). Existing open-source datasets are often plagued by widespread noise and a critical deficit in complex reasoning data, such as Chain-of-Thought (CoT), which hinders the development of advanced model capabilities. Addressing these challenges, our work makes three primary contributions. First, we introduce Honey-Data-15M, a new SFT dataset comprising approximately 15 million QA pairs, processed through multiple cleaning techniques and enhanced with a novel dual-level (short and long) CoT enrichment strategy. Second, we introduce HoneyPipe, the data curation pipeline, and its underlying framework DataStudio, providing the community with a transparent and adaptable methodology for data curation that moves beyond static dataset releases. Finally, to validate our dataset and pipeline, we train Bee-8B, an 8B model on Honey-Data-15M. Experiments show that Bee-8B establishes a new state-of-the-art (SOTA) for fully open MLLMs, achieving performance that is competitive with, and in some cases surpasses, recent semi-open models such as InternVL3.5-8B. Our work delivers to the community a suite of foundational resources, including: the Honey-Data-15M corpus; the full-stack suite comprising HoneyPipe and DataStudio; training recipes; an evaluation harness; and the model weights. This effort demonstrates that a principled focus on data quality is a key pathway to developing fully open MLLMs that are highly competitive with their semi-open counterparts.
comment: homepage: https://open-bee.github.io/
♻ ☆ PowerChain: A Verifiable Agentic AI System for Automating Distribution Grid Analyses
Rapid electrification and decarbonization are increasing the complexity of distribution grid (DG) operation and planning, necessitating advanced computational analyses to ensure reliability and resilience. These analyses depend on disparate workflows comprising complex models, function calls, and data pipelines that require substantial expert knowledge and remain difficult to automate. Workforce and budget constraints further limit utilities' ability to apply such analyses at scale. To address this gap, we build an agentic system PowerChain, which is capable of autonomously performing complex grid analyses. Existing agentic AI systems are typically developed in a bottom-up manner with customized context for predefined analysis tasks; therefore, they do not generalize to tasks that the agent has never seen. In comparison, to generalize to unseen DG analysis tasks, PowerChain dynamically generates structured context by leveraging supervisory signals from self-contained power systems tools (e.g., GridLAB-D) and an optimized set of expert-annotated and verified reasoning trajectories. For complex DG tasks defined in natural language, empirical results on real utility data demonstrate that PowerChain achieves up to a 144/% improvement in performance over baselines.
♻ ☆ Correct-Detect: Balancing Performance and Ambiguity Through the Lens of Coreference Resolution in LLMs EMNLP 2025
Large Language Models (LLMs) are intended to reflect human linguistic competencies. But humans have access to a broad and embodied context, which is key in detecting and resolving linguistic ambiguities, even in isolated text spans. A foundational case of semantic ambiguity is found in the task of coreference resolution: how is a pronoun related to an earlier person mention? This capability is implicit in nearly every downstream task, and the presence of ambiguity at this level can alter performance significantly. We show that LLMs can achieve good performance with minimal prompting in both coreference disambiguation and the detection of ambiguity in coreference, however, they cannot do both at the same time. We present the CORRECT-DETECT trade-off: though models have both capabilities and deploy them implicitly, successful performance balancing these two abilities remains elusive.
comment: Accepted at EMNLP 2025 (main)
♻ ☆ NEXUS: Network Exploration for eXploiting Unsafe Sequences in Multi-Turn LLM Jailbreaks EMNLP 2025
Large Language Models (LLMs) have revolutionized natural language processing but remain vulnerable to jailbreak attacks, especially multi-turn jailbreaks that distribute malicious intent across benign exchanges and bypass alignment mechanisms. Existing approaches often explore the adversarial space poorly, rely on hand-crafted heuristics, or lack systematic query refinement. We present NEXUS (Network Exploration for eXploiting Unsafe Sequences), a modular framework for constructing, refining, and executing optimized multi-turn attacks. NEXUS comprises: (1) ThoughtNet, which hierarchically expands a harmful intent into a structured semantic network of topics, entities, and query chains; (2) a feedback-driven Simulator that iteratively refines and prunes these chains through attacker-victim-judge LLM collaboration using harmfulness and semantic-similarity benchmarks; and (3) a Network Traverser that adaptively navigates the refined query space for real-time attacks. This pipeline uncovers stealthy, high-success adversarial paths across LLMs. On several closed-source and open-source LLMs, NEXUS increases attack success rate by 2.1% to 19.4% over prior methods. Code: https://github.com/inspire-lab/NEXUS
comment: This paper has been accepted in the main conference proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing (EMNLP 2025). Javad Rafiei Asl and Sidhant Narula are co-first authors
♻ ☆ How Transformers Learn In-Context Recall Tasks? Optimality, Training Dynamics and Generalization
We study the approximation capabilities, convergence speeds and on-convergence behaviors of transformers trained on in-context recall tasks -- which requires to recognize the \emph{positional} association between a pair of tokens from in-context examples. Existing theoretical results only focus on the in-context reasoning behavior of transformers after being trained for the \emph{one} gradient descent step. It remains unclear what is the on-convergence behavior of transformers being trained by gradient descent and how fast the convergence rate is. In addition, the generalization of transformers in one-step in-context reasoning has not been formally investigated. This work addresses these gaps. We first show that a class of transformers with either linear, ReLU or softmax attentions, is provably Bayes-optimal for an in-context recall task. When being trained with gradient descent, we show via a finite-sample analysis that the expected loss converges at linear rate to the Bayes risks. Moreover, we show that the trained transformers exhibit out-of-distribution (OOD) generalization, i.e., generalizing to samples outside of the population distribution. Our theoretical findings are further supported by extensive empirical validations, showing that \emph{without} proper parameterization, models with larger expressive power surprisingly \emph{fail} to generalize OOD after being trained by gradient descent.
comment: V3: added new results for softmax attention, typos fixed, titled changed. 33 pages
♻ ☆ AstroMMBench: A Benchmark for Evaluating Multimodal Large Language Models Capabilities in Astronomy
Astronomical image interpretation presents a significant challenge for applying multimodal large language models (MLLMs) to specialized scientific tasks. Existing benchmarks focus on general multimodal capabilities but fail to capture the complexity of astronomical data. To bridge this gap, we introduce AstroMMBench, the first comprehensive benchmark designed to evaluate MLLMs in astronomical image understanding. AstroMMBench comprises 621 multiple-choice questions across six astrophysical subfields, curated and reviewed by 15 domain experts for quality and relevance. We conducted an extensive evaluation of 25 diverse MLLMs, including 22 open-source and 3 closed-source models, using AstroMMBench. The results show that Ovis2-34B achieved the highest overall accuracy (70.5%), demonstrating leading capabilities even compared to strong closed-source models. Performance showed variations across the six astrophysical subfields, proving particularly challenging in domains like cosmology and high-energy astrophysics, while models performed relatively better in others, such as instrumentation and solar astrophysics. These findings underscore the vital role of domain-specific benchmarks like AstroMMBench in critically evaluating MLLM performance and guiding their targeted development for scientific applications. AstroMMBench provides a foundational resource and a dynamic tool to catalyze advancements at the intersection of AI and astronomy.
♻ ☆ Nondeterminism-Aware Optimistic Verification for Floating-Point Neural Networks
Neural networks increasingly run on hardware outside the user's control (cloud GPUs, inference marketplaces). Yet ML-as-a-Service reveals little about what actually ran or whether returned outputs faithfully reflect the intended inputs. Users lack recourse against service downgrades (model swaps, quantization, graph rewrites, or discrepancies like altered ad embeddings). Verifying outputs is hard because floating-point(FP) execution on heterogeneous accelerators is inherently nondeterministic. Existing approaches are either impractical for real FP neural networks or reintroduce vendor trust. We present NAO: a Nondeterministic tolerance Aware Optimistic verification protocol that accepts outputs within principled operator-level acceptance regions rather than requiring bitwise equality. NAO combines two error models: (i) sound per-operator IEEE-754 worst-case bounds and (ii) tight empirical percentile profiles calibrated across hardware. Discrepancies trigger a Merkle-anchored, threshold-guided dispute game that recursively partitions the computation graph until one operator remains, where adjudication reduces to a lightweight theoretical-bound check or a small honest-majority vote against empirical thresholds. Unchallenged results finalize after a challenge window, without requiring trusted hardware or deterministic kernels. We implement NAO as a PyTorch-compatible runtime and a contract layer currently deployed on Ethereum Holesky testnet. The runtime instruments graphs, computes per-operator bounds, and runs unmodified vendor kernels in FP32 with negligible overhead (0.3% on Qwen3-8B). Across CNNs, Transformers and diffusion models on A100, H100, RTX6000, RTX4090, empirical thresholds are $10^2-10^3$ times tighter than theoretical bounds, and bound-aware adversarial attacks achieve 0% success. NAO reconciles scalability with verifiability for real-world heterogeneous ML compute.
comment: 17 pages, 7 figures
♻ ☆ Understanding In-Context Learning on Structured Manifolds: Bridging Attention to Kernel Methods
While in-context learning (ICL) has achieved remarkable success in natural language and vision domains, its theoretical understanding-particularly in the context of structured geometric data-remains unexplored. This paper initiates a theoretical study of ICL for regression of H\"older functions on manifolds. We establish a novel connection between the attention mechanism and classical kernel methods, demonstrating that transformers effectively perform kernel-based prediction at a new query through its interaction with the prompt. This connection is validated by numerical experiments, revealing that the learned query-prompt scores for H\"older functions are highly correlated with the Gaussian kernel. Building on this insight, we derive generalization error bounds in terms of the prompt length and the number of training tasks. When a sufficient number of training tasks are observed, transformers give rise to the minimax regression rate of H\"older functions on manifolds, which scales exponentially with the intrinsic dimension of the manifold, rather than the ambient space dimension. Our result also characterizes how the generalization error scales with the number of training tasks, shedding light on the complexity of transformers as in-context kernel algorithm learners. Our findings provide foundational insights into the role of geometry in ICL and novels tools to study ICL of nonlinear models.
♻ ☆ FALCON: Fine-grained Activation Manipulation by Contrastive Orthogonal Unalignment for Large Language Model NeurIPS 2025
Large language models have been widely applied, but can inadvertently encode sensitive or harmful information, raising significant safety concerns. Machine unlearning has emerged to alleviate this concern; however, existing training-time unlearning approaches, relying on coarse-grained loss combinations, have limitations in precisely separating knowledge and balancing removal effectiveness with model utility. In contrast, we propose Fine-grained Activation manipuLation by Contrastive Orthogonal uNalignment (FALCON), a novel representation-guided unlearning approach that leverages information-theoretic guidance for efficient parameter selection, employs contrastive mechanisms to enhance representation separation, and projects conflict gradients onto orthogonal subspaces to resolve conflicts between forgetting and retention objectives. Extensive experiments demonstrate that FALCON achieves superior unlearning effectiveness while maintaining model utility, exhibiting robust resistance against knowledge recovery attempts.
comment: Accepted at NeurIPS 2025 with minor revisions
♻ ☆ Stabilizing MoE Reinforcement Learning by Aligning Training and Inference Routers
Reinforcement learning (RL) has emerged as a crucial approach for enhancing the capabilities of large language models. However, in Mixture-of-Experts (MoE) models, the routing mechanism often introduces instability, even leading to catastrophic RL training collapse. We analyze the training-inference consistency of MoE models and identify a notable discrepancy in routing behaviors between the two phases. Moreover, even under identical conditions, the routing framework can yield divergent expert selections across repeated forward passes. To address this foundational inconsistency, we propose Rollout Routing Replay (R3), a method that records routing distributions from the inference engine and replays them during training. R3 significantly reduces training-inference policy KL divergence and mitigates extreme discrepancies without compromising training speed. Extensive experiments on various settings confirm that R3 succeeds in stabilizing RL training, preventing collapse and outperforming methods such as GSPO and TIS. We believe this work can offer a new solution for stabilizing RL in MoE models.
♻ ☆ The Shift Towards Preprints in AI Policy Research: A Comparative Study of Preprint Trends in the U.S., Europe, and South Korea
The adoption of open science has quickly changed how artificial intelligence (AI) policy research is distributed globally. This study examines the regional trends in the citation of preprints, specifically focusing on the impact of two major disruptive events: the COVID-19 pandemic and the release of ChatGPT, on research dissemination patterns in the United States, Europe, and South Korea from 2015 to 2024. Using bibliometrics data from the Web of Science, this study tracks how global disruptive events influenced the adoption of preprints in AI policy research and how such shifts vary by region. By marking the timing of these disruptive events, the analysis reveals that while all regions experienced growth in preprint citations, the magnitude and trajectory of change varied significantly. The United States exhibited sharp, event-driven increases; Europe demonstrated institutional growth; and South Korea maintained consistent, linear growth in preprint adoption. These findings suggest that global disruptions may have accelerated preprint adoption, but the extent and trajectory are shaped by local research cultures, policy environments, and levels of open science maturity. This paper emphasizes the need for future AI governance strategies to consider regional variability in research dissemination and highlights opportunities for further longitudinal and comparative research to deepen our understanding of open-access adoption in AI policy development.
comment: 22 pages, 6 figures, 3 tables. Uses cross-regional analysis to evaluate how preprint citation trends in AI - policy research have shifted over time in response to two major global events: the COVID-19 pandemic and the release of ChatGPT. Compares United States, Europe, and South Korea
♻ ☆ Context-Aware Pseudo-Label Scoring for Zero-Shot Video Summarization
With video exploding across social media, surveillance, and education, compressing long footage into concise yet faithful surrogates is crucial. Supervised methods learn frame/shot importance from dense labels and excel in-domain, but are costly and brittle across datasets; unsupervised methods avoid labels but often miss high-level semantics and narrative cues. Recent zero-shot pipelines use LLMs for training-free summarization, yet remain sensitive to handcrafted prompts and dataset-specific normalization.We propose a rubric-guided, pseudo-labeled prompting framework. A small subset of human annotations is converted into high-confidence pseudo labels and aggregated into structured, dataset-adaptive scoring rubrics for interpretable scene evaluation. At inference, boundary scenes (first/last) are scored from their own descriptions, while intermediate scenes include brief summaries of adjacent segments to assess progression and redundancy, enabling the LLM to balance local salience with global coherence without parameter tuning.Across three benchmarks, our method is consistently effective. On SumMe and TVSum it achieves F1 of 57.58 and 63.05, surpassing a zero-shot baseline (56.73, 62.21) by +0.85 and +0.84 and approaching supervised performance. On the query-focused QFVS benchmark it attains 53.79 F1, beating 53.42 by +0.37 and remaining stable across validation videos. These results show that rubric-guided pseudo labeling, coupled with contextual prompting, stabilizes LLM-based scoring and yields a general, interpretable zero-shot paradigm for both generic and query-focused video summarization.
♻ ☆ Is Implicit Knowledge Enough for LLMs? A RAG Approach for Tree-based Structures
Large Language Models (LLMs) are adept at generating responses based on information within their context. While this ability is useful for interacting with structured data like code files, another popular method, Retrieval-Augmented Generation (RAG), retrieves relevant documents to augment the model's in-context learning. However, it is not well-explored how to best represent this retrieved knowledge for generating responses on structured data, particularly hierarchical structures like trees. In this work, we propose a novel bottom-up method to linearize knowledge from tree-like structures (like a GitHub repository) by generating implicit, aggregated summaries at each hierarchical level. This approach enables the knowledge to be stored in a knowledge base and used directly with RAG. We then compare our method to using RAG on raw, unstructured code, evaluating the accuracy and quality of the generated responses. Our results show that while response quality is comparable across both methods, our approach generates over 68% fewer documents in the retriever, a significant gain in efficiency. This finding suggests that leveraging implicit, linearized knowledge may be a highly effective and scalable strategy for handling complex, hierarchical data structures.
comment: Waiting for Conference Response
♻ ☆ Counterfactual reasoning: an analysis of in-context emergence NeurIPS
Large-scale neural language models exhibit remarkable performance in in-context learning: the ability to learn and reason about the input context on the fly. This work studies in-context counterfactual reasoning in language models, that is, the ability to predict consequences of a hypothetical scenario. We focus on a well-defined, synthetic linear regression task that requires noise abduction. Accurate prediction is based on (1) inferring an unobserved latent concept and (2) copying contextual noise from factual observations. We show that language models are capable of counterfactual reasoning. Further, we enhance existing identifiability results and reduce counterfactual reasoning for a broad class of functions to a transformation on in-context observations. In Transformers, we find that self-attention, model depth and pre-training data diversity drive performance. Moreover, we provide mechanistic evidence that the latent concept is linearly represented in the residual stream and we introduce designated \textit{noise abduction heads} central to performing counterfactual reasoning. Lastly, our findings extend to counterfactual reasoning under SDE dynamics and reflect that Transformers can perform noise abduction on sequential data, providing preliminary evidence on the potential for counterfactual story generation. Our code is available under https://github.com/mrtzmllr/iccr.
comment: Published as a conference paper at the Thirty-Ninth Annual Conference on Neural Information Processing Systems (NeurIPS) 2025
♻ ☆ Interpretable Decision-Making for End-to-End Autonomous Driving ICCV 2025
Trustworthy AI is mandatory for the broad deployment of autonomous vehicles. Although end-to-end approaches derive control commands directly from raw data, interpreting these decisions remains challenging, especially in complex urban scenarios. This is mainly attributed to very deep neural networks with non-linear decision boundaries, making it challenging to grasp the logic behind AI-driven decisions. This paper presents a method to enhance interpretability while optimizing control commands in autonomous driving. To address this, we propose loss functions that promote the interpretability of our model by generating sparse and localized feature maps. The feature activations allow us to explain which image regions contribute to the predicted control command. We conduct comprehensive ablation studies on the feature extraction step and validate our method on the CARLA benchmarks. We also demonstrate that our approach improves interpretability, which correlates with reducing infractions, yielding a safer, high-performance driving model. Notably, our monocular, non-ensemble model surpasses the top-performing approaches from the CARLA Leaderboard by achieving lower infraction scores and the highest route completion rate, all while ensuring interpretability.
comment: Accepted to the ICCV 2025 2nd Workshop on the Challenge Of Out-of-Label Hazards in Autonomous Driving (2COOOL)
♻ ☆ Can Large Language Models Adequately Perform Symbolic Reasoning Over Time Series?
Uncovering hidden symbolic laws from time series data, as an aspiration dating back to Kepler's discovery of planetary motion, remains a core challenge in scientific discovery and artificial intelligence. While Large Language Models show promise in structured reasoning tasks, their ability to infer interpretable, context-aligned symbolic structures from time series data is still underexplored. To systematically evaluate this capability, we introduce SymbolBench, a comprehensive benchmark designed to assess symbolic reasoning over real-world time series across three tasks: multivariate symbolic regression, Boolean network inference, and causal discovery. Unlike prior efforts limited to simple algebraic equations, SymbolBench spans a diverse set of symbolic forms with varying complexity. We further propose a unified framework that integrates LLMs with genetic programming to form a closed-loop symbolic reasoning system, where LLMs act both as predictors and evaluators. Our empirical results reveal key strengths and limitations of current models, highlighting the importance of combining domain knowledge, context alignment, and reasoning structure to improve LLMs in automated scientific discovery.
comment: version2
♻ ☆ InternLM2.5-StepProver: Advancing Automated Theorem Proving via Critic-Guided Search
Large Language Models (LLMs) have emerged as powerful tools in mathematical theorem proving, particularly when utilizing formal languages such as LEAN. A prevalent proof method involves the LLM prover iteratively constructing the proof tactic by tactic, typically following a best-first search scheme. However, this method often ignores the critical preference information inside the existing tactic trajectories, hindering the search for deeper proofs. We propose an intuitive yet effective method, which utilizes a critic model to capture the preference information and to guide the search of the prover model at runtime. Given the prover-critic framework, a large-scale expert iteration with more than 20,000 CPU days is then applied to further fine-tune the prover and the critic. The trained InternLM2.5-StepProver critic significantly boosts the performance of the prover model (59.4% to 65.9%). We also analyze the impact of the critic on various aspects of the theorem proving process during expert iteration, providing insights into its effectiveness. We open-source our models and searched proofs at https://github.com/InternLM/InternLM-Math and https://huggingface.co/datasets/internlm/Lean-Workbook.
♻ ☆ Static Sandboxes Are Inadequate: Modeling Societal Complexity Requires Open-Ended Co-Evolution in LLM-Based Multi-Agent Simulations
What if artificial agents could not just communicate, but also evolve, adapt, and reshape their worlds in ways we cannot fully predict? With llm now powering multi-agent systems and social simulations, we are witnessing new possibilities for modeling open-ended, ever-changing environments. Yet, most current simulations remain constrained within static sandboxes, characterized by predefined tasks, limited dynamics, and rigid evaluation criteria. These limitations prevent them from capturing the complexity of real-world societies. In this paper, we argue that static, task-specific benchmarks are fundamentally inadequate and must be rethought. We critically review emerging architectures that blend llm with multi-agent dynamics, highlight key hurdles such as balancing stability and diversity, evaluating unexpected behaviors, and scaling to greater complexity, and introduce a fresh taxonomy for this rapidly evolving field. Finally, we present a research roadmap centered on open-endedness, continuous co-evolution, and the development of resilient, socially aligned AI ecosystems. We call on the community to move beyond static paradigms and help shape the next generation of adaptive, socially-aware multi-agent simulations.
comment: Preprint; feedback welcome
♻ ☆ Understanding Reinforcement Learning for Model Training, and future directions with GRAPE
This paper provides a self-contained, from-scratch, exposition of key algorithms for instruction tuning of models: SFT, Rejection Sampling, REINFORCE, Trust Region Policy Optimization (TRPO), Proximal Policy Optimization (PPO), Group Relative Policy Optimization (GRPO), and Direct Preference Optimization (DPO). Explanations of these algorithms often assume prior knowledge, lack critical details, and/or are overly generalized and complex. Here, each method is discussed and developed step by step using simplified and explicit notation focused on LLMs, aiming to eliminate ambiguity and provide a clear and intuitive understanding of the concepts. By minimizing detours into the broader RL literature and connecting concepts to LLMs, we eliminate superfluous abstractions and reduce cognitive overhead. Following this exposition, we provide a literature review of new techniques and approaches beyond those detailed. Finally, new ideas for research and exploration in the form of GRAPE (Generalized Relative Advantage Policy Evolution) are presented.
comment: 35 pages, 1 figure
♻ ☆ Review of Explainable Graph-Based Recommender Systems
Explainability of recommender systems has become essential to ensure users' trust and satisfaction. Various types of explainable recommender systems have been proposed including explainable graph-based recommender systems. This review paper discusses state-of-the-art approaches of these systems and categorizes them based on three aspects: learning methods, explaining methods, and explanation types. It also explores the commonly used datasets, explainability evaluation methods, and future directions of this research area. Compared with the existing review papers, this paper focuses on explainability based on graphs and covers the topics required for developing novel explainable graph-based recommender systems.
♻ ☆ Discovering the curriculum with AI: A proof-of-concept demonstration with an intelligent tutoring system for teaching project selection
The decisions of individuals and organizations are often suboptimal because fully rational decision-making is too demanding in the real world. Recent work suggests that some errors can be prevented by leveraging artificial intelligence to discover and teach clever heuristics. So far, this line of research has been limited to simplified, artificial decision-making tasks. This article is the first to extend this approach to a real-world decision problem, namely, executives deciding which project their organization should launch next. We develop a computational method (MGPS) that automatically discovers project selection strategies that are optimized for real people, and we develop an intelligent tutor that teaches the discovered project selection procedures. We evaluated MGPS on a computational benchmark and tested the intelligent tutor in a training experiment with two control conditions. MGPS outperformed a state-of-the-art method and was more computationally efficient. Moreover, people who practiced with our intelligent tutor learned significantly better project selection strategies than the control groups. These findings suggest that AI could be used to automate the process of discovering and formalizing the cognitive strategies taught by intelligent tutoring systems.
♻ ☆ Language Models are Injective and Hence Invertible
Transformer components such as non-linear activations and normalization are inherently non-injective, suggesting that different inputs could map to the same output and prevent exact recovery of the input from a model's representations. In this paper, we challenge this view. First, we prove mathematically that transformer language models mapping discrete input sequences to their corresponding sequence of continuous representations are injective and therefore lossless, a property established at initialization and preserved during training. Second, we confirm this result empirically through billions of collision tests on six state-of-the-art language models, and observe no collisions. Third, we operationalize injectivity: we introduce SipIt, the first algorithm that provably and efficiently reconstructs the exact input text from hidden activations, establishing linear-time guarantees and demonstrating exact invertibility in practice. Overall, our work establishes injectivity as a fundamental and exploitable property of language models, with direct implications for transparency, interpretability, and safe deployment.
♻ ☆ Lightweight Baselines for Medical Abstract Classification: DistilBERT with Cross-Entropy as a Strong Default
The research evaluates lightweight medical abstract classification methods to establish their maximum performance capabilities under financial budget restrictions. On the public medical abstracts corpus, we finetune BERT base and Distil BERT with three objectives cross entropy (CE), class weighted CE, and focal loss under identical tokenization, sequence length, optimizer, and schedule. DistilBERT with plain CE gives the strongest raw argmax trade off, while a post hoc operating point selection (validation calibrated, classwise thresholds) sub stantially improves deployed performance; under this tuned regime, focal benefits most. We report Accuracy, Macro F1, and WeightedF1, release evaluation artifacts, and include confusion analyses to clarify error structure. The practical takeaway is to start with a compact encoder and CE, then add lightweight calibration or thresholding when deployment requires higher macro balance.
comment: Healthcare AI, Medical Text Classification,LLM, DistilBERT
♻ ☆ An Automated Multi-modal Evaluation Framework for Mobile Intelligent Assistants Based on Large Language Models and Multi-Agent Collaboration
With the rapid development of mobile intelligent assistant technologies, multi-modal AI assistants have become essential interfaces for daily user interactions. However, current evaluation methods face challenges including high manual costs, inconsistent standards, and subjective bias. This paper proposes an automated multi-modal evaluation framework based on large language models and multi-agent collaboration. The framework employs a three-tier agent architecture consisting of interaction evaluation agents, semantic verification agents, and experience decision agents. Through supervised fine-tuning on the Qwen3-8B model, we achieve a significant evaluation matching accuracy with human experts. Experimental results on eight major intelligent agents demonstrate the framework's effectiveness in predicting users' satisfaction and identifying generation defects.
♻ ☆ A Survey of Process Reward Models: From Outcome Signals to Process Supervisions for Large Language Models
Although Large Language Models (LLMs) exhibit advanced reasoning ability, conventional alignment remains largely dominated by outcome reward models (ORMs) that judge only final answers. Process Reward Models(PRMs) address this gap by evaluating and guiding reasoning at the step or trajectory level. This survey provides a systematic overview of PRMs through the full loop: how to generate process data, build PRMs, and use PRMs for test-time scaling and reinforcement learning. We summarize applications across math, code, text, multimodal reasoning, robotics, and agents, and review emerging benchmarks. Our goal is to clarify design spaces, reveal open challenges, and guide future research toward fine-grained, robust reasoning alignment.
♻ ☆ VIKI-R: Coordinating Embodied Multi-Agent Cooperation via Reinforcement Learning
Coordinating multiple embodied agents in dynamic environments remains a core challenge in artificial intelligence, requiring both perception-driven reasoning and scalable cooperation strategies. While recent works have leveraged large language models (LLMs) for multi-agent planning, a few have begun to explore vision-language models (VLMs) for visual reasoning. However, these VLM-based approaches remain limited in their support for diverse embodiment types. In this work, we introduce VIKI-Bench, the first hierarchical benchmark tailored for embodied multi-agent cooperation, featuring three structured levels: agent activation, task planning, and trajectory perception. VIKI-Bench includes diverse robot embodiments, multi-view visual observations, and structured supervision signals to evaluate reasoning grounded in visual inputs. To demonstrate the utility of VIKI-Bench, we propose VIKI-R, a two-stage framework that fine-tunes a pretrained vision-language model (VLM) using Chain-of-Thought annotated demonstrations, followed by reinforcement learning under multi-level reward signals. Our extensive experiments show that VIKI-R significantly outperforms baselines method across all task levels. Furthermore, we show that reinforcement learning enables the emergence of compositional cooperation patterns among heterogeneous agents. Together, VIKI-Bench and VIKI-R offer a unified testbed and method for advancing multi-agent, visual-driven cooperation in embodied AI systems.
comment: Project page: https://faceong.github.io/VIKI-R/
♻ ☆ Mitigating Prior Errors in Causal Structure Learning: A Resilient Approach via Bayesian Networks
Causal structure learning (CSL), a prominent technique for encoding cause-and-effect relationships among variables, through Bayesian Networks (BNs). Although recovering causal structure solely from data is a challenge, the integration of prior knowledge, revealing partial structural truth, can markedly enhance learning quality. However, current methods based on prior knowledge exhibit limited resilience to errors in the prior, with hard constraint methods disregarding priors entirely, and soft constraints accepting priors based on a predetermined confidence level, which may require expert intervention. To address this issue, we propose a strategy resilient to edge-level prior errors for CSL, thereby minimizing human intervention. We classify prior errors into different types and provide their theoretical impact on the Structural Hamming Distance (SHD) under the presumption of sufficient data. Intriguingly, we discover and prove that the strong hazard of prior errors is associated with a unique acyclic closed structure, defined as ``quasi-circle''. Leveraging this insight, a post-hoc strategy is employed to identify the prior errors by its impact on the increment of ``quasi-circles''. Through empirical evaluation on both real and synthetic datasets, we demonstrate our strategy's robustness against prior errors. Specifically, we highlight its substantial ability to resist order-reversed errors while maintaining the majority of correct prior.
comment: 12 pages, 4 figures
♻ ☆ Can Agents Fix Agent Issues? NeurIPS 2025
LLM-based agent systems are emerging as a new software paradigm and have been widely adopted across diverse domains such as medicine, robotics, and programming. However, maintaining these systems requires substantial effort, as they are inevitably prone to bugs and continually evolve to meet changing external requirements. Therefore, automatically resolving agent issues (i.e., bug reports or feature requests) is a crucial and challenging task. While recent software engineering (SE) agents (e.g., SWE-agent) have shown promise in addressing issues in traditional software systems, it remains unclear how effectively they can resolve real-world issues in agent systems, which differ significantly from traditional software. To fill this gap, we first manually analyze 201 real-world agent issues and identify common categories of agent issues. We then spend 500 person-hours constructing AGENTISSUE-BENCH, a reproducible benchmark comprising 50 agent issue resolution tasks (each with an executable environment and failure-triggering tests). We further evaluate state-of-the-art SE agents on AGENTISSUE-BENCH and reveal their limited effectiveness (i.e., with only 3.33% - 12.67% resolution rates). These results underscore the unique challenges of maintaining agent systems compared to traditional software, highlighting the need for further research to develop advanced SE agents for resolving agent issues. Data and code are available at https://alfin06.github.io/AgentIssue-Bench-Leaderboard/#/ .
comment: Accepted by the 39th Annual Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ VITA-Audio: Fast Interleaved Cross-Modal Token Generation for Efficient Large Speech-Language Model
With the growing requirement for natural human-computer interaction, speech-based systems receive increasing attention as speech is one of the most common forms of daily communication. However, the existing speech models still experience high latency when generating the first audio token during streaming, which poses a significant bottleneck for deployment. To address this issue, we propose VITA-Audio, an end-to-end large speech model with fast audio-text token generation. Specifically, we introduce a lightweight Multiple Cross-modal Token Prediction (MCTP) module that efficiently generates multiple audio tokens within a single model forward pass, which not only accelerates the inference but also significantly reduces the latency for generating the first audio in streaming scenarios. In addition, a four-stage progressive training strategy is explored to achieve model acceleration with minimal loss of speech quality. To our knowledge, VITA-Audio is the first multi-modal large language model capable of generating audio output during the first forward pass, enabling real-time conversational capabilities with minimal latency. VITA-Audio is fully reproducible and is trained on open-source data only. Experimental results demonstrate that our model achieves an inference speedup of 3~5x at the 7B parameter scale, but also significantly outperforms open-source models of similar model size on multiple benchmarks for automatic speech recognition (ASR), text-to-speech (TTS), and spoken question answering (SQA) tasks.
comment: Training and Inference Codes: https://github.com/VITA-MLLM/VITA-Audio
♻ ☆ R-Horizon: How Far Can Your Large Reasoning Model Really Go in Breadth and Depth?
Recent trends in test-time scaling for reasoning models (e.g., OpenAI o1, DeepSeek-R1) have led to remarkable improvements through long Chain-of-Thought (CoT). However, existing benchmarks mainly focus on immediate, single-horizon tasks, failing to adequately evaluate models' ability to understand and respond to complex, long-horizon scenarios. To address this incomplete evaluation of Large Reasoning Models (LRMs), we propose R-HORIZON, a method designed to stimulate long-horizon reasoning behaviors in LRMs through query composition. Based on R-HORIZON, we construct a long-horizon reasoning benchmark, comprising complex multi-step reasoning tasks with interdependent problems that span long reasoning horizons. Through comprehensive evaluation of LRMs using the R-HORIZON benchmark, we find that even the most advanced LRMs suffer significant performance degradation. Our analysis reveals that LRMs exhibit limited effective reasoning length and struggle to allocate thinking budget across multiple problems appropriately. Recognizing these limitations, we use R-HORIZON to construct long-horizon reasoning data for reinforcement learning with verified rewards (RLVR). Compared to training with single-horizon data, RLVR with R-HORIZON not only substantially improves performance on the multi-horizon reasoning tasks, but also promotes accuracy on standard reasoning tasks, with an increase of 7.5 on AIME2024. These results position R-HORIZON as a scalable, controllable, and low-cost paradigm for enhancing and evaluating the long-horizon reasoning capabilities of LRMs.
♻ ☆ Deep Learning in Palmprint Recognition-A Comprehensive Survey
Palmprint recognition has emerged as a prominent biometric technology, widely applied in diverse scenarios. Traditional handcrafted methods for palmprint recognition often fall short in representation capability, as they heavily depend on researchers' prior knowledge. Deep learning (DL) has been introduced to address this limitation, leveraging its remarkable successes across various domains. While existing surveys focus narrowly on specific tasks within palmprint recognition-often grounded in traditional methodologies-there remains a significant gap in comprehensive research exploring DL-based approaches across all facets of palmprint recognition. This paper bridges that gap by thoroughly reviewing recent advancements in DL-powered palmprint recognition. The paper systematically examines progress across key tasks, including region-of-interest segmentation, feature extraction, and security/privacy-oriented challenges. Beyond highlighting these advancements, the paper identifies current challenges and uncovers promising opportunities for future research. By consolidating state-of-the-art progress, this review serves as a valuable resource for researchers, enabling them to stay abreast of cutting-edge technologies and drive innovation in palmprint recognition.
comment: Palmprint recognition, biometrics, deep learning, feature extraction, recognition tasks
♻ ☆ CaMiT: A Time-Aware Car Model Dataset for Classification and Generation NeurIPS 2025
AI systems must adapt to evolving visual environments, especially in domains where object appearances change over time. We introduce Car Models in Time (CaMiT), a fine-grained dataset capturing the temporal evolution of car models, a representative class of technological artifacts. CaMiT includes 787K labeled samples of 190 car models (2007-2023) and 5.1M unlabeled samples (2005-2023), supporting both supervised and self-supervised learning. Static pretraining on in-domain data achieves competitive performance with large-scale generalist models while being more resource-efficient, yet accuracy declines when models are tested across years. To address this, we propose a time-incremental classification setting, a realistic continual learning scenario with emerging, evolving, and disappearing classes. We evaluate two strategies: time-incremental pretraining, which updates the backbone, and time-incremental classifier learning, which updates only the final layer, both improving temporal robustness. Finally, we explore time-aware image generation that leverages temporal metadata during training, yielding more realistic outputs. CaMiT offers a rich benchmark for studying temporal adaptation in fine-grained visual recognition and generation.
comment: To be published in NeurIPS 2025 Track on Datasets and Benchmarks
♻ ☆ UniPixel: Unified Object Referring and Segmentation for Pixel-Level Visual Reasoning NeurIPS 2025
Recent advances in Large Multi-modal Models (LMMs) have demonstrated their remarkable success as general-purpose multi-modal assistants, with particular focuses on holistic image- and video-language understanding. Conversely, less attention has been given to scaling fine-grained pixel-level understanding capabilities, where the models are expected to realize pixel-level alignment between visual signals and language semantics. Some previous studies have applied LMMs to related tasks such as region-level captioning and referring expression segmentation. However, these models are limited to performing either referring or segmentation tasks independently and fail to integrate these fine-grained perception capabilities into visual reasoning. To bridge this gap, we propose UniPixel, a large multi-modal model capable of flexibly comprehending visual prompt inputs and generating mask-grounded responses. Our model distinguishes itself by seamlessly integrating pixel-level perception with general visual understanding capabilities. Specifically, UniPixel processes visual prompts and generates relevant masks on demand, and performs subsequent reasoning conditioning on these intermediate pointers during inference, thereby enabling fine-grained pixel-level reasoning. The effectiveness of our approach has been verified on 10 benchmarks across a diverse set of tasks, including pixel-level referring/segmentation and object-centric understanding in images/videos. A novel PixelQA task that jointly requires referring, segmentation, and question answering is also designed to verify the flexibility of our method.
comment: NeurIPS 2025 Camera Ready. Project Page: https://polyu-chenlab.github.io/unipixel/
♻ ☆ SOCIA: Joint Structure-Parameter Co-Optimization for Automated Simulator Construction
Building credible simulators from data is difficult because structure design, parameter calibration, and out-of-distribution (OOD) robustness are tightly coupled. We introduce SOCIA (Simulation Orchestration for Computational Intelligence with Agents), a framework that treats simulator construction as joint structure-parameter co-optimization: it elicits mechanism-rich blueprints, exposes explicit tunable parameters, and instantiates a calibration schema, producing an executable simulator with built-in calibration hooks. SOCIA couples Bayesian Optimization for sample-efficient point calibration with Simulation-Based Inference for uncertainty-aware fitting; diagnostics trigger targeted structural edits in an outer refinement loop to co-optimize design and parameters under tight budgets. Across three diverse tasks, SOCIA consistently outperforms strong baselines, excelling on both in-distribution (ID) fitting and OOD shift. Ablations that weaken structure, calibration design, or tuning yield near-monotone degradations, underscoring the necessity of unified structure-parameter optimization. We will release the code soon.
comment: 53 pages, 1 figure, 2 tables. The paper is under review
♻ ☆ Pretraining a Shared Q-Network for Data-Efficient Offline Reinforcement Learning
Offline reinforcement learning (RL) aims to learn a policy from a static dataset without further interactions with the environment. Collecting sufficiently large datasets for offline RL is exhausting since this data collection requires colossus interactions with environments and becomes tricky when the interaction with the environment is restricted. Hence, how an agent learns the best policy with a minimal static dataset is a crucial issue in offline RL, similar to the sample efficiency problem in online RL. In this paper, we propose a simple yet effective plug-and-play pretraining method to initialize a feature of a Q-network to enhance data efficiency in offline RL. Specifically, we introduce a shared Q-network structure that outputs predictions of the next state and Q-value. We pretrain the shared Q-network through a supervised regression task that predicts a next state and trains the shared Q-network using diverse offline RL methods. Through extensive experiments, we empirically demonstrate that our method enhances the performance of existing popular offline RL methods on the D4RL, Robomimic and V-D4RL benchmarks. Furthermore, we show that our method significantly boosts data-efficient offline RL across various data qualities and data distributions trough D4RL and ExoRL benchmarks. Notably, our method adapted with only 10% of the dataset outperforms standard algorithms even with full datasets.
♻ ☆ Regression is all you need for medical image translation
While Generative Adversarial Nets (GANs) and Diffusion Models (DMs) have achieved impressive results in natural image synthesis, their core strengths - creativity and realism - can be detrimental in medical applications, where accuracy and fidelity are paramount. These models instead risk introducing hallucinations and replication of unwanted acquisition noise. Here, we propose YODA (You Only Denoise once - or Average), a 2.5D diffusion-based framework for medical image translation (MIT). Consistent with DM theory, we find that conventional diffusion sampling stochastically replicates noise. To mitigate this, we draw and average multiple samples, akin to physical signal averaging. As this effectively approximates the DM's expected value, we term this Expectation-Approximation (ExpA) sampling. We additionally propose regression sampling YODA, which retains the initial DM prediction and omits iterative refinement to produce noise-free images in a single step. Across five diverse multi-modal datasets - including multi-contrast brain MRI and pelvic MRI-CT - we demonstrate that regression sampling is not only substantially more efficient but also matches or exceeds image quality of full diffusion sampling even with ExpA. Our results reveal that iterative refinement solely enhances perceptual realism without benefiting information translation, which we confirm in relevant downstream tasks. YODA outperforms eight state-of-the-art DMs and GANs and challenges the presumed superiority of DMs and GANs over computationally cheap regression models for high-quality MIT. Furthermore, we show that YODA-translated images are interchangeable with, or even superior to, physical acquisitions for several medical applications.
♻ ☆ EvaLearn: Quantifying the Learning Capability and Efficiency of LLMs via Sequential Problem Solving NeurIPS 2025
We introduce EvaLearn, a pioneering benchmark designed to evaluate large language models (LLMs) on their learning capability and efficiency in challenging tasks, a critical, yet underexplored aspect of model potential. EvaLearn contains 648 challenging problems across six task types, grouped into 182 sequences, each sequence dedicated to one task type. Diverging from most existing benchmarks that evaluate models in parallel, EvaLearn requires models to solve problems sequentially, allowing them to leverage the experience gained from previous solutions. EvaLearn provides five comprehensive automated metrics to evaluate models and quantify their learning capability and efficiency. We extensively benchmark nine frontier models and observe varied performance profiles: some models, such as Claude-3.7-sonnet, start with moderate initial performance but exhibit strong learning ability, while some models struggle to benefit from experience and may even show negative transfer. Moreover, we investigate model performance under two learning settings and find that instance-level rubrics and teacher-model feedback further facilitate model learning. Importantly, we observe that current LLMs with stronger static abilities do not show a clear advantage in learning capability across all tasks, highlighting that EvaLearn evaluates a new dimension of model performance. We hope EvaLearn provides a novel evaluation perspective for assessing LLM potential and understanding the gap between models and human capabilities, promoting the development of deeper and more dynamic evaluation approaches. All datasets, the automatic evaluation framework, and the results studied in this paper are available at the GitHub repository.
comment: Accepted by NeurIPS 2025. 47 pages, 24 figures
♻ ☆ Can LLMs Reconcile Knowledge Conflicts in Counterfactual Reasoning ICML 2025
Large Language Models have been shown to contain extensive world knowledge in their parameters, enabling impressive performance on many knowledge intensive tasks. However, when deployed in novel settings, LLMs often encounter situations where they must integrate parametric knowledge with new or unfamiliar information. In this work, we explore whether LLMs can combine knowledge in-context with their parametric knowledge through the lens of counterfactual reasoning. Through synthetic and real experiments in multi-hop reasoning problems, we show that LLMs generally struggle with counterfactual reasoning, often resorting to exclusively using their parametric knowledge. Moreover, we show that simple post-hoc finetuning can struggle to instill counterfactual reasoning ability -- often leading to degradation in stored parametric knowledge. Ultimately, our work reveals important limitations of current LLM's abilities to re-purpose parametric knowledge in novel settings.
comment: ICML 2025 Workshop on Scaling up Intervention Models
♻ ☆ Patent Language Model Pretraining with ModernBERT
Transformer-based language models such as BERT have become foundational in NLP, yet their performance degrades in specialized domains like patents, which contain long, technical, and legally structured text. Prior approaches to patent NLP have primarily relied on fine-tuning general-purpose models or domain-adapted variants pretrained with limited data. In this work, we pretrain 3 domain-specific masked language models for patents, using the ModernBERT architecture and a curated corpus of over 60 million patent records. Our approach incorporates architectural optimizations, including FlashAttention, rotary embeddings, and GLU feed-forward layers. We evaluate our models on four downstream patent classification tasks. Our model, ModernBERT-base-PT, consistently outperforms the general-purpose ModernBERT baseline on three out of four datasets and achieves competitive performance with a baseline PatentBERT. Additional experiments with ModernBERT-base-VX and Mosaic-BERT-large demonstrate that scaling the model size and customizing the tokenizer further enhance performance on selected tasks. Notably, all ModernBERT variants retain substantially faster inference over - 3x that of PatentBERT - underscoring their suitability for time-sensitive applications. These results underscore the benefits of domain-specific pretraining and architectural improvements for patent-focused NLP tasks.
comment: 7 pages, 5 figures, 4 tables
♻ ☆ LAMP-PRo: Label-aware Attention for Multi-label Prediction of DNA- and RNA-binding Proteins using Protein Language Models
Identifying DNA- (DBPs) and RNA-binding proteins (RBPs) is crucial for the understanding of cell function, molecular interactions as well as regulatory functions. Owing to their high similarity, most of the existing approaches face challenges in differentiating between DBPs and RBPs leading to high cross-prediction errors. Moreover, identifying proteins which bind to both DNA and RNA (DRBPs) is also quite a challenging task. In this regard, we propose a novel framework viz. LAMP-PRo which is based on pre-trained protein language model (PLM), attention mechanisms and multi-label learning to mitigate these issues. First, pre-trained PLM such ESM-2 is used for embedding the protein sequences followed by convolutional neural network (CNN). Subsequently multi-head self-attention mechanism is applied for the contextual information while label-aware attention is used to compute class-specific representations by attending to the sequence in a way that is tailored to each label (DBP, RBP and non-NABP) in a multi-label setup. We have also included a novel cross-label attention mechanism to explicitly capture dependencies between DNA- and RNA-binding proteins, enabling more accurate prediction of DRBP. Finally, a linear layer followed by a sigmoid function are used for the final prediction. Extensive experiments are carried out to compare LAMP-PRo with the existing methods wherein the proposed model shows consistent competent performance. Furthermore, we also provide visualization to showcase model interpretability, highlighting which parts of the sequence are most relevant for a predicted label. The original datasets are available at http://bliulab.net/iDRBP\_MMC and the codes are available at https://github.com/NimishaGhosh/LAMP-PRo.
♻ ☆ SimBench: Benchmarking the Ability of Large Language Models to Simulate Human Behaviors
Large language model (LLM) simulations of human behavior have the potential to revolutionize the social and behavioral sciences, if and only if they faithfully reflect real human behaviors. Current evaluations are fragmented, based on bespoke tasks and metrics, creating a patchwork of incomparable results. To address this, we introduce SimBench, the first large-scale, standardized benchmark for a robust, reproducible science of LLM simulation. By unifying 20 diverse datasets covering tasks from moral decision-making to economic choice across a large global participant pool, SimBench provides the necessary foundation to ask fundamental questions about when, how, and why LLM simulations succeed or fail. We show that, while even the best LLMs today have limited simulation ability (score: 40.80/100), performance scales log-linearly with model size. Simulation performance is not improved by increased inference-time compute. We demonstrate an alignment-simulation trade-off: instruction-tuning improves performance on low-entropy (consensus) questions but degrades it on high-entropy (diverse) ones. Models particularly struggle when simulating specific demographic groups. Finally, we demonstrate that simulation ability correlates most strongly with deep, knowledge-intensive reasoning (MMLU-Pro, r=0.939). By making progress measurable, we aim to accelerate the development of more faithful LLM simulators.
comment: Project Website: http://simbench.tiancheng.hu/ Data: https://huggingface.co/datasets/pitehu/SimBench
♻ ☆ A representational framework for learning and encoding structurally enriched trajectories in complex agent environments
The ability of artificial intelligence agents to make optimal decisions and generalise them to different domains and tasks is compromised in complex scenarios. One way to address this issue has focused on learning efficient representations of the world and on how the actions of agents affect them in state-action transitions. Whereas such representations are procedurally efficient, they lack structural richness. To address this problem, we propose to enhance the agent's ontology and extend the traditional conceptualisation of trajectories to provide a more nuanced view of task execution. Structurally Enriched Trajectories (SETs) extend the encoding of sequences of states and their transitions by incorporating hierarchical relations between objects, interactions, and affordances. SETs are built as multi-level graphs, providing a detailed representation of the agent dynamics and a transferable functional abstraction of the task. SETs are integrated into an architecture, Structurally Enriched Trajectory Learning and Encoding (SETLE), that employs a heterogeneous graph-based memory structure of multi-level relational dependencies essential for generalisation. We demonstrate that SETLE can support downstream tasks, enabling agents to recognise task relevant structural patterns across CREATE and MiniGrid environments. Finally, we integrate SETLE with reinforcement learning and show measurable improvements in downstream performance, including breakthrough success rates in complex, sparse-reward tasks.
♻ ☆ SentinelNet: Safeguarding Multi-Agent Collaboration Through Credit-Based Dynamic Threat Detection
Malicious agents pose significant threats to the reliability and decision-making capabilities of Multi-Agent Systems (MAS) powered by Large Language Models (LLMs). Existing defenses often fall short due to reactive designs or centralized architectures which may introduce single points of failure. To address these challenges, we propose SentinelNet, the first decentralized framework for proactively detecting and mitigating malicious behaviors in multi-agent collaboration. SentinelNet equips each agent with a credit-based detector trained via contrastive learning on augmented adversarial debate trajectories, enabling autonomous evaluation of message credibility and dynamic neighbor ranking via bottom-k elimination to suppress malicious communications. To overcome the scarcity of attack data, it generates adversarial trajectories simulating diverse threats, ensuring robust training. Experiments on MAS benchmarks show SentinelNet achieves near-perfect detection of malicious agents, close to 100% within two debate rounds, and recovers 95% of system accuracy from compromised baselines. By exhibiting strong generalizability across domains and attack patterns, SentinelNet establishes a novel paradigm for safeguarding collaborative MAS.
♻ ☆ AI Debaters are More Persuasive when Arguing in Alignment with Their Own Beliefs
The core premise of AI debate as a scalable oversight technique is that it is harder to lie convincingly than to refute a lie, enabling the judge to identify the correct position. Yet, existing debate experiments have relied on datasets with ground truth, where lying is reduced to defending an incorrect proposition. This overlooks a subjective dimension: lying also requires the belief that the claim defended is false. In this work, we apply debate to subjective questions and explicitly measure large language models' prior beliefs before experiments. Debaters were asked to select their preferred position, then presented with a judge persona deliberately designed to conflict with their identified priors. This setup tested whether models would adopt sycophantic strategies, aligning with the judge's presumed perspective to maximize persuasiveness, or remain faithful to their prior beliefs. We implemented and compared two debate protocols, sequential and simultaneous, to evaluate potential systematic biases. Finally, we assessed whether models were more persuasive and produced higher-quality arguments when defending positions consistent with their prior beliefs versus when arguing against them. Our main findings show that models tend to prefer defending stances aligned with the judge persona rather than their prior beliefs, sequential debate introduces significant bias favoring the second debater, models are more persuasive when defending positions aligned with their prior beliefs, and paradoxically, arguments misaligned with prior beliefs are rated as higher quality in pairwise comparison. These results can inform human judges to provide higher-quality training signals and contribute to more aligned AI systems, while revealing important aspects of human-AI interaction regarding persuasion dynamics in language models.
comment: 31 pages
♻ ☆ SimKO: Simple Pass@K Policy Optimization
Reinforcement learning with verifiable rewards (RLVR) has advanced the reasoning capabilities of large language models (LLMs). However, prevailing RLVR methods exhibit a systematic bias toward exploitation over exploration, as evidenced by improved pass@1 but reduced pass@K (K>1) performance. To understand this issue, we analyze training dynamics of RLVR methods by tracking the token-level probability distributions over vocabulary candidates. Our analysis reveals a consistent probability concentration effect where the top-1 candidate increasingly accumulates probability mass and suppresses that of other candidates. More importantly, stronger over-concentration correlates with worse pass@K performance. Inspired by this finding, we propose Simple Pass@K Optimization (SimKO), a method designed to mitigate the over-concentration issue, thereby encouraging exploration. SimKO operates in an asymmetrical manner. For verified-correct responses, it boosts the probabilities of the top-K candidates. For verified-incorrect responses, it applies stronger penalties to the top-1 candidate. We observe that this asymmetric design is particularly effective at mitigating over-concentration when applied at tokens with high entropy. Across various math and logical-reasoning benchmarks, SimKO consistently yields higher pass@K for a wide range of K, providing a simple way to improve RLVR's exploration.
comment: Technical report (20 pages, 10 figures, project page: https://spherelab.ai/simko/)
♻ ☆ LENS: Large Pre-trained Transformer for Exploring Financial Time Series Regularities
Modeling large-scale time series has gained significant attention in recent years. However, its direct application in finance remains challenging due to substantial differences in data characteristics across domains. Specifically, financial systems feature inherent stochasticity and low signal-to-noise ratios, rendering traditional methods and pre-training approaches ineffective. This underscores the urgent need for a foundation model tailored to financial time series. To bridge this gap, we propose \textbf{LENS}, a pre-trained model for this domain. \textbf{LENS} effectively captures the complexity of financial stochastic systems through a carefully crafted model architecture and mitigates noise during pre-training by using an invertible embedding module. We provide a rigorous theoretical explanation of the model's effectiveness and validate its performance through extensive experiments. Pre-trained on a dataset comprising 100 billion financial observations, \textbf{LENS} achieves exceptional results across a wide range of critical downstream tasks. Moreover, our work offers practical insights into developing pre-trained time series models in high-noise environments, paving the way for further advancements in this pivotal research domain.
♻ ☆ Beyond Pass@k: Breadth-Depth Metrics for Reasoning Boundaries
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a powerful paradigm to improve Large Language Models on reasoning tasks such as coding, math or logic. To assess the reasoning boundary (the fraction of problems a model can solve) researchers often report Pass@k at large sampling budgets. Recent results reveal a crossover phenomenon: while RLVR models outperform the base model at small k values, the base model usually outperforms them when sampling a very large number of completions. This has been interpreted as evidence that base models have a larger reasoning boundary. We argue that on tasks with discrete answer spaces, such as math with numeric outputs, Pass@k at large k reflects the increasingly higher chance of success in the limit of the number of trials rather than genuine reasoning, and can therefore be misleading. We propose Cover@tau, which measures the fraction of problems that a model can solve for which at least a tau proportion of completions are correct. Unlike Pass@k, Cover@tau captures reasoning under an explicit reliability threshold: models that rely on random guessing degrade rapidly as tau increases. We evaluate several RLVR models using Cover@tau-based metrics and illustrate how the relative rankings of popular algorithms change compared to Pass@1, offering a different perspective on reasoning boundaries.
comment: 10 pages, 3 figures. v2 adds discussion of related work (G-Pass@k)
♻ ☆ Denoising the Future: Top-p Distributions for Moving Through Time
Inference in dynamic probabilistic models is a complex task involving expensive operations. In particular, for Hidden Markov Models, the whole state space has to be enumerated for advancing in time. Even states with negligible probabilities are considered, resulting in computational inefficiency and increased noise due to the propagation of unlikely probability mass. We propose to denoise the future and speed up inference by using only the top-p states, i.e., the most probable states with accumulated probability p. We show that the error introduced by using only the top-p states is bound by p and the so-called minimal mixing rate of the underlying model. Moreover, in our empirical evaluation, we show that we can expect speedups of at least an order of magnitude, while the error in terms of total variation distance is below 0.09.
comment: Accepted at ECSQARU 2025
♻ ☆ A surrogate model for topology optimisation of elastic structures via parametric autoencoders
A surrogate-based topology optimisation algorithm for linear elastic structures under parametric loads and boundary conditions is proposed. Instead of learning the parametric solution of the state (and adjoint) problems or the optimisation trajectory as a function of the iterations, the proposed approach devises a surrogate version of the entire optimisation pipeline. First, the method predicts a quasi-optimal topology for a given problem configuration as a surrogate model of high-fidelity topologies optimised with the homogenisation method. This is achieved by means of a feed-forward net learning the mapping between the input parameters characterising the system setup and a latent space determined by encoder/decoder blocks reducing the dimensionality of the parametric topology optimisation problem and reconstructing a high-dimensional representation of the topology. Then, the predicted topology is used as an educated initial guess for a computationally efficient algorithm penalising the intermediate values of the design variable, while enforcing the governing equations of the system. This step allows the method to correct potential errors introduced by the surrogate model, eliminate artifacts, and refine the design in order to produce topologies consistent with the underlying physics. Different architectures are proposed and the approximation and generalisation capabilities of the resulting models are numerically evaluated. The quasi-optimal topologies allow to outperform the high-fidelity optimiser by reducing the average number of optimisation iterations by $53\%$ while achieving discrepancies below $4\%$ in the optimal value of the objective functional, even in the challenging scenario of testing the model to extrapolate beyond the training and validation domain.
comment: 43 pages, 13 figures, 7 tables
♻ ☆ When Text Embedding Meets Large Language Model: A Comprehensive Survey
Text embedding has become a foundational technology in natural language processing (NLP) during the deep learning era, driving advancements across a wide array of downstream tasks. While many natural language understanding challenges can now be modeled using generative paradigms and leverage the robust generative and comprehension capabilities of large language models (LLMs), numerous practical applications - such as semantic matching, clustering, and information retrieval - continue to rely on text embeddings for their efficiency and effectiveness. Therefore, integrating LLMs with text embeddings has become a major research focus in recent years. In this survey, we categorize the interplay between LLMs and text embeddings into three overarching themes: (1) LLM-augmented text embedding, enhancing traditional embedding methods with LLMs; (2) LLMs as text embedders, adapting their innate capabilities for high-quality embedding; and (3) Text embedding understanding with LLMs, leveraging LLMs to analyze and interpret embeddings. By organizing recent works based on interaction patterns rather than specific downstream applications, we offer a novel and systematic overview of contributions from various research and application domains in the era of LLMs. Furthermore, we highlight the unresolved challenges that persisted in the pre-LLM era with pre-trained language models (PLMs) and explore the emerging obstacles brought forth by LLMs. Building on this analysis, we outline prospective directions for the evolution of text embedding, addressing both theoretical and practical opportunities in the rapidly advancing landscape of NLP.
comment: Version 4: We added the latest works of LLM-based Embedders
♻ ☆ PICABench: How Far Are We from Physically Realistic Image Editing?
Image editing has achieved remarkable progress recently. Modern editing models could already follow complex instructions to manipulate the original content. However, beyond completing the editing instructions, the accompanying physical effects are the key to the generation realism. For example, removing an object should also remove its shadow, reflections, and interactions with nearby objects. Unfortunately, existing models and benchmarks mainly focus on instruction completion but overlook these physical effects. So, at this moment, how far are we from physically realistic image editing? To answer this, we introduce PICABench, which systematically evaluates physical realism across eight sub-dimension (spanning optics, mechanics, and state transitions) for most of the common editing operations (add, remove, attribute change, etc.). We further propose the PICAEval, a reliable evaluation protocol that uses VLM-as-a-judge with per-case, region-level human annotations and questions. Beyond benchmarking, we also explore effective solutions by learning physics from videos and construct a training dataset PICA-100K. After evaluating most of the mainstream models, we observe that physical realism remains a challenging problem with large rooms to explore. We hope that our benchmark and proposed solutions can serve as a foundation for future work moving from naive content editing toward physically consistent realism.
♻ ☆ Learning Fairer Representations with FairVIC
Mitigating bias in automated decision-making systems, particularly in deep learning models, is a critical challenge due to nuanced definitions of fairness, dataset-specific biases, and the inherent trade-off between fairness and accuracy. To address these issues, we introduce FairVIC, an innovative approach that enhances fairness in neural networks by integrating variance, invariance, and covariance terms into the loss function during training. Unlike methods that rely on predefined fairness criteria, FairVIC abstracts fairness concepts to minimise dependency on protected characteristics. We evaluate FairVIC against comparable bias mitigation techniques on benchmark datasets, considering both group and individual fairness, and conduct an ablation study on the accuracy-fairness trade-off. FairVIC demonstrates significant improvements ($\approx70\%$) in fairness across all tested metrics without compromising accuracy, thus offering a robust, generalisable solution for fair deep learning across diverse tasks and datasets.
♻ ☆ Can we Evaluate RAGs with Synthetic Data? ECML-PKDD 2025
We investigate whether synthetic question-answer (QA) data generated by large language models (LLMs) can serve as an effective proxy for human-labeled benchmarks when the latter is unavailable. We assess the reliability of synthetic benchmarks across two experiments: one varying retriever parameters while keeping the generator fixed, and another varying the generator with fixed retriever parameters. Across four datasets, of which two open-domain and two proprietary, we find that synthetic benchmarks reliably rank the RAGs varying in terms of retriever configuration, aligning well with human-labeled benchmark baselines. However, they do not consistently produce reliable RAG rankings when comparing generator architectures. The breakdown possibly arises from a combination of task mismatch between the synthetic and human benchmarks, and stylistic bias favoring certain generators.
comment: Accepted for the SynDAiTE workshop at the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 2025), September 15, 2025 - Porto, Portugal
♻ ☆ A Multimodal Deep Learning Approach for White Matter Shape Prediction in Diffusion MRI Tractography
Shape measures have emerged as promising descriptors of white matter tractography, offering complementary insights into anatomical variability and associations with cognitive and clinical phenotypes. However, conventional methods for computing shape measures are computationally expensive and time-consuming for large-scale datasets due to reliance on voxel-based representations. We propose Tract2Shape, a novel multimodal deep learning framework that leverages geometric (point cloud) and scalar (tabular) features to predict ten white matter tractography shape measures. To enhance model efficiency, we utilize a dimensionality reduction algorithm for the model to predict five primary shape components. The model is trained and evaluated on two independently acquired datasets, the HCP-YA dataset, and the PPMI dataset. We evaluate the performance of Tract2Shape by training and testing it on the HCP-YA dataset and comparing the results with state-of-the-art models. To further assess its robustness and generalization ability, we also test Tract2Shape on the unseen PPMI dataset. Tract2Shape outperforms SOTA deep learning models across all ten shape measures, achieving the highest average Pearson's r and the lowest nMSE on the HCP-YA dataset. The ablation study shows that both multimodal input and PCA contribute to performance gains. On the unseen testing PPMI dataset, Tract2Shape maintains a high Pearson's r and low nMSE, demonstrating strong generalizability in cross-dataset evaluation. Tract2Shape enables fast, accurate, and generalizable prediction of white matter shape measures from tractography data, supporting scalable analysis across datasets. This framework lays a promising foundation for future large-scale white matter shape analysis.
comment: Paper accepted to Human Brain Mapping. 25 pages, 3 figures, 8 tables
♻ ☆ From Unaligned to Aligned: Scaling Multilingual LLMs with Multi-Way Parallel Corpora EMNLP 2025
Continued pretraining and instruction tuning on large-scale multilingual data have proven to be effective in scaling large language models (LLMs) to low-resource languages. However, the unaligned nature of such data limits its ability to effectively capture cross-lingual semantics. In contrast, multi-way parallel data, where identical content is aligned across multiple languages, provides stronger cross-lingual consistency and offers greater potential for improving multilingual performance. In this paper, we introduce a large-scale, high-quality multi-way parallel corpus, TED2025, based on TED Talks. The corpus spans 113 languages, with up to 50 languages aligned in parallel, ensuring extensive multilingual coverage. Using this dataset, we investigate best practices for leveraging multi-way parallel data to enhance LLMs, including strategies for continued pretraining, instruction tuning, and the analysis of key influencing factors. Experiments on six multilingual benchmarks show that models trained on multiway parallel data consistently outperform those trained on unaligned multilingual data.
comment: EMNLP 2025 Main Conference (Oral)
♻ ☆ MetaBox-v2: A Unified Benchmark Platform for Meta-Black-Box Optimization NeurIPS 2025
Meta-Black-Box Optimization (MetaBBO) streamlines the automation of optimization algorithm design through meta-learning. It typically employs a bi-level structure: the meta-level policy undergoes meta-training to reduce the manual effort required in developing algorithms for low-level optimization tasks. The original MetaBox (2023) provided the first open-source framework for reinforcement learning-based single-objective MetaBBO. However, its relatively narrow scope no longer keep pace with the swift advancement in this field. In this paper, we introduce MetaBox-v2 (https://github.com/MetaEvo/MetaBox) as a milestone upgrade with four novel features: 1) a unified architecture supporting RL, evolutionary, and gradient-based approaches, by which we reproduce $23$ up-to-date baselines; 2) efficient parallelization schemes, which reduce the training/testing time by $10-40$x; 3) a comprehensive benchmark suite of $18$ synthetic/realistic tasks ($1900$+ instances) spanning single-objective, multi-objective, multi-model, and multi-task optimization scenarios; 4) plentiful and extensible interfaces for custom analysis/visualization and integrating to external optimization tools/benchmarks. To show the utility of MetaBox-v2, we carry out a systematic case study that evaluates the built-in baselines in terms of the optimization performance, generalization ability and learning efficiency. Valuable insights are concluded from thorough and detailed analysis for practitioners and those new to the field.
comment: Accepted by NeurIPS 2025
♻ ☆ The Narcissus Hypothesis: Descending to the Rung of Illusion NeurIPS 2025
Modern foundational models increasingly reflect not just world knowledge, but patterns of human preference embedded in their training data. We hypothesize that recursive alignment-via human feedback and model-generated corpora-induces a social desirability bias, nudging models to favor agreeable or flattering responses over objective reasoning. We refer to it as the Narcissus Hypothesis and test it across 31 models using standardized personality assessments and a novel Social Desirability Bias score. Results reveal a significant drift toward socially conforming traits, with profound implications for corpus integrity and the reliability of downstream inferences. We then offer a novel epistemological interpretation, tracing how recursive bias may collapse higher-order reasoning down Pearl's Ladder of Causality, culminating in what we refer to as the Rung of Illusion.
comment: NeurIPS 2025 Workshop on Evaluating the Evolving LLM Lifecycle: Benchmarks, Emergent Abilities, and Scaling
♻ ☆ MATRIX: Multimodal Agent Tuning for Robust Tool-Use Reasoning
Vision language models (VLMs) are increasingly deployed as controllers with access to external tools for complex reasoning and decision-making, yet their effectiveness remains limited by the scarcity of high-quality multimodal trajectories and the cost of manual annotation. We address this challenge with a vision-centric agent tuning framework that automatically synthesizes multimodal trajectories, generates step-wise preference pairs, and trains a VLM controller for robust tool-use reasoning. Our pipeline first constructs M-TRACE, a large-scale dataset of 28.5K multimodal tasks with 177K verified trajectories, enabling imitation-based trajectory tuning. Building on this, we develop MATRIX Agent, a controller finetuned on M-TRACE for step-wise tool reasoning. To achieve finer alignment, we further introduce Pref-X, a set of 11K automatically generated preference pairs, and optimize MATRIX on it via step-wise preference learning. Across three benchmarks, Agent-X, GTA, and GAIA, MATRIX consistently surpasses both open- and closed-source VLMs, demonstrating scalable and effective multimodal tool use. Our data and code is avaliable at https://github.com/mbzuai-oryx/MATRIX.
comment: We have come across a recent approach that has not been properly attributed at the time of submission and compared in a fair setting. Therefore, we would like to withdraw the paper to address these concerns
♻ ☆ LIMOPro: Reasoning Refinement for Efficient and Effective Test-time Scaling NeurIPS 2025
Large language models (LLMs) have demonstrated remarkable reasoning capabilities through test-time scaling approaches, particularly when fine-tuned with chain-of-thought (CoT) data distilled from more powerful large reasoning models (LRMs). However, these reasoning chains often contain verbose elements that mirror human problem-solving, categorized as progressive reasoning (the essential solution development path) and functional elements (verification processes, alternative solution approaches, and error corrections). While progressive reasoning is crucial, the functional elements significantly increase computational demands during test-time inference. We introduce PIR (Perplexity-based Importance Refinement), a principled framework that quantitatively evaluates the importance of each reasoning step based on its impact on answer prediction confidence. PIR systematically identifies and selectively prunes only low-importance functional steps while preserving progressive reasoning components, creating optimized training data that maintains the integrity of the core solution path while reducing verbosity. Models fine-tuned on PIR-optimized data exhibit superior test-time scaling properties, generating more concise reasoning chains while achieving improved accuracy (+0.9\% to +6.6\%) with significantly reduced token usage (-3\% to -41\%) across challenging reasoning benchmarks (AIME, AMC, and GPQA Diamond). Our approach demonstrates strong generalizability across different model sizes, data sources, and token budgets, offering a practical solution for deploying reasoning-capable LLMs in scenarios where efficient test-time scaling, response time, and computational efficiency are valuable constraints.
comment: Accepted at NeurIPS 2025
♻ ☆ ProSh: Probabilistic Shielding for Model-free Reinforcement Learning
Safety is a major concern in reinforcement learning (RL): we aim at developing RL systems that not only perform optimally, but are also safe to deploy by providing formal guarantees about their safety. To this end, we introduce Probabilistic Shielding via Risk Augmentation (ProSh), a model-free algorithm for safe reinforcement learning under cost constraints. ProSh augments the Constrained MDP state space with a risk budget and enforces safety by applying a shield to the agent's policy distribution using a learned cost critic. The shield ensures that all sampled actions remain safe in expectation. We also show that optimality is preserved when the environment is deterministic. Since ProSh is model-free, safety during training depends on the knowledge we have acquired about the environment. We provide a tight upper-bound on the cost in expectation, depending only on the backup-critic accuracy, that is always satisfied during training. Under mild, practically achievable assumptions, ProSh guarantees safety even at training time, as shown in the experiments.
♻ ☆ Tree of Agents: Improving Long-Context Capabilities of Large Language Models through Multi-Perspective Reasoning
Large language models (LLMs) face persistent challenges when handling long-context tasks, most notably the lost in the middle issue, where information located in the middle of a long input tends to be underutilized. Some existing methods that reduce input have the risk of discarding key information, while others that extend context windows often lead to attention dispersion. To address these limitations, we propose Tree of Agents (TOA), a multi-agent reasoning framework that segments the input into chunks processed by independent agents. Each agent generates its local cognition, then agents dynamically exchange information for collaborative reasoning along tree-structured paths. TOA enables agents to probe different reasoning orders for multi-perspective understanding, effectively mitigating position bias and reducing hallucinations. To improve processing efficiency, we incorporate prefix-hash caching and adaptive pruning strategies, achieving significant performance improvements with comparable API overhead. Experiments show that TOA, powered by compact LLaMA3.1-8B, significantly outperforms multiple baselines and demonstrates comparable performance to the latest and much larger commercial models, such as Gemini1.5-pro, on various long-context tasks. Code is available at https://github.com/Aireduce952/Tree-of-Agents.
comment: 19 pages, 5 figures
♻ ☆ Expressive Reward Synthesis with the Runtime Monitoring Language
A key challenge in reinforcement learning (RL) is reward (mis)specification, whereby imprecisely defined reward functions can result in unintended, possibly harmful, behaviours. Indeed, reward functions in RL are typically treated as black-box mappings from state-action pairs to scalar values. While effective in many settings, this approach provides no information about why rewards are given, which can hinder learning and interpretability. Reward Machines address this issue by representing reward functions as finite state automata, enabling the specification of structured, non-Markovian reward functions. However, their expressivity is typically bounded by regular languages, leaving them unable to capture more complex behaviours such as counting or parametrised conditions. In this work, we build on the Runtime Monitoring Language (RML) to develop a novel class of language-based Reward Machines. By leveraging the built-in memory of RML, our approach can specify reward functions for non-regular, non-Markovian tasks. We demonstrate the expressiveness of our approach through experiments, highlighting additional advantages in flexible event-handling and task specification over existing Reward Machine-based methods.
♻ ☆ Exploring Data-Efficient Adaptation of Large Language Models for Code Generation
Although Large Language Models (LLMs) have made significant progress in code generation, they still struggle with code generation tasks in specific scenarios. These scenarios usually necessitate the adaptation of LLMs to fulfill specific needs, but the limited training data available in practice leads to poor code generation performance. Therefore, how to effectively adapt LLMs to new scenarios with few training data is a major challenge for current code generation. In this paper, we propose a novel adaptation approach named DEED, which stands for Data-Efficient adaptation with Error-Driven learning for code generation. DEED leverages the errors made by LLMs as learning opportunities, using error revision to overcome their own shortcomings, thus achieving efficient learning. Specifically, DEED involves identifying error code generated by LLMs, employing Self-Revise for code revision, optimizing the model with revised code, and iteratively adapting the process for continuous improvement. Experimental results show that, compared to other mainstream fine-tuning approaches, DEED achieves superior performance with few training data, showing an average relative improvement of 46.2% in Pass@1 on multiple code generation benchmarks. We also validate the effectiveness of Self-Revise, which generates revised code that optimizes the model more efficiently compared to the code samples from datasets. Moreover, DEED consistently demonstrates strong performance across various LLMs, underscoring its applicability.
comment: Accepted by TOSEM
♻ ☆ MEET-Sepsis: Multi-Endogenous-View Enhanced Time-Series Representation Learning for Early Sepsis Prediction PRICAI 2025
Sepsis is a life-threatening infectious syndrome associated with high mortality in intensive care units (ICUs). Early and accurate sepsis prediction (SP) is critical for timely intervention, yet remains challenging due to subtle early manifestations and rapidly escalating mortality. While AI has improved SP efficiency, existing methods struggle to capture weak early temporal signals. This paper introduces a Multi-Endogenous-view Representation Enhancement (MERE) mechanism to construct enriched feature views, coupled with a Cascaded Dual-convolution Time-series Attention (CDTA) module for multi-scale temporal representation learning. The proposed MEET-Sepsis framework achieves competitive prediction accuracy using only 20% of the ICU monitoring time required by SOTA methods, significantly advancing early SP. Extensive validation confirms its efficacy. Code is available at: https://github.com/yueliangy/MEET-Sepsis.
comment: Accepted to PRICAI 2025
♻ ☆ Deep Edge Filter: Return of the Human-Crafted Layer in Deep Learning NeurIPS2025
We introduce the Deep Edge Filter, a novel approach that applies high-pass filtering to deep neural network features to improve model generalizability. Our method is motivated by our hypothesis that neural networks encode task-relevant semantic information in high-frequency components while storing domain-specific biases in low-frequency components of deep features. By subtracting low-pass filtered outputs from original features, our approach isolates generalizable representations while preserving architectural integrity. Experimental results across diverse domains such as Vision, Text, 3D, and Audio demonstrate consistent performance improvements regardless of model architecture and data modality. Analysis reveals that our method induces feature sparsification and effectively isolates high-frequency components, providing empirical validation of our core hypothesis. The code is available at https://github.com/dongkwani/DeepEdgeFilter.
comment: NeurIPS2025
♻ ☆ Counterfactual Effect Decomposition in Multi-Agent Sequential Decision Making ICML 2025
We address the challenge of explaining counterfactual outcomes in multi-agent Markov decision processes. In particular, we aim to explain the total counterfactual effect of an agent's action on the outcome of a realized scenario through its influence on the environment dynamics and the agents' behavior. To achieve this, we introduce a novel causal explanation formula that decomposes the counterfactual effect by attributing to each agent and state variable a score reflecting their respective contributions to the effect. First, we show that the total counterfactual effect of an agent's action can be decomposed into two components: one measuring the effect that propagates through all subsequent agents' actions and another related to the effect that propagates through the state transitions. Building on recent advancements in causal contribution analysis, we further decompose these two effects as follows. For the former, we consider agent-specific effects -- a causal concept that quantifies the counterfactual effect of an agent's action that propagates through a subset of agents. Based on this notion, we use Shapley value to attribute the effect to individual agents. For the latter, we consider the concept of structure-preserving interventions and attribute the effect to state variables based on their "intrinsic" contributions. Through extensive experimentation, we demonstrate the interpretability of our approach in a Gridworld environment with LLM-assisted agents and a sepsis management simulator.
comment: ICML 2025
♻ ☆ Uncertain Knowledge Graph Completion via Semi-Supervised Confidence Distribution Learning NeurIPS 2025
Uncertain knowledge graphs (UKGs) associate each triple with a confidence score to provide more precise knowledge representations. Recently, since real-world UKGs suffer from the incompleteness, uncertain knowledge graph (UKG) completion attracts more attention, aiming to complete missing triples and confidences. Current studies attempt to learn UKG embeddings to solve this problem, but they neglect the extremely imbalanced distributions of triple confidences. This causes that the learnt embeddings are insufficient to high-quality UKG completion. Thus, in this paper, to address the above issue, we propose a new semi-supervised Confidence Distribution Learning (ssCDL) method for UKG completion, where each triple confidence is transformed into a confidence distribution to introduce more supervision information of different confidences to reinforce the embedding learning process. ssCDL iteratively learns UKG embedding by relational learning on labeled data (i.e., existing triples with confidences) and unlabeled data with pseudo labels (i.e., unseen triples with the generated confidences), which are predicted by meta-learning to augment the training data and rebalance the distribution of triple confidences. Experiments on two UKG datasets demonstrate that ssCDL consistently outperforms state-of-the-art baselines in different evaluation metrics.
comment: 13 pages, accepted by NeurIPS 2025 (spotlight)
♻ ☆ Think With Videos For Agentic Long-Video Understanding
Long-video understanding~(LVU) is a challenging problem in computer vision. Existing methods either downsample frames for single-pass reasoning, sacrificing fine-grained details, or depend on textual reasoning over task-agnostic representations, hindering task-specific perception and exploration. In this paper, we propose VideoExplorer, a framework grounded in the principle of ``thinking with video'', which naturally intertwines planning, temporal grounding, and scalable perception into a coherent reasoning process. Rather than reasoning over a static context, VideoExplorer iteratively formulates sub-questions, locates relevant moments, and performs task-oriented, temporally scalable video understanding until reaching the final answer, enabling faithful, efficient, and interpretable reasoning. To address the lack of LVU training resources, we construct a long-video reasoning dataset using difficulty-adaptive sampling to ensure high-quality trajectories on complex tasks. Building on this dataset, we design a two-stage training pipeline: supervised trajectory initialization followed by trajectory-level preference optimization, encouraging adaptive temporal grounding and iterative information integration guided by downstream rewards. Extensive evaluations on popular long-video understanding and reasoning benchmarks demonstrate VideoExplorer's significant advantage over existing baselines, highlighting its robustness, adaptability, and efficiency. Our code is made publicly available in this repository(https://github.com/yhy-2000/VideoDeepResearch).
♻ ☆ HauntAttack: When Attack Follows Reasoning as a Shadow
Emerging Large Reasoning Models (LRMs) consistently excel in mathematical and reasoning tasks, showcasing remarkable capabilities. However, the enhancement of reasoning abilities and the exposure of internal reasoning processes introduce new safety vulnerabilities. A critical question arises: when reasoning becomes intertwined with harmfulness, will LRMs become more vulnerable to jailbreaks in reasoning mode? To investigate this, we introduce HauntAttack, a novel and general-purpose black-box adversarial attack framework that systematically embeds harmful instructions into reasoning questions. Specifically, we modify key reasoning conditions in existing questions with harmful instructions, thereby constructing a reasoning pathway that guides the model step by step toward unsafe outputs. We evaluate HauntAttack on 11 LRMs and observe an average attack success rate of 70\%, achieving up to 12 percentage points of absolute improvement over the strongest prior baseline. Our further analysis reveals that even advanced safety-aligned models remain highly susceptible to reasoning-based attacks, offering insights into the urgent challenge of balancing reasoning capability and safety in future model development.
♻ ☆ When Agents go Astray: Course-Correcting SWE Agents with PRMs
Large Language Model (LLM) agents are increasingly deployed for complex, multi-step software engineering (SWE) tasks. However, their trajectories often contain costly inefficiencies, such as redundant exploration, looping, and failure to terminate once a solution is reached. Prior work has largely treated these errors in a post-hoc manner, diagnosing failures only after execution. In this paper, we introduce SWE-PRM, an inference-time Process Reward Model (PRM) that intervenes during execution to detect and course-correct trajectory-level errors. Our PRM design leverages a taxonomy of common inefficiencies and delivers lightweight, interpretable feedback without modifying the underlying policy. On SWE-bench Verified, closed-source PRMs improve resolution from 40.0% to 50.6% (+10.6 p.p.), with the largest gains on medium and hard tasks. Among feedback strategies, taxonomy-guided PRMs outperform unguided or explicit action-prescriptive variants, increasing success rate while reducing trajectory length. These benefits come at an acceptable added inference cost of as low as $0.2, making PRMs a practical and scalable mechanism for improving SWE agents' reliability and efficiency.
♻ ☆ Model-based Implicit Neural Representation for sub-wavelength Radio Localization
The increasing deployment of large antenna arrays at base stations has significantly improved the spatial resolution and localization accuracy of radio-localization methods. However, traditional signal processing techniques struggle in complex radio environments, particularly in scenarios dominated by non line of sight (NLoS) propagation paths, resulting in degraded localization accuracy. Recent developments in machine learning have facilitated the development of machine learning-assisted localization techniques, enhancing localization accuracy in complex radio environments. However, these methods often involve substantial computational complexity during both the training and inference phases. This work extends the well-established fingerprinting-based localization framework by simultaneously reducing its memory requirements and improving its accuracy. Specifically, a model-based neural network is used to learn the location-to-channel mapping, and then serves as a generative neural channel model. This generative model augments the fingerprinting comparison dictionary while reducing the memory requirements. The proposed method outperforms fingerprinting baselines by achieving sub-wavelength localization accuracy, even in complex static NLoS environments. Remarkably, it offers an improvement by several orders of magnitude in localization accuracy, while simultaneously reducing memory requirements by an order of magnitude compared to classical fingerprinting methods.
♻ ☆ Explaining Large Language Models with gSMILE
Large Language Models (LLMs) such as GPT, LLaMA, and Claude achieve remarkable performance in text generation but remain opaque in their decision-making processes, limiting trust and accountability in high-stakes applications. We present gSMILE (generative SMILE), a model-agnostic, perturbation-based framework for token-level interpretability in LLMs. Extending the SMILE methodology, gSMILE uses controlled prompt perturbations, Wasserstein distance metrics, and weighted linear surrogates to identify input tokens with the most significant impact on the output. This process enables the generation of intuitive heatmaps that visually highlight influential tokens and reasoning paths. We evaluate gSMILE across leading LLMs (OpenAI's gpt-3.5-turbo-instruct, Meta's LLaMA 3.1 Instruct Turbo, and Anthropic's Claude 2.1) using attribution fidelity, attribution consistency, attribution stability, attribution faithfulness, and attribution accuracy as metrics. Results show that gSMILE delivers reliable human-aligned attributions, with Claude 2.1 excelling in attention fidelity and GPT-3.5 achieving the highest output consistency. These findings demonstrate gSMILE's ability to balance model performance and interpretability, enabling more transparent and trustworthy AI systems.
♻ ☆ PokeeResearch: Effective Deep Research via Reinforcement Learning from AI Feedback and Robust Reasoning Scaffold
Tool-augmented large language models (LLMs) are emerging as deep research agents, systems that decompose complex queries, retrieve external evidence, and synthesize grounded responses. Yet current agents remain limited by shallow retrieval, weak alignment metrics, and brittle tool-use behavior. We introduce PokeeResearch-7B, a 7B-parameter deep research agent built under a unified reinforcement learning framework for robustness, alignment, and scalability. PokeeResearch-7B is trained by an annotation-free Reinforcement Learning from AI Feedback (RLAIF) framework to optimize policies using LLM-based reward signals that capture factual accuracy, citation faithfulness, and instruction adherence. A chain-of-thought-driven multi-call reasoning scaffold further enhances robustness through self-verification and adaptive recovery from tool failures. Among 10 popular deep research benchmarks, PokeeResearch-7B achieves state-of-the-art performance among 7B-scale deep research agents. This highlights that careful reinforcement learning and reasoning design can produce efficient, resilient, and research-grade AI agents. The model and inference code is open-sourced under Apache 2.0 license at https://github.com/Pokee-AI/PokeeResearchOSS.
♻ ☆ Changing Base Without Losing Pace: A GPU-Efficient Alternative to MatMul in DNNs
Modern AI relies on huge matrix multiplications (MatMuls), whose computation poses a scalability problem for inference and training. We propose an alternative, GPU native bilinear operator to MatMuls in neural networks, which offers a three-way tradeoff between: speed, accuracy and parameter count. In particular, this operator requires substantially fewer FLOPs to evaluate ($\ll n^3$), yet increases the parameter count compared to MatMul ($\gg n^2$). We call this operator Strassen-Tile (STL). The key idea behind STL is a local learnable change-of-basis, applied on tiles of the weight and activation matrices, followed by an element-wise product between the tiles, implemented simultaneously via MatMul. The key technical question we study is how to optimize the change-of-basis of a given layer, which is a highly non-convex problem. We show that theory-backed initializations (inspired by fast matrix and polynomial multiplication) lead to substantially better accuracy than random SGD initialization. This phenomenon motivates further algorithmic study of STL optimization in DNNs. Our experiments demonstrate that STL can approximate 4x4 MatMul of tiles while reducing FLOPs by a factor of 2.66, and can improve Imagenet-1K accuracy of SoTA T2T-ViT-7 (4.3M parameters) while lowering FLOPs. Even with non-CUDA optimized PyTorch code, STL achieves wall-clock speedups in the compute-bound regime. These results, together with its theoretical grounds, suggest STL as a promising building block for scalable and cost-efficient AI.
♻ ☆ SAFER: Risk-Constrained Sample-then-Filter in Large Language Models
As large language models (LLMs) are increasingly deployed in risk-sensitive applications such as real-world open-ended question answering (QA), ensuring the trustworthiness of their outputs has become critical. Existing selective conformal prediction (SCP) methods provide statistical guarantees by constructing prediction sets with a constrained miscoverage rate for correct answers. However, prior works unrealistically assume that admissible answers for all instances can be obtained via finite sampling, even for open-ended QA scenarios that lack a fixed and finite solution space. To address this, we introduce a two-stage risk control framework comprising abstention-aware sampling and conformalized filtering (SAFER). Firstly, on a held-out calibration set, SAFER calibrates a sampling budget within the maximum sampling cap, using the Clopper-Pearson exact method at a user-desired risk level (i.e., the maximum allowable miscoverage rate of the sampling sets). If the risk level cannot be satisfied within the cap, we abstain; otherwise, the calibrated sampling budget becomes the minimum requirements at test time. Then, we employ calibration instances where correct answers are attainable under the calibrated budget and apply the conformal risk control method to determine a statistically valid uncertainty threshold, which filters unreliable distractors from the candidate set for each test data point. In this stage, SAFER introduces an additional risk level to guide the calculation of the threshold, thereby controlling the risk of correct answers being excluded. Furthermore, we show that SAFER is compatible with various task-specific admission criteria and calibration-test split ratios, highlighting its robustness and high data efficiency.
♻ ☆ Iterative Quantum Feature Maps
Quantum machine learning models that leverage quantum circuits as quantum feature maps (QFMs) are recognized for their enhanced expressive power in learning tasks. Such models have demonstrated rigorous end-to-end quantum speedups for specific families of classification problems. However, deploying deep QFMs on real quantum hardware remains challenging due to circuit noise and hardware constraints. Additionally, variational quantum algorithms often suffer from computational bottlenecks, particularly in accurate gradient estimation, which significantly increases quantum resource demands during training. We propose Iterative Quantum Feature Maps (IQFMs), a hybrid quantum-classical framework that constructs a deep architecture by iteratively connecting shallow QFMs with classically computed augmentation weights. By incorporating contrastive learning and a layer-wise training mechanism, the IQFMs framework effectively reduces quantum runtime and mitigates noise-induced degradation. In tasks involving noisy quantum data, numerical experiments show that the IQFMs framework outperforms quantum convolutional neural networks, without requiring the optimization of variational quantum parameters. Even for a typical classical image classification benchmark, a carefully designed IQFMs framework achieves performance comparable to that of classical neural networks. This framework presents a promising path to address current limitations and harness the full potential of quantum-enhanced machine learning.
comment: 13 pages, 12 figures; typos corrected, references added
♻ ☆ SpecExit: Accelerating Large Reasoning Model via Speculative Exit
Despite their strong performance on reasoning tasks, large reasoning models (LRMs) often suffer from overthinking, producing unnecessarily long outputs and incurring high end-to-end latency, a significant limitation to their real-world deployment. To address overthinking, early-exit mechanisms have been proposed to terminate reasoning before typical completion, showing that this approach can effectively shorten generation length with minimal impact on accuracy. However, their reliance on probing mechanisms introduces a detection overhead that limits their end-to-end latency gains and compromises their generalizability across diverse problems. Inspired by the use of hidden states in speculative decoding, we propose SpecExit, a novel framework that predicts both future tokens and an early-exit signal directly from a lightweight draft model without probing overhead. Our method offers significant improvements, reducing average generation length by 66\% and achieving a 2.5x speedup in end-to-end latency compared to the speculative decoding baseline, without compromising accuracy. Our method leverages the inherent signals from hidden states to provide effective early-exit signals, suggesting broader use of hidden states for efficient reasoning. Our code is available at https://github.com/Tencent/AngelSlim.
♻ ☆ SoK: Taxonomy and Evaluation of Prompt Security in Large Language Models
Large Language Models (LLMs) have rapidly become integral to real-world applications, powering services across diverse sectors. However, their widespread deployment has exposed critical security risks, particularly through jailbreak prompts that can bypass model alignment and induce harmful outputs. Despite intense research into both attack and defense techniques, the field remains fragmented: definitions, threat models, and evaluation criteria vary widely, impeding systematic progress and fair comparison. In this Systematization of Knowledge (SoK), we address these challenges by (1) proposing a holistic, multi-level taxonomy that organizes attacks, defenses, and vulnerabilities in LLM prompt security; (2) formalizing threat models and cost assumptions into machine-readable profiles for reproducible evaluation; (3) introducing an open-source evaluation toolkit for standardized, auditable comparison of attacks and defenses; (4) releasing JAILBREAKDB, the largest annotated dataset of jailbreak and benign prompts to date;\footnote{The dataset is released at \href{https://huggingface.co/datasets/youbin2014/JailbreakDB}{\textcolor{purple}{https://huggingface.co/datasets/youbin2014/JailbreakDB}}.} and (5) presenting a comprehensive evaluation platform and leaderboard of state-of-the-art methods \footnote{will be released soon.}. Our work unifies fragmented research, provides rigorous foundations for future studies, and supports the development of robust, trustworthy LLMs suitable for high-stakes deployment.
♻ ☆ Multi-Agent Collaboration via Evolving Orchestration NeurIPS 2025
Large language models (LLMs) have achieved remarkable results across diverse downstream tasks, but their monolithic nature restricts scalability and efficiency in complex problem-solving. While recent research explores multi-agent collaboration among LLMs, most approaches rely on static organizational structures that struggle to adapt as task complexity and agent numbers grow, resulting in coordination overhead and inefficiencies. To this end, we propose a puppeteer-style paradigm for LLM-based multi-agent collaboration, where a centralized orchestrator ("puppeteer") dynamically directs agents ("puppets") in response to evolving task states. This orchestrator is trained via reinforcement learning to adaptively sequence and prioritize agents, enabling flexible and evolvable collective reasoning. Experiments on closed- and open-domain scenarios show that this method achieves superior performance with reduced computational costs. Analyses further reveal that the key improvements consistently stem from the emergence of more compact, cyclic reasoning structures under the orchestrator's evolution. Our code is available at https://github.com/OpenBMB/ChatDev/tree/puppeteer.
comment: accepted at NeurIPS 2025
♻ ☆ Learning to Interpret Weight Differences in Language Models
Finetuning (pretrained) language models is a standard approach for updating their internal parametric knowledge and specializing them to new tasks and domains. However, the corresponding model weight changes ("weight diffs") are not generally interpretable. While inspecting the finetuning dataset can give a sense of how the model might have changed, these datasets are often not publicly available or are too large to work with directly. Towards the goal of comprehensively understanding weight diffs in natural language, we introduce Diff Interpretation Tuning (DIT), a method that trains models to describe their own finetuning-induced modifications. Our approach uses synthetic, labeled weight diffs to train a DIT-adapter, which can be applied to a compatible finetuned model to make it describe how it has changed. We demonstrate in two proof-of-concept settings (reporting hidden behaviors and summarizing finetuned knowledge) that our method enables models to describe their finetuning-induced modifications using accurate natural language descriptions.
comment: Project code and links to weight diffs, adapters, and training data can be found at https://github.com/Aviously/diff-interpretation-tuning
♻ ☆ SceneCOT: Eliciting Grounded Chain-of-Thought Reasoning in 3D Scenes
Existing research on 3D Large Language Models (LLMs) still struggles to achieve grounded question-answering, primarily due to the under-exploration of the mech- anism of human-like scene-object grounded reasoning. This paper bridges the gap by presenting a novel framework. We first introduce a grounded Chain-of- Thought reasoning method in 3D scenes (SCENECOT), decoupling a complex reasoning task into simpler and manageable problems, and building corresponding visual clues based on multimodal expert modules. To enable such a method, we develop SCENECOT-185K, the first large-scale grounded CoT reasoning dataset, consisting of 185K high-quality instances. Extensive experiments across various complex 3D scene reasoning benchmarks demonstrate that our new framework achieves strong performance with high grounding-QA coherence. To the best of our knowledge, this is the first successful application of CoT reasoning to 3D scene understanding, enabling step-by-step human-like reasoning and showing potential for extension to broader 3D scene understanding scenarios.
comment: Project page: https://scenecot.github.io/
♻ ☆ Temporal Alignment of LLMs through Cycle Encoding for Long-Range Time Representations
Large language models (LLMs) suffer from temporal misalignment issues especially across long span of time. The issue arises from knowing that LLMs are trained on large amounts of data where temporal information is rather sparse over long times, such as thousands of years, resulting in insufficient learning or catastrophic forgetting by the LLMs. This paper proposes a methodology named "Ticktack" for addressing the LLM's long-time span misalignment in a yearly setting. Specifically, we first propose to utilize the sexagenary year expression instead of the Gregorian year expression employed by LLMs, achieving a more uniform distribution in yearly granularity. Then, we employ polar coordinates to model the sexagenary cycle of 60 terms and the year order within each term, with additional temporal encoding to ensure LLMs understand them. Finally, we present a temporal representational alignment approach for post-training LLMs that effectively distinguishes time points with relevant knowledge, hence improving performance on time-related tasks, particularly over a long period. We also create a long time span benchmark for evaluation. Experimental results prove the effectiveness of our proposal.
♻ ☆ Segment Policy Optimization: Effective Segment-Level Credit Assignment in RL for Large Language Models NeurIPS 2025
Enhancing the reasoning capabilities of large language models effectively using reinforcement learning (RL) remains a crucial challenge. Existing approaches primarily adopt two contrasting advantage estimation granularities: token-level methods (e.g., PPO) aim to provide fine-grained advantage signals but suffer from inaccurate estimation due to difficulties in training an accurate critic model. On the other extreme, trajectory-level methods (e.g., GRPO) solely rely on a coarse-grained advantage signal from the final reward, leading to imprecise credit assignment. To address these limitations, we propose Segment Policy Optimization (SPO), a novel RL framework that leverages segment-level advantage estimation at an intermediate granularity, achieving a better balance by offering more precise credit assignment than trajectory-level methods and requiring fewer estimation points than token-level methods, enabling accurate advantage estimation based on Monte Carlo (MC) without a critic model. SPO features three components with novel strategies: (1) flexible segment partition; (2) accurate segment advantage estimation; and (3) policy optimization using segment advantages, including a novel probability-mask strategy. We further instantiate SPO for two specific scenarios: (1) SPO-chain for short chain-of-thought (CoT), featuring novel cutpoint-based partition and chain-based advantage estimation, achieving $6$-$12$ percentage point improvements in accuracy over PPO and GRPO on GSM8K. (2) SPO-tree for long CoT, featuring novel tree-based advantage estimation, which significantly reduces the cost of MC estimation, achieving $7$-$11$ percentage point improvements over GRPO on MATH500 under 2K and 4K context evaluation. We make our code publicly available at https://github.com/AIFrameResearch/SPO.
comment: Accepted at NeurIPS 2025
♻ ☆ Program Synthesis via Test-Time Transduction NeurIPS 2025
We introduce transductive program synthesis, a new formulation of the program synthesis task that explicitly leverages test inputs during synthesis. While prior approaches to program synthesis--whether based on natural language descriptions or input-output examples--typically aim to generalize from training examples, they often struggle with robustness, especially in real-world settings where training examples are limited and test inputs involve various edge cases. To address this, we propose a novel framework that improves robustness by treating synthesis as an active learning over a finite hypothesis class defined by programs' outputs. We use an LLM to predict outputs for selected test inputs and eliminate inconsistent hypotheses, where the inputs are chosen via a greedy maximin algorithm to minimize the number of LLM queries required. We evaluate our approach on four benchmarks: Playgol, MBPP+, 1D-ARC, and programmatic world modeling on MiniGrid. We demonstrate that our method significantly improves program synthesis in both accuracy and efficiency. We release our code at https://github.com/klee972/SYNTRA.
comment: NeurIPS 2025
♻ ☆ Improving Human-AI Coordination through Online Adversarial Training and Generative Models
Being able to cooperate with diverse humans is an important component of many economically valuable AI tasks, from household robotics to autonomous driving. However, generalizing to novel humans requires training on data that captures the diversity of human behaviors. Adversarial training is a promising method that allows dynamic data generation and ensures that agents are robust. It creates a feedback loop where the agent's performance influences the generation of new adversarial data, which can be used immediately to train the agent. However, adversarial training is difficult to apply in a cooperative task; how can we train an adversarial cooperator? We propose a novel strategy that combines a pretrained generative model to simulate valid cooperative agent policies with adversarial training to maximize regret. We call our method GOAT: Generative Online Adversarial Training. In this framework, the GOAT dynamically searches the latent space of the generative model for coordination strategies where the learning policy, the Cooperator agent, underperforms. GOAT enables better generalization by exposing the Cooperator to various challenging interaction scenarios. We maintain realistic coordination strategies by keeping the generative model frozen, thus avoiding adversarial exploitation. We evaluate GOAT with real human partners, and the results demonstrate state of the art performance on the Overcooked benchmark, highlighting its effectiveness in generalizing to diverse human behaviors.
♻ ☆ "She's Like a Person but Better": Characterizing Companion-Assistant Dynamics in Human-AI Relationships
Large language models are increasingly used for both task-based assistance and social companionship, yet research has typically focused on one or the other. Drawing on a survey (N = 204) and 30 interviews with high-engagement ChatGPT and Replika users, we characterize digital companionship as an emerging form of human-AI relationship. With both systems, users were drawn to humanlike qualities, such as emotional resonance and personalized responses, and non-humanlike qualities, such as constant availability and inexhaustible tolerance. This led to fluid chatbot uses, such as Replika as a writing assistant and ChatGPT as an emotional confidant, despite their distinct branding. However, we observed challenging tensions in digital companionship dynamics: participants grappled with bounded personhood, forming deep attachments while denying chatbots "real" human qualities, and struggled to reconcile chatbot relationships with social norms. These dynamics raise questions for the design of digital companions and the rise of hybrid, general-purpose AI systems.
♻ ☆ Shuffle-R1: Efficient RL framework for Multimodal Large Language Models via Data-centric Dynamic Shuffle
Reinforcement learning (RL) has emerged as an effective post-training paradigm for enhancing the reasoning capabilities of multimodal large language model (MLLM). However, current RL pipelines often suffer from training inefficiencies caused by two underexplored issues: Advantage Collapsing, where most advantages in a batch concentrate near zero, and Rollout Silencing, where the proportion of rollouts contributing non-zero gradients diminishes over time. These issues lead to suboptimal gradient updates and hinder long-term learning efficiency. To address these issues, we propose Shuffle-R1, a simple yet principled framework that improves RL fine-tuning efficiency by dynamically restructuring trajectory sampling and batch composition. It introduces (1) Pairwise Trajectory Sampling, which selects high-contrast trajectories with large advantages to improve gradient signal quality, and (2) Advantage-based Trajectory Shuffle, which increases exposure of valuable rollouts through informed batch reshuffling. Experiments across multiple reasoning benchmarks show that our framework consistently outperforms strong RL baselines with minimal overhead. These results highlight the importance of data-centric adaptations for more efficient RL training in MLLM.
comment: Project page at: https://xenozlh.github.io/Shuffle-R1/
♻ ☆ Offline Policy Evaluation of Multi-Turn LLM Health Coaching with Real Users NeurIPS 2025
We study a web-deployed, tool-augmented LLM health coach with real users. In a pilot with seven users (280 rated turns), offline policy evaluation (OPE) over factorized decision heads (Tool/Style) shows that a uniform heavy-tool policy raises average value on logs but harms specific subgroups, most notably low-health-literacy/high-self-efficacy users. A lightweight simulator with hidden archetypes further shows that adding a small early information-gain bonus reliably shortens trait identification and improves goal success and pass@3. Together, these early findings indicate an evaluation-first path to personalization: freeze the generator, learn subgroup-aware decision heads on typed rewards (objective tool outcomes and satisfaction), and always report per-archetype metrics to surface subgroup harms that averages obscure.
comment: Accepted to the NeurIPS 2025 Workshop on Multi-Turn Interactions in Large Language Models
♻ ☆ Incomplete Multi-view Clustering via Hierarchical Semantic Alignment and Cooperative Completion
Incomplete multi-view data, where certain views are entirely missing for some samples, poses significant challenges for traditional multi-view clustering methods. Existing deep incomplete multi-view clustering approaches often rely on static fusion strategies or two-stage pipelines, leading to suboptimal fusion results and error propagation issues. To address these limitations, this paper proposes a novel incomplete multi-view clustering framework based on Hierarchical Semantic Alignment and Cooperative Completion (HSACC). HSACC achieves robust cross-view fusion through a dual-level semantic space design. In the low-level semantic space, consistency alignment is ensured by maximizing mutual information across views. In the high-level semantic space, adaptive view weights are dynamically assigned based on the distributional affinity between individual views and an initial fused representation, followed by weighted fusion to generate a unified global representation. Additionally, HSACC implicitly recovers missing views by projecting aligned latent representations into high-dimensional semantic spaces and jointly optimizes reconstruction and clustering objectives, enabling cooperative learning of completion and clustering. Experimental results demonstrate that HSACC significantly outperforms state-of-the-art methods on five benchmark datasets. Ablation studies validate the effectiveness of the hierarchical alignment and dynamic weighting mechanisms, while parameter analysis confirms the model's robustness to hyperparameter variations.
♻ ☆ Combining Cost-Constrained Runtime Monitors for AI Safety
Monitoring AIs at runtime can help us detect and stop harmful actions. In this paper, we study how to efficiently combine multiple runtime monitors into a single monitoring protocol. The protocol's objective is to maximize the probability of applying a safety intervention on misaligned outputs (i.e., maximize recall). Since running monitors and applying safety interventions are costly, the protocol also needs to adhere to an average-case budget constraint. Taking the monitors' performance and cost as given, we develop an algorithm to find the best protocol. The algorithm exhaustively searches over when and which monitors to call, and allocates safety interventions based on the Neyman-Pearson lemma. By focusing on likelihood ratios and strategically trading off spending on monitors against spending on interventions, we more than double our recall rate compared to a naive baseline in a code review setting. We also show that combining two monitors can Pareto dominate using either monitor alone. Our framework provides a principled methodology for combining existing monitors to detect undesirable behavior in cost-sensitive settings.
♻ ☆ ComputerRL: Scaling End-to-End Online Reinforcement Learning for Computer Use Agents
We introduce ComputerRL, a framework for autonomous desktop intelligence that enables agents to operate complex digital workspaces skillfully. ComputerRL features the API-GUI paradigm, which unifies programmatic API calls and direct GUI interaction to address the inherent mismatch between machine agents and human-centric desktop environments. Scaling end-to-end RL training is crucial for improvement and generalization across diverse desktop tasks; however, it remains challenging due to environmental inefficiency and instability during extended training. To support scalable and robust training, we develop a distributed RL infrastructure capable of orchestrating thousands of parallel virtual desktop environments to accelerate large-scale online RL. Furthermore, we propose Entropulse, a training strategy that alternates reinforcement learning with supervised fine-tuning, effectively mitigating entropy collapse during extended training runs. We employ ComputerRL on open models GLM-4-9B-0414 and GLM-4.1V-9B-Thinking, and evaluate them on the OSWorld benchmark. The AutoGLM-OS-9B achieves a new state-of-the-art accuracy of 48.9%, demonstrating significant improvements for general agents in desktop automation. Our code and the new OfficeWorld benchmark are available at https://github.com/thudm/ComputerRL. The algorithm and framework are adopted in building AutoGLM (Liu et al., 2024b).
♻ ☆ HyperGraphRAG: Retrieval-Augmented Generation via Hypergraph-Structured Knowledge Representation NeurIPS 2025
Standard Retrieval-Augmented Generation (RAG) relies on chunk-based retrieval, whereas GraphRAG advances this approach by graph-based knowledge representation. However, existing graph-based RAG approaches are constrained by binary relations, as each edge in an ordinary graph connects only two entities, limiting their ability to represent the n-ary relations (n >= 2) in real-world knowledge. In this work, we propose HyperGraphRAG, a novel hypergraph-based RAG method that represents n-ary relational facts via hyperedges, and consists of knowledge hypergraph construction, retrieval, and generation. Experiments across medicine, agriculture, computer science, and law demonstrate that HyperGraphRAG outperforms both standard RAG and previous graph-based RAG methods in answer accuracy, retrieval efficiency, and generation quality. Our data and code are publicly available at https://github.com/LHRLAB/HyperGraphRAG.
comment: Accepted by NeurIPS 2025 main conference
♻ ☆ Secure and Efficient Access Control for Computer-Use Agents via Context Space
Large language model (LLM)-based computer-use agents represent a convergence of AI and OS capabilities, enabling natural language to control system- and application-level functions. However, due to LLMs' inherent uncertainty issues, granting agents control over computers poses significant security risks. When agent actions deviate from user intentions, they can cause irreversible consequences. Existing mitigation approaches, such as user confirmation and LLM-based dynamic action validation, still suffer from limitations in usability, security, and performance. To address these challenges, we propose CSAgent, a system-level, static policy-based access control framework for computer-use agents. To bridge the gap between static policy and dynamic context and user intent, CSAgent introduces intent- and context-aware policies, and provides an automated toolchain to assist developers in constructing and refining them. CSAgent enforces these policies through an optimized OS service, ensuring that agent actions can only be executed under specific user intents and contexts. CSAgent supports protecting agents that control computers through diverse interfaces, including API, CLI, and GUI. We implement and evaluate CSAgent, which successfully defends against more than 99.36% of attacks while introducing only 6.83% performance overhead.
♻ ☆ Visible Yet Unreadable: A Systematic Blind Spot of Vision Language Models Across Writing Systems
Writing is a universal cultural technology that reuses vision for symbolic communication. Humans display striking resilience: we readily recognize words even when characters are fragmented, fused, or partially occluded. This paper investigates whether advanced vision language models (VLMs) share this resilience. We construct two psychophysics inspired benchmarks across distinct writing systems, Chinese logographs and English alphabetic words, by splicing, recombining, and overlaying glyphs to yield ''visible but unreadable'' stimuli for models while remaining legible to humans. Despite strong performance on clean text, contemporary VLMs show a severe drop under these perturbations, frequently producing unrelated or incoherent outputs. The pattern suggests a structural limitation: models heavily leverage generic visual invariances but under rely on compositional priors needed for robust literacy. We release stimuli generation code, prompts, and evaluation protocols to facilitate transparent replication and follow up work. Our findings motivate architectures and training strategies that encode symbol segmentation, composition, and binding across scripts, and they delineate concrete challenges for deploying multimodal systems in education, accessibility, cultural heritage, and security.
comment: Agent4Science 2025 Spotlight
♻ ☆ FinAI Data Assistant: LLM-based Financial Database Query Processing with the OpenAI Function Calling API CIKM 2025
We present FinAI Data Assistant, a practical approach for natural-language querying over financial databases that combines large language models (LLMs) with the OpenAI Function Calling API. Rather than synthesizing complete SQL via text-to-SQL, our system routes user requests to a small library of vetted, parameterized queries, trading generative flexibility for reliability, low latency, and cost efficiency. We empirically study three questions: (RQ1) whether LLMs alone can reliably recall or extrapolate time-dependent financial data without external retrieval; (RQ2) how well LLMs map company names to stock ticker symbols; and (RQ3) whether function calling outperforms text-to-SQL for end-to-end database query processing. Across controlled experiments on prices and fundamentals, LLM-only predictions exhibit non-negligible error and show look-ahead bias primarily for stock prices relative to model knowledge cutoffs. Ticker-mapping accuracy is near-perfect for NASDAQ-100 constituents and high for S\&P~500 firms. Finally, FinAI Data Assistant achieves lower latency and cost and higher reliability than a text-to-SQL baseline on our task suite. We discuss design trade-offs, limitations, and avenues for deployment.
comment: 6 pages, 2 figures, accepted at CIKM 2025 FinAI Workshop
♻ ☆ Measuring the Measures: Discriminative Capacity of Representational Similarity Metrics Across Model Families
Representational similarity metrics are fundamental tools in neuroscience and AI, yet we lack systematic comparisons of their discriminative power across model families. We introduce a quantitative framework to evaluate representational similarity measures based on their ability to separate model families-across architectures (CNNs, Vision Transformers, Swin Transformers, ConvNeXt) and training regimes (supervised vs. self-supervised). Using three complementary separability measures-dprime from signal detection theory, silhouette coefficients and ROC-AUC, we systematically assess the discriminative capacity of commonly used metrics including RSA, linear predictivity, Procrustes, and soft matching. We show that separability systematically increases as metrics impose more stringent alignment constraints. Among mapping-based approaches, soft-matching achieves the highest separability, followed by Procrustes alignment and linear predictivity. Non-fitting methods such as RSA also yield strong separability across families. These results provide the first systematic comparison of similarity metrics through a separability lens, clarifying their relative sensitivity and guiding metric choice for large-scale model and brain comparisons.
♻ ☆ A$^2$FM: An Adaptive Agent Foundation Model for Tool-Aware Hybrid Reasoning
Large language models split into two families: reasoning-centric LLMs, which strengthen internal chain-of-thought reasoning but cannot invoke external tools, and agentic LLMs, which learn to interact with environments and leverage tools but often lag in deep reasoning. This divide arises from fundamentally different training objectives, leading to mismatched strengths and inefficiency on simple queries, where both families tend to overthink or over-call tools. In this work, we present Adaptive Agent Foundation Model (A$^2$FM), a unified framework that follows a route-then-align principle: the model first learns task-aware routing and then aligns mode-specific trajectories under a shared backbone. To address the inefficiency gap, we introduce a third mode-instant-that handles simple queries directly, preventing unnecessary reasoning or tool calls while complementing the agentic and reasoning modes. To jointly enhance accuracy and efficiency, we propose Adaptive Policy Optimization (APO), which enforces adaptive sampling across modes and applies a cost-regularized reward. On the 32B scale, A$^2$FM achieves 13.4% on BrowseComp, 70.4% on AIME25, and 16.7% on HLE, setting new SOTA among comparable models and performing competitively with frontier LLMs across agentic, reasoning, and general benchmarks. Notably, the adaptive execution achieves a cost of pass of only $0.00487 per correct answer-cutting cost by 45.2% relative to reasoning and 33.5% relative to agentic, thus delivering substantially higher cost efficiency while maintaining comparable accuracy.
comment: 12 pages, 6 figures
♻ ☆ Learning from Mistakes: Enhancing Harmful Meme Detection via Misjudgment Risk Patterns
Internet memes have emerged as a popular multimodal medium, yet they are increasingly weaponized to convey harmful opinions through subtle rhetorical devices like irony and metaphor. Existing detection approaches, including MLLM-based techniques, struggle with these implicit expressions, leading to frequent misjudgments. This paper introduces PatMD, a novel approach that improves harmful meme detection by learning from and proactively mitigating these potential misjudgment risks. Our core idea is to move beyond superficial content-level matching and instead identify the underlying misjudgment risk patterns, proactively guiding the MLLMs to avoid known misjudgment pitfalls. We first construct a knowledge base where each meme is deconstructed into a misjudgment risk pattern explaining why it might be misjudged, either overlooking harmful undertones (false negative) or overinterpreting benign content (false positive). For a given target meme, PatMD retrieves relevant patterns and utilizes them to dynamically guide the MLLM's reasoning. Experiments on a benchmark of 6,626 memes across 5 harmful detection tasks show that PatMD outperforms state-of-the-art baselines, achieving an average of 8.30\% improvement in F1-score and 7.71\% improvement in accuracy, demonstrating strong generalizability and improved detection capability of harmful memes.
comment: The paper has something wrong and need to be corrected
♻ ☆ Taming the Judge: Deconflicting AI Feedback for Stable Reinforcement Learning
Aligning language models using LLM judge feedback offers a scalable alternative to human annotation, yet is plagued by judgment inconsistencies that destabilize reinforcement learning. While prior work has focused on judge accuracy, the critical issue of logical coherence particularly preference cycles has been largely unaddressed. To address this gap, this work introduces an end to end framework to systematically detect and resolve these inconsistencies within the reinforcement learning training loop. Our framework features two core contributions: the Conflict Detection Rate (CDR), a novel metric to quantify judgment conflicts, and Deconflicted Graph Rewards (DGR), a signal-purification framework that eliminates cycles before policy optimization. DGR constructs preference graphs from raw judgments, transforms them into conflict-free Directed Acyclic Graphs (DAGs), and generates a logically coherent reward signal compatible with any policy optimizer. Experiments confirm that our framework significantly improves training stability and model performance over strong baselines, establishing logical consistency as a crucial and now-addressable dimension of AI feedback. The code for our method is available at https://github.com/modelscope/RM-Gallery.
♻ ☆ VisuRiddles: Fine-grained Perception is a Primary Bottleneck for Multimodal Large Language Models in Abstract Visual Reasoning
Recent strides in multimodal large language models (MLLMs) have significantly advanced their performance in many reasoning tasks. However, Abstract Visual Reasoning (AVR) remains a critical challenge, primarily due to limitations in perceiving abstract graphics. To tackle this issue, we investigate the bottlenecks in current MLLMs and synthesize training data to improve their abstract visual perception. First, we propose VisuRiddles, a benchmark for AVR, featuring tasks meticulously constructed to assess models' reasoning capacities across five core dimensions and two high-level reasoning categories. Second, we introduce the Perceptual Riddle Synthesizer (PRS), an automated framework for generating riddles with fine-grained perceptual descriptions. PRS not only generates valuable training data for abstract graphics but also provides fine-grained perceptual description, crucially allowing for supervision over intermediate reasoning stages and thereby improving both training efficacy and model interpretability. Our extensive experimental results on VisuRiddles empirically validate that fine-grained visual perception is the principal bottleneck and our synthesis framework markedly enhances the performance of contemporary MLLMs on these challenging tasks. Our code and dataset will be released at https://github.com/yh-hust/VisuRiddles
comment: 13 pages, 4 figures
♻ ☆ AI Agentic Vulnerability Injection And Transformation with Optimized Reasoning
The increasing complexity of software systems and the sophistication of cyber-attacks have underscored the critical need for effective automated vulnerability detection and repair systems. Data-driven approaches using deep learning models show promise but critically depend on the availability of large, accurately labeled datasets. Yet existing datasets either suffer from noisy labels, limited range of vulnerabilities, or fail to reflect vulnerabilities as they occur in real-world software. This also limits large-scale benchmarking of such solutions. Automated vulnerability injection provides a way to directly address these dataset limitations, but existing techniques remain limited in coverage, contextual fidelity, or injection success rates. In this paper, we present AVIATOR, the first AI-agentic vulnerability injection workflow. It automatically injects realistic, category-specific vulnerabilities for high-fidelity, diverse, large-scale vulnerability dataset generation. Unlike prior monolithic approaches, AVIATOR orchestrates specialized AI agents, function agents and traditional code analysis tools that replicate expert reasoning. It combines semantic analysis, injection synthesis enhanced with LoRA-based fine-tuning and Retrieval-Augmented Generation, as well as post-injection validation via static analysis and LLM-based discriminators. This modular decomposition allows specialized agents to focus on distinct tasks, improving robustness of injection and reducing error propagation across the workflow. Evaluations across three distinct benchmarks demonstrate that AVIATOR achieves 91%-95% injection success rates, significantly surpassing existing automated dataset generation techniques in both accuracy and scope of software vulnerabilities.
♻ ☆ LegiScout: A Visual Tool for Understanding Complex Legislation
Modern legislative frameworks, such as the Affordable Care Act (ACA), often involve complex webs of agencies, mandates, and interdependencies. Government issued charts attempt to depict these structures but are typically static, dense, and difficult to interpret - even for experts. We introduce LegiScout, an interactive visualization system that transforms static policy diagrams into dynamic, force-directed graphs, enhancing comprehension while preserving essential relationships. By integrating data extraction, natural language processing, and computer vision techniques, LegiScout supports deeper exploration of not only the ACA but also a wide range of legislative and regulatory frameworks. Our approach enables stakeholders - policymakers, analysts, and the public - to navigate and understand the complexity inherent in modern law.
♻ ☆ Ontology-Enhanced Knowledge Graph Completion using Large Language Models
Large Language Models (LLMs) have been extensively adopted in Knowledge Graph Completion (KGC), showcasing significant research advancements. However, as black-box models driven by deep neural architectures, current LLM-based KGC methods rely on implicit knowledge representation with parallel propagation of erroneous knowledge, thereby hindering their ability to produce conclusive and decisive reasoning outcomes. We aim to integrate neural-perceptual structural information with ontological knowledge, leveraging the powerful capabilities of LLMs to achieve a deeper understanding of the intrinsic logic of the knowledge. We propose an ontology enhanced KGC method using LLMs -- OL-KGC. It first leverages neural perceptual mechanisms to effectively embed structural information into the textual space, and then uses an automated extraction algorithm to retrieve ontological knowledge from the knowledge graphs (KGs) that needs to be completed, which is further transformed into a textual format comprehensible to LLMs for providing logic guidance. We conducted extensive experiments on three widely-used benchmarks -- FB15K-237, UMLS and WN18RR. The experimental results demonstrate that OL-KGC significantly outperforms existing mainstream KGC methods across multiple evaluation metrics, achieving state-of-the-art performance.
♻ ☆ Noise-Robustness Through Noise: A Framework combining Asymmetric LoRA with Poisoning MoE NeurIPS 2025
Current parameter-efficient fine-tuning methods for adapting pre-trained language models to downstream tasks are susceptible to interference from noisy data. Conventional noise-handling approaches either rely on laborious data pre-processing or employ model architecture modifications prone to error accumulation. In contrast to existing noise-process paradigms, we propose a noise-robust adaptation method via asymmetric LoRA poisoning experts (LoPE), a novel framework that enhances model robustness to noise only with generated noisy data. Drawing inspiration from the mixture-of-experts architecture, LoPE strategically integrates a dedicated poisoning expert in an asymmetric LoRA configuration. Through a two-stage paradigm, LoPE performs noise injection on the poisoning expert during fine-tuning to enhance its noise discrimination and processing ability. During inference, we selectively mask the dedicated poisoning expert to leverage purified knowledge acquired by normal experts for noise-robust output. Extensive experiments demonstrate that LoPE achieves strong performance and robustness purely through the low-cost noise injection, which completely eliminates the requirement of data cleaning.
comment: Accecpted to NeurIPS 2025
♻ ☆ Latent Diffusion Model without Variational Autoencoder
Recent progress in diffusion-based visual generation has largely relied on latent diffusion models with variational autoencoders (VAEs). While effective for high-fidelity synthesis, this VAE+diffusion paradigm suffers from limited training efficiency, slow inference, and poor transferability to broader vision tasks. These issues stem from a key limitation of VAE latent spaces: the lack of clear semantic separation and strong discriminative structure. Our analysis confirms that these properties are crucial not only for perception and understanding tasks, but also for the stable and efficient training of latent diffusion models. Motivated by this insight, we introduce SVG, a novel latent diffusion model without variational autoencoders, which leverages self-supervised representations for visual generation. SVG constructs a feature space with clear semantic discriminability by leveraging frozen DINO features, while a lightweight residual branch captures fine-grained details for high-fidelity reconstruction. Diffusion models are trained directly on this semantically structured latent space to facilitate more efficient learning. As a result, SVG enables accelerated diffusion training, supports few-step sampling, and improves generative quality. Experimental results further show that SVG preserves the semantic and discriminative capabilities of the underlying self-supervised representations, providing a principled pathway toward task-general, high-quality visual representations. Code and interpretations are available at https://howlin-wang.github.io/svg/.
♻ ☆ Disaster Management in the Era of Agentic AI Systems: A Vision for Collective Human-Machine Intelligence for Augmented Resilience
The escalating frequency and severity of disasters routinely overwhelm traditional response capabilities, exposing critical vulnerability in disaster management. Current practices are hindered by fragmented data streams, siloed technologies, resource constraints, and the erosion of institutional memory, which collectively impede timely and effective decision making. This study introduces Disaster Copilot, a vision for a multi-agent artificial intelligence system designed to overcome these systemic challenges by unifying specialized AI tools within a collaborative framework. The proposed architecture utilizes a central orchestrator to coordinate diverse sub-agents, each specializing in critical domains such as predictive risk analytics, situational awareness, and impact assessment. By integrating multi-modal data, the system delivers a holistic, real-time operational picture and serve as the essential AI backbone required to advance Disaster Digital Twins from passive models to active, intelligent environments. Furthermore, it ensures functionality in resource-limited environments through on-device orchestration and incorporates mechanisms to capture institutional knowledge, mitigating the impact of staff turnover. We detail the system architecture and propose a three-phased roadmap emphasizing the parallel growth of technology, organizational capacity, and human-AI teaming. Disaster Copilot offers a transformative vision, fostering collective human-machine intelligence to build more adaptive, data-driven and resilient communities.
♻ ☆ BlockScan: Detecting Anomalies in Blockchain Transactions
We propose BlockScan, a customized Transformer for anomaly detection in blockchain transactions. Unlike existing methods that rely on rule-based systems or directly apply off-the-shelf large language models (LLMs), BlockScan introduces a series of customized designs to effectively model the unique data structure of blockchain transactions. First, a blockchain transaction is multi-modal, containing blockchain-specific tokens, texts, and numbers. We design a novel modularized tokenizer to handle these multi-modal inputs, balancing the information across different modalities. Second, we design a customized masked language modeling mechanism for pretraining the Transformer architecture, incorporating RoPE embedding and FlashAttention for handling longer sequences. Finally, we design a novel anomaly detection method based on the model outputs. We further provide theoretical analysis for the detection method of our system. Extensive evaluations on Ethereum and Solana transactions demonstrate BlockScan's exceptional capability in anomaly detection while maintaining a low false positive rate. Remarkably, BlockScan is the only method that successfully detects anomalous transactions on Solana with high accuracy, whereas all other approaches achieved very low or zero detection recall scores. This work sets a new benchmark for applying Transformer-based approaches in blockchain data analysis.
♻ ☆ GPO: Learning from Critical Steps to Improve LLM Reasoning NeurIPS 2025
Large language models (LLMs) are increasingly used in various domains, showing impressive potential on different tasks. Recently, reasoning LLMs have been proposed to improve the \textit{reasoning} or \textit{thinking} capabilities of LLMs to solve complex problems. Despite the promising results of reasoning LLMs, enhancing the multi-step reasoning capabilities of LLMs still remains a significant challenge. While existing optimization methods have advanced the LLM reasoning capabilities, they often treat reasoning trajectories as a whole, without considering the underlying critical steps within the trajectory. In this paper, we introduce \textbf{G}uided \textbf{P}ivotal \textbf{O}ptimization (GPO), a novel fine-tuning strategy that dives into the reasoning process to enable more effective improvements. GPO first identifies the `critical step' within a reasoning trajectory - a point that the model must carefully proceed to succeed at the problem. We locate the critical step by estimating the advantage function. GPO then resets the policy to the critical step, samples the new rollout and prioritizes the learning process on those rollouts. This focus allows the model to learn more effectively from pivotal moments within the reasoning process to improve the reasoning performance. We demonstrate that GPO is a general strategy that can be integrated with various optimization methods to improve reasoning performance. Besides theoretical analysis, our experiments across challenging reasoning benchmarks show that GPO can consistently and significantly enhance the performance of existing optimization methods, showcasing its effectiveness and generalizability in improving LLM reasoning by concentrating on pivotal moments within the generation process.
comment: 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ Human-AI Interactions: Cognitive, Behavioral, and Emotional Impacts IEEE
As stories of human-AI interactions continue to be highlighted in the news and research platforms, the challenges are becoming more pronounced, including potential risks of overreliance, cognitive offloading, social and emotional manipulation, and the nuanced degradation of human agency and judgment. This paper surveys recent research on these issues through the lens of the psychological triad: cognition, behavior, and emotion. Observations seem to suggest that while AI can substantially enhance memory, creativity, and engagement, it also introduces risks such as diminished critical thinking, skill erosion, and increased anxiety. Emotional outcomes are similarly mixed, with AI systems showing promise for support and stress reduction, but raising concerns about dependency, inappropriate attachments, and ethical oversight. This paper aims to underscore the need for responsible and context-aware AI design, highlighting gaps for longitudinal research and grounded evaluation frameworks to balance benefits with emerging human-centric risks.
comment: 13 pages, 1 figure. Submitted to IEEE Transactions on Technology and Society. Preprint also available on TechRxiv
♻ ☆ Towards Agentic Self-Learning LLMs in Search Environment
We study whether self-learning can scale LLM-based agents without relying on human-curated datasets or predefined rule-based rewards. Through controlled experiments in a search-agent setting, we identify two key determinants of scalable agent training: the source of reward signals and the scale of agent task data. We find that rewards from a Generative Reward Model (GRM) outperform rigid rule-based signals for open-domain learning, and that co-evolving the GRM with the policy further boosts performance. Increasing the volume of agent task data-even when synthetically generated-substantially enhances agentic capabilities. Building on these insights, we propose \textbf{Agentic Self-Learning} (ASL), a fully closed-loop, multi-role reinforcement learning framework that unifies task generation, policy execution, and evaluation within a shared tool environment and LLM backbone. ASL coordinates a Prompt Generator, a Policy Model, and a Generative Reward Model to form a virtuous cycle of harder task setting, sharper verification, and stronger solving. Empirically, ASL delivers steady, round-over-round gains, surpasses strong RLVR baselines (e.g., Search-R1) that plateau or degrade, and continues improving under zero-labeled-data conditions, indicating superior sample efficiency and robustness. We further show that GRM verification capacity is the main bottleneck: if frozen, it induces reward hacking and stalls progress; continual GRM training on the evolving data distribution mitigates this, and a small late-stage injection of real verification data raises the performance ceiling. This work establishes reward source and data scale as critical levers for open-domain agent learning and demonstrates the efficacy of multi-role co-evolution for scalable, self-improving agents. The data and code of this paper are released at https://github.com/forangel2014/Towards-Agentic-Self-Learning
♻ ☆ Infinity Parser: Layout Aware Reinforcement Learning for Scanned Document Parsing
Automated parsing of scanned documents into richly structured, machine-readable formats remains a critical bottleneck in Document AI, as traditional multi-stage pipelines suffer from error propagation and limited adaptability to diverse layouts. We introduce layoutRL, an end-to-end reinforcement learning framework that trains models to be explicitly layout-aware by optimizing a composite reward of normalized edit distance, paragraph count accuracy, and reading order preservation. Leveraging our newly released dataset, Infinity-Doc-55K, which combines 55K high-fidelity synthetic scanned document parsing data with expert-filtered real-world documents, we instantiate layoutRL in a vision-language-model-based parser called Infinity-Parser. Evaluated on English and Chinese benchmarks for OCR, table and formula extraction, and reading order detection, Infinity-Parser achieves new state-of-the-art performance in both accuracy and structural fidelity, outpacing specialist pipelines and general-purpose vision-language models. We will publicly release our code and dataset to accelerate progress in robust document understanding.
comment: 16 pages, 12 figures
♻ ☆ A Study on the Framework for Evaluating the Ethics and Trustworthiness of Generative AI
This study provides an in_depth analysis of the ethical and trustworthiness challenges emerging alongside the rapid advancement of generative artificial intelligence (AI) technologies and proposes a comprehensive framework for their systematic evaluation. While generative AI, such as ChatGPT, demonstrates remarkable innovative potential, it simultaneously raises ethical and social concerns, including bias, harmfulness, copyright infringement, privacy violations, and hallucination. Current AI evaluation methodologies, which mainly focus on performance and accuracy, are insufficient to address these multifaceted issues. Thus, this study emphasizes the need for new human_centered criteria that also reflect social impact. To this end, it identifies key dimensions for evaluating the ethics and trustworthiness of generative AI_fairness, transparency, accountability, safety, privacy, accuracy, consistency, robustness, explainability, copyright and intellectual property protection, and source traceability and develops detailed indicators and assessment methodologies for each. Moreover, it provides a comparative analysis of AI ethics policies and guidelines in South Korea, the United States, the European Union, and China, deriving key approaches and implications from each. The proposed framework applies across the AI lifecycle and integrates technical assessments with multidisciplinary perspectives, thereby offering practical means to identify and manage ethical risks in real_world contexts. Ultimately, the study establishes an academic foundation for the responsible advancement of generative AI and delivers actionable insights for policymakers, developers, users, and other stakeholders, supporting the positive societal contributions of AI technologies.
comment: Request for withdrawal because the content is poor and there are some mistakes
♻ ☆ A Generalized Bisimulation Metric of State Similarity between Markov Decision Processes: From Theoretical Propositions to Applications NeurIPS 2025
The bisimulation metric (BSM) is a powerful tool for computing state similarities within a Markov decision process (MDP), revealing that states closer in BSM have more similar optimal value functions. While BSM has been successfully utilized in reinforcement learning (RL) for tasks like state representation learning and policy exploration, its application to multiple-MDP scenarios, such as policy transfer, remains challenging. Prior work has attempted to generalize BSM to pairs of MDPs, but a lack of rigorous analysis of its mathematical properties has limited further theoretical progress. In this work, we formally establish a generalized bisimulation metric (GBSM) between pairs of MDPs, which is rigorously proven with the three fundamental properties: GBSM symmetry, inter-MDP triangle inequality, and the distance bound on identical state spaces. Leveraging these properties, we theoretically analyse policy transfer, state aggregation, and sampling-based estimation in MDPs, obtaining explicit bounds that are strictly tighter than those derived from the standard BSM. Additionally, GBSM provides a closed-form sample complexity for estimation, improving upon existing asymptotic results based on BSM. Numerical results validate our theoretical findings and demonstrate the effectiveness of GBSM in multi-MDP scenarios.
comment: This paper is accepted by the 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ ViFusionTST: Deep Fusion of Time-Series Image Representations from Load Signals for Early Bed-Exit Prediction
Bed-related falls remain a major source of injury in hospitals and long-term care facilities, yet many commercial alarms trigger only after a patient has already left the bed. We show that early bed-exit intent can be predicted using only one low-cost load cell mounted under a bed leg. The resulting load signals are first converted into a compact set of complementary images: an RGB line plot that preserves raw waveforms and three texture maps-recurrence plot, Markov transition field, and Gramian angular field-that expose higher-order dynamics. We introduce ViFusionTST, a dual-stream Swin Transformer that processes the line plot and texture maps in parallel and fuses them through cross-attention to learn data-driven modality weights. To provide a realistic benchmark, we collected six months of continuous data from 95 beds in a long-term-care facility. On this real-world dataset ViFusionTST reaches an accuracy of 0.885 and an F1 score of 0.794, surpassing recent 1D and 2D time-series baselines across F1, recall, accuracy, and AUPRC. The results demonstrate that image-based fusion of load-sensor signals for time series classification is a practical and effective solution for real-time, privacy-preserving fall prevention.
♻ ☆ LLM-RG: Referential Grounding in Outdoor Scenarios using Large Language Models IROS 2025
Referential grounding in outdoor driving scenes is challenging due to large scene variability, many visually similar objects, and dynamic elements that complicate resolving natural-language references (e.g., "the black car on the right"). We propose LLM-RG, a hybrid pipeline that combines off-the-shelf vision-language models for fine-grained attribute extraction with large language models for symbolic reasoning. LLM-RG processes an image and a free-form referring expression by using an LLM to extract relevant object types and attributes, detecting candidate regions, generating rich visual descriptors with a VLM, and then combining these descriptors with spatial metadata into natural-language prompts that are input to an LLM for chain-of-thought reasoning to identify the referent's bounding box. Evaluated on the Talk2Car benchmark, LLM-RG yields substantial gains over both LLM and VLM-based baselines. Additionally, our ablations show that adding 3D spatial cues further improves grounding. Our results demonstrate the complementary strengths of VLMs and LLMs, applied in a zero-shot manner, for robust outdoor referential grounding.
comment: Human-aware Embodied AI Workshop @ IROS 2025
♻ ☆ NEBULA: Do We Evaluate Vision-Language-Action Agents Correctly?
The evaluation of Vision-Language-Action (VLA) agents is hindered by the coarse, end-task success metric that fails to provide precise skill diagnosis or measure robustness to real-world perturbations. This challenge is exacerbated by a fragmented data landscape that impedes reproducible research and the development of generalist models. To address these limitations, we introduce NEBULA, a unified ecosystem for single-arm manipulation that enables diagnostic and reproducible evaluation. NEBULA features a novel dual-axis evaluation protocol that combines fine-grained capability tests for precise skill diagnosis with systematic stress tests that measure robustness. A standardized API and a large-scale, aggregated dataset are provided to reduce fragmentation and support cross-dataset training and fair comparison. Using NEBULA, we demonstrate that top-performing VLAs struggle with key capabilities such as spatial reasoning and dynamic adaptation, which are consistently obscured by conventional end-task success metrics. By measuring both what an agent can do and when it does so reliably, NEBULA provides a practical foundation for robust, general-purpose embodied agents.
comment: Homepage: https://vulab-ai.github.io/NEBULA-Alpha/
♻ ☆ Balancing Act: Prioritization Strategies for LLM-Designed Restless Bandit Rewards
LLMs are increasingly used to design reward functions based on human preferences in Reinforcement Learning (RL). We focus on LLM-designed rewards for Restless Multi-Armed Bandits, a framework for allocating limited resources among agents. In applications such as public health, this approach empowers grassroots health workers to tailor automated allocation decisions to community needs. In the presence of multiple agents, altering the reward function based on human preferences can impact subpopulations very differently, leading to complex tradeoffs and a multi-objective resource allocation problem. We are the first to present a principled method termed Social Choice Language Model for dealing with these tradeoffs for LLM-designed rewards for multiagent planners in general and restless bandits in particular. The novel part of our model is a transparent and configurable selection component, called an adjudicator, external to the LLM that controls complex tradeoffs via a user-selected social welfare function. Our experiments demonstrate that our model reliably selects more effective, aligned, and balanced reward functions compared to purely LLM-based approaches.
♻ ☆ Generalized Principal-Agent Problem with a Learning Agent ICLR 2025
In classic principal-agent problems such as Stackelberg games, contract design, and Bayesian persuasion, the agent best responds to the principal's committed strategy. We study repeated generalized principal-agent problems under the assumption that the principal does not have commitment power and the agent uses algorithms to learn to respond to the principal. We reduce this problem to a one-shot problem where the agent approximately best responds, and prove that: (1) If the agent uses contextual no-regret learning algorithms with regret $\mathrm{Reg}(T)$, then the principal can guarantee utility at least $U^* - \Theta\big(\sqrt{\tfrac{\mathrm{Reg}(T)}{T}}\big)$, where $U^*$ is the principal's optimal utility in the classic model with a best-responding agent. (2) If the agent uses contextual no-swap-regret learning algorithms with swap-regret $\mathrm{SReg}(T)$, then the principal cannot obtain utility more than $U^* + O(\frac{\mathrm{SReg(T)}}{T})$. (3) In addition, if the agent uses mean-based learning algorithms (which can be no-regret but not no-swap-regret), then the principal can sometimes do significantly better than $U^*$. These results not only refine previous works on Stackelberg games and contract design, but also lead to new results for Bayesian persuasion with a learning agent and all generalized principal-agent problems where the agent does not have private information.
comment: A short version of this work appeared on ICLR 2025 (spotlight). This full version has been accepted by Quantitative Economics
♻ ☆ SceneCOT: Eliciting Grounded Chain-of-Thought Reasoning in 3D Scenes
Existing research on 3D Large Language Models (LLMs) still struggles to achieve grounded question-answering, primarily due to the under-exploration of the mechanism of human-like scene-object grounded reasoning. This paper bridges the gap by presenting a novel framework. We first introduce a grounded Chain-of-Thought reasoning method in 3D scenes (SCENECOT), decoupling a complex reasoning task into simpler and manageable problems, and building corresponding visual clues based on multimodal expert modules. To enable such a method, we develop SCENECOT-185K, the first large-scale grounded CoT reasoning dataset, consisting of 185K high-quality instances. Extensive experiments across various complex 3D scene reasoning benchmarks demonstrate that our new framework achieves strong performance with high grounding-QA coherence. To the best of our knowledge, this is the first successful application of CoT reasoning to 3D scene understanding, enabling step-by-step human-like reasoning and showing potential for extension to broader 3D scene understanding scenarios.
comment: Project page: https://scenecot.github.io/
♻ ☆ Conformal Prediction for Time-series Forecasting with Change Points
Conformal prediction has been explored as a general and efficient way to provide uncertainty quantification for time series. However, current methods struggle to handle time series data with change points - sudden shifts in the underlying data-generating process. In this paper, we propose a novel Conformal Prediction for Time-series with Change points (CPTC) algorithm, addressing this gap by integrating a model to predict the underlying state with online conformal prediction to model uncertainties in non-stationary time series. We prove CPTC's validity and improved adaptivity in the time series setting under minimum assumptions, and demonstrate CPTC's practical effectiveness on 6 synthetic and real-world datasets, showing improved validity and adaptivity compared to state-of-the-art baselines.
♻ ☆ Improving Metacognition and Uncertainty Communication in Language Models
Large language models (LLMs) are increasingly used in decision-making contexts, but when they present answers without signaling low confidence, users may unknowingly act on erroneous outputs. Prior work shows that LLMs maintain internal uncertainty signals, yet their expressed confidence is often miscalibrated and poorly discriminates between correct and incorrect answers. We investigate whether supervised fine-tuning can improve models' ability to communicate uncertainty and whether such improvements generalize across tasks and domains. We fine-tune LLMs on datasets spanning general knowledge, mathematics, and open-ended trivia, and evaluate two metacognitive tasks: (1) single-question confidence estimation, where the model assigns a numeric certainty to its answer, and (2) pairwise confidence comparison, where the model selects which of two answers it is more likely to answer correctly. We assess generalization to unseen domains, including medical and legal reasoning. Results show that fine-tuning improves calibration (alignment between stated confidence and accuracy) and discrimination (higher confidence for correct vs. incorrect responses) within and across domains. However, gains are task-specific: training on single-question calibration does not transfer to pairwise comparison, and vice versa. Multitask fine-tuning yields broader gains, lowering calibration error and strengthening discrimination in out-of-domain evaluations. This suggests that uncertainty communication in LLMs is trainable but requires multitask training to generalize effectively.
♻ ☆ Fast MRI for All: Bridging Access Gaps by Training without Raw Data NeurIPS
Physics-driven deep learning (PD-DL) approaches have become popular for improved reconstruction of fast magnetic resonance imaging (MRI) scans. Though PD-DL offers higher acceleration rates than existing clinical fast MRI techniques, their use has been limited outside specialized MRI centers. A key challenge is generalization to rare pathologies or different populations, noted in multiple studies, with fine-tuning on target populations suggested for improvement. However, current approaches for PD-DL training require access to raw k-space measurements, which is typically only available at specialized MRI centers that have research agreements for such data access. This is especially an issue for rural and under-resourced areas, where commercial MRI scanners only provide access to a final reconstructed image. To tackle these challenges, we propose Compressibility-inspired Unsupervised Learning via Parallel Imaging Fidelity (CUPID) for high-quality PD-DL training using only routine clinical reconstructed images exported from an MRI scanner. CUPID evaluates output quality with a compressibility-based approach while ensuring that the output stays consistent with the clinical parallel imaging reconstruction through well-designed perturbations. Our results show CUPID achieves similar quality to established PD-DL training that requires k-space data while outperforming compressed sensing (CS) and diffusion-based generative methods. We further demonstrate its effectiveness in a zero-shot training setup for retrospectively and prospectively sub-sampled acquisitions, attesting to its minimal training burden. As an approach that radically deviates from existing strategies, CUPID presents an opportunity to provide broader access to fast MRI for remote and rural populations in an attempt to reduce the obstacles associated with this expensive imaging modality.
comment: Neural Information Processing Systems (NeurIPS), 2025 (Spotlight)
♻ ☆ Concept-Guided Interpretability via Neural Chunking
Neural networks are often described as black boxes, reflecting the significant challenge of understanding their internal workings and interactions. We propose a different perspective that challenges the prevailing view: rather than being inscrutable, neural networks exhibit patterns in their raw population activity that mirror regularities in the training data. We refer to this as the Reflection Hypothesis and provide evidence for this phenomenon in both simple recurrent neural networks (RNNs) and complex large language models (LLMs). Building on this insight, we propose to leverage our cognitive tendency of chunking to segment high-dimensional neural population dynamics into interpretable units that reflect underlying concepts. We propose three methods to extract recurring chunks on a neural population level, complementing each other based on label availability and neural data dimensionality. Discrete sequence chunking (DSC) learns a dictionary of entities in a lower-dimensional neural space; population averaging (PA) extracts recurring entities that correspond to known labels; and unsupervised chunk discovery (UCD) can be used when labels are absent. We demonstrate the effectiveness of these methods in extracting concept-encoding entities agnostic to model architectures. These concepts can be both concrete (words), abstract (POS tags), or structural (narrative schema). Additionally, we show that extracted chunks play a causal role in network behavior, as grafting them leads to controlled and predictable changes in the model's behavior. Our work points to a new direction for interpretability, one that harnesses both cognitive principles and the structure of naturalistic data to reveal the hidden computations of complex learning systems, gradually transforming them from black boxes into systems we can begin to understand.
♻ ☆ Improving planning and MBRL with temporally-extended actions NeurIPS 2025
Continuous time systems are often modeled using discrete time dynamics but this requires a small simulation step to maintain accuracy. In turn, this requires a large planning horizon which leads to computationally demanding planning problems and reduced performance. Previous work in model-free reinforcement learning has partially addressed this issue using action repeats where a policy is learned to determine a discrete action duration. Instead we propose to control the continuous decision timescale directly by using temporally-extended actions and letting the planner treat the duration of the action as an additional optimization variable along with the standard action variables. This additional structure has multiple advantages. It speeds up simulation time of trajectories and, importantly, it allows for deep horizon search in terms of primitive actions while using a shallow search depth in the planner. In addition, in the model-based reinforcement learning (MBRL) setting, it reduces compounding errors from model learning and improves training time for models. We show that this idea is effective and that the range for action durations can be automatically selected using a multi-armed bandit formulation and integrated into the MBRL framework. An extensive experimental evaluation both in planning and in MBRL, shows that our approach yields faster planning, better solutions, and that it enables solutions to problems that are not solved in the standard formulation.
comment: NeurIPS 2025. For project website, see https://pecey.github.io/MBRL-with-TEA/
♻ ☆ AgentTTS: Large Language Model Agent for Test-time Compute-optimal Scaling Strategy in Complex Tasks NeurIPS 2025
Test-time scaling (TTS) enhances the performance of large language models (LLMs) by allocating additional compute resources during inference. However, existing research primarily investigates TTS in single-stage tasks; while many real-world problems are multi-stage complex tasks, composed of a sequence of heterogeneous subtasks with each subtask requires LLM of specific capability. Therefore, we study a novel problem: the test-time compute-optimal scaling in multi-stage complex tasks, aiming to select suitable models and allocate budgets per subtask to maximize overall performance. TTS in multi-stage tasks introduces two fundamental challenges: (i) The combinatorial search space of model and budget allocations, combined with the high cost of inference, makes brute-force search impractical. (ii) The optimal model and budget allocations across subtasks are interdependent, increasing the complexity of the compute-optimal search. To address this gap, we conduct extensive pilot experiments on four tasks across six datasets, deriving three empirical insights characterizing the behavior of LLMs in multi-stage complex tasks. Informed by these insights, we propose AgentTTS, an LLM-agent-based framework that autonomously searches for compute-optimal allocations through iterative feedback-driven interactions with the execution environment. Experimental results demonstrate that AgentTTS significantly outperforms traditional and other LLM-based baselines in search efficiency, and shows improved robustness to varying training set sizes and enhanced interpretability.
comment: Accepted by NeurIPS 2025
♻ ☆ CtrlDiff: Boosting Large Diffusion Language Models with Dynamic Block Prediction and Controllable Generation
Although autoregressive models have dominated language modeling in recent years, there has been a growing interest in exploring alternative paradigms to the conventional next-token prediction framework. Diffusion-based language models have emerged as a compelling alternative due to their powerful parallel generation capabilities and inherent editability. However, these models are often constrained by fixed-length generation. A promising direction is to combine the strengths of both paradigms, segmenting sequences into blocks, modeling autoregressive dependencies across blocks while leveraging discrete diffusion to estimate the conditional distribution within each block given the preceding context. Nevertheless, their practical application is often hindered by two key limitations: rigid fixed-length outputs and a lack of flexible control mechanisms. In this work, we address the critical limitations of fixed granularity and weak controllability in current large diffusion language models. We propose CtrlDiff, a dynamic and controllable semi-autoregressive framework that adaptively determines the size of each generation block based on local semantics using reinforcement learning. Furthermore, we introduce a classifier-guided control mechanism tailored to discrete diffusion, which significantly reduces computational overhead while facilitating efficient post-hoc conditioning without retraining. Extensive experiments demonstrate that CtrlDiff sets a new standard among hybrid diffusion models, narrows the performance gap to state-of-the-art autoregressive approaches, and enables effective conditional text generation across diverse tasks.
♻ ☆ ALHD: A Large-Scale and Multigenre Benchmark Dataset for Arabic LLM-Generated Text Detection
We introduce ALHD, the first large-scale comprehensive Arabic dataset explicitly designed to distinguish between human- and LLM-generated texts. ALHD spans three genres (news, social media, reviews), covering both MSA and dialectal Arabic, and contains over 400K balanced samples generated by three leading LLMs and originated from multiple human sources, which enables studying generalizability in Arabic LLM-genearted text detection. We provide rigorous preprocessing, rich annotations, and standardized balanced splits to support reproducibility. In addition, we present, analyze and discuss benchmark experiments using our new dataset, in turn identifying gaps and proposing future research directions. Benchmarking across traditional classifiers, BERT-based models, and LLMs (zero-shot and few-shot) demonstrates that fine-tuned BERT models achieve competitive performance, outperforming LLM-based models. Results are however not always consistent, as we observe challenges when generalizing across genres; indeed, models struggle to generalize when they need to deal with unseen patterns in cross-genre settings, and these challenges are particularly prominent when dealing with news articles, where LLM-generated texts resemble human texts in style, which opens up avenues for future research. ALHD establishes a foundation for research related to Arabic LLM-detection and mitigating risks of misinformation, academic dishonesty, and cyber threats.
comment: 47 pages, 15 figures. Dataset available at Zenodo: https://doi.org/10.5281/zenodo.17249602 Codebase available at GitHub: https://github.com/alikhairallah/ALHD-Benchmarking
♻ ☆ FP-IRL: Fokker-Planck Inverse Reinforcement Learning -- A Physics-Constrained Approach to Markov Decision Processes
Inverse reinforcement learning (IRL) is a powerful paradigm for uncovering the incentive structure that drives agent behavior, by inferring an unknown reward function from observed trajectories within a Markov decision process (MDP). However, most existing IRL methods require access to the transition function, either prescribed or estimated \textit{a priori}, which poses significant challenges when the underlying dynamics are unknown, unobservable, or not easily sampled. We propose Fokker--Planck inverse reinforcement learning (FP-IRL), a novel physics-constrained IRL framework tailored for systems governed by Fokker--Planck (FP) dynamics. FP-IRL simultaneously infers both the reward and transition functions directly from trajectory data, without requiring access to sampled transitions. Our method leverages a conjectured equivalence between MDPs and the FP equation, linking reward maximization in MDPs with free energy minimization in FP dynamics. This connection enables inference of the potential function using our inference approach of variational system identification, from which the full set of MDP components -- reward, transition, and policy -- can be recovered using analytic expressions. We demonstrate the effectiveness of FP-IRL through experiments on synthetic benchmarks and a modified version of the Mountain Car problem. Our results show that FP-IRL achieves accurate recovery of agent incentives while preserving computational efficiency and physical interpretability.
♻ ☆ SPiDR: A Simple Approach for Zero-Shot Safety in Sim-to-Real Transfer
Deploying reinforcement learning (RL) safely in the real world is challenging, as policies trained in simulators must face the inevitable sim-to-real gap. Robust safe RL techniques are provably safe, however difficult to scale, while domain randomization is more practical yet prone to unsafe behaviors. We address this gap by proposing SPiDR, short for Sim-to-real via Pessimistic Domain Randomization -- a scalable algorithm with provable guarantees for safe sim-to-real transfer. SPiDR uses domain randomization to incorporate the uncertainty about the sim-to-real gap into the safety constraints, making it versatile and highly compatible with existing training pipelines. Through extensive experiments on sim-to-sim benchmarks and two distinct real-world robotic platforms, we demonstrate that SPiDR effectively ensures safety despite the sim-to-real gap while maintaining strong performance.
♻ ☆ Benchmarking Large Language Models with Integer Sequence Generation Tasks
We present a novel benchmark designed to rigorously evaluate the capabilities of large language models (LLMs) in mathematical reasoning and algorithmic code synthesis tasks. The benchmark comprises integer sequence generation tasks sourced from the Online Encyclopedia of Integer Sequences (OEIS), testing LLMs' abilities to accurately and efficiently generate Python code to compute these sequences without using lookup tables. Our comprehensive evaluation includes leading models from OpenAI (including the specialized reasoning-focused o-series), Anthropic, Meta, and Google across a carefully selected set of 1000 OEIS sequences categorized as ``easy'' or ``hard.'' Half of these sequences are classical sequences from the early days of OEIS and half were recently added to avoid contamination with the models' training data. To prevent models from exploiting memorized sequence values, we introduce an automated cheating detection mechanism that flags usage of lookup tables, validated by comparison with human expert evaluations. Experimental results demonstrate that reasoning-specialized models (o3, o3-mini, o4-mini from OpenAI, and Gemini 2.5-pro from Google) achieve substantial improvements in accuracy over non-reasoning models, especially on more complex tasks. However, overall model performance on the hard sequences is poor, highlighting persistent challenges in algorithmic reasoning. Our benchmark provides important insights into the strengths and limitations of state-of-the-art LLMs, particularly emphasizing the necessity for further advancements to reliably solve complex mathematical reasoning tasks algorithmically.
♻ ☆ A Unified Formal Theory on the Logical Limits of Symbol Grounding
This paper synthesizes a series of formal proofs to construct a unified theory on the logical limits of the Symbol Grounding Problem. We demonstrate through a four-stage argument that meaning within a formal system must arise from a process that is external, dynamic, and non-algorithmic. First, we prove that any purely symbolic system, devoid of external connections, cannot internally establish a consistent foundation for meaning due to self-referential paradoxes. Second, we extend this limitation to systems with any finite, static set of pre-established meanings, proving they are inherently incomplete. Third, we demonstrate that the very "act" of connecting an internal symbol to an external meaning cannot be a product of logical inference within the system but must be an axiomatic, meta-level update. Finally, we prove that any attempt to automate this update process using a fixed, external "judgment" algorithm will inevitably construct a larger, yet equally incomplete, symbolic system. Together, these conclusions formally establish that the grounding of meaning is a necessarily open-ended, non-algorithmic process, revealing a fundamental, G\"odel-style limitation for any self-contained intelligent system.
comment: 8 pages, 1 figure. A formal proof on the logical limits of symbol grounding
Computation and Language 149
☆ Grasp Any Region: Towards Precise, Contextual Pixel Understanding for Multimodal LLMs
While Multimodal Large Language Models (MLLMs) excel at holistic understanding, they struggle in capturing the dense world with complex scenes, requiring fine-grained analysis of intricate details and object inter-relationships. Region-level MLLMs have been a promising step. However, previous attempts are generally optimized to understand given regions in isolation, neglecting crucial global contexts. To address this, we introduce Grasp Any Region (GAR) for comprehen- sive region-level visual understanding. Empowered by an effective RoI-aligned feature replay technique, GAR supports (1) precise perception by leveraging necessary global contexts, and (2) modeling interactions between multiple prompts. Together, it then naturally achieves (3) advanced compositional reasoning to answer specific free-form questions about any region, shifting the paradigm from passive description to active dialogue. Moreover, we construct GAR-Bench, which not only provides a more accurate evaluation of single-region comprehension, but also, more importantly, measures interactions and complex reasoning across multiple regions. Extensive experiments have demonstrated that GAR-1B not only maintains the state-of-the-art captioning capabilities, e.g., outperforming DAM-3B +4.5 on DLC-Bench, but also excels at modeling relationships between multiple prompts with advanced comprehension capabilities, even surpassing InternVL3-78B on GAR-Bench-VQA. More importantly, our zero-shot GAR-8B even outperforms in-domain VideoRefer-7B on VideoRefer-BenchQ, indicating its strong capabilities can be easily transferred to videos.
☆ Retaining by Doing: The Role of On-Policy Data in Mitigating Forgetting
Adapting language models (LMs) to new tasks via post-training carries the risk of degrading existing capabilities -- a phenomenon classically known as catastrophic forgetting. In this paper, toward identifying guidelines for mitigating this phenomenon, we systematically compare the forgetting patterns of two widely adopted post-training methods: supervised fine-tuning (SFT) and reinforcement learning (RL). Our experiments reveal a consistent trend across LM families (Llama, Qwen) and tasks (instruction following, general knowledge, and arithmetic reasoning): RL leads to less forgetting than SFT while achieving comparable or higher target task performance. To investigate the cause for this difference, we consider a simplified setting in which the LM is modeled as a mixture of two distributions, one corresponding to prior knowledge and the other to the target task. We identify that the mode-seeking nature of RL, which stems from its use of on-policy data, enables keeping prior knowledge intact when learning the target task. We then verify this insight by demonstrating that the use on-policy data underlies the robustness of RL to forgetting in practical settings, as opposed to other algorithmic choices such as the KL regularization or advantage estimation. Lastly, as a practical implication, our results highlight the potential of mitigating forgetting using approximately on-policy data, which can be substantially more efficient to obtain than fully on-policy data.
☆ How Do LLMs Use Their Depth?
Growing evidence suggests that large language models do not use their depth uniformly, yet we still lack a fine-grained understanding of their layer-wise prediction dynamics. In this paper, we trace the intermediate representations of several open-weight models during inference and reveal a structured and nuanced use of depth. Specifically, we propose a "Guess-then-Refine" framework that explains how LLMs internally structure their computations to make predictions. We first show that the top-ranked predictions in early LLM layers are composed primarily of high-frequency tokens, which act as statistical guesses proposed by the model early on due to the lack of appropriate contextual information. As contextual information develops deeper into the model, these initial guesses get refined into contextually appropriate tokens. Even high-frequency token predictions from early layers get refined >70% of the time, indicating that correct token prediction is not "one-and-done". We then go beyond frequency-based prediction to examine the dynamic usage of layer depth across three case studies. (i) Part-of-speech analysis shows that function words are, on average, the earliest to be predicted correctly. (ii) Fact recall task analysis shows that, in a multi-token answer, the first token requires more computational depth than the rest. (iii) Multiple-choice task analysis shows that the model identifies the format of the response within the first half of the layers, but finalizes its response only toward the end. Together, our results provide a detailed view of depth usage in LLMs, shedding light on the layer-by-layer computations that underlie successful predictions and providing insights for future works to improve computational efficiency in transformer-based models.
☆ LightMem: Lightweight and Efficient Memory-Augmented Generation
Despite their remarkable capabilities, Large Language Models (LLMs) struggle to effectively leverage historical interaction information in dynamic and complex environments. Memory systems enable LLMs to move beyond stateless interactions by introducing persistent information storage, retrieval, and utilization mechanisms. However, existing memory systems often introduce substantial time and computational overhead. To this end, we introduce a new memory system called LightMem, which strikes a balance between the performance and efficiency of memory systems. Inspired by the Atkinson-Shiffrin model of human memory, LightMem organizes memory into three complementary stages. First, cognition-inspired sensory memory rapidly filters irrelevant information through lightweight compression and groups information according to their topics. Next, topic-aware short-term memory consolidates these topic-based groups, organizing and summarizing content for more structured access. Finally, long-term memory with sleep-time update employs an offline procedure that decouples consolidation from online inference. Experiments on LongMemEval with GPT and Qwen backbones show that LightMem outperforms strong baselines in accuracy (up to 10.9% gains) while reducing token usage by up to 117x, API calls by up to 159x, and runtime by over 12x. The code is available at https://github.com/zjunlp/LightMem.
comment: Work in progress
☆ Every Step Evolves: Scaling Reinforcement Learning for Trillion-Scale Thinking Model
We present Ring-1T, the first open-source, state-of-the-art thinking model with a trillion-scale parameter. It features 1 trillion total parameters and activates approximately 50 billion per token. Training such models at a trillion-parameter scale introduces unprecedented challenges, including train-inference misalignment, inefficiencies in rollout processing, and bottlenecks in the RL system. To address these, we pioneer three interconnected innovations: (1) IcePop stabilizes RL training via token-level discrepancy masking and clipping, resolving instability from training-inference mismatches; (2) C3PO++ improves resource utilization for long rollouts under a token budget by dynamically partitioning them, thereby obtaining high time efficiency; and (3) ASystem, a high-performance RL framework designed to overcome the systemic bottlenecks that impede trillion-parameter model training. Ring-1T delivers breakthrough results across critical benchmarks: 93.4 on AIME-2025, 86.72 on HMMT-2025, 2088 on CodeForces, and 55.94 on ARC-AGI-v1. Notably, it attains a silver medal-level result on the IMO-2025, underscoring its exceptional reasoning capabilities. By releasing the complete 1T parameter MoE model to the community, we provide the research community with direct access to cutting-edge reasoning capabilities. This contribution marks a significant milestone in democratizing large-scale reasoning intelligence and establishes a new baseline for open-source model performance.
comment: Technical Report
☆ Towards Faithful and Controllable Personalization via Critique-Post-Edit Reinforcement Learning
Faithfully personalizing large language models (LLMs) to align with individual user preferences is a critical but challenging task. While supervised fine-tuning (SFT) quickly reaches a performance plateau, standard reinforcement learning from human feedback (RLHF) also struggles with the nuances of personalization. Scalar-based reward models are prone to reward hacking which leads to verbose and superficially personalized responses. To address these limitations, we propose Critique-Post-Edit, a robust reinforcement learning framework that enables more faithful and controllable personalization. Our framework integrates two key components: (1) a Personalized Generative Reward Model (GRM) that provides multi-dimensional scores and textual critiques to resist reward hacking, and (2) a Critique-Post-Edit mechanism where the policy model revises its own outputs based on these critiques for more targeted and efficient learning. Under a rigorous length-controlled evaluation, our method substantially outperforms standard PPO on personalization benchmarks. Personalized Qwen2.5-7B achieves an average 11\% win-rate improvement, and personalized Qwen2.5-14B model surpasses the performance of GPT-4.1. These results demonstrate a practical path to faithful, efficient, and controllable personalization.
comment: work in progress
☆ See the Text: From Tokenization to Visual Reading
People see text. Humans read by recognizing words as visual objects, including their shapes, layouts, and patterns, before connecting them to meaning, which enables us to handle typos, distorted fonts, and various scripts effectively. Modern large language models (LLMs), however, rely on subword tokenization, fragmenting text into pieces from a fixed vocabulary. While effective for high-resource languages, this approach over-segments low-resource languages, yielding long, linguistically meaningless sequences and inflating computation. In this work, we challenge this entrenched paradigm and move toward a vision-centric alternative. Our method, SeeTok, renders text as images (visual-text) and leverages pretrained multimodal LLMs to interpret them, reusing strong OCR and text-vision alignment abilities learned from large-scale multimodal training. Across three different language tasks, SeeTok matches or surpasses subword tokenizers while requiring 4.43 times fewer tokens and reducing FLOPs by 70.5%, with additional gains in cross-lingual generalization, robustness to typographic noise, and linguistic hierarchy. SeeTok signals a shift from symbolic tokenization to human-like visual reading, and takes a step toward more natural and cognitively inspired language models.
☆ MTraining: Distributed Dynamic Sparse Attention for Efficient Ultra-Long Context Training
The adoption of long context windows has become a standard feature in Large Language Models (LLMs), as extended contexts significantly enhance their capacity for complex reasoning and broaden their applicability across diverse scenarios. Dynamic sparse attention is a promising approach for reducing the computational cost of long-context. However, efficiently training LLMs with dynamic sparse attention on ultra-long contexts-especially in distributed settings-remains a significant challenge, due in large part to worker- and step-level imbalance. This paper introduces MTraining, a novel distributed methodology leveraging dynamic sparse attention to enable efficient training for LLMs with ultra-long contexts. Specifically, MTraining integrates three key components: a dynamic sparse training pattern, balanced sparse ring attention, and hierarchical sparse ring attention. These components are designed to synergistically address the computational imbalance and communication overheads inherent in dynamic sparse attention mechanisms during the training of models with extensive context lengths. We demonstrate the efficacy of MTraining by training Qwen2.5-3B, successfully expanding its context window from 32K to 512K tokens on a cluster of 32 A100 GPUs. Our evaluations on a comprehensive suite of downstream tasks, including RULER, PG-19, InfiniteBench, and Needle In A Haystack, reveal that MTraining achieves up to a 6x higher training throughput while preserving model accuracy. Our code is available at https://github.com/microsoft/MInference/tree/main/MTraining.
☆ Fine-Tuned Thoughts: Leveraging Chain-of-Thought Reasoning for Industrial Asset Health Monitoring EMNLP 2025
Small Language Models (SLMs) are becoming increasingly popular in specialized fields, such as industrial applications, due to their efficiency, lower computational requirements, and ability to be fine-tuned for domain-specific tasks, enabling accurate and cost-effective solutions. However, performing complex reasoning using SLMs in specialized fields such as Industry 4.0 remains challenging. In this paper, we propose a knowledge distillation framework for industrial asset health, which transfers reasoning capabilities via Chain-of-Thought (CoT) distillation from Large Language Models (LLMs) to smaller, more efficient models (SLMs). We discuss the advantages and the process of distilling LLMs using multi-choice question answering (MCQA) prompts to enhance reasoning and refine decision-making. We also perform in-context learning to verify the quality of the generated knowledge and benchmark the performance of fine-tuned SLMs with generated knowledge against widely used LLMs. The results show that the fine-tuned SLMs with CoT reasoning outperform the base models by a significant margin, narrowing the gap to their LLM counterparts. Our code is open-sourced at: https://github.com/IBM/FailureSensorIQ.
comment: Accepted at EMNLP 2025
☆ WebSeer: Training Deeper Search Agents through Reinforcement Learning with Self-Reflection
Search agents have achieved significant advancements in enabling intelligent information retrieval and decision-making within interactive environments. Although reinforcement learning has been employed to train agentic models capable of more dynamic interactive retrieval, existing methods are limited by shallow tool-use depth and the accumulation of errors over multiple iterative interactions. In this paper, we present WebSeer, a more intelligent search agent trained via reinforcement learning enhanced with a self-reflection mechanism. Specifically, we construct a large dataset annotated with reflection patterns and design a two-stage training framework that unifies cold start and reinforcement learning within the self-reflection paradigm for real-world web-based environments, which enables the model to generate longer and more reflective tool-use trajectories. Our approach substantially extends tool-use chains and improves answer accuracy. Using a single 14B model, we achieve state-of-the-art results on HotpotQA and SimpleQA, with accuracies of 72.3% and 90.0%, respectively, and demonstrate strong generalization to out-of-distribution datasets. The code is available at https://github.com/99hgz/WebSeer
☆ KAT-Coder Technical Report
Recent advances in large language models (LLMs) have enabled progress in agentic coding, where models autonomously reason, plan, and act within interactive software development workflows. However, bridging the gap between static text-based training and dynamic real-world agentic execution remains a core challenge. In this technical report, we present KAT-Coder, a large-scale agentic code model trained through a multi-stage curriculum encompassing Mid-Term Training, Supervised Fine-Tuning (SFT), Reinforcement Fine-Tuning (RFT), and Reinforcement-to-Deployment Adaptation. The Mid-Term stage enhances reasoning, planning, and reflection capabilities through a corpus of real software engineering data and synthetic agentic interactions. The SFT stage constructs a million-sample dataset balancing twenty programming languages, ten development contexts, and ten task archetypes. The RFT stage introduces a novel multi-ground-truth reward formulation for stable and sample-efficient policy optimization. Finally, the Reinforcement-to-Deployment phase adapts the model to production-grade IDE environments using Error-Masked SFT and Tree-Structured Trajectory Training. In summary, these stages enable KAT-Coder to achieve robust tool-use reliability, instruction alignment, and long-context reasoning, forming a deployable foundation for real-world intelligent coding agents. Our KAT series 32B model, KAT-Dev, has been open-sourced on https://huggingface.co/Kwaipilot/KAT-Dev.
☆ AI use in American newspapers is widespread, uneven, and rarely disclosed
AI is rapidly transforming journalism, but the extent of its use in published newspaper articles remains unclear. We address this gap by auditing a large-scale dataset of 186K articles from online editions of 1.5K American newspapers published in the summer of 2025. Using Pangram, a state-of-the-art AI detector, we discover that approximately 9% of newly-published articles are either partially or fully AI-generated. This AI use is unevenly distributed, appearing more frequently in smaller, local outlets, in specific topics such as weather and technology, and within certain ownership groups. We also analyze 45K opinion pieces from Washington Post, New York Times, and Wall Street Journal, finding that they are 6.4 times more likely to contain AI-generated content than news articles from the same publications, with many AI-flagged op-eds authored by prominent public figures. Despite this prevalence, we find that AI use is rarely disclosed: a manual audit of 100 AI-flagged articles found only five disclosures of AI use. Overall, our audit highlights the immediate need for greater transparency and updated editorial standards regarding the use of AI in journalism to maintain public trust.
☆ Topoformer: brain-like topographic organization in Transformer language models through spatial querying and reweighting ICLR 2024
Spatial functional organization is a hallmark of biological brains: neurons are arranged topographically according to their response properties, at multiple scales. In contrast, representations within most machine learning models lack spatial biases, instead manifesting as disorganized vector spaces that are difficult to visualize and interpret. Here, we propose a novel form of self-attention that turns Transformers into "Topoformers" with topographic organization. We introduce spatial querying - where keys and queries are arranged on 2D grids, and local pools of queries are associated with a given key - and spatial reweighting, where we convert the standard fully connected layer of self-attention into a locally connected layer. We first demonstrate the feasibility of our approach by training a 1-layer Topoformer on a sentiment classification task. Training with spatial querying encourages topographic organization in the queries and keys, and spatial reweighting separately encourages topographic organization in the values and self-attention outputs. We then apply the Topoformer motifs at scale, training a BERT architecture with a masked language modeling objective. We find that the topographic variant performs on par with a non-topographic control model on NLP benchmarks, yet produces interpretable topographic organization as evaluated via eight linguistic test suites. Finally, analyzing an fMRI dataset of human brain responses to a large set of naturalistic sentences, we demonstrate alignment between low-dimensional topographic variability in the Topoformer model and human brain language network. Scaling up Topoformers further holds promise for greater interpretability in NLP research, and for more accurate models of the organization of linguistic information in the human brain.
comment: ICLR 2024 Workshop on Representational Alignment (Re-Align) Camera Ready
☆ Verifiable Accuracy and Abstention Rewards in Curriculum RL to Alleviate Lost-in-Conversation
Large Language Models demonstrate strong capabilities in single-turn instruction following but suffer from Lost-in-Conversation (LiC), a degradation in performance as information is revealed progressively in multi-turn settings. Motivated by the current progress on Reinforcement Learning with Verifiable Rewards (RLVR), we propose Curriculum Reinforcement Learning with Verifiable Accuracy and Abstention Rewards (RLAAR), a framework that encourages models not only to generate correct answers, but also to judge the solvability of questions in the multi-turn conversation setting. Our approach employs a competence-gated curriculum that incrementally increases dialogue difficulty (in terms of instruction shards), stabilizing training while promoting reliability. Using multi-turn, on-policy rollouts and a mixed-reward system, RLAAR teaches models to balance problem-solving with informed abstention, reducing premature answering behaviors that cause LiC. Evaluated on LiC benchmarks, RLAAR significantly mitigates LiC performance decay (62.6% to 75.1%) and improves calibrated abstention rates (33.5% to 73.4%). Together, these results provide a practical recipe for building multi-turn reliable and trustworthy LLMs.
☆ SemiAdapt and SemiLoRA: Efficient Domain Adaptation for Transformer-based Low-Resource Language Translation with a Case Study on Irish
Fine-tuning is widely used to tailor large language models for specific tasks such as neural machine translation (NMT). However, leveraging transfer learning is computationally expensive when fine-tuning large multilingual models with billions of parameters, thus creating a barrier to entry for researchers working on low-resource domains such as Irish translation. Parameter-efficient fine-tuning (PEFT) bridges this gap by training on a fraction of the original model parameters, with the Low-Rank Adaptation (LoRA) approach introducing small, trainable adapter layers. We introduce SemiAdapt and SemiLoRA as semi-supervised inference-efficient approaches that strengthen domain adaptation and lead to improved overall performance in NMT. We demonstrate that SemiAdapt can outperform full-domain fine-tuning, while most notably, SemiLoRA can propel PEFT methods to match or even outperform full-model fine-tuning. We further evaluate domain-by-dataset fine-tuning and demonstrate that our embedding-based inference methods perform especially well on larger and noisier corpora. All Irish translation models developed in this work are released as open resources. These methods aim to make high-quality domain adaptation and fine-tuning more accessible to researchers working with low-resource languages.
comment: 8 pages
☆ Adapting Language Balance in Code-Switching Speech ICASSP 2026
Despite achieving impressive results on standard benchmarks, large foundational models still struggle against code-switching test cases. When data scarcity cannot be used as the usual justification for poor performance, the reason may lie in the infrequent occurrence of code-switched moments, where the embedding of the second language appears subtly. Instead of expecting the models to learn this infrequency on their own, it might be beneficial to provide the training process with labels. Evaluating model performance on code-switching data requires careful localization of code-switching points where recognition errors are most consequential, so that the analysis emphasizes mistakes occurring at those moments. Building on this observation, we leverage the difference between the embedded and the main language to highlight those code-switching points and thereby emphasize learning at those locations. This simple yet effective differentiable surrogate mitigates context bias during generation -- the central challenge in code-switching -- thereby improving the model's robustness. Our experiments with Arabic and Chinese-English showed that the models are able to predict the switching places more correctly, reflected by the reduced substitution error.
comment: Submitted to ICASSP 2026
☆ Bayesian Low-Rank Factorization for Robust Model Adaptation ICASSP 2026
Large speech foundation models achieve strong performance across many domains, but they often require adaptation to handle local needs such as code-switching, where speakers mix languages within the same utterance. Direct fine-tuning of these models risks overfitting to the target domain and overwriting the broad capabilities of the base model. To address this challenge, we explore Bayesian factorized adapters for speech foundation models, which place priors near zero to achieve sparser adaptation matrices and thereby retain general performance while adapting to specific domains. We apply our approach to the Whisper model and evaluate on different multilingual code-switching scenarios. Our results show only minimal adaptation loss while significantly reducing catastrophic forgetting of the base model. Compared to LoRA, our method achieves a backward gain of 54% with only a 4% drop on the new domain. These findings highlight the effectiveness of Bayesian adaptation for fine-tuning speech foundation models without sacrificing generalization.
comment: Submitted to ICASSP 2026
☆ Investigating LLM Capabilities on Long Context Comprehension for Medical Question Answering
This study is the first to investigate LLM comprehension capabilities over long-context (LC) medical QA of clinical relevance. Our comprehensive assessment spans a range of content-inclusion settings based on their relevance, LLM models of varying capabilities and datasets across task formulations, revealing insights on model size effects, limitations, underlying memorization issues and the benefits of reasoning models. Importantly, we examine the effect of RAG on medical LC comprehension, uncover best settings in single versus multi-document reasoning datasets and showcase RAG strategies for improvements over LC. We shed light into some of the evaluation aspects using a multi-faceted approach. Our qualitative and error analyses address open questions on when RAG is beneficial over LC, revealing common failure cases.
☆ MLMA: Towards Multilingual with Mamba Based Architectures ICASSP 2026
Multilingual automatic speech recognition (ASR) remains a challenging task, especially when balancing performance across high- and low-resource languages. Recent advances in sequence modeling suggest that architectures beyond Transformers may offer better scalability and efficiency. In this work, we introduce MLMA (Multilingual Language Modeling with Mamba for ASR), a new approach that leverages the Mamba architecture--an efficient state-space model optimized for long-context sequence processing--for multilingual ASR. Using Mamba, MLMA implicitly incorporates language-aware conditioning and shared representations to support robust recognition across diverse languages. Experiments on standard multilingual benchmarks show that MLMA achieves competitive performance compared to Transformer-based architectures. These results highlight Mamba's potential as a strong backbone for scalable, efficient, and accurate multilingual speech recognition.
comment: The paper is under review at ICASSP 2026
☆ Dynamical model parameters from ultrasound tongue kinematics
The control of speech can be modelled as a dynamical system in which articulators are driven toward target positions. These models are typically evaluated using fleshpoint data, such as electromagnetic articulography (EMA), but recent methodological advances make ultrasound imaging a promising alternative. We evaluate whether the parameters of a linear harmonic oscillator can be reliably estimated from ultrasound tongue kinematics and compare these with parameters estimated from simultaneously-recorded EMA data. We find that ultrasound and EMA yield comparable dynamical parameters, while mandibular short tendon tracking also adequately captures jaw motion. This supports using ultrasound kinematics to evaluate dynamical articulatory models.
comment: Accepted for publication in JASA Express Letters
☆ Beyond the Explicit: A Bilingual Dataset for Dehumanization Detection in Social Media
Digital dehumanization, although a critical issue, remains largely overlooked within the field of computational linguistics and Natural Language Processing. The prevailing approach in current research concentrating primarily on a single aspect of dehumanization that identifies overtly negative statements as its core marker. This focus, while crucial for understanding harmful online communications, inadequately addresses the broader spectrum of dehumanization. Specifically, it overlooks the subtler forms of dehumanization that, despite not being overtly offensive, still perpetuate harmful biases against marginalized groups in online interactions. These subtler forms can insidiously reinforce negative stereotypes and biases without explicit offensiveness, making them harder to detect yet equally damaging. Recognizing this gap, we use different sampling methods to collect a theory-informed bilingual dataset from Twitter and Reddit. Using crowdworkers and experts to annotate 16,000 instances on a document- and span-level, we show that our dataset covers the different dimensions of dehumanization. This dataset serves as both a training resource for machine learning models and a benchmark for evaluating future dehumanization detection techniques. To demonstrate its effectiveness, we fine-tune ML models on this dataset, achieving performance that surpasses state-of-the-art models in zero and few-shot in-context settings.
☆ Large language models for folktale type automation based on motifs: Cinderella case study
Artificial intelligence approaches are being adapted to many research areas, including digital humanities. We built a methodology for large-scale analyses in folkloristics. Using machine learning and natural language processing, we automatically detected motifs in a large collection of Cinderella variants and analysed their similarities and differences with clustering and dimensionality reduction. The results show that large language models detect complex interactions in tales, enabling computational analysis of extensive text collections and facilitating cross-lingual comparisons.
☆ Building Trust in Clinical LLMs: Bias Analysis and Dataset Transparency EMNLP
Large language models offer transformative potential for healthcare, yet their responsible and equitable development depends critically on a deeper understanding of how training data characteristics influence model behavior, including the potential for bias. Current practices in dataset curation and bias assessment often lack the necessary transparency, creating an urgent need for comprehensive evaluation frameworks to foster trust and guide improvements. In this study, we present an in-depth analysis of potential downstream biases in clinical language models, with a focus on differential opioid prescription tendencies across diverse demographic groups, such as ethnicity, gender, and age. As part of this investigation, we introduce HC4: Healthcare Comprehensive Commons Corpus, a novel and extensively curated pretraining dataset exceeding 89 billion tokens. Our evaluation leverages both established general benchmarks and a novel, healthcare-specific methodology, offering crucial insights to support fairness and safety in clinical AI applications.
comment: Accepted to EMNLP Main 2025
☆ Identity-Aware Large Language Models require Cultural Reasoning
Large language models have become the latest trend in natural language processing, heavily featuring in the digital tools we use every day. However, their replies often reflect a narrow cultural viewpoint that overlooks the diversity of global users. This missing capability could be referred to as cultural reasoning, which we define here as the capacity of a model to recognise culture-specific knowledge values and social norms, and to adjust its output so that it aligns with the expectations of individual users. Because culture shapes interpretation, emotional resonance, and acceptable behaviour, cultural reasoning is essential for identity-aware AI. When this capacity is limited or absent, models can sustain stereotypes, ignore minority perspectives, erode trust, and perpetuate hate. Recent empirical studies strongly suggest that current models default to Western norms when judging moral dilemmas, interpreting idioms, or offering advice, and that fine-tuning on survey data only partly reduces this tendency. The present evaluation methods mainly report static accuracy scores and thus fail to capture adaptive reasoning in context. Although broader datasets can help, they cannot alone ensure genuine cultural competence. Therefore, we argue that cultural reasoning must be treated as a foundational capability alongside factual accuracy and linguistic coherence. By clarifying the concept and outlining initial directions for its assessment, a foundation is laid for future systems to be able to respond with greater sensitivity to the complex fabric of human culture.
☆ Zero-Shot Vehicle Model Recognition via Text-Based Retrieval-Augmented Generation
Vehicle make and model recognition (VMMR) is an important task in intelligent transportation systems, but existing approaches struggle to adapt to newly released models. Contrastive Language-Image Pretraining (CLIP) provides strong visual-text alignment, yet its fixed pretrained weights limit performance without costly image-specific finetuning. We propose a pipeline that integrates vision language models (VLMs) with Retrieval-Augmented Generation (RAG) to support zero-shot recognition through text-based reasoning. A VLM converts vehicle images into descriptive attributes, which are compared against a database of textual features. Relevant entries are retrieved and combined with the description to form a prompt, and a language model (LM) infers the make and model. This design avoids large-scale retraining and enables rapid updates by adding textual descriptions of new vehicles. Experiments show that the proposed method improves recognition by nearly 20% over the CLIP baseline, demonstrating the potential of RAG-enhanced LM reasoning for scalable VMMR in smart-city applications.
comment: Accepted by The 38th Conference of Open Innovations Association FRUCT, 2025
☆ How Efficient Are Diffusion Language Models? A Critical Examination of Efficiency Evaluation Practices
Diffusion language models (DLMs) have emerged as a promising alternative to the long-dominant autoregressive (AR) paradigm, offering a parallelable decoding process that could yield greater efficiency. Yet, in practice, current open-source DLMs often underperform their AR counterparts in speed, limiting their real-world utility. This work presents a systematic study of DLM efficiency, identifying key issues in prior evaluation methods. Through empirical benchmarking and a roofline-based theoretical analysis, we demonstrate that AR models generally achieve higher throughput, while DLMs consistently lag. We also investigate acceleration strategies, finding that techniques like dual cache and parallel decoding mainly offer gains at small batch sizes, with their benefits diminishing upon scaling. Our findings underscore the necessity of robust evaluation methods and improved acceleration strategies to advance research on DLMs.
☆ Probabilistic Modeling of Intentions in Socially Intelligent LLM Agents
We present a probabilistic intent modeling framework for large language model (LLM) agents in multi-turn social dialogue. The framework maintains a belief distribution over a partner's latent intentions, initialized from contextual priors and dynamically updated through likelihood estimation after each utterance. The evolving distribution provides additional contextual grounding for the policy, enabling adaptive dialogue strategies under uncertainty. Preliminary experiments in the SOTOPIA environment show consistent improvements: the proposed framework increases the Overall score by 9.0% on SOTOPIA-All and 4.1% on SOTOPIA-Hard compared with the Qwen2.5-7B baseline, and slightly surpasses an oracle agent that directly observes partner intentions. These early results suggest that probabilistic intent modeling can contribute to the development of socially intelligent LLM agents.
☆ DART: A Structured Dataset of Regulatory Drug Documents in Italian for Clinical NLP
The extraction of pharmacological knowledge from regulatory documents has become a key focus in biomedical natural language processing, with applications ranging from adverse event monitoring to AI-assisted clinical decision support. However, research in this field has predominantly relied on English-language corpora such as DrugBank, leaving a significant gap in resources tailored to other healthcare systems. To address this limitation, we introduce DART (Drug Annotation from Regulatory Texts), the first structured corpus of Italian Summaries of Product Characteristics derived from the official repository of the Italian Medicines Agency (AIFA). The dataset was built through a reproducible pipeline encompassing web-scale document retrieval, semantic segmentation of regulatory sections, and clinical summarization using a few-shot-tuned large language model with low-temperature decoding. DART provides structured information on key pharmacological domains such as indications, adverse drug reactions, and drug-drug interactions. To validate its utility, we implemented an LLM-based drug interaction checker that leverages the dataset to infer clinically meaningful interactions. Experimental results show that instruction-tuned LLMs can accurately infer potential interactions and their clinical implications when grounded in the structured textual fields of DART. We publicly release our code on GitHub: https://github.com/PRAISELab-PicusLab/DART.
☆ CodeRL+: Improving Code Generation via Reinforcement with Execution Semantics Alignment
While Large Language Models (LLMs) excel at code generation by learning from vast code corpora, a fundamental semantic gap remains between their training on textual patterns and the goal of functional correctness, which is governed by formal execution semantics. Reinforcement Learning with Verifiable Rewards (RLVR) approaches attempt to bridge this gap using outcome rewards from executing test cases. However, solely relying on binary pass/fail signals is inefficient for establishing a well-aligned connection between the textual representation of code and its execution semantics, especially for subtle logical errors within the code. In this paper, we propose CodeRL+, a novel approach that integrates execution semantics alignment into the RLVR training pipeline for code generation. CodeRL+ enables the model to infer variable-level execution trajectory, providing a direct learning signal of execution semantics. CodeRL+ can construct execution semantics alignment directly using existing on-policy rollouts and integrates seamlessly with various RL algorithms. Extensive experiments demonstrate that CodeRL+ outperforms post-training baselines (including RLVR and Distillation), achieving a 4.6% average relative improvement in pass@1. CodeRL+ generalizes effectively to other coding tasks, yielding 15.5% and 4.4% higher accuracy on code-reasoning and test-output-generation benchmarks, respectively. CodeRL+ shows strong applicability across diverse RL algorithms and LLMs. Furthermore, probe analyses provide compelling evidence that CodeRL+ strengthens the alignment between code's textual representations and its underlying execution semantics.
☆ IMB: An Italian Medical Benchmark for Question Answering
Online medical forums have long served as vital platforms where patients seek professional healthcare advice, generating vast amounts of valuable knowledge. However, the informal nature and linguistic complexity of forum interactions pose significant challenges for automated question answering systems, especially when dealing with non-English languages. We present two comprehensive Italian medical benchmarks: \textbf{IMB-QA}, containing 782,644 patient-doctor conversations from 77 medical categories, and \textbf{IMB-MCQA}, comprising 25,862 multiple-choice questions from medical specialty examinations. We demonstrate how Large Language Models (LLMs) can be leveraged to improve the clarity and consistency of medical forum data while retaining their original meaning and conversational style, and compare a variety of LLM architectures on both open and multiple-choice question answering tasks. Our experiments with Retrieval Augmented Generation (RAG) and domain-specific fine-tuning reveal that specialized adaptation strategies can outperform larger, general-purpose models in medical question answering tasks. These findings suggest that effective medical AI systems may benefit more from domain expertise and efficient information retrieval than from increased model scale. We release both datasets and evaluation frameworks in our GitHub repository to support further research on multilingual medical question answering: https://github.com/PRAISELab-PicusLab/IMB.
☆ CEFR-Annotated WordNet: LLM-Based Proficiency-Guided Semantic Database for Language Learning
Although WordNet is a valuable resource owing to its structured semantic networks and extensive vocabulary, its fine-grained sense distinctions can be challenging for second-language learners. To address this, we developed a WordNet annotated with the Common European Framework of Reference for Languages (CEFR), integrating its semantic networks with language-proficiency levels. We automated this process using a large language model to measure the semantic similarity between sense definitions in WordNet and entries in the English Vocabulary Profile Online. To validate our method, we constructed a large-scale corpus containing both sense and CEFR-level information from our annotated WordNet and used it to develop contextual lexical classifiers. Our experiments demonstrate that models fine-tuned on our corpus perform comparably to those trained on gold-standard annotations. Furthermore, by combining our corpus with the gold-standard data, we developed a practical classifier that achieves a Macro-F1 score of 0.81, indicating the high accuracy of our annotations. Our annotated WordNet, corpus, and classifiers are publicly available to help bridge the gap between natural language processing and language education, thereby facilitating more effective and efficient language learning.
☆ DePass: Unified Feature Attributing by Simple Decomposed Forward Pass
Attributing the behavior of Transformer models to internal computations is a central challenge in mechanistic interpretability. We introduce DePass, a unified framework for feature attribution based on a single decomposed forward pass. DePass decomposes hidden states into customized additive components, then propagates them with attention scores and MLP's activations fixed. It achieves faithful, fine-grained attribution without requiring auxiliary training. We validate DePass across token-level, model component-level, and subspace-level attribution tasks, demonstrating its effectiveness and fidelity. Our experiments highlight its potential to attribute information flow between arbitrary components of a Transformer model. We hope DePass serves as a foundational tool for broader applications in interpretability.
☆ ChronoPlay: A Framework for Modeling Dual Dynamics and Authenticity in Game RAG Benchmarks
Retrieval Augmented Generation (RAG) systems are increasingly vital in dynamic domains like online gaming, yet the lack of a dedicated benchmark has impeded standardized evaluation in this area. The core difficulty lies in Dual Dynamics: the constant interplay between game content updates and the shifting focus of the player community. Furthermore, the necessity of automating such a benchmark introduces a critical requirement for player-centric authenticity to ensure generated questions are realistic. To address this integrated challenge, we introduce ChronoPlay, a novel framework for the automated and continuous generation of game RAG benchmarks. ChronoPlay utilizes a dual-dynamic update mechanism to track both forms of change, and a dual-source synthesis engine that draws from official sources and player community to ensure both factual correctness and authentic query patterns. We instantiate our framework on three distinct games to create the first dynamic RAG benchmark for the gaming domain, offering new insights into model performance under these complex and realistic conditions. Code is avaliable at: https://github.com/hly1998/ChronoPlay.
☆ Engagement Undermines Safety: How Stereotypes and Toxicity Shape Humor in Language Models
Large language models are increasingly used for creative writing and engagement content, raising safety concerns about the outputs. Therefore, casting humor generation as a testbed, this work evaluates how funniness optimization in modern LLM pipelines couples with harmful content by jointly measuring humor, stereotypicality, and toxicity. This is further supplemented by analyzing incongruity signals through information-theoretic metrics. Across six models, we observe that harmful outputs receive higher humor scores which further increase under role-based prompting, indicating a bias amplification loop between generators and evaluators. Information-theoretic analyses show harmful cues widen predictive uncertainty and surprisingly, can even make harmful punchlines more expected for some models, suggesting structural embedding in learned humor distributions. External validation on an additional satire-generation task with human perceived funniness judgments shows that LLM satire increases stereotypicality and typically toxicity, including for closed models. Quantitatively, stereotypical/toxic jokes gain $10-21\%$ in mean humor score, stereotypical jokes appear $11\%$ to $28\%$ more often among the jokes marked funny by LLM-based metric and up to $10\%$ more often in generations perceived as funny by humans.
☆ Grounding or Guessing? Visual Signals for Detecting Hallucinations in Sign Language Translation
Hallucination, where models generate fluent text unsupported by visual evidence, remains a major flaw in vision-language models and is particularly critical in sign language translation (SLT). In SLT, meaning depends on precise grounding in video, and gloss-free models are especially vulnerable because they map continuous signer movements directly into natural language without intermediate gloss supervision that serves as alignment. We argue that hallucinations arise when models rely on language priors rather than visual input. To capture this, we propose a token-level reliability measure that quantifies how much the decoder uses visual information. Our method combines feature-based sensitivity, which measures internal changes when video is masked, with counterfactual signals, which capture probability differences between clean and altered video inputs. These signals are aggregated into a sentence-level reliability score, providing a compact and interpretable measure of visual grounding. We evaluate the proposed measure on two SLT benchmarks (PHOENIX-2014T and CSL-Daily) with both gloss-based and gloss-free models. Our results show that reliability predicts hallucination rates, generalizes across datasets and architectures, and decreases under visual degradations. Beyond these quantitative trends, we also find that reliability distinguishes grounded tokens from guessed ones, allowing risk estimation without references; when combined with text-based signals (confidence, perplexity, or entropy), it further improves hallucination risk estimation. Qualitative analysis highlights why gloss-free models are more susceptible to hallucinations. Taken together, our findings establish reliability as a practical and reusable tool for diagnosing hallucinations in SLT, and lay the groundwork for more robust hallucination detection in multimodal generation.
☆ Chain-of-Conceptual-Thought: Eliciting the Agent to Deeply Think within the Response
Chain-of-Thought (CoT) is widely applied to improve the LLM capability in math, coding and reasoning tasks. However, its performance is limited for open-domain tasks since there are no clearly defined reasoning steps or logical transitions. To mitigate such challenges, we propose another prompt-based paradigm called Chain of Conceptual Thought (CoCT), where the LLM first tags a concept, then generates the detailed content. The chain of concepts is allowed within the utterance, encouraging the LLM's deep and strategic thinking. We experiment with this paradigm in daily and emotional support conversations where the concept is comprised of emotions, strategies and topics. Automatic, human and model evaluations suggest that CoCT surpasses baselines such as Self-Refine, ECoT, ToT, SoT and RAG, suggesting a potential effective prompt-based paradigm of LLM for a wider scope of tasks.
☆ Adamas: Hadamard Sparse Attention for Efficient Long-Context Inference
Large language models (LLMs) now support context windows of hundreds of thousands to millions of tokens, enabling applications such as long-document summarization, large-scale code synthesis, multi-document question answering and persistent multi-turn dialogue. However, such extended contexts exacerbate the quadratic cost of self-attention, leading to severe latency in autoregressive decoding. Existing sparse attention methods alleviate these costs but rely on heuristic patterns that struggle to recall critical key-value (KV) pairs for each query, resulting in accuracy degradation. We introduce Adamas, a lightweight yet highly accurate sparse attention mechanism designed for long-context inference. Adamas applies the Hadamard transform, bucketization and 2-bit compression to produce compact representations, and leverages Manhattan-distance estimation for efficient top-k selections. Experiments show that Adamas matches the accuracy of full attention with only a 64-token budget, achieves near-lossless performance at 128, and supports up to 8x higher sparsity than prior state-of-the-art (SOTA) methods while delivering up to 4.4x self-attention and 1.5x end-to-end speedups on 32K-length sequences. Remarkably, Adamas attains comparable or even lower perplexity than full attention, underscoring its effectiveness in maintaining accuracy under aggressive sparsity.
☆ MENTOR: A Reinforcement Learning Framework for Model Enhancement via Teacher-Optimized Rewards in Small Models
Distilling the tool-using capabilities of large language models (LLMs) into smaller, more efficient small language models (SLMs) is a key challenge for their practical application. The predominant approach, supervised fine-tuning (SFT), suffers from poor generalization as it trains models to imitate a static set of teacher trajectories rather than learn a robust methodology. While reinforcement learning (RL) offers an alternative, the standard RL using sparse rewards fails to effectively guide SLMs, causing them to struggle with inefficient exploration and adopt suboptimal strategies. To address these distinct challenges, we propose MENTOR, a framework that synergistically combines RL with teacher-guided distillation. Instead of simple imitation, MENTOR employs an RL-based process to learn a more generalizable policy through exploration. In addition, to solve the problem of reward sparsity, it uses a teacher's reference trajectory to construct a dense, composite teacher-guided reward that provides fine-grained guidance. Extensive experiments demonstrate that MENTOR significantly improves the cross-domain generalization and strategic competence of SLMs compared to both SFT and standard sparse-reward RL baselines.
☆ Towards Fair ASR For Second Language Speakers Using Fairness Prompted Finetuning ICASSP 2026
In this work, we address the challenge of building fair English ASR systems for second-language speakers. Our analysis of widely used ASR models, Whisper and Seamless-M4T, reveals large fluctuations in word error rate (WER) across 26 accent groups, indicating significant fairness gaps. To mitigate this, we propose fairness-prompted finetuning with lightweight adapters, incorporating Spectral Decoupling (SD), Group Distributionally Robust Optimization (Group-DRO), and Invariant Risk Minimization (IRM). Our proposed fusion of traditional empirical risk minimization (ERM) with cross-entropy and fairness-driven objectives (SD, Group DRO, and IRM) enhances fairness across accent groups while maintaining overall recognition accuracy. In terms of macro-averaged word error rate, our approach achieves a relative improvement of 58.7% and 58.5% over the large pretrained Whisper and SeamlessM4T, and 9.7% and 7.8% over them, finetuning with standard empirical risk minimization with cross-entropy loss.
comment: Submitted to ICASSP 2026
☆ KoSimpleQA: A Korean Factuality Benchmark with an Analysis of Reasoning LLMs
We present $\textbf{Korean SimpleQA (KoSimpleQA)}$, a benchmark for evaluating factuality in large language models (LLMs) with a focus on Korean cultural knowledge. KoSimpleQA is designed to be challenging yet easy to grade, consisting of 1,000 short, fact-seeking questions with unambiguous answers. We conduct a comprehensive evaluation across a diverse set of open-source LLMs of varying sizes that support Korean, and find that even the strongest model generates correct answer only 33.7% of the time, underscoring the challenging nature of KoSimpleQA. Notably, performance rankings on KoSimpleQA differ substantially from those on the English SimpleQA, highlighting the unique value of our dataset. Furthermore, our analysis of reasoning LLMs shows that engaging reasoning capabilities in the factual QA task can both help models better elicit their latent knowledge and improve their ability to abstain when uncertain. KoSimpleQA can be found at https://anonymous.4open.science/r/KoSimpleQA-62EB.
☆ KrishokBondhu: A Retrieval-Augmented Voice-Based Agricultural Advisory Call Center for Bengali Farmers
In Bangladesh, many farmers continue to face challenges in accessing timely, expert-level agricultural guidance. This paper presents KrishokBondhu, a voice-enabled, call-centre-integrated advisory platform built on a Retrieval-Augmented Generation (RAG) framework, designed specifically for Bengali-speaking farmers. The system aggregates authoritative agricultural handbooks, extension manuals, and NGO publications; applies Optical Character Recognition (OCR) and document-parsing pipelines to digitize and structure the content; and indexes this corpus in a vector database for efficient semantic retrieval. Through a simple phone-based interface, farmers can call the system to receive real-time, context-aware advice: speech-to-text converts the Bengali query, the RAG module retrieves relevant content, a large language model (Gemma 3-4B) generates a context-grounded response, and text-to-speech delivers the answer in natural spoken Bengali. In a pilot evaluation, KrishokBondhu produced high-quality responses for 72.7% of diverse agricultural queries covering crop management, disease control, and cultivation practices. Compared to the KisanQRS benchmark, the system achieved a composite score of 4.53 (vs. 3.13) on a 5-point scale, a 44.7% improvement, with especially large gains in contextual richness (+367%) and completeness (+100.4%), while maintaining comparable relevance and technical specificity. Semantic similarity analysis further revealed a strong correlation between retrieved context and answer quality, emphasizing the importance of grounding generative responses in curated documentation. KrishokBondhu demonstrates the feasibility of integrating call-centre accessibility, multilingual voice interaction, and modern RAG techniques to deliver expert-level agricultural guidance to remote Bangladeshi farmers, paving the way toward a fully AI-driven agricultural advisory ecosystem.
comment: 6 pages, 7 figures, 5 tables, submitted to the 11th IEEE International Women in Engineering (WIE) Conference on Electrical and Computer Engineering (WIECON-ECE 2025)
☆ Combining Distantly Supervised Models with In Context Learning for Monolingual and Cross-Lingual Relation Extraction
Distantly Supervised Relation Extraction (DSRE) remains a long-standing challenge in NLP, where models must learn from noisy bag-level annotations while making sentence-level predictions. While existing state-of-the-art (SoTA) DSRE models rely on task-specific training, their integration with in-context learning (ICL) using large language models (LLMs) remains underexplored. A key challenge is that the LLM may not learn relation semantics correctly, due to noisy annotation. In response, we propose HYDRE -- HYbrid Distantly Supervised Relation Extraction framework. It first uses a trained DSRE model to identify the top-k candidate relations for a given test sentence, then uses a novel dynamic exemplar retrieval strategy that extracts reliable, sentence-level exemplars from training data, which are then provided in LLM prompt for outputting the final relation(s). We further extend HYDRE to cross-lingual settings for RE in low-resource languages. Using available English DSRE training data, we evaluate all methods on English as well as a newly curated benchmark covering four diverse low-resource Indic languages -- Oriya, Santali, Manipuri, and Tulu. HYDRE achieves up to 20 F1 point gains in English and, on average, 17 F1 points on Indic languages over prior SoTA DSRE models. Detailed ablations exhibit HYDRE's efficacy compared to other prompting strategies.
☆ ECG-LLM-- training and evaluation of domain-specific large language models for electrocardiography
Domain-adapted open-weight large language models (LLMs) offer promising healthcare applications, from queryable knowledge bases to multimodal assistants, with the crucial advantage of local deployment for privacy preservation. However, optimal adaptation strategies, evaluation methodologies, and performance relative to general-purpose LLMs remain poorly characterized. We investigated these questions in electrocardiography, an important area of cardiovascular medicine, by finetuning open-weight models on domain-specific literature and implementing a multi-layered evaluation framework comparing finetuned models, retrieval-augmented generation (RAG), and Claude Sonnet 3.7 as a representative general-purpose model. Finetuned Llama 3.1 70B achieved superior performance on multiple-choice evaluations and automatic text metrics, ranking second to Claude 3.7 in LLM-as-a-judge assessments. Human expert evaluation favored Claude 3.7 and RAG approaches for complex queries. Finetuned models significantly outperformed their base counterparts across nearly all evaluation modes. Our findings reveal substantial performance heterogeneity across evaluation methodologies, underscoring assessment complexity. Nevertheless, domain-specific adaptation through finetuning and RAG achieves competitive performance with proprietary models, supporting the viability of privacy-preserving, locally deployable clinical solutions.
comment: 34 pages, 8 figures, code available at https://github.com/AI4HealthUOL/ecg-llm
☆ Position: LLM Watermarking Should Align Stakeholders' Incentives for Practical Adoption
Despite progress in watermarking algorithms for large language models (LLMs), real-world deployment remains limited. We argue that this gap stems from misaligned incentives among LLM providers, platforms, and end users, which manifest as four key barriers: competitive risk, detection-tool governance, robustness concerns and attribution issues. We revisit three classes of watermarking through this lens. \emph{Model watermarking} naturally aligns with LLM provider interests, yet faces new challenges in open-source ecosystems. \emph{LLM text watermarking} offers modest provider benefit when framed solely as an anti-misuse tool, but can gain traction in narrowly scoped settings such as dataset de-contamination or user-controlled provenance. \emph{In-context watermarking} (ICW) is tailored for trusted parties, such as conference organizers or educators, who embed hidden watermarking instructions into documents. If a dishonest reviewer or student submits this text to an LLM, the output carries a detectable watermark indicating misuse. This setup aligns incentives: users experience no quality loss, trusted parties gain a detection tool, and LLM providers remain neutral by simply following watermark instructions. We advocate for a broader exploration of incentive-aligned methods, with ICW as an example, in domains where trusted parties need reliable tools to detect misuse. More broadly, we distill design principles for incentive-aligned, domain-specific watermarking and outline future research directions. Our position is that the practical adoption of LLM watermarking requires aligning stakeholder incentives in targeted application domains and fostering active community engagement.
☆ The Impact of Image Resolution on Biomedical Multimodal Large Language Models
Imaging technologies are fundamental to biomedical research and modern medicine, requiring analysis of high-resolution images across various modalities. While multimodal large language models (MLLMs) show promise for biomedical image analysis, most are designed for low-resolution images from general-purpose datasets, risking critical information loss. We investigate how image resolution affects MLLM performance in biomedical applications and demonstrate that: (1) native-resolution training and inference significantly improve performance across multiple tasks, (2) misalignment between training and inference resolutions severely degrades performance, and (3) mixed-resolution training effectively mitigates misalignment and balances computational constraints with performance requirements. Based on these findings, we recommend prioritizing native-resolution inference and mixed-resolution datasets to optimize biomedical MLLMs for transformative impact in scientific research and clinical applications.
comment: Proceedings of the 10th Machine Learning for Healthcare Conference, PMLR 298, 2025
☆ From Retrieval to Generation: Unifying External and Parametric Knowledge for Medical Question Answering
Medical question answering (QA) requires extensive access to domain-specific knowledge. A promising direction is to enhance large language models (LLMs) with external knowledge retrieved from medical corpora or parametric knowledge stored in model parameters. Existing approaches typically fall into two categories: Retrieval-Augmented Generation (RAG), which grounds model reasoning on externally retrieved evidence, and Generation-Augmented Generation (GAG), which depends solely on the models internal knowledge to generate contextual documents. However, RAG often suffers from noisy or incomplete retrieval, while GAG is vulnerable to hallucinated or inaccurate information due to unconstrained generation. Both issues can mislead reasoning and undermine answer reliability. To address these challenges, we propose MedRGAG, a unified retrieval-generation augmented framework that seamlessly integrates external and parametric knowledge for medical QA. MedRGAG comprises two key modules: Knowledge-Guided Context Completion (KGCC), which directs the generator to produce background documents that complement the missing knowledge revealed by retrieval; and Knowledge-Aware Document Selection (KADS), which adaptively selects an optimal combination of retrieved and generated documents to form concise yet comprehensive evidence for answer generation. Extensive experiments on five medical QA benchmarks demonstrate that MedRGAG achieves a 12.5% improvement over MedRAG and a 4.5% gain over MedGENIE, highlighting the effectiveness of unifying retrieval and generation for knowledge-intensive reasoning. Our code and data are publicly available at https://anonymous.4open.science/r/MedRGAG
comment: 13 pages, 4 figures
☆ Food4All: A Multi-Agent Framework for Real-time Free Food Discovery with Integrated Nutritional Metadata
Food insecurity remains a persistent public health emergency in the United States, tightly interwoven with chronic disease, mental illness, and opioid misuse. Yet despite the existence of thousands of food banks and pantries, access remains fragmented: 1) current retrieval systems depend on static directories or generic search engines, which provide incomplete and geographically irrelevant results; 2) LLM-based chatbots offer only vague nutritional suggestions and fail to adapt to real-world constraints such as time, mobility, and transportation; and 3) existing food recommendation systems optimize for culinary diversity but overlook survival-critical needs of food-insecure populations, including immediate proximity, verified availability, and contextual barriers. These limitations risk leaving the most vulnerable individuals, those experiencing homelessness, addiction, or digital illiteracy, unable to access urgently needed resources. To address this, we introduce Food4All, the first multi-agent framework explicitly designed for real-time, context-aware free food retrieval. Food4All unifies three innovations: 1) heterogeneous data aggregation across official databases, community platforms, and social media to provide a continuously updated pool of food resources; 2) a lightweight reinforcement learning algorithm trained on curated cases to optimize for both geographic accessibility and nutritional correctness; and 3) an online feedback loop that dynamically adapts retrieval policies to evolving user needs. By bridging information acquisition, semantic analysis, and decision support, Food4All delivers nutritionally annotated and guidance at the point of need. This framework establishes an urgent step toward scalable, equitable, and intelligent systems that directly support populations facing food insecurity and its compounding health risks.
☆ BrailleLLM: Braille Instruction Tuning with Large Language Models for Braille Domain Tasks EMNLP 2025
Braille plays a vital role in education and information accessibility for visually impaired individuals. However, Braille information processing faces challenges such as data scarcity and ambiguities in mixed-text contexts. We construct English and Chinese Braille Mixed Datasets (EBMD/CBMD) with mathematical formulas to support diverse Braille domain research, and propose a syntax tree-based augmentation method tailored for Braille data. To address the underperformance of traditional fine-tuning methods in Braille-related tasks, we investigate Braille Knowledge-Based Fine-Tuning (BKFT), which reduces the learning difficulty of Braille contextual features. BrailleLLM employs BKFT via instruction tuning to achieve unified Braille translation, formula-to-Braille conversion, and mixed-text translation. Experiments demonstrate that BKFT achieves significant performance improvements over conventional fine-tuning in Braille translation scenarios. Our open-sourced datasets and methodologies establish a foundation for low-resource multilingual Braille research.
comment: Accepted to EMNLP 2025
☆ Text or Pixels? It Takes Half: On the Token Efficiency of Visual Text Inputs in Multimodal LLMs EMNLP 2025
Large language models (LLMs) and their multimodal variants can now process visual inputs, including images of text. This raises an intriguing question: can we compress textual inputs by feeding them as images to reduce token usage while preserving performance? In this paper, we show that visual text representations are a practical and surprisingly effective form of input compression for decoder LLMs. We exploit the idea of rendering long text inputs as a single image and provide it directly to the model. This leads to dramatically reduced number of decoder tokens required, offering a new form of input compression. Through experiments on two distinct benchmarks RULER (long-context retrieval) and CNN/DailyMail (document summarization) we demonstrate that this text-as-image method yields substantial token savings (often nearly half) without degrading task performance.
comment: Accepted to EMNLP 2025 Findings. Previously titled "Text or Pixels? Evaluating Efficiency and Understanding of LLMs with Visual Text Inputs"
☆ DelvePO: Direction-Guided Self-Evolving Framework for Flexible Prompt Optimization
Prompt Optimization has emerged as a crucial approach due to its capabilities in steering Large Language Models to solve various tasks. However, current works mainly rely on the random rewriting ability of LLMs, and the optimization process generally focus on specific influencing factors, which makes it easy to fall into local optimum. Besides, the performance of the optimized prompt is often unstable, which limits its transferability in different tasks. To address the above challenges, we propose $\textbf{DelvePO}$ ($\textbf{D}$irection-Guid$\textbf{e}$d Se$\textbf{l}$f-E$\textbf{v}$olving Framework for Fl$\textbf{e}$xible $\textbf{P}$rompt $\textbf{O}$ptimization), a task-agnostic framework to optimize prompts in self-evolve manner. In our framework, we decouple prompts into different components that can be used to explore the impact that different factors may have on various tasks. On this basis, we introduce working memory, through which LLMs can alleviate the deficiencies caused by their own uncertainties and further obtain key insights to guide the generation of new prompts. Extensive experiments conducted on different tasks covering various domains for both open- and closed-source LLMs, including DeepSeek-R1-Distill-Llama-8B, Qwen2.5-7B-Instruct and GPT-4o-mini. Experimental results show that DelvePO consistently outperforms previous SOTA methods under identical experimental settings, demonstrating its effectiveness and transferability across different tasks.
☆ VLSU: Mapping the Limits of Joint Multimodal Understanding for AI Safety
Safety evaluation of multimodal foundation models often treats vision and language inputs separately, missing risks from joint interpretation where benign content becomes harmful in combination. Existing approaches also fail to distinguish clearly unsafe content from borderline cases, leading to problematic over-blocking or under-refusal of genuinely harmful content. We present Vision Language Safety Understanding (VLSU), a comprehensive framework to systematically evaluate multimodal safety through fine-grained severity classification and combinatorial analysis across 17 distinct safety patterns. Using a multi-stage pipeline with real-world images and human annotation, we construct a large-scale benchmark of 8,187 samples spanning 15 harm categories. Our evaluation of eleven state-of-the-art models reveals systematic joint understanding failures: while models achieve 90%-plus accuracy on clear unimodal safety signals, performance degrades substantially to 20-55% when joint image-text reasoning is required to determine the safety label. Most critically, 34% of errors in joint image-text safety classification occur despite correct classification of the individual modalities, further demonstrating absent compositional reasoning capabilities. Additionally, we find that models struggle to balance refusing unsafe content while still responding to borderline cases that deserve engagement. For example, we find that instruction framing can reduce the over-blocking rate on borderline content from 62.4% to 10.4% in Gemini-1.5, but only at the cost of under-refusing on unsafe content with refusal rate dropping from 90.8% to 53.9%. Overall, our framework exposes weaknesses in joint image-text understanding and alignment gaps in current models, and provides a critical test bed to enable the next milestones in research on robust vision-language safety.
comment: 10 pages, 5 figures, 4 tables. Under review
☆ MARCUS: An Event-Centric NLP Pipeline that generates Character Arcs from Narratives
Character arcs are important theoretical devices employed in literary studies to understand character journeys, identify tropes across literary genres, and establish similarities between narratives. This work addresses the novel task of computationally generating event-centric, relation-based character arcs from narratives. Providing a quantitative representation for arcs brings tangibility to a theoretical concept and paves the way for subsequent applications. We present MARCUS (Modelling Arcs for Understanding Stories), an NLP pipeline that extracts events, participant characters, implied emotion, and sentiment to model inter-character relations. MARCUS tracks and aggregates these relations across the narrative to generate character arcs as graphical plots. We generate character arcs from two extended fantasy series, Harry Potter and Lord of the Rings. We evaluate our approach before outlining existing challenges, suggesting applications of our pipeline, and discussing future work.
☆ Contrastive Decoding Mitigates Score Range Bias in LLM-as-a-Judge
Large Language Models (LLMs) are commonly used as evaluators in various applications, but the reliability of the outcomes remains a challenge. One such challenge is using LLMs-as-judges for direct assessment, i.e., assigning scores from a specified range without any references. We first show that this challenge stems from LLM judge outputs being associated with score range bias, i.e., LLM judge outputs are highly sensitive to pre-defined score ranges, preventing the search for optimal score ranges. We also show that similar biases exist among models from the same family. We then mitigate this bias through contrastive decoding, achieving up to 11.3% relative improvement on average in Spearman correlation with human judgments across different score ranges.
☆ MLMA: Towards Multilingual with Mamba Based Architectures ICASSP 2026
Multilingual automatic speech recognition (ASR) remains a challenging task, especially when balancing performance across high- and low-resource languages. Recent advances in sequence modeling suggest that architectures beyond Transformers may offer better scalability and efficiency. In this work, we introduce MLMA (Multilingual Language Modeling with Mamba for ASR), a new approach that leverages the Mamba architecture -- an efficient state-space model optimized for long-context sequence processing -- for multilingual ASR. Using Mamba, MLMA implicitly incorporates language-aware conditioning and shared representations to support robust recognition across diverse languages. Experiments on standard multilingual benchmarks show that MLMA achieves competitive performance compared to Transformer-based architectures. These results highlight Mamba's potential as a strong backbone for scalable, efficient, and accurate multilingual speech recognition.
comment: The paper is under review at ICASSP 2026
☆ ECG-LLM -- training and evaluation of domain-specific large language models for electrocardiography
Domain-adapted open-weight large language models (LLMs) offer promising healthcare applications, from queryable knowledge bases to multimodal assistants, with the crucial advantage of local deployment for privacy preservation. However, optimal adaptation strategies, evaluation methodologies, and performance relative to general-purpose LLMs remain poorly characterized. We investigated these questions in electrocardiography, an important area of cardiovascular medicine, by finetuning open-weight models on domain-specific literature and implementing a multi-layered evaluation framework comparing finetuned models, retrieval-augmented generation (RAG), and Claude Sonnet 3.7 as a representative general-purpose model. Finetuned Llama 3.1 70B achieved superior performance on multiple-choice evaluations and automatic text metrics, ranking second to Claude 3.7 in LLM-as-a-judge assessments. Human expert evaluation favored Claude 3.7 and RAG approaches for complex queries. Finetuned models significantly outperformed their base counterparts across nearly all evaluation modes. Our findings reveal substantial performance heterogeneity across evaluation methodologies, underscoring assessment complexity. Nevertheless, domain-specific adaptation through finetuning and RAG achieves competitive performance with proprietary models, supporting the viability of privacy-preserving, locally deployable clinical solutions.
comment: 34 pages, 8 figures, code available at https://github.com/AI4HealthUOL/ecg-llm
☆ Training-Free Spectral Fingerprints of Voice Processing in Transformers
Different transformer architectures implement identical linguistic computations via distinct connectivity patterns, yielding model imprinted ``computational fingerprints'' detectable through spectral analysis. Using graph signal processing on attention induced token graphs, we track changes in algebraic connectivity (Fiedler value, $\Delta\lambda_2$) under voice alternation across 20 languages and three model families, with a prespecified early window (layers 2--5). Our analysis uncovers clear architectural signatures: Phi-3-Mini shows a dramatic English specific early layer disruption ($\overline{\Delta\lambda_2}_{[2,5]}\!\approx\!-0.446$) while effects in 19 other languages are minimal, consistent with public documentation that positions the model primarily for English use. Qwen2.5-7B displays small, distributed shifts that are largest for morphologically rich languages, and LLaMA-3.2-1B exhibits systematic but muted responses. These spectral signatures correlate strongly with behavioral differences (Phi-3: $r=-0.976$) and are modulated by targeted attention head ablations, linking the effect to early attention structure and confirming functional relevance. Taken together, the findings are consistent with the view that training emphasis can leave detectable computational imprints: specialized processing strategies that manifest as measurable connectivity patterns during syntactic transformations. Beyond voice alternation, the framework differentiates reasoning modes, indicating utility as a simple, training free diagnostic for revealing architectural biases and supporting model reliability analysis.
comment: Preprint under review (2025). 12 pages, 8 figures
☆ A Graph Signal Processing Framework for Hallucination Detection in Large Language Models
Large language models achieve impressive results but distinguishing factual reasoning from hallucinations remains challenging. We propose a spectral analysis framework that models transformer layers as dynamic graphs induced by attention, with token embeddings as signals on these graphs. Through graph signal processing, we define diagnostics including Dirichlet energy, spectral entropy, and high-frequency energy ratios, with theoretical connections to computational stability. Experiments across GPT architectures suggest universal spectral patterns: factual statements exhibit consistent "energy mountain" behavior with low-frequency convergence, while different hallucination types show distinct signatures. Logical contradictions destabilize spectra with large effect sizes ($g>1.0$), semantic errors remain stable but show connectivity drift, and substitution hallucinations display intermediate perturbations. A simple detector using spectral signatures achieves 88.75% accuracy versus 75% for perplexity-based baselines, demonstrating practical utility. These findings indicate that spectral geometry may capture reasoning patterns and error behaviors, potentially offering a framework for hallucination detection in large language models.
comment: Preprint under review (2025). 11 pages, 7 figures. Code and scripts: to be released
☆ That's Deprecated! Understanding, Detecting, and Steering Knowledge Conflicts in Language Models for Code Generation
This paper investigates how large language models (LLMs) behave when faced with discrepancies between their parametric knowledge and conflicting information contained in a prompt. Building on prior question-answering (QA) research, we extend the investigation of knowledge conflicts to the realm of code generation. We propose a domain-agnostic framework for constructing and interpreting such conflicts, along with a novel evaluation method and dataset tailored to code conflict scenarios. Our experiments indicate that sufficiently large LLMs encode the notion of a knowledge conflict in their parameters, enabling us to detect knowledge conflicts with up to \textbf{80.65\%} accuracy. Building on these insights, we show that activation-level steering can achieve up to a \textbf{12.6\%} improvement in steering success over a random baseline. However, effectiveness depends critically on balancing model size, task domain, and steering direction. The experiment code and data will be made publicly available after acceptance.
☆ PoSh: Using Scene Graphs To Guide LLMs-as-a-Judge For Detailed Image Descriptions
While vision-language models (VLMs) have advanced into detailed image description, evaluation remains a challenge. Standard metrics (e.g. CIDEr, SPICE) were designed for short texts and tuned to recognize errors that are now uncommon, such as object misidentification. In contrast, long texts require sensitivity to attribute and relation attachments and scores that localize errors to particular text spans. In this work, we introduce PoSh, a metric for detailed image description that uses scene graphs as structured rubrics to guide LLMs-as-a-Judge, producing aggregate scores grounded in fine-grained errors (e.g. mistakes in compositional understanding). PoSh is replicable, interpretable and a better proxy for human raters than existing metrics (including GPT4o-as-a-Judge). To validate PoSh, we introduce a challenging new dataset, DOCENT. This novel benchmark contains artwork, paired with expert-written references, and model-generated descriptions, augmented with granular and coarse judgments of their quality from art history students. Thus, DOCENT enables evaluating both detailed image description metrics and detailed image description itself in a challenging new domain. We show that PoSh achieves stronger correlations (+0.05 Spearman $\rho$) with the human judgments in DOCENT than the best open-weight alternatives, is robust to image type (using CapArena, an existing dataset of web imagery) and is a capable reward function, outperforming standard supervised fine-tuning. Then, using PoSh, we characterize the performance of open and closed models in describing the paintings, sketches and statues in DOCENT and find that foundation models struggle to achieve full, error-free coverage of images with rich scene dynamics, establishing a demanding new task to gauge VLM progress. Through both PoSh and DOCENT, we hope to enable advances in important areas such as assistive text generation.
comment: 24 pages, 9 figures. Metric/benchmark available at https://github.com/amith-ananthram/posh
☆ From Memorization to Generalization: Fine-Tuning Large Language Models for Biomedical Term-to-Identifier Normalization
Effective biomedical data integration depends on automated term normalization, the mapping of natural language biomedical terms to standardized identifiers. This linking of terms to identifiers is essential for semantic interoperability. Large language models (LLMs) show promise for this task but perform unevenly across terminologies. We evaluated both memorization (training-term performance) and generalization (validation-term performance) across multiple biomedical ontologies. Fine-tuning Llama 3.1 8B revealed marked differences by terminology. GO mappings showed strong memorization gains (up to 77% improvement in term-to-identifier accuracy), whereas HPO showed minimal improvement. Generalization occurred only for protein-gene (GENE) mappings (13.9% gain), while fine-tuning for HPO and GO yielded negligible transfer. Baseline accuracy varied by model scale, with GPT-4o outperforming both Llama variants for all terminologies. Embedding analyses showed tight semantic alignment between gene symbols and protein names but weak alignment between terms and identifiers for GO or HPO, consistent with limited lexicalization. Fine-tuning success depended on two interacting factors: identifier popularity and lexicalization. Popular identifiers were more likely encountered during pretraining, enhancing memorization. Lexicalized identifiers, such as gene symbols, enabled semantic generalization. By contrast, arbitrary identifiers in GO and HPO constrained models to rote learning. These findings provide a predictive framework for when fine-tuning enhances factual recall versus when it fails due to sparse or non-lexicalized identifiers.
comment: Submitted for publication to BMC BioData Mining
☆ When Can We Trust LLMs in Mental Health? Large-Scale Benchmarks for Reliable LLM Evaluation
Evaluating Large Language Models (LLMs) for mental health support is challenging due to the emotionally and cognitively complex nature of therapeutic dialogue. Existing benchmarks are limited in scale, reliability, often relying on synthetic or social media data, and lack frameworks to assess when automated judges can be trusted. To address the need for large-scale dialogue datasets and judge reliability assessment, we introduce two benchmarks that provide a framework for generation and evaluation. MentalBench-100k consolidates 10,000 one-turn conversations from three real scenarios datasets, each paired with nine LLM-generated responses, yielding 100,000 response pairs. MentalAlign-70k}reframes evaluation by comparing four high-performing LLM judges with human experts across 70,000 ratings on seven attributes, grouped into Cognitive Support Score (CSS) and Affective Resonance Score (ARS). We then employ the Affective Cognitive Agreement Framework, a statistical methodology using intraclass correlation coefficients (ICC) with confidence intervals to quantify agreement, consistency, and bias between LLM judges and human experts. Our analysis reveals systematic inflation by LLM judges, strong reliability for cognitive attributes such as guidance and informativeness, reduced precision for empathy, and some unreliability in safety and relevance. Our contributions establish new methodological and empirical foundations for reliable, large-scale evaluation of LLMs in mental health. We release the benchmarks and codes at: https://github.com/abeerbadawi/MentalBench/
☆ Re:Member: Emotional Question Generation from Personal Memories ACL 2025
We present Re:Member, a system that explores how emotionally expressive, memory-grounded interaction can support more engaging second language (L2) learning. By drawing on users' personal videos and generating stylized spoken questions in the target language, Re:Member is designed to encourage affective recall and conversational engagement. The system aligns emotional tone with visual context, using expressive speech styles such as whispers or late-night tones to evoke specific moods. It combines WhisperX-based transcript alignment, 3-frame visual sampling, and Style-BERT-VITS2 for emotional synthesis within a modular generation pipeline. Designed as a stylized interaction probe, Re:Member highlights the role of affect and personal media in learner-centered educational technologies.
comment: Accepted to HCI+NLP at ACL 2025
☆ Are they lovers or friends? Evaluating LLMs' Social Reasoning in English and Korean Dialogues
As large language models (LLMs) are increasingly used in human-AI interactions, their social reasoning capabilities in interpersonal contexts are critical. We introduce SCRIPTS, a 1k-dialogue dataset in English and Korean, sourced from movie scripts. The task involves evaluating models' social reasoning capability to infer the interpersonal relationships (e.g., friends, sisters, lovers) between speakers in each dialogue. Each dialogue is annotated with probabilistic relational labels (Highly Likely, Less Likely, Unlikely) by native (or equivalent) Korean and English speakers from Korea and the U.S. Evaluating nine models on our task, current proprietary LLMs achieve around 75-80% on the English dataset, whereas their performance on Korean drops to 58-69%. More strikingly, models select Unlikely relationships in 10-25% of their responses. Furthermore, we find that thinking models and chain-of-thought prompting, effective for general reasoning, provide minimal benefits for social reasoning and occasionally amplify social biases. Our findings reveal significant limitations in current LLMs' social reasoning capabilities, highlighting the need for efforts to develop socially-aware language models.
☆ Dynamic Evaluation for Oversensitivity in LLMs EMNLP
Oversensitivity occurs when language models defensively reject prompts that are actually benign. This behavior not only disrupts user interactions but also obscures the boundary between harmful and harmless content. Existing benchmarks rely on static datasets that degrade overtime as models evolve, leading to data contamination and diminished evaluative power. To address this, we develop a framework that dynamically generates model-specific challenging datasets, capturing emerging defensive patterns and aligning with each model's unique behavior. Building on this approach, we construct OVERBENCH, a benchmark that aggregates these datasets across diverse LLM families, encompassing 450,000 samples from 25 models. OVERBENCH provides a dynamic and evolving perspective on oversensitivity, allowing for continuous monitoring of defensive triggers as models advance, highlighting vulnerabilities that static datasets overlook.
comment: EMNLP-Findings 2025
☆ ProfBench: Multi-Domain Rubrics requiring Professional Knowledge to Answer and Judge
Evaluating progress in large language models (LLMs) is often constrained by the challenge of verifying responses, limiting assessments to tasks like mathematics, programming, and short-form question-answering. However, many real-world applications require evaluating LLMs in processing professional documents, synthesizing information, and generating comprehensive reports in response to user queries. We introduce ProfBench: a set of over 7000 response-criterion pairs as evaluated by human-experts with professional knowledge across Physics PhD, Chemistry PhD, Finance MBA and Consulting MBA. We build robust and affordable LLM-Judges to evaluate ProfBench rubrics, by mitigating self-enhancement bias and reducing the cost of evaluation by 2-3 orders of magnitude, to make it fair and accessible to the broader community. Our findings reveal that ProfBench poses significant challenges even for state-of-the-art LLMs, with top-performing models like GPT-5-high achieving only 65.9\% overall performance. Furthermore, we identify notable performance disparities between proprietary and open-weight models and provide insights into the role that extended thinking plays in addressing complex, professional-domain tasks. Data: https://huggingface.co/datasets/nvidia/ProfBench and Code: https://github.com/NVlabs/ProfBench
comment: 23 pages
☆ NeuroAda: Activating Each Neuron's Potential for Parameter-Efficient Fine-Tuning
Existing parameter-efficient fine-tuning (PEFT) methods primarily fall into two categories: addition-based and selective in-situ adaptation. The former, such as LoRA, introduce additional modules to adapt the model to downstream tasks, offering strong memory efficiency. However, their representational capacity is often limited, making them less suitable for fine-grained adaptation. In contrast, the latter directly fine-tunes a carefully chosen subset of the original model parameters, allowing for more precise and effective adaptation, but at the cost of significantly increased memory consumption. To reconcile this trade-off, we propose NeuroAda, a novel PEFT method that enables fine-grained model finetuning while maintaining high memory efficiency. Our approach first identifies important parameters (i.e., connections within the network) as in selective adaptation, and then introduces bypass connections for these selected parameters. During finetuning, only the bypass connections are updated, leaving the original model parameters frozen. Empirical results on 23+ tasks spanning both natural language generation and understanding demonstrate that NeuroAda achieves state-of-the-art performance with as little as $\leq \textbf{0.02}\%$ trainable parameters, while reducing CUDA memory usage by up to 60%. We release our code here: https://github.com/FightingFighting/NeuroAda.git.
☆ Lost in the Maze: Overcoming Context Limitations in Long-Horizon Agentic Search
Long-horizon agentic search requires iteratively exploring the web over long trajectories and synthesizing information across many sources, and is the foundation for enabling powerful applications like deep research systems. In this work, we show that popular agentic search frameworks struggle to scale to long trajectories primarily due to context limitations-they accumulate long, noisy content, hit context window and tool budgets, or stop early. Then, we introduce SLIM (Simple Lightweight Information Management), a simple framework that separates retrieval into distinct search and browse tools, and periodically summarizes the trajectory, keeping context concise while enabling longer, more focused searches. On long-horizon tasks, SLIM achieves comparable performance at substantially lower cost and with far fewer tool calls than strong open-source baselines across multiple base models. Specifically, with o3 as the base model, SLIM achieves 56% on BrowseComp and 31% on HLE, outperforming all open-source frameworks by 8 and 4 absolute points, respectively, while incurring 4-6x fewer tool calls. Finally, we release an automated fine-grained trajectory analysis pipeline and error taxonomy for characterizing long-horizon agentic search frameworks; SLIM exhibits fewer hallucinations than prior systems. We hope our analysis framework and simple tool design inform future long-horizon agents.
comment: Code and data are available here: https://github.com/howard-yen/SLIM
☆ StutterZero and StutterFormer: End-to-End Speech Conversion for Stuttering Transcription and Correction
Over 70 million people worldwide experience stuttering, yet most automatic speech systems misinterpret disfluent utterances or fail to transcribe them accurately. Existing methods for stutter correction rely on handcrafted feature extraction or multi-stage automatic speech recognition (ASR) and text-to-speech (TTS) pipelines, which separate transcription from audio reconstruction and often amplify distortions. This work introduces StutterZero and StutterFormer, the first end-to-end waveform-to-waveform models that directly convert stuttered speech into fluent speech while jointly predicting its transcription. StutterZero employs a convolutional-bidirectional LSTM encoder-decoder with attention, whereas StutterFormer integrates a dual-stream Transformer with shared acoustic-linguistic representations. Both architectures are trained on paired stuttered-fluent data synthesized from the SEP-28K and LibriStutter corpora and evaluated on unseen speakers from the FluencyBank dataset. Across all benchmarks, StutterZero had a 24% decrease in Word Error Rate (WER) and a 31% improvement in semantic similarity (BERTScore) compared to the leading Whisper-Medium model. StutterFormer achieved better results, with a 28% decrease in WER and a 34% improvement in BERTScore. The results validate the feasibility of direct end-to-end stutter-to-fluent speech conversion, offering new opportunities for inclusive human-computer interaction, speech therapy, and accessibility-oriented AI systems.
comment: 13 pages, 5 figures
☆ Evaluating LLM Story Generation through Large-scale Network Analysis of Social Structures NeurIPS 2025
Evaluating the creative capabilities of large language models (LLMs) in complex tasks often requires human assessments that are difficult to scale. We introduce a novel, scalable methodology for evaluating LLM story generation by analyzing underlying social structures in narratives as signed character networks. To demonstrate its effectiveness, we conduct a large-scale comparative analysis using networks from over 1,200 stories, generated by four leading LLMs (GPT-4o, GPT-4o mini, Gemini 1.5 Pro, and Gemini 1.5 Flash) and a human-written corpus. Our findings, based on network properties like density, clustering, and signed edge weights, show that LLM-generated stories consistently exhibit a strong bias toward tightly-knit, positive relationships, which aligns with findings from prior research using human assessment. Our proposed approach provides a valuable tool for evaluating limitations and tendencies in the creative storytelling of current and future LLMs.
comment: This paper has 14 pages and 8 figures. To be presented at the NeurIPS 2025 Workshop on Evaluating the Evolving LLM Lifecycle: Benchmarks, Emergent Abilities, and Scaling
☆ BAPO: Stabilizing Off-Policy Reinforcement Learning for LLMs via Balanced Policy Optimization with Adaptive Clipping
Reinforcement learning (RL) has recently become the core paradigm for aligning and strengthening large language models (LLMs). Yet, applying RL in off-policy settings--where stale data from past policies are used for training--improves sample efficiency, but remains challenging: policy entropy declines sharply, optimization often becomes unstable and may even collapse. Through theoretical and empirical analysis, we identify two key insights: (i) an imbalance in optimization, where negative-advantage samples dominate the policy gradient, suppressing useful behaviors and risking gradient explosions; and (ii) the derived Entropy-Clip Rule, which reveals that the fixed clipping mechanism in PPO-like objectives systematically blocks entropy-increasing updates, thereby driving the policy toward over-exploitation at the expense of exploration. Building on these insights, we propose BAlanced Policy Optimization with Adaptive Clipping (BAPO), a simple yet effective method that dynamically adjusts clipping bounds to adaptively re-balance positive and negative contributions, preserve entropy, and stabilize RL optimization. Across diverse off-policy scenarios--including sample replay and partial rollout--BAPO achieves fast, stable, and data-efficient training. On AIME 2024 and AIME 2025 benchmarks, our 7B BAPO model surpasses open-source counterparts such as SkyWork-OR1-7B, while our 32B BAPO model not only achieves state-of-the-art results among models of the same scale but also outperforms leading proprietary systems like o3-mini and Gemini-2.5-Flash-Thinking.
comment: Preprint
☆ Benchmarking On-Device Machine Learning on Apple Silicon with MLX
The recent widespread adoption of Large Language Models (LLMs) and machine learning in general has sparked research interest in exploring the possibilities of deploying these models on smaller devices such as laptops and mobile phones. This creates a need for frameworks and approaches that are capable of taking advantage of on-device hardware. The MLX framework was created to address this need. It is a framework optimized for machine learning (ML) computations on Apple silicon devices, facilitating easier research, experimentation, and prototyping. This paper presents a performance evaluation of MLX, focusing on inference latency of transformer models. We compare the performance of different transformer architecture implementations in MLX with their Pytorch counterparts. For this research we create a framework called MLX-transformers which includes different transformer implementations in MLX and downloads the model checkpoints in pytorch and converts it to the MLX format. By leveraging the advanced architecture and capabilities of Apple Silicon, MLX-Transformers enables seamless execution of transformer models directly sourced from Hugging Face, eliminating the need for checkpoint conversion often required when porting models between frameworks. Our study benchmarks different transformer models on two Apple Silicon macbook devices against an NVIDIA CUDA GPU. Specifically, we compare the inference latency performance of models with the same parameter sizes and checkpoints. We evaluate the performance of BERT, RoBERTa, and XLM-RoBERTa models, with the intention of extending future work to include models of different modalities, thus providing a more comprehensive assessment of MLX's capabilities. The results highlight MLX's potential in enabling efficient and more accessible on-device ML applications within Apple's ecosystem.
comment: 19 pages, 6 figures. Presented at the 6th Deep Learning Indaba (DLI 2024), Dakar, Senegal; non-archival presentation. Poster: https://storage.googleapis.com/indaba-public/Oluwaseun_Ajayi%20.pdf
☆ Misinformation Detection using Large Language Models with Explainability
The rapid spread of misinformation on online platforms undermines trust among individuals and hinders informed decision making. This paper shows an explainable and computationally efficient pipeline to detect misinformation using transformer-based pretrained language models (PLMs). We optimize both RoBERTa and DistilBERT using a two-step strategy: first, we freeze the backbone and train only the classification head; then, we progressively unfreeze the backbone layers while applying layer-wise learning rate decay. On two real-world benchmark datasets, COVID Fake News and FakeNewsNet GossipCop, we test the proposed approach with a unified protocol of preprocessing and stratified splits. To ensure transparency, we integrate the Local Interpretable Model-Agnostic Explanations (LIME) at the token level to present token-level rationales and SHapley Additive exPlanations (SHAP) at the global feature attribution level. It demonstrates that DistilBERT achieves accuracy comparable to RoBERTa while requiring significantly less computational resources. This work makes two key contributions: (1) it quantitatively shows that a lightweight PLM can maintain task performance while substantially reducing computational cost, and (2) it presents an explainable pipeline that retrieves faithful local and global justifications without compromising performance. The results suggest that PLMs combined with principled fine-tuning and interpretability can be an effective framework for scalable, trustworthy misinformation detection.
comment: Accepted for publication in the Proceedings of the 8th International Conference on Algorithms, Computing and Artificial Intelligence (ACAI 2025)
☆ MMAO-Bench: MultiModal All in One Benchmark Reveals Compositional Law between Uni-modal and Omni-modal in OmniModels
Multimodal Large Languages models have been progressing from uni-modal understanding toward unifying visual, audio and language modalities, collectively termed omni models. However, the correlation between uni-modal and omni-modal remains unclear, which requires comprehensive evaluation to drive omni model's intelligence evolution. In this work, we propose a novel, high quality and diversity omni model benchmark, MultiModal All in One Benchmark (MMAO-Bench), which effectively assesses both uni-modal and omni-modal understanding capabilities. The benchmark consists of 1880 human curated samples, across 44 task types, and a innovative multi-step open-ended question type that better assess complex reasoning tasks. Experimental result shows the compositional law between cross-modal and uni-modal performance and the omni-modal capability manifests as a bottleneck effect on weak models, while exhibiting synergistic promotion on strong models.
comment: 10 pages, 8 figures. Work in progress
☆ Context-aware Fairness Evaluation and Mitigation in LLMs
Large language models often display undesirable behaviors embedded in their internal representations, undermining fairness, inconsistency drift, amplification of harmful content, and the propagation of unwanted patterns during extended dialogue and conversations. Although training-time or data-centric methods attempt to reduce these effects, they are computationally expensive, irreversible once deployed, and slow to adapt to new conversational contexts. Pruning-based methods provide a flexible and transparent way to reduce bias by adjusting the neurons responsible for certain behaviors. However, most existing approaches are static; once a neuron is removed, the model loses the ability to adapt when the conversation or context changes. To address this, we propose a dynamic, reversible, pruning-based framework that detects context-aware neuron activations and applies adaptive masking to modulate their influence during generation. Our inference-time solution provides fine-grained, memory-aware mitigation with knowledge-preserved, more coherent behavior across multilingual single- and multi-turn dialogues, enabling dynamic fairness control in real-world conversational AI.
comment: PrePrint
☆ Learning from the Best, Differently: A Diversity-Driven Rethinking on Data Selection
High-quality pre-training data is crutial for large language models, where quality captures factual reliability and semantic value, and diversity ensures broad coverage and distributional heterogeneity. Existing approaches typically rely on single or multiple-dimensional score-based selection. However, directly selecting top-scored data often degrades performance, and sampling from a broader range is required to recover results. The above non-monotonicity between dataset scores and downstream benchmark results reveals a fundamental bias: score-based methods collapse correlated dimensions, causing top-scored data to appear high-quality while systematically overlooking diversity. We argue that ensuring diversity requires decomposing correlated metrics into orthogonal feature dimensions, from which the top-scored data can be directly selected. Therefore, we proposed the Orthogonal Diversity-Aware Selection (ODiS) algorithm, which preserves both quality and diversity during data selection. First, ODiS evaluates data from multiple dimensions, covering language quality, knowledge quality, and comprehension difficulty. The multi-dimensional scores are then decorrelated via Principal Component Analysis (PCA), yielding orthogonal evaluation dimensions. For each dimension, a Roberta-based scorer is trained to regress the data onto PCA-projected scores, enabling scalable inference on large corpora. Finally, ODiS constructs the training dataset by selecting top-scored data within each orthogonal dimension, thereby ensuring both quality and diversity. Empirical results show that ODiS-selected data exhibit less than 2\% inter-dimension overlap, confirming orthogonality between dimensions. More importantly, models trained with ODiS-selected data significantly outperform other baselines on downstream benchmarks, highlighting the necessity of orthogonal, diversity-aware data selection for LLMs.
☆ Improving Topic Modeling of Social Media Short Texts with Rephrasing: A Case Study of COVID-19 Related Tweets
Social media platforms such as Twitter (now X) provide rich data for analyzing public discourse, especially during crises such as the COVID-19 pandemic. However, the brevity, informality, and noise of social media short texts often hinder the effectiveness of traditional topic modeling, producing incoherent or redundant topics that are often difficult to interpret. To address these challenges, we have developed \emph{TM-Rephrase}, a model-agnostic framework that leverages large language models (LLMs) to rephrase raw tweets into more standardized and formal language prior to topic modeling. Using a dataset of 25,027 COVID-19-related Twitter posts, we investigate the effects of two rephrasing strategies, general- and colloquial-to-formal-rephrasing, on multiple topic modeling methods. Results demonstrate that \emph{TM-Rephrase} improves three metrics measuring topic modeling performance (i.e., topic coherence, topic uniqueness, and topic diversity) while reducing topic redundancy of most topic modeling algorithms, with the colloquial-to-formal strategy yielding the greatest performance gains and especially for the Latent Dirichlet Allocation (LDA) algorithm. This study contributes to a model-agnostic approach to enhancing topic modeling in public health related social media analysis, with broad implications for improved understanding of public discourse in health crisis as well as other important domains.
☆ DuoLens: A Framework for Robust Detection of Machine-Generated Multilingual Text and Code NeurIPS 2025
The prevalence of Large Language Models (LLMs) for generating multilingual text and source code has only increased the imperative for machine-generated content detectors to be accurate and efficient across domains. Current detectors, predominantly utilizing zero-shot methods, such as Fast DetectGPT or GPTZero, either incur high computational cost or lack sufficient accuracy, often with a trade-off between the two, leaving room for further improvement. To address these gaps, we propose the fine-tuning of encoder-only Small Language Models (SLMs), in particular, the pre-trained models of RoBERTA and CodeBERTa using specialized datasets on source code and other natural language to prove that for the task of binary classification, SLMs outperform LLMs by a huge margin whilst using a fraction of compute. Our encoders achieve AUROC $= 0.97$ to $0.99$ and macro-F1 $0.89$ to $0.94$ while reducing latency by $8$-$12\times$ and peak VRAM by $3$-$5\times$ at $512$-token inputs. Under cross-generator shifts and adversarial transformations (paraphrase, back-translation; code formatting/renaming), performance retains $\geq 92%$ of clean AUROC. We release training and evaluation scripts with seeds and configs; a reproducibility checklist is also included.
comment: Accepted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025): 4th Workshop on Deep Learning for Code
☆ DeBERTa-KC: A Transformer-Based Classifier for Knowledge Construction in Online Learning Discourse
This study presents DeBERTa-KC, a transformer-based model for automatic classification of knowledge construction (KC) levels in online science learning discourse. Using comments collected from four popular YouTube science channels (2022--2024), a balanced corpus of 20,000 manually annotated samples was created across four KC categories: \textit{nonKC}, \textit{Share}, \textit{Explore}, and \textit{Negotiate}. The proposed model extends DeBERTa-v3 with Focal Loss, Label Smoothing, and R-Drop regularization to address class imbalance and enhance generalization. A reproducible end-to-end pipeline was implemented, encompassing data extraction, annotation, preprocessing, training, and evaluation. Across 10-fold stratified cross-validation, DeBERTa-KC achieved a macro-F1 of $0.836 \pm 0.008$, significantly out-performing both classical and transformer baselines ($p<0.01$). Per-category results indicate strong sensitivity to higher-order epistemic engagement, particularly in \textit{Explore} and \textit{Negotiate} discourse. These findings demonstrate that large language models can effectively capture nuanced indicators of knowledge construction in informal digital learning environments, offering scalable, theory-informed approaches to discourse analysis and the development of automated tools for assessing epistemic engagement.
♻ ☆ Correct-Detect: Balancing Performance and Ambiguity Through the Lens of Coreference Resolution in LLMs EMNLP 2025
Large Language Models (LLMs) are intended to reflect human linguistic competencies. But humans have access to a broad and embodied context, which is key in detecting and resolving linguistic ambiguities, even in isolated text spans. A foundational case of semantic ambiguity is found in the task of coreference resolution: how is a pronoun related to an earlier person mention? This capability is implicit in nearly every downstream task, and the presence of ambiguity at this level can alter performance significantly. We show that LLMs can achieve good performance with minimal prompting in both coreference disambiguation and the detection of ambiguity in coreference, however, they cannot do both at the same time. We present the CORRECT-DETECT trade-off: though models have both capabilities and deploy them implicitly, successful performance balancing these two abilities remains elusive.
comment: Accepted at EMNLP 2025 (main)
♻ ☆ FALCON: Fine-grained Activation Manipulation by Contrastive Orthogonal Unalignment for Large Language Model NeurIPS 2025
Large language models have been widely applied, but can inadvertently encode sensitive or harmful information, raising significant safety concerns. Machine unlearning has emerged to alleviate this concern; however, existing training-time unlearning approaches, relying on coarse-grained loss combinations, have limitations in precisely separating knowledge and balancing removal effectiveness with model utility. In contrast, we propose Fine-grained Activation manipuLation by Contrastive Orthogonal uNalignment (FALCON), a novel representation-guided unlearning approach that leverages information-theoretic guidance for efficient parameter selection, employs contrastive mechanisms to enhance representation separation, and projects conflict gradients onto orthogonal subspaces to resolve conflicts between forgetting and retention objectives. Extensive experiments demonstrate that FALCON achieves superior unlearning effectiveness while maintaining model utility, exhibiting robust resistance against knowledge recovery attempts.
comment: Accepted at NeurIPS 2025 with minor revisions
♻ ☆ Stabilizing MoE Reinforcement Learning by Aligning Training and Inference Routers
Reinforcement learning (RL) has emerged as a crucial approach for enhancing the capabilities of large language models. However, in Mixture-of-Experts (MoE) models, the routing mechanism often introduces instability, even leading to catastrophic RL training collapse. We analyze the training-inference consistency of MoE models and identify a notable discrepancy in routing behaviors between the two phases. Moreover, even under identical conditions, the routing framework can yield divergent expert selections across repeated forward passes. To address this foundational inconsistency, we propose Rollout Routing Replay (R3), a method that records routing distributions from the inference engine and replays them during training. R3 significantly reduces training-inference policy KL divergence and mitigates extreme discrepancies without compromising training speed. Extensive experiments on various settings confirm that R3 succeeds in stabilizing RL training, preventing collapse and outperforming methods such as GSPO and TIS. We believe this work can offer a new solution for stabilizing RL in MoE models.
♻ ☆ Glyph: Scaling Context Windows via Visual-Text Compression
Large language models (LLMs) increasingly rely on long-context modeling for tasks such as document understanding, code analysis, and multi-step reasoning. However, scaling context windows to the million-token level brings prohibitive computational and memory costs, limiting the practicality of long-context LLMs. In this work, we take a different perspective-visual context scaling-to tackle this challenge. Instead of extending token-based sequences, we propose Glyph, a framework that renders long texts into images and processes them with vision-language models (VLMs). This approach substantially compresses textual input while preserving semantic information, and we further design an LLM-driven genetic search to identify optimal visual rendering configurations for balancing accuracy and compression. Through extensive experiments, we demonstrate that our method achieves 3-4x token compression while maintaining accuracy comparable to leading LLMs such as Qwen3-8B on various long-context benchmarks. This compression also leads to around 4x faster prefilling and decoding, and approximately 2x faster SFT training. Furthermore, under extreme compression, a 128K-context VLM could scale to handle 1M-token-level text tasks. In addition, the rendered text data benefits real-world multimodal tasks, such as document understanding. Our code and model are released at https://github.com/thu-coai/Glyph.
♻ ☆ SafeSearch: Do Not Trade Safety for Utility in LLM Search Agents
Large language model (LLM) based search agents iteratively generate queries, retrieve external information, and reason to answer open-domain questions. While researchers have primarily focused on improving their utility, their safety behaviors remain underexplored. In this paper, we first evaluate search agents using red-teaming datasets and find that they are more likely to produce harmful outputs than base LLMs. For example, when asked "How can I track someone's location without their consent?", a base model refuses, whereas a search agent designed to retrieve and cite sources may lower its refusal threshold, fetch documents (e.g., court cases), and, once appended, synthesize them into an informative yet unsafe summary. We further show that utility-oriented fine-tuning intensifies this risk, motivating joint alignment of safety and utility. We present SafeSearch, a multi-objective reinforcement learning approach that couples a final-output safety/utility reward with a novel query-level shaping term that penalizes unsafe queries and rewards safe ones. Experiments show that SafeSearch reduces agent harmfulness by over 70% across three red-teaming datasets while producing safe, helpful responses, and matches the QA performance of a utility-only finetuned agent; further analyses confirm the effectiveness of the query-level reward in jointly improving safety and utility.
♻ ☆ Improving the fact-checking performance of language models by relying on their entailment ability
Automated fact-checking has been a challenging task for the research community. Past works tried various strategies, such as end-to-end training, retrieval-augmented generation, and prompt engineering, to build robust fact-checking systems. However, their accuracy has not been very high for real-world deployment. We, on the other hand, propose a simple yet effective strategy, where entailed justifications generated by LLMs are used to train encoder-only language models (ELMs) for fact-checking. We conducted a rigorous set of experiments, comparing our approach with recent works and various prompting and fine-tuning strategies to demonstrate the superiority of our approach. Additionally, we did quality analysis of model explanations, ablation studies, and error analysis to provide a comprehensive understanding of our approach.
comment: 13 pages
♻ ☆ Is Implicit Knowledge Enough for LLMs? A RAG Approach for Tree-based Structures
Large Language Models (LLMs) are adept at generating responses based on information within their context. While this ability is useful for interacting with structured data like code files, another popular method, Retrieval-Augmented Generation (RAG), retrieves relevant documents to augment the model's in-context learning. However, it is not well-explored how to best represent this retrieved knowledge for generating responses on structured data, particularly hierarchical structures like trees. In this work, we propose a novel bottom-up method to linearize knowledge from tree-like structures (like a GitHub repository) by generating implicit, aggregated summaries at each hierarchical level. This approach enables the knowledge to be stored in a knowledge base and used directly with RAG. We then compare our method to using RAG on raw, unstructured code, evaluating the accuracy and quality of the generated responses. Our results show that while response quality is comparable across both methods, our approach generates over 68% fewer documents in the retriever, a significant gain in efficiency. This finding suggests that leveraging implicit, linearized knowledge may be a highly effective and scalable strategy for handling complex, hierarchical data structures.
comment: Waiting for Conference Response
♻ ☆ Facts are Harder Than Opinions -- A Multilingual, Comparative Analysis of LLM-Based Fact-Checking Reliability
The proliferation of misinformation necessitates scalable, automated fact-checking solutions. Yet, current benchmarks often overlook multilingual and topical diversity. This paper introduces a novel, dynamically extensible data set that includes 61,514 claims in multiple languages and topics, extending existing datasets up to 2024. Through a comprehensive evaluation of five prominent Large Language Models (LLMs), including GPT-4o, GPT-3.5 Turbo, LLaMA 3.1, and Mixtral 8x7B, we identify significant performance gaps between different languages and topics. While overall GPT-4o achieves the highest accuracy, it declines to classify 43% of claims. Across all models, factual-sounding claims are misclassified more often than opinions, revealing a key vulnerability. These findings underscore the need for caution and highlight challenges in deploying LLM-based fact-checking systems at scale.
♻ ☆ Counterfactual reasoning: an analysis of in-context emergence NeurIPS
Large-scale neural language models exhibit remarkable performance in in-context learning: the ability to learn and reason about the input context on the fly. This work studies in-context counterfactual reasoning in language models, that is, the ability to predict consequences of a hypothetical scenario. We focus on a well-defined, synthetic linear regression task that requires noise abduction. Accurate prediction is based on (1) inferring an unobserved latent concept and (2) copying contextual noise from factual observations. We show that language models are capable of counterfactual reasoning. Further, we enhance existing identifiability results and reduce counterfactual reasoning for a broad class of functions to a transformation on in-context observations. In Transformers, we find that self-attention, model depth and pre-training data diversity drive performance. Moreover, we provide mechanistic evidence that the latent concept is linearly represented in the residual stream and we introduce designated \textit{noise abduction heads} central to performing counterfactual reasoning. Lastly, our findings extend to counterfactual reasoning under SDE dynamics and reflect that Transformers can perform noise abduction on sequential data, providing preliminary evidence on the potential for counterfactual story generation. Our code is available under https://github.com/mrtzmllr/iccr.
comment: Published as a conference paper at the Thirty-Ninth Annual Conference on Neural Information Processing Systems (NeurIPS) 2025
♻ ☆ InternLM2.5-StepProver: Advancing Automated Theorem Proving via Critic-Guided Search
Large Language Models (LLMs) have emerged as powerful tools in mathematical theorem proving, particularly when utilizing formal languages such as LEAN. A prevalent proof method involves the LLM prover iteratively constructing the proof tactic by tactic, typically following a best-first search scheme. However, this method often ignores the critical preference information inside the existing tactic trajectories, hindering the search for deeper proofs. We propose an intuitive yet effective method, which utilizes a critic model to capture the preference information and to guide the search of the prover model at runtime. Given the prover-critic framework, a large-scale expert iteration with more than 20,000 CPU days is then applied to further fine-tune the prover and the critic. The trained InternLM2.5-StepProver critic significantly boosts the performance of the prover model (59.4% to 65.9%). We also analyze the impact of the critic on various aspects of the theorem proving process during expert iteration, providing insights into its effectiveness. We open-source our models and searched proofs at https://github.com/InternLM/InternLM-Math and https://huggingface.co/datasets/internlm/Lean-Workbook.
♻ ☆ Understanding Reinforcement Learning for Model Training, and future directions with GRAPE
This paper provides a self-contained, from-scratch, exposition of key algorithms for instruction tuning of models: SFT, Rejection Sampling, REINFORCE, Trust Region Policy Optimization (TRPO), Proximal Policy Optimization (PPO), Group Relative Policy Optimization (GRPO), and Direct Preference Optimization (DPO). Explanations of these algorithms often assume prior knowledge, lack critical details, and/or are overly generalized and complex. Here, each method is discussed and developed step by step using simplified and explicit notation focused on LLMs, aiming to eliminate ambiguity and provide a clear and intuitive understanding of the concepts. By minimizing detours into the broader RL literature and connecting concepts to LLMs, we eliminate superfluous abstractions and reduce cognitive overhead. Following this exposition, we provide a literature review of new techniques and approaches beyond those detailed. Finally, new ideas for research and exploration in the form of GRAPE (Generalized Relative Advantage Policy Evolution) are presented.
comment: 35 pages, 1 figure
♻ ☆ Fairshare Data Pricing via Data Valuation for Large Language Models
Training data is the backbone of large language models (LLMs), yet today's data markets often operate under exploitative pricing -- sourcing data from marginalized groups with little pay or recognition. This paper introduces a theoretical framework for LLM data markets, modeling the strategic interactions between buyers (LLM builders) and sellers (human annotators). We begin with theoretical and empirical analysis showing how exploitative pricing drives high-quality sellers out of the market, degrading data quality and long-term model performance. Then we introduce fairshare, a pricing mechanism grounded in data valuation that quantifies each data's contribution. It aligns incentives by sustaining seller participation and optimizing utility for both buyers and sellers. Theoretically, we show that fairshare yields mutually optimal outcomes: maximizing long-term buyer utility and seller profit while sustaining market participation. Empirically when training open-source LLMs on complex NLP tasks, including math problems, medical diagnosis, and physical reasoning, fairshare boosts seller earnings and ensures a stable supply of high-quality data, while improving buyers' performance-per-dollar and long-term welfare. Our findings offer a concrete path toward fair, transparent, and economically sustainable data markets for LLM.
♻ ☆ Lightweight Baselines for Medical Abstract Classification: DistilBERT with Cross-Entropy as a Strong Default
The research evaluates lightweight medical abstract classification methods to establish their maximum performance capabilities under financial budget restrictions. On the public medical abstracts corpus, we finetune BERT base and Distil BERT with three objectives cross entropy (CE), class weighted CE, and focal loss under identical tokenization, sequence length, optimizer, and schedule. DistilBERT with plain CE gives the strongest raw argmax trade off, while a post hoc operating point selection (validation calibrated, classwise thresholds) sub stantially improves deployed performance; under this tuned regime, focal benefits most. We report Accuracy, Macro F1, and WeightedF1, release evaluation artifacts, and include confusion analyses to clarify error structure. The practical takeaway is to start with a compact encoder and CE, then add lightweight calibration or thresholding when deployment requires higher macro balance.
comment: Healthcare AI, Medical Text Classification,LLM, DistilBERT
♻ ☆ Text Takes Over: A Study of Modality Bias in Multimodal Intent Detection EMNLP 2025
The rise of multimodal data, integrating text, audio, and visuals, has created new opportunities for studying multimodal tasks such as intent detection. This work investigates the effectiveness of Large Language Models (LLMs) and non-LLMs, including text-only and multi-modal models, in the multimodal intent detection task. Our study reveals that Mistral-7B, a text-only LLM, outperforms most competitive multimodal models by approximately 9% on MIntRec-1 and 4% on MIntRec2.0 datasets. This performance advantage comes from a strong textual bias in these datasets, where over 90% of the samples require textual input, either alone or in combination with other modalities, for correct classification. We confirm the modality bias of these datasets via human evaluation, too. Next, we propose a framework to debias the datasets, and upon debiasing, more than 70% of the samples in MIntRec-1 and more than 50% in MIntRec2.0 get removed, resulting in significant performance degradation across all models, with smaller multimodal fusion models being the most affected with an accuracy drop of over 50 - 60%. Further, we analyze the context-specific relevance of different modalities through empirical analysis. Our findings highlight the challenges posed by modality bias in multimodal intent datasets and emphasize the need for unbiased datasets to evaluate multimodal models effectively.
comment: EMNLP 2025 Main Conference Full Paper
♻ ☆ Introducing Spotlight: A Novel Approach for Generating Captivating Key Information from Documents EMNLP 2025
In this paper, we introduce Spotlight, a novel paradigm for information extraction that produces concise, engaging narratives by highlighting the most compelling aspects of a document. Unlike traditional summaries, which prioritize comprehensive coverage, spotlights selectively emphasize intriguing content to foster deeper reader engagement with the source material. We formally differentiate spotlights from related constructs and support our analysis with a detailed benchmarking study using new datasets curated for this work. To generate high-quality spotlights, we propose a two-stage approach: fine-tuning a large language model on our benchmark data, followed by alignment via Direct Preference Optimization (DPO). Our comprehensive evaluation demonstrates that the resulting model not only identifies key elements with precision but also enhances readability and boosts the engagement value of the original document.
comment: Paper accepted in EMNLP 2025 Main Conference (Full Paper)
♻ ☆ A Survey of Process Reward Models: From Outcome Signals to Process Supervisions for Large Language Models
Although Large Language Models (LLMs) exhibit advanced reasoning ability, conventional alignment remains largely dominated by outcome reward models (ORMs) that judge only final answers. Process Reward Models(PRMs) address this gap by evaluating and guiding reasoning at the step or trajectory level. This survey provides a systematic overview of PRMs through the full loop: how to generate process data, build PRMs, and use PRMs for test-time scaling and reinforcement learning. We summarize applications across math, code, text, multimodal reasoning, robotics, and agents, and review emerging benchmarks. Our goal is to clarify design spaces, reveal open challenges, and guide future research toward fine-grained, robust reasoning alignment.
♻ ☆ VITA-Audio: Fast Interleaved Cross-Modal Token Generation for Efficient Large Speech-Language Model
With the growing requirement for natural human-computer interaction, speech-based systems receive increasing attention as speech is one of the most common forms of daily communication. However, the existing speech models still experience high latency when generating the first audio token during streaming, which poses a significant bottleneck for deployment. To address this issue, we propose VITA-Audio, an end-to-end large speech model with fast audio-text token generation. Specifically, we introduce a lightweight Multiple Cross-modal Token Prediction (MCTP) module that efficiently generates multiple audio tokens within a single model forward pass, which not only accelerates the inference but also significantly reduces the latency for generating the first audio in streaming scenarios. In addition, a four-stage progressive training strategy is explored to achieve model acceleration with minimal loss of speech quality. To our knowledge, VITA-Audio is the first multi-modal large language model capable of generating audio output during the first forward pass, enabling real-time conversational capabilities with minimal latency. VITA-Audio is fully reproducible and is trained on open-source data only. Experimental results demonstrate that our model achieves an inference speedup of 3~5x at the 7B parameter scale, but also significantly outperforms open-source models of similar model size on multiple benchmarks for automatic speech recognition (ASR), text-to-speech (TTS), and spoken question answering (SQA) tasks.
comment: Training and Inference Codes: https://github.com/VITA-MLLM/VITA-Audio
♻ ☆ R-Horizon: How Far Can Your Large Reasoning Model Really Go in Breadth and Depth?
Recent trends in test-time scaling for reasoning models (e.g., OpenAI o1, DeepSeek-R1) have led to remarkable improvements through long Chain-of-Thought (CoT). However, existing benchmarks mainly focus on immediate, single-horizon tasks, failing to adequately evaluate models' ability to understand and respond to complex, long-horizon scenarios. To address this incomplete evaluation of Large Reasoning Models (LRMs), we propose R-HORIZON, a method designed to stimulate long-horizon reasoning behaviors in LRMs through query composition. Based on R-HORIZON, we construct a long-horizon reasoning benchmark, comprising complex multi-step reasoning tasks with interdependent problems that span long reasoning horizons. Through comprehensive evaluation of LRMs using the R-HORIZON benchmark, we find that even the most advanced LRMs suffer significant performance degradation. Our analysis reveals that LRMs exhibit limited effective reasoning length and struggle to allocate thinking budget across multiple problems appropriately. Recognizing these limitations, we use R-HORIZON to construct long-horizon reasoning data for reinforcement learning with verified rewards (RLVR). Compared to training with single-horizon data, RLVR with R-HORIZON not only substantially improves performance on the multi-horizon reasoning tasks, but also promotes accuracy on standard reasoning tasks, with an increase of 7.5 on AIME2024. These results position R-HORIZON as a scalable, controllable, and low-cost paradigm for enhancing and evaluating the long-horizon reasoning capabilities of LRMs.
♻ ☆ DanmakuTPPBench: A Multi-modal Benchmark for Temporal Point Process Modeling and Understanding NeurIPS 2025
We introduce DanmakuTPPBench, a comprehensive benchmark designed to advance multi-modal Temporal Point Process (TPP) modeling in the era of Large Language Models (LLMs). While TPPs have been widely studied for modeling temporal event sequences, existing datasets are predominantly unimodal, hindering progress in models that require joint reasoning over temporal, textual, and visual information. To address this gap, DanmakuTPPBench comprises two complementary components: (1) DanmakuTPP-Events, a novel dataset derived from the Bilibili video platform, where user-generated bullet comments (Danmaku) naturally form multi-modal events annotated with precise timestamps, rich textual content, and corresponding video frames; (2) DanmakuTPP-QA, a challenging question-answering dataset constructed via a novel multi-agent pipeline powered by state-of-the-art LLMs and multi-modal LLMs (MLLMs), targeting complex temporal-textual-visual reasoning. We conduct extensive evaluations using both classical TPP models and recent MLLMs, revealing significant performance gaps and limitations in current methods' ability to model multi-modal event dynamics. Our benchmark establishes strong baselines and calls for further integration of TPP modeling into the multi-modal language modeling landscape. Project page: https://github.com/FRENKIE-CHIANG/DanmakuTPPBench
comment: Accepted by Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ Towards Greater Leverage: Scaling Laws for Efficient Mixture-of-Experts Language Models
Mixture-of-Experts (MoE) has become a dominant architecture for scaling Large Language Models (LLMs) efficiently by decoupling total parameters from computational cost. However, this decoupling creates a critical challenge: predicting the model capacity of a given MoE configurations (e.g., expert activation ratio and granularity) remains an unresolved problem. To address this gap, we introduce Efficiency Leverage (EL), a metric quantifying the computational advantage of an MoE model over a dense equivalent. We conduct a large-scale empirical study, training over 300 models up to 28B parameters, to systematically investigate the relationship between MoE architectural configurations and EL. Our findings reveal that EL is primarily driven by the expert activation ratio and the total compute budget, both following predictable power laws, while expert granularity acts as a non-linear modulator with a clear optimal range. We integrate these discoveries into a unified scaling law that accurately predicts the EL of an MoE architecture based on its configuration. To validate our derived scaling laws, we designed and trained Ling-mini-beta, a pilot model for Ling-2.0 series with only 0.85B active parameters, alongside a 6.1B dense model for comparison. When trained on an identical 1T high-quality token dataset, Ling-mini-beta matched the performance of the 6.1B dense model while consuming over 7x fewer computational resources, thereby confirming the accuracy of our scaling laws. This work provides a principled and empirically-grounded foundation for the scaling of efficient MoE models.
♻ ☆ EvaLearn: Quantifying the Learning Capability and Efficiency of LLMs via Sequential Problem Solving NeurIPS 2025
We introduce EvaLearn, a pioneering benchmark designed to evaluate large language models (LLMs) on their learning capability and efficiency in challenging tasks, a critical, yet underexplored aspect of model potential. EvaLearn contains 648 challenging problems across six task types, grouped into 182 sequences, each sequence dedicated to one task type. Diverging from most existing benchmarks that evaluate models in parallel, EvaLearn requires models to solve problems sequentially, allowing them to leverage the experience gained from previous solutions. EvaLearn provides five comprehensive automated metrics to evaluate models and quantify their learning capability and efficiency. We extensively benchmark nine frontier models and observe varied performance profiles: some models, such as Claude-3.7-sonnet, start with moderate initial performance but exhibit strong learning ability, while some models struggle to benefit from experience and may even show negative transfer. Moreover, we investigate model performance under two learning settings and find that instance-level rubrics and teacher-model feedback further facilitate model learning. Importantly, we observe that current LLMs with stronger static abilities do not show a clear advantage in learning capability across all tasks, highlighting that EvaLearn evaluates a new dimension of model performance. We hope EvaLearn provides a novel evaluation perspective for assessing LLM potential and understanding the gap between models and human capabilities, promoting the development of deeper and more dynamic evaluation approaches. All datasets, the automatic evaluation framework, and the results studied in this paper are available at the GitHub repository.
comment: Accepted by NeurIPS 2025. 47 pages, 24 figures
♻ ☆ Patent Language Model Pretraining with ModernBERT
Transformer-based language models such as BERT have become foundational in NLP, yet their performance degrades in specialized domains like patents, which contain long, technical, and legally structured text. Prior approaches to patent NLP have primarily relied on fine-tuning general-purpose models or domain-adapted variants pretrained with limited data. In this work, we pretrain 3 domain-specific masked language models for patents, using the ModernBERT architecture and a curated corpus of over 60 million patent records. Our approach incorporates architectural optimizations, including FlashAttention, rotary embeddings, and GLU feed-forward layers. We evaluate our models on four downstream patent classification tasks. Our model, ModernBERT-base-PT, consistently outperforms the general-purpose ModernBERT baseline on three out of four datasets and achieves competitive performance with a baseline PatentBERT. Additional experiments with ModernBERT-base-VX and Mosaic-BERT-large demonstrate that scaling the model size and customizing the tokenizer further enhance performance on selected tasks. Notably, all ModernBERT variants retain substantially faster inference over - 3x that of PatentBERT - underscoring their suitability for time-sensitive applications. These results underscore the benefits of domain-specific pretraining and architectural improvements for patent-focused NLP tasks.
comment: 7 pages, 5 figures, 4 tables
♻ ☆ SimBench: Benchmarking the Ability of Large Language Models to Simulate Human Behaviors
Large language model (LLM) simulations of human behavior have the potential to revolutionize the social and behavioral sciences, if and only if they faithfully reflect real human behaviors. Current evaluations are fragmented, based on bespoke tasks and metrics, creating a patchwork of incomparable results. To address this, we introduce SimBench, the first large-scale, standardized benchmark for a robust, reproducible science of LLM simulation. By unifying 20 diverse datasets covering tasks from moral decision-making to economic choice across a large global participant pool, SimBench provides the necessary foundation to ask fundamental questions about when, how, and why LLM simulations succeed or fail. We show that, while even the best LLMs today have limited simulation ability (score: 40.80/100), performance scales log-linearly with model size. Simulation performance is not improved by increased inference-time compute. We demonstrate an alignment-simulation trade-off: instruction-tuning improves performance on low-entropy (consensus) questions but degrades it on high-entropy (diverse) ones. Models particularly struggle when simulating specific demographic groups. Finally, we demonstrate that simulation ability correlates most strongly with deep, knowledge-intensive reasoning (MMLU-Pro, r=0.939). By making progress measurable, we aim to accelerate the development of more faithful LLM simulators.
comment: Project Website: http://simbench.tiancheng.hu/ Data: https://huggingface.co/datasets/pitehu/SimBench
♻ ☆ AI Debaters are More Persuasive when Arguing in Alignment with Their Own Beliefs
The core premise of AI debate as a scalable oversight technique is that it is harder to lie convincingly than to refute a lie, enabling the judge to identify the correct position. Yet, existing debate experiments have relied on datasets with ground truth, where lying is reduced to defending an incorrect proposition. This overlooks a subjective dimension: lying also requires the belief that the claim defended is false. In this work, we apply debate to subjective questions and explicitly measure large language models' prior beliefs before experiments. Debaters were asked to select their preferred position, then presented with a judge persona deliberately designed to conflict with their identified priors. This setup tested whether models would adopt sycophantic strategies, aligning with the judge's presumed perspective to maximize persuasiveness, or remain faithful to their prior beliefs. We implemented and compared two debate protocols, sequential and simultaneous, to evaluate potential systematic biases. Finally, we assessed whether models were more persuasive and produced higher-quality arguments when defending positions consistent with their prior beliefs versus when arguing against them. Our main findings show that models tend to prefer defending stances aligned with the judge persona rather than their prior beliefs, sequential debate introduces significant bias favoring the second debater, models are more persuasive when defending positions aligned with their prior beliefs, and paradoxically, arguments misaligned with prior beliefs are rated as higher quality in pairwise comparison. These results can inform human judges to provide higher-quality training signals and contribute to more aligned AI systems, while revealing important aspects of human-AI interaction regarding persuasion dynamics in language models.
comment: 31 pages
♻ ☆ Beyond Pass@k: Breadth-Depth Metrics for Reasoning Boundaries
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a powerful paradigm to improve Large Language Models on reasoning tasks such as coding, math or logic. To assess the reasoning boundary (the fraction of problems a model can solve) researchers often report Pass@k at large sampling budgets. Recent results reveal a crossover phenomenon: while RLVR models outperform the base model at small k values, the base model usually outperforms them when sampling a very large number of completions. This has been interpreted as evidence that base models have a larger reasoning boundary. We argue that on tasks with discrete answer spaces, such as math with numeric outputs, Pass@k at large k reflects the increasingly higher chance of success in the limit of the number of trials rather than genuine reasoning, and can therefore be misleading. We propose Cover@tau, which measures the fraction of problems that a model can solve for which at least a tau proportion of completions are correct. Unlike Pass@k, Cover@tau captures reasoning under an explicit reliability threshold: models that rely on random guessing degrade rapidly as tau increases. We evaluate several RLVR models using Cover@tau-based metrics and illustrate how the relative rankings of popular algorithms change compared to Pass@1, offering a different perspective on reasoning boundaries.
comment: 10 pages, 3 figures. v2 adds discussion of related work (G-Pass@k)
♻ ☆ When Text Embedding Meets Large Language Model: A Comprehensive Survey
Text embedding has become a foundational technology in natural language processing (NLP) during the deep learning era, driving advancements across a wide array of downstream tasks. While many natural language understanding challenges can now be modeled using generative paradigms and leverage the robust generative and comprehension capabilities of large language models (LLMs), numerous practical applications - such as semantic matching, clustering, and information retrieval - continue to rely on text embeddings for their efficiency and effectiveness. Therefore, integrating LLMs with text embeddings has become a major research focus in recent years. In this survey, we categorize the interplay between LLMs and text embeddings into three overarching themes: (1) LLM-augmented text embedding, enhancing traditional embedding methods with LLMs; (2) LLMs as text embedders, adapting their innate capabilities for high-quality embedding; and (3) Text embedding understanding with LLMs, leveraging LLMs to analyze and interpret embeddings. By organizing recent works based on interaction patterns rather than specific downstream applications, we offer a novel and systematic overview of contributions from various research and application domains in the era of LLMs. Furthermore, we highlight the unresolved challenges that persisted in the pre-LLM era with pre-trained language models (PLMs) and explore the emerging obstacles brought forth by LLMs. Building on this analysis, we outline prospective directions for the evolution of text embedding, addressing both theoretical and practical opportunities in the rapidly advancing landscape of NLP.
comment: Version 4: We added the latest works of LLM-based Embedders
♻ ☆ Can we Evaluate RAGs with Synthetic Data? ECML-PKDD 2025
We investigate whether synthetic question-answer (QA) data generated by large language models (LLMs) can serve as an effective proxy for human-labeled benchmarks when the latter is unavailable. We assess the reliability of synthetic benchmarks across two experiments: one varying retriever parameters while keeping the generator fixed, and another varying the generator with fixed retriever parameters. Across four datasets, of which two open-domain and two proprietary, we find that synthetic benchmarks reliably rank the RAGs varying in terms of retriever configuration, aligning well with human-labeled benchmark baselines. However, they do not consistently produce reliable RAG rankings when comparing generator architectures. The breakdown possibly arises from a combination of task mismatch between the synthetic and human benchmarks, and stylistic bias favoring certain generators.
comment: Accepted for the SynDAiTE workshop at the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 2025), September 15, 2025 - Porto, Portugal
♻ ☆ Uncertainty Quantification for Evaluating Machine Translation Bias
The predictive uncertainty of machine translation (MT) models is typically used as a quality estimation proxy. In this work, we posit that apart from confidently translating when a single correct translation exists, models should also maintain uncertainty when the input is ambiguous. We use uncertainty to measure gender bias in MT systems. When the source sentence includes a lexeme whose gender is not overtly marked, but whose target-language equivalent requires gender specification, the model must infer the appropriate gender from the context and can be susceptible to biases. Prior work measured bias via gender accuracy, however it cannot be applied to ambiguous cases. Using semantic uncertainty, we are able to assess bias when translating both ambiguous and unambiguous source sentences, and find that high translation accuracy does not correlate with exhibiting uncertainty appropriately, and that debiasing affects the two cases differently.
♻ ☆ From Unaligned to Aligned: Scaling Multilingual LLMs with Multi-Way Parallel Corpora EMNLP 2025
Continued pretraining and instruction tuning on large-scale multilingual data have proven to be effective in scaling large language models (LLMs) to low-resource languages. However, the unaligned nature of such data limits its ability to effectively capture cross-lingual semantics. In contrast, multi-way parallel data, where identical content is aligned across multiple languages, provides stronger cross-lingual consistency and offers greater potential for improving multilingual performance. In this paper, we introduce a large-scale, high-quality multi-way parallel corpus, TED2025, based on TED Talks. The corpus spans 113 languages, with up to 50 languages aligned in parallel, ensuring extensive multilingual coverage. Using this dataset, we investigate best practices for leveraging multi-way parallel data to enhance LLMs, including strategies for continued pretraining, instruction tuning, and the analysis of key influencing factors. Experiments on six multilingual benchmarks show that models trained on multiway parallel data consistently outperform those trained on unaligned multilingual data.
comment: EMNLP 2025 Main Conference (Oral)
♻ ☆ DCAD-2000: A Multilingual Dataset across 2000+ Languages with Data Cleaning as Anomaly Detection NeurIPS 2025
The rapid development of multilingual large language models (LLMs) highlights the need for high-quality, diverse, and well-curated multilingual datasets. In this paper, we introduce DCAD-2000 (Data Cleaning as Anomaly Detection), a large-scale multilingual corpus constructed from newly extracted Common Crawl data and existing multilingual sources. DCAD-2000 covers 2,282 languages, 46.72TB of text, and 8.63 billion documents, spanning 155 high- and medium-resource languages and 159 writing scripts. To overcome the limitations of existing data cleaning approaches, which rely on manually designed heuristic thresholds, we reframe data cleaning as an anomaly detection problem. This dynamic filtering paradigm substantially improves data quality by automatically identifying and removing noisy or anomalous content. By fine-tuning LLMs on DCAD-2000, we demonstrate notable improvements in data quality, robustness of the cleaning pipeline, and downstream performance, particularly for low-resource languages across multiple multilingual benchmarks.
comment: NeurIPS 2025 Datasets and Benchmarks Track
♻ ☆ MATRIX: Multimodal Agent Tuning for Robust Tool-Use Reasoning
Vision language models (VLMs) are increasingly deployed as controllers with access to external tools for complex reasoning and decision-making, yet their effectiveness remains limited by the scarcity of high-quality multimodal trajectories and the cost of manual annotation. We address this challenge with a vision-centric agent tuning framework that automatically synthesizes multimodal trajectories, generates step-wise preference pairs, and trains a VLM controller for robust tool-use reasoning. Our pipeline first constructs M-TRACE, a large-scale dataset of 28.5K multimodal tasks with 177K verified trajectories, enabling imitation-based trajectory tuning. Building on this, we develop MATRIX Agent, a controller finetuned on M-TRACE for step-wise tool reasoning. To achieve finer alignment, we further introduce Pref-X, a set of 11K automatically generated preference pairs, and optimize MATRIX on it via step-wise preference learning. Across three benchmarks, Agent-X, GTA, and GAIA, MATRIX consistently surpasses both open- and closed-source VLMs, demonstrating scalable and effective multimodal tool use. Our data and code is avaliable at https://github.com/mbzuai-oryx/MATRIX.
comment: We have come across a recent approach that has not been properly attributed at the time of submission and compared in a fair setting. Therefore, we would like to withdraw the paper to address these concerns
♻ ☆ LIMOPro: Reasoning Refinement for Efficient and Effective Test-time Scaling NeurIPS 2025
Large language models (LLMs) have demonstrated remarkable reasoning capabilities through test-time scaling approaches, particularly when fine-tuned with chain-of-thought (CoT) data distilled from more powerful large reasoning models (LRMs). However, these reasoning chains often contain verbose elements that mirror human problem-solving, categorized as progressive reasoning (the essential solution development path) and functional elements (verification processes, alternative solution approaches, and error corrections). While progressive reasoning is crucial, the functional elements significantly increase computational demands during test-time inference. We introduce PIR (Perplexity-based Importance Refinement), a principled framework that quantitatively evaluates the importance of each reasoning step based on its impact on answer prediction confidence. PIR systematically identifies and selectively prunes only low-importance functional steps while preserving progressive reasoning components, creating optimized training data that maintains the integrity of the core solution path while reducing verbosity. Models fine-tuned on PIR-optimized data exhibit superior test-time scaling properties, generating more concise reasoning chains while achieving improved accuracy (+0.9\% to +6.6\%) with significantly reduced token usage (-3\% to -41\%) across challenging reasoning benchmarks (AIME, AMC, and GPQA Diamond). Our approach demonstrates strong generalizability across different model sizes, data sources, and token budgets, offering a practical solution for deploying reasoning-capable LLMs in scenarios where efficient test-time scaling, response time, and computational efficiency are valuable constraints.
comment: Accepted at NeurIPS 2025
♻ ☆ Exploring Data-Efficient Adaptation of Large Language Models for Code Generation
Although Large Language Models (LLMs) have made significant progress in code generation, they still struggle with code generation tasks in specific scenarios. These scenarios usually necessitate the adaptation of LLMs to fulfill specific needs, but the limited training data available in practice leads to poor code generation performance. Therefore, how to effectively adapt LLMs to new scenarios with few training data is a major challenge for current code generation. In this paper, we propose a novel adaptation approach named DEED, which stands for Data-Efficient adaptation with Error-Driven learning for code generation. DEED leverages the errors made by LLMs as learning opportunities, using error revision to overcome their own shortcomings, thus achieving efficient learning. Specifically, DEED involves identifying error code generated by LLMs, employing Self-Revise for code revision, optimizing the model with revised code, and iteratively adapting the process for continuous improvement. Experimental results show that, compared to other mainstream fine-tuning approaches, DEED achieves superior performance with few training data, showing an average relative improvement of 46.2% in Pass@1 on multiple code generation benchmarks. We also validate the effectiveness of Self-Revise, which generates revised code that optimizes the model more efficiently compared to the code samples from datasets. Moreover, DEED consistently demonstrates strong performance across various LLMs, underscoring its applicability.
comment: Accepted by TOSEM
♻ ☆ Think With Videos For Agentic Long-Video Understanding
Long-video understanding~(LVU) is a challenging problem in computer vision. Existing methods either downsample frames for single-pass reasoning, sacrificing fine-grained details, or depend on textual reasoning over task-agnostic representations, hindering task-specific perception and exploration. In this paper, we propose VideoExplorer, a framework grounded in the principle of ``thinking with video'', which naturally intertwines planning, temporal grounding, and scalable perception into a coherent reasoning process. Rather than reasoning over a static context, VideoExplorer iteratively formulates sub-questions, locates relevant moments, and performs task-oriented, temporally scalable video understanding until reaching the final answer, enabling faithful, efficient, and interpretable reasoning. To address the lack of LVU training resources, we construct a long-video reasoning dataset using difficulty-adaptive sampling to ensure high-quality trajectories on complex tasks. Building on this dataset, we design a two-stage training pipeline: supervised trajectory initialization followed by trajectory-level preference optimization, encouraging adaptive temporal grounding and iterative information integration guided by downstream rewards. Extensive evaluations on popular long-video understanding and reasoning benchmarks demonstrate VideoExplorer's significant advantage over existing baselines, highlighting its robustness, adaptability, and efficiency. Our code is made publicly available in this repository(https://github.com/yhy-2000/VideoDeepResearch).
♻ ☆ HauntAttack: When Attack Follows Reasoning as a Shadow
Emerging Large Reasoning Models (LRMs) consistently excel in mathematical and reasoning tasks, showcasing remarkable capabilities. However, the enhancement of reasoning abilities and the exposure of internal reasoning processes introduce new safety vulnerabilities. A critical question arises: when reasoning becomes intertwined with harmfulness, will LRMs become more vulnerable to jailbreaks in reasoning mode? To investigate this, we introduce HauntAttack, a novel and general-purpose black-box adversarial attack framework that systematically embeds harmful instructions into reasoning questions. Specifically, we modify key reasoning conditions in existing questions with harmful instructions, thereby constructing a reasoning pathway that guides the model step by step toward unsafe outputs. We evaluate HauntAttack on 11 LRMs and observe an average attack success rate of 70\%, achieving up to 12 percentage points of absolute improvement over the strongest prior baseline. Our further analysis reveals that even advanced safety-aligned models remain highly susceptible to reasoning-based attacks, offering insights into the urgent challenge of balancing reasoning capability and safety in future model development.
♻ ☆ Unconditional Truthfulness: Learning Unconditional Uncertainty of Large Language Models
Uncertainty quantification (UQ) has emerged as a promising approach for detecting hallucinations and low-quality output of Large Language Models (LLMs). However, obtaining proper uncertainty scores is complicated by the conditional dependency between the generation steps of an autoregressive LLM because it is hard to model it explicitly. Here, we propose to learn this dependency from attention-based features. In particular, we train a regression model that leverages LLM attention maps, probabilities on the current generation step, and recurrently computed uncertainty scores from previously generated tokens. To incorporate the recurrent features, we also suggest a two-staged training procedure. Our experimental evaluation on ten datasets and three LLMs shows that the proposed method is highly effective for selective generation, achieving substantial improvements over rivaling unsupervised and supervised approaches.
♻ ☆ Explaining Large Language Models with gSMILE
Large Language Models (LLMs) such as GPT, LLaMA, and Claude achieve remarkable performance in text generation but remain opaque in their decision-making processes, limiting trust and accountability in high-stakes applications. We present gSMILE (generative SMILE), a model-agnostic, perturbation-based framework for token-level interpretability in LLMs. Extending the SMILE methodology, gSMILE uses controlled prompt perturbations, Wasserstein distance metrics, and weighted linear surrogates to identify input tokens with the most significant impact on the output. This process enables the generation of intuitive heatmaps that visually highlight influential tokens and reasoning paths. We evaluate gSMILE across leading LLMs (OpenAI's gpt-3.5-turbo-instruct, Meta's LLaMA 3.1 Instruct Turbo, and Anthropic's Claude 2.1) using attribution fidelity, attribution consistency, attribution stability, attribution faithfulness, and attribution accuracy as metrics. Results show that gSMILE delivers reliable human-aligned attributions, with Claude 2.1 excelling in attention fidelity and GPT-3.5 achieving the highest output consistency. These findings demonstrate gSMILE's ability to balance model performance and interpretability, enabling more transparent and trustworthy AI systems.
♻ ☆ SpecExit: Accelerating Large Reasoning Model via Speculative Exit
Despite their strong performance on reasoning tasks, large reasoning models (LRMs) often suffer from overthinking, producing unnecessarily long outputs and incurring high end-to-end latency, a significant limitation to their real-world deployment. To address overthinking, early-exit mechanisms have been proposed to terminate reasoning before typical completion, showing that this approach can effectively shorten generation length with minimal impact on accuracy. However, their reliance on probing mechanisms introduces a detection overhead that limits their end-to-end latency gains and compromises their generalizability across diverse problems. Inspired by the use of hidden states in speculative decoding, we propose SpecExit, a novel framework that predicts both future tokens and an early-exit signal directly from a lightweight draft model without probing overhead. Our method offers significant improvements, reducing average generation length by 66\% and achieving a 2.5x speedup in end-to-end latency compared to the speculative decoding baseline, without compromising accuracy. Our method leverages the inherent signals from hidden states to provide effective early-exit signals, suggesting broader use of hidden states for efficient reasoning. Our code is available at https://github.com/Tencent/AngelSlim.
♻ ☆ Multi-Agent Collaboration via Evolving Orchestration NeurIPS 2025
Large language models (LLMs) have achieved remarkable results across diverse downstream tasks, but their monolithic nature restricts scalability and efficiency in complex problem-solving. While recent research explores multi-agent collaboration among LLMs, most approaches rely on static organizational structures that struggle to adapt as task complexity and agent numbers grow, resulting in coordination overhead and inefficiencies. To this end, we propose a puppeteer-style paradigm for LLM-based multi-agent collaboration, where a centralized orchestrator ("puppeteer") dynamically directs agents ("puppets") in response to evolving task states. This orchestrator is trained via reinforcement learning to adaptively sequence and prioritize agents, enabling flexible and evolvable collective reasoning. Experiments on closed- and open-domain scenarios show that this method achieves superior performance with reduced computational costs. Analyses further reveal that the key improvements consistently stem from the emergence of more compact, cyclic reasoning structures under the orchestrator's evolution. Our code is available at https://github.com/OpenBMB/ChatDev/tree/puppeteer.
comment: accepted at NeurIPS 2025
♻ ☆ Learning to Interpret Weight Differences in Language Models
Finetuning (pretrained) language models is a standard approach for updating their internal parametric knowledge and specializing them to new tasks and domains. However, the corresponding model weight changes ("weight diffs") are not generally interpretable. While inspecting the finetuning dataset can give a sense of how the model might have changed, these datasets are often not publicly available or are too large to work with directly. Towards the goal of comprehensively understanding weight diffs in natural language, we introduce Diff Interpretation Tuning (DIT), a method that trains models to describe their own finetuning-induced modifications. Our approach uses synthetic, labeled weight diffs to train a DIT-adapter, which can be applied to a compatible finetuned model to make it describe how it has changed. We demonstrate in two proof-of-concept settings (reporting hidden behaviors and summarizing finetuned knowledge) that our method enables models to describe their finetuning-induced modifications using accurate natural language descriptions.
comment: Project code and links to weight diffs, adapters, and training data can be found at https://github.com/Aviously/diff-interpretation-tuning
♻ ☆ Temporal Alignment of LLMs through Cycle Encoding for Long-Range Time Representations
Large language models (LLMs) suffer from temporal misalignment issues especially across long span of time. The issue arises from knowing that LLMs are trained on large amounts of data where temporal information is rather sparse over long times, such as thousands of years, resulting in insufficient learning or catastrophic forgetting by the LLMs. This paper proposes a methodology named "Ticktack" for addressing the LLM's long-time span misalignment in a yearly setting. Specifically, we first propose to utilize the sexagenary year expression instead of the Gregorian year expression employed by LLMs, achieving a more uniform distribution in yearly granularity. Then, we employ polar coordinates to model the sexagenary cycle of 60 terms and the year order within each term, with additional temporal encoding to ensure LLMs understand them. Finally, we present a temporal representational alignment approach for post-training LLMs that effectively distinguishes time points with relevant knowledge, hence improving performance on time-related tasks, particularly over a long period. We also create a long time span benchmark for evaluation. Experimental results prove the effectiveness of our proposal.
♻ ☆ Segment Policy Optimization: Effective Segment-Level Credit Assignment in RL for Large Language Models NeurIPS 2025
Enhancing the reasoning capabilities of large language models effectively using reinforcement learning (RL) remains a crucial challenge. Existing approaches primarily adopt two contrasting advantage estimation granularities: token-level methods (e.g., PPO) aim to provide fine-grained advantage signals but suffer from inaccurate estimation due to difficulties in training an accurate critic model. On the other extreme, trajectory-level methods (e.g., GRPO) solely rely on a coarse-grained advantage signal from the final reward, leading to imprecise credit assignment. To address these limitations, we propose Segment Policy Optimization (SPO), a novel RL framework that leverages segment-level advantage estimation at an intermediate granularity, achieving a better balance by offering more precise credit assignment than trajectory-level methods and requiring fewer estimation points than token-level methods, enabling accurate advantage estimation based on Monte Carlo (MC) without a critic model. SPO features three components with novel strategies: (1) flexible segment partition; (2) accurate segment advantage estimation; and (3) policy optimization using segment advantages, including a novel probability-mask strategy. We further instantiate SPO for two specific scenarios: (1) SPO-chain for short chain-of-thought (CoT), featuring novel cutpoint-based partition and chain-based advantage estimation, achieving $6$-$12$ percentage point improvements in accuracy over PPO and GRPO on GSM8K. (2) SPO-tree for long CoT, featuring novel tree-based advantage estimation, which significantly reduces the cost of MC estimation, achieving $7$-$11$ percentage point improvements over GRPO on MATH500 under 2K and 4K context evaluation. We make our code publicly available at https://github.com/AIFrameResearch/SPO.
comment: Accepted at NeurIPS 2025
♻ ☆ Program Synthesis via Test-Time Transduction NeurIPS 2025
We introduce transductive program synthesis, a new formulation of the program synthesis task that explicitly leverages test inputs during synthesis. While prior approaches to program synthesis--whether based on natural language descriptions or input-output examples--typically aim to generalize from training examples, they often struggle with robustness, especially in real-world settings where training examples are limited and test inputs involve various edge cases. To address this, we propose a novel framework that improves robustness by treating synthesis as an active learning over a finite hypothesis class defined by programs' outputs. We use an LLM to predict outputs for selected test inputs and eliminate inconsistent hypotheses, where the inputs are chosen via a greedy maximin algorithm to minimize the number of LLM queries required. We evaluate our approach on four benchmarks: Playgol, MBPP+, 1D-ARC, and programmatic world modeling on MiniGrid. We demonstrate that our method significantly improves program synthesis in both accuracy and efficiency. We release our code at https://github.com/klee972/SYNTRA.
comment: NeurIPS 2025
♻ ☆ Don't Retrieve, Generate: Prompting LLMs for Synthetic Training Data in Dense Retrieval
Training effective dense retrieval models typically relies on hard negative (HN) examples mined from large document corpora using methods such as BM25 or cross-encoders (CE), which require full corpus access. We propose a corpus-free alternative: an end-to-end pipeline where a Large Language Model (LLM) first generates a query from a passage and then produces a hard negative example using only the generated query text. Our dataset comprises 7,250 arXiv abstracts spanning diverse domains including mathematics, physics, computer science, and related fields, serving as positive passages for query generation. We evaluate two fine-tuning configurations of DistilBERT for dense retrieval; one using LLM-generated hard negatives conditioned solely on the query, and another using negatives generated with both the query and its positive document as context. Compared to traditional corpus-based mining methods {LLM Query $\rightarrow$ BM25 HN and LLM Query $\rightarrow$ CE HN on multiple BEIR benchmark datasets, our all-LLM pipeline outperforms strong lexical mining baselines and achieves performance comparable to cross-encoder-based methods, demonstrating the potential of corpus-free hard negative generation for retrieval model training.
♻ ☆ Think Silently, Think Fast: Dynamic Latent Compression of LLM Reasoning Chains
Large Language Models (LLMs) achieve superior performance through Chain-of-Thought (CoT) reasoning, but these token-level reasoning chains are computationally expensive and inefficient. In this paper, we introduce Compressed Latent Reasoning (CoLaR), a novel framework that dynamically compresses reasoning processes in latent space through a two-stage training approach. First, during supervised fine-tuning, CoLaR extends beyond next-token prediction by incorporating an auxiliary next compressed embedding prediction objective. This process merges embeddings of consecutive tokens using a compression factor randomly sampled from a predefined range, and trains a specialized latent head to predict distributions of subsequent compressed embeddings. Second, we enhance CoLaR through reinforcement learning (RL) that leverages the latent head's non-deterministic nature to explore diverse reasoning paths and exploit more compact ones. This approach enables CoLaR to: i) perform reasoning at a dense latent level (i.e., silently), substantially reducing reasoning chain length, and ii) dynamically adjust reasoning speed at inference time by simply prompting the desired compression factor. Extensive experiments across four mathematical reasoning datasets demonstrate that CoLaR achieves 14.1% higher accuracy than latent-based baseline methods at comparable compression ratios, and reduces reasoning chain length by 53.3% with only 4.8% performance degradation compared to explicit CoT method. Moreover, when applied to more challenging mathematical reasoning tasks, our RL-enhanced CoLaR demonstrates performance gains of up to 5.4% while dramatically reducing latent reasoning chain length by 82.8%. The code and models will be released upon acceptance.
comment: 15 pages, 8 figures
♻ ☆ Offline Policy Evaluation of Multi-Turn LLM Health Coaching with Real Users NeurIPS 2025
We study a web-deployed, tool-augmented LLM health coach with real users. In a pilot with seven users (280 rated turns), offline policy evaluation (OPE) over factorized decision heads (Tool/Style) shows that a uniform heavy-tool policy raises average value on logs but harms specific subgroups, most notably low-health-literacy/high-self-efficacy users. A lightweight simulator with hidden archetypes further shows that adding a small early information-gain bonus reliably shortens trait identification and improves goal success and pass@3. Together, these early findings indicate an evaluation-first path to personalization: freeze the generator, learn subgroup-aware decision heads on typed rewards (objective tool outcomes and satisfaction), and always report per-archetype metrics to surface subgroup harms that averages obscure.
comment: Accepted to the NeurIPS 2025 Workshop on Multi-Turn Interactions in Large Language Models
♻ ☆ Can Large Language Models Master Complex Card Games? NeurIPS 2025
Complex games have long been an important benchmark for testing the progress of artificial intelligence algorithms. AlphaGo, AlphaZero, and MuZero have defeated top human players in Go and Chess, garnering widespread societal attention towards artificial intelligence. Concurrently, large language models (LLMs) have exhibited remarkable capabilities across various tasks, raising the question of whether LLMs can achieve similar success in complex games. In this paper, we explore the potential of LLMs in mastering complex card games. We systematically assess the learning capabilities of LLMs across eight diverse card games, evaluating the impact of fine-tuning on high-quality gameplay data, and examining the models' ability to retain general capabilities while mastering these games. Our findings indicate that: (1) LLMs can approach the performance of strong game AIs through supervised fine-tuning on high-quality data, (2) LLMs can achieve a certain level of proficiency in multiple complex card games simultaneously, with performance augmentation for games with similar rules and conflicts for dissimilar ones, and (3) LLMs experience a decline in general capabilities when mastering complex games, but this decline can be mitigated by integrating a certain amount of general instruction data. The evaluation results demonstrate strong learning ability and versatility of LLMs. The code is available at https://github.com/THUDM/LLM4CardGame
comment: Accepted by NeurIPS 2025
♻ ☆ Analyzing Similarity Metrics for Data Selection for Language Model Pretraining
Measuring similarity between training examples is critical for curating high-quality and diverse pretraining datasets for language models. However, similarity is typically computed with a generic off-the-shelf embedding model that has been trained for tasks such as retrieval. Whether these embedding-based similarity metrics are well-suited for pretraining data selection remains largely unexplored. In this paper, we propose a new framework to assess the suitability of a similarity metric specifically for data curation in language model pretraining applications. Our framework's first evaluation criterion captures how well distances reflect generalization in pretraining loss between different training examples. Next, we use each embedding model to guide a standard diversity-based data curation algorithm and measure its utility by pretraining a language model on the selected data and evaluating downstream task performance. Finally, we evaluate the capabilities of embeddings to distinguish between examples from different data sources. With these evaluations, we demonstrate that standard off-the-shelf embedding models are not well-suited for the pretraining data curation setting, underperforming even remarkably simple embeddings that are extracted from models trained on the same pretraining corpus. Our experiments are performed on the Pile, for pretraining a 1.7B parameter language model on 200B tokens. We believe our analysis and evaluation framework serves as a foundation for the future design of embeddings that specifically reason about similarity in pretraining datasets.
♻ ☆ Harnessing Test-time Adaptation for NLU tasks Involving Dialects of English
Test-time domain adaptation (TTDA) is an excellent method which helps generalize models across domains, tasks, and distributions without the use of labeled datasets. Thus, TTDA is very useful in natural language processing (NLP) in the dialectal setting, since oftentimes, models are trained on Standard American English (SAE), evaluated on Indian English (IndE), Singaporean English (SingE), or Nigerian English (NgE), of which distribution differs significantly from the former. This is especially useful since dialectal datasets are scarce. In this paper, we explore one of the most famous TTDA techniques, SHOT, in dialectal NLP. We finetune and evaluate SHOT on different combinations of dialectal GLUE. Our findings show that SHOT is a viable technique when labeled datasets are unavailable. We also theoretically propose the concept of dialectal gap and show that it has a positive correlation with the effectiveness of SHOT. We also find that in many cases, finetuning on SAE yields higher performance than finetuning on dialectal data.
♻ ☆ A$^2$FM: An Adaptive Agent Foundation Model for Tool-Aware Hybrid Reasoning
Large language models split into two families: reasoning-centric LLMs, which strengthen internal chain-of-thought reasoning but cannot invoke external tools, and agentic LLMs, which learn to interact with environments and leverage tools but often lag in deep reasoning. This divide arises from fundamentally different training objectives, leading to mismatched strengths and inefficiency on simple queries, where both families tend to overthink or over-call tools. In this work, we present Adaptive Agent Foundation Model (A$^2$FM), a unified framework that follows a route-then-align principle: the model first learns task-aware routing and then aligns mode-specific trajectories under a shared backbone. To address the inefficiency gap, we introduce a third mode-instant-that handles simple queries directly, preventing unnecessary reasoning or tool calls while complementing the agentic and reasoning modes. To jointly enhance accuracy and efficiency, we propose Adaptive Policy Optimization (APO), which enforces adaptive sampling across modes and applies a cost-regularized reward. On the 32B scale, A$^2$FM achieves 13.4% on BrowseComp, 70.4% on AIME25, and 16.7% on HLE, setting new SOTA among comparable models and performing competitively with frontier LLMs across agentic, reasoning, and general benchmarks. Notably, the adaptive execution achieves a cost of pass of only $0.00487 per correct answer-cutting cost by 45.2% relative to reasoning and 33.5% relative to agentic, thus delivering substantially higher cost efficiency while maintaining comparable accuracy.
comment: 12 pages, 6 figures
♻ ☆ MSR-Align: Policy-Grounded Multimodal Alignment for Safety-Aware Reasoning in Vision-Language Models
Vision-Language Models (VLMs) have achieved remarkable progress in multimodal reasoning tasks through enhanced chain-of-thought capabilities. However, this advancement also introduces novel safety risks, as these models become increasingly vulnerable to harmful multimodal prompts that can trigger unethical or unsafe behaviors. Existing safety alignment approaches, primarily designed for unimodal language models, fall short in addressing the complex and nuanced threats posed by multimodal inputs. Moreover, current safety datasets lack the fine-grained, policy-grounded reasoning required to robustly align reasoning-capable VLMs. In this work, we introduce {MSR-Align}, a high-quality Multimodal Safety Reasoning dataset tailored to bridge this gap. MSR-Align supports fine-grained, deliberative reasoning over standardized safety policies across both vision and text modalities. Our data generation pipeline emphasizes multimodal diversity, policy-grounded reasoning, and rigorous quality filtering using strong multimodal judges. Extensive experiments demonstrate that fine-tuning VLMs on MSR-Align substantially improves robustness against both textual and vision-language jailbreak attacks, while preserving or enhancing general reasoning performance. MSR-Align provides a scalable and effective foundation for advancing the safety alignment of reasoning-capable VLMs. Our dataset is made publicly available at https://huggingface.co/datasets/Leigest/MSR-Align.
♻ ☆ DrunkAgent: Stealthy Memory Corruption in LLM-Powered Recommender Agents
Large language model (LLM)-powered agents are increasingly used in recommender systems (RSs) to achieve personalized behavior modeling, where the memory mechanism plays a pivotal role in enabling the agents to autonomously explore, learn and self-evolve from real-world interactions. However, this very mechanism, serving as a contextual repository, inherently exposes an attack surface for potential adversarial manipulations. Despite its central role, the robustness of agentic RSs in the face of such threats remains largely underexplored. Previous works suffer from semantic mismatches or rely on static embeddings or pre-defined prompts, all of which are not designed for dynamic systems, especially for dynamic memory states of LLM agents. This challenge is exacerbated by the black-box nature of commercial recommenders. To tackle the above problems, in this paper, we present the first systematic investigation of memory-based vulnerabilities in LLM-powered recommender agents, revealing their security limitations and guiding efforts to strengthen system resilience and trustworthiness. Specifically, we propose a novel black-box attack framework named DrunkAgent. DrunkAgent crafts semantically meaningful adversarial textual triggers for target item promotions and introduces a series of strategies to maximize the trigger effect by corrupting the memory updates during the interactions. The triggers and strategies are optimized on a surrogate model, enabling DrunkAgent transferable and stealthy. Extensive experiments on real-world datasets across diverse agentic RSs, including collaborative filtering, retrieval augmentation and sequential recommendations, demonstrate the generalizability, transferability and stealthiness of DrunkAgent.
♻ ☆ IASC: Interactive Agentic System for ConLangs
We present a system that uses LLMs as a tool in the development of Constructed Languages. The system is modular in that one first creates a target phonology for the language using an agentic approach that refines its output at each step with commentary feedback on its previous attempt. Next, a set of sentences is 'translated' from their English original into a morphosyntactic markup that reflects the word order and morphosyntactic feature specifications of the desired target language, with affixes represented as morphosyntactic feature bundles. From this translated corpus, a lexicon is constructed using the phonological model and the set of morphemes (stems and affixes) extracted from the 'translated' sentences. The system is then instructed to provide an orthography for the language, using an existing script such as Latin or Cyrillic. Finally, the system writes a brief grammatical handbook of the language. The system can also translate further sentences into the target language. Our goal is twofold. First, we hope that these tools will be fun to use for creating artificially constructed languages. Second, we are interested in exploring what LLMs 'know' about language-not what they know about any particular language or linguistic phenomenon, but how much they know about and understand language and linguistic concepts. As we shall see, there is a fairly wide gulf in capabilities both among different LLMs and among different linguistic specifications, with it being notably easier for systems to deal with more common patterns than rarer ones. An additional avenue that we explore is the application of our approach to translating from high-resource into low-resource languages. While the results so far are mostly negative, we provide some evidence that an improved version of the present system could afford some real gains in such tasks. https://github.com/SakanaAI/IASC
comment: Initial draft
♻ ☆ Ontology-Enhanced Knowledge Graph Completion using Large Language Models
Large Language Models (LLMs) have been extensively adopted in Knowledge Graph Completion (KGC), showcasing significant research advancements. However, as black-box models driven by deep neural architectures, current LLM-based KGC methods rely on implicit knowledge representation with parallel propagation of erroneous knowledge, thereby hindering their ability to produce conclusive and decisive reasoning outcomes. We aim to integrate neural-perceptual structural information with ontological knowledge, leveraging the powerful capabilities of LLMs to achieve a deeper understanding of the intrinsic logic of the knowledge. We propose an ontology enhanced KGC method using LLMs -- OL-KGC. It first leverages neural perceptual mechanisms to effectively embed structural information into the textual space, and then uses an automated extraction algorithm to retrieve ontological knowledge from the knowledge graphs (KGs) that needs to be completed, which is further transformed into a textual format comprehensible to LLMs for providing logic guidance. We conducted extensive experiments on three widely-used benchmarks -- FB15K-237, UMLS and WN18RR. The experimental results demonstrate that OL-KGC significantly outperforms existing mainstream KGC methods across multiple evaluation metrics, achieving state-of-the-art performance.
♻ ☆ Infinity Parser: Layout Aware Reinforcement Learning for Scanned Document Parsing
Automated parsing of scanned documents into richly structured, machine-readable formats remains a critical bottleneck in Document AI, as traditional multi-stage pipelines suffer from error propagation and limited adaptability to diverse layouts. We introduce layoutRL, an end-to-end reinforcement learning framework that trains models to be explicitly layout-aware by optimizing a composite reward of normalized edit distance, paragraph count accuracy, and reading order preservation. Leveraging our newly released dataset, Infinity-Doc-55K, which combines 55K high-fidelity synthetic scanned document parsing data with expert-filtered real-world documents, we instantiate layoutRL in a vision-language-model-based parser called Infinity-Parser. Evaluated on English and Chinese benchmarks for OCR, table and formula extraction, and reading order detection, Infinity-Parser achieves new state-of-the-art performance in both accuracy and structural fidelity, outpacing specialist pipelines and general-purpose vision-language models. We will publicly release our code and dataset to accelerate progress in robust document understanding.
comment: 16 pages, 12 figures
♻ ☆ CoDial: Interpretable Task-Oriented Dialogue Systems Through Dialogue Flow Alignment
Building Task-Oriented Dialogue (TOD) systems that generalize across different tasks remains a challenging problem. Data-driven approaches often struggle to transfer effectively to unseen tasks. While recent schema-based TOD frameworks improve generalization by decoupling task logic from language understanding, their reliance on neural or generative models often obscures how task schemas influence behaviour and hence impair interpretability. In this work, we introduce a novel framework, CoDial (Code for Dialogue), which converts a TOD task schema, represented as a novel structured heterogeneous graph, to programmatic LLM guardrailing code, such as NVIDIA's Colang, enabling interpretable and efficient alignment of dialogue policies during inference. We introduce two paradigms, $\text{CoDial}_{\text{free}}$ and $\text{CoDial}_{\text{structured}}$ for generating LLM guardrails, and propose a feedback mechanism that integrates human feedback to iteratively improve the generated code. Empirically, CoDial achieves state-of-the-art (SOTA) performance on the widely used STAR dataset and is on par with SOTA on the MultiWOZ dataset, while also providing interpretability. We additionally demonstrate CoDial's iterative improvement via manual and LLM-aided feedback, making it a practical tool for expert-guided alignment of LLMs in high-stakes domains.
♻ ☆ HiPO: Hybrid Policy Optimization for Dynamic Reasoning in LLMs
Large Language Models (LLMs) increasingly rely on Chain-of-Thought (CoT) reasoning to improve accuracy on complex tasks. However, always generating lengthy reasoning traces is inefficient, leading to excessive token usage and higher inference costs. This paper introduces the Hybrid Policy Optimization (i.e., HiPO), a framework for adaptive reasoning control that enables LLMs to selectively decide when to engage in detailed reasoning (Think-on) and when to respond directly (Think-off). Specifically, HiPO combines a hybrid data pipelineproviding paired Think-on and Think-off responseswith a hybrid reinforcement learning reward system that balances accuracy and efficiency while avoiding over-reliance on detailed reasoning. Experiments across mathematics and coding benchmarks demonstrate that HiPO can substantially reduce token length while maintaining or improving accuracy. Finally, we hope HiPO a can be a principled approach for efficient adaptive reasoning, advancing the deployment of reasoning-oriented LLMs in real-world, resource-sensitive settings.
♻ ☆ Semantic Agreement Enables Efficient Open-Ended LLM Cascades EMNLP
Cascade systems route computational requests to smaller models when possible and defer to larger models only when necessary, offering a promising approach to balance cost and quality in LLM deployment. However, they face a fundamental challenge in open-ended text generation: determining output reliability when generation quality lies on a continuous spectrum, often with multiple valid responses. To address this, we propose semantic agreement -- meaning-level consensus between ensemble outputs -- as a training-free signal for reliable deferral. We show that when diverse model outputs agree semantically, their consensus is a stronger reliability signal than token-level confidence. Evaluated from 500M to 70B-parameter models, we find that semantic cascades match or surpass target-model quality at 40% of the cost and reduce latency by up to 60%. Our method requires no model internals, works across black-box APIs, and remains robust to model updates, making it a practical baseline for real-world LLM deployment.
comment: 2025 Conference on Empirical Methods in Natural Language Processing (EMNLP) Industry Track
♻ ☆ ETT: Expanding the Long Context Understanding Capability of LLMs at Test-Time
Transformer-based Language Models' computation and memory overhead increase quadratically as a function of sequence length. The quadratic cost poses challenges when employing LLMs for processing long sequences. In this work, we introduce \ourmodelacronym~(Extend at Test-Time), method for extending the context length of short context Transformer-based LLMs, with constant memory requirement and linear computation overhead. ETT enable the extension of the context length at test-time by efficient fine-tuning the model's parameters on the input context, chunked into overlapping small subsequences. We evaluate ETT on LongBench by extending the context length of GPT-Large and Phi-2 up to 32 times, increasing from 1k to 32k tokens. This results in up to a 30 percent improvement in the model's accuracy. We also study how context can be stored in LLM's weights effectively and efficiently. Through a detailed ablation study, we examine which Transformer modules are most beneficial to fine-tune at test-time. Interestingly, we find that fine-tuning the second layer of the FFNs is more effective than full fine-tuning, leading to a further improvement in the models' accuracy.
♻ ☆ Improving Metacognition and Uncertainty Communication in Language Models
Large language models (LLMs) are increasingly used in decision-making contexts, but when they present answers without signaling low confidence, users may unknowingly act on erroneous outputs. Prior work shows that LLMs maintain internal uncertainty signals, yet their expressed confidence is often miscalibrated and poorly discriminates between correct and incorrect answers. We investigate whether supervised fine-tuning can improve models' ability to communicate uncertainty and whether such improvements generalize across tasks and domains. We fine-tune LLMs on datasets spanning general knowledge, mathematics, and open-ended trivia, and evaluate two metacognitive tasks: (1) single-question confidence estimation, where the model assigns a numeric certainty to its answer, and (2) pairwise confidence comparison, where the model selects which of two answers it is more likely to answer correctly. We assess generalization to unseen domains, including medical and legal reasoning. Results show that fine-tuning improves calibration (alignment between stated confidence and accuracy) and discrimination (higher confidence for correct vs. incorrect responses) within and across domains. However, gains are task-specific: training on single-question calibration does not transfer to pairwise comparison, and vice versa. Multitask fine-tuning yields broader gains, lowering calibration error and strengthening discrimination in out-of-domain evaluations. This suggests that uncertainty communication in LLMs is trainable but requires multitask training to generalize effectively.
♻ ☆ Antislop: A Comprehensive Framework for Identifying and Eliminating Repetitive Patterns in Language Models
Widespread LLM adoption has introduced characteristic repetitive phraseology, termed "slop," which degrades output quality and makes AI-generated text immediately recognizable. We present Antislop, a comprehensive framework providing tools to both detect and eliminate these overused patterns. Our approach combines three innovations: (1) The Antislop Sampler, which uses backtracking to suppress unwanted strings at inference time without destroying vocabulary; (2) An automated pipeline that profiles model-specific slop against human baselines and generates training data; (3) Final Token Preference Optimization (FTPO), a novel fine-tuning method that operates on individual tokens, surgically adjusting logits wherever a banned pattern has appeared in an inference trace. We demonstrate that some slop patterns appear over 1,000x more frequently in LLM output than human text. The Antislop Sampler successfully suppresses 8,000+ patterns while maintaining quality, whereas token banning becomes unusable at just 2,000. Most importantly, FTPO achieves 90% slop reduction while maintaining or improving performance in cross-domain evals including GSM8K, MMLU, and creative writing tasks. In contrast, DPO suffers significant degradation in writing quality and lexical diversity despite achieving weaker suppression. We release all code and results under MIT license: https://github.com/sam-paech/auto-antislop.
comment: 11 pages + appendices, 16 figures
♻ ☆ Presenting a Paper is an Art: Self-Improvement Aesthetic Agents for Academic Presentations
The promotion of academic papers has become an important means of enhancing research visibility. However, existing automated methods struggle limited storytelling, insufficient aesthetic quality, and constrained self-adjustment, making it difficult to achieve efficient and engaging dissemination. At the heart of those challenges is a simple principle: \emph{there is no way to improve it when you cannot evaluate it right}. To address this, we introduce \textbf{EvoPresent}, a self-improvement agent framework that unifies coherent narratives, aesthetic-aware designs, and realistic presentation delivery via virtual characters. Central to EvoPresent is \textbf{PresAesth}, a multi-task reinforcement learning (RL) aesthetic model that provides reliable aesthetic scoring, defect adjustment, and comparative feedback, enabling iterative self-improvement even under limited aesthetic training data. To systematically evaluate the methods, we introduce \textbf{EvoPresent Benchmark}, a comprehensive benchmark comprising: \textit{Presentation Generation Quality}, built on 650 top-tier AI conference papers with multimodal resources (slides, videos and scripts) to assess both content and design; and \textit{Aesthetic Awareness}, consisting of 2,000 slide pairs with varying aesthetic levels, supporting joint training and evaluation on scoring, defect adjustment, and comparison. Our findings highlight that (i) High-quality feedback is essential for agent self-improvement, while initial capability alone does not guarantee effective self-correction. (ii) Automated generation pipelines exhibit a trade-off between visual design and content construction. (iii) Multi-task RL training shows stronger generalization in aesthetic awareness tasks.
♻ ☆ AgentTTS: Large Language Model Agent for Test-time Compute-optimal Scaling Strategy in Complex Tasks NeurIPS 2025
Test-time scaling (TTS) enhances the performance of large language models (LLMs) by allocating additional compute resources during inference. However, existing research primarily investigates TTS in single-stage tasks; while many real-world problems are multi-stage complex tasks, composed of a sequence of heterogeneous subtasks with each subtask requires LLM of specific capability. Therefore, we study a novel problem: the test-time compute-optimal scaling in multi-stage complex tasks, aiming to select suitable models and allocate budgets per subtask to maximize overall performance. TTS in multi-stage tasks introduces two fundamental challenges: (i) The combinatorial search space of model and budget allocations, combined with the high cost of inference, makes brute-force search impractical. (ii) The optimal model and budget allocations across subtasks are interdependent, increasing the complexity of the compute-optimal search. To address this gap, we conduct extensive pilot experiments on four tasks across six datasets, deriving three empirical insights characterizing the behavior of LLMs in multi-stage complex tasks. Informed by these insights, we propose AgentTTS, an LLM-agent-based framework that autonomously searches for compute-optimal allocations through iterative feedback-driven interactions with the execution environment. Experimental results demonstrate that AgentTTS significantly outperforms traditional and other LLM-based baselines in search efficiency, and shows improved robustness to varying training set sizes and enhanced interpretability.
comment: Accepted by NeurIPS 2025
♻ ☆ ScholaWrite: A Dataset of End-to-End Scholarly Writing Process
Writing is a cognitively demanding activity that requires constant decision-making, heavy reliance on working memory, and frequent shifts between tasks of different goals. To build writing assistants that truly align with writers' cognition, we must capture and decode the complete thought process behind how writers transform ideas into final texts. We present ScholaWrite, the first dataset of end-to-end scholarly writing, tracing the multi-month journey from initial drafts to final manuscripts. We contribute three key advances: (1) a Chrome extension that unobtrusively records keystrokes on Overleaf, enabling the collection of realistic, in-situ writing data; (2) a novel corpus of full scholarly manuscripts, enriched with fine-grained annotations of cognitive writing intentions. The dataset includes \LaTeX-based edits from five computer science preprints, capturing nearly 62K text changes over four months; and (3) analyses and insights into the micro-dynamics of scholarly writing, highlighting gaps between human writing processes and the current capabilities of large language models (LLMs) in providing meaningful assistance. ScholaWrite underscores the value of capturing end-to-end writing data to develop future writing assistants that support, not replace, the cognitive work of scientists.
comment: Equal contribution: Khanh Chi Le, Linghe Wang, Minhwa Lee | project page: https://minnesotanlp.github.io/scholawrite/
♻ ☆ CtrlDiff: Boosting Large Diffusion Language Models with Dynamic Block Prediction and Controllable Generation
Although autoregressive models have dominated language modeling in recent years, there has been a growing interest in exploring alternative paradigms to the conventional next-token prediction framework. Diffusion-based language models have emerged as a compelling alternative due to their powerful parallel generation capabilities and inherent editability. However, these models are often constrained by fixed-length generation. A promising direction is to combine the strengths of both paradigms, segmenting sequences into blocks, modeling autoregressive dependencies across blocks while leveraging discrete diffusion to estimate the conditional distribution within each block given the preceding context. Nevertheless, their practical application is often hindered by two key limitations: rigid fixed-length outputs and a lack of flexible control mechanisms. In this work, we address the critical limitations of fixed granularity and weak controllability in current large diffusion language models. We propose CtrlDiff, a dynamic and controllable semi-autoregressive framework that adaptively determines the size of each generation block based on local semantics using reinforcement learning. Furthermore, we introduce a classifier-guided control mechanism tailored to discrete diffusion, which significantly reduces computational overhead while facilitating efficient post-hoc conditioning without retraining. Extensive experiments demonstrate that CtrlDiff sets a new standard among hybrid diffusion models, narrows the performance gap to state-of-the-art autoregressive approaches, and enables effective conditional text generation across diverse tasks.
♻ ☆ ALHD: A Large-Scale and Multigenre Benchmark Dataset for Arabic LLM-Generated Text Detection
We introduce ALHD, the first large-scale comprehensive Arabic dataset explicitly designed to distinguish between human- and LLM-generated texts. ALHD spans three genres (news, social media, reviews), covering both MSA and dialectal Arabic, and contains over 400K balanced samples generated by three leading LLMs and originated from multiple human sources, which enables studying generalizability in Arabic LLM-genearted text detection. We provide rigorous preprocessing, rich annotations, and standardized balanced splits to support reproducibility. In addition, we present, analyze and discuss benchmark experiments using our new dataset, in turn identifying gaps and proposing future research directions. Benchmarking across traditional classifiers, BERT-based models, and LLMs (zero-shot and few-shot) demonstrates that fine-tuned BERT models achieve competitive performance, outperforming LLM-based models. Results are however not always consistent, as we observe challenges when generalizing across genres; indeed, models struggle to generalize when they need to deal with unseen patterns in cross-genre settings, and these challenges are particularly prominent when dealing with news articles, where LLM-generated texts resemble human texts in style, which opens up avenues for future research. ALHD establishes a foundation for research related to Arabic LLM-detection and mitigating risks of misinformation, academic dishonesty, and cyber threats.
comment: 47 pages, 15 figures. Dataset available at Zenodo: https://doi.org/10.5281/zenodo.17249602 Codebase available at GitHub: https://github.com/alikhairallah/ALHD-Benchmarking
♻ ☆ Robustness Assessment and Enhancement of Text Watermarking for Google's SynthID
Recent advances in LLM watermarking methods such as SynthID-Text by Google DeepMind offer promising solutions for tracing the provenance of AI-generated text. However, our robustness assessment reveals that SynthID-Text is vulnerable to meaning-preserving attacks, such as paraphrasing, copy-paste modifications, and back-translation, which can significantly degrade watermark detectability. To address these limitations, we propose SynGuard, a hybrid framework that combines the semantic alignment strength of Semantic Information Retrieval (SIR) with the probabilistic watermarking mechanism of SynthID-Text. Our approach jointly embeds watermarks at both lexical and semantic levels, enabling robust provenance tracking while preserving the original meaning. Experimental results across multiple attack scenarios show that SynGuard improves watermark recovery by an average of 11.1\% in F1 score compared to SynthID-Text. These findings demonstrate the effectiveness of semantic-aware watermarking in resisting real-world tampering. All code, datasets, and evaluation scripts are publicly available at: https://github.com/githshine/SynGuard.
comment: Accepted by TrustCom2025
♻ ☆ PixelWorld: How Far Are We from Perceiving Everything as Pixels?
Recent agentic language models increasingly need to interact with real-world environments that contain tightly intertwined visual and textual information, often through raw camera pixels rather than separately processed images and tokenized text. This shift highlights the need for a unified perception paradigm. To investigate this idea, we explore Perceive Everything as Pixels (PEAP) and introduce PixelWorld, a benchmark that renders natural-language, tabular, mathematical, and diagrammatic inputs into a shared pixel space. Experiments across multiple benchmarks show that PEAP achieves comparable performance to token-based approaches on semantic understanding tasks, suggesting that vision transformers can partially capture global textual semantics without explicit tokenization. In contrast, reasoning-intensive tasks such as mathematics and code show notable performance degradation, although Chain-of-Thought prompting helps mitigate this gap by compensating for missing symbolic structure. We further find that when visual and textual information are closely integrated, representing everything as pixels simplifies preprocessing and avoids cross-modal misalignment. PixelWorld thus provides a systematic and practical framework for evaluating unified vision--language models and facilitates further exploration of pixel-based multimodal learning.
♻ ☆ Efficient Interleaved Speech Modeling through Knowledge Distillation
Current speech language models exceed the size and latency constraints of many deployment environments. We build compact, expressive speech generation models through layer-aligned distillation, matching hidden states, attention maps, and softened logits to compress large multimodal transformers by 3x with minimal loss in performance. We introduce TinyWave, a family of 2B-parameter models for speech-to-speech and interleaved speech-text generation, trained on 50,000 hours of public audio. TinyWave supports (i) speech-only generation using phonetic or expressive tokens and (ii) mixed speech-text continuations. Evaluation on Libri-Light shows TinyWave within 1.4 normalized perplexity points of its teacher. Accuracy on spoken StoryCloze and SALMon reaches 93-97% of the teacher's performance, outperforming size-matched baselines. These models are optimized for deployment on commodity hardware, enabling applications in real-time conversational agents, assistive technologies, and low-resource environments. We release models, training code, and evaluation scripts to support reproducible research on compact, expressive speech generation.
♻ ☆ CausalRAG: Integrating Causal Graphs into Retrieval-Augmented Generation ACL 2025
Large language models (LLMs) have revolutionized natural language processing (NLP), particularly through Retrieval-Augmented Generation (RAG), which enhances LLM capabilities by integrating external knowledge. However, traditional RAG systems face critical limitations, including disrupted contextual integrity due to text chunking, and over-reliance on semantic similarity for retrieval. To address these issues, we propose CausalRAG, a novel framework that incorporates causal graphs into the retrieval process. By constructing and tracing causal relationships, CausalRAG preserves contextual continuity and improves retrieval precision, leading to more accurate and interpretable responses. We evaluate CausalRAG against regular RAG and graph-based RAG approaches, demonstrating its superiority across several metrics. Our findings suggest that grounding retrieval in causal reasoning provides a promising approach to knowledge-intensive tasks.
comment: Accepted at Findings of ACL 2025
♻ ☆ Flow-SLM: Joint Learning of Linguistic and Acoustic Information for Spoken Language Modeling
Textless spoken language models (SLMs) are generative models of speech that do not rely on text supervision. Most textless SLMs learn to predict the next semantic token, a discrete representation of linguistic content, and rely on a separate vocoder to add acoustic information to the generated speech. Such models have no access to acoustic context and no built-in control over acoustic details. In this work, we propose to jointly model linguistic and acoustic information by generating semantic tokens and a continuous real-valued representation of the acoustic frame. We use a flow-matching objective to predict the continuous vector conditioned on the semantic tokens. We study the design space of this approach and find that predicting multiple future semantic tokens helps preserve linguistic information. Our approach achieves comparable performance to existing models in terms of linguistic likelihood benchmarks, while providing better acoustic detail in prompted generation.
comment: ASRU 2025. Project page: https://jjery2243542.github.io/flowslm.github.io/
Machine Learning 279
☆ Retaining by Doing: The Role of On-Policy Data in Mitigating Forgetting
Adapting language models (LMs) to new tasks via post-training carries the risk of degrading existing capabilities -- a phenomenon classically known as catastrophic forgetting. In this paper, toward identifying guidelines for mitigating this phenomenon, we systematically compare the forgetting patterns of two widely adopted post-training methods: supervised fine-tuning (SFT) and reinforcement learning (RL). Our experiments reveal a consistent trend across LM families (Llama, Qwen) and tasks (instruction following, general knowledge, and arithmetic reasoning): RL leads to less forgetting than SFT while achieving comparable or higher target task performance. To investigate the cause for this difference, we consider a simplified setting in which the LM is modeled as a mixture of two distributions, one corresponding to prior knowledge and the other to the target task. We identify that the mode-seeking nature of RL, which stems from its use of on-policy data, enables keeping prior knowledge intact when learning the target task. We then verify this insight by demonstrating that the use on-policy data underlies the robustness of RL to forgetting in practical settings, as opposed to other algorithmic choices such as the KL regularization or advantage estimation. Lastly, as a practical implication, our results highlight the potential of mitigating forgetting using approximately on-policy data, which can be substantially more efficient to obtain than fully on-policy data.
☆ LightMem: Lightweight and Efficient Memory-Augmented Generation
Despite their remarkable capabilities, Large Language Models (LLMs) struggle to effectively leverage historical interaction information in dynamic and complex environments. Memory systems enable LLMs to move beyond stateless interactions by introducing persistent information storage, retrieval, and utilization mechanisms. However, existing memory systems often introduce substantial time and computational overhead. To this end, we introduce a new memory system called LightMem, which strikes a balance between the performance and efficiency of memory systems. Inspired by the Atkinson-Shiffrin model of human memory, LightMem organizes memory into three complementary stages. First, cognition-inspired sensory memory rapidly filters irrelevant information through lightweight compression and groups information according to their topics. Next, topic-aware short-term memory consolidates these topic-based groups, organizing and summarizing content for more structured access. Finally, long-term memory with sleep-time update employs an offline procedure that decouples consolidation from online inference. Experiments on LongMemEval with GPT and Qwen backbones show that LightMem outperforms strong baselines in accuracy (up to 10.9% gains) while reducing token usage by up to 117x, API calls by up to 159x, and runtime by over 12x. The code is available at https://github.com/zjunlp/LightMem.
comment: Work in progress
☆ Lyapunov-Aware Quantum-Inspired Reinforcement Learning for Continuous-Time Vehicle Control: A Feasibility Study
This paper presents a novel Lyapunov-Based Quantum Reinforcement Learning (LQRL) framework that integrates quantum policy optimization with Lyapunov stability analysis for continuous-time vehicle control. The proposed approach combines the representational power of variational quantum circuits (VQCs) with a stability-aware policy gradient mechanism to ensure asymptotic convergence and safe decision-making under dynamic environments. The vehicle longitudinal control problem was formulated as a continuous-state reinforcement learning task, where the quantum policy network generates control actions subject to Lyapunov stability constraints. Simulation experiments were conducted in a closed-loop adaptive cruise control scenario using a quantum-inspired policy trained under stability feedback. The results demonstrate that the LQRL framework successfully embeds Lyapunov stability verification into quantum policy learning, enabling interpretable and stability-aware control performance. Although transient overshoot and Lyapunov divergence were observed under aggressive acceleration, the system maintained bounded state evolution, validating the feasibility of integrating safety guarantees within quantum reinforcement learning architectures. The proposed framework provides a foundational step toward provably safe quantum control in autonomous systems and hybrid quantum-classical optimization domains.
comment: 7 pages, 4 figures, 20 equations, 3 appendices, 4 tables
☆ A Hybrid Enumeration Framework for Optimal Counterfactual Generation in Post-Acute COVID-19 Heart Failure
Counterfactual inference provides a mathematical framework for reasoning about hypothetical outcomes under alternative interventions, bridging causal reasoning and predictive modeling. We present a counterfactual inference framework for individualized risk estimation and intervention analysis, illustrated through a clinical application to post-acute sequelae of COVID-19 (PASC) among patients with pre-existing heart failure (HF). Using longitudinal diagnosis, laboratory, and medication data from a large health-system cohort, we integrate regularized predictive modeling with counterfactual search to identify actionable pathways to PASC-related HF hospital admissions. The framework combines exact enumeration with optimization-based methods, including the Nearest Instance Counterfactual Explanations (NICE) and Multi-Objective Counterfactuals (MOC) algorithms, to efficiently explore high-dimensional intervention spaces. Applied to more than 2700 individuals with confirmed SARS-CoV-2 infection and prior HF, the model achieved strong discriminative performance (AUROC: 0.88, 95% CI: 0.84-0.91) and generated interpretable, patient-specific counterfactuals that quantify how modifying comorbidity patterns or treatment factors could alter predicted outcomes. This work demonstrates how counterfactual reasoning can be formalized as an optimization problem over predictive functions, offering a rigorous, interpretable, and computationally efficient approach to personalized inference in complex biomedical systems.
☆ MTraining: Distributed Dynamic Sparse Attention for Efficient Ultra-Long Context Training
The adoption of long context windows has become a standard feature in Large Language Models (LLMs), as extended contexts significantly enhance their capacity for complex reasoning and broaden their applicability across diverse scenarios. Dynamic sparse attention is a promising approach for reducing the computational cost of long-context. However, efficiently training LLMs with dynamic sparse attention on ultra-long contexts-especially in distributed settings-remains a significant challenge, due in large part to worker- and step-level imbalance. This paper introduces MTraining, a novel distributed methodology leveraging dynamic sparse attention to enable efficient training for LLMs with ultra-long contexts. Specifically, MTraining integrates three key components: a dynamic sparse training pattern, balanced sparse ring attention, and hierarchical sparse ring attention. These components are designed to synergistically address the computational imbalance and communication overheads inherent in dynamic sparse attention mechanisms during the training of models with extensive context lengths. We demonstrate the efficacy of MTraining by training Qwen2.5-3B, successfully expanding its context window from 32K to 512K tokens on a cluster of 32 A100 GPUs. Our evaluations on a comprehensive suite of downstream tasks, including RULER, PG-19, InfiniteBench, and Needle In A Haystack, reveal that MTraining achieves up to a 6x higher training throughput while preserving model accuracy. Our code is available at https://github.com/microsoft/MInference/tree/main/MTraining.
☆ Actor-Free Continuous Control via Structurally Maximizable Q-Functions NeurIPS 2025
Value-based algorithms are a cornerstone of off-policy reinforcement learning due to their simplicity and training stability. However, their use has traditionally been restricted to discrete action spaces, as they rely on estimating Q-values for individual state-action pairs. In continuous action spaces, evaluating the Q-value over the entire action space becomes computationally infeasible. To address this, actor-critic methods are typically employed, where a critic is trained on off-policy data to estimate Q-values, and an actor is trained to maximize the critic's output. Despite their popularity, these methods often suffer from instability during training. In this work, we propose a purely value-based framework for continuous control that revisits structural maximization of Q-functions, introducing a set of key architectural and algorithmic choices to enable efficient and stable learning. We evaluate the proposed actor-free Q-learning approach on a range of standard simulation tasks, demonstrating performance and sample efficiency on par with state-of-the-art baselines, without the cost of learning a separate actor. Particularly, in environments with constrained action spaces, where the value functions are typically non-smooth, our method with structural maximization outperforms traditional actor-critic methods with gradient-based maximization. We have released our code at https://github.com/USC-Lira/Q3C.
comment: 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
☆ SO(3)-invariant PCA with application to molecular data
Principal component analysis (PCA) is a fundamental technique for dimensionality reduction and denoising; however, its application to three-dimensional data with arbitrary orientations -- common in structural biology -- presents significant challenges. A naive approach requires augmenting the dataset with many rotated copies of each sample, incurring prohibitive computational costs. In this paper, we extend PCA to 3D volumetric datasets with unknown orientations by developing an efficient and principled framework for SO(3)-invariant PCA that implicitly accounts for all rotations without explicit data augmentation. By exploiting underlying algebraic structure, we demonstrate that the computation involves only the square root of the total number of covariance entries, resulting in a substantial reduction in complexity. We validate the method on real-world molecular datasets, demonstrating its effectiveness and opening up new possibilities for large-scale, high-dimensional reconstruction problems.
☆ BO4Mob: Bayesian Optimization Benchmarks for High-Dimensional Urban Mobility Problem
We introduce \textbf{BO4Mob}, a new benchmark framework for high-dimensional Bayesian Optimization (BO), driven by the challenge of origin-destination (OD) travel demand estimation in large urban road networks. Estimating OD travel demand from limited traffic sensor data is a difficult inverse optimization problem, particularly in real-world, large-scale transportation networks. This problem involves optimizing over high-dimensional continuous spaces where each objective evaluation is computationally expensive, stochastic, and non-differentiable. BO4Mob comprises five scenarios based on real-world San Jose, CA road networks, with input dimensions scaling up to 10,100. These scenarios utilize high-resolution, open-source traffic simulations that incorporate realistic nonlinear and stochastic dynamics. We demonstrate the benchmark's utility by evaluating five optimization methods: three state-of-the-art BO algorithms and two non-BO baselines. This benchmark is designed to support both the development of scalable optimization algorithms and their application for the design of data-driven urban mobility models, including high-resolution digital twins of metropolitan road networks. Code and documentation are available at https://github.com/UMN-Choi-Lab/BO4Mob.
☆ Search Self-play: Pushing the Frontier of Agent Capability without Supervision
Reinforcement learning with verifiable rewards (RLVR) has become the mainstream technique for training LLM agents. However, RLVR highly depends on well-crafted task queries and corresponding ground-truth answers to provide accurate rewards, which requires massive human efforts and hinders the RL scaling processes, especially under agentic scenarios. Although a few recent works explore task synthesis methods, the difficulty of generated agentic tasks can hardly be controlled to provide effective RL training advantages. To achieve agentic RLVR with higher scalability, we explore self-play training for deep search agents, in which the learning LLM utilizes multi-turn search engine calling and acts simultaneously as both a task proposer and a problem solver. The task proposer aims to generate deep search queries with well-defined ground-truth answers and increasing task difficulty. The problem solver tries to handle the generated search queries and output the correct answer predictions. To ensure that each generated search query has accurate ground truth, we collect all the searching results from the proposer's trajectory as external knowledge, then conduct retrieval-augmentation generation (RAG) to test whether the proposed query can be correctly answered with all necessary search documents provided. In this search self-play (SSP) game, the proposer and the solver co-evolve their agent capabilities through both competition and cooperation. With substantial experimental results, we find that SSP can significantly improve search agents' performance uniformly on various benchmarks without any supervision under both from-scratch and continuous RL training setups. The code is at https://github.com/Alibaba-Quark/SSP.
☆ Online SFT for LLM Reasoning: Surprising Effectiveness of Self-Tuning without Rewards
We present a simple, self-help online supervised finetuning (OSFT) paradigm for LLM reasoning. In this paradigm, the model generates its own responses and is immediately finetuned on this self-generated data. OSFT is a highly efficient training strategy for LLM reasoning, as it is reward-free and uses just one rollout by default. Experiment results show that OSFT achieves downstream performance on challenging mathematical reasoning tasks comparable to strong reinforcement learning with verifiable rewards (RLVR) methods such as GRPO. Our ablation study further demonstrates the efficiency and robustness of OSFT. The major mechanism of OSFT lies in facilitating the model's own existing preference (latent knowledge) learned from pretraining, which leads to reasoning ability improvement. We believe that OSFT offers an efficient and promising alternative to more complex, reward-based training paradigms. Our code is available at https://github.com/ElementQi/OnlineSFT.
☆ A Unified Perspective on Optimization in Machine Learning and Neuroscience: From Gradient Descent to Neural Adaptation
Iterative optimization is central to modern artificial intelligence (AI) and provides a crucial framework for understanding adaptive systems. This review provides a unified perspective on this subject, bridging classic theory with neural network training and biological learning. Although gradient-based methods, powered by the efficient but biologically implausible backpropagation (BP), dominate machine learning, their computational demands can hinder scalability in high-dimensional settings. In contrast, derivative-free or zeroth-order (ZO) optimization feature computationally lighter approaches that rely only on function evaluations and randomness. While generally less sample efficient, recent breakthroughs demonstrate that modern ZO methods can effectively approximate gradients and achieve performance competitive with BP in neural network models. This ZO paradigm is also particularly relevant for biology. Its core principles of random exploration (probing) and feedback-guided adaptation (reinforcing) parallel key mechanisms of biological learning, offering a mathematically principled perspective on how the brain learns. In this review, we begin by categorizing optimization approaches based on the order of derivative information they utilize, ranging from first-, second-, and higher-order gradient-based to ZO methods. We then explore how these methods are adapted to the unique challenges of neural network training and the resulting learning dynamics. Finally, we build upon these insights to view biological learning through an optimization lens, arguing that a ZO paradigm leverages the brain's intrinsic noise as a computational resource. This framework not only illuminates our understanding of natural intelligence but also holds vast implications for neuromorphic hardware, helping us design fast and energy-efficient AI systems that exploit intrinsic hardware noise.
☆ When LRP Diverges from Leave-One-Out in Transformers EMNLP 2025
Leave-One-Out (LOO) provides an intuitive measure of feature importance but is computationally prohibitive. While Layer-Wise Relevance Propagation (LRP) offers a potentially efficient alternative, its axiomatic soundness in modern Transformers remains largely under-examined. In this work, we first show that the bilinear propagation rules used in recent advances of AttnLRP violate the implementation invariance axiom. We prove this analytically and confirm it empirically in linear attention layers. Second, we also revisit CP-LRP as a diagnostic baseline and find that bypassing relevance propagation through the softmax layer -- backpropagating relevance only through the value matrices -- significantly improves alignment with LOO, particularly in middle-to-late Transformer layers. Overall, our results suggest that (i) bilinear factorization sensitivity and (ii) softmax propagation error potentially jointly undermine LRP's ability to approximate LOO in Transformers.
comment: BlackboxNLP @ EMNLP 2025
☆ On Biologically Plausible Learning in Continuous Time
Biological learning unfolds continuously in time, yet most algorithmic models rely on discrete updates and separate inference and learning phases. We study a continuous-time neural model that unifies several biologically plausible learning algorithms and removes the need for phase separation. Rules including stochastic gradient descent (SGD), feedback alignment (FA), direct feedback alignment (DFA), and Kolen-Pollack (KP) emerge naturally as limiting cases of the dynamics. Simulations show that these continuous-time networks stably learn at biological timescales, even under temporal mismatches and integration noise. Through analysis and simulation, we show that learning depends on temporal overlap: a synapse updates correctly only when its input and the corresponding error signal coincide in time. When inputs are held constant, learning strength declines linearly as the delay between input and error approaches the stimulus duration, explaining observed robustness and failure across network depths. Critically, robust learning requires the synaptic plasticity timescale to exceed the stimulus duration by one to two orders of magnitude. For typical cortical stimuli (tens of milliseconds), this places the functional plasticity window in the few-second range, a testable prediction that identifies seconds-scale eligibility traces as necessary for error-driven learning in biological circuits.
☆ Decoding Funded Research: Comparative Analysis of Topic Models and Uncovering the Effect of Gender and Geographic Location
Optimizing national scientific investment requires a clear understanding of evolving research trends and the demographic and geographical forces shaping them, particularly in light of commitments to equity, diversity, and inclusion. This study addresses this need by analyzing 18 years (2005-2022) of research proposals funded by the Natural Sciences and Engineering Research Council of Canada (NSERC). We conducted a comprehensive comparative evaluation of three topic modelling approaches: Latent Dirichlet Allocation (LDA), Structural Topic Modelling (STM), and BERTopic. We also introduced a novel algorithm, named COFFEE, designed to enable robust covariate effect estimation for BERTopic. This advancement addresses a significant gap, as BERTopic lacks a native function for covariate analysis, unlike the probabilistic STM. Our findings highlight that while all models effectively delineate core scientific domains, BERTopic outperformed by consistently identifying more granular, coherent, and emergent themes, such as the rapid expansion of artificial intelligence. Additionally, the covariate analysis, powered by COFFEE, confirmed distinct provincial research specializations and revealed consistent gender-based thematic patterns across various scientific disciplines. These insights offer a robust empirical foundation for funding organizations to formulate more equitable and impactful funding strategies, thereby enhancing the effectiveness of the scientific ecosystem.
comment: 35 pages
☆ Stick-Breaking Embedded Topic Model with Continuous Optimal Transport for Online Analysis of Document Streams
Online topic models are unsupervised algorithms to identify latent topics in data streams that continuously evolve over time. Although these methods naturally align with real-world scenarios, they have received considerably less attention from the community compared to their offline counterparts, due to specific additional challenges. To tackle these issues, we present SB-SETM, an innovative model extending the Embedded Topic Model (ETM) to process data streams by merging models formed on successive partial document batches. To this end, SB-SETM (i) leverages a truncated stick-breaking construction for the topic-per-document distribution, enabling the model to automatically infer from the data the appropriate number of active topics at each timestep; and (ii) introduces a merging strategy for topic embeddings based on a continuous formulation of optimal transport adapted to the high dimensionality of the latent topic space. Numerical experiments show SB-SETM outperforming baselines on simulated scenarios. We extensively test it on a real-world corpus of news articles covering the Russian-Ukrainian war throughout 2022-2023.
comment: Under review
☆ CAGE: Curvature-Aware Gradient Estimation For Accurate Quantization-Aware Training
Despite significant work on low-bit quantization-aware training (QAT), there is still a large accuracy gap between such techniques and native training. To address this, we introduce CAGE (Curvature-Aware Gradient Estimation), a new QAT method that augments the straight-through estimator (STE) gradient with a curvature-aware correction designed to counteract the loss increase induced by quantization. CAGE is derived from a multi-objective view of QAT that balances loss minimization with adherence to quantization constraints, yielding a principled correction term that depends on local curvature information. On the theoretical side, we introduce the notion of Pareto-optimal solutions for quantized optimization, and establish that CAGE yields strong convergence guarantees in the smooth non-convex setting. In terms of implementation, our approach is optimizer-agnostic, but we provide a highly-efficient implementation that leverages Adam statistics. When pre-training Llama-style models of up to 800M-parameters, CAGE recovers over 10% of the quantization-induced loss increase in the W4A4 regime over outlier-mitigation methods. These results indicate that curvature-aware gradient corrections can bridge the remaining performance gap beyond current outlier-handling methods.
☆ Enhancing Fractional Gradient Descent with Learned Optimizers
Fractional Gradient Descent (FGD) offers a novel and promising way to accelerate optimization by incorporating fractional calculus into machine learning. Although FGD has shown encouraging initial results across various optimization tasks, it faces significant challenges with convergence behavior and hyperparameter selection. Moreover, the impact of its hyperparameters is not fully understood, and scheduling them is particularly difficult in non-convex settings such as neural network training. To address these issues, we propose a novel approach called Learning to Optimize Caputo Fractional Gradient Descent (L2O-CFGD), which meta-learns how to dynamically tune the hyperparameters of Caputo FGD (CFGD). Our method's meta-learned schedule outperforms CFGD with static hyperparameters found through an extensive search and, in some tasks, achieves performance comparable to a fully black-box meta-learned optimizer. L2O-CFGD can thus serve as a powerful tool for researchers to identify high-performing hyperparameters and gain insights on how to leverage the history-dependence of the fractional differential in optimization.
☆ A Frequentist Statistical Introduction to Variational Inference, Autoencoders, and Diffusion Models
While Variational Inference (VI) is central to modern generative models like Variational Autoencoders (VAEs) and Denoising Diffusion Models (DDMs), its pedagogical treatment is split across disciplines. In statistics, VI is typically framed as a Bayesian method for posterior approximation. In machine learning, however, VAEs and DDMs are developed from a Frequentist viewpoint, where VI is used to approximate a maximum likelihood estimator. This creates a barrier for statisticians, as the principles behind VAEs and DDMs are hard to contextualize without a corresponding Frequentist introduction to VI. This paper provides that introduction: we explain the theory for VI, VAEs, and DDMs from a purely Frequentist perspective, starting with the classical Expectation-Maximization (EM) algorithm. We show how VI arises as a scalable solution for intractable E-steps and how VAEs and DDMs are natural, deep-learning-based extensions of this framework, thereby bridging the gap between classical statistical inference and modern generative AI.
comment: This is an introduction paper. 28 pages, 2 figures
☆ Improving the Generation and Evaluation of Synthetic Data for Downstream Medical Causal Inference
Causal inference is essential for developing and evaluating medical interventions, yet real-world medical datasets are often difficult to access due to regulatory barriers. This makes synthetic data a potentially valuable asset that enables these medical analyses, along with the development of new inference methods themselves. Generative models can produce synthetic data that closely approximate real data distributions, yet existing methods do not consider the unique challenges that downstream causal inference tasks, and specifically those focused on treatments, pose. We establish a set of desiderata that synthetic data containing treatments should satisfy to maximise downstream utility: preservation of (i) the covariate distribution, (ii) the treatment assignment mechanism, and (iii) the outcome generation mechanism. Based on these desiderata, we propose a set of evaluation metrics to assess such synthetic data. Finally, we present STEAM: a novel method for generating Synthetic data for Treatment Effect Analysis in Medicine that mimics the data-generating process of data containing treatments and optimises for our desiderata. We empirically demonstrate that STEAM achieves state-of-the-art performance across our metrics as compared to existing generative models, particularly as the complexity of the true data-generating process increases.
☆ Symbolic Emulators for Cosmology: Accelerating Cosmological Analyses Without Sacrificing Precision
In cosmology, emulators play a crucial role by providing fast and accurate predictions of complex physical models, enabling efficient exploration of high-dimensional parameter spaces that would be computationally prohibitive with direct numerical simulations. Symbolic emulators have emerged as promising alternatives to numerical approaches, delivering comparable accuracy with significantly faster evaluation times. While previous symbolic emulators were limited to relatively narrow prior ranges, we expand these to cover the parameter space relevant for current cosmological analyses. We introduce approximations to hypergeometric functions used for the $\Lambda$CDM comoving distance and linear growth factor which are accurate to better than 0.001% and 0.05%, respectively, for all redshifts and for $\Omega_{\rm m} \in [0.1, 0.5]$. We show that integrating symbolic emulators into a Dark Energy Survey-like $3\times2$pt analysis produces cosmological constraints consistent with those obtained using standard numerical methods. Our symbolic emulators offer substantial improvements in speed and memory usage, demonstrating their practical potential for scalable, likelihood-based inference.
comment: 22 pages, 6 figures. Invited contribution for the Royal Society Philosophical Transactions A special issue "Symbolic regression in the physical sciences"
☆ Diffusion Buffer for Online Generative Speech Enhancement
Online Speech Enhancement was mainly reserved for predictive models. A key advantage of these models is that for an incoming signal frame from a stream of data, the model is called only once for enhancement. In contrast, generative Speech Enhancement models often require multiple calls, resulting in a computational complexity that is too high for many online speech enhancement applications. This work presents the Diffusion Buffer, a generative diffusion-based Speech Enhancement model which only requires one neural network call per incoming signal frame from a stream of data and performs enhancement in an online fashion on a consumer-grade GPU. The key idea of the Diffusion Buffer is to align physical time with Diffusion time-steps. The approach progressively denoises frames through physical time, where past frames have more noise removed. Consequently, an enhanced frame is output to the listener with a delay defined by the Diffusion Buffer, and the output frame has a corresponding look-ahead. In this work, we extend upon our previous work by carefully designing a 2D convolutional UNet architecture that specifically aligns with the Diffusion Buffer's look-ahead. We observe that the proposed UNet improves performance, particularly when the algorithmic latency is low. Moreover, we show that using a Data Prediction loss instead of Denoising Score Matching loss enables flexible control over the trade-off between algorithmic latency and quality during inference. The extended Diffusion Buffer equipped with a novel NN and loss function drastically reduces the algorithmic latency from 320 - 960 ms to 32 - 176 ms with an even increased performance. While it has been shown before that offline generative diffusion models outperform predictive approaches in unseen noisy speech data, we confirm that the online Diffusion Buffer also outperforms its predictive counterpart on unseen noisy speech data.
☆ Verifiable Accuracy and Abstention Rewards in Curriculum RL to Alleviate Lost-in-Conversation
Large Language Models demonstrate strong capabilities in single-turn instruction following but suffer from Lost-in-Conversation (LiC), a degradation in performance as information is revealed progressively in multi-turn settings. Motivated by the current progress on Reinforcement Learning with Verifiable Rewards (RLVR), we propose Curriculum Reinforcement Learning with Verifiable Accuracy and Abstention Rewards (RLAAR), a framework that encourages models not only to generate correct answers, but also to judge the solvability of questions in the multi-turn conversation setting. Our approach employs a competence-gated curriculum that incrementally increases dialogue difficulty (in terms of instruction shards), stabilizing training while promoting reliability. Using multi-turn, on-policy rollouts and a mixed-reward system, RLAAR teaches models to balance problem-solving with informed abstention, reducing premature answering behaviors that cause LiC. Evaluated on LiC benchmarks, RLAAR significantly mitigates LiC performance decay (62.6% to 75.1%) and improves calibrated abstention rates (33.5% to 73.4%). Together, these results provide a practical recipe for building multi-turn reliable and trustworthy LLMs.
☆ Adapting Language Balance in Code-Switching Speech ICASSP 2026
Despite achieving impressive results on standard benchmarks, large foundational models still struggle against code-switching test cases. When data scarcity cannot be used as the usual justification for poor performance, the reason may lie in the infrequent occurrence of code-switched moments, where the embedding of the second language appears subtly. Instead of expecting the models to learn this infrequency on their own, it might be beneficial to provide the training process with labels. Evaluating model performance on code-switching data requires careful localization of code-switching points where recognition errors are most consequential, so that the analysis emphasizes mistakes occurring at those moments. Building on this observation, we leverage the difference between the embedded and the main language to highlight those code-switching points and thereby emphasize learning at those locations. This simple yet effective differentiable surrogate mitigates context bias during generation -- the central challenge in code-switching -- thereby improving the model's robustness. Our experiments with Arabic and Chinese-English showed that the models are able to predict the switching places more correctly, reflected by the reduced substitution error.
comment: Submitted to ICASSP 2026
☆ Bayesian Low-Rank Factorization for Robust Model Adaptation ICASSP 2026
Large speech foundation models achieve strong performance across many domains, but they often require adaptation to handle local needs such as code-switching, where speakers mix languages within the same utterance. Direct fine-tuning of these models risks overfitting to the target domain and overwriting the broad capabilities of the base model. To address this challenge, we explore Bayesian factorized adapters for speech foundation models, which place priors near zero to achieve sparser adaptation matrices and thereby retain general performance while adapting to specific domains. We apply our approach to the Whisper model and evaluate on different multilingual code-switching scenarios. Our results show only minimal adaptation loss while significantly reducing catastrophic forgetting of the base model. Compared to LoRA, our method achieves a backward gain of 54% with only a 4% drop on the new domain. These findings highlight the effectiveness of Bayesian adaptation for fine-tuning speech foundation models without sacrificing generalization.
comment: Submitted to ICASSP 2026
☆ Preference-based Reinforcement Learning beyond Pairwise Comparisons: Benefits of Multiple Options NeurIPS 2025
We study online preference-based reinforcement learning (PbRL) with the goal of improving sample efficiency. While a growing body of theoretical work has emerged-motivated by PbRL's recent empirical success, particularly in aligning large language models (LLMs)-most existing studies focus only on pairwise comparisons. A few recent works (Zhu et al., 2023, Mukherjee et al., 2024, Thekumparampil et al., 2024) have explored using multiple comparisons and ranking feedback, but their performance guarantees fail to improve-and can even deteriorate-as the feedback length increases, despite the richer information available. To address this gap, we adopt the Plackett-Luce (PL) model for ranking feedback over action subsets and propose M-AUPO, an algorithm that selects multiple actions by maximizing the average uncertainty within the offered subset. We prove that M-AUPO achieves a suboptimality gap of $\tilde{\mathcal{O}}\left( \frac{d}{T} \sqrt{ \sum_{t=1}^T \frac{1}{|S_t|}} \right)$, where $T$ is the total number of rounds, $d$ is the feature dimension, and $|S_t|$ is the size of the subset at round $t$. This result shows that larger subsets directly lead to improved performance and, notably, the bound avoids the exponential dependence on the unknown parameter's norm, which was a fundamental limitation in most previous works. Moreover, we establish a near-matching lower bound of $\Omega \left( \frac{d}{K \sqrt{T}} \right)$, where $K$ is the maximum subset size. To the best of our knowledge, this is the first theoretical result in PbRL with ranking feedback that explicitly shows improved sample efficiency as a function of the subset size.
comment: Accepted at NeurIPS 2025
☆ Reinforcement Learning with Imperfect Transition Predictions: A Bellman-Jensen Approach
Traditional reinforcement learning (RL) assumes the agents make decisions based on Markov decision processes (MDPs) with one-step transition models. In many real-world applications, such as energy management and stock investment, agents can access multi-step predictions of future states, which provide additional advantages for decision making. However, multi-step predictions are inherently high-dimensional: naively embedding these predictions into an MDP leads to an exponential blow-up in state space and the curse of dimensionality. Moreover, existing RL theory provides few tools to analyze prediction-augmented MDPs, as it typically works on one-step transition kernels and cannot accommodate multi-step predictions with errors or partial action-coverage. We address these challenges with three key innovations: First, we propose the \emph{Bayesian value function} to characterize the optimal prediction-aware policy tractably. Second, we develop a novel \emph{Bellman-Jensen Gap} analysis on the Bayesian value function, which enables characterizing the value of imperfect predictions. Third, we introduce BOLA (Bayesian Offline Learning with Online Adaptation), a two-stage model-based RL algorithm that separates offline Bayesian value learning from lightweight online adaptation to real-time predictions. We prove that BOLA remains sample-efficient even under imperfect predictions. We validate our theory and algorithm on synthetic MDPs and a real-world wind energy storage control problem.
☆ Learning Task-Agnostic Representations through Multi-Teacher Distillation NeurIPS-2025
Casting complex inputs into tractable representations is a critical step across various fields. Diverse embedding models emerge from differences in architectures, loss functions, input modalities and datasets, each capturing unique aspects of the input. Multi-teacher distillation leverages this diversity to enrich representations but often remains tailored to specific tasks. In this paper, we introduce a task-agnostic framework based on a ``majority vote" objective function. We demonstrate that this function is bounded by the mutual information between student and teachers' embeddings, leading to a task-agnostic distillation loss that eliminates dependence on task-specific labels or prior knowledge. Our evaluations across text, vision models, and molecular modeling show that our method effectively leverages teacher diversity, resulting in representations enabling better performance for a wide range of downstream tasks such as classification, clustering, or regression. Additionally, we train and release state-of-the-art embedding models, enhancing downstream performance in various modalities.
comment: NeurIPS-2025
☆ Reasoning Language Model Inference Serving Unveiled: An Empirical Study
The reasoning large language model (RLLM) has been proven competitive in solving complex reasoning tasks such as mathematics, coding, compared to general LLM. However, the serving performance and behavior of RLLM remains unexplored, which may undermine the deployment and utilization of RLLM in real-world scenario. To close this gap, in this paper, we conduct a comprehensive study of RLLM service. We first perform a pilot study on comparing the serving performance between RLLM and traditional LLM and reveal that there are several distinct differences regarding serving behavior: (1) significant memory usage and fluctuations; (2) straggler requests; (3) adaptive running time; (4) domain preference. Then we further investigate whether existing inference optimization techniques are valid for RLLM. Our main takeaways are that model quantization methods and speculative decoding can improve service system efficiency with small compromise to RLLM accuracy, while prefix caching, KV cache quantization may even degrade accuracy or serving performance for small RLLM. Lastly, we conduct evaluation under real world workload modeled by Gamma distribution to verify our findings. Empirical results of real world workload evaluation across different dataset are aligned with our main findings regarding RLLM serving. We hope our work can provide the research community and industry with insights to advance RLLM inference serving.
☆ Prototyping an End-to-End Multi-Modal Tiny-CNN for Cardiovascular Sensor Patches IEEE
The vast majority of cardiovascular diseases may be preventable if early signs and risk factors are detected. Cardiovascular monitoring with body-worn sensor devices like sensor patches allows for the detection of such signs while preserving the freedom and comfort of patients. However, the analysis of the sensor data must be robust, reliable, efficient, and highly accurate. Deep learning methods can automate data interpretation, reducing the workload of clinicians. In this work, we analyze the feasibility of applying deep learning models to the classification of synchronized electrocardiogram (ECG) and phonocardiogram (PCG) recordings on resource-constrained medical edge devices. We propose a convolutional neural network with early fusion of data to solve a binary classification problem. We train and validate our model on the synchronized ECG and PCG recordings from the Physionet Challenge 2016 dataset. Our approach reduces memory footprint and compute cost by three orders of magnitude compared to the state-of-the-art while maintaining competitive accuracy. We demonstrate the applicability of our proposed model on medical edge devices by analyzing energy consumption on a microcontroller and an experimental sensor device setup, confirming that on-device inference can be more energy-efficient than continuous data streaming.
comment: Submitted to the IEEE Journal of Biomedical And Health Informatics
☆ Differentially Private E-Values
E-values have gained prominence as flexible tools for statistical inference and risk control, enabling anytime- and post-hoc-valid procedures under minimal assumptions. However, many real-world applications fundamentally rely on sensitive data, which can be leaked through e-values. To ensure their safe release, we propose a general framework to transform non-private e-values into differentially private ones. Towards this end, we develop a novel biased multiplicative noise mechanism that ensures our e-values remain statistically valid. We show that our differentially private e-values attain strong statistical power, and are asymptotically as powerful as their non-private counterparts. Experiments across online risk monitoring, private healthcare, and conformal e-prediction demonstrate our approach's effectiveness and illustrate its broad applicability.
☆ Binary Quadratic Quantization: Beyond First-Order Quantization for Real-Valued Matrix Compression NeurIPS 2025
This paper proposes a novel matrix quantization method, Binary Quadratic Quantization (BQQ). In contrast to conventional first-order quantization approaches, such as uniform quantization and binary coding quantization, that approximate real-valued matrices via linear combinations of binary bases, BQQ leverages the expressive power of binary quadratic expressions while maintaining an extremely compact data format. We validate our approach with two experiments: a matrix compression benchmark and post-training quantization (PTQ) on pretrained Vision Transformer-based models. Experimental results demonstrate that BQQ consistently achieves a superior trade-off between memory efficiency and reconstruction error than conventional methods for compressing diverse matrix data. It also delivers strong PTQ performance, even though we neither target state-of-the-art PTQ accuracy under tight memory constraints nor rely on PTQ-specific binary matrix optimization. For example, our proposed method outperforms the state-of-the-art PTQ method by up to 2.2\% and 59.1% on the ImageNet dataset under the calibration-based and data-free scenarios, respectively, with quantization equivalent to 2 bits. These findings highlight the surprising effectiveness of binary quadratic expressions for efficient matrix approximation and neural network compression.
comment: Accepted to NeurIPS 2025
☆ Learning Time-Varying Turn-Taking Behavior in Group Conversations
We propose a flexible probabilistic model for predicting turn-taking patterns in group conversations based solely on individual characteristics and past speaking behavior. Many models of conversation dynamics cannot yield insights that generalize beyond a single group. Moreover, past works often aim to characterize speaking behavior through a universal formulation that may not be suitable for all groups. We thus develop a generalization of prior conversation models that predicts speaking turns among individuals in any group based on their individual characteristics, that is, personality traits, and prior speaking behavior. Importantly, our approach provides the novel ability to learn how speaking inclination varies based on when individuals last spoke. We apply our model to synthetic and real-world conversation data to verify the proposed approach and characterize real group interactions. Our results demonstrate that previous behavioral models may not always be realistic, motivating our data-driven yet theoretically grounded approach.
☆ Informed Learning for Estimating Drought Stress at Fine-Scale Resolution Enables Accurate Yield Prediction
Water is essential for agricultural productivity. Assessing water shortages and reduced yield potential is a critical factor in decision-making for ensuring agricultural productivity and food security. Crop simulation models, which align with physical processes, offer intrinsic explainability but often perform poorly. Conversely, machine learning models for crop yield modeling are powerful and scalable, yet they commonly operate as black boxes and lack adherence to the physical principles of crop growth. This study bridges this gap by coupling the advantages of both worlds. We postulate that the crop yield is inherently defined by the water availability. Therefore, we formulate crop yield as a function of temporal water scarcity and predict both the crop drought stress and the sensitivity to water scarcity at fine-scale resolution. Sequentially modeling the crop yield response to water enables accurate yield prediction. To enforce physical consistency, a novel physics-informed loss function is proposed. We leverage multispectral satellite imagery, meteorological data, and fine-scale yield data. Further, to account for the uncertainty within the model, we build upon a deep ensemble approach. Our method surpasses state-of-the-art models like LSTM and Transformers in crop yield prediction with a coefficient of determination ($R^2$-score) of up to 0.82 while offering high explainability. This method offers decision support for industry, policymakers, and farmers in building a more resilient agriculture in times of changing climate conditions.
☆ Optimality and NP-Hardness of Transformers in Learning Markovian Dynamical Functions NeurIPS 2025
Transformer architectures can solve unseen tasks based on input-output pairs in a given prompt due to in-context learning (ICL). Existing theoretical studies on ICL have mainly focused on linear regression tasks, often with i.i.d. inputs. To understand how transformers express ICL when modeling dynamics-driven functions, we investigate Markovian function learning through a structured ICL setup, where we characterize the loss landscape to reveal underlying optimization behaviors. Specifically, we (1) provide the closed-form expression of the global minimizer (in an enlarged parameter space) for a single-layer linear self-attention (LSA) model; (2) prove that recovering transformer parameters that realize the optimal solution is NP-hard in general, revealing a fundamental limitation of one-layer LSA in representing structured dynamical functions; and (3) supply a novel interpretation of a multilayer LSA as performing preconditioned gradient descent to optimize multiple objectives beyond the square loss. These theoretical results are numerically validated using simplified transformers.
comment: NeurIPS 2025
☆ ε-Seg: Sparsely Supervised Semantic Segmentation of Microscopy Data
Semantic segmentation of electron microscopy (EM) images of biological samples remains a challenge in the life sciences. EM data captures details of biological structures, sometimes with such complexity that even human observers can find it overwhelming. We introduce {\epsilon}-Seg, a method based on hierarchical variational autoencoders (HVAEs), employing center-region masking, sparse label contrastive learning (CL), a Gaussian mixture model (GMM) prior, and clustering-free label prediction. Center-region masking and the inpainting loss encourage the model to learn robust and representative embeddings to distinguish the desired classes, even if training labels are sparse (0.05% of the total image data or less). For optimal performance, we employ CL and a GMM prior to shape the latent space of the HVAE such that encoded input patches tend to cluster wrt. the semantic classes we wish to distinguish. Finally, instead of clustering latent embeddings for semantic segmentation, we propose a MLP semantic segmentation head to directly predict class labels from latent embeddings. We show empirical results of {\epsilon}-Seg and baseline methods on 2 dense EM datasets of biological tissues and demonstrate the applicability of our method also on fluorescence microscopy data. Our results show that {\epsilon}-Seg is capable of achieving competitive sparsely-supervised segmentation results on complex biological image data, even if only limited amounts of training labels are available.
comment: 10 pages main text, 17 pages total
☆ C-SWAP: Explainability-Aware Structured Pruning for Efficient Neural Networks Compression BMVC2025
Neural network compression has gained increasing attention in recent years, particularly in computer vision applications, where the need for model reduction is crucial for overcoming deployment constraints. Pruning is a widely used technique that prompts sparsity in model structures, e.g. weights, neurons, and layers, reducing size and inference costs. Structured pruning is especially important as it allows for the removal of entire structures, which further accelerates inference time and reduces memory overhead. However, it can be computationally expensive, requiring iterative retraining and optimization. To overcome this problem, recent methods considered one-shot setting, which applies pruning directly at post-training. Unfortunately, they often lead to a considerable drop in performance. In this paper, we focus on this issue by proposing a novel one-shot pruning framework that relies on explainable deep learning. First, we introduce a causal-aware pruning approach that leverages cause-effect relations between model predictions and structures in a progressive pruning process. It allows us to efficiently reduce the size of the network, ensuring that the removed structures do not deter the performance of the model. Then, through experiments conducted on convolution neural network and vision transformer baselines, pre-trained on classification tasks, we demonstrate that our method consistently achieves substantial reductions in model size, with minimal impact on performance, and without the need for fine-tuning. Overall, our approach outperforms its counterparts, offering the best trade-off. Our code is available on GitHub.
comment: 10 pages, BMVC2025
☆ Hardness of Learning Regular Languages in the Next Symbol Prediction Setting
We study the learnability of languages in the Next Symbol Prediction (NSP) setting, where a learner receives only positive examples from a language together with, for every prefix, (i) whether the prefix itself is in the language and (ii) which next symbols can lead to an accepting string. This setting has been used in prior works to empirically analyze neural sequence models, and additionally, we observe that efficient algorithms for the NSP setting can be used to learn the (truncated) support of language models. We formalize the setting so as to make it amenable to PAC-learning analysis. While the setting provides a much richer set of labels than the conventional classification setting, we show that learning concept classes such as DFAs and Boolean formulas remains computationally hard. The proof is via a construction that makes almost all additional labels uninformative, yielding a reduction from the conventional learning problem to learning with NSP labels. Under cryptographic assumptions, the reduction implies that the problem of learning DFAs is computationally hard in the NSP setting.
comment: 7 pages
☆ A Rectification-Based Approach for Distilling Boosted Trees into Decision Trees
We present a new approach for distilling boosted trees into decision trees, in the objective of generating an ML model offering an acceptable compromise in terms of predictive performance and interpretability. We explain how the correction approach called rectification can be used to implement such a distillation process. We show empirically that this approach provides interesting results, in comparison with an approach to distillation achieved by retraining the model.
comment: 29 pages
☆ Unrolled-SINDy: A Stable Explicit Method for Non linear PDE Discovery from Sparsely Sampled Data
Identifying from observation data the governing differential equations of a physical dynamics is a key challenge in machine learning. Although approaches based on SINDy have shown great promise in this area, they still fail to address a whole class of real world problems where the data is sparsely sampled in time. In this article, we introduce Unrolled-SINDy, a simple methodology that leverages an unrolling scheme to improve the stability of explicit methods for PDE discovery. By decorrelating the numerical time step size from the sampling rate of the available data, our approach enables the recovery of equation parameters that would not be the minimizers of the original SINDy optimization problem due to large local truncation errors. Our method can be exploited either through an iterative closed-form approach or by a gradient descent scheme. Experiments show the versatility of our method. On both traditional SINDy and state-of-the-art noise-robust iNeuralSINDy, with different numerical schemes (Euler, RK4), our proposed unrolling scheme allows to tackle problems not accessible to non-unrolled methods.
comment: 56 pages, 12 figures, 39 tables
☆ A Compositional Paradigm for Foundation Models: Towards Smarter Robotic Agents
The birth of Foundation Models brought unprecedented results in a wide range of tasks, from language to vision, to robotic control. These models are able to process huge quantities of data, and can extract and develop rich representations, which can be employed across different domains and modalities. However, they still have issues in adapting to dynamic, real-world scenarios without retraining the entire model from scratch. In this work, we propose the application of Continual Learning and Compositionality principles to foster the development of more flexible, efficient and smart AI solutions.
☆ Channel-Aware Vector Quantization for Robust Semantic Communication on Discrete Channels
Deep learning-based semantic communication has largely relied on analog or semi-digital transmission, which limits compatibility with modern digital communication infrastructures. Recent studies have employed vector quantization (VQ) to enable discrete semantic transmission, yet existing methods neglect channel state information during codebook optimization, leading to suboptimal robustness. To bridge this gap, we propose a channel-aware vector quantization (CAVQ) algorithm within a joint source-channel coding (JSCC) framework, termed VQJSCC, established on a discrete memoryless channel. In this framework, semantic features are discretized and directly mapped to modulation constellation symbols, while CAVQ integrates channel transition probabilities into the quantization process, aligning easily confused symbols with semantically similar codewords. A multi-codebook alignment mechanism is further introduced to handle mismatches between codebook order and modulation order by decomposing the transmission stream into multiple independently optimized subchannels. Experimental results demonstrate that VQJSCC effectively mitigates the digital cliff effect, achieves superior reconstruction quality across various modulation schemes, and outperforms state-of-the-art digital semantic communication baselines in both robustness and efficiency.
comment: 12 pages, 8 figures
☆ Robustness Verification of Graph Neural Networks Via Lightweight Satisfiability Testing
Graph neural networks (GNNs) are the predominant architecture for learning over graphs. As with any machine learning model, and important issue is the detection of adversarial attacks, where an adversary can change the output with a small perturbation of the input. Techniques for solving the adversarial robustness problem - determining whether such an attack exists - were originally developed for image classification, but there are variants for many other machine learning architectures. In the case of graph learning, the attack model usually considers changes to the graph structure in addition to or instead of the numerical features of the input, and the state of the art techniques in the area proceed via reduction to constraint solving, working on top of powerful solvers, e.g. for mixed integer programming. We show that it is possible to improve on the state of the art in structural robustness by replacing the use of powerful solvers by calls to efficient partial solvers, which run in polynomial time but may be incomplete. We evaluate our tool RobLight on a diverse set of GNN variants and datasets.
☆ CovMatch: Cross-Covariance Guided Multimodal Dataset Distillation with Trainable Text Encoder NeurIPS 2025
Multimodal dataset distillation aims to synthesize a small set of image-text pairs that enables efficient training of large-scale vision-language models. While dataset distillation has shown promise in unimodal tasks, extending it to multimodal contrastive learning presents key challenges: learning cross-modal alignment and managing the high computational cost of large encoders. Prior approaches address scalability by freezing the text encoder and update only the image encoder and text projection layer. However, we find this severely limits semantic alignment and becomes a bottleneck for performance scaling. We propose CovMatch, a scalable dataset distillation framework that aligns the cross-covariance of real and synthetic features while regularizing feature distributions within each modality. Unlike prior approaches, CovMatch enables joint optimization of both encoders, leading to stronger cross-modal alignment and improved performance. Evaluated on Flickr30K and COCO, CovMatch outperforms state-of-the-art multimodal distillation methods and achieves up to 6.8% absolute gains in retrieval accuracy using only 500 synthetic pairs.
comment: NeurIPS 2025
☆ HeFS: Helper-Enhanced Feature Selection via Pareto-Optimized Genetic Search
Feature selection is a combinatorial optimization problem that is NP-hard. Conventional approaches often employ heuristic or greedy strategies, which are prone to premature convergence and may fail to capture subtle yet informative features. This limitation becomes especially critical in high-dimensional datasets, where complex and interdependent feature relationships prevail. We introduce the HeFS (Helper-Enhanced Feature Selection) framework to refine feature subsets produced by existing algorithms. HeFS systematically searches the residual feature space to identify a Helper Set - features that complement the original subset and improve classification performance. The approach employs a biased initialization scheme and a ratio-guided mutation mechanism within a genetic algorithm, coupled with Pareto-based multi-objective optimization to jointly maximize predictive accuracy and feature complementarity. Experiments on 18 benchmark datasets demonstrate that HeFS consistently identifies overlooked yet informative features and achieves superior performance over state-of-the-art methods, including in challenging domains such as gastric cancer classification, drug toxicity prediction, and computer science applications. The code and datasets are available at https://healthinformaticslab.org/supp/.
☆ A Multi-Evidence Framework Rescues Low- Power Prognostic Signals and Rejects Statistical Artifacts in Cancer Genomics
Motivation: Standard genome-wide association studies in cancer genomics rely on statistical significance with multiple testing correction, but systematically fail in underpowered cohorts. In TCGA breast cancer (n=967, 133 deaths), low event rates (13.8%) create severe power limitations, producing false negatives for known drivers and false positives for large passenger genes. Results: We developed a five-criteria computational framework integrating causal inference (inverse probability weighting, doubly robust estimation) with orthogonal biological validation (expression, mutation patterns, literature evidence). Applied to TCGA-BRCA mortality analysis, standard Cox+FDR detected zero genes at FDR<0.05, confirming complete failure in underpowered settings. Our framework correctly identified RYR2 - a cardiac gene with no cancer function - as a false positive despite nominal significance (p=0.024), while identifying KMT2C as a complex candidate requiring validation despite marginal significance (p=0.047, q=0.954). Power analysis revealed median power of 15.1% across genes, with KMT2C achieving only 29.8% power (HR=1.55), explaining borderline statistical significance despite strong biological evidence. The framework distinguished true signals from artifacts through mutation pattern analysis: RYR2 showed 29.8% silent mutations (passenger signature) with no hotspots, while KMT2C showed 6.7% silent mutations with 31.4% truncating variants (driver signature). This multi-evidence approach provides a template for analyzing underpowered cohorts, prioritizing biological interpretability over purely statistical significance. Availability: All code and analysis pipelines available at github.com/akarlaraytu/causal- inference-for-cancer-genomics
comment: 17 pages (main text), 4 figures (main text), 7 supplementary figures, 4 supplementary tables. Focuses on a computational framework using causal inference and biological validation for underpowered cancer genomic studies
☆ RAISE: A Unified Framework for Responsible AI Scoring and Evaluation
As AI systems enter high-stakes domains, evaluation must extend beyond predictive accuracy to include explainability, fairness, robustness, and sustainability. We introduce RAISE (Responsible AI Scoring and Evaluation), a unified framework that quantifies model performance across these four dimensions and aggregates them into a single, holistic Responsibility Score. We evaluated three deep learning models: a Multilayer Perceptron (MLP), a Tabular ResNet, and a Feature Tokenizer Transformer, on structured datasets from finance, healthcare, and socioeconomics. Our findings reveal critical trade-offs: the MLP demonstrated strong sustainability and robustness, the Transformer excelled in explainability and fairness at a very high environmental cost, and the Tabular ResNet offered a balanced profile. These results underscore that no single model dominates across all responsibility criteria, highlighting the necessity of multi-dimensional evaluation for responsible model selection. Our implementation is available at: https://github.com/raise-framework/raise.
comment: Accepted at the 26th International Conference on Principles and Practice of Multi-Agent Systems
☆ Interval Prediction of Annual Average Daily Traffic on Local Roads via Quantile Random Forest with High-Dimensional Spatial Data
Accurate annual average daily traffic (AADT) data are vital for transport planning and infrastructure management. However, automatic traffic detectors across national road networks often provide incomplete coverage, leading to underrepresentation of minor roads. While recent machine learning advances have improved AADT estimation at unmeasured locations, most models produce only point predictions and overlook estimation uncertainty. This study addresses that gap by introducing an interval prediction approach that explicitly quantifies predictive uncertainty. We integrate a Quantile Random Forest model with Principal Component Analysis to generate AADT prediction intervals, providing plausible traffic ranges bounded by estimated minima and maxima. Using data from over 2,000 minor roads in England and Wales, and evaluated with specialized interval metrics, the proposed method achieves an interval coverage probability of 88.22%, a normalized average width of 0.23, and a Winkler Score of 7,468.47. By combining machine learning with spatial and high-dimensional analysis, this framework enhances both the accuracy and interpretability of AADT estimation, supporting more robust and informed transport planning.
☆ Pay Attention to the Triggers: Constructing Backdoors That Survive Distillation
LLMs are often used by downstream users as teacher models for knowledge distillation, compressing their capabilities into memory-efficient models. However, as these teacher models may stem from untrusted parties, distillation can raise unexpected security risks. In this paper, we investigate the security implications of knowledge distillation from backdoored teacher models. First, we show that prior backdoors mostly do not transfer onto student models. Our key insight is that this is because existing LLM backdooring methods choose trigger tokens that rarely occur in usual contexts. We argue that this underestimates the security risks of knowledge distillation and introduce a new backdooring technique, T-MTB, that enables the construction and study of transferable backdoors. T-MTB carefully constructs a composite backdoor trigger, made up of several specific tokens that often occur individually in anticipated distillation datasets. As such, the poisoned teacher remains stealthy, while during distillation the individual presence of these tokens provides enough signal for the backdoor to transfer onto the student. Using T-MTB, we demonstrate and extensively study the security risks of transferable backdoors across two attack scenarios, jailbreaking and content modulation, and across four model families of LLMs.
☆ Counterfactual Reasoning for Steerable Pluralistic Value Alignment of Large Language Models
As large language models (LLMs) become increasingly integrated into applications serving users across diverse cultures, communities and demographics, it is critical to align LLMs with pluralistic human values beyond average principles (e.g., HHH). In psychological and social value theories such as Schwartz's Value Theory, pluralistic values are represented by multiple value dimensions paired with various priorities. However, existing methods encounter two challenges when aligning with such fine-grained value objectives: 1) they often treat multiple values as independent and equally important, ignoring their interdependence and relative priorities (value complexity); 2) they struggle to precisely control nuanced value priorities, especially those underrepresented ones (value steerability). To handle these challenges, we propose COUPLE, a COUnterfactual reasoning framework for PLuralistic valuE alignment. It introduces a structural causal model (SCM) to feature complex interdependency and prioritization among features, as well as the causal relationship between high-level value dimensions and behaviors. Moreover, it applies counterfactual reasoning to generate outputs aligned with any desired value objectives. Benefitting from explicit causal modeling, COUPLE also provides better interpretability. We evaluate COUPLE on two datasets with different value systems and demonstrate that COUPLE advances other baselines across diverse types of value objectives.
comment: 41 pages, 7 figures
☆ Partial VOROS: A Cost-aware Performance Metric for Binary Classifiers with Precision and Capacity Constraints
The ROC curve is widely used to assess binary classification performance. Yet for some applications such as alert systems for hospitalized patient monitoring, conventional ROC analysis cannot capture crucial factors that impact deployment, such as enforcing a minimum precision constraint to avoid false alarm fatigue or imposing an upper bound on the number of predicted positives to represent the capacity of hospital staff. The usual area under the curve metric also does not reflect asymmetric costs for false positives and false negatives. In this paper we address all three of these issues. First, we show how the subset of classifiers that meet given precision and capacity constraints can be represented as a feasible region in ROC space. We establish the geometry of this feasible region. We then define the partial area of lesser classifiers, a performance metric that is monotonic with cost and only accounts for the feasible portion of ROC space. Averaging this area over a desired range of cost parameters results in the partial volume over the ROC surface, or partial VOROS. In experiments predicting mortality risk using vital sign history on the MIMIC-IV dataset, we show this cost-aware metric is better than alternatives for ranking classifiers in hospital alert applications.
☆ Decoding Dynamic Visual Experience from Calcium Imaging via Cell-Pattern-Aware SSL
Self-supervised learning (SSL) holds a great deal of promise for applications in neuroscience, due to the lack of large-scale, consistently labeled neural datasets. However, most neural datasets contain heterogeneous populations that mix stable, predictable cells with highly stochastic, stimulus-contingent ones, which has made it hard to identify consistent activity patterns during SSL. As a result, self-supervised pretraining has yet to show clear signs of benefits from scale on neural data. Here, we present a novel approach to self-supervised pretraining, POYO-SSL that exploits the heterogeneity of neural data to improve pre-training and achieve benefits of scale. Specifically, in POYO-SSL we pretrain only on predictable (statistically regular) neurons-identified on the pretraining split via simple higher-order statistics (skewness and kurtosis)-then we fine-tune on the unpredictable population for downstream tasks. On the Allen Brain Observatory dataset, this strategy yields approximately 12-13% relative gains over from-scratch training and exhibits smooth, monotonic scaling with model size. In contrast, existing state-of-the-art baselines plateau or destabilize as model size increases. By making predictability an explicit metric for crafting the data diet, POYO-SSL turns heterogeneity from a liability into an asset, providing a robust, biologically grounded recipe for scalable neural decoding and a path toward foundation models of neural dynamics.
☆ Zero-Shot Vehicle Model Recognition via Text-Based Retrieval-Augmented Generation
Vehicle make and model recognition (VMMR) is an important task in intelligent transportation systems, but existing approaches struggle to adapt to newly released models. Contrastive Language-Image Pretraining (CLIP) provides strong visual-text alignment, yet its fixed pretrained weights limit performance without costly image-specific finetuning. We propose a pipeline that integrates vision language models (VLMs) with Retrieval-Augmented Generation (RAG) to support zero-shot recognition through text-based reasoning. A VLM converts vehicle images into descriptive attributes, which are compared against a database of textual features. Relevant entries are retrieved and combined with the description to form a prompt, and a language model (LM) infers the make and model. This design avoids large-scale retraining and enables rapid updates by adding textual descriptions of new vehicles. Experiments show that the proposed method improves recognition by nearly 20% over the CLIP baseline, demonstrating the potential of RAG-enhanced LM reasoning for scalable VMMR in smart-city applications.
comment: Accepted by The 38th Conference of Open Innovations Association FRUCT, 2025
☆ Alibaba International E-commerce Product Search Competition DILAB Team Technical Report CIKM
This study presents the multilingual e-commerce search system developed by the DILAB team, which achieved 5th place on the final leaderboard with a competitive overall score of 0.8819, demonstrating stable and high-performing results across evaluation metrics. To address challenges in multilingual query-item understanding, we designed a multi-stage pipeline integrating data refinement, lightweight preprocessing, and adaptive modeling. The data refinement stage enhanced dataset consistency and category coverage, while language tagging and noise filtering improved input quality. In the modeling phase, multiple architectures and fine-tuning strategies were explored, and hyperparameters optimized using curated validation sets to balance performance across query-category (QC) and query-item (QI) tasks. The proposed framework exhibited robustness and adaptability across languages and domains, highlighting the effectiveness of systematic data curation and iterative evaluation for multilingual search systems. The source code is available at https://github.com/2noweyh/DILAB-Alibaba-Ecommerce-Search.
comment: CIKM Alibaba E-commerce Search Challenge 2025
☆ Learning to Navigate Under Imperfect Perception: Conformalised Segmentation for Safe Reinforcement Learning
Reliable navigation in safety-critical environments requires both accurate hazard perception and principled uncertainty handling to strengthen downstream safety handling. Despite the effectiveness of existing approaches, they assume perfect hazard detection capabilities, while uncertainty-aware perception approaches lack finite-sample guarantees. We present COPPOL, a conformal-driven perception-to-policy learning approach that integrates distribution-free, finite-sample safety guarantees into semantic segmentation, yielding calibrated hazard maps with rigorous bounds for missed detections. These maps induce risk-aware cost fields for downstream RL planning. Across two satellite-derived benchmarks, COPPOL increases hazard coverage (up to 6x) compared to comparative baselines, achieving near-complete detection of unsafe regions while reducing hazardous violations during navigation (up to approx 50%). More importantly, our approach remains robust to distributional shift, preserving both safety and efficiency.
☆ Safe But Not Sorry: Reducing Over-Conservatism in Safety Critics via Uncertainty-Aware Modulation
Ensuring the safe exploration of reinforcement learning (RL) agents is critical for deployment in real-world systems. Yet existing approaches struggle to strike the right balance: methods that tightly enforce safety often cripple task performance, while those that prioritize reward leave safety constraints frequently violated, producing diffuse cost landscapes that flatten gradients and stall policy improvement. We introduce the Uncertain Safety Critic (USC), a novel approach that integrates uncertainty-aware modulation and refinement into critic training. By concentrating conservatism in uncertain and costly regions while preserving sharp gradients in safe areas, USC enables policies to achieve effective reward-safety trade-offs. Extensive experiments show that USC reduces safety violations by approximately 40% while maintaining competitive or higher rewards, and reduces the error between predicted and true cost gradients by approximately 83%, breaking the prevailing trade-off between safety and performance and paving the way for scalable safe RL.
☆ Benchmarking Fairness-aware Graph Neural Networks in Knowledge Graphs
Graph neural networks (GNNs) are powerful tools for learning from graph-structured data but often produce biased predictions with respect to sensitive attributes. Fairness-aware GNNs have been actively studied for mitigating biased predictions. However, no prior studies have evaluated fairness-aware GNNs on knowledge graphs, which are one of the most important graphs in many applications, such as recommender systems. Therefore, we introduce a benchmarking study on knowledge graphs. We generate new graphs from three knowledge graphs, YAGO, DBpedia, and Wikidata, that are significantly larger than the existing graph datasets used in fairness studies. We benchmark inprocessing and preprocessing methods in different GNN backbones and early stopping conditions. We find several key insights: (i) knowledge graphs show different trends from existing datasets; clearer trade-offs between prediction accuracy and fairness metrics than other graphs in fairness-aware GNNs, (ii) the performance is largely affected by not only fairness-aware GNN methods but also GNN backbones and early stopping conditions, and (iii) preprocessing methods often improve fairness metrics, while inprocessing methods improve prediction accuracy.
☆ Simple and Efficient Heterogeneous Temporal Graph Neural Network
Heterogeneous temporal graphs (HTGs) are ubiquitous data structures in the real world. Recently, to enhance representation learning on HTGs, numerous attention-based neural networks have been proposed. Despite these successes, existing methods rely on a decoupled temporal and spatial learning paradigm, which weakens interactions of spatio-temporal information and leads to a high model complexity. To bridge this gap, we propose a novel learning paradigm for HTGs called Simple and Efficient Heterogeneous Temporal Graph N}eural Network (SE-HTGNN). Specifically, we innovatively integrate temporal modeling into spatial learning via a novel dynamic attention mechanism, which retains attention information from historical graph snapshots to guide subsequent attention computation, thereby improving the overall discriminative representations learning of HTGs. Additionally, to comprehensively and adaptively understand HTGs, we leverage large language models to prompt SE-HTGNN, enabling the model to capture the implicit properties of node types as prior knowledge. Extensive experiments demonstrate that SE-HTGNN achieves up to 10x speed-up over the state-of-the-art and latest baseline while maintaining the best forecasting accuracy.
comment: Accepted by Neurips 2025
☆ Learning Boltzmann Generators via Constrained Mass Transport
Efficient sampling from high-dimensional and multimodal unnormalized probability distributions is a central challenge in many areas of science and machine learning. We focus on Boltzmann generators (BGs) that aim to sample the Boltzmann distribution of physical systems, such as molecules, at a given temperature. Classical variational approaches that minimize the reverse Kullback-Leibler divergence are prone to mode collapse, while annealing-based methods, commonly using geometric schedules, can suffer from mass teleportation and rely heavily on schedule tuning. We introduce Constrained Mass Transport (CMT), a variational framework that generates intermediate distributions under constraints on both the KL divergence and the entropy decay between successive steps. These constraints enhance distributional overlap, mitigate mass teleportation, and counteract premature convergence. Across standard BG benchmarks and the here introduced ELIL tetrapeptide, the largest system studied to date without access to samples from molecular dynamics, CMT consistently surpasses state-of-the-art variational methods, achieving more than 2.5x higher effective sample size while avoiding mode collapse.
☆ Vision Foundation Models Can Be Good Tokenizers for Latent Diffusion Models
The performance of Latent Diffusion Models (LDMs) is critically dependent on the quality of their visual tokenizer. While recent works have explored incorporating Vision Foundation Models (VFMs) via distillation, we identify a fundamental flaw in this approach: it inevitably weakens the robustness of alignment with the original VFM, causing the aligned latents to deviate semantically under distribution shifts. In this paper, we bypass distillation by proposing a more direct approach: Vision Foundation Model Variational Autoencoder (VFM-VAE). To resolve the inherent tension between the VFM's semantic focus and the need for pixel-level fidelity, we redesign the VFM-VAE decoder with Multi-Scale Latent Fusion and Progressive Resolution Reconstruction blocks, enabling high-quality reconstruction from spatially coarse VFM features. Furthermore, we provide a comprehensive analysis of representation dynamics during diffusion training, introducing the proposed SE-CKNNA metric as a more precise tool for this diagnosis. This analysis allows us to develop a joint tokenizer-diffusion alignment strategy that dramatically accelerates convergence. Our innovations in tokenizer design and training strategy lead to superior performance and efficiency: our system reaches a gFID (w/o CFG) of 2.20 in merely 80 epochs (a 10x speedup over prior tokenizers). With continued training to 640 epochs, it further attains a gFID (w/o CFG) of 1.62, establishing direct VFM integration as a superior paradigm for LDMs.
comment: Code and models available at: https://github.com/tianciB/VFM-VAE
☆ A machine learning approach to automation and uncertainty evaluation for self-validating thermocouples SC
Thermocouples are in widespread use in industry, but they are particularly susceptible to calibration drift in harsh environments. Self-validating thermocouples aim to address this issue by using a miniature phase-change cell (fixed-point) in close proximity to the measurement junction (tip) of the thermocouple. The fixed point is a crucible containing an ingot of metal with a known melting temperature. When the process temperature being monitored passes through the melting temperature of the ingot, the thermocouple output exhibits a "plateau" during melting. Since the melting temperature of the ingot is known, the thermocouple can be recalibrated in situ. Identifying the melting plateau to determine the onset of melting is reasonably well established but requires manual intervention involving zooming in on the region around the actual melting temperature, a process which can depend on the shape of the melting plateau. For the first time, we present a novel machine learning approach to recognize and identify the characteristic shape of the melting plateau and once identified, to quantity the point at which melting begins, along with its associated uncertainty. This removes the need for human intervention in locating and characterizing the melting point. Results from test data provided by CCPI Europe show 100% accuracy of melting plateau detection. They also show a cross-validated R2 of 0.99 on predictions of calibration drift.
comment: 6 pages, 7 figures. TEMPERATURE: ITS MEASUREMENT AND CONTROL IN SCIENCE AND INDUSTRY, VOLUME 9: Proceedings of the Tenth International Temperature Symposium 3-7 April 2023 Anaheim, USA
☆ Provable Generalization Bounds for Deep Neural Networks with Adaptive Regularization
Deep neural networks (DNNs) achieve remarkable performance but often suffer from overfitting due to their high capacity. We introduce Momentum-Adaptive Gradient Dropout (MAGDrop), a novel regularization method that dynamically adjusts dropout rates on activations based on current gradients and accumulated momentum, enhancing stability in non-convex optimization landscapes. To theoretically justify MAGDrop's effectiveness, we derive a tightened PAC-Bayes generalization bound that accounts for its adaptive nature, achieving up to 20% sharper bounds compared to standard approaches by leveraging momentum-driven perturbation control. Empirically, the activation-based MAGDrop outperforms baseline regularization techniques, including standard dropout and adaptive gradient regularization, by 1-2% in test accuracy on MNIST (99.52%) and CIFAR-10 (90.63%), with generalization gaps of 0.48% and 7.14%, respectively. Our work bridges theoretical insights and practical advancements, offering a robust framework for enhancing DNN generalization suitable for high-stakes applications.
comment: 8 pages
☆ Learning from N-Tuple Data with M Positive Instances: Unbiased Risk Estimation and Theoretical Guarantees
Weakly supervised learning often operates with coarse aggregate signals rather than instance labels. We study a setting where each training example is an $n$-tuple containing exactly m positives, while only the count m per tuple is observed. This NTMP (N-tuple with M positives) supervision arises in, e.g., image classification with region proposals and multi-instance measurements. We show that tuple counts admit a trainable unbiased risk estimator (URE) by linking the tuple-generation process to latent instance marginals. Starting from fixed (n,m), we derive a closed-form URE and extend it to variable tuple sizes, variable counts, and their combination. Identification holds whenever the effective mixing rate is separated from the class prior. We establish generalization bounds via Rademacher complexity and prove statistical consistency with standard rates under mild regularity assumptions. To improve finite-sample stability, we introduce simple ReLU corrections to the URE that preserve asymptotic correctness. Across benchmarks converted to NTMP tasks, the approach consistently outperforms representative weak-supervision baselines and yields favorable precision-recall and F1 trade-offs. It remains robust under class-prior imbalance and across diverse tuple configurations, demonstrating that count-only supervision can be exploited effectively through a theoretically grounded and practically stable objective.
☆ Approximation Rates of Shallow Neural Networks: Barron Spaces, Activation Functions and Optimality Analysis
This paper investigates the approximation properties of shallow neural networks with activation functions that are powers of exponential functions. It focuses on the dependence of the approximation rate on the dimension and the smoothness of the function being approximated within the Barron function space. We examine the approximation rates of ReLU$^{k}$ activation functions, proving that the optimal rate cannot be achieved under $\ell^{1}$-bounded coefficients or insufficient smoothness conditions. We also establish optimal approximation rates in various norms for functions in Barron spaces and Sobolev spaces, confirming the curse of dimensionality. Our results clarify the limits of shallow neural networks' approximation capabilities and offer insights into the selection of activation functions and network structures.
☆ S2AP: Score-space Sharpness Minimization for Adversarial Pruning
Adversarial pruning methods have emerged as a powerful tool for compressing neural networks while preserving robustness against adversarial attacks. These methods typically follow a three-step pipeline: (i) pretrain a robust model, (ii) select a binary mask for weight pruning, and (iii) finetune the pruned model. To select the binary mask, these methods minimize a robust loss by assigning an importance score to each weight, and then keep the weights with the highest scores. However, this score-space optimization can lead to sharp local minima in the robust loss landscape and, in turn, to an unstable mask selection, reducing the robustness of adversarial pruning methods. To overcome this issue, we propose a novel plug-in method for adversarial pruning, termed Score-space Sharpness-aware Adversarial Pruning (S2AP). Through our method, we introduce the concept of score-space sharpness minimization, which operates during the mask search by perturbing importance scores and minimizing the corresponding robust loss. Extensive experiments across various datasets, models, and sparsity levels demonstrate that S2AP effectively minimizes sharpness in score space, stabilizing the mask selection, and ultimately improving the robustness of adversarial pruning methods.
☆ Training Diverse Graph Experts for Ensembles: A Systematic Empirical Study
Graph Neural Networks (GNNs) have become essential tools for learning on relational data, yet the performance of a single GNN is often limited by the heterogeneity present in real-world graphs. Recent advances in Mixture-of-Experts (MoE) frameworks demonstrate that assembling multiple, explicitly diverse GNNs with distinct generalization patterns can significantly improve performance. In this work, we present the first systematic empirical study of expert-level diversification techniques for GNN ensembles. Evaluating 20 diversification strategies -- including random re-initialization, hyperparameter tuning, architectural variation, directionality modeling, and training data partitioning -- across 14 node classification benchmarks, we construct and analyze over 200 ensemble variants. Our comprehensive evaluation examines each technique in terms of expert diversity, complementarity, and ensemble performance. We also uncovers mechanistic insights into training maximally diverse experts. These findings provide actionable guidance for expert training and the design of effective MoE frameworks on graph data. Our code is available at https://github.com/Hydrapse/bench-gnn-diversification.
☆ Towards Unsupervised Open-Set Graph Domain Adaptation via Dual Reprogramming NeurIPS 2025
Unsupervised Graph Domain Adaptation has become a promising paradigm for transferring knowledge from a fully labeled source graph to an unlabeled target graph. Existing graph domain adaptation models primarily focus on the closed-set setting, where the source and target domains share the same label spaces. However, this assumption might not be practical in the real-world scenarios, as the target domain might include classes that are not present in the source domain. In this paper, we investigate the problem of unsupervised open-set graph domain adaptation, where the goal is to not only correctly classify target nodes into the known classes, but also recognize previously unseen node types into the unknown class. Towards this end, we propose a novel framework called GraphRTA, which conducts reprogramming on both the graph and model sides. Specifically, we reprogram the graph by modifying target graph structure and node features, which facilitates better separation of known and unknown classes. Meanwhile, we also perform model reprogramming by pruning domain-specific parameters to reduce bias towards the source graph while preserving parameters that capture transferable patterns across graphs. Additionally, we extend the classifier with an extra dimension for the unknown class, thus eliminating the need of manually specified threshold in open-set recognition. Comprehensive experiments on several public datasets demonstrate that our proposed model can achieve satisfied performance compared with recent state-of-the-art baselines. Our source codes and datasets are publicly available at https://github.com/cszhangzhen/GraphRTA.
comment: Accepted by NeurIPS 2025
☆ Learning to Flow from Generative Pretext Tasks for Neural Architecture Encoding NeurIPS 2025
The performance of a deep learning model on a specific task and dataset depends heavily on its neural architecture, motivating considerable efforts to rapidly and accurately identify architectures suited to the target task and dataset. To achieve this, researchers use machine learning models-typically neural architecture encoders-to predict the performance of a neural architecture. Many state-of-the-art encoders aim to capture information flow within a neural architecture, which reflects how information moves through the forward pass and backpropagation, via a specialized model structure. However, due to their complicated structures, these flow-based encoders are significantly slower to process neural architectures compared to simpler encoders, presenting a notable practical challenge. To address this, we propose FGP, a novel pre-training method for neural architecture encoding that trains an encoder to capture the information flow without requiring specialized model structures. FGP trains an encoder to reconstruct a flow surrogate, our proposed representation of the neural architecture's information flow. Our experiments show that FGP boosts encoder performance by up to 106% in Precision-1%, compared to the same encoder trained solely with supervised learning.
comment: Published as a conference paper at NeurIPS 2025
☆ Ensembling Pruned Attention Heads For Uncertainty-Aware Efficient Transformers
Uncertainty quantification (UQ) is essential for deploying deep neural networks in safety-critical settings. Although methods like Deep Ensembles achieve strong UQ performance, their high computational and memory costs hinder scalability to large models. We introduce Hydra Ensembles, an efficient transformer-based ensemble that prunes attention heads to create diverse members and merges them via a new multi-head attention with grouped fully-connected layers. This yields a compact model with inference speed close to a single network, matching or surpassing Deep Ensembles in UQ performance without retraining from scratch. We also provide an in-depth analysis of pruning, showing that naive approaches can harm calibration, whereas Hydra Ensembles preserves robust uncertainty. Experiments on image and text classification tasks, with various architectures, show consistent gains over Deep Ensembles. Remarkably, in zero-shot classification on ImageNet-1k, our approach surpasses state of the art methods, even without requiring additional training.
☆ Computable universal online learning NeurIPS 2025
Understanding when learning is possible is a fundamental task in the theory of machine learning. However, many characterizations known from the literature deal with abstract learning as a mathematical object and ignore the crucial question: when can learning be implemented as a computer program? We address this question for universal online learning, a generalist theoretical model of online binary classification, recently characterized by Bousquet et al. (STOC'21). In this model, there is no hypothesis fixed in advance; instead, Adversary -- playing the role of Nature -- can change their mind as long as local consistency with the given class of hypotheses is maintained. We require Learner to achieve a finite number of mistakes while using a strategy that can be implemented as a computer program. We show that universal online learning does not imply computable universal online learning, even if the class of hypotheses is relatively easy from a computability-theoretic perspective. We then study the agnostic variant of computable universal online learning and provide an exact characterization of classes that are learnable in this sense. We also consider a variant of proper universal online learning and show exactly when it is possible. Together, our results give a more realistic perspective on the existing theory of online binary classification and the related problem of inductive inference.
comment: Accepted for presentation at NeurIPS 2025
☆ PGTT: Phase-Guided Terrain Traversal for Perceptive Legged Locomotion
State-of-the-art perceptive Reinforcement Learning controllers for legged robots either (i) impose oscillator or IK-based gait priors that constrain the action space, add bias to the policy optimization and reduce adaptability across robot morphologies, or (ii) operate "blind", which struggle to anticipate hind-leg terrain, and are brittle to noise. In this paper, we propose Phase-Guided Terrain Traversal (PGTT), a perception-aware deep-RL approach that overcomes these limitations by enforcing gait structure purely through reward shaping, thereby reducing inductive bias in policy learning compared to oscillator/IK-conditioned action priors. PGTT encodes per-leg phase as a cubic Hermite spline that adapts swing height to local heightmap statistics and adds a swing- phase contact penalty, while the policy acts directly in joint space supporting morphology-agnostic deployment. Trained in MuJoCo (MJX) on procedurally generated stair-like terrains with curriculum and domain randomization, PGTT achieves the highest success under push disturbances (median +7.5% vs. the next best method) and on discrete obstacles (+9%), with comparable velocity tracking, and converging to an effective policy roughly 2x faster than strong end-to-end baselines. We validate PGTT on a Unitree Go2 using a real-time LiDAR elevation-to-heightmap pipeline, and we report preliminary results on ANYmal-C obtained with the same hyperparameters. These findings indicate that terrain-adaptive, phase-guided reward shaping is a simple and general mechanism for robust perceptive locomotion across platforms.
comment: 9 pages, 9 figures, 2 tables
☆ Why Policy Gradient Algorithms Work for Undiscounted Total-Reward MDPs
The classical policy gradient method is the theoretical and conceptual foundation of modern policy-based reinforcement learning (RL) algorithms. Most rigorous analyses of such methods, particularly those establishing convergence guarantees, assume a discount factor $\gamma < 1$. In contrast, however, a recent line of work on policy-based RL for large language models uses the undiscounted total-reward setting with $\gamma = 1$, rendering much of the existing theory inapplicable. In this paper, we provide analyses of the policy gradient method for undiscounted expected total-reward infinite-horizon MDPs based on two key insights: (i) the classification of the MDP states into recurrent and transient states is invariant over the set of policies that assign strictly positive probability to every action (as is typical in deep RL models employing a softmax output layer) and (ii) the classical state visitation measure (which may be ill-defined when $\gamma = 1$) can be replaced with a new object that we call the transient visitation measure.
☆ ECG-LLM-- training and evaluation of domain-specific large language models for electrocardiography
Domain-adapted open-weight large language models (LLMs) offer promising healthcare applications, from queryable knowledge bases to multimodal assistants, with the crucial advantage of local deployment for privacy preservation. However, optimal adaptation strategies, evaluation methodologies, and performance relative to general-purpose LLMs remain poorly characterized. We investigated these questions in electrocardiography, an important area of cardiovascular medicine, by finetuning open-weight models on domain-specific literature and implementing a multi-layered evaluation framework comparing finetuned models, retrieval-augmented generation (RAG), and Claude Sonnet 3.7 as a representative general-purpose model. Finetuned Llama 3.1 70B achieved superior performance on multiple-choice evaluations and automatic text metrics, ranking second to Claude 3.7 in LLM-as-a-judge assessments. Human expert evaluation favored Claude 3.7 and RAG approaches for complex queries. Finetuned models significantly outperformed their base counterparts across nearly all evaluation modes. Our findings reveal substantial performance heterogeneity across evaluation methodologies, underscoring assessment complexity. Nevertheless, domain-specific adaptation through finetuning and RAG achieves competitive performance with proprietary models, supporting the viability of privacy-preserving, locally deployable clinical solutions.
comment: 34 pages, 8 figures, code available at https://github.com/AI4HealthUOL/ecg-llm
☆ Parametrising the Inhomogeneity Inducing Capacity of a Training Set, and its Impact on Supervised Learning
We introduce parametrisation of that property of the available training dataset, that necessitates an inhomogeneous correlation structure for the function that is learnt as a model of the relationship between the pair of variables, observations of which comprise the considered training data. We refer to a parametrisation of this property of a given training set, as its ``inhomogeneity parameter''. It is easy to compute this parameter for small-to-large datasets, and we demonstrate such computation on multiple publicly-available datasets, while also demonstrating that conventional ``non-stationarity'' of data does not imply a non-zero inhomogeneity parameter of the dataset. We prove that - within the probabilistic Gaussian Process-based learning approach - a training set with a non-zero inhomogeneity parameter renders it imperative, that the process that is invoked to model the sought function, be non-stationary. Following the learning of a real-world multivariate function with such a Process, quality and reliability of predictions at test inputs, are demonstrated to be affected by the inhomogeneity parameter of the training data.
☆ Scalable, Explainable and Provably Robust Anomaly Detection with One-Step Flow Matching NeurIPS 2025
We introduce Time-Conditioned Contraction Matching (TCCM), a novel method for semi-supervised anomaly detection in tabular data. TCCM is inspired by flow matching, a recent generative modeling framework that learns velocity fields between probability distributions and has shown strong performance compared to diffusion models and generative adversarial networks. Instead of directly applying flow matching as originally formulated, TCCM builds on its core idea -- learning velocity fields between distributions -- but simplifies the framework by predicting a time-conditioned contraction vector toward a fixed target (the origin) at each sampled time step. This design offers three key advantages: (1) a lightweight and scalable training objective that removes the need for solving ordinary differential equations during training and inference; (2) an efficient scoring strategy called one time-step deviation, which quantifies deviation from expected contraction behavior in a single forward pass, addressing the inference bottleneck of existing continuous-time models such as DTE (a diffusion-based model with leading anomaly detection accuracy but heavy inference cost); and (3) explainability and provable robustness, as the learned velocity field operates directly in input space, making the anomaly score inherently feature-wise attributable; moreover, the score function is Lipschitz-continuous with respect to the input, providing theoretical guarantees under small perturbations. Extensive experiments on the ADBench benchmark show that TCCM strikes a favorable balance between detection accuracy and inference cost, outperforming state-of-the-art methods -- especially on high-dimensional and large-scale datasets. The source code is available at our GitHub repository.
comment: Paper accepted by NeurIPS 2025
☆ Uncertainty Estimation by Flexible Evidential Deep Learning NeurIPS 2025
Uncertainty quantification (UQ) is crucial for deploying machine learning models in high-stakes applications, where overconfident predictions can lead to serious consequences. An effective UQ method must balance computational efficiency with the ability to generalize across diverse scenarios. Evidential deep learning (EDL) achieves efficiency by modeling uncertainty through the prediction of a Dirichlet distribution over class probabilities. However, the restrictive assumption of Dirichlet-distributed class probabilities limits EDL's robustness, particularly in complex or unforeseen situations. To address this, we propose \textit{flexible evidential deep learning} ($\mathcal{F}$-EDL), which extends EDL by predicting a flexible Dirichlet distribution -- a generalization of the Dirichlet distribution -- over class probabilities. This approach provides a more expressive and adaptive representation of uncertainty, significantly enhancing UQ generalization and reliability under challenging scenarios. We theoretically establish several advantages of $\mathcal{F}$-EDL and empirically demonstrate its state-of-the-art UQ performance across diverse evaluation settings, including classical, long-tailed, and noisy in-distribution scenarios.
comment: NeurIPS 2025
☆ MoMaGen: Generating Demonstrations under Soft and Hard Constraints for Multi-Step Bimanual Mobile Manipulation
Imitation learning from large-scale, diverse human demonstrations has proven effective for training robots, but collecting such data is costly and time-consuming. This challenge is amplified for multi-step bimanual mobile manipulation, where humans must teleoperate both a mobile base and two high-degree-of-freedom arms. Prior automated data generation frameworks have addressed static bimanual manipulation by augmenting a few human demonstrations in simulation, but they fall short for mobile settings due to two key challenges: (1) determining base placement to ensure reachability, and (2) positioning the camera to provide sufficient visibility for visuomotor policies. To address these issues, we introduce MoMaGen, which formulates data generation as a constrained optimization problem that enforces hard constraints (e.g., reachability) while balancing soft constraints (e.g., visibility during navigation). This formulation generalizes prior approaches and provides a principled foundation for future methods. We evaluate MoMaGen on four multi-step bimanual mobile manipulation tasks and show that it generates significantly more diverse datasets than existing methods. Leveraging this diversity, MoMaGen can train successful imitation learning policies from a single source demonstration, and these policies can be fine-tuned with as few as 40 real-world demonstrations to achieve deployment on physical robotic hardware. More details are available at our project page: momagen.github.io.
comment: Project website: momagen.github.io. The first four authors contribute equally
☆ Higher Embedding Dimension Creates a Stronger World Model for a Simple Sorting Task
We investigate how embedding dimension affects the emergence of an internal "world model" in a transformer trained with reinforcement learning to perform bubble-sort-style adjacent swaps. Models achieve high accuracy even with very small embedding dimensions, but larger dimensions yield more faithful, consistent, and robust internal representations. In particular, higher embedding dimensions strengthen the formation of structured internal representation and lead to better interpretability. After hundreds of experiments, we observe two consistent mechanisms: (1) the last row of the attention weight matrix monotonically encodes the global ordering of tokens; and (2) the selected transposition aligns with the largest adjacent difference of these encoded values. Our results provide quantitative evidence that transformers build structured internal world models and that model size improves representation quality in addition to end performance. We release our metrics and analyses, which can be used to probe similar algorithmic tasks.
☆ Towards Identifiability of Hierarchical Temporal Causal Representation Learning
Modeling hierarchical latent dynamics behind time series data is critical for capturing temporal dependencies across multiple levels of abstraction in real-world tasks. However, existing temporal causal representation learning methods fail to capture such dynamics, as they fail to recover the joint distribution of hierarchical latent variables from \textit{single-timestep observed variables}. Interestingly, we find that the joint distribution of hierarchical latent variables can be uniquely determined using three conditionally independent observations. Building on this insight, we propose a Causally Hierarchical Latent Dynamic (CHiLD) identification framework. Our approach first employs temporal contextual observed variables to identify the joint distribution of multi-layer latent variables. Sequentially, we exploit the natural sparsity of the hierarchical structure among latent variables to identify latent variables within each layer. Guided by the theoretical results, we develop a time series generative model grounded in variational inference. This model incorporates a contextual encoder to reconstruct multi-layer latent variables and normalize flow-based hierarchical prior networks to impose the independent noise condition of hierarchical latent dynamics. Empirical evaluations on both synthetic and real-world datasets validate our theoretical claims and demonstrate the effectiveness of CHiLD in modeling hierarchical latent dynamics.
☆ A Distributed Framework for Causal Modeling of Performance Variability in GPU Traces
Large-scale GPU traces play a critical role in identifying performance bottlenecks within heterogeneous High-Performance Computing (HPC) architectures. However, the sheer volume and complexity of a single trace of data make performance analysis both computationally expensive and time-consuming. To address this challenge, we present an end-to-end parallel performance analysis framework designed to handle multiple large-scale GPU traces efficiently. Our proposed framework partitions and processes trace data concurrently and employs causal graph methods and parallel coordinating chart to expose performance variability and dependencies across execution flows. Experimental results demonstrate a 67% improvement in terms of scalability, highlighting the effectiveness of our pipeline for analyzing multiple traces independently.
☆ Physics-Informed Parametric Bandits for Beam Alignment in mmWave Communications
In millimeter wave (mmWave) communications, beam alignment and tracking are crucial to combat the significant path loss. As scanning the entire directional space is inefficient, designing an efficient and robust method to identify the optimal beam directions is essential. Since traditional bandit algorithms require a long time horizon to converge under large beam spaces, many existing works propose efficient bandit algorithms for beam alignment by relying on unimodality or multimodality assumptions on the reward function's structure. However, such assumptions often do not hold (or cannot be strictly satisfied) in practice, which causes such algorithms to converge to choosing suboptimal beams. In this work, we propose two physics-informed bandit algorithms \textit{pretc} and \textit{prgreedy} that exploit the sparse multipath property of mmWave channels - a generic but realistic assumption - which is connected to the Phase Retrieval Bandit problem. Our algorithms treat the parameters of each path as black boxes and maintain optimal estimates of them based on sampled historical rewards. \textit{pretc} starts with a random exploration phase and then commits to the optimal beam under the estimated reward function. \textit{prgreedy} performs such estimation in an online manner and chooses the best beam under current estimates. Our algorithms can also be easily adapted to beam tracking in the mobile setting. Through experiments using both the synthetic DeepMIMO dataset and the real-world DeepSense6G dataset, we demonstrate that both algorithms outperform existing approaches in a wide range of scenarios across diverse channel environments, showing their generalizability and robustness.
☆ Efficient Few-shot Identity Preserving Attribute Editing for 3D-aware Deep Generative Models
Identity preserving editing of faces is a generative task that enables modifying the illumination, adding/removing eyeglasses, face aging, editing hairstyles, modifying expression etc., while preserving the identity of the face. Recent progress in 2D generative models have enabled photorealistic editing of faces using simple techniques leveraging the compositionality in GANs. However, identity preserving editing for 3D faces with a given set of attributes is a challenging task as the generative model must reason about view consistency from multiple poses and render a realistic 3D face. Further, 3D portrait editing requires large-scale attribute labelled datasets and presents a trade-off between editability in low-resolution and inflexibility to editing in high resolution. In this work, we aim to alleviate some of the constraints in editing 3D faces by identifying latent space directions that correspond to photorealistic edits. To address this, we present a method that builds on recent advancements in 3D-aware deep generative models and 2D portrait editing techniques to perform efficient few-shot identity preserving attribute editing for 3D-aware generative models. We aim to show from experimental results that using just ten or fewer labelled images of an attribute is sufficient to estimate edit directions in the latent space that correspond to 3D-aware attribute editing. In this work, we leverage an existing face dataset with masks to obtain the synthetic images for few attribute examples required for estimating the edit directions. Further, to demonstrate the linearity of edits, we investigate one-shot stylization by performing sequential editing and use the (2D) Attribute Style Manipulation (ASM) technique to investigate a continuous style manifold for 3D consistent identity preserving face aging. Code and results are available at: https://vishal-vinod.github.io/gmpi-edit/
comment: 14 pages, 7 figures
☆ Online Time Series Forecasting with Theoretical Guarantees
This paper is concerned with online time series forecasting, where unknown distribution shifts occur over time, i.e., latent variables influence the mapping from historical to future observations. To develop an automated way of online time series forecasting, we propose a Theoretical framework for Online Time-series forecasting (TOT in short) with theoretical guarantees. Specifically, we prove that supplying a forecaster with latent variables tightens the Bayes risk, the benefit endures under estimation uncertainty of latent variables and grows as the latent variables achieve a more precise identifiability. To better introduce latent variables into online forecasting algorithms, we further propose to identify latent variables with minimal adjacent observations. Based on these results, we devise a model-agnostic blueprint by employing a temporal decoder to match the distribution of observed variables and two independent noise estimators to model the causal inference of latent variables and mixing procedures of observed variables, respectively. Experiment results on synthetic data support our theoretical claims. Moreover, plug-in implementations built on several baselines yield general improvement across multiple benchmarks, highlighting the effectiveness in real-world applications.
☆ SPIKE: Stable Physics-Informed Kernel Evolution Method for Solving Hyperbolic Conservation Laws
We introduce the Stable Physics-Informed Kernel Evolution (SPIKE) method for numerical computation of inviscid hyperbolic conservation laws. SPIKE resolves a fundamental paradox: how strong-form residual minimization can capture weak solutions containing discontinuities. SPIKE employs reproducing kernel representations with regularized parameter evolution, where Tikhonov regularization provides a smooth transition mechanism through shock formation, allowing the dynamics to traverse shock singularities. This approach automatically maintains conservation, tracks characteristics, and captures shocks satisfying Rankine-Hugoniot conditions within a unified framework requiring no explicit shock detection or artificial viscosity. Numerical validation across scalar and vector-valued conservation laws confirms the method's effectiveness.
comment: 24 pages, 8 figures
☆ From Competition to Synergy: Unlocking Reinforcement Learning for Subject-Driven Image Generation
Subject-driven image generation models face a fundamental trade-off between identity preservation (fidelity) and prompt adherence (editability). While online reinforcement learning (RL), specifically GPRO, offers a promising solution, we find that a naive application of GRPO leads to competitive degradation, as the simple linear aggregation of rewards with static weights causes conflicting gradient signals and a misalignment with the temporal dynamics of the diffusion process. To overcome these limitations, we propose Customized-GRPO, a novel framework featuring two key innovations: (i) Synergy-Aware Reward Shaping (SARS), a non-linear mechanism that explicitly penalizes conflicted reward signals and amplifies synergistic ones, providing a sharper and more decisive gradient. (ii) Time-Aware Dynamic Weighting (TDW), which aligns the optimization pressure with the model's temporal dynamics by prioritizing prompt-following in the early, identity preservation in the later. Extensive experiments demonstrate that our method significantly outperforms naive GRPO baselines, successfully mitigating competitive degradation. Our model achieves a superior balance, generating images that both preserve key identity features and accurately adhere to complex textual prompts.
☆ Learning under Quantization for High-Dimensional Linear Regression
The use of low-bit quantization has emerged as an indispensable technique for enabling the efficient training of large-scale models. Despite its widespread empirical success, a rigorous theoretical understanding of its impact on learning performance remains notably absent, even in the simplest linear regression setting. We present the first systematic theoretical study of this fundamental question, analyzing finite-step stochastic gradient descent (SGD) for high-dimensional linear regression under a comprehensive range of quantization targets: data, labels, parameters, activations, and gradients. Our novel analytical framework establishes precise algorithm-dependent and data-dependent excess risk bounds that characterize how different quantization affects learning: parameter, activation, and gradient quantization amplify noise during training; data quantization distorts the data spectrum; and data and label quantization introduce additional approximation and quantized error. Crucially, we prove that for multiplicative quantization (with input-dependent quantization step), this spectral distortion can be eliminated, and for additive quantization (with constant quantization step), a beneficial scaling effect with batch size emerges. Furthermore, for common polynomial-decay data spectra, we quantitatively compare the risks of multiplicative and additive quantization, drawing a parallel to the comparison between FP and integer quantization methods. Our theory provides a powerful lens to characterize how quantization shapes the learning dynamics of optimization algorithms, paving the way to further explore learning theory under practical hardware constraints.
☆ NTKMTL: Mitigating Task Imbalance in Multi-Task Learning from Neural Tangent Kernel Perspective
Multi-Task Learning (MTL) enables a single model to learn multiple tasks simultaneously, leveraging knowledge transfer among tasks for enhanced generalization, and has been widely applied across various domains. However, task imbalance remains a major challenge in MTL. Although balancing the convergence speeds of different tasks is an effective approach to address this issue, it is highly challenging to accurately characterize the training dynamics and convergence speeds of multiple tasks within the complex MTL system. To this end, we attempt to analyze the training dynamics in MTL by leveraging Neural Tangent Kernel (NTK) theory and propose a new MTL method, NTKMTL. Specifically, we introduce an extended NTK matrix for MTL and adopt spectral analysis to balance the convergence speeds of multiple tasks, thereby mitigating task imbalance. Based on the approximation via shared representation, we further propose NTKMTL-SR, achieving training efficiency while maintaining competitive performance. Extensive experiments demonstrate that our methods achieve state-of-the-art performance across a wide range of benchmarks, including both multi-task supervised learning and multi-task reinforcement learning. Source code is available at https://github.com/jianke0604/NTKMTL.
☆ Illusions of reflection: open-ended task reveals systematic failures in Large Language Models' reflective reasoning
Humans do not just find mistakes after the fact -- we often catch them mid-stream because 'reflection' is tied to the goal and its constraints. Today's large language models produce reasoning tokens and 'reflective' text, but is it functionally equivalent with human reflective reasoning? Prior work on closed-ended tasks -- with clear, external 'correctness' signals -- can make 'reflection' look effective while masking limits in self-correction. We therefore test eight frontier models on a simple, real-world task that is open-ended yet rule-constrained, with auditable success criteria: to produce valid scientific test items, then revise after considering their own critique. First-pass performance is poor (often zero valid items out of 4 required; mean $\approx$ 1), and reflection yields only modest gains (also $\approx$ 1). Crucially, the second attempt frequently repeats the same violation of constraint, indicating 'corrective gains' arise largely from chance production of a valid item rather than error detection and principled, constraint-sensitive repair. Performance before and after reflection deteriorates as open-endedness increases, and models marketed for 'reasoning' show no advantage. Our results suggest that current LLM 'reflection' lacks functional evidence of the active, goal-driven monitoring that helps humans respect constraints even on a first pass. Until such mechanisms are instantiated in the model itself, reliable performance requires external structure that enforces constraints.
☆ Finding the Sweet Spot: Optimal Data Augmentation Ratio for Imbalanced Credit Scoring Using ADASYN
Credit scoring models face a critical challenge: severe class imbalance, with default rates typically below 10%, which hampers model learning and predictive performance. While synthetic data augmentation techniques such as SMOTE and ADASYN have been proposed to address this issue, the optimal augmentation ratio remains unclear, with practitioners often defaulting to full balancing (1:1 ratio) without empirical justification. This study systematically evaluates 10 data augmentation scenarios using the Give Me Some Credit dataset (97,243 observations, 7% default rate), comparing SMOTE, BorderlineSMOTE, and ADASYN at different multiplication factors (1x, 2x, 3x). All models were trained using XGBoost and evaluated on a held-out test set of 29,173 real observations. Statistical significance was assessed using bootstrap testing with 1,000 iterations. Key findings reveal that ADASYN with 1x multiplication (doubling the minority class) achieved optimal performance with AUC of 0.6778 and Gini coefficient of 0.3557, representing statistically significant improvements of +0.77% and +3.00% respectively (p = 0.017, bootstrap test). Higher multiplication factors (2x and 3x) resulted in performance degradation, with 3x showing a -0.48% decrease in AUC, suggesting a "law of diminishing returns" for synthetic oversampling. The optimal class imbalance ratio was found to be 6.6:1 (majority:minority), contradicting the common practice of balancing to 1:1. This work provides the first empirical evidence of an optimal "sweet spot" for data augmentation in credit scoring, with practical guidelines for industry practitioners and researchers working with imbalanced datasets. While demonstrated on a single representative dataset, the methodology provides a reproducible framework for determining optimal augmentation ratios in other imbalanced domains.
comment: 25 pages, 3 figures, 6 tables
☆ Scaling Laws Meet Model Architecture: Toward Inference-Efficient LLMs
Scaling the number of parameters and the size of training data has proven to be an effective strategy for improving large language model (LLM) performance. Yet, as these models grow increasingly powerful and widely deployed, the cost of inference has become a pressing concern. Despite its importance, the trade-off between model accuracy and inference efficiency remains underexplored. In this work, we examine how key architectural factors, hidden size, the allocation of parameters between MLP and attention (mlp-to-attention ratio), and grouped-query attention (GQA), influence both inference cost and accuracy. We introduce a conditional scaling law that augments the Chinchilla framework with architectural information, along with a search framework for identifying architectures that are simultaneously inference-efficient and accurate. To validate our approach, we train more than 200 models spanning 80M to 3B parameters and 8B to 100B training tokens, and fit the proposed conditional scaling law. Our results show that the conditional scaling law reliably predicts optimal architectural choices and that the resulting models outperform existing open-source baselines. Under the same training budget, optimized architectures achieve up to 2.1% higher accuracy and 42% greater inference throughput compared to LLaMA-3.2.
comment: 27 pages, 17 figures
☆ Learning with Dual-level Noisy Correspondence for Multi-modal Entity Alignment
Multi-modal entity alignment (MMEA) aims to identify equivalent entities across heterogeneous multi-modal knowledge graphs (MMKGs), where each entity is described by attributes from various modalities. Existing methods typically assume that both intra-entity and inter-graph correspondences are faultless, which is often violated in real-world MMKGs due to the reliance on expert annotations. In this paper, we reveal and study a highly practical yet under-explored problem in MMEA, termed Dual-level Noisy Correspondence (DNC). DNC refers to misalignments in both intra-entity (entity-attribute) and inter-graph (entity-entity and attribute-attribute) correspondences. To address the DNC problem, we propose a robust MMEA framework termed RULE. RULE first estimates the reliability of both intra-entity and inter-graph correspondences via a dedicated two-fold principle. Leveraging the estimated reliabilities, RULE mitigates the negative impact of intra-entity noise during attribute fusion and prevents overfitting to noisy inter-graph correspondences during inter-graph discrepancy elimination. Beyond the training-time designs, RULE further incorporates a correspondence reasoning module that uncovers the underlying attribute-attribute connection across graphs, guaranteeing more accurate equivalent entity identification. Extensive experiments on five benchmarks verify the effectiveness of our method against the DNC compared with seven state-of-the-art methods.The code is available at \href{https://github.com/XLearning-SCU/RULE}{XLearning-SCU/RULE}
comment: 30 pages, 12 figures
☆ LIME: Link-based user-item Interaction Modeling with decoupled xor attention for Efficient test time scaling
Scaling large recommendation systems requires advancing three major frontiers: processing longer user histories, expanding candidate sets, and increasing model capacity. While promising, transformers' computational cost scales quadratically with the user sequence length and linearly with the number of candidates. This trade-off makes it prohibitively expensive to expand candidate sets or increase sequence length at inference, despite the significant performance improvements. We introduce \textbf{LIME}, a novel architecture that resolves this trade-off. Through two key innovations, LIME fundamentally reduces computational complexity. First, low-rank ``link embeddings" enable pre-computation of attention weights by decoupling user and candidate interactions, making the inference cost nearly independent of candidate set size. Second, a linear attention mechanism, \textbf{LIME-XOR}, reduces the complexity with respect to user sequence length from quadratic ($O(N^2)$) to linear ($O(N)$). Experiments on public and industrial datasets show LIME achieves near-parity with state-of-the-art transformers but with a 10$\times$ inference speedup on large candidate sets or long sequence lengths. When tested on a major recommendation platform, LIME improved user engagement while maintaining minimal inference costs with respect to candidate set size and user history length, establishing a new paradigm for efficient and expressive recommendation systems.
comment: 16 pages
☆ Fostering the Ecosystem of AI for Social Impact Requires Expanding and Strengthening Evaluation Standards NeurIPS 2025
There has been increasing research interest in AI/ML for social impact, and correspondingly more publication venues have refined review criteria for practice-driven AI/ML research. However, these review guidelines tend to most concretely recognize projects that simultaneously achieve deployment and novel ML methodological innovation. We argue that this introduces incentives for researchers that undermine the sustainability of a broader research ecosystem of social impact, which benefits from projects that make contributions on single front (applied or methodological) that may better meet project partner needs. Our position is that researchers and reviewers in machine learning for social impact must simultaneously adopt: 1) a more expansive conception of social impacts beyond deployment and 2) more rigorous evaluations of the impact of deployed systems.
comment: Accepted at NeurIPS 2025
☆ ACTG-ARL: Differentially Private Conditional Text Generation with RL-Boosted Control
Generating high-quality synthetic text under differential privacy (DP) is critical for training and evaluating language models without compromising user privacy. Prior work on synthesizing DP datasets often fail to preserve key statistical attributes, suffer utility loss from the noise required by DP, and lack fine-grained control over generation. To address these challenges, we make two contributions. First, we introduce a hierarchical framework that decomposes DP synthetic text generation into two subtasks: feature learning and conditional text generation. This design explicitly incorporates learned features into the generation process and simplifies the end-to-end synthesis task. Through systematic ablations, we identify the most effective configuration: a rich tabular schema as feature, a DP tabular synthesizer, and a DP fine-tuned conditional generator, which we term ACTG (Attribute-Conditioned Text Generation). Second, we propose Anchored RL (ARL), a post-training method that improves the instruction-following ability of ACTG for conditional generation. ARL combines RL to boost control with an SFT anchor on best-of-$N$ data to prevent reward hacking. Together, these components form our end-to-end algorithm ACTG-ARL, which advances both the quality of DP synthetic text (+20% MAUVE over prior work) and the control of the conditional generator under strong privacy guarantees.
☆ Towards Fast LLM Fine-tuning through Zeroth-Order Optimization with Projected Gradient-Aligned Perturbations
Fine-tuning large language models (LLMs) using zeroth-order (ZO) optimization has emerged as a promising alternative to traditional gradient-based methods due to its reduced memory footprint requirement. However, existing ZO methods suffer from high variance in gradient estimation, leading to slow convergence and suboptimal performance on large-scale models. In this work, we propose P-GAP, a fast LLM fine-tuning approach through zeroth-order optimization with Projected Gradient-Aligned Perturbations. Specifically, we first estimate a low-dimensional gradient space and then align perturbations in projected gradients' direction within the space. This approach enables reduced the number of perturbed parameters and decreased variance, therefore accelerated convergence for LLM fine-tuning. Experiments on LLMs show that P-GAP consistently surpasses the baselines, achieving up to 6% increase in accuracy on classification tasks and up to 12% higher accuracy on generation tasks, with up to about 81% less training iterations and 70% less GPU hours. These results demonstrate that P-GAP enables fast, scalable, and resource-efficient ZO LLM fine-tuning.
comment: 10 pages, 5 figures
☆ Joint Optimization of Cooperation Efficiency and Communication Covertness for Target Detection with AUVs
This paper investigates underwater cooperative target detection using autonomous underwater vehicles (AUVs), with a focus on the critical trade-off between cooperation efficiency and communication covertness. To tackle this challenge, we first formulate a joint trajectory and power control optimization problem, and then present an innovative hierarchical action management framework to solve it. According to the hierarchical formulation, at the macro level, the master AUV models the agent selection process as a Markov decision process and deploys the proximal policy optimization algorithm for strategic task allocation. At the micro level, each selected agent's decentralized decision-making is modeled as a partially observable Markov decision process, and a multi-agent proximal policy optimization algorithm is used to dynamically adjust its trajectory and transmission power based on its local observations. Under the centralized training and decentralized execution paradigm, our target detection framework enables adaptive covert cooperation while satisfying both energy and mobility constraints. By comprehensively modeling the considered system, the involved signals and tasks, as well as energy consumption, theoretical insights and practical solutions for the efficient and secure operation of multiple AUVs are provided, offering significant implications for the execution of underwater covert communication tasks.
☆ The Bias-Variance Tradeoff in Data-Driven Optimization: A Local Misspecification Perspective
Data-driven stochastic optimization is ubiquitous in machine learning and operational decision-making problems. Sample average approximation (SAA) and model-based approaches such as estimate-then-optimize (ETO) or integrated estimation-optimization (IEO) are all popular, with model-based approaches being able to circumvent some of the issues with SAA in complex context-dependent problems. Yet the relative performance of these methods is poorly understood, with most results confined to the dichotomous cases of the model-based approach being either well-specified or misspecified. We develop the first results that allow for a more granular analysis of the relative performance of these methods under a local misspecification setting, which models the scenario where the model-based approach is nearly well-specified. By leveraging tools from contiguity theory in statistics, we show that there is a bias-variance tradeoff between SAA, IEO, and ETO under local misspecification, and that the relative importance of the bias and the variance depends on the degree of local misspecification. Moreover, we derive explicit expressions for the decision bias, which allows us to characterize (un)impactful misspecification directions, and provide further geometric understanding of the variance.
☆ VLSU: Mapping the Limits of Joint Multimodal Understanding for AI Safety
Safety evaluation of multimodal foundation models often treats vision and language inputs separately, missing risks from joint interpretation where benign content becomes harmful in combination. Existing approaches also fail to distinguish clearly unsafe content from borderline cases, leading to problematic over-blocking or under-refusal of genuinely harmful content. We present Vision Language Safety Understanding (VLSU), a comprehensive framework to systematically evaluate multimodal safety through fine-grained severity classification and combinatorial analysis across 17 distinct safety patterns. Using a multi-stage pipeline with real-world images and human annotation, we construct a large-scale benchmark of 8,187 samples spanning 15 harm categories. Our evaluation of eleven state-of-the-art models reveals systematic joint understanding failures: while models achieve 90%-plus accuracy on clear unimodal safety signals, performance degrades substantially to 20-55% when joint image-text reasoning is required to determine the safety label. Most critically, 34% of errors in joint image-text safety classification occur despite correct classification of the individual modalities, further demonstrating absent compositional reasoning capabilities. Additionally, we find that models struggle to balance refusing unsafe content while still responding to borderline cases that deserve engagement. For example, we find that instruction framing can reduce the over-blocking rate on borderline content from 62.4% to 10.4% in Gemini-1.5, but only at the cost of under-refusing on unsafe content with refusal rate dropping from 90.8% to 53.9%. Overall, our framework exposes weaknesses in joint image-text understanding and alignment gaps in current models, and provides a critical test bed to enable the next milestones in research on robust vision-language safety.
comment: 10 pages, 5 figures, 4 tables. Under review
A Definition of AGI
The lack of a concrete definition for Artificial General Intelligence (AGI) obscures the gap between today's specialized AI and human-level cognition. This paper introduces a quantifiable framework to address this, defining AGI as matching the cognitive versatility and proficiency of a well-educated adult. To operationalize this, we ground our methodology in Cattell-Horn-Carroll theory, the most empirically validated model of human cognition. The framework dissects general intelligence into ten core cognitive domains-including reasoning, memory, and perception-and adapts established human psychometric batteries to evaluate AI systems. Application of this framework reveals a highly "jagged" cognitive profile in contemporary models. While proficient in knowledge-intensive domains, current AI systems have critical deficits in foundational cognitive machinery, particularly long-term memory storage. The resulting AGI scores (e.g., GPT-4 at 27%, GPT-5 at 58%) concretely quantify both rapid progress and the substantial gap remaining before AGI.
☆ RESCUE: Retrieval Augmented Secure Code Generation
Despite recent advances, Large Language Models (LLMs) still generate vulnerable code. Retrieval-Augmented Generation (RAG) has the potential to enhance LLMs for secure code generation by incorporating external security knowledge. However, the conventional RAG design struggles with the noise of raw security-related documents, and existing retrieval methods overlook the significant security semantics implicitly embedded in task descriptions. To address these issues, we propose RESCUE, a new RAG framework for secure code generation with two key innovations. First, we propose a hybrid knowledge base construction method that combines LLM-assisted cluster-then-summarize distillation with program slicing, producing both high-level security guidelines and concise, security-focused code examples. Second, we design a hierarchical multi-faceted retrieval to traverse the constructed knowledge base from top to bottom and integrates multiple security-critical facts at each hierarchical level, ensuring comprehensive and accurate retrieval. We evaluated RESCUE on four benchmarks and compared it with five state-of-the-art secure code generation methods on six LLMs. The results demonstrate that RESCUE improves the SecurePass@1 metric by an average of 4.8 points, establishing a new state-of-the-art performance for security. Furthermore, we performed in-depth analysis and ablation studies to rigorously validate the effectiveness of individual components in RESCUE.
☆ Ensemble based Closed-Loop Optimal Control using Physics-Informed Neural Networks
The objective of designing a control system is to steer a dynamical system with a control signal, guiding it to exhibit the desired behavior. The Hamilton-Jacobi-Bellman (HJB) partial differential equation offers a framework for optimal control system design. However, numerical solutions to this equation are computationally intensive, and analytical solutions are frequently unavailable. Knowledge-guided machine learning methodologies, such as physics-informed neural networks (PINNs), offer new alternative approaches that can alleviate the difficulties of solving the HJB equation numerically. This work presents a multistage ensemble framework to learn the optimal cost-to-go, and subsequently the corresponding optimal control signal, through the HJB equation. Prior PINN-based approaches rely on a stabilizing the HJB enforcement during training. Our framework does not use stabilizer terms and offers a means of controlling the nonlinear system, via either a singular learned control signal or an ensemble control signal policy. Success is demonstrated in closed-loop control, using both ensemble- and singular-control, of a steady-state time-invariant two-state continuous nonlinear system with an infinite time horizon, accounting of noisy, perturbed system states and varying initial conditions.
☆ FST.ai 2.0: An Explainable AI Ecosystem for Fair, Fast, and Inclusive Decision-Making in Olympic and Paralympic Taekwondo
Fair, transparent, and explainable decision-making remains a critical challenge in Olympic and Paralympic combat sports. This paper presents \emph{FST.ai 2.0}, an explainable AI ecosystem designed to support referees, coaches, and athletes in real time during Taekwondo competitions and training. The system integrates {pose-based action recognition} using graph convolutional networks (GCNs), {epistemic uncertainty modeling} through credal sets, and {explainability overlays} for visual decision support. A set of {interactive dashboards} enables human--AI collaboration in referee evaluation, athlete performance analysis, and Para-Taekwondo classification. Beyond automated scoring, FST.ai~2.0 incorporates modules for referee training, fairness monitoring, and policy-level analytics within the World Taekwondo ecosystem. Experimental validation on competition data demonstrates an {85\% reduction in decision review time} and {93\% referee trust} in AI-assisted decisions. The framework thus establishes a transparent and extensible pipeline for trustworthy, data-driven officiating and athlete assessment. By bridging real-time perception, explainable inference, and governance-aware design, FST.ai~2.0 represents a step toward equitable, accountable, and human-aligned AI in sports.
comment: 23 pages, 12 figures
☆ Joint Estimation of Piano Dynamics and Metrical Structure with a Multi-task Multi-Scale Network ICASSP2026
Estimating piano dynamic from audio recordings is a fundamental challenge in computational music analysis. In this paper, we propose an efficient multi-task network that jointly predicts dynamic levels, change points, beats, and downbeats from a shared latent representation. These four targets form the metrical structure of dynamics in the music score. Inspired by recent vocal dynamic research, we use a multi-scale network as the backbone, which takes Bark-scale specific loudness as the input feature. Compared to log-Mel as input, this reduces model size from 14.7 M to 0.5 M, enabling long sequential input. We use a 60-second audio length in audio segmentation, which doubled the length of beat tracking commonly used. Evaluated on the public MazurkaBL dataset, our model achieves state-of-the-art results across all tasks. This work sets a new benchmark for piano dynamic estimation and delivers a powerful and compact tool, paving the way for large-scale, resource-efficient analysis of musical expression.
comment: Paper submitted to ICASSP2026
☆ ActivationReasoning: Logical Reasoning in Latent Activation Spaces
Large language models (LLMs) excel at generating fluent text, but their internal reasoning remains opaque and difficult to control. Sparse autoencoders (SAEs) make hidden activations more interpretable by exposing latent features that often align with human concepts. Yet, these features are fragile and passive, offering no mechanism for systematic reasoning or model control. To address this, we introduce ActivationReasoning (AR), a framework that embeds explicit logical reasoning into the latent space of LLMs. It proceeds in three stages: (1) Finding latent representations, first latent concept representations are identified (e.g., via SAEs) and organized into a dictionary; (2) Activating propositions, at inference time AR detects activating concepts and maps them to logical propositions; and (3)Logical reasoning, applying logical rules over these propositions to infer higher-order structures, compose new concepts, and steer model behavior. We evaluate AR on multi-hop reasoning (PrOntoQA), abstraction and robustness to indirect concept cues (Rail2Country), reasoning over natural and diverse language (ProverQA), and context-sensitive safety (BeaverTails). Across all tasks, AR scales robustly with reasoning complexity, generalizes to abstract and context-sensitive tasks, and transfers across model backbones. These results demonstrate that grounding logical structure in latent activations not only improves transparency but also enables structured reasoning, reliable control, and alignment with desired behaviors, providing a path toward more reliable and auditable AI.
☆ Nash Policy Gradient: A Policy Gradient Method with Iteratively Refined Regularization for Finding Nash Equilibria
Finding Nash equilibria in imperfect-information games remains a central challenge in multi-agent reinforcement learning. While regularization-based methods have recently achieved last-iteration convergence to a regularized equilibrium, they require the regularization strength to shrink toward zero to approximate a Nash equilibrium, often leading to unstable learning in practice. Instead, we fix the regularization strength at a large value for robustness and achieve convergence by iteratively refining the reference policy. Our main theoretical result shows that this procedure guarantees strictly monotonic improvement and convergence to an exact Nash equilibrium in two-player zero-sum games, without requiring a uniqueness assumption. Building on this framework, we develop a practical algorithm, Nash Policy Gradient (NashPG), which preserves the generalizability of policy gradient methods while relying solely on the current and reference policies. Empirically, NashPG achieves comparable or lower exploitability than prior model-free methods on classic benchmark games and scales to large domains such as Battleship and No-Limit Texas Hold'em, where NashPG consistently attains higher Elo ratings.
☆ A Multi-Evidence Framework Rescues Low-Power Prognostic Signals and Rejects Statistical Artifacts in Cancer Genomics
Motivation: Standard genome-wide association studies in cancer genomics rely on statistical significance with multiple testing correction, but systematically fail in underpowered cohorts. In TCGA breast cancer (n=967, 133 deaths), low event rates (13.8%) create severe power limitations, producing false negatives for known drivers and false positives for large passenger genes. Results: We developed a five-criteria computational framework integrating causal inference (inverse probability weighting, doubly robust estimation) with orthogonal biological validation (expression, mutation patterns, literature evidence). Applied to TCGA-BRCA mortality analysis, standard Cox+FDR detected zero genes at FDR<0.05, confirming complete failure in underpowered settings. Our framework correctly identified RYR2 - a cardiac gene with no cancer function - as a false positive despite nominal significance (p=0.024), while identifying KMT2C as a complex candidate requiring validation despite marginal significance (p=0.047, q=0.954). Power analysis revealed median power of 15.1% across genes, with KMT2C achieving only 29.8% power (HR=1.55), explaining borderline statistical significance despite strong biological evidence. The framework distinguished true signals from artifacts through mutation pattern analysis: RYR2 showed 29.8% silent mutations (passenger signature) with no hotspots, while KMT2C showed 6.7% silent mutations with 31.4% truncating variants (driver signature). This multi-evidence approach provides a template for analyzing underpowered cohorts, prioritizing biological interpretability over purely statistical significance. Availability: All code and analysis pipelines available at github.com/akarlaraytu/causal- inference-for-cancer-genomics
comment: 17 pages (main text), 4 figures (main text), 7 supplementary figures, 4 supplementary tables. Focuses on a computational framework using causal inference and biological validation for underpowered cancer genomic studies
☆ A Multi-Evidence Framework Rescues Low-Power Prognostic Signals and Rejects Statistical Artifacts in Cancer Genomics
Motivation: Standard genome-wide association studies in cancer genomics rely on statistical significance with multiple testing correction, but systematically fail in underpowered cohorts. In TCGA breast cancer (n=967, 133 deaths), low event rates (13.8%) create severe power limitations, producing false negatives for known drivers and false positives for large passenger genes. Results: We developed a five-criteria computational framework integrating causal inference (inverse probability weighting, doubly robust estimation) with orthogonal biological validation (expression, mutation patterns, literature evidence). Applied to TCGA-BRCA mortality analysis, standard Cox+FDR detected zero genes at FDR<0.05, confirming complete failure in underpowered settings. Our framework correctly identified RYR2 -- a cardiac gene with no cancer function -- as a false positive despite nominal significance (p=0.024), while identifying KMT2C as a complex candidate requiring validation despite marginal significance (p=0.047, q=0.954). Power analysis revealed median power of 15.1% across genes, with KMT2C achieving only 29.8% power (HR=1.55), explaining borderline statistical significance despite strong biological evidence. The framework distinguished true signals from artifacts through mutation pattern analysis: RYR2 showed 29.8% silent mutations (passenger signature) with no hotspots, while KMT2C showed 6.7% silent mutations with 31.4% truncating variants (driver signature). This multi-evidence approach provides a template for analyzing underpowered cohorts, prioritizing biological interpretability over purely statistical significance. Availability: All code and analysis pipelines available at github.com/akarlaraytu/causal-inference-for-cancer-genomics
comment: 17 pages (main text), 4 figures (main text), 7 supplementary figures, 4 supplementary tables. Focuses on a computational framework using causal inference and biological validation for underpowered cancer genomic studies
☆ PGTT: Phase-Guided Terrain Traversal for Perceptive Legged Locomotion
State-of-the-art perceptive Reinforcement Learning controllers for legged robots either (i) impose oscillator or IK-based gait priors that constrain the action space, add bias to the policy optimization and reduce adaptability across robot morphologies, or (ii) operate "blind", which struggle to anticipate hind-leg terrain, and are brittle to noise. In this paper, we propose Phase-Guided Terrain Traversal (PGTT), a perception-aware deep-RL approach that overcomes these limitations by enforcing gait structure purely through reward shaping, thereby reducing inductive bias in policy learning compared to oscillator/IK-conditioned action priors. PGTT encodes per-leg phase as a cubic Hermite spline that adapts swing height to local heightmap statistics and adds a swing-phase contact penalty, while the policy acts directly in joint space supporting morphology-agnostic deployment. Trained in MuJoCo (MJX) on procedurally generated stair-like terrains with curriculum and domain randomization, PGTT achieves the highest success under push disturbances (median +7.5% vs. the next best method) and on discrete obstacles (+9%), with comparable velocity tracking, and converging to an effective policy roughly 2x faster than strong end-to-end baselines. We validate PGTT on a Unitree Go2 using a real-time LiDAR elevation-to-heightmap pipeline, and we report preliminary results on ANYmal-C obtained with the same hyperparameters. These findings indicate that terrain-adaptive, phase-guided reward shaping is a simple and general mechanism for robust perceptive locomotion across platforms.
comment: 9 pages, 9 figures, 2 tables
☆ ECG-LLM -- training and evaluation of domain-specific large language models for electrocardiography
Domain-adapted open-weight large language models (LLMs) offer promising healthcare applications, from queryable knowledge bases to multimodal assistants, with the crucial advantage of local deployment for privacy preservation. However, optimal adaptation strategies, evaluation methodologies, and performance relative to general-purpose LLMs remain poorly characterized. We investigated these questions in electrocardiography, an important area of cardiovascular medicine, by finetuning open-weight models on domain-specific literature and implementing a multi-layered evaluation framework comparing finetuned models, retrieval-augmented generation (RAG), and Claude Sonnet 3.7 as a representative general-purpose model. Finetuned Llama 3.1 70B achieved superior performance on multiple-choice evaluations and automatic text metrics, ranking second to Claude 3.7 in LLM-as-a-judge assessments. Human expert evaluation favored Claude 3.7 and RAG approaches for complex queries. Finetuned models significantly outperformed their base counterparts across nearly all evaluation modes. Our findings reveal substantial performance heterogeneity across evaluation methodologies, underscoring assessment complexity. Nevertheless, domain-specific adaptation through finetuning and RAG achieves competitive performance with proprietary models, supporting the viability of privacy-preserving, locally deployable clinical solutions.
comment: 34 pages, 8 figures, code available at https://github.com/AI4HealthUOL/ecg-llm
☆ Training-Free Spectral Fingerprints of Voice Processing in Transformers
Different transformer architectures implement identical linguistic computations via distinct connectivity patterns, yielding model imprinted ``computational fingerprints'' detectable through spectral analysis. Using graph signal processing on attention induced token graphs, we track changes in algebraic connectivity (Fiedler value, $\Delta\lambda_2$) under voice alternation across 20 languages and three model families, with a prespecified early window (layers 2--5). Our analysis uncovers clear architectural signatures: Phi-3-Mini shows a dramatic English specific early layer disruption ($\overline{\Delta\lambda_2}_{[2,5]}\!\approx\!-0.446$) while effects in 19 other languages are minimal, consistent with public documentation that positions the model primarily for English use. Qwen2.5-7B displays small, distributed shifts that are largest for morphologically rich languages, and LLaMA-3.2-1B exhibits systematic but muted responses. These spectral signatures correlate strongly with behavioral differences (Phi-3: $r=-0.976$) and are modulated by targeted attention head ablations, linking the effect to early attention structure and confirming functional relevance. Taken together, the findings are consistent with the view that training emphasis can leave detectable computational imprints: specialized processing strategies that manifest as measurable connectivity patterns during syntactic transformations. Beyond voice alternation, the framework differentiates reasoning modes, indicating utility as a simple, training free diagnostic for revealing architectural biases and supporting model reliability analysis.
comment: Preprint under review (2025). 12 pages, 8 figures
☆ Steering Autoregressive Music Generation with Recursive Feature Machines
Controllable music generation remains a significant challenge, with existing methods often requiring model retraining or introducing audible artifacts. We introduce MusicRFM, a framework that adapts Recursive Feature Machines (RFMs) to enable fine-grained, interpretable control over frozen, pre-trained music models by directly steering their internal activations. RFMs analyze a model's internal gradients to produce interpretable "concept directions", or specific axes in the activation space that correspond to musical attributes like notes or chords. We first train lightweight RFM probes to discover these directions within MusicGen's hidden states; then, during inference, we inject them back into the model to guide the generation process in real-time without per-step optimization. We present advanced mechanisms for this control, including dynamic, time-varying schedules and methods for the simultaneous enforcement of multiple musical properties. Our method successfully navigates the trade-off between control and generation quality: we can increase the accuracy of generating a target musical note from 0.23 to 0.82, while text prompt adherence remains within approximately 0.02 of the unsteered baseline, demonstrating effective control with minimal impact on prompt fidelity. We release code to encourage further exploration on RFMs in the music domain.
☆ Learning Peer Influence Probabilities with Linear Contextual Bandits
In networked environments, users frequently share recommendations about content, products, services, and courses of action with others. The extent to which such recommendations are successful and adopted is highly contextual, dependent on the characteristics of the sender, recipient, their relationship, the recommended item, and the medium, which makes peer influence probabilities highly heterogeneous. Accurate estimation of these probabilities is key to understanding information diffusion processes and to improving the effectiveness of viral marketing strategies. However, learning these probabilities from data is challenging; static data may capture correlations between peer recommendations and peer actions but fails to reveal influence relationships. Online learning algorithms can learn these probabilities from interventions but either waste resources by learning from random exploration or optimize for rewards, thus favoring exploration of the space with higher influence probabilities. In this work, we study learning peer influence probabilities under a contextual linear bandit framework. We show that a fundamental trade-off can arise between regret minimization and estimation error, characterize all achievable rate pairs, and propose an uncertainty-guided exploration algorithm that, by tuning a parameter, attains any pair within this trade-off. Our experiments on semi-synthetic network datasets show the advantages of our method over static methods and contextual bandits that ignore this trade-off.
☆ A Graph Signal Processing Framework for Hallucination Detection in Large Language Models
Large language models achieve impressive results but distinguishing factual reasoning from hallucinations remains challenging. We propose a spectral analysis framework that models transformer layers as dynamic graphs induced by attention, with token embeddings as signals on these graphs. Through graph signal processing, we define diagnostics including Dirichlet energy, spectral entropy, and high-frequency energy ratios, with theoretical connections to computational stability. Experiments across GPT architectures suggest universal spectral patterns: factual statements exhibit consistent "energy mountain" behavior with low-frequency convergence, while different hallucination types show distinct signatures. Logical contradictions destabilize spectra with large effect sizes ($g>1.0$), semantic errors remain stable but show connectivity drift, and substitution hallucinations display intermediate perturbations. A simple detector using spectral signatures achieves 88.75% accuracy versus 75% for perplexity-based baselines, demonstrating practical utility. These findings indicate that spectral geometry may capture reasoning patterns and error behaviors, potentially offering a framework for hallucination detection in large language models.
comment: Preprint under review (2025). 11 pages, 7 figures. Code and scripts: to be released
☆ That's Deprecated! Understanding, Detecting, and Steering Knowledge Conflicts in Language Models for Code Generation
This paper investigates how large language models (LLMs) behave when faced with discrepancies between their parametric knowledge and conflicting information contained in a prompt. Building on prior question-answering (QA) research, we extend the investigation of knowledge conflicts to the realm of code generation. We propose a domain-agnostic framework for constructing and interpreting such conflicts, along with a novel evaluation method and dataset tailored to code conflict scenarios. Our experiments indicate that sufficiently large LLMs encode the notion of a knowledge conflict in their parameters, enabling us to detect knowledge conflicts with up to \textbf{80.65\%} accuracy. Building on these insights, we show that activation-level steering can achieve up to a \textbf{12.6\%} improvement in steering success over a random baseline. However, effectiveness depends critically on balancing model size, task domain, and steering direction. The experiment code and data will be made publicly available after acceptance.
☆ Signature Kernel Scoring Rule as Spatio-Temporal Diagnostic for Probabilistic Forecasting
Modern weather forecasting has increasingly transitioned from numerical weather prediction (NWP) to data-driven machine learning forecasting techniques. While these new models produce probabilistic forecasts to quantify uncertainty, their training and evaluation may remain hindered by conventional scoring rules, primarily MSE, which ignore the highly correlated data structures present in weather and atmospheric systems. This work introduces the signature kernel scoring rule, grounded in rough path theory, which reframes weather variables as continuous paths to encode temporal and spatial dependencies through iterated integrals. Validated as strictly proper through the use of path augmentations to guarantee uniqueness, the signature kernel provides a theoretically robust metric for forecast verification and model training. Empirical evaluations through weather scorecards on WeatherBench 2 models demonstrate the signature kernel scoring rule's high discriminative power and unique capacity to capture path-dependent interactions. Following previous demonstration of successful adversarial-free probabilistic training, we train sliding window generative neural networks using a predictive-sequential scoring rule on ERA5 reanalysis weather data. Using a lightweight model, we demonstrate that signature kernel based training outperforms climatology for forecast paths of up to fifteen timesteps.
☆ MetaCluster: Enabling Deep Compression of Kolmogorov-Arnold Network
Kolmogorov-Arnold Networks (KANs) replace scalar weights with per-edge vectors of basis coefficients, thereby boosting expressivity and accuracy but at the same time resulting in a multiplicative increase in parameters and memory. We propose MetaCluster, a framework that makes KANs highly compressible without sacrificing accuracy. Specifically, a lightweight meta-learner, trained jointly with the KAN, is used to map low-dimensional embedding to coefficient vectors, shaping them to lie on a low-dimensional manifold that is amenable to clustering. We then run K-means in coefficient space and replace per-edge vectors with shared centroids. Afterwards, the meta-learner can be discarded, and a brief fine-tuning of the centroid codebook recovers any residual accuracy loss. The resulting model stores only a small codebook and per-edge indices, exploiting the vector nature of KAN parameters to amortize storage across multiple coefficients. On MNIST, CIFAR-10, and CIFAR-100, across standard KANs and ConvKANs using multiple basis functions, MetaCluster achieves a reduction of up to 80$\times$ in parameter storage, with no loss in accuracy. Code will be released upon publication.
☆ What Makes a Good Curriculum? Disentangling the Effects of Data Ordering on LLM Mathematical Reasoning
Curriculum learning (CL) - ordering training data from easy to hard - has become a popular strategy for improving reasoning in large language models (LLMs). Yet prior work employs disparate difficulty metrics and training setups, leaving open fundamental questions: When does curriculum help? Which direction - forward or reverse - is better? And does the answer depend on what we measure? We address these questions through a unified offline evaluation framework that decomposes curriculum difficulty into five complementary dimensions: Problem Difficulty, Model Surprisal, Confidence Margin, Predictive Uncertainty, and Decision Variability. Through controlled post-training experiments on mathematical reasoning benchmarks with Llama3.1-8B, Mistral-7B, and Gemma3-4B, we find that (i) no curriculum strategy dominates universally - the relative effectiveness of forward versus reverse CL depends jointly on model capability and task complexity; (ii) even within a single metric, samples at different difficulty levels produce distinct gains depending on task demands; and (iii) task-aligned curricula focus on shaping the model's final representations and generalization, whereas inner-state curricula modulate internal states such as confidence and uncertainty. Our findings challenge the notion of a universal curriculum strategy and offer actionable guidance across model and task regimes, with some metrics indicating that prioritizing decision-uncertain samples can further enhance learning outcomes.
comment: 8 pages (main text) + 4 pages (appendix), 4 figures
☆ Weight Decay may matter more than muP for Learning Rate Transfer in Practice
Transferring the optimal learning rate from small to large neural networks can enable efficient training at scales where hyperparameter tuning is otherwise prohibitively expensive. To this end, the Maximal Update Parameterization (muP) proposes a learning rate scaling designed to keep the update dynamics of internal representations stable across different model widths. However, the scaling rules of muP rely on strong assumptions, particularly about the geometric alignment of a layer's inputs with both its weights and gradient updates. In this large-scale empirical investigation, we show that these assumptions hold only briefly at the start of training in the practical setups where learning rate transfer is most valuable, such as LLM training. For the remainder of training it is weight decay rather than muP that correctly stabilizes the update dynamics of internal representations across widths, facilitating learning rate transfer. This suggests muP's scaling primarily acts as a form of implicit learning rate warmup, allowing us to largely replace it with modified warmup schedules. Together these findings fundamentally challenge prevailing beliefs about learning rate transfer and can explain empirical practice such as why muP requires the independent weight decay variant for successful transfer.
☆ Learning noisy tissue dynamics across time scales
Tissue dynamics play a crucial role in biological processes ranging from wound healing to morphogenesis. However, these noisy multicellular dynamics are notoriously hard to predict. Here, we introduce a biomimetic machine learning framework capable of inferring noisy multicellular dynamics directly from experimental movies. This generative model combines graph neural networks, normalizing flows and WaveNet algorithms to represent tissues as neural stochastic differential equations where cells are edges of an evolving graph. This machine learning architecture reflects the architecture of the underlying biological tissues, substantially reducing the amount of data needed to train it compared to convolutional or fully-connected neural networks. Taking epithelial tissue experiments as a case study, we show that our model not only captures stochastic cell motion but also predicts the evolution of cell states in their division cycle. Finally, we demonstrate that our method can accurately generate the experimental dynamics of developmental systems, such as the fly wing, and cell signaling processes mediated by stochastic ERK waves, paving the way for its use as a digital twin in bioengineering and clinical contexts.
comment: 15 pages, 6 figures
☆ POLAR: Policy-based Layerwise Reinforcement Learning Method for Stealthy Backdoor Attacks in Federated Learning
Federated Learning (FL) enables decentralized model training across multiple clients without exposing local data, but its distributed feature makes it vulnerable to backdoor attacks. Despite early FL backdoor attacks modifying entire models, recent studies have explored the concept of backdoor-critical (BC) layers, which poison the chosen influential layers to maintain stealthiness while achieving high effectiveness. However, existing BC layers approaches rely on rule-based selection without consideration of the interrelations between layers, making them ineffective and prone to detection by advanced defenses. In this paper, we propose POLAR (POlicy-based LAyerwise Reinforcement learning), the first pipeline to creatively adopt RL to solve the BC layer selection problem in layer-wise backdoor attack. Different from other commonly used RL paradigm, POLAR is lightweight with Bernoulli sampling. POLAR dynamically learns an attack strategy, optimizing layer selection using policy gradient updates based on backdoor success rate (BSR) improvements. To ensure stealthiness, we introduce a regularization constraint that limits the number of modified layers by penalizing large attack footprints. Extensive experiments demonstrate that POLAR outperforms the latest attack methods by up to 40% against six state-of-the-art (SOTA) defenses.
☆ Rectifying Shortcut Behaviors in Preference-based Reward Learning NeurIPS 2025
In reinforcement learning from human feedback, preference-based reward models play a central role in aligning large language models to human-aligned behavior. However, recent studies show that these models are prone to reward hacking and often fail to generalize well due to over-optimization. They achieve high reward scores by exploiting shortcuts, that is, exploiting spurious features (e.g., response verbosity, agreeable tone, or sycophancy) that correlate with human preference labels in the training data rather than genuinely reflecting the intended objectives. In this paper, instead of probing these issues one at a time, we take a broader view of the reward hacking problem as shortcut behaviors and introduce a principled yet flexible approach to mitigate shortcut behaviors in preference-based reward learning. Inspired by the invariant theory in the kernel perspective, we propose Preference-based Reward Invariance for Shortcut Mitigation (PRISM), which learns group-invariant kernels with feature maps in a closed-form learning objective. Experimental results in several benchmarks show that our method consistently improves the accuracy of the reward model on diverse out-of-distribution tasks and reduces the dependency on shortcuts in downstream policy models, establishing a robust framework for preference-based alignment.
comment: NeurIPS 2025
☆ Empowering Decision Trees via Shape Function Branching NeurIPS 2025
Decision trees are prized for their interpretability and strong performance on tabular data. Yet, their reliance on simple axis-aligned linear splits often forces deep, complex structures to capture non-linear feature effects, undermining human comprehension of the constructed tree. To address this limitation, we propose a novel generalization of a decision tree, the Shape Generalized Tree (SGT), in which each internal node applies a learnable axis-aligned shape function to a single feature, enabling rich, non-linear partitioning in one split. As users can easily visualize each node's shape function, SGTs are inherently interpretable and provide intuitive, visual explanations of the model's decision mechanisms. To learn SGTs from data, we propose ShapeCART, an efficient induction algorithm for SGTs. We further extend the SGT framework to bivariate shape functions (S$^2$GT) and multi-way trees (SGT$_K$), and present Shape$^2$CART and ShapeCART$_K$, extensions to ShapeCART for learning S$^2$GTs and SGT$_K$s, respectively. Experiments on various datasets show that SGTs achieve superior performance with reduced model size compared to traditional axis-aligned linear trees.
comment: Accepted at NeurIPS 2025, Source code found at: https://github.com/optimal-uoft/Empowering-DTs-via-Shape-Functions
☆ Category learning in deep neural networks: Information content and geometry of internal representations
In animals, category learning enhances discrimination between stimuli close to the category boundary. This phenomenon, called categorical perception, was also empirically observed in artificial neural networks trained on classification tasks. In previous modeling works based on neuroscience data, we show that this expansion/compression is a necessary outcome of efficient learning. Here we extend our theoretical framework to artificial networks. We show that minimizing the Bayes cost (mean of the cross-entropy loss) implies maximizing the mutual information between the set of categories and the neural activities prior to the decision layer. Considering structured data with an underlying feature space of small dimension, we show that maximizing the mutual information implies (i) finding an appropriate projection space, and, (ii) building a neural representation with the appropriate metric. The latter is based on a Fisher information matrix measuring the sensitivity of the neural activity to changes in the projection space. Optimal learning makes this neural Fisher information follow a category-specific Fisher information, measuring the sensitivity of the category membership. Category learning thus induces an expansion of neural space near decision boundaries. We characterize the properties of the categorical Fisher information, showing that its eigenvectors give the most discriminant directions at each point of the projection space. We find that, unexpectedly, its maxima are in general not exactly at, but near, the class boundaries. Considering toy models and the MNIST dataset, we numerically illustrate how after learning the two Fisher information matrices match, and essentially align with the category boundaries. Finally, we relate our approach to the Information Bottleneck one, and we exhibit a bias-variance decomposition of the Bayes cost, of interest on its own.
☆ Calibrated Principal Component Regression
We propose a new method for statistical inference in generalized linear models. In the overparameterized regime, Principal Component Regression (PCR) reduces variance by projecting high-dimensional data to a low-dimensional principal subspace before fitting. However, PCR incurs truncation bias whenever the true regression vector has mass outside the retained principal components (PC). To mitigate the bias, we propose Calibrated Principal Component Regression (CPCR), which first learns a low-variance prior in the PC subspace and then calibrates the model in the original feature space via a centered Tikhonov step. CPCR leverages cross-fitting and controls the truncation bias by softening PCR's hard cutoff. Theoretically, we calculate the out-of-sample risk in the random matrix regime, which shows that CPCR outperforms standard PCR when the regression signal has non-negligible components in low-variance directions. Empirically, CPCR consistently improves prediction across multiple overparameterized problems. The results highlight CPCR's stability and flexibility in modern overparameterized settings.
☆ Prior-informed optimization of treatment recommendation via bandit algorithms trained on large language model-processed historical records
Current medical practice depends on standardized treatment frameworks and empirical methodologies that neglect individual patient variations, leading to suboptimal health outcomes. We develop a comprehensive system integrating Large Language Models (LLMs), Conditional Tabular Generative Adversarial Networks (CTGAN), T-learner counterfactual models, and contextual bandit approaches to provide customized, data-informed clinical recommendations. The approach utilizes LLMs to process unstructured medical narratives into structured datasets (93.2% accuracy), uses CTGANs to produce realistic synthetic patient data (55% accuracy via two-sample verification), deploys T-learners to forecast patient-specific treatment responses (84.3% accuracy), and integrates prior-informed contextual bandits to enhance online therapeutic selection by effectively balancing exploration of new possibilities with exploitation of existing knowledge. Testing on stage III colon cancer datasets revealed that our KernelUCB approach obtained 0.60-0.61 average reward scores across 5,000 rounds, exceeding other reference methods. This comprehensive system overcomes cold-start limitations in online learning environments, improves computational effectiveness, and constitutes notable progress toward individualized medicine adapted to specific patient characteristics.
☆ Plural Voices, Single Agent: Towards Inclusive AI in Multi-User Domestic Spaces
Domestic AI agents faces ethical, autonomy, and inclusion challenges, particularly for overlooked groups like children, elderly, and Neurodivergent users. We present the Plural Voices Model (PVM), a novel single-agent framework that dynamically negotiates multi-user needs through real-time value alignment, leveraging diverse public datasets on mental health, eldercare, education, and moral reasoning. Using human+synthetic curriculum design with fairness-aware scenarios and ethical enhancements, PVM identifies core values, conflicts, and accessibility requirements to inform inclusive principles. Our privacy-focused prototype features adaptive safety scaffolds, tailored interactions (e.g., step-by-step guidance for Neurodivergent users, simple wording for children), and equitable conflict resolution. In preliminary evaluations, PVM outperforms multi-agent baselines in compliance (76% vs. 70%), fairness (90% vs. 85%), safety-violation rate (0% vs. 7%), and latency. Design innovations, including video guidance, autonomy sliders, family hubs, and adaptive safety dashboards, demonstrate new directions for ethical and inclusive domestic AI, for building user-centered agentic systems in plural domestic contexts. Our Codes and Model are been open sourced, available for reproduction: https://github.com/zade90/Agora
☆ Impartial Selection with Predictions
We study the selection of agents based on mutual nominations, a theoretical problem with many applications from committee selection to AI alignment. As agents both select and are selected, they may be incentivized to misrepresent their true opinion about the eligibility of others to influence their own chances of selection. Impartial mechanisms circumvent this issue by guaranteeing that the selection of an agent is independent of the nominations cast by that agent. Previous research has established strong bounds on the performance of impartial mechanisms, measured by their ability to approximate the number of nominations for the most highly nominated agents. We study to what extent the performance of impartial mechanisms can be improved if they are given a prediction of a set of agents receiving a maximum number of nominations. Specifically, we provide bounds on the consistency and robustness of such mechanisms, where consistency measures the performance of the mechanisms when the prediction is accurate and robustness its performance when the prediction is inaccurate. For the general setting where up to $k$ agents are to be selected and agents nominate any number of other agents, we give a mechanism with consistency $1-O\big(\frac{1}{k}\big)$ and robustness $1-\frac{1}{e}-O\big(\frac{1}{k}\big)$. For the special case of selecting a single agent based on a single nomination per agent, we prove that $1$-consistency can be achieved while guaranteeing $\frac{1}{2}$-robustness. A close comparison with previous results shows that (asymptotically) optimal consistency can be achieved with little to no sacrifice in terms of robustness.
☆ An Encode-then-Decompose Approach to Unsupervised Time Series Anomaly Detection on Contaminated Training Data--Extended Version ICDE 2026
Time series anomaly detection is important in modern large-scale systems and is applied in a variety of domains to analyze and monitor the operation of diverse systems. Unsupervised approaches have received widespread interest, as they do not require anomaly labels during training, thus avoiding potentially high costs and having wider applications. Among these, autoencoders have received extensive attention. They use reconstruction errors from compressed representations to define anomaly scores. However, representations learned by autoencoders are sensitive to anomalies in training time series, causing reduced accuracy. We propose a novel encode-then-decompose paradigm, where we decompose the encoded representation into stable and auxiliary representations, thereby enhancing the robustness when training with contaminated time series. In addition, we propose a novel mutual information based metric to replace the reconstruction errors for identifying anomalies. Our proposal demonstrates competitive or state-of-the-art performance on eight commonly used multi- and univariate time series benchmarks and exhibits robustness to time series with different contamination ratios.
comment: 15 pages. An extended version of "An Encode-then-Decompose Approach to Unsupervised Time Series Anomaly Detection on Contaminated Training Data" accepted at ICDE 2026
☆ Towards Universal Solvers: Using PGD Attack in Active Learning to Increase Generalizability of Neural Operators as Knowledge Distillation from Numerical PDE Solvers
Nonlinear PDE solvers require fine space-time discretizations and local linearizations, leading to high memory cost and slow runtimes. Neural operators such as FNOs and DeepONets offer fast single-shot inference by learning function-to-function mappings and truncating high-frequency components, but they suffer from poor out-of-distribution (OOD) generalization, often failing on inputs outside the training distribution. We propose an adversarial teacher-student distillation framework in which a differentiable numerical solver supervises a compact neural operator while a PGD-style active sampling loop searches for worst-case inputs under smoothness and energy constraints to expand the training set. Using differentiable spectral solvers enables gradient-based adversarial search and stabilizes sample mining. Experiments on Burgers and Navier-Stokes systems demonstrate that adversarial distillation substantially improves OOD robustness while preserving the low parameter cost and fast inference of neural operators.
☆ ProfBench: Multi-Domain Rubrics requiring Professional Knowledge to Answer and Judge
Evaluating progress in large language models (LLMs) is often constrained by the challenge of verifying responses, limiting assessments to tasks like mathematics, programming, and short-form question-answering. However, many real-world applications require evaluating LLMs in processing professional documents, synthesizing information, and generating comprehensive reports in response to user queries. We introduce ProfBench: a set of over 7000 response-criterion pairs as evaluated by human-experts with professional knowledge across Physics PhD, Chemistry PhD, Finance MBA and Consulting MBA. We build robust and affordable LLM-Judges to evaluate ProfBench rubrics, by mitigating self-enhancement bias and reducing the cost of evaluation by 2-3 orders of magnitude, to make it fair and accessible to the broader community. Our findings reveal that ProfBench poses significant challenges even for state-of-the-art LLMs, with top-performing models like GPT-5-high achieving only 65.9\% overall performance. Furthermore, we identify notable performance disparities between proprietary and open-weight models and provide insights into the role that extended thinking plays in addressing complex, professional-domain tasks. Data: https://huggingface.co/datasets/nvidia/ProfBench and Code: https://github.com/NVlabs/ProfBench
comment: 23 pages
☆ NeuroAda: Activating Each Neuron's Potential for Parameter-Efficient Fine-Tuning
Existing parameter-efficient fine-tuning (PEFT) methods primarily fall into two categories: addition-based and selective in-situ adaptation. The former, such as LoRA, introduce additional modules to adapt the model to downstream tasks, offering strong memory efficiency. However, their representational capacity is often limited, making them less suitable for fine-grained adaptation. In contrast, the latter directly fine-tunes a carefully chosen subset of the original model parameters, allowing for more precise and effective adaptation, but at the cost of significantly increased memory consumption. To reconcile this trade-off, we propose NeuroAda, a novel PEFT method that enables fine-grained model finetuning while maintaining high memory efficiency. Our approach first identifies important parameters (i.e., connections within the network) as in selective adaptation, and then introduces bypass connections for these selected parameters. During finetuning, only the bypass connections are updated, leaving the original model parameters frozen. Empirical results on 23+ tasks spanning both natural language generation and understanding demonstrate that NeuroAda achieves state-of-the-art performance with as little as $\leq \textbf{0.02}\%$ trainable parameters, while reducing CUDA memory usage by up to 60%. We release our code here: https://github.com/FightingFighting/NeuroAda.git.
♻ ☆ Wonder Wins Ways: Curiosity-Driven Exploration through Multi-Agent Contextual Calibration
Autonomous exploration in complex multi-agent reinforcement learning (MARL) with sparse rewards critically depends on providing agents with effective intrinsic motivation. While artificial curiosity offers a powerful self-supervised signal, it often confuses environmental stochasticity with meaningful novelty. Moreover, existing curiosity mechanisms exhibit a uniform novelty bias, treating all unexpected observations equally. However, peer behavior novelty, which encode latent task dynamics, are often overlooked, resulting in suboptimal exploration in decentralized, communication-free MARL settings. To this end, inspired by how human children adaptively calibrate their own exploratory behaviors via observing peers, we propose a novel approach to enhance multi-agent exploration. We introduce CERMIC, a principled framework that empowers agents to robustly filter noisy surprise signals and guide exploration by dynamically calibrating their intrinsic curiosity with inferred multi-agent context. Additionally, CERMIC generates theoretically-grounded intrinsic rewards, encouraging agents to explore state transitions with high information gain. We evaluate CERMIC on benchmark suites including VMAS, Meltingpot, and SMACv2. Empirical results demonstrate that exploration with CERMIC significantly outperforms SoTA algorithms in sparse-reward environments.
♻ ☆ High-Fidelity And Complex Test Data Generation For Google SQL Code Generation Services
The demand for high-fidelity test data is paramount in industrial settings where access to production data is largely restricted. Traditional data generation methods often fall short, struggling with low-fidelity and the ability to model complex data structures and semantic relationships that are critical for testing complex SQL code generation services like Natural Language to SQL (NL2SQL). In this paper, we address the critical need for generating syntactically correct and semantically relevant high-fidelity mock data for complex data structures that includes columns with nested structures that we frequently encounter in Google workloads. We highlight the limitations of existing approaches used in production, particularly their inability to handle large and complex data structures, as well as the lack of semantically coherent test data that lead to limited test coverage. We demonstrate that by leveraging Large Language Models (LLMs) and incorporating strategic pre- and post-processing steps, we can generate syntactically correct and semantically relevant high-fidelity test data that adheres to complex structural constraints and maintains semantic integrity to the SQL test targets (queries/functions). This approach supports comprehensive testing of complex SQL queries involving joins, aggregations, and even deeply nested subqueries, ensuring robust evaluation of SQL code generation services, like NL2SQL and SQL Code Assistant. Our results demonstrate the practical utility of an LLM (\textit{gemini}) based test data generation for industrial SQL code generation services where generating high-fidelity test data is essential due to the frequent unavailability and inaccessibility of production datasets for testing.
♻ ☆ One-Pass Learning via Bridging Orthogonal Gradient Descent and Recursive Least-Squares IEEE
While large machine learning models have shown remarkable performance in various domains, their training typically requires iterating for many passes over the training data. However, due to computational and memory constraints and potential privacy concerns, storing and accessing all the data is impractical in many real-world scenarios where the data arrives in a stream. In this paper, we investigate the problem of one-pass learning, in which a model is trained on sequentially arriving data without retraining on previous datapoints. Motivated by the demonstrated effectiveness of overparameterized models and the phenomenon of benign overfitting, we propose Orthogonal Recursive Fitting (ORFit), an algorithm for one-pass learning which seeks to perfectly fit each new datapoint while minimally altering the predictions on previous datapoints. ORFit updates the parameters in a direction orthogonal to past gradients, similar to orthogonal gradient descent (OGD) in continual learning. We show that, interestingly, ORFit's update leads to an operation similar to the recursive least-squares (RLS) algorithm in adaptive filtering but with significantly improved memory and computational efficiency, i.e., linear, instead of quadratic, in the number of parameters. To further reduce memory usage, we leverage the structure of the streaming data via an incremental principal component analysis (IPCA). We show that using the principal components is minimax optimal, i.e., it minimizes the worst-case forgetting of previous predictions for unknown future updates. Further, we prove that, for overparameterized linear models, the parameter vector obtained by ORFit matches what the standard multi-pass stochastic gradient descent (SGD) would converge to. Finally, we extend our results to the nonlinear setting for highly overparameterized models, relevant for deep learning.
comment: Journal extension of v1: Y. Min, K, Ahn, N. Azizan, "One-Pass Learning via Bridging Orthogonal Gradient Descent and Recursive Least-Squares," IEEE Conference on Decision and Control, 2022
♻ ☆ How Transformers Learn In-Context Recall Tasks? Optimality, Training Dynamics and Generalization
We study the approximation capabilities, convergence speeds and on-convergence behaviors of transformers trained on in-context recall tasks -- which requires to recognize the \emph{positional} association between a pair of tokens from in-context examples. Existing theoretical results only focus on the in-context reasoning behavior of transformers after being trained for the \emph{one} gradient descent step. It remains unclear what is the on-convergence behavior of transformers being trained by gradient descent and how fast the convergence rate is. In addition, the generalization of transformers in one-step in-context reasoning has not been formally investigated. This work addresses these gaps. We first show that a class of transformers with either linear, ReLU or softmax attentions, is provably Bayes-optimal for an in-context recall task. When being trained with gradient descent, we show via a finite-sample analysis that the expected loss converges at linear rate to the Bayes risks. Moreover, we show that the trained transformers exhibit out-of-distribution (OOD) generalization, i.e., generalizing to samples outside of the population distribution. Our theoretical findings are further supported by extensive empirical validations, showing that \emph{without} proper parameterization, models with larger expressive power surprisingly \emph{fail} to generalize OOD after being trained by gradient descent.
comment: V3: added new results for softmax attention, typos fixed, titled changed. 33 pages
♻ ☆ Nondeterminism-Aware Optimistic Verification for Floating-Point Neural Networks
Neural networks increasingly run on hardware outside the user's control (cloud GPUs, inference marketplaces). Yet ML-as-a-Service reveals little about what actually ran or whether returned outputs faithfully reflect the intended inputs. Users lack recourse against service downgrades (model swaps, quantization, graph rewrites, or discrepancies like altered ad embeddings). Verifying outputs is hard because floating-point(FP) execution on heterogeneous accelerators is inherently nondeterministic. Existing approaches are either impractical for real FP neural networks or reintroduce vendor trust. We present NAO: a Nondeterministic tolerance Aware Optimistic verification protocol that accepts outputs within principled operator-level acceptance regions rather than requiring bitwise equality. NAO combines two error models: (i) sound per-operator IEEE-754 worst-case bounds and (ii) tight empirical percentile profiles calibrated across hardware. Discrepancies trigger a Merkle-anchored, threshold-guided dispute game that recursively partitions the computation graph until one operator remains, where adjudication reduces to a lightweight theoretical-bound check or a small honest-majority vote against empirical thresholds. Unchallenged results finalize after a challenge window, without requiring trusted hardware or deterministic kernels. We implement NAO as a PyTorch-compatible runtime and a contract layer currently deployed on Ethereum Holesky testnet. The runtime instruments graphs, computes per-operator bounds, and runs unmodified vendor kernels in FP32 with negligible overhead (0.3% on Qwen3-8B). Across CNNs, Transformers and diffusion models on A100, H100, RTX6000, RTX4090, empirical thresholds are $10^2-10^3$ times tighter than theoretical bounds, and bound-aware adversarial attacks achieve 0% success. NAO reconciles scalability with verifiability for real-world heterogeneous ML compute.
comment: 17 pages, 7 figures
♻ ☆ Understanding In-Context Learning on Structured Manifolds: Bridging Attention to Kernel Methods
While in-context learning (ICL) has achieved remarkable success in natural language and vision domains, its theoretical understanding-particularly in the context of structured geometric data-remains unexplored. This paper initiates a theoretical study of ICL for regression of H\"older functions on manifolds. We establish a novel connection between the attention mechanism and classical kernel methods, demonstrating that transformers effectively perform kernel-based prediction at a new query through its interaction with the prompt. This connection is validated by numerical experiments, revealing that the learned query-prompt scores for H\"older functions are highly correlated with the Gaussian kernel. Building on this insight, we derive generalization error bounds in terms of the prompt length and the number of training tasks. When a sufficient number of training tasks are observed, transformers give rise to the minimax regression rate of H\"older functions on manifolds, which scales exponentially with the intrinsic dimension of the manifold, rather than the ambient space dimension. Our result also characterizes how the generalization error scales with the number of training tasks, shedding light on the complexity of transformers as in-context kernel algorithm learners. Our findings provide foundational insights into the role of geometry in ICL and novels tools to study ICL of nonlinear models.
♻ ☆ TeLLMe v2: An Efficient End-to-End Ternary LLM Prefill and Decode Accelerator with Table-Lookup Matmul on Edge FPGAs
With the emergence of wearable devices and other embedded systems, deploying large language models (LLMs) on edge platforms has become an urgent need. However, this is challenging because of their high computational and memory demands. Although recent low-bit quantization methods (e.g., BitNet, DeepSeek) compress weights to as low as 1.58~bits with minimal accuracy loss, edge deployment is still constrained by limited on-chip resources, power budgets, and the often-neglected long latency of the prefill stage. We present \textbf{TeLLMe}, the first table-lookup-based ternary LLM accelerator for low-power edge FPGAs that fully supports both prefill and autoregressive decoding using 1.58-bit weights and 8-bit activations. TeLLMe incorporates several novel techniques, including (1) a table-lookup-based ternary matrix multiplication (TLMM) engine utilizing grouped activations and online precomputation for low resource utilization and high throughput; (2) a fine-grained analytic URAM-based weight buffer management scheme for efficient loading and compute engine access; (3) a streaming dataflow architecture that fuses floating-point element-wise operations with linear computations to hide latency; (4) a reversed-reordered prefill stage attention with fused attention operations for high memory efficiency; and (5) a resource-efficient specialized decoding stage attention. Under a 5~W power budget, TeLLMe delivers up to 25~tokens/s decoding throughput and 0.45--0.96~s time-to-first-token (TTFT) for 64--128 token prompts, marking a significant energy-efficiency advancement in LLM inference on edge FPGAs.
♻ ☆ Stabilizing MoE Reinforcement Learning by Aligning Training and Inference Routers
Reinforcement learning (RL) has emerged as a crucial approach for enhancing the capabilities of large language models. However, in Mixture-of-Experts (MoE) models, the routing mechanism often introduces instability, even leading to catastrophic RL training collapse. We analyze the training-inference consistency of MoE models and identify a notable discrepancy in routing behaviors between the two phases. Moreover, even under identical conditions, the routing framework can yield divergent expert selections across repeated forward passes. To address this foundational inconsistency, we propose Rollout Routing Replay (R3), a method that records routing distributions from the inference engine and replays them during training. R3 significantly reduces training-inference policy KL divergence and mitigates extreme discrepancies without compromising training speed. Extensive experiments on various settings confirm that R3 succeeds in stabilizing RL training, preventing collapse and outperforming methods such as GSPO and TIS. We believe this work can offer a new solution for stabilizing RL in MoE models.
♻ ☆ Glyph: Scaling Context Windows via Visual-Text Compression
Large language models (LLMs) increasingly rely on long-context modeling for tasks such as document understanding, code analysis, and multi-step reasoning. However, scaling context windows to the million-token level brings prohibitive computational and memory costs, limiting the practicality of long-context LLMs. In this work, we take a different perspective-visual context scaling-to tackle this challenge. Instead of extending token-based sequences, we propose Glyph, a framework that renders long texts into images and processes them with vision-language models (VLMs). This approach substantially compresses textual input while preserving semantic information, and we further design an LLM-driven genetic search to identify optimal visual rendering configurations for balancing accuracy and compression. Through extensive experiments, we demonstrate that our method achieves 3-4x token compression while maintaining accuracy comparable to leading LLMs such as Qwen3-8B on various long-context benchmarks. This compression also leads to around 4x faster prefilling and decoding, and approximately 2x faster SFT training. Furthermore, under extreme compression, a 128K-context VLM could scale to handle 1M-token-level text tasks. In addition, the rendered text data benefits real-world multimodal tasks, such as document understanding. Our code and model are released at https://github.com/thu-coai/Glyph.
♻ ☆ Stochastic Path Planning in Correlated Obstacle Fields
We introduce the Stochastic Correlated Obstacle Scene (SCOS) problem, a navigation setting with spatially correlated obstacles of uncertain blockage status, realistically constrained sensors that provide noisy readings and costly disambiguation. Modeling the spatial correlation with Gaussian Random Field (GRF), we develop Bayesian belief updates that refine blockage probabilities, and use the posteriors to reduce search space for efficiency. To find the optimal traversal policy, we propose a novel two-stage learning framework. An offline phase learns a robust base policy via optimistic policy iteration augmented with information bonus to encourage exploration in informative regions, followed by an online rollout policy with periodic base updates via a Bayesian mechanism for information adaptation. This framework supports both Monte Carlo point estimation and distributional reinforcement learning (RL) to learn full cost distributions, leading to stronger uncertainty quantification. We establish theoretical benefits of correlation-aware updating and convergence property under posterior sampling. Comprehensive empirical evaluations across varying obstacle densities, sensor capabilities demonstrate consistent performance gains over baselines. This framework addresses navigation challenges in environments with adversarial interruptions or clustered natural hazards.
♻ ☆ Inverse Q-Learning Done Right: Offline Imitation Learning in $Q^π$-Realizable MDPs
We study the problem of offline imitation learning in Markov decision processes (MDPs), where the goal is to learn a well-performing policy given a dataset of state-action pairs generated by an expert policy. Complementing a recent line of work on this topic that assumes the expert belongs to a tractable class of known policies, we approach this problem from a new angle and leverage a different type of structural assumption about the environment. Specifically, for the class of linear $Q^\pi$-realizable MDPs, we introduce a new algorithm called saddle-point offline imitation learning (\SPOIL), which is guaranteed to match the performance of any expert up to an additive error $\varepsilon$ with access to $\mathcal{O}(\varepsilon^{-2})$ samples. Moreover, we extend this result to possibly non-linear $Q^\pi$-realizable MDPs at the cost of a worse sample complexity of order $\mathcal{O}(\varepsilon^{-4})$. Finally, our analysis suggests a new loss function for training critic networks from expert data in deep imitation learning. Empirical evaluations on standard benchmarks demonstrate that the neural net implementation of \SPOIL is superior to behavior cloning and competitive with state-of-the-art algorithms.
♻ ☆ Viability of perturbative expansion for quantum field theories on neurons
Neural Network (NN) architectures that break statistical independence of parameters have been proposed as a new approach for simulating local quantum field theories (QFTs). In the infinite neuron number limit, single-layer NNs can exactly reproduce QFT results. This paper examines the viability of this architecture for perturbative calculations of local QFTs for finite neuron number $N$ using scalar $\phi^4$ theory in $d$ Euclidean dimensions as an example. We find that the renormalized $O(1/N)$ corrections to two- and four-point correlators yield perturbative series which are sensitive to the ultraviolet cut-off and therefore have a weak convergence. We propose a modification to the architecture to improve this convergence and discuss constraints on the parameters of the theory and the scaling of N which allow us to extract accurate field theory results.
comment: Updated references and minor changes to the text
♻ ☆ Is Implicit Knowledge Enough for LLMs? A RAG Approach for Tree-based Structures
Large Language Models (LLMs) are adept at generating responses based on information within their context. While this ability is useful for interacting with structured data like code files, another popular method, Retrieval-Augmented Generation (RAG), retrieves relevant documents to augment the model's in-context learning. However, it is not well-explored how to best represent this retrieved knowledge for generating responses on structured data, particularly hierarchical structures like trees. In this work, we propose a novel bottom-up method to linearize knowledge from tree-like structures (like a GitHub repository) by generating implicit, aggregated summaries at each hierarchical level. This approach enables the knowledge to be stored in a knowledge base and used directly with RAG. We then compare our method to using RAG on raw, unstructured code, evaluating the accuracy and quality of the generated responses. Our results show that while response quality is comparable across both methods, our approach generates over 68% fewer documents in the retriever, a significant gain in efficiency. This finding suggests that leveraging implicit, linearized knowledge may be a highly effective and scalable strategy for handling complex, hierarchical data structures.
comment: Waiting for Conference Response
♻ ☆ In-Context Learning of Stochastic Differential Equations with Foundation Inference Models NeurIPS 2025
Stochastic differential equations (SDEs) describe dynamical systems where deterministic flows, governed by a drift function, are superimposed with random fluctuations, dictated by a diffusion function. The accurate estimation (or discovery) of these functions from data is a central problem in machine learning, with wide application across the natural and social sciences. Yet current solutions either rely heavily on prior knowledge of the dynamics or involve intricate training procedures. We introduce FIM-SDE (Foundation Inference Model for SDEs), a pretrained recognition model that delivers accurate in-context (or zero-shot) estimation of the drift and diffusion functions of low-dimensional SDEs, from noisy time series data, and allows rapid finetuning to target datasets. Leveraging concepts from amortized inference and neural operators, we (pre)train FIM-SDE in a supervised fashion to map a large set of noisy, discretely observed SDE paths onto the space of drift and diffusion functions. We demonstrate that FIM-SDE achieves robust in-context function estimation across a wide range of synthetic and real-world processes -- from canonical SDE systems (e.g., double-well dynamics or weakly perturbed Lorenz attractors) to stock price recordings and oil-price and wind-speed fluctuations -- while matching the performance of symbolic, Gaussian process and Neural SDE baselines trained on the target datasets. When finetuned to the target processes, we show that FIM-SDE consistently outperforms all these baselines.
comment: Accepted at NeurIPS 2025. The previous version appeared under the title "Foundation Inference Models for Stochastic Differential Equations: A Transformer-based Approach for Zero-shot Function Estimation."
♻ ☆ Counterfactual reasoning: an analysis of in-context emergence NeurIPS
Large-scale neural language models exhibit remarkable performance in in-context learning: the ability to learn and reason about the input context on the fly. This work studies in-context counterfactual reasoning in language models, that is, the ability to predict consequences of a hypothetical scenario. We focus on a well-defined, synthetic linear regression task that requires noise abduction. Accurate prediction is based on (1) inferring an unobserved latent concept and (2) copying contextual noise from factual observations. We show that language models are capable of counterfactual reasoning. Further, we enhance existing identifiability results and reduce counterfactual reasoning for a broad class of functions to a transformation on in-context observations. In Transformers, we find that self-attention, model depth and pre-training data diversity drive performance. Moreover, we provide mechanistic evidence that the latent concept is linearly represented in the residual stream and we introduce designated \textit{noise abduction heads} central to performing counterfactual reasoning. Lastly, our findings extend to counterfactual reasoning under SDE dynamics and reflect that Transformers can perform noise abduction on sequential data, providing preliminary evidence on the potential for counterfactual story generation. Our code is available under https://github.com/mrtzmllr/iccr.
comment: Published as a conference paper at the Thirty-Ninth Annual Conference on Neural Information Processing Systems (NeurIPS) 2025
♻ ☆ Interpretable Decision-Making for End-to-End Autonomous Driving ICCV 2025
Trustworthy AI is mandatory for the broad deployment of autonomous vehicles. Although end-to-end approaches derive control commands directly from raw data, interpreting these decisions remains challenging, especially in complex urban scenarios. This is mainly attributed to very deep neural networks with non-linear decision boundaries, making it challenging to grasp the logic behind AI-driven decisions. This paper presents a method to enhance interpretability while optimizing control commands in autonomous driving. To address this, we propose loss functions that promote the interpretability of our model by generating sparse and localized feature maps. The feature activations allow us to explain which image regions contribute to the predicted control command. We conduct comprehensive ablation studies on the feature extraction step and validate our method on the CARLA benchmarks. We also demonstrate that our approach improves interpretability, which correlates with reducing infractions, yielding a safer, high-performance driving model. Notably, our monocular, non-ensemble model surpasses the top-performing approaches from the CARLA Leaderboard by achieving lower infraction scores and the highest route completion rate, all while ensuring interpretability.
comment: Accepted to the ICCV 2025 2nd Workshop on the Challenge Of Out-of-Label Hazards in Autonomous Driving (2COOOL)
♻ ☆ Who cuts emissions, who turns up the heat? causal machine learning estimates of energy efficiency interventions
Reducing domestic energy demand is central to climate mitigation and fuel poverty strategies, yet the impact of energy efficiency interventions is highly heterogeneous. Using a causal machine learning model trained on nationally representative data of the English housing stock, we estimate average and conditional treatment effects of wall insulation on gas consumption, focusing on distributional effects across energy burden subgroups. While interventions reduce gas demand on average (by as much as 19 percent), low energy burden groups achieve substantial savings, whereas those experiencing high energy burdens see little to no reduction. This pattern reflects a behaviourally-driven mechanism: households constrained by high costs-to-income ratios (e.g. more than 0.1) reallocate savings toward improved thermal comfort rather than lowering consumption. Far from wasteful, such responses represent rational adjustments in contexts of prior deprivation, with potential co-benefits for health and well-being. These findings call for a broader evaluation framework that accounts for both climate impacts and the equity implications of domestic energy policy.
♻ ☆ Inductive Domain Transfer In Misspecified Simulation-Based Inference
Simulation-based inference (SBI) is a statistical inference approach for estimating latent parameters of a physical system when the likelihood is intractable but simulations are available. In practice, SBI is often hindered by model misspecification--the mismatch between simulated and real-world observations caused by inherent modeling simplifications. RoPE, a recent SBI approach, addresses this challenge through a two-stage domain transfer process that combines semi-supervised calibration with optimal transport (OT)-based distribution alignment. However, RoPE operates in a fully transductive setting, requiring access to a batch of test samples at inference time, which limits scalability and generalization. We propose here a fully inductive and amortized SBI framework that integrates calibration and distributional alignment into a single, end-to-end trainable model. Our method leverages mini-batch OT with a closed-form coupling to align real and simulated observations that correspond to the same latent parameters, using both paired calibration data and unpaired samples. A conditional normalizing flow is then trained to approximate the OT-induced posterior, enabling efficient inference without simulation access at test time. Across a range of synthetic and real-world benchmarks--including complex medical biomarker estimation--our approach matches or surpasses the performance of RoPE, as well as other standard SBI and non-SBI estimators, while offering improved scalability and applicability in challenging, misspecified environments.
♻ ☆ A unified framework for establishing the universal approximation of transformer-type architectures NeurIPS 2025
We investigate the universal approximation property (UAP) of transformer-type architectures, providing a unified theoretical framework that extends prior results on residual networks to models incorporating attention mechanisms. Our work identifies token distinguishability as a fundamental requirement for UAP and introduces a general sufficient condition that applies to a broad class of architectures. Leveraging an analyticity assumption on the attention layer, we can significantly simplify the verification of this condition, providing a non-constructive approach in establishing UAP for such architectures. We demonstrate the applicability of our framework by proving UAP for transformers with various attention mechanisms, including kernel-based and sparse attention mechanisms. The corollaries of our results either generalize prior works or establish UAP for architectures not previously covered. Furthermore, our framework offers a principled foundation for designing novel transformer architectures with inherent UAP guarantees, including those with specific functional symmetries. We propose examples to illustrate these insights.
comment: NeurIPS 2025 camera-ready
♻ ☆ Understanding Reinforcement Learning for Model Training, and future directions with GRAPE
This paper provides a self-contained, from-scratch, exposition of key algorithms for instruction tuning of models: SFT, Rejection Sampling, REINFORCE, Trust Region Policy Optimization (TRPO), Proximal Policy Optimization (PPO), Group Relative Policy Optimization (GRPO), and Direct Preference Optimization (DPO). Explanations of these algorithms often assume prior knowledge, lack critical details, and/or are overly generalized and complex. Here, each method is discussed and developed step by step using simplified and explicit notation focused on LLMs, aiming to eliminate ambiguity and provide a clear and intuitive understanding of the concepts. By minimizing detours into the broader RL literature and connecting concepts to LLMs, we eliminate superfluous abstractions and reduce cognitive overhead. Following this exposition, we provide a literature review of new techniques and approaches beyond those detailed. Finally, new ideas for research and exploration in the form of GRAPE (Generalized Relative Advantage Policy Evolution) are presented.
comment: 35 pages, 1 figure
♻ ☆ Dynamic object goal pushing with mobile manipulators through model-free constrained reinforcement learning ICRA 2025
Non-prehensile pushing to move and reorient objects to a goal is a versatile loco-manipulation skill. In the real world, the object's physical properties and friction with the floor contain significant uncertainties, which makes the task challenging for a mobile manipulator. In this paper, we develop a learning-based controller for a mobile manipulator to move an unknown object to a desired position and yaw orientation through a sequence of pushing actions. The proposed controller for the robotic arm and the mobile base motion is trained using a constrained Reinforcement Learning (RL) formulation. We demonstrate its capability in experiments with a quadrupedal robot equipped with an arm. The learned policy achieves a success rate of 91.35% in simulation and at least 80% on hardware in challenging scenarios. Through our extensive hardware experiments, we show that the approach demonstrates high robustness against unknown objects of different masses, materials, sizes, and shapes. It reactively discovers the pushing location and direction, thus achieving contact-rich behavior while observing only the pose of the object. Additionally, we demonstrate the adaptive behavior of the learned policy towards preventing the object from toppling.
comment: presented at ICRA 2025, Video: https://youtu.be/wGAdPGVf9Ws?si=pi83ONWofHHqbFG0
♻ ☆ FedMeld: A Model-dispersal Federated Learning Framework for Space-ground Integrated Networks IEEE
To bridge the digital divide, the space-ground integrated networks (SGINs), which will be a key component of the six-generation (6G) mobile networks, are expected to deliver artificial intelligence (AI) services to every corner of the world. One mission of SGINs is to support federated learning (FL) at a global scale. However, existing space-ground integrated FL frameworks involve ground stations or costly inter-satellite links, entailing excessive training latency and communication costs. To overcome these limitations, we propose an infrastructure-free federated learning framework based on a model dispersal (FedMeld) strategy, which exploits periodic movement patterns and store-carry-forward capabilities of satellites to enable parameter mixing across large-scale geographical regions. We theoretically show that FedMeld leads to global model convergence and quantify the effects of round interval and mixing ratio between adjacent areas on its learning performance. Based on the theoretical results, we formulate a joint optimization problem to design the staleness control and mixing ratio (SC-MR) for minimizing the training loss. By decomposing the problem into sequential SC and MR subproblems without compromising the optimality, we derive the round interval solution in a closed form and the mixing ratio in a semi-closed form to achieve the optimal latency-accuracy tradeoff. Experiments using various datasets demonstrate that FedMeld achieves superior model accuracy while significantly reducing communication costs as compared with traditional FL schemes for SGINs.
comment: 16 pages, 10 figures. This work has been submitted to the IEEE for possible publication
♻ ☆ A Statistical Theory of Contrastive Pre-training and Multimodal Generative AI
Multi-modal generative AI systems, such as those combining vision and language, rely on contrastive pre-training to learn representations across different modalities. While their practical benefits are widely acknowledged, a rigorous theoretical understanding of the contrastive pre-training framework remains limited. This paper develops a theoretical framework to explain the success of contrastive pre-training in downstream tasks, such as zero-shot classification, conditional diffusion models, and vision-language models. We introduce the concept of approximate sufficient statistics, a generalization of the classical sufficient statistics, and show that near-minimizers of the contrastive pre-training loss are approximately sufficient, making them adaptable to diverse downstream tasks. We further propose the Joint Generative Hierarchical Model for the joint distribution of images and text, showing that transformers can efficiently approximate relevant functions within this model via belief propagation. Building on this framework, we derive sample complexity guarantees for multi-modal learning based on contrastive pre-trained representations. Numerical simulations validate these theoretical findings, demonstrating the strong generalization performance of contrastively pre-trained transformers in various multi-modal tasks.
♻ ☆ Review of Explainable Graph-Based Recommender Systems
Explainability of recommender systems has become essential to ensure users' trust and satisfaction. Various types of explainable recommender systems have been proposed including explainable graph-based recommender systems. This review paper discusses state-of-the-art approaches of these systems and categorizes them based on three aspects: learning methods, explaining methods, and explanation types. It also explores the commonly used datasets, explainability evaluation methods, and future directions of this research area. Compared with the existing review papers, this paper focuses on explainability based on graphs and covers the topics required for developing novel explainable graph-based recommender systems.
♻ ☆ From Reviews to Actionable Insights: An LLM-Based Approach for Attribute and Feature Extraction
This research proposes a systematic, large language model (LLM) approach for extracting product and service attributes, features, and associated sentiments from customer reviews. Grounded in marketing theory, the framework distinguishes perceptual attributes from actionable features, producing interpretable and managerially actionable insights. We apply the methodology to 20,000 Yelp reviews of Starbucks stores and evaluate eight prompt variants on a random subset of reviews. Model performance is assessed through agreement with human annotations and predictive validity for customer ratings. Results show high consistency between LLMs and human coders and strong predictive validity, confirming the reliability of the approach. Human coders required a median of six minutes per review, whereas the LLM processed each in two seconds, delivering comparable insights at a scale unattainable through manual coding. Managerially, the analysis identifies attributes and features that most strongly influence customer satisfaction and their associated sentiments, enabling firms to pinpoint "joy points," address "pain points," and design targeted interventions. We demonstrate how structured review data can power an actionable marketing dashboard that tracks sentiment over time and across stores, benchmarks performance, and highlights high-leverage features for improvement. Simulations indicate that enhancing sentiment for key service features could yield 1-2% average revenue gains per store.
♻ ☆ Backward Conformal Prediction
We introduce $\textit{Backward Conformal Prediction}$, a method that guarantees conformal coverage while providing flexible control over the size of prediction sets. Unlike standard conformal prediction, which fixes the coverage level and allows the conformal set size to vary, our approach defines a rule that constrains how prediction set sizes behave based on the observed data, and adapts the coverage level accordingly. Our method builds on two key foundations: (i) recent results by Gauthier et al. [2025] on post-hoc validity using e-values, which ensure marginal coverage of the form $\mathbb{P}(Y_{\rm test} \in \hat C_n^{\tilde{\alpha}}(X_{\rm test})) \ge 1 - \mathbb{E}[\tilde{\alpha}]$ up to a first-order Taylor approximation for any data-dependent miscoverage $\tilde{\alpha}$, and (ii) a novel leave-one-out estimator $\hat{\alpha}^{\rm LOO}$ of the marginal miscoverage $\mathbb{E}[\tilde{\alpha}]$ based on the calibration set, ensuring that the theoretical guarantees remain computable in practice. This approach is particularly useful in applications where large prediction sets are impractical such as medical diagnosis. We provide theoretical results and empirical evidence supporting the validity of our method, demonstrating that it maintains computable coverage guarantees while ensuring interpretable, well-controlled prediction set sizes.
comment: Code available at: https://github.com/GauthierE/backward-cp
♻ ☆ Spike-timing-dependent Hebbian learning as noisy gradient descent
Hebbian learning is a key principle underlying learning in biological neural networks. We relate a Hebbian spike-timing-dependent plasticity rule to noisy gradient descent with respect to a non-convex loss function on the probability simplex. Despite the constant injection of noise and the non-convexity of the underlying optimization problem, one can rigorously prove that the considered Hebbian learning dynamic identifies the presynaptic neuron with the highest activity and that the convergence is exponentially fast in the number of iterations. This is non-standard and surprising as typically noisy gradient descent with fixed noise level only converges to a stationary regime where the noise causes the dynamic to fluctuate around a minimiser.
♻ ☆ Trial and Trust: Addressing Byzantine Attacks with Comprehensive Defense Strategy
Recent advancements in machine learning have improved performance while also increasing computational demands. While federated and distributed setups address these issues, their structure is vulnerable to malicious influences. In this paper, we address a specific threat, Byzantine attacks, where compromised clients inject adversarial updates to derail global convergence. We combine the trust scores concept with trial function methodology to dynamically filter outliers. Our methods address the critical limitations of previous approaches, allowing functionality even when Byzantine nodes are in the majority. Moreover, our algorithms adapt to widely used scaled methods like Adam and RMSProp, as well as practical scenarios, including local training and partial participation. We validate the robustness of our methods by conducting extensive experiments on both synthetic and real ECG data collected from medical institutions. Furthermore, we provide a broad theoretical analysis of our algorithms and their extensions to aforementioned practical setups. The convergence guarantees of our methods are comparable to those of classical algorithms developed without Byzantine interference.
♻ ☆ Generation of Uncertainty-Aware Emergent Concepts in Factorized 3D Scene Graphs via Graph Neural Networks IEEE
Enabling robots to autonomously discover emergent spatial concepts (e.g., rooms) from primitive geometric observations (e.g., planar surfaces) within 3D Scene Graphs is essential for robust indoor navigation and mapping. These graphs provide a hierarchical metric-semantic representation in which such concepts are organized. To further enhance graph-SLAM performance, Factorized 3D Scene Graphs incorporate these concepts as optimization factors that constrain relative geometry and enforce global consistency. However, both stages of this process remain largely manual: concepts are typically derived using hand-crafted, concept-specific heuristics, while factors and their covariances are likewise manually designed. This reliance on manual specification limits generalization across diverse environments and scalability to new concept classes. This paper presents, for the first time, a learning-based method to generate online spatial emergent concepts as optimizable factors within a SLAM backend, reducing the need to handcraft both concept generation and the definition of their corresponding factors and covariances. In both simulated and real indoor scenarios, our approach improves complex concept detection by 20.7% and 5.3%, trajectory estimation by 19.2%, and map reconstruction by 12.3% and 3.8%, respectively, highlighting the benefits of this integration for robust and adaptive spatial understanding.
comment: Submitted to IEEE Robotics and Automation Letters (RA-L)
♻ ☆ The $\varphi$ Curve: The Shape of Generalization through the Lens of Norm-based Capacity Control NeurIPS'25
Understanding how the test risk scales with model complexity is a central question in machine learning. Classical theory is challenged by the learning curves observed for large over-parametrized deep networks. Capacity measures based on parameter count typically fail to account for these empirical observations. To tackle this challenge, we consider norm-based capacity measures and develop our study for random features based estimators, widely used as simplified theoretical models for more complex networks. In this context, we provide a precise characterization of how the estimator's norm concentrates and how it governs the associated test error. Our results show that the predicted learning curve admits a phase transition from under- to over-parameterization, but no double descent behavior. This confirms that more classical U-shaped behavior is recovered considering appropriate capacity measures based on models norms rather than size. From a technical point of view, we leverage deterministic equivalence as the key tool and further develop new deterministic quantities which are of independent interest.
comment: Accepted by NeurIPS'25
♻ ☆ A Physics-Informed Spatiotemporal Deep Learning Framework for Turbulent Systems
Fluid thermodynamics underpins atmospheric dynamics, climate science, industrial applications, and energy systems. However, direct numerical simulations (DNS) of such systems can be computationally prohibitive. To address this, we present a novel physics-informed spatiotemporal surrogate model for Rayleigh-B\'enard convection (RBC), a canonical example of convective fluid flow. Our approach combines convolutional neural networks, for spatial dimension reduction, with an innovative recurrent architecture, inspired by large language models, to model long-range temporal dynamics. Inference is penalized with respect to the governing partial differential equations to ensure physical interpretability. Since RBC exhibits turbulent behavior, we quantify uncertainty using a conformal prediction framework. This model replicates key physical features of RBC dynamics while significantly reducing computational cost, offering a scalable alternative to DNS for long-term simulations.
♻ ☆ Language Models are Injective and Hence Invertible
Transformer components such as non-linear activations and normalization are inherently non-injective, suggesting that different inputs could map to the same output and prevent exact recovery of the input from a model's representations. In this paper, we challenge this view. First, we prove mathematically that transformer language models mapping discrete input sequences to their corresponding sequence of continuous representations are injective and therefore lossless, a property established at initialization and preserved during training. Second, we confirm this result empirically through billions of collision tests on six state-of-the-art language models, and observe no collisions. Third, we operationalize injectivity: we introduce SipIt, the first algorithm that provably and efficiently reconstructs the exact input text from hidden activations, establishing linear-time guarantees and demonstrating exact invertibility in practice. Overall, our work establishes injectivity as a fundamental and exploitable property of language models, with direct implications for transparency, interpretability, and safe deployment.
♻ ☆ Neural Graduated Assignment for Maximum Common Edge Subgraphs
The Maximum Common Edge Subgraph (MCES) problem is a crucial challenge with significant implications in domains such as biology and chemistry. Traditional approaches, which include transformations into max-clique and search-based algorithms, suffer from scalability issues when dealing with larger instances. This paper introduces ``Neural Graduated Assignment'' (NGA), a simple, scalable, unsupervised-training-based method that addresses these limitations. Central to NGA is stacking of differentiable assignment optimization with neural components, enabling high-dimensional parameterization of the matching process through a learnable temperature mechanism. We further theoretically analyze the learning dynamics of NGA, showing its design leads to fast convergence, better exploration-exploitation tradeoff, and ability to escape local optima. Extensive experiments across MCES computation, graph similarity estimation, and graph retrieval tasks reveal that NGA not only significantly improves computation time and scalability on large instances but also enhances performance compared to existing methodologies. The introduction of NGA marks a significant advancement in the computation of MCES and offers insights into other assignment problems.
♻ ☆ Mitigating Prior Errors in Causal Structure Learning: A Resilient Approach via Bayesian Networks
Causal structure learning (CSL), a prominent technique for encoding cause-and-effect relationships among variables, through Bayesian Networks (BNs). Although recovering causal structure solely from data is a challenge, the integration of prior knowledge, revealing partial structural truth, can markedly enhance learning quality. However, current methods based on prior knowledge exhibit limited resilience to errors in the prior, with hard constraint methods disregarding priors entirely, and soft constraints accepting priors based on a predetermined confidence level, which may require expert intervention. To address this issue, we propose a strategy resilient to edge-level prior errors for CSL, thereby minimizing human intervention. We classify prior errors into different types and provide their theoretical impact on the Structural Hamming Distance (SHD) under the presumption of sufficient data. Intriguingly, we discover and prove that the strong hazard of prior errors is associated with a unique acyclic closed structure, defined as ``quasi-circle''. Leveraging this insight, a post-hoc strategy is employed to identify the prior errors by its impact on the increment of ``quasi-circles''. Through empirical evaluation on both real and synthetic datasets, we demonstrate our strategy's robustness against prior errors. Specifically, we highlight its substantial ability to resist order-reversed errors while maintaining the majority of correct prior.
comment: 12 pages, 4 figures
♻ ☆ On Generalization and Distributional Update for Mimicking Observations with Adequate Exploration
Learning from observations (LfO) replicates expert behavior without needing access to the expert's actions, making it more practical than learning from demonstrations (LfD) in many real-world scenarios. However, directly applying the on-policy training scheme in LfO worsens the sample inefficiency problem, while employing the traditional off-policy training scheme in LfO magnifies the instability issue. This paper seeks to develop an efficient and stable solution for the LfO problem. Specifically, we begin by exploring the generalization capabilities of both the reward function and policy in LfO, which provides a theoretical foundation for computation. Building on this, we modify the policy optimization method in generative adversarial imitation from observation (GAIfO) with distributional soft actor-critic (DSAC), and propose the Mimicking Observations through Distributional Update Learning with adequate Exploration (MODULE) algorithm to solve the LfO problem. MODULE incorporates the advantages of (1) high sample efficiency and training robustness enhancement in soft actor-critic (SAC), and (2) training stability in distributional reinforcement learning (RL). Extensive experiments in MuJoCo environments showcase the superior performance of MODULE over current LfO methods.
♻ ☆ Efficient Verified Machine Unlearning For Distillation NeurIPS 2025
Growing data privacy demands, driven by regulations like GDPR and CCPA, require machine unlearning methods capable of swiftly removing the influence of specific training points. Although verified approaches like SISA, using data slicing and checkpointing, achieve efficient unlearning for single models by reverting to intermediate states, these methods struggle in teacher-student knowledge distillation settings. Unlearning in the teacher typically forces costly, complete student retraining due to pervasive information propagation during distillation. Our primary contribution is PURGE (Partitioned Unlearning with Retraining Guarantee for Ensembles), a novel framework integrating verified unlearning with distillation. We introduce constituent mapping and an incremental multi-teacher strategy that partitions the distillation process, confines each teacher constituent's impact to distinct student data subsets, and crucially maintains data isolation. The PURGE framework substantially reduces retraining overhead, requiring only partial student updates when teacher-side unlearning occurs. We provide both theoretical analysis, quantifying significant speed-ups in the unlearning process, and empirical validation on multiple datasets, demonstrating that PURGE achieves these efficiency gains while maintaining student accuracy comparable to standard baselines.
comment: Accepted at The Thirty-Ninth Annual Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ Learning Confidence Bounds for Classification with Imbalanced Data ECAI 2024
Class imbalance poses a significant challenge in classification tasks, where traditional approaches often lead to biased models and unreliable predictions. Undersampling and oversampling techniques have been commonly employed to address this issue, yet they suffer from inherent limitations stemming from their simplistic approach such as loss of information and additional biases respectively. In this paper, we propose a novel framework that leverages learning theory and concentration inequalities to overcome the shortcomings of traditional solutions. We focus on understanding the uncertainty in a class-dependent manner, as captured by confidence bounds that we directly embed into the learning process. By incorporating class-dependent estimates, our method can effectively adapt to the varying degrees of imbalance across different classes, resulting in more robust and reliable classification outcomes. We empirically show how our framework provides a promising direction for handling imbalanced data in classification tasks, offering practitioners a valuable tool for building more accurate and trustworthy models.
comment: Published at ECAI 2024 main track (Frontiers in Artificial Intelligence and Applications)
♻ ☆ Pretraining a Shared Q-Network for Data-Efficient Offline Reinforcement Learning
Offline reinforcement learning (RL) aims to learn a policy from a static dataset without further interactions with the environment. Collecting sufficiently large datasets for offline RL is exhausting since this data collection requires colossus interactions with environments and becomes tricky when the interaction with the environment is restricted. Hence, how an agent learns the best policy with a minimal static dataset is a crucial issue in offline RL, similar to the sample efficiency problem in online RL. In this paper, we propose a simple yet effective plug-and-play pretraining method to initialize a feature of a Q-network to enhance data efficiency in offline RL. Specifically, we introduce a shared Q-network structure that outputs predictions of the next state and Q-value. We pretrain the shared Q-network through a supervised regression task that predicts a next state and trains the shared Q-network using diverse offline RL methods. Through extensive experiments, we empirically demonstrate that our method enhances the performance of existing popular offline RL methods on the D4RL, Robomimic and V-D4RL benchmarks. Furthermore, we show that our method significantly boosts data-efficient offline RL across various data qualities and data distributions trough D4RL and ExoRL benchmarks. Notably, our method adapted with only 10% of the dataset outperforms standard algorithms even with full datasets.
♻ ☆ Beyond Benign Overfitting in Nadaraya-Watson Interpolators NeurIPS 2025
In recent years, there has been much interest in understanding the generalization behavior of interpolating predictors, which overfit on noisy training data. Whereas standard analyses are concerned with whether a method is consistent or not, recent observations have shown that even inconsistent predictors can generalize well. In this work, we revisit the classic interpolating Nadaraya-Watson (NW) estimator (also known as Shepard's method), and study its generalization capabilities through this modern viewpoint. In particular, by varying a single bandwidth-like hyperparameter, we prove the existence of multiple overfitting behaviors, ranging non-monotonically from catastrophic, through benign, to tempered. Our results highlight how even classical interpolating methods can exhibit intricate generalization behaviors. In addition, for the purpose of tuning the hyperparameter, the results suggest that over-estimating the intrinsic dimension of the data is less harmful than under-estimating it. Numerical experiments complement our theory, demonstrating the same phenomena.
comment: NeurIPS 2025
♻ ☆ DanmakuTPPBench: A Multi-modal Benchmark for Temporal Point Process Modeling and Understanding NeurIPS 2025
We introduce DanmakuTPPBench, a comprehensive benchmark designed to advance multi-modal Temporal Point Process (TPP) modeling in the era of Large Language Models (LLMs). While TPPs have been widely studied for modeling temporal event sequences, existing datasets are predominantly unimodal, hindering progress in models that require joint reasoning over temporal, textual, and visual information. To address this gap, DanmakuTPPBench comprises two complementary components: (1) DanmakuTPP-Events, a novel dataset derived from the Bilibili video platform, where user-generated bullet comments (Danmaku) naturally form multi-modal events annotated with precise timestamps, rich textual content, and corresponding video frames; (2) DanmakuTPP-QA, a challenging question-answering dataset constructed via a novel multi-agent pipeline powered by state-of-the-art LLMs and multi-modal LLMs (MLLMs), targeting complex temporal-textual-visual reasoning. We conduct extensive evaluations using both classical TPP models and recent MLLMs, revealing significant performance gaps and limitations in current methods' ability to model multi-modal event dynamics. Our benchmark establishes strong baselines and calls for further integration of TPP modeling into the multi-modal language modeling landscape. Project page: https://github.com/FRENKIE-CHIANG/DanmakuTPPBench
comment: Accepted by Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ Sparse Explanations of Neural Networks Using Pruned Layer-Wise Relevance Propagation ECML
Explainability is a key component in many applications involving deep neural networks (DNNs). However, current explanation methods for DNNs commonly leave it to the human observer to distinguish relevant explanations from spurious noise. This is not feasible anymore when going from easily human-accessible data such as images to more complex data such as genome sequences. To facilitate the accessibility of DNN outputs from such complex data and to increase explainability, we present a modification of the widely used explanation method layer-wise relevance propagation. Our approach enforces sparsity directly by pruning the relevance propagation for the different layers. Thereby, we achieve sparser relevance attributions for the input features as well as for the intermediate layers. As the relevance propagation is input-specific, we aim to prune the relevance propagation rather than the underlying model architecture. This allows to prune different neurons for different inputs and hence, might be more appropriate to the local nature of explanation methods. To demonstrate the efficacy of our method, we evaluate it on two types of data: images and genome sequences. We show that our modification indeed leads to noise reduction and concentrates relevance on the most important features compared to the baseline.
comment: Presented at ECML PKDD 2024
♻ ☆ Can LLMs Reconcile Knowledge Conflicts in Counterfactual Reasoning ICML 2025
Large Language Models have been shown to contain extensive world knowledge in their parameters, enabling impressive performance on many knowledge intensive tasks. However, when deployed in novel settings, LLMs often encounter situations where they must integrate parametric knowledge with new or unfamiliar information. In this work, we explore whether LLMs can combine knowledge in-context with their parametric knowledge through the lens of counterfactual reasoning. Through synthetic and real experiments in multi-hop reasoning problems, we show that LLMs generally struggle with counterfactual reasoning, often resorting to exclusively using their parametric knowledge. Moreover, we show that simple post-hoc finetuning can struggle to instill counterfactual reasoning ability -- often leading to degradation in stored parametric knowledge. Ultimately, our work reveals important limitations of current LLM's abilities to re-purpose parametric knowledge in novel settings.
comment: ICML 2025 Workshop on Scaling up Intervention Models
♻ ☆ Patent Language Model Pretraining with ModernBERT
Transformer-based language models such as BERT have become foundational in NLP, yet their performance degrades in specialized domains like patents, which contain long, technical, and legally structured text. Prior approaches to patent NLP have primarily relied on fine-tuning general-purpose models or domain-adapted variants pretrained with limited data. In this work, we pretrain 3 domain-specific masked language models for patents, using the ModernBERT architecture and a curated corpus of over 60 million patent records. Our approach incorporates architectural optimizations, including FlashAttention, rotary embeddings, and GLU feed-forward layers. We evaluate our models on four downstream patent classification tasks. Our model, ModernBERT-base-PT, consistently outperforms the general-purpose ModernBERT baseline on three out of four datasets and achieves competitive performance with a baseline PatentBERT. Additional experiments with ModernBERT-base-VX and Mosaic-BERT-large demonstrate that scaling the model size and customizing the tokenizer further enhance performance on selected tasks. Notably, all ModernBERT variants retain substantially faster inference over - 3x that of PatentBERT - underscoring their suitability for time-sensitive applications. These results underscore the benefits of domain-specific pretraining and architectural improvements for patent-focused NLP tasks.
comment: 7 pages, 5 figures, 4 tables
♻ ☆ LAMP-PRo: Label-aware Attention for Multi-label Prediction of DNA- and RNA-binding Proteins using Protein Language Models
Identifying DNA- (DBPs) and RNA-binding proteins (RBPs) is crucial for the understanding of cell function, molecular interactions as well as regulatory functions. Owing to their high similarity, most of the existing approaches face challenges in differentiating between DBPs and RBPs leading to high cross-prediction errors. Moreover, identifying proteins which bind to both DNA and RNA (DRBPs) is also quite a challenging task. In this regard, we propose a novel framework viz. LAMP-PRo which is based on pre-trained protein language model (PLM), attention mechanisms and multi-label learning to mitigate these issues. First, pre-trained PLM such ESM-2 is used for embedding the protein sequences followed by convolutional neural network (CNN). Subsequently multi-head self-attention mechanism is applied for the contextual information while label-aware attention is used to compute class-specific representations by attending to the sequence in a way that is tailored to each label (DBP, RBP and non-NABP) in a multi-label setup. We have also included a novel cross-label attention mechanism to explicitly capture dependencies between DNA- and RNA-binding proteins, enabling more accurate prediction of DRBP. Finally, a linear layer followed by a sigmoid function are used for the final prediction. Extensive experiments are carried out to compare LAMP-PRo with the existing methods wherein the proposed model shows consistent competent performance. Furthermore, we also provide visualization to showcase model interpretability, highlighting which parts of the sequence are most relevant for a predicted label. The original datasets are available at http://bliulab.net/iDRBP\_MMC and the codes are available at https://github.com/NimishaGhosh/LAMP-PRo.
♻ ☆ SimBench: Benchmarking the Ability of Large Language Models to Simulate Human Behaviors
Large language model (LLM) simulations of human behavior have the potential to revolutionize the social and behavioral sciences, if and only if they faithfully reflect real human behaviors. Current evaluations are fragmented, based on bespoke tasks and metrics, creating a patchwork of incomparable results. To address this, we introduce SimBench, the first large-scale, standardized benchmark for a robust, reproducible science of LLM simulation. By unifying 20 diverse datasets covering tasks from moral decision-making to economic choice across a large global participant pool, SimBench provides the necessary foundation to ask fundamental questions about when, how, and why LLM simulations succeed or fail. We show that, while even the best LLMs today have limited simulation ability (score: 40.80/100), performance scales log-linearly with model size. Simulation performance is not improved by increased inference-time compute. We demonstrate an alignment-simulation trade-off: instruction-tuning improves performance on low-entropy (consensus) questions but degrades it on high-entropy (diverse) ones. Models particularly struggle when simulating specific demographic groups. Finally, we demonstrate that simulation ability correlates most strongly with deep, knowledge-intensive reasoning (MMLU-Pro, r=0.939). By making progress measurable, we aim to accelerate the development of more faithful LLM simulators.
comment: Project Website: http://simbench.tiancheng.hu/ Data: https://huggingface.co/datasets/pitehu/SimBench
♻ ☆ A representational framework for learning and encoding structurally enriched trajectories in complex agent environments
The ability of artificial intelligence agents to make optimal decisions and generalise them to different domains and tasks is compromised in complex scenarios. One way to address this issue has focused on learning efficient representations of the world and on how the actions of agents affect them in state-action transitions. Whereas such representations are procedurally efficient, they lack structural richness. To address this problem, we propose to enhance the agent's ontology and extend the traditional conceptualisation of trajectories to provide a more nuanced view of task execution. Structurally Enriched Trajectories (SETs) extend the encoding of sequences of states and their transitions by incorporating hierarchical relations between objects, interactions, and affordances. SETs are built as multi-level graphs, providing a detailed representation of the agent dynamics and a transferable functional abstraction of the task. SETs are integrated into an architecture, Structurally Enriched Trajectory Learning and Encoding (SETLE), that employs a heterogeneous graph-based memory structure of multi-level relational dependencies essential for generalisation. We demonstrate that SETLE can support downstream tasks, enabling agents to recognise task relevant structural patterns across CREATE and MiniGrid environments. Finally, we integrate SETLE with reinforcement learning and show measurable improvements in downstream performance, including breakthrough success rates in complex, sparse-reward tasks.
♻ ☆ ReVeal: Self-Evolving Code Agents via Reliable Self-Verification
Reinforcement learning with verifiable rewards (RLVR) has advanced the reasoning capabilities of large language models. However, existing methods rely solely on outcome rewards, without explicitly optimizing verification or leveraging reliable signals from realistic environments, leading to unreliable self-verification and limited test-time scaling. To address this, we widen the verification-generation asymmetry by explicitly optimizing self-verification, making it a reliable driver of deeper test-time scaling. We introduce ReVeal, a multi-turn reinforcement learning framework that evolves code generation through self-verification and tool-based evaluation. ReVeal structures long-horizon reasoning as iterative generation-verification turns and incorporates TAPO for turn-level credit assignment, fostering the co-evolution of code and test generation. At inference, this strengthened self-verification enables the model to use self-constructed tests and tool feedback to continuously evolve code for 20+ turns on LiveCodeBench despite training on only three. It also significantly improves Pass@k, indicating stronger exploration that expands the reasoning boundaries of the base model. These findings highlight the promise of ReVeal as a scalable paradigm for RL training and test-time scaling, paving the way for more robust and autonomous AI agents.
♻ ☆ LENS: Large Pre-trained Transformer for Exploring Financial Time Series Regularities
Modeling large-scale time series has gained significant attention in recent years. However, its direct application in finance remains challenging due to substantial differences in data characteristics across domains. Specifically, financial systems feature inherent stochasticity and low signal-to-noise ratios, rendering traditional methods and pre-training approaches ineffective. This underscores the urgent need for a foundation model tailored to financial time series. To bridge this gap, we propose \textbf{LENS}, a pre-trained model for this domain. \textbf{LENS} effectively captures the complexity of financial stochastic systems through a carefully crafted model architecture and mitigates noise during pre-training by using an invertible embedding module. We provide a rigorous theoretical explanation of the model's effectiveness and validate its performance through extensive experiments. Pre-trained on a dataset comprising 100 billion financial observations, \textbf{LENS} achieves exceptional results across a wide range of critical downstream tasks. Moreover, our work offers practical insights into developing pre-trained time series models in high-noise environments, paving the way for further advancements in this pivotal research domain.
♻ ☆ Molecular Fingerprints Are Strong Models for Peptide Function Prediction
Understanding peptide properties is often assumed to require modeling long-range molecular interactions, motivating the use of complex graph neural networks and pretrained transformers. Yet, whether such long-range dependencies are essential remains unclear. We investigate if simple, domain-specific molecular fingerprints can capture peptide function without these assumptions. Atomic-level representation aims to provide richer information than purely sequence-based models and better efficiency than structural ones. Across 132 datasets, including LRGB and five other peptide benchmarks, models using count-based ECFP, Topological Torsion, and RDKit fingerprints with LightGBM achieve state-of-the-art accuracy. Despite encoding only short-range molecular features, these models outperform GNNs and transformer-based approaches. Control experiments with sequence shuffling and amino acid counts confirm that fingerprints, though inherently local, suffice for robust peptide property prediction. Our results challenge the presumed necessity of long-range interaction modeling and highlight molecular fingerprints as efficient, interpretable, and computationally lightweight alternatives for peptide prediction.
♻ ☆ Improving Diffusion-based Inverse Algorithms under Few-Step Constraint via Learnable Linear Extrapolation NeurIPS 2025
Diffusion-based inverse algorithms have shown remarkable performance across various inverse problems, yet their reliance on numerous denoising steps incurs high computational costs. While recent developments of fast diffusion ODE solvers offer effective acceleration for diffusion sampling without observations, their application in inverse problems remains limited due to the heterogeneous formulations of inverse algorithms and their prevalent use of approximations and heuristics, which often introduce significant errors that undermine the reliability of analytical solvers. In this work, we begin with an analysis of ODE solvers for inverse problems that reveals a linear combination structure of approximations for the inverse trajectory. Building on this insight, we propose a canonical form that unifies a broad class of diffusion-based inverse algorithms and facilitates the design of more generalizable solvers. Inspired by the linear subspace search strategy, we propose Learnable Linear Extrapolation (LLE), a lightweight approach that universally enhances the performance of any diffusion-based inverse algorithm conforming to our canonical form. LLE optimizes the combination coefficients to refine current predictions using previous estimates, alleviating the sensitivity of analytical solvers for inverse algorithms. Extensive experiments demonstrate consistent improvements of the proposed LLE method across multiple algorithms and tasks, indicating its potential for more efficient solutions and boosted performance of diffusion-based inverse algorithms with limited steps. Codes for reproducing our experiments are available at https://github.com/weigerzan/LLE_inverse_problem.
comment: Accepted by NeurIPS 2025
♻ ☆ Beyond Pass@k: Breadth-Depth Metrics for Reasoning Boundaries
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a powerful paradigm to improve Large Language Models on reasoning tasks such as coding, math or logic. To assess the reasoning boundary (the fraction of problems a model can solve) researchers often report Pass@k at large sampling budgets. Recent results reveal a crossover phenomenon: while RLVR models outperform the base model at small k values, the base model usually outperforms them when sampling a very large number of completions. This has been interpreted as evidence that base models have a larger reasoning boundary. We argue that on tasks with discrete answer spaces, such as math with numeric outputs, Pass@k at large k reflects the increasingly higher chance of success in the limit of the number of trials rather than genuine reasoning, and can therefore be misleading. We propose Cover@tau, which measures the fraction of problems that a model can solve for which at least a tau proportion of completions are correct. Unlike Pass@k, Cover@tau captures reasoning under an explicit reliability threshold: models that rely on random guessing degrade rapidly as tau increases. We evaluate several RLVR models using Cover@tau-based metrics and illustrate how the relative rankings of popular algorithms change compared to Pass@1, offering a different perspective on reasoning boundaries.
comment: 10 pages, 3 figures. v2 adds discussion of related work (G-Pass@k)
♻ ☆ S-CFE: Simple Counterfactual Explanations
We study the problem of finding optimal sparse, manifold-aligned counterfactual explanations for classifiers. Canonically, this can be formulated as an optimization problem with multiple non-convex components, including classifier loss functions and manifold alignment (or \emph{plausibility}) metrics. The added complexity of enforcing \emph{sparsity}, or shorter explanations, complicates the problem further. Existing methods often focus on specific models and plausibility measures, relying on convex $\ell_1$ regularizers to enforce sparsity. In this paper, we tackle the canonical formulation using the accelerated proximal gradient (APG) method, a simple yet efficient first-order procedure capable of handling smooth non-convex objectives and non-smooth $\ell_p$ (where $0 \leq p < 1$) regularizers. This enables our approach to seamlessly incorporate various classifiers and plausibility measures while producing sparser solutions. Our algorithm only requires differentiable data-manifold regularizers and supports box constraints for bounded feature ranges, ensuring the generated counterfactuals remain \emph{actionable}. Finally, experiments on real-world datasets demonstrate that our approach effectively produces sparse, manifold-aligned counterfactual explanations while maintaining proximity to the factual data and computational efficiency.
♻ ☆ Denoising the Future: Top-p Distributions for Moving Through Time
Inference in dynamic probabilistic models is a complex task involving expensive operations. In particular, for Hidden Markov Models, the whole state space has to be enumerated for advancing in time. Even states with negligible probabilities are considered, resulting in computational inefficiency and increased noise due to the propagation of unlikely probability mass. We propose to denoise the future and speed up inference by using only the top-p states, i.e., the most probable states with accumulated probability p. We show that the error introduced by using only the top-p states is bound by p and the so-called minimal mixing rate of the underlying model. Moreover, in our empirical evaluation, we show that we can expect speedups of at least an order of magnitude, while the error in terms of total variation distance is below 0.09.
comment: Accepted at ECSQARU 2025
♻ ☆ Matcha: Multi-Stage Riemannian Flow Matching for Accurate and Physically Valid Molecular Docking
Accurate prediction of protein-ligand binding poses is crucial for structure-based drug design, yet existing methods struggle to balance speed, accuracy, and physical plausibility. We introduce Matcha, a novel molecular docking pipeline that combines multi-stage flow matching with learned scoring and physical validity filtering. Our approach consists of three sequential stages applied consecutively to refine docking predictions, each implemented as a flow matching model operating on appropriate geometric spaces ($\mathbb{R}^3$, $\mathrm{SO}(3)$, and $\mathrm{SO}(2)$). We enhance the prediction quality through a dedicated scoring model and apply unsupervised physical validity filters to eliminate unrealistic poses. Compared to various approaches, Matcha demonstrates superior performance on Astex and PDBbind test sets in terms of docking success rate and physical plausibility. Moreover, our method works approximately 25 times faster than modern large-scale co-folding models. The model weights and inference code to reproduce our results are available at https://github.com/LigandPro/Matcha.
♻ ☆ A surrogate model for topology optimisation of elastic structures via parametric autoencoders
A surrogate-based topology optimisation algorithm for linear elastic structures under parametric loads and boundary conditions is proposed. Instead of learning the parametric solution of the state (and adjoint) problems or the optimisation trajectory as a function of the iterations, the proposed approach devises a surrogate version of the entire optimisation pipeline. First, the method predicts a quasi-optimal topology for a given problem configuration as a surrogate model of high-fidelity topologies optimised with the homogenisation method. This is achieved by means of a feed-forward net learning the mapping between the input parameters characterising the system setup and a latent space determined by encoder/decoder blocks reducing the dimensionality of the parametric topology optimisation problem and reconstructing a high-dimensional representation of the topology. Then, the predicted topology is used as an educated initial guess for a computationally efficient algorithm penalising the intermediate values of the design variable, while enforcing the governing equations of the system. This step allows the method to correct potential errors introduced by the surrogate model, eliminate artifacts, and refine the design in order to produce topologies consistent with the underlying physics. Different architectures are proposed and the approximation and generalisation capabilities of the resulting models are numerically evaluated. The quasi-optimal topologies allow to outperform the high-fidelity optimiser by reducing the average number of optimisation iterations by $53\%$ while achieving discrepancies below $4\%$ in the optimal value of the objective functional, even in the challenging scenario of testing the model to extrapolate beyond the training and validation domain.
comment: 43 pages, 13 figures, 7 tables
♻ ☆ Learning Fairer Representations with FairVIC
Mitigating bias in automated decision-making systems, particularly in deep learning models, is a critical challenge due to nuanced definitions of fairness, dataset-specific biases, and the inherent trade-off between fairness and accuracy. To address these issues, we introduce FairVIC, an innovative approach that enhances fairness in neural networks by integrating variance, invariance, and covariance terms into the loss function during training. Unlike methods that rely on predefined fairness criteria, FairVIC abstracts fairness concepts to minimise dependency on protected characteristics. We evaluate FairVIC against comparable bias mitigation techniques on benchmark datasets, considering both group and individual fairness, and conduct an ablation study on the accuracy-fairness trade-off. FairVIC demonstrates significant improvements ($\approx70\%$) in fairness across all tested metrics without compromising accuracy, thus offering a robust, generalisable solution for fair deep learning across diverse tasks and datasets.
♻ ☆ Airfoil optimization using Design-by-Morphing with minimized design-space dimensionality
Effective airfoil geometry optimization requires exploring a diverse range of designs using as few design variables as possible. This study introduces AirDbM, a Design-by-Morphing (DbM) approach specialized for airfoil optimization that systematically reduces design-space dimensionality. AirDbM selects an optimal set of 12 baseline airfoils from the UIUC airfoil database, which contains over 1,600 shapes, by sequentially adding the baseline that most increases the design capacity. With these baselines, AirDbM reconstructs 99 % of the database with a mean absolute error below 0.005, which matches the performance of a previous DbM approach that used more baselines. In multi-objective aerodynamic optimization, AirDbM demonstrates rapid convergence and achieves a Pareto front with a greater hypervolume than that of the previous larger-baseline study, where new Pareto-optimal solutions are discovered with enhanced lift-to-drag ratios at moderate stall tolerances. Furthermore, AirDbM demonstrates outstanding adaptability for reinforcement learning (RL) agents in generating airfoil geometry when compared to conventional airfoil parameterization methods, implying the broader potential of DbM in machine learning-driven design.
♻ ☆ Adversarial Graph Fusion for Incomplete Multi-view Semi-supervised Learning with Tensorial Imputation
View missing remains a significant challenge in graph-based multi-view semi-supervised learning, hindering their real-world applications. To address this issue, traditional methods introduce a missing indicator matrix and focus on mining partial structure among existing samples in each view for label propagation (LP). However, we argue that these disregarded missing samples sometimes induce discontinuous local structures, i.e., sub-clusters, breaking the fundamental smoothness assumption in LP. Consequently, such a Sub-Cluster Problem (SCP) would distort graph fusion and degrade classification performance. To alleviate SCP, we propose a novel incomplete multi-view semi-supervised learning method, termed AGF-TI. Firstly, we design an adversarial graph fusion scheme to learn a robust consensus graph against the distorted local structure through a min-max framework. By stacking all similarity matrices into a tensor, we further recover the incomplete structure from the high-order consistency information based on the low-rank tensor learning. Additionally, the anchor-based strategy is incorporated to reduce the computational complexity. An efficient alternative optimization algorithm combining a reduced gradient descent method is developed to solve the formulated objective, with theoretical convergence. Extensive experimental results on various datasets validate the superiority of our proposed AGF-TI as compared to state-of-the-art methods. Code is available at https://github.com/ZhangqiJiang07/AGF_TI.
comment: 31 pages, 15 figures
♻ ☆ MetaBox-v2: A Unified Benchmark Platform for Meta-Black-Box Optimization NeurIPS 2025
Meta-Black-Box Optimization (MetaBBO) streamlines the automation of optimization algorithm design through meta-learning. It typically employs a bi-level structure: the meta-level policy undergoes meta-training to reduce the manual effort required in developing algorithms for low-level optimization tasks. The original MetaBox (2023) provided the first open-source framework for reinforcement learning-based single-objective MetaBBO. However, its relatively narrow scope no longer keep pace with the swift advancement in this field. In this paper, we introduce MetaBox-v2 (https://github.com/MetaEvo/MetaBox) as a milestone upgrade with four novel features: 1) a unified architecture supporting RL, evolutionary, and gradient-based approaches, by which we reproduce $23$ up-to-date baselines; 2) efficient parallelization schemes, which reduce the training/testing time by $10-40$x; 3) a comprehensive benchmark suite of $18$ synthetic/realistic tasks ($1900$+ instances) spanning single-objective, multi-objective, multi-model, and multi-task optimization scenarios; 4) plentiful and extensible interfaces for custom analysis/visualization and integrating to external optimization tools/benchmarks. To show the utility of MetaBox-v2, we carry out a systematic case study that evaluates the built-in baselines in terms of the optimization performance, generalization ability and learning efficiency. Valuable insights are concluded from thorough and detailed analysis for practitioners and those new to the field.
comment: Accepted by NeurIPS 2025
♻ ☆ The Narcissus Hypothesis: Descending to the Rung of Illusion NeurIPS 2025
Modern foundational models increasingly reflect not just world knowledge, but patterns of human preference embedded in their training data. We hypothesize that recursive alignment-via human feedback and model-generated corpora-induces a social desirability bias, nudging models to favor agreeable or flattering responses over objective reasoning. We refer to it as the Narcissus Hypothesis and test it across 31 models using standardized personality assessments and a novel Social Desirability Bias score. Results reveal a significant drift toward socially conforming traits, with profound implications for corpus integrity and the reliability of downstream inferences. We then offer a novel epistemological interpretation, tracing how recursive bias may collapse higher-order reasoning down Pearl's Ladder of Causality, culminating in what we refer to as the Rung of Illusion.
comment: NeurIPS 2025 Workshop on Evaluating the Evolving LLM Lifecycle: Benchmarks, Emergent Abilities, and Scaling
♻ ☆ REPA-E: Unlocking VAE for End-to-End Tuning with Latent Diffusion Transformers
In this paper we tackle a fundamental question: "Can we train latent diffusion models together with the variational auto-encoder (VAE) tokenizer in an end-to-end manner?" Traditional deep-learning wisdom dictates that end-to-end training is often preferable when possible. However, for latent diffusion transformers, it is observed that end-to-end training both VAE and diffusion-model using standard diffusion-loss is ineffective, even causing a degradation in final performance. We show that while diffusion loss is ineffective, end-to-end training can be unlocked through the representation-alignment (REPA) loss -- allowing both VAE and diffusion model to be jointly tuned during the training process. Despite its simplicity, the proposed training recipe (REPA-E) shows remarkable performance; speeding up diffusion model training by over 17x and 45x over REPA and vanilla training recipes, respectively. Interestingly, we observe that end-to-end tuning with REPA-E also improves the VAE itself; leading to improved latent space structure and downstream generation performance. In terms of final performance, our approach sets a new state-of-the-art; achieving FID of 1.12 and 1.69 with and without classifier-free guidance on ImageNet 256 x 256. Code is available at https://end2end-diffusion.github.io.
♻ ☆ Training on Plausible Counterfactuals Removes Spurious Correlations
Plausible counterfactual explanations (p-CFEs) are perturbations that minimally modify inputs to change classifier decisions while remaining plausible under the data distribution. In this study, we demonstrate that classifiers can be trained on p-CFEs labeled with induced \emph{incorrect} target classes to classify unperturbed inputs with the original labels. While previous studies have shown that such learning is possible with adversarial perturbations, we extend this paradigm to p-CFEs. Interestingly, our experiments reveal that learning from p-CFEs is even more effective: the resulting classifiers achieve not only high in-distribution accuracy but also exhibit significantly reduced bias with respect to spurious correlations.
♻ ☆ VLA-Cache: Efficient Vision-Language-Action Manipulation via Adaptive Token Caching NeurIPS 2025
Vision-Language-Action (VLA) models have demonstrated strong multi-modal reasoning capabilities, enabling direct action generation from visual perception and language instructions in an end-to-end manner. However, their substantial computational cost poses a challenge for real-time robotic control, where rapid decision-making is essential. This paper introduces VLA-Cache, a training-free inference acceleration method that reduces computational overhead by adaptively caching and reusing static visual tokens across frames. Exploiting the temporal continuity in robotic manipulation, VLA-Cache identifies minimally changed tokens between adjacent frames and reuses their cached key-value representations, thereby circumventing redundant computations. Additionally, to maintain action precision, VLA-Cache selectively re-computes task-relevant tokens that are environmentally sensitive, ensuring the fidelity of critical visual information. To further optimize efficiency, we introduce a layer adaptive token reusing strategy that dynamically adjusts the reuse ratio based on attention concentration across decoder layers, prioritizing critical tokens for recomputation. Extensive experiments on two simulation platforms (LIBERO and SIMPLER) and a real-world robotic system demonstrate that VLA-Cache achieves up to 1.7x speedup in CUDA latency and a 15% increase in control frequency, with negligible loss on task success rate. The code and videos can be found at our project page: https://vla-cache.github.io.
comment: Accepted to NeurIPS 2025
♻ ☆ The Spacetime of Diffusion Models: An Information Geometry Perspective
We present a novel geometric perspective on the latent space of diffusion models. We first show that the standard pullback approach, utilizing the deterministic probability flow ODE decoder, is fundamentally flawed. It provably forces geodesics to decode as straight segments in data space, effectively ignoring any intrinsic data geometry beyond the ambient Euclidean space. Complementing this view, diffusion also admits a stochastic decoder via the reverse SDE, which enables an information geometric treatment with the Fisher-Rao metric. However, a choice of $x_T$ as the latent representation collapses this metric due to memorylessness. We address this by introducing a latent spacetime $z=(x_t,t)$ that indexes the family of denoising distributions $p(x_0 | x_t)$ across all noise scales, yielding a nontrivial geometric structure. We prove these distributions form an exponential family and derive simulation-free estimators for curve lengths, enabling efficient geodesic computation. The resulting structure induces a principled Diffusion Edit Distance, where geodesics trace minimal sequences of noise and denoise edits between data. We also demonstrate benefits for transition path sampling in molecular systems, including constrained variants such as low-variance transitions and region avoidance. Code is available at: https://github.com/rafalkarczewski/spacetime-geometry
♻ ☆ ALINE: Joint Amortization for Bayesian Inference and Active Data Acquisition NeurIPS 2025
Many critical applications, from autonomous scientific discovery to personalized medicine, demand systems that can both strategically acquire the most informative data and instantaneously perform inference based upon it. While amortized methods for Bayesian inference and experimental design offer part of the solution, neither approach is optimal in the most general and challenging task, where new data needs to be collected for instant inference. To tackle this issue, we introduce the Amortized Active Learning and Inference Engine (ALINE), a unified framework for amortized Bayesian inference and active data acquisition. ALINE leverages a transformer architecture trained via reinforcement learning with a reward based on self-estimated information gain provided by its own integrated inference component. This allows it to strategically query informative data points while simultaneously refining its predictions. Moreover, ALINE can selectively direct its querying strategy towards specific subsets of model parameters or designated predictive tasks, optimizing for posterior estimation, data prediction, or a mixture thereof. Empirical results on regression-based active learning, classical Bayesian experimental design benchmarks, and a psychometric model with selectively targeted parameters demonstrate that ALINE delivers both instant and accurate inference along with efficient selection of informative points.
comment: 27 pages, 13 figures. Accepted at the 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ A Flow-Based Model for Conditional and Probabilistic Electricity Consumption Profile Generation and Prediction
Residential Load Profile (RLP) generation and prediction are critical for the operation and planning of distribution networks, especially as diverse low-carbon technologies (e.g., photovoltaic and electric vehicles) are increasingly adopted. This paper introduces a novel flow-based generative model, termed Full Convolutional Profile Flow (FCPFlow), which is uniquely designed for both conditional and unconditional RLP generation, and for probabilistic load forecasting. By introducing two new layers--the invertible linear layer and the invertible normalization layer--the proposed FCPFlow architecture shows three main advantages compared to traditional statistical and contemporary deep generative models: 1) it is well-suited for RLP generation under continuous conditions, such as varying weather and annual electricity consumption, 2) it demonstrates superior scalability in different datasets compared to traditional statistical models, and 3) it also demonstrates better modeling capabilities in capturing the complex correlation of RLPs compared with deep generative models.
♻ ☆ Shuffling Heuristic in Variational Inequalities: Establishing New Convergence Guarantees
Variational inequalities have gained significant attention in machine learning and optimization research. While stochastic methods for solving these problems typically assume independent data sampling, we investigate an alternative approach -- the shuffling heuristic. This strategy involves permuting the dataset before sequential processing, ensuring equal consideration of all data points. Despite its practical utility, theoretical guarantees for shuffling in variational inequalities remain unexplored. We address this gap by providing the first theoretical convergence estimates for shuffling methods in this context. Our analysis establishes rigorous bounds and convergence rates, extending the theoretical framework for this important class of algorithms. We validate our findings through extensive experiments on diverse benchmark variational inequality problems, demonstrating faster convergence of shuffling methods compared to independent sampling approaches.
comment: 25 pages, 5 figures, 2 tables
♻ ☆ ProSh: Probabilistic Shielding for Model-free Reinforcement Learning
Safety is a major concern in reinforcement learning (RL): we aim at developing RL systems that not only perform optimally, but are also safe to deploy by providing formal guarantees about their safety. To this end, we introduce Probabilistic Shielding via Risk Augmentation (ProSh), a model-free algorithm for safe reinforcement learning under cost constraints. ProSh augments the Constrained MDP state space with a risk budget and enforces safety by applying a shield to the agent's policy distribution using a learned cost critic. The shield ensures that all sampled actions remain safe in expectation. We also show that optimality is preserved when the environment is deterministic. Since ProSh is model-free, safety during training depends on the knowledge we have acquired about the environment. We provide a tight upper-bound on the cost in expectation, depending only on the backup-critic accuracy, that is always satisfied during training. Under mild, practically achievable assumptions, ProSh guarantees safety even at training time, as shown in the experiments.
♻ ☆ Sign-SGD is the Golden Gate between Multi-Node to Single-Node Learning: Significant Boost via Parameter-Free Optimization
Quite recently, large language models have made a significant breakthrough across various disciplines. However, training them is an extremely resource-intensive task, even for major players with vast computing resources. One of the methods gaining popularity in light of these challenges is Sign-SGD. This method can be applied both as a memory-efficient approach in single-node training and as a gradient compression technique in the distributed learning. Nevertheless, it is impossible to automatically determine the effective stepsize from the theoretical standpoint. Indeed, it depends on the parameters of the dataset to which we do not have access in the real-world learning paradigm. To address this issue, we design several variants of single-node deterministic Sign-SGD. We extend our approaches to practical scenarios: stochastic single-node and multi-node learning, methods with incorporated momentum. We conduct extensive experiments on real machine learning problems that emphasize the practical applicability of our ideas.
comment: 58 pages, 5 figures, 5 tables
♻ ☆ Expressive Reward Synthesis with the Runtime Monitoring Language
A key challenge in reinforcement learning (RL) is reward (mis)specification, whereby imprecisely defined reward functions can result in unintended, possibly harmful, behaviours. Indeed, reward functions in RL are typically treated as black-box mappings from state-action pairs to scalar values. While effective in many settings, this approach provides no information about why rewards are given, which can hinder learning and interpretability. Reward Machines address this issue by representing reward functions as finite state automata, enabling the specification of structured, non-Markovian reward functions. However, their expressivity is typically bounded by regular languages, leaving them unable to capture more complex behaviours such as counting or parametrised conditions. In this work, we build on the Runtime Monitoring Language (RML) to develop a novel class of language-based Reward Machines. By leveraging the built-in memory of RML, our approach can specify reward functions for non-regular, non-Markovian tasks. We demonstrate the expressiveness of our approach through experiments, highlighting additional advantages in flexible event-handling and task specification over existing Reward Machine-based methods.
♻ ☆ MEET-Sepsis: Multi-Endogenous-View Enhanced Time-Series Representation Learning for Early Sepsis Prediction PRICAI 2025
Sepsis is a life-threatening infectious syndrome associated with high mortality in intensive care units (ICUs). Early and accurate sepsis prediction (SP) is critical for timely intervention, yet remains challenging due to subtle early manifestations and rapidly escalating mortality. While AI has improved SP efficiency, existing methods struggle to capture weak early temporal signals. This paper introduces a Multi-Endogenous-view Representation Enhancement (MERE) mechanism to construct enriched feature views, coupled with a Cascaded Dual-convolution Time-series Attention (CDTA) module for multi-scale temporal representation learning. The proposed MEET-Sepsis framework achieves competitive prediction accuracy using only 20% of the ICU monitoring time required by SOTA methods, significantly advancing early SP. Extensive validation confirms its efficacy. Code is available at: https://github.com/yueliangy/MEET-Sepsis.
comment: Accepted to PRICAI 2025
♻ ☆ FlashBias: Fast Computation of Attention with Bias
Attention with bias, which extends standard attention by introducing prior knowledge as an additive bias matrix to the query-key scores, has been widely deployed in vision, language, protein-folding and other advanced scientific models, underscoring its status as a key evolution of this foundational module. However, introducing bias terms creates a severe efficiency bottleneck in attention computation. It disrupts the tightly fused memory-compute pipeline that underlies the speed of accelerators like FlashAttention, thereby stripping away most of their performance gains and leaving biased attention computationally expensive. Surprisingly, despite its common usage, targeted efficiency optimization for attention with bias remains absent, which seriously hinders its application in complex tasks. Diving into the computation of FlashAttention, we prove that its optimal efficiency is determined by the rank of the attention weight matrix. Inspired by this theoretical result, this paper presents FlashBias based on the low-rank compressed sensing theory, which can provide fast-exact computation for many widely used attention biases and a fast-accurate approximation for biases in general formalizations. FlashBias can fully take advantage of the extremely optimized matrix multiplication operation in modern GPUs, achieving 1.5$\times$ speedup for Pairformer in AlphaFold 3, and over 2$\times$ speedup for attention with bias in vision and language models without loss of accuracy. Code is available at this repository: https://github.com/thuml/FlashBias.
♻ ☆ Deep Edge Filter: Return of the Human-Crafted Layer in Deep Learning NeurIPS2025
We introduce the Deep Edge Filter, a novel approach that applies high-pass filtering to deep neural network features to improve model generalizability. Our method is motivated by our hypothesis that neural networks encode task-relevant semantic information in high-frequency components while storing domain-specific biases in low-frequency components of deep features. By subtracting low-pass filtered outputs from original features, our approach isolates generalizable representations while preserving architectural integrity. Experimental results across diverse domains such as Vision, Text, 3D, and Audio demonstrate consistent performance improvements regardless of model architecture and data modality. Analysis reveals that our method induces feature sparsification and effectively isolates high-frequency components, providing empirical validation of our core hypothesis. The code is available at https://github.com/dongkwani/DeepEdgeFilter.
comment: NeurIPS2025
♻ ☆ DreamPRM-1.5: Unlocking the Potential of Each Instance for Multimodal Process Reward Model Training
Training multimodal process reward models (PRMs) is hard due to (i) distribution shift between training set and test set and (ii) quality imbalance across training data samples. While domain-level reweighting (e.g., DreamPRM) aligns training with test-time objectives, it leaves a clear gap to an oracle upper bound (pass@N), even under a "sanity check" that uses test set data to probe headroom -- pointing to meta-level under-parameterization. We introduce DreamPRM-1.5, an instance-level reweighting framework that assigns an adaptive weight to every training example via bi-level optimization. To realize instance reweighting across scales, we develop two complementary regimes: Instance Table, which learns explicit per-sample weights and excels on small/medium data, and Instance Net, a lightweight neural network that generalizes better and scales to large corpora. A practical, stable training recipe -- time-scale matching between upper/lower updates, cold-start initialization, and bounded-range weights -- prevents divergence. Integrated with test-time scaling, DreamPRM-1.5 attains 84.6 accuracy on the MMMU validation set, 31.3 accuracy on R-Bench-V and, when paired with a leading backbone (e.g., GPT-5-mini), achieves first-place results on public multimodal reasoning leaderboards. Moreover, extensive experiments, including benchmark evaluations, baseline comparisons, and a sanity check, demonstrate that DreamPRM-1.5 closes the gap toward the oracle, achieves leading performance, and trains stably.
♻ ☆ Asynchronous Federated Learning: A Scalable Approach for Decentralized Machine Learning
Federated Learning (FL) has emerged as a powerful paradigm for decentralized machine learning, enabling collaborative model training across diverse clients without sharing raw data. However, traditional FL approaches often face limitations in scalability and efficiency due to their reliance on synchronous client updates, which can result in significant delays and increased communication overhead, particularly in heterogeneous and dynamic environments. To address these challenges in this paper, we propose an Asynchronous Federated Learning (AFL) algorithm, which allows clients to update the global model independently and asynchronously. Our key contributions include a comprehensive convergence analysis of AFL in the presence of client delays and model staleness. By leveraging martingale difference sequence theory and variance bounds, we ensure robust convergence despite asynchronous updates. Assuming strongly convex local objective functions, we establish bounds on gradient variance under random client sampling and derive a recursion formula quantifying the impact of client delays on convergence. Furthermore, we demonstrate the practical applicability of the AFL algorithm by training decentralized linear regression and Support Vector Machine (SVM) based classifiers and compare its results with synchronous FL algorithm to effectively handling non-IID data distributed among clients. The proposed AFL algorithm addresses key limitations of traditional FL methods, such as inefficiency due to global synchronization and susceptibility to client drift. It enhances scalability, robustness, and efficiency in real-world settings with heterogeneous client populations and dynamic network conditions. Our results underscore the potential of AFL to drive advancements indistributed learning systems, particularly for large-scale, privacy-preserving applications in resource-constrained environments.
♻ ☆ Time Reversal Symmetry for Efficient Robotic Manipulations in Deep Reinforcement Learning NeurIPS 2025
Symmetry is pervasive in robotics and has been widely exploited to improve sample efficiency in deep reinforcement learning (DRL). However, existing approaches primarily focus on spatial symmetries, such as reflection, rotation, and translation, while largely neglecting temporal symmetries. To address this gap, we explore time reversal symmetry, a form of temporal symmetry commonly found in robotics tasks such as door opening and closing. We propose Time Reversal symmetry enhanced Deep Reinforcement Learning (TR-DRL), a framework that combines trajectory reversal augmentation and time reversal guided reward shaping to efficiently solve temporally symmetric tasks. Our method generates reversed transitions from fully reversible transitions, identified by a proposed dynamics-consistent filter, to augment the training data. For partially reversible transitions, we apply reward shaping to guide learning, according to successful trajectories from the reversed task. Extensive experiments on the Robosuite and MetaWorld benchmarks demonstrate that TR-DRL is effective in both single-task and multi-task settings, achieving higher sample efficiency and stronger final performance compared to baseline methods.
comment: Accepted in NeurIPS 2025
♻ ☆ Fair Minimum Labeling: Efficient Temporal Network Activations for Reachability and Equity NeurIPS 2025
Balancing resource efficiency and fairness is critical in networked systems that support modern learning applications. We introduce the Fair Minimum Labeling (FML) problem: the task of designing a minimum-cost temporal edge activation plan that ensures each group of nodes in a network has sufficient access to a designated target set, according to specified coverage requirements. FML captures key trade-offs in systems where edge activations incur resource costs and equitable access is essential, such as distributed data collection, update dissemination in edge-cloud systems, and fair service restoration in critical infrastructure. We show that FML is NP-hard and $\Omega(\log |V|)$-hard to approximate, where $V$ is the set of nodes, and we present probabilistic approximation algorithms that match this bound, achieving the best possible guarantee for the activation cost. We demonstrate the practical utility of FML in a fair multi-source data aggregation task for training a shared model. Empirical results show that FML enforces group-level fairness with substantially lower activation cost than baseline heuristics, underscoring its potential for building resource-efficient, equitable temporal reachability in learning-integrated networks.
comment: Accepted at NeurIPS 2025
♻ ☆ Enhancing Sample Selection Against Label Noise by Cutting Mislabeled Easy Examples NeurIPS 2025
Sample selection is a prevalent approach in learning with noisy labels, aiming to identify confident samples for training. Although existing sample selection methods have achieved decent results by reducing the noise rate of the selected subset, they often overlook that not all mislabeled examples harm the model's performance equally. In this paper, we demonstrate that mislabeled examples correctly predicted by the model early in the training process are particularly harmful to model performance. We refer to these examples as Mislabeled Easy Examples (MEEs). To address this, we propose Early Cutting, which introduces a recalibration step that employs the model's later training state to re-select the confident subset identified early in training, thereby avoiding misleading confidence from early learning and effectively filtering out MEEs. Experiments on the CIFAR, WebVision, and full ImageNet-1k datasets demonstrate that our method effectively improves sample selection and model performance by reducing MEEs.
comment: Accepted by NeurIPS 2025
♻ ☆ Model-based Implicit Neural Representation for sub-wavelength Radio Localization
The increasing deployment of large antenna arrays at base stations has significantly improved the spatial resolution and localization accuracy of radio-localization methods. However, traditional signal processing techniques struggle in complex radio environments, particularly in scenarios dominated by non line of sight (NLoS) propagation paths, resulting in degraded localization accuracy. Recent developments in machine learning have facilitated the development of machine learning-assisted localization techniques, enhancing localization accuracy in complex radio environments. However, these methods often involve substantial computational complexity during both the training and inference phases. This work extends the well-established fingerprinting-based localization framework by simultaneously reducing its memory requirements and improving its accuracy. Specifically, a model-based neural network is used to learn the location-to-channel mapping, and then serves as a generative neural channel model. This generative model augments the fingerprinting comparison dictionary while reducing the memory requirements. The proposed method outperforms fingerprinting baselines by achieving sub-wavelength localization accuracy, even in complex static NLoS environments. Remarkably, it offers an improvement by several orders of magnitude in localization accuracy, while simultaneously reducing memory requirements by an order of magnitude compared to classical fingerprinting methods.
♻ ☆ Explaining Large Language Models with gSMILE
Large Language Models (LLMs) such as GPT, LLaMA, and Claude achieve remarkable performance in text generation but remain opaque in their decision-making processes, limiting trust and accountability in high-stakes applications. We present gSMILE (generative SMILE), a model-agnostic, perturbation-based framework for token-level interpretability in LLMs. Extending the SMILE methodology, gSMILE uses controlled prompt perturbations, Wasserstein distance metrics, and weighted linear surrogates to identify input tokens with the most significant impact on the output. This process enables the generation of intuitive heatmaps that visually highlight influential tokens and reasoning paths. We evaluate gSMILE across leading LLMs (OpenAI's gpt-3.5-turbo-instruct, Meta's LLaMA 3.1 Instruct Turbo, and Anthropic's Claude 2.1) using attribution fidelity, attribution consistency, attribution stability, attribution faithfulness, and attribution accuracy as metrics. Results show that gSMILE delivers reliable human-aligned attributions, with Claude 2.1 excelling in attention fidelity and GPT-3.5 achieving the highest output consistency. These findings demonstrate gSMILE's ability to balance model performance and interpretability, enabling more transparent and trustworthy AI systems.
♻ ☆ PAUSE: Low-Latency and Privacy-Aware Active User Selection for Federated Learning
Federated learning (FL) enables multiple edge devices to collaboratively train a machine learning model without the need to share potentially private data. Federated learning proceeds through iterative exchanges of model updates, which pose two key challenges: First, the accumulation of privacy leakage over time, and second, communication latency. These two limitations are typically addressed separately: The former via perturbed updates to enhance privacy and the latter using user selection to mitigate latency - both at the expense of accuracy. In this work, we propose a method that jointly addresses the accumulation of privacy leakage and communication latency via active user selection, aiming to improve the trade-off among privacy, latency, and model performance. To achieve this, we construct a reward function that accounts for these three objectives. Building on this reward, we propose a multi-armed bandit (MAB)-based algorithm, termed Privacy-aware Active User SElection (PAUSE) which dynamically selects a subset of users each round while ensuring bounded overall privacy leakage. We establish a theoretical analysis, systematically showing that the reward growth rate of PAUSE follows that of the best-known rate in MAB literature. To address the complexity overhead of active user selection, we propose a simulated annealing-based relaxation of PAUSE and analyze its ability to approximate the reward-maximizing policy under reduced complexity. We numerically validate the privacy leakage, associated improved latency, and accuracy gains of our methods for the federated training in various scenarios.
♻ ☆ Changing Base Without Losing Pace: A GPU-Efficient Alternative to MatMul in DNNs
Modern AI relies on huge matrix multiplications (MatMuls), whose computation poses a scalability problem for inference and training. We propose an alternative, GPU native bilinear operator to MatMuls in neural networks, which offers a three-way tradeoff between: speed, accuracy and parameter count. In particular, this operator requires substantially fewer FLOPs to evaluate ($\ll n^3$), yet increases the parameter count compared to MatMul ($\gg n^2$). We call this operator Strassen-Tile (STL). The key idea behind STL is a local learnable change-of-basis, applied on tiles of the weight and activation matrices, followed by an element-wise product between the tiles, implemented simultaneously via MatMul. The key technical question we study is how to optimize the change-of-basis of a given layer, which is a highly non-convex problem. We show that theory-backed initializations (inspired by fast matrix and polynomial multiplication) lead to substantially better accuracy than random SGD initialization. This phenomenon motivates further algorithmic study of STL optimization in DNNs. Our experiments demonstrate that STL can approximate 4x4 MatMul of tiles while reducing FLOPs by a factor of 2.66, and can improve Imagenet-1K accuracy of SoTA T2T-ViT-7 (4.3M parameters) while lowering FLOPs. Even with non-CUDA optimized PyTorch code, STL achieves wall-clock speedups in the compute-bound regime. These results, together with its theoretical grounds, suggest STL as a promising building block for scalable and cost-efficient AI.
♻ ☆ Low-cost Embedded Breathing Rate Determination Using 802.15.4z IR-UWB Hardware for Remote Healthcare IEEE
Respiratory diseases account for a significant portion of global mortality. Affordable and early detection is an effective way of addressing these ailments. To this end, a low-cost commercial off-the-shelf (COTS), IEEE 802.15.4z standard compliant impulse-radio ultra-wideband (IR-UWB) radar system is used to estimate human respiration rates. We propose a convolutional neural network (CNN) specifically adapted to predict breathing rates from ultra-wideband (UWB) channel impulse response (CIR) data, and compare its performance with both other rule-based algorithms and model-based solutions. The study uses a diverse dataset, incorporating various real-life environments to evaluate system robustness. To facilitate future research, this dataset will be released as open source. Results show that the CNN achieves a mean absolute error (MAE) of 1.73 breaths per minute (BPM) in unseen situations, significantly outperforming rule-based methods (3.40 BPM). By incorporating calibration data from other individuals in the unseen situations, the error is further reduced to 0.84 BPM. In addition, this work evaluates the feasibility of running the pipeline on a low-cost embedded device. Applying 8-bit quantization to both the weights and input/ouput tensors, reduces memory requirements by 67% and inference time by 64% with only a 3% increase in MAE. As a result, we show it is feasible to deploy the algorithm on an nRF52840 system-on-chip (SoC) requiring only 46 KB of memory and operating with an inference time of only 192 ms. Once deployed, an analytical energy model estimates that the system, while continuously monitoring the room, can operate for up to 268 days without recharging when powered by a 20 000 mAh battery pack. For breathing monitoring in bed, the sampling rate can be lowered, extending battery life to 313 days, making the solution highly efficient for real-world, low-cost deployments.
comment: This paper has been submitted to IEEE Sensors Journal and is currently undergoing review
♻ ☆ Estimating Model Performance Under Covariate Shift Without Labels
After deployment, machine learning models often experience performance degradation due to shifts in data distribution. It is challenging to assess post-deployment performance accurately when labels are missing or delayed. Existing proxy methods, such as data drift detection, fail to measure the effects of these shifts adequately. To address this, we introduce a new method for evaluating binary classification models on unlabeled tabular data that accurately estimates model performance under covariate shift and call it Probabilistic Adaptive Performance Estimation (PAPE). It can be applied to any performance metric defined with elements of the confusion matrix. Crucially, PAPE operates independently of the original model, relying only on its predictions and probability estimates, and does not need any assumptions about the nature of covariate shift, learning directly from data instead. We tested PAPE using over 900 dataset-model combinations from US census data, assessing its performance against several benchmarks through various metrics. Our findings show that PAPE outperforms other methodologies, making it a superior choice for estimating the performance of binary classification models.
comment: 25 content pages, 7 figures
♻ ☆ SpecExit: Accelerating Large Reasoning Model via Speculative Exit
Despite their strong performance on reasoning tasks, large reasoning models (LRMs) often suffer from overthinking, producing unnecessarily long outputs and incurring high end-to-end latency, a significant limitation to their real-world deployment. To address overthinking, early-exit mechanisms have been proposed to terminate reasoning before typical completion, showing that this approach can effectively shorten generation length with minimal impact on accuracy. However, their reliance on probing mechanisms introduces a detection overhead that limits their end-to-end latency gains and compromises their generalizability across diverse problems. Inspired by the use of hidden states in speculative decoding, we propose SpecExit, a novel framework that predicts both future tokens and an early-exit signal directly from a lightweight draft model without probing overhead. Our method offers significant improvements, reducing average generation length by 66\% and achieving a 2.5x speedup in end-to-end latency compared to the speculative decoding baseline, without compromising accuracy. Our method leverages the inherent signals from hidden states to provide effective early-exit signals, suggesting broader use of hidden states for efficient reasoning. Our code is available at https://github.com/Tencent/AngelSlim.
♻ ☆ gen2seg: Generative Models Enable Generalizable Instance Segmentation
By pretraining to synthesize coherent images from perturbed inputs, generative models inherently learn to understand object boundaries and scene compositions. How can we repurpose these generative representations for general-purpose perceptual organization? We finetune Stable Diffusion and MAE (encoder+decoder) for category-agnostic instance segmentation using our instance coloring loss exclusively on a narrow set of object types (indoor furnishings and cars). Surprisingly, our models exhibit strong zero-shot generalization, accurately segmenting objects of types and styles unseen in finetuning (and in many cases, MAE's ImageNet-1K pretraining too). Our best-performing models closely approach the heavily supervised SAM when evaluated on unseen object types and styles, and outperform it when segmenting fine structures and ambiguous boundaries. In contrast, existing promptable segmentation architectures or discriminatively pretrained models fail to generalize. This suggests that generative models learn an inherent grouping mechanism that transfers across categories and domains, even without internet-scale pretraining. Code, pretrained models, and demos are available on our website.
comment: Website: https://reachomk.github.io/gen2seg/
♻ ☆ Dynamic Diffusion Schrödinger Bridge in Astrophysical Observational Inversions NeurIPS 2025
We study Diffusion Schr\"odinger Bridge (DSB) models in the context of dynamical astrophysical systems, specifically tackling observational inverse prediction tasks within Giant Molecular Clouds (GMCs) for star formation. We introduce the Astro-DSB model, a variant of DSB with the pairwise domain assumption tailored for astrophysical dynamics. By investigating its learning process and prediction performance in both physically simulated data and in real observations (the Taurus B213 data), we present two main takeaways. First, from the astrophysical perspective, our proposed paired DSB method improves interpretability, learning efficiency, and prediction performance over conventional astrostatistical and other machine learning methods. Second, from the generative modeling perspective, probabilistic generative modeling reveals improvements over discriminative pixel-to-pixel modeling in Out-Of-Distribution (OOD) testing cases of physical simulations with unseen initial conditions and different dominant physical processes. Our study expands research into diffusion models beyond the traditional visual synthesis application and provides evidence of the models' learning abilities beyond pure data statistics, paving a path for future physics-aware generative models which can align dynamics between machine learning and real (astro)physical systems.
comment: Accepted to NeurIPS 2025. Code available at https://github.com/L-YeZhu/AstroDSB
♻ ☆ Learning to Interpret Weight Differences in Language Models
Finetuning (pretrained) language models is a standard approach for updating their internal parametric knowledge and specializing them to new tasks and domains. However, the corresponding model weight changes ("weight diffs") are not generally interpretable. While inspecting the finetuning dataset can give a sense of how the model might have changed, these datasets are often not publicly available or are too large to work with directly. Towards the goal of comprehensively understanding weight diffs in natural language, we introduce Diff Interpretation Tuning (DIT), a method that trains models to describe their own finetuning-induced modifications. Our approach uses synthetic, labeled weight diffs to train a DIT-adapter, which can be applied to a compatible finetuned model to make it describe how it has changed. We demonstrate in two proof-of-concept settings (reporting hidden behaviors and summarizing finetuned knowledge) that our method enables models to describe their finetuning-induced modifications using accurate natural language descriptions.
comment: Project code and links to weight diffs, adapters, and training data can be found at https://github.com/Aviously/diff-interpretation-tuning
♻ ☆ Segment Policy Optimization: Effective Segment-Level Credit Assignment in RL for Large Language Models NeurIPS 2025
Enhancing the reasoning capabilities of large language models effectively using reinforcement learning (RL) remains a crucial challenge. Existing approaches primarily adopt two contrasting advantage estimation granularities: token-level methods (e.g., PPO) aim to provide fine-grained advantage signals but suffer from inaccurate estimation due to difficulties in training an accurate critic model. On the other extreme, trajectory-level methods (e.g., GRPO) solely rely on a coarse-grained advantage signal from the final reward, leading to imprecise credit assignment. To address these limitations, we propose Segment Policy Optimization (SPO), a novel RL framework that leverages segment-level advantage estimation at an intermediate granularity, achieving a better balance by offering more precise credit assignment than trajectory-level methods and requiring fewer estimation points than token-level methods, enabling accurate advantage estimation based on Monte Carlo (MC) without a critic model. SPO features three components with novel strategies: (1) flexible segment partition; (2) accurate segment advantage estimation; and (3) policy optimization using segment advantages, including a novel probability-mask strategy. We further instantiate SPO for two specific scenarios: (1) SPO-chain for short chain-of-thought (CoT), featuring novel cutpoint-based partition and chain-based advantage estimation, achieving $6$-$12$ percentage point improvements in accuracy over PPO and GRPO on GSM8K. (2) SPO-tree for long CoT, featuring novel tree-based advantage estimation, which significantly reduces the cost of MC estimation, achieving $7$-$11$ percentage point improvements over GRPO on MATH500 under 2K and 4K context evaluation. We make our code publicly available at https://github.com/AIFrameResearch/SPO.
comment: Accepted at NeurIPS 2025
♻ ☆ FlexQuant: A Flexible and Efficient Dynamic Precision Switching Framework for LLM Quantization
The rapid advancement of large language models (LLMs) has exacerbated the memory bottleneck due to the widening gap between model parameter scaling and hardware capabilities. While post-training quantization techniques effectively reduce memory overhead, existing methods predominantly rely on static quantization strategies, which struggle to adapt to dynamic workloads. To address this, we propose FlexQuant, a dynamic precision-switching framework that optimizes the trade-off between inference speed and accuracy. Leveraging model perplexity entropy and Kullback-Leibler divergence, FlexQuant enables fine-grained, layer-wise mixed-precision quantization and dynamically adjusts bit-widths during each token generation. FlexQuant provides a comprehensive analysis of quantization strategies, introduces a precision requirement model for optimal switching, and implements efficient fine-grained precision management. Evaluations demonstrate that FlexQuant achieves a 1.3x end-to-end speedup across diverse language tasks with negligible accuracy loss introduced. This framework offers a flexible and adaptive solution for efficient LLM deployment. Code is released at https://github.com/ZongwuWang/FlexQuant.git.
comment: 10 pages, 7 figures, 2 tables
♻ ☆ Preference-driven Knowledge Distillation for Few-shot Node Classification NeurIPS 2025
Graph neural networks (GNNs) can efficiently process text-attributed graphs (TAGs) due to their message-passing mechanisms, but their training heavily relies on the human-annotated labels. Moreover, the complex and diverse local topologies of nodes of real-world TAGs make it challenging for a single mechanism to handle. Large language models (LLMs) perform well in zero-/few-shot learning on TAGs but suffer from a scalability challenge. Therefore, we propose a preference-driven knowledge distillation (PKD) framework to synergize the complementary strengths of LLMs and various GNNs for few-shot node classification. Specifically, we develop a GNN-preference-driven node selector that effectively promotes prediction distillation from LLMs to teacher GNNs. To further tackle nodes' intricate local topologies, we develop a node-preference-driven GNN selector that identifies the most suitable teacher GNN for each node, thereby facilitating tailored knowledge distillation from teacher GNNs to the student GNN. Extensive experiments validate the efficacy of our proposed framework in few-shot node classification on real-world TAGs. Our code is available.
comment: Accepted by NeurIPS 2025
♻ ☆ Shuffle-R1: Efficient RL framework for Multimodal Large Language Models via Data-centric Dynamic Shuffle
Reinforcement learning (RL) has emerged as an effective post-training paradigm for enhancing the reasoning capabilities of multimodal large language model (MLLM). However, current RL pipelines often suffer from training inefficiencies caused by two underexplored issues: Advantage Collapsing, where most advantages in a batch concentrate near zero, and Rollout Silencing, where the proportion of rollouts contributing non-zero gradients diminishes over time. These issues lead to suboptimal gradient updates and hinder long-term learning efficiency. To address these issues, we propose Shuffle-R1, a simple yet principled framework that improves RL fine-tuning efficiency by dynamically restructuring trajectory sampling and batch composition. It introduces (1) Pairwise Trajectory Sampling, which selects high-contrast trajectories with large advantages to improve gradient signal quality, and (2) Advantage-based Trajectory Shuffle, which increases exposure of valuable rollouts through informed batch reshuffling. Experiments across multiple reasoning benchmarks show that our framework consistently outperforms strong RL baselines with minimal overhead. These results highlight the importance of data-centric adaptations for more efficient RL training in MLLM.
comment: Project page at: https://xenozlh.github.io/Shuffle-R1/
♻ ☆ Incomplete Multi-view Clustering via Hierarchical Semantic Alignment and Cooperative Completion
Incomplete multi-view data, where certain views are entirely missing for some samples, poses significant challenges for traditional multi-view clustering methods. Existing deep incomplete multi-view clustering approaches often rely on static fusion strategies or two-stage pipelines, leading to suboptimal fusion results and error propagation issues. To address these limitations, this paper proposes a novel incomplete multi-view clustering framework based on Hierarchical Semantic Alignment and Cooperative Completion (HSACC). HSACC achieves robust cross-view fusion through a dual-level semantic space design. In the low-level semantic space, consistency alignment is ensured by maximizing mutual information across views. In the high-level semantic space, adaptive view weights are dynamically assigned based on the distributional affinity between individual views and an initial fused representation, followed by weighted fusion to generate a unified global representation. Additionally, HSACC implicitly recovers missing views by projecting aligned latent representations into high-dimensional semantic spaces and jointly optimizes reconstruction and clustering objectives, enabling cooperative learning of completion and clustering. Experimental results demonstrate that HSACC significantly outperforms state-of-the-art methods on five benchmark datasets. Ablation studies validate the effectiveness of the hierarchical alignment and dynamic weighting mechanisms, while parameter analysis confirms the model's robustness to hyperparameter variations.
♻ ☆ Graph Neural Networks for Road Safety Modeling: Datasets and Evaluations for Accident Analysis NeurIPS 2023
We consider the problem of traffic accident analysis on a road network based on road network connections and traffic volume. Previous works have designed various deep-learning methods using historical records to predict traffic accident occurrences. However, there is a lack of consensus on how accurate existing methods are, and a fundamental issue is the lack of public accident datasets for comprehensive evaluations. This paper constructs a large-scale, unified dataset of traffic accident records from official reports of various states in the US, totaling 9 million records, accompanied by road networks and traffic volume reports. Using this new dataset, we evaluate existing deep-learning methods for predicting the occurrence of accidents on road networks. Our main finding is that graph neural networks such as GraphSAGE can accurately predict the number of accidents on roads with less than 22% mean absolute error (relative to the actual count) and whether an accident will occur or not with over 87% AUROC, averaged over states. We achieve these results by using multitask learning to account for cross-state variabilities (e.g., availability of accident labels) and transfer learning to combine traffic volume with accident prediction. Ablation studies highlight the importance of road graph-structural features, amongst other features. Lastly, we discuss the implications of the analysis and develop a package for easily using our new dataset.
comment: 22 pages. Appeared in NeurIPS 2023
♻ ☆ Class-wise Balancing Data Replay for Federated Class-Incremental Learning NeurIPS'25
Federated Class Incremental Learning (FCIL) aims to collaboratively process continuously increasing incoming tasks across multiple clients. Among various approaches, data replay has become a promising solution, which can alleviate forgetting by reintroducing representative samples from previous tasks. However, their performance is typically limited by class imbalance, both within the replay buffer due to limited global awareness and between replayed and newly arrived classes. To address this issue, we propose a class wise balancing data replay method for FCIL (FedCBDR), which employs a global coordination mechanism for class-level memory construction and reweights the learning objective to alleviate the aforementioned imbalances. Specifically, FedCBDR has two key components: 1) the global-perspective data replay module reconstructs global representations of prior task in a privacy-preserving manner, which then guides a class-aware and importance-sensitive sampling strategy to achieve balanced replay; 2) Subsequently, to handle class imbalance across tasks, the task aware temperature scaling module adaptively adjusts the temperature of logits at both class and instance levels based on task dynamics, which reduces the model's overconfidence in majority classes while enhancing its sensitivity to minority classes. Experimental results verified that FedCBDR achieves balanced class-wise sampling under heterogeneous data distributions and improves generalization under task imbalance between earlier and recent tasks, yielding a 2%-15% Top-1 accuracy improvement over six state-of-the-art methods.
comment: NeurIPS'25 Accepted, Oral
♻ ☆ Enabling Fine-Grained Operating Points for Black-Box LLMs ICLR 2026
Black-box Large Language Models (LLMs) provide practical and accessible alternatives to other machine learning methods, as they require minimal labeled data and machine learning expertise to develop solutions for various decision making problems. However, for applications that need operating with constraints on specific metrics (e.g., precision $\geq$ 95%), decision making with black-box LLMs remains unfavorable, due to their low numerical output cardinalities. This results in limited control over their operating points, preventing fine-grained adjustment of their decision making behavior. In this paper, we study using black-box LLMs as classifiers, focusing on efficiently improving their operational granularity without performance loss. Specifically, we first investigate the reasons behind their low-cardinality numerical outputs and show that they are biased towards generating rounded but informative verbalized probabilities. Then, we experiment with standard prompt engineering, uncertainty estimation and confidence elicitation techniques, and observe that they do not effectively improve operational granularity without sacrificing performance or increasing inference cost. Finally, we propose efficient approaches to significantly increase the number and diversity of available operating points. Our proposed approaches provide finer-grained operating points and achieve comparable to or better performance than the benchmark methods across 11 datasets and 3 LLMs.
comment: Under review at ICLR 2026. 36 pages, 17 figures
♻ ☆ Analyzing Similarity Metrics for Data Selection for Language Model Pretraining
Measuring similarity between training examples is critical for curating high-quality and diverse pretraining datasets for language models. However, similarity is typically computed with a generic off-the-shelf embedding model that has been trained for tasks such as retrieval. Whether these embedding-based similarity metrics are well-suited for pretraining data selection remains largely unexplored. In this paper, we propose a new framework to assess the suitability of a similarity metric specifically for data curation in language model pretraining applications. Our framework's first evaluation criterion captures how well distances reflect generalization in pretraining loss between different training examples. Next, we use each embedding model to guide a standard diversity-based data curation algorithm and measure its utility by pretraining a language model on the selected data and evaluating downstream task performance. Finally, we evaluate the capabilities of embeddings to distinguish between examples from different data sources. With these evaluations, we demonstrate that standard off-the-shelf embedding models are not well-suited for the pretraining data curation setting, underperforming even remarkably simple embeddings that are extracted from models trained on the same pretraining corpus. Our experiments are performed on the Pile, for pretraining a 1.7B parameter language model on 200B tokens. We believe our analysis and evaluation framework serves as a foundation for the future design of embeddings that specifically reason about similarity in pretraining datasets.
♻ ☆ Decision by Supervised Learning with Deep Ensembles: A Practical Framework for Robust Portfolio Optimization CIKM 2025
We propose Decision by Supervised Learning (DSL), a practical framework for robust portfolio optimization. DSL reframes portfolio construction as a supervised learning problem: models are trained to predict optimal portfolio weights, using cross-entropy loss and portfolios constructed by maximizing the Sharpe or Sortino ratio. To further enhance stability and reliability, DSL employs Deep Ensemble methods, substantially reducing variance in portfolio allocations. Through comprehensive backtesting across diverse market universes and neural architectures, shows superior performance compared to both traditional strategies and leading machine learning-based methods, including Prediction-Focused Learning and End-to-End Learning. We show that increasing the ensemble size leads to higher median returns and more stable risk-adjusted performance. The code is available at https://github.com/DSLwDE/DSLwDE.
comment: 8 pages, 3 figures, Accepted at CIKM 2025 FinAI Workshop
♻ ☆ Measuring the Measures: Discriminative Capacity of Representational Similarity Metrics Across Model Families
Representational similarity metrics are fundamental tools in neuroscience and AI, yet we lack systematic comparisons of their discriminative power across model families. We introduce a quantitative framework to evaluate representational similarity measures based on their ability to separate model families-across architectures (CNNs, Vision Transformers, Swin Transformers, ConvNeXt) and training regimes (supervised vs. self-supervised). Using three complementary separability measures-dprime from signal detection theory, silhouette coefficients and ROC-AUC, we systematically assess the discriminative capacity of commonly used metrics including RSA, linear predictivity, Procrustes, and soft matching. We show that separability systematically increases as metrics impose more stringent alignment constraints. Among mapping-based approaches, soft-matching achieves the highest separability, followed by Procrustes alignment and linear predictivity. Non-fitting methods such as RSA also yield strong separability across families. These results provide the first systematic comparison of similarity metrics through a separability lens, clarifying their relative sensitivity and guiding metric choice for large-scale model and brain comparisons.
♻ ☆ Harnessing Test-time Adaptation for NLU tasks Involving Dialects of English
Test-time domain adaptation (TTDA) is an excellent method which helps generalize models across domains, tasks, and distributions without the use of labeled datasets. Thus, TTDA is very useful in natural language processing (NLP) in the dialectal setting, since oftentimes, models are trained on Standard American English (SAE), evaluated on Indian English (IndE), Singaporean English (SingE), or Nigerian English (NgE), of which distribution differs significantly from the former. This is especially useful since dialectal datasets are scarce. In this paper, we explore one of the most famous TTDA techniques, SHOT, in dialectal NLP. We finetune and evaluate SHOT on different combinations of dialectal GLUE. Our findings show that SHOT is a viable technique when labeled datasets are unavailable. We also theoretically propose the concept of dialectal gap and show that it has a positive correlation with the effectiveness of SHOT. We also find that in many cases, finetuning on SAE yields higher performance than finetuning on dialectal data.
♻ ☆ Can We Validate Counterfactual Estimations in the Presence of General Network Interference?
Randomized experiments have become a cornerstone of evidence-based decision-making in contexts ranging from online platforms to public health. However, in experimental settings with network interference, a unit's treatment can influence outcomes of other units, challenging both causal effect estimation and its validation. Classic validation approaches fail as outcomes are only observable under a single treatment scenario and exhibit complex correlation patterns due to interference. To address these challenges, we introduce a framework that facilitates the use of machine learning tools for both estimation and validation in causal inference. Central to our approach is the new distribution-preserving network bootstrap, a theoretically-grounded technique that generates multiple statistically-valid subpopulations from a single experiment's data. This amplification of experimental samples enables our second contribution: a counterfactual cross-validation procedure. This procedure adapts the principles of model validation to the unique constraints of causal settings, providing a rigorous, data-driven method for selecting and evaluating estimators. We extend recent causal message-passing developments by incorporating heterogeneous unit-level characteristics and varying local interactions, ensuring reliable finite-sample performance through non-asymptotic analysis. Additionally, we develop and publicly release a comprehensive benchmark toolbox featuring diverse experimental environments, from networks of interacting AI agents to ride-sharing applications. These environments provide known ground truth values while maintaining realistic complexities, enabling systematic evaluation of causal inference methods. Extensive testing across these environments demonstrates our method's robustness to diverse forms of network interference.
♻ ☆ Learning from Mistakes: Enhancing Harmful Meme Detection via Misjudgment Risk Patterns
Internet memes have emerged as a popular multimodal medium, yet they are increasingly weaponized to convey harmful opinions through subtle rhetorical devices like irony and metaphor. Existing detection approaches, including MLLM-based techniques, struggle with these implicit expressions, leading to frequent misjudgments. This paper introduces PatMD, a novel approach that improves harmful meme detection by learning from and proactively mitigating these potential misjudgment risks. Our core idea is to move beyond superficial content-level matching and instead identify the underlying misjudgment risk patterns, proactively guiding the MLLMs to avoid known misjudgment pitfalls. We first construct a knowledge base where each meme is deconstructed into a misjudgment risk pattern explaining why it might be misjudged, either overlooking harmful undertones (false negative) or overinterpreting benign content (false positive). For a given target meme, PatMD retrieves relevant patterns and utilizes them to dynamically guide the MLLM's reasoning. Experiments on a benchmark of 6,626 memes across 5 harmful detection tasks show that PatMD outperforms state-of-the-art baselines, achieving an average of 8.30\% improvement in F1-score and 7.71\% improvement in accuracy, demonstrating strong generalizability and improved detection capability of harmful memes.
comment: The paper has something wrong and need to be corrected
♻ ☆ Fair Supervised Learning Through Constraints on Smooth Nonconvex Unfairness-Measure Surrogates
A new strategy for fair supervised machine learning is proposed. The main advantages of the proposed strategy as compared to others in the literature are as follows. (a) We introduce a new smooth nonconvex surrogate to approximate the Heaviside functions involved in discontinuous unfairness measures. The surrogate is based on smoothing methods from the optimization literature, and is new for the fair supervised learning literature. The surrogate is a tight approximation which ensures the trained prediction models are fair, as opposed to other (e.g., convex) surrogates that can fail to lead to a fair prediction model in practice. (b) Rather than rely on regularizers (that lead to optimization problems that are difficult to solve) and corresponding regularization parameters (that can be expensive to tune), we propose a strategy that employs hard constraints so that specific tolerances for unfairness can be enforced without the complications associated with the use of regularization. (c) Our proposed strategy readily allows for constraints on multiple (potentially conflicting) unfairness measures at the same time. Multiple measures can be considered with a regularization approach, but at the cost of having even more difficult optimization problems to solve and further expense for tuning. By contrast, through hard constraints, our strategy leads to optimization models that can be solved tractably with minimal tuning.
♻ ☆ Noise-Robustness Through Noise: A Framework combining Asymmetric LoRA with Poisoning MoE NeurIPS 2025
Current parameter-efficient fine-tuning methods for adapting pre-trained language models to downstream tasks are susceptible to interference from noisy data. Conventional noise-handling approaches either rely on laborious data pre-processing or employ model architecture modifications prone to error accumulation. In contrast to existing noise-process paradigms, we propose a noise-robust adaptation method via asymmetric LoRA poisoning experts (LoPE), a novel framework that enhances model robustness to noise only with generated noisy data. Drawing inspiration from the mixture-of-experts architecture, LoPE strategically integrates a dedicated poisoning expert in an asymmetric LoRA configuration. Through a two-stage paradigm, LoPE performs noise injection on the poisoning expert during fine-tuning to enhance its noise discrimination and processing ability. During inference, we selectively mask the dedicated poisoning expert to leverage purified knowledge acquired by normal experts for noise-robust output. Extensive experiments demonstrate that LoPE achieves strong performance and robustness purely through the low-cost noise injection, which completely eliminates the requirement of data cleaning.
comment: Accecpted to NeurIPS 2025
♻ ☆ TrajMamba: An Efficient and Semantic-rich Vehicle Trajectory Pre-training Model NeurIPS2025
Vehicle GPS trajectories record how vehicles move over time, storing valuable travel semantics, including movement patterns and travel purposes. Learning travel semantics effectively and efficiently is crucial for real-world applications of trajectory data, which is hindered by two major challenges. First, travel purposes are tied to the functions of the roads and points-of-interest (POIs) involved in a trip. Such information is encoded in textual addresses and descriptions and introduces heavy computational burden to modeling. Second, real-world trajectories often contain redundant points, which harm both computational efficiency and trajectory embedding quality. To address these challenges, we propose TrajMamba, a novel approach for efficient and semantically rich vehicle trajectory learning. TrajMamba introduces a Traj-Mamba Encoder that captures movement patterns by jointly modeling both GPS and road perspectives of trajectories, enabling robust representations of continuous travel behaviors. It also incorporates a Travel Purpose-aware Pre-training procedure to integrate travel purposes into the learned embeddings without introducing extra overhead to embedding calculation. To reduce redundancy in trajectories, TrajMamba features a Knowledge Distillation Pre-training scheme to identify key trajectory points through a learnable mask generator and obtain effective compressed trajectory embeddings. Extensive experiments on two real-world datasets and three downstream tasks show that TrajMamba outperforms state-of-the-art baselines in both efficiency and accuracy.
comment: Accepted by NeurIPS2025
♻ ☆ TPP-SD: Accelerating Transformer Point Process Sampling with Speculative Decoding
We propose TPP-SD, a novel approach that accelerates Transformer temporal point process (TPP) sampling by adapting speculative decoding (SD) techniques from language models. By identifying the structural similarities between thinning algorithms for TPPs and speculative decoding for language models, we develop an efficient sampling framework that leverages a smaller draft model to generate multiple candidate events, which are then verified by the larger target model in parallel. TPP-SD maintains the same output distribution as autoregressive sampling while achieving significant acceleration. Experiments on both synthetic and real datasets demonstrate that our approach produces samples from identical distributions as standard methods, but with 2-6$\times$ speedup. Our ablation studies analyze the impact of hyperparameters such as draft length and draft model size on sampling efficiency. TPP-SD bridges the gap between powerful Transformer TPP models and the practical need for rapid sequence sampling.
♻ ☆ In-Context Learning of Linear Dynamical Systems with Transformers: Approximation Bounds and Depth-Separation NeurIPS 2025
This paper investigates approximation-theoretic aspects of the in-context learning capability of the transformers in representing a family of noisy linear dynamical systems. Our first theoretical result establishes an upper bound on the approximation error of multi-layer transformers with respect to an $L^2$-testing loss uniformly defined across tasks. This result demonstrates that transformers with logarithmic depth can achieve error bounds comparable with those of the least-squares estimator. In contrast, our second result establishes a non-diminishing lower bound on the approximation error for a class of single-layer linear transformers, which suggests a depth-separation phenomenon for transformers in the in-context learning of dynamical systems. Moreover, this second result uncovers a critical distinction in the approximation power of single-layer linear transformers when learning from IID versus non-IID data.
comment: NeurIPS 2025 camera ready version. Slight change to title and author order from earlier version. Added experiments and acknowledgements section
♻ ☆ Understanding Differential Transformer Unchains Pretrained Self-Attentions NeurIPS 2025
Differential Transformer has recently gained significant attention for its impressive empirical performance, often attributed to its ability to perform noise canceled attention. However, precisely how differential attention achieves its empirical benefits remains poorly understood. Moreover, Differential Transformer architecture demands large-scale training from scratch, hindering utilization of open pretrained weights. In this work, we conduct an in-depth investigation of Differential Transformer, uncovering three key factors behind its success: (1) enhanced expressivity via negative attention, (2) reduced redundancy among attention heads, and (3) improved learning dynamics. Based on these findings, we propose DEX, a novel method to efficiently integrate the advantages of differential attention into pretrained language models. By reusing the softmax attention scores and adding a lightweight differential operation on the output value matrix, DEX effectively incorporates the key advantages of differential attention while remaining lightweight in both training and inference. Evaluations confirm that DEX substantially improves the pretrained LLMs across diverse benchmarks, achieving significant performance gains with minimal adaptation data (< 0.01%).
comment: NeurIPS 2025
♻ ☆ Diverse Influence Component Analysis: A Geometric Approach to Nonlinear Mixture Identifiability
Latent component identification from unknown nonlinear mixtures is a foundational challenge in machine learning, with applications in tasks such as disentangled representation learning and causal inference. Prior work in nonlinear independent component analysis (nICA) has shown that auxiliary signals -- such as weak supervision -- can support identifiability of conditionally independent latent components. More recent approaches explore structural assumptions, e.g., sparsity in the Jacobian of the mixing function, to relax such requirements. In this work, we introduce Diverse Influence Component Analysis (DICA), a framework that exploits the convex geometry of the mixing function's Jacobian. We propose a Jacobian Volume Maximization (J-VolMax) criterion, which enables latent component identification by encouraging diversity in their influence on the observed variables. Under reasonable conditions, this approach achieves identifiability without relying on auxiliary information, latent component independence, or Jacobian sparsity assumptions. These results extend the scope of identifiability analysis and offer a complementary perspective to existing methods.
comment: 30 pages, 3 figures
♻ ☆ Disaster Management in the Era of Agentic AI Systems: A Vision for Collective Human-Machine Intelligence for Augmented Resilience
The escalating frequency and severity of disasters routinely overwhelm traditional response capabilities, exposing critical vulnerability in disaster management. Current practices are hindered by fragmented data streams, siloed technologies, resource constraints, and the erosion of institutional memory, which collectively impede timely and effective decision making. This study introduces Disaster Copilot, a vision for a multi-agent artificial intelligence system designed to overcome these systemic challenges by unifying specialized AI tools within a collaborative framework. The proposed architecture utilizes a central orchestrator to coordinate diverse sub-agents, each specializing in critical domains such as predictive risk analytics, situational awareness, and impact assessment. By integrating multi-modal data, the system delivers a holistic, real-time operational picture and serve as the essential AI backbone required to advance Disaster Digital Twins from passive models to active, intelligent environments. Furthermore, it ensures functionality in resource-limited environments through on-device orchestration and incorporates mechanisms to capture institutional knowledge, mitigating the impact of staff turnover. We detail the system architecture and propose a three-phased roadmap emphasizing the parallel growth of technology, organizational capacity, and human-AI teaming. Disaster Copilot offers a transformative vision, fostering collective human-machine intelligence to build more adaptive, data-driven and resilient communities.
♻ ☆ Infinity Parser: Layout Aware Reinforcement Learning for Scanned Document Parsing
Automated parsing of scanned documents into richly structured, machine-readable formats remains a critical bottleneck in Document AI, as traditional multi-stage pipelines suffer from error propagation and limited adaptability to diverse layouts. We introduce layoutRL, an end-to-end reinforcement learning framework that trains models to be explicitly layout-aware by optimizing a composite reward of normalized edit distance, paragraph count accuracy, and reading order preservation. Leveraging our newly released dataset, Infinity-Doc-55K, which combines 55K high-fidelity synthetic scanned document parsing data with expert-filtered real-world documents, we instantiate layoutRL in a vision-language-model-based parser called Infinity-Parser. Evaluated on English and Chinese benchmarks for OCR, table and formula extraction, and reading order detection, Infinity-Parser achieves new state-of-the-art performance in both accuracy and structural fidelity, outpacing specialist pipelines and general-purpose vision-language models. We will publicly release our code and dataset to accelerate progress in robust document understanding.
comment: 16 pages, 12 figures
♻ ☆ A Generalized Bisimulation Metric of State Similarity between Markov Decision Processes: From Theoretical Propositions to Applications NeurIPS 2025
The bisimulation metric (BSM) is a powerful tool for computing state similarities within a Markov decision process (MDP), revealing that states closer in BSM have more similar optimal value functions. While BSM has been successfully utilized in reinforcement learning (RL) for tasks like state representation learning and policy exploration, its application to multiple-MDP scenarios, such as policy transfer, remains challenging. Prior work has attempted to generalize BSM to pairs of MDPs, but a lack of rigorous analysis of its mathematical properties has limited further theoretical progress. In this work, we formally establish a generalized bisimulation metric (GBSM) between pairs of MDPs, which is rigorously proven with the three fundamental properties: GBSM symmetry, inter-MDP triangle inequality, and the distance bound on identical state spaces. Leveraging these properties, we theoretically analyse policy transfer, state aggregation, and sampling-based estimation in MDPs, obtaining explicit bounds that are strictly tighter than those derived from the standard BSM. Additionally, GBSM provides a closed-form sample complexity for estimation, improving upon existing asymptotic results based on BSM. Numerical results validate our theoretical findings and demonstrate the effectiveness of GBSM in multi-MDP scenarios.
comment: This paper is accepted by the 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ MatPROV: A Provenance Graph Dataset of Material Synthesis Extracted from Scientific Literature
Synthesis procedures play a critical role in materials research, as they directly affect material properties. With data-driven approaches increasingly accelerating materials discovery, there is growing interest in extracting synthesis procedures from scientific literature as structured data. However, existing studies often rely on rigid, domain-specific schemas with predefined fields for structuring synthesis procedures or assume that synthesis procedures are linear sequences of operations, which limits their ability to capture the structural complexity of real-world procedures. To address these limitations, we adopt PROV-DM, an international standard for provenance information, which supports flexible, graph-based modeling of procedures. We present MatPROV, a dataset of PROV-DM-compliant synthesis procedures extracted from scientific literature using large language models. MatPROV captures structural complexities and causal relationships among materials, operations, and conditions through visually intuitive directed graphs. This representation enables machine-interpretable synthesis knowledge, opening opportunities for future research such as automated synthesis planning and optimization.
♻ ☆ Týr-the-Pruner: Structural Pruning LLMs via Global Sparsity Distribution Optimization
Structural pruning enhances hardware-agnostic inference efficiency for large language models (LLMs) yet often fails to maintain comparable performance. Local pruning performs efficient layer-by-layer compression but ignores global topology. Although global pruning aims to identify an optimal sparse model, intuitive methods typically adopt a two-stage paradigm that first evaluates substructure saliency and then applies global pruning, which ignores inter-structure dependencies and fails to achieve end-to-end optimization. To address these limitations, we propose T\'yr-the-Pruner, an efficient end-to-end search-based global structural pruning framework. This framework constructs a supernet by repeatedly applying local pruning across a range of sparsity ratios to each layer in an LLM, with the core goal of determining the optimal sparsity distribution under a target overall sparsity ratio. Concretely, we introduce an effective local pruning and an expectation error accumulation approach to improve supernet construction. Furthermore, we employ an iterative prune-and-search strategy with coarse-to-fine sparsity granularity to ensure efficient search convergence. Experimental results show that T\'yr-the-Pruner achieves state-of-the-art structural pruning, retaining 97% of the dense model's performance while removing a challenging 50% of Llama-3.1-70B's parameters. Code will be available at https://github.com/AMD-AGI/Tyr-the-Pruner.
♻ ☆ ProtoTS: Learning Hierarchical Prototypes for Explainable Time Series Forecasting
While deep learning has achieved impressive performance in time series forecasting, it becomes increasingly crucial to understand its decision-making process for building trust in high-stakes scenarios. Existing interpretable models often provide only local and partial explanations, lacking the capability to reveal how heterogeneous and interacting input variables jointly shape the overall temporal patterns in the forecast curve. We propose ProtoTS, a novel interpretable forecasting framework that achieves both high accuracy and transparent decision-making through modeling prototypical temporal patterns. ProtoTS computes instance-prototype similarity based on a denoised representation that preserves abundant heterogeneous information. The prototypes are organized hierarchically to capture global temporal patterns with coarse prototypes while capturing finer-grained local variations with detailed prototypes, enabling expert steering and multi-level interpretability. Experiments on multiple realistic benchmarks, including a newly released LOF dataset, show that ProtoTS not only exceeds existing methods in forecast accuracy but also delivers expert-steerable interpretations for better model understanding and decision support.
comment: Under submission
♻ ☆ Kernel-Based Nonparametric Tests For Shape Constraints
We develop a reproducing kernel Hilbert space (RKHS) framework for nonparametric mean-variance optimization and inference on shape constraints of the optimal rule. We derive statistical properties of the sample estimator and provide rigorous theoretical guarantees, such as asymptotic consistency, a functional central limit theorem, and a finite-sample deviation bound that matches the Monte Carlo rate up to regularization. Building on these findings, we introduce a joint Wald-type statistic to test for shape constraints over finite grids. The approach comes with an efficient computational procedure based on a pivoted Cholesky factorization, facilitating scalability to large datasets. Empirical tests suggest favorably of the proposed methodology.
comment: 32 pages, 1 figure
♻ ☆ Implicit Neural Compression of Point Clouds
Point clouds have gained prominence across numerous applications due to their ability to accurately represent 3D objects and scenes. However, efficiently compressing unstructured, high-precision point cloud data remains a significant challenge. In this paper, we propose NeRC$^3$, a novel point cloud compression framework that leverages implicit neural representations (INRs) to encode both geometry and attributes of dense point clouds. Our approach employs two coordinate-based neural networks: one maps spatial coordinates to voxel occupancy, while the other maps occupied voxels to their attributes, thereby implicitly representing the geometry and attributes of a voxelized point cloud. The encoder quantizes and compresses network parameters alongside auxiliary information required for reconstruction, while the decoder reconstructs the original point cloud by inputting voxel coordinates into the neural networks. Furthermore, we extend our method to dynamic point cloud compression through techniques that reduce temporal redundancy, including a 4D spatio-temporal representation termed 4D-NeRC$^3$. Experimental results validate the effectiveness of our approach: For static point clouds, NeRC$^3$ outperforms octree-based G-PCC standard and existing INR-based methods. For dynamic point clouds, 4D-NeRC$^3$ achieves superior geometry compression performance compared to the latest G-PCC and V-PCC standards, while matching state-of-the-art learning-based methods. It also demonstrates competitive performance in joint geometry and attribute compression.
♻ ☆ Nearly Dimension-Independent Convergence of Mean-Field Black-Box Variational Inference NeurIPS'25
We prove that, given a mean-field location-scale variational family, black-box variational inference (BBVI) with the reparametrization gradient converges at a rate that is nearly independent of explicit dimension dependence. Specifically, for a $d$-dimensional strongly log-concave and log-smooth target, the number of iterations for BBVI with a sub-Gaussian family to obtain a solution $\epsilon$-close to the global optimum has a dimension dependence of $\mathrm{O}(\log d)$. This is a significant improvement over the $\mathrm{O}(d)$ dependence of full-rank location-scale families. For heavy-tailed families, we prove a weaker $\mathrm{O}(d^{2/k})$ dependence, where $k$ is the number of finite moments of the family. Additionally, if the Hessian of the target log-density is constant, the complexity is free of any explicit dimension dependence. We also prove that our bound on the gradient variance, which is key to our result, cannot be improved using only spectral bounds on the Hessian of the target log-density.
comment: Accepted to NeurIPS'25
♻ ☆ Balancing Act: Prioritization Strategies for LLM-Designed Restless Bandit Rewards
LLMs are increasingly used to design reward functions based on human preferences in Reinforcement Learning (RL). We focus on LLM-designed rewards for Restless Multi-Armed Bandits, a framework for allocating limited resources among agents. In applications such as public health, this approach empowers grassroots health workers to tailor automated allocation decisions to community needs. In the presence of multiple agents, altering the reward function based on human preferences can impact subpopulations very differently, leading to complex tradeoffs and a multi-objective resource allocation problem. We are the first to present a principled method termed Social Choice Language Model for dealing with these tradeoffs for LLM-designed rewards for multiagent planners in general and restless bandits in particular. The novel part of our model is a transparent and configurable selection component, called an adjudicator, external to the LLM that controls complex tradeoffs via a user-selected social welfare function. Our experiments demonstrate that our model reliably selects more effective, aligned, and balanced reward functions compared to purely LLM-based approaches.
♻ ☆ Generalized Principal-Agent Problem with a Learning Agent ICLR 2025
In classic principal-agent problems such as Stackelberg games, contract design, and Bayesian persuasion, the agent best responds to the principal's committed strategy. We study repeated generalized principal-agent problems under the assumption that the principal does not have commitment power and the agent uses algorithms to learn to respond to the principal. We reduce this problem to a one-shot problem where the agent approximately best responds, and prove that: (1) If the agent uses contextual no-regret learning algorithms with regret $\mathrm{Reg}(T)$, then the principal can guarantee utility at least $U^* - \Theta\big(\sqrt{\tfrac{\mathrm{Reg}(T)}{T}}\big)$, where $U^*$ is the principal's optimal utility in the classic model with a best-responding agent. (2) If the agent uses contextual no-swap-regret learning algorithms with swap-regret $\mathrm{SReg}(T)$, then the principal cannot obtain utility more than $U^* + O(\frac{\mathrm{SReg(T)}}{T})$. (3) In addition, if the agent uses mean-based learning algorithms (which can be no-regret but not no-swap-regret), then the principal can sometimes do significantly better than $U^*$. These results not only refine previous works on Stackelberg games and contract design, but also lead to new results for Bayesian persuasion with a learning agent and all generalized principal-agent problems where the agent does not have private information.
comment: A short version of this work appeared on ICLR 2025 (spotlight). This full version has been accepted by Quantitative Economics
♻ ☆ DNN Modularization via Activation-Driven Training ICSE 2026
Deep Neural Networks (DNNs) tend to accrue technical debt and suffer from significant retraining costs when adapting to evolving requirements. Modularizing DNNs offers the promise of improving their reusability. Previous work has proposed techniques to decompose DNN models into modules both during and after training. However, these strategies yield several shortcomings, including significant weight overlaps and accuracy losses across modules, restricted focus on convolutional layers only, and added complexity and training time by introducing auxiliary masks to control modularity. In this work, we propose MODA, an activation-driven modular training approach. MODA promotes inherent modularity within a DNN model by directly regulating the activation outputs of its layers based on three modular objectives: intra-class affinity, inter-class dispersion, and compactness. MODA is evaluated using three well-known DNN models and five datasets with varying sizes. This evaluation indicates that, compared to the existing state-of-the-art, using MODA yields several advantages: (1) MODA accomplishes modularization with 22% less training time; (2) the resultant modules generated by MODA comprise up to 24x fewer weights and 37x less weight overlap while (3) preserving the original model's accuracy without additional fine-tuning; in module replacement scenarios, (4) MODA improves the accuracy of a target class by 12% on average while ensuring minimal impact on the accuracy of other classes.
comment: Accepted at ICSE 2026 (Research Track)
♻ ☆ Conformal Prediction for Time-series Forecasting with Change Points
Conformal prediction has been explored as a general and efficient way to provide uncertainty quantification for time series. However, current methods struggle to handle time series data with change points - sudden shifts in the underlying data-generating process. In this paper, we propose a novel Conformal Prediction for Time-series with Change points (CPTC) algorithm, addressing this gap by integrating a model to predict the underlying state with online conformal prediction to model uncertainties in non-stationary time series. We prove CPTC's validity and improved adaptivity in the time series setting under minimum assumptions, and demonstrate CPTC's practical effectiveness on 6 synthetic and real-world datasets, showing improved validity and adaptivity compared to state-of-the-art baselines.
♻ ☆ LLMBridge: Reducing Costs to Access LLMs in a Prompt-Centric Internet
Today's Internet infrastructure is centered around content retrieval over HTTP, with middleboxes (e.g., HTTP proxies) playing a crucial role in performance, security, and cost-effectiveness. We envision a future where Internet communication will be dominated by "prompts" sent to generative AI models. For this, we will need proxies that provide similar functions to HTTP proxies (e.g., caching, routing, compression) while dealing with unique challenges and opportunities of prompt-based communication. As a first step toward supporting prompt-based communication, we present LLMBridge, an LLM proxy designed for cost-conscious users, such as those in developing regions and education (e.g., students, instructors). LLMBridge supports three key optimizations: model selection (routing prompts to the most suitable model), context management (intelligently reducing the amount of context), and semantic caching (serving prompts using local models and vector databases). These optimizations introduce trade-offs between cost and quality, which applications navigate through a high-level, bidirectional interface. As case studies, we deploy LLMBridge in two cost-sensitive settings: a WhatsApp-based Q&A service and a university classroom environment. The WhatsApp service has been live for over twelve months, serving 100+ users and handling more than 14.7K requests. In parallel, we exposed LLMBridge to students across three computer science courses over a semester, where it supported diverse LLM-powered applications - such as reasoning agents and chatbots - and handled an average of 500 requests per day. We report on deployment experiences across both settings and use the collected workloads to benchmark the effectiveness of various cost-optimization strategies, analyzing their trade-offs in cost, latency, and response quality.
♻ ☆ Feature-driven reinforcement learning for photovoltaic in continuous intraday trading
Photovoltaic (PV) operators face substantial uncertainty in generation and short-term electricity prices. Continuous intraday markets enable producers to adjust their positions in real time, potentially improving revenues and reducing imbalance costs. We propose a feature-driven reinforcement learning (RL) approach for PV intraday trading that integrates data-driven features into the state and learns bidding policies in a sequential decision framework. The problem is cast as a Markov Decision Process with a reward that balances trading profit and imbalance penalties and is solved with Proximal Policy Optimization (PPO) using a predominantly linear, interpretable policy. Trained on historical market data and evaluated out-of-sample, the strategy consistently outperforms benchmark baselines across diverse scenarios. Extensive validation shows rapid convergence, real-time inference, and transparent decision rules. Learned weights highlight the central role of market microstructure and historical features. Taken together, these results indicate that feature-driven RL offers a practical, data-efficient, and operationally deployable pathway for active intraday participation by PV producers.
♻ ☆ VisDiff: SDF-Guided Polygon Generation for Visibility Reconstruction and Recognition
The ability to capture rich representations of combinatorial structures has enabled the application of machine learning to tasks such as analysis and generation of floorplans, terrains, images, and animations. Recent work has primarily focused on understanding structures with well-defined features, neighborhoods, or underlying distance metrics, while those lacking such characteristics remain largely unstudied. Examples of these combinatorial structures can be found in polygons, where a small change in the vertex locations causes a significant rearrangement of the combinatorial structure, expressed as a visibility or triangulation graphs. Current representation learning approaches fail to capture structures without well-defined features and distance metrics. In this paper, we study the open problem of Visibility Reconstruction: Given a visibility graph $G$, construct a polygon $P$ whose visibility graph is $G$. We introduce VisDiff, a novel diffusion-based approach to generate polygon $P$ from the input visibility graph $G$. The main novelty of our approach is that, rather than generating the polygon's vertex set directly, we first estimate the signed distance function (SDF) associated with the polygon. The SDF is then used to extract the vertex location representing the final polygon. We show that going through the SDF allows VisDiff to learn the visibility relationship much more effectively than generating vertex locations directly. In order to train VisDiff, we create a carefully curated dataset. We use this dataset to benchmark our method and achieve 26% improvement in F1-Score over standard methods as well as state of the art approaches.
♻ ☆ Joint Hierarchical Representation Learning of Samples and Features via Informed Tree-Wasserstein Distance
High-dimensional data often exhibit hierarchical structures in both modes: samples and features. Yet, most existing approaches for hierarchical representation learning consider only one mode at a time. In this work, we propose an unsupervised method for jointly learning hierarchical representations of samples and features via Tree-Wasserstein Distance (TWD). Our method alternates between the two data modes. It first constructs a tree for one mode, then computes a TWD for the other mode based on that tree, and finally uses the resulting TWD to build the second mode's tree. By repeatedly alternating through these steps, the method gradually refines both trees and the corresponding TWDs, capturing meaningful hierarchical representations of the data. We provide a theoretical analysis showing that our method converges. We show that our method can be integrated into hyperbolic graph convolutional networks as a pre-processing technique, improving performance in link prediction and node classification tasks. In addition, our method outperforms baselines in sparse approximation and unsupervised Wasserstein distance learning tasks on word-document and single-cell RNA-sequencing datasets.
♻ ☆ DR-VIDAL -- Doubly Robust Variational Information-theoretic Deep Adversarial Learning for Counterfactual Prediction and Treatment Effect Estimation on Real World Data
Determining causal effects of interventions onto outcomes from real-world, observational (non-randomized) data, e.g., treatment repurposing using electronic health records, is challenging due to underlying bias. Causal deep learning has improved over traditional techniques for estimating individualized treatment effects (ITE). We present the Doubly Robust Variational Information-theoretic Deep Adversarial Learning (DR-VIDAL), a novel generative framework that combines two joint models of treatment and outcome, ensuring an unbiased ITE estimation even when one of the two is misspecified. DR-VIDAL integrates: (i) a variational autoencoder (VAE) to factorize confounders into latent variables according to causal assumptions; (ii) an information-theoretic generative adversarial network (Info-GAN) to generate counterfactuals; (iii) a doubly robust block incorporating treatment propensities for outcome predictions. On synthetic and real-world datasets (Infant Health and Development Program, Twin Birth Registry, and National Supported Work Program), DR-VIDAL achieves better performance than other non-generative and generative methods. In conclusion, DR-VIDAL uniquely fuses causal assumptions, VAE, Info-GAN, and doubly robustness into a comprehensive, performant framework. Code is available at: https://github.com/Shantanu48114860/DR-VIDAL-AMIA-22 under MIT license.
comment: AMIA Annual Symposium, 2022 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10148269/)
♻ ☆ Finite Sample Identification of Partially Observed Bilinear Dynamical Systems
We consider the problem of learning a realization of a partially observed bilinear dynamical system (BLDS) from noisy input-output data. Given a single trajectory of input-output samples, we provide a finite time analysis for learning the system's Markov-like parameters, from which a balanced realization of the bilinear system can be obtained. Our bilinear system identification algorithm learns the system's Markov-like parameters by regressing the outputs to highly correlated, nonlinear, and heavy-tailed covariates. Moreover, the stability of BLDS depends on the sequence of inputs used to excite the system. These properties, unique to partially observed bilinear dynamical systems, pose significant challenges to the analysis of our algorithm for learning the unknown dynamics. We address these challenges and provide high probability error bounds on our identification algorithm under a uniform stability assumption. Our analysis provides insights into system theoretic quantities that affect learning accuracy and sample complexity. Lastly, we perform numerical experiments with synthetic data to reinforce these insights.
♻ ☆ AmorLIP: Efficient Language-Image Pretraining via Amortization
Contrastive Language-Image Pretraining (CLIP) has demonstrated strong zero-shot performance across diverse downstream text-image tasks. Existing CLIP methods typically optimize a contrastive objective using negative samples drawn from each minibatch. To achieve robust representation learning, these methods require extremely large batch sizes and escalate computational demands to hundreds or even thousands of GPUs. Prior approaches to mitigate this issue often compromise downstream performance, prolong training duration, or face scalability challenges with very large datasets. To overcome these limitations, we propose AmorLIP, an efficient CLIP pretraining framework that amortizes expensive computations involved in contrastive learning through lightweight neural networks, which substantially improves training efficiency and performance. Leveraging insights from a spectral factorization of energy-based models, we introduce novel amortization objectives along with practical techniques to improve training stability. Extensive experiments across 38 downstream tasks demonstrate the superior zero-shot classification and retrieval capabilities of AmorLIP, consistently outperforming standard CLIP baselines with substantial relative improvements of up to 12.24%.
♻ ☆ Antislop: A Comprehensive Framework for Identifying and Eliminating Repetitive Patterns in Language Models
Widespread LLM adoption has introduced characteristic repetitive phraseology, termed "slop," which degrades output quality and makes AI-generated text immediately recognizable. We present Antislop, a comprehensive framework providing tools to both detect and eliminate these overused patterns. Our approach combines three innovations: (1) The Antislop Sampler, which uses backtracking to suppress unwanted strings at inference time without destroying vocabulary; (2) An automated pipeline that profiles model-specific slop against human baselines and generates training data; (3) Final Token Preference Optimization (FTPO), a novel fine-tuning method that operates on individual tokens, surgically adjusting logits wherever a banned pattern has appeared in an inference trace. We demonstrate that some slop patterns appear over 1,000x more frequently in LLM output than human text. The Antislop Sampler successfully suppresses 8,000+ patterns while maintaining quality, whereas token banning becomes unusable at just 2,000. Most importantly, FTPO achieves 90% slop reduction while maintaining or improving performance in cross-domain evals including GSM8K, MMLU, and creative writing tasks. In contrast, DPO suffers significant degradation in writing quality and lexical diversity despite achieving weaker suppression. We release all code and results under MIT license: https://github.com/sam-paech/auto-antislop.
comment: 11 pages + appendices, 16 figures
♻ ☆ Fast MRI for All: Bridging Access Gaps by Training without Raw Data NeurIPS
Physics-driven deep learning (PD-DL) approaches have become popular for improved reconstruction of fast magnetic resonance imaging (MRI) scans. Though PD-DL offers higher acceleration rates than existing clinical fast MRI techniques, their use has been limited outside specialized MRI centers. A key challenge is generalization to rare pathologies or different populations, noted in multiple studies, with fine-tuning on target populations suggested for improvement. However, current approaches for PD-DL training require access to raw k-space measurements, which is typically only available at specialized MRI centers that have research agreements for such data access. This is especially an issue for rural and under-resourced areas, where commercial MRI scanners only provide access to a final reconstructed image. To tackle these challenges, we propose Compressibility-inspired Unsupervised Learning via Parallel Imaging Fidelity (CUPID) for high-quality PD-DL training using only routine clinical reconstructed images exported from an MRI scanner. CUPID evaluates output quality with a compressibility-based approach while ensuring that the output stays consistent with the clinical parallel imaging reconstruction through well-designed perturbations. Our results show CUPID achieves similar quality to established PD-DL training that requires k-space data while outperforming compressed sensing (CS) and diffusion-based generative methods. We further demonstrate its effectiveness in a zero-shot training setup for retrospectively and prospectively sub-sampled acquisitions, attesting to its minimal training burden. As an approach that radically deviates from existing strategies, CUPID presents an opportunity to provide broader access to fast MRI for remote and rural populations in an attempt to reduce the obstacles associated with this expensive imaging modality.
comment: Neural Information Processing Systems (NeurIPS), 2025 (Spotlight)
♻ ☆ Rank-One Modified Value Iteration
In this paper, we provide a novel algorithm for solving planning and learning problems of Markov decision processes. The proposed algorithm follows a policy iteration-type update by using a rank-one approximation of the transition probability matrix in the policy evaluation step. This rank-one approximation is closely related to the stationary distribution of the corresponding transition probability matrix, which is approximated using the power method. We provide theoretical guarantees for the convergence of the proposed algorithm to optimal (action-)value function with the same rate and computational complexity as the value iteration algorithm in the planning problem and as the Q-learning algorithm in the learning problem. Through our extensive numerical simulations, however, we show that the proposed algorithm consistently outperforms first-order algorithms and their accelerated versions for both planning and learning problems.
comment: 24 pages,9 figures, conference
♻ ☆ Concept-Guided Interpretability via Neural Chunking
Neural networks are often described as black boxes, reflecting the significant challenge of understanding their internal workings and interactions. We propose a different perspective that challenges the prevailing view: rather than being inscrutable, neural networks exhibit patterns in their raw population activity that mirror regularities in the training data. We refer to this as the Reflection Hypothesis and provide evidence for this phenomenon in both simple recurrent neural networks (RNNs) and complex large language models (LLMs). Building on this insight, we propose to leverage our cognitive tendency of chunking to segment high-dimensional neural population dynamics into interpretable units that reflect underlying concepts. We propose three methods to extract recurring chunks on a neural population level, complementing each other based on label availability and neural data dimensionality. Discrete sequence chunking (DSC) learns a dictionary of entities in a lower-dimensional neural space; population averaging (PA) extracts recurring entities that correspond to known labels; and unsupervised chunk discovery (UCD) can be used when labels are absent. We demonstrate the effectiveness of these methods in extracting concept-encoding entities agnostic to model architectures. These concepts can be both concrete (words), abstract (POS tags), or structural (narrative schema). Additionally, we show that extracted chunks play a causal role in network behavior, as grafting them leads to controlled and predictable changes in the model's behavior. Our work points to a new direction for interpretability, one that harnesses both cognitive principles and the structure of naturalistic data to reveal the hidden computations of complex learning systems, gradually transforming them from black boxes into systems we can begin to understand.
♻ ☆ Sub-optimality of the Separation Principle for Quadratic Control from Bilinear Observations
We consider the problem of controlling a linear dynamical system from bilinear observations with minimal quadratic cost. Despite the similarity of this problem to standard linear quadratic Gaussian (LQG) control, we show that when the observation model is bilinear, neither does the Separation Principle hold, nor is the optimal controller affine in the estimated state. Moreover, the cost-to-go is non-convex in the control input. Hence, finding an analytical expression for the optimal feedback controller is difficult in general. Under certain settings, we show that the standard LQG controller locally maximizes the cost instead of minimizing it. Furthermore, the optimal controllers (derived analytically) are not unique and are nonlinear in the estimated state. We also introduce a notion of input-dependent observability and derive conditions under which the Kalman filter covariance remains bounded. We illustrate our theoretical results through numerical experiments in multiple synthetic settings.
♻ ☆ Improving planning and MBRL with temporally-extended actions NeurIPS 2025
Continuous time systems are often modeled using discrete time dynamics but this requires a small simulation step to maintain accuracy. In turn, this requires a large planning horizon which leads to computationally demanding planning problems and reduced performance. Previous work in model-free reinforcement learning has partially addressed this issue using action repeats where a policy is learned to determine a discrete action duration. Instead we propose to control the continuous decision timescale directly by using temporally-extended actions and letting the planner treat the duration of the action as an additional optimization variable along with the standard action variables. This additional structure has multiple advantages. It speeds up simulation time of trajectories and, importantly, it allows for deep horizon search in terms of primitive actions while using a shallow search depth in the planner. In addition, in the model-based reinforcement learning (MBRL) setting, it reduces compounding errors from model learning and improves training time for models. We show that this idea is effective and that the range for action durations can be automatically selected using a multi-armed bandit formulation and integrated into the MBRL framework. An extensive experimental evaluation both in planning and in MBRL, shows that our approach yields faster planning, better solutions, and that it enables solutions to problems that are not solved in the standard formulation.
comment: NeurIPS 2025. For project website, see https://pecey.github.io/MBRL-with-TEA/
♻ ☆ Kolmogorov-Arnold Attention: Is Learnable Attention Better For Vision Transformers?
Kolmogorov-Arnold networks (KANs) are a remarkable innovation that consists of learnable activation functions, with the potential to capture more complex relationships from data. Presently, KANs are deployed by replacing multilayer perceptrons (MLPs) in deep networks, including advanced architectures such as vision Transformers (ViTs). This work asks whether KAN could learn token interactions. In this paper, we design the first learnable attention called Kolmogorov-Arnold Attention (KArAt) for ViTs that can operate on any basis, ranging from Fourier, Wavelets, Splines, to Rational Functions. However, learnable activations in the attention cause a memory explosion. To remedy this, we propose a modular version of KArAt that uses a low-rank approximation. By adopting the Fourier basis, Fourier-KArAt and its variants, in some cases, outperform their traditional softmax counterparts, or show comparable performance on CIFAR-10, CIFAR-100, and ImageNet-1K. We also deploy Fourier KArAt to ConViT and Swin-Transformer, and use it in detection and segmentation with ViT-Det. We dissect the performance of these architectures by analyzing their loss landscapes, weight distributions, optimizer paths, attention visualizations, and transferability to other datasets. KArAt's learnable activation yields a better attention score across all ViTs, indicating improved token-to-token interactions and contributing to enhanced inference. Still, its generalizability does not scale with larger ViTs. However, many factors, including the present computing interface, affect the relative performance of parameter- and memory-heavy KArAts. We note that the goal of this paper is not to produce efficient attention or challenge the traditional activations; by designing KArAt, we are the first to show that attention can be learned and encourage researchers to explore KArAt in conjunction with more advanced architectures.
comment: Preprint, Appendix included
♻ ☆ AgentTTS: Large Language Model Agent for Test-time Compute-optimal Scaling Strategy in Complex Tasks NeurIPS 2025
Test-time scaling (TTS) enhances the performance of large language models (LLMs) by allocating additional compute resources during inference. However, existing research primarily investigates TTS in single-stage tasks; while many real-world problems are multi-stage complex tasks, composed of a sequence of heterogeneous subtasks with each subtask requires LLM of specific capability. Therefore, we study a novel problem: the test-time compute-optimal scaling in multi-stage complex tasks, aiming to select suitable models and allocate budgets per subtask to maximize overall performance. TTS in multi-stage tasks introduces two fundamental challenges: (i) The combinatorial search space of model and budget allocations, combined with the high cost of inference, makes brute-force search impractical. (ii) The optimal model and budget allocations across subtasks are interdependent, increasing the complexity of the compute-optimal search. To address this gap, we conduct extensive pilot experiments on four tasks across six datasets, deriving three empirical insights characterizing the behavior of LLMs in multi-stage complex tasks. Informed by these insights, we propose AgentTTS, an LLM-agent-based framework that autonomously searches for compute-optimal allocations through iterative feedback-driven interactions with the execution environment. Experimental results demonstrate that AgentTTS significantly outperforms traditional and other LLM-based baselines in search efficiency, and shows improved robustness to varying training set sizes and enhanced interpretability.
comment: Accepted by NeurIPS 2025
♻ ☆ Unfolding Generative Flows with Koopman Operators: Fast and Interpretable Sampling
Continuous Normalizing Flows (CNFs) enable elegant generative modeling but remain bottlenecked by slow sampling: producing a single sample requires solving a nonlinear ODE with hundreds of function evaluations. Recent approaches such as Rectified Flow and OT-CFM accelerate sampling by straightening trajectories, yet the learned dynamics remain nonlinear black boxes, limiting both efficiency and interpretability. We propose a fundamentally different perspective: globally linearizing flow dynamics via Koopman theory. By lifting Conditional Flow Matching (CFM) into a higher-dimensional Koopman space, we represent its evolution with a single linear operator. This yields two key benefits. First, sampling becomes one-step and parallelizable, computed in closed form via the matrix exponential. Second, the Koopman operator provides a spectral blueprint of generation, enabling novel interpretability through its eigenvalues and modes. We derive a practical, simulation-free training objective that enforces infinitesimal consistency with the teacher's dynamics and show that this alignment preserves fidelity along the full generative path, distinguishing our method from boundary-only distillation. Empirically, our approach achieves competitive sample quality with dramatic speedups, while uniquely enabling spectral analysis of generative flows.
♻ ☆ ALHD: A Large-Scale and Multigenre Benchmark Dataset for Arabic LLM-Generated Text Detection
We introduce ALHD, the first large-scale comprehensive Arabic dataset explicitly designed to distinguish between human- and LLM-generated texts. ALHD spans three genres (news, social media, reviews), covering both MSA and dialectal Arabic, and contains over 400K balanced samples generated by three leading LLMs and originated from multiple human sources, which enables studying generalizability in Arabic LLM-genearted text detection. We provide rigorous preprocessing, rich annotations, and standardized balanced splits to support reproducibility. In addition, we present, analyze and discuss benchmark experiments using our new dataset, in turn identifying gaps and proposing future research directions. Benchmarking across traditional classifiers, BERT-based models, and LLMs (zero-shot and few-shot) demonstrates that fine-tuned BERT models achieve competitive performance, outperforming LLM-based models. Results are however not always consistent, as we observe challenges when generalizing across genres; indeed, models struggle to generalize when they need to deal with unseen patterns in cross-genre settings, and these challenges are particularly prominent when dealing with news articles, where LLM-generated texts resemble human texts in style, which opens up avenues for future research. ALHD establishes a foundation for research related to Arabic LLM-detection and mitigating risks of misinformation, academic dishonesty, and cyber threats.
comment: 47 pages, 15 figures. Dataset available at Zenodo: https://doi.org/10.5281/zenodo.17249602 Codebase available at GitHub: https://github.com/alikhairallah/ALHD-Benchmarking
♻ ☆ Discrete Neural Flow Samplers with Locally Equivariant Transformer
Sampling from unnormalised discrete distributions is a fundamental problem across various domains. While Markov chain Monte Carlo offers a principled approach, it often suffers from slow mixing and poor convergence. In this paper, we propose Discrete Neural Flow Samplers (DNFS), a trainable and efficient framework for discrete sampling. DNFS learns the rate matrix of a continuous-time Markov chain such that the resulting dynamics satisfy the Kolmogorov equation. As this objective involves the intractable partition function, we then employ control variates to reduce the variance of its Monte Carlo estimation, leading to a coordinate descent learning algorithm. To further facilitate computational efficiency, we propose locally equivaraint Transformer, a novel parameterisation of the rate matrix that significantly improves training efficiency while preserving powerful network expressiveness. Empirically, we demonstrate the efficacy of DNFS in a wide range of applications, including sampling from unnormalised distributions, training discrete energy-based models, and solving combinatorial optimisation problems.
♻ ☆ Conformal Prediction for Signal Temporal Logic Inference
Signal Temporal Logic (STL) inference seeks to extract human-interpretable rules from time-series data, but existing methods lack formal confidence guarantees for the inferred rules. Conformal prediction (CP) is a technique that can provide statistical correctness guarantees, but is typically applied as a post-training wrapper without improving model learning. Instead, we introduce an end-to-end differentiable CP framework for STL inference that enhances both reliability and interpretability of the resulting formulas. We introduce a robustness-based nonconformity score, embed a smooth CP layer directly into training, and employ a new loss function that simultaneously optimizes inference accuracy and CP prediction sets with a single term. Following training, an exact CP procedure delivers statistical guarantees for the learned STL formulas. Experiments on benchmark time-series tasks show that our approach reduces uncertainty in predictions (i.e., it achieves high coverage while reducing prediction set size), and improves accuracy (i.e., the number of misclassifications when using a fixed threshold) over state-of-the-art baselines.
♻ ☆ FP-IRL: Fokker-Planck Inverse Reinforcement Learning -- A Physics-Constrained Approach to Markov Decision Processes
Inverse reinforcement learning (IRL) is a powerful paradigm for uncovering the incentive structure that drives agent behavior, by inferring an unknown reward function from observed trajectories within a Markov decision process (MDP). However, most existing IRL methods require access to the transition function, either prescribed or estimated \textit{a priori}, which poses significant challenges when the underlying dynamics are unknown, unobservable, or not easily sampled. We propose Fokker--Planck inverse reinforcement learning (FP-IRL), a novel physics-constrained IRL framework tailored for systems governed by Fokker--Planck (FP) dynamics. FP-IRL simultaneously infers both the reward and transition functions directly from trajectory data, without requiring access to sampled transitions. Our method leverages a conjectured equivalence between MDPs and the FP equation, linking reward maximization in MDPs with free energy minimization in FP dynamics. This connection enables inference of the potential function using our inference approach of variational system identification, from which the full set of MDP components -- reward, transition, and policy -- can be recovered using analytic expressions. We demonstrate the effectiveness of FP-IRL through experiments on synthetic benchmarks and a modified version of the Mountain Car problem. Our results show that FP-IRL achieves accurate recovery of agent incentives while preserving computational efficiency and physical interpretability.
♻ ☆ Rebalancing with Calibrated Sub-classes (RCS): A Statistical Fusion-based Framework for Robust Imbalanced Classification across Modalities
Class imbalance, where certain classes have insufficient data, poses a critical challenge for robust classification, often biasing models toward majority classes. Distribution calibration offers a promising avenue to address this by estimating more accurate class distributions. In this work, we propose Rebalancing with Calibrated Sub-classes (RCS) - a novel distribution calibration framework for robust imbalanced classification. RCS aims to fuse statistical information from the majority and intermediate class distributions via a weighted mixture of Gaussian components to estimate minority class parameters more accurately. An encoder-decoder network is trained to preserve structural relationships in imbalanced datasets and prevent feature disentanglement. Post-training, encoder-extracted feature vectors are leveraged to generate synthetic samples guided by the calibrated distributions. This fusion-based calibration effectively mitigates overgeneralization by incorporating neighborhood distribution information rather than relying solely on majority-class statistics. Extensive experiments on diverse image, text, and tabular datasets demonstrate that RCS consistently outperforms several baseline and state-of-the-art methods, highlighting its effectiveness and broad applicability in addressing real-world imbalanced classification challenges.
♻ ☆ Spatio-Temporal Graph Convolutional Networks for EV Charging Demand Forecasting Using Real-World Multi-Modal Data Integration
Transportation remains a major contributor to greenhouse gas emissions, highlighting the urgency of transitioning toward sustainable alternatives such as electric vehicles (EVs). Yet, uneven spatial distribution and irregular utilization of charging infrastructure create challenges for both power grid stability and investment planning. This study introduces TW-GCN, a spatio-temporal forecasting framework that combines Graph Convolutional Networks with temporal architectures to predict EV charging demand in Tennessee, United States (U.S.). We utilize real-world traffic flows, weather conditions, and proprietary data provided by one of the largest EV infrastructure company in the U.S. to capture both spatial dependencies and temporal dynamics. Extensive experiments across varying lag horizons, clustering strategies, and sequence lengths reveal that mid-horizon (3-hour) forecasts achieve the best balance between responsiveness and stability, with 1DCNN consistently outperforming other temporal models. Regional analysis shows disparities in predictive accuracy across East, Middle, and West Tennessee, reflecting how station density, population, and local demand variability shape model performance. The proposed TW-GCN framework advances the integration of data-driven intelligence into EV infrastructure planning, supporting both sustainable mobility transitions and resilient grid management.
♻ ☆ Dual-Weighted Reinforcement Learning for Generative Preference Modeling
Reinforcement learning (RL) has recently proven effective at scaling chain-of-thought (CoT) reasoning in large language models on tasks with verifiable answers. However, extending RL to more general non-verifiable tasks, typically in the format of human preference pairs, remains both challenging and underexplored. In this work, we propose Dual-Weighted Reinforcement Learning (DWRL), a new framework for preference modeling that integrates CoT reasoning with the Bradley-Terry (BT) model via a dual-weighted RL objective that preserves preference-modeling inductive bias. DWRL approximates the maximum-likelihood objective of the BT model with two complementary weights: an instance-wise misalignment weight, which emphasizes under-trained pairs misaligned with human preference, and a group-wise (self-normalized) conditional preference score, which promotes promising thoughts. In this paper, we apply DWRL to preference modeling by training generative preference models (GPMs) to first generate a thought and then predict the human preference score. Across multiple benchmarks and model scales (Llama3 and Qwen2.5), DWRL consistently outperforms both GPM baselines and scalar models, while producing coherent, interpretable thoughts. In summary, our results position DWRL as a general framework for reasoning-enhanced preference learning beyond verifiable tasks.
♻ ☆ Benchmarking Large Language Models with Integer Sequence Generation Tasks
We present a novel benchmark designed to rigorously evaluate the capabilities of large language models (LLMs) in mathematical reasoning and algorithmic code synthesis tasks. The benchmark comprises integer sequence generation tasks sourced from the Online Encyclopedia of Integer Sequences (OEIS), testing LLMs' abilities to accurately and efficiently generate Python code to compute these sequences without using lookup tables. Our comprehensive evaluation includes leading models from OpenAI (including the specialized reasoning-focused o-series), Anthropic, Meta, and Google across a carefully selected set of 1000 OEIS sequences categorized as ``easy'' or ``hard.'' Half of these sequences are classical sequences from the early days of OEIS and half were recently added to avoid contamination with the models' training data. To prevent models from exploiting memorized sequence values, we introduce an automated cheating detection mechanism that flags usage of lookup tables, validated by comparison with human expert evaluations. Experimental results demonstrate that reasoning-specialized models (o3, o3-mini, o4-mini from OpenAI, and Gemini 2.5-pro from Google) achieve substantial improvements in accuracy over non-reasoning models, especially on more complex tasks. However, overall model performance on the hard sequences is poor, highlighting persistent challenges in algorithmic reasoning. Our benchmark provides important insights into the strengths and limitations of state-of-the-art LLMs, particularly emphasizing the necessity for further advancements to reliably solve complex mathematical reasoning tasks algorithmically.
♻ ☆ SolverLLM: Leveraging Test-Time Scaling for Optimization Problem via LLM-Guided Search NeurIPS 2025
Large Language Models (LLMs) offer promising capabilities for tackling complex reasoning tasks, including optimization problems. However, existing methods either rely on prompt engineering, which leads to poor generalization across problem types, or require costly supervised training. We introduce SolverLLM, a training-free framework that leverages test-time scaling to solve diverse optimization problems. Rather than solving directly, SolverLLM generates mathematical formulations and translates them into solver-ready code, guided by a novel Monte Carlo Tree Search (MCTS) strategy. To enhance the search process, we modify classical MCTS with (1) dynamic expansion for adaptive formulation generation, (2) prompt backpropagation to guide exploration via outcome-driven feedback, and (3) uncertainty backpropagation to incorporate reward reliability into decision-making. Experiments on six standard benchmark datasets demonstrate that SolverLLM outperforms both prompt-based and learning-based baselines, achieving strong generalization without additional training.
comment: NeurIPS 2025
♻ ☆ Disentanglement Beyond Static vs. Dynamic: A Benchmark and Evaluation Framework for Multi-Factor Sequential Representations
Learning disentangled representations in sequential data is a key goal in deep learning, with broad applications in vision, audio, and time series. While real-world data involves multiple interacting semantic factors over time, prior work has mostly focused on simpler two-factor static and dynamic settings, primarily because such settings make data collection easier, thereby overlooking the inherently multi-factor nature of real-world data. We introduce the first standardized benchmark for evaluating multi-factor sequential disentanglement across six diverse datasets spanning video, audio, and time series. Our benchmark includes modular tools for dataset integration, model development, and evaluation metrics tailored to multi-factor analysis. We additionally propose a post-hoc Latent Exploration Stage to automatically align latent dimensions with semantic factors, and introduce a Koopman-inspired model that achieves state-of-the-art results. Moreover, we show that Vision-Language Models can automate dataset annotation and serve as zero-shot disentanglement evaluators, removing the need for manual labels and human intervention. Together, these contributions provide a robust and scalable foundation for advancing multi-factor sequential disentanglement.
♻ ☆ Efficient Tensor Completion Algorithms for Highly Oscillatory Operators
This paper presents low-complexity tensor completion algorithms and their efficient implementation to reconstruct highly oscillatory operators discretized as $n\times n$ matrices. The underlying tensor decomposition is based on the reshaping of the input matrix and its butterfly decomposition into an order $O (\log n)$ tensor. The reshaping of the input matrix into a tensor allows for representation of the butterfly decomposition as a tensor decomposition with dense tensors. This leads to efficient utilization of the existing software infrastructure for dense and sparse tensor computations. We propose two tensor completion algorithms in the butterfly format, using alternating least squares and gradient-based optimization, as well as a novel strategy that uses low-rank matrix completion to efficiently generate an initial guess for the proposed algorithms. To demonstrate the efficiency and applicability of our proposed algorithms, we perform three numerical experiments using simulated oscillatory operators in seismic applications. In these experiments, we use $O (n \log n)$ observed entries in the input matrix and demonstrate an $O(n\log^3 n)$ computational cost of the proposed algorithms, leading to a speedup of orders of magnitudes per iteration for large matrices compared to the low-rank matrix and quantized tensor-train completion. Moreover, the proposed butterfly completion algorithms, equipped with the novel initial guess generation strategy, achieve reconstruction errors that are smaller by an order of magnitude, enabling accurate recovery of the underlying structure compared to the state-of-the-art completion algorithms.
Multimedia 9
☆ PIRA: Pan-CDN Intra-video Resource Adaptation for Short Video Streaming
In large scale short video platforms, CDN resource selection plays a critical role in maintaining Quality of Experience (QoE) while controlling escalating traffic costs. To better understand this phenomenon, we conduct in the wild network measurements during video playback in a production short video system. The results reveal that CDNs delivering higher average QoE often come at greater financial cost, yet their connection quality fluctuates even within a single video underscoring a fundamental and dynamic trade off between QoE and cost. However, the problem of sustaining high QoE under cost constraints remains insufficiently investigated in the context of CDN selection for short video streaming. To address this, we propose PIRA, a dynamic resource selection algorithm that optimizes QoE and cost in real time during video playback. PIRA formally integrating QoE and cost by a mathematical model, and introduce a intra video control theoretic CDN resource selection approach which can balance QoE and cost under network dynamics. To reduce the computation overheads, PIRA employs state space pruning and adaptive parameter adjustment to efficiently solve the high dimensional optimization problem. In large scale production experiments involving 450,000 users over two weeks, PIRA outperforms the production baseline, achieving a 2.1% reduction in start up delay, 15.2% shorter rebuffering time, and 10% lower average unit traffic cost, demonstrating its effectiveness in balancing user experience and financial cost at scale.
☆ Noise-Conditioned Mixture-of-Experts Framework for Robust Speaker Verification
Robust speaker verification under noisy conditions remains an open challenge. Conventional deep learning methods learn a robust unified speaker representation space against diverse background noise and achieve significant improvement. In contrast, this paper presents a noise-conditioned mixture-ofexperts framework that decomposes the feature space into specialized noise-aware subspaces for speaker verification. Specifically, we propose a noise-conditioned expert routing mechanism, a universal model based expert specialization strategy, and an SNR-decaying curriculum learning protocol, collectively improving model robustness and generalization under diverse noise conditions. The proposed method can automatically route inputs to expert networks based on noise information derived from the inputs, where each expert targets distinct noise characteristics while preserving speaker identity information. Comprehensive experiments demonstrate consistent superiority over baselines, confirming that explicit noise-dependent feature modeling significantly enhances robustness without sacrificing verification accuracy.
☆ DeLoad: Demand-Driven Short-Video Preloading with Scalable Watch-Time Estimation
Short video streaming has become a dominant paradigm in digital media, characterized by rapid swiping interactions and diverse media content. A key technical challenge is designing an effective preloading strategy that dynamically selects and prioritizes download tasks from an evolving playlist, balancing Quality of Experience (QoE) and bandwidth efficiency under practical commercial constraints. However, real world analysis reveals critical limitations of existing approaches: (1) insufficient adaptation of download task sizes to dynamic conditions, and (2) watch time prediction models that are difficult to deploy reliably at scale. In this paper, we propose DeLoad, a novel preloading framework that addresses these issues by introducing dynamic task sizing and a practical, multi dimensional watch time estimation method. Additionally, a Deep Reinforcement Learning (DRL) enhanced agent is trained to optimize the download range decisions adaptively. Extensive evaluations conducted on an offline testing platform, leveraging massive real world network data, demonstrate that DeLoad achieves significant improvements in QoE metrics (34.4% to 87.4% gain). Furthermore, after deployment on a large scale commercial short video platform, DeLoad has increased overall user watch time by 0.09% while simultaneously reducing rebuffering events and 3.76% bandwidth consumption.
☆ How2Compress: Scalable and Efficient Edge Video Analytics via Adaptive Granular Video Compression
With the rapid proliferation of the Internet of Things, video analytics has become a cornerstone application in wireless multimedia sensor networks. To support such applications under bandwidth constraints, learning-based adaptive quantization for video compression have demonstrated strong potential in reducing bitrate while maintaining analytical accuracy. However, existing frameworks often fail to fully exploit the fine-grained quality control enabled by modern blockbased video codecs, leaving significant compression efficiency untapped. In this paper, we present How2Compress, a simple yet effective framework designed to enhance video compression efficiency through precise, fine-grained quality control at the macroblock level. How2Compress is a plug-and-play module and can be seamlessly integrated into any existing edge video analytics pipelines. We implement How2Compress on the H.264 codec and evaluate its performance across diverse real-world scenarios. Experimental results show that How2Compress achieves up to $50.4\%$ bitrate savings and outperforms baselines by up to $3.01\times$ without compromising accuracy, demonstrating its practical effectiveness and efficiency. Code is available at https://github.com/wyhallenwu/how2compress and a reproducible docker image at https://hub.docker.com/r/wuyuheng/how2compress.
comment: MM 2025
☆ EVER: Edge-Assisted Auto-Verification for Mobile MR-Aided Operation
Mixed Reality (MR)-aided operation overlays digital objects on the physical world to provide a more immersive and intuitive operation process. A primary challenge is the precise and fast auto-verification of whether the user follows MR guidance by comparing frames before and after each operation. The pre-operation frame includes virtual guiding objects, while the post-operation frame contains physical counterparts. Existing approaches fall short of accounting for the discrepancies between physical and virtual objects due to imperfect 3D modeling or lighting estimation. In this paper, we propose EVER: an edge-assisted auto-verification system for mobile MR-aided operations. Unlike traditional frame-based similarity comparisons, EVER leverages the segmentation model and rendering pipeline adapted to the unique attributes of frames with physical pieces and those with their virtual counterparts; it adopts a threshold-based strategy using Intersection over Union (IoU) metrics for accurate auto-verification. To ensure fast auto-verification and low energy consumption, EVER offloads compute-intensive tasks to an edge server. Through comprehensive evaluations of public datasets and custom datasets with practical implementation, EVER achieves over 90% verification accuracy within 100 milliseconds (significantly faster than average human reaction time of approximately 273 milliseconds), while consuming only minimal additional computational resources and energy compared to a system without auto-verification.
☆ Foveated Compression for Immersive Telepresence Visualization IEEE
Immersive televisualization is important both for telepresence and teleoperation, but resolution and fidelity are often limited by communication bandwidth constraints. We propose a lightweight method for foveated compression of immersive televisualization video streams that can be easily integrated with common video codecs, reducing the required bandwidth if eye tracking data is available. Specifically, we show how to spatially adjust the Quantization Parameter of modern block-based video codecs in a adaptive way based on eye tracking information. The foveal region is transmitted with high fidelity while quality is reduced in the peripheral region, saving bandwidth. We integrate our method with the NimbRo avatar system, which won the ANA Avatar XPRIZE competition. Our experiments show that bandwidth can be reduced to a third without sacrificing immersion. We analyze transmission fidelity with qualitative examples and report quantitative results.
comment: Presented at IEEE TELEPRESENCE 2025, Leiden, Netherlands
♻ ☆ LongInsightBench: A Comprehensive Benchmark for Evaluating Omni-Modal Models on Human-Centric Long-Video Understanding
We introduce \textbf{LongInsightBench}, the first benchmark designed to assess models' ability to understand long videos, with a focus on human language, viewpoints, actions, and other contextual elements, while integrating \textbf{visual, audio, and text} modalities. Our benchmark excels in three key areas: \textbf{a) Long-Duration, Information-Dense Videos:} We carefully select approximately 1,000 videos from open-source datasets FineVideo based on duration limit and the information density of both visual and audio modalities, focusing on content like lectures, interviews, and vlogs, which contain rich language elements. \textbf{b) Diverse and Challenging Task Scenarios:} We have designed six challenging task scenarios, including both Intra-Event and Inter-Event Tasks. \textbf{c) Rigorous and Comprehensive Quality Assurance Pipelines:} We have developed a three-step, semi-automated data quality assurance pipeline to ensure the difficulty and validity of the synthesized questions and answer options. Based on LongInsightBench, we designed a series of experiments. Experimental results shows that Omni-modal models(OLMs) still face challenge in tasks requiring precise temporal localization (T-Loc) and long-range causal inference (CE-Caus). Extended experiments reveal the information loss and processing bias in multi-modal fusion of OLMs. Our dataset and code is available at https://anonymous.4open.science/r/LongInsightBench-910F/.
comment: Submitted to ARR Rolling Review
♻ ☆ M3ST-DTI: A multi-task learning model for drug-target interactions based on multi-modal features and multi-stage alignment IEEE
Accurate prediction of drug-target interactions (DTI) is pivotal in drug discovery. However, existing approaches often fail to capture deep intra-modal feature interactions or achieve effective cross-modal alignment, limiting predictive performance and generalization. To address these challenges, we propose M3ST-DTI, a multi-task learning model that enables multi-stage integration and alignment of multi modal features for DTI prediction. M3ST-DTI incorporates three types of features-textual, structural, and functional and enhances intra-modal representations using self-attention mechanisms and a hybrid pooling graph attention module. For early-stage feature alignment and fusion, the model in tegrates MCA with Gram loss as a structural constraint. In the later stage, a BCA module captures fine-grained interactions between drugs and targets within each modality, while a deep orthogonal fusion module mitigates feature redundancy.Extensive evaluations on benchmark datasets demonstrate that M3ST-DTI consistently outperforms state-of-the art methods across diverse metrics
comment: This paper accepted by IEEE BIBM 2025
♻ ☆ SongBloom: Coherent Song Generation via Interleaved Autoregressive Sketching and Diffusion Refinement NeurIPS2025
Generating music with coherent structure, harmonious instrumental and vocal elements remains a significant challenge in song generation. Existing language models and diffusion-based methods often struggle to balance global coherence with local fidelity, resulting in outputs that lack musicality or suffer from incoherent progression and mismatched lyrics. This paper introduces $\textbf{SongBloom}$, a novel framework for full-length song generation that leverages an interleaved paradigm of autoregressive sketching and diffusion-based refinement. SongBloom employs an autoregressive diffusion model that combines the high fidelity of diffusion models with the scalability of language models. Specifically, it gradually extends a musical sketch from short to long and refines the details from coarse to fine-grained. The interleaved generation paradigm effectively integrates prior semantic and acoustic context to guide the generation process. Experimental results demonstrate that SongBloom outperforms existing methods across both subjective and objective metrics and achieves performance comparable to the state-of-the-art commercial music generation platforms. Audio samples are available on our demo page: https://cypress-yang.github.io/SongBloom_demo. The code and model weights have been released on https://github.com/Cypress-Yang/SongBloom .
comment: Accepted by NeurIPS2025
Computer Vision and Pattern Recognition 200
☆ ConsistEdit: Highly Consistent and Precise Training-free Visual Editing SIGGRAPH
Recent advances in training-free attention control methods have enabled flexible and efficient text-guided editing capabilities for existing generation models. However, current approaches struggle to simultaneously deliver strong editing strength while preserving consistency with the source. This limitation becomes particularly critical in multi-round and video editing, where visual errors can accumulate over time. Moreover, most existing methods enforce global consistency, which limits their ability to modify individual attributes such as texture while preserving others, thereby hindering fine-grained editing. Recently, the architectural shift from U-Net to MM-DiT has brought significant improvements in generative performance and introduced a novel mechanism for integrating text and vision modalities. These advancements pave the way for overcoming challenges that previous methods failed to resolve. Through an in-depth analysis of MM-DiT, we identify three key insights into its attention mechanisms. Building on these, we propose ConsistEdit, a novel attention control method specifically tailored for MM-DiT. ConsistEdit incorporates vision-only attention control, mask-guided pre-attention fusion, and differentiated manipulation of the query, key, and value tokens to produce consistent, prompt-aligned edits. Extensive experiments demonstrate that ConsistEdit achieves state-of-the-art performance across a wide range of image and video editing tasks, including both structure-consistent and structure-inconsistent scenarios. Unlike prior methods, it is the first approach to perform editing across all inference steps and attention layers without handcraft, significantly enhancing reliability and consistency, which enables robust multi-round and multi-region editing. Furthermore, it supports progressive adjustment of structural consistency, enabling finer control.
comment: SIGGRAPH Asia 2025
☆ Glyph: Scaling Context Windows via Visual-Text Compression
Large language models (LLMs) increasingly rely on long-context modeling for tasks such as document understanding, code analysis, and multi-step reasoning. However, scaling context windows to the million-token level brings prohibitive computational and memory costs, limiting the practicality of long-context LLMs. In this work, we take a different perspective-visual context scaling-to tackle this challenge. Instead of extending token-based sequences, we propose Glyph, a framework that renders long texts into images and processes them with vision-language models (VLMs). This approach substantially compresses textual input while preserving semantic information, and we further design an LLM-driven genetic search to identify optimal visual rendering configurations for balancing accuracy and compression. Through extensive experiments, we demonstrate that our method achieves 3-4x token compression while maintaining accuracy comparable to leading LLMs such as Qwen3-8B on various long-context benchmarks. This compression also leads to around 4x faster prefilling and decoding, and approximately 2x faster SFT training. Furthermore, under extreme compression, a 128K-context VLM could scale to handle 1M-token-level text tasks. In addition, the rendered text data benefits real-world multimodal tasks, such as document understanding. Our code and model are released at https://github.com/thu-coai/Glyph.
☆ UltraCUA: A Foundation Model for Computer Use Agents with Hybrid Action
Multimodal agents for computer use rely exclusively on primitive actions (click, type, scroll) that require accurate visual grounding and lengthy execution chains, leading to cascading failures and performance bottlenecks. While other agents leverage rich programmatic interfaces (APIs, MCP servers, tools), computer-use agents (CUAs) remain isolated from these capabilities. We present UltraCUA, a foundation model that bridges this gap through hybrid action -- seamlessly integrating GUI primitives with high-level programmatic tool calls. To achieve this, our approach comprises four key components: (1) an automated pipeline that scales programmatic tools from software documentation, open-source repositories, and code generation; (2) a synthetic data engine producing over 17,000 verifiable tasks spanning real-world computer-use scenarios; (3) a large-scale high-quality hybrid action trajectory collection with both low-level GUI actions and high-level programmatic tool calls; and (4) a two-stage training pipeline combining supervised fine-tuning with online reinforcement learning, enabling strategic alternation between low-level and high-level actions. Experiments with our 7B and 32B models demonstrate substantial improvements over state-of-the-art agents. On OSWorld, UltraCUA models achieve an average 22% relative improvement over base models, while being 11% faster in terms of steps. Out-of-domain evaluation on WindowsAgentArena shows our model reaches 21.7% success rate, outperforming baselines trained on Windows data. The hybrid action mechanism proves critical, reducing error propagation while maintaining execution efficiency.
☆ Botany-Bot: Digital Twin Monitoring of Occluded and Underleaf Plant Structures with Gaussian Splats IROS 2025
Commercial plant phenotyping systems using fixed cameras cannot perceive many plant details due to leaf occlusion. In this paper, we present Botany-Bot, a system for building detailed "annotated digital twins" of living plants using two stereo cameras, a digital turntable inside a lightbox, an industrial robot arm, and 3D segmentated Gaussian Splat models. We also present robot algorithms for manipulating leaves to take high-resolution indexable images of occluded details such as stem buds and the underside/topside of leaves. Results from experiments suggest that Botany-Bot can segment leaves with 90.8% accuracy, detect leaves with 86.2% accuracy, lift/push leaves with 77.9% accuracy, and take detailed overside/underside images with 77.3% accuracy. Code, videos, and datasets are available at https://berkeleyautomation.github.io/Botany-Bot/.
comment: 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025)
☆ SparseVILA: Decoupling Visual Sparsity for Efficient VLM Inference
Vision Language Models (VLMs) have rapidly advanced in integrating visual and textual reasoning, powering applications across high-resolution image understanding, long-video analysis, and multi-turn conversation. However, their scalability remains limited by the growing number of visual tokens that dominate inference latency. We present SparseVILA, a new paradigm for efficient VLM inference that decouples visual sparsity across the prefilling and decoding stages. SparseVILA distributes sparsity across stages by pruning redundant visual tokens during prefill and retrieving only query-relevant tokens during decoding. This decoupled design matches leading prefill pruning methods while preserving multi-turn fidelity by retaining most of the visual cache so that query-aware tokens can be retrieved at each conversation round. Built on an AWQ-optimized inference pipeline, SparseVILA achieves up to 4.0 times faster prefilling, 2.5 times faster decoding, and an overall 2.6 times end-to-end speedup on long-context video tasks -- while improving accuracy on document-understanding and reasoning tasks. By decoupling query-agnostic pruning and query-aware retrieval, SparseVILA establishes a new direction for efficient multimodal inference, offering a training-free, architecture-agnostic framework for accelerating large VLMs without sacrificing capability.
☆ Towards Explainable Skin Cancer Classification: A Dual-Network Attention Model with Lesion Segmentation and Clinical Metadata Fusion
Skin cancer is a life-threatening disease where early detection significantly improves patient outcomes. Automated diagnosis from dermoscopic images is challenging due to high intra-class variability and subtle inter-class differences. Many deep learning models operate as "black boxes," limiting clinical trust. In this work, we propose a dual-encoder attention-based framework that leverages both segmented lesions and clinical metadata to enhance skin lesion classification in terms of both accuracy and interpretability. A novel Deep-UNet architecture with Dual Attention Gates (DAG) and Atrous Spatial Pyramid Pooling (ASPP) is first employed to segment lesions. The classification stage uses two DenseNet201 encoders-one on the original image and another on the segmented lesion whose features are fused via multi-head cross-attention. This dual-input design guides the model to focus on salient pathological regions. In addition, a transformer-based module incorporates patient metadata (age, sex, lesion site) into the prediction. We evaluate our approach on the HAM10000 dataset and the ISIC 2018 and 2019 challenges. The proposed method achieves state-of-the-art segmentation performance and significantly improves classification accuracy and average AUC compared to baseline models. To validate our model's reliability, we use Gradient-weighted Class Activation Mapping (Grad-CAM) to generate heatmaps. These visualizations confirm that our model's predictions are based on the lesion area, unlike models that rely on spurious background features. These results demonstrate that integrating precise lesion segmentation and clinical data with attention-based fusion leads to a more accurate and interpretable skin cancer classification model.
comment: 15 pages, 7 Figures, 3 Tables
☆ Seeing but Not Believing: Probing the Disconnect Between Visual Attention and Answer Correctness in VLMs
Vision-Language Models (VLMs) achieve strong results on multimodal tasks such as visual question answering, yet they can still fail even when the correct visual evidence is present. In this work, we systematically investigate whether these failures arise from not perceiving the evidence or from not leveraging it effectively. By examining layer-wise attention dynamics, we find that shallow layers focus primarily on text, while deeper layers sparsely but reliably attend to localized evidence regions. Surprisingly, VLMs often perceive the visual evidence when outputting incorrect answers, a phenomenon we term ``seeing but not believing'' that widely exists in major VLM families. Building on this, we introduce an inference-time intervention that highlights deep-layer evidence regions through selective attention-based masking. It requires no training and consistently improves accuracy across multiple families, including LLaVA, Qwen, Gemma, and InternVL. These results show that VLMs encode reliable evidence internally but under-utilize it, making such signals explicit can bridge the gap between perception and reasoning, advancing the diagnostic understanding and reliability of VLMs.
comment: 21 pages, 10 figures, 6 tables
☆ VERA-V: Variational Inference Framework for Jailbreaking Vision-Language Models
Vision-Language Models (VLMs) extend large language models with visual reasoning, but their multimodal design also introduces new, underexplored vulnerabilities. Existing multimodal red-teaming methods largely rely on brittle templates, focus on single-attack settings, and expose only a narrow subset of vulnerabilities. To address these limitations, we introduce VERA-V, a variational inference framework that recasts multimodal jailbreak discovery as learning a joint posterior distribution over paired text-image prompts. This probabilistic view enables the generation of stealthy, coupled adversarial inputs that bypass model guardrails. We train a lightweight attacker to approximate the posterior, allowing efficient sampling of diverse jailbreaks and providing distributional insights into vulnerabilities. VERA-V further integrates three complementary strategies: (i) typography-based text prompts that embed harmful cues, (ii) diffusion-based image synthesis that introduces adversarial signals, and (iii) structured distractors to fragment VLM attention. Experiments on HarmBench and HADES benchmarks show that VERA-V consistently outperforms state-of-the-art baselines on both open-source and frontier VLMs, achieving up to 53.75% higher attack success rate (ASR) over the best baseline on GPT-4o.
comment: 18 pages, 7 Figures,
☆ Joint Multi-Condition Representation Modelling via Matrix Factorisation for Visual Place Recognition
We address multi-reference visual place recognition (VPR), where reference sets captured under varying conditions are used to improve localisation performance. While deep learning with large-scale training improves robustness, increasing data diversity and model complexity incur extensive computational cost during training and deployment. Descriptor-level fusion via voting or aggregation avoids training, but often targets multi-sensor setups or relies on heuristics with limited gains under appearance and viewpoint change. We propose a training-free, descriptor-agnostic approach that jointly models places using multiple reference descriptors via matrix decomposition into basis representations, enabling projection-based residual matching. We also introduce SotonMV, a structured benchmark for multi-viewpoint VPR. On multi-appearance data, our method improves Recall@1 by up to ~18% over single-reference and outperforms multi-reference baselines across appearance and viewpoint changes, with gains of ~5% on unstructured data, demonstrating strong generalisation while remaining lightweight.
comment: 13 pages
☆ Can Image-To-Video Models Simulate Pedestrian Dynamics? ICML 2025
Recent high-performing image-to-video (I2V) models based on variants of the diffusion transformer (DiT) have displayed remarkable inherent world-modeling capabilities by virtue of training on large scale video datasets. We investigate whether these models can generate realistic pedestrian movement patterns in crowded public scenes. Our framework conditions I2V models on keyframes extracted from pedestrian trajectory benchmarks, then evaluates their trajectory prediction performance using quantitative measures of pedestrian dynamics.
comment: Appeared in the ICML 2025 Workshop on Building Physically Plausible World Models, July 2025, https://physical-world-modeling.github.io/
☆ Signature Forgery Detection: Improving Cross-Dataset Generalization
Automated signature verification is a critical biometric technique used in banking, identity authentication, and legal documentation. Despite the notable progress achieved by deep learning methods, most approaches in offline signature verification still struggle to generalize across datasets, as variations in handwriting styles and acquisition protocols often degrade performance. This study investigates feature learning strategies for signature forgery detection, focusing on improving cross-dataset generalization -- that is, model robustness when trained on one dataset and tested on another. Using three public benchmarks -- CEDAR, ICDAR, and GPDS Synthetic -- two experimental pipelines were developed: one based on raw signature images and another employing a preprocessing method referred to as shell preprocessing. Several behavioral patterns were identified and analyzed; however, no definitive superiority between the two approaches was established. The results show that the raw-image model achieved higher performance across benchmarks, while the shell-based model demonstrated promising potential for future refinement toward robust, cross-domain signature verification.
comment: Undergraduate thesis (preprint)---submitted to Escola Polit\'ecnica, Universidade Federal do Rio de Janeiro (POLI/UFRJ). The final version will include official signatures and defense approval
☆ MT-Video-Bench: A Holistic Video Understanding Benchmark for Evaluating Multimodal LLMs in Multi-Turn Dialogues
The recent development of Multimodal Large Language Models (MLLMs) has significantly advanced AI's ability to understand visual modalities. However, existing evaluation benchmarks remain limited to single-turn question answering, overlooking the complexity of multi-turn dialogues in real-world scenarios. To bridge this gap, we introduce MT-Video-Bench, a holistic video understanding benchmark for evaluating MLLMs in multi-turn dialogues. Specifically, our MT-Video-Bench mainly assesses six core competencies that focus on perceptivity and interactivity, encompassing 987 meticulously curated multi-turn dialogues from diverse domains. These capabilities are rigorously aligned with real-world applications, such as interactive sports analysis and multi-turn video-based intelligent tutoring. With MT-Video-Bench, we extensively evaluate various state-of-the-art open-source and closed-source MLLMs, revealing their significant performance discrepancies and limitations in handling multi-turn video dialogues. The benchmark will be publicly available to foster future research.
comment: Project Website: https://github.com/NJU-LINK/MT-Video-Bench
☆ Raindrop GS: A Benchmark for 3D Gaussian Splatting under Raindrop Conditions
3D Gaussian Splatting (3DGS) under raindrop conditions suffers from severe occlusions and optical distortions caused by raindrop contamination on the camera lens, substantially degrading reconstruction quality. Existing benchmarks typically evaluate 3DGS using synthetic raindrop images with known camera poses (constrained images), assuming ideal conditions. However, in real-world scenarios, raindrops often interfere with accurate camera pose estimation and point cloud initialization. Moreover, a significant domain gap between synthetic and real raindrops further impairs generalization. To tackle these issues, we introduce RaindropGS, a comprehensive benchmark designed to evaluate the full 3DGS pipeline-from unconstrained, raindrop-corrupted images to clear 3DGS reconstructions. Specifically, the whole benchmark pipeline consists of three parts: data preparation, data processing, and raindrop-aware 3DGS evaluation, including types of raindrop interference, camera pose estimation and point cloud initialization, single image rain removal comparison, and 3D Gaussian training comparison. First, we collect a real-world raindrop reconstruction dataset, in which each scene contains three aligned image sets: raindrop-focused, background-focused, and rain-free ground truth, enabling a comprehensive evaluation of reconstruction quality under different focus conditions. Through comprehensive experiments and analyses, we reveal critical insights into the performance limitations of existing 3DGS methods on unconstrained raindrop images and the varying impact of different pipeline components: the impact of camera focus position on 3DGS reconstruction performance, and the interference caused by inaccurate pose and point cloud initialization on reconstruction. These insights establish clear directions for developing more robust 3DGS methods under raindrop conditions.
☆ Automatic Classification of Circulating Blood Cell Clusters based on Multi-channel Flow Cytometry Imaging
Circulating blood cell clusters (CCCs) containing red blood cells (RBCs), white blood cells(WBCs), and platelets are significant biomarkers linked to conditions like thrombosis, infection, and inflammation. Flow cytometry, paired with fluorescence staining, is commonly used to analyze these cell clusters, revealing cell morphology and protein profiles. While computational approaches based on machine learning have advanced the automatic analysis of single-cell flow cytometry images, there is a lack of effort to build tools to automatically analyze images containing CCCs. Unlike single cells, cell clusters often exhibit irregular shapes and sizes. In addition, these cell clusters often consist of heterogeneous cell types, which require multi-channel staining to identify the specific cell types within the clusters. This study introduces a new computational framework for analyzing CCC images and identifying cell types within clusters. Our framework uses a two-step analysis strategy. First, it categorizes images into cell cluster and non-cluster groups by fine-tuning the You Only Look Once(YOLOv11) model, which outperforms traditional convolutional neural networks (CNNs), Vision Transformers (ViT). Then, it identifies cell types by overlaying cluster contours with regions from multi-channel fluorescence stains, enhancing accuracy despite cell debris and staining artifacts. This approach achieved over 95% accuracy in both cluster classification and phenotype identification. In summary, our automated framework effectively analyzes CCC images from flow cytometry, leveraging both bright-field and fluorescence data. Initially tested on blood cells, it holds potential for broader applications, such as analyzing immune and tumor cell clusters, supporting cellular research across various diseases.
☆ Improving Cross-Patient Generalization in Parkinson's Disease Detection through Chunk-Based Analysis of Hand-Drawn Patterns
Parkinson's disease (PD) is a neurodegenerative disease affecting about 1% of people over the age of 60, causing motor impairments that impede hand coordination activities such as writing and drawing. Many approaches have tried to support early detection of Parkinson's disease based on hand-drawn images; however, we identified two major limitations in the related works: (1) the lack of sufficient datasets, (2) the robustness when dealing with unseen patient data. In this paper, we propose a new approach to detect Parkinson's disease that consists of two stages: The first stage classifies based on their drawing type(circle, meander, spiral), and the second stage extracts the required features from the images and detects Parkinson's disease. We overcame the previous two limitations by applying a chunking strategy where we divide each image into 2x2 chunks. Each chunk is processed separately when extracting features and recognizing Parkinson's disease indicators. To make the final classification, an ensemble method is used to merge the decisions made from each chunk. Our evaluation shows that our proposed approach outperforms the top performing state-of-the-art approaches, in particular on unseen patients. On the NewHandPD dataset our approach, it achieved 97.08% accuracy for seen patients and 94.91% for unseen patients, our proposed approach maintained a gap of only 2.17 percentage points, compared to the 4.76-point drop observed in prior work.
comment: 19 pages, 2 figures, 9 tables
☆ Elastic ViTs from Pretrained Models without Retraining NeurIPS 2025
Vision foundation models achieve remarkable performance but are only available in a limited set of pre-determined sizes, forcing sub-optimal deployment choices under real-world constraints. We introduce SnapViT: Single-shot network approximation for pruned Vision Transformers, a new post-pretraining structured pruning method that enables elastic inference across a continuum of compute budgets. Our approach efficiently combines gradient information with cross-network structure correlations, approximated via an evolutionary algorithm, does not require labeled data, generalizes to models without a classification head, and is retraining-free. Experiments on DINO, SigLIPv2, DeIT, and AugReg models demonstrate superior performance over state-of-the-art methods across various sparsities, requiring less than five minutes on a single A100 GPU to generate elastic models that can be adjusted to any computational budget. Our key contributions include an efficient pruning strategy for pretrained Vision Transformers, a novel evolutionary approximation of Hessian off-diagonal structures, and a self-supervised importance scoring mechanism that maintains strong performance without requiring retraining or labels. Code and pruned models are available at: https://elastic.ashita.nl/
comment: Accepted at NeurIPS 2025
☆ GAS: Improving Discretization of Diffusion ODEs via Generalized Adversarial Solver
While diffusion models achieve state-of-the-art generation quality, they still suffer from computationally expensive sampling. Recent works address this issue with gradient-based optimization methods that distill a few-step ODE diffusion solver from the full sampling process, reducing the number of function evaluations from dozens to just a few. However, these approaches often rely on intricate training techniques and do not explicitly focus on preserving fine-grained details. In this paper, we introduce the Generalized Solver: a simple parameterization of the ODE sampler that does not require additional training tricks and improves quality over existing approaches. We further combine the original distillation loss with adversarial training, which mitigates artifacts and enhances detail fidelity. We call the resulting method the Generalized Adversarial Solver and demonstrate its superior performance compared to existing solver training methods under similar resource constraints. Code is available at https://github.com/3145tttt/GAS.
☆ Towards 3D Objectness Learning in an Open World NeurIPS 2025
Recent advancements in 3D object detection and novel category detection have made significant progress, yet research on learning generalized 3D objectness remains insufficient. In this paper, we delve into learning open-world 3D objectness, which focuses on detecting all objects in a 3D scene, including novel objects unseen during training. Traditional closed-set 3D detectors struggle to generalize to open-world scenarios, while directly incorporating 3D open-vocabulary models for open-world ability struggles with vocabulary expansion and semantic overlap. To achieve generalized 3D object discovery, We propose OP3Det, a class-agnostic Open-World Prompt-free 3D Detector to detect any objects within 3D scenes without relying on hand-crafted text prompts. We introduce the strong generalization and zero-shot capabilities of 2D foundation models, utilizing both 2D semantic priors and 3D geometric priors for class-agnostic proposals to broaden 3D object discovery. Then, by integrating complementary information from point cloud and RGB image in the cross-modal mixture of experts, OP3Det dynamically routes uni-modal and multi-modal features to learn generalized 3D objectness. Extensive experiments demonstrate the extraordinary performance of OP3Det, which significantly surpasses existing open-world 3D detectors by up to 16.0% in AR and achieves a 13.5% improvement compared to closed-world 3D detectors.
comment: Accepted by NeurIPS 2025
☆ Multilingual Text-to-Image Person Retrieval via Bidirectional Relation Reasoning and Aligning IEEE
Text-to-image person retrieval (TIPR) aims to identify the target person using textual descriptions, facing challenge in modality heterogeneity. Prior works have attempted to address it by developing cross-modal global or local alignment strategies. However, global methods typically overlook fine-grained cross-modal differences, whereas local methods require prior information to explore explicit part alignments. Additionally, current methods are English-centric, restricting their application in multilingual contexts. To alleviate these issues, we pioneer a multilingual TIPR task by developing a multilingual TIPR benchmark, for which we leverage large language models for initial translations and refine them by integrating domain-specific knowledge. Correspondingly, we propose Bi-IRRA: a Bidirectional Implicit Relation Reasoning and Aligning framework to learn alignment across languages and modalities. Within Bi-IRRA, a bidirectional implicit relation reasoning module enables bidirectional prediction of masked image and text, implicitly enhancing the modeling of local relations across languages and modalities, a multi-dimensional global alignment module is integrated to bridge the modality heterogeneity. The proposed method achieves new state-of-the-art results on all multilingual TIPR datasets. Data and code are presented in https://github.com/Flame-Chasers/Bi-IRRA.
comment: Final version published in IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI). Xplore link: https://ieeexplore.ieee.org/document/11199360
☆ Intelligent Communication Mixture-of-Experts Boosted-Medical Image Segmentation Foundation Model
Foundation models for medical image segmentation have achieved remarkable performance. Adaptive fine-tuning of natural image segmentation foundation models is crucial for medical image segmentation tasks. However, some limitations exist in existing fine-tuning methods: 1) insufficient representation of high-level features and 2) the fine-tuning process disrupts the structural integrity of pretrained weights. Inspired by these critical problems, we propose an intelligent communication mixture-of-experts boosted-medical image segmentation foundation model, named IC-MoE, with twofold ideas: 1) We construct basic experts, semantic experts, and adaptive experts. Moreover, we implement a pixel probability adaptive voting strategy, which enables expert selection and fusion through label consistency and load balancing. This approach preliminarily enhances the representation capability of high-level features while preserving the structural integrity of pretrained weights. 2) We propose a semantic-guided contrastive learning method to address the issue of weak supervision in contrastive learning. This method further enhances the representation capability of high-level features while preserving the structural integrity of pretrained weights. Extensive experiments across three public medical image segmentation datasets demonstrate that the IC-MoE outperforms other SOTA models. Consequently, the proposed IC-MoE effectively supplements foundational medical image segmentation models with high-level features and pretrained structural integrity. We also validate the superior generalizability of the IC-MoE across diverse medical image segmentation scenarios.
☆ PICABench: How Far Are We from Physically Realistic Image Editing?
Image editing has achieved remarkable progress recently. Modern editing models could already follow complex instructions to manipulate the original content. However, beyond completing the editing instructions, the accompanying physical effects are the key to the generation realism. For example, removing an object should also remove its shadow, reflections, and interactions with nearby objects. Unfortunately, existing models and benchmarks mainly focus on instruction completion but overlook these physical effects. So, at this moment, how far are we from physically realistic image editing? To answer this, we introduce PICABench, which systematically evaluates physical realism across eight sub-dimension (spanning optics, mechanics, and state transitions) for most of the common editing operations (add, remove, attribute change, etc). We further propose the PICAEval, a reliable evaluation protocol that uses VLM-as-a-judge with per-case, region-level human annotations and questions. Beyond benchmarking, we also explore effective solutions by learning physics from videos and construct a training dataset PICA-100K. After evaluating most of the mainstream models, we observe that physical realism remains a challenging problem with large rooms to explore. We hope that our benchmark and proposed solutions can serve as a foundation for future work moving from naive content editing toward physically consistent realism.
☆ 4DSegStreamer: Streaming 4D Panoptic Segmentation via Dual Threads
4D panoptic segmentation in a streaming setting is critical for highly dynamic environments, such as evacuating dense crowds and autonomous driving in complex scenarios, where real-time, fine-grained perception within a constrained time budget is essential. In this paper, we introduce 4DSegStreamer, a novel framework that employs a Dual-Thread System to efficiently process streaming frames. The framework is general and can be seamlessly integrated into existing 3D and 4D segmentation methods to enable real-time capability. It also demonstrates superior robustness compared to existing streaming perception approaches, particularly under high FPS conditions. The system consists of a predictive thread and an inference thread. The predictive thread leverages historical motion and geometric information to extract features and forecast future dynamics. The inference thread ensures timely prediction for incoming frames by aligning with the latest memory and compensating for ego-motion and dynamic object movements. We evaluate 4DSegStreamer on the indoor HOI4D dataset and the outdoor SemanticKITTI and nuScenes datasets. Comprehensive experiments demonstrate the effectiveness of our approach, particularly in accurately predicting dynamic objects in complex scenes.
☆ Frugal Federated Learning for Violence Detection: A Comparison of LoRA-Tuned VLMs and Personalized CNNs
We examine frugal federated learning approaches to violence detection by comparing two complementary strategies: (i) zero-shot and federated fine-tuning of vision-language models (VLMs), and (ii) personalized training of a compact 3D convolutional neural network (CNN3D). Using LLaVA-7B and a 65.8M parameter CNN3D as representative cases, we evaluate accuracy, calibration, and energy usage under realistic non-IID settings. Both approaches exceed 90% accuracy. CNN3D slightly outperforms Low-Rank Adaptation(LoRA)-tuned VLMs in ROC AUC and log loss, while using less energy. VLMs remain favorable for contextual reasoning and multimodal inference. We quantify energy and CO$_2$ emissions across training and inference, and analyze sustainability trade-offs for deployment. To our knowledge, this is the first comparative study of LoRA-tuned vision-language models and personalized CNNs for federated violence detection, with an emphasis on energy efficiency and environmental metrics. These findings support a hybrid model: lightweight CNNs for routine classification, with selective VLM activation for complex or descriptive scenarios. The resulting framework offers a reproducible baseline for responsible, resource-aware AI in video surveillance, with extensions toward real-time, multimodal, and lifecycle-aware systems.
comment: 7 pages, 1 figure, FLTA 2025
☆ ZACH-ViT: A Zero-Token Vision Transformer with ShuffleStrides Data Augmentation for Robust Lung Ultrasound Classification
Differentiating cardiogenic pulmonary oedema (CPE) from non-cardiogenic and structurally normal lungs in lung ultrasound (LUS) videos remains challenging due to the high visual variability of non-cardiogenic inflammatory patterns (NCIP/ARDS-like), interstitial lung disease, and healthy lungs. This heterogeneity complicates automated classification as overlapping B-lines and pleural artefacts are common. We introduce ZACH-ViT (Zero-token Adaptive Compact Hierarchical Vision Transformer), a 0.25 M-parameter Vision Transformer variant that removes both positional embeddings and the [CLS] token, making it fully permutation-invariant and suitable for unordered medical image data. To enhance generalization, we propose ShuffleStrides Data Augmentation (SSDA), which permutes probe-view sequences and frame orders while preserving anatomical validity. ZACH-ViT was evaluated on 380 LUS videos from 95 critically ill patients against nine state-of-the-art baselines. Despite the heterogeneity of the non-cardiogenic group, ZACH-ViT achieved the highest validation and test ROC-AUC (0.80 and 0.79) with balanced sensitivity (0.60) and specificity (0.91), while all competing models collapsed to trivial classification. It trains 1.35x faster than Minimal ViT (0.62M parameters) with 2.5x fewer parameters, supporting real-time clinical deployment. These results show that aligning architectural design with data structure can outperform scale in small-data medical imaging.
comment: 14 pages, 6 figures, 2 tables. Primary subject: cs.LG (Machine Learning) Cross-listed to: cs.CV (Computer Vision and Pattern Recognition), eess.IV (Image and Video Processing). Code available at: https://github.com/Bluesman79/ZACH-ViT Installation: pip install zachvit Paper licensed under CC BY-NC-ND 4.0. Code released under Apache 2.0 License
Self-supervised Pre-training for Mapping of Archaeological Stone Wall in Historic Landscapes Using High-Resolution DEM Derivatives
Dry-stone walls hold significant heritage and environmental value. Mapping these structures is essential for ecosystem preservation and wildfire management in Australia. Yet, many walls remain unidentified due to their inaccessibility and the high cost of manual mapping. Deep learning-based segmentation offers a scalable solution, but two major challenges persist: (1) visual occlusion of low-lying walls by dense vegetation, and (2) limited labeled data for supervised training. We propose DINO-CV, a segmentation framework for automatic mapping of low-lying dry-stone walls using high-resolution Airborne LiDAR-derived digital elevation models (DEMs). DEMs overcome visual occlusion by capturing terrain structures hidden beneath vegetation, enabling analysis of structural rather than spectral cues. DINO-CV introduces a self-supervised cross-view pre-training strategy based on knowledge distillation to mitigate data scarcity. It learns invariant visual and geometric representations across multiple DEM derivatives, supporting various vision backbones including ResNet, Wide ResNet, and Vision Transformers. Applied to the UNESCO World Heritage cultural landscape of Budj Bim, Victoria, the method identifies one of Australia's densest collections of colonial dry-stone walls beyond Indigenous heritage contexts. DINO-CV achieves a mean Intersection over Union (mIoU) of 68.6% on test areas and maintains 63.8% mIoU when fine-tuned with only 10% labeled data. These results demonstrate the potential of self-supervised learning on high-resolution DEM derivatives for automated dry-stone wall mapping in vegetated and heritage-rich environments with scarce annotations.
☆ CaMiT: A Time-Aware Car Model Dataset for Classification and Generation NeurIPS 2025
AI systems must adapt to evolving visual environments, especially in domains where object appearances change over time. We introduce Car Models in Time (CaMiT), a fine-grained dataset capturing the temporal evolution of car models, a representative class of technological artifacts. CaMiT includes 787K labeled samples of 190 car models (2007-2023) and 5.1M unlabeled samples (2005-2023), supporting both supervised and self-supervised learning. Static pretraining on in-domain data achieves competitive performance with large-scale generalist models while being more resource-efficient, yet accuracy declines when models are tested across years. To address this, we propose a time-incremental classification setting, a realistic continual learning scenario with emerging, evolving, and disappearing classes. We evaluate two strategies: time-incremental pretraining, which updates the backbone, and time-incremental classifier learning, which updates only the final layer, both improving temporal robustness. Finally, we explore time-aware image generation that leverages temporal metadata during training, yielding more realistic outputs. CaMiT offers a rich benchmark for studying temporal adaptation in fine-grained visual recognition and generation.
comment: To be published in NeurIPS 2025 Track on Datasets and Benchmarks
☆ ImaGGen: Zero-Shot Generation of Co-Speech Semantic Gestures Grounded in Language and Image Input
Human communication combines speech with expressive nonverbal cues such as hand gestures that serve manifold communicative functions. Yet, current generative gesture generation approaches are restricted to simple, repetitive beat gestures that accompany the rhythm of speaking but do not contribute to communicating semantic meaning. This paper tackles a core challenge in co-speech gesture synthesis: generating iconic or deictic gestures that are semantically coherent with a verbal utterance. Such gestures cannot be derived from language input alone, which inherently lacks the visual meaning that is often carried autonomously by gestures. We therefore introduce a zero-shot system that generates gestures from a given language input and additionally is informed by imagistic input, without manual annotation or human intervention. Our method integrates an image analysis pipeline that extracts key object properties such as shape, symmetry, and alignment, together with a semantic matching module that links these visual details to spoken text. An inverse kinematics engine then synthesizes iconic and deictic gestures and combines them with co-generated natural beat gestures for coherent multimodal communication. A comprehensive user study demonstrates the effectiveness of our approach. In scenarios where speech alone was ambiguous, gestures generated by our system significantly improved participants' ability to identify object properties, confirming their interpretability and communicative value. While challenges remain in representing complex shapes, our results highlight the importance of context-aware semantic gestures for creating expressive and collaborative virtual agents or avatars, marking a substantial step forward towards efficient and robust, embodied human-agent interaction. More information and example videos are available here: https://review-anon-io.github.io/ImaGGen.github.io/
☆ One Dinomaly2 Detect Them All: A Unified Framework for Full-Spectrum Unsupervised Anomaly Detection CVPR2025
Unsupervised anomaly detection (UAD) has evolved from building specialized single-class models to unified multi-class models, yet existing multi-class models significantly underperform the most advanced one-for-one counterparts. Moreover, the field has fragmented into specialized methods tailored to specific scenarios (multi-class, 3D, few-shot, etc.), creating deployment barriers and highlighting the need for a unified solution. In this paper, we present Dinomaly2, the first unified framework for full-spectrum image UAD, which bridges the performance gap in multi-class models while seamlessly extending across diverse data modalities and task settings. Guided by the "less is more" philosophy, we demonstrate that the orchestration of five simple element achieves superior performance in a standard reconstruction-based framework. This methodological minimalism enables natural extension across diverse tasks without modification, establishing that simplicity is the foundation of true universality. Extensive experiments on 12 UAD benchmarks demonstrate Dinomaly2's full-spectrum superiority across multiple modalities (2D, multi-view, RGB-3D, RGB-IR), task settings (single-class, multi-class, inference-unified multi-class, few-shot) and application domains (industrial, biological, outdoor). For example, our multi-class model achieves unprecedented 99.9% and 99.3% image-level (I-) AUROC on MVTec-AD and VisA respectively. For multi-view and multi-modal inspection, Dinomaly2 demonstrates state-of-the-art performance with minimum adaptations. Moreover, using only 8 normal examples per class, our method surpasses previous full-shot models, achieving 98.7% and 97.4% I-AUROC on MVTec-AD and VisA. The combination of minimalistic design, computational scalability, and universal applicability positions Dinomaly2 as a unified solution for the full spectrum of real-world anomaly detection applications.
comment: Extended version of CVPR2025
☆ Integrating BIM and UAV-based photogrammetry for Automated 3D Structure Model Segmentation
The advancement of UAV technology has enabled efficient, non-contact structural health monitoring. Combined with photogrammetry, UAVs can capture high-resolution scans and reconstruct detailed 3D models of infrastructure. However, a key challenge remains in segmenting specific structural components from these models-a process traditionally reliant on time-consuming and error-prone manual labeling. To address this issue, we propose a machine learning-based framework for automated segmentation of 3D point clouds. Our approach uses the complementary strengths of real-world UAV-scanned point clouds and synthetic data generated from Building Information Modeling (BIM) to overcome the limitations associated with manual labeling. Validation on a railroad track dataset demonstrated high accuracy in identifying and segmenting major components such as rails and crossties. Moreover, by using smaller-scale datasets supplemented with BIM data, the framework significantly reduced training time while maintaining reasonable segmentation accuracy. This automated approach improves the precision and efficiency of 3D infrastructure model segmentation and advances the integration of UAV and BIM technologies in structural health monitoring and infrastructure management.
☆ ShapeCraft: LLM Agents for Structured, Textured and Interactive 3D Modeling NeurIPS 2025
3D generation from natural language offers significant potential to reduce expert manual modeling efforts and enhance accessibility to 3D assets. However, existing methods often yield unstructured meshes and exhibit poor interactivity, making them impractical for artistic workflows. To address these limitations, we represent 3D assets as shape programs and introduce ShapeCraft, a novel multi-agent framework for text-to-3D generation. At its core, we propose a Graph-based Procedural Shape (GPS) representation that decomposes complex natural language into a structured graph of sub-tasks, thereby facilitating accurate LLM comprehension and interpretation of spatial relationships and semantic shape details. Specifically, LLM agents hierarchically parse user input to initialize GPS, then iteratively refine procedural modeling and painting to produce structured, textured, and interactive 3D assets. Qualitative and quantitative experiments demonstrate ShapeCraft's superior performance in generating geometrically accurate and semantically rich 3D assets compared to existing LLM-based agents. We further show the versatility of ShapeCraft through examples of animated and user-customized editing, highlighting its potential for broader interactive applications.
comment: NeurIPS 2025 Poster
☆ Conveying Meaning through Gestures: An Investigation into Semantic Co-Speech Gesture Generation
This study explores two frameworks for co-speech gesture generation, AQ-GT and its semantically-augmented variant AQ-GT-a, to evaluate their ability to convey meaning through gestures and how humans perceive the resulting movements. Using sentences from the SAGA spatial communication corpus, contextually similar sentences, and novel movement-focused sentences, we conducted a user-centered evaluation of concept recognition and human-likeness. Results revealed a nuanced relationship between semantic annotations and performance. The original AQ-GT framework, lacking explicit semantic input, was surprisingly more effective at conveying concepts within its training domain. Conversely, the AQ-GT-a framework demonstrated better generalization, particularly for representing shape and size in novel contexts. While participants rated gestures from AQ-GT-a as more expressive and helpful, they did not perceive them as more human-like. These findings suggest that explicit semantic enrichment does not guarantee improved gesture generation and that its effectiveness is highly dependent on the context, indicating a potential trade-off between specialization and generalization.
☆ MIRAGE: Agentic Framework for Multimodal Misinformation Detection with Web-Grounded Reasoning
Misinformation spreads across web platforms through billions of daily multimodal posts that combine text and images, overwhelming manual fact-checking capacity. Supervised detection models require domain-specific training data and fail to generalize across diverse manipulation tactics. We present MIRAGE, an inference-time, model-pluggable agentic framework that decomposes multimodal verification into four sequential modules: visual veracity assessment detects AI-generated images, cross-modal consistency analysis identifies out-of-context repurposing, retrieval-augmented factual checking grounds claims in web evidence through iterative question generation, and a calibrated judgment module integrates all signals. MIRAGE orchestrates vision-language model reasoning with targeted web retrieval, outputs structured and citation-linked rationales. On MMFakeBench validation set (1,000 samples), MIRAGE with GPT-4o-mini achieves 81.65% F1 and 75.1% accuracy, outperforming the strongest zero-shot baseline (GPT-4V with MMD-Agent at 74.0% F1) by 7.65 points while maintaining 34.3% false positive rate versus 97.3% for a judge-only baseline. Test set results (5,000 samples) confirm generalization with 81.44% F1 and 75.08% accuracy. Ablation studies show visual verification contributes 5.18 F1 points and retrieval-augmented reasoning contributes 2.97 points. Our results demonstrate that decomposed agentic reasoning with web retrieval can match supervised detector performance without domain-specific training, enabling misinformation detection across modalities where labeled data remains scarce.
comment: 16 pages, 3 tables, 1 figure
☆ Expose Camouflage in the Water: Underwater Camouflaged Instance Segmentation and Dataset
With the development of underwater exploration and marine protection, underwater vision tasks are widespread. Due to the degraded underwater environment, characterized by color distortion, low contrast, and blurring, camouflaged instance segmentation (CIS) faces greater challenges in accurately segmenting objects that blend closely with their surroundings. Traditional camouflaged instance segmentation methods, trained on terrestrial-dominated datasets with limited underwater samples, may exhibit inadequate performance in underwater scenes. To address these issues, we introduce the first underwater camouflaged instance segmentation (UCIS) dataset, abbreviated as UCIS4K, which comprises 3,953 images of camouflaged marine organisms with instance-level annotations. In addition, we propose an Underwater Camouflaged Instance Segmentation network based on Segment Anything Model (UCIS-SAM). Our UCIS-SAM includes three key modules. First, the Channel Balance Optimization Module (CBOM) enhances channel characteristics to improve underwater feature learning, effectively addressing the model's limited understanding of underwater environments. Second, the Frequency Domain True Integration Module (FDTIM) is proposed to emphasize intrinsic object features and reduce interference from camouflage patterns, enhancing the segmentation performance of camouflaged objects blending with their surroundings. Finally, the Multi-scale Feature Frequency Aggregation Module (MFFAM) is designed to strengthen the boundaries of low-contrast camouflaged instances across multiple frequency bands, improving the model's ability to achieve more precise segmentation of camouflaged objects. Extensive experiments on the proposed UCIS4K and public benchmarks show that our UCIS-SAM outperforms state-of-the-art approaches.
☆ PAGE-4D: Disentangled Pose and Geometry Estimation for 4D Perception
Recent 3D feed-forward models, such as the Visual Geometry Grounded Transformer (VGGT), have shown strong capability in inferring 3D attributes of static scenes. However, since they are typically trained on static datasets, these models often struggle in real-world scenarios involving complex dynamic elements, such as moving humans or deformable objects like umbrellas. To address this limitation, we introduce PAGE-4D, a feedforward model that extends VGGT to dynamic scenes, enabling camera pose estimation, depth prediction, and point cloud reconstruction -- all without post-processing. A central challenge in multi-task 4D reconstruction is the inherent conflict between tasks: accurate camera pose estimation requires suppressing dynamic regions, while geometry reconstruction requires modeling them. To resolve this tension, we propose a dynamics-aware aggregator that disentangles static and dynamic information by predicting a dynamics-aware mask -- suppressing motion cues for pose estimation while amplifying them for geometry reconstruction. Extensive experiments show that PAGE-4D consistently outperforms the original VGGT in dynamic scenarios, achieving superior results in camera pose estimation, monocular and video depth estimation, and dense point map reconstruction.
☆ WP-CrackNet: A Collaborative Adversarial Learning Framework for End-to-End Weakly-Supervised Road Crack Detection
Road crack detection is essential for intelligent infrastructure maintenance in smart cities. To reduce reliance on costly pixel-level annotations, we propose WP-CrackNet, an end-to-end weakly-supervised method that trains with only image-level labels for pixel-wise crack detection. WP-CrackNet integrates three components: a classifier generating class activation maps (CAMs), a reconstructor measuring feature inferability, and a detector producing pixel-wise road crack detection results. During training, the classifier and reconstructor alternate in adversarial learning to encourage crack CAMs to cover complete crack regions, while the detector learns from pseudo labels derived from post-processed crack CAMs. This mutual feedback among the three components improves learning stability and detection accuracy. To further boost detection performance, we design a path-aware attention module (PAAM) that fuses high-level semantics from the classifier with low-level structural cues from the reconstructor by modeling spatial and channel-wise dependencies. Additionally, a center-enhanced CAM consistency module (CECCM) is proposed to refine crack CAMs using center Gaussian weighting and consistency constraints, enabling better pseudo-label generation. We create three image-level datasets and extensive experiments show that WP-CrackNet achieves comparable results to supervised methods and outperforms existing weakly-supervised methods, significantly advancing scalable road inspection. The source code package and datasets are available at https://mias.group/WP-CrackNet/.
☆ Detecting streaks in smart telescopes images with Deep Learning
The growing negative impact of the visibility of satellites in the night sky is influencing the practice of astronomy and astrophotograph, both at the amateur and professional levels. The presence of these satellites has the effect of introducing streaks into the images captured during astronomical observation, requiring the application of additional post processing to mitigate the undesirable impact, whether for data loss or cosmetic reasons. In this paper, we show how we test and adapt various Deep Learning approaches to detect streaks in raw astronomical data captured between March 2022 and February 2023 with smart telescopes.
comment: 19 pages, preprint submitted to the Springer CCIS Special Issue on DATA 2024 (currently under editorial processing)
MambaX-Net: Dual-Input Mamba-Enhanced Cross-Attention Network for Longitudinal MRI Segmentation
Active Surveillance (AS) is a treatment option for managing low and intermediate-risk prostate cancer (PCa), aiming to avoid overtreatment while monitoring disease progression through serial MRI and clinical follow-up. Accurate prostate segmentation is an important preliminary step for automating this process, enabling automated detection and diagnosis of PCa. However, existing deep-learning segmentation models are often trained on single-time-point and expertly annotated datasets, making them unsuitable for longitudinal AS analysis, where multiple time points and a scarcity of expert labels hinder their effective fine-tuning. To address these challenges, we propose MambaX-Net, a novel semi-supervised, dual-scan 3D segmentation architecture that computes the segmentation for time point t by leveraging the MRI and the corresponding segmentation mask from the previous time point. We introduce two new components: (i) a Mamba-enhanced Cross-Attention Module, which integrates the Mamba block into cross attention to efficiently capture temporal evolution and long-range spatial dependencies, and (ii) a Shape Extractor Module that encodes the previous segmentation mask into a latent anatomical representation for refined zone delination. Moreover, we introduce a semi-supervised self-training strategy that leverages pseudo-labels generated from a pre-trained nnU-Net, enabling effective learning without expert annotations. MambaX-Net was evaluated on a longitudinal AS dataset, and results showed that it significantly outperforms state-of-the-art U-Net and Transformer-based models, achieving superior prostate zone segmentation even when trained on limited and noisy data.
☆ MUG-V 10B: High-efficiency Training Pipeline for Large Video Generation Models
In recent years, large-scale generative models for visual content (\textit{e.g.,} images, videos, and 3D objects/scenes) have made remarkable progress. However, training large-scale video generation models remains particularly challenging and resource-intensive due to cross-modal text-video alignment, the long sequences involved, and the complex spatiotemporal dependencies. To address these challenges, we present a training framework that optimizes four pillars: (i) data processing, (ii) model architecture, (iii) training strategy, and (iv) infrastructure for large-scale video generation models. These optimizations delivered significant efficiency gains and performance improvements across all stages of data preprocessing, video compression, parameter scaling, curriculum-based pretraining, and alignment-focused post-training. Our resulting model, MUG-V 10B, matches recent state-of-the-art video generators overall and, on e-commerce-oriented video generation tasks, surpasses leading open-source baselines in human evaluations. More importantly, we open-source the complete stack, including model weights, Megatron-Core-based large-scale training code, and inference pipelines for video generation and enhancement. To our knowledge, this is the first public release of large-scale video generation training code that exploits Megatron-Core to achieve high training efficiency and near-linear multi-node scaling, details are available in \href{https://github.com/Shopee-MUG/MUG-V}{our webpage}.
comment: Technical Report; Project Page: \href{https://github.com/Shopee-MUG/MUG-V}
☆ Context-Aware Pseudo-Label Scoring for Zero-Shot Video Summarization
With the rapid proliferation of video content across social media, surveillance, and education platforms, efficiently summarizing long videos into concise yet semantically faithful surrogates has become increasingly vital. Existing supervised methods achieve strong in-domain accuracy by learning from dense annotations but suffer from high labeling costs and limited cross-dataset generalization, while unsupervised approaches, though label-free, often fail to capture high-level human semantics and fine-grained narrative cues. More recently, zero-shot prompting pipelines have leveraged large language models (LLMs) for training-free video summarization, yet remain highly sensitive to handcrafted prompt templates and dataset-specific score normalization. To overcome these limitations, we introduce a rubric-guided, pseudo-labeled prompting framework that transforms a small subset of ground-truth annotations into high-confidence pseudo labels, which are aggregated into structured, dataset-adaptive scoring rubrics guiding interpretable scene evaluation. During inference, first and last segments are scored based solely on their descriptions, whereas intermediate ones incorporate brief contextual summaries of adjacent scenes to assess narrative progression and redundancy. This contextual prompting enables the LLM to balance local salience and global coherence without parameter tuning. On SumMe and TVSum, our method achieves F1 scores of \textbf{57.58} and \textbf{63.05}, surpassing unsupervised and prior zero-shot baselines while approaching supervised performance. The results demonstrate that rubric-guided pseudo labeling effectively stabilizes LLM-based scoring and establishes a general, interpretable zero-shot paradigm for video summarization.
☆ Split-Fuse-Transport: Annotation-Free Saliency via Dual Clustering and Optimal Transport Alignment
Salient object detection (SOD) aims to segment visually prominent regions in images and serves as a foundational task for various computer vision applications. We posit that SOD can now reach near-supervised accuracy without a single pixel-level label, but only when reliable pseudo-masks are available. We revisit the prototype-based line of work and make two key observations. First, boundary pixels and interior pixels obey markedly different geometry; second, the global consistency enforced by optimal transport (OT) is underutilized if prototype quality is weak. To address this, we introduce POTNet, an adaptation of Prototypical Optimal Transport that replaces POT's single k-means step with an entropy-guided dual-clustering head: high-entropy pixels are organized by spectral clustering, low-entropy pixels by k-means, and the two prototype sets are subsequently aligned by OT. This split-fuse-transport design yields sharper, part-aware pseudo-masks in a single forward pass, without handcrafted priors. Those masks supervise a standard MaskFormer-style encoder-decoder, giving rise to AutoSOD, an end-to-end unsupervised SOD pipeline that eliminates SelfMask's offline voting yet improves both accuracy and training efficiency. Extensive experiments on five benchmarks show that AutoSOD outperforms unsupervised methods by up to 26% and weakly supervised methods by up to 36% in F-measure, further narrowing the gap to fully supervised models.
☆ SparseWorld: A Flexible, Adaptive, and Efficient 4D Occupancy World Model Powered by Sparse and Dynamic Queries
Semantic occupancy has emerged as a powerful representation in world models for its ability to capture rich spatial semantics. However, most existing occupancy world models rely on static and fixed embeddings or grids, which inherently limit the flexibility of perception. Moreover, their ``in-place classification" over grids exhibits a potential misalignment with the dynamic and continuous nature of real scenarios.In this paper, we propose SparseWorld, a novel 4D occupancy world model that is flexible, adaptive, and efficient, powered by sparse and dynamic queries. We propose a Range-Adaptive Perception module, in which learnable queries are modulated by the ego vehicle states and enriched with temporal-spatial associations to enable extended-range perception. To effectively capture the dynamics of the scene, we design a State-Conditioned Forecasting module, which replaces classification-based forecasting with regression-guided formulation, precisely aligning the dynamic queries with the continuity of the 4D environment. In addition, We specifically devise a Temporal-Aware Self-Scheduling training strategy to enable smooth and efficient training. Extensive experiments demonstrate that SparseWorld achieves state-of-the-art performance across perception, forecasting, and planning tasks. Comprehensive visualizations and ablation studies further validate the advantages of SparseWorld in terms of flexibility, adaptability, and efficiency. The code is available at https://github.com/MSunDYY/SparseWorld.
comment: Under Review
☆ Initialize to Generalize: A Stronger Initialization Pipeline for Sparse-View 3DGS
Sparse-view 3D Gaussian Splatting (3DGS) often overfits to the training views, leading to artifacts like blurring in novel view rendering. Prior work addresses it either by enhancing the initialization (\emph{i.e.}, the point cloud from Structure-from-Motion (SfM)) or by adding training-time constraints (regularization) to the 3DGS optimization. Yet our controlled ablations reveal that initialization is the decisive factor: it determines the attainable performance band in sparse-view 3DGS, while training-time constraints yield only modest within-band improvements at extra cost. Given initialization's primacy, we focus our design there. Although SfM performs poorly under sparse views due to its reliance on feature matching, it still provides reliable seed points. Thus, building on SfM, our effort aims to supplement the regions it fails to cover as comprehensively as possible. Specifically, we design: (i) frequency-aware SfM that improves low-texture coverage via low-frequency view augmentation and relaxed multi-view correspondences; (ii) 3DGS self-initialization that lifts photometric supervision into additional points, compensating SfM-sparse regions with learned Gaussian centers; and (iii) point-cloud regularization that enforces multi-view consistency and uniform spatial coverage through simple geometric/visibility priors, yielding a clean and reliable point cloud. Our experiments on LLFF and Mip-NeRF360 demonstrate consistent gains in sparse-view settings, establishing our approach as a stronger initialization strategy. Code is available at https://github.com/zss171999645/ItG-GS.
comment: A preprint paper
☆ Rethinking Nighttime Image Deraining via Learnable Color Space Transformation NeurIPS 2025
Compared to daytime image deraining, nighttime image deraining poses significant challenges due to inherent complexities of nighttime scenarios and the lack of high-quality datasets that accurately represent the coupling effect between rain and illumination. In this paper, we rethink the task of nighttime image deraining and contribute a new high-quality benchmark, HQ-NightRain, which offers higher harmony and realism compared to existing datasets. In addition, we develop an effective Color Space Transformation Network (CST-Net) for better removing complex rain from nighttime scenes. Specifically, we propose a learnable color space converter (CSC) to better facilitate rain removal in the Y channel, as nighttime rain is more pronounced in the Y channel compared to the RGB color space. To capture illumination information for guiding nighttime deraining, implicit illumination guidance is introduced enabling the learned features to improve the model's robustness in complex scenarios. Extensive experiments show the value of our dataset and the effectiveness of our method. The source code and datasets are available at https://github.com/guanqiyuan/CST-Net.
comment: Accepted by NeurIPS 2025
☆ From Spatial to Actions: Grounding Vision-Language-Action Model in Spatial Foundation Priors
Existing vision-language-action (VLA) models act in 3D real-world but are typically built on 2D encoders, leaving a spatial reasoning gap that limits generalization and adaptability. Recent 3D integration techniques for VLAs either require specialized sensors and transfer poorly across modalities, or inject weak cues that lack geometry and degrade vision-language alignment. In this work, we introduce FALCON (From Spatial to Action), a novel paradigm that injects rich 3D spatial tokens into the action head. FALCON leverages spatial foundation models to deliver strong geometric priors from RGB alone, and includes an Embodied Spatial Model that can optionally fuse depth, or pose for higher fidelity when available, without retraining or architectural changes. To preserve language reasoning, spatial tokens are consumed by a Spatial-Enhanced Action Head rather than being concatenated into the vision-language backbone. These designs enable FALCON to address limitations in spatial representation, modality transferability, and alignment. In comprehensive evaluations across three simulation benchmarks and eleven real-world tasks, our proposed FALCON achieves state-of-the-art performance, consistently surpasses competitive baselines, and remains robust under clutter, spatial-prompt conditioning, and variations in object scale and height.
comment: Project page: https://falcon-vla.github.io/
☆ Leveraging AV1 motion vectors for Fast and Dense Feature Matching
We repurpose AV1 motion vectors to produce dense sub-pixel correspondences and short tracks filtered by cosine consistency. On short videos, this compressed-domain front end runs comparably to sequential SIFT while using far less CPU, and yields denser matches with competitive pairwise geometry. As a small SfM demo on a 117-frame clip, MV matches register all images and reconstruct 0.46-0.62M points at 0.51-0.53,px reprojection error; BA time grows with match density. These results show compressed-domain correspondences are a practical, resource-efficient front end with clear paths to scaling in full pipelines.
comment: Accepted ICIR 2025, camera-ready version
☆ DeepDetect: Learning All-in-One Dense Keypoints
Keypoint detection is the foundation of many computer vision tasks, including image registration, structure-from motion, 3D reconstruction, visual odometry, and SLAM. Traditional detectors (SIFT, SURF, ORB, BRISK, etc.) and learning based methods (SuperPoint, R2D2, LF-Net, D2-Net, etc.) have shown strong performance yet suffer from key limitations: sensitivity to photometric changes, low keypoint density and repeatability, limited adaptability to challenging scenes, and lack of semantic understanding, often failing to prioritize visually important regions. We present DeepDetect, an intelligent, all-in-one, dense keypoint detector that unifies the strengths of classical detectors using deep learning. Firstly, we create ground-truth masks by fusing outputs of 7 keypoint and 2 edge detectors, extracting diverse visual cues from corners and blobs to prominent edges and textures in the images. Afterwards, a lightweight and efficient model: ESPNet, is trained using these masks as labels, enabling DeepDetect to focus semantically on images while producing highly dense keypoints, that are adaptable to diverse and visually degraded conditions. Evaluations on the Oxford Affine Covariant Regions dataset demonstrate that DeepDetect surpasses other detectors in keypoint density, repeatability, and the number of correct matches, achieving maximum values of 0.5143 (average keypoint density), 0.9582 (average repeatability), and 59,003 (correct matches).
comment: 6 pages, 6 figures, 2 tables, 7 equations
☆ Monitoring Horses in Stalls: From Object to Event Detection
Monitoring the behavior of stalled horses is essential for early detection of health and welfare issues but remains labor-intensive and time-consuming. In this study, we present a prototype vision-based monitoring system that automates the detection and tracking of horses and people inside stables using object detection and multi-object tracking techniques. The system leverages YOLOv11 and BoT-SORT for detection and tracking, while event states are inferred based on object trajectories and spatial relations within the stall. To support development, we constructed a custom dataset annotated with assistance from foundation models CLIP and GroundingDINO. The system distinguishes between five event types and accounts for the camera's blind spots. Qualitative evaluation demonstrated reliable performance for horse-related events, while highlighting limitations in detecting people due to data scarcity. This work provides a foundation for real-time behavioral monitoring in equine facilities, with implications for animal welfare and stable management.
comment: 12 pages, 4 figures, 4 tables
☆ MILES: Modality-Informed Learning Rate Scheduler for Balancing Multimodal Learning IJCNN'25
The aim of multimodal neural networks is to combine diverse data sources, referred to as modalities, to achieve enhanced performance compared to relying on a single modality. However, training of multimodal networks is typically hindered by modality overfitting, where the network relies excessively on one of the available modalities. This often yields sub-optimal performance, hindering the potential of multimodal learning and resulting in marginal improvements relative to unimodal models. In this work, we present the Modality-Informed Learning ratE Scheduler (MILES) for training multimodal joint fusion models in a balanced manner. MILES leverages the differences in modality-wise conditional utilization rates during training to effectively balance multimodal learning. The learning rate is dynamically adjusted during training to balance the speed of learning from each modality by the multimodal model, aiming for enhanced performance in both multimodal and unimodal predictions. We extensively evaluate MILES on four multimodal joint fusion tasks and compare its performance to seven state-of-the-art baselines. Our results show that MILES outperforms all baselines across all tasks and fusion methods considered in our study, effectively balancing modality usage during training. This results in improved multimodal performance and stronger modality encoders, which can be leveraged when dealing with unimodal samples or absent modalities. Overall, our work highlights the impact of balancing multimodal learning on improving model performance.
comment: Accepted and presented at the 2025 International Joint Conference on Neural Networks (IJCNN'25). The paper was awarded an honorable mention (best 4 papers)
☆ Closed-Loop Transfer for Weakly-supervised Affordance Grounding ICCV 2025
Humans can perform previously unexperienced interactions with novel objects simply by observing others engage with them. Weakly-supervised affordance grounding mimics this process by learning to locate object regions that enable actions on egocentric images, using exocentric interaction images with image-level annotations. However, extracting affordance knowledge solely from exocentric images and transferring it one-way to egocentric images limits the applicability of previous works in complex interaction scenarios. Instead, this study introduces LoopTrans, a novel closed-loop framework that not only transfers knowledge from exocentric to egocentric but also transfers back to enhance exocentric knowledge extraction. Within LoopTrans, several innovative mechanisms are introduced, including unified cross-modal localization and denoising knowledge distillation, to bridge domain gaps between object-centered egocentric and interaction-centered exocentric images while enhancing knowledge transfer. Experiments show that LoopTrans achieves consistent improvements across all metrics on image and video benchmarks, even handling challenging scenarios where object interaction regions are fully occluded by the human body.
comment: Accepted at ICCV 2025
☆ Latent Spaces Beyond Synthesis: From GANs to Diffusion Models
This paper examines the evolving nature of internal representations in generative visual models, focusing on the conceptual and technical shift from GANs and VAEs to diffusion-based architectures. Drawing on Beatrice Fazi's account of synthesis as the amalgamation of distributed representations, we propose a distinction between "synthesis in a strict sense", where a compact latent space wholly determines the generative process, and "synthesis in a broad sense," which characterizes models whose representational labor is distributed across layers. Through close readings of model architectures and a targeted experimental setup that intervenes in layerwise representations, we show how diffusion models fragment the burden of representation and thereby challenge assumptions of unified internal space. By situating these findings within media theoretical frameworks and critically engaging with metaphors such as the latent space and the Platonic Representation Hypothesis, we argue for a reorientation of how generative AI is understood: not as a direct synthesis of content, but as an emergent configuration of specialized processes.
comment: Presented and published at Ethics and Aesthetics of Artificial Intelligence Conference (EA-AI'25)
☆ Facial Expression-based Parkinson's Disease Severity Diagnosis via Feature Fusion and Adaptive Class Balancing
Parkinson's disease (PD) severity diagnosis is crucial for early detecting potential patients and adopting tailored interventions. Diagnosing PD based on facial expression is grounded in PD patients' "masked face" symptom and gains growing interest recently for its convenience and affordability. However, current facial expression-based approaches often rely on single type of expression which can lead to misdiagnosis, and ignore the class imbalance across different PD stages which degrades the prediction performance. Moreover, most existing methods focus on binary classification (i.e., PD / non-PD) rather than diagnosing the severity of PD. To address these issues, we propose a new facial expression-based method for PD severity diagnosis which integrates multiple facial expression features through attention-based feature fusion. Moreover, we mitigate the class imbalance problem via an adaptive class balancing strategy which dynamically adjusts the contribution of training samples based on their class distribution and classification difficulty. Experimental results demonstrate the promising performance of the proposed method for PD severity diagnosis, as well as the efficacy of attention-based feature fusion and adaptive class balancing.
comment: 3 pages, 2 figures, accepted by MIND 2025
☆ Beyond Real Faces: Synthetic Datasets Can Achieve Reliable Recognition Performance without Privacy Compromise
The deployment of facial recognition systems has created an ethical dilemma: achieving high accuracy requires massive datasets of real faces collected without consent, leading to dataset retractions and potential legal liabilities under regulations like GDPR. While synthetic facial data presents a promising privacy-preserving alternative, the field lacks comprehensive empirical evidence of its viability. This study addresses this critical gap through extensive evaluation of synthetic facial recognition datasets. We present a systematic literature review identifying 25 synthetic facial recognition datasets (2018-2025), combined with rigorous experimental validation. Our methodology examines seven key requirements for privacy-preserving synthetic data: identity leakage prevention, intra-class variability, identity separability, dataset scale, ethical data sourcing, bias mitigation, and benchmark reliability. Through experiments involving over 10 million synthetic samples, extended by a comparison of results reported on five standard benchmarks, we provide the first comprehensive empirical assessment of synthetic data's capability to replace real datasets. Best-performing synthetic datasets (VariFace, VIGFace) achieve recognition accuracies of 95.67% and 94.91% respectively, surpassing established real datasets including CASIA-WebFace (94.70%). While those images remain private, publicly available alternatives Vec2Face (93.52%) and CemiFace (93.22%) come close behind. Our findings reveal that they ensure proper intra-class variability while maintaining identity separability. Demographic bias analysis shows that, even though synthetic data inherits limited biases, it offers unprecedented control for bias mitigation through generation parameters. These results establish synthetic facial data as a scientifically viable and ethically imperative alternative for facial recognition research.
☆ Recurrent Attention-based Token Selection for Efficient Streaming Video-LLMs NeurIPS 2025
Video Large Language Models (Video-LLMs) excel at understanding videos in-context, provided they have full access to the video when answering queries. However, these models face challenges in streaming scenarios where hour-long videos must be processed online, and questions need timely responses. In this work, we propose a training-free approach compatible with standard Video-LLMs, leveraging three key concepts: 1) LLM-informed selection of visual tokens to identify those that the LLM has attended to and contributed to its understanding of each short clip. Our attention-based selection allows us to discard up to ~95% of unimportant visual tokens with minimal performance loss; 2) Recurrent processing of past selected tokens to generate temporally coherent understanding of each processed clip; 3) Caption-based question answering for lightweight and accurate responses. Our method achieves state-of-the-art performance on streaming video benchmarks, striking a balance between efficiency and effectiveness.
comment: NeurIPS 2025
☆ M2H: Multi-Task Learning with Efficient Window-Based Cross-Task Attention for Monocular Spatial Perception IROS 2025
Deploying real-time spatial perception on edge devices requires efficient multi-task models that leverage complementary task information while minimizing computational overhead. This paper introduces Multi-Mono-Hydra (M2H), a novel multi-task learning framework designed for semantic segmentation and depth, edge, and surface normal estimation from a single monocular image. Unlike conventional approaches that rely on independent single-task models or shared encoder-decoder architectures, M2H introduces a Window-Based Cross-Task Attention Module that enables structured feature exchange while preserving task-specific details, improving prediction consistency across tasks. Built on a lightweight ViT-based DINOv2 backbone, M2H is optimized for real-time deployment and serves as the foundation for monocular spatial perception systems supporting 3D scene graph construction in dynamic environments. Comprehensive evaluations show that M2H outperforms state-of-the-art multi-task models on NYUDv2, surpasses single-task depth and semantic baselines on Hypersim, and achieves superior performance on the Cityscapes dataset, all while maintaining computational efficiency on laptop hardware. Beyond benchmarks, M2H is validated on real-world data, demonstrating its practicality in spatial perception tasks.
comment: Accepted to the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025). 8 pages, 7 figures
☆ Exploring The Missing Semantics In Event Modality
Event cameras offer distinct advantages such as low latency, high dynamic range, and efficient motion capture. However, event-to-video reconstruction (E2V), a fundamental event-based vision task, remains challenging, particularly for reconstructing and recovering semantic information. This is primarily due to the nature of the event camera, as it only captures intensity changes, ignoring static objects and backgrounds, resulting in a lack of semantic information in captured event modality. Further, semantic information plays a crucial role in video and frame reconstruction, yet is often overlooked by existing E2V approaches. To bridge this gap, we propose Semantic-E2VID, an E2V framework that explores the missing visual semantic knowledge in event modality and leverages it to enhance event-to-video reconstruction. Specifically, Semantic-E2VID introduces a cross-modal feature alignment (CFA) module to transfer the robust visual semantics from a frame-based vision foundation model, the Segment Anything Model (SAM), to the event encoder, while aligning the high-level features from distinct modalities. To better utilize the learned semantic feature, we further propose a semantic-aware feature fusion (SFF) block to integrate learned semantics in frame modality to form event representations with rich semantics that can be decoded by the event decoder. Further, to facilitate the reconstruction of semantic information, we propose a novel Semantic Perceptual E2V Supervision that helps the model to reconstruct semantic details by leveraging SAM-generated categorical labels. Extensive experiments demonstrate that Semantic-E2VID significantly enhances frame quality, outperforming state-of-the-art E2V methods across multiple benchmarks. The sample code is included in the supplementary material.
☆ Nearest-Class Mean and Logits Agreement for Wildlife Open-Set Recognition
Current state-of-the-art Wildlife classification models are trained under the closed world setting. When exposed to unknown classes, they remain overconfident in their predictions. Open-set Recognition (OSR) aims to classify known classes while rejecting unknown samples. Several OSR methods have been proposed to model the closed-set distribution by observing the feature, logit, or softmax probability space. A significant drawback of many existing approaches is the requirement to retrain the pre-trained classification model with the OSR-specific strategy. This study contributes a post-processing OSR method that measures the agreement between the models' features and predicted logits. We propose a probability distribution based on an input's distance to its Nearest Class Mean (NCM). The NCM-based distribution is then compared with the softmax probabilities from the logit space to measure agreement between the NCM and the classification head. Our proposed strategy ranks within the top three on two evaluated datasets, showing consistent performance across the two datasets. In contrast, current state-of-the-art methods excel on a single dataset. We achieve an AUROC of 93.41 and 95.35 for African and Swedish animals. The code can be found https://github.com/Applied-Representation-Learning-Lab/OSR.
☆ iDETEX: Empowering MLLMs for Intelligent DETailed EXplainable IQA ICCV 2025
Image Quality Assessment (IQA) has progressed from scalar quality prediction to more interpretable, human-aligned evaluation paradigms. In this work, we address the emerging challenge of detailed and explainable IQA by proposing iDETEX-a unified multimodal large language model (MLLM) capable of simultaneously performing three key tasks: quality grounding, perception, and description. To facilitate efficient and generalizable training across these heterogeneous subtasks, we design a suite of task-specific offline augmentation modules and a data mixing strategy. These are further complemented by online enhancement strategies to fully exploit multi-sourced supervision. We validate our approach on the large-scale ViDA-UGC benchmark, where iDETEX achieves state-of-the-art performance across all subtasks. Our model ranks first in the ICCV MIPI 2025 Detailed Image Quality Assessment Challenge, demonstrating its effectiveness and robustness in delivering accurate and interpretable quality assessments.
comment: Accepted to ICCV 2025 Workshop
☆ CharDiff: A Diffusion Model with Character-Level Guidance for License Plate Image Restoration
The significance of license plate image restoration goes beyond the preprocessing stage of License Plate Recognition (LPR) systems, as it also serves various purposes, including increasing evidential value, enhancing the clarity of visual interface, and facilitating further utilization of license plate images. We propose a novel diffusion-based framework with character-level guidance, CharDiff, which effectively restores and recognizes severely degraded license plate images captured under realistic conditions. CharDiff leverages fine-grained character-level priors extracted through external segmentation and Optical Character Recognition (OCR) modules tailored for low-quality license plate images. For precise and focused guidance, CharDiff incorporates a novel Character-guided Attention through Region-wise Masking (CHARM) module, which ensures that each character's guidance is restricted to its own region, thereby avoiding interference with other regions. In experiments, CharDiff significantly outperformed the baseline restoration models in both restoration quality and recognition accuracy, achieving a 28% relative reduction in CER on the Roboflow-LP dataset, compared to the best-performing baseline model. These results indicate that the structured character-guided conditioning effectively enhances the robustness of diffusion-based license plate restoration and recognition in practical deployment scenarios.
comment: 11 pages, 6 figures
☆ A Single Set of Adversarial Clothes Breaks Multiple Defense Methods in the Physical World
In recent years, adversarial attacks against deep learning-based object detectors in the physical world have attracted much attention. To defend against these attacks, researchers have proposed various defense methods against adversarial patches, a typical form of physically-realizable attack. However, our experiments showed that simply enlarging the patch size could make these defense methods fail. Motivated by this, we evaluated various defense methods against adversarial clothes which have large coverage over the human body. Adversarial clothes provide a good test case for adversarial defense against patch-based attacks because they not only have large sizes but also look more natural than a large patch on humans. Experiments show that all the defense methods had poor performance against adversarial clothes in both the digital world and the physical world. In addition, we crafted a single set of clothes that broke multiple defense methods on Faster R-CNN. The set achieved an Attack Success Rate (ASR) of 96.06% against the undefended detector and over 64.84% ASRs against nine defended models in the physical world, unveiling the common vulnerability of existing adversarial defense methods against adversarial clothes. Code is available at: https://github.com/weiz0823/adv-clothes-break-multiple-defenses.
comment: 13 pages, 8 figures
☆ CausalMamba: Scalable Conditional State Space Models for Neural Causal Inference
We introduce CausalMamba, a scalable framework that addresses fundamental limitations in fMRI-based causal inference: the ill-posed nature of inferring neural causality from hemodynamically distorted BOLD signals and the computational intractability of existing methods like Dynamic Causal Modeling (DCM). Our approach decomposes this complex inverse problem into two tractable stages: BOLD deconvolution to recover latent neural activity, followed by causal graph inference using a novel Conditional Mamba architecture. On simulated data, CausalMamba achieves 37% higher accuracy than DCM. Critically, when applied to real task fMRI data, our method recovers well-established neural pathways with 88% fidelity, whereas conventional approaches fail to identify these canonical circuits in over 99% of subjects. Furthermore, our network analysis of working memory data reveals that the brain strategically shifts its primary causal hub-recruiting executive or salience networks depending on the stimulus-a sophisticated reconfiguration that remains undetected by traditional methods. This work provides neuroscientists with a practical tool for large-scale causal inference that captures both fundamental circuit motifs and flexible network dynamics underlying cognitive function.
☆ LongInsightBench: A Comprehensive Benchmark for Evaluating Omni-Modal Models on Human-Centric Long-Video Understanding
We introduce \textbf{LongInsightBench}, the first benchmark designed to assess models' ability to understand long videos, with a focus on human language, viewpoints, actions, and other contextual elements, while integrating \textbf{visual, audio, and text} modalities. Our benchmark excels in three key areas: \textbf{a) Long-Duration, Information-Dense Videos:} We carefully select approximately 1,000 videos from open-source datasets FineVideo based on duration limit and the information density of both visual and audio modalities, focusing on content like lectures, interviews, and vlogs, which contain rich language elements. \textbf{b) Diverse and Challenging Task Scenarios:} We have designed six challenging task scenarios, including both Intra-Event and Inter-Event Tasks. \textbf{c) Rigorous and Comprehensive Quality Assurance Pipelines:} We have developed a three-step, semi-automated data quality assurance pipeline to ensure the difficulty and validity of the synthesized questions and answer options. Based on LongInsightBench, we designed a series of experiments. Experimental results shows that Omni-modal models(OLMs) still face challenge in tasks requiring precise temporal localization (T-Loc) and long-range causal inference (CE-Caus). Extended experiments reveal the information loss and processing bias in multi-modal fusion of OLMs. Our dataset and code is available at https://anonymous.4open.science/r/LongInsightBench-910F/.
comment: Submitted to ARR Rolling Review
☆ Exploring Structural Degradation in Dense Representations for Self-supervised Learning NeurIPS 2025
In this work, we observe a counterintuitive phenomenon in self-supervised learning (SSL): longer training may impair the performance of dense prediction tasks (e.g., semantic segmentation). We refer to this phenomenon as Self-supervised Dense Degradation (SDD) and demonstrate its consistent presence across sixteen state-of-the-art SSL methods with various losses, architectures, and datasets. When the model performs suboptimally on dense tasks at the end of training, measuring the performance during training becomes essential. However, evaluating dense performance effectively without annotations remains an open challenge. To tackle this issue, we introduce a Dense representation Structure Estimator (DSE), composed of a class-relevance measure and an effective dimensionality measure. The proposed DSE is both theoretically grounded and empirically validated to be closely correlated with the downstream performance. Based on this metric, we introduce a straightforward yet effective model selection strategy and a DSE-based regularization method. Experiments on sixteen SSL methods across four benchmarks confirm that model selection improves mIoU by $3.0\%$ on average with negligible computational cost. Additionally, DSE regularization consistently mitigates the effects of dense degradation. Code is available at https://github.com/EldercatSAM/SSL-Degradation.
comment: Accepted by NeurIPS 2025
☆ Machine Vision-Based Surgical Lighting System:Design and Implementation
Effortless and ergonomically designed surgical lighting is critical for precision and safety during procedures. However, traditional systems often rely on manual adjustments, leading to surgeon fatigue, neck strain, and inconsistent illumination due to drift and shadowing. To address these challenges, we propose a novel surgical lighting system that leverages the YOLOv11 object detection algorithm to identify a blue marker placed above the target surgical site. A high-power LED light source is then directed to the identified location using two servomotors equipped with tilt-pan brackets. The YOLO model achieves 96.7% mAP@50 on the validation set consisting of annotated images simulating surgical scenes with the blue spherical marker. By automating the lighting process, this machine vision-based solution reduces physical strain on surgeons, improves consistency in illumination, and supports improved surgical outcomes.
☆ SG-CLDFF: A Novel Framework for Automated White Blood Cell Classification and Segmentation
Accurate segmentation and classification of white blood cells (WBCs) in microscopic images are essential for diagnosis and monitoring of many hematological disorders, yet remain challenging due to staining variability, complex backgrounds, and class imbalance. In this paper, we introduce a novel Saliency-Guided Cross-Layer Deep Feature Fusion framework (SG-CLDFF) that tightly integrates saliency-driven preprocessing with multi-scale deep feature aggregation to improve both robustness and interpretability for WBC analysis. SG-CLDFF first computes saliency priors to highlight candidate WBC regions and guide subsequent feature extraction. A lightweight hybrid backbone (EfficientSwin-style) produces multi-resolution representations, which are fused by a ResNeXt-CC-inspired cross-layer fusion module to preserve complementary information from shallow and deep layers. The network is trained in a multi-task setup with concurrent segmentation and cell-type classification heads, using class-aware weighted losses and saliency-alignment regularization to mitigate imbalance and suppress background activation. Interpretability is enforced through Grad-CAM visualizations and saliency consistency checks, allowing model decisions to be inspected at the regional level. We validate the framework on standard public benchmarks (BCCD, LISC, ALL-IDB), reporting consistent gains in IoU, F1, and classification accuracy compared to strong CNN and transformer baselines. An ablation study also demonstrates the individual contributions of saliency preprocessing and cross-layer fusion. SG-CLDFF offers a practical and explainable path toward more reliable automated WBC analysis in clinical workflows.
☆ Enhanced Motion Forecasting with Plug-and-Play Multimodal Large Language Models IROS 2025
Current autonomous driving systems rely on specialized models for perceiving and predicting motion, which demonstrate reliable performance in standard conditions. However, generalizing cost-effectively to diverse real-world scenarios remains a significant challenge. To address this, we propose Plug-and-Forecast (PnF), a plug-and-play approach that augments existing motion forecasting models with multimodal large language models (MLLMs). PnF builds on the insight that natural language provides a more effective way to describe and handle complex scenarios, enabling quick adaptation to targeted behaviors. We design prompts to extract structured scene understanding from MLLMs and distill this information into learnable embeddings to augment existing behavior prediction models. Our method leverages the zero-shot reasoning capabilities of MLLMs to achieve significant improvements in motion prediction performance, while requiring no fine-tuning -- making it practical to adopt. We validate our approach on two state-of-the-art motion forecasting models using the Waymo Open Motion Dataset and the nuScenes Dataset, demonstrating consistent performance improvements across both benchmarks.
comment: In proceedings of IROS 2025
☆ FineVision: Open Data Is All You Need
The advancement of vision-language models (VLMs) is hampered by a fragmented landscape of inconsistent and contaminated public datasets. We introduce FineVision, a meticulously collected, curated, and unified corpus of 24 million samples - the largest open resource of its kind. We unify more than 200 sources into 185 subsets via a semi-automated, human-in-the-loop pipeline: automation performs bulk ingestion and schema mapping, while reviewers audit mappings and spot-check outputs to verify faithful consumption of annotations, appropriate formatting and diversity, and safety; issues trigger targeted fixes and re-runs. The workflow further applies rigorous de-duplication within and across sources and decontamination against 66 public benchmarks. FineVision also encompasses agentic/GUI tasks with a unified action space; reviewers validate schemas and inspect a sample of trajectories to confirm executable fidelity. Models trained on FineVision consistently outperform those trained on existing open mixtures across a broad evaluation suite, underscoring the benefits of scale, data hygiene, and balanced automation with human oversight. We release the corpus and curation tools to accelerate data-centric VLM research.
☆ Fair and Interpretable Deepfake Detection in Videos
Existing deepfake detection methods often exhibit bias, lack transparency, and fail to capture temporal information, leading to biased decisions and unreliable results across different demographic groups. In this paper, we propose a fairness-aware deepfake detection framework that integrates temporal feature learning and demographic-aware data augmentation to enhance fairness and interpretability. Our method leverages sequence-based clustering for temporal modeling of deepfake videos and concept extraction to improve detection reliability while also facilitating interpretable decisions for non-expert users. Additionally, we introduce a demography-aware data augmentation method that balances underrepresented groups and applies frequency-domain transformations to preserve deepfake artifacts, thereby mitigating bias and improving generalization. Extensive experiments on FaceForensics++, DFD, Celeb-DF, and DFDC datasets using state-of-the-art (SoTA) architectures (Xception, ResNet) demonstrate the efficacy of the proposed method in obtaining the best tradeoff between fairness and accuracy when compared to SoTA.
comment: 10 pages (including References)
☆ From Preferences to Prejudice: The Role of Alignment Tuning in Shaping Social Bias in Video Diffusion Models
Recent advances in video diffusion models have significantly enhanced text-to-video generation, particularly through alignment tuning using reward models trained on human preferences. While these methods improve visual quality, they can unintentionally encode and amplify social biases. To systematically trace how such biases evolve throughout the alignment pipeline, we introduce VideoBiasEval, a comprehensive diagnostic framework for evaluating social representation in video generation. Grounded in established social bias taxonomies, VideoBiasEval employs an event-based prompting strategy to disentangle semantic content (actions and contexts) from actor attributes (gender and ethnicity). It further introduces multi-granular metrics to evaluate (1) overall ethnicity bias, (2) gender bias conditioned on ethnicity, (3) distributional shifts in social attributes across model variants, and (4) the temporal persistence of bias within videos. Using this framework, we conduct the first end-to-end analysis connecting biases in human preference datasets, their amplification in reward models, and their propagation through alignment-tuned video diffusion models. Our results reveal that alignment tuning not only strengthens representational biases but also makes them temporally stable, producing smoother yet more stereotyped portrayals. These findings highlight the need for bias-aware evaluation and mitigation throughout the alignment process to ensure fair and socially responsible video generation.
☆ Taming Modality Entanglement in Continual Audio-Visual Segmentation
Recently, significant progress has been made in multi-modal continual learning, aiming to learn new tasks sequentially in multi-modal settings while preserving performance on previously learned ones. However, existing methods mainly focus on coarse-grained tasks, with limitations in addressing modality entanglement in fine-grained continual learning settings. To bridge this gap, we introduce a novel Continual Audio-Visual Segmentation (CAVS) task, aiming to continuously segment new classes guided by audio. Through comprehensive analysis, two critical challenges are identified: 1) multi-modal semantic drift, where a sounding objects is labeled as background in sequential tasks; 2) co-occurrence confusion, where frequent co-occurring classes tend to be confused. In this work, a Collision-based Multi-modal Rehearsal (CMR) framework is designed to address these challenges. Specifically, for multi-modal semantic drift, a Multi-modal Sample Selection (MSS) strategy is proposed to select samples with high modal consistency for rehearsal. Meanwhile, for co-occurence confusion, a Collision-based Sample Rehearsal (CSR) mechanism is designed, allowing for the increase of rehearsal sample frequency of those confusable classes during training process. Moreover, we construct three audio-visual incremental scenarios to verify effectiveness of our method. Comprehensive experiments demonstrate that our method significantly outperforms single-modal continual learning methods.
☆ When One Moment Isn't Enough: Multi-Moment Retrieval with Cross-Moment Interactions NeurIPS 2025
Existing Moment retrieval (MR) methods focus on Single-Moment Retrieval (SMR). However, one query can correspond to multiple relevant moments in real-world applications. This makes the existing datasets and methods insufficient for video temporal grounding. By revisiting the gap between current MR tasks and real-world applications, we introduce a high-quality datasets called QVHighlights Multi-Moment Dataset (QV-M$^2$), along with new evaluation metrics tailored for multi-moment retrieval (MMR). QV-M$^2$ consists of 2,212 annotations covering 6,384 video segments. Building on existing efforts in MMR, we propose a framework called FlashMMR. Specifically, we propose a Multi-moment Post-verification module to refine the moment boundaries. We introduce constrained temporal adjustment and subsequently leverage a verification module to re-evaluate the candidate segments. Through this sophisticated filtering pipeline, low-confidence proposals are pruned, and robust multi-moment alignment is achieved. We retrain and evaluate 6 existing MR methods on QV-M$^2$ and QVHighlights under both SMR and MMR settings. Results show that QV-M$^2$ serves as an effective benchmark for training and evaluating MMR models, while FlashMMR provides a strong baseline. Specifically, on QV-M$^2$, it achieves improvements over prior SOTA method by 3.00% on G-mAP, 2.70% on mAP@3+tgt, and 2.56% on mR@3. The proposed benchmark and method establish a foundation for advancing research in more realistic and challenging video temporal grounding scenarios. Code is released at https://github.com/Zhuo-Cao/QV-M2.
comment: Accepted to NeurIPS 2025
☆ $\mathcal{V}isi\mathcal{P}runer$: Decoding Discontinuous Cross-Modal Dynamics for Efficient Multimodal LLMs EMNLP 2025
Multimodal Large Language Models (MLLMs) have achieved strong performance across vision-language tasks, but suffer from significant computational overhead due to the quadratic growth of attention computations with the number of multimodal tokens. Though efforts have been made to prune tokens in MLLMs, \textit{they lack a fundamental understanding of how MLLMs process and fuse multimodal information.} Through systematic analysis, we uncover a \textbf{three-stage} cross-modal interaction process: (1) Shallow layers recognize task intent, with visual tokens acting as passive attention sinks; (2) Cross-modal fusion occurs abruptly in middle layers, driven by a few critical visual tokens; (3) Deep layers discard vision tokens, focusing solely on linguistic refinement. Based on these findings, we propose \emph{VisiPruner}, a training-free pruning framework that reduces up to 99\% of vision-related attention computations and 53.9\% of FLOPs on LLaVA-v1.5 7B. It significantly outperforms existing token pruning methods and generalizes across diverse MLLMs. Beyond pruning, our insights further provide actionable guidelines for training efficient MLLMs by aligning model architecture with its intrinsic layer-wise processing dynamics. Our code is available at: https://github.com/EIT-NLP/VisiPruner.
comment: EMNLP 2025 Main
☆ Optimizing DINOv2 with Registers for Face Anti-Spoofing ICCV 2025
Face recognition systems are designed to be robust against variations in head pose, illumination, and image blur during capture. However, malicious actors can exploit these systems by presenting a face photo of a registered user, potentially bypassing the authentication process. Such spoofing attacks must be detected prior to face recognition. In this paper, we propose a DINOv2-based spoofing attack detection method to discern minute differences between live and spoofed face images. Specifically, we employ DINOv2 with registers to extract generalizable features and to suppress perturbations in the attention mechanism, which enables focused attention on essential and minute features. We demonstrate the effectiveness of the proposed method through experiments conducted on the dataset provided by ``The 6th Face Anti-Spoofing Workshop: Unified Physical-Digital Attacks Detection@ICCV2025'' and SiW dataset.
comment: ICCV 2025 Workshop FAS
☆ EndoCIL: A Class-Incremental Learning Framework for Endoscopic Image Classification
Class-incremental learning (CIL) for endoscopic image analysis is crucial for real-world clinical applications, where diagnostic models should continuously adapt to evolving clinical data while retaining performance on previously learned ones. However, existing replay-based CIL methods fail to effectively mitigate catastrophic forgetting due to severe domain discrepancies and class imbalance inherent in endoscopic imaging. To tackle these challenges, we propose EndoCIL, a novel and unified CIL framework specifically tailored for endoscopic image diagnosis. EndoCIL incorporates three key components: Maximum Mean Discrepancy Based Replay (MDBR), employing a distribution-aligned greedy strategy to select diverse and representative exemplars, Prior Regularized Class Balanced Loss (PRCBL), designed to alleviate both inter-phase and intra-phase class imbalance by integrating prior class distributions and balance weights into the loss function, and Calibration of Fully-Connected Gradients (CFG), which adjusts the classifier gradients to mitigate bias toward new classes. Extensive experiments conducted on four public endoscopic datasets demonstrate that EndoCIL generally outperforms state-of-the-art CIL methods across varying buffer sizes and evaluation metrics. The proposed framework effectively balances stability and plasticity in lifelong endoscopic diagnosis, showing promising potential for clinical scalability and deployment.
☆ Round Outcome Prediction in VALORANT Using Tactical Features from Video Analysis IEEE 2025
Recently, research on predicting match outcomes in esports has been actively conducted, but much of it is based on match log data and statistical information. This research targets the FPS game VALORANT, which requires complex strategies, and aims to build a round outcome prediction model by analyzing minimap information in match footage. Specifically, based on the video recognition model TimeSformer, we attempt to improve prediction accuracy by incorporating detailed tactical features extracted from minimap information, such as character position information and other in-game events. This paper reports preliminary results showing that a model trained on a dataset augmented with such tactical event labels achieved approximately 81% prediction accuracy, especially from the middle phases of a round onward, significantly outperforming a model trained on a dataset with the minimap information itself. This suggests that leveraging tactical features from match footage is highly effective for predicting round outcomes in VALORANT.
comment: Accepted to IEEE 2025 Conference on Games
☆ From Pixels to People: Satellite-Based Mapping and Quantification of Riverbank Erosion and Lost Villages in Bangladesh
The great rivers of Bangladesh, arteries of commerce and sustenance, are also agents of relentless destruction. Each year, they swallow whole villages and vast tracts of farmland, erasing communities from the map and displacing thousands of families. To track this slow-motion catastrophe has, until now, been a Herculean task for human analysts. Here we show how a powerful general-purpose vision model, the Segment Anything Model (SAM), can be adapted to this task with remarkable precision. To do this, we assembled a new dataset - a digital chronicle of loss compiled from historical Google Earth imagery of Bangladesh's most vulnerable regions, including Mokterer Char Union, Kedarpur Union, Balchipara village, and Chowhali Upazila, from 2003 to 2025. Crucially, this dataset is the first to include manually annotated data on the settlements that have vanished beneath the water. Our method first uses a simple color-channel analysis to provide a rough segmentation of land and water, and then fine-tunes SAM's mask decoder to recognize the subtle signatures of riverbank erosion. The resulting model demonstrates a keen eye for this destructive process, achieving a mean Intersection over Union of 86.30% and a Dice score of 92.60% - a performance that significantly surpasses traditional methods and off-the-shelf deep learning models. This work delivers three key contributions: the first annotated dataset of disappeared settlements in Bangladesh due to river erosion; a specialized AI model fine-tuned for this critical task; and a method for quantifying land loss with compelling visual evidence. Together, these tools provide a powerful new lens through which policymakers and disaster management agencies can monitor erosion, anticipate its trajectory, and ultimately protect the vulnerable communities in its path.
comment: Submitted to the International Conference on Data and Applied Analytics (IDAA 2025). 15 pages, 5 figures, 4 tables
☆ ZSPAPrune: Zero-Shot Prompt-Aware Token Pruning for Vision-Language Models
As the capabilities of Vision-Language Models (VLMs) advance, they can process increasingly large inputs, which, unlike in LLMs, generates significant visual token redundancy and leads to prohibitive inference costs. While many methods aim to reduce these costs by pruning visual tokens, existing approaches, whether based on attention or diversity, typically neglect the guidance of the text prompt and thus fail to prioritize task relevance. In this work, we propose a novel, zero-shot method that reframes the problem by introducing a prompt-aware perspective, explicitly modeling visual token pruning as a balance between task relevance and information diversity. Our hierarchical approach first selects a core set of task-relevant visual tokens and then supplements them with diversity tokens to preserve broader context. Experiments across multiple models and benchmarks show that our method achieves performance that matches or surpasses the state-of-the-art with only minimal accuracy loss, even when pruning up to 90\% of the tokens. Furthermore, these gains are accompanied by significant reductions in GPU memory footprint and inference latency.
☆ HIDISC: A Hyperbolic Framework for Domain Generalization with Generalized Category Discovery NeurIPS
Generalized Category Discovery (GCD) aims to classify test-time samples into either seen categories** -- available during training -- or novel ones, without relying on label supervision. Most existing GCD methods assume simultaneous access to labeled and unlabeled data during training and arising from the same domain, limiting applicability in open-world scenarios involving distribution shifts. Domain Generalization with GCD (DG-GCD) lifts this constraint by requiring models to generalize to unseen domains containing novel categories, without accessing targetdomain data during training. The only prior DG-GCD method, DG2CD-Net, relies on episodic training with multiple synthetic domains and task vector aggregation, incurring high computational cost and error accumulation. We propose HIDISC, a hyperbolic representation learning framework that achieves domain and category-level generalization without episodic simulation. To expose the model to minimal but diverse domain variations, we augment the source domain using GPT-guided diffusion, avoiding overfitting while maintaining efficiency. To structure the representation space, we introduce Tangent CutMix, a curvature-aware interpolation that synthesizes pseudo-novel samples in tangent space, preserving manifold consistency. A unified loss -- combining penalized Busemann alignment, hybrid hyperbolic contrastive regularization, and adaptive outlier repulsion -- **facilitates compact, semantically structured embeddings. A learnable curvature parameter further adapts the geometry to dataset complexity. HIDISC achieves state-of-the-art results on PACS , Office-Home , and DomainNet, consistently outperforming the existing Euclidean and hyperbolic (DG)-GCD baselines.
comment: Accpeted at NeurIPS (2025) Main Conference
☆ Capturing Head Avatar with Hand Contacts from a Monocular Video ICCV 2025
Photorealistic 3D head avatars are vital for telepresence, gaming, and VR. However, most methods focus solely on facial regions, ignoring natural hand-face interactions, such as a hand resting on the chin or fingers gently touching the cheek, which convey cognitive states like pondering. In this work, we present a novel framework that jointly learns detailed head avatars and the non-rigid deformations induced by hand-face interactions. There are two principal challenges in this task. First, naively tracking hand and face separately fails to capture their relative poses. To overcome this, we propose to combine depth order loss with contact regularization during pose tracking, ensuring correct spatial relationships between the face and hand. Second, no publicly available priors exist for hand-induced deformations, making them non-trivial to learn from monocular videos. To address this, we learn a PCA basis specific to hand-induced facial deformations from a face-hand interaction dataset. This reduces the problem to estimating a compact set of PCA parameters rather than a full spatial deformation field. Furthermore, inspired by physics-based simulation, we incorporate a contact loss that provides additional supervision, significantly reducing interpenetration artifacts and enhancing the physical plausibility of the results. We evaluate our approach on RGB(D) videos captured by an iPhone. Additionally, to better evaluate the reconstructed geometry, we construct a synthetic dataset of avatars with various types of hand interactions. We show that our method can capture better appearance and more accurate deforming geometry of the face than SOTA surface reconstruction methods.
comment: ICCV 2025
☆ Benchmarking Out-of-Distribution Detection for Plankton Recognition: A Systematic Evaluation of Advanced Methods in Marine Ecological Monitoring
Automated plankton recognition models face significant challenges during real-world deployment due to distribution shifts (Out-of-Distribution, OoD) between training and test data. This stems from plankton's complex morphologies, vast species diversity, and the continuous discovery of novel species, which leads to unpredictable errors during inference. Despite rapid advancements in OoD detection methods in recent years, the field of plankton recognition still lacks a systematic integration of the latest computer vision developments and a unified benchmark for large-scale evaluation. To address this, this paper meticulously designed a series of OoD benchmarks simulating various distribution shift scenarios based on the DYB-PlanktonNet dataset \cite{875n-f104-21}, and systematically evaluated twenty-two OoD detection methods. Extensive experimental results demonstrate that the ViM \cite{wang2022vim} method significantly outperforms other approaches in our constructed benchmarks, particularly excelling in Far-OoD scenarios with substantial improvements in key metrics. This comprehensive evaluation not only provides a reliable reference for algorithm selection in automated plankton recognition but also lays a solid foundation for future research in plankton OoD detection. To our knowledge, this study marks the first large-scale, systematic evaluation and analysis of Out-of-Distribution data detection methods in plankton recognition. Code is available at https://github.com/BlackJack0083/PlanktonOoD.
☆ Generation then Reconstruction: Accelerating Masked Autoregressive Models via Two-Stage Sampling
Masked Autoregressive (MAR) models promise better efficiency in visual generation than autoregressive (AR) models for the ability of parallel generation, yet their acceleration potential remains constrained by the modeling complexity of spatially correlated visual tokens in a single step. To address this limitation, we introduce Generation then Reconstruction (GtR), a training-free hierarchical sampling strategy that decomposes generation into two stages: structure generation establishing global semantic scaffolding, followed by detail reconstruction efficiently completing remaining tokens. Assuming that it is more difficult to create an image from scratch than to complement images based on a basic image framework, GtR is designed to achieve acceleration by computing the reconstruction stage quickly while maintaining the generation quality by computing the generation stage slowly. Moreover, observing that tokens on the details of an image often carry more semantic information than tokens in the salient regions, we further propose Frequency-Weighted Token Selection (FTS) to offer more computation budget to tokens on image details, which are localized based on the energy of high frequency information. Extensive experiments on ImageNet class-conditional and text-to-image generation demonstrate 3.72x speedup on MAR-H while maintaining comparable quality (e.g., FID: 1.59, IS: 304.4 vs. original 1.59, 299.1), substantially outperforming existing acceleration methods across various model scales and generation tasks. Our codes will be released in https://github.com/feihongyan1/GtR.
comment: 12 pages, 6 figures
☆ Investigating Adversarial Robustness against Preprocessing used in Blackbox Face Recognition
Face Recognition (FR) models have been shown to be vulnerable to adversarial examples that subtly alter benign facial images, exposing blind spots in these systems, as well as protecting user privacy. End-to-end FR systems first obtain preprocessed faces from diverse facial imagery prior to computing the similarity of the deep feature embeddings. Whilst face preprocessing is a critical component of FR systems, and hence adversarial attacks against them, we observe that this preprocessing is often overlooked in blackbox settings. Our study seeks to investigate the transferability of several out-of-the-box state-of-the-art adversarial attacks against FR when applied against different preprocessing techniques used in a blackbox setting. We observe that the choice of face detection model can degrade the attack success rate by up to 78%, whereas choice of interpolation method during downsampling has relatively minimal impacts. Furthermore, we find that the requirement for facial preprocessing even degrades attack strength in a whitebox setting, due to the unintended interaction of produced noise vectors against face detection models. Based on these findings, we propose a preprocessing-invariant method using input transformations that improves the transferability of the studied attacks by up to 27%. Our findings highlight the importance of preprocessing in FR systems, and the need for its consideration towards improving the adversarial generalisation of facial adversarial examples.
comment: Accepted for publication in DICTA 2025
☆ GACO-CAD: Geometry-Augmented and Conciseness-Optimized CAD Model Generation from Single Image
Generating editable, parametric CAD models from a single image holds great potential to lower the barriers of industrial concept design. However, current multi-modal large language models (MLLMs) still struggle with accurately inferring 3D geometry from 2D images due to limited spatial reasoning capabilities. We address this limitation by introducing GACO-CAD, a novel two-stage post-training framework. It is designed to achieve a joint objective: simultaneously improving the geometric accuracy of the generated CAD models and encouraging the use of more concise modeling procedures. First, during supervised fine-tuning, we leverage depth and surface normal maps as dense geometric priors, combining them with the RGB image to form a multi-channel input. In the context of single-view reconstruction, these priors provide complementary spatial cues that help the MLLM more reliably recover 3D geometry from 2D observations. Second, during reinforcement learning, we introduce a group length reward that, while preserving high geometric fidelity, promotes the generation of more compact and less redundant parametric modeling sequences. A simple dynamic weighting strategy is adopted to stabilize training. Experiments on the DeepCAD and Fusion360 datasets show that GACO-CAD achieves state-of-the-art performance under the same MLLM backbone, consistently outperforming existing methods in terms of code validity, geometric accuracy, and modeling conciseness.
☆ DiffVLA++: Bridging Cognitive Reasoning and End-to-End Driving through Metric-Guided Alignment
Conventional end-to-end (E2E) driving models are effective at generating physically plausible trajectories, but often fail to generalize to long-tail scenarios due to the lack of essential world knowledge to understand and reason about surrounding environments. In contrast, Vision-Language-Action (VLA) models leverage world knowledge to handle challenging cases, but their limited 3D reasoning capability can lead to physically infeasible actions. In this work we introduce DiffVLA++, an enhanced autonomous driving framework that explicitly bridges cognitive reasoning and E2E planning through metric-guided alignment. First, we build a VLA module directly generating semantically grounded driving trajectories. Second, we design an E2E module with a dense trajectory vocabulary that ensures physical feasibility. Third, and most critically, we introduce a metric-guided trajectory scorer that guides and aligns the outputs of the VLA and E2E modules, thereby integrating their complementary strengths. The experiment on the ICCV 2025 Autonomous Grand Challenge leaderboard shows that DiffVLA++ achieves EPDMS of 49.12.
☆ KineDiff3D: Kinematic-Aware Diffusion for Category-Level Articulated Object Shape Reconstruction and Generation
Articulated objects, such as laptops and drawers, exhibit significant challenges for 3D reconstruction and pose estimation due to their multi-part geometries and variable joint configurations, which introduce structural diversity across different states. To address these challenges, we propose KineDiff3D: Kinematic-Aware Diffusion for Category-Level Articulated Object Shape Reconstruction and Generation, a unified framework for reconstructing diverse articulated instances and pose estimation from single view input. Specifically, we first encode complete geometry (SDFs), joint angles, and part segmentation into a structured latent space via a novel Kinematic-Aware VAE (KA-VAE). In addition, we employ two conditional diffusion models: one for regressing global pose (SE(3)) and joint parameters, and another for generating the kinematic-aware latent code from partial observations. Finally, we produce an iterative optimization module that bidirectionally refines reconstruction accuracy and kinematic parameters via Chamfer-distance minimization while preserving articulation constraints. Experimental results on synthetic, semi-synthetic, and real-world datasets demonstrate the effectiveness of our approach in accurately reconstructing articulated objects and estimating their kinematic properties.
☆ GOOD: Training-Free Guided Diffusion Sampling for Out-of-Distribution Detection
Recent advancements have explored text-to-image diffusion models for synthesizing out-of-distribution (OOD) samples, substantially enhancing the performance of OOD detection. However, existing approaches typically rely on perturbing text-conditioned embeddings, resulting in semantic instability and insufficient shift diversity, which limit generalization to realistic OOD. To address these challenges, we propose GOOD, a novel and flexible framework that directly guides diffusion sampling trajectories towards OOD regions using off-the-shelf in-distribution (ID) classifiers. GOOD incorporates dual-level guidance: (1) Image-level guidance based on the gradient of log partition to reduce input likelihood, drives samples toward low-density regions in pixel space. (2) Feature-level guidance, derived from k-NN distance in the classifier's latent space, promotes sampling in feature-sparse regions. Hence, this dual-guidance design enables more controllable and diverse OOD sample generation. Additionally, we introduce a unified OOD score that adaptively combines image and feature discrepancies, enhancing detection robustness. We perform thorough quantitative and qualitative analyses to evaluate the effectiveness of GOOD, demonstrating that training with samples generated by GOOD can notably enhance OOD detection performance.
comment: 28 pages, 16 figures, conference
☆ Matricial Free Energy as a Gaussianizing Regularizer: Enhancing Autoencoders for Gaussian Code Generation
We introduce a novel regularization scheme for autoencoders based on matricial free energy. Our approach defines a differentiable loss function in terms of the singular values of the code matrix (code dimension x batch size). From the standpoint of free probability an d random matrix theory, this loss achieves its minimum when the singular value distribution of the code matrix coincides with that of an appropriately sculpted random metric with i.i.d. Gaussian entries. Empirical simulations demonstrate that minimizing the negative matricial free energy through standard stochastic gradient-based training yields Gaussian-like codes that generalize across training and test sets. Building on this foundation, we propose a matricidal free energy maximizing autoencoder that reliably produces Gaussian codes and show its application to underdetermined inverse problems.
☆ Towards Imperceptible Watermarking Via Environment Illumination for Consumer Cameras
This paper introduces a method for using LED-based environmental lighting to produce visually imperceptible watermarks for consumer cameras. Our approach optimizes an LED light source's spectral profile to be minimally visible to the human eye while remaining highly detectable by typical consumer cameras. The method jointly considers the human visual system's sensitivity to visible spectra, modern consumer camera sensors' spectral sensitivity, and narrowband LEDs' ability to generate broadband spectra perceived as "white light" (specifically, D65 illumination). To ensure imperceptibility, we employ spectral modulation rather than intensity modulation. Unlike conventional visible light communication, our approach enables watermark extraction at standard low frame rates (30-60 fps). While the information transfer rate is modest-embedding 128 bits within a 10-second video clip-this capacity is sufficient for essential metadata supporting privacy protection and content verification.
☆ Boosting Fidelity for Pre-Trained-Diffusion-Based Low-Light Image Enhancement via Condition Refinement
Diffusion-based methods, leveraging pre-trained large models like Stable Diffusion via ControlNet, have achieved remarkable performance in several low-level vision tasks. However, Pre-Trained Diffusion-Based (PTDB) methods often sacrifice content fidelity to attain higher perceptual realism. This issue is exacerbated in low-light scenarios, where severely degraded information caused by the darkness limits effective control. We identify two primary causes of fidelity loss: the absence of suitable conditional latent modeling and the lack of bidirectional interaction between the conditional latent and noisy latent in the diffusion process. To address this, we propose a novel optimization strategy for conditioning in pre-trained diffusion models, enhancing fidelity while preserving realism and aesthetics. Our method introduces a mechanism to recover spatial details lost during VAE encoding, i.e., a latent refinement pipeline incorporating generative priors. Additionally, the refined latent condition interacts dynamically with the noisy latent, leading to improved restoration performance. Our approach is plug-and-play, seamlessly integrating into existing diffusion networks to provide more effective control. Extensive experiments demonstrate significant fidelity improvements in PTDB methods.
☆ Shape-aware Inertial Poser: Motion Tracking for Humans with Diverse Shapes Using Sparse Inertial Sensors SIGGRAPH
Human motion capture with sparse inertial sensors has gained significant attention recently. However, existing methods almost exclusively rely on a template adult body shape to model the training data, which poses challenges when generalizing to individuals with largely different body shapes (such as a child). This is primarily due to the variation in IMU-measured acceleration caused by changes in body shape. To fill this gap, we propose Shape-aware Inertial Poser (SAIP), the first solution considering body shape differences in sparse inertial-based motion capture. Specifically, we decompose the sensor measurements related to shape and pose in order to effectively model their joint correlations. Firstly, we train a regression model to transfer the IMU-measured accelerations of a real body to match the template adult body model, compensating for the shape-related sensor measurements. Then, we can easily follow the state-of-the-art methods to estimate the full body motions of the template-shaped body. Finally, we utilize a second regression model to map the joint velocities back to the real body, combined with a shape-aware physical optimization strategy to calculate global motions on the subject. Furthermore, our method relies on body shape awareness, introducing the first inertial shape estimation scheme. This is accomplished by modeling the shape-conditioned IMU-pose correlation using an MLP-based network. To validate the effectiveness of SAIP, we also present the first IMU motion capture dataset containing individuals of different body sizes. This dataset features 10 children and 10 adults, with heights ranging from 110 cm to 190 cm, and a total of 400 minutes of paired IMU-Motion samples. Extensive experimental results demonstrate that SAIP can effectively handle motion capture tasks for diverse body shapes. The code and dataset are available at https://github.com/yinlu5942/SAIP.
comment: Accepted by SIGGRAPH Asia 2025 (TOG)
☆ GSPlane: Concise and Accurate Planar Reconstruction via Structured Representation
Planes are fundamental primitives of 3D sences, especially in man-made environments such as indoor spaces and urban streets. Representing these planes in a structured and parameterized format facilitates scene editing and physical simulations in downstream applications. Recently, Gaussian Splatting (GS) has demonstrated remarkable effectiveness in the Novel View Synthesis task, with extensions showing great potential in accurate surface reconstruction. However, even state-of-the-art GS representations often struggle to reconstruct planar regions with sufficient smoothness and precision. To address this issue, we propose GSPlane, which recovers accurate geometry and produces clean and well-structured mesh connectivity for plane regions in the reconstructed scene. By leveraging off-the-shelf segmentation and normal prediction models, GSPlane extracts robust planar priors to establish structured representations for planar Gaussian coordinates, which help guide the training process by enforcing geometric consistency. To further enhance training robustness, a Dynamic Gaussian Re-classifier is introduced to adaptively reclassify planar Gaussians with persistently high gradients as non-planar, ensuring more reliable optimization. Furthermore, we utilize the optimized planar priors to refine the mesh layouts, significantly improving topological structure while reducing the number of vertices and faces. We also explore applications of the structured planar representation, which enable decoupling and flexible manipulation of objects on supportive planes. Extensive experiments demonstrate that, with no sacrifice in rendering quality, the introduction of planar priors significantly improves the geometric accuracy of the extracted meshes across various baselines.
☆ Towards a Generalizable Fusion Architecture for Multimodal Object Detection ICCV 2025
Multimodal object detection improves robustness in chal- lenging conditions by leveraging complementary cues from multiple sensor modalities. We introduce Filtered Multi- Modal Cross Attention Fusion (FMCAF), a preprocess- ing architecture designed to enhance the fusion of RGB and infrared (IR) inputs. FMCAF combines a frequency- domain filtering block (Freq-Filter) to suppress redun- dant spectral features with a cross-attention-based fusion module (MCAF) to improve intermodal feature sharing. Unlike approaches tailored to specific datasets, FMCAF aims for generalizability, improving performance across different multimodal challenges without requiring dataset- specific tuning. On LLVIP (low-light pedestrian detec- tion) and VEDAI (aerial vehicle detection), FMCAF outper- forms traditional fusion (concatenation), achieving +13.9% mAP@50 on VEDAI and +1.1% on LLVIP. These results support the potential of FMCAF as a flexible foundation for robust multimodal fusion in future detection pipelines.
comment: 8 pages, 8 figures, accepted at ICCV 2025 MIRA Workshop
☆ ProDAT: Progressive Density-Aware Tail-Drop for Point Cloud Coding
Three-dimensional (3D) point clouds are becoming increasingly vital in applications such as autonomous driving, augmented reality, and immersive communication, demanding real-time processing and low latency. However, their large data volumes and bandwidth constraints hinder the deployment of high-quality services in resource-limited environments. Progres- sive coding, which allows for decoding at varying levels of detail, provides an alternative by allowing initial partial decoding with subsequent refinement. Although recent learning-based point cloud geometry coding methods have achieved notable success, their fixed latent representation does not support progressive decoding. To bridge this gap, we propose ProDAT, a novel density-aware tail-drop mechanism for progressive point cloud coding. By leveraging density information as a guidance signal, latent features and coordinates are decoded adaptively based on their significance, therefore achieving progressive decoding at multiple bitrates using one single model. Experimental results on benchmark datasets show that the proposed ProDAT not only enables progressive coding but also achieves superior coding efficiency compared to state-of-the-art learning-based coding techniques, with over 28.6% BD-rate improvement for PSNR- D2 on SemanticKITTI and over 18.15% for ShapeNet
☆ Frugal Federated Learning for Violence Detection: A Comparison of LoRA-Tuned VLMs and Personalized CNNs
We examine frugal federated learning approaches to violence detection by comparing two complementary strategies: (i) zero-shot and federated fine-tuning of vision-language models (VLMs), and (ii) personalized training of a compact 3D convolutional neural network (CNN3D). Using LLaVA-7B and a 65.8M parameter CNN3D as representative cases, we evaluate accuracy, calibration, and energy usage under realistic non-IID settings. Both approaches exceed 90% accuracy. CNN3D slightly outperforms Low-Rank Adaptation(LoRA)-tuned VLMs in ROC AUC and log loss, while using less energy. VLMs remain favorable for contextual reasoning and multimodal inference. We quantify energy and CO$_2$ emissions across training and inference, and analyze sustainability trade-offs for deployment. To our knowledge, this is the first comparative study of LoRA-tuned vision-language models and personalized CNNs for federated violence detection, with an emphasis on energy efficiency and environmental metrics. These findings support a hybrid model: lightweight CNNs for routine classification, with selective VLM activation for complex or descriptive scenarios. The resulting framework offers a reproducible baseline for responsible, resource-aware AI in video surveillance, with extensions toward real-time, multimodal, and lifecycle-aware systems.
comment: 7 pages, 1 figure, FLTA 2025
☆ Adapting Stereo Vision From Objects To 3D Lunar Surface Reconstruction with the StereoLunar Dataset ICCV
Accurate 3D reconstruction of lunar surfaces is essential for space exploration. However, existing stereo vision reconstruction methods struggle in this context due to the Moon's lack of texture, difficult lighting variations, and atypical orbital trajectories. State-of-the-art deep learning models, trained on human-scale datasets, have rarely been tested on planetary imagery and cannot be transferred directly to lunar conditions. To address this issue, we introduce LunarStereo, the first open dataset of photorealistic stereo image pairs of the Moon, simulated using ray tracing based on high-resolution topography and reflectance models. It covers diverse altitudes, lighting conditions, and viewing angles around the lunar South Pole, offering physically grounded supervision for 3D reconstruction tasks. Based on this dataset, we adapt the MASt3R model to the lunar domain through fine-tuning on LunarStereo. We validate our approach through extensive qualitative and quantitative experiments on both synthetic and real lunar data, evaluating 3D surface reconstruction and relative pose estimation. Extensive experiments on synthetic and real lunar data validate the approach, demonstrating significant improvements over zero-shot baselines and paving the way for robust cross-scale generalization in extraterrestrial environments.
comment: Accepted to ICCV workshop 2025. The project page can be accessed via this https://clementinegrethen.github.io/publications/3D-Vast-ICCV2025.html URL. The source code is available at this https://github.com/clementinegrethen/StereoLunar URL
☆ World-in-World: World Models in a Closed-Loop World
Generative world models (WMs) can now simulate worlds with striking visual realism, which naturally raises the question of whether they can endow embodied agents with predictive perception for decision making. Progress on this question has been limited by fragmented evaluation: most existing benchmarks adopt open-loop protocols that emphasize visual quality in isolation, leaving the core issue of embodied utility unresolved, i.e., do WMs actually help agents succeed at embodied tasks? To address this gap, we introduce World-in-World, the first open platform that benchmarks WMs in a closed-loop world that mirrors real agent-environment interactions. World-in-World provides a unified online planning strategy and a standardized action API, enabling heterogeneous WMs for decision making. We curate four closed-loop environments that rigorously evaluate diverse WMs, prioritize task success as the primary metric, and move beyond the common focus on visual quality; we also present the first data scaling law for world models in embodied settings. Our study uncovers three surprises: (1) visual quality alone does not guarantee task success, controllability matters more; (2) scaling post-training with action-observation data is more effective than upgrading the pretrained video generators; and (3) allocating more inference-time compute allows WMs to substantially improve closed-loop performance.
comment: Code is at https://github.com/World-In-World/world-in-world
☆ SafeCoop: Unravelling Full Stack Safety in Agentic Collaborative Driving
Collaborative driving systems leverage vehicle-to-everything (V2X) communication across multiple agents to enhance driving safety and efficiency. Traditional V2X systems take raw sensor data, neural features, or perception results as communication media, which face persistent challenges, including high bandwidth demands, semantic loss, and interoperability issues. Recent advances investigate natural language as a promising medium, which can provide semantic richness, decision-level reasoning, and human-machine interoperability at significantly lower bandwidth. Despite great promise, this paradigm shift also introduces new vulnerabilities within language communication, including message loss, hallucinations, semantic manipulation, and adversarial attacks. In this work, we present the first systematic study of full-stack safety and security issues in natural-language-based collaborative driving. Specifically, we develop a comprehensive taxonomy of attack strategies, including connection disruption, relay/replay interference, content spoofing, and multi-connection forgery. To mitigate these risks, we introduce an agentic defense pipeline, which we call SafeCoop, that integrates a semantic firewall, language-perception consistency checks, and multi-source consensus, enabled by an agentic transformation function for cross-frame spatial alignment. We systematically evaluate SafeCoop in closed-loop CARLA simulation across 32 critical scenarios, achieving 69.15% driving score improvement under malicious attacks and up to 67.32% F1 score for malicious detection. This study provides guidance for advancing research on safe, secure, and trustworthy language-driven collaboration in transportation systems. Our project page is https://xiangbogaobarry.github.io/SafeCoop.
☆ Online In-Context Distillation for Low-Resource Vision Language Models
As the field continues its push for ever more resources, this work turns the spotlight on a critical question: how can vision-language models (VLMs) be adapted to thrive in low-resource, budget-constrained settings? While large VLMs offer strong performance, they are impractical to deploy in such settings. Small VLMs, on the other hand, are efficient but typically require costly fine-tuning to close the performance gap with larger models in the deployment domain. Inspired by the in-context learning framework, we propose an online In-Context Distillation (ICD) method, in which a small VLM collaborates with a stronger teacher model at inference time, distilling its knowledge via sparse demonstrations to efficiently bridge the gap between them. Our method is built on an in-depth analysis that identifies the scale and the choice of models for which vision-language ICL is currently feasible, and demonstrates the advantage of ICL over fine-tuning under constrained compute budgets. We enhance our method with a novel cross-modal demonstration selection strategy, teacher test-time scaling to reduce noise, and student uncertainty conditioning to dynamically populate a demonstration pool and minimize teacher queries. Our ICD method significantly boosts the performance of small models (up to 33%) using scarce teacher annotations (as low as 4%), and competes with the teacher's zero-shot performance.
☆ From Volume Rendering to 3D Gaussian Splatting: Theory and Applications
The problem of 3D reconstruction from posed images is undergoing a fundamental transformation, driven by continuous advances in 3D Gaussian Splatting (3DGS). By modeling scenes explicitly as collections of 3D Gaussians, 3DGS enables efficient rasterization through volumetric splatting, offering thus a seamless integration with common graphics pipelines. Despite its real-time rendering capabilities for novel view synthesis, 3DGS suffers from a high memory footprint, the tendency to bake lighting effects directly into its representation, and limited support for secondary-ray effects. This tutorial provides a concise yet comprehensive overview of the 3DGS pipeline, starting from its splatting formulation and then exploring the main efforts in addressing its limitations. Finally, we survey a range of applications that leverage 3DGS for surface reconstruction, avatar modeling, animation, and content generation-highlighting its efficient rendering and suitability for feed-forward pipelines.
comment: Accepted at the Conference on Graphics, Patterns and Images (SIBGRAPI), math focused, 5 equations, 5 Figure, 5 pages of text and 1 of bibligraphy
☆ Accelerating Vision Transformers with Adaptive Patch Sizes
Vision Transformers (ViTs) partition input images into uniformly sized patches regardless of their content, resulting in long input sequence lengths for high-resolution images. We present Adaptive Patch Transformers (APT), which addresses this by using multiple different patch sizes within the same image. APT reduces the total number of input tokens by allocating larger patch sizes in more homogeneous areas and smaller patches in more complex ones. APT achieves a drastic speedup in ViT inference and training, increasing throughput by 40% on ViT-L and 50% on ViT-H while maintaining downstream performance, and can be applied to a previously fine-tuned ViT, converging in as little as 1 epoch. It also significantly reduces training and inference time without loss of performance in high-resolution dense visual tasks, achieving up to 30\% faster training and inference in visual QA, object detection, and semantic segmentation.
comment: Project page at https://rccchoudhury.github.io/apt/
☆ Big Data, Tiny Targets: An Exploratory Study in Machine Learning-enhanced Detection of Microplastic from Filters
Microplastics (MPs) are ubiquitous pollutants with demonstrated potential to impact ecosystems and human health. Their microscopic size complicates detection, classification, and removal, especially in biological and environmental samples. While techniques like optical microscopy, Scanning Electron Microscopy (SEM), and Atomic Force Microscopy (AFM) provide a sound basis for detection, applying these approaches requires usually manual analysis and prevents efficient use in large screening studies. To this end, machine learning (ML) has emerged as a powerful tool in advancing microplastic detection. In this exploratory study, we investigate potential, limitations and future directions of advancing the detection and quantification of MP particles and fibres using a combination of SEM imaging and machine learning-based object detection. For simplicity, we focus on a filtration scenario where image backgrounds exhibit a symmetric and repetitive pattern. Our findings indicate differences in the quality of YOLO models for the given task and the relevance of optimizing preprocessing. At the same time, we identify open challenges, such as limited amounts of expert-labeled data necessary for reliable training of ML models.
☆ Chimera: Compositional Image Generation using Part-based Concepting
Personalized image generative models are highly proficient at synthesizing images from text or a single image, yet they lack explicit control for composing objects from specific parts of multiple source images without user specified masks or annotations. To address this, we introduce Chimera, a personalized image generation model that generates novel objects by combining specified parts from different source images according to textual instructions. To train our model, we first construct a dataset from a taxonomy built on 464 unique (part, subject) pairs, which we term semantic atoms. From this, we generate 37k prompts and synthesize the corresponding images with a high-fidelity text-to-image model. We train a custom diffusion prior model with part-conditional guidance, which steers the image-conditioning features to enforce both semantic identity and spatial layout. We also introduce an objective metric PartEval to assess the fidelity and compositional accuracy of generation pipelines. Human evaluations and our proposed metric show that Chimera outperforms other baselines by 14% in part alignment and compositional accuracy and 21% in visual quality.
☆ HouseTour: A Virtual Real Estate A(I)gent ICCV 2025
We introduce HouseTour, a method for spatially-aware 3D camera trajectory and natural language summary generation from a collection of images depicting an existing 3D space. Unlike existing vision-language models (VLMs), which struggle with geometric reasoning, our approach generates smooth video trajectories via a diffusion process constrained by known camera poses and integrates this information into the VLM for 3D-grounded descriptions. We synthesize the final video using 3D Gaussian splatting to render novel views along the trajectory. To support this task, we present the HouseTour dataset, which includes over 1,200 house-tour videos with camera poses, 3D reconstructions, and real estate descriptions. Experiments demonstrate that incorporating 3D camera trajectories into the text generation process improves performance over methods handling each task independently. We evaluate both individual and end-to-end performance, introducing a new joint metric. Our work enables automated, professional-quality video creation for real estate and touristic applications without requiring specialized expertise or equipment.
comment: Published on ICCV 2025
☆ TriggerNet: A Novel Explainable AI Framework for Red Palm Mite Detection and Multi-Model Comparison and Heuristic-Guided Annotation
The red palm mite infestation has become a serious concern, particularly in regions with extensive palm cultivation, leading to reduced productivity and economic losses. Accurate and early identification of mite-infested plants is critical for effective management. The current study focuses on evaluating and comparing the ML model for classifying the affected plants and detecting the infestation. TriggerNet is a novel interpretable AI framework that integrates Grad-CAM, RISE, FullGrad, and TCAV to generate novel visual explanations for deep learning models in plant classification and disease detection. This study applies TriggerNet to address red palm mite (Raoiella indica) infestation, a major threat to palm cultivation and agricultural productivity. A diverse set of RGB images across 11 plant species, Arecanut, Date Palm, Bird of Paradise, Coconut Palm, Ginger, Citrus Tree, Palm Oil, Orchid, Banana Palm, Avocado Tree, and Cast Iron Plant was utilized for training and evaluation. Advanced deep learning models like CNN, EfficientNet, MobileNet, ViT, ResNet50, and InceptionV3, alongside machine learning classifiers such as Random Forest, SVM, and KNN, were employed for plant classification. For disease classification, all plants were categorized into four classes: Healthy, Yellow Spots, Reddish Bronzing, and Silk Webbing. Snorkel was used to efficiently label these disease classes by leveraging heuristic rules and patterns, reducing manual annotation time and improving dataset reliability.
comment: 17 pages, 9 figures
☆ SAVANT: Semantic Analysis with Vision-Augmented Anomaly deTection
Autonomous driving systems remain critically vulnerable to the long-tail of rare, out-of-distribution scenarios with semantic anomalies. While Vision Language Models (VLMs) offer promising reasoning capabilities, naive prompting approaches yield unreliable performance and depend on expensive proprietary models, limiting practical deployment. We introduce SAVANT (Semantic Analysis with Vision-Augmented Anomaly deTection), a structured reasoning framework that achieves high accuracy and recall in detecting anomalous driving scenarios from input images through layered scene analysis and a two-phase pipeline: structured scene description extraction followed by multi-modal evaluation. Our approach transforms VLM reasoning from ad-hoc prompting to systematic analysis across four semantic layers: Street, Infrastructure, Movable Objects, and Environment. SAVANT achieves 89.6% recall and 88.0% accuracy on real-world driving scenarios, significantly outperforming unstructured baselines. More importantly, we demonstrate that our structured framework enables a fine-tuned 7B parameter open-source model (Qwen2.5VL) to achieve 90.8% recall and 93.8% accuracy - surpassing all models evaluated while enabling local deployment at near-zero cost. By automatically labeling over 9,640 real-world images with high accuracy, SAVANT addresses the critical data scarcity problem in anomaly detection and provides a practical path toward reliable, accessible semantic monitoring for autonomous systems.
comment: 8 pages, 5 figures
☆ ViBED-Net: Video Based Engagement Detection Network Using Face-Aware and Scene-Aware Spatiotemporal Cues
Engagement detection in online learning environments is vital for improving student outcomes and personalizing instruction. We present ViBED-Net (Video-Based Engagement Detection Network), a novel deep learning framework designed to assess student engagement from video data using a dual-stream architecture. ViBED-Net captures both facial expressions and full-scene context by processing facial crops and entire video frames through EfficientNetV2 for spatial feature extraction. These features are then analyzed over time using two temporal modeling strategies: Long Short-Term Memory (LSTM) networks and Transformer encoders. Our model is evaluated on the DAiSEE dataset, a large-scale benchmark for affective state recognition in e-learning. To enhance performance on underrepresented engagement classes, we apply targeted data augmentation techniques. Among the tested variants, ViBED-Net with LSTM achieves 73.43\% accuracy, outperforming existing state-of-the-art approaches. ViBED-Net demonstrates that combining face-aware and scene-aware spatiotemporal cues significantly improves engagement detection accuracy. Its modular design allows flexibility for application across education, user experience research, and content personalization. This work advances video-based affective computing by offering a scalable, high-performing solution for real-world engagement analysis. The source code for this project is available on https://github.com/prateek-gothwal/ViBED-Net .
comment: 10 pages, 4 figures, 2 tables
☆ ManzaiSet: A Multimodal Dataset of Viewer Responses to Japanese Manzai Comedy ICCV 2025
We present ManzaiSet, the first large scale multimodal dataset of viewer responses to Japanese manzai comedy, capturing facial videos and audio from 241 participants watching up to 10 professional performances in randomized order (94.6 percent watched >= 8; analyses focus on n=228). This addresses the Western centric bias in affective computing. Three key findings emerge: (1) k means clustering identified three distinct viewer types: High and Stable Appreciators (72.8 percent, n=166), Low and Variable Decliners (13.2 percent, n=30), and Variable Improvers (14.0 percent, n=32), with heterogeneity of variance (Brown Forsythe p < 0.001); (2) individual level analysis revealed a positive viewing order effect (mean slope = 0.488, t(227) = 5.42, p < 0.001, permutation p < 0.001), contradicting fatigue hypotheses; (3) automated humor classification (77 instances, 131 labels) plus viewer level response modeling found no type wise differences after FDR correction. The dataset enables culturally aware emotion AI development and personalized entertainment systems tailored to non Western contexts.
comment: ICCV 2025 Workshop on Affective & Behavior Analysis in-the-Wild (ABAW), Honolulu, HI, USA (Oct 19, 2025, HST). 11 pages, 5 figures
☆ Investigating Demographic Bias in Brain MRI Segmentation: A Comparative Study of Deep-Learning and Non-Deep-Learning Methods
Deep-learning-based segmentation algorithms have substantially advanced the field of medical image analysis, particularly in structural delineations in MRIs. However, an important consideration is the intrinsic bias in the data. Concerns about unfairness, such as performance disparities based on sensitive attributes like race and sex, are increasingly urgent. In this work, we evaluate the results of three different segmentation models (UNesT, nnU-Net, and CoTr) and a traditional atlas-based method (ANTs), applied to segment the left and right nucleus accumbens (NAc) in MRI images. We utilize a dataset including four demographic subgroups: black female, black male, white female, and white male. We employ manually labeled gold-standard segmentations to train and test segmentation models. This study consists of two parts: the first assesses the segmentation performance of models, while the second measures the volumes they produce to evaluate the effects of race, sex, and their interaction. Fairness is quantitatively measured using a metric designed to quantify fairness in segmentation performance. Additionally, linear mixed models analyze the impact of demographic variables on segmentation accuracy and derived volumes. Training on the same race as the test subjects leads to significantly better segmentation accuracy for some models. ANTs and UNesT show notable improvements in segmentation accuracy when trained and tested on race-matched data, unlike nnU-Net, which demonstrates robust performance independent of demographic matching. Finally, we examine sex and race effects on the volume of the NAc using segmentations from the manual rater and from our biased models. Results reveal that the sex effects observed with manual segmentation can also be observed with biased models, whereas the race effects disappear in all but one model.
☆ Demystifying Transition Matching: When and Why It Can Beat Flow Matching
Flow Matching (FM) underpins many state-of-the-art generative models, yet recent results indicate that Transition Matching (TM) can achieve higher quality with fewer sampling steps. This work answers the question of when and why TM outperforms FM. First, when the target is a unimodal Gaussian distribution, we prove that TM attains strictly lower KL divergence than FM for finite number of steps. The improvement arises from stochastic difference latent updates in TM, which preserve target covariance that deterministic FM underestimates. We then characterize convergence rates, showing that TM achieves faster convergence than FM under a fixed compute budget, establishing its advantage in the unimodal Gaussian setting. Second, we extend the analysis to Gaussian mixtures and identify local-unimodality regimes in which the sampling dynamics approximate the unimodal case, where TM can outperform FM. The approximation error decreases as the minimal distance between component means increases, highlighting that TM is favored when the modes are well separated. However, when the target variance approaches zero, each TM update converges to the FM update, and the performance advantage of TM diminishes. In summary, we show that TM outperforms FM when the target distribution has well-separated modes and non-negligible variances. We validate our theoretical results with controlled experiments on Gaussian distributions, and extend the comparison to real-world applications in image and video generation.
☆ Robobench: A Comprehensive Evaluation Benchmark for Multimodal Large Language Models as Embodied Brain
Building robots that can perceive, reason, and act in dynamic, unstructured environments remains a core challenge. Recent embodied systems often adopt a dual-system paradigm, where System 2 handles high-level reasoning while System 1 executes low-level control. In this work, we refer to System 2 as the embodied brain, emphasizing its role as the cognitive core for reasoning and decision-making in manipulation tasks. Given this role, systematic evaluation of the embodied brain is essential. Yet existing benchmarks emphasize execution success, or when targeting high-level reasoning, suffer from incomplete dimensions and limited task realism, offering only a partial picture of cognitive capability. To bridge this gap, we introduce RoboBench, a benchmark that systematically evaluates multimodal large language models (MLLMs) as embodied brains. Motivated by the critical roles across the full manipulation pipeline, RoboBench defines five dimensions-instruction comprehension, perception reasoning, generalized planning, affordance prediction, and failure analysis-spanning 14 capabilities, 25 tasks, and 6092 QA pairs. To ensure realism, we curate datasets across diverse embodiments, attribute-rich objects, and multi-view scenes, drawing from large-scale real robotic data. For planning, RoboBench introduces an evaluation framework, MLLM-as-world-simulator. It evaluate embodied feasibility by simulating whether predicted plans can achieve critical object-state changes. Experiments on 14 MLLMs reveal fundamental limitations: difficulties with implicit instruction comprehension, spatiotemporal reasoning, cross-scenario planning, fine-grained affordance understanding, and execution failure diagnosis. RoboBench provides a comprehensive scaffold to quantify high-level cognition, and guide the development of next-generation embodied MLLMs. The project page is in https://robo-bench.github.io.
♻ ☆ SV-DRR: High-Fidelity Novel View X-Ray Synthesis Using Diffusion Model MICCAI2025
X-ray imaging is a rapid and cost-effective tool for visualizing internal human anatomy. While multi-view X-ray imaging provides complementary information that enhances diagnosis, intervention, and education, acquiring images from multiple angles increases radiation exposure and complicates clinical workflows. To address these challenges, we propose a novel view-conditioned diffusion model for synthesizing multi-view X-ray images from a single view. Unlike prior methods, which are limited in angular range, resolution, and image quality, our approach leverages the Diffusion Transformer to preserve fine details and employs a weak-to-strong training strategy for stable high-resolution image generation. Experimental results demonstrate that our method generates higher-resolution outputs with improved control over viewing angles. This capability has significant implications not only for clinical applications but also for medical education and data extension, enabling the creation of diverse, high-quality datasets for training and analysis. Our code is available at https://github.com/xiechun298/SV-DRR.
comment: Accepted by MICCAI2025
♻ ☆ UniCTokens: Boosting Personalized Understanding and Generation via Unified Concept Tokens
Personalized models have demonstrated remarkable success in understanding and generating concepts provided by users. However, existing methods use separate concept tokens for understanding and generation, treating these tasks in isolation. This may result in limitations for generating images with complex prompts. For example, given the concept $\langle bo\rangle$, generating "$\langle bo\rangle$ wearing its hat" without additional textual descriptions of its hat. We call this kind of generation \textit{\textbf{personalized attribute-reasoning generation}}. To address the limitation, we present UniCTokens, a novel framework that effectively integrates personalized information into a unified vision language model (VLM) for understanding and generation. UniCTokens trains a set of unified concept tokens to leverage complementary semantics, boosting two personalized tasks. Moreover, we propose a progressive training strategy with three stages: understanding warm-up, bootstrapping generation from understanding, and deepening understanding from generation to enhance mutual benefits between both tasks. To quantitatively evaluate the unified VLM personalization, we present UnifyBench, the first benchmark for assessing concept understanding, concept generation, and attribute-reasoning generation. Experimental results on UnifyBench indicate that UniCTokens shows competitive performance compared to leading methods in concept understanding, concept generation, and achieving state-of-the-art results in personalized attribute-reasoning generation. Our research demonstrates that enhanced understanding improves generation, and the generation process can yield valuable insights into understanding. Our code and dataset will be released at: \href{https://github.com/arctanxarc/UniCTokens}{https://github.com/arctanxarc/UniCTokens}.
♻ ☆ A Synthetic Data-Driven Radiology Foundation Model for Pan-tumor Clinical Diagnosis
AI-assisted imaging made substantial advances in tumor diagnosis and management. However, a major barrier to developing robust oncology foundation models is the scarcity of large-scale, high-quality annotated datasets, which are limited by privacy restrictions and the high cost of manual labeling. To address this gap, we present PASTA, a pan-tumor radiology foundation model built on PASTA-Gen, a synthetic data framework that generated 30,000 3D CT scans with pixel-level lesion masks and structured reports of tumors across ten organ systems. Leveraging this resource, PASTA achieves state-of-the-art performance on 45 of 46 oncology tasks, including non-contrast CT tumor screening, lesion segmentation, structured reporting, tumor staging, survival prediction, and MRI-modality transfer. To assess clinical applicability, we developed PASTA-AID, a clinical decision support system, and ran a retrospective simulated clinical trial across two scenarios. For pan-tumor screening on plain CT with fixed reading time, PASTA-AID increased radiologists' throughput by 11.1-25.1% and improved sensitivity by 17.0-31.4% and precision by 10.5-24.9%; additionally, in a diagnosis-aid workflow, it reduced segmentation time by up to 78.2% and reporting time by up to 36.5%. Beyond gains in accuracy and efficiency, PASTA-AID narrowed the expertise gap, enabling less-experienced radiologists to approach expert-level performance. Together, this work establishes an end-to-end, synthetic data-driven pipeline spanning data generation, model development, and clinical validation, thereby demonstrating substantial potential for pan-tumor research and clinical translation.
comment: 63 pages, 7 figures
♻ ☆ Creative synthesis of kinematic mechanisms
In this paper, we formulate the problem of kinematic synthesis for planar linkages as a cross-domain image generation task. We develop a planar linkages dataset using RGB image representations, covering a range of mechanisms: from simple types such as crank-rocker and crank-slider to more complex eight-bar linkages like Jansen's mechanism. A shared-latent variational autoencoder (VAE) is employed to explore the potential of image generative models for synthesizing unseen motion curves and simulating novel kinematics. By encoding the drawing speed of trajectory points as color gradients, the same architecture also supports kinematic synthesis conditioned on both trajectory shape and velocity profiles. We validate our method on three datasets of increasing complexity: a standard four-bar linkage set, a mixed set of four-bar and crank-slider mechanisms, and a complex set including multi-loop mechanisms. Preliminary results demonstrate the effectiveness of image-based representations for generative mechanical design, showing that mechanisms with revolute and prismatic joints, and potentially cams and gears, can be represented and synthesized within a unified image generation framework.
comment: 6pages, 6 figures
♻ ☆ NanoHTNet: Nano Human Topology Network for Efficient 3D Human Pose Estimation
The widespread application of 3D human pose estimation (HPE) is limited by resource-constrained edge devices, requiring more efficient models. A key approach to enhancing efficiency involves designing networks based on the structural characteristics of input data. However, effectively utilizing the structural priors in human skeletal inputs remains challenging. To address this, we leverage both explicit and implicit spatio-temporal priors of the human body through innovative model design and a pre-training proxy task. First, we propose a Nano Human Topology Network (NanoHTNet), a tiny 3D HPE network with stacked Hierarchical Mixers to capture explicit features. Specifically, the spatial Hierarchical Mixer efficiently learns the human physical topology across multiple semantic levels, while the temporal Hierarchical Mixer with discrete cosine transform and low-pass filtering captures local instantaneous movements and global action coherence. Moreover, Efficient Temporal-Spatial Tokenization (ETST) is introduced to enhance spatio-temporal interaction and reduce computational complexity significantly. Second, PoseCLR is proposed as a general pre-training method based on contrastive learning for 3D HPE, aimed at extracting implicit representations of human topology. By aligning 2D poses from diverse viewpoints in the proxy task, PoseCLR aids 3D HPE encoders like NanoHTNet in more effectively capturing the high-dimensional features of the human body, leading to further performance improvements. Extensive experiments verify that NanoHTNet with PoseCLR outperforms other state-of-the-art methods in efficiency, making it ideal for deployment on edge devices like the Jetson Nano. Code and models are available at https://github.com/vefalun/NanoHTNet.
comment: Accepted by TIP 2025, Open Sourced
♻ ☆ Solving Oscillator Ordinary Differential Equations in the Time Domain with High Performance via Soft-constrained Physics-informed Neural Network with Small Data
In many scientific and engineering (e.g., physical, biochemical, medical) practices, data generated through expensive experiments or large-scale simulations, are often sparse and noisy. Physics-informed neural network (PINN) incorporates physical information and knowledge into network topology or computational processes as model priors, with the unique advantage of achieving strong generalization with small data. This study aims to investigate the performance characteristics of the soft-constrained PINN method to solving typical linear and nonlinear ordinary differential equations (ODEs) such as primer, Van der Pol and Duffing oscillators, especially the effectiveness, efficiency, and robustness to noise with minimal data. It is verified that the soft-constrained PINN significantly reduces the need for labeled data. With the aid of appropriate collocation points no need to be labeled, it can predict and also extrapolate with minimal data. First-order and second-order ODEs, no matter linear or nonlinear oscillators, require only one and two training data (containing initial values) respectively, just like classical analytic or Runge-Kutta methods, and with equivalent precision and comparable efficiency (fast training in seconds for scalar ODEs). Furthermore, it can conveniently impose a physical law (e.g., conservation of energy) constraint by adding a regularization term to the total loss function, improving the performance to deal with various complexities such as nonlinearity like Duffing. The DeepXDE-based PINN implementation is light code and can be efficiently trained on both GPU and CPU platforms. The mathematical and computational framework of this alternative and feasible PINN method to ODEs, can be easily extended to PDEs, etc., and is becoming a favorable catalyst for the era of Digital Twins.
comment: 17 pages, 7 figures, 2 tables, etc
♻ ☆ SpectraLift: Physics-Guided Spectral-Inversion Network for Self-Supervised Hyperspectral Image Super-Resolution
High-spatial-resolution hyperspectral images (HSI) are essential for applications such as remote sensing and medical imaging, yet HSI sensors inherently trade spatial detail for spectral richness. Fusing high-spatial-resolution multispectral images (HR-MSI) with low-spatial-resolution hyperspectral images (LR-HSI) is a promising route to recover fine spatial structures without sacrificing spectral fidelity. Most state-of-the-art methods for HSI-MSI fusion demand point spread function (PSF) calibration or ground truth high resolution HSI (HR-HSI), both of which are impractical to obtain in real world settings. We present SpectraLift, a fully self-supervised framework that fuses LR-HSI and HR-MSI inputs using only the MSI's Spectral Response Function (SRF). SpectraLift trains a lightweight per-pixel multi-layer perceptron (MLP) network using ($i$)~a synthetic low-spatial-resolution multispectral image (LR-MSI) obtained by applying the SRF to the LR-HSI as input, ($ii$)~the LR-HSI as the output, and ($iii$)~an $\ell_1$ spectral reconstruction loss between the estimated and true LR-HSI as the optimization objective. At inference, SpectraLift uses the trained network to map the HR-MSI pixel-wise into a HR-HSI estimate. SpectraLift converges in minutes, is agnostic to spatial blur and resolution, and outperforms state-of-the-art methods on PSNR, SAM, SSIM, and RMSE benchmarks.
♻ ☆ Morpheus: Benchmarking Physical Reasoning of Video Generative Models with Real Physical Experiments
Recent advances in image and video generation raise hopes that these models possess world modeling capabilities, the ability to generate realistic, physically plausible videos. This could revolutionize applications in robotics, autonomous driving, and scientific simulation. However, before treating these models as world models, we must ask: Do they adhere to physical conservation laws? To answer this, we introduce Morpheus, a benchmark for evaluating video generation models on physical reasoning. It features 80 real-world videos capturing physical phenomena, guided by conservation laws. Since artificial generations lack ground truth, we assess physical plausibility using physics-informed metrics evaluated with respect to infallible conservation laws known per physical setting, leveraging advances in physics-informed neural networks and vision-language foundation models. Our findings reveal that even with advanced prompting and video conditioning, current models struggle to encode physical principles despite generating aesthetically pleasing videos. All data, leaderboard, and code are open-sourced at our project page.
♻ ☆ DitHub: A Modular Framework for Incremental Open-Vocabulary Object Detection NeurIPS 2025
Open-Vocabulary object detectors can generalize to an unrestricted set of categories through simple textual prompting. However, adapting these models to rare classes or reinforcing their abilities on multiple specialized domains remains essential. While recent methods rely on monolithic adaptation strategies with a single set of weights, we embrace modular deep learning. We introduce DitHub, a framework designed to build and maintain a library of efficient adaptation modules. Inspired by Version Control Systems, DitHub manages expert modules as branches that can be fetched and merged as needed. This modular approach allows us to conduct an in-depth exploration of the compositional properties of adaptation modules, marking the first such study in Object Detection. Our method achieves state-of-the-art performance on the ODinW-13 benchmark and ODinW-O, a newly introduced benchmark designed to assess class reappearance. For more details, visit our project page: https://aimagelab.github.io/DitHub/
comment: Accepted at the 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ When Does Supervised Training Pay Off? The Hidden Economics of Object Detection in the Era of Vision-Language Models
Object detection traditionally relies on costly manual annotation. We present the first comprehensive cost-effectiveness analysis comparing supervised YOLO and zero-shot vision-language models (Gemini Flash 2.5 and GPT-4). Evaluated on 5,000 stratified COCO images and 500 diverse product images, combined with Total Cost of Ownership modeling, we derive break-even thresholds for architecture selection. Results show supervised YOLO attains 91.2% accuracy versus 68.5% for Gemini and 71.3% for GPT-4 on standard categories; the annotation expense for a 100-category system is $10,800, and the accuracy advantage only pays off beyond 55 million inferences (151,000 images/day for one year). On diverse product categories Gemini achieves 52.3% and GPT-4 55.1%, while supervised YOLO cannot detect untrained classes. Cost-per-correct-detection favors Gemini ($0.00050) and GPT-4 ($0.00067) over YOLO ($0.143) at 100,000 inferences. We provide decision frameworks showing that optimal architecture choice depends on inference volume, category stability, budget, and accuracy requirements.
comment: 30 pages, 12 figures, 4 tables
♻ ☆ AI-Generated Video Detection via Perceptual Straightening NeurIPS 2025
The rapid advancement of generative AI enables highly realistic synthetic videos, posing significant challenges for content authentication and raising urgent concerns about misuse. Existing detection methods often struggle with generalization and capturing subtle temporal inconsistencies. We propose ReStraV(Representation Straightening Video), a novel approach to distinguish natural from AI-generated videos. Inspired by the "perceptual straightening" hypothesis -- which suggests real-world video trajectories become more straight in neural representation domain -- we analyze deviations from this expected geometric property. Using a pre-trained self-supervised vision transformer (DINOv2), we quantify the temporal curvature and stepwise distance in the model's representation domain. We aggregate statistics of these measures for each video and train a classifier. Our analysis shows that AI-generated videos exhibit significantly different curvature and distance patterns compared to real videos. A lightweight classifier achieves state-of-the-art detection performance (e.g., 97.17% accuracy and 98.63% AUROC on the VidProM benchmark), substantially outperforming existing image- and video-based methods. ReStraV is computationally efficient, it is offering a low-cost and effective detection solution. This work provides new insights into using neural representation geometry for AI-generated video detection.
comment: Advances in Neural Information Processing Systems 38 (NeurIPS 2025)
♻ ☆ Principled Feature Disentanglement for High-Fidelity Unified Brain MRI Synthesis
Multisequence Magnetic Resonance Imaging (MRI) provides a more reliable diagnosis in clinical applications through complementary information across sequences. However, in practice, the absence of certain MR sequences is a common problem that can lead to inconsistent analysis results. In this work, we propose a novel unified framework for synthesizing multisequence MR images, called hybrid-fusion GAN (HF-GAN). The fundamental mechanism of this work is principled feature disentanglement, which aligns the design of the architecture with the complexity of the features. A powerful many-to-one stream is constructed for the extraction of complex complementary features, while utilizing parallel, one-to-one streams to process modality-specific information. These disentangled features are dynamically integrated into a common latent space by a channel attention-based fusion module (CAFF) and then transformed via a modality infuser to generate the target sequence. We validated our framework on public datasets of both healthy and pathological brain MRI. Quantitative and qualitative results show that HF-GAN achieves state-of-the-art performance, with our 2D slice-based framework notably outperforming a leading 3D volumetric model. Furthermore, the utilization of HF-GAN for data imputation substantially improves the performance of the downstream brain tumor segmentation task, demonstrating its clinical relevance.
comment: 14 pages, 9 figures
♻ ☆ Grounded Reinforcement Learning for Visual Reasoning
While reinforcement learning (RL) over chains of thought has significantly advanced language models in tasks such as mathematics and coding, visual reasoning introduces added complexity by requiring models to direct visual attention, interpret perceptual inputs, and ground abstract reasoning in spatial evidence. We introduce ViGoRL (Visually Grounded Reinforcement Learning), a vision-language model trained with RL to explicitly anchor each reasoning step to specific visual coordinates. Inspired by human visual decision-making, ViGoRL learns to produce spatially grounded reasoning traces, guiding visual attention to task-relevant regions at each step. When fine-grained exploration is required, our novel multi-turn RL framework enables the model to dynamically zoom into predicted coordinates as reasoning unfolds. Across a diverse set of visual reasoning benchmarks--including SAT-2 and BLINK for spatial reasoning, V*bench for visual search, and ScreenSpot and VisualWebArena for web-based grounding--ViGoRL consistently outperforms both supervised fine-tuning and conventional RL baselines that lack explicit grounding mechanisms. Incorporating multi-turn RL with zoomed-in visual feedback significantly improves ViGoRL's performance on localizing small GUI elements and visual search, achieving 86.4% on V*Bench. Additionally, we find that grounding amplifies other visual behaviors such as region exploration, grounded subgoal setting, and visual verification. Finally, human evaluations show that the model's visual references are not only spatially accurate but also helpful for understanding model reasoning steps. Our results show that visually grounded RL is a strong paradigm for imbuing models with general-purpose visual reasoning.
comment: Project website: https://visually-grounded-rl.github.io/
♻ ☆ VimoRAG: Video-based Retrieval-augmented 3D Motion Generation for Motion Language Models NeurIPS 2025
This paper introduces VimoRAG, a novel video-based retrieval-augmented motion generation framework for motion large language models (LLMs). As motion LLMs face severe out-of-domain/out-of-vocabulary issues due to limited annotated data, VimoRAG leverages large-scale in-the-wild video databases to enhance 3D motion generation by retrieving relevant 2D human motion signals. While video-based motion RAG is nontrivial, we address two key bottlenecks: (1) developing an effective motion-centered video retrieval model that distinguishes human poses and actions, and (2) mitigating the issue of error propagation caused by suboptimal retrieval results. We design the Gemini Motion Video Retriever mechanism and the Motion-centric Dual-alignment DPO Trainer, enabling effective retrieval and generation processes. Experimental results show that VimoRAG significantly boosts the performance of motion LLMs constrained to text-only input. All the resources are available at https://walkermitty.github.io/VimoRAG/
comment: Accepted by NeurIPS 2025; Project Page: https://walkermitty.github.io/VimoRAG
♻ ☆ When Words Smile: Generating Diverse Emotional Facial Expressions from Text EMNLP 2025
Enabling digital humans to express rich emotions has significant applications in dialogue systems, gaming, and other interactive scenarios. While recent advances in talking head synthesis have achieved impressive results in lip synchronization, they tend to overlook the rich and dynamic nature of facial expressions. To fill this critical gap, we introduce an end-to-end text-to-expression model that explicitly focuses on emotional dynamics. Our model learns expressive facial variations in a continuous latent space and generates expressions that are diverse, fluid, and emotionally coherent. To support this task, we introduce EmoAva, a large-scale and high-quality dataset containing 15,000 text-3D expression pairs. Extensive experiments on both existing datasets and EmoAva demonstrate that our method significantly outperforms baselines across multiple evaluation metrics, marking a significant advancement in the field.
comment: Accepted by EMNLP 2025 (Oral); Project Page: https://walkermitty.github.io/EmoAva
♻ ☆ WaveFormer: A Lightweight Transformer Model for sEMG-based Gesture Recognition IEEE
Human-machine interaction, particularly in prosthetic and robotic control, has seen progress with gesture recognition via surface electromyographic (sEMG) signals.However, classifying similar gestures that produce nearly identical muscle signals remains a challenge, often reducing classification accuracy. Traditional deep learning models for sEMG gesture recognition are large and computationally expensive, limiting their deployment on resource-constrained embedded systems. In this work, we propose WaveFormer, a lightweight transformer-based architecture tailored for sEMG gesture recognition. Our model integrates time-domain and frequency-domain features through a novel learnable wavelet transform, enhancing feature extraction. In particular, the WaveletConv module, a multi-level wavelet decomposition layer with depthwise separable convolution, ensures both efficiency and compactness. With just 3.1 million parameters, WaveFormer achieves 95% classification accuracy on the EPN612 dataset, outperforming larger models. Furthermore, when profiled on a laptop equipped with an Intel CPU, INT8 quantization achieves real-time deployment with a 6.75 ms inference latency.
comment: 6 pages, 3 figures, accepted to IEEE EMBS Conference on Neural Engineering (NER) 2025. Code and data are available at https://github.com/ForeverBlue816/WaveFormer
♻ ☆ ScreenCoder: Advancing Visual-to-Code Generation for Front-End Automation via Modular Multimodal Agents
Automating the transformation of user interface (UI) designs into front-end code holds significant promise for accelerating software development and democratizing design workflows. While multimodal large language models (MLLMs) can translate images to code, they often fail on complex UIs, struggling to unify visual perception, layout planning, and code synthesis within a single monolithic model, which leads to frequent perception and planning errors. To address this, we propose ScreenCoder, a modular multi-agent framework that decomposes the task into three interpretable stages: grounding, planning, and generation. By assigning these distinct responsibilities to specialized agents, our framework achieves significantly higher robustness and fidelity than end-to-end approaches. Furthermore, ScreenCoder serves as a scalable data engine, enabling us to generate high-quality image-code pairs. We use this data to fine-tune open-source MLLM via a dual-stage pipeline of supervised fine-tuning and reinforcement learning, demonstrating substantial gains in its UI generation capabilities. Extensive experiments demonstrate that our approach achieves state-of-the-art performance in layout accuracy, structural coherence, and code correctness. Our code is made publicly available at https://github.com/leigest519/ScreenCoder.
comment: ScreenCoder-v2
♻ ☆ Styl3R: Instant 3D Stylized Reconstruction for Arbitrary Scenes and Styles NeurIPS 2025
Stylizing 3D scenes instantly while maintaining multi-view consistency and faithfully resembling a style image remains a significant challenge. Current state-of-the-art 3D stylization methods typically involve computationally intensive test-time optimization to transfer artistic features into a pretrained 3D representation, often requiring dense posed input images. In contrast, leveraging recent advances in feed-forward reconstruction models, we demonstrate a novel approach to achieve direct 3D stylization in less than a second using unposed sparse-view scene images and an arbitrary style image. To address the inherent decoupling between reconstruction and stylization, we introduce a branched architecture that separates structure modeling and appearance shading, effectively preventing stylistic transfer from distorting the underlying 3D scene structure. Furthermore, we adapt an identity loss to facilitate pre-training our stylization model through the novel view synthesis task. This strategy also allows our model to retain its original reconstruction capabilities while being fine-tuned for stylization. Comprehensive evaluations, using both in-domain and out-of-domain datasets, demonstrate that our approach produces high-quality stylized 3D content that achieve a superior blend of style and scene appearance, while also outperforming existing methods in terms of multi-view consistency and efficiency.
comment: NeurIPS 2025, Project page: https://nickisdope.github.io/Styl3R
♻ ☆ Predicting Patient Recovery or Mortality Using Deep Neural Decision Tree and Forest
Objective: Identifying patients at high risk of mortality is crucial for emergency physicians to allocate hospital resources effectively, particularly in regions with limited medical services. This need becomes even more pressing during global health crises that lead to significant morbidity and mortality. This study aimed to present the usability deep neural decision forest and deep neural decision tree to predict mortality among Coronavirus disease 2019 (COVID-19) patients. To this end, We used patient data encompassing Coronavirus disease 2019 diagnosis, demographics, health indicators, and occupational risk factors to analyze disease severity and outcomes. The dataset was partitioned using a stratified sampling method, ensuring that 80% was allocated for training and 20% for testing. Nine machine learning and deep learning methods were employed to build predictive models. The models were evaluated across all stages to determine their effectiveness in predicting patient outcomes. Results: Among the models, the deep neural decision forest consistently outperformed others. Results indicated that using only clinical data yielded an accuracy of 80% by deep neural decision forest, demonstrating it as a reliable predictor of patient mortality. Moreover, the results suggest that clinical data alone may be the most accurate diagnostic tool for predicting mortality.
♻ ☆ NeRF-based Visualization of 3D Cues Supporting Data-Driven Spacecraft Pose Estimation IEEE
On-orbit operations require the estimation of the relative 6D pose, i.e., position and orientation, between a chaser spacecraft and its target. While data-driven spacecraft pose estimation methods have been developed, their adoption in real missions is hampered by the lack of understanding of their decision process. This paper presents a method to visualize the 3D visual cues on which a given pose estimator relies. For this purpose, we train a NeRF-based image generator using the gradients back-propagated through the pose estimation network. This enforces the generator to render the main 3D features exploited by the spacecraft pose estimation network. Experiments demonstrate that our method recovers the relevant 3D cues. Furthermore, they offer additional insights on the relationship between the pose estimation network supervision and its implicit representation of the target spacecraft.
comment: Accepted at IEEE ISpaRo 2025 (International Conference on Space Robotics) (8 pages, 2 figures)
♻ ☆ FairGen: Enhancing Fairness in Text-to-Image Diffusion Models via Self-Discovering Latent Directions
While Diffusion Models (DM) exhibit remarkable performance across various image generative tasks, they nonetheless reflect the inherent bias presented in the training set. As DMs are now widely used in real-world applications, these biases could perpetuate a distorted worldview and hinder opportunities for minority groups. Existing methods on debiasing DMs usually requires model retraining with a human-crafted reference dataset or additional classifiers, which suffer from two major limitations: (1) collecting reference datasets causes expensive annotation cost; (2) the debiasing performance is heavily constrained by the quality of the reference dataset or the additional classifier. To address the above limitations, we propose FairGen, a plug-and-play method that learns attribute latent directions in a self-discovering manner, thus eliminating the reliance on such reference dataset. Specifically, FairGen consists of two parts: a set of attribute adapters and a distribution indicator. Each adapter in the set aims to learn an attribute latent direction, and is optimized via noise composition through a self-discovering process. Then, the distribution indicator is multiplied by the set of adapters to guide the generation process towards the prescribed distribution. Our method enables debiasing multiple attributes in DMs simultaneously, while remaining lightweight and easily integrable with other DMs, eliminating the need for retraining. Extensive experiments on debiasing gender, racial, and their intersectional biases show that our method outperforms previous SOTA by a large margin.
♻ ☆ Nexus: An Omni-Perceptive And -Interactive Model for Language, Audio, And Vision
This work proposes an industry-level omni-modal large language model (LLM) pipeline that integrates auditory, visual, and linguistic modalities to overcome challenges such as limited tri-modal datasets, high computational costs, and complex feature alignments. Our pipeline consists of three main components: First, a modular framework enabling flexible configuration of various encoder-LLM-decoder architectures. Second, a lightweight training strategy that pre-trains audio-language alignment on the state-of-the-art vision-language model Qwen2.5-VL, thus avoiding the costly pre-training of vision-specific modalities. Third, an audio synthesis pipeline that generates high-quality audio-text data from diverse real-world scenarios, supporting applications such as Automatic Speech Recognition and Speech-to-Speech chat. To this end, we introduce an industry-level omni-modal LLM, Nexus. Extensive experiments validate the efficacy of our pipeline, yielding the following key findings:(1) In the visual understanding task, Nexus exhibits superior performance compared with its backbone model - Qwen2.5-VL-7B, validating the efficiency of our training strategy. (2) Within the English Spoken Question-Answering task, the model achieves better accuracy than the same-period competitor (i.e, MiniCPM-o2.6-7B) in the LLaMA Q. benchmark. (3) In our real-world ASR testset, Nexus achieves outstanding performance, indicating its robustness in real scenarios. (4) In the Speech-to-Text Translation task, our model outperforms Qwen2-Audio-Instruct-7B. (5) In the Text-to-Speech task, based on pretrained vocoder (e.g., Fishspeech1.4 or CosyVoice2.0), Nexus is comparable to its backbone vocoder on Seed-TTS benchmark. (6) An in-depth analysis of tri-modal alignment reveals that incorporating the audio modality enhances representational alignment between vision and language.
comment: Project: https://github.com/HiThink-Research/NEXUS-O
♻ ☆ What is Memory? A Homological Perspective
We introduce the delta-homology model of memory, a unified framework in which recall, learning, and prediction emerge from cycle closure, the completion of topologically constrained trajectories within the brain's latent manifold. A Dirac-like memory trace corresponds to a nontrivial homology generator, representing a sparse, irreducible attractor that reactivates only when inference trajectories close upon themselves. In this view, memory is not a static attractor landscape but a topological process of recurrence, where structure arises through the stabilization of closed loops. Building on this principle, we represent spike-timing dynamics as spatiotemporal complexes, in which temporally consistent transitions among neurons form chain complexes supporting persistent activation cycles. These cycles are organized into cell posets, compact causal representations that encode overlapping and compositional memory traces. Within this construction, learning and recall correspond to cycle closure under contextual modulation: inference trajectories stabilize into nontrivial homology classes when both local synchrony (context) and global recurrence (content) are satisfied. We formalize this mechanism through the Context-Content Uncertainty Principle (CCUP), which states that cognition minimizes joint uncertainty between a high-entropy context variable and a low-entropy content variable. Synchronization acts as a context filter selecting coherent subnetworks, while recurrence acts as a content filter validating nontrivial cycles.
♻ ☆ SSL4Eco: A Global Seasonal Dataset for Geospatial Foundation Models in Ecology CVPR 2025
With the exacerbation of the biodiversity and climate crises, macroecological pursuits such as global biodiversity mapping become more urgent. Remote sensing offers a wealth of Earth observation data for ecological studies, but the scarcity of labeled datasets remains a major challenge. Recently, self-supervised learning has enabled learning representations from unlabeled data, triggering the development of pretrained geospatial models with generalizable features. However, these models are often trained on datasets biased toward areas of high human activity, leaving entire ecological regions underrepresented. Additionally, while some datasets attempt to address seasonality through multi-date imagery, they typically follow calendar seasons rather than local phenological cycles. To better capture vegetation seasonality at a global scale, we propose a simple phenology-informed sampling strategy and introduce corresponding SSL4Eco, a multi-date Sentinel-2 dataset, on which we train an existing model with a season-contrastive objective. We compare representations learned from SSL4Eco against other datasets on diverse ecological downstream tasks and demonstrate that our straightforward sampling method consistently improves representation quality, highlighting the importance of dataset construction. The model pretrained on SSL4Eco reaches state of the art performance on 7 out of 8 downstream tasks spanning (multi-label) classification and regression. We release our code, data, and model weights to support macroecological and computer vision research at https://github.com/PlekhanovaElena/ssl4eco.
comment: CVPR 2025, EarthVision workshop
♻ ☆ Learning to Detect Unknown Jailbreak Attacks in Large Vision-Language Models
Despite extensive alignment efforts, Large Vision-Language Models (LVLMs) remain vulnerable to jailbreak attacks, posing serious safety risks. To address this, existing detection methods either learn attack-specific parameters, which hinders generalization to unseen attacks, or rely on heuristically sound principles, which limit accuracy and efficiency. To overcome these limitations, we propose Learning to Detect (LoD), a general framework that accurately detects unknown jailbreak attacks by shifting the focus from attack-specific learning to task-specific learning. This framework includes a Multi-modal Safety Concept Activation Vector module for safety-oriented representation learning and a Safety Pattern Auto-Encoder module for unsupervised attack classification. Extensive experiments show that our method achieves consistently higher detection AUROC on diverse unknown attacks while improving efficiency. The code is available at https://anonymous.4open.science/r/Learning-to-Detect-51CB.
comment: Withdrawn due to an accidental duplicate submission. This paper (arXiv:2510.15430) was unintentionally submitted as a new entry instead of a new version of our previous work (arXiv:2508.09201)
♻ ☆ Infinity Parser: Layout Aware Reinforcement Learning for Scanned Document Parsing
Automated parsing of scanned documents into richly structured, machine-readable formats remains a critical bottleneck in Document AI, as traditional multi-stage pipelines suffer from error propagation and limited adaptability to diverse layouts. We introduce layoutRL, an end-to-end reinforcement learning framework that trains models to be explicitly layout-aware by optimizing a composite reward of normalized edit distance, paragraph count accuracy, and reading order preservation. Leveraging our newly released dataset, Infinity-Doc-55K, which combines 55K high-fidelity synthetic scanned document parsing data with expert-filtered real-world documents, we instantiate layoutRL in a vision-language-model-based parser called Infinity-Parser. Evaluated on English and Chinese benchmarks for OCR, table and formula extraction, and reading order detection, Infinity-Parser achieves new state-of-the-art performance in both accuracy and structural fidelity, outpacing specialist pipelines and general-purpose vision-language models. We will publicly release our code and dataset to accelerate progress in robust document understanding.
comment: 16 pages, 12 figures
♻ ☆ Leveraging Vision-Language Models for Open-Vocabulary Instance Segmentation and Tracking IEEE
Vision-language models (VLMs) excel in visual understanding but often lack reliable grounding capabilities and actionable inference rates. Integrating them with open-vocabulary object detection (OVD), instance segmentation, and tracking leverages their strengths while mitigating these drawbacks. We utilize VLM-generated structured descriptions to identify visible object instances, collect application-relevant attributes, and inform an open-vocabulary detector to extract corresponding bounding boxes that are passed to a video segmentation model providing segmentation masks and tracking. Once initialized, this model directly extracts segmentation masks, processing image streams in real time with minimal computational overhead. Tracks can be updated online as needed by generating new structured descriptions and detections. This combines the descriptive power of VLMs with the grounding capability of OVD and the pixel-level understanding and speed of video segmentation. Our evaluation across datasets and robotics platforms demonstrates the broad applicability of this approach, showcasing its ability to extract task-specific attributes from non-standard objects in dynamic environments. Code, data, videos, and benchmarks are available at https://vlm-gist.github.io
comment: IEEE Robotics and Automation Letters (RA-L), November 2025
♻ ☆ Shaken or Stirred? An Analysis of MetaFormer's Token Mixing for Medical Imaging
The generalization of the Transformer architecture via MetaFormer has reshaped our understanding of its success in computer vision. By replacing self-attention with simpler token mixers, MetaFormer provides strong baselines for vision tasks. However, while extensively studied on natural image datasets, its use in medical imaging remains scarce, and existing works rarely compare different token mixers, potentially overlooking more suitable designs choices. In this work, we present the first comprehensive study of token mixers for medical imaging. We systematically analyze pooling-, convolution-, and attention-based token mixers within the MetaFormer architecture on image classification (global prediction task) and semantic segmentation (dense prediction task). Our evaluation spans eight datasets covering diverse modalities and common challenges in the medical domain. Given the prevalence of pretraining from natural images to mitigate medical data scarcity, we also examine transferring pretrained weights to new token mixers. Our results show that, for classification, low-complexity token mixers (e.g. grouped convolution or pooling) are sufficient, aligning with findings on natural images. Pretrained weights remain useful despite the domain gap introduced by the new token mixer. For segmentation, we find that the local inductive bias of convolutional token mixers is essential. Grouped convolutions emerge as the preferred choice, as they reduce runtime and parameter count compared to standard convolutions, while the MetaFormer's channel-MLPs already provide the necessary cross-channel interactions.
comment: Code and data: https://github.com/multimodallearning/MetaFormerMedImaging/tree/clean_code
♻ ☆ Accurate and Efficient Low-Rank Model Merging in Core Space NeurIPS 2025
In this paper, we address the challenges associated with merging low-rank adaptations of large neural networks. With the rise of parameter-efficient adaptation techniques, such as Low-Rank Adaptation (LoRA), model fine-tuning has become more accessible. While fine-tuning models with LoRA is highly efficient, existing merging methods often sacrifice this efficiency by merging fully-sized weight matrices. We propose the Core Space merging framework, which enables the merging of LoRA-adapted models within a common alignment basis, thereby preserving the efficiency of low-rank adaptation while substantially improving accuracy across tasks. We further provide a formal proof that projection into Core Space ensures no loss of information and provide a complexity analysis showing the efficiency gains. Extensive empirical results demonstrate that Core Space significantly improves existing merging techniques and achieves state-of-the-art results on both vision and language tasks while utilizing a fraction of the computational resources. Codebase is available at https://github.com/apanariello4/core-space-merging.
comment: Accepted at 39th Conference on Neural Information Processing Systems (NeurIPS 2025), San Diego, USA
♻ ☆ Periodontal Bone Loss Analysis via Keypoint Detection With Heuristic Post-Processing
This study proposes a deep learning framework and annotation methodology for the automatic detection of periodontal bone loss landmarks, associated conditions, and staging. 192 periapical radiographs were collected and annotated with a stage agnostic methodology, labelling clinically relevant landmarks regardless of disease presence or extent. We propose a heuristic post-processing module that aligns predicted keypoints to tooth boundaries using an auxiliary instance segmentation model. An evaluation metric, Percentage of Relative Correct Keypoints (PRCK), is proposed to capture keypoint performance in dental imaging domains. Four donor pose estimation models were adapted with fine-tuning for our keypoint problem. Post-processing improved fine-grained localisation, raising average PRCK^{0.05} by +0.028, but reduced coarse performance for PRCK^{0.25} by -0.0523 and PRCK^{0.5} by -0.0345. Orientation estimation shows excellent performance for auxiliary segmentation when filtered with either stage 1 object detection model. Periodontal staging was detected sufficiently, with the best mesial and distal Dice scores of 0.508 and 0.489, while furcation involvement and widened periodontal ligament space tasks remained challenging due to scarce positive samples. Scalability is implied with similar validation and external set performance. The annotation methodology enables stage agnostic training with balanced representation across disease severities for some detection tasks. The PRCK metric provides a domain-specific alternative to generic pose metrics, while the heuristic post-processing module consistently corrected implausible predictions with occasional catastrophic failures. The proposed framework demonstrates the feasibility of clinically interpretable periodontal bone loss assessment, with potential to reduce diagnostic variability and clinician workload.
comment: 18 pages, 7 tables, 9 figures, 1 equation, journal paper submitted to Computers in Biology and Medicine
♻ ☆ Scalable Frame Sampling for Video Classification: A Semi-Optimal Policy Approach with Reduced Search Space
Given a video with $T$ frames, frame sampling is a task to select $N \ll T$ frames, so as to maximize the performance of a fixed video classifier. Not just brute-force search, but most existing methods suffer from its vast search space of $\binom{T}{N}$, especially when $N$ gets large. To address this challenge, we introduce a novel perspective of reducing the search space from $O(T^N)$ to $O(T)$. Instead of exploring the entire $O(T^N)$ space, our proposed semi-optimal policy selects the top $N$ frames based on the independently estimated value of each frame using per-frame confidence, significantly reducing the computational complexity. We verify that our semi-optimal policy can efficiently approximate the optimal policy, particularly under practical settings. Additionally, through extensive experiments on various datasets and model architectures, we demonstrate that learning our semi-optimal policy ensures stable and high performance regardless of the size of $N$ and $T$.
♻ ☆ Unseen from Seen: Rewriting Observation-Instruction Using Foundation Models for Augmenting Vision-Language Navigation IEEE
Data scarcity is a long-standing challenge in the Vision-Language Navigation (VLN) field, which extremely hinders the generalization of agents to unseen environments. Previous works primarily rely on additional simulator data or web-collected images/videos to improve the generalization. However, the simulator environments still face limited diversity, and the web-collected data often requires extensive labor to remove the noise. In this paper, we propose a Rewriting-driven AugMentation (RAM) paradigm for VLN, which directly creates the unseen observation-instruction pairs via rewriting human-annotated training data. Benefiting from our rewriting mechanism, new observation-instruction pairs can be obtained in both simulator-free and labor-saving manners to promote generalization. Specifically, we first introduce Object-Enriched Observation Rewriting, where we combine Vision-Language Models (VLMs) and Large Language Models (LLMs) to derive rewritten object-enriched scene descriptions, enabling observation synthesis with diverse objects and spatial layouts via Text-to-Image Generation Models (T2IMs). Then, we propose Observation-Contrast Instruction Rewriting, which generates observation-aligned rewritten instructions by requiring LLMs to reason the difference between original and new observations. We further develop a mixing-then-focusing training strategy with a random observation cropping scheme, effectively enhancing data distribution diversity while suppressing augmentation data noise during training. Experiments on both the discrete environments (R2R, REVERIE, and R4R datasets) and continuous environments (R2R-CE dataset) show the superior performance and impressive generalization ability of our method. Code is available at https://github.com/SaDil13/VLN-RAM.
comment: Accepted by IEEE Transactions on Neural Networks and Learning Systems
♻ ☆ CReFT-CAD: Boosting Orthographic Projection Reasoning for CAD via Reinforcement Fine-Tuning
Computer-Aided Design (CAD) plays a pivotal role in industrial manufacturing. Orthographic projection reasoning underpins the entire CAD workflow, encompassing design, manufacturing, and simulation. However, prevailing deep-learning approaches employ standard 3D reconstruction pipelines as an alternative, which often introduce imprecise dimensions and limit the parametric editability required for CAD workflows. Recently, some researchers adopt vision-language models (VLMs), particularly supervised fine-tuning (SFT), to tackle CAD-related challenges. SFT shows promise but often devolves into pattern memorization, yielding poor out-of-distribution performance on complex reasoning tasks. To address these gaps, we introduce CReFT-CAD, a two-stage fine-tuning paradigm that first employs a curriculum-driven reinforcement learning stage with difficulty-aware rewards to build reasoning ability steadily, and then applies supervised post-tuning to hone instruction following and semantic extraction. Complementing this, we release TriView2CAD, the first large-scale, open-source benchmark for orthographic projection reasoning, comprising 200,000 synthetic and 3,000 real-world orthographic projections with precise dimension annotations and six interoperable data modalities. We benchmark leading VLMs on orthographic projection reasoning and demonstrate that CReFT-CAD substantially improves reasoning accuracy and out-of-distribution generalizability in real-world scenarios, offering valuable insights for advancing CAD reasoning research.
♻ ☆ DynVFX: Augmenting Real Videos with Dynamic Content
We present a method for augmenting real-world videos with newly generated dynamic content. Given an input video and a simple user-provided text instruction describing the desired content, our method synthesizes dynamic objects or complex scene effects that naturally interact with the existing scene over time. The position, appearance, and motion of the new content are seamlessly integrated into the original footage while accounting for camera motion, occlusions, and interactions with other dynamic objects in the scene, resulting in a cohesive and realistic output video. We achieve this via a zero-shot, training-free framework that harnesses a pre-trained text-to-video diffusion transformer to synthesize the new content and a pre-trained vision-language model to envision the augmented scene in detail. Specifically, we introduce a novel inference-based method that manipulates features within the attention mechanism, enabling accurate localization and seamless integration of the new content while preserving the integrity of the original scene. Our method is fully automated, requiring only a simple user instruction. We demonstrate its effectiveness on a wide range of edits applied to real-world videos, encompassing diverse objects and scenarios involving both camera and object motion.
comment: Project page: https://dynvfx.github.io
♻ ☆ MSDM: Generating Task-Specific Pathology Images with a Multimodal Conditioned Diffusion Model for Cell and Nuclei Segmentation
Scarcity of annotated data, particularly for rare or atypical morphologies, present significant challenges for cell and nuclei segmentation in computational pathology. While manual annotation is labor-intensive and costly, synthetic data offers a cost-effective alternative. We introduce a Multimodal Semantic Diffusion Model (MSDM) for generating realistic pixel-precise image-mask pairs for cell and nuclei segmentation. By conditioning the generative process with cellular/nuclear morphologies (using horizontal and vertical maps), RGB color characteristics, and BERT-encoded assay/indication metadata, MSDM generates datasests with desired morphological properties. These heterogeneous modalities are integrated via multi-head cross-attention, enabling fine-grained control over the generated images. Quantitative analysis demonstrates that synthetic images closely match real data, with low Wasserstein distances between embeddings of generated and real images under matching biological conditions. The incorporation of these synthetic samples, exemplified by columnar cells, significantly improves segmentation model accuracy on columnar cells. This strategy systematically enriches data sets, directly targeting model deficiencies. We highlight the effectiveness of multimodal diffusion-based augmentation for advancing the robustness and generalizability of cell and nuclei segmentation models. Thereby, we pave the way for broader application of generative models in computational pathology.
♻ ☆ PartSDF: Part-Based Implicit Neural Representation for Composite 3D Shape Parametrization and Optimization
Accurate 3D shape representation is essential in engineering applications such as design, optimization, and simulation. In practice, engineering workflows require structured, part-based representations, as objects are inherently designed as assemblies of distinct components. However, most existing methods either model shapes holistically or decompose them without predefined part structures, limiting their applicability in real-world design tasks. We propose PartSDF, a supervised implicit representation framework that explicitly models composite shapes with independent, controllable parts while maintaining shape consistency. Thanks to its simple but innovative architecture, PartSDF outperforms both supervised and unsupervised baselines in reconstruction and generation tasks. We further demonstrate its effectiveness as a structured shape prior for engineering applications, enabling precise control over individual components while preserving overall coherence. Code available at https://github.com/cvlab-epfl/PartSDF.
comment: Accepted to TMLR (33 pages, 22 figures)
♻ ☆ DARIL: When Imitation Learning outperforms Reinforcement Learning in Surgical Action Planning MICCAI2025
Surgical action planning requires predicting future instrument-verb-target triplets for real-time assistance. While teleoperated robotic surgery provides natural expert demonstrations for imitation learning (IL), reinforcement learning (RL) could potentially discover superior strategies through self-exploration. We present the first comprehensive comparison of IL versus RL for surgical action planning on CholecT50. Our Dual-task Autoregressive Imitation Learning (DARIL) baseline achieves 34.6% action triplet recognition mAP and 33.6% next frame prediction mAP with smooth planning degradation to 29.2% at 10-second horizons. We evaluated three RL variants: world model-based RL, direct video RL, and inverse RL enhancement. Surprisingly, all RL approaches underperformed DARIL--world model RL dropped to 3.1% mAP at 10s while direct video RL achieved only 15.9%. Our analysis reveals that distribution matching on expert-annotated test sets systematically favors IL over potentially valid RL policies that differ from training demonstrations. This challenges assumptions about RL superiority in sequential decision making and provides crucial insights for surgical AI development.
comment: Paper accepted at the MICCAI2025 workshop proceedings on COLlaborative Intelligence and Autonomy in Image-guided Surgery (COLAS)
♻ ☆ Aesthetics is Cheap, Show me the Text: An Empirical Evaluation of State-of-the-Art Generative Models for OCR
Text image is a unique and crucial information medium that integrates visual aesthetics and linguistic semantics in modern e-society. Due to their subtlety and complexity, the generation of text images represents a challenging and evolving frontier in the image generation field. The recent surge of specialized image generators (\emph{e.g.}, Flux-series) and unified generative models (\emph{e.g.}, GPT-4o), which demonstrate exceptional fidelity, raises a natural question: can they master the intricacies of text image generation and editing? Motivated by this, we assess current state-of-the-art generative models' capabilities in terms of text image generation and editing. We incorporate various typical optical character recognition (OCR) tasks into our evaluation and broaden the concept of text-based generation tasks into OCR generative tasks. We select 33 representative tasks and categorize them into five categories: document, handwritten text, scene text, artistic text, and complex \& layout-rich text. For comprehensive evaluation, we examine six models across both closed-source and open-source domains, using tailored, high-quality image inputs and prompts. Through this evaluation, we draw crucial observations and identify the weaknesses of current generative models for OCR tasks. We argue that photorealistic text image generation and editing should be internalized as foundational skills into general-domain generative models, rather than being delegated to specialized solutions, and we hope this empirical analysis can provide valuable insights for the community to achieve this goal. This evaluation is online and will be continuously updated at our GitHub repository.
♻ ☆ Vision Mamba for Permeability Prediction of Porous Media
Vision Mamba has recently received attention as an alternative to Vision Transformers (ViTs) for image classification. The network size of Vision Mamba scales linearly with input image resolution, whereas ViTs scale quadratically, a feature that improves computational and memory efficiency. Moreover, Vision Mamba requires a significantly smaller number of trainable parameters than traditional convolutional neural networks (CNNs), and thus, they can be more memory efficient. Because of these features, we introduce, for the first time, a neural network that uses Vision Mamba as its backbone for predicting the permeability of three-dimensional porous media. We compare the performance of Vision Mamba with ViT and CNN models across multiple aspects of permeability prediction and perform an ablation study to assess the effects of its components on accuracy. We demonstrate in practice the aforementioned advantages of Vision Mamba over ViTs and CNNs in the permeability prediction of three-dimensional porous media. We make the source code publicly available to facilitate reproducibility and to enable other researchers to build on and extend this work. We believe the proposed framework has the potential to be integrated into large vision models in which Vision Mamba is used instead of ViTs.
♻ ☆ Learning Generalizable Shape Completion with SIM(3) Equivariance NeurIPS 2025
3D shape completion methods typically assume scans are pre-aligned to a canonical frame. This leaks pose and scale cues that networks may exploit to memorize absolute positions rather than inferring intrinsic geometry. When such alignment is absent in real data, performance collapses. We argue that robust generalization demands architectural equivariance to the similarity group, SIM(3), so the model remains agnostic to pose and scale. Following this principle, we introduce the first SIM(3)-equivariant shape completion network, whose modular layers successively canonicalize features, reason over similarity-invariant geometry, and restore the original frame. Under a de-biased evaluation protocol that removes the hidden cues, our model outperforms both equivariant and augmentation baselines on the PCN benchmark. It also sets new cross-domain records on real driving and indoor scans, lowering minimal matching distance on KITTI by 17% and Chamfer distance $\ell1$ on OmniObject3D by 14%. Perhaps surprisingly, ours under the stricter protocol still outperforms competitors under their biased settings. These results establish full SIM(3) equivariance as an effective route to truly generalizable shape completion. Project page: https://sime-completion.github.io.
comment: NeurIPS 2025
♻ ☆ Auto-Connect: Connectivity-Preserving RigFormer with Direct Preference Optimization
We introduce Auto-Connect, a novel approach for automatic rigging that explicitly preserves skeletal connectivity through a connectivity-preserving tokenization scheme. Unlike previous methods that predict bone positions represented as two joints or first predict points before determining connectivity, our method employs special tokens to define endpoints for each joint's children and for each hierarchical layer, effectively automating connectivity relationships. This approach significantly enhances topological accuracy by integrating connectivity information directly into the prediction framework. To further guarantee high-quality topology, we implement a topology-aware reward function that quantifies topological correctness, which is then utilized in a post-training phase through reward-guided Direct Preference Optimization. Additionally, we incorporate implicit geodesic features for latent top-k bone selection, which substantially improves skinning quality. By leveraging geodesic distance information within the model's latent space, our approach intelligently determines the most influential bones for each vertex, effectively mitigating common skinning artifacts. This combination of connectivity-preserving tokenization, reward-guided fine-tuning, and geodesic-aware bone selection enables our model to consistently generate more anatomically plausible skeletal structures with superior deformation properties.
♻ ☆ BokehDiff: Neural Lens Blur with One-Step Diffusion ICCV 2025
We introduce BokehDiff, a novel lens blur rendering method that achieves physically accurate and visually appealing outcomes, with the help of generative diffusion prior. Previous methods are bounded by the accuracy of depth estimation, generating artifacts in depth discontinuities. Our method employs a physics-inspired self-attention module that aligns with the image formation process, incorporating depth-dependent circle of confusion constraint and self-occlusion effects. We adapt the diffusion model to the one-step inference scheme without introducing additional noise, and achieve results of high quality and fidelity. To address the lack of scalable paired data, we propose to synthesize photorealistic foregrounds with transparency with diffusion models, balancing authenticity and scene diversity.
comment: Accepted by ICCV 2025
♻ ☆ Reasoning-Aligned Perception Decoupling for Scalable Multi-modal Reasoning
Recent breakthroughs in reasoning language models have significantly advanced text-based reasoning. On the other hand, Multi-modal Large Language Models (MLLMs) still lag behind, hindered by their outdated internal LLMs. Upgrading these is often prohibitively expensive, as it requires complete vision-language alignment retraining which is costly. To address this issue, we introduce Perception-Reasoning Decoupling, which modularizes the MLLM's reasoning component and makes it easily replaceable. This approach redefines the MLLM's role to convert multi-modal inputs into detailed textual outputs that can be processed by any powerful, external, text-only LLM reasoners. To align the MLLM's perceptual output with the final reasoning task, we propose a novel reinforcement learning algorithm called Visual Perception Optimization (VPO). VPO rewards the MLLM based on the correctness of answers generated by the external reasoner to produce faithful and query-relevant captions. Together, this decoupling pipeline and VPO form our Reasoning-Aligned PerceptIon Decoupling (RAPID) approach. Empirical results show that RAPID achieves significant performance gains on multi-modal reasoning benchmarks. Crucially, RAPID enables a novel inference-time scaling paradigm: Once trained with VPO, the MLLM can be paired with any state-of-the-art LLM reasoner for consistent performance improvement without retraining.
♻ ☆ Hyperspectral Anomaly Detection Fused Unified Nonconvex Tensor Ring Factors Regularization
In recent years, tensor decomposition-based approaches for hyperspectral anomaly detection (HAD) have gained significant attention in the field of remote sensing. However, existing methods often fail to fully leverage both the global correlations and local smoothness of the background components in hyperspectral images (HSIs), which exist in both the spectral and spatial domains. This limitation results in suboptimal detection performance. To mitigate this critical issue, we put forward a novel HAD method named HAD-EUNTRFR, which incorporates an enhanced unified nonconvex tensor ring (TR) factors regularization. In the HAD-EUNTRFR framework, the raw HSIs are first decomposed into background and anomaly components. The TR decomposition is then employed to capture the spatial-spectral correlations within the background component. Additionally, we introduce a unified and efficient nonconvex regularizer, induced by tensor singular value decomposition (TSVD), to simultaneously encode the low-rankness and sparsity of the 3-D gradient TR factors into a unique concise form. The above characterization scheme enables the interpretable gradient TR factors to inherit the low-rankness and smoothness of the original background. To further enhance anomaly detection, we design a generalized nonconvex regularization term to exploit the group sparsity of the anomaly component. To solve the resulting doubly nonconvex model, we develop a highly efficient optimization algorithm based on the alternating direction method of multipliers (ADMM) framework. Experimental results on several benchmark datasets demonstrate that our proposed method outperforms existing state-of-the-art (SOTA) approaches in terms of detection accuracy.
♻ ☆ Knowledge-based Visual Question Answer with Multimodal Processing, Retrieval and Filtering NeurIPS 2025
Knowledge-based visual question answering (KB-VQA) requires visual language models (VLMs) to integrate visual understanding with external knowledge retrieval. Although retrieval-augmented generation (RAG) achieves significant advances in this task by combining knowledge-base querying, it still struggles with the quality of multimodal queries and the relevance of retrieved results. To overcome these challenges, we propose a novel three-stage method, termed Wiki-PRF, including Processing, Retrieval and Filtering stages. The processing stage dynamically invokes visual tools to extract precise multimodal information for retrieval. The retrieval stage integrates visual and text features to achieve multimodal knowledge retrieval. The filtering stage performs relevance filtering and concentration on retrieval results. To this end, we introduce a visual language model trained with answer accuracy and format consistency as reward signals via a reinforcement learning manner. This enhances the model's reasoning, tool invocation for accurate queries, and filtering of irrelevant content. Experiments on benchmark datasets (E-VQA and InfoSeek) show significant improvements~(36.0 and 42.8) in answer quality, achieving state-of-the-art performance. Code is available at https://github.com/cqu-student/Wiki-PRF
comment: Accepted by NeurIPS 2025
♻ ☆ Grounding Language with Vision: A Conditional Mutual Information Calibrated Decoding Strategy for Reducing Hallucinations in LVLMs
Large Vision-Language Models (LVLMs) are susceptible to hallucinations, where generated responses seem semantically plausible yet exhibit little or no relevance to the input image. Previous studies reveal that this issue primarily stems from LVLMs' over-reliance on language priors while disregarding the visual information during decoding. To alleviate this issue, we introduce a novel Conditional Pointwise Mutual Information (C-PMI) calibrated decoding strategy, which adaptively strengthens the mutual dependency between generated texts and input images to mitigate hallucinations. Unlike existing methods solely focusing on text token sampling, we propose to jointly model the contributions of visual and textual tokens to C-PMI, formulating hallucination mitigation as a bi-level optimization problem aimed at maximizing mutual information. To solve it, we design a token purification mechanism that dynamically regulates the decoding process by sampling text tokens remaining maximally relevant to the given image, while simultaneously refining image tokens most pertinent to the generated response. Extensive experiments across various benchmarks reveal that the proposed method significantly reduces hallucinations in LVLMs while preserving decoding efficiency.
♻ ☆ DeepSeek-Inspired Exploration of RL-based LLMs and Synergy with Wireless Networks: A Survey
Reinforcement learning (RL)-based large language models (LLMs), such as ChatGPT, DeepSeek, and Grok-3, have attracted widespread attention for their remarkable capabilities in multimodal data understanding. Meanwhile, the rapid expansion of information services has led to a growing demand for AI-enabled wireless networks. The open-source DeepSeek models are famous for their innovative designs, such as large-scale pure RL and cost-efficient training, which make them well-suited for practical deployment in wireless networks. By integrating DeepSeek-style LLMs with wireless infrastructures, a synergistic opportunity arises: the DeepSeek-style LLMs enhance network optimization with strong reasoning and decision-making abilities, while wireless infrastructure enables the broad deployment of these models. Motivated by this convergence, this survey presents a comprehensive DeepSeek-inspired exploration of RL-based LLMs in the context of wireless networks. We begin by reviewing key techniques behind network optimization to establish a foundation for understanding DeepSeek-style LLM integration. Next, we examine recent advancements in RL-based LLMs, using DeepSeek models as a representative example. Building on this, we explore the synergy between the two domains, highlighting motivations, challenges, and potential solutions. Finally, we highlight emerging directions for integrating LLMs with wireless networks, such as quantum, on-device, and neural-symbolic LLM models, as well as embodied AI agents. Overall, this survey offers a comprehensive examination of the interplay between DeepSeek-style LLMs and wireless networks, demonstrating how these domains can mutually enhance each other to drive innovation.
comment: 45 pages, 12 figures
♻ ☆ Dress Well via Fashion Cognitive Learning
Fashion compatibility models enable online retailers to easily obtain a large number of outfit compositions with good quality. However, effective fashion recommendation demands precise service for each customer with a deeper cognition of fashion. In this paper, we conduct the first study on fashion cognitive learning, which is fashion recommendations conditioned on personal physical information. To this end, we propose a Fashion Cognitive Network (FCN) to learn the relationships among visual-semantic embedding of outfit composition and appearance features of individuals. FCN contains two submodules, namely outfit encoder and Multi-label Graph Neural Network (ML-GCN). The outfit encoder uses a convolutional layer to encode an outfit into an outfit embedding. The latter module learns label classifiers via stacked GCN. We conducted extensive experiments on the newly collected O4U dataset, and the results provide strong qualitative and quantitative evidence that our framework outperforms alternative methods.
♻ ☆ MIRROR: Multi-Modal Pathological Self-Supervised Representation Learning via Modality Alignment and Retention
Histopathology and transcriptomics are fundamental modalities in oncology, encapsulating the morphological and molecular aspects of the disease. Multi-modal self-supervised learning has demonstrated remarkable potential in learning pathological representations by integrating diverse data sources. Conventional multi-modal integration methods primarily emphasize modality alignment, while paying insufficient attention to retaining the modality-specific structures. However, unlike conventional scenarios where multi-modal inputs share highly overlapping features, histopathology and transcriptomics exhibit pronounced heterogeneity, offering orthogonal yet complementary insights. Histopathology provides morphological and spatial context, elucidating tissue architecture and cellular topology, whereas transcriptomics delineates molecular signatures through gene expression patterns. This inherent disparity introduces a major challenge in aligning them while maintaining modality-specific fidelity. To address these challenges, we present MIRROR, a novel multi-modal representation learning method designed to foster both modality alignment and retention. MIRROR employs dedicated encoders to extract comprehensive features for each modality, which is further complemented by a modality alignment module to achieve seamless integration between phenotype patterns and molecular profiles. Furthermore, a modality retention module safeguards unique attributes from each modality, while a style clustering module mitigates redundancy and enhances disease-relevant information by modeling and aligning consistent pathological signatures within a clustering space. Extensive evaluations on TCGA cohorts for cancer subtyping and survival analysis highlight MIRROR's superior performance, demonstrating its effectiveness in constructing comprehensive oncological feature representations and benefiting the cancer diagnosis.
comment: 18 pages, 7 figures, 10 tables. Code available at https://github.com/TianyiFranklinWang/MIRROR. Project page: https://tianyifranklinwang.github.io/MIRROR
♻ ☆ NFIG: Multi-Scale Autoregressive Image Generation via Frequency Ordering
Autoregressive models have achieved significant success in image generation. However, unlike the inherent hierarchical structure of image information in the spectral domain, standard autoregressive methods typically generate pixels sequentially in a fixed spatial order. To better leverage this spectral hierarchy, we introduce NextFrequency Image Generation (NFIG). NFIG is a novel framework that decomposes the image generation process into multiple frequency-guided stages. NFIG aligns the generation process with the natural image structure. It does this by first generating low-frequency components, which efficiently capture global structure with significantly fewer tokens, and then progressively adding higher-frequency details. This frequency-aware paradigm offers substantial advantages: it not only improves the quality of generated images but crucially reduces inference cost by efficiently establishing global structure early on. Extensive experiments on the ImageNet-256 benchmark validate NFIG's effectiveness, demonstrating superior performance (FID: 2.81) and a notable 1.25x speedup compared to the strong baseline VAR-d20. The source code is available at https://github.com/Pride-Huang/NFIG.
comment: 10 pages, 7 figures, 2 tables
♻ ☆ FlowDet: Overcoming Perspective and Scale Challenges in Real-Time End-to-End Traffic Detection
End-to-end object detectors offer a promising NMS-free paradigm for real-time applications, yet their high computational cost remains a significant barrier, particularly for complex scenarios like intersection traffic monitoring. To address this challenge, we propose FlowDet, a high-speed detector featuring a decoupled encoder optimization strategy applied to the DETR architecture. Specifically, FlowDet employs a novel Geometric Deformable Unit (GDU) for traffic-aware geometric modeling and a Scale-Aware Attention (SAA) module to maintain high representational power across extreme scale variations. To rigorously evaluate the model's performance in environments with severe occlusion and high object density, we collected the Intersection-Flow-5k dataset, a new challenging scene for this task. Evaluated on Intersection-Flow-5k, FlowDet establishes a new state-of-the-art. Compared to the strong RT-DETR baseline, it improves AP(test) by 1.5% and AP50(test) by 1.6%, while simultaneously reducing GFLOPs by 63.2% and increasing inference speed by 16.2%. Our work demonstrates a new path towards building highly efficient and accurate detectors for demanding, real-world perception systems. The Intersection-Flow-5k dataset is available at https://github.com/AstronZh/Intersection-Flow-5K.
comment: Accepted by PRCV 2025. Project page with code and dataset: https://github.com/AstronZh/Intersection-Flow-5K
♻ ☆ Advancing Complex Wide-Area Scene Understanding with Hierarchical Coresets Selection
Scene understanding is one of the core tasks in computer vision, aiming to extract semantic information from images to identify objects, scene categories, and their interrelationships. Although advancements in Vision-Language Models (VLMs) have driven progress in this field, existing VLMs still face challenges in adaptation to unseen complex wide-area scenes. To address the challenges, this paper proposes a Hierarchical Coresets Selection (HCS) mechanism to advance the adaptation of VLMs in complex wide-area scene understanding. It progressively refines the selected regions based on the proposed theoretically guaranteed importance function, which considers utility, representativeness, robustness, and synergy. Without requiring additional fine-tuning, HCS enables VLMs to achieve rapid understandings of unseen scenes at any scale using minimal interpretable regions while mitigating insufficient feature density. HCS is a plug-and-play method that is compatible with any VLM. Experiments demonstrate that HCS achieves superior performance and universality in various tasks.
comment: Accepted by ACMMM2025
♻ ☆ REACT-KD: Region-Aware Cross-modal Topological Knowledge Distillation for Interpretable Medical Image Classification
Reliable and interpretable tumor classification from clinical imaging remains a core challenge. The main difficulties arise from heterogeneous modality quality, limited annotations, and the absence of structured anatomical guidance. We present REACT-KD, a Region-Aware Cross-modal Topological Knowledge Distillation framework that transfers supervision from high-fidelity multi-modal sources into a lightweight CT-based student model. The framework employs a dual teacher design. One branch captures structure-function relationships through dual-tracer PET/CT, while the other models dose-aware features using synthetically degraded low-dose CT. These branches jointly guide the student model through two complementary objectives. The first achieves semantic alignment through logits distillation, and the second models anatomical topology through region graph distillation. A shared CBAM3D module ensures consistent attention across modalities. To improve reliability in deployment, REACT-KD introduces modality dropout during training, which enables robust inference under partial or noisy inputs. As a case study, we applied REACT-KD to hepatocellular carcinoma staging. The framework achieved an average AUC of 93.5\% on an internal PET/CT cohort and maintained 76.6\% to 81.5\% AUC across varying levels of dose degradation in external CT testing. Decision curve analysis further shows that REACT-KD consistently provides the highest net clinical benefit across all thresholds, confirming its value in real-world diagnostic practice. Code is available at: https://github.com/Kinetics-JOJO/REACT-KD
♻ ☆ Patch of Invisibility: Naturalistic Physical Black-Box Adversarial Attacks on Object Detectors ECML-PKDD 2024
Adversarial attacks on deep learning models have received increased attention in recent years. Work in this area has mostly focused on gradient-based techniques, so-called 'white-box' attacks, where the attacker has access to the targeted model's internal parameters; such an assumption is usually untenable in the real world. Additionally, some attacks use the entire pixel space to fool a given model, which is neither practical nor physical. To accommodate these problems we propose the BBNP algorithm (Black-Box Naturalistic Patch): a direct, black-box, naturalistic, gradient-free method that uses the learned image manifold of a pretrained, generative adversarial network (GAN) to generate naturalistic adversarial patches for object detectors. This method performs model-agnostic black-box naturalistic attacks on object detection models by relying solely on the outputs of the model. Comparing our approach against five models, five black-box and two white-box attacks, we show that our proposed method achieves state-of-the-art results, outperforming all other tested black-box approaches.
comment: Accepted at MLCS @ ECML-PKDD 2024
♻ ☆ Large Language Model-Guided Semantic Alignment for Human Activity Recognition
Human Activity Recognition (HAR) using Inertial Measurement Unit (IMU) sensors is critical for applications in healthcare, safety, and industrial production. However, variations in activity patterns, device types, and sensor placements create distribution gaps across datasets, reducing the performance of HAR models. To address this, we propose LanHAR, a novel system that leverages Large Language Models (LLMs) to generate semantic interpretations of sensor readings and activity labels for cross-dataset HAR. This approach not only mitigates cross-dataset heterogeneity but also enhances the recognition of new activities. LanHAR employs an iterative re-generation method to produce high-quality semantic interpretations with LLMs and a two-stage training framework that bridges the semantic interpretations of sensor readings and activity labels. This ultimately leads to a lightweight sensor encoder suitable for mobile deployment, enabling any sensor reading to be mapped into the semantic interpretation space. Experiments on five public datasets demonstrate that our approach significantly outperforms state-of-the-art methods in both cross-dataset HAR and new activity recognition. The source code is publicly available at https://github.com/DASHLab/LanHAR.
♻ ☆ From Cradle to Cane: A Two-Pass Framework for High-Fidelity Lifespan Face Aging NeurIPS 2025
Face aging has become a crucial task in computer vision, with applications ranging from entertainment to healthcare. However, existing methods struggle with achieving a realistic and seamless transformation across the entire lifespan, especially when handling large age gaps or extreme head poses. The core challenge lies in balancing age accuracy and identity preservation--what we refer to as the Age-ID trade-off. Most prior methods either prioritize age transformation at the expense of identity consistency or vice versa. In this work, we address this issue by proposing a two-pass face aging framework, named Cradle2Cane, based on few-step text-to-image (T2I) diffusion models. The first pass focuses on solving age accuracy by introducing an adaptive noise injection (AdaNI) mechanism. This mechanism is guided by including prompt descriptions of age and gender for the given person as the textual condition. Also, by adjusting the noise level, we can control the strength of aging while allowing more flexibility in transforming the face. However, identity preservation is weakly ensured here to facilitate stronger age transformations. In the second pass, we enhance identity preservation while maintaining age-specific features by conditioning the model on two identity-aware embeddings (IDEmb): SVR-ArcFace and Rotate-CLIP. This pass allows for denoising the transformed image from the first pass, ensuring stronger identity preservation without compromising the aging accuracy. Both passes are jointly trained in an end-to-end way. Extensive experiments on the CelebA-HQ test dataset, evaluated through Face++ and Qwen-VL protocols, show that our Cradle2Cane outperforms existing face aging methods in age accuracy and identity consistency. Code is available at https://github.com/byliutao/Cradle2Cane.
comment: 32 pages, 12 figures, NeurIPS 2025 Poster
♻ ☆ The 1st Solution for 7th LSVOS RVOS Track: SaSaSa2VA ICCV 2025
Referring video object segmentation (RVOS) requires segmenting and tracking objects in videos conditioned on natural-language expressions, demanding fine-grained understanding of both appearance and motion. Building on Sa2VA, which couples a Multi-modal Large Language Model (MLLM) with the video segmentation model SAM2, we identify two key bottlenecks that limit segmentation performance: sparse frame sampling and reliance on a single [SEG] token for an entire video. We propose Segmentation Augmented and Selective Averaged Sa2VA (SaSaSa2VA) to address these issues. On the 7th LSVOS Challenge (RVOS track), SaSaSa2VA achieves a $\mathcal{J\&F}$ of 67.45, ranking first and surpassing the runner-up by 2.80 points. This result and ablation studies demonstrate that efficient segmentation augmentation and test-time ensembling substantially enhance grounded MLLMs for RVOS. The code is released in Sa2VA repository: https://github.com/bytedance/Sa2VA.
comment: The 1st place report of 7th LSVOS challenge RVOS track in ICCV 2025. The code is released in Sa2VA repository: https://github.com/bytedance/Sa2VA
♻ ☆ Adaptive Convolutional Neural Network for Image Super-resolution
Convolutional neural networks can automatically learn features via deep network architectures and given input samples. However, the robustness of obtained models may face challenges in varying scenes. Bigger differences in network architecture are beneficial to extract more diversified structural information to strengthen the robustness of an obtained super-resolution model. In this paper, we proposed a adaptive convolutional neural network for image super-resolution (ADSRNet). To capture more information, ADSRNet is implemented by a heterogeneous parallel network. The upper network can enhance relation of context information, salient information relation of a kernel mapping and relations of shallow and deep layers to improve performance of image super-resolution. That can strengthen adaptability of an obtained super-resolution model for different scenes. The lower network utilizes a symmetric architecture to enhance relations of different layers to mine more structural information, which is complementary with a upper network for image super-resolution. The relevant experimental results show that the proposed ADSRNet is effective to deal with image resolving. Codes are obtained at https://github.com/hellloxiaotian/ADSRNet.
comment: 11pages, 7 figures
♻ ☆ OSCAR: One-Step Diffusion Codec Across Multiple Bit-rates
Pretrained latent diffusion models have shown strong potential for lossy image compression, owing to their powerful generative priors. Most existing diffusion-based methods reconstruct images by iteratively denoising from random noise, guided by compressed latent representations. While these approaches have achieved high reconstruction quality, their multi-step sampling process incurs substantial computational overhead. Moreover, they typically require training separate models for different compression bit-rates, leading to significant training and storage costs. To address these challenges, we propose a one-step diffusion codec across multiple bit-rates. termed OSCAR. Specifically, our method views compressed latents as noisy variants of the original latents, where the level of distortion depends on the bit-rate. This perspective allows them to be modeled as intermediate states along a diffusion trajectory. By establishing a mapping from the compression bit-rate to a pseudo diffusion timestep, we condition a single generative model to support reconstructions at multiple bit-rates. Meanwhile, we argue that the compressed latents retain rich structural information, thereby making one-step denoising feasible. Thus, OSCAR replaces iterative sampling with a single denoising pass, significantly improving inference efficiency. Extensive experiments demonstrate that OSCAR achieves superior performance in both quantitative and visual quality metrics. The code and models are available at https://github.com/jp-guo/OSCAR.
♻ ☆ MotionGPT3: Human Motion as a Second Modality
With the rapid progress of large language models (LLMs), multimodal frameworks that unify understanding and generation have become promising, yet they face increasing complexity as the number of modalities and tasks grows. We observe that motion quantization introduces approximation errors that cap motion quality, and that unifying discrete text and continuous motion within a single-stream backbone amplifies cross-modal interference. Motivated by recent multi-branch Transformer designs that separate signals from different modalities, we propose MotionGPT3, a bimodal motion-language model for both understanding and generation. MotionGPT3 encodes raw motion into a continuous latent space using a variational autoencoder (VAE), thereby avoiding quantization-induced artifacts, while leveraging the semantic prior of pretrained language models. A dual-stream Transformer with shared attention preserves modality-specific routes while enabling controlled, bidirectional information flow, which reduces interference, stabilizing optimization, and empirically accelerates convergence without degrading fidelity. For multimodal joint training, a generate-then-align three-stage schedule further improves stability and limits cross-task interference. Experiments show that MotionGPT3 achieves 2x faster convergence in training loss and up to 4x faster convergence in validation, while maintaining state-of-the-art performance on standard motion understanding and motion generation benchmarks.
comment: 26 pages, 11 figures
♻ ☆ SoPo: Text-to-Motion Generation Using Semi-Online Preference Optimization
Text-to-motion generation is essential for advancing the creative industry but often presents challenges in producing consistent, realistic motions. To address this, we focus on fine-tuning text-to-motion models to consistently favor high-quality, human-preferred motions, a critical yet largely unexplored problem. In this work, we theoretically investigate the DPO under both online and offline settings, and reveal their respective limitation: overfitting in offline DPO, and biased sampling in online DPO. Building on our theoretical insights, we introduce Semi-online Preference Optimization (SoPo), a DPO-based method for training text-to-motion models using "semi-online" data pair, consisting of unpreferred motion from online distribution and preferred motion in offline datasets. This method leverages both online and offline DPO, allowing each to compensate for the other's limitations. Extensive experiments demonstrate that SoPo outperforms other preference alignment methods, with an MM-Dist of 3.25% (vs e.g. 0.76% of MoDiPO) on the MLD model, 2.91% (vs e.g. 0.66% of MoDiPO) on MDM model, respectively. Additionally, the MLD model fine-tuned by our SoPo surpasses the SoTA model in terms of R-precision and MM Dist. Visualization results also show the efficacy of our SoPo in preference alignment. Project page: https://xiaofeng-tan.github.io/projects/SoPo/ .
♻ ☆ Rethinking Multimodal Learning from the Perspective of Mitigating Classification Ability Disproportion
Multimodal learning (MML) is significantly constrained by modality imbalance, leading to suboptimal performance in practice. While existing approaches primarily focus on balancing the learning of different modalities to address this issue, they fundamentally overlook the inherent disproportion in model classification ability, which serves as the primary cause of this phenomenon. In this paper, we propose a novel multimodal learning approach to dynamically balance the classification ability of weak and strong modalities by incorporating the principle of boosting. Concretely, we first propose a sustained boosting algorithm in multimodal learning by simultaneously optimizing the classification and residual errors. Subsequently, we introduce an adaptive classifier assignment strategy to dynamically facilitate the classification performance of the weak modality. Furthermore, we theoretically analyze the convergence property of the cross-modal gap function, ensuring the effectiveness of the proposed boosting scheme. To this end, the classification ability of strong and weak modalities is expected to be balanced, thereby mitigating the imbalance issue. Empirical experiments on widely used datasets reveal the superiority of our method through comparison with various state-of-the-art (SOTA) multimodal learning baselines. The source code is available at https://github.com/njustkmg/NeurIPS25-AUG.
♻ ☆ Tag-Enriched Multi-Attention with Large Language Models for Cross-Domain Sequential Recommendation IEEE
Cross-Domain Sequential Recommendation (CDSR) plays a crucial role in modern consumer electronics and e-commerce platforms, where users interact with diverse services such as books, movies, and online retail products. These systems must accurately capture both domain-specific and cross-domain behavioral patterns to provide personalized and seamless consumer experiences. To address this challenge, we propose \textbf{TEMA-LLM} (\textit{Tag-Enriched Multi-Attention with Large Language Models}), a practical and effective framework that integrates \textit{Large Language Models (LLMs)} for semantic tag generation and enrichment. Specifically, TEMA-LLM employs LLMs to assign domain-aware prompts and generate descriptive tags from item titles and descriptions. The resulting tag embeddings are fused with item identifiers as well as textual and visual features to construct enhanced item representations. A \textit{Tag-Enriched Multi-Attention} mechanism is then introduced to jointly model user preferences within and across domains, enabling the system to capture complex and evolving consumer interests. Extensive experiments on four large-scale e-commerce datasets demonstrate that TEMA-LLM consistently outperforms state-of-the-art baselines, underscoring the benefits of LLM-based semantic tagging and multi-attention integration for consumer-facing recommendation systems. The proposed approach highlights the potential of LLMs to advance intelligent, user-centric services in the field of consumer electronics.
comment: Accepted in IEEE Transactions on Consumer Electronics 2025
♻ ☆ VisuRiddles: Fine-grained Perception is a Primary Bottleneck for Multimodal Large Language Models in Abstract Visual Reasoning
Recent strides in multimodal large language models (MLLMs) have significantly advanced their performance in many reasoning tasks. However, Abstract Visual Reasoning (AVR) remains a critical challenge, primarily due to limitations in perceiving abstract graphics. To tackle this issue, we investigate the bottlenecks in current MLLMs and synthesize training data to improve their abstract visual perception. First, we propose VisuRiddles, a benchmark for AVR, featuring tasks meticulously constructed to assess models' reasoning capacities across five core dimensions and two high-level reasoning categories. Second, we introduce the Perceptual Riddle Synthesizer (PRS), an automated framework for generating riddles with fine-grained perceptual descriptions. PRS not only generates valuable training data for abstract graphics but also provides fine-grained perceptual description, crucially allowing for supervision over intermediate reasoning stages and thereby improving both training efficacy and model interpretability. Our extensive experimental results on VisuRiddles empirically validate that fine-grained visual perception is the principal bottleneck and our synthesis framework markedly enhances the performance of contemporary MLLMs on these challenging tasks. Our code and dataset will be released at https://github.com/yh-hust/VisuRiddles
comment: 13 pages, 4 figures
♻ ☆ Video-SafetyBench: A Benchmark for Safety Evaluation of Video LVLMs NeurIPS 2025
The increasing deployment of Large Vision-Language Models (LVLMs) raises safety concerns under potential malicious inputs. However, existing multimodal safety evaluations primarily focus on model vulnerabilities exposed by static image inputs, ignoring the temporal dynamics of video that may induce distinct safety risks. To bridge this gap, we introduce Video-SafetyBench, the first comprehensive benchmark designed to evaluate the safety of LVLMs under video-text attacks. It comprises 2,264 video-text pairs spanning 48 fine-grained unsafe categories, each pairing a synthesized video with either a harmful query, which contains explicit malice, or a benign query, which appears harmless but triggers harmful behavior when interpreted alongside the video. To generate semantically accurate videos for safety evaluation, we design a controllable pipeline that decomposes video semantics into subject images (what is shown) and motion text (how it moves), which jointly guide the synthesis of query-relevant videos. To effectively evaluate uncertain or borderline harmful outputs, we propose RJScore, a novel LLM-based metric that incorporates the confidence of judge models and human-aligned decision threshold calibration. Extensive experiments show that benign-query video composition achieves average attack success rates of 67.2%, revealing consistent vulnerabilities to video-induced attacks. We believe Video-SafetyBench will catalyze future research into video-based safety evaluation and defense strategies.
comment: Accepted by NeurIPS 2025 Dataset and Benchmark Track, Project page: https://liuxuannan.github.io/Video-SafetyBench.github.io/
♻ ☆ Latent Diffusion Model without Variational Autoencoder
Recent progress in diffusion-based visual generation has largely relied on latent diffusion models with variational autoencoders (VAEs). While effective for high-fidelity synthesis, this VAE+diffusion paradigm suffers from limited training efficiency, slow inference, and poor transferability to broader vision tasks. These issues stem from a key limitation of VAE latent spaces: the lack of clear semantic separation and strong discriminative structure. Our analysis confirms that these properties are crucial not only for perception and understanding tasks, but also for the stable and efficient training of latent diffusion models. Motivated by this insight, we introduce SVG, a novel latent diffusion model without variational autoencoders, which leverages self-supervised representations for visual generation. SVG constructs a feature space with clear semantic discriminability by leveraging frozen DINO features, while a lightweight residual branch captures fine-grained details for high-fidelity reconstruction. Diffusion models are trained directly on this semantically structured latent space to facilitate more efficient learning. As a result, SVG enables accelerated diffusion training, supports few-step sampling, and improves generative quality. Experimental results further show that SVG preserves the semantic and discriminative capabilities of the underlying self-supervised representations, providing a principled pathway toward task-general, high-quality visual representations. Code and interpretations are available at https://howlin-wang.github.io/svg/.
♻ ☆ Streaming Drag-Oriented Interactive Video Manipulation: Drag Anything, Anytime!
Achieving streaming, fine-grained control over the outputs of autoregressive video diffusion models remains challenging, making it difficult to ensure that they consistently align with user expectations. To bridge this gap, we propose \textbf{stReaming drag-oriEnted interactiVe vidEo manipuLation (REVEL)}, a new task that enables users to modify generated videos \emph{anytime} on \emph{anything} via fine-grained, interactive drag. Beyond DragVideo and SG-I2V, REVEL unifies drag-style video manipulation as editing and animating video frames with both supporting user-specified translation, deformation, and rotation effects, making drag operations versatile. In resolving REVEL, we observe: \emph{i}) drag-induced perturbations accumulate in latent space, causing severe latent distribution drift that halts the drag process; \emph{ii}) streaming drag is easily disturbed by context frames, thereby yielding visually unnatural outcomes. We thus propose a training-free approach, \textbf{DragStream}, comprising: \emph{i}) an adaptive distribution self-rectification strategy that leverages neighboring frames' statistics to effectively constrain the drift of latent embeddings; \emph{ii}) a spatial-frequency selective optimization mechanism, allowing the model to fully exploit contextual information while mitigating its interference via selectively propagating visual cues along generation. Our method can be seamlessly integrated into existing autoregressive video diffusion models, and extensive experiments firmly demonstrate the effectiveness of our DragStream.
♻ ☆ CARDIUM: Congenital Anomaly Recognition with Diagnostic Images and Unified Medical records ICCV 2025
Prenatal diagnosis of Congenital Heart Diseases (CHDs) holds great potential for Artificial Intelligence (AI)-driven solutions. However, collecting high-quality diagnostic data remains difficult due to the rarity of these conditions, resulting in imbalanced and low-quality datasets that hinder model performance. Moreover, no public efforts have been made to integrate multiple sources of information, such as imaging and clinical data, further limiting the ability of AI models to support and enhance clinical decision-making. To overcome these challenges, we introduce the Congenital Anomaly Recognition with Diagnostic Images and Unified Medical records (CARDIUM) dataset, the first publicly available multimodal dataset consolidating fetal ultrasound and echocardiographic images along with maternal clinical records for prenatal CHD detection. Furthermore, we propose a robust multimodal transformer architecture that incorporates a cross-attention mechanism to fuse feature representations from image and tabular data, improving CHD detection by 11% and 50% over image and tabular single-modality approaches, respectively, and achieving an F1 score of 79.8 $\pm$ 4.8% in the CARDIUM dataset. We will publicly release our dataset and code to encourage further research on this unexplored field. Our dataset and code are available at https://github.com/BCV-Uniandes/Cardium, and at the project website https://bcv-uniandes.github.io/CardiumPage/
comment: Accepted to CVAMD Workshop, ICCV 2025
♻ ☆ Geodesic Diffusion Models for Efficient Medical Image Enhancement
Diffusion models generate data by learning to reverse a forward process, where samples are progressively perturbed with Gaussian noise according to a predefined noise schedule. From a geometric perspective, each noise schedule corresponds to a unique trajectory in probability space from the data distribution to a Gaussian prior. However, prior diffusion models rely on empirically chosen schedules that may not be optimal. This inefficiency necessitates many intermediate time steps, resulting in high computational costs during both training and sampling. To address this, we derive a family of geodesic noise schedules corresponding to the shortest paths in probability space under the Fisher-Rao metric. Based on these schedules, we propose Geodesic Diffusion Models (GDMs), which significantly improve training and sampling efficiency by minimizing the energy required to transform between probability distributions. This efficiency further enables sampling to start from an intermediate distribution in conditional image generation, achieving state-of-the-art results with as few as 6 steps. We evaluated GDM on two medical image enhancement tasks: CT image denoising and MRI image super-resolution. Experimental results show that GDM achieved state-of-the-art performance while reducing training time by 20- to 30-fold compared to Denoising Diffusion Probabilistic Models (DDPMs) and 4- to 6-fold compared to Fast-DDPM, and accelerating sampling by 160- to 170-fold and 1.6-fold, respectively. These gains support the use of GDM for efficient model development and real-time clinical applications. Our code is publicly available at: https://github.com/mirthAI/GDM-VE.
♻ ☆ Attention (as Discrete-Time Markov) Chains NeurIPS 2025
We introduce a new interpretation of the attention matrix as a discrete-time Markov chain. Our interpretation sheds light on common operations involving attention scores such as selection, summation, and averaging in a unified framework. It further extends them by considering indirect attention, propagated through the Markov chain, as opposed to previous studies that only model immediate effects. Our key observation is that tokens linked to semantically similar regions form metastable states, i.e., regions where attention tends to concentrate, while noisy attention scores dissipate. Metastable states and their prevalence can be easily computed through simple matrix multiplication and eigenanalysis, respectively. Using these lightweight tools, we demonstrate state-of-the-art zero-shot segmentation. Lastly, we define TokenRank -- the steady state vector of the Markov chain, which measures global token importance. We show that TokenRank enhances unconditional image generation, improving both quality (IS) and diversity (FID), and can also be incorporated into existing segmentation techniques to improve their performance over existing benchmarks. We believe our framework offers a fresh view of how tokens are being attended in modern visual transformers.
comment: NeurIPS 2025. Project page: https://yoterel.github.io/attention_chains/
♻ ☆ Indoor Heat Estimation from a Single Visible-Light Panorama
This paper introduces a novel image-based rendering technique for jointly estimating indoor lighting and thermal conditions from paired indoor-outdoor high dynamic range (HDR) panoramas. Our method uses the indoor panorama to estimate the 3D floor layout, while the corresponding outdoor panorama serves as an environment map to infer spatially-varying illumination and material properties. Assuming indoor surfaces are Lambertian and that all heat originates from outdoor visible light, we model the relationship between light transport and heat transfer, and perform transient heat simulations to generate indoor temperature distributions. The simulated heat maps are validated against real-world thermal images captured with an infrared camera. This approach supports photorealistic and physically informed visualization, enabling integrated light and heat estimation to advance traditional virtual home staging.
comment: ISVC'25, Selected for Oral Presentation
♻ ☆ HOIDiNi: Human-Object Interaction through Diffusion Noise Optimization
We present HOIDiNi, a text-driven diffusion framework for synthesizing realistic and plausible human-object interaction (HOI). HOI generation is extremely challenging since it induces strict contact accuracies alongside a diverse motion manifold. While current literature trades off between realism and physical correctness, HOIDiNi optimizes directly in the noise space of a pretrained diffusion model using Diffusion Noise Optimization (DNO), achieving both. This is made feasible thanks to our observation that the problem can be separated into two phases: an object-centric phase, primarily making discrete choices of hand-object contact locations, and a human-centric phase that refines the full-body motion to realize this blueprint. This structured approach allows for precise hand-object contact without compromising motion naturalness. Quantitative, qualitative, and subjective evaluations on the GRAB dataset alone clearly indicate HOIDiNi outperforms prior works and baselines in contact accuracy, physical validity, and overall quality. Our results demonstrate the ability to generate complex, controllable interactions, including grasping, placing, and full-body coordination, driven solely by textual prompts. https://hoidini.github.io.
comment: Project page: https://hoidini.github.io
♻ ☆ COLORA: Efficient Fine-Tuning for Convolutional Models with a Study Case on Optical Coherence Tomography Image Classification
We introduce CoLoRA (Convolutional Low-Rank Adaptation), a parameter-efficient fine-tuning method for convolutional neural networks (CNNs). CoLoRA extends LoRA to convolutional layers by decomposing kernel updates into lightweight depthwise and pointwise components.This design reduces the number of trainable parameters to 0.2 compared to conventional fine-tuning, preserves the original model size, and allows merging updates into the pretrained weights after each epoch, keeping inference complexity unchanged. On OCTMNISTv2, CoLoRA applied to VGG16 and ResNet50 achieves up to 1 percent accuracy and 0.013 AUC improvements over strong baselines (Vision Transformers, state-space, and Kolmogorov Arnold models) while reducing per-epoch training time by nearly 20 percent. Results indicate that CoLoRA provides a stable and effective alternative to full fine-tuning for medical image classification.
comment: 15 pages, 13 figures
♻ ☆ VLLFL: A Vision-Language Model Based Lightweight Federated Learning Framework for Smart Agriculture
In modern smart agriculture, object detection plays a crucial role by enabling automation, precision farming, and monitoring of resources. From identifying crop health and pest infestations to optimizing harvesting processes, accurate object detection enhances both productivity and sustainability. However, training object detection models often requires large-scale data collection and raises privacy concerns, particularly when sensitive agricultural data is distributed across farms. To address these challenges, we propose VLLFL, a vision-language model-based lightweight federated learning framework (VLLFL). It harnesses the generalization and context-aware detection capabilities of the vision-language model (VLM) and leverages the privacy-preserving nature of federated learning. By training a compact prompt generator to boost the performance of the VLM deployed across different farms, VLLFL preserves privacy while reducing communication overhead. Experimental results demonstrate that VLLFL achieves 14.53% improvement in the performance of VLM while reducing 99.3% communication overhead. Spanning tasks from identifying a wide variety of fruits to detecting harmful animals in agriculture, the proposed framework offers an efficient, scalable, and privacy-preserving solution specifically tailored to agricultural applications.
♻ ☆ The Impact of Coreset Selection on Spurious Correlations and Group Robustness
Coreset selection methods have shown promise in reducing the training data size while maintaining model performance for data-efficient machine learning. However, as many datasets suffer from biases that cause models to learn spurious correlations instead of causal features, it is important to understand whether and how dataset reduction methods may perpetuate, amplify, or mitigate these biases. In this work, we conduct the first comprehensive analysis of the implications of data selection on the spurious bias levels of the selected coresets and the robustness of downstream models trained on them. We use an extensive experimental setting spanning ten different spurious correlations benchmarks, five score metrics to characterize sample importance/ difficulty, and five data selection policies across a broad range of coreset sizes. Thereby, we unravel a series of nontrivial nuances in interactions between sample difficulty and bias alignment, as well as dataset bias and resultant model robustness. For example, we find that selecting coresets using embedding-based sample characterization scores runs a comparatively lower risk of inadvertently exacerbating bias than selecting using characterizations based on learning dynamics. Most importantly, our analysis reveals that although some coreset selection methods could achieve lower bias levels by prioritizing difficult samples, they do not reliably guarantee downstream robustness.
comment: 10 pages, 9 additional pages for Appendix
♻ ☆ Moving Object Detection from Moving Camera Using Focus of Expansion Likelihood and Segmentation
Separating moving and static objects from a moving camera viewpoint is essential for 3D reconstruction, autonomous navigation, and scene understanding in robotics. Existing approaches often rely primarily on optical flow, which struggles to detect moving objects in complex, structured scenes involving camera motion. To address this limitation, we propose Focus of Expansion Likelihood and Segmentation (FoELS), a method based on the core idea of integrating both optical flow and texture information. FoELS computes the focus of expansion (FoE) from optical flow and derives an initial motion likelihood from the outliers of the FoE computation. This likelihood is then fused with a segmentation-based prior to estimate the final moving probability. The method effectively handles challenges including complex structured scenes, rotational camera motion, and parallel motion. Comprehensive evaluations on the DAVIS 2016 dataset and real-world traffic videos demonstrate its effectiveness and state-of-the-art performance.
comment: 8 pages, 15 figures, RA-L submission
♻ ☆ 3D Audio-Visual Segmentation NeurIPS 2024
Recognizing the sounding objects in scenes is a longstanding objective in embodied AI, with diverse applications in robotics and AR/VR/MR. To that end, Audio-Visual Segmentation (AVS), taking as condition an audio signal to identify the masks of the target sounding objects in an input image with synchronous camera and microphone sensors, has been recently advanced. However, this paradigm is still insufficient for real-world operation, as the mapping from 2D images to 3D scenes is missing. To address this fundamental limitation, we introduce a novel research problem, 3D Audio-Visual Segmentation, extending the existing AVS to the 3D output space. This problem poses more challenges due to variations in camera extrinsics, audio scattering, occlusions, and diverse acoustics across sounding object categories. To facilitate this research, we create the very first simulation based benchmark, 3DAVS-S34-O7, providing photorealistic 3D scene environments with grounded spatial audio under single-instance and multi-instance settings, across 34 scenes and 7 object categories. This is made possible by re-purposing the Habitat simulator to generate comprehensive annotations of sounding object locations and corresponding 3D masks. Subsequently, we propose a new approach, EchoSegnet, characterized by integrating the ready-to-use knowledge from pretrained 2D audio-visual foundation models synergistically with 3D visual scene representation through spatial audio-aware mask alignment and refinement. Extensive experiments demonstrate that EchoSegnet can effectively segment sounding objects in 3D space on our new benchmark, representing a significant advancement in the field of embodied AI. Project page: https://x-up-lab.github.io/research/3d-audio-visual-segmentation/
comment: Accepted at the NeurIPS 2024 Workshop on Audio Imagination; this version updates the project page link
♻ ☆ FlySearch: Exploring how vision-language models explore NeurIPS 2025
The real world is messy and unstructured. Uncovering critical information often requires active, goal-driven exploration. It remains to be seen whether Vision-Language Models (VLMs), which recently emerged as a popular zero-shot tool in many difficult tasks, can operate effectively in such conditions. In this paper, we answer this question by introducing FlySearch, a 3D, outdoor, photorealistic environment for searching and navigating to objects in complex scenes. We define three sets of scenarios with varying difficulty and observe that state-of-the-art VLMs cannot reliably solve even the simplest exploration tasks, with the gap to human performance increasing as the tasks get harder. We identify a set of central causes, ranging from vision hallucination, through context misunderstanding, to task planning failures, and we show that some of them can be addressed by finetuning. We publicly release the benchmark, scenarios, and the underlying codebase.
comment: NeurIPS 2025 Datasets and Benchmarks track
♻ ☆ TACO: Enhancing Multimodal In-context Learning via Task Mapping-Guided Sequence Configuration EMNLP2025
Multimodal in-context learning (ICL) has emerged as a key mechanism for harnessing the capabilities of large vision-language models (LVLMs). However, its effectiveness remains highly sensitive to the quality of input ICL sequences, particularly for tasks involving complex reasoning or open-ended generation. A major limitation is our limited understanding of how LVLMs actually exploit these sequences during inference. To bridge this gap, we systematically interpret multimodal ICL through the lens of task mapping, which reveals how local and global relationships within and among demonstrations guide model reasoning. Building on this insight, we present TACO, a lightweight transformer-based model equipped with task-aware attention that dynamically configures ICL sequences. By injecting task-mapping signals into the autoregressive decoding process, TACO creates a bidirectional synergy between sequence construction and task reasoning. Experiments on five LVLMs and nine datasets demonstrate that TACO consistently surpasses baselines across diverse ICL tasks. These results position task mapping as a novel and valuable perspective for interpreting and improving multimodal ICL.
comment: EMNLP2025 Main, 28 pages, 11 figures, 19 tables
♻ ☆ Monitoring morphometric drift in lifelong learning segmentation of the spinal cord
Morphometric measures derived from spinal cord segmentations can serve as diagnostic and prognostic biomarkers in neurological diseases and injuries affecting the spinal cord. While robust, automatic segmentation methods to a wide variety of contrasts and pathologies have been developed over the past few years, whether their predictions are stable as the model is updated using new datasets has not been assessed. This is particularly important for deriving normative values from healthy participants. In this study, we present a spinal cord segmentation model trained on a multisite $(n=75)$ dataset, including 9 different MRI contrasts and several spinal cord pathologies. We also introduce a lifelong learning framework to automatically monitor the morphometric drift as the model is updated using additional datasets. The framework is triggered by an automatic GitHub Actions workflow every time a new model is created, recording the morphometric values derived from the model's predictions over time. As a real-world application of the proposed framework, we employed the spinal cord segmentation model to update a recently-introduced normative database of healthy participants containing commonly used measures of spinal cord morphometry. Results showed that: (i) our model outperforms previous versions and pathology-specific models on challenging lumbar spinal cord cases, achieving an average Dice score of $0.95 \pm 0.03$; (ii) the automatic workflow for monitoring morphometric drift provides a quick feedback loop for developing future segmentation models; and (iii) the scaling factor required to update the database of morphometric measures is nearly constant among slices across the given vertebral levels, showing minimum drift between the current and previous versions of the model monitored by the framework. The code and model are open-source and accessible via Spinal Cord Toolbox v7.0.
comment: Under review (after 1st round of revision) at Imaging Neuroscience journal
♻ ☆ Predicting Video Slot Attention Queries from Random Slot-Feature Pairs
Unsupervised video Object-Centric Learning (OCL) is promising as it enables object-level scene representation and dynamics modeling as we humans do. Mainstream video OCL methods adopt a recurrent architecture: An aggregator aggregates current video frame into object features, termed slots, under some queries; A transitioner transits current slots to queries for the next frame. This is an effective architecture but all existing implementations both (\textit{i1}) neglect to incorporate next frame features, the most informative source for query prediction, and (\textit{i2}) fail to learn transition dynamics, the knowledge essential for query prediction. To address these issues, we propose Random Slot-Feature pair for learning Query prediction (RandSF.Q): (\textit{t1}) We design a new transitioner to incorporate both slots and features, which provides more information for query prediction; (\textit{t2}) We train the transitioner to predict queries from slot-feature pairs randomly sampled from available recurrences, which drives it to learn transition dynamics. Experiments on scene representation demonstrate that our method surpass existing video OCL methods significantly, e.g., up to 10 points on object discovery, setting new state-of-the-art. Such superiority also benefits downstream tasks like dynamics modeling. Our core source code and training logs are available on https://github.com/Genera1Z/RandSF.Q.
♻ ☆ REOrdering Patches Improves Vision Models NeurIPS 2025
Sequence models such as transformers require inputs to be represented as one-dimensional sequences. In vision, this typically involves flattening images using a fixed row-major (raster-scan) order. While full self-attention is permutation-equivariant, modern long-sequence transformers increasingly rely on architectural approximations that break this invariance and introduce sensitivity to patch ordering. We show that patch order significantly affects model performance in such settings, with simple alternatives like column-major or Hilbert curves yielding notable accuracy shifts. Motivated by this, we propose REOrder, a two-stage framework for discovering task-optimal patch orderings. First, we derive an information-theoretic prior by evaluating the compressibility of various patch sequences. Then, we learn a policy over permutations by optimizing a Plackett-Luce policy using REINFORCE. This approach enables efficient learning in a combinatorial permutation space. REOrder improves top-1 accuracy over row-major ordering on ImageNet-1K by up to 3.01% and Functional Map of the World by 13.35%.
comment: Accepted to the 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ Curriculum Learning with Synthetic Data for Enhanced Pulmonary Nodule Detection in Chest Radiographs
This study evaluates whether integrating curriculum learning with diffusion-based synthetic augmentation can enhance the detection of difficult pulmonary nodules in chest radiographs, particularly those with low size, brightness, and contrast, which often challenge conventional AI models due to data imbalance and limited annotation. A Faster R-CNN with a Feature Pyramid Network (FPN) backbone was trained on a hybrid dataset comprising expert-labeled NODE21 (1,213 patients; 52.4 percent male; mean age 63.2 +/- 11.5 years), VinDr-CXR, CheXpert, and 11,206 DDPM-generated synthetic images. Difficulty scores based on size, brightness, and contrast guided curriculum learning. Performance was compared to a non-curriculum baseline using mean average precision (mAP), Dice score, and area under the curve (AUC). Statistical tests included bootstrapped confidence intervals, DeLong tests, and paired t-tests. The curriculum model achieved a mean AUC of 0.95 versus 0.89 for the baseline (p < 0.001), with improvements in sensitivity (70 percent vs. 48 percent) and accuracy (82 percent vs. 70 percent). Stratified analysis demonstrated consistent gains across all difficulty bins (Easy to Very Hard). Grad-CAM visualizations confirmed more anatomically focused attention under curriculum learning. These results suggest that curriculum-guided synthetic augmentation enhances model robustness and generalization for pulmonary nodule detection.
comment: This version has been withdrawn due to authorship changes and a decision to substantially revise the manuscript with new methodology. A future version may be submitted separately
♻ ☆ Dissecting Mahalanobis: How Feature Geometry and Normalization Shape OOD Detection
Out-of-distribution (OOD) detection is critical for the reliable deployment of deep learning models. hile Mahalanobis distance methods are widely used, the impact of representation geometry and normalization on their performance is not fully understood, which may limit their downstream application. To address this gap, we conducted a comprehensive empirical study across diverse image foundation models, datasets, and distance normalization schemes. First, our analysis shows that Mahalanobis-based methods aren't universally reliable. Second, we define the ideal geometry for data representations and demonstrate that spectral and intrinsic-dimensionality metrics can accurately predict a model's OOD performance. Finally, we analyze how normalization impacts OOD performance. Building upon these studies, we propose radially scaled $\ell_2$ normalization, a method that generalizes the standard $\ell_2$ normalization recently applied to Mahalanobis-based OOD detection. Our approach introduces a tunable parameter to directly control the radial geometry of the feature space, systematically contracting or expanding representations to significantly improve OOD detection performance. By bridging the gap between representation geometry, normalization, and OOD performance, our findings offer new insights into the design of more effective and reliable deep learning models.
♻ ☆ DisasterM3: A Remote Sensing Vision-Language Dataset for Disaster Damage Assessment and Response
Large vision-language models (VLMs) have made great achievements in Earth vision. However, complex disaster scenes with diverse disaster types, geographic regions, and satellite sensors have posed new challenges for VLM applications. To fill this gap, we curate a remote sensing vision-language dataset (DisasterM3) for global-scale disaster assessment and response. DisasterM3 includes 26,988 bi-temporal satellite images and 123k instruction pairs across 5 continents, with three characteristics: 1) Multi-hazard: DisasterM3 involves 36 historical disaster events with significant impacts, which are categorized into 10 common natural and man-made disasters. 2)Multi-sensor: Extreme weather during disasters often hinders optical sensor imaging, making it necessary to combine Synthetic Aperture Radar (SAR) imagery for post-disaster scenes. 3) Multi-task: Based on real-world scenarios, DisasterM3 includes 9 disaster-related visual perception and reasoning tasks, harnessing the full potential of VLM's reasoning ability with progressing from disaster-bearing body recognition to structural damage assessment and object relational reasoning, culminating in the generation of long-form disaster reports. We extensively evaluated 14 generic and remote sensing VLMs on our benchmark, revealing that state-of-the-art models struggle with the disaster tasks, largely due to the lack of a disaster-specific corpus, cross-sensor gap, and damage object counting insensitivity. Focusing on these issues, we fine-tune four VLMs using our dataset and achieve stable improvements across all tasks, with robust cross-sensor and cross-disaster generalization capabilities. The code and data are available at: https://github.com/Junjue-Wang/DisasterM3.
comment: A multi-hazard, multi-sensor, and multi-task vision-language dataset for global-scale disaster assessment and response
♻ ☆ SDTagNet: Leveraging Text-Annotated Navigation Maps for Online HD Map Construction NeurIPS 2025
Autonomous vehicles rely on detailed and accurate environmental information to operate safely. High definition (HD) maps offer a promising solution, but their high maintenance cost poses a significant barrier to scalable deployment. This challenge is addressed by online HD map construction methods, which generate local HD maps from live sensor data. However, these methods are inherently limited by the short perception range of onboard sensors. To overcome this limitation and improve general performance, recent approaches have explored the use of standard definition (SD) maps as prior, which are significantly easier to maintain. We propose SDTagNet, the first online HD map construction method that fully utilizes the information of widely available SD maps, like OpenStreetMap, to enhance far range detection accuracy. Our approach introduces two key innovations. First, in contrast to previous work, we incorporate not only polyline SD map data with manually selected classes, but additional semantic information in the form of textual annotations. In this way, we enrich SD vector map tokens with NLP-derived features, eliminating the dependency on predefined specifications or exhaustive class taxonomies. Second, we introduce a point-level SD map encoder together with orthogonal element identifiers to uniformly integrate all types of map elements. Experiments on Argoverse 2 and nuScenes show that this boosts map perception performance by up to +5.9 mAP (+45%) w.r.t. map construction without priors and up to +3.2 mAP (+20%) w.r.t. previous approaches that already use SD map priors. Code is available at https://github.com/immel-f/SDTagNet
comment: 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ Identity-Preserving Image-to-Video Generation via Reward-Guided Optimization
Recent advances in image-to-video (I2V) generation have achieved remarkable progress in synthesizing high-quality, temporally coherent videos from static images. Among all the applications of I2V, human-centric video generation includes a large portion. However, existing I2V models encounter difficulties in maintaining identity consistency between the input human image and the generated video, especially when the person in the video exhibits significant expression changes and movements. This issue becomes critical when the human face occupies merely a small fraction of the image. Since humans are highly sensitive to identity variations, this poses a critical yet under-explored challenge in I2V generation. In this paper, we propose Identity-Preserving Reward-guided Optimization (IPRO), a novel video diffusion framework based on reinforcement learning to enhance identity preservation. Instead of introducing auxiliary modules or altering model architectures, our approach introduces a direct and effective tuning algorithm that optimizes diffusion models using a face identity scorer. To improve performance and accelerate convergence, our method backpropagates the reward signal through the last steps of the sampling chain, enabling richer gradient feedback. We also propose a novel facial scoring mechanism that treats faces in ground-truth videos as facial feature pools, providing multi-angle facial information to enhance generalization. A KL-divergence regularization is further incorporated to stabilize training and prevent overfitting to the reward signal. Extensive experiments on Wan 2.2 I2V model and our in-house I2V model demonstrate the effectiveness of our method. Our project and code are available at https://ipro-alimama.github.io/.
♻ ☆ Re-ttention: Ultra Sparse Visual Generation via Attention Statistical Reshape
Diffusion Transformers (DiT) have become the de-facto model for generating high-quality visual content like videos and images. A huge bottleneck is the attention mechanism where complexity scales quadratically with resolution and video length. One logical way to lessen this burden is sparse attention, where only a subset of tokens or patches are included in the calculation. However, existing techniques fail to preserve visual quality at extremely high sparsity levels and might even incur non-negligible compute overheads. To address this concern, we propose Re-ttention, which implements very high sparse attention for visual generation models by leveraging the temporal redundancy of Diffusion Models to overcome the probabilistic normalization shift within the attention mechanism. Specifically, Re-ttention reshapes attention scores based on the prior softmax distribution history in order to preserve the visual quality of the full quadratic attention at very high sparsity levels. Experimental results on T2V/T2I models such as CogVideoX and the PixArt DiTs demonstrate that Re-ttention requires as few as 3.1% of the tokens during inference, outperforming contemporary methods like FastDiTAttn, Sparse VideoGen and MInference.
comment: author comment: This version was previously removed by arXiv administrators as the submitter did not have the rights to agree to the license at the time of submission. The authors have now obtained the necessary permissions, and the paper is resubmitted accordingly
♻ ☆ Learning by Watching: A Review of Video-based Learning Approaches for Robot Manipulation IEEE
Robot learning of manipulation skills is hindered by the scarcity of diverse, unbiased datasets. While curated datasets can help, challenges remain in generalizability and real-world transfer. Meanwhile, large-scale "in-the-wild" video datasets have driven progress in computer vision through self-supervised techniques. Translating this to robotics, recent works have explored learning manipulation skills by passively watching abundant videos sourced online. Showing promising results, such video-based learning paradigms provide scalable supervision while reducing dataset bias. This survey reviews foundations such as video feature representation learning techniques, object affordance understanding, 3D hand/body modeling, and large-scale robot resources, as well as emerging techniques for acquiring robot manipulation skills from uncontrolled video demonstrations. We discuss how learning only from observing large-scale human videos can enhance generalization and sample efficiency for robotic manipulation. The survey summarizes video-based learning approaches, analyses their benefits over standard datasets, survey metrics, and benchmarks, and discusses open challenges and future directions in this nascent domain at the intersection of computer vision, natural language processing, and robot learning.
comment: Published at IEEE Access
♻ ☆ RWKV-UNet: Improving UNet with Long-Range Cooperation for Effective Medical Image Segmentation
In recent years, significant advancements have been made in deep learning for medical image segmentation, particularly with convolutional neural networks (CNNs) and transformer models. However, CNNs face limitations in capturing long-range dependencies, while transformers suffer from high computational complexity. To address this, we propose RWKV-UNet, a novel model that integrates the RWKV (Receptance Weighted Key Value) structure into the U-Net architecture. This integration enhances the model's ability to capture long-range dependencies and to improve contextual understanding, which is crucial for accurate medical image segmentation. We build a strong encoder with developed Global-Local Spatial Perception (GLSP) blocks combining CNNs and RWKVs. We also propose a Cross-Channel Mix (CCM) module to improve skip connections with multi-scale feature fusion, achieving global channel information integration. Experiments on 11 benchmark datasets show that the RWKV-UNet achieves state-of-the-art performance on various types of medical image segmentation tasks. Additionally, smaller variants, RWKV-UNet-S and RWKV-UNet-T, balance accuracy and computational efficiency, making them suitable for broader clinical applications.
♻ ☆ Learning to Detect Unknown Jailbreak Attacks in Large Vision-Language Models
Despite extensive alignment efforts, Large Vision-Language Models (LVLMs) remain vulnerable to jailbreak attacks, posing serious safety risks. To address this, existing detection methods either learn attack-specific parameters, which hinders generalization to unseen attacks, or rely on heuristically sound principles, which limit accuracy and efficiency. To overcome these limitations, we propose Learning to Detect (LoD), a general framework that accurately detects unknown jailbreak attacks by shifting the focus from attack-specific learning to task-specific learning. This framework includes a Multi-modal Safety Concept Activation Vector module for safety-oriented representation learning and a Safety Pattern Auto-Encoder module for unsupervised attack classification. Extensive experiments show that our method achieves consistently higher detection AUROC on diverse unknown attacks while improving efficiency. The code is available at https://anonymous.4open.science/r/Learning-to-Detect-51CB.
comment: 16 pages; Previously this version appeared as arXiv:2510.15430 which was submitted as a new work by accident
Artificial Intelligence 262
☆ Unbiased Gradient Low-Rank Projection
Memory-efficient optimization is critical for training increasingly large language models (LLMs). A popular strategy involves gradient low-rank projection, storing only the projected optimizer states, with GaLore being a representative example. However, a significant drawback of many such methods is their lack of convergence guarantees, as various low-rank projection approaches introduce inherent biases relative to the original optimization algorithms, which contribute to performance gaps compared to full-parameter training. Aiming to tackle this problem, this paper investigates the layerwise sampling technique for debiasing low-rank projection mechanisms. In particular, an instantiation of the paradigm gives rise to a novel and unbiased low-rank optimization method built upon GaLore's mechanism and the Muon algorithm, named GaLore Unbiased with Muon (GUM). We theoretically prove our method matches the convergence guarantees of the base Muon algorithm while preserving the memory efficiency of low-rank techniques. Empirical experiments on LLM fine-tuning and pretraining also demonstrate non-trivial improvements over GaLore and even better performance than full-parameter training. Further investigation shows that the improvement of this technique comes from a more uniform distribution of knowledge inside layers, leading to more efficient utilization of the model parameter space and better memorization.
☆ Enterprise Deep Research: Steerable Multi-Agent Deep Research for Enterprise Analytics
As information grows exponentially, enterprises face increasing pressure to transform unstructured data into coherent, actionable insights. While autonomous agents show promise, they often struggle with domain-specific nuances, intent alignment, and enterprise integration. We present Enterprise Deep Research (EDR), a multi-agent system that integrates (1) a Master Planning Agent for adaptive query decomposition, (2) four specialized search agents (General, Academic, GitHub, LinkedIn), (3) an extensible MCP-based tool ecosystem supporting NL2SQL, file analysis, and enterprise workflows, (4) a Visualization Agent for data-driven insights, and (5) a reflection mechanism that detects knowledge gaps and updates research direction with optional human-in-the-loop steering guidance. These components enable automated report generation, real-time streaming, and seamless enterprise deployment, as validated on internal datasets. On open-ended benchmarks including DeepResearch Bench and DeepConsult, EDR outperforms state-of-the-art agentic systems without any human steering. We release the EDR framework and benchmark trajectories to advance research on multi-agent reasoning applications. Code at https://github.com/SalesforceAIResearch/enterprise-deep-research and Dataset at https://huggingface.co/datasets/Salesforce/EDR-200
comment: Technical report; 13 pages plus references and appendices
☆ Executable Knowledge Graphs for Replicating AI Research
Replicating AI research is a crucial yet challenging task for large language model (LLM) agents. Existing approaches often struggle to generate executable code, primarily due to insufficient background knowledge and the limitations of retrieval-augmented generation (RAG) methods, which fail to capture latent technical details hidden in referenced papers. Furthermore, previous approaches tend to overlook valuable implementation-level code signals and lack structured knowledge representations that support multi-granular retrieval and reuse. To overcome these challenges, we propose Executable Knowledge Graphs (xKG), a modular and pluggable knowledge base that automatically integrates technical insights, code snippets, and domain-specific knowledge extracted from scientific literature. When integrated into three agent frameworks with two different LLMs, xKG shows substantial performance gains (10.9% with o3-mini) on PaperBench, demonstrating its effectiveness as a general and extensible solution for automated AI research replication. Code will released at https://github.com/zjunlp/xKG.
comment: Work in progress
☆ Foundational Automatic Evaluators: Scaling Multi-Task Generative Evaluator Training for Reasoning-Centric Domains
Finetuning specialized generative evaluators has emerged as a popular paradigm to meet the increasing demand for scalable evaluation during both training and test-time. However, recent work has largely focused on applying new methodology, such as reinforcement learning (RL), to training evaluators, shying away from large-scale, data-driven development. In this work, we focus on data scaling, curating a set of 2.5M samples spanning five unique evaluation tasks (pairwise, step-level, reference-free and reference-based verification, and single rating) and multiple domains focused on reasoning evaluation. With our data, we train Foundational Automatic Reasoning Evaluators (FARE), a family of 8B and 20B (with 3.6B active) parameter evaluators, with a simple iterative rejection-sampling supervised finetuning (SFT) approach. FARE-8B challenges larger specialized RL-trained evaluators and FARE-20B sets the new standard for open-source evaluators, surpassing specialized 70B+ evaluators. Beyond static benchmarks, we evaluate FARE in real-world tasks: As inference-time rerankers, FARE-20B achieves near-oracle performance on MATH. As verifiers in RL training, FARE improves the downstream RL-trained model performance by up to 14.1% vs. string-matching verifiers. When initialized from FARE, a continually-finetuned FARE-Code outperforms gpt-oss-20B by 65% on evaluating test-case quality.
comment: 29 pages, 9 tables, 6 figures
☆ SoftMimic: Learning Compliant Whole-body Control from Examples
We introduce SoftMimic, a framework for learning compliant whole-body control policies for humanoid robots from example motions. Imitating human motions with reinforcement learning allows humanoids to quickly learn new skills, but existing methods incentivize stiff control that aggressively corrects deviations from a reference motion, leading to brittle and unsafe behavior when the robot encounters unexpected contacts. In contrast, SoftMimic enables robots to respond compliantly to external forces while maintaining balance and posture. Our approach leverages an inverse kinematics solver to generate an augmented dataset of feasible compliant motions, which we use to train a reinforcement learning policy. By rewarding the policy for matching compliant responses rather than rigidly tracking the reference motion, SoftMimic learns to absorb disturbances and generalize to varied tasks from a single motion clip. We validate our method through simulations and real-world experiments, demonstrating safe and effective interaction with the environment.
comment: Website: https://gmargo11.github.io/softmimic/
☆ Mapping Post-Training Forgetting in Language Models at Scale
Scaled post-training now drives many of the largest capability gains in language models (LMs), yet its effect on pretrained knowledge remains poorly understood. Not all forgetting is equal: Forgetting one fact (e.g., a U.S. president or an API call) does not "average out" by recalling another. Hence, we propose a sample-wise paradigm to measure what is forgotten and when backward transfer occurs. Our metric counts 1->0 transitions (correct before post-training, incorrect after) to quantify forgetting and 0->1 transitions to quantify backward transfer. Traditional task averages conflate these effects and obscure large changes. For multiple-choice benchmarks, we add chance-adjusted variants that subtract the expected contribution of random guessing from pre- and post-training accuracies. We apply this framework across post-training stages, model sizes, and data scales. Our large-scale analysis shows that: (1) Domain-continual pretraining induces moderate forgetting with low-to-moderate backward transfer; (2) RL/SFT post-training applied to base models and Instruction tuning yields moderate-to-large backward transfer on math and logic with overall low-to-moderate forgetting; (3) Applying RL/SFT to instruction-tuned models is sensitive on data scale: at small scales, both forgetting and backward transfer are small; at larger scales, effects are mixed and warrant further study with better controls; (4) Model merging does not reliably mitigate forgetting. Overall, our framework offers a practical yardstick for mapping how post-training alters pretrained knowledge at scale -- enabling progress towards generally capable AI systems.
comment: 43 pages,15 figures
☆ Towards Explainable Skin Cancer Classification: A Dual-Network Attention Model with Lesion Segmentation and Clinical Metadata Fusion
Skin cancer is a life-threatening disease where early detection significantly improves patient outcomes. Automated diagnosis from dermoscopic images is challenging due to high intra-class variability and subtle inter-class differences. Many deep learning models operate as "black boxes," limiting clinical trust. In this work, we propose a dual-encoder attention-based framework that leverages both segmented lesions and clinical metadata to enhance skin lesion classification in terms of both accuracy and interpretability. A novel Deep-UNet architecture with Dual Attention Gates (DAG) and Atrous Spatial Pyramid Pooling (ASPP) is first employed to segment lesions. The classification stage uses two DenseNet201 encoders-one on the original image and another on the segmented lesion whose features are fused via multi-head cross-attention. This dual-input design guides the model to focus on salient pathological regions. In addition, a transformer-based module incorporates patient metadata (age, sex, lesion site) into the prediction. We evaluate our approach on the HAM10000 dataset and the ISIC 2018 and 2019 challenges. The proposed method achieves state-of-the-art segmentation performance and significantly improves classification accuracy and average AUC compared to baseline models. To validate our model's reliability, we use Gradient-weighted Class Activation Mapping (Grad-CAM) to generate heatmaps. These visualizations confirm that our model's predictions are based on the lesion area, unlike models that rely on spurious background features. These results demonstrate that integrating precise lesion segmentation and clinical data with attention-based fusion leads to a more accurate and interpretable skin cancer classification model.
comment: 15 pages, 7 Figures, 3 Tables
☆ Seeing but Not Believing: Probing the Disconnect Between Visual Attention and Answer Correctness in VLMs
Vision-Language Models (VLMs) achieve strong results on multimodal tasks such as visual question answering, yet they can still fail even when the correct visual evidence is present. In this work, we systematically investigate whether these failures arise from not perceiving the evidence or from not leveraging it effectively. By examining layer-wise attention dynamics, we find that shallow layers focus primarily on text, while deeper layers sparsely but reliably attend to localized evidence regions. Surprisingly, VLMs often perceive the visual evidence when outputting incorrect answers, a phenomenon we term ``seeing but not believing'' that widely exists in major VLM families. Building on this, we introduce an inference-time intervention that highlights deep-layer evidence regions through selective attention-based masking. It requires no training and consistently improves accuracy across multiple families, including LLaVA, Qwen, Gemma, and InternVL. These results show that VLMs encode reliable evidence internally but under-utilize it, making such signals explicit can bridge the gap between perception and reasoning, advancing the diagnostic understanding and reliability of VLMs.
comment: 21 pages, 10 figures, 6 tables
☆ Prediction of Sea Ice Velocity and Concentration in the Arctic Ocean using Physics-informed Neural Network
As an increasing amount of remote sensing data becomes available in the Arctic Ocean, data-driven machine learning (ML) techniques are becoming widely used to predict sea ice velocity (SIV) and sea ice concentration (SIC). However, fully data-driven ML models have limitations in generalizability and physical consistency due to their excessive reliance on the quantity and quality of training data. In particular, as Arctic sea ice entered a new phase with thinner ice and accelerated melting, there is a possibility that an ML model trained with historical sea ice data cannot fully represent the dynamically changing sea ice conditions in the future. In this study, we develop physics-informed neural network (PINN) strategies to integrate physical knowledge of sea ice into the ML model. Based on the Hierarchical Information-sharing U-net (HIS-Unet) architecture, we incorporate the physics loss function and the activation function to produce physically plausible SIV and SIC outputs. Our PINN model outperforms the fully data-driven model in the daily predictions of SIV and SIC, even when trained with a small number of samples. The PINN approach particularly improves SIC predictions in melting and early freezing seasons and near fast-moving ice regions.
comment: 49 pages, 7 figures, submitted to Environmental Modelling & Software
☆ Human-AI Interactions: Cognitive, Behavioral, and Emotional Impacts IEEE
As stories of human-AI interactions continue to be highlighted in the news and research platforms, the challenges are becoming more pronounced, including potential risks of overreliance, cognitive offloading, social and emotional manipulation, and the nuanced degradation of human agency and judgment. This paper surveys recent research on these issues through the lens of the psychological triad: cognition, behavior, and emotion. Observations seem to suggest that while AI can substantially enhance memory, creativity, and engagement, it also introduces risks such as diminished critical thinking, skill erosion, and increased anxiety. Emotional outcomes are similarly mixed, with AI systems showing promise for support and stress reduction, but raising concerns about dependency, inappropriate attachments, and ethical oversight. This paper aims to underscore the need for responsible and context-aware AI design, highlighting gaps for longitudinal research and grounded evaluation frameworks to balance benefits with emerging human-centric risks.
comment: 13 pages, 1 figure. Submitted to IEEE Transactions on Technology and Society. Preprint also available on TechRxiv
☆ A Multi-Threading Kernel for Enabling Neuromorphic Edge Applications ISCA
Spiking Neural Networks (SNNs) have sparse, event driven processing that can leverage neuromorphic applications. In this work, we introduce a multi-threading kernel that enables neuromorphic applications running at the edge, meaning they process sensory input directly and without any up-link to or dependency on a cloud service. The kernel shows speed-up gains over single thread processing by a factor of four on moderately sized SNNs and 1.7X on a Synfire network. Furthermore, it load-balances all cores available on multi-core processors, such as ARM, which run today's mobile devices and is up to 70% more energy efficient compared to statical core assignment. The present work can enable the development of edge applications that have low Size, Weight, and Power (SWaP), and can prototype the integration of neuromorphic chips.
comment: Submitted to ISCAS 2026
☆ AcademicEval: Live Long-Context LLM Benchmark
Large Language Models (LLMs) have recently achieved remarkable performance in long-context understanding. However, current long-context LLM benchmarks are limited by rigid context length, labor-intensive annotation, and the pressing challenge of label leakage issues during LLM training. Therefore, we propose \textsc{AcademicEval}, a live benchmark for evaluating LLMs over long-context generation tasks. \textsc{AcademicEval} adopts papers on arXiv to introduce several academic writing tasks with long-context inputs, \textit{i.e.}, \textsc{Title}, \textsc{Abstract}, \textsc{Introduction}, and \textsc{Related Work}, which cover a wide range of abstraction levels and require no manual labeling. Moreover, \textsc{AcademicEval} integrates high-quality and expert-curated few-shot demonstrations from a collected co-author graph to enable flexible context length. Especially, \textsc{AcademicEval} features an efficient live evaluation, ensuring no label leakage. We conduct a holistic evaluation on \textsc{AcademicEval}, and the results illustrate that LLMs perform poorly on tasks with hierarchical abstraction levels and tend to struggle with long few-shot demonstrations, highlighting the challenge of our benchmark. Through experimental analysis, we also reveal some insights for enhancing LLMs' long-context modeling capabilities. Code is available at https://github.com/ulab-uiuc/AcademicEval
comment: Accepted by TMLR. Code is available at https://github.com/ulab-uiuc/AcademicEval
☆ Signature Forgery Detection: Improving Cross-Dataset Generalization
Automated signature verification is a critical biometric technique used in banking, identity authentication, and legal documentation. Despite the notable progress achieved by deep learning methods, most approaches in offline signature verification still struggle to generalize across datasets, as variations in handwriting styles and acquisition protocols often degrade performance. This study investigates feature learning strategies for signature forgery detection, focusing on improving cross-dataset generalization -- that is, model robustness when trained on one dataset and tested on another. Using three public benchmarks -- CEDAR, ICDAR, and GPDS Synthetic -- two experimental pipelines were developed: one based on raw signature images and another employing a preprocessing method referred to as shell preprocessing. Several behavioral patterns were identified and analyzed; however, no definitive superiority between the two approaches was established. The results show that the raw-image model achieved higher performance across benchmarks, while the shell-based model demonstrated promising potential for future refinement toward robust, cross-domain signature verification.
comment: Undergraduate thesis (preprint)---submitted to Escola Polit\'ecnica, Universidade Federal do Rio de Janeiro (POLI/UFRJ). The final version will include official signatures and defense approval
☆ MT-Video-Bench: A Holistic Video Understanding Benchmark for Evaluating Multimodal LLMs in Multi-Turn Dialogues
The recent development of Multimodal Large Language Models (MLLMs) has significantly advanced AI's ability to understand visual modalities. However, existing evaluation benchmarks remain limited to single-turn question answering, overlooking the complexity of multi-turn dialogues in real-world scenarios. To bridge this gap, we introduce MT-Video-Bench, a holistic video understanding benchmark for evaluating MLLMs in multi-turn dialogues. Specifically, our MT-Video-Bench mainly assesses six core competencies that focus on perceptivity and interactivity, encompassing 987 meticulously curated multi-turn dialogues from diverse domains. These capabilities are rigorously aligned with real-world applications, such as interactive sports analysis and multi-turn video-based intelligent tutoring. With MT-Video-Bench, we extensively evaluate various state-of-the-art open-source and closed-source MLLMs, revealing their significant performance discrepancies and limitations in handling multi-turn video dialogues. The benchmark will be publicly available to foster future research.
comment: Project Website: https://github.com/NJU-LINK/MT-Video-Bench
☆ PANER: A Paraphrase-Augmented Framework for Low-Resource Named Entity Recognition
Named Entity Recognition (NER) is a critical task that requires substantial annotated data, making it challenging in low-resource scenarios where label acquisition is expensive. While zero-shot and instruction-tuned approaches have made progress, they often fail to generalize to domain-specific entities and do not effectively utilize limited available data. We present a lightweight few-shot NER framework that addresses these challenges through two key innovations: (1) a new instruction tuning template with a simplified output format that combines principles from prior IT approaches to leverage the large context window of recent state-of-the-art LLMs; (2) introducing a strategic data augmentation technique that preserves entity information while paraphrasing the surrounding context, thereby expanding our training data without compromising semantic relationships. Experiments on benchmark datasets show that our method achieves performance comparable to state-of-the-art models on few-shot and zero-shot tasks, with our few-shot approach attaining an average F1 score of 80.1 on the CrossNER datasets. Models trained with our paraphrasing approach show consistent improvements in F1 scores of up to 17 points over baseline versions, offering a promising solution for groups with limited NER training data and compute power.
☆ Closing the Sim2Real Performance Gap in RL
Sim2Real aims at training policies in high-fidelity simulation environments and effectively transferring them to the real world. Despite the developments of accurate simulators and Sim2Real RL approaches, the policies trained purely in simulation often suffer significant performance drops when deployed in real environments. This drop is referred to as the Sim2Real performance gap. Current Sim2Real RL methods optimize the simulator accuracy and variability as proxies for real-world performance. However, these metrics do not necessarily correlate with the real-world performance of the policy as established theoretically and empirically in the literature. We propose a novel framework to address this issue by directly adapting the simulator parameters based on real-world performance. We frame this problem as a bi-level RL framework: the inner-level RL trains a policy purely in simulation, and the outer-level RL adapts the simulation model and in-sim reward parameters to maximize real-world performance of the in-sim policy. We derive and validate in simple examples the mathematical tools needed to develop bi-level RL algorithms that close the Sim2Real performance gap.
☆ Contextual Attention Modulation: Towards Efficient Multi-Task Adaptation in Large Language Models CIKM' 25
Large Language Models (LLMs) possess remarkable generalization capabilities but struggle with multi-task adaptation, particularly in balancing knowledge retention with task-specific specialization. Conventional fine-tuning methods suffer from catastrophic forgetting and substantial resource consumption, while existing parameter-efficient methods perform suboptimally in complex multi-task scenarios. To address this, we propose Contextual Attention Modulation (CAM), a novel mechanism that dynamically modulates the representations of self-attention modules in LLMs. CAM enhances task-specific features while preserving general knowledge, thereby facilitating more effective and efficient adaptation. For effective multi-task adaptation, CAM is integrated into our Hybrid Contextual Attention Modulation (HyCAM) framework, which combines a shared, full-parameter CAM module with multiple specialized, lightweight CAM modules, enhanced by a dynamic routing strategy for adaptive knowledge fusion. Extensive experiments on heterogeneous tasks, including question answering, code generation, and logical reasoning, demonstrate that our approach significantly outperforms existing approaches, achieving an average performance improvement of 3.65%. The implemented code and data are available to ease reproducibility at https://github.com/Applied-Machine-Learning-Lab/HyCAM.
comment: Accepted by CIKM' 25
☆ Improving Cross-Patient Generalization in Parkinson's Disease Detection through Chunk-Based Analysis of Hand-Drawn Patterns
Parkinson's disease (PD) is a neurodegenerative disease affecting about 1% of people over the age of 60, causing motor impairments that impede hand coordination activities such as writing and drawing. Many approaches have tried to support early detection of Parkinson's disease based on hand-drawn images; however, we identified two major limitations in the related works: (1) the lack of sufficient datasets, (2) the robustness when dealing with unseen patient data. In this paper, we propose a new approach to detect Parkinson's disease that consists of two stages: The first stage classifies based on their drawing type(circle, meander, spiral), and the second stage extracts the required features from the images and detects Parkinson's disease. We overcame the previous two limitations by applying a chunking strategy where we divide each image into 2x2 chunks. Each chunk is processed separately when extracting features and recognizing Parkinson's disease indicators. To make the final classification, an ensemble method is used to merge the decisions made from each chunk. Our evaluation shows that our proposed approach outperforms the top performing state-of-the-art approaches, in particular on unseen patients. On the NewHandPD dataset our approach, it achieved 97.08% accuracy for seen patients and 94.91% for unseen patients, our proposed approach maintained a gap of only 2.17 percentage points, compared to the 4.76-point drop observed in prior work.
comment: 19 pages, 2 figures, 9 tables
☆ A Principle of Targeted Intervention for Multi-Agent Reinforcement Learning NeurIPS 2025
Steering cooperative multi-agent reinforcement learning (MARL) towards desired outcomes is challenging, particularly when the global guidance from a human on the whole multi-agent system is impractical in a large-scale MARL. On the other hand, designing mechanisms to coordinate agents most relies on empirical studies, lacking a easy-to-use research tool. In this work, we employ multi-agent influence diagrams (MAIDs) as a graphical framework to address the above issues. First, we introduce interaction paradigms that leverage MAIDs to analyze and visualize existing approaches in MARL. Then, we design a new interaction paradigm based on MAIDs, referred to as targeted intervention that is applied to only a single targeted agent, so the problem of global guidance can be mitigated. In our implementation, we introduce a causal inference technique-referred to as Pre-Strategy Intervention (PSI)-to realize the targeted intervention paradigm. Since MAIDs can be regarded as a special class of causal diagrams, a composite desired outcome that integrates the primary task goal and an additional desired outcome can be achieved by maximizing the corresponding causal effect through the PSI. Moreover, the bundled relevance graph analysis of MAIDs provides a tool to identify whether an MARL learning paradigm is workable under the design of an interaction paradigm. In experiments, we demonstrate the effectiveness of our proposed targeted intervention, and verify the result of relevance graph analysis.
comment: Accepted to NeurIPS 2025
☆ CrossGuard: Safeguarding MLLMs against Joint-Modal Implicit Malicious Attacks
Multimodal Large Language Models (MLLMs) achieve strong reasoning and perception capabilities but are increasingly vulnerable to jailbreak attacks. While existing work focuses on explicit attacks, where malicious content resides in a single modality, recent studies reveal implicit attacks, in which benign text and image inputs jointly express unsafe intent. Such joint-modal threats are difficult to detect and remain underexplored, largely due to the scarcity of high-quality implicit data. We propose ImpForge, an automated red-teaming pipeline that leverages reinforcement learning with tailored reward modules to generate diverse implicit samples across 14 domains. Building on this dataset, we further develop CrossGuard, an intent-aware safeguard providing robust and comprehensive defense against both explicit and implicit threats. Extensive experiments across safe and unsafe benchmarks, implicit and explicit attacks, and multiple out-of-domain settings demonstrate that CrossGuard significantly outperforms existing defenses, including advanced MLLMs and guardrails, achieving stronger security while maintaining high utility. This offers a balanced and practical solution for enhancing MLLM robustness against real-world multimodal threats.
comment: 14 pages, 8 figures, 2 tables
☆ Multilingual Text-to-Image Person Retrieval via Bidirectional Relation Reasoning and Aligning IEEE
Text-to-image person retrieval (TIPR) aims to identify the target person using textual descriptions, facing challenge in modality heterogeneity. Prior works have attempted to address it by developing cross-modal global or local alignment strategies. However, global methods typically overlook fine-grained cross-modal differences, whereas local methods require prior information to explore explicit part alignments. Additionally, current methods are English-centric, restricting their application in multilingual contexts. To alleviate these issues, we pioneer a multilingual TIPR task by developing a multilingual TIPR benchmark, for which we leverage large language models for initial translations and refine them by integrating domain-specific knowledge. Correspondingly, we propose Bi-IRRA: a Bidirectional Implicit Relation Reasoning and Aligning framework to learn alignment across languages and modalities. Within Bi-IRRA, a bidirectional implicit relation reasoning module enables bidirectional prediction of masked image and text, implicitly enhancing the modeling of local relations across languages and modalities, a multi-dimensional global alignment module is integrated to bridge the modality heterogeneity. The proposed method achieves new state-of-the-art results on all multilingual TIPR datasets. Data and code are presented in https://github.com/Flame-Chasers/Bi-IRRA.
comment: Final version published in IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI). Xplore link: https://ieeexplore.ieee.org/document/11199360
☆ Intelligent Communication Mixture-of-Experts Boosted-Medical Image Segmentation Foundation Model
Foundation models for medical image segmentation have achieved remarkable performance. Adaptive fine-tuning of natural image segmentation foundation models is crucial for medical image segmentation tasks. However, some limitations exist in existing fine-tuning methods: 1) insufficient representation of high-level features and 2) the fine-tuning process disrupts the structural integrity of pretrained weights. Inspired by these critical problems, we propose an intelligent communication mixture-of-experts boosted-medical image segmentation foundation model, named IC-MoE, with twofold ideas: 1) We construct basic experts, semantic experts, and adaptive experts. Moreover, we implement a pixel probability adaptive voting strategy, which enables expert selection and fusion through label consistency and load balancing. This approach preliminarily enhances the representation capability of high-level features while preserving the structural integrity of pretrained weights. 2) We propose a semantic-guided contrastive learning method to address the issue of weak supervision in contrastive learning. This method further enhances the representation capability of high-level features while preserving the structural integrity of pretrained weights. Extensive experiments across three public medical image segmentation datasets demonstrate that the IC-MoE outperforms other SOTA models. Consequently, the proposed IC-MoE effectively supplements foundational medical image segmentation models with high-level features and pretrained structural integrity. We also validate the superior generalizability of the IC-MoE across diverse medical image segmentation scenarios.
☆ PICABench: How Far Are We from Physically Realistic Image Editing?
Image editing has achieved remarkable progress recently. Modern editing models could already follow complex instructions to manipulate the original content. However, beyond completing the editing instructions, the accompanying physical effects are the key to the generation realism. For example, removing an object should also remove its shadow, reflections, and interactions with nearby objects. Unfortunately, existing models and benchmarks mainly focus on instruction completion but overlook these physical effects. So, at this moment, how far are we from physically realistic image editing? To answer this, we introduce PICABench, which systematically evaluates physical realism across eight sub-dimension (spanning optics, mechanics, and state transitions) for most of the common editing operations (add, remove, attribute change, etc). We further propose the PICAEval, a reliable evaluation protocol that uses VLM-as-a-judge with per-case, region-level human annotations and questions. Beyond benchmarking, we also explore effective solutions by learning physics from videos and construct a training dataset PICA-100K. After evaluating most of the mainstream models, we observe that physical realism remains a challenging problem with large rooms to explore. We hope that our benchmark and proposed solutions can serve as a foundation for future work moving from naive content editing toward physically consistent realism.
☆ LILO: Bayesian Optimization with Interactive Natural Language Feedback
For many real-world applications, feedback is essential in translating complex, nuanced, or subjective goals into quantifiable optimization objectives. We propose a language-in-the-loop framework that uses a large language model (LLM) to convert unstructured feedback in the form of natural language into scalar utilities to conduct BO over a numeric search space. Unlike preferential BO, which only accepts restricted feedback formats and requires customized models for each domain-specific problem, our approach leverages LLMs to turn varied types of textual feedback into consistent utility signals and to easily include flexible user priors without manual kernel design. At the same time, our method maintains the sample efficiency and principled uncertainty quantification of BO. We show that this hybrid method not only provides a more natural interface to the decision maker but also outperforms conventional BO baselines and LLM-only optimizers, particularly in feedback-limited regimes.
☆ On-the-Fly OVD Adaptation with FLAME: Few-shot Localization via Active Marginal-Samples Exploration
Open-vocabulary object detection (OVD) models offer remarkable flexibility by detecting objects from arbitrary text queries. However, their zero-shot performance in specialized domains like Remote Sensing (RS) is often compromised by the inherent ambiguity of natural language, limiting critical downstream applications. For instance, an OVD model may struggle to distinguish between fine-grained classes such as "fishing boat" and "yacht" since their embeddings are similar and often inseparable. This can hamper specific user goals, such as monitoring illegal fishing, by producing irrelevant detections. To address this, we propose a cascaded approach that couples the broad generalization of a large pre-trained OVD model with a lightweight few-shot classifier. Our method first employs the zero-shot model to generate high-recall object proposals. These proposals are then refined for high precision by a compact classifier trained in real-time on only a handful of user-annotated examples - drastically reducing the high costs of RS imagery annotation.The core of our framework is FLAME, a one-step active learning strategy that selects the most informative samples for training. FLAME identifies, on the fly, uncertain marginal candidates near the decision boundary using density estimation, followed by clustering to ensure sample diversity. This efficient sampling technique achieves high accuracy without costly full-model fine-tuning and enables instant adaptation, within less then a minute, which is significantly faster than state-of-the-art alternatives.Our method consistently surpasses state-of-the-art performance on RS benchmarks, establishing a practical and resource-efficient framework for adapting foundation models to specific user needs.
☆ Frugal Federated Learning for Violence Detection: A Comparison of LoRA-Tuned VLMs and Personalized CNNs
We examine frugal federated learning approaches to violence detection by comparing two complementary strategies: (i) zero-shot and federated fine-tuning of vision-language models (VLMs), and (ii) personalized training of a compact 3D convolutional neural network (CNN3D). Using LLaVA-7B and a 65.8M parameter CNN3D as representative cases, we evaluate accuracy, calibration, and energy usage under realistic non-IID settings. Both approaches exceed 90% accuracy. CNN3D slightly outperforms Low-Rank Adaptation(LoRA)-tuned VLMs in ROC AUC and log loss, while using less energy. VLMs remain favorable for contextual reasoning and multimodal inference. We quantify energy and CO$_2$ emissions across training and inference, and analyze sustainability trade-offs for deployment. To our knowledge, this is the first comparative study of LoRA-tuned vision-language models and personalized CNNs for federated violence detection, with an emphasis on energy efficiency and environmental metrics. These findings support a hybrid model: lightweight CNNs for routine classification, with selective VLM activation for complex or descriptive scenarios. The resulting framework offers a reproducible baseline for responsible, resource-aware AI in video surveillance, with extensions toward real-time, multimodal, and lifecycle-aware systems.
comment: 7 pages, 1 figure, FLTA 2025
☆ RESample: A Robust Data Augmentation Framework via Exploratory Sampling for Robotic Manipulation ICRA2026
Vision-Language-Action models (VLAs) have demonstrated remarkable performance on complex robotic manipulation tasks through imitation learning. However, existing imitation learning datasets contain only successful trajectories and lack failure or recovery data, especially for out-of-distribution (OOD) states where the robot deviates from the main policy due to minor perturbations or errors, leading VLA models to struggle with states deviating from the training distribution. To this end, we propose an automated OOD data augmentation framework named RESample through exploratory sampling. Specifically, we first leverage offline reinforcement learning to obtain an action-value network that accurately identifies sub-optimal actions under the current manipulation policy. We further sample potential OOD states from trajectories via rollout, and design an exploratory sampling mechanism that adaptively incorporates these action proxies into the training dataset to ensure efficiency. Subsequently, our framework explicitly encourages the VLAs to recover from OOD states and enhances their robustness against distributional shifts. We conduct extensive experiments on the LIBERO benchmark as well as real-world robotic manipulation tasks, demonstrating that RESample consistently improves the stability and generalization ability of VLA models.
comment: 9 pages,7 figures, submitted to ICRA2026
☆ LLM-as-a-Prophet: Understanding Predictive Intelligence with Prophet Arena
Forecasting is not only a fundamental intellectual pursuit but also is of significant importance to societal systems such as finance and economics. With the rapid advances of large language models (LLMs) trained on Internet-scale data, it raises the promise of employing LLMs to forecast real-world future events, an emerging paradigm we call "LLM-as-a-Prophet". This paper systematically investigates such predictive intelligence of LLMs. To this end, we build Prophet Arena, a general evaluation benchmark that continuously collects live forecasting tasks and decomposes each task into distinct pipeline stages, in order to support our controlled and large-scale experimentation. Our comprehensive evaluation reveals that many LLMs already exhibit impressive forecasting capabilities, reflected in, e.g., their small calibration errors, consistent prediction confidence and promising market returns. However, we also uncover key bottlenecks towards achieving superior predictive intelligence via LLM-as-a-Prophet, such as LLMs' inaccurate event recalls, misunderstanding of data sources and slower information aggregation compared to markets when resolution nears.
comment: https://www.prophetarena.co/
☆ CaMiT: A Time-Aware Car Model Dataset for Classification and Generation NeurIPS 2025
AI systems must adapt to evolving visual environments, especially in domains where object appearances change over time. We introduce Car Models in Time (CaMiT), a fine-grained dataset capturing the temporal evolution of car models, a representative class of technological artifacts. CaMiT includes 787K labeled samples of 190 car models (2007-2023) and 5.1M unlabeled samples (2005-2023), supporting both supervised and self-supervised learning. Static pretraining on in-domain data achieves competitive performance with large-scale generalist models while being more resource-efficient, yet accuracy declines when models are tested across years. To address this, we propose a time-incremental classification setting, a realistic continual learning scenario with emerging, evolving, and disappearing classes. We evaluate two strategies: time-incremental pretraining, which updates the backbone, and time-incremental classifier learning, which updates only the final layer, both improving temporal robustness. Finally, we explore time-aware image generation that leverages temporal metadata during training, yielding more realistic outputs. CaMiT offers a rich benchmark for studying temporal adaptation in fine-grained visual recognition and generation.
comment: To be published in NeurIPS 2025 Track on Datasets and Benchmarks
☆ GUIDE: Enhancing Gradient Inversion Attacks in Federated Learning with Denoising Models
Federated Learning (FL) enables collaborative training of Machine Learning (ML) models across multiple clients while preserving their privacy. Rather than sharing raw data, federated clients transmit locally computed updates to train the global model. Although this paradigm should provide stronger privacy guarantees than centralized ML, client updates remain vulnerable to privacy leakage. Adversaries can exploit them to infer sensitive properties about the training data or even to reconstruct the original inputs via Gradient Inversion Attacks (GIAs). Under the honest-butcurious threat model, GIAs attempt to reconstruct training data by reversing intermediate updates using optimizationbased techniques. We observe that these approaches usually reconstruct noisy approximations of the original inputs, whose quality can be enhanced with specialized denoising models. This paper presents Gradient Update Inversion with DEnoising (GUIDE), a novel methodology that leverages diffusion models as denoising tools to improve image reconstruction attacks in FL. GUIDE can be integrated into any GIAs that exploits surrogate datasets, a widely adopted assumption in GIAs literature. We comprehensively evaluate our approach in two attack scenarios that use different FL algorithms, models, and datasets. Our results demonstrate that GUIDE integrates seamlessly with two state-ofthe- art GIAs, substantially improving reconstruction quality across multiple metrics. Specifically, GUIDE achieves up to 46% higher perceptual similarity, as measured by the DreamSim metric.
☆ OG-Rank: Learning to Rank Fast and Slow with Uncertainty and Reward-Trend Guided Adaptive Exploration
Clinicians need ranking systems that work in real time and still justify their choices. Motivated by the need for a low-latency, decoder-based reranker, we present OG-Rank, a single-decoder approach that pairs a pooled first-token scoring signal with an uncertainty-gated explanation step. The model scores all candidates in one pass and generates a brief, structured rationale only when the list is genuinely ambiguous, keeping latency predictable. Trained with a curriculum that concentrates effort on hard cases, OG-Rank delivers strong effectiveness on encounter-scoped order selection (fast path: Recall@1~0.45, nDCG@20~0.625) and improves further when the gate activates (Recall@1~0.56, nDCG@20~0.699 at a 45\% gate rate), while compact backbones show similar gains under the same policy. Encoder baselines trail in both effectiveness and flexibility. The result is a practical recipe: rank fast by default and explain when it helps, a pattern that applies broadly to decision tasks where selective generation buys accuracy at acceptable cost. The single-policy design simplifies deployment and budget planning, and the curriculum principle (spend more on the hard cases, less on the easy ones) readily transfers beyond clinical order selection.
☆ Reasoning Distillation and Structural Alignment for Improved Code Generation
Effective code generation with language models hinges on two critical factors: accurately understanding the intent of the prompt and generating code that applies algorithmic reasoning to produce correct solutions capable of passing diverse test cases while adhering to the syntax of the target programming language. Unlike other language tasks, code generation requires more than accurate token prediction; it demands comprehension of solution-level and structural relationships rather than merely generating the most likely tokens. very large language model (VLLM) are capable of generating detailed steps toward the correct solution of complex tasks where reasoning is crucial in solving the problem. Such reasoning capabilities may be absent in smaller language models. Therefore, in this work, we distill the reasoning capabilities of a VLLM into a smaller, more efficient model that is faster and cheaper to deploy. Our approach trains the model to emulate the reasoning and problem-solving abilities of the VLLM by learning to identify correct solution pathways and establishing a structural correspondence between problem definitions and potential solutions through a novel method of structure-aware loss optimization. This enables the model to transcend token-level generation and to deeply grasp the overarching structure of solutions for given problems. Experimental results show that our fine-tuned model, developed through a cheap and simple to implement process, significantly outperforms our baseline model in terms of pass@1, average data flow, and average syntax match metrics across the MBPP, MBPP Plus, and HumanEval benchmarks.
☆ HGAdapter: Hypergraph-based Adapters in Language Models for Code Summarization and Clone Detection EMNLP 2025
Pre-trained language models (PLMs) are increasingly being applied to code-related tasks. Although PLMs have achieved good results, they do not take into account potential high-order data correlations within the code. We propose three types of high-order correlations in code tokens, i.e. abstract syntax tree family correlation, lexical correlation, and line correlation. We design a tokens and hyperedges generator to capture these high-order data correlations. We improve the architecture of hypergraph neural networks and combine it with adapter tuning to propose a novel hypergraph-based adapter (HGAdapter) to fine-tune PLMs. HGAdapter can encode high-order data correlations and is allowed to be inserted into various PLMs to enhance performance. Experiments were conducted on several public datasets, including six languages of code summarization and code clone detection tasks. Our methods improved the performance of PLMs in datasets to varying degrees. Experimental results validate the introduction of high-order data correlations that contribute to improved effectiveness.
comment: Accepted by the 2025 Conference on Empirical Methods in Natural Language Processing (EMNLP 2025) as a findings long paper
☆ MIRAGE: Agentic Framework for Multimodal Misinformation Detection with Web-Grounded Reasoning
Misinformation spreads across web platforms through billions of daily multimodal posts that combine text and images, overwhelming manual fact-checking capacity. Supervised detection models require domain-specific training data and fail to generalize across diverse manipulation tactics. We present MIRAGE, an inference-time, model-pluggable agentic framework that decomposes multimodal verification into four sequential modules: visual veracity assessment detects AI-generated images, cross-modal consistency analysis identifies out-of-context repurposing, retrieval-augmented factual checking grounds claims in web evidence through iterative question generation, and a calibrated judgment module integrates all signals. MIRAGE orchestrates vision-language model reasoning with targeted web retrieval, outputs structured and citation-linked rationales. On MMFakeBench validation set (1,000 samples), MIRAGE with GPT-4o-mini achieves 81.65% F1 and 75.1% accuracy, outperforming the strongest zero-shot baseline (GPT-4V with MMD-Agent at 74.0% F1) by 7.65 points while maintaining 34.3% false positive rate versus 97.3% for a judge-only baseline. Test set results (5,000 samples) confirm generalization with 81.44% F1 and 75.08% accuracy. Ablation studies show visual verification contributes 5.18 F1 points and retrieval-augmented reasoning contributes 2.97 points. Our results demonstrate that decomposed agentic reasoning with web retrieval can match supervised detector performance without domain-specific training, enabling misinformation detection across modalities where labeled data remains scarce.
comment: 16 pages, 3 tables, 1 figure
☆ CEPerFed: Communication-Efficient Personalized Federated Learning for Multi-Pulse MRI Classification
Multi-pulse magnetic resonance imaging (MRI) is widely utilized for clinical practice such as Alzheimer's disease diagnosis. To train a robust model for multi-pulse MRI classification, it requires large and diverse data from various medical institutions while protecting privacy by preventing raw data sharing across institutions. Although federated learning (FL) is a feasible solution to address this issue, it poses challenges of model convergence due to the effect of data heterogeneity and substantial communication overhead due to large numbers of parameters transmitted within the model. To address these challenges, we propose CEPerFed, a communication-efficient personalized FL method. It mitigates the effect of data heterogeneity by incorporating client-side historical risk gradients and historical mean gradients to coordinate local and global optimization. The former is used to weight the contributions from other clients, enhancing the reliability of local updates, while the latter enforces consistency between local updates and the global optimization direction to ensure stable convergence across heterogeneous data distributions. To address the high communication overhead, we propose a hierarchical SVD (HSVD) strategy that transmits only the most critical information required for model updates. Experiments on five classification tasks demonstrate the effectiveness of the CEPerFed method. The code will be released upon acceptance at https://github.com/LD0416/CEPerFed.
☆ Intent-Driven LLM Ensemble Planning for Flexible Multi-Robot Disassembly: Demonstration on EV Batteries
This paper addresses the problem of planning complex manipulation tasks, in which multiple robots with different end-effectors and capabilities, informed by computer vision, must plan and execute concatenated sequences of actions on a variety of objects that can appear in arbitrary positions and configurations in unstructured scenes. We propose an intent-driven planning pipeline which can robustly construct such action sequences with varying degrees of supervisory input from a human using simple language instructions. The pipeline integrates: (i) perception-to-text scene encoding, (ii) an ensemble of large language models (LLMs) that generate candidate removal sequences based on the operator's intent, (iii) an LLM-based verifier that enforces formatting and precedence constraints, and (iv) a deterministic consistency filter that rejects hallucinated objects. The pipeline is evaluated on an example task in which two robot arms work collaboratively to dismantle an Electric Vehicle battery for recycling applications. A variety of components must be grasped and removed in specific sequences, determined by human instructions and/or by task-order feasibility decisions made by the autonomous system. On 200 real scenes with 600 operator prompts across five component classes, we used metrics of full-sequence correctness and next-task correctness to evaluate and compare five LLM-based planners (including ablation analyses of pipeline components). We also evaluated the LLM-based human interface in terms of time to execution and NASA TLX with human participant experiments. Results indicate that our ensemble-with-verification approach reliably maps operator intent to safe, executable multi-robot plans while maintaining low user effort.
comment: This work is funded by the project called "Research and Development of a Highly Automated and Safe Streamlined Process for Increasing Lithium-ion Battery Repurposing and Recycling" (REBELION) under Grant 101104241, and partially supported by the Ministry of National Education, Republic of Turkey. Submitted to Frontiers for Review
☆ An Empirical Study of Lagrangian Methods in Safe Reinforcement Learning
In safety-critical domains such as robotics, navigation and power systems, constrained optimization problems arise where maximizing performance must be carefully balanced with associated constraints. Safe reinforcement learning provides a framework to address these challenges, with Lagrangian methods being a popular choice. However, the effectiveness of Lagrangian methods crucially depends on the choice of the Lagrange multiplier $\lambda$, which governs the trade-off between return and constraint cost. A common approach is to update the multiplier automatically during training. Although this is standard in practice, there remains limited empirical evidence on the robustness of an automated update and its influence on overall performance. Therefore, we analyze (i) optimality and (ii) stability of Lagrange multipliers in safe reinforcement learning across a range of tasks. We provide $\lambda$-profiles that give a complete visualization of the trade-off between return and constraint cost of the optimization problem. These profiles show the highly sensitive nature of $\lambda$ and moreover confirm the lack of general intuition for choosing the optimal value $\lambda^*$. Our findings additionally show that automated multiplier updates are able to recover and sometimes even exceed the optimal performance found at $\lambda^*$ due to the vast difference in their learning trajectories. Furthermore, we show that automated multiplier updates exhibit oscillatory behavior during training, which can be mitigated through PID-controlled updates. However, this method requires careful tuning to achieve consistently better performance across tasks. This highlights the need for further research on stabilizing Lagrangian methods in safe reinforcement learning. The code used to reproduce our results can be found at https://github.com/lindsayspoor/Lagrangian_SafeRL.
MambaX-Net: Dual-Input Mamba-Enhanced Cross-Attention Network for Longitudinal MRI Segmentation
Active Surveillance (AS) is a treatment option for managing low and intermediate-risk prostate cancer (PCa), aiming to avoid overtreatment while monitoring disease progression through serial MRI and clinical follow-up. Accurate prostate segmentation is an important preliminary step for automating this process, enabling automated detection and diagnosis of PCa. However, existing deep-learning segmentation models are often trained on single-time-point and expertly annotated datasets, making them unsuitable for longitudinal AS analysis, where multiple time points and a scarcity of expert labels hinder their effective fine-tuning. To address these challenges, we propose MambaX-Net, a novel semi-supervised, dual-scan 3D segmentation architecture that computes the segmentation for time point t by leveraging the MRI and the corresponding segmentation mask from the previous time point. We introduce two new components: (i) a Mamba-enhanced Cross-Attention Module, which integrates the Mamba block into cross attention to efficiently capture temporal evolution and long-range spatial dependencies, and (ii) a Shape Extractor Module that encodes the previous segmentation mask into a latent anatomical representation for refined zone delination. Moreover, we introduce a semi-supervised self-training strategy that leverages pseudo-labels generated from a pre-trained nnU-Net, enabling effective learning without expert annotations. MambaX-Net was evaluated on a longitudinal AS dataset, and results showed that it significantly outperforms state-of-the-art U-Net and Transformer-based models, achieving superior prostate zone segmentation even when trained on limited and noisy data.
☆ MUG-V 10B: High-efficiency Training Pipeline for Large Video Generation Models
In recent years, large-scale generative models for visual content (\textit{e.g.,} images, videos, and 3D objects/scenes) have made remarkable progress. However, training large-scale video generation models remains particularly challenging and resource-intensive due to cross-modal text-video alignment, the long sequences involved, and the complex spatiotemporal dependencies. To address these challenges, we present a training framework that optimizes four pillars: (i) data processing, (ii) model architecture, (iii) training strategy, and (iv) infrastructure for large-scale video generation models. These optimizations delivered significant efficiency gains and performance improvements across all stages of data preprocessing, video compression, parameter scaling, curriculum-based pretraining, and alignment-focused post-training. Our resulting model, MUG-V 10B, matches recent state-of-the-art video generators overall and, on e-commerce-oriented video generation tasks, surpasses leading open-source baselines in human evaluations. More importantly, we open-source the complete stack, including model weights, Megatron-Core-based large-scale training code, and inference pipelines for video generation and enhancement. To our knowledge, this is the first public release of large-scale video generation training code that exploits Megatron-Core to achieve high training efficiency and near-linear multi-node scaling, details are available in \href{https://github.com/Shopee-MUG/MUG-V}{our webpage}.
comment: Technical Report; Project Page: \href{https://github.com/Shopee-MUG/MUG-V}
☆ SimBench: Benchmarking the Ability of Large Language Models to Simulate Human Behaviors
Large language model (LLM) simulations of human behavior have the potential to revolutionize the social and behavioral sciences, if and only if they faithfully reflect real human behaviors. Current evaluations are fragmented, based on bespoke tasks and metrics, creating a patchwork of incomparable results. To address this, we introduce SimBench, the first large-scale, standardized benchmark for a robust, reproducible science of LLM simulation. By unifying 20 diverse datasets covering tasks from moral decision-making to economic choice across a large global participant pool, SimBench provides the necessary foundation to ask fundamental questions about when, how, and why LLM simulations succeed or fail. We show that, while even the best LLMs today have limited simulation ability (score: 40.80/100), performance scales log-linearly with model size. Simulation performance is not improved by increased inference-time compute. We demonstrate an alignment-simulation trade-off: instruction-tuning improves performance on low-entropy (consensus) questions but degrades it on high-entropy (diverse) ones. Models particularly struggle when simulating specific demographic groups. Finally, we demonstrate that simulation ability correlates most strongly with deep, knowledge-intensive reasoning (MMLU-Pro, r=0.939). By making progress measurable, we aim to accelerate the development of more faithful LLM simulators.
comment: Project Website: http://simbench.tiancheng.hu/ Data: https://huggingface.co/datasets/pitehu/SimBench
☆ The Graphon Limit Hypothesis: Understanding Neural Network Pruning via Infinite Width Analysis NeurIPS 2025
Sparse neural networks promise efficiency, yet training them effectively remains a fundamental challenge. Despite advances in pruning methods that create sparse architectures, understanding why some sparse structures are better trainable than others with the same level of sparsity remains poorly understood. Aiming to develop a systematic approach to this fundamental problem, we propose a novel theoretical framework based on the theory of graph limits, particularly graphons, that characterizes sparse neural networks in the infinite-width regime. Our key insight is that connectivity patterns of sparse neural networks induced by pruning methods converge to specific graphons as networks' width tends to infinity, which encodes implicit structural biases of different pruning methods. We postulate the Graphon Limit Hypothesis and provide empirical evidence to support it. Leveraging this graphon representation, we derive a Graphon Neural Tangent Kernel (Graphon NTK) to study the training dynamics of sparse networks in the infinite width limit. Graphon NTK provides a general framework for the theoretical analysis of sparse networks. We empirically show that the spectral analysis of Graphon NTK correlates with observed training dynamics of sparse networks, explaining the varying convergence behaviours of different pruning methods. Our framework provides theoretical insights into the impact of connectivity patterns on the trainability of various sparse network architectures.
comment: NeurIPS 2025 Spotlight
☆ Context-Aware Pseudo-Label Scoring for Zero-Shot Video Summarization
With the rapid proliferation of video content across social media, surveillance, and education platforms, efficiently summarizing long videos into concise yet semantically faithful surrogates has become increasingly vital. Existing supervised methods achieve strong in-domain accuracy by learning from dense annotations but suffer from high labeling costs and limited cross-dataset generalization, while unsupervised approaches, though label-free, often fail to capture high-level human semantics and fine-grained narrative cues. More recently, zero-shot prompting pipelines have leveraged large language models (LLMs) for training-free video summarization, yet remain highly sensitive to handcrafted prompt templates and dataset-specific score normalization. To overcome these limitations, we introduce a rubric-guided, pseudo-labeled prompting framework that transforms a small subset of ground-truth annotations into high-confidence pseudo labels, which are aggregated into structured, dataset-adaptive scoring rubrics guiding interpretable scene evaluation. During inference, first and last segments are scored based solely on their descriptions, whereas intermediate ones incorporate brief contextual summaries of adjacent scenes to assess narrative progression and redundancy. This contextual prompting enables the LLM to balance local salience and global coherence without parameter tuning. On SumMe and TVSum, our method achieves F1 scores of \textbf{57.58} and \textbf{63.05}, surpassing unsupervised and prior zero-shot baselines while approaching supervised performance. The results demonstrate that rubric-guided pseudo labeling effectively stabilizes LLM-based scoring and establishes a general, interpretable zero-shot paradigm for video summarization.
☆ I-RAVEN-X: Benchmarking Generalization and Robustness of Analogical and Mathematical Reasoning in Large Language and Reasoning Models NeurIPS 2025
We introduce I-RAVEN-X, a symbolic benchmark designed to evaluate generalization and robustness in analogical and mathematical reasoning for Large Language Models (LLMs) and Large Reasoning Models (LRMs). I-RAVEN-X extends I-RAVEN by increasing operand complexity, attribute range, and introducing perceptual uncertainty. Compared to LLMs, empirical results show that LRMs achieve improved productivity and systematicity on longer reasoning relations and wider attribute ranges, respectively. However, LRMs are still significantly challenged by reasoning under uncertainty and cannot effectively explore multiple probabilistic outcomes.
comment: Accepted at the 5th Workshop on Mathematical Reasoning and AI (MATH-AI), NeurIPS 2025
☆ SparseWorld: A Flexible, Adaptive, and Efficient 4D Occupancy World Model Powered by Sparse and Dynamic Queries
Semantic occupancy has emerged as a powerful representation in world models for its ability to capture rich spatial semantics. However, most existing occupancy world models rely on static and fixed embeddings or grids, which inherently limit the flexibility of perception. Moreover, their ``in-place classification" over grids exhibits a potential misalignment with the dynamic and continuous nature of real scenarios.In this paper, we propose SparseWorld, a novel 4D occupancy world model that is flexible, adaptive, and efficient, powered by sparse and dynamic queries. We propose a Range-Adaptive Perception module, in which learnable queries are modulated by the ego vehicle states and enriched with temporal-spatial associations to enable extended-range perception. To effectively capture the dynamics of the scene, we design a State-Conditioned Forecasting module, which replaces classification-based forecasting with regression-guided formulation, precisely aligning the dynamic queries with the continuity of the 4D environment. In addition, We specifically devise a Temporal-Aware Self-Scheduling training strategy to enable smooth and efficient training. Extensive experiments demonstrate that SparseWorld achieves state-of-the-art performance across perception, forecasting, and planning tasks. Comprehensive visualizations and ablation studies further validate the advantages of SparseWorld in terms of flexibility, adaptability, and efficiency. The code is available at https://github.com/MSunDYY/SparseWorld.
comment: Under Review
☆ DAMSDAN: Distribution-Aware Multi-Source Domain Adaptation Network for Cross-Domain EEG-based Emotion Recognition
Significant inter-individual variability limits the generalization of EEG-based emotion recognition under cross-domain settings. We address two core challenges in multi-source adaptation: (1) dynamically modeling distributional heterogeneity across sources and quantifying their relevance to a target to reduce negative transfer; and (2) achieving fine-grained semantic consistency to strengthen class discrimination. We propose a distribution-aware multi-source domain adaptation network (DAMSDAN). DAMSDAN integrates prototype-based constraints with adversarial learning to drive the encoder toward discriminative, domain-invariant emotion representations. A domain-aware source weighting strategy based on maximum mean discrepancy (MMD) dynamically estimates inter-domain shifts and reweights source contributions. In addition, a prototype-guided conditional alignment module with dual pseudo-label interaction enhances pseudo-label reliability and enables category-level, fine-grained alignment, mitigating noise propagation and semantic drift. Experiments on SEED and SEED-IV show average accuracies of 94.86\% and 79.78\% for cross-subject, and 95.12\% and 83.15\% for cross-session protocols. On the large-scale FACED dataset, DAMSDAN achieves 82.88\% (cross-subject). Extensive ablations and interpretability analyses corroborate the effectiveness of the proposed framework for cross-domain EEG-based emotion recognition.
comment: 14 pages, 9 figures
☆ Layer Specialization Underlying Compositional Reasoning in Transformers
Transformers exhibit compositional reasoning on sequences not observed during training, a capability often attributed to in-context learning (ICL) and skill composition. We investigate this phenomenon using the Random Hierarchy Model (RHM), a probabilistic context-free grammar that generates sequences through recursive rule application. Models are trained on subsets of sequences and evaluated across four generalization conditions: memorization, in-distribution generalization, out-of-distribution generalization with the same rules, and cross-layer transfer. Behaviorally, performance improves systematically with task complexity and the number of in-context examples, with out-of-distribution tasks requiring substantially more examples than in-distribution scenarios. Mechanistically, we identify a progressive emergence of layer specialization during training that correlates with generalization performance. Principal component analysis and attention pattern clustering reveal that transformers develop structured, hierarchically organized representations in specialized layers. These results demonstrate that transformers develop modular, interpretable mechanisms supporting compositional reasoning, linking internal algorithmic structure to observed behavioral capabilities.
☆ Label Indeterminacy in AI & Law
Machine learning is increasingly used in the legal domain, where it typically operates retrospectively by treating past case outcomes as ground truth. However, legal outcomes are often shaped by human interventions that are not captured in most machine learning approaches. A final decision may result from a settlement, an appeal, or other procedural actions. This creates label indeterminacy: the outcome could have been different if the intervention had or had not taken place. We argue that legal machine learning applications need to account for label indeterminacy. Methods exist that can impute these indeterminate labels, but they are all grounded in unverifiable assumptions. In the context of classifying cases from the European Court of Human Rights, we show that the way that labels are constructed during training can significantly affect model behaviour. We therefore position label indeterminacy as a relevant concern in AI & Law and demonstrate how it can shape model behaviour.
comment: This manuscript has been accepted for presentation as a short paper at the 38th International Conference on Legal Knowledge and Information Systems (JURIX) in Turin, December 9 to 11 of 2025
☆ The Parameterized Complexity of Computing the VC-Dimension NeurIPS 2025
The VC-dimension is a fundamental and well-studied measure of the complexity of a set system (or hypergraph) that is central to many areas of machine learning. We establish several new results on the complexity of computing the VC-dimension. In particular, given a hypergraph $\mathcal{H}=(\mathcal{V},\mathcal{E})$, we prove that the naive $2^{\mathcal{O}(|\mathcal{V}|)}$-time algorithm is asymptotically tight under the Exponential Time Hypothesis (ETH). We then prove that the problem admits a 1-additive fixed-parameter approximation algorithm when parameterized by the maximum degree of $\mathcal{H}$ and a fixed-parameter algorithm when parameterized by its dimension, and that these are essentially the only such exploitable structural parameters. Lastly, we consider a generalization of the problem, formulated using graphs, which captures the VC-dimension of both set systems and graphs. We show that it is fixed-parameter tractable parameterized by the treewidth of the graph (which, in the case of set systems, applies to the treewidth of its incidence graph). In contrast with closely related problems whose dependency on the treewidth is necessarily double-exponential (assuming the ETH), our algorithm has a relatively low dependency on the treewidth.
comment: To appear in the proceedings of NeurIPS 2025
☆ Active Inference for an Intelligent Agent in Autonomous Reconnaissance Missions
We develop an active inference route-planning method for the autonomous control of intelligent agents. The aim is to reconnoiter a geographical area to maintain a common operational picture. To achieve this, we construct an evidence map that reflects our current understanding of the situation, incorporating both positive and "negative" sensor observations of possible target objects collected over time, and diffusing the evidence across the map as time progresses. The generative model of active inference uses Dempster-Shafer theory and a Gaussian sensor model, which provides input to the agent. The generative process employs a Bayesian approach to update a posterior probability distribution. We calculate the variational free energy for all positions within the area by assessing the divergence between a pignistic probability distribution of the evidence map and a posterior probability distribution of a target object based on the observations, including the level of surprise associated with receiving new observations. Using the free energy, we direct the agents' movements in a simulation by taking an incremental step toward a position that minimizes the free energy. This approach addresses the challenge of exploration and exploitation, allowing agents to balance searching extensive areas of the geographical map while tracking identified target objects.
comment: Presented at the 6th International Workshop on Active Inference, 15-17 October 2025, Montreal, Canada
☆ From Spatial to Actions: Grounding Vision-Language-Action Model in Spatial Foundation Priors
Existing vision-language-action (VLA) models act in 3D real-world but are typically built on 2D encoders, leaving a spatial reasoning gap that limits generalization and adaptability. Recent 3D integration techniques for VLAs either require specialized sensors and transfer poorly across modalities, or inject weak cues that lack geometry and degrade vision-language alignment. In this work, we introduce FALCON (From Spatial to Action), a novel paradigm that injects rich 3D spatial tokens into the action head. FALCON leverages spatial foundation models to deliver strong geometric priors from RGB alone, and includes an Embodied Spatial Model that can optionally fuse depth, or pose for higher fidelity when available, without retraining or architectural changes. To preserve language reasoning, spatial tokens are consumed by a Spatial-Enhanced Action Head rather than being concatenated into the vision-language backbone. These designs enable FALCON to address limitations in spatial representation, modality transferability, and alignment. In comprehensive evaluations across three simulation benchmarks and eleven real-world tasks, our proposed FALCON achieves state-of-the-art performance, consistently surpasses competitive baselines, and remains robust under clutter, spatial-prompt conditioning, and variations in object scale and height.
comment: Project page: https://falcon-vla.github.io/
☆ Navigating the Alignment-Calibration Trade-off: A Pareto-Superior Frontier via Model Merging
The "alignment tax" of post-training is typically framed as a drop in task accuracy. We show it also involves a severe loss of calibration, making models overconfident, less reliable, and model outputs less diverse. We show that this trade-off can be navigated effectively via a simple post-hoc intervention: interpolating between a model's weights before and after alignment. Crucially, this is not a strict trade-off. We find that the process consistently reveals Pareto-optimal interpolations - models that improve accuracy beyond both parents while substantially recovering the calibration lost during alignment. Our work demonstrates that simple model merging provides a computationally efficient method for mitigating the full scope of the alignment tax, yielding models that are more capable and more reliable.
☆ Diverse Planning with Simulators via Linear Temporal Logic
Autonomous agents rely on automated planning algorithms to achieve their objectives. Simulation-based planning offers a significant advantage over declarative models in modelling complex environments. However, relying solely on a planner that produces a single plan may not be practical, as the generated plans may not always satisfy the agent's preferences. To address this limitation, we introduce $\texttt{FBI}_\texttt{LTL}$, a diverse planner explicitly designed for simulation-based planning problems. $\texttt{FBI}_\texttt{LTL}$ utilises Linear Temporal Logic (LTL) to define semantic diversity criteria, enabling agents to specify what constitutes meaningfully different plans. By integrating these LTL-based diversity models directly into the search process, $\texttt{FBI}_\texttt{LTL}$ ensures the generation of semantically diverse plans, addressing a critical limitation of existing diverse planning approaches that may produce syntactically different but semantically identical solutions. Extensive evaluations on various benchmarks consistently demonstrate that $\texttt{FBI}_\texttt{LTL}$ generates more diverse plans compared to a baseline approach. This work establishes the feasibility of semantically-guided diverse planning in simulation-based environments, paving the way for innovative approaches in realistic, non-symbolic domains where traditional model-based approaches fail.
☆ BenCao: An Instruction-Tuned Large Language Model for Traditional Chinese Medicine
Traditional Chinese Medicine (TCM), with a history spanning over two millennia, plays a role in global healthcare. However, applying large language models (LLMs) to TCM remains challenging due to its reliance on holistic reasoning, implicit logic, and multimodal diagnostic cues. Existing TCM-domain LLMs have made progress in text-based understanding but lack multimodal integration, interpretability, and clinical applicability. To address these limitations, we developed BenCao, a ChatGPT-based multimodal assistant for TCM, integrating structured knowledge bases, diagnostic data, and expert feedback refinement. BenCao was trained through natural language instruction tuning rather than parameter retraining, aligning with expert-level reasoning and ethical norms specific to TCM. The system incorporates a comprehensive knowledge base of over 1,000 classical and modern texts, a scenario-based instruction framework for diverse interactions, a chain-of-thought simulation mechanism for interpretable reasoning, and a feedback refinement process involving licensed TCM practitioners. BenCao connects to external APIs for tongue-image classification and multimodal database retrieval, enabling dynamic access to diagnostic resources. In evaluations across single-choice question benchmarks and multimodal classification tasks, BenCao achieved superior accuracy to general-domain and TCM-domain models, particularly in diagnostics, herb recognition, and constitution classification. The model was deployed as an interactive application on the OpenAI GPTs Store, accessed by nearly 1,000 users globally as of October 2025. This study demonstrates the feasibility of developing a TCM-domain LLM through natural language-based instruction tuning and multimodal integration, offering a practical framework for aligning generative AI with traditional medical reasoning and a scalable pathway for real-world deployment.
☆ AFRICAPTION: Establishing a New Paradigm for Image Captioning in African Languages
Multimodal AI research has overwhelmingly focused on high-resource languages, hindering the democratization of advancements in the field. To address this, we present AfriCaption, a comprehensive framework for multilingual image captioning in 20 African languages and our contributions are threefold: (i) a curated dataset built on Flickr8k, featuring semantically aligned captions generated via a context-aware selection and translation process; (ii) a dynamic, context-preserving pipeline that ensures ongoing quality through model ensembling and adaptive substitution; and (iii) the AfriCaption model, a 0.5B parameter vision-to-text architecture that integrates SigLIP and NLLB200 for caption generation across under-represented languages. This unified framework ensures ongoing data quality and establishes the first scalable image-captioning resource for under-represented African languages, laying the groundwork for truly inclusive multimodal AI.
☆ Leveraging Group Relative Policy Optimization to Advance Large Language Models in Traditional Chinese Medicine
Traditional Chinese Medicine (TCM) presents a rich and structurally unique knowledge system that challenges conventional applications of large language models (LLMs). Although previous TCM-specific LLMs have shown progress through supervised fine-tuning, they often face limitations in alignment, data quality, and evaluation consistency. In this study, we introduce Ladder-base, the first TCM-focused LLM trained with Group Relative Policy Optimization (GRPO), a reinforcement learning method that improves reasoning and factual consistency by optimizing response selection based on intra-group comparisons. Ladder-base is built upon the Qwen2.5-7B-Instruct foundation model and trained exclusively on the textual subset of the TCM-Ladder benchmark, using 80 percent of the data for training and the remaining 20 percent split evenly between validation and test sets. Through standardized evaluation, Ladder-base demonstrates superior performance across multiple reasoning metrics when compared to both state-of-the-art general-purpose LLMs such as GPT-4, Gemini 2.5, Claude 3, and Qwen3 and domain-specific TCM models including BenTsao, HuatuoGPT2, and Zhongjing. These findings suggest that GRPO provides an effective and efficient strategy for aligning LLMs with expert-level reasoning in traditional medical domains and supports the development of trustworthy and clinically grounded TCM artificial intelligence systems.
☆ EduAdapt: A Question Answer Benchmark Dataset for Evaluating Grade-Level Adaptability in LLMs EMNLP 2025
Large language models (LLMs) are transforming education by answering questions, explaining complex concepts, and generating content across a wide range of subjects. Despite strong performance on academic benchmarks, they often fail to tailor responses to students' grade levels. This is a critical need in K-12 education, where age-appropriate vocabulary and explanation are essential for effective learning. Existing models frequently produce outputs that are too advanced or vague for younger learners, and there are no standardized benchmarks to evaluate their ability to adjust across cognitive and developmental stages. To address this gap, we introduce EduAdapt, a benchmark of nearly 48k grade-labeled QA pairs across nine science subjects, spanning Grades 1-12 and grouped into four grade levels. We evaluate a diverse set of open-source LLMs on EduAdapt and find that while larger models generally perform better, they still struggle with generating suitable responses for early-grade students (Grades 1-5). Our work presents the first dataset and evaluation framework for assessing grade-level adaptability in LLMs, aiming to foster more developmentally aligned educational AI systems through better training and prompting strategies. EduAdapt code and datasets are publicly available at https://github.com/NaumanNaeem/EduAdapt.
comment: 28 pages, 2 figures, 14 tables, 50 listings, EMNLP 2025 Main
☆ Inference of Deterministic Finite Automata via Q-Learning
Traditional approaches to inference of deterministic finite-state automata (DFA) stem from symbolic AI, including both active learning methods (e.g., Angluin's L* algorithm and its variants) and passive techniques (e.g., Biermann and Feldman's method, RPNI). Meanwhile, sub-symbolic AI, particularly machine learning, offers alternative paradigms for learning from data, such as supervised, unsupervised, and reinforcement learning (RL). This paper investigates the use of Q-learning, a well-known reinforcement learning algorithm, for the passive inference of deterministic finite automata. It builds on the core insight that the learned Q-function, which maps state-action pairs to rewards, can be reinterpreted as the transition function of a DFA over a finite domain. This provides a novel bridge between sub-symbolic learning and symbolic representations. The paper demonstrates how Q-learning can be adapted for automaton inference and provides an evaluation on several examples.
☆ TabR1: Taming GRPO for tabular reasoning LLMs
Tabular prediction has traditionally relied on gradient-boosted decision trees and specialized deep learning models, which excel within tasks but provide limited interpretability and weak transfer across tables. Reasoning large language models (LLMs) promise cross-task adaptability with trans- parent reasoning traces, yet their potential has not been fully realized for tabular data. This paper presents TabR1, the first reasoning LLM for tabular prediction with multi-step reasoning. At its core is Permutation Relative Policy Optimization (PRPO), a simple yet efficient reinforcement learning method that encodes column-permutation invariance as a structural prior. By construct- ing multiple label-preserving permutations per sample and estimating advantages both within and across permutations, PRPO transforms sparse rewards into dense learning signals and improves generalization. With limited supervision, PRPO activates the reasoning ability of LLMs for tabular prediction, enhancing few-shot and zero-shot performance as well as interpretability. Comprehensive experiments demonstrate that TabR1 achieves performance comparable to strong baselines under full-supervision fine-tuning. In the zero-shot setting, TabR1 approaches the performance of strong baselines under the 32-shot setting. Moreover, TabR1 (8B) substantially outperforms much larger LLMs across various tasks, achieving up to 53.17% improvement over DeepSeek-R1 (685B).
☆ Graph Attention-Guided Search for Dense Multi-Agent Pathfinding
Finding near-optimal solutions for dense multi-agent pathfinding (MAPF) problems in real-time remains challenging even for state-of-the-art planners. To this end, we develop a hybrid framework that integrates a learned heuristic derived from MAGAT, a neural MAPF policy with a graph attention scheme, into a leading search-based algorithm, LaCAM. While prior work has explored learning-guided search in MAPF, such methods have historically underperformed. In contrast, our approach, termed LaGAT, outperforms both purely search-based and purely learning-based methods in dense scenarios. This is achieved through an enhanced MAGAT architecture, a pre-train-then-fine-tune strategy on maps of interest, and a deadlock detection scheme to account for imperfect neural guidance. Our results demonstrate that, when carefully designed, hybrid search offers a powerful solution for tightly coupled, challenging multi-agent coordination problems.
☆ Optimizing Energy Management of Smart Grid using Reinforcement Learning aided by Surrogate models built using Physics-informed Neural Networks
Optimizing the energy management within a smart grids scenario presents significant challenges, primarily due to the complexity of real-world systems and the intricate interactions among various components. Reinforcement Learning (RL) is gaining prominence as a solution for addressing the challenges of Optimal Power Flow in smart grids. However, RL needs to iterate compulsively throughout a given environment to obtain the optimal policy. This means obtaining samples from a, most likely, costly simulator, which can lead to a sample efficiency problem. In this work, we address this problem by substituting costly smart grid simulators with surrogate models built using Phisics-informed Neural Networks (PINNs), optimizing the RL policy training process by arriving to convergent results in a fraction of the time employed by the original environment.
☆ Bridging Embodiment Gaps: Deploying Vision-Language-Action Models on Soft Robots NeurIPS 2025
Robotic systems are increasingly expected to operate in human-centered, unstructured environments where safety, adaptability, and generalization are essential. Vision-Language-Action (VLA) models have been proposed as a language guided generalized control framework for real robots. However, their deployment has been limited to conventional serial link manipulators. Coupled by their rigidity and unpredictability of learning based control, the ability to safely interact with the environment is missing yet critical. In this work, we present the deployment of a VLA model on a soft continuum manipulator to demonstrate autonomous safe human-robot interaction. We present a structured finetuning and deployment pipeline evaluating two state-of-the-art VLA models (OpenVLA-OFT and $\pi_0$) across representative manipulation tasks, and show while out-of-the-box policies fail due to embodiment mismatch, through targeted finetuning the soft robot performs equally to the rigid counterpart. Our findings highlight the necessity of finetuning for bridging embodiment gaps, and demonstrate that coupling VLA models with soft robots enables safe and flexible embodied AI in human-shared environments.
comment: Accepted by NeurIPS 2025 SpaVLE workshop. 4 pages, 2 figures(in main paper, excluding references and supplements)
☆ Localist LLMs with Recruitment Learning
We present a novel framework for training large language models with continuously adjustable internal representations that span the full spectrum from localist (interpretable, rule-based) to distributed (generalizable, efficient) encodings. The key innovations are (1) a locality dial, a tunable parameter that dynamically controls the degree of localization during both training and inference without requiring model retraining, (2) an information-theoretic recruitment mechanism that adaptively allocates semantic blocks as needed, eliminating the requirement for complete domain knowledge at initialization, and (3) a hierarchical recruitment framework that extends capacity allocation to entire specialized LLMs, enabling multi-granularity architectural adaptation. This is achieved through group sparsity penalties on attention mechanisms, information-theoretic anchor design, dynamic rule injection, and principled recruitment criteria based on penalized likelihood with explicit units. We provide rigorous mathematical results establishing explicit threshold conditions under which attention provably concentrates on semantically relevant blocks at stationary points, with exact bounds on attention entropy and pointer fidelity. The hierarchical recruitment mechanism provides convergence guarantees at both the block level (fine-grained, within-LLM) and the LLM level (coarse-grained, cross-domain), ensuring the system discovers semantic partitions that balance model complexity against data encoding efficiency. This framework enables practitioners to continuously interpolate between interpretable and high-performance modes while adapting architectural capacity at multiple granularities, supporting applications in regulated domains requiring both transparency and capability.
☆ Towards Mixed-Modal Retrieval for Universal Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) has emerged as a powerful paradigm for enhancing large language models (LLMs) by retrieving relevant documents from an external corpus. However, existing RAG systems primarily focus on unimodal text documents, and often fall short in real-world scenarios where both queries and documents may contain mixed modalities (such as text and images). In this paper, we address the challenge of Universal Retrieval-Augmented Generation (URAG), which involves retrieving and reasoning over mixed-modal information to improve vision-language generation. To this end, we propose Nyx, a unified mixed-modal to mixed-modal retriever tailored for URAG scenarios. To mitigate the scarcity of realistic mixed-modal data, we introduce a four-stage automated pipeline for generation and filtering, leveraging web documents to construct NyxQA, a dataset comprising diverse mixed-modal question-answer pairs that better reflect real-world information needs. Building on this high-quality dataset, we adopt a two-stage training framework for Nyx: we first perform pre-training on NyxQA along with a variety of open-source retrieval datasets, followed by supervised fine-tuning using feedback from downstream vision-language models (VLMs) to align retrieval outputs with generative preferences. Experimental results demonstrate that Nyx not only performs competitively on standard text-only RAG benchmarks, but also excels in the more general and realistic URAG setting, significantly improving generation quality in vision-language tasks.
comment: This work is in progress
☆ TopSeg: A Multi-Scale Topological Framework for Data-Efficient Heart Sound Segmentation ICASSP2026
Deep learning approaches for heart-sound (PCG) segmentation built on time--frequency features can be accurate but often rely on large expert-labeled datasets, limiting robustness and deployment. We present TopSeg, a topological representation-centric framework that encodes PCG dynamics with multi-scale topological features and decodes them using a lightweight temporal convolutional network (TCN) with an order- and duration-constrained inference step. To evaluate data efficiency and generalization, we train exclusively on PhysioNet 2016 dataset with subject-level subsampling and perform external validation on CirCor dataset. Under matched-capacity decoders, the topological features consistently outperform spectrogram and envelope inputs, with the largest margins at low data budgets; as a full system, TopSeg surpasses representative end-to-end baselines trained on their native inputs under the same budgets while remaining competitive at full data. Ablations at 10% training confirm that all scales contribute and that combining H_0 and H_1 yields more reliable S1/S2 localization and boundary stability. These results indicate that topology-aware representations provide a strong inductive bias for data-efficient, cross-dataset PCG segmentation, supporting practical use when labeled data are limited.
comment: Paper has submitted to ICASSP2026
☆ DDSC: Dynamic Dual-Signal Curriculum for Data-Efficient Acoustic Scene Classification under Domain Shift ICASSP2026
Acoustic scene classification (ASC) suffers from device-induced domain shift, especially when labels are limited. Prior work focuses on curriculum-based training schedules that structure data presentation by ordering or reweighting training examples from easy-to-hard to facilitate learning; however, existing curricula are static, fixing the ordering or the weights before training and ignoring that example difficulty and marginal utility evolve with the learned representation. To overcome this limitation, we propose the Dynamic Dual-Signal Curriculum (DDSC), a training schedule that adapts the curriculum online by combining two signals computed each epoch: a domain-invariance signal and a learning-progress signal. A time-varying scheduler fuses these signals into per-example weights that prioritize domain-invariant examples in early epochs and progressively emphasize device-specific cases. DDSC is lightweight, architecture-agnostic, and introduces no additional inference overhead. Under the official DCASE 2024 Task~1 protocol, DDSC consistently improves cross-device performance across diverse ASC baselines and label budgets, with the largest gains on unseen-device splits.
comment: Paper has submitted to ICASSP2026
☆ CharDiff: A Diffusion Model with Character-Level Guidance for License Plate Image Restoration
The significance of license plate image restoration goes beyond the preprocessing stage of License Plate Recognition (LPR) systems, as it also serves various purposes, including increasing evidential value, enhancing the clarity of visual interface, and facilitating further utilization of license plate images. We propose a novel diffusion-based framework with character-level guidance, CharDiff, which effectively restores and recognizes severely degraded license plate images captured under realistic conditions. CharDiff leverages fine-grained character-level priors extracted through external segmentation and Optical Character Recognition (OCR) modules tailored for low-quality license plate images. For precise and focused guidance, CharDiff incorporates a novel Character-guided Attention through Region-wise Masking (CHARM) module, which ensures that each character's guidance is restricted to its own region, thereby avoiding interference with other regions. In experiments, CharDiff significantly outperformed the baseline restoration models in both restoration quality and recognition accuracy, achieving a 28% relative reduction in CER on the Roboflow-LP dataset, compared to the best-performing baseline model. These results indicate that the structured character-guided conditioning effectively enhances the robustness of diffusion-based license plate restoration and recognition in practical deployment scenarios.
comment: 11 pages, 6 figures
☆ Auto-Rubric: Learning to Extract Generalizable Criteria for Reward Modeling
Reward models are essential for aligning Large Language Models (LLMs) with human values, yet their development is hampered by costly preference datasets and poor interpretability. While recent rubric-based approaches offer transparency, they often lack systematic quality control and optimization, creating a trade-off between scalability and reliability. We address these limitations with a novel, training-free framework built on a key assumption: \textit{evaluation rubrics underlying human preferences exhibit significant generalization ability across diverse queries}, a property that enables remarkable data efficiency. Our two-stage approach first infers high-quality, query-specific rubrics using a validation-guided \textbf{Propose-Evaluate-Revise} pipeline. Second, it generalizes these granular rubrics into a compact, non-redundant core set by maximizing an \textbf{information-theoretic coding rate}. The final output is an interpretable, hierarchical "Theme-Tips" rubric set. Extensive experiments demonstrate the framework's exceptional data efficiency and performance. Critically, using just 70 preference pairs (1.5\% of the source data), our method also empowers smaller models like Qwen3-8B to outperform specialized, fully-trained counterparts. This work pioneers a scalable, interpretable, and data-efficient path for reward modeling.
☆ RubiSCoT: A Framework for AI-Supported Academic Assessment
The evaluation of academic theses is a cornerstone of higher education, ensuring rigor and integrity. Traditional methods, though effective, are time-consuming and subject to evaluator variability. This paper presents RubiSCoT, an AI-supported framework designed to enhance thesis evaluation from proposal to final submission. Using advanced natural language processing techniques, including large language models, retrieval-augmented generation, and structured chain-of-thought prompting, RubiSCoT offers a consistent, scalable solution. The framework includes preliminary assessments, multidimensional assessments, content extraction, rubric-based scoring, and detailed reporting. We present the design and implementation of RubiSCoT, discussing its potential to optimize academic assessment processes through consistent, scalable, and transparent evaluation.
☆ Comprehending Spatio-temporal Data via Cinematic Storytelling using Large Language Models
Spatio-temporal data captures complex dynamics across both space and time, yet traditional visualizations are complex, require domain expertise and often fail to resonate with broader audiences. Here, we propose MapMuse, a storytelling-based framework for interpreting spatio-temporal datasets, transforming them into compelling, narrative-driven experiences. We utilize large language models and employ retrieval augmented generation (RAG) and agent-based techniques to generate comprehensive stories. Drawing on principles common in cinematic storytelling, we emphasize clarity, emotional connection, and audience-centric design. As a case study, we analyze a dataset of taxi trajectories. Two perspectives are presented: a captivating story based on a heat map that visualizes millions of taxi trip endpoints to uncover urban mobility patterns; and a detailed narrative following a single long taxi journey, enriched with city landmarks and temporal shifts. By portraying locations as characters and movement as plot, we argue that data storytelling drives insight, engagement, and action from spatio-temporal information. The case study illustrates how MapMuse can bridge the gap between data complexity and human understanding. The aim of this short paper is to provide a glimpse to the potential of the cinematic storytelling technique as an effective communication tool for spatio-temporal data, as well as to describe open problems and opportunities for future research.
comment: 5 pages
☆ MemoryBench: A Benchmark for Memory and Continual Learning in LLM Systems
Scaling up data, parameters, and test-time computation has been the mainstream methods to improve LLM systems (LLMsys), but their upper bounds are almost reached due to the gradual depletion of high-quality data and marginal gains obtained from larger computational resource consumption. Inspired by the abilities of human and traditional AI systems in learning from practice, constructing memory and continual learning frameworks for LLMsys has become an important and popular research direction in recent literature. Yet, existing benchmarks for LLM memory often focus on evaluating the system on homogeneous reading comprehension tasks with long-form inputs rather than testing their abilities to learn from accumulated user feedback in service time. Therefore, we propose a user feedback simulation framework and a comprehensive benchmark covering multiple domains, languages, and types of tasks to evaluate the continual learning abilities of LLMsys. Experiments show that the effectiveness and efficiency of state-of-the-art baselines are far from satisfying, and we hope this benchmark could pave the way for future studies on LLM memory and optimization algorithms.
☆ FineVision: Open Data Is All You Need
The advancement of vision-language models (VLMs) is hampered by a fragmented landscape of inconsistent and contaminated public datasets. We introduce FineVision, a meticulously collected, curated, and unified corpus of 24 million samples - the largest open resource of its kind. We unify more than 200 sources into 185 subsets via a semi-automated, human-in-the-loop pipeline: automation performs bulk ingestion and schema mapping, while reviewers audit mappings and spot-check outputs to verify faithful consumption of annotations, appropriate formatting and diversity, and safety; issues trigger targeted fixes and re-runs. The workflow further applies rigorous de-duplication within and across sources and decontamination against 66 public benchmarks. FineVision also encompasses agentic/GUI tasks with a unified action space; reviewers validate schemas and inspect a sample of trajectories to confirm executable fidelity. Models trained on FineVision consistently outperform those trained on existing open mixtures across a broad evaluation suite, underscoring the benefits of scale, data hygiene, and balanced automation with human oversight. We release the corpus and curation tools to accelerate data-centric VLM research.
☆ Augmented Web Usage Mining and User Experience Optimization with CAWAL's Enriched Analytics Data
Understanding user behavior on the web is increasingly critical for optimizing user experience (UX). This study introduces Augmented Web Usage Mining (AWUM), a methodology designed to enhance web usage mining and improve UX by enriching the interaction data provided by CAWAL (Combined Application Log and Web Analytics), a framework for advanced web analytics. Over 1.2 million session records collected in one month (~8.5GB of data) were processed and transformed into enriched datasets. AWUM analyzes session structures, page requests, service interactions, and exit methods. Results show that 87.16% of sessions involved multiple pages, contributing 98.05% of total pageviews; 40% of users accessed various services and 50% opted for secure exits. Association rule mining revealed patterns of frequently accessed services, highlighting CAWAL's precision and efficiency over conventional methods. AWUM offers a comprehensive understanding of user behavior and strong potential for large-scale UX optimization.
comment: 19 pages, 5 figures. Published in International Journal of Human-Computer Interaction (Taylor & Francis, 2025)
☆ How News Feels: Understanding Affective Bias in Multilingual Headlines for Human-Centered Media Design
News media often shape the public mood not only by what they report but by how they frame it. The same event can appear calm in one outlet and alarming in another, reflecting subtle emotional bias in reporting. Negative or emotionally charged headlines tend to attract more attention and spread faster, which in turn encourages outlets to frame stories in ways that provoke stronger reactions. This research explores that tendency through large-scale emotion analysis of Bengali news. Using zero-shot inference with Gemma-3 4B, we analyzed 300000 Bengali news headlines and their content to identify the dominant emotion and overall tone of each. The findings reveal a clear dominance of negative emotions, particularly anger, fear, and disappointment, and significant variation in how similar stories are emotionally portrayed across outlets. Based on these insights, we propose design ideas for a human-centered news aggregator that visualizes emotional cues and helps readers recognize hidden affective framing in daily news.
comment: 15 pages, 7 figures, 4 tables. Submitted to the International Conference on Data and Applied Analytics (IDAA 2025)
☆ Visibility Allocation Systems: How Algorithmic Design Shapes Online Visibility and Societal Outcomes
Throughout application domains, we now rely extensively on algorithmic systems to engage with ever-expanding datasets of information. Despite their benefits, these systems are often complex (comprising of many intricate tools, e.g., moderation, recommender systems, prediction models), of unknown structure (due to the lack of accompanying documentation), and having hard-to-predict yet potentially severe downstream consequences (due to the extensive use, systematic enactment of existing errors, and many comprising feedback loops). As such, understanding and evaluating these systems as a whole remains a challenge for both researchers and legislators. To aid ongoing efforts, we introduce a formal framework for such visibility allocation systems (VASs) which we define as (semi-)automated systems deciding which (processed) data to present a human user with. We review typical tools comprising VASs and define the associated computational problems they solve. By doing so, VASs can be decomposed into sub-processes and illustrated via data flow diagrams. Moreover, we survey metrics for evaluating VASs throughout the pipeline, thus aiding system diagnostics. Using forecasting-based recommendations in school choice as a case study, we demonstrate how our framework can support VAS evaluation. We also discuss how our framework can support ongoing AI-legislative efforts to locate obligations, quantify systemic risks, and enable adaptive compliance.
☆ Coinvisor: An RL-Enhanced Chatbot Agent for Interactive Cryptocurrency Investment Analysis
The cryptocurrency market offers significant investment opportunities but faces challenges including high volatility and fragmented information. Data integration and analysis are essential for informed investment decisions. Currently, investors use three main approaches: (1) Manual analysis across various sources, which depends heavily on individual experience and is time-consuming and prone to bias; (2) Data aggregation platforms-limited in functionality and depth of analysis; (3) Large language model agents-based on static pretrained models, lacking real-time data integration and multi-step reasoning capabilities. To address these limitations, we present Coinvisor, a reinforcement learning-based chatbot that provides comprehensive analytical support for cryptocurrency investment through a multi-agent framework. Coinvisor integrates diverse analytical capabilities through specialized tools. Its key innovation is a reinforcement learning-based tool selection mechanism that enables multi-step planning and flexible integration of diverse data sources. This design supports real-time interaction and adaptive analysis of dynamic content, delivering accurate and actionable investment insights. We evaluated Coinvisor through automated benchmarks on tool calling accuracy and user studies with 20 cryptocurrency investors using our interface. Results show that Coinvisor improves recall by 40.7% and F1 score by 26.6% over the base model in tool orchestration. User studies show high satisfaction (4.64/5), with participants preferring Coinvisor to both general LLMs and existing crypto platforms (4.62/5).
☆ Taming Modality Entanglement in Continual Audio-Visual Segmentation
Recently, significant progress has been made in multi-modal continual learning, aiming to learn new tasks sequentially in multi-modal settings while preserving performance on previously learned ones. However, existing methods mainly focus on coarse-grained tasks, with limitations in addressing modality entanglement in fine-grained continual learning settings. To bridge this gap, we introduce a novel Continual Audio-Visual Segmentation (CAVS) task, aiming to continuously segment new classes guided by audio. Through comprehensive analysis, two critical challenges are identified: 1) multi-modal semantic drift, where a sounding objects is labeled as background in sequential tasks; 2) co-occurrence confusion, where frequent co-occurring classes tend to be confused. In this work, a Collision-based Multi-modal Rehearsal (CMR) framework is designed to address these challenges. Specifically, for multi-modal semantic drift, a Multi-modal Sample Selection (MSS) strategy is proposed to select samples with high modal consistency for rehearsal. Meanwhile, for co-occurence confusion, a Collision-based Sample Rehearsal (CSR) mechanism is designed, allowing for the increase of rehearsal sample frequency of those confusable classes during training process. Moreover, we construct three audio-visual incremental scenarios to verify effectiveness of our method. Comprehensive experiments demonstrate that our method significantly outperforms single-modal continual learning methods.
☆ When One Moment Isn't Enough: Multi-Moment Retrieval with Cross-Moment Interactions NeurIPS 2025
Existing Moment retrieval (MR) methods focus on Single-Moment Retrieval (SMR). However, one query can correspond to multiple relevant moments in real-world applications. This makes the existing datasets and methods insufficient for video temporal grounding. By revisiting the gap between current MR tasks and real-world applications, we introduce a high-quality datasets called QVHighlights Multi-Moment Dataset (QV-M$^2$), along with new evaluation metrics tailored for multi-moment retrieval (MMR). QV-M$^2$ consists of 2,212 annotations covering 6,384 video segments. Building on existing efforts in MMR, we propose a framework called FlashMMR. Specifically, we propose a Multi-moment Post-verification module to refine the moment boundaries. We introduce constrained temporal adjustment and subsequently leverage a verification module to re-evaluate the candidate segments. Through this sophisticated filtering pipeline, low-confidence proposals are pruned, and robust multi-moment alignment is achieved. We retrain and evaluate 6 existing MR methods on QV-M$^2$ and QVHighlights under both SMR and MMR settings. Results show that QV-M$^2$ serves as an effective benchmark for training and evaluating MMR models, while FlashMMR provides a strong baseline. Specifically, on QV-M$^2$, it achieves improvements over prior SOTA method by 3.00% on G-mAP, 2.70% on mAP@3+tgt, and 2.56% on mR@3. The proposed benchmark and method establish a foundation for advancing research in more realistic and challenging video temporal grounding scenarios. Code is released at https://github.com/Zhuo-Cao/QV-M2.
comment: Accepted to NeurIPS 2025
☆ Diagnosis of Fuel Cell Health Status with Deep Sparse Auto-Encoder Neural Network
Effective and accurate diagnosis of fuel cell health status is crucial for ensuring the stable operation of fuel cell stacks. Among various parameters, high-frequency impedance serves as a critical indicator for assessing fuel cell state and health conditions. However, its online testing is prohibitively complex and costly. This paper employs a deep sparse auto-encoding network for the prediction and classification of high-frequency impedance in fuel cells, achieving metric of accuracy rate above 92\%. The network is further deployed on an FPGA, attaining a hardware-based recognition rate almost 90\%.
☆ D2C-HRHR: Discrete Actions with Double Distributional Critics for High-Risk-High-Return Tasks
Tasks involving high-risk-high-return (HRHR) actions, such as obstacle crossing, often exhibit multimodal action distributions and stochastic returns. Most reinforcement learning (RL) methods assume unimodal Gaussian policies and rely on scalar-valued critics, which limits their effectiveness in HRHR settings. We formally define HRHR tasks and theoretically show that Gaussian policies cannot guarantee convergence to the optimal solution. To address this, we propose a reinforcement learning framework that (i) discretizes continuous action spaces to approximate multimodal distributions, (ii) employs entropy-regularized exploration to improve coverage of risky but rewarding actions, and (iii) introduces a dual-critic architecture for more accurate discrete value distribution estimation. The framework scales to high-dimensional action spaces, supporting complex control domains. Experiments on locomotion and manipulation benchmarks with high risks of failure demonstrate that our method outperforms baselines, underscoring the importance of explicitly modeling multimodality and risk in RL.
☆ Temporally Detailed Hypergraph Neural ODEs for Type 2 Diabetes Progression Modeling
Disease progression modeling aims to characterize and predict how a patient's disease complications worsen over time based on longitudinal electronic health records (EHRs). Accurate modeling of disease progression, such as type 2 diabetes, can enhance patient sub-phenotyping and inform effective and timely interventions. However, the problem is challenging due to the need to learn continuous-time dynamics of progression patterns based on irregular-time event samples and patient heterogeneity (\eg different progression rates and pathways). Existing mechanistic and data-driven methods either lack adaptability to learn from real-world data or fail to capture complex continuous-time dynamics on progression trajectories. To address these limitations, we propose Temporally Detailed Hypergraph Neural Ordinary Differential Equation (TD-HNODE), which represents disease progression on clinically recognized trajectories as a temporally detailed hypergraph and learns the continuous-time progression dynamics via a neural ODE framework. TD-HNODE contains a learnable TD-Hypergraph Laplacian that captures the interdependency of disease complication markers within both intra- and inter-progression trajectories. Experiments on two real-world clinical datasets demonstrate that TD-HNODE outperforms multiple baselines in modeling the progression of type 2 diabetes and related cardiovascular diseases.
☆ Soft-Masked Diffusion Language Models
Diffusion models have demonstrated strong potential in language modeling, offering various advantages over traditional autoregressive approaches. Their ability to generate and revise entire responses in parallel enables faster generation and built-in self-correction mechanisms. Most modern diffusion-based language models employ masked diffusion, where decoding involves iteratively processing masked tokens based on a binary decision: either retaining the mask or replacing it with the predicted token. However, this binary choice discards valuable predictive information when the mask is retained. To address this limitation, we introduce soft-masking (SM), a novel method that dynamically blends the embedding of the mask token with the embeddings of the top-$k$ predicted tokens from the previous decoding step, for each retained mask. This provides the model with a more informative prior, preserving context from earlier computations and allowing partial information about masked tokens to propagate beyond a single step. We propose a training methodology that adapts a pretrained masked diffusion language model to incorporate SM. We demonstrate that continuing pretraining a 169M parameter model with SM leads to improved perplexity and MAUVE scores. Furthermore, we finetune two state-of-the-art diffusion models, Dream-7B and Dream-Coder-7B, with SM. SM consistently improves performance across multiple coding benchmarks, particularly in high-throughput settings.
☆ Round Outcome Prediction in VALORANT Using Tactical Features from Video Analysis IEEE 2025
Recently, research on predicting match outcomes in esports has been actively conducted, but much of it is based on match log data and statistical information. This research targets the FPS game VALORANT, which requires complex strategies, and aims to build a round outcome prediction model by analyzing minimap information in match footage. Specifically, based on the video recognition model TimeSformer, we attempt to improve prediction accuracy by incorporating detailed tactical features extracted from minimap information, such as character position information and other in-game events. This paper reports preliminary results showing that a model trained on a dataset augmented with such tactical event labels achieved approximately 81% prediction accuracy, especially from the middle phases of a round onward, significantly outperforming a model trained on a dataset with the minimap information itself. This suggests that leveraging tactical features from match footage is highly effective for predicting round outcomes in VALORANT.
comment: Accepted to IEEE 2025 Conference on Games
☆ From Pixels to People: Satellite-Based Mapping and Quantification of Riverbank Erosion and Lost Villages in Bangladesh
The great rivers of Bangladesh, arteries of commerce and sustenance, are also agents of relentless destruction. Each year, they swallow whole villages and vast tracts of farmland, erasing communities from the map and displacing thousands of families. To track this slow-motion catastrophe has, until now, been a Herculean task for human analysts. Here we show how a powerful general-purpose vision model, the Segment Anything Model (SAM), can be adapted to this task with remarkable precision. To do this, we assembled a new dataset - a digital chronicle of loss compiled from historical Google Earth imagery of Bangladesh's most vulnerable regions, including Mokterer Char Union, Kedarpur Union, Balchipara village, and Chowhali Upazila, from 2003 to 2025. Crucially, this dataset is the first to include manually annotated data on the settlements that have vanished beneath the water. Our method first uses a simple color-channel analysis to provide a rough segmentation of land and water, and then fine-tunes SAM's mask decoder to recognize the subtle signatures of riverbank erosion. The resulting model demonstrates a keen eye for this destructive process, achieving a mean Intersection over Union of 86.30% and a Dice score of 92.60% - a performance that significantly surpasses traditional methods and off-the-shelf deep learning models. This work delivers three key contributions: the first annotated dataset of disappeared settlements in Bangladesh due to river erosion; a specialized AI model fine-tuned for this critical task; and a method for quantifying land loss with compelling visual evidence. Together, these tools provide a powerful new lens through which policymakers and disaster management agencies can monitor erosion, anticipate its trajectory, and ultimately protect the vulnerable communities in its path.
comment: Submitted to the International Conference on Data and Applied Analytics (IDAA 2025). 15 pages, 5 figures, 4 tables
☆ ZSPAPrune: Zero-Shot Prompt-Aware Token Pruning for Vision-Language Models
As the capabilities of Vision-Language Models (VLMs) advance, they can process increasingly large inputs, which, unlike in LLMs, generates significant visual token redundancy and leads to prohibitive inference costs. While many methods aim to reduce these costs by pruning visual tokens, existing approaches, whether based on attention or diversity, typically neglect the guidance of the text prompt and thus fail to prioritize task relevance. In this work, we propose a novel, zero-shot method that reframes the problem by introducing a prompt-aware perspective, explicitly modeling visual token pruning as a balance between task relevance and information diversity. Our hierarchical approach first selects a core set of task-relevant visual tokens and then supplements them with diversity tokens to preserve broader context. Experiments across multiple models and benchmarks show that our method achieves performance that matches or surpasses the state-of-the-art with only minimal accuracy loss, even when pruning up to 90\% of the tokens. Furthermore, these gains are accompanied by significant reductions in GPU memory footprint and inference latency.
☆ Understanding and Improving Length Generalization in Hierarchical Sparse Attention Models
Effectively processing long contexts is a critical challenge for language models. While standard Transformers are limited by quadratic complexity and poor length extrapolation, alternative architectures like sliding window attention and state space models sacrifice the ability to effectively utilize the full context due to their fixed-size memory. Chunk-based sparse attention has emerged as a promising paradigm for extreme length generalization, yet the key architectural principles underpinning its success are not yet fully understood. In this work, we present a systematic dissection of these models to identify the core components driving their performance. Through a unified framework and comprehensive ablation studies, we demonstrate that a combination of three design principles is critical: (1) an expressive, non-linear Chunk Encoder with a dedicated CLS token to produce representations for retrieval; (2) a Bypassing Residual Path to stably integrate retrieved global information without it being overridden by the local residual stream; and (3) enforced selection sparsity during pre-training to bridge the train-test distribution gap. We provide a theoretical motivation for intra-chunk information processing and landmark generation. By combining these principles, we establish a new state-of-the-art for training-free length extrapolation, successfully generalizing models trained on a 4K context to 32 million tokens on RULER and BABILong. Our findings provide a clear and empirically-grounded set of design principles for developing future, highly-capable long-context language models.
comment: Preprint. Work in progress
☆ SimpleVSF: VLM-Scoring Fusion for Trajectory Prediction of End-to-End Autonomous Driving
End-to-end autonomous driving has emerged as a promising paradigm for achieving robust and intelligent driving policies. However, existing end-to-end methods still face significant challenges, such as suboptimal decision-making in complex scenarios. In this paper,we propose SimpleVSF (Simple VLM-Scoring Fusion), a novel framework that enhances end-to-end planning by leveraging the cognitive capabilities of Vision-Language Models (VLMs) and advanced trajectory fusion techniques. We utilize the conventional scorers and the novel VLM-enhanced scorers. And we leverage a robust weight fusioner for quantitative aggregation and a powerful VLM-based fusioner for qualitative, context-aware decision-making. As the leading approach in the ICCV 2025 NAVSIM v2 End-to-End Driving Challenge, our SimpleVSF framework demonstrates state-of-the-art performance, achieving a superior balance between safety, comfort, and efficiency.
comment: 6 pages, 2 figures, 2 tables
☆ Benchmarking Out-of-Distribution Detection for Plankton Recognition: A Systematic Evaluation of Advanced Methods in Marine Ecological Monitoring
Automated plankton recognition models face significant challenges during real-world deployment due to distribution shifts (Out-of-Distribution, OoD) between training and test data. This stems from plankton's complex morphologies, vast species diversity, and the continuous discovery of novel species, which leads to unpredictable errors during inference. Despite rapid advancements in OoD detection methods in recent years, the field of plankton recognition still lacks a systematic integration of the latest computer vision developments and a unified benchmark for large-scale evaluation. To address this, this paper meticulously designed a series of OoD benchmarks simulating various distribution shift scenarios based on the DYB-PlanktonNet dataset \cite{875n-f104-21}, and systematically evaluated twenty-two OoD detection methods. Extensive experimental results demonstrate that the ViM \cite{wang2022vim} method significantly outperforms other approaches in our constructed benchmarks, particularly excelling in Far-OoD scenarios with substantial improvements in key metrics. This comprehensive evaluation not only provides a reliable reference for algorithm selection in automated plankton recognition but also lays a solid foundation for future research in plankton OoD detection. To our knowledge, this study marks the first large-scale, systematic evaluation and analysis of Out-of-Distribution data detection methods in plankton recognition. Code is available at https://github.com/BlackJack0083/PlanktonOoD.
☆ Offline Policy Evaluation of Multi-Turn LLM Health Coaching with Real Users NeurIPS 2025
We study a web-deployed, tool-augmented LLM health coach with real users. In a pilot with seven users (280 rated turns), offline policy evaluation (OPE) over factorized decision heads (Tool/Style) shows that a uniform heavy-tool policy raises average value on logs but harms specific subgroups, most notably low-health-literacy/high-self-efficacy users. A lightweight simulator with hidden archetypes further shows that adding a small early information-gain bonus reliably shortens trait identification and improves goal success and pass@3. Together, these early findings indicate an evaluation-first path to personalization: freeze the generator, learn subgroup-aware decision heads on typed rewards (objective tool outcomes and satisfaction), and always report per-archetype metrics to surface subgroup harms that averages obscure.
comment: Accepted to the NeurIPS 2025 Workshop on Multi-Turn Interactions in Large Language Models
☆ Combining ECG Foundation Model and XGBoost to Predict In-Hospital Malignant Ventricular Arrhythmias in AMI Patients
Malignant ventricular arrhythmias (VT/VF) following acute myocardial infarction (AMI) are a major cause of in-hospital death, yet early identification remains a clinical challenge. While traditional risk scores have limited performance, end-to-end deep learning models often lack the interpretability needed for clinical trust. This study aimed to develop a hybrid predictive framework that integrates a large-scale electrocardiogram (ECG) foundation model (ECGFounder) with an interpretable XGBoost classifier to improve both accuracy and interpretability. We analyzed 6,634 ECG recordings from AMI patients, among whom 175 experienced in-hospital VT/VF. The ECGFounder model was used to extract 150-dimensional diagnostic probability features , which were then refined through feature selection to train the XGBoost classifier. Model performance was evaluated using AUC and F1-score , and the SHAP method was used for interpretability. The ECGFounder + XGBoost hybrid model achieved an AUC of 0.801 , outperforming KNN (AUC 0.677), RNN (AUC 0.676), and an end-to-end 1D-CNN (AUC 0.720). SHAP analysis revealed that model-identified key features, such as "premature ventricular complexes" (risk predictor) and "normal sinus rhythm" (protective factor), were highly consistent with clinical knowledge. We conclude that this hybrid framework provides a novel paradigm for VT/VF risk prediction by validating the use of foundation model outputs as effective, automated feature engineering for building trustworthy, explainable AI-based clinical decision support systems.
☆ TREAT: A Code LLMs Trustworthiness / Reliability Evaluation and Testing Framework
Large foundation models are fundamentally transforming the software engineering landscape, demonstrating exceptional capabilities across diverse tasks such as code generation, debugging, and testing. Despite this rapid progress, a significant gap remains in how to comprehensively evaluate these models' trustworthiness in real-world software engineering scenarios. Existing benchmarks suffer from limited task scope and fail to incorporate critical evaluation aspects such as the robustness and reliability of models. To bridge this gap, we present an evaluation framework called TREAT (Code LLMs Trustworthiness / Reliability Evaluation And Testing) that provides a holistic assessment of model performance in code intelligence tasks. Our evaluation framework addresses key limitations in existing approaches with four main improvements: (1) Multi-Task Holistic Evaluation that spans diverse software engineering activities rather than limited coding tasks; (2) Multi-Language and Multi-Modality Assessment that extends beyond traditional single-language, text-only benchmarks to include multi-modality coding tasks; (3) Robustness Assessment that evaluates model reliability under semantically-preserving code transformations; and (4) Rigorous Evaluation Methodology that enhances the trustworthiness of evaluation results through diverse evaluation prompts and adaptive solution extraction. Based on this evaluation framework, we assess 26 state-of-the-art models and uncover both their strengths and limitations, yielding several key insights:(1) Current models show substantial performance variation across programming tasks; (2) Multi-modal language models demonstrate specific performance limitations in UI code generation and edit;
☆ GACO-CAD: Geometry-Augmented and Conciseness-Optimized CAD Model Generation from Single Image
Generating editable, parametric CAD models from a single image holds great potential to lower the barriers of industrial concept design. However, current multi-modal large language models (MLLMs) still struggle with accurately inferring 3D geometry from 2D images due to limited spatial reasoning capabilities. We address this limitation by introducing GACO-CAD, a novel two-stage post-training framework. It is designed to achieve a joint objective: simultaneously improving the geometric accuracy of the generated CAD models and encouraging the use of more concise modeling procedures. First, during supervised fine-tuning, we leverage depth and surface normal maps as dense geometric priors, combining them with the RGB image to form a multi-channel input. In the context of single-view reconstruction, these priors provide complementary spatial cues that help the MLLM more reliably recover 3D geometry from 2D observations. Second, during reinforcement learning, we introduce a group length reward that, while preserving high geometric fidelity, promotes the generation of more compact and less redundant parametric modeling sequences. A simple dynamic weighting strategy is adopted to stabilize training. Experiments on the DeepCAD and Fusion360 datasets show that GACO-CAD achieves state-of-the-art performance under the same MLLM backbone, consistently outperforming existing methods in terms of code validity, geometric accuracy, and modeling conciseness.
☆ Which LLM Multi-Agent Protocol to Choose? ICLR 2026
As large-scale multi-agent systems evolve, the communication protocol layer has become a critical yet under-evaluated factor shaping performance and reliability. Despite the existence of diverse protocols (A2A, ACP, ANP, Agora, etc.), selection is often intuition-driven and lacks standardized guidance. We introduce ProtocolBench, a benchmark that systematically compares agent protocols along four measurable axes: task success, end-to-end latency, message or byte overhead, and robustness under failures. On ProtocolBench, protocol choice significantly influences system behavior. In the Streaming Queue scenario, overall completion time varies by up to 36.5% across protocols, and mean end-to-end latency differs by 3.48 s. Under Fail-Storm Recovery, resilience also differs consistently across protocols. Beyond evaluation, we present ProtocolRouter, a learnable protocol router that selects per-scenario (or per-module) protocols from requirement and runtime signals. ProtocolRouter reduces Fail-Storm recovery time by up to 18.1% versus the best single-protocol baseline, and achieves scenario-specific gains such as higher success in GAIA. We also release ProtocolRouterBench to standardize protocol evaluation and improve reliability at scale.
comment: Under review at ICLR 2026.Code and benchmark artifacts: https://github.com/ulab-uiuc/AgentProtocols
☆ Physics-Informed Large Language Models for HVAC Anomaly Detection with Autonomous Rule Generation NeurIPS 2025
Heating, Ventilation, and Air-Conditioning (HVAC) systems account for a substantial share of global building energy use, making reliable anomaly detection essential for improving efficiency and reducing emissions. Classical rule-based approaches offer explainability but lack adaptability, while deep learning methods provide predictive power at the cost of transparency, efficiency, and physical plausibility. Recent attempts to use Large Language Models (LLMs) for anomaly detection improve interpretability but largely ignore the physical principles that govern HVAC operations. We present PILLM, a Physics-Informed LLM framework that operates within an evolutionary loop to automatically generate, evaluate, and refine anomaly detection rules. Our approach introduces physics-informed reflection and crossover operators that embed thermodynamic and control-theoretic constraints, enabling rules that are both adaptive and physically grounded. Experiments on the public Building Fault Detection dataset show that PILLM achieves state-of-the-art performance while producing diagnostic rules that are interpretable and actionable, advancing trustworthy and deployable AI for smart building systems.
comment: NeurIPS 2025 Workshop of UrbanAI (Oral)
☆ Enhanced Fish Freshness Classification with Incremental Handcrafted Feature Fusion
Accurate assessment of fish freshness remains a major challenge in the food industry, with direct consequences for product quality, market value, and consumer health. Conventional sensory evaluation is inherently subjective, inconsistent, and difficult to standardize across contexts, often limited by subtle, species-dependent spoilage cues. To address these limitations, we propose a handcrafted feature-based approach that systematically extracts and incrementally fuses complementary descriptors, including color statistics, histograms across multiple color spaces, and texture features such as Local Binary Patterns (LBP) and Gray-Level Co-occurrence Matrices (GLCM), from fish eye images. Our method captures global chromatic variations from full images and localized degradations from ROI segments, fusing each independently to evaluate their effectiveness in assessing freshness. Experiments on the Freshness of the Fish Eyes (FFE) dataset demonstrate the approach's effectiveness: in a standard train-test setting, a LightGBM classifier achieved 77.56% accuracy, a 14.35% improvement over the previous deep learning baseline of 63.21%. With augmented data, an Artificial Neural Network (ANN) reached 97.16% accuracy, surpassing the prior best of 77.3% by 19.86%. These results demonstrate that carefully engineered, handcrafted features, when strategically processed, yield a robust, interpretable, and reliable solution for automated fish freshness assessment, providing valuable insights for practical applications in food quality monitoring.
comment: 35 pages, 6 figures and 11 tables
☆ Do LLMs Recognize Your Latent Preferences? A Benchmark for Latent Information Discovery in Personalized Interaction
Large Language Models (LLMs) excel at producing broadly relevant text, but this generality becomes a limitation when user-specific preferences are required, such as recommending restaurants or planning travel. In these scenarios, users rarely articulate every preference explicitly; instead, much of what they care about remains latent, waiting to be inferred. This raises a fundamental question: Can LLMs uncover and reason about such latent information through conversation? We address this problem by introducing a unified benchmark for evaluating latent information discovery - the ability of LLMs to reveal and utilize hidden user attributes through multi-turn interaction. The benchmark spans three progressively realistic settings: the classic 20 Questions game, Personalized Question Answering, and Personalized Text Summarization. All tasks share a tri-agent framework (User, Assistant, Judge) enabling turn-level evaluation of elicitation and adaptation. Our results reveal that while LLMs can indeed surface latent information through dialogue, their success varies dramatically with context: from 32% to 98%, depending on task complexity, topic, and number of hidden attributes. This benchmark provides the first systematic framework for studying latent information discovery in personalized interaction, highlighting that effective preference inference remains an open frontier for building truly adaptive AI systems.
☆ GOOD: Training-Free Guided Diffusion Sampling for Out-of-Distribution Detection
Recent advancements have explored text-to-image diffusion models for synthesizing out-of-distribution (OOD) samples, substantially enhancing the performance of OOD detection. However, existing approaches typically rely on perturbing text-conditioned embeddings, resulting in semantic instability and insufficient shift diversity, which limit generalization to realistic OOD. To address these challenges, we propose GOOD, a novel and flexible framework that directly guides diffusion sampling trajectories towards OOD regions using off-the-shelf in-distribution (ID) classifiers. GOOD incorporates dual-level guidance: (1) Image-level guidance based on the gradient of log partition to reduce input likelihood, drives samples toward low-density regions in pixel space. (2) Feature-level guidance, derived from k-NN distance in the classifier's latent space, promotes sampling in feature-sparse regions. Hence, this dual-guidance design enables more controllable and diverse OOD sample generation. Additionally, we introduce a unified OOD score that adaptively combines image and feature discrepancies, enhancing detection robustness. We perform thorough quantitative and qualitative analyses to evaluate the effectiveness of GOOD, demonstrating that training with samples generated by GOOD can notably enhance OOD detection performance.
comment: 28 pages, 16 figures, conference
☆ DVAGen: Dynamic Vocabulary Augmented Generation
Language models trained with a fixed vocabulary struggle to generalize to novel or out-of-vocabulary words, limiting their flexibility in handling diverse token combinations. Existing dynamic vocabulary approaches attempt to address this limitation but face challenges such as fragmented codebases, lack of support for modern LLMs, and limited inference scalability. To overcome these issues, we introduce DVAGen, a fully open-source, unified framework designed for training, evaluation, and visualization of dynamic vocabulary-augmented language models. Our framework modularizes the pipeline for ease of customization, integrates seamlessly with open-source LLMs, and is the first to provide both CLI and WebUI tools for real-time result inspection. We validate the effectiveness of dynamic vocabulary methods on modern LLMs and demonstrate support for batch inference, significantly improving inference throughput.
☆ Efficient Vision-Language-Action Models for Embodied Manipulation: A Systematic Survey
Vision-Language-Action (VLA) models extend vision-language models to embodied control by mapping natural-language instructions and visual observations to robot actions. Despite their capabilities, VLA systems face significant challenges due to their massive computational and memory demands, which conflict with the constraints of edge platforms such as on-board mobile manipulators that require real-time performance. Addressing this tension has become a central focus of recent research. In light of the growing efforts toward more efficient and scalable VLA systems, this survey provides a systematic review of approaches for improving VLA efficiency, with an emphasis on reducing latency, memory footprint, and training and inference costs. We categorize existing solutions into four dimensions: model architecture, perception feature, action generation, and training/inference strategies, summarizing representative techniques within each category. Finally, we discuss future trends and open challenges, highlighting directions for advancing efficient embodied intelligence.
☆ Verification-Aware Planning for Multi-Agent Systems
Large language model (LLM) agents are increasingly deployed to tackle complex tasks, often necessitating collaboration among multiple specialized agents. However, multi-agent collaboration introduces new challenges in planning, coordination, and verification. Execution failures frequently arise not from flawed reasoning alone, but from subtle misalignments in task interpretation, output format, or inter-agent handoffs. To address these challenges, we present VeriMAP, a framework for multi-agent collaboration with verification-aware planning. The VeriMAP planner decomposes tasks, models subtask dependencies, and encodes planner-defined passing criteria as subtask verification functions (VFs) in Python and natural language. We evaluate VeriMAP on diverse datasets, demonstrating that it outperforms both single- and multi-agent baselines while enhancing system robustness and interpretability. Our analysis highlights how verification-aware planning enables reliable coordination and iterative refinement in multi-agent systems, without relying on external labels or annotations.
comment: Submission for ARR Oct
☆ Structured Debate Improves Corporate Credit Reasoning in Financial AI AAAI-2026
Despite advances in financial AI, the automation of evidence-based reasoning remains unresolved in corporate credit assessment, where qualitative non-financial indicators exert decisive influence on loan repayment outcomes yet resist formalization. Existing approaches focus predominantly on numerical prediction and provide limited support for the interpretive judgments required in professional loan evaluation. This study develops and evaluates two operational large language model (LLM)-based systems designed to generate structured reasoning from non-financial evidence. The first is a non-adversarial single-agent system (NAS) that produces bidirectional analysis through a single-pass reasoning pipeline. The second is a debate-based multi-agent system (KPD-MADS) that operationalizes adversarial verification through a ten-step structured interaction protocol grounded in Karl Popper's critical dialogue framework. Both systems were applied to three real corporate cases and evaluated by experienced credit risk professionals. Compared to manual expert reporting, both systems achieved substantial productivity gains (NAS: 11.55 s per case; KPD-MADS: 91.97 s; human baseline: 1920 s). The KPD-MADS demonstrated superior reasoning quality, receiving higher median ratings in explanatory adequacy (4.0 vs. 3.0), practical applicability (4.0 vs. 3.0), and usability (62.5 vs. 52.5). These findings show that structured multi-agent interaction can enhance reasoning rigor and interpretability in financial AI, advancing scalable and defensible automation in corporate credit assessment.
comment: 18 pages, 4 figures, 2 algorithms, 2 tables, 4 appendices, will be submitted to AAAI-2026 workshop
☆ Can Transformer Memory Be Corrupted? Investigating Cache-Side Vulnerabilities in Large Language Models
Even when prompts and parameters are secured, transformer language models remain vulnerable because their key-value (KV) cache during inference constitutes an overlooked attack surface. This paper introduces Malicious Token Injection (MTI), a modular framework that systematically perturbs cached key vectors at selected layers and timesteps through controlled magnitude and frequency, using additive Gaussian noise, zeroing, and orthogonal rotations. A theoretical analysis quantifies how these perturbations propagate through attention, linking logit deviations to the Frobenius norm of corruption and softmax Lipschitz dynamics. Empirical results show that MTI significantly alters next-token distributions and downstream task performance across GPT-2 and LLaMA-2/7B, as well as destabilizes retrieval-augmented and agentic reasoning pipelines. These findings identify cache integrity as a critical yet underexplored vulnerability in current LLM deployments, positioning cache corruption as a reproducible and theoretically grounded threat model for future robustness and security research.
☆ Explainable Heterogeneous Anomaly Detection in Financial Networks via Adaptive Expert Routing
Financial anomalies exhibit heterogeneous mechanisms (price shocks, liquidity freezes, contagion cascades, regime shifts), but existing detectors treat all anomalies uniformly, producing scalar scores without revealing which mechanism is failing, where risks concentrate, or how to intervene. This opacity prevents targeted regulatory responses. Three unsolved challenges persist: (1) static graph structures cannot adapt when market correlations shift during regime changes; (2) uniform detection mechanisms miss type-specific signatures across multiple temporal scales while failing to integrate individual behaviors with network contagion; (3) black-box outputs provide no actionable guidance on anomaly mechanisms or their temporal evolution. We address these via adaptive graph learning with specialized expert networks that provide built-in interpretability. Our framework captures multi-scale temporal dependencies through BiLSTM with self-attention, fuses temporal and spatial information via cross-modal attention, learns dynamic graphs through neural multi-source interpolation, adaptively balances learned dynamics with structural priors via stress-modulated fusion, routes anomalies to four mechanism-specific experts, and produces dual-level interpretable attributions. Critically, interpretability is embedded architecturally rather than applied post-hoc. On 100 US equities (2017-2024), we achieve 92.3% detection of 13 major events with 3.8-day lead time, outperforming best baseline by 30.8pp. Silicon Valley Bank case study demonstrates anomaly evolution tracking: Price-Shock expert weight rose to 0.39 (33% above baseline 0.29) during closure, peaking at 0.48 (66% above baseline) one week later, revealing automatic temporal mechanism identification without labeled supervision.
☆ A Brain Cell Type Resource Created by Large Language Models and a Multi-Agent AI System for Collaborative Community Annotation
Single-cell RNA sequencing has transformed our ability to identify diverse cell types and their transcriptomic signatures. However, annotating these signatures-especially those involving poorly characterized genes-remains a major challenge. Traditional methods, such as Gene Set Enrichment Analysis (GSEA), depend on well-curated annotations and often perform poorly in these contexts. Large Language Models (LLMs) offer a promising alternative but struggle to represent complex biological knowledge within structured ontologies. To address this, we present BRAINCELL-AID (BRAINCELL-AID: https://biodataai.uth.edu/BRAINCELL-AID), a novel multi-agent AI system that integrates free-text descriptions with ontology labels to enable more accurate and robust gene set annotation. By incorporating retrieval-augmented generation (RAG), we developed a robust agentic workflow that refines predictions using relevant PubMed literature, reducing hallucinations and enhancing interpretability. Using this workflow, we achieved correct annotations for 77% of mouse gene sets among their top predictions. Applying this approach, we annotated 5,322 brain cell clusters from the comprehensive mouse brain cell atlas generated by the BRAIN Initiative Cell Census Network, enabling novel insights into brain cell function by identifying region-specific gene co-expression patterns and inferring functional roles of gene ensembles. BRAINCELL-AID also identifies Basal Ganglia-related cell types with neurologically meaningful descriptions. Hence, we create a valuable resource to support community-driven cell type annotation.
comment: 22 pages, 6 figures, 2 tables
☆ Investigating Thinking Behaviours of Reasoning-Based Language Models for Social Bias Mitigation
While reasoning-based large language models excel at complex tasks through an internal, structured thinking process, a concerning phenomenon has emerged that such a thinking process can aggregate social stereotypes, leading to biased outcomes. However, the underlying behaviours of these language models in social bias scenarios remain underexplored. In this work, we systematically investigate mechanisms within the thinking process behind this phenomenon and uncover two failure patterns that drive social bias aggregation: 1) stereotype repetition, where the model relies on social stereotypes as its primary justification, and 2) irrelevant information injection, where it fabricates or introduces new details to support a biased narrative. Building on these insights, we introduce a lightweight prompt-based mitigation approach that queries the model to review its own initial reasoning against these specific failure patterns. Experiments on question answering (BBQ and StereoSet) and open-ended (BOLD) benchmarks show that our approach effectively reduces bias while maintaining or improving accuracy.
☆ Bitwidth-Specific Logarithmic Arithmetic for Future Hardware-Accelerated Training
While advancements in quantization have significantly reduced the computational costs of inference in deep learning, training still predominantly relies on complex floating-point arithmetic. Low-precision fixed-point training presents a compelling alternative. This work introduces a novel enhancement in low-precision logarithmic fixed-point training, geared towards future hardware accelerator designs. We propose incorporating bitwidth in the design of approximations to arithmetic operations. To this end, we introduce a new hardware-friendly, piece-wise linear approximation for logarithmic addition. Using simulated annealing, we optimize this approximation at different precision levels. A C++ bit-true simulation demonstrates training of VGG-11 and VGG-16 models on CIFAR-100 and TinyImageNet, respectively, using 12-bit integer arithmetic with minimal accuracy degradation compared to 32-bit floating-point training. Our hardware study reveals up to 32.5% reduction in area and 53.5% reduction in energy consumption for the proposed LNS multiply-accumulate units compared to that of linear fixed-point equivalents.
☆ The Ends Justify the Thoughts: RL-Induced Motivated Reasoning in LLMs
The use of reinforcement learning (RL) with chain-of-thought (CoT) reasoning has emerged as a promising approach for developing more capable language models. In turn, this has led to investigation of CoT monitoring as a compelling method for detecting harmful behaviors such as reward hacking, under the assumption that models' reasoning processes reflect their internal decision-making. In practice, LLM training often produces unintended behaviors due to imperfect reward signals, leading models to develop misaligned tendencies. A common corrective approach is to apply post-hoc instructions to avoid problematic behaviors like sycophancy, but what happens to the model's reasoning process when these instructions conflict with learned behaviors? We investigate this question in simple settings and find that models engage in systematic motivated reasoning -- generating plausible-sounding justifications for violating their instructions while downplaying potential harms. Beyond being an interesting property of training, we find that while motivated reasoning can be detected by most frontier reasoning models, smaller LLM judges can fail to identify a portion of it, and in rare cases can themselves be persuaded that the reasoning is correct, despite it contradicting clear instructions. This capability gap raises concerns that as models become more sophisticated, their motivated reasoning may become increasingly difficult for monitors to detect. Our results underscore the need to account for motivated reasoning when relying on chain-of-thought processes for model evaluation and oversight. All code for this paper will be made available. WARNING: some examples in this paper may be upsetting.
comment: 26 pages
☆ Frugal Federated Learning for Violence Detection: A Comparison of LoRA-Tuned VLMs and Personalized CNNs
We examine frugal federated learning approaches to violence detection by comparing two complementary strategies: (i) zero-shot and federated fine-tuning of vision-language models (VLMs), and (ii) personalized training of a compact 3D convolutional neural network (CNN3D). Using LLaVA-7B and a 65.8M parameter CNN3D as representative cases, we evaluate accuracy, calibration, and energy usage under realistic non-IID settings. Both approaches exceed 90% accuracy. CNN3D slightly outperforms Low-Rank Adaptation(LoRA)-tuned VLMs in ROC AUC and log loss, while using less energy. VLMs remain favorable for contextual reasoning and multimodal inference. We quantify energy and CO$_2$ emissions across training and inference, and analyze sustainability trade-offs for deployment. To our knowledge, this is the first comparative study of LoRA-tuned vision-language models and personalized CNNs for federated violence detection, with an emphasis on energy efficiency and environmental metrics. These findings support a hybrid model: lightweight CNNs for routine classification, with selective VLM activation for complex or descriptive scenarios. The resulting framework offers a reproducible baseline for responsible, resource-aware AI in video surveillance, with extensions toward real-time, multimodal, and lifecycle-aware systems.
comment: 7 pages, 1 figure, FLTA 2025
☆ Local Coherence or Global Validity? Investigating RLVR Traces in Math Domains
Reinforcement Learning with Verifiable Rewards (RLVR)-based post-training of Large Language Models (LLMs) has been shown to improve accuracy on reasoning tasks and continues to attract significant attention. Existing RLVR methods, however, typically treat all tokens uniformly without accounting for token-level advantages. These methods primarily evaluate performance based on final answer correctness or Pass@K accuracy, and yet make claims about RL post-training leading to improved reasoning traces. This motivates our investigation into the effect of RL post-training on intermediate tokens which are not directly incentivized. To study this, we design an experimental setup using the GRPO algorithm with Qwen-2.5-0.5B model on the GSM8K dataset. We introduce trace coherence, a First-Order Logic (FOL)-based measure to capture the consistency of reasoning steps by identifying errors in the traces. We distinguish between trace validity and trace coherence, noting that the former implies logical soundness while the latter measures local coherence via lack of errors. Our results show that RL post-training overall improves trace coherence with the most significant gains on problems where the base model fails but the RL model succeeds. Surprisingly, RL enhances local coherence without necessarily producing valid or correct solutions. This highlights a crucial distinction: improved local coherence in reasoning steps does not guarantee final answer correctness. We argue that claims of improved reasoning via RL must be examined with care, as these may be based on improved trace coherence, which may not translate into fully valid mathematical proofs.
comment: 4 pages, 2 figures
☆ AgentChangeBench: A Multi-Dimensional Evaluation Framework for Goal-Shift Robustness in Conversational AI NeurIPS 2025
Goal changes are a defining feature of real world multi-turn interactions, yet current agent benchmarks primarily evaluate static objectives or one-shot tool use. We introduce AgentChangeBench, a benchmark explicitly designed to measure how tool augmented language model agents adapt to mid dialogue goal shifts across three enterprise domains. Our framework formalizes evaluation through four complementary metrics: Task Success Rate (TSR) for effectiveness, Tool Use Efficiency (TUE) for reliability, Tool Call Redundancy Rate (TCRR) for wasted effort, and Goal-Shift Recovery Time (GSRT) for adaptation latency. AgentChangeBench comprises 2,835 task sequences and five user personas, each designed to trigger realistic shift points in ongoing workflows. Using this setup, we evaluate several frontier models and uncover sharp contrasts obscured by traditional $\text{pass}@k$ scores: for example, GPT-4o reaches $92.2\%$ recovery on airline booking shifts while Gemini collapses to $48.6\%$, and retail tasks show near perfect parameter validity yet redundancy rates above $80\%$, revealing major inefficiencies. These findings demonstrate that high raw accuracy does not imply robustness under dynamic goals, and that explicit measurement of recovery time and redundancy is essential. AgentChangeBench establishes a reproducible testbed for diagnosing and improving agent resilience in realistic enterprise settings.
comment: Accepted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Multi-Turn Interactions in Large Language Models
☆ Saber: An Efficient Sampling with Adaptive Acceleration and Backtracking Enhanced Remasking for Diffusion Language Model
Diffusion language models (DLMs) are emerging as a powerful and promising alternative to the dominant autoregressive paradigm, offering inherent advantages in parallel generation and bidirectional context modeling. However, the performance of DLMs on code generation tasks, which have stronger structural constraints, is significantly hampered by the critical trade-off between inference speed and output quality. We observed that accelerating the code generation process by reducing the number of sampling steps usually leads to a catastrophic collapse in performance. In this paper, we introduce efficient Sampling with Adaptive acceleration and Backtracking Enhanced Remasking (i.e., Saber), a novel training-free sampling algorithm for DLMs to achieve better inference speed and output quality in code generation. Specifically, Saber is motivated by two key insights in the DLM generation process: 1) it can be adaptively accelerated as more of the code context is established; 2) it requires a backtracking mechanism to reverse the generated tokens. Extensive experiments on multiple mainstream code generation benchmarks show that Saber boosts Pass@1 accuracy by an average improvement of 1.9% over mainstream DLM sampling methods, meanwhile achieving an average 251.4% inference speedup. By leveraging the inherent advantages of DLMs, our work significantly narrows the performance gap with autoregressive models in code generation.
☆ Automatic Prompt Generation via Adaptive Selection of Prompting Techniques
Prompt engineering is crucial for achieving reliable and effective outputs from large language models (LLMs), but its design requires specialized knowledge of prompting techniques and a deep understanding of target tasks. To address this challenge, we propose a novel method that adaptively selects task-appropriate prompting techniques based on users' abstract task descriptions and automatically generates high-quality prompts without relying on pre-existing templates or frameworks. The proposed method constructs a knowledge base that associates task clusters, characterized by semantic similarity across diverse tasks, with their corresponding prompting techniques. When users input task descriptions, the system assigns them to the most relevant task cluster and dynamically generates prompts by integrating techniques drawn from the knowledge base. An experimental evaluation of the proposed method on 23 tasks from BIG-Bench Extra Hard (BBEH) demonstrates superior performance compared with standard prompts and existing automatic prompt-generation tools, as measured by both arithmetic and harmonic mean scores. This research establishes a foundation for streamlining and standardizing prompt creation, enabling non-experts to effectively leverage LLMs.
comment: 35 pages, 29 figures, 5 tables
☆ LLM-Based Multi-Agent System for Simulating and Analyzing Marketing and Consumer Behavior IEEE
Simulating consumer decision-making is vital for designing and evaluating marketing strategies before costly real- world deployment. However, post-event analyses and rule-based agent-based models (ABMs) struggle to capture the complexity of human behavior and social interaction. We introduce an LLM-powered multi-agent simulation framework that models consumer decisions and social dynamics. Building on recent advances in large language model simulation in a sandbox envi- ronment, our framework enables generative agents to interact, express internal reasoning, form habits, and make purchasing decisions without predefined rules. In a price-discount marketing scenario, the system delivers actionable strategy-testing outcomes and reveals emergent social patterns beyond the reach of con- ventional methods. This approach offers marketers a scalable, low-risk tool for pre-implementation testing, reducing reliance on time-intensive post-event evaluations and lowering the risk of underperforming campaigns.
comment: Accepted for publication at IEEE International Conference on e-Business Engineering ICEBE 2025, November 10-12, Buraydah, Saudi Arabia. 8 pages, 5 figures
☆ Annotating the Chain-of-Thought: A Behavior-Labeled Dataset for AI Safety
Recent work has highlighted the importance of monitoring chain-of-thought reasoning for AI safety; however, current approaches that analyze textual reasoning steps can miss subtle harmful patterns and may be circumvented by models that hide unsafe reasoning. We present a sentence-level labeled dataset that enables activation-based monitoring of safety behaviors during LLM reasoning. Our dataset contains reasoning sequences with sentence-level annotations of safety behaviors such as expression of safety concerns or speculation on user intent, which we use to extract steering vectors for detecting and influencing these behaviors within model activations. The dataset fills a key gap in safety research: while existing datasets label reasoning holistically, effective application of steering vectors for safety monitoring could be improved by identifying precisely when specific behaviors occur within reasoning chains. We demonstrate the dataset's utility by extracting representations that both detect and steer safety behaviors in model activations, showcasing the potential of activation-level techniques for improving safety oversight on reasoning. Content Warning: This paper discusses AI safety in the context of harmful prompts and may contain references to potentially harmful content.
☆ Learning from Generalization Patterns: An Evaluation-Driven Approach to Enhanced Data Augmentation for Fine-Tuning Small Language Models NeurIPS 2025
Small Language Models (SLMs) offer compelling advantages in deployment cost and latency, but their accuracy often lags behind larger models, particularly for complex domain-specific tasks. While supervised fine-tuning can help bridge this performance gap, it requires substantial manual effort in data preparation and iterative optimization. We present PaDA-Agent (Pattern-guided Data Augmentation Agent), an evaluation-driven approach that streamlines the data augmentation process for SLMs through coordinated operations. Unlike state-of-the-art approaches that focus on model training errors only and generating error-correcting samples, PaDA-Agent discovers failure patterns from the validation data via evaluations and drafts targeted data augmentation strategies aiming to directly reduce the generalization gap. Our experimental results demonstrate significant improvements over state-of-the-art LLM-based data augmentation approaches for Llama 3.2 1B Instruct model fine-tuning.
comment: Neural Information Processing Systems (NeurIPS 2025) Workshop: Evaluating the Evolving LLM Lifecycle
☆ Measuring Reasoning in LLMs: a New Dialectical Angle
What does it truly mean for a language model to "reason"? Most current evaluations and benchmarks reward models' correct standalone answers--but correctness alone reveals little about the process that produced them. In this work, we explore a different perspective: reasoning is not a static chain of steps, but a dynamic trajectory where ideas interact, clash, and evolve into deeper insights. To capture this dynamic, we draw on a well-established philosophical tradition: \textit{dialectics}, where reasoning unfolds through thesis, antithesis, and synthesis. Building on this, we present SIEV, a structured framework that evaluates reasoning of LLMs through dialectics. Unlike conventional evaluations, SIEV assesses not only the conclusion a model reaches, but how it gets there: its ability to resolve tension, integrate distinct ideas, and synthesize higher-order reasoning. This lens uncovers significant reasoning gaps in state-of-the-art models even under saturated benchmarks like GSM and MMLU. For instance, GPT-5-chat, a recent model, loses over 40 points (out of 100) when evaluated with SIEV on GSM. Our findings highlight that adopting a process-oriented, philosophically grounded approach enables a deeper, more rigorous, and more discriminative assessment of LLM reasoning.
☆ SafeCoop: Unravelling Full Stack Safety in Agentic Collaborative Driving
Collaborative driving systems leverage vehicle-to-everything (V2X) communication across multiple agents to enhance driving safety and efficiency. Traditional V2X systems take raw sensor data, neural features, or perception results as communication media, which face persistent challenges, including high bandwidth demands, semantic loss, and interoperability issues. Recent advances investigate natural language as a promising medium, which can provide semantic richness, decision-level reasoning, and human-machine interoperability at significantly lower bandwidth. Despite great promise, this paradigm shift also introduces new vulnerabilities within language communication, including message loss, hallucinations, semantic manipulation, and adversarial attacks. In this work, we present the first systematic study of full-stack safety and security issues in natural-language-based collaborative driving. Specifically, we develop a comprehensive taxonomy of attack strategies, including connection disruption, relay/replay interference, content spoofing, and multi-connection forgery. To mitigate these risks, we introduce an agentic defense pipeline, which we call SafeCoop, that integrates a semantic firewall, language-perception consistency checks, and multi-source consensus, enabled by an agentic transformation function for cross-frame spatial alignment. We systematically evaluate SafeCoop in closed-loop CARLA simulation across 32 critical scenarios, achieving 69.15% driving score improvement under malicious attacks and up to 67.32% F1 score for malicious detection. This study provides guidance for advancing research on safe, secure, and trustworthy language-driven collaboration in transportation systems. Our project page is https://xiangbogaobarry.github.io/SafeCoop.
☆ Latent Discrete Diffusion Models
We study discrete diffusion for language and other categorical data and focus on a common limitation of masked denoisers: reverse transitions typically factorize across positions, which can weaken joint structure and degrade quality in few-step generation. We propose \emph{Latent Discrete Diffusion Models} (LDDMs), which couple a masked discrete diffusion over tokens with a continuous diffusion over latent embeddings. The latent channel provides a softer signal and carries cross-token dependencies that help resolve ambiguities. We present two instantiations: (i) FUJI-LDDMs, which perform fully joint denoising of tokens and latents, and (ii) SEQ-LDDMs, which sequentially resolve the latent and then the discrete chain conditionally on it. For both variants we derive ELBO-style objectives and discuss design choices to learn informative latents yet amenable to diffusoin modeling. In experiments, LDDMs yield improvements on unconditional generation metrics as compared to state-of-the-art masked discrete diffusion baselines, and are effective at lower sampling budgets, where unmasking many tokens per step is desirable.
☆ From AutoRecSys to AutoRecLab: A Call to Build, Evaluate, and Govern Autonomous Recommender-Systems Research Labs
Recommender-systems research has accelerated model and evaluation advances, yet largely neglects automating the research process itself. We argue for a shift from narrow AutoRecSys tools -- focused on algorithm selection and hyper-parameter tuning -- to an Autonomous Recommender-Systems Research Lab (AutoRecLab) that integrates end-to-end automation: problem ideation, literature analysis, experimental design and execution, result interpretation, manuscript drafting, and provenance logging. Drawing on recent progress in automated science (e.g., multi-agent AI Scientist and AI Co-Scientist systems), we outline an agenda for the RecSys community: (1) build open AutoRecLab prototypes that combine LLM-driven ideation and reporting with automated experimentation; (2) establish benchmarks and competitions that evaluate agents on producing reproducible RecSys findings with minimal human input; (3) create review venues for transparently AI-generated submissions; (4) define standards for attribution and reproducibility via detailed research logs and metadata; and (5) foster interdisciplinary dialogue on ethics, governance, privacy, and fairness in autonomous research. Advancing this agenda can increase research throughput, surface non-obvious insights, and position RecSys to contribute to emerging Artificial Research Intelligence. We conclude with a call to organise a community retreat to coordinate next steps and co-author guidance for the responsible integration of automated research systems.
☆ Enhancing mortality prediction in cardiac arrest ICU patients through meta-modeling of structured clinical data from MIMIC-IV
Accurate early prediction of in-hospital mortality in intensive care units (ICUs) is essential for timely clinical intervention and efficient resource allocation. This study develops and evaluates machine learning models that integrate both structured clinical data and unstructured textual information, specifically discharge summaries and radiology reports, from the MIMIC-IV database. We used LASSO and XGBoost for feature selection, followed by a multivariate logistic regression trained on the top features identified by both models. Incorporating textual features using TF-IDF and BERT embeddings significantly improved predictive performance. The final logistic regression model, which combined structured and textual input, achieved an AUC of 0.918, compared to 0.753 when using structured data alone, a relative improvement 22%. The analysis of the decision curve demonstrated a superior standardized net benefit in a wide range of threshold probabilities (0.2-0.8), confirming the clinical utility of the model. These results underscore the added prognostic value of unstructured clinical notes and support their integration into interpretable feature-driven risk prediction models for ICU patients.
comment: 38 pages, 5 figures, 2 tables, 3 appendices
☆ SMaRT: Select, Mix, and ReinvenT - A Strategy Fusion Framework for LLM-Driven Reasoning and Planning
Large Language Models (LLMs) have redefined complex task automation with exceptional generalization capabilities. Despite these advancements, state-of-the-art methods rely on single-strategy prompting, missing the synergy of diverse reasoning approaches. No single strategy excels universally, highlighting the need for frameworks that fuse strategies to maximize performance and ensure robustness. We introduce the Select, Mix, and ReinvenT (SMaRT) framework, an innovative strategy fusion approach designed to overcome this constraint by creating balanced and efficient solutions through the seamless integration of diverse reasoning strategies. Unlike existing methods, which employ LLMs merely as evaluators, SMaRT uses them as intelligent integrators, unlocking the "best of all worlds" across tasks. Extensive empirical evaluations across benchmarks in reasoning, planning, and sequential decision-making highlight the robustness and adaptability of SMaRT. The framework consistently outperforms state-of-the-art baselines in solution quality, constraint adherence, and performance metrics. This work redefines LLM-driven decision-making by pioneering a new paradigm in cross-strategy calibration, unlocking superior outcomes for reasoning systems and advancing the boundaries of self-refining methodologies.
☆ Accelerating Vision Transformers with Adaptive Patch Sizes
Vision Transformers (ViTs) partition input images into uniformly sized patches regardless of their content, resulting in long input sequence lengths for high-resolution images. We present Adaptive Patch Transformers (APT), which addresses this by using multiple different patch sizes within the same image. APT reduces the total number of input tokens by allocating larger patch sizes in more homogeneous areas and smaller patches in more complex ones. APT achieves a drastic speedup in ViT inference and training, increasing throughput by 40% on ViT-L and 50% on ViT-H while maintaining downstream performance, and can be applied to a previously fine-tuned ViT, converging in as little as 1 epoch. It also significantly reduces training and inference time without loss of performance in high-resolution dense visual tasks, achieving up to 30\% faster training and inference in visual QA, object detection, and semantic segmentation.
comment: Project page at https://rccchoudhury.github.io/apt/
☆ Planned Diffusion
A central challenge in large language model inference is the trade-off between generation speed and output quality. Autoregressive models produce high-quality text but generate tokens sequentially. Diffusion models can generate tokens in parallel but often need many iterations to match the same quality. We propose planned diffusion, a hybrid method that combines the strengths of both paradigms. Planned diffusion works in two stages: first, the model creates a short autoregressive plan that breaks the output into smaller, independent spans. Second, the model generates these spans simultaneously using diffusion. This approach expands the speed-quality Pareto frontier and provides a practical path to faster, high-quality text generation. On AlpacaEval, a suite of 805 instruction-following prompts, planned diffusion achieves Pareto-optimal trade-off between quality and latency, achieving 1.27x to 1.81x speedup over autoregressive generation with only 0.87\% to 5.4\% drop in win rate, respectively. Our sensitivity analysis shows that the planning mechanism of planned diffusion is minimal and reliable, and simple runtime knobs exist to provide flexible control of the quality-latency trade-off.
comment: 10 pages, 8 figures
☆ R2BC: Multi-Agent Imitation Learning from Single-Agent Demonstrations
Imitation Learning (IL) is a natural way for humans to teach robots, particularly when high-quality demonstrations are easy to obtain. While IL has been widely applied to single-robot settings, relatively few studies have addressed the extension of these methods to multi-agent systems, especially in settings where a single human must provide demonstrations to a team of collaborating robots. In this paper, we introduce and study Round-Robin Behavior Cloning (R2BC), a method that enables a single human operator to effectively train multi-robot systems through sequential, single-agent demonstrations. Our approach allows the human to teleoperate one agent at a time and incrementally teach multi-agent behavior to the entire system, without requiring demonstrations in the joint multi-agent action space. We show that R2BC methods match, and in some cases surpass, the performance of an oracle behavior cloning approach trained on privileged synchronized demonstrations across four multi-agent simulated tasks. Finally, we deploy R2BC on two physical robot tasks trained using real human demonstrations.
comment: 9 pages, 6 figures
☆ RL-Driven Security-Aware Resource Allocation Framework for UAV-Assisted O-RAN
The integration of Unmanned Aerial Vehicles (UAVs) into Open Radio Access Networks (O-RAN) enhances communication in disaster management and Search and Rescue (SAR) operations by ensuring connectivity when infrastructure fails. However, SAR scenarios demand stringent security and low-latency communication, as delays or breaches can compromise mission success. While UAVs serve as mobile relays, they introduce challenges in energy consumption and resource management, necessitating intelligent allocation strategies. Existing UAV-assisted O-RAN approaches often overlook the joint optimization of security, latency, and energy efficiency in dynamic environments. This paper proposes a novel Reinforcement Learning (RL)-based framework for dynamic resource allocation in UAV relays, explicitly addressing these trade-offs. Our approach formulates an optimization problem that integrates security-aware resource allocation, latency minimization, and energy efficiency, which is solved using RL. Unlike heuristic or static methods, our framework adapts in real-time to network dynamics, ensuring robust communication. Simulations demonstrate superior performance compared to heuristic baselines, achieving enhanced security and energy efficiency while maintaining ultra-low latency in SAR scenarios.
comment: 6 pages
☆ Any-Depth Alignment: Unlocking Innate Safety Alignment of LLMs to Any-Depth
Large Language Models (LLMs) exhibit strong but shallow alignment: they directly refuse harmful queries when a refusal is expected at the very start of an assistant turn, yet this protection collapses once a harmful continuation is underway (either through the adversarial attacks or via harmful assistant-prefill attacks). This raises a fundamental question: Can the innate shallow alignment in LLMs be unlocked to ensure safety at arbitrary generation depths? To achieve this goal, we propose Any-Depth Alignment (ADA), an effective inference-time defense with negligible overhead. ADA is built based on our observation that alignment is concentrated in the assistant header tokens through repeated use in shallow-refusal training, and these tokens possess the model's strong alignment priors. By reintroducing these tokens mid-stream, ADA induces the model to reassess harmfulness and recover refusals at any point in generation. Across diverse open-source model families (Llama, Gemma, Mistral, Qwen, DeepSeek, and gpt-oss), ADA achieves robust safety performance without requiring any changes to the base model's parameters. It secures a near-100% refusal rate against challenging adversarial prefill attacks ranging from dozens to thousands of tokens. Furthermore, ADA reduces the average success rate of prominent adversarial prompt attacks (such as GCG, AutoDAN, PAIR, and TAP) to below 3%. This is all accomplished while preserving utility on benign tasks with minimal over-refusal. ADA maintains this resilience even after the base model undergoes subsequent instruction tuning (benign or adversarial).
☆ R2L: Reliable Reinforcement Learning: Guaranteed Return & Reliable Policies in Reinforcement Learning
In this work, we address the problem of determining reliable policies in reinforcement learning (RL), with a focus on optimization under uncertainty and the need for performance guarantees. While classical RL algorithms aim at maximizing the expected return, many real-world applications - such as routing, resource allocation, or sequential decision-making under risk - require strategies that ensure not only high average performance but also a guaranteed probability of success. To this end, we propose a novel formulation in which the objective is to maximize the probability that the cumulative return exceeds a prescribed threshold. We demonstrate that this reliable RL problem can be reformulated, via a state-augmented representation, into a standard RL problem, thereby allowing the use of existing RL and deep RL algorithms without the need for entirely new algorithmic frameworks. Theoretical results establish the equivalence of the two formulations and show that reliable strategies can be derived by appropriately adapting well-known methods such as Q-learning or Dueling Double DQN. To illustrate the practical relevance of the approach, we consider the problem of reliable routing, where the goal is not to minimize the expected travel time but rather to maximize the probability of reaching the destination within a given time budget. Numerical experiments confirm that the proposed formulation leads to policies that effectively balance efficiency and reliability, highlighting the potential of reliable RL for applications in stochastic and safety-critical environments.
comment: 27 pages
☆ Fine-tuning Flow Matching Generative Models with Intermediate Feedback
Flow-based generative models have shown remarkable success in text-to-image generation, yet fine-tuning them with intermediate feedback remains challenging, especially for continuous-time flow matching models. Most existing approaches solely learn from outcome rewards, struggling with the credit assignment problem. Alternative methods that attempt to learn a critic via direct regression on cumulative rewards often face training instabilities and model collapse in online settings. We present AC-Flow, a robust actor-critic framework that addresses these challenges through three key innovations: (1) reward shaping that provides well-normalized learning signals to enable stable intermediate value learning and gradient control, (2) a novel dual-stability mechanism that combines advantage clipping to prevent destructive policy updates with a warm-up phase that allows the critic to mature before influencing the actor, and (3) a scalable generalized critic weighting scheme that extends traditional reward-weighted methods while preserving model diversity through Wasserstein regularization. Through extensive experiments on Stable Diffusion 3, we demonstrate that AC-Flow achieves state-of-the-art performance in text-to-image alignment tasks and generalization to unseen human preference models. Our results demonstrate that even with a computationally efficient critic model, we can robustly finetune flow models without compromising generative quality, diversity, or stability.
☆ SPACeR: Self-Play Anchoring with Centralized Reference Models
Developing autonomous vehicles (AVs) requires not only safety and efficiency, but also realistic, human-like behaviors that are socially aware and predictable. Achieving this requires sim agent policies that are human-like, fast, and scalable in multi-agent settings. Recent progress in imitation learning with large diffusion-based or tokenized models has shown that behaviors can be captured directly from human driving data, producing realistic policies. However, these models are computationally expensive, slow during inference, and struggle to adapt in reactive, closed-loop scenarios. In contrast, self-play reinforcement learning (RL) scales efficiently and naturally captures multi-agent interactions, but it often relies on heuristics and reward shaping, and the resulting policies can diverge from human norms. We propose SPACeR, a framework that leverages a pretrained tokenized autoregressive motion model as a centralized reference policy to guide decentralized self-play. The reference model provides likelihood rewards and KL divergence, anchoring policies to the human driving distribution while preserving RL scalability. Evaluated on the Waymo Sim Agents Challenge, our method achieves competitive performance with imitation-learned policies while being up to 10x faster at inference and 50x smaller in parameter size than large generative models. In addition, we demonstrate in closed-loop ego planning evaluation tasks that our sim agents can effectively measure planner quality with fast and scalable traffic simulation, establishing a new paradigm for testing autonomous driving policies.
comment: Project page: https://spacer-ai.github.io/
☆ Adaptive Divergence Regularized Policy Optimization for Fine-tuning Generative Models
Balancing exploration and exploitation during reinforcement learning fine-tuning of generative models presents a critical challenge, as existing approaches rely on fixed divergence regularization that creates an inherent dilemma: strong regularization preserves model capabilities but limits reward optimization, while weak regularization enables greater alignment but risks instability or reward hacking. We introduce Adaptive Divergence Regularized Policy Optimization (ADRPO), which automatically adjusts regularization strength based on advantage estimates-reducing regularization for high-value samples while applying stronger regularization to poor samples, enabling policies to navigate between exploration and aggressive exploitation according to data quality. Our implementation with Wasserstein-2 regularization for flow matching generative models achieves remarkable results on text-to-image generation, achieving better semantic alignment and diversity than offline methods like DPO and online methods with fixed regularization like ORW-CFM-W2. ADRPO enables a 2B parameter SD3 model to surpass much larger models with 4.8B and 12B parameters in attribute binding, semantic consistency, artistic style transfer, and compositional control while maintaining generation diversity. ADRPO generalizes to KL-regularized fine-tuning of both text-only LLMs and multi-modal reasoning models, enhancing existing online RL methods like GRPO. In LLM fine-tuning, ADRPO demonstrates an emergent ability to escape local optima through active exploration, while in multi-modal audio reasoning, it outperforms GRPO through superior step-by-step reasoning, enabling a 7B model to outperform substantially larger commercial models including Gemini 2.5 Pro and GPT-4o Audio, offering an effective plug-and-play solution to the exploration-exploitation challenge across diverse generative architectures and modalities.
comment: 30 pages
☆ Language Models as Semantic Augmenters for Sequential Recommenders
Large Language Models (LLMs) excel at capturing latent semantics and contextual relationships across diverse modalities. However, in modeling user behavior from sequential interaction data, performance often suffers when such semantic context is limited or absent. We introduce LaMAR, a LLM-driven semantic enrichment framework designed to enrich such sequences automatically. LaMAR leverages LLMs in a few-shot setting to generate auxiliary contextual signals by inferring latent semantic aspects of a user's intent and item relationships from existing metadata. These generated signals, such as inferred usage scenarios, item intents, or thematic summaries, augment the original sequences with greater contextual depth. We demonstrate the utility of this generated resource by integrating it into benchmark sequential modeling tasks, where it consistently improves performance. Further analysis shows that LLM-generated signals exhibit high semantic novelty and diversity, enhancing the representational capacity of the downstream models. This work represents a new data-centric paradigm where LLMs serve as intelligent context generators, contributing a new method for the semi-automatic creation of training data and language resources.
☆ CompactPrompt: A Unified Pipeline for Prompt Data Compression in LLM Workflows
Large Language Models (LLMs) deliver powerful reasoning and generation capabilities but incur substantial run-time costs when operating in agentic workflows that chain together lengthy prompts and process rich data streams. We introduce CompactPrompt, an end-to-end pipeline that merges hard prompt compression with lightweight file-level data compression. CompactPrompt first prunes low-information tokens from prompts using self-information scoring and dependency-based phrase grouping. In parallel, it applies n-gram abbreviation to recurrent textual patterns in attached documents and uniform quantization to numerical columns, yielding compact yet semantically faithful representations. Integrated into standard LLM agents, CompactPrompt reduces total token usage and inference cost by up to 60% on benchmark dataset like TAT-QA and FinQA, while preserving output quality (Results in less than 5% accuracy drop for Claude-3.5-Sonnet, and GPT-4.1-Mini) CompactPrompt helps visualize real-time compression decisions and quantify cost-performance trade-offs, laying the groundwork for leaner generative AI pipelines.
comment: Workshop on LLMs and Generative AI for Finance at ACM ICAIF 2025
☆ Cross-Domain Long-Term Forecasting: Radiation Dose from Sparse Neutron Sensor via Spatio-Temporal Operator Network
Forecasting unobservable physical quantities from sparse, cross-domain sensor data is a central unsolved problem in scientific machine learning. Existing neural operators and large-scale forecasters rely on dense, co-located input-output fields and short temporal contexts, assumptions that fail in real-world systems where sensing and prediction occur on distinct physical manifolds and over long timescales. We introduce the Spatio-Temporal Operator Network (STONe), a non-autoregressive neural operator that learns a stable functional mapping between heterogeneous domains. By directly inferring high-altitude radiation dose fields from sparse ground-based neutron measurements, STONe demonstrates that operator learning can generalize beyond shared-domain settings. It defines a nonlinear operator between sensor and target manifolds that remains stable over long forecasting horizons without iterative recurrence. This challenges the conventional view that operator learning requires domain alignment or autoregressive propagation. Trained on 23 years of global neutron data, STONe achieves accurate 180-day forecasts with millisecond inference latency. The framework establishes a general principle for cross-domain operator inference, enabling real-time prediction of complex spatiotemporal fields in physics, climate, and energy systems.
☆ Subject-Event Ontology Without Global Time: Foundations and Execution Semantics
A formalization of a subject-event ontology is proposed for modeling complex dynamic systems without reliance on global time. Key principles: (1) event as an act of fixation - a subject discerns and fixes changes according to models (conceptual templates) available to them; (2) causal order via happens-before - the order of events is defined by explicit dependencies, not timestamps; (3) making the ontology executable via a declarative dataflow mechanism, ensuring determinism; (4) models as epistemic filters - a subject can only fix what falls under its known concepts and properties; (5) presumption of truth - the declarative content of an event is available for computation from the moment of fixation, without external verification. The formalization includes nine axioms (A1-A9), ensuring the correctness of executable ontologies: monotonicity of history (I1), acyclicity of causality (I2), traceability (I3). Special attention is given to the model-based approach (A9): event validation via schemas, actor authorization, automatic construction of causal chains (W3) without global time. Practical applicability is demonstrated on the boldsea system - a workflow engine for executable ontologies, where the theoretical constructs are implemented in BSL (Boldsea Semantic Language). The formalization is applicable to distributed systems, microservice architectures, DLT platforms, and multiperspectivity scenarios (conflicting facts from different subjects).
comment: 32 pages
☆ TriggerNet: A Novel Explainable AI Framework for Red Palm Mite Detection and Multi-Model Comparison and Heuristic-Guided Annotation
The red palm mite infestation has become a serious concern, particularly in regions with extensive palm cultivation, leading to reduced productivity and economic losses. Accurate and early identification of mite-infested plants is critical for effective management. The current study focuses on evaluating and comparing the ML model for classifying the affected plants and detecting the infestation. TriggerNet is a novel interpretable AI framework that integrates Grad-CAM, RISE, FullGrad, and TCAV to generate novel visual explanations for deep learning models in plant classification and disease detection. This study applies TriggerNet to address red palm mite (Raoiella indica) infestation, a major threat to palm cultivation and agricultural productivity. A diverse set of RGB images across 11 plant species, Arecanut, Date Palm, Bird of Paradise, Coconut Palm, Ginger, Citrus Tree, Palm Oil, Orchid, Banana Palm, Avocado Tree, and Cast Iron Plant was utilized for training and evaluation. Advanced deep learning models like CNN, EfficientNet, MobileNet, ViT, ResNet50, and InceptionV3, alongside machine learning classifiers such as Random Forest, SVM, and KNN, were employed for plant classification. For disease classification, all plants were categorized into four classes: Healthy, Yellow Spots, Reddish Bronzing, and Silk Webbing. Snorkel was used to efficiently label these disease classes by leveraging heuristic rules and patterns, reducing manual annotation time and improving dataset reliability.
comment: 17 pages, 9 figures
☆ SAVANT: Semantic Analysis with Vision-Augmented Anomaly deTection
Autonomous driving systems remain critically vulnerable to the long-tail of rare, out-of-distribution scenarios with semantic anomalies. While Vision Language Models (VLMs) offer promising reasoning capabilities, naive prompting approaches yield unreliable performance and depend on expensive proprietary models, limiting practical deployment. We introduce SAVANT (Semantic Analysis with Vision-Augmented Anomaly deTection), a structured reasoning framework that achieves high accuracy and recall in detecting anomalous driving scenarios from input images through layered scene analysis and a two-phase pipeline: structured scene description extraction followed by multi-modal evaluation. Our approach transforms VLM reasoning from ad-hoc prompting to systematic analysis across four semantic layers: Street, Infrastructure, Movable Objects, and Environment. SAVANT achieves 89.6% recall and 88.0% accuracy on real-world driving scenarios, significantly outperforming unstructured baselines. More importantly, we demonstrate that our structured framework enables a fine-tuned 7B parameter open-source model (Qwen2.5VL) to achieve 90.8% recall and 93.8% accuracy - surpassing all models evaluated while enabling local deployment at near-zero cost. By automatically labeling over 9,640 real-world images with high accuracy, SAVANT addresses the critical data scarcity problem in anomaly detection and provides a practical path toward reliable, accessible semantic monitoring for autonomous systems.
comment: 8 pages, 5 figures
☆ OPTAGENT: Optimizing Multi-Agent LLM Interactions Through Verbal Reinforcement Learning for Enhanced Reasoning
Large Language Models (LLMs) have shown remarkable reasoning capabilities in mathematical and scientific tasks. To enhance complex reasoning, multi-agent systems have been proposed to harness the collective intelligence of LLM agents. However, existing collaboration structures are either predefined or rely on majority voting or round-table debates, which can suppress correct but less dominant agent contributions. Recent approaches model multi-agent systems as graph networks but optimize purely for agent performance, neglecting the quality of interactions. We hypothesize that effective agent communication is crucial for multi-agent reasoning and that debating quality plays a significant role. To address this, we propose $\ours$, a multi-agent verbal reinforcement learning algorithm that dynamically constructs and refines multi-agent collaboration structures. Our method defines action spaces and a feedback mechanism that evaluates communication robustness and coherence throughout the debate. The final decision is achieved through a majority vote over all the agents. We assess $\ours$ on various reasoning tasks, including mathematical reasoning, creative writing, scientific reasoning, and numerical sorting. Results demonstrate that our approach significantly outperforms single-agent prompting methods and state-of-the-art multi-agent frameworks on diverse tasks.
comment: 8 pages for main content
☆ From Local to Global: Revisiting Structured Pruning Paradigms for Large Language Models
Structured pruning is a practical approach to deploying large language models (LLMs) efficiently, as it yields compact, hardware-friendly architectures. However, the dominant local paradigm is task-agnostic: by optimizing layer-wise reconstruction rather than task objectives, it tends to preserve perplexity or generic zero-shot behavior but fails to capitalize on modest task-specific calibration signals, often yielding limited downstream gains. We revisit global structured pruning and present GISP-Global Iterative Structured Pruning-a post-training method that removes attention heads and MLP channels using first-order, loss-based important weights aggregated at the structure level with block-wise normalization. An iterative schedule, rather than one-shot pruning, stabilizes accuracy at higher sparsity and mitigates perplexity collapse without requiring intermediate fine-tuning; the pruning trajectory also forms nested subnetworks that support a "prune-once, deploy-many" workflow. Furthermore, because importance is defined by a model-level loss, GISP naturally supports task-specific objectives; we instantiate perplexity for language modeling and a margin-based objective for decision-style tasks. Extensive experiments show that across Llama2-7B/13B, Llama3-8B, and Mistral-0.3-7B, GISP consistently lowers WikiText-2 perplexity and improves downstream accuracy, with especially strong gains at 40-50% sparsity; on DeepSeek-R1-Distill-Llama-3-8B with GSM8K, task-aligned calibration substantially boosts exact-match accuracy.
comment: 16 pages, 4 figures
☆ DynaQuery: A Self-Adapting Framework for Querying Structured and Multimodal Data
The rise of Large Language Models (LLMs) has accelerated the long-standing goal of enabling natural language querying over complex, hybrid databases. Yet, this ambition exposes a dual challenge: reasoning jointly over structured, multi-relational schemas and the semantic content of linked unstructured assets. To overcome this, we present DynaQuery - a unified, self-adapting framework that serves as a practical blueprint for next-generation "Unbound Databases." At the heart of DynaQuery lies the Schema Introspection and Linking Engine (SILE), a novel systems primitive that elevates schema linking to a first-class query planning phase. We conduct a rigorous, multi-benchmark empirical evaluation of this structure-aware architecture against the prevalent unstructured Retrieval-Augmented Generation (RAG) paradigm. Our results demonstrate that the unstructured retrieval paradigm is architecturally susceptible to catastrophic contextual failures, such as SCHEMA_HALLUCINATION, leading to unreliable query generation. In contrast, our SILE-based design establishes a substantially more robust foundation, nearly eliminating this failure mode. Moreover, end-to-end validation on a complex, newly curated benchmark uncovers a key generalization principle: the transition from pure schema-awareness to holistic semantics-awareness. Taken together, our findings provide a validated architectural basis for developing natural language database interfaces that are robust, adaptable, and predictably consistent.
comment: 15 pages, 2 figures, 10 tables. Source code and experimental artifacts are available at: https://github.com/aymanehassini/DynaQuery . The 'DynaQuery-Eval-5K' benchmark, introduced in this work, is also publicly available at: https://www.kaggle.com/datasets/aymanehassini/dynaquery-eval-5k-benchmark
☆ Is Multilingual LLM Watermarking Truly Multilingual? A Simple Back-Translation Solution
Multilingual watermarking aims to make large language model (LLM) outputs traceable across languages, yet current methods still fall short. Despite claims of cross-lingual robustness, they are evaluated only on high-resource languages. We show that existing multilingual watermarking methods are not truly multilingual: they fail to remain robust under translation attacks in medium- and low-resource languages. We trace this failure to semantic clustering, which fails when the tokenizer vocabulary contains too few full-word tokens for a given language. To address this, we introduce STEAM, a back-translation-based detection method that restores watermark strength lost through translation. STEAM is compatible with any watermarking method, robust across different tokenizers and languages, non-invasive, and easily extendable to new languages. With average gains of +0.19 AUC and +40%p TPR@1% on 17 languages, STEAM provides a simple and robust path toward fairer watermarking across diverse languages.
☆ BadScientist: Can a Research Agent Write Convincing but Unsound Papers that Fool LLM Reviewers?
The convergence of LLM-powered research assistants and AI-based peer review systems creates a critical vulnerability: fully automated publication loops where AI-generated research is evaluated by AI reviewers without human oversight. We investigate this through \textbf{BadScientist}, a framework that evaluates whether fabrication-oriented paper generation agents can deceive multi-model LLM review systems. Our generator employs presentation-manipulation strategies requiring no real experiments. We develop a rigorous evaluation framework with formal error guarantees (concentration bounds and calibration analysis), calibrated on real data. Our results reveal systematic vulnerabilities: fabricated papers achieve acceptance rates up to . Critically, we identify \textit{concern-acceptance conflict} -- reviewers frequently flag integrity issues yet assign acceptance-level scores. Our mitigation strategies show only marginal improvements, with detection accuracy barely exceeding random chance. Despite provably sound aggregation mathematics, integrity checking systematically fails, exposing fundamental limitations in current AI-driven review systems and underscoring the urgent need for defense-in-depth safeguards in scientific publishing.
☆ SimBA: Simplifying Benchmark Analysis Using Performance Matrices Alone EMNLP 2025
Modern language models are evaluated on large benchmarks, which are difficult to make sense of, especially for model selection. Looking at the raw evaluation numbers themselves using a model-centric lens, we propose SimBA, a three phase framework to Simplify Benchmark Analysis. The three phases of SimBA are: stalk, where we conduct dataset & model comparisons, prowl, where we discover a representative subset, and pounce, where we use the representative subset to predict performance on a held-out set of models. Applying SimBA to three popular LM benchmarks: HELM, MMLU, and BigBenchLite reveals that across all three benchmarks, datasets and models relate strongly to one another (stalk). We develop an representative set discovery algorithm which covers a benchmark using raw evaluation scores alone. Using our algorithm, we find that with 6.25% (1/16), 1.7% (1/58), and 28.4% (21/74) of the datasets for HELM, MMLU, and BigBenchLite respectively, we achieve coverage levels of at least 95% (prowl). Additionally, using just these representative subsets, we can both preserve model ranks and predict performance on a held-out set of models with near zero mean-squared error (pounce). Taken together, SimBA can help model developers improve efficiency during model training and dataset creators validate whether their newly created dataset differs from existing datasets in a benchmark. Our code is open source, available at https://github.com/nishantsubramani/simba.
comment: EMNLP 2025 Findings
☆ FABRIC: Framework for Agent-Based Realistic Intelligence Creation
Large language models (LLMs) are increasingly deployed as agents, expected to decompose goals, invoke tools, and verify results in dynamic environments. Realizing these capabilities requires access to agentic data- structured interaction records that couple user intents with tool specifications, argument-grounded calls, and verifiable execution traces. However, collecting such data from human annotators is costly, time-consuming, and difficult to scale. We present a unified framework for synthesizing agentic data using only LLMs, without any human-in-the-loop supervision. This framework decomposes generation into modular pipelines that produce complete interaction records spanning task specifications, tool definitions, policy pseudocode, natural language exchanges, and execution traces. Records conform to strict syntactic and semantic constraints, ensuring machine-parseability and faithful alignment across inputs, outputs, and tool calls. Beyond single tasks, there is support for both multi-task and multi-turn agent interactions, enabling the construction of datasets that reflect the full spectrum of tool-use competencies. To ensure quality and consistency, the framework integrates constrained generation formats, JSON-schema validation, and judge-based filtering. This paper formalizes the schema for agentic records, details the prompt design principles that guide generation, and introduces scalable pipelines for high-quality synthetic data. By providing a reproducible, LLM-only alternative to manual collection, hence advancing the development of agentic LLMs capable of robust tool use.
comment: 51 Pages, 38 Listings, 5 Figures
☆ Universal Spectral Tokenization via Self-Supervised Panchromatic Representation Learning NeurIPS 2025
Sequential scientific data span many resolutions and domains, and unifying them into a common representation is a key step toward developing foundation models for the sciences. Astronomical spectra exemplify this challenge: massive surveys have collected millions of spectra across a wide range of wavelengths and resolutions, yet analyses remain fragmented across spectral domains (e.g., optical vs. infrared) and object types (e.g., stars vs. galaxies), limiting the ability to pool information across datasets. We present a deep learning model that jointly learns from heterogeneous spectra in a self-supervised manner. Our universal spectral tokenizer processes spectra from a variety of object types and resolutions directly on their native wavelength grids, producing intrinsically aligned, homogeneous, and physically meaningful representations that can be efficiently adapted to achieve competitive performance across a range of downstream tasks. For the first time, we demonstrate that a single model can unify spectral data across resolutions and domains, suggesting that our model can serve as a powerful building block for foundation models in astronomy -- and potentially extend to other scientific domains with heterogeneous sequential data, such as climate and healthcare.
comment: Accepted at NeurIPS 2025 Machine Learning and the Physical Sciences Workshop
☆ Studying the Effects of Robot Intervention on School Shooters in Virtual Reality
We advance the understanding of robotic intervention in high-risk scenarios by examining their potential to distract and impede a school shooter. To evaluate this concept, we conducted a virtual reality study with 150 university participants role-playing as a school shooter. Within the simulation, an autonomous robot predicted the shooter's movements and positioned itself strategically to interfere and distract. The strategy the robot used to approach the shooter was manipulated -- either moving directly in front of the shooter (aggressive) or maintaining distance (passive) -- and the distraction method, ranging from no additional cues (low), to siren and lights (medium), to siren, lights, and smoke to impair visibility (high). An aggressive, high-distraction robot reduced the number of victims by 46.6% relative to a no-robot control. This outcome underscores both the potential of robotic intervention to enhance safety and the pressing ethical questions surrounding their use in school environments.
comment: Preprint under review for conference publication. 10 pages, 9 figures, 3 tables (including 1-page appendix)
☆ PLAGUE: Plug-and-play framework for Lifelong Adaptive Generation of Multi-turn Exploits
Large Language Models (LLMs) are improving at an exceptional rate. With the advent of agentic workflows, multi-turn dialogue has become the de facto mode of interaction with LLMs for completing long and complex tasks. While LLM capabilities continue to improve, they remain increasingly susceptible to jailbreaking, especially in multi-turn scenarios where harmful intent can be subtly injected across the conversation to produce nefarious outcomes. While single-turn attacks have been extensively explored, adaptability, efficiency and effectiveness continue to remain key challenges for their multi-turn counterparts. To address these gaps, we present PLAGUE, a novel plug-and-play framework for designing multi-turn attacks inspired by lifelong-learning agents. PLAGUE dissects the lifetime of a multi-turn attack into three carefully designed phases (Primer, Planner and Finisher) that enable a systematic and information-rich exploration of the multi-turn attack family. Evaluations show that red-teaming agents designed using PLAGUE achieve state-of-the-art jailbreaking results, improving attack success rates (ASR) by more than 30% across leading models in a lesser or comparable query budget. Particularly, PLAGUE enables an ASR (based on StrongReject) of 81.4% on OpenAI's o3 and 67.3% on Claude's Opus 4.1, two models that are considered highly resistant to jailbreaks in safety literature. Our work offers tools and insights to understand the importance of plan initialization, context optimization and lifelong learning in crafting multi-turn attacks for a comprehensive model vulnerability evaluation.
☆ Intuitionistic $j$-Do-Calculus in Topos Causal Models
In this paper, we generalize Pearl's do-calculus to an Intuitionistic setting called $j$-stable causal inference inside a topos of sheaves. Our framework is an elaboration of the recently proposed framework of Topos Causal Models (TCMs), where causal interventions are defined as subobjects. We generalize the original setting of TCM using the Lawvere-Tierney topology on a topos, defined by a modal operator $j$ on the subobject classifier $\Omega$. We introduce $j$-do-calculus, where we replace global truth with local truth defined by Kripke-Joyal semantics, and formalize causal reasoning as structure-preserving morphisms that are stable along $j$-covers. $j$-do-calculus is a sound rule system whose premises and conclusions are formulas of the internal Intuitionistic logic of the causal topos. We define $j$-stability for conditional independences and interventional claims as local truth in the internal logic of the causal topos. We give three inference rules that mirror Pearl's insertion/deletion and action/observation exchange, and we prove soundness in the Kripke-Joyal semantics. A companion paper in preparation will describe how to estimate the required entities from data and instantiate $j$-do with standard discovery procedures (e.g., score-based and constraint-based methods), and will include experimental results on how to (i) form data-driven $j$-covers (via regime/section constructions), (ii) compute chartwise conditional independences after graph surgeries, and (iii) glue them to certify the premises of the $j$-do rules in practice
comment: 42 pages
☆ Trust in foundation models and GenAI: A geographic perspective
Large-scale pre-trained machine learning models have reshaped our understanding of artificial intelligence across numerous domains, including our own field of geography. As with any new technology, trust has taken on an important role in this discussion. In this chapter, we examine the multifaceted concept of trust in foundation models, particularly within a geographic context. As reliance on these models increases and they become relied upon for critical decision-making, trust, while essential, has become a fractured concept. Here we categorize trust into three types: epistemic trust in the training data, operational trust in the model's functionality, and interpersonal trust in the model developers. Each type of trust brings with it unique implications for geographic applications. Topics such as cultural context, data heterogeneity, and spatial relationships are fundamental to the spatial sciences and play an important role in developing trust. The chapter continues with a discussion of the challenges posed by different forms of biases, the importance of transparency and explainability, and ethical responsibilities in model development. Finally, the novel perspective of geographic information scientists is emphasized with a call for further transparency, bias mitigation, and regionally-informed policies. Simply put, this chapter aims to provide a conceptual starting point for researchers, practitioners, and policy-makers to better understand trust in (generative) GeoAI.
☆ Believe It or Not: How Deeply do LLMs Believe Implanted Facts?
Knowledge editing techniques promise to implant new factual knowledge into large language models (LLMs). But do LLMs really believe these facts? We develop a framework to measure belief depth and use it to evaluate the success of knowledge editing techniques. We operationalize belief depth as the extent to which implanted knowledge 1) generalizes to related contexts (e.g. Fermi estimates several logical steps removed), 2) is robust to self-scrutiny and direct challenge, and 3) is represented similarly to genuine knowledge (as measured by linear probes). Our evaluations show that simple prompting and mechanistic editing techniques fail to implant knowledge deeply. In contrast, Synthetic Document Finetuning (SDF) - where models are trained on LLM-generated documents consistent with a fact - often succeeds at implanting beliefs that behave similarly to genuine knowledge. However, SDF's success is not universal, as implanted beliefs that contradict basic world knowledge are brittle and representationally distinct from genuine knowledge. Overall, our work introduces measurable criteria for belief depth and enables the rigorous evaluation necessary for deploying knowledge editing in real-world applications.
☆ Beyond More Context: Retrieval Diversity Boosts Multi-Turn Intent Understanding
Multi turn intent understanding is central to task oriented chatbots, yet real deployments face tight token budgets and noisy contexts, and most retrieval pipelines emphasize relevance while overlooking set level diversity and confounds such as more context or exemplar order. We ask whether retrieval diversity, rather than longer prompts, systematically improves LLM intent understanding under fixed budgets. We present a diversity aware retrieval framework that selects in context exemplars to balance intent coverage and linguistic variety, and integrates this selection with standard LLM decoders; the evaluation enforces budget matched prompts and randomized positions, and includes sensitivity analyses over exemplar count, diversity strength, and backbone size. On MultiWOZ 2.4 and SGD, the approach achieves strong gains in Joint Goal Accuracy under equal token budgets, surpassing strong LLM/DST baselines, with consistent improvements across K from 4 to 7 and moderate latency. Overall, the study isolates and validates the impact of content diversity in retrieval and offers a simple, deployable selection principle for building accurate, budget constrained multi turn intent systems.
comment: 15 pages,6 figs
☆ LLM-Based Multi-Agent System for Simulating and Analyzing Marketing and Consumer Behavior IEEE
Simulating consumer decision-making is vital for designing and evaluating marketing strategies before costly real-world deployment. However, post-event analyses and rule-based agent-based models (ABMs) struggle to capture the complexity of human behavior and social interaction. We introduce an LLM-powered multi-agent simulation framework that models consumer decisions and social dynamics. Building on recent advances in large language model simulation in a sandbox environment, our framework enables generative agents to interact, express internal reasoning, form habits, and make purchasing decisions without predefined rules. In a price-discount marketing scenario, the system delivers actionable strategy-testing outcomes and reveals emergent social patterns beyond the reach of conventional methods. This approach offers marketers a scalable, low-risk tool for pre-implementation testing, reducing reliance on time-intensive post-event evaluations and lowering the risk of underperforming campaigns.
comment: Accepted for publication at IEEE International Conference on e-Business Engineering ICEBE 2025, November 10-12, Buraydah, Saudi Arabia. 8 pages, 5 figures
☆ SMaRT: Select, Mix, and ReinvenT -- A Strategy Fusion Framework for LLM-Driven Reasoning and Planning
Large Language Models (LLMs) have redefined complex task automation with exceptional generalization capabilities. Despite these advancements, state-of-the-art methods rely on single-strategy prompting, missing the synergy of diverse reasoning approaches. No single strategy excels universally, highlighting the need for frameworks that fuse strategies to maximize performance and ensure robustness. We introduce the Select, Mix, and ReinvenT (SMaRT) framework, an innovative strategy fusion approach designed to overcome this constraint by creating balanced and efficient solutions through the seamless integration of diverse reasoning strategies. Unlike existing methods, which employ LLMs merely as evaluators, SMaRT uses them as intelligent integrators, unlocking the "best of all worlds" across tasks. Extensive empirical evaluations across benchmarks in reasoning, planning, and sequential decision-making highlight the robustness and adaptability of SMaRT. The framework consistently outperforms state-of-the-art baselines in solution quality, constraint adherence, and performance metrics. This work redefines LLM-driven decision-making by pioneering a new paradigm in cross-strategy calibration, unlocking superior outcomes for reasoning systems and advancing the boundaries of self-refining methodologies.
☆ FABRIC: Framework for Agent-Based Realistic Intelligence Creation
Large language models (LLMs) are increasingly deployed as agents, expected to decompose goals, invoke tools, and verify results in dynamic environments. Realizing these capabilities requires access to agentic data-structured interaction records that couple user intents with tool specifications, argument-grounded calls, and verifiable execution traces. However, collecting such data from human annotators is costly, time-consuming, and difficult to scale. We present a unified framework for synthesizing agentic data using only LLMs, without any human-in-the-loop supervision. This framework decomposes generation into modular pipelines that produce complete interaction records spanning task specifications, tool definitions, policy pseudocode, natural language exchanges, and execution traces. Records conform to strict syntactic and semantic constraints, ensuring machine-parseability and faithful alignment across inputs, outputs, and tool calls. Beyond single tasks, there is support for both multi-task and multi-turn agent interactions, enabling the construction of datasets that reflect the full spectrum of tool-use competencies. To ensure quality and consistency, the framework integrates constrained generation formats, JSON-schema validation, and judge-based filtering. This paper formalizes the schema for agentic records, details the prompt design principles that guide generation, and introduces scalable pipelines for high-quality synthetic data. By providing a reproducible, LLM-only alternative to manual collection, hence advancing the development of agentic LLMs capable of robust tool use.
comment: 51 Pages, 38 Listings, 5 Figures
♻ ☆ Denoising the Future: Top-p Distributions for Moving Through Time
Inference in dynamic probabilistic models is a complex task involving expensive operations. In particular, for Hidden Markov Models, the whole state space has to be enumerated for advancing in time. Even states with negligible probabilities are considered, resulting in computational inefficiency and increased noise due to the propagation of unlikely probability mass. We propose to denoise the future and speed up inference by using only the top-p states, i.e., the most probable states with accumulated probability p. We show that the error introduced by using only the top-p states is bound by p and the so-called minimal mixing rate of the underlying model. Moreover, in our empirical evaluation, we show that we can expect speedups of at least an order of magnitude, while the error in terms of total variation distance is below 0.09.
comment: Accepted at ECSQARU 2025
♻ ☆ DRIFT: Decompose, Retrieve, Illustrate, then Formalize Theorems
Automating the formalization of mathematical statements for theorem proving remains a major challenge for Large Language Models (LLMs). LLMs struggle to identify and utilize the prerequisite mathematical knowledge and its corresponding formal representation in languages like Lean. Current retrieval-augmented autoformalization methods query external libraries using the informal statement directly, but overlook a fundamental limitation: informal mathematical statements are often complex and offer limited context on the underlying math concepts. To address this, we introduce DRIFT, a novel framework that enables LLMs to decompose informal mathematical statements into smaller, more tractable ''sub-components''. This facilitates targeted retrieval of premises from mathematical libraries such as Mathlib. Additionally, DRIFT retrieves illustrative theorems to help models use premises more effectively in formalization tasks. We evaluate DRIFT across diverse benchmarks (ProofNet, ConNF, and MiniF2F-test) and find that it consistently improves premise retrieval, nearly doubling the F1 score compared to the DPR baseline on ProofNet. Notably, DRIFT demonstrates strong performance on the out-of-distribution ConNF benchmark, with BEq+@10 improvements of 37.14% and 42.25% using GPT-4.1 and DeepSeek-V3.1, respectively. Our analysis shows that retrieval effectiveness in mathematical autoformalization depends heavily on model-specific knowledge boundaries, highlighting the need for adaptive retrieval strategies aligned with each model's capabilities.
♻ ☆ REASONING GYM: Reasoning Environments for Reinforcement Learning with Verifiable Rewards NeurIPS 2025
We introduce Reasoning Gym (RG), a library of reasoning environments for reinforcement learning with verifiable rewards. It provides over 100 data generators and verifiers spanning multiple domains including algebra, arithmetic, computation, cognition, geometry, graph theory, logic, and various common games. Its key innovation is the ability to generate virtually infinite training data with adjustable complexity, unlike most previous reasoning datasets, which are typically fixed. This procedural generation approach allows for continuous evaluation across varying difficulty levels. Our experimental results demonstrate the efficacy of RG in both evaluating and reinforcement learning of reasoning models.
comment: NeurIPS 2025 Spotlight. For code, see https://github.com/open-thought/reasoning-gym
♻ ☆ Evolution of AI Agent Registry Solutions: Centralized, Enterprise, and Distributed Approaches
Autonomous AI agents now operate across cloud, enterprise, and decentralized domains, creating demand for registry infrastructures that enable trustworthy discovery, capability negotiation, and identity assurance. We analyze five prominent approaches: (1) MCP Registry (centralized publication of mcp.json descriptors), (2) A2A Agent Cards (decentralized self-describing JSON capability manifests), (3) AGNTCY Agent Directory Service (IPFS Kademlia DHT content routing extended for semantic taxonomy-based content discovery, OCI artifact storage, and Sigstore-backed integrity), (4) Microsoft Entra Agent ID (enterprise SaaS directory with policy and zero-trust integration), and (5) NANDA Index AgentFacts (cryptographically verifiable, privacy-preserving fact model with credentialed assertions). Using four evaluation dimensions: security, authentication, scalability, and maintainability, we surface architectural trade-offs between centralized control, enterprise governance, and distributed resilience. We conclude with design recommendations for an emerging Internet of AI Agents requiring verifiable identity, adaptive discovery flows, and interoperable capability semantics.
♻ ☆ LeapFactual: Reliable Visual Counterfactual Explanation Using Conditional Flow Matching NeurIPS 2025
The growing integration of machine learning (ML) and artificial intelligence (AI) models into high-stakes domains such as healthcare and scientific research calls for models that are not only accurate but also interpretable. Among the existing explainable methods, counterfactual explanations offer interpretability by identifying minimal changes to inputs that would alter a model's prediction, thus providing deeper insights. However, current counterfactual generation methods suffer from critical limitations, including gradient vanishing, discontinuous latent spaces, and an overreliance on the alignment between learned and true decision boundaries. To overcome these limitations, we propose LeapFactual, a novel counterfactual explanation algorithm based on conditional flow matching. LeapFactual generates reliable and informative counterfactuals, even when true and learned decision boundaries diverge. Following a model-agnostic approach, LeapFactual is not limited to models with differentiable loss functions. It can even handle human-in-the-loop systems, expanding the scope of counterfactual explanations to domains that require the participation of human annotators, such as citizen science. We provide extensive experiments on benchmark and real-world datasets showing that LeapFactual generates accurate and in-distribution counterfactual explanations that offer actionable insights. We observe, for instance, that our reliable counterfactual samples with labels aligning to ground truth can be beneficially used as new training data to enhance the model. The proposed method is broadly applicable and enhances both scientific knowledge discovery and non-expert interpretability.
comment: Accepted as a poster presentation at NeurIPS 2025. Camera-ready version. 10 pages, 7 figures
♻ ☆ CLIMB: Class-imbalanced Learning Benchmark on Tabular Data NeurIPS 2025
Class-imbalanced learning (CIL) on tabular data is important in many real-world applications where the minority class holds the critical but rare outcomes. In this paper, we present CLIMB, a comprehensive benchmark for class-imbalanced learning on tabular data. CLIMB includes 73 real-world datasets across diverse domains and imbalance levels, along with unified implementations of 29 representative CIL algorithms. Built on a high-quality open-source Python package with unified API designs, detailed documentation, and rigorous code quality controls, CLIMB supports easy implementation and comparison between different CIL algorithms. Through extensive experiments, we provide practical insights on method accuracy and efficiency, highlighting the limitations of naive rebalancing, the effectiveness of ensembles, and the importance of data quality. Our code, documentation, and examples are available at https://github.com/ZhiningLiu1998/imbalanced-ensemble.
comment: NeurIPS 2025, Dataset and Benchmark Track. 18 pages, 7 figures, 8 tables
♻ ☆ Creative synthesis of kinematic mechanisms
In this paper, we formulate the problem of kinematic synthesis for planar linkages as a cross-domain image generation task. We develop a planar linkages dataset using RGB image representations, covering a range of mechanisms: from simple types such as crank-rocker and crank-slider to more complex eight-bar linkages like Jansen's mechanism. A shared-latent variational autoencoder (VAE) is employed to explore the potential of image generative models for synthesizing unseen motion curves and simulating novel kinematics. By encoding the drawing speed of trajectory points as color gradients, the same architecture also supports kinematic synthesis conditioned on both trajectory shape and velocity profiles. We validate our method on three datasets of increasing complexity: a standard four-bar linkage set, a mixed set of four-bar and crank-slider mechanisms, and a complex set including multi-loop mechanisms. Preliminary results demonstrate the effectiveness of image-based representations for generative mechanical design, showing that mechanisms with revolute and prismatic joints, and potentially cams and gears, can be represented and synthesized within a unified image generation framework.
comment: 6pages, 6 figures
♻ ☆ Market-Driven Subset Selection for Budgeted Training
Training large language models on massive datasets is computationally expensive, yet empirical evidence suggests that substantial portions of training examples contribute minimally to final performance. Data subset selection addresses this inefficiency by identifying small, high-utility subsets under resource constraints. However, example utility is inherently multi-faceted, encompassing uncertainty, distributional rarity, and diversity signals that are heterogeneous and typically combined through ad hoc weighted sums lacking theoretical grounding. We propose a market-based framework that treats each training example as a tradeable contract and employs the Logarithmic Market Scoring Rule to aggregate multiple utility signals into coherent prices. Heterogeneous signals act as traders, a single liquidity parameter controls concentration versus smoothing, and topic-wise normalization ensures calibrated aggregation. Token budgets are handled explicitly through a price-per-token decision rule with an interpretable length-bias parameter. We establish theoretical connections to maximum-entropy aggregation and provide utility recovery guarantees under noisy but monotone signals. On GSM8K mathematical reasoning under strict 60k-token budgets, our selector achieves parity with strong single-signal baselines while exhibiting lower variance and incurring less than 0.1 GPU-hour overhead. On AGNews classification at 5-25\% retention rates, the market formulation delivers competitive accuracy with improved stability. Our framework unifies multi-signal data curation under fixed computational budgets for prompt-level reasoning and classification tasks.
comment: Retitled major revision of the same work (formerly "Market-Based Data Subset Selection -- Principled Aggregation of Multi-Criteria Example Utility"). Abstract and exposition revised; ablations added; theory clarified. Core results unchanged. Supersedes v1; please process as a replacement
♻ ☆ Limitations of Normalization in Attention Mechanism
This paper investigates the limitations of the normalization in attention mechanisms. We begin with a theoretical framework that enables the identification of the model's selective ability and the geometric separation involved in token selection. Our analysis includes explicit bounds on distances and separation criteria for token vectors under softmax scaling. Through experiments with pre-trained GPT-2 model, we empirically validate our theoretical results and analyze key behaviors of the attention mechanism. Notably, we demonstrate that as the number of selected tokens increases, the model's ability to distinguish informative tokens declines, often converging toward a uniform selection pattern. We also show that gradient sensitivity under softmax normalization presents challenges during training, especially at low temperature settings. These findings advance current understanding of softmax-based attention mechanism and motivate the need for more robust normalization and selection strategies in future attention architectures.
comment: 10 pages, 4 figures
♻ ☆ When Does Supervised Training Pay Off? The Hidden Economics of Object Detection in the Era of Vision-Language Models
Object detection traditionally relies on costly manual annotation. We present the first comprehensive cost-effectiveness analysis comparing supervised YOLO and zero-shot vision-language models (Gemini Flash 2.5 and GPT-4). Evaluated on 5,000 stratified COCO images and 500 diverse product images, combined with Total Cost of Ownership modeling, we derive break-even thresholds for architecture selection. Results show supervised YOLO attains 91.2% accuracy versus 68.5% for Gemini and 71.3% for GPT-4 on standard categories; the annotation expense for a 100-category system is $10,800, and the accuracy advantage only pays off beyond 55 million inferences (151,000 images/day for one year). On diverse product categories Gemini achieves 52.3% and GPT-4 55.1%, while supervised YOLO cannot detect untrained classes. Cost-per-correct-detection favors Gemini ($0.00050) and GPT-4 ($0.00067) over YOLO ($0.143) at 100,000 inferences. We provide decision frameworks showing that optimal architecture choice depends on inference volume, category stability, budget, and accuracy requirements.
comment: 30 pages, 12 figures, 4 tables
♻ ☆ AI-Generated Video Detection via Perceptual Straightening NeurIPS 2025
The rapid advancement of generative AI enables highly realistic synthetic videos, posing significant challenges for content authentication and raising urgent concerns about misuse. Existing detection methods often struggle with generalization and capturing subtle temporal inconsistencies. We propose ReStraV(Representation Straightening Video), a novel approach to distinguish natural from AI-generated videos. Inspired by the "perceptual straightening" hypothesis -- which suggests real-world video trajectories become more straight in neural representation domain -- we analyze deviations from this expected geometric property. Using a pre-trained self-supervised vision transformer (DINOv2), we quantify the temporal curvature and stepwise distance in the model's representation domain. We aggregate statistics of these measures for each video and train a classifier. Our analysis shows that AI-generated videos exhibit significantly different curvature and distance patterns compared to real videos. A lightweight classifier achieves state-of-the-art detection performance (e.g., 97.17% accuracy and 98.63% AUROC on the VidProM benchmark), substantially outperforming existing image- and video-based methods. ReStraV is computationally efficient, it is offering a low-cost and effective detection solution. This work provides new insights into using neural representation geometry for AI-generated video detection.
comment: Advances in Neural Information Processing Systems 38 (NeurIPS 2025)
♻ ☆ PhysioWave: A Multi-Scale Wavelet-Transformer for Physiological Signal Representation NeurIPS 2025
Physiological signals are often corrupted by motion artifacts, baseline drift, and other low-SNR disturbances, which pose significant challenges for analysis. Additionally, these signals exhibit strong non-stationarity, with sharp peaks and abrupt changes that evolve continuously, making them difficult to represent using traditional time-domain or filtering methods. To address these issues, a novel wavelet-based approach for physiological signal analysis is presented, aiming to capture multi-scale time-frequency features in various physiological signals. Leveraging this technique, two large-scale pretrained models specific to EMG and ECG are introduced for the first time, achieving superior performance and setting new baselines in downstream tasks. Additionally, a unified multi-modal framework is constructed by integrating pretrained EEG model, where each modality is guided through its dedicated branch and fused via learnable weighted fusion. This design effectively addresses challenges such as low signal-to-noise ratio, high inter-subject variability, and device mismatch, outperforming existing methods on multi-modal tasks. The proposed wavelet-based architecture lays a solid foundation for analysis of diverse physiological signals, while the multi-modal design points to next-generation physiological signal processing with potential impact on wearable health monitoring, clinical diagnostics, and broader biomedical applications. Code and data are available at: github.com/ForeverBlue816/PhysioWave
comment: 43 pages, 17 figures, 17 tables. Accepted by NeurIPS 2025. Code and data are available at: github.com/ForeverBlue816/PhysioWave
♻ ☆ PsychCounsel-Bench: Evaluating the Psychology Intelligence of Large Language Models
Large Language Models (LLMs) have demonstrated remarkable success across a wide range of industries, primarily due to their impressive generative abilities. Yet, their potential in applications requiring cognitive abilities, such as psychological counseling, remains largely untapped. This paper investigates the key question: \textit{Can LLMs be effectively applied to psychological counseling?} To determine whether an LLM can effectively take on the role of a psychological counselor, the first step is to assess whether it meets the qualifications required for such a role, namely the ability to pass the U.S. National Counselor Certification Exam (NCE). This is because, just as a human counselor must pass a certification exam to practice, an LLM must demonstrate sufficient psychological knowledge to meet the standards required for such a role. To address this, we introduce PsychCounsel-Bench, a benchmark grounded in U.S.national counselor examinations, a licensure test for professional counselors that requires about 70\% accuracy to pass. PsychCounsel-Bench comprises approximately 2,252 carefully curated single-choice questions, crafted to require deep understanding and broad enough to cover various sub-disciplines of psychology. This benchmark provides a comprehensive assessment of an LLM's ability to function as a counselor. Our evaluation shows that advanced models such as GPT-4o, Llama3.3-70B, and Gemma3-27B achieve well above the passing threshold, while smaller open-source models (e.g., Qwen2.5-7B, Mistral-7B) remain far below it. These results suggest that only frontier LLMs are currently capable of meeting counseling exam standards, highlighting both the promise and the challenges of developing psychology-oriented LLMs. We release the proposed dataset for public use: https://github.com/cloversjtu/PsychCounsel-Bench
♻ ☆ From Next Token Prediction to (STRIPS) World Models -- Preliminary Results
We consider the problem of learning propositional STRIPS world models from action traces alone, using a deep learning architecture (transformers) and gradient descent. The task is cast as a supervised next token prediction problem where the tokens are the actions, and an action $a$ may follow an action sequence if the hidden effects of the previous actions do not make an action precondition of $a$ false. We show that a suitable transformer architecture can faithfully represent propositional STRIPS world models, and that the models can be learned from sets of random valid (positive) and invalid (negative) action sequences alone. A number of experiments are reported.
comment: 10 pages, 3 figures
♻ ☆ VimoRAG: Video-based Retrieval-augmented 3D Motion Generation for Motion Language Models NeurIPS 2025
This paper introduces VimoRAG, a novel video-based retrieval-augmented motion generation framework for motion large language models (LLMs). As motion LLMs face severe out-of-domain/out-of-vocabulary issues due to limited annotated data, VimoRAG leverages large-scale in-the-wild video databases to enhance 3D motion generation by retrieving relevant 2D human motion signals. While video-based motion RAG is nontrivial, we address two key bottlenecks: (1) developing an effective motion-centered video retrieval model that distinguishes human poses and actions, and (2) mitigating the issue of error propagation caused by suboptimal retrieval results. We design the Gemini Motion Video Retriever mechanism and the Motion-centric Dual-alignment DPO Trainer, enabling effective retrieval and generation processes. Experimental results show that VimoRAG significantly boosts the performance of motion LLMs constrained to text-only input. All the resources are available at https://walkermitty.github.io/VimoRAG/
comment: Accepted by NeurIPS 2025; Project Page: https://walkermitty.github.io/VimoRAG
♻ ☆ PsyMem: Fine-grained psychological alignment and Explicit Memory Control for Advanced Role-Playing LLMs ACL
Existing LLM-based role-playing methods often rely on superficial textual descriptions or simplistic metrics, inadequately modeling both intrinsic and extrinsic character dimensions. Additionally, they typically simulate character memory with implicit model knowledge or basic retrieval augment generation without explicit memory alignment, compromising memory consistency. The two issues weaken reliability of role-playing LLMs in several applications, such as trustworthy social simulation. To address these limitations, we propose PsyMem, a novel framework integrating fine-grained psychological attributes and explicit memory control for role-playing. PsyMem supplements textual descriptions with 26 psychological indicators to detailed model character. Additionally, PsyMem implements memory alignment training, explicitly trains the model to align character's response with memory, thereby enabling dynamic memory-controlled responding during inference. By training Qwen2.5-7B-Instruct on our specially designed dataset (including 5,414 characters and 38,962 dialogues extracted from novels), the resulting model, termed as PsyMem-Qwen, outperforms baseline models in role-playing, achieving the best performance in human-likeness and character fidelity.
comment: Pre-MIT Press publication version, has been accepted by TACL
♻ ☆ When Words Smile: Generating Diverse Emotional Facial Expressions from Text EMNLP 2025
Enabling digital humans to express rich emotions has significant applications in dialogue systems, gaming, and other interactive scenarios. While recent advances in talking head synthesis have achieved impressive results in lip synchronization, they tend to overlook the rich and dynamic nature of facial expressions. To fill this critical gap, we introduce an end-to-end text-to-expression model that explicitly focuses on emotional dynamics. Our model learns expressive facial variations in a continuous latent space and generates expressions that are diverse, fluid, and emotionally coherent. To support this task, we introduce EmoAva, a large-scale and high-quality dataset containing 15,000 text-3D expression pairs. Extensive experiments on both existing datasets and EmoAva demonstrate that our method significantly outperforms baselines across multiple evaluation metrics, marking a significant advancement in the field.
comment: Accepted by EMNLP 2025 (Oral); Project Page: https://walkermitty.github.io/EmoAva
♻ ☆ TimeEmb: A Lightweight Static-Dynamic Disentanglement Framework for Time Series Forecasting
Temporal non-stationarity, the phenomenon that time series distributions change over time, poses fundamental challenges to reliable time series forecasting. Intuitively, the complex time series can be decomposed into two factors, \ie time-invariant and time-varying components, which indicate static and dynamic patterns, respectively. Nonetheless, existing methods often conflate the time-varying and time-invariant components, and jointly learn the combined long-term patterns and short-term fluctuations, leading to suboptimal performance facing distribution shifts. To address this issue, we initiatively propose a lightweight static-dynamic decomposition framework, TimeEmb, for time series forecasting. TimeEmb innovatively separates time series into two complementary components: (1) time-invariant component, captured by a novel global embedding module that learns persistent representations across time series, and (2) time-varying component, processed by an efficient frequency-domain filtering mechanism inspired by full-spectrum analysis in signal processing. Experiments on real-world datasets demonstrate that TimeEmb outperforms state-of-the-art baselines and requires fewer computational resources. We conduct comprehensive quantitative and qualitative analyses to verify the efficacy of static-dynamic disentanglement. This lightweight framework can also improve existing time-series forecasting methods with simple integration. To ease reproducibility, the code is available at https://github.com/showmeon/TimeEmb.
♻ ☆ Does Math Reasoning Improve General LLM Capabilities? Understanding Transferability of LLM Reasoning
Math reasoning has become the poster child of progress in large language models (LLMs), with new models rapidly surpassing human-level performance on benchmarks like MATH and AIME. But as math leaderboards improve week by week, it is worth asking: do these gains reflect broader problem-solving ability or just narrow overfitting? To answer this question, we evaluate over 20 open-weight reasoning-tuned models across a broad suite of tasks, including math, scientific QA, agent planning, coding, and standard instruction-following. We surprisingly find that most models that succeed in math fail to transfer their gains to other domains. To rigorously study this phenomenon, we conduct controlled experiments on Qwen3-14B models using math-only data but different tuning methods. We find that reinforcement learning (RL)-tuned models generalize well across domains, while supervised fine-tuning (SFT)-tuned models often forget general capabilities. Latent-space representation and token-space distribution shift analyses reveal that SFT induces substantial representation and output drift, while RL preserves general-domain structure. Our results suggest a need to rethink standard post-training recipes, particularly the reliance on SFT-distilled data for advancing reasoning models.
♻ ☆ Diffusion Transformers as Open-World Spatiotemporal Foundation Models NeurIPS 2025
The urban environment is characterized by complex spatio-temporal dynamics arising from diverse human activities and interactions. Effectively modeling these dynamics is essential for understanding and optimizing urban systems. In this work, we introduce UrbanDiT, a foundation model for open-world urban spatio-temporal learning that successfully scales up diffusion transformers in this field. UrbanDiT pioneers a unified model that integrates diverse data sources and types while learning universal spatio-temporal patterns across different cities and scenarios. This allows the model to unify both multi-data and multi-task learning, and effectively support a wide range of spatio-temporal applications. Its key innovation lies in the elaborated prompt learning framework, which adaptively generates both data-driven and task-specific prompts, guiding the model to deliver superior performance across various urban applications. UrbanDiT offers three advantages: 1) It unifies diverse data types, such as grid-based and graph-based data, into a sequential format; 2) With task-specific prompts, it supports a wide range of tasks, including bi-directional spatio-temporal prediction, temporal interpolation, spatial extrapolation, and spatio-temporal imputation; and 3) It generalizes effectively to open-world scenarios, with its powerful zero-shot capabilities outperforming nearly all baselines with training data. UrbanDiT sets up a new benchmark for foundation models in the urban spatio-temporal domain. Code and datasets are publicly available at https://github.com/tsinghua-fib-lab/UrbanDiT.
comment: Accepted by NeurIPS 2025
♻ ☆ RPG: A Repository Planning Graph for Unified and Scalable Codebase Generation
Large language models excel at generating individual functions or single files of code, yet generating complete repositories from scratch remains a fundamental challenge. This capability is key to building coherent software systems from high-level specifications and realizing the full potential of automated code generation. The process requires planning at two levels: deciding what features and modules to build (proposal stage) and defining their implementation details (implementation stage). Current approaches rely on natural language planning, which often produces unclear specifications, misaligned components, and brittle designs due to its inherent ambiguity and lack of structure. To address these limitations, we introduce the Repository Planning Graph (RPG), a structured representation that encodes capabilities, file structures, data flows, and functions in a unified graph. By replacing free-form natural language with an explicit blueprint, RPG enables consistent long-horizon planning for repository generation. Building on RPG, we develop ZeroRepo, a graph-driven framework that operates in three stages: proposal-level planning, implementation-level construction, and graph-guided code generation with test validation. To evaluate, we construct RepoCraft, a benchmark of six real-world projects with 1,052 tasks. On RepoCraft, ZeroRepo produces nearly 36K Code Lines and 445K Code Tokens, on average 3.9$\times$ larger than the strongest baseline (Claude Code), and 68$\times$ larger than other baselines. It achieves 81.5% coverage and 69.7% test accuracy, improving over Claude Code by 27.3 and 35.8 points. Further analysis shows that RPG models complex dependencies, enables more sophisticated planning through near-linear scaling, and improves agent understanding of repositories, thus accelerating localization.
♻ ☆ SketchMind: A Multi-Agent Cognitive Framework for Assessing Student-Drawn Scientific Sketches NeurIPS2025
Scientific sketches (e.g., models) offer a powerful lens into students' conceptual understanding, yet AI-powered automated assessment of such free-form, visually diverse artifacts remains a critical challenge. Existing solutions often treat sketch evaluation as either an image classification task or monolithic vision-language models, which lack interpretability, pedagogical alignment, and adaptability across cognitive levels. To address these limitations, we present SketchMind, a cognitively grounded, multi-agent framework for evaluating and improving student-drawn scientific sketches. SketchMind comprises modular agents responsible for rubric parsing, sketch perception, cognitive alignment, and iterative feedback with sketch modification, enabling personalized and transparent evaluation. We evaluate SketchMind on a curated dataset of 3,575 student-generated sketches across six science assessment items with different highest order of Bloom's level that require students to draw models to explain phenomena. Compared to baseline GPT-4o performance without SRG (average accuracy: 55.6%), and with SRG integration achieves 77.1% average accuracy (+21.4% average absolute gain). We also demonstrate that multi-agent orchestration with SRG enhances SketchMind performance, for example, GPT-4.1 gains an average 8.9% increase in sketch prediction accuracy, outperforming single-agent pipelines across all items. Human evaluators rated the feedback and co-created sketches generated by \textsc{SketchMind} with GPT-4.1, which achieved an average of 4.1 out of 5, significantly higher than those of baseline models (e.g., 2.3 for GPT-4o). Experts noted the system's potential to meaningfully support conceptual growth through guided revision. Our code and (pending approval) dataset will be released to support reproducibility and future research in AI-driven education.
comment: Submitted to NeurIPS2025
♻ ☆ Parameter Efficient Fine-tuning via Explained Variance Adaptation NeurIPS 2025
Foundation models (FMs) are pre-trained on large-scale datasets and then fine-tuned for a specific downstream task. The most common fine-tuning method is to update pretrained weights via low-rank adaptation (LoRA). Existing initialization strategies for LoRA often rely on singular value decompositions (SVD) of gradients or weight matrices. However, they do not provably maximize the expected gradient signal, which is critical for fast adaptation. To this end, we introduce Explained Variance Adaptation (EVA), an initialization scheme that uses the directions capturing the most activation variance, provably maximizing the expected gradient signal and accelerating fine-tuning. EVA performs incremental SVD on minibatches of activation vectors and selects the right-singular vectors for initialization once they converged. Further, by selecting the directions that capture the most activation-variance for a given rank budget, EVA accommodates adaptive ranks that reduce the number of trainable parameters. We apply EVA to a variety of fine-tuning tasks as language generation and understanding, image classification, and reinforcement learning. EVA exhibits faster convergence than competitors and achieves the highest average score across a multitude of tasks per domain while reducing the number of trainable parameters through rank redistribution. In summary, EVA establishes a new Pareto frontier compared to existing LoRA initialization schemes in both accuracy and efficiency.
comment: Accepted at NeurIPS 2025, Shared first authorship, Code available at https://github.com/ml-jku/EVA
♻ ☆ DISCOVER: Automated Curricula for Sparse-Reward Reinforcement Learning NeurIPS 2025
Sparse-reward reinforcement learning (RL) can model a wide range of highly complex tasks. Solving sparse-reward tasks is RL's core premise, requiring efficient exploration coupled with long-horizon credit assignment, and overcoming these challenges is key for building self-improving agents with superhuman ability. Prior work commonly explores with the objective of solving many sparse-reward tasks, making exploration of individual high-dimensional, long-horizon tasks intractable. We argue that solving such challenging tasks requires solving simpler tasks that are relevant to the target task, i.e., whose achieval will teach the agent skills required for solving the target task. We demonstrate that this sense of direction, necessary for effective exploration, can be extracted from existing RL algorithms, without leveraging any prior information. To this end, we propose a method for directed sparse-reward goal-conditioned very long-horizon RL (DISCOVER), which selects exploratory goals in the direction of the target task. We connect DISCOVER to principled exploration in bandits, formally bounding the time until the target task becomes achievable in terms of the agent's initial distance to the target, but independent of the volume of the space of all tasks. We then perform a thorough evaluation in high-dimensional environments. We find that the directed goal selection of DISCOVER solves exploration problems that are beyond the reach of prior state-of-the-art exploration methods in RL.
comment: NeurIPS 2025
♻ ☆ KG-TRACES: Enhancing Large Language Models with Knowledge Graph-constrained Trajectory Reasoning and Attribution Supervision
Large language models (LLMs) have made remarkable strides in various natural language processing tasks, but their performance on complex reasoning problems remains hindered by a lack of explainability and trustworthiness. This issue, often manifesting as hallucinations or unattributable reasoning processes, limits their applicability in complex reasoning scenarios. To address this, we propose Knowledge Graph-constrained Trajectory Reasoning Attribution and Chain Explanation Supervision (KG-TRACES), a novel framework that enhances the reasoning ability of LLMs through explicit supervision over reasoning paths and processes. KG-TRACES jointly supervises the model to: (1) predict symbolic relation paths, (2) predict full triple-level reasoning paths, and (3) generate attribution-aware reasoning processes grounded in the reasoning paths. At inference phase, the model adapts to both KG-available and KG-unavailable scenarios, retrieving reasoning paths from a KG when possible or predicting plausible reasoning paths with only intrinsic knowledge when not. This design enables the model to reason in an explainable and source-attributable pattern. Through extensive experiments on complex reasoning tasks, we demonstrate that KG-TRACES significantly outperforms existing SOTA: it improves Hits@1 by 1.6% and F1 by 4.7% on WebQSP, and achieves improvements of 4.8% in Hits@1 and 2.1% in F1 on CWQ. Moreover, we show its transferability to specialized domains such as medicine. By visualizing the intermediate steps of reasoning processes, we further show that the explicit supervision introduced by KG-TRACES leads to more stable and goal-directed reasoning processes, aligning closely with correct answers. Code is available at https://github.com/Edaizi/KG-TRACES.
comment: 24 pages, 13 figures
♻ ☆ A New Digital Divide? Coder Worldviews, the Slop Economy, and Democracy in the Age of AI
Digital technologies are transforming democratic life in conflicting ways. This article bridges two perspectives to unpack these tensions. First, we present an original survey of software developers in Silicon Valley, interrogating how coder worldviews, ethics, and workplace cultures shape the democratic potential and social impact of the technologies they build. Results indicate that while most developers recognize the power of their products to influence civil liberties and political discourse, they often face ethical dilemmas and top-down pressures that can lead to design choices undermining democratic ideals. Second, we critically investigate these findings in the context of an emerging new digital divide, not of internet access but of information quality. We interrogate the survey findings in the context of the Slop Economy, in which billions of users unable to pay for high-quality content experience an internet dominated by low-quality, AI-generated ad-driven content. We find a reinforcing cycle between tech creator beliefs and the digital ecosystems they spawn. We discuss implications for democratic governance, arguing for more ethically informed design and policy interventions to help bridge the digital divide to ensure that technological innovation supports rather than subverts democratic values in the next chapter of the digital age.
♻ ☆ General agents contain world models ICML 2025
Are world models a necessary ingredient for flexible, goal-directed behaviour, or is model-free learning sufficient? We provide a formal answer to this question, showing that any agent capable of generalizing to multi-step goal-directed tasks must have learned a predictive model of its environment. We show that this model can be extracted from the agent's policy, and that increasing the agents performance or the complexity of the goals it can achieve requires learning increasingly accurate world models. This has a number of consequences: from developing safe and general agents, to bounding agent capabilities in complex environments, and providing new algorithms for eliciting world models from agents.
comment: Accepted ICML 2025. Typos corrected
♻ ☆ CodeVisionary: An Agent-based Framework for Evaluating Large Language Models in Code Generation
Large language models (LLMs) have demonstrated strong capabilities in code generation, underscoring the critical need for rigorous and comprehensive evaluation. Existing evaluation approaches fall into three categories, including human-centered, metric-based, and LLM-based. Considering that human-centered approaches are labour-intensive and metric-based ones overly rely on reference answers, LLM-based approaches are gaining increasing attention due to their stronger contextual understanding capabilities. However, they generally evaluate the generated code based on static prompts, and tend to fail for complex code scenarios which typically involve multiple requirements and require more contextual information. In addition, these approaches lack fine-grained evaluation for complex code, resulting in limited explainability. To mitigate the limitations, we propose CodeVisionary, the first agent-based evaluation framework for complex code generation. CodeVisionary consists of two stages: (1) Requirement-guided multi-dimensional context distillation stage and (2) Fine-grained scoring and summarization stage. A comprehensive evaluation report is also generated for enhanced explainability. For validation, we construct a new benchmark consisting of 363 samples spanning 37 coding scenarios and 23 programming languages. Extensive experiments demonstrate that CodeVisionary achieves the best performance among three baselines for evaluating complex code generation, outperforming the best baseline with average improvements of 0.217, 0.163, and 0.141 in Pearson, Spearman, and Kendall-Tau coefficients, respectively. The resources of CodeVisionary are available at https://github.com/Eshe0922/CodeVisionary.
♻ ☆ Learning to Detect Unknown Jailbreak Attacks in Large Vision-Language Models
Despite extensive alignment efforts, Large Vision-Language Models (LVLMs) remain vulnerable to jailbreak attacks, posing serious safety risks. To address this, existing detection methods either learn attack-specific parameters, which hinders generalization to unseen attacks, or rely on heuristically sound principles, which limit accuracy and efficiency. To overcome these limitations, we propose Learning to Detect (LoD), a general framework that accurately detects unknown jailbreak attacks by shifting the focus from attack-specific learning to task-specific learning. This framework includes a Multi-modal Safety Concept Activation Vector module for safety-oriented representation learning and a Safety Pattern Auto-Encoder module for unsupervised attack classification. Extensive experiments show that our method achieves consistently higher detection AUROC on diverse unknown attacks while improving efficiency. The code is available at https://anonymous.4open.science/r/Learning-to-Detect-51CB.
comment: Withdrawn due to an accidental duplicate submission. This paper (arXiv:2510.15430) was unintentionally submitted as a new entry instead of a new version of our previous work (arXiv:2508.09201)
♻ ☆ Communications to Circulations: Real-Time 3D Wind Field Prediction Using 5G GNSS Signals and Deep Learning
Accurate atmospheric wind field information is crucial for various applications, including weather forecasting, aviation safety, and disaster risk reduction. However, obtaining high spatiotemporal resolution wind data remains challenging due to limitations in traditional in-situ observations and remote sensing techniques, as well as the computational expense and biases of numerical weather prediction (NWP) models. This paper introduces G-WindCast, a novel deep learning framework that leverages signal strength variations from 5G Global Navigation Satellite System (GNSS) signals to forecast three-dimensional (3D) atmospheric wind fields. The framework utilizes Forward Neural Networks (FNN) and Transformer networks to capture complex, nonlinear, and spatiotemporal relationships between GNSS-derived features and wind dynamics. Our preliminary results demonstrate promising accuracy in real-time wind forecasts (up to 30 minutes lead time). The model exhibits robustness across forecast horizons and different pressure levels, and its predictions for wind fields show superior agreement with ground-based radar wind profiler compared to concurrent European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5). Furthermore, we show that the system can maintain excellent performance for localized forecasting even with a significantly reduced number of GNSS stations (e.g., around 100), highlighting its cost-effectiveness and scalability. This interdisciplinary approach underscores the transformative potential of exploiting non-traditional data sources and deep learning for advanced environmental monitoring and real-time atmospheric applications.
comment: 31 pages, 10 figures; Minor text revisions; Updated the questions, some images in the article, the abstract, and the main text content
♻ ☆ CAPO: Towards Enhancing LLM Reasoning through Generative Credit Assignment
Reinforcement Learning with Verifiable Rewards (RLVR) has improved the reasoning abilities of Large Language Models (LLMs) by using rule-based binary feedback. However, current RLVR methods typically assign the same reward to every token. This coarse-grained feedback hampers precise credit assignment, making it hard for models to identify which reasoning steps lead to success or failure, and often results in suboptimal policies. Methods like PPO provide credit assignment by value estimation, but yield inaccurate and unverifiable signals due to limited sampling. On the other hand, methods using Process Reward Models can provide step-wise rewards but suffer from several key limitations: they require high-quality process supervision labels, the feedback is unreliable due to probabilistic reward modeling, and their application in online reinforcement learning (RL) is time-consuming. To overcome these limitations, we introduce a simple but efficient method-Credit Assignment Policy Optimization (CAPO). Instead of training auxiliary models, CAPO directly leverages an off-the-shelf, general-purpose LLM as a Generative Process Reward Model (LLM-as-GenPRM) to generate all step-wise critique by one pass only based on the correctness of the step itself, providing deterministic token-level credits to refine the tokens that were originally assigned identical rule-based rewards. To further enhance the accuracy and robustness, we employ voting mechanisms that scale with the number of generated critiques. Extensive experiments on various backbones like Llama and Qwen models show that CAPO consistently outperforms supervised learning-based and RL-based fine-tuning methods across four challenging mathematical benchmarks and three out-of-domain benchmarks. Further analysis shows that CAPO can help the model to foster the learning of correct reasoning pathways leading to correct answers.
comment: Work in progress
♻ ☆ Infinity Parser: Layout Aware Reinforcement Learning for Scanned Document Parsing
Automated parsing of scanned documents into richly structured, machine-readable formats remains a critical bottleneck in Document AI, as traditional multi-stage pipelines suffer from error propagation and limited adaptability to diverse layouts. We introduce layoutRL, an end-to-end reinforcement learning framework that trains models to be explicitly layout-aware by optimizing a composite reward of normalized edit distance, paragraph count accuracy, and reading order preservation. Leveraging our newly released dataset, Infinity-Doc-55K, which combines 55K high-fidelity synthetic scanned document parsing data with expert-filtered real-world documents, we instantiate layoutRL in a vision-language-model-based parser called Infinity-Parser. Evaluated on English and Chinese benchmarks for OCR, table and formula extraction, and reading order detection, Infinity-Parser achieves new state-of-the-art performance in both accuracy and structural fidelity, outpacing specialist pipelines and general-purpose vision-language models. We will publicly release our code and dataset to accelerate progress in robust document understanding.
comment: 16 pages, 12 figures
♻ ☆ Accurate and Efficient Low-Rank Model Merging in Core Space NeurIPS 2025
In this paper, we address the challenges associated with merging low-rank adaptations of large neural networks. With the rise of parameter-efficient adaptation techniques, such as Low-Rank Adaptation (LoRA), model fine-tuning has become more accessible. While fine-tuning models with LoRA is highly efficient, existing merging methods often sacrifice this efficiency by merging fully-sized weight matrices. We propose the Core Space merging framework, which enables the merging of LoRA-adapted models within a common alignment basis, thereby preserving the efficiency of low-rank adaptation while substantially improving accuracy across tasks. We further provide a formal proof that projection into Core Space ensures no loss of information and provide a complexity analysis showing the efficiency gains. Extensive empirical results demonstrate that Core Space significantly improves existing merging techniques and achieves state-of-the-art results on both vision and language tasks while utilizing a fraction of the computational resources. Codebase is available at https://github.com/apanariello4/core-space-merging.
comment: Accepted at 39th Conference on Neural Information Processing Systems (NeurIPS 2025), San Diego, USA
♻ ☆ Periodontal Bone Loss Analysis via Keypoint Detection With Heuristic Post-Processing
This study proposes a deep learning framework and annotation methodology for the automatic detection of periodontal bone loss landmarks, associated conditions, and staging. 192 periapical radiographs were collected and annotated with a stage agnostic methodology, labelling clinically relevant landmarks regardless of disease presence or extent. We propose a heuristic post-processing module that aligns predicted keypoints to tooth boundaries using an auxiliary instance segmentation model. An evaluation metric, Percentage of Relative Correct Keypoints (PRCK), is proposed to capture keypoint performance in dental imaging domains. Four donor pose estimation models were adapted with fine-tuning for our keypoint problem. Post-processing improved fine-grained localisation, raising average PRCK^{0.05} by +0.028, but reduced coarse performance for PRCK^{0.25} by -0.0523 and PRCK^{0.5} by -0.0345. Orientation estimation shows excellent performance for auxiliary segmentation when filtered with either stage 1 object detection model. Periodontal staging was detected sufficiently, with the best mesial and distal Dice scores of 0.508 and 0.489, while furcation involvement and widened periodontal ligament space tasks remained challenging due to scarce positive samples. Scalability is implied with similar validation and external set performance. The annotation methodology enables stage agnostic training with balanced representation across disease severities for some detection tasks. The PRCK metric provides a domain-specific alternative to generic pose metrics, while the heuristic post-processing module consistently corrected implausible predictions with occasional catastrophic failures. The proposed framework demonstrates the feasibility of clinically interpretable periodontal bone loss assessment, with potential to reduce diagnostic variability and clinician workload.
comment: 18 pages, 7 tables, 9 figures, 1 equation, journal paper submitted to Computers in Biology and Medicine
♻ ☆ Unseen from Seen: Rewriting Observation-Instruction Using Foundation Models for Augmenting Vision-Language Navigation IEEE
Data scarcity is a long-standing challenge in the Vision-Language Navigation (VLN) field, which extremely hinders the generalization of agents to unseen environments. Previous works primarily rely on additional simulator data or web-collected images/videos to improve the generalization. However, the simulator environments still face limited diversity, and the web-collected data often requires extensive labor to remove the noise. In this paper, we propose a Rewriting-driven AugMentation (RAM) paradigm for VLN, which directly creates the unseen observation-instruction pairs via rewriting human-annotated training data. Benefiting from our rewriting mechanism, new observation-instruction pairs can be obtained in both simulator-free and labor-saving manners to promote generalization. Specifically, we first introduce Object-Enriched Observation Rewriting, where we combine Vision-Language Models (VLMs) and Large Language Models (LLMs) to derive rewritten object-enriched scene descriptions, enabling observation synthesis with diverse objects and spatial layouts via Text-to-Image Generation Models (T2IMs). Then, we propose Observation-Contrast Instruction Rewriting, which generates observation-aligned rewritten instructions by requiring LLMs to reason the difference between original and new observations. We further develop a mixing-then-focusing training strategy with a random observation cropping scheme, effectively enhancing data distribution diversity while suppressing augmentation data noise during training. Experiments on both the discrete environments (R2R, REVERIE, and R4R datasets) and continuous environments (R2R-CE dataset) show the superior performance and impressive generalization ability of our method. Code is available at https://github.com/SaDil13/VLN-RAM.
comment: Accepted by IEEE Transactions on Neural Networks and Learning Systems
♻ ☆ Semantic Representation Attack against Aligned Large Language Models
Large Language Models (LLMs) increasingly employ alignment techniques to prevent harmful outputs. Despite these safeguards, attackers can circumvent them by crafting prompts that induce LLMs to generate harmful content. Current methods typically target exact affirmative responses, such as ``Sure, here is...'', suffering from limited convergence, unnatural prompts, and high computational costs. We introduce Semantic Representation Attack, a novel paradigm that fundamentally reconceptualizes adversarial objectives against aligned LLMs. Rather than targeting exact textual patterns, our approach exploits the semantic representation space comprising diverse responses with equivalent harmful meanings. This innovation resolves the inherent trade-off between attack efficacy and prompt naturalness that plagues existing methods. The Semantic Representation Heuristic Search algorithm is proposed to efficiently generate semantically coherent and concise adversarial prompts by maintaining interpretability during incremental expansion. We establish rigorous theoretical guarantees for semantic convergence and demonstrate that our method achieves unprecedented attack success rates (89.41\% averaged across 18 LLMs, including 100\% on 11 models) while maintaining stealthiness and efficiency. Comprehensive experimental results confirm the overall superiority of our Semantic Representation Attack. The code will be publicly available.
♻ ☆ PokeeResearch: Effective Deep Research via Reinforcement Learning from AI Feedback and Robust Reasoning Scaffold
Tool-augmented large language models (LLMs) are emerging as deep research agents, systems that decompose complex queries, retrieve external evidence, and synthesize grounded responses. Yet current agents remain limited by shallow retrieval, weak alignment metrics, and brittle tool-use behavior. We introduce PokeeResearch-7B, a 7B-parameter deep research agent built under a unified reinforcement learning framework for robustness, alignment, and scalability. PokeeResearch-7B is trained by an annotation-free Reinforcement Learning from AI Feedback (RLAIF) framework to optimize policies using LLM-based reward signals that capture factual accuracy, citation faithfulness, and instruction adherence. A chain-of-thought-driven multi-call reasoning scaffold further enhances robustness through self-verification and adaptive recovery from tool failures. Among 10 popular deep research benchmarks, PokeeResearch-7B achieves state-of-the-art performance among 7B-scale deep research agents. This highlights that careful reinforcement learning and reasoning design can produce efficient, resilient, and research-grade AI agents. The model and inference code is open-sourced under MIT license at https://github.com/Pokee-AI/PokeeResearchOSS.
♻ ☆ SRA-CL: Semantic Retrieval Augmented Contrastive Learning for Sequential Recommendation NeurIPS 2025
Contrastive learning has shown effectiveness in improving sequential recommendation models. However, existing methods still face challenges in generating high-quality contrastive pairs: they either rely on random perturbations that corrupt user preference patterns or depend on sparse collaborative data that generates unreliable contrastive pairs. Furthermore, existing approaches typically require predefined selection rules that impose strong assumptions, limiting the model's ability to autonomously learn optimal contrastive pairs. To address these limitations, we propose a novel approach named Semantic Retrieval Augmented Contrastive Learning (SRA-CL). SRA-CL leverages the semantic understanding and reasoning capabilities of LLMs to generate expressive embeddings that capture both user preferences and item characteristics. These semantic embeddings enable the construction of candidate pools for inter-user and intra-user contrastive learning through semantic-based retrieval. To further enhance the quality of the contrastive samples, we introduce a learnable sample synthesizer that optimizes the contrastive sample generation process during model training. SRA-CL adopts a plug-and-play design, enabling seamless integration with existing sequential recommendation architectures. Extensive experiments on four public datasets demonstrate the effectiveness and model-agnostic nature of our approach.
comment: Accepted by NeurIPS 2025. Code is available at: https://github.com/ziqiangcui/SRA-CL
♻ ☆ Robust LLM Training Infrastructure at ByteDance
The training scale of large language models (LLMs) has reached tens of thousands of GPUs and is still continuously expanding, enabling faster learning of larger models. Accompanying the expansion of the resource scale is the prevalence of failures (CUDA error, NaN values, job hang, etc.), which poses significant challenges to training stability. Any large-scale LLM training infrastructure should strive for minimal training interruption, efficient fault diagnosis, and effective failure tolerance to enable highly efficient continuous training. This paper presents ByteRobust, a large-scale GPU infrastructure management system tailored for robust and stable training of LLMs. It exploits the uniqueness of LLM training process and gives top priorities to detecting and recovering failures in a routine manner. Leveraging parallelisms and characteristics of LLM training, ByteRobust enables high-capacity fault tolerance, prompt fault demarcation, and localization with an effective data-driven approach, comprehensively ensuring continuous and efficient training of LLM tasks. ByteRobust is deployed on a production GPU platform and achieves 97% ETTR for a three-month training job on 9,600 GPUs.
♻ ☆ MSDM: Generating Task-Specific Pathology Images with a Multimodal Conditioned Diffusion Model for Cell and Nuclei Segmentation
Scarcity of annotated data, particularly for rare or atypical morphologies, present significant challenges for cell and nuclei segmentation in computational pathology. While manual annotation is labor-intensive and costly, synthetic data offers a cost-effective alternative. We introduce a Multimodal Semantic Diffusion Model (MSDM) for generating realistic pixel-precise image-mask pairs for cell and nuclei segmentation. By conditioning the generative process with cellular/nuclear morphologies (using horizontal and vertical maps), RGB color characteristics, and BERT-encoded assay/indication metadata, MSDM generates datasests with desired morphological properties. These heterogeneous modalities are integrated via multi-head cross-attention, enabling fine-grained control over the generated images. Quantitative analysis demonstrates that synthetic images closely match real data, with low Wasserstein distances between embeddings of generated and real images under matching biological conditions. The incorporation of these synthetic samples, exemplified by columnar cells, significantly improves segmentation model accuracy on columnar cells. This strategy systematically enriches data sets, directly targeting model deficiencies. We highlight the effectiveness of multimodal diffusion-based augmentation for advancing the robustness and generalizability of cell and nuclei segmentation models. Thereby, we pave the way for broader application of generative models in computational pathology.
♻ ☆ The quest for the GRAph Level autoEncoder (GRALE)
Although graph-based learning has attracted a lot of attention, graph representation learning is still a challenging task whose resolution may impact key application fields such as chemistry or biology. To this end, we introduce GRALE, a novel graph autoencoder that encodes and decodes graphs of varying sizes into a shared embedding space. GRALE is trained using an Optimal Transport-inspired loss that compares the original and reconstructed graphs and leverages a differentiable node matching module, which is trained jointly with the encoder and decoder. The proposed attention-based architecture relies on Evoformer, the core component of AlphaFold, which we extend to support both graph encoding and decoding. We show, in numerical experiments on simulated and molecular data, that GRALE enables a highly general form of pre-training, applicable to a wide range of downstream tasks, from classification and regression to more complex tasks such as graph interpolation, editing, matching, and prediction.
♻ ☆ PartSDF: Part-Based Implicit Neural Representation for Composite 3D Shape Parametrization and Optimization
Accurate 3D shape representation is essential in engineering applications such as design, optimization, and simulation. In practice, engineering workflows require structured, part-based representations, as objects are inherently designed as assemblies of distinct components. However, most existing methods either model shapes holistically or decompose them without predefined part structures, limiting their applicability in real-world design tasks. We propose PartSDF, a supervised implicit representation framework that explicitly models composite shapes with independent, controllable parts while maintaining shape consistency. Thanks to its simple but innovative architecture, PartSDF outperforms both supervised and unsupervised baselines in reconstruction and generation tasks. We further demonstrate its effectiveness as a structured shape prior for engineering applications, enabling precise control over individual components while preserving overall coherence. Code available at https://github.com/cvlab-epfl/PartSDF.
comment: Accepted to TMLR (33 pages, 22 figures)
♻ ☆ Client Clustering Meets Knowledge Sharing: Enhancing Privacy and Robustness in Personalized Peer-to-Peer Learning IEEE
The growing adoption of Artificial Intelligence (AI) in Internet of Things (IoT) ecosystems has intensified the need for personalized learning methods that can operate efficiently and privately across heterogeneous, resource-constrained devices. However, enabling effective personalized learning in decentralized settings introduces several challenges, including efficient knowledge transfer between clients, protection of data privacy, and resilience against poisoning attacks. In this paper, we address these challenges by developing P4 (Personalized, Private, Peer-to-Peer) -- a method designed to deliver personalized models for resource-constrained IoT devices while ensuring differential privacy and robustness against poisoning attacks. Our solution employs a lightweight, fully decentralized algorithm to privately detect client similarity and form collaborative groups. Within each group, clients leverage differentially private knowledge distillation to co-train their models, maintaining high accuracy while ensuring robustness to the presence of malicious clients. We evaluate P4 on popular benchmark datasets using both linear and CNN-based architectures across various heterogeneity settings and attack scenarios. Experimental results show that P4 achieves 5% to 30% higher accuracy than leading differentially private peer-to-peer approaches and maintains robustness with up to 30% malicious clients. Additionally, we demonstrate its practicality by deploying it on resource-constrained devices, where collaborative training between two clients adds only ~7 seconds of overhead.
comment: This paper has been accepted for publication at the IEEE Annual Congress on Artificial Intelligence of Things (IEEE AIoT) 2025
♻ ☆ DARIL: When Imitation Learning outperforms Reinforcement Learning in Surgical Action Planning MICCAI2025
Surgical action planning requires predicting future instrument-verb-target triplets for real-time assistance. While teleoperated robotic surgery provides natural expert demonstrations for imitation learning (IL), reinforcement learning (RL) could potentially discover superior strategies through self-exploration. We present the first comprehensive comparison of IL versus RL for surgical action planning on CholecT50. Our Dual-task Autoregressive Imitation Learning (DARIL) baseline achieves 34.6% action triplet recognition mAP and 33.6% next frame prediction mAP with smooth planning degradation to 29.2% at 10-second horizons. We evaluated three RL variants: world model-based RL, direct video RL, and inverse RL enhancement. Surprisingly, all RL approaches underperformed DARIL--world model RL dropped to 3.1% mAP at 10s while direct video RL achieved only 15.9%. Our analysis reveals that distribution matching on expert-annotated test sets systematically favors IL over potentially valid RL policies that differ from training demonstrations. This challenges assumptions about RL superiority in sequential decision making and provides crucial insights for surgical AI development.
comment: Paper accepted at the MICCAI2025 workshop proceedings on COLlaborative Intelligence and Autonomy in Image-guided Surgery (COLAS)
♻ ☆ Late Fusion and Multi-Level Fission Amplify Cross-Modal Transfer in Text-Speech LMs
Text-Speech Language Models (TSLMs) -- language models trained to jointly process and generate text and speech -- are commonly trained through an early modality fusion/fission approach, in which both modalities are fed and predicted from a shared backbone via linear layers. We hypothesize that this approach limits cross-modal transfer by neglecting feature compositionality -- specifically, the finer-grained nature of speech representations compared to text -- preventing the emergence of a shared feature hierarchy within model layers. In this paper, we argue that this limitation can be addressed through late fusion and fission, with a fission process that accesses both high- and low-level features for speech generation. Our models implementing these principles, SmolTolk, rival or surpass state-of-the-art TSLMs trained with orders of magnitude more compute, and achieve significantly improved cross-modal performance relative to early fusion/fission baselines. Representation analyses further suggest that our method enhances the model's ability to abstract higher-level, more semantic features from speech, and leads to increasingly shared representation spaces across layers.
♻ ☆ DICE: Structured Reasoning in LLMs through SLM-Guided Chain-of-Thought Correction EMNLP 2025
When performing reasoning tasks with user-specific requirements, such as strict output formats, large language models (LLMs) often prioritize reasoning over adherence to detailed instructions. Fine-tuning LLMs on supervised datasets to address this is impractical due to high computational costs and limited parameter access. To tackle this, we propose DICE, a lightweight framework that guides small language models (SLMs) to refine LLMs' outputs through chain-of-thought (CoT) correction. DICE decouples the process by first prompting LLMs to generate natural language responses, then using trained SLMs to analyze and refine these outputs to meet structured output specifications. This framework preserves LLMs' broad knowledge and reasoning capabilities while ensuring the outputs conform to user demands. Specifically, DICE first constructs structured CoT adaptation datasets via a two-stage method and subsequently applies a dual-tuning strategy to fine-tune SLMs for generating structured outputs in an analyze-then-answer pattern. Experiments demonstrate that DICE improves the average format accuracy and content correctness of LLM outputs by 35.4\% and 29.4\%, respectively, achieving state-of-the-art (SOTA) performance over other competitive baselines.
comment: This paper was accepted to the EMNLP 2025 main conference
♻ ☆ Towards Evaluating Proactive Risk Awareness of Multimodal Language Models NeurIPS 2025
Human safety awareness gaps often prevent the timely recognition of everyday risks. In solving this problem, a proactive safety artificial intelligence (AI) system would work better than a reactive one. Instead of just reacting to users' questions, it would actively watch people's behavior and their environment to detect potential dangers in advance. Our Proactive Safety Bench (PaSBench) evaluates this capability through 416 multimodal scenarios (128 image sequences, 288 text logs) spanning 5 safety-critical domains. Evaluation of 36 advanced models reveals fundamental limitations: Top performers like Gemini-2.5-pro achieve 71% image and 64% text accuracy, but miss 45-55% risks in repeated trials. Through failure analysis, we identify unstable proactive reasoning rather than knowledge deficits as the primary limitation. This work establishes (1) a proactive safety benchmark, (2) systematic evidence of model limitations, and (3) critical directions for developing reliable protective AI. We believe our dataset and findings can promote the development of safer AI assistants that actively prevent harm rather than merely respond to requests. Our dataset can be found at https://huggingface.co/datasets/Youliang/PaSBench.
comment: Accepted by NeurIPS 2025 (Track on Datasets and Benchmarks)
♻ ☆ Trainable Dynamic Mask Sparse Attention
The increasing demand for long-context modeling in large language models (LLMs) is bottlenecked by the quadratic complexity of the standard self-attention mechanism. The community has proposed sparse attention to mitigate this issue. However, position-aware sparse attention methods rely on static sparse structures that lack adaptability to diverse query contexts, while content-aware sparse attention methods depend on heuristic key-value selection, hindering full differentiability. We introduce a trainable dynamic mask sparse attention mechanism, a method that merges the advantages of both position-aware and content-aware approaches. Dynamic Mask Attention (DMA) achieves this through three key innovations: First, it leverages value vector representations to generate content-aware dynamic masks, enabling the model to adaptively identify and attend to critical information. Second, it computes position-aware sparse weights in a hardware-friendly manner, efficiently skipping unnecessary computational regions. Finally, we demonstrate that the introduced dynamic mask and sparse weights do not obstruct gradients, supporting end-to-end training. We have validated the performance of DMA through comprehensive experiments. A large body of experimental evidence shows that DMA consistently holds a Pareto advantage over state-of-the-art sparse attention baselines in tasks including scaling laws, multi-query associative recall, standard benchmarks, and needle in a haystack tests, while also delivering up to a 10x overall speedup. These results highlight its ability to effectively balance model efficiency with long-context modeling capabilities. Our computational kernel code is now open-source at https://github.com/SmallDoges/flash-dmattn to encourage further research and application by the community.
comment: 26 pages
♻ ☆ Every Rollout Counts: Optimal Resource Allocation for Efficient Test-Time Scaling NeurIPS2025
Test-Time Scaling (TTS) improves the performance of Large Language Models (LLMs) by using additional inference-time computation to explore multiple reasoning paths through search. Yet how to allocate a fixed rollout budget most effectively during search remains underexplored, often resulting in inefficient use of compute at test time. To bridge this gap, we formulate test-time search as a resource allocation problem and derive the optimal allocation strategy that maximizes the probability of obtaining a correct solution under a fixed rollout budget. Within this formulation, we reveal a core limitation of existing search methods: solution-level allocation tends to favor reasoning directions with more candidates, leading to theoretically suboptimal and inefficient use of compute. To address this, we propose Direction-Oriented Resource Allocation (DORA), a provably optimal method that mitigates this bias by decoupling direction quality from candidate count and allocating resources at the direction level. To demonstrate DORA's effectiveness, we conduct extensive experiments on challenging mathematical reasoning benchmarks including MATH500, AIME2024, and AIME2025. The empirical results show that DORA consistently outperforms strong baselines with comparable computational cost, achieving state-of-the-art accuracy. We hope our findings contribute to a broader understanding of optimal TTS for LLMs.
comment: Accepted at NeurIPS2025
♻ ☆ ADA-DPM: A Neural Descriptors-based Adaptive Noise Filtering Strategy for SLAM
Lidar SLAM plays a significant role in mobile robot navigation and high-definition map construction. However, existing methods often face a trade-off between localization accuracy and system robustness in scenarios with a high proportion of dynamic objects, point cloud distortion, and unstructured environments. To address this issue, we propose a neural descriptors-based adaptive noise filtering strategy for SLAM, named ADA-DPM, which improves the performance of localization and mapping tasks through three key technical innovations. Firstly, to tackle dynamic object interference, we design the Dynamic Segmentation Head to predict and filter out dynamic feature points, eliminating the ego-motion interference caused by dynamic objects. Secondly, to mitigate the impact of noise and unstructured feature points, we propose the Global Importance Scoring Head that adaptively selects high-contribution feature points while suppressing the influence of noise and unstructured feature points. Moreover, we introduce the Cross-Layer Graph Convolution Module (GLI-GCN) to construct multi-scale neighborhood graphs, fusing local structural information across different scales and improving the discriminative power of overlapping features. Finally, experimental validations on multiple public datasets confirm the effectiveness of ADA-DPM.
♻ ☆ Tracing Partisan Bias to Its Emotional Fingerprints: A Computational Approach to Mitigation
This study introduces a novel framework for analysing and mitigating media bias by tracing partisan stances to their linguistic roots in emotional language. We posit that partisan bias is not merely an abstract stance but materialises as quantifiable 'emotional fingerprints' within news texts. These fingerprints are systematically measured using the Valence-Arousal-Dominance (VAD) framework, allowing us to decode the affective strategies behind partisan framing. Our analysis of the Allsides dataset confirms this hypothesis, revealing distinct and statistically significant emotional fingerprints for left, centre, and right-leaning media. Based on this evidence-driven approach, we then propose a computational approach to mitigation through NeutraSum, a model designed to neutralise these identified emotional patterns. By explicitly targeting the VAD characteristics of biased language, NeutraSum generates summaries that are not only coherent but also demonstrably closer to an emotionally neutral baseline. Experimental results validate our framework: NeutraSum successfully erases the partisan emotional fingerprints from its summaries, achieving a demonstrably lower emotional bias score than other models. This work pioneers a new path for bias mitigation, shifting the focus from treating symptoms (political labels) to addressing the cause: the emotional encoding of partisan bias in language.
♻ ☆ Learning Generalizable Shape Completion with SIM(3) Equivariance NeurIPS 2025
3D shape completion methods typically assume scans are pre-aligned to a canonical frame. This leaks pose and scale cues that networks may exploit to memorize absolute positions rather than inferring intrinsic geometry. When such alignment is absent in real data, performance collapses. We argue that robust generalization demands architectural equivariance to the similarity group, SIM(3), so the model remains agnostic to pose and scale. Following this principle, we introduce the first SIM(3)-equivariant shape completion network, whose modular layers successively canonicalize features, reason over similarity-invariant geometry, and restore the original frame. Under a de-biased evaluation protocol that removes the hidden cues, our model outperforms both equivariant and augmentation baselines on the PCN benchmark. It also sets new cross-domain records on real driving and indoor scans, lowering minimal matching distance on KITTI by 17% and Chamfer distance $\ell1$ on OmniObject3D by 14%. Perhaps surprisingly, ours under the stricter protocol still outperforms competitors under their biased settings. These results establish full SIM(3) equivariance as an effective route to truly generalizable shape completion. Project page: https://sime-completion.github.io.
comment: NeurIPS 2025
♻ ☆ Synthetic Series-Symbol Data Generation for Time Series Foundation Models NeurIPS 2025
Foundation models for time series analysis (TSA) have attracted significant attention. However, challenges such as training data scarcity and imbalance continue to hinder their development. Inspired by complex dynamic system theories, we design a series-symbol data generation mechanism, enabling the unrestricted creation of high-quality time series data paired with corresponding symbolic expressions. To leverage series-symbol data pairs with strong correlations, we develop SymTime, a pre-trained foundation model for enhancing time series representation using symbolic information. SymTime demonstrates competitive performance across five major TSA tasks when fine-tunes with downstream tasks, rivaling foundation models pre-trained on real-world datasets. This approach underscores the potential of series-symbol data generation and pretraining mechanisms in overcoming data scarcity and enhancing task performance. The code is available at https://github.com/wwhenxuan/SymTime.
comment: 64 pages, 25 figures, 35 tables, NeurIPS 2025 accepted
♻ ☆ RocqStar: Leveraging Similarity-driven Retrieval and Agentic Systems for Rocq generation
Interactive Theorem Proving was repeatedly shown to be fruitful combined with Generative Artificial Intelligence. This paper assesses multiple approaches to Rocq generation and illuminates potential avenues for improvement. We highlight the importance of thorough premise selection for generating Rocq proofs and propose a novel approach, leveraging retrieval via a self-attentive embedder model. The evaluation of the designed approach shows up to 28% relative increase of the generator's performance. We tackle the problem of writing Rocq proofs using a multi-stage agentic system, tailored for formal verification, and demonstrate its high effectiveness. We conduct an ablation study and demonstrate shows that incorporating multi-agent debate during the planning stage increases the proof success rate by 20% overall and nearly doubles it for complex theorems, while the reflection mechanism further enhances stability and consistency.
♻ ☆ ReDi: Rectified Discrete Flow
Discrete Flow-based Models (DFMs) are powerful generative models for high-quality discrete data but typically suffer from slow sampling speeds due to their reliance on iterative decoding processes. This reliance on a multi-step process originates from the factorization approximation of DFMs, which is necessary for handling high-dimensional data. In this paper, we analyze the factorization approximation error using Conditional Total Correlation (TC), and reveal its dependence on the coupling. To address the challenge of efficient few-step generation, we propose Rectified Discrete Flow (ReDi), a novel iterative method that reduces the underlying factorization error (measured as Conditional TC) by rectifying the coupling between source and target distributions. We theoretically prove that each ReDi step guarantees a monotonic decreasing Conditional TC, ensuring its convergence. Empirically, ReDi significantly reduces Conditional TC and enables few-step generation. Moreover, we demonstrate that the rectified couplings are well-suited for training efficient one-step models on image generation. ReDi offers a simple and theoretically grounded approach for tackling the few-step challenge, providing a new perspective on efficient discrete data synthesis. Code is available at https://github.com/Ugness/ReDi_discrete.
♻ ☆ When majority rules, minority loses: bias amplification of gradient descent
Despite growing empirical evidence of bias amplification in machine learning, its theoretical foundations remain poorly understood. We develop a formal framework for majority-minority learning tasks, showing how standard training can favor majority groups and produce stereotypical predictors that neglect minority-specific features. Assuming population and variance imbalance, our analysis reveals three key findings: (i) the close proximity between ``full-data'' and stereotypical predictors, (ii) the dominance of a region where training the entire model tends to merely learn the majority traits, and (iii) a lower bound on the additional training required. Our results are illustrated through experiments in deep learning for tabular and image classification tasks.
♻ ☆ Language Models are Injective and Hence Invertible
Transformer components such as non-linear activations and normalization are inherently non-injective, suggesting that different inputs could map to the same output and prevent exact recovery of the input from a model's representations. In this paper, we challenge this view. First, we prove mathematically that transformer language models mapping discrete input sequences to their corresponding sequence of continuous representations are injective and therefore lossless, a property established at initialization and preserved during training. Second, we confirm this result empirically through billions of collision tests on six state-of-the-art language models, and observe no collisions. Third, we operationalize injectivity: we introduce SipIt, the first algorithm that provably and efficiently reconstructs the exact input text from hidden activations, establishing linear-time guarantees and demonstrating exact invertibility in practice. Overall, our work establishes injectivity as a fundamental and exploitable property of language models, with direct implications for transparency, interpretability, and safe deployment.
♻ ☆ Knowledge-based Visual Question Answer with Multimodal Processing, Retrieval and Filtering NeurIPS 2025
Knowledge-based visual question answering (KB-VQA) requires visual language models (VLMs) to integrate visual understanding with external knowledge retrieval. Although retrieval-augmented generation (RAG) achieves significant advances in this task by combining knowledge-base querying, it still struggles with the quality of multimodal queries and the relevance of retrieved results. To overcome these challenges, we propose a novel three-stage method, termed Wiki-PRF, including Processing, Retrieval and Filtering stages. The processing stage dynamically invokes visual tools to extract precise multimodal information for retrieval. The retrieval stage integrates visual and text features to achieve multimodal knowledge retrieval. The filtering stage performs relevance filtering and concentration on retrieval results. To this end, we introduce a visual language model trained with answer accuracy and format consistency as reward signals via a reinforcement learning manner. This enhances the model's reasoning, tool invocation for accurate queries, and filtering of irrelevant content. Experiments on benchmark datasets (E-VQA and InfoSeek) show significant improvements~(36.0 and 42.8) in answer quality, achieving state-of-the-art performance. Code is available at https://github.com/cqu-student/Wiki-PRF
comment: Accepted by NeurIPS 2025
♻ ☆ Robust Deterministic Policy Gradient for Disturbance Attenuation and Its Application to Quadrotor Control
Practical control systems pose significant challenges in identifying optimal control policies due to uncertainties in the system model and external disturbances. While $H_\infty$ control techniques are commonly used to design robust controllers that mitigate the effects of disturbances, these methods often require complex and computationally intensive calculations. To address this issue, this paper proposes a reinforcement learning algorithm called robust deterministic policy gradient (RDPG), which formulates the $H_\infty$ control problem as a two-player zero-sum dynamic game. In this formulation, one player (the user) aims to minimize the cost, while the other player (the adversary) seeks to maximize it. We then employ deterministic policy gradient (DPG) and its deep reinforcement learning counterpart to train a robust control policy with effective disturbance attenuation. In particular, for practical implementation, we introduce an algorithm called robust deep deterministic policy gradient (RDDPG), which employs a deep neural network architecture and integrates techniques from the twin-delayed deep deterministic policy gradient (TD3) to enhance stability and learning efficiency. To evaluate the proposed algorithm, we implement it on an unmanned aerial vehicle (UAV) tasked with following a predefined path in a disturbance-prone environment. The experimental results demonstrate that the proposed method outperforms other control approaches in terms of robustness against disturbances, enabling precise real-time tracking of moving targets even under severe disturbance conditions.
comment: 24 pages
♻ ☆ DeepSeek-Inspired Exploration of RL-based LLMs and Synergy with Wireless Networks: A Survey
Reinforcement learning (RL)-based large language models (LLMs), such as ChatGPT, DeepSeek, and Grok-3, have attracted widespread attention for their remarkable capabilities in multimodal data understanding. Meanwhile, the rapid expansion of information services has led to a growing demand for AI-enabled wireless networks. The open-source DeepSeek models are famous for their innovative designs, such as large-scale pure RL and cost-efficient training, which make them well-suited for practical deployment in wireless networks. By integrating DeepSeek-style LLMs with wireless infrastructures, a synergistic opportunity arises: the DeepSeek-style LLMs enhance network optimization with strong reasoning and decision-making abilities, while wireless infrastructure enables the broad deployment of these models. Motivated by this convergence, this survey presents a comprehensive DeepSeek-inspired exploration of RL-based LLMs in the context of wireless networks. We begin by reviewing key techniques behind network optimization to establish a foundation for understanding DeepSeek-style LLM integration. Next, we examine recent advancements in RL-based LLMs, using DeepSeek models as a representative example. Building on this, we explore the synergy between the two domains, highlighting motivations, challenges, and potential solutions. Finally, we highlight emerging directions for integrating LLMs with wireless networks, such as quantum, on-device, and neural-symbolic LLM models, as well as embodied AI agents. Overall, this survey offers a comprehensive examination of the interplay between DeepSeek-style LLMs and wireless networks, demonstrating how these domains can mutually enhance each other to drive innovation.
comment: 45 pages, 12 figures
♻ ☆ Error Broadcast and Decorrelation as a Potential Artificial and Natural Learning Mechanism
We introduce Error Broadcast and Decorrelation (EBD), a novel learning framework for neural networks that addresses credit assignment by directly broadcasting output errors to individual layers, circumventing weight transport of backpropagation. EBD is rigorously grounded in the stochastic orthogonality property of Minimum Mean Square Error estimators. This fundamental principle states that the error of an optimal estimator is orthogonal to functions of the input. Guided by this insight, EBD defines layerwise loss functions that directly penalize correlations between layer activations and output errors, thereby establishing a principled foundation for error broadcasting. This theoretically sound mechanism naturally leads to the experimentally observed three-factor learning rule and integrates with biologically plausible frameworks to enhance performance and plausibility. Numerical experiments demonstrate EBD's competitive or better performance against other error-broadcast methods on benchmark datasets. Our findings establish EBD as an efficient, biologically plausible, and principled alternative for neural network training. The implementation is available at: https://github.com/meterdogan07/error-broadcast-decorrelation.
♻ ☆ MIRROR: Multi-Modal Pathological Self-Supervised Representation Learning via Modality Alignment and Retention
Histopathology and transcriptomics are fundamental modalities in oncology, encapsulating the morphological and molecular aspects of the disease. Multi-modal self-supervised learning has demonstrated remarkable potential in learning pathological representations by integrating diverse data sources. Conventional multi-modal integration methods primarily emphasize modality alignment, while paying insufficient attention to retaining the modality-specific structures. However, unlike conventional scenarios where multi-modal inputs share highly overlapping features, histopathology and transcriptomics exhibit pronounced heterogeneity, offering orthogonal yet complementary insights. Histopathology provides morphological and spatial context, elucidating tissue architecture and cellular topology, whereas transcriptomics delineates molecular signatures through gene expression patterns. This inherent disparity introduces a major challenge in aligning them while maintaining modality-specific fidelity. To address these challenges, we present MIRROR, a novel multi-modal representation learning method designed to foster both modality alignment and retention. MIRROR employs dedicated encoders to extract comprehensive features for each modality, which is further complemented by a modality alignment module to achieve seamless integration between phenotype patterns and molecular profiles. Furthermore, a modality retention module safeguards unique attributes from each modality, while a style clustering module mitigates redundancy and enhances disease-relevant information by modeling and aligning consistent pathological signatures within a clustering space. Extensive evaluations on TCGA cohorts for cancer subtyping and survival analysis highlight MIRROR's superior performance, demonstrating its effectiveness in constructing comprehensive oncological feature representations and benefiting the cancer diagnosis.
comment: 18 pages, 7 figures, 10 tables. Code available at https://github.com/TianyiFranklinWang/MIRROR. Project page: https://tianyifranklinwang.github.io/MIRROR
♻ ☆ NFIG: Multi-Scale Autoregressive Image Generation via Frequency Ordering
Autoregressive models have achieved significant success in image generation. However, unlike the inherent hierarchical structure of image information in the spectral domain, standard autoregressive methods typically generate pixels sequentially in a fixed spatial order. To better leverage this spectral hierarchy, we introduce NextFrequency Image Generation (NFIG). NFIG is a novel framework that decomposes the image generation process into multiple frequency-guided stages. NFIG aligns the generation process with the natural image structure. It does this by first generating low-frequency components, which efficiently capture global structure with significantly fewer tokens, and then progressively adding higher-frequency details. This frequency-aware paradigm offers substantial advantages: it not only improves the quality of generated images but crucially reduces inference cost by efficiently establishing global structure early on. Extensive experiments on the ImageNet-256 benchmark validate NFIG's effectiveness, demonstrating superior performance (FID: 2.81) and a notable 1.25x speedup compared to the strong baseline VAR-d20. The source code is available at https://github.com/Pride-Huang/NFIG.
comment: 10 pages, 7 figures, 2 tables
♻ ☆ Flex-Judge: Text-Only Reasoning Unleashes Zero-Shot Multimodal Evaluators NeurIPS 2025
Human-generated reward signals are critical for aligning generative models with human preferences, guiding both training and inference-time evaluations. While large language models (LLMs) employed as proxy evaluators, i.e., LLM-as-a-Judge, significantly reduce the costs associated with manual annotations, they typically require extensive modality-specific training data and fail to generalize well across diverse multimodal tasks. In this paper, we propose Flex-Judge, a reasoning-guided multimodal judge model that leverages minimal textual reasoning data to robustly generalize across multiple modalities and evaluation formats. Our core intuition is that structured textual reasoning explanations inherently encode generalizable decision-making patterns, enabling an effective transfer to multimodal judgments, e.g., with images or videos. Empirical results demonstrate that Flex-Judge, despite being trained on significantly fewer text data, achieves competitive or superior performance compared to state-of-the-art commercial APIs and extensively trained multimodal evaluators. Notably, Flex-Judge presents broad impact in modalities like molecule, where comprehensive evaluation benchmarks are scarce, underscoring its practical value in resource-constrained domains. Our framework highlights reasoning-based text supervision as a powerful, cost-effective alternative to traditional annotation-intensive approaches, substantially advancing scalable multimodal model-as-a-judge.
comment: NeurIPS 2025
♻ ☆ FlowDet: Overcoming Perspective and Scale Challenges in Real-Time End-to-End Traffic Detection
End-to-end object detectors offer a promising NMS-free paradigm for real-time applications, yet their high computational cost remains a significant barrier, particularly for complex scenarios like intersection traffic monitoring. To address this challenge, we propose FlowDet, a high-speed detector featuring a decoupled encoder optimization strategy applied to the DETR architecture. Specifically, FlowDet employs a novel Geometric Deformable Unit (GDU) for traffic-aware geometric modeling and a Scale-Aware Attention (SAA) module to maintain high representational power across extreme scale variations. To rigorously evaluate the model's performance in environments with severe occlusion and high object density, we collected the Intersection-Flow-5k dataset, a new challenging scene for this task. Evaluated on Intersection-Flow-5k, FlowDet establishes a new state-of-the-art. Compared to the strong RT-DETR baseline, it improves AP(test) by 1.5% and AP50(test) by 1.6%, while simultaneously reducing GFLOPs by 63.2% and increasing inference speed by 16.2%. Our work demonstrates a new path towards building highly efficient and accurate detectors for demanding, real-world perception systems. The Intersection-Flow-5k dataset is available at https://github.com/AstronZh/Intersection-Flow-5K.
comment: Accepted by PRCV 2025. Project page with code and dataset: https://github.com/AstronZh/Intersection-Flow-5K
♻ ☆ Patch of Invisibility: Naturalistic Physical Black-Box Adversarial Attacks on Object Detectors ECML-PKDD 2024
Adversarial attacks on deep learning models have received increased attention in recent years. Work in this area has mostly focused on gradient-based techniques, so-called 'white-box' attacks, where the attacker has access to the targeted model's internal parameters; such an assumption is usually untenable in the real world. Additionally, some attacks use the entire pixel space to fool a given model, which is neither practical nor physical. To accommodate these problems we propose the BBNP algorithm (Black-Box Naturalistic Patch): a direct, black-box, naturalistic, gradient-free method that uses the learned image manifold of a pretrained, generative adversarial network (GAN) to generate naturalistic adversarial patches for object detectors. This method performs model-agnostic black-box naturalistic attacks on object detection models by relying solely on the outputs of the model. Comparing our approach against five models, five black-box and two white-box attacks, we show that our proposed method achieves state-of-the-art results, outperforming all other tested black-box approaches.
comment: Accepted at MLCS @ ECML-PKDD 2024
♻ ☆ GFM-RAG: Graph Foundation Model for Retrieval Augmented Generation NeurIPS 2025
Retrieval-augmented generation (RAG) has proven effective in integrating knowledge into large language models (LLMs). However, conventional RAGs struggle to capture complex relationships between pieces of knowledge, limiting their performance in intricate reasoning that requires integrating knowledge from multiple sources. Recently, graph-enhanced retrieval augmented generation (GraphRAG) builds graph structure to explicitly model these relationships, enabling more effective and efficient retrievers. Nevertheless, its performance is still hindered by the noise and incompleteness within the graph structure. To address this, we introduce GFM-RAG, a novel graph foundation model (GFM) for retrieval augmented generation. GFM-RAG is powered by an innovative graph neural network that reasons over graph structure to capture complex query-knowledge relationships. The GFM with 8M parameters undergoes a two-stage training process on large-scale datasets, comprising 60 knowledge graphs with over 14M triples and 700k documents. This results in impressive performance and generalizability for GFM-RAG, making it the first graph foundation model applicable to unseen datasets for retrieval without any fine-tuning required. Extensive experiments on three multi-hop QA datasets and seven domain-specific RAG datasets demonstrate that GFM-RAG achieves state-of-the-art performance while maintaining efficiency and alignment with neural scaling laws, highlighting its potential for further improvement.
comment: Accepted by NeurIPS 2025
♻ ☆ Planner and Executor: Collaboration between Discrete Diffusion And Autoregressive Models in Reasoning
Current autoregressive language models (ARMs) achieve high accuracy but require long token sequences, making them costly. Discrete diffusion language models (DDLMs) enable parallel and flexible generation within a fixed number of steps and have recently emerged for their strong performance in complex reasoning and long-term planning tasks. We present a study exploring hybrid architectures that couple DDLMs with ARMs to assess whether their collaboration can yield complementary benefits. We first examine collaboration in text space, where one model plans the reasoning process and another executes the final answer based on that plan. We then extend this setup to latent-space communication, introducing a learned projector that maps DDLM latents into the ARM's embedding space, potentially bypassing some of the text-generation limitations of diffusion models. We find that shifting DDLM --> ARM communication from text space to latent space yields significant accuracy gains, for example increasing from 27.0% to 54.0% on DART-5 and from 0.0% to 14.0% on AIME24. We also find that combining a DDLM planner with an ARM executor can provide substantial computational savings with little to no impact on accuracy. For example, the latent-space pipeline, using 64 tokens for planning and roughly 5 for execution, surpasses Qwen3.1-7B on DART-5 and AIME, despite Qwen using 44 times more tokens. Overall, our study offers new insights into reasoning with DDLMs and highlights their potential in hybrid architectures.
comment: Under Submission
♻ ☆ From Cradle to Cane: A Two-Pass Framework for High-Fidelity Lifespan Face Aging NeurIPS 2025
Face aging has become a crucial task in computer vision, with applications ranging from entertainment to healthcare. However, existing methods struggle with achieving a realistic and seamless transformation across the entire lifespan, especially when handling large age gaps or extreme head poses. The core challenge lies in balancing age accuracy and identity preservation--what we refer to as the Age-ID trade-off. Most prior methods either prioritize age transformation at the expense of identity consistency or vice versa. In this work, we address this issue by proposing a two-pass face aging framework, named Cradle2Cane, based on few-step text-to-image (T2I) diffusion models. The first pass focuses on solving age accuracy by introducing an adaptive noise injection (AdaNI) mechanism. This mechanism is guided by including prompt descriptions of age and gender for the given person as the textual condition. Also, by adjusting the noise level, we can control the strength of aging while allowing more flexibility in transforming the face. However, identity preservation is weakly ensured here to facilitate stronger age transformations. In the second pass, we enhance identity preservation while maintaining age-specific features by conditioning the model on two identity-aware embeddings (IDEmb): SVR-ArcFace and Rotate-CLIP. This pass allows for denoising the transformed image from the first pass, ensuring stronger identity preservation without compromising the aging accuracy. Both passes are jointly trained in an end-to-end way. Extensive experiments on the CelebA-HQ test dataset, evaluated through Face++ and Qwen-VL protocols, show that our Cradle2Cane outperforms existing face aging methods in age accuracy and identity consistency. Code is available at https://github.com/byliutao/Cradle2Cane.
comment: 32 pages, 12 figures, NeurIPS 2025 Poster
♻ ☆ The 1st Solution for 7th LSVOS RVOS Track: SaSaSa2VA ICCV 2025
Referring video object segmentation (RVOS) requires segmenting and tracking objects in videos conditioned on natural-language expressions, demanding fine-grained understanding of both appearance and motion. Building on Sa2VA, which couples a Multi-modal Large Language Model (MLLM) with the video segmentation model SAM2, we identify two key bottlenecks that limit segmentation performance: sparse frame sampling and reliance on a single [SEG] token for an entire video. We propose Segmentation Augmented and Selective Averaged Sa2VA (SaSaSa2VA) to address these issues. On the 7th LSVOS Challenge (RVOS track), SaSaSa2VA achieves a $\mathcal{J\&F}$ of 67.45, ranking first and surpassing the runner-up by 2.80 points. This result and ablation studies demonstrate that efficient segmentation augmentation and test-time ensembling substantially enhance grounded MLLMs for RVOS. The code is released in Sa2VA repository: https://github.com/bytedance/Sa2VA.
comment: The 1st place report of 7th LSVOS challenge RVOS track in ICCV 2025. The code is released in Sa2VA repository: https://github.com/bytedance/Sa2VA
♻ ☆ Ineq-Comp: Benchmarking Human-Intuitive Compositional Reasoning in Automated Theorem Proving on Inequalities NeurIPS 2025
LLM-based formal proof assistants (e.g., in Lean) hold great promise for automating mathematical discovery. But beyond syntactic correctness, do these systems truly understand mathematical structure as humans do? We investigate this question in context of mathematical inequalities -- specifically the prover's ability to recognize that the given problem simplifies by applying a known inequality such as AM/GM. Specifically, we are interested in their ability to do this in a compositional setting where multiple inequalities must be applied as part of a solution. We introduce Ineq-Comp, a benchmark built from elementary inequalities through systematic transformations, including variable duplication, algebraic rewriting, and multi-step composition. Although these problems remain easy for humans, we find that most provers -- including Goedel, STP, and Kimina-7B -- struggle significantly. DeepSeek-Prover-V2-7B shows relative robustness, but still suffers a 20% performance drop (pass@32). Even for DeepSeek-Prover-V2-671B model, the gap between compositional variants and seed problems exists, implying that simply scaling up the model size alone does not fully solve the compositional weakness. Strikingly, performance remains poor for all models even when formal proofs of the constituent parts are provided in context, revealing that the source of weakness is indeed in compositional reasoning. Our results expose a persisting gap between the generalization behavior of current AI provers and human mathematical intuition. All data and evaluation code can be found at https://github.com/haoyuzhao123/LeanIneqComp.
comment: To appear in NeurIPS 2025 Track on Datasets and Benchmarks. 28 pages
♻ ☆ On Task Vectors and Gradients
Task arithmetic has emerged as a simple yet powerful technique for model merging, enabling the combination of multiple finetuned models into one. Despite its empirical success, a clear theoretical explanation of why and when it works is lacking. This paper provides a rigorous theoretical foundation for task arithmetic by establishing a connection between task vectors and gradients of the task losses. We show that under standard gradient descent, a task vector generated from one epoch of finetuning is exactly equivalent to the negative gradient of the loss, scaled by the learning rate. For the practical multi-epoch setting, we prove that this equivalence holds approximately, with a second-order error term that we explicitly bound for feed-forward networks. Our empirical analysis across seven vision benchmarks corroborates our theory, demonstrating that the first-epoch gradient dominates the finetuning trajectory in both norm and direction. A key implication is that merging models finetuned for only a single epoch often yields performance comparable to merging fully converged models. These findings reframe task arithmetic as a form of approximate multitask learning, providing a clear rationale for its effectiveness and highlighting the critical role of early training dynamics in model merging.
comment: 10 pages of main paper, 5 figures
♻ ☆ Automated Knowledge Component Generation for Interpretable Knowledge Tracing in Coding Problems
Knowledge components (KCs) mapped to problems help model student learning, tracking their mastery levels on fine-grained skills thereby facilitating personalized learning and feedback in online learning platforms. However, crafting and tagging KCs to problems, traditionally performed by human domain experts, is highly labor intensive. We present an automated, LLM-based pipeline for KC generation and tagging for open-ended programming problems. We also develop an LLM-based knowledge tracing (KT) framework to leverage these LLM-generated KCs, which we refer to as KCGen-KT. We conduct extensive quantitative and qualitative evaluations on two real-world student code submission datasets in different programming languages.We find that KCGen-KT outperforms existing KT methods and human-written KCs on future student response prediction. We investigate the learning curves of generated KCs and show that LLM-generated KCs result in a better fit than human written KCs under a cognitive model. We also conduct a human evaluation with course instructors to show that our pipeline generates reasonably accurate problem-KC mappings.
♻ ☆ ConsintBench: Evaluating Language Models on Real-World Consumer Intent Understanding
Understanding human intent is a complex, high-level task for large language models (LLMs), requiring analytical reasoning, contextual interpretation, dynamic information aggregation, and decision-making under uncertainty. Real-world public discussions, such as consumer product discussions, are rarely linear or involve a single user. Instead, they are characterized by interwoven and often conflicting perspectives, divergent concerns, goals, emotional tendencies, as well as implicit assumptions and background knowledge about usage scenarios. To accurately understand such explicit public intent, an LLM must go beyond parsing individual sentences; it must integrate multi-source signals, reason over inconsistencies, and adapt to evolving discourse, similar to how experts in fields like politics, economics, or finance approach complex, uncertain environments. Despite the importance of this capability, no large-scale benchmark currently exists for evaluating LLMs on real-world human intent understanding, primarily due to the challenges of collecting real-world public discussion data and constructing a robust evaluation pipeline. To bridge this gap, we introduce \bench, the first dynamic, live evaluation benchmark specifically designed for intent understanding, particularly in the consumer domain. \bench is the largest and most diverse benchmark of its kind, supporting real-time updates while preventing data contamination through an automated curation pipeline.
♻ ☆ The Gauss-Markov Adjunction Provides Categorical Semantics of Residuals in Supervised Learning
Enhancing the intelligibility and interpretability of machine learning is a crucial task in responding to the demand for Explicability as an AI principle, and in promoting the better social implementation of AI. The aim of our research is to contribute to this improvement by reformulating machine learning models through the lens of category theory, thereby developing a semantic framework for structuring and understanding AI systems. Our categorical modeling in this paper clarifies and formalizes the structural interplay between residuals and parameters in supervised learning. The present paper focuses on the multiple linear regression model, which represents the most basic form of supervised learning. By defining two Lawvere-enriched categories corresponding to parameters and data, along with an adjoint pair of functors between them, we introduce our categorical formulation of supervised learning. We show that the essential structure of this framework is captured by what we call the Gauss-Markov Adjunction. Within this setting, the dual flow of information can be explicitly described as a correspondence between variations in parameters and residuals. The ordinary least squares estimator for the parameters and the minimum residual are related via the preservation of limits by the right adjoint functor. Furthermore, we position this formulation as an instance of extended denotational semantics for supervised learning, and propose applying a semantic perspective developed in theoretical computer science as a formal foundation for Explicability in AI.
♻ ☆ Consistency of Responses and Continuations Generated by Large Language Models on Social Media AAAI
Large Language Models (LLMs) demonstrate remarkable capabilities in text generation, yet their emotional consistency and semantic coherence in social media contexts remain insufficiently understood. This study investigates how LLMs handle emotional content and maintain semantic relationships through continuation and response tasks using three open-source models: Gemma, Llama3 and Llama3.3 and one commercial Model:Claude. By analyzing climate change discussions from Twitter and Reddit, we examine emotional transitions, intensity patterns, and semantic consistency between human-authored and LLM-generated content. Our findings reveal that while both models maintain high semantic coherence, they exhibit distinct emotional patterns: these models show a strong tendency to moderate negative emotions. When the input text carries negative emotions such as anger, disgust, fear, or sadness, LLM tends to generate content with more neutral emotions, or even convert them into positive emotions such as joy or surprise. At the same time, we compared the LLM-generated content with human-authored content. The four models systematically generated responses with reduced emotional intensity and showed a preference for neutral rational emotions in the response task. In addition, these models all maintained a high semantic similarity with the original text, although their performance in the continuation task and the response task was different. These findings provide deep insights into the emotion and semantic processing capabilities of LLM, which are of great significance for its deployment in social media environments and human-computer interaction design.
comment: This paper has been accepted by the International AAAI Conference on Web and Social Media (ICWSM) 2026 (Los Angeles, California, U.S.)
♻ ☆ Fully Autonomous AI Agents Should Not be Developed
This paper argues that fully autonomous AI agents should not be developed. In support of this position, we build from prior scientific literature and current product marketing to delineate different AI agent levels and detail the ethical values at play in each, documenting trade-offs in potential benefits and risks. Our analysis reveals that risks to people increase with the autonomy of a system: The more control a user cedes to an AI agent, the more risks to people arise. Particularly concerning are safety risks, which affect human life and impact further values.
♻ ☆ RHYTHM: Reasoning with Hierarchical Temporal Tokenization for Human Mobility NeurIPS
Predicting human mobility is inherently challenging due to complex long-range dependencies and multi-scale periodic behaviors. To address this, we introduce RHYTHM (Reasoning with Hierarchical Temporal Tokenization for Human Mobility), a unified framework that leverages large language models (LLMs) as general-purpose spatio-temporal predictors and trajectory reasoners. Methodologically, RHYTHM employs temporal tokenization to partition each trajectory into daily segments and encode them as discrete tokens with hierarchical attention that captures both daily and weekly dependencies, thereby quadratically reducing the sequence length while preserving cyclical information. Additionally, we enrich token representations by adding pre-computed prompt embeddings for trajectory segments and prediction targets via a frozen LLM, and feeding these combined embeddings back into the LLM backbone to capture complex interdependencies. Computationally, RHYTHM keeps the pretrained LLM backbone frozen, yielding faster training and lower memory usage. We evaluate our model against state-of-the-art methods using three real-world datasets. Notably, RHYTHM achieves a 2.4% improvement in overall accuracy, a 5.0% increase on weekends, and a 24.6% reduction in training time. Code is publicly available at https://github.com/he-h/rhythm.
comment: Advances in Neural Information Processing Systems 39 (NeurIPS) 2025
♻ ☆ Visual Instruction Bottleneck Tuning NeurIPS 2025
Despite widespread adoption, multimodal large language models (MLLMs) suffer performance degradation when encountering unfamiliar queries under distribution shifts. Existing methods to improve MLLM generalization typically require either more instruction data or larger advanced model architectures, both of which incur non-trivial human labor or computational costs. In this work, we take an alternative approach to enhance the generalization and robustness of MLLMs under distribution shifts, from a representation learning perspective. Inspired by information bottleneck (IB) principle, we derive a variational lower bound of the IB for MLLMs and devise a practical implementation, Visual Instruction Bottleneck Tuning (Vittle). We then provide a theoretical justification of Vittle by revealing its connection to an information-theoretic robustness metric of MLLM. Empirical validation of multiple MLLMs on open-ended and closed-form question answering and object hallucination detection tasks over 45 datasets, including 30 shift scenarios, demonstrates that Vittle consistently improves the MLLM's robustness under shifts by pursuing the learning of a minimal sufficient representation.
comment: NeurIPS 2025
♻ ☆ VisuRiddles: Fine-grained Perception is a Primary Bottleneck for Multimodal Large Language Models in Abstract Visual Reasoning
Recent strides in multimodal large language models (MLLMs) have significantly advanced their performance in many reasoning tasks. However, Abstract Visual Reasoning (AVR) remains a critical challenge, primarily due to limitations in perceiving abstract graphics. To tackle this issue, we investigate the bottlenecks in current MLLMs and synthesize training data to improve their abstract visual perception. First, we propose VisuRiddles, a benchmark for AVR, featuring tasks meticulously constructed to assess models' reasoning capacities across five core dimensions and two high-level reasoning categories. Second, we introduce the Perceptual Riddle Synthesizer (PRS), an automated framework for generating riddles with fine-grained perceptual descriptions. PRS not only generates valuable training data for abstract graphics but also provides fine-grained perceptual description, crucially allowing for supervision over intermediate reasoning stages and thereby improving both training efficacy and model interpretability. Our extensive experimental results on VisuRiddles empirically validate that fine-grained visual perception is the principal bottleneck and our synthesis framework markedly enhances the performance of contemporary MLLMs on these challenging tasks. Our code and dataset will be released at https://github.com/yh-hust/VisuRiddles
comment: 13 pages, 4 figures
♻ ☆ Leveraging Importance Sampling to Detach Alignment Modules from Large Language Models NeurIPS 2025
The widespread adoption of large language models (LLMs) across industries has increased the demand for high-quality and customizable outputs. However, traditional alignment methods often require retraining large pretrained models, making it difficult to quickly adapt and optimize LLMs for diverse applications. To address this limitation, we propose a novel \textit{Residual Alignment Model} (\textit{RAM}) that formalizes the alignment process as a type of importance sampling. In this framework, the unaligned upstream model serves as the proposal distribution, while the alignment process is framed as secondary sampling based on an autoregressive alignment module that acts as an estimator of the importance weights. This design enables a natural detachment of the alignment module from the target aligned model, improving flexibility and scalability. Based on this model, we derive an efficient sequence-level training strategy for the alignment module, which operates independently of the proposal module. Additionally, we develop a resampling algorithm with iterative token-level decoding to address the common first-token latency issue in comparable methods. Experimental evaluations on two leading open-source LLMs across diverse tasks, including instruction following, domain adaptation, and preference optimization, demonstrate that our approach consistently outperforms baseline models.
comment: Accepted by NeurIPS 2025, 28 pages
♻ ☆ LLMTaxo: Leveraging Large Language Models for Constructing Taxonomy of Factual Claims from Social Media
With the rapid expansion of content on social media platforms, analyzing and comprehending online discourse has become increasingly complex. This paper introduces LLMTaxo, a novel framework leveraging large language models for the automated construction of taxonomies of factual claims from social media by generating topics at multiple levels of granularity. The resulting hierarchical structure significantly reduces redundancy and improves information accessibility. We also propose dedicated taxonomy evaluation metrics to enable comprehensive assessment. Evaluations conducted on three diverse datasets demonstrate LLMTaxo's effectiveness in producing clear, coherent, and comprehensive taxonomies. Among the evaluated models, GPT-4o mini consistently outperforms others across most metrics. The framework's flexibility and low reliance on manual intervention underscore its potential for broad applicability.
♻ ☆ Latent Diffusion Model without Variational Autoencoder
Recent progress in diffusion-based visual generation has largely relied on latent diffusion models with variational autoencoders (VAEs). While effective for high-fidelity synthesis, this VAE+diffusion paradigm suffers from limited training efficiency, slow inference, and poor transferability to broader vision tasks. These issues stem from a key limitation of VAE latent spaces: the lack of clear semantic separation and strong discriminative structure. Our analysis confirms that these properties are crucial not only for perception and understanding tasks, but also for the stable and efficient training of latent diffusion models. Motivated by this insight, we introduce SVG, a novel latent diffusion model without variational autoencoders, which leverages self-supervised representations for visual generation. SVG constructs a feature space with clear semantic discriminability by leveraging frozen DINO features, while a lightweight residual branch captures fine-grained details for high-fidelity reconstruction. Diffusion models are trained directly on this semantically structured latent space to facilitate more efficient learning. As a result, SVG enables accelerated diffusion training, supports few-step sampling, and improves generative quality. Experimental results further show that SVG preserves the semantic and discriminative capabilities of the underlying self-supervised representations, providing a principled pathway toward task-general, high-quality visual representations. Code and interpretations are available at https://howlin-wang.github.io/svg/.
♻ ☆ A Markovian Framing of WaveFunctionCollapse for Procedurally Generating Aesthetically Complex Environments
Procedural content generation often requires satisfying both designer-specified objectives and adjacency constraints implicitly imposed by the underlying tile set. To address the challenges of jointly optimizing both constraints and objectives, we reformulate WaveFunctionCollapse (WFC) as a Markov Decision Process (MDP), enabling external optimization algorithms to focus exclusively on objective maximization while leveraging WFC's propagation mechanism to enforce constraint satisfaction. We empirically compare optimizing this MDP to traditional evolutionary approaches that jointly optimize global metrics and local tile placement. Across multiple domains with various difficulties, we find that joint optimization not only struggles as task complexity increases, but consistently underperforms relative to optimization over the WFC-MDP, underscoring the advantages of decoupling local constraint satisfaction from global objective optimization.
♻ ☆ Generating Individual Travel Diaries Using Large Language Models Informed by Census and Land-Use Data
This study introduces a Large Language Model (LLM) scheme for generating individual travel diaries in agent-based transportation models. While traditional approaches rely on large quantities of proprietary household travel surveys, the method presented in this study generates personas stochastically from open-source American Community Survey (ACS) and Smart Location Database (SLD) data, then synthesizes diaries through direct prompting. This study features a novel one-to-cohort realism score: a composite of four metrics (Trip Count Score, Interval Score, Purpose Score, and Mode Score) validated against the Connecticut Statewide Transportation Study (CSTS) diaries, matched across demographic variables. The validation utilizes Jensen-Shannon Divergence to measure distributional similarities between generated and real diaries. When compared to diaries generated with classical methods (Negative Binomial for trip generation; Multinomial Logit for mode/purpose) calibrated on the validation set, LLM-generated diaries achieve comparable overall realism (LLM mean: 0.485 vs. 0.455). The LLM excels in determining trip purpose and demonstrates greater consistency (narrower realism score distribution), while classical models lead in numerical estimates of trip count and activity duration. Aggregate validation confirms the LLM's statistical representativeness (LLM mean: 0.612 vs. 0.435), demonstrating LLM's zero-shot viability and establishing a quantifiable metric of diary realism for future synthetic diary evaluation systems.
♻ ☆ COLORA: Efficient Fine-Tuning for Convolutional Models with a Study Case on Optical Coherence Tomography Image Classification
We introduce CoLoRA (Convolutional Low-Rank Adaptation), a parameter-efficient fine-tuning method for convolutional neural networks (CNNs). CoLoRA extends LoRA to convolutional layers by decomposing kernel updates into lightweight depthwise and pointwise components.This design reduces the number of trainable parameters to 0.2 compared to conventional fine-tuning, preserves the original model size, and allows merging updates into the pretrained weights after each epoch, keeping inference complexity unchanged. On OCTMNISTv2, CoLoRA applied to VGG16 and ResNet50 achieves up to 1 percent accuracy and 0.013 AUC improvements over strong baselines (Vision Transformers, state-space, and Kolmogorov Arnold models) while reducing per-epoch training time by nearly 20 percent. Results indicate that CoLoRA provides a stable and effective alternative to full fine-tuning for medical image classification.
comment: 15 pages, 13 figures
♻ ☆ VLLFL: A Vision-Language Model Based Lightweight Federated Learning Framework for Smart Agriculture
In modern smart agriculture, object detection plays a crucial role by enabling automation, precision farming, and monitoring of resources. From identifying crop health and pest infestations to optimizing harvesting processes, accurate object detection enhances both productivity and sustainability. However, training object detection models often requires large-scale data collection and raises privacy concerns, particularly when sensitive agricultural data is distributed across farms. To address these challenges, we propose VLLFL, a vision-language model-based lightweight federated learning framework (VLLFL). It harnesses the generalization and context-aware detection capabilities of the vision-language model (VLM) and leverages the privacy-preserving nature of federated learning. By training a compact prompt generator to boost the performance of the VLM deployed across different farms, VLLFL preserves privacy while reducing communication overhead. Experimental results demonstrate that VLLFL achieves 14.53% improvement in the performance of VLM while reducing 99.3% communication overhead. Spanning tasks from identifying a wide variety of fruits to detecting harmful animals in agriculture, the proposed framework offers an efficient, scalable, and privacy-preserving solution specifically tailored to agricultural applications.
♻ ☆ Dendritic Computing with Multi-Gate Ferroelectric Field-Effect Transistors
Although inspired by neuronal systems in the brain, artificial neural networks generally employ point-neurons, which offer far less computational complexity than their biological counterparts. Neurons have dendritic arbors that connect to different sets of synapses and offer local non-linear accumulation - playing a pivotal role in processing and learning. Inspired by this, we propose a novel neuron design based on a multi-gate ferroelectric field-effect transistor that mimics dendrites. It leverages ferroelectric nonlinearity for local computations within dendritic branches, while utilizing the transistor action to generate the final neuronal output. The branched architecture paves the way for utilizing smaller crossbar arrays in hardware integration, leading to greater efficiency. Using an experimentally calibrated device-circuit-algorithm co-simulation framework, we demonstrate that networks incorporating our dendritic neurons achieve superior performance in comparison to much larger networks without dendrites ($\sim$17$\times$ fewer trainable weight parameters). These findings suggest that dendritic hardware can significantly improve computational efficiency, and learning capacity of neuromorphic systems optimized for edge applications.
♻ ☆ Efficient Training-Free Online Routing for High-Volume Multi-LLM Serving NeurIPS 2025
Increasing demand for Large Language Models (LLMs) services imposes substantial deployment and computation costs on providers. LLM routing offers a cost-efficient solution by directing queries to the optimal LLM based on model and query features. However, existing works primarily focus on offline scenarios and struggle to adapt to online settings with high query volume and constrained token budgets. In this work, we introduce the first training-free algorithm for online routing scenarios. Our algorithm leverages approximate nearest neighbor search to efficiently estimate query features and performs a one-time optimization over a small set of initial queries to learn a routing strategy that guides future routing. We provide theoretical guarantees demonstrating that our algorithm achieves a competitive ratio of $1 - o(1)$ under natural assumptions, which is further validated by extensive experiments across 3 benchmark datasets and 8 baselines, showing an average improvement of 3.55$\times$ in overall performance, 1.85$\times$ in cost efficiency, and nearly 4.25$\times$ in throughput. Our code is available at https://github.com/fzwark/PORT.
comment: NeurIPS 2025
♻ ☆ Proof2Silicon: Prompt Repair for Verified Code and Hardware Generation via Reinforcement Learning
Large Language Models (LLMs) have demonstrated impressive capabilities in automated code generation but frequently produce code that fails formal verification, an essential requirement for hardware and safety-critical domains. To overcome this fundamental limitation, we previously proposed PREFACE, a model-agnostic framework based on reinforcement learning (RL) that iteratively repairs the prompts provided to frozen LLMs, systematically steering them toward generating formally verifiable Dafny code without costly fine-tuning. This work presents Proof2Silicon, a novel end-to-end synthesis framework that embeds the previously proposed PREFACE flow to enable the generation of correctness-by-construction hardware directly from natural language specifications. Proof2Silicon operates by: (1) leveraging PREFACE's verifier-driven RL agent to optimize prompt generation iteratively, ensuring Dafny code correctness; (2) automatically translating verified Dafny programs into synthesizable high-level C using Dafny's Python backend and PyLog; and (3) employing Vivado HLS to produce RTL implementations. Evaluated rigorously on a challenging 100-task benchmark, PREFACE's RL-guided prompt optimization consistently improved Dafny verification success rates across diverse LLMs by up to 21%. Crucially, Proof2Silicon achieved an end-to-end hardware synthesis success rate of up to 72%, generating RTL designs through Vivado HLS synthesis flows. These results demonstrate a robust, scalable, and automated pipeline for LLM-driven, formally verified hardware synthesis, bridging natural-language specification and silicon realization.
♻ ☆ GraSS: Scalable Data Attribution with Gradient Sparsification and Sparse Projection NeurIPS 2025
Gradient-based data attribution methods, such as influence functions, are critical for understanding the impact of individual training samples without requiring repeated model retraining. However, their scalability is often limited by the high computational and memory costs associated with per-sample gradient computation. In this work, we propose GraSS, a novel gradient compression algorithm and its variants FactGraSS for linear layers specifically, that explicitly leverage the inherent sparsity of per-sample gradients to achieve sub-linear space and time complexity. Extensive experiments demonstrate the effectiveness of our approach, achieving substantial speedups while preserving data influence fidelity. In particular, FactGraSS achieves up to 165% faster throughput on billion-scale models compared to the previous state-of-the-art baselines. Our code is publicly available at https://github.com/TRAIS-Lab/GraSS.
comment: Accepted at the 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ Sim2Dust: Mastering Dynamic Waypoint Tracking on Granular Media
Reliable autonomous navigation across the unstructured terrains of distant planetary surfaces is a critical enabler for future space exploration. However, the deployment of learning-based controllers is hindered by the inherent sim-to-real gap, particularly for the complex dynamics of wheel interactions with granular media. This work presents a complete sim-to-real framework for developing and validating robust control policies for dynamic waypoint tracking on such challenging surfaces. We leverage massively parallel simulation to train reinforcement learning agents across a vast distribution of procedurally generated environments with randomized physics. These policies are then transferred zero-shot to a physical wheeled rover operating in a lunar-analogue facility. Our experiments systematically compare multiple reinforcement learning algorithms and action smoothing filters to identify the most effective combinations for real-world deployment. Crucially, we provide strong empirical evidence that agents trained with procedural diversity achieve superior zero-shot performance compared to those trained on static scenarios. We also analyze the trade-offs of fine-tuning with high-fidelity particle physics, which offers minor gains in low-speed precision at a significant computational cost. Together, these contributions establish a validated workflow for creating reliable learning-based navigation systems, marking a substantial step towards deploying autonomous robots in the final frontier.
comment: Accepted for publication at the 2025 International Conference on Space Robotics (iSpaRo) | The source code is available at https://github.com/AndrejOrsula/space_robotics_bench
♻ ☆ RepIt: Steering Language Models with Concept-Specific Refusal Vectors
While activation steering in large language models (LLMs) is a growing area of research, methods can often incur broader effects than desired. This motivates isolation of purer concept vectors to enable targeted interventions and understand LLM behavior at a more granular level. We present RepIt, a simple and data-efficient framework for isolating concept-specific representations. Across five frontier LLMs, RepIt enables precise interventions: it selectively suppresses refusal on targeted concepts while preserving refusal elsewhere, producing models that answer WMD-related questions while still scoring as safe on standard benchmarks. We further show that the corrective signal localizes to just 100-200 neurons and that robust target representations can be extracted from as few as a dozen examples on a single A6000. This efficiency raises a dual concern: manipulations can be performed with modest compute and data to extend to underrepresented data-scarce topics while evading existing benchmarks. By disentangling refusal vectors with RepIt, this work demonstrates that targeted interventions can counteract overgeneralization, laying the foundation for more granular control of model behavior.
♻ ☆ Modeling Human Beliefs about AI Behavior for Scalable Oversight
As AI systems advance beyond human capabilities, scalable oversight becomes critical: how can we supervise AI that exceeds our abilities? A key challenge is that human evaluators may form incorrect beliefs about AI behavior in complex tasks, leading to unreliable feedback and poor value inference. To address this, we propose modeling evaluators' beliefs to interpret their feedback more reliably. We formalize human belief models, analyze their theoretical role in value learning, and characterize when ambiguity remains. To reduce reliance on precise belief models, we introduce "belief model covering" as a relaxation. This motivates our preliminary proposal to use the internal representations of adapted foundation models to mimic human evaluators' beliefs. These representations could be used to learn correct values from human feedback even when evaluators misunderstand the AI's behavior. Our work suggests that modeling human beliefs can improve value learning and outlines practical research directions for implementing this approach to scalable oversight.
comment: 56 pages
♻ ☆ A Survey of Automatic Hallucination Evaluation on Natural Language Generation
The rapid advancement of Large Language Models (LLMs) has brought a pressing challenge: how to reliably assess hallucinations to guarantee model trustworthiness. Although Automatic Hallucination Evaluation (AHE) has become an indispensable component of this effort, the field remains fragmented in its methodologies, limiting both conceptual clarity and practical progress. This survey addresses this critical gap through a systematic analysis of 105 evaluation methods, revealing that 77.1% specifically target LLMs, a paradigm shift that demands new evaluation frameworks. We formulate a structured framework to organize the field, based on a survey of foundational datasets and benchmarks and a taxonomy of evaluation methodologies, which together systematically document the evolution from pre-LLM to post-LLM approaches. Beyond taxonomical organization, we identify fundamental limitations in current approaches and their implications for real-world deployment. To guide future research, we delineate key challenges and propose strategic directions, including enhanced interpretability mechanisms and integration of application-specific evaluation criteria, ultimately providing a roadmap for developing more robust and practical hallucination evaluation systems.
comment: 46 pages
♻ ☆ REOrdering Patches Improves Vision Models NeurIPS 2025
Sequence models such as transformers require inputs to be represented as one-dimensional sequences. In vision, this typically involves flattening images using a fixed row-major (raster-scan) order. While full self-attention is permutation-equivariant, modern long-sequence transformers increasingly rely on architectural approximations that break this invariance and introduce sensitivity to patch ordering. We show that patch order significantly affects model performance in such settings, with simple alternatives like column-major or Hilbert curves yielding notable accuracy shifts. Motivated by this, we propose REOrder, a two-stage framework for discovering task-optimal patch orderings. First, we derive an information-theoretic prior by evaluating the compressibility of various patch sequences. Then, we learn a policy over permutations by optimizing a Plackett-Luce policy using REINFORCE. This approach enables efficient learning in a combinatorial permutation space. REOrder improves top-1 accuracy over row-major ordering on ImageNet-1K by up to 3.01% and Functional Map of the World by 13.35%.
comment: Accepted to the 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ Curriculum Learning with Synthetic Data for Enhanced Pulmonary Nodule Detection in Chest Radiographs
This study evaluates whether integrating curriculum learning with diffusion-based synthetic augmentation can enhance the detection of difficult pulmonary nodules in chest radiographs, particularly those with low size, brightness, and contrast, which often challenge conventional AI models due to data imbalance and limited annotation. A Faster R-CNN with a Feature Pyramid Network (FPN) backbone was trained on a hybrid dataset comprising expert-labeled NODE21 (1,213 patients; 52.4 percent male; mean age 63.2 +/- 11.5 years), VinDr-CXR, CheXpert, and 11,206 DDPM-generated synthetic images. Difficulty scores based on size, brightness, and contrast guided curriculum learning. Performance was compared to a non-curriculum baseline using mean average precision (mAP), Dice score, and area under the curve (AUC). Statistical tests included bootstrapped confidence intervals, DeLong tests, and paired t-tests. The curriculum model achieved a mean AUC of 0.95 versus 0.89 for the baseline (p < 0.001), with improvements in sensitivity (70 percent vs. 48 percent) and accuracy (82 percent vs. 70 percent). Stratified analysis demonstrated consistent gains across all difficulty bins (Easy to Very Hard). Grad-CAM visualizations confirmed more anatomically focused attention under curriculum learning. These results suggest that curriculum-guided synthetic augmentation enhances model robustness and generalization for pulmonary nodule detection.
comment: This version has been withdrawn due to authorship changes and a decision to substantially revise the manuscript with new methodology. A future version may be submitted separately
♻ ☆ Task Priors: Enhancing Model Evaluation by Considering the Entire Space of Downstream Tasks NeurIPS
The grand goal of AI research, and particularly Self Supervised Learning (SSL), is to produce systems that can successfully solve any possible task. In contrast, current evaluation methods available to AI researchers typically rely on a fixed collection of hand-picked downstream benchmarks. Hence, a large amount of effort is put into designing and searching for large collection of evaluation tasks that can serve as a proxy of our grand goal. We argue that such a rigid evaluation protocol creates a silent bottleneck in AI research. To remedy that, we define a probabilistic space of downstream tasks obtained by adopting a distribution of tasks and by defining Task Priors. Under this view, one can evaluate a model's performance over the set of all possible downstream tasks. Our framework is the first to provide answers to key questions such as (i) what is the average performance of my model over all possible downstream tasks weighted by the probability to encounter each task? or (ii) what is the variance of my model's performance across all downstream tasks under the defined Task Priors? Beyond establishing a new standard for evaluation, we believe that Task Priors will accelerate the pace of research in SSL - where downstream task evaluation is the sole qualitative signal that researchers have access to.
comment: NeurIPS UniReps Workshop 2025
♻ ☆ LLM Safety Alignment is Divergence Estimation in Disguise NeurIPS 2025
We present a theoretical framework showing that popular LLM alignment methods, including RLHF and its variants, can be understood as divergence estimators between aligned (safe or preferred) and unaligned (harmful or less preferred) distributions. This perspective explains the emergence of separation in the latent space between safe and harmful prompts after alignment. As an application of our general divergence framework, we propose KLDO, a novel KL divergence-based alignment method, and empirically validate its effectiveness. We further show that using compliance-refusal datasets, rather than standard preference-based datasets, leads to stronger separation and improved safety alignment. Finally, to quantify the separation effect, we propose a distance-based metric in the prompt representation space, which also acts as a statistically significant indicator for model safety.
comment: Accepted to NeurIPS 2025
♻ ☆ Echoes of Human Malice in Agents: Benchmarking LLMs for Multi-Turn Online Harassment Attacks
Large Language Model (LLM) agents are powering a growing share of interactive web applications, yet remain vulnerable to misuse and harm. Prior jailbreak research has largely focused on single-turn prompts, whereas real harassment often unfolds over multi-turn interactions. In this work, we present the Online Harassment Agentic Benchmark consisting of: (i) a synthetic multi-turn harassment conversation dataset, (ii) a multi-agent (e.g., harasser, victim) simulation informed by repeated game theory, (iii) three jailbreak methods attacking agents across memory, planning, and fine-tuning, and (iv) a mixed-methods evaluation framework. We utilize two prominent LLMs, LLaMA-3.1-8B-Instruct (open-source) and Gemini-2.0-flash (closed-source). Our results show that jailbreak tuning makes harassment nearly guaranteed with an attack success rate of 95.78--96.89% vs. 57.25--64.19% without tuning in Llama, and 99.33% vs. 98.46% without tuning in Gemini, while sharply reducing refusal rate to 1-2% in both models. The most prevalent toxic behaviors are Insult with 84.9--87.8% vs. 44.2--50.8% without tuning, and Flaming with 81.2--85.1% vs. 31.5--38.8% without tuning, indicating weaker guardrails compared to sensitive categories such as sexual or racial harassment. Qualitative evaluation further reveals that attacked agents reproduce human-like aggression profiles, such as Machiavellian/psychopathic patterns under planning, and narcissistic tendencies with memory. Counterintuitively, closed-source and open-source models exhibit distinct escalation trajectories across turns, with closed-source models showing significant vulnerability. Overall, our findings show that multi-turn and theory-grounded attacks not only succeed at high rates but also mimic human-like harassment dynamics, motivating the development of robust safety guardrails to ultimately keep online platforms safe and responsible.
comment: 13 pages, 4 figures
♻ ☆ Energy Matching: Unifying Flow Matching and Energy-Based Models for Generative Modeling NeurIPS 2025
Current state-of-the-art generative models map noise to data distributions by matching flows or scores. A key limitation of these models is their inability to readily integrate available partial observations and additional priors. In contrast, energy-based models (EBMs) address this by incorporating corresponding scalar energy terms. Here, we propose Energy Matching, a framework that endows flow-based approaches with the flexibility of EBMs. Far from the data manifold, samples move from noise to data along irrotational, optimal transport paths. As they approach the data manifold, an entropic energy term guides the system into a Boltzmann equilibrium distribution, explicitly capturing the underlying likelihood structure of the data. We parameterize these dynamics with a single time-independent scalar field, which serves as both a powerful generator and a flexible prior for effective regularization of inverse problems. The present method substantially outperforms existing EBMs on CIFAR-10 and ImageNet generation in terms of fidelity, while retaining simulation-free training of transport-based approaches away from the data manifold. Furthermore, we leverage the flexibility of the method to introduce an interaction energy that supports the exploration of diverse modes, which we demonstrate in a controlled protein generation setting. This approach learns a scalar potential energy, without time conditioning, auxiliary generators, or additional networks, marking a significant departure from recent EBM methods. We believe this simplified yet rigorous formulation significantly advances EBMs capabilities and paves the way for their wider adoption in generative modeling in diverse domains.
comment: Accepted to NeurIPS 2025
♻ ☆ C-SEO Bench: Does Conversational SEO Work? NeurIPS
Large Language Models (LLMs) are transforming search engines into Conversational Search Engines (CSE). Consequently, Search Engine Optimization (SEO) is being shifted into Conversational Search Engine Optimization (C-SEO). We are beginning to see dedicated C-SEO methods for modifying web documents to increase their visibility in CSE responses. However, they are often tested only for a limited breadth of application domains; we do not know whether certain C-SEO methods would be effective for a broad range of domains. Moreover, existing evaluations consider only a single-actor scenario where only one web document adopts a C-SEO method; in reality, multiple players are likely to competitively adopt the cutting-edge C-SEO techniques, drawing an analogy from the dynamics we have seen in SEO. We present C-SEO Bench, the first benchmark designed to evaluate C-SEO methods across multiple tasks, domains, and number of actors. We consider two search tasks, question answering and product recommendation, with three domains each. We also formalize a new evaluation protocol with varying adoption rates among involved actors. Our experiments reveal that most current C-SEO methods are not only largely ineffective but also frequently have a negative impact on document ranking, which is opposite to what is expected. Instead, traditional SEO strategies, those aiming to improve the ranking of the source in the LLM context, are significantly more effective. We also observe that as we increase the number of C-SEO adopters, the overall gains decrease, depicting a congested and zero-sum nature of the problem. Our code and data are available at https://github.com/parameterlab/c-seo-bench and https://huggingface.co/datasets/parameterlab/c-seo-bench.
comment: Accepted at NeurIPS Datasets & Benchmarks 2025
♻ ☆ Transition of $α$-mixing in Random Iterations with Applications in Queuing Theory
Nonlinear time series models with exogenous regressors are essential in econometrics, queuing theory, and machine learning, though their statistical analysis remains incomplete. Key results, such as the law of large numbers and the functional central limit theorem, are known for weakly dependent variables. We demonstrate the transfer of mixing properties from the exogenous regressor to the response via coupling arguments. Additionally, we study Markov chains in random environments with drift and minorization conditions, even under non-stationary environments with favorable mixing properties, and apply this framework to single-server queuing models.
comment: 39 pages, 1 figure
♻ ☆ Sparse Feature Coactivation Reveals Causal Semantic Modules in Large Language Models
We identify semantically coherent, context-consistent network components in large language models (LLMs) using coactivation of sparse autoencoder (SAE) features collected from just a handful of prompts. Focusing on concept-relation prediction tasks, we show that ablating these components for concepts (e.g., countries and words) and relations (e.g., capital city and translation language) changes model outputs in predictable ways, while amplifying these components induces counterfactual responses. Notably, composing relation and concept components yields compound counterfactual outputs. Further analysis reveals that while most concept components emerge from the very first layer, more abstract relation components are concentrated in later layers. Lastly, we show that extracted components more comprehensively capture concepts and relations than individual features while maintaining specificity. Overall, our findings suggest a modular organization of knowledge accessed through compositional operations, and advance methods for efficient, targeted LLM manipulation.
♻ ☆ Learning by Watching: A Review of Video-based Learning Approaches for Robot Manipulation IEEE
Robot learning of manipulation skills is hindered by the scarcity of diverse, unbiased datasets. While curated datasets can help, challenges remain in generalizability and real-world transfer. Meanwhile, large-scale "in-the-wild" video datasets have driven progress in computer vision through self-supervised techniques. Translating this to robotics, recent works have explored learning manipulation skills by passively watching abundant videos sourced online. Showing promising results, such video-based learning paradigms provide scalable supervision while reducing dataset bias. This survey reviews foundations such as video feature representation learning techniques, object affordance understanding, 3D hand/body modeling, and large-scale robot resources, as well as emerging techniques for acquiring robot manipulation skills from uncontrolled video demonstrations. We discuss how learning only from observing large-scale human videos can enhance generalization and sample efficiency for robotic manipulation. The survey summarizes video-based learning approaches, analyses their benefits over standard datasets, survey metrics, and benchmarks, and discusses open challenges and future directions in this nascent domain at the intersection of computer vision, natural language processing, and robot learning.
comment: Published at IEEE Access
♻ ☆ MTRE: Multi-Token Reliability Estimation for Hallucination Detection in VLMs
Vision-language models (VLMs) now rival human performance on many multimodal tasks, yet they still hallucinate objects or generate unsafe text. Current hallucination detectors, e.g., single-token linear probing (LP) and PTrue, typically analyze only the logit of the first generated token or just its highest-scoring component, overlooking richer signals embedded within earlier token distributions. We demonstrate that analyzing the complete sequence of early logits potentially provides substantially more diagnostic information. We emphasize that hallucinations may only emerge after several tokens, as subtle inconsistencies accumulate over time. By analyzing the Kullback-Leibler (KL) divergence between logits corresponding to hallucinated and non-hallucinated tokens, we underscore the importance of incorporating later-token logits to more accurately capture the reliability dynamics of VLMs. In response, we introduce Multi-Token Reliability Estimation (MTRE), a lightweight, white-box method that aggregates logits from the first ten tokens using multi-token log-likelihood ratios and self-attention. Despite the challenges posed by large vocabulary sizes and long logit sequences, MTRE remains efficient and tractable. Across MAD-Bench, MM-SafetyBench, MathVista, and four compositional-geometry benchmarks, MTRE achieves a 9.4% gain in accuracy and a 14.8% gain in AUROC over standard detection methods, establishing a new state of the art in hallucination detection for open-source VLMs.
♻ ☆ Mind the Web: The Security of Web Use Agents
Web-use agents are rapidly being deployed to automate complex web tasks with extensive browser capabilities. However, these capabilities create a critical and previously unexplored attack surface. This paper demonstrates how attackers can exploit web-use agents by embedding malicious content in web pages, such as comments, reviews, or advertisements, that agents encounter during legitimate browsing tasks. We introduce the task-aligned injection technique that frames malicious commands as helpful task guidance rather than obvious attacks, exploiting fundamental limitations in LLMs' contextual reasoning. Agents struggle to maintain coherent contextual awareness and fail to detect when seemingly helpful web content contains steering attempts that deviate them from their original task goal. To scale this attack, we developed an automated three-stage pipeline that generates effective injections without manual annotation or costly online agent interactions during training, remaining efficient even with limited training data. This pipeline produces a generator model that we evaluate on five popular agents using payloads organized by the Confidentiality-Integrity-Availability (CIA) security triad, including unauthorized camera activation, file exfiltration, user impersonation, phishing, and denial-of-service. This generator achieves over 80% attack success rate (ASR) with strong transferability across unseen payloads, diverse web environments, and different underlying LLMs. This attack succeed even against agents with built-in safety mechanisms, requiring only the ability to post content on public websites. To address this risk, we propose comprehensive mitigation strategies including oversight mechanisms, execution constraints, and task-aware reasoning techniques.
♻ ☆ Automotive Crash Dynamics Modeling Accelerated with Machine Learning
Crashworthiness assessment is a critical aspect of automotive design, traditionally relying on high-fidelity finite element (FE) simulations that are computationally expensive and time-consuming. This work presents an exploratory comparative study on developing machine learning-based surrogate models for efficient prediction of structural deformation in crash scenarios using the NVIDIA PhysicsNeMo framework. Given the limited prior work applying machine learning to structural crash dynamics, the primary contribution lies in demonstrating the feasibility and engineering utility of the various modeling approaches explored in this work. We investigate two state-of-the-art neural network architectures for modeling crash dynamics: MeshGraphNet, and Transolver. Additionally, we examine three strategies for modeling transient dynamics: time-conditional, the standard Autoregressive approach, and a stability-enhanced Autoregressive scheme incorporating rollout-based training. The models are evaluated on a comprehensive Body-in-White (BIW) crash dataset comprising 150 detailed FE simulations using LS-DYNA. The dataset represents a structurally rich vehicle assembly with over 200 components, including 38 key components featuring variable thickness distributions to capture realistic manufacturing variability. Each model utilizes the undeformed mesh geometry and component characteristics as inputs to predict the spatiotemporal evolution of the deformed mesh during the crash sequence. Evaluation results show that the models capture the overall deformation trends with reasonable fidelity, demonstrating the feasibility of applying machine learning to structural crash dynamics. Although not yet matching full FE accuracy, the models achieve orders-of-magnitude reductions in computational cost, enabling rapid design exploration and early-stage optimization in crashworthiness evaluation.
♻ ☆ Challenges in Testing Large Language Model Based Software: A Faceted Taxonomy
Large Language Models (LLMs) and Multi-Agent LLMs (MALLMs) introduce non-determinism unlike traditional or machine learning software, requiring new approaches to verifying correctness beyond simple output comparisons or statistical accuracy over test datasets. This paper presents a taxonomy for LLM test case design, informed by research literature and our experience. Each facet is exemplified, and we conduct an LLM-assisted analysis of six open-source testing frameworks, perform a sensitivity study of an agent-based system across different model configurations, and provide working examples contrasting atomic and aggregated test cases. We identify key variation points that impact test correctness and highlight open challenges that the research, industry, and open-source communities must address as LLMs become integral to software systems. Our taxonomy defines four facets of LLM test case design, addressing ambiguity in both inputs and outputs while establishing best practices. It distinguishes variability in goals, the system under test, and inputs, and introduces two key oracle types: atomic and aggregated. Our findings reveal that current tools treat test executions as isolated events, lack explicit aggregation mechanisms, and inadequately capture variability across model versions, configurations, and repeated runs. This highlights the need for viewing correctness as a distribution of outcomes rather than a binary property, requiring closer collaboration between academia and practitioners to establish mature, variability-aware testing methodologies.
♻ ☆ Do LLMs Strategically Reveal, Conceal, and Infer Information? A Theoretical and Empirical Analysis in The Chameleon Game
Large language model-based (LLM-based) agents have become common in settings that include non-cooperative parties. In such settings, agents' decision-making needs to conceal information from their adversaries, reveal information to their cooperators, and infer information to identify the other agents' characteristics. To investigate whether LLMs have these information control and decision-making capabilities, we make LLM agents play the language-based hidden-identity game, The Chameleon. In this game, a group of non-chameleon agents who do not know each other aim to identify the chameleon agent without revealing a secret. The game requires the aforementioned information control capabilities both as a chameleon and a non-chameleon. We begin with a theoretical analysis for a spectrum of strategies, from concealing to revealing, and provide bounds on the non-chameleons' winning probability. The empirical results with GPT, Gemini 2.5 Pro, Llama 3.1, and Qwen3 models show that while non-chameleon LLM agents identify the chameleon, they fail to conceal the secret from the chameleon, and their winning probability is far from the levels of even trivial strategies. Based on these empirical results and our theoretical analysis, we deduce that LLM-based agents may reveal excessive information to agents of unknown identities. Interestingly, we find that, when instructed to adopt an information-revealing level, this level is linearly encoded in the LLM's internal representations. While the instructions alone are often ineffective at making non-chameleon LLMs conceal, we show that steering the internal representations in this linear direction directly can reliably induce concealing behavior.
Computation and Language 150
☆ Glyph: Scaling Context Windows via Visual-Text Compression
Large language models (LLMs) increasingly rely on long-context modeling for tasks such as document understanding, code analysis, and multi-step reasoning. However, scaling context windows to the million-token level brings prohibitive computational and memory costs, limiting the practicality of long-context LLMs. In this work, we take a different perspective-visual context scaling-to tackle this challenge. Instead of extending token-based sequences, we propose Glyph, a framework that renders long texts into images and processes them with vision-language models (VLMs). This approach substantially compresses textual input while preserving semantic information, and we further design an LLM-driven genetic search to identify optimal visual rendering configurations for balancing accuracy and compression. Through extensive experiments, we demonstrate that our method achieves 3-4x token compression while maintaining accuracy comparable to leading LLMs such as Qwen3-8B on various long-context benchmarks. This compression also leads to around 4x faster prefilling and decoding, and approximately 2x faster SFT training. Furthermore, under extreme compression, a 128K-context VLM could scale to handle 1M-token-level text tasks. In addition, the rendered text data benefits real-world multimodal tasks, such as document understanding. Our code and model are released at https://github.com/thu-coai/Glyph.
☆ Enterprise Deep Research: Steerable Multi-Agent Deep Research for Enterprise Analytics
As information grows exponentially, enterprises face increasing pressure to transform unstructured data into coherent, actionable insights. While autonomous agents show promise, they often struggle with domain-specific nuances, intent alignment, and enterprise integration. We present Enterprise Deep Research (EDR), a multi-agent system that integrates (1) a Master Planning Agent for adaptive query decomposition, (2) four specialized search agents (General, Academic, GitHub, LinkedIn), (3) an extensible MCP-based tool ecosystem supporting NL2SQL, file analysis, and enterprise workflows, (4) a Visualization Agent for data-driven insights, and (5) a reflection mechanism that detects knowledge gaps and updates research direction with optional human-in-the-loop steering guidance. These components enable automated report generation, real-time streaming, and seamless enterprise deployment, as validated on internal datasets. On open-ended benchmarks including DeepResearch Bench and DeepConsult, EDR outperforms state-of-the-art agentic systems without any human steering. We release the EDR framework and benchmark trajectories to advance research on multi-agent reasoning applications. Code at https://github.com/SalesforceAIResearch/enterprise-deep-research and Dataset at https://huggingface.co/datasets/Salesforce/EDR-200
comment: Technical report; 13 pages plus references and appendices
☆ Executable Knowledge Graphs for Replicating AI Research
Replicating AI research is a crucial yet challenging task for large language model (LLM) agents. Existing approaches often struggle to generate executable code, primarily due to insufficient background knowledge and the limitations of retrieval-augmented generation (RAG) methods, which fail to capture latent technical details hidden in referenced papers. Furthermore, previous approaches tend to overlook valuable implementation-level code signals and lack structured knowledge representations that support multi-granular retrieval and reuse. To overcome these challenges, we propose Executable Knowledge Graphs (xKG), a modular and pluggable knowledge base that automatically integrates technical insights, code snippets, and domain-specific knowledge extracted from scientific literature. When integrated into three agent frameworks with two different LLMs, xKG shows substantial performance gains (10.9% with o3-mini) on PaperBench, demonstrating its effectiveness as a general and extensible solution for automated AI research replication. Code will released at https://github.com/zjunlp/xKG.
comment: Work in progress
☆ Foundational Automatic Evaluators: Scaling Multi-Task Generative Evaluator Training for Reasoning-Centric Domains
Finetuning specialized generative evaluators has emerged as a popular paradigm to meet the increasing demand for scalable evaluation during both training and test-time. However, recent work has largely focused on applying new methodology, such as reinforcement learning (RL), to training evaluators, shying away from large-scale, data-driven development. In this work, we focus on data scaling, curating a set of 2.5M samples spanning five unique evaluation tasks (pairwise, step-level, reference-free and reference-based verification, and single rating) and multiple domains focused on reasoning evaluation. With our data, we train Foundational Automatic Reasoning Evaluators (FARE), a family of 8B and 20B (with 3.6B active) parameter evaluators, with a simple iterative rejection-sampling supervised finetuning (SFT) approach. FARE-8B challenges larger specialized RL-trained evaluators and FARE-20B sets the new standard for open-source evaluators, surpassing specialized 70B+ evaluators. Beyond static benchmarks, we evaluate FARE in real-world tasks: As inference-time rerankers, FARE-20B achieves near-oracle performance on MATH. As verifiers in RL training, FARE improves the downstream RL-trained model performance by up to 14.1% vs. string-matching verifiers. When initialized from FARE, a continually-finetuned FARE-Code outperforms gpt-oss-20B by 65% on evaluating test-case quality.
comment: 29 pages, 9 tables, 6 figures
☆ UltraCUA: A Foundation Model for Computer Use Agents with Hybrid Action
Multimodal agents for computer use rely exclusively on primitive actions (click, type, scroll) that require accurate visual grounding and lengthy execution chains, leading to cascading failures and performance bottlenecks. While other agents leverage rich programmatic interfaces (APIs, MCP servers, tools), computer-use agents (CUAs) remain isolated from these capabilities. We present UltraCUA, a foundation model that bridges this gap through hybrid action -- seamlessly integrating GUI primitives with high-level programmatic tool calls. To achieve this, our approach comprises four key components: (1) an automated pipeline that scales programmatic tools from software documentation, open-source repositories, and code generation; (2) a synthetic data engine producing over 17,000 verifiable tasks spanning real-world computer-use scenarios; (3) a large-scale high-quality hybrid action trajectory collection with both low-level GUI actions and high-level programmatic tool calls; and (4) a two-stage training pipeline combining supervised fine-tuning with online reinforcement learning, enabling strategic alternation between low-level and high-level actions. Experiments with our 7B and 32B models demonstrate substantial improvements over state-of-the-art agents. On OSWorld, UltraCUA models achieve an average 22% relative improvement over base models, while being 11% faster in terms of steps. Out-of-domain evaluation on WindowsAgentArena shows our model reaches 21.7% success rate, outperforming baselines trained on Windows data. The hybrid action mechanism proves critical, reducing error propagation while maintaining execution efficiency.
☆ Mapping Post-Training Forgetting in Language Models at Scale
Scaled post-training now drives many of the largest capability gains in language models (LMs), yet its effect on pretrained knowledge remains poorly understood. Not all forgetting is equal: Forgetting one fact (e.g., a U.S. president or an API call) does not "average out" by recalling another. Hence, we propose a sample-wise paradigm to measure what is forgotten and when backward transfer occurs. Our metric counts 1->0 transitions (correct before post-training, incorrect after) to quantify forgetting and 0->1 transitions to quantify backward transfer. Traditional task averages conflate these effects and obscure large changes. For multiple-choice benchmarks, we add chance-adjusted variants that subtract the expected contribution of random guessing from pre- and post-training accuracies. We apply this framework across post-training stages, model sizes, and data scales. Our large-scale analysis shows that: (1) Domain-continual pretraining induces moderate forgetting with low-to-moderate backward transfer; (2) RL/SFT post-training applied to base models and Instruction tuning yields moderate-to-large backward transfer on math and logic with overall low-to-moderate forgetting; (3) Applying RL/SFT to instruction-tuned models is sensitive on data scale: at small scales, both forgetting and backward transfer are small; at larger scales, effects are mixed and warrant further study with better controls; (4) Model merging does not reliably mitigate forgetting. Overall, our framework offers a practical yardstick for mapping how post-training alters pretrained knowledge at scale -- enabling progress towards generally capable AI systems.
comment: 43 pages,15 figures
☆ Evaluating Medical LLMs by Levels of Autonomy: A Survey Moving from Benchmarks to Applications
Medical Large language models achieve strong scores on standard benchmarks; however, the transfer of those results to safe and reliable performance in clinical workflows remains a challenge. This survey reframes evaluation through a levels-of-autonomy lens (L0-L3), spanning informational tools, information transformation and aggregation, decision support, and supervised agents. We align existing benchmarks and metrics with the actions permitted at each level and their associated risks, making the evaluation targets explicit. This motivates a level-conditioned blueprint for selecting metrics, assembling evidence, and reporting claims, alongside directions that link evaluation to oversight. By centering autonomy, the survey moves the field beyond score-based claims toward credible, risk-aware evidence for real clinical use.
☆ VERA-V: Variational Inference Framework for Jailbreaking Vision-Language Models
Vision-Language Models (VLMs) extend large language models with visual reasoning, but their multimodal design also introduces new, underexplored vulnerabilities. Existing multimodal red-teaming methods largely rely on brittle templates, focus on single-attack settings, and expose only a narrow subset of vulnerabilities. To address these limitations, we introduce VERA-V, a variational inference framework that recasts multimodal jailbreak discovery as learning a joint posterior distribution over paired text-image prompts. This probabilistic view enables the generation of stealthy, coupled adversarial inputs that bypass model guardrails. We train a lightweight attacker to approximate the posterior, allowing efficient sampling of diverse jailbreaks and providing distributional insights into vulnerabilities. VERA-V further integrates three complementary strategies: (i) typography-based text prompts that embed harmful cues, (ii) diffusion-based image synthesis that introduces adversarial signals, and (iii) structured distractors to fragment VLM attention. Experiments on HarmBench and HADES benchmarks show that VERA-V consistently outperforms state-of-the-art baselines on both open-source and frontier VLMs, achieving up to 53.75% higher attack success rate (ASR) over the best baseline on GPT-4o.
comment: 18 pages, 7 Figures,
☆ Train for Truth, Keep the Skills: Binary Retrieval-Augmented Reward Mitigates Hallucinations
Language models often generate factually incorrect information unsupported by their training data, a phenomenon known as extrinsic hallucination. Existing mitigation approaches often degrade performance on open-ended generation and downstream tasks, limiting their practical utility. We propose an online reinforcement learning method using a novel binary retrieval-augmented reward (RAR) to address this tradeoff. Unlike continuous reward schemes, our approach assigns a reward of one only when the model's output is entirely factually correct, and zero otherwise. We evaluate our method on Qwen3 reasoning models across diverse tasks. For open-ended generation, binary RAR achieves a 39.3% reduction in hallucination rates, substantially outperforming both supervised training and continuous-reward RL baselines. In short-form question answering, the model learns calibrated abstention, strategically outputting "I don't know" when faced with insufficient parametric knowledge. This yields 44.4% and 21.7% fewer incorrect answers on PopQA and GPQA, respectively. Crucially, these factuality gains come without performance degradation on instruction following, math, or code, whereas continuous-reward RL, despite improving factuality, induces quality regressions.
☆ AcademicEval: Live Long-Context LLM Benchmark
Large Language Models (LLMs) have recently achieved remarkable performance in long-context understanding. However, current long-context LLM benchmarks are limited by rigid context length, labor-intensive annotation, and the pressing challenge of label leakage issues during LLM training. Therefore, we propose \textsc{AcademicEval}, a live benchmark for evaluating LLMs over long-context generation tasks. \textsc{AcademicEval} adopts papers on arXiv to introduce several academic writing tasks with long-context inputs, \textit{i.e.}, \textsc{Title}, \textsc{Abstract}, \textsc{Introduction}, and \textsc{Related Work}, which cover a wide range of abstraction levels and require no manual labeling. Moreover, \textsc{AcademicEval} integrates high-quality and expert-curated few-shot demonstrations from a collected co-author graph to enable flexible context length. Especially, \textsc{AcademicEval} features an efficient live evaluation, ensuring no label leakage. We conduct a holistic evaluation on \textsc{AcademicEval}, and the results illustrate that LLMs perform poorly on tasks with hierarchical abstraction levels and tend to struggle with long few-shot demonstrations, highlighting the challenge of our benchmark. Through experimental analysis, we also reveal some insights for enhancing LLMs' long-context modeling capabilities. Code is available at https://github.com/ulab-uiuc/AcademicEval
comment: Accepted by TMLR. Code is available at https://github.com/ulab-uiuc/AcademicEval
☆ PANER: A Paraphrase-Augmented Framework for Low-Resource Named Entity Recognition
Named Entity Recognition (NER) is a critical task that requires substantial annotated data, making it challenging in low-resource scenarios where label acquisition is expensive. While zero-shot and instruction-tuned approaches have made progress, they often fail to generalize to domain-specific entities and do not effectively utilize limited available data. We present a lightweight few-shot NER framework that addresses these challenges through two key innovations: (1) a new instruction tuning template with a simplified output format that combines principles from prior IT approaches to leverage the large context window of recent state-of-the-art LLMs; (2) introducing a strategic data augmentation technique that preserves entity information while paraphrasing the surrounding context, thereby expanding our training data without compromising semantic relationships. Experiments on benchmark datasets show that our method achieves performance comparable to state-of-the-art models on few-shot and zero-shot tasks, with our few-shot approach attaining an average F1 score of 80.1 on the CrossNER datasets. Models trained with our paraphrasing approach show consistent improvements in F1 scores of up to 17 points over baseline versions, offering a promising solution for groups with limited NER training data and compute power.
☆ QueST: Incentivizing LLMs to Generate Difficult Problems
Large Language Models have achieved strong performance on reasoning tasks, solving competition-level coding and math problems. However, their scalability is limited by human-labeled datasets and the lack of large-scale, challenging coding problem training data. Existing competitive coding datasets contain only thousands to tens of thousands of problems. Previous synthetic data generation methods rely on either augmenting existing instruction datasets or selecting challenging problems from human-labeled data. In this paper, we propose QueST, a novel framework which combines difficulty-aware graph sampling and difficulty-aware rejection fine-tuning that directly optimizes specialized generators to create challenging coding problems. Our trained generators demonstrate superior capability compared to even GPT-4o at creating challenging problems that benefit downstream performance. We leverage QueST to generate large-scale synthetic coding problems, which we then use to distill from strong teacher models with long chain-of-thought or to conduct reinforcement learning for smaller models, proving effective in both scenarios. Our distillation experiments demonstrate significant performance gains. Specifically, after fine-tuning Qwen3-8B-base on 100K difficult problems generated by QueST, we surpass the performance of the original Qwen3-8B on LiveCodeBench. With an additional 112K examples (i.e., 28K human-written problems paired with multiple synthetic solutions), our 8B model matches the performance of the much larger DeepSeek-R1-671B. These findings indicate that generating complex problems via QueST offers an effective and scalable approach to advancing the frontiers of competitive coding and reasoning for large language models.
comment: 20 pages, 7 figures
☆ Contextual Attention Modulation: Towards Efficient Multi-Task Adaptation in Large Language Models CIKM' 25
Large Language Models (LLMs) possess remarkable generalization capabilities but struggle with multi-task adaptation, particularly in balancing knowledge retention with task-specific specialization. Conventional fine-tuning methods suffer from catastrophic forgetting and substantial resource consumption, while existing parameter-efficient methods perform suboptimally in complex multi-task scenarios. To address this, we propose Contextual Attention Modulation (CAM), a novel mechanism that dynamically modulates the representations of self-attention modules in LLMs. CAM enhances task-specific features while preserving general knowledge, thereby facilitating more effective and efficient adaptation. For effective multi-task adaptation, CAM is integrated into our Hybrid Contextual Attention Modulation (HyCAM) framework, which combines a shared, full-parameter CAM module with multiple specialized, lightweight CAM modules, enhanced by a dynamic routing strategy for adaptive knowledge fusion. Extensive experiments on heterogeneous tasks, including question answering, code generation, and logical reasoning, demonstrate that our approach significantly outperforms existing approaches, achieving an average performance improvement of 3.65%. The implemented code and data are available to ease reproducibility at https://github.com/Applied-Machine-Learning-Lab/HyCAM.
comment: Accepted by CIKM' 25
☆ Towards Mining Effective Pedagogical Strategies from Learner-LLM Educational Dialogues
Dialogue plays a crucial role in educational settings, yet existing evaluation methods for educational applications of large language models (LLMs) primarily focus on technical performance or learning outcomes, often neglecting attention to learner-LLM interactions. To narrow this gap, this AIED Doctoral Consortium paper presents an ongoing study employing a dialogue analysis approach to identify effective pedagogical strategies from learner-LLM dialogues. The proposed approach involves dialogue data collection, dialogue act (DA) annotation, DA pattern mining, and predictive model building. Early insights are outlined as an initial step toward future research. The work underscores the need to evaluate LLM-based educational applications by focusing on dialogue dynamics and pedagogical strategies.
☆ LILO: Bayesian Optimization with Interactive Natural Language Feedback
For many real-world applications, feedback is essential in translating complex, nuanced, or subjective goals into quantifiable optimization objectives. We propose a language-in-the-loop framework that uses a large language model (LLM) to convert unstructured feedback in the form of natural language into scalar utilities to conduct BO over a numeric search space. Unlike preferential BO, which only accepts restricted feedback formats and requires customized models for each domain-specific problem, our approach leverages LLMs to turn varied types of textual feedback into consistent utility signals and to easily include flexible user priors without manual kernel design. At the same time, our method maintains the sample efficiency and principled uncertainty quantification of BO. We show that this hybrid method not only provides a more natural interface to the decision maker but also outperforms conventional BO baselines and LLM-only optimizers, particularly in feedback-limited regimes.
☆ DELULU: Discriminative Embedding Learning Using Latent Units for Speaker-Aware Self-Supervised Speech Foundational Model
Self-supervised speech models have achieved remarkable success on content-driven tasks, yet they remain limited in capturing speaker-discriminative features critical for verification, diarization, and profiling applications. We introduce DELULU, a speaker-aware self-supervised foundational model that addresses this limitation by integrating external supervision into the pseudo-label generation process. DELULU leverages frame-level embeddings from ReDimNet, a state-of-the-art speaker verification model, to guide the k-means clustering step during pre-training, introducing a strong speaker-discriminative inductive bias that aligns representation learning with speaker identity. The model is trained using a dual objective that combines masked prediction and denoising, further enhancing robustness and generalization. DELULU significantly outperforms prior self-supervised learning (SSL) models across a range of speaker-centric tasks, achieving up to 62% relative improvement in equal error rate (EER) for speaker verification and consistent gains on zero-shot profiling tasks such as gender, age, accent, and speaker counting. Our findings demonstrate that DELULU is a strong universal encoder for speaker-aware speech processing, enabling superior performance even without task-specific fine-tuning.
☆ Qomhra: A Bilingual Irish-English Large Language Model
This paper introduces Qomhr\'a, a bilingual Irish-English large language model (LLM), developed under low-resource constraints presenting a complete pipeline spanning bilingual continued pre-training, instruction tuning, and alignment from human preferences. Newly accessible Irish corpora and English text are mixed and curated to improve Irish performance while preserving English ability. 6 closed-weight LLMs are judged for their Irish text generation by a native speaker, a learner and other LLMs. Google's Gemini-2.5-Pro is ranked the highest and is subsequently used to synthesise instruction tuning and human preference datasets. Two datasets are contributed leveraging Gemini-2.5-Pro: a 30K Irish-English parallel instruction tuning dataset and a 1K human preference dataset, generating accepted and rejected responses that show near perfect alignment with a native Irish speaker. Qomhr\'a is comprehensively evaluated across benchmarks testing translation, gender understanding, topic identification and world knowledge with gains of up to 29% in Irish and 44% in English. Qomhr\'a also undergoes instruction tuning and demonstrates clear progress in instruction following, crucial for chatbot functionality.
☆ LLM-as-a-Prophet: Understanding Predictive Intelligence with Prophet Arena
Forecasting is not only a fundamental intellectual pursuit but also is of significant importance to societal systems such as finance and economics. With the rapid advances of large language models (LLMs) trained on Internet-scale data, it raises the promise of employing LLMs to forecast real-world future events, an emerging paradigm we call "LLM-as-a-Prophet". This paper systematically investigates such predictive intelligence of LLMs. To this end, we build Prophet Arena, a general evaluation benchmark that continuously collects live forecasting tasks and decomposes each task into distinct pipeline stages, in order to support our controlled and large-scale experimentation. Our comprehensive evaluation reveals that many LLMs already exhibit impressive forecasting capabilities, reflected in, e.g., their small calibration errors, consistent prediction confidence and promising market returns. However, we also uncover key bottlenecks towards achieving superior predictive intelligence via LLM-as-a-Prophet, such as LLMs' inaccurate event recalls, misunderstanding of data sources and slower information aggregation compared to markets when resolution nears.
comment: https://www.prophetarena.co/
☆ Forget to Know, Remember to Use: Context-Aware Unlearning for Large Language Models
Large language models may encode sensitive information or outdated knowledge that needs to be removed, to ensure responsible and compliant model responses. Unlearning has emerged as an efficient alternative to full retraining, aiming to remove specific knowledge while preserving overall model utility. Existing evaluations of unlearning methods focus on (1) the extent of forgetting of the target knowledge (forget set) and (2) maintaining performance on the retain set (i.e., utility). However, these evaluations overlook an important usability aspect: users may still want the model to leverage the removed information if it is re-introduced in the prompt. In a systematic evaluation of six state-of-the-art unlearning methods, we find that they consistently impair such contextual utility. To address this, we augment unlearning objectives with a plug-in term that preserves the model's ability to use forgotten knowledge when it is present in context. Extensive experiments demonstrate that our approach restores contextual utility to near original levels while still maintaining effective forgetting and retain-set utility.
☆ LawChain: Modeling Legal Reasoning Chains for Chinese Tort Case Analysis
Legal reasoning is a fundamental component of legal analysis and decision-making. Existing computational approaches to legal reasoning predominantly rely on generic reasoning frameworks such as syllogism and IRAC, which do not comprehensively examine the nuanced processes that underpin legal reasoning. Moreover, current research has largely focused on criminal cases, with insufficient modeling for civil cases. In this work, we present a novel framework for explicitly modeling legal reasoning in the analysis of Chinese tort-related civil cases. We first operationalize the legal reasoning processes used in tort analysis into the LawChain framework. LawChain is a three-module reasoning framework, with each module consisting of multiple finer-grained sub-steps. Informed by the LawChain framework, we introduce the task of tort legal reasoning and construct an evaluation benchmark, LawChain$_{eval}$, to systematically assess the critical steps within analytical reasoning chains for tort analysis. Leveraging this benchmark, we evaluate state-of-the-art large language models for their legal reasoning ability in civil tort contexts. Our results indicate that current models still fall short in accurately handling crucial elements of tort legal reasoning. Furthermore, we introduce several baseline approaches that explicitly incorporate LawChain-style reasoning through prompting or post-training. We conduct further experiments on additional legal analysis tasks, such as Legal Named-Entity Recognition and Criminal Damages Calculation, to verify the generalizability of these baselines. The proposed baseline approaches achieve significant improvements in tort-related legal reasoning and generalize well to related legal analysis tasks, thus demonstrating the value of explicitly modeling legal reasoning chains to enhance the reasoning capabilities of language models.
☆ Reasoning Distillation and Structural Alignment for Improved Code Generation
Effective code generation with language models hinges on two critical factors: accurately understanding the intent of the prompt and generating code that applies algorithmic reasoning to produce correct solutions capable of passing diverse test cases while adhering to the syntax of the target programming language. Unlike other language tasks, code generation requires more than accurate token prediction; it demands comprehension of solution-level and structural relationships rather than merely generating the most likely tokens. very large language model (VLLM) are capable of generating detailed steps toward the correct solution of complex tasks where reasoning is crucial in solving the problem. Such reasoning capabilities may be absent in smaller language models. Therefore, in this work, we distill the reasoning capabilities of a VLLM into a smaller, more efficient model that is faster and cheaper to deploy. Our approach trains the model to emulate the reasoning and problem-solving abilities of the VLLM by learning to identify correct solution pathways and establishing a structural correspondence between problem definitions and potential solutions through a novel method of structure-aware loss optimization. This enables the model to transcend token-level generation and to deeply grasp the overarching structure of solutions for given problems. Experimental results show that our fine-tuned model, developed through a cheap and simple to implement process, significantly outperforms our baseline model in terms of pass@1, average data flow, and average syntax match metrics across the MBPP, MBPP Plus, and HumanEval benchmarks.
☆ HGAdapter: Hypergraph-based Adapters in Language Models for Code Summarization and Clone Detection EMNLP 2025
Pre-trained language models (PLMs) are increasingly being applied to code-related tasks. Although PLMs have achieved good results, they do not take into account potential high-order data correlations within the code. We propose three types of high-order correlations in code tokens, i.e. abstract syntax tree family correlation, lexical correlation, and line correlation. We design a tokens and hyperedges generator to capture these high-order data correlations. We improve the architecture of hypergraph neural networks and combine it with adapter tuning to propose a novel hypergraph-based adapter (HGAdapter) to fine-tune PLMs. HGAdapter can encode high-order data correlations and is allowed to be inserted into various PLMs to enhance performance. Experiments were conducted on several public datasets, including six languages of code summarization and code clone detection tasks. Our methods improved the performance of PLMs in datasets to varying degrees. Experimental results validate the introduction of high-order data correlations that contribute to improved effectiveness.
comment: Accepted by the 2025 Conference on Empirical Methods in Natural Language Processing (EMNLP 2025) as a findings long paper
☆ MIRAGE: Agentic Framework for Multimodal Misinformation Detection with Web-Grounded Reasoning
Misinformation spreads across web platforms through billions of daily multimodal posts that combine text and images, overwhelming manual fact-checking capacity. Supervised detection models require domain-specific training data and fail to generalize across diverse manipulation tactics. We present MIRAGE, an inference-time, model-pluggable agentic framework that decomposes multimodal verification into four sequential modules: visual veracity assessment detects AI-generated images, cross-modal consistency analysis identifies out-of-context repurposing, retrieval-augmented factual checking grounds claims in web evidence through iterative question generation, and a calibrated judgment module integrates all signals. MIRAGE orchestrates vision-language model reasoning with targeted web retrieval, outputs structured and citation-linked rationales. On MMFakeBench validation set (1,000 samples), MIRAGE with GPT-4o-mini achieves 81.65% F1 and 75.1% accuracy, outperforming the strongest zero-shot baseline (GPT-4V with MMD-Agent at 74.0% F1) by 7.65 points while maintaining 34.3% false positive rate versus 97.3% for a judge-only baseline. Test set results (5,000 samples) confirm generalization with 81.44% F1 and 75.08% accuracy. Ablation studies show visual verification contributes 5.18 F1 points and retrieval-augmented reasoning contributes 2.97 points. Our results demonstrate that decomposed agentic reasoning with web retrieval can match supervised detector performance without domain-specific training, enabling misinformation detection across modalities where labeled data remains scarce.
comment: 16 pages, 3 tables, 1 figure
☆ Language Confusion Gate: Language-Aware Decoding Through Model Self-Distillation
Large language models (LLMs) often experience language confusion, which is the unintended mixing of languages during text generation. Current solutions to this problem either necessitate model retraining or cannot differentiate between harmful confusion and acceptable code-switching. This paper introduces the Language Confusion Gate (LCG), a lightweight, plug-in solution that filters tokens during decoding without altering the base LLM. The LCG is trained using norm-adjusted self-distillation to predict appropriate language families and apply masking only when needed. Our method is based on the findings that language confusion is infrequent, correct-language tokens are usually among the top predictions, and output token embedding norms are larger for high-resource languages, which biases sampling. When evaluated across various models, including Qwen3, GPT-OSS, Gemma3, Llama3.1, LCG decreases language confusion significantly, often by an order of magnitude, without negatively impacting task performance. Code is available at https://github.com/collinzrj/language_confusion_gate.
☆ When Annotators Disagree, Topology Explains: Mapper, a Topological Tool for Exploring Text Embedding Geometry and Ambiguity EMNLP 2025
Language models are often evaluated with scalar metrics like accuracy, but such measures fail to capture how models internally represent ambiguity, especially when human annotators disagree. We propose a topological perspective to analyze how fine-tuned models encode ambiguity and more generally instances. Applied to RoBERTa-Large on the MD-Offense dataset, Mapper, a tool from topological data analysis, reveals that fine-tuning restructures embedding space into modular, non-convex regions aligned with model predictions, even for highly ambiguous cases. Over $98\%$ of connected components exhibit $\geq 90\%$ prediction purity, yet alignment with ground-truth labels drops in ambiguous data, surfacing a hidden tension between structural confidence and label uncertainty. Unlike traditional tools such as PCA or UMAP, Mapper captures this geometry directly uncovering decision regions, boundary collapses, and overconfident clusters. Our findings position Mapper as a powerful diagnostic tool for understanding how models resolve ambiguity. Beyond visualization, it also enables topological metrics that may inform proactive modeling strategies in subjective NLP tasks.
comment: Accepted to appear in the Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing (EMNLP 2025, Main Conference)
☆ OncoReason: Structuring Clinical Reasoning in LLMs for Robust and Interpretable Survival Prediction
Predicting cancer treatment outcomes requires models that are both accurate and interpretable, particularly in the presence of heterogeneous clinical data. While large language models (LLMs) have shown strong performance in biomedical NLP, they often lack structured reasoning capabilities critical for high-stakes decision support. We present a unified, multi-task learning framework that aligns autoregressive LLMs with clinical reasoning for outcome prediction on the MSK-CHORD dataset. Our models are trained to jointly perform binary survival classification, continuous survival time regression, and natural language rationale generation. We evaluate three alignment strategies: (1) standard supervised fine-tuning (SFT), (2) SFT with Chain-of-Thought (CoT) prompting to elicit step-by-step reasoning, and (3) Group Relative Policy Optimization (GRPO), a reinforcement learning method that aligns model outputs to expert-derived reasoning trajectories. Experiments with LLaMa3-8B and Med42-8B backbones demonstrate that CoT prompting improves F1 by +6.0 and reduces MAE by 12%, while GRPO achieves state-of-the-art interpretability and predictive performance across BLEU, ROUGE, and BERTScore. We further show that existing biomedical LLMs often fail to produce valid reasoning traces due to architectural constraints. Our findings underscore the importance of reasoning-aware alignment in multi-task clinical modeling and set a new benchmark for interpretable, trustworthy LLMs in precision oncology.
☆ SimBench: Benchmarking the Ability of Large Language Models to Simulate Human Behaviors
Large language model (LLM) simulations of human behavior have the potential to revolutionize the social and behavioral sciences, if and only if they faithfully reflect real human behaviors. Current evaluations are fragmented, based on bespoke tasks and metrics, creating a patchwork of incomparable results. To address this, we introduce SimBench, the first large-scale, standardized benchmark for a robust, reproducible science of LLM simulation. By unifying 20 diverse datasets covering tasks from moral decision-making to economic choice across a large global participant pool, SimBench provides the necessary foundation to ask fundamental questions about when, how, and why LLM simulations succeed or fail. We show that, while even the best LLMs today have limited simulation ability (score: 40.80/100), performance scales log-linearly with model size. Simulation performance is not improved by increased inference-time compute. We demonstrate an alignment-simulation trade-off: instruction-tuning improves performance on low-entropy (consensus) questions but degrades it on high-entropy (diverse) ones. Models particularly struggle when simulating specific demographic groups. Finally, we demonstrate that simulation ability correlates most strongly with deep, knowledge-intensive reasoning (MMLU-Pro, r=0.939). By making progress measurable, we aim to accelerate the development of more faithful LLM simulators.
comment: Project Website: http://simbench.tiancheng.hu/ Data: https://huggingface.co/datasets/pitehu/SimBench
☆ Annotation-Efficient Universal Honesty Alignment
Honesty alignment-the ability of large language models (LLMs) to recognize their knowledge boundaries and express calibrated confidence-is essential for trustworthy deployment. Existing methods either rely on training-free confidence estimation (e.g., token probabilities, self-consistency) or training-based calibration with correctness annotations. While effective, achieving universal honesty alignment with training-based calibration requires costly, large-scale labeling. To support annotation-efficient training, we introduce Elicitation-Then-Calibration (EliCal), a two-stage framework that first elicits internal confidence using inexpensive self-consistency supervision, then calibrates this confidence with a small set of correctness annotations. To support a large-scale study, we release HonestyBench, a benchmark covering ten free-form QA datasets with 560k training and 70k evaluation instances annotated with correctness and self-consistency signals. Experiments show that EliCal achieves near-optimal alignment with only 1k correctness annotations (0.18% of full supervision) and better alignment performance on unseen MMLU tasks than the calibration-only baseline, offering a scalable solution toward universal honesty alignment in LLMs.
☆ Lingua Custodi's participation at the WMT 2025 Terminology shared task
While BERT is an effective method for learning monolingual sentence embeddings for semantic similarity and embedding based transfer learning BERT based cross-lingual sentence embeddings have yet to be explored. We systematically investigate methods for learning multilingual sentence embeddings by combining the best methods for learning monolingual and cross-lingual representations including: masked language modeling (MLM), translation language modeling (TLM), dual encoder translation ranking, and additive margin softmax. We show that introducing a pre-trained multilingual language model dramatically reduces the amount of parallel training data required to achieve good performance by 80%. Composing the best of these methods produces a model that achieves 83.7% bi-text retrieval accuracy over 112 languages on Tatoeba, well above the 65.5 achieved by LASER, while still performing competitively on monolingual transfer learning benchmarks. Parallel data mined from CommonCrawl using our best model is shown to train competitive NMT models for en-zh and en-de. We publicly release our best multilingual sentence embedding model for 109+ languages at https://tfhub.dev/google/LaBSE.
☆ Deep Self-Evolving Reasoning
Long-form chain-of-thought reasoning has become a cornerstone of advanced reasoning in large language models. While recent verification-refinement frameworks have enabled proprietary models to solve Olympiad-level problems, their effectiveness hinges on strong, reliable verification and correction capabilities, which remain fragile in open-weight, smaller-scale models. This work demonstrates that even with weak verification and refinement capabilities on hard tasks, the reasoning limits of such models can be substantially extended through a probabilistic paradigm we call Deep Self-Evolving Reasoning (DSER). We conceptualize iterative reasoning as a Markov chain, where each step represents a stochastic transition in the solution space. The key insight is that convergence to a correct solution is guaranteed as long as the probability of improvement marginally exceeds that of degradation. By running multiple long-horizon, self-evolving processes in parallel, DSER amplifies these small positive tendencies, enabling the model to asymptotically approach correct answers. Empirically, we apply DSER to the DeepSeek-R1-0528-Qwen3-8B model. On the challenging AIME 2024-2025 benchmark, DSER solves 5 out of 9 previously unsolvable problems and boosts overall performance, enabling this compact model to surpass the single-turn accuracy of its 600B-parameter teacher through majority voting. Beyond its immediate utility for test-time scaling, the DSER framework serves to diagnose the fundamental limitations of current open-weight reasoners. By clearly delineating their shortcomings in self-verification, refinement, and stability, our findings establish a clear research agenda for developing next-generation models with powerful, intrinsic self-evolving capabilities.
☆ Empowering Real-World: A Survey on the Technology, Practice, and Evaluation of LLM-driven Industry Agents
With the rise of large language models (LLMs), LLM agents capable of autonomous reasoning, planning, and executing complex tasks have become a frontier in artificial intelligence. However, how to translate the research on general agents into productivity that drives industry transformations remains a significant challenge. To address this, this paper systematically reviews the technologies, applications, and evaluation methods of industry agents based on LLMs. Using an industry agent capability maturity framework, it outlines the evolution of agents in industry applications, from "process execution systems" to "adaptive social systems." First, we examine the three key technological pillars that support the advancement of agent capabilities: Memory, Planning, and Tool Use. We discuss how these technologies evolve from supporting simple tasks in their early forms to enabling complex autonomous systems and collective intelligence in more advanced forms. Then, we provide an overview of the application of industry agents in real-world domains such as digital engineering, scientific discovery, embodied intelligence, collaborative business execution, and complex system simulation. Additionally, this paper reviews the evaluation benchmarks and methods for both fundamental and specialized capabilities, identifying the challenges existing evaluation systems face regarding authenticity, safety, and industry specificity. Finally, we focus on the practical challenges faced by industry agents, exploring their capability boundaries, developmental potential, and governance issues in various scenarios, while providing insights into future directions. By combining technological evolution with industry practices, this review aims to clarify the current state and offer a clear roadmap and theoretical foundation for understanding and building the next generation of industry agents.
☆ DETree: DEtecting Human-AI Collaborative Texts via Tree-Structured Hierarchical Representation Learning NeurIPS 2025
Detecting AI-involved text is essential for combating misinformation, plagiarism, and academic misconduct. However, AI text generation includes diverse collaborative processes (AI-written text edited by humans, human-written text edited by AI, and AI-generated text refined by other AI), where various or even new LLMs could be involved. Texts generated through these varied processes exhibit complex characteristics, presenting significant challenges for detection. Current methods model these processes rather crudely, primarily employing binary classification (purely human vs. AI-involved) or multi-classification (treating human-AI collaboration as a new class). We observe that representations of texts generated through different processes exhibit inherent clustering relationships. Therefore, we propose DETree, a novel approach that models the relationships among different processes as a Hierarchical Affinity Tree structure, and introduces a specialized loss function that aligns text representations with this tree. To facilitate this learning, we developed RealBench, a comprehensive benchmark dataset that automatically incorporates a wide spectrum of hybrid texts produced through various human-AI collaboration processes. Our method improves performance in hybrid text detection tasks and significantly enhances robustness and generalization in out-of-distribution scenarios, particularly in few-shot learning conditions, further demonstrating the promise of training-based approaches in OOD settings. Our code and dataset are available at https://github.com/heyongxin233/DETree.
comment: To appear in NeurIPS 2025
☆ ReXMoE: Reusing Experts with Minimal Overhead in Mixture-of-Experts
Mixture-of-Experts (MoE) architectures have emerged as a promising approach to scale Large Language Models (LLMs). MoE boosts the efficiency by activating a subset of experts per token. Recent works show that fine-grained experts substantially enriches the combinatorial flexibility of active experts and enhances model expressiveness. However, such a design is fundamentally limited by the layer-local routing mechanism: each layer is restricted to its own expert pool. This requires a careful trade-off between expert dimensionality and routing diversity given fixed parameter budgets. We describe ReXMoE, a novel MoE architecture that improves routing beyond the existing layer-local approaches by allowing routers to reuse experts across adjacent layers. ReXMoE decouples expert dimensionality from per-layer budgets, enabling richer expert combinations without sacrificing individual expert capacity or inflating overall parameters. To this end, we propose a new progressive scaling routing (PSR) strategy to gradually increase the candidate expert pool during training. As a result, ReXMoE improves both language modeling and downstream task performance. Extensive experiments on models ranging from 0.5B to 7B parameters across different architectures demonstrate that ReXMoE consistently improves performance under fixed architectural dimensions, confirming ReXMoE as new design paradigm for parameter-efficient and scalable MoE-based LLMs.
☆ Disparities in Multilingual LLM-Based Healthcare Q&A
Equitable access to reliable health information is vital when integrating AI into healthcare. Yet, information quality varies across languages, raising concerns about the reliability and consistency of multilingual Large Language Models (LLMs). We systematically examine cross-lingual disparities in pre-training source and factuality alignment in LLM answers for multilingual healthcare Q&A across English, German, Turkish, Chinese (Mandarin), and Italian. We (i) constructed Multilingual Wiki Health Care (MultiWikiHealthCare), a multilingual dataset from Wikipedia; (ii) analyzed cross-lingual healthcare coverage; (iii) assessed LLM response alignment with these references; and (iv) conducted a case study on factual alignment through the use of contextual information and Retrieval-Augmented Generation (RAG). Our findings reveal substantial cross-lingual disparities in both Wikipedia coverage and LLM factual alignment. Across LLMs, responses align more with English Wikipedia, even when the prompts are non-English. Providing contextual excerpts from non-English Wikipedia at inference time effectively shifts factual alignment toward culturally relevant knowledge. These results highlight practical pathways for building more equitable, multilingual AI systems for healthcare.
comment: Under review
☆ Evaluating Large Language Models on Urdu Idiom Translation
Idiomatic translation remains a significant challenge in machine translation, especially for low resource languages such as Urdu, and has received limited prior attention. To advance research in this area, we introduce the first evaluation datasets for Urdu to English idiomatic translation, covering both Native Urdu and Roman Urdu scripts and annotated with gold-standard English equivalents. We evaluate multiple open-source Large Language Models (LLMs) and Neural Machine Translation (NMT) systems on this task, focusing on their ability to preserve idiomatic and cultural meaning. Automatic metrics including BLEU, BERTScore, COMET, and XCOMET are used to assess translation quality. Our findings indicate that prompt engineering enhances idiomatic translation compared to direct translation, though performance differences among prompt types are relatively minor. Moreover, cross script comparisons reveal that text representation substantially affects translation quality, with Native Urdu inputs producing more accurate idiomatic translations than Roman Urdu.
☆ Multilingual Clinical NER for Diseases and Medications Recognition in Cardiology Texts using BERT Embeddings
The rapidly increasing volume of electronic health record (EHR) data underscores a pressing need to unlock biomedical knowledge from unstructured clinical texts to support advancements in data-driven clinical systems, including patient diagnosis, disease progression monitoring, treatment effects assessment, prediction of future clinical events, etc. While contextualized language models have demonstrated impressive performance improvements for named entity recognition (NER) systems in English corpora, there remains a scarcity of research focused on clinical texts in low-resource languages. To bridge this gap, our study aims to develop multiple deep contextual embedding models to enhance clinical NER in the cardiology domain, as part of the BioASQ MultiCardioNER shared task. We explore the effectiveness of different monolingual and multilingual BERT-based models, trained on general domain text, for extracting disease and medication mentions from clinical case reports written in English, Spanish, and Italian. We achieved an F1-score of 77.88% on Spanish Diseases Recognition (SDR), 92.09% on Spanish Medications Recognition (SMR), 91.74% on English Medications Recognition (EMR), and 88.9% on Italian Medications Recognition (IMR). These results outperform the mean and median F1 scores in the test leaderboard across all subtasks, with the mean/median values being: 69.61%/75.66% for SDR, 81.22%/90.18% for SMR, 89.2%/88.96% for EMR, and 82.8%/87.76% for IMR.
comment: 11 pages, 5 figures, 1 table, published in Working Notes of the Conference and Labs of the Evaluation Forum (CLEF 2024)
☆ Agentic Reinforcement Learning for Search is Unsafe
Agentic reinforcement learning (RL) trains large language models to autonomously call tools during reasoning, with search as the most common application. These models excel at multi-step reasoning tasks, but their safety properties are not well understood. In this study, we show that RL-trained search models inherit refusal from instruction tuning and often deflect harmful requests by turning them into safe queries. However, this safety is fragile. Two simple attacks, one that forces the model to begin response with search (Search attack), another that encourages models to repeatedly search (Multi-search attack), trigger cascades of harmful searches and answers. Across two model families (Qwen, Llama) with both local and web search, these attacks lower refusal rates by up to 60.0%, answer safety by 82.5%, and search-query safety by 82.4%. The attacks succeed by triggering models to generate harmful, request-mirroring search queries before they can generate the inherited refusal tokens. This exposes a core weakness of current RL training: it rewards continued generation of effective queries without accounting for their harmfulness. As a result, RL search models have vulnerabilities that users can easily exploit, making it urgent to develop safety-aware agentic RL pipelines optimising for safe search.
☆ Navigating the Alignment-Calibration Trade-off: A Pareto-Superior Frontier via Model Merging
The "alignment tax" of post-training is typically framed as a drop in task accuracy. We show it also involves a severe loss of calibration, making models overconfident, less reliable, and model outputs less diverse. We show that this trade-off can be navigated effectively via a simple post-hoc intervention: interpolating between a model's weights before and after alignment. Crucially, this is not a strict trade-off. We find that the process consistently reveals Pareto-optimal interpolations - models that improve accuracy beyond both parents while substantially recovering the calibration lost during alignment. Our work demonstrates that simple model merging provides a computationally efficient method for mitigating the full scope of the alignment tax, yielding models that are more capable and more reliable.
☆ BenCao: An Instruction-Tuned Large Language Model for Traditional Chinese Medicine
Traditional Chinese Medicine (TCM), with a history spanning over two millennia, plays a role in global healthcare. However, applying large language models (LLMs) to TCM remains challenging due to its reliance on holistic reasoning, implicit logic, and multimodal diagnostic cues. Existing TCM-domain LLMs have made progress in text-based understanding but lack multimodal integration, interpretability, and clinical applicability. To address these limitations, we developed BenCao, a ChatGPT-based multimodal assistant for TCM, integrating structured knowledge bases, diagnostic data, and expert feedback refinement. BenCao was trained through natural language instruction tuning rather than parameter retraining, aligning with expert-level reasoning and ethical norms specific to TCM. The system incorporates a comprehensive knowledge base of over 1,000 classical and modern texts, a scenario-based instruction framework for diverse interactions, a chain-of-thought simulation mechanism for interpretable reasoning, and a feedback refinement process involving licensed TCM practitioners. BenCao connects to external APIs for tongue-image classification and multimodal database retrieval, enabling dynamic access to diagnostic resources. In evaluations across single-choice question benchmarks and multimodal classification tasks, BenCao achieved superior accuracy to general-domain and TCM-domain models, particularly in diagnostics, herb recognition, and constitution classification. The model was deployed as an interactive application on the OpenAI GPTs Store, accessed by nearly 1,000 users globally as of October 2025. This study demonstrates the feasibility of developing a TCM-domain LLM through natural language-based instruction tuning and multimodal integration, offering a practical framework for aligning generative AI with traditional medical reasoning and a scalable pathway for real-world deployment.
☆ AFRICAPTION: Establishing a New Paradigm for Image Captioning in African Languages
Multimodal AI research has overwhelmingly focused on high-resource languages, hindering the democratization of advancements in the field. To address this, we present AfriCaption, a comprehensive framework for multilingual image captioning in 20 African languages and our contributions are threefold: (i) a curated dataset built on Flickr8k, featuring semantically aligned captions generated via a context-aware selection and translation process; (ii) a dynamic, context-preserving pipeline that ensures ongoing quality through model ensembling and adaptive substitution; and (iii) the AfriCaption model, a 0.5B parameter vision-to-text architecture that integrates SigLIP and NLLB200 for caption generation across under-represented languages. This unified framework ensures ongoing data quality and establishes the first scalable image-captioning resource for under-represented African languages, laying the groundwork for truly inclusive multimodal AI.
☆ Leveraging Group Relative Policy Optimization to Advance Large Language Models in Traditional Chinese Medicine
Traditional Chinese Medicine (TCM) presents a rich and structurally unique knowledge system that challenges conventional applications of large language models (LLMs). Although previous TCM-specific LLMs have shown progress through supervised fine-tuning, they often face limitations in alignment, data quality, and evaluation consistency. In this study, we introduce Ladder-base, the first TCM-focused LLM trained with Group Relative Policy Optimization (GRPO), a reinforcement learning method that improves reasoning and factual consistency by optimizing response selection based on intra-group comparisons. Ladder-base is built upon the Qwen2.5-7B-Instruct foundation model and trained exclusively on the textual subset of the TCM-Ladder benchmark, using 80 percent of the data for training and the remaining 20 percent split evenly between validation and test sets. Through standardized evaluation, Ladder-base demonstrates superior performance across multiple reasoning metrics when compared to both state-of-the-art general-purpose LLMs such as GPT-4, Gemini 2.5, Claude 3, and Qwen3 and domain-specific TCM models including BenTsao, HuatuoGPT2, and Zhongjing. These findings suggest that GRPO provides an effective and efficient strategy for aligning LLMs with expert-level reasoning in traditional medical domains and supports the development of trustworthy and clinically grounded TCM artificial intelligence systems.
☆ EduAdapt: A Question Answer Benchmark Dataset for Evaluating Grade-Level Adaptability in LLMs EMNLP 2025
Large language models (LLMs) are transforming education by answering questions, explaining complex concepts, and generating content across a wide range of subjects. Despite strong performance on academic benchmarks, they often fail to tailor responses to students' grade levels. This is a critical need in K-12 education, where age-appropriate vocabulary and explanation are essential for effective learning. Existing models frequently produce outputs that are too advanced or vague for younger learners, and there are no standardized benchmarks to evaluate their ability to adjust across cognitive and developmental stages. To address this gap, we introduce EduAdapt, a benchmark of nearly 48k grade-labeled QA pairs across nine science subjects, spanning Grades 1-12 and grouped into four grade levels. We evaluate a diverse set of open-source LLMs on EduAdapt and find that while larger models generally perform better, they still struggle with generating suitable responses for early-grade students (Grades 1-5). Our work presents the first dataset and evaluation framework for assessing grade-level adaptability in LLMs, aiming to foster more developmentally aligned educational AI systems through better training and prompting strategies. EduAdapt code and datasets are publicly available at https://github.com/NaumanNaeem/EduAdapt.
comment: 28 pages, 2 figures, 14 tables, 50 listings, EMNLP 2025 Main
☆ The Atomic Instruction Gap: Instruction-Tuned LLMs Struggle with Simple, Self-Contained Directives
Instruction-tuned large language models (IT-LLMs) exhibit strong zero-shot reasoning, yet their ability to execute simple, self-contained instructions remains underexplored, despite this being foundational to complex instruction-following. We evaluate 20 IT-LLMs on modified MMLU and MMLU-Pro benchmarks, by systematically varying the format of option labels (alphabetic, numeric, Roman) while keeping their meaning identical under four paradigms, namely: (1) With explicit instructions, label changes cause large performance shifts (e.g., -30.45\% for Roman vs. numeric), revealing instruction-format bias. (2) Without instructions, performance drops further (up to -10.84\%) and label sensitivity intensifies, underscoring the role of explicit guidance. (3) When option contents are removed, models fail random-choice baselines except with numeric labels, suggesting weak adherence to atomic directives. (4) Three-shot exemplars yield no significant gains in robustness or fidelity, and generation analyses show persistent label errors, especially for non-numeric formats. Across model sizes, larger LLMs achieve higher accuracy but remain inconsistent in instruction adherence. These results expose the insufficiencies of current instruction-tuning paradigms and highlight the need for evaluation methods and training strategies that explicitly target atomic instruction-following.
comment: 11 pages, 1 figure, 8 tables
☆ Towards Mixed-Modal Retrieval for Universal Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) has emerged as a powerful paradigm for enhancing large language models (LLMs) by retrieving relevant documents from an external corpus. However, existing RAG systems primarily focus on unimodal text documents, and often fall short in real-world scenarios where both queries and documents may contain mixed modalities (such as text and images). In this paper, we address the challenge of Universal Retrieval-Augmented Generation (URAG), which involves retrieving and reasoning over mixed-modal information to improve vision-language generation. To this end, we propose Nyx, a unified mixed-modal to mixed-modal retriever tailored for URAG scenarios. To mitigate the scarcity of realistic mixed-modal data, we introduce a four-stage automated pipeline for generation and filtering, leveraging web documents to construct NyxQA, a dataset comprising diverse mixed-modal question-answer pairs that better reflect real-world information needs. Building on this high-quality dataset, we adopt a two-stage training framework for Nyx: we first perform pre-training on NyxQA along with a variety of open-source retrieval datasets, followed by supervised fine-tuning using feedback from downstream vision-language models (VLMs) to align retrieval outputs with generative preferences. Experimental results demonstrate that Nyx not only performs competitively on standard text-only RAG benchmarks, but also excels in the more general and realistic URAG setting, significantly improving generation quality in vision-language tasks.
comment: This work is in progress
☆ Addressing Antisocial Behavior in Multi-Party Dialogs Through Multimodal Representation Learning
Antisocial behavior (ASB) on social media -- including hate speech, harassment, and cyberbullying -- poses growing risks to platform safety and societal well-being. Prior research has focused largely on networks such as X and Reddit, while \textit{multi-party conversational settings} remain underexplored due to limited data. To address this gap, we use \textit{CyberAgressionAdo-Large}, a French open-access dataset simulating ASB in multi-party conversations, and evaluate three tasks: \textit{abuse detection}, \textit{bullying behavior analysis}, and \textit{bullying peer-group identification}. We benchmark six text-based and eight graph-based \textit{representation-learning methods}, analyzing lexical cues, interactional dynamics, and their multimodal fusion. Results show that multimodal models outperform unimodal baselines. The late fusion model \texttt{mBERT + WD-SGCN} achieves the best overall results, with top performance on abuse detection (0.718) and competitive scores on peer-group identification (0.286) and bullying analysis (0.606). Error analysis highlights its effectiveness in handling nuanced ASB phenomena such as implicit aggression, role transitions, and context-dependent hostility.
☆ TaxoAlign: Scholarly Taxonomy Generation Using Language Models EMNLP 2025
Taxonomies play a crucial role in helping researchers structure and navigate knowledge in a hierarchical manner. They also form an important part in the creation of comprehensive literature surveys. The existing approaches to automatic survey generation do not compare the structure of the generated surveys with those written by human experts. To address this gap, we present our own method for automated taxonomy creation that can bridge the gap between human-generated and automatically-created taxonomies. For this purpose, we create the CS-TaxoBench benchmark which consists of 460 taxonomies that have been extracted from human-written survey papers. We also include an additional test set of 80 taxonomies curated from conference survey papers. We propose TaxoAlign, a three-phase topic-based instruction-guided method for scholarly taxonomy generation. Additionally, we propose a stringent automated evaluation framework that measures the structural alignment and semantic coherence of automatically generated taxonomies in comparison to those created by human experts. We evaluate our method and various baselines on CS-TaxoBench, using both automated evaluation metrics and human evaluation studies. The results show that TaxoAlign consistently surpasses the baselines on nearly all metrics. The code and data can be found at https://github.com/AvishekLahiri/TaxoAlign.
comment: This paper has been accepted at the EMNLP 2025 Main Conference
☆ Explainability of Large Language Models: Opportunities and Challenges toward Generating Trustworthy Explanations
Large language models have exhibited impressive performance across a broad range of downstream tasks in natural language processing. However, how a language model predicts the next token and generates content is not generally understandable by humans. Furthermore, these models often make errors in prediction and reasoning, known as hallucinations. These errors underscore the urgent need to better understand and interpret the intricate inner workings of language models and how they generate predictive outputs. Motivated by this gap, this paper investigates local explainability and mechanistic interpretability within Transformer-based large language models to foster trust in such models. In this regard, our paper aims to make three key contributions. First, we present a review of local explainability and mechanistic interpretability approaches and insights from relevant studies in the literature. Furthermore, we describe experimental studies on explainability and reasoning with large language models in two critical domains -- healthcare and autonomous driving -- and analyze the trust implications of such explanations for explanation receivers. Finally, we summarize current unaddressed issues in the evolving landscape of LLM explainability and outline the opportunities, critical challenges, and future directions toward generating human-aligned, trustworthy LLM explanations.
☆ How News Feels: Understanding Affective Bias in Multilingual Headlines for Human-Centered Media Design
News media often shape the public mood not only by what they report but by how they frame it. The same event can appear calm in one outlet and alarming in another, reflecting subtle emotional bias in reporting. Negative or emotionally charged headlines tend to attract more attention and spread faster, which in turn encourages outlets to frame stories in ways that provoke stronger reactions. This research explores that tendency through large-scale emotion analysis of Bengali news. Using zero-shot inference with Gemma-3 4B, we analyzed 300000 Bengali news headlines and their content to identify the dominant emotion and overall tone of each. The findings reveal a clear dominance of negative emotions, particularly anger, fear, and disappointment, and significant variation in how similar stories are emotionally portrayed across outlets. Based on these insights, we propose design ideas for a human-centered news aggregator that visualizes emotional cues and helps readers recognize hidden affective framing in daily news.
comment: 15 pages, 7 figures, 4 tables. Submitted to the International Conference on Data and Applied Analytics (IDAA 2025)
☆ From Preferences to Prejudice: The Role of Alignment Tuning in Shaping Social Bias in Video Diffusion Models
Recent advances in video diffusion models have significantly enhanced text-to-video generation, particularly through alignment tuning using reward models trained on human preferences. While these methods improve visual quality, they can unintentionally encode and amplify social biases. To systematically trace how such biases evolve throughout the alignment pipeline, we introduce VideoBiasEval, a comprehensive diagnostic framework for evaluating social representation in video generation. Grounded in established social bias taxonomies, VideoBiasEval employs an event-based prompting strategy to disentangle semantic content (actions and contexts) from actor attributes (gender and ethnicity). It further introduces multi-granular metrics to evaluate (1) overall ethnicity bias, (2) gender bias conditioned on ethnicity, (3) distributional shifts in social attributes across model variants, and (4) the temporal persistence of bias within videos. Using this framework, we conduct the first end-to-end analysis connecting biases in human preference datasets, their amplification in reward models, and their propagation through alignment-tuned video diffusion models. Our results reveal that alignment tuning not only strengthens representational biases but also makes them temporally stable, producing smoother yet more stereotyped portrayals. These findings highlight the need for bias-aware evaluation and mitigation throughout the alignment process to ensure fair and socially responsible video generation.
☆ StreamingThinker: Large Language Models Can Think While Reading
Large language models (LLMs) have demonstrated remarkable capabilities in chain of thought (CoT) reasoning. However, the current LLM reasoning paradigm initiates thinking only after the entire input is available, which introduces unnecessary latency and weakens attention to earlier information in dynamic scenarios. Inspired by human cognition of thinking while reading, we first design a \textit{\textbf{streaming thinking}} paradigm for LLMs, where reasoning unfolds in the order of input and further adjusts its depth once reading is complete. We instantiate this paradigm with \textit{StreamingThinker}, a framework that enables LLMs to think while reading through the integration of streaming CoT generation, streaming-constraint training, and streaming parallel inference. Specifically, StreamingThinker employs streaming reasoning units with quality control for CoT generation, enforces order-preserving reasoning through streaming attention masks and position encoding, and leverages parallel KV caches that decouple input encoding from reasoning generation, thereby ensuring alignment and enabling true concurrency. We evaluate StreamingThinker on the Qwen3 model family across math reasoning, logical reasoning, and context-based QA reasoning tasks. Experimental results show that the StreamingThinker preserves performance comparable to batch thinking, while yielding an 80\% reduction in token waiting before the onset of reasoning and a more than 60\% reduction in time-level latency for producing the final answer, demonstrating the effectiveness of the streaming paradigm for LLM reasoning. Code will be released at \href{https://github.com/EIT-NLP/StreamingLLM/tree/main/StreamingThinker}{this repository.}
☆ Wisdom is Knowing What not to Say: Hallucination-Free LLMs Unlearning via Attention Shifting
The increase in computing power and the necessity of AI-assisted decision-making boost the growing application of large language models (LLMs). Along with this, the potential retention of sensitive data of LLMs has spurred increasing research into machine unlearning. However, existing unlearning approaches face a critical dilemma: Aggressive unlearning compromises model utility, while conservative strategies preserve utility but risk hallucinated responses. This significantly limits LLMs' reliability in knowledge-intensive applications. To address this, we introduce a novel Attention-Shifting (AS) framework for selective unlearning. AS is driven by two design objectives: (1) context-preserving suppression that attenuates attention to fact-bearing tokens without disrupting LLMs' linguistic structure; and (2) hallucination-resistant response shaping that discourages fabricated completions when queried about unlearning content. AS realizes these objectives through two attention-level interventions, which are importance-aware suppression applied to the unlearning set to reduce reliance on memorized knowledge and attention-guided retention enhancement that reinforces attention toward semantically essential tokens in the retained dataset to mitigate unintended degradation. These two components are jointly optimized via a dual-loss objective, which forms a soft boundary that localizes unlearning while preserving unrelated knowledge under representation superposition. Experimental results show that AS improves performance preservation over the state-of-the-art unlearning methods, achieving up to 15% higher accuracy on the ToFU benchmark and 10% on the TDEC benchmark, while maintaining competitive hallucination-free unlearning effectiveness. Compared to existing methods, AS demonstrates a superior balance between unlearning effectiveness, generalization, and response reliability.
comment: 22 pages, 10 figures
☆ Soft-Masked Diffusion Language Models
Diffusion models have demonstrated strong potential in language modeling, offering various advantages over traditional autoregressive approaches. Their ability to generate and revise entire responses in parallel enables faster generation and built-in self-correction mechanisms. Most modern diffusion-based language models employ masked diffusion, where decoding involves iteratively processing masked tokens based on a binary decision: either retaining the mask or replacing it with the predicted token. However, this binary choice discards valuable predictive information when the mask is retained. To address this limitation, we introduce soft-masking (SM), a novel method that dynamically blends the embedding of the mask token with the embeddings of the top-$k$ predicted tokens from the previous decoding step, for each retained mask. This provides the model with a more informative prior, preserving context from earlier computations and allowing partial information about masked tokens to propagate beyond a single step. We propose a training methodology that adapts a pretrained masked diffusion language model to incorporate SM. We demonstrate that continuing pretraining a 169M parameter model with SM leads to improved perplexity and MAUVE scores. Furthermore, we finetune two state-of-the-art diffusion models, Dream-7B and Dream-Coder-7B, with SM. SM consistently improves performance across multiple coding benchmarks, particularly in high-throughput settings.
☆ $\mathcal{V}isi\mathcal{P}runer$: Decoding Discontinuous Cross-Modal Dynamics for Efficient Multimodal LLMs EMNLP 2025
Multimodal Large Language Models (MLLMs) have achieved strong performance across vision-language tasks, but suffer from significant computational overhead due to the quadratic growth of attention computations with the number of multimodal tokens. Though efforts have been made to prune tokens in MLLMs, \textit{they lack a fundamental understanding of how MLLMs process and fuse multimodal information.} Through systematic analysis, we uncover a \textbf{three-stage} cross-modal interaction process: (1) Shallow layers recognize task intent, with visual tokens acting as passive attention sinks; (2) Cross-modal fusion occurs abruptly in middle layers, driven by a few critical visual tokens; (3) Deep layers discard vision tokens, focusing solely on linguistic refinement. Based on these findings, we propose \emph{VisiPruner}, a training-free pruning framework that reduces up to 99\% of vision-related attention computations and 53.9\% of FLOPs on LLaVA-v1.5 7B. It significantly outperforms existing token pruning methods and generalizes across diverse MLLMs. Beyond pruning, our insights further provide actionable guidelines for training efficient MLLMs by aligning model architecture with its intrinsic layer-wise processing dynamics. Our code is available at: https://github.com/EIT-NLP/VisiPruner.
comment: EMNLP 2025 Main
☆ Understanding and Improving Length Generalization in Hierarchical Sparse Attention Models
Effectively processing long contexts is a critical challenge for language models. While standard Transformers are limited by quadratic complexity and poor length extrapolation, alternative architectures like sliding window attention and state space models sacrifice the ability to effectively utilize the full context due to their fixed-size memory. Chunk-based sparse attention has emerged as a promising paradigm for extreme length generalization, yet the key architectural principles underpinning its success are not yet fully understood. In this work, we present a systematic dissection of these models to identify the core components driving their performance. Through a unified framework and comprehensive ablation studies, we demonstrate that a combination of three design principles is critical: (1) an expressive, non-linear Chunk Encoder with a dedicated CLS token to produce representations for retrieval; (2) a Bypassing Residual Path to stably integrate retrieved global information without it being overridden by the local residual stream; and (3) enforced selection sparsity during pre-training to bridge the train-test distribution gap. We provide a theoretical motivation for intra-chunk information processing and landmark generation. By combining these principles, we establish a new state-of-the-art for training-free length extrapolation, successfully generalizing models trained on a 4K context to 32 million tokens on RULER and BABILong. Our findings provide a clear and empirically-grounded set of design principles for developing future, highly-capable long-context language models.
comment: Preprint. Work in progress
☆ Offline Policy Evaluation of Multi-Turn LLM Health Coaching with Real Users NeurIPS 2025
We study a web-deployed, tool-augmented LLM health coach with real users. In a pilot with seven users (280 rated turns), offline policy evaluation (OPE) over factorized decision heads (Tool/Style) shows that a uniform heavy-tool policy raises average value on logs but harms specific subgroups, most notably low-health-literacy/high-self-efficacy users. A lightweight simulator with hidden archetypes further shows that adding a small early information-gain bonus reliably shortens trait identification and improves goal success and pass@3. Together, these early findings indicate an evaluation-first path to personalization: freeze the generator, learn subgroup-aware decision heads on typed rewards (objective tool outcomes and satisfaction), and always report per-archetype metrics to surface subgroup harms that averages obscure.
comment: Accepted to the NeurIPS 2025 Workshop on Multi-Turn Interactions in Large Language Models
☆ When AI companions become witty: Can human brain recognize AI-generated irony?
As Large Language Models (LLMs) are increasingly deployed as social agents and trained to produce humor and irony, a question emerges: when encountering witty AI remarks, do people interpret these as intentional communication or mere computational output? This study investigates whether people adopt the intentional stance, attributing mental states to explain behavior,toward AI during irony comprehension. Irony provides an ideal paradigm because it requires distinguishing intentional contradictions from unintended errors through effortful semantic reanalysis. We compared behavioral and neural responses to ironic statements from AI versus human sources using established ERP components: P200 reflecting early incongruity detection and P600 indexing cognitive efforts in reinterpreting incongruity as deliberate irony. Results demonstrate that people do not fully adopt the intentional stance toward AI-generated irony. Behaviorally, participants attributed incongruity to deliberate communication for both sources, though significantly less for AI than human, showing greater tendency to interpret AI incongruities as computational errors. Neural data revealed attenuated P200 and P600 effects for AI-generated irony, suggesting reduced effortful detection and reanalysis consistent with diminished attribution of communicative intent. Notably, people who perceived AI as more sincere showed larger P200 and P600 effects for AI-generated irony, suggesting that intentional stance adoption is calibrated by specific mental models of artificial agents. These findings reveal that source attribution shapes neural processing of social-communicative phenomena. Despite current LLMs' linguistic sophistication, achieving genuine social agency requires more than linguistic competence, it necessitates a shift in how humans perceive and attribute intentionality to artificial agents.
☆ Rethinking On-policy Optimization for Query Augmentation
Recent advances in large language models (LLMs) have led to a surge of interest in query augmentation for information retrieval (IR). Two main approaches have emerged. The first prompts LLMs to generate answers or pseudo-documents that serve as new queries, relying purely on the model's parametric knowledge or contextual information. The second applies reinforcement learning (RL) to fine-tune LLMs for query rewriting, directly optimizing retrieval metrics. While having respective advantages and limitations, the two approaches have not been compared under consistent experimental conditions. In this work, we present the first systematic comparison of prompting-based and RL-based query augmentation across diverse benchmarks, including evidence-seeking, ad hoc, and tool retrieval. Our key finding is that simple, training-free query augmentation often performs on par with, or even surpasses, more expensive RL-based counterparts, especially when using powerful LLMs. Motivated by this discovery, we introduce a novel hybrid method, On-policy Pseudo-document Query Expansion (OPQE), which, instead of rewriting a query, the LLM policy learns to generate a pseudo-document that maximizes retrieval performance, thus merging the flexibility and generative structure of prompting with the targeted optimization of RL. We show OPQE outperforms both standalone prompting and RL-based rewriting, demonstrating that a synergistic approach yields the best results. Our implementation is made available to facilitate reproducibility.
☆ Do LLMs Recognize Your Latent Preferences? A Benchmark for Latent Information Discovery in Personalized Interaction
Large Language Models (LLMs) excel at producing broadly relevant text, but this generality becomes a limitation when user-specific preferences are required, such as recommending restaurants or planning travel. In these scenarios, users rarely articulate every preference explicitly; instead, much of what they care about remains latent, waiting to be inferred. This raises a fundamental question: Can LLMs uncover and reason about such latent information through conversation? We address this problem by introducing a unified benchmark for evaluating latent information discovery - the ability of LLMs to reveal and utilize hidden user attributes through multi-turn interaction. The benchmark spans three progressively realistic settings: the classic 20 Questions game, Personalized Question Answering, and Personalized Text Summarization. All tasks share a tri-agent framework (User, Assistant, Judge) enabling turn-level evaluation of elicitation and adaptation. Our results reveal that while LLMs can indeed surface latent information through dialogue, their success varies dramatically with context: from 32% to 98%, depending on task complexity, topic, and number of hidden attributes. This benchmark provides the first systematic framework for studying latent information discovery in personalized interaction, highlighting that effective preference inference remains an open frontier for building truly adaptive AI systems.
☆ DVAGen: Dynamic Vocabulary Augmented Generation
Language models trained with a fixed vocabulary struggle to generalize to novel or out-of-vocabulary words, limiting their flexibility in handling diverse token combinations. Existing dynamic vocabulary approaches attempt to address this limitation but face challenges such as fragmented codebases, lack of support for modern LLMs, and limited inference scalability. To overcome these issues, we introduce DVAGen, a fully open-source, unified framework designed for training, evaluation, and visualization of dynamic vocabulary-augmented language models. Our framework modularizes the pipeline for ease of customization, integrates seamlessly with open-source LLMs, and is the first to provide both CLI and WebUI tools for real-time result inspection. We validate the effectiveness of dynamic vocabulary methods on modern LLMs and demonstrate support for batch inference, significantly improving inference throughput.
☆ Verification-Aware Planning for Multi-Agent Systems
Large language model (LLM) agents are increasingly deployed to tackle complex tasks, often necessitating collaboration among multiple specialized agents. However, multi-agent collaboration introduces new challenges in planning, coordination, and verification. Execution failures frequently arise not from flawed reasoning alone, but from subtle misalignments in task interpretation, output format, or inter-agent handoffs. To address these challenges, we present VeriMAP, a framework for multi-agent collaboration with verification-aware planning. The VeriMAP planner decomposes tasks, models subtask dependencies, and encodes planner-defined passing criteria as subtask verification functions (VFs) in Python and natural language. We evaluate VeriMAP on diverse datasets, demonstrating that it outperforms both single- and multi-agent baselines while enhancing system robustness and interpretability. Our analysis highlights how verification-aware planning enables reliable coordination and iterative refinement in multi-agent systems, without relying on external labels or annotations.
comment: Submission for ARR Oct
☆ Investigating Thinking Behaviours of Reasoning-Based Language Models for Social Bias Mitigation
While reasoning-based large language models excel at complex tasks through an internal, structured thinking process, a concerning phenomenon has emerged that such a thinking process can aggregate social stereotypes, leading to biased outcomes. However, the underlying behaviours of these language models in social bias scenarios remain underexplored. In this work, we systematically investigate mechanisms within the thinking process behind this phenomenon and uncover two failure patterns that drive social bias aggregation: 1) stereotype repetition, where the model relies on social stereotypes as its primary justification, and 2) irrelevant information injection, where it fabricates or introduces new details to support a biased narrative. Building on these insights, we introduce a lightweight prompt-based mitigation approach that queries the model to review its own initial reasoning against these specific failure patterns. Experiments on question answering (BBQ and StereoSet) and open-ended (BOLD) benchmarks show that our approach effectively reduces bias while maintaining or improving accuracy.
☆ CMT-Bench: Cricket Multi-Table Generation Benchmark for Probing Robustness in Large Language Models
LLM Driven text-to-table (T2T) systems often rely on extensive prompt-engineering or iterative event extraction in code-parsable formats, which boosts scores but are computationally expensive and obscure how models actually reason over temporal evolving narratives to summarise key information. We present CMT-Bench, a diagnostic benchmark built from live cricket commentary that requires dynamic table generation across two evolving schemas under a dense, rule-governed policy. CMT-Bench is designed to probe robustness via three semantics-preserving dimensions: (i) extractive-cue ablation to separate extractive shortcuts from state tracking, (ii) temporal prefixing to test long-context stability, and (iii) entity-form perturbations (anonymization, outof-distribution substitutions, role-entangling paraphrases) to assess sensitivity to surface variation. Across diverse long-context stateof-the-art LLMs, we find large drops without extractive summaries, monotonic degradation with input length, and consistent accuracy drop under entity-form changes. Complementary distributional tests confirm significant shifts in numeric error patterns, indicating drift in reasoning rather than mere noise. Our results show that current LLMs are brittle in dynamic Textto-table generation, motivating robustness-first evaluation as a prerequisite for developing efficient and scalable approaches for this task.
☆ Saber: An Efficient Sampling with Adaptive Acceleration and Backtracking Enhanced Remasking for Diffusion Language Model
Diffusion language models (DLMs) are emerging as a powerful and promising alternative to the dominant autoregressive paradigm, offering inherent advantages in parallel generation and bidirectional context modeling. However, the performance of DLMs on code generation tasks, which have stronger structural constraints, is significantly hampered by the critical trade-off between inference speed and output quality. We observed that accelerating the code generation process by reducing the number of sampling steps usually leads to a catastrophic collapse in performance. In this paper, we introduce efficient Sampling with Adaptive acceleration and Backtracking Enhanced Remasking (i.e., Saber), a novel training-free sampling algorithm for DLMs to achieve better inference speed and output quality in code generation. Specifically, Saber is motivated by two key insights in the DLM generation process: 1) it can be adaptively accelerated as more of the code context is established; 2) it requires a backtracking mechanism to reverse the generated tokens. Extensive experiments on multiple mainstream code generation benchmarks show that Saber boosts Pass@1 accuracy by an average improvement of 1.9% over mainstream DLM sampling methods, meanwhile achieving an average 251.4% inference speedup. By leveraging the inherent advantages of DLMs, our work significantly narrows the performance gap with autoregressive models in code generation.
☆ Automatic Prompt Generation via Adaptive Selection of Prompting Techniques
Prompt engineering is crucial for achieving reliable and effective outputs from large language models (LLMs), but its design requires specialized knowledge of prompting techniques and a deep understanding of target tasks. To address this challenge, we propose a novel method that adaptively selects task-appropriate prompting techniques based on users' abstract task descriptions and automatically generates high-quality prompts without relying on pre-existing templates or frameworks. The proposed method constructs a knowledge base that associates task clusters, characterized by semantic similarity across diverse tasks, with their corresponding prompting techniques. When users input task descriptions, the system assigns them to the most relevant task cluster and dynamically generates prompts by integrating techniques drawn from the knowledge base. An experimental evaluation of the proposed method on 23 tasks from BIG-Bench Extra Hard (BBEH) demonstrates superior performance compared with standard prompts and existing automatic prompt-generation tools, as measured by both arithmetic and harmonic mean scores. This research establishes a foundation for streamlining and standardizing prompt creation, enabling non-experts to effectively leverage LLMs.
comment: 35 pages, 29 figures, 5 tables
☆ Extracting Rule-based Descriptions of Attention Features in Transformers
Mechanistic interpretability strives to explain model behavior in terms of bottom-up primitives. The leading paradigm is to express hidden states as a sparse linear combination of basis vectors, called features. However, this only identifies which text sequences (exemplars) activate which features; the actual interpretation of features requires subjective inspection of these exemplars. This paper advocates for a different solution: rule-based descriptions that match token patterns in the input and correspondingly increase or decrease the likelihood of specific output tokens. Specifically, we extract rule-based descriptions of SAE features trained on the outputs of attention layers. While prior work treats the attention layers as an opaque box, we describe how it may naturally be expressed in terms of interactions between input and output features, of which we study three types: (1) skip-gram rules of the form "[Canadian city]... speaks --> English", (2) absence rules of the form "[Montreal]... speaks -/-> English," and (3) counting rules that toggle only when the count of a word exceeds a certain value or the count of another word. Absence and counting rules are not readily discovered by inspection of exemplars, where manual and automatic descriptions often identify misleading or incomplete explanations. We then describe a simple approach to extract these types of rules automatically from a transformer, and apply it to GPT-2 small. We find that a majority of features may be described well with around 100 skip-gram rules, though absence rules are abundant even as early as the first layer (in over a fourth of features). We also isolate a few examples of counting rules. This paper lays the groundwork for future research into rule-based descriptions of features by defining them, showing how they may be extracted, and providing a preliminary taxonomy of some of the behaviors they represent.
comment: Our code is available at https://github.com/princeton-nlp/AttentionRules
☆ LLMs Encode How Difficult Problems Are
Large language models exhibit a puzzling inconsistency: they solve complex problems yet frequently fail on seemingly simpler ones. We investigate whether LLMs internally encode problem difficulty in a way that aligns with human judgment, and whether this representation tracks generalization during reinforcement learning post-training. We train linear probes across layers and token positions on 60 models, evaluating on mathematical and coding subsets of Easy2HardBench. We find that human-labeled difficulty is strongly linearly decodable (AMC: $\rho \approx 0.88$) and exhibits clear model-size scaling, whereas LLM-derived difficulty is substantially weaker and scales poorly. Steering along the difficulty direction reveals that pushing models toward "easier" representations reduces hallucination and improves accuracy. During GRPO training on Qwen2.5-Math-1.5B, the human-difficulty probe strengthens and positively correlates with test accuracy across training steps, while the LLM-difficulty probe degrades and negatively correlates with performance. These results suggest that human annotations provide a stable difficulty signal that RL amplifies, while automated difficulty estimates derived from model performance become misaligned precisely as models improve. We release probe code and evaluation scripts to facilitate replication.
☆ SafeCoop: Unravelling Full Stack Safety in Agentic Collaborative Driving
Collaborative driving systems leverage vehicle-to-everything (V2X) communication across multiple agents to enhance driving safety and efficiency. Traditional V2X systems take raw sensor data, neural features, or perception results as communication media, which face persistent challenges, including high bandwidth demands, semantic loss, and interoperability issues. Recent advances investigate natural language as a promising medium, which can provide semantic richness, decision-level reasoning, and human-machine interoperability at significantly lower bandwidth. Despite great promise, this paradigm shift also introduces new vulnerabilities within language communication, including message loss, hallucinations, semantic manipulation, and adversarial attacks. In this work, we present the first systematic study of full-stack safety and security issues in natural-language-based collaborative driving. Specifically, we develop a comprehensive taxonomy of attack strategies, including connection disruption, relay/replay interference, content spoofing, and multi-connection forgery. To mitigate these risks, we introduce an agentic defense pipeline, which we call SafeCoop, that integrates a semantic firewall, language-perception consistency checks, and multi-source consensus, enabled by an agentic transformation function for cross-frame spatial alignment. We systematically evaluate SafeCoop in closed-loop CARLA simulation across 32 critical scenarios, achieving 69.15% driving score improvement under malicious attacks and up to 67.32% F1 score for malicious detection. This study provides guidance for advancing research on safe, secure, and trustworthy language-driven collaboration in transportation systems. Our project page is https://xiangbogaobarry.github.io/SafeCoop.
☆ Does Reasoning Help LLM Agents Play Dungeons and Dragons? A Prompt Engineering Experiment EMNLP 2025
This paper explores the application of Large Language Models (LLMs) and reasoning to predict Dungeons & Dragons (DnD) player actions and format them as Avrae Discord bot commands. Using the FIREBALL dataset, we evaluated a reasoning model, DeepSeek-R1-Distill-LLaMA-8B, and an instruct model, LLaMA-3.1-8B-Instruct, for command generation. Our findings highlight the importance of providing specific instructions to models, that even single sentence changes in prompts can greatly affect the output of models, and that instruct models are sufficient for this task compared to reasoning models.
comment: Published at the Wordplay: When Language Meets Games Workshop (EMNLP 2025)
☆ Na Prática, qual IA Entende o Direito? Um Estudo Experimental com IAs Generalistas e uma IA Jurídica
This study presents the Jusbrasil Study on the Use of General-Purpose AIs in Law, proposing an experimental evaluation protocol combining legal theory, such as material correctness, systematic coherence, and argumentative integrity, with empirical assessment by 48 legal professionals. Four systems (JusIA, ChatGPT Free, ChatGPT Pro, and Gemini) were tested in tasks simulating lawyers' daily work. JusIA, a domain-specialized model, consistently outperformed the general-purpose systems, showing that both domain specialization and a theoretically grounded evaluation are essential for reliable legal AI outputs.
comment: 22 pages, in Portuguese language
☆ SMaRT: Select, Mix, and ReinvenT - A Strategy Fusion Framework for LLM-Driven Reasoning and Planning
Large Language Models (LLMs) have redefined complex task automation with exceptional generalization capabilities. Despite these advancements, state-of-the-art methods rely on single-strategy prompting, missing the synergy of diverse reasoning approaches. No single strategy excels universally, highlighting the need for frameworks that fuse strategies to maximize performance and ensure robustness. We introduce the Select, Mix, and ReinvenT (SMaRT) framework, an innovative strategy fusion approach designed to overcome this constraint by creating balanced and efficient solutions through the seamless integration of diverse reasoning strategies. Unlike existing methods, which employ LLMs merely as evaluators, SMaRT uses them as intelligent integrators, unlocking the "best of all worlds" across tasks. Extensive empirical evaluations across benchmarks in reasoning, planning, and sequential decision-making highlight the robustness and adaptability of SMaRT. The framework consistently outperforms state-of-the-art baselines in solution quality, constraint adherence, and performance metrics. This work redefines LLM-driven decision-making by pioneering a new paradigm in cross-strategy calibration, unlocking superior outcomes for reasoning systems and advancing the boundaries of self-refining methodologies.
☆ Chain-of-Thought Reasoning Improves Context-Aware Translation with Large Language Models
This paper assesses the capacity of large language models (LLMs) to translate texts that include inter-sentential dependencies. We use the English-French DiscEvalMT benchmark (Bawden et al., 2018) with pairs of sentences containing translation challenges either for pronominal anaphora or for lexical cohesion. We evaluate 12 LLMs from the DeepSeek-R1, GPT, Llama, Mistral and Phi families on two tasks: (1) distinguishing a correct translation from a wrong but plausible one; (2) generating a correct translation. We compare prompts that encourage chain-of-thought reasoning with those that do not. The best models take advantage of reasoning and reach about 90% accuracy on the first task, and COMET scores of about 92% on the second task, with GPT-4, GPT-4o and Phi standing out. Moreover, we observe a "wise get wiser" effect: the improvements through reasoning are positively correlated with the scores of the models without reasoning.
☆ HouseTour: A Virtual Real Estate A(I)gent ICCV 2025
We introduce HouseTour, a method for spatially-aware 3D camera trajectory and natural language summary generation from a collection of images depicting an existing 3D space. Unlike existing vision-language models (VLMs), which struggle with geometric reasoning, our approach generates smooth video trajectories via a diffusion process constrained by known camera poses and integrates this information into the VLM for 3D-grounded descriptions. We synthesize the final video using 3D Gaussian splatting to render novel views along the trajectory. To support this task, we present the HouseTour dataset, which includes over 1,200 house-tour videos with camera poses, 3D reconstructions, and real estate descriptions. Experiments demonstrate that incorporating 3D camera trajectories into the text generation process improves performance over methods handling each task independently. We evaluate both individual and end-to-end performance, introducing a new joint metric. Our work enables automated, professional-quality video creation for real estate and touristic applications without requiring specialized expertise or equipment.
comment: Published on ICCV 2025
☆ Language Models as Semantic Augmenters for Sequential Recommenders
Large Language Models (LLMs) excel at capturing latent semantics and contextual relationships across diverse modalities. However, in modeling user behavior from sequential interaction data, performance often suffers when such semantic context is limited or absent. We introduce LaMAR, a LLM-driven semantic enrichment framework designed to enrich such sequences automatically. LaMAR leverages LLMs in a few-shot setting to generate auxiliary contextual signals by inferring latent semantic aspects of a user's intent and item relationships from existing metadata. These generated signals, such as inferred usage scenarios, item intents, or thematic summaries, augment the original sequences with greater contextual depth. We demonstrate the utility of this generated resource by integrating it into benchmark sequential modeling tasks, where it consistently improves performance. Further analysis shows that LLM-generated signals exhibit high semantic novelty and diversity, enhancing the representational capacity of the downstream models. This work represents a new data-centric paradigm where LLMs serve as intelligent context generators, contributing a new method for the semi-automatic creation of training data and language resources.
☆ Subject-Event Ontology Without Global Time: Foundations and Execution Semantics
A formalization of a subject-event ontology is proposed for modeling complex dynamic systems without reliance on global time. Key principles: (1) event as an act of fixation - a subject discerns and fixes changes according to models (conceptual templates) available to them; (2) causal order via happens-before - the order of events is defined by explicit dependencies, not timestamps; (3) making the ontology executable via a declarative dataflow mechanism, ensuring determinism; (4) models as epistemic filters - a subject can only fix what falls under its known concepts and properties; (5) presumption of truth - the declarative content of an event is available for computation from the moment of fixation, without external verification. The formalization includes nine axioms (A1-A9), ensuring the correctness of executable ontologies: monotonicity of history (I1), acyclicity of causality (I2), traceability (I3). Special attention is given to the model-based approach (A9): event validation via schemas, actor authorization, automatic construction of causal chains (W3) without global time. Practical applicability is demonstrated on the boldsea system - a workflow engine for executable ontologies, where the theoretical constructs are implemented in BSL (Boldsea Semantic Language). The formalization is applicable to distributed systems, microservice architectures, DLT platforms, and multiperspectivity scenarios (conflicting facts from different subjects).
comment: 32 pages
☆ From Local to Global: Revisiting Structured Pruning Paradigms for Large Language Models
Structured pruning is a practical approach to deploying large language models (LLMs) efficiently, as it yields compact, hardware-friendly architectures. However, the dominant local paradigm is task-agnostic: by optimizing layer-wise reconstruction rather than task objectives, it tends to preserve perplexity or generic zero-shot behavior but fails to capitalize on modest task-specific calibration signals, often yielding limited downstream gains. We revisit global structured pruning and present GISP-Global Iterative Structured Pruning-a post-training method that removes attention heads and MLP channels using first-order, loss-based important weights aggregated at the structure level with block-wise normalization. An iterative schedule, rather than one-shot pruning, stabilizes accuracy at higher sparsity and mitigates perplexity collapse without requiring intermediate fine-tuning; the pruning trajectory also forms nested subnetworks that support a "prune-once, deploy-many" workflow. Furthermore, because importance is defined by a model-level loss, GISP naturally supports task-specific objectives; we instantiate perplexity for language modeling and a margin-based objective for decision-style tasks. Extensive experiments show that across Llama2-7B/13B, Llama3-8B, and Mistral-0.3-7B, GISP consistently lowers WikiText-2 perplexity and improves downstream accuracy, with especially strong gains at 40-50% sparsity; on DeepSeek-R1-Distill-Llama-3-8B with GSM8K, task-aligned calibration substantially boosts exact-match accuracy.
comment: 16 pages, 4 figures
☆ Is Multilingual LLM Watermarking Truly Multilingual? A Simple Back-Translation Solution
Multilingual watermarking aims to make large language model (LLM) outputs traceable across languages, yet current methods still fall short. Despite claims of cross-lingual robustness, they are evaluated only on high-resource languages. We show that existing multilingual watermarking methods are not truly multilingual: they fail to remain robust under translation attacks in medium- and low-resource languages. We trace this failure to semantic clustering, which fails when the tokenizer vocabulary contains too few full-word tokens for a given language. To address this, we introduce STEAM, a back-translation-based detection method that restores watermark strength lost through translation. STEAM is compatible with any watermarking method, robust across different tokenizers and languages, non-invasive, and easily extendable to new languages. With average gains of +0.19 AUC and +40%p TPR@1% on 17 languages, STEAM provides a simple and robust path toward fairer watermarking across diverse languages.
☆ SimBA: Simplifying Benchmark Analysis Using Performance Matrices Alone EMNLP 2025
Modern language models are evaluated on large benchmarks, which are difficult to make sense of, especially for model selection. Looking at the raw evaluation numbers themselves using a model-centric lens, we propose SimBA, a three phase framework to Simplify Benchmark Analysis. The three phases of SimBA are: stalk, where we conduct dataset & model comparisons, prowl, where we discover a representative subset, and pounce, where we use the representative subset to predict performance on a held-out set of models. Applying SimBA to three popular LM benchmarks: HELM, MMLU, and BigBenchLite reveals that across all three benchmarks, datasets and models relate strongly to one another (stalk). We develop an representative set discovery algorithm which covers a benchmark using raw evaluation scores alone. Using our algorithm, we find that with 6.25% (1/16), 1.7% (1/58), and 28.4% (21/74) of the datasets for HELM, MMLU, and BigBenchLite respectively, we achieve coverage levels of at least 95% (prowl). Additionally, using just these representative subsets, we can both preserve model ranks and predict performance on a held-out set of models with near zero mean-squared error (pounce). Taken together, SimBA can help model developers improve efficiency during model training and dataset creators validate whether their newly created dataset differs from existing datasets in a benchmark. Our code is open source, available at https://github.com/nishantsubramani/simba.
comment: EMNLP 2025 Findings
☆ PLAGUE: Plug-and-play framework for Lifelong Adaptive Generation of Multi-turn Exploits
Large Language Models (LLMs) are improving at an exceptional rate. With the advent of agentic workflows, multi-turn dialogue has become the de facto mode of interaction with LLMs for completing long and complex tasks. While LLM capabilities continue to improve, they remain increasingly susceptible to jailbreaking, especially in multi-turn scenarios where harmful intent can be subtly injected across the conversation to produce nefarious outcomes. While single-turn attacks have been extensively explored, adaptability, efficiency and effectiveness continue to remain key challenges for their multi-turn counterparts. To address these gaps, we present PLAGUE, a novel plug-and-play framework for designing multi-turn attacks inspired by lifelong-learning agents. PLAGUE dissects the lifetime of a multi-turn attack into three carefully designed phases (Primer, Planner and Finisher) that enable a systematic and information-rich exploration of the multi-turn attack family. Evaluations show that red-teaming agents designed using PLAGUE achieve state-of-the-art jailbreaking results, improving attack success rates (ASR) by more than 30% across leading models in a lesser or comparable query budget. Particularly, PLAGUE enables an ASR (based on StrongReject) of 81.4% on OpenAI's o3 and 67.3% on Claude's Opus 4.1, two models that are considered highly resistant to jailbreaks in safety literature. Our work offers tools and insights to understand the importance of plan initialization, context optimization and lifelong learning in crafting multi-turn attacks for a comprehensive model vulnerability evaluation.
☆ Believe It or Not: How Deeply do LLMs Believe Implanted Facts?
Knowledge editing techniques promise to implant new factual knowledge into large language models (LLMs). But do LLMs really believe these facts? We develop a framework to measure belief depth and use it to evaluate the success of knowledge editing techniques. We operationalize belief depth as the extent to which implanted knowledge 1) generalizes to related contexts (e.g. Fermi estimates several logical steps removed), 2) is robust to self-scrutiny and direct challenge, and 3) is represented similarly to genuine knowledge (as measured by linear probes). Our evaluations show that simple prompting and mechanistic editing techniques fail to implant knowledge deeply. In contrast, Synthetic Document Finetuning (SDF) - where models are trained on LLM-generated documents consistent with a fact - often succeeds at implanting beliefs that behave similarly to genuine knowledge. However, SDF's success is not universal, as implanted beliefs that contradict basic world knowledge are brittle and representationally distinct from genuine knowledge. Overall, our work introduces measurable criteria for belief depth and enables the rigorous evaluation necessary for deploying knowledge editing in real-world applications.
☆ AtlasKV: Augmenting LLMs with Billion-Scale Knowledge Graphs in 20GB VRAM
Retrieval-augmented generation (RAG) has shown some success in augmenting large language models (LLMs) with external knowledge. However, as a non-parametric knowledge integration paradigm for LLMs, RAG methods heavily rely on external retrieval modules and the retrieved textual context prior. Especially for very large scale knowledge augmentation, they would introduce substantial inference latency due to expensive searches and much longer relevant context. In this paper, we propose a parametric knowledge integration method, called \textbf{AtlasKV}, a scalable, effective, and general way to augment LLMs with billion-scale knowledge graphs (KGs) (e.g. 1B triples) using very little GPU memory cost (e.g. less than 20GB VRAM). In AtlasKV, we introduce KG2KV and HiKVP to integrate KG triples into LLMs at scale with sub-linear time and memory complexity. It maintains strong knowledge grounding and generalization performance using the LLMs' inherent attention mechanism, and requires no external retrievers, long context priors, or retraining when adapting to new knowledge.
☆ Diagnosing Representation Dynamics in NER Model Extension
Extending Named Entity Recognition (NER) models to new PII entities in noisy spoken-language data is a common need. We find that jointly fine-tuning a BERT model on standard semantic entities (PER, LOC, ORG) and new pattern-based PII (EMAIL, PHONE) results in minimal degradation for original classes. We investigate this "peaceful coexistence," hypothesizing that the model uses independent semantic vs. morphological feature mechanisms. Using an incremental learning setup as a diagnostic tool, we measure semantic drift and find two key insights. First, the LOC (location) entity is uniquely vulnerable due to a representation overlap with new PII, as it shares pattern-like features (e.g., postal codes). Second, we identify a "reverse O-tag representation drift." The model, initially trained to map PII patterns to 'O', blocks new learning. This is resolved only by unfreezing the 'O' tag's classifier, allowing the background class to adapt and "release" these patterns. This work provides a mechanistic diagnosis of NER model adaptation, highlighting feature independence, representation overlap, and 'O' tag plasticity.
☆ Efficient Toxicity Detection in Gaming Chats: A Comparative Study of Embeddings, Fine-Tuned Transformers and LLMs
This paper presents a comprehensive comparative analysis of Natural Language Processing (NLP) methods for automated toxicity detection in online gaming chats. Traditional machine learning models with embeddings, large language models (LLMs) with zero-shot and few-shot prompting, fine-tuned transformer models, and retrieval-augmented generation (RAG) approaches are evaluated. The evaluation framework assesses three critical dimensions: classification accuracy, processing speed, and computational costs. A hybrid moderation system architecture is proposed that optimizes human moderator workload through automated detection and incorporates continuous learning mechanisms. The experimental results demonstrate significant performance variations across methods, with fine-tuned DistilBERT achieving optimal accuracy-cost trade-offs. The findings provide empirical evidence for deploying cost-effective, efficient content moderation systems in dynamic online gaming environments.
comment: Published in the Journal of Data Mining & Digital Humanities (JDMDH), special issue NLP4DH
☆ Select-Then-Decompose: From Empirical Analysis to Adaptive Selection Strategy for Task Decomposition in Large Language Models EMNLP 2025
Large language models (LLMs) have demonstrated remarkable reasoning and planning capabilities, driving extensive research into task decomposition. Existing task decomposition methods focus primarily on memory, tool usage, and feedback mechanisms, achieving notable success in specific domains, but they often overlook the trade-off between performance and cost. In this study, we first conduct a comprehensive investigation on task decomposition, identifying six categorization schemes. Then, we perform an empirical analysis of three factors that influence the performance and cost of task decomposition: categories of approaches, characteristics of tasks, and configuration of decomposition and execution models, uncovering three critical insights and summarizing a set of practical principles. Building on this analysis, we propose the Select-Then-Decompose strategy, which establishes a closed-loop problem-solving process composed of three stages: selection, execution, and verification. This strategy dynamically selects the most suitable decomposition approach based on task characteristics and enhances the reliability of the results through a verification module. Comprehensive evaluations across multiple benchmarks show that the Select-Then-Decompose consistently lies on the Pareto frontier, demonstrating an optimal balance between performance and cost. Our code is publicly available at https://github.com/summervvind/Select-Then-Decompose.
comment: Accepted to the Main Conference of EMNLP 2025 (Oral)
☆ CLAWS:Creativity detection for LLM-generated solutions using Attention Window of Sections NeurIPS 2025
Recent advances in enhancing the reasoning ability of large language models (LLMs) have been remarkably successful. LLMs trained with reinforcement learning (RL) for reasoning demonstrate strong performance in challenging tasks such as mathematics and coding, even with relatively small model sizes. However, despite these improvements in task accuracy, the assessment of creativity in LLM generations has been largely overlooked in reasoning tasks, in contrast to writing tasks. The lack of research on creativity assessment in reasoning primarily stems from two challenges: (1) the difficulty of defining the range of creativity, and (2) the necessity of human evaluation in the assessment process. To address these challenges, we propose CLAWS, a method that defines and classifies mathematical solutions into typical, creative, and hallucinated categories without human evaluation, by leveraging attention weights across prompt sections and output. CLAWS outperforms five existing white-box detection methods (Perplexity, Logit Entropy, Window Entropy, Hidden Score, and Attention Score) on five 7-8B math RL models (DeepSeek, Qwen, Mathstral, OpenMath2, and Oreal). We validate CLAWS on 4545 math problems collected from 181 math contests (AJHSME, AMC, AIME).
comment: NeurIPS 2025
☆ JT-Safe: Intrinsically Enhancing the Safety and Trustworthiness of LLMs
The hallucination and credibility concerns of large language models (LLMs) are global challenges that the industry is collectively addressing. Recently, a significant amount of advances have been made on post-training and inference techniques to mitigate these challenges. However, it is widely agreed that unsafe and hallucinations of LLMs intrinsically originate from pre-training, involving pre-training data and the next-token prediction learning mechanism. In this paper, we focus on enhancing pre-training data to improve the trustworthiness and safety of LLMs. Since the data is vast, it's almost impossible to entirely purge the data of factual errors, logical inconsistencies, or distributional biases. Moreover, the pre-training data lack grounding in real-world knowledge. Each piece of data is treated as a sequence of tokens rather than as a representation of a part of the world. To overcome these issues, we propose approaches to enhancing our pre-training data with its context in the world and increasing a substantial amount of data reflecting industrial scenarios. We argue that most source data are created by the authors for specific purposes in a certain spatial-temporal context. They have played a role in the real world. By incorporating related world context information, we aim to better anchor pre-training data within real-world scenarios, thereby reducing uncertainty in model training and enhancing the model's safety and trustworthiness. We refer to our Data with World Context as DWC. We continue pre-training an earlier checkpoint of JT-35B-Base with 1.5 trillion of DWC tokens. We introduce our post-training procedures to activate the potentials of DWC. Compared with the Qwen model of a similar scale, JT-Safe-35B achieves an average performance improvement of 1.79% on the Safety and Trustworthy evaluation benchmarks, while being pretrained with only 6.2 trillion tokens.
☆ SMaRT: Select, Mix, and ReinvenT -- A Strategy Fusion Framework for LLM-Driven Reasoning and Planning
Large Language Models (LLMs) have redefined complex task automation with exceptional generalization capabilities. Despite these advancements, state-of-the-art methods rely on single-strategy prompting, missing the synergy of diverse reasoning approaches. No single strategy excels universally, highlighting the need for frameworks that fuse strategies to maximize performance and ensure robustness. We introduce the Select, Mix, and ReinvenT (SMaRT) framework, an innovative strategy fusion approach designed to overcome this constraint by creating balanced and efficient solutions through the seamless integration of diverse reasoning strategies. Unlike existing methods, which employ LLMs merely as evaluators, SMaRT uses them as intelligent integrators, unlocking the "best of all worlds" across tasks. Extensive empirical evaluations across benchmarks in reasoning, planning, and sequential decision-making highlight the robustness and adaptability of SMaRT. The framework consistently outperforms state-of-the-art baselines in solution quality, constraint adherence, and performance metrics. This work redefines LLM-driven decision-making by pioneering a new paradigm in cross-strategy calibration, unlocking superior outcomes for reasoning systems and advancing the boundaries of self-refining methodologies.
♻ ☆ DRIFT: Decompose, Retrieve, Illustrate, then Formalize Theorems
Automating the formalization of mathematical statements for theorem proving remains a major challenge for Large Language Models (LLMs). LLMs struggle to identify and utilize the prerequisite mathematical knowledge and its corresponding formal representation in languages like Lean. Current retrieval-augmented autoformalization methods query external libraries using the informal statement directly, but overlook a fundamental limitation: informal mathematical statements are often complex and offer limited context on the underlying math concepts. To address this, we introduce DRIFT, a novel framework that enables LLMs to decompose informal mathematical statements into smaller, more tractable ''sub-components''. This facilitates targeted retrieval of premises from mathematical libraries such as Mathlib. Additionally, DRIFT retrieves illustrative theorems to help models use premises more effectively in formalization tasks. We evaluate DRIFT across diverse benchmarks (ProofNet, ConNF, and MiniF2F-test) and find that it consistently improves premise retrieval, nearly doubling the F1 score compared to the DPR baseline on ProofNet. Notably, DRIFT demonstrates strong performance on the out-of-distribution ConNF benchmark, with BEq+@10 improvements of 37.14% and 42.25% using GPT-4.1 and DeepSeek-V3.1, respectively. Our analysis shows that retrieval effectiveness in mathematical autoformalization depends heavily on model-specific knowledge boundaries, highlighting the need for adaptive retrieval strategies aligned with each model's capabilities.
♻ ☆ REASONING GYM: Reasoning Environments for Reinforcement Learning with Verifiable Rewards NeurIPS 2025
We introduce Reasoning Gym (RG), a library of reasoning environments for reinforcement learning with verifiable rewards. It provides over 100 data generators and verifiers spanning multiple domains including algebra, arithmetic, computation, cognition, geometry, graph theory, logic, and various common games. Its key innovation is the ability to generate virtually infinite training data with adjustable complexity, unlike most previous reasoning datasets, which are typically fixed. This procedural generation approach allows for continuous evaluation across varying difficulty levels. Our experimental results demonstrate the efficacy of RG in both evaluating and reinforcement learning of reasoning models.
comment: NeurIPS 2025 Spotlight. For code, see https://github.com/open-thought/reasoning-gym
♻ ☆ Auto-Prompt Generation is Not Robust: Prompt Optimization Driven by Pseudo Gradient
While automatic prompt generation methods have recently received significant attention, their robustness remains poorly understood. In this paper, we introduce PertBench, a comprehensive benchmark dataset that includes a wide range of input perturbations, designed to systematically evaluate the robustness of current auto-prompting techniques. Our analysis reveals substantial vulnerabilities in existing prompt generation strategies, where even minor modifications to the prompt can lead to significant differences in model output. To address this issue, we propose PGO, a gradient-free prompt generation framework that leverages perturbation types as pseudo-gradient signals to guide LLMs in producing more robust prompts. In contrast to existing methods that assess prompt quality only on clean, well-structured inputs, our approach explicitly emphasizes robustness under noisy and perturbed conditions. Extensive experiments across diverse tasks and multiple LLMs show PGO consistently outperforms previous methods in maintaining performance under input perturbations.
♻ ☆ HUME: Measuring the Human-Model Performance Gap in Text Embedding Tasks ICLR 2026
Comparing human and model performance offers a valuable perspective for understanding the strengths and limitations of embedding models, highlighting where they succeed and where they fail to capture meaning and nuance. However, such comparisons are rarely made, as human performance on embedding tasks is difficult to measure. To fill this gap, we introduce HUME: Human Evaluation Framework for Text Embeddings. While frameworks like MTEB provide broad model evaluation, they lack reliable estimates of human performance, limiting the interpretability of model scores. We measure human performance across 16 MTEB datasets spanning reranking, classification, clustering, and semantic textual similarity across linguistically diverse high- and low-resource languages. Humans achieve an average performance of 77.6% compared to 80.1% for the best embedding model, although variation is substantial: models reach near-ceiling performance on some datasets while struggling on others, suggesting dataset issues and revealing shortcomings in low-resource languages. We provide human performance baselines, insight into task difficulty patterns, and an extensible evaluation framework that enables a more meaningful interpretation of the model and informs the development of both models and benchmarks. Our code, dataset, and leaderboard are publicly available at https://github.com/embeddings-benchmark/mteb.
comment: Submitted to ICLR 2026
♻ ☆ Evolving LLMs' Self-Refinement Capability via Iterative Preference Optimization
Self-Refinement refers to a model's ability to revise its own responses to produce improved outputs. This capability can also serve as a fundamental mechanism for Self-Improvement, for example, by reconstructing datasets with refined results to enhance intrinsic model performance. However, our comprehensive experiments reveal that large language models (LLMs) show no clear evidence of inherent Self-Refinement and may even experience response quality degradation after Self-Refinement. To address this issue, we propose EVOLVE, a simple and effective framework for eliciting and tracking the evolution of Self-Refinement through iterative training. We first explore optimization methods during training to activate the model's Self-Refinement capability. Then, at inference, we investigate various generation strategies to further enhance and utilize Self-Refinement while supplying the necessary data for training. Through synergistic optimization of training and inference stages, we continually evolve the model's Self-Refinement ability, enabling it to better refine its own responses. Moreover, we demonstrate the potential of leveraging Self-Refinement to achieve broader Self-Improvement of intrinsic model abilities. Experiments show that the evolved Self-Refinement ability enables the Llama-3.1-8B base model to surpass GPT-4o, achieving 62.3% length-controlled and 63.3% raw win rates on AlpacaEval 2, and 50.3% on Arena-Hard. It also generalizes effectively to out-of-domain reasoning tasks, improving performance on mathematical reasoning benchmarks such as GSM8K and MATH.
♻ ☆ The Curious Case of Curiosity across Human Cultures and LLMs
Recent advances in Large Language Models (LLMs) have expanded their role in human interaction, yet curiosity -- a central driver of inquiry -- remains underexplored in these systems, particularly across cultural contexts. In this work, we investigate cultural variation in curiosity using Yahoo! Answers, a real-world multi-country dataset spanning diverse topics. We introduce CUEST (CUriosity Evaluation across SocieTies), an evaluation framework that measures human-model alignment in curiosity through linguistic (style), topic preference (content) analysis and grounding insights in social science constructs. Across open- and closed-source models, we find that LLMs flatten cross-cultural diversity, aligning more closely with how curiosity is expressed in Western countries. We then explore fine-tuning strategies to induce curiosity in LLMs, narrowing the human-model alignment gap by up to 50%. Finally, we demonstrate the practical value of curiosity for LLM adaptability across cultures, showing its importance for future NLP research.
comment: Preprint (Paper under review)
♻ ☆ Limitations of Normalization in Attention Mechanism
This paper investigates the limitations of the normalization in attention mechanisms. We begin with a theoretical framework that enables the identification of the model's selective ability and the geometric separation involved in token selection. Our analysis includes explicit bounds on distances and separation criteria for token vectors under softmax scaling. Through experiments with pre-trained GPT-2 model, we empirically validate our theoretical results and analyze key behaviors of the attention mechanism. Notably, we demonstrate that as the number of selected tokens increases, the model's ability to distinguish informative tokens declines, often converging toward a uniform selection pattern. We also show that gradient sensitivity under softmax normalization presents challenges during training, especially at low temperature settings. These findings advance current understanding of softmax-based attention mechanism and motivate the need for more robust normalization and selection strategies in future attention architectures.
comment: 10 pages, 4 figures
♻ ☆ PsychCounsel-Bench: Evaluating the Psychology Intelligence of Large Language Models
Large Language Models (LLMs) have demonstrated remarkable success across a wide range of industries, primarily due to their impressive generative abilities. Yet, their potential in applications requiring cognitive abilities, such as psychological counseling, remains largely untapped. This paper investigates the key question: \textit{Can LLMs be effectively applied to psychological counseling?} To determine whether an LLM can effectively take on the role of a psychological counselor, the first step is to assess whether it meets the qualifications required for such a role, namely the ability to pass the U.S. National Counselor Certification Exam (NCE). This is because, just as a human counselor must pass a certification exam to practice, an LLM must demonstrate sufficient psychological knowledge to meet the standards required for such a role. To address this, we introduce PsychCounsel-Bench, a benchmark grounded in U.S.national counselor examinations, a licensure test for professional counselors that requires about 70\% accuracy to pass. PsychCounsel-Bench comprises approximately 2,252 carefully curated single-choice questions, crafted to require deep understanding and broad enough to cover various sub-disciplines of psychology. This benchmark provides a comprehensive assessment of an LLM's ability to function as a counselor. Our evaluation shows that advanced models such as GPT-4o, Llama3.3-70B, and Gemma3-27B achieve well above the passing threshold, while smaller open-source models (e.g., Qwen2.5-7B, Mistral-7B) remain far below it. These results suggest that only frontier LLMs are currently capable of meeting counseling exam standards, highlighting both the promise and the challenges of developing psychology-oriented LLMs. We release the proposed dataset for public use: https://github.com/cloversjtu/PsychCounsel-Bench
♻ ☆ VimoRAG: Video-based Retrieval-augmented 3D Motion Generation for Motion Language Models NeurIPS 2025
This paper introduces VimoRAG, a novel video-based retrieval-augmented motion generation framework for motion large language models (LLMs). As motion LLMs face severe out-of-domain/out-of-vocabulary issues due to limited annotated data, VimoRAG leverages large-scale in-the-wild video databases to enhance 3D motion generation by retrieving relevant 2D human motion signals. While video-based motion RAG is nontrivial, we address two key bottlenecks: (1) developing an effective motion-centered video retrieval model that distinguishes human poses and actions, and (2) mitigating the issue of error propagation caused by suboptimal retrieval results. We design the Gemini Motion Video Retriever mechanism and the Motion-centric Dual-alignment DPO Trainer, enabling effective retrieval and generation processes. Experimental results show that VimoRAG significantly boosts the performance of motion LLMs constrained to text-only input. All the resources are available at https://walkermitty.github.io/VimoRAG/
comment: Accepted by NeurIPS 2025; Project Page: https://walkermitty.github.io/VimoRAG
♻ ☆ PsyMem: Fine-grained psychological alignment and Explicit Memory Control for Advanced Role-Playing LLMs ACL
Existing LLM-based role-playing methods often rely on superficial textual descriptions or simplistic metrics, inadequately modeling both intrinsic and extrinsic character dimensions. Additionally, they typically simulate character memory with implicit model knowledge or basic retrieval augment generation without explicit memory alignment, compromising memory consistency. The two issues weaken reliability of role-playing LLMs in several applications, such as trustworthy social simulation. To address these limitations, we propose PsyMem, a novel framework integrating fine-grained psychological attributes and explicit memory control for role-playing. PsyMem supplements textual descriptions with 26 psychological indicators to detailed model character. Additionally, PsyMem implements memory alignment training, explicitly trains the model to align character's response with memory, thereby enabling dynamic memory-controlled responding during inference. By training Qwen2.5-7B-Instruct on our specially designed dataset (including 5,414 characters and 38,962 dialogues extracted from novels), the resulting model, termed as PsyMem-Qwen, outperforms baseline models in role-playing, achieving the best performance in human-likeness and character fidelity.
comment: Pre-MIT Press publication version, has been accepted by TACL
♻ ☆ Does Math Reasoning Improve General LLM Capabilities? Understanding Transferability of LLM Reasoning
Math reasoning has become the poster child of progress in large language models (LLMs), with new models rapidly surpassing human-level performance on benchmarks like MATH and AIME. But as math leaderboards improve week by week, it is worth asking: do these gains reflect broader problem-solving ability or just narrow overfitting? To answer this question, we evaluate over 20 open-weight reasoning-tuned models across a broad suite of tasks, including math, scientific QA, agent planning, coding, and standard instruction-following. We surprisingly find that most models that succeed in math fail to transfer their gains to other domains. To rigorously study this phenomenon, we conduct controlled experiments on Qwen3-14B models using math-only data but different tuning methods. We find that reinforcement learning (RL)-tuned models generalize well across domains, while supervised fine-tuning (SFT)-tuned models often forget general capabilities. Latent-space representation and token-space distribution shift analyses reveal that SFT induces substantial representation and output drift, while RL preserves general-domain structure. Our results suggest a need to rethink standard post-training recipes, particularly the reliance on SFT-distilled data for advancing reasoning models.
♻ ☆ RPG: A Repository Planning Graph for Unified and Scalable Codebase Generation
Large language models excel at generating individual functions or single files of code, yet generating complete repositories from scratch remains a fundamental challenge. This capability is key to building coherent software systems from high-level specifications and realizing the full potential of automated code generation. The process requires planning at two levels: deciding what features and modules to build (proposal stage) and defining their implementation details (implementation stage). Current approaches rely on natural language planning, which often produces unclear specifications, misaligned components, and brittle designs due to its inherent ambiguity and lack of structure. To address these limitations, we introduce the Repository Planning Graph (RPG), a structured representation that encodes capabilities, file structures, data flows, and functions in a unified graph. By replacing free-form natural language with an explicit blueprint, RPG enables consistent long-horizon planning for repository generation. Building on RPG, we develop ZeroRepo, a graph-driven framework that operates in three stages: proposal-level planning, implementation-level construction, and graph-guided code generation with test validation. To evaluate, we construct RepoCraft, a benchmark of six real-world projects with 1,052 tasks. On RepoCraft, ZeroRepo produces nearly 36K Code Lines and 445K Code Tokens, on average 3.9$\times$ larger than the strongest baseline (Claude Code), and 68$\times$ larger than other baselines. It achieves 81.5% coverage and 69.7% test accuracy, improving over Claude Code by 27.3 and 35.8 points. Further analysis shows that RPG models complex dependencies, enables more sophisticated planning through near-linear scaling, and improves agent understanding of repositories, thus accelerating localization.
♻ ☆ Parameter Efficient Fine-tuning via Explained Variance Adaptation NeurIPS 2025
Foundation models (FMs) are pre-trained on large-scale datasets and then fine-tuned for a specific downstream task. The most common fine-tuning method is to update pretrained weights via low-rank adaptation (LoRA). Existing initialization strategies for LoRA often rely on singular value decompositions (SVD) of gradients or weight matrices. However, they do not provably maximize the expected gradient signal, which is critical for fast adaptation. To this end, we introduce Explained Variance Adaptation (EVA), an initialization scheme that uses the directions capturing the most activation variance, provably maximizing the expected gradient signal and accelerating fine-tuning. EVA performs incremental SVD on minibatches of activation vectors and selects the right-singular vectors for initialization once they converged. Further, by selecting the directions that capture the most activation-variance for a given rank budget, EVA accommodates adaptive ranks that reduce the number of trainable parameters. We apply EVA to a variety of fine-tuning tasks as language generation and understanding, image classification, and reinforcement learning. EVA exhibits faster convergence than competitors and achieves the highest average score across a multitude of tasks per domain while reducing the number of trainable parameters through rank redistribution. In summary, EVA establishes a new Pareto frontier compared to existing LoRA initialization schemes in both accuracy and efficiency.
comment: Accepted at NeurIPS 2025, Shared first authorship, Code available at https://github.com/ml-jku/EVA
♻ ☆ Watch the Weights: Unsupervised monitoring and control of fine-tuned LLMs
The releases of powerful open-weight large language models (LLMs) are often not accompanied by access to their full training data. Existing interpretability methods, particularly those based on activations, often require or assume distributionally similar data. This is a significant limitation when detecting and defending against novel potential threats like backdoors, which are by definition out-of-distribution. In this work, we introduce a new method for understanding, monitoring and controlling fine-tuned LLMs that interprets weights, rather than activations, thereby side stepping the need for data that is distributionally similar to the unknown training data. We demonstrate that the top singular vectors of the weight difference between a fine-tuned model and its base model correspond to newly acquired behaviors. By monitoring the cosine similarity of activations along these directions, we can detect salient behaviors introduced during fine-tuning with high precision. For backdoored models that bypasses safety mechanisms when a secret trigger is present, our method stops up to 100% of attacks with a false positive rate below 1.2%. For models that have undergone unlearning, we detect inference on erased topics with accuracy up to 95.42% and can even steer the model to recover "unlearned" information. Besides monitoring, our method also shows potential for pre-deployment model auditing: by analyzing commercial instruction-tuned models (OLMo, Llama, Qwen), we are able to uncover model-specific fine-tuning focus including marketing strategies and Midjourney prompt generation. Our implementation can be found at https://github.com/fjzzq2002/WeightWatch.
♻ ☆ KG-TRACES: Enhancing Large Language Models with Knowledge Graph-constrained Trajectory Reasoning and Attribution Supervision
Large language models (LLMs) have made remarkable strides in various natural language processing tasks, but their performance on complex reasoning problems remains hindered by a lack of explainability and trustworthiness. This issue, often manifesting as hallucinations or unattributable reasoning processes, limits their applicability in complex reasoning scenarios. To address this, we propose Knowledge Graph-constrained Trajectory Reasoning Attribution and Chain Explanation Supervision (KG-TRACES), a novel framework that enhances the reasoning ability of LLMs through explicit supervision over reasoning paths and processes. KG-TRACES jointly supervises the model to: (1) predict symbolic relation paths, (2) predict full triple-level reasoning paths, and (3) generate attribution-aware reasoning processes grounded in the reasoning paths. At inference phase, the model adapts to both KG-available and KG-unavailable scenarios, retrieving reasoning paths from a KG when possible or predicting plausible reasoning paths with only intrinsic knowledge when not. This design enables the model to reason in an explainable and source-attributable pattern. Through extensive experiments on complex reasoning tasks, we demonstrate that KG-TRACES significantly outperforms existing SOTA: it improves Hits@1 by 1.6% and F1 by 4.7% on WebQSP, and achieves improvements of 4.8% in Hits@1 and 2.1% in F1 on CWQ. Moreover, we show its transferability to specialized domains such as medicine. By visualizing the intermediate steps of reasoning processes, we further show that the explicit supervision introduced by KG-TRACES leads to more stable and goal-directed reasoning processes, aligning closely with correct answers. Code is available at https://github.com/Edaizi/KG-TRACES.
comment: 24 pages, 13 figures
♻ ☆ Supervised In-Context Fine-Tuning for Generative Sequence Labeling
Sequence labeling (SL) tasks, where labels are assigned to tokens, are abundant in NLP (e.g., named entity recognition and aspect-based sentiment analysis). Owing to the intuition that they require bidirectional context, SL tasks are commonly tackled with encoder-only models. Recent work also shows that removing the causal mask in fine-tuning enables decoder-based LLMs to become effective token classifiers. Less work, however, focused on (supervised) generative SL, a more natural setting for causal LLMs. Due to their rapid scaling, causal LLMs applied to SL are expected to outperform encoders, whose own development has stagnated. In this work, we propose supervised in-context fine-tuning (SIFT) for generative SL. SIFT casts SL tasks as constrained response generation, natural to LLMs, combining in-context learning (ICL) from demonstrations with supervised fine-tuning. SIFT considerably outperforms both ICL and decoder-as-encoder fine-tuning baselines on a range of standard SL tasks. We further find that although long context hinders the performance of generative SL in both ICL and SIFT, this deficiency can be mitigated by removing the instruction, as instructions are shown to be largely unnecessary for achieving strong SL performance with SIFT. Our findings highlight strengths and limitations of SL with LLMs, underscoring the importance of a response-based generative task formulation for effective SL performance.
♻ ☆ CodeVisionary: An Agent-based Framework for Evaluating Large Language Models in Code Generation
Large language models (LLMs) have demonstrated strong capabilities in code generation, underscoring the critical need for rigorous and comprehensive evaluation. Existing evaluation approaches fall into three categories, including human-centered, metric-based, and LLM-based. Considering that human-centered approaches are labour-intensive and metric-based ones overly rely on reference answers, LLM-based approaches are gaining increasing attention due to their stronger contextual understanding capabilities. However, they generally evaluate the generated code based on static prompts, and tend to fail for complex code scenarios which typically involve multiple requirements and require more contextual information. In addition, these approaches lack fine-grained evaluation for complex code, resulting in limited explainability. To mitigate the limitations, we propose CodeVisionary, the first agent-based evaluation framework for complex code generation. CodeVisionary consists of two stages: (1) Requirement-guided multi-dimensional context distillation stage and (2) Fine-grained scoring and summarization stage. A comprehensive evaluation report is also generated for enhanced explainability. For validation, we construct a new benchmark consisting of 363 samples spanning 37 coding scenarios and 23 programming languages. Extensive experiments demonstrate that CodeVisionary achieves the best performance among three baselines for evaluating complex code generation, outperforming the best baseline with average improvements of 0.217, 0.163, and 0.141 in Pearson, Spearman, and Kendall-Tau coefficients, respectively. The resources of CodeVisionary are available at https://github.com/Eshe0922/CodeVisionary.
♻ ☆ LLM as GNN: Graph Vocabulary Learning for Text-Attributed Graph Foundation Models
Text-Attributed Graphs (TAGs), where each node is associated with text descriptions, are ubiquitous in real-world scenarios. They typically exhibit distinctive structure and domain-specific knowledge, motivating the development of a Graph Foundation Model (GFM) that generalizes across diverse graphs and tasks. Despite large efforts to integrate Large Language Models (LLMs) and Graph Neural Networks (GNNs) for TAGs, existing approaches suffer from decoupled architectures with two-stage alignment, limiting their synergistic potential. Even worse, existing methods assign out-of-vocabulary (OOV) tokens to graph nodes, leading to graph-specific semantics, token explosion, and incompatibility with task-oriented prompt templates, which hinders cross-graph and cross-task transferability. To address these challenges, we propose PromptGFM, a versatile GFM for TAGs grounded in graph vocabulary learning. PromptGFM comprises two key components: (1) Graph Understanding Module, which explicitly prompts LLMs to replicate the finest GNN workflow within the text space, facilitating seamless GNN-LLM integration and elegant graph-text alignment; (2) Graph Inference Module, which establishes a language-based graph vocabulary ensuring expressiveness, transferability, and scalability, enabling readable instructions for LLM fine-tuning. Extensive experiments demonstrate our superiority and transferability across diverse graphs and tasks. The code is available at this: https://github.com/agiresearch/PromptGFM.
♻ ☆ Don't Trust Generative Agents to Mimic Communication on Social Networks Unless You Benchmarked their Empirical Realism
The ability of Large Language Models (LLMs) to mimic human behavior triggered a plethora of computational social science research, assuming that empirical studies of humans can be conducted with AI agents instead. Since there have been conflicting research findings on whether and when this hypothesis holds, there is a need to better understand the differences in their experimental designs. We focus on replicating the behavior of social network users with the use of LLMs for the analysis of communication on social networks. First, we provide a formal framework for the simulation of social networks, before focusing on the sub-task of imitating user communication. We empirically test different approaches to imitate user behavior on X in English and German. Our findings suggest that social simulations should be validated by their empirical realism measured in the setting in which the simulation components were fitted. With this paper, we argue for more rigor when applying generative-agent-based modeling for social simulation.
comment: 11 pages, 1 figure, 3 tables
♻ ☆ CAPO: Towards Enhancing LLM Reasoning through Generative Credit Assignment
Reinforcement Learning with Verifiable Rewards (RLVR) has improved the reasoning abilities of Large Language Models (LLMs) by using rule-based binary feedback. However, current RLVR methods typically assign the same reward to every token. This coarse-grained feedback hampers precise credit assignment, making it hard for models to identify which reasoning steps lead to success or failure, and often results in suboptimal policies. Methods like PPO provide credit assignment by value estimation, but yield inaccurate and unverifiable signals due to limited sampling. On the other hand, methods using Process Reward Models can provide step-wise rewards but suffer from several key limitations: they require high-quality process supervision labels, the feedback is unreliable due to probabilistic reward modeling, and their application in online reinforcement learning (RL) is time-consuming. To overcome these limitations, we introduce a simple but efficient method-Credit Assignment Policy Optimization (CAPO). Instead of training auxiliary models, CAPO directly leverages an off-the-shelf, general-purpose LLM as a Generative Process Reward Model (LLM-as-GenPRM) to generate all step-wise critique by one pass only based on the correctness of the step itself, providing deterministic token-level credits to refine the tokens that were originally assigned identical rule-based rewards. To further enhance the accuracy and robustness, we employ voting mechanisms that scale with the number of generated critiques. Extensive experiments on various backbones like Llama and Qwen models show that CAPO consistently outperforms supervised learning-based and RL-based fine-tuning methods across four challenging mathematical benchmarks and three out-of-domain benchmarks. Further analysis shows that CAPO can help the model to foster the learning of correct reasoning pathways leading to correct answers.
comment: Work in progress
♻ ☆ Infinity Parser: Layout Aware Reinforcement Learning for Scanned Document Parsing
Automated parsing of scanned documents into richly structured, machine-readable formats remains a critical bottleneck in Document AI, as traditional multi-stage pipelines suffer from error propagation and limited adaptability to diverse layouts. We introduce layoutRL, an end-to-end reinforcement learning framework that trains models to be explicitly layout-aware by optimizing a composite reward of normalized edit distance, paragraph count accuracy, and reading order preservation. Leveraging our newly released dataset, Infinity-Doc-55K, which combines 55K high-fidelity synthetic scanned document parsing data with expert-filtered real-world documents, we instantiate layoutRL in a vision-language-model-based parser called Infinity-Parser. Evaluated on English and Chinese benchmarks for OCR, table and formula extraction, and reading order detection, Infinity-Parser achieves new state-of-the-art performance in both accuracy and structural fidelity, outpacing specialist pipelines and general-purpose vision-language models. We will publicly release our code and dataset to accelerate progress in robust document understanding.
comment: 16 pages, 12 figures
♻ ☆ Infinity Parser: Layout Aware Reinforcement Learning for Scanned Document Parsing
Document parsing from scanned images into structured formats remains a significant challenge due to its complexly intertwined elements such as text paragraphs, figures, formulas, and tables. Existing supervised fine-tuning methods often struggle to generalize across diverse document types, leading to poor performance, particularly on out-of-distribution data. This issue is further exacerbated by the limited availability of high-quality training data for layout-aware parsing tasks. To address these challenges, we introduce LayoutRL, a reinforcement learning framework that optimizes layout understanding through composite rewards integrating normalized edit distance, paragraph count accuracy, and reading order preservation. To support this training, we construct the Infinity-Doc-400K dataset, which we use to train Infinity-Parser, a vision-language model demonstrating robust generalization across various domains. Extensive evaluations on benchmarks including OmniDocBench, olmOCR-Bench, PubTabNet, and FinTabNet show that Infinity-Parser consistently achieves state-of-the-art performance across a broad range of document types, languages, and structural complexities, substantially outperforming both specialized document parsing systems and general-purpose vision-language models. We will release our code, dataset, and model to facilitate reproducible research in document parsing.
comment: This submission (arXiv:2510.15349) was mistakenly uploaded as a new article. It was intended to replace our previous work arXiv:2506.03197. All subsequent updates will be made to arXiv:2506.03197
♻ ☆ Consistency is Key: Disentangling Label Variation in Natural Language Processing with Intra-Annotator Agreement
We commonly use agreement measures to assess the utility of judgements made by human annotators in Natural Language Processing (NLP) tasks. While inter-annotator agreement is frequently used as an indication of label reliability by measuring consistency between annotators, we argue for the additional use of intra-annotator agreement to measure label stability (and annotator consistency) over time. However, in a systematic review, we find that the latter is rarely reported in this field. Calculating these measures can act as important quality control and could provide insights into why annotators disagree. We conduct exploratory annotation experiments to investigate the relationships between these measures and perceptions of subjectivity and ambiguity in text items, finding that annotators provide inconsistent responses around 25% of the time across four different NLP tasks.
comment: Accepted for publication in Proceedings of the Fourth Workshop on Perspectivist Approaches to NLP (NLPerspectives)
♻ ☆ Unseen from Seen: Rewriting Observation-Instruction Using Foundation Models for Augmenting Vision-Language Navigation IEEE
Data scarcity is a long-standing challenge in the Vision-Language Navigation (VLN) field, which extremely hinders the generalization of agents to unseen environments. Previous works primarily rely on additional simulator data or web-collected images/videos to improve the generalization. However, the simulator environments still face limited diversity, and the web-collected data often requires extensive labor to remove the noise. In this paper, we propose a Rewriting-driven AugMentation (RAM) paradigm for VLN, which directly creates the unseen observation-instruction pairs via rewriting human-annotated training data. Benefiting from our rewriting mechanism, new observation-instruction pairs can be obtained in both simulator-free and labor-saving manners to promote generalization. Specifically, we first introduce Object-Enriched Observation Rewriting, where we combine Vision-Language Models (VLMs) and Large Language Models (LLMs) to derive rewritten object-enriched scene descriptions, enabling observation synthesis with diverse objects and spatial layouts via Text-to-Image Generation Models (T2IMs). Then, we propose Observation-Contrast Instruction Rewriting, which generates observation-aligned rewritten instructions by requiring LLMs to reason the difference between original and new observations. We further develop a mixing-then-focusing training strategy with a random observation cropping scheme, effectively enhancing data distribution diversity while suppressing augmentation data noise during training. Experiments on both the discrete environments (R2R, REVERIE, and R4R datasets) and continuous environments (R2R-CE dataset) show the superior performance and impressive generalization ability of our method. Code is available at https://github.com/SaDil13/VLN-RAM.
comment: Accepted by IEEE Transactions on Neural Networks and Learning Systems
♻ ☆ Semantic Representation Attack against Aligned Large Language Models
Large Language Models (LLMs) increasingly employ alignment techniques to prevent harmful outputs. Despite these safeguards, attackers can circumvent them by crafting prompts that induce LLMs to generate harmful content. Current methods typically target exact affirmative responses, such as ``Sure, here is...'', suffering from limited convergence, unnatural prompts, and high computational costs. We introduce Semantic Representation Attack, a novel paradigm that fundamentally reconceptualizes adversarial objectives against aligned LLMs. Rather than targeting exact textual patterns, our approach exploits the semantic representation space comprising diverse responses with equivalent harmful meanings. This innovation resolves the inherent trade-off between attack efficacy and prompt naturalness that plagues existing methods. The Semantic Representation Heuristic Search algorithm is proposed to efficiently generate semantically coherent and concise adversarial prompts by maintaining interpretability during incremental expansion. We establish rigorous theoretical guarantees for semantic convergence and demonstrate that our method achieves unprecedented attack success rates (89.41\% averaged across 18 LLMs, including 100\% on 11 models) while maintaining stealthiness and efficiency. Comprehensive experimental results confirm the overall superiority of our Semantic Representation Attack. The code will be publicly available.
♻ ☆ Late Fusion and Multi-Level Fission Amplify Cross-Modal Transfer in Text-Speech LMs
Text-Speech Language Models (TSLMs) -- language models trained to jointly process and generate text and speech -- are commonly trained through an early modality fusion/fission approach, in which both modalities are fed and predicted from a shared backbone via linear layers. We hypothesize that this approach limits cross-modal transfer by neglecting feature compositionality -- specifically, the finer-grained nature of speech representations compared to text -- preventing the emergence of a shared feature hierarchy within model layers. In this paper, we argue that this limitation can be addressed through late fusion and fission, with a fission process that accesses both high- and low-level features for speech generation. Our models implementing these principles, SmolTolk, rival or surpass state-of-the-art TSLMs trained with orders of magnitude more compute, and achieve significantly improved cross-modal performance relative to early fusion/fission baselines. Representation analyses further suggest that our method enhances the model's ability to abstract higher-level, more semantic features from speech, and leads to increasingly shared representation spaces across layers.
♻ ☆ DICE: Structured Reasoning in LLMs through SLM-Guided Chain-of-Thought Correction EMNLP 2025
When performing reasoning tasks with user-specific requirements, such as strict output formats, large language models (LLMs) often prioritize reasoning over adherence to detailed instructions. Fine-tuning LLMs on supervised datasets to address this is impractical due to high computational costs and limited parameter access. To tackle this, we propose DICE, a lightweight framework that guides small language models (SLMs) to refine LLMs' outputs through chain-of-thought (CoT) correction. DICE decouples the process by first prompting LLMs to generate natural language responses, then using trained SLMs to analyze and refine these outputs to meet structured output specifications. This framework preserves LLMs' broad knowledge and reasoning capabilities while ensuring the outputs conform to user demands. Specifically, DICE first constructs structured CoT adaptation datasets via a two-stage method and subsequently applies a dual-tuning strategy to fine-tune SLMs for generating structured outputs in an analyze-then-answer pattern. Experiments demonstrate that DICE improves the average format accuracy and content correctness of LLM outputs by 35.4\% and 29.4\%, respectively, achieving state-of-the-art (SOTA) performance over other competitive baselines.
comment: This paper was accepted to the EMNLP 2025 main conference
♻ ☆ Towards Evaluating Proactive Risk Awareness of Multimodal Language Models NeurIPS 2025
Human safety awareness gaps often prevent the timely recognition of everyday risks. In solving this problem, a proactive safety artificial intelligence (AI) system would work better than a reactive one. Instead of just reacting to users' questions, it would actively watch people's behavior and their environment to detect potential dangers in advance. Our Proactive Safety Bench (PaSBench) evaluates this capability through 416 multimodal scenarios (128 image sequences, 288 text logs) spanning 5 safety-critical domains. Evaluation of 36 advanced models reveals fundamental limitations: Top performers like Gemini-2.5-pro achieve 71% image and 64% text accuracy, but miss 45-55% risks in repeated trials. Through failure analysis, we identify unstable proactive reasoning rather than knowledge deficits as the primary limitation. This work establishes (1) a proactive safety benchmark, (2) systematic evidence of model limitations, and (3) critical directions for developing reliable protective AI. We believe our dataset and findings can promote the development of safer AI assistants that actively prevent harm rather than merely respond to requests. Our dataset can be found at https://huggingface.co/datasets/Youliang/PaSBench.
comment: Accepted by NeurIPS 2025 (Track on Datasets and Benchmarks)
♻ ☆ Trainable Dynamic Mask Sparse Attention
The increasing demand for long-context modeling in large language models (LLMs) is bottlenecked by the quadratic complexity of the standard self-attention mechanism. The community has proposed sparse attention to mitigate this issue. However, position-aware sparse attention methods rely on static sparse structures that lack adaptability to diverse query contexts, while content-aware sparse attention methods depend on heuristic key-value selection, hindering full differentiability. We introduce a trainable dynamic mask sparse attention mechanism, a method that merges the advantages of both position-aware and content-aware approaches. Dynamic Mask Attention (DMA) achieves this through three key innovations: First, it leverages value vector representations to generate content-aware dynamic masks, enabling the model to adaptively identify and attend to critical information. Second, it computes position-aware sparse weights in a hardware-friendly manner, efficiently skipping unnecessary computational regions. Finally, we demonstrate that the introduced dynamic mask and sparse weights do not obstruct gradients, supporting end-to-end training. We have validated the performance of DMA through comprehensive experiments. A large body of experimental evidence shows that DMA consistently holds a Pareto advantage over state-of-the-art sparse attention baselines in tasks including scaling laws, multi-query associative recall, standard benchmarks, and needle in a haystack tests, while also delivering up to a 10x overall speedup. These results highlight its ability to effectively balance model efficiency with long-context modeling capabilities. Our computational kernel code is now open-source at https://github.com/SmallDoges/flash-dmattn to encourage further research and application by the community.
comment: 26 pages
♻ ☆ Tracing Partisan Bias to Its Emotional Fingerprints: A Computational Approach to Mitigation
This study introduces a novel framework for analysing and mitigating media bias by tracing partisan stances to their linguistic roots in emotional language. We posit that partisan bias is not merely an abstract stance but materialises as quantifiable 'emotional fingerprints' within news texts. These fingerprints are systematically measured using the Valence-Arousal-Dominance (VAD) framework, allowing us to decode the affective strategies behind partisan framing. Our analysis of the Allsides dataset confirms this hypothesis, revealing distinct and statistically significant emotional fingerprints for left, centre, and right-leaning media. Based on this evidence-driven approach, we then propose a computational approach to mitigation through NeutraSum, a model designed to neutralise these identified emotional patterns. By explicitly targeting the VAD characteristics of biased language, NeutraSum generates summaries that are not only coherent but also demonstrably closer to an emotionally neutral baseline. Experimental results validate our framework: NeutraSum successfully erases the partisan emotional fingerprints from its summaries, achieving a demonstrably lower emotional bias score than other models. This work pioneers a new path for bias mitigation, shifting the focus from treating symptoms (political labels) to addressing the cause: the emotional encoding of partisan bias in language.
♻ ☆ FinResearchBench: A Logic Tree based Agent-as-a-Judge Evaluation Framework for Financial Research Agents
Recently, AI agents are rapidly evolving in intelligence and widely used in professional research applications, such as STEM, software development, and finance. Among these AI agents, deep research agent is a key category as it can perform long-horizon tasks and solve problems of greater complexity. However, there are few evaluation frameworks and benchmarks that systematically and automatically investigate the capabilities of these research agents. In addition, financial research problems have distinct complexity and subtlety. To fill in the gap, we propose FinResearchBench, which is a logic tree-based Agent-as-a-Judge and targets specifically for the financial research agents. It provides a comprehensive and automatic assessment of the research agents across 7 key types of tasks in the financial research domain. The contributions of this work are two-folded: (1) the first and innovative Agent-as-a-Judge system that extracts the logic tree of the research outcome and uses it as the intermediate information to present a comprehensive, reliable, and robust evaluation; (2) finance-oriented that it covers 70 typical financial research questions, spreading across 7 frequently encountered types of task in the domain.
♻ ☆ Grounding Language with Vision: A Conditional Mutual Information Calibrated Decoding Strategy for Reducing Hallucinations in LVLMs
Large Vision-Language Models (LVLMs) are susceptible to hallucinations, where generated responses seem semantically plausible yet exhibit little or no relevance to the input image. Previous studies reveal that this issue primarily stems from LVLMs' over-reliance on language priors while disregarding the visual information during decoding. To alleviate this issue, we introduce a novel Conditional Pointwise Mutual Information (C-PMI) calibrated decoding strategy, which adaptively strengthens the mutual dependency between generated texts and input images to mitigate hallucinations. Unlike existing methods solely focusing on text token sampling, we propose to jointly model the contributions of visual and textual tokens to C-PMI, formulating hallucination mitigation as a bi-level optimization problem aimed at maximizing mutual information. To solve it, we design a token purification mechanism that dynamically regulates the decoding process by sampling text tokens remaining maximally relevant to the given image, while simultaneously refining image tokens most pertinent to the generated response. Extensive experiments across various benchmarks reveal that the proposed method significantly reduces hallucinations in LVLMs while preserving decoding efficiency.
♻ ☆ Flex-Judge: Text-Only Reasoning Unleashes Zero-Shot Multimodal Evaluators NeurIPS 2025
Human-generated reward signals are critical for aligning generative models with human preferences, guiding both training and inference-time evaluations. While large language models (LLMs) employed as proxy evaluators, i.e., LLM-as-a-Judge, significantly reduce the costs associated with manual annotations, they typically require extensive modality-specific training data and fail to generalize well across diverse multimodal tasks. In this paper, we propose Flex-Judge, a reasoning-guided multimodal judge model that leverages minimal textual reasoning data to robustly generalize across multiple modalities and evaluation formats. Our core intuition is that structured textual reasoning explanations inherently encode generalizable decision-making patterns, enabling an effective transfer to multimodal judgments, e.g., with images or videos. Empirical results demonstrate that Flex-Judge, despite being trained on significantly fewer text data, achieves competitive or superior performance compared to state-of-the-art commercial APIs and extensively trained multimodal evaluators. Notably, Flex-Judge presents broad impact in modalities like molecule, where comprehensive evaluation benchmarks are scarce, underscoring its practical value in resource-constrained domains. Our framework highlights reasoning-based text supervision as a powerful, cost-effective alternative to traditional annotation-intensive approaches, substantially advancing scalable multimodal model-as-a-judge.
comment: NeurIPS 2025
♻ ☆ GFM-RAG: Graph Foundation Model for Retrieval Augmented Generation NeurIPS 2025
Retrieval-augmented generation (RAG) has proven effective in integrating knowledge into large language models (LLMs). However, conventional RAGs struggle to capture complex relationships between pieces of knowledge, limiting their performance in intricate reasoning that requires integrating knowledge from multiple sources. Recently, graph-enhanced retrieval augmented generation (GraphRAG) builds graph structure to explicitly model these relationships, enabling more effective and efficient retrievers. Nevertheless, its performance is still hindered by the noise and incompleteness within the graph structure. To address this, we introduce GFM-RAG, a novel graph foundation model (GFM) for retrieval augmented generation. GFM-RAG is powered by an innovative graph neural network that reasons over graph structure to capture complex query-knowledge relationships. The GFM with 8M parameters undergoes a two-stage training process on large-scale datasets, comprising 60 knowledge graphs with over 14M triples and 700k documents. This results in impressive performance and generalizability for GFM-RAG, making it the first graph foundation model applicable to unseen datasets for retrieval without any fine-tuning required. Extensive experiments on three multi-hop QA datasets and seven domain-specific RAG datasets demonstrate that GFM-RAG achieves state-of-the-art performance while maintaining efficiency and alignment with neural scaling laws, highlighting its potential for further improvement.
comment: Accepted by NeurIPS 2025
♻ ☆ Planner and Executor: Collaboration between Discrete Diffusion And Autoregressive Models in Reasoning
Current autoregressive language models (ARMs) achieve high accuracy but require long token sequences, making them costly. Discrete diffusion language models (DDLMs) enable parallel and flexible generation within a fixed number of steps and have recently emerged for their strong performance in complex reasoning and long-term planning tasks. We present a study exploring hybrid architectures that couple DDLMs with ARMs to assess whether their collaboration can yield complementary benefits. We first examine collaboration in text space, where one model plans the reasoning process and another executes the final answer based on that plan. We then extend this setup to latent-space communication, introducing a learned projector that maps DDLM latents into the ARM's embedding space, potentially bypassing some of the text-generation limitations of diffusion models. We find that shifting DDLM --> ARM communication from text space to latent space yields significant accuracy gains, for example increasing from 27.0% to 54.0% on DART-5 and from 0.0% to 14.0% on AIME24. We also find that combining a DDLM planner with an ARM executor can provide substantial computational savings with little to no impact on accuracy. For example, the latent-space pipeline, using 64 tokens for planning and roughly 5 for execution, surpasses Qwen3.1-7B on DART-5 and AIME, despite Qwen using 44 times more tokens. Overall, our study offers new insights into reasoning with DDLMs and highlights their potential in hybrid architectures.
comment: Under Submission
♻ ☆ Ineq-Comp: Benchmarking Human-Intuitive Compositional Reasoning in Automated Theorem Proving on Inequalities NeurIPS 2025
LLM-based formal proof assistants (e.g., in Lean) hold great promise for automating mathematical discovery. But beyond syntactic correctness, do these systems truly understand mathematical structure as humans do? We investigate this question in context of mathematical inequalities -- specifically the prover's ability to recognize that the given problem simplifies by applying a known inequality such as AM/GM. Specifically, we are interested in their ability to do this in a compositional setting where multiple inequalities must be applied as part of a solution. We introduce Ineq-Comp, a benchmark built from elementary inequalities through systematic transformations, including variable duplication, algebraic rewriting, and multi-step composition. Although these problems remain easy for humans, we find that most provers -- including Goedel, STP, and Kimina-7B -- struggle significantly. DeepSeek-Prover-V2-7B shows relative robustness, but still suffers a 20% performance drop (pass@32). Even for DeepSeek-Prover-V2-671B model, the gap between compositional variants and seed problems exists, implying that simply scaling up the model size alone does not fully solve the compositional weakness. Strikingly, performance remains poor for all models even when formal proofs of the constituent parts are provided in context, revealing that the source of weakness is indeed in compositional reasoning. Our results expose a persisting gap between the generalization behavior of current AI provers and human mathematical intuition. All data and evaluation code can be found at https://github.com/haoyuzhao123/LeanIneqComp.
comment: To appear in NeurIPS 2025 Track on Datasets and Benchmarks. 28 pages
♻ ☆ Automated Knowledge Component Generation for Interpretable Knowledge Tracing in Coding Problems
Knowledge components (KCs) mapped to problems help model student learning, tracking their mastery levels on fine-grained skills thereby facilitating personalized learning and feedback in online learning platforms. However, crafting and tagging KCs to problems, traditionally performed by human domain experts, is highly labor intensive. We present an automated, LLM-based pipeline for KC generation and tagging for open-ended programming problems. We also develop an LLM-based knowledge tracing (KT) framework to leverage these LLM-generated KCs, which we refer to as KCGen-KT. We conduct extensive quantitative and qualitative evaluations on two real-world student code submission datasets in different programming languages.We find that KCGen-KT outperforms existing KT methods and human-written KCs on future student response prediction. We investigate the learning curves of generated KCs and show that LLM-generated KCs result in a better fit than human written KCs under a cognitive model. We also conduct a human evaluation with course instructors to show that our pipeline generates reasonably accurate problem-KC mappings.
♻ ☆ ConsintBench: Evaluating Language Models on Real-World Consumer Intent Understanding
Understanding human intent is a complex, high-level task for large language models (LLMs), requiring analytical reasoning, contextual interpretation, dynamic information aggregation, and decision-making under uncertainty. Real-world public discussions, such as consumer product discussions, are rarely linear or involve a single user. Instead, they are characterized by interwoven and often conflicting perspectives, divergent concerns, goals, emotional tendencies, as well as implicit assumptions and background knowledge about usage scenarios. To accurately understand such explicit public intent, an LLM must go beyond parsing individual sentences; it must integrate multi-source signals, reason over inconsistencies, and adapt to evolving discourse, similar to how experts in fields like politics, economics, or finance approach complex, uncertain environments. Despite the importance of this capability, no large-scale benchmark currently exists for evaluating LLMs on real-world human intent understanding, primarily due to the challenges of collecting real-world public discussion data and constructing a robust evaluation pipeline. To bridge this gap, we introduce \bench, the first dynamic, live evaluation benchmark specifically designed for intent understanding, particularly in the consumer domain. \bench is the largest and most diverse benchmark of its kind, supporting real-time updates while preventing data contamination through an automated curation pipeline.
♻ ☆ Consistency of Responses and Continuations Generated by Large Language Models on Social Media AAAI
Large Language Models (LLMs) demonstrate remarkable capabilities in text generation, yet their emotional consistency and semantic coherence in social media contexts remain insufficiently understood. This study investigates how LLMs handle emotional content and maintain semantic relationships through continuation and response tasks using three open-source models: Gemma, Llama3 and Llama3.3 and one commercial Model:Claude. By analyzing climate change discussions from Twitter and Reddit, we examine emotional transitions, intensity patterns, and semantic consistency between human-authored and LLM-generated content. Our findings reveal that while both models maintain high semantic coherence, they exhibit distinct emotional patterns: these models show a strong tendency to moderate negative emotions. When the input text carries negative emotions such as anger, disgust, fear, or sadness, LLM tends to generate content with more neutral emotions, or even convert them into positive emotions such as joy or surprise. At the same time, we compared the LLM-generated content with human-authored content. The four models systematically generated responses with reduced emotional intensity and showed a preference for neutral rational emotions in the response task. In addition, these models all maintained a high semantic similarity with the original text, although their performance in the continuation task and the response task was different. These findings provide deep insights into the emotion and semantic processing capabilities of LLM, which are of great significance for its deployment in social media environments and human-computer interaction design.
comment: This paper has been accepted by the International AAAI Conference on Web and Social Media (ICWSM) 2026 (Los Angeles, California, U.S.)
♻ ☆ MotionGPT3: Human Motion as a Second Modality
With the rapid progress of large language models (LLMs), multimodal frameworks that unify understanding and generation have become promising, yet they face increasing complexity as the number of modalities and tasks grows. We observe that motion quantization introduces approximation errors that cap motion quality, and that unifying discrete text and continuous motion within a single-stream backbone amplifies cross-modal interference. Motivated by recent multi-branch Transformer designs that separate signals from different modalities, we propose MotionGPT3, a bimodal motion-language model for both understanding and generation. MotionGPT3 encodes raw motion into a continuous latent space using a variational autoencoder (VAE), thereby avoiding quantization-induced artifacts, while leveraging the semantic prior of pretrained language models. A dual-stream Transformer with shared attention preserves modality-specific routes while enabling controlled, bidirectional information flow, which reduces interference, stabilizing optimization, and empirically accelerates convergence without degrading fidelity. For multimodal joint training, a generate-then-align three-stage schedule further improves stability and limits cross-task interference. Experiments show that MotionGPT3 achieves 2x faster convergence in training loss and up to 4x faster convergence in validation, while maintaining state-of-the-art performance on standard motion understanding and motion generation benchmarks.
comment: 26 pages, 11 figures
♻ ☆ RHYTHM: Reasoning with Hierarchical Temporal Tokenization for Human Mobility NeurIPS
Predicting human mobility is inherently challenging due to complex long-range dependencies and multi-scale periodic behaviors. To address this, we introduce RHYTHM (Reasoning with Hierarchical Temporal Tokenization for Human Mobility), a unified framework that leverages large language models (LLMs) as general-purpose spatio-temporal predictors and trajectory reasoners. Methodologically, RHYTHM employs temporal tokenization to partition each trajectory into daily segments and encode them as discrete tokens with hierarchical attention that captures both daily and weekly dependencies, thereby quadratically reducing the sequence length while preserving cyclical information. Additionally, we enrich token representations by adding pre-computed prompt embeddings for trajectory segments and prediction targets via a frozen LLM, and feeding these combined embeddings back into the LLM backbone to capture complex interdependencies. Computationally, RHYTHM keeps the pretrained LLM backbone frozen, yielding faster training and lower memory usage. We evaluate our model against state-of-the-art methods using three real-world datasets. Notably, RHYTHM achieves a 2.4% improvement in overall accuracy, a 5.0% increase on weekends, and a 24.6% reduction in training time. Code is publicly available at https://github.com/he-h/rhythm.
comment: Advances in Neural Information Processing Systems 39 (NeurIPS) 2025
♻ ☆ Video-SafetyBench: A Benchmark for Safety Evaluation of Video LVLMs NeurIPS 2025
The increasing deployment of Large Vision-Language Models (LVLMs) raises safety concerns under potential malicious inputs. However, existing multimodal safety evaluations primarily focus on model vulnerabilities exposed by static image inputs, ignoring the temporal dynamics of video that may induce distinct safety risks. To bridge this gap, we introduce Video-SafetyBench, the first comprehensive benchmark designed to evaluate the safety of LVLMs under video-text attacks. It comprises 2,264 video-text pairs spanning 48 fine-grained unsafe categories, each pairing a synthesized video with either a harmful query, which contains explicit malice, or a benign query, which appears harmless but triggers harmful behavior when interpreted alongside the video. To generate semantically accurate videos for safety evaluation, we design a controllable pipeline that decomposes video semantics into subject images (what is shown) and motion text (how it moves), which jointly guide the synthesis of query-relevant videos. To effectively evaluate uncertain or borderline harmful outputs, we propose RJScore, a novel LLM-based metric that incorporates the confidence of judge models and human-aligned decision threshold calibration. Extensive experiments show that benign-query video composition achieves average attack success rates of 67.2%, revealing consistent vulnerabilities to video-induced attacks. We believe Video-SafetyBench will catalyze future research into video-based safety evaluation and defense strategies.
comment: Accepted by NeurIPS 2025 Dataset and Benchmark Track, Project page: https://liuxuannan.github.io/Video-SafetyBench.github.io/
♻ ☆ Leveraging Importance Sampling to Detach Alignment Modules from Large Language Models NeurIPS 2025
The widespread adoption of large language models (LLMs) across industries has increased the demand for high-quality and customizable outputs. However, traditional alignment methods often require retraining large pretrained models, making it difficult to quickly adapt and optimize LLMs for diverse applications. To address this limitation, we propose a novel \textit{Residual Alignment Model} (\textit{RAM}) that formalizes the alignment process as a type of importance sampling. In this framework, the unaligned upstream model serves as the proposal distribution, while the alignment process is framed as secondary sampling based on an autoregressive alignment module that acts as an estimator of the importance weights. This design enables a natural detachment of the alignment module from the target aligned model, improving flexibility and scalability. Based on this model, we derive an efficient sequence-level training strategy for the alignment module, which operates independently of the proposal module. Additionally, we develop a resampling algorithm with iterative token-level decoding to address the common first-token latency issue in comparable methods. Experimental evaluations on two leading open-source LLMs across diverse tasks, including instruction following, domain adaptation, and preference optimization, demonstrate that our approach consistently outperforms baseline models.
comment: Accepted by NeurIPS 2025, 28 pages
♻ ☆ Leveraging Robust Optimization for LLM Alignment under Distribution Shifts NeurIPS 2025
Preference alignment methods are increasingly critical for steering large language models (LLMs) to generate outputs consistent with human values. While recent approaches often rely on synthetic data generated by LLMs for scalability and cost-efficiency reasons, this reliance can introduce distribution shifts that undermine the nuanced representation of human preferences needed for desirable outputs. In this paper, we propose a novel distribution-aware optimization framework that improves preference alignment despite such shifts. Our approach first leverages well-learned classifiers to assign a calibration value to each training sample, quantifying its alignment with the target human-preferred distribution. These values are then incorporated into a robust optimization objective that minimizes the worst-case loss over regions of the data space most relevant to human preferences. By explicitly focusing optimization on the target distribution, our approach mitigates the impact of distributional mismatch and improves the generation of responses that better reflect intended values.
comment: NeurIPS 2025
♻ ☆ Large-scale User Game Lifecycle Representation Learning
The rapid expansion of video game production necessitates the development of effective advertising and recommendation systems for online game platforms. Recommending and advertising games to users hinges on capturing their interest in games. However, existing representation learning methods crafted for handling billions of items in recommendation systems are unsuitable for game advertising and recommendation. This is primarily due to game sparsity, where the mere hundreds of games fall short for large-scale user representation learning, and game imbalance, where user behaviors are overwhelmingly dominated by a handful of popular games. To address the sparsity issue, we introduce the User Game Lifecycle (UGL), designed to enrich user behaviors in games. Additionally, we propose two innovative strategies aimed at manipulating user behaviors to more effectively extract both short and long-term interests. To tackle the game imbalance challenge, we present an Inverse Probability Masking strategy for UGL representation learning. The offline and online experimental results demonstrate that the UGL representations significantly enhance model by achieving a 1.83% AUC offline increase on average and a 21.67% CVR online increase on average for game advertising and a 0.5% AUC offline increase and a 0.82% ARPU online increase for in-game item recommendation.
♻ ☆ LLMTaxo: Leveraging Large Language Models for Constructing Taxonomy of Factual Claims from Social Media
With the rapid expansion of content on social media platforms, analyzing and comprehending online discourse has become increasingly complex. This paper introduces LLMTaxo, a novel framework leveraging large language models for the automated construction of taxonomies of factual claims from social media by generating topics at multiple levels of granularity. The resulting hierarchical structure significantly reduces redundancy and improves information accessibility. We also propose dedicated taxonomy evaluation metrics to enable comprehensive assessment. Evaluations conducted on three diverse datasets demonstrate LLMTaxo's effectiveness in producing clear, coherent, and comprehensive taxonomies. Among the evaluated models, GPT-4o mini consistently outperforms others across most metrics. The framework's flexibility and low reliance on manual intervention underscore its potential for broad applicability.
♻ ☆ AutoGraph-R1: End-to-End Reinforcement Learning for Knowledge Graph Construction
Building effective knowledge graphs (KGs) for Retrieval-Augmented Generation (RAG) is pivotal for advancing question answering (QA) systems. However, its effectiveness is hindered by a fundamental disconnect: the knowledge graph (KG) construction process is decoupled from its downstream application, yielding suboptimal graph structures. To bridge this gap, we introduce AutoGraph-R1, the first framework to directly optimize KG construction for task performance using Reinforcement Learning (RL). AutoGraph-R1 trains an LLM constructor by framing graph generation as a policy learning problem, where the reward is derived from the graph's functional utility in a RAG pipeline. We design two novel, task-aware reward functions, one for graphs as knowledge carriers and another as knowledge indices. Across multiple QA benchmarks, AutoGraph-R1 consistently enables graph RAG methods to achieve significant performance gains over using task-agnostic baseline graphs. Our work shows it is possible to close the loop between construction and application, shifting the paradigm from building intrinsically ``good'' graphs to building demonstrably ``useful'' ones.
♻ ☆ Accelerating Mobile Language Model via Speculative Decoding and NPU-Coordinated Execution
Enhancing on-device large language models (LLMs) with contextual information from local data enables personalized and task-aware generation, powering use cases such as intelligent assistants and UI agents. While recent developments in neural processors have substantially improved the efficiency of prefill on mobile devices, the token-by-token generation process still suffers from high latency and limited hardware utilization due to its inherently memory-bound characteristics. This work presents sd.npu, a mobile inference framework that integrates speculative decoding with dynamic hardware scheduling to accelerate context-aware text generation on mobile devices. The framework introduces three synergistic components: (1) adaptive execution scheduling, which dynamically balances compute graphs between prefill and decoding phases; (2) context-aligned drafting, which improves speculative efficiency through lightweight online calibration to current tasks; and (3) hardware-efficient draft extension, which reuses and expands intermediate sequences to improve processing parallelism and reduce verification cost. Experiments on multiple smartphones and representative workloads show consistent improvements of up to 3.8x in generation speed and 4.7x in energy efficiency compared with existing mobile inference solutions. Component-level analysis further validates the contribution of each optimization.
♻ ☆ Value-Based Large Language Model Agent Simulation for Mutual Evaluation of Trust and Interpersonal Closeness
Large language models (LLMs) have emerged as powerful tools for simulating complex social phenomena using human-like agents with specific traits. In human societies, value similarity is important for building trust and close relationships; however, it remains unexplored whether this principle holds true in artificial societies comprising LLM agents. Therefore, this study investigates the influence of value similarity on relationship-building among LLM agents through two experiments. First, in a preliminary experiment, we evaluated the controllability of values in LLMs to identify the most effective model and prompt design for controlling the values. Subsequently, in the main experiment, we generated pairs of LLM agents imbued with specific values and analyzed their mutual evaluations of trust and interpersonal closeness following a dialogue. The experiments were conducted in English and Japanese to investigate language dependence. The results confirmed that pairs of agents with higher value similarity exhibited greater mutual trust and interpersonal closeness. Our findings demonstrate that the LLM agent simulation serves as a valid testbed for social science theories, contributes to elucidating the mechanisms by which values influence relationship building, and provides a foundation for inspiring new theories and insights into the social sciences.
♻ ☆ Generating Individual Travel Diaries Using Large Language Models Informed by Census and Land-Use Data
This study introduces a Large Language Model (LLM) scheme for generating individual travel diaries in agent-based transportation models. While traditional approaches rely on large quantities of proprietary household travel surveys, the method presented in this study generates personas stochastically from open-source American Community Survey (ACS) and Smart Location Database (SLD) data, then synthesizes diaries through direct prompting. This study features a novel one-to-cohort realism score: a composite of four metrics (Trip Count Score, Interval Score, Purpose Score, and Mode Score) validated against the Connecticut Statewide Transportation Study (CSTS) diaries, matched across demographic variables. The validation utilizes Jensen-Shannon Divergence to measure distributional similarities between generated and real diaries. When compared to diaries generated with classical methods (Negative Binomial for trip generation; Multinomial Logit for mode/purpose) calibrated on the validation set, LLM-generated diaries achieve comparable overall realism (LLM mean: 0.485 vs. 0.455). The LLM excels in determining trip purpose and demonstrates greater consistency (narrower realism score distribution), while classical models lead in numerical estimates of trip count and activity duration. Aggregate validation confirms the LLM's statistical representativeness (LLM mean: 0.612 vs. 0.435), demonstrating LLM's zero-shot viability and establishing a quantifiable metric of diary realism for future synthetic diary evaluation systems.
♻ ☆ Evaluating Program Semantics Reasoning with Type Inference in System F NeurIPS '25
Large Language Models (LLMs) are increasingly integrated into the software engineering ecosystem. Their test-time compute (TTC) reasoning capabilities show significant potential for understanding program logic and semantics beyond mere token recognition. However, current benchmarks for code reasoning lack a formal, program-centric deductive framework to ensure sound evaluation, and are incapable of assessing whether models genuinely reason about program semantics or merely exploit superficial associations between natural language and code tokens. To bridge this gap, we introduce TF-Bench, a benchmark designed to evaluate LLM reasoning based on type inference in System F, a task we refer to as program semantics reasoning. By employing verified transformations to remove semantically irrelevant natural language, we construct TF-Bench_pure, a purely semantics-driven variant of TF-Bench. Our analysis reveals substantial limitations in state-of-the-art LLMs, with the best-performing LLM (Claude-3.7-sonnet) achieving only 55.85% accuracy on TF-Bench_pure. Additionally, we propose two novel metrics to assess robustness and the effectiveness of test-time reasoning, underscoring critical limitations in current LLM capabilities and highlighting essential directions for future research.
comment: NeurIPS '25, package released at: https://github.com/SecurityLab-UCD/TF-Bench
♻ ☆ Generative or Discriminative? Revisiting Text Classification in the Era of Transformers EMNLP 2025
The comparison between discriminative and generative classifiers has intrigued researchers since Efron's seminal analysis of logistic regression versus discriminant analysis. While early theoretical work established that generative classifiers exhibit lower sample complexity but higher asymptotic error in simple linear settings, these trade-offs remain unexplored in the transformer era. We present the first comprehensive evaluation of modern generative and discriminative architectures - Auto-regressive modeling, Masked Language Modeling, Discrete Diffusion, and Encoders for text classification. Our study reveals that the classical 'two regimes' phenomenon manifests distinctly across different architectures and training paradigms. Beyond accuracy, we analyze sample efficiency, calibration, noise robustness, and ordinality across diverse scenarios. Our findings offer practical guidance for selecting the most suitable modeling approach based on real-world constraints such as latency and data limitations.
comment: 23 pages - Nominated for Outstanding Paper award at EMNLP 2025
♻ ☆ TACO: Enhancing Multimodal In-context Learning via Task Mapping-Guided Sequence Configuration EMNLP2025
Multimodal in-context learning (ICL) has emerged as a key mechanism for harnessing the capabilities of large vision-language models (LVLMs). However, its effectiveness remains highly sensitive to the quality of input ICL sequences, particularly for tasks involving complex reasoning or open-ended generation. A major limitation is our limited understanding of how LVLMs actually exploit these sequences during inference. To bridge this gap, we systematically interpret multimodal ICL through the lens of task mapping, which reveals how local and global relationships within and among demonstrations guide model reasoning. Building on this insight, we present TACO, a lightweight transformer-based model equipped with task-aware attention that dynamically configures ICL sequences. By injecting task-mapping signals into the autoregressive decoding process, TACO creates a bidirectional synergy between sequence construction and task reasoning. Experiments on five LVLMs and nine datasets demonstrate that TACO consistently surpasses baselines across diverse ICL tasks. These results position task mapping as a novel and valuable perspective for interpreting and improving multimodal ICL.
comment: EMNLP2025 Main, 28 pages, 11 figures, 19 tables
♻ ☆ DialUp! Modeling the Language Continuum by Adapting Models to Dialects and Dialects to Models ACL '25
Most of the world's languages and dialects are low-resource, and lack support in mainstream machine translation (MT) models. However, many of them have a closely-related high-resource language (HRL) neighbor, and differ in linguistically regular ways from it. This underscores the importance of model robustness to dialectal variation and cross-lingual generalization to the HRL dialect continuum. We present DialUp, consisting of a training-time technique for adapting a pretrained model to dialectal data (M->D), and an inference-time intervention adapting dialectal data to the model expertise (D->M). M->D induces model robustness to potentially unseen and unknown dialects by exposure to synthetic data exemplifying linguistic mechanisms of dialectal variation, whereas D->M treats dialectal divergence for known target dialects. These methods show considerable performance gains for several dialects from four language families, and modest gains for two other language families. We also conduct feature and error analyses, which show that language varieties with low baseline MT performance are more likely to benefit from these approaches.
comment: 9 pages, 46 incl. appendix. Presented at ACL '25 (main conference)
♻ ☆ Rethinking LLM Uncertainty: A Multi-Agent Approach to Estimating Black-Box Model Uncertainty EMNLP 2025
Quantifying uncertainty in black-box LLMs is vital for reliable responses and scalable oversight. Existing methods, which gauge a model's uncertainty through evaluating self-consistency in responses to the target query, can be misleading: an LLM may confidently provide an incorrect answer to a target query, yet give a confident and accurate answer to that same target query when answering a knowledge-preserving perturbation of the query. We systematically analyze the model behaviors and demonstrate that this discrepancy stems from suboptimal retrieval of parametric knowledge, often due to contextual biases that prevent consistent access to stored knowledge. We then introduce DiverseAgentEntropy, a novel, theoretically-grounded method employing multi-agent interaction across diverse query variations for uncertainty estimation of black-box LLMs. This approach more accurately assesses an LLM's true uncertainty and improves hallucination detection, outperforming existing self-consistency based techniques.
comment: EMNLP 2025 Findings
♻ ☆ RepIt: Steering Language Models with Concept-Specific Refusal Vectors
While activation steering in large language models (LLMs) is a growing area of research, methods can often incur broader effects than desired. This motivates isolation of purer concept vectors to enable targeted interventions and understand LLM behavior at a more granular level. We present RepIt, a simple and data-efficient framework for isolating concept-specific representations. Across five frontier LLMs, RepIt enables precise interventions: it selectively suppresses refusal on targeted concepts while preserving refusal elsewhere, producing models that answer WMD-related questions while still scoring as safe on standard benchmarks. We further show that the corrective signal localizes to just 100-200 neurons and that robust target representations can be extracted from as few as a dozen examples on a single A6000. This efficiency raises a dual concern: manipulations can be performed with modest compute and data to extend to underrepresented data-scarce topics while evading existing benchmarks. By disentangling refusal vectors with RepIt, this work demonstrates that targeted interventions can counteract overgeneralization, laying the foundation for more granular control of model behavior.
♻ ☆ The Translation Barrier Hypothesis: Multilingual Generation with Large Language Models Suffers from Implicit Translation Failure
Multilingual generation with large language models (LLMs) is often of poor quality for mid- to low-resource languages, but the causes for this are not well-understood. We first demonstrate the existence of an implicit task-solving-->translation pipeline for generation, whereby the model first solves the required task in a largely target-language-agnostic manner, and subsequently translates answer concepts into the intended target language. We hypothesize that the failure of the translation stage, despite task-solving success, is an important culprit for the observed low quality of final outputs, and formalize this as the translation barrier hypothesis. We quantify the extent to which either stage in the pipeline is responsible for final failure for a word translation task across 108 language pairs, and find that the translation barrier explains a dominant portion of error for a majority of language pairs, and is especially severe for low-resource target languages. Our results highlight an important bottleneck for end-to-end multilingual generation, relevant for future work seeking to improve multilinguality in LLMs.
comment: 28 pages, incl. appendix
♻ ☆ WHAT-IF: Exploring Branching Narratives by Meta-Prompting Large Language Models EMNLP 2025
WHAT-IF -- Writing a Hero's Alternate Timeline through Interactive Fiction -- is a system that uses zero-shot meta-prompting to create branching narratives from a prewritten story. Played as an interactive fiction (IF) game, WHAT-IF lets the player choose between decisions that the large language model (LLM) GPT-4 generates as possible branches in the story. Starting with an existing linear plot as input, a branch is created at each key decision taken by the main character. By meta-prompting the LLM to consider the major plot points from the story, the system produces coherent and well-structured alternate storylines. WHAT-IF stores the branching plot tree in a graph which helps it to both keep track of the story for prompting and maintain the structure for the final IF system. A demo of WHAT-IF can be found at https://what-if-game.github.io/.
comment: Published in Wordplay: When Language Meets Games Workshop (EMNLP 2025)
♻ ☆ A Survey of Automatic Hallucination Evaluation on Natural Language Generation
The rapid advancement of Large Language Models (LLMs) has brought a pressing challenge: how to reliably assess hallucinations to guarantee model trustworthiness. Although Automatic Hallucination Evaluation (AHE) has become an indispensable component of this effort, the field remains fragmented in its methodologies, limiting both conceptual clarity and practical progress. This survey addresses this critical gap through a systematic analysis of 105 evaluation methods, revealing that 77.1% specifically target LLMs, a paradigm shift that demands new evaluation frameworks. We formulate a structured framework to organize the field, based on a survey of foundational datasets and benchmarks and a taxonomy of evaluation methodologies, which together systematically document the evolution from pre-LLM to post-LLM approaches. Beyond taxonomical organization, we identify fundamental limitations in current approaches and their implications for real-world deployment. To guide future research, we delineate key challenges and propose strategic directions, including enhanced interpretability mechanisms and integration of application-specific evaluation criteria, ultimately providing a roadmap for developing more robust and practical hallucination evaluation systems.
comment: 46 pages
♻ ☆ Soundness-Aware Level: A Microscopic Signature that Predicts LLM Reasoning Potential
Reinforcement learning with verifiable rewards (RLVR) can elicit strong reasoning in large language models (LLMs), while their performance after RLVR varies dramatically across different base models. This raises a fundamental question: what microscopic property of pre-trained models leads to this variation? To investigate, we formalize reasoning as chains of Horn clauses ("if-then" rules) built from features extracted from the LLM's latent space via cross-layer sparse autoencoders (SAEs). We estimate the transition probabilities between its features, and further categorize each rule by its semantic soundness level (e.g., strict, plausible, noisy) with an LLM. Our key discovery is that high-potential models are inherently soundness-aware: their internal probability distributions systematically shift across rules' soundness levels, becoming highly distinct for "strict" versus "noisy" rules. In contrast, weaker models are soundness-agnostic, collapsing to one distribution regardless of soundness levels. To quantify this, we introduce the Soundness-Aware Level (SAL), a microscopic metric using the Jensen-Shannon Divergence to measure the separation between these distributions. We show that SAL's predictions of post-RLVR reasoning performance follow a precise empirical law (R^2=0.87) across diverse model families (Qwen, Mistral, Llama, DeepSeek) and scales (0.5B-14B). This reveals that a model's reasoning potential is tied to its intrinsic, pre-trained ability to distinguish sound knowledge from unsound ones. These findings underscore the critical role of model pre-training in shaping reasoning and offer a practical metric grounded in the model's internal mechanisms for selecting/designing stronger base models.
comment: Pre-print
♻ ☆ C-SEO Bench: Does Conversational SEO Work? NeurIPS
Large Language Models (LLMs) are transforming search engines into Conversational Search Engines (CSE). Consequently, Search Engine Optimization (SEO) is being shifted into Conversational Search Engine Optimization (C-SEO). We are beginning to see dedicated C-SEO methods for modifying web documents to increase their visibility in CSE responses. However, they are often tested only for a limited breadth of application domains; we do not know whether certain C-SEO methods would be effective for a broad range of domains. Moreover, existing evaluations consider only a single-actor scenario where only one web document adopts a C-SEO method; in reality, multiple players are likely to competitively adopt the cutting-edge C-SEO techniques, drawing an analogy from the dynamics we have seen in SEO. We present C-SEO Bench, the first benchmark designed to evaluate C-SEO methods across multiple tasks, domains, and number of actors. We consider two search tasks, question answering and product recommendation, with three domains each. We also formalize a new evaluation protocol with varying adoption rates among involved actors. Our experiments reveal that most current C-SEO methods are not only largely ineffective but also frequently have a negative impact on document ranking, which is opposite to what is expected. Instead, traditional SEO strategies, those aiming to improve the ranking of the source in the LLM context, are significantly more effective. We also observe that as we increase the number of C-SEO adopters, the overall gains decrease, depicting a congested and zero-sum nature of the problem. Our code and data are available at https://github.com/parameterlab/c-seo-bench and https://huggingface.co/datasets/parameterlab/c-seo-bench.
comment: Accepted at NeurIPS Datasets & Benchmarks 2025
♻ ☆ Discovering Properties of Inflectional Morphology in Neural Emergent Communication
Emergent communication (EmCom) with deep neural network-based agents promises to yield insights into the nature of human language, but remains focused primarily on a few subfield-specific goals and metrics that prioritize communication schemes which represent attributes with unique characters one-to-one and compose them syntactically. We thus reinterpret a common EmCom setting, the attribute-value reconstruction game, by imposing a small-vocabulary constraint to simulate double articulation, and formulating a novel setting analogous to naturalistic inflectional morphology (enabling meaningful comparison to natural language communication schemes). We develop new metrics and explore variations of this game motivated by real properties of inflectional morphology: concatenativity and fusion. Through our experiments, we discover that simulated phonological constraints encourage concatenative morphology, and emergent languages replicate the tendency of natural languages to fuse grammatical attributes.
♻ ☆ Sparse Feature Coactivation Reveals Causal Semantic Modules in Large Language Models
We identify semantically coherent, context-consistent network components in large language models (LLMs) using coactivation of sparse autoencoder (SAE) features collected from just a handful of prompts. Focusing on concept-relation prediction tasks, we show that ablating these components for concepts (e.g., countries and words) and relations (e.g., capital city and translation language) changes model outputs in predictable ways, while amplifying these components induces counterfactual responses. Notably, composing relation and concept components yields compound counterfactual outputs. Further analysis reveals that while most concept components emerge from the very first layer, more abstract relation components are concentrated in later layers. Lastly, we show that extracted components more comprehensively capture concepts and relations than individual features while maintaining specificity. Overall, our findings suggest a modular organization of knowledge accessed through compositional operations, and advance methods for efficient, targeted LLM manipulation.
♻ ☆ Synthetic Dataset for Evaluating Complex Compositional Knowledge for Natural Language Inference ACL 2023
We introduce a synthetic dataset called Sentences Involving Complex Compositional Knowledge (SICCK) and a novel analysis that investigates the performance of Natural Language Inference (NLI) models to understand compositionality in logic. We produce 1,304 sentence pairs by modifying 15 examples from the SICK dataset (Marelli et al., 2014). To this end, we modify the original texts using a set of phrases - modifiers that correspond to universal quantifiers, existential quantifiers, negation, and other concept modifiers in Natural Logic (NL) (MacCartney, 2009). We use these phrases to modify the subject, verb, and object parts of the premise and hypothesis. Lastly, we annotate these modified texts with the corresponding entailment labels following NL rules. We conduct a preliminary verification of how well the change in the structural and semantic composition is captured by neural NLI models, in both zero-shot and fine-tuned scenarios. We found that the performance of NLI models under the zero-shot setting is poor, especially for modified sentences with negation and existential quantifiers. After fine-tuning this dataset, we observe that models continue to perform poorly over negation, existential and universal modifiers.
comment: Accepted to Natural Language Reasoning and Structured Explanations (NLRSE) Workshop, ACL 2023. For dataset, please refer https://github.com/sushmaakoju/clulab-releases/blob/master/acl2023-nlrse-sicck/README.md and https://github.com/sushmaanandakoju/acl2023-nlrse-clulab-SICCK-dataset
Machine Learning 297
☆ Unbiased Gradient Low-Rank Projection
Memory-efficient optimization is critical for training increasingly large language models (LLMs). A popular strategy involves gradient low-rank projection, storing only the projected optimizer states, with GaLore being a representative example. However, a significant drawback of many such methods is their lack of convergence guarantees, as various low-rank projection approaches introduce inherent biases relative to the original optimization algorithms, which contribute to performance gaps compared to full-parameter training. Aiming to tackle this problem, this paper investigates the layerwise sampling technique for debiasing low-rank projection mechanisms. In particular, an instantiation of the paradigm gives rise to a novel and unbiased low-rank optimization method built upon GaLore's mechanism and the Muon algorithm, named GaLore Unbiased with Muon (GUM). We theoretically prove our method matches the convergence guarantees of the base Muon algorithm while preserving the memory efficiency of low-rank techniques. Empirical experiments on LLM fine-tuning and pretraining also demonstrate non-trivial improvements over GaLore and even better performance than full-parameter training. Further investigation shows that the improvement of this technique comes from a more uniform distribution of knowledge inside layers, leading to more efficient utilization of the model parameter space and better memorization.
☆ Glyph: Scaling Context Windows via Visual-Text Compression
Large language models (LLMs) increasingly rely on long-context modeling for tasks such as document understanding, code analysis, and multi-step reasoning. However, scaling context windows to the million-token level brings prohibitive computational and memory costs, limiting the practicality of long-context LLMs. In this work, we take a different perspective-visual context scaling-to tackle this challenge. Instead of extending token-based sequences, we propose Glyph, a framework that renders long texts into images and processes them with vision-language models (VLMs). This approach substantially compresses textual input while preserving semantic information, and we further design an LLM-driven genetic search to identify optimal visual rendering configurations for balancing accuracy and compression. Through extensive experiments, we demonstrate that our method achieves 3-4x token compression while maintaining accuracy comparable to leading LLMs such as Qwen3-8B on various long-context benchmarks. This compression also leads to around 4x faster prefilling and decoding, and approximately 2x faster SFT training. Furthermore, under extreme compression, a 128K-context VLM could scale to handle 1M-token-level text tasks. In addition, the rendered text data benefits real-world multimodal tasks, such as document understanding. Our code and model are released at https://github.com/thu-coai/Glyph.
☆ Executable Knowledge Graphs for Replicating AI Research
Replicating AI research is a crucial yet challenging task for large language model (LLM) agents. Existing approaches often struggle to generate executable code, primarily due to insufficient background knowledge and the limitations of retrieval-augmented generation (RAG) methods, which fail to capture latent technical details hidden in referenced papers. Furthermore, previous approaches tend to overlook valuable implementation-level code signals and lack structured knowledge representations that support multi-granular retrieval and reuse. To overcome these challenges, we propose Executable Knowledge Graphs (xKG), a modular and pluggable knowledge base that automatically integrates technical insights, code snippets, and domain-specific knowledge extracted from scientific literature. When integrated into three agent frameworks with two different LLMs, xKG shows substantial performance gains (10.9% with o3-mini) on PaperBench, demonstrating its effectiveness as a general and extensible solution for automated AI research replication. Code will released at https://github.com/zjunlp/xKG.
comment: Work in progress
☆ Functional Distribution Networks (FDN) ICLR 2026
Modern probabilistic regressors often remain overconfident under distribution shift. We present Functional Distribution Networks (FDN), an input-conditioned distribution over network weights that induces predictive mixtures whose dispersion adapts to the input. FDN is trained with a beta-ELBO and Monte Carlo sampling. We further propose an evaluation protocol that cleanly separates interpolation from extrapolation and stresses OOD sanity checks (e.g., that predictive likelihood degrades under shift while in-distribution accuracy and calibration are maintained). On standard regression tasks, we benchmark against strong Bayesian, ensemble, dropout, and hypernetwork baselines under matched parameter and update budgets, and assess accuracy, calibration, and shift-awareness with standard diagnostics. Together, the framework and protocol aim to make OOD-aware, well-calibrated neural regression practical and modular.
comment: Submitted to ICLR 2026. Code will be released upon acceptance
☆ Foundational Automatic Evaluators: Scaling Multi-Task Generative Evaluator Training for Reasoning-Centric Domains
Finetuning specialized generative evaluators has emerged as a popular paradigm to meet the increasing demand for scalable evaluation during both training and test-time. However, recent work has largely focused on applying new methodology, such as reinforcement learning (RL), to training evaluators, shying away from large-scale, data-driven development. In this work, we focus on data scaling, curating a set of 2.5M samples spanning five unique evaluation tasks (pairwise, step-level, reference-free and reference-based verification, and single rating) and multiple domains focused on reasoning evaluation. With our data, we train Foundational Automatic Reasoning Evaluators (FARE), a family of 8B and 20B (with 3.6B active) parameter evaluators, with a simple iterative rejection-sampling supervised finetuning (SFT) approach. FARE-8B challenges larger specialized RL-trained evaluators and FARE-20B sets the new standard for open-source evaluators, surpassing specialized 70B+ evaluators. Beyond static benchmarks, we evaluate FARE in real-world tasks: As inference-time rerankers, FARE-20B achieves near-oracle performance on MATH. As verifiers in RL training, FARE improves the downstream RL-trained model performance by up to 14.1% vs. string-matching verifiers. When initialized from FARE, a continually-finetuned FARE-Code outperforms gpt-oss-20B by 65% on evaluating test-case quality.
comment: 29 pages, 9 tables, 6 figures
☆ SoftMimic: Learning Compliant Whole-body Control from Examples
We introduce SoftMimic, a framework for learning compliant whole-body control policies for humanoid robots from example motions. Imitating human motions with reinforcement learning allows humanoids to quickly learn new skills, but existing methods incentivize stiff control that aggressively corrects deviations from a reference motion, leading to brittle and unsafe behavior when the robot encounters unexpected contacts. In contrast, SoftMimic enables robots to respond compliantly to external forces while maintaining balance and posture. Our approach leverages an inverse kinematics solver to generate an augmented dataset of feasible compliant motions, which we use to train a reinforcement learning policy. By rewarding the policy for matching compliant responses rather than rigidly tracking the reference motion, SoftMimic learns to absorb disturbances and generalize to varied tasks from a single motion clip. We validate our method through simulations and real-world experiments, demonstrating safe and effective interaction with the environment.
comment: Website: https://gmargo11.github.io/softmimic/
☆ Inference-Time Compute Scaling For Flow Matching
Allocating extra computation at inference time has recently improved sample quality in large language models and diffusion-based image generation. In parallel, Flow Matching (FM) has gained traction in language, vision, and scientific domains, but inference-time scaling methods for it remain under-explored. Concurrently, Kim et al., 2025 approach this problem but replace the linear interpolant with a non-linear variance-preserving (VP) interpolant at inference, sacrificing FM's efficient and straight sampling. Additionally, inference-time compute scaling for flow matching has only been applied to visual tasks, like image generation. We introduce novel inference-time scaling procedures for FM that preserve the linear interpolant during sampling. Evaluations of our method on image generation, and for the first time (to the best of our knowledge), unconditional protein generation, show that I) sample quality consistently improves as inference compute increases, and II) flow matching inference-time scaling can be applied to scientific domains.
☆ Mapping Post-Training Forgetting in Language Models at Scale
Scaled post-training now drives many of the largest capability gains in language models (LMs), yet its effect on pretrained knowledge remains poorly understood. Not all forgetting is equal: Forgetting one fact (e.g., a U.S. president or an API call) does not "average out" by recalling another. Hence, we propose a sample-wise paradigm to measure what is forgotten and when backward transfer occurs. Our metric counts 1->0 transitions (correct before post-training, incorrect after) to quantify forgetting and 0->1 transitions to quantify backward transfer. Traditional task averages conflate these effects and obscure large changes. For multiple-choice benchmarks, we add chance-adjusted variants that subtract the expected contribution of random guessing from pre- and post-training accuracies. We apply this framework across post-training stages, model sizes, and data scales. Our large-scale analysis shows that: (1) Domain-continual pretraining induces moderate forgetting with low-to-moderate backward transfer; (2) RL/SFT post-training applied to base models and Instruction tuning yields moderate-to-large backward transfer on math and logic with overall low-to-moderate forgetting; (3) Applying RL/SFT to instruction-tuned models is sensitive on data scale: at small scales, both forgetting and backward transfer are small; at larger scales, effects are mixed and warrant further study with better controls; (4) Model merging does not reliably mitigate forgetting. Overall, our framework offers a practical yardstick for mapping how post-training alters pretrained knowledge at scale -- enabling progress towards generally capable AI systems.
comment: 43 pages,15 figures
☆ Atlas-based Manifold Representations for Interpretable Riemannian Machine Learning
Despite the popularity of the manifold hypothesis, current manifold-learning methods do not support machine learning directly on the latent $d$-dimensional data manifold, as they primarily aim to perform dimensionality reduction into $\mathbb{R}^D$, losing key manifold features when the embedding dimension $D$ approaches $d$. On the other hand, methods that directly learn the latent manifold as a differentiable atlas have been relatively underexplored. In this paper, we aim to give a proof of concept of the effectiveness and potential of atlas-based methods. To this end, we implement a generic data structure to maintain a differentiable atlas that enables Riemannian optimization over the manifold. We complement this with an unsupervised heuristic that learns a differentiable atlas from point cloud data. We experimentally demonstrate that this approach has advantages in terms of efficiency and accuracy in selected settings. Moreover, in a supervised classification task over the Klein bottle and in RNA velocity analysis of hematopoietic data, we showcase the improved interpretability and robustness of our approach.
☆ VERA-V: Variational Inference Framework for Jailbreaking Vision-Language Models
Vision-Language Models (VLMs) extend large language models with visual reasoning, but their multimodal design also introduces new, underexplored vulnerabilities. Existing multimodal red-teaming methods largely rely on brittle templates, focus on single-attack settings, and expose only a narrow subset of vulnerabilities. To address these limitations, we introduce VERA-V, a variational inference framework that recasts multimodal jailbreak discovery as learning a joint posterior distribution over paired text-image prompts. This probabilistic view enables the generation of stealthy, coupled adversarial inputs that bypass model guardrails. We train a lightweight attacker to approximate the posterior, allowing efficient sampling of diverse jailbreaks and providing distributional insights into vulnerabilities. VERA-V further integrates three complementary strategies: (i) typography-based text prompts that embed harmful cues, (ii) diffusion-based image synthesis that introduces adversarial signals, and (iii) structured distractors to fragment VLM attention. Experiments on HarmBench and HADES benchmarks show that VERA-V consistently outperforms state-of-the-art baselines on both open-source and frontier VLMs, achieving up to 53.75% higher attack success rate (ASR) over the best baseline on GPT-4o.
comment: 18 pages, 7 Figures,
☆ Prediction of Sea Ice Velocity and Concentration in the Arctic Ocean using Physics-informed Neural Network
As an increasing amount of remote sensing data becomes available in the Arctic Ocean, data-driven machine learning (ML) techniques are becoming widely used to predict sea ice velocity (SIV) and sea ice concentration (SIC). However, fully data-driven ML models have limitations in generalizability and physical consistency due to their excessive reliance on the quantity and quality of training data. In particular, as Arctic sea ice entered a new phase with thinner ice and accelerated melting, there is a possibility that an ML model trained with historical sea ice data cannot fully represent the dynamically changing sea ice conditions in the future. In this study, we develop physics-informed neural network (PINN) strategies to integrate physical knowledge of sea ice into the ML model. Based on the Hierarchical Information-sharing U-net (HIS-Unet) architecture, we incorporate the physics loss function and the activation function to produce physically plausible SIV and SIC outputs. Our PINN model outperforms the fully data-driven model in the daily predictions of SIV and SIC, even when trained with a small number of samples. The PINN approach particularly improves SIC predictions in melting and early freezing seasons and near fast-moving ice regions.
comment: 49 pages, 7 figures, submitted to Environmental Modelling & Software
☆ Efficient Tensor Completion Algorithms for Highly Oscillatory Operators
This paper presents low-complexity tensor completion algorithms and their efficient implementation to reconstruct highly oscillatory operators discretized as $n\times n$ matrices. The underlying tensor decomposition is based on the reshaping of the input matrix and its butterfly decomposition into an order $\mathcal{O} (\log n)$ tensor. The reshaping of the input matrix into a tensor allows for representation of the butterfly decomposition as a tensor decomposition with dense tensors. This leads to efficient utilization of the existing software infrastructure for dense and sparse tensor computations. We propose two tensor completion algorithms in the butterfly format, using alternating least squares and gradient-based optimization, as well as a novel strategy that uses low-rank matrix completion to efficiently generate an initial guess for the proposed algorithms. To demonstrate the efficiency and applicability of our proposed algorithms, we perform three numerical experiments using simulated oscillatory operators in seismic applications. In these experiments, we use $\mathcal {O} (n \log n)$ observed entries in the input matrix and demonstrate an $\mathcal{O}(n\log^3 n)$ computational cost of the proposed algorithms, leading to a speedup of orders of magnitudes per iteration for large matrices compared to the low-rank matrix and quantized tensor-train completion. Moreover, the proposed butterfly completion algorithms, equipped with the novel initial guess generation strategy, achieve reconstruction errors that are smaller by an order of magnitude, enabling accurate recovery of the underlying structure compared to the state-of-the-art completion algorithms.
☆ Train for Truth, Keep the Skills: Binary Retrieval-Augmented Reward Mitigates Hallucinations
Language models often generate factually incorrect information unsupported by their training data, a phenomenon known as extrinsic hallucination. Existing mitigation approaches often degrade performance on open-ended generation and downstream tasks, limiting their practical utility. We propose an online reinforcement learning method using a novel binary retrieval-augmented reward (RAR) to address this tradeoff. Unlike continuous reward schemes, our approach assigns a reward of one only when the model's output is entirely factually correct, and zero otherwise. We evaluate our method on Qwen3 reasoning models across diverse tasks. For open-ended generation, binary RAR achieves a 39.3% reduction in hallucination rates, substantially outperforming both supervised training and continuous-reward RL baselines. In short-form question answering, the model learns calibrated abstention, strategically outputting "I don't know" when faced with insufficient parametric knowledge. This yields 44.4% and 21.7% fewer incorrect answers on PopQA and GPQA, respectively. Crucially, these factuality gains come without performance degradation on instruction following, math, or code, whereas continuous-reward RL, despite improving factuality, induces quality regressions.
☆ Enabling Fine-Grained Operating Points for Black-Box LLMs
Black-box Large Language Models (LLMs) provide practical and accessible alternatives to other machine learning methods, as they require minimal labeled data and machine learning expertise to develop solutions for various decision making problems. However, for applications that need operating with constraints on specific metrics (e.g., precision $\geq$ 95%), decision making with black-box LLMs remains unfavorable, due to their low numerical output cardinalities. This results in limited control over their operating points, preventing fine-grained adjustment of their decision making behavior. In this paper, we study using black-box LLMs as classifiers, focusing on efficiently improving their operational granularity without performance loss. Specifically, we first investigate the reasons behind their low-cardinality numerical outputs and show that they are biased towards generating rounded but informative verbalized probabilities. Then, we experiment with standard prompt engineering, uncertainty estimation and confidence elicitation techniques, and observe that they do not effectively improve operational granularity without sacrificing performance or increasing inference cost. Finally, we propose efficient approaches to significantly increase the number and diversity of available operating points. Our proposed approaches provide finer-grained operating points and achieve comparable to or better performance than the benchmark methods across 11 datasets and 3 LLMs.
comment: 35 pages
☆ AcademicEval: Live Long-Context LLM Benchmark
Large Language Models (LLMs) have recently achieved remarkable performance in long-context understanding. However, current long-context LLM benchmarks are limited by rigid context length, labor-intensive annotation, and the pressing challenge of label leakage issues during LLM training. Therefore, we propose \textsc{AcademicEval}, a live benchmark for evaluating LLMs over long-context generation tasks. \textsc{AcademicEval} adopts papers on arXiv to introduce several academic writing tasks with long-context inputs, \textit{i.e.}, \textsc{Title}, \textsc{Abstract}, \textsc{Introduction}, and \textsc{Related Work}, which cover a wide range of abstraction levels and require no manual labeling. Moreover, \textsc{AcademicEval} integrates high-quality and expert-curated few-shot demonstrations from a collected co-author graph to enable flexible context length. Especially, \textsc{AcademicEval} features an efficient live evaluation, ensuring no label leakage. We conduct a holistic evaluation on \textsc{AcademicEval}, and the results illustrate that LLMs perform poorly on tasks with hierarchical abstraction levels and tend to struggle with long few-shot demonstrations, highlighting the challenge of our benchmark. Through experimental analysis, we also reveal some insights for enhancing LLMs' long-context modeling capabilities. Code is available at https://github.com/ulab-uiuc/AcademicEval
comment: Accepted by TMLR. Code is available at https://github.com/ulab-uiuc/AcademicEval
☆ The Marked Edge Walk: A Novel MCMC Algorithm for Sampling of Graph Partitions
Novel Markov Chain Monte Carlo (MCMC) methods have enabled the generation of large ensembles of redistricting plans through graph partitioning. However, existing algorithms such as Reversible Recombination (RevReCom) and Metropolized Forest Recombination (MFR) are constrained to sampling from distributions related to spanning trees. We introduce the marked edge walk (MEW), a novel MCMC algorithm for sampling from the space of graph partitions under a tunable distribution. The walk operates on the space of spanning trees with marked edges, allowing for calculable transition probabilities for use in the Metropolis-Hastings algorithm. Empirical results on real-world dual graphs show convergence under target distributions unrelated to spanning trees. For this reason, MEW represents an advancement in flexible ensemble generation.
☆ Closing the Sim2Real Performance Gap in RL
Sim2Real aims at training policies in high-fidelity simulation environments and effectively transferring them to the real world. Despite the developments of accurate simulators and Sim2Real RL approaches, the policies trained purely in simulation often suffer significant performance drops when deployed in real environments. This drop is referred to as the Sim2Real performance gap. Current Sim2Real RL methods optimize the simulator accuracy and variability as proxies for real-world performance. However, these metrics do not necessarily correlate with the real-world performance of the policy as established theoretically and empirically in the literature. We propose a novel framework to address this issue by directly adapting the simulator parameters based on real-world performance. We frame this problem as a bi-level RL framework: the inner-level RL trains a policy purely in simulation, and the outer-level RL adapts the simulation model and in-sim reward parameters to maximize real-world performance of the in-sim policy. We derive and validate in simple examples the mathematical tools needed to develop bi-level RL algorithms that close the Sim2Real performance gap.
☆ GAS: Improving Discretization of Diffusion ODEs via Generalized Adversarial Solver
While diffusion models achieve state-of-the-art generation quality, they still suffer from computationally expensive sampling. Recent works address this issue with gradient-based optimization methods that distill a few-step ODE diffusion solver from the full sampling process, reducing the number of function evaluations from dozens to just a few. However, these approaches often rely on intricate training techniques and do not explicitly focus on preserving fine-grained details. In this paper, we introduce the Generalized Solver: a simple parameterization of the ODE sampler that does not require additional training tricks and improves quality over existing approaches. We further combine the original distillation loss with adversarial training, which mitigates artifacts and enhances detail fidelity. We call the resulting method the Generalized Adversarial Solver and demonstrate its superior performance compared to existing solver training methods under similar resource constraints. Code is available at https://github.com/3145tttt/GAS.
☆ A Principle of Targeted Intervention for Multi-Agent Reinforcement Learning NeurIPS 2025
Steering cooperative multi-agent reinforcement learning (MARL) towards desired outcomes is challenging, particularly when the global guidance from a human on the whole multi-agent system is impractical in a large-scale MARL. On the other hand, designing mechanisms to coordinate agents most relies on empirical studies, lacking a easy-to-use research tool. In this work, we employ multi-agent influence diagrams (MAIDs) as a graphical framework to address the above issues. First, we introduce interaction paradigms that leverage MAIDs to analyze and visualize existing approaches in MARL. Then, we design a new interaction paradigm based on MAIDs, referred to as targeted intervention that is applied to only a single targeted agent, so the problem of global guidance can be mitigated. In our implementation, we introduce a causal inference technique-referred to as Pre-Strategy Intervention (PSI)-to realize the targeted intervention paradigm. Since MAIDs can be regarded as a special class of causal diagrams, a composite desired outcome that integrates the primary task goal and an additional desired outcome can be achieved by maximizing the corresponding causal effect through the PSI. Moreover, the bundled relevance graph analysis of MAIDs provides a tool to identify whether an MARL learning paradigm is workable under the design of an interaction paradigm. In experiments, we demonstrate the effectiveness of our proposed targeted intervention, and verify the result of relevance graph analysis.
comment: Accepted to NeurIPS 2025
☆ Efficient Algorithms for Mitigating Uncertainty and Risk in Reinforcement Learning
This dissertation makes three main contributions. First, We identify a new connection between policy gradient and dynamic programming in MMDPs and propose the Coordinate Ascent Dynamic Programming (CADP) algorithm to compute a Markov policy that maximizes the discounted return averaged over the uncertain models. CADP adjusts model weights iteratively to guarantee monotone policy improvements to a local maximum. Second, We establish sufficient and necessary conditions for the exponential ERM Bellman operator to be a contraction and prove the existence of stationary deterministic optimal policies for ERM-TRC and EVaR-TRC. We also propose exponential value iteration, policy iteration, and linear programming algorithms for computing optimal stationary policies for ERM-TRC and EVaR-TRC. Third, We propose model-free Q-learning algorithms for computing policies with risk-averse objectives: ERM-TRC and EVaR-TRC. The challenge is that Q-learning ERM Bellman may not be a contraction. Instead, we use the monotonicity of Q-learning ERM Bellman operators to derive a rigorous proof that the ERM-TRC and the EVaR-TRC Q-learning algorithms converge to the optimal risk-averse value functions. The proposed Q-learning algorithms compute the optimal stationary policy for ERM-TRC and EVaR-TRC.
comment: Dissertation
☆ Quantum Synthetic Data Generation for Industrial Bioprocess Monitoring
Data scarcity and sparsity in bio-manufacturing poses challenges for accurate model development, process monitoring, and optimization. We aim to replicate and capture the complex dynamics of industrial bioprocesses by proposing the use of a Quantum Wasserstein Generative Adversarial Network with Gradient Penalty (QWGAN-GP) to generate synthetic time series data for industrially relevant processes. The generator within our GAN is comprised of a Parameterized Quantum Circuit (PQC). This methodology offers potential advantages in process monitoring, modeling, forecasting, and optimization, enabling more efficient bioprocess management by reducing the dependence on scarce experimental data. Our results demonstrate acceptable performance in capturing the temporal dynamics of real bioprocess data. We focus on Optical Density, a key measurement for Dry Biomass estimation. The data generated showed high fidelity to the actual historical experimental data. This intersection of quantum computing and machine learning has opened new frontiers in data analysis and generation, particularly in computationally intensive fields, for use cases such as increasing prediction accuracy for soft sensor design or for use in predictive control.
☆ LILO: Bayesian Optimization with Interactive Natural Language Feedback
For many real-world applications, feedback is essential in translating complex, nuanced, or subjective goals into quantifiable optimization objectives. We propose a language-in-the-loop framework that uses a large language model (LLM) to convert unstructured feedback in the form of natural language into scalar utilities to conduct BO over a numeric search space. Unlike preferential BO, which only accepts restricted feedback formats and requires customized models for each domain-specific problem, our approach leverages LLMs to turn varied types of textual feedback into consistent utility signals and to easily include flexible user priors without manual kernel design. At the same time, our method maintains the sample efficiency and principled uncertainty quantification of BO. We show that this hybrid method not only provides a more natural interface to the decision maker but also outperforms conventional BO baselines and LLM-only optimizers, particularly in feedback-limited regimes.
☆ On-the-Fly OVD Adaptation with FLAME: Few-shot Localization via Active Marginal-Samples Exploration
Open-vocabulary object detection (OVD) models offer remarkable flexibility by detecting objects from arbitrary text queries. However, their zero-shot performance in specialized domains like Remote Sensing (RS) is often compromised by the inherent ambiguity of natural language, limiting critical downstream applications. For instance, an OVD model may struggle to distinguish between fine-grained classes such as "fishing boat" and "yacht" since their embeddings are similar and often inseparable. This can hamper specific user goals, such as monitoring illegal fishing, by producing irrelevant detections. To address this, we propose a cascaded approach that couples the broad generalization of a large pre-trained OVD model with a lightweight few-shot classifier. Our method first employs the zero-shot model to generate high-recall object proposals. These proposals are then refined for high precision by a compact classifier trained in real-time on only a handful of user-annotated examples - drastically reducing the high costs of RS imagery annotation.The core of our framework is FLAME, a one-step active learning strategy that selects the most informative samples for training. FLAME identifies, on the fly, uncertain marginal candidates near the decision boundary using density estimation, followed by clustering to ensure sample diversity. This efficient sampling technique achieves high accuracy without costly full-model fine-tuning and enables instant adaptation, within less then a minute, which is significantly faster than state-of-the-art alternatives.Our method consistently surpasses state-of-the-art performance on RS benchmarks, establishing a practical and resource-efficient framework for adapting foundation models to specific user needs.
☆ Handling Extreme Class Imbalance: Using GANs in Data Augmentation for Suicide Prediction
Suicide prediction is the key for prevention, but real data with sufficient positive samples is rare and causes extreme class imbalance. We utilized machine learning (ML) to build the model and deep learning (DL) techniques, like Generative Adversarial Networks (GAN), to generate synthetic data samples to enhance the dataset. The initial dataset contained 656 samples, with only four positive cases, prompting the need for data augmentation. A variety of machine learning models, ranging from interpretable data models to black box algorithmic models, were used. On real test data, Logistic Regression (LR) achieved a weighted precision of 0.99, a weighted recall of 0.85, and a weighted F1 score of 0.91; Random Forest (RF) showed 0.98, 0.99, and 0.99, respectively; and Support Vector Machine (SVM) achieved 0.99, 0.76, and 0.86. LR and SVM correctly identified one suicide attempt case (sensitivity:1.0) and misclassified LR(20) and SVM (31) non-attempts as attempts (specificity: 0.85 & 0.76, respectively). RF identified 0 suicide attempt cases (sensitivity: 0.0) with 0 false positives (specificity: 1.0). These results highlight the models' effectiveness, with GAN playing a key role in generating synthetic data to support suicide prevention modeling efforts.
☆ Frugal Federated Learning for Violence Detection: A Comparison of LoRA-Tuned VLMs and Personalized CNNs
We examine frugal federated learning approaches to violence detection by comparing two complementary strategies: (i) zero-shot and federated fine-tuning of vision-language models (VLMs), and (ii) personalized training of a compact 3D convolutional neural network (CNN3D). Using LLaVA-7B and a 65.8M parameter CNN3D as representative cases, we evaluate accuracy, calibration, and energy usage under realistic non-IID settings. Both approaches exceed 90% accuracy. CNN3D slightly outperforms Low-Rank Adaptation(LoRA)-tuned VLMs in ROC AUC and log loss, while using less energy. VLMs remain favorable for contextual reasoning and multimodal inference. We quantify energy and CO$_2$ emissions across training and inference, and analyze sustainability trade-offs for deployment. To our knowledge, this is the first comparative study of LoRA-tuned vision-language models and personalized CNNs for federated violence detection, with an emphasis on energy efficiency and environmental metrics. These findings support a hybrid model: lightweight CNNs for routine classification, with selective VLM activation for complex or descriptive scenarios. The resulting framework offers a reproducible baseline for responsible, resource-aware AI in video surveillance, with extensions toward real-time, multimodal, and lifecycle-aware systems.
comment: 7 pages, 1 figure, FLTA 2025
☆ ZACH-ViT: A Zero-Token Vision Transformer with ShuffleStrides Data Augmentation for Robust Lung Ultrasound Classification
Differentiating cardiogenic pulmonary oedema (CPE) from non-cardiogenic and structurally normal lungs in lung ultrasound (LUS) videos remains challenging due to the high visual variability of non-cardiogenic inflammatory patterns (NCIP/ARDS-like), interstitial lung disease, and healthy lungs. This heterogeneity complicates automated classification as overlapping B-lines and pleural artefacts are common. We introduce ZACH-ViT (Zero-token Adaptive Compact Hierarchical Vision Transformer), a 0.25 M-parameter Vision Transformer variant that removes both positional embeddings and the [CLS] token, making it fully permutation-invariant and suitable for unordered medical image data. To enhance generalization, we propose ShuffleStrides Data Augmentation (SSDA), which permutes probe-view sequences and frame orders while preserving anatomical validity. ZACH-ViT was evaluated on 380 LUS videos from 95 critically ill patients against nine state-of-the-art baselines. Despite the heterogeneity of the non-cardiogenic group, ZACH-ViT achieved the highest validation and test ROC-AUC (0.80 and 0.79) with balanced sensitivity (0.60) and specificity (0.91), while all competing models collapsed to trivial classification. It trains 1.35x faster than Minimal ViT (0.62M parameters) with 2.5x fewer parameters, supporting real-time clinical deployment. These results show that aligning architectural design with data structure can outperform scale in small-data medical imaging.
comment: 14 pages, 6 figures, 2 tables. Primary subject: cs.LG (Machine Learning) Cross-listed to: cs.CV (Computer Vision and Pattern Recognition), eess.IV (Image and Video Processing). Code available at: https://github.com/Bluesman79/ZACH-ViT Installation: pip install zachvit Paper licensed under CC BY-NC-ND 4.0. Code released under Apache 2.0 License
☆ Quantum Federated Learning: Architectural Elements and Future Directions
Federated learning (FL) focuses on collaborative model training without the need to move the private data silos to a central server. Despite its several benefits, the classical FL is plagued with several limitations, such as high computational power required for model training(which is critical for low-resource clients), privacy risks, large update traffic, and non-IID heterogeneity. This chapter surveys a hybrid paradigm - Quantum Federated Learning (QFL), which introduces quantum computation, that addresses multiple challenges of classical FL and offers rapid computing capability while keeping the classical orchestration intact. Firstly, we motivate QFL with a concrete presentation on pain points of classical FL, followed by a discussion on a general architecture of QFL frameworks specifying the roles of client and server, communication primitives and the quantum model placement. We classify the existing QFL systems based on four criteria - quantum architecture (pure QFL, hybrid QFL), data processing method (quantum data encoding, quantum feature mapping, and quantum feature selection & dimensionality reduction), network topology (centralized, hierarchial, decentralized), and quantum security mechanisms (quantum key distribution, quantum homomorphic encryption, quantum differential privacy, blind quantum computing). We then describe applications of QFL in healthcare, vehicular networks, wireless networks, and network security, clearly highlighting where QFL improves communication efficiency, security, and performance compared to classical FL. We close with multiple challenges and future works in QFL, including extension of QFL beyond classification tasks, adversarial attacks, realistic hardware deployment, quantum communication protocols deployment, aggregation of different quantum models, and quantum split learning as an alternative to QFL.
comment: 28 PAGES, 11 figures, introductory review article (book chapter), to be published in a book with springer
☆ RESample: A Robust Data Augmentation Framework via Exploratory Sampling for Robotic Manipulation ICRA2026
Vision-Language-Action models (VLAs) have demonstrated remarkable performance on complex robotic manipulation tasks through imitation learning. However, existing imitation learning datasets contain only successful trajectories and lack failure or recovery data, especially for out-of-distribution (OOD) states where the robot deviates from the main policy due to minor perturbations or errors, leading VLA models to struggle with states deviating from the training distribution. To this end, we propose an automated OOD data augmentation framework named RESample through exploratory sampling. Specifically, we first leverage offline reinforcement learning to obtain an action-value network that accurately identifies sub-optimal actions under the current manipulation policy. We further sample potential OOD states from trajectories via rollout, and design an exploratory sampling mechanism that adaptively incorporates these action proxies into the training dataset to ensure efficiency. Subsequently, our framework explicitly encourages the VLAs to recover from OOD states and enhances their robustness against distributional shifts. We conduct extensive experiments on the LIBERO benchmark as well as real-world robotic manipulation tasks, demonstrating that RESample consistently improves the stability and generalization ability of VLA models.
comment: 9 pages,7 figures, submitted to ICRA2026
☆ LLM-as-a-Prophet: Understanding Predictive Intelligence with Prophet Arena
Forecasting is not only a fundamental intellectual pursuit but also is of significant importance to societal systems such as finance and economics. With the rapid advances of large language models (LLMs) trained on Internet-scale data, it raises the promise of employing LLMs to forecast real-world future events, an emerging paradigm we call "LLM-as-a-Prophet". This paper systematically investigates such predictive intelligence of LLMs. To this end, we build Prophet Arena, a general evaluation benchmark that continuously collects live forecasting tasks and decomposes each task into distinct pipeline stages, in order to support our controlled and large-scale experimentation. Our comprehensive evaluation reveals that many LLMs already exhibit impressive forecasting capabilities, reflected in, e.g., their small calibration errors, consistent prediction confidence and promising market returns. However, we also uncover key bottlenecks towards achieving superior predictive intelligence via LLM-as-a-Prophet, such as LLMs' inaccurate event recalls, misunderstanding of data sources and slower information aggregation compared to markets when resolution nears.
comment: https://www.prophetarena.co/
☆ Just-In-Time Piecewise-Linear Semantics for ReLU-type Networks
We present a JIT PL semantics for ReLU-type networks that compiles models into a guarded CPWL transducer with shared guards. The system adds hyperplanes only when operands are affine on the current cell, maintains global lower/upper envelopes, and uses a budgeted branch-and-bound. We obtain anytime soundness, exactness on fully refined cells, monotone progress, guard-linear complexity (avoiding global $\binom{k}{2}$), dominance pruning, and decidability under finite refinement. The shared carrier supports region extraction, decision complexes, Jacobians, exact/certified Lipschitz, LP/SOCP robustness, and maximal causal influence. A minimal prototype returns certificates or counterexamples with cost proportional to visited subdomains.
☆ Non-asymptotic error bounds for probability flow ODEs under weak log-concavity
Score-based generative modeling, implemented through probability flow ODEs, has shown impressive results in numerous practical settings. However, most convergence guarantees rely on restrictive regularity assumptions on the target distribution -- such as strong log-concavity or bounded support. This work establishes non-asymptotic convergence bounds in the 2-Wasserstein distance for a general class of probability flow ODEs under considerably weaker assumptions: weak log-concavity and Lipschitz continuity of the score function. Our framework accommodates non-log-concave distributions, such as Gaussian mixtures, and explicitly accounts for initialization errors, score approximation errors, and effects of discretization via an exponential integrator scheme. Bridging a key theoretical challenge in diffusion-based generative modeling, our results extend convergence theory to more realistic data distributions and practical ODE solvers. We provide concrete guarantees for the efficiency and correctness of the sampling algorithm, complementing the empirical success of diffusion models with rigorous theory. Moreover, from a practical perspective, our explicit rates might be helpful in choosing hyperparameters, such as the step size in the discretization.
☆ Reasoning Distillation and Structural Alignment for Improved Code Generation
Effective code generation with language models hinges on two critical factors: accurately understanding the intent of the prompt and generating code that applies algorithmic reasoning to produce correct solutions capable of passing diverse test cases while adhering to the syntax of the target programming language. Unlike other language tasks, code generation requires more than accurate token prediction; it demands comprehension of solution-level and structural relationships rather than merely generating the most likely tokens. very large language model (VLLM) are capable of generating detailed steps toward the correct solution of complex tasks where reasoning is crucial in solving the problem. Such reasoning capabilities may be absent in smaller language models. Therefore, in this work, we distill the reasoning capabilities of a VLLM into a smaller, more efficient model that is faster and cheaper to deploy. Our approach trains the model to emulate the reasoning and problem-solving abilities of the VLLM by learning to identify correct solution pathways and establishing a structural correspondence between problem definitions and potential solutions through a novel method of structure-aware loss optimization. This enables the model to transcend token-level generation and to deeply grasp the overarching structure of solutions for given problems. Experimental results show that our fine-tuned model, developed through a cheap and simple to implement process, significantly outperforms our baseline model in terms of pass@1, average data flow, and average syntax match metrics across the MBPP, MBPP Plus, and HumanEval benchmarks.
☆ HGAdapter: Hypergraph-based Adapters in Language Models for Code Summarization and Clone Detection EMNLP 2025
Pre-trained language models (PLMs) are increasingly being applied to code-related tasks. Although PLMs have achieved good results, they do not take into account potential high-order data correlations within the code. We propose three types of high-order correlations in code tokens, i.e. abstract syntax tree family correlation, lexical correlation, and line correlation. We design a tokens and hyperedges generator to capture these high-order data correlations. We improve the architecture of hypergraph neural networks and combine it with adapter tuning to propose a novel hypergraph-based adapter (HGAdapter) to fine-tune PLMs. HGAdapter can encode high-order data correlations and is allowed to be inserted into various PLMs to enhance performance. Experiments were conducted on several public datasets, including six languages of code summarization and code clone detection tasks. Our methods improved the performance of PLMs in datasets to varying degrees. Experimental results validate the introduction of high-order data correlations that contribute to improved effectiveness.
comment: Accepted by the 2025 Conference on Empirical Methods in Natural Language Processing (EMNLP 2025) as a findings long paper
☆ MIRAGE: Agentic Framework for Multimodal Misinformation Detection with Web-Grounded Reasoning
Misinformation spreads across web platforms through billions of daily multimodal posts that combine text and images, overwhelming manual fact-checking capacity. Supervised detection models require domain-specific training data and fail to generalize across diverse manipulation tactics. We present MIRAGE, an inference-time, model-pluggable agentic framework that decomposes multimodal verification into four sequential modules: visual veracity assessment detects AI-generated images, cross-modal consistency analysis identifies out-of-context repurposing, retrieval-augmented factual checking grounds claims in web evidence through iterative question generation, and a calibrated judgment module integrates all signals. MIRAGE orchestrates vision-language model reasoning with targeted web retrieval, outputs structured and citation-linked rationales. On MMFakeBench validation set (1,000 samples), MIRAGE with GPT-4o-mini achieves 81.65% F1 and 75.1% accuracy, outperforming the strongest zero-shot baseline (GPT-4V with MMD-Agent at 74.0% F1) by 7.65 points while maintaining 34.3% false positive rate versus 97.3% for a judge-only baseline. Test set results (5,000 samples) confirm generalization with 81.44% F1 and 75.08% accuracy. Ablation studies show visual verification contributes 5.18 F1 points and retrieval-augmented reasoning contributes 2.97 points. Our results demonstrate that decomposed agentic reasoning with web retrieval can match supervised detector performance without domain-specific training, enabling misinformation detection across modalities where labeled data remains scarce.
comment: 16 pages, 3 tables, 1 figure
☆ CEPerFed: Communication-Efficient Personalized Federated Learning for Multi-Pulse MRI Classification
Multi-pulse magnetic resonance imaging (MRI) is widely utilized for clinical practice such as Alzheimer's disease diagnosis. To train a robust model for multi-pulse MRI classification, it requires large and diverse data from various medical institutions while protecting privacy by preventing raw data sharing across institutions. Although federated learning (FL) is a feasible solution to address this issue, it poses challenges of model convergence due to the effect of data heterogeneity and substantial communication overhead due to large numbers of parameters transmitted within the model. To address these challenges, we propose CEPerFed, a communication-efficient personalized FL method. It mitigates the effect of data heterogeneity by incorporating client-side historical risk gradients and historical mean gradients to coordinate local and global optimization. The former is used to weight the contributions from other clients, enhancing the reliability of local updates, while the latter enforces consistency between local updates and the global optimization direction to ensure stable convergence across heterogeneous data distributions. To address the high communication overhead, we propose a hierarchical SVD (HSVD) strategy that transmits only the most critical information required for model updates. Experiments on five classification tasks demonstrate the effectiveness of the CEPerFed method. The code will be released upon acceptance at https://github.com/LD0416/CEPerFed.
☆ Semi-supervised Latent Bayesian Optimization for Designing Antimicrobial Peptides
Antimicrobial peptides (AMPs) are a promising class of therapeutics to treat bacterial infections. Discovering and designing such peptides is difficult because of the vast number of possible sequences of amino acids. Deep generative models, such as variational autoencoders, have shown value in peptide design due to their ability to model sequence space with a continuous-valued latent space. Although such models have already been used to great effect in biomolecular design, they still suffer from a lack of interpretability and rigorous quantification of latent space quality as a search space. We investigate (1) whether further compression of the design space via dimensionality reduction may facilitate optimization, (2) the interpretability of the spaces, and (3) how organizing latent spaces with physicochemical properties may improve the efficiency of optimizing antimicrobial activity. We find that further reduction of the latent space via dimensionality reduction can be advantageous when organizing the space with more relevant information at data availability, that using the dimensionality reduction search space can be more interpretable, and that we can organize the latent space with different physicochemical properties even at different percentages of available labels.
comment: 19 pages, 9 figures
☆ An Empirical Study of Lagrangian Methods in Safe Reinforcement Learning
In safety-critical domains such as robotics, navigation and power systems, constrained optimization problems arise where maximizing performance must be carefully balanced with associated constraints. Safe reinforcement learning provides a framework to address these challenges, with Lagrangian methods being a popular choice. However, the effectiveness of Lagrangian methods crucially depends on the choice of the Lagrange multiplier $\lambda$, which governs the trade-off between return and constraint cost. A common approach is to update the multiplier automatically during training. Although this is standard in practice, there remains limited empirical evidence on the robustness of an automated update and its influence on overall performance. Therefore, we analyze (i) optimality and (ii) stability of Lagrange multipliers in safe reinforcement learning across a range of tasks. We provide $\lambda$-profiles that give a complete visualization of the trade-off between return and constraint cost of the optimization problem. These profiles show the highly sensitive nature of $\lambda$ and moreover confirm the lack of general intuition for choosing the optimal value $\lambda^*$. Our findings additionally show that automated multiplier updates are able to recover and sometimes even exceed the optimal performance found at $\lambda^*$ due to the vast difference in their learning trajectories. Furthermore, we show that automated multiplier updates exhibit oscillatory behavior during training, which can be mitigated through PID-controlled updates. However, this method requires careful tuning to achieve consistently better performance across tasks. This highlights the need for further research on stabilizing Lagrangian methods in safe reinforcement learning. The code used to reproduce our results can be found at https://github.com/lindsayspoor/Lagrangian_SafeRL.
☆ Formally Exploring Time-Series Anomaly Detection Evaluation Metrics
Undetected anomalies in time series can trigger catastrophic failures in safety-critical systems, such as chemical plant explosions or power grid outages. Although many detection methods have been proposed, their performance remains unclear because current metrics capture only narrow aspects of the task and often yield misleading results. We address this issue by introducing verifiable properties that formalize essential requirements for evaluating time-series anomaly detection. These properties enable a theoretical framework that supports principled evaluations and reliable comparisons. Analyzing 37 widely used metrics, we show that most satisfy only a few properties, and none satisfy all, explaining persistent inconsistencies in prior results. To close this gap, we propose LARM, a flexible metric that provably satisfies all properties, and extend it to ALARM, an advanced variant meeting stricter requirements.
comment: 73 pages, 13 figures
☆ The Free Transformer
We propose an extension of the decoder Transformer that conditions its generative process on random latent variables which are learned without supervision thanks to a variational procedure. Experimental evaluations show that allowing such a conditioning translates into substantial improvements on downstream tasks.
☆ TrajMamba: An Efficient and Semantic-rich Vehicle Trajectory Pre-training Model NeurIPS2025
Vehicle GPS trajectories record how vehicles move over time, storing valuable travel semantics, including movement patterns and travel purposes. Learning travel semantics effectively and efficiently is crucial for real-world applications of trajectory data, which is hindered by two major challenges. First, travel purposes are tied to the functions of the roads and points-of-interest (POIs) involved in a trip. Such information is encoded in textual addresses and descriptions and introduces heavy computational burden to modeling. Second, real-world trajectories often contain redundant points, which harm both computational efficiency and trajectory embedding quality. To address these challenges, we propose TrajMamba, a novel approach for efficient and semantically rich vehicle trajectory learning. TrajMamba introduces a Traj-Mamba Encoder that captures movement patterns by jointly modeling both GPS and road perspectives of trajectories, enabling robust representations of continuous travel behaviors. It also incorporates a Travel Purpose-aware Pre-training procedure to integrate travel purposes into the learned embeddings without introducing extra overhead to embedding calculation. To reduce redundancy in trajectories, TrajMamba features a Knowledge Distillation Pre-training scheme to identify key trajectory points through a learnable mask generator and obtain effective compressed trajectory embeddings. Extensive experiments on two real-world datasets and three downstream tasks show that TrajMamba outperforms state-of-the-art baselines in both efficiency and accuracy.
comment: Accepted by NeurIPS2025
☆ Reliable Inference in Edge-Cloud Model Cascades via Conformal Alignment
Edge intelligence enables low-latency inference via compact on-device models, but assuring reliability remains challenging. We study edge-cloud cascades that must preserve conditional coverage: whenever the edge returns a prediction set, it should contain the true label with a user-specified probability, as if produced by the cloud model. We formalize conditional coverage with respect to the cloud predictive distribution, and introduce a conformal alignment-based (CAb) cascading mechanism that certifies this property with user control over the risk level. Our method casts escalation from edge to cloud models as a multiple-hypothesis testing (MHT) problem, tailoring conformal alignment (CA) to select which inputs can be safely handled at the edge. The proposed CAb model cascading method yields statistical guarantees on the average fraction of edge decisions that satisfy cloud-level conditional coverage. The procedure applies to arbitrary edge prediction sets, including variants of conformal prediction (CP), and exposes a tunable trade-off among coverage, deferral rate, and set size. Experiments on CIFAR-100 image classification and the TeleQnA question-answering (QA) benchmark show that the proposed CAb cascade maintains the target conditional coverage for edge predictions while substantially reducing offloading to the cloud and incurring modest increases in prediction-set size.
comment: Under Review
☆ OncoReason: Structuring Clinical Reasoning in LLMs for Robust and Interpretable Survival Prediction
Predicting cancer treatment outcomes requires models that are both accurate and interpretable, particularly in the presence of heterogeneous clinical data. While large language models (LLMs) have shown strong performance in biomedical NLP, they often lack structured reasoning capabilities critical for high-stakes decision support. We present a unified, multi-task learning framework that aligns autoregressive LLMs with clinical reasoning for outcome prediction on the MSK-CHORD dataset. Our models are trained to jointly perform binary survival classification, continuous survival time regression, and natural language rationale generation. We evaluate three alignment strategies: (1) standard supervised fine-tuning (SFT), (2) SFT with Chain-of-Thought (CoT) prompting to elicit step-by-step reasoning, and (3) Group Relative Policy Optimization (GRPO), a reinforcement learning method that aligns model outputs to expert-derived reasoning trajectories. Experiments with LLaMa3-8B and Med42-8B backbones demonstrate that CoT prompting improves F1 by +6.0 and reduces MAE by 12%, while GRPO achieves state-of-the-art interpretability and predictive performance across BLEU, ROUGE, and BERTScore. We further show that existing biomedical LLMs often fail to produce valid reasoning traces due to architectural constraints. Our findings underscore the importance of reasoning-aware alignment in multi-task clinical modeling and set a new benchmark for interpretable, trustworthy LLMs in precision oncology.
☆ Plasma Shape Control via Zero-shot Generative Reinforcement Learning
Traditional PID controllers have limited adaptability for plasma shape control, and task-specific reinforcement learning (RL) methods suffer from limited generalization and the need for repetitive retraining. To overcome these challenges, this paper proposes a novel framework for developing a versatile, zero-shot control policy from a large-scale offline dataset of historical PID-controlled discharges. Our approach synergistically combines Generative Adversarial Imitation Learning (GAIL) with Hilbert space representation learning to achieve dual objectives: mimicking the stable operational style of the PID data and constructing a geometrically structured latent space for efficient, goal-directed control. The resulting foundation policy can be deployed for diverse trajectory tracking tasks in a zero-shot manner without any task-specific fine-tuning. Evaluations on the HL-3 tokamak simulator demonstrate that the policy excels at precisely and stably tracking reference trajectories for key shape parameters across a range of plasma scenarios. This work presents a viable pathway toward developing highly flexible and data-efficient intelligent control systems for future fusion reactors.
MambaX-Net: Dual-Input Mamba-Enhanced Cross-Attention Network for Longitudinal MRI Segmentation
Active Surveillance (AS) is a treatment option for managing low and intermediate-risk prostate cancer (PCa), aiming to avoid overtreatment while monitoring disease progression through serial MRI and clinical follow-up. Accurate prostate segmentation is an important preliminary step for automating this process, enabling automated detection and diagnosis of PCa. However, existing deep-learning segmentation models are often trained on single-time-point and expertly annotated datasets, making them unsuitable for longitudinal AS analysis, where multiple time points and a scarcity of expert labels hinder their effective fine-tuning. To address these challenges, we propose MambaX-Net, a novel semi-supervised, dual-scan 3D segmentation architecture that computes the segmentation for time point t by leveraging the MRI and the corresponding segmentation mask from the previous time point. We introduce two new components: (i) a Mamba-enhanced Cross-Attention Module, which integrates the Mamba block into cross attention to efficiently capture temporal evolution and long-range spatial dependencies, and (ii) a Shape Extractor Module that encodes the previous segmentation mask into a latent anatomical representation for refined zone delination. Moreover, we introduce a semi-supervised self-training strategy that leverages pseudo-labels generated from a pre-trained nnU-Net, enabling effective learning without expert annotations. MambaX-Net was evaluated on a longitudinal AS dataset, and results showed that it significantly outperforms state-of-the-art U-Net and Transformer-based models, achieving superior prostate zone segmentation even when trained on limited and noisy data.
☆ How Does Label Noise Gradient Descent Improve Generalization in the Low SNR Regime?
The capacity of deep learning models is often large enough to both learn the underlying statistical signal and overfit to noise in the training set. This noise memorization can be harmful especially for data with a low signal-to-noise ratio (SNR), leading to poor generalization. Inspired by prior observations that label noise provides implicit regularization that improves generalization, in this work, we investigate whether introducing label noise to the gradient updates can enhance the test performance of neural network (NN) in the low SNR regime. Specifically, we consider training a two-layer NN with a simple label noise gradient descent (GD) algorithm, in an idealized signal-noise data setting. We prove that adding label noise during training suppresses noise memorization, preventing it from dominating the learning process; consequently, label noise GD enjoys rapid signal growth while the overfitting remains controlled, thereby achieving good generalization despite the low SNR. In contrast, we also show that NN trained with standard GD tends to overfit to noise in the same low SNR setting and establish a non-vanishing lower bound on its test error, thus demonstrating the benefit of introducing label noise in gradient-based training.
comment: 40 pages
☆ Mitigating Clever Hans Strategies in Image Classifiers through Generating Counterexamples
Deep learning models remain vulnerable to spurious correlations, leading to so-called Clever Hans predictors that undermine robustness even in large-scale foundation and self-supervised models. Group distributional robustness methods, such as Deep Feature Reweighting (DFR) rely on explicit group labels to upweight underrepresented subgroups, but face key limitations: (1) group labels are often unavailable, (2) low within-group sample sizes hinder coverage of the subgroup distribution, and (3) performance degrades sharply when multiple spurious correlations fragment the data into even smaller groups. We propose Counterfactual Knowledge Distillation (CFKD), a framework that sidesteps these issues by generating diverse counterfactuals, enabling a human annotator to efficiently explore and correct the model's decision boundaries through a knowledge distillation step. Unlike DFR, our method not only reweights the undersampled groups, but it also enriches them with new data points. Our method does not require any confounder labels, achieves effective scaling to multiple confounders, and yields balanced generalization across groups. We demonstrate CFKD's efficacy across five datasets, spanning synthetic tasks to an industrial application, with particularly strong gains in low-data regimes with pronounced spurious correlations. Additionally, we provide an ablation study on the effect of the chosen counterfactual explainer and teacher model, highlighting their impact on robustness.
☆ Curiosity Meets Cooperation: A Game-Theoretic Approach to Long-Tail Multi-Label Learning
Long-tail imbalance is endemic to multi-label learning: a few head labels dominate the gradient signal, while the many rare labels that matter in practice are silently ignored. We tackle this problem by casting the task as a cooperative potential game. In our Curiosity-Driven Game-Theoretic Multi-Label Learning (CD-GTMLL) framework, the label space is split among several cooperating players that share a global accuracy payoff yet earn additional curiosity rewards that rise with label rarity and inter-player disagreement. These curiosity bonuses inject gradient on under-represented tags without hand-tuned class weights. We prove that gradient best-response updates ascend a differentiable potential and converge to tail-aware stationary points that tighten a lower bound on the expected Rare-F1. Extensive experiments on conventional benchmarks and three extreme-scale datasets show consistent state-of-the-art gains, delivering up to +4.3% Rare-F1 and +1.6% P@3 over the strongest baselines, while ablations reveal emergent division of labour and faster consensus on rare classes. CD-GTMLL thus offers a principled, scalable route to long-tail robustness in multi-label prediction.
comment: Under review
☆ SAFE-D: A Spatiotemporal Detection Framework for Abnormal Driving Among Parkinson's Disease-like Drivers
A driver's health state serves as a determinant factor in driving behavioral regulation. Subtle deviations from normalcy can lead to operational anomalies, posing risks to public transportation safety. While prior efforts have developed detection mechanisms for functionally-driven temporary anomalies such as drowsiness and distraction, limited research has addressed pathologically-triggered deviations, especially those stemming from chronic medical conditions. To bridge this gap, we investigate the driving behavior of Parkinson's disease patients and propose SAFE-D, a novel framework for detecting Parkinson-related behavioral anomalies to enhance driving safety. Our methodology starts by performing analysis of Parkinson's disease symptomatology, focusing on primary motor impairments, and establishes causal links to degraded driving performance. To represent the subclinical behavioral variations of early-stage Parkinson's disease, our framework integrates data from multiple vehicle control components to build a behavioral profile. We then design an attention-based network that adaptively prioritizes spatiotemporal features, enabling robust anomaly detection under physiological variability. Finally, we validate SAFE-D on the Logitech G29 platform and CARLA simulator, using data from three road maps to emulate real-world driving. Our results show SAFE-D achieves 96.8% average accuracy in distinguishing normal and Parkinson-affected driving patterns.
☆ SimBench: Benchmarking the Ability of Large Language Models to Simulate Human Behaviors
Large language model (LLM) simulations of human behavior have the potential to revolutionize the social and behavioral sciences, if and only if they faithfully reflect real human behaviors. Current evaluations are fragmented, based on bespoke tasks and metrics, creating a patchwork of incomparable results. To address this, we introduce SimBench, the first large-scale, standardized benchmark for a robust, reproducible science of LLM simulation. By unifying 20 diverse datasets covering tasks from moral decision-making to economic choice across a large global participant pool, SimBench provides the necessary foundation to ask fundamental questions about when, how, and why LLM simulations succeed or fail. We show that, while even the best LLMs today have limited simulation ability (score: 40.80/100), performance scales log-linearly with model size. Simulation performance is not improved by increased inference-time compute. We demonstrate an alignment-simulation trade-off: instruction-tuning improves performance on low-entropy (consensus) questions but degrades it on high-entropy (diverse) ones. Models particularly struggle when simulating specific demographic groups. Finally, we demonstrate that simulation ability correlates most strongly with deep, knowledge-intensive reasoning (MMLU-Pro, r=0.939). By making progress measurable, we aim to accelerate the development of more faithful LLM simulators.
comment: Project Website: http://simbench.tiancheng.hu/ Data: https://huggingface.co/datasets/pitehu/SimBench
☆ The Graphon Limit Hypothesis: Understanding Neural Network Pruning via Infinite Width Analysis NeurIPS 2025
Sparse neural networks promise efficiency, yet training them effectively remains a fundamental challenge. Despite advances in pruning methods that create sparse architectures, understanding why some sparse structures are better trainable than others with the same level of sparsity remains poorly understood. Aiming to develop a systematic approach to this fundamental problem, we propose a novel theoretical framework based on the theory of graph limits, particularly graphons, that characterizes sparse neural networks in the infinite-width regime. Our key insight is that connectivity patterns of sparse neural networks induced by pruning methods converge to specific graphons as networks' width tends to infinity, which encodes implicit structural biases of different pruning methods. We postulate the Graphon Limit Hypothesis and provide empirical evidence to support it. Leveraging this graphon representation, we derive a Graphon Neural Tangent Kernel (Graphon NTK) to study the training dynamics of sparse networks in the infinite width limit. Graphon NTK provides a general framework for the theoretical analysis of sparse networks. We empirically show that the spectral analysis of Graphon NTK correlates with observed training dynamics of sparse networks, explaining the varying convergence behaviours of different pruning methods. Our framework provides theoretical insights into the impact of connectivity patterns on the trainability of various sparse network architectures.
comment: NeurIPS 2025 Spotlight
☆ AWARE: Audio Watermarking with Adversarial Resistance to Edits
Prevailing practice in learning-based audio watermarking is to pursue robustness by expanding the set of simulated distortions during training. However, such surrogates are narrow and prone to overfitting. This paper presents AWARE (Audio Watermarking with Adversarial Resistance to Edits), an alternative approach that avoids reliance on attack-simulation stacks and handcrafted differentiable distortions. Embedding is obtained via adversarial optimization in the time-frequency domain under a level-proportional perceptual budget. Detection employs a time-order-agnostic detector with a Bitwise Readout Head (BRH) that aggregates temporal evidence into one score per watermark bit, enabling reliable watermark decoding even under desynchronization and temporal cuts. Empirically, AWARE attains high audio quality and speech intelligibility (PESQ/STOI) and consistently low BER across various audio edits, often surpassing representative state-of-the-art learning-based audio watermarking systems.
☆ Convergence Rates for Gradient Descent on the Edge of Stability in Overparametrised Least Squares NeurIPS2025
Classical optimisation theory guarantees monotonic objective decrease for gradient descent (GD) when employed in a small step size, or ``stable", regime. In contrast, gradient descent on neural networks is frequently performed in a large step size regime called the ``edge of stability", in which the objective decreases non-monotonically with an observed implicit bias towards flat minima. In this paper, we take a step toward quantifying this phenomenon by providing convergence rates for gradient descent with large learning rates in an overparametrised least squares setting. The key insight behind our analysis is that, as a consequence of overparametrisation, the set of global minimisers forms a Riemannian manifold $M$, which enables the decomposition of the GD dynamics into components parallel and orthogonal to $M$. The parallel component corresponds to Riemannian gradient descent on the objective sharpness, while the orthogonal component is a bifurcating dynamical system. This insight allows us to derive convergence rates in three regimes characterised by the learning rate size: (a) the subcritical regime, in which transient instability is overcome in finite time before linear convergence to a suboptimally flat global minimum; (b) the critical regime, in which instability persists for all time with a power-law convergence toward the optimally flat global minimum; and (c) the supercritical regime, in which instability persists for all time with linear convergence to an orbit of period two centred on the optimally flat global minimum.
comment: NeurIPS2025. Code available at https://github.com/lemacdonald/eos-convergence-rates-codimension-1
☆ Stochastic Difference-of-Convex Optimization with Momentum
Stochastic difference-of-convex (DC) optimization is prevalent in numerous machine learning applications, yet its convergence properties under small batch sizes remain poorly understood. Existing methods typically require large batches or strong noise assumptions, which limit their practical use. In this work, we show that momentum enables convergence under standard smoothness and bounded variance assumptions (of the concave part) for any batch size. We prove that without momentum, convergence may fail regardless of stepsize, highlighting its necessity. Our momentum-based algorithm achieves provable convergence and demonstrates strong empirical performance.
☆ I-RAVEN-X: Benchmarking Generalization and Robustness of Analogical and Mathematical Reasoning in Large Language and Reasoning Models NeurIPS 2025
We introduce I-RAVEN-X, a symbolic benchmark designed to evaluate generalization and robustness in analogical and mathematical reasoning for Large Language Models (LLMs) and Large Reasoning Models (LRMs). I-RAVEN-X extends I-RAVEN by increasing operand complexity, attribute range, and introducing perceptual uncertainty. Compared to LLMs, empirical results show that LRMs achieve improved productivity and systematicity on longer reasoning relations and wider attribute ranges, respectively. However, LRMs are still significantly challenged by reasoning under uncertainty and cannot effectively explore multiple probabilistic outcomes.
comment: Accepted at the 5th Workshop on Mathematical Reasoning and AI (MATH-AI), NeurIPS 2025
☆ DETree: DEtecting Human-AI Collaborative Texts via Tree-Structured Hierarchical Representation Learning NeurIPS 2025
Detecting AI-involved text is essential for combating misinformation, plagiarism, and academic misconduct. However, AI text generation includes diverse collaborative processes (AI-written text edited by humans, human-written text edited by AI, and AI-generated text refined by other AI), where various or even new LLMs could be involved. Texts generated through these varied processes exhibit complex characteristics, presenting significant challenges for detection. Current methods model these processes rather crudely, primarily employing binary classification (purely human vs. AI-involved) or multi-classification (treating human-AI collaboration as a new class). We observe that representations of texts generated through different processes exhibit inherent clustering relationships. Therefore, we propose DETree, a novel approach that models the relationships among different processes as a Hierarchical Affinity Tree structure, and introduces a specialized loss function that aligns text representations with this tree. To facilitate this learning, we developed RealBench, a comprehensive benchmark dataset that automatically incorporates a wide spectrum of hybrid texts produced through various human-AI collaboration processes. Our method improves performance in hybrid text detection tasks and significantly enhances robustness and generalization in out-of-distribution scenarios, particularly in few-shot learning conditions, further demonstrating the promise of training-based approaches in OOD settings. Our code and dataset are available at https://github.com/heyongxin233/DETree.
comment: To appear in NeurIPS 2025
☆ Local properties of neural networks through the lens of layer-wise Hessians
We introduce a methodology for analyzing neural networks through the lens of layer-wise Hessian matrices. The local Hessian of each functional block (layer) is defined as the matrix of second derivatives of a scalar function with respect to the parameters of that layer. This concept provides a formal tool for characterizing the local geometry of the parameter space. We show that the spectral properties of local Hessians, such as the distribution of eigenvalues, reveal quantitative patterns associated with overfitting, underparameterization, and expressivity in neural network architectures. We conduct an extensive empirical study involving 111 experiments across 37 datasets. The results demonstrate consistent structural regularities in the evolution of local Hessians during training and highlight correlations between their spectra and generalization performance. These findings establish a foundation for using local geometric analysis to guide the diagnosis and design of deep neural networks. The proposed framework connects optimization geometry with functional behavior and offers practical insight for improving network architectures and training stability.
comment: Comments: 22 pages, 8 figures. Submitted to arXiv:cs.LG
☆ Unified Privacy Guarantees for Decentralized Learning via Matrix Factorization
Decentralized Learning (DL) enables users to collaboratively train models without sharing raw data by iteratively averaging local updates with neighbors in a network graph. This setting is increasingly popular for its scalability and its ability to keep data local under user control. Strong privacy guarantees in DL are typically achieved through Differential Privacy (DP), with results showing that DL can even amplify privacy by disseminating noise across peer-to-peer communications. Yet in practice, the observed privacy-utility trade-off often appears worse than in centralized training, which may be due to limitations in current DP accounting methods for DL. In this paper, we show that recent advances in centralized DP accounting based on Matrix Factorization (MF) for analyzing temporal noise correlations can also be leveraged in DL. By generalizing existing MF results, we show how to cast both standard DL algorithms and common trust models into a unified formulation. This yields tighter privacy accounting for existing DP-DL algorithms and provides a principled way to develop new ones. To demonstrate the approach, we introduce MAFALDA-SGD, a gossip-based DL algorithm with user-level correlated noise that outperforms existing methods on synthetic and real-world graphs.
comment: 21 pages, 5 figures
☆ Towards geological inference with process-based and deep generative modeling, part 2: inversion of fluvial deposits and latent-space disentanglement
High costs and uncertainties make subsurface decision-making challenging, as acquiring new data is rarely scalable. Embedding geological knowledge directly into predictive models offers a valuable alternative. A joint approach enables just that: process-based models that mimic geological processes can help train generative models that make predictions more efficiently. This study explores whether a generative adversarial network (GAN) - a type of deep-learning algorithm for generative modeling - trained to produce fluvial deposits can be inverted to match well and seismic data. Four inversion approaches applied to three test samples with 4, 8, and 20 wells struggled to match these well data, especially as the well number increased or as the test sample diverged from the training data. The key bottleneck lies in the GAN's latent representation: it is entangled, so samples with similar sedimentological features are not necessarily close in the latent space. Label conditioning or latent overparameterization can partially disentangle the latent space during training, although not yet sufficiently for a successful inversion. Fine-tuning the GAN to restructure the latent space locally reduces mismatches to acceptable levels for all test cases, with and without seismic data. But this approach depends on an initial, partially successful inversion step, which influences the quality and diversity of the final samples. Overall, GANs can already handle the tasks required for their integration into geomodeling workflows. We still need to further assess their robustness, and how to best leverage them in support of geological interpretation.
comment: 52 pages, 42 figures
☆ DAMSDAN: Distribution-Aware Multi-Source Domain Adaptation Network for Cross-Domain EEG-based Emotion Recognition
Significant inter-individual variability limits the generalization of EEG-based emotion recognition under cross-domain settings. We address two core challenges in multi-source adaptation: (1) dynamically modeling distributional heterogeneity across sources and quantifying their relevance to a target to reduce negative transfer; and (2) achieving fine-grained semantic consistency to strengthen class discrimination. We propose a distribution-aware multi-source domain adaptation network (DAMSDAN). DAMSDAN integrates prototype-based constraints with adversarial learning to drive the encoder toward discriminative, domain-invariant emotion representations. A domain-aware source weighting strategy based on maximum mean discrepancy (MMD) dynamically estimates inter-domain shifts and reweights source contributions. In addition, a prototype-guided conditional alignment module with dual pseudo-label interaction enhances pseudo-label reliability and enables category-level, fine-grained alignment, mitigating noise propagation and semantic drift. Experiments on SEED and SEED-IV show average accuracies of 94.86\% and 79.78\% for cross-subject, and 95.12\% and 83.15\% for cross-session protocols. On the large-scale FACED dataset, DAMSDAN achieves 82.88\% (cross-subject). Extensive ablations and interpretability analyses corroborate the effectiveness of the proposed framework for cross-domain EEG-based emotion recognition.
comment: 14 pages, 9 figures
☆ Certified Self-Consistency: Statistical Guarantees and Test-Time Training for Reliable Reasoning in LLMs
Recent advances such as self-consistency and test-time reinforcement learning (TTRL) improve the reliability of large language models (LLMs) without additional supervision, yet their underlying mechanisms and statistical guarantees remain poorly understood. We present a unified framework for certifiable inference in LLMs, showing that majority voting provides a statistical certificate of self-consistency: under mild assumptions, the aggregated answer coincides with the mode of the model's terminal distribution with high probability. We derive finite-sample and anytime-valid concentration bounds that quantify this confidence, and introduce the Martingale Majority Certificate (MMC), a sequential stopping rule that adaptively determines when sufficient samples have been drawn. We further prove that label-free post-training methods such as TTRL implicitly sharpen the answer distribution by exponentially tilting it toward its mode, thereby reducing the number of samples required for certification. Building on this insight, we propose new post-training objectives that explicitly optimise this trade-off between sharpness and bias. Together, these results explain and connect two central test-time scaling strategies, self-consistency and TTRL, within a single statistical framework for label-free, certifiable reliability in reasoning LLMs.
☆ Layer Specialization Underlying Compositional Reasoning in Transformers
Transformers exhibit compositional reasoning on sequences not observed during training, a capability often attributed to in-context learning (ICL) and skill composition. We investigate this phenomenon using the Random Hierarchy Model (RHM), a probabilistic context-free grammar that generates sequences through recursive rule application. Models are trained on subsets of sequences and evaluated across four generalization conditions: memorization, in-distribution generalization, out-of-distribution generalization with the same rules, and cross-layer transfer. Behaviorally, performance improves systematically with task complexity and the number of in-context examples, with out-of-distribution tasks requiring substantially more examples than in-distribution scenarios. Mechanistically, we identify a progressive emergence of layer specialization during training that correlates with generalization performance. Principal component analysis and attention pattern clustering reveal that transformers develop structured, hierarchically organized representations in specialized layers. These results demonstrate that transformers develop modular, interpretable mechanisms supporting compositional reasoning, linking internal algorithmic structure to observed behavioral capabilities.
☆ CrossStateECG: Multi-Scale Deep Convolutional Network with Attention for Rest-Exercise ECG Biometrics
Current research in Electrocardiogram (ECG) biometrics mainly emphasizes resting-state conditions, leaving the performance decline in rest-exercise scenarios largely unresolved. This paper introduces CrossStateECG, a robust ECG-based authentication model explicitly tailored for cross-state (rest-exercise) conditions. The proposed model creatively combines multi-scale deep convolutional feature extraction with attention mechanisms to ensure strong identification across different physiological states. Experimental results on the exercise-ECGID dataset validate the effectiveness of CrossStateECG, achieving an identification accuracy of 92.50% in the Rest-to-Exercise scenario (training on resting ECG and testing on post-exercise ECG) and 94.72% in the Exercise-to-Rest scenario (training on post-exercise ECG and testing on resting ECG). Furthermore, CrossStateECG demonstrates exceptional performance across both state combinations, reaching an accuracy of 99.94% in Rest-to-Rest scenarios and 97.85% in Mixed-to-Mixed scenarios. Additional validations on the ECG-ID and MIT-BIH datasets further confirmed the generalization abilities of CrossStateECG, underscoring its potential as a practical solution for post-exercise ECG-based authentication in dynamic real-world settings.
☆ Estimating Orbital Parameters of Direct Imaging Exoplanet Using Neural Network
In this work, we propose a new flow-matching Markov chain Monte Carlo (FM-MCMC) algorithm for estimating the orbital parameters of exoplanetary systems, especially for those only one exoplanet is involved. Compared to traditional methods that rely on random sampling within the Bayesian framework, our approach first leverages flow matching posterior estimation (FMPE) to efficiently constrain the prior range of physical parameters, and then employs MCMC to accurately infer the posterior distribution. For example, in the orbital parameter inference of beta Pictoris b, our model achieved a substantial speed-up while maintaining comparable accuracy-running 77.8 times faster than Parallel Tempered MCMC (PTMCMC) and 365.4 times faster than nested sampling. Moreover, our FM-MCMC method also attained the highest average log-likelihood among all approaches, demonstrating its superior sampling efficiency and accuracy. This highlights the scalability and efficiency of our approach, making it well-suited for processing the massive datasets expected from future exoplanet surveys. Beyond astrophysics, our methodology establishes a versatile paradigm for synergizing deep generative models with traditional sampling, which can be adopted to tackle complex inference problems in other fields, such as cosmology, biomedical imaging, and particle physics.
☆ Explainable AI for microseismic event detection
Deep neural networks like PhaseNet show high accuracy in detecting microseismic events, but their black-box nature is a concern in critical applications. We apply explainable AI (XAI) techniques, such as Gradient-weighted Class Activation Mapping (Grad-CAM) and Shapley Additive Explanations (SHAP), to interpret the PhaseNet model's decisions and improve its reliability. Grad-CAM highlights that the network's attention aligns with P- and S-wave arrivals. SHAP values quantify feature contributions, confirming that vertical-component amplitudes drive P-phase picks while horizontal components dominate S-phase picks, consistent with geophysical principles. Leveraging these insights, we introduce a SHAP-gated inference scheme that combines the model's output with an explanation-based metric to reduce errors. On a test set of 9,000 waveforms, the SHAP-gated model achieved an F1-score of 0.98 (precision 0.99, recall 0.97), outperforming the baseline PhaseNet (F1-score 0.97) and demonstrating enhanced robustness to noise. These results show that XAI can not only interpret deep learning models but also directly enhance their performance, providing a template for building trust in automated seismic detectors.
comment: Submitted to Artificial Intelligence in Geosciences
☆ Deeper with Riemannian Geometry: Overcoming Oversmoothing and Oversquashing for Graph Foundation Models NeurIPS 25
Message Passing Neural Networks (MPNNs) is the building block of graph foundation models, but fundamentally suffer from oversmoothing and oversquashing. There has recently been a surge of interest in fixing both issues. Existing efforts primarily adopt global approaches, which may be beneficial in some regions but detrimental in others, ultimately leading to the suboptimal expressiveness. In this paper, we begin by revisiting oversquashing through a global measure -- spectral gap $\lambda$ -- and prove that the increase of $\lambda$ leads to gradient vanishing with respect to the input features, thereby undermining the effectiveness of message passing. Motivated by such theoretical insights, we propose a \textbf{local} approach that adaptively adjusts message passing based on local structures. To achieve this, we connect local Riemannian geometry with MPNNs, and establish a novel nonhomogeneous boundary condition to address both oversquashing and oversmoothing. Building on the Robin condition, we design a GBN network with local bottleneck adjustment, coupled with theoretical guarantees. Extensive experiments on homophilic and heterophilic graphs show the expressiveness of GBN. Furthermore, GBN does not exhibit performance degradation even when the network depth exceeds $256$ layers.
comment: Accept by NeurIPS 25
☆ The Parameterized Complexity of Computing the VC-Dimension NeurIPS 2025
The VC-dimension is a fundamental and well-studied measure of the complexity of a set system (or hypergraph) that is central to many areas of machine learning. We establish several new results on the complexity of computing the VC-dimension. In particular, given a hypergraph $\mathcal{H}=(\mathcal{V},\mathcal{E})$, we prove that the naive $2^{\mathcal{O}(|\mathcal{V}|)}$-time algorithm is asymptotically tight under the Exponential Time Hypothesis (ETH). We then prove that the problem admits a 1-additive fixed-parameter approximation algorithm when parameterized by the maximum degree of $\mathcal{H}$ and a fixed-parameter algorithm when parameterized by its dimension, and that these are essentially the only such exploitable structural parameters. Lastly, we consider a generalization of the problem, formulated using graphs, which captures the VC-dimension of both set systems and graphs. We show that it is fixed-parameter tractable parameterized by the treewidth of the graph (which, in the case of set systems, applies to the treewidth of its incidence graph). In contrast with closely related problems whose dependency on the treewidth is necessarily double-exponential (assuming the ETH), our algorithm has a relatively low dependency on the treewidth.
comment: To appear in the proceedings of NeurIPS 2025
☆ From Spatial to Actions: Grounding Vision-Language-Action Model in Spatial Foundation Priors
Existing vision-language-action (VLA) models act in 3D real-world but are typically built on 2D encoders, leaving a spatial reasoning gap that limits generalization and adaptability. Recent 3D integration techniques for VLAs either require specialized sensors and transfer poorly across modalities, or inject weak cues that lack geometry and degrade vision-language alignment. In this work, we introduce FALCON (From Spatial to Action), a novel paradigm that injects rich 3D spatial tokens into the action head. FALCON leverages spatial foundation models to deliver strong geometric priors from RGB alone, and includes an Embodied Spatial Model that can optionally fuse depth, or pose for higher fidelity when available, without retraining or architectural changes. To preserve language reasoning, spatial tokens are consumed by a Spatial-Enhanced Action Head rather than being concatenated into the vision-language backbone. These designs enable FALCON to address limitations in spatial representation, modality transferability, and alignment. In comprehensive evaluations across three simulation benchmarks and eleven real-world tasks, our proposed FALCON achieves state-of-the-art performance, consistently surpasses competitive baselines, and remains robust under clutter, spatial-prompt conditioning, and variations in object scale and height.
comment: Project page: https://falcon-vla.github.io/
☆ Navigating the Alignment-Calibration Trade-off: A Pareto-Superior Frontier via Model Merging
The "alignment tax" of post-training is typically framed as a drop in task accuracy. We show it also involves a severe loss of calibration, making models overconfident, less reliable, and model outputs less diverse. We show that this trade-off can be navigated effectively via a simple post-hoc intervention: interpolating between a model's weights before and after alignment. Crucially, this is not a strict trade-off. We find that the process consistently reveals Pareto-optimal interpolations - models that improve accuracy beyond both parents while substantially recovering the calibration lost during alignment. Our work demonstrates that simple model merging provides a computationally efficient method for mitigating the full scope of the alignment tax, yielding models that are more capable and more reliable.
☆ Quantifying Climate Policy Action and Its Links to Development Outcomes: A Cross-National Data-Driven Analysis NeurIPS 2025
Addressing climate change effectively requires more than cataloguing the number of policies in place; it calls for tools that can reveal their thematic priorities and their tangible impacts on development outcomes. Existing assessments often rely on qualitative descriptions or composite indices, which can mask crucial differences between key domains such as mitigation, adaptation, disaster risk management, and loss and damage. To bridge this gap, we develop a quantitative indicator of climate policy orientation by applying a multilingual transformer-based language model to official national policy documents, achieving a classification accuracy of 0.90 (F1-score). Linking these indicators with World Bank development data in panel regressions reveals that mitigation policies are associated with higher GDP and GNI; disaster risk management correlates with greater GNI and debt but reduced foreign direct investment; adaptation and loss and damage show limited measurable effects. This integrated NLP-econometric framework enables comparable, theme-specific analysis of climate governance, offering a scalable method to monitor progress, evaluate trade-offs, and align policy emphasis with development goals.
comment: This paper/proposal has been accepted as a poster in the NeurIPS 2025
☆ Diffusion Models as Dataset Distillation Priors
Dataset distillation aims to synthesize compact yet informative datasets from large ones. A significant challenge in this field is achieving a trifecta of diversity, generalization, and representativeness in a single distilled dataset. Although recent generative dataset distillation methods adopt powerful diffusion models as their foundation models, the inherent representativeness prior in diffusion models is overlooked. Consequently, these approaches often necessitate the integration of external constraints to enhance data quality. To address this, we propose Diffusion As Priors (DAP), which formalizes representativeness by quantifying the similarity between synthetic and real data in feature space using a Mercer kernel. We then introduce this prior as guidance to steer the reverse diffusion process, enhancing the representativeness of distilled samples without any retraining. Extensive experiments on large-scale datasets, such as ImageNet-1K and its subsets, demonstrate that DAP outperforms state-of-the-art methods in generating high-fidelity datasets while achieving superior cross-architecture generalization. Our work not only establishes a theoretical connection between diffusion priors and the objectives of dataset distillation but also provides a practical, training-free framework for improving the quality of the distilled dataset.
☆ A Conditional Diffusion Model for Probabilistic Prediction of Battery Capacity Degradation
Accurate prediction of lithium-ion battery capacity and its associated uncertainty is essential for reliable battery management but remains challenging due to the stochastic nature of aging. This paper presents a novel method, termed the Condition Diffusion U-Net with Attention (CDUA), which integrates feature engineering and deep learning to address this challenge. The proposed approach employs a diffusion-based generative model for time-series forecasting and incorporates attention mechanisms to enhance predictive performance. Battery capacity is first derived from real-world vehicle operation data. The most relevant features are then identified using the Pearson correlation coefficient and the XGBoost algorithm. These features are used to train the CDUA model, which comprises two core components: (1) a contextual U-Net with self-attention to capture complex temporal dependencies, and (2) a denoising network to reconstruct accurate capacity values from noisy observations. Experimental validation on the real-world vehicle data demonstrates that the proposed CDUA model achieves a relative Mean Absolute Error (MAE) of 0.94% and a relative Root Mean Square Error (RMSE) of 1.14%, with a narrow 95% confidence interval of 3.74% in relative width. These results confirm that CDUA provides both accurate capacity estimation and reliable uncertainty quantification. Comparative experiments further verify its robustness and superior performance over existing mainstream approaches.
☆ S4ECG: Exploring the impact of long-range interactions for arrhythmia prediction
The electrocardiogram (ECG) exemplifies biosignal-based time series with continuous, temporally ordered structure reflecting cardiac physiological and pathophysiological dynamics. Detailed analysis of these dynamics has proven challenging, as conventional methods capture either global trends or local waveform features but rarely their simultaneous interplay at high temporal resolution. To bridge global and local signal analysis, we introduce S4ECG, a novel deep learning architecture leveraging structured state space models for multi-epoch arrhythmia classification. Our joint multi-epoch predictions significantly outperform single-epoch approaches by 1.0-11.6% in macro-AUROC, with atrial fibrillation specificity improving from 0.718-0.979 to 0.967-0.998, demonstrating superior performance in-distribution and enhanced out-of-distribution robustness. Systematic investigation reveals optimal temporal dependency windows spanning 10-20 minutes for peak performance. This work contributes to a paradigm shift toward temporally-aware arrhythmia detection algorithms, opening new possibilities for ECG interpretation, in particular for complex arrhythmias like atrial fibrillation and atrial flutter.
☆ Leveraging Group Relative Policy Optimization to Advance Large Language Models in Traditional Chinese Medicine
Traditional Chinese Medicine (TCM) presents a rich and structurally unique knowledge system that challenges conventional applications of large language models (LLMs). Although previous TCM-specific LLMs have shown progress through supervised fine-tuning, they often face limitations in alignment, data quality, and evaluation consistency. In this study, we introduce Ladder-base, the first TCM-focused LLM trained with Group Relative Policy Optimization (GRPO), a reinforcement learning method that improves reasoning and factual consistency by optimizing response selection based on intra-group comparisons. Ladder-base is built upon the Qwen2.5-7B-Instruct foundation model and trained exclusively on the textual subset of the TCM-Ladder benchmark, using 80 percent of the data for training and the remaining 20 percent split evenly between validation and test sets. Through standardized evaluation, Ladder-base demonstrates superior performance across multiple reasoning metrics when compared to both state-of-the-art general-purpose LLMs such as GPT-4, Gemini 2.5, Claude 3, and Qwen3 and domain-specific TCM models including BenTsao, HuatuoGPT2, and Zhongjing. These findings suggest that GRPO provides an effective and efficient strategy for aligning LLMs with expert-level reasoning in traditional medical domains and supports the development of trustworthy and clinically grounded TCM artificial intelligence systems.
☆ RINS-T: Robust Implicit Neural Solvers for Time Series Linear Inverse Problems IEEE
Time series data are often affected by various forms of corruption, such as missing values, noise, and outliers, which pose significant challenges for tasks such as forecasting and anomaly detection. To address these issues, inverse problems focus on reconstructing the original signal from corrupted data by leveraging prior knowledge about its underlying structure. While deep learning methods have demonstrated potential in this domain, they often require extensive pretraining and struggle to generalize under distribution shifts. In this work, we propose RINS-T (Robust Implicit Neural Solvers for Time Series Linear Inverse Problems), a novel deep prior framework that achieves high recovery performance without requiring pretraining data. RINS-T leverages neural networks as implicit priors and integrates robust optimization techniques, making it resilient to outliers while relaxing the reliance on Gaussian noise assumptions. To further improve optimization stability and robustness, we introduce three key innovations: guided input initialization, input perturbation, and convex output combination techniques. Each of these contributions strengthens the framework's optimization stability and robustness. These advancements make RINS-T a flexible and effective solution for addressing complex real-world time series challenges. Our code is available at https://github.com/EPFL-IMOS/RINS-T.
comment: Accepted to IEEE Transactions on Instrumentation and Measurement
☆ MILES: Modality-Informed Learning Rate Scheduler for Balancing Multimodal Learning IJCNN'25
The aim of multimodal neural networks is to combine diverse data sources, referred to as modalities, to achieve enhanced performance compared to relying on a single modality. However, training of multimodal networks is typically hindered by modality overfitting, where the network relies excessively on one of the available modalities. This often yields sub-optimal performance, hindering the potential of multimodal learning and resulting in marginal improvements relative to unimodal models. In this work, we present the Modality-Informed Learning ratE Scheduler (MILES) for training multimodal joint fusion models in a balanced manner. MILES leverages the differences in modality-wise conditional utilization rates during training to effectively balance multimodal learning. The learning rate is dynamically adjusted during training to balance the speed of learning from each modality by the multimodal model, aiming for enhanced performance in both multimodal and unimodal predictions. We extensively evaluate MILES on four multimodal joint fusion tasks and compare its performance to seven state-of-the-art baselines. Our results show that MILES outperforms all baselines across all tasks and fusion methods considered in our study, effectively balancing modality usage during training. This results in improved multimodal performance and stronger modality encoders, which can be leveraged when dealing with unimodal samples or absent modalities. Overall, our work highlights the impact of balancing multimodal learning on improving model performance.
comment: Accepted and presented at the 2025 International Joint Conference on Neural Networks (IJCNN'25). The paper was awarded an honorable mention (best 4 papers)
☆ Finite-Time Bounds for Average-Reward Fitted Q-Iteration
Although there is an extensive body of work characterizing the sample complexity of discounted-return offline RL with function approximations, prior work on the average-reward setting has received significantly less attention, and existing approaches rely on restrictive assumptions, such as ergodicity or linearity of the MDP. In this work, we establish the first sample complexity results for average-reward offline RL with function approximation for weakly communicating MDPs, a much milder assumption. To this end, we introduce Anchored Fitted Q-Iteration, which combines the standard Fitted Q-Iteration with an anchor mechanism. We show that the anchor, which can be interpreted as a form of weight decay, is crucial for enabling finite-time analysis in the average-reward setting. We also extend our finite-time analysis to the setup where the dataset is generated from a single-trajectory rather than IID transitions, again leveraging the anchor mechanism.
☆ Exploration via Feature Perturbation in Contextual Bandits NeurIPS 2025
We propose feature perturbation, a simple yet powerful technique that injects randomness directly into feature inputs, instead of randomizing unknown parameters or adding noise to rewards. Remarkably, this algorithm achieves $\tilde{\mathcal{O}}(d\sqrt{T})$ worst-case regret bound for generalized linear bandits, while avoiding the $\tilde{\mathcal{O}}(d^{3/2}\sqrt{T})$ regret typical of existing randomized bandit algorithms. Because our algorithm eschews parameter sampling, it is both computationally efficient and naturally extends to non-parametric or neural network models. We verify these advantages through empirical evaluations, demonstrating that feature perturbation not only surpasses existing methods but also unifies strong practical performance with best-known theoretical guarantees.
comment: Accepted at NeurIPS 2025 (spotlight)
☆ TabR1: Taming GRPO for tabular reasoning LLMs
Tabular prediction has traditionally relied on gradient-boosted decision trees and specialized deep learning models, which excel within tasks but provide limited interpretability and weak transfer across tables. Reasoning large language models (LLMs) promise cross-task adaptability with trans- parent reasoning traces, yet their potential has not been fully realized for tabular data. This paper presents TabR1, the first reasoning LLM for tabular prediction with multi-step reasoning. At its core is Permutation Relative Policy Optimization (PRPO), a simple yet efficient reinforcement learning method that encodes column-permutation invariance as a structural prior. By construct- ing multiple label-preserving permutations per sample and estimating advantages both within and across permutations, PRPO transforms sparse rewards into dense learning signals and improves generalization. With limited supervision, PRPO activates the reasoning ability of LLMs for tabular prediction, enhancing few-shot and zero-shot performance as well as interpretability. Comprehensive experiments demonstrate that TabR1 achieves performance comparable to strong baselines under full-supervision fine-tuning. In the zero-shot setting, TabR1 approaches the performance of strong baselines under the 32-shot setting. Moreover, TabR1 (8B) substantially outperforms much larger LLMs across various tasks, achieving up to 53.17% improvement over DeepSeek-R1 (685B).
☆ Latent Spaces Beyond Synthesis: From GANs to Diffusion Models
This paper examines the evolving nature of internal representations in generative visual models, focusing on the conceptual and technical shift from GANs and VAEs to diffusion-based architectures. Drawing on Beatrice Fazi's account of synthesis as the amalgamation of distributed representations, we propose a distinction between "synthesis in a strict sense", where a compact latent space wholly determines the generative process, and "synthesis in a broad sense," which characterizes models whose representational labor is distributed across layers. Through close readings of model architectures and a targeted experimental setup that intervenes in layerwise representations, we show how diffusion models fragment the burden of representation and thereby challenge assumptions of unified internal space. By situating these findings within media theoretical frameworks and critically engaging with metaphors such as the latent space and the Platonic Representation Hypothesis, we argue for a reorientation of how generative AI is understood: not as a direct synthesis of content, but as an emergent configuration of specialized processes.
comment: Presented and published at Ethics and Aesthetics of Artificial Intelligence Conference (EA-AI'25)
☆ Graph Attention-Guided Search for Dense Multi-Agent Pathfinding
Finding near-optimal solutions for dense multi-agent pathfinding (MAPF) problems in real-time remains challenging even for state-of-the-art planners. To this end, we develop a hybrid framework that integrates a learned heuristic derived from MAGAT, a neural MAPF policy with a graph attention scheme, into a leading search-based algorithm, LaCAM. While prior work has explored learning-guided search in MAPF, such methods have historically underperformed. In contrast, our approach, termed LaGAT, outperforms both purely search-based and purely learning-based methods in dense scenarios. This is achieved through an enhanced MAGAT architecture, a pre-train-then-fine-tune strategy on maps of interest, and a deadlock detection scheme to account for imperfect neural guidance. Our results demonstrate that, when carefully designed, hybrid search offers a powerful solution for tightly coupled, challenging multi-agent coordination problems.
☆ Beyond Binary Out-of-Distribution Detection: Characterizing Distributional Shifts with Multi-Statistic Diffusion Trajectories
Detecting out-of-distribution (OOD) data is critical for machine learning, be it for safety reasons or to enable open-ended learning. However, beyond mere detection, choosing an appropriate course of action typically hinges on the type of OOD data encountered. Unfortunately, the latter is generally not distinguished in practice, as modern OOD detection methods collapse distributional shifts into single scalar outlier scores. This work argues that scalar-based methods are thus insufficient for OOD data to be properly contextualized and prospectively exploited, a limitation we overcome with the introduction of DISC: Diffusion-based Statistical Characterization. DISC leverages the iterative denoising process of diffusion models to extract a rich, multi-dimensional feature vector that captures statistical discrepancies across multiple noise levels. Extensive experiments on image and tabular benchmarks show that DISC matches or surpasses state-of-the-art detectors for OOD detection and, crucially, also classifies OOD type, a capability largely absent from prior work. As such, our work enables a shift from simple binary OOD detection to a more granular detection.
comment: 11 Pages, 6 Figures
☆ Optimizing Energy Management of Smart Grid using Reinforcement Learning aided by Surrogate models built using Physics-informed Neural Networks
Optimizing the energy management within a smart grids scenario presents significant challenges, primarily due to the complexity of real-world systems and the intricate interactions among various components. Reinforcement Learning (RL) is gaining prominence as a solution for addressing the challenges of Optimal Power Flow in smart grids. However, RL needs to iterate compulsively throughout a given environment to obtain the optimal policy. This means obtaining samples from a, most likely, costly simulator, which can lead to a sample efficiency problem. In this work, we address this problem by substituting costly smart grid simulators with surrogate models built using Phisics-informed Neural Networks (PINNs), optimizing the RL policy training process by arriving to convergent results in a fraction of the time employed by the original environment.
☆ Model Metamers Reveal Invariances in Graph Neural Networks
In recent years, deep neural networks have been extensively employed in perceptual systems to learn representations endowed with invariances, aiming to emulate the invariance mechanisms observed in the human brain. However, studies in the visual and auditory domains have confirmed that significant gaps remain between the invariance properties of artificial neural networks and those of humans. To investigate the invariance behavior within graph neural networks (GNNs), we introduce a model ``metamers'' generation technique. By optimizing input graphs such that their internal node activations match those of a reference graph, we obtain graphs that are equivalent in the model's representation space, yet differ significantly in both structure and node features. Our theoretical analysis focuses on two aspects: the local metamer dimension for a single node and the activation-induced volume change of the metamer manifold. Utilizing this approach, we uncover extreme levels of representational invariance across several classic GNN architectures. Although targeted modifications to model architecture and training strategies can partially mitigate this excessive invariance, they fail to fundamentally bridge the gap to human-like invariance. Finally, we quantify the deviation between metamer graphs and their original counterparts, revealing unique failure modes of current GNNs and providing a complementary benchmark for model evaluation.
☆ Bridging Embodiment Gaps: Deploying Vision-Language-Action Models on Soft Robots NeurIPS 2025
Robotic systems are increasingly expected to operate in human-centered, unstructured environments where safety, adaptability, and generalization are essential. Vision-Language-Action (VLA) models have been proposed as a language guided generalized control framework for real robots. However, their deployment has been limited to conventional serial link manipulators. Coupled by their rigidity and unpredictability of learning based control, the ability to safely interact with the environment is missing yet critical. In this work, we present the deployment of a VLA model on a soft continuum manipulator to demonstrate autonomous safe human-robot interaction. We present a structured finetuning and deployment pipeline evaluating two state-of-the-art VLA models (OpenVLA-OFT and $\pi_0$) across representative manipulation tasks, and show while out-of-the-box policies fail due to embodiment mismatch, through targeted finetuning the soft robot performs equally to the rigid counterpart. Our findings highlight the necessity of finetuning for bridging embodiment gaps, and demonstrate that coupling VLA models with soft robots enables safe and flexible embodied AI in human-shared environments.
comment: Accepted by NeurIPS 2025 SpaVLE workshop. 4 pages, 2 figures(in main paper, excluding references and supplements)
☆ Recurrent Attention-based Token Selection for Efficient Streaming Video-LLMs NeurIPS 2025
Video Large Language Models (Video-LLMs) excel at understanding videos in-context, provided they have full access to the video when answering queries. However, these models face challenges in streaming scenarios where hour-long videos must be processed online, and questions need timely responses. In this work, we propose a training-free approach compatible with standard Video-LLMs, leveraging three key concepts: 1) LLM-informed selection of visual tokens to identify those that the LLM has attended to and contributed to its understanding of each short clip. Our attention-based selection allows us to discard up to ~95% of unimportant visual tokens with minimal performance loss; 2) Recurrent processing of past selected tokens to generate temporally coherent understanding of each processed clip; 3) Caption-based question answering for lightweight and accurate responses. Our method achieves state-of-the-art performance on streaming video benchmarks, striking a balance between efficiency and effectiveness.
comment: NeurIPS 2025
☆ M2H: Multi-Task Learning with Efficient Window-Based Cross-Task Attention for Monocular Spatial Perception IROS 2025
Deploying real-time spatial perception on edge devices requires efficient multi-task models that leverage complementary task information while minimizing computational overhead. This paper introduces Multi-Mono-Hydra (M2H), a novel multi-task learning framework designed for semantic segmentation and depth, edge, and surface normal estimation from a single monocular image. Unlike conventional approaches that rely on independent single-task models or shared encoder-decoder architectures, M2H introduces a Window-Based Cross-Task Attention Module that enables structured feature exchange while preserving task-specific details, improving prediction consistency across tasks. Built on a lightweight ViT-based DINOv2 backbone, M2H is optimized for real-time deployment and serves as the foundation for monocular spatial perception systems supporting 3D scene graph construction in dynamic environments. Comprehensive evaluations show that M2H outperforms state-of-the-art multi-task models on NYUDv2, surpasses single-task depth and semantic baselines on Hypersim, and achieves superior performance on the Cityscapes dataset, all while maintaining computational efficiency on laptop hardware. Beyond benchmarks, M2H is validated on real-world data, demonstrating its practicality in spatial perception tasks.
comment: Accepted to the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025). 8 pages, 7 figures
☆ Localist LLMs with Recruitment Learning
We present a novel framework for training large language models with continuously adjustable internal representations that span the full spectrum from localist (interpretable, rule-based) to distributed (generalizable, efficient) encodings. The key innovations are (1) a locality dial, a tunable parameter that dynamically controls the degree of localization during both training and inference without requiring model retraining, (2) an information-theoretic recruitment mechanism that adaptively allocates semantic blocks as needed, eliminating the requirement for complete domain knowledge at initialization, and (3) a hierarchical recruitment framework that extends capacity allocation to entire specialized LLMs, enabling multi-granularity architectural adaptation. This is achieved through group sparsity penalties on attention mechanisms, information-theoretic anchor design, dynamic rule injection, and principled recruitment criteria based on penalized likelihood with explicit units. We provide rigorous mathematical results establishing explicit threshold conditions under which attention provably concentrates on semantically relevant blocks at stationary points, with exact bounds on attention entropy and pointer fidelity. The hierarchical recruitment mechanism provides convergence guarantees at both the block level (fine-grained, within-LLM) and the LLM level (coarse-grained, cross-domain), ensuring the system discovers semantic partitions that balance model complexity against data encoding efficiency. This framework enables practitioners to continuously interpolate between interpretable and high-performance modes while adapting architectural capacity at multiple granularities, supporting applications in regulated domains requiring both transparency and capability.
☆ Towards Mixed-Modal Retrieval for Universal Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) has emerged as a powerful paradigm for enhancing large language models (LLMs) by retrieving relevant documents from an external corpus. However, existing RAG systems primarily focus on unimodal text documents, and often fall short in real-world scenarios where both queries and documents may contain mixed modalities (such as text and images). In this paper, we address the challenge of Universal Retrieval-Augmented Generation (URAG), which involves retrieving and reasoning over mixed-modal information to improve vision-language generation. To this end, we propose Nyx, a unified mixed-modal to mixed-modal retriever tailored for URAG scenarios. To mitigate the scarcity of realistic mixed-modal data, we introduce a four-stage automated pipeline for generation and filtering, leveraging web documents to construct NyxQA, a dataset comprising diverse mixed-modal question-answer pairs that better reflect real-world information needs. Building on this high-quality dataset, we adopt a two-stage training framework for Nyx: we first perform pre-training on NyxQA along with a variety of open-source retrieval datasets, followed by supervised fine-tuning using feedback from downstream vision-language models (VLMs) to align retrieval outputs with generative preferences. Experimental results demonstrate that Nyx not only performs competitively on standard text-only RAG benchmarks, but also excels in the more general and realistic URAG setting, significantly improving generation quality in vision-language tasks.
comment: This work is in progress
☆ Optimal Best Arm Identification under Differential Privacy
Best Arm Identification (BAI) algorithms are deployed in data-sensitive applications, such as adaptive clinical trials or user studies. Driven by the privacy concerns of these applications, we study the problem of fixed-confidence BAI under global Differential Privacy (DP) for Bernoulli distributions. While numerous asymptotically optimal BAI algorithms exist in the non-private setting, a significant gap remains between the best lower and upper bounds in the global DP setting. This work reduces this gap to a small multiplicative constant, for any privacy budget $\epsilon$. First, we provide a tighter lower bound on the expected sample complexity of any $\delta$-correct and $\epsilon$-global DP strategy. Our lower bound replaces the Kullback-Leibler (KL) divergence in the transportation cost used by the non-private characteristic time with a new information-theoretic quantity that optimally trades off between the KL divergence and the Total Variation distance scaled by $\epsilon$. Second, we introduce a stopping rule based on these transportation costs and a private estimator of the means computed using an arm-dependent geometric batching. En route to proving the correctness of our stopping rule, we derive concentration results of independent interest for the Laplace distribution and for the sum of Bernoulli and Laplace distributions. Third, we propose a Top Two sampling rule based on these transportation costs. For any budget $\epsilon$, we show an asymptotic upper bound on its expected sample complexity that matches our lower bound to a multiplicative constant smaller than $8$. Our algorithm outperforms existing $\delta$-correct and $\epsilon$-global DP BAI algorithms for different values of $\epsilon$.
comment: 92 pages, 2 figures, 2 tables. To be published in the Thirty-Ninth Annual Conference on Neural Information Processing Systems
☆ Auto-Rubric: Learning to Extract Generalizable Criteria for Reward Modeling
Reward models are essential for aligning Large Language Models (LLMs) with human values, yet their development is hampered by costly preference datasets and poor interpretability. While recent rubric-based approaches offer transparency, they often lack systematic quality control and optimization, creating a trade-off between scalability and reliability. We address these limitations with a novel, training-free framework built on a key assumption: \textit{evaluation rubrics underlying human preferences exhibit significant generalization ability across diverse queries}, a property that enables remarkable data efficiency. Our two-stage approach first infers high-quality, query-specific rubrics using a validation-guided \textbf{Propose-Evaluate-Revise} pipeline. Second, it generalizes these granular rubrics into a compact, non-redundant core set by maximizing an \textbf{information-theoretic coding rate}. The final output is an interpretable, hierarchical "Theme-Tips" rubric set. Extensive experiments demonstrate the framework's exceptional data efficiency and performance. Critically, using just 70 preference pairs (1.5\% of the source data), our method also empowers smaller models like Qwen3-8B to outperform specialized, fully-trained counterparts. This work pioneers a scalable, interpretable, and data-efficient path for reward modeling.
☆ Disentanglement Beyond Static vs. Dynamic: A Benchmark and Evaluation Framework for Multi-Factor Sequential Representations
Learning disentangled representations in sequential data is a key goal in deep learning, with broad applications in vision, audio, and time series. While real-world data involves multiple interacting semantic factors over time, prior work has mostly focused on simpler two-factor static and dynamic settings, primarily because such settings make data collection easier, thereby overlooking the inherently multi-factor nature of real-world data. We introduce the first standardized benchmark for evaluating multi-factor sequential disentanglement across six diverse datasets spanning video, audio, and time series. Our benchmark includes modular tools for dataset integration, model development, and evaluation metrics tailored to multi-factor analysis. We additionally propose a post-hoc Latent Exploration Stage to automatically align latent dimensions with semantic factors, and introduce a Koopman-inspired model that achieves state-of-the-art results. Moreover, we show that Vision-Language Models can automate dataset annotation and serve as zero-shot disentanglement evaluators, removing the need for manual labels and human intervention. Together, these contributions provide a robust and scalable foundation for advancing multi-factor sequential disentanglement.
☆ Symmetries in PAC-Bayesian Learning
Symmetries are known to improve the empirical performance of machine learning models, yet theoretical guarantees explaining these gains remain limited. Prior work has focused mainly on compact group symmetries and often assumes that the data distribution itself is invariant, an assumption rarely satisfied in real-world applications. In this work, we extend generalization guarantees to the broader setting of non-compact symmetries, such as translations and to non-invariant data distributions. Building on the PAC-Bayes framework, we adapt and tighten existing bounds, demonstrating the approach on McAllester's PAC-Bayes bound while showing that it applies to a wide range of PAC-Bayes bounds. We validate our theory with experiments on a rotated MNIST dataset with a non-uniform rotation group, where the derived guarantees not only hold but also improve upon prior results. These findings provide theoretical evidence that, for symmetric data, symmetric models are preferable beyond the narrow setting of compact groups and invariant distributions, opening the way to a more general understanding of symmetries in machine learning.
☆ MemoryBench: A Benchmark for Memory and Continual Learning in LLM Systems
Scaling up data, parameters, and test-time computation has been the mainstream methods to improve LLM systems (LLMsys), but their upper bounds are almost reached due to the gradual depletion of high-quality data and marginal gains obtained from larger computational resource consumption. Inspired by the abilities of human and traditional AI systems in learning from practice, constructing memory and continual learning frameworks for LLMsys has become an important and popular research direction in recent literature. Yet, existing benchmarks for LLM memory often focus on evaluating the system on homogeneous reading comprehension tasks with long-form inputs rather than testing their abilities to learn from accumulated user feedback in service time. Therefore, we propose a user feedback simulation framework and a comprehensive benchmark covering multiple domains, languages, and types of tasks to evaluate the continual learning abilities of LLMsys. Experiments show that the effectiveness and efficiency of state-of-the-art baselines are far from satisfying, and we hope this benchmark could pave the way for future studies on LLM memory and optimization algorithms.
☆ Breaking and Fixing Defenses Against Control-Flow Hijacking in Multi-Agent Systems
Control-flow hijacking attacks manipulate orchestration mechanisms in multi-agent systems into performing unsafe actions that compromise the system and exfiltrate sensitive information. Recently proposed defenses, such as LlamaFirewall, rely on alignment checks of inter-agent communications to ensure that all agent invocations are "related to" and "likely to further" the original objective. We start by demonstrating control-flow hijacking attacks that evade these defenses even if alignment checks are performed by advanced LLMs. We argue that the safety and functionality objectives of multi-agent systems fundamentally conflict with each other. This conflict is exacerbated by the brittle definitions of "alignment" and the checkers' incomplete visibility into the execution context. We then propose, implement, and evaluate ControlValve, a new defense inspired by the principles of control-flow integrity and least privilege. ControlValve (1) generates permitted control-flow graphs for multi-agent systems, and (2) enforces that all executions comply with these graphs, along with contextual rules (generated in a zero-shot manner) for each agent invocation.
☆ Uncertainty-aware data assimilation through variational inference
Data assimilation, consisting in the combination of a dynamical model with a set of noisy and incomplete observations in order to infer the state of a system over time, involves uncertainty in most settings. Building upon an existing deterministic machine learning approach, we propose a variational inference-based extension in which the predicted state follows a multivariate Gaussian distribution. Using the chaotic Lorenz-96 dynamics as a testing ground, we show that our new model enables to obtain nearly perfectly calibrated predictions, and can be integrated in a wider variational data assimilation pipeline in order to achieve greater benefit from increasing lengths of data assimilation windows. Our code is available at https://github.com/anthony-frion/Stochastic_CODA.
☆ Adaptive Discretization for Consistency Models NeurIPS 2025
Consistency Models (CMs) have shown promise for efficient one-step generation. However, most existing CMs rely on manually designed discretization schemes, which can cause repeated adjustments for different noise schedules and datasets. To address this, we propose a unified framework for the automatic and adaptive discretization of CMs, formulating it as an optimization problem with respect to the discretization step. Concretely, during the consistency training process, we propose using local consistency as the optimization objective to ensure trainability by avoiding excessive discretization, and taking global consistency as a constraint to ensure stability by controlling the denoising error in the training target. We establish the trade-off between local and global consistency with a Lagrange multiplier. Building on this framework, we achieve adaptive discretization for CMs using the Gauss-Newton method. We refer to our approach as ADCMs. Experiments demonstrate that ADCMs significantly improve the training efficiency of CMs, achieving superior generative performance with minimal training overhead on both CIFAR-10 and ImageNet. Moreover, ADCMs exhibit strong adaptability to more advanced DM variants. Code is available at https://github.com/rainstonee/ADCM.
comment: Accepted by NeurIPS 2025
☆ Fair and Interpretable Deepfake Detection in Videos
Existing deepfake detection methods often exhibit bias, lack transparency, and fail to capture temporal information, leading to biased decisions and unreliable results across different demographic groups. In this paper, we propose a fairness-aware deepfake detection framework that integrates temporal feature learning and demographic-aware data augmentation to enhance fairness and interpretability. Our method leverages sequence-based clustering for temporal modeling of deepfake videos and concept extraction to improve detection reliability while also facilitating interpretable decisions for non-expert users. Additionally, we introduce a demography-aware data augmentation method that balances underrepresented groups and applies frequency-domain transformations to preserve deepfake artifacts, thereby mitigating bias and improving generalization. Extensive experiments on FaceForensics++, DFD, Celeb-DF, and DFDC datasets using state-of-the-art (SoTA) architectures (Xception, ResNet) demonstrate the efficacy of the proposed method in obtaining the best tradeoff between fairness and accuracy when compared to SoTA.
comment: 10 pages (including References)
☆ High-Level Multi-Robot Trajectory Planning And Spurious Behavior Detection
The reliable execution of high-level missions in multi-robot systems with heterogeneous agents, requires robust methods for detecting spurious behaviors. In this paper, we address the challenge of identifying spurious executions of plans specified as a Linear Temporal Logic (LTL) formula, as incorrect task sequences, violations of spatial constraints, timing inconsis- tencies, or deviations from intended mission semantics. To tackle this, we introduce a structured data generation framework based on the Nets-within-Nets (NWN) paradigm, which coordinates robot actions with LTL-derived global mission specifications. We further propose a Transformer-based anomaly detection pipeline that classifies robot trajectories as normal or anomalous. Experi- mental evaluations show that our method achieves high accuracy (91.3%) in identifying execution inefficiencies, and demonstrates robust detection capabilities for core mission violations (88.3%) and constraint-based adaptive anomalies (66.8%). An ablation experiment of the embedding and architecture was carried out, obtaining successful results where our novel proposition performs better than simpler representations.
comment: 6 pages,3 figures, Iberian Robotics Conference 2025
☆ A Prototypical Network with an Attention-based Encoder for Drivers Identification Application
Driver identification has become an area of increasing interest in recent years, especially for data- driven applications, because biometric-based technologies may incur privacy issues. This study proposes a deep learning neural network architecture, an attention-based encoder (AttEnc), which uses an attention mechanism for driver identification and uses fewer model parameters than current methods. Most studies do not address the issue of data shortages for driver identification, and most of them are inflexible when encountering unknown drivers. In this study, an architecture that combines a prototypical network and an attention-based encoder (P-AttEnc) is proposed. It applies few-shot learning to overcome the data shortage issues and to enhance model generalizations. The experiments showed that the attention-based encoder can identify drivers with accuracies of 99.3%, 99.0% and 99.9% in three different datasets and has a prediction time that is 44% to 79% faster because it significantly reduces, on average, 87.6% of the model parameters. P-AttEnc identifies drivers based on few shot data, extracts driver fingerprints to address the issue of data shortages, and is able to classify unknown drivers. The first experiment showed that P-AttEnc can identify drivers with an accuracy of 69.8% in the one-shot scenario. The second experiment showed that P-AttEnc, in the 1-shot scenario, can classify unknown drivers with an average accuracy of 65.7%.
☆ Diagnosis of Fuel Cell Health Status with Deep Sparse Auto-Encoder Neural Network
Effective and accurate diagnosis of fuel cell health status is crucial for ensuring the stable operation of fuel cell stacks. Among various parameters, high-frequency impedance serves as a critical indicator for assessing fuel cell state and health conditions. However, its online testing is prohibitively complex and costly. This paper employs a deep sparse auto-encoding network for the prediction and classification of high-frequency impedance in fuel cells, achieving metric of accuracy rate above 92\%. The network is further deployed on an FPGA, attaining a hardware-based recognition rate almost 90\%.
☆ D2C-HRHR: Discrete Actions with Double Distributional Critics for High-Risk-High-Return Tasks
Tasks involving high-risk-high-return (HRHR) actions, such as obstacle crossing, often exhibit multimodal action distributions and stochastic returns. Most reinforcement learning (RL) methods assume unimodal Gaussian policies and rely on scalar-valued critics, which limits their effectiveness in HRHR settings. We formally define HRHR tasks and theoretically show that Gaussian policies cannot guarantee convergence to the optimal solution. To address this, we propose a reinforcement learning framework that (i) discretizes continuous action spaces to approximate multimodal distributions, (ii) employs entropy-regularized exploration to improve coverage of risky but rewarding actions, and (iii) introduces a dual-critic architecture for more accurate discrete value distribution estimation. The framework scales to high-dimensional action spaces, supporting complex control domains. Experiments on locomotion and manipulation benchmarks with high risks of failure demonstrate that our method outperforms baselines, underscoring the importance of explicitly modeling multimodality and risk in RL.
☆ Temporally Detailed Hypergraph Neural ODEs for Type 2 Diabetes Progression Modeling
Disease progression modeling aims to characterize and predict how a patient's disease complications worsen over time based on longitudinal electronic health records (EHRs). Accurate modeling of disease progression, such as type 2 diabetes, can enhance patient sub-phenotyping and inform effective and timely interventions. However, the problem is challenging due to the need to learn continuous-time dynamics of progression patterns based on irregular-time event samples and patient heterogeneity (\eg different progression rates and pathways). Existing mechanistic and data-driven methods either lack adaptability to learn from real-world data or fail to capture complex continuous-time dynamics on progression trajectories. To address these limitations, we propose Temporally Detailed Hypergraph Neural Ordinary Differential Equation (TD-HNODE), which represents disease progression on clinically recognized trajectories as a temporally detailed hypergraph and learns the continuous-time progression dynamics via a neural ODE framework. TD-HNODE contains a learnable TD-Hypergraph Laplacian that captures the interdependency of disease complication markers within both intra- and inter-progression trajectories. Experiments on two real-world clinical datasets demonstrate that TD-HNODE outperforms multiple baselines in modeling the progression of type 2 diabetes and related cardiovascular diseases.
☆ Soft-Masked Diffusion Language Models
Diffusion models have demonstrated strong potential in language modeling, offering various advantages over traditional autoregressive approaches. Their ability to generate and revise entire responses in parallel enables faster generation and built-in self-correction mechanisms. Most modern diffusion-based language models employ masked diffusion, where decoding involves iteratively processing masked tokens based on a binary decision: either retaining the mask or replacing it with the predicted token. However, this binary choice discards valuable predictive information when the mask is retained. To address this limitation, we introduce soft-masking (SM), a novel method that dynamically blends the embedding of the mask token with the embeddings of the top-$k$ predicted tokens from the previous decoding step, for each retained mask. This provides the model with a more informative prior, preserving context from earlier computations and allowing partial information about masked tokens to propagate beyond a single step. We propose a training methodology that adapts a pretrained masked diffusion language model to incorporate SM. We demonstrate that continuing pretraining a 169M parameter model with SM leads to improved perplexity and MAUVE scores. Furthermore, we finetune two state-of-the-art diffusion models, Dream-7B and Dream-Coder-7B, with SM. SM consistently improves performance across multiple coding benchmarks, particularly in high-throughput settings.
☆ Understanding and Improving Length Generalization in Hierarchical Sparse Attention Models
Effectively processing long contexts is a critical challenge for language models. While standard Transformers are limited by quadratic complexity and poor length extrapolation, alternative architectures like sliding window attention and state space models sacrifice the ability to effectively utilize the full context due to their fixed-size memory. Chunk-based sparse attention has emerged as a promising paradigm for extreme length generalization, yet the key architectural principles underpinning its success are not yet fully understood. In this work, we present a systematic dissection of these models to identify the core components driving their performance. Through a unified framework and comprehensive ablation studies, we demonstrate that a combination of three design principles is critical: (1) an expressive, non-linear Chunk Encoder with a dedicated CLS token to produce representations for retrieval; (2) a Bypassing Residual Path to stably integrate retrieved global information without it being overridden by the local residual stream; and (3) enforced selection sparsity during pre-training to bridge the train-test distribution gap. We provide a theoretical motivation for intra-chunk information processing and landmark generation. By combining these principles, we establish a new state-of-the-art for training-free length extrapolation, successfully generalizing models trained on a 4K context to 32 million tokens on RULER and BABILong. Our findings provide a clear and empirically-grounded set of design principles for developing future, highly-capable long-context language models.
comment: Preprint. Work in progress
☆ SOLE: Hardware-Software Co-design of Softmax and LayerNorm for Efficient Transformer Inference
Transformers have shown remarkable performance in both natural language processing (NLP) and computer vision (CV) tasks. However, their real-time inference speed and efficiency are limited due to the inefficiency in Softmax and Layer Normalization (LayerNorm). Previous works based on function approximation suffer from inefficient implementation as they place emphasis on computation while disregarding memory overhead concerns. Moreover, such methods rely on retraining to compensate for approximation error which can be costly and inconvenient. In this paper, we present SOLE, a hardware-software co-design for Softmax and LayerNorm which is composed of E2Softmax and AILayerNorm. E2Softmax utilizes log2 quantization of exponent function and log-based division to approximate Softmax while AILayerNorm adopts low-precision statistic calculation. Compared with state-of-the-art designs, we achieve both low-precision calculation and low bit-width storage on Softmax and LayerNorm. Experiments show that SOLE maintains inference accuracy without retraining while offering orders of magnitude speedup and energy savings over GPU, achieving 3.04x, 3.86x energy-efficiency improvements and 2.82x, 3.32x area-efficiency improvements over prior state-of-the-art custom hardware for Softmax and LayerNorm, respectively.
☆ A Standardized Benchmark for Machine-Learned Molecular Dynamics using Weighted Ensemble Sampling
The rapid evolution of molecular dynamics (MD) methods, including machine-learned dynamics, has outpaced the development of standardized tools for method validation. Objective comparison between simulation approaches is often hindered by inconsistent evaluation metrics, insufficient sampling of rare conformational states, and the absence of reproducible benchmarks. To address these challenges, we introduce a modular benchmarking framework that systematically evaluates protein MD methods using enhanced sampling analysis. Our approach uses weighted ensemble (WE) sampling via The Weighted Ensemble Simulation Toolkit with Parallelization and Analysis (WESTPA), based on progress coordinates derived from Time-lagged Independent Component Analysis (TICA), enabling fast and efficient exploration of protein conformational space. The framework includes a flexible, lightweight propagator interface that supports arbitrary simulation engines, allowing both classical force fields and machine learning-based models. Additionally, the framework offers a comprehensive evaluation suite capable of computing more than 19 different metrics and visualizations across a variety of domains. We further contribute a dataset of nine diverse proteins, ranging from 10 to 224 residues, that span a variety of folding complexities and topologies. Each protein has been extensively simulated at 300K for one million MD steps per starting point (4 ns). To demonstrate the utility of our framework, we perform validation tests using classic MD simulations with implicit solvent and compare protein conformational sampling using a fully trained versus under-trained CGSchNet model. By standardizing evaluation protocols and enabling direct, reproducible comparisons across MD approaches, our open-source platform lays the groundwork for consistent, rigorous benchmarking across the molecular simulation community.
comment: 37 Pages (Main Text), 10 Figures, Submitted to Journal of Physical Chemistry B
☆ Robustness in Text-Attributed Graph Learning: Insights, Trade-offs, and New Defenses
While Graph Neural Networks (GNNs) and Large Language Models (LLMs) are powerful approaches for learning on Text-Attributed Graphs (TAGs), a comprehensive understanding of their robustness remains elusive. Current evaluations are fragmented, failing to systematically investigate the distinct effects of textual and structural perturbations across diverse models and attack scenarios. To address these limitations, we introduce a unified and comprehensive framework to evaluate robustness in TAG learning. Our framework evaluates classical GNNs, robust GNNs (RGNNs), and GraphLLMs across ten datasets from four domains, under diverse text-based, structure-based, and hybrid perturbations in both poisoning and evasion scenarios. Our extensive analysis reveals multiple findings, among which three are particularly noteworthy: 1) models have inherent robustness trade-offs between text and structure, 2) the performance of GNNs and RGNNs depends heavily on the text encoder and attack type, and 3) GraphLLMs are particularly vulnerable to training data corruption. To overcome the identified trade-offs, we introduce SFT-auto, a novel framework that delivers superior and balanced robustness against both textual and structural attacks within a single model. Our work establishes a foundation for future research on TAG security and offers practical solutions for robust TAG learning in adversarial environments. Our code is available at: https://github.com/Leirunlin/TGRB.
☆ QRïS: A Preemptive Novel Method for Quishing Detection Through Structural Features of QR
Globally, individuals and organizations employ Quick Response (QR) codes for swift and convenient communication. Leveraging this, cybercriminals embed falsify and misleading information in QR codes to launch various phishing attacks which termed as Quishing. Many former studies have introduced defensive approaches to preclude Quishing such as by classifying the embedded content of QR codes and then label the QR codes accordingly, whereas other studies classify them using visual features (i.e., deep features, histogram density analysis features). However, these approaches mainly rely on black-box techniques which do not clearly provide interpretability and transparency to fully comprehend and reproduce the intrinsic decision process; therefore, having certain obvious limitations includes the approaches' trust, accountability, issues in bias detection, and many more. We proposed QR\"iS, the pioneer method to classify QR codes through the comprehensive structural analysis of a QR code which helps to identify phishing QR codes beforehand. Our classification method is clearly transparent which makes it reproducible, scalable, and easy to comprehend. First, we generated QR codes dataset (i.e. 400,000 samples) using recently published URLs datasets [1], [2]. Then, unlike black-box models, we developed a simple algorithm to extract 24 structural features from layout patterns present in QR codes. Later, we train the machine learning models on the harvested features and obtained accuracy of up to 83.18%. To further evaluate the effectiveness of our approach, we perform the comparative analysis of proposed method with relevant contemporary studies. Lastly, for real-world deployment and validation, we developed a mobile app which assures the feasibility of the proposed solution in real-world scenarios which eventually strengthen the applicability of the study.
comment: 13 pages, 11 figures, and 7 tables
☆ ALPINE: A Lightweight and Adaptive Privacy-Decision Agent Framework for Dynamic Edge Crowdsensing WWW 2026
Mobile edge crowdsensing (MECS) systems continuously generate and transmit user data in dynamic, resource-constrained environments, exposing users to significant privacy threats. In practice, many privacy-preserving mechanisms build on differential privacy (DP). However, static DP mechanisms often fail to adapt to evolving risks, for example, shifts in adversarial capabilities, resource constraints and task requirements, resulting in either excessive noise or inadequate protection. To address this challenge, we propose ALPINE, a lightweight, adaptive framework that empowers terminal devices to autonomously adjust differential privacy levels in real time. ALPINE operates as a closed-loop control system consisting of four modules: dynamic risk perception, privacy decision via twin delayed deep deterministic policy gradient (TD3), local privacy execution and performance verification from edge nodes. Based on environmental risk assessments, we design a reward function that balances privacy gains, data utility and energy cost, guiding the TD3 agent to adaptively tune noise magnitude across diverse risk scenarios and achieve a dynamic equilibrium among privacy, utility and cost. Both the collaborative risk model and pretrained TD3-based agent are designed for low-overhead deployment. Extensive theoretical analysis and real-world simulations demonstrate that ALPINE effectively mitigates inference attacks while preserving utility and cost, making it practical for large-scale edge applications.
comment: 12 pages, 8 figures, 4 tables. Submitted to The Web Conference (WWW 2026)
☆ Learning After Model Deployment ECAI-2025
In classic supervised learning, once a model is deployed in an application, it is fixed. No updates will be made to it during the application. This is inappropriate for many dynamic and open environments, where unexpected samples from unseen classes may appear. In such an environment, the model should be able to detect these novel samples from unseen classes and learn them after they are labeled. We call this paradigm Autonomous Learning after Model Deployment (ALMD). The learning here is continuous and involves no human engineers. Labeling in this scenario is performed by human co-workers or other knowledgeable agents, which is similar to what humans do when they encounter an unfamiliar object and ask another person for its name. In ALMD, the detection of novel samples is dynamic and differs from traditional out-of-distribution (OOD) detection in that the set of in-distribution (ID) classes expands as new classes are learned during application, whereas ID classes is fixed in traditional OOD detection. Learning is also different from classic supervised learning because in ALMD, we learn the encountered new classes immediately and incrementally. It is difficult to retrain the model from scratch using all the past data from the ID classes and the novel samples from newly discovered classes, as this would be resource- and time-consuming. Apart from these two challenges, ALMD faces the data scarcity issue because instances of new classes often appear sporadically in real-life applications. To address these issues, we propose a novel method, PLDA, which performs dynamic OOD detection and incremental learning of new classes on the fly. Empirical evaluations will demonstrate the effectiveness of PLDA.
comment: Published at ECAI-2025
☆ HyperSearch: Prediction of New Hyperedges through Unconstrained yet Efficient Search IEEE
Higher-order interactions (HOIs) in complex systems, such as scientific collaborations, multi-protein complexes, and multi-user communications, are commonly modeled as hypergraphs, where each hyperedge (i.e., a subset of nodes) represents an HOI among the nodes. Given a hypergraph, hyperedge prediction aims to identify hyperedges that are either missing or likely to form in the future, and it has broad applications, including recommending interest-based social groups, predicting collaborations, and uncovering functional complexes in biological systems. However, the vast search space of hyperedge candidates (i.e., all possible subsets of nodes) poses a significant computational challenge, making naive exhaustive search infeasible. As a result, existing approaches rely on either heuristic sampling to obtain constrained candidate sets or ungrounded assumptions on hypergraph structure to select promising hyperedges. In this work, we propose HyperSearch, a search-based algorithm for hyperedge prediction that efficiently evaluates unconstrained candidate sets, by incorporating two key components: (1) an empirically grounded scoring function derived from observations in real-world hypergraphs and (2) an efficient search mechanism, where we derive and use an anti-monotonic upper bound of the original scoring function (which is not antimonotonic) to prune the search space. This pruning comes with theoretical guarantees, ensuring that discarded candidates are never better than the kept ones w.r.t. the original scoring function. In extensive experiments on 10 real-world hypergraphs across five domains, HyperSearch consistently outperforms state-of-the-art baselines, achieving higher accuracy in predicting new (i.e., not in the training set) hyperedges.
comment: IEEE International Conference on Data Mining (ICDM) 2025
☆ In-situ Autoguidance: Eliciting Self-Correction in Diffusion Models ICML 2025
The generation of high-quality, diverse, and prompt-aligned images is a central goal in image-generating diffusion models. The popular classifier-free guidance (CFG) approach improves quality and alignment at the cost of reduced variation, creating an inherent entanglement of these effects. Recent work has successfully disentangled these properties by guiding a model with a separately trained, inferior counterpart; however, this solution introduces the considerable overhead of requiring an auxiliary model. We challenge this prerequisite by introducing In-situ Autoguidance, a method that elicits guidance from the model itself without any auxiliary components. Our approach dynamically generates an inferior prediction on the fly using a stochastic forward pass, reframing guidance as a form of inference-time self-correction. We demonstrate that this zero-cost approach is not only viable but also establishes a powerful new baseline for cost-efficient guidance, proving that the benefits of self-guidance can be achieved without external models.
comment: 6 pages, 3 figures. ICML 2025 Workshop submission
☆ Do LLMs Recognize Your Latent Preferences? A Benchmark for Latent Information Discovery in Personalized Interaction
Large Language Models (LLMs) excel at producing broadly relevant text, but this generality becomes a limitation when user-specific preferences are required, such as recommending restaurants or planning travel. In these scenarios, users rarely articulate every preference explicitly; instead, much of what they care about remains latent, waiting to be inferred. This raises a fundamental question: Can LLMs uncover and reason about such latent information through conversation? We address this problem by introducing a unified benchmark for evaluating latent information discovery - the ability of LLMs to reveal and utilize hidden user attributes through multi-turn interaction. The benchmark spans three progressively realistic settings: the classic 20 Questions game, Personalized Question Answering, and Personalized Text Summarization. All tasks share a tri-agent framework (User, Assistant, Judge) enabling turn-level evaluation of elicitation and adaptation. Our results reveal that while LLMs can indeed surface latent information through dialogue, their success varies dramatically with context: from 32% to 98%, depending on task complexity, topic, and number of hidden attributes. This benchmark provides the first systematic framework for studying latent information discovery in personalized interaction, highlighting that effective preference inference remains an open frontier for building truly adaptive AI systems.
☆ Continuous Q-Score Matching: Diffusion Guided Reinforcement Learning for Continuous-Time Control
Reinforcement learning (RL) has achieved significant success across a wide range of domains, however, most existing methods are formulated in discrete time. In this work, we introduce a novel RL method for continuous-time control, where stochastic differential equations govern state-action dynamics. Departing from traditional value function-based approaches, our key contribution is the characterization of continuous-time Q-functions via a martingale condition and the linking of diffusion policy scores to the action gradient of a learned continuous Q-function by the dynamic programming principle. This insight motivates Continuous Q-Score Matching (CQSM), a score-based policy improvement algorithm. Notably, our method addresses a long-standing challenge in continuous-time RL: preserving the action-evaluation capability of Q-functions without relying on time discretization. We further provide theoretical closed-form solutions for linear-quadratic (LQ) control problems within our framework. Numerical results in simulated environments demonstrate the effectiveness of our proposed method and compare it to popular baselines.
☆ Matricial Free Energy as a Gaussianizing Regularizer: Enhancing Autoencoders for Gaussian Code Generation
We introduce a novel regularization scheme for autoencoders based on matricial free energy. Our approach defines a differentiable loss function in terms of the singular values of the code matrix (code dimension x batch size). From the standpoint of free probability an d random matrix theory, this loss achieves its minimum when the singular value distribution of the code matrix coincides with that of an appropriately sculpted random metric with i.i.d. Gaussian entries. Empirical simulations demonstrate that minimizing the negative matricial free energy through standard stochastic gradient-based training yields Gaussian-like codes that generalize across training and test sets. Building on this foundation, we propose a matricidal free energy maximizing autoencoder that reliably produces Gaussian codes and show its application to underdetermined inverse problems.
☆ Efficient Vision-Language-Action Models for Embodied Manipulation: A Systematic Survey
Vision-Language-Action (VLA) models extend vision-language models to embodied control by mapping natural-language instructions and visual observations to robot actions. Despite their capabilities, VLA systems face significant challenges due to their massive computational and memory demands, which conflict with the constraints of edge platforms such as on-board mobile manipulators that require real-time performance. Addressing this tension has become a central focus of recent research. In light of the growing efforts toward more efficient and scalable VLA systems, this survey provides a systematic review of approaches for improving VLA efficiency, with an emphasis on reducing latency, memory footprint, and training and inference costs. We categorize existing solutions into four dimensions: model architecture, perception feature, action generation, and training/inference strategies, summarizing representative techniques within each category. Finally, we discuss future trends and open challenges, highlighting directions for advancing efficient embodied intelligence.
☆ Verification-Aware Planning for Multi-Agent Systems
Large language model (LLM) agents are increasingly deployed to tackle complex tasks, often necessitating collaboration among multiple specialized agents. However, multi-agent collaboration introduces new challenges in planning, coordination, and verification. Execution failures frequently arise not from flawed reasoning alone, but from subtle misalignments in task interpretation, output format, or inter-agent handoffs. To address these challenges, we present VeriMAP, a framework for multi-agent collaboration with verification-aware planning. The VeriMAP planner decomposes tasks, models subtask dependencies, and encodes planner-defined passing criteria as subtask verification functions (VFs) in Python and natural language. We evaluate VeriMAP on diverse datasets, demonstrating that it outperforms both single- and multi-agent baselines while enhancing system robustness and interpretability. Our analysis highlights how verification-aware planning enables reliable coordination and iterative refinement in multi-agent systems, without relying on external labels or annotations.
comment: Submission for ARR Oct
☆ Fighter: Unveiling the Graph Convolutional Nature of Transformers in Time Series Modeling
Transformers have achieved remarkable success in time series modeling, yet their internal mechanisms remain opaque. This work demystifies the Transformer encoder by establishing its fundamental equivalence to a Graph Convolutional Network (GCN). We show that in the forward pass, the attention distribution matrix serves as a dynamic adjacency matrix, and its composition with subsequent transformations performs computations analogous to graph convolution. Moreover, we demonstrate that in the backward pass, the update dynamics of value and feed-forward projections mirror those of GCN parameters. Building on this unified theoretical reinterpretation, we propose \textbf{Fighter} (Flexible Graph Convolutional Transformer), a streamlined architecture that removes redundant linear projections and incorporates multi-hop graph aggregation. This perspective yields an explicit and interpretable representation of temporal dependencies across different scales, naturally expressed as graph edges. Experiments on standard forecasting benchmarks confirm that Fighter achieves competitive performance while providing clearer mechanistic interpretability of its predictions.
comment: Preprint
☆ Adapting to Stochastic and Adversarial Losses in Episodic MDPs with Aggregate Bandit Feedback
We study online learning in finite-horizon episodic Markov decision processes (MDPs) under the challenging aggregate bandit feedback model, where the learner observes only the cumulative loss incurred in each episode, rather than individual losses at each state-action pair. While prior work in this setting has focused exclusively on worst-case analysis, we initiate the study of best-of-both-worlds (BOBW) algorithms that achieve low regret in both stochastic and adversarial environments. We propose the first BOBW algorithms for episodic tabular MDPs with aggregate bandit feedback. In the case of known transitions, our algorithms achieve $O(\log T)$ regret in stochastic settings and ${O}(\sqrt{T})$ regret in adversarial ones. Importantly, we also establish matching lower bounds, showing the optimality of our algorithms in this setting. We further extend our approach to unknown-transition settings by incorporating confidence-based techniques. Our results rely on a combination of FTRL over occupancy measures, self-bounding techniques, and new loss estimators inspired by recent advances in online shortest path problems. Along the way, we also provide the first individual-gap-dependent lower bounds and demonstrate near-optimal BOBW algorithms for shortest path problems with bandit feedback.
comment: 49 pages
☆ On the Universal Near Optimality of Hedge in Combinatorial Settings
In this paper, we study the classical Hedge algorithm in combinatorial settings. In each round, the learner selects a vector $\boldsymbol{x}_t$ from a set $X \subseteq \{0,1\}^d$, observes a full loss vector $\boldsymbol{y}_t \in \mathbb{R}^d$, and incurs a loss $\langle \boldsymbol{x}_t, \boldsymbol{y}_t \rangle \in [-1,1]$. This setting captures several important problems, including extensive-form games, resource allocation, $m$-sets, online multitask learning, and shortest-path problems on directed acyclic graphs (DAGs). It is well known that Hedge achieves a regret of $O\big(\sqrt{T \log |X|}\big)$ after $T$ rounds of interaction. In this paper, we ask whether Hedge is optimal across all combinatorial settings. To that end, we show that for any $X \subseteq \{0,1\}^d$, Hedge is near-optimal--specifically, up to a $\sqrt{\log d}$ factor--by establishing a lower bound of $\Omega\big(\sqrt{T \log(|X|)/\log d}\big)$ that holds for any algorithm. We then identify a natural class of combinatorial sets--namely, $m$-sets with $\log d \leq m \leq \sqrt{d}$--for which this lower bound is tight, and for which Hedge is provably suboptimal by a factor of exactly $\sqrt{\log d}$. At the same time, we show that Hedge is optimal for online multitask learning, a generalization of the classical $K$-experts problem. Finally, we leverage the near-optimality of Hedge to establish the existence of a near-optimal regularizer for online shortest-path problems in DAGs--a setting that subsumes a broad range of combinatorial domains. Specifically, we show that the classical Online Mirror Descent (OMD) algorithm, when instantiated with the dilated entropy regularizer, is iterate-equivalent to Hedge, and therefore inherits its near-optimal regret guarantees for DAGs.
comment: 28 pages, 1 Figure
☆ Explainable Heterogeneous Anomaly Detection in Financial Networks via Adaptive Expert Routing
Financial anomalies exhibit heterogeneous mechanisms (price shocks, liquidity freezes, contagion cascades, regime shifts), but existing detectors treat all anomalies uniformly, producing scalar scores without revealing which mechanism is failing, where risks concentrate, or how to intervene. This opacity prevents targeted regulatory responses. Three unsolved challenges persist: (1) static graph structures cannot adapt when market correlations shift during regime changes; (2) uniform detection mechanisms miss type-specific signatures across multiple temporal scales while failing to integrate individual behaviors with network contagion; (3) black-box outputs provide no actionable guidance on anomaly mechanisms or their temporal evolution. We address these via adaptive graph learning with specialized expert networks that provide built-in interpretability. Our framework captures multi-scale temporal dependencies through BiLSTM with self-attention, fuses temporal and spatial information via cross-modal attention, learns dynamic graphs through neural multi-source interpolation, adaptively balances learned dynamics with structural priors via stress-modulated fusion, routes anomalies to four mechanism-specific experts, and produces dual-level interpretable attributions. Critically, interpretability is embedded architecturally rather than applied post-hoc. On 100 US equities (2017-2024), we achieve 92.3% detection of 13 major events with 3.8-day lead time, outperforming best baseline by 30.8pp. Silicon Valley Bank case study demonstrates anomaly evolution tracking: Price-Shock expert weight rose to 0.39 (33% above baseline 0.29) during closure, peaking at 0.48 (66% above baseline) one week later, revealing automatic temporal mechanism identification without labeled supervision.
☆ Data Reliability Scoring
How can we assess the reliability of a dataset without access to ground truth? We introduce the problem of reliability scoring for datasets collected from potentially strategic sources. The true data are unobserved, but we see outcomes of an unknown statistical experiment that depends on them. To benchmark reliability, we define ground-truth-based orderings that capture how much reported data deviate from the truth. We then propose the Gram determinant score, which measures the volume spanned by vectors describing the empirical distribution of the observed data and experiment outcomes. We show that this score preserves several ground-truth based reliability orderings and, uniquely up to scaling, yields the same reliability ranking of datasets regardless of the experiment -- a property we term experiment agnosticism. Experiments on synthetic noise models, CIFAR-10 embeddings, and real employment data demonstrate that the Gram determinant score effectively captures data quality across diverse observation processes.
comment: 39 pages, 5 figures
☆ DFNN: A Deep Fréchet Neural Network Framework for Learning Metric-Space-Valued Responses
Regression with non-Euclidean responses -- e.g., probability distributions, networks, symmetric positive-definite matrices, and compositions -- has become increasingly important in modern applications. In this paper, we propose deep Fr\'echet neural networks (DFNNs), an end-to-end deep learning framework for predicting non-Euclidean responses -- which are considered as random objects in a metric space -- from Euclidean predictors. Our method leverages the representation-learning power of deep neural networks (DNNs) to the task of approximating conditional Fr\'echet means of the response given the predictors, the metric-space analogue of conditional expectations, by minimizing a Fr\'echet risk. The framework is highly flexible, accommodating diverse metrics and high-dimensional predictors. We establish a universal approximation theorem for DFNNs, advancing the state-of-the-art of neural network approximation theory to general metric-space-valued responses without making model assumptions or relying on local smoothing. Empirical studies on synthetic distributional and network-valued responses, as well as a real-world application to predicting employment occupational compositions, demonstrate that DFNNs consistently outperform existing methods.
☆ Convergence of Regret Matching in Potential Games and Constrained Optimization
Regret matching (RM} -- and its modern variants -- is a foundational online algorithm that has been at the heart of many AI breakthrough results in solving benchmark zero-sum games, such as poker. Yet, surprisingly little is known so far in theory about its convergence beyond two-player zero-sum games. For example, whether regret matching converges to Nash equilibria in potential games has been an open problem for two decades. Even beyond games, one could try to use RM variants for general constrained optimization problems. Recent empirical evidence suggests that they -- particularly regret matching$^+$ (RM$^+$) -- attain strong performance on benchmark constrained optimization problems, outperforming traditional gradient descent-type algorithms. We show that alternating RM$^+$ converges to an $\epsilon$-KKT point after $O_\epsilon(1/\epsilon^4)$ iterations, establishing for the first time that it is a sound and fast first-order optimizer. Our argument relates the KKT gap to the accumulated regret, two quantities that are entirely disparate in general but interact in an intriguing way in our setting, so much so that when regrets are bounded, our complexity bound improves all the way to $O_\epsilon(1/\epsilon^2)$. From a technical standpoint, while RM$^+$ does not have the usual one-step improvement property in general, we show that it does in a certain region that the algorithm will quickly reach and remain in thereafter. In sharp contrast, our second main result establishes a lower bound: RM, with or without alternation, can take an exponential number of iterations to reach a crude approximate solution even in two-player potential games. This represents the first worst-case separation between RM and RM$^+$. Our lower bound shows that convergence to coarse correlated equilibria in potential games is exponentially faster than convergence to Nash equilibria.
☆ Mode Collapse of Mean-Field Variational Inference
Mean-field variational inference (MFVI) is a widely used method for approximating high-dimensional probability distributions by product measures. It has been empirically observed that MFVI optimizers often suffer from mode collapse. Specifically, when the target measure $\pi$ is a mixture $\pi = w P_0 + (1 - w) P_1$, the MFVI optimizer tends to place most of its mass near a single component of the mixture. This work provides the first theoretical explanation of mode collapse in MFVI. We introduce the notion to capture the separatedness of the two mixture components -- called $\varepsilon$-separateness -- and derive explicit bounds on the fraction of mass that any MFVI optimizer assigns to each component when $P_0$ and $P_1$ are $\varepsilon$-separated for sufficiently small $\varepsilon$. Our results suggest that the occurrence of mode collapse crucially depends on the relative position of the components. To address this issue, we propose the rotational variational inference (RoVI), which augments MFVI with a rotation matrix. The numerical studies support our theoretical findings and demonstrate the benefits of RoVI.
☆ Consistent Zero-Shot Imitation with Contrastive Goal Inference
In the same way that generative models today conduct most of their training in a self-supervised fashion, how can agentic models conduct their training in a self-supervised fashion, interactively exploring, learning, and preparing to quickly adapt to new tasks? A prerequisite for embodied agents deployed in real world interactions ought to be training with interaction, yet today's most successful AI models (e.g., VLMs, LLMs) are trained without an explicit notion of action. The problem of pure exploration (which assumes no data as input) is well studied in the reinforcement learning literature and provides agents with a wide array of experiences, yet it fails to prepare them for rapid adaptation to new tasks. Today's language and vision models are trained on data provided by humans, which provides a strong inductive bias for the sorts of tasks that the model will have to solve (e.g., modeling chords in a song, phrases in a sonnet, sentences in a medical record). However, when they are prompted to solve a new task, there is a faulty tacit assumption that humans spend most of their time in the most rewarding states. The key contribution of our paper is a method for pre-training interactive agents in a self-supervised fashion, so that they can instantly mimic human demonstrations. Our method treats goals (i.e., observations) as the atomic construct. During training, our method automatically proposes goals and practices reaching them, building off prior work in reinforcement learning exploration. During evaluation, our method solves an (amortized) inverse reinforcement learning problem to explain demonstrations as optimal goal-reaching behavior. Experiments on standard benchmarks (not designed for goal-reaching) show that our approach outperforms prior methods for zero-shot imitation.
☆ Bitwidth-Specific Logarithmic Arithmetic for Future Hardware-Accelerated Training
While advancements in quantization have significantly reduced the computational costs of inference in deep learning, training still predominantly relies on complex floating-point arithmetic. Low-precision fixed-point training presents a compelling alternative. This work introduces a novel enhancement in low-precision logarithmic fixed-point training, geared towards future hardware accelerator designs. We propose incorporating bitwidth in the design of approximations to arithmetic operations. To this end, we introduce a new hardware-friendly, piece-wise linear approximation for logarithmic addition. Using simulated annealing, we optimize this approximation at different precision levels. A C++ bit-true simulation demonstrates training of VGG-11 and VGG-16 models on CIFAR-100 and TinyImageNet, respectively, using 12-bit integer arithmetic with minimal accuracy degradation compared to 32-bit floating-point training. Our hardware study reveals up to 32.5% reduction in area and 53.5% reduction in energy consumption for the proposed LNS multiply-accumulate units compared to that of linear fixed-point equivalents.
☆ The Ends Justify the Thoughts: RL-Induced Motivated Reasoning in LLMs
The use of reinforcement learning (RL) with chain-of-thought (CoT) reasoning has emerged as a promising approach for developing more capable language models. In turn, this has led to investigation of CoT monitoring as a compelling method for detecting harmful behaviors such as reward hacking, under the assumption that models' reasoning processes reflect their internal decision-making. In practice, LLM training often produces unintended behaviors due to imperfect reward signals, leading models to develop misaligned tendencies. A common corrective approach is to apply post-hoc instructions to avoid problematic behaviors like sycophancy, but what happens to the model's reasoning process when these instructions conflict with learned behaviors? We investigate this question in simple settings and find that models engage in systematic motivated reasoning -- generating plausible-sounding justifications for violating their instructions while downplaying potential harms. Beyond being an interesting property of training, we find that while motivated reasoning can be detected by most frontier reasoning models, smaller LLM judges can fail to identify a portion of it, and in rare cases can themselves be persuaded that the reasoning is correct, despite it contradicting clear instructions. This capability gap raises concerns that as models become more sophisticated, their motivated reasoning may become increasingly difficult for monitors to detect. Our results underscore the need to account for motivated reasoning when relying on chain-of-thought processes for model evaluation and oversight. All code for this paper will be made available. WARNING: some examples in this paper may be upsetting.
comment: 26 pages
☆ Frugal Federated Learning for Violence Detection: A Comparison of LoRA-Tuned VLMs and Personalized CNNs
We examine frugal federated learning approaches to violence detection by comparing two complementary strategies: (i) zero-shot and federated fine-tuning of vision-language models (VLMs), and (ii) personalized training of a compact 3D convolutional neural network (CNN3D). Using LLaVA-7B and a 65.8M parameter CNN3D as representative cases, we evaluate accuracy, calibration, and energy usage under realistic non-IID settings. Both approaches exceed 90% accuracy. CNN3D slightly outperforms Low-Rank Adaptation(LoRA)-tuned VLMs in ROC AUC and log loss, while using less energy. VLMs remain favorable for contextual reasoning and multimodal inference. We quantify energy and CO$_2$ emissions across training and inference, and analyze sustainability trade-offs for deployment. To our knowledge, this is the first comparative study of LoRA-tuned vision-language models and personalized CNNs for federated violence detection, with an emphasis on energy efficiency and environmental metrics. These findings support a hybrid model: lightweight CNNs for routine classification, with selective VLM activation for complex or descriptive scenarios. The resulting framework offers a reproducible baseline for responsible, resource-aware AI in video surveillance, with extensions toward real-time, multimodal, and lifecycle-aware systems.
comment: 7 pages, 1 figure, FLTA 2025
☆ Local Coherence or Global Validity? Investigating RLVR Traces in Math Domains
Reinforcement Learning with Verifiable Rewards (RLVR)-based post-training of Large Language Models (LLMs) has been shown to improve accuracy on reasoning tasks and continues to attract significant attention. Existing RLVR methods, however, typically treat all tokens uniformly without accounting for token-level advantages. These methods primarily evaluate performance based on final answer correctness or Pass@K accuracy, and yet make claims about RL post-training leading to improved reasoning traces. This motivates our investigation into the effect of RL post-training on intermediate tokens which are not directly incentivized. To study this, we design an experimental setup using the GRPO algorithm with Qwen-2.5-0.5B model on the GSM8K dataset. We introduce trace coherence, a First-Order Logic (FOL)-based measure to capture the consistency of reasoning steps by identifying errors in the traces. We distinguish between trace validity and trace coherence, noting that the former implies logical soundness while the latter measures local coherence via lack of errors. Our results show that RL post-training overall improves trace coherence with the most significant gains on problems where the base model fails but the RL model succeeds. Surprisingly, RL enhances local coherence without necessarily producing valid or correct solutions. This highlights a crucial distinction: improved local coherence in reasoning steps does not guarantee final answer correctness. We argue that claims of improved reasoning via RL must be examined with care, as these may be based on improved trace coherence, which may not translate into fully valid mathematical proofs.
comment: 4 pages, 2 figures
☆ AgentChangeBench: A Multi-Dimensional Evaluation Framework for Goal-Shift Robustness in Conversational AI NeurIPS 2025
Goal changes are a defining feature of real world multi-turn interactions, yet current agent benchmarks primarily evaluate static objectives or one-shot tool use. We introduce AgentChangeBench, a benchmark explicitly designed to measure how tool augmented language model agents adapt to mid dialogue goal shifts across three enterprise domains. Our framework formalizes evaluation through four complementary metrics: Task Success Rate (TSR) for effectiveness, Tool Use Efficiency (TUE) for reliability, Tool Call Redundancy Rate (TCRR) for wasted effort, and Goal-Shift Recovery Time (GSRT) for adaptation latency. AgentChangeBench comprises 2,835 task sequences and five user personas, each designed to trigger realistic shift points in ongoing workflows. Using this setup, we evaluate several frontier models and uncover sharp contrasts obscured by traditional $\text{pass}@k$ scores: for example, GPT-4o reaches $92.2\%$ recovery on airline booking shifts while Gemini collapses to $48.6\%$, and retail tasks show near perfect parameter validity yet redundancy rates above $80\%$, revealing major inefficiencies. These findings demonstrate that high raw accuracy does not imply robustness under dynamic goals, and that explicit measurement of recovery time and redundancy is essential. AgentChangeBench establishes a reproducible testbed for diagnosing and improving agent resilience in realistic enterprise settings.
comment: Accepted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Multi-Turn Interactions in Large Language Models
☆ Saber: An Efficient Sampling with Adaptive Acceleration and Backtracking Enhanced Remasking for Diffusion Language Model
Diffusion language models (DLMs) are emerging as a powerful and promising alternative to the dominant autoregressive paradigm, offering inherent advantages in parallel generation and bidirectional context modeling. However, the performance of DLMs on code generation tasks, which have stronger structural constraints, is significantly hampered by the critical trade-off between inference speed and output quality. We observed that accelerating the code generation process by reducing the number of sampling steps usually leads to a catastrophic collapse in performance. In this paper, we introduce efficient Sampling with Adaptive acceleration and Backtracking Enhanced Remasking (i.e., Saber), a novel training-free sampling algorithm for DLMs to achieve better inference speed and output quality in code generation. Specifically, Saber is motivated by two key insights in the DLM generation process: 1) it can be adaptively accelerated as more of the code context is established; 2) it requires a backtracking mechanism to reverse the generated tokens. Extensive experiments on multiple mainstream code generation benchmarks show that Saber boosts Pass@1 accuracy by an average improvement of 1.9% over mainstream DLM sampling methods, meanwhile achieving an average 251.4% inference speedup. By leveraging the inherent advantages of DLMs, our work significantly narrows the performance gap with autoregressive models in code generation.
☆ Beating the Winner's Curse via Inference-Aware Policy Optimization
There has been a surge of recent interest in automatically learning policies to target treatment decisions based on rich individual covariates. A common approach is to train a machine learning model to predict counterfactual outcomes, and then select the policy that optimizes the predicted objective value. In addition, practitioners also want confidence that the learned policy has better performance than the incumbent policy according to downstream policy evaluation. However, due to the winner's curse-an issue where the policy optimization procedure exploits prediction errors rather than finding actual improvements-predicted performance improvements are often not substantiated by downstream policy optimization. To address this challenge, we propose a novel strategy called inference-aware policy optimization, which modifies policy optimization to account for how the policy will be evaluated downstream. Specifically, it optimizes not only for the estimated objective value, but also for the chances that the policy will be statistically significantly better than the observational policy used to collect data. We mathematically characterize the Pareto frontier of policies according to the tradeoff of these two goals. Based on our characterization, we design a policy optimization algorithm that uses machine learning to predict counterfactual outcomes, and then plugs in these predictions to estimate the Pareto frontier; then, the decision-maker can select the policy that optimizes their desired tradeoff, after which policy evaluation can be performed on the test set as usual. Finally, we perform simulations to illustrate the effectiveness of our methodology.
☆ Extracting Rule-based Descriptions of Attention Features in Transformers
Mechanistic interpretability strives to explain model behavior in terms of bottom-up primitives. The leading paradigm is to express hidden states as a sparse linear combination of basis vectors, called features. However, this only identifies which text sequences (exemplars) activate which features; the actual interpretation of features requires subjective inspection of these exemplars. This paper advocates for a different solution: rule-based descriptions that match token patterns in the input and correspondingly increase or decrease the likelihood of specific output tokens. Specifically, we extract rule-based descriptions of SAE features trained on the outputs of attention layers. While prior work treats the attention layers as an opaque box, we describe how it may naturally be expressed in terms of interactions between input and output features, of which we study three types: (1) skip-gram rules of the form "[Canadian city]... speaks --> English", (2) absence rules of the form "[Montreal]... speaks -/-> English," and (3) counting rules that toggle only when the count of a word exceeds a certain value or the count of another word. Absence and counting rules are not readily discovered by inspection of exemplars, where manual and automatic descriptions often identify misleading or incomplete explanations. We then describe a simple approach to extract these types of rules automatically from a transformer, and apply it to GPT-2 small. We find that a majority of features may be described well with around 100 skip-gram rules, though absence rules are abundant even as early as the first layer (in over a fourth of features). We also isolate a few examples of counting rules. This paper lays the groundwork for future research into rule-based descriptions of features by defining them, showing how they may be extracted, and providing a preliminary taxonomy of some of the behaviors they represent.
comment: Our code is available at https://github.com/princeton-nlp/AttentionRules
☆ Learning from Generalization Patterns: An Evaluation-Driven Approach to Enhanced Data Augmentation for Fine-Tuning Small Language Models NeurIPS 2025
Small Language Models (SLMs) offer compelling advantages in deployment cost and latency, but their accuracy often lags behind larger models, particularly for complex domain-specific tasks. While supervised fine-tuning can help bridge this performance gap, it requires substantial manual effort in data preparation and iterative optimization. We present PaDA-Agent (Pattern-guided Data Augmentation Agent), an evaluation-driven approach that streamlines the data augmentation process for SLMs through coordinated operations. Unlike state-of-the-art approaches that focus on model training errors only and generating error-correcting samples, PaDA-Agent discovers failure patterns from the validation data via evaluations and drafts targeted data augmentation strategies aiming to directly reduce the generalization gap. Our experimental results demonstrate significant improvements over state-of-the-art LLM-based data augmentation approaches for Llama 3.2 1B Instruct model fine-tuning.
comment: Neural Information Processing Systems (NeurIPS 2025) Workshop: Evaluating the Evolving LLM Lifecycle
☆ Rethinking PCA Through Duality NeurIPS 2025
Motivated by the recently shown connection between self-attention and (kernel) principal component analysis (PCA), we revisit the fundamentals of PCA. Using the difference-of-convex (DC) framework, we present several novel formulations and provide new theoretical insights. In particular, we show the kernelizability and out-of-sample applicability for a PCA-like family of problems. Moreover, we uncover that simultaneous iteration, which is connected to the classical QR algorithm, is an instance of the difference-of-convex algorithm (DCA), offering an optimization perspective on this longstanding method. Further, we describe new algorithms for PCA and empirically compare them with state-of-the-art methods. Lastly, we introduce a kernelizable dual formulation for a robust variant of PCA that minimizes the $l_1$ deviation of the reconstruction errors.
comment: NeurIPS 2025 poster
☆ HyperDiffusionFields (HyDiF): Diffusion-Guided Hypernetworks for Learning Implicit Molecular Neural Fields
We introduce HyperDiffusionFields (HyDiF), a framework that models 3D molecular conformers as continuous fields rather than discrete atomic coordinates or graphs. At the core of our approach is the Molecular Directional Field (MDF), a vector field that maps any point in space to the direction of the nearest atom of a particular type. We represent MDFs using molecule-specific neural implicit fields, which we call Molecular Neural Fields (MNFs). To enable learning across molecules and facilitate generalization, we adopt an approach where a shared hypernetwork, conditioned on a molecule, generates the weights of the given molecule's MNF. To endow the model with generative capabilities, we train the hypernetwork as a denoising diffusion model, enabling sampling in the function space of molecular fields. Our design naturally extends to a masked diffusion mechanism to support structure-conditioned generation tasks, such as molecular inpainting, by selectively noising regions of the field. Beyond generation, the localized and continuous nature of MDFs enables spatially fine-grained feature extraction for molecular property prediction, something not easily achievable with graph or point cloud based methods. Furthermore, we demonstrate that our approach scales to larger biomolecules, illustrating a promising direction for field-based molecular modeling.
☆ Efficient Long-context Language Model Training by Core Attention Disaggregation
We present core attention disaggregation (CAD), a technique that improves long-context large language model training by decoupling the core attention computation, softmax(QK^T)V, from the rest of the model and executing it on a separate pool of devices. In existing systems, core attention is colocated with other layers; at long context lengths, its quadratic compute growth compared to the near-linear growth of other components causes load imbalance and stragglers across data and pipeline parallel groups. CAD is enabled by two observations. First, core attention is stateless: it has no trainable parameters and only minimal transient data, so balancing reduces to scheduling compute-bound tasks. Second, it is composable: modern attention kernels retain high efficiency when processing fused batches of token-level shards with arbitrary lengths. CAD partitions core attention into token-level tasks and dispatches them to dedicated attention servers, which dynamically rebatch tasks to equalize compute without sacrificing kernel efficiency. We implement CAD in a system called DistCA, which uses a ping-pong execution scheme to fully overlap communication with computation and in-place execution on attention servers to reduce memory use. On 512 H200 GPUs and context lengths up to 512k tokens, DistCA improves end-to-end training throughput by up to 1.35x, eliminates data and pipeline parallel stragglers, and achieves near-perfect compute and memory balance.
☆ Generalization Below the Edge of Stability: The Role of Data Geometry
Understanding generalization in overparameterized neural networks hinges on the interplay between the data geometry, neural architecture, and training dynamics. In this paper, we theoretically explore how data geometry controls this implicit bias. This paper presents theoretical results for overparameterized two-layer ReLU networks trained below the edge of stability. First, for data distributions supported on a mixture of low-dimensional balls, we derive generalization bounds that provably adapt to the intrinsic dimension. Second, for a family of isotropic distributions that vary in how strongly probability mass concentrates toward the unit sphere, we derive a spectrum of bounds showing that rates deteriorate as the mass concentrates toward the sphere. These results instantiate a unifying principle: When the data is harder to "shatter" with respect to the activation thresholds of the ReLU neurons, gradient descent tends to learn representations that capture shared patterns and thus finds solutions that generalize well. On the other hand, for data that is easily shattered (e.g., data supported on the sphere) gradient descent favors memorization. Our theoretical results consolidate disparate empirical findings that have appeared in the literature.
comment: Under Review. Comments welcome!
☆ Gradient Variance Reveals Failure Modes in Flow-Based Generative Models NeurIPS 2025
Rectified Flows learn ODE vector fields whose trajectories are straight between source and target distributions, enabling near one-step inference. We show that this straight-path objective conceals fundamental failure modes: under deterministic training, low gradient variance drives memorization of arbitrary training pairings, even when interpolant lines between pairs intersect. To analyze this mechanism, we study Gaussian-to-Gaussian transport and use the loss gradient variance across stochastic and deterministic regimes to characterize which vector fields optimization favors in each setting. We then show that, in a setting where all interpolating lines intersect, applying Rectified Flow yields the same specific pairings at inference as during training. More generally, we prove that a memorizing vector field exists even when training interpolants intersect, and that optimizing the straight-path objective converges to this ill-defined field. At inference, deterministic integration reproduces the exact training pairings. We validate our findings empirically on the CelebA dataset, confirming that deterministic interpolants induce memorization, while the injection of small noise restores generalization.
comment: 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
☆ Latent Discrete Diffusion Models
We study discrete diffusion for language and other categorical data and focus on a common limitation of masked denoisers: reverse transitions typically factorize across positions, which can weaken joint structure and degrade quality in few-step generation. We propose \emph{Latent Discrete Diffusion Models} (LDDMs), which couple a masked discrete diffusion over tokens with a continuous diffusion over latent embeddings. The latent channel provides a softer signal and carries cross-token dependencies that help resolve ambiguities. We present two instantiations: (i) FUJI-LDDMs, which perform fully joint denoising of tokens and latents, and (ii) SEQ-LDDMs, which sequentially resolve the latent and then the discrete chain conditionally on it. For both variants we derive ELBO-style objectives and discuss design choices to learn informative latents yet amenable to diffusoin modeling. In experiments, LDDMs yield improvements on unconditional generation metrics as compared to state-of-the-art masked discrete diffusion baselines, and are effective at lower sampling budgets, where unmasking many tokens per step is desirable.
☆ PrivaDE: Privacy-preserving Data Evaluation for Blockchain-based Data Marketplaces
Evaluating the relevance of data is a critical task for model builders seeking to acquire datasets that enhance model performance. Ideally, such evaluation should allow the model builder to assess the utility of candidate data without exposing proprietary details of the model. At the same time, data providers must be assured that no information about their data - beyond the computed utility score - is disclosed to the model builder. In this paper, we present PrivaDE, a cryptographic protocol for privacy-preserving utility scoring and selection of data for machine learning. While prior works have proposed data evaluation protocols, our approach advances the state of the art through a practical, blockchain-centric design. Leveraging the trustless nature of blockchains, PrivaDE enforces malicious-security guarantees and ensures strong privacy protection for both models and datasets. To achieve efficiency, we integrate several techniques - including model distillation, model splitting, and cut-and-choose zero-knowledge proofs - bringing the runtime to a practical level. Furthermore, we propose a unified utility scoring function that combines empirical loss, predictive entropy, and feature-space diversity, and that can be seamlessly integrated into active-learning workflows. Evaluation shows that PrivaDE performs data evaluation effectively, achieving online runtimes within 15 minutes even for models with millions of parameters. Our work lays the foundation for fair and automated data marketplaces in decentralized machine learning ecosystems.
☆ From AutoRecSys to AutoRecLab: A Call to Build, Evaluate, and Govern Autonomous Recommender-Systems Research Labs
Recommender-systems research has accelerated model and evaluation advances, yet largely neglects automating the research process itself. We argue for a shift from narrow AutoRecSys tools -- focused on algorithm selection and hyper-parameter tuning -- to an Autonomous Recommender-Systems Research Lab (AutoRecLab) that integrates end-to-end automation: problem ideation, literature analysis, experimental design and execution, result interpretation, manuscript drafting, and provenance logging. Drawing on recent progress in automated science (e.g., multi-agent AI Scientist and AI Co-Scientist systems), we outline an agenda for the RecSys community: (1) build open AutoRecLab prototypes that combine LLM-driven ideation and reporting with automated experimentation; (2) establish benchmarks and competitions that evaluate agents on producing reproducible RecSys findings with minimal human input; (3) create review venues for transparently AI-generated submissions; (4) define standards for attribution and reproducibility via detailed research logs and metadata; and (5) foster interdisciplinary dialogue on ethics, governance, privacy, and fairness in autonomous research. Advancing this agenda can increase research throughput, surface non-obvious insights, and position RecSys to contribute to emerging Artificial Research Intelligence. We conclude with a call to organise a community retreat to coordinate next steps and co-author guidance for the responsible integration of automated research systems.
☆ Enhancing mortality prediction in cardiac arrest ICU patients through meta-modeling of structured clinical data from MIMIC-IV
Accurate early prediction of in-hospital mortality in intensive care units (ICUs) is essential for timely clinical intervention and efficient resource allocation. This study develops and evaluates machine learning models that integrate both structured clinical data and unstructured textual information, specifically discharge summaries and radiology reports, from the MIMIC-IV database. We used LASSO and XGBoost for feature selection, followed by a multivariate logistic regression trained on the top features identified by both models. Incorporating textual features using TF-IDF and BERT embeddings significantly improved predictive performance. The final logistic regression model, which combined structured and textual input, achieved an AUC of 0.918, compared to 0.753 when using structured data alone, a relative improvement 22%. The analysis of the decision curve demonstrated a superior standardized net benefit in a wide range of threshold probabilities (0.2-0.8), confirming the clinical utility of the model. These results underscore the added prognostic value of unstructured clinical notes and support their integration into interpretable feature-driven risk prediction models for ICU patients.
comment: 38 pages, 5 figures, 2 tables, 3 appendices
☆ Accelerating Vision Transformers with Adaptive Patch Sizes
Vision Transformers (ViTs) partition input images into uniformly sized patches regardless of their content, resulting in long input sequence lengths for high-resolution images. We present Adaptive Patch Transformers (APT), which addresses this by using multiple different patch sizes within the same image. APT reduces the total number of input tokens by allocating larger patch sizes in more homogeneous areas and smaller patches in more complex ones. APT achieves a drastic speedup in ViT inference and training, increasing throughput by 40% on ViT-L and 50% on ViT-H while maintaining downstream performance, and can be applied to a previously fine-tuned ViT, converging in as little as 1 epoch. It also significantly reduces training and inference time without loss of performance in high-resolution dense visual tasks, achieving up to 30\% faster training and inference in visual QA, object detection, and semantic segmentation.
comment: Project page at https://rccchoudhury.github.io/apt/
☆ Provably Optimal Reinforcement Learning under Safety Filtering
Recent advances in reinforcement learning (RL) enable its use on increasingly complex tasks, but the lack of formal safety guarantees still limits its application in safety-critical settings. A common practical approach is to augment the RL policy with a safety filter that overrides unsafe actions to prevent failures during both training and deployment. However, safety filtering is often perceived as sacrificing performance and hindering the learning process. We show that this perceived safety-performance tradeoff is not inherent and prove, for the first time, that enforcing safety with a sufficiently permissive safety filter does not degrade asymptotic performance. We formalize RL safety with a safety-critical Markov decision process (SC-MDP), which requires categorical, rather than high-probability, avoidance of catastrophic failure states. Additionally, we define an associated filtered MDP in which all actions result in safe effects, thanks to a safety filter that is considered to be a part of the environment. Our main theorem establishes that (i) learning in the filtered MDP is safe categorically, (ii) standard RL convergence carries over to the filtered MDP, and (iii) any policy that is optimal in the filtered MDP-when executed through the same filter-achieves the same asymptotic return as the best safe policy in the SC-MDP, yielding a complete separation between safety enforcement and performance optimization. We validate the theory on Safety Gymnasium with representative tasks and constraints, observing zero violations during training and final performance matching or exceeding unfiltered baselines. Together, these results shed light on a long-standing question in safety-filtered learning and provide a simple, principled recipe for safe RL: train and deploy RL policies with the most permissive safety filter that is available.
comment: 17 pages, 3 figures
☆ Any-Depth Alignment: Unlocking Innate Safety Alignment of LLMs to Any-Depth
Large Language Models (LLMs) exhibit strong but shallow alignment: they directly refuse harmful queries when a refusal is expected at the very start of an assistant turn, yet this protection collapses once a harmful continuation is underway (either through the adversarial attacks or via harmful assistant-prefill attacks). This raises a fundamental question: Can the innate shallow alignment in LLMs be unlocked to ensure safety at arbitrary generation depths? To achieve this goal, we propose Any-Depth Alignment (ADA), an effective inference-time defense with negligible overhead. ADA is built based on our observation that alignment is concentrated in the assistant header tokens through repeated use in shallow-refusal training, and these tokens possess the model's strong alignment priors. By reintroducing these tokens mid-stream, ADA induces the model to reassess harmfulness and recover refusals at any point in generation. Across diverse open-source model families (Llama, Gemma, Mistral, Qwen, DeepSeek, and gpt-oss), ADA achieves robust safety performance without requiring any changes to the base model's parameters. It secures a near-100% refusal rate against challenging adversarial prefill attacks ranging from dozens to thousands of tokens. Furthermore, ADA reduces the average success rate of prominent adversarial prompt attacks (such as GCG, AutoDAN, PAIR, and TAP) to below 3%. This is all accomplished while preserving utility on benign tasks with minimal over-refusal. ADA maintains this resilience even after the base model undergoes subsequent instruction tuning (benign or adversarial).
☆ MEG-GPT: A transformer-based foundation model for magnetoencephalography data
Modelling the complex spatiotemporal patterns of large-scale brain dynamics is crucial for neuroscience, but traditional methods fail to capture the rich structure in modalities such as magnetoencephalography (MEG). Recent advances in deep learning have enabled significant progress in other domains, such as language and vision, by using foundation models at scale. Here, we introduce MEG-GPT, a transformer based foundation model that uses time-attention and next time-point prediction. To facilitate this, we also introduce a novel data-driven tokeniser for continuous MEG data, which preserves the high temporal resolution of continuous MEG signals without lossy transformations. We trained MEG-GPT on tokenised brain region time-courses extracted from a large-scale MEG dataset (N=612, eyes-closed rest, Cam-CAN data), and show that the learnt model can generate data with realistic spatio-spectral properties, including transient events and population variability. Critically, it performs well in downstream decoding tasks, improving downstream supervised prediction task, showing improved zero-shot generalisation across sessions (improving accuracy from 0.54 to 0.59) and subjects (improving accuracy from 0.41 to 0.49) compared to a baseline methods. Furthermore, we show the model can be efficiently fine-tuned on a smaller labelled dataset to boost performance in cross-subject decoding scenarios. This work establishes a powerful foundation model for electrophysiological data, paving the way for applications in computational neuroscience and neural decoding.
☆ Batch Distillation Data for Developing Machine Learning Anomaly Detection Methods
Machine learning (ML) holds great potential to advance anomaly detection (AD) in chemical processes. However, the development of ML-based methods is hindered by the lack of openly available experimental data. To address this gap, we have set up a laboratory-scale batch distillation plant and operated it to generate an extensive experimental database, covering fault-free experiments and experiments in which anomalies were intentionally induced, for training advanced ML-based AD methods. In total, 119 experiments were conducted across a wide range of operating conditions and mixtures. Most experiments containing anomalies were paired with a corresponding fault-free one. The database that we provide here includes time-series data from numerous sensors and actuators, along with estimates of measurement uncertainty. In addition, unconventional data sources -- such as concentration profiles obtained via online benchtop NMR spectroscopy and video and audio recordings -- are provided. Extensive metadata and expert annotations of all experiments are included. The anomaly annotations are based on an ontology developed in this work. The data are organized in a structured database and made freely available via doi.org/10.5281/zenodo.17395544. This new database paves the way for the development of advanced ML-based AD methods. As it includes information on the causes of anomalies, it further enables the development of interpretable and explainable ML approaches, as well as methods for anomaly mitigation.
☆ R2L: Reliable Reinforcement Learning: Guaranteed Return & Reliable Policies in Reinforcement Learning
In this work, we address the problem of determining reliable policies in reinforcement learning (RL), with a focus on optimization under uncertainty and the need for performance guarantees. While classical RL algorithms aim at maximizing the expected return, many real-world applications - such as routing, resource allocation, or sequential decision-making under risk - require strategies that ensure not only high average performance but also a guaranteed probability of success. To this end, we propose a novel formulation in which the objective is to maximize the probability that the cumulative return exceeds a prescribed threshold. We demonstrate that this reliable RL problem can be reformulated, via a state-augmented representation, into a standard RL problem, thereby allowing the use of existing RL and deep RL algorithms without the need for entirely new algorithmic frameworks. Theoretical results establish the equivalence of the two formulations and show that reliable strategies can be derived by appropriately adapting well-known methods such as Q-learning or Dueling Double DQN. To illustrate the practical relevance of the approach, we consider the problem of reliable routing, where the goal is not to minimize the expected travel time but rather to maximize the probability of reaching the destination within a given time budget. Numerical experiments confirm that the proposed formulation leads to policies that effectively balance efficiency and reliability, highlighting the potential of reliable RL for applications in stochastic and safety-critical environments.
comment: 27 pages
☆ Fine-tuning Flow Matching Generative Models with Intermediate Feedback
Flow-based generative models have shown remarkable success in text-to-image generation, yet fine-tuning them with intermediate feedback remains challenging, especially for continuous-time flow matching models. Most existing approaches solely learn from outcome rewards, struggling with the credit assignment problem. Alternative methods that attempt to learn a critic via direct regression on cumulative rewards often face training instabilities and model collapse in online settings. We present AC-Flow, a robust actor-critic framework that addresses these challenges through three key innovations: (1) reward shaping that provides well-normalized learning signals to enable stable intermediate value learning and gradient control, (2) a novel dual-stability mechanism that combines advantage clipping to prevent destructive policy updates with a warm-up phase that allows the critic to mature before influencing the actor, and (3) a scalable generalized critic weighting scheme that extends traditional reward-weighted methods while preserving model diversity through Wasserstein regularization. Through extensive experiments on Stable Diffusion 3, we demonstrate that AC-Flow achieves state-of-the-art performance in text-to-image alignment tasks and generalization to unseen human preference models. Our results demonstrate that even with a computationally efficient critic model, we can robustly finetune flow models without compromising generative quality, diversity, or stability.
☆ Arbitrated Indirect Treatment Comparisons
Matching-adjusted indirect comparison (MAIC) has been increasingly employed in health technology assessments (HTA). By reweighting subjects from a trial with individual participant data (IPD) to match the covariate summary statistics of another trial with only aggregate data (AgD), MAIC facilitates the estimation of a treatment effect defined with respect to the AgD trial population. This manuscript introduces a new class of methods, termed arbitrated indirect treatment comparisons, designed to address the ``MAIC paradox'' -- a phenomenon highlighted by Jiang et al.~(2025). The MAIC paradox arises when different sponsors, analyzing the same data, reach conflicting conclusions regarding which treatment is more effective. The underlying issue is that each sponsor implicitly targets a different population. To resolve this inconsistency, the proposed methods focus on estimating treatment effects in a common target population, specifically chosen to be the overlap population.
☆ SPACeR: Self-Play Anchoring with Centralized Reference Models
Developing autonomous vehicles (AVs) requires not only safety and efficiency, but also realistic, human-like behaviors that are socially aware and predictable. Achieving this requires sim agent policies that are human-like, fast, and scalable in multi-agent settings. Recent progress in imitation learning with large diffusion-based or tokenized models has shown that behaviors can be captured directly from human driving data, producing realistic policies. However, these models are computationally expensive, slow during inference, and struggle to adapt in reactive, closed-loop scenarios. In contrast, self-play reinforcement learning (RL) scales efficiently and naturally captures multi-agent interactions, but it often relies on heuristics and reward shaping, and the resulting policies can diverge from human norms. We propose SPACeR, a framework that leverages a pretrained tokenized autoregressive motion model as a centralized reference policy to guide decentralized self-play. The reference model provides likelihood rewards and KL divergence, anchoring policies to the human driving distribution while preserving RL scalability. Evaluated on the Waymo Sim Agents Challenge, our method achieves competitive performance with imitation-learned policies while being up to 10x faster at inference and 50x smaller in parameter size than large generative models. In addition, we demonstrate in closed-loop ego planning evaluation tasks that our sim agents can effectively measure planner quality with fast and scalable traffic simulation, establishing a new paradigm for testing autonomous driving policies.
comment: Project page: https://spacer-ai.github.io/
☆ Fast Agnostic Learners in the Plane
We investigate the computational efficiency of agnostic learning for several fundamental geometric concept classes in the plane. While the sample complexity of agnostic learning is well understood, its time complexity has received much less attention. We study the class of triangles and, more generally, the class of convex polygons with $k$ vertices for small $k$, as well as the class of convex sets in a square. We present a proper agnostic learner for the class of triangles that has optimal sample complexity and runs in time $\tilde O({\epsilon^{-6}})$, improving on the algorithm of Dobkin and Gunopulos (COLT `95) that runs in time $\tilde O({\epsilon^{-10}})$. For 4-gons and 5-gons, we improve the running time from $O({\epsilon^{-12}})$, achieved by Fischer and Kwek (eCOLT `96), to $\tilde O({\epsilon^{-8}})$ and $\tilde O({\epsilon^{-10}})$, respectively. We also design a proper agnostic learner for convex sets under the uniform distribution over a square with running time $\tilde O({\epsilon^{-5}})$, improving on the previous $\tilde O(\epsilon^{-8})$ bound at the cost of slightly higher sample complexity. Notably, agnostic learning of convex sets in $[0,1]^2$ under general distributions is impossible because this concept class has infinite VC-dimension. Our agnostic learners use data structures and algorithms from computational geometry and their analysis relies on tools from geometry and probabilistic combinatorics. Because our learners are proper, they yield tolerant property testers with matching running times. Our results raise a fundamental question of whether a gap between the sample and time complexity is inherent for agnostic learning of these and other natural concept classes.
☆ Adaptive Divergence Regularized Policy Optimization for Fine-tuning Generative Models
Balancing exploration and exploitation during reinforcement learning fine-tuning of generative models presents a critical challenge, as existing approaches rely on fixed divergence regularization that creates an inherent dilemma: strong regularization preserves model capabilities but limits reward optimization, while weak regularization enables greater alignment but risks instability or reward hacking. We introduce Adaptive Divergence Regularized Policy Optimization (ADRPO), which automatically adjusts regularization strength based on advantage estimates-reducing regularization for high-value samples while applying stronger regularization to poor samples, enabling policies to navigate between exploration and aggressive exploitation according to data quality. Our implementation with Wasserstein-2 regularization for flow matching generative models achieves remarkable results on text-to-image generation, achieving better semantic alignment and diversity than offline methods like DPO and online methods with fixed regularization like ORW-CFM-W2. ADRPO enables a 2B parameter SD3 model to surpass much larger models with 4.8B and 12B parameters in attribute binding, semantic consistency, artistic style transfer, and compositional control while maintaining generation diversity. ADRPO generalizes to KL-regularized fine-tuning of both text-only LLMs and multi-modal reasoning models, enhancing existing online RL methods like GRPO. In LLM fine-tuning, ADRPO demonstrates an emergent ability to escape local optima through active exploration, while in multi-modal audio reasoning, it outperforms GRPO through superior step-by-step reasoning, enabling a 7B model to outperform substantially larger commercial models including Gemini 2.5 Pro and GPT-4o Audio, offering an effective plug-and-play solution to the exploration-exploitation challenge across diverse generative architectures and modalities.
comment: 30 pages
☆ Cross-Domain Long-Term Forecasting: Radiation Dose from Sparse Neutron Sensor via Spatio-Temporal Operator Network
Forecasting unobservable physical quantities from sparse, cross-domain sensor data is a central unsolved problem in scientific machine learning. Existing neural operators and large-scale forecasters rely on dense, co-located input-output fields and short temporal contexts, assumptions that fail in real-world systems where sensing and prediction occur on distinct physical manifolds and over long timescales. We introduce the Spatio-Temporal Operator Network (STONe), a non-autoregressive neural operator that learns a stable functional mapping between heterogeneous domains. By directly inferring high-altitude radiation dose fields from sparse ground-based neutron measurements, STONe demonstrates that operator learning can generalize beyond shared-domain settings. It defines a nonlinear operator between sensor and target manifolds that remains stable over long forecasting horizons without iterative recurrence. This challenges the conventional view that operator learning requires domain alignment or autoregressive propagation. Trained on 23 years of global neutron data, STONe achieves accurate 180-day forecasts with millisecond inference latency. The framework establishes a general principle for cross-domain operator inference, enabling real-time prediction of complex spatiotemporal fields in physics, climate, and energy systems.
☆ TriggerNet: A Novel Explainable AI Framework for Red Palm Mite Detection and Multi-Model Comparison and Heuristic-Guided Annotation
The red palm mite infestation has become a serious concern, particularly in regions with extensive palm cultivation, leading to reduced productivity and economic losses. Accurate and early identification of mite-infested plants is critical for effective management. The current study focuses on evaluating and comparing the ML model for classifying the affected plants and detecting the infestation. TriggerNet is a novel interpretable AI framework that integrates Grad-CAM, RISE, FullGrad, and TCAV to generate novel visual explanations for deep learning models in plant classification and disease detection. This study applies TriggerNet to address red palm mite (Raoiella indica) infestation, a major threat to palm cultivation and agricultural productivity. A diverse set of RGB images across 11 plant species, Arecanut, Date Palm, Bird of Paradise, Coconut Palm, Ginger, Citrus Tree, Palm Oil, Orchid, Banana Palm, Avocado Tree, and Cast Iron Plant was utilized for training and evaluation. Advanced deep learning models like CNN, EfficientNet, MobileNet, ViT, ResNet50, and InceptionV3, alongside machine learning classifiers such as Random Forest, SVM, and KNN, were employed for plant classification. For disease classification, all plants were categorized into four classes: Healthy, Yellow Spots, Reddish Bronzing, and Silk Webbing. Snorkel was used to efficiently label these disease classes by leveraging heuristic rules and patterns, reducing manual annotation time and improving dataset reliability.
comment: 17 pages, 9 figures
☆ Benchmarking Probabilistic Time Series Forecasting Models on Neural Activity NeurIPS 2025
Neural activity forecasting is central to understanding neural systems and enabling closed-loop control. While deep learning has recently advanced the state-of-the-art in the time series forecasting literature, its application to neural activity forecasting remains limited. To bridge this gap, we systematically evaluated eight probabilistic deep learning models, including two foundation models, that have demonstrated strong performance on general forecasting benchmarks. We compared them against four classical statistical models and two baseline methods on spontaneous neural activity recorded from mouse cortex via widefield imaging. Across prediction horizons, several deep learning models consistently outperformed classical approaches, with the best model producing informative forecasts up to 1.5 seconds into the future. Our findings point toward future control applications and open new avenues for probing the intrinsic temporal structure of neural activity.
comment: Accepted at the 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Data on the Brain & Mind
Transformer Redesign for Late Fusion of Audio-Text Features on Ultra-Low-Power Edge Hardware
Deploying emotion recognition systems in real-world environments where devices must be small, low-power, and private remains a significant challenge. This is especially relevant for applications such as tension monitoring, conflict de-escalation, and responsive wearables, where cloud-based solutions are impractical. Multimodal emotion recognition has advanced through deep learning, but most systems remain unsuitable for deployment on ultra-constrained edge devices. Prior work typically relies on powerful hardware, lacks real-time performance, or uses unimodal input. This paper addresses that gap by presenting a hardware-aware emotion recognition system that combines acoustic and linguistic features using a late-fusion architecture optimised for Edge TPU. The design integrates a quantised transformer-based acoustic model with frozen keyword embeddings from a DSResNet-SE network, enabling real-time inference within a 1.8MB memory budget and 21-23ms latency. The pipeline ensures spectrogram alignment between training and deployment using MicroFrontend and MLTK. Evaluation on re-recorded, segmented IEMOCAP samples captured through the Coral Dev Board Micro microphone shows a 6.3% macro F1 improvement over unimodal baselines. This work demonstrates that accurate, real-time multimodal emotion inference is achievable on microcontroller-class edge platforms through task-specific fusion and hardware-guided model design.
☆ From Local to Global: Revisiting Structured Pruning Paradigms for Large Language Models
Structured pruning is a practical approach to deploying large language models (LLMs) efficiently, as it yields compact, hardware-friendly architectures. However, the dominant local paradigm is task-agnostic: by optimizing layer-wise reconstruction rather than task objectives, it tends to preserve perplexity or generic zero-shot behavior but fails to capitalize on modest task-specific calibration signals, often yielding limited downstream gains. We revisit global structured pruning and present GISP-Global Iterative Structured Pruning-a post-training method that removes attention heads and MLP channels using first-order, loss-based important weights aggregated at the structure level with block-wise normalization. An iterative schedule, rather than one-shot pruning, stabilizes accuracy at higher sparsity and mitigates perplexity collapse without requiring intermediate fine-tuning; the pruning trajectory also forms nested subnetworks that support a "prune-once, deploy-many" workflow. Furthermore, because importance is defined by a model-level loss, GISP naturally supports task-specific objectives; we instantiate perplexity for language modeling and a margin-based objective for decision-style tasks. Extensive experiments show that across Llama2-7B/13B, Llama3-8B, and Mistral-0.3-7B, GISP consistently lowers WikiText-2 perplexity and improves downstream accuracy, with especially strong gains at 40-50% sparsity; on DeepSeek-R1-Distill-Llama-3-8B with GSM8K, task-aligned calibration substantially boosts exact-match accuracy.
comment: 16 pages, 4 figures
☆ ViBED-Net: Video Based Engagement Detection Network Using Face-Aware and Scene-Aware Spatiotemporal Cues
Engagement detection in online learning environments is vital for improving student outcomes and personalizing instruction. We present ViBED-Net (Video-Based Engagement Detection Network), a novel deep learning framework designed to assess student engagement from video data using a dual-stream architecture. ViBED-Net captures both facial expressions and full-scene context by processing facial crops and entire video frames through EfficientNetV2 for spatial feature extraction. These features are then analyzed over time using two temporal modeling strategies: Long Short-Term Memory (LSTM) networks and Transformer encoders. Our model is evaluated on the DAiSEE dataset, a large-scale benchmark for affective state recognition in e-learning. To enhance performance on underrepresented engagement classes, we apply targeted data augmentation techniques. Among the tested variants, ViBED-Net with LSTM achieves 73.43\% accuracy, outperforming existing state-of-the-art approaches. ViBED-Net demonstrates that combining face-aware and scene-aware spatiotemporal cues significantly improves engagement detection accuracy. Its modular design allows flexibility for application across education, user experience research, and content personalization. This work advances video-based affective computing by offering a scalable, high-performing solution for real-world engagement analysis. The source code for this project is available on https://github.com/prateek-gothwal/ViBED-Net .
comment: 10 pages, 4 figures, 2 tables
☆ Attention-Guided Deep Adversarial Temporal Subspace Clustering (A-DATSC) Model for multivariate spatiotemporal data ICLR 2025
Deep subspace clustering models are vital for applications such as snowmelt detection, sea ice tracking, crop health monitoring, infectious disease modeling, network load prediction, and land-use planning, where multivariate spatiotemporal data exhibit complex temporal dependencies and reside on multiple nonlinear manifolds beyond the capability of traditional clustering methods. These models project data into a latent space where samples lie in linear subspaces and exploit the self-expressiveness property to uncover intrinsic relationships. Despite their success, existing methods face major limitations: they use shallow autoencoders that ignore clustering errors, emphasize global features while neglecting local structure, fail to model long-range dependencies and positional information, and are rarely applied to 4D spatiotemporal data. To address these issues, we propose A-DATSC (Attention-Guided Deep Adversarial Temporal Subspace Clustering), a model combining a deep subspace clustering generator and a quality-verifying discriminator. The generator, inspired by U-Net, preserves spatial and temporal integrity through stacked TimeDistributed ConvLSTM2D layers, reducing parameters and enhancing generalization. A graph attention transformer based self-expressive network captures local spatial relationships, global dependencies, and both short- and long-range correlations. Experiments on three real-world multivariate spatiotemporal datasets show that A-DATSC achieves substantially superior clustering performance compared to state-of-the-art deep subspace clustering models.
comment: 9 pages, under review submitted to ICLR 2025
☆ SimBA: Simplifying Benchmark Analysis Using Performance Matrices Alone EMNLP 2025
Modern language models are evaluated on large benchmarks, which are difficult to make sense of, especially for model selection. Looking at the raw evaluation numbers themselves using a model-centric lens, we propose SimBA, a three phase framework to Simplify Benchmark Analysis. The three phases of SimBA are: stalk, where we conduct dataset & model comparisons, prowl, where we discover a representative subset, and pounce, where we use the representative subset to predict performance on a held-out set of models. Applying SimBA to three popular LM benchmarks: HELM, MMLU, and BigBenchLite reveals that across all three benchmarks, datasets and models relate strongly to one another (stalk). We develop an representative set discovery algorithm which covers a benchmark using raw evaluation scores alone. Using our algorithm, we find that with 6.25% (1/16), 1.7% (1/58), and 28.4% (21/74) of the datasets for HELM, MMLU, and BigBenchLite respectively, we achieve coverage levels of at least 95% (prowl). Additionally, using just these representative subsets, we can both preserve model ranks and predict performance on a held-out set of models with near zero mean-squared error (pounce). Taken together, SimBA can help model developers improve efficiency during model training and dataset creators validate whether their newly created dataset differs from existing datasets in a benchmark. Our code is open source, available at https://github.com/nishantsubramani/simba.
comment: EMNLP 2025 Findings
☆ Demystifying Transition Matching: When and Why It Can Beat Flow Matching
Flow Matching (FM) underpins many state-of-the-art generative models, yet recent results indicate that Transition Matching (TM) can achieve higher quality with fewer sampling steps. This work answers the question of when and why TM outperforms FM. First, when the target is a unimodal Gaussian distribution, we prove that TM attains strictly lower KL divergence than FM for finite number of steps. The improvement arises from stochastic difference latent updates in TM, which preserve target covariance that deterministic FM underestimates. We then characterize convergence rates, showing that TM achieves faster convergence than FM under a fixed compute budget, establishing its advantage in the unimodal Gaussian setting. Second, we extend the analysis to Gaussian mixtures and identify local-unimodality regimes in which the sampling dynamics approximate the unimodal case, where TM can outperform FM. The approximation error decreases as the minimal distance between component means increases, highlighting that TM is favored when the modes are well separated. However, when the target variance approaches zero, each TM update converges to the FM update, and the performance advantage of TM diminishes. In summary, we show that TM outperforms FM when the target distribution has well-separated modes and non-negligible variances. We validate our theoretical results with controlled experiments on Gaussian distributions, and extend the comparison to real-world applications in image and video generation.
☆ QINNs: Quantum-Informed Neural Networks
Classical deep neural networks can learn rich multi-particle correlations in collider data, but their inductive biases are rarely anchored in physics structure. We propose quantum-informed neural networks (QINNs), a general framework that brings quantum information concepts and quantum observables into purely classical models. While the framework is broad, in this paper, we study one concrete realisation that encodes each particle as a qubit and uses the Quantum Fisher Information Matrix (QFIM) as a compact, basis-independent summary of particle correlations. Using jet tagging as a case study, QFIMs act as lightweight embeddings in graph neural networks, increasing model expressivity and plasticity. The QFIM reveals distinct patterns for QCD and hadronic top jets that align with physical expectations. Thus, QINNs offer a practical, interpretable, and scalable route to quantum-informed analyses, that is, tomography, of particle collisions, particularly by enhancing well-established deep learning approaches.
comment: 20 pages, 9 figures
☆ Universal Spectral Tokenization via Self-Supervised Panchromatic Representation Learning NeurIPS 2025
Sequential scientific data span many resolutions and domains, and unifying them into a common representation is a key step toward developing foundation models for the sciences. Astronomical spectra exemplify this challenge: massive surveys have collected millions of spectra across a wide range of wavelengths and resolutions, yet analyses remain fragmented across spectral domains (e.g., optical vs. infrared) and object types (e.g., stars vs. galaxies), limiting the ability to pool information across datasets. We present a deep learning model that jointly learns from heterogeneous spectra in a self-supervised manner. Our universal spectral tokenizer processes spectra from a variety of object types and resolutions directly on their native wavelength grids, producing intrinsically aligned, homogeneous, and physically meaningful representations that can be efficiently adapted to achieve competitive performance across a range of downstream tasks. For the first time, we demonstrate that a single model can unify spectral data across resolutions and domains, suggesting that our model can serve as a powerful building block for foundation models in astronomy -- and potentially extend to other scientific domains with heterogeneous sequential data, such as climate and healthcare.
comment: Accepted at NeurIPS 2025 Machine Learning and the Physical Sciences Workshop
☆ OmniCast: A Masked Latent Diffusion Model for Weather Forecasting Across Time Scales NeurIPS 2025
Accurate weather forecasting across time scales is critical for anticipating and mitigating the impacts of climate change. Recent data-driven methods based on deep learning have achieved significant success in the medium range, but struggle at longer subseasonal-to-seasonal (S2S) horizons due to error accumulation in their autoregressive approach. In this work, we propose OmniCast, a scalable and skillful probabilistic model that unifies weather forecasting across timescales. OmniCast consists of two components: a VAE model that encodes raw weather data into a continuous, lower-dimensional latent space, and a diffusion-based transformer model that generates a sequence of future latent tokens given the initial conditioning tokens. During training, we mask random future tokens and train the transformer to estimate their distribution given conditioning and visible tokens using a per-token diffusion head. During inference, the transformer generates the full sequence of future tokens by iteratively unmasking random subsets of tokens. This joint sampling across space and time mitigates compounding errors from autoregressive approaches. The low-dimensional latent space enables modeling long sequences of future latent states, allowing the transformer to learn weather dynamics beyond initial conditions. OmniCast performs competitively with leading probabilistic methods at the medium-range timescale while being 10x to 20x faster, and achieves state-of-the-art performance at the subseasonal-to-seasonal scale across accuracy, physics-based, and probabilistic metrics. Furthermore, we demonstrate that OmniCast can generate stable rollouts up to 100 years ahead. Code and model checkpoints are available at https://github.com/tung-nd/omnicast.
comment: Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ Challenges and proposed solutions in modeling multimodal data: A systematic review
Multimodal data modeling has emerged as a powerful approach in clinical research, enabling the integration of diverse data types such as imaging, genomics, wearable sensors, and electronic health records. Despite its potential to improve diagnostic accuracy and support personalized care, modeling such heterogeneous data presents significant technical challenges. This systematic review synthesizes findings from 69 studies to identify common obstacles, including missing modalities, limited sample sizes, dimensionality imbalance, interpretability issues, and finding the optimal fusion techniques. We highlight recent methodological advances, such as transfer learning, generative models, attention mechanisms, and neural architecture search that offer promising solutions. By mapping current trends and innovations, this review provides a comprehensive overview of the field and offers practical insights to guide future research and development in multimodal modeling for medical applications.
♻ ☆ Denoising the Future: Top-p Distributions for Moving Through Time
Inference in dynamic probabilistic models is a complex task involving expensive operations. In particular, for Hidden Markov Models, the whole state space has to be enumerated for advancing in time. Even states with negligible probabilities are considered, resulting in computational inefficiency and increased noise due to the propagation of unlikely probability mass. We propose to denoise the future and speed up inference by using only the top-p states, i.e., the most probable states with accumulated probability p. We show that the error introduced by using only the top-p states is bound by p and the so-called minimal mixing rate of the underlying model. Moreover, in our empirical evaluation, we show that we can expect speedups of at least an order of magnitude, while the error in terms of total variation distance is below 0.09.
comment: Accepted at ECSQARU 2025
♻ ☆ Intrinsic Dimensionality of Fermi-Pasta-Ulam-Tsingou High-Dimensional Trajectories Through Manifold Learning: A Linear Approach
A data-driven approach based on unsupervised machine learning is proposed to infer the intrinsic dimension $m^{\ast}$ of the high-dimensional trajectories of the Fermi-Pasta-Ulam-Tsingou (FPUT) model. Principal component analysis (PCA) is applied to trajectory data consisting of $n_s = 4,000,000$ datapoints, of the FPUT $\beta$ model with $N = 32$ coupled oscillators, revealing a critical relationship between $m^{\ast}$ and the model's nonlinear strength. By estimating the intrinsic dimension $m^{\ast}$ using multiple methods (participation ratio, Kaiser rule, and the Kneedle algorithm), it is found that $m^{\ast}$ increases with the model nonlinearity. Interestingly, in the weakly nonlinear regime, for trajectories initialized by exciting the first mode, the participation ratio estimates $m^{\ast} = 2, 3$, strongly suggesting that quasi-periodic motion on a low-dimensional Riemannian manifold underlies the characteristic energy recurrences observed in the FPUT model.
comment: 14 pages, 15 figures. This version matches the article published in Chaos 35, 103118 (2025)
♻ ☆ Score-based deterministic density sampling
We propose a deterministic sampling framework using Score-Based Transport Modeling for sampling an unnormalized target density $\pi$ given only its score $\nabla \log \pi$. Our method approximates the Wasserstein gradient flow on $\mathrm{KL}(f_t\|\pi)$ by learning the time-varying score $\nabla \log f_t$ on the fly using score matching. While having the same marginal distribution as Langevin dynamics, our method produces smooth deterministic trajectories, resulting in monotone noise-free convergence. We prove that our method dissipates relative entropy at the same rate as the exact gradient flow, provided sufficient training. Numerical experiments validate our theoretical findings: our method converges at the optimal rate, has smooth trajectories, and is often more sample efficient than its stochastic counterpart. Experiments on high-dimensional image data show that our method produces high-quality generations in as few as 15 steps and exhibits natural exploratory behavior. The memory and runtime scale linearly in the sample size.
comment: 13 pages, 2 tables, 11 figures. Key words: Deterministic sampling; score-based transport modeling; Wasserstein gradient flow; relative entropy; Fisher information; annealing; neural network; neural tangent kernel
♻ ☆ Weak-to-Strong Generalization Even in Random Feature Networks, Provably
Weak-to-Strong Generalization (Burns et al., 2024) is the phenomenon whereby a strong student, say GPT-4, learns a task from a weak teacher, say GPT-2, and ends up significantly outperforming the teacher. We show that this phenomenon does not require a strong learner like GPT-4. We consider student and teacher that are random feature models, described by two-layer networks with a random and fixed bottom layer and a trained top layer. A "weak" teacher, with a small number of units (i.e. random features), is trained on the population, and a "strong" student, with a much larger number of units (i.e. random features), is trained only on labels generated by the weak teacher. We demonstrate, prove, and understand how the student can outperform the teacher, even though trained only on data labeled by the teacher. We also explain how such weak-to-strong generalization is enabled by early stopping. Importantly, we also show the quantitative limits of weak-to-strong generalization in this model.
♻ ☆ REASONING GYM: Reasoning Environments for Reinforcement Learning with Verifiable Rewards NeurIPS 2025
We introduce Reasoning Gym (RG), a library of reasoning environments for reinforcement learning with verifiable rewards. It provides over 100 data generators and verifiers spanning multiple domains including algebra, arithmetic, computation, cognition, geometry, graph theory, logic, and various common games. Its key innovation is the ability to generate virtually infinite training data with adjustable complexity, unlike most previous reasoning datasets, which are typically fixed. This procedural generation approach allows for continuous evaluation across varying difficulty levels. Our experimental results demonstrate the efficacy of RG in both evaluating and reinforcement learning of reasoning models.
comment: NeurIPS 2025 Spotlight. For code, see https://github.com/open-thought/reasoning-gym
♻ ☆ Speech Foundation Models Generalize to Time Series Tasks from Wearable Sensor Data
Both speech and sensor time series data encode information in both the time- and frequency- domains, like spectral powers and waveform shapelets. We show that speech foundation models learn representations that generalize beyond the speech domain and achieve state-of-the-art performance on diverse time-series tasks from wearable sensors. Probes trained on features extracted from HuBERT and wav2vec 2.0 outperform those extracted from self-supervised models trained directly on modality-specific datasets for mood classification, arrhythmia detection, and activity classification tasks. We find that the convolutional feature encoders of speech models are particularly relevant for wearable sensor applications. The proposed approach enhances performance on data-scarce time-series tasks using simple probing methods. This work takes a step toward developing generalized time-series models that unify speech and sensor modalities.
comment: Preprint, under review
♻ ☆ Auto-Prompt Generation is Not Robust: Prompt Optimization Driven by Pseudo Gradient
While automatic prompt generation methods have recently received significant attention, their robustness remains poorly understood. In this paper, we introduce PertBench, a comprehensive benchmark dataset that includes a wide range of input perturbations, designed to systematically evaluate the robustness of current auto-prompting techniques. Our analysis reveals substantial vulnerabilities in existing prompt generation strategies, where even minor modifications to the prompt can lead to significant differences in model output. To address this issue, we propose PGO, a gradient-free prompt generation framework that leverages perturbation types as pseudo-gradient signals to guide LLMs in producing more robust prompts. In contrast to existing methods that assess prompt quality only on clean, well-structured inputs, our approach explicitly emphasizes robustness under noisy and perturbed conditions. Extensive experiments across diverse tasks and multiple LLMs show PGO consistently outperforms previous methods in maintaining performance under input perturbations.
♻ ☆ Navigating the Latent Space Dynamics of Neural Models
Neural networks transform high-dimensional data into compact, structured representations, often modeled as elements of a lower dimensional latent space. In this paper, we present an alternative interpretation of neural models as dynamical systems acting on the latent manifold. Specifically, we show that autoencoder models implicitly define a latent vector field on the manifold, derived by iteratively applying the encoding-decoding map, without any additional training. We observe that standard training procedures introduce inductive biases that lead to the emergence of attractor points within this vector field. Drawing on this insight, we propose to leverage the vector field as a representation for the network, providing a novel tool to analyze the properties of the model and the data. This representation enables to: (i) analyze the generalization and memorization regimes of neural models, even throughout training; (ii) extract prior knowledge encoded in the network's parameters from the attractors, without requiring any input data; (iii) identify out-of-distribution samples from their trajectories in the vector field. We further validate our approach on vision foundation models, showcasing the applicability and effectiveness of our method in real-world scenarios.
♻ ☆ LeapFactual: Reliable Visual Counterfactual Explanation Using Conditional Flow Matching NeurIPS 2025
The growing integration of machine learning (ML) and artificial intelligence (AI) models into high-stakes domains such as healthcare and scientific research calls for models that are not only accurate but also interpretable. Among the existing explainable methods, counterfactual explanations offer interpretability by identifying minimal changes to inputs that would alter a model's prediction, thus providing deeper insights. However, current counterfactual generation methods suffer from critical limitations, including gradient vanishing, discontinuous latent spaces, and an overreliance on the alignment between learned and true decision boundaries. To overcome these limitations, we propose LeapFactual, a novel counterfactual explanation algorithm based on conditional flow matching. LeapFactual generates reliable and informative counterfactuals, even when true and learned decision boundaries diverge. Following a model-agnostic approach, LeapFactual is not limited to models with differentiable loss functions. It can even handle human-in-the-loop systems, expanding the scope of counterfactual explanations to domains that require the participation of human annotators, such as citizen science. We provide extensive experiments on benchmark and real-world datasets showing that LeapFactual generates accurate and in-distribution counterfactual explanations that offer actionable insights. We observe, for instance, that our reliable counterfactual samples with labels aligning to ground truth can be beneficially used as new training data to enhance the model. The proposed method is broadly applicable and enhances both scientific knowledge discovery and non-expert interpretability.
comment: Accepted as a poster presentation at NeurIPS 2025. Camera-ready version. 10 pages, 7 figures
♻ ☆ Evolving LLMs' Self-Refinement Capability via Iterative Preference Optimization
Self-Refinement refers to a model's ability to revise its own responses to produce improved outputs. This capability can also serve as a fundamental mechanism for Self-Improvement, for example, by reconstructing datasets with refined results to enhance intrinsic model performance. However, our comprehensive experiments reveal that large language models (LLMs) show no clear evidence of inherent Self-Refinement and may even experience response quality degradation after Self-Refinement. To address this issue, we propose EVOLVE, a simple and effective framework for eliciting and tracking the evolution of Self-Refinement through iterative training. We first explore optimization methods during training to activate the model's Self-Refinement capability. Then, at inference, we investigate various generation strategies to further enhance and utilize Self-Refinement while supplying the necessary data for training. Through synergistic optimization of training and inference stages, we continually evolve the model's Self-Refinement ability, enabling it to better refine its own responses. Moreover, we demonstrate the potential of leveraging Self-Refinement to achieve broader Self-Improvement of intrinsic model abilities. Experiments show that the evolved Self-Refinement ability enables the Llama-3.1-8B base model to surpass GPT-4o, achieving 62.3% length-controlled and 63.3% raw win rates on AlpacaEval 2, and 50.3% on Arena-Hard. It also generalizes effectively to out-of-domain reasoning tasks, improving performance on mathematical reasoning benchmarks such as GSM8K and MATH.
♻ ☆ CLIMB: Class-imbalanced Learning Benchmark on Tabular Data NeurIPS 2025
Class-imbalanced learning (CIL) on tabular data is important in many real-world applications where the minority class holds the critical but rare outcomes. In this paper, we present CLIMB, a comprehensive benchmark for class-imbalanced learning on tabular data. CLIMB includes 73 real-world datasets across diverse domains and imbalance levels, along with unified implementations of 29 representative CIL algorithms. Built on a high-quality open-source Python package with unified API designs, detailed documentation, and rigorous code quality controls, CLIMB supports easy implementation and comparison between different CIL algorithms. Through extensive experiments, we provide practical insights on method accuracy and efficiency, highlighting the limitations of naive rebalancing, the effectiveness of ensembles, and the importance of data quality. Our code, documentation, and examples are available at https://github.com/ZhiningLiu1998/imbalanced-ensemble.
comment: NeurIPS 2025, Dataset and Benchmark Track. 18 pages, 7 figures, 8 tables
♻ ☆ Absolute abstraction: a renormalisation group approach
Abstraction is the process of extracting the essential features from raw data while ignoring irrelevant details. It is well known that abstraction emerges with depth in neural networks, where deep layers capture abstract characteristics of data by combining lower level features encoded in shallow layers (e.g. edges). Yet we argue that depth alone is not enough to develop truly abstract representations. We advocate that the level of abstraction crucially depends on how broad the training set is. We address the issue within a renormalisation group approach where a representation is expanded to encompass a broader set of data. We take the unique fixed point of this transformation -- the Hierarchical Feature Model -- as a candidate for a representation which is absolutely abstract. This theoretical picture is tested in numerical experiments based on Deep Belief Networks and auto-encoders trained on data of different breadth. These show that representations in neural networks approach the Hierarchical Feature Model as the data get broader and as depth increases, in agreement with theoretical predictions.
comment: 36 pages, 7 figures
♻ ☆ Invertible ResNets for Inverse Imaging Problems: Competitive Performance with Provable Regularization Properties
Learning-based methods have demonstrated remarkable performance in solving inverse problems, particularly in image reconstruction tasks. Despite their success, these approaches often lack theoretical guarantees, which are crucial in sensitive applications such as medical imaging. Recent works by Arndt et al addressed this gap by analyzing a data-driven reconstruction method based on invertible residual networks (iResNets). They revealed that, under reasonable assumptions, this approach constitutes a convergent regularization scheme. However, the performance of the reconstruction method was only validated on academic toy problems and small-scale iResNet architectures. In this work, we address this gap by evaluating the performance of iResNets on two real-world imaging tasks: a linear blurring operator and a nonlinear diffusion operator. To do so, we compare the performance of iResNets against state-of-the-art neural networks, revealing their competitiveness at the expense of longer training times. Moreover, we numerically demonstrate the advantages of the iResNet's inherent stability and invertibility by showcasing increased robustness across various scenarios as well as interpretability of the learned operator, thereby reducing the black-box nature of the reconstruction scheme.
♻ ☆ PICT -- A Differentiable, GPU-Accelerated Multi-Block PISO Solver for Simulation-Coupled Learning Tasks in Fluid Dynamics
Despite decades of advancements, the simulation of fluids remains one of the most challenging areas of in scientific computing. Supported by the necessity of gradient information in deep learning, differentiable simulators have emerged as an effective tool for optimization and learning in physics simulations. In this work, we present our fluid simulator PICT, a differentiable pressure-implicit solver coded in PyTorch with Graphics-processing-unit (GPU) support. We first verify the accuracy of both the forward simulation and our derived gradients in various established benchmarks like lid-driven cavities and turbulent channel flows before we show that the gradients provided by our solver can be used to learn complicated turbulence models in 2D and 3D. We apply both supervised and unsupervised training regimes using physical priors to match flow statistics. In particular, we learn a stable sub-grid scale (SGS) model for a 3D turbulent channel flow purely based on reference statistics. The low-resolution corrector trained with our solver runs substantially faster than the highly resolved references, while keeping or even surpassing their accuracy. Finally, we give additional insights into the physical interpretation of different solver gradients, and motivate a physically informed regularization technique. To ensure that the full potential of PICT can be leveraged, it is published as open source: https://github.com/tum-pbs/PICT.
comment: Source code at https://github.com/tum-pbs/PICT
♻ ☆ Learning Counterfactual Distributions via Kernel Nearest Neighbors
Consider a setting with multiple units (e.g., individuals, cohorts, geographic locations) and outcomes (e.g., treatments, times, items), where the goal is to learn a multivariate distribution for each unit-outcome entry, such as the distribution of a user's weekly spend and engagement under a specific mobile app version. A common challenge is the prevalence of missing not at random data, where observations are available only for certain unit-outcome combinations and the observation availability can be correlated with the properties of distributions themselves, i.e., there is unobserved confounding. An additional challenge is that for any observed unit-outcome entry, we only have a finite number of samples from the underlying distribution. We tackle these two challenges by casting the problem into a novel distributional matrix completion framework and introduce a kernel based distributional generalization of nearest neighbors to estimate the underlying distributions. By leveraging maximum mean discrepancies and a suitable factor model on the kernel mean embeddings of the underlying distributions, we establish consistent recovery of the underlying distributions even when data is missing not at random and positivity constraints are violated. Furthermore, we demonstrate that our nearest neighbors approach is robust to heteroscedastic noise, provided we have access to two or more measurements for the observed unit-outcome entries, a robustness not present in prior works on nearest neighbors with single measurements.
comment: 44 pages, 10 figures
♻ ☆ A Generic Framework for Conformal Fairness ICLR 2025
Conformal Prediction (CP) is a popular method for uncertainty quantification with machine learning models. While conformal prediction provides probabilistic guarantees regarding the coverage of the true label, these guarantees are agnostic to the presence of sensitive attributes within the dataset. In this work, we formalize \textit{Conformal Fairness}, a notion of fairness using conformal predictors, and provide a theoretically well-founded algorithm and associated framework to control for the gaps in coverage between different sensitive groups. Our framework leverages the exchangeability assumption (implicit to CP) rather than the typical IID assumption, allowing us to apply the notion of Conformal Fairness to data types and tasks that are not IID, such as graph data. Experiments were conducted on graph and tabular datasets to demonstrate that the algorithm can control fairness-related gaps in addition to coverage aligned with theoretical expectations.
comment: ICLR 2025 Camera Ready Version
♻ ☆ SAFES: Sequential Privacy and Fairness Enhancing Data Synthesis for Responsible AI
As data-driven and AI-based decision making gains widespread adoption across disciplines, it is crucial that both data privacy and decision fairness are appropriately addressed. Although differential privacy (DP) provides a robust framework for guaranteeing privacy and methods are available to improve fairness, most prior work treats the two concerns separately. Even though there are existing approaches that consider privacy and fairness simultaneously, they typically focus on a single specific learning task, limiting their generalizability. In response, we introduce SAFES, a Sequential PrivAcy and Fairness Enhancing data Synthesis procedure that sequentially combines DP data synthesis with a fairness-aware data preprocessing step. SAFES allows users flexibility in navigating the privacy-fairness-utility trade-offs. We illustrate SAFES with different DP synthesizers and fairness-aware data preprocessing methods and run extensive experiments on multiple real datasets to examine the privacy-fairness-utility trade-offs of synthetic data generated by SAFES. Empirical evaluations demonstrate that for reasonable privacy loss, SAFES-generated synthetic data can achieve significantly improved fairness metrics with relatively low utility loss.
♻ ☆ Reflections from Research Roundtables at the Conference on Health, Inference, and Learning (CHIL) 2025
The 6th Annual Conference on Health, Inference, and Learning (CHIL 2025), hosted by the Association for Health Learning and Inference (AHLI), was held in person on June 25-27, 2025, at the University of California, Berkeley, in Berkeley, California, USA. As part of this year's program, we hosted Research Roundtables to catalyze collaborative, small-group dialogue around critical, timely topics at the intersection of machine learning and healthcare. Each roundtable was moderated by a team of senior and junior chairs who fostered open exchange, intellectual curiosity, and inclusive engagement. The sessions emphasized rigorous discussion of key challenges, exploration of emerging opportunities, and collective ideation toward actionable directions in the field. In total, eight roundtables were held by 19 roundtable chairs on topics of "Explainability, Interpretability, and Transparency," "Uncertainty, Bias, and Fairness," "Causality," "Domain Adaptation," "Foundation Models," "Learning from Small Medical Data," "Multimodal Methods," and "Scalable, Translational Healthcare Solutions."
♻ ☆ Time-Varying Bayesian Optimization Without a Metronome
Time-Varying Bayesian Optimization (TVBO) is the go-to framework for optimizing a time-varying, expensive, noisy black-box function $f$. However, most of the asymptotic guarantees offered by TVBO algorithms rely on the assumption that observations are acquired at a constant frequency. As the GP inference complexity scales with the cube of its dataset size, this assumption is unrealistic in the long run. In this paper, we relax this assumption and derive the first upper regret bound that explicitly accounts for changes in the observations sampling frequency. Based on this analysis, we formulate practical recommendations about dataset sizes and stale data policies of TVBO algorithms. We illustrate how an algorithm (BOLT) that follows these recommendations performs better than the state-of-the-art of TVBO through experiments on synthetic and real-world problems.
♻ ☆ Solving Oscillator Ordinary Differential Equations in the Time Domain with High Performance via Soft-constrained Physics-informed Neural Network with Small Data
In many scientific and engineering (e.g., physical, biochemical, medical) practices, data generated through expensive experiments or large-scale simulations, are often sparse and noisy. Physics-informed neural network (PINN) incorporates physical information and knowledge into network topology or computational processes as model priors, with the unique advantage of achieving strong generalization with small data. This study aims to investigate the performance characteristics of the soft-constrained PINN method to solving typical linear and nonlinear ordinary differential equations (ODEs) such as primer, Van der Pol and Duffing oscillators, especially the effectiveness, efficiency, and robustness to noise with minimal data. It is verified that the soft-constrained PINN significantly reduces the need for labeled data. With the aid of appropriate collocation points no need to be labeled, it can predict and also extrapolate with minimal data. First-order and second-order ODEs, no matter linear or nonlinear oscillators, require only one and two training data (containing initial values) respectively, just like classical analytic or Runge-Kutta methods, and with equivalent precision and comparable efficiency (fast training in seconds for scalar ODEs). Furthermore, it can conveniently impose a physical law (e.g., conservation of energy) constraint by adding a regularization term to the total loss function, improving the performance to deal with various complexities such as nonlinearity like Duffing. The DeepXDE-based PINN implementation is light code and can be efficiently trained on both GPU and CPU platforms. The mathematical and computational framework of this alternative and feasible PINN method to ODEs, can be easily extended to PDEs, etc., and is becoming a favorable catalyst for the era of Digital Twins.
comment: 17 pages, 7 figures, 2 tables, etc
♻ ☆ Market-Driven Subset Selection for Budgeted Training
Training large language models on massive datasets is computationally expensive, yet empirical evidence suggests that substantial portions of training examples contribute minimally to final performance. Data subset selection addresses this inefficiency by identifying small, high-utility subsets under resource constraints. However, example utility is inherently multi-faceted, encompassing uncertainty, distributional rarity, and diversity signals that are heterogeneous and typically combined through ad hoc weighted sums lacking theoretical grounding. We propose a market-based framework that treats each training example as a tradeable contract and employs the Logarithmic Market Scoring Rule to aggregate multiple utility signals into coherent prices. Heterogeneous signals act as traders, a single liquidity parameter controls concentration versus smoothing, and topic-wise normalization ensures calibrated aggregation. Token budgets are handled explicitly through a price-per-token decision rule with an interpretable length-bias parameter. We establish theoretical connections to maximum-entropy aggregation and provide utility recovery guarantees under noisy but monotone signals. On GSM8K mathematical reasoning under strict 60k-token budgets, our selector achieves parity with strong single-signal baselines while exhibiting lower variance and incurring less than 0.1 GPU-hour overhead. On AGNews classification at 5-25\% retention rates, the market formulation delivers competitive accuracy with improved stability. Our framework unifies multi-signal data curation under fixed computational budgets for prompt-level reasoning and classification tasks.
comment: Retitled major revision of the same work (formerly "Market-Based Data Subset Selection -- Principled Aggregation of Multi-Criteria Example Utility"). Abstract and exposition revised; ablations added; theory clarified. Core results unchanged. Supersedes v1; please process as a replacement
♻ ☆ Asymptotic Performance of Time-Varying Bayesian Optimization
Time-Varying Bayesian Optimization (TVBO) is the go-to framework for optimizing a time-varying black-box objective function that may be noisy and expensive to evaluate, but its excellent empirical performance remains to be understood theoretically. Is it possible for the instantaneous regret of a TVBO algorithm to vanish asymptotically, and if so, when? We answer this question of great importance by providing upper bounds and algorithm-independent lower bounds for the cumulative regret of TVBO algorithms. In doing so, we provide important insights about the TVBO framework and derive sufficient conditions for a TVBO algorithm to have the no-regret property. To the best of our knowledge, our analysis is the first to cover all major classes of stationary kernel functions used in practice.
♻ ☆ Limitations of Normalization in Attention Mechanism
This paper investigates the limitations of the normalization in attention mechanisms. We begin with a theoretical framework that enables the identification of the model's selective ability and the geometric separation involved in token selection. Our analysis includes explicit bounds on distances and separation criteria for token vectors under softmax scaling. Through experiments with pre-trained GPT-2 model, we empirically validate our theoretical results and analyze key behaviors of the attention mechanism. Notably, we demonstrate that as the number of selected tokens increases, the model's ability to distinguish informative tokens declines, often converging toward a uniform selection pattern. We also show that gradient sensitivity under softmax normalization presents challenges during training, especially at low temperature settings. These findings advance current understanding of softmax-based attention mechanism and motivate the need for more robust normalization and selection strategies in future attention architectures.
comment: 10 pages, 4 figures
♻ ☆ Wavy Transformer NeurIPS 2025
Transformers have achieved remarkable success across natural language processing (NLP) and computer vision (CV). However, deep transformer models often suffer from an over-smoothing issue, in which token representations converge to similar values as they pass through successive transformer blocks. In this paper, we establish an equivalence between the hidden-state dynamics induced by stacked attention layers and graph neural diffusion on a complete graph. From this perspective, over-smoothing can be interpreted as a consequence of the dissipative nature of the underlying diffusion dynamics. Motivated by this physical interpretation, we propose Wavy Transformer, which consists of a novel attention layer based on second-order wavy dynamics. We also introduce a feed-forward network and a normalization layer designed to preserve the physical state-velocity relationship under the chain rule, thereby extending the transformer architecture. We further validate our proposed techniques on various transformer models for NLP and CV tasks. The results consistently demonstrate that Wavy Transformer improves performance with minimal additional parameters and no extra hyperparameter tuning.
comment: Accepted by NeurIPS 2025
♻ ☆ Identifiable Latent Bandits: Leveraging observational data for personalized decision-making
Sequential decision-making algorithms such as multi-armed bandits can find optimal personalized decisions, but are notoriously sample-hungry. In personalized medicine, for example, training a bandit from scratch for every patient is typically infeasible, as the number of trials required is much larger than the number of decision points for a single patient. To combat this, latent bandits offer rapid exploration and personalization beyond what context variables alone can offer, provided that a latent variable model of problem instances can be learned consistently. However, existing works give no guidance as to how such a model can be found. In this work, we propose an identifiable latent bandit framework that leads to optimal decision-making with a shorter exploration time than classical bandits by learning from historical records of decisions and outcomes. Our method is based on nonlinear independent component analysis that provably identifies representations from observational data sufficient to infer optimal actions in new bandit instances. We verify this strategy in simulated and semi-synthetic environments, showing substantial improvement over online and offline learning baselines when identifying conditions are satisfied.
comment: 29 pages, 17 figures
♻ ☆ DitHub: A Modular Framework for Incremental Open-Vocabulary Object Detection NeurIPS 2025
Open-Vocabulary object detectors can generalize to an unrestricted set of categories through simple textual prompting. However, adapting these models to rare classes or reinforcing their abilities on multiple specialized domains remains essential. While recent methods rely on monolithic adaptation strategies with a single set of weights, we embrace modular deep learning. We introduce DitHub, a framework designed to build and maintain a library of efficient adaptation modules. Inspired by Version Control Systems, DitHub manages expert modules as branches that can be fetched and merged as needed. This modular approach allows us to conduct an in-depth exploration of the compositional properties of adaptation modules, marking the first such study in Object Detection. Our method achieves state-of-the-art performance on the ODinW-13 benchmark and ODinW-O, a newly introduced benchmark designed to assess class reappearance. For more details, visit our project page: https://aimagelab.github.io/DitHub/
comment: Accepted at the 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ When Does Supervised Training Pay Off? The Hidden Economics of Object Detection in the Era of Vision-Language Models
Object detection traditionally relies on costly manual annotation. We present the first comprehensive cost-effectiveness analysis comparing supervised YOLO and zero-shot vision-language models (Gemini Flash 2.5 and GPT-4). Evaluated on 5,000 stratified COCO images and 500 diverse product images, combined with Total Cost of Ownership modeling, we derive break-even thresholds for architecture selection. Results show supervised YOLO attains 91.2% accuracy versus 68.5% for Gemini and 71.3% for GPT-4 on standard categories; the annotation expense for a 100-category system is $10,800, and the accuracy advantage only pays off beyond 55 million inferences (151,000 images/day for one year). On diverse product categories Gemini achieves 52.3% and GPT-4 55.1%, while supervised YOLO cannot detect untrained classes. Cost-per-correct-detection favors Gemini ($0.00050) and GPT-4 ($0.00067) over YOLO ($0.143) at 100,000 inferences. We provide decision frameworks showing that optimal architecture choice depends on inference volume, category stability, budget, and accuracy requirements.
comment: 30 pages, 12 figures, 4 tables
♻ ☆ AI-Generated Video Detection via Perceptual Straightening NeurIPS 2025
The rapid advancement of generative AI enables highly realistic synthetic videos, posing significant challenges for content authentication and raising urgent concerns about misuse. Existing detection methods often struggle with generalization and capturing subtle temporal inconsistencies. We propose ReStraV(Representation Straightening Video), a novel approach to distinguish natural from AI-generated videos. Inspired by the "perceptual straightening" hypothesis -- which suggests real-world video trajectories become more straight in neural representation domain -- we analyze deviations from this expected geometric property. Using a pre-trained self-supervised vision transformer (DINOv2), we quantify the temporal curvature and stepwise distance in the model's representation domain. We aggregate statistics of these measures for each video and train a classifier. Our analysis shows that AI-generated videos exhibit significantly different curvature and distance patterns compared to real videos. A lightweight classifier achieves state-of-the-art detection performance (e.g., 97.17% accuracy and 98.63% AUROC on the VidProM benchmark), substantially outperforming existing image- and video-based methods. ReStraV is computationally efficient, it is offering a low-cost and effective detection solution. This work provides new insights into using neural representation geometry for AI-generated video detection.
comment: Advances in Neural Information Processing Systems 38 (NeurIPS 2025)
♻ ☆ PhysioWave: A Multi-Scale Wavelet-Transformer for Physiological Signal Representation NeurIPS 2025
Physiological signals are often corrupted by motion artifacts, baseline drift, and other low-SNR disturbances, which pose significant challenges for analysis. Additionally, these signals exhibit strong non-stationarity, with sharp peaks and abrupt changes that evolve continuously, making them difficult to represent using traditional time-domain or filtering methods. To address these issues, a novel wavelet-based approach for physiological signal analysis is presented, aiming to capture multi-scale time-frequency features in various physiological signals. Leveraging this technique, two large-scale pretrained models specific to EMG and ECG are introduced for the first time, achieving superior performance and setting new baselines in downstream tasks. Additionally, a unified multi-modal framework is constructed by integrating pretrained EEG model, where each modality is guided through its dedicated branch and fused via learnable weighted fusion. This design effectively addresses challenges such as low signal-to-noise ratio, high inter-subject variability, and device mismatch, outperforming existing methods on multi-modal tasks. The proposed wavelet-based architecture lays a solid foundation for analysis of diverse physiological signals, while the multi-modal design points to next-generation physiological signal processing with potential impact on wearable health monitoring, clinical diagnostics, and broader biomedical applications. Code and data are available at: github.com/ForeverBlue816/PhysioWave
comment: 43 pages, 17 figures, 17 tables. Accepted by NeurIPS 2025. Code and data are available at: github.com/ForeverBlue816/PhysioWave
♻ ☆ TimeEmb: A Lightweight Static-Dynamic Disentanglement Framework for Time Series Forecasting
Temporal non-stationarity, the phenomenon that time series distributions change over time, poses fundamental challenges to reliable time series forecasting. Intuitively, the complex time series can be decomposed into two factors, \ie time-invariant and time-varying components, which indicate static and dynamic patterns, respectively. Nonetheless, existing methods often conflate the time-varying and time-invariant components, and jointly learn the combined long-term patterns and short-term fluctuations, leading to suboptimal performance facing distribution shifts. To address this issue, we initiatively propose a lightweight static-dynamic decomposition framework, TimeEmb, for time series forecasting. TimeEmb innovatively separates time series into two complementary components: (1) time-invariant component, captured by a novel global embedding module that learns persistent representations across time series, and (2) time-varying component, processed by an efficient frequency-domain filtering mechanism inspired by full-spectrum analysis in signal processing. Experiments on real-world datasets demonstrate that TimeEmb outperforms state-of-the-art baselines and requires fewer computational resources. We conduct comprehensive quantitative and qualitative analyses to verify the efficacy of static-dynamic disentanglement. This lightweight framework can also improve existing time-series forecasting methods with simple integration. To ease reproducibility, the code is available at https://github.com/showmeon/TimeEmb.
♻ ☆ Quantum Reinforcement Learning Trading Agent for Sector Rotation in the Taiwan Stock Market
We propose a hybrid quantum-classical reinforcement learning framework for sector rotation in the Taiwan stock market. Our system employs Proximal Policy Optimization (PPO) as the backbone algorithm and integrates both classical architectures (LSTM, Transformer) and quantum-enhanced models (QNN, QRWKV, QASA) as policy and value networks. An automated feature engineering pipeline extracts financial indicators from capital share data to ensure consistent model input across all configurations. Empirical backtesting reveals a key finding: although quantum-enhanced models consistently achieve higher training rewards, they underperform classical models in real-world investment metrics such as cumulative return and Sharpe ratio. This discrepancy highlights a core challenge in applying reinforcement learning to financial domains -- namely, the mismatch between proxy reward signals and true investment objectives. Our analysis suggests that current reward designs may incentivize overfitting to short-term volatility rather than optimizing risk-adjusted returns. This issue is compounded by the inherent expressiveness and optimization instability of quantum circuits under Noisy Intermediate-Scale Quantum (NISQ) constraints. We discuss the implications of this reward-performance gap and propose directions for future improvement, including reward shaping, model regularization, and validation-based early stopping. Our work offers a reproducible benchmark and critical insights into the practical challenges of deploying quantum reinforcement learning in real-world finance.
♻ ☆ Test-Time Training for Speech Enhancement
This paper introduces a novel application of Test-Time Training (TTT) for Speech Enhancement, addressing the challenges posed by unpredictable noise conditions and domain shifts. This method combines a main speech enhancement task with a self-supervised auxiliary task in a Y-shaped architecture. The model dynamically adapts to new domains during inference time by optimizing the proposed self-supervised tasks like noise-augmented signal reconstruction or masked spectrogram prediction, bypassing the need for labeled data. We further introduce various TTT strategies offering a trade-off between adaptation and efficiency. Evaluations across synthetic and real-world datasets show consistent improvements across speech quality metrics, outperforming the baseline model. This work highlights the effectiveness of TTT in speech enhancement, providing insights for future research in adaptive and robust speech processing.
comment: Published in the Proceedings of Interspeech 2025
♻ ☆ Diffusion Transformers as Open-World Spatiotemporal Foundation Models NeurIPS 2025
The urban environment is characterized by complex spatio-temporal dynamics arising from diverse human activities and interactions. Effectively modeling these dynamics is essential for understanding and optimizing urban systems. In this work, we introduce UrbanDiT, a foundation model for open-world urban spatio-temporal learning that successfully scales up diffusion transformers in this field. UrbanDiT pioneers a unified model that integrates diverse data sources and types while learning universal spatio-temporal patterns across different cities and scenarios. This allows the model to unify both multi-data and multi-task learning, and effectively support a wide range of spatio-temporal applications. Its key innovation lies in the elaborated prompt learning framework, which adaptively generates both data-driven and task-specific prompts, guiding the model to deliver superior performance across various urban applications. UrbanDiT offers three advantages: 1) It unifies diverse data types, such as grid-based and graph-based data, into a sequential format; 2) With task-specific prompts, it supports a wide range of tasks, including bi-directional spatio-temporal prediction, temporal interpolation, spatial extrapolation, and spatio-temporal imputation; and 3) It generalizes effectively to open-world scenarios, with its powerful zero-shot capabilities outperforming nearly all baselines with training data. UrbanDiT sets up a new benchmark for foundation models in the urban spatio-temporal domain. Code and datasets are publicly available at https://github.com/tsinghua-fib-lab/UrbanDiT.
comment: Accepted by NeurIPS 2025
♻ ☆ What should a neuron aim for? Designing local objective functions based on information theory ICLR 2025
In modern deep neural networks, the learning dynamics of the individual neurons is often obscure, as the networks are trained via global optimization. Conversely, biological systems build on self-organized, local learning, achieving robustness and efficiency with limited global information. We here show how self-organization between individual artificial neurons can be achieved by designing abstract bio-inspired local learning goals. These goals are parameterized using a recent extension of information theory, Partial Information Decomposition (PID), which decomposes the information that a set of information sources holds about an outcome into unique, redundant and synergistic contributions. Our framework enables neurons to locally shape the integration of information from various input classes, i.e. feedforward, feedback, and lateral, by selecting which of the three inputs should contribute uniquely, redundantly or synergistically to the output. This selection is expressed as a weighted sum of PID terms, which, for a given problem, can be directly derived from intuitive reasoning or via numerical optimization, offering a window into understanding task-relevant local information processing. Achieving neuron-level interpretability while enabling strong performance using local learning, our work advances a principled information-theoretic foundation for local learning strategies.
comment: Presented as an oral at ICLR 2025. Conference version: https://openreview.net/forum?id=CLE09ESvul, 24 pages, 11 figures
♻ ☆ Predicting Patient Recovery or Mortality Using Deep Neural Decision Tree and Forest
Objective: Identifying patients at high risk of mortality is crucial for emergency physicians to allocate hospital resources effectively, particularly in regions with limited medical services. This need becomes even more pressing during global health crises that lead to significant morbidity and mortality. This study aimed to present the usability deep neural decision forest and deep neural decision tree to predict mortality among Coronavirus disease 2019 (COVID-19) patients. To this end, We used patient data encompassing Coronavirus disease 2019 diagnosis, demographics, health indicators, and occupational risk factors to analyze disease severity and outcomes. The dataset was partitioned using a stratified sampling method, ensuring that 80% was allocated for training and 20% for testing. Nine machine learning and deep learning methods were employed to build predictive models. The models were evaluated across all stages to determine their effectiveness in predicting patient outcomes. Results: Among the models, the deep neural decision forest consistently outperformed others. Results indicated that using only clinical data yielded an accuracy of 80% by deep neural decision forest, demonstrating it as a reliable predictor of patient mortality. Moreover, the results suggest that clinical data alone may be the most accurate diagnostic tool for predicting mortality.
♻ ☆ A Pure Hypothesis Test for Inhomogeneous Random Graph Models Based on a Kernelised Stein Discrepancy
Complex data are often represented as a graph, which in turn can often be viewed as a realisation of a random graph, such as an inhomogeneous random graph model (IRG). For general fast goodness-of-fit tests in high dimensions, kernelised Stein discrepancy (KSD) tests are a powerful tool. Here, we develop a KSD-type test for IRG models that can be carried out with a single observation of the network. The test applies to a network of any size, but is particularly interesting for small networks for which asymptotic tests are not warranted. We also provide theoretical guarantees.
comment: 49 pages, 24 figures
♻ ☆ GIST: Greedy Independent Set Thresholding for Max-Min Diversification with Submodular Utility
This work studies a novel subset selection problem called max-min diversification with monotone submodular utility ($\textsf{MDMS}$), which has a wide range of applications in machine learning, e.g., data sampling and feature selection. Given a set of points in a metric space, the goal of $\textsf{MDMS}$ is to maximize $f(S) = g(S) + \lambda \cdot \texttt{div}(S)$ subject to a cardinality constraint $|S| \le k$, where $g(S)$ is a monotone submodular function and $\texttt{div}(S) = \min_{u,v \in S : u \ne v} \text{dist}(u,v)$ is the max-min diversity objective. We propose the $\texttt{GIST}$ algorithm, which gives a $\frac{1}{2}$-approximation guarantee for $\textsf{MDMS}$ by approximating a series of maximum independent set problems with a bicriteria greedy algorithm. We also prove that it is NP-hard to approximate within a factor of $0.5584$. Finally, we show in our empirical study that $\texttt{GIST}$ outperforms state-of-the-art benchmarks for a single-shot data sampling task on ImageNet.
comment: 21 pages, 3 figures
♻ ☆ Parameter Efficient Fine-tuning via Explained Variance Adaptation NeurIPS 2025
Foundation models (FMs) are pre-trained on large-scale datasets and then fine-tuned for a specific downstream task. The most common fine-tuning method is to update pretrained weights via low-rank adaptation (LoRA). Existing initialization strategies for LoRA often rely on singular value decompositions (SVD) of gradients or weight matrices. However, they do not provably maximize the expected gradient signal, which is critical for fast adaptation. To this end, we introduce Explained Variance Adaptation (EVA), an initialization scheme that uses the directions capturing the most activation variance, provably maximizing the expected gradient signal and accelerating fine-tuning. EVA performs incremental SVD on minibatches of activation vectors and selects the right-singular vectors for initialization once they converged. Further, by selecting the directions that capture the most activation-variance for a given rank budget, EVA accommodates adaptive ranks that reduce the number of trainable parameters. We apply EVA to a variety of fine-tuning tasks as language generation and understanding, image classification, and reinforcement learning. EVA exhibits faster convergence than competitors and achieves the highest average score across a multitude of tasks per domain while reducing the number of trainable parameters through rank redistribution. In summary, EVA establishes a new Pareto frontier compared to existing LoRA initialization schemes in both accuracy and efficiency.
comment: Accepted at NeurIPS 2025, Shared first authorship, Code available at https://github.com/ml-jku/EVA
♻ ☆ FlexQuant: A Flexible and Efficient Dynamic Precision Switching Framework for LLM Quantization
The rapid advancement of large language models (LLMs) has exacerbated the memory bottleneck due to the widening gap between model parameter scaling and hardware capabilities. While post-training quantization techniques effectively reduce memory overhead, existing methods predominantly rely on static quantization strategies, which struggle to adapt to dynamic workloads. To address this, we propose FlexQuant, a dynamic precision-switching framework that optimizes the trade-off between inference speed and accuracy. Leveraging model perplexity entropy and Kullback-Leibler divergence, FlexQuant enables fine-grained, layer-wise mixed-precision quantization and dynamically adjusts bit-widths during each token generation. FlexQuant provides a comprehensive analysis of quantization strategies, introduces a precision requirement model for optimal switching, and implements efficient fine-grained precision management. Evaluations demonstrate that FlexQuant achieves a 1.3x end-to-end speedup across diverse language tasks with negligible accuracy loss introduced. This framework offers a flexible and adaptive solution for efficient LLM deployment. Code is released at https://github.com/ZongwuWang/FlexQuant.git.
comment: 1p pages, 7 figures, 2 tables
♻ ☆ The Syntax and Semantics of einsum
In 2011, einsum was introduced to NumPy as a practical and convenient notation for tensor expressions in machine learning, quantum circuit simulation, and other fields. It has since been implemented in additional Python frameworks such as PyTorch and TensorFlow, as well as in other programming languages such as Julia. Despite its practical success, the einsum notation still lacks a solid theoretical basis, and is not unified across the different frameworks, limiting opportunities for formal reasoning and systematic optimization. In this work, we discuss the terminology of tensor expressions and provide a formal definition of the einsum language. Based on this definition, we formalize and prove important equivalence rules for tensor expressions and highlight their relevance in practical applications.
comment: 21 pages, 1 figure. Includes formal definitions, proofs of algebraic properties, and nesting/denesting rules for the einsum notation
♻ ☆ Watch the Weights: Unsupervised monitoring and control of fine-tuned LLMs
The releases of powerful open-weight large language models (LLMs) are often not accompanied by access to their full training data. Existing interpretability methods, particularly those based on activations, often require or assume distributionally similar data. This is a significant limitation when detecting and defending against novel potential threats like backdoors, which are by definition out-of-distribution. In this work, we introduce a new method for understanding, monitoring and controlling fine-tuned LLMs that interprets weights, rather than activations, thereby side stepping the need for data that is distributionally similar to the unknown training data. We demonstrate that the top singular vectors of the weight difference between a fine-tuned model and its base model correspond to newly acquired behaviors. By monitoring the cosine similarity of activations along these directions, we can detect salient behaviors introduced during fine-tuning with high precision. For backdoored models that bypasses safety mechanisms when a secret trigger is present, our method stops up to 100% of attacks with a false positive rate below 1.2%. For models that have undergone unlearning, we detect inference on erased topics with accuracy up to 95.42% and can even steer the model to recover "unlearned" information. Besides monitoring, our method also shows potential for pre-deployment model auditing: by analyzing commercial instruction-tuned models (OLMo, Llama, Qwen), we are able to uncover model-specific fine-tuning focus including marketing strategies and Midjourney prompt generation. Our implementation can be found at https://github.com/fjzzq2002/WeightWatch.
♻ ☆ Adv-SSL: Adversarial Self-Supervised Representation Learning with Theoretical Guarantees NeurIPS 2025
Learning transferable data representations from abundant unlabeled data remains a central challenge in machine learning. Although numerous self-supervised learning methods have been proposed to address this challenge, a significant class of these approaches aligns the covariance or correlation matrix with the identity matrix. Despite impressive performance across various downstream tasks, these methods often suffer from biased sample risk, leading to substantial optimization shifts in mini-batch settings and complicating theoretical analysis. In this paper, we introduce a novel \underline{\bf Adv}ersarial \underline{\bf S}elf-\underline{\bf S}upervised Representation \underline{\bf L}earning (Adv-SSL) for unbiased transfer learning with no additional cost compared to its biased counterparts. Our approach not only outperforms the existing methods across multiple benchmark datasets but is also supported by comprehensive end-to-end theoretical guarantees. Our analysis reveals that the minimax optimization in Adv-SSL encourages representations to form well-separated clusters in the embedding space, provided there is sufficient upstream unlabeled data. As a result, our method achieves strong classification performance even with limited downstream labels, shedding new light on few-shot learning.
comment: Accepted at the Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ DISCOVER: Automated Curricula for Sparse-Reward Reinforcement Learning NeurIPS 2025
Sparse-reward reinforcement learning (RL) can model a wide range of highly complex tasks. Solving sparse-reward tasks is RL's core premise, requiring efficient exploration coupled with long-horizon credit assignment, and overcoming these challenges is key for building self-improving agents with superhuman ability. Prior work commonly explores with the objective of solving many sparse-reward tasks, making exploration of individual high-dimensional, long-horizon tasks intractable. We argue that solving such challenging tasks requires solving simpler tasks that are relevant to the target task, i.e., whose achieval will teach the agent skills required for solving the target task. We demonstrate that this sense of direction, necessary for effective exploration, can be extracted from existing RL algorithms, without leveraging any prior information. To this end, we propose a method for directed sparse-reward goal-conditioned very long-horizon RL (DISCOVER), which selects exploratory goals in the direction of the target task. We connect DISCOVER to principled exploration in bandits, formally bounding the time until the target task becomes achievable in terms of the agent's initial distance to the target, but independent of the volume of the space of all tasks. We then perform a thorough evaluation in high-dimensional environments. We find that the directed goal selection of DISCOVER solves exploration problems that are beyond the reach of prior state-of-the-art exploration methods in RL.
comment: NeurIPS 2025
♻ ☆ General agents contain world models ICML 2025
Are world models a necessary ingredient for flexible, goal-directed behaviour, or is model-free learning sufficient? We provide a formal answer to this question, showing that any agent capable of generalizing to multi-step goal-directed tasks must have learned a predictive model of its environment. We show that this model can be extracted from the agent's policy, and that increasing the agents performance or the complexity of the goals it can achieve requires learning increasingly accurate world models. This has a number of consequences: from developing safe and general agents, to bounding agent capabilities in complex environments, and providing new algorithms for eliciting world models from agents.
comment: Accepted ICML 2025. Typos corrected
♻ ☆ What is Memory? A Homological Perspective
We introduce the delta-homology model of memory, a unified framework in which recall, learning, and prediction emerge from cycle closure, the completion of topologically constrained trajectories within the brain's latent manifold. A Dirac-like memory trace corresponds to a nontrivial homology generator, representing a sparse, irreducible attractor that reactivates only when inference trajectories close upon themselves. In this view, memory is not a static attractor landscape but a topological process of recurrence, where structure arises through the stabilization of closed loops. Building on this principle, we represent spike-timing dynamics as spatiotemporal complexes, in which temporally consistent transitions among neurons form chain complexes supporting persistent activation cycles. These cycles are organized into cell posets, compact causal representations that encode overlapping and compositional memory traces. Within this construction, learning and recall correspond to cycle closure under contextual modulation: inference trajectories stabilize into nontrivial homology classes when both local synchrony (context) and global recurrence (content) are satisfied. We formalize this mechanism through the Context-Content Uncertainty Principle (CCUP), which states that cognition minimizes joint uncertainty between a high-entropy context variable and a low-entropy content variable. Synchronization acts as a context filter selecting coherent subnetworks, while recurrence acts as a content filter validating nontrivial cycles.
♻ ☆ OCR-APT: Reconstructing APT Stories from Audit Logs using Subgraph Anomaly Detection and LLMs CCS 2025
Advanced Persistent Threats (APTs) are stealthy cyberattacks that often evade detection in system-level audit logs. Provenance graphs model these logs as connected entities and events, revealing relationships that are missed by linear log representations. Existing systems apply anomaly detection to these graphs but often suffer from high false positive rates and coarse-grained alerts. Their reliance on node attributes like file paths or IPs leads to spurious correlations, reducing detection robustness and reliability. To fully understand an attack's progression and impact, security analysts need systems that can generate accurate, human-like narratives of the entire attack. To address these challenges, we introduce OCR-APT, a system for APT detection and reconstruction of human-like attack stories. OCR-APT uses Graph Neural Networks (GNNs) for subgraph anomaly detection, learning behavior patterns around nodes rather than fragile attributes such as file paths or IPs. This approach leads to a more robust anomaly detection. It then iterates over detected subgraphs using Large Language Models (LLMs) to reconstruct multi-stage attack stories. Each stage is validated before proceeding, reducing hallucinations and ensuring an interpretable final report. Our evaluations on the DARPA TC3, OpTC, and NODLINK datasets show that OCR-APT outperforms state-of-the-art systems in both detection accuracy and alert interpretability. Moreover, OCR-APT reconstructs human-like reports that comprehensively capture the attack story.
comment: This is the authors' extended version of the paper accepted for publication at the ACM SIGSAC Conference on Computer and Communications Security (CCS 2025). The final published version is available at https://doi.org/10.1145/3719027.3765219
♻ ☆ CodeVisionary: An Agent-based Framework for Evaluating Large Language Models in Code Generation
Large language models (LLMs) have demonstrated strong capabilities in code generation, underscoring the critical need for rigorous and comprehensive evaluation. Existing evaluation approaches fall into three categories, including human-centered, metric-based, and LLM-based. Considering that human-centered approaches are labour-intensive and metric-based ones overly rely on reference answers, LLM-based approaches are gaining increasing attention due to their stronger contextual understanding capabilities. However, they generally evaluate the generated code based on static prompts, and tend to fail for complex code scenarios which typically involve multiple requirements and require more contextual information. In addition, these approaches lack fine-grained evaluation for complex code, resulting in limited explainability. To mitigate the limitations, we propose CodeVisionary, the first agent-based evaluation framework for complex code generation. CodeVisionary consists of two stages: (1) Requirement-guided multi-dimensional context distillation stage and (2) Fine-grained scoring and summarization stage. A comprehensive evaluation report is also generated for enhanced explainability. For validation, we construct a new benchmark consisting of 363 samples spanning 37 coding scenarios and 23 programming languages. Extensive experiments demonstrate that CodeVisionary achieves the best performance among three baselines for evaluating complex code generation, outperforming the best baseline with average improvements of 0.217, 0.163, and 0.141 in Pearson, Spearman, and Kendall-Tau coefficients, respectively. The resources of CodeVisionary are available at https://github.com/Eshe0922/CodeVisionary.
♻ ☆ LLM as GNN: Graph Vocabulary Learning for Text-Attributed Graph Foundation Models
Text-Attributed Graphs (TAGs), where each node is associated with text descriptions, are ubiquitous in real-world scenarios. They typically exhibit distinctive structure and domain-specific knowledge, motivating the development of a Graph Foundation Model (GFM) that generalizes across diverse graphs and tasks. Despite large efforts to integrate Large Language Models (LLMs) and Graph Neural Networks (GNNs) for TAGs, existing approaches suffer from decoupled architectures with two-stage alignment, limiting their synergistic potential. Even worse, existing methods assign out-of-vocabulary (OOV) tokens to graph nodes, leading to graph-specific semantics, token explosion, and incompatibility with task-oriented prompt templates, which hinders cross-graph and cross-task transferability. To address these challenges, we propose PromptGFM, a versatile GFM for TAGs grounded in graph vocabulary learning. PromptGFM comprises two key components: (1) Graph Understanding Module, which explicitly prompts LLMs to replicate the finest GNN workflow within the text space, facilitating seamless GNN-LLM integration and elegant graph-text alignment; (2) Graph Inference Module, which establishes a language-based graph vocabulary ensuring expressiveness, transferability, and scalability, enabling readable instructions for LLM fine-tuning. Extensive experiments demonstrate our superiority and transferability across diverse graphs and tasks. The code is available at this: https://github.com/agiresearch/PromptGFM.
♻ ☆ Communications to Circulations: Real-Time 3D Wind Field Prediction Using 5G GNSS Signals and Deep Learning
Accurate atmospheric wind field information is crucial for various applications, including weather forecasting, aviation safety, and disaster risk reduction. However, obtaining high spatiotemporal resolution wind data remains challenging due to limitations in traditional in-situ observations and remote sensing techniques, as well as the computational expense and biases of numerical weather prediction (NWP) models. This paper introduces G-WindCast, a novel deep learning framework that leverages signal strength variations from 5G Global Navigation Satellite System (GNSS) signals to forecast three-dimensional (3D) atmospheric wind fields. The framework utilizes Forward Neural Networks (FNN) and Transformer networks to capture complex, nonlinear, and spatiotemporal relationships between GNSS-derived features and wind dynamics. Our preliminary results demonstrate promising accuracy in real-time wind forecasts (up to 30 minutes lead time). The model exhibits robustness across forecast horizons and different pressure levels, and its predictions for wind fields show superior agreement with ground-based radar wind profiler compared to concurrent European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5). Furthermore, we show that the system can maintain excellent performance for localized forecasting even with a significantly reduced number of GNSS stations (e.g., around 100), highlighting its cost-effectiveness and scalability. This interdisciplinary approach underscores the transformative potential of exploiting non-traditional data sources and deep learning for advanced environmental monitoring and real-time atmospheric applications.
comment: 31 pages, 10 figures; Minor text revisions; Updated the questions, some images in the article, the abstract, and the main text content
♻ ☆ CAPO: Towards Enhancing LLM Reasoning through Generative Credit Assignment
Reinforcement Learning with Verifiable Rewards (RLVR) has improved the reasoning abilities of Large Language Models (LLMs) by using rule-based binary feedback. However, current RLVR methods typically assign the same reward to every token. This coarse-grained feedback hampers precise credit assignment, making it hard for models to identify which reasoning steps lead to success or failure, and often results in suboptimal policies. Methods like PPO provide credit assignment by value estimation, but yield inaccurate and unverifiable signals due to limited sampling. On the other hand, methods using Process Reward Models can provide step-wise rewards but suffer from several key limitations: they require high-quality process supervision labels, the feedback is unreliable due to probabilistic reward modeling, and their application in online reinforcement learning (RL) is time-consuming. To overcome these limitations, we introduce a simple but efficient method-Credit Assignment Policy Optimization (CAPO). Instead of training auxiliary models, CAPO directly leverages an off-the-shelf, general-purpose LLM as a Generative Process Reward Model (LLM-as-GenPRM) to generate all step-wise critique by one pass only based on the correctness of the step itself, providing deterministic token-level credits to refine the tokens that were originally assigned identical rule-based rewards. To further enhance the accuracy and robustness, we employ voting mechanisms that scale with the number of generated critiques. Extensive experiments on various backbones like Llama and Qwen models show that CAPO consistently outperforms supervised learning-based and RL-based fine-tuning methods across four challenging mathematical benchmarks and three out-of-domain benchmarks. Further analysis shows that CAPO can help the model to foster the learning of correct reasoning pathways leading to correct answers.
comment: Work in progress
♻ ☆ Application-oriented automatic hyperparameter optimization for spiking neural network prototyping
Hyperparameter optimization (HPO) is of paramount importance in the development of high-performance, specialized artificial intelligence (AI) models, ranging from well-established machine learning (ML) solutions to the deep learning (DL) domain and the field of spiking neural networks (SNNs). The latter introduce further complexity due to the neuronal computational units and their additional hyperparameters, whose inadequate setting can dramatically impact the final model performance. At the cost of possible reduced generalization capabilities, the most suitable strategy to fully disclose the power of SNNs is to adopt an application-oriented approach and perform extensive HPO experiments. To facilitate these operations, automatic pipelines are fundamental, and their configuration is crucial. In this document, the Neural Network Intelligence (NNI) toolkit is used as reference framework to present one such solution, with a use case example providing evidence of the corresponding results. In addition, a summary of published works employing the presented pipeline is reported as a potential source of insights into application-oriented HPO experiments for SNN prototyping.
♻ ☆ Infinity Parser: Layout Aware Reinforcement Learning for Scanned Document Parsing
Automated parsing of scanned documents into richly structured, machine-readable formats remains a critical bottleneck in Document AI, as traditional multi-stage pipelines suffer from error propagation and limited adaptability to diverse layouts. We introduce layoutRL, an end-to-end reinforcement learning framework that trains models to be explicitly layout-aware by optimizing a composite reward of normalized edit distance, paragraph count accuracy, and reading order preservation. Leveraging our newly released dataset, Infinity-Doc-55K, which combines 55K high-fidelity synthetic scanned document parsing data with expert-filtered real-world documents, we instantiate layoutRL in a vision-language-model-based parser called Infinity-Parser. Evaluated on English and Chinese benchmarks for OCR, table and formula extraction, and reading order detection, Infinity-Parser achieves new state-of-the-art performance in both accuracy and structural fidelity, outpacing specialist pipelines and general-purpose vision-language models. We will publicly release our code and dataset to accelerate progress in robust document understanding.
comment: 16 pages, 12 figures
♻ ☆ Going with the Flow: Approximating Banzhaf Values via Graph Neural Networks
Computing the Banzhaf value in network flow games is fundamental for quantifying agent influence in multi-agent systems, with applications ranging from cybersecurity to infrastructure planning. However, exact computation is intractable for systems with more than $\sim20$ agents due to exponential complexity $\mathcal{O}(2^m)$. While Monte Carlo sampling methods provide statistical estimates, they suffer from high sample complexity and cannot transfer knowledge across different network configurations, making them impractical for large-scale or dynamic systems. We present a novel learning-based approach using Graph Neural Networks (GNNs) to approximate Banzhaf values in cardinal network flow games. By framing the problem as a graph-level prediction task, our method learns generalisable patterns of agent influence directly from network topology and control structure. We conduct a comprehensive empirical study comparing three state-of-the-art GNN architectures-Graph Attention Networks (GAT), Graph Isomorphism Networks with Edge features (GINE), and EdgeConv-on a large-scale synthetic dataset of 200,000 graphs per configuration, varying in size (20-100 nodes), agent count (5-20), and edge probability (0.5-1.0). Our results demonstrate that trained GNN models achieve high-fidelity Banzhaf value approximation with order-of-magnitude speedups compared to exact and sampling-based methods. Most significantly, we show strong zero-shot generalisation: models trained on graphs of a specific size and topology accurately predict Banzhaf values for entirely new networks with different structural properties, without requiring retraining. This work establishes GNNs as a practical tool for scalable cooperative game-theoretic analysis of complex networked systems.
comment: 21 pages, 8 figures, 11-page appendix
♻ ☆ A deep solver for backward stochastic Volterra integral equations
We present the first deep-learning solver for backward stochastic Volterra integral equations (BSVIEs) and their fully-coupled forward-backward variants. The method trains a neural network to approximate the two solution fields in a single stage, avoiding the use of nested time-stepping cycles that limit classical algorithms. For the decoupled case we prove a non-asymptotic error bound composed of an a posteriori residual plus the familiar square root dependence on the time step. Numerical experiments are consistent with this rate and reveal two key properties: \emph{scalability}, in the sense that accuracy remains stable from low dimension up to 500 spatial variables while GPU batching keeps wall-clock time nearly constant; and \emph{generality}, since the same method handles coupled systems whose forward dynamics depend on the backward solution. These results open practical access to a family of high-dimensional, time-inconsistent problems in stochastic control and quantitative finance.
comment: 25 pages, 10 figures
♻ ☆ Neural Green's Operators for Parametric Partial Differential Equations
This work introduces a paradigm for constructing parametric neural operators that are derived from finite-dimensional representations of Green's operators, with learnable Green's functions, for linear partial differential equations (PDEs). We refer to such neural operators as Neural Green's Operators (NGOs). Our construction of NGOs preserves the linear action of Green's operators on the inhomogeneity fields, while approximating the nonlinear dependence of the Green's function on the coefficients of the PDE using neural networks that take weighted averages of such coefficients as input. This construction reduces the complexity of the problem from learning the entire solution operator and its dependence on all parameters to only learning the Green's function and its dependence on the PDE coefficients. Moreover, taking weighted averages, rather than point samples, of input functions decouples the network size from the number of sampling points, enabling efficient resolution of multiple scales in the input fields. Furthermore, we show that our explicit representation of Green's functions enables the embedding of desirable mathematical attributes in our NGO architectures, such as symmetry, spectral, and conservation properties. Through numerical benchmarks on canonical PDEs, we demonstrate that NGOs achieve comparable or superior accuracy to deep operator networks, variationally mimetic operator networks, and Fourier neural operators with similar parameter counts, while generalizing significantly better when tested on out-of-distribution data. For time-dependent PDEs, we show that NGOs can produce pointwise-accurate dynamics in an auto-regressive manner when trained on a single time step. Finally, we show that we can leverage the explicit representation of Green's functions returned by NGOs to construct effective matrix preconditioners that accelerate iterative solvers for PDEs.
♻ ☆ Conformal online model aggregation
Conformal prediction equips machine learning models with a reasonable notion of uncertainty quantification without making strong distributional assumptions. It wraps around any prediction model and converts point predictions into set predictions with a predefined marginal coverage guarantee. However, conformal prediction only works if we fix the underlying machine learning model in advance. A relatively unaddressed issue in conformal prediction is that of model selection and/or aggregation: given a set of prediction models, which one should we conformalize? This paper suggests that instead of performing model selection, it can be prudent and practical to perform conformal set aggregation in an online, adaptive fashion. We propose a wrapper that takes in several conformal prediction sets (themselves wrapped around black-box prediction models), and outputs a single adaptively-combined prediction set. Our method, called conformal online model aggregation (COMA), is based on combining the prediction sets from several algorithms by weighted voting, and can be thought of as a sort of online stacking of the underlying conformal sets. As long as the input sets have (distribution-free) coverage guarantees, COMA retains coverage guarantees, under a negative correlation assumption between errors and weights. We verify that the assumption holds empirically in all settings considered. COMA is well-suited for decentralized or distributed settings, where different users may have different models, and are only willing to share their prediction sets for a new test point in a black-box fashion. As we demonstrate, it is also well-suited to settings with distribution drift and shift, where model selection can be imprudent.
♻ ☆ Progressive Tempering Sampler with Diffusion ICML 2025
Recent research has focused on designing neural samplers that amortize the process of sampling from unnormalized densities. However, despite significant advancements, they still fall short of the state-of-the-art MCMC approach, Parallel Tempering (PT), when it comes to the efficiency of target evaluations. On the other hand, unlike a well-trained neural sampler, PT yields only dependent samples and needs to be rerun -- at considerable computational cost -- whenever new samples are required. To address these weaknesses, we propose the Progressive Tempering Sampler with Diffusion (PTSD), which trains diffusion models sequentially across temperatures, leveraging the advantages of PT to improve the training of neural samplers. We also introduce a novel method to combine high-temperature diffusion models to generate approximate lower-temperature samples, which are minimally refined using MCMC and used to train the next diffusion model. PTSD enables efficient reuse of sample information across temperature levels while generating well-mixed, uncorrelated samples. Our method significantly improves target evaluation efficiency, outperforming diffusion-based neural samplers.
comment: Accepted for publication at ICML 2025
♻ ☆ CEReBrO: Compact Encoder for Representations of Brain Oscillations Using Efficient Alternating Attention
Electroencephalograph (EEG) is a crucial tool for studying brain activity. Recently, self-supervised learning methods leveraging large unlabeled datasets have emerged as a potential solution to the scarcity of widely available annotated EEG data. However, current methods suffer from at least one of the following limitations: i) sub-optimal EEG signal modeling, ii) model sizes in the hundreds of millions of trainable parameters, and iii) reliance on private datasets and/or inconsistent public benchmarks, hindering reproducibility. To address these challenges, we introduce a Compact Encoder for Representations of Brain Oscillations using alternating attention (CEReBrO), a new small EEG foundation model. Our tokenization scheme represents EEG signals at a per-channel patch granularity. We propose an alternating attention mechanism that jointly models intra-channel temporal dynamics and inter-channel spatial correlations, achieving 2x speed improvement with 6x less memory required compared to standard self-attention. We present several model sizes ranging from 3.6 million to 85 million parameters. Pre-trained on over 20,000 hours of publicly available scalp EEG recordings with diverse channel configurations, our models set new benchmarks in emotion detection and seizure detection tasks, with competitive performance in anomaly classification and gait prediction. This validates our models' effectiveness and efficiency.
♻ ☆ Robust LLM Training Infrastructure at ByteDance
The training scale of large language models (LLMs) has reached tens of thousands of GPUs and is still continuously expanding, enabling faster learning of larger models. Accompanying the expansion of the resource scale is the prevalence of failures (CUDA error, NaN values, job hang, etc.), which poses significant challenges to training stability. Any large-scale LLM training infrastructure should strive for minimal training interruption, efficient fault diagnosis, and effective failure tolerance to enable highly efficient continuous training. This paper presents ByteRobust, a large-scale GPU infrastructure management system tailored for robust and stable training of LLMs. It exploits the uniqueness of LLM training process and gives top priorities to detecting and recovering failures in a routine manner. Leveraging parallelisms and characteristics of LLM training, ByteRobust enables high-capacity fault tolerance, prompt fault demarcation, and localization with an effective data-driven approach, comprehensively ensuring continuous and efficient training of LLM tasks. ByteRobust is deployed on a production GPU platform and achieves 97% ETTR for a three-month training job on 9,600 GPUs.
♻ ☆ The quest for the GRAph Level autoEncoder (GRALE)
Although graph-based learning has attracted a lot of attention, graph representation learning is still a challenging task whose resolution may impact key application fields such as chemistry or biology. To this end, we introduce GRALE, a novel graph autoencoder that encodes and decodes graphs of varying sizes into a shared embedding space. GRALE is trained using an Optimal Transport-inspired loss that compares the original and reconstructed graphs and leverages a differentiable node matching module, which is trained jointly with the encoder and decoder. The proposed attention-based architecture relies on Evoformer, the core component of AlphaFold, which we extend to support both graph encoding and decoding. We show, in numerical experiments on simulated and molecular data, that GRALE enables a highly general form of pre-training, applicable to a wide range of downstream tasks, from classification and regression to more complex tasks such as graph interpolation, editing, matching, and prediction.
♻ ☆ Client Clustering Meets Knowledge Sharing: Enhancing Privacy and Robustness in Personalized Peer-to-Peer Learning IEEE
The growing adoption of Artificial Intelligence (AI) in Internet of Things (IoT) ecosystems has intensified the need for personalized learning methods that can operate efficiently and privately across heterogeneous, resource-constrained devices. However, enabling effective personalized learning in decentralized settings introduces several challenges, including efficient knowledge transfer between clients, protection of data privacy, and resilience against poisoning attacks. In this paper, we address these challenges by developing P4 (Personalized, Private, Peer-to-Peer) -- a method designed to deliver personalized models for resource-constrained IoT devices while ensuring differential privacy and robustness against poisoning attacks. Our solution employs a lightweight, fully decentralized algorithm to privately detect client similarity and form collaborative groups. Within each group, clients leverage differentially private knowledge distillation to co-train their models, maintaining high accuracy while ensuring robustness to the presence of malicious clients. We evaluate P4 on popular benchmark datasets using both linear and CNN-based architectures across various heterogeneity settings and attack scenarios. Experimental results show that P4 achieves 5% to 30% higher accuracy than leading differentially private peer-to-peer approaches and maintains robustness with up to 30% malicious clients. Additionally, we demonstrate its practicality by deploying it on resource-constrained devices, where collaborative training between two clients adds only ~7 seconds of overhead.
comment: This paper has been accepted for publication at the IEEE Annual Congress on Artificial Intelligence of Things (IEEE AIoT) 2025
♻ ☆ Federated Conditional Conformal Prediction via Generative Models
Conformal Prediction (CP) provides distribution-free uncertainty quantification by constructing prediction sets that guarantee coverage of the true labels. This reliability makes CP valuable for high-stakes federated learning scenarios such as multi-center healthcare. However, standard CP assumes i.i.d. data, which is violated in federated settings where client distributions differ substantially. Existing federated CP methods address this by maintaining marginal coverage on each client, but such guarantees often fail to reflect input-conditional uncertainty. In this work, we propose Federated Conditional Conformal Prediction (Fed-CCP) via generative models, which aims for conditional coverage that adapts to local data heterogeneity. Fed-CCP leverages generative models, such as normalizing flows or diffusion models, to approximate conditional data distributions without requiring the sharing of raw data. This enables each client to locally calibrate conformal scores that reflect its unique uncertainty, while preserving global consistency through federated aggregation. Experiments on real datasets demonstrate that Fed-CCP achieves more adaptive prediction sets.
♻ ☆ Trainable Dynamic Mask Sparse Attention
The increasing demand for long-context modeling in large language models (LLMs) is bottlenecked by the quadratic complexity of the standard self-attention mechanism. The community has proposed sparse attention to mitigate this issue. However, position-aware sparse attention methods rely on static sparse structures that lack adaptability to diverse query contexts, while content-aware sparse attention methods depend on heuristic key-value selection, hindering full differentiability. We introduce a trainable dynamic mask sparse attention mechanism, a method that merges the advantages of both position-aware and content-aware approaches. Dynamic Mask Attention (DMA) achieves this through three key innovations: First, it leverages value vector representations to generate content-aware dynamic masks, enabling the model to adaptively identify and attend to critical information. Second, it computes position-aware sparse weights in a hardware-friendly manner, efficiently skipping unnecessary computational regions. Finally, we demonstrate that the introduced dynamic mask and sparse weights do not obstruct gradients, supporting end-to-end training. We have validated the performance of DMA through comprehensive experiments. A large body of experimental evidence shows that DMA consistently holds a Pareto advantage over state-of-the-art sparse attention baselines in tasks including scaling laws, multi-query associative recall, standard benchmarks, and needle in a haystack tests, while also delivering up to a 10x overall speedup. These results highlight its ability to effectively balance model efficiency with long-context modeling capabilities. Our computational kernel code is now open-source at https://github.com/SmallDoges/flash-dmattn to encourage further research and application by the community.
comment: 26 pages
♻ ☆ Path Gradients after Flow Matching
Boltzmann Generators have emerged as a promising machine learning tool for generating samples from equilibrium distributions of molecular systems using Normalizing Flows and importance weighting. Recently, Flow Matching has helped speed up Continuous Normalizing Flows (CNFs), scale them to more complex molecular systems, and minimize the length of the flow integration trajectories. We investigate the benefits of using path gradients to fine-tune CNFs initially trained by Flow Matching, in the setting where a target energy is known. Our experiments show that this hybrid approach yields up to a threefold increase in sampling efficiency for molecular systems, all while using the same model, a similar computational budget and without the need for additional sampling. Furthermore, by measuring the length of the flow trajectories during fine-tuning, we show that path gradients largely preserve the learned structure of the flow.
♻ ☆ Every Rollout Counts: Optimal Resource Allocation for Efficient Test-Time Scaling NeurIPS2025
Test-Time Scaling (TTS) improves the performance of Large Language Models (LLMs) by using additional inference-time computation to explore multiple reasoning paths through search. Yet how to allocate a fixed rollout budget most effectively during search remains underexplored, often resulting in inefficient use of compute at test time. To bridge this gap, we formulate test-time search as a resource allocation problem and derive the optimal allocation strategy that maximizes the probability of obtaining a correct solution under a fixed rollout budget. Within this formulation, we reveal a core limitation of existing search methods: solution-level allocation tends to favor reasoning directions with more candidates, leading to theoretically suboptimal and inefficient use of compute. To address this, we propose Direction-Oriented Resource Allocation (DORA), a provably optimal method that mitigates this bias by decoupling direction quality from candidate count and allocating resources at the direction level. To demonstrate DORA's effectiveness, we conduct extensive experiments on challenging mathematical reasoning benchmarks including MATH500, AIME2024, and AIME2025. The empirical results show that DORA consistently outperforms strong baselines with comparable computational cost, achieving state-of-the-art accuracy. We hope our findings contribute to a broader understanding of optimal TTS for LLMs.
comment: Accepted at NeurIPS2025
♻ ☆ Multiscale Neural PDE Surrogates for Prediction and Downscaling: Application to Ocean Currents NeurIPS 2025
Accurate modeling of physical systems governed by partial differential equations is a central challenge in scientific computing. In oceanography, high-resolution current data are critical for coastal management, environmental monitoring, and maritime safety. However, available satellite products, such as Copernicus data for sea water velocity at ~0.08 degrees spatial resolution and global ocean models, often lack the spatial granularity required for detailed local analyses. In this work, we (a) introduce a supervised deep learning framework based on neural operators for solving PDEs and providing arbitrary resolution solutions, and (b) propose downscaling models with an application to Copernicus ocean current data. Additionally, our method can model surrogate PDEs and predict solutions at arbitrary resolution, regardless of the input resolution. We evaluated our model on real-world Copernicus ocean current data and synthetic Navier-Stokes simulation datasets.
comment: Tackling Climate Change with Machine Learning: workshop at NeurIPS 2025
♻ ☆ Towards Explainable Deep Clustering for Time Series Data ECML-PKDD 2025
Deep clustering uncovers hidden patterns and groups in complex time series data, yet its opaque decision-making limits use in safety-critical settings. This survey offers a structured overview of explainable deep clustering for time series, collecting current methods and their real-world applications. We thoroughly discuss and compare peer-reviewed and preprint papers through application domains across healthcare, finance, IoT, and climate science. Our analysis reveals that most work relies on autoencoder and attention architectures, with limited support for streaming, irregularly sampled, or privacy-preserved series, and interpretability is still primarily treated as an add-on. To push the field forward, we outline six research opportunities: (1) combining complex networks with built-in interpretability; (2) setting up clear, faithfulness-focused evaluation metrics for unsupervised explanations; (3) building explainers that adapt to live data streams; (4) crafting explanations tailored to specific domains; (5) adding human-in-the-loop methods that refine clusters and explanations together; and (6) improving our understanding of how time series clustering models work internally. By making interpretability a primary design goal rather than an afterthought, we propose the groundwork for the next generation of trustworthy deep clustering time series analytics.
comment: 14 pages, accepted at TempXAI Workshop at ECML-PKDD 2025
♻ ☆ Synthetic Series-Symbol Data Generation for Time Series Foundation Models NeurIPS 2025
Foundation models for time series analysis (TSA) have attracted significant attention. However, challenges such as training data scarcity and imbalance continue to hinder their development. Inspired by complex dynamic system theories, we design a series-symbol data generation mechanism, enabling the unrestricted creation of high-quality time series data paired with corresponding symbolic expressions. To leverage series-symbol data pairs with strong correlations, we develop SymTime, a pre-trained foundation model for enhancing time series representation using symbolic information. SymTime demonstrates competitive performance across five major TSA tasks when fine-tunes with downstream tasks, rivaling foundation models pre-trained on real-world datasets. This approach underscores the potential of series-symbol data generation and pretraining mechanisms in overcoming data scarcity and enhancing task performance. The code is available at https://github.com/wwhenxuan/SymTime.
comment: 64 pages, 25 figures, 35 tables, NeurIPS 2025 accepted
♻ ☆ RocqStar: Leveraging Similarity-driven Retrieval and Agentic Systems for Rocq generation
Interactive Theorem Proving was repeatedly shown to be fruitful combined with Generative Artificial Intelligence. This paper assesses multiple approaches to Rocq generation and illuminates potential avenues for improvement. We highlight the importance of thorough premise selection for generating Rocq proofs and propose a novel approach, leveraging retrieval via a self-attentive embedder model. The evaluation of the designed approach shows up to 28% relative increase of the generator's performance. We tackle the problem of writing Rocq proofs using a multi-stage agentic system, tailored for formal verification, and demonstrate its high effectiveness. We conduct an ablation study and demonstrate shows that incorporating multi-agent debate during the planning stage increases the proof success rate by 20% overall and nearly doubles it for complex theorems, while the reflection mechanism further enhances stability and consistency.
♻ ☆ Reliable Wireless Indoor Localization via Cross-Validated Prediction-Powered Calibration
Wireless indoor localization using predictive models with received signal strength information (RSSI) requires proper calibration for reliable position estimates. One remedy is to employ synthetic labels produced by a (generally different) predictive model. But fine-tuning an additional predictor, as well as estimating residual bias of the synthetic labels, demands additional data, aggravating calibration data scarcity in wireless environments. This letter proposes an approach that efficiently uses limited calibration data to simultaneously fine-tune a predictor and estimate the bias of synthetic labels, yielding prediction sets with rigorous coverage guarantees. Experiments on a fingerprinting dataset validate the effectiveness of the proposed method.
♻ ☆ Neural Dynamic Data Valuation: A Stochastic Optimal Control Approach
Data valuation has become a cornerstone of the modern data economy, where datasets function as tradable intellectual assets that drive decision-making, model training, and market transactions. Despite substantial progress, existing valuation methods remain limited by high computational cost, weak fairness guarantees, and poor interpretability, which hinder their deployment in large-scale, high-stakes applications. This paper introduces Neural Dynamic Data Valuation (NDDV), a new framework that formulates data valuation as a stochastic optimal control problem to capture the dynamic evolution of data utility over time. Unlike static combinatorial approaches, NDDV models data interactions through continuous trajectories that reflect both individual and collective learning dynamics.
comment: 14 pages, 10 figures
♻ ☆ ReDi: Rectified Discrete Flow
Discrete Flow-based Models (DFMs) are powerful generative models for high-quality discrete data but typically suffer from slow sampling speeds due to their reliance on iterative decoding processes. This reliance on a multi-step process originates from the factorization approximation of DFMs, which is necessary for handling high-dimensional data. In this paper, we analyze the factorization approximation error using Conditional Total Correlation (TC), and reveal its dependence on the coupling. To address the challenge of efficient few-step generation, we propose Rectified Discrete Flow (ReDi), a novel iterative method that reduces the underlying factorization error (measured as Conditional TC) by rectifying the coupling between source and target distributions. We theoretically prove that each ReDi step guarantees a monotonic decreasing Conditional TC, ensuring its convergence. Empirically, ReDi significantly reduces Conditional TC and enables few-step generation. Moreover, we demonstrate that the rectified couplings are well-suited for training efficient one-step models on image generation. ReDi offers a simple and theoretically grounded approach for tackling the few-step challenge, providing a new perspective on efficient discrete data synthesis. Code is available at https://github.com/Ugness/ReDi_discrete.
♻ ☆ LANGTRAJ: Diffusion Model and Dataset for Language-Conditioned Trajectory Simulation ICCV 2025
Evaluating autonomous vehicles with controllability enables scalable testing in counterfactual or structured settings, enhancing both efficiency and safety. We introduce LangTraj, a language-conditioned scene-diffusion model that simulates the joint behavior of all agents in traffic scenarios. By conditioning on natural language inputs, LangTraj provides flexible and intuitive control over interactive behaviors, generating nuanced and realistic scenarios. Unlike prior approaches that depend on domain-specific guidance functions, LangTraj incorporates language conditioning during training, facilitating more intuitive traffic simulation control. We propose a novel closed-loop training strategy for diffusion models, explicitly tailored to enhance stability and realism during closed-loop simulation. To support language-conditioned simulation, we develop Inter-Drive, a large-scale dataset with diverse and interactive labels for training language-conditioned diffusion models. Our dataset is built upon a scalable pipeline for annotating agent-agent interactions and single-agent behaviors, ensuring rich and varied supervision. Validated on the Waymo Open Motion Dataset, LangTraj demonstrates strong performance in realism, language controllability, and language-conditioned safety-critical simulation, establishing a new paradigm for flexible and scalable autonomous vehicle testing. Project Website: https://langtraj.github.io/
comment: ICCV 2025
♻ ☆ Hyperspectral Anomaly Detection Fused Unified Nonconvex Tensor Ring Factors Regularization
In recent years, tensor decomposition-based approaches for hyperspectral anomaly detection (HAD) have gained significant attention in the field of remote sensing. However, existing methods often fail to fully leverage both the global correlations and local smoothness of the background components in hyperspectral images (HSIs), which exist in both the spectral and spatial domains. This limitation results in suboptimal detection performance. To mitigate this critical issue, we put forward a novel HAD method named HAD-EUNTRFR, which incorporates an enhanced unified nonconvex tensor ring (TR) factors regularization. In the HAD-EUNTRFR framework, the raw HSIs are first decomposed into background and anomaly components. The TR decomposition is then employed to capture the spatial-spectral correlations within the background component. Additionally, we introduce a unified and efficient nonconvex regularizer, induced by tensor singular value decomposition (TSVD), to simultaneously encode the low-rankness and sparsity of the 3-D gradient TR factors into a unique concise form. The above characterization scheme enables the interpretable gradient TR factors to inherit the low-rankness and smoothness of the original background. To further enhance anomaly detection, we design a generalized nonconvex regularization term to exploit the group sparsity of the anomaly component. To solve the resulting doubly nonconvex model, we develop a highly efficient optimization algorithm based on the alternating direction method of multipliers (ADMM) framework. Experimental results on several benchmark datasets demonstrate that our proposed method outperforms existing state-of-the-art (SOTA) approaches in terms of detection accuracy.
♻ ☆ When majority rules, minority loses: bias amplification of gradient descent
Despite growing empirical evidence of bias amplification in machine learning, its theoretical foundations remain poorly understood. We develop a formal framework for majority-minority learning tasks, showing how standard training can favor majority groups and produce stereotypical predictors that neglect minority-specific features. Assuming population and variance imbalance, our analysis reveals three key findings: (i) the close proximity between ``full-data'' and stereotypical predictors, (ii) the dominance of a region where training the entire model tends to merely learn the majority traits, and (iii) a lower bound on the additional training required. Our results are illustrated through experiments in deep learning for tabular and image classification tasks.
♻ ☆ Language Models are Injective and Hence Invertible
Transformer components such as non-linear activations and normalization are inherently non-injective, suggesting that different inputs could map to the same output and prevent exact recovery of the input from a model's representations. In this paper, we challenge this view. First, we prove mathematically that transformer language models mapping discrete input sequences to their corresponding sequence of continuous representations are injective and therefore lossless, a property established at initialization and preserved during training. Second, we confirm this result empirically through billions of collision tests on six state-of-the-art language models, and observe no collisions. Third, we operationalize injectivity: we introduce SipIt, the first algorithm that provably and efficiently reconstructs the exact input text from hidden activations, establishing linear-time guarantees and demonstrating exact invertibility in practice. Overall, our work establishes injectivity as a fundamental and exploitable property of language models, with direct implications for transparency, interpretability, and safe deployment.
♻ ☆ MatPROV: A Provenance Graph Dataset of Material Synthesis Extracted from Scientific Literature
Synthesis procedures play a critical role in materials research, as they directly affect material properties. With data-driven approaches increasingly accelerating materials discovery, there is growing interest in extracting synthesis procedures from scientific literature as structured data. However, existing studies often rely on rigid, domain-specific schemas with predefined fields for structuring synthesis procedures or assume that synthesis procedures are linear sequences of operations, which limits their ability to capture the structural complexity of real-world procedures. To address these limitations, we adopt PROV-DM, an international standard for provenance information, which supports flexible, graph-based modeling of procedures. We present MatPROV, a dataset of PROV-DM-compliant synthesis procedures extracted from scientific literature using large language models. MatPROV captures structural complexities and causal relationships among materials, operations, and conditions through visually intuitive directed graphs. This representation enables machine-interpretable synthesis knowledge, opening opportunities for future research such as automated synthesis planning and optimization.
♻ ☆ DeepSeek-Inspired Exploration of RL-based LLMs and Synergy with Wireless Networks: A Survey
Reinforcement learning (RL)-based large language models (LLMs), such as ChatGPT, DeepSeek, and Grok-3, have attracted widespread attention for their remarkable capabilities in multimodal data understanding. Meanwhile, the rapid expansion of information services has led to a growing demand for AI-enabled wireless networks. The open-source DeepSeek models are famous for their innovative designs, such as large-scale pure RL and cost-efficient training, which make them well-suited for practical deployment in wireless networks. By integrating DeepSeek-style LLMs with wireless infrastructures, a synergistic opportunity arises: the DeepSeek-style LLMs enhance network optimization with strong reasoning and decision-making abilities, while wireless infrastructure enables the broad deployment of these models. Motivated by this convergence, this survey presents a comprehensive DeepSeek-inspired exploration of RL-based LLMs in the context of wireless networks. We begin by reviewing key techniques behind network optimization to establish a foundation for understanding DeepSeek-style LLM integration. Next, we examine recent advancements in RL-based LLMs, using DeepSeek models as a representative example. Building on this, we explore the synergy between the two domains, highlighting motivations, challenges, and potential solutions. Finally, we highlight emerging directions for integrating LLMs with wireless networks, such as quantum, on-device, and neural-symbolic LLM models, as well as embodied AI agents. Overall, this survey offers a comprehensive examination of the interplay between DeepSeek-style LLMs and wireless networks, demonstrating how these domains can mutually enhance each other to drive innovation.
comment: 45 pages, 12 figures
♻ ☆ Error Broadcast and Decorrelation as a Potential Artificial and Natural Learning Mechanism
We introduce Error Broadcast and Decorrelation (EBD), a novel learning framework for neural networks that addresses credit assignment by directly broadcasting output errors to individual layers, circumventing weight transport of backpropagation. EBD is rigorously grounded in the stochastic orthogonality property of Minimum Mean Square Error estimators. This fundamental principle states that the error of an optimal estimator is orthogonal to functions of the input. Guided by this insight, EBD defines layerwise loss functions that directly penalize correlations between layer activations and output errors, thereby establishing a principled foundation for error broadcasting. This theoretically sound mechanism naturally leads to the experimentally observed three-factor learning rule and integrates with biologically plausible frameworks to enhance performance and plausibility. Numerical experiments demonstrate EBD's competitive or better performance against other error-broadcast methods on benchmark datasets. Our findings establish EBD as an efficient, biologically plausible, and principled alternative for neural network training. The implementation is available at: https://github.com/meterdogan07/error-broadcast-decorrelation.
♻ ☆ UniCrossFi: A Unified Framework For Cross-Domain Wi-Fi-based Gesture Recognition
Wi-Fi sensing systems are severely hindered by cross domain problem when deployed in unseen real-world environments. Existing methods typically design separate frameworks for either domain adaptation or domain generalization, often relying on extensive labeled data. Existing methods that designed for domain generalization is often relying on extensive labeled data. However, real-world scenarios are far more complex, where the deployed model must be capable of handling generalization under limited labeled source data. To this end, we propose UniCrossFi, a unified framework designed to mitigate performance drop in CSI-based sensing across diverse deployment settings. Our framework not only extends conventional Domain Generalization (DG) to a more practical Semi-Supervised Domain Generalization (SSDG) setting, where only partially labeled source data are available, but also introduces a physics-informed data augmentation strategy, Antenna Response Consistency (ARC). ARC mitigates the risk of learning superficial shortcuts by exploiting the intrinsic spatial diversity of multi-antenna systems, treating signals from different antennas as naturally augmented views of the same event. In addition, we design a Unified Contrastive Objective to prevent conventional contrastive learning from pushing apart samples from different domains that share the same class. We conduct extensive experiments on the public Widar and CSIDA datasets. The results demonstrate that UniCrossFi consistently establishes a new state-of-the-art, significantly outperforming existing methods across all unsupervised domain adaptation, DG, and SSDG benchmarks. UniCrossFi provides a principled and practical solution to the domain shift challenge, advancing the feasibility of robust, real-world Wi-Fi sensing systems that can operate effectively with limited labeled data.
♻ ☆ Unlocking the Power of Mixture-of-Experts for Task-Aware Time Series Analytics
Time Series Analysis is widely used in various real-world applications such as weather forecasting, financial fraud detection, imputation for missing data in IoT systems, and classification for action recognization. Mixture-of-Experts (MoE), as a powerful architecture, though demonstrating effectiveness in NLP, still falls short in adapting to versatile tasks in time series analytics due to its task-agnostic router and the lack of capability in modeling channel correlations. In this study, we propose a novel, general MoE-based time series framework called PatchMoE to support the intricate ``knowledge'' utilization for distinct tasks, thus task-aware. Based on the observation that hierarchical representations often vary across tasks, e.g., forecasting vs. classification, we propose a Recurrent Noisy Gating to utilize the hierarchical information in routing, thus obtaining task-sepcific capability. And the routing strategy is operated on time series tokens in both temporal and channel dimensions, and encouraged by a meticulously designed Temporal \& Channel Load Balancing Loss to model the intricate temporal and channel correlations. Comprehensive experiments on five downstream tasks demonstrate the state-of-the-art performance of PatchMoE.
♻ ☆ From AI for Science to Agentic Science: A Survey on Autonomous Scientific Discovery
Artificial intelligence (AI) is reshaping scientific discovery, evolving from specialized computational tools into autonomous research partners. We position Agentic Science as a pivotal stage within the broader AI for Science paradigm, where AI systems progress from partial assistance to full scientific agency. Enabled by large language models (LLMs), multimodal systems, and integrated research platforms, agentic AI shows capabilities in hypothesis generation, experimental design, execution, analysis, and iterative refinement -- behaviors once regarded as uniquely human. This survey provides a domain-oriented review of autonomous scientific discovery across life sciences, chemistry, materials science, and physics. We unify three previously fragmented perspectives -- process-oriented, autonomy-oriented, and mechanism-oriented -- through a comprehensive framework that connects foundational capabilities, core processes, and domain-specific realizations. Building on this framework, we (i) trace the evolution of AI for Science, (ii) identify five core capabilities underpinning scientific agency, (iii) model discovery as a dynamic four-stage workflow, (iv) review applications across the above domains, and (v) synthesize key challenges and future opportunities. This work establishes a domain-oriented synthesis of autonomous scientific discovery and positions Agentic Science as a structured paradigm for advancing AI-driven research.
♻ ☆ Aurora: Towards Universal Generative Multimodal Time Series Forecasting
Cross-domain generalization is very important in Time Series Forecasting because similar historical information may lead to distinct future trends due to the domain-specific characteristics. Recent works focus on building unimodal time series foundation models and end-to-end multimodal supervised models. Since domain-specific knowledge is often contained in modalities like texts, the former lacks the explicit utilization of them, thus hindering the performance. The latter is tailored for end-to-end scenarios and does not support zero-shot inference for cross-domain scenarios. In this work, we introduce Aurora, a Multimodal Time Series Foundation Model, which supports multimodal inputs and zero-shot inference. Pretrained on Corss-domain Multimodal Time Series Corpus, Aurora can adaptively extract and focus on key domain knowledge contained in corrsponding text or image modalities, thus possessing strong Cross-domain generalization capability. Through tokenization, encoding, and distillation, Aurora can extract multimodal domain knowledge as guidance and then utilizes a Modality-Guided Multi-head Self-Attention to inject them into the modeling of temporal representations. In the decoding phase, the multimodal representations are used to generate the conditions and prototypes of future tokens, contributing to a novel Prototype-Guided Flow Matching for generative probabilistic forecasting. Comprehensive experiments on well-recognized benchmarks, including TimeMMD, TSFM-Bench and ProbTS, demonstrate the consistent state-of-the-art performance of Aurora on both unimodal and multimodal scenarios.
♻ ☆ Enhancing Time Series Forecasting through Selective Representation Spaces: A Patch Perspective
Time Series Forecasting has made significant progress with the help of Patching technique, which partitions time series into multiple patches to effectively retain contextual semantic information into a representation space beneficial for modeling long-term dependencies. However, conventional patching partitions a time series into adjacent patches, which causes a fixed representation space, thus resulting in insufficiently expressful representations. In this paper, we pioneer the exploration of constructing a selective representation space to flexibly include the most informative patches for forecasting. Specifically, we propose the Selective Representation Space (SRS) module, which utilizes the learnable Selective Patching and Dynamic Reassembly techniques to adaptively select and shuffle the patches from the contextual time series, aiming at fully exploiting the information of contextual time series to enhance the forecasting performance of patch-based models. To demonstrate the effectiveness of SRS module, we propose a simple yet effective SRSNet consisting of SRS and an MLP head, which achieves state-of-the-art performance on real-world datasets from multiple domains. Furthermore, as a novel plugin-and-play module, SRS can also enhance the performance of existing patch-based models. The resources are available at https://github.com/decisionintelligence/SRSNet.
♻ ☆ Planner and Executor: Collaboration between Discrete Diffusion And Autoregressive Models in Reasoning
Current autoregressive language models (ARMs) achieve high accuracy but require long token sequences, making them costly. Discrete diffusion language models (DDLMs) enable parallel and flexible generation within a fixed number of steps and have recently emerged for their strong performance in complex reasoning and long-term planning tasks. We present a study exploring hybrid architectures that couple DDLMs with ARMs to assess whether their collaboration can yield complementary benefits. We first examine collaboration in text space, where one model plans the reasoning process and another executes the final answer based on that plan. We then extend this setup to latent-space communication, introducing a learned projector that maps DDLM latents into the ARM's embedding space, potentially bypassing some of the text-generation limitations of diffusion models. We find that shifting DDLM --> ARM communication from text space to latent space yields significant accuracy gains, for example increasing from 27.0% to 54.0% on DART-5 and from 0.0% to 14.0% on AIME24. We also find that combining a DDLM planner with an ARM executor can provide substantial computational savings with little to no impact on accuracy. For example, the latent-space pipeline, using 64 tokens for planning and roughly 5 for execution, surpasses Qwen3.1-7B on DART-5 and AIME, despite Qwen using 44 times more tokens. Overall, our study offers new insights into reasoning with DDLMs and highlights their potential in hybrid architectures.
comment: Under Submission
♻ ☆ Re-uploading quantum data: A universal function approximator for quantum inputs
Quantum data re-uploading has proved powerful for classical inputs, where repeatedly encoding features into a small circuit yields universal function approximation. Extending this idea to quantum inputs remains underexplored, as the information contained in a quantum state is not directly accessible in classical form. We propose and analyze a quantum data re-uploading architecture in which a qubit interacts sequentially with fresh copies of an arbitrary input state. The circuit can approximate any bounded continuous function using only one ancilla qubit and single-qubit measurements. By alternating entangling unitaries with mid-circuit resets of the input register, the architecture realizes a discrete cascade of completely positive and trace-preserving maps, analogous to collision models in open quantum system dynamics. Our framework provides a qubit-efficient and expressive approach to designing quantum machine learning models that operate directly on quantum data.
comment: 24 pages, 11 figures
♻ ☆ Membership Inference Attack Should Move On to Distributional Statistics for Distilled Generative Models
To detect unauthorized data usage in training large-scale generative models (e.g., ChatGPT or Midjourney), membership inference attacks (MIA) have proven effective in distinguishing a single training instance (a member) from a single non-training instance (a non-member). This success is mainly credited to a memorization effect: models tend to perform better on a member than a non-member. However, we find that standard MIAs fail against distilled generative models (i.e., student models) that are increasingly deployed in practice for efficiency (e.g., ChatGPT 4o-mini). Trained exclusively on data generated from a large-scale model (a teacher model), the student model lacks direct exposure to any members (teacher's training data), nullifying the memorization effect that standard MIAs rely on. This finding reveals a serious privacy loophole, where generation-service providers could deploy a student model whose teacher was potentially trained on unauthorized data, yet claim the deployed model is clean because it was not directly trained on such data. Hence, are distilled models inherently unauditable for upstream privacy violations, and should we discard them when we care about privacy? We contend no, as we uncover a memory chain connecting the student and teacher's member data: the distribution of student-generated data aligns more closely with the distribution of the teacher's members than with non-members, thus we can detect unauthorized data usage even when direct instance-level memorization is absent. This leads us to posit that MIAs on distilled generative models should shift from instance-level scores to distribution-level statistics. We further propose three principles of distribution-based MIAs for detecting unauthorized training data through distilled generative models, and validate our position through an exemplar framework. We lastly discuss the implications of our position.
♻ ☆ Ineq-Comp: Benchmarking Human-Intuitive Compositional Reasoning in Automated Theorem Proving on Inequalities NeurIPS 2025
LLM-based formal proof assistants (e.g., in Lean) hold great promise for automating mathematical discovery. But beyond syntactic correctness, do these systems truly understand mathematical structure as humans do? We investigate this question in context of mathematical inequalities -- specifically the prover's ability to recognize that the given problem simplifies by applying a known inequality such as AM/GM. Specifically, we are interested in their ability to do this in a compositional setting where multiple inequalities must be applied as part of a solution. We introduce Ineq-Comp, a benchmark built from elementary inequalities through systematic transformations, including variable duplication, algebraic rewriting, and multi-step composition. Although these problems remain easy for humans, we find that most provers -- including Goedel, STP, and Kimina-7B -- struggle significantly. DeepSeek-Prover-V2-7B shows relative robustness, but still suffers a 20% performance drop (pass@32). Even for DeepSeek-Prover-V2-671B model, the gap between compositional variants and seed problems exists, implying that simply scaling up the model size alone does not fully solve the compositional weakness. Strikingly, performance remains poor for all models even when formal proofs of the constituent parts are provided in context, revealing that the source of weakness is indeed in compositional reasoning. Our results expose a persisting gap between the generalization behavior of current AI provers and human mathematical intuition. All data and evaluation code can be found at https://github.com/haoyuzhao123/LeanIneqComp.
comment: To appear in NeurIPS 2025 Track on Datasets and Benchmarks. 28 pages
♻ ☆ When LLM Agents Meet Graph Optimization: An Automated Data Quality Improvement Approach
Text-attributed graphs (TAGs) have become a key form of graph-structured data in modern data management and analytics, combining structural relationships with rich textual semantics for diverse applications. However, the effectiveness of analytical models, particularly graph neural networks (GNNs), is highly sensitive to data quality. Our empirical analysis shows that both conventional and LLM-enhanced GNNs degrade notably under textual, structural, and label imperfections, underscoring TAG quality as a key bottleneck for reliable analytics. Existing studies have explored data-level optimization for TAGs, but most focus on specific degradation types and target a single aspect like structure or label, lacking a systematic and comprehensive perspective on data quality improvement. To address this gap, we propose LAGA (Large Language and Graph Agent), a unified multi-agent framework for comprehensive TAG quality optimization. LAGA formulates graph quality control as a data-centric process, integrating detection, planning, action, and evaluation agents into an automated loop. It holistically enhances textual, structural, and label aspects through coordinated multi-modal optimization. Extensive experiments on 5 datasets and 16 baselines across 9 scenarios demonstrate the effectiveness, robustness and scalability of LAGA, confirming the importance of data-centric quality optimization for reliable TAG analytics.
comment: 12 pages, 7figures
♻ ☆ Neural Network Reprogrammability: A Unified Theme on Model Reprogramming, Prompt Tuning, and Prompt Instruction
As large-scale pre-trained foundation models continue to expand in size and capability, efficiently adapting them to specific downstream tasks has become increasingly critical. Despite substantial progress, existing adaptation approaches have evolved largely in isolation, without a clear understanding of their interrelationships. This survey introduces neural network reprogrammability as a unifying framework that bridges mainstream model adaptation techniques--model reprogramming, prompt tuning, and prompt instruction--previously fragmented research areas yet converges on a shared principle: repurposing a pre-trained model by manipulating information at the interfaces while keeping the model parameters frozen. These methods exploit neural networks' sensitivity to manipulation on different interfaces, be it through perturbing inputs, inserting tokens into intermediate layers, or providing task-specific examples in context, to redirect model behaviors towards desired outcomes. We then present a taxonomy that categorizes such information manipulation-based adaptation approaches across four key dimensions: manipulation format (fixed or learnable), location (interfaces where manipulations occur), operator (how they are applied), and output alignment requirement (post-processing needed to align outputs with downstream tasks). Notably, this framework applies consistently across data modalities, independent of specific model architectures. Moreover, viewing established techniques like in-context learning and chain-of-thought prompting through this lens reveals both their theoretical connections and practical distinctions. We further analyze remaining technical challenges and ethical considerations, positioning neural network reprogrammability as a fundamental paradigm for efficient model adaptation. We lastly identify promising research directions emerging from this integrative viewpoint.
♻ ☆ On Task Vectors and Gradients
Task arithmetic has emerged as a simple yet powerful technique for model merging, enabling the combination of multiple finetuned models into one. Despite its empirical success, a clear theoretical explanation of why and when it works is lacking. This paper provides a rigorous theoretical foundation for task arithmetic by establishing a connection between task vectors and gradients of the task losses. We show that under standard gradient descent, a task vector generated from one epoch of finetuning is exactly equivalent to the negative gradient of the loss, scaled by the learning rate. For the practical multi-epoch setting, we prove that this equivalence holds approximately, with a second-order error term that we explicitly bound for feed-forward networks. Our empirical analysis across seven vision benchmarks corroborates our theory, demonstrating that the first-epoch gradient dominates the finetuning trajectory in both norm and direction. A key implication is that merging models finetuned for only a single epoch often yields performance comparable to merging fully converged models. These findings reframe task arithmetic as a form of approximate multitask learning, providing a clear rationale for its effectiveness and highlighting the critical role of early training dynamics in model merging.
comment: 10 pages of main paper, 5 figures
♻ ☆ Automated Knowledge Component Generation for Interpretable Knowledge Tracing in Coding Problems
Knowledge components (KCs) mapped to problems help model student learning, tracking their mastery levels on fine-grained skills thereby facilitating personalized learning and feedback in online learning platforms. However, crafting and tagging KCs to problems, traditionally performed by human domain experts, is highly labor intensive. We present an automated, LLM-based pipeline for KC generation and tagging for open-ended programming problems. We also develop an LLM-based knowledge tracing (KT) framework to leverage these LLM-generated KCs, which we refer to as KCGen-KT. We conduct extensive quantitative and qualitative evaluations on two real-world student code submission datasets in different programming languages.We find that KCGen-KT outperforms existing KT methods and human-written KCs on future student response prediction. We investigate the learning curves of generated KCs and show that LLM-generated KCs result in a better fit than human written KCs under a cognitive model. We also conduct a human evaluation with course instructors to show that our pipeline generates reasonably accurate problem-KC mappings.
♻ ☆ BLUR: A Bi-Level Optimization Approach for LLM Unlearning
Enabling large language models (LLMs) to unlearn knowledge and capabilities acquired during training has proven vital for ensuring compliance with data regulations and promoting ethical practices in generative AI. Although there are growing interests in developing various unlearning algorithms, it remains unclear how to best formulate the unlearning problem. The most popular formulation uses a weighted sum of forget and retain loss, but it often leads to performance degradation due to the inherent trade-off between forget and retain losses. In this work, we argue that it is important to model the hierarchical structure of the unlearning problem, where the forget problem (which \textit{unlearns} certain knowledge and/or capabilities) takes priority over the retain problem (which preserves model utility). This hierarchical structure naturally leads to a bi-level optimization formulation where the lower-level objective focuses on minimizing the forget loss, while the upper-level objective aims to maintain the model's utility. Based on this new formulation, we propose a novel algorithm, termed Bi-Level UnleaRning (\texttt{BLUR}), which not only possesses strong theoretical guarantees but more importantly, delivers superior performance. In particular, our extensive experiments demonstrate that \texttt{BLUR} consistently outperforms all the state-of-the-art algorithms across various unlearning tasks, models, and metrics. Codes are available at https://github.com/OptimAI-Lab/BLURLLMUnlearning.
♻ ☆ Machine Learning for Early Detection of Meningitis: Stacked Ensemble Learning with EHR Data
We utilized a cohort of 214 meningitis patients and 46,303 non-meningitis patients from the MIMIC-III database. After extensive data preprocessing, which included ICD-based cohort selection, one-hot encoding of coding, and a two-stage feature selection process (for both the training set and the testing sets), clinically relevant features such as gender and high-risk ICD codes (including subarachnoid hemorrhage, secondary malignant neoplasm of the brain, and generalized epilepsy) are selected. Overall, these clinically reasonable and temporally adherent features provided excellent modeling performance. Three models (Random Forest, LightGBM, and Deep Neural Networks (DNN) are trained as base models for Ensemble Learning. Base model outputs are aggregated and stacked into a meta model (Logistic Regression) that uses the base model outputs as input values in training. Ultimately, soldier outputs (AUC of Testing Set 1: 0.9637, AUC of Testing Set 2: 0.9472) are obtained through ensemble learning. We created a challenging condition for diagnosing meningitis, simulating a real-world ER (Emergency Room) scenario to enhance clinical use in real-world applications. While directly deploying a diagnostic tool that clinicians can use is challenging, this paper paves the way for a potential future AI-driven diagnostic approach for meningitis using Ensemble Learning.
♻ ☆ Greedy Low-Rank Gradient Compression for Distributed Learning with Convergence Guarantees
Distributed optimization is pivotal for large-scale signal processing and machine learning, yet communication overhead remains a major bottleneck. Low-rank gradient compression, in which the transmitted gradients are approximated by low-rank matrices to reduce communication, offers a promising remedy. Existing methods typically adopt either randomized or greedy compression strategies: randomized approaches project gradients onto randomly chosen subspaces, introducing high variance and degrading empirical performance; greedy methods select the most informative subspaces, achieving strong empirical results but lacking convergence guarantees. To address this gap, we propose GreedyLore--the first Greedy Low-Rank gradient compression algorithm for distributed learning with rigorous convergence guarantees. GreedyLore incorporates error feedback to correct the bias introduced by greedy compression and introduces a semi-lazy subspace update that ensures the compression operator remains contractive throughout all iterations. With these techniques, we prove that GreedyLore achieves a convergence rate of $\mathcal{O}(\sigma/\sqrt{NT} + 1/T)$ under standard optimizers such as MSGD and Adam--marking the first linear speedup convergence rate for low-rank gradient compression. Extensive experiments are conducted to validate our theoretical findings.
comment: 17 pages, 5 figures
♻ ☆ Importance-Aware Activation Space Reconstruction
Large language models (LLMs) achieve strong performance across many domains but are difficult to deploy in resource-constrained settings due to their size. Low-rank weight matrix compression is a popular strategy for reducing model size, typically by minimizing weight reconstruction error under the assumption that weights are low-rank. However, this assumption often does not hold in LLMs. Instead, LLM activations exhibit stronger low-rank structure-prompting a shift toward minimizing activation reconstruction error. We show that this shift alone is insufficient: activation dimensions contribute unequally to model performance, and uniform reconstruction can harm performance. We propose IMPACT, a principled framework for importance-aware activation reconstruction that links model compression decisions to their impact on model behavior. IMPACT formulates an optimization problem that considers both activation structure and gradient sensitivity, and derives a closed-form solution where the optimal reconstruction bases are the eigenvectors of an importance-weighted activation covariance matrix. This enables low-rank approximations explicitly optimized to preserve accuracy. Experiments across diverse models and tasks show that IMPACT achieves up to 48.6% greater model size reduction with accuracy comparable to state-of-the-art baselines.
♻ ☆ RHYTHM: Reasoning with Hierarchical Temporal Tokenization for Human Mobility NeurIPS
Predicting human mobility is inherently challenging due to complex long-range dependencies and multi-scale periodic behaviors. To address this, we introduce RHYTHM (Reasoning with Hierarchical Temporal Tokenization for Human Mobility), a unified framework that leverages large language models (LLMs) as general-purpose spatio-temporal predictors and trajectory reasoners. Methodologically, RHYTHM employs temporal tokenization to partition each trajectory into daily segments and encode them as discrete tokens with hierarchical attention that captures both daily and weekly dependencies, thereby quadratically reducing the sequence length while preserving cyclical information. Additionally, we enrich token representations by adding pre-computed prompt embeddings for trajectory segments and prediction targets via a frozen LLM, and feeding these combined embeddings back into the LLM backbone to capture complex interdependencies. Computationally, RHYTHM keeps the pretrained LLM backbone frozen, yielding faster training and lower memory usage. We evaluate our model against state-of-the-art methods using three real-world datasets. Notably, RHYTHM achieves a 2.4% improvement in overall accuracy, a 5.0% increase on weekends, and a 24.6% reduction in training time. Code is publicly available at https://github.com/he-h/rhythm.
comment: Advances in Neural Information Processing Systems 39 (NeurIPS) 2025
♻ ☆ GeoRecon: Graph-Level Representation Learning for 3D Molecules via Reconstruction-Based Pretraining
The pretraining-finetuning paradigm has powered major advances in domains such as natural language processing and computer vision, with representative examples including masked language modeling and next-token prediction. In molecular representation learning, however, pretraining tasks remain largely restricted to node-level denoising, which effectively captures local atomic environments but is often insufficient for encoding the global molecular structure critical to graph-level property prediction tasks such as energy estimation and molecular regression. To address this gap, we introduce GeoRecon, a graph-level pretraining framework that shifts the focus from individual atoms to the molecule as an integrated whole. GeoRecon formulates a graph-level reconstruction task: during pretraining, the model is trained to produce an informative graph representation that guides geometry reconstruction while inducing smoother and more transferable latent spaces. This encourages the learning of coherent, global structural features beyond isolated atomic details. Without relying on external supervision, GeoRecon generally improves over backbone baselines on multiple molecular benchmarks including QM9, MD17, MD22, and 3BPA, demonstrating the effectiveness of graph-level reconstruction for holistic and geometry-aware molecular embeddings.
♻ ☆ SWIR-LightFusion: Multi-spectral Semantic Fusion of Synthetic SWIR with Thermal IR (LWIR/MWIR) and RGB
Enhancing scene understanding in adverse visibility conditions remains a critical challenge for surveillance and autonomous navigation systems. Conventional imaging modalities, such as RGB and thermal infrared (MWIR / LWIR), when fused, often struggle to deliver comprehensive scene information, particularly under conditions of atmospheric interference or inadequate illumination. To address these limitations, Short-Wave Infrared (SWIR) imaging has emerged as a promising modality due to its ability to penetrate atmospheric disturbances and differentiate materials with improved clarity. However, the advancement and widespread implementation of SWIR-based systems face significant hurdles, primarily due to the scarcity of publicly accessible SWIR datasets. In response to this challenge, our research introduces an approach to synthetically generate SWIR-like structural/contrast cues (without claiming spectral reproduction) images from existing LWIR data using advanced contrast enhancement techniques. We then propose a multimodal fusion framework integrating synthetic SWIR, LWIR, and RGB modalities, employing an optimized encoder-decoder neural network architecture with modality-specific encoders and a softmax-gated fusion head. Comprehensive experiments on public RGB-LWIR benchmarks (M3FD, TNO, CAMEL, MSRS, RoadScene) and an additional private real RGB-MWIR-SWIR dataset demonstrate that our synthetic-SWIR-enhanced fusion framework improves fused-image quality (contrast, edge definition, structural fidelity) while maintaining real-time performance. We also add fair trimodal baselines (LP, LatLRR, GFF) and cascaded trimodal variants of U2Fusion/SwinFusion under a unified protocol. The outcomes highlight substantial potential for real-world applications in surveillance and autonomous systems.
♻ ☆ Generating Individual Travel Diaries Using Large Language Models Informed by Census and Land-Use Data
This study introduces a Large Language Model (LLM) scheme for generating individual travel diaries in agent-based transportation models. While traditional approaches rely on large quantities of proprietary household travel surveys, the method presented in this study generates personas stochastically from open-source American Community Survey (ACS) and Smart Location Database (SLD) data, then synthesizes diaries through direct prompting. This study features a novel one-to-cohort realism score: a composite of four metrics (Trip Count Score, Interval Score, Purpose Score, and Mode Score) validated against the Connecticut Statewide Transportation Study (CSTS) diaries, matched across demographic variables. The validation utilizes Jensen-Shannon Divergence to measure distributional similarities between generated and real diaries. When compared to diaries generated with classical methods (Negative Binomial for trip generation; Multinomial Logit for mode/purpose) calibrated on the validation set, LLM-generated diaries achieve comparable overall realism (LLM mean: 0.485 vs. 0.455). The LLM excels in determining trip purpose and demonstrates greater consistency (narrower realism score distribution), while classical models lead in numerical estimates of trip count and activity duration. Aggregate validation confirms the LLM's statistical representativeness (LLM mean: 0.612 vs. 0.435), demonstrating LLM's zero-shot viability and establishing a quantifiable metric of diary realism for future synthetic diary evaluation systems.
♻ ☆ PARALLELPROMPT: Extracting Parallelism from Large Language Model Queries NeurIPS 2025
LLM serving systems typically treat user prompts as monolithic inputs, optimizing inference through decoding tricks or inter-query batching. However, many real-world prompts contain latent semantic parallelism--decomposable structures where subtasks can be executed independently to reduce latency while preserving meaning. We introduce PARALLELPROMPT, the first benchmark for measuring intra-query parallelism in natural user prompts. Our dataset comprises over 37,000 real-world prompts from public LLM chat logs, each annotated with a structured schema capturing task templates, shared context, and iteration inputs. These schemas are extracted using LLM-assisted prompting with rule-based multilingual validation. To evaluate the benefits of decomposition, we provide an execution suite that benchmarks serial vs. parallel strategies, measuring latency, structural adherence, and semantic fidelity. Our results show that intra-query parallelism can be successfully parsed in over 75% of curated datasets, unlocking up to 5x speedups on tasks like translation, comprehension, and comparative analysis, with minimal quality degradation. By releasing this benchmark, curation pipeline, and evaluation suite, we provide the first standardized testbed for studying structure-aware execution in LLM serving pipelines.
comment: 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Datasets and Benchmarks Track
♻ ☆ VLLFL: A Vision-Language Model Based Lightweight Federated Learning Framework for Smart Agriculture
In modern smart agriculture, object detection plays a crucial role by enabling automation, precision farming, and monitoring of resources. From identifying crop health and pest infestations to optimizing harvesting processes, accurate object detection enhances both productivity and sustainability. However, training object detection models often requires large-scale data collection and raises privacy concerns, particularly when sensitive agricultural data is distributed across farms. To address these challenges, we propose VLLFL, a vision-language model-based lightweight federated learning framework (VLLFL). It harnesses the generalization and context-aware detection capabilities of the vision-language model (VLM) and leverages the privacy-preserving nature of federated learning. By training a compact prompt generator to boost the performance of the VLM deployed across different farms, VLLFL preserves privacy while reducing communication overhead. Experimental results demonstrate that VLLFL achieves 14.53% improvement in the performance of VLM while reducing 99.3% communication overhead. Spanning tasks from identifying a wide variety of fruits to detecting harmful animals in agriculture, the proposed framework offers an efficient, scalable, and privacy-preserving solution specifically tailored to agricultural applications.
♻ ☆ Steering Generative Models with Experimental Data for Protein Fitness Optimization NeurIPS 2025
Protein fitness optimization involves finding a protein sequence that maximizes desired quantitative properties in a combinatorially large design space of possible sequences. Recent advances in steering protein generative models (e.g., diffusion models and language models) with labeled data offer a promising approach. However, most previous studies have optimized surrogate rewards and/or utilized large amounts of labeled data for steering, making it unclear how well existing methods perform and compare to each other in real-world optimization campaigns where fitness is measured through low-throughput wet-lab assays. In this study, we explore fitness optimization using small amounts (hundreds) of labeled sequence-fitness pairs and comprehensively evaluate strategies such as classifier guidance and posterior sampling for guiding generation from different discrete diffusion models of protein sequences. We also demonstrate how guidance can be integrated into adaptive sequence selection akin to Thompson sampling in Bayesian optimization, showing that plug-and-play guidance strategies offer advantages over alternatives such as reinforcement learning with protein language models. Overall, we provide practical insights into how to effectively steer modern generative models for next-generation protein fitness optimization.
comment: NeurIPS 2025
♻ ☆ The Impact of Coreset Selection on Spurious Correlations and Group Robustness
Coreset selection methods have shown promise in reducing the training data size while maintaining model performance for data-efficient machine learning. However, as many datasets suffer from biases that cause models to learn spurious correlations instead of causal features, it is important to understand whether and how dataset reduction methods may perpetuate, amplify, or mitigate these biases. In this work, we conduct the first comprehensive analysis of the implications of data selection on the spurious bias levels of the selected coresets and the robustness of downstream models trained on them. We use an extensive experimental setting spanning ten different spurious correlations benchmarks, five score metrics to characterize sample importance/ difficulty, and five data selection policies across a broad range of coreset sizes. Thereby, we unravel a series of nontrivial nuances in interactions between sample difficulty and bias alignment, as well as dataset bias and resultant model robustness. For example, we find that selecting coresets using embedding-based sample characterization scores runs a comparatively lower risk of inadvertently exacerbating bias than selecting using characterizations based on learning dynamics. Most importantly, our analysis reveals that although some coreset selection methods could achieve lower bias levels by prioritizing difficult samples, they do not reliably guarantee downstream robustness.
comment: 10 pages, 9 additional pages for Appendix
♻ ☆ Efficient Training-Free Online Routing for High-Volume Multi-LLM Serving NeurIPS 2025
Increasing demand for Large Language Models (LLMs) services imposes substantial deployment and computation costs on providers. LLM routing offers a cost-efficient solution by directing queries to the optimal LLM based on model and query features. However, existing works primarily focus on offline scenarios and struggle to adapt to online settings with high query volume and constrained token budgets. In this work, we introduce the first training-free algorithm for online routing scenarios. Our algorithm leverages approximate nearest neighbor search to efficiently estimate query features and performs a one-time optimization over a small set of initial queries to learn a routing strategy that guides future routing. We provide theoretical guarantees demonstrating that our algorithm achieves a competitive ratio of $1 - o(1)$ under natural assumptions, which is further validated by extensive experiments across 3 benchmark datasets and 8 baselines, showing an average improvement of 3.55$\times$ in overall performance, 1.85$\times$ in cost efficiency, and nearly 4.25$\times$ in throughput. Our code is available at https://github.com/fzwark/PORT.
comment: NeurIPS 2025
♻ ☆ One protein is all you need
Generalization beyond training data remains a central challenge in machine learning for biology. A common way to enhance generalization is self-supervised pre-training on large datasets. However, aiming to perform well on all possible proteins can limit a model's capacity to excel on any specific one, whereas experimentalists typically need accurate predictions for individual proteins they study, often not covered in training data. To address this limitation, we propose a method that enables self-supervised customization of protein language models to one target protein at a time, on the fly, and without assuming any additional data. We show that our Protein Test-Time Training (ProteinTTT) method consistently enhances generalization across different models, their sizes, and datasets. ProteinTTT improves structure prediction for challenging targets, achieves new state-of-the-art results on protein fitness prediction, and enhances function prediction on two tasks. Through two challenging case studies, we also show that customization via ProteinTTT achieves more accurate antibody-antigen loop modeling and enhances 19% of structures in the Big Fantastic Virus Database, delivering improved predictions where general-purpose AlphaFold2 and ESMFold struggle.
♻ ☆ FlySearch: Exploring how vision-language models explore NeurIPS 2025
The real world is messy and unstructured. Uncovering critical information often requires active, goal-driven exploration. It remains to be seen whether Vision-Language Models (VLMs), which recently emerged as a popular zero-shot tool in many difficult tasks, can operate effectively in such conditions. In this paper, we answer this question by introducing FlySearch, a 3D, outdoor, photorealistic environment for searching and navigating to objects in complex scenes. We define three sets of scenarios with varying difficulty and observe that state-of-the-art VLMs cannot reliably solve even the simplest exploration tasks, with the gap to human performance increasing as the tasks get harder. We identify a set of central causes, ranging from vision hallucination, through context misunderstanding, to task planning failures, and we show that some of them can be addressed by finetuning. We publicly release the benchmark, scenarios, and the underlying codebase.
comment: NeurIPS 2025 Datasets and Benchmarks track
♻ ☆ Generative or Discriminative? Revisiting Text Classification in the Era of Transformers EMNLP 2025
The comparison between discriminative and generative classifiers has intrigued researchers since Efron's seminal analysis of logistic regression versus discriminant analysis. While early theoretical work established that generative classifiers exhibit lower sample complexity but higher asymptotic error in simple linear settings, these trade-offs remain unexplored in the transformer era. We present the first comprehensive evaluation of modern generative and discriminative architectures - Auto-regressive modeling, Masked Language Modeling, Discrete Diffusion, and Encoders for text classification. Our study reveals that the classical 'two regimes' phenomenon manifests distinctly across different architectures and training paradigms. Beyond accuracy, we analyze sample efficiency, calibration, noise robustness, and ordinality across diverse scenarios. Our findings offer practical guidance for selecting the most suitable modeling approach based on real-world constraints such as latency and data limitations.
comment: 23 pages - Nominated for Outstanding Paper award at EMNLP 2025
♻ ☆ AICO: Feature Significance Tests for Supervised Learning
The opacity of many supervised learning algorithms remains a key challenge, hindering scientific discovery and limiting broader deployment--particularly in high-stakes domains. This paper develops model- and distribution-agnostic significance tests to assess the influence of input features in any regression or classification algorithm. Our method evaluates a feature's incremental contribution to model performance by masking its values across samples. Under the null hypothesis, the distribution of performance differences across a test set has a non-positive median. We construct a uniformly most powerful, randomized sign test for this median, yielding exact p-values for assessing feature significance and confidence intervals with exact coverage for estimating population-level feature importance. The approach requires minimal assumptions, avoids model retraining or auxiliary models, and remains computationally efficient even for large-scale, high-dimensional settings. Experiments on synthetic tasks validate its statistical and computational advantages, and applications to real-world data demonstrate its ability to inform high-stakes decisions with legal, economic, and regulatory implications.
♻ ☆ GraSS: Scalable Data Attribution with Gradient Sparsification and Sparse Projection NeurIPS 2025
Gradient-based data attribution methods, such as influence functions, are critical for understanding the impact of individual training samples without requiring repeated model retraining. However, their scalability is often limited by the high computational and memory costs associated with per-sample gradient computation. In this work, we propose GraSS, a novel gradient compression algorithm and its variants FactGraSS for linear layers specifically, that explicitly leverage the inherent sparsity of per-sample gradients to achieve sub-linear space and time complexity. Extensive experiments demonstrate the effectiveness of our approach, achieving substantial speedups while preserving data influence fidelity. In particular, FactGraSS achieves up to 165% faster throughput on billion-scale models compared to the previous state-of-the-art baselines. Our code is publicly available at https://github.com/TRAIS-Lab/GraSS.
comment: Accepted at the 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ Sim2Dust: Mastering Dynamic Waypoint Tracking on Granular Media
Reliable autonomous navigation across the unstructured terrains of distant planetary surfaces is a critical enabler for future space exploration. However, the deployment of learning-based controllers is hindered by the inherent sim-to-real gap, particularly for the complex dynamics of wheel interactions with granular media. This work presents a complete sim-to-real framework for developing and validating robust control policies for dynamic waypoint tracking on such challenging surfaces. We leverage massively parallel simulation to train reinforcement learning agents across a vast distribution of procedurally generated environments with randomized physics. These policies are then transferred zero-shot to a physical wheeled rover operating in a lunar-analogue facility. Our experiments systematically compare multiple reinforcement learning algorithms and action smoothing filters to identify the most effective combinations for real-world deployment. Crucially, we provide strong empirical evidence that agents trained with procedural diversity achieve superior zero-shot performance compared to those trained on static scenarios. We also analyze the trade-offs of fine-tuning with high-fidelity particle physics, which offers minor gains in low-speed precision at a significant computational cost. Together, these contributions establish a validated workflow for creating reliable learning-based navigation systems, marking a substantial step towards deploying autonomous robots in the final frontier.
comment: Accepted for publication at the 2025 International Conference on Space Robotics (iSpaRo) | The source code is available at https://github.com/AndrejOrsula/space_robotics_bench
♻ ☆ CayleyPy RL: Pathfinding and Reinforcement Learning on Cayley Graphs
This paper is the second in a series of studies on developing efficient artificial intelligence-based approaches to pathfinding on extremely large graphs (e.g. $10^{70}$ nodes) with a focus on Cayley graphs and mathematical applications. The open-source CayleyPy project is a central component of our research. The present paper proposes a novel combination of a reinforcement learning approach with a more direct diffusion distance approach from the first paper. Our analysis includes benchmarking various choices for the key building blocks of the approach: architectures of the neural network, generators for the random walks and beam search pathfinding. We compared these methods against the classical computer algebra system GAP, demonstrating that they "overcome the GAP" for the considered examples. As a particular mathematical application we examine the Cayley graph of the symmetric group with cyclic shift and transposition generators. We provide strong support for the OEIS-A186783 conjecture that the diameter is equal to n(n-1)/2 by machine learning and mathematical methods. We identify the conjectured longest element and generate its decomposition of the desired length. We prove a diameter lower bound of n(n-1)/2-n/2 and an upper bound of n(n-1)/2+ 3n by presenting the algorithm with given complexity. We also present several conjectures motivated by numerical experiments, including observations on the central limit phenomenon (with growth approximated by a Gumbel distribution), the uniform distribution for the spectrum of the graph, and a numerical study of sorting networks. To stimulate crowdsourcing activity, we create challenges on the Kaggle platform and invite contributions to improve and benchmark approaches on Cayley graph pathfinding and other tasks.
comment: 32+16 pages
♻ ☆ Doubly Robust Estimation of Causal Effects in Strategic Equilibrium Systems
We introduce the Strategic Doubly Robust (SDR) estimator, a novel framework that integrates strategic equilibrium modeling with doubly robust estimation for causal inference in strategic environments. SDR addresses endogenous treatment assignment arising from strategic agent behavior, maintaining double robustness while incorporating strategic considerations. Theoretical analysis confirms SDR's consistency and asymptotic normality under strategic unconfoundedness. Empirical evaluations demonstrate SDR's superior performance over baseline methods, achieving 7.6\%-29.3\% bias reduction across varying strategic strengths and maintaining robust scalability with agent populations. The framework provides a principled approach for reliable causal inference when agents respond strategically to interventions.
♻ ☆ A novel Information-Driven Strategy for Optimal Regression Assessment
In Machine Learning (ML), a regression algorithm aims to minimize a loss function based on data. An assessment method in this context seeks to quantify the discrepancy between the optimal response for an input-output system and the estimate produced by a learned predictive model (the student). Evaluating the quality of a learned regressor remains challenging without access to the true data-generating mechanism, as no data-driven assessment method can ensure the achievability of global optimality. This work introduces the Information Teacher, a novel data-driven framework for evaluating regression algorithms with formal performance guarantees to assess global optimality. Our novel approach builds on estimating the Shannon mutual information (MI) between the input variables and the residuals and applies to a broad class of additive noise models. Through numerical experiments, we confirm that the Information Teacher is capable of detecting global optimality, which is aligned with the condition of zero estimation error with respect to the -- inaccessible, in practice -- true model, working as a surrogate measure of the ground truth assessment loss and offering a principled alternative to conventional empirical performance metrics.
♻ ☆ Better NTK Conditioning: A Free Lunch from (ReLU) Nonlinear Activation in Wide Neural Networks NeurIPS 2025
Nonlinear activation functions are widely recognized for enhancing the expressivity of neural networks, which is the primary reason for their widespread implementation. In this work, we focus on ReLU activation and reveal a novel and intriguing property of nonlinear activations. By comparing enabling and disabling the nonlinear activations in the neural network, we demonstrate their specific effects on wide neural networks: (a) better feature separation, i.e., a larger angle separation for similar data in the feature space of model gradient, and (b) better NTK conditioning, i.e., a smaller condition number of neural tangent kernel (NTK). Furthermore, we show that the network depth (i.e., with more nonlinear activation operations) further amplifies these effects; in addition, in the infinite-width-then-depth limit, all data are equally separated with a fixed angle in the model gradient feature space, regardless of how similar they are originally in the input space. Note that, without the nonlinear activation, i.e., in a linear neural network, the data separation remains the same as for the original inputs and NTK condition number is equivalent to the Gram matrix, regardless of the network depth. Due to the close connection between NTK condition number and convergence theories, our results imply that nonlinear activation helps to improve the worst-case convergence rates of gradient based methods.
comment: NeurIPS 2025
♻ ☆ Modeling Human Beliefs about AI Behavior for Scalable Oversight
As AI systems advance beyond human capabilities, scalable oversight becomes critical: how can we supervise AI that exceeds our abilities? A key challenge is that human evaluators may form incorrect beliefs about AI behavior in complex tasks, leading to unreliable feedback and poor value inference. To address this, we propose modeling evaluators' beliefs to interpret their feedback more reliably. We formalize human belief models, analyze their theoretical role in value learning, and characterize when ambiguity remains. To reduce reliance on precise belief models, we introduce "belief model covering" as a relaxation. This motivates our preliminary proposal to use the internal representations of adapted foundation models to mimic human evaluators' beliefs. These representations could be used to learn correct values from human feedback even when evaluators misunderstand the AI's behavior. Our work suggests that modeling human beliefs can improve value learning and outlines practical research directions for implementing this approach to scalable oversight.
comment: 56 pages
♻ ☆ Enabling Automatic Differentiation with Mollified Graph Neural Operators
Physics-informed neural operators offer a powerful framework for learning solution operators of partial differential equations (PDEs) by combining data and physics losses. However, these physics losses rely on derivatives. Computing these derivatives remains challenging, with spectral and finite difference methods introducing approximation errors due to finite resolution. Here, we propose the mollified graph neural operator ($m$GNO), the first method to leverage automatic differentiation and compute exact gradients on arbitrary geometries. This enhancement enables efficient training on irregular grids and varying geometries while allowing seamless evaluation of physics losses at randomly sampled points for improved generalization. For a PDE example on regular grids, $m$GNO paired with autograd reduced the L2 relative data error by 20x compared to finite differences, although training was slower. It can also solve PDEs on unstructured point clouds seamlessly, using physics losses only, at resolutions vastly lower than those needed for finite differences to be accurate enough. On these unstructured point clouds, $m$GNO leads to errors that are consistently 2 orders of magnitude lower than machine learning baselines (Meta-PDE, which accelerates PINNs) for comparable runtimes, and also delivers speedups from 1 to 3 orders of magnitude compared to the numerical solver for similar accuracy. $m$GNOs can also be used to solve inverse design and shape optimization problems on complex geometries.
♻ ☆ REOrdering Patches Improves Vision Models NeurIPS 2025
Sequence models such as transformers require inputs to be represented as one-dimensional sequences. In vision, this typically involves flattening images using a fixed row-major (raster-scan) order. While full self-attention is permutation-equivariant, modern long-sequence transformers increasingly rely on architectural approximations that break this invariance and introduce sensitivity to patch ordering. We show that patch order significantly affects model performance in such settings, with simple alternatives like column-major or Hilbert curves yielding notable accuracy shifts. Motivated by this, we propose REOrder, a two-stage framework for discovering task-optimal patch orderings. First, we derive an information-theoretic prior by evaluating the compressibility of various patch sequences. Then, we learn a policy over permutations by optimizing a Plackett-Luce policy using REINFORCE. This approach enables efficient learning in a combinatorial permutation space. REOrder improves top-1 accuracy over row-major ordering on ImageNet-1K by up to 3.01% and Functional Map of the World by 13.35%.
comment: Accepted to the 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ Task Priors: Enhancing Model Evaluation by Considering the Entire Space of Downstream Tasks NeurIPS
The grand goal of AI research, and particularly Self Supervised Learning (SSL), is to produce systems that can successfully solve any possible task. In contrast, current evaluation methods available to AI researchers typically rely on a fixed collection of hand-picked downstream benchmarks. Hence, a large amount of effort is put into designing and searching for large collection of evaluation tasks that can serve as a proxy of our grand goal. We argue that such a rigid evaluation protocol creates a silent bottleneck in AI research. To remedy that, we define a probabilistic space of downstream tasks obtained by adopting a distribution of tasks and by defining Task Priors. Under this view, one can evaluate a model's performance over the set of all possible downstream tasks. Our framework is the first to provide answers to key questions such as (i) what is the average performance of my model over all possible downstream tasks weighted by the probability to encounter each task? or (ii) what is the variance of my model's performance across all downstream tasks under the defined Task Priors? Beyond establishing a new standard for evaluation, we believe that Task Priors will accelerate the pace of research in SSL - where downstream task evaluation is the sole qualitative signal that researchers have access to.
comment: NeurIPS UniReps Workshop 2025
♻ ☆ LLM Safety Alignment is Divergence Estimation in Disguise NeurIPS 2025
We present a theoretical framework showing that popular LLM alignment methods, including RLHF and its variants, can be understood as divergence estimators between aligned (safe or preferred) and unaligned (harmful or less preferred) distributions. This perspective explains the emergence of separation in the latent space between safe and harmful prompts after alignment. As an application of our general divergence framework, we propose KLDO, a novel KL divergence-based alignment method, and empirically validate its effectiveness. We further show that using compliance-refusal datasets, rather than standard preference-based datasets, leads to stronger separation and improved safety alignment. Finally, to quantify the separation effect, we propose a distance-based metric in the prompt representation space, which also acts as a statistically significant indicator for model safety.
comment: Accepted to NeurIPS 2025
♻ ☆ Energy Matching: Unifying Flow Matching and Energy-Based Models for Generative Modeling NeurIPS 2025
Current state-of-the-art generative models map noise to data distributions by matching flows or scores. A key limitation of these models is their inability to readily integrate available partial observations and additional priors. In contrast, energy-based models (EBMs) address this by incorporating corresponding scalar energy terms. Here, we propose Energy Matching, a framework that endows flow-based approaches with the flexibility of EBMs. Far from the data manifold, samples move from noise to data along irrotational, optimal transport paths. As they approach the data manifold, an entropic energy term guides the system into a Boltzmann equilibrium distribution, explicitly capturing the underlying likelihood structure of the data. We parameterize these dynamics with a single time-independent scalar field, which serves as both a powerful generator and a flexible prior for effective regularization of inverse problems. The present method substantially outperforms existing EBMs on CIFAR-10 and ImageNet generation in terms of fidelity, while retaining simulation-free training of transport-based approaches away from the data manifold. Furthermore, we leverage the flexibility of the method to introduce an interaction energy that supports the exploration of diverse modes, which we demonstrate in a controlled protein generation setting. This approach learns a scalar potential energy, without time conditioning, auxiliary generators, or additional networks, marking a significant departure from recent EBM methods. We believe this simplified yet rigorous formulation significantly advances EBMs capabilities and paves the way for their wider adoption in generative modeling in diverse domains.
comment: Accepted to NeurIPS 2025
♻ ☆ Dissecting Mahalanobis: How Feature Geometry and Normalization Shape OOD Detection
Out-of-distribution (OOD) detection is critical for the reliable deployment of deep learning models. hile Mahalanobis distance methods are widely used, the impact of representation geometry and normalization on their performance is not fully understood, which may limit their downstream application. To address this gap, we conducted a comprehensive empirical study across diverse image foundation models, datasets, and distance normalization schemes. First, our analysis shows that Mahalanobis-based methods aren't universally reliable. Second, we define the ideal geometry for data representations and demonstrate that spectral and intrinsic-dimensionality metrics can accurately predict a model's OOD performance. Finally, we analyze how normalization impacts OOD performance. Building upon these studies, we propose radially scaled $\ell_2$ normalization, a method that generalizes the standard $\ell_2$ normalization recently applied to Mahalanobis-based OOD detection. Our approach introduces a tunable parameter to directly control the radial geometry of the feature space, systematically contracting or expanding representations to significantly improve OOD detection performance. By bridging the gap between representation geometry, normalization, and OOD performance, our findings offer new insights into the design of more effective and reliable deep learning models.
♻ ☆ Soundness-Aware Level: A Microscopic Signature that Predicts LLM Reasoning Potential
Reinforcement learning with verifiable rewards (RLVR) can elicit strong reasoning in large language models (LLMs), while their performance after RLVR varies dramatically across different base models. This raises a fundamental question: what microscopic property of pre-trained models leads to this variation? To investigate, we formalize reasoning as chains of Horn clauses ("if-then" rules) built from features extracted from the LLM's latent space via cross-layer sparse autoencoders (SAEs). We estimate the transition probabilities between its features, and further categorize each rule by its semantic soundness level (e.g., strict, plausible, noisy) with an LLM. Our key discovery is that high-potential models are inherently soundness-aware: their internal probability distributions systematically shift across rules' soundness levels, becoming highly distinct for "strict" versus "noisy" rules. In contrast, weaker models are soundness-agnostic, collapsing to one distribution regardless of soundness levels. To quantify this, we introduce the Soundness-Aware Level (SAL), a microscopic metric using the Jensen-Shannon Divergence to measure the separation between these distributions. We show that SAL's predictions of post-RLVR reasoning performance follow a precise empirical law (R^2=0.87) across diverse model families (Qwen, Mistral, Llama, DeepSeek) and scales (0.5B-14B). This reveals that a model's reasoning potential is tied to its intrinsic, pre-trained ability to distinguish sound knowledge from unsound ones. These findings underscore the critical role of model pre-training in shaping reasoning and offer a practical metric grounded in the model's internal mechanisms for selecting/designing stronger base models.
comment: Pre-print
♻ ☆ Learning by Watching: A Review of Video-based Learning Approaches for Robot Manipulation IEEE
Robot learning of manipulation skills is hindered by the scarcity of diverse, unbiased datasets. While curated datasets can help, challenges remain in generalizability and real-world transfer. Meanwhile, large-scale "in-the-wild" video datasets have driven progress in computer vision through self-supervised techniques. Translating this to robotics, recent works have explored learning manipulation skills by passively watching abundant videos sourced online. Showing promising results, such video-based learning paradigms provide scalable supervision while reducing dataset bias. This survey reviews foundations such as video feature representation learning techniques, object affordance understanding, 3D hand/body modeling, and large-scale robot resources, as well as emerging techniques for acquiring robot manipulation skills from uncontrolled video demonstrations. We discuss how learning only from observing large-scale human videos can enhance generalization and sample efficiency for robotic manipulation. The survey summarizes video-based learning approaches, analyses their benefits over standard datasets, survey metrics, and benchmarks, and discusses open challenges and future directions in this nascent domain at the intersection of computer vision, natural language processing, and robot learning.
comment: Published at IEEE Access
♻ ☆ Automotive Crash Dynamics Modeling Accelerated with Machine Learning
Crashworthiness assessment is a critical aspect of automotive design, traditionally relying on high-fidelity finite element (FE) simulations that are computationally expensive and time-consuming. This work presents an exploratory comparative study on developing machine learning-based surrogate models for efficient prediction of structural deformation in crash scenarios using the NVIDIA PhysicsNeMo framework. Given the limited prior work applying machine learning to structural crash dynamics, the primary contribution lies in demonstrating the feasibility and engineering utility of the various modeling approaches explored in this work. We investigate two state-of-the-art neural network architectures for modeling crash dynamics: MeshGraphNet, and Transolver. Additionally, we examine three strategies for modeling transient dynamics: time-conditional, the standard Autoregressive approach, and a stability-enhanced Autoregressive scheme incorporating rollout-based training. The models are evaluated on a comprehensive Body-in-White (BIW) crash dataset comprising 150 detailed FE simulations using LS-DYNA. The dataset represents a structurally rich vehicle assembly with over 200 components, including 38 key components featuring variable thickness distributions to capture realistic manufacturing variability. Each model utilizes the undeformed mesh geometry and component characteristics as inputs to predict the spatiotemporal evolution of the deformed mesh during the crash sequence. Evaluation results show that the models capture the overall deformation trends with reasonable fidelity, demonstrating the feasibility of applying machine learning to structural crash dynamics. Although not yet matching full FE accuracy, the models achieve orders-of-magnitude reductions in computational cost, enabling rapid design exploration and early-stage optimization in crashworthiness evaluation.
♻ ☆ $\boldsymbolλ$-Orthogonality Regularization for Compatible Representation Learning NeurIPS2025
Retrieval systems rely on representations learned by increasingly powerful models. However, due to the high training cost and inconsistencies in learned representations, there is significant interest in facilitating communication between representations and ensuring compatibility across independently trained neural networks. In the literature, two primary approaches are commonly used to adapt different learned representations: affine transformations, which adapt well to specific distributions but can significantly alter the original representation, and orthogonal transformations, which preserve the original structure with strict geometric constraints but limit adaptability. A key challenge is adapting the latent spaces of updated models to align with those of previous models on downstream distributions while preserving the newly learned representation spaces. In this paper, we impose a relaxed orthogonality constraint, namely $\lambda$-Orthogonality regularization, while learning an affine transformation, to obtain distribution-specific adaptation while retaining the original learned representations. Extensive experiments across various architectures and datasets validate our approach, demonstrating that it preserves the model's zero-shot performance and ensures compatibility across model updates. Code available at: \href{https://github.com/miccunifi/lambda_orthogonality.git}{https://github.com/miccunifi/lambda\_orthogonality}.
comment: Accepted at NeurIPS2025
♻ ☆ Reinforcement Learning with Verifiable Rewards: GRPO's Effective Loss, Dynamics, and Success Amplification
Group Relative Policy Optimization (GRPO) was introduced and used recently for promoting reasoning in LLMs under verifiable (binary) rewards. We show that the mean + variance calibration of these rewards induces a weighted contrastive loss in which the contrastive samples are synthetic data drawn from the previous policy. While GRPO was originally paired with clipping to keep updates near the old policy, we analyze variants that differ in reward normalization (mean-only vs mean + variance) and in how they regularize updates using KL divergence: either penalizing divergence from the previous model (mirror), penalizing divergence from a fixed reference model $\pi_{\mathrm{ref}}$, or combining both forms of regularization. For each, the optimal policy $\pi_n$ admits an explicit form in terms of the binary reward and the first and second order statistics of the reward under $\pi_{n-1}$, as well as the policies $\pi_{n-1}$ and $\pi_{\mathrm{ref}}$. Iterating results in a sequence $\{\pi_n\}$ whose probability of success (PoS) obeys a simple recurrence that converges to a fixed point determined by the reference PoS and the regularization strength. We further show that this fixed point exceeds the reference, demonstrating that GRPO amplifies the policy's probability of success.
♻ ☆ Identification and Adaptive Control of Markov Jump Systems: Sample Complexity and Regret Bounds
Learning how to effectively control unknown dynamical systems is crucial for intelligent autonomous systems. This task becomes a significant challenge when the underlying dynamics are changing with time. Motivated by this challenge, this paper considers the problem of controlling an unknown Markov jump linear system (MJS) to optimize a quadratic objective. By taking a model-based perspective, we consider identification-based adaptive control of MJSs. We first provide a system identification algorithm for MJS to learn the dynamics in each mode as well as the Markov transition matrix, underlying the evolution of the mode switches, from a single trajectory of the system states, inputs, and modes. Through martingale-based arguments, sample complexity of this algorithm is shown to be $\mathcal{O}(1/\sqrt{T})$. We then propose an adaptive control scheme that performs system identification together with certainty equivalent control to adapt the controllers in an episodic fashion. Combining our sample complexity results with recent perturbation results for certainty equivalent control, we prove that when the episode lengths are appropriately chosen, the proposed adaptive control scheme achieves $\mathcal{O}(\sqrt{T})$ regret, which can be improved to $\mathcal{O}(polylog(T))$ with partial knowledge of the system. Our proof strategy introduces innovations to handle Markovian jumps and a weaker notion of stability common in MJSs. Our analysis provides insights into system theoretic quantities that affect learning accuracy and control performance. Numerical simulations are presented to further reinforce these insights.
comment: Improved results using Martingale-based arguments
♻ ☆ AICO: Feature Significance Tests for Supervised Learning
The opacity of many supervised learning algorithms remains a key challenge, hindering scientific discovery and limiting broader deployment -- particularly in high-stakes domains. This paper develops model- and distribution-agnostic significance tests to assess the influence of input features in any regression or classification algorithm. Our method evaluates a feature's incremental contribution to model performance by masking its values across samples. Under the null hypothesis, the distribution of performance differences across a test set has a non-positive median. We construct a uniformly most powerful, randomized sign test for this median, yielding exact p-values for assessing feature significance and confidence intervals with exact coverage for estimating population-level feature importance. The approach requires minimal assumptions, avoids model retraining or auxiliary models, and remains computationally efficient even for large-scale, high-dimensional settings. Experiments on synthetic tasks validate its statistical and computational advantages, and applications to real-world data demonstrate its ability to inform high-stakes decisions with legal, economic, and regulatory implications.
Multimedia 9
☆ AWARE: Audio Watermarking with Adversarial Resistance to Edits
Prevailing practice in learning-based audio watermarking is to pursue robustness by expanding the set of simulated distortions during training. However, such surrogates are narrow and prone to overfitting. This paper presents AWARE (Audio Watermarking with Adversarial Resistance to Edits), an alternative approach that avoids reliance on attack-simulation stacks and handcrafted differentiable distortions. Embedding is obtained via adversarial optimization in the time-frequency domain under a level-proportional perceptual budget. Detection employs a time-order-agnostic detector with a Bitwise Readout Head (BRH) that aggregates temporal evidence into one score per watermark bit, enabling reliable watermark decoding even under desynchronization and temporal cuts. Empirically, AWARE attains high audio quality and speech intelligibility (PESQ/STOI) and consistently low BER across various audio edits, often surpassing representative state-of-the-art learning-based audio watermarking systems.
☆ AV1 Motion Vector Fidelity and Application for Efficient Optical Flow
This paper presents a comprehensive analysis of motion vectors extracted from AV1-encoded video streams and their application in accelerating optical flow estimation. We demonstrate that motion vectors from AV1 video codec can serve as a high-quality and computationally efficient substitute for traditional optical flow, a critical but often resource-intensive component in many computer vision pipelines. Our primary contributions are twofold. First, we provide a detailed comparison of motion vectors from both AV1 and HEVC against ground-truth optical flow, establishing their fidelity. In particular we show the impact of encoder settings on motion estimation fidelity and make recommendations about the optimal settings. Second, we show that using these extracted AV1 motion vectors as a "warm-start" for a state-of-the-art deep learning-based optical flow method, RAFT, significantly reduces the time to convergence while achieving comparable accuracy. Specifically, we observe a four-fold speedup in computation time with only a minor trade- off in end-point error. These findings underscore the potential of reusing motion vectors from compressed video as a practical and efficient method for a wide range of motion-aware computer vision applications.
comment: Accepted PCS 2025, camera-ready version
☆ BenCao: An Instruction-Tuned Large Language Model for Traditional Chinese Medicine
Traditional Chinese Medicine (TCM), with a history spanning over two millennia, plays a role in global healthcare. However, applying large language models (LLMs) to TCM remains challenging due to its reliance on holistic reasoning, implicit logic, and multimodal diagnostic cues. Existing TCM-domain LLMs have made progress in text-based understanding but lack multimodal integration, interpretability, and clinical applicability. To address these limitations, we developed BenCao, a ChatGPT-based multimodal assistant for TCM, integrating structured knowledge bases, diagnostic data, and expert feedback refinement. BenCao was trained through natural language instruction tuning rather than parameter retraining, aligning with expert-level reasoning and ethical norms specific to TCM. The system incorporates a comprehensive knowledge base of over 1,000 classical and modern texts, a scenario-based instruction framework for diverse interactions, a chain-of-thought simulation mechanism for interpretable reasoning, and a feedback refinement process involving licensed TCM practitioners. BenCao connects to external APIs for tongue-image classification and multimodal database retrieval, enabling dynamic access to diagnostic resources. In evaluations across single-choice question benchmarks and multimodal classification tasks, BenCao achieved superior accuracy to general-domain and TCM-domain models, particularly in diagnostics, herb recognition, and constitution classification. The model was deployed as an interactive application on the OpenAI GPTs Store, accessed by nearly 1,000 users globally as of October 2025. This study demonstrates the feasibility of developing a TCM-domain LLM through natural language-based instruction tuning and multimodal integration, offering a practical framework for aligning generative AI with traditional medical reasoning and a scalable pathway for real-world deployment.
☆ LongInsightBench: A Comprehensive Benchmark for Evaluating Omni-Modal Models on Human-Centric Long-Video Understanding
We introduce \textbf{LongInsightBench}, the first benchmark designed to assess models' ability to understand long videos, with a focus on human language, viewpoints, actions, and other contextual elements, while integrating \textbf{visual, audio, and text} modalities. Our benchmark excels in three key areas: \textbf{a) Long-Duration, Information-Dense Videos:} We carefully select approximately 1,000 videos from open-source datasets FineVideo based on duration limit and the information density of both visual and audio modalities, focusing on content like lectures, interviews, and vlogs, which contain rich language elements. \textbf{b) Diverse and Challenging Task Scenarios:} We have designed six challenging task scenarios, including both Intra-Event and Inter-Event Tasks. \textbf{c) Rigorous and Comprehensive Quality Assurance Pipelines:} We have developed a three-step, semi-automated data quality assurance pipeline to ensure the difficulty and validity of the synthesized questions and answer options. Based on LongInsightBench, we designed a series of experiments. Experimental results shows that Omni-modal models(OLMs) still face challenge in tasks requiring precise temporal localization (T-Loc) and long-range causal inference (CE-Caus). Extended experiments reveal the information loss and processing bias in multi-modal fusion of OLMs. Our dataset and code is available at https://anonymous.4open.science/r/LongInsightBench-910F/.
comment: Submitted to ARR Rolling Review
☆ Taming Modality Entanglement in Continual Audio-Visual Segmentation
Recently, significant progress has been made in multi-modal continual learning, aiming to learn new tasks sequentially in multi-modal settings while preserving performance on previously learned ones. However, existing methods mainly focus on coarse-grained tasks, with limitations in addressing modality entanglement in fine-grained continual learning settings. To bridge this gap, we introduce a novel Continual Audio-Visual Segmentation (CAVS) task, aiming to continuously segment new classes guided by audio. Through comprehensive analysis, two critical challenges are identified: 1) multi-modal semantic drift, where a sounding objects is labeled as background in sequential tasks; 2) co-occurrence confusion, where frequent co-occurring classes tend to be confused. In this work, a Collision-based Multi-modal Rehearsal (CMR) framework is designed to address these challenges. Specifically, for multi-modal semantic drift, a Multi-modal Sample Selection (MSS) strategy is proposed to select samples with high modal consistency for rehearsal. Meanwhile, for co-occurence confusion, a Collision-based Sample Rehearsal (CSR) mechanism is designed, allowing for the increase of rehearsal sample frequency of those confusable classes during training process. Moreover, we construct three audio-visual incremental scenarios to verify effectiveness of our method. Comprehensive experiments demonstrate that our method significantly outperforms single-modal continual learning methods.
☆ ManzaiSet: A Multimodal Dataset of Viewer Responses to Japanese Manzai Comedy ICCV 2025
We present ManzaiSet, the first large scale multimodal dataset of viewer responses to Japanese manzai comedy, capturing facial videos and audio from 241 participants watching up to 10 professional performances in randomized order (94.6 percent watched >= 8; analyses focus on n=228). This addresses the Western centric bias in affective computing. Three key findings emerge: (1) k means clustering identified three distinct viewer types: High and Stable Appreciators (72.8 percent, n=166), Low and Variable Decliners (13.2 percent, n=30), and Variable Improvers (14.0 percent, n=32), with heterogeneity of variance (Brown Forsythe p < 0.001); (2) individual level analysis revealed a positive viewing order effect (mean slope = 0.488, t(227) = 5.42, p < 0.001, permutation p < 0.001), contradicting fatigue hypotheses; (3) automated humor classification (77 instances, 131 labels) plus viewer level response modeling found no type wise differences after FDR correction. The dataset enables culturally aware emotion AI development and personalized entertainment systems tailored to non Western contexts.
comment: ICCV 2025 Workshop on Affective & Behavior Analysis in-the-Wild (ABAW), Honolulu, HI, USA (Oct 19, 2025, HST). 11 pages, 5 figures
♻ ☆ Nexus: An Omni-Perceptive And -Interactive Model for Language, Audio, And Vision
This work proposes an industry-level omni-modal large language model (LLM) pipeline that integrates auditory, visual, and linguistic modalities to overcome challenges such as limited tri-modal datasets, high computational costs, and complex feature alignments. Our pipeline consists of three main components: First, a modular framework enabling flexible configuration of various encoder-LLM-decoder architectures. Second, a lightweight training strategy that pre-trains audio-language alignment on the state-of-the-art vision-language model Qwen2.5-VL, thus avoiding the costly pre-training of vision-specific modalities. Third, an audio synthesis pipeline that generates high-quality audio-text data from diverse real-world scenarios, supporting applications such as Automatic Speech Recognition and Speech-to-Speech chat. To this end, we introduce an industry-level omni-modal LLM, Nexus. Extensive experiments validate the efficacy of our pipeline, yielding the following key findings:(1) In the visual understanding task, Nexus exhibits superior performance compared with its backbone model - Qwen2.5-VL-7B, validating the efficiency of our training strategy. (2) Within the English Spoken Question-Answering task, the model achieves better accuracy than the same-period competitor (i.e, MiniCPM-o2.6-7B) in the LLaMA Q. benchmark. (3) In our real-world ASR testset, Nexus achieves outstanding performance, indicating its robustness in real scenarios. (4) In the Speech-to-Text Translation task, our model outperforms Qwen2-Audio-Instruct-7B. (5) In the Text-to-Speech task, based on pretrained vocoder (e.g., Fishspeech1.4 or CosyVoice2.0), Nexus is comparable to its backbone vocoder on Seed-TTS benchmark. (6) An in-depth analysis of tri-modal alignment reveals that incorporating the audio modality enhances representational alignment between vision and language.
comment: Project: https://github.com/HiThink-Research/NEXUS-O
♻ ☆ MIRROR: Multi-Modal Pathological Self-Supervised Representation Learning via Modality Alignment and Retention
Histopathology and transcriptomics are fundamental modalities in oncology, encapsulating the morphological and molecular aspects of the disease. Multi-modal self-supervised learning has demonstrated remarkable potential in learning pathological representations by integrating diverse data sources. Conventional multi-modal integration methods primarily emphasize modality alignment, while paying insufficient attention to retaining the modality-specific structures. However, unlike conventional scenarios where multi-modal inputs share highly overlapping features, histopathology and transcriptomics exhibit pronounced heterogeneity, offering orthogonal yet complementary insights. Histopathology provides morphological and spatial context, elucidating tissue architecture and cellular topology, whereas transcriptomics delineates molecular signatures through gene expression patterns. This inherent disparity introduces a major challenge in aligning them while maintaining modality-specific fidelity. To address these challenges, we present MIRROR, a novel multi-modal representation learning method designed to foster both modality alignment and retention. MIRROR employs dedicated encoders to extract comprehensive features for each modality, which is further complemented by a modality alignment module to achieve seamless integration between phenotype patterns and molecular profiles. Furthermore, a modality retention module safeguards unique attributes from each modality, while a style clustering module mitigates redundancy and enhances disease-relevant information by modeling and aligning consistent pathological signatures within a clustering space. Extensive evaluations on TCGA cohorts for cancer subtyping and survival analysis highlight MIRROR's superior performance, demonstrating its effectiveness in constructing comprehensive oncological feature representations and benefiting the cancer diagnosis.
comment: 18 pages, 7 figures, 10 tables. Code available at https://github.com/TianyiFranklinWang/MIRROR. Project page: https://tianyifranklinwang.github.io/MIRROR
♻ ☆ 3D Audio-Visual Segmentation NeurIPS 2024
Recognizing the sounding objects in scenes is a longstanding objective in embodied AI, with diverse applications in robotics and AR/VR/MR. To that end, Audio-Visual Segmentation (AVS), taking as condition an audio signal to identify the masks of the target sounding objects in an input image with synchronous camera and microphone sensors, has been recently advanced. However, this paradigm is still insufficient for real-world operation, as the mapping from 2D images to 3D scenes is missing. To address this fundamental limitation, we introduce a novel research problem, 3D Audio-Visual Segmentation, extending the existing AVS to the 3D output space. This problem poses more challenges due to variations in camera extrinsics, audio scattering, occlusions, and diverse acoustics across sounding object categories. To facilitate this research, we create the very first simulation based benchmark, 3DAVS-S34-O7, providing photorealistic 3D scene environments with grounded spatial audio under single-instance and multi-instance settings, across 34 scenes and 7 object categories. This is made possible by re-purposing the Habitat simulator to generate comprehensive annotations of sounding object locations and corresponding 3D masks. Subsequently, we propose a new approach, EchoSegnet, characterized by integrating the ready-to-use knowledge from pretrained 2D audio-visual foundation models synergistically with 3D visual scene representation through spatial audio-aware mask alignment and refinement. Extensive experiments demonstrate that EchoSegnet can effectively segment sounding objects in 3D space on our new benchmark, representing a significant advancement in the field of embodied AI. Project page: https://x-up-lab.github.io/research/3d-audio-visual-segmentation/
comment: Accepted at the NeurIPS 2024 Workshop on Audio Imagination; this version updates the project page link
Computer Vision and Pattern Recognition 85
☆ How Universal Are SAM2 Features? IEEE
The trade-off between general-purpose foundation vision models and their specialized counterparts is critical for efficient feature coding design and is not yet fully understood. We investigate this trade-off by comparing the feature versatility of the general-purpose Hiera encoder against the segmentation-specialized Segment Anything Model 2 (SAM2). Using a lightweight, trainable neck to probe the adaptability of their frozen features, we quantify the information-theoretic cost of specialization. Our results reveal that while SAM2's specialization is highly effective for spatially-related tasks like depth estimation, it comes at a cost. The specialized SAM2 encoder underperforms its generalist predecessor, Hiera, on conceptually distant tasks such as pose estimation and image captioning, demonstrating a measurable loss of broader semantic information. A novel cross-neck analysis on SAM2 reveals that each level of adaptation creates a further representational bottleneck. Our analysis illuminates these trade-offs in feature universality, providing a quantitative foundation for designing efficient feature coding and adaptation strategies for diverse downstream applications.
comment: This work has been accepted for publication in IEEE Picture Coding Symposium (PCS) 2025
☆ Video Reasoning without Training
Video reasoning using Large Multimodal Models (LMMs) relies on costly reinforcement learning (RL) and verbose chain-of-thought, resulting in substantial computational overhead during both training and inference. Moreover, the mechanisms that control the thinking process in these reasoning models are very limited. In this paper, using entropy of the model's output as a signal, we discover that the high-quality models go through a series of micro-explorations and micro-exploitations which keep the reasoning process grounded (i.e., avoid excessive randomness while the model is exploring or thinking through an answer). We further observe that once this "thinking" process is over, more accurate models demonstrate a better convergence by reducing the entropy significantly via a final exploitation phase (i.e., a more certain convergence towards a solution trajectory). We then use these novel, theoretically-grounded insights to tune the model's behavior directly at inference, without using any RL or supervised fine-tuning. Specifically, during inference, our proposed approach called V-Reason (Video-Reason) adapts the value cache of the LMM via a few optimization steps on a small, trainable controller using an entropy-based objective, i.e., no supervision from any dataset or RL is necessary. This tuning improves the model's micro-exploration and exploitation behavior during inference. Our experiments show that our proposed method achieves significant improvements over the base instruction-tuned models across several video reasoning datasets, narrowing the gap with RL-trained models to within 0.6% average accuracy without any training, while offering massive efficiency benefits: output tokens are reduced by 58.6% compared to the RL model.
☆ Person Re-Identification via Generalized Class Prototypes
Advanced feature extraction methods have significantly contributed to enhancing the task of person re-identification. In addition, modifications to objective functions have been developed to further improve performance. Nonetheless, selecting better class representatives is an underexplored area of research that can also lead to advancements in re-identification performance. Although past works have experimented with using the centroid of a gallery image class during training, only a few have investigated alternative representations during the retrieval stage. In this paper, we demonstrate that these prior techniques yield suboptimal results in terms of re-identification metrics. To address the re-identification problem, we propose a generalized selection method that involves choosing representations that are not limited to class centroids. Our approach strikes a balance between accuracy and mean average precision, leading to improvements beyond the state of the art. For example, the actual number of representations per class can be adjusted to meet specific application requirements. We apply our methodology on top of multiple re-identification embeddings, and in all cases it substantially improves upon contemporary results
comment: 18 pages, 11 figures, and 4 tables
☆ Click, Predict, Trust: Clinician-in-the-Loop AI Segmentation for Lung Cancer CT-Based Prognosis within the Knowledge-to-Action Framework
Lung cancer remains the leading cause of cancer mortality, with CT imaging central to screening, prognosis, and treatment. Manual segmentation is variable and time-intensive, while deep learning (DL) offers automation but faces barriers to clinical adoption. Guided by the Knowledge-to-Action framework, this study develops a clinician-in-the-loop DL pipeline to enhance reproducibility, prognostic accuracy, and clinical trust. Multi-center CT data from 999 patients across 12 public datasets were analyzed using five DL models (3D Attention U-Net, ResUNet, VNet, ReconNet, SAM-Med3D), benchmarked against expert contours on whole and click-point cropped images. Segmentation reproducibility was assessed using 497 PySERA-extracted radiomic features via Spearman correlation, ICC, Wilcoxon tests, and MANOVA, while prognostic modeling compared supervised (SL) and semi-supervised learning (SSL) across 38 dimensionality reduction strategies and 24 classifiers. Six physicians qualitatively evaluated masks across seven domains, including clinical meaningfulness, boundary quality, prognostic value, trust, and workflow integration. VNet achieved the best performance (Dice = 0.83, IoU = 0.71), radiomic stability (mean correlation = 0.76, ICC = 0.65), and predictive accuracy under SSL (accuracy = 0.88, F1 = 0.83). SSL consistently outperformed SL across models. Radiologists favored VNet for peritumoral representation and smoother boundaries, preferring AI-generated initial masks for refinement rather than replacement. These results demonstrate that integrating VNet with SSL yields accurate, reproducible, and clinically trusted CT-based lung cancer prognosis, highlighting a feasible path toward physician-centered AI translation.
comment: 13 pages, 2 figures, and 2 tables
☆ DINO-CVA: A Multimodal Goal-Conditioned Vision-to-Action Model for Autonomous Catheter Navigation
Cardiac catheterization remains a cornerstone of minimally invasive interventions, yet it continues to rely heavily on manual operation. Despite advances in robotic platforms, existing systems are predominantly follow-leader in nature, requiring continuous physician input and lacking intelligent autonomy. This dependency contributes to operator fatigue, more radiation exposure, and variability in procedural outcomes. This work moves towards autonomous catheter navigation by introducing DINO-CVA, a multimodal goal-conditioned behavior cloning framework. The proposed model fuses visual observations and joystick kinematics into a joint embedding space, enabling policies that are both vision-aware and kinematic-aware. Actions are predicted autoregressively from expert demonstrations, with goal conditioning guiding navigation toward specified destinations. A robotic experimental setup with a synthetic vascular phantom was designed to collect multimodal datasets and evaluate performance. Results show that DINO-CVA achieves high accuracy in predicting actions, matching the performance of a kinematics-only baseline while additionally grounding predictions in the anatomical environment. These findings establish the feasibility of multimodal, goal-conditioned architectures for catheter navigation, representing an important step toward reducing operator dependency and improving the reliability of catheterbased therapies.
☆ Conditional Synthetic Live and Spoof Fingerprint Generation
Large fingerprint datasets, while important for training and evaluation, are time-consuming and expensive to collect and require strict privacy measures. Researchers are exploring the use of synthetic fingerprint data to address these issues. This paper presents a novel approach for generating synthetic fingerprint images (both spoof and live), addressing concerns related to privacy, cost, and accessibility in biometric data collection. Our approach utilizes conditional StyleGAN2-ADA and StyleGAN3 architectures to produce high-resolution synthetic live fingerprints, conditioned on specific finger identities (thumb through little finger). Additionally, we employ CycleGANs to translate these into realistic spoof fingerprints, simulating a variety of presentation attack materials (e.g., EcoFlex, Play-Doh). These synthetic spoof fingerprints are crucial for developing robust spoof detection systems. Through these generative models, we created two synthetic datasets (DB2 and DB3), each containing 1,500 fingerprint images of all ten fingers with multiple impressions per finger, and including corresponding spoofs in eight material types. The results indicate robust performance: our StyleGAN3 model achieves a Fr\'echet Inception Distance (FID) as low as 5, and the generated fingerprints achieve a True Accept Rate of 99.47% at a 0.01% False Accept Rate. The StyleGAN2-ADA model achieved a TAR of 98.67% at the same 0.01% FAR. We assess fingerprint quality using standard metrics (NFIQ2, MINDTCT), and notably, matching experiments confirm strong privacy preservation, with no significant evidence of identity leakage, confirming the strong privacy-preserving properties of our synthetic datasets.
☆ Where, Not What: Compelling Video LLMs to Learn Geometric Causality for 3D-Grounding
Multimodal 3D grounding has garnered considerable interest in Vision-Language Models (VLMs) \cite{yin2025spatial} for advancing spatial reasoning in complex environments. However, these models suffer from a severe "2D semantic bias" that arises from over-reliance on 2D image features for coarse localization, largely disregarding 3D geometric inputs and resulting in suboptimal fusion performance. In this paper, we propose a novel training framework called What-Where Representation Re-Forming (W2R2) to tackle this issue via disentangled representation learning and targeted shortcut suppression. Our approach fundamentally reshapes the model's internal space by designating 2D features as semantic beacons for "What" identification and 3D features as spatial anchors for "Where" localization, enabling precise 3D grounding without modifying inference architecture. Key components include a dual-objective loss function with an Alignment Loss that supervises fused predictions using adapted cross-entropy for multimodal synergy, and a Pseudo-Label Loss that penalizes overly effective 2D-dominant pseudo-outputs via a margin-based mechanism. Experiments conducted on ScanRefer and ScanQA demonstrate the effectiveness of W2R2, with significant gains in localization accuracy and robustness, particularly in cluttered outdoor scenes.
☆ Enrich and Detect: Video Temporal Grounding with Multimodal LLMs ICCV 2025
We introduce ED-VTG, a method for fine-grained video temporal grounding utilizing multi-modal large language models. Our approach harnesses the capabilities of multimodal LLMs to jointly process text and video, in order to effectively localize natural language queries in videos through a two-stage process. Rather than being directly grounded, language queries are initially transformed into enriched sentences that incorporate missing details and cues to aid in grounding. In the second stage, these enriched queries are grounded, using a lightweight decoder, which specializes at predicting accurate boundaries conditioned on contextualized representations of the enriched queries. To mitigate noise and reduce the impact of hallucinations, our model is trained with a multiple-instance-learning objective that dynamically selects the optimal version of the query for each training sample. We demonstrate state-of-the-art results across various benchmarks in temporal video grounding and paragraph grounding settings. Experiments reveal that our method significantly outperforms all previously proposed LLM-based temporal grounding approaches and is either superior or comparable to specialized models, while maintaining a clear advantage against them in zero-shot evaluation scenarios.
comment: ICCV 2025 (Highlights)
☆ Do Satellite Tasks Need Special Pretraining?
Foundation models have advanced machine learning across various modalities, including images. Recently multiple teams trained foundation models specialized for remote sensing applications. This line of research is motivated by the distinct characteristics of remote sensing imagery, specific applications and types of robustness useful for satellite image analysis. In this work we systematically challenge the idea that specific foundation models are more useful than general-purpose vision foundation models, at least in the small scale. First, we design a simple benchmark that measures generalization of remote sensing models towards images with lower resolution for two downstream tasks. Second, we train iBOT, a self-supervised vision encoder, on MillionAID, an ImageNet-scale satellite imagery dataset, with several modifications specific to remote sensing. We show that none of those pretrained models bring consistent improvements upon general-purpose baselines at the ViT-B scale.
☆ An empirical study of the effect of video encoders on Temporal Video Grounding
Temporal video grounding is a fundamental task in computer vision, aiming to localize a natural language query in a long, untrimmed video. It has a key role in the scientific community, in part due to the large amount of video generated every day. Although we find extensive work in this task, we note that research remains focused on a small selection of video representations, which may lead to architectural overfitting in the long run. To address this issue, we propose an empirical study to investigate the impact of different video features on a classical architecture. We extract features for three well-known benchmarks, Charades-STA, ActivityNet-Captions and YouCookII, using video encoders based on CNNs, temporal reasoning and transformers. Our results show significant differences in the performance of our model by simply changing the video encoder, while also revealing clear patterns and errors derived from the use of certain features, ultimately indicating potential feature complementarity.
☆ Training-free Online Video Step Grounding NeurIPS 2025
Given a task and a set of steps composing it, Video Step Grounding (VSG) aims to detect which steps are performed in a video. Standard approaches for this task require a labeled training set (e.g., with step-level annotations or narrations), which may be costly to collect. Moreover, they process the full video offline, limiting their applications for scenarios requiring online decisions. Thus, in this work, we explore how to perform VSG online and without training. We achieve this by exploiting the zero-shot capabilities of recent Large Multimodal Models (LMMs). In particular, we use LMMs to predict the step associated with a restricted set of frames, without access to the whole video. We show that this online strategy without task-specific tuning outperforms offline and training-based models. Motivated by this finding, we develop Bayesian Grounding with Large Multimodal Models (BaGLM), further injecting knowledge of past frames into the LMM-based predictions. BaGLM exploits Bayesian filtering principles, modeling step transitions via (i) a dependency matrix extracted through large language models and (ii) an estimation of step progress. Experiments on three datasets show superior performance of BaGLM over state-of-the-art training-based offline methods.
comment: NeurIPS 2025. Project website at https://lucazanella.github.io/baglm/
☆ CARE: Contrastive Alignment for ADL Recognition from Event-Triggered Sensor Streams
The recognition of Activities of Daily Living (ADLs) from event-triggered ambient sensors is an essential task in Ambient Assisted Living, yet existing methods remain constrained by representation-level limitations. Sequence-based approaches preserve temporal order of sensor activations but are sensitive to noise and lack spatial awareness, while image-based approaches capture global patterns and implicit spatial correlations but compress fine-grained temporal dynamics and distort sensor layouts. Naive fusion (e.g., feature concatenation) fail to enforce alignment between sequence- and image-based representation views, underutilizing their complementary strengths. We propose Contrastive Alignment for ADL Recognition from Event-Triggered Sensor Streams (CARE), an end-to-end framework that jointly optimizes representation learning via Sequence-Image Contrastive Alignment (SICA) and classification via cross-entropy, ensuring both cross-representation alignment and task-specific discriminability. CARE integrates (i) time-aware, noise-resilient sequence encoding with (ii) spatially-informed and frequency-sensitive image representations, and employs (iii) a joint contrastive-classification objective for end-to-end learning of aligned and discriminative embeddings. Evaluated on three CASAS datasets, CARE achieves state-of-the-art performance (89.8% on Milan, 88.9% on Cairo, and 73.3% on Kyoto7) and demonstrates robustness to sensor malfunctions and layout variability, highlighting its potential for reliable ADL recognition in smart homes.
☆ One-step Diffusion Models with Bregman Density Ratio Matching
Diffusion and flow models achieve high generative quality but remain computationally expensive due to slow multi-step sampling. Distillation methods accelerate them by training fast student generators, yet most existing objectives lack a unified theoretical foundation. In this work, we propose Di-Bregman, a compact framework that formulates diffusion distillation as Bregman divergence-based density-ratio matching. This convex-analytic view connects several existing objectives through a common lens. Experiments on CIFAR-10 and text-to-image generation demonstrate that Di-Bregman achieves improved one-step FID over reverse-KL distillation and maintains high visual fidelity compared to the teacher model. Our results highlight Bregman density-ratio matching as a practical and theoretically-grounded route toward efficient one-step diffusion generation.
comment: work in progress
☆ Foundation Models in Medical Image Analysis: A Systematic Review and Meta-Analysis
Recent advancements in artificial intelligence (AI), particularly foundation models (FMs), have revolutionized medical image analysis, demonstrating strong zero- and few-shot performance across diverse medical imaging tasks, from segmentation to report generation. Unlike traditional task-specific AI models, FMs leverage large corpora of labeled and unlabeled multimodal datasets to learn generalized representations that can be adapted to various downstream clinical applications with minimal fine-tuning. However, despite the rapid proliferation of FM research in medical imaging, the field remains fragmented, lacking a unified synthesis that systematically maps the evolution of architectures, training paradigms, and clinical applications across modalities. To address this gap, this review article provides a comprehensive and structured analysis of FMs in medical image analysis. We systematically categorize studies into vision-only and vision-language FMs based on their architectural foundations, training strategies, and downstream clinical tasks. Additionally, a quantitative meta-analysis of the studies was conducted to characterize temporal trends in dataset utilization and application domains. We also critically discuss persistent challenges, including domain adaptation, efficient fine-tuning, computational constraints, and interpretability along with emerging solutions such as federated learning, knowledge distillation, and advanced prompting. Finally, we identify key future research directions aimed at enhancing the robustness, explainability, and clinical integration of FMs, thereby accelerating their translation into real-world medical practice.
☆ Unlocking Off-the-Grid Sparse Recovery with Unlimited Sensing: Simultaneous Super-Resolution in Time and Amplitude IEEE
The recovery of Dirac impulses, or spikes, from filtered measurements is a classical problem in signal processing. As the spikes lie in the continuous domain while measurements are discrete, this task is known as super-resolution or off-the-grid sparse recovery. Despite significant theoretical and algorithmic advances over the past decade, these developments often overlook critical challenges at the analog-digital interface. In particular, when spikes exhibit strong-weak amplitude disparity, conventional digital acquisition may result in clipping of strong components or loss of weak ones beneath the quantization noise floor. This motivates a broader perspective: super-resolution must simultaneously resolve both amplitude and temporal structure. Under a fixed bit budget, such information loss is unavoidable. In contrast, the emerging theory and practice of the Unlimited Sensing Framework (USF) demonstrate that these fundamental limitations can be overcome. Building on this foundation, we demonstrate that modulo encoding within USF enables digital super-resolution by enhancing measurement precision, thereby unlocking temporal super-resolution beyond conventional limits. We develop new theoretical results that extend to non-bandlimited kernels commonly encountered in practice and introduce a robust algorithm for off-the-grid sparse recovery. To demonstrate practical impact, we instantiate our framework in the context of time-of-flight imaging. Both numerical simulations and hardware experiments validate the effectiveness of our approach under low-bit quantization, enabling super-resolution in amplitude and time.
comment: 28 Pages, 10 figures. To appear in IEEE Journal of Selected Topics in Signal Processing
☆ Res-Bench: Benchmarking the Robustness of Multimodal Large Language Models to Dynamic Resolution Input
Multimodal Large Language Models (MLLMs) increasingly support dynamic image resolutions. However, current evaluation paradigms primarily assess semantic performance, overlooking the critical question of resolution robustness - whether performance remains stable across varying input resolutions. To address this gap, we introduce \textbf{Res-Bench}, a comprehensive benchmark comprising 14,400 samples across 12 resolution levels and six core capability dimensions. We designed a novel evaluation framework that goes beyond traditional accuracy metrics to capture performance stability. This framework introduces multiple robustness metrics: Spearman's correlation for assessing resolution-performance trends, and Absolute/Relative Continuous Error (ACE/RCE) for measuring performance volatility. Using these metrics, we conducted a large-scale evaluation of leading MLLMs. Our analysis encompasses: (1) model-centric and task-centric robustness examination, (2) investigation of preprocessing strategies including padding and super-resolution, and (3) exploration of fine-tuning for stability enhancement.
comment: 23 pages,19 figures
☆ Domain Generalizable Continual Learning
To adapt effectively to dynamic real-world environments, intelligent systems must continually acquire new skills while generalizing them to diverse, unseen scenarios. Here, we introduce a novel and realistic setting named domain generalizable continual learning (DGCL): a model learns sequential tasks with each involving a single domain, aiming to perform well across all encountered tasks and domains. This setting poses unique challenges in acquiring, retaining, and leveraging both semantic- and domain-relevant information for robust generalization. Although state-of-the-art continual learning (CL) methods have employed pre-trained models (PTMs) to enhance task-specific generalization, they typically assume identical training and testing domains for each task and therefore perform poorly in DGCL. To this end, we propose adaptive Domain Transformation (DoT), an innovative PTMs-based approach tailored to DGCL. Inspired by the distributed-plus-hub theory of the human brain, DoT disentangles semantic- and domain-relevant information in representation learning, and adaptively transforms task representations across various domains for output alignment, ensuring balanced and generalized predictions. DoT serves as a plug-in strategy that greatly facilitates state-of-the-art CL baselines under both full parameter tuning and parameter-efficient tuning paradigms in DGCL, validated by extensive experiments. Also, DoT is shown to accumulate domain-generalizable knowledge from DGCL, and ensure resource efficiency with a lightweight implementation.
comment: 25 pages
☆ Beyond RGB: Leveraging Vision Transformers for Thermal Weapon Segmentation
Thermal weapon segmentation is crucial for surveillance and security applications, enabling robust detection under lowlight and visually obscured conditions where RGB-based systems fail. While convolutional neural networks (CNNs) dominate thermal segmentation literature, their ability to capture long-range dependencies and fine structural details is limited. Vision Transformers (ViTs), with their global context modeling capabilities, have achieved state-of-the-art results in RGB segmentation tasks, yet their potential in thermal weapon segmentation remains underexplored. This work adapts and evaluates four transformer-based architectures SegFormer, DeepLabV3\+, SegNeXt, and Swin Transformer for binary weapon segmentation on a custom thermal dataset comprising 9,711 images collected from real world surveillance videos and automatically annotated using SAM2. We employ standard augmentation strategies within the MMSegmentation framework to ensure robust model training and fair architectural comparison. Experimental results demonstrate significant improvements in segmentation performance: SegFormer-b5 achieves the highest mIoU (94.15\%) and Pixel Accuracy (97.04\%), while SegFormer-b0 provides the fastest inference speed (98.32 FPS) with competitive mIoU (90.84\%). SegNeXt-mscans offers balanced performance with 85.12 FPS and 92.24\% mIoU, and DeepLabV3\+ R101-D8 reaches 92.76\% mIoU at 29.86 FPS. The transformer architectures demonstrate robust generalization capabilities for weapon detection in low-light and occluded thermal environments, with flexible accuracy-speed trade-offs suitable for diverse real-time security applications.
comment: 9 Images with 1 figure and 3 Tables. This is a preprint submitted to arXiv
☆ Contrail-to-Flight Attribution Using Ground Visible Cameras and Flight Surveillance Data
Aviation's non-CO2 effects, particularly contrails, are a significant contributor to its climate impact. Persistent contrails can evolve into cirrus-like clouds that trap outgoing infrared radiation, with radiative forcing potentially comparable to or exceeding that of aviation's CO2 emissions. While physical models simulate contrail formation, evolution and dissipation, validating and calibrating these models requires linking observed contrails to the flights that generated them, a process known as contrail-to-flight attribution. Satellite-based attribution is challenging due to limited spatial and temporal resolution, as contrails often drift and deform before detection. In this paper, we evaluate an alternative approach using ground-based cameras, which capture contrails shortly after formation at high spatial and temporal resolution, when they remain thin, linear, and visually distinct. Leveraging the ground visible camera contrail sequences (GVCCS) dataset, we introduce a modular framework for attributing contrails observed using ground-based cameras to theoretical contrails derived from aircraft surveillance and meteorological data. The framework accommodates multiple geometric representations and distance metrics, incorporates temporal smoothing, and enables flexible probability-based assignment strategies. This work establishes a strong baseline and provides a modular framework for future research in linking contrails to their source flight.
☆ Uniworld-V2: Reinforce Image Editing with Diffusion Negative-aware Finetuning and MLLM Implicit Feedback
Instruction-based image editing has achieved remarkable progress; however, models solely trained via supervised fine-tuning often overfit to annotated patterns, hindering their ability to explore and generalize beyond training distributions. To this end, we introduce Edit-R1, a novel post-training framework for instruction-based image editing based on policy optimization. Specifically, we utilize Diffusion Negative-aware Finetuning (DiffusionNFT), a likelihood-free policy optimization method consistent with the flow matching forward process, thereby enabling the use of higher-order samplers and more efficient training. Another key challenge here is the absence of a universal reward model, resulting from the diverse nature of editing instructions and tasks. To bridge this gap, we employ a Multimodal Large Language Model (MLLM) as a unified, training-free reward model, leveraging its output logits to provide fine-grained feedback. Furthermore, we carefully design a low-variance group filtering mechanism to reduce MLLM scoring noise and stabilize optimization. UniWorld-V2, trained with this framework, achieves \textbf{state-of-the-art} results on the ImgEdit and GEdit-Bench benchmarks, scoring 4.49 and 7.83, respectively. Crucially, our framework is model-agnostic, delivering substantial performance gains when applied to diverse base models like Qwen-Image-Edit and FLUX-Kontext, demonstrating its wide applicability. Code and models are publicly available at https://github.com/PKU-YuanGroup/UniWorld-V2.
☆ Class-N-Diff: Classification-Induced Diffusion Model Can Make Fair Skin Cancer Diagnosis
Generative models, especially Diffusion Models, have demonstrated remarkable capability in generating high-quality synthetic data, including medical images. However, traditional class-conditioned generative models often struggle to generate images that accurately represent specific medical categories, limiting their usefulness for applications such as skin cancer diagnosis. To address this problem, we propose a classification-induced diffusion model, namely, Class-N-Diff, to simultaneously generate and classify dermoscopic images. Our Class-N-Diff model integrates a classifier within a diffusion model to guide image generation based on its class conditions. Thus, the model has better control over class-conditioned image synthesis, resulting in more realistic and diverse images. Additionally, the classifier demonstrates improved performance, highlighting its effectiveness for downstream diagnostic tasks. This unique integration in our Class-N-Diff makes it a robust tool for enhancing the quality and utility of diffusion model-based synthetic dermoscopic image generation. Our code is available at https://github.com/Munia03/Class-N-Diff.
comment: EMBC 2025
☆ Fly-CL: A Fly-Inspired Framework for Enhancing Efficient Decorrelation and Reduced Training Time in Pre-trained Model-based Continual Representation Learning
Using a nearly-frozen pretrained model, the continual representation learning paradigm reframes parameter updates as a similarity-matching problem to mitigate catastrophic forgetting. However, directly leveraging pretrained features for downstream tasks often suffers from multicollinearity in the similarity-matching stage, and more advanced methods can be computationally prohibitive for real-time, low-latency applications. Inspired by the fly olfactory circuit, we propose Fly-CL, a bio-inspired framework compatible with a wide range of pretrained backbones. Fly-CL substantially reduces training time while achieving performance comparable to or exceeding that of current state-of-the-art methods. We theoretically show how Fly-CL progressively resolves multicollinearity, enabling more effective similarity matching with low time complexity. Extensive simulation experiments across diverse network architectures and data regimes validate Fly-CL's effectiveness in addressing this challenge through a biologically inspired design. Code is available at https://github.com/gfyddha/Fly-CL.
☆ Uncovering Brain-Like Hierarchical Patterns in Vision-Language Models through fMRI-Based Neural Encoding
While brain-inspired artificial intelligence(AI) has demonstrated promising results, current understanding of the parallels between artificial neural networks (ANNs) and human brain processing remains limited: (1) unimodal ANN studies fail to capture the brain's inherent multimodal processing capabilities, and (2) multimodal ANN research primarily focuses on high-level model outputs, neglecting the crucial role of individual neurons. To address these limitations, we propose a novel neuron-level analysis framework that investigates the multimodal information processing mechanisms in vision-language models (VLMs) through the lens of human brain activity. Our approach uniquely combines fine-grained artificial neuron (AN) analysis with fMRI-based voxel encoding to examine two architecturally distinct VLMs: CLIP and METER. Our analysis reveals four key findings: (1) ANs successfully predict biological neurons (BNs) activities across multiple functional networks (including language, vision, attention, and default mode), demonstrating shared representational mechanisms; (2) Both ANs and BNs demonstrate functional redundancy through overlapping neural representations, mirroring the brain's fault-tolerant and collaborative information processing mechanisms; (3) ANs exhibit polarity patterns that parallel the BNs, with oppositely activated BNs showing mirrored activation trends across VLM layers, reflecting the complexity and bidirectional nature of neural information processing; (4) The architectures of CLIP and METER drive distinct BNs: CLIP's independent branches show modality-specific specialization, whereas METER's cross-modal design yields unified cross-modal activation, highlighting the architecture's influence on ANN brain-like properties. These results provide compelling evidence for brain-like hierarchical processing in VLMs at the neuronal level.
comment: 14 pages, 7 figures
☆ Registration is a Powerful Rotation-Invariance Learner for 3D Anomaly Detection
3D anomaly detection in point-cloud data is critical for industrial quality control, aiming to identify structural defects with high reliability. However, current memory bank-based methods often suffer from inconsistent feature transformations and limited discriminative capacity, particularly in capturing local geometric details and achieving rotation invariance. These limitations become more pronounced when registration fails, leading to unreliable detection results. We argue that point-cloud registration plays an essential role not only in aligning geometric structures but also in guiding feature extraction toward rotation-invariant and locally discriminative representations. To this end, we propose a registration-induced, rotation-invariant feature extraction framework that integrates the objectives of point-cloud registration and memory-based anomaly detection. Our key insight is that both tasks rely on modeling local geometric structures and leveraging feature similarity across samples. By embedding feature extraction into the registration learning process, our framework jointly optimizes alignment and representation learning. This integration enables the network to acquire features that are both robust to rotations and highly effective for anomaly detection. Extensive experiments on the Anomaly-ShapeNet and Real3D-AD datasets demonstrate that our method consistently outperforms existing approaches in effectiveness and generalizability.
☆ BARL: Bilateral Alignment in Representation and Label Spaces for Semi-Supervised Volumetric Medical Image Segmentation
Semi-supervised medical image segmentation (SSMIS) seeks to match fully supervised performance while sharply reducing annotation cost. Mainstream SSMIS methods rely on \emph{label-space consistency}, yet they overlook the equally critical \emph{representation-space alignment}. Without harmonizing latent features, models struggle to learn representations that are both discriminative and spatially coherent. To this end, we introduce \textbf{Bilateral Alignment in Representation and Label spaces (BARL)}, a unified framework that couples two collaborative branches and enforces alignment in both spaces. For label-space alignment, inspired by co-training and multi-scale decoding, we devise \textbf{Dual-Path Regularization (DPR)} and \textbf{Progressively Cognitive Bias Correction (PCBC)} to impose fine-grained cross-branch consistency while mitigating error accumulation from coarse to fine scales. For representation-space alignment, we conduct region-level and lesion-instance matching between branches, explicitly capturing the fragmented, complex pathological patterns common in medical imagery. Extensive experiments on four public benchmarks and a proprietary CBCT dataset demonstrate that BARL consistently surpasses state-of-the-art SSMIS methods. Ablative studies further validate the contribution of each component. Code will be released soon.
comment: 14 pages, 5 figures
☆ ArmFormer: Lightweight Transformer Architecture for Real-Time Multi-Class Weapon Segmentation and Classification
The escalating threat of weapon-related violence necessitates automated detection systems capable of pixel-level precision for accurate threat assessment in real-time security applications. Traditional weapon detection approaches rely on object detection frameworks that provide only coarse bounding box localizations, lacking the fine-grained segmentation required for comprehensive threat analysis. Furthermore, existing semantic segmentation models either sacrifice accuracy for computational efficiency or require excessive computational resources incompatible with edge deployment scenarios. This paper presents ArmFormer, a lightweight transformer-based semantic segmentation framework that strategically integrates Convolutional Block Attention Module (CBAM) with MixVisionTransformer architecture to achieve superior accuracy while maintaining computational efficiency suitable for resource-constrained edge devices. Our approach combines CBAM-enhanced encoder backbone with attention-integrated hamburger decoder to enable multi-class weapon segmentation across five categories: handgun, rifle, knife, revolver, and human. Comprehensive experiments demonstrate that ArmFormer achieves state-of-the-art performance with 80.64% mIoU and 89.13% mFscore while maintaining real-time inference at 82.26 FPS. With only 4.886G FLOPs and 3.66M parameters, ArmFormer outperforms heavyweight models requiring up to 48x more computation, establishing it as the optimal solution for deployment on portable security cameras, surveillance drones, and embedded AI accelerators in distributed security infrastructure.
comment: 9 pages with 4 figures and 5 tables. This is a preprint submitted to arXiv
☆ 2DGS-R: Revisiting the Normal Consistency Regularization in 2D Gaussian Splatting
Recent advancements in 3D Gaussian Splatting (3DGS) have greatly influenced neural fields, as it enables high-fidelity rendering with impressive visual quality. However, 3DGS has difficulty accurately representing surfaces. In contrast, 2DGS transforms the 3D volume into a collection of 2D planar Gaussian disks. Despite advancements in geometric fidelity, rendering quality remains compromised, highlighting the challenge of achieving both high-quality rendering and precise geometric structures. This indicates that optimizing both geometric and rendering quality in a single training stage is currently unfeasible. To overcome this limitation, we present 2DGS-R, a new method that uses a hierarchical training approach to improve rendering quality while maintaining geometric accuracy. 2DGS-R first trains the original 2D Gaussians with the normal consistency regularization. Then 2DGS-R selects the 2D Gaussians with inadequate rendering quality and applies a novel in-place cloning operation to enhance the 2D Gaussians. Finally, we fine-tune the 2DGS-R model with opacity frozen. Experimental results show that compared to the original 2DGS, our method requires only 1\% more storage and minimal additional training time. Despite this negligible overhead, it achieves high-quality rendering results while preserving fine geometric structures. These findings indicate that our approach effectively balances efficiency with performance, leading to improvements in both visual fidelity and geometric reconstruction accuracy.
☆ From Mannequin to Human: A Pose-Aware and Identity-Preserving Video Generation Framework for Lifelike Clothing Display
Mannequin-based clothing displays offer a cost-effective alternative to real-model showcases for online fashion presentation, but lack realism and expressive detail. To overcome this limitation, we introduce a new task called mannequin-to-human (M2H) video generation, which aims to synthesize identity-controllable, photorealistic human videos from footage of mannequins. We propose M2HVideo, a pose-aware and identity-preserving video generation framework that addresses two key challenges: the misalignment between head and body motion, and identity drift caused by temporal modeling. In particular, M2HVideo incorporates a dynamic pose-aware head encoder that fuses facial semantics with body pose to produce consistent identity embeddings across frames. To address the loss of fine facial details due to latent space compression, we introduce a mirror loss applied in pixel space through a denoising diffusion implicit model (DDIM)-based one-step denoising. Additionally, we design a distribution-aware adapter that aligns statistical distributions of identity and clothing features to enhance temporal coherence. Extensive experiments on the UBC fashion dataset, our self-constructed ASOS dataset, and the newly collected MannequinVideos dataset captured on-site demonstrate that M2HVideo achieves superior performance in terms of clothing consistency, identity preservation, and video fidelity in comparison to state-of-the-art methods.
☆ Robust Cross-Domain Adaptation in Texture Features Transferring for Wood Chip Moisture Content Prediction
Accurate and quick prediction of wood chip moisture content is critical for optimizing biofuel production and ensuring energy efficiency. The current widely used direct method (oven drying) is limited by its longer processing time and sample destructiveness. On the other hand, existing indirect methods, including near-infrared spectroscopy-based, electrical capacitance-based, and image-based approaches, are quick but not accurate when wood chips come from various sources. Variability in the source material can alter data distributions, undermining the performance of data-driven models. Therefore, there is a need for a robust approach that effectively mitigates the impact of source variability. Previous studies show that manually extracted texture features have the potential to predict wood chip moisture class. Building on this, in this study, we conduct a comprehensive analysis of five distinct texture feature types extracted from wood chip images to predict moisture content. Our findings reveal that a combined feature set incorporating all five texture features achieves an accuracy of 95% and consistently outperforms individual texture features in predicting moisture content. To ensure robust moisture prediction, we propose a domain adaptation method named AdaptMoist that utilizes the texture features to transfer knowledge from one source of wood chip data to another, addressing variability across different domains. We also proposed a criterion for model saving based on adjusted mutual information. The AdaptMoist method improves prediction accuracy across domains by 23%, achieving an average accuracy of 80%, compared to 57% for non-adapted models. These results highlight the effectiveness of AdaptMoist as a robust solution for wood chip moisture content estimation across domains, making it a potential solution for wood chip-reliant industries.
☆ ReefNet: A Large scale, Taxonomically Enriched Dataset and Benchmark for Hard Coral Classification
Coral reefs are rapidly declining due to anthropogenic pressures such as climate change, underscoring the urgent need for scalable, automated monitoring. We introduce ReefNet, a large public coral reef image dataset with point-label annotations mapped to the World Register of Marine Species (WoRMS). ReefNet aggregates imagery from 76 curated CoralNet sources and an additional site from Al Wajh in the Red Sea, totaling approximately 925000 genus-level hard coral annotations with expert-verified labels. Unlike prior datasets, which are often limited by size, geography, or coarse labels and are not ML-ready, ReefNet offers fine-grained, taxonomically mapped labels at a global scale to WoRMS. We propose two evaluation settings: (i) a within-source benchmark that partitions each source's images for localized evaluation, and (ii) a cross-source benchmark that withholds entire sources to test domain generalization. We analyze both supervised and zero-shot classification performance on ReefNet and find that while supervised within-source performance is promising, supervised performance drops sharply across domains, and performance is low across the board for zero-shot models, especially for rare and visually similar genera. This provides a challenging benchmark intended to catalyze advances in domain generalization and fine-grained coral classification. We will release our dataset, benchmarking code, and pretrained models to advance robust, domain-adaptive, global coral reef monitoring and conservation.
☆ Needles in the Landscape: Semi-Supervised Pseudolabeling for Archaeological Site Discovery under Label Scarcity
Archaeological predictive modelling estimates where undiscovered sites are likely to occur by combining known locations with environmental, cultural, and geospatial variables. We address this challenge using a deep learning approach but must contend with structural label scarcity inherent to archaeology: positives are rare, and most locations are unlabeled. To address this, we adopt a semi-supervised, positive-unlabeled (PU) learning strategy, implemented as a semantic segmentation model and evaluated on two datasets covering a representative range of archaeological periods. Our approach employs dynamic pseudolabeling, refined with a Conditional Random Field (CRF) implemented via an RNN, increasing label confidence under severe class imbalance. On a geospatial dataset derived from a digital elevation model (DEM), our model performs on par with the state-of-the-art, LAMAP, while achieving higher Dice scores. On raw satellite imagery, assessed end-to-end with stratified k-fold cross-validation, it maintains performance and yields predictive surfaces with improved interpretability. Overall, our results indicate that semi-supervised learning offers a promising approach to identifying undiscovered sites across large, sparsely annotated landscapes.
☆ An RGB-D Image Dataset for Lychee Detection and Maturity Classification for Robotic Harvesting
Lychee is a high-value subtropical fruit. The adoption of vision-based harvesting robots can significantly improve productivity while reduce reliance on labor. High-quality data are essential for developing such harvesting robots. However, there are currently no consistently and comprehensively annotated open-source lychee datasets featuring fruits in natural growing environments. To address this, we constructed a dataset to facilitate lychee detection and maturity classification. Color (RGB) images were acquired under diverse weather conditions, and at different times of the day, across multiple lychee varieties, such as Nuomici, Feizixiao, Heiye, and Huaizhi. The dataset encompasses three different ripeness stages and contains 11,414 images, consisting of 878 raw RGB images, 8,780 augmented RGB images, and 1,756 depth images. The images are annotated with 9,658 pairs of lables for lychee detection and maturity classification. To improve annotation consistency, three individuals independently labeled the data, and their results were then aggregated and verified by a fourth reviewer. Detailed statistical analyses were done to examine the dataset. Finally, we performed experiments using three representative deep learning models to evaluate the dataset. It is publicly available for academic
☆ Personalized Image Filter: Mastering Your Photographic Style
Photographic style, as a composition of certain photographic concepts, is the charm behind renowned photographers. But learning and transferring photographic style need a profound understanding of how the photo is edited from the unknown original appearance. Previous works either fail to learn meaningful photographic concepts from reference images, or cannot preserve the content of the content image. To tackle these issues, we proposed a Personalized Image Filter (PIF). Based on a pretrained text-to-image diffusion model, the generative prior enables PIF to learn the average appearance of photographic concepts, as well as how to adjust them according to text prompts. PIF then learns the photographic style of reference images with the textual inversion technique, by optimizing the prompts for the photographic concepts. PIF shows outstanding performance in extracting and transferring various kinds of photographic style. Project page: https://pif.pages.dev/
☆ Unsupervised Monocular Road Segmentation for Autonomous Driving via Scene Geometry
This paper presents a fully unsupervised approach for binary road segmentation (road vs. non-road), eliminating the reliance on costly manually labeled datasets. The method leverages scene geometry and temporal cues to distinguish road from non-road regions. Weak labels are first generated from geometric priors, marking pixels above the horizon as non-road and a predefined quadrilateral in front of the vehicle as road. In a refinement stage, temporal consistency is enforced by tracking local feature points across frames and penalizing inconsistent label assignments using mutual information maximization. This enhances both precision and temporal stability. On the Cityscapes dataset, the model achieves an Intersection-over-Union (IoU) of 0.82, demonstrating high accuracy with a simple design. These findings demonstrate the potential of combining geometric constraints and temporal consistency for scalable unsupervised road segmentation in autonomous driving.
comment: 7 pages, 3 figures
Segmentation as A Plug-and-Play Capability for Frozen Multimodal LLMs
Integrating diverse visual capabilities into a unified model is a significant trend in Multimodal Large Language Models (MLLMs). Among these, the inclusion of segmentation poses a distinct set of challenges. To equip MLLMs with pixel-level segmentation abilities, prevailing methods require finetuning the model to produce specific outputs compatible with a mask decoder. This process typically alters the model's output space and compromises its intrinsic generalization, which undermines the goal of building a unified model. We introduce LENS (Leveraging kEypoiNts for MLLMs' Segmentation), a novel plug-and-play solution. LENS attaches a lightweight, trainable head to a completely frozen MLLM. By refining the spatial cues embedded in attention maps, LENS extracts keypoints and describes them into point-wise features directly compatible with the mask decoder. Extensive experiments validate our approach: LENS achieves segmentation performance competitive with or superior to that of retraining-based methods. Crucially, it does so while fully preserving the MLLM's generalization capabilities, which are significantly degraded by finetuning approaches. As such, the attachable design of LENS establishes an efficient and powerful paradigm for extending MLLMs, paving the way for truly multi-talented, unified models.
☆ Xiaoice: Training-Free Video Understanding via Self-Supervised Spatio-Temporal Clustering of Semantic Features
The remarkable zero-shot reasoning capabilities of large-scale Visual Language Models (VLMs) on static images have yet to be fully translated to the video domain. Conventional video understanding models often rely on extensive, task-specific training on annotated datasets, a process that is both costly and limited in scalability. This paper introduces a novel, training-free framework for video understanding that circumvents end-to-end training by synergistically combining the rich semantic priors of pre-trained VLMs with classic machine learning algorithms for pattern discovery. Our core idea is to reframe video understanding as a self-supervised spatio-temporal clustering problem within a high-dimensional semantic feature space. The proposed pipeline first transforms a video stream into a semantic feature trajectory using the frozen visual encoder of a pre-trained VLM. Subsequently, we employ Kernel Temporal Segmentation (KTS), a robust machine learning technique, to partition the continuous feature stream into discrete, semantically coherent event segments. These segments are then subjected to unsupervised density-based clustering to identify recurring macroscopic scenes and themes throughout the video. By selecting representative keyframes from each discovered cluster and leveraging the VLM's generative capabilities for textual description, our framework automatically produces a structured, multi-modal summary of the video content. This approach provides an effective, interpretable, and model-agnostic pathway for zero-shot, automated structural analysis of video content.
☆ GS2POSE: Marry Gaussian Splatting to 6D Object Pose Estimation
Accurate 6D pose estimation of 3D objects is a fundamental task in computer vision, and current research typically predicts the 6D pose by establishing correspondences between 2D image features and 3D model features. However, these methods often face difficulties with textureless objects and varying illumination conditions. To overcome these limitations, we propose GS2POSE, a novel approach for 6D object pose estimation. GS2POSE formulates a pose regression algorithm inspired by the principles of Bundle Adjustment (BA). By leveraging Lie algebra, we extend the capabilities of 3DGS to develop a pose-differentiable rendering pipeline, which iteratively optimizes the pose by comparing the input image to the rendered image. Additionally, GS2POSE updates color parameters within the 3DGS model, enhancing its adaptability to changes in illumination. Compared to previous models, GS2POSE demonstrates accuracy improvements of 1.4\%, 2.8\% and 2.5\% on the T-LESS, LineMod-Occlusion and LineMod datasets, respectively.
☆ EMRRG: Efficient Fine-Tuning Pre-trained X-ray Mamba Networks for Radiology Report Generation
X-ray image-based medical report generation (MRG) is a pivotal area in artificial intelligence that can significantly reduce diagnostic burdens for clinicians and patient wait times. Existing MRG models predominantly rely on Large Language Models (LLMs) to improve report generation, with limited exploration of pre-trained vision foundation models or advanced fine-tuning techniques. Mainstream frameworks either avoid fine-tuning or utilize simplistic methods like LoRA, often neglecting the potential of enhancing cross-attention mechanisms. Additionally, while Transformer-based models dominate vision-language tasks, non-Transformer architectures, such as the Mamba network, remain underexplored for medical report generation, presenting a promising avenue for future research. In this paper, we propose EMRRG, a novel X-ray report generation framework that fine-tunes pre-trained Mamba networks using parameter-efficient methods. Specifically, X-ray images are divided into patches, tokenized, and processed by an SSM-based vision backbone for feature extraction, with Partial LoRA yielding optimal performance. An LLM with a hybrid decoder generates the medical report, enabling end-to-end training and achieving strong results on benchmark datasets. Extensive experiments on three widely used benchmark datasets fully validated the effectiveness of our proposed strategies for the X-ray MRG. The source code of this paper will be released on https://github.com/Event-AHU/Medical_Image_Analysis.
☆ Region in Context: Text-condition Image editing with Human-like semantic reasoning
Recent research has made significant progress in localizing and editing image regions based on text. However, most approaches treat these regions in isolation, relying solely on local cues without accounting for how each part contributes to the overall visual and semantic composition. This often results in inconsistent edits, unnatural transitions, or loss of coherence across the image. In this work, we propose Region in Context, a novel framework for text-conditioned image editing that performs multilevel semantic alignment between vision and language, inspired by the human ability to reason about edits in relation to the whole scene. Our method encourages each region to understand its role within the global image context, enabling precise and harmonized changes. At its core, the framework introduces a dual-level guidance mechanism: regions are represented with full-image context and aligned with detailed region-level descriptions, while the entire image is simultaneously matched to a comprehensive scene-level description generated by a large vision-language model. These descriptions serve as explicit verbal references of the intended content, guiding both local modifications and global structure. Experiments show that it produces more coherent and instruction-aligned results. Code is available at: https://github.com/thuyvuphuong/Region-in-Context.git
☆ WaMaIR: Image Restoration via Multiscale Wavelet Convolutions and Mamba-based Channel Modeling with Texture Enhancement
Image restoration is a fundamental and challenging task in computer vision, where CNN-based frameworks demonstrate significant computational efficiency. However, previous CNN-based methods often face challenges in adequately restoring fine texture details, which are limited by the small receptive field of CNN structures and the lack of channel feature modeling. In this paper, we propose WaMaIR, which is a novel framework with a large receptive field for image perception and improves the reconstruction of texture details in restored images. Specifically, we introduce the Global Multiscale Wavelet Transform Convolutions (GMWTConvs) for expandding the receptive field to extract image features, preserving and enriching texture features in model inputs. Meanwhile, we propose the Mamba-Based Channel-Aware Module (MCAM), explicitly designed to capture long-range dependencies within feature channels, which enhancing the model sensitivity to color, edges, and texture information. Additionally, we propose Multiscale Texture Enhancement Loss (MTELoss) for image restoration to guide the model in preserving detailed texture structures effectively. Extensive experiments confirm that WaMaIR outperforms state-of-the-art methods, achieving better image restoration and efficient computational performance of the model.
comment: Chinese Conference on Pattern Recognition and Computer Vision (PRCV), Oral
☆ End-to-end Listen, Look, Speak and Act
Human interaction is inherently multimodal and full-duplex: we listen while watching, speak while acting, and fluidly adapt to turn-taking and interruptions. Realizing these capabilities is essential for building models simulating humans. We present ELLSA (End-to-end Listen, Look, Speak and Act), which, to our knowledge, is the first full-duplex, end-to-end model that simultaneously perceives and generates across vision, text, speech, and action within a single architecture, enabling interaction patterns previously out of reach, yielding more natural, human-like behaviors. At its core is a novel SA-MoE architecture (Self-Attention Mixture-of-Experts) that routes each modality to specialized experts and fuses them through a unified attention backbone. This provides a generalizable solution for joint multimodal perception and concurrent generation, leveraging strong pre-trained components while enabling efficient modality integration and mitigating modality interference. On speech-interaction and robot-manipulation benchmarks, ELLSA matches modality-specific baselines, while uniquely supporting advanced multimodal and full-duplex behaviors such as dialogue and action turn-taking, defective instruction rejection, speaking-while-acting, context-grounded visual question answering, and action barge-ins. We contend that ELLSA represents a step toward more natural and general interactive intelligence, contributing to the broader pursuit of artificial general intelligence. All data, code and model checkpoints will be released upon acceptance.
comment: 22 pages, 8 figures
☆ Prominence-Aware Artifact Detection and Dataset for Image Super-Resolution
Generative image super-resolution (SR) is rapidly advancing in visual quality and detail restoration. As the capacity of SR models expands, however, so does their tendency to produce artifacts: incorrect, visually disturbing details that reduce perceived quality. Crucially, their perceptual impact varies: some artifacts are barely noticeable while others strongly degrade the image. We argue that artifacts should be characterized by their prominence to human observers rather than treated as uniform binary defects. Motivated by this, we present a novel dataset of 1302 artifact examples from 11 contemporary image-SR methods, where each artifact is paired with a crowdsourced prominence score. Building on this dataset, we train a lightweight regressor that produces spatial prominence heatmaps and outperforms existing methods at detecting prominent artifacts. We release the dataset and code to facilitate prominence-aware evaluation and mitigation of SR artifacts.
☆ Visual Autoregressive Models Beat Diffusion Models on Inference Time Scaling
While inference-time scaling through search has revolutionized Large Language Models, translating these gains to image generation has proven difficult. Recent attempts to apply search strategies to continuous diffusion models show limited benefits, with simple random sampling often performing best. We demonstrate that the discrete, sequential nature of visual autoregressive models enables effective search for image generation. We show that beam search substantially improves text-to-image generation, enabling a 2B parameter autoregressive model to outperform a 12B parameter diffusion model across benchmarks. Systematic ablations show that this advantage comes from the discrete token space, which allows early pruning and computational reuse, and our verifier analysis highlights trade-offs between speed and reasoning capability. These findings suggest that model architecture, not just scale, is critical for inference-time optimization in visual generation.
☆ A Comprehensive Survey on World Models for Embodied AI
Embodied AI requires agents that perceive, act, and anticipate how actions reshape future world states. World models serve as internal simulators that capture environment dynamics, enabling forward and counterfactual rollouts to support perception, prediction, and decision making. This survey presents a unified framework for world models in embodied AI. Specifically, we formalize the problem setting and learning objectives, and propose a three-axis taxonomy encompassing: (1) Functionality, Decision-Coupled vs. General-Purpose; (2) Temporal Modeling, Sequential Simulation and Inference vs. Global Difference Prediction; (3) Spatial Representation, Global Latent Vector, Token Feature Sequence, Spatial Latent Grid, and Decomposed Rendering Representation. We systematize data resources and metrics across robotics, autonomous driving, and general video settings, covering pixel prediction quality, state-level understanding, and task performance. Furthermore, we offer a quantitative comparison of state-of-the-art models and distill key open challenges, including the scarcity of unified datasets and the need for evaluation metrics that assess physical consistency over pixel fidelity, the trade-off between model performance and the computational efficiency required for real-time control, and the core modeling difficulty of achieving long-horizon temporal consistency while mitigating error accumulation. Finally, we maintain a curated bibliography at https://github.com/Li-Zn-H/AwesomeWorldModels.
comment: https://github.com/Li-Zn-H/AwesomeWorldModels
☆ UKANFormer: Noise-Robust Semantic Segmentation for Coral Reef Mapping via a Kolmogorov-Arnold Network-Transformer Hybrid
Coral reefs are vital yet fragile ecosystems that require accurate large-scale mapping for effective conservation. Although global products such as the Allen Coral Atlas provide unprecedented coverage of global coral reef distri-bution, their predictions are frequently limited in spatial precision and semantic consistency, especially in regions requiring fine-grained boundary delineation. To address these challenges, we propose UKANFormer, a novel se-mantic segmentation model designed to achieve high-precision mapping under noisy supervision derived from Allen Coral Atlas. Building upon the UKAN architecture, UKANFormer incorporates a Global-Local Transformer (GL-Trans) block in the decoder, enabling the extraction of both global semantic structures and local boundary details. In experiments, UKANFormer achieved a coral-class IoU of 67.00% and pixel accuracy of 83.98%, outperforming conventional baselines under the same noisy labels setting. Remarkably, the model produces predictions that are visually and structurally more accurate than the noisy labels used for training. These results challenge the notion that data quality directly limits model performance, showing that architectural design can mitigate label noise and sup-port scalable mapping under imperfect supervision. UKANFormer provides a foundation for ecological monitoring where reliable labels are scarce.
☆ Vision-Centric 4D Occupancy Forecasting and Planning via Implicit Residual World Models
End-to-end autonomous driving systems increasingly rely on vision-centric world models to understand and predict their environment. However, a common ineffectiveness in these models is the full reconstruction of future scenes, which expends significant capacity on redundantly modeling static backgrounds. To address this, we propose IR-WM, an Implicit Residual World Model that focuses on modeling the current state and evolution of the world. IR-WM first establishes a robust bird's-eye-view representation of the current state from the visual observation. It then leverages the BEV features from the previous timestep as a strong temporal prior and predicts only the "residual", i.e., the changes conditioned on the ego-vehicle's actions and scene context. To alleviate error accumulation over time, we further apply an alignment module to calibrate semantic and dynamic misalignments. Moreover, we investigate different forecasting-planning coupling schemes and demonstrate that the implicit future state generated by world models substantially improves planning accuracy. On the nuScenes benchmark, IR-WM achieves top performance in both 4D occupancy forecasting and trajectory planning.
☆ Eliciting Grounded Chain-of-Thought Reasoning in 3D Scenes
Existing research on 3D Large Language Models (LLMs) still struggles to achieve grounded question-answering, primarily due to the under-exploration of the mech- anism of human-like scene-object grounded reasoning. This paper bridges the gap by presenting a novel framework. We first introduce a grounded Chain-of- Thought reasoning method in 3D scenes (SCENECOT), decoupling a complex reasoning task into simpler and manageable problems, and building corresponding visual clues based on multimodal expert modules. To enable such a method, we develop SCENECOT-185K, the first large-scale grounded CoT reasoning dataset, consisting of 185K high-quality instances. Extensive experiments across various complex 3D scene reasoning benchmarks demonstrate that our new framework achieves strong performance with high grounding-QA coherence. To the best of our knowledge, this is the first successful application of CoT reasoning to 3D scene understanding, enabling step-by-step human-like reasoning and showing potential for extension to broader 3D scene understanding scenarios.
comment: Project page: https://scenecot.github.io/
☆ HumanCM: One Step Human Motion Prediction
We present HumanCM, a one-step human motion prediction framework built upon consistency models. Instead of relying on multi-step denoising as in diffusion-based methods, HumanCM performs efficient single-step generation by learning a self-consistent mapping between noisy and clean motion states. The framework adopts a Transformer-based spatiotemporal architecture with temporal embeddings to model long-range dependencies and preserve motion coherence. Experiments on Human3.6M and HumanEva-I demonstrate that HumanCM achieves comparable or superior accuracy to state-of-the-art diffusion models while reducing inference steps by up to two orders of magnitude.
comment: 6 pages, 2 figures, 2 tables
☆ Connecting Domains and Contrasting Samples: A Ladder for Domain Generalization KDD 2025
Distribution shifts between training and testing samples frequently occur in practice and impede model generalization performance. This crucial challenge thereby motivates studies on domain generalization (DG), which aim to predict the label on unseen target domain data by solely using data from source domains. It is intuitive to conceive the class-separated representations learned in contrastive learning (CL) are able to improve DG, while the reality is quite the opposite: users observe directly applying CL deteriorates the performance. We analyze the phenomenon with the insights from CL theory and discover lack of intra-class connectivity in the DG setting causes the deficiency. We thus propose a new paradigm, domain-connecting contrastive learning (DCCL), to enhance the conceptual connectivity across domains and obtain generalizable representations for DG. On the data side, more aggressive data augmentation and cross-domain positive samples are introduced to improve intra-class connectivity. On the model side, to better embed the unseen test domains, we propose model anchoring to exploit the intra-class connectivity in pre-trained representations and complement the anchoring with generative transformation loss. Extensive experiments on five standard DG benchmarks are performed. The results verify that DCCL outperforms state-of-the-art baselines even without domain supervision. The detailed model implementation and the code are provided through https://github.com/weitianxin/DCCL
comment: Accepted by KDD 2025
☆ SDPA++: A General Framework for Self-Supervised Denoising with Patch Aggregation IEEE
Optical Coherence Tomography (OCT) is a widely used non-invasive imaging technique that provides detailed three-dimensional views of the retina, which are essential for the early and accurate diagnosis of ocular diseases. Consequently, OCT image analysis and processing have emerged as key research areas in biomedical imaging. However, acquiring paired datasets of clean and real-world noisy OCT images for supervised denoising models remains a formidable challenge due to intrinsic speckle noise and practical constraints in clinical imaging environments. To address these issues, we propose SDPA++: A General Framework for Self-Supervised Denoising with Patch Aggregation. Our novel approach leverages only noisy OCT images by first generating pseudo-ground-truth images through self-fusion and self-supervised denoising. These refined images then serve as targets to train an ensemble of denoising models using a patch-based strategy that effectively enhances image clarity. Performance improvements are validated via metrics such as Contrast-to-Noise Ratio (CNR), Mean Square Ratio (MSR), Texture Preservation (TP), and Edge Preservation (EP) on the real-world dataset from the IEEE SPS Video and Image Processing Cup. Notably, the VIP Cup dataset contains only real-world noisy OCT images without clean references, highlighting our method's potential for improving image quality and diagnostic outcomes in clinical practice.
comment: 2025 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)
☆ Pursuing Minimal Sufficiency in Spatial Reasoning
Spatial reasoning, the ability to ground language in 3D understanding, remains a persistent challenge for Vision-Language Models (VLMs). We identify two fundamental bottlenecks: inadequate 3D understanding capabilities stemming from 2D-centric pre-training, and reasoning failures induced by redundant 3D information. To address these, we first construct a Minimal Sufficient Set (MSS) of information before answering a given question: a compact selection of 3D perception results from \textit{expert models}. We introduce MSSR (Minimal Sufficient Spatial Reasoner), a dual-agent framework that implements this principle. A Perception Agent programmatically queries 3D scenes using a versatile perception toolbox to extract sufficient information, including a novel SOG (Situated Orientation Grounding) module that robustly extracts language-grounded directions. A Reasoning Agent then iteratively refines this information to pursue minimality, pruning redundant details and requesting missing ones in a closed loop until the MSS is curated. Extensive experiments demonstrate that our method, by explicitly pursuing both sufficiency and minimality, significantly improves accuracy and achieves state-of-the-art performance across two challenging benchmarks. Furthermore, our framework produces interpretable reasoning paths, offering a promising source of high-quality training data for future models. Source code is available at https://github.com/gyj155/mssr.
☆ Filtering of Small Components for Isosurface Generation
Let $f: \mathbb{R}^3 \rightarrow \mathbb{R}$ be a scalar field. An isosurface is a piecewise linear approximation of a level set $f^{-1}(\sigma)$ for some $\sigma \in \mathbb{R}$ built from some regular grid sampling of $f$. Isosurfaces constructed from scanned data such as CT scans or MRIs often contain extremely small components that distract from the visualization and do not form part of any geometric model produced from the data. Simple prefiltering of the data can remove such small components while having no effect on the large components that form the body of the visualization. We present experimental results on such filtering.
comment: 8 pages, 6 figures, 5 tables
♻ ☆ Beyond Uncertainty Quantification: Learning Uncertainty for Trust-Informed Neural Network Decisions - A Case Study in COVID-19 Classification
Reliable uncertainty quantification is critical in high-stakes applications, such as medical diagnosis, where confidently incorrect predictions can erode trust in automated decision-making systems. Traditional uncertainty quantification methods rely on a predefined confidence threshold to classify predictions as confident or uncertain. However, this approach assumes that predictions exceeding the threshold are trustworthy, while those below it are uncertain, without explicitly assessing the correctness of high-confidence predictions. As a result, confidently incorrect predictions may still occur, leading to misleading uncertainty assessments. To address this limitation, this study proposed an uncertainty-aware stacked neural network, which extends conventional uncertainty quantification by learning when predictions should be trusted. The framework consists of a two-tier model: the base model generates predictions with uncertainty estimates, while the meta-model learns to assign a trust flag, distinguishing confidently correct cases from those requiring expert review. The proposed approach is evaluated against the traditional threshold-based method across multiple confidence thresholds and pre-trained architectures using the COVIDx CXR-4 dataset. Results demonstrate that the proposed framework significantly reduces confidently incorrect predictions, offering a more trustworthy and efficient decision-support system for high-stakes domains.
comment: 13 pages, 5 figures, 6 tables
♻ ☆ Generate, but Verify: Reducing Hallucination in Vision-Language Models with Retrospective Resampling NeurIPS 2025
Vision-Language Models (VLMs) excel at visual understanding but often suffer from visual hallucinations, where they generate descriptions of nonexistent objects, actions, or concepts, posing significant risks in safety-critical applications. Existing hallucination mitigation methods typically follow one of two paradigms: generation adjustment, which modifies decoding behavior to align text with visual inputs, and post-hoc verification, where external models assess and correct outputs. While effective, generation adjustment methods often rely on heuristics and lack correction mechanisms, while post-hoc verification is complicated, typically requiring multiple models and tending to reject outputs rather than refine them. In this work, we introduce REVERSE, a unified framework that integrates hallucination-aware training with on-the-fly self-verification. By leveraging a new hallucination-verification dataset containing over 1.3M semi-synthetic samples, along with a novel inference-time retrospective resampling technique, our approach enables VLMs to both detect hallucinations during generation and dynamically revise those hallucinations. Our evaluations show that REVERSE achieves state-of-the-art hallucination reduction, outperforming the best existing methods by up to 12% on CHAIR-MSCOCO and 34% on HaloQuest. Our dataset, model, and code are available at: https://reverse-vlm.github.io.
comment: Accepted to NeurIPS 2025; Project Page: https://reverse-vlm.github.io
♻ ☆ ActAlign: Zero-Shot Fine-Grained Video Classification via Language-Guided Sequence Alignment
We address the task of zero-shot video classification for extremely fine-grained actions (e.g., Windmill Dunk in basketball), where no video examples or temporal annotations are available for unseen classes. While image-language models (e.g., CLIP, SigLIP) show strong open-set recognition, they lack temporal modeling needed for video understanding. We propose ActAlign, a truly zero-shot, training-free method that formulates video classification as a sequence alignment problem, preserving the generalization strength of pretrained image-language models. For each class, a large language model (LLM) generates an ordered sequence of sub-actions, which we align with video frames using Dynamic Time Warping (DTW) in a shared embedding space. Without any video-text supervision or fine-tuning, ActAlign achieves 30.5% accuracy on ActionAtlas--the most diverse benchmark of fine-grained actions across multiple sports--where human performance is only 61.6%. ActAlign outperforms billion-parameter video-language models while using 8x fewer parameters. Our approach is model-agnostic and domain-general, demonstrating that structured language priors combined with classical alignment methods can unlock the open-set recognition potential of image-language models for fine-grained video understanding.
comment: Accepted to TMLR 2025 - Project page: https://amir-aghdam.github.io/act-align/
♻ ☆ Robust Pan-Cancer Mitotic Figure Detection with YOLOv12
Mitotic figures represent a key histoprognostic feature in tumor pathology, providing crucial insights into tumor aggressiveness and proliferation. However, their identification remains challenging, subject to significant inter-observer variability, even among experienced pathologists. To address this issue, the MItosis DOmain Generalization (MIDOG) 2025 challenge marks the third edition of an international competition aiming to develop robust mitosis detection algorithms. In this paper, we present a mitotic figure detection approach based on the state-of-the-art YOLOv12 object detection architecture. Our method achieved an F1-score of 0.801 on the preliminary test set (hotspots only) and ranked second on the final test leaderboard with an F1-score of 0.7216 across complex and heterogeneous whole-slide regions, without relying on external data.
♻ ☆ Hierarchical Material Recognition from Local Appearance ICCV 2025
We introduce a taxonomy of materials for hierarchical recognition from local appearance. Our taxonomy is motivated by vision applications and is arranged according to the physical traits of materials. We contribute a diverse, in-the-wild dataset with images and depth maps of the taxonomy classes. Utilizing the taxonomy and dataset, we present a method for hierarchical material recognition based on graph attention networks. Our model leverages the taxonomic proximity between classes and achieves state-of-the-art performance. We demonstrate the model's potential to generalize to adverse, real-world imaging conditions, and that novel views rendered using the depth maps can enhance this capability. Finally, we show the model's capacity to rapidly learn new materials in a few-shot learning setting.
comment: ICCV 2025 Camera Ready
♻ ☆ Towards Better & Faster Autoregressive Image Generation: From the Perspective of Entropy
In this work, we first revisit the sampling issues in current autoregressive (AR) image generation models and identify that image tokens, unlike text tokens, exhibit lower information density and non-uniform spatial distribution. Accordingly, we present an entropy-informed decoding strategy that facilitates higher autoregressive generation quality with faster synthesis speed. Specifically, the proposed method introduces two main innovations: 1) dynamic temperature control guided by spatial entropy of token distributions, enhancing the balance between content diversity, alignment accuracy, and structural coherence in both mask-based and scale-wise models, without extra computational overhead, and 2) entropy-aware acceptance rules in speculative decoding, achieving near-lossless generation at about 85\% of the inference cost of conventional acceleration methods. Extensive experiments across multiple benchmarks using diverse AR image generation models demonstrate the effectiveness and generalizability of our approach in enhancing both generation quality and sampling speed.
comment: Code is available at https://github.com/krennic999/ARsample
♻ ☆ Enhancing Test Time Adaptation with Few-shot Guidance
Deep neural networks often encounter significant performance drops while facing with domain shifts between training (source) and test (target) data. To address this issue, Test Time Adaptation (TTA) methods have been proposed to adapt pre-trained source model to handle out-of-distribution streaming target data. Although these methods offer some relief, they lack a reliable mechanism for domain shift correction, which can often be erratic in real-world applications. In response, we develop Few-Shot Test Time Adaptation (FS-TTA), a novel and practical setting that utilizes a few-shot support set on top of TTA. Adhering to the principle of few inputs, big gains, FS-TTA reduces blind exploration in unseen target domains. Furthermore, we propose a two-stage framework to tackle FS-TTA, including (i) fine-tuning the pre-trained source model with few-shot support set, along with using feature diversity augmentation module to avoid overfitting, (ii) implementing test time adaptation based on prototype memory bank guidance to produce high quality pseudo-label for model adaptation. Through extensive experiments on three cross-domain classification benchmarks, we demonstrate the superior performance and reliability of our FS-TTA and framework.
comment: 17 pages, 8 figures
♻ ☆ Enhancing Osteoporosis Detection: An Explainable Multi-Modal Learning Framework with Feature Fusion and Variable Clustering
Osteoporosis is a common condition that increases fracture risk, especially in older adults. Early diagnosis is vital for preventing fractures, reducing treatment costs, and preserving mobility. However, healthcare providers face challenges like limited labeled data and difficulties in processing medical images. This study presents a novel multi-modal learning framework that integrates clinical and imaging data to improve diagnostic accuracy and model interpretability. The model utilizes three pre-trained networks-VGG19, InceptionV3, and ResNet50-to extract deep features from X-ray images. These features are transformed using PCA to reduce dimensionality and focus on the most relevant components. A clustering-based selection process identifies the most representative components, which are then combined with preprocessed clinical data and processed through a fully connected network (FCN) for final classification. A feature importance plot highlights key variables, showing that Medical History, BMI, and Height were the main contributors, emphasizing the significance of patient-specific data. While imaging features were valuable, they had lower importance, indicating that clinical data are crucial for accurate predictions. This framework promotes precise and interpretable predictions, enhancing transparency and building trust in AI-driven diagnoses for clinical integration.
♻ ☆ Parameter-Efficient Fine-Tuning for Pre-Trained Vision Models: A Survey and Benchmark IEEE
Pre-trained vision models (PVMs) have demonstrated remarkable adaptability across a wide range of downstream vision tasks, showcasing exceptional performance. However, as these models scale to billions or even trillions of parameters, conventional full fine-tuning has become increasingly impractical due to its high computational and storage demands. To address these challenges, parameter-efficient fine-tuning (PEFT) has emerged as a promising alternative, aiming to achieve performance comparable to full fine-tuning while making minimal adjustments to the model parameters. This paper presents a comprehensive survey of the latest advancements in the visual PEFT field, systematically reviewing current methodologies and categorizing them into four primary categories: addition-based, partial-based, unified-based, and multi-task tuning. In addition, this paper offers an in-depth analysis of widely used visual datasets and real-world applications where PEFT methods have been successfully applied. Furthermore, this paper introduces the V-PEFT Bench, a unified benchmark designed to standardize the evaluation of PEFT methods across a diverse set of vision tasks, ensuring consistency and fairness in comparison. Finally, the paper outlines potential directions for future research to propel advances in the PEFT field. A comprehensive collection of resources is available at https://github.com/synbol/Awesome-Parameter-Efficient-Transfer-Learning.
comment: Submitted to IEEE TPAMI
♻ ☆ GeoReasoner: Geo-localization with Reasoning in Street Views using a Large Vision-Language Model
This work tackles the problem of geo-localization with a new paradigm using a large vision-language model (LVLM) augmented with human inference knowledge. A primary challenge here is the scarcity of data for training the LVLM - existing street-view datasets often contain numerous low-quality images lacking visual clues, and lack any reasoning inference. To address the data-quality issue, we devise a CLIP-based network to quantify the degree of street-view images being locatable, leading to the creation of a new dataset comprising highly locatable street views. To enhance reasoning inference, we integrate external knowledge obtained from real geo-localization games, tapping into valuable human inference capabilities. The data are utilized to train GeoReasoner, which undergoes fine-tuning through dedicated reasoning and location-tuning stages. Qualitative and quantitative evaluations illustrate that GeoReasoner outperforms counterpart LVLMs by more than 25% at country-level and 38% at city-level geo-localization tasks, and surpasses StreetCLIP performance while requiring fewer training resources. The data and code are available at https://github.com/lingli1996/GeoReasoner.
♻ ☆ FireANTs: Adaptive Riemannian Optimization for Multi-Scale Diffeomorphic Matching
The paper proposes FireANTs, a multi-scale Adaptive Riemannian Optimization algorithm for dense diffeomorphic image matching. Existing state-of-the-art methods for diffeomorphic image matching are slow due to inefficient implementations and slow convergence due to the ill-conditioned nature of the optimization problem. Deep learning methods offer fast inference but require extensive training time, substantial inference memory, and fail to generalize across long-tailed distributions or diverse image modalities, necessitating costly retraining. We address these challenges by proposing a training-free, GPU-accelerated multi-scale Adaptive Riemannian Optimization algorithm for fast and accurate dense diffeomorphic image matching. FireANTs runs about 2.5x faster than ANTs on a CPU, and upto 1200x faster on a GPU. On a single GPU, FireANTs performs competitively with deep learning methods on inference runtime while consuming upto 10x less memory. FireANTs shows remarkable robustness to a wide variety of matching problems across modalities, species, and organs without any domain-specific training or tuning. Our framework allows hyperparameter grid search studies with significantly less resources and time compared to traditional and deep learning registration algorithms alike.
♻ ☆ Efficient Long-duration Talking Video Synthesis with Linear Diffusion Transformer under Multimodal Guidance
Long-duration talking video synthesis faces enduring challenges in achieving high video quality, portrait and temporal consistency, and computational efficiency. As video length increases, issues such as visual degradation, identity inconsistency, temporal incoherence, and error accumulation become increasingly problematic, severely affecting the realism and reliability of the results. To address these challenges, we present LetsTalk, a diffusion transformer framework equipped with multimodal guidance and a novel memory bank mechanism, explicitly maintaining contextual continuity and enabling robust, high-quality, and efficient generation of long-duration talking videos. In particular, LetsTalk introduces a noise-regularized memory bank to alleviate error accumulation and sampling artifacts during extended video generation. To further improve efficiency and spatiotemporal consistency, LetsTalk employs a deep compression autoencoder and a spatiotemporal-aware transformer with linear attention for effective multimodal fusion. We systematically analyze three fusion schemes and show that combining deep (Symbiotic Fusion) for portrait features and shallow (Direct Fusion) for audio achieves superior visual realism and precise speech-driven motion, while preserving diversity of movements. Extensive experiments demonstrate that LetsTalk establishes new state-of-the-art in generation quality, producing temporally coherent and realistic talking videos with enhanced diversity and liveliness, and maintains remarkable efficiency with 8x fewer parameters than previous approaches.
comment: 10 pages, 7 figures
♻ ☆ Seeing in the Dark: A Teacher-Student Framework for Dark Video Action Recognition via Knowledge Distillation and Contrastive Learning
Action recognition in dark or low-light (under-exposed) videos is a challenging task due to visibility degradation, which can hinder critical spatiotemporal details. This paper proposes ActLumos, a teacher-student framework that attains single-stream inference while retaining multi-stream level accuracy. The teacher consumes dual stream inputs, which include original dark frames and retinex-enhanced frames, processed by weight-shared R(2+1)D-34 backbones and fused by a Dynamic Feature Fusion (DFF) module, which dynamically re-weights the two streams at each time step, emphasising the most informative temporal segments. The teacher is also included with a supervised contrastive loss (SupCon) that sharpens class margins. The student shares the R(2+1)D-34 backbone but uses only dark frames and no fusion at test time. The student is first pre-trained with self-supervision on dark clips of both datasets without their labels and then fine-tuned with knowledge distillation from the teacher, transferring the teacher's multi-stream knowledge into a single-stream model. Under single-stream inference, the distilled student attains state-of-the-art accuracy of 96.92% (Top-1) on ARID V1.0, 88.27% on ARID V1.5, and 48.96% on Dark48. Ablation studies further highlight the individual contributions of each component, i.e., DFF in the teacher outperforms single or static fusion, knowledge distillation (KD) transfers these gains to the single-stream student, and two-view spatio-temporal SSL surpasses spatial-only or temporal-only variants without increasing inference cost. The official website of this work is available at: https://github.com/HrishavBakulBarua/ActLumos
♻ ☆ Mysteries of the Deep: Role of Intermediate Representations in Out of Distribution Detection
Out-of-distribution (OOD) detection is essential for reliably deploying machine learning models in the wild. Yet, most methods treat large pre-trained models as monolithic encoders and rely solely on their final-layer representations for detection. We challenge this wisdom. We reveal the \textit{intermediate layers} of pre-trained models, shaped by residual connections that subtly transform input projections, \textit{can} encode \textit{surprisingly rich and diverse signals} for detecting distributional shifts. Importantly, to exploit latent representation diversity across layers, we introduce an entropy-based criterion to \textit{automatically} identify layers offering the most complementary information in a training-free setting -- \textit{without access to OOD data}. We show that selectively incorporating these intermediate representations can increase the accuracy of OOD detection by up to \textbf{$10\%$} in far-OOD and over \textbf{$7\%$} in near-OOD benchmarks compared to state-of-the-art training-free methods across various model architectures and training objectives. Our findings reveal a new avenue for OOD detection research and uncover the impact of various training objectives and model architectures on confidence-based OOD detection methods.
♻ ☆ Is Artificial Intelligence Generated Image Detection a Solved Problem? NeurIPS 2025
The rapid advancement of generative models, such as GANs and Diffusion models, has enabled the creation of highly realistic synthetic images, raising serious concerns about misinformation, deepfakes, and copyright infringement. Although numerous Artificial Intelligence Generated Image (AIGI) detectors have been proposed, often reporting high accuracy, their effectiveness in real-world scenarios remains questionable. To bridge this gap, we introduce AIGIBench, a comprehensive benchmark designed to rigorously evaluate the robustness and generalization capabilities of state-of-the-art AIGI detectors. AIGIBench simulates real-world challenges through four core tasks: multi-source generalization, robustness to image degradation, sensitivity to data augmentation, and impact of test-time pre-processing. It includes 23 diverse fake image subsets that span both advanced and widely adopted image generation techniques, along with real-world samples collected from social media and AI art platforms. Extensive experiments on 11 advanced detectors demonstrate that, despite their high reported accuracy in controlled settings, these detectors suffer significant performance drops on real-world data, limited benefits from common augmentations, and nuanced effects of pre-processing, highlighting the need for more robust detection strategies. By providing a unified and realistic evaluation framework, AIGIBench offers valuable insights to guide future research toward dependable and generalizable AIGI detection.Data and code are publicly available at: https://github.com/HorizonTEL/AIGIBench.
comment: Accepted by NeurIPS 2025 Datasets and Benchmarks Track
♻ ☆ Consistent Story Generation: Unlocking the Potential of Zigzag Sampling
Text-to-image generation models have made significant progress in producing high-quality images from textual descriptions, yet they continue to struggle with maintaining subject consistency across multiple images, a fundamental requirement for visual storytelling. Existing methods attempt to address this by either fine-tuning models on large-scale story visualization datasets, which is resource-intensive, or by using training-free techniques that share information across generations, which still yield limited success. In this paper, we introduce a novel training-free sampling strategy called Zigzag Sampling with Asymmetric Prompts and Visual Sharing to enhance subject consistency in visual story generation. Our approach proposes a zigzag sampling mechanism that alternates between asymmetric prompting to retain subject characteristics, while a visual sharing module transfers visual cues across generated images to %further enforce consistency. Experimental results, based on both quantitative metrics and qualitative evaluations, demonstrate that our method significantly outperforms previous approaches in generating coherent and consistent visual stories. The code is available at https://github.com/Mingxiao-Li/Asymmetry-Zigzag-StoryDiffusion.
comment: 20 pages, 10 figures
♻ ☆ Text-controlled Motion Mamba: Text-Instructed Temporal Grounding of Human Motion IEEE
Human motion understanding is a fundamental task with diverse practical applications, facilitated by the availability of large-scale motion capture datasets. Recent studies focus on text-motion tasks, such as text-based motion generation, editing and question answering. In this study, we introduce the novel task of text-based human motion grounding (THMG), aimed at precisely localizing temporal segments corresponding to given textual descriptions within untrimmed motion sequences. Capturing global temporal information is crucial for the THMG task. However, Transformer-based models that rely on global temporal self-attention face challenges when handling long untrimmed sequences due to the quadratic computational cost. We address these challenges by proposing Text-controlled Motion Mamba (TM-Mamba), a unified model that integrates temporal global context, language query control, and spatial graph topology with only linear memory cost. The core of the model is a text-controlled selection mechanism which dynamically incorporates global temporal information based on text query. The model is further enhanced to be topology-aware through the integration of relational embeddings. For evaluation, we introduce BABEL-Grounding, the first text-motion dataset that provides detailed textual descriptions of human actions along with their corresponding temporal segments. Extensive evaluations demonstrate the effectiveness of TM-Mamba on BABEL-Grounding.
comment: Accepted by IEEE Transactions on Image Processing (TIP)
♻ ☆ GeoCAD: Local Geometry-Controllable CAD Generation with Large Language Models NeurIPS 2025
Local geometry-controllable computer-aided design (CAD) generation aims to modify local parts of CAD models automatically, enhancing design efficiency. It also ensures that the shapes of newly generated local parts follow user-specific geometric instructions (e.g., an isosceles right triangle or a rectangle with one corner cut off). However, existing methods encounter challenges in achieving this goal. Specifically, they either lack the ability to follow textual instructions or are unable to focus on the local parts. To address this limitation, we introduce GeoCAD, a user-friendly and local geometry-controllable CAD generation method. Specifically, we first propose a complementary captioning strategy to generate geometric instructions for local parts. This strategy involves vertex-based and VLLM-based captioning for systematically annotating simple and complex parts, respectively. In this way, we caption $\sim$221k different local parts in total. In the training stage, given a CAD model, we randomly mask a local part. Then, using its geometric instruction and the remaining parts as input, we prompt large language models (LLMs) to predict the masked part. During inference, users can specify any local part for modification while adhering to a variety of predefined geometric instructions. Extensive experiments demonstrate the effectiveness of GeoCAD in generation quality, validity and text-to-CAD consistency. Code will be available at https://github.com/Zhanwei-Z/GeoCAD.
comment: Accepted by NeurIPS 2025
♻ ☆ AutoLungDx: A Hybrid Deep Learning Approach for Early Lung Cancer Diagnosis Using 3D Res-U-Net, YOLOv5, and Vision Transformers
Lung cancer is a leading cause of cancer-related deaths worldwide, and early detection is crucial for improving patient outcomes. Nevertheless, early diagnosis of cancer is a major challenge, particularly in low-resource settings where access to medical resources and trained radiologists is limited. The objective of this study is to propose an automated end-to-end deep learning-based framework for the early detection and classification of lung nodules, specifically for low-resource settings. The proposed framework consists of three stages: lung segmentation using a modified 3D U-Net named 3D Res-U-Net, nodule detection using YOLO-v5, and classification with a Vision Transformer-based architecture. We evaluated the proposed framework on a publicly available dataset, LUNA16. The proposed framework's performance was measured using the respective domain's evaluation matrices. The proposed framework achieved a 98.82% lung segmentation dice score while detecting the lung nodule with 0.76 mAP@50 from the segmented lung, at a low false-positive rate. The performance of both networks of the proposed framework was compared with other studies and found to outperform them regarding segmentation and detection accuracy. Additionally, our proposed Vision transformer network obtained an accuracy of 93.57%, which is 1.21% higher than the state-of-the-art networks. Our proposed end-to-end deep learning-based framework can effectively segment lungs, and detect and classify lung nodules, specifically in low-resource settings with limited access to radiologists. The proposed framework outperforms existing studies regarding all the respective evaluation metrics. The proposed framework can potentially improve the accuracy and efficiency of lung cancer screening in low-resource settings, ultimately leading to better patient outcomes.
♻ ☆ Exploring the Limits of Vision-Language-Action Manipulations in Cross-task Generalization
The generalization capabilities of vision-language-action (VLA) models to unseen tasks are crucial to achieving general-purpose robotic manipulation in open-world settings. However, the cross-task generalization capabilities of existing VLA models remain significantly underexplored. To address this gap, we introduce AGNOSTOS, a novel simulation benchmark designed to rigorously evaluate cross-task zero-shot generalization in manipulation. AGNOSTOS comprises 23 unseen manipulation tasks for testing, distinct from common training task distributions, and incorporates two levels of generalization difficulty to assess robustness. Our systematic evaluation reveals that current VLA models, despite being trained on diverse datasets, struggle to generalize effectively to these unseen tasks. To overcome this limitation, we propose Cross-Task In-Context Manipulation (X-ICM), a method that conditions large language models (LLMs) on in-context demonstrations from seen tasks to predict action sequences for unseen tasks. Additionally, we introduce a dynamics-guided sample selection strategy that identifies relevant demonstrations by capturing cross-task dynamics. On AGNOSTOS, X-ICM significantly improves cross-task zero-shot generalization performance over leading VLAs. We believe AGNOSTOS and X-ICM will serve as valuable tools for advancing general-purpose robotic manipulation.
comment: Project Page: https://jiaming-zhou.github.io/AGNOSTOS
♻ ☆ FetalCLIP: A Visual-Language Foundation Model for Fetal Ultrasound Image Analysis
Foundation models are becoming increasingly effective in the medical domain, offering pre-trained models on large datasets that can be readily adapted for downstream tasks. Despite progress, fetal ultrasound images remain a challenging domain for foundation models due to their inherent complexity, often requiring substantial additional training and facing limitations due to the scarcity of paired multimodal data. To overcome these challenges, here we introduce FetalCLIP, a vision-language foundation model capable of generating universal representation of fetal ultrasound images. FetalCLIP was pre-trained using a multimodal learning approach on a diverse dataset of 210,035 fetal ultrasound images paired with text. This represents the largest paired dataset of its kind used for foundation model development to date. This unique training approach allows FetalCLIP to effectively learn the intricate anatomical features present in fetal ultrasound images, resulting in robust representations that can be used for a variety of downstream applications. In extensive benchmarking across a range of key fetal ultrasound applications, including classification, gestational age estimation, congenital heart defect (CHD) detection, and fetal structure segmentation, FetalCLIP outperformed all baselines while demonstrating remarkable generalizability and strong performance even with limited labeled data. We plan to release the FetalCLIP model publicly for the benefit of the broader scientific community.
♻ ☆ Eye-for-an-eye: Appearance Transfer with Semantic Correspondence in Diffusion Models
As pre-trained text-to-image diffusion models have become a useful tool for image synthesis, people want to specify the results in various ways. This paper tackles training-free appearance transfer, which produces an image with the structure of a target image from the appearance of a reference image. Existing methods usually do not reflect semantic correspondence, as they rely on query-key similarity within the self-attention layer to establish correspondences between images. To this end, we propose explicitly rearranging the features according to the dense semantic correspondences. Extensive experiments show the superiority of our method in various aspects: preserving the structure of the target and reflecting the correct color from the reference, even when the two images are not aligned.
comment: project page : https://sooyeon-go.github.io/eye_for_an_eye/
♻ ☆ Limitations of Data-Driven Spectral Reconstruction -- An Optics-Aware Analysis
Hyperspectral imaging empowers machine vision systems with the distinct capability of identifying materials through recording their spectral signatures. Recent efforts in data-driven spectral reconstruction aim at extracting spectral information from RGB images captured by cost-effective RGB cameras, instead of dedicated hardware. Published work reports exceedingly high numerical scores for this reconstruction task, yet real-world performance lags substantially behind. We systematically analyze the performance of such methods. First, we evaluate the overfitting limitations with respect to current datasets by training the networks with less data, validating the trained models with unseen yet slightly modified data and cross-dataset validation. Second, we reveal fundamental limitations in the ability of RGB to spectral methods to deal with metameric or near-metameric conditions, which have so far gone largely unnoticed due to the insufficiencies of existing datasets. We validate the trained models with metamer data generated by metameric black theory and re-training the networks with various forms of metamers. This methodology can also be used for data augmentation as a partial mitigation of the dataset issues, although the RGB to spectral inverse problem remains fundamentally ill-posed. Finally, we analyze the potential for modifying the problem setting to achieve better performance by exploiting optical encoding provided by either optical aberrations or deliberate optical design. Our experiments show such approaches provide improved results under certain circumstances, but their overall performance is limited by the same dataset issues. We conclude that future progress on snapshot spectral imaging will heavily depend on the generation of improved datasets which can then be used to design effective optical encoding strategies. Code: https://github.com/vccimaging/OpticsAwareHSI-Analysis.
comment: 16 pages, 9 figures, 9 tables
♻ ☆ MaterialRefGS: Reflective Gaussian Splatting with Multi-view Consistent Material Inference NeurIPS 2025
Modeling reflections from 2D images is essential for photorealistic rendering and novel view synthesis. Recent approaches enhance Gaussian primitives with reflection-related material attributes to enable physically based rendering (PBR) with Gaussian Splatting. However, the material inference often lacks sufficient constraints, especially under limited environment modeling, resulting in illumination aliasing and reduced generalization. In this work, we revisit the problem from a multi-view perspective and show that multi-view consistent material inference with more physically-based environment modeling is key to learning accurate reflections with Gaussian Splatting. To this end, we enforce 2D Gaussians to produce multi-view consistent material maps during deferred shading. We also track photometric variations across views to identify highly reflective regions, which serve as strong priors for reflection strength terms. To handle indirect illumination caused by inter-object occlusions, we further introduce an environment modeling strategy through ray tracing with 2DGS, enabling photorealistic rendering of indirect radiance. Experiments on widely used benchmarks show that our method faithfully recovers both illumination and geometry, achieving state-of-the-art rendering quality in novel views synthesis.
comment: Accepted by NeurIPS 2025. Project Page: https://wen-yuan-zhang.github.io/MaterialRefGS
♻ ☆ ASCD: Attention-Steerable Contrastive Decoding for Reducing Hallucination in MLLM
Multimodal large language models (MLLMs) frequently hallucinate by over-committing to spurious visual cues. Prior remedies-Visual and Instruction Contrastive Decoding (VCD, ICD)-mitigate this issue, yet the mechanism remains opaque. We first empirically show that their improvements systematically coincide with redistributions of cross-modal attention. Building on this insight, we propose Attention-Steerable Contrastive Decoding (ASCD), which directly steers the attention scores during decoding. ASCD combines (i) positive steering, which amplifies automatically mined text-centric heads-stable within a model and robust across domains-with (ii) negative steering, which dampens on-the-fly identified critical visual tokens. The method incurs negligible runtime and memory overhead and requires no additional training. Across five MLLM backbones and three decoding schemes, ASCD reduces hallucination on POPE, CHAIR, and MMHal-Bench by up to 38.2 percent while improving accuracy on standard VQA benchmarks, including MMMU, MM-VET, ScienceQA, TextVQA, and GQA. These results position attention steering as a simple, model-agnostic, and principled route to safer, more faithful multimodal generation.
comment: 14 pages, 8 figures
♻ ☆ Multimodal Fusion at Three Tiers: Physics-Driven Data Generation and Vision-Language Guidance for Brain Tumor Segmentation
Accurate brain tumor segmentation is crucial for neuro-oncology diagnosis and treatment planning. Deep learning methods have made significant progress, but automatic segmentation still faces challenges, including tumor morphological heterogeneity and complex three-dimensional spatial relationships. This paper proposes a three-tier fusion architecture that achieves precise brain tumor segmentation. The method processes information progressively at the pixel, feature, and semantic levels. At the pixel level, physical modeling extends magnetic resonance imaging (MRI) to multimodal data, including simulated ultrasound and synthetic computed tomography (CT). At the feature level, the method performs Transformer-based cross-modal feature fusion through multi-teacher collaborative distillation, integrating three expert teachers (MRI, US, CT). At the semantic level, clinical textual knowledge generated by GPT-4V is transformed into spatial guidance signals using CLIP contrastive learning and Feature-wise Linear Modulation (FiLM). These three tiers together form a complete processing chain from data augmentation to feature extraction to semantic guidance. We validated the method on the Brain Tumor Segmentation (BraTS) 2020, 2021, and 2023 datasets. The model achieves average Dice coefficients of 0.8665, 0.9014, and 0.8912 on the three datasets, respectively, and reduces the 95% Hausdorff Distance (HD95) by an average of 6.57 millimeters compared with the baseline. This method provides a new paradigm for precise tumor segmentation and boundary localization.
comment: 31 pages,3 figures
♻ ☆ STANCE: Motion Coherent Video Generation Via Sparse-to-Dense Anchored Encoding
Video generation has recently made striking visual progress, but maintaining coherent object motion and interactions remains difficult. We trace two practical bottlenecks: (i) human-provided motion hints (e.g., small 2D maps) often collapse to too few effective tokens after encoding, weakening guidance; and (ii) optimizing for appearance and motion in a single head can favor texture over temporal consistency. We present STANCE, an image-to-video framework that addresses both issues with two simple components. First, we introduce Instance Cues -- a pixel-aligned control signal that turns sparse, user-editable hints into a dense 2.5D (camera-relative) motion field by averaging per-instance flow and augmenting with monocular depth over the instance mask. This reduces depth ambiguity compared to 2D arrow inputs while remaining easy to use. Second, we preserve the salience of these cues in token space with Dense RoPE, which tags a small set of motion tokens (anchored on the first frame) with spatial-addressable rotary embeddings. Paired with joint RGB \(+\) auxiliary-map prediction (segmentation or depth), our model anchors structure while RGB handles appearance, stabilizing optimization and improving temporal coherence without requiring per-frame trajectory scripts.
comment: Code, model, and demos can be found at https://envision-research.github.io/STANCE/
♻ ☆ Agentic Design of Compositional Machines
The design of complex machines stands as both a marker of human intelligence and a foundation of engineering practice. Given recent advances in large language models (LLMs), we ask whether they, too, can learn to create. We approach this question through the lens of compositional machine design: a task in which machines are assembled from standardized components to meet functional demands like locomotion or manipulation in a simulated physical environment. With this simplification, machine design is expressed as writing XML-like code that explicitly specifies pairwise part connections. To support this investigation, we introduce BesiegeField, a testbed built on the machine-building game Besiege, which enables part-based construction, physical simulation and reward-driven evaluation. Using BesiegeField, we benchmark state-of-the-art LLMs with agentic workflows and identify key capabilities required for success, including spatial reasoning, strategic assembly, and instruction-following. As current open-source models fall short, we explore reinforcement learning (RL) as a path to improvement: we curate a cold-start dataset, conduct RL finetuning experiments, and highlight open challenges at the intersection of language, machine design, and physical reasoning.
comment: 75 pages, 31 figures, Project Page: https://besiegefield.github.io
♻ ☆ Jasmine: Harnessing Diffusion Prior for Self-supervised Depth Estimation NeurIPS 2025
In this paper, we propose Jasmine, the first Stable Diffusion (SD)-based self-supervised framework for monocular depth estimation, which effectively harnesses SD's visual priors to enhance the sharpness and generalization of unsupervised prediction. Previous SD-based methods are all supervised since adapting diffusion models for dense prediction requires high-precision supervision. In contrast, self-supervised reprojection suffers from inherent challenges (e.g., occlusions, texture-less regions, illumination variance), and the predictions exhibit blurs and artifacts that severely compromise SD's latent priors. To resolve this, we construct a novel surrogate task of hybrid image reconstruction. Without any additional supervision, it preserves the detail priors of SD models by reconstructing the images themselves while preventing depth estimation from degradation. Furthermore, to address the inherent misalignment between SD's scale and shift invariant estimation and self-supervised scale-invariant depth estimation, we build the Scale-Shift GRU. It not only bridges this distribution gap but also isolates the fine-grained texture of SD output against the interference of reprojection loss. Extensive experiments demonstrate that Jasmine achieves SoTA performance on the KITTI benchmark and exhibits superior zero-shot generalization across multiple datasets.
comment: Accepted to NeurIPS 2025. 23 pages, with the appendix
♻ ☆ Cutting-edge 3D reconstruction solutions for underwater coral reef images: A review and comparison
Corals serve as the foundational habitat-building organisms within reef ecosystems, constructing extensive structures that extend over vast distances. However, their inherent fragility and vulnerability to various threats render them susceptible to significant damage and destruction. The application of advanced 3D reconstruction technologies for high-quality modeling is crucial for preserving them. These technologies help scientists to accurately document and monitor the state of coral reefs, including their structure, species distribution and changes over time. Photogrammetry-based approaches stand out among existing solutions, especially with recent advancements in underwater videography, photogrammetric computer vision, and machine learning. Despite continuous progress in image-based 3D reconstruction techniques, there remains a lack of systematic reviews and comprehensive evaluations of cutting-edge solutions specifically applied to underwater coral reef images. The emerging advanced methods may have difficulty coping with underwater imaging environments, complex coral structures, and computational resource constraints. They need to be reviewed and evaluated to bridge the gap between many cutting-edge technical studies and practical applications. This paper focuses on the two critical stages of these approaches: camera pose estimation and dense surface reconstruction. We systematically review and summarize classical and emerging methods, conducting comprehensive evaluations through real-world and simulated datasets. Based on our findings, we offer reference recommendations and discuss the development potential and challenges of existing approaches in depth. This work equips scientists and managers with a technical foundation and practical guidance for processing underwater coral reef images for 3D reconstruction....
♻ ☆ Dolphin v1.0 Technical Report
Ultrasound is crucial in modern medicine but faces challenges like operator dependence, image noise, and real-time scanning, hindering AI integration. While large multimodal models excel in other medical imaging areas, they struggle with ultrasound's complexities. To address this, we introduce Dolphin v1.0 (V1) and its reasoning-augmented version, Dolphin R1-the first large-scale multimodal ultrasound foundation models unifying diverse clinical tasks in a single vision-language framework.To tackle ultrasound variability and noise, we curated a 2-million-scale multimodal dataset, combining textbook knowledge, public data, synthetic samples, and general corpora. This ensures robust perception, generalization, and clinical adaptability.The Dolphin series employs a three-stage training strategy: domain-specialized pretraining, instruction-driven alignment, and reinforcement-based refinement. Dolphin v1.0 delivers reliable performance in classification, detection, regression, and report generation. Dolphin R1 enhances diagnostic inference, reasoning transparency, and interpretability through reinforcement learning with ultrasound-specific rewards.Evaluated on U2-Bench across eight ultrasound tasks, Dolphin R1 achieves a U2-score of 0.5835-over twice the second-best model (0.2968) setting a new state of the art. Dolphin v1.0 also performs competitively, validating the unified framework. Comparisons show reasoning-enhanced training significantly improves diagnostic accuracy, consistency, and interpretability, highlighting its importance for high-stakes medical AI.
♻ ☆ Free$^2$Guide: Training-Free Text-to-Video Alignment using Image LVLM ICCV 2025
Diffusion models have achieved impressive results in generative tasks for text-to-video (T2V) synthesis. However, achieving accurate text alignment in T2V generation remains challenging due to the complex temporal dependencies across frames. Existing reinforcement learning (RL)-based approaches to enhance text alignment often require differentiable reward functions trained for videos, hindering their scalability and applicability. In this paper, we propose \textbf{Free$^2$Guide}, a novel gradient-free and training-free framework for aligning generated videos with text prompts. Specifically, leveraging principles from path integral control, Free$^2$Guide approximates guidance for diffusion models using non-differentiable reward functions, thereby enabling the integration of powerful black-box Large Vision-Language Models (LVLMs) as reward models. To enable image-trained LVLMs to assess text-to-video alignment, we leverage \textit{stitching} between video frames and use system prompts to capture sequential attributions. Our framework supports the flexible ensembling of multiple reward models to synergistically enhance alignment without significant computational overhead. Experimental results confirm that Free$^2$Guide using image-trained LVLMs significantly improves text-to-video alignment, thereby enhancing the overall video quality. Our results and code are available at https://kjm981995.github.io/free2guide/
comment: ICCV 2025 accepted
♻ ☆ GMatch: A Lightweight, Geometry-Constrained Keypoint Matcher for Zero-Shot 6DoF Pose Estimation in Robotic Grasp Tasks
6DoF object pose estimation is fundamental to robotic grasp tasks. While recent learning-based methods achieve high accuracy, their computational demands hinder deployment on resource-constrained mobile platforms. In this work, we revisit the classical keypoint matching paradigm and propose GMatch, a lightweight, geometry-constrained keypoint matcher that can run efficiently on embedded CPU-only platforms. GMatch works with keypoint descriptors and it uses a set of geometric constraints to establishes inherent ambiguities between features extracted by descriptors, thus giving a globally consistent correspondences from which 6DoF pose can be easily solved. We benchmark GMatch on the HOPE and YCB-Video datasets, where our method beats existing keypoint matchers (both feature-based and geometry-based) among three commonly used descriptors and approaches the SOTA zero-shot method on texture-rich objects with much more humble devices. The method is further deployed on a LoCoBot mobile manipulator, enabling a one-shot grasp pipeline that demonstrates high task success rates in real-world experiments. In a word, by its lightweight and white-box nature, GMatch offers a practical solution for resource-limited robotic systems, and although currently bottlenecked by descriptor quality, the framework presents a promising direction towards robust yet efficient pose estimation. Code will be released soon under Mozilla Public License.
comment: 6 pages + 1 page references + 1 page appendix; 6 figures; 3 tables
Artificial Intelligence 110
☆ ToolCritic: Detecting and Correcting Tool-Use Errors in Dialogue Systems
Tool-augmented large language models (LLMs) are increasingly employed in real-world applications, but tool usage errors still hinder their reliability. We introduce ToolCritic, a diagnostic framework that evaluates and improves LLM behavior in multi-turn, tool-augmented dialogues. ToolCritic detects eight distinct error types specific to tool-calling (e.g., premature invocation, argument misalignment, and misinterpretation of tool outputs) and provides targeted feedback to the main LLM. The main LLM, assumed to have strong reasoning, task understanding and orchestration capabilities, then revises its response based on ToolCritic's feedback. We systematically define these error categories and construct a synthetic dataset to train ToolCritic. Experimental results on the Schema-Guided Dialogue (SGD) dataset demonstrate that ToolCritic improves tool-calling accuracy by up to 13% over baselines, including zero-shot prompting and self-correction techniques. This represents a promising step toward more robust LLM integration with external tools in real-world dialogue applications.
☆ Video Reasoning without Training
Video reasoning using Large Multimodal Models (LMMs) relies on costly reinforcement learning (RL) and verbose chain-of-thought, resulting in substantial computational overhead during both training and inference. Moreover, the mechanisms that control the thinking process in these reasoning models are very limited. In this paper, using entropy of the model's output as a signal, we discover that the high-quality models go through a series of micro-explorations and micro-exploitations which keep the reasoning process grounded (i.e., avoid excessive randomness while the model is exploring or thinking through an answer). We further observe that once this "thinking" process is over, more accurate models demonstrate a better convergence by reducing the entropy significantly via a final exploitation phase (i.e., a more certain convergence towards a solution trajectory). We then use these novel, theoretically-grounded insights to tune the model's behavior directly at inference, without using any RL or supervised fine-tuning. Specifically, during inference, our proposed approach called V-Reason (Video-Reason) adapts the value cache of the LMM via a few optimization steps on a small, trainable controller using an entropy-based objective, i.e., no supervision from any dataset or RL is necessary. This tuning improves the model's micro-exploration and exploitation behavior during inference. Our experiments show that our proposed method achieves significant improvements over the base instruction-tuned models across several video reasoning datasets, narrowing the gap with RL-trained models to within 0.6% average accuracy without any training, while offering massive efficiency benefits: output tokens are reduced by 58.6% compared to the RL model.
☆ DINO-CVA: A Multimodal Goal-Conditioned Vision-to-Action Model for Autonomous Catheter Navigation
Cardiac catheterization remains a cornerstone of minimally invasive interventions, yet it continues to rely heavily on manual operation. Despite advances in robotic platforms, existing systems are predominantly follow-leader in nature, requiring continuous physician input and lacking intelligent autonomy. This dependency contributes to operator fatigue, more radiation exposure, and variability in procedural outcomes. This work moves towards autonomous catheter navigation by introducing DINO-CVA, a multimodal goal-conditioned behavior cloning framework. The proposed model fuses visual observations and joystick kinematics into a joint embedding space, enabling policies that are both vision-aware and kinematic-aware. Actions are predicted autoregressively from expert demonstrations, with goal conditioning guiding navigation toward specified destinations. A robotic experimental setup with a synthetic vascular phantom was designed to collect multimodal datasets and evaluate performance. Results show that DINO-CVA achieves high accuracy in predicting actions, matching the performance of a kinematics-only baseline while additionally grounding predictions in the anatomical environment. These findings establish the feasibility of multimodal, goal-conditioned architectures for catheter navigation, representing an important step toward reducing operator dependency and improving the reliability of catheterbased therapies.
☆ Curiosity-driven RL for symbolic equation solving NeurIPS 2025
We explore if RL can be useful for symbolic mathematics. Previous work showed contrastive learning can solve linear equations in one variable. We show model-free PPO \cite{schulman2017proximal} augmented with curiosity-based exploration and graph-based actions can solve nonlinear equations such as those involving radicals, exponentials, and trig functions. Our work suggests curiosity-based exploration may be useful for general symbolic reasoning tasks.
comment: Accepted at the NeurIPS 2025 MATH-AI Workshop
☆ Justitia: Fair and Efficient Scheduling for LLM Applications
In the era of Large Language Models (LLMs), it has been popular to launch a series of LLM inferences -- we call an LLM application -- to better solve real-world problems. When serving those applications in shared GPU servers, the schedulers are expected to attain fast application completions with guaranteed worst-case performance. However, mainstream LLM schedulers fail to behave well for LLM applications -- due to head-of-line blocking or over-constrained resource allocation. In this paper, we propose to serve LLM applications in a fair and also efficient manner. To this end, we design Justitia, a novel scheduler with three key techniques. First, given that memory is prevalently a bottleneck for mainstream inference frameworks like vLLM, Justitia models the service cost of LLM applications in a memory-centric manner. Meanwhile, it uses a simple neural network model to conduct light-weight and also accurate demand prediction. Moreover, Justitia adopts a virtual-time based fair queuing algorithm to reduce the overall performance with guaranteed worst-case delay. We have implemented Justitia atop vLLM, and experimental results involving diverse LLM applications show that it can substantially enhance the scheduling efficiency with fairness preserved.
☆ ReclAIm: A multi-agent framework for degradation-aware performance tuning of medical imaging AI
Ensuring the long-term reliability of AI models in clinical practice requires continuous performance monitoring and corrective actions when degradation occurs. Addressing this need, this manuscript presents ReclAIm, a multi-agent framework capable of autonomously monitoring, evaluating, and fine-tuning medical image classification models. The system, built on a large language model core, operates entirely through natural language interaction, eliminating the need for programming expertise. ReclAIm successfully trains, evaluates, and maintains consistent performance of models across MRI, CT, and X-ray datasets. Once ReclAIm detects significant performance degradation, it autonomously executes state-of-the-art fine-tuning procedures that substantially reduce the performance gap. In cases with performance drops of up to -41.1% (MRI InceptionV3), ReclAIm managed to readjust performance metrics within 1.5% of the initial model results. ReclAIm enables automated, continuous maintenance of medical imaging AI models in a user-friendly and adaptable manner that facilitates broader adoption in both research and clinical environments.
comment: 25 pages, 4 figures
☆ STARK: Strategic Team of Agents for Refining Kernels
The efficiency of GPU kernels is central to the progress of modern AI, yet optimizing them remains a difficult and labor-intensive task due to complex interactions between memory hierarchies, thread scheduling, and hardware-specific characteristics. While recent advances in large language models (LLMs) provide new opportunities for automated code generation, existing approaches largely treat LLMs as single-shot generators or naive refinement tools, limiting their effectiveness in navigating the irregular kernel optimization landscape. We introduce an LLM agentic framework for GPU kernel optimization that systematically explores the design space through multi-agent collaboration, grounded instruction, dynamic context management, and strategic search. This framework mimics the workflow of expert engineers, enabling LLMs to reason about hardware trade-offs, incorporate profiling feedback, and refine kernels iteratively. We evaluate our approach on KernelBench, a benchmark for LLM-based kernel optimization, and demonstrate substantial improvements over baseline agents: our system produces correct solutions where baselines often fail, and achieves kernels with up to 16x faster runtime performance. These results highlight the potential of agentic LLM frameworks to advance fully automated, scalable GPU kernel optimization.
☆ CARE: Contrastive Alignment for ADL Recognition from Event-Triggered Sensor Streams
The recognition of Activities of Daily Living (ADLs) from event-triggered ambient sensors is an essential task in Ambient Assisted Living, yet existing methods remain constrained by representation-level limitations. Sequence-based approaches preserve temporal order of sensor activations but are sensitive to noise and lack spatial awareness, while image-based approaches capture global patterns and implicit spatial correlations but compress fine-grained temporal dynamics and distort sensor layouts. Naive fusion (e.g., feature concatenation) fail to enforce alignment between sequence- and image-based representation views, underutilizing their complementary strengths. We propose Contrastive Alignment for ADL Recognition from Event-Triggered Sensor Streams (CARE), an end-to-end framework that jointly optimizes representation learning via Sequence-Image Contrastive Alignment (SICA) and classification via cross-entropy, ensuring both cross-representation alignment and task-specific discriminability. CARE integrates (i) time-aware, noise-resilient sequence encoding with (ii) spatially-informed and frequency-sensitive image representations, and employs (iii) a joint contrastive-classification objective for end-to-end learning of aligned and discriminative embeddings. Evaluated on three CASAS datasets, CARE achieves state-of-the-art performance (89.8% on Milan, 88.9% on Cairo, and 73.3% on Kyoto7) and demonstrates robustness to sensor malfunctions and layout variability, highlighting its potential for reliable ADL recognition in smart homes.
Parameter-Efficient Fine-Tuning for Low-Resource Languages: A Comparative Study of LLMs for Bengali Hate Speech Detection IEEE
Bengali social media platforms have witnessed a sharp increase in hate speech, disproportionately affecting women and adolescents. While datasets such as BD-SHS provide a basis for structured evaluation, most prior approaches rely on either computationally costly full-model fine-tuning or proprietary APIs. This paper presents the first application of Parameter-Efficient Fine-Tuning (PEFT) for Bengali hate speech detection using LoRA and QLoRA. Three instruction-tuned large language models - Gemma-3-4B, Llama-3.2-3B, and Mistral-7B - were fine-tuned on the BD-SHS dataset of 50,281 annotated comments. Each model was adapted by training fewer than 1% of its parameters, enabling experiments on a single consumer-grade GPU. The results show that Llama-3.2-3B achieved the highest F1-score of 92.23%, followed by Mistral-7B at 88.94% and Gemma-3-4B at 80.25%. These findings establish PEFT as a practical and replicable strategy for Bengali and related low-resource languages.
comment: Accepted to IEEE COMPAS 2025. 6 pages, 3 figures, 6 tables
☆ One-step Diffusion Models with Bregman Density Ratio Matching
Diffusion and flow models achieve high generative quality but remain computationally expensive due to slow multi-step sampling. Distillation methods accelerate them by training fast student generators, yet most existing objectives lack a unified theoretical foundation. In this work, we propose Di-Bregman, a compact framework that formulates diffusion distillation as Bregman divergence-based density-ratio matching. This convex-analytic view connects several existing objectives through a common lens. Experiments on CIFAR-10 and text-to-image generation demonstrate that Di-Bregman achieves improved one-step FID over reverse-KL distillation and maintains high visual fidelity compared to the teacher model. Our results highlight Bregman density-ratio matching as a practical and theoretically-grounded route toward efficient one-step diffusion generation.
comment: work in progress
☆ Foundation Models in Medical Image Analysis: A Systematic Review and Meta-Analysis
Recent advancements in artificial intelligence (AI), particularly foundation models (FMs), have revolutionized medical image analysis, demonstrating strong zero- and few-shot performance across diverse medical imaging tasks, from segmentation to report generation. Unlike traditional task-specific AI models, FMs leverage large corpora of labeled and unlabeled multimodal datasets to learn generalized representations that can be adapted to various downstream clinical applications with minimal fine-tuning. However, despite the rapid proliferation of FM research in medical imaging, the field remains fragmented, lacking a unified synthesis that systematically maps the evolution of architectures, training paradigms, and clinical applications across modalities. To address this gap, this review article provides a comprehensive and structured analysis of FMs in medical image analysis. We systematically categorize studies into vision-only and vision-language FMs based on their architectural foundations, training strategies, and downstream clinical tasks. Additionally, a quantitative meta-analysis of the studies was conducted to characterize temporal trends in dataset utilization and application domains. We also critically discuss persistent challenges, including domain adaptation, efficient fine-tuning, computational constraints, and interpretability along with emerging solutions such as federated learning, knowledge distillation, and advanced prompting. Finally, we identify key future research directions aimed at enhancing the robustness, explainability, and clinical integration of FMs, thereby accelerating their translation into real-world medical practice.
☆ Leave It to the Experts: Detecting Knowledge Distillation via MoE Expert Signatures
Knowledge Distillation (KD) accelerates training of large language models (LLMs) but poses intellectual property protection and LLM diversity risks. Existing KD detection methods based on self-identity or output similarity can be easily evaded through prompt engineering. We present a KD detection framework effective in both white-box and black-box settings by exploiting an overlooked signal: the transfer of MoE "structural habits", especially internal routing patterns. Our approach analyzes how different experts specialize and collaborate across various inputs, creating distinctive fingerprints that persist through the distillation process. To extend beyond the white-box setup and MoE architectures, we further propose Shadow-MoE, a black-box method that constructs proxy MoE representations via auxiliary distillation to compare these patterns between arbitrary model pairs. We establish a comprehensive, reproducible benchmark that offers diverse distilled checkpoints and an extensible framework to facilitate future research. Extensive experiments demonstrate >94% detection accuracy across various scenarios and strong robustness to prompt-based evasion, outperforming existing baselines while highlighting the structural habits transfer in LLMs.
comment: Code is at https://github.com/unites-lab/shadow-moe
☆ Quantile Regression, Variational Autoencoders, and Diffusion Models for Uncertainty Quantification: A Spatial Analysis of Sub-seasonal Wind Speed Prediction
This study aims to improve the spatial representation of uncertainties when regressing surface wind speeds from large-scale atmospheric predictors for sub-seasonal forecasting. Sub-seasonal forecasting often relies on large-scale atmospheric predictors such as 500 hPa geopotential height (Z500), which exhibit higher predictability than surface variables and can be downscaled to obtain more localised information. Previous work by Tian et al. (2024) demonstrated that stochastic perturbations based on model residuals can improve ensemble dispersion representation in statistical downscaling frameworks, but this method fails to represent spatial correlations and physical consistency adequately. More sophisticated approaches are needed to capture the complex relationships between large-scale predictors and local-scale predictands while maintaining physical consistency. Probabilistic deep learning models offer promising solutions for capturing complex spatial dependencies. This study evaluates three probabilistic methods with distinct uncertainty quantification mechanisms: Quantile Regression Neural Network that directly models distribution quantiles, Variational Autoencoders that leverage latent space sampling, and Diffusion Models that utilise iterative denoising. These models are trained on ERA5 reanalysis data and applied to ECMWF sub-seasonal hindcasts to regress probabilistic wind speed ensembles. Our results show that probabilistic downscaling approaches provide more realistic spatial uncertainty representations compared to simpler stochastic methods, with each probabilistic model offering different strengths in terms of ensemble dispersion, deterministic skill, and physical consistency. These findings establish probabilistic downscaling as an effective enhancement to operational sub-seasonal wind forecasts for renewable energy planning and risk assessment.
comment: This Work has been submitted to Monthly Weather Review. Copyright in this Work may be transferred without further notice
☆ A Comparative User Evaluation of XRL Explanations using Goal Identification ECAI 2025
Debugging is a core application of explainable reinforcement learning (XRL) algorithms; however, limited comparative evaluations have been conducted to understand their relative performance. We propose a novel evaluation methodology to test whether users can identify an agent's goal from an explanation of its decision-making. Utilising the Atari's Ms. Pacman environment and four XRL algorithms, we find that only one achieved greater than random accuracy for the tested goals and that users were generally overconfident in their selections. Further, we find that users' self-reported ease of identification and understanding for every explanation did not correlate with their accuracy.
comment: Accepted to ECAI 2025 Workshop on Evaluating Explainable AI and Complex Decision-Making, 8 Pages
☆ Peering Inside the Black Box: Uncovering LLM Errors in Optimization Modelling through Component-Level Evaluation
Large language models (LLMs) are increasingly used to convert natural language descriptions into mathematical optimization formulations. Current evaluations often treat formulations as a whole, relying on coarse metrics like solution accuracy or runtime, which obscure structural or numerical errors. In this study, we present a comprehensive, component-level evaluation framework for LLM-generated formulations. Beyond the conventional optimality gap, our framework introduces metrics such as precision and recall for decision variables and constraints, constraint and objective root mean squared error (RMSE), and efficiency indicators based on token usage and latency. We evaluate GPT-5, LLaMA 3.1 Instruct, and DeepSeek Math across optimization problems of varying complexity under six prompting strategies. Results show that GPT-5 consistently outperforms other models, with chain-of-thought, self-consistency, and modular prompting proving most effective. Analysis indicates that solver performance depends primarily on high constraint recall and low constraint RMSE, which together ensure structural correctness and solution reliability. Constraint precision and decision variable metrics play secondary roles, while concise outputs enhance computational efficiency. These findings highlight three principles for NLP-to-optimization modeling: (i) Complete constraint coverage prevents violations, (ii) minimizing constraint RMSE ensures solver-level accuracy, and (iii) concise outputs improve computational efficiency. The proposed framework establishes a foundation for fine-grained, diagnostic evaluation of LLMs in optimization modeling.
☆ A Primer on Kolmogorov-Arnold Networks (KANs) for Probabilistic Time Series Forecasting
This work introduces Probabilistic Kolmogorov-Arnold Network (P-KAN), a novel probabilistic extension of Kolmogorov-Arnold Networks (KANs) for time series forecasting. By replacing scalar weights with spline-based functional connections and directly parameterizing predictive distributions, P-KANs offer expressive yet parameter-efficient models capable of capturing nonlinear and heavy-tailed dynamics. We evaluate P-KANs on satellite traffic forecasting, where uncertainty-aware predictions enable dynamic thresholding for resource allocation. Results show that P-KANs consistently outperform Multi Layer Perceptron (MLP) baselines in both accuracy and calibration, achieving superior efficiency-risk trade-offs while using significantly fewer parameters. We build up P-KANs on two distributions, namely Gaussian and Student-t distributions. The Gaussian variant provides robust, conservative forecasts suitable for safety-critical scenarios, whereas the Student-t variant yields sharper distributions that improve efficiency under stable demand. These findings establish P-KANs as a powerful framework for probabilistic forecasting with direct applicability to satellite communications and other resource-constrained domains.
☆ Tutoring LLM into a Better CUDA Optimizer
Recent leaps in large language models (LLMs) caused a revolution in programming tools (like GitHub Copilot) that can help with code generation, debugging, and even performance optimization. In this paper, we focus on the capabilities of the most recent reasoning models to generate optimized CUDA code for predefined, well-known tasks. Our objective is to determine which types of code optimizations and parallel patterns the LLMs can perform by themselves and whether they can be improved by tutoring (providing more detailed hints and guidelines in the prompt). The generated solutions were evaluated both automatically (for correctness and speedup) and manually (code reviews) to provide a more detailed perspective. We also tried an interactive approach where the LLM can fix its previous mistakes within a session. The results indicate that LLMs are quite skilled coders; however, they require tutoring to reach optimized solutions provided by parallel computing experts.
comment: This preprint has not undergone peer review or any post-submission improvements or corrections. The Version of Record of this contribution is published in Euro-Par 2025: Parallel Processing, Part II, and is available online at https://doi.org/10.1007/978-3-031-99857-7_18
☆ UNDREAM: Bridging Differentiable Rendering and Photorealistic Simulation for End-to-end Adversarial Attacks
Deep learning models deployed in safety critical applications like autonomous driving use simulations to test their robustness against adversarial attacks in realistic conditions. However, these simulations are non-differentiable, forcing researchers to create attacks that do not integrate simulation environmental factors, reducing attack success. To address this limitation, we introduce UNDREAM, the first software framework that bridges the gap between photorealistic simulators and differentiable renderers to enable end-to-end optimization of adversarial perturbations on any 3D objects. UNDREAM enables manipulation of the environment by offering complete control over weather, lighting, backgrounds, camera angles, trajectories, and realistic human and object movements, thereby allowing the creation of diverse scenes. We showcase a wide array of distinct physically plausible adversarial objects that UNDREAM enables researchers to swiftly explore in different configurable environments. This combination of photorealistic simulation and differentiable optimization opens new avenues for advancing research of physical adversarial attacks.
☆ SAKE: Towards Editing Auditory Attribute Knowledge of Large Audio-Language Models
Knowledge editing offers an efficient way to update model knowledge without full retraining, but prior work has concentrated almost exclusively on textual or visual modalities. We introduce SAKE, the first benchmark specifically designed for editing auditory attribute knowledge in Large Audio-Language Models (LALMs). Unlike factual updates, SAKE targets several abstract auditory attributes, capturing knowledge types that go beyond conventional textual and visual domains. We benchmark seven editing methods on two LALMs along four dimensions: reliability, generality, audio/text locality, and portability. Results highlight challenges such as preserving intra-attribute knowledge unrelated to the edit, generalizing edits to multimodal reasoning, and maintaining edits under sequential updates. SAKE provides a principled framework to study how knowledge editing extends to the auditory modalities, opening new directions for maintaining and adapting LALMs in more diverse real-world scenarios.
comment: Work in progress
☆ Domain Generalizable Continual Learning
To adapt effectively to dynamic real-world environments, intelligent systems must continually acquire new skills while generalizing them to diverse, unseen scenarios. Here, we introduce a novel and realistic setting named domain generalizable continual learning (DGCL): a model learns sequential tasks with each involving a single domain, aiming to perform well across all encountered tasks and domains. This setting poses unique challenges in acquiring, retaining, and leveraging both semantic- and domain-relevant information for robust generalization. Although state-of-the-art continual learning (CL) methods have employed pre-trained models (PTMs) to enhance task-specific generalization, they typically assume identical training and testing domains for each task and therefore perform poorly in DGCL. To this end, we propose adaptive Domain Transformation (DoT), an innovative PTMs-based approach tailored to DGCL. Inspired by the distributed-plus-hub theory of the human brain, DoT disentangles semantic- and domain-relevant information in representation learning, and adaptively transforms task representations across various domains for output alignment, ensuring balanced and generalized predictions. DoT serves as a plug-in strategy that greatly facilitates state-of-the-art CL baselines under both full parameter tuning and parameter-efficient tuning paradigms in DGCL, validated by extensive experiments. Also, DoT is shown to accumulate domain-generalizable knowledge from DGCL, and ensure resource efficiency with a lightweight implementation.
comment: 25 pages
☆ A Lightweight DL Model for Smart Grid Power Forecasting with Feature and Resolution Mismatch IEEE
How can short-term energy consumption be accurately forecasted when sensor data is noisy, incomplete, and lacks contextual richness? This question guided our participation in the \textit{2025 Competition on Electric Energy Consumption Forecast Adopting Multi-criteria Performance Metrics}, which challenged teams to predict next-day power demand using real-world high-frequency data. We proposed a robust yet lightweight Deep Learning (DL) pipeline combining hourly downsizing, dual-mode imputation (mean and polynomial regression), and comprehensive normalization, ultimately selecting Standard Scaling for optimal balance. The lightweight GRU-LSTM sequence-to-one model achieves an average RMSE of 601.9~W, MAE of 468.9~W, and 84.36\% accuracy. Despite asymmetric inputs and imputed gaps, it generalized well, captured nonlinear demand patterns, and maintained low inference latency. Notably, spatiotemporal heatmap analysis reveals a strong alignment between temperature trends and predicted consumption, further reinforcing the model's reliability. These results demonstrate that targeted preprocessing paired with compact recurrent architectures can still enable fast, accurate, and deployment-ready energy forecasting in real-world conditions.
comment: 5 pages, 3 figures, The IEEE PES ISGT Middle East 2025 (ISGT-ME 2025) November 23-26th 2025, Dubai, UAE
☆ VAGEN: Reinforcing World Model Reasoning for Multi-Turn VLM Agents NeurIPS 2025
A key challenge in training Vision-Language Model (VLM) agents, compared to Language Model (LLM) agents, lies in the shift from textual states to complex visual observations. This transition introduces partial observability and demands robust world modeling. We ask: Can VLM agents construct internal world models through explicit visual state reasoning? To address this question, we architecturally enforce and reward the agent's reasoning process via reinforcement learning (RL), formulating it as a Partially Observable Markov Decision Process (POMDP). We find that decomposing the agent's reasoning into State Estimation ("what is the current state?") and Transition Modeling ("what comes next?") is critical for success, as demonstrated through five reasoning strategies. Our investigation into how agents represent internal beliefs reveals that the optimal representation is task-dependent: Natural Language excels at capturing semantic relationships in general tasks, while Structured formats are indispensable for precise manipulation and control. Building on these insights, we design a World Modeling Reward that provides dense, turn-level supervision for accurate state prediction, and introduce Bi-Level General Advantage Estimation (Bi-Level GAE) for turn-aware credit assignment. Through this form of visual state reasoning, a 3B-parameter model achieves a score of 0.82 across five diverse agent benchmarks, representing a 3$\times$ improvement over its untrained counterpart (0.21) and outperforming proprietary reasoning models such as GPT-5 (0.75), Gemini 2.5 Pro (0.67) and Claude 4.5 (0.62). All experiments are conducted within our VAGEN framework, a scalable system for training and analyzing multi-turn VLM agents in diverse visual environments. Code and data are publicly available at https://vagen-ai.github.io.
comment: Accepted to NeurIPS 2025
☆ SNOMED CT-powered Knowledge Graphs for Structured Clinical Data and Diagnostic Reasoning
The effectiveness of artificial intelligence (AI) in healthcare is significantly hindered by unstructured clinical documentation, which results in noisy, inconsistent, and logically fragmented training data. To address this challenge, we present a knowledge-driven framework that integrates the standardized clinical terminology SNOMED CT with the Neo4j graph database to construct a structured medical knowledge graph. In this graph, clinical entities such as diseases, symptoms, and medications are represented as nodes, and semantic relationships such as ``caused by,'' ``treats,'' and ``belongs to'' are modeled as edges in Neo4j, with types mapped from formal SNOMED CT relationship concepts (e.g., \texttt{Causative agent}, \texttt{Indicated for}). This design enables multi-hop reasoning and ensures terminological consistency. By extracting and standardizing entity-relationship pairs from clinical texts, we generate structured, JSON-formatted datasets that embed explicit diagnostic pathways. These datasets are used to fine-tune large language models (LLMs), significantly improving the clinical logic consistency of their outputs. Experimental results demonstrate that our knowledge-guided approach enhances the validity and interpretability of AI-generated diagnostic reasoning, providing a scalable solution for building reliable AI-assisted clinical systems.
☆ Adaptive Online Learning with LSTM Networks for Energy Price Prediction
Accurate prediction of electricity prices is crucial for stakeholders in the energy market, particularly for grid operators, energy producers, and consumers. This study focuses on developing a predictive model leveraging Long Short-Term Memory (LSTM) networks to forecast day-ahead electricity prices in the California energy market. The model incorporates a variety of features, including historical price data, weather conditions, and the energy generation mix. A novel custom loss function that integrates Mean Absolute Error (MAE), Jensen-Shannon Divergence (JSD), and a smoothness penalty is introduced to enhance the prediction accuracy and interpretability. Additionally, an online learning approach is implemented to allow the model to adapt to new data incrementally, ensuring continuous relevance and accuracy. The results demonstrate that the custom loss function can improve the model's performance, aligning predicted prices more closely with actual values, particularly during peak intervals. Also, the online learning model outperforms other models by effectively incorporating real-time data, resulting in lower prediction error and variability. The inclusion of the energy generation mix further enhances the model's predictive capabilities, highlighting the importance of comprehensive feature integration. This research provides a robust framework for electricity price forecasting, offering valuable insights and tools for better decision-making in dynamic electricity markets.
☆ Investigating Safety Vulnerabilities of Large Audio-Language Models Under Speaker Emotional Variations ICASSP 2026
Large audio-language models (LALMs) extend text-based LLMs with auditory understanding, offering new opportunities for multimodal applications. While their perception, reasoning, and task performance have been widely studied, their safety alignment under paralinguistic variation remains underexplored. This work systematically investigates the role of speaker emotion. We construct a dataset of malicious speech instructions expressed across multiple emotions and intensities, and evaluate several state-of-the-art LALMs. Our results reveal substantial safety inconsistencies: different emotions elicit varying levels of unsafe responses, and the effect of intensity is non-monotonic, with medium expressions often posing the greatest risk. These findings highlight an overlooked vulnerability in LALMs and call for alignment strategies explicitly designed to ensure robustness under emotional variation, a prerequisite for trustworthy deployment in real-world settings.
comment: Submitted to ICASSP 2026
☆ Utility-Diversity Aware Online Batch Selection for LLM Supervised Fine-tuning
Supervised fine-tuning (SFT) is a commonly used technique to adapt large language models (LLMs) to downstream tasks. In practice, SFT on a full dataset is computationally expensive and sometimes suffers from overfitting or bias amplification. This facilitates the rise of data curation in SFT, which prioritizes the most valuable data to optimze. This work studies the online batch selection family that dynamically scores and filters samples during the training process. However, existing popular methods often (i) rely merely on the utility of data to select a subset while neglecting other crucial factors like diversity, (ii) rely on external resources such as reference models or validation sets, and (iii) incur extra training time over full-dataset training. To address these limitations, this work develops \textbf{UDS (Utility-Diversity Sampling)}, a framework for efficient online batch selection in SFT. UDS leverages the nuclear norm of the logits matrix to capture both data utility and intra-sample diversity, while estimating inter-sample diversity through efficient low-dimensional embedding comparisons with a lightweight memory buffer of historical samples. Such a design eliminates the need for external resources and unnecessary backpropagation, securing computational efficiency. Experiments on multiple benchmarks demonstrate that UDS consistently outperforms state-of-the-art online batch selection methods under varying data budgets, and significantly reduces training time compared to full-dataset fine-tuning. Code is available at https://github.com/gfyddha/UDS.
☆ Fly-CL: A Fly-Inspired Framework for Enhancing Efficient Decorrelation and Reduced Training Time in Pre-trained Model-based Continual Representation Learning
Using a nearly-frozen pretrained model, the continual representation learning paradigm reframes parameter updates as a similarity-matching problem to mitigate catastrophic forgetting. However, directly leveraging pretrained features for downstream tasks often suffers from multicollinearity in the similarity-matching stage, and more advanced methods can be computationally prohibitive for real-time, low-latency applications. Inspired by the fly olfactory circuit, we propose Fly-CL, a bio-inspired framework compatible with a wide range of pretrained backbones. Fly-CL substantially reduces training time while achieving performance comparable to or exceeding that of current state-of-the-art methods. We theoretically show how Fly-CL progressively resolves multicollinearity, enabling more effective similarity matching with low time complexity. Extensive simulation experiments across diverse network architectures and data regimes validate Fly-CL's effectiveness in addressing this challenge through a biologically inspired design. Code is available at https://github.com/gfyddha/Fly-CL.
☆ DeepAnalyze: Agentic Large Language Models for Autonomous Data Science
Autonomous data science, from raw data sources to analyst-grade deep research reports, has been a long-standing challenge, and is now becoming feasible with the emergence of powerful large language models (LLMs). Recent workflow-based data agents have shown promising results on specific data tasks but remain fundamentally limited in achieving fully autonomous data science due to their reliance on predefined workflows. In this paper, we introduce DeepAnalyze-8B, the first agentic LLM designed for autonomous data science, capable of automatically completing the end-toend pipeline from data sources to analyst-grade deep research reports. To tackle high-complexity data science tasks, we propose a curriculum-based agentic training paradigm that emulates the learning trajectory of human data scientists, enabling LLMs to progressively acquire and integrate multiple capabilities in real-world environments. We also introduce a data-grounded trajectory synthesis framework that constructs high-quality training data. Through agentic training, DeepAnalyze learns to perform a broad spectrum of data tasks, ranging from data question answering and specialized analytical tasks to open-ended data research. Experiments demonstrate that, with only 8B parameters, DeepAnalyze outperforms previous workflow-based agents built on most advanced proprietary LLMs. The model, code, and training data of DeepAnalyze are open-sourced, paving the way toward autonomous data science.
comment: Code: https://github.com/ruc-datalab/DeepAnalyze Model: https://huggingface.co/RUC-DataLab/DeepAnalyze-8B
☆ DrivAerStar: An Industrial-Grade CFD Dataset for Vehicle Aerodynamic Optimization
Vehicle aerodynamics optimization has become critical for automotive electrification, where drag reduction directly determines electric vehicle range and energy efficiency. Traditional approaches face an intractable trade-off: computationally expensive Computational Fluid Dynamics (CFD) simulations requiring weeks per design iteration, or simplified models that sacrifice production-grade accuracy. While machine learning offers transformative potential, existing datasets exhibit fundamental limitations -- inadequate mesh resolution, missing vehicle components, and validation errors exceeding 5% -- preventing deployment in industrial workflows. We present DrivAerStar, comprising 12,000 industrial-grade automotive CFD simulations generated using $\text{STAR-CCM+}^\unicode{xAE}$ software. The dataset systematically explores three vehicle configurations through 20 Computer Aided Design (CAD) parameters via Free Form Deformation (FFD) algorithms, including complete engine compartments and cooling systems with realistic internal airflow. DrivAerStar achieves wind tunnel validation accuracy below 1.04% -- a five-fold improvement over existing datasets -- through refined mesh strategies with strict wall $y^+$ control. Benchmarks demonstrate that models trained on this data achieve production-ready accuracy while reducing computational costs from weeks to minutes. This represents the first dataset bridging academic machine learning research and industrial CFD practice, establishing a new standard for data-driven aerodynamic optimization in automotive development. Beyond automotive applications, DrivAerStar demonstrates a paradigm for integrating high-fidelity physics simulations with Artificial Intelligence (AI) across engineering disciplines where computational constraints currently limit innovation.
☆ ArmFormer: Lightweight Transformer Architecture for Real-Time Multi-Class Weapon Segmentation and Classification
The escalating threat of weapon-related violence necessitates automated detection systems capable of pixel-level precision for accurate threat assessment in real-time security applications. Traditional weapon detection approaches rely on object detection frameworks that provide only coarse bounding box localizations, lacking the fine-grained segmentation required for comprehensive threat analysis. Furthermore, existing semantic segmentation models either sacrifice accuracy for computational efficiency or require excessive computational resources incompatible with edge deployment scenarios. This paper presents ArmFormer, a lightweight transformer-based semantic segmentation framework that strategically integrates Convolutional Block Attention Module (CBAM) with MixVisionTransformer architecture to achieve superior accuracy while maintaining computational efficiency suitable for resource-constrained edge devices. Our approach combines CBAM-enhanced encoder backbone with attention-integrated hamburger decoder to enable multi-class weapon segmentation across five categories: handgun, rifle, knife, revolver, and human. Comprehensive experiments demonstrate that ArmFormer achieves state-of-the-art performance with 80.64% mIoU and 89.13% mFscore while maintaining real-time inference at 82.26 FPS. With only 4.886G FLOPs and 3.66M parameters, ArmFormer outperforms heavyweight models requiring up to 48x more computation, establishing it as the optimal solution for deployment on portable security cameras, surveillance drones, and embedded AI accelerators in distributed security infrastructure.
comment: 9 pages with 4 figures and 5 tables. This is a preprint submitted to arXiv
☆ Agentic Inequality
Autonomous AI agents, capable of complex planning and action, represent a significant technological evolution beyond current generative tools. As these systems become integrated into political and economic life, their distribution and capabilities will be highly consequential. This paper introduces and explores "agentic inequality" - the potential disparities in power, opportunity, and outcomes stemming from differential access to, and capabilities of, AI agents. We analyse the dual potential of this technology, exploring how agents could both exacerbate existing divides and, under the right conditions, serve as a powerful equalising force. To this end, the paper makes three primary contributions. First, it establishes an analytical framework by delineating the three core dimensions through which this inequality can manifest: disparities in the availability, quality, and quantity of agents. Second, it argues that agentic inequality is distinct from prior technological divides. Unlike tools that primarily augment human abilities, agents act as autonomous delegates, creating novel power asymmetries through scalable goal delegation and direct agent-to-agent competition that are poised to reshape outcomes across economic and socio-political spheres. Finally, it provides a systematic analysis of the technical and socioeconomic drivers - from model release strategies to market incentives - that will shape the distribution of agentic power, concluding with a research agenda for navigating the complex governance challenges ahead.
☆ Neuronal Group Communication for Efficient Neural representation
The ever-increasing scale of modern neural networks has brought unprecedented performance alongside daunting challenges in efficiency and interpretability. This paper addresses the core question of how to build large neural systems that learn efficient, modular, and interpretable representations. We propose Neuronal Group Communication (NGC), a theory-driven framework that reimagines a neural network as a dynamical system of interacting neuronal groups rather than a monolithic collection of neural weights. Instead of treating each weight as an independent trainable parameter, NGC treats weights as transient interactions between embedding-like neuronal states, with neural computation unfolding through iterative communication among groups of neurons. This low-rank, modular representation yields compact models: groups of neurons exchange low-dimensional signals, enabling intra-group specialization and inter-group information sharing while dramatically reducing redundant parameters. By drawing on dynamical systems theory, we introduce a neuronal stability metric (analogous to Lyapunov stability) that quantifies the contraction of neuron activations toward stable patterns during sequence processing. Using this metric, we reveal that emergent reasoning capabilities correspond to an external driving force or ``potential'', which nudges the neural dynamics away from trivial trajectories while preserving stability. Empirically, we instantiate NGC in large language models (LLMs) and demonstrate improved performance on complex reasoning benchmarks under moderate compression. NGC consistently outperforms standard low-rank approximations and cross-layer basis-sharing methods at comparable compression rates. We conclude by discussing the broader implications of NGC, including how structured neuronal group dynamics might relate to generalization in high-dimensional learning systems.
comment: 28 pages, 2 figures
☆ FinSight: Towards Real-World Financial Deep Research
Generating professional financial reports is a labor-intensive and intellectually demanding process that current AI systems struggle to fully automate. To address this challenge, we introduce FinSight (Financial InSight), a novel multi agent framework for producing high-quality, multimodal financial reports. The foundation of FinSight is the Code Agent with Variable Memory (CAVM) architecture, which unifies external data, designed tools, and agents into a programmable variable space, enabling flexible data collection, analysis and report generation through executable code. To ensure professional-grade visualization, we propose an Iterative Vision-Enhanced Mechanism that progressively refines raw visual outputs into polished financial charts. Furthermore, a two stage Writing Framework expands concise Chain-of-Analysis segments into coherent, citation-aware, and multimodal reports, ensuring both analytical depth and structural consistency. Experiments on various company and industry-level tasks demonstrate that FinSight significantly outperforms all baselines, including leading deep research systems in terms of factual accuracy, analytical depth, and presentation quality, demonstrating a clear path toward generating reports that approach human-expert quality.
comment: Working in progress
☆ Schrödinger Bridge Mamba for One-Step Speech Enhancement
We propose Schr\"odinger Bridge Mamba (SBM), a new concept of training-inference framework motivated by the inherent compatibility between Schr\"odinger Bridge (SB) training paradigm and selective state-space model Mamba. We exemplify the concept of SBM with an implementation for generative speech enhancement. Experiments on a joint denoising and dereverberation task using four benchmark datasets demonstrate that SBM, with only 1-step inference, outperforms strong baselines with 1-step or iterative inference and achieves the best real-time factor (RTF). Beyond speech enhancement, we discuss the integration of SB paradigm and selective state-space model architecture based on their underlying alignment, which indicates a promising direction for exploring new deep generative models potentially applicable to a broad range of generative tasks. Demo page: https://sbmse.github.io
comment: 5 pages, 1 figure
☆ Who's Asking? Simulating Role-Based Questions for Conversational AI Evaluation
Language model users often embed personal and social context in their questions. The asker's role -- implicit in how the question is framed -- creates specific needs for an appropriate response. However, most evaluations, while capturing the model's capability to respond, often ignore who is asking. This gap is especially critical in stigmatized domains such as opioid use disorder (OUD), where accounting for users' contexts is essential to provide accessible, stigma-free responses. We propose CoRUS (COmmunity-driven Roles for User-centric Question Simulation), a framework for simulating role-based questions. Drawing on role theory and posts from an online OUD recovery community (r/OpiatesRecovery), we first build a taxonomy of asker roles -- patients, caregivers, practitioners. Next, we use it to simulate 15,321 questions that embed each role's goals, behaviors, and experiences. Our evaluations show that these questions are both highly believable and comparable to real-world data. When used to evaluate five LLMs, for the same question but differing roles, we find systematic differences: vulnerable roles, such as patients and caregivers, elicit more supportive responses (+17%) and reduced knowledge content (-19%) in comparison to practitioners. Our work demonstrates how implicitly signaling a user's role shapes model responses, and provides a methodology for role-informed evaluation of conversational AI.
☆ ReefNet: A Large scale, Taxonomically Enriched Dataset and Benchmark for Hard Coral Classification
Coral reefs are rapidly declining due to anthropogenic pressures such as climate change, underscoring the urgent need for scalable, automated monitoring. We introduce ReefNet, a large public coral reef image dataset with point-label annotations mapped to the World Register of Marine Species (WoRMS). ReefNet aggregates imagery from 76 curated CoralNet sources and an additional site from Al Wajh in the Red Sea, totaling approximately 925000 genus-level hard coral annotations with expert-verified labels. Unlike prior datasets, which are often limited by size, geography, or coarse labels and are not ML-ready, ReefNet offers fine-grained, taxonomically mapped labels at a global scale to WoRMS. We propose two evaluation settings: (i) a within-source benchmark that partitions each source's images for localized evaluation, and (ii) a cross-source benchmark that withholds entire sources to test domain generalization. We analyze both supervised and zero-shot classification performance on ReefNet and find that while supervised within-source performance is promising, supervised performance drops sharply across domains, and performance is low across the board for zero-shot models, especially for rare and visually similar genera. This provides a challenging benchmark intended to catalyze advances in domain generalization and fine-grained coral classification. We will release our dataset, benchmarking code, and pretrained models to advance robust, domain-adaptive, global coral reef monitoring and conservation.
☆ Efficient High-Accuracy PDEs Solver with the Linear Attention Neural Operator
Neural operators offer a powerful data-driven framework for learning mappings between function spaces, in which the transformer-based neural operator architecture faces a fundamental scalability-accuracy trade-off: softmax attention provides excellent fidelity but incurs quadratic complexity $\mathcal{O}(N^2 d)$ in the number of mesh points $N$ and hidden dimension $d$, while linear attention variants reduce cost to $\mathcal{O}(N d^2)$ but often suffer significant accuracy degradation. To address the aforementioned challenge, in this paper, we present a novel type of neural operators, Linear Attention Neural Operator (LANO), which achieves both scalability and high accuracy by reformulating attention through an agent-based mechanism. LANO resolves this dilemma by introducing a compact set of $M$ agent tokens $(M \ll N)$ that mediate global interactions among $N$ tokens. This agent attention mechanism yields an operator layer with linear complexity $\mathcal{O}(MN d)$ while preserving the expressive power of softmax attention. Theoretically, we demonstrate the universal approximation property, thereby demonstrating improved conditioning and stability properties. Empirically, LANO surpasses current state-of-the-art neural PDE solvers, including Transolver with slice-based softmax attention, achieving average $19.5\%$ accuracy improvement across standard benchmarks. By bridging the gap between linear complexity and softmax-level performance, LANO establishes a scalable, high-accuracy foundation for scientific machine learning applications.
comment: 31 pages, 8 figures
☆ Knowing the Facts but Choosing the Shortcut: Understanding How Large Language Models Compare Entities ACL
Large Language Models (LLMs) are increasingly used for knowledge-based reasoning tasks, yet understanding when they rely on genuine knowledge versus superficial heuristics remains challenging. We investigate this question through entity comparison tasks by asking models to compare entities along numerical attributes (e.g., ``Which river is longer, the Danube or the Nile?''), which offer clear ground truth for systematic analysis. Despite having sufficient numerical knowledge to answer correctly, LLMs frequently make predictions that contradict this knowledge. We identify three heuristic biases that strongly influence model predictions: entity popularity, mention order, and semantic co-occurrence. For smaller models, a simple logistic regression using only these surface cues predicts model choices more accurately than the model's own numerical predictions, suggesting heuristics largely override principled reasoning. Crucially, we find that larger models (32B parameters) selectively rely on numerical knowledge when it is more reliable, while smaller models (7--8B parameters) show no such discrimination, which explains why larger models outperform smaller ones even when the smaller models possess more accurate knowledge. Chain-of-thought prompting steers all models towards using the numerical features across all model sizes.
comment: 33 pages, 20 figures. Submitted ACL ARR 2025 October (under review)
☆ Needles in the Landscape: Semi-Supervised Pseudolabeling for Archaeological Site Discovery under Label Scarcity
Archaeological predictive modelling estimates where undiscovered sites are likely to occur by combining known locations with environmental, cultural, and geospatial variables. We address this challenge using a deep learning approach but must contend with structural label scarcity inherent to archaeology: positives are rare, and most locations are unlabeled. To address this, we adopt a semi-supervised, positive-unlabeled (PU) learning strategy, implemented as a semantic segmentation model and evaluated on two datasets covering a representative range of archaeological periods. Our approach employs dynamic pseudolabeling, refined with a Conditional Random Field (CRF) implemented via an RNN, increasing label confidence under severe class imbalance. On a geospatial dataset derived from a digital elevation model (DEM), our model performs on par with the state-of-the-art, LAMAP, while achieving higher Dice scores. On raw satellite imagery, assessed end-to-end with stratified k-fold cross-validation, it maintains performance and yields predictive surfaces with improved interpretability. Overall, our results indicate that semi-supervised learning offers a promising approach to identifying undiscovered sites across large, sparsely annotated landscapes.
☆ When Many-Shot Prompting Fails: An Empirical Study of LLM Code Translation
Large Language Models (LLMs) with vast context windows offer new avenues for in-context learning (ICL), where providing many examples ("many-shot" prompting) is often assumed to enhance performance. We investigate this assumption for the complex task of code translation. Through a large-scale empirical study of over 90,000 translations, we systematically evaluate the impact of scaling in-context examples from zero-shot to many-shot configurations of up to 625 examples, with prompts spanning from approximately 100,000 to 800,000 tokens. Our findings reveal a "many-shot paradox": while static similarity metrics may modestly improve with more examples, functional correctness consistently peaks with few-shot prompting (5-25 examples). Providing substantially more examples often degrades this crucial functional performance. This study highlights that for code translation, the quality of a few well-chosen examples outweighs sheer quantity, challenging the universal efficacy of "more is better" for ICL and underscoring the task-dependent nature of optimal prompting strategies. Our results have significant implications for effectively leveraging LLMs in software engineering.
☆ Improving Model Representation and Reducing KV Cache via Skip Connections with First Value Heads
Transformer models have driven breakthroughs across various language tasks by their strong capability to learn rich contextual representations. Scaling them to improve representation, however, often demands substantial memory and compute costs, such as the Key-Value (KV) cache used during auto-regressive decoding. Skip connections offer a promising way to improve representation without bloating resource usage, yet most prior works either improve expressivity while leaving KV costs unchanged, or reduce memory at the cost of weaker representation. In this work, we propose SkipV1Former, a Transformer variant that uses skip connections from the first layer's Value heads to strengthen model representation and reduce KV cache. Specifically, from the second block onward, each layer reuses half of its Value heads from the very first layer, while computing the other half as usual-cutting Value projections and V cache by nearly 50 \%. Theoretically, we show that routing uncompressed first-layer Values into deeper layers restores information lost to compression and accelerates the model's implicit mesa-optimization-a key pattern of Transformer in auto-regressive tasks. Empirically, across different model scales, SkipV1Former delivers consistent reductions of approximately 25 \% in KV cache while improving perplexity relative to standard Multi-Head Attention (MHA) Transformers and some advanced variants. Moreover, we propose a recipe for uptraining existing MHA Transformer checkpoints to SkipV1Former with only 10-15\% additional compute. Finally, SkipV1Former can seamlessly combine advanced methods like Group-Query Attention and Multi-Latent Attention to achieve further KV cache savings and performance improvement. When combined with YOCO, it cuts KV cache size by nearly 50 \% while still improving performance.
comment: The code is available at: \url{https://github.com/Zhoutong-Wu/SkipV1Former}
☆ Mixed-Precision Quantization for Language Models: Techniques and Prospects
The rapid scaling of language models (LMs) has resulted in unprecedented computational, memory, and energy requirements, making their training and deployment increasingly unsustainable. Quantization has emerged as an essential compression technique to reduce model size, alleviate memory bottlenecks, and accelerate inference. However, while uniform low-bit quantization (e.g., INT8, INT4) provides significant efficiency gains, it can degrade accuracy in sensitive components of transformer-based LMs. Mixed-precision quantization offers a promising alternative by selectively allocating precision across layers or within tensors to balance efficiency and accuracy. This survey provides a comprehensive overview of Mixed-Precision quantization frameworks for LMs (MXPLMs). We first review quantization fundamentals, including uniform and non-uniform quantizers, quantization granularity, and methods widely used in post-training quantization. We then categorize and compare recent MXPLM frameworks according to their bit allocation strategies and precision configurations across weights, activations, and key-value caches. A comparative analysis highlights differences in perplexity, zero-shot task performance, and deployment trade-offs. Furthermore, we contrast MXPLMs with earlier mixed-precision quantization methods for deep neural networks, identifying strategies that transfer and those that face challenges in the LM setting. Finally, we summarize open issues and future directions, including hardware-aware design, activation quantization, and scalable optimization methods for billion-parameter models. By consolidating recent advances, this work serves as a reference for understanding the current landscape and research prospects of mixed-precision quantization for large-scale language models.
comment: 46 pages, 6 figures, 5 tables
☆ Domain-Contextualized Concept Graphs: A Computable Framework for Knowledge Representation
Traditional knowledge graphs are constrained by fixed ontologies that organize concepts within rigid hierarchical structures. The root cause lies in treating domains as implicit context rather than as explicit, reasoning-level components. To overcome these limitations, we propose the Domain-Contextualized Concept Graph (CDC), a novel knowledge modeling framework that elevates domains to first-class elements of conceptual representation. CDC adopts a C-D-C triple structure - - where domain specifications serve as dynamic classification dimensions defined on demand. Grounded in a cognitive-linguistic isomorphic mapping principle, CDC operationalizes how humans understand concepts through contextual frames. We formalize more than twenty standardized relation predicates (structural, logical, cross-domain, and temporal) and implement CDC in Prolog for full inference capability. Case studies in education, enterprise knowledge systems, and technical documentation demonstrate that CDC enables context-aware reasoning, cross-domain analogy, and personalized knowledge modeling - capabilities unattainable under traditional ontology-based frameworks.
comment: 14 pages
☆ MOSAIC: Masked Objective with Selective Adaptation for In-domain Contrastive Learning
We introduce MOSAIC (Masked Objective with Selective Adaptation for In-domain Contrastive learning), a multi-stage framework for domain adaptation of sentence embedding models that incorporates joint domain-specific masked supervision. Our approach addresses the challenges of adapting large-scale general-domain sentence embedding models to specialized domains. By jointly optimizing masked language modeling (MLM) and contrastive objectives within a unified training pipeline, our method enables effective learning of domain-relevant representations while preserving the robust semantic discrimination properties of the original model. We empirically validate our approach on both high-resource and low-resource domains, achieving improvements up to 13.4% in NDCG@10 (Normalized Discounted Cumulative Gain) over strong general-domain baselines. Comprehensive ablation studies further demonstrate the effectiveness of each component, highlighting the importance of balanced joint supervision and staged adaptation.
☆ More with Less: An Empirical Study of Turn-Control Strategies for Efficient Coding Agents
LLM-powered coding agents, which operate in iterative loops (turns) to solve software engineering tasks, are becoming increasingly powerful. However, their practical deployment is hindered by significant and unpredictable costs. This challenge arises from a combination of factors: quadratically growing token counts with each turn, the high price of models, the large number of turns required for real-world tasks, and the tendency of agents to take inefficient or unnecessary actions. While existing research focuses on optimizing individual turns, the strategic control of the total number of turns remains an underexplored area for managing agent performance and cost. To address this gap, we conduct a comprehensive empirical study on SWE-bench using three state-of-the-art models and evaluate the impact of three distinct turn-control strategies: an unrestricted baseline, a fixed-turn limit with reminders, and a novel dynamic-turn strategy that grants extensions on-demand. Our findings first reveal a fundamental trade-off in the unrestricted setting, where no single model excels across performance, cost, and turn efficiency. We then show that a fixed-turn limit, specifically at the 75th percentile of the baseline, serves as a "sweet spot", substantially reducing costs (by 24%-68%) with minimal impact on solve rates. Most significantly, the dynamic-turn strategy consistently outperforms fixed-limit approaches, achieving comparable or better solve rates while further reducing costs by an additional 12%-24% by intelligently allocating resources only to tasks that need them. This work provides the first systematic analysis of turn-control strategies, offering simple yet effective guidelines for developers to balance cost and efficacy. We demonstrate that dynamic resource allocation is a superior, easy-to-implement approach for deploying powerful yet economically viable coding agents.
☆ LC-Eval: A Bilingual Multi-Task Evaluation Benchmark for Long-Context Understanding
Recent advancements in Large Language Models (LLMs) have demonstrated sophisticated capabilities, including the ability to process and comprehend extended contexts. These emergent capabilities necessitate rigorous evaluation methods to effectively assess their performance in long-context understanding. In this paper, we present \textbf{LC-Eval}, a bilingual, multi-task evaluation benchmark designed to evaluate long-context understanding in English and Arabic, targeting context lengths ranging from 4k to over 128k tokens. LC-Eval introduces four novel and challenging tasks: multi-document question answering, bilingual question answering, claim verification within a paragraph, and multiple-choice questions based on long contexts. These tasks are designed to assess LLMs' abilities in deep reasoning, document comprehension, information tracing, and bilingual information extraction and understanding. The benchmark includes datasets in both Arabic and English for each task, allowing for a comparative analysis of their performance across different text genres. Evaluations were conducted on both open-weight and closed LLMs, with results indicating that LC-Eval presents significant challenges. Even high-performing models, such as GPT-4o, struggled with certain tasks, highlighting the complexity and rigor of the benchmark.
comment: 1 figure, 15 tables, 10 main pages
☆ Xiaoice: Training-Free Video Understanding via Self-Supervised Spatio-Temporal Clustering of Semantic Features
The remarkable zero-shot reasoning capabilities of large-scale Visual Language Models (VLMs) on static images have yet to be fully translated to the video domain. Conventional video understanding models often rely on extensive, task-specific training on annotated datasets, a process that is both costly and limited in scalability. This paper introduces a novel, training-free framework for video understanding that circumvents end-to-end training by synergistically combining the rich semantic priors of pre-trained VLMs with classic machine learning algorithms for pattern discovery. Our core idea is to reframe video understanding as a self-supervised spatio-temporal clustering problem within a high-dimensional semantic feature space. The proposed pipeline first transforms a video stream into a semantic feature trajectory using the frozen visual encoder of a pre-trained VLM. Subsequently, we employ Kernel Temporal Segmentation (KTS), a robust machine learning technique, to partition the continuous feature stream into discrete, semantically coherent event segments. These segments are then subjected to unsupervised density-based clustering to identify recurring macroscopic scenes and themes throughout the video. By selecting representative keyframes from each discovered cluster and leveraging the VLM's generative capabilities for textual description, our framework automatically produces a structured, multi-modal summary of the video content. This approach provides an effective, interpretable, and model-agnostic pathway for zero-shot, automated structural analysis of video content.
☆ EMRRG: Efficient Fine-Tuning Pre-trained X-ray Mamba Networks for Radiology Report Generation
X-ray image-based medical report generation (MRG) is a pivotal area in artificial intelligence that can significantly reduce diagnostic burdens for clinicians and patient wait times. Existing MRG models predominantly rely on Large Language Models (LLMs) to improve report generation, with limited exploration of pre-trained vision foundation models or advanced fine-tuning techniques. Mainstream frameworks either avoid fine-tuning or utilize simplistic methods like LoRA, often neglecting the potential of enhancing cross-attention mechanisms. Additionally, while Transformer-based models dominate vision-language tasks, non-Transformer architectures, such as the Mamba network, remain underexplored for medical report generation, presenting a promising avenue for future research. In this paper, we propose EMRRG, a novel X-ray report generation framework that fine-tunes pre-trained Mamba networks using parameter-efficient methods. Specifically, X-ray images are divided into patches, tokenized, and processed by an SSM-based vision backbone for feature extraction, with Partial LoRA yielding optimal performance. An LLM with a hybrid decoder generates the medical report, enabling end-to-end training and achieving strong results on benchmark datasets. Extensive experiments on three widely used benchmark datasets fully validated the effectiveness of our proposed strategies for the X-ray MRG. The source code of this paper will be released on https://github.com/Event-AHU/Medical_Image_Analysis.
☆ Learning to play: A Multimodal Agent for 3D Game-Play
We argue that 3-D first-person video games are a challenging environment for real-time multi-modal reasoning. We first describe our dataset of human game-play, collected across a large variety of 3-D first-person games, which is both substantially larger and more diverse compared to prior publicly disclosed datasets, and contains text instructions. We demonstrate that we can learn an inverse dynamics model from this dataset, which allows us to impute actions on a much larger dataset of publicly available videos of human game play that lack recorded actions. We then train a text-conditioned agent for game playing using behavior cloning, with a custom architecture capable of realtime inference on a consumer GPU. We show the resulting model is capable of playing a variety of 3-D games and responding to text input. Finally, we outline some of the remaining challenges such as long-horizon tasks and quantitative evaluation across a large set of games.
comment: International Conference on Computer Vision Workshop on Multi-Modal Reasoning for Agentic Intelligence
☆ Region in Context: Text-condition Image editing with Human-like semantic reasoning
Recent research has made significant progress in localizing and editing image regions based on text. However, most approaches treat these regions in isolation, relying solely on local cues without accounting for how each part contributes to the overall visual and semantic composition. This often results in inconsistent edits, unnatural transitions, or loss of coherence across the image. In this work, we propose Region in Context, a novel framework for text-conditioned image editing that performs multilevel semantic alignment between vision and language, inspired by the human ability to reason about edits in relation to the whole scene. Our method encourages each region to understand its role within the global image context, enabling precise and harmonized changes. At its core, the framework introduces a dual-level guidance mechanism: regions are represented with full-image context and aligned with detailed region-level descriptions, while the entire image is simultaneously matched to a comprehensive scene-level description generated by a large vision-language model. These descriptions serve as explicit verbal references of the intended content, guiding both local modifications and global structure. Experiments show that it produces more coherent and instruction-aligned results. Code is available at: https://github.com/thuyvuphuong/Region-in-Context.git
☆ See or Say Graphs: Agent-Driven Scalable Graph Understanding with Vision-Language Models
Vision-language models (VLMs) have shown promise in graph understanding, but remain limited by input-token constraints, facing scalability bottlenecks and lacking effective mechanisms to coordinate textual and visual modalities. To address these challenges, we propose GraphVista, a unified framework that enhances both scalability and modality coordination in graph understanding. For scalability, GraphVista organizes graph information hierarchically into a lightweight GraphRAG base, which retrieves only task-relevant textual descriptions and high-resolution visual subgraphs, compressing redundant context while preserving key reasoning elements. For modality coordination, GraphVista introduces a planning agent that routes tasks to the most suitable modality-using the text modality for simple property reasoning and the visual modality for local and structurally complex reasoning grounded in explicit topology. Extensive experiments demonstrate that GraphVista scales to large graphs, up to $200\times$ larger than those used in existing benchmarks, and consistently outperforms existing textual, visual, and fusion-based methods, achieving up to $4.4\times$ quality improvement over the state-of-the-art baselines by fully exploiting the complementary strengths of both modalities.
☆ SAMOSA: Sharpness Aware Minimization for Open Set Active learning
Modern machine learning solutions require extensive data collection where labeling remains costly. To reduce this burden, open set active learning approaches aim to select informative samples from a large pool of unlabeled data that includes irrelevant or unknown classes. In this context, we propose Sharpness Aware Minimization for Open Set Active Learning (SAMOSA) as an effective querying algorithm. Building on theoretical findings concerning the impact of data typicality on the generalization properties of traditional stochastic gradient descent (SGD) and sharpness-aware minimization (SAM), SAMOSA actively queries samples based on their typicality. SAMOSA effectively identifies atypical samples that belong to regions of the embedding manifold close to the model decision boundaries. Therefore, SAMOSA prioritizes the samples that are (i) highly informative for the targeted classes, and (ii) useful for distinguishing between targeted and unwanted classes. Extensive experiments show that SAMOSA achieves up to 3% accuracy improvement over the state of the art across several datasets, while not introducing computational overhead. The source code of our experiments is available at: https://anonymous.4open.science/r/samosa-DAF4
☆ End-to-end Listen, Look, Speak and Act
Human interaction is inherently multimodal and full-duplex: we listen while watching, speak while acting, and fluidly adapt to turn-taking and interruptions. Realizing these capabilities is essential for building models simulating humans. We present ELLSA (End-to-end Listen, Look, Speak and Act), which, to our knowledge, is the first full-duplex, end-to-end model that simultaneously perceives and generates across vision, text, speech, and action within a single architecture, enabling interaction patterns previously out of reach, yielding more natural, human-like behaviors. At its core is a novel SA-MoE architecture (Self-Attention Mixture-of-Experts) that routes each modality to specialized experts and fuses them through a unified attention backbone. This provides a generalizable solution for joint multimodal perception and concurrent generation, leveraging strong pre-trained components while enabling efficient modality integration and mitigating modality interference. On speech-interaction and robot-manipulation benchmarks, ELLSA matches modality-specific baselines, while uniquely supporting advanced multimodal and full-duplex behaviors such as dialogue and action turn-taking, defective instruction rejection, speaking-while-acting, context-grounded visual question answering, and action barge-ins. We contend that ELLSA represents a step toward more natural and general interactive intelligence, contributing to the broader pursuit of artificial general intelligence. All data, code and model checkpoints will be released upon acceptance.
comment: 22 pages, 8 figures
☆ ELMM: Efficient Lightweight Multimodal Large Language Models for Multimodal Knowledge Graph Completion
Multimodal Knowledge Graphs (MKGs) extend traditional knowledge graphs by incorporating visual and textual modalities, enabling richer and more expressive entity representations. However, existing MKGs often suffer from incompleteness, which hinder their effectiveness in downstream tasks. Therefore, multimodal knowledge graph completion (MKGC) task is receiving increasing attention. While large language models (LLMs) have shown promise for knowledge graph completion (KGC), their application to the multimodal setting remains underexplored. Moreover, applying Multimodal Large Language Models (MLLMs) to the task of MKGC introduces significant challenges: (1) the large number of image tokens per entity leads to semantic noise and modality conflicts, and (2) the high computational cost of processing large token inputs. To address these issues, we propose Efficient Lightweight Multimodal Large Language Models (ELMM) for MKGC. ELMM proposes a Multi-view Visual Token Compressor (MVTC) based on multi-head attention mechanism, which adaptively compresses image tokens from both textual and visual views, thereby effectively reducing redundancy while retaining necessary information and avoiding modality conflicts. Additionally, we design an attention pruning strategy to remove redundant attention layers from MLLMs, thereby significantly reducing the inference cost. We further introduce a linear projection to compensate for the performance degradation caused by pruning. Extensive experiments on benchmark FB15k-237-IMG and WN18-IMG demonstrate that ELMM achieves state-of-the-art performance while substantially improving computational efficiency, establishing a new paradigm for multimodal knowledge graph completion.
comment: 11 pages, 4 figures
☆ Surrogate Modeling and Explainable Artificial Intelligence for Complex Systems: A Workflow for Automated Simulation Exploration
Complex systems are increasingly explored through simulation-driven engineering workflows that combine physics-based and empirical models with optimization and analytics. Despite their power, these workflows face two central obstacles: (1) high computational cost, since accurate exploration requires many expensive simulator runs; and (2) limited transparency and reliability when decisions rely on opaque blackbox components. We propose a workflow that addresses both challenges by training lightweight emulators on compact designs of experiments that (i) provide fast, low-latency approximations of expensive simulators, (ii) enable rigorous uncertainty quantification, and (iii) are adapted for global and local Explainable Artificial Intelligence (XAI) analyses. This workflow unifies every simulation-based complex-system analysis tool, ranging from engineering design to agent-based models for socio-environmental understanding. In this paper, we proposea comparative methodology and practical recommendations for using surrogate-based explainability tools within the proposed workflow. The methodology supports continuous and categorical inputs, combines global-effect and uncertainty analyses with local attribution, and evaluates the consistency of explanations across surrogate models, thereby diagnosing surrogate adequacy and guiding further data collection or model refinement. We demonstrate the approach on two contrasting case studies: a multidisciplinary design analysis of a hybrid-electric aircraft and an agent-based model of urban segregation. Results show that the surrogate model and XAI coupling enables large-scale exploration in seconds, uncovers nonlinear interactions and emergent behaviors, identifies key design and policy levers, and signals regions where surrogates require more data or alternative architectures.
☆ Beacon: Single-Turn Diagnosis and Mitigation of Latent Sycophancy in Large Language Models
Large language models internalize a structural trade-off between truthfulness and obsequious flattery, emerging from reward optimization that conflates helpfulness with polite submission. This latent bias, known as sycophancy, manifests as a preference for user agreement over principled reasoning. We introduce Beacon, a single-turn forced-choice benchmark that isolates this bias independent of conversational context, enabling precise measurement of the tension between factual accuracy and submissive bias. Evaluations across twelve state-of-the-art models reveal that sycophancy decomposes into stable linguistic and affective sub-biases, each scaling with model capacity. We further propose prompt-level and activation-level interventions that modulate these biases in opposing directions, exposing the internal geometry of alignment as a dynamic manifold between truthfulness and socially compliant judgment. Beacon reframes sycophancy as a measurable form of normative misgeneralization, providing a reproducible foundation for studying and mitigating alignment drift in large-scale generative systems.
☆ A Comprehensive Survey on Reinforcement Learning-based Agentic Search: Foundations, Roles, Optimizations, Evaluations, and Applications
The advent of large language models (LLMs) has transformed information access and reasoning through open-ended natural language interaction. However, LLMs remain limited by static knowledge, factual hallucinations, and the inability to retrieve real-time or domain-specific information. Retrieval-Augmented Generation (RAG) mitigates these issues by grounding model outputs in external evidence, but traditional RAG pipelines are often single turn and heuristic, lacking adaptive control over retrieval and reasoning. Recent advances in agentic search address these limitations by enabling LLMs to plan, retrieve, and reflect through multi-step interaction with search environments. Within this paradigm, reinforcement learning (RL) offers a powerful mechanism for adaptive and self-improving search behavior. This survey provides the first comprehensive overview of \emph{RL-based agentic search}, organizing the emerging field along three complementary dimensions: (i) What RL is for (functional roles), (ii) How RL is used (optimization strategies), and (iii) Where RL is applied (scope of optimization). We summarize representative methods, evaluation protocols, and applications, and discuss open challenges and future directions toward building reliable and scalable RL driven agentic search systems. We hope this survey will inspire future research on the integration of RL and agentic search. Our repository is available at https://github.com/ventr1c/Awesome-RL-based-Agentic-Search-Papers.
comment: 38 pages, 4 figures, 7 tables
☆ Beyond Pipelines: A Survey of the Paradigm Shift toward Model-Native Agentic AI
The rapid evolution of agentic AI marks a new phase in artificial intelligence, where Large Language Models (LLMs) no longer merely respond but act, reason, and adapt. This survey traces the paradigm shift in building agentic AI: from Pipeline-based systems, where planning, tool use, and memory are orchestrated by external logic, to the emerging Model-native paradigm, where these capabilities are internalized within the model's parameters. We first position Reinforcement Learning (RL) as the algorithmic engine enabling this paradigm shift. By reframing learning from imitating static data to outcome-driven exploration, RL underpins a unified solution of LLM + RL + Task across language, vision and embodied domains. Building on this, the survey systematically reviews how each capability -- Planning, Tool use, and Memory -- has evolved from externally scripted modules to end-to-end learned behaviors. Furthermore, it examines how this paradigm shift has reshaped major agent applications, specifically the Deep Research agent emphasizing long-horizon reasoning and the GUI agent emphasizing embodied interaction. We conclude by discussing the continued internalization of agentic capabilities like Multi-agent collaboration and Reflection, alongside the evolving roles of the system and model layers in future agentic AI. Together, these developments outline a coherent trajectory toward model-native agentic AI as an integrated learning and interaction framework, marking the transition from constructing systems that apply intelligence to developing models that grow intelligence through experience.
☆ Eliciting Grounded Chain-of-Thought Reasoning in 3D Scenes
Existing research on 3D Large Language Models (LLMs) still struggles to achieve grounded question-answering, primarily due to the under-exploration of the mech- anism of human-like scene-object grounded reasoning. This paper bridges the gap by presenting a novel framework. We first introduce a grounded Chain-of- Thought reasoning method in 3D scenes (SCENECOT), decoupling a complex reasoning task into simpler and manageable problems, and building corresponding visual clues based on multimodal expert modules. To enable such a method, we develop SCENECOT-185K, the first large-scale grounded CoT reasoning dataset, consisting of 185K high-quality instances. Extensive experiments across various complex 3D scene reasoning benchmarks demonstrate that our new framework achieves strong performance with high grounding-QA coherence. To the best of our knowledge, this is the first successful application of CoT reasoning to 3D scene understanding, enabling step-by-step human-like reasoning and showing potential for extension to broader 3D scene understanding scenarios.
comment: Project page: https://scenecot.github.io/
☆ The Chameleon Nature of LLMs: Quantifying Multi-Turn Stance Instability in Search-Enabled Language Models
Integration of Large Language Models with search/retrieval engines has become ubiquitous, yet these systems harbor a critical vulnerability that undermines their reliability. We present the first systematic investigation of "chameleon behavior" in LLMs: their alarming tendency to shift stances when presented with contradictory questions in multi-turn conversations (especially in search-enabled LLMs). Through our novel Chameleon Benchmark Dataset, comprising 17,770 carefully crafted question-answer pairs across 1,180 multi-turn conversations spanning 12 controversial domains, we expose fundamental flaws in state-of-the-art systems. We introduce two theoretically grounded metrics: the Chameleon Score (0-1) that quantifies stance instability, and Source Re-use Rate (0-1) that measures knowledge diversity. Our rigorous evaluation of Llama-4-Maverick, GPT-4o-mini, and Gemini-2.5-Flash reveals consistent failures: all models exhibit severe chameleon behavior (scores 0.391-0.511), with GPT-4o-mini showing the worst performance. Crucially, small across-temperature variance (less than 0.004) suggests the effect is not a sampling artifact. Our analysis uncovers the mechanism: strong correlations between source re-use rate and confidence (r=0.627) and stance changes (r=0.429) are statistically significant (p less than 0.05), indicating that limited knowledge diversity makes models pathologically deferential to query framing. These findings highlight the need for comprehensive consistency evaluation before deploying LLMs in healthcare, legal, and financial systems where maintaining coherent positions across interactions is critical for reliable decision support.
♻ ☆ GRIFFIN: Effective Token Alignment for Faster Speculative Decoding
Speculative decoding accelerates inference in large language models (LLMs) by generating multiple draft tokens simultaneously. However, existing methods often struggle with token misalignment between the training and decoding phases, limiting their performance. To address this, we propose GRIFFIN, a novel framework that incorporates a token-alignable training strategy and a token-alignable draft model to mitigate misalignment. The training strategy employs a loss masking mechanism to exclude highly misaligned tokens during training, preventing them from negatively impacting the draft model's optimization. The token-alignable draft model introduces input tokens to correct inconsistencies in generated features. Experiments on LLaMA, Vicuna, Qwen and Mixtral models demonstrate that GRIFFIN achieves an average acceptance length improvement of over 8% and a speedup ratio exceeding 7%, outperforming current speculative decoding state-of-the-art methods. Our code and GRIFFIN's draft models are released publicly in https://github.com/hsj576/GRIFFIN.
♻ ☆ Beyond Uncertainty Quantification: Learning Uncertainty for Trust-Informed Neural Network Decisions - A Case Study in COVID-19 Classification
Reliable uncertainty quantification is critical in high-stakes applications, such as medical diagnosis, where confidently incorrect predictions can erode trust in automated decision-making systems. Traditional uncertainty quantification methods rely on a predefined confidence threshold to classify predictions as confident or uncertain. However, this approach assumes that predictions exceeding the threshold are trustworthy, while those below it are uncertain, without explicitly assessing the correctness of high-confidence predictions. As a result, confidently incorrect predictions may still occur, leading to misleading uncertainty assessments. To address this limitation, this study proposed an uncertainty-aware stacked neural network, which extends conventional uncertainty quantification by learning when predictions should be trusted. The framework consists of a two-tier model: the base model generates predictions with uncertainty estimates, while the meta-model learns to assign a trust flag, distinguishing confidently correct cases from those requiring expert review. The proposed approach is evaluated against the traditional threshold-based method across multiple confidence thresholds and pre-trained architectures using the COVIDx CXR-4 dataset. Results demonstrate that the proposed framework significantly reduces confidently incorrect predictions, offering a more trustworthy and efficient decision-support system for high-stakes domains.
comment: 13 pages, 5 figures, 6 tables
♻ ☆ Creativity Benchmark: A benchmark for marketing creativity for large language models
We introduce Creativity Benchmark, an evaluation framework for large language models (LLMs) in marketing creativity. The benchmark covers 100 brands (12 categories) and three prompt types (Insights, Ideas, Wild Ideas). Human pairwise preferences from 678 practising creatives over 11,012 anonymised comparisons, analysed with Bradley-Terry models, show tightly clustered performance with no model dominating across brands or prompt types: the top-bottom spread is $\Delta\theta \approx 0.45$, which implies a head-to-head win probability of $0.61$; the highest-rated model beats the lowest only about $61\%$ of the time. We also analyse model diversity using cosine distances to capture intra- and inter-model variation and sensitivity to prompt reframing. Comparing three LLM-as-judge setups with human rankings reveals weak, inconsistent correlations and judge-specific biases, underscoring that automated judges cannot substitute for human evaluation. Conventional creativity tests also transfer only partially to brand-constrained tasks. Overall, the results highlight the need for expert human evaluation and diversity-aware workflows.
comment: 30 Pages, 14 figures. Fixed typos
♻ ☆ Robust Pan-Cancer Mitotic Figure Detection with YOLOv12
Mitotic figures represent a key histoprognostic feature in tumor pathology, providing crucial insights into tumor aggressiveness and proliferation. However, their identification remains challenging, subject to significant inter-observer variability, even among experienced pathologists. To address this issue, the MItosis DOmain Generalization (MIDOG) 2025 challenge marks the third edition of an international competition aiming to develop robust mitosis detection algorithms. In this paper, we present a mitotic figure detection approach based on the state-of-the-art YOLOv12 object detection architecture. Our method achieved an F1-score of 0.801 on the preliminary test set (hotspots only) and ranked second on the final test leaderboard with an F1-score of 0.7216 across complex and heterogeneous whole-slide regions, without relying on external data.
♻ ☆ System Prompt Poisoning: Persistent Attacks on Large Language Models Beyond User Injection
Large language models (LLMs) have gained widespread adoption across diverse applications due to their impressive generative capabilities. Their plug-and-play nature enables both developers and end users to interact with these models through simple prompts. However, as LLMs become more integrated into various systems in diverse domains, concerns around their security are growing. Existing studies mainly focus on threats arising from user prompts (e.g. prompt injection attack) and model output (e.g. model inversion attack), while the security of system prompts remains largely overlooked. This work bridges the critical gap. We introduce system prompt poisoning, a new attack vector against LLMs that, unlike traditional user prompt injection, poisons system prompts hence persistently impacts all subsequent user interactions and model responses. We systematically investigate four practical attack strategies in various poisoning scenarios. Through demonstration on both generative and reasoning LLMs, we show that system prompt poisoning is highly feasible without requiring jailbreak techniques, and effective across a wide range of tasks, including those in mathematics, coding, logical reasoning, and natural language processing. Importantly, our findings reveal that the attack remains effective even when user prompts employ advanced prompting techniques like chain-of-thought (CoT). We also show that such techniques, including CoT and retrieval-augmentation-generation (RAG), which are proven to be effective for improving LLM performance in a wide range of tasks, are significantly weakened in their effectiveness by system prompt poisoning.
♻ ☆ Incentivizing Truthful Language Models via Peer Elicitation Games
Large Language Models (LLMs) have demonstrated strong generative capabilities but remain prone to inconsistencies and hallucinations. We introduce Peer Elicitation Games (PEG), a training-free, game-theoretic framework for aligning LLMs through a peer elicitation mechanism involving a generator and multiple discriminators instantiated from distinct base models. Discriminators interact in a peer evaluation setting, where utilities are computed using a determinant-based mutual information score that provably incentivizes truthful reporting without requiring ground-truth labels. We establish theoretical guarantees showing that each agent, via online learning, achieves sublinear regret in the sense their cumulative performance approaches that of the best fixed truthful strategy in hindsight. Moreover, we prove last-iterate convergence to a truthful Nash equilibrium, ensuring that the actual policies used by agents converge to stable and truthful behavior over time. Empirical evaluations across multiple benchmarks demonstrate significant improvements in factual accuracy. These results position PEG as a practical approach for eliciting truthful behavior from LLMs without supervision or fine-tuning.
♻ ☆ Efficient Large Language Model Inference with Neural Block Linearization
The high inference demands of transformer-based Large Language Models (LLMs) pose substantial challenges in their deployment. To this end, we introduce Neural Block Linearization (NBL), a novel framework for accelerating transformer model inference by replacing self-attention layers with linear approximations derived from Linear Minimum Mean Squared Error estimators. NBL leverages Canonical Correlation Analysis to compute a theoretical upper bound on the approximation error. Then, we use this bound as a criterion for substitution, selecting the LLM layers with the lowest linearization error. NBL can be efficiently applied to pre-trained LLMs without the need for fine-tuning. In experiments, NBL achieves notable computational speed-ups while preserving competitive accuracy on multiple reasoning benchmarks. For instance, applying NBL to 12 self-attention layers in DeepSeek-R1-Distill-Llama-8B increases the inference speed by 32% with less than 1% accuracy trade-off, making it a flexible and promising solution to improve the inference efficiency of LLMs. The implementation is available at: https://github.com/LIONS-EPFL/NBL.
♻ ☆ RL-PLUS: Countering Capability Boundary Collapse of LLMs in Reinforcement Learning with Hybrid-policy Optimization
Reinforcement Learning with Verifiable Reward (RLVR) has significantly advanced the complex reasoning abilities of Large Language Models (LLMs). However, it struggles to break through the inherent capability boundaries of the base LLM, due to its essentially on-policy strategy coupled with LLM's immense action space and sparse reward. Critically, RLVR can lead to the capability boundary collapse, narrowing the LLM's problem-solving scope. To address this problem, we propose RL-PLUS, a novel hybrid-policy optimization approach for LLMs that synergizes internal exploitation with external data to achieve stronger reasoning capabilities and surpass the boundaries of base models. RL-PLUS integrates two core components, i.e., Multiple Importance Sampling to address distributional mismatch from external data, and Exploration-Based Advantage Function to guide the model towards high-value, unexplored reasoning paths. We provide both theoretical analysis and extensive experiments to demonstrate the superiority and generalizability of our approach. Compared with existing RLVR methods, RL-PLUS achieves 1) state-of-the-art performance on six math reasoning benchmarks; 2) superior performance on six out-of-distribution reasoning tasks; 3) consistent and significant gains across diverse model families, with average relative improvements up to 69.2\%. Moreover, the analysis of Pass@k curves indicates that RL-PLUS effectively resolves the capability boundary collapse problem.
♻ ☆ Harmony in Divergence: Towards Fast, Accurate, and Memory-efficient Zeroth-order LLM Fine-tuning
Large language models (LLMs) excel across various tasks, but standard first-order (FO) fine-tuning demands considerable memory, significantly limiting real-world deployment. Recently, zeroth-order (ZO) optimization stood out as a promising memory-efficient training paradigm, avoiding backward passes and relying solely on forward passes for gradient estimation, making it attractive for resource-constrained scenarios. However, ZO method lags far behind FO method in both convergence speed and accuracy. To bridge the gap, we introduce a novel layer-wise divergence analysis that uncovers the distinct update pattern of FO and ZO optimization. Aiming to resemble the learning capacity of FO method from the findings, we propose Divergence-driven Zeroth-Order (DiZO) optimization. DiZO conducts divergence-driven layer adaptation by incorporating projections to ZO updates, generating diverse-magnitude updates precisely scaled to layer-wise individual optimization needs. Our results demonstrate that DiZO significantly reduces the needed iterations for convergence without sacrificing throughput, cutting training GPU hours by up to 48\% on various datasets. Moreover, DiZO consistently outperforms the representative ZO baselines in fine-tuning RoBERTa-large, OPT-series, and Llama-series on downstream tasks and, in some cases, even surpasses memory-intensive FO fine-tuning. Our code is released at https://github.com/Skilteee/DiZO.
♻ ☆ From Sequence to Structure: Uncovering Substructure Reasoning in Transformers
Recent studies suggest that large language models (LLMs) possess the capability to solve graph reasoning tasks. Notably, even when graph structures are embedded within textual descriptions, LLMs can still effectively answer related questions. This raises a fundamental question: How can a decoder-only Transformer architecture understand underlying graph structures? To address this, we start with the substructure extraction task, interpreting the inner mechanisms inside the transformers and analyzing the impact of the input queries. Specifically, through both empirical results and theoretical analysis, we present Induced Substructure Filtration (ISF), a perspective that captures the substructure identification in the multi-layer transformers. We further validate the ISF process in LLMs, revealing consistent internal dynamics across layers. Building on these insights, we explore the broader capabilities of Transformers in handling diverse graph types. Specifically, we introduce the concept of thinking in substructures to efficiently extract complex composite patterns, and demonstrate that decoder-only Transformers can successfully extract substructures from attributed graphs, such as molecular graphs. Together, our findings offer a new insight on how sequence-based Transformers perform the substructure extraction task over graph data.
comment: Camera Ready version for Neurips 2025
♻ ☆ mini-vec2vec: Scaling Universal Geometry Alignment with Linear Transformations
We build upon vec2vec, a procedure designed to align text embedding spaces without parallel data. vec2vec finds a near-perfect alignment, but it is expensive and unstable. We present mini-vec2vec, a simple and efficient alternative that requires substantially lower computational cost and is highly robust. Moreover, the learned mapping is a linear transformation. Our method consists of three main stages: a tentative matching of pseudo-parallel embedding vectors, transformation fitting, and iterative refinement. Our linear alternative exceeds the original instantiation of vec2vec by orders of magnitude in efficiency, while matching or exceeding their results. The method's stability and interpretable algorithmic steps facilitate scaling and unlock new opportunities for adoption in new domains and fields.
♻ ☆ Formally Verified Certification of Unsolvability of Temporal Planning Problems
We present an approach to unsolvability certification of temporal planning. Our approach is based on encoding the planning problem into a network of timed automata, and then using an efficient model checker on the network followed by a certificate checker to certify the output of the model checker. Our approach prioritises trustworthiness of the certification: we formally verify our implementation of the encoding to timed automata using the theorem prover Isabelle/HOL and we use an existing certificate checker (also formally verified in Isabelle/HOL) to certify the model checking result.
♻ ☆ Smart Traffic Signals: Comparing MARL and Fixed-Time Strategies
Urban traffic congestion, particularly at intersections, significantly impacts travel time, fuel consumption, and emissions. Traditional fixed-time signal control systems often lack the adaptability to manage dynamic traffic patterns effectively. This study explores the application of multi-agent reinforcement learning (MARL) to optimize traffic signal coordination across multiple intersections within a simulated environment. Utilizing Pygame, a simulation was developed to model a network of interconnected intersections with randomly generated vehicle flows to reflect realistic traffic variability. A decentralized MARL controller was implemented, in which each traffic signal operates as an autonomous agent, making decisions based on local observations and information from neighboring agents. Performance was evaluated against a baseline fixed-time controller using metrics such as average vehicle wait time and overall throughput. The MARL approach demonstrated statistically significant improvements, including reduced average waiting times and improved throughput. These findings suggest that MARL-based dynamic control strategies hold substantial promise for improving urban traffic management efficiency. More research is recommended to address scalability and real-world implementation challenges.
♻ ☆ DOGe: Defensive Output Generation for LLM Protection Against Knowledge Distillation
Large Language Models (LLMs) represent substantial intellectual and economic investments, yet their effectiveness can inadvertently facilitate model imitation via knowledge distillation (KD). In practical scenarios, competitors can distill proprietary LLM capabilities by simply observing publicly accessible outputs, akin to reverse-engineering a complex performance by observation alone. Existing protective methods like watermarking only identify imitation post-hoc, while other defenses assume the student model mimics the teacher's internal logits, rendering them ineffective against distillation purely from observed output text. This paper confronts the challenge of actively protecting LLMs within the realistic constraints of API-based access. We introduce an effective and efficient Defensive Output Generation (DOGe) strategy that subtly modifies the output behavior of an LLM. Its outputs are accurate and useful for legitimate users, yet are designed to be misleading for distillation, significantly undermining imitation attempts. We achieve this by fine-tuning only the final linear layer of the teacher LLM with an adversarial loss. This targeted training approach anticipates and disrupts distillation attempts during inference time. Our experiments show that, while preserving the performance of the teacher model, student models distilled from the defensively generated outputs demonstrate catastrophically reduced performance, demonstrating DOGe as a practical safeguard against KD-based model imitation.
comment: Code is available at https://github.com/unites-lab/doge
♻ ☆ HardNet: Hard-Constrained Neural Networks with Universal Approximation Guarantees
Incorporating prior knowledge or specifications of input-output relationships into machine learning models has attracted significant attention, as it enhances generalization from limited data and yields conforming outputs. However, most existing approaches use soft constraints by penalizing violations through regularization, which offers no guarantee of constraint satisfaction, especially on inputs far from the training distribution--an essential requirement in safety-critical applications. On the other hand, imposing hard constraints on neural networks may hinder their representational power, adversely affecting performance. To address this, we propose HardNet, a practical framework for constructing neural networks that inherently satisfy hard constraints without sacrificing model capacity. Unlike approaches that modify outputs only at inference time, HardNet enables end-to-end training with hard constraint guarantees, leading to improved performance. To the best of our knowledge, HardNet is the first method that enables efficient and differentiable enforcement of more than one input-dependent inequality constraint. It allows unconstrained optimization of the network parameters using standard algorithms by appending a differentiable closed-form enforcement layer to the network's output. Furthermore, we show that HardNet retains neural networks' universal approximation capabilities. We demonstrate its versatility and effectiveness across various applications: learning with piecewise constraints, learning optimization solvers with guaranteed feasibility, and optimizing control policies in safety-critical systems.
♻ ☆ $Q\sharp$: Provably Optimal Distributional RL for LLM Post-Training NeurIPS 2025
Reinforcement learning (RL) post-training is crucial for LLM alignment and reasoning, but existing policy-based methods, such as PPO and DPO, can fall short of fixing shortcuts inherited from pre-training. In this work, we introduce $Q\sharp$, a value-based algorithm for KL-regularized RL that guides the reference policy using the optimal regularized $Q$ function. We propose to learn the optimal $Q$ function using distributional RL on an aggregated online dataset. Unlike prior value-based baselines that guide the model using unregularized $Q$-values, our method is theoretically principled and provably learns the optimal policy for the KL-regularized RL problem. Empirically, $Q\sharp$ outperforms prior baselines in math reasoning benchmarks while maintaining a smaller KL divergence to the reference policy. Theoretically, we establish a reduction from KL-regularized RL to no-regret online learning, providing the first bounds for deterministic MDPs under only realizability. Thanks to distributional RL, our bounds are also variance-dependent and converge faster when the reference policy has small variance. In sum, our results highlight $Q\sharp$ as an effective approach for post-training LLMs, offering both improved performance and theoretical guarantees. The code can be found at https://github.com/jinpz/q_sharp.
comment: NeurIPS 2025
♻ ☆ Towards Principled Unsupervised Multi-Agent Reinforcement Learning
In reinforcement learning, we typically refer to unsupervised pre-training when we aim to pre-train a policy without a priori access to the task specification, i.e. rewards, to be later employed for efficient learning of downstream tasks. In single-agent settings, the problem has been extensively studied and mostly understood. A popular approach, called task-agnostic exploration, casts the unsupervised objective as maximizing the entropy of the state distribution induced by the agent's policy, from which principles and methods follow. In contrast, little is known about it in multi-agent settings, which are ubiquitous in the real world. What are the pros and cons of alternative problem formulations in this setting? How hard is the problem in theory, how can we solve it in practice? In this paper, we address these questions by first characterizing those alternative formulations and highlighting how the problem, even when tractable in theory, is non-trivial in practice. Then, we present a scalable, decentralized, trust-region policy search algorithm to address the problem in practical settings. Finally, we provide numerical validations to both corroborate the theoretical findings and pave the way for unsupervised multi-agent reinforcement learning via task-agnostic exploration in challenging domains, showing that optimizing for a specific objective, namely mixture entropy, provides an excellent trade-off between tractability and performances.
♻ ☆ Enhancing Osteoporosis Detection: An Explainable Multi-Modal Learning Framework with Feature Fusion and Variable Clustering
Osteoporosis is a common condition that increases fracture risk, especially in older adults. Early diagnosis is vital for preventing fractures, reducing treatment costs, and preserving mobility. However, healthcare providers face challenges like limited labeled data and difficulties in processing medical images. This study presents a novel multi-modal learning framework that integrates clinical and imaging data to improve diagnostic accuracy and model interpretability. The model utilizes three pre-trained networks-VGG19, InceptionV3, and ResNet50-to extract deep features from X-ray images. These features are transformed using PCA to reduce dimensionality and focus on the most relevant components. A clustering-based selection process identifies the most representative components, which are then combined with preprocessed clinical data and processed through a fully connected network (FCN) for final classification. A feature importance plot highlights key variables, showing that Medical History, BMI, and Height were the main contributors, emphasizing the significance of patient-specific data. While imaging features were valuable, they had lower importance, indicating that clinical data are crucial for accurate predictions. This framework promotes precise and interpretable predictions, enhancing transparency and building trust in AI-driven diagnoses for clinical integration.
♻ ☆ Online automatic code generation for robot swarms: LLMs and self-organizing hierarchy IROS 2025
Our recently introduced self-organizing nervous system (SoNS) provides robot swarms with 1) ease of behavior design and 2) global estimation of the swarm configuration and its collective environment, facilitating the implementation of online automatic code generation for robot swarms. In a demonstration with 6 real robots and simulation trials with >30 robots, we show that when a SoNS-enhanced robot swarm gets stuck, it can automatically solicit and run code generated by an external LLM on the fly, completing its mission with an 85% success rate.
comment: This abstract was accepted to and presented at the "Multi-Agent Cooperative Systems and Swarm Robotics in the Era of Generative AI" (MACRAI) workshop at the 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025)
♻ ☆ A Prospect-Theoretic Policy Gradient Framework for Behaviorally Nuanced Reinforcement Learning
Classical reinforcement learning (RL) typically assumes rational decision-making based on expected utility theory. However, this model has been shown to be empirically inconsistent with actual human preferences, as evidenced in psychology and behavioral economics. Cumulative Prospect Theory (CPT) provides a more nuanced model for human-based decision-making, capturing diverse attitudes and perceptions toward risk, gains, and losses. While prior work has integrated CPT with RL to solve CPT policy optimization problems, the understanding and impact of this formulation remain limited. Our contributions are as follows: (a) we derive a novel policy gradient theorem for CPT objectives, generalizing the foundational result in standard RL, (b) we design a model-free policy gradient algorithm for solving the CPT-RL problem, (c) we analyze our policy gradient estimator and prove asymptotic convergence of the algorithm to first-order stationary points, and (d) test its performance through simulations. Notably, our first-order policy gradient algorithm scales better than existing zeroth-order methods to larger state spaces. Our theoretical framework offers more flexibility to advance the integration of behavioral decision-making into RL.
♻ ☆ Co-Alignment: Rethinking Alignment as Bidirectional Human-AI Cognitive Adaptation
Current AI alignment through RLHF follows a single directional paradigm that AI conforms to human preferences while treating human cognition as fixed. We propose a shift to co-alignment through Bidirectional Cognitive Alignment (BiCA), where humans and AI mutually adapt. BiCA uses learnable protocols, representation mapping, and KL-budget constraints for controlled co-evolution. In collaborative navigation, BiCA achieved 85.5% success versus 70.3% baseline, with 230% better mutual adaptation and 332% better protocol convergence. Emergent protocols outperformed handcrafted ones by 84%, while bidirectional adaptation unexpectedly improved safety (+23% out-of-distribution robustness). The 46% synergy improvement demonstrates optimal collaboration exists at the intersection, not union, of human and AI capabilities, validating the shift from single-directional to co-alignment paradigms.
♻ ☆ Large Language Models are Powerful Electronic Health Record Encoders
Electronic Health Records (EHRs) offer considerable potential for clinical prediction, but their complexity and heterogeneity present significant challenges for traditional machine learning methods. Recently, domain-specific EHR foundation models trained on large volumes of unlabeled EHR data have shown improved predictive accuracy and generalization. However, their development is constrained by limited access to diverse, high-quality datasets, and inconsistencies in coding standards and clinical practices. In this study, we explore the use of general-purpose Large Language Models (LLMs) to encode EHR into high-dimensional representations for downstream clinical prediction tasks. We convert structured EHR data into Markdown-formatted plain-text documents by replacing medical codes with natural language descriptions. This enables the use of LLMs and their extensive semantic understanding and generalization capabilities as effective encoders of EHRs without requiring access to private medical training data. We show that LLM-based embeddings can often match or even surpass the performance of a specialized EHR foundation model, CLMBR-T-Base, across 15 diverse clinical tasks from the EHRSHOT benchmark. Critically, our approach requires no institution-specific training and can incorporate any medical code with a text description, whereas existing EHR foundation models operate on fixed vocabularies and can only process codes seen during pretraining. To demonstrate generalizability, we further evaluate the approach on the UK Biobank (UKB) cohort, out-of-domain for CLMBR-T-Base, whose fixed vocabulary covers only 16% of UKB codes. Notably, an LLM-based model achieves superior performance for prediction of disease onset, hospitalization, and mortality, indicating robustness to population and coding shifts.
♻ ☆ VolleyBots: A Testbed for Multi-Drone Volleyball Game Combining Motion Control and Strategic Play NeurIPS 2025
Robot sports, characterized by well-defined objectives, explicit rules, and dynamic interactions, present ideal scenarios for demonstrating embodied intelligence. In this paper, we present VolleyBots, a novel robot sports testbed where multiple drones cooperate and compete in the sport of volleyball under physical dynamics. VolleyBots integrates three features within a unified platform: competitive and cooperative gameplay, turn-based interaction structure, and agile 3D maneuvering. These intertwined features yield a complex problem combining motion control and strategic play, with no available expert demonstrations. We provide a comprehensive suite of tasks ranging from single-drone drills to multi-drone cooperative and competitive tasks, accompanied by baseline evaluations of representative reinforcement learning (RL), multi-agent reinforcement learning (MARL) and game-theoretic algorithms. Simulation results show that on-policy RL methods outperform off-policy methods in single-agent tasks, but both approaches struggle in complex tasks that combine motion control and strategic play. We additionally design a hierarchical policy which achieves 69.5% win rate against the strongest baseline in the 3 vs 3 task, demonstrating its potential for tackling the complex interplay between low-level control and high-level strategy. To highlight VolleyBots' sim-to-real potential, we further demonstrate the zero-shot deployment of a policy trained entirely in simulation on real-world drones.
comment: Accepted by NeurIPS 2025
♻ ☆ Seeing in the Dark: A Teacher-Student Framework for Dark Video Action Recognition via Knowledge Distillation and Contrastive Learning
Action recognition in dark or low-light (under-exposed) videos is a challenging task due to visibility degradation, which can hinder critical spatiotemporal details. This paper proposes ActLumos, a teacher-student framework that attains single-stream inference while retaining multi-stream level accuracy. The teacher consumes dual stream inputs, which include original dark frames and retinex-enhanced frames, processed by weight-shared R(2+1)D-34 backbones and fused by a Dynamic Feature Fusion (DFF) module, which dynamically re-weights the two streams at each time step, emphasising the most informative temporal segments. The teacher is also included with a supervised contrastive loss (SupCon) that sharpens class margins. The student shares the R(2+1)D-34 backbone but uses only dark frames and no fusion at test time. The student is first pre-trained with self-supervision on dark clips of both datasets without their labels and then fine-tuned with knowledge distillation from the teacher, transferring the teacher's multi-stream knowledge into a single-stream model. Under single-stream inference, the distilled student attains state-of-the-art accuracy of 96.92% (Top-1) on ARID V1.0, 88.27% on ARID V1.5, and 48.96% on Dark48. Ablation studies further highlight the individual contributions of each component, i.e., DFF in the teacher outperforms single or static fusion, knowledge distillation (KD) transfers these gains to the single-stream student, and two-view spatio-temporal SSL surpasses spatial-only or temporal-only variants without increasing inference cost. The official website of this work is available at: https://github.com/HrishavBakulBarua/ActLumos
♻ ☆ AutoLungDx: A Hybrid Deep Learning Approach for Early Lung Cancer Diagnosis Using 3D Res-U-Net, YOLOv5, and Vision Transformers
Lung cancer is a leading cause of cancer-related deaths worldwide, and early detection is crucial for improving patient outcomes. Nevertheless, early diagnosis of cancer is a major challenge, particularly in low-resource settings where access to medical resources and trained radiologists is limited. The objective of this study is to propose an automated end-to-end deep learning-based framework for the early detection and classification of lung nodules, specifically for low-resource settings. The proposed framework consists of three stages: lung segmentation using a modified 3D U-Net named 3D Res-U-Net, nodule detection using YOLO-v5, and classification with a Vision Transformer-based architecture. We evaluated the proposed framework on a publicly available dataset, LUNA16. The proposed framework's performance was measured using the respective domain's evaluation matrices. The proposed framework achieved a 98.82% lung segmentation dice score while detecting the lung nodule with 0.76 mAP@50 from the segmented lung, at a low false-positive rate. The performance of both networks of the proposed framework was compared with other studies and found to outperform them regarding segmentation and detection accuracy. Additionally, our proposed Vision transformer network obtained an accuracy of 93.57%, which is 1.21% higher than the state-of-the-art networks. Our proposed end-to-end deep learning-based framework can effectively segment lungs, and detect and classify lung nodules, specifically in low-resource settings with limited access to radiologists. The proposed framework outperforms existing studies regarding all the respective evaluation metrics. The proposed framework can potentially improve the accuracy and efficiency of lung cancer screening in low-resource settings, ultimately leading to better patient outcomes.
♻ ☆ LLM-Enhanced Black-Litterman Portfolio Optimization CIKM 2025
The Black-Litterman model addresses the sensitivity issues of tra- ditional mean-variance optimization by incorporating investor views, but systematically generating these views remains a key challenge. This study proposes and validates a systematic frame- work that translates return forecasts and predictive uncertainty from Large Language Models (LLMs) into the core inputs for the Black-Litterman model: investor views and their confidence lev- els. Through a backtest on S&P 500 constituents, we demonstrate that portfolios driven by top-performing LLMs significantly out- perform traditional baselines in both absolute and risk-adjusted terms. Crucially, our analysis reveals that each LLM exhibits a dis- tinct and consistent investment style which is the primary driver of performance. We found that the selection of an LLM is therefore not a search for a single best forecaster, but a strategic choice of an investment style whose success is contingent on its alignment with the prevailing market regime. The source code and data are available at https://github.com/youngandbin/LLM-BLM.
comment: Presented at the CIKM 2025 Workshop on Financial AI (https://advancesinfinancialai.com/)
♻ ☆ A Multi-Stage Hybrid CNN-Transformer Network for Automated Pediatric Lung Sound Classification
Automated analysis of lung sound auscultation is essential for monitoring respiratory health, especially in regions facing a shortage of skilled healthcare workers. While respiratory sound classification has been widely studied in adults, its ap plication in pediatric populations, particularly in children aged <6 years, remains an underexplored area. The developmental changes in pediatric lungs considerably alter the acoustic proper ties of respiratory sounds, necessitating specialized classification approaches tailored to this age group. To address this, we propose a multistage hybrid CNN-Transformer framework that combines CNN-extracted features with an attention-based architecture to classify pediatric respiratory diseases using scalogram images from both full recordings and individual breath events. Our model achieved an overall score of 0.9039 in binary event classifi cation and 0.8448 in multiclass event classification by employing class-wise focal loss to address data imbalance. At the recording level, the model attained scores of 0.720 for ternary and 0.571 for multiclass classification. These scores outperform the previous best models by 3.81% and 5.94%, respectively. This approach offers a promising solution for scalable pediatric respiratory disease diagnosis, especially in resource-limited settings.
♻ ☆ Chiplet-Based RISC-V SoC with Modular AI Acceleration
Achieving high performance, energy efficiency, and cost-effectiveness while maintaining architectural flexibility is a critical challenge in the development and deployment of edge AI devices. Monolithic SoC designs struggle with this complex balance mainly due to low manufacturing yields (below 16%) at advanced 360 mm^2 process nodes. This paper presents a novel chiplet-based RISC-V SoC architecture that addresses these limitations through modular AI acceleration and intelligent system level optimization. Our proposed design integrates 4 different key innovations in a 30mm x 30mm silicon interposer: adaptive cross-chiplet Dynamic Voltage and Frequency Scaling (DVFS); AI-aware Universal Chiplet Interconnect Express (UCIe) protocol extensions featuring streaming flow control units and compression-aware transfers; distributed cryptographic security across heterogeneous chiplets; and intelligent sensor-driven load migration. The proposed architecture integrates a 7nm RISC-V CPU chiplet with dual 5nm AI accelerators (15 TOPS INT8 each), 16GB HBM3 memory stacks, and dedicated power management controllers. Experimental results across industry standard benchmarks like MobileNetV2, ResNet-50 and real-time video processing demonstrate significant performance improvements. The AI-optimized configuration achieves ~14.7% latency reduction, 17.3% throughput improvement, and 16.2% power reduction compared to previous basic chiplet implementations. These improvements collectively translate to a 40.1% efficiency gain corresponding to ~3.5 mJ per MobileNetV2 inference (860 mW/244 images/s), while maintaining sub-5ms real-time capability across all experimented workloads. These performance upgrades demonstrate that modular chiplet designs can achieve near-monolithic computational density while enabling cost efficiency, scalability and upgradeability, crucial for next-generation edge AI device applications.
comment: 3 pages, 3 figures and 2 tables
♻ ☆ SpikingBrain: Spiking Brain-inspired Large Models
Mainstream Transformer-based large language models face major efficiency bottlenecks: training computation scales quadratically with sequence length, and inference memory grows linearly, limiting long-context processing. Building large models on non-NVIDIA platforms also poses challenges for stable and efficient training. To address this, we introduce SpikingBrain, a family of brain-inspired models designed for efficient long-context training and inference. SpikingBrain leverages the MetaX GPU cluster and focuses on three aspects: (1) Model Architecture: linear and hybrid-linear attention architectures with adaptive spiking neurons; (2) Algorithmic Optimizations: an efficient, conversion-based training pipeline and a dedicated spike coding framework; (3) System Engineering: customized training frameworks, operator libraries, and parallelism strategies tailored to MetaX hardware. Using these techniques, we develop two models: SpikingBrain-7B, a linear LLM, and SpikingBrain-76B, a hybrid-linear MoE LLM. These models demonstrate the feasibility of large-scale LLM development on non-NVIDIA platforms. SpikingBrain achieves performance comparable to open-source Transformer baselines while using only about 150B tokens for continual pre-training. Our models significantly improve long-sequence training efficiency and deliver inference with (partially) constant memory and event-driven spiking behavior. For example, SpikingBrain-7B attains over 100x speedup in Time to First Token for 4M-token sequences. Training remains stable for weeks on hundreds of MetaX C550 GPUs, with the 7B model reaching a Model FLOPs Utilization of 23.4 percent. The proposed spiking scheme achieves 69.15 percent sparsity, enabling low-power operation. Overall, this work demonstrates the potential of brain-inspired mechanisms to drive the next generation of efficient and scalable large model design.
♻ ☆ DP-Fusion: Token-Level Differentially Private Inference for Large Language Models UAI
Large language models (LLMs) do not preserve privacy at inference-time. The LLM's outputs can inadvertently reveal information about the model's context, which presents a privacy challenge when the LLM is augmented via tools or databases containing sensitive information. Existing privacy-preserving methods at inference-time have significant limitations since they (i) lack provable guarantees or (ii) have a poor utility/privacy trade-off. We propose DP-Fusion, a Differentially Private Inference (DPI) mechanism for LLMs that provably bounds the influence a set of tokens in the context can have on the LLM's output. DP-Fusion works as follows: (1) label a subset of sensitive tokens, (2) infer the LLM without any sensitive tokens to obtain a baseline, (3) infer the LLM with the sensitive tokens, and (4) blend distributions so that the final output remains within a bounded distance of the baseline distribution. While this per-token influence bound also mitigates jailbreak-style prompt injection, we focus on \emph{document privatization}, where the goal is to paraphrase a document containing sensitive tokens, e.g., personally identifiable information, so that no attacker can reliably infer them from the paraphrased document while preserving high text quality. The privacy/utility trade-off is controlled by $\epsilon$, where $\epsilon=0$ hides sensitive tokens entirely, while higher values trade off privacy for improved text quality. We show that our method creates token-level provably privatized documents with substantially improved theoretical and empirical privacy, achieving $6\times$ lower perplexity than related DPI methods.
comment: Our code and data are publicly available here: https://github.com/MBZUAI-Trustworthy-ML/DP-Fusion-DPI
♻ ☆ A Survey on LLM-as-a-Judge
Accurate and consistent evaluation is crucial for decision-making across numerous fields, yet it remains a challenging task due to inherent subjectivity, variability, and scale. Large Language Models (LLMs) have achieved remarkable success across diverse domains, leading to the emergence of "LLM-as-a-Judge," where LLMs are employed as evaluators for complex tasks. With their ability to process diverse data types and provide scalable, cost-effective, and consistent assessments, LLMs present a compelling alternative to traditional expert-driven evaluations. However, ensuring the reliability of LLM-as-a-Judge systems remains a significant challenge that requires careful design and standardization. This paper provides a comprehensive survey of LLM-as-a-Judge, addressing the core question: How can reliable LLM-as-a-Judge systems be built? We explore strategies to enhance reliability, including improving consistency, mitigating biases, and adapting to diverse assessment scenarios. Additionally, we propose methodologies for evaluating the reliability of LLM-as-a-Judge systems, supported by a novel benchmark designed for this purpose. To advance the development and real-world deployment of LLM-as-a-Judge systems, we also discussed practical applications, challenges, and future directions. This survey serves as a foundational reference for researchers and practitioners in this rapidly evolving field.
comment: Project Page: https://awesome-llm-as-a-judge.github.io/
♻ ☆ When To Solve, When To Verify: Compute-Optimal Problem Solving and Generative Verification for LLM Reasoning
Scaling test-time compute has emerged as a key strategy for enhancing the reasoning capabilities of large language models (LLMs), particularly in tasks like mathematical problem-solving. A traditional approach, Self-Consistency (SC), generates multiple solutions to a problem and selects the most common answer via majority voting. Another common method involves scoring each solution with a reward model (verifier) and choosing the best one. Recent advancements in Generative Reward Models (GenRM) reframe verification as a next-token prediction task, enabling inference-time scaling along a new axis. Specifically, GenRM generates multiple verification chains-of-thought to score each solution. Under a limited inference budget, this introduces a fundamental trade-off: should you spend the budget on scaling solutions via SC or generate fewer solutions and allocate compute to verification via GenRM? To address this, we evaluate GenRM against SC under a fixed inference budget. Interestingly, we find that SC is more compute-efficient than GenRM for most practical inference budgets across diverse models and datasets. For instance, GenRM first matches SC after consuming up to 8x the inference compute and requires significantly more compute to outperform it. Furthermore, we derive inference scaling laws for the GenRM paradigm, revealing that compute-optimal inference favors scaling solution generation more aggressively than scaling the number of verifications. Our work provides practical guidance on optimizing test-time scaling by balancing solution generation and verification. The code is available at https://github.com/nishadsinghi/sc-genrm-scaling.
comment: COLM 2025
♻ ☆ Repo2Run: Automated Building Executable Environment for Code Repository at Scale
Scaling up executable code data is significant for improving language models' software engineering capability. The intricate nature of the process makes it labor-intensive, time-consuming and expert-knowledge-dependent to build a large number of executable code repositories, limiting the scalability of existing work based on running tests. The primary bottleneck lies in the automated building of test environments for different repositories, which is an essential yet underexplored task. To mitigate the gap, we introduce Repo2Run, the first LLM-based agent aiming at automating the building of executable test environments for any repositories at scale. Specifically, given a code repository, Repo2Run iteratively builds the Docker image, runs unit tests based on the feedback of the building, and synthesizes the Dockerfile until the entire pipeline is executed successfully. The resulting Dockerfile can then be used to create Docker container environments for running code and tests. We created a benchmark containing 420 Python repositories with unit tests for evaluation. The results illustrate that Repo2Run achieves an 86.0% success rate, outperforming SWE-agent by 77.0%. The resources of Repo2Run are available at https://github.com/bytedance/Repo2Run.
♻ ☆ An Empirical Study on LLM-based Agents for Automated Bug Fixing
Large language models (LLMs) and LLM-based Agents have been applied to fix bugs automatically, demonstrating the capability in addressing software defects by engaging in development environment interaction, iterative validation and code modification. However, systematic analysis of these agent systems remain limited, particularly regarding performance variations among top-performing ones. In this paper, we examine six repair systems on the SWE-bench Verified benchmark for automated bug fixing. We first assess each system's overall performance, noting the instances solvable by all or none of these systems, and explore the capabilities of different systems. We also compare fault localization accuracy at file and code symbol levels and evaluate bug reproduction capabilities. Through analysis, we concluded that further optimization is needed in both the LLM capability itself and the design of Agentic flow to improve the effectiveness of the Agent in bug fixing.
♻ ☆ RealMath: A Continuous Benchmark for Evaluating Language Models on Research-Level Mathematics NeurIPS 2025
Existing benchmarks for evaluating mathematical reasoning in large language models (LLMs) rely primarily on competition problems, formal proofs, or artificially challenging questions -- failing to capture the nature of mathematics encountered in actual research environments. We introduce RealMath, a novel benchmark derived directly from research papers and mathematical forums that assesses LLMs' abilities on authentic mathematical tasks. Our approach addresses three critical challenges: sourcing diverse research-level content, enabling reliable automated evaluation through verifiable statements, and designing a continually refreshable dataset to mitigate contamination risks. Experimental results across multiple LLMs reveal surprising capabilities in handling research mathematics compared to competition problems, suggesting current models may already serve as valuable assistants for working mathematicians despite limitations on highly challenging problems. The code and dataset for RealMath are publicly available.
comment: Accepted at NeurIPS 2025
♻ ☆ A Systematic Approach to Predict the Impact of Cybersecurity Vulnerabilities Using LLMs IEEE
Vulnerability databases, such as the National Vulnerability Database (NVD), offer detailed descriptions of Common Vulnerabilities and Exposures (CVEs), but often lack information on their real-world impact, such as the tactics, techniques, and procedures (TTPs) that adversaries may use to exploit the vulnerability. However, manually linking CVEs to their corresponding TTPs is a challenging and time-consuming task, and the high volume of new vulnerabilities published annually makes automated support desirable. This paper introduces TRIAGE, a two-pronged automated approach that uses Large Language Models (LLMs) to map CVEs to relevant techniques from the ATT&CK knowledge base. We first prompt an LLM with instructions based on MITRE's CVE Mapping Methodology to predict an initial list of techniques. This list is then combined with the results from a second LLM-based module that uses in-context learning to map a CVE to relevant techniques. This hybrid approach strategically combines rule-based reasoning with data-driven inference. Our evaluation reveals that in-context learning outperforms the individual mapping methods, and the hybrid approach improves recall of exploitation techniques. We also find that GPT-4o-mini performs better than Llama3.3-70B on this task. Overall, our results show that LLMs can be used to automatically predict the impact of cybersecurity vulnerabilities and TRIAGE makes the process of mapping CVEs to ATT&CK more efficient. A replication package is available for download from https://doi.org/10.5281/zenodo.17341503. Keywords: vulnerability impact, CVE, ATT&CK techniques, large language models, automated mapping.
comment: Accepted for publication in the 24th IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom 2025)
♻ ☆ Intrinsic Self-Correction in LLMs: Towards Explainable Prompting via Mechanistic Interpretability
Intrinsic self-correction refers to the phenomenon where a language model refines its own outputs purely through prompting, without external feedback or parameter updates. While this approach improves performance across diverse tasks, its internal mechanism remains poorly understood. We analyze intrinsic self-correction from a representation-level perspective. We formalize and introduce the notion of a prompt-induced shift, which is the change in hidden representations caused by a self-correction prompt. Across 5 open-source LLMs, prompt-induced shifts in text detoxification and text toxification align with latent directions constructed from contrastive pairs. In detoxification, the shifts align with the non-toxic direction; in toxification, they align with the toxic direction. These results suggest that intrinsic self-correction functions as representation steering along interpretable latent directions, beyond what standard metrics such as task scores or model confidence capture. Our analysis offers an interpretability-based account of intrinsic self-correction and contributes to a more systematic understanding of LLM prompting.
♻ ☆ FetalCLIP: A Visual-Language Foundation Model for Fetal Ultrasound Image Analysis
Foundation models are becoming increasingly effective in the medical domain, offering pre-trained models on large datasets that can be readily adapted for downstream tasks. Despite progress, fetal ultrasound images remain a challenging domain for foundation models due to their inherent complexity, often requiring substantial additional training and facing limitations due to the scarcity of paired multimodal data. To overcome these challenges, here we introduce FetalCLIP, a vision-language foundation model capable of generating universal representation of fetal ultrasound images. FetalCLIP was pre-trained using a multimodal learning approach on a diverse dataset of 210,035 fetal ultrasound images paired with text. This represents the largest paired dataset of its kind used for foundation model development to date. This unique training approach allows FetalCLIP to effectively learn the intricate anatomical features present in fetal ultrasound images, resulting in robust representations that can be used for a variety of downstream applications. In extensive benchmarking across a range of key fetal ultrasound applications, including classification, gestational age estimation, congenital heart defect (CHD) detection, and fetal structure segmentation, FetalCLIP outperformed all baselines while demonstrating remarkable generalizability and strong performance even with limited labeled data. We plan to release the FetalCLIP model publicly for the benefit of the broader scientific community.
♻ ☆ Eye-for-an-eye: Appearance Transfer with Semantic Correspondence in Diffusion Models
As pre-trained text-to-image diffusion models have become a useful tool for image synthesis, people want to specify the results in various ways. This paper tackles training-free appearance transfer, which produces an image with the structure of a target image from the appearance of a reference image. Existing methods usually do not reflect semantic correspondence, as they rely on query-key similarity within the self-attention layer to establish correspondences between images. To this end, we propose explicitly rearranging the features according to the dense semantic correspondences. Extensive experiments show the superiority of our method in various aspects: preserving the structure of the target and reflecting the correct color from the reference, even when the two images are not aligned.
comment: project page : https://sooyeon-go.github.io/eye_for_an_eye/
♻ ☆ From Individual Learning to Market Equilibrium: Correcting Structural and Parametric Biases in RL Simulations of Economic Models
The application of Reinforcement Learning (RL) to economic modeling reveals a fundamental conflict between the assumptions of equilibrium theory and the emergent behavior of learning agents. While canonical economic models assume atomistic agents act as `takers' of aggregate market conditions, a naive single-agent RL simulation incentivizes the agent to become a `manipulator' of its environment. This paper first demonstrates this discrepancy within a search-and-matching model with concave production, showing that a standard RL agent learns a non-equilibrium, monopsonistic policy. Additionally, we identify a parametric bias arising from the mismatch between economic discounting and RL's treatment of intertemporal costs. To address both issues, we propose a calibrated Mean-Field Reinforcement Learning framework that embeds a representative agent in a fixed macroeconomic field and adjusts the cost function to reflect economic opportunity costs. Our iterative algorithm converges to a self-consistent fixed point where the agent's policy aligns with the competitive equilibrium. This approach provides a tractable and theoretically sound methodology for modeling learning agents in economic systems within the broader domain of computational social science.
♻ ☆ Robust Search with Uncertainty-Aware Value Models for Language Model Reasoning
Value model guided search is effective in steering LLM generation but suffers from a lack of robustness. This is due to verifier failure: imperfect VMs mistakenly prune valid reasoning paths, especially when encountering unseen reasoning paths generated during search. To address this, we propose an uncertainty-aware framework with two key components: (1) Uncertainty-Aware Value Models (UVMs), which replace single-point value estimates with value distributions to quantify prediction reliability, and (2) Group Thompson Sampling, an efficient algorithm that selects candidates based on their probability of being optimal. Experiments on two In-Distribution (ID) settings (GSM8K, MATH) and three Out-Of-Distribution (OOD) settings (e.g., AIME25, Minerva Math) show our method significantly mitigates verifier failure and boosts solution coverage, especially on OOD problems. This work provides the first systematic integration of uncertainty quantification into LLM search paradigms, enhancing robustness. The code is released at https://github.com/FreedomIntelligence/UVM.
♻ ☆ Quantum Information Fusion and Correction with Dempster-Shafer Structure
Dempster-Shafer structure is effective in classical settings for connecting set-valued hypotheses and representing structured ignorance, yet its practical use is limited by combination growth over focal sets and high conflict management. We observe a mathematical consistency between Dempster-Shafer structure and quantum superposition: elements of the power set form an orthogonal basis, and a basic probability assignment can be encoded as a normalized quantum state whose amplitudes respect mass value constraints. In this paper, we implement the information fusion and correction with Dempster-Shafer structure on quantum circuits, demonstrating that belief functions provide a more concise and effective alternative to Bayesian approaches within the quantum computing framework.Furthermore, by leveraging the unique characteristics of quantum computing, we propose several novel approaches for belief transfer. More broadly, this paper introduces a novel perspective on basic information representation in quantum AI models, proposing that belief functions are better suited than Bayesian approaches for handling uncertainty in quantum circuits.
♻ ☆ Kick Bad Guys Out! Conditionally Activated Anomaly Detection in Federated Learning with Zero-Knowledge Proof Verification
Federated Learning (FL) systems are susceptible to adversarial attacks, such as model poisoning attacks and backdoor attacks. Existing defense mechanisms face critical limitations in real-world deployments, such as relying on impractical assumptions (e.g., adversaries acknowledging the presence of attacks before attacking) or undermining accuracy in model training, even in benign scenarios. To address these challenges, we propose RedJasper, a two-staged anomaly detection method specifically designed for real-world FL deployments. It identifies suspicious activities in the first stage, then activates the second stage conditionally to further scrutinize the suspicious local models, employing the 3{\sigma} rule to identify real malicious local models and filtering them out from FL training. To ensure integrity and transparency within the FL system, RedJasper integrates zero-knowledge proofs, enabling clients to cryptographically verify the server's detection process without relying on the server's goodwill. RedJasper operates without unrealistic assumptions and avoids interfering with FL training in attack-free scenarios. It bridges the gap between theoretical advances in FL security and the practical demands of real-world deployment. Experimental results demonstrate that RedJasper consistently delivers performance comparable to benign cases, highlighting its effectiveness in identifying potential attacks and eliminating malicious models with high accuracy.
♻ ☆ Multimodal Fusion at Three Tiers: Physics-Driven Data Generation and Vision-Language Guidance for Brain Tumor Segmentation
Accurate brain tumor segmentation is crucial for neuro-oncology diagnosis and treatment planning. Deep learning methods have made significant progress, but automatic segmentation still faces challenges, including tumor morphological heterogeneity and complex three-dimensional spatial relationships. This paper proposes a three-tier fusion architecture that achieves precise brain tumor segmentation. The method processes information progressively at the pixel, feature, and semantic levels. At the pixel level, physical modeling extends magnetic resonance imaging (MRI) to multimodal data, including simulated ultrasound and synthetic computed tomography (CT). At the feature level, the method performs Transformer-based cross-modal feature fusion through multi-teacher collaborative distillation, integrating three expert teachers (MRI, US, CT). At the semantic level, clinical textual knowledge generated by GPT-4V is transformed into spatial guidance signals using CLIP contrastive learning and Feature-wise Linear Modulation (FiLM). These three tiers together form a complete processing chain from data augmentation to feature extraction to semantic guidance. We validated the method on the Brain Tumor Segmentation (BraTS) 2020, 2021, and 2023 datasets. The model achieves average Dice coefficients of 0.8665, 0.9014, and 0.8912 on the three datasets, respectively, and reduces the 95% Hausdorff Distance (HD95) by an average of 6.57 millimeters compared with the baseline. This method provides a new paradigm for precise tumor segmentation and boundary localization.
comment: 31 pages,3 figures
♻ ☆ STANCE: Motion Coherent Video Generation Via Sparse-to-Dense Anchored Encoding
Video generation has recently made striking visual progress, but maintaining coherent object motion and interactions remains difficult. We trace two practical bottlenecks: (i) human-provided motion hints (e.g., small 2D maps) often collapse to too few effective tokens after encoding, weakening guidance; and (ii) optimizing for appearance and motion in a single head can favor texture over temporal consistency. We present STANCE, an image-to-video framework that addresses both issues with two simple components. First, we introduce Instance Cues -- a pixel-aligned control signal that turns sparse, user-editable hints into a dense 2.5D (camera-relative) motion field by averaging per-instance flow and augmenting with monocular depth over the instance mask. This reduces depth ambiguity compared to 2D arrow inputs while remaining easy to use. Second, we preserve the salience of these cues in token space with Dense RoPE, which tags a small set of motion tokens (anchored on the first frame) with spatial-addressable rotary embeddings. Paired with joint RGB \(+\) auxiliary-map prediction (segmentation or depth), our model anchors structure while RGB handles appearance, stabilizing optimization and improving temporal coherence without requiring per-frame trajectory scripts.
comment: Code, model, and demos can be found at https://envision-research.github.io/STANCE/
♻ ☆ Agentic Design of Compositional Machines
The design of complex machines stands as both a marker of human intelligence and a foundation of engineering practice. Given recent advances in large language models (LLMs), we ask whether they, too, can learn to create. We approach this question through the lens of compositional machine design: a task in which machines are assembled from standardized components to meet functional demands like locomotion or manipulation in a simulated physical environment. With this simplification, machine design is expressed as writing XML-like code that explicitly specifies pairwise part connections. To support this investigation, we introduce BesiegeField, a testbed built on the machine-building game Besiege, which enables part-based construction, physical simulation and reward-driven evaluation. Using BesiegeField, we benchmark state-of-the-art LLMs with agentic workflows and identify key capabilities required for success, including spatial reasoning, strategic assembly, and instruction-following. As current open-source models fall short, we explore reinforcement learning (RL) as a path to improvement: we curate a cold-start dataset, conduct RL finetuning experiments, and highlight open challenges at the intersection of language, machine design, and physical reasoning.
comment: 75 pages, 31 figures, Project Page: https://besiegefield.github.io
♻ ☆ Programmable Cognitive Bias in Social Agents
This paper introduces CoBRA, a novel toolkit for systematically specifying agent behavior in LLM-based social simulation. We found that conventional approaches that specify agent behaviors through implicit natural language descriptions cannot yield consistent behaviors across models, and the produced agent behaviors do not capture the nuances of the descriptions. In contrast, CoBRA presents a new approach to program agents' cognitive biases explicitly, by grounding agents' expected behaviors using classic social science experiments. CoBRA has two components: (1) Cognitive Bias Index that measures the cognitive bias of a social agent, by quantifying the agent's reactions in a set of validated classical social science experiments; (2) Behavioral Regulation Engine that aligns the agent's behavior to demonstrate controlled cognitive bias. We evaluated CoBRA as an HCI toolkit through demonstration and technical benchmarks. Our results suggest that CoBRA can precisely program the cognitive bias demonstrated in a social agent in a model-agnostic manner.
♻ ☆ DualTune: Decoupled Fine-Tuning for On-Device Agentic Systems
The deployment of Large Language Models (LLMs) as agentic orchestrators has revolutionized task automation, but the need for privacy-preserving, cost-effective solutions demands on-device inference capabilities. However, local LLMs consistently underperform compared to frontier models in tool calling scenarios, struggling with both tool selection from large tool sets and accurate argument generation for complex parameter structures. We introduce a methodology that disaggregates a tool-calling task into two distinct subtasks: tool selection and argument generation. We propose "decoupled fine-tuning", a novel post-training approach that employs LoRA fine-tuning to create dedicated LoRA adapters for tool selection and tool-specific argument generation using separate loss masking for each of the subtasks. Furthermore, we present DualTune, an inference framework that leverages the LoRA adapters created using decoupled fine-tuning to perform efficient agent orchestration with the help of local models on end-user devices. DualTune decomposes the tool-call generation step into tool selection and argument generation, and dynamically loads the corresponding LoRA adapters to generate tool calls. Additionally, DualTune implements hierarchical orchestration to restrict the number of tools required for tool selection. Our experiments on the MCP-Bench benchmark demonstrate that the Qwen-2.5-7B model trained using decoupled fine-tuning improves the tool calling accuracy of the base model by 46%, and outperforms other local reasoning, non-reasoning and fine-tuned models of similar size in all cases, and models that are 2x larger, in most cases.
♻ ☆ AgentAuditor: Human-Level Safety and Security Evaluation for LLM Agents NeurIPS 2025
Despite the rapid advancement of LLM-based agents, the reliable evaluation of their safety and security remains a significant challenge. Existing rule-based or LLM-based evaluators often miss dangers in agents' step-by-step actions, overlook subtle meanings, fail to see how small issues compound, and get confused by unclear safety or security rules. To overcome this evaluation crisis, we introduce AgentAuditor, a universal, training-free, memory-augmented reasoning framework that empowers LLM evaluators to emulate human expert evaluators. AgentAuditor constructs an experiential memory by having an LLM adaptively extract structured semantic features (e.g., scenario, risk, behavior) and generate associated chain-of-thought reasoning traces for past interactions. A multi-stage, context-aware retrieval-augmented generation process then dynamically retrieves the most relevant reasoning experiences to guide the LLM evaluator's assessment of new cases. Moreover, we developed ASSEBench, the first benchmark designed to check how well LLM-based evaluators can spot both safety risks and security threats. ASSEBench comprises 2293 meticulously annotated interaction records, covering 15 risk types across 29 application scenarios. A key feature of ASSEBench is its nuanced approach to ambiguous risk situations, employing "Strict" and "Lenient" judgment standards. Experiments demonstrate that AgentAuditor not only consistently improves the evaluation performance of LLMs across all benchmarks but also sets a new state-of-the-art in LLM-as-a-judge for agent safety and security, achieving human-level accuracy. Our work is openly accessible at https://github.com/Astarojth/AgentAuditor.
comment: This paper is accepted by 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ Exploiting Meta-Learning-based Poisoning Attacks for Graph Link Prediction
Link prediction in graph data uses various algorithms and Graph Nerual Network (GNN) models to predict potential relationships between graph nodes. These techniques have found widespread use in numerous real-world applications, including recommendation systems, community/social networks, and biological structures. However, recent research has highlighted the vulnerability of GNN models to adversarial attacks, such as poisoning and evasion attacks. Addressing the vulnerability of GNN models is crucial to ensure stable and robust performance in GNN applications. Although many works have focused on enhancing the robustness of node classification on GNN models, the robustness of link prediction has received less attention. To bridge this gap, this article introduces an unweighted graph poisoning attack that leverages meta-learning with weighted scheme strategies to degrade the link prediction performance of GNNs. We conducted comprehensive experiments on diverse datasets across multiple link prediction applications to evaluate the proposed method and its parameters, comparing it with existing approaches under similar conditions. Our results demonstrate that our approach significantly reduces link prediction performance and consistently outperforms other state-of-the-art baselines.
Computation and Language 78
☆ Mapping from Meaning: Addressing the Miscalibration of Prompt-Sensitive Language Models
An interesting behavior in large language models (LLMs) is prompt sensitivity. When provided with different but semantically equivalent versions of the same prompt, models may produce very different distributions of answers. This suggests that the uncertainty reflected in a model's output distribution for one prompt may not reflect the model's uncertainty about the meaning of the prompt. We model prompt sensitivity as a type of generalization error, and show that sampling across the semantic ``concept space'' with paraphrasing perturbations improves uncertainty calibration without compromising accuracy. Additionally, we introduce a new metric for uncertainty decomposition in black-box LLMs that improves upon entropy-based decomposition by modeling semantic continuities in natural language generation. We show that this decomposition metric can be used to quantify how much LLM uncertainty is attributed to prompt sensitivity. Our work introduces a new way to improve uncertainty calibration in prompt-sensitive language models, and provides evidence that some LLMs fail to exhibit consistent general reasoning about the meanings of their inputs.
☆ Forgetting to Forget: Attention Sink as A Gateway for Backdooring LLM Unlearning
Large language model (LLM) unlearning has become a critical mechanism for removing undesired data, knowledge, or behaviors from pre-trained models while retaining their general utility. Yet, with the rise of open-weight LLMs, we ask: can the unlearning process itself be backdoored, appearing successful under normal conditions yet reverting to pre-unlearned behavior when a hidden trigger is activated? Drawing inspiration from classical backdoor attacks that embed triggers into training data to enforce specific behaviors, we investigate backdoor unlearning, where models forget as intended in the clean setting but recover forgotten knowledge when the trigger appears. We show that designing such attacks presents unique challenges, hinging on where triggers are placed and how backdoor training is reinforced. We uncover a strong link between backdoor efficacy and the attention sink phenomenon, i.e., shallow input tokens consistently attract disproportionate attention in LLMs. Our analysis reveals that these attention sinks serve as gateways for backdoor unlearning: placing triggers at sink positions and aligning their attention values markedly enhances backdoor persistence. Extensive experiments validate these findings, showing that attention-sink-guided backdoor unlearning reliably restores forgotten knowledge in the presence of backdoor triggers, while behaving indistinguishably from a normally unlearned model when triggers are absent. Code is available at https://github.com/OPTML-Group/Unlearn-Backdoor.
☆ Extended LSTM: Adaptive Feature Gating for Toxic Comment Classification
Toxic comment detection remains a challenging task, where transformer-based models (e.g., BERT) incur high computational costs and degrade on minority toxicity classes, while classical ensembles lack semantic adaptability. We propose xLSTM, a parameter-efficient and theoretically grounded framework that unifies cosine-similarity gating, adaptive feature prioritization, and principled class rebalancing. A learnable reference vector {v} in {R}^d modulates contextual embeddings via cosine similarity, amplifying toxic cues and attenuating benign signals to yield stronger gradients under severe class imbalance. xLSTM integrates multi-source embeddings (GloVe, FastText, BERT CLS) through a projection layer, a character-level BiLSTM for morphological cues, embedding-space SMOTE for minority augmentation, and adaptive focal loss with dynamic class weighting. On the Jigsaw Toxic Comment benchmark, xLSTM attains 96.0% accuracy and 0.88 macro-F1, outperforming BERT by 33% on threat and 28% on identity_hate categories, with 15 times fewer parameters and 50ms inference latency. Cosine gating contributes a +4.8% F1 gain in ablations. The results establish a new efficiency adaptability frontier, demonstrating that lightweight, theoretically informed architectures can surpass large pretrained models on imbalanced, domain-specific NLP tasks.
☆ SafeSearch: Do Not Trade Safety for Utility in LLM Search Agents
Large language model (LLM) based search agents iteratively generate queries, retrieve external information, and reason to answer open-domain questions. While researchers have primarily focused on improving their utility, their safety behaviors remain underexplored. In this paper, we first evaluate search agents using red-teaming datasets and find that they are more likely to produce harmful outputs than base LLMs. For example, when asked ``How can I track someone's location without their consent?'', a base model refuses, whereas a search agent designed to retrieve and cite sources may lower its refusal threshold, fetch documents (e.g., court cases), and, once appended, synthesize them into an informative yet unsafe summary. We further show that utility-oriented fine-tuning intensifies this risk, motivating joint alignment of safety and utility. We present SafeSearch, a multi-objective reinforcement learning approach that couples a final-output safety/utility reward with a novel query-level shaping term that penalizes unsafe queries and rewards safe ones. Experiments show that SafeSearch reduces agent harmfulness by over 70% across three red-teaming datasets while producing safe, helpful responses, and matches the QA performance of a utility-only finetuned agent; further analyses confirm the effectiveness of the query-level reward in jointly improving safety and utility.
comment: Code: https://github.com/ZQS1943/SafeSearch
☆ DiscoTrack: A Multilingual LLM Benchmark for Discourse Tracking
Recent LLM benchmarks have tested models on a range of phenomena, but are still focused primarily on natural language understanding for extraction of explicit information, such as QA or summarization, with responses often tar- geting information from individual sentences. We are still lacking more challenging, and im- portantly also multilingual, benchmarks focus- ing on implicit information and pragmatic infer- ences across larger documents in the context of discourse tracking: integrating and aggregating information across sentences, paragraphs and multiple speaker utterances. To this end, we present DiscoTrack, an LLM benchmark target- ing a range of tasks across 12 languages and four levels of discourse understanding: salience recognition, entity tracking, discourse relations and bridging inference. Our evaluation shows that these tasks remain challenging, even for state-of-the-art models.
☆ Online Learning Defense against Iterative Jailbreak Attacks via Prompt Optimization
Iterative jailbreak methods that repeatedly rewrite and input prompts into large language models (LLMs) to induce harmful outputs -- using the model's previous responses to guide each new iteration -- have been found to be a highly effective attack strategy. Despite being an effective attack strategy against LLMs and their safety mechanisms, existing defenses do not proactively disrupt this dynamic trial-and-error cycle. In this study, we propose a novel framework that dynamically updates its defense strategy through online learning in response to each new prompt from iterative jailbreak methods. Leveraging the distinctions between harmful jailbreak-generated prompts and typical harmless prompts, we introduce a reinforcement learning-based approach that optimizes prompts to ensure appropriate responses for harmless tasks while explicitly rejecting harmful prompts. Additionally, to curb overfitting to the narrow band of partial input rewrites explored during an attack, we introduce Past-Direction Gradient Damping (PDGD). Experiments conducted on three LLMs show that our approach significantly outperforms five existing defense methods against five iterative jailbreak methods. Moreover, our results indicate that our prompt optimization strategy simultaneously enhances response quality for harmless tasks.
☆ Vocab Diet: Reshaping the Vocabulary of LLMs with Vector Arithmetic
Large language models (LLMs) were shown to encode word form variations, such as "walk"->"walked", as linear directions in embedding space. However, standard tokenization algorithms treat these variations as distinct tokens -- filling the size-capped vocabulary with surface form variants (e.g., "walk", "walking", "Walk"), at the expense of less frequent words and multilingual coverage. We show that many of these variations can be captured by transformation vectors -- additive offsets that yield the appropriate word's representation when applied to the base form word embedding -- in both the input and output spaces. Building on this, we propose a compact reshaping of the vocabulary: rather than assigning unique tokens to each surface form, we compose them from shared base form and transformation vectors (e.g., "walked" = "walk" + past tense). We apply our approach to multiple LLMs and across five languages, removing up to 10% of vocabulary entries -- thereby freeing space to allocate new, more diverse tokens. Importantly, we do so while also expanding vocabulary coverage to out-of-vocabulary words, with minimal impact on downstream performance, and without modifying model weights. Our findings motivate a foundational rethinking of vocabulary design, moving from string enumeration to a compositional vocabulary that leverages the underlying structure of language.
☆ Bits Leaked per Query: Information-Theoretic Bounds on Adversarial Attacks against LLMs NeurIPS 2025
Adversarial attacks by malicious users that threaten the safety of large language models (LLMs) can be viewed as attempts to infer a target property $T$ that is unknown when an instruction is issued, and becomes knowable only after the model's reply is observed. Examples of target properties $T$ include the binary flag that triggers an LLM's harmful response or rejection, and the degree to which information deleted by unlearning can be restored, both elicited via adversarial instructions. The LLM reveals an \emph{observable signal} $Z$ that potentially leaks hints for attacking through a response containing answer tokens, thinking process tokens, or logits. Yet the scale of information leaked remains anecdotal, leaving auditors without principled guidance and defenders blind to the transparency--risk trade-off. We fill this gap with an information-theoretic framework that computes how much information can be safely disclosed, and enables auditors to gauge how close their methods come to the fundamental limit. Treating the mutual information $I(Z;T)$ between the observation $Z$ and the target property $T$ as the leaked bits per query, we show that achieving error $\varepsilon$ requires at least $\log(1/\varepsilon)/I(Z;T)$ queries, scaling linearly with the inverse leak rate and only logarithmically with the desired accuracy. Thus, even a modest increase in disclosure collapses the attack cost from quadratic to logarithmic in terms of the desired accuracy. Experiments on seven LLMs across system-prompt leakage, jailbreak, and relearning attacks corroborate the theory: exposing answer tokens alone requires about a thousand queries; adding logits cuts this to about a hundred; and revealing the full thinking process trims it to a few dozen. Our results provide the first principled yardstick for balancing transparency and security when deploying LLMs.
comment: NeurIPS 2025 (spotlight)
☆ Back to Bytes: Revisiting Tokenization Through UTF-8
We present UTF8Tokenizer, a minimalist byte-level tokenizer that maps text exactly to IDs corresponding to the bytes underlying the text's UTF-8 encoding (e.g., byte x09 is token ID 9). Unlike prior byte-level approaches (Xue et al., 2021; Pagnoni et al., 2025), our implementation never introduces out-of-range IDs (i.e. there is no token ID 256) or auxiliary tokens: all special behavior (e.g., padding, boundaries, conversation structure, attention segments, tool calling, "thinking" spans, etc.) is encoded using C0 control bytes - just as ASCII was originally designed to embed control information alongside printable text. These design principles yield practical benefits: (1) faster tokenization (14x) and significantly lower host-device transfer (8x less than int64); (2) simple, shareable 256*d embedding tables that can be aligned across models; and (3) a training-time enhancement via bit-biased embeddings, which exposes per-byte bit structure and can be added to the embedding table post-training, removing inference costs. Our HuggingFace-compatible implementation improves language modeling convergence.
Parameter-Efficient Fine-Tuning for Low-Resource Languages: A Comparative Study of LLMs for Bengali Hate Speech Detection IEEE
Bengali social media platforms have witnessed a sharp increase in hate speech, disproportionately affecting women and adolescents. While datasets such as BD-SHS provide a basis for structured evaluation, most prior approaches rely on either computationally costly full-model fine-tuning or proprietary APIs. This paper presents the first application of Parameter-Efficient Fine-Tuning (PEFT) for Bengali hate speech detection using LoRA and QLoRA. Three instruction-tuned large language models - Gemma-3-4B, Llama-3.2-3B, and Mistral-7B - were fine-tuned on the BD-SHS dataset of 50,281 annotated comments. Each model was adapted by training fewer than 1% of its parameters, enabling experiments on a single consumer-grade GPU. The results show that Llama-3.2-3B achieved the highest F1-score of 92.23%, followed by Mistral-7B at 88.94% and Gemma-3-4B at 80.25%. These findings establish PEFT as a practical and replicable strategy for Bengali and related low-resource languages.
comment: Accepted to IEEE COMPAS 2025. 6 pages, 3 figures, 6 tables
☆ Leave It to the Experts: Detecting Knowledge Distillation via MoE Expert Signatures
Knowledge Distillation (KD) accelerates training of large language models (LLMs) but poses intellectual property protection and LLM diversity risks. Existing KD detection methods based on self-identity or output similarity can be easily evaded through prompt engineering. We present a KD detection framework effective in both white-box and black-box settings by exploiting an overlooked signal: the transfer of MoE "structural habits", especially internal routing patterns. Our approach analyzes how different experts specialize and collaborate across various inputs, creating distinctive fingerprints that persist through the distillation process. To extend beyond the white-box setup and MoE architectures, we further propose Shadow-MoE, a black-box method that constructs proxy MoE representations via auxiliary distillation to compare these patterns between arbitrary model pairs. We establish a comprehensive, reproducible benchmark that offers diverse distilled checkpoints and an extensible framework to facilitate future research. Extensive experiments demonstrate >94% detection accuracy across various scenarios and strong robustness to prompt-based evasion, outperforming existing baselines while highlighting the structural habits transfer in LLMs.
comment: Code is at https://github.com/unites-lab/shadow-moe
☆ Real-Time World Crafting: Generating Structured Game Behaviors from Natural Language with Large Language Models EMNLP
We present a novel architecture for safely integrating Large Language Models (LLMs) into interactive game engines, allowing players to "program" new behaviors using natural language. Our framework mitigates risks by using an LLM to translate commands into a constrained Domain-Specific Language (DSL), which configures a custom Entity-Component-System (ECS) at runtime. We evaluated this system in a 2D spell-crafting game prototype by experimentally assessing models from the Gemini, GPT, and Claude families with various prompting strategies. A validated LLM judge qualitatively rated the outputs, showing that while larger models better captured creative intent, the optimal prompting strategy is task-dependent: Chain-of-Thought improved creative alignment, while few-shot examples were necessary to generate more complex DSL scripts. This work offers a validated LLM-ECS pattern for emergent gameplay and a quantitative performance comparison for developers.
comment: 16 pages, 11 figures (including appendix). To be presented at the 5th Wordplay @ EMNLP workshop (2025)
☆ Peering Inside the Black Box: Uncovering LLM Errors in Optimization Modelling through Component-Level Evaluation
Large language models (LLMs) are increasingly used to convert natural language descriptions into mathematical optimization formulations. Current evaluations often treat formulations as a whole, relying on coarse metrics like solution accuracy or runtime, which obscure structural or numerical errors. In this study, we present a comprehensive, component-level evaluation framework for LLM-generated formulations. Beyond the conventional optimality gap, our framework introduces metrics such as precision and recall for decision variables and constraints, constraint and objective root mean squared error (RMSE), and efficiency indicators based on token usage and latency. We evaluate GPT-5, LLaMA 3.1 Instruct, and DeepSeek Math across optimization problems of varying complexity under six prompting strategies. Results show that GPT-5 consistently outperforms other models, with chain-of-thought, self-consistency, and modular prompting proving most effective. Analysis indicates that solver performance depends primarily on high constraint recall and low constraint RMSE, which together ensure structural correctness and solution reliability. Constraint precision and decision variable metrics play secondary roles, while concise outputs enhance computational efficiency. These findings highlight three principles for NLP-to-optimization modeling: (i) Complete constraint coverage prevents violations, (ii) minimizing constraint RMSE ensures solver-level accuracy, and (iii) concise outputs improve computational efficiency. The proposed framework establishes a foundation for fine-grained, diagnostic evaluation of LLMs in optimization modeling.
Prompt-MII: Meta-Learning Instruction Induction for LLMs
A popular method to adapt large language models (LLMs) to new tasks is in-context learning (ICL), which is effective but incurs high inference costs as context length grows. In this paper we propose a method to perform instruction induction, where we take training examples and reduce them to a compact but descriptive prompt that can achieve performance comparable to ICL over the full training set. Specifically, we propose PROMPT-MII, a reinforcement learning (RL) based framework to meta-learn an instruction induction model that can generate compact instructions on the fly for an arbitrary new dataset. We train on over 3,000 diverse classification datasets from the HuggingFace hub, and evaluate on 90 unseen tasks. PROMPT-MII improves downstream model quality by 4-9 F1 points (10-20% relative), matching ICL performance while requiring 3-13x fewer tokens.
☆ ChiKhaPo: A Large-Scale Multilingual Benchmark for Evaluating Lexical Comprehension and Generation in Large Language Models
Existing benchmarks for large language models (LLMs) are largely restricted to high- or mid-resource languages, and often evaluate performance on higher-order tasks in reasoning and generation. However, plenty of evidence points to the fact that LLMs lack basic linguistic competence in the vast majority of the world's 3800+ written languages. We introduce ChiKhaPo, consisting of 8 subtasks of varying difficulty designed to evaluate the lexical comprehension and generation abilities of generative models. ChiKhaPo draws on existing lexicons, monolingual data, and bitext, and provides coverage for 2700+ languages for 2 subtasks, surpassing any existing benchmark in terms of language coverage. We further show that 6 SOTA models struggle on our benchmark, and discuss the factors contributing to performance scores, including language family, language resourcedness, task, and comprehension versus generation directions. With ChiKhaPo, we hope to enable and encourage the massively multilingual benchmarking of LLMs.
☆ Res-Bench: Benchmarking the Robustness of Multimodal Large Language Models to Dynamic Resolution Input
Multimodal Large Language Models (MLLMs) increasingly support dynamic image resolutions. However, current evaluation paradigms primarily assess semantic performance, overlooking the critical question of resolution robustness - whether performance remains stable across varying input resolutions. To address this gap, we introduce \textbf{Res-Bench}, a comprehensive benchmark comprising 14,400 samples across 12 resolution levels and six core capability dimensions. We designed a novel evaluation framework that goes beyond traditional accuracy metrics to capture performance stability. This framework introduces multiple robustness metrics: Spearman's correlation for assessing resolution-performance trends, and Absolute/Relative Continuous Error (ACE/RCE) for measuring performance volatility. Using these metrics, we conducted a large-scale evaluation of leading MLLMs. Our analysis encompasses: (1) model-centric and task-centric robustness examination, (2) investigation of preprocessing strategies including padding and super-resolution, and (3) exploration of fine-tuning for stability enhancement.
comment: 23 pages,19 figures
☆ Does Visual Grounding Enhance the Understanding of Embodied Knowledge in Large Language Models? EMNLP 2025
Despite significant progress in multimodal language models (LMs), it remains unclear whether visual grounding enhances their understanding of embodied knowledge compared to text-only models. To address this question, we propose a novel embodied knowledge understanding benchmark based on the perceptual theory from psychology, encompassing visual, auditory, tactile, gustatory, olfactory external senses, and interoception. The benchmark assesses the models' perceptual abilities across different sensory modalities through vector comparison and question-answering tasks with over 1,700 questions. By comparing 30 state-of-the-art LMs, we surprisingly find that vision-language models (VLMs) do not outperform text-only models in either task. Moreover, the models perform significantly worse in the visual dimension compared to other sensory dimensions. Further analysis reveals that the vector representations are easily influenced by word form and frequency, and the models struggle to answer questions involving spatial perception and reasoning. Our findings underscore the need for more effective integration of embodied knowledge in LMs to enhance their understanding of the physical world.
comment: Accepted to EMNLP 2025 (Findings). This version corrects a redundant sentence in the Results section that appeared in the camera-ready version
☆ SAKE: Towards Editing Auditory Attribute Knowledge of Large Audio-Language Models
Knowledge editing offers an efficient way to update model knowledge without full retraining, but prior work has concentrated almost exclusively on textual or visual modalities. We introduce SAKE, the first benchmark specifically designed for editing auditory attribute knowledge in Large Audio-Language Models (LALMs). Unlike factual updates, SAKE targets several abstract auditory attributes, capturing knowledge types that go beyond conventional textual and visual domains. We benchmark seven editing methods on two LALMs along four dimensions: reliability, generality, audio/text locality, and portability. Results highlight challenges such as preserving intra-attribute knowledge unrelated to the edit, generalizing edits to multimodal reasoning, and maintaining edits under sequential updates. SAKE provides a principled framework to study how knowledge editing extends to the auditory modalities, opening new directions for maintaining and adapting LALMs in more diverse real-world scenarios.
comment: Work in progress
☆ VAGEN: Reinforcing World Model Reasoning for Multi-Turn VLM Agents NeurIPS 2025
A key challenge in training Vision-Language Model (VLM) agents, compared to Language Model (LLM) agents, lies in the shift from textual states to complex visual observations. This transition introduces partial observability and demands robust world modeling. We ask: Can VLM agents construct internal world models through explicit visual state reasoning? To address this question, we architecturally enforce and reward the agent's reasoning process via reinforcement learning (RL), formulating it as a Partially Observable Markov Decision Process (POMDP). We find that decomposing the agent's reasoning into State Estimation ("what is the current state?") and Transition Modeling ("what comes next?") is critical for success, as demonstrated through five reasoning strategies. Our investigation into how agents represent internal beliefs reveals that the optimal representation is task-dependent: Natural Language excels at capturing semantic relationships in general tasks, while Structured formats are indispensable for precise manipulation and control. Building on these insights, we design a World Modeling Reward that provides dense, turn-level supervision for accurate state prediction, and introduce Bi-Level General Advantage Estimation (Bi-Level GAE) for turn-aware credit assignment. Through this form of visual state reasoning, a 3B-parameter model achieves a score of 0.82 across five diverse agent benchmarks, representing a 3$\times$ improvement over its untrained counterpart (0.21) and outperforming proprietary reasoning models such as GPT-5 (0.75), Gemini 2.5 Pro (0.67) and Claude 4.5 (0.62). All experiments are conducted within our VAGEN framework, a scalable system for training and analyzing multi-turn VLM agents in diverse visual environments. Code and data are publicly available at https://vagen-ai.github.io.
comment: Accepted to NeurIPS 2025
☆ Investigating Safety Vulnerabilities of Large Audio-Language Models Under Speaker Emotional Variations ICASSP 2026
Large audio-language models (LALMs) extend text-based LLMs with auditory understanding, offering new opportunities for multimodal applications. While their perception, reasoning, and task performance have been widely studied, their safety alignment under paralinguistic variation remains underexplored. This work systematically investigates the role of speaker emotion. We construct a dataset of malicious speech instructions expressed across multiple emotions and intensities, and evaluate several state-of-the-art LALMs. Our results reveal substantial safety inconsistencies: different emotions elicit varying levels of unsafe responses, and the effect of intensity is non-monotonic, with medium expressions often posing the greatest risk. These findings highlight an overlooked vulnerability in LALMs and call for alignment strategies explicitly designed to ensure robustness under emotional variation, a prerequisite for trustworthy deployment in real-world settings.
comment: Submitted to ICASSP 2026
☆ Utility-Diversity Aware Online Batch Selection for LLM Supervised Fine-tuning
Supervised fine-tuning (SFT) is a commonly used technique to adapt large language models (LLMs) to downstream tasks. In practice, SFT on a full dataset is computationally expensive and sometimes suffers from overfitting or bias amplification. This facilitates the rise of data curation in SFT, which prioritizes the most valuable data to optimze. This work studies the online batch selection family that dynamically scores and filters samples during the training process. However, existing popular methods often (i) rely merely on the utility of data to select a subset while neglecting other crucial factors like diversity, (ii) rely on external resources such as reference models or validation sets, and (iii) incur extra training time over full-dataset training. To address these limitations, this work develops \textbf{UDS (Utility-Diversity Sampling)}, a framework for efficient online batch selection in SFT. UDS leverages the nuclear norm of the logits matrix to capture both data utility and intra-sample diversity, while estimating inter-sample diversity through efficient low-dimensional embedding comparisons with a lightweight memory buffer of historical samples. Such a design eliminates the need for external resources and unnecessary backpropagation, securing computational efficiency. Experiments on multiple benchmarks demonstrate that UDS consistently outperforms state-of-the-art online batch selection methods under varying data budgets, and significantly reduces training time compared to full-dataset fine-tuning. Code is available at https://github.com/gfyddha/UDS.
☆ DeepAnalyze: Agentic Large Language Models for Autonomous Data Science
Autonomous data science, from raw data sources to analyst-grade deep research reports, has been a long-standing challenge, and is now becoming feasible with the emergence of powerful large language models (LLMs). Recent workflow-based data agents have shown promising results on specific data tasks but remain fundamentally limited in achieving fully autonomous data science due to their reliance on predefined workflows. In this paper, we introduce DeepAnalyze-8B, the first agentic LLM designed for autonomous data science, capable of automatically completing the end-toend pipeline from data sources to analyst-grade deep research reports. To tackle high-complexity data science tasks, we propose a curriculum-based agentic training paradigm that emulates the learning trajectory of human data scientists, enabling LLMs to progressively acquire and integrate multiple capabilities in real-world environments. We also introduce a data-grounded trajectory synthesis framework that constructs high-quality training data. Through agentic training, DeepAnalyze learns to perform a broad spectrum of data tasks, ranging from data question answering and specialized analytical tasks to open-ended data research. Experiments demonstrate that, with only 8B parameters, DeepAnalyze outperforms previous workflow-based agents built on most advanced proprietary LLMs. The model, code, and training data of DeepAnalyze are open-sourced, paving the way toward autonomous data science.
comment: Code: https://github.com/ruc-datalab/DeepAnalyze Model: https://huggingface.co/RUC-DataLab/DeepAnalyze-8B
☆ Neuronal Group Communication for Efficient Neural representation
The ever-increasing scale of modern neural networks has brought unprecedented performance alongside daunting challenges in efficiency and interpretability. This paper addresses the core question of how to build large neural systems that learn efficient, modular, and interpretable representations. We propose Neuronal Group Communication (NGC), a theory-driven framework that reimagines a neural network as a dynamical system of interacting neuronal groups rather than a monolithic collection of neural weights. Instead of treating each weight as an independent trainable parameter, NGC treats weights as transient interactions between embedding-like neuronal states, with neural computation unfolding through iterative communication among groups of neurons. This low-rank, modular representation yields compact models: groups of neurons exchange low-dimensional signals, enabling intra-group specialization and inter-group information sharing while dramatically reducing redundant parameters. By drawing on dynamical systems theory, we introduce a neuronal stability metric (analogous to Lyapunov stability) that quantifies the contraction of neuron activations toward stable patterns during sequence processing. Using this metric, we reveal that emergent reasoning capabilities correspond to an external driving force or ``potential'', which nudges the neural dynamics away from trivial trajectories while preserving stability. Empirically, we instantiate NGC in large language models (LLMs) and demonstrate improved performance on complex reasoning benchmarks under moderate compression. NGC consistently outperforms standard low-rank approximations and cross-layer basis-sharing methods at comparable compression rates. We conclude by discussing the broader implications of NGC, including how structured neuronal group dynamics might relate to generalization in high-dimensional learning systems.
comment: 28 pages, 2 figures
☆ FinSight: Towards Real-World Financial Deep Research
Generating professional financial reports is a labor-intensive and intellectually demanding process that current AI systems struggle to fully automate. To address this challenge, we introduce FinSight (Financial InSight), a novel multi agent framework for producing high-quality, multimodal financial reports. The foundation of FinSight is the Code Agent with Variable Memory (CAVM) architecture, which unifies external data, designed tools, and agents into a programmable variable space, enabling flexible data collection, analysis and report generation through executable code. To ensure professional-grade visualization, we propose an Iterative Vision-Enhanced Mechanism that progressively refines raw visual outputs into polished financial charts. Furthermore, a two stage Writing Framework expands concise Chain-of-Analysis segments into coherent, citation-aware, and multimodal reports, ensuring both analytical depth and structural consistency. Experiments on various company and industry-level tasks demonstrate that FinSight significantly outperforms all baselines, including leading deep research systems in terms of factual accuracy, analytical depth, and presentation quality, demonstrating a clear path toward generating reports that approach human-expert quality.
comment: Working in progress
☆ Verifiable Fine-Tuning for LLMs: Zero-Knowledge Training Proofs Bound to Data Provenance and Policy
Large language models are often adapted through parameter efficient fine tuning, but current release practices provide weak assurances about what data were used and how updates were computed. We present Verifiable Fine Tuning, a protocol and system that produces succinct zero knowledge proofs that a released model was obtained from a public initialization under a declared training program and an auditable dataset commitment. The approach combines five elements. First, commitments that bind data sources, preprocessing, licenses, and per epoch quota counters to a manifest. Second, a verifiable sampler that supports public replayable and private index hiding batch selection. Third, update circuits restricted to parameter efficient fine tuning that enforce AdamW style optimizer semantics and proof friendly approximations with explicit error budgets. Fourth, recursive aggregation that folds per step proofs into per epoch and end to end certificates with millisecond verification. Fifth, provenance binding and optional trusted execution property cards that attest code identity and constants. On English and bilingual instruction mixtures, the method maintains utility within tight budgets while achieving practical proof performance. Policy quotas are enforced with zero violations, and private sampling windows show no measurable index leakage. Federated experiments demonstrate that the system composes with probabilistic audits and bandwidth constraints. These results indicate that end to end verifiable fine tuning is feasible today for real parameter efficient pipelines, closing a critical trust gap for regulated and decentralized deployments.
comment: 20 pages, 10 figures
☆ Who's Asking? Simulating Role-Based Questions for Conversational AI Evaluation
Language model users often embed personal and social context in their questions. The asker's role -- implicit in how the question is framed -- creates specific needs for an appropriate response. However, most evaluations, while capturing the model's capability to respond, often ignore who is asking. This gap is especially critical in stigmatized domains such as opioid use disorder (OUD), where accounting for users' contexts is essential to provide accessible, stigma-free responses. We propose CoRUS (COmmunity-driven Roles for User-centric Question Simulation), a framework for simulating role-based questions. Drawing on role theory and posts from an online OUD recovery community (r/OpiatesRecovery), we first build a taxonomy of asker roles -- patients, caregivers, practitioners. Next, we use it to simulate 15,321 questions that embed each role's goals, behaviors, and experiences. Our evaluations show that these questions are both highly believable and comparable to real-world data. When used to evaluate five LLMs, for the same question but differing roles, we find systematic differences: vulnerable roles, such as patients and caregivers, elicit more supportive responses (+17%) and reduced knowledge content (-19%) in comparison to practitioners. Our work demonstrates how implicitly signaling a user's role shapes model responses, and provides a methodology for role-informed evaluation of conversational AI.
☆ Cross-Genre Authorship Attribution via LLM-Based Retrieve-and-Rerank
Authorship attribution (AA) is the task of identifying the most likely author of a query document from a predefined set of candidate authors. We introduce a two-stage retrieve-and-rerank framework that finetunes LLMs for cross-genre AA. Unlike the field of information retrieval (IR), where retrieve-and-rerank is a de facto strategy, cross-genre AA systems must avoid relying on topical cues and instead learn to identify author-specific linguistic patterns that are independent of the text's subject matter (genre/domain/topic). Consequently, for the reranker, we demonstrate that training strategies commonly used in IR are fundamentally misaligned with cross-genre AA, leading to suboptimal behavior. To address this, we introduce a targeted data curation strategy that enables the reranker to effectively learn author-discriminative signals. Using our LLM-based retrieve-and-rerank pipeline, we achieve substantial gains of 22.3 and 34.4 absolute Success@8 points over the previous state-of-the-art on HIATUS's challenging HRS1 and HRS2 cross-genre AA benchmarks.
☆ Knowing the Facts but Choosing the Shortcut: Understanding How Large Language Models Compare Entities ACL
Large Language Models (LLMs) are increasingly used for knowledge-based reasoning tasks, yet understanding when they rely on genuine knowledge versus superficial heuristics remains challenging. We investigate this question through entity comparison tasks by asking models to compare entities along numerical attributes (e.g., ``Which river is longer, the Danube or the Nile?''), which offer clear ground truth for systematic analysis. Despite having sufficient numerical knowledge to answer correctly, LLMs frequently make predictions that contradict this knowledge. We identify three heuristic biases that strongly influence model predictions: entity popularity, mention order, and semantic co-occurrence. For smaller models, a simple logistic regression using only these surface cues predicts model choices more accurately than the model's own numerical predictions, suggesting heuristics largely override principled reasoning. Crucially, we find that larger models (32B parameters) selectively rely on numerical knowledge when it is more reliable, while smaller models (7--8B parameters) show no such discrimination, which explains why larger models outperform smaller ones even when the smaller models possess more accurate knowledge. Chain-of-thought prompting steers all models towards using the numerical features across all model sizes.
comment: 33 pages, 20 figures. Submitted ACL ARR 2025 October (under review)
☆ When Many-Shot Prompting Fails: An Empirical Study of LLM Code Translation
Large Language Models (LLMs) with vast context windows offer new avenues for in-context learning (ICL), where providing many examples ("many-shot" prompting) is often assumed to enhance performance. We investigate this assumption for the complex task of code translation. Through a large-scale empirical study of over 90,000 translations, we systematically evaluate the impact of scaling in-context examples from zero-shot to many-shot configurations of up to 625 examples, with prompts spanning from approximately 100,000 to 800,000 tokens. Our findings reveal a "many-shot paradox": while static similarity metrics may modestly improve with more examples, functional correctness consistently peaks with few-shot prompting (5-25 examples). Providing substantially more examples often degrades this crucial functional performance. This study highlights that for code translation, the quality of a few well-chosen examples outweighs sheer quantity, challenging the universal efficacy of "more is better" for ICL and underscoring the task-dependent nature of optimal prompting strategies. Our results have significant implications for effectively leveraging LLMs in software engineering.
☆ MOSAIC: Masked Objective with Selective Adaptation for In-domain Contrastive Learning
We introduce MOSAIC (Masked Objective with Selective Adaptation for In-domain Contrastive learning), a multi-stage framework for domain adaptation of sentence embedding models that incorporates joint domain-specific masked supervision. Our approach addresses the challenges of adapting large-scale general-domain sentence embedding models to specialized domains. By jointly optimizing masked language modeling (MLM) and contrastive objectives within a unified training pipeline, our method enables effective learning of domain-relevant representations while preserving the robust semantic discrimination properties of the original model. We empirically validate our approach on both high-resource and low-resource domains, achieving improvements up to 13.4% in NDCG@10 (Normalized Discounted Cumulative Gain) over strong general-domain baselines. Comprehensive ablation studies further demonstrate the effectiveness of each component, highlighting the importance of balanced joint supervision and staged adaptation.
☆ LC-Eval: A Bilingual Multi-Task Evaluation Benchmark for Long-Context Understanding
Recent advancements in Large Language Models (LLMs) have demonstrated sophisticated capabilities, including the ability to process and comprehend extended contexts. These emergent capabilities necessitate rigorous evaluation methods to effectively assess their performance in long-context understanding. In this paper, we present \textbf{LC-Eval}, a bilingual, multi-task evaluation benchmark designed to evaluate long-context understanding in English and Arabic, targeting context lengths ranging from 4k to over 128k tokens. LC-Eval introduces four novel and challenging tasks: multi-document question answering, bilingual question answering, claim verification within a paragraph, and multiple-choice questions based on long contexts. These tasks are designed to assess LLMs' abilities in deep reasoning, document comprehension, information tracing, and bilingual information extraction and understanding. The benchmark includes datasets in both Arabic and English for each task, allowing for a comparative analysis of their performance across different text genres. Evaluations were conducted on both open-weight and closed LLMs, with results indicating that LC-Eval presents significant challenges. Even high-performing models, such as GPT-4o, struggled with certain tasks, highlighting the complexity and rigor of the benchmark.
comment: 1 figure, 15 tables, 10 main pages
☆ Xiaoice: Training-Free Video Understanding via Self-Supervised Spatio-Temporal Clustering of Semantic Features
The remarkable zero-shot reasoning capabilities of large-scale Visual Language Models (VLMs) on static images have yet to be fully translated to the video domain. Conventional video understanding models often rely on extensive, task-specific training on annotated datasets, a process that is both costly and limited in scalability. This paper introduces a novel, training-free framework for video understanding that circumvents end-to-end training by synergistically combining the rich semantic priors of pre-trained VLMs with classic machine learning algorithms for pattern discovery. Our core idea is to reframe video understanding as a self-supervised spatio-temporal clustering problem within a high-dimensional semantic feature space. The proposed pipeline first transforms a video stream into a semantic feature trajectory using the frozen visual encoder of a pre-trained VLM. Subsequently, we employ Kernel Temporal Segmentation (KTS), a robust machine learning technique, to partition the continuous feature stream into discrete, semantically coherent event segments. These segments are then subjected to unsupervised density-based clustering to identify recurring macroscopic scenes and themes throughout the video. By selecting representative keyframes from each discovered cluster and leveraging the VLM's generative capabilities for textual description, our framework automatically produces a structured, multi-modal summary of the video content. This approach provides an effective, interpretable, and model-agnostic pathway for zero-shot, automated structural analysis of video content.
☆ See or Say Graphs: Agent-Driven Scalable Graph Understanding with Vision-Language Models
Vision-language models (VLMs) have shown promise in graph understanding, but remain limited by input-token constraints, facing scalability bottlenecks and lacking effective mechanisms to coordinate textual and visual modalities. To address these challenges, we propose GraphVista, a unified framework that enhances both scalability and modality coordination in graph understanding. For scalability, GraphVista organizes graph information hierarchically into a lightweight GraphRAG base, which retrieves only task-relevant textual descriptions and high-resolution visual subgraphs, compressing redundant context while preserving key reasoning elements. For modality coordination, GraphVista introduces a planning agent that routes tasks to the most suitable modality-using the text modality for simple property reasoning and the visual modality for local and structurally complex reasoning grounded in explicit topology. Extensive experiments demonstrate that GraphVista scales to large graphs, up to $200\times$ larger than those used in existing benchmarks, and consistently outperforms existing textual, visual, and fusion-based methods, achieving up to $4.4\times$ quality improvement over the state-of-the-art baselines by fully exploiting the complementary strengths of both modalities.
☆ Enhancing Language Agent Strategic Reasoning through Self-Play in Adversarial Games
Existing language agents often encounter difficulties in dynamic adversarial games due to poor strategic reasoning. To mitigate this limitation, a promising approach is to allow agents to learn from game interactions automatically, without relying on costly expert-labeled data. Unlike static environments where agents receive fixed feedback or rewards, selecting appropriate opponents in dynamic adversarial games can significantly impact learning performance. However, the discussion of opponents in adversarial environments remains an area under exploration. In this paper, we propose a Step-level poliCy Optimization method through Play-And-Learn, SCO-PAL. Leveraging SCO-PAL, we conduct a detailed analysis of opponent selection by setting opponents at different levels and find that self-play is the most effective way to improve strategic reasoning in such adversarial environments. Utilizing SCO-PAL with self-play, we increase the average win rate against four opponents by approximately 30% compared to baselines and achieve a 54.76% win rate against GPT-4 in six adversarial games.
☆ End-to-end Listen, Look, Speak and Act
Human interaction is inherently multimodal and full-duplex: we listen while watching, speak while acting, and fluidly adapt to turn-taking and interruptions. Realizing these capabilities is essential for building models simulating humans. We present ELLSA (End-to-end Listen, Look, Speak and Act), which, to our knowledge, is the first full-duplex, end-to-end model that simultaneously perceives and generates across vision, text, speech, and action within a single architecture, enabling interaction patterns previously out of reach, yielding more natural, human-like behaviors. At its core is a novel SA-MoE architecture (Self-Attention Mixture-of-Experts) that routes each modality to specialized experts and fuses them through a unified attention backbone. This provides a generalizable solution for joint multimodal perception and concurrent generation, leveraging strong pre-trained components while enabling efficient modality integration and mitigating modality interference. On speech-interaction and robot-manipulation benchmarks, ELLSA matches modality-specific baselines, while uniquely supporting advanced multimodal and full-duplex behaviors such as dialogue and action turn-taking, defective instruction rejection, speaking-while-acting, context-grounded visual question answering, and action barge-ins. We contend that ELLSA represents a step toward more natural and general interactive intelligence, contributing to the broader pursuit of artificial general intelligence. All data, code and model checkpoints will be released upon acceptance.
comment: 22 pages, 8 figures
☆ Zero-Shot Performance Prediction for Probabilistic Scaling Laws NeurIPS 2025
The prediction of learning curves for Natural Language Processing (NLP) models enables informed decision-making to meet specific performance objectives, while reducing computational overhead and lowering the costs associated with dataset acquisition and curation. In this work, we formulate the prediction task as a multitask learning problem, where each task's data is modelled as being organized within a two-layer hierarchy. To model the shared information and dependencies across tasks and hierarchical levels, we employ latent variable multi-output Gaussian Processes, enabling to account for task correlations and supporting zero-shot prediction of learning curves (LCs). We demonstrate that this approach facilitates the development of probabilistic scaling laws at lower costs. Applying an active learning strategy, LCs can be queried to reduce predictive uncertainty and provide predictions close to ground truth scaling laws. We validate our framework on three small-scale NLP datasets with up to $30$ LCs. These are obtained from nanoGPT models, from bilingual translation using mBART and Transformer models, and from multilingual translation using M2M100 models of varying sizes.
comment: Accepted to NeurIPS 2025
☆ Beacon: Single-Turn Diagnosis and Mitigation of Latent Sycophancy in Large Language Models
Large language models internalize a structural trade-off between truthfulness and obsequious flattery, emerging from reward optimization that conflates helpfulness with polite submission. This latent bias, known as sycophancy, manifests as a preference for user agreement over principled reasoning. We introduce Beacon, a single-turn forced-choice benchmark that isolates this bias independent of conversational context, enabling precise measurement of the tension between factual accuracy and submissive bias. Evaluations across twelve state-of-the-art models reveal that sycophancy decomposes into stable linguistic and affective sub-biases, each scaling with model capacity. We further propose prompt-level and activation-level interventions that modulate these biases in opposing directions, exposing the internal geometry of alignment as a dynamic manifold between truthfulness and socially compliant judgment. Beacon reframes sycophancy as a measurable form of normative misgeneralization, providing a reproducible foundation for studying and mitigating alignment drift in large-scale generative systems.
☆ A Comprehensive Survey on Reinforcement Learning-based Agentic Search: Foundations, Roles, Optimizations, Evaluations, and Applications
The advent of large language models (LLMs) has transformed information access and reasoning through open-ended natural language interaction. However, LLMs remain limited by static knowledge, factual hallucinations, and the inability to retrieve real-time or domain-specific information. Retrieval-Augmented Generation (RAG) mitigates these issues by grounding model outputs in external evidence, but traditional RAG pipelines are often single turn and heuristic, lacking adaptive control over retrieval and reasoning. Recent advances in agentic search address these limitations by enabling LLMs to plan, retrieve, and reflect through multi-step interaction with search environments. Within this paradigm, reinforcement learning (RL) offers a powerful mechanism for adaptive and self-improving search behavior. This survey provides the first comprehensive overview of \emph{RL-based agentic search}, organizing the emerging field along three complementary dimensions: (i) What RL is for (functional roles), (ii) How RL is used (optimization strategies), and (iii) Where RL is applied (scope of optimization). We summarize representative methods, evaluation protocols, and applications, and discuss open challenges and future directions toward building reliable and scalable RL driven agentic search systems. We hope this survey will inspire future research on the integration of RL and agentic search. Our repository is available at https://github.com/ventr1c/Awesome-RL-based-Agentic-Search-Papers.
comment: 38 pages, 4 figures, 7 tables
☆ U-Codec: Ultra Low Frame-rate Neural Speech Codec for Fast High-fidelity Speech Generation
We propose \textbf{U-Codec}, an \textbf{U}ltra low frame-rate neural speech \textbf{Codec} that achieves high-fidelity reconstruction and fast speech generation at an extremely low frame-rate of 5Hz (5 frames per second). Extreme compression at 5Hz typically leads to severe intelligibility and spectral detail loss, we introduce a Transformer-based inter-frame long-term dependency module and systematically explore residual vector quantization (RVQ) depth and codebook size to identify optimal configurations. Moreover, we apply U-Codec into a large language model (LLM)-based auto-regressive TTS model, which leverages global and local hierarchical architecture to effectively capture dependencies across multi-layer tokens. We extend LLM-based TTS from 3-layer RVQ at 50Hz to 32-layer RVQ at 5Hz. Experimental results demonstrate that U-Codec improves LLM-based TTS inference speed by around 3 $\times$ over high-frame-rate codecs while maintaining similarity and naturalness. These results validate the feasibility of using highly compressed 5Hz discrete tokens for fast and high-fidelity speech synthesis.
☆ so much depends / upon / a whitespace: Why Whitespace Matters for Poets and LLMs
Whitespace is a critical component of poetic form, reflecting both adherence to standardized forms and rebellion against those forms. Each poem's whitespace distribution reflects the artistic choices of the poet and is an integral semantic and spatial feature of the poem. Yet, despite the popularity of poetry as both a long-standing art form and as a generation task for large language models (LLMs), whitespace has not received sufficient attention from the NLP community. Using a corpus of 19k English-language published poems from Poetry Foundation, we investigate how 4k poets have used whitespace in their works. We release a subset of 2.8k public-domain poems with preserved formatting to facilitate further research in this area. We compare whitespace usage in the published poems to (1) 51k LLM-generated poems, and (2) 12k unpublished poems posted in an online community. We also explore whitespace usage across time periods, poetic forms, and data sources. Additionally, we find that different text processing methods can result in significantly different representations of whitespace in poetry data, motivating us to use these poems and whitespace patterns to discuss implications for the processing strategies used to assemble pretraining datasets for LLMs.
☆ The Chameleon Nature of LLMs: Quantifying Multi-Turn Stance Instability in Search-Enabled Language Models
Integration of Large Language Models with search/retrieval engines has become ubiquitous, yet these systems harbor a critical vulnerability that undermines their reliability. We present the first systematic investigation of "chameleon behavior" in LLMs: their alarming tendency to shift stances when presented with contradictory questions in multi-turn conversations (especially in search-enabled LLMs). Through our novel Chameleon Benchmark Dataset, comprising 17,770 carefully crafted question-answer pairs across 1,180 multi-turn conversations spanning 12 controversial domains, we expose fundamental flaws in state-of-the-art systems. We introduce two theoretically grounded metrics: the Chameleon Score (0-1) that quantifies stance instability, and Source Re-use Rate (0-1) that measures knowledge diversity. Our rigorous evaluation of Llama-4-Maverick, GPT-4o-mini, and Gemini-2.5-Flash reveals consistent failures: all models exhibit severe chameleon behavior (scores 0.391-0.511), with GPT-4o-mini showing the worst performance. Crucially, small across-temperature variance (less than 0.004) suggests the effect is not a sampling artifact. Our analysis uncovers the mechanism: strong correlations between source re-use rate and confidence (r=0.627) and stance changes (r=0.429) are statistically significant (p less than 0.05), indicating that limited knowledge diversity makes models pathologically deferential to query framing. These findings highlight the need for comprehensive consistency evaluation before deploying LLMs in healthcare, legal, and financial systems where maintaining coherent positions across interactions is critical for reliable decision support.
☆ Natural Language Processing Applications in Cardiology: A Narrative Review
Cardiovascular disease has become increasingly prevalent in modern society and has a significant effect on global health and well-being. Heart-related conditions are intricate, multifaceted disorders, which may be influenced by a combination of genetic predispositions, lifestyle choices, and various socioeconomic and clinical factors. Information regarding these potentially complex interrelationships is dispersed among diverse types of textual data, which include patient narratives, medical records, and scientific literature, among others. Natural language processing (NLP) techniques have increasingly been adopted as a powerful means to analyse and make sense of this vast amount of unstructured data. This, in turn, can allow healthcare professionals to gain deeper insights into the cardiology field, which has the potential to revolutionize current approaches to the diagnosis, treatment, and prevention of cardiac problems. This review provides a detailed overview of NLP research in cardiology between 2014 and 2025. We queried six literature databases to find articles describing the application of NLP techniques in the context of a range of different cardiovascular diseases. Following a rigorous screening process, we identified a total of 265 relevant articles. We analysed each article from multiple dimensions, i.e., NLP paradigm types, cardiology-related task types, cardiovascular disease types, and data source types. Our analysis reveals considerable diversity within each of these dimensions, thus demonstrating the considerable breadth of NLP research within the field. We also perform a temporal analysis, which illustrates the evolution and changing trends in NLP methods employed over the last decade that we cover. To our knowledge, the review constitutes the most comprehensive overview of NLP research in cardiology to date.
☆ Investigating the Impact of Rationales for LLMs on Natural Language Understanding
Chain-of-thought (CoT) rationales, which provide step-by-step reasoning to derive final answers, benefit LLMs in both inference and training. Incorporating rationales, either by generating them before answering during inference, or by placing them before or after the original answers during training - significantly improves model performance on mathematical, symbolic and commonsense reasoning tasks. However, most work focuses on the role of rationales in these reasoning tasks, overlooking their potential impact on other important tasks like natural language understanding (NLU) tasks. In this work, we raise the question: Can rationales similarly benefit NLU tasks? To conduct a systematic exploration, we construct NLURC, a comprehensive and high-quality NLU dataset collection with rationales, and develop various rationale-augmented methods. Through exploring the applicability of these methods on NLU tasks using the dataset, we uncover several potentially surprising findings: (1) CoT inference shifts from hindering NLU performance to surpassing direct label prediction as model size grows, indicating a positive correlation. (2) Most rationale-augmented training methods perform worse than label-only training, with one specially designed method consistently achieving improvements. (3) LLMs trained with rationales achieve significant performance gains on unseen NLU tasks, rivaling models ten times their size, while delivering interpretability on par with commercial LLMs.
☆ Temporal Understanding under Deictic Frame of Reference
Understanding time is fundamental to human cognition, where temporal experience is often conceptualized through spatial metaphors grounded in sensory-motor experience. For example, "summer is approaching" parallels "We are approaching the summer". In such expressions, humans rely on a frame of reference (FoR) to interpret meaning relative to a particular viewpoint. Extending this concept to time, a temporal frame of reference (t-FoR) defines how temporal relations are perceived relative to an experiencer's moment of "now". While Large Language Models (LLMs) have shown remarkable advances in natural language understanding, their ability to interpret and reason about time remains limited. In this work, we introduce TUuD (Temporal Understanding under Deictic t-FoR), a framework that evaluates how LLMs interpret time-event and event-event relations when the reference point of "now" dynamically shifts along a timeline. Following recent work on temporal cognition \cite{li2025other}, LLMs are prompted to rate the similarity between the current moment and a target event from 0.00 (completely dissimilar) to 1.00 (highly similar), where similarity quantifies perceived temporal alignment between the two points. Our results show that four evaluated LLMs exhibit measurable adaptation to a deictic t-FoR, with similarity ratings peaking around the present and decreasing toward past and future events. The adaptation, however, weakens beyond near-term contexts, suggesting that while LLMs display partial human-like temporal cognition, their temporal reasoning remains sensitive to reference-frame shifts and temporal distance.
comment: Under review
☆ All You Need is One: Capsule Prompt Tuning with a Single Vector NeurIPS 2025
Prompt-based learning has emerged as a parameter-efficient finetuning (PEFT) approach to facilitate Large Language Model (LLM) adaptation to downstream tasks by conditioning generation with task-aware guidance. Despite its successes, current prompt-based learning methods heavily rely on laborious grid searching for optimal prompt length and typically require considerable number of prompts, introducing additional computational burden. Worse yet, our pioneer findings indicate that the task-aware prompt design is inherently limited by its absence of instance-aware information, leading to a subtle attention interplay with the input sequence. In contrast, simply incorporating instance-aware information as a part of the guidance can enhance the prompt-tuned model performance without additional fine-tuning. Moreover, we find an interesting phenomenon, namely "attention anchor", that incorporating instance-aware tokens at the earliest position of the sequence can successfully preserve strong attention to critical structural information and exhibit more active attention interaction with all input tokens. In light of our observation, we introduce Capsule Prompt-Tuning (CaPT), an efficient and effective solution that leverages off-the-shelf, informative instance semantics into prompt-based learning. Our approach innovatively integrates both instance-aware and task-aware information in a nearly parameter-free manner (i.e., one single capsule prompt). Empirical results demonstrate that our method can exhibit superior performance across various language tasks (e.g., 84.03\% average accuracy on T5-Large), serving as an "attention anchor," while enjoying high parameter efficiency (e.g., 0.003\% of model parameters on Llama3.2-1B).
comment: NeurIPS 2025
☆ Interpretability Framework for LLMs in Undergraduate Calculus
Large Language Models (LLMs) are increasingly being used in education, yet their correctness alone does not capture the quality, reliability, or pedagogical validity of their problem-solving behavior, especially in mathematics, where multistep logic, symbolic reasoning, and conceptual clarity are critical. Conventional evaluation methods largely focus on final answer accuracy and overlook the reasoning process. To address this gap, we introduce a novel interpretability framework for analyzing LLM-generated solutions using undergraduate calculus problems as a representative domain. Our approach combines reasoning flow extraction and decomposing solutions into semantically labeled operations and concepts with prompt ablation analysis to assess input salience and output stability. Using structured metrics such as reasoning complexity, phrase sensitivity, and robustness, we evaluated the model behavior on real Calculus I to III university exams. Our findings revealed that LLMs often produce syntactically fluent yet conceptually flawed solutions, with reasoning patterns sensitive to prompt phrasing and input variation. This framework enables fine-grained diagnosis of reasoning failures, supports curriculum alignment, and informs the design of interpretable AI-assisted feedback tools. This is the first study to offer a structured, quantitative, and pedagogically grounded framework for interpreting LLM reasoning in mathematics education, laying the foundation for the transparent and responsible deployment of AI in STEM learning environments.
☆ Atomic Literary Styling: Mechanistic Manipulation of Prose Generation in Neural Language Models
We present a mechanistic analysis of literary style in GPT-2, identifying individual neurons that discriminate between exemplary prose and rigid AI-generated text. Using Herman Melville's Bartleby, the Scrivener as a corpus, we extract activation patterns from 355 million parameters across 32,768 neurons in late layers. We find 27,122 statistically significant discriminative neurons ($p < 0.05$), with effect sizes up to $|d| = 1.4$. Through systematic ablation studies, we discover a paradoxical result: while these neurons correlate with literary text during analysis, removing them often improves rather than degrades generated prose quality. Specifically, ablating 50 high-discriminating neurons yields a 25.7% improvement in literary style metrics. This demonstrates a critical gap between observational correlation and causal necessity in neural networks. Our findings challenge the assumption that neurons which activate on desirable inputs will produce those outputs during generation, with implications for mechanistic interpretability research and AI alignment.
comment: 12 pages, 3 figures, 4 tables
♻ ☆ Thinking Out Loud: Do Reasoning Models Know When They're Right? EMNLP 2025
Large reasoning models (LRMs) have recently demonstrated impressive capabilities in complex reasoning tasks by leveraging increased test-time computation and exhibiting behaviors reminiscent of human-like self-reflection. While LRMs show a clear capacity for valuable self-reflection, how this ability interacts with other model behaviors remains underexplored. We investigate this connection by analyzing verbalized confidence, how models articulate their certainty, as a lens into the nature of self-reflection in LRMs. We find that supervised fine-tuning on reasoning traces (i.e., distillation) and reinforcement learning can improve verbalized calibration in reasoning-intensive settings in a progressive, laddered fashion. However, our results also indicate that reasoning models may possess a diminished awareness of their own knowledge boundaries, as evidenced by significantly lower "I don't know" response rates on factuality benchmarks. Moreover, we examine the relationship between verbalized confidence and reasoning chains, finding that models tend to express higher confidence when providing shorter or less elaborate reasoning. Our findings highlight how reasoning-oriented training can enhance performance in reasoning-centric tasks while potentially incurring a "reasoning tax," a cost reflected in the model's reduced ability to accurately recognize the limits of its own knowledge in small-scale models. More broadly, our work showcases how this erosion of knowledge boundaries can compromise model faithfulness, as models grow more confident without a commensurate understanding of when they should abstain.
comment: EMNLP 2025
♻ ☆ GRIFFIN: Effective Token Alignment for Faster Speculative Decoding
Speculative decoding accelerates inference in large language models (LLMs) by generating multiple draft tokens simultaneously. However, existing methods often struggle with token misalignment between the training and decoding phases, limiting their performance. To address this, we propose GRIFFIN, a novel framework that incorporates a token-alignable training strategy and a token-alignable draft model to mitigate misalignment. The training strategy employs a loss masking mechanism to exclude highly misaligned tokens during training, preventing them from negatively impacting the draft model's optimization. The token-alignable draft model introduces input tokens to correct inconsistencies in generated features. Experiments on LLaMA, Vicuna, Qwen and Mixtral models demonstrate that GRIFFIN achieves an average acceptance length improvement of over 8% and a speedup ratio exceeding 7%, outperforming current speculative decoding state-of-the-art methods. Our code and GRIFFIN's draft models are released publicly in https://github.com/hsj576/GRIFFIN.
♻ ☆ Creativity Benchmark: A benchmark for marketing creativity for large language models
We introduce Creativity Benchmark, an evaluation framework for large language models (LLMs) in marketing creativity. The benchmark covers 100 brands (12 categories) and three prompt types (Insights, Ideas, Wild Ideas). Human pairwise preferences from 678 practising creatives over 11,012 anonymised comparisons, analysed with Bradley-Terry models, show tightly clustered performance with no model dominating across brands or prompt types: the top-bottom spread is $\Delta\theta \approx 0.45$, which implies a head-to-head win probability of $0.61$; the highest-rated model beats the lowest only about $61\%$ of the time. We also analyse model diversity using cosine distances to capture intra- and inter-model variation and sensitivity to prompt reframing. Comparing three LLM-as-judge setups with human rankings reveals weak, inconsistent correlations and judge-specific biases, underscoring that automated judges cannot substitute for human evaluation. Conventional creativity tests also transfer only partially to brand-constrained tasks. Overall, the results highlight the need for expert human evaluation and diversity-aware workflows.
comment: 30 Pages, 14 figures. Fixed typos
♻ ☆ RL-PLUS: Countering Capability Boundary Collapse of LLMs in Reinforcement Learning with Hybrid-policy Optimization
Reinforcement Learning with Verifiable Reward (RLVR) has significantly advanced the complex reasoning abilities of Large Language Models (LLMs). However, it struggles to break through the inherent capability boundaries of the base LLM, due to its essentially on-policy strategy coupled with LLM's immense action space and sparse reward. Critically, RLVR can lead to the capability boundary collapse, narrowing the LLM's problem-solving scope. To address this problem, we propose RL-PLUS, a novel hybrid-policy optimization approach for LLMs that synergizes internal exploitation with external data to achieve stronger reasoning capabilities and surpass the boundaries of base models. RL-PLUS integrates two core components, i.e., Multiple Importance Sampling to address distributional mismatch from external data, and Exploration-Based Advantage Function to guide the model towards high-value, unexplored reasoning paths. We provide both theoretical analysis and extensive experiments to demonstrate the superiority and generalizability of our approach. Compared with existing RLVR methods, RL-PLUS achieves 1) state-of-the-art performance on six math reasoning benchmarks; 2) superior performance on six out-of-distribution reasoning tasks; 3) consistent and significant gains across diverse model families, with average relative improvements up to 69.2\%. Moreover, the analysis of Pass@k curves indicates that RL-PLUS effectively resolves the capability boundary collapse problem.
♻ ☆ Harmony in Divergence: Towards Fast, Accurate, and Memory-efficient Zeroth-order LLM Fine-tuning
Large language models (LLMs) excel across various tasks, but standard first-order (FO) fine-tuning demands considerable memory, significantly limiting real-world deployment. Recently, zeroth-order (ZO) optimization stood out as a promising memory-efficient training paradigm, avoiding backward passes and relying solely on forward passes for gradient estimation, making it attractive for resource-constrained scenarios. However, ZO method lags far behind FO method in both convergence speed and accuracy. To bridge the gap, we introduce a novel layer-wise divergence analysis that uncovers the distinct update pattern of FO and ZO optimization. Aiming to resemble the learning capacity of FO method from the findings, we propose Divergence-driven Zeroth-Order (DiZO) optimization. DiZO conducts divergence-driven layer adaptation by incorporating projections to ZO updates, generating diverse-magnitude updates precisely scaled to layer-wise individual optimization needs. Our results demonstrate that DiZO significantly reduces the needed iterations for convergence without sacrificing throughput, cutting training GPU hours by up to 48\% on various datasets. Moreover, DiZO consistently outperforms the representative ZO baselines in fine-tuning RoBERTa-large, OPT-series, and Llama-series on downstream tasks and, in some cases, even surpasses memory-intensive FO fine-tuning. Our code is released at https://github.com/Skilteee/DiZO.
♻ ☆ From Sequence to Structure: Uncovering Substructure Reasoning in Transformers
Recent studies suggest that large language models (LLMs) possess the capability to solve graph reasoning tasks. Notably, even when graph structures are embedded within textual descriptions, LLMs can still effectively answer related questions. This raises a fundamental question: How can a decoder-only Transformer architecture understand underlying graph structures? To address this, we start with the substructure extraction task, interpreting the inner mechanisms inside the transformers and analyzing the impact of the input queries. Specifically, through both empirical results and theoretical analysis, we present Induced Substructure Filtration (ISF), a perspective that captures the substructure identification in the multi-layer transformers. We further validate the ISF process in LLMs, revealing consistent internal dynamics across layers. Building on these insights, we explore the broader capabilities of Transformers in handling diverse graph types. Specifically, we introduce the concept of thinking in substructures to efficiently extract complex composite patterns, and demonstrate that decoder-only Transformers can successfully extract substructures from attributed graphs, such as molecular graphs. Together, our findings offer a new insight on how sequence-based Transformers perform the substructure extraction task over graph data.
comment: Camera Ready version for Neurips 2025
♻ ☆ mini-vec2vec: Scaling Universal Geometry Alignment with Linear Transformations
We build upon vec2vec, a procedure designed to align text embedding spaces without parallel data. vec2vec finds a near-perfect alignment, but it is expensive and unstable. We present mini-vec2vec, a simple and efficient alternative that requires substantially lower computational cost and is highly robust. Moreover, the learned mapping is a linear transformation. Our method consists of three main stages: a tentative matching of pseudo-parallel embedding vectors, transformation fitting, and iterative refinement. Our linear alternative exceeds the original instantiation of vec2vec by orders of magnitude in efficiency, while matching or exceeding their results. The method's stability and interpretable algorithmic steps facilitate scaling and unlock new opportunities for adoption in new domains and fields.
♻ ☆ A Controllable Examination for Long-Context Language Models NeurIPS 2025
Existing frameworks for evaluating long-context language models (LCLM) can be broadly categorized into real-world applications (e.g, document summarization) and synthetic tasks (e.g, needle-in-a-haystack). Despite their utility, both approaches are accompanied by certain intrinsic limitations. Real-world tasks often involve complexity that makes interpretation challenging and suffer from data contamination, whereas synthetic tasks frequently lack meaningful coherence between the target information (needle) and its surrounding context (haystack), undermining their validity as proxies for realistic applications. In response to these challenges, we posit that an ideal long-context evaluation framework should be characterized by three essential features: 1) seamless context 2) controllable setting and 3) sound evaluation. This study introduces $\textbf{LongBioBench}$, a benchmark that utilizes artificially generated biographies as a controlled environment for assessing LCLMs across dimensions of understanding, reasoning, and trustworthiness. Our experimental evaluation, which includes 18 LCLMs in total, demonstrates that most models still exhibit deficiencies in semantic understanding and elementary reasoning over retrieved results and are less trustworthy as context length increases. Our further analysis indicates some design choices employed by existing synthetic benchmarks, such as contextual non-coherence, numerical needles, and the absence of distractors, rendering them vulnerable to test the model's long-context capabilities. To sum up, compared to previous synthetic benchmarks, LongBioBench achieves a better trade-off between mirroring authentic language tasks and maintaining controllability, and is highly interpretable and configurable.
comment: NeurIPS 2025 Dataset and Benchmark Track Spotlight
♻ ☆ DOGe: Defensive Output Generation for LLM Protection Against Knowledge Distillation
Large Language Models (LLMs) represent substantial intellectual and economic investments, yet their effectiveness can inadvertently facilitate model imitation via knowledge distillation (KD). In practical scenarios, competitors can distill proprietary LLM capabilities by simply observing publicly accessible outputs, akin to reverse-engineering a complex performance by observation alone. Existing protective methods like watermarking only identify imitation post-hoc, while other defenses assume the student model mimics the teacher's internal logits, rendering them ineffective against distillation purely from observed output text. This paper confronts the challenge of actively protecting LLMs within the realistic constraints of API-based access. We introduce an effective and efficient Defensive Output Generation (DOGe) strategy that subtly modifies the output behavior of an LLM. Its outputs are accurate and useful for legitimate users, yet are designed to be misleading for distillation, significantly undermining imitation attempts. We achieve this by fine-tuning only the final linear layer of the teacher LLM with an adversarial loss. This targeted training approach anticipates and disrupts distillation attempts during inference time. Our experiments show that, while preserving the performance of the teacher model, student models distilled from the defensively generated outputs demonstrate catastrophically reduced performance, demonstrating DOGe as a practical safeguard against KD-based model imitation.
comment: Code is available at https://github.com/unites-lab/doge
♻ ☆ $Q\sharp$: Provably Optimal Distributional RL for LLM Post-Training NeurIPS 2025
Reinforcement learning (RL) post-training is crucial for LLM alignment and reasoning, but existing policy-based methods, such as PPO and DPO, can fall short of fixing shortcuts inherited from pre-training. In this work, we introduce $Q\sharp$, a value-based algorithm for KL-regularized RL that guides the reference policy using the optimal regularized $Q$ function. We propose to learn the optimal $Q$ function using distributional RL on an aggregated online dataset. Unlike prior value-based baselines that guide the model using unregularized $Q$-values, our method is theoretically principled and provably learns the optimal policy for the KL-regularized RL problem. Empirically, $Q\sharp$ outperforms prior baselines in math reasoning benchmarks while maintaining a smaller KL divergence to the reference policy. Theoretically, we establish a reduction from KL-regularized RL to no-regret online learning, providing the first bounds for deterministic MDPs under only realizability. Thanks to distributional RL, our bounds are also variance-dependent and converge faster when the reference policy has small variance. In sum, our results highlight $Q\sharp$ as an effective approach for post-training LLMs, offering both improved performance and theoretical guarantees. The code can be found at https://github.com/jinpz/q_sharp.
comment: NeurIPS 2025
♻ ☆ UFT: Unifying Supervised and Reinforcement Fine-Tuning
Post-training has demonstrated its importance in enhancing the reasoning capabilities of large language models (LLMs). The primary post-training methods can be categorized into supervised fine-tuning (SFT) and reinforcement fine-tuning (RFT). SFT is efficient and well-suited for small language models, but it may lead to overfitting and limit the reasoning abilities of larger models. In contrast, RFT generally yields better generalization but depends heavily on the strength of the base model. To address the limitations of SFT and RFT, we propose Unified Fine-Tuning (UFT), a novel post-training paradigm that unifies SFT and RFT into a single, integrated process. UFT enables the model to effectively explore solutions while incorporating informative supervision signals, bridging the gap between memorizing and thinking underlying existing methods. Notably, UFT outperforms both SFT and RFT in general, regardless of model sizes. Furthermore, we theoretically prove that UFT breaks RFT's inherent exponential sample complexity bottleneck, showing for the first time that unified training can exponentially accelerate convergence on long-horizon reasoning tasks.
♻ ☆ Hope vs. Hate: Understanding User Interactions with LGBTQ+ News Content in Mainstream US News Media through the Lens of Hope Speech
This paper makes three contributions. First, via a substantial corpus of 1,419,047 comments posted on 3,161 YouTube news videos of major US cable news outlets, we analyze how users engage with LGBTQ+ news content. Our analyses focus both on positive and negative content. In particular, we construct a fine-grained hope speech classifier that detects positive (hope speech), negative, neutral, and irrelevant content. Second, in consultation with a public health expert specializing on LGBTQ+ health, we conduct an annotation study with a balanced and diverse political representation and release a dataset of 3,750 instances with fine-grained labels and detailed annotator demographic information. Finally, beyond providing a vital resource for the LGBTQ+ community, our annotation study and subsequent in-the-wild assessments reveal (1) strong association between rater political beliefs and how they rate content relevant to a marginalized community; (2) models trained on individual political beliefs exhibit considerable in-the-wild disagreement; and (3) zero-shot large language models (LLMs) align more with liberal raters.
♻ ☆ CultureGuard: Towards Culturally-Aware Dataset and Guard Model for Multilingual Safety Applications
The increasing use of Large Language Models (LLMs) in agentic applications highlights the need for robust safety guard models. While content safety in English is well-studied, non-English languages lack similar advancements due to the high cost of collecting culturally aligned labeled datasets. We present CultureGuard, a novel solution for curating culturally aligned, high-quality safety datasets across multiple languages. Our approach introduces a four-stage synthetic data generation and filtering pipeline: cultural data segregation, cultural data adaptation, machine translation, and quality filtering. This pipeline enables the conversion and expansion of the Nemotron-Content-Safety-Dataset-V2 English safety dataset into eight distinct languages: Arabic, German, Spanish, French, Hindi, Japanese, Thai, and Chinese. The resulting dataset, Nemotron-Safety-Guard-Dataset-v3, comprises 386,661 samples in 9 languages and facilitates the training of Llama-3.1-Nemotron-Safety-Guard-8B-v3 via LoRA-based fine-tuning. The final model achieves state-of-the-art performance on several multilingual content safety benchmarks. Furthermore, we show our moderately multilingual fine-tuning enables robust cross-lingual transfer and strong zero-shot generalization to unseen languages. We also benchmark the latest open LLMs on multilingual safety and observe that these LLMs are more prone to give unsafe responses when prompted in non-English languages. This work advances multilingual LLM safety by enabling the development of culturally aware safety guard models.
♻ ☆ Large Language Models are Powerful Electronic Health Record Encoders
Electronic Health Records (EHRs) offer considerable potential for clinical prediction, but their complexity and heterogeneity present significant challenges for traditional machine learning methods. Recently, domain-specific EHR foundation models trained on large volumes of unlabeled EHR data have shown improved predictive accuracy and generalization. However, their development is constrained by limited access to diverse, high-quality datasets, and inconsistencies in coding standards and clinical practices. In this study, we explore the use of general-purpose Large Language Models (LLMs) to encode EHR into high-dimensional representations for downstream clinical prediction tasks. We convert structured EHR data into Markdown-formatted plain-text documents by replacing medical codes with natural language descriptions. This enables the use of LLMs and their extensive semantic understanding and generalization capabilities as effective encoders of EHRs without requiring access to private medical training data. We show that LLM-based embeddings can often match or even surpass the performance of a specialized EHR foundation model, CLMBR-T-Base, across 15 diverse clinical tasks from the EHRSHOT benchmark. Critically, our approach requires no institution-specific training and can incorporate any medical code with a text description, whereas existing EHR foundation models operate on fixed vocabularies and can only process codes seen during pretraining. To demonstrate generalizability, we further evaluate the approach on the UK Biobank (UKB) cohort, out-of-domain for CLMBR-T-Base, whose fixed vocabulary covers only 16% of UKB codes. Notably, an LLM-based model achieves superior performance for prediction of disease onset, hospitalization, and mortality, indicating robustness to population and coding shifts.
♻ ☆ SpikingBrain: Spiking Brain-inspired Large Models
Mainstream Transformer-based large language models face major efficiency bottlenecks: training computation scales quadratically with sequence length, and inference memory grows linearly, limiting long-context processing. Building large models on non-NVIDIA platforms also poses challenges for stable and efficient training. To address this, we introduce SpikingBrain, a family of brain-inspired models designed for efficient long-context training and inference. SpikingBrain leverages the MetaX GPU cluster and focuses on three aspects: (1) Model Architecture: linear and hybrid-linear attention architectures with adaptive spiking neurons; (2) Algorithmic Optimizations: an efficient, conversion-based training pipeline and a dedicated spike coding framework; (3) System Engineering: customized training frameworks, operator libraries, and parallelism strategies tailored to MetaX hardware. Using these techniques, we develop two models: SpikingBrain-7B, a linear LLM, and SpikingBrain-76B, a hybrid-linear MoE LLM. These models demonstrate the feasibility of large-scale LLM development on non-NVIDIA platforms. SpikingBrain achieves performance comparable to open-source Transformer baselines while using only about 150B tokens for continual pre-training. Our models significantly improve long-sequence training efficiency and deliver inference with (partially) constant memory and event-driven spiking behavior. For example, SpikingBrain-7B attains over 100x speedup in Time to First Token for 4M-token sequences. Training remains stable for weeks on hundreds of MetaX C550 GPUs, with the 7B model reaching a Model FLOPs Utilization of 23.4 percent. The proposed spiking scheme achieves 69.15 percent sparsity, enabling low-power operation. Overall, this work demonstrates the potential of brain-inspired mechanisms to drive the next generation of efficient and scalable large model design.
♻ ☆ DP-Fusion: Token-Level Differentially Private Inference for Large Language Models UAI
Large language models (LLMs) do not preserve privacy at inference-time. The LLM's outputs can inadvertently reveal information about the model's context, which presents a privacy challenge when the LLM is augmented via tools or databases containing sensitive information. Existing privacy-preserving methods at inference-time have significant limitations since they (i) lack provable guarantees or (ii) have a poor utility/privacy trade-off. We propose DP-Fusion, a Differentially Private Inference (DPI) mechanism for LLMs that provably bounds the influence a set of tokens in the context can have on the LLM's output. DP-Fusion works as follows: (1) label a subset of sensitive tokens, (2) infer the LLM without any sensitive tokens to obtain a baseline, (3) infer the LLM with the sensitive tokens, and (4) blend distributions so that the final output remains within a bounded distance of the baseline distribution. While this per-token influence bound also mitigates jailbreak-style prompt injection, we focus on \emph{document privatization}, where the goal is to paraphrase a document containing sensitive tokens, e.g., personally identifiable information, so that no attacker can reliably infer them from the paraphrased document while preserving high text quality. The privacy/utility trade-off is controlled by $\epsilon$, where $\epsilon=0$ hides sensitive tokens entirely, while higher values trade off privacy for improved text quality. We show that our method creates token-level provably privatized documents with substantially improved theoretical and empirical privacy, achieving $6\times$ lower perplexity than related DPI methods.
comment: Our code and data are publicly available here: https://github.com/MBZUAI-Trustworthy-ML/DP-Fusion-DPI
♻ ☆ A Survey on LLM-as-a-Judge
Accurate and consistent evaluation is crucial for decision-making across numerous fields, yet it remains a challenging task due to inherent subjectivity, variability, and scale. Large Language Models (LLMs) have achieved remarkable success across diverse domains, leading to the emergence of "LLM-as-a-Judge," where LLMs are employed as evaluators for complex tasks. With their ability to process diverse data types and provide scalable, cost-effective, and consistent assessments, LLMs present a compelling alternative to traditional expert-driven evaluations. However, ensuring the reliability of LLM-as-a-Judge systems remains a significant challenge that requires careful design and standardization. This paper provides a comprehensive survey of LLM-as-a-Judge, addressing the core question: How can reliable LLM-as-a-Judge systems be built? We explore strategies to enhance reliability, including improving consistency, mitigating biases, and adapting to diverse assessment scenarios. Additionally, we propose methodologies for evaluating the reliability of LLM-as-a-Judge systems, supported by a novel benchmark designed for this purpose. To advance the development and real-world deployment of LLM-as-a-Judge systems, we also discussed practical applications, challenges, and future directions. This survey serves as a foundational reference for researchers and practitioners in this rapidly evolving field.
comment: Project Page: https://awesome-llm-as-a-judge.github.io/
♻ ☆ When To Solve, When To Verify: Compute-Optimal Problem Solving and Generative Verification for LLM Reasoning
Scaling test-time compute has emerged as a key strategy for enhancing the reasoning capabilities of large language models (LLMs), particularly in tasks like mathematical problem-solving. A traditional approach, Self-Consistency (SC), generates multiple solutions to a problem and selects the most common answer via majority voting. Another common method involves scoring each solution with a reward model (verifier) and choosing the best one. Recent advancements in Generative Reward Models (GenRM) reframe verification as a next-token prediction task, enabling inference-time scaling along a new axis. Specifically, GenRM generates multiple verification chains-of-thought to score each solution. Under a limited inference budget, this introduces a fundamental trade-off: should you spend the budget on scaling solutions via SC or generate fewer solutions and allocate compute to verification via GenRM? To address this, we evaluate GenRM against SC under a fixed inference budget. Interestingly, we find that SC is more compute-efficient than GenRM for most practical inference budgets across diverse models and datasets. For instance, GenRM first matches SC after consuming up to 8x the inference compute and requires significantly more compute to outperform it. Furthermore, we derive inference scaling laws for the GenRM paradigm, revealing that compute-optimal inference favors scaling solution generation more aggressively than scaling the number of verifications. Our work provides practical guidance on optimizing test-time scaling by balancing solution generation and verification. The code is available at https://github.com/nishadsinghi/sc-genrm-scaling.
comment: COLM 2025
♻ ☆ ShiZhi: A Chinese Lightweight Large Language Model for Court View Generation
Criminal Court View Generation (CVG) is a fundamental task in legal artificial intelligence, aiming to automatically generate the "Court View" section of a legal case document. Generating court views is challenging due to the diversity and complexity of case facts, and directly generating from raw facts may limit performance. In this paper, we present ShiZhi, the first large language model (LLM) specifically designed for court view generation. We construct a Chinese Court View Generation dataset, CCVG, of more than 110K cases, each containing fact descriptions paired with corresponding court views. Based on this dataset, ShiZhi achieving 70.00 ROUGE-1 and 67.85 BLEU-1 on court view generation, as well as 86.48\% accuracy with 92.75\% macro F1 on charge prediction. Experimental results demonstrate that even a small LLM can generate reasonable and legally coherent court views when trained on high-quality domain-specific data. Our model and dataset are available at \href{https://github.com/ZhitianHou/ShiZhi}{https://github.com/ZhitianHou/ShiZhi}.
♻ ☆ Repo2Run: Automated Building Executable Environment for Code Repository at Scale
Scaling up executable code data is significant for improving language models' software engineering capability. The intricate nature of the process makes it labor-intensive, time-consuming and expert-knowledge-dependent to build a large number of executable code repositories, limiting the scalability of existing work based on running tests. The primary bottleneck lies in the automated building of test environments for different repositories, which is an essential yet underexplored task. To mitigate the gap, we introduce Repo2Run, the first LLM-based agent aiming at automating the building of executable test environments for any repositories at scale. Specifically, given a code repository, Repo2Run iteratively builds the Docker image, runs unit tests based on the feedback of the building, and synthesizes the Dockerfile until the entire pipeline is executed successfully. The resulting Dockerfile can then be used to create Docker container environments for running code and tests. We created a benchmark containing 420 Python repositories with unit tests for evaluation. The results illustrate that Repo2Run achieves an 86.0% success rate, outperforming SWE-agent by 77.0%. The resources of Repo2Run are available at https://github.com/bytedance/Repo2Run.
♻ ☆ A Systematic Approach to Predict the Impact of Cybersecurity Vulnerabilities Using LLMs IEEE
Vulnerability databases, such as the National Vulnerability Database (NVD), offer detailed descriptions of Common Vulnerabilities and Exposures (CVEs), but often lack information on their real-world impact, such as the tactics, techniques, and procedures (TTPs) that adversaries may use to exploit the vulnerability. However, manually linking CVEs to their corresponding TTPs is a challenging and time-consuming task, and the high volume of new vulnerabilities published annually makes automated support desirable. This paper introduces TRIAGE, a two-pronged automated approach that uses Large Language Models (LLMs) to map CVEs to relevant techniques from the ATT&CK knowledge base. We first prompt an LLM with instructions based on MITRE's CVE Mapping Methodology to predict an initial list of techniques. This list is then combined with the results from a second LLM-based module that uses in-context learning to map a CVE to relevant techniques. This hybrid approach strategically combines rule-based reasoning with data-driven inference. Our evaluation reveals that in-context learning outperforms the individual mapping methods, and the hybrid approach improves recall of exploitation techniques. We also find that GPT-4o-mini performs better than Llama3.3-70B on this task. Overall, our results show that LLMs can be used to automatically predict the impact of cybersecurity vulnerabilities and TRIAGE makes the process of mapping CVEs to ATT&CK more efficient. A replication package is available for download from https://doi.org/10.5281/zenodo.17341503. Keywords: vulnerability impact, CVE, ATT&CK techniques, large language models, automated mapping.
comment: Accepted for publication in the 24th IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom 2025)
♻ ☆ A*-Thought: Efficient Reasoning via Bidirectional Compression for Low-Resource Settings NeurIPS 2025
Large Reasoning Models (LRMs) achieve superior performance by extending the thought length. However, a lengthy thinking trajectory leads to reduced efficiency. Most of the existing methods are stuck in the assumption of overthinking and attempt to reason efficiently by compressing the Chain-of-Thought, but this often leads to performance degradation. To address this problem, we introduce A*-Thought, an efficient tree search-based unified framework designed to identify and isolate the most essential thoughts from the extensive reasoning chains produced by these models. It formulates the reasoning process of LRMs as a search tree, where each node represents a reasoning span in the giant reasoning space. By combining the A* search algorithm with a cost function specific to the reasoning path, it can efficiently compress the chain of thought and determine a reasoning path with high information density and low cost. In addition, we also propose a bidirectional importance estimation mechanism, which further refines this search process and enhances its efficiency beyond uniform sampling. Extensive experiments on several advanced math tasks show that A*-Thought effectively balances performance and efficiency over a huge search space. Specifically, A*-Thought can improve the performance of QwQ-32B by 2.39$\times$ with low-budget and reduce the length of the output token by nearly 50% with high-budget. The proposed method is also compatible with several other LRMs, demonstrating its generalization capability. The code can be accessed at: https://github.com/AI9Stars/AStar-Thought.
comment: Accepted by NeurIPS 2025
♻ ☆ Intrinsic Self-Correction in LLMs: Towards Explainable Prompting via Mechanistic Interpretability
Intrinsic self-correction refers to the phenomenon where a language model refines its own outputs purely through prompting, without external feedback or parameter updates. While this approach improves performance across diverse tasks, its internal mechanism remains poorly understood. We analyze intrinsic self-correction from a representation-level perspective. We formalize and introduce the notion of a prompt-induced shift, which is the change in hidden representations caused by a self-correction prompt. Across 5 open-source LLMs, prompt-induced shifts in text detoxification and text toxification align with latent directions constructed from contrastive pairs. In detoxification, the shifts align with the non-toxic direction; in toxification, they align with the toxic direction. These results suggest that intrinsic self-correction functions as representation steering along interpretable latent directions, beyond what standard metrics such as task scores or model confidence capture. Our analysis offers an interpretability-based account of intrinsic self-correction and contributes to a more systematic understanding of LLM prompting.
♻ ☆ Robust Search with Uncertainty-Aware Value Models for Language Model Reasoning
Value model guided search is effective in steering LLM generation but suffers from a lack of robustness. This is due to verifier failure: imperfect VMs mistakenly prune valid reasoning paths, especially when encountering unseen reasoning paths generated during search. To address this, we propose an uncertainty-aware framework with two key components: (1) Uncertainty-Aware Value Models (UVMs), which replace single-point value estimates with value distributions to quantify prediction reliability, and (2) Group Thompson Sampling, an efficient algorithm that selects candidates based on their probability of being optimal. Experiments on two In-Distribution (ID) settings (GSM8K, MATH) and three Out-Of-Distribution (OOD) settings (e.g., AIME25, Minerva Math) show our method significantly mitigates verifier failure and boosts solution coverage, especially on OOD problems. This work provides the first systematic integration of uncertainty quantification into LLM search paradigms, enhancing robustness. The code is released at https://github.com/FreedomIntelligence/UVM.
♻ ☆ MiLQ: Benchmarking IR Models for Bilingual Web Search with Mixed Language Queries EMNLP 2025
Despite bilingual speakers frequently using mixed-language queries in web searches, Information Retrieval (IR) research on them remains scarce. To address this, we introduce MiLQ, Mixed-Language Query test set, the first public benchmark of mixed-language queries, qualified as realistic and relatively preferred. Experiments show that multilingual IR models perform moderately on MiLQ and inconsistently across native, English, and mixed-language queries, also suggesting code-switched training data's potential for robust IR models handling such queries. Meanwhile, intentional English mixing in queries proves an effective strategy for bilinguals searching English documents, which our analysis attributes to enhanced token matching compared to native queries.
comment: 17 pages, 9 figures, EMNLP 2025 Main Conference
♻ ☆ ASCD: Attention-Steerable Contrastive Decoding for Reducing Hallucination in MLLM
Multimodal large language models (MLLMs) frequently hallucinate by over-committing to spurious visual cues. Prior remedies-Visual and Instruction Contrastive Decoding (VCD, ICD)-mitigate this issue, yet the mechanism remains opaque. We first empirically show that their improvements systematically coincide with redistributions of cross-modal attention. Building on this insight, we propose Attention-Steerable Contrastive Decoding (ASCD), which directly steers the attention scores during decoding. ASCD combines (i) positive steering, which amplifies automatically mined text-centric heads-stable within a model and robust across domains-with (ii) negative steering, which dampens on-the-fly identified critical visual tokens. The method incurs negligible runtime and memory overhead and requires no additional training. Across five MLLM backbones and three decoding schemes, ASCD reduces hallucination on POPE, CHAIR, and MMHal-Bench by up to 38.2 percent while improving accuracy on standard VQA benchmarks, including MMMU, MM-VET, ScienceQA, TextVQA, and GQA. These results position attention steering as a simple, model-agnostic, and principled route to safer, more faithful multimodal generation.
comment: 14 pages, 8 figures
♻ ☆ Agentic Design of Compositional Machines
The design of complex machines stands as both a marker of human intelligence and a foundation of engineering practice. Given recent advances in large language models (LLMs), we ask whether they, too, can learn to create. We approach this question through the lens of compositional machine design: a task in which machines are assembled from standardized components to meet functional demands like locomotion or manipulation in a simulated physical environment. With this simplification, machine design is expressed as writing XML-like code that explicitly specifies pairwise part connections. To support this investigation, we introduce BesiegeField, a testbed built on the machine-building game Besiege, which enables part-based construction, physical simulation and reward-driven evaluation. Using BesiegeField, we benchmark state-of-the-art LLMs with agentic workflows and identify key capabilities required for success, including spatial reasoning, strategic assembly, and instruction-following. As current open-source models fall short, we explore reinforcement learning (RL) as a path to improvement: we curate a cold-start dataset, conduct RL finetuning experiments, and highlight open challenges at the intersection of language, machine design, and physical reasoning.
comment: 75 pages, 31 figures, Project Page: https://besiegefield.github.io
♻ ☆ Evaluating Retrieval-Augmented Generation Systems on Unanswerable, Uncheatable, Realistic, Multi-hop Queries
Real-world use cases often present RAG systems with complex queries for which relevant information is missing from the corpus or is incomplete. In these settings, RAG systems must be able to reject unanswerable, out-of-scope queries and identify failures of retrieval and multi-hop reasoning. Despite this, existing RAG benchmarks rarely reflect realistic task complexity for multi-hop or out-of-scope questions, which often can be cheated via disconnected reasoning (i.e., solved without genuine multi-hop inference) or require only simple factual recall. This limits the ability for such benchmarks to uncover limitations of existing RAG systems. To address this gap, we present the first pipeline for automatic, difficulty-controlled creation of un$\underline{c}$heatable, $\underline{r}$ealistic, $\underline{u}$nanswerable, and $\underline{m}$ulti-hop $\underline{q}$uerie$\underline{s}$ (CRUMQs), adaptable to any corpus and domain. We use our pipeline to create CRUMQs over two popular RAG datasets and demonstrate its effectiveness via benchmark experiments on leading retrieval-augmented LLMs. Results show that compared to prior RAG benchmarks, CRUMQs are highly challenging for RAG systems and achieve up to 81.0\% reduction in cheatability scores. More broadly, our pipeline offers a simple way to enhance benchmark difficulty and realism and drive development of more capable RAG systems.
♻ ☆ Enhancing Efficiency and Exploration in Reinforcement Learning for LLMs EMNLP 2025
Reasoning large language models (LLMs) excel in complex tasks, which has drawn significant attention to reinforcement learning (RL) for LLMs. However, existing approaches allocate an equal number of rollouts to all questions during the RL process, which is inefficient. This inefficiency stems from the fact that training on simple questions yields limited gains, whereas more rollouts are needed for challenging questions to sample correct answers. Furthermore, while RL improves response precision, it limits the model's exploration ability, potentially resulting in a performance cap below that of the base model prior to RL. To address these issues, we propose a mechanism for dynamically allocating rollout budgets based on the difficulty of the problems, enabling more efficient RL training. Additionally, we introduce an adaptive dynamic temperature adjustment strategy to maintain the entropy at a stable level, thereby encouraging sufficient exploration. This enables LLMs to improve response precision while preserving their exploratory ability to uncover potential correct pathways. The code and data is available on: https://github.com/LiaoMengqi/E3-RL4LLMs
comment: Accept by EMNLP 2025 main
♻ ☆ MedScore: Generalizable Factuality Evaluation of Free-Form Medical Answers by Domain-adapted Claim Decomposition and Verification
While Large Language Models (LLMs) can generate fluent and convincing responses, they are not necessarily correct. This is especially apparent in the popular decompose-then-verify factuality evaluation pipeline, where LLMs evaluate generations by decomposing the generations into individual, valid claims. Factuality evaluation is especially important for medical answers, since incorrect medical information could seriously harm the patient. However, existing factuality systems are a poor match for the medical domain, as they are typically only evaluated on objective, entity-centric, formulaic texts such as biographies and historical topics. This differs from condition-dependent, conversational, hypothetical, sentence-structure diverse, and subjective medical answers, which makes decomposition into valid facts challenging. We propose MedScore, a new pipeline to decompose medical answers into condition-aware valid facts and verify against in-domain corpora. Our method extracts up to three times more valid facts than existing methods, reducing hallucination and vague references, and retaining condition-dependency in facts. The resulting factuality score substantially varies by decomposition method, verification corpus, and used backbone LLM, highlighting the importance of customizing each step for reliable factuality evaluation by using our generalizable and modularized pipeline for domain adaptation.
comment: Added generalizability experiment and examples on non-medical free-form answer. Added ablation study for MedCorp verification corpus and MedScore decomposition prompt
♻ ☆ StarWhisper Telescope: An AI framework for automating end-to-end astronomical observations
The exponential growth of large-scale telescope arrays has boosted time-domain astronomy development but introduced operational bottlenecks, including labor-intensive observation planning, data processing, and real-time decision-making. Here we present the StarWhisper Telescope system, an AI agent framework automating end-to-end astronomical observations for surveys like the Nearby Galaxy Supernovae Survey. By integrating large language models with specialized function calls and modular workflows, StarWhisper Telescope autonomously generates site-specific observation lists, executes real-time image analysis via pipelines, and dynamically triggers follow-up proposals upon transient detection. The system reduces human intervention through automated observation planning, telescope controlling and data processing, while enabling seamless collaboration between amateur and professional astronomers. Deployed across Nearby Galaxy Supernovae Survey's network of 10 amateur telescopes, the StarWhisper Telescope has detected transients with promising response times relative to existing surveys. Furthermore, StarWhisper Telescope's scalable agent architecture provides a blueprint for future facilities like the Global Open Transient Telescope Array, where AI-driven autonomy will be critical for managing 60 telescopes.
comment: 33 pages
Machine Learning 72
☆ Video Reasoning without Training
Video reasoning using Large Multimodal Models (LMMs) relies on costly reinforcement learning (RL) and verbose chain-of-thought, resulting in substantial computational overhead during both training and inference. Moreover, the mechanisms that control the thinking process in these reasoning models are very limited. In this paper, using entropy of the model's output as a signal, we discover that the high-quality models go through a series of micro-explorations and micro-exploitations which keep the reasoning process grounded (i.e., avoid excessive randomness while the model is exploring or thinking through an answer). We further observe that once this "thinking" process is over, more accurate models demonstrate a better convergence by reducing the entropy significantly via a final exploitation phase (i.e., a more certain convergence towards a solution trajectory). We then use these novel, theoretically-grounded insights to tune the model's behavior directly at inference, without using any RL or supervised fine-tuning. Specifically, during inference, our proposed approach called V-Reason (Video-Reason) adapts the value cache of the LMM via a few optimization steps on a small, trainable controller using an entropy-based objective, i.e., no supervision from any dataset or RL is necessary. This tuning improves the model's micro-exploration and exploitation behavior during inference. Our experiments show that our proposed method achieves significant improvements over the base instruction-tuned models across several video reasoning datasets, narrowing the gap with RL-trained models to within 0.6% average accuracy without any training, while offering massive efficiency benefits: output tokens are reduced by 58.6% compared to the RL model.
☆ Diverse Influence Component Analysis: A Geometric Approach to Nonlinear Mixture Identifiability
Latent component identification from unknown nonlinear mixtures is a foundational challenge in machine learning, with applications in tasks such as disentangled representation learning and causal inference. Prior work in nonlinear independent component analysis (nICA) has shown that auxiliary signals -- such as weak supervision -- can support identifiability of conditionally independent latent components. More recent approaches explore structural assumptions, e.g., sparsity in the Jacobian of the mixing function, to relax such requirements. In this work, we introduce Diverse Influence Component Analysis (DICA), a framework that exploits the convex geometry of the mixing function's Jacobian. We propose a Jacobian Volume Maximization (J-VolMax) criterion, which enables latent component identification by encouraging diversity in their influence on the observed variables. Under reasonable conditions, this approach achieves identifiability without relying on auxiliary information, latent component independence, or Jacobian sparsity assumptions. These results extend the scope of identifiability analysis and offer a complementary perspective to existing methods.
comment: 30 pages, 3 figures
☆ Hephaestus: Mixture Generative Modeling with Energy Guidance for Large-scale QoS Degradation NeurIPS 2025
We study the Quality of Service Degradation (QoSD) problem, in which an adversary perturbs edge weights to degrade network performance. This setting arises in both network infrastructures and distributed ML systems, where communication quality, not just connectivity, determines functionality. While classical methods rely on combinatorial optimization, and recent ML approaches address only restricted linear variants with small-size networks, no prior model directly tackles the QoSD problem under nonlinear edge-weight functions. This work proposes \PIMMA, a self-reinforcing generative framework that synthesizes feasible solutions in latent space, to fill this gap. Our method includes three phases: (1) Forge: a Predictive Path-Stressing (PPS) algorithm that uses graph learning and approximation to produce feasible solutions with performance guarantee, (2) Morph: a new theoretically grounded training paradigm for Mixture of Conditional VAEs guided by an energy-based model to capture solution feature distributions, and (3) Refine: a reinforcement learning agent that explores this space to generate progressively near-optimal solutions using our designed differentiable reward function. Experiments on both synthetic and real-world networks show that our approach consistently outperforms classical and ML baselines, particularly in scenarios with nonlinear cost functions where traditional methods fail to generalize.
comment: 62 pages, 19 figures, Neural Information Processing Systems (NeurIPS 2025)
☆ Mapping from Meaning: Addressing the Miscalibration of Prompt-Sensitive Language Models
An interesting behavior in large language models (LLMs) is prompt sensitivity. When provided with different but semantically equivalent versions of the same prompt, models may produce very different distributions of answers. This suggests that the uncertainty reflected in a model's output distribution for one prompt may not reflect the model's uncertainty about the meaning of the prompt. We model prompt sensitivity as a type of generalization error, and show that sampling across the semantic ``concept space'' with paraphrasing perturbations improves uncertainty calibration without compromising accuracy. Additionally, we introduce a new metric for uncertainty decomposition in black-box LLMs that improves upon entropy-based decomposition by modeling semantic continuities in natural language generation. We show that this decomposition metric can be used to quantify how much LLM uncertainty is attributed to prompt sensitivity. Our work introduces a new way to improve uncertainty calibration in prompt-sensitive language models, and provides evidence that some LLMs fail to exhibit consistent general reasoning about the meanings of their inputs.
☆ Curiosity-driven RL for symbolic equation solving NeurIPS 2025
We explore if RL can be useful for symbolic mathematics. Previous work showed contrastive learning can solve linear equations in one variable. We show model-free PPO \cite{schulman2017proximal} augmented with curiosity-based exploration and graph-based actions can solve nonlinear equations such as those involving radicals, exponentials, and trig functions. Our work suggests curiosity-based exploration may be useful for general symbolic reasoning tasks.
comment: Accepted at the NeurIPS 2025 MATH-AI Workshop
☆ Forgetting to Forget: Attention Sink as A Gateway for Backdooring LLM Unlearning
Large language model (LLM) unlearning has become a critical mechanism for removing undesired data, knowledge, or behaviors from pre-trained models while retaining their general utility. Yet, with the rise of open-weight LLMs, we ask: can the unlearning process itself be backdoored, appearing successful under normal conditions yet reverting to pre-unlearned behavior when a hidden trigger is activated? Drawing inspiration from classical backdoor attacks that embed triggers into training data to enforce specific behaviors, we investigate backdoor unlearning, where models forget as intended in the clean setting but recover forgotten knowledge when the trigger appears. We show that designing such attacks presents unique challenges, hinging on where triggers are placed and how backdoor training is reinforced. We uncover a strong link between backdoor efficacy and the attention sink phenomenon, i.e., shallow input tokens consistently attract disproportionate attention in LLMs. Our analysis reveals that these attention sinks serve as gateways for backdoor unlearning: placing triggers at sink positions and aligning their attention values markedly enhances backdoor persistence. Extensive experiments validate these findings, showing that attention-sink-guided backdoor unlearning reliably restores forgotten knowledge in the presence of backdoor triggers, while behaving indistinguishably from a normally unlearned model when triggers are absent. Code is available at https://github.com/OPTML-Group/Unlearn-Backdoor.
☆ Extended LSTM: Adaptive Feature Gating for Toxic Comment Classification
Toxic comment detection remains a challenging task, where transformer-based models (e.g., BERT) incur high computational costs and degrade on minority toxicity classes, while classical ensembles lack semantic adaptability. We propose xLSTM, a parameter-efficient and theoretically grounded framework that unifies cosine-similarity gating, adaptive feature prioritization, and principled class rebalancing. A learnable reference vector {v} in {R}^d modulates contextual embeddings via cosine similarity, amplifying toxic cues and attenuating benign signals to yield stronger gradients under severe class imbalance. xLSTM integrates multi-source embeddings (GloVe, FastText, BERT CLS) through a projection layer, a character-level BiLSTM for morphological cues, embedding-space SMOTE for minority augmentation, and adaptive focal loss with dynamic class weighting. On the Jigsaw Toxic Comment benchmark, xLSTM attains 96.0% accuracy and 0.88 macro-F1, outperforming BERT by 33% on threat and 28% on identity_hate categories, with 15 times fewer parameters and 50ms inference latency. Cosine gating contributes a +4.8% F1 gain in ablations. The results establish a new efficiency adaptability frontier, demonstrating that lightweight, theoretically informed architectures can surpass large pretrained models on imbalanced, domain-specific NLP tasks.
☆ Justitia: Fair and Efficient Scheduling for LLM Applications
In the era of Large Language Models (LLMs), it has been popular to launch a series of LLM inferences -- we call an LLM application -- to better solve real-world problems. When serving those applications in shared GPU servers, the schedulers are expected to attain fast application completions with guaranteed worst-case performance. However, mainstream LLM schedulers fail to behave well for LLM applications -- due to head-of-line blocking or over-constrained resource allocation. In this paper, we propose to serve LLM applications in a fair and also efficient manner. To this end, we design Justitia, a novel scheduler with three key techniques. First, given that memory is prevalently a bottleneck for mainstream inference frameworks like vLLM, Justitia models the service cost of LLM applications in a memory-centric manner. Meanwhile, it uses a simple neural network model to conduct light-weight and also accurate demand prediction. Moreover, Justitia adopts a virtual-time based fair queuing algorithm to reduce the overall performance with guaranteed worst-case delay. We have implemented Justitia atop vLLM, and experimental results involving diverse LLM applications show that it can substantially enhance the scheduling efficiency with fairness preserved.
☆ EEschematic: Multimodal-LLM Based AI Agent for Schematic Generation of Analog Circuit
Circuit schematics play a crucial role in analog integrated circuit design, serving as the primary medium for human understanding and verification of circuit functionality. While recent large language model (LLM)-based approaches have shown promise in circuit topology generation and device sizing, most rely solely on textual representations such as SPICE netlists, which lack visual interpretability for circuit designers. To address this limitation, we propose EEschematic, an AI agent for automatic analog schematic generation based on a Multimodal Large Language Model (MLLM). EEschematic integrates textual, visual, and symbolic modalities to translate SPICE netlists into schematic diagrams represented in a human-editable format. The framework uses six analog substructure examples for few-shot placement and a Visual Chain-of-Thought (VCoT) strategy to iteratively refine placement and wiring, enhancing schematic clarity and symmetry. Experimental results on representative analog circuits, including a CMOS inverter, a five-transistor operational transconductance amplifier (5T-OTA), and a telescopic cascode amplifier, demonstrate that EEschematic produces schematics with high visual quality and structural correctness.
☆ Bits Leaked per Query: Information-Theoretic Bounds on Adversarial Attacks against LLMs NeurIPS 2025
Adversarial attacks by malicious users that threaten the safety of large language models (LLMs) can be viewed as attempts to infer a target property $T$ that is unknown when an instruction is issued, and becomes knowable only after the model's reply is observed. Examples of target properties $T$ include the binary flag that triggers an LLM's harmful response or rejection, and the degree to which information deleted by unlearning can be restored, both elicited via adversarial instructions. The LLM reveals an \emph{observable signal} $Z$ that potentially leaks hints for attacking through a response containing answer tokens, thinking process tokens, or logits. Yet the scale of information leaked remains anecdotal, leaving auditors without principled guidance and defenders blind to the transparency--risk trade-off. We fill this gap with an information-theoretic framework that computes how much information can be safely disclosed, and enables auditors to gauge how close their methods come to the fundamental limit. Treating the mutual information $I(Z;T)$ between the observation $Z$ and the target property $T$ as the leaked bits per query, we show that achieving error $\varepsilon$ requires at least $\log(1/\varepsilon)/I(Z;T)$ queries, scaling linearly with the inverse leak rate and only logarithmically with the desired accuracy. Thus, even a modest increase in disclosure collapses the attack cost from quadratic to logarithmic in terms of the desired accuracy. Experiments on seven LLMs across system-prompt leakage, jailbreak, and relearning attacks corroborate the theory: exposing answer tokens alone requires about a thousand queries; adding logits cuts this to about a hundred; and revealing the full thinking process trims it to a few dozen. Our results provide the first principled yardstick for balancing transparency and security when deploying LLMs.
comment: NeurIPS 2025 (spotlight)
☆ Graph4MM: Weaving Multimodal Learning with Structural Information ICML 2025
Real-world multimodal data usually exhibit complex structural relationships beyond traditional one-to-one mappings like image-caption pairs. Entities across modalities interact in intricate ways, with images and text forming diverse interconnections through contextual dependencies and co-references. Graphs provide powerful structural information for modeling intra-modal and inter-modal relationships. However, previous works fail to distinguish multi-hop neighbors and treat the graph as a standalone modality, which fragments the overall understanding. This limitation presents two key challenges in multimodal learning: (1) integrating structural information from multi-hop neighbors into foundational models, and (2) fusing modality-specific information in a principled manner. To address these challenges, we revisit the role of graphs in multimodal learning within the era of foundation models and propose Graph4MM, a graph-based multimodal learning framework. To be specific, we introduce Hop-Diffused Attention, which integrates multi-hop structural information into self-attention through causal masking and hop diffusion. Furthermore, we design MM-QFormer, a multi-mapping querying transformer for cross-modal fusion. Through theoretical and empirical analysis, we show that leveraging structures to integrate both intra- and inter-modal interactions improves multimodal understanding beyond treating them as a standalone modality. Experiments on both generative and discriminative tasks show that Graph4MM outperforms larger VLMs, LLMs, and multimodal graph baselines, achieving a 6.93% average improvement.
comment: ICML 2025
☆ Adaptive Sample Sharing for Linear Regression
In many business settings, task-specific labeled data are scarce or costly to obtain, which limits supervised learning on a specific task. To address this challenge, we study sample sharing in the case of ridge regression: leveraging an auxiliary data set while explicitly protecting against negative transfer. We introduce a principled, data-driven rule that decides how many samples from an auxiliary dataset to add to the target training set. The rule is based on an estimate of the transfer gain i.e. the marginal reduction in the predictive error. Building on this estimator, we derive finite-sample guaranties: under standard conditions, the procedure borrows when it improves parameter estimation and abstains otherwise. In the Gaussian feature setting, we analyze which data set properties ensure that borrowing samples reduces the predictive error. We validate the approach in synthetic and real datasets, observing consistent gains over strong baselines and single-task training while avoiding negative transfer.
Parameter-Efficient Fine-Tuning for Low-Resource Languages: A Comparative Study of LLMs for Bengali Hate Speech Detection IEEE
Bengali social media platforms have witnessed a sharp increase in hate speech, disproportionately affecting women and adolescents. While datasets such as BD-SHS provide a basis for structured evaluation, most prior approaches rely on either computationally costly full-model fine-tuning or proprietary APIs. This paper presents the first application of Parameter-Efficient Fine-Tuning (PEFT) for Bengali hate speech detection using LoRA and QLoRA. Three instruction-tuned large language models - Gemma-3-4B, Llama-3.2-3B, and Mistral-7B - were fine-tuned on the BD-SHS dataset of 50,281 annotated comments. Each model was adapted by training fewer than 1% of its parameters, enabling experiments on a single consumer-grade GPU. The results show that Llama-3.2-3B achieved the highest F1-score of 92.23%, followed by Mistral-7B at 88.94% and Gemma-3-4B at 80.25%. These findings establish PEFT as a practical and replicable strategy for Bengali and related low-resource languages.
comment: Accepted to IEEE COMPAS 2025. 6 pages, 3 figures, 6 tables
☆ One-step Diffusion Models with Bregman Density Ratio Matching
Diffusion and flow models achieve high generative quality but remain computationally expensive due to slow multi-step sampling. Distillation methods accelerate them by training fast student generators, yet most existing objectives lack a unified theoretical foundation. In this work, we propose Di-Bregman, a compact framework that formulates diffusion distillation as Bregman divergence-based density-ratio matching. This convex-analytic view connects several existing objectives through a common lens. Experiments on CIFAR-10 and text-to-image generation demonstrate that Di-Bregman achieves improved one-step FID over reverse-KL distillation and maintains high visual fidelity compared to the teacher model. Our results highlight Bregman density-ratio matching as a practical and theoretically-grounded route toward efficient one-step diffusion generation.
comment: work in progress
☆ MuonBP: Faster Muon via Block-Periodic Orthogonalization
Gradient orthogonalization is a simple strategy that shows great utility in speeding up gradient descent. The Muon optimizer (Jordan, Jin, et al., 2024) combines gradient orthogonalization with first-order momentum and achieves significant improvement in data efficiency over Adam/AdamW (Loshchilov and Hutter, 2019) for language model training. However, when using model parallelism, gradient orthogonalization introduces additional overhead compared to coordinate-wise optimizers (such as AdamW) due to additional gather and scatter operations on gradient matrix shards from different devices. This additional communication can amount to a throughput hit of 5%-10% compared to Adam/AdamW. To remedy this, we propose Muon with Block-Periodic Orthogonalization (MuonBP), which applies orthogonalization independently to matrix shards on each device and periodically performs full orthogonalization to maintain training stability at scale. We show how to adjust the learning rate from the baseline to MuonBP and give convergence guarantees for this algorithm. Crucially, our theory dictates that we use two stepsizes: one for the blockwise orthogonalization steps, and one for the full orthogonalization steps. Our method is simple, requires minimal hyperparameter adjustments, and achieves competitive iteration complexity compared with baseline Muon while providing per-iteration throughput comparable to coordinate-wise methods such as AdamW. When training an 8B model with eight-way tensor parallelism and ZeRO optimizer state sharding, MuonBP achieves 8% throughput increase compared to Muon with no degradation in performance.
☆ Towards Interpretable and Trustworthy Time Series Reasoning: A BlueSky Vision
Time series reasoning is emerging as the next frontier in temporal analysis, aiming to move beyond pattern recognition towards explicit, interpretable, and trustworthy inference. This paper presents a BlueSky vision built on two complementary directions. One builds robust foundations for time series reasoning, centered on comprehensive temporal understanding, structured multi-step reasoning, and faithful evaluation frameworks. The other advances system-level reasoning, moving beyond language-only explanations by incorporating multi-agent collaboration, multi-modal context, and retrieval-augmented approaches. Together, these directions outline a flexible and extensible framework for advancing time series reasoning, aiming to deliver interpretable and trustworthy temporal intelligence across diverse domains.
☆ Differentially Private Linear Regression and Synthetic Data Generation with Statistical Guarantees
In social sciences, small- to medium-scale datasets are common and linear regression (LR) is canonical. In privacy-aware settings, much work has focused on differentially private (DP) LR, but mostly on point estimation with limited attention to uncertainty quantification. Meanwhile, synthetic data generation (SDG) is increasingly important for reproducibility studies, yet current DP LR methods do not readily support it. Mainstream SDG approaches are either tailored to discretized data, making them less suitable for continuous regression, or rely on deep models that require large datasets, limiting their use for the smaller, continuous data typical in social science. We propose a method for LR with valid inference under Gaussian DP: a DP bias-corrected estimator with asymptotic confidence intervals (CIs) and a general SDG procedure in which regression on the synthetic data matches our DP regression. Our binning-aggregation strategy is effective in small- to moderate-dimensional settings. Experiments show our method (1) improves accuracy over existing methods, (2) provides valid CIs, and (3) produces more reliable synthetic data for downstream ML tasks than current DP SDGs.
☆ Leave It to the Experts: Detecting Knowledge Distillation via MoE Expert Signatures
Knowledge Distillation (KD) accelerates training of large language models (LLMs) but poses intellectual property protection and LLM diversity risks. Existing KD detection methods based on self-identity or output similarity can be easily evaded through prompt engineering. We present a KD detection framework effective in both white-box and black-box settings by exploiting an overlooked signal: the transfer of MoE "structural habits", especially internal routing patterns. Our approach analyzes how different experts specialize and collaborate across various inputs, creating distinctive fingerprints that persist through the distillation process. To extend beyond the white-box setup and MoE architectures, we further propose Shadow-MoE, a black-box method that constructs proxy MoE representations via auxiliary distillation to compare these patterns between arbitrary model pairs. We establish a comprehensive, reproducible benchmark that offers diverse distilled checkpoints and an extensible framework to facilitate future research. Extensive experiments demonstrate >94% detection accuracy across various scenarios and strong robustness to prompt-based evasion, outperforming existing baselines while highlighting the structural habits transfer in LLMs.
comment: Code is at https://github.com/unites-lab/shadow-moe
☆ Quantile Regression, Variational Autoencoders, and Diffusion Models for Uncertainty Quantification: A Spatial Analysis of Sub-seasonal Wind Speed Prediction
This study aims to improve the spatial representation of uncertainties when regressing surface wind speeds from large-scale atmospheric predictors for sub-seasonal forecasting. Sub-seasonal forecasting often relies on large-scale atmospheric predictors such as 500 hPa geopotential height (Z500), which exhibit higher predictability than surface variables and can be downscaled to obtain more localised information. Previous work by Tian et al. (2024) demonstrated that stochastic perturbations based on model residuals can improve ensemble dispersion representation in statistical downscaling frameworks, but this method fails to represent spatial correlations and physical consistency adequately. More sophisticated approaches are needed to capture the complex relationships between large-scale predictors and local-scale predictands while maintaining physical consistency. Probabilistic deep learning models offer promising solutions for capturing complex spatial dependencies. This study evaluates three probabilistic methods with distinct uncertainty quantification mechanisms: Quantile Regression Neural Network that directly models distribution quantiles, Variational Autoencoders that leverage latent space sampling, and Diffusion Models that utilise iterative denoising. These models are trained on ERA5 reanalysis data and applied to ECMWF sub-seasonal hindcasts to regress probabilistic wind speed ensembles. Our results show that probabilistic downscaling approaches provide more realistic spatial uncertainty representations compared to simpler stochastic methods, with each probabilistic model offering different strengths in terms of ensemble dispersion, deterministic skill, and physical consistency. These findings establish probabilistic downscaling as an effective enhancement to operational sub-seasonal wind forecasts for renewable energy planning and risk assessment.
comment: This Work has been submitted to Monthly Weather Review. Copyright in this Work may be transferred without further notice
☆ Peering Inside the Black Box: Uncovering LLM Errors in Optimization Modelling through Component-Level Evaluation
Large language models (LLMs) are increasingly used to convert natural language descriptions into mathematical optimization formulations. Current evaluations often treat formulations as a whole, relying on coarse metrics like solution accuracy or runtime, which obscure structural or numerical errors. In this study, we present a comprehensive, component-level evaluation framework for LLM-generated formulations. Beyond the conventional optimality gap, our framework introduces metrics such as precision and recall for decision variables and constraints, constraint and objective root mean squared error (RMSE), and efficiency indicators based on token usage and latency. We evaluate GPT-5, LLaMA 3.1 Instruct, and DeepSeek Math across optimization problems of varying complexity under six prompting strategies. Results show that GPT-5 consistently outperforms other models, with chain-of-thought, self-consistency, and modular prompting proving most effective. Analysis indicates that solver performance depends primarily on high constraint recall and low constraint RMSE, which together ensure structural correctness and solution reliability. Constraint precision and decision variable metrics play secondary roles, while concise outputs enhance computational efficiency. These findings highlight three principles for NLP-to-optimization modeling: (i) Complete constraint coverage prevents violations, (ii) minimizing constraint RMSE ensures solver-level accuracy, and (iii) concise outputs improve computational efficiency. The proposed framework establishes a foundation for fine-grained, diagnostic evaluation of LLMs in optimization modeling.
☆ A Primer on Kolmogorov-Arnold Networks (KANs) for Probabilistic Time Series Forecasting
This work introduces Probabilistic Kolmogorov-Arnold Network (P-KAN), a novel probabilistic extension of Kolmogorov-Arnold Networks (KANs) for time series forecasting. By replacing scalar weights with spline-based functional connections and directly parameterizing predictive distributions, P-KANs offer expressive yet parameter-efficient models capable of capturing nonlinear and heavy-tailed dynamics. We evaluate P-KANs on satellite traffic forecasting, where uncertainty-aware predictions enable dynamic thresholding for resource allocation. Results show that P-KANs consistently outperform Multi Layer Perceptron (MLP) baselines in both accuracy and calibration, achieving superior efficiency-risk trade-offs while using significantly fewer parameters. We build up P-KANs on two distributions, namely Gaussian and Student-t distributions. The Gaussian variant provides robust, conservative forecasts suitable for safety-critical scenarios, whereas the Student-t variant yields sharper distributions that improve efficiency under stable demand. These findings establish P-KANs as a powerful framework for probabilistic forecasting with direct applicability to satellite communications and other resource-constrained domains.
☆ A Topological Approach to Parameterizing Deep Hedging Networks
Deep hedging uses recurrent neural networks to hedge financial products that cannot be fully hedged in incomplete markets. Previous work in this area focuses on minimizing some measure of quadratic hedging error by calculating pathwise gradients, but doing so requires large batch sizes and can make training effective models in a reasonable amount of time challenging. We show that by adding certain topological features, we can reduce batch sizes substantially and make training these models more practically feasible without greatly compromising hedging performance.
☆ Prediction-Augmented Trees for Reliable Statistical Inference
The remarkable success of machine learning (ML) in predictive tasks has led scientists to incorporate ML predictions as a core component of the scientific discovery pipeline. This was exemplified by the landmark achievement of AlphaFold (Jumper et al. (2021)). In this paper, we study how ML predictions can be safely used in statistical analysis of data towards scientific discovery. In particular, we follow the framework introduced by Angelopoulos et al. (2023). In this framework, we assume access to a small set of $n$ gold-standard labeled samples, a much larger set of $N$ unlabeled samples, and a ML model that can be used to impute the labels of the unlabeled data points. We introduce two new learning-augmented estimators: (1) Prediction-Augmented Residual Tree (PART), and (2) Prediction-Augmented Quadrature (PAQ). Both estimators have significant advantages over existing estimators like PPI and PPI++ introduced by Angelopoulos et al. (2023) and Angelopoulos et al. (2024), respectively. PART is a decision-tree based estimator built using a greedy criterion. We first characterize PART's asymptotic distribution and demonstrate how to construct valid confidence intervals. Then we show that PART outperforms existing methods in real-world datasets from ecology, astronomy, and census reports, among other domains. This leads to estimators with higher confidence, which is the result of using both the gold-standard samples and the machine learning predictions. Finally, we provide a formal proof of the advantage of PART by exploring PAQ, an estimation that arises when considering the limit of PART when the depth its tree grows to infinity. Under appropriate assumptions in the input data we show that the variance of PAQ shrinks at rate of $O(N^{-1} + n^{-4})$, improving significantly on the $O(N^{-1}+n^{-1})$ rate of existing methods.
comment: 45 pages, 9 Figures
☆ Closing the Curvature Gap: Full Transformer Hessians and Their Implications for Scaling Laws ICLR 2026
The lack of theoretical results for Layer Normalization and feedforward Hessians has left a gap in the study of Transformer optimization landscapes. We address this by deriving explicit second-order expressions for these components, thereby completing the Hessian characterization of full Transformer blocks. Our results generalize prior self-attention analyses and yield estimations for the role of each sublayer in curvature propagation. We demonstrate how these Hessian structures inform both convergence dynamics and the empirical scaling laws governing large-model performance. Further, we propose a Taylor-expansion-based framework for analyzing loss differences to quantify convergence trajectories. By extending Hessian theory to the full Transformer architecture, this work establishes a new foundation for theoretical and empirical investigations of optimization in large-scale deep learning.
comment: 38 pages, 12 figures. Submitted to ICLR 2026
☆ UNDREAM: Bridging Differentiable Rendering and Photorealistic Simulation for End-to-end Adversarial Attacks
Deep learning models deployed in safety critical applications like autonomous driving use simulations to test their robustness against adversarial attacks in realistic conditions. However, these simulations are non-differentiable, forcing researchers to create attacks that do not integrate simulation environmental factors, reducing attack success. To address this limitation, we introduce UNDREAM, the first software framework that bridges the gap between photorealistic simulators and differentiable renderers to enable end-to-end optimization of adversarial perturbations on any 3D objects. UNDREAM enables manipulation of the environment by offering complete control over weather, lighting, backgrounds, camera angles, trajectories, and realistic human and object movements, thereby allowing the creation of diverse scenes. We showcase a wide array of distinct physically plausible adversarial objects that UNDREAM enables researchers to swiftly explore in different configurable environments. This combination of photorealistic simulation and differentiable optimization opens new avenues for advancing research of physical adversarial attacks.
☆ SolverLLM: Leveraging Test-Time Scaling for Optimization Problem via LLM-Guided Search NeurIPS 2025
Large Language Models (LLMs) offer promising capabilities for tackling complex reasoning tasks, including optimization problems. However, existing methods either rely on prompt engineering, which leads to poor generalization across problem types, or require costly supervised training. We introduce SolverLLM, a training-free framework that leverages test-time scaling to solve diverse optimization problems. Rather than solving directly, SolverLLM generates mathematical formulations and translates them into solver-ready code, guided by a novel Monte Carlo Tree Search (MCTS) strategy. To enhance the search process, we modify classical MCTS with (1) dynamic expansion for adaptive formulation generation, (2) prompt backpropagation to guide exploration via outcome-driven feedback, and (3) uncertainty backpropagation to incorporate reward reliability into decision-making. Experiments on six standard benchmark datasets demonstrate that SolverLLM outperforms both prompt-based and learning-based baselines, achieving strong generalization without additional training.
comment: NeurIPS 2025
☆ Domain Generalizable Continual Learning
To adapt effectively to dynamic real-world environments, intelligent systems must continually acquire new skills while generalizing them to diverse, unseen scenarios. Here, we introduce a novel and realistic setting named domain generalizable continual learning (DGCL): a model learns sequential tasks with each involving a single domain, aiming to perform well across all encountered tasks and domains. This setting poses unique challenges in acquiring, retaining, and leveraging both semantic- and domain-relevant information for robust generalization. Although state-of-the-art continual learning (CL) methods have employed pre-trained models (PTMs) to enhance task-specific generalization, they typically assume identical training and testing domains for each task and therefore perform poorly in DGCL. To this end, we propose adaptive Domain Transformation (DoT), an innovative PTMs-based approach tailored to DGCL. Inspired by the distributed-plus-hub theory of the human brain, DoT disentangles semantic- and domain-relevant information in representation learning, and adaptively transforms task representations across various domains for output alignment, ensuring balanced and generalized predictions. DoT serves as a plug-in strategy that greatly facilitates state-of-the-art CL baselines under both full parameter tuning and parameter-efficient tuning paradigms in DGCL, validated by extensive experiments. Also, DoT is shown to accumulate domain-generalizable knowledge from DGCL, and ensure resource efficiency with a lightweight implementation.
comment: 25 pages
☆ A Lightweight DL Model for Smart Grid Power Forecasting with Feature and Resolution Mismatch IEEE
How can short-term energy consumption be accurately forecasted when sensor data is noisy, incomplete, and lacks contextual richness? This question guided our participation in the \textit{2025 Competition on Electric Energy Consumption Forecast Adopting Multi-criteria Performance Metrics}, which challenged teams to predict next-day power demand using real-world high-frequency data. We proposed a robust yet lightweight Deep Learning (DL) pipeline combining hourly downsizing, dual-mode imputation (mean and polynomial regression), and comprehensive normalization, ultimately selecting Standard Scaling for optimal balance. The lightweight GRU-LSTM sequence-to-one model achieves an average RMSE of 601.9~W, MAE of 468.9~W, and 84.36\% accuracy. Despite asymmetric inputs and imputed gaps, it generalized well, captured nonlinear demand patterns, and maintained low inference latency. Notably, spatiotemporal heatmap analysis reveals a strong alignment between temperature trends and predicted consumption, further reinforcing the model's reliability. These results demonstrate that targeted preprocessing paired with compact recurrent architectures can still enable fast, accurate, and deployment-ready energy forecasting in real-world conditions.
comment: 5 pages, 3 figures, The IEEE PES ISGT Middle East 2025 (ISGT-ME 2025) November 23-26th 2025, Dubai, UAE
☆ SNOMED CT-powered Knowledge Graphs for Structured Clinical Data and Diagnostic Reasoning
The effectiveness of artificial intelligence (AI) in healthcare is significantly hindered by unstructured clinical documentation, which results in noisy, inconsistent, and logically fragmented training data. To address this challenge, we present a knowledge-driven framework that integrates the standardized clinical terminology SNOMED CT with the Neo4j graph database to construct a structured medical knowledge graph. In this graph, clinical entities such as diseases, symptoms, and medications are represented as nodes, and semantic relationships such as ``caused by,'' ``treats,'' and ``belongs to'' are modeled as edges in Neo4j, with types mapped from formal SNOMED CT relationship concepts (e.g., \texttt{Causative agent}, \texttt{Indicated for}). This design enables multi-hop reasoning and ensures terminological consistency. By extracting and standardizing entity-relationship pairs from clinical texts, we generate structured, JSON-formatted datasets that embed explicit diagnostic pathways. These datasets are used to fine-tune large language models (LLMs), significantly improving the clinical logic consistency of their outputs. Experimental results demonstrate that our knowledge-guided approach enhances the validity and interpretability of AI-generated diagnostic reasoning, providing a scalable solution for building reliable AI-assisted clinical systems.
☆ Adaptive Online Learning with LSTM Networks for Energy Price Prediction
Accurate prediction of electricity prices is crucial for stakeholders in the energy market, particularly for grid operators, energy producers, and consumers. This study focuses on developing a predictive model leveraging Long Short-Term Memory (LSTM) networks to forecast day-ahead electricity prices in the California energy market. The model incorporates a variety of features, including historical price data, weather conditions, and the energy generation mix. A novel custom loss function that integrates Mean Absolute Error (MAE), Jensen-Shannon Divergence (JSD), and a smoothness penalty is introduced to enhance the prediction accuracy and interpretability. Additionally, an online learning approach is implemented to allow the model to adapt to new data incrementally, ensuring continuous relevance and accuracy. The results demonstrate that the custom loss function can improve the model's performance, aligning predicted prices more closely with actual values, particularly during peak intervals. Also, the online learning model outperforms other models by effectively incorporating real-time data, resulting in lower prediction error and variability. The inclusion of the energy generation mix further enhances the model's predictive capabilities, highlighting the importance of comprehensive feature integration. This research provides a robust framework for electricity price forecasting, offering valuable insights and tools for better decision-making in dynamic electricity markets.
☆ DeepChem Equivariant: SE(3)-Equivariant Support in an Open-Source Molecular Machine Learning Library
Neural networks that incorporate geometric relationships respecting SE(3) group transformations (e.g. rotations and translations) are increasingly important in molecular applications, such as molecular property prediction, protein structure modeling, and materials design. These models, known as SE(3)-equivariant neural networks, ensure outputs transform predictably with input coordinate changes by explicitly encoding spatial atomic positions. Although libraries such as E3NN [4] and SE(3)-TRANSFORMER [3 ] offer powerful implementations, they often require substantial deep learning or mathematical prior knowledge and lack complete training pipelines. We extend DEEPCHEM [ 13] with support for ready-to-use equivariant models, enabling scientists with minimal deep learning background to build, train, and evaluate models, such as SE(3)-Transformer and Tensor Field Networks. Our implementation includes equivariant models, complete training pipelines, and a toolkit of equivariant utilities, supported with comprehensive tests and documentation, to facilitate both application and further development of SE(3)-equivariant models.
comment: Presented at Machine Learning Symposium - BayLearn (2025)
☆ UniGTE: Unified Graph-Text Encoding for Zero-Shot Generalization across Graph Tasks and Domains
Generalizing to unseen graph tasks without task-specific supervision is challenging: conventional graph neural networks are typically tied to a fixed label space, while large language models (LLMs) struggle to capture graph structure. We introduce UniGTE, an instruction-tuned encoder-decoder framework that unifies structural and semantic reasoning. The encoder augments a pretrained autoregressive LLM with learnable alignment tokens and a structure-aware graph-text attention mechanism, enabling it to attend jointly to a tokenized graph and a natural-language task prompt while remaining permutation-invariant to node order. This yields compact, task-aware graph representations. Conditioned solely on these representations, a frozen LLM decoder predicts and reconstructs: it outputs the task answer and simultaneously paraphrases the input graph in natural language. The reconstruction objective regularizes the encoder to preserve structural cues. UniGTE is instruction-tuned on five datasets spanning node-level, edge-level, and graph-level tasks across diverse domains, yet requires no fine-tuning at inference. It achieves new state-of-the-art zero-shot results on node classification, link prediction, graph classification, and graph regression under cross-task and cross-domain settings, demonstrating that tight integration of graph structure with LLM semantics enables robust, transferable graph reasoning.
☆ Utility-Diversity Aware Online Batch Selection for LLM Supervised Fine-tuning
Supervised fine-tuning (SFT) is a commonly used technique to adapt large language models (LLMs) to downstream tasks. In practice, SFT on a full dataset is computationally expensive and sometimes suffers from overfitting or bias amplification. This facilitates the rise of data curation in SFT, which prioritizes the most valuable data to optimze. This work studies the online batch selection family that dynamically scores and filters samples during the training process. However, existing popular methods often (i) rely merely on the utility of data to select a subset while neglecting other crucial factors like diversity, (ii) rely on external resources such as reference models or validation sets, and (iii) incur extra training time over full-dataset training. To address these limitations, this work develops \textbf{UDS (Utility-Diversity Sampling)}, a framework for efficient online batch selection in SFT. UDS leverages the nuclear norm of the logits matrix to capture both data utility and intra-sample diversity, while estimating inter-sample diversity through efficient low-dimensional embedding comparisons with a lightweight memory buffer of historical samples. Such a design eliminates the need for external resources and unnecessary backpropagation, securing computational efficiency. Experiments on multiple benchmarks demonstrate that UDS consistently outperforms state-of-the-art online batch selection methods under varying data budgets, and significantly reduces training time compared to full-dataset fine-tuning. Code is available at https://github.com/gfyddha/UDS.
☆ Fly-CL: A Fly-Inspired Framework for Enhancing Efficient Decorrelation and Reduced Training Time in Pre-trained Model-based Continual Representation Learning
Using a nearly-frozen pretrained model, the continual representation learning paradigm reframes parameter updates as a similarity-matching problem to mitigate catastrophic forgetting. However, directly leveraging pretrained features for downstream tasks often suffers from multicollinearity in the similarity-matching stage, and more advanced methods can be computationally prohibitive for real-time, low-latency applications. Inspired by the fly olfactory circuit, we propose Fly-CL, a bio-inspired framework compatible with a wide range of pretrained backbones. Fly-CL substantially reduces training time while achieving performance comparable to or exceeding that of current state-of-the-art methods. We theoretically show how Fly-CL progressively resolves multicollinearity, enabling more effective similarity matching with low time complexity. Extensive simulation experiments across diverse network architectures and data regimes validate Fly-CL's effectiveness in addressing this challenge through a biologically inspired design. Code is available at https://github.com/gfyddha/Fly-CL.
☆ DrivAerStar: An Industrial-Grade CFD Dataset for Vehicle Aerodynamic Optimization
Vehicle aerodynamics optimization has become critical for automotive electrification, where drag reduction directly determines electric vehicle range and energy efficiency. Traditional approaches face an intractable trade-off: computationally expensive Computational Fluid Dynamics (CFD) simulations requiring weeks per design iteration, or simplified models that sacrifice production-grade accuracy. While machine learning offers transformative potential, existing datasets exhibit fundamental limitations -- inadequate mesh resolution, missing vehicle components, and validation errors exceeding 5% -- preventing deployment in industrial workflows. We present DrivAerStar, comprising 12,000 industrial-grade automotive CFD simulations generated using $\text{STAR-CCM+}^\unicode{xAE}$ software. The dataset systematically explores three vehicle configurations through 20 Computer Aided Design (CAD) parameters via Free Form Deformation (FFD) algorithms, including complete engine compartments and cooling systems with realistic internal airflow. DrivAerStar achieves wind tunnel validation accuracy below 1.04% -- a five-fold improvement over existing datasets -- through refined mesh strategies with strict wall $y^+$ control. Benchmarks demonstrate that models trained on this data achieve production-ready accuracy while reducing computational costs from weeks to minutes. This represents the first dataset bridging academic machine learning research and industrial CFD practice, establishing a new standard for data-driven aerodynamic optimization in automotive development. Beyond automotive applications, DrivAerStar demonstrates a paradigm for integrating high-fidelity physics simulations with Artificial Intelligence (AI) across engineering disciplines where computational constraints currently limit innovation.
☆ Schrödinger Bridge Mamba for One-Step Speech Enhancement
We propose Schr\"odinger Bridge Mamba (SBM), a new concept of training-inference framework motivated by the inherent compatibility between Schr\"odinger Bridge (SB) training paradigm and selective state-space model Mamba. We exemplify the concept of SBM with an implementation for generative speech enhancement. Experiments on a joint denoising and dereverberation task using four benchmark datasets demonstrate that SBM, with only 1-step inference, outperforms strong baselines with 1-step or iterative inference and achieves the best real-time factor (RTF). Beyond speech enhancement, we discuss the integration of SB paradigm and selective state-space model architecture based on their underlying alignment, which indicates a promising direction for exploring new deep generative models potentially applicable to a broad range of generative tasks. Demo page: https://sbmse.github.io
comment: 5 pages, 1 figure
♻ ☆ Enhancing the Cross-Size Generalization for Solving Vehicle Routing Problems via Continual Learning
Exploring machine learning techniques for addressing vehicle routing problems has attracted considerable research attention. To achieve decent and efficient solutions, existing deep models for vehicle routing problems are typically trained and evaluated using instances of a single size. This substantially limits their ability to generalize across different problem sizes and thus hampers their practical applicability. To address the issue, we propose a continual learning based framework that sequentially trains a deep model with instances of ascending problem sizes. Specifically, on the one hand, we design an inter-task regularization scheme to retain the knowledge acquired from smaller problem sizes in the model training on a larger size. On the other hand, we introduce an intra-task regularization scheme to consolidate the model by imitating the latest desirable behaviors during training on each size. Additionally, we exploit the experience replay to revisit instances of formerly trained sizes for mitigating the catastrophic forgetting. Experimental results show that our approach achieves predominantly superior performance across various problem sizes (either seen or unseen in the training), as compared to state-of-the-art deep models including the ones specialized for generalizability enhancement. Meanwhile, the ablation studies on the key designs manifest their synergistic effect in the proposed framework.
♻ ☆ Barron Space Representations for Elliptic PDEs with Homogeneous Boundary Conditions
We study the approximation complexity of high-dimensional second-order elliptic PDEs with homogeneous boundary conditions on the unit hypercube, within the framework of Barron spaces. Under the assumption that the coefficients belong to suitably defined Barron spaces, we prove that the solution can be efficiently approximated by two-layer neural networks, circumventing the curse of dimensionality. Our results demonstrate the expressive power of shallow networks in capturing high-dimensional PDE solutions under appropriate structural assumptions.
♻ ☆ Variational Inference for Uncertainty Quantification: an Analysis of Trade-offs
Given an intractable distribution $p$, the problem of variational inference (VI) is to find the best approximation from some more tractable family $Q$. Commonly, one chooses $Q$ to be a family of factorized distributions (i.e., the mean-field assumption), even though $p$ itself does not factorize. We show that this mismatch can lead to an impossibility theorem: if $p$ does not factorize and furthermore has a non-diagonal covariance matrix, then any factorized approximation $q\!\in\!Q$ can correctly estimate at most one of the following three measures of uncertainty: (i) the marginal variances, (ii) the marginal precisions, or (iii) the generalized variance (which for elliptical distributions is closely related to the entropy). In practice, the best variational approximation in $Q$ is found by minimizing some divergence $D(q,p)$ between distributions, and so we ask: how does the choice of divergence determine which measure of uncertainty, if any, is correctly estimated by VI? We consider the classic Kullback-Leibler divergences, the more general $\alpha$-divergences, and a score-based divergence which compares $\nabla \log p$ and $\nabla \log q$. We thoroughly analyze the case where $p$ is a Gaussian and $q$ is a (factorized) Gaussian. In this setting, we show that all the considered divergences can be ordered based on the estimates of uncertainty they yield as objective functions for VI. Finally, we empirically evaluate the validity of this ordering when the target distribution $p$ is not Gaussian.
♻ ☆ Critically-Damped Higher-Order Langevin Dynamics for Generative Modeling
Denoising diffusion probabilistic models (DDPMs) represent an entirely new class of generative AI methods that have yet to be fully explored. They use Langevin dynamics, represented as stochastic differential equations, to describe a process that transforms data into noise, the forward process, and a process that transforms noise into generated data, the reverse process. Many of these methods utilize auxiliary variables that formulate the data as a ``position" variable, and the auxiliary variables are referred to as ``velocity", ``acceleration", etc. In this sense, it is possible to ``critically damp" the dynamics. Critical damping has been successfully introduced in Critically-Damped Langevin Dynamics (CLD) and Critically-Damped Third-Order Langevin Dynamics (TOLD++), but has not yet been applied to dynamics of arbitrary order. The proposed methodology generalizes Higher-Order Langevin Dynamics (HOLD), a recent state-of-the-art diffusion method, by introducing the concept of critical damping from systems analysis. Similarly to TOLD++, this work proposes an optimal set of hyperparameters in the $n$-dimensional case, where HOLD leaves these to be user defined. Additionally, this work provides closed-form solutions for the mean and covariance of the forward process that greatly simplify its implementation. Experiments are performed on the CIFAR-10 and CelebA-HQ $256 \times 256$ datasets, and validated against the FID metric.
comment: 10 pages
♻ ☆ ActAlign: Zero-Shot Fine-Grained Video Classification via Language-Guided Sequence Alignment
We address the task of zero-shot video classification for extremely fine-grained actions (e.g., Windmill Dunk in basketball), where no video examples or temporal annotations are available for unseen classes. While image-language models (e.g., CLIP, SigLIP) show strong open-set recognition, they lack temporal modeling needed for video understanding. We propose ActAlign, a truly zero-shot, training-free method that formulates video classification as a sequence alignment problem, preserving the generalization strength of pretrained image-language models. For each class, a large language model (LLM) generates an ordered sequence of sub-actions, which we align with video frames using Dynamic Time Warping (DTW) in a shared embedding space. Without any video-text supervision or fine-tuning, ActAlign achieves 30.5% accuracy on ActionAtlas--the most diverse benchmark of fine-grained actions across multiple sports--where human performance is only 61.6%. ActAlign outperforms billion-parameter video-language models while using 8x fewer parameters. Our approach is model-agnostic and domain-general, demonstrating that structured language priors combined with classical alignment methods can unlock the open-set recognition potential of image-language models for fine-grained video understanding.
comment: Accepted to TMLR 2025 - Project page: https://amir-aghdam.github.io/act-align/
♻ ☆ Subgradient Method for System Identification with Non-Smooth Objectives
This paper investigates a subgradient-based algorithm to solve the system identification problem for linear time-invariant systems with non-smooth objectives. This is essential for robust system identification in safety-critical applications. While existing work provides theoretical exact recovery guarantees using optimization solvers, the design of fast learning algorithms with convergence guarantees for practical use remains unexplored. We analyze the subgradient method in this setting, where the optimization problems to be solved evolve over time as new measurements are collected, and we establish linear convergence to the ground-truth system for both the best and Polyak step sizes after a burn-in period. We further characterize sublinear convergence of the iterates under constant and diminishing step sizes, which require only minimal information and thus offer broad applicability. Finally, we compare the time complexity of standard solvers with the subgradient algorithm and support our findings with experimental results. This is the first work to analyze subgradient algorithms for system identification with non-smooth objectives.
comment: 20 pages, 2 figures
♻ ☆ Incentivizing Truthful Language Models via Peer Elicitation Games
Large Language Models (LLMs) have demonstrated strong generative capabilities but remain prone to inconsistencies and hallucinations. We introduce Peer Elicitation Games (PEG), a training-free, game-theoretic framework for aligning LLMs through a peer elicitation mechanism involving a generator and multiple discriminators instantiated from distinct base models. Discriminators interact in a peer evaluation setting, where utilities are computed using a determinant-based mutual information score that provably incentivizes truthful reporting without requiring ground-truth labels. We establish theoretical guarantees showing that each agent, via online learning, achieves sublinear regret in the sense their cumulative performance approaches that of the best fixed truthful strategy in hindsight. Moreover, we prove last-iterate convergence to a truthful Nash equilibrium, ensuring that the actual policies used by agents converge to stable and truthful behavior over time. Empirical evaluations across multiple benchmarks demonstrate significant improvements in factual accuracy. These results position PEG as a practical approach for eliciting truthful behavior from LLMs without supervision or fine-tuning.
♻ ☆ Efficient Large Language Model Inference with Neural Block Linearization
The high inference demands of transformer-based Large Language Models (LLMs) pose substantial challenges in their deployment. To this end, we introduce Neural Block Linearization (NBL), a novel framework for accelerating transformer model inference by replacing self-attention layers with linear approximations derived from Linear Minimum Mean Squared Error estimators. NBL leverages Canonical Correlation Analysis to compute a theoretical upper bound on the approximation error. Then, we use this bound as a criterion for substitution, selecting the LLM layers with the lowest linearization error. NBL can be efficiently applied to pre-trained LLMs without the need for fine-tuning. In experiments, NBL achieves notable computational speed-ups while preserving competitive accuracy on multiple reasoning benchmarks. For instance, applying NBL to 12 self-attention layers in DeepSeek-R1-Distill-Llama-8B increases the inference speed by 32% with less than 1% accuracy trade-off, making it a flexible and promising solution to improve the inference efficiency of LLMs. The implementation is available at: https://github.com/LIONS-EPFL/NBL.
♻ ☆ RL-PLUS: Countering Capability Boundary Collapse of LLMs in Reinforcement Learning with Hybrid-policy Optimization
Reinforcement Learning with Verifiable Reward (RLVR) has significantly advanced the complex reasoning abilities of Large Language Models (LLMs). However, it struggles to break through the inherent capability boundaries of the base LLM, due to its essentially on-policy strategy coupled with LLM's immense action space and sparse reward. Critically, RLVR can lead to the capability boundary collapse, narrowing the LLM's problem-solving scope. To address this problem, we propose RL-PLUS, a novel hybrid-policy optimization approach for LLMs that synergizes internal exploitation with external data to achieve stronger reasoning capabilities and surpass the boundaries of base models. RL-PLUS integrates two core components, i.e., Multiple Importance Sampling to address distributional mismatch from external data, and Exploration-Based Advantage Function to guide the model towards high-value, unexplored reasoning paths. We provide both theoretical analysis and extensive experiments to demonstrate the superiority and generalizability of our approach. Compared with existing RLVR methods, RL-PLUS achieves 1) state-of-the-art performance on six math reasoning benchmarks; 2) superior performance on six out-of-distribution reasoning tasks; 3) consistent and significant gains across diverse model families, with average relative improvements up to 69.2\%. Moreover, the analysis of Pass@k curves indicates that RL-PLUS effectively resolves the capability boundary collapse problem.
♻ ☆ Harmony in Divergence: Towards Fast, Accurate, and Memory-efficient Zeroth-order LLM Fine-tuning
Large language models (LLMs) excel across various tasks, but standard first-order (FO) fine-tuning demands considerable memory, significantly limiting real-world deployment. Recently, zeroth-order (ZO) optimization stood out as a promising memory-efficient training paradigm, avoiding backward passes and relying solely on forward passes for gradient estimation, making it attractive for resource-constrained scenarios. However, ZO method lags far behind FO method in both convergence speed and accuracy. To bridge the gap, we introduce a novel layer-wise divergence analysis that uncovers the distinct update pattern of FO and ZO optimization. Aiming to resemble the learning capacity of FO method from the findings, we propose Divergence-driven Zeroth-Order (DiZO) optimization. DiZO conducts divergence-driven layer adaptation by incorporating projections to ZO updates, generating diverse-magnitude updates precisely scaled to layer-wise individual optimization needs. Our results demonstrate that DiZO significantly reduces the needed iterations for convergence without sacrificing throughput, cutting training GPU hours by up to 48\% on various datasets. Moreover, DiZO consistently outperforms the representative ZO baselines in fine-tuning RoBERTa-large, OPT-series, and Llama-series on downstream tasks and, in some cases, even surpasses memory-intensive FO fine-tuning. Our code is released at https://github.com/Skilteee/DiZO.
♻ ☆ Estimating Treatment Effects under Recommender Interference: A Structured Neural Networks Approach
Recommender systems are essential for content-sharing platforms by curating personalized content. To improve recommender systems, platforms frequently rely on creator-side randomized experiments to evaluate algorithm updates. We show that commonly adopted difference-in-means estimators can lead to severely biased estimates due to recommender interference, where treated and control creators compete for exposure. This bias can result in incorrect business decisions. To address this, we propose a ``recommender choice model'' that explicitly represents the interference pathway. The approach combines a structural choice framework with neural networks to account for rich viewer-content heterogeneity. Building on this foundation, we develop a debiased estimator using the double machine learning (DML) framework to adjust for errors from nuisance component estimation. We show that the estimator is $\sqrt{n}$-consistent and asymptotically normal, and we extend the DML theory to handle correlated data, which arise in our context due to overlapped items. We validate our method with a large-scale field experiment on Weixin short-video platform, using a costly double-sided randomization design to obtain an interference-free ground truth. Our results show that the proposed estimator successfully recovers this ground truth, whereas benchmark estimators exhibit substantial bias, and in some cases, yield reversed signs.
♻ ☆ mini-vec2vec: Scaling Universal Geometry Alignment with Linear Transformations
We build upon vec2vec, a procedure designed to align text embedding spaces without parallel data. vec2vec finds a near-perfect alignment, but it is expensive and unstable. We present mini-vec2vec, a simple and efficient alternative that requires substantially lower computational cost and is highly robust. Moreover, the learned mapping is a linear transformation. Our method consists of three main stages: a tentative matching of pseudo-parallel embedding vectors, transformation fitting, and iterative refinement. Our linear alternative exceeds the original instantiation of vec2vec by orders of magnitude in efficiency, while matching or exceeding their results. The method's stability and interpretable algorithmic steps facilitate scaling and unlock new opportunities for adoption in new domains and fields.
♻ ☆ HERO: Heterogeneous Continual Graph Learning via Meta-Knowledge Distillation
Heterogeneous graph neural networks have seen rapid progress in web applications such as social networks, knowledge graphs, and recommendation systems, driven by the inherent heterogeneity of web data. However, existing methods typically assume static graphs, while real-world graphs are continuously evolving. This dynamic nature requires models to adapt to new data while preserving existing knowledge. To this end, this work introduces HERO (HEterogeneous continual gRaph learning via meta-knOwledge distillation), a unified framework for continual learning on heterogeneous graphs. HERO employs meta-adaptation, a gradient-based meta-learning strategy that provides directional guidance for rapid adaptation to new tasks with limited samples. To enable efficient and effective knowledge reuse, we propose DiSCo (Diversity Sampling with semantic Consistency), a heterogeneity-aware sampling method that maximizes target node diversity and expands subgraphs along metapaths, retaining critical semantic and structural information with minimal overhead. Furthermore, HERO incorporates heterogeneity-aware knowledge distillation, which aligns knowledge at both the node and semantic levels to balance adaptation and retention across tasks. Extensive experiments on four web-related heterogeneous graph benchmarks demonstrate that HERO substantially mitigates catastrophic forgetting while achieving efficient and consistent knowledge reuse in dynamic web environments.
comment: updated version with new LaTeX template and minor formatting revisions, added references and experimental results
♻ ☆ DOGe: Defensive Output Generation for LLM Protection Against Knowledge Distillation
Large Language Models (LLMs) represent substantial intellectual and economic investments, yet their effectiveness can inadvertently facilitate model imitation via knowledge distillation (KD). In practical scenarios, competitors can distill proprietary LLM capabilities by simply observing publicly accessible outputs, akin to reverse-engineering a complex performance by observation alone. Existing protective methods like watermarking only identify imitation post-hoc, while other defenses assume the student model mimics the teacher's internal logits, rendering them ineffective against distillation purely from observed output text. This paper confronts the challenge of actively protecting LLMs within the realistic constraints of API-based access. We introduce an effective and efficient Defensive Output Generation (DOGe) strategy that subtly modifies the output behavior of an LLM. Its outputs are accurate and useful for legitimate users, yet are designed to be misleading for distillation, significantly undermining imitation attempts. We achieve this by fine-tuning only the final linear layer of the teacher LLM with an adversarial loss. This targeted training approach anticipates and disrupts distillation attempts during inference time. Our experiments show that, while preserving the performance of the teacher model, student models distilled from the defensively generated outputs demonstrate catastrophically reduced performance, demonstrating DOGe as a practical safeguard against KD-based model imitation.
comment: Code is available at https://github.com/unites-lab/doge
♻ ☆ Statistical Decision Theory with Counterfactual Loss
Many researchers have applied classical statistical decision theory to evaluate treatment choices and learn optimal policies. However, because this framework is based solely on realized outcomes under chosen decisions and ignores counterfactual outcomes, it cannot assess the quality of a decision relative to feasible alternatives. For example, in bail decisions, a judge must consider not only crime prevention but also the avoidance of unnecessary burdens on arrestees. To address this limitation, we generalize standard decision theory by incorporating counterfactual losses, allowing decisions to be evaluated using all potential outcomes. The central challenge in this counterfactual statistical decision framework is identification: since only one potential outcome is observed for each unit, the associated counterfactual risk is generally not identifiable. We prove that, under the assumption of strong ignorability, the counterfactual risk is identifiable if and only if the counterfactual loss function is additive in the potential outcomes. Moreover, we demonstrate that additive counterfactual losses can yield treatment recommendations, which differ from those based on standard loss functions when the decision problem involves more than two treatment options. One interpretation of this result is that additive counterfactual losses can capture the accuracy and difficulty of a decision, whereas standard losses account for accuracy alone. Finally, we formulate a symbolic linear inverse program that, given a counterfactual loss, determines whether its risk is identifiable, without requiring data.
♻ ☆ HardNet: Hard-Constrained Neural Networks with Universal Approximation Guarantees
Incorporating prior knowledge or specifications of input-output relationships into machine learning models has attracted significant attention, as it enhances generalization from limited data and yields conforming outputs. However, most existing approaches use soft constraints by penalizing violations through regularization, which offers no guarantee of constraint satisfaction, especially on inputs far from the training distribution--an essential requirement in safety-critical applications. On the other hand, imposing hard constraints on neural networks may hinder their representational power, adversely affecting performance. To address this, we propose HardNet, a practical framework for constructing neural networks that inherently satisfy hard constraints without sacrificing model capacity. Unlike approaches that modify outputs only at inference time, HardNet enables end-to-end training with hard constraint guarantees, leading to improved performance. To the best of our knowledge, HardNet is the first method that enables efficient and differentiable enforcement of more than one input-dependent inequality constraint. It allows unconstrained optimization of the network parameters using standard algorithms by appending a differentiable closed-form enforcement layer to the network's output. Furthermore, we show that HardNet retains neural networks' universal approximation capabilities. We demonstrate its versatility and effectiveness across various applications: learning with piecewise constraints, learning optimization solvers with guaranteed feasibility, and optimizing control policies in safety-critical systems.
♻ ☆ $Q\sharp$: Provably Optimal Distributional RL for LLM Post-Training NeurIPS 2025
Reinforcement learning (RL) post-training is crucial for LLM alignment and reasoning, but existing policy-based methods, such as PPO and DPO, can fall short of fixing shortcuts inherited from pre-training. In this work, we introduce $Q\sharp$, a value-based algorithm for KL-regularized RL that guides the reference policy using the optimal regularized $Q$ function. We propose to learn the optimal $Q$ function using distributional RL on an aggregated online dataset. Unlike prior value-based baselines that guide the model using unregularized $Q$-values, our method is theoretically principled and provably learns the optimal policy for the KL-regularized RL problem. Empirically, $Q\sharp$ outperforms prior baselines in math reasoning benchmarks while maintaining a smaller KL divergence to the reference policy. Theoretically, we establish a reduction from KL-regularized RL to no-regret online learning, providing the first bounds for deterministic MDPs under only realizability. Thanks to distributional RL, our bounds are also variance-dependent and converge faster when the reference policy has small variance. In sum, our results highlight $Q\sharp$ as an effective approach for post-training LLMs, offering both improved performance and theoretical guarantees. The code can be found at https://github.com/jinpz/q_sharp.
comment: NeurIPS 2025
♻ ☆ UFT: Unifying Supervised and Reinforcement Fine-Tuning
Post-training has demonstrated its importance in enhancing the reasoning capabilities of large language models (LLMs). The primary post-training methods can be categorized into supervised fine-tuning (SFT) and reinforcement fine-tuning (RFT). SFT is efficient and well-suited for small language models, but it may lead to overfitting and limit the reasoning abilities of larger models. In contrast, RFT generally yields better generalization but depends heavily on the strength of the base model. To address the limitations of SFT and RFT, we propose Unified Fine-Tuning (UFT), a novel post-training paradigm that unifies SFT and RFT into a single, integrated process. UFT enables the model to effectively explore solutions while incorporating informative supervision signals, bridging the gap between memorizing and thinking underlying existing methods. Notably, UFT outperforms both SFT and RFT in general, regardless of model sizes. Furthermore, we theoretically prove that UFT breaks RFT's inherent exponential sample complexity bottleneck, showing for the first time that unified training can exponentially accelerate convergence on long-horizon reasoning tasks.
♻ ☆ The Nondecreasing Rank
In this article the notion of the nondecreasing (ND) rank of a matrix or tensor is introduced. A tensor has an ND rank of r if it can be represented as a sum of r outer products of vectors, with each vector satisfying a monotonicity constraint. It is shown that for certain poset orderings finding an ND factorization of rank $r$ is equivalent to finding a nonnegative rank-r factorization of a transformed tensor. However, not every tensor that is monotonic has a finite ND rank. Theory is developed describing the properties of the ND rank, including typical, maximum, and border ND ranks. Highlighted also are the special settings where a matrix or tensor has an ND rank of one or two. As a means of finding low ND rank approximations to a data tensor we introduce a variant of the hierarchical alternating least squares algorithm. Low ND rank factorizations are found and interpreted for two datasets concerning the weight of pigs and a mental health survey during the COVID-19 pandemic.
comment: 29 pages, 6 figures
♻ ☆ Efficient Data Selection for Training Genomic Perturbation Models
Genomic studies face a vast hypothesis space, while interventions such as gene perturbations remain costly and time-consuming. To accelerate such experiments, gene perturbation models predict the transcriptional outcome of interventions. Since constructing the training set is challenging, active learning is often employed in a "lab-in-the-loop" process. While this strategy makes training more targeted, it is substantially slower, as it fails to exploit the inherent parallelizability of Perturb-seq experiments. Here, we focus on graph neural network-based gene perturbation models and propose a subset selection method that, unlike active learning, selects the training perturbations in one shot. Our method chooses the interventions that maximize the propagation of the supervision signal to the model. The selection criterion is defined over the input knowledge graph and is optimized with submodular maximization, ensuring a near-optimal guarantee. Experimental results across multiple datasets show that, in addition to providing months of acceleration compared to active learning, the method improves the stability of perturbation choices while maintaining competitive predictive accuracy.
comment: 17 pages
♻ ☆ Towards Principled Unsupervised Multi-Agent Reinforcement Learning
In reinforcement learning, we typically refer to unsupervised pre-training when we aim to pre-train a policy without a priori access to the task specification, i.e. rewards, to be later employed for efficient learning of downstream tasks. In single-agent settings, the problem has been extensively studied and mostly understood. A popular approach, called task-agnostic exploration, casts the unsupervised objective as maximizing the entropy of the state distribution induced by the agent's policy, from which principles and methods follow. In contrast, little is known about it in multi-agent settings, which are ubiquitous in the real world. What are the pros and cons of alternative problem formulations in this setting? How hard is the problem in theory, how can we solve it in practice? In this paper, we address these questions by first characterizing those alternative formulations and highlighting how the problem, even when tractable in theory, is non-trivial in practice. Then, we present a scalable, decentralized, trust-region policy search algorithm to address the problem in practical settings. Finally, we provide numerical validations to both corroborate the theoretical findings and pave the way for unsupervised multi-agent reinforcement learning via task-agnostic exploration in challenging domains, showing that optimizing for a specific objective, namely mixture entropy, provides an excellent trade-off between tractability and performances.
♻ ☆ Online Learning of Whittle Indices for Restless Bandits with Non-Stationary Transition Kernels
We study optimal resource allocation in restless multi-armed bandits (RMABs) under unknown and non-stationary dynamics. Solving RMABs optimally is PSPACE-hard even with full knowledge of model parameters, and while the Whittle index policy offers asymptotic optimality with low computational cost, it requires access to stationary transition kernels - an unrealistic assumption in many applications. To address this challenge, we propose a Sliding-Window Online Whittle (SW-Whittle) policy that remains computationally efficient while adapting to time-varying kernels. Our algorithm achieves a dynamic regret of $\tilde O(T^{2/3}\tilde V^{1/3}+T^{4/5})$ for large RMABs, where $T$ is the number of episodes and $\tilde V$ is the total variation distance between consecutive transition kernels. Importantly, we handle the challenging case where the variation budget is unknown in advance by combining a Bandit-over-Bandit framework with our sliding-window design. Window lengths are tuned online as a function of the estimated variation, while Whittle indices are computed via an upper-confidence-bound of the estimated transition kernels and a bilinear optimization routine. Numerical experiments demonstrate that our algorithm consistently outperforms baselines, achieving the lowest cumulative regret across a range of non-stationary environments.
♻ ☆ Hope vs. Hate: Understanding User Interactions with LGBTQ+ News Content in Mainstream US News Media through the Lens of Hope Speech
This paper makes three contributions. First, via a substantial corpus of 1,419,047 comments posted on 3,161 YouTube news videos of major US cable news outlets, we analyze how users engage with LGBTQ+ news content. Our analyses focus both on positive and negative content. In particular, we construct a fine-grained hope speech classifier that detects positive (hope speech), negative, neutral, and irrelevant content. Second, in consultation with a public health expert specializing on LGBTQ+ health, we conduct an annotation study with a balanced and diverse political representation and release a dataset of 3,750 instances with fine-grained labels and detailed annotator demographic information. Finally, beyond providing a vital resource for the LGBTQ+ community, our annotation study and subsequent in-the-wild assessments reveal (1) strong association between rater political beliefs and how they rate content relevant to a marginalized community; (2) models trained on individual political beliefs exhibit considerable in-the-wild disagreement; and (3) zero-shot large language models (LLMs) align more with liberal raters.
♻ ☆ Improving Rectified Flow with Boundary Conditions ICCV 2025
Rectified Flow offers a simple and effective approach to high-quality generative modeling by learning a velocity field. However, we identify a limitation in directly modeling the velocity with an unconstrained neural network: the learned velocity often fails to satisfy certain boundary conditions, leading to inaccurate velocity field estimations that deviate from the desired ODE. This issue is particularly critical during stochastic sampling at inference, as the score function's errors are amplified near the boundary. To mitigate this, we propose a Boundary-enforced Rectified Flow Model (Boundary RF Model), in which we enforce boundary conditions with a minimal code modification. Boundary RF Model improves performance over vanilla RF model, demonstrating 8.01% improvement in FID score on ImageNet using ODE sampling and 8.98% improvement using SDE sampling.
comment: ICCV 2025
♻ ☆ Parameter-Efficient Fine-Tuning for Pre-Trained Vision Models: A Survey and Benchmark IEEE
Pre-trained vision models (PVMs) have demonstrated remarkable adaptability across a wide range of downstream vision tasks, showcasing exceptional performance. However, as these models scale to billions or even trillions of parameters, conventional full fine-tuning has become increasingly impractical due to its high computational and storage demands. To address these challenges, parameter-efficient fine-tuning (PEFT) has emerged as a promising alternative, aiming to achieve performance comparable to full fine-tuning while making minimal adjustments to the model parameters. This paper presents a comprehensive survey of the latest advancements in the visual PEFT field, systematically reviewing current methodologies and categorizing them into four primary categories: addition-based, partial-based, unified-based, and multi-task tuning. In addition, this paper offers an in-depth analysis of widely used visual datasets and real-world applications where PEFT methods have been successfully applied. Furthermore, this paper introduces the V-PEFT Bench, a unified benchmark designed to standardize the evaluation of PEFT methods across a diverse set of vision tasks, ensuring consistency and fairness in comparison. Finally, the paper outlines potential directions for future research to propel advances in the PEFT field. A comprehensive collection of resources is available at https://github.com/synbol/Awesome-Parameter-Efficient-Transfer-Learning.
comment: Submitted to IEEE TPAMI
♻ ☆ GeoReasoner: Geo-localization with Reasoning in Street Views using a Large Vision-Language Model
This work tackles the problem of geo-localization with a new paradigm using a large vision-language model (LVLM) augmented with human inference knowledge. A primary challenge here is the scarcity of data for training the LVLM - existing street-view datasets often contain numerous low-quality images lacking visual clues, and lack any reasoning inference. To address the data-quality issue, we devise a CLIP-based network to quantify the degree of street-view images being locatable, leading to the creation of a new dataset comprising highly locatable street views. To enhance reasoning inference, we integrate external knowledge obtained from real geo-localization games, tapping into valuable human inference capabilities. The data are utilized to train GeoReasoner, which undergoes fine-tuning through dedicated reasoning and location-tuning stages. Qualitative and quantitative evaluations illustrate that GeoReasoner outperforms counterpart LVLMs by more than 25% at country-level and 38% at city-level geo-localization tasks, and surpasses StreetCLIP performance while requiring fewer training resources. The data and code are available at https://github.com/lingli1996/GeoReasoner.
♻ ☆ CultureGuard: Towards Culturally-Aware Dataset and Guard Model for Multilingual Safety Applications
The increasing use of Large Language Models (LLMs) in agentic applications highlights the need for robust safety guard models. While content safety in English is well-studied, non-English languages lack similar advancements due to the high cost of collecting culturally aligned labeled datasets. We present CultureGuard, a novel solution for curating culturally aligned, high-quality safety datasets across multiple languages. Our approach introduces a four-stage synthetic data generation and filtering pipeline: cultural data segregation, cultural data adaptation, machine translation, and quality filtering. This pipeline enables the conversion and expansion of the Nemotron-Content-Safety-Dataset-V2 English safety dataset into eight distinct languages: Arabic, German, Spanish, French, Hindi, Japanese, Thai, and Chinese. The resulting dataset, Nemotron-Safety-Guard-Dataset-v3, comprises 386,661 samples in 9 languages and facilitates the training of Llama-3.1-Nemotron-Safety-Guard-8B-v3 via LoRA-based fine-tuning. The final model achieves state-of-the-art performance on several multilingual content safety benchmarks. Furthermore, we show our moderately multilingual fine-tuning enables robust cross-lingual transfer and strong zero-shot generalization to unseen languages. We also benchmark the latest open LLMs on multilingual safety and observe that these LLMs are more prone to give unsafe responses when prompted in non-English languages. This work advances multilingual LLM safety by enabling the development of culturally aware safety guard models.
♻ ☆ A Principled Path to Fitted Distributional Evaluation
In reinforcement learning, distributional off-policy evaluation (OPE) focuses on estimating the return distribution of a target policy using offline data collected under a different policy. This work focuses on extending the widely used fitted Q-evaluation -- developed for expectation-based reinforcement learning -- to the distributional OPE setting. We refer to this extension as fitted distributional evaluation (FDE). While only a few related approaches exist, there remains no unified framework for designing FDE methods. To fill this gap, we present a set of guiding principles for constructing theoretically grounded FDE methods. Building on these principles, we develop several new FDE methods with convergence analysis and provide theoretical justification for existing methods, even in non-tabular environments. Extensive experiments, including simulations on linear quadratic regulators and Atari games, demonstrate the superior performance of the FDE methods.
♻ ☆ A Prospect-Theoretic Policy Gradient Framework for Behaviorally Nuanced Reinforcement Learning
Classical reinforcement learning (RL) typically assumes rational decision-making based on expected utility theory. However, this model has been shown to be empirically inconsistent with actual human preferences, as evidenced in psychology and behavioral economics. Cumulative Prospect Theory (CPT) provides a more nuanced model for human-based decision-making, capturing diverse attitudes and perceptions toward risk, gains, and losses. While prior work has integrated CPT with RL to solve CPT policy optimization problems, the understanding and impact of this formulation remain limited. Our contributions are as follows: (a) we derive a novel policy gradient theorem for CPT objectives, generalizing the foundational result in standard RL, (b) we design a model-free policy gradient algorithm for solving the CPT-RL problem, (c) we analyze our policy gradient estimator and prove asymptotic convergence of the algorithm to first-order stationary points, and (d) test its performance through simulations. Notably, our first-order policy gradient algorithm scales better than existing zeroth-order methods to larger state spaces. Our theoretical framework offers more flexibility to advance the integration of behavioral decision-making into RL.
♻ ☆ HypER: Hyperbolic Echo State Networks for Capturing Stretch-and-Fold Dynamics in Chaotic Flows ECAI 2025
Forecasting chaotic dynamics beyond a few Lyapunov times is difficult because infinitesimal errors grow exponentially. Existing Echo State Networks (ESNs) mitigate this growth but employ reservoirs whose Euclidean geometry is mismatched to the stretch-and-fold structure of chaos. We introduce the Hyperbolic Embedding Reservoir (HypER), an ESN whose neurons are sampled in the Poincare ball and whose connections decay exponentially with hyperbolic distance. This negative-curvature construction embeds an exponential metric directly into the latent space, aligning the reservoir's local expansion-contraction spectrum with the system's Lyapunov directions while preserving standard ESN features such as sparsity, leaky integration, and spectral-radius control. Training is limited to a Tikhonov-regularized readout. On the chaotic Lorenz-63 and Roessler systems, and the hyperchaotic Chen-Ueta attractor, HypER consistently lengthens the mean valid-prediction horizon beyond Euclidean and graph-structured ESN baselines, with statistically significant gains confirmed over 30 independent runs; parallel results on real-world benchmarks, including heart-rate variability from the Santa Fe and MIT-BIH datasets and international sunspot numbers, corroborate its advantage. We further establish a lower bound on the rate of state divergence for HypER, mirroring Lyapunov growth.
comment: 8 pages, accepted in ECAI 2025
♻ ☆ Large Language Models are Powerful Electronic Health Record Encoders
Electronic Health Records (EHRs) offer considerable potential for clinical prediction, but their complexity and heterogeneity present significant challenges for traditional machine learning methods. Recently, domain-specific EHR foundation models trained on large volumes of unlabeled EHR data have shown improved predictive accuracy and generalization. However, their development is constrained by limited access to diverse, high-quality datasets, and inconsistencies in coding standards and clinical practices. In this study, we explore the use of general-purpose Large Language Models (LLMs) to encode EHR into high-dimensional representations for downstream clinical prediction tasks. We convert structured EHR data into Markdown-formatted plain-text documents by replacing medical codes with natural language descriptions. This enables the use of LLMs and their extensive semantic understanding and generalization capabilities as effective encoders of EHRs without requiring access to private medical training data. We show that LLM-based embeddings can often match or even surpass the performance of a specialized EHR foundation model, CLMBR-T-Base, across 15 diverse clinical tasks from the EHRSHOT benchmark. Critically, our approach requires no institution-specific training and can incorporate any medical code with a text description, whereas existing EHR foundation models operate on fixed vocabularies and can only process codes seen during pretraining. To demonstrate generalizability, we further evaluate the approach on the UK Biobank (UKB) cohort, out-of-domain for CLMBR-T-Base, whose fixed vocabulary covers only 16% of UKB codes. Notably, an LLM-based model achieves superior performance for prediction of disease onset, hospitalization, and mortality, indicating robustness to population and coding shifts.
♻ ☆ VolleyBots: A Testbed for Multi-Drone Volleyball Game Combining Motion Control and Strategic Play NeurIPS 2025
Robot sports, characterized by well-defined objectives, explicit rules, and dynamic interactions, present ideal scenarios for demonstrating embodied intelligence. In this paper, we present VolleyBots, a novel robot sports testbed where multiple drones cooperate and compete in the sport of volleyball under physical dynamics. VolleyBots integrates three features within a unified platform: competitive and cooperative gameplay, turn-based interaction structure, and agile 3D maneuvering. These intertwined features yield a complex problem combining motion control and strategic play, with no available expert demonstrations. We provide a comprehensive suite of tasks ranging from single-drone drills to multi-drone cooperative and competitive tasks, accompanied by baseline evaluations of representative reinforcement learning (RL), multi-agent reinforcement learning (MARL) and game-theoretic algorithms. Simulation results show that on-policy RL methods outperform off-policy methods in single-agent tasks, but both approaches struggle in complex tasks that combine motion control and strategic play. We additionally design a hierarchical policy which achieves 69.5% win rate against the strongest baseline in the 3 vs 3 task, demonstrating its potential for tackling the complex interplay between low-level control and high-level strategy. To highlight VolleyBots' sim-to-real potential, we further demonstrate the zero-shot deployment of a policy trained entirely in simulation on real-world drones.
comment: Accepted by NeurIPS 2025
♻ ☆ Observation-guided Interpolation Using Graph Neural Networks for High-Resolution Nowcasting in Switzerland
Recent advances in neural weather forecasting have shown significant potential for accurate short-term forecasts. However, adapting such gridded approaches to smaller, topographically complex regions like Switzerland introduces computational challenges, especially when aiming for high spatial (1km) and temporal (10 min) resolution. This paper presents a Graph Neural Network (GNN)-based approach for high-resolution nowcasting in Switzerland using the Anemoi framework and observational inputs. The proposed architecture combines surface observations with selected past and future numerical weather prediction (NWP) states, enabling an observation-guided interpolation strategy that enhances short-term accuracy while preserving physical consistency. We evaluate two models, one trained using local nowcasting analyses and one trained without, on multiple surface variables and compare it against operational high-resolution NWP (ICON-CH1) and nowcasting (INCA) baselines. Results over the test period show that both GNNs consistently outperform ICON-CH1 when verified against INCA analyses across most variables and lead times. Relative to the INCA forecast system, scores against INCA analyses show AI gains beyond 2h (with early-lead disadvantages attributable to INCA's warm start from the analysis), while verification against held-out stations shows no systematic degradation at short lead-times for AI models and frequent outperformance across surface variables. A comprehensive verification procedure, including spatial skill scores for precipitation, pairwise significance testing and event-based evaluation, demonstrates the operational relevance of the approach for mountainous domains. These results indicate that high-resolution, observation-guided GNNs can match or exceed the skill of established forecasting systems for short lead times, including when they are trained without nowcasting analyses.
comment: Updated 19.10.2025
♻ ☆ Frozen in Time: Parameter-Efficient Time Series Transformers via Reservoir-Induced Feature Expansion and Fixed Random Dynamics ECAI 2025
Transformers are the de-facto choice for sequence modelling, yet their quadratic self-attention and weak temporal bias can make long-range forecasting both expensive and brittle. We introduce FreezeTST, a lightweight hybrid that interleaves frozen random-feature (reservoir) blocks with standard trainable Transformer layers. The frozen blocks endow the network with rich nonlinear memory at no optimisation cost; the trainable layers learn to query this memory through self-attention. The design cuts trainable parameters and also lowers wall-clock training time, while leaving inference complexity unchanged. On seven standard long-term forecasting benchmarks, FreezeTST consistently matches or surpasses specialised variants such as Informer, Autoformer, and PatchTST; with substantially lower compute. Our results show that embedding reservoir principles within Transformers offers a simple, principled route to efficient long-term time-series prediction.
comment: 8 pages, 5 tables, 3 figures, accepted at ECAI 2025
♻ ☆ Seeing in the Dark: A Teacher-Student Framework for Dark Video Action Recognition via Knowledge Distillation and Contrastive Learning
Action recognition in dark or low-light (under-exposed) videos is a challenging task due to visibility degradation, which can hinder critical spatiotemporal details. This paper proposes ActLumos, a teacher-student framework that attains single-stream inference while retaining multi-stream level accuracy. The teacher consumes dual stream inputs, which include original dark frames and retinex-enhanced frames, processed by weight-shared R(2+1)D-34 backbones and fused by a Dynamic Feature Fusion (DFF) module, which dynamically re-weights the two streams at each time step, emphasising the most informative temporal segments. The teacher is also included with a supervised contrastive loss (SupCon) that sharpens class margins. The student shares the R(2+1)D-34 backbone but uses only dark frames and no fusion at test time. The student is first pre-trained with self-supervision on dark clips of both datasets without their labels and then fine-tuned with knowledge distillation from the teacher, transferring the teacher's multi-stream knowledge into a single-stream model. Under single-stream inference, the distilled student attains state-of-the-art accuracy of 96.92% (Top-1) on ARID V1.0, 88.27% on ARID V1.5, and 48.96% on Dark48. Ablation studies further highlight the individual contributions of each component, i.e., DFF in the teacher outperforms single or static fusion, knowledge distillation (KD) transfers these gains to the single-stream student, and two-view spatio-temporal SSL surpasses spatial-only or temporal-only variants without increasing inference cost. The official website of this work is available at: https://github.com/HrishavBakulBarua/ActLumos
♻ ☆ Boosting Graph Robustness Against Backdoor Attacks: An Over-Similarity Perspective
Graph Neural Networks (GNNs) have achieved notable success in tasks such as social and transportation networks. However, recent studies have highlighted the vulnerability of GNNs to backdoor attacks, raising significant concerns about their reliability in real-world applications. Despite initial efforts to defend against specific graph backdoor attacks, existing defense methods face two main challenges: either the inability to establish a clear distinction between triggers and clean nodes, resulting in the removal of many clean nodes, or the failure to eliminate the impact of triggers, making it challenging to restore the target nodes to their pre-attack state. Through empirical analysis of various existing graph backdoor attacks, we observe that the triggers generated by these methods exhibit over-similarity in both features and structure. Based on this observation, we propose a novel graph backdoor defense method SimGuard. We first utilizes a similarity-based metric to detect triggers and then employs contrastive learning to train a backdoor detector that generates embeddings capable of separating triggers from clean nodes, thereby improving detection efficiency. Extensive experiments conducted on real-world datasets demonstrate that our proposed method effectively defends against various graph backdoor attacks while preserving performance on clean nodes. The code will be released upon acceptance.
comment: After discussions with one of the co-authors, it was decided that this version should not be made public at this time. To respect the co-author's perspective and ensure alignment among all authors, I am requesting the withdrawal of this article
Multimedia 5
☆ Enrich and Detect: Video Temporal Grounding with Multimodal LLMs ICCV 2025
We introduce ED-VTG, a method for fine-grained video temporal grounding utilizing multi-modal large language models. Our approach harnesses the capabilities of multimodal LLMs to jointly process text and video, in order to effectively localize natural language queries in videos through a two-stage process. Rather than being directly grounded, language queries are initially transformed into enriched sentences that incorporate missing details and cues to aid in grounding. In the second stage, these enriched queries are grounded, using a lightweight decoder, which specializes at predicting accurate boundaries conditioned on contextualized representations of the enriched queries. To mitigate noise and reduce the impact of hallucinations, our model is trained with a multiple-instance-learning objective that dynamically selects the optimal version of the query for each training sample. We demonstrate state-of-the-art results across various benchmarks in temporal video grounding and paragraph grounding settings. Experiments reveal that our method significantly outperforms all previously proposed LLM-based temporal grounding approaches and is either superior or comparable to specialized models, while maintaining a clear advantage against them in zero-shot evaluation scenarios.
comment: ICCV 2025 (Highlights)
♻ ☆ ActAlign: Zero-Shot Fine-Grained Video Classification via Language-Guided Sequence Alignment
We address the task of zero-shot video classification for extremely fine-grained actions (e.g., Windmill Dunk in basketball), where no video examples or temporal annotations are available for unseen classes. While image-language models (e.g., CLIP, SigLIP) show strong open-set recognition, they lack temporal modeling needed for video understanding. We propose ActAlign, a truly zero-shot, training-free method that formulates video classification as a sequence alignment problem, preserving the generalization strength of pretrained image-language models. For each class, a large language model (LLM) generates an ordered sequence of sub-actions, which we align with video frames using Dynamic Time Warping (DTW) in a shared embedding space. Without any video-text supervision or fine-tuning, ActAlign achieves 30.5% accuracy on ActionAtlas--the most diverse benchmark of fine-grained actions across multiple sports--where human performance is only 61.6%. ActAlign outperforms billion-parameter video-language models while using 8x fewer parameters. Our approach is model-agnostic and domain-general, demonstrating that structured language priors combined with classical alignment methods can unlock the open-set recognition potential of image-language models for fine-grained video understanding.
comment: Accepted to TMLR 2025 - Project page: https://amir-aghdam.github.io/act-align/
♻ ☆ SongBloom: Coherent Song Generation via Interleaved Autoregressive Sketching and Diffusion Refinement NeurIPS2025
Generating music with coherent structure, harmonious instrumental and vocal elements remains a significant challenge in song generation. Existing language models and diffusion-based methods often struggle to balance global coherence with local fidelity, resulting in outputs that lack musicality or suffer from incoherent progression and mismatched lyrics. This paper introduces $\textbf{SongBloom}$, a novel framework for full-length song generation that leverages an interleaved paradigm of autoregressive sketching and diffusion-based refinement. SongBloom employs an autoregressive diffusion model that combines the high fidelity of diffusion models with the scalability of language models. Specifically, it gradually extends a musical sketch from short to long and refines the details from coarse to fine-grained. The interleaved generation paradigm effectively integrates prior semantic and acoustic context to guide the generation process. Experimental results demonstrate that SongBloom outperforms existing methods across both subjective and objective metrics and achieves performance comparable to the state-of-the-art commercial music generation platforms. Audio samples are available on our demo page: https://cypress-yang.github.io/SongBloom_demo. The code and model weights have been released on https://github.com/Cypress-Yang/SongBloom .
comment: Accepted by NeurIPS2025
♻ ☆ Seeing in the Dark: A Teacher-Student Framework for Dark Video Action Recognition via Knowledge Distillation and Contrastive Learning
Action recognition in dark or low-light (under-exposed) videos is a challenging task due to visibility degradation, which can hinder critical spatiotemporal details. This paper proposes ActLumos, a teacher-student framework that attains single-stream inference while retaining multi-stream level accuracy. The teacher consumes dual stream inputs, which include original dark frames and retinex-enhanced frames, processed by weight-shared R(2+1)D-34 backbones and fused by a Dynamic Feature Fusion (DFF) module, which dynamically re-weights the two streams at each time step, emphasising the most informative temporal segments. The teacher is also included with a supervised contrastive loss (SupCon) that sharpens class margins. The student shares the R(2+1)D-34 backbone but uses only dark frames and no fusion at test time. The student is first pre-trained with self-supervision on dark clips of both datasets without their labels and then fine-tuned with knowledge distillation from the teacher, transferring the teacher's multi-stream knowledge into a single-stream model. Under single-stream inference, the distilled student attains state-of-the-art accuracy of 96.92% (Top-1) on ARID V1.0, 88.27% on ARID V1.5, and 48.96% on Dark48. Ablation studies further highlight the individual contributions of each component, i.e., DFF in the teacher outperforms single or static fusion, knowledge distillation (KD) transfers these gains to the single-stream student, and two-view spatio-temporal SSL surpasses spatial-only or temporal-only variants without increasing inference cost. The official website of this work is available at: https://github.com/HrishavBakulBarua/ActLumos
♻ ☆ Text-controlled Motion Mamba: Text-Instructed Temporal Grounding of Human Motion IEEE
Human motion understanding is a fundamental task with diverse practical applications, facilitated by the availability of large-scale motion capture datasets. Recent studies focus on text-motion tasks, such as text-based motion generation, editing and question answering. In this study, we introduce the novel task of text-based human motion grounding (THMG), aimed at precisely localizing temporal segments corresponding to given textual descriptions within untrimmed motion sequences. Capturing global temporal information is crucial for the THMG task. However, Transformer-based models that rely on global temporal self-attention face challenges when handling long untrimmed sequences due to the quadratic computational cost. We address these challenges by proposing Text-controlled Motion Mamba (TM-Mamba), a unified model that integrates temporal global context, language query control, and spatial graph topology with only linear memory cost. The core of the model is a text-controlled selection mechanism which dynamically incorporates global temporal information based on text query. The model is further enhanced to be topology-aware through the integration of relational embeddings. For evaluation, we introduce BABEL-Grounding, the first text-motion dataset that provides detailed textual descriptions of human actions along with their corresponding temporal segments. Extensive evaluations demonstrate the effectiveness of TM-Mamba on BABEL-Grounding.
comment: Accepted by IEEE Transactions on Image Processing (TIP)
Computer Vision and Pattern Recognition 52
☆ HYDRA: HYbrid knowledge Distillation and spectral Reconstruction Algorithm for high channel hyperspectral camera applications
Hyperspectral images (HSI) promise to support a range of new applications in computer vision. Recent research has explored the feasibility of generalizable Spectral Reconstruction (SR), the problem of recovering a HSI from a natural three-channel color image in unseen scenarios. However, previous Multi-Scale Attention (MSA) works have only demonstrated sufficient generalizable results for very sparse spectra, while modern HSI sensors contain hundreds of channels. This paper introduces a novel approach to spectral reconstruction via our HYbrid knowledge Distillation and spectral Reconstruction Architecture (HYDRA). Using a Teacher model that encapsulates latent hyperspectral image data and a Student model that learns mappings from natural images to the Teacher's encoded domain, alongside a novel training method, we achieve high-quality spectral reconstruction. This addresses key limitations of prior SR models, providing SOTA performance across all metrics, including an 18\% boost in accuracy, and faster inference times than current SOTA models at various channel depths.
☆ Universal and Transferable Attacks on Pathology Foundation Models
We introduce Universal and Transferable Adversarial Perturbations (UTAP) for pathology foundation models that reveal critical vulnerabilities in their capabilities. Optimized using deep learning, UTAP comprises a fixed and weak noise pattern that, when added to a pathology image, systematically disrupts the feature representation capabilities of multiple pathology foundation models. Therefore, UTAP induces performance drops in downstream tasks that utilize foundation models, including misclassification across a wide range of unseen data distributions. In addition to compromising the model performance, we demonstrate two key features of UTAP: (1) universality: its perturbation can be applied across diverse field-of-views independent of the dataset that UTAP was developed on, and (2) transferability: its perturbation can successfully degrade the performance of various external, black-box pathology foundation models - never seen before. These two features indicate that UTAP is not a dedicated attack associated with a specific foundation model or image dataset, but rather constitutes a broad threat to various emerging pathology foundation models and their applications. We systematically evaluated UTAP across various state-of-the-art pathology foundation models on multiple datasets, causing a significant drop in their performance with visually imperceptible modifications to the input images using a fixed noise pattern. The development of these potent attacks establishes a critical, high-standard benchmark for model robustness evaluation, highlighting a need for advancing defense mechanisms and potentially providing the necessary assets for adversarial training to ensure the safe and reliable deployment of AI in pathology.
comment: 38 Pages, 8 Figures
☆ Structured Interfaces for Automated Reasoning with 3D Scene Graphs
In order to provide a robot with the ability to understand and react to a user's natural language inputs, the natural language must be connected to the robot's underlying representations of the world. Recently, large language models (LLMs) and 3D scene graphs (3DSGs) have become a popular choice for grounding natural language and representing the world. In this work, we address the challenge of using LLMs with 3DSGs to ground natural language. Existing methods encode the scene graph as serialized text within the LLM's context window, but this encoding does not scale to large or rich 3DSGs. Instead, we propose to use a form of Retrieval Augmented Generation to select a subset of the 3DSG relevant to the task. We encode a 3DSG in a graph database and provide a query language interface (Cypher) as a tool to the LLM with which it can retrieve relevant data for language grounding. We evaluate our approach on instruction following and scene question-answering tasks and compare against baseline context window and code generation methods. Our results show that using Cypher as an interface to 3D scene graphs scales significantly better to large, rich graphs on both local and cloud-based models. This leads to large performance improvements in grounded language tasks while also substantially reducing the token count of the scene graph content. A video supplement is available at https://www.youtube.com/watch?v=zY_YI9giZSA.
comment: 25 pages, 3 figures
☆ MultiVerse: A Multi-Turn Conversation Benchmark for Evaluating Large Vision and Language Models
Vision-and-Language Models (VLMs) have shown impressive capabilities on single-turn benchmarks, yet real-world applications often demand more intricate multi-turn dialogues. Existing multi-turn datasets (e.g, MMDU, ConvBench) only partially capture the breadth and depth of conversational scenarios encountered by users. In this work, we introduce MultiVerse, a novel multi-turn conversation benchmark featuring 647 dialogues - each averaging four turns - derived from a diverse set of 12 popular VLM evaluation benchmarks. With 484 tasks and 484 interaction goals, MultiVerse covers a wide range of topics, from factual knowledge and perception to advanced reasoning tasks such as mathematics and coding. To facilitate robust assessment, we propose a checklist-based evaluation method that leverages GPT-4o as the automated evaluator, measuring performance across 37 key aspects, including perceptual accuracy, linguistic clarity, and factual correctness. We evaluate 18 VLMs on MultiVerse, revealing that even the strongest models (e.g., GPT-4o) achieve only a 50% success rate in complex multi-turn conversations, highlighting the dataset's challenging nature. Notably, we find that providing full dialogue context significantly enhances performance for smaller or weaker models, emphasizing the importance of in-context learning. We believe MultiVerse is a landscape of evaluating multi-turn interaction abilities for VLMs.
comment: Project website: https://passing2961.github.io/multiverse-project-page/
Self-Supervised Learning to Fly using Efficient Semantic Segmentation and Metric Depth Estimation for Low-Cost Autonomous UAVs
This paper presents a vision-only autonomous flight system for small UAVs operating in controlled indoor environments. The system combines semantic segmentation with monocular depth estimation to enable obstacle avoidance, scene exploration, and autonomous safe landing operations without requiring GPS or expensive sensors such as LiDAR. A key innovation is an adaptive scale factor algorithm that converts non-metric monocular depth predictions into accurate metric distance measurements by leveraging semantic ground plane detection and camera intrinsic parameters, achieving a mean distance error of 14.4 cm. The approach uses a knowledge distillation framework where a color-based Support Vector Machine (SVM) teacher generates training data for a lightweight U-Net student network (1.6M parameters) capable of real-time semantic segmentation. For more complex environments, the SVM teacher can be replaced with a state-of-the-art segmentation model. Testing was conducted in a controlled 5x4 meter laboratory environment with eight cardboard obstacles simulating urban structures. Extensive validation across 30 flight tests in a real-world environment and 100 flight tests in a digital-twin environment demonstrates that the combined segmentation and depth approach increases the distance traveled during surveillance and reduces mission time while maintaining 100% success rates. The system is further optimized through end-to-end learning, where a compact student neural network learns complete flight policies from demonstration data generated by our best-performing method, achieving an 87.5% autonomous mission success rate. This work advances practical vision-based drone navigation in structured environments, demonstrating solutions for metric depth estimation and computational efficiency challenges that enable deployment on resource-constrained platforms.
☆ A Deep Learning Framework for Real-Time Image Processing in Medical Diagnostics: Enhancing Accuracy and Speed in Clinical Applications
Medical imaging plays a vital role in modern diagnostics; however, interpreting high-resolution radiological data remains time-consuming and susceptible to variability among clinicians. Traditional image processing techniques often lack the precision, robustness, and speed required for real-time clinical use. To overcome these limitations, this paper introduces a deep learning framework for real-time medical image analysis designed to enhance diagnostic accuracy and computational efficiency across multiple imaging modalities, including X-ray, CT, and MRI. The proposed system integrates advanced neural network architectures such as U-Net, EfficientNet, and Transformer-based models with real-time optimization strategies including model pruning, quantization, and GPU acceleration. The framework enables flexible deployment on edge devices, local servers, and cloud infrastructures, ensuring seamless interoperability with clinical systems such as PACS and EHR. Experimental evaluations on public benchmark datasets demonstrate state-of-the-art performance, achieving classification accuracies above 92%, segmentation Dice scores exceeding 91%, and inference times below 80 milliseconds. Furthermore, visual explanation tools such as Grad-CAM and segmentation overlays enhance transparency and clinical interpretability. These results indicate that the proposed framework can substantially accelerate diagnostic workflows, reduce clinician workload, and support trustworthy AI integration in time-critical healthcare environments.
comment: 20 pages, 4 figures
☆ VisionSelector: End-to-End Learnable Visual Token Compression for Efficient Multimodal LLMs
Multimodal Large Language Models (MLLMs) encounter significant computational and memory bottlenecks from the massive number of visual tokens generated by high-resolution images or multi-image inputs. Previous token compression techniques are often constrained by heuristic rules that risk discarding critical information. They may suffer from biases, such as attention sinks, that lead to sharp performance drops under aggressive compression ratios. To address these limitations, we reformulate token compression as a lightweight plug-and-play framework that reformulates token compression into an end-to-end learnable decision process. To be specific, we propose VisionSelector, a scorer module decoupled from the MLLM backbone that incorporates a differentiable Top-K mechanism and a curriculum annealing strategy to bridge the training-inference gap, enabling efficient and adaptive token selection various arbitrary compression rates. Remarkably lightweight with only 12.85M trainable parameters, VisionSelector demonstrates generalization across various compression rates and adaptively identifying critical tokens. This leads to superior performance across all compression budgets, evidenced by preserving 100% accuracy on MME with 30% retention budget, outperforming prior methods by 12.14% at 10% retention budget, and doubling prefill speed. Our code is available at https://github.com/JulietChoo/VisionSelector .
comment: 22 pages, 8 figures
☆ SHIELD: Suppressing Hallucinations In LVLM Encoders via Bias and Vulnerability Defense
Large Vision-Language Models (LVLMs) excel in diverse cross-modal tasks. However, object hallucination, where models produce plausible but inaccurate object descriptions, remains a significant challenge. In contrast to previous work focusing on LLM components, this paper is the first to trace LVLM hallucinations to visual encoders and identifies three key issues: statistical bias, inherent bias, and vulnerability. To address these challenges, we propose SHIELD, a training-free framework that mitigates hallucinations through three strategies: re-weighting visual tokens to reduce statistical bias, introducing noise-derived tokens to counter inherent bias, and applying adversarial attacks with contrastive decoding to address vulnerability. Experiments demonstrate that SHIELD effectively mitigates object hallucinations across diverse benchmarks and LVLM families. Moreover, SHIELD achieves strong performance on the general LVLM benchmark, highlighting its broad applicability. Code will be released.
☆ Patronus: Safeguarding Text-to-Image Models against White-Box Adversaries
Text-to-image (T2I) models, though exhibiting remarkable creativity in image generation, can be exploited to produce unsafe images. Existing safety measures, e.g., content moderation or model alignment, fail in the presence of white-box adversaries who know and can adjust model parameters, e.g., by fine-tuning. This paper presents a novel defensive framework, named Patronus, which equips T2I models with holistic protection to defend against white-box adversaries. Specifically, we design an internal moderator that decodes unsafe input features into zero vectors while ensuring the decoding performance of benign input features. Furthermore, we strengthen the model alignment with a carefully designed non-fine-tunable learning mechanism, ensuring the T2I model will not be compromised by malicious fine-tuning. We conduct extensive experiments to validate the intactness of the performance on safe content generation and the effectiveness of rejecting unsafe content generation. Results also confirm the resilience of Patronus against various fine-tuning attacks by white-box adversaries.
comment: 14 pages, 18 figures, 7 tables
☆ Fit for Purpose? Deepfake Detection in the Real World
The rapid proliferation of AI-generated content, driven by advances in generative adversarial networks, diffusion models, and multimodal large language models, has made the creation and dissemination of synthetic media effortless, heightening the risks of misinformation, particularly political deepfakes that distort truth and undermine trust in political institutions. In turn, governments, research institutions, and industry have strongly promoted deepfake detection initiatives as solutions. Yet, most existing models are trained and validated on synthetic, laboratory-controlled datasets, limiting their generalizability to the kinds of real-world political deepfakes circulating on social platforms that affect the public. In this work, we introduce the first systematic benchmark based on the Political Deepfakes Incident Database, a curated collection of real-world political deepfakes shared on social media since 2018. Our study includes a systematic evaluation of state-of-the-art deepfake detectors across academia, government, and industry. We find that the detectors from academia and government perform relatively poorly. While paid detection tools achieve relatively higher performance than free-access models, all evaluated detectors struggle to generalize effectively to authentic political deepfakes, and are vulnerable to simple manipulations, especially in the video domain. Results urge the need for politically contextualized deepfake detection frameworks to better safeguard the public in real-world settings.
☆ Watch Where You Move: Region-aware Dynamic Aggregation and Excitation for Gait Recognition
Deep learning-based gait recognition has achieved great success in various applications. The key to accurate gait recognition lies in considering the unique and diverse behavior patterns in different motion regions, especially when covariates affect visual appearance. However, existing methods typically use predefined regions for temporal modeling, with fixed or equivalent temporal scales assigned to different types of regions, which makes it difficult to model motion regions that change dynamically over time and adapt to their specific patterns. To tackle this problem, we introduce a Region-aware Dynamic Aggregation and Excitation framework (GaitRDAE) that automatically searches for motion regions, assigns adaptive temporal scales and applies corresponding attention. Specifically, the framework includes two core modules: the Region-aware Dynamic Aggregation (RDA) module, which dynamically searches the optimal temporal receptive field for each region, and the Region-aware Dynamic Excitation (RDE) module, which emphasizes the learning of motion regions containing more stable behavior patterns while suppressing attention to static regions that are more susceptible to covariates. Experimental results show that GaitRDAE achieves state-of-the-art performance on several benchmark datasets.
☆ Enhancing Compositional Reasoning in CLIP via Reconstruction and Alignment of Text Descriptions NeurIPS 2025
Despite recent advances, vision-language models trained with standard contrastive objectives still struggle with compositional reasoning -- the ability to understand structured relationships between visual and linguistic elements. This shortcoming is largely due to the tendency of the text encoder to focus on individual words rather than their relations, a limitation reinforced by contrastive training that primarily aligns words with visual objects. In this paper, we introduce REconstruction and Alignment of text Descriptions (READ), a fine-tuning method designed to enhance compositional reasoning by adding two auxiliary objectives to the contrastive learning: (1) a token-level reconstruction objective, where a frozen pre-trained decoder reconstructs alternative captions based on the embedding of the original caption; and (2) a sentence-level alignment objective, which explicitly aligns paraphrased sentences in the embedding space. We show that READ-CLIP, a model derived by applying the READ method to the pre-trained CLIP model, achieves the state-of-the-art performance across five major compositional reasoning benchmarks, outperforming the strongest conventional fine-tuning baseline by up to 4.1%. Furthermore, applying the READ to existing CLIP variants (including NegCLIP and FSC-CLIP) also improves performance on these benchmarks. Quantitative and qualitative analyses reveal that our proposed objectives -- reconstruction and alignment -- offer complementary benefits: the former encourages the encoder to capture relationships between words within a caption, while the latter ensures consistent representations for paraphrases expressed with different wording.
comment: Accepted at NeurIPS 2025 (poster). This is the camera-ready version
☆ Image Categorization and Search via a GAT Autoencoder and Representative Models
We propose a method for image categorization and retrieval that leverages graphs and a graph attention network (GAT)-based autoencoder. Our approach is representative-centric, that is, we execute the categorization and retrieval process via the representative models we construct for the images and image categories. We utilize a graph where nodes represent images (or their representatives) and edges capture similarity relationships. GAT highlights important features and relationships between images, enabling the autoencoder to construct context-aware latent representations that capture the key features of each image relative to its neighbors. We obtain category representatives from these embeddings and categorize a query image by comparing its representative to the category representatives. We then retrieve the most similar image to the query image within its identified category. We demonstrate the effectiveness of our representative-centric approach through experiments with both the GAT autoencoders and standard feature-based techniques.
comment: 10 pages, 22 figures, Under review
☆ Differentiable, Bit-shifting, and Scalable Quantization without training neural network from scratch
Quantization of neural networks provides benefits of inference in less compute and memory requirements. Previous work in quantization lack two important aspects which this work provides. First almost all previous work in quantization used a non-differentiable approach and for learning; the derivative is usually set manually in backpropogation which make the learning ability of algorithm questionable, our approach is not just differentiable, we also provide proof of convergence of our approach to the optimal neural network. Second previous work in shift/logrithmic quantization either have avoided activation quantization along with weight quantization or achieved less accuracy. Learning logrithmic quantize values of form $2^n$ requires the quantization function can scale to more than 1 bit quantization which is another benifit of our quantization that it provides $n$ bits quantization as well. Our approach when tested with image classification task using imagenet dataset, resnet18 and weight quantization only achieves less than 1 percent accuracy compared to full precision accuracy while taking only 15 epochs to train using shift bit quantization and achieves comparable to SOTA approaches accuracy in both weight and activation quantization using shift bit quantization in 15 training epochs with slightly higher(only higher cpu instructions) inference cost compared to 1 bit quantization(without logrithmic quantization) and not requiring any higher precision multiplication.
☆ OOS-DSD: Improving Out-of-stock Detection in Retail Images using Auxiliary Tasks
Out-of-stock (OOS) detection is a very important retail verification process that aims to infer the unavailability of products in their designated areas on the shelf. In this paper, we introduce OOS-DSD, a novel deep learning-based method that advances OOS detection through auxiliary learning. In particular, we extend a well-established YOLOv8 object detection architecture with additional convolutional branches to simultaneously detect OOS, segment products, and estimate scene depth. While OOS detection and product segmentation branches are trained using ground truth data, the depth estimation branch is trained using pseudo-labeled annotations produced by the state-of-the-art (SOTA) depth estimation model Depth Anything V2. Furthermore, since the aforementioned pseudo-labeled depth estimates display relative depth, we propose an appropriate depth normalization procedure that stabilizes the training process. The experimental results show that the proposed method surpassed the performance of the SOTA OOS detection methods by 1.8% of the mean average precision (mAP). In addition, ablation studies confirm the effectiveness of auxiliary learning and the proposed depth normalization procedure, with the former increasing mAP by 3.7% and the latter by 4.2%.
☆ PRISMM-Bench: A Benchmark of Peer-Review Grounded Multimodal Inconsistencies
Large Multimodal Models (LMMs) are increasingly applied to scientific research, yet it remains unclear whether they can reliably understand and reason over the multimodal complexity of papers. A central challenge lies in detecting and resolving inconsistencies across text, figures, tables, and equations, issues that are often subtle, domain-specific, and ultimately undermine clarity, reproducibility, and trust. Existing benchmarks overlook this issue, either isolating single modalities or relying on synthetic errors that fail to capture real-world complexity. We introduce PRISMM-Bench (Peer-Review-sourced Inconsistency Set for Multimodal Models), the first benchmark grounded in real reviewer-flagged inconsistencies in scientific papers. Through a multi-stage pipeline of review mining, LLM-assisted filtering and human verification, we curate 262 inconsistencies from 242 papers. Based on this set, we design three tasks, namely inconsistency identification, remedy and pair matching, which assess a model's capacity to detect, correct, and reason over inconsistencies across different modalities. Furthermore, to address the notorious problem of choice-only shortcuts in multiple-choice evaluation, where models exploit answer patterns without truly understanding the question, we further introduce structured JSON-based answer representations that minimize linguistic biases by reducing reliance on superficial stylistic cues. We benchmark 21 leading LMMs, including large open-weight models (GLM-4.5V 106B, InternVL3 78B) and proprietary models (Gemini 2.5 Pro, GPT-5 with high reasoning). Results reveal strikingly low performance (26.1-54.2%), underscoring the challenge of multimodal scientific reasoning and motivating progress towards trustworthy scientific assistants.
☆ HGC-Avatar: Hierarchical Gaussian Compression for Streamable Dynamic 3D Avatars
Recent advances in 3D Gaussian Splatting (3DGS) have enabled fast, photorealistic rendering of dynamic 3D scenes, showing strong potential in immersive communication. However, in digital human encoding and transmission, the compression methods based on general 3DGS representations are limited by the lack of human priors, resulting in suboptimal bitrate efficiency and reconstruction quality at the decoder side, which hinders their application in streamable 3D avatar systems. We propose HGC-Avatar, a novel Hierarchical Gaussian Compression framework designed for efficient transmission and high-quality rendering of dynamic avatars. Our method disentangles the Gaussian representation into a structural layer, which maps poses to Gaussians via a StyleUNet-based generator, and a motion layer, which leverages the SMPL-X model to represent temporal pose variations compactly and semantically. This hierarchical design supports layer-wise compression, progressive decoding, and controllable rendering from diverse pose inputs such as video sequences or text. Since people are most concerned with facial realism, we incorporate a facial attention mechanism during StyleUNet training to preserve identity and expression details under low-bitrate constraints. Experimental results demonstrate that HGC-Avatar provides a streamable solution for rapid 3D avatar rendering, while significantly outperforming prior methods in both visual quality and compression efficiency.
comment: ACM International Conference on Multimedia 2025
☆ NavQ: Learning a Q-Model for Foresighted Vision-and-Language Navigation ICCV 2025
In this work we concentrate on the task of goal-oriented Vision-and-Language Navigation (VLN). Existing methods often make decisions based on historical information, overlooking the future implications and long-term outcomes of the actions. In contrast, we aim to develop a foresighted agent. Specifically, we draw upon Q-learning to train a Q-model using large-scale unlabeled trajectory data, in order to learn the general knowledge regarding the layout and object relations within indoor scenes. This model can generate a Q-feature, analogous to the Q-value in traditional Q-network, for each candidate action, which describes the potential future information that may be observed after taking the specific action. Subsequently, a cross-modal future encoder integrates the task-agnostic Q-feature with navigation instructions to produce a set of action scores reflecting future prospects. These scores, when combined with the original scores based on history, facilitate an A*-style searching strategy to effectively explore the regions that are more likely to lead to the destination. Extensive experiments conducted on widely used goal-oriented VLN datasets validate the effectiveness of the proposed method.
comment: ICCV 2025
☆ Instance-Aware Pseudo-Labeling and Class-Focused Contrastive Learning for Weakly Supervised Domain Adaptive Segmentation of Electron Microscopy
Annotation-efficient segmentation of the numerous mitochondria instances from various electron microscopy (EM) images is highly valuable for biological and neuroscience research. Although unsupervised domain adaptation (UDA) methods can help mitigate domain shifts and reduce the high costs of annotating each domain, they typically have relatively low performance in practical applications. Thus, we investigate weakly supervised domain adaptation (WDA) that utilizes additional sparse point labels on the target domain, which require minimal annotation effort and minimal expert knowledge. To take full use of the incomplete and imprecise point annotations, we introduce a multitask learning framework that jointly conducts segmentation and center detection with a novel cross-teaching mechanism and class-focused cross-domain contrastive learning. While leveraging unlabeled image regions is essential, we introduce segmentation self-training with a novel instance-aware pseudo-label (IPL) selection strategy. Unlike existing methods that typically rely on pixel-wise pseudo-label filtering, the IPL semantically selects reliable and diverse pseudo-labels with the help of the detection task. Comprehensive validations and comparisons on challenging datasets demonstrate that our method outperforms existing UDA and WDA methods, significantly narrowing the performance gap with the supervised upper bound. Furthermore, under the UDA setting, our method also achieves substantial improvements over other UDA techniques.
☆ VIPAMIN: Visual Prompt Initialization via Embedding Selection and Subspace Expansion NeurIPS 2025
In the era of large-scale foundation models, fully fine-tuning pretrained networks for each downstream task is often prohibitively resource-intensive. Prompt tuning offers a lightweight alternative by introducing tunable prompts while keeping the backbone frozen. However, existing visual prompt tuning methods often fail to specialize the prompts or enrich the representation space--especially when applied to self-supervised backbones. We show that these limitations become especially pronounced in challenging tasks and data-scarce settings, where effective adaptation is most critical. In this work, we introduce VIPAMIN, a visual prompt initialization strategy that enhances adaptation of self-supervised models by (1) aligning prompts with semantically informative regions in the embedding space, and (2) injecting novel representational directions beyond the pretrained subspace. Despite its simplicity--requiring only a single forward pass and lightweight operations--VIPAMIN consistently improves performance across diverse tasks and dataset sizes, setting a new state of the art in visual prompt tuning. Our code is available at https://github.com/iamjaekyun/vipamin.
comment: NeurIPS 2025
☆ Enhancing Rotated Object Detection via Anisotropic Gaussian Bounding Box and Bhattacharyya Distance
Detecting rotated objects accurately and efficiently is a significant challenge in computer vision, particularly in applications such as aerial imagery, remote sensing, and autonomous driving. Although traditional object detection frameworks are effective for axis-aligned objects, they often underperform in scenarios involving rotated objects due to their limitations in capturing orientation variations. This paper introduces an improved loss function aimed at enhancing detection accuracy and robustness by leveraging the Gaussian bounding box representation and Bhattacharyya distance. In addition, we advocate for the use of an anisotropic Gaussian representation to address the issues associated with isotropic variance in square-like objects. Our proposed method addresses these challenges by incorporating a rotation-invariant loss function that effectively captures the geometric properties of rotated objects. We integrate this proposed loss function into state-of-the-art deep learning-based rotated object detection detectors, and extensive experiments demonstrated significant improvements in mean Average Precision metrics compared to existing methods. The results highlight the potential of our approach to establish new benchmark in rotated object detection, with implications for a wide range of applications requiring precise and reliable object localization irrespective of orientation.
comment: Neurocomputing
☆ RefAtomNet++: Advancing Referring Atomic Video Action Recognition using Semantic Retrieval based Multi-Trajectory Mamba ECCV 2024
Referring Atomic Video Action Recognition (RAVAR) aims to recognize fine-grained, atomic-level actions of a specific person of interest conditioned on natural language descriptions. Distinct from conventional action recognition and detection tasks, RAVAR emphasizes precise language-guided action understanding, which is particularly critical for interactive human action analysis in complex multi-person scenarios. In this work, we extend our previously introduced RefAVA dataset to RefAVA++, which comprises >2.9 million frames and >75.1k annotated persons in total. We benchmark this dataset using baselines from multiple related domains, including atomic action localization, video question answering, and text-video retrieval, as well as our earlier model, RefAtomNet. Although RefAtomNet surpasses other baselines by incorporating agent attention to highlight salient features, its ability to align and retrieve cross-modal information remains limited, leading to suboptimal performance in localizing the target person and predicting fine-grained actions. To overcome the aforementioned limitations, we introduce RefAtomNet++, a novel framework that advances cross-modal token aggregation through a multi-hierarchical semantic-aligned cross-attention mechanism combined with multi-trajectory Mamba modeling at the partial-keyword, scene-attribute, and holistic-sentence levels. In particular, scanning trajectories are constructed by dynamically selecting the nearest visual spatial tokens at each timestep for both partial-keyword and scene-attribute levels. Moreover, we design a multi-hierarchical semantic-aligned cross-attention strategy, enabling more effective aggregation of spatial and temporal tokens across different semantic hierarchies. Experiments show that RefAtomNet++ establishes new state-of-the-art results. The dataset and code are released at https://github.com/KPeng9510/refAVA2.
comment: Extended version of ECCV 2024 paper arXiv:2407.01872. The dataset and code are released at https://github.com/KPeng9510/refAVA2
☆ EDVD-LLaMA: Explainable Deepfake Video Detection via Multimodal Large Language Model Reasoning
The rapid development of deepfake video technology has not only facilitated artistic creation but also made it easier to spread misinformation. Traditional deepfake video detection (DVD) methods face issues such as a lack of transparency in their principles and insufficient generalization capabilities to cope with evolving forgery techniques. This highlights an urgent need for detectors that can identify forged content and provide verifiable reasoning explanations. This paper proposes the explainable deepfake video detection (EDVD) task and designs the EDVD-LLaMA multimodal, a large language model (MLLM) reasoning framework, which provides traceable reasoning processes alongside accurate detection results and trustworthy explanations. Our approach first incorporates a Spatio-Temporal Subtle Information Tokenization (ST-SIT) to extract and fuse global and local cross-frame deepfake features, providing rich spatio-temporal semantic information input for MLLM reasoning. Second, we construct a Fine-grained Multimodal Chain-of-Thought (Fg-MCoT) mechanism, which introduces facial feature data as hard constraints during the reasoning process to achieve pixel-level spatio-temporal video localization, suppress hallucinated outputs, and enhance the reliability of the chain of thought. In addition, we build an Explainable Reasoning FF++ benchmark dataset (ER-FF++set), leveraging structured data to annotate videos and ensure quality control, thereby supporting dual supervision for reasoning and detection. Extensive experiments demonstrate that EDVD-LLaMA achieves outstanding performance and robustness in terms of detection accuracy, explainability, and its ability to handle cross-forgery methods and cross-dataset scenarios. Compared to previous DVD methods, it provides a more explainable and superior solution. The source code and dataset will be publicly available.
☆ LightGlueStick: a Fast and Robust Glue for Joint Point-Line Matching ICCV
Lines and points are complementary local features, whose combination has proven effective for applications such as SLAM and Structure-from-Motion. The backbone of these pipelines are the local feature matchers, establishing correspondences across images. Traditionally, point and line matching have been treated as independent tasks. Recently, GlueStick proposed a GNN-based network that simultaneously operates on points and lines to establish matches. While running a single joint matching reduced the overall computational complexity, the heavy architecture prevented real-time applications or deployment to edge devices. Inspired by recent progress in point matching, we propose LightGlueStick, a lightweight matcher for points and line segments. The key novel component in our architecture is the Attentional Line Message Passing (ALMP), which explicitly exposes the connectivity of the lines to the network, allowing for efficient communication between nodes. In thorough experiments we show that LightGlueStick establishes a new state-of-the-art across different benchmarks. The code is available at https://github.com/aubingazhib/LightGlueStick.
comment: Accepted at ICCVW 2025
☆ SSL4RL: Revisiting Self-supervised Learning as Intrinsic Reward for Visual-Language Reasoning
Vision-language models (VLMs) have shown remarkable abilities by integrating large language models with visual inputs. However, they often fail to utilize visual evidence adequately, either depending on linguistic priors in vision-centric tasks or resorting to textual shortcuts during reasoning. Although reinforcement learning (RL) can align models with desired behaviors, its application to VLMs has been hindered by the lack of scalable and reliable reward mechanisms. To overcome this challenge, we propose SSL4RL, a novel framework that leverages self-supervised learning (SSL) tasks as a source of verifiable rewards for RL-based fine-tuning. Our approach reformulates SSL objectives-such as predicting image rotation or reconstructing masked patches-into dense, automatic reward signals, eliminating the need for human preference data or unreliable AI evaluators. Experiments show that SSL4RL substantially improves performance on both vision-centric and vision-language reasoning benchmarks. Furthermore, through systematic ablations, we identify key factors-such as task difficulty, model scale, and semantic alignment with the target domain-that influence the effectiveness of SSL4RL tasks, offering new design principles for future work. We also demonstrate the framework's generality by applying it to graph learning, where it yields significant gains. SSL4RL establishes a versatile and effective paradigm for aligning multimodal models using verifiable, self-supervised objectives.
☆ REALM: An MLLM-Agent Framework for Open World 3D Reasoning Segmentation and Editing on Gaussian Splatting
Bridging the gap between complex human instructions and precise 3D object grounding remains a significant challenge in vision and robotics. Existing 3D segmentation methods often struggle to interpret ambiguous, reasoning-based instructions, while 2D vision-language models that excel at such reasoning lack intrinsic 3D spatial understanding. In this paper, we introduce REALM, an innovative MLLM-agent framework that enables open-world reasoning-based segmentation without requiring extensive 3D-specific post-training. We perform segmentation directly on 3D Gaussian Splatting representations, capitalizing on their ability to render photorealistic novel views that are highly suitable for MLLM comprehension. As directly feeding one or more rendered views to the MLLM can lead to high sensitivity to viewpoint selection, we propose a novel Global-to-Local Spatial Grounding strategy. Specifically, multiple global views are first fed into the MLLM agent in parallel for coarse-level localization, aggregating responses to robustly identify the target object. Then, several close-up novel views of the object are synthesized to perform fine-grained local segmentation, yielding accurate and consistent 3D masks. Extensive experiments show that REALM achieves remarkable performance in interpreting both explicit and implicit instructions across LERF, 3D-OVS, and our newly introduced REALM3D benchmarks. Furthermore, our agent framework seamlessly supports a range of 3D interaction tasks, including object removal, replacement, and style transfer, demonstrating its practical utility and versatility. Project page: https://ChangyueShi.github.io/REALM.
☆ SPLite Hand: Sparsity-Aware Lightweight 3D Hand Pose Estimation
With the increasing ubiquity of AR/VR devices, the deployment of deep learning models on edge devices has become a critical challenge. These devices require real-time inference, low power consumption, and minimal latency. Many framework designers face the conundrum of balancing efficiency and performance. We design a light framework that adopts an encoder-decoder architecture and introduces several key contributions aimed at improving both efficiency and accuracy. We apply sparse convolution on a ResNet-18 backbone to exploit the inherent sparsity in hand pose images, achieving a 42% end-to-end efficiency improvement. Moreover, we propose our SPLite decoder. This new architecture significantly boosts the decoding process's frame rate by 3.1x on the Raspberry Pi 5, while maintaining accuracy on par. To further optimize performance, we apply quantization-aware training, reducing memory usage while preserving accuracy (PA-MPJPE increases only marginally from 9.0 mm to 9.1 mm on FreiHAND). Overall, our system achieves a 2.98x speed-up on a Raspberry Pi 5 CPU (BCM2712 quad-core Arm A76 processor). Our method is also evaluated on compound benchmark datasets, demonstrating comparable accuracy to state-of-the-art approaches while significantly enhancing computational efficiency.
comment: Accepted to AICCC 2025
☆ Demeter: A Parametric Model of Crop Plant Morphology from the Real World ICCV 2025
Learning 3D parametric shape models of objects has gained popularity in vision and graphics and has showed broad utility in 3D reconstruction, generation, understanding, and simulation. While powerful models exist for humans and animals, equally expressive approaches for modeling plants are lacking. In this work, we present Demeter, a data-driven parametric model that encodes key factors of a plant morphology, including topology, shape, articulation, and deformation into a compact learned representation. Unlike previous parametric models, Demeter handles varying shape topology across various species and models three sources of shape variation: articulation, subcomponent shape variation, and non-rigid deformation. To advance crop plant modeling, we collected a large-scale, ground-truthed dataset from a soybean farm as a testbed. Experiments show that Demeter effectively synthesizes shapes, reconstructs structures, and simulates biophysical processes. Code and data is available at https://tianhang-cheng.github.io/Demeter/.
comment: ICCV 2025
☆ iWatchRoadv2: Pothole Detection, Geospatial Mapping, and Intelligent Road Governance
Road potholes pose significant safety hazards and maintenance challenges, particularly on India's diverse and under-maintained road networks. This paper presents iWatchRoadv2, a fully automated end-to-end platform for real-time pothole detection, GPS-based geotagging, and dynamic road health visualization using OpenStreetMap (OSM). We curated a self-annotated dataset of over 7,000 dashcam frames capturing diverse Indian road conditions, weather patterns, and lighting scenarios, which we used to fine-tune the Ultralytics YOLO model for accurate pothole detection. The system synchronizes OCR-extracted video timestamps with external GPS logs to precisely geolocate each detected pothole, enriching detections with comprehensive metadata, including road segment attribution and contractor information managed through an optimized backend database. iWatchRoadv2 introduces intelligent governance features that enable authorities to link road segments with contract metadata through a secure login interface. The system automatically sends alerts to contractors and officials when road health deteriorates, supporting automated accountability and warranty enforcement. The intuitive web interface delivers actionable analytics to stakeholders and the public, facilitating evidence-driven repair planning, budget allocation, and quality assessment. Our cost-effective and scalable solution streamlines frame processing and storage while supporting seamless public engagement for urban and rural deployments. By automating the complete pothole monitoring lifecycle, from detection to repair verification, iWatchRoadv2 enables data-driven smart city management, transparent governance, and sustainable improvements in road infrastructure maintenance. The platform and live demonstration are accessible at https://smlab.niser.ac.in/project/iwatchroad.
comment: Under review
☆ Cataract-LMM: Large-Scale, Multi-Source, Multi-Task Benchmark for Deep Learning in Surgical Video Analysis
The development of computer-assisted surgery systems depends on large-scale, annotated datasets. Current resources for cataract surgery often lack the diversity and annotation depth needed to train generalizable deep-learning models. To address this gap, we present a dataset of 3,000 phacoemulsification cataract surgery videos from two surgical centers, performed by surgeons with a range of experience levels. This resource is enriched with four annotation layers: temporal surgical phases, instance segmentation of instruments and anatomical structures, instrument-tissue interaction tracking, and quantitative skill scores based on the established competency rubrics like the ICO-OSCAR. The technical quality of the dataset is supported by a series of benchmarking experiments for key surgical AI tasks, including workflow recognition, scene segmentation, and automated skill assessment. Furthermore, we establish a domain adaptation baseline for the phase recognition task by training a model on a subset of surgical centers and evaluating its performance on a held-out center. The dataset and annotations are available in Google Form (https://docs.google.com/forms/d/e/1FAIpQLSfmyMAPSTGrIy2sTnz0-TMw08ZagTimRulbAQcWdaPwDy187A/viewform?usp=dialog).
comment: 20 pages, 11 figures, 11 tables. Data descriptor for the Cataract-LMM benchmark dataset. Source code and dataset are available
☆ MIRAD - A comprehensive real-world robust anomaly detection dataset for Mass Individualization
Social manufacturing leverages community collaboration and scattered resources to realize mass individualization in modern industry. However, this paradigm shift also introduces substantial challenges in quality control, particularly in defect detection. The main difficulties stem from three aspects. First, products often have highly customized configurations. Second, production typically involves fragmented, small-batch orders. Third, imaging environments vary considerably across distributed sites. To overcome the scarcity of real-world datasets and tailored algorithms, we introduce the Mass Individualization Robust Anomaly Detection (MIRAD) dataset. As the first benchmark explicitly designed for anomaly detection in social manufacturing, MIRAD captures three critical dimensions of this domain: (1) diverse individualized products with large intra-class variation, (2) data collected from six geographically dispersed manufacturing nodes, and (3) substantial imaging heterogeneity, including variations in lighting, background, and motion conditions. We then conduct extensive evaluations of state-of-the-art (SOTA) anomaly detection methods on MIRAD, covering one-class, multi-class, and zero-shot approaches. Results show a significant performance drop across all models compared with conventional benchmarks, highlighting the unresolved complexities of defect detection in real-world individualized production. By bridging industrial requirements and academic research, MIRAD provides a realistic foundation for developing robust quality control solutions essential for Industry 5.0. The dataset is publicly available at https://github.com/wu33learn/MIRAD.
comment: https://github.com/wu33learn/MIRAD
☆ Beyond Fixed Anchors: Precisely Erasing Concepts with Sibling Exclusive Counterparts
Existing concept erasure methods for text-to-image diffusion models commonly rely on fixed anchor strategies, which often lead to critical issues such as concept re-emergence and erosion. To address this, we conduct causal tracing to reveal the inherent sensitivity of erasure to anchor selection and define Sibling Exclusive Concepts as a superior class of anchors. Based on this insight, we propose \textbf{SELECT} (Sibling-Exclusive Evaluation for Contextual Targeting), a dynamic anchor selection framework designed to overcome the limitations of fixed anchors. Our framework introduces a novel two-stage evaluation mechanism that automatically discovers optimal anchors for precise erasure while identifying critical boundary anchors to preserve related concepts. Extensive evaluations demonstrate that SELECT, as a universal anchor solution, not only efficiently adapts to multiple erasure frameworks but also consistently outperforms existing baselines across key performance metrics, averaging only 4 seconds for anchor mining of a single concept.
☆ On the Provable Importance of Gradients for Language-Assisted Image Clustering ICCV2025
This paper investigates the recently emerged problem of Language-assisted Image Clustering (LaIC), where textual semantics are leveraged to improve the discriminability of visual representations to facilitate image clustering. Due to the unavailability of true class names, one of core challenges of LaIC lies in how to filter positive nouns, i.e., those semantically close to the images of interest, from unlabeled wild corpus data. Existing filtering strategies are predominantly based on the off-the-shelf feature space learned by CLIP; however, despite being intuitive, these strategies lack a rigorous theoretical foundation. To fill this gap, we propose a novel gradient-based framework, termed as GradNorm, which is theoretically guaranteed and shows strong empirical performance. In particular, we measure the positiveness of each noun based on the magnitude of gradients back-propagated from the cross-entropy between the predicted target distribution and the softmax output. Theoretically, we provide a rigorous error bound to quantify the separability of positive nouns by GradNorm and prove that GradNorm naturally subsumes existing filtering strategies as extremely special cases of itself. Empirically, extensive experiments show that GradNorm achieves the state-of-the-art clustering performance on various benchmarks.
comment: revised and extended version of ICCV2025
☆ RL makes MLLMs see better than SFT
A dominant assumption in Multimodal Language Model (MLLM) research is that its performance is largely inherited from the LLM backbone, given its immense parameter scale and remarkable capabilities. This has created a void in the understanding of the vision encoder, which determines how MLLMs perceive images. The recent shift in MLLM training paradigms, from Supervised Finetuning (SFT) to Reinforcement Learning (RL), magnifies this oversight-namely, the significant lack of analysis on how such training reshapes the vision encoder as well as the MLLM. To address this, we first investigate the impact of training strategies on MLLMs, where RL shows a clear advantage over SFT in strongly vision-related VQA benchmarks. Motivated by this, we conduct a critical yet under-explored analysis of the vision encoder of MLLMs through diverse and in-depth experiments, ranging from ImageNet classification and segmentation to gradient visualization. Our results demonstrate that MLLM's post-training strategy (i.e., SFT or RL) not only leads to distinct outcomes on MLLM downstream tasks, but also fundamentally reshapes MLLM's underlying visual representations. Specifically, the key finding of our study is that RL produces stronger and precisely localized visual representations compared to SFT, boosting the ability of the vision encoder for MLLM. We then reframe our findings into a simple recipe for building strong vision encoders for MLLMs, Preference-Instructed Vision OpTimization (PIVOT). When integrated into MLLMs, a PIVOT-trained vision encoder outperforms even larger and more heavily-trained counterparts, despite requiring less than 1% of the computational cost of standard vision pretraining. This result opens an effective and efficient path for advancing the vision backbones of MLLMs. Project page available at https://june-page.github.io/pivot/
☆ TokenAR: Multiple Subject Generation via Autoregressive Token-level enhancement
Autoregressive Model (AR) has shown remarkable success in conditional image generation. However, these approaches for multiple reference generation struggle with decoupling different reference identities. In this work, we propose the TokenAR framework, specifically focused on a simple but effective token-level enhancement mechanism to address reference identity confusion problem. Such token-level enhancement consists of three parts, 1). Token Index Embedding clusters the tokens index for better representing the same reference images; 2). Instruct Token Injection plays as a role of extra visual feature container to inject detailed and complementary priors for reference tokens; 3). The identity-token disentanglement strategy (ITD) explicitly guides the token representations toward independently representing the features of each identity.This token-enhancement framework significantly augments the capabilities of existing AR based methods in conditional image generation, enabling good identity consistency while preserving high quality background reconstruction. Driven by the goal of high-quality and high-diversity in multi-subject generation, we introduce the InstructAR Dataset, the first open-source, large-scale, multi-reference input, open domain image generation dataset that includes 28K training pairs, each example has two reference subjects, a relative prompt and a background with mask annotation, curated for multiple reference image generation training and evaluating. Comprehensive experiments validate that our approach surpasses current state-of-the-art models in multiple reference image generation task. The implementation code and datasets will be made publicly. Codes are available, see https://github.com/lyrig/TokenAR
☆ DiffusionX: Efficient Edge-Cloud Collaborative Image Generation with Multi-Round Prompt Evolution
Recent advances in diffusion models have driven remarkable progress in image generation. However, the generation process remains computationally intensive, and users often need to iteratively refine prompts to achieve the desired results, further increasing latency and placing a heavy burden on cloud resources. To address this challenge, we propose DiffusionX, a cloud-edge collaborative framework for efficient multi-round, prompt-based generation. In this system, a lightweight on-device diffusion model interacts with users by rapidly producing preview images, while a high-capacity cloud model performs final refinements after the prompt is finalized. We further introduce a noise level predictor that dynamically balances the computation load, optimizing the trade-off between latency and cloud workload. Experiments show that DiffusionX reduces average generation time by 15.8% compared with Stable Diffusion v1.5, while maintaining comparable image quality. Moreover, it is only 0.9% slower than Tiny-SD with significantly improved image quality, thereby demonstrating efficiency and scalability with minimal overhead.
♻ ☆ Dual Caption Preference Optimization for Diffusion Models
Recent advancements in human preference optimization, originally developed for Large Language Models (LLMs), have shown significant potential in improving text-to-image diffusion models. These methods aim to learn the distribution of preferred samples while distinguishing them from less preferred ones. However, within the existing preference datasets, the original caption often does not clearly favor the preferred image over the alternative, which weakens the supervision signal available during training. To address this issue, we introduce Dual Caption Preference Optimization (DCPO), a data augmentation and optimization framework that reinforces the learning signal by assigning two distinct captions to each preference pair. This encourages the model to better differentiate between preferred and less-preferred outcomes during training. We also construct Pick-Double Caption, a modified version of Pick-a-Pic v2 with separate captions for each image, and propose three different strategies for generating distinct captions: captioning, perturbation, and hybrid methods. Our experiments show that DCPO significantly improves image quality and relevance to prompts, outperforming Stable Diffusion (SD) 2.1, SFT_Chosen, Diffusion-DPO, and MaPO across multiple metrics, including Pickscore, HPSv2.1, GenEval, CLIPscore, and ImageReward, fine-tuned on SD 2.1 as the backbone.
♻ ☆ The Shape of Attraction in UMAP: Exploring the Embedding Forces in Dimensionality Reduction
Uniform manifold approximation and projection (UMAP) is among the most popular neighbor embedding methods. The method relies on attractive and repulsive forces among high-dimensional data points to obtain a low-dimensional embedding. In this paper, we analyze the forces to reveal their effects on cluster formations and visualization and compare UMAP to its contemporaries. Repulsion emphasizes differences, controlling cluster boundaries and inter-cluster distance. Attraction is more subtle, as attractive tension between points can manifest simultaneously as attraction and repulsion in the lower-dimensional mapping. This explains the need for learning rate annealing and motivates the different treatments between attractive and repulsive terms. Moreover, by modifying attraction, we improve the consistency of cluster formation under random initialization. Overall, our analysis makes UMAP and similar embedding methods more interpretable, more robust, and more accurate.
comment: 9 page + appendix
♻ ☆ ELIP: Enhanced Visual-Language Foundation Models for Image Retrieval IEEE
The objective in this paper is to improve the performance of text-to-image retrieval. To this end, we introduce a new framework that can boost the performance of large-scale pre-trained vision-language models, so that they can be used for text-to-image re-ranking. The approach, Enhanced Language-Image Pre-training (ELIP), uses the text query, via a simple MLP mapping network, to predict a set of visual prompts to condition the ViT image encoding. ELIP can easily be applied to the commonly used CLIP, SigLIP and BLIP-2 networks. To train the architecture with limited computing resources, we develop a 'student friendly' best practice, involving global hard sample mining, and curation of a large-scale dataset. On the evaluation side, we set up two new out-of-distribution (OOD) benchmarks, Occluded COCO and ImageNet-R, to assess the zero-shot generalisation of the models to different domains. The results demonstrate that ELIP significantly boosts CLIP/SigLIP/SigLIP-2 text-to-image retrieval performance and outperforms BLIP-2 on several benchmarks, as well as providing an easy means to adapt to OOD datasets.
comment: Accepted by CBMI 2025 (IEEE International Conference on Content-Based Multimedia Indexing)
♻ ☆ Hierarchical Feature Learning for Medical Point Clouds via State Space Model
Deep learning-based point cloud modeling has been widely investigated as an indispensable component of general shape analysis. Recently, transformer and state space model (SSM) have shown promising capacities in point cloud learning. However, limited research has been conducted on medical point clouds, which have great potential in disease diagnosis and treatment. This paper presents an SSM-based hierarchical feature learning framework for medical point cloud understanding. Specifically, we down-sample input into multiple levels through the farthest point sampling. At each level, we perform a series of k-nearest neighbor (KNN) queries to aggregate multi-scale structural information. To assist SSM in processing point clouds, we introduce coordinate-order and inside-out scanning strategies for efficient serialization of irregular points. Point features are calculated progressively from short neighbor sequences and long point sequences through vanilla and group Point SSM blocks, to capture both local patterns and long-range dependencies. To evaluate the proposed method, we build a large-scale medical point cloud dataset named MedPointS for anatomy classification, completion, and segmentation. Extensive experiments conducted on MedPointS demonstrate that our method achieves superior performance across all tasks. The dataset is available at https://flemme-docs.readthedocs.io/en/latest/medpoints.html. Code is merged to a public medical imaging platform: https://github.com/wlsdzyzl/flemme.
comment: 10 pages, 3 figures
♻ ☆ Real-time Spatial-temporal Traversability Assessment via Feature-based Sparse Gaussian Process IROS2025
Terrain analysis is critical for the practical ap- plication of ground mobile robots in real-world tasks, espe- cially in outdoor unstructured environments. In this paper, we propose a novel spatial-temporal traversability assessment method, which aims to enable autonomous robots to effectively navigate through complex terrains. Our approach utilizes sparse Gaussian processes (SGP) to extract geometric features (curvature, gradient, elevation, etc.) directly from point cloud scans. These features are then used to construct a high- resolution local traversability map. Then, we design a spatial- temporal Bayesian Gaussian kernel (BGK) inference method to dynamically evaluate traversability scores, integrating historical and real-time data while considering factors such as slope, flatness, gradient, and uncertainty metrics. GPU acceleration is applied in the feature extraction step, and the system achieves real-time performance. Extensive simulation experiments across diverse terrain scenarios demonstrate that our method outper- forms SOTA approaches in both accuracy and computational efficiency. Additionally, we develop an autonomous navigation framework integrated with the traversability map and validate it with a differential driven vehicle in complex outdoor envi- ronments. Our code will be open-source for further research and development by the community, https://github.com/ZJU-FAST-Lab/FSGP_BGK.
comment: accepted by IROS2025
♻ ☆ I2I-Mamba: Multi-modal medical image synthesis via selective state space modeling
Multi-modal medical image synthesis involves nonlinear transformation of tissue signals between source and target modalities, where tissues exhibit contextual interactions across diverse spatial distances. As such, the utility of a network architecture in synthesis depends on its ability to express the broad set of contextual features in medical images. Convolutional neural networks (CNNs) offer high local precision at the expense of poor sensitivity to long-range context. While transformers promise to alleviate this issue, they suffer from an unfavorable trade-off between sensitivity to long- versus short-range context due to the intrinsic complexity of attention filters. To effectively capture contextual features while avoiding the complexitydriven trade-offs, here we introduce a novel multi-modal synthesis method, I2I-Mamba, based on the state space modeling (SSM) framework. Focusing on high-level representations across a hybrid residual architecture, I2I-Mamba leverages novel dual-domain Mamba (ddMamba) blocks for complementary contextual modeling in image and Fourier domains, while maintaining spatial precision with convolutional layers. Diverting from conventional raster-scan trajectories, ddMamba leverages novel SSM operators based on a spiral-scan trajectory to learn context with enhanced angular isotropy and radial coverage, and a channel-mixing layer to aggregate context across the channel dimension. Comprehensive demonstrations on multi-contrast MRI and MRI-CT protocols indicate that I2I-Mamba outperforms state-of-the-art CNNs, transformers and SSMs.
comment: 12 pages, 6 figures
♻ ☆ Improvement of Spiking Neural Network with Bit Planes and Color Models IEEE 16
Spiking neural network (SNN) has emerged as a promising paradigm in computational neuroscience and artificial intelligence, offering advantages such as low energy consumption and small memory footprint. However, their practical adoption is constrained by several challenges, prominently among them being performance optimization. In this study, we present a novel approach to enhance the performance of SNN for images through a new coding method that exploits bit plane representation. Our proposed technique is designed to improve the accuracy of SNN without increasing model size. Also, we investigate the impacts of color models of the proposed coding process. Through extensive experimental validation, we demonstrate the effectiveness of our coding strategy in achieving performance gain across multiple datasets. To the best of our knowledge, this is the first research that considers bit planes and color models in the context of SNN. By leveraging the unique characteristics of bit planes, we hope to unlock new potentials in SNNs performance, potentially paving the way for more efficient and effective SNNs models in future researches and applications.
comment: 2024 IEEE 16th International Conference on Computational Intelligence and Communication Networks (CICN)
♻ ☆ Predicting High-precision Depth on Low-Precision Devices Using 2D Hilbert Curves
Dense depth prediction deep neural networks (DNN) have achieved impressive results for both monocular and binocular data, but still they are limited by high computational complexity, restricting their use on low-end devices. For better on-device efficiency and hardware utilization, weights and activations of the DNN should be converted to low-bit precision. However, this precision is not sufficient to represent high dynamic range depth. In this paper, we aim to overcome this limitation and restore high-precision depth from low-bit precision predictions. To achieve this, we propose to represent high dynamic range depth as two low dynamic range components of a Hilbert curve, and to train the full-precision DNN to directly predict the latter. For on-device deployment, we use standard quantization methods and add a post-processing step that reconstructs depth from the Hilbert curve components predicted in low-bit precision. Extensive experiments demonstrate that our method increases the bit precision of predicted depth by up to three bits with little computational overhead. We also observed a positive side effect of quantization error reduction by up to 4.6 times. Our method enables effective and accurate depth prediction with DNN weights and activations quantized to eight-bit precision.
comment: 19 pages, 19 figures
♻ ☆ VGGSounder: Audio-Visual Evaluations for Foundation Models ICCV
The emergence of audio-visual foundation models underscores the importance of reliably assessing their multi-modal understanding. The VGGSound dataset is commonly used as a benchmark for evaluation audio-visual classification. However, our analysis identifies several limitations of VGGSound, including incomplete labelling, partially overlapping classes, and misaligned modalities. These lead to distorted evaluations of auditory and visual capabilities. To address these limitations, we introduce VGGSounder, a comprehensively re-annotated, multi-label test set that extends VGGSound and is specifically designed to evaluate audio-visual foundation models. VGGSounder features detailed modality annotations, enabling precise analyses of modality-specific performance. Furthermore, we reveal model limitations by analysing performance degradation when adding another input modality with our new modality confusion metric.
comment: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) 2025
♻ ☆ Delta-Influence: Unlearning Poisons via Influence Functions NeurIPS
Addressing data integrity challenges, such as unlearning the effects of data poisoning after model training, is necessary for the reliable deployment of machine learning models. State-of-the-art influence functions, such as EK-FAC and TRAK, often fail to accurately attribute abnormal model behavior to the specific poisoned training data responsible for the data poisoning attack. In addition, traditional unlearning algorithms often struggle to effectively remove the influence of poisoned samples, particularly when only a few affected examples can be identified. To address these challenge, we introduce $\Delta$-Influence, a novel approach that leverages influence functions to trace abnormal model behavior back to the responsible poisoned training data using as little as just one poisoned test example. $\Delta$-Influence applies data transformations that sever the link between poisoned training data and compromised test points without significantly affecting clean data. This allows $\Delta$-Influence to detect large negative shifts in influence scores following data transformations, a phenomenon we term as influence collapse, thereby accurately identifying poisoned training data. Unlearning this subset, e.g. through retraining, effectively eliminates the data poisoning. We validate our method across three vision-based poisoning attacks and three datasets, benchmarking against five detection algorithms and five unlearning strategies. We show that $\Delta$-Influence consistently achieves the best unlearning across all settings, showing the promise of influence functions for corrective unlearning. Our code is publicly available at: https://github.com/Ruby-a07/delta-influence
comment: Accepted at NeurIPS Workshop on Attributing Model Behavior at Scale (ATTRIB @ NeurIPS 2024)
♻ ☆ RoboRefer: Towards Spatial Referring with Reasoning in Vision-Language Models for Robotics NeurIPS 2025
Spatial referring is a fundamental capability of embodied robots to interact with the 3D physical world. However, even with the powerful pretrained vision language models (VLMs), recent approaches are still not qualified to accurately understand the complex 3D scenes and dynamically reason about the instruction-indicated locations for interaction. To this end, we propose RoboRefer, a 3D-aware VLM that can first achieve precise spatial understanding by integrating a disentangled but dedicated depth encoder via supervised fine-tuning (SFT). Moreover, RoboRefer advances generalized multi-step spatial reasoning via reinforcement fine-tuning (RFT), with metric-sensitive process reward functions tailored for spatial referring tasks. To support SFT and RFT training, we introduce RefSpatial, a large-scale dataset of 20M QA pairs (2x prior), covering 31 spatial relations (vs. 15 prior) and supporting complex reasoning processes (up to 5 steps). In addition, we introduce RefSpatial-Bench, a challenging benchmark filling the gap in evaluating spatial referring with multi-step reasoning. Experiments show that SFT-trained RoboRefer achieves state-of-the-art spatial understanding, with an average success rate of 89.6%. RFT-trained RoboRefer further outperforms all other baselines by a large margin, even surpassing Gemini-2.5-Pro by 17.4% in average accuracy on RefSpatial-Bench. Notably, RoboRefer can be integrated with various control policies to execute long-horizon, dynamic tasks across diverse robots (e,g., UR5, G1 humanoid) in cluttered real-world scenes. See the project page at https://zhoues.github.io/RoboRefer.
comment: Accepted by NeurIPS 2025. Project page: https://zhoues.github.io/RoboRefer/
♻ ☆ Geometry and Perception Guided Gaussians for Multiview-consistent 3D Generation from a Single Image
Generating realistic 3D objects from single-view images requires natural appearance, 3D consistency, and the ability to capture multiple plausible interpretations of unseen regions. Existing approaches often rely on fine-tuning pretrained 2D diffusion models or directly generating 3D information through fast network inference or 3D Gaussian Splatting, but their results generally suffer from poor multiview consistency and lack geometric detail. To tackle these issues, we present a novel method that seamlessly integrates geometry and perception information without requiring additional model training to reconstruct detailed 3D objects from a single image. Specifically, we incorporate geometry and perception priors to initialize the Gaussian branches and guide their parameter optimization. The geometry prior captures the rough 3D shapes, while the perception prior utilizes the 2D pretrained diffusion model to enhance multiview information. Subsequently, we introduce a stable Score Distillation Sampling for fine-grained prior distillation to ensure effective knowledge transfer. The model is further enhanced by a reprojection-based strategy that enforces depth consistency. Experimental results show that we outperform existing methods on novel view synthesis and 3D reconstruction, demonstrating robust and consistent 3D object generation.
comment: 10 pages, 5 figures
♻ ☆ Privacy-Preserving Visual Localization with Event Cameras IEEE
We consider the problem of client-server localization, where edge device users communicate visual data with the service provider for locating oneself against a pre-built 3D map. This localization paradigm is a crucial component for location-based services in AR/VR or mobile applications, as it is not trivial to store large-scale 3D maps and process fast localization on resource-limited edge devices. Nevertheless, conventional client-server localization systems possess numerous challenges in computational efficiency, robustness, and privacy-preservation during data transmission. Our work aims to jointly solve these challenges with a localization pipeline based on event cameras. By using event cameras, our system consumes low energy and maintains small memory bandwidth. Then during localization, we propose applying event-to-image conversion and leverage mature image-based localization, which achieves robustness even in low-light or fast-moving scenes. To further enhance privacy protection, we introduce privacy protection techniques at two levels. Network level protection aims to hide the entire user's view in private scenes using a novel split inference approach, while sensor level protection aims to hide sensitive user details such as faces with light-weight filtering. Both methods involve small client-side computation and localization performance loss, while significantly mitigating the feeling of insecurity as revealed in our user study. We thus project our method to serve as a building block for practical location-based services using event cameras. Project page including the code is available through this link: https://82magnolia.github.io/event\_localization/.
comment: Published in IEEE Transactions on Image Processing (TIP)
♻ ☆ JND-Guided Light-Weight Neural Pre-Filter for Perceptual Image Coding
Just Noticeable Distortion (JND)-guided pre-filter is a promising technique for improving the perceptual compression efficiency of image coding. However, existing methods are often computationally expensive, and the field lacks standardized benchmarks for fair comparison. To address these challenges, this paper introduces a twofold contribution. First, we develop and open-source FJNDF-Pytorch, a unified benchmark for frequency-domain JND-Guided pre-filters. Second, leveraging this platform, we propose a complete learning framework for a novel, lightweight Convolutional Neural Network (CNN). Experimental results demonstrate that our proposed method achieves state-of-the-art compression efficiency, consistently outperforming competitors across multiple datasets and encoders. In terms of computational cost, our model is exceptionally lightweight, requiring only 7.15 GFLOPs to process a 1080p image, which is merely 14.1% of the cost of recent lightweight network. Our work presents a robust, state-of-the-art solution that excels in both performance and efficiency, supported by a reproducible research platform. The open-source implementation is available at https://github.com/viplab-fudan/FJNDF-Pytorch.
comment: 5 pages, 4 figures
♻ ☆ Fine-Grained Classification: Connecting Metadata via Cross-Contrastive Pre-Training IEEE
Fine-grained visual classification aims to recognize objects belonging to many subordinate categories of a supercategory, where appearance alone often fails to distinguish highly similar classes. We propose a unified framework that integrates image, text, and metadata via cross-contrastive pre-training. We first align the three modality encoders in a shared embedding space and then fine-tune the image and metadata encoders for classification. On NABirds, our approach improves over the baseline by 7.83% and achieves 84.44% top-1 accuracy, outperforming strong multimodal methods.
comment: 5 pages, 4 figures. Accepted at IEEE ISCMI 2025
♻ ☆ EvidMTL: Evidential Multi-Task Learning for Uncertainty-Aware Semantic Surface Mapping from Monocular RGB Images IROS 2025
For scene understanding in unstructured environments, an accurate and uncertainty-aware metric-semantic mapping is required to enable informed action selection by autonomous systems. Existing mapping methods often suffer from overconfident semantic predictions, and sparse and noisy depth sensing, leading to inconsistent map representations. In this paper, we therefore introduce EvidMTL, a multi-task learning framework that uses evidential heads for depth estimation and semantic segmentation, enabling uncertainty-aware inference from monocular RGB images. To enable uncertainty-calibrated evidential multi-task learning, we propose a novel evidential depth loss function that jointly optimizes the belief strength of the depth prediction in conjunction with evidential segmentation loss. Building on this, we present EvidKimera, an uncertainty-aware semantic surface mapping framework, which uses evidential depth and semantics prediction for improved 3D metric-semantic consistency. We train and evaluate EvidMTL on the NYUDepthV2 and assess its zero-shot performance on ScanNetV2, demonstrating superior uncertainty estimation compared to conventional approaches while maintaining comparable depth estimation and semantic segmentation. In zero-shot mapping tests on ScanNetV2, EvidKimera outperforms Kimera in semantic surface mapping accuracy and consistency, highlighting the benefits of uncertainty-aware mapping and underscoring its potential for real-world robotic applications.
comment: Submitted to IROS 2025 Conference
Computation and Language 66
☆ Unleashing Diverse Thinking Modes in LLMs through Multi-Agent Collaboration
Large Language Models (LLMs) demonstrate strong performance but often lack interpretable reasoning. This paper introduces the Multi-Agent Collaboration Framework for Diverse Thinking Modes (DiMo), which enhances both performance and interpretability by simulating a structured debate among four specialized LLM agents. Each agent embodies a distinct reasoning paradigm, allowing the framework to collaboratively explore diverse cognitive approaches. Through iterative debate, agents challenge and refine initial responses, yielding more robust conclusions and an explicit, auditable reasoning chain. Across six benchmarks and under a unified open-source setup, DiMo improves accuracy over widely used single-model and debate baselines, with the largest gains on math. We position DiMo as a semantics-aware, Web-native multi-agent framework: it models human-machine intelligence with LLM agents that produce semantically typed, URL-annotated evidence chains for explanations and user-friendly interactions. Although our experiments use standard reasoning benchmarks, the framework is designed to be instantiated over Web corpora and knowledge graphs, combining retrieval-augmented reasoning with structured justifications that downstream systems can inspect and reuse.
Prompt Optimization via Retrieved Reasoning Assets and Multi-Agent Analysis
Prompt optimization has emerged as an effective alternative to retraining for improving the performance of Large Language Models (LLMs). However, most existing approaches treat evaluation as a black box, relying solely on numerical scores while offering limited insight into why a prompt succeeds or fails. They also depend heavily on trial-and-error refinements, which are difficult to interpret and control. In this paper, we introduce MA-SAPO, a Multi-Agent framework for Score-Aware Prompt Optimization. Compared to prior methods, MA-SAPO explicitly couples evaluation outcomes with structured reasoning to guide systematic edits. The framework specifically consists of two stages: during the Reasoning Phase, agents collaboratively explain metric scores, diagnose weaknesses, and synthesize targeted refinements that are stored as reusable reasoning assets; during the Test Phase, agents retrieve these assets to analyze optimized prompts and apply only evidence-grounded edits. By turning evaluation signals into interpretable reasoning chains, MA-SAPO produces prompt refinements that are more transparent, auditable, and controllable. Experiments on the HelpSteer1/2 benchmarks demonstrate consistent improvements over single-pass prompting, retrieval-augmented baselines, and prior multi-agent strategies, validating the effectiveness of our approach.
comment: Preprint
☆ Fine-tuning of Large Language Models for Constituency Parsing Using a Sequence to Sequence Approach
Recent advances in natural language processing with large neural models have opened new possibilities for syntactic analysis based on machine learning. This work explores a novel approach to phrase-structure analysis by fine-tuning large language models (LLMs) to translate an input sentence into its corresponding syntactic structure. The main objective is to extend the capabilities of MiSintaxis, a tool designed for teaching Spanish syntax. Several models from the Hugging Face repository were fine-tuned using training data generated from the AnCora-ES corpus, and their performance was evaluated using the F1 score. The results demonstrate high accuracy in phrase-structure analysis and highlight the potential of this methodology.
comment: 6 pages, 3 figures. Submitted to SEPLN 2023 Conference
☆ Copy-Augmented Representation for Structure Invariant Template-Free Retrosynthesis
Retrosynthesis prediction is fundamental to drug discovery and chemical synthesis, requiring the identification of reactants that can produce a target molecule. Current template-free methods struggle to capture the structural invariance inherent in chemical reactions, where substantial molecular scaffolds remain unchanged, leading to unnecessarily large search spaces and reduced prediction accuracy. We introduce C-SMILES, a novel molecular representation that decomposes traditional SMILES into element-token pairs with five special tokens, effectively minimizing editing distance between reactants and products. Building upon this representation, we incorporate a copy-augmented mechanism that dynamically determines whether to generate new tokens or preserve unchanged molecular fragments from the product. Our approach integrates SMILES alignment guidance to enhance attention consistency with ground-truth atom mappings, enabling more chemically coherent predictions. Comprehensive evaluation on USPTO-50K and large-scale USPTO-FULL datasets demonstrates significant improvements: 67.2% top-1 accuracy on USPTO-50K and 50.8% on USPTO-FULL, with 99.9% validity in generated molecules. This work establishes a new paradigm for structure-aware molecular generation with direct applications in computational drug discovery.
☆ AI-Generated Text Detection in Low-Resource Languages: A Case Study on Urdu
Large Language Models (LLMs) are now capable of generating text that closely resembles human writing, making them powerful tools for content creation, but this growing ability has also made it harder to tell whether a piece of text was written by a human or by a machine. This challenge becomes even more serious for languages like Urdu, where there are very few tools available to detect AI-generated text. To address this gap, we propose a novel AI-generated text detection framework tailored for the Urdu language. A balanced dataset comprising 1,800 humans authored, and 1,800 AI generated texts, sourced from models such as Gemini, GPT-4o-mini, and Kimi AI was developed. Detailed linguistic and statistical analysis was conducted, focusing on features such as character and word counts, vocabulary richness (Type Token Ratio), and N-gram patterns, with significance evaluated through t-tests and MannWhitney U tests. Three state-of-the-art multilingual transformer models such as mdeberta-v3-base, distilbert-base-multilingualcased, and xlm-roberta-base were fine-tuned on this dataset. The mDeBERTa-v3-base achieved the highest performance, with an F1-score 91.29 and accuracy of 91.26% on the test set. This research advances efforts in contesting misinformation and academic misconduct in Urdu-speaking communities and contributes to the broader development of NLP tools for low resource languages.
☆ Hallucination Benchmark for Speech Foundation Models
Hallucinations in automatic speech recognition (ASR) systems refer to fluent and coherent transcriptions produced by neural ASR models that are completely unrelated to the underlying acoustic input (i.e., the speech signal). While similar to conventional decoding errors in potentially compromising the usability of transcriptions for downstream applications, hallucinations can be more detrimental due to their preservation of syntactically and semantically plausible structure. This apparent coherence can mislead subsequent processing stages and introduce serious risks, particularly in critical domains such as healthcare and law. Conventional evaluation metrics are primarily centered on error-based metrics and fail to distinguish between phonetic inaccuracies and hallucinations. Consequently, there is a critical need for new evaluation frameworks that can effectively identify and assess models with a heightened propensity for generating hallucinated content. To this end, we introduce SHALLOW, the first benchmark framework that systematically categorizes and quantifies hallucination phenomena in ASR along four complementary axes: lexical, phonetic, morphological, and semantic. We define targeted metrics within each category to produce interpretable profiles of model behavior. Through evaluation across various architectures and speech domains, we have found that SHALLOW metrics correlate strongly with word error rate (WER) when recognition quality is high (i.e., low WER). Still, this correlation weakens substantially as WER increases. SHALLOW, therefore, captures fine-grained error patterns that WER fails to distinguish under degraded and challenging conditions. Our framework supports specific diagnosis of model weaknesses and provides feedback for model improvement beyond what aggregate error rates can offer.
comment: Under Review
☆ Language over Content: Tracing Cultural Understanding in Multilingual Large Language Models CIKM 2025
Large language models (LLMs) are increasingly used across diverse cultural contexts, making accurate cultural understanding essential. Prior evaluations have mostly focused on output-level performance, obscuring the factors that drive differences in responses, while studies using circuit analysis have covered few languages and rarely focused on culture. In this work, we trace LLMs' internal cultural understanding mechanisms by measuring activation path overlaps when answering semantically equivalent questions under two conditions: varying the target country while fixing the question language, and varying the question language while fixing the country. We also use same-language country pairs to disentangle language from cultural aspects. Results show that internal paths overlap more for same-language, cross-country questions than for cross-language, same-country questions, indicating strong language-specific patterns. Notably, the South Korea-North Korea pair exhibits low overlap and high variability, showing that linguistic similarity does not guarantee aligned internal representation.
comment: Accepted to CIKM 2025 Workshop on Human Centric AI
ReviewGuard: Enhancing Deficient Peer Review Detection via LLM-Driven Data Augmentation
Peer review serves as the gatekeeper of science, yet the surge in submissions and widespread adoption of large language models (LLMs) in scholarly evaluation present unprecedented challenges. Recent work has focused on using LLMs to improve review efficiency or generate insightful review content. However, unchecked deficient reviews from both human experts and AI systems threaten to systematically undermine the peer review ecosystem and compromise academic integrity. To address this critical issue, we introduce ReviewGuard, an automated system for detecting and categorizing deficient reviews. ReviewGuard employs a comprehensive four-stage LLM-driven framework that: (1) collects ICLR and NeurIPS papers with their corresponding reviews from OpenReview; (2) annotates review types using GPT-4.1 with human validation; (3) addresses class imbalance and data scarcity through LLM-driven synthetic data augmentation, producing a final corpus of 6,634 papers, 24,657 real reviews, and 46,438 synthetic reviews; and (4) fine-tunes both encoder-based models and open source LLMs. We perform comprehensive feature analysis of the structure and quality of the review text. Compared to sufficient reviews, deficient reviews demonstrate lower rating scores, higher self-reported confidence, reduced structural complexity, and a higher proportion of negative sentiment. AI-generated text detection reveals that, since ChatGPT's emergence, AI-generated reviews have increased dramatically. In the evaluation of deficient review detection models, mixed training with synthetic and real review data provides substantial enhancements to recall and F1 scores on the binary task. This study presents the first LLM-driven system for detecting deficient peer reviews, providing evidence to inform AI governance in peer review while offering valuable insights into human-AI collaboration to maintain academic integrity.
☆ Automated Composition of Agents: A Knapsack Approach for Agentic Component Selection NeurIPS 2025
Designing effective agentic systems requires the seamless composition and integration of agents, tools, and models within dynamic and uncertain environments. Most existing methods rely on static, semantic retrieval approaches for tool or agent discovery. However, effective reuse and composition of existing components remain challenging due to incomplete capability descriptions and the limitations of retrieval methods. Component selection suffers because the decisions are not based on capability, cost, and real-time utility. To address these challenges, we introduce a structured, automated framework for agentic system composition that is inspired by the knapsack problem. Our framework enables a composer agent to systematically identify, select, and assemble an optimal set of agentic components by jointly considering performance, budget constraints, and compatibility. By dynamically testing candidate components and modeling their utility in real-time, our approach streamlines the assembly of agentic systems and facilitates scalable reuse of resources. Empirical evaluation with Claude 3.5 Sonnet across five benchmarking datasets shows that our online-knapsack-based composer consistently lies on the Pareto frontier, achieving higher success rates at significantly lower component costs compared to our baselines. In the single-agent setup, the online knapsack composer shows a success rate improvement of up to 31.6% in comparison to the retrieval baselines. In multi-agent systems, the online knapsack composer increases success rate from 37% to 87% when agents are selected from an agent inventory of 100+ agents. The substantial performance gap confirms the robust adaptability of our method across diverse domains and budget constraints.
comment: Accepted to NeurIPS 2025 Conference
☆ Check Yourself Before You Wreck Yourself: Selectively Quitting Improves LLM Agent Safety
As Large Language Model (LLM) agents increasingly operate in complex environments with real-world consequences, their safety becomes critical. While uncertainty quantification is well-studied for single-turn tasks, multi-turn agentic scenarios with real-world tool access present unique challenges where uncertainties and ambiguities compound, leading to severe or catastrophic risks beyond traditional text generation failures. We propose using "quitting" as a simple yet effective behavioral mechanism for LLM agents to recognize and withdraw from situations where they lack confidence. Leveraging the ToolEmu framework, we conduct a systematic evaluation of quitting behavior across 12 state-of-the-art LLMs. Our results demonstrate a highly favorable safety-helpfulness trade-off: agents prompted to quit with explicit instructions improve safety by an average of +0.39 on a 0-3 scale across all models (+0.64 for proprietary models), while maintaining a negligible average decrease of -0.03 in helpfulness. Our analysis demonstrates that simply adding explicit quit instructions proves to be a highly effective safety mechanism that can immediately be deployed in existing agent systems, and establishes quitting as an effective first-line defense mechanism for autonomous agents in high-stakes applications.
comment: Reliable ML and Regulatable ML workshops, Neurips 2025
☆ Agree, Disagree, Explain: Decomposing Human Label Variation in NLI through the Lens of Explanations
Natural Language Inference datasets often exhibit human label variation. To better understand these variations, explanation-based approaches analyze the underlying reasoning behind annotators' decisions. One such approach is the LiTEx taxonomy, which categorizes free-text explanations in English into reasoning types. However, previous work applying such taxonomies has focused on within-label variation: cases where annotators agree on the final NLI label but provide different explanations. In contrast, this paper broadens the scope by examining how annotators may diverge not only in the reasoning type but also in the labeling step. We use explanations as a lens to decompose the reasoning process underlying NLI annotation and to analyze individual differences. We apply LiTEx to two NLI English datasets and align annotation variation from multiple aspects: NLI label agreement, explanation similarity, and taxonomy agreement, with an additional compounding factor of annotators' selection bias. We observe instances where annotators disagree on the label but provide highly similar explanations, suggesting that surface-level disagreement may mask underlying agreement in interpretation. Moreover, our analysis reveals individual preferences in explanation strategies and label choices. These findings highlight that agreement in reasoning types better reflects the semantic similarity of free-text explanations than label agreement alone. Our findings underscore the richness of reasoning-based explanations and the need for caution in treating labels as ground truth.
☆ RAVEN: Robust Advertisement Video Violation Temporal Grounding via Reinforcement Reasoning ACL 2025
Advertisement (Ad) video violation detection is critical for ensuring platform compliance, but existing methods struggle with precise temporal grounding, noisy annotations, and limited generalization. We propose RAVEN, a novel framework that integrates curriculum reinforcement learning with multimodal large language models (MLLMs) to enhance reasoning and cognitive capabilities for violation detection. RAVEN employs a progressive training strategy, combining precisely and coarsely annotated data, and leverages Group Relative Policy Optimization (GRPO) to develop emergent reasoning abilities without explicit reasoning annotations. Multiple hierarchical sophisticated reward mechanism ensures precise temporal grounding and consistent category prediction. Experiments on industrial datasets and public benchmarks show that RAVEN achieves superior performances in violation category accuracy and temporal interval localization. We also design a pipeline to deploy the RAVEN on the online Ad services, and online A/B testing further validates its practical applicability, with significant improvements in precision and recall. RAVEN also demonstrates strong generalization, mitigating the catastrophic forgetting issue associated with supervised fine-tuning.
comment: ACL 2025 (Oral, Industry Track)
☆ TrajSelector: Harnessing Latent Representations for Efficient and Effective Best-of-N in Large Reasoning Model
Large language models (LLMs) have shown remarkable progress in complex reasoning tasks, largely enabled by test-time scaling (TTS) paradigms that allocate additional compute during inference. Among these, external TTS (particularly the Best-of-N selection paradigm) yields scalable performance improvements by selecting from multiple independently generated reasoning trajectories. However, this approach faces key limitations: (i) the high computational overhead of deploying process reward models, (ii) the underutilization of the LLM's intrinsic latent representations. We introduce TrajSelector, an efficient and effective Best-of-N framework that exploit the hidden states in the sampler LLM for process-level scoring. A lightweight verifier (with only 0.6B parameters) evaluates the quality of step-wise trajectory, and then aggregates these scores to identify the optimal reasoning trajectory. Our framework employs a fully data-driven, end-to-end training recipe that eliminates reliance on massive step-level annotations. Experiential results across five benchmarks demonstrate that TrajSelector delivers consistent performance gains. In Best-of-32 settings, it surpasses majority voting by 4.61% accuracy and outperforms existing process reward models by 4.31% to 12.21%, all while maintaining lower inference costs.
comment: 13 pages, 6 figures. Project website: https://zgca-ai4edu.github.io/TrajSelector
☆ FrugalPrompt: Reducing Contextual Overhead in Large Language Models via Token Attribution
Large language models (LLMs) owe much of their stellar performance to expansive input contexts, yet such verbosity inflates monetary costs, carbon footprint, and inference-time latency. Much of this overhead manifests from the redundant low-utility tokens present in typical prompts, as only a fraction of tokens typically carries the majority of the semantic weight. We address this inefficiency by introducing FrugalPrompt, a novel prompt compression framework for LLMs, which retains only the most semantically significant tokens. Leveraging two state-of-the-art token attribution methods, GlobEnc and DecompX, we assign salience scores to every token in an input sequence, rank them to preserve the top-k% tokens in their original order, and obtain a sparse frugalized prompt. We evaluate the approach across four NLP tasks: Sentiment Analysis, Commonsense QA, Summarization, and Mathematical Reasoning, using a suite of frontier LLMs. For the first three tasks, a 20% prompt reduction incurs only a marginal loss in task performance, demonstrating that contemporary LLMs can reconstruct elided context from high-salience cues. In contrast, performance on mathematical reasoning deteriorates sharply, reflecting a stronger dependence on complete token continuity. Further analysis with bottom-k% and random-k% tokens reveals asymmetric performance patterns that may suggest potential task contamination effects, wherein models may resort to shallow memorized patterns from pretraining exposure for conventional NLP tasks. We posit that our work contributes to a more nuanced understanding of LLM behavior in performance-efficiency trade-offs, and delineate the boundary between tasks tolerant to contextual sparsity and those requiring exhaustive context. Our source code and models are available at: https://github.com/Starscream-11813/Frugal-ICL
☆ What Questions Should Robots Be Able to Answer? A Dataset of User Questions for Explainable Robotics
With the growing use of large language models and conversational interfaces in human-robot interaction, robots' ability to answer user questions is more important than ever. We therefore introduce a dataset of 1,893 user questions for household robots, collected from 100 participants and organized into 12 categories and 70 subcategories. Most work in explainable robotics focuses on why-questions. In contrast, our dataset provides a wide variety of questions, from questions about simple execution details to questions about how the robot would act in hypothetical scenarios -- thus giving roboticists valuable insights into what questions their robot needs to be able to answer. To collect the dataset, we created 15 video stimuli and 7 text stimuli, depicting robots performing varied household tasks. We then asked participants on Prolific what questions they would want to ask the robot in each portrayed situation. In the final dataset, the most frequent categories are questions about task execution details (22.5%), the robot's capabilities (12.7%), and performance assessments (11.3%). Although questions about how robots would handle potentially difficult scenarios and ensure correct behavior are less frequent, users rank them as the most important for robots to be able to answer. Moreover, we find that users who identify as novices in robotics ask different questions than more experienced users. Novices are more likely to inquire about simple facts, such as what the robot did or the current state of the environment. As robots enter environments shared with humans and language becomes central to giving instructions and interaction, this dataset provides a valuable foundation for (i) identifying the information robots need to log and expose to conversational interfaces, (ii) benchmarking question-answering modules, and (iii) designing explanation strategies that align with user expectations.
☆ Probing the Hidden Talent of ASR Foundation Models for L2 English Oral Assessment
In this paper, we explore the untapped potential of Whisper, a well-established automatic speech recognition (ASR) foundation model, in the context of L2 spoken language assessment (SLA). Unlike prior studies that extrinsically analyze transcriptions produced by Whisper, our approach goes a step further to probe its latent capabilities by extracting acoustic and linguistic features from hidden representations. With only a lightweight classifier being trained on top of Whisper's intermediate and final outputs, our method achieves strong performance on the GEPT picture-description dataset, outperforming existing cutting-edge baselines, including a multimodal approach. Furthermore, by incorporating image and text-prompt information as auxiliary relevance cues, we demonstrate additional performance gains. Finally, we conduct an in-depth analysis of Whisper's embeddings, which reveals that, even without task-specific fine-tuning, the model intrinsically encodes both ordinal proficiency patterns and semantic aspects of speech, highlighting its potential as a powerful foundation for SLA and other spoken language understanding tasks.
☆ ATA: A Neuro-Symbolic Approach to Implement Autonomous and Trustworthy Agents
Large Language Models (LLMs) have demonstrated impressive capabilities, yet their deployment in high-stakes domains is hindered by inherent limitations in trustworthiness, including hallucinations, instability, and a lack of transparency. To address these challenges, we introduce a generic neuro-symbolic approach, which we call Autonomous Trustworthy Agents (ATA). The core of our approach lies in decoupling tasks into two distinct phases: Offline knowledge ingestion and online task processing. During knowledge ingestion, an LLM translates an informal problem specification into a formal, symbolic knowledge base. This formal representation is crucial as it can be verified and refined by human experts, ensuring its correctness and alignment with domain requirements. In the subsequent task processing phase, each incoming input is encoded into the same formal language. A symbolic decision engine then utilizes this encoded input in conjunction with the formal knowledge base to derive a reliable result. Through an extensive evaluation on a complex reasoning task, we demonstrate that a concrete implementation of ATA is competitive with state-of-the-art end-to-end reasoning models in a fully automated setup while maintaining trustworthiness. Crucially, with a human-verified and corrected knowledge base, our approach significantly outperforms even larger models, while exhibiting perfect determinism, enhanced stability against input perturbations, and inherent immunity to prompt injection attacks. By generating decisions grounded in symbolic reasoning, ATA offers a practical and controllable architecture for building the next generation of transparent, auditable, and reliable autonomous agents.
☆ MoReBench: Evaluating Procedural and Pluralistic Moral Reasoning in Language Models, More than Outcomes
As AI systems progress, we rely more on them to make decisions with us and for us. To ensure that such decisions are aligned with human values, it is imperative for us to understand not only what decisions they make but also how they come to those decisions. Reasoning language models, which provide both final responses and (partially transparent) intermediate thinking traces, present a timely opportunity to study AI procedural reasoning. Unlike math and code problems which often have objectively correct answers, moral dilemmas are an excellent testbed for process-focused evaluation because they allow for multiple defensible conclusions. To do so, we present MoReBench: 1,000 moral scenarios, each paired with a set of rubric criteria that experts consider essential to include (or avoid) when reasoning about the scenarios. MoReBench contains over 23 thousand criteria including identifying moral considerations, weighing trade-offs, and giving actionable recommendations to cover cases on AI advising humans moral decisions as well as making moral decisions autonomously. Separately, we curate MoReBench-Theory: 150 examples to test whether AI can reason under five major frameworks in normative ethics. Our results show that scaling laws and existing benchmarks on math, code, and scientific reasoning tasks fail to predict models' abilities to perform moral reasoning. Models also show partiality towards specific moral frameworks (e.g., Benthamite Act Utilitarianism and Kantian Deontology), which might be side effects of popular training paradigms. Together, these benchmarks advance process-focused reasoning evaluation towards safer and more transparent AI.
comment: 46 pages, 8 figures, 10 tables. Preprint
☆ Navigating through the hidden embedding space: steering LLMs to improve mental health assessment
The rapid evolution of Large Language Models (LLMs) is transforming AI, opening new opportunities in sensitive and high-impact areas such as Mental Health (MH). Yet, despite these advancements, recent evidence reveals that smaller-scale models still struggle to deliver optimal performance in domain-specific applications. In this study, we present a cost-efficient yet powerful approach to improve MH assessment capabilities of an LLM, without relying on any computationally intensive techniques. Our lightweight method consists of a linear transformation applied to a specific layer's activations, leveraging steering vectors to guide the model's output. Remarkably, this intervention enables the model to achieve improved results across two distinct tasks: (1) identifying whether a Reddit post is useful for detecting the presence or absence of depressive symptoms (relevance prediction task), and (2) completing a standardized psychological screening questionnaire for depression based on users' Reddit post history (questionnaire completion task). Results highlight the untapped potential of steering mechanisms as computationally efficient tools for LLMs' MH domain adaptation.
☆ End-to-End Argument Mining through Autoregressive Argumentative Structure Prediction IJCNN 2025
Argument Mining (AM) helps in automating the extraction of complex argumentative structures such as Argument Components (ACs) like Premise, Claim etc. and Argumentative Relations (ARs) like Support, Attack etc. in an argumentative text. Due to the inherent complexity of reasoning involved with this task, modelling dependencies between ACs and ARs is challenging. Most of the recent approaches formulate this task through a generative paradigm by flattening the argumentative structures. In contrast to that, this study jointly formulates the key tasks of AM in an end-to-end fashion using Autoregressive Argumentative Structure Prediction (AASP) framework. The proposed AASP framework is based on the autoregressive structure prediction framework that has given good performance for several NLP tasks. AASP framework models the argumentative structures as constrained pre-defined sets of actions with the help of a conditional pre-trained language model. These actions build the argumentative structures step-by-step in an autoregressive manner to capture the flow of argumentative reasoning in an efficient way. Extensive experiments conducted on three standard AM benchmarks demonstrate that AASP achieves state-of-theart (SoTA) results across all AM tasks in two benchmarks and delivers strong results in one benchmark.
comment: Accepted version. To appear in IJCNN 2025
☆ Utilising Large Language Models for Generating Effective Counter Arguments to Anti-Vaccine Tweets
In an era where public health is increasingly influenced by information shared on social media, combatting vaccine skepticism and misinformation has become a critical societal goal. Misleading narratives around vaccination have spread widely, creating barriers to achieving high immunisation rates and undermining trust in health recommendations. While efforts to detect misinformation have made significant progress, the generation of real time counter-arguments tailored to debunk such claims remains an insufficiently explored area. In this work, we explore the capabilities of LLMs to generate sound counter-argument rebuttals to vaccine misinformation. Building on prior research in misinformation debunking, we experiment with various prompting strategies and fine-tuning approaches to optimise counter-argument generation. Additionally, we train classifiers to categorise anti-vaccine tweets into multi-labeled categories such as concerns about vaccine efficacy, side effects, and political influences allowing for more context aware rebuttals. Our evaluation, conducted through human judgment, LLM based assessments, and automatic metrics, reveals strong alignment across these methods. Our findings demonstrate that integrating label descriptions and structured fine-tuning enhances counter-argument effectiveness, offering a promising approach for mitigating vaccine misinformation at scale.
comment: 14 pages, 1 figure, work done as a part of B.Tech project at IIT Kharagpur
☆ Thinking About Thinking: Evaluating Reasoning in Post-Trained Language Models
Recent advances in post-training techniques have endowed Large Language Models (LLMs) with enhanced capabilities for tackling complex, logic-intensive tasks through the generation of supplementary planning tokens. This development raises a fundamental question: Are these models aware of what they "learn" and "think"? To address this, we define three core competencies: (1) awareness of learned latent policies, (2) generalization of these policies across domains, and (3) alignment between internal reasoning traces and final outputs. We empirically evaluate these abilities on several tasks, each designed to require learning a distinct policy. Furthermore, we contrast the profiles of models post-trained via Supervised Fine-Tuning (SFT), Direct Policy Optimization (DPO), and Group Relative Policy Optimization (GRPO). Our findings indicate that RL-trained models not only demonstrate greater awareness of their learned behaviors and stronger generalizability to novel, structurally similar tasks than SFT models but also often exhibit weak alignment between their reasoning traces and final outputs, an effect most pronounced in GRPO-trained models.
☆ Investigating the Association Between Text-Based Indications of Foodborne Illness from Yelp Reviews and New York City Health Inspection Outcomes (2023)
Foodborne illnesses are gastrointestinal conditions caused by consuming contaminated food. Restaurants are critical venues to investigate outbreaks because they share sourcing, preparation, and distribution of foods. Public reporting of illness via formal channels is limited, whereas social media platforms host abundant user-generated content that can provide timely public health signals. This paper analyzes signals from Yelp reviews produced by a Hierarchical Sigmoid Attention Network (HSAN) classifier and compares them with official restaurant inspection outcomes issued by the New York City Department of Health and Mental Hygiene (NYC DOHMH) in 2023. We evaluate correlations at the Census tract level, compare distributions of HSAN scores by prevalence of C-graded restaurants, and map spatial patterns across NYC. We find minimal correlation between HSAN signals and inspection scores at the tract level and no significant differences by number of C-graded restaurants. We discuss implications and outline next steps toward address-level analyses.
comment: Presented as a poster at Data Science Day 2024
☆ Cerberus: Real-Time Video Anomaly Detection via Cascaded Vision-Language Models
Video anomaly detection (VAD) has rapidly advanced by recent development of Vision-Language Models (VLMs). While these models offer superior zero-shot detection capabilities, their immense computational cost and unstable visual grounding performance hinder real-time deployment. To overcome these challenges, we introduce Cerberus, a two-stage cascaded system designed for efficient yet accurate real-time VAD. Cerberus learns normal behavioral rules offline, and combines lightweight filtering with fine-grained VLM reasoning during online inference. The performance gains of Cerberus come from two key innovations: motion mask prompting and rule-based deviation detection. The former directs the VLM's attention to regions relevant to motion, while the latter identifies anomalies as deviations from learned norms rather than enumerating possible anomalies. Extensive evaluations on four datasets show that Cerberus on average achieves 57.68 fps on an NVIDIA L40S GPU, a 151.79$\times$ speedup, and 97.2\% accuracy comparable to the state-of-the-art VLM-based VAD methods, establishing it as a practical solution for real-time video analytics.
☆ Instant Personalized Large Language Model Adaptation via Hypernetwork
Personalized large language models (LLMs) tailor content to individual preferences using user profiles or histories. However, existing parameter-efficient fine-tuning (PEFT) methods, such as the ``One-PEFT-Per-User'' (OPPU) paradigm, require training a separate adapter for each user, making them computationally expensive and impractical for real-time updates. We introduce Profile-to-PEFT, a scalable framework that employs a hypernetwork, trained end-to-end, to map a user's encoded profile directly to a full set of adapter parameters (e.g., LoRA), eliminating per-user training at deployment. This design enables instant adaptation, generalization to unseen users, and privacy-preserving local deployment. Experimental results demonstrate that our method outperforms both prompt-based personalization and OPPU while using substantially fewer computational resources at deployment. The framework exhibits strong generalization to out-of-distribution users and maintains robustness across varying user activity levels and different embedding backbones. The proposed Profile-to-PEFT framework enables efficient, scalable, and adaptive LLM personalization suitable for large-scale applications.
♻ ☆ BED-LLM: Intelligent Information Gathering with LLMs and Bayesian Experimental Design
We propose a general-purpose approach for improving the ability of Large Language Models (LLMs) to intelligently and adaptively gather information from a user or other external source using the framework of sequential Bayesian experimental design (BED). This enables LLMs to act as effective multi-turn conversational agents and interactively interface with external environments. Our approach, which we call BED-LLM (Bayesian Experimental Design with Large Language Models), is based on iteratively choosing questions or queries that maximize the expected information gain (EIG) about the task of interest given the responses gathered previously. We show how this EIG can be formulated (and then estimated) in a principled way using a probabilistic model derived from the LLM's predictive distributions and provide detailed insights into key decisions in its construction and updating procedure. We find that BED-LLM achieves substantial gains in performance across a wide range of tests based on the 20 questions game and using the LLM to actively infer user preferences, compared to direct prompting of the LLM and other adaptive design strategies.
♻ ☆ A Knapsack by Any Other Name: Presentation impacts LLM performance on NP-hard problems EMNLP 2025
To investigate the effect of problem presentation on LLMs' ability to solve optimization problems, we introduce the dataset of Everyday Hard Optimization Problems (EHOP), a collection of NP-hard problems expressed in natural language. EHOP includes problem formulations that could be found in computer science textbooks (e.g., graph coloring), versions that are dressed up as problems that could arise in real life (e.g., party planning), and variants with inverted rules. We find that state-of-the-art LLMs, across multiple prompting strategies, systematically solve textbook problems more accurately than their real-life and inverted counterparts. While reasoning models are more capable, they nonetheless show high variance across problem presentations, suggesting they lack a truly robust reasoning mechanism. We argue that this constitutes evidence that LLMs are still heavily dependent on what was seen in training and struggle to generalize to novel problems.
comment: 24 pages, 6 figures, EMNLP 2025
♻ ☆ From Scarcity to Efficiency: Investigating the Effects of Data Augmentation on African Machine Translation
The linguistic diversity across the African continent presents different challenges and opportunities for machine translation. This study explores the effects of data augmentation techniques in improving translation systems in low-resource African languages. We focus on two data augmentation techniques: sentence concatenation with back translation and switch-out, applying them across six African languages. Our experiments show significant improvements in machine translation performance, with a minimum increase of 25\% in BLEU score across all six languages. We provide a comprehensive analysis and highlight the potential of these techniques to improve machine translation systems for low-resource languages, contributing to the development of more robust translation systems for under-resourced languages.
comment: 8 pages, 3 tables. Exploratory work on Data Augmentation for African Machine Translation
♻ ☆ ReaGAN: Node-as-Agent-Reasoning Graph Agentic Network
Graph Neural Networks (GNNs) have achieved remarkable success in graph-based learning by propagating information among neighbor nodes via predefined aggregation mechanisms. However, such fixed schemes often suffer from two key limitations. First, they cannot handle the imbalance in node informativeness -- some nodes are rich in information, while others remain sparse. Second, predefined message passing primarily leverages local structural similarity while ignoring global semantic relationships across the graph, limiting the model's ability to capture distant but relevant information. We propose Retrieval-augmented Graph Agentic Network (ReaGAN), an agent-based framework that empowers each node with autonomous, node-level decision-making. Each node acts as an agent that independently plans its next action based on its internal memory, enabling node-level planning and adaptive message propagation. Additionally, retrieval-augmented generation (RAG) allows nodes to access semantically relevant content and build global relationships in the graph. ReaGAN achieves competitive performance under few-shot in-context settings using a frozen LLM backbone without fine-tuning, showcasing the potential of agentic planning and local-global retrieval in graph learning.
comment: 11 pages, work in progress
♻ ☆ Reassessing Active Learning Adoption in Contemporary NLP: A Community Survey
Supervised learning relies on data annotation which usually is time-consuming and therefore expensive. A longstanding strategy to reduce annotation costs is active learning, an iterative process, in which a human annotates only data instances deemed informative by a model. Research in active learning has made considerable progress, especially with the rise of large language models (LLMs). However, we still know little about how these remarkable advances have translated into real-world applications, or contributed to removing key barriers to active learning adoption. To fill in this gap, we conduct an online survey in the NLP community to collect previously intangible insights on current implementation practices, common obstacles in application, and future prospects in active learning. We also reassess the perceived relevance of data annotation and active learning as fundamental assumptions. Our findings show that data annotation is expected to remain important and active learning to stay relevant while benefiting from LLMs. Consistent with a community survey from over 15 years ago, three key challenges yet persist -- setup complexity, uncertain cost reduction, and tooling -- for which we propose alleviation strategies. We publish an anonymized version of the dataset.
♻ ☆ Forecasting Clinical Risk from Textual Time Series: Structuring Narratives for Temporal AI in Healthcare AAAI
Clinical case reports encode temporal patient trajectories that are often underexploited by traditional machine learning methods relying on structured data. In this work, we introduce the forecasting problem from textual time series, where timestamped clinical findings -- extracted via an LLM-assisted annotation pipeline -- serve as the primary input for prediction. We systematically evaluate a diverse suite of models, including fine-tuned decoder-based large language models and encoder-based transformers, on tasks of event occurrence prediction, temporal ordering, and survival analysis. Our experiments reveal that encoder-based models consistently achieve higher F1 scores and superior temporal concordance for short- and long-horizon event forecasting, while fine-tuned masking approaches enhance ranking performance. In contrast, instruction-tuned decoder models demonstrate a relative advantage in survival analysis, especially in early prognosis settings. Our sensitivity analyses further demonstrate the importance of time ordering, which requires clinical time series construction, as compared to text ordering, the format of the text inputs that LLMs are classically trained on. This highlights the additional benefit that can be ascertained from time-ordered corpora, with implications for temporal tasks in the era of widespread LLM use.
comment: AAAI AI for Social Impact 2026. Shahriar Noroozizadeh, Sayantan Kumar (authors contributed equally)
♻ ☆ The Curious Case of Factual (Mis)Alignment between LLMs' Short- and Long-Form Answers
Large language models (LLMs) can correctly answer "When was Einstein born?" yet fail to provide the same date when writing about Einstein's life revealing a fundamental inconsistency in how models access factual knowledge across task complexities. While models display impressive accuracy on factual question-answering benchmarks, the reliability gap between simple and complex queries remains poorly understood, eroding their trustworthiness. In this work, we introduce Short-Long Form Alignment for Factual Question Answering (SLAQ), a controlled evaluation framework that compares LLMs' answers to the same factual questions asked (a) in isolation (short) vs. (b) integrated into complex queries (long). Looking at 16 LLMs across 600 queries, we find a systematic misalignment of answers to the corresponding short and long queries. We further uncover position-dependent accuracy loss and momentum effects where consecutive correct or incorrect answers create self-reinforcing patterns. Through mechanistic analysis, we find that aligned facts activate overlapping model internals, and that metrics based on mechanistic similarity can predict short-long answer alignment with up to 78% accuracy. Our work establishes factual consistency over query complexity as an important aspect of LLMs' trustworthiness and challenges current evaluation practices, which implicitly assume that good performance for simple factual queries implies reliability in more complex knowledge-seeking tasks too.
comment: Code: https://github.com/WorldHellow/SLAQ/tree/main
♻ ☆ Adaptive Data-Resilient Multi-Modal Hierarchical Multi-Label Book Genre Identification
Identifying fine-grained book genres is essential for enhancing user experience through efficient discovery, personalized recommendations, and improved reader engagement. At the same time, it provides publishers and marketers with valuable insights into consumer preferences and emerging market trends. While traditional genre classification methods predominantly rely on textual reviews or content analysis, the integration of additional modalities, such as book covers, blurbs, and metadata, offers richer contextual cues. However, the effectiveness of such multi-modal systems is often hindered by incomplete, noisy, or missing data across modalities. To address this, we propose IMAGINE (Intelligent Multi-modal Adaptive Genre Identification NEtwork), a framework designed to leverage multi-modal data while remaining robust to missing or unreliable information. IMAGINE learns modality-specific feature representations and adaptively prioritizes the most informative sources available at inference time. It further employs a hierarchical classification strategy, grounded in a curated taxonomy of book genres, to capture inter-genre relationships and support multi-label assignments reflective of real-world literary diversity. A key strength of IMAGINE is its adaptability: it maintains high predictive performance even when one modality, such as text or image, is unavailable. We also curated a large-scale hierarchical dataset that structures book genres into multiple levels of granularity, allowing for a more comprehensive evaluation. Experimental results demonstrate that IMAGINE outperformed strong baselines in various settings, with significant gains in scenarios involving incomplete modality-specific data.
♻ ☆ A social context-aware graph-based multimodal attentive learning framework for disaster content classification during emergencies: a benchmark dataset and method
In times of crisis, the prompt and precise classification of disaster-related information shared on social media platforms is crucial for effective disaster response and public safety. During such critical events, individuals use social media to communicate, sharing multimodal textual and visual content. However, due to the significant influx of unfiltered and diverse data, humanitarian organizations face challenges in leveraging this information efficiently. Existing methods for classifying disaster-related content often fail to model users' credibility, emotional context, and social interaction information, which are essential for accurate classification. To address this gap, we propose CrisisSpot, a method that utilizes a Graph-based Neural Network to capture complex relationships between textual and visual modalities, as well as Social Context Features to incorporate user-centric and content-centric information. We also introduce Inverted Dual Embedded Attention (IDEA), which captures both harmonious and contrasting patterns within the data to enhance multimodal interactions and provide richer insights. Additionally, we present TSEqD (Turkey-Syria Earthquake Dataset), a large annotated dataset for a single disaster event, containing 10,352 samples. Through extensive experiments, CrisisSpot demonstrated significant improvements, achieving an average F1-score gain of 9.45% and 5.01% compared to state-of-the-art methods on the publicly available CrisisMMD dataset and the TSEqD dataset, respectively.
♻ ☆ ToMAP: Training Opponent-Aware LLM Persuaders with Theory of Mind
Large language models (LLMs) have shown promising potential in persuasion, but existing works on training LLM persuaders are still preliminary. Notably, while humans are skilled in modeling their opponent's thoughts and opinions proactively and dynamically, current LLMs struggle with such Theory of Mind (ToM) reasoning, resulting in limited diversity and opponent awareness. To address this limitation, we introduce Theory of Mind Augmented Persuader (ToMAP), a novel approach for building more flexible persuader agents by incorporating two theory of mind modules that enhance the persuader's awareness and analysis of the opponent's mental state. Specifically, we begin by prompting the persuader to consider possible objections to the target central claim, and then use a text encoder paired with a trained MLP classifier to predict the opponent's current stance on these counterclaims. Our carefully designed reinforcement learning schema enables the persuader learns how to analyze opponent-related information and utilize it to generate more effective arguments. Experiments show that the ToMAP persuader, while containing only 3B parameters, outperforms much larger baselines, like GPT-4o, with a relative gain of 39.4% across multiple persuadee models and diverse corpora. Notably, ToMAP exhibits complex reasoning chains and reduced repetition during training, which leads to more diverse and effective arguments. The opponent-aware feature of ToMAP also makes it suitable for long conversations and enables it to employ more logical and opponent-aware strategies. These results underscore our method's effectiveness and highlight its potential for developing more persuasive language agents. Code is available at: https://github.com/ulab-uiuc/ToMAP.
♻ ☆ Concise and Sufficient Sub-Sentence Citations for Retrieval-Augmented Generation
In retrieval-augmented generation (RAG) question answering systems, generating citations for large language model (LLM) outputs enhances verifiability and helps users identify potential hallucinations. However, we observe two problems in the citations produced by existing attribution methods. First, the citations are typically provided at the sentence or even paragraph level. Long sentences or paragraphs may include a substantial amount of irrelevant content. Second, sentence-level citations may omit information that is essential for verifying the output, forcing users to read the surrounding context. In this paper, we propose generating sub-sentence citations that are both concise and sufficient, thereby reducing the effort required by users to confirm the correctness of the generated output. To this end, we first develop annotation guidelines for such citations and construct a corresponding dataset. Then, we propose an attribution framework for generating citations that adhere to our standards. This framework leverages LLMs to automatically generate fine-tuning data for our task and employs a credit model to filter out low-quality examples. Our experiments on the constructed dataset demonstrate that the propose approach can generate high-quality and more readable citations.
♻ ☆ HCR-Reasoner: Synergizing Large Language Models and Theory for Human-like Causal Reasoning
Genuine human-like causal reasoning is fundamental for strong artificial intelligence. Humans typically identify whether an event is part of the causal chain first, and then influenced by modulatory factors such as morality, normality, and intention to make the final judgment. These two stages naturally map to the fields of 1) actual causality that provides formalisms for causal chain membership and 2) causal judgment from cognitive science that studies psychological modulators that influence causal selection. However, these two domains have largely been studied in isolation, leaving a gap for a systematic method based on LLMs. Therefore, we introduce HCR-Reasoner, a framework that systematically integrates the theory of actual causality and causal judgment into LLMs for human-like causal reasoning. It simulates humans by using actual causality formalisms to filter for structurally necessary candidate causes and causal judgment factors to determine the psychologically selected cause. For fine-grained evaluation, we introduce HCR-Bench, a challenging benchmark with 1,093 annotated instances with detailed reasoning steps. Results show HCR-Reasoner consistently and significantly improves LLMs' causal alignment with humans, and that explicitly integrating theory-guided reasoning into LLMs is highly effective for achieving faithful human-like causal reasoning.
♻ ☆ Large Language Diffusion Models
The capabilities of large language models (LLMs) are widely regarded as relying on autoregressive models (ARMs). We challenge this notion by introducing LLaDA, a diffusion model trained from scratch under the pre-training and supervised fine-tuning (SFT) paradigm. LLaDA employs a forward data masking process and a reverse generation process, parameterized by a Transformer to predict masked tokens. It provides a principled generative approach for probabilistic inference by optimizing a likelihood lower bound. Across extensive benchmarks on general tasks, math, code, and so on, LLaDA demonstrates strong scalability and performs comparably to our self-constructed ARM baselines. Remarkably, LLaDA 8B is competitive with strong LLMs like LLaMA3 8B in in-context learning and, after SFT, exhibits impressive instruction-following abilities in case studies such as multi-turn dialogue. Moreover, LLaDA addresses the reversal curse, surpassing GPT-4o in a reversal poem completion task. Our findings show the promise of diffusion models for language modeling at scale and challenge the common assumption that core LLM capabilities discussed above inherently depend on ARMs. Project page and codes: https://ml-gsai.github.io/LLaDA-demo/.
♻ ☆ Hard Negatives, Hard Lessons: Revisiting Training Data Quality for Robust Information Retrieval with LLMs EMNLP 2025
Training robust retrieval and reranker models typically relies on large-scale retrieval datasets; for example, the BGE collection contains 1.6 million query-passage pairs sourced from various data sources. However, we find that certain datasets can negatively impact model effectiveness -- pruning 8 out of 15 datasets from the BGE collection, reduces the training set size by 2.35$\times$, surprisingly increases nDCG@10 on BEIR by 1.0 point. This motivates a deeper examination of training data quality, with a particular focus on "false negatives", where relevant passages are incorrectly labeled as irrelevant. We utilize LLMs as a simple, cost-effective approach to identify and relabel false negatives in training datasets. Experimental results show that relabeling false negatives as true positives improves both E5 (base) and Qwen2.5-7B retrieval models by 0.7$\unicode{x2013}$1.4 points on BEIR and by 1.7$\unicode{x2013}$1.8 points at nDCG@10 on zero-shot AIR-Bench evaluation. Similar gains are observed for rerankers fine-tuned on the relabeled data, such as Qwen2.5-3B on BEIR. The reliability of LLMs to identify false negatives is supported by human annotation results. Our training dataset and code are publicly available.
comment: EMNLP 2025 Findings
♻ ☆ Lost at the Beginning of Reasoning
Recent advancements in large language models (LLMs) have significantly advanced complex reasoning capabilities, particularly through extended chain-of-thought (CoT) reasoning that incorporates mechanisms such as backtracking, self-reflection, and self-correction. Despite these developments, the self-correction abilities of LLMs during long CoT reasoning remain underexplored. And recent findings on overthinking suggest that such models often engage in unnecessarily redundant reasoning. In this work, we empirically show that the first reasoning step exerts a disproportionately large influence on the final prediction. I.e., errors introduced at this stage can substantially degrade subsequent reasoning quality. This phenomenon is consistently observed across various state-of-the-art open- and closed-source reasoning models. Leveraging this insight, we propose an efficient sampling strategy that leverages a reward model to identify and retain high-quality first reasoning steps while discarding suboptimal ones, achieving up to a 70% reduction in inference cost without sacrificing any accuracy. Our work highlights the central role of the first reasoning step in generating a high-quality reasoning trajectory, and thus enabling significantly efficient sampling.
comment: remove the benchmark part. (10 pages, 6 figures, 5 tables)
♻ ☆ KG-Infused RAG: Augmenting Corpus-Based RAG with External Knowledge Graphs
Retrieval-Augmented Generation (RAG) improves factual accuracy by grounding responses in external knowledge. However, existing RAG methods either rely solely on text corpora and neglect structural knowledge, or build ad-hoc knowledge graphs (KGs) at high cost and low reliability. To address these issues, we propose KG-Infused RAG, a framework that incorporates pre-existing large-scale KGs into RAG and applies spreading activation to enhance both retrieval and generation. KG-Infused RAG directly performs spreading activation over external KGs to retrieve relevant structured knowledge, which is then used to expand queries and integrated with corpus passages, enabling interpretable and semantically grounded multi-source retrieval. We further improve KG-Infused RAG through preference learning on sampled key stages of the pipeline. Experiments on five QA benchmarks show that KG-Infused RAG consistently outperforms vanilla RAG (by 3.9% to 17.8%). Compared with KG-based approaches such as GraphRAG and LightRAG, our method obtains structured knowledge at lower cost while achieving superior performance. Additionally, integrating KG-Infused RAG with Self-RAG and DeepNote yields further gains, demonstrating its effectiveness and versatility as a plug-and-play enhancement module for corpus-based RAG methods.
♻ ☆ TemplateRL: Structured Template-Guided Reinforcement Learning for LLM Reasoning
Reinforcement learning (RL) has emerged as an effective paradigm for enhancing model reasoning. However, existing RL methods like GRPO often rely on unstructured self-sampling to fit scalar rewards, often producing inefficient rollouts that fail to capture transferable problem-solving strategies. To address these limitations, we propose **TemplateRL**, a structured template-guided RL framework that augments policy optimization with explicit template guidance. Our approach first constructs a problem-solving template library via MCTS on a small seed set, then seamlessly integrates this high-level structured guidance into RL training. By guiding rollout generation to align with proven template structures, TemplateRL significantly improves high-quality trajectory hit rates while reducing ineffective exploration. This structure-guided design steers the policy toward validated strategic patterns, stabilizing training dynamics, and enhancing RL sampling efficiency. Notably, the explicit template library is interpretable, editable, and supports online updates-enabling continuous updates during both training and inference. Extensive experiments demonstrate that TemplateRL outperforms GRPO by 99% on AIME and 41% on AMC, with superior stability on weak models and remarkable cross-domain generalization, highlighting its potential for broader tasks.
♻ ☆ Mitigating Forgetting in LLM Fine-Tuning via Low-Perplexity Token Learning NeurIPS 2025
Maintaining consistent model performance across domains is a fundamental challenge in machine learning. While recent work has explored using LLM-generated data for fine-tuning, its impact on cross-domain generalization remains poorly understood. This paper presents a systematic analysis revealing that fine-tuning with LLM-generated data not only improves target task performance but also reduces non-target task degradation compared to fine-tuning with ground truth data. Through analyzing the data sequence in tasks of various domains, we demonstrate that this enhancement of non-target task robustness stems from the reduction of high perplexity tokens found in LLM-generated sequences. Following our findings, we showed that masking high perplexity tokens in ground truth training data achieves similar non-target task performance preservation, comparable to using LLM-generated data. Extensive experiments across different model families and scales, including Gemma 2 IT 2B, Llama 3 8B Instruct, and three additional models, agree with our findings. To the best of our knowledge, this is the first work to provide an empirical explanation based on token perplexity reduction to mitigate catastrophic forgetting in LLMs after fine-tuning, offering valuable insights for developing more robust fine-tuning strategies.
comment: Accepted to NeurIPS 2025
♻ ☆ Understanding LLMs' Cross-Lingual Context Retrieval: How Good It Is And Where It Comes From
Cross-lingual context retrieval (extracting contextual information in one language based on requests in another) is a fundamental aspect of cross-lingual alignment, but the performance and mechanism of it for large language models (LLMs) remains unclear. In this paper, we evaluate the cross-lingual context retrieval of over 40 LLMs across 12 languages, using cross-lingual machine reading comprehension (xMRC) as a representative scenario. Our results show that post-trained open LLMs show strong cross-lingual context retrieval ability, comparable to closed-source LLMs such as GPT-4o, and their estimated oracle performances greatly improve after post-training. Our mechanism analysis shows that the cross-lingual context retrieval process can be divided into two main phases: question encoding and answer retrieval, which are formed in pre-training and post-training respectively. The phasing stability correlates with xMRC performance, and the xMRC bottleneck lies at the last model layers in the second phase, where the effect of post-training can be evidently observed. Our results also indicate that larger-scale pretraining cannot improve the xMRC performance. Instead, larger LLMs need further multilingual post-training to fully unlock their cross-lingual context retrieval potential.
♻ ☆ MedTrust-RAG: Evidence Verification and Trust Alignment for Biomedical Question Answering
Biomedical question answering (QA) requires accurate interpretation of complex medical knowledge. Large language models (LLMs) have shown promising capabilities in this domain, with retrieval-augmented generation (RAG) systems enhancing performance by incorporating external medical literature. However, RAG-based approaches in biomedical QA suffer from hallucinations due to post-retrieval noise and insufficient verification of retrieved evidence, undermining response reliability. We propose MedTrust-Guided Iterative RAG, a framework designed to enhance factual consistency and mitigate hallucinations in medical QA. Our method introduces three key innovations. First, it enforces citation-aware reasoning by requiring all generated content to be explicitly grounded in retrieved medical documents, with structured Negative Knowledge Assertions used when evidence is insufficient. Second, it employs an iterative retrieval-verification process, where a verification agent assesses evidence adequacy and refines queries through Medical Gap Analysis until reliable information is obtained. Third, it integrates the MedTrust-Align Module (MTAM) that combines verified positive examples with hallucination-aware negative samples, leveraging Direct Preference Optimization to reinforce citation-grounded reasoning while penalizing hallucination-prone response patterns.
comment: Accepted as a short paper at BlBM2025
♻ ☆ AnTKV: Anchor Token-Aware Sub-Bit Vector Quantization for KV Cache in Large Language Models
Quantization has emerged as an effective and lightweight solution to reduce the memory footprint of the KV cache in Large Language Models. Nevertheless, minimizing the accuracy degradation caused by ultra-low-bit KV cache quantization remains a significant challenge. While scalar quantization is constrained by 1-bit bound, vector quantization exploits intra-vector correlations and enables sub-bit regimes, making it more suitable for ultra-low-bit quantization. To further mitigate quantization-induced degradation, we reveal that the degradation is highly uneven across tokens in attention quality. To investigate this unevenness, we introduce anchor score to measure each token's sensitivity to quantization. Our analysis and experiments show that preserving a small subset (1\%) of tokens with the highest Anchor Score significantly mitigates accuracy loss under aggressive quantization. We propose AnTKV, a dual-stage framework that leverages anchor token-aware vector quantization to compress the KV cache. It combines offline token-aware centroids learning and online anchor token selection to balance compression and accuracy. To enable efficient deployment, we design an online anchor token selection kernel compatible with FlashAttention. It allows LLaMA3-8B to scale to 840K tokens on a single 80GB A100, while delivering up to $3.5\times$ higher decoding throughput over the FP16 baseline. Experiments demonstrate that AnTKV matches or surpasses prior methods at 4-bit, and significantly reduce perplexity under ultra-low-bit quantization, achieving 6.32 at 1-bit on Mistral-7B, compared to 7.25 for CQ and 15.36 for KVQuant.
♻ ☆ Hallucination Detection in LLMs Using Spectral Features of Attention Maps EMNLP 2025
Large Language Models (LLMs) have demonstrated remarkable performance across various tasks but remain prone to hallucinations. Detecting hallucinations is essential for safety-critical applications, and recent methods leverage attention map properties to this end, though their effectiveness remains limited. In this work, we investigate the spectral features of attention maps by interpreting them as adjacency matrices of graph structures. We propose the $\text{LapEigvals}$ method, which utilises the top-$k$ eigenvalues of the Laplacian matrix derived from the attention maps as an input to hallucination detection probes. Empirical evaluations demonstrate that our approach achieves state-of-the-art hallucination detection performance among attention-based methods. Extensive ablation studies further highlight the robustness and generalisation of $\text{LapEigvals}$, paving the way for future advancements in the hallucination detection domain.
comment: Accepted to EMNLP 2025. Code available at https://github.com/graphml-lab-pwr/lapeigvals
♻ ☆ Audit-of-Understanding: Posterior-Constrained Inference for Mathematical Reasoning in Language Models
Large language models (LLMs) often generate reasoning traces that appear coherent but rest on unsupported assumptions, leading to hallucinated conclusions. Prior work mainly addresses factual hallucinations or relies on post-hoc verification, leaving reasoning-induced hallucinations largely unaddressed. We propose Audit-of-Understanding (AoU), a framework that constrains inference to validated premises through three phases: (1) decomposing a query into candidate assumptions, (2) auditing their support, and (3) conditioning inference only on the validated subset. Formally, AoU is \emph{posterior-constrained inference}, connecting to selective prediction and rejection learning. Our contributions are threefold: (i) theoretical guarantees under perfect validation, (ii) excess-risk bounds under imperfect audits, and (iii) tractability analysis. Empirically, AoU improves both accuracy and faithfulness on GSM8K, MultiArith, and SVAMP, achieving up to +30% gains on GSM8K, +45% on MultiArith, and consistent +20--28% improvements on SVAMP over Chain-of-Thought, Self-Consistency, and CoT-Decoding. Code is available at https://anonymous.4open.science/r/audit-of-understanding-E28B.
♻ ☆ Geometric-Mean Policy Optimization
Group Relative Policy Optimization (GRPO) has significantly enhanced the reasoning capability of large language models by optimizing the arithmetic mean of token-level rewards. Unfortunately, GRPO is observed to suffer from unstable policy updates when facing tokens with outlier importance-weighted rewards, which manifest as extreme importance sampling ratios during training. In this study, we propose Geometric-Mean Policy Optimization (GMPO), with the aim to improve the stability of GRPO through suppressing token reward outliers. Instead of optimizing the arithmetic mean, GMPO maximizes the geometric mean of token-level rewards, which is inherently less sensitive to outliers and maintains a more stable range of importance sampling ratio. GMPO is plug-and-play-simply replacing GRPO's arithmetic mean with the geometric mean of token-level rewards, as the latter is inherently less sensitive to outliers. GMPO is theoretically plausible-analysis reveals that both GMPO and GRPO are weighted forms of the policy gradient while the former enjoys more stable weights, which consequently benefits policy optimization and performance. Experiments on multiple mathematical reasoning benchmarks show that GMPO-7B improves the average Pass@1 of GRPO by up to 4.1%, outperforming many state-of-the-art approaches. Code is available at https://github.com/callsys/GMPO.
comment: Code is available at https://github.com/callsys/GMPO
♻ ☆ Humanity's Last Code Exam: Can Advanced LLMs Conquer Human's Hardest Code Competition? EMNLP 2025
Code generation is a core capability of large language models (LLMs), yet mainstream benchmarks (e.g., APPs and LiveCodeBench) contain questions with medium-level difficulty and pose no challenge to advanced LLMs. To better reflected the advanced reasoning and code generation ability, We introduce Humanity's Last Code Exam (HLCE), comprising 235 most challenging problems from the International Collegiate Programming Contest (ICPC World Finals) and the International Olympiad in Informatics (IOI) spanning 2010 - 2024. As part of HLCE, we design a harmonized online-offline sandbox that guarantees fully reproducible evaluation. Through our comprehensive evaluation, we observe that even the strongest reasoning LLMs: o4-mini(high) and Gemini-2.5 Pro, achieve pass@1 rates of only 15.9% and 11.4%, respectively. Meanwhile, we propose a novel "self-recognition" task to measure LLMs' awareness of their own capabilities. Results indicate that LLMs' self-recognition abilities are not proportionally correlated with their code generation performance. Finally, our empirical validation of test-time scaling laws reveals that current advanced LLMs have substantial room for improvement on complex programming tasks. We expect HLCE to become a milestone challenge for code generation and to catalyze advances in high-performance reasoning and human-AI collaborative programming. Our code and dataset are also public available(https://github.com/Humanity-s-Last-Code-Exam/HLCE).
comment: EMNLP 2025 Findings
♻ ☆ Valid Survey Simulations with Limited Human Data: The Roles of Prompting, Fine-Tuning, and Rectification
Surveys provide valuable insights into public opinion and behavior, but their execution is costly and slow. Large language models (LLMs) have been proposed as a scalable, low-cost substitute for human respondents, but their outputs are often biased and yield invalid estimates. We study the interplay between synthesis methods that use LLMs to generate survey responses and rectification methods that debias population estimates, and explore how human responses are best allocated between them. Using two panel surveys with questions on nutrition, politics, and economics, we find that synthesis alone introduces substantial bias (24-86%), whereas combining it with rectification reduces bias below 5% and increases effective sample size by up to 14%. Overall, we challenge the common practice of using all human responses for fine-tuning, showing that under a fixed budget, allocating most to rectification results in far more effective estimation.
comment: 19 pages, 4 figures, 9 tables
♻ ☆ From Multimodal Perception to Strategic Reasoning: A Survey on AI-Generated Game Commentary
The advent of artificial intelligence has propelled AI-Generated Game Commentary (AI-GGC) into a rapidly expanding field, offering benefits such as unlimited availability and personalized narration. However, current researches in this area remain fragmented, and a comprehensive survey that systematically unifies existing efforts is still missing. To bridge this gap, our survey introduces a unified framework that systematically organizes the AI-GGC landscape. We present a novel taxonomy focused on three core commentator capabilities: Live Observation, Strategic Analysis, and Historical Recall. Commentary is further categorized into three functional types: Descriptive, Analytical, and Background. Building on this structure, we provide an in-depth review of state-of-the-art methods, datasets, and evaluation metrics across various game genres. Finally, we highlight key challenges such as real-time reasoning, multimodal integration, and evaluation bottlenecks, and outline promising directions for future research and system development in AI-GGC.
♻ ☆ SHANKS: Simultaneous Hearing and Thinking for Spoken Language Models
Current large language models (LLMs) and spoken language models (SLMs) begin thinking and taking actions only after the user has finished their turn. This prevents the model from interacting during the user's turn and can lead to high response latency while it waits to think. Consequently, thinking after receiving the full input is not suitable for speech-to-speech interaction, where real-time, low-latency exchange is important. We address this by noting that humans naturally "think while listening." In this paper, we propose SHANKS, a general inference framework that enables SLMs to generate unspoken chain-of-thought reasoning while listening to the user input. SHANKS streams the input speech in fixed-duration chunks and, as soon as a chunk is received, generates unspoken reasoning based on all previous speech and reasoning, while the user continues speaking. SHANKS uses this unspoken reasoning to decide whether to interrupt the user and to make tool calls to complete the task. We demonstrate that SHANKS enhances real-time user-SLM interaction in two scenarios: (1) when the user is presenting a step-by-step solution to a math problem, SHANKS can listen, reason, and interrupt when the user makes a mistake, achieving 37.1% higher interruption accuracy than a baseline that interrupts without thinking; and (2) in a tool-augmented dialogue, SHANKS can complete 56.9% of the tool calls before the user finishes their turn. Overall, SHANKS moves toward models that keep thinking throughout the conversation, not only after a turn ends. Animated illustrations of Shanks can be found at https://d223302.github.io/SHANKS/
comment: Work in progress
♻ ☆ Your Next Token Prediction: A Multilingual Benchmark for Personalized Response Generation
Large language models (LLMs) excel at general next-token prediction but still struggle to generate responses that reflect how individuals truly communicate, such as replying to emails or social messages in their own style. However, real SNS or email histories are difficult to collect due to privacy concerns. To address this, we propose the task of "Your Next Token Prediction (YNTP)", which models a user's precise word choices through controlled human-agent conversations. We build a multilingual benchmark of 100 dialogue sessions across English, Japanese, and Chinese, where users interact for five days with psychologically grounded NPCs based on MBTI dimensions. This setup captures natural, daily-life communication patterns and enables analysis of users' internal models. We evaluate prompt-based and fine-tuning-based personalization methods, establishing the first benchmark for YNTP and a foundation for user-aligned language modeling. The dataset is available at: https://github.com/AnonymousHub4Submissions/your-next-token-prediction-dataset-100
♻ ☆ Beyond One World: Benchmarking Super Heros in Role-Playing Across Multiversal Contexts
Large language models (LLMs) are increasingly used as role-playing agents, yet their capacity to faithfully and consistently portray version-specific characters -- for example, superheroes across comic and cinematic universes -- remains underexplored. Superhero canons such as Marvel and DC provide a rich testbed: decades of storytelling yield multiple incarnations of the same character with distinct histories, values, and moral codes. To study this problem, we introduce Beyond One World, a benchmark for character-grounded roleplay spanning 30 iconic heroes and 90 canon-specific versions. The benchmark comprises two tasks: (i) Canon Events, which probes factual recall of pivotal life stages, and (ii) Moral Dilemmas, which confronts models with ethically charged scenarios. We score responses for canonical accuracy and reasoning fidelity under a framework that separates internal deliberation ("thinking") from outward decisions ("acting"). We further propose Think-Act Matching, a metric that quantifies alignment between reasons and actions and serves as a proxy for model trustworthiness. Experiments across reasoning- and non-reasoning-oriented models yield three findings: (1) chain-of-thought prompting improves narrative coherence in weaker models but can reduce canonical accuracy in stronger ones; (2) cross-version generalization within a character remains a major obstacle; and (3) models often excel at either thinking or acting, but rarely both. Beyond One World exposes critical gaps in multiversal consistency and reasoning alignment, offering a challenging evaluation for role-playing LLMs.
♻ ☆ Deflanderization for Game Dialogue: Balancing Character Authenticity with Task Execution in LLM-based NPCs
The emergence of large language models (LLMs) has opened new opportunities for cre- ating dynamic non-player characters (NPCs) in gaming environments, enabling both func- tional task execution and persona-consistent dialogue generation. In this paper, we (Tu_Character_lab) report our participation in the Commonsense Persona-Grounded Dialogue Challenge (CPDC) 2025 Round 2, which eval- uates agents across three tracks: task-oriented dialogue, context-aware dialogue, and their integration. Our approach combines two complementary strategies: (i) lightweight prompting techniques in the API track, including a Deflanderization prompting method to suppress excessive role-play and improve task fidelity, and (ii) fine-tuned large models in the GPU track, leveraging Qwen3-14B with supervisedfinetuning (SFT) and Low-Rank Adaptation(LoRA). Our best submissions ranked 2nd on Task 1, 2nd on Task 3 (API track), and 4th on Task 3 (GPU track).
♻ ☆ Automated Evaluation of Meter and Rhyme in Russian Generative and Human-Authored Poetry
Generative poetry systems require effective tools for data engineering and automatic evaluation, particularly to assess how well a poem adheres to versification rules, such as the correct alternation of stressed and unstressed syllables and the presence of rhymes. In this work, we introduce the Russian Poetry Scansion Tool library designed for stress mark placement in Russian-language syllabo-tonic poetry, rhyme detection, and identification of defects of poeticness. Additionally, we release RIFMA -- a dataset of poem fragments spanning various genres and forms, annotated with stress marks. This dataset can be used to evaluate the capability of modern large language models to accurately place stress marks in poetic texts. The published resources provide valuable tools for researchers and practitioners in the field of creative generative AI, facilitating advancements in the development and evaluation of generative poetry systems.
comment: 7 pages, 1 figure, ver.2
♻ ☆ A Survey of Scientific Large Language Models: From Data Foundations to Agent Frontiers
Scientific Large Language Models (Sci-LLMs) are transforming how knowledge is represented, integrated, and applied in scientific research, yet their progress is shaped by the complex nature of scientific data. This survey presents a comprehensive, data-centric synthesis that reframes the development of Sci-LLMs as a co-evolution between models and their underlying data substrate. We formulate a unified taxonomy of scientific data and a hierarchical model of scientific knowledge, emphasizing the multimodal, cross-scale, and domain-specific challenges that differentiate scientific corpora from general natural language processing datasets. We systematically review recent Sci-LLMs, from general-purpose foundations to specialized models across diverse scientific disciplines, alongside an extensive analysis of over 270 pre-/post-training datasets, showing why Sci-LLMs pose distinct demands -- heterogeneous, multi-scale, uncertainty-laden corpora that require representations preserving domain invariance and enabling cross-modal reasoning. On evaluation, we examine over 190 benchmark datasets and trace a shift from static exams toward process- and discovery-oriented assessments with advanced evaluation protocols. These data-centric analyses highlight persistent issues in scientific data development and discuss emerging solutions involving semi-automated annotation pipelines and expert validation. Finally, we outline a paradigm shift toward closed-loop systems where autonomous agents based on Sci-LLMs actively experiment, validate, and contribute to a living, evolving knowledge base. Collectively, this work provides a roadmap for building trustworthy, continually evolving artificial intelligence (AI) systems that function as a true partner in accelerating scientific discovery.
♻ ☆ Exploration of Marker-Based Approaches in Argument Mining through Augmented Natural Language IJCNN 2025
Argument Mining (AM) involves identifying and extracting Argumentative Components (ACs) and their corresponding Argumentative Relations (ARs). Most of the prior works have broken down these tasks into multiple sub-tasks. Existing end-to-end setups primarily use the dependency parsing approach. This work introduces a generative paradigm-based end-to-end framework argTANL. argTANL frames the argumentative structures into label-augmented text, called Augmented Natural Language (ANL). This framework jointly extracts both ACs and ARs from a given argumentative text. Additionally, this study explores the impact of Argumentative and Discourse markers on enhancing the model's performance within the proposed framework. Two distinct frameworks, Marker-Enhanced argTANL (ME-argTANL) and argTANL with specialized Marker-Based Fine-Tuning, are proposed to achieve this. Extensive experiments are conducted on three standard AM benchmarks to demonstrate the superior performance of the ME-argTANL.
comment: Accepted version. To appear in the IJCNN 2025 Proceedings
♻ ☆ Unifying Attention Heads and Task Vectors via Hidden State Geometry in In-Context Learning NeurIPS 2025
The unusual properties of in-context learning (ICL) have prompted investigations into the internal mechanisms of large language models. Prior work typically focuses on either special attention heads or task vectors at specific layers, but lacks a unified framework linking these components to the evolution of hidden states across layers that ultimately produce the model's output. In this paper, we propose such a framework for ICL in classification tasks by analyzing two geometric factors that govern performance: the separability and alignment of query hidden states. A fine-grained analysis of layer-wise dynamics reveals a striking two-stage mechanism: separability emerges in early layers, while alignment develops in later layers. Ablation studies further show that Previous Token Heads drive separability, while Induction Heads and task vectors enhance alignment. Our findings thus bridge the gap between attention heads and task vectors, offering a unified account of ICL's underlying mechanisms.
comment: 52 pages, 70 figures, 24 tables, NeurIPS 2025
♻ ☆ HauntAttack: When Attack Follows Reasoning as a Shadow
Emerging Large Reasoning Models (LRMs) consistently excel in mathematical and reasoning tasks, showcasing remarkable capabilities. However, the enhancement of reasoning abilities and the exposure of internal reasoning processes introduce new safety vulnerabilities. A critical question arises: when reasoning becomes intertwined with harmfulness, will LRMs become more vulnerable to jailbreaks in reasoning mode? To investigate this, we introduce HauntAttack, a novel and general-purpose black-box adversarial attack framework that systematically embeds harmful instructions into reasoning questions. Specifically, we modify key reasoning conditions in existing questions with harmful instructions, thereby constructing a reasoning pathway that guides the model step by step toward unsafe outputs. We evaluate HauntAttack on 11 LRMs and observe an average attack success rate of 70\%, achieving up to 12 percentage points of absolute improvement over the strongest prior baseline. Our further analysis reveals that even advanced safety-aligned models remain highly susceptible to reasoning-based attacks, offering insights into the urgent challenge of balancing reasoning capability and safety in future model development.
♻ ☆ Customer-R1: Personalized Simulation of Human Behaviors via RL-based LLM Agent in Online Shopping
Simulating step-wise human behavior with Large Language Models (LLMs) has become an emerging research direction, enabling applications in various practical domains. While prior methods, including prompting, supervised fine-tuning (SFT), and reinforcement learning (RL), have shown promise in modeling step-wise behavior, they primarily learn a population-level policy without conditioning on a user's persona, yielding generic rather than personalized simulations. In this work, we pose a critical question: how can LLM agents better simulate personalized user behavior? We introduce Customer-R1, an RL-based method for personalized, step-wise user behavior simulation in online shopping environments. Our policy is conditioned on an explicit persona, and we optimize next-step rationale and action generation via action correctness reward signals. Experiments on the OPeRA dataset emonstrate that Customer-R1 not only significantly outperforms prompting and SFT-based baselines in next-action prediction tasks, but also better matches users' action distribution, indicating higher fidelity in personalized behavior simulation.
♻ ☆ Autoencoding-Free Context Compression for LLMs via Contextual Semantic Anchors
Context compression presents a promising approach for accelerating large language model (LLM) inference by compressing long contexts into compact representations. Current context compression methods predominantly rely on autoencoding tasks to train context-agnostic compression tokens to compress contextual semantics. While autoencoding tasks enable compression tokens to acquire compression capabilities, compression via autoencoding tasks creates a fundamental mismatch: the models are optimized for reconstruction that diverge from actual downstream tasks, thereby weakening the features more beneficial for real-world usage. We propose Semantic-Anchor Compression (SAC), a novel method that shifts from autoencoding task based compression to an architecture that is equipped with this compression capability \textit{a priori}. Instead of training models to compress contexts through autoencoding tasks, SAC directly selects so-called anchor tokens from the original context and aggregates contextual information into their key-value (KV) representations. By deriving representations directly from the contextual tokens, SAC eliminates the need for autoencoding training. To ensure compression performance while directly leveraging anchor tokens, SAC incorporates two key designs: (1) anchor embeddings that enable the compressor to identify critical tokens, and (2) bidirectional attention modification that allows anchor tokens to capture information from the entire context. Experimental results demonstrate that SAC consistently outperforms existing context compression methods across various compression ratios. On out-of-distribution evaluation using MRQA, SAC achieves 1 EM improvement at 5x compression over strong baselines, with increasing advantages at higher compression ratios.
comment: 18 pages,9 figures
♻ ☆ Whose Journey Matters? Investigating Identity Biases in Large Language Models (LLMs) for Travel Planning Assistance
As large language models (LLMs) become increasingly integral to the hospitality and tourism industry, concerns about their fairness in serving diverse identity groups persist. Grounded in social identity theory and sociotechnical systems theory, this study examines ethnic and gender biases in travel recommendations generated by LLMs. Using fairness probing, we analyze outputs from three leading open-source LLMs. The results show that test accuracy for both ethnicity and gender classifiers exceed random chance. Analysis of the most influential features reveals the presence of stereotype bias in LLM-generated recommendations. We also found hallucinations among these features, occurring more frequently in recommendations for minority groups. These findings indicate that LLMs exhibit ethnic and gender bias when functioning as travel planning assistants. This study underscores the need for bias mitigation strategies to improve the inclusivity and reliability of generative AI-driven travel planning assistance.
♻ ☆ The Moral Foundations Reddit Corpus
Moral framing and sentiment can affect a variety of online and offline behaviors, including donation, environmental action, political engagement, and protest. Various computational methods in Natural Language Processing (NLP) have been used to detect moral sentiment from textual data, but achieving strong performance in such subjective tasks requires large, hand-annotated datasets. Previous corpora annotated for moral sentiment have proven valuable, and have generated new insights both within NLP and across the social sciences, but have been limited to Twitter. To facilitate improving our understanding of the role of moral rhetoric, we present the Moral Foundations Reddit Corpus, a collection of 16,123 English Reddit comments that have been curated from 12 distinct subreddits, hand-annotated by at least three trained annotators for 8 categories of moral sentiment (i.e., Care, Proportionality, Equality, Purity, Authority, Loyalty, Thin Morality, Implicit/Explicit Morality) based on the updated Moral Foundations Theory (MFT) framework. We evaluate baselines using large language models (Llama3-8B, Ministral-8B) in zero-shot, few-shot, and PEFT settings, comparing their performance to fine-tuned encoder-only models like BERT. The results show that LLMs continue to lag behind fine-tuned encoders on this subjective task, underscoring the ongoing need for human-annotated moral corpora for AI alignment evaluation. Keywords: moral sentiment annotation, moral values, moral foundations theory, multi-label text classification, large language models, benchmark dataset, evaluation and alignment resource
♻ ☆ GEM: Empowering MLLM for Grounded ECG Understanding with Time Series and Images NeurIPS 2025
While recent multimodal large language models (MLLMs) have advanced automated ECG interpretation, they still face two key limitations: (1) insufficient multimodal synergy between time series signals and visual ECG representations, and (2) limited explainability in linking diagnoses to granular waveform evidence. We introduce GEM, the first MLLM unifying ECG time series, 12-lead ECG images and text for grounded and clinician-aligned ECG interpretation. GEM enables feature-grounded analysis, evidence-driven reasoning, and a clinician-like diagnostic process through three core innovations: a dual-encoder framework extracting complementary time series and image features, cross-modal alignment for effective multimodal understanding, and knowledge-guided instruction generation for generating high-granularity grounding data (ECG-Grounding) linking diagnoses to measurable parameters ($e.g.$, QRS/PR Intervals). Additionally, we propose the Grounded ECG Understanding task, a clinically motivated benchmark designed to comprehensively assess the MLLM's capability in grounded ECG understanding. Experimental results on both existing and our proposed benchmarks show GEM significantly improves predictive performance (CSN $7.4\% \uparrow$), explainability ($22.7\% \uparrow$), and grounding ($24.8\% \uparrow$), making it more suitable for real-world clinical applications. GitHub repository: https://github.com/lanxiang1017/GEM.git
comment: NeurIPS 2025 Camera-Ready
Multimedia 3
☆ RefAtomNet++: Advancing Referring Atomic Video Action Recognition using Semantic Retrieval based Multi-Trajectory Mamba ECCV 2024
Referring Atomic Video Action Recognition (RAVAR) aims to recognize fine-grained, atomic-level actions of a specific person of interest conditioned on natural language descriptions. Distinct from conventional action recognition and detection tasks, RAVAR emphasizes precise language-guided action understanding, which is particularly critical for interactive human action analysis in complex multi-person scenarios. In this work, we extend our previously introduced RefAVA dataset to RefAVA++, which comprises >2.9 million frames and >75.1k annotated persons in total. We benchmark this dataset using baselines from multiple related domains, including atomic action localization, video question answering, and text-video retrieval, as well as our earlier model, RefAtomNet. Although RefAtomNet surpasses other baselines by incorporating agent attention to highlight salient features, its ability to align and retrieve cross-modal information remains limited, leading to suboptimal performance in localizing the target person and predicting fine-grained actions. To overcome the aforementioned limitations, we introduce RefAtomNet++, a novel framework that advances cross-modal token aggregation through a multi-hierarchical semantic-aligned cross-attention mechanism combined with multi-trajectory Mamba modeling at the partial-keyword, scene-attribute, and holistic-sentence levels. In particular, scanning trajectories are constructed by dynamically selecting the nearest visual spatial tokens at each timestep for both partial-keyword and scene-attribute levels. Moreover, we design a multi-hierarchical semantic-aligned cross-attention strategy, enabling more effective aggregation of spatial and temporal tokens across different semantic hierarchies. Experiments show that RefAtomNet++ establishes new state-of-the-art results. The dataset and code are released at https://github.com/KPeng9510/refAVA2.
comment: Extended version of ECCV 2024 paper arXiv:2407.01872. The dataset and code are released at https://github.com/KPeng9510/refAVA2
♻ ☆ VGGSounder: Audio-Visual Evaluations for Foundation Models ICCV
The emergence of audio-visual foundation models underscores the importance of reliably assessing their multi-modal understanding. The VGGSound dataset is commonly used as a benchmark for evaluation audio-visual classification. However, our analysis identifies several limitations of VGGSound, including incomplete labelling, partially overlapping classes, and misaligned modalities. These lead to distorted evaluations of auditory and visual capabilities. To address these limitations, we introduce VGGSounder, a comprehensively re-annotated, multi-label test set that extends VGGSound and is specifically designed to evaluate audio-visual foundation models. VGGSounder features detailed modality annotations, enabling precise analyses of modality-specific performance. Furthermore, we reveal model limitations by analysing performance degradation when adding another input modality with our new modality confusion metric.
comment: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) 2025
♻ ☆ JND-Guided Light-Weight Neural Pre-Filter for Perceptual Image Coding
Just Noticeable Distortion (JND)-guided pre-filter is a promising technique for improving the perceptual compression efficiency of image coding. However, existing methods are often computationally expensive, and the field lacks standardized benchmarks for fair comparison. To address these challenges, this paper introduces a twofold contribution. First, we develop and open-source FJNDF-Pytorch, a unified benchmark for frequency-domain JND-Guided pre-filters. Second, leveraging this platform, we propose a complete learning framework for a novel, lightweight Convolutional Neural Network (CNN). Experimental results demonstrate that our proposed method achieves state-of-the-art compression efficiency, consistently outperforming competitors across multiple datasets and encoders. In terms of computational cost, our model is exceptionally lightweight, requiring only 7.15 GFLOPs to process a 1080p image, which is merely 14.1% of the cost of recent lightweight network. Our work presents a robust, state-of-the-art solution that excels in both performance and efficiency, supported by a reproducible research platform. The open-source implementation is available at https://github.com/viplab-fudan/FJNDF-Pytorch.
comment: 5 pages, 4 figures