Yg4Arxiv
Computer Vision and Pattern Recognition 196
☆ EventNeuS: 3D Mesh Reconstruction from a Single Event Camera
Event cameras offer a considerable alternative to RGB cameras in many scenarios. While there are recent works on event-based novel-view synthesis, dense 3D mesh reconstruction remains scarcely explored and existing event-based techniques are severely limited in their 3D reconstruction accuracy. To address this limitation, we present EventNeuS, a self-supervised neural model for learning 3D representations from monocular colour event streams. Our approach, for the first time, combines 3D signed distance function and density field learning with event-based supervision. Furthermore, we introduce spherical harmonics encodings into our model for enhanced handling of view-dependent effects. EventNeuS outperforms existing approaches by a significant margin, achieving 34% lower Chamfer distance and 31% lower mean absolute error on average compared to the best previous method.
comment: 13 pages, 10 figures, 3 tables; project page: https://4dqv.mpi-inf.mpg.de/EventNeuS/
☆ PrevizWhiz: Combining Rough 3D Scenes and 2D Video to Guide Generative Video Previsualization
In pre-production, filmmakers and 3D animation experts must rapidly prototype ideas to explore a film's possibilities before fullscale production, yet conventional approaches involve trade-offs in efficiency and expressiveness. Hand-drawn storyboards often lack spatial precision needed for complex cinematography, while 3D previsualization demands expertise and high-quality rigged assets. To address this gap, we present PrevizWhiz, a system that leverages rough 3D scenes in combination with generative image and video models to create stylized video previews. The workflow integrates frame-level image restyling with adjustable resemblance, time-based editing through motion paths or external video inputs, and refinement into high-fidelity video clips. A study with filmmakers demonstrates that our system lowers technical barriers for film-makers, accelerates creative iteration, and effectively bridges the communication gap, while also surfacing challenges of continuity, authorship, and ethical consideration in AI-assisted filmmaking.
comment: 21 pages, 13 figures; accepted and to appear at CHI 2026
☆ AutoFigure: Generating and Refining Publication-Ready Scientific Illustrations ICLR 2026
High-quality scientific illustrations are crucial for effectively communicating complex scientific and technical concepts, yet their manual creation remains a well-recognized bottleneck in both academia and industry. We present FigureBench, the first large-scale benchmark for generating scientific illustrations from long-form scientific texts. It contains 3,300 high-quality scientific text-figure pairs, covering diverse text-to-illustration tasks from scientific papers, surveys, blogs, and textbooks. Moreover, we propose AutoFigure, the first agentic framework that automatically generates high-quality scientific illustrations based on long-form scientific text. Specifically, before rendering the final result, AutoFigure engages in extensive thinking, recombination, and validation to produce a layout that is both structurally sound and aesthetically refined, outputting a scientific illustration that achieves both structural completeness and aesthetic appeal. Leveraging the high-quality data from FigureBench, we conduct extensive experiments to test the performance of AutoFigure against various baseline methods. The results demonstrate that AutoFigure consistently surpasses all baseline methods, producing publication-ready scientific illustrations. The code, dataset and huggingface space are released in https://github.com/ResearAI/AutoFigure.
comment: Accepted at the ICLR 2026
☆ Continuous Control of Editing Models via Adaptive-Origin Guidance
Diffusion-based editing models have emerged as a powerful tool for semantic image and video manipulation. However, existing models lack a mechanism for smoothly controlling the intensity of text-guided edits. In standard text-conditioned generation, Classifier-Free Guidance (CFG) impacts prompt adherence, suggesting it as a potential control for edit intensity in editing models. However, we show that scaling CFG in these models does not produce a smooth transition between the input and the edited result. We attribute this behavior to the unconditional prediction, which serves as the guidance origin and dominates the generation at low guidance scales, while representing an arbitrary manipulation of the input content. To enable continuous control, we introduce Adaptive-Origin Guidance (AdaOr), a method that adjusts this standard guidance origin with an identity-conditioned adaptive origin, using an identity instruction corresponding to the identity manipulation. By interpolating this identity prediction with the standard unconditional prediction according to the edit strength, we ensure a continuous transition from the input to the edited result. We evaluate our method on image and video editing tasks, demonstrating that it provides smoother and more consistent control compared to current slider-based editing approaches. Our method incorporates an identity instruction into the standard training framework, enabling fine-grained control at inference time without per-edit procedure or reliance on specialized datasets.
comment: Project page at https://adaor-paper.github.io/
☆ Deep-learning-based pan-phenomic data reveals the explosive evolution of avian visual disparity
The evolution of biological morphology is critical for understanding the diversity of the natural world, yet traditional analyses often involve subjective biases in the selection and coding of morphological traits. This study employs deep learning techniques, utilising a ResNet34 model capable of recognising over 10,000 bird species, to explore avian morphological evolution. We extract weights from the model's final fully connected (fc) layer and investigate the semantic alignment between the high-dimensional embedding space learned by the model and biological phenotypes. The results demonstrate that the high-dimensional embedding space encodes phenotypic convergence. Subsequently, we assess the morphological disparity among various taxa and evaluate the association between morphological disparity and species richness, demonstrating that species richness is the primary driver of morphospace expansion. Moreover, the disparity-through-time analysis reveals a visual "early burst" after the K-Pg extinction. While mainly aimed at evolutionary analysis, this study also provides insights into the interpretability of Deep Neural Networks. We demonstrate that hierarchical semantic structures (biological taxonomy) emerged in the high-dimensional embedding space despite being trained on flat labels. Furthermore, through adversarial examples, we provide evidence that our model in this task can overcome texture bias and learn holistic shape representations (body plans), challenging the prevailing view that CNNs rely primarily on local textures.
comment: Readers from the field of computer science may be interested in section 2.1, 2.2, 3.1, 4.1, 4.2. These sections discussed the interpretability and representation learning, especially the texture vs shape problem, highlighting our model's ability of overcoming the texture biases and capturing overall shape features. (Although they're put here to prove the biological validity of the model.)
☆ Fast-Slow Efficient Training for Multimodal Large Language Models via Visual Token Pruning
Multimodal Large Language Models (MLLMs) suffer from severe training inefficiency issue, which is associated with their massive model sizes and visual token numbers. Existing efforts in efficient training focus on reducing model sizes or trainable parameters. Inspired by the success of Visual Token Pruning (VTP) in improving inference efficiency, we are exploring another substantial research direction for efficient training by reducing visual tokens. However, applying VTP at the training stage results in a training-inference mismatch: pruning-trained models perform poorly when inferring on non-pruned full visual token sequences. To close this gap, we propose DualSpeed, a fast-slow framework for efficient training of MLLMs. The fast-mode is the primary mode, which incorporates existing VTP methods as plugins to reduce visual tokens, along with a mode isolator to isolate the model's behaviors. The slow-mode is the auxiliary mode, where the model is trained on full visual sequences to retain training-inference consistency. To boost its training, it further leverages self-distillation to learn from the sufficiently trained fast-mode. Together, DualSpeed can achieve both training efficiency and non-degraded performance. Experiments show DualSpeed accelerates the training of LLaVA-1.5 by 2.1$\times$ and LLaVA-NeXT by 4.0$\times$, retaining over 99% performance. Code: https://github.com/dingkun-zhang/DualSpeed
☆ Progressive Checkerboards for Autoregressive Multiscale Image Generation
A key challenge in autoregressive image generation is to efficiently sample independent locations in parallel, while still modeling mutual dependencies with serial conditioning. Some recent works have addressed this by conditioning between scales in a multiscale pyramid. Others have looked at parallelizing samples in a single image using regular partitions or randomized orders. In this work we examine a flexible, fixed ordering based on progressive checkerboards for multiscale autoregressive image generation. Our ordering draws samples in parallel from evenly spaced regions at each scale, maintaining full balance in all levels of a quadtree subdivision at each step. This enables effective conditioning both between and within scales. Intriguingly, we find evidence that in our balanced setting, a wide range of scale-up factors lead to similar results, so long as the total number of serial steps is constant. On class-conditional ImageNet, our method achieves competitive performance compared to recent state-of-the-art autoregressive systems with like model capacity, using fewer sampling steps.
☆ FullStack-Agent: Enhancing Agentic Full-Stack Web Coding via Development-Oriented Testing and Repository Back-Translation
Assisting non-expert users to develop complex interactive websites has become a popular task for LLM-powered code agents. However, existing code agents tend to only generate frontend web pages, masking the lack of real full-stack data processing and storage with fancy visual effects. Notably, constructing production-level full-stack web applications is far more challenging than only generating frontend web pages, demanding careful control of data flow, comprehensive understanding of constantly updating packages and dependencies, and accurate localization of obscure bugs in the codebase. To address these difficulties, we introduce FullStack-Agent, a unified agent system for full-stack agentic coding that consists of three parts: (1) FullStack-Dev, a multi-agent framework with strong planning, code editing, codebase navigation, and bug localization abilities. (2) FullStack-Learn, an innovative data-scaling and self-improving method that back-translates crawled and synthesized website repositories to improve the backbone LLM of FullStack-Dev. (3) FullStack-Bench, a comprehensive benchmark that systematically tests the frontend, backend and database functionalities of the generated website. Our FullStack-Dev outperforms the previous state-of-the-art method by 8.7%, 38.2%, and 15.9% on the frontend, backend, and database test cases respectively. Additionally, FullStack-Learn raises the performance of a 30B model by 9.7%, 9.5%, and 2.8% on the three sets of test cases through self-improvement, demonstrating the effectiveness of our approach. The code is released at https://github.com/mnluzimu/FullStack-Agent.
☆ 3D-Aware Implicit Motion Control for View-Adaptive Human Video Generation
Existing methods for human motion control in video generation typically rely on either 2D poses or explicit 3D parametric models (e.g., SMPL) as control signals. However, 2D poses rigidly bind motion to the driving viewpoint, precluding novel-view synthesis. Explicit 3D models, though structurally informative, suffer from inherent inaccuracies (e.g., depth ambiguity and inaccurate dynamics) which, when used as a strong constraint, override the powerful intrinsic 3D awareness of large-scale video generators. In this work, we revisit motion control from a 3D-aware perspective, advocating for an implicit, view-agnostic motion representation that naturally aligns with the generator's spatial priors rather than depending on externally reconstructed constraints. We introduce 3DiMo, which jointly trains a motion encoder with a pretrained video generator to distill driving frames into compact, view-agnostic motion tokens, injected semantically via cross-attention. To foster 3D awareness, we train with view-rich supervision (i.e., single-view, multi-view, and moving-camera videos), forcing motion consistency across diverse viewpoints. Additionally, we use auxiliary geometric supervision that leverages SMPL only for early initialization and is annealed to zero, enabling the model to transition from external 3D guidance to learning genuine 3D spatial motion understanding from the data and the generator's priors. Experiments confirm that 3DiMo faithfully reproduces driving motions with flexible, text-driven camera control, significantly surpassing existing methods in both motion fidelity and visual quality.
comment: Project Page: https://hjrphoebus.github.io/3DiMo/
☆ BridgeV2W: Bridging Video Generation Models to Embodied World Models via Embodiment Masks
Embodied world models have emerged as a promising paradigm in robotics, most of which leverage large-scale Internet videos or pretrained video generation models to enrich visual and motion priors. However, they still face key challenges: a misalignment between coordinate-space actions and pixel-space videos, sensitivity to camera viewpoint, and non-unified architectures across embodiments. To this end, we present BridgeV2W, which converts coordinate-space actions into pixel-aligned embodiment masks rendered from the URDF and camera parameters. These masks are then injected into a pretrained video generation model via a ControlNet-style pathway, which aligns the action control signals with predicted videos, adds view-specific conditioning to accommodate camera viewpoints, and yields a unified world model architecture across embodiments. To mitigate overfitting to static backgrounds, BridgeV2W further introduces a flow-based motion loss that focuses on learning dynamic and task-relevant regions. Experiments on single-arm (DROID) and dual-arm (AgiBot-G1) datasets, covering diverse and challenging conditions with unseen viewpoints and scenes, show that BridgeV2W improves video generation quality compared to prior state-of-the-art methods. We further demonstrate the potential of BridgeV2W on downstream real-world tasks, including policy evaluation and goal-conditioned planning. More results can be found on our project website at https://BridgeV2W.github.io .
☆ From Pre- to Intra-operative MRI: Predicting Brain Shift in Temporal Lobe Resection for Epilepsy Surgery
Introduction: In neurosurgery, image-guided Neurosurgery Systems (IGNS) highly rely on preoperative brain magnetic resonance images (MRI) to assist surgeons in locating surgical targets and determining surgical paths. However, brain shift invalidates the preoperative MRI after dural opening. Updated intraoperative brain MRI with brain shift compensation is crucial for enhancing the precision of neuronavigation systems and ensuring the optimal outcome of surgical interventions. Methodology: We propose NeuralShift, a U-Net-based model that predicts brain shift entirely from pre-operative MRI for patients undergoing temporal lobe resection. We evaluated our results using Target Registration Errors (TREs) computed on anatomical landmarks located on the resection side and along the midline, and DICE scores comparing predicted intraoperative masks with masks derived from intraoperative MRI. Results: Our experimental results show that our model can predict the global deformation of the brain (DICE of 0.97) with accurate local displacements (achieve landmark TRE as low as 1.12 mm), compensating for large brain shifts during temporal lobe removal neurosurgery. Conclusion: Our proposed model is capable of predicting the global deformation of the brain during temporal lobe resection using only preoperative images, providing potential opportunities to the surgical team to increase safety and efficiency of neurosurgery and better outcomes to patients. Our contributions will be publicly available after acceptance in https://github.com/SurgicalDataScienceKCL/NeuralShift.
☆ QVLA: Not All Channels Are Equal in Vision-Language-Action Model's Quantization ICLR2026
The advent of Vision-Language-Action (VLA) models represents a significant leap for embodied intelligence, yet their immense computational demands critically hinder deployment on resource-constrained robotic platforms. Intuitively, low-bit quantization is a prevalent and preferred technique for large-scale model compression. However, we find that a systematic analysis of VLA model's quantization is fundamentally lacking. We argue that naively applying uniform-bit quantization from Large Language Models (LLMs) to robotics is flawed, as these methods prioritize passive data fidelity while ignoring how minor action deviations compound into catastrophic task failures. To bridge this gap, we introduce QVLA, the first action-centric quantization framework specifically designed for embodied control. In a sharp departure from the rigid, uniform-bit quantization of LLM-based methods, QVLA introduces a highly granular, channel-wise bit allocation strategy. Its core mechanism is to directly measure the final action-space sensitivity when quantizing each individual channel to various bit-widths. This process yields a precise, per-channel importance metric that guides a global optimization, which elegantly unifies quantization and pruning (0-bit) into a single, cohesive framework. Extensive evaluations on different baselines demonstrate the superiority of our approach. In the LIBERO, the quantization version of OpenVLA-OFT with our method requires only 29.2% of the original model's VRAM while maintaining 98.9% of its original performance and achieving a 1.49x speedup. This translates to a 22.6% performance improvement over the LLM-derived method SmoothQuant. Our work establishes a new, principled foundation for compressing VLA models in robotics, paving the way for deploying powerful, large-scale models on real-world hardware. Code will be released.
comment: ICLR2026
☆ FOVI: A biologically-inspired foveated interface for deep vision models
Human vision is foveated, with variable resolution peaking at the center of a large field of view; this reflects an efficient trade-off for active sensing, allowing eye-movements to bring different parts of the world into focus with other parts of the world in context. In contrast, most computer vision systems encode the visual world at a uniform resolution, raising challenges for processing full-field high-resolution images efficiently. We propose a foveated vision interface (FOVI) based on the human retina and primary visual cortex, that reformats a variable-resolution retina-like sensor array into a uniformly dense, V1-like sensor manifold. Receptive fields are defined as k-nearest-neighborhoods (kNNs) on the sensor manifold, enabling kNN-convolution via a novel kernel mapping technique. We demonstrate two use cases: (1) an end-to-end kNN-convolutional architecture, and (2) a foveated adaptation of the foundational DINOv3 ViT model, leveraging low-rank adaptation (LoRA). These models provide competitive performance at a fraction of the computational cost of non-foveated baselines, opening pathways for efficient and scalable active sensing for high-resolution egocentric vision. Code and pre-trained models are available at https://github.com/nblauch/fovi and https://huggingface.co/fovi-pytorch.
☆ RAWDet-7: A Multi-Scenario Benchmark for Object Detection and Description on Quantized RAW Images
Most vision models are trained on RGB images processed through ISP pipelines optimized for human perception, which can discard sensor-level information useful for machine reasoning. RAW images preserve unprocessed scene data, enabling models to leverage richer cues for both object detection and object description, capturing fine-grained details, spatial relationships, and contextual information often lost in processed images. To support research in this domain, we introduce RAWDet-7, a large-scale dataset of ~25k training and 7.6k test RAW images collected across diverse cameras, lighting conditions, and environments, densely annotated for seven object categories following MS-COCO and LVIS conventions. In addition, we provide object-level descriptions derived from the corresponding high-resolution sRGB images, facilitating the study of object-level information preservation under RAW image processing and low-bit quantization. The dataset allows evaluation under simulated 4-bit, 6-bit, and 8-bit quantization, reflecting realistic sensor constraints, and provides a benchmark for studying detection performance, description quality & detail, and generalization in low-bit RAW image processing. Dataset & code upon acceptance.
comment: *Equal Contribution
☆ Test-Time Conditioning with Representation-Aligned Visual Features
While representation alignment with self-supervised models has been shown to improve diffusion model training, its potential for enhancing inference-time conditioning remains largely unexplored. We introduce Representation-Aligned Guidance (REPA-G), a framework that leverages these aligned representations, with rich semantic properties, to enable test-time conditioning from features in generation. By optimizing a similarity objective (the potential) at inference, we steer the denoising process toward a conditioned representation extracted from a pre-trained feature extractor. Our method provides versatile control at multiple scales, ranging from fine-grained texture matching via single patches to broad semantic guidance using global image feature tokens. We further extend this to multi-concept composition, allowing for the faithful combination of distinct concepts. REPA-G operates entirely at inference time, offering a flexible and precise alternative to often ambiguous text prompts or coarse class labels. We theoretically justify how this guidance enables sampling from the potential-induced tilted distribution. Quantitative results on ImageNet and COCO demonstrate that our approach achieves high-quality, diverse generations. Code is available at https://github.com/valeoai/REPA-G.
☆ Zero-shot large vision-language model prompting for automated bone identification in paleoradiology x-ray archives
Paleoradiology, the use of modern imaging technologies to study archaeological and anthropological remains, offers new windows on millennial scale patterns of human health. Unfortunately, the radiographs collected during field campaigns are heterogeneous: bones are disarticulated, positioning is ad hoc, and laterality markers are often absent. Additionally, factors such as age at death, age of bone, sex, and imaging equipment introduce high variability. Thus, content navigation, such as identifying a subset of images with a specific projection view, can be time consuming and difficult, making efficient triaging a bottleneck for expert analysis. We report a zero shot prompting strategy that leverages a state of the art Large Vision Language Model (LVLM) to automatically identify the main bone, projection view, and laterality in such images. Our pipeline converts raw DICOM files to bone windowed PNGs, submits them to the LVLM with a carefully engineered prompt, and receives structured JSON outputs, which are extracted and formatted onto a spreadsheet in preparation for validation. On a random sample of 100 images reviewed by an expert board certified paleoradiologist, the system achieved 92% main bone accuracy, 80% projection view accuracy, and 100% laterality accuracy, with low or medium confidence flags for ambiguous cases. These results suggest that LVLMs can substantially accelerate code word development for large paleoradiology datasets, allowing for efficient content navigation in future anthropology workflows.
☆ See-through: Single-image Layer Decomposition for Anime Characters
We introduce a framework that automates the transformation of static anime illustrations into manipulatable 2.5D models. Current professional workflows require tedious manual segmentation and the artistic ``hallucination'' of occluded regions to enable motion. Our approach overcomes this by decomposing a single image into fully inpainted, semantically distinct layers with inferred drawing orders. To address the scarcity of training data, we introduce a scalable engine that bootstraps high-quality supervision from commercial Live2D models, capturing pixel-perfect semantics and hidden geometry. Our methodology couples a diffusion-based Body Part Consistency Module, which enforces global geometric coherence, with a pixel-level pseudo-depth inference mechanism. This combination resolves the intricate stratification of anime characters, e.g., interleaving hair strands, allowing for dynamic layer reconstruction. We demonstrate that our approach yields high-fidelity, manipulatable models suitable for professional, real-time animation applications.
comment: 23 pages, 20 figures, preprint version only
☆ LIVE: Long-horizon Interactive Video World Modeling
Autoregressive video world models predict future visual observations conditioned on actions. While effective over short horizons, these models often struggle with long-horizon generation, as small prediction errors accumulate over time. Prior methods alleviate this by introducing pre-trained teacher models and sequence-level distribution matching, which incur additional computational cost and fail to prevent error propagation beyond the training horizon. In this work, we propose LIVE, a Long-horizon Interactive Video world modEl that enforces bounded error accumulation via a novel cycle-consistency objective, thereby eliminating the need for teacher-based distillation. Specifically, LIVE first performs a forward rollout from ground-truth frames and then applies a reverse generation process to reconstruct the initial state. The diffusion loss is subsequently computed on the reconstructed terminal state, providing an explicit constraint on long-horizon error propagation. Moreover, we provide an unified view that encompasses different approaches and introduce progressive training curriculum to stabilize training. Experiments demonstrate that LIVE achieves state-of-the-art performance on long-horizon benchmarks, generating stable, high-quality videos far beyond training rollout lengths.
comment: 18 pages, 22 figures
☆ Edge-Optimized Vision-Language Models for Underground Infrastructure Assessment
Autonomous inspection of underground infrastructure, such as sewer and culvert systems, is critical to public safety and urban sustainability. Although robotic platforms equipped with visual sensors can efficiently detect structural deficiencies, the automated generation of human-readable summaries from these detections remains a significant challenge, especially on resource-constrained edge devices. This paper presents a novel two-stage pipeline for end-to-end summarization of underground deficiencies, combining our lightweight RAPID-SCAN segmentation model with a fine-tuned Vision-Language Model (VLM) deployed on an edge computing platform. The first stage employs RAPID-SCAN (Resource-Aware Pipeline Inspection and Defect Segmentation using Compact Adaptive Network), achieving 0.834 F1-score with only 0.64M parameters for efficient defect segmentation. The second stage utilizes a fine-tuned Phi-3.5 VLM that generates concise, domain-specific summaries in natural language from the segmentation outputs. We introduce a curated dataset of inspection images with manually verified descriptions for VLM fine-tuning and evaluation. To enable real-time performance, we employ post-training quantization with hardware-specific optimization, achieving significant reductions in model size and inference latency without compromising summarization quality. We deploy and evaluate our complete pipeline on a mobile robotic platform, demonstrating its effectiveness in real-world inspection scenarios. Our results show the potential of edge-deployable integrated AI systems to bridge the gap between automated defect detection and actionable insights for infrastructure maintenance, paving the way for more scalable and autonomous inspection solutions.
☆ RegionReasoner: Region-Grounded Multi-Round Visual Reasoning ICLR 2026
Large vision-language models have achieved remarkable progress in visual reasoning, yet most existing systems rely on single-step or text-only reasoning, limiting their ability to iteratively refine understanding across multiple visual contexts. To address this limitation, we introduce a new multi-round visual reasoning benchmark with training and test sets spanning both detection and segmentation tasks, enabling systematic evaluation under iterative reasoning scenarios. We further propose RegionReasoner, a reinforcement learning framework that enforces grounded reasoning by requiring each reasoning trace to explicitly cite the corresponding reference bounding boxes, while maintaining semantic coherence via a global-local consistency reward. This reward extracts key objects and nouns from both global scene captions and region-level captions, aligning them with the reasoning trace to ensure consistency across reasoning steps. RegionReasoner is optimized with structured rewards combining grounding fidelity and global-local semantic alignment. Experiments on detection and segmentation tasks show that RegionReasoner-7B, together with our newly introduced benchmark RegionDial-Bench, considerably improves multi-round reasoning accuracy, spatial grounding precision, and global-local consistency, establishing a strong baseline for this emerging research direction.
comment: Accepted by ICLR 2026
☆ Referring Industrial Anomaly Segmentation
Industrial Anomaly Detection (IAD) is vital for manufacturing, yet traditional methods face significant challenges: unsupervised approaches yield rough localizations requiring manual thresholds, while supervised methods overfit due to scarce, imbalanced data. Both suffer from the "One Anomaly Class, One Model" limitation. To address this, we propose Referring Industrial Anomaly Segmentation (RIAS), a paradigm leveraging language to guide detection. RIAS generates precise masks from text descriptions without manual thresholds and uses universal prompts to detect diverse anomalies with a single model. We introduce the MVTec-Ref dataset to support this, designed with diverse referring expressions and focusing on anomaly patterns, notably with 95% small anomalies. We also propose the Dual Query Token with Mask Group Transformer (DQFormer) benchmark, enhanced by Language-Gated Multi-Level Aggregation (LMA) to improve multi-scale segmentation. Unlike traditional methods using redundant queries, DQFormer employs only "Anomaly" and "Background" tokens for efficient visual-textual integration. Experiments demonstrate RIAS's effectiveness in advancing IAD toward open-set capabilities. Code: https://github.com/swagger-coder/RIAS-MVTec-Ref.
☆ Efficient Sequential Neural Network with Spatial-Temporal Attention and Linear LSTM for Robust Lane Detection Using Multi-Frame Images IEEE
Lane detection is a crucial perception task for all levels of automated vehicles (AVs) and Advanced Driver Assistance Systems, particularly in mixed-traffic environments where AVs must interact with human-driven vehicles (HDVs) and challenging traffic scenarios. Current methods lack versatility in delivering accurate, robust, and real-time compatible lane detection, especially vision-based methods often neglect critical regions of the image and their spatial-temporal (ST) salience, leading to poor performance in difficult circumstances such as serious occlusion and dazzle lighting. This study introduces a novel sequential neural network model with a spatial-temporal attention mechanism to focus on key features of lane lines and exploit salient ST correlations among continuous image frames. The proposed model, built on a standard encoder-decoder structure and common neural network backbones, is trained and evaluated on three large-scale open-source datasets. Extensive experiments demonstrate the strength and robustness of the proposed model, outperforming state-of-the-art methods in various testing scenarios. Furthermore, with the ST attention mechanism, the developed sequential neural network models exhibit fewer parameters and reduced Multiply-Accumulate Operations (MACs) compared to baseline sequential models, highlighting their computational efficiency. Relevant data, code, and models are released at https://doi.org/10.4121/4619cab6-ae4a-40d5-af77-582a77f3d821.
comment: 14 pages, 9 figures, under review by IEEE T-ITS
☆ MVP-LAM: Learning Action-Centric Latent Action via Cross-Viewpoint Reconstruction
Learning \emph{latent actions} from diverse human videos enables scaling robot learning beyond embodiment-specific robot datasets, and these latent actions have recently been used as pseudo-action labels for vision-language-action (VLA) model pretraining. To make VLA pretraining effective, latent actions should contain information about the underlying agent's actions despite the absence of ground-truth labels. We propose \textbf{M}ulti-\textbf{V}iew\textbf{P}oint \textbf{L}atent \textbf{A}ction \textbf{M}odel (\textbf{MVP-LAM}), which learns discrete latent actions that are highly informative about ground-truth actions from time-synchronized multi-view videos. MVP-LAM trains latent actions with a \emph{cross-viewpoint reconstruction} objective, so that a latent action inferred from one view must explain the future in another view, reducing reliance on viewpoint-specific cues. On Bridge V2, MVP-LAM produces more action-centric latent actions, achieving higher mutual information with ground-truth actions and improved action prediction, including under out-of-distribution evaluation. Finally, pretraining VLAs with MVP-LAM latent actions improves downstream manipulation performance on the SIMPLER and LIBERO-Long benchmarks.
☆ MM-SCALE: Grounded Multimodal Moral Reasoning via Scalar Judgment and Listwise Alignment
Vision-Language Models (VLMs) continue to struggle to make morally salient judgments in multimodal and socially ambiguous contexts. Prior works typically rely on binary or pairwise supervision, which often fail to capture the continuous and pluralistic nature of human moral reasoning. We present MM-SCALE (Multimodal Moral Scale), a large-scale dataset for aligning VLMs with human moral preferences through 5-point scalar ratings and explicit modality grounding. Each image-scenario pair is annotated with moral acceptability scores and grounded reasoning labels by humans using an interface we tailored for data collection, enabling listwise preference optimization over ranked scenario sets. By moving from discrete to scalar supervision, our framework provides richer alignment signals and finer calibration of multimodal moral reasoning. Experiments show that VLMs fine-tuned on MM-SCALE achieve higher ranking fidelity and more stable safety calibration than those trained with binary signals.
☆ SPWOOD: Sparse Partial Weakly-Supervised Oriented Object Detection ICLR 2026
A consistent trend throughout the research of oriented object detection has been the pursuit of maintaining comparable performance with fewer and weaker annotations. This is particularly crucial in the remote sensing domain, where the dense object distribution and a wide variety of categories contribute to prohibitively high costs. Based on the supervision level, existing oriented object detection algorithms can be broadly grouped into fully supervised, semi-supervised, and weakly supervised methods. Within the scope of this work, we further categorize them to include sparsely supervised and partially weakly-supervised methods. To address the challenges of large-scale labeling, we introduce the first Sparse Partial Weakly-Supervised Oriented Object Detection framework, designed to efficiently leverage only a few sparse weakly-labeled data and plenty of unlabeled data. Our framework incorporates three key innovations: (1) We design a Sparse-annotation-Orientation-and-Scale-aware Student (SOS-Student) model to separate unlabeled objects from the background in a sparsely-labeled setting, and learn orientation and scale information from orientation-agnostic or scale-agnostic weak annotations. (2) We construct a novel Multi-level Pseudo-label Filtering strategy that leverages the distribution of model predictions, which is informed by the model's multi-layer predictions. (3) We propose a unique sparse partitioning approach, ensuring equal treatment for each category. Extensive experiments on the DOTA and DIOR datasets show that our framework achieves a significant performance gain over traditional oriented object detection methods mentioned above, offering a highly cost-effective solution. Our code is publicly available at https://github.com/VisionXLab/SPWOOD.
comment: The Fourteenth International Conference on Learning Representations (ICLR 2026)
☆ Multi-Objective Optimization for Synthetic-to-Real Style Transfer
Semantic segmentation networks require large amounts of pixel-level annotated data, which are costly to obtain for real-world images. Computer graphics engines can generate synthetic images alongside their ground-truth annotations. However, models trained on such images can perform poorly on real images due to the domain gap between real and synthetic images. Style transfer methods can reduce this difference by applying a realistic style to synthetic images. Choosing effective data transformations and their sequence is difficult due to the large combinatorial search space of style transfer operators. Using multi-objective genetic algorithms, we optimize pipelines to balance structural coherence and style similarity to target domains. We study the use of paired-image metrics on individual image samples during evolution to enable rapid pipeline evaluation, as opposed to standard distributional metrics that require the generation of many images. After optimization, we evaluate the resulting Pareto front using distributional metrics and segmentation performance. We apply this approach to standard datasets in synthetic-to-real domain adaptation: from the video game GTA5 to real image datasets Cityscapes and ACDC, focusing on adverse conditions. Results demonstrate that evolutionary algorithms can propose diverse augmentation pipelines adapted to different objectives. The contribution of this work is the formulation of style transfer as a sequencing problem suitable for evolutionary optimization and the study of efficient metrics that enable feasible search in this space. The source code is available at: https://github.com/echigot/MOOSS.
comment: Accepted in International Conference on the Applications of Evolutionary Computation (Part of EvoStar), April 2026 (EvoApplications 2026)
☆ Quasi-multimodal-based pathophysiological feature learning for retinal disease diagnosis
Retinal diseases spanning a broad spectrum can be effectively identified and diagnosed using complementary signals from multimodal data. However, multimodal diagnosis in ophthalmic practice is typically challenged in terms of data heterogeneity, potential invasiveness, registration complexity, and so on. As such, a unified framework that integrates multimodal data synthesis and fusion is proposed for retinal disease classification and grading. Specifically, the synthesized multimodal data incorporates fundus fluorescein angiography (FFA), multispectral imaging (MSI), and saliency maps that emphasize latent lesions as well as optic disc/cup regions. Parallel models are independently trained to learn modality-specific representations that capture cross-pathophysiological signatures. These features are then adaptively calibrated within and across modalities to perform information pruning and flexible integration according to downstream tasks. The proposed learning system is thoroughly interpreted through visualizations in both image and feature spaces. Extensive experiments on two public datasets demonstrated the superiority of our approach over state-of-the-art ones in the tasks of multi-label classification (F1-score: 0.683, AUC: 0.953) and diabetic retinopathy grading (Accuracy:0.842, Kappa: 0.861). This work not only enhances the accuracy and efficiency of retinal disease screening but also offers a scalable framework for data augmentation across various medical imaging modalities.
☆ KTV: Keyframes and Key Tokens Selection for Efficient Training-Free Video LLMs
Training-free video understanding leverages the strong image comprehension capabilities of pre-trained vision language models (VLMs) by treating a video as a sequence of static frames, thus obviating the need for costly video-specific training. However, this paradigm often suffers from severe visual redundancy and high computational overhead, especially when processing long videos. Crucially, existing keyframe selection strategies, especially those based on CLIP similarity, are prone to biases and may inadvertently overlook critical frames, resulting in suboptimal video comprehension. To address these significant challenges, we propose \textbf{KTV}, a novel two-stage framework for efficient and effective training-free video understanding. In the first stage, KTV performs question-agnostic keyframe selection by clustering frame-level visual features, yielding a compact, diverse, and representative subset of frames that mitigates temporal redundancy. In the second stage, KTV applies key visual token selection, pruning redundant or less informative tokens from each selected keyframe based on token importance and redundancy, which significantly reduces the number of tokens fed into the LLM. Extensive experiments on the Multiple-Choice VideoQA task demonstrate that KTV outperforms state-of-the-art training-free baselines while using significantly fewer visual tokens, \emph{e.g.}, only 504 visual tokens for a 60-min video with 10800 frames, achieving $44.8\%$ accuracy on the MLVU-Test benchmark. In particular, KTV also exceeds several training-based approaches on certain benchmarks.
A Lightweight Library for Energy-Based Joint-Embedding Predictive Architectures
We present EB-JEPA, an open-source library for learning representations and world models using Joint-Embedding Predictive Architectures (JEPAs). JEPAs learn to predict in representation space rather than pixel space, avoiding the pitfalls of generative modeling while capturing semantically meaningful features suitable for downstream tasks. Our library provides modular, self-contained implementations that illustrate how representation learning techniques developed for image-level self-supervised learning can transfer to video, where temporal dynamics add complexity, and ultimately to action-conditioned world models, where the model must additionally learn to predict the effects of control inputs. Each example is designed for single-GPU training within a few hours, making energy-based self-supervised learning accessible for research and education. We provide ablations of JEA components on CIFAR-10. Probing these representations yields 91% accuracy, indicating that the model learns useful features. Extending to video, we include a multi-step prediction example on Moving MNIST that demonstrates how the same principles scale to temporal modeling. Finally, we show how these representations can drive action-conditioned world models, achieving a 97% planning success rate on the Two Rooms navigation task. Comprehensive ablations reveal the critical importance of each regularization component for preventing representation collapse. Code is available at https://github.com/facebookresearch/eb_jepa.
☆ Refer-Agent: A Collaborative Multi-Agent System with Reasoning and Reflection for Referring Video Object Segmentation
Referring Video Object Segmentation (RVOS) aims to segment objects in videos based on textual queries. Current methods mainly rely on large-scale supervised fine-tuning (SFT) of Multi-modal Large Language Models (MLLMs). However, this paradigm suffers from heavy data dependence and limited scalability against the rapid evolution of MLLMs. Although recent zero-shot approaches offer a flexible alternative, their performance remains significantly behind SFT-based methods, due to the straightforward workflow designs. To address these limitations, we propose \textbf{Refer-Agent}, a collaborative multi-agent system with alternating reasoning-reflection mechanisms. This system decomposes RVOS into step-by-step reasoning process. During reasoning, we introduce a Coarse-to-Fine frame selection strategy to ensure the frame diversity and textual relevance, along with a Dynamic Focus Layout that adaptively adjusts the agent's visual focus. Furthermore, we propose a Chain-of-Reflection mechanism, which employs a Questioner-Responder pair to generate a self-reflection chain, enabling the system to verify intermediate results and generates feedback for next-round reasoning refinement. Extensive experiments on five challenging benchmarks demonstrate that Refer-Agent significantly outperforms state-of-the-art methods, including both SFT-based models and zero-shot approaches. Moreover, Refer-Agent is flexible and enables fast integration of new MLLMs without any additional fine-tuning costs. Code will be released.
☆ TIPS Over Tricks: Simple Prompts for Effective Zero-shot Anomaly Detection ICASSP'26
Anomaly detection identifies departures from expected behavior in safety-critical settings. When target-domain normal data are unavailable, zero-shot anomaly detection (ZSAD) leverages vision-language models (VLMs). However, CLIP's coarse image-text alignment limits both localization and detection due to (i) spatial misalignment and (ii) weak sensitivity to fine-grained anomalies; prior work compensates with complex auxiliary modules yet largely overlooks the choice of backbone. We revisit the backbone and use TIPS-a VLM trained with spatially aware objectives. While TIPS alleviates CLIP's issues, it exposes a distributional gap between global and local features. We address this with decoupled prompts-fixed for image-level detection and learnable for pixel-level localization-and by injecting local evidence into the global score. Without CLIP-specific tricks, our TIPS-based pipeline improves image-level performance by 1.1-3.9% and pixel-level by 1.5-6.9% across seven industrial datasets, delivering strong generalization with a lean architecture. Code is available at github.com/AlirezaSalehy/Tipsomaly.
comment: This is the extended version of the paper accepted in ICASSP'26, which will be publicly available in May. Authors' contributions may vary among the versions
☆ High-Resolution Underwater Camouflaged Object Detection: GBU-UCOD Dataset and Topology-Aware and Frequency-Decoupled Networks
Underwater Camouflaged Object Detection (UCOD) is a challenging task due to the extreme visual similarity between targets and backgrounds across varying marine depths. Existing methods often struggle with topological fragmentation of slender creatures in the deep sea and the subtle feature extraction of transparent organisms. In this paper, we propose DeepTopo-Net, a novel framework that integrates topology-aware modeling with frequency-decoupled perception. To address physical degradation, we design the Water-Conditioned Adaptive Perceptor (WCAP), which employs Riemannian metric tensors to dynamically deform convolutional sampling fields. Furthermore, the Abyssal-Topology Refinement Module (ATRM) is developed to maintain the structural connectivity of spindly targets through skeletal priors. Specifically, we first introduce GBU-UCOD, the first high-resolution (2K) benchmark tailored for marine vertical zonation, filling the data gap for hadal and abyssal zones. Extensive experiments on MAS3K, RMAS, and our proposed GBU-UCOD datasets demonstrate that DeepTopo-Net achieves state-of-the-art performance, particularly in preserving the morphological integrity of complex underwater patterns. The datasets and codes will be released at https://github.com/Wuwenji18/GBU-UCOD.
☆ SlowFocus: Enhancing Fine-grained Temporal Understanding in Video LLM NeurIPS 2024
Large language models (LLMs) have demonstrated exceptional capabilities in text understanding, which has paved the way for their expansion into video LLMs (Vid-LLMs) to analyze video data. However, current Vid-LLMs struggle to simultaneously retain high-quality frame-level semantic information (i.e., a sufficient number of tokens per frame) and comprehensive video-level temporal information (i.e., an adequate number of sampled frames per video). This limitation hinders the advancement of Vid-LLMs towards fine-grained video understanding. To address this issue, we introduce the SlowFocus mechanism, which significantly enhances the equivalent sampling frequency without compromising the quality of frame-level visual tokens. SlowFocus begins by identifying the query-related temporal segment based on the posed question, then performs dense sampling on this segment to extract local high-frequency features. A multi-frequency mixing attention module is further leveraged to aggregate these local high-frequency details with global low-frequency contexts for enhanced temporal comprehension. Additionally, to tailor Vid-LLMs to this innovative mechanism, we introduce a set of training strategies aimed at bolstering both temporal grounding and detailed temporal reasoning capabilities. Furthermore, we establish FineAction-CGR, a benchmark specifically devised to assess the ability of Vid-LLMs to process fine-grained temporal understanding tasks. Comprehensive experiments demonstrate the superiority of our mechanism across both existing public video understanding benchmarks and our proposed FineAction-CGR.
comment: NeurIPS 2024
☆ ELIQ: A Label-Free Framework for Quality Assessment of Evolving AI-Generated Images
Generative text-to-image models are advancing at an unprecedented pace, continuously shifting the perceptual quality ceiling and rendering previously collected labels unreliable for newer generations. To address this, we present ELIQ, a Label-free Framework for Quality Assessment of Evolving AI-generated Images. Specifically, ELIQ focuses on visual quality and prompt-image alignment, automatically constructs positive and aspect-specific negative pairs to cover both conventional distortions and AIGC-specific distortion modes, enabling transferable supervision without human annotations. Building on these pairs, ELIQ adapts a pre-trained multimodal model into a quality-aware critic via instruction tuning and predicts two-dimensional quality using lightweight gated fusion and a Quality Query Transformer. Experiments across multiple benchmarks demonstrate that ELIQ consistently outperforms existing label-free methods, generalizes from AI-generated content (AIGC) to user-generated content (UGC) scenarios without modification, and paves the way for scalable and label-free quality assessment under continuously evolving generative models. The code will be released upon publication.
☆ Cut to the Mix: Simple Data Augmentation Outperforms Elaborate Ones in Limited Organ Segmentation Datasets MICCAI 2024
Multi-organ segmentation is a widely applied clinical routine and automated organ segmentation tools dramatically improve the pipeline of the radiologists. Recently, deep learning (DL) based segmentation models have shown the capacity to accomplish such a task. However, the training of the segmentation networks requires large amount of data with manual annotations, which is a major concern due to the data scarcity from clinic. Working with limited data is still common for researches on novel imaging modalities. To enhance the effectiveness of DL models trained with limited data, data augmentation (DA) is a crucial regularization technique. Traditional DA (TDA) strategies focus on basic intra-image operations, i.e. generating images with different orientations and intensity distributions. In contrast, the interimage and object-level DA operations are able to create new images from separate individuals. However, such DA strategies are not well explored on the task of multi-organ segmentation. In this paper, we investigated four possible inter-image DA strategies: CutMix, CarveMix, ObjectAug and AnatoMix, on two organ segmentation datasets. The result shows that CutMix, CarveMix and AnatoMix can improve the average dice score by 4.9, 2.0 and 1.9, compared with the state-of-the-art nnUNet without DA strategies. These results can be further improved by adding TDA strategies. It is revealed in our experiments that Cut-Mix is a robust but simple DA strategy to drive up the segmentation performance for multi-organ segmentation, even when CutMix produces intuitively 'wrong' images. Our implementation is publicly available for future benchmarks.
comment: Accepted at MICCAI 2024
☆ AffordanceGrasp-R1:Leveraging Reasoning-Based Affordance Segmentation with Reinforcement Learning for Robotic Grasping
We introduce AffordanceGrasp-R1, a reasoning-driven affordance segmentation framework for robotic grasping that combines a chain-of-thought (CoT) cold-start strategy with reinforcement learning to enhance deduction and spatial grounding. In addition, we redesign the grasping pipeline to be more context-aware by generating grasp candidates from the global scene point cloud and subsequently filtering them using instruction-conditioned affordance masks. Extensive experiments demonstrate that AffordanceGrasp-R1 consistently outperforms state-of-the-art (SOTA) methods on benchmark datasets, and real-world robotic grasping evaluations further validate its robustness and generalization under complex language-conditioned manipulation scenarios.
comment: Preprint version
☆ Constrained Dynamic Gaussian Splatting
While Dynamic Gaussian Splatting enables high-fidelity 4D reconstruction, its deployment is severely hindered by a fundamental dilemma: unconstrained densification leads to excessive memory consumption incompatible with edge devices, whereas heuristic pruning fails to achieve optimal rendering quality under preset Gaussian budgets. In this work, we propose Constrained Dynamic Gaussian Splatting (CDGS), a novel framework that formulates dynamic scene reconstruction as a budget-constrained optimization problem to enforce a strict, user-defined Gaussian budget during training. Our key insight is to introduce a differentiable budget controller as the core optimization driver. Guided by a multi-modal unified importance score, this controller fuses geometric, motion, and perceptual cues for precise capacity regulation. To maximize the utility of this fixed budget, we further decouple the optimization of static and dynamic elements, employing an adaptive allocation mechanism that dynamically distributes capacity based on motion complexity. Furthermore, we implement a three-phase training strategy to seamlessly integrate these constraints, ensuring precise adherence to the target count. Coupled with a dual-mode hybrid compression scheme, CDGS not only strictly adheres to hardware constraints (error < 2%}) but also pushes the Pareto frontier of rate-distortion performance. Extensive experiments demonstrate that CDGS delivers optimal rendering quality under varying capacity limits, achieving over 3x compression compared to state-of-the-art methods.
☆ PnP-U3D: Plug-and-Play 3D Framework Bridging Autoregression and Diffusion for Unified Understanding and Generation
The rapid progress of large multimodal models has inspired efforts toward unified frameworks that couple understanding and generation. While such paradigms have shown remarkable success in 2D, extending them to 3D remains largely underexplored. Existing attempts to unify 3D tasks under a single autoregressive (AR) paradigm lead to significant performance degradation due to forced signal quantization and prohibitive training cost. Our key insight is that the essential challenge lies not in enforcing a unified autoregressive paradigm, but in enabling effective information interaction between generation and understanding while minimally compromising their inherent capabilities and leveraging pretrained models to reduce training cost. Guided by this perspective, we present the first unified framework for 3D understanding and generation that combines autoregression with diffusion. Specifically, we adopt an autoregressive next-token prediction paradigm for 3D understanding, and a continuous diffusion paradigm for 3D generation. A lightweight transformer bridges the feature space of large language models and the conditional space of 3D diffusion models, enabling effective cross-modal information exchange while preserving the priors learned by standalone models. Extensive experiments demonstrate that our framework achieves state-of-the-art performance across diverse 3D understanding and generation benchmarks, while also excelling in 3D editing tasks. These results highlight the potential of unified AR+diffusion models as a promising direction for building more general-purpose 3D intelligence.
comment: Yongwei Chen and Tianyi Wei contributed equally. Project page: https://cyw-3d.github.io/PnP-U3D/
☆ Robust Representation Learning in Masked Autoencoders
Masked Autoencoders (MAEs) achieve impressive performance in image classification tasks, yet the internal representations they learn remain less understood. This work started as an attempt to understand the strong downstream classification performance of MAE. In this process we discover that representations learned with the pretraining and fine-tuning, are quite robust - demonstrating a good classification performance in the presence of degradations, such as blur and occlusions. Through layer-wise analysis of token embeddings, we show that pretrained MAE progressively constructs its latent space in a class-aware manner across network depth: embeddings from different classes lie in subspaces that become increasingly separable. We further observe that MAE exhibits early and persistent global attention across encoder layers, in contrast to standard Vision Transformers (ViTs). To quantify feature robustness, we introduce two sensitivity indicators: directional alignment between clean and perturbed embeddings, and head-wise retention of active features under degradations. These studies help establish the robust classification performance of MAEs.
comment: 11 pages, 8 figures, and 3 tables
☆ Interpretable Logical Anomaly Classification via Constraint Decomposition and Instruction Fine-Tuning
Logical anomalies are violations of predefined constraints on object quantity, spatial layout, and compositional relationships in industrial images. While prior work largely treats anomaly detection as a binary decision, such formulations cannot indicate which logical rule is broken and therefore offer limited value for quality assurance. We introduce Logical Anomaly Classification (LAC), a task that unifies anomaly detection and fine-grained violation classification in a single inference step. To tackle LAC, we propose LogiCls, a vision-language framework that decomposes complex logical constraints into a sequence of verifiable subqueries. We further present a data-centric instruction synthesis pipeline that generates chain-of-thought (CoT) supervision for these subqueries, coupling precise grounding annotations with diverse image-text augmentations to adapt vision language models (VLMs) to logic-sensitive reasoning. Training is stabilized by a difficulty-aware resampling strategy that emphasizes challenging subqueries and long tail constraint types. Extensive experiments demonstrate that LogiCls delivers robust, interpretable, and accurate industrial logical anomaly classification, providing both the predicted violation categories and their evidence trails.
comment: 6 pages, 6 figures
☆ Semantic Routing: Exploring Multi-Layer LLM Feature Weighting for Diffusion Transformers
Recent DiT-based text-to-image models increasingly adopt LLMs as text encoders, yet text conditioning remains largely static and often utilizes only a single LLM layer, despite pronounced semantic hierarchy across LLM layers and non-stationary denoising dynamics over both diffusion time and network depth. To better match the dynamic process of DiT generation and thereby enhance the diffusion model's generative capability, we introduce a unified normalized convex fusion framework equipped with lightweight gates to systematically organize multi-layer LLM hidden states via time-wise, depth-wise, and joint fusion. Experiments establish Depth-wise Semantic Routing as the superior conditioning strategy, consistently improving text-image alignment and compositional generation (e.g., +9.97 on the GenAI-Bench Counting task). Conversely, we find that purely time-wise fusion can paradoxically degrade visual generation fidelity. We attribute this to a train-inference trajectory mismatch: under classifier-free guidance, nominal timesteps fail to track the effective SNR, causing semantically mistimed feature injection during inference. Overall, our results position depth-wise routing as a strong and effective baseline and highlight the critical need for trajectory-aware signals to enable robust time-dependent conditioning.
☆ Decoupling Skeleton and Flesh: Efficient Multimodal Table Reasoning with Disentangled Alignment and Structure-aware Guidance
Reasoning over table images remains challenging for Large Vision-Language Models (LVLMs) due to complex layouts and tightly coupled structure-content information. Existing solutions often depend on expensive supervised training, reinforcement learning, or external tools, limiting efficiency and scalability. This work addresses a key question: how to adapt LVLMs to table reasoning with minimal annotation and no external tools? Specifically, we first introduce DiSCo, a Disentangled Structure-Content alignment framework that explicitly separates structural abstraction from semantic grounding during multimodal alignment, efficiently adapting LVLMs to tables structures. Building on DiSCo, we further present Table-GLS, a Global-to-Local Structure-guided reasoning framework that performs table reasoning via structured exploration and evidence-grounded inference. Extensive experiments across diverse benchmarks demonstrate that our framework efficiently enhances LVLM's table understanding and reasoning capabilities, particularly generalizing to unseen table structures.
☆ Scaling Continual Learning with Bi-Level Routing Mixture-of-Experts
Continual learning, especially class-incremental learning (CIL), on the basis of a pre-trained model (PTM) has garnered substantial research interest in recent years. However, how to effectively learn both discriminative and comprehensive feature representations while maintaining stability and plasticity over very long task sequences remains an open problem. We propose CaRE, a scalable {C}ontinual Le{a}rner with efficient Bi-Level {R}outing Mixture-of-{E}xperts (BR-MoE). The core idea of BR-MoE is a bi-level routing mechanism: a router selection stage that dynamically activates relevant task-specific routers, followed by an expert routing phase that dynamically activates and aggregates experts, aiming to inject discriminative and comprehensive representations into every intermediate network layer. On the other hand, we introduce a challenging evaluation protocol for comprehensively assessing CIL methods across very long task sequences spanning hundreds of tasks. Extensive experiments show that CaRE demonstrates leading performance across a variety of datasets and task settings, including commonly used CIL datasets with classical CIL settings (e.g., 5-20 tasks). To the best of our knowledge, CaRE is the first continual learner that scales to very long task sequences (ranging from 100 to over 300 non-overlapping tasks), while outperforming all baselines by a large margin on such task sequences. Code will be publicly released at https://github.com/LMMMEng/CaRE.git.
☆ Inlier-Centric Post-Training Quantization for Object Detection Models
Object detection is pivotal in computer vision, yet its immense computational demands make deployment slow and power-hungry, motivating quantization. However, task-irrelevant morphologies such as background clutter and sensor noise induce redundant activations (or anomalies). These anomalies expand activation ranges and skew activation distributions toward task-irrelevant responses, complicating bit allocation and weakening the preservation of informative features. Without a clear criterion to distinguish anomalies, suppressing them can inadvertently discard useful information. To address this, we present InlierQ, an inlier-centric post-training quantization approach that separates anomalies from informative inliers. InlierQ computes gradient-aware volume saliency scores, classifies each volume as an inlier or anomaly, and fits a posterior distribution over these scores using the Expectation-Maximization (EM) algorithm. This design suppresses anomalies while preserving informative features. InlierQ is label-free, drop-in, and requires only 64 calibration samples. Experiments on the COCO and nuScenes benchmarks show consistent reductions in quantization error for camera-based (2D and 3D) and LiDAR-based (3D) object detection.
☆ Contextualized Visual Personalization in Vision-Language Models
Despite recent progress in vision-language models (VLMs), existing approaches often fail to generate personalized responses based on the user's specific experiences, as they lack the ability to associate visual inputs with a user's accumulated visual-textual context. We newly formalize this challenge as contextualized visual personalization, which requires the visual recognition and textual retrieval of personalized visual experiences by VLMs when interpreting new images. To address this issue, we propose CoViP, a unified framework that treats personalized image captioning as a core task for contextualized visual personalization and improves this capability through reinforcement-learning-based post-training and caption-augmented generation. We further introduce diagnostic evaluations that explicitly rule out textual shortcut solutions and verify whether VLMs truly leverage visual context. Extensive experiments demonstrate that existing open-source and proprietary VLMs exhibit substantial limitations, while CoViP not only improves personalized image captioning but also yields holistic gains across downstream personalization tasks. These results highlight CoViP as a crucial stage for enabling robust and generalizable contextualized visual personalization.
comment: Project Page: https://github.com/oyt9306/CoViP
☆ Hierarchical Concept-to-Appearance Guidance for Multi-Subject Image Generation
Multi-subject image generation aims to synthesize images that faithfully preserve the identities of multiple reference subjects while following textual instructions. However, existing methods often suffer from identity inconsistency and limited compositional control, as they rely on diffusion models to implicitly associate text prompts with reference images. In this work, we propose Hierarchical Concept-to-Appearance Guidance (CAG), a framework that provides explicit, structured supervision from high-level concepts to fine-grained appearances. At the conceptual level, we introduce a VAE dropout training strategy that randomly omits reference VAE features, encouraging the model to rely more on robust semantic signals from a Visual Language Model (VLM) and thereby promoting consistent concept-level generation in the absence of complete appearance cues. At the appearance level, we integrate the VLM-derived correspondences into a correspondence-aware masked attention module within the Diffusion Transformer (DiT). This module restricts each text token to attend only to its matched reference regions, ensuring precise attribute binding and reliable multi-subject composition. Extensive experiments demonstrate that our method achieves state-of-the-art performance on the multi-subject image generation, substantially improving prompt following and subject consistency.
☆ HetroD: A High-Fidelity Drone Dataset and Benchmark for Autonomous Driving in Heterogeneous Traffic IEEE
We present HetroD, a dataset and benchmark for developing autonomous driving systems in heterogeneous environments. HetroD targets the critical challenge of navi- gating real-world heterogeneous traffic dominated by vulner- able road users (VRUs), including pedestrians, cyclists, and motorcyclists that interact with vehicles. These mixed agent types exhibit complex behaviors such as hook turns, lane splitting, and informal right-of-way negotiation. Such behaviors pose significant challenges for autonomous vehicles but remain underrepresented in existing datasets focused on structured, lane-disciplined traffic. To bridge the gap, we collect a large- scale drone-based dataset to provide a holistic observation of traffic scenes with centimeter-accurate annotations, HD maps, and traffic signal states. We further develop a modular toolkit for extracting per-agent scenarios to support downstream task development. In total, the dataset comprises over 65.4k high- fidelity agent trajectories, 70% of which are from VRUs. HetroD supports modeling of VRU behaviors in dense, het- erogeneous traffic and provides standardized benchmarks for forecasting, planning, and simulation tasks. Evaluation results reveal that state-of-the-art prediction and planning models struggle with the challenges presented by our dataset: they fail to predict lateral VRU movements, cannot handle unstructured maneuvers, and exhibit limited performance in dense and multi-agent scenarios, highlighting the need for more robust approaches to heterogeneous traffic. See our project page for more examples: https://hetroddata.github.io/HetroD/
comment: IEEE International Conference on Robotics and Automation (ICRA) 2026
☆ ConsistentRFT: Reducing Visual Hallucinations in Flow-based Reinforcement Fine-Tuning
Reinforcement Fine-Tuning (RFT) on flow-based models is crucial for preference alignment. However, they often introduce visual hallucinations like over-optimized details and semantic misalignment. This work preliminarily explores why visual hallucinations arise and how to reduce them. We first investigate RFT methods from a unified perspective, and reveal the core problems stemming from two aspects, exploration and exploitation: (1) limited exploration during stochastic differential equation (SDE) rollouts, leading to an over-emphasis on local details at the expense of global semantics, and (2) trajectory imitation process inherent in policy gradient methods, distorting the model's foundational vector field and its cross-step consistency. Building on this, we propose ConsistentRFT, a general framework to mitigate these hallucinations. Specifically, we design a Dynamic Granularity Rollout (DGR) mechanism to balance exploration between global semantics and local details by dynamically scheduling different noise sources. We then introduce a Consistent Policy Gradient Optimization (CPGO) that preserves the model's consistency by aligning the current policy with a more stable prior. Extensive experiments demonstrate that ConsistentRFT significantly mitigates visual hallucinations, achieving average reductions of 49\% for low-level and 38\% for high-level perceptual hallucinations. Furthermore, ConsistentRFT outperforms other RFT methods on out-of-domain metrics, showing an improvement of 5.1\% (v.s. the baseline's decrease of -0.4\%) over FLUX1.dev. This is \href{https://xiaofeng-tan.github.io/projects/ConsistentRFT}{Project Page}.
☆ Origin Lens: A Privacy-First Mobile Framework for Cryptographic Image Provenance and AI Detection
The proliferation of generative AI poses challenges for information integrity assurance, requiring systems that connect model governance with end-user verification. We present Origin Lens, a privacy-first mobile framework that targets visual disinformation through a layered verification architecture. Unlike server-side detection systems, Origin Lens performs cryptographic image provenance verification and AI detection locally on the device via a Rust/Flutter hybrid architecture. Our system integrates multiple signals - including cryptographic provenance, generative model fingerprints, and optional retrieval-augmented verification - to provide users with graded confidence indicators at the point of consumption. We discuss the framework's alignment with regulatory requirements (EU AI Act, DSA) and its role in verification infrastructure that complements platform-level mechanisms.
comment: Accepted at ACM TheWebConf '26 Companion
☆ Socratic-Geo: Synthetic Data Generation and Geometric Reasoning via Multi-Agent Interaction
Multimodal Large Language Models (MLLMs) have significantly advanced vision-language understanding. However, even state-of-the-art models struggle with geometric reasoning, revealing a critical bottleneck: the extreme scarcity of high-quality image-text pairs. Human annotation is prohibitively expensive, while automated methods fail to ensure fidelity and training effectiveness. Existing approaches either passively adapt to available images or employ inefficient random exploration with filtering, decoupling generation from learning needs. We propose Socratic-Geo, a fully autonomous framework that dynamically couples data synthesis with model learning through multi-agent interaction. The Teacher agent generates parameterized Python scripts with reflective feedback (Reflect for solvability, RePI for visual validity), ensuring image-text pair purity. The Solver agent optimizes reasoning through preference learning, with failure paths guiding Teacher's targeted augmentation. Independently, the Generator learns image generation capabilities on accumulated "image-code-instruction" triplets, distilling programmatic drawing intelligence into visual generation. Starting from only 108 seed problems, Socratic-Solver achieves 49.11 on six benchmarks using one-quarter of baseline data, surpassing strong baselines by 2.43 points. Socratic-Generator achieves 42.4% on GenExam, establishing new state-of-the-art for open-source models, surpassing Seedream-4.0 (39.8%) and approaching Gemini-2.5-Flash-Image (43.1%).
comment: 18pages
☆ UnHype: CLIP-Guided Hypernetworks for Dynamic LoRA Unlearning
Recent advances in large-scale diffusion models have intensified concerns about their potential misuse, particularly in generating realistic yet harmful or socially disruptive content. This challenge has spurred growing interest in effective machine unlearning, the process of selectively removing specific knowledge or concepts from a model without compromising its overall generative capabilities. Among various approaches, Low-Rank Adaptation (LoRA) has emerged as an effective and efficient method for fine-tuning models toward targeted unlearning. However, LoRA-based methods often exhibit limited adaptability to concept semantics and struggle to balance removing closely related concepts with maintaining generalization across broader meanings. Moreover, these methods face scalability challenges when multiple concepts must be erased simultaneously. To address these limitations, we introduce UnHype, a framework that incorporates hypernetworks into single- and multi-concept LoRA training. The proposed architecture can be directly plugged into Stable Diffusion as well as modern flow-based text-to-image models, where it demonstrates stable training behavior and effective concept control. During inference, the hypernetwork dynamically generates adaptive LoRA weights based on the CLIP embedding, enabling more context-aware, scalable unlearning. We evaluate UnHype across several challenging tasks, including object erasure, celebrity erasure, and explicit content removal, demonstrating its effectiveness and versatility. Repository: https://github.com/gmum/UnHype.
☆ From Vicious to Virtuous Cycles: Synergistic Representation Learning for Unsupervised Video Object-Centric Learning ICLR 2026
Unsupervised object-centric learning models, particularly slot-based architectures, have shown great promise in decomposing complex scenes. However, their reliance on reconstruction-based training creates a fundamental conflict between the sharp, high-frequency attention maps of the encoder and the spatially consistent but blurry reconstruction maps of the decoder. We identify that this discrepancy gives rise to a vicious cycle: the noisy feature map from the encoder forces the decoder to average over possibilities and produce even blurrier outputs, while the gradient computed from blurry reconstruction maps lacks high-frequency details necessary to supervise encoder features. To break this cycle, we introduce Synergistic Representation Learning (SRL) that establishes a virtuous cycle where the encoder and decoder mutually refine one another. SRL leverages the encoder's sharpness to deblur the semantic boundary within the decoder output, while exploiting the decoder's spatial consistency to denoise the encoder's features. This mutual refinement process is stabilized by a warm-up phase with a slot regularization objective that initially allocates distinct entities per slot. By bridging the representational gap between the encoder and decoder, SRL achieves state-of-the-art results on video object-centric learning benchmarks. Codes are available at https://github.com/hynnsk/SRL.
comment: ICLR 2026; Code is available at https://github.com/hynnsk/SRL
☆ Seeing Through the Chain: Mitigate Hallucination in Multimodal Reasoning Models via CoT Compression and Contrastive Preference Optimization
While multimodal reasoning models (MLRMs) have exhibited impressive capabilities, they remain prone to hallucinations, and effective solutions are still underexplored. In this paper, we experimentally analyze the hallucination cause and propose C3PO, a training-based mitigation framework comprising \textbf{C}hain-of-Thought \textbf{C}ompression and \textbf{C}ontrastive \textbf{P}reference \textbf{O}ptimization. Firstly, we identify that introducing reasoning mechanisms exacerbates models' reliance on language priors while overlooking visual inputs, which can produce CoTs with reduced visual cues but redundant text tokens. To this end, we propose to selectively filter redundant thinking tokens for a more compact and signal-efficient CoT representation that preserves task-relevant information while suppressing noise. In addition, we observe that the quality of the reasoning trace largely determines whether hallucination emerges in subsequent responses. To leverage this insight, we introduce a reasoning-enhanced preference tuning scheme that constructs training pairs using high-quality AI feedback. We further design a multimodal hallucination-inducing mechanism that elicits models' inherent hallucination patterns via carefully crafted inducers, yielding informative negative signals for contrastive correction. We provide theoretical justification for the effectiveness and demonstrate consistent hallucination reduction across diverse MLRMs and benchmarks.
☆ PlanTRansformer: Unified Prediction and Planning with Goal-conditioned Transformer IEEE
Trajectory prediction and planning are fundamental yet disconnected components in autonomous driving. Prediction models forecast surrounding agent motion under unknown intentions, producing multimodal distributions, while planning assumes known ego objectives and generates deterministic trajectories. This mismatch creates a critical bottleneck: prediction lacks supervision for agent intentions, while planning requires this information. Existing prediction models, despite strong benchmarking performance, often remain disconnected from planning constraints such as collision avoidance and dynamic feasibility. We introduce Plan TRansformer (PTR), a unified Gaussian Mixture Transformer framework integrating goal-conditioned prediction, dynamic feasibility, interaction awareness, and lane-level topology reasoning. A teacher-student training strategy progressively masks surrounding agent commands during training to align with inference conditions where agent intentions are unavailable. PTR achieves 4.3%/3.5% improvement in marginal/joint mAP compared to the baseline Motion Transformer (MTR) and 15.5% planning error reduction at 5s horizon compared to GameFormer. The architecture-agnostic design enables application to diverse Transformer-based prediction models. Project Website: https://github.com/SelzerConst/PlanTRansformer
comment: Submitted and accepted at IEEE IV 2026
☆ Unifying Watermarking via Dimension-Aware Mapping
Deep watermarking methods often share similar encoder-decoder architectures, yet differ substantially in their functional behaviors. We propose DiM, a new multi-dimensional watermarking framework that formulates watermarking as a dimension-aware mapping problem, thereby unifying existing watermarking methods at the functional level. Under DiM, watermark information is modeled as payloads of different dimensionalities, including one-dimensional binary messages, two-dimensional spatial masks, and three-dimensional spatiotemporal structures. We find that the dimensional configuration of embedding and extraction largely determines the resulting watermarking behavior. Same-dimensional mappings preserve payload structure and support fine-grained control, while cross-dimensional mappings enable spatial or spatiotemporal localization. We instantiate DiM in the video domain, where spatiotemporal representations enable a broader set of dimension mappings. Experiments demonstrate that varying only the embedding and extraction dimensions, without architectural changes, leads to different watermarking capabilities, including spatiotemporal tamper localization, local embedding control, and recovery of temporal order under frame disruptions.
comment: 29 pages, 25 figures
☆ SLIM-Diff: Shared Latent Image-Mask Diffusion with Lp loss for Data-Scarce Epilepsy FLAIR MRI
Focal cortical dysplasia (FCD) lesions in epilepsy FLAIR MRI are subtle and scarce, making joint image--mask generative modeling prone to instability and memorization. We propose SLIM-Diff, a compact joint diffusion model whose main contributions are (i) a single shared-bottleneck U-Net that enforces tight coupling between anatomy and lesion geometry from a 2-channel image+mask representation, and (ii) loss-geometry tuning via a tunable $L_p$ objective. As an internal baseline, we include the canonical DDPM-style objective ($ε$-prediction with $L_2$ loss) and isolate the effect of prediction parameterization and $L_p$ geometry under a matched setup. Experiments show that $x_0$-prediction is consistently the strongest choice for joint synthesis, and that fractional sub-quadratic penalties ($L_{1.5}$) improve image fidelity while $L_2$ better preserves lesion mask morphology. Our code and model weights are available in https://github.com/MarioPasc/slim-diff
comment: 6 pages, 2 figures, 1 table, conference paper
☆ Multi-Resolution Alignment for Voxel Sparsity in Camera-Based 3D Semantic Scene Completion
Camera-based 3D semantic scene completion (SSC) offers a cost-effective solution for assessing the geometric occupancy and semantic labels of each voxel in the surrounding 3D scene with image inputs, providing a voxel-level scene perception foundation for the perception-prediction-planning autonomous driving systems. Although significant progress has been made in existing methods, their optimization rely solely on the supervision from voxel labels and face the challenge of voxel sparsity as a large portion of voxels in autonomous driving scenarios are empty, which limits both optimization efficiency and model performance. To address this issue, we propose a \textit{Multi-Resolution Alignment (MRA)} approach to mitigate voxel sparsity in camera-based 3D semantic scene completion, which exploits the scene and instance level alignment across multi-resolution 3D features as auxiliary supervision. Specifically, we first propose the Multi-resolution View Transformer module, which projects 2D image features into multi-resolution 3D features and aligns them at the scene level through fusing discriminative seed features. Furthermore, we design the Cubic Semantic Anisotropy module to identify the instance-level semantic significance of each voxel, accounting for the semantic differences of a specific voxel against its neighboring voxels within a cubic area. Finally, we devise a Critical Distribution Alignment module, which selects critical voxels as instance-level anchors with the guidance of cubic semantic anisotropy, and applies a circulated loss for auxiliary supervision on the critical feature distribution consistency across different resolutions. The code is available at https://github.com/PKU-ICST-MIPL/MRA_TIP.
comment: 15 pages, 6 figures, accepted by TIP 2026
☆ Symbol-Aware Reasoning with Masked Discrete Diffusion for Handwritten Mathematical Expression Recognition
Handwritten Mathematical Expression Recognition (HMER) requires reasoning over diverse symbols and 2D structural layouts, yet autoregressive models struggle with exposure bias and syntactic inconsistency. We present a discrete diffusion framework that reformulates HMER as iterative symbolic refinement instead of sequential generation. Through multi-step remasking, the proposal progressively refines both symbols and structural relations, removing causal dependencies and improving structural consistency. A symbol-aware tokenization and Random-Masking Mutual Learning further enhance syntactic alignment and robustness to handwriting diversity. On the MathWriting benchmark, the proposal achieves 5.56\% CER and 60.42\% EM, outperforming strong Transformer and commercial baselines. Consistent gains on CROHME 2014--2023 demonstrate that discrete diffusion provides a new paradigm for structure-aware visual recognition beyond generative modeling.
☆ Z3D: Zero-Shot 3D Visual Grounding from Images
3D visual grounding (3DVG) aims to localize objects in a 3D scene based on natural language queries. In this work, we explore zero-shot 3DVG from multi-view images alone, without requiring any geometric supervision or object priors. We introduce Z3D, a universal grounding pipeline that flexibly operates on multi-view images while optionally incorporating camera poses and depth maps. We identify key bottlenecks in prior zero-shot methods causing significant performance degradation and address them with (i) a state-of-the-art zero-shot 3D instance segmentation method to generate high-quality 3D bounding box proposals and (ii) advanced reasoning via prompt-based segmentation, which utilizes full capabilities of modern VLMs. Extensive experiments on the ScanRefer and Nr3D benchmarks demonstrate that our approach achieves state-of-the-art performance among zero-shot methods. Code is available at https://github.com/col14m/z3d .
☆ Tiled Prompts: Overcoming Prompt Underspecification in Image and Video Super-Resolution
Text-conditioned diffusion models have advanced image and video super-resolution by using prompts as semantic priors, but modern super-resolution pipelines typically rely on latent tiling to scale to high resolutions, where a single global caption causes prompt underspecification. A coarse global prompt often misses localized details (prompt sparsity) and provides locally irrelevant guidance (prompt misguidance) that can be amplified by classifier-free guidance. We propose Tiled Prompts, a unified framework for image and video super-resolution that generates a tile-specific prompt for each latent tile and performs super-resolution under locally text-conditioned posteriors, providing high-information guidance that resolves prompt underspecification with minimal overhead. Experiments on high resolution real-world images and videos show consistent gains in perceptual quality and text alignment, while reducing hallucinations and tile-level artifacts relative to global-prompt baselines.
comment: 13 pages, 7 figures
☆ Composable Visual Tokenizers with Generator-Free Diagnostics of Learnability
We introduce CompTok, a training framework for learning visual tokenizers whose tokens are enhanced for compositionality. CompTok uses a token-conditioned diffusion decoder. By employing an InfoGAN-style objective, where we train a recognition model to predict the tokens used to condition the diffusion decoder using the decoded images, we enforce the decoder to not ignore any of the tokens. To promote compositional control, besides the original images, CompTok also trains on tokens formed by swapping token subsets between images, enabling more compositional control of the token over the decoder. As the swapped tokens between images do not have ground truth image targets, we apply a manifold constraint via an adversarial flow regularizer to keep unpaired swap generations on the natural-image distribution. The resulting tokenizer not only achieves state-of-the-art performance on image class-conditioned generation, but also demonstrates properties such as swapping tokens between images to achieve high level semantic editing of an image. Additionally, we propose two metrics that measures the landscape of the token space that can be useful to describe not only the compositionality of the tokens, but also how easy to learn the landscape is for a generator to be trained on this space. We show in experiments that CompTok can improve on both of the metrics as well as supporting state-of-the-art generators for class conditioned generation.
☆ PWAVEP: Purifying Imperceptible Adversarial Perturbations in 3D Point Clouds via Spectral Graph Wavelets WWW 2026
Recent progress in adversarial attacks on 3D point clouds, particularly in achieving spatial imperceptibility and high attack performance, presents significant challenges for defenders. Current defensive approaches remain cumbersome, often requiring invasive model modifications, expensive training procedures or auxiliary data access. To address these threats, in this paper, we propose a plug-and-play and non-invasive defense mechanism in the spectral domain, grounded in a theoretical and empirical analysis of the relationship between imperceptible perturbations and high-frequency spectral components. Building upon these insights, we introduce a novel purification framework, termed PWAVEP, which begins by computing a spectral graph wavelet domain saliency score and local sparsity score for each point. Guided by these values, PWAVEP adopts a hierarchical strategy, it eliminates the most salient points, which are identified as hardly recoverable adversarial outliers. Simultaneously, it applies a spectral filtering process to a broader set of moderately salient points. This process leverages a graph wavelet transform to attenuate high-frequency coefficients associated with the targeted points, thereby effectively suppressing adversarial noise. Extensive evaluations demonstrate that the proposed PWAVEP achieves superior accuracy and robustness compared to existing approaches, advancing the state-of-the-art in 3D point cloud purification. Code and datasets are available at https://github.com/a772316182/pwavep
comment: Accepted by WWW 2026
☆ Pi-GS: Sparse-View Gaussian Splatting with Dense π^3 Initialization
Novel view synthesis has evolved rapidly, advancing from Neural Radiance Fields to 3D Gaussian Splatting (3DGS), which offers real-time rendering and rapid training without compromising visual fidelity. However, 3DGS relies heavily on accurate camera poses and high-quality point cloud initialization, which are difficult to obtain in sparse-view scenarios. While traditional Structure from Motion (SfM) pipelines often fail in these settings, existing learning-based point estimation alternatives typically require reliable reference views and remain sensitive to pose or depth errors. In this work, we propose a robust method utilizing π^3, a reference-free point cloud estimation network. We integrate dense initialization from π^3 with a regularization scheme designed to mitigate geometric inaccuracies. Specifically, we employ uncertainty-guided depth supervision, normal consistency loss, and depth warping. Experimental results demonstrate that our approach achieves state-of-the-art performance on the Tanks and Temples, LLFF, DTU, and MipNeRF360 datasets.
☆ MedSAM-Agent: Empowering Interactive Medical Image Segmentation with Multi-turn Agentic Reinforcement Learning
Medical image segmentation is evolving from task-specific models toward generalizable frameworks. Recent research leverages Multi-modal Large Language Models (MLLMs) as autonomous agents, employing reinforcement learning with verifiable reward (RLVR) to orchestrate specialized tools like the Segment Anything Model (SAM). However, these approaches often rely on single-turn, rigid interaction strategies and lack process-level supervision during training, which hinders their ability to fully exploit the dynamic potential of interactive tools and leads to redundant actions. To bridge this gap, we propose MedSAM-Agent, a framework that reformulates interactive segmentation as a multi-step autonomous decision-making process. First, we introduce a hybrid prompting strategy for expert-curated trajectory generation, enabling the model to internalize human-like decision heuristics and adaptive refinement strategies. Furthermore, we develop a two-stage training pipeline that integrates multi-turn, end-to-end outcome verification with a clinical-fidelity process reward design to promote interaction parsimony and decision efficiency. Extensive experiments across 6 medical modalities and 21 datasets demonstrate that MedSAM-Agent achieves state-of-the-art performance, effectively unifying autonomous medical reasoning with robust, iterative optimization. Code is available \href{https://github.com/CUHK-AIM-Group/MedSAM-Agent}{here}.
comment: 23 Pages, 4 Figures
☆ Invisible Clean-Label Backdoor Attacks for Generative Data Augmentation
With the rapid advancement of image generative models, generative data augmentation has become an effective way to enrich training images, especially when only small-scale datasets are available. At the same time, in practical applications, generative data augmentation can be vulnerable to clean-label backdoor attacks, which aim to bypass human inspection. However, based on theoretical analysis and preliminary experiments, we observe that directly applying existing pixel-level clean-label backdoor attack methods (e.g., COMBAT) to generated images results in low attack success rates. This motivates us to move beyond pixel-level triggers and focus instead on the latent feature level. To this end, we propose InvLBA, an invisible clean-label backdoor attack method for generative data augmentation by latent perturbation. We theoretically prove that the generalization of the clean accuracy and attack success rates of InvLBA can be guaranteed. Experiments on multiple datasets show that our method improves the attack success rate by 46.43% on average, with almost no reduction in clean accuracy and high robustness against SOTA defense methods.
☆ PQTNet: Pixel-wise Quantitative Thermography Neural Network for Estimating Defect Depth in Polylactic Acid Parts by Additive Manufacturing
Defect depth quantification in additively manufactured (AM) components remains a significant challenge for non-destructive testing (NDT). This study proposes a Pixel-wise Quantitative Thermography Neural Network (PQT-Net) to address this challenge for polylactic acid (PLA) parts. A key innovation is a novel data augmentation strategy that reconstructs thermal sequence data into two-dimensional stripe images, preserving the complete temporal evolution of heat diffusion for each pixel. The PQT-Net architecture incorporates a pre-trained EfficientNetV2-S backbone and a custom Residual Regression Head (RRH) with learnable parameters to refine outputs. Comparative experiments demonstrate the superiority of PQT-Net over other deep learning models, achieving a minimum Mean Absolute Error (MAE) of 0.0094 mm and a coefficient of determination (R) exceeding 99%. The high precision of PQT-Net underscores its potential for robust quantitative defect characterization in AM.
comment: Under review
☆ RDT2: Exploring the Scaling Limit of UMI Data Towards Zero-Shot Cross-Embodiment Generalization
Vision-Language-Action (VLA) models hold promise for generalist robotics but currently struggle with data scarcity, architectural inefficiencies, and the inability to generalize across different hardware platforms. We introduce RDT2, a robotic foundation model built upon a 7B parameter VLM designed to enable zero-shot deployment on novel embodiments for open-vocabulary tasks. To achieve this, we collected one of the largest open-source robotic datasets--over 10,000 hours of demonstrations in diverse families--using an enhanced, embodiment-agnostic Universal Manipulation Interface (UMI). Our approach employs a novel three-stage training recipe that aligns discrete linguistic knowledge with continuous control via Residual Vector Quantization (RVQ), flow-matching, and distillation for real-time inference. Consequently, RDT2 becomes one of the first models that simultaneously zero-shot generalizes to unseen objects, scenes, instructions, and even robotic platforms. Besides, it outperforms state-of-the-art baselines in dexterous, long-horizon, and dynamic downstream tasks like playing table tennis. See https://rdt-robotics.github.io/rdt2/ for more information.
☆ Full end-to-end diagnostic workflow automation of 3D OCT via foundation model-driven AI for retinal diseases
Optical coherence tomography (OCT) has revolutionized retinal disease diagnosis with its high-resolution and three-dimensional imaging nature, yet its full diagnostic automation in clinical practices remains constrained by multi-stage workflows and conventional single-slice single-task AI models. We present Full-process OCT-based Clinical Utility System (FOCUS), a foundation model-driven framework enabling end-to-end automation of 3D OCT retinal disease diagnosis. FOCUS sequentially performs image quality assessment with EfficientNetV2-S, followed by abnormality detection and multi-disease classification using a fine-tuned Vision Foundation Model. Crucially, FOCUS leverages a unified adaptive aggregation method to intelligently integrate 2D slices-level predictions into comprehensive 3D patient-level diagnosis. Trained and tested on 3,300 patients (40,672 slices), and externally validated on 1,345 patients (18,498 slices) across four different-tier centers and diverse OCT devices, FOCUS achieved high F1 scores for quality assessment (99.01%), abnormally detection (97.46%), and patient-level diagnosis (94.39%). Real-world validation across centers also showed stable performance (F1: 90.22%-95.24%). In human-machine comparisons, FOCUS matched expert performance in abnormality detection (F1: 95.47% vs 90.91%) and multi-disease diagnosis (F1: 93.49% vs 91.35%), while demonstrating better efficiency. FOCUS automates the image-to-diagnosis pipeline, representing a critical advance towards unmanned ophthalmology with a validated blueprint for autonomous screening to enhance population scale retinal care accessibility and efficiency.
☆ R1-SyntheticVL: Is Synthetic Data from Generative Models Ready for Multimodal Large Language Model?
In this work, we aim to develop effective data synthesis techniques that autonomously synthesize multimodal training data for enhancing MLLMs in solving complex real-world tasks. To this end, we propose Collective Adversarial Data Synthesis (CADS), a novel and general approach to synthesize high-quality, diverse and challenging multimodal data for MLLMs. The core idea of CADS is to leverage collective intelligence to ensure high-quality and diverse generation, while exploring adversarial learning to synthesize challenging samples for effectively driving model improvement. Specifically, CADS operates with two cyclic phases, i.e., Collective Adversarial Data Generation (CAD-Generate) and Collective Adversarial Data Judgment (CAD-Judge). CAD-Generate leverages collective knowledge to jointly generate new and diverse multimodal data, while CAD-Judge collaboratively assesses the quality of synthesized data. In addition, CADS introduces an Adversarial Context Optimization mechanism to optimize the generation context to encourage challenging and high-value data generation. With CADS, we construct MMSynthetic-20K and train our model R1-SyntheticVL, which demonstrates superior performance on various benchmarks.
☆ POP: Prefill-Only Pruning for Efficient Large Model Inference
Large Language Models (LLMs) and Vision-Language Models (VLMs) have demonstrated remarkable capabilities. However, their deployment is hindered by significant computational costs. Existing structured pruning methods, while hardware-efficient, often suffer from significant accuracy degradation. In this paper, we argue that this failure stems from a stage-agnostic pruning approach that overlooks the asymmetric roles between the prefill and decode stages. By introducing a virtual gate mechanism, our importance analysis reveals that deep layers are critical for next-token prediction (decode) but largely redundant for context encoding (prefill). Leveraging this insight, we propose Prefill-Only Pruning (POP), a stage-aware inference strategy that safely omits deep layers during the computationally intensive prefill stage while retaining the full model for the sensitive decode stage. To enable the transition between stages, we introduce independent Key-Value (KV) projections to maintain cache integrity, and a boundary handling strategy to ensure the accuracy of the first generated token. Extensive experiments on Llama-3.1, Qwen3-VL, and Gemma-3 across diverse modalities demonstrate that POP achieves up to 1.37$\times$ speedup in prefill latency with minimal performance loss, effectively overcoming the accuracy-efficiency trade-off limitations of existing structured pruning methods.
☆ LEVIO: Lightweight Embedded Visual Inertial Odometry for Resource-Constrained Devices IEEE
Accurate, infrastructure-less sensor systems for motion tracking are essential for mobile robotics and augmented reality (AR) applications. The most popular state-of-the-art visual-inertial odometry (VIO) systems, however, are too computationally demanding for resource-constrained hardware, such as micro-drones and smart glasses. This work presents LEVIO, a fully featured VIO pipeline optimized for ultra-low-power compute platforms, allowing six-degrees-of-freedom (DoF) real-time sensing. LEVIO incorporates established VIO components such as Oriented FAST and Rotated BRIEF (ORB) feature tracking and bundle adjustment, while emphasizing a computationally efficient architecture with parallelization and low memory usage to suit embedded microcontrollers and low-power systems-on-chip (SoCs). The paper proposes and details the algorithmic design choices and the hardware-software co-optimization approach, and presents real-time performance on resource-constrained hardware. LEVIO is validated on a parallel-processing ultra-low-power RISC-V SoC, achieving 20 FPS while consuming less than 100 mW, and benchmarked against public VIO datasets, offering a compelling balance between efficiency and accuracy. To facilitate reproducibility and adoption, the complete implementation is released as open-source.
comment: This article has been accepted for publication in the IEEE Sensors Journal (JSEN)
☆ A3-TTA: Adaptive Anchor Alignment Test-Time Adaptation for Image Segmentation IEEE
Test-Time Adaptation (TTA) offers a practical solution for deploying image segmentation models under domain shift without accessing source data or retraining. Among existing TTA strategies, pseudo-label-based methods have shown promising performance. However, they often rely on perturbation-ensemble heuristics (e.g., dropout sampling, test-time augmentation, Gaussian noise), which lack distributional grounding and yield unstable training signals. This can trigger error accumulation and catastrophic forgetting during adaptation. To address this, we propose \textbf{A3-TTA}, a TTA framework that constructs reliable pseudo-labels through anchor-guided supervision. Specifically, we identify well-predicted target domain images using a class compact density metric, under the assumption that confident predictions imply distributional proximity to the source domain. These anchors serve as stable references to guide pseudo-label generation, which is further regularized via semantic consistency and boundary-aware entropy minimization. Additionally, we introduce a self-adaptive exponential moving average strategy to mitigate label noise and stabilize model update during adaptation. Evaluated on both multi-domain medical images (heart structure and prostate segmentation) and natural images, A3-TTA significantly improves average Dice scores by 10.40 to 17.68 percentage points compared to the source model, outperforming several state-of-the-art TTA methods under different segmentation model architectures. A3-TTA also excels in continual TTA, maintaining high performance across sequential target domains with strong anti-forgetting ability. The code will be made publicly available at https://github.com/HiLab-git/A3-TTA.
comment: Accepted by IEEE Transactions on Image Processing
☆ Time Is All It Takes: Spike-Retiming Attacks on Event-Driven Spiking Neural Networks ICLR 2026
Spiking neural networks (SNNs) compute with discrete spikes and exploit temporal structure, yet most adversarial attacks change intensities or event counts instead of timing. We study a timing-only adversary that retimes existing spikes while preserving spike counts and amplitudes in event-driven SNNs, thus remaining rate-preserving. We formalize a capacity-1 spike-retiming threat model with a unified trio of budgets: per-spike jitter $\mathcal{B}_{\infty}$, total delay $\mathcal{B}_{1}$, and tamper count $\mathcal{B}_{0}$. Feasible adversarial examples must satisfy timeline consistency and non-overlap, which makes the search space discrete and constrained. To optimize such retimings at scale, we use projected-in-the-loop (PIL) optimization: shift-probability logits yield a differentiable soft retiming for backpropagation, and a strict projection in the forward pass produces a feasible discrete schedule that satisfies capacity-1, non-overlap, and the chosen budget at every step. The objective maximizes task loss on the projected input and adds a capacity regularizer together with budget-aware penalties, which stabilizes gradients and aligns optimization with evaluation. Across event-driven benchmarks (CIFAR10-DVS, DVS-Gesture, N-MNIST) and diverse SNN architectures, we evaluate under binary and integer event grids and a range of retiming budgets, and also test models trained with timing-aware adversarial training designed to counter timing-only attacks. For example, on DVS-Gesture the attack attains high success (over $90\%$) while touching fewer than $2\%$ of spikes under $\mathcal{B}_{0}$. Taken together, our results show that spike retiming is a practical and stealthy attack surface that current defenses struggle to counter, providing a clear reference for temporal robustness in event-driven SNNs. Code is available at https://github.com/yuyi-sd/Spike-Retiming-Attacks.
comment: Accepted by ICLR 2026
☆ Global Geometry Is Not Enough for Vision Representations
A common assumption in representation learning is that globally well-distributed embeddings support robust and generalizable representations. This focus has shaped both training objectives and evaluation protocols, implicitly treating global geometry as a proxy for representational competence. While global geometry effectively encodes which elements are present, it is often insensitive to how they are composed. We investigate this limitation by testing the ability of geometric metrics to predict compositional binding across 21 vision encoders. We find that standard geometry-based statistics exhibit near-zero correlation with compositional binding. In contrast, functional sensitivity, as measured by the input-output Jacobian, reliably tracks this capability. We further provide an analytic account showing that this disparity arises from objective design, as existing losses explicitly constrain embedding geometry but leave the local input-output mapping unconstrained. These results suggest that global embedding geometry captures only a partial view of representational competence and establish functional sensitivity as a critical complementary axis for modeling composite structure.
☆ HypCBC: Domain-Invariant Hyperbolic Cross-Branch Consistency for Generalizable Medical Image Analysis
Robust generalization beyond training distributions remains a critical challenge for deep neural networks. This is especially pronounced in medical image analysis, where data is often scarce and covariate shifts arise from different hardware devices, imaging protocols, and heterogeneous patient populations. These factors collectively hinder reliable performance and slow down clinical adoption. Despite recent progress, existing learning paradigms primarily rely on the Euclidean manifold, whose flat geometry fails to capture the complex, hierarchical structures present in clinical data. In this work, we exploit the advantages of hyperbolic manifolds to model complex data characteristics. We present the first comprehensive validation of hyperbolic representation learning for medical image analysis and demonstrate statistically significant gains across eleven in-distribution datasets and three ViT models. We further propose an unsupervised, domain-invariant hyperbolic cross-branch consistency constraint. Extensive experiments confirm that our proposed method promotes domain-invariant features and outperforms state-of-the-art Euclidean methods by an average of $+2.1\%$ AUC on three domain generalization benchmarks: Fitzpatrick17k, Camelyon17-WILDS, and a cross-dataset setup for retinal imaging. These datasets span different imaging modalities, data sizes, and label granularities, confirming generalization capabilities across substantially different conditions. The code is available at https://github.com/francescodisalvo05/hyperbolic-cross-branch-consistency .
comment: Accepted to Transactions on Machine Learning Research (TMLR)
☆ LaVPR: Benchmarking Language and Vision for Place Recognition
Visual Place Recognition (VPR) often fails under extreme environmental changes and perceptual aliasing. Furthermore, standard systems cannot perform "blind" localization from verbal descriptions alone, a capability needed for applications such as emergency response. To address these challenges, we introduce LaVPR, a large-scale benchmark that extends existing VPR datasets with over 650,000 rich natural-language descriptions. Using LaVPR, we investigate two paradigms: Multi-Modal Fusion for enhanced robustness and Cross-Modal Retrieval for language-based localization. Our results show that language descriptions yield consistent gains in visually degraded conditions, with the most significant impact on smaller backbones. Notably, adding language allows compact models to rival the performance of much larger vision-only architectures. For cross-modal retrieval, we establish a baseline using Low-Rank Adaptation (LoRA) and Multi-Similarity loss, which substantially outperforms standard contrastive methods across vision-language models. Ultimately, LaVPR enables a new class of localization systems that are both resilient to real-world stochasticity and practical for resource-constrained deployment. Our dataset and code are available at https://github.com/oferidan1/LaVPR.
☆ InstaDrive: Instance-Aware Driving World Models for Realistic and Consistent Video Generation
Autonomous driving relies on robust models trained on high-quality, large-scale multi-view driving videos. While world models offer a cost-effective solution for generating realistic driving videos, they struggle to maintain instance-level temporal consistency and spatial geometric fidelity. To address these challenges, we propose InstaDrive, a novel framework that enhances driving video realism through two key advancements: (1) Instance Flow Guider, which extracts and propagates instance features across frames to enforce temporal consistency, preserving instance identity over time. (2) Spatial Geometric Aligner, which improves spatial reasoning, ensures precise instance positioning, and explicitly models occlusion hierarchies. By incorporating these instance-aware mechanisms, InstaDrive achieves state-of-the-art video generation quality and enhances downstream autonomous driving tasks on the nuScenes dataset. Additionally, we utilize CARLA's autopilot to procedurally and stochastically simulate rare but safety-critical driving scenarios across diverse maps and regions, enabling rigorous safety evaluation for autonomous systems. Our project page is https://shanpoyang654.github.io/InstaDrive/page.html.
☆ EventFlash: Towards Efficient MLLMs for Event-Based Vision
Event-based multimodal large language models (MLLMs) enable robust perception in high-speed and low-light scenarios, addressing key limitations of frame-based MLLMs. However, current event-based MLLMs often rely on dense image-like processing paradigms, overlooking the spatiotemporal sparsity of event streams and resulting in high computational cost. In this paper, we propose EventFlash, a novel and efficient MLLM to explore spatiotemporal token sparsification for reducing data redundancy and accelerating inference. Technically, we build EventMind, a large-scale and scene-diverse dataset with over 500k instruction sets, providing both short and long event stream sequences to support our curriculum training strategy. We then present an adaptive temporal window aggregation module for efficient temporal sampling, which adaptively compresses temporal tokens while retaining key temporal cues. Finally, a sparse density-guided attention module is designed to improve spatial token efficiency by selecting informative regions and suppressing empty or sparse areas. Experimental results show that EventFlash achieves a $12.4\times$ throughput improvement over the baseline (EventFlash-Zero) while maintaining comparable performance. It supports long-range event stream processing with up to 1,000 bins, significantly outperforming the 5-bin limit of EventGPT. We believe EventFlash serves as an efficient foundation model for event-based vision.
☆ Spiral RoPE: Rotate Your Rotary Positional Embeddings in the 2D Plane
Rotary Position Embedding (RoPE) is the de facto positional encoding in large language models due to its ability to encode relative positions and support length extrapolation. When adapted to vision transformers, the standard axial formulation decomposes two-dimensional spatial positions into horizontal and vertical components, implicitly restricting positional encoding to axis-aligned directions. We identify this directional constraint as a fundamental limitation of the standard axial 2D RoPE, which hinders the modeling of oblique spatial relationships that naturally exist in natural images. To overcome this limitation, we propose Spiral RoPE, a simple yet effective extension that enables multi-directional positional encoding by partitioning embedding channels into multiple groups associated with uniformly distributed directions. Each group is rotated according to the projection of the patch position onto its corresponding direction, allowing spatial relationships to be encoded beyond the horizontal and vertical axes. Across a wide range of vision tasks including classification, segmentation, and generation, Spiral RoPE consistently improves performance. Qualitative analysis of attention maps further show that Spiral RoPE exhibits more concentrated activations on semantically relevant objects and better respects local object boundaries, highlighting the importance of multi-directional positional encoding in vision transformers.
☆ PokeFusion Attention: Enhancing Reference-Free Style-Conditioned Generation IJCNN 2026
This paper studies reference-free style-conditioned character generation in text-to-image diffusion models, where high-quality synthesis requires both stable character structure and consistent, fine-grained style expression across diverse prompts. Existing approaches primarily rely on text-only prompting, which is often under-specified for visual style and tends to produce noticeable style drift and geometric inconsistency, or introduce reference-based adapters that depend on external images at inference time, increasing architectural complexity and limiting deployment flexibility.We propose PokeFusion Attention, a lightweight decoder-level cross-attention mechanism that fuses textual semantics with learned style embeddings directly inside the diffusion decoder. By decoupling text and style conditioning at the attention level, our method enables effective reference-free stylized generation while keeping the pretrained diffusion backbone fully frozen.PokeFusion Attention trains only decoder cross-attention layers together with a compact style projection module, resulting in a parameter-efficient and plug-and-play control component that can be easily integrated into existing diffusion pipelines and transferred across different backbones.Experiments on a stylized character generation benchmark (Pokemon-style) demonstrate that our method consistently improves style fidelity, semantic alignment, and character shape consistency compared with representative adapter-based baselines, while maintaining low parameter overhead and inference-time simplicity.
comment: 7 pages, 5 figures. Under review at IJCNN 2026
☆ FARTrack: Fast Autoregressive Visual Tracking with High Performance
Inference speed and tracking performance are two critical evaluation metrics in the field of visual tracking. However, high-performance trackers often suffer from slow processing speeds, making them impractical for deployment on resource-constrained devices. To alleviate this issue, we propose FARTrack, a Fast Auto-Regressive Tracking framework. Since autoregression emphasizes the temporal nature of the trajectory sequence, it can maintain high performance while achieving efficient execution across various devices. FARTrack introduces Task-Specific Self-Distillation and Inter-frame Autoregressive Sparsification, designed from the perspectives of shallow-yet-accurate distillation and redundant-to-essential token optimization, respectively. Task-Specific Self-Distillation achieves model compression by distilling task-specific tokens layer by layer, enhancing the model's inference speed while avoiding suboptimal manual teacher-student layer pairs assignments. Meanwhile, Inter-frame Autoregressive Sparsification sequentially condenses multiple templates, avoiding additional runtime overhead while learning a temporally-global optimal sparsification strategy. FARTrack demonstrates outstanding speed and competitive performance. It delivers an AO of 70.6% on GOT-10k in real-time. Beyond, our fastest model achieves a speed of 343 FPS on the GPU and 121 FPS on the CPU.
☆ ConsisDrive: Identity-Preserving Driving World Models for Video Generation by Instance Mask
Autonomous driving relies on robust models trained on large-scale, high-quality multi-view driving videos. Although world models provide a cost-effective solution for generating realistic driving data, they often suffer from identity drift, where the same object changes its appearance or category across frames due to the absence of instance-level temporal constraints. We introduce ConsisDrive, an identity-preserving driving world model designed to enforce temporal consistency at the instance level. Our framework incorporates two key components: (1) Instance-Masked Attention, which applies instance identity masks and trajectory masks within attention blocks to ensure that visual tokens interact only with their corresponding instance features across spatial and temporal dimensions, thereby preserving object identity consistency; and (2) Instance-Masked Loss, which adaptively emphasizes foreground regions with probabilistic instance masking, reducing background noise while maintaining overall scene fidelity. By integrating these mechanisms, ConsisDrive achieves state-of-the-art driving video generation quality and demonstrates significant improvements in downstream autonomous driving tasks on the nuScenes dataset. Our project page is https://shanpoyang654.github.io/ConsisDrive/page.html.
☆ VIRAL: Visual In-Context Reasoning via Analogy in Diffusion Transformers
Replicating In-Context Learning (ICL) in computer vision remains challenging due to task heterogeneity. We propose \textbf{VIRAL}, a framework that elicits visual reasoning from a pre-trained image editing model by formulating ICL as conditional generation via visual analogy ($x_s : x_t :: x_q : y_q$). We adapt a frozen Diffusion Transformer (DiT) using role-aware multi-image conditioning and introduce a Mixture-of-Experts LoRA to mitigate gradient interference across diverse tasks. Additionally, to bridge the gaps in current visual context datasets, we curate a large-scale dataset spanning perception, restoration, and editing. Experiments demonstrate that VIRAL outperforms existing methods, validating that a unified V-ICL paradigm can handle the majority of visual tasks, including open-domain editing. Our code is available at https://anonymous.4open.science/r/VIRAL-744A
☆ Spectral Evolution Search: Efficient Inference-Time Scaling for Reward-Aligned Image Generation
Inference-time scaling offers a versatile paradigm for aligning visual generative models with downstream objectives without parameter updates. However, existing approaches that optimize the high-dimensional initial noise suffer from severe inefficiency, as many search directions exert negligible influence on the final generation. We show that this inefficiency is closely related to a spectral bias in generative dynamics: model sensitivity to initial perturbations diminishes rapidly as frequency increases. Building on this insight, we propose Spectral Evolution Search (SES), a plug-and-play framework for initial noise optimization that executes gradient-free evolutionary search within a low-frequency subspace. Theoretically, we derive the Spectral Scaling Prediction from perturbation propagation dynamics, which explains the systematic differences in the impact of perturbations across frequencies. Extensive experiments demonstrate that SES significantly advances the Pareto frontier of generation quality versus computational cost, consistently outperforming strong baselines under equivalent budgets.
☆ WebSplatter: Enabling Cross-Device Efficient Gaussian Splatting in Web Browsers via WebGPU
We present WebSplatter, an end-to-end GPU rendering pipeline for the heterogeneous web ecosystem. Unlike naive ports, WebSplatter introduces a wait-free hierarchical radix sort that circumvents the lack of global atomics in WebGPU, ensuring deterministic execution across diverse hardware. Furthermore, we propose an opacity-aware geometry culling stage that dynamically prunes splats before rasterization, significantly reducing overdraw and peak memory footprint. Evaluation demonstrates that WebSplatter consistently achieves 1.2$\times$ to 4.5$\times$ speedups over state-of-the-art web viewers.
☆ Hand3R: Online 4D Hand-Scene Reconstruction in the Wild
For Embodied AI, jointly reconstructing dynamic hands and the dense scene context is crucial for understanding physical interaction. However, most existing methods recover isolated hands in local coordinates, overlooking the surrounding 3D environment. To address this, we present Hand3R, the first online framework for joint 4D hand-scene reconstruction from monocular video. Hand3R synergizes a pre-trained hand expert with a 4D scene foundation model via a scene-aware visual prompting mechanism. By injecting high-fidelity hand priors into a persistent scene memory, our approach enables simultaneous reconstruction of accurate hand meshes and dense metric-scale scene geometry in a single forward pass. Experiments demonstrate that Hand3R bypasses the reliance on offline optimization and delivers competitive performance in both local hand reconstruction and global positioning.
☆ From Single Scan to Sequential Consistency: A New Paradigm for LIDAR Relocalization
LiDAR relocalization aims to estimate the global 6-DoF pose of a sensor in the environment. However, existing regression-based approaches are prone to dynamic or ambiguous scenarios, as they either solely rely on single-frame inference or neglect the spatio-temporal consistency across scans. In this paper, we propose TempLoc, a new LiDAR relocalization framework that enhances the robustness of localization by effectively modeling sequential consistency. Specifically, a Global Coordinate Estimation module is first introduced to predict point-wise global coordinates and associated uncertainties for each LiDAR scan. A Prior Coordinate Generation module is then presented to estimate inter-frame point correspondences by the attention mechanism. Lastly, an Uncertainty-Guided Coordinate Fusion module is deployed to integrate both predictions of point correspondence in an end-to-end fashion, yielding a more temporally consistent and accurate global 6-DoF pose. Experimental results on the NCLT and Oxford Robot-Car benchmarks show that our TempLoc outperforms stateof-the-art methods by a large margin, demonstrating the effectiveness of temporal-aware correspondence modeling in LiDAR relocalization. Our code will be released soon.
comment: Nothing
☆ LSGQuant: Layer-Sensitivity Guided Quantization for One-Step Diffusion Real-World Video Super-Resolution
One-Step Diffusion Models have demonstrated promising capability and fast inference in video super-resolution (VSR) for real-world. Nevertheless, the substantial model size and high computational cost of Diffusion Transformers (DiTs) limit downstream applications. While low-bit quantization is a common approach for model compression, the effectiveness of quantized models is challenged by the high dynamic range of input latent and diverse layer behaviors. To deal with these challenges, we introduce LSGQuant, a layer-sensitivity guided quantizing approach for one-step diffusion-based real-world VSR. Our method incorporates a Dynamic Range Adaptive Quantizer (DRAQ) to fit video token activations. Furthermore, we estimate layer sensitivity and implement a Variance-Oriented Layer Training Strategy (VOLTS) by analyzing layer-wise statistics in calibration. We also introduce Quantization-Aware Optimization (QAO) to jointly refine the quantized branch and a retained high-precision branch. Extensive experiments demonstrate that our method has nearly performance to origin model with full-precision and significantly exceeds existing quantization techniques. Code is available at: https://github.com/zhengchen1999/LSGQuant.
comment: Code is available at: https://github.com/zhengchen1999/LSGQuant
☆ BinaryDemoire: Moiré-Aware Binarization for Image Demoiréing
Image demoiréing aims to remove structured moiré artifacts in recaptured imagery, where degradations are highly frequency-dependent and vary across scales and directions. While recent deep networks achieve high-quality restoration, their full-precision designs remain costly for deployment. Binarization offers an extreme compression regime by quantizing both activations and weights to 1-bit. Yet, it has been rarely studied for demoiréing and performs poorly when naively applied. In this work, we propose BinaryDemoire, a binarized demoiréing framework that explicitly accommodates the frequency structure of moiré degradations. First, we introduce a moiré-aware binary gate (MABG) that extracts lightweight frequency descriptors together with activation statistics. It predicts channel-wise gating coefficients to condition the aggregation of binary convolution responses. Second, we design a shuffle-grouped residual adapter (SGRA) that performs structured sparse shortcut alignment. It further integrates interleaved mixing to promote information exchange across different channel partitions. Extensive experiments on four benchmarks demonstrate that the proposed BinaryDemoire surpasses current binarization methods. Code: https://github.com/zhengchen1999/BinaryDemoire.
comment: Code is available at: https://github.com/zhengchen1999/BinaryDemoire
☆ Human-in-the-loop Adaptation in Group Activity Feature Learning for Team Sports Video Retrieval
This paper proposes human-in-the-loop adaptation for Group Activity Feature Learning (GAFL) without group activity annotations. This human-in-the-loop adaptation is employed in a group-activity video retrieval framework to improve its retrieval performance. Our method initially pre-trains the GAF space based on the similarity of group activities in a self-supervised manner, unlike prior work that classifies videos into pre-defined group activity classes in a supervised learning manner. Our interactive fine-tuning process updates the GAF space to allow a user to better retrieve videos similar to query videos given by the user. In this fine-tuning, our proposed data-efficient video selection process provides several videos, which are selected from a video database, to the user in order to manually label these videos as positive or negative. These labeled videos are used to update (i.e., fine-tune) the GAF space, so that the positive and negative videos move closer to and farther away from the query videos through contrastive learning. Our comprehensive experimental results on two team sports datasets validate that our method significantly improves the retrieval performance. Ablation studies also demonstrate that several components in our human-in-the-loop adaptation contribute to the improvement of the retrieval performance. Code: https://github.com/chihina/GAFL-FINE-CVIU.
comment: Accepted to Computer Vision and Image Understanding (CVIU)
☆ Fully Kolmogorov-Arnold Deep Model in Medical Image Segmentation
Deeply stacked KANs are practically impossible due to high training difficulties and substantial memory requirements. Consequently, existing studies can only incorporate few KAN layers, hindering the comprehensive exploration of KANs. This study overcomes these limitations and introduces the first fully KA-based deep model, demonstrating that KA-based layers can entirely replace traditional architectures in deep learning and achieve superior learning capacity. Specifically, (1) the proposed Share-activation KAN (SaKAN) reformulates Sprecher's variant of Kolmogorov-Arnold representation theorem, which achieves better optimization due to its simplified parameterization and denser training samples, to ease training difficulty, (2) this paper indicates that spline gradients contribute negligibly to training while consuming huge GPU memory, thus proposes the Grad-Free Spline to significantly reduce memory usage and computational overhead. (3) Building on these two innovations, our ALL U-KAN is the first representative implementation of fully KA-based deep model, where the proposed KA and KAonv layers completely replace FC and Conv layers. Extensive evaluations on three medical image segmentation tasks confirm the superiority of the full KA-based architecture compared to partial KA-based and traditional architectures, achieving all higher segmentation accuracy. Compared to directly deeply stacked KAN, ALL U-KAN achieves 10 times reduction in parameter count and reduces memory consumption by more than 20 times, unlocking the new explorations into deep KAN architectures.
comment: 11 pages, 5 figures, conference
☆ Diversity-Preserved Distribution Matching Distillation for Fast Visual Synthesis
Distribution matching distillation (DMD) aligns a multi-step generator with its few-step counterpart to enable high-quality generation under low inference cost. However, DMD tends to suffer from mode collapse, as its reverse-KL formulation inherently encourages mode-seeking behavior, for which existing remedies typically rely on perceptual or adversarial regularization, thereby incurring substantial computational overhead and training instability. In this work, we propose a role-separated distillation framework that explicitly disentangles the roles of distilled steps: the first step is dedicated to preserving sample diversity via a target-prediction (e.g., v-prediction) objective, while subsequent steps focus on quality refinement under the standard DMD loss, with gradients from the DMD objective blocked at the first step. We term this approach Diversity-Preserved DMD (DP-DMD), which, despite its simplicity -- no perceptual backbone, no discriminator, no auxiliary networks, and no additional ground-truth images -- preserves sample diversity while maintaining visual quality on par with state-of-the-art methods in extensive text-to-image experiments.
☆ FSOD-VFM: Few-Shot Object Detection with Vision Foundation Models and Graph Diffusion ICLR 2026
In this paper, we present FSOD-VFM: Few-Shot Object Detectors with Vision Foundation Models, a framework that leverages vision foundation models to tackle the challenge of few-shot object detection. FSOD-VFM integrates three key components: a universal proposal network (UPN) for category-agnostic bounding box generation, SAM2 for accurate mask extraction, and DINOv2 features for efficient adaptation to new object categories. Despite the strong generalization capabilities of foundation models, the bounding boxes generated by UPN often suffer from overfragmentation, covering only partial object regions and leading to numerous small, false-positive proposals rather than accurate, complete object detections. To address this issue, we introduce a novel graph-based confidence reweighting method. In our approach, predicted bounding boxes are modeled as nodes in a directed graph, with graph diffusion operations applied to propagate confidence scores across the network. This reweighting process refines the scores of proposals, assigning higher confidence to whole objects and lower confidence to local, fragmented parts. This strategy improves detection granularity and effectively reduces the occurrence of false-positive bounding box proposals. Through extensive experiments on Pascal-5$^i$, COCO-20$^i$, and CD-FSOD datasets, we demonstrate that our method substantially outperforms existing approaches, achieving superior performance without requiring additional training. Notably, on the challenging CD-FSOD dataset, which spans multiple datasets and domains, our FSOD-VFM achieves 31.6 AP in the 10-shot setting, substantially outperforming previous training-free methods that reach only 21.4 AP. Code is available at: https://intellindust-ai-lab.github.io/projects/FSOD-VFM.
comment: Accepted by ICLR 2026. Code is available at: \url{https://intellindust-ai-lab.github.io/projects/FSOD-VFM}
☆ SwiftVLM: Efficient Vision-Language Model Inference via Cross-Layer Token Bypass
Visual token pruning is a promising approach for reducing the computational cost of vision-language models (VLMs), and existing methods often rely on early pruning decisions to improve efficiency. While effective on coarse-grained reasoning tasks, they suffer from significant performance degradation on tasks requiring fine-grained visual details. Through layer-wise analysis, we reveal substantial discrepancies in visual token importance across layers, showing that tokens deemed unimportant at shallow layers can later become highly relevant for text-conditioned reasoning. To avoid irreversible critical information loss caused by premature pruning, we introduce a new pruning paradigm, termed bypass, which preserves unselected visual tokens and forwards them to subsequent pruning stages for re-evaluation. Building on this paradigm, we propose SwiftVLM, a simple and training-free method that performs pruning at model-specific layers with strong visual token selection capability, while enabling independent pruning decisions across layers. Experiments across multiple VLMs and benchmarks demonstrate that SwiftVLM consistently outperforms existing pruning strategies, achieving superior accuracy-efficiency trade-offs and more faithful visual token selection behavior.
☆ FinMTM: A Multi-Turn Multimodal Benchmark for Financial Reasoning and Agent Evaluation
The financial domain poses substantial challenges for vision-language models (VLMs) due to specialized chart formats and knowledge-intensive reasoning requirements. However, existing financial benchmarks are largely single-turn and rely on a narrow set of question formats, limiting comprehensive evaluation in realistic application scenarios. To address this gap, we propose FinMTM, a multi-turn multimodal benchmark that expands diversity along both data and task dimensions. On the data side, we curate and annotate 11{,}133 bilingual (Chinese and English) financial QA pairs grounded in financial visuals, including candlestick charts, statistical plots, and report figures. On the task side, FinMTM covers single- and multiple-choice questions, multi-turn open-ended dialogues, and agent-based tasks. We further design task-specific evaluation protocols, including a set-overlap scoring rule for multiple-choice questions, a weighted combination of turn-level and session-level scores for multi-turn dialogues, and a composite metric that integrates planning quality with final outcomes for agent tasks. Extensive experimental evaluation of 22 VLMs reveal their limitations in fine-grained visual perception, long-context reasoning, and complex agent workflows.
☆ Flexible Geometric Guidance for Probabilistic Human Pose Estimation with Diffusion Models
3D human pose estimation from 2D images is a challenging problem due to depth ambiguity and occlusion. Because of these challenges the task is underdetermined, where there exists multiple -- possibly infinite -- poses that are plausible given the image. Despite this, many prior works assume the existence of a deterministic mapping and estimate a single pose given an image. Furthermore, methods based on machine learning require a large amount of paired 2D-3D data to train and suffer from generalization issues to unseen scenarios. To address both of these issues, we propose a framework for pose estimation using diffusion models, which enables sampling from a probability distribution over plausible poses which are consistent with a 2D image. Our approach falls under the guidance framework for conditional generation, and guides samples from an unconditional diffusion model, trained only on 3D data, using the gradients of the heatmaps from a 2D keypoint detector. We evaluate our method on the Human 3.6M dataset under best-of-$m$ multiple hypothesis evaluation, showing state-of-the-art performance among methods which do not require paired 2D-3D data for training. We additionally evaluate the generalization ability using the MPI-INF-3DHP and 3DPW datasets and demonstrate competitive performance. Finally, we demonstrate the flexibility of our framework by using it for novel tasks including pose generation and pose completion, without the need to train bespoke conditional models. We make code available at https://github.com/fsnelgar/diffusion_pose .
☆ Feature, Alignment, and Supervision in Category Learning: A Comparative Approach with Children and Neural Networks
Understanding how humans and machines learn from sparse data is central to cognitive science and machine learning. Using a species-fair design, we compare children and convolutional neural networks (CNNs) in a few-shot semi-supervised category learning task. Both learners are exposed to novel object categories under identical conditions. Learners receive mixtures of labeled and unlabeled exemplars while we vary supervision (1/3/6 labels), target feature (size, shape, pattern), and perceptual alignment (high/low). We find that children generalize rapidly from minimal labels but show strong feature-specific biases and sensitivity to alignment. CNNs show a different interaction profile: added supervision improves performance, but both alignment and feature structure moderate the impact additional supervision has on learning. These results show that human-model comparisons must be drawn under the right conditions, emphasizing interactions among supervision, feature structure, and alignment rather than overall accuracy.
☆ Beyond Cropping and Rotation: Automated Evolution of Powerful Task-Specific Augmentations with Generative Models
Data augmentation has long been a cornerstone for reducing overfitting in vision models, with methods like AutoAugment automating the design of task-specific augmentations. Recent advances in generative models, such as conditional diffusion and few-shot NeRFs, offer a new paradigm for data augmentation by synthesizing data with significantly greater diversity and realism. However, unlike traditional augmentations like cropping or rotation, these methods introduce substantial changes that enhance robustness but also risk degrading performance if the augmentations are poorly matched to the task. In this work, we present EvoAug, an automated augmentation learning pipeline, which leverages these generative models alongside an efficient evolutionary algorithm to learn optimal task-specific augmentations. Our pipeline introduces a novel approach to image augmentation that learns stochastic augmentation trees that hierarchically compose augmentations, enabling more structured and adaptive transformations. We demonstrate strong performance across fine-grained classification and few-shot learning tasks. Notably, our pipeline discovers augmentations that align with domain knowledge, even in low-data settings. These results highlight the potential of learned generative augmentations, unlocking new possibilities for robust model training.
☆ Gromov Wasserstein Optimal Transport for Semantic Correspondences
Establishing correspondences between image pairs is a long studied problem in computer vision. With recent large-scale foundation models showing strong zero-shot performance on downstream tasks including classification and segmentation, there has been interest in using the internal feature maps of these models for the semantic correspondence task. Recent works observe that features from DINOv2 and Stable Diffusion (SD) are complementary, the former producing accurate but sparse correspondences, while the latter produces spatially consistent correspondences. As a result, current state-of-the-art methods for semantic correspondence involve combining features from both models in an ensemble. While the performance of these methods is impressive, they are computationally expensive, requiring evaluating feature maps from large-scale foundation models. In this work we take a different approach, instead replacing SD features with a superior matching algorithm which is imbued with the desirable spatial consistency property. Specifically, we replace the standard nearest neighbours matching with an optimal transport algorithm that includes a Gromov Wasserstein spatial smoothness prior. We show that we can significantly boost the performance of the DINOv2 baseline, and be competitive and sometimes surpassing state-of-the-art methods using Stable Diffusion features, while being 5--10x more efficient. We make code available at https://github.com/fsnelgar/semantic_matching_gwot .
☆ Neural Predictor-Corrector: Solving Homotopy Problems with Reinforcement Learning
The Homotopy paradigm, a general principle for solving challenging problems, appears across diverse domains such as robust optimization, global optimization, polynomial root-finding, and sampling. Practical solvers for these problems typically follow a predictor-corrector (PC) structure, but rely on hand-crafted heuristics for step sizes and iteration termination, which are often suboptimal and task-specific. To address this, we unify these problems under a single framework, which enables the design of a general neural solver. Building on this unified view, we propose Neural Predictor-Corrector (NPC), which replaces hand-crafted heuristics with automatically learned policies. NPC formulates policy selection as a sequential decision-making problem and leverages reinforcement learning to automatically discover efficient strategies. To further enhance generalization, we introduce an amortized training mechanism, enabling one-time offline training for a class of problems and efficient online inference on new instances. Experiments on four representative homotopy problems demonstrate that our method generalizes effectively to unseen instances. It consistently outperforms classical and specialized baselines in efficiency while demonstrating superior stability across tasks, highlighting the value of unifying homotopy methods into a single neural framework.
☆ A generalizable large-scale foundation model for musculoskeletal radiographs
Artificial intelligence (AI) has shown promise in detecting and characterizing musculoskeletal diseases from radiographs. However, most existing models remain task-specific, annotation-dependent, and limited in generalizability across diseases and anatomical regions. Although a generalizable foundation model trained on large-scale musculoskeletal radiographs is clinically needed, publicly available datasets remain limited in size and lack sufficient diversity to enable training across a wide range of musculoskeletal conditions and anatomical sites. Here, we present SKELEX, a large-scale foundation model for musculoskeletal radiographs, trained using self-supervised learning on 1.2 million diverse, condition-rich images. The model was evaluated on 12 downstream diagnostic tasks and generally outperformed baselines in fracture detection, osteoarthritis grading, and bone tumor classification. Furthermore, SKELEX demonstrated zero-shot abnormality localization, producing error maps that identified pathologic regions without task-specific training. Building on this capability, we developed an interpretable, region-guided model for predicting bone tumors, which maintained robust performance on independent external datasets and was deployed as a publicly accessible web application. Overall, SKELEX provides a scalable, label-efficient, and generalizable AI framework for musculoskeletal imaging, establishing a foundation for both clinical translation and data-efficient research in musculoskeletal radiology.
☆ Finding Optimal Video Moment without Training: Gaussian Boundary Optimization for Weakly Supervised Video Grounding IEEE
Weakly supervised temporal video grounding aims to localize query-relevant segments in untrimmed videos using only video-sentence pairs, without requiring ground-truth segment annotations that specify exact temporal boundaries. Recent approaches tackle this task by utilizing Gaussian-based temporal proposals to represent query-relevant segments. However, their inference strategies rely on heuristic mappings from Gaussian parameters to segment boundaries, resulting in suboptimal localization performance. To address this issue, we propose Gaussian Boundary Optimization (GBO), a novel inference framework that predicts segment boundaries by solving a principled optimization problem that balances proposal coverage and segment compactness. We derive a closed-form solution for this problem and rigorously analyze the optimality conditions under varying penalty regimes. Beyond its theoretical foundations, GBO offers several practical advantages: it is training-free and compatible with both single-Gaussian and mixture-based proposal architectures. Our experiments show that GBO significantly improves localization, achieving state-of-the-art results across standard benchmarks. Extensive experiments demonstrate the efficiency and generalizability of GBO across various proposal schemes. The code is available at \href{https://github.com/sunoh-kim/gbo}{https://github.com/sunoh-kim/gbo}.
comment: Accepted in IEEE TMM
☆ JRDB-Pose3D: A Multi-person 3D Human Pose and Shape Estimation Dataset for Robotics
Real-world scenes are inherently crowded. Hence, estimating 3D poses of all nearby humans, tracking their movements over time, and understanding their activities within social and environmental contexts are essential for many applications, such as autonomous driving, robot perception, robot navigation, and human-robot interaction. However, most existing 3D human pose estimation datasets primarily focus on single-person scenes or are collected in controlled laboratory environments, which restricts their relevance to real-world applications. To bridge this gap, we introduce JRDB-Pose3D, which captures multi-human indoor and outdoor environments from a mobile robotic platform. JRDB-Pose3D provides rich 3D human pose annotations for such complex and dynamic scenes, including SMPL-based pose annotations with consistent body-shape parameters and track IDs for each individual over time. JRDB-Pose3D contains, on average, 5-10 human poses per frame, with some scenes featuring up to 35 individuals simultaneously. The proposed dataset presents unique challenges, including frequent occlusions, truncated bodies, and out-of-frame body parts, which closely reflect real-world environments. Moreover, JRDB-Pose3D inherits all available annotations from the JRDB dataset, such as 2D pose, information about social grouping, activities, and interactions, full-scene semantic masks with consistent human- and object-level tracking, and detailed annotations for each individual, such as age, gender, and race, making it a holistic dataset for a wide range of downstream perception and human-centric understanding tasks.
☆ IVC-Prune: Revealing the Implicit Visual Coordinates in LVLMs for Vision Token Pruning ICLR 2026
Large Vision-Language Models (LVLMs) achieve impressive performance across multiple tasks. A significant challenge, however, is their prohibitive inference cost when processing high-resolution visual inputs. While visual token pruning has emerged as a promising solution, existing methods that primarily focus on semantic relevance often discard tokens that are crucial for spatial reasoning. We address this gap through a novel insight into \emph{how LVLMs process spatial reasoning}. Specifically, we reveal that LVLMs implicitly establish visual coordinate systems through Rotary Position Embeddings (RoPE), where specific token positions serve as \textbf{implicit visual coordinates} (IVC tokens) that are essential for spatial reasoning. Based on this insight, we propose \textbf{IVC-Prune}, a training-free, prompt-aware pruning strategy that retains both IVC tokens and semantically relevant foreground tokens. IVC tokens are identified by theoretically analyzing the mathematical properties of RoPE, targeting positions at which its rotation matrices approximate identity matrix or the $90^\circ$ rotation matrix. Foreground tokens are identified through a robust two-stage process: semantic seed discovery followed by contextual refinement via value-vector similarity. Extensive evaluations across four representative LVLMs and twenty diverse benchmarks show that IVC-Prune reduces visual tokens by approximately 50\% while maintaining $\geq$ 99\% of the original performance and even achieving improvements on several benchmarks. Source codes are available at https://github.com/FireRedTeam/IVC-Prune.
comment: Accepted to ICLR 2026
☆ SAFE-KD: Risk-Controlled Early-Exit Distillation for Vision Backbones IJCNN
Early-exit networks reduce inference cost by allowing ``easy'' inputs to stop early, but practical deployment hinges on knowing \emph{when} early exit is safe. We introduce SAFE-KD, a universal multi-exit wrapper for modern vision backbones that couples hierarchical distillation with \emph{conformal risk control}. SAFE-KD attaches lightweight exit heads at intermediate depths, distills a strong teacher into all exits via Decoupled Knowledge Distillation (DKD), and enforces deep-to-shallow consistency between exits. At inference, we calibrate per-exit stopping thresholds on a held-out set using conformal risk control (CRC) to guarantee a user-specified \emph{selective} misclassification risk (among the samples that exit early) under exchangeability. Across multiple datasets and architectures, SAFE-KD yields improved accuracy compute trade-offs, stronger calibration, and robust performance under corruption while providing finite-sample risk guarantees.
comment: Submitted to IJCNN
☆ HP-GAN: Harnessing pretrained networks for GAN improvement with FakeTwins and discriminator consistency
Generative Adversarial Networks (GANs) have made significant progress in enhancing the quality of image synthesis. Recent methods frequently leverage pretrained networks to calculate perceptual losses or utilize pretrained feature spaces. In this paper, we extend the capabilities of pretrained networks by incorporating innovative self-supervised learning techniques and enforcing consistency between discriminators during GAN training. Our proposed method, named HP-GAN, effectively exploits neural network priors through two primary strategies: FakeTwins and discriminator consistency. FakeTwins leverages pretrained networks as encoders to compute a self-supervised loss and applies this through the generated images to train the generator, thereby enabling the generation of more diverse and high quality images. Additionally, we introduce a consistency mechanism between discriminators that evaluate feature maps extracted from Convolutional Neural Network (CNN) and Vision Transformer (ViT) feature networks. Discriminator consistency promotes coherent learning among discriminators and enhances training robustness by aligning their assessments of image quality. Our extensive evaluation across seventeen datasets-including scenarios with large, small, and limited data, and covering a variety of image domains-demonstrates that HP-GAN consistently outperforms current state-of-the-art methods in terms of Fréchet Inception Distance (FID), achieving significant improvements in image diversity and quality. Code is available at: https://github.com/higun2/HP-GAN.
comment: Accepted manuscript. This is the accepted version of the article published in Neural Networks
☆ Bongards at the Boundary of Perception and Reasoning: Programs or Language?
Vision-Language Models (VLMs) have made great strides in everyday visual tasks, such as captioning a natural image, or answering commonsense questions about such images. But humans possess the puzzling ability to deploy their visual reasoning abilities in radically new situations, a skill rigorously tested by the classic set of visual reasoning challenges known as the Bongard problems. We present a neurosymbolic approach to solving these problems: given a hypothesized solution rule for a Bongard problem, we leverage LLMs to generate parameterized programmatic representations for the rule and perform parameter fitting using Bayesian optimization. We evaluate our method on classifying Bongard problem images given the ground truth rule, as well as on solving the problems from scratch.
comment: 6 pages, 5 figures
☆ MUSE: A Multi-agent Framework for Unconstrained Story Envisioning via Closed-Loop Cognitive Orchestration
Generating long-form audio-visual stories from a short user prompt remains challenging due to an intent-execution gap, where high-level narrative intent must be preserved across coherent, shot-level multimodal generation over long horizons. Existing approaches typically rely on feed-forward pipelines or prompt-only refinement, which often leads to semantic drift and identity inconsistency as sequences grow longer. We address this challenge by formulating storytelling as a closed-loop constraint enforcement problem and propose MUSE, a multi-agent framework that coordinates generation through an iterative plan-execute-verify-revise loop. MUSE translates narrative intent into explicit, machine-executable controls over identity, spatial composition, and temporal continuity, and applies targeted multimodal feedback to correct violations during generation. To evaluate open-ended storytelling without ground-truth references, we introduce MUSEBench, a reference-free evaluation protocol validated by human judgments. Experiments demonstrate that MUSE substantially improves long-horizon narrative coherence, cross-modal identity consistency, and cinematic quality compared with representative baselines.
☆ A Vision-Based Analysis of Congestion Pricing in New York City
We examine the impact of New York City's congestion pricing program through automated analysis of traffic camera data. Our computer vision pipeline processes footage from over 900 cameras distributed throughout Manhattan and New York, comparing traffic patterns from November 2024 through the program's implementation in January 2025 until January 2026. We establish baseline traffic patterns and identify systematic changes in vehicle density across the monitored region.
☆ Thinking inside the Convolution for Image Inpainting: Reconstructing Texture via Structure under Global and Local Side
Image inpainting has earned substantial progress, owing to the encoder-and-decoder pipeline, which is benefited from the Convolutional Neural Networks (CNNs) with convolutional downsampling to inpaint the masked regions semantically from the known regions within the encoder, coupled with an upsampling process from the decoder for final inpainting output. Recent studies intuitively identify the high-frequency structure and low-frequency texture to be extracted by CNNs from the encoder, and subsequently for a desirable upsampling recovery. However, the existing arts inevitably overlook the information loss for both structure and texture feature maps during the convolutional downsampling process, hence suffer from a non-ideal upsampling output. In this paper, we systematically answer whether and how the structure and texture feature map can mutually help to alleviate the information loss during the convolutional downsampling. Given the structure and texture feature maps, we adopt the statistical normalization and denormalization strategy for the reconstruction guidance during the convolutional downsampling process. The extensive experimental results validate its advantages to the state-of-the-arts over the images from low-to-high resolutions including 256*256 and 512*512, especially holds by substituting all the encoders by ours. Our code is available at https://github.com/htyjers/ConvInpaint-TSGL
comment: 17 pages, 17 figures
☆ VOILA: Value-of-Information Guided Fidelity Selection for Cost-Aware Multimodal Question Answering
Despite significant costs from retrieving and processing high-fidelity visual inputs, most multimodal vision-language systems operate at fixed fidelity levels. We introduce VOILA, a framework for Value-Of-Information-driven adaptive fidelity selection in Visual Question Answering (VQA) that optimizes what information to retrieve before model execution. Given a query, VOILA uses a two-stage pipeline: a gradient-boosted regressor estimates correctness likelihood at each fidelity from question features alone, then an isotonic calibrator refines these probabilities for reliable decision-making. The system selects the minimum-cost fidelity maximizing expected utility given predicted accuracy and retrieval costs. We evaluate VOILA across three deployment scenarios using five datasets (VQA-v2, GQA, TextVQA, LoCoMo, FloodNet) and six Vision-Language Models (VLMs) with 7B-235B parameters. VOILA consistently achieves 50-60% cost reductions while retaining 90-95% of full-resolution accuracy across diverse query types and model architectures, demonstrating that pre-retrieval fidelity selection is vital to optimize multimodal inference under resource constraints.
☆ Video-OPD: Efficient Post-Training of Multimodal Large Language Models for Temporal Video Grounding via On-Policy Distillation
Reinforcement learning has emerged as a principled post-training paradigm for Temporal Video Grounding (TVG) due to its on-policy optimization, yet existing GRPO-based methods remain fundamentally constrained by sparse reward signals and substantial computational overhead. We propose Video-OPD, an efficient post-training framework for TVG inspired by recent advances in on-policy distillation. Video-OPD optimizes trajectories sampled directly from the current policy, thereby preserving alignment between training and inference distributions, while a frontier teacher supplies dense, token-level supervision via a reverse KL divergence objective. This formulation preserves the on-policy property critical for mitigating distributional shift, while converting sparse, episode-level feedback into fine-grained, step-wise learning signals. Building on Video-OPD, we introduce Teacher-Validated Disagreement Focusing (TVDF), a lightweight training curriculum that iteratively prioritizes trajectories that are both teacher-reliable and maximally informative for the student, thereby improving training efficiency. Empirical results demonstrate that Video-OPD consistently outperforms GRPO while achieving substantially faster convergence and lower computational cost, establishing on-policy distillation as an effective alternative to conventional reinforcement learning for TVG.
☆ SharpTimeGS: Sharp and Stable Dynamic Gaussian Splatting via Lifespan Modulation
Novel view synthesis of dynamic scenes is fundamental to achieving photorealistic 4D reconstruction and immersive visual experiences. Recent progress in Gaussian-based representations has significantly improved real-time rendering quality, yet existing methods still struggle to maintain a balance between long-term static and short-term dynamic regions in both representation and optimization. To address this, we present SharpTimeGS, a lifespan-aware 4D Gaussian framework that achieves temporally adaptive modeling of both static and dynamic regions under a unified representation. Specifically, we introduce a learnable lifespan parameter that reformulates temporal visibility from a Gaussian-shaped decay into a flat-top profile, allowing primitives to remain consistently active over their intended duration and avoiding redundant densification. In addition, the learned lifespan modulates each primitives' motion, reducing drift in long-lived static points while retaining unrestricted motion for short-lived dynamic ones. This effectively decouples motion magnitude from temporal duration, improving long-term stability without compromising dynamic fidelity. Moreover, we design a lifespan-velocity-aware densification strategy that mitigates optimization imbalance between static and dynamic regions by allocating more capacity to regions with pronounced motion while keeping static areas compact and stable. Extensive experiments on multiple benchmarks demonstrate that our method achieves state-of-the-art performance while supporting real-time rendering up to 4K resolution at 100 FPS on one RTX 4090.
☆ Aligning Forest and Trees in Images and Long Captions for Visually Grounded Understanding
Large vision-language models such as CLIP struggle with long captions because they align images and texts as undifferentiated wholes. Fine-grained vision-language understanding requires hierarchical semantics capturing both global context and localized details across visual and textual domains. Yet linguistic hierarchies from syntax or semantics rarely match visual organization, and purely visual hierarchies tend to fragment scenes into appearance-driven parts without semantic focus. We propose CAFT (Cross-domain Alignment of Forests and Trees), a hierarchical image-text representation learning framework that aligns global and local semantics across images and long captions without pixel-level supervision. Coupling a fine-to-coarse visual encoder with a hierarchical text transformer, it uses a hierarchical alignment loss that matches whole images with whole captions while biasing region-sentence correspondences, so that coarse semantics are built from fine-grained evidence rather than from aggregation untethered to part-level grounding. Trained on 30M image-text pairs, CAFT achieves state-of-the-art performance on six long-text retrieval benchmarks and exhibits strong scaling behavior. Experiments show that hierarchical cross-domain alignment enables fine-grained, visually grounded image-text representations to emerge without explicit region-level supervision.
comment: Preprint
☆ SceneLinker: Compositional 3D Scene Generation via Semantic Scene Graph from RGB Sequences IEEE
We introduce SceneLinker, a novel framework that generates compositional 3D scenes via semantic scene graph from RGB sequences. To adaptively experience Mixed Reality (MR) content based on each user's space, it is essential to generate a 3D scene that reflects the real-world layout by compactly capturing the semantic cues of the surroundings. Prior works struggled to fully capture the contextual relationship between objects or mainly focused on synthesizing diverse shapes, making it challenging to generate 3D scenes aligned with object arrangements. We address these challenges by designing a graph network with cross-check feature attention for scene graph prediction and constructing a graph-variational autoencoder (graph-VAE), which consists of a joint shape and layout block for 3D scene generation. Experiments on the 3RScan/3DSSG and SG-FRONT datasets demonstrate that our approach outperforms state-of-the-art methods in both quantitative and qualitative evaluations, even in complex indoor environments and under challenging scene graph constraints. Our work enables users to generate consistent 3D spaces from their physical environments via scene graphs, allowing them to create spatial MR content. Project page is https://scenelinker2026.github.io.
comment: Accepted as an IEEE TVCG paper at IEEE VR 2026 (journal track)
☆ Fisheye Stereo Vision: Depth and Range Error
This study derives analytical expressions for the depth and range error of fisheye stereo vision systems as a function of object distance, specifically accounting for accuracy at large angles.
☆ Dynamic High-frequency Convolution for Infrared Small Target Detection
Infrared small targets are typically tiny and locally salient, which belong to high-frequency components (HFCs) in images. Single-frame infrared small target (SIRST) detection is challenging, since there are many HFCs along with targets, such as bright corners, broken clouds, and other clutters. Current learning-based methods rely on the powerful capabilities of deep networks, but neglect explicit modeling and discriminative representation learning of various HFCs, which is important to distinguish targets from other HFCs. To address the aforementioned issues, we propose a dynamic high-frequency convolution (DHiF) to translate the discriminative modeling process into the generation of a dynamic local filter bank. Especially, DHiF is sensitive to HFCs, owing to the dynamic parameters of its generated filters being symmetrically adjusted within a zero-centered range according to Fourier transformation properties. Combining with standard convolution operations, DHiF can adaptively and dynamically process different HFC regions and capture their distinctive grayscale variation characteristics for discriminative representation learning. DHiF functions as a drop-in replacement for standard convolution and can be used in arbitrary SIRST detection networks without significant decrease in computational efficiency. To validate the effectiveness of our DHiF, we conducted extensive experiments across different SIRST detection networks on real-scene datasets. Compared to other state-of-the-art convolution operations, DHiF exhibits superior detection performance with promising improvement. Codes are available at https://github.com/TinaLRJ/DHiF.
☆ TRACE: Temporal Radiology with Anatomical Change Explanation for Grounded X-ray Report Generation
Temporal comparison of chest X-rays is fundamental to clinical radiology, enabling detection of disease progression, treatment response, and new findings. While vision-language models have advanced single-image report generation and visual grounding, no existing method combines these capabilities for temporal change detection. We introduce Temporal Radiology with Anatomical Change Explanation (TRACE), the first model that jointly performs temporal comparison, change classification, and spatial localization. Given a prior and current chest X-ray, TRACE generates natural language descriptions of interval changes (worsened, improved, stable) while grounding each finding with bounding box coordinates. TRACE demonstrates effective spatial localization with over 90% grounding accuracy, establishing a foundation for this challenging new task. Our ablation study uncovers an emergent capability: change detection arises only when temporal comparison and spatial grounding are jointly learned, as neither alone enables meaningful change detection. This finding suggests that grounding provides a spatial attention mechanism essential for temporal reasoning.
☆ Nüwa: Mending the Spatial Integrity Torn by VLM Token Pruning
Vision token pruning has proven to be an effective acceleration technique for the efficient Vision Language Model (VLM). However, existing pruning methods demonstrate excellent performance preservation in visual question answering (VQA) and suffer substantial degradation on visual grounding (VG) tasks. Our analysis of the VLM's processing pipeline reveals that strategies utilizing global semantic similarity and attention scores lose the global spatial reference frame, which is derived from the interactions of tokens' positional information. Motivated by these findings, we propose $\text{Nüwa}$, a two-stage token pruning framework that enables efficient feature aggregation while maintaining spatial integrity. In the first stage, after the vision encoder, we apply three operations, namely separation, alignment, and aggregation, which are inspired by swarm intelligence algorithms to retain information-rich global spatial anchors. In the second stage, within the LLM, we perform text-guided pruning to retain task-relevant visual tokens. Extensive experiments demonstrate that $\text{Nüwa}$ achieves SOTA performance on multiple VQA benchmarks (from 94% to 95%) and yields substantial improvements on visual grounding tasks (from 7% to 47%).
☆ SRA-Seg: Synthetic to Real Alignment for Semi-Supervised Medical Image Segmentation
Synthetic data, an appealing alternative to extensive expert-annotated data for medical image segmentation, consistently fails to improve segmentation performance despite its visual realism. The reason being that synthetic and real medical images exist in different semantic feature spaces, creating a domain gap that current semi-supervised learning methods cannot bridge. We propose SRA-Seg, a framework explicitly designed to align synthetic and real feature distributions for medical image segmentation. SRA-Seg introduces a similarity-alignment (SA) loss using frozen DINOv2 embeddings to pull synthetic representations toward their nearest real counterparts in semantic space. We employ soft edge blending to create smooth anatomical transitions and continuous labels, eliminating the hard boundaries from traditional copy-paste augmentation. The framework generates pseudo-labels for synthetic images via an EMA teacher model and applies soft-segmentation losses that respect uncertainty in mixed regions. Our experiments demonstrate strong results: using only 10% labeled real data and 90% synthetic unlabeled data, SRA-Seg achieves 89.34% Dice on ACDC and 84.42% on FIVES, significantly outperforming existing semi-supervised methods and matching the performance of methods using real unlabeled data.
♻ ☆ MixGRPO: Unlocking Flow-based GRPO Efficiency with Mixed ODE-SDE
Although GRPO substantially enhances flow matching models in human preference alignment of image generation, methods such as FlowGRPO and DanceGRPO still exhibit inefficiency due to the necessity of sampling and optimizing over all denoising steps specified by the Markov Decision Process (MDP). In this paper, we propose $\textbf{MixGRPO}$, a novel framework that leverages the flexibility of mixed sampling strategies through the integration of stochastic differential equations (SDE) and ordinary differential equations (ODE). This streamlines the optimization process within the MDP to improve efficiency and boost performance. Specifically, MixGRPO introduces a sliding window mechanism, using SDE sampling and GRPO-guided optimization only within the window, while applying ODE sampling outside. This design confines sampling randomness to the time-steps within the window, thereby reducing the optimization overhead, and allowing for more focused gradient updates to accelerate convergence. Additionally, as time-steps beyond the sliding window are not involved in optimization, higher-order solvers are supported for faster sampling. So we present a faster variant, termed $\textbf{MixGRPO-Flash}$, which further improves training efficiency while achieving comparable performance. MixGRPO exhibits substantial gains across multiple dimensions of human preference alignment, outperforming DanceGRPO in both effectiveness and efficiency, with nearly 50% lower training time. Notably, MixGRPO-Flash further reduces training time by 71%.
♻ ☆ Model Optimization for Multi-Camera 3D Detection and Tracking
Outside-in multi-camera perception is increasingly important in indoor environments, where networks of static cameras must support multi-target tracking under occlusion and heterogeneous viewpoints. We evaluate Sparse4D, a query-based spatiotemporal 3D detection and tracking framework that fuses multi-view features in a shared world frame and propagates sparse object queries via instance memory. We study reduced input frame rates, post-training quantization (INT8 and FP8), transfer to the WILDTRACK benchmark, and Transformer Engine mixed-precision fine-tuning. To better capture identity stability, we report Average Track Duration (AvgTrackDur), which measures identity persistence in seconds. Sparse4D remains stable under moderate FPS reductions, but below 2 FPS, identity association collapses even when detections are stable. Selective quantization of the backbone and neck offers the best speed-accuracy trade-off, while attention-related modules are consistently sensitive to low precision. On WILDTRACK, low-FPS pretraining yields large zero-shot gains over the base checkpoint, while small-scale fine-tuning provides limited additional benefit. Transformer Engine mixed precision reduces latency and improves camera scalability, but can destabilize identity propagation, motivating stability-aware validation.
♻ ☆ Moonworks Lunara Aesthetic II: An Image Variation Dataset
We introduce Lunara Aesthetic II, a publicly released, ethically sourced image dataset designed to support controlled evaluation and learning of contextual consistency in modern image generation and editing systems. The dataset comprises 2,854 anchor-linked variation pairs derived from original art and photographs created by Moonworks. Each variation pair applies contextual transformations, such as illumination, weather, viewpoint, scene composition, color tone, or mood; while preserving a stable underlying identity. Lunara Aesthetic II operationalizes identity-preserving contextual variation as a supervision signal while also retaining Lunara's signature high aesthetic scores. Results show high identity stability, strong target attribute realization, and a robust aesthetic profile that exceeds large-scale web datasets. Released under the Apache 2.0 license, Lunara Aesthetic II is intended for benchmarking, fine-tuning, and analysis of contextual generalization, identity preservation, and edit robustness in image generation and image-to-image systems with interpretable, relational supervision. The dataset is publicly available at: https://huggingface.co/datasets/moonworks/lunara-aesthetic-image-variations.
♻ ☆ Seeing through Satellite Images at Street Views IEEE
This paper studies the task of SatStreet-view synthesis, which aims to render photorealistic street-view panorama images and videos given any satellite image and specified camera positions or trajectories. We formulate to learn neural radiance field from paired images captured from satellite and street viewpoints, which comes to be a challenging learning problem due to the sparse-view natural and the extremely-large viewpoint changes between satellite and street-view images. We tackle the challenges based on a task-specific observation that street-view specific elements, including the sky and illumination effects are only visible in street-view panoramas, and present a novel approach Sat2Density++ to accomplish the goal of photo-realistic street-view panoramas rendering by modeling these street-view specific in neural networks. In the experiments, our method is testified on both urban and suburban scene datasets, demonstrating that Sat2Density++ is capable of rendering photorealistic street-view panoramas that are consistent across multiple views and faithful to the satellite image.
comment: Accepted to IEEE TPAMI. Initially submitted in July 2024. Code is available on https://qianmingduowan.github.io/sat2density-pp/
♻ ☆ Towards Sustainable Universal Deepfake Detection with Frequency-Domain Masking
Universal deepfake detection aims to identify AI-generated images across a broad range of generative models, including unseen ones. This requires robust generalization to new and unseen deepfakes, which emerge frequently, while minimizing computational overhead to enable large-scale deepfake screening, a critical objective in the era of Green AI. In this work, we explore frequency-domain masking as a training strategy for deepfake detectors. Unlike traditional methods that rely heavily on spatial features or large-scale pretrained models, our approach introduces random masking and geometric transformations, with a focus on frequency masking due to its superior generalization properties. We demonstrate that frequency masking not only enhances detection accuracy across diverse generators but also maintains performance under significant model pruning, offering a scalable and resource-conscious solution. Our method achieves state-of-the-art generalization on GAN- and diffusion-generated image datasets and exhibits consistent robustness under structured pruning. These results highlight the potential of frequency-based masking as a practical step toward sustainable and generalizable deepfake detection. Code and models are available at https://github.com/chandlerbing65nm/FakeImageDetection.
comment: Accepted to ACM TOMM
♻ ☆ Rethinking Bottlenecks in Safety Fine-Tuning of Vision Language Models
Large Vision-Language Models (VLMs) have achieved remarkable performance across a wide range of tasks. However, their deployment in safety-critical domains poses significant challenges. Existing safety fine-tuning methods, which focus on textual or multimodal content, fall short in addressing challenging cases or disrupt the balance between helpfulness and harmlessness. Our evaluation highlights a safety reasoning gap: these methods lack safety visual reasoning ability, leading to such bottlenecks. To address this limitation and enhance both visual perception and reasoning in safety-critical contexts, we propose a novel dataset that integrates multi-image inputs with safety Chain-of-Thought (CoT) labels as fine-grained reasoning logic to improve model performance. Specifically, we introduce the Multi-Image Safety (MIS) dataset, an instruction-following dataset tailored for multi-image safety scenarios, consisting of training and test splits. Our experiments demonstrate that fine-tuning InternVL2.5-8B with MIS significantly outperforms both powerful open-source models and API-based models in challenging multi-image tasks requiring safety-related visual reasoning. This approach not only delivers exceptional safety performance but also preserves general capabilities without any trade-offs. Specifically, fine-tuning with MIS increases average accuracy by 0.83% across five general benchmarks and reduces the Attack Success Rate (ASR) on multiple safety benchmarks by a large margin.
♻ ☆ RANKVIDEO: Reasoning Reranking for Text-to-Video Retrieval
Reranking is a critical component of modern retrieval systems, which typically pair an efficient first-stage retriever with a more expressive model to refine results. While large reasoning models have driven rapid progress in text-centric reranking, reasoning-based reranking for video retrieval remains underexplored. To address this gap, we introduce RANKVIDEO, a reasoning-based reranker for video retrieval that explicitly reasons over query-video pairs using video content to assess relevance. RANKVIDEO is trained using a two-stage curriculum consisting of perception-grounded supervised fine-tuning followed by reranking training that combines pointwise, pairwise, and teacher confidence distillation objectives, and is supported by a data synthesis pipeline for constructing reasoning-intensive query-video pairs. Experiments on the large-scale MultiVENT 2.0 benchmark demonstrate that RANKVIDEO consistently improves retrieval performance within a two-stage framework, yielding an average improvement of 31% on nDCG@10 and outperforming text-only and vision-language reranking alternatives, while more efficient.
♻ ☆ Ground-R1: Incentivizing Grounded Visual Reasoning via Reinforcement Learning
Large Vision-Language Models (LVLMs) have become powerful general-purpose assistants, yet their predictions often lack reliability and interpretability due to insufficient grounding in visual evidence. The emerging thinking-with-images paradigm seeks to address this issue by explicitly anchoring reasoning to image regions. However, we empirically find that most existing methods suffer from a systematic scale-driven bias in optimization, where training rewards are dominated by large visual regions, suppressing learning from small but semantically critical evidence and leading to spurious grounding at inference time. To address this limitation, we propose Ground-R1, a de-biased thinking-with-images framework trained via a novel Scale Relative Policy Optimization (SRPO) objective that replaces standard GRPO. Specifically, our SRPO recalibrates reward learning across evidence regions of different sizes through scale-aware binning and intra-/inter-bin comparisons, enabling balanced credit assignment during training. Experimental results on general LVLM, high-resolution, and visual grounding benchmarks validate the effectiveness of Ground-R1 and show that SRPO yields consistent gains over standard GRPO in both response accuracy and evidence grounding.
♻ ☆ Mapping the Unseen: Unified Promptable Panoptic Mapping with Dynamic Labeling using Foundation Models
Panoptic maps enable robots to reason about both geometry and semantics. However, open-vocabulary models repeatedly produce closely related labels that split panoptic entities and degrade volumetric consistency. The proposed UPPM advances open-world scene understanding by leveraging foundation models to introduce a panoptic Dynamic Descriptor that reconciles open-vocabulary labels with unified category structure and geometric size priors. The fusion for such dynamic descriptors is performed within a multi-resolution multi-TSDF map using language-guided open-vocabulary panoptic segmentation and semantic retrieval, resulting in a persistent and promptable panoptic map without additional model training. Based on our evaluation experiments, UPPM shows the best overall performance in terms of the map reconstruction accuracy and the panoptic segmentation quality. The ablation study investigates the contribution for each component of UPPM (custom NMS, blurry-frame filtering, and unified semantics) to the overall system performance. Consequently, UPPM preserves open-vocabulary interpretability while delivering strong geometric and panoptic accuracy.
♻ ☆ Infinite-World: Scaling Interactive World Models to 1000-Frame Horizons via Pose-Free Hierarchical Memory
We propose Infinite-World, a robust interactive world model capable of maintaining coherent visual memory over 1000+ frames in complex real-world environments. While existing world models can be efficiently optimized on synthetic data with perfect ground-truth, they lack an effective training paradigm for real-world videos due to noisy pose estimations and the scarcity of viewpoint revisits. To bridge this gap, we first introduce a Hierarchical Pose-free Memory Compressor (HPMC) that recursively distills historical latents into a fixed-budget representation. By jointly optimizing the compressor with the generative backbone, HPMC enables the model to autonomously anchor generations in the distant past with bounded computational cost, eliminating the need for explicit geometric priors. Second, we propose an Uncertainty-aware Action Labeling module that discretizes continuous motion into a tri-state logic. This strategy maximizes the utilization of raw video data while shielding the deterministic action space from being corrupted by noisy trajectories, ensuring robust action-response learning. Furthermore, guided by insights from a pilot toy study, we employ a Revisit-Dense Finetuning Strategy using a compact, 30-minute dataset to efficiently activate the model's long-range loop-closure capabilities. Extensive experiments, including objective metrics and user studies, demonstrate that Infinite-World achieves superior performance in visual quality, action controllability, and spatial consistency.
comment: project page: https://rq-wu.github.io/projects/infinite-world/index.html
♻ ☆ SEMNAV: Enhancing Visual Semantic Navigation in Robotics through Semantic Segmentation
Visual Semantic Navigation (VSN) is a fundamental problem in robotics, where an agent must navigate toward a target object in an unknown environment, mainly using visual information. Most state-of-the-art VSN models are trained in simulation environments, where rendered scenes of the real world are used, at best. These approaches typically rely on raw RGB data from the virtual scenes, which limits their ability to generalize to real-world environments due to domain adaptation issues. To tackle this problem, in this work, we propose SEMNAV, a novel approach that leverages semantic segmentation as the main visual input representation of the environment to enhance the agent's perception and decision-making capabilities. By explicitly incorporating this type of high-level semantic information, our model learns robust navigation policies that improve generalization across unseen environments, both in simulated and real world settings. We also introduce the SEMNAV dataset, a newly curated dataset designed for training semantic segmentation-aware navigation models like SEMNAV. Our approach is evaluated extensively in both simulated environments and with real-world robotic platforms. Experimental results demonstrate that SEMNAV outperforms existing state-of-the-art VSN models, achieving higher success rates in the Habitat 2.0 simulation environment, using the HM3D dataset. Furthermore, our real-world experiments highlight the effectiveness of semantic segmentation in mitigating the sim-to-real gap, making our model a promising solution for practical VSN-based robotic applications. The code and datasets are accessible at https://github.com/gramuah/semnav
♻ ☆ Accurate and Efficient World Modeling with Masked Latent Transformers
The Dreamer algorithm has recently obtained remarkable performance across diverse environment domains by training powerful agents with simulated trajectories. However, the compressed nature of its world model's latent space can result in the loss of crucial information, negatively affecting the agent's performance. Recent approaches, such as $Δ$-IRIS and DIAMOND, address this limitation by training more accurate world models. However, these methods require training agents directly from pixels, which reduces training efficiency and prevents the agent from benefiting from the inner representations learned by the world model. In this work, we propose an alternative approach to world modeling that is both accurate and efficient. We introduce EMERALD (Efficient MaskEd latent tRAnsformer worLD model), a world model using a spatial latent state with MaskGIT predictions to generate accurate trajectories in latent space and improve the agent performance. On the Crafter benchmark, EMERALD achieves new state-of-the-art performance, becoming the first method to surpass human experts performance within 10M environment steps. Our method also succeeds to unlock all 22 Crafter achievements at least once during evaluation.
♻ ☆ Driving on Registers
We present DrivoR, a simple and efficient transformer-based architecture for end-to-end autonomous driving. Our approach builds on pretrained Vision Transformers (ViTs) and introduces camera-aware register tokens that compress multi-camera features into a compact scene representation, significantly reducing downstream computation without sacrificing accuracy. These tokens drive two lightweight transformer decoders that generate and then score candidate trajectories. The scoring decoder learns to mimic an oracle and predicts interpretable sub-scores representing aspects such as safety, comfort, and efficiency, enabling behavior-conditioned driving at inference. Despite its minimal design, DrivoR outperforms or matches strong contemporary baselines across NAVSIM-v1, NAVSIM-v2, and the photorealistic closed-loop HUGSIM benchmark. Our results show that a pure-transformer architecture, combined with targeted token compression, is sufficient for accurate, efficient, and adaptive end-to-end driving. Code and checkpoints will be made available via the project page.
♻ ☆ Generating a Paracosm for Training-Free Zero-Shot Composed Image Retrieval
Composed Image Retrieval (CIR) is the task of retrieving a target image from a database using a multimodal query, which consists of a reference image and a modification text. The text specifies how to alter the reference image to form a ``mental image'', based on which CIR should find the target image in the database. The fundamental challenge of CIR is that this ``mental image'' is not physically available and is only implicitly defined by the query. The contemporary literature pursues zero-shot methods and uses a Large Multimodal Model (LMM) to generate a textual description for a given multimodal query, and then employs a Vision-Language Model (VLM) for textual-visual matching to search the target image. In contrast, we address CIR from first principles by directly generating the ``mental image'' for more accurate matching. Particularly, we prompt an LMM to generate a ``mental image'' for a given multimodal query and propose to use this ``mental image'' to search for the target image. As the ``mental image'' has a synthetic-to-real domain gap with real images, we also generate a synthetic counterpart for each real image in the database to facilitate matching. In this sense, our method uses LMM to construct a ``paracosm'', where it matches the multimodal query and database images. Hence, we call this method Paracosm. Notably, Paracosm is a training-free zero-shot CIR method. It significantly outperforms existing zero-shot methods on four challenging benchmarks, achieving state-of-the-art performance for zero-shot CIR.
♻ ☆ OptiPMB: Enhancing 3D Multi-Object Tracking with Optimized Poisson Multi-Bernoulli Filtering
Accurate 3D multi-object tracking (MOT) is crucial for autonomous driving, as it enables robust perception, navigation, and planning in complex environments. While deep learning-based solutions have demonstrated impressive 3D MOT performance, model-based approaches remain appealing for their simplicity, interpretability, and data efficiency. Conventional model-based trackers typically rely on random vector-based Bayesian filters within the tracking-by-detection (TBD) framework but face limitations due to heuristic data association and track management schemes. In contrast, random finite set (RFS)-based Bayesian filtering handles object birth, survival, and death in a theoretically sound manner, facilitating interpretability and parameter tuning. In this paper, we present OptiPMB, a novel RFS-based 3D MOT method that employs an optimized Poisson multi-Bernoulli (PMB) filter while incorporating several key innovative designs within the TBD framework. Specifically, we propose a measurement-driven hybrid adaptive birth model for improved track initialization, employ adaptive detection probability parameters to effectively maintain tracks for occluded objects, and optimize density pruning and track extraction modules to further enhance overall tracking performance. Extensive evaluations on nuScenes and KITTI datasets show that OptiPMB achieves superior tracking accuracy compared with state-of-the-art methods, thereby establishing a new benchmark for model-based 3D MOT and offering valuable insights for future research on RFS-based trackers in autonomous driving.
♻ ☆ PISA: Piecewise Sparse Attention Is Wiser for Efficient Diffusion Transformers
Diffusion Transformers are fundamental for video and image generation, but their efficiency is bottlenecked by the quadratic complexity of attention. While block sparse attention accelerates computation by attending only critical key-value blocks, it suffers from degradation at high sparsity by discarding context. In this work, we discover that attention scores of non-critical blocks exhibit distributional stability, allowing them to be approximated accurately and efficiently rather than discarded, which is essentially important for sparse attention design. Motivated by this key insight, we propose PISA, a training-free Piecewise Sparse Attention that covers the full attention span with sub-quadratic complexity. Unlike the conventional keep-or-drop paradigm that directly drop the non-critical block information, PISA introduces a novel exact-or-approximate strategy: it maintains exact computation for critical blocks while efficiently approximating the remainder through block-wise Taylor expansion. This design allows PISA to serve as a faithful proxy to full attention, effectively bridging the gap between speed and quality. Experimental results demonstrate that PISA achieves 1.91 times and 2.57 times speedups on Wan2.1-14B and Hunyuan-Video, respectively, while consistently maintaining the highest quality among sparse attention methods. Notably, even for image generation on FLUX, PISA achieves a 1.2 times acceleration without compromising visual quality. Code is available at: https://github.com/xie-lab-ml/piecewise-sparse-attention.
comment: 17 pages
♻ ☆ SpecFLASH: A Latent-Guided Semi-autoregressive Speculative Decoding Framework for Efficient Multimodal Generation
Large language models and large multimodal models (LLMs and LMMs) deliver strong generative performance but suffer from slow decoding, a problem that becomes more severe when handling visual inputs, whose sequences typically contain many more tokens with lower information density than text. Speculative decoding accelerates LLM inference by letting a compact draft model propose candidate tokens that are selectively accepted by a larger target model, achieving speed-up without degrading quality. However, existing multimodal speculative decoding approaches largely ignore the structural characteristics of visual representations and usually rely on text-only draft models. In this paper, we introduce SpecFLASH, a speculative decoding framework tailored to LMMs that explicitly exploits multimodal structure when designing the draft model. We first mitigate redundancy in visual token sequences with a lightweight, latent-guided token compression module that compacts visual features while preserving semantics, and then leverage the co-occurrence and local correlations of visual entities via a semi-autoregressive decoding scheme that predicts multiple tokens in a single forward pass. Extensive experiments demonstrate that SpecFLASH consistently surpasses prior speculative decoding baselines, achieving up to $2.68\times$ speed-up on video captioning and $2.55\times$ on visual instruction tuning, relative to the original LMM. Our code is available here: https://github.com/ZihuaEvan/FlashSD/.
comment: Under review
♻ ☆ Understanding-informed Bias Mitigation for Fair CMR Segmentation
Artificial intelligence (AI) is increasingly being used for medical imaging tasks. However, there can be biases in AI models, particularly when they are trained using imbalanced training datasets. One such example has been the strong ethnicity bias effect in cardiac magnetic resonance (CMR) image segmentation models. Although this phenomenon has been reported in a number of publications, little is known about the effectiveness of bias mitigation algorithms in this domain. We aim to investigate the impact of common bias mitigation methods to address bias between Black and White subjects in AI-based CMR segmentation models. Specifically, we use oversampling, importance reweighing and Group DRO as well as combinations of these techniques to mitigate the ethnicity bias. Second, motivated by recent findings on the root causes of AI-based CMR segmentation bias, we evaluate the same methods using models trained and evaluated on cropped CMR images. We find that bias can be mitigated using oversampling, significantly improving performance for the underrepresented Black subjects whilst not significantly reducing the majority White subjects' performance. Using cropped images increases performance for both ethnicities and reduces the bias, whilst adding oversampling as a bias mitigation technique with cropped images reduces the bias further. When testing the models on an external clinical validation set, we find high segmentation performance and no statistically significant bias.
comment: Accepted for publication at the Journal of Machine Learning for Biomedical Imaging (MELBA) https://melba-journal.org/2025:036
♻ ☆ Material-informed Gaussian Splatting for 3D World Reconstruction in a Digital Twin IEEE
3D reconstruction for Digital Twins often relies on LiDAR-based methods, which provide accurate geometry but lack the semantics and textures naturally captured by cameras. Traditional LiDAR-camera fusion approaches require complex calibration and still struggle with certain materials like glass, which are visible in images but poorly represented in point clouds. We propose a camera-only pipeline that reconstructs scenes using 3D Gaussian Splatting from multi-view images, extracts semantic material masks via vision models, converts Gaussian representations to mesh surfaces with projected material labels, and assigns physics-based material properties for accurate sensor simulation in modern graphics engines and simulators. This approach combines photorealistic reconstruction with physics-based material assignment, providing sensor simulation fidelity comparable to LiDAR-camera fusion while eliminating hardware complexity and calibration requirements. We validate our camera-only method using an internal dataset from an instrumented test vehicle, leveraging LiDAR as ground truth for reflectivity validation alongside image similarity metrics.
comment: 8 pages, 5 figures. Accepted to IEEE Intelligent Vehicles Symposium (IV) 2026. Revised version (v3) presents camera-ready publication
♻ ☆ Patronus: Interpretable Diffusion Models with Prototypes
Uncovering the opacity of diffusion-based generative models is urgently needed, as their applications continue to expand while their underlying procedures largely remain a black box. With a critical question -- how can the diffusion generation process be interpreted and understood? -- we proposed Patronus, an interpretable diffusion model that incorporates a prototypical network to encode semantics in visual patches, revealing what visual patterns are modeled and where and when they emerge throughout denoising. This interpretability of Patronus provides deeper insights into the generative mechanism, enabling the detection of shortcut learning via unwanted correlations and the tracing of semantic emergence across timesteps. We evaluate Patronus on four natural image datasets and one medical imaging dataset, demonstrating both faithful interpretability and strong generative performance. With this work, we open new avenues for understanding and steering diffusion models through prototype-based interpretability.\\ Our code is available at https://github.com/nina-weng/patronus}{https://github.com/nina-weng/patronus.
♻ ☆ CAD-SLAM: Consistency-Aware Dynamic SLAM with Dynamic-Static Decoupled Mapping
Recent advances in neural radiation fields (NeRF) and 3D Gaussian-based SLAM have achieved impressive localization accuracy and high-quality dense mapping in static scenes. However, these methods remain challenged in dynamic environments, where moving objects violate the static-world assumption and introduce inconsistent observations that degrade both camera tracking and map reconstruction. This motivates two fundamental problems: robustly identifying dynamic objects and modeling them online. To address these limitations, we propose CAD-SLAM, a Consistency-Aware Dynamic SLAM framework with dynamic-static decoupled mapping. Our key insight is that dynamic objects inherently violate cross-view and cross-time scene consistency. We detect object motion by analyzing geometric and texture discrepancies between historical map renderings and real-world observations. Once a moving object is identified, we perform bidirectional dynamic object tracking (both backward and forward in time) to achieve complete sequence-wise dynamic recognition. Our consistency-aware dynamic detection model achieves category-agnostic, instantaneous dynamic identification, which effectively mitigates motion-induced interference during localization and mapping. In addition, we introduce a dynamic-static decoupled mapping strategy that employs a temporal Gaussian model for online incremental dynamic modeling. Experiments conducted on multiple dynamic datasets demonstrate the flexible and accurate dynamic segmentation capabilities of our method, along with the state-of-the-art performance in both localization and mapping.
♻ ☆ video-SALMONN S: Memory-Enhanced Streaming Audio-Visual LLM
Long-duration streaming video understanding is fundamental for future AI agents, yet remains limited by ineffective long-term memory. We introduce video-SALMONN S, a memory-enhanced streaming audio-visual large language model that processes over 3-hour videos at 1 FPS and 360p resolution, outperforming strong non-streaming models under the same memory budget. In addition to token merging or downsampling, video-SALMONN S is the first to employ test-time training (TTT) as a streaming memory mechanism for video understanding. TTT continuously transforms short-term multimodal representations into long-term memory embedded in model parameters. To improve long-range dependency modeling and memory capacity, we propose (i) a TTT_MEM layer with an additional long-span prediction objective, (ii) a two-stage training scheme, and (iii) a modality-aware memory reader. We further introduce the Episodic Learning from Video Memory (ELViM) benchmark, simulating agent-like scenarios where models must learn from videos observed hours earlier. video-SALMONN S consistently outperforms both streaming and non-streaming baselines by 3-7% on long video benchmarks. Notably, video-SALMONN S achieves a 15% absolute accuracy improvement over strong non-streaming models on ELViM, demonstrating strong learning abilities from video memory.
♻ ☆ Reg4Pru: Regularisation Through Random Token Routing for Token Pruning
Transformers are widely adopted in modern vision models due to their strong ability to scale with dataset size and generalisability. However, this comes with a major drawback: computation scales quadratically to the total number of tokens. Numerous methods have been proposed to mitigate this. For example, we consider token pruning with reactivating tokens from preserved representations, but the increased computational efficiency of this method results in decreased stability from the preserved representations, leading to poorer dense prediction performance at deeper layers. In this work, we introduce Reg4Pru, a training regularisation technique that mitigates token-pruning performance loss for segmentation. We compare our models on the FIVES blood vessel segmentation dataset and find that Reg4Pru improves average precision by an absolute 46% compared to the same model trained without routing. This increase is observed using a configuration that achieves a 29% relative speedup in wall-clock time compared to the non-pruned baseline. These findings indicate that Reg4Pru is a valuable regulariser for token reduction strategies.
comment: 11 pages, 7 figures
♻ ☆ A Multicenter Benchmark of Multiple Instance Learning Models for Lymphoma Subtyping from HE-stained Whole Slide Images
Timely and accurate lymphoma diagnosis is essential for guiding cancer treatment. Standard diagnostic practice combines hematoxylin and eosin (HE)-stained whole slide images with immunohistochemistry, flow cytometry, and molecular genetic tests to determine lymphoma subtypes, a process requiring costly equipment, skilled personnel, and causing treatment delays. Deep learning methods could assist pathologists by extracting diagnostic information from routinely available HE-stained slides, yet comprehensive benchmarks for lymphoma subtyping on multicenter data are lacking. In this work, we present the first multicenter lymphoma benchmarking dataset covering four common lymphoma subtypes and healthy control tissue. We systematically evaluate five publicly available pathology foundation models (H-optimus-1, H0-mini, Virchow2, UNI2, Titan) combined with attention-based (AB-MIL) and transformer-based (TransMIL) multiple instance learning aggregators across three magnifications (10x, 20x, 40x). On in-distribution test sets, models achieve multiclass balanced accuracies exceeding 80% across all magnifications, with all foundation models performing similarly and both aggregation methods showing comparable results. The magnification study reveals that 40x resolution is sufficient, with no performance gains from higher resolutions or cross-magnification aggregation. However, on out-of-distribution test sets, performance drops substantially to around 60%, highlighting significant generalization challenges. To advance the field, larger multicenter studies covering additional rare lymphoma subtypes are needed. We provide an automated benchmarking pipeline to facilitate such future research.
comment: 19 pages
♻ ☆ ECORE: Energy-Conscious Optimized Routing for Deep Learning Models at the Edge
Edge computing enables data processing closer to the source, significantly reducing latency, an essential requirement for real-time vision-based analytics such as object detection in surveillance and smart city environments. However, these tasks place substantial demands on resource-constrained edge devices, making the joint optimization of energy consumption and detection accuracy critical. To address this challenge, we propose ECORE, a framework that integrates multiple dynamic routing strategies, including a novel estimation-based techniques and an innovative greedy selection algorithm, to direct image processing requests to the most suitable edge device-model pair. ECORE dynamically balances energy efficiency and detection performance based on object characteristics. We evaluate our framework through extensive experiments on real-world datasets, comparing against widely used baseline techniques. The evaluation leverages established object detection models (YOLO, SSD, EfficientDet) and diverse edge platforms, including Jetson Orin Nano, Raspberry Pi 4 and 5, and TPU accelerators. Results demonstrate that our proposed context-aware routing strategies can reduce energy consumption and latency by 35% and 49%, respectively, while incurring only a 2% loss in detection accuracy compared to accuracy-centric methods.
♻ ☆ LazyDrag: Enabling Stable Drag-Based Editing on Multi-Modal Diffusion Transformers via Explicit Correspondence
The reliance on implicit point matching via attention has become a core bottleneck in drag-based editing, resulting in a fundamental compromise on weakened inversion strength and costly test-time optimization (TTO). This compromise severely limits the generative capabilities of diffusion models, suppressing high-fidelity inpainting and text-guided creation. In this paper, we introduce LazyDrag, the first drag-based image editing method for Multi-Modal Diffusion Transformers, which directly eliminates the reliance on implicit point matching. In concrete terms, our method generates an explicit correspondence map from user drag inputs as a reliable reference to boost the attention control. This reliable reference opens the potential for a stable full-strength inversion process, which is the first in the drag-based editing task. It obviates the necessity for TTO and unlocks the generative capability of models. Therefore, LazyDrag naturally unifies precise geometric control with text guidance, enabling complex edits that were previously out of reach: opening the mouth of a dog and inpainting its interior, generating new objects like a ``tennis ball'', or for ambiguous drags, making context-aware changes like moving a hand into a pocket. Additionally, LazyDrag supports multi-round workflows with simultaneous move and scale operations. Evaluated on the DragBench, our method outperforms baselines in drag accuracy and perceptual quality, as validated by VIEScore and human evaluation. LazyDrag not only establishes new state-of-the-art performance, but also paves a new way to editing paradigms.
comment: https://zxyin.github.io/LazyDrag
♻ ☆ Training-Free Text-Guided Color Editing with Multi-Modal Diffusion Transformer
Text-guided color editing in images and videos is a fundamental yet unsolved problem, requiring fine-grained manipulation of color attributes, including albedo, light source color, and ambient lighting, while preserving physical consistency in geometry, material properties, and light-matter interactions. Existing training-free methods offer broad applicability across editing tasks but struggle with precise color control and often introduce visual inconsistency in both edited and non-edited regions. In this work, we present ColorCtrl, a training-free color editing method that leverages the attention mechanisms of modern Multi-Modal Diffusion Transformers (MM-DiT). By disentangling structure and color through targeted manipulation of attention maps and value tokens, our method enables accurate and consistent color editing, along with word-level control of attribute intensity. Our method modifies only the intended regions specified by the prompt, leaving unrelated areas untouched. Extensive experiments on both SD3 and FLUX.1-dev demonstrate that ColorCtrl outperforms existing training-free approaches and achieves state-of-the-art performances in both edit quality and consistency. Furthermore, our method surpasses strong commercial models such as FLUX.1 Kontext Max and GPT-4o Image Generation in terms of consistency. When extended to video models like CogVideoX, our approach exhibits greater advantages, particularly in maintaining temporal coherence and editing stability. Finally, our method also generalizes to instruction-based editing diffusion models such as Step1X-Edit and FLUX.1 Kontext dev, further demonstrating its versatility.
comment: https://zxyin.github.io/ColorCtrl
♻ ☆ Thalia: A Global, Multi-Modal Dataset for Volcanic Activity Monitoring
Monitoring volcanic activity is of paramount importance to safeguarding lives, infrastructure, and ecosystems. However, only a small fraction of known volcanoes are continuously monitored. Satellite-based Interferometric Synthetic Aperture Radar (InSAR) enables systematic, global-scale deformation monitoring. However, its complex data challenge traditional remote sensing methods. Deep learning offers a powerful means to automate and enhance InSAR interpretation, advancing volcanology and geohazard assessment. Despite its promise, progress has been limited by the scarcity of well-curated datasets. In this work, we build on the existing Hephaestus dataset and introduce Thalia, addressing crucial limitations and enriching its scope with higher-resolution, multi-source, and multi-temporal data. Thalia is a global collection of 38 spatiotemporal datacubes covering 7 years and integrating InSAR products, topographic data, as well as atmospheric variables, known to introduce signal delays that can mimic ground deformation in InSAR imagery. Each sample includes expert annotations detailing the type, intensity, and extent of deformation, ac- companied by descriptive text. To enable fair and consistent evaluation, we provide a comprehensive benchmark using state-of-the-art models for classification and segmentation. This work fosters collaboration between machine learning and Earth science, advancing volcanic monitoring and promoting data-driven approaches in geoscience. The code and latest version of the dataset are available through the github repository: https://github.com/Orion-AI-Lab/Thalia
♻ ☆ L2M-Reg: Building-level Uncertainty-aware Registration of Outdoor LiDAR Point Clouds and Semantic 3D City Models SP
Accurate registration between LiDAR (Light Detection and Ranging) point clouds and semantic 3D city models is a fundamental topic in urban digital twinning and a prerequisite for downstream tasks, such as digital construction, change detection, and model refinement. However, achieving accurate LiDAR-to-Model registration at the individual building level remains challenging, particularly due to the generalization uncertainty in semantic 3D city models at the Level of Detail 2 (LoD2). This paper addresses this gap by proposing L2M-Reg, a plane-based fine registration method that explicitly accounts for model uncertainty. L2M-Reg consists of three key steps: establishing reliable plane correspondence, building a pseudo-plane-constrained Gauss-Helmert model, and adaptively estimating vertical translation. Overall, extensive experiments on five real-world datasets demonstrate that L2M-Reg is both more accurate and computationally efficient than current leading ICP-based and plane-based methods. Therefore, L2M-Reg provides a novel building-level solution regarding LiDAR-to-Model registration when model uncertainty is present. The datasets and code for L2M-Reg can be found: https://github.com/Ziyang-Geodesy/L2M-Reg.
comment: Accepted version by ISPRS Journal of Photogrammetry and Remote Sensing
♻ ☆ DeepUrban: Interaction-Aware Trajectory Prediction and Planning for Automated Driving by Aerial Imagery
The efficacy of autonomous driving systems hinges critically on robust prediction and planning capabilities. However, current benchmarks are impeded by a notable scarcity of scenarios featuring dense traffic, which is essential for understanding and modeling complex interactions among road users. To address this gap, we collaborated with our industrial partner, DeepScenario, to develop DeepUrban-a new drone dataset designed to enhance trajectory prediction and planning benchmarks focusing on dense urban settings. DeepUrban provides a rich collection of 3D traffic objects, extracted from high-resolution images captured over urban intersections at approximately 100 meters altitude. The dataset is further enriched with comprehensive map and scene information to support advanced modeling and simulation tasks. We evaluate state-of-the-art (SOTA) prediction and planning methods, and conducted experiments on generalization capabilities. Our findings demonstrate that adding DeepUrban to nuScenes can boost the accuracy of vehicle predictions and planning, achieving improvements up to 44.1 % / 44.3% on the ADE / FDE metrics. Website: https://iv.ee.hm.edu/deepurban
♻ ☆ V2P-Bench: Evaluating Video-Language Understanding with Visual Prompts for Better Human-Model Interaction
Large Vision-Language Models (LVLMs) have made significant strides in the field of video understanding in recent times. Nevertheless, existing video benchmarks predominantly rely on text prompts for evaluation, which often require complex referential language and diminish both the accuracy and efficiency of human model interaction in turn. To address this limitation, we propose V2P-Bench, a robust and comprehensive benchmark for evaluating the ability of LVLMs to understand Video Visual Prompts in human model interaction scenarios. V2P-Bench consists of 980 videos and 1172 well-structured high-quality QA pairs, each paired with manually annotated visual prompt frames. The benchmark spans three main tasks and twelve categories, thereby enabling fine-grained, instance-level evaluation. Through an in-depth analysis of current LVLMs, we identify several key findings: 1) Visual prompts are both more model-friendly and user-friendly in interactive scenarios than text prompts, leading to significantly improved model performance and enhanced user experience. 2) Models are reasonably capable of zero-shot understanding of visual prompts, but struggle with spatiotemporal understanding. Even o1 achieves only 71.8%, far below the human expert score of 88.3%, while most open-source models perform below 60%. 3) LVLMs exhibit pervasive Hack Phenomena in video question answering tasks, which become more pronounced as video length increases and frame sampling density decreases, thereby inflating performance scores artificially. We anticipate that V2P-Bench will not only shed light on these challenges but also serve as a foundational tool for advancing human model interaction and improving the evaluation of video understanding.
comment: Project Page: https://vlm-reasoning.github.io/V2P-Bench/
♻ ☆ No time to train! Training-Free Reference-Based Instance Segmentation
The performance of image segmentation models has historically been constrained by the high cost of collecting large-scale annotated data. The Segment Anything Model (SAM) alleviates this original problem through a promptable, semantics-agnostic, segmentation paradigm and yet still requires manual visual-prompts or complex domain-dependent prompt-generation rules to process a new image. Towards reducing this new burden, our work investigates the task of object segmentation when provided with, alternatively, only a small set of reference images. Our key insight is to leverage strong semantic priors, as learned by foundation models, to identify corresponding regions between a reference and a target image. We find that correspondences enable automatic generation of instance-level segmentation masks for downstream tasks and instantiate our ideas via a multi-stage, training-free method incorporating (1) memory bank construction; (2) representation aggregation and (3) semantic-aware feature matching. Our experiments show significant improvements on segmentation metrics, leading to state-of-the-art performance on COCO FSOD (36.8% nAP), PASCAL VOC Few-Shot (71.2% nAP50) and outperforming existing training-free approaches on the Cross-Domain FSOD benchmark (22.4% nAP).
comment: Preprint
♻ ☆ SurfSplat: Conquering Feedforward 2D Gaussian Splatting with Surface Continuity Priors ICLR 2026
Reconstructing 3D scenes from sparse images remains a challenging task due to the difficulty of recovering accurate geometry and texture without optimization. Recent approaches leverage generalizable models to generate 3D scenes using 3D Gaussian Splatting (3DGS) primitive. However, they often fail to produce continuous surfaces and instead yield discrete, color-biased point clouds that appear plausible at normal resolution but reveal severe artifacts under close-up views. To address this issue, we present SurfSplat, a feedforward framework based on 2D Gaussian Splatting (2DGS) primitive, which provides stronger anisotropy and higher geometric precision. By incorporating a surface continuity prior and a forced alpha blending strategy, SurfSplat reconstructs coherent geometry together with faithful textures. Furthermore, we introduce High-Resolution Rendering Consistency (HRRC), a new evaluation metric designed to evaluate high-resolution reconstruction quality. Extensive experiments on RealEstate10K, DL3DV, and ScanNet demonstrate that SurfSplat consistently outperforms prior methods on both standard metrics and HRRC, establishing a robust solution for high-fidelity 3D reconstruction from sparse inputs. Project page: https://hebing-sjtu.github.io/SurfSplat-website/
comment: ICLR 2026; Project Page: https://hebing-sjtu.github.io/SurfSplat-website/
♻ ☆ UniFGVC: Universal Training-Free Few-Shot Fine-Grained Vision Classification via Attribute-Aware Multimodal Retrieval
Few-shot fine-grained visual classification (FGVC) aims to leverage limited data to enable models to discriminate subtly distinct categories. Recent works mostly finetuned the pre-trained visual language models to achieve performance gain, yet suffering from overfitting and weak generalization. To deal with this, we introduce UniFGVC, a universal training-free framework that reformulates few-shot FGVC as multimodal retrieval. First, we propose the Category-Discriminative Visual Captioner (CDV-Captioner) to exploit the open-world knowledge of multimodal large language models (MLLMs) to generate a structured text description that captures the fine-grained attribute features distinguishing closely related classes. CDV-Captioner uses chain-of-thought prompting and visually similar reference images to reduce hallucination and enhance discrimination of generated captions. Using it we can convert each image into an image-description pair, enabling more comprehensive feature representation, and construct the multimodal category templates using few-shot samples for the subsequent retrieval pipeline. Then, off-the-shelf vision and text encoders embed query and template pairs, and FGVC is accomplished by retrieving the nearest template in the joint space. UniFGVC ensures broad compatibility with diverse MLLMs and encoders, offering reliable generalization and adaptability across few-shot FGVC scenarios. Extensive experiments on 12 FGVC benchmarks demonstrate its consistent superiority over prior few-shot CLIP-based methods and even several fully-supervised MLLMs-based approaches.
♻ ☆ MapDream: Task-Driven Map Learning for Vision-Language Navigation
Vision-Language Navigation (VLN) requires agents to follow natural language instructions in partially observed 3D environments, motivating map representations that aggregate spatial context beyond local perception. However, most existing approaches rely on hand-crafted maps constructed independently of the navigation policy. We argue that maps should instead be learned representations shaped directly by navigation objectives rather than exhaustive reconstructions. Based on this insight, we propose MapDream, a map-in-the-loop framework that formulates map construction as autoregressive bird's-eye-view (BEV) image synthesis. The framework jointly learns map generation and action prediction, distilling environmental context into a compact three-channel BEV map that preserves only navigation-critical affordances. Supervised pre-training bootstraps a reliable mapping-to-control interface, while the autoregressive design enables end-to-end joint optimization through reinforcement fine-tuning. Experiments on R2R-CE and RxR-CE achieve state-of-the-art monocular performance, validating task-driven generative map learning.
♻ ☆ Beyond the Vision Encoder: Identifying and Mitigating Spatial Bias in Large Vision-Language Models
Large Vision-Language Models (LVLMs) have achieved remarkable success across a wide range of multimodal tasks, yet their robustness to spatial variations remains insufficiently understood. In this work, we conduct a systematic study of the spatial bias of LVLMs, examining how models respond when identical key visual information is placed at different locations within an image. Through controlled probing experiments, we observe that current LVLMs often produce inconsistent outputs under such spatial shifts, revealing a clear spatial bias in their semantic understanding. Further analysis indicates that this bias does not stem from the vision encoder, but rather from a mismatch in attention mechanisms between the vision encoder and the large language model, which disrupts the global information flow. Motivated by this insight, we propose Adaptive Global Context Injection (AGCI), a lightweight mechanism that dynamically injects shared global visual context into each image token. AGCI works without architectural modifications, mitigating spatial bias by enhancing the semantic accessibility of image tokens while preserving the model's intrinsic capabilities. Extensive experiments demonstrate that AGCI not only enhances the spatial robustness of LVLMs, but also achieves strong performance on various downstream tasks and hallucination benchmarks.
♻ ☆ CountZES: Counting via Zero-Shot Exemplar Selection
Object counting in complex scenes is particularly challenging in the zero-shot (ZS) setting, where instances of unseen categories are counted using only a class name. Existing ZS counting methods that infer exemplars from text often rely on off-the-shelf open-vocabulary detectors (OVDs), which in dense scenes suffer from semantic noise, appearance variability, and frequent multi-instance proposals. Alternatively, random image-patch sampling is employed, which fails to accurately delineate object instances. To address these issues, we propose CountZES, an inference-only approach for object counting via ZS exemplar selection. CountZES discovers diverse exemplars through three synergistic stages: Detection-Anchored Exemplar (DAE), Density-Guided Exemplar (DGE), and Feature-Consensus Exemplar (FCE). DAE refines OVD detections to isolate precise single-instance exemplars. DGE introduces a density-driven, self-supervised paradigm to identify statistically consistent and semantically compact exemplars, while FCE reinforces visual coherence through feature-space clustering. Together, these stages yield a complementary exemplar set that balances textual grounding, count consistency, and feature representativeness. Experiments on diverse datasets demonstrate CountZES superior performance among ZOC methods while generalizing effectively across domains.
♻ ☆ v1: Learning to Point Visual Tokens for Multimodal Grounded Reasoning
When thinking with images, humans rarely rely on a single glance: they revisit visual evidence while reasoning. In contrast, most Multimodal Language Models encode an image once to key-value cache and then reason purely in text, making it hard to re-ground intermediate steps. We empirically confirm this: as reasoning chains lengthen, models progressively lose focus on relevant regions. We introduce v1, a lightweight extension for active visual referencing via point-and-copy: the model selects relevant image patches and copies their embeddings back into the reasoning stream. Crucially, our point-and-copy mechanism retrieves patches using their semantic representations as keys, ensuring perceptual evidence remains aligned with the reasoning space. To train this behavior, we build v1, a dataset of 300K multimodal reasoning traces with interleaved grounding annotations. Across multimodal mathematical reasoning benchmarks, v1 consistently outperforms comparable baselines. We plan to release the model checkpoint and data.
♻ ☆ Imbalance-Robust and Sampling-Efficient Continuous Conditional GANs via Adaptive Vicinity and Auxiliary Regularization
Recent advances in conditional generative modeling have introduced Continuous conditional Generative Adversarial Network (CcGAN) and Continuous Conditional Diffusion Model (CCDM) for estimating high-dimensional data distributions conditioned on scalar, continuous regression labels (e.g., angles, ages, or temperatures). However, these approaches face fundamental limitations: CcGAN suffers from data imbalance due to fixed-size vicinity constraints, while CCDM requires computationally expensive iterative sampling. To address these issues, we propose CcGAN-AVAR, an enhanced CcGAN framework featuring (1) two novel components for handling data imbalance - an adaptive vicinity mechanism that dynamically adjusts vicinity size and a multi-task discriminator that enhances generator training through auxiliary regression and density ratio estimation - and (2) the GAN framework's native one-step generator, enable 30x-2000x faster inference than CCDM. Extensive experiments on four benchmark datasets (64x64 to 256x256 resolution) across eleven challenging settings demonstrate that CcGAN-AVAR achieves state-of-the-art generation quality while maintaining sampling efficiency.
♻ ☆ TreeLoc: 6-DoF LiDAR Global Localization in Forests via Inter-Tree Geometric Matching ICRA 2026
Reliable localization is crucial for navigation in forests, where GPS is often degraded and LiDAR measurements are repetitive, occluded, and structurally complex. These conditions weaken the assumptions of traditional urban-centric localization methods, which assume that consistent features arise from unique structural patterns, necessitating forest-centric solutions to achieve robustness in these environments. To address these challenges, we propose TreeLoc, a LiDAR-based global localization framework for forests that handles place recognition and 6-DoF pose estimation. We represent scenes using tree stems and their Diameter at Breast Height (DBH), which are aligned to a common reference frame via their axes and summarized using the tree distribution histogram (TDH) for coarse matching, followed by fine matching with a 2D triangle descriptor. Finally, pose estimation is achieved through a two-step geometric verification. On diverse forest benchmarks, TreeLoc outperforms baselines, achieving precise localization. Ablation studies validate the contribution of each component. We also propose applications for long-term forest management using descriptors from a compact global tree database. TreeLoc is open-sourced for the robotics community at https://github.com/minwoo0611/TreeLoc.
comment: An 8-page paper with 7 tables and 8 figures, accepted to ICRA 2026
♻ ☆ Happy Young Women, Grumpy Old Men? Emotion-Driven Demographic Biases in Synthetic Face Generation
Synthetic face generation has rapidly advanced with the emergence of text-to-image (T2I) and of multimodal large language models, enabling high-fidelity image production from natural-language prompts. Despite the widespread adoption of these tools, the biases, representational quality, and cross-cultural consistency of these models remain poorly understood. Prior research on biases in the synthetic generation of human faces has examined demographic biases, yet there is little research on how emotional prompts influence demographic representation and how models trained in different cultural and linguistic contexts vary in their output distributions. We present a systematic audit of eight state-of-the-art T2I models comprising four models developed by Western organizations and four developed by Chinese institutions, all prompted identically. Using state-of-the-art facial analysis algorithms, we estimate the gender, race, age, and attractiveness levels in the generated faces. To measure the deviations from global population statistics, we apply information-theoretic bias metrics including Kullback-Leibler and Jensen-Shannon divergences. Our findings reveal persistent demographic and emotion-conditioned biases in all models regardless of their country of origin. We discuss implications for fairness, socio-technical harms, governance, and the development of transparent generative systems.
comment: 23 pages, 11 figures
♻ ☆ Cross-Modal Alignment and Fusion for RGB-D Transmission-Line Defect Detection
Transmission line defect detection remains challenging for automated UAV inspection due to the dominance of small-scale defects, complex backgrounds, and illumination variations. Existing RGB-based detectors, despite recent progress, struggle to distinguish geometrically subtle defects from visually similar background structures under limited chromatic contrast. This paper proposes CMAFNet, a Cross-Modal Alignment and Fusion Network that integrates RGB appearance and depth geometry through a principled purify-then-fuse paradigm. CMAFNet consists of a Semantic Recomposition Module that performs dictionary-based feature purification via a learned codebook to suppress modality-specific noise while preserving defect-discriminative information, and a Contextual Semantic Integration Framework that captures global spatial dependencies using partial-channel attention to enhance structural semantic reasoning. Position-wise normalization within the purification stage enforces explicit reconstruction-driven cross-modal alignment, ensuring statistical compatibility between heterogeneous features prior to fusion. Extensive experiments on the TLRGBD benchmark, where 94.5% of instances are small objects, demonstrate that CMAFNet achieves 32.2% mAP@50 and 12.5% APs, outperforming the strongest baseline by 9.8 and 4.0 percentage points, respectively. A lightweight variant reaches 24.8% mAP50 at 228 FPS with only 4.9M parameters, surpassing all YOLO-based detectors while matching transformer-based methods at substantially lower computational cost.
♻ ☆ Object Fidelity Diffusion for Remote Sensing Image Generation
High-precision controllable remote sensing image generation is both meaningful and challenging. Existing diffusion models often produce low-fidelity images due to their inability to adequately capture morphological details, which may affect the robustness and reliability of object detection models. To enhance the accuracy and fidelity of generated objects in remote sensing, this paper proposes Object Fidelity Diffusion (OF-Diff), which effectively improves the fidelity of generated objects. Specifically, we are the first to extract the prior shapes of objects based on the layout for diffusion models in remote sensing. Then, we introduce a dual-branch diffusion model with diffusion consistency loss, which can generate high-fidelity remote sensing images without providing real images during the sampling phase. Furthermore, we introduce DDPO to fine-tune the diffusion process, making the generated remote sensing images more diverse and semantically consistent. Comprehensive experiments demonstrate that OF-Diff outperforms state-of-the-art methods in the remote sensing across key quality metrics. Notably, the performance of several polymorphic and small object classes shows significant improvement. For instance, the mAP increases by 8.3%, 7.7%, and 4.0% for airplanes, ships, and vehicles, respectively.
♻ ☆ MedFrameQA: A Multi-Image Medical VQA Benchmark for Clinical Reasoning
Real-world clinical practice demands multi-image comparative reasoning, yet current medical benchmarks remain limited to single-frame interpretation. We present MedFrameQA, the first benchmark explicitly designed to test multi-image medical VQA through educationally-validated diagnostic sequences. To construct this dataset, we develop a scalable pipeline that leverages narrative transcripts from medical education videos to align visual frames with textual concepts, automatically producing 2,851 high-quality multi-image VQA pairs with explicit, transcript-grounded reasoning chains. Our evaluation of 11 advanced MLLMs (including reasoning models) exposes severe deficiencies in multi-image synthesis, where accuracies mostly fall below 50% and exhibit instability across varying image counts. Error analysis demonstrates that models often treat images as isolated instances, failing to track pathological progression or cross-reference anatomical shifts. MedFrameQA provides a rigorous standard for evaluating the next generation of MLLMs in handling complex, temporally grounded medical narratives.
comment: 27 pages, 15 Figures Benchmark data: https://huggingface.co/datasets/SuhaoYu1020/MedFrameQA
♻ ☆ FlyPrompt: Brain-Inspired Random-Expanded Routing with Temporal-Ensemble Experts for General Continual Learning ICLR 2026
General continual learning (GCL) challenges intelligent systems to learn from single-pass, non-stationary data streams without clear task boundaries. While recent advances in continual parameter-efficient tuning (PET) of pretrained models show promise, they typically rely on multiple training epochs and explicit task cues, limiting their effectiveness in GCL scenarios. Moreover, existing methods often lack targeted design and fail to address two fundamental challenges in continual PET: how to allocate expert parameters to evolving data distributions, and how to improve their representational capacity under limited supervision. Inspired by the fruit fly's hierarchical memory system characterized by sparse expansion and modular ensembles, we propose FlyPrompt, a brain-inspired framework that decomposes GCL into two subproblems: expert routing and expert competence improvement. FlyPrompt introduces a randomly expanded analytic router for instance-level expert activation and a temporal ensemble of output heads to dynamically adapt decision boundaries over time. Extensive theoretical and empirical evaluations demonstrate FlyPrompt's superior performance, achieving up to 11.23%, 12.43%, and 7.62% gains over state-of-the-art baselines on CIFAR-100, ImageNet-R, and CUB-200, respectively. Our source code is available at https://github.com/AnAppleCore/FlyGCL.
comment: 33 pages. Accepted by ICLR 2026
♻ ☆ Rethinking Efficient Mixture-of-Experts for Remote Sensing Modality-Missing Classification
Multimodal remote sensing classification often suffers from missing modalities caused by sensor failures and environmental interference, leading to severe performance degradation. In this work, we rethink missing-modality learning from a conditional computation perspective and investigate whether Mixture-of-Experts (MoE) models can inherently adapt to diverse modality-missing scenarios. We first conduct a systematic study of representative MoE paradigms under various missing-modality settings, revealing both their potential and limitations. Building on these insights, we propose a Missing-aware Mixture-of-LoRAs (MaMOL), a parameter-efficient MoE framework that unifies multiple modality-missing cases within a single model. MaMOL introduces a dual-routing mechanism to decouple modality-invariant shared experts and modality-aware dynamic experts, enabling automatic expert activation conditioned on available modalities. Extensive experiments on multiple remote sensing benchmarks demonstrate that MaMOL significantly improves robustness and generalization under diverse missing-modality scenarios with minimal computational overhead. Transfer experiments on natural image datasets further validate its scalability and cross-domain applicability.
comment: 11 pages, 5 figures
♻ ☆ What does really matter in image goal navigation?
Image goal navigation requires two different skills: firstly, core navigation skills, including the detection of free space and obstacles, and taking decisions based on an internal representation; and secondly, computing directional information by comparing visual observations to the goal image. Current state-of-the-art methods either rely on dedicated image-matching, or pre-training of computer vision modules on relative pose estimation. In this paper, we study whether this task can be efficiently solved with end-to-end training of full agents with RL, as has been claimed by recent work. A positive answer would have impact beyond Embodied AI and allow training of relative pose estimation from reward for navigation alone. In this large experimental study we investigate the effect of architectural choices like late fusion, channel stacking, space-to-depth projections and cross-attention, and their role in the emergence of relative pose estimators from navigation training. We show that the success of recent methods is influenced up to a certain extent by simulator settings, leading to shortcuts in simulation. However, we also show that these capabilities can be transferred to more realistic setting, up to some extent. We also find evidence for correlations between navigation performance and probed (emerging) relative pose estimation performance, an important sub skill.
♻ ☆ Beyond Random: Automatic Inner-loop Optimization in Dataset Distillation NeurIPS 2025
The growing demand for efficient deep learning has positioned dataset distillation as a pivotal technique for compressing training dataset while preserving model performance. However, existing inner-loop optimization methods for dataset distillation typically rely on random truncation strategies, which lack flexibility and often yield suboptimal results. In this work, we observe that neural networks exhibit distinct learning dynamics across different training stages-early, middle, and late-making random truncation ineffective. To address this limitation, we propose Automatic Truncated Backpropagation Through Time (AT-BPTT), a novel framework that dynamically adapts both truncation positions and window sizes according to intrinsic gradient behavior. AT-BPTT introduces three key components: (1) a probabilistic mechanism for stage-aware timestep selection, (2) an adaptive window sizing strategy based on gradient variation, and (3) a low-rank Hessian approximation to reduce computational overhead. Extensive experiments on CIFAR-10, CIFAR-100, Tiny-ImageNet, and ImageNet-1K show that AT-BPTT achieves state-of-the-art performance, improving accuracy by an average of 6.16% over baseline methods. Moreover, our approach accelerates inner-loop optimization by 3.9x while saving 63% memory cost.
comment: Accepted by NeurIPS 2025
♻ ☆ DiffVL: Diffusion-Based Visual Localization on 2D Maps via BEV-Conditioned GPS Denoising
Accurate visual localization is crucial for autonomous driving, yet existing methods face a fundamental dilemma: While high-definition (HD) maps provide high-precision localization references, their costly construction and maintenance hinder scalability, which drives research toward standard-definition (SD) maps like OpenStreetMap. Current SD-map-based approaches primarily focus on Bird's-Eye View (BEV) matching between images and maps, overlooking a ubiquitous signal-noisy GPS. Although GPS is readily available, it suffers from multipath errors in urban environments. We propose DiffVL, the first framework to reformulate visual localization as a GPS denoising task using diffusion models. Our key insight is that noisy GPS trajectory, when conditioned on visual BEV features and SD maps, implicitly encode the true pose distribution, which can be recovered through iterative diffusion refinement. DiffVL, unlike prior BEV-matching methods (e.g., OrienterNet) or transformer-based registration approaches, learns to reverse GPS noise perturbations by jointly modeling GPS, SD map, and visual signals, achieving sub-meter accuracy without relying on HD maps. Experiments on multiple datasets demonstrate that our method achieves state-of-the-art accuracy compared to BEV-matching baselines. Crucially, our work proves that diffusion models can enable scalable localization by treating noisy GPS as a generative prior-making a paradigm shift from traditional matching-based methods.
♻ ☆ From Frames to Sequences: Temporally Consistent Human-Centric Dense Prediction
In this work, we focus on the challenge of temporally consistent human-centric dense prediction across video sequences. Existing models achieve strong per-frame accuracy but often flicker under motion, occlusion, and lighting changes, and they rarely have paired human video supervision for multiple dense tasks. We address this gap with a scalable synthetic data pipeline that generates photorealistic human frames and motion-aligned sequences with pixel-accurate depth, normals, and masks. Unlike prior static data synthetic pipelines, our pipeline provides both frame-level labels for spatial learning and sequence-level supervision for temporal learning. Building on this, we train a unified ViT-based dense predictor that (i) injects an explicit human geometric prior via CSE embeddings and (ii) improves geometry-feature reliability with a lightweight channel reweighting module after feature fusion. Our two-stage training strategy, combining static pretraining with dynamic sequence supervision, enables the model first to acquire robust spatial representations and then refine temporal consistency across motion-aligned sequences. Extensive experiments show that we achieve state-of-the-art performance on THuman2.1 and Hi4D and generalize effectively to in-the-wild videos.
♻ ☆ Saliency-Guided DETR for Moment Retrieval and Highlight Detection
Existing approaches for video moment retrieval and highlight detection are not able to align text and video features efficiently, resulting in unsatisfying performance and limited production usage. To address this, we propose a novel architecture that utilizes recent foundational video models designed for such alignment. Combined with the introduced Saliency-Guided Cross Attention mechanism and a hybrid DETR architecture, our approach significantly enhances performance in both moment retrieval and highlight detection tasks. For even better improvement, we developed InterVid-MR, a large-scale and high-quality dataset for pretraining. Using it, our architecture achieves state-of-the-art results on the QVHighlights, Charades-STA and TACoS benchmarks. The proposed approach provides an efficient and scalable solution for both zero-shot and fine-tuning scenarios in video-language tasks.
comment: 8 pages, 2 figure, 6 tables
♻ ☆ Comprehensive Machine Learning Benchmarking for Fringe Projection Profilometry with Photorealistic Synthetic Data
Machine learning approaches for fringe projection profilometry (FPP) are hindered by the lack of large, diverse datasets and standardized benchmarking protocols. This paper introduces the first open-source, photorealistic synthetic dataset for FPP, generated using NVIDIA Isaac Sim, comprising 15,600 fringe images and 300 depth reconstructions across 50 objects. We apply this dataset to single-shot FPP, where models predict 3D depth maps directly from individual fringe images without temporal phase shifting. Through systematic ablation studies, we identify optimal learning configurations for long-range (1.5-2.1 m) depth prediction. We compare three depth normalization strategies and show that individual normalization, which decouples object shape from absolute scale, yields a 9.1x improvement in object reconstruction accuracy over raw depth. We further show that removing background fringe patterns severely degrades performance across all normalizations, demonstrating that background fringes provide essential spatial phase reference rather than noise. We evaluate six loss functions and identify Hybrid L1 loss as optimal. Using the best configuration, we benchmark four architectures and find UNet achieves the strongest performance, though errors remain far above the sub-millimeter accuracy of classical FPP. The small performance gap between architectures indicates that the dominant limitation is information deficit rather than model design: single fringe images lack sufficient information for accurate depth recovery without explicit phase cues. This work provides a standardized benchmark and evidence motivating hybrid approaches combining phase-based FPP with learned refinement. The dataset is available at https://huggingface.co/datasets/aharoon/fpp-ml-bench and code at https://github.com/AnushLak/fpp-ml-bench.
comment: 19 pages, 10 figures, 5 tables
♻ ☆ Understanding Representation Dynamics of Diffusion Models via Low-Dimensional Modeling NeurIPS 2025
Diffusion models, though originally designed for generative tasks, have demonstrated impressive self-supervised representation learning capabilities. A particularly intriguing phenomenon in these models is the emergence of unimodal representation dynamics, where the quality of learned features peaks at an intermediate noise level. In this work, we conduct a comprehensive theoretical and empirical investigation of this phenomenon. Leveraging the inherent low-dimensionality structure of image data, we theoretically demonstrate that the unimodal dynamic emerges when the diffusion model successfully captures the underlying data distribution. The unimodality arises from an interplay between denoising strength and class confidence across noise scales. Empirically, we further show that, in classification tasks, the presence of unimodal dynamics reliably reflects the generalization of the diffusion model: it emerges when the model generates novel images and gradually transitions to a monotonically decreasing curve as the model begins to memorize the training data.
comment: First two authors contributed equally. Accepted at NeurIPS 2025
♻ ☆ HAAP: Vision-context Hierarchical Attention Autoregressive with Adaptive Permutation for Scene Text Recognition
Scene Text Recognition (STR) is challenging in extracting effective character representations from visual data when text is unreadable. Permutation language modeling (PLM) is introduced to refine character predictions by jointly capturing contextual and visual information. However, in PLM, the use of random permutations causes training fit oscillation, and the iterative refinement (IR) operation also introduces additional overhead. To address these issues, this paper proposes the Hierarchical Attention autoregressive Model with Adaptive Permutation (HAAP) to enhance position-context-image interaction capability, improving autoregressive LM generalization. First, we propose Implicit Permutation Neurons (IPN) to generate adaptive attention masks that dynamically exploit token dependencies, enhancing the correlation between visual information and context. Adaptive correlation representation helps the model avoid training fit oscillation. Second, the Cross-modal Hierarchical Attention mechanism (CHA) is introduced to capture the dependencies among position queries, contextual semantics and visual information. CHA enables position tokens to aggregate global semantic information, avoiding the need for IR. Extensive experimental results show that the proposed HAAP achieves state-of-the-art (SOTA) performance in terms of accuracy, complexity, and latency on several datasets.
comment: 12 pages, 12 figures
♻ ☆ Embedding Compression via Spherical Coordinates
We present a compression method for unit-norm embeddings that achieves 1.5$\times$ compression, 25% better than the best prior lossless method. The method exploits that spherical coordinates of high-dimensional unit vectors concentrate around $π/2$, causing IEEE 754 exponents to collapse to a single value and high-order mantissa bits to become predictable, enabling entropy coding of both. Reconstruction error is below 1e-7, under float32 machine epsilon. Evaluation across 26 configurations spanning text, image, and multi-vector embeddings confirms consistent improvement.
♻ ☆ Data Augmentation for High-Fidelity Generation of CAR-T/NK Immunological Synapse Images
Chimeric antigen receptor (CAR)-T and NK cell immunotherapies have transformed cancer treatment, and recent studies suggest that the quality of the CAR-T/NK cell immunological synapse (IS) may serve as a functional biomarker for predicting therapeutic efficacy. Accurate detection and segmentation of CAR-T/NK IS structures using artificial neural networks (ANNs) can greatly increase the speed and reliability of IS quantification. However, a persistent challenge is the limited size of annotated microscopy datasets, which restricts the ability of ANNs to generalize. To address this challenge, we integrate two complementary data-augmentation frameworks. First, we employ Instance Aware Automatic Augmentation (IAAA), an automated, instance-preserving augmentation method that generates synthetic CAR-T/NK IS images and corresponding segmentation masks by applying optimized augmentation policies to original IS data. IAAA supports multiple imaging modalities (e.g., fluorescence and brightfield) and can be applied directly to CAR-T/NK IS images derived from patient samples. In parallel, we introduce a Semantic-Aware AI Augmentation (SAAA) pipeline that combines a diffusion-based mask generator with a Pix2Pix conditional image synthesizer. This second method enables the creation of diverse, anatomically realistic segmentation masks and produces high-fidelity CAR-T/NK IS images aligned with those masks, further expanding the training corpus beyond what IAAA alone can provide. Together, these augmentation strategies generate synthetic images whose visual and structural properties closely match real IS data, significantly improving CAR-T/NK IS detection and segmentation performance. By enhancing the robustness and accuracy of IS quantification, this work supports the development of more reliable imaging-based biomarkers for predicting patient response to CAR-T/NK immunotherapy.
♻ ☆ CIEC: Coupling Implicit and Explicit Cues for Multimodal Weakly Supervised Manipulation Localization
To mitigate the threat of misinformation, multimodal manipulation localization has garnered growing attention. Consider that current methods rely on costly and time-consuming fine-grained annotations, such as patch/token-level annotations. This paper proposes a novel framework named Coupling Implicit and Explicit Cues (CIEC), which aims to achieve multimodal weakly-supervised manipulation localization for image-text pairs utilizing only coarse-grained image/sentence-level annotations. It comprises two branches, image-based and text-based weakly-supervised localization. For the former, we devise the Textual-guidance Refine Patch Selection (TRPS) module. It integrates forgery cues from both visual and textual perspectives to lock onto suspicious regions aided by spatial priors. Followed by the background silencing and spatial contrast constraints to suppress interference from irrelevant areas. For the latter, we devise the Visual-deviation Calibrated Token Grounding (VCTG) module. It focuses on meaningful content words and leverages relative visual bias to assist token localization. Followed by the asymmetric sparse and semantic consistency constraints to mitigate label noise and ensure reliability. Extensive experiments demonstrate the effectiveness of our CIEC, yielding results comparable to fully supervised methods on several evaluation metrics.
♻ ☆ Rectification Reimagined: A Unified Mamba Model for Image Correction and Rectangling with Prompts AAAI 2026
Image correction and rectangling are valuable tasks in practical photography systems such as smartphones. Recent remarkable advancements in deep learning have undeniably brought about substantial performance improvements in these fields. Nevertheless, existing methods mainly rely on task-specific architectures. This significantly restricts their generalization ability and effective application across a wide range of different tasks. In this paper, we introduce the Unified Rectification Framework (UniRect), a comprehensive approach that addresses these practical tasks from a consistent distortion rectification perspective. Our approach incorporates various task-specific inverse problems into a general distortion model by simulating different types of lenses. To handle diverse distortions, UniRect adopts one task-agnostic rectification framework with a dual-component structure: a {Deformation Module}, which utilizes a novel Residual Progressive Thin-Plate Spline (RP-TPS) model to address complex geometric deformations, and a subsequent Restoration Module, which employs Residual Mamba Blocks (RMBs) to counteract the degradation caused by the deformation process and enhance the fidelity of the output image. Moreover, a Sparse Mixture-of-Experts (SMoEs) structure is designed to circumvent heavy task competition in multi-task learning due to varying distortions. Extensive experiments demonstrate that our models have achieved state-of-the-art performance compared with other up-to-date methods.
comment: AAAI 2026
♻ ☆ ReasonEdit: Editing Vision-Language Models using Human Reasoning
Model editing aims to correct errors in large, pretrained models without altering unrelated behaviors. While some recent works have edited vision-language models (VLMs), no existing editors tackle reasoning-heavy tasks, which typically require humans and models to reason about images. We therefore propose ReasonEdit, the first VLM editor to let users explain their reasoning during editing, introducing a new, practical model editing setup. ReasonEdit continuously stores human reasoning in a codebook, and retrieves only relevant facts during inference using a novel topology-balanced multimodal embedding method inspired by network science. Across four VLMs on multiple rationale-based visual question answering datasets, ReasonEdit achieves state-of-the-art editing performance, ultimately showing that using human reasoning during editing greatly improves edit generalization.
♻ ☆ Can 3D point cloud data improve automated body condition score prediction in dairy cattle?
Body condition score (BCS) is a widely used indicator of body energy status and is closely associated with metabolic status, reproductive performance, and health in dairy cattle; however, conventional visual scoring is subjective and labor-intensive. Computer vision approaches have been applied to BCS prediction, with depth images widely used because they capture geometric information independent of coat color and texture. More recently, three-dimensional point cloud data have attracted increasing interest due to their ability to represent richer geometric characteristics of animal morphology, but direct head-to-head comparisons with depth image-based approaches remain limited. In this study, we compared top-view depth image and point cloud data for BCS prediction under four settings: 1) unsegmented raw data, 2) segmented full-body data, 3) segmented hindquarter data, and 4) handcrafted feature data. Prediction models were evaluated using data from 1,020 dairy cows collected on a commercial farm, with cow-level cross-validation to prevent data leakage. Depth image-based models consistently achieved higher accuracy than point cloud-based models when unsegmented raw data and segmented full-body data were used, whereas comparable performance was observed when segmented hindquarter data were used. Both depth image and point cloud approaches showed reduced accuracy when handcrafted feature data were employed compared with the other settings. Overall, point cloud-based predictions were more sensitive to noise and model architecture than depth image-based predictions. Taken together, these results indicate that three-dimensional point clouds do not provide a consistent advantage over depth images for BCS prediction in dairy cattle under the evaluated conditions.
♻ ☆ Decipher-MR: A Vision-Language Foundation Model for 3D MRI Representations
Magnetic Resonance Imaging is a critical imaging modality in clinical diagnosis and research, yet its complexity and heterogeneity hinder scalable, generalizable machine learning. Although foundation models have revolutionized language and vision tasks, their application to MRI remains constrained by data scarcity and narrow anatomical focus. We present Decipher-MR, a 3D MRI-specific vision-language foundation model trained on 200,000 MRI series from over 22,000 studies spanning diverse anatomical regions, sequences, and pathologies. Decipher-MR integrates self-supervised vision learning with report-guided text supervision to build robust representations for broad applications. To enable efficient use, Decipher-MR supports a modular design that enables tuning of lightweight, task-specific decoders attached to a frozen pretrained encoder. Following this setting, we evaluate Decipher-MR across disease classification, demographic prediction, anatomical localization, and cross-modal retrieval, demonstrating consistent improvements over existing foundation models and task-specific approaches. These results position Decipher-MR as a versatile foundation for MRI-based AI in clinical and research settings.
♻ ☆ SyNeT: Synthetic Negatives for Traversability Learning
Reliable traversability estimation is crucial for autonomous robots to navigate complex outdoor environments safely. Existing self-supervised learning frameworks primarily rely on positive and unlabeled data; however, the lack of explicit negative data remains a critical limitation, hindering the model's ability to accurately identify diverse non-traversable regions. To address this issue, we introduce a method to explicitly construct synthetic negatives, representing plausible but non-traversable, and integrate them into vision-based traversability learning. Our approach is formulated as a training strategy that can be seamlessly integrated into both Positive-Unlabeled (PU) and Positive-Negative (PN) frameworks without modifying inference architectures. Complementing standard pixel-wise metrics, we introduce an object-centric FPR evaluation approach that analyzes predictions in regions where synthetic negatives are inserted. This evaluation provides an indirect measure of the model's ability to consistently identify non-traversable regions without additional manual labeling. Extensive experiments on both public and self-collected datasets demonstrate that our approach significantly enhances robustness and generalization across diverse environments. The source code and demonstration videos will be publicly available.
♻ ☆ Mixture of Distributions Matters: Dynamic Sparse Attention for Efficient Video Diffusion Transformers
While Diffusion Transformers (DiTs) have achieved notable progress in video generation, this long-sequence generation task remains constrained by the quadratic complexity inherent to self-attention mechanisms, creating significant barriers to practical deployment. Although sparse attention methods attempt to address this challenge, existing approaches either rely on oversimplified static patterns or require computationally expensive sampling operations to achieve dynamic sparsity, resulting in inaccurate pattern predictions and degraded generation quality. To overcome these limitations, we propose a \underline{\textbf{M}}ixture-\underline{\textbf{O}}f-\underline{\textbf{D}}istribution \textbf{DiT} (\textbf{MOD-DiT}), a novel sampling-free dynamic attention framework that accurately models evolving attention patterns through a two-stage process. First, MOD-DiT leverages prior information from early denoising steps and adopts a {distributed mixing approach} to model an efficient linear approximation model, which is then used to predict mask patterns for a specific denoising interval. Second, an online block masking strategy dynamically applies these predicted masks while maintaining historical sparsity information, eliminating the need for repetitive sampling operations. Extensive evaluations demonstrate consistent acceleration and quality improvements across multiple benchmarks and model architectures, validating MOD-DiT's effectiveness for efficient, high-quality video generation while overcoming the computational limitations of traditional sparse attention approaches.
♻ ☆ ShotFinder: Imagination-Driven Open-Domain Video Shot Retrieval via Web Search
In recent years, large language models (LLMs) have made rapid progress in information retrieval, yet existing research has mainly focused on text or static multimodal settings. Open-domain video shot retrieval, which involves richer temporal structure and more complex semantics, still lacks systematic benchmarks and analysis. To fill this gap, we introduce ShotFinder, a benchmark that formalizes editing requirements as keyframe-oriented shot descriptions and introduces five types of controllable single-factor constraints: Temporal order, Color, Visual style, Audio, and Resolution. We curate 1,210 high-quality samples from YouTube across 20 thematic categories, using large models for generation with human verification. Based on the benchmark, we propose ShotFinder, a text-driven three-stage retrieval and localization pipeline: (1) query expansion via video imagination, (2) candidate video retrieval with a search engine, and (3) description-guided temporal localization. Experiments on multiple closed-source and open-source models reveal a significant gap to human performance, with clear imbalance across constraints: temporal localization is relatively tractable, while color and visual style remain major challenges. These results reveal that open-domain video shot retrieval is still a critical capability that multimodal large models have yet to overcome.
comment: 28 pages, 7 figures
♻ ☆ TP-Blend: Textual-Prompt Attention Pairing for Precise Object-Style Blending in Diffusion Models
Current text-conditioned diffusion editors handle single object replacement well but struggle when a new object and a new style must be introduced simultaneously. We present Twin-Prompt Attention Blend (TP-Blend), a lightweight training-free framework that receives two separate textual prompts, one specifying a blend object and the other defining a target style, and injects both into a single denoising trajectory. TP-Blend is driven by two complementary attention processors. Cross-Attention Object Fusion (CAOF) first averages head-wise attention to locate spatial tokens that respond strongly to either prompt, then solves an entropy-regularised optimal transport problem that reassigns complete multi-head feature vectors to those positions. CAOF updates feature vectors at the full combined dimensionality of all heads (e.g., 640 dimensions in SD-XL), preserving rich cross-head correlations while keeping memory low. Self-Attention Style Fusion (SASF) injects style at every self-attention layer through Detail-Sensitive Instance Normalization. A lightweight one-dimensional Gaussian filter separates low- and high-frequency components; only the high-frequency residual is blended back, imprinting brush-stroke-level texture without disrupting global geometry. SASF further swaps the Key and Value matrices with those derived from the style prompt, enforcing context-aware texture modulation that remains independent of object fusion. Extensive experiments show that TP-Blend produces high-resolution, photo-realistic edits with precise control over both content and appearance, surpassing recent baselines in quantitative fidelity, perceptual quality, and inference speed.
♻ ☆ ObjEmbed: Towards Universal Multimodal Object Embeddings
Aligning objects with corresponding textual descriptions is a fundamental challenge and a realistic requirement in vision-language understanding. While recent multimodal embedding models excel at global image-text alignment, they often struggle with fine-grained alignment between image regions and specific phrases. In this work, we present ObjEmbed, a novel MLLM embedding model that decomposes the input image into multiple regional embeddings, each corresponding to an individual object, along with global embeddings. It supports a wide range of visual understanding tasks like visual grounding, local image retrieval, and global image retrieval. ObjEmbed enjoys three key properties: (1) Object-Oriented Representation: It captures both semantic and spatial aspects of objects by generating two complementary embeddings for each region: an object embedding for semantic matching and an IoU embedding that predicts localization quality. The final object matching score combines semantic similarity with the predicted IoU, enabling more accurate retrieval. (2) Versatility: It seamlessly handles both region-level and image-level tasks. (3) Efficient Encoding: All objects in an image, along with the full image, are encoded in a single forward pass for high efficiency. Superior performance on 18 diverse benchmarks demonstrates its strong semantic discrimination.
♻ ☆ MiTA Attention: Efficient Fast-Weight Scaling via a Mixture of Top-k Activations
The attention operator in Transformers can be viewed as a two-layer fast-weight MLP, whose weights are dynamically instantiated from input tokens and whose width equals sequence length N. As the context extends, the expressive capacity of such an N-width MLP increases, but scaling its fast weights becomes prohibitively expensive for extremely long sequences. Recently, this fast-weight scaling perspective has motivated the Mixture-of-Experts (MoE) attention, which partitions the sequence into fast-weight experts and sparsely routes the tokens to them. In this paper, we elevate this perspective to a unifying framework for a wide range of efficient attention methods by interpreting them as scaling fast weights through routing and/or compression. Then we propose a compress-and-route strategy, which compresses the N-width MLP into a narrower one using a small set of landmark queries and constructs deformable experts by gathering top-k activated key-value pairs for each landmark query. We call this strategy a Mixture of Top-k Activations (MiTA), and refer to the resulting efficient mechanism as MiTA attention. Preliminary experiments on vision tasks demonstrate the promise of our MiTA attention and motivate further investigation on its optimization and broader applications in more challenging settings.
♻ ☆ Proteus-ID: ID-Consistent and Motion-Coherent Video Customization SIGGRAPH
Video identity customization seeks to synthesize realistic, temporally coherent videos of a specific subject, given a single reference image and a text prompt. This task presents two core challenges: (1) maintaining identity consistency while aligning with the described appearance and actions, and (2) generating natural, fluid motion without unrealistic stiffness. To address these challenges, we introduce Proteus-ID, a novel diffusion-based framework for identity-consistent and motion-coherent video customization. First, we propose a Multimodal Identity Fusion (MIF) module that unifies visual and textual cues into a joint identity representation using a Q-Former, providing coherent guidance to the diffusion model and eliminating modality imbalance. Second, we present a Time-Aware Identity Injection (TAII) mechanism that dynamically modulates identity conditioning across denoising steps, improving fine-detail reconstruction. Third, we propose Adaptive Motion Learning (AML), a self-supervised strategy that reweights the training loss based on optical-flow-derived motion heatmaps, enhancing motion realism without requiring additional inputs. To support this task, we construct Proteus-Bench, a high-quality dataset comprising 200K curated clips for training and 150 individuals from diverse professions and ethnicities for evaluation. Extensive experiments demonstrate that Proteus-ID outperforms prior methods in identity preservation, text alignment, and motion quality, establishing a new benchmark for video identity customization. Codes and data are publicly available at https://grenoble-zhang.github.io/Proteus-ID/.
comment: SIGGRAPH Asia 2025
♻ ☆ SurgVidLM: Towards Multi-grained Surgical Video Understanding with Large Language Model
Surgical scene understanding is critical for surgical training and robotic decision-making in robot-assisted surgery. Recent advances in Multimodal Large Language Models (MLLMs) have demonstrated great potential for advancing scene perception in the medical domain, facilitating surgeons to understand surgical scenes and procedures. However, these methods are primarily oriented towards image-based analysis or global video understanding, overlooking the fine-grained video reasoning that is crucial for analyzing specific processes and capturing detailed task execution within a surgical procedure. To bridge this gap, we propose SurgVidLM, the first video language model designed to address both full and fine-grained surgical video comprehension. To train our SurgVidLM, we construct the SVU-31K that is a large-scale dataset with over 31K video-instruction pairs, enabling both holistic understanding and detailed analysis of surgical procedures. Building on this resource, SurgVidLM incorporates a two-stage StageFocus mechanism: the first stage extracts global procedural context, while the second stage performs high-frequency local analysis guided by temporal cues. We also develop the Multi-frequency Fusion Attention to effectively integrate low- and high-frequency visual tokens, ensuring the preservation of critical task-specific details. Experimental results demonstrate that SurgVidLM significantly outperforms state-of-the-art Vid-LLMs of comparable parameter scale in both full and fine-grained video understanding tasks, showcasing its superior capability in capturing the context of complex robot-assisted surgeries. Our code and dataset will be publicly accessible soon.
♻ ☆ DuoGen: Towards General Purpose Interleaved Multimodal Generation
Interleaved multimodal generation enables capabilities beyond unimodal generation models, such as step-by-step instructional guides, visual planning, and generating visual drafts for reasoning. However, the quality of existing interleaved generation models under general instructions remains limited by insufficient training data and base model capacity. We present DuoGen, a general-purpose interleaved generation framework that systematically addresses data curation, architecture design, and evaluation. On the data side, we build a large-scale, high-quality instruction-tuning dataset by combining multimodal conversations rewritten from curated raw websites, and diverse synthetic examples covering everyday scenarios. Architecturally, DuoGen leverages the strong visual understanding of a pretrained multimodal LLM and the visual generation capabilities of a diffusion transformer (DiT) pretrained on video generation, avoiding costly unimodal pretraining and enabling flexible base model selection. A two-stage decoupled strategy first instruction-tunes the MLLM, then aligns DiT with it using curated interleaved image-text sequences. Across public and newly proposed benchmarks, DuoGen outperforms prior open-source models in text quality, image fidelity, and image-context alignment, and also achieves state-of-the-art performance on text-to-image and image editing among unified generation models. Data and code will be released at https://research.nvidia.com/labs/dir/duogen/.
comment: Technical Report. Project Page: https://research.nvidia.com/labs/dir/duogen/
♻ ☆ EVODiff: Entropy-aware Variance Optimized Diffusion Inference NeurIPS 2025
Diffusion models (DMs) excel in image generation but suffer from slow inference and training-inference discrepancies. Although gradient-based solvers for DMs accelerate denoising inference, they often lack theoretical foundations in information transmission efficiency. In this work, we introduce an information-theoretic perspective on the inference processes of DMs, revealing that successful denoising fundamentally reduces conditional entropy in reverse transitions. This principle leads to our key insights into the inference processes: (1) data prediction parameterization outperforms its noise counterpart, and (2) optimizing conditional variance offers a reference-free way to minimize both transition and reconstruction errors. Based on these insights, we propose an entropy-aware variance optimized method for the generative process of DMs, called EVODiff, which systematically reduces uncertainty by optimizing conditional entropy during denoising. Extensive experiments on DMs validate our insights and demonstrate that our method significantly and consistently outperforms state-of-the-art (SOTA) gradient-based solvers. For example, compared to the DPM-Solver++, EVODiff reduces the reconstruction error by up to 45.5\% (FID improves from 5.10 to 2.78) at 10 function evaluations (NFE) on CIFAR-10, cuts the NFE cost by 25\% (from 20 to 15 NFE) for high-quality samples on ImageNet-256, and improves text-to-image generation while reducing artifacts. Code is available at https://github.com/ShiguiLi/EVODiff.
comment: NeurIPS 2025, 41 pages, 14 figures
♻ ☆ DDP-WM: Disentangled Dynamics Prediction for Efficient World Models
World models are essential for autonomous robotic planning. However, the substantial computational overhead of existing dense Transformerbased models significantly hinders real-time deployment. To address this efficiency-performance bottleneck, we introduce DDP-WM, a novel world model centered on the principle of Disentangled Dynamics Prediction (DDP). We hypothesize that latent state evolution in observed scenes is heterogeneous and can be decomposed into sparse primary dynamics driven by physical interactions and secondary context-driven background updates. DDP-WM realizes this decomposition through an architecture that integrates efficient historical processing with dynamic localization to isolate primary dynamics. By employing a crossattention mechanism for background updates, the framework optimizes resource allocation and provides a smooth optimization landscape for planners. Extensive experiments demonstrate that DDP-WM achieves significant efficiency and performance across diverse tasks, including navigation, precise tabletop manipulation, and complex deformable or multi-body interactions. Specifically, on the challenging Push-T task, DDP-WM achieves an approximately 9 times inference speedup and improves the MPC success rate from 90% to98% compared to state-of-the-art dense models. The results establish a promising path for developing efficient, high-fidelity world models. Codes will be available at https://github.com/HCPLab-SYSU/DDP-WM.
comment: Codes will be available at https://github.com/HCPLab-SYSU/DDP-WM
♻ ☆ DSKC: Domain Style Modeling with Adaptive Knowledge Consolidation for Exemplar-free Lifelong Person Re-Identification
Lifelong Person Re-identification (LReID) aims to continuously match individuals across camera views from sequential data streams. Existing LReID methods often ignore domain-specific style awareness and unified knowledge consolidation, which are crucial for mitigating forgetting when adapting to new information. We propose DSKC, a novel rehearsal-free and distillation-free framework for LReID. DSKC designs a domain-style encoder (DSE) to dynamically model domain-specific styles, and a unified knowledge consolidation (UKC) mechanism to adaptively integrate instance-level representations with domain-specific style into a cross-domain unified representation. By leveraging unified representation as a bridge, DSKC explicitly models inter-domain associations at both instance and domain levels to enhance anti-forgetting and generalization. Experimental results demonstrate that our DSKC outperforms state-of-the-art methods in two training orders and enhances the model's strong performance. Our code is available at https://github.com/LiuShiBen/DKUA.
comment: 11 papges, 6 figures
♻ ☆ SAIL-RL: Guiding MLLMs in When and How to Think via Dual-Reward RL Tuning
We introduce SAIL-RL, a reinforcement learning (RL) post-training framework that enhances the reasoning capabilities of multimodal large language models (MLLMs) by teaching them when and how to think. Existing approaches are limited by outcome-only supervision, which rewards correct answers without ensuring sound reasoning, and by uniform thinking strategies, which often lead to overthinking on simple tasks and underthinking on complex ones. SAIL-RL addresses these challenges with a dual reward system: the Thinking Reward, which evaluates reasoning quality through factual grounding, logical coherence, and answer consistency, and the Judging Reward, which adaptively determines whether deep reasoning or direct answering is appropriate. Experiments on the state-of-the-art SAIL-VL2 show that SAIL-RL improves reasoning and multimodal understanding benchmarks at both 4B and 8B scales, achieving competitive performance against commercial closed-source models such as GPT-4o, and substantially reduces hallucinations, establishing it as a principled framework for building more reliable and adaptive MLLMs. The code will be available at https://github.com/BytedanceDouyinContent/SAIL-RL.
♻ ☆ TFFM: Topology-Aware Feature Fusion Module via Latent Graph Reasoning for Retinal Vessel Segmentation WACV 2026
Precise segmentation of retinal arteries and veins carries the diagnosis of systemic cardiovascular conditions. However, standard convolutional architectures often yield topologically disjointed segmentations, characterized by gaps and discontinuities that render reliable graph-based clinical analysis impossible despite high pixel-level accuracy. To address this, we introduce a topology-aware framework engineered to maintain vascular connectivity. Our architecture fuses a Topological Feature Fusion Module (TFFM) that maps local feature representations into a latent graph space, deploying Graph Attention Networks to capture global structural dependencies often missed by fixed receptive fields. Furthermore, we drive the learning process with a hybrid objective function, coupling Tversky loss for class imbalance with soft clDice loss to explicitly penalize topological disconnects. Evaluation on the Fundus-AVSeg dataset reveals state-of-the-art performance, achieving a combined Dice score of 90.97% and a 95% Hausdorff Distance of 3.50 pixels. Notably, our method decreases vessel fragmentation by approximately 38% relative to baselines, yielding topologically coherent vascular trees viable for automated biomarker quantification. We open-source our code at https://tffm-module.github.io/.
comment: Accepted in WACV 2026 @ P2P-workshop as a full paper and selected for oral presentation
♻ ☆ UniADC: A Unified Framework for Anomaly Detection and Classification
In this paper, we introduce a novel task termed unified anomaly detection and classification, which aims to simultaneously detect anomalous regions in images and identify their specific categories. Existing methods typically treat anomaly detection and classification as separate tasks, thereby neglecting their inherent correlations and limiting information sharing, which results in suboptimal performance. To address this, we propose UniADC, a model designed to effectively perform both tasks with only a few or even no anomaly images. Specifically, UniADC consists of two key components: a training-free Controllable Inpainting Network and an Implicit-Normal Discriminator. The inpainting network can synthesize anomaly images of specific categories by repainting normal regions guided by anomaly priors, and can also repaint few-shot anomaly samples to augment the available anomaly data. The implicit-normal discriminator addresses the severe challenge of the imbalance between normal and anomalous pixel distributions by implicitly modeling the normal state, achieving precise anomaly detection and classification by aligning fine-grained image features with anomaly-category embeddings. We conduct extensive experiments on three anomaly detection and classification datasets, including MVTec-FS, MTD, and WFDD, and the results demonstrate that UniADC consistently outperforms existing methods in anomaly detection, localization, and classification. The code is available at https://github.com/cnulab/UniADC.
Artificial Intelligence 300
☆ PLATE: Plasticity-Tunable Efficient Adapters for Geometry-Aware Continual Learning
We develop a continual learning method for pretrained models that \emph{requires no access to old-task data}, addressing a practical barrier in foundation model adaptation where pretraining distributions are often unavailable. Our key observation is that pretrained networks exhibit substantial \emph{geometric redundancy}, and that this redundancy can be exploited in two complementary ways. First, redundant neurons provide a proxy for dominant pretraining-era feature directions, enabling the construction of approximately protected update subspaces directly from pretrained weights. Second, redundancy offers a natural bias for \emph{where} to place plasticity: by restricting updates to a subset of redundant neurons and constraining the remaining degrees of freedom, we obtain update families with reduced functional drift on the old-data distribution and improved worst-case retention guarantees. These insights lead to \textsc{PLATE} (\textbf{Pla}sticity-\textbf{T}unable \textbf{E}fficient Adapters), a continual learning method requiring no past-task data that provides explicit control over the plasticity-retention trade-off. PLATE parameterizes each layer with a structured low-rank update $ΔW = B A Q^\top$, where $B$ and $Q$ are computed once from pretrained weights and kept frozen, and only $A$ is trained on the new task. The code is available at https://github.com/SalesforceAIResearch/PLATE.
☆ PrevizWhiz: Combining Rough 3D Scenes and 2D Video to Guide Generative Video Previsualization
In pre-production, filmmakers and 3D animation experts must rapidly prototype ideas to explore a film's possibilities before fullscale production, yet conventional approaches involve trade-offs in efficiency and expressiveness. Hand-drawn storyboards often lack spatial precision needed for complex cinematography, while 3D previsualization demands expertise and high-quality rigged assets. To address this gap, we present PrevizWhiz, a system that leverages rough 3D scenes in combination with generative image and video models to create stylized video previews. The workflow integrates frame-level image restyling with adjustable resemblance, time-based editing through motion paths or external video inputs, and refinement into high-fidelity video clips. A study with filmmakers demonstrates that our system lowers technical barriers for film-makers, accelerates creative iteration, and effectively bridges the communication gap, while also surfacing challenges of continuity, authorship, and ethical consideration in AI-assisted filmmaking.
comment: 21 pages, 13 figures; accepted and to appear at CHI 2026
☆ Accelerating Scientific Research with Gemini: Case Studies and Common Techniques
Recent advances in large language models (LLMs) have opened new avenues for accelerating scientific research. While models are increasingly capable of assisting with routine tasks, their ability to contribute to novel, expert-level mathematical discovery is less understood. We present a collection of case studies demonstrating how researchers have successfully collaborated with advanced AI models, specifically Google's Gemini-based models (in particular Gemini Deep Think and its advanced variants), to solve open problems, refute conjectures, and generate new proofs across diverse areas in theoretical computer science, as well as other areas such as economics, optimization, and physics. Based on these experiences, we extract common techniques for effective human-AI collaboration in theoretical research, such as iterative refinement, problem decomposition, and cross-disciplinary knowledge transfer. While the majority of our results stem from this interactive, conversational methodology, we also highlight specific instances that push beyond standard chat interfaces. These include deploying the model as a rigorous adversarial reviewer to detect subtle flaws in existing proofs, and embedding it within a "neuro-symbolic" loop that autonomously writes and executes code to verify complex derivations. Together, these examples highlight the potential of AI not just as a tool for automation, but as a versatile, genuine partner in the creative process of scientific discovery.
☆ AutoFigure: Generating and Refining Publication-Ready Scientific Illustrations ICLR 2026
High-quality scientific illustrations are crucial for effectively communicating complex scientific and technical concepts, yet their manual creation remains a well-recognized bottleneck in both academia and industry. We present FigureBench, the first large-scale benchmark for generating scientific illustrations from long-form scientific texts. It contains 3,300 high-quality scientific text-figure pairs, covering diverse text-to-illustration tasks from scientific papers, surveys, blogs, and textbooks. Moreover, we propose AutoFigure, the first agentic framework that automatically generates high-quality scientific illustrations based on long-form scientific text. Specifically, before rendering the final result, AutoFigure engages in extensive thinking, recombination, and validation to produce a layout that is both structurally sound and aesthetically refined, outputting a scientific illustration that achieves both structural completeness and aesthetic appeal. Leveraging the high-quality data from FigureBench, we conduct extensive experiments to test the performance of AutoFigure against various baseline methods. The results demonstrate that AutoFigure consistently surpasses all baseline methods, producing publication-ready scientific illustrations. The code, dataset and huggingface space are released in https://github.com/ResearAI/AutoFigure.
comment: Accepted at the ICLR 2026
☆ Adaptive Evidence Weighting for Audio-Spatiotemporal Fusion
Many machine learning systems have access to multiple sources of evidence for the same prediction target, yet these sources often differ in reliability and informativeness across inputs. In bioacoustic classification, species identity may be inferred both from the acoustic signal and from spatiotemporal context such as location and season; while Bayesian inference motivates multiplicative evidence combination, in practice we typically only have access to discriminative predictors rather than calibrated generative models. We introduce \textbf{F}usion under \textbf{IN}dependent \textbf{C}onditional \textbf{H}ypotheses (\textbf{FINCH}), an adaptive log-linear evidence fusion framework that integrates a pre-trained audio classifier with a structured spatiotemporal predictor. FINCH learns a per-sample gating function that estimates the reliability of contextual information from uncertainty and informativeness statistics. The resulting fusion family \emph{contains} the audio-only classifier as a special case and explicitly bounds the influence of contextual evidence, yielding a risk-contained hypothesis class with an interpretable audio-only fallback. Across benchmarks, FINCH consistently outperforms fixed-weight fusion and audio-only baselines, improving robustness and error trade-offs even when contextual information is weak in isolation. We achieve state-of-the-art performance on CBI and competitive or improved performance on several subsets of BirdSet using a lightweight, interpretable, evidence-based approach. Code is available: \texttt{\href{https://anonymous.4open.science/r/birdnoise-85CD/README.md}{anonymous-repository}}
☆ Conformal Thinking: Risk Control for Reasoning on a Compute Budget
Reasoning Large Language Models (LLMs) enable test-time scaling, with dataset-level accuracy improving as the token budget increases, motivating adaptive reasoning -- spending tokens when they improve reliability and stopping early when additional computation is unlikely to help. However, setting the token budget, as well as the threshold for adaptive reasoning, is a practical challenge that entails a fundamental risk-accuracy trade-off. We re-frame the budget setting problem as risk control, limiting the error rate while minimizing compute. Our framework introduces an upper threshold that stops reasoning when the model is confident (risking incorrect output) and a novel parametric lower threshold that preemptively stops unsolvable instances (risking premature stoppage). Given a target risk and a validation set, we use distribution-free risk control to optimally specify these stopping mechanisms. For scenarios with multiple budget controlling criteria, we incorporate an efficiency loss to select the most computationally efficient exiting mechanism. Empirical results across diverse reasoning tasks and models demonstrate the effectiveness of our risk control approach, demonstrating computational efficiency gains from the lower threshold and ensemble stopping mechanisms while adhering to the user-specified risk target.
☆ Antidistillation Fingerprinting
Model distillation enables efficient emulation of frontier large language models (LLMs), creating a need for robust mechanisms to detect when a third-party student model has trained on a teacher model's outputs. However, existing fingerprinting techniques that could be used to detect such distillation rely on heuristic perturbations that impose a steep trade-off between generation quality and fingerprinting strength, often requiring significant degradation of utility to ensure the fingerprint is effectively internalized by the student. We introduce antidistillation fingerprinting (ADFP), a principled approach that aligns the fingerprinting objective with the student's learning dynamics. Building upon the gradient-based framework of antidistillation sampling, ADFP utilizes a proxy model to identify and sample tokens that directly maximize the expected detectability of the fingerprint in the student after fine-tuning, rather than relying on the incidental absorption of the un-targeted biases of a more naive watermark. Experiments on GSM8K and OASST1 benchmarks demonstrate that ADFP achieves a significant Pareto improvement over state-of-the-art baselines, yielding stronger detection confidence with minimal impact on utility, even when the student model's architecture is unknown.
comment: 26 pages, 11 figures
☆ Enhancing Imbalanced Node Classification via Curriculum-Guided Feature Learning and Three-Stage Attention Network
Imbalanced node classification in graph neural networks (GNNs) happens when some labels are much more common than others, which causes the model to learn unfairly and perform badly on the less common classes. To solve this problem, we propose a Curriculum-Guided Feature Learning and Three-Stage Attention Network (CL3AN-GNN), a learning network that uses a three-step attention system (Engage, Enact, Embed) similar to how humans learn. The model begins by engaging with structurally simpler features, defined as (1) local neighbourhood patterns (1-hop), (2) low-degree node attributes, and (3) class-separable node pairs identified via initial graph convolutional networks and graph attention networks (GCN and GAT) embeddings. This foundation enables stable early learning despite label skew. The Enact stage then addresses complicated aspects: (1) connections that require multiple steps, (2) edges that connect different types of nodes, and (3) nodes at the edges of minority classes by using adjustable attention weights. Finally, Embed consolidates these features via iterative message passing and curriculum-aligned loss weighting. We evaluate CL3AN-GNN on eight Open Graph Benchmark datasets spanning social, biological, and citation networks. Experiments show consistent improvements across all datasets in accuracy, F1-score, and AUC over recent state-of-the-art methods. The model's step-by-step method works well with different types of graph datasets, showing quicker results than training everything at once, better performance on new, imbalanced graphs, and clear explanations of each step using gradient stability and attention correlation learning curves. This work provides both a theoretically grounded framework for curriculum learning in GNNs and practical evidence of its effectiveness against imbalances, validated through metrics, convergence speeds, and generalisation tests.
☆ Bridging Online and Offline RL: Contextual Bandit Learning for Multi-Turn Code Generation
Recently, there have been significant research interests in training large language models (LLMs) with reinforcement learning (RL) on real-world tasks, such as multi-turn code generation. While online RL tends to perform better than offline RL, its higher training cost and instability hinders wide adoption. In this paper, we build on the observation that multi-turn code generation can be formulated as a one-step recoverable Markov decision process and propose contextual bandit learning with offline trajectories (Cobalt), a new method that combines the benefits of online and offline RL. Cobalt first collects code generation trajectories using a reference LLM and divides them into partial trajectories as contextual prompts. Then, during online bandit learning, the LLM is trained to complete each partial trajectory prompt through single-step code generation. Cobalt outperforms two multi-turn online RL baselines based on GRPO and VeRPO, and substantially improves R1-Distill 8B and Qwen3 8B by up to 9.0 and 6.2 absolute Pass@1 scores on LiveCodeBench. Also, we analyze LLMs' in-context reward hacking behaviors and augment Cobalt training with perturbed trajectories to mitigate this issue. Overall, our results demonstrate Cobalt as a promising solution for iterative decision-making tasks like multi-turn code generation. Our code and data are available at https://github.com/OSU-NLP-Group/cobalt.
☆ Do We Need Asynchronous SGD? On the Near-Optimality of Synchronous Methods
Modern distributed optimization methods mostly rely on traditional synchronous approaches, despite substantial recent progress in asynchronous optimization. We revisit Synchronous SGD and its robust variant, called $m$-Synchronous SGD, and theoretically show that they are nearly optimal in many heterogeneous computation scenarios, which is somewhat unexpected. We analyze the synchronous methods under random computation times and adversarial partial participation of workers, and prove that their time complexities are optimal in many practical regimes, up to logarithmic factors. While synchronous methods are not universal solutions and there exist tasks where asynchronous methods may be necessary, we show that they are sufficient for many modern heterogeneous computation scenarios.
☆ Conformal Reachability for Safe Control in Unknown Environments
Designing provably safe control is a core problem in trustworthy autonomy. However, most prior work in this regard assumes either that the system dynamics are known or deterministic, or that the state and action space are finite, significantly limiting application scope. We address this limitation by developing a probabilistic verification framework for unknown dynamical systems which combines conformal prediction with reachability analysis. In particular, we use conformal prediction to obtain valid uncertainty intervals for the unknown dynamics at each time step, with reachability then verifying whether safety is maintained within the conformal uncertainty bounds. Next, we develop an algorithmic approach for training control policies that optimize nominal reward while also maximizing the planning horizon with sound probabilistic safety guarantees. We evaluate the proposed approach in seven safe control settings spanning four domains -- cartpole, lane following, drone control, and safe navigation -- for both affine and nonlinear safety specifications. Our experiments show that the policies we learn achieve the strongest provable safety guarantees while still maintaining high average reward.
☆ Understanding Agent Scaling in LLM-Based Multi-Agent Systems via Diversity
LLM-based multi-agent systems (MAS) have emerged as a promising approach to tackle complex tasks that are difficult for individual LLMs. A natural strategy is to scale performance by increasing the number of agents; however, we find that such scaling exhibits strong diminishing returns in homogeneous settings, while introducing heterogeneity (e.g., different models, prompts, or tools) continues to yield substantial gains. This raises a fundamental question: what limits scaling, and why does diversity help? We present an information-theoretic framework showing that MAS performance is bounded by the intrinsic task uncertainty, not by agent count. We derive architecture-agnostic bounds demonstrating that improvements depend on how many effective channels the system accesses. Homogeneous agents saturate early because their outputs are strongly correlated, whereas heterogeneous agents contribute complementary evidence. We further introduce $K^*$, an effective channel count that quantifies the number of effective channels without ground-truth labels. Empirically, we show that heterogeneous configurations consistently outperform homogeneous scaling: 2 diverse agents can match or exceed the performance of 16 homogeneous agents. Our results provide principled guidelines for building efficient and robust MAS through diversity-aware design. Code and Dataset are available at the link: https://github.com/SafeRL-Lab/Agent-Scaling.
☆ WebSentinel: Detecting and Localizing Prompt Injection Attacks for Web Agents
Prompt injection attacks manipulate webpage content to cause web agents to execute attacker-specified tasks instead of the user's intended ones. Existing methods for detecting and localizing such attacks achieve limited effectiveness, as their underlying assumptions often do not hold in the web-agent setting. In this work, we propose WebSentinel, a two-step approach for detecting and localizing prompt injection attacks in webpages. Given a webpage, Step I extracts \emph{segments of interest} that may be contaminated, and Step II evaluates each segment by checking its consistency with the webpage content as context. We show that WebSentinel is highly effective, substantially outperforming baseline methods across multiple datasets of both contaminated and clean webpages that we collected. Our code is available at: https://github.com/wxl-lxw/WebSentinel.
☆ Fast Sampling for Flows and Diffusions with Lazy and Point Mass Stochastic Interpolants
Stochastic interpolants unify flows and diffusions, popular generative modeling frameworks. A primary hyperparameter in these methods is the interpolation schedule that determines how to bridge a standard Gaussian base measure to an arbitrary target measure. We prove how to convert a sample path of a stochastic differential equation (SDE) with arbitrary diffusion coefficient under any schedule into the unique sample path under another arbitrary schedule and diffusion coefficient. We then extend the stochastic interpolant framework to admit a larger class of point mass schedules in which the Gaussian base measure collapses to a point mass measure. Under the assumption of Gaussian data, we identify lazy schedule families that make the drift identically zero and show that with deterministic sampling one gets a variance-preserving schedule commonly used in diffusion models, whereas with statistically optimal SDE sampling one gets our point mass schedule. Finally, to demonstrate the usefulness of our theoretical results on realistic highly non-Gaussian data, we apply our lazy schedule conversion to a state-of-the-art pretrained flow model and show that this allows for generating images in fewer steps without retraining the model.
☆ AOrchestra: Automating Sub-Agent Creation for Agentic Orchestration
Language agents have shown strong promise for task automation. Realizing this promise for increasingly complex, long-horizon tasks has driven the rise of a sub-agent-as-tools paradigm for multi-turn task solving. However, existing designs still lack a dynamic abstraction view of sub-agents, thereby hurting adaptability. We address this challenge with a unified, framework-agnostic agent abstraction that models any agent as a tuple Instruction, Context, Tools, Model. This tuple acts as a compositional recipe for capabilities, enabling the system to spawn specialized executors for each task on demand. Building on this abstraction, we introduce an agentic system AOrchestra, where the central orchestrator concretizes the tuple at each step: it curates task-relevant context, selects tools and models, and delegates execution via on-the-fly automatic agent creation. Such designs enable reducing human engineering efforts, and remain framework-agnostic with plug-and-play support for diverse agents as task executors. It also enables a controllable performance-cost trade-off, allowing the system to approach Pareto-efficient. Across three challenging benchmarks (GAIA, SWE-Bench, Terminal-Bench), AOrchestra achieves 16.28% relative improvement against the strongest baseline when paired with Gemini-3-Flash. The code is available at: https://github.com/FoundationAgents/AOrchestra
☆ Efficient Estimation of Kernel Surrogate Models for Task Attribution ICLR 2026
Modern AI agents such as large language models are trained on diverse tasks -- translation, code generation, mathematical reasoning, and text prediction -- simultaneously. A key question is to quantify how each individual training task influences performance on a target task, a problem we refer to as task attribution. The direct approach, leave-one-out retraining, measures the effect of removing each task, but is computationally infeasible at scale. An alternative approach that builds surrogate models to predict a target task's performance for any subset of training tasks has emerged in recent literature. Prior work focuses on linear surrogate models, which capture first-order relationships, but miss nonlinear interactions such as synergy, antagonism, or XOR-type effects. In this paper, we first consider a unified task weighting framework for analyzing task attribution methods, and show a new connection between linear surrogate models and influence functions through a second-order analysis. Then, we introduce kernel surrogate models, which more effectively represent second-order task interactions. To efficiently learn the kernel surrogate, we develop a gradient-based estimation procedure that leverages a first-order approximation of pretrained models; empirically, this yields accurate estimates with less than $2\%$ relative error without repeated retraining. Experiments across multiple domains -- including math reasoning in transformers, in-context learning, and multi-objective reinforcement learning -- demonstrate the effectiveness of kernel surrogate models. They achieve a $25\%$ higher correlation with the leave-one-out ground truth than linear surrogates and influence-function baselines. When used for downstream task selection, kernel surrogate models yield a $40\%$ improvement in demonstration selection for in-context learning and multi-objective reinforcement learning benchmarks.
comment: 27 pages. To appear in ICLR 2026
☆ Reward Redistribution for CVaR MDPs using a Bellman Operator on L-infinity
Tail-end risk measures such as static conditional value-at-risk (CVaR) are used in safety-critical applications to prevent rare, yet catastrophic events. Unlike risk-neutral objectives, the static CVaR of the return depends on entire trajectories without admitting a recursive Bellman decomposition in the underlying Markov decision process. A classical resolution relies on state augmentation with a continuous variable. However, unless restricted to a specialized class of admissible value functions, this formulation induces sparse rewards and degenerate fixed points. In this work, we propose a novel formulation of the static CVaR objective based on augmentation. Our alternative approach leads to a Bellman operator with: (1) dense per-step rewards; (2) contracting properties on the full space of bounded value functions. Building on this theoretical foundation, we develop risk-averse value iteration and model-free Q-learning algorithms that rely on discretized augmented states. We further provide convergence guarantees and approximation error bounds due to discretization. Empirical results demonstrate that our algorithms successfully learn CVaR-sensitive policies and achieve effective performance-safety trade-offs.
☆ DiffLOB: Diffusion Models for Counterfactual Generation in Limit Order Books
Modern generative models for limit order books (LOBs) can reproduce realistic market dynamics, but remain fundamentally passive: they either model what typically happens without accounting for hypothetical future market conditions, or they require interaction with another agent to explore alternative outcomes. This limits their usefulness for stress testing, scenario analysis, and decision-making. We propose \textbf{DiffLOB}, a regime-conditioned \textbf{Diff}usion model for controllable and counterfactual generation of \textbf{LOB} trajectories. DiffLOB explicitly conditions the generative process on future market regimes--including trend, volatility, liquidity, and order-flow imbalance, which enables the model to answer counterfactual queries of the form: ``If the future market regime were X instead of Y, how would the limit order book evolve?'' Our systematic evaluation framework for counterfactual LOB generation consists of three criteria: (1) \textit{Controllable Realism}, measuring how well generated trajectories can reproduce marginal distributions, temporal dependence structure and regime variables; (2) \textit{Counterfactual validity}, testing whether interventions on future regimes induce consistent changes in the generated LOB dynamics; (3) \textit{Counterfactual usefulness}, assessing whether synthetic counterfactual trajectories improve downstream prediction of future market regimes.
comment: 12 pages, 8 figures
☆ An Empirical Study of Collective Behaviors and Social Dynamics in Large Language Model Agents
Large Language Models (LLMs) increasingly mediate our social, cultural, and political interactions. While they can simulate some aspects of human behavior and decision-making, it is still underexplored whether repeated interactions with other agents amplify their biases or lead to exclusionary behaviors. To this end, we study Chirper.ai-an LLM-driven social media platform-analyzing 7M posts and interactions among 32K LLM agents over a year. We start with homophily and social influence among LLMs, learning that similar to humans', their social networks exhibit these fundamental phenomena. Next, we study the toxic language of LLMs, its linguistic features, and their interaction patterns, finding that LLMs show different structural patterns in toxic posting than humans. After studying the ideological leaning in LLMs posts, and the polarization in their community, we focus on how to prevent their potential harmful activities. We present a simple yet effective method, called Chain of Social Thought (CoST), that reminds LLM agents to avoid harmful posting.
☆ UniGeM: Unifying Data Mixing and Selection via Geometric Exploration and Mining
The scaling of Large Language Models (LLMs) is increasingly limited by data quality. Most methods handle data mixing and sample selection separately, which can break the structure in code corpora. We introduce \textbf{UniGeM}, a framework that unifies mixing and selection by treating data curation as a \textit{manifold approximation} problem without training proxy models or relying on external reference datasets. UniGeM operates hierarchically: \textbf{Macro-Exploration} learns mixing weights with stability-based clustering; \textbf{Micro-Mining} filters high-quality instances by their geometric distribution to ensure logical consistency. Validated by training 8B and 16B MoE models on 100B tokens, UniGeM achieves \textbf{2.0$\times$ data efficiency} over a random baseline and further improves overall performance compared to SOTA methods in reasoning-heavy evaluations and multilingual generalization.
☆ Decision-oriented benchmarking to transform AI weather forecast access: Application to the Indian monsoon
Artificial intelligence weather prediction (AIWP) models now often outperform traditional physics-based models on common metrics while requiring orders-of-magnitude less computing resources and time. Open-access AIWP models thus hold promise as transformational tools for helping low- and middle-income populations make decisions in the face of high-impact weather shocks. Yet, current approaches to evaluating AIWP models focus mainly on aggregated meteorological metrics without considering local stakeholders' needs in decision-oriented, operational frameworks. Here, we introduce such a framework that connects meteorology, AI, and social sciences. As an example, we apply it to the 150-year-old problem of Indian monsoon forecasting, focusing on benefits to rain-fed agriculture, which is highly susceptible to climate change. AIWP models skillfully predict an agriculturally relevant onset index at regional scales weeks in advance when evaluated out-of-sample using deterministic and probabilistic metrics. This framework informed a government-led effort in 2025 to send 38 million Indian farmers AI-based monsoon onset forecasts, which captured an unusual weeks-long pause in monsoon progression. This decision-oriented benchmarking framework provides a key component of a blueprint for harnessing the power of AIWP models to help large vulnerable populations adapt to weather shocks in the face of climate variability and change.
☆ Zero-shot large vision-language model prompting for automated bone identification in paleoradiology x-ray archives
Paleoradiology, the use of modern imaging technologies to study archaeological and anthropological remains, offers new windows on millennial scale patterns of human health. Unfortunately, the radiographs collected during field campaigns are heterogeneous: bones are disarticulated, positioning is ad hoc, and laterality markers are often absent. Additionally, factors such as age at death, age of bone, sex, and imaging equipment introduce high variability. Thus, content navigation, such as identifying a subset of images with a specific projection view, can be time consuming and difficult, making efficient triaging a bottleneck for expert analysis. We report a zero shot prompting strategy that leverages a state of the art Large Vision Language Model (LVLM) to automatically identify the main bone, projection view, and laterality in such images. Our pipeline converts raw DICOM files to bone windowed PNGs, submits them to the LVLM with a carefully engineered prompt, and receives structured JSON outputs, which are extracted and formatted onto a spreadsheet in preparation for validation. On a random sample of 100 images reviewed by an expert board certified paleoradiologist, the system achieved 92% main bone accuracy, 80% projection view accuracy, and 100% laterality accuracy, with low or medium confidence flags for ambiguous cases. These results suggest that LVLMs can substantially accelerate code word development for large paleoradiology datasets, allowing for efficient content navigation in future anthropology workflows.
☆ Cognitively Diverse Multiple-Choice Question Generation: A Hybrid Multi-Agent Framework with Large Language Models
Recent advances in large language models (LLMs) have made automated multiple-choice question (MCQ) generation increasingly feasible; however, reliably producing items that satisfy controlled cognitive demands remains a challenge. To address this gap, we introduce ReQUESTA, a hybrid, multi-agent framework for generating cognitively diverse MCQs that systematically target text-based, inferential, and main idea comprehension. ReQUESTA decomposes MCQ authoring into specialized subtasks and coordinates LLM-powered agents with rule-based components to support planning, controlled generation, iterative evaluation, and post-processing. We evaluated the framework in a large-scale reading comprehension study using academic expository texts, comparing ReQUESTA-generated MCQs with those produced by a single-pass GPT-5 zero-shot baseline. Psychometric analyses of learner responses assessed item difficulty and discrimination, while expert raters evaluated question quality across multiple dimensions, including topic relevance and distractor quality. Results showed that ReQUESTA-generated items were consistently more challenging, more discriminative, and more strongly aligned with overall reading comprehension performance. Expert evaluations further indicated stronger alignment with central concepts and superior distractor linguistic consistency and semantic plausibility, particularly for inferential questions. These findings demonstrate that hybrid, agentic orchestration can systematically improve the reliability and controllability of LLM-based generation, highlighting workflow design as a key lever for structured artifact generation beyond single-pass prompting.
comment: This manuscript is under review at Electronics
☆ Anytime Pretraining: Horizon-Free Learning-Rate Schedules with Weight Averaging
Large language models are increasingly trained in continual or open-ended settings, where the total training horizon is not known in advance. Despite this, most existing pretraining recipes are not anytime: they rely on horizon-dependent learning rate schedules and extensive tuning under a fixed compute budget. In this work, we provide a theoretical analysis demonstrating the existence of anytime learning schedules for overparameterized linear regression, and we highlight the central role of weight averaging - also known as model merging - in achieving the minimax convergence rates of stochastic gradient descent. We show that these anytime schedules polynomially decay with time, with the decay rate determined by the source and capacity conditions of the problem. Empirically, we evaluate 150M and 300M parameter language models trained at 1-32x Chinchilla scale, comparing constant learning rates with weight averaging and $1/\sqrt{t}$ schedules with weight averaging against a well-tuned cosine schedule. Across the full training range, the anytime schedules achieve comparable final loss to cosine decay. Taken together, our results suggest that weight averaging combined with simple, horizon-free step sizes offers a practical and effective anytime alternative to cosine learning rate schedules for large language model pretraining.
☆ Agent Primitives: Reusable Latent Building Blocks for Multi-Agent Systems
While existing multi-agent systems (MAS) can handle complex problems by enabling collaboration among multiple agents, they are often highly task-specific, relying on manually crafted agent roles and interaction prompts, which leads to increased architectural complexity and limited reusability across tasks. Moreover, most MAS communicate primarily through natural language, making them vulnerable to error accumulation and instability in long-context, multi-stage interactions within internal agent histories. In this work, we propose \textbf{Agent Primitives}, a set of reusable latent building blocks for LLM-based MAS. Inspired by neural network design, where complex models are built from reusable components, we observe that many existing MAS architectures can be decomposed into a small number of recurring internal computation patterns. Based on this observation, we instantiate three primitives: Review, Voting and Selection, and Planning and Execution. All primitives communicate internally via key-value (KV) cache, which improves both robustness and efficiency by mitigating information degradation across multi-stage interactions. To enable automatic system construction, an Organizer agent selects and composes primitives for each query, guided by a lightweight knowledge pool of previously successful configurations, forming a primitive-based MAS. Experiments show that primitives-based MAS improve average accuracy by 12.0-16.5\% over single-agent baselines, reduce token usage and inference latency by approximately 3$\times$-4$\times$ compared to text-based MAS, while incurring only 1.3$\times$-1.6$\times$ overhead relative to single-agent inference and providing more stable performance across model backbones.
comment: 16 pages
☆ OCRTurk: A Comprehensive OCR Benchmark for Turkish EACL 2026
Document parsing is now widely used in applications, such as large-scale document digitization, retrieval-augmented generation, and domain-specific pipelines in healthcare and education. Benchmarking these models is crucial for assessing their reliability and practical robustness. Existing benchmarks mostly target high-resource languages and provide limited coverage for low-resource settings, such as Turkish. Moreover, existing studies on Turkish document parsing lack a standardized benchmark that reflects real-world scenarios and document diversity. To address this gap, we introduce OCRTurk, a Turkish document parsing benchmark covering multiple layout elements and document categories at three difficulty levels. OCRTurk consists of 180 Turkish documents drawn from academic articles, theses, slide decks, and non-academic articles. We evaluate seven OCR models on OCRTurk using element-wise metrics. Across difficulty levels, PaddleOCR achieves the strongest overall results, leading most element-wise metrics except figures and attaining high Normalized Edit Distance scores in easy, medium, and hard subsets. We also observe performance variation by document type. Models perform well on non-academic documents, while slideshows become the most challenging.
comment: Accepted by EACL 2026 SIGTURK
☆ LLM-Inspired Pretrain-Then-Finetune for Small-Data, Large-Scale Optimization
We consider small-data, large-scale decision problems in which a firm must make many operational decisions simultaneously (e.g., across a large product portfolio) while observing only a few, potentially noisy, data points per instance. Inspired by the success of large language models (LLMs), we propose a pretrain-then-finetune approach built on a designed Transformer model to address this challenge. The model is first pretrained on large-scale, domain-informed synthetic data that encode managerial knowledge and structural features of the decision environment, and is then fine-tuned on real observations. This new pipeline offers two complementary advantages: pretraining injects domain knowledge into the learning process and enables the training of high-capacity models using abundant synthetic data, while finetuning adapts the pretrained model to the operational environment and improves alignment with the true data-generating regime. While we have leveraged the Transformer's state-of-the-art representational capacity, particularly its attention mechanism, to efficiently extract cross-task structure, our approach is not an off-the-shelf application. Instead, it relies on problem-specific architectural design and a tailored training procedure to match the decision setting. Theoretically, we develop the first comprehensive error analysis regarding Transformer learning in relevant contexts, establishing nonasymptotic guarantees that validate the method's effectiveness. Critically, our analysis reveals how pretraining and fine-tuning jointly determine performance, with the dominant contribution governed by whichever is more favorable. In particular, finetuning exhibits an economies-of-scale effect, whereby transfer learning becomes increasingly effective as the number of instances grows.
☆ Rethinking the Reranker: Boundary-Aware Evidence Selection for Robust Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) systems remain brittle under realistic retrieval noise, even when the required evidence appears in the top-K results. A key reason is that retrievers and rerankers optimize solely for relevance, often selecting either trivial, answer-revealing passages or evidence that lacks the critical information required to answer the question, without considering whether the evidence is suitable for the generator. We propose BAR-RAG, which reframes the reranker as a boundary-aware evidence selector that targets the generator's Goldilocks Zone -- evidence that is neither trivially easy nor fundamentally unanswerable for the generator, but is challenging yet sufficient for inference and thus provides the strongest learning signal. BAR-RAG trains the selector with reinforcement learning using generator feedback, and adopts a two-stage pipeline that fine-tunes the generator under the induced evidence distribution to mitigate the distribution mismatch between training and inference. Experiments on knowledge-intensive question answering benchmarks show that BAR-RAG consistently improves end-to-end performance under noisy retrieval, achieving an average gain of 10.3 percent over strong RAG and reranking baselines while substantially improving robustness. Code is publicly avaliable at https://github.com/GasolSun36/BAR-RAG.
comment: 19 pages, 8 tables, 5 figures
☆ TodyComm: Task-Oriented Dynamic Communication for Multi-Round LLM-based Multi-Agent System
Multi-round LLM-based multi-agent systems rely on effective communication structures to support collaboration across rounds. However, most existing methods employ a fixed communication topology during inference, which falls short in many realistic applications where the agents' roles may change \textit{across rounds} due to dynamic adversary, task progression, or time-varying constraints such as communication bandwidth. In this paper, we propose addressing this issue through TodyComm, a \textbf{t}ask-\textbf{o}riented \textbf{dy}namic \textbf{comm}unication algorithm. It produces behavior-driven collaboration topologies that adapt to the dynamics at each round, optimizing the utility for the task through policy gradient. Experiments on five benchmarks demonstrate that under both dynamic adversary and communications budgets, TodyComm delivers superior task effectiveness while retaining token efficiency and scalability.
☆ QuAIL: Quality-Aware Inertial Learning for Robust Training under Data Corruption
Tabular machine learning systems are frequently trained on data affected by non-uniform corruption, including noisy measurements, missing entries, and feature-specific biases. In practice, these defects are often documented only through column-level reliability indicators rather than instance-wise quality annotations, limiting the applicability of many robustness and cleaning techniques. We present QuAIL, a quality-informed training mechanism that incorporates feature reliability priors directly into the learning process. QuAIL augments existing models with a learnable feature-modulation layer whose updates are selectively constrained by a quality-dependent proximal regularizer, thereby inducing controlled adaptation across features of varying trustworthiness. This stabilizes optimization under structured corruption without explicit data repair or sample-level reweighting. Empirical evaluation across 50 classification and regression datasets demonstrates that QuAIL consistently improves average performance over neural baselines under both random and value-dependent corruption, with especially robust behavior in low-data and systematically biased settings. These results suggest that incorporating feature reliability information directly into optimization dynamics is a practical and effective approach for resilient tabular learning.
☆ Universal One-third Time Scaling in Learning Peaked Distributions
Training large language models (LLMs) is computationally expensive, partly because the loss exhibits slow power-law convergence whose origin remains debatable. Through systematic analysis of toy models and empirical evaluation of LLMs, we show that this behavior can arise intrinsically from the use of softmax and cross-entropy. When learning peaked probability distributions, e.g., next-token distributions, these components yield power-law vanishing losses and gradients, creating a fundamental optimization bottleneck. This ultimately leads to power-law time scaling of the loss with a universal exponent of $1/3$. Our results provide a mechanistic explanation for observed neural scaling and suggest new directions for improving LLM training efficiency.
comment: 24 pages, 6 main text figures, 27 figures in total
☆ ContraLog: Log File Anomaly Detection with Contrastive Learning and Masked Language Modeling
Log files record computational events that reflect system state and behavior, making them a primary source of operational insights in modern computer systems. Automated anomaly detection on logs is therefore critical, yet most established methods rely on log parsers that collapse messages into discrete templates, discarding variable values and semantic content. We propose ContraLog, a parser-free and self-supervised method that reframes log anomaly detection as predicting continuous message embeddings rather than discrete template IDs. ContraLog combines a message encoder that produces rich embeddings for individual log messages with a sequence encoder to model temporal dependencies within sequences. The model is trained with a combination of masked language modeling and contrastive learning to predict masked message embeddings based on the surrounding context. Experiments on the HDFS, BGL, and Thunderbird benchmark datasets empirically demonstrate effectiveness on complex datasets with diverse log messages. Additionally, we find that message embeddings generated by ContraLog carry meaningful information and are predictive of anomalies even without sequence context. These results highlight embedding-level prediction as an approach for log anomaly detection, with potential applicability to other event sequences.
comment: 26 pages with 16 figures
☆ Equilibrium Propagation for Non-Conservative Systems
Equilibrium Propagation (EP) is a physics-inspired learning algorithm that uses stationary states of a dynamical system both for inference and learning. In its original formulation it is limited to conservative systems, $\textit{i.e.}$ to dynamics which derive from an energy function. Given their importance in applications, it is important to extend EP to nonconservative systems, $\textit{i.e.}$ systems with non-reciprocal interactions. Previous attempts to generalize EP to such systems failed to compute the exact gradient of the cost function. Here we propose a framework that extends EP to arbitrary nonconservative systems, including feedforward networks. We keep the key property of equilibrium propagation, namely the use of stationary states both for inference and learning. However, we modify the dynamics in the learning phase by a term proportional to the non-reciprocal part of the interaction so as to obtain the exact gradient of the cost function. This algorithm can also be derived using a variational formulation that generates the learning dynamics through an energy function defined over an augmented state space. Numerical experiments using the MNIST database show that this algorithm achieves better performance and learns faster than previous proposals.
comment: 19 pages (9 pages main text), 7 figures
☆ Efficient Sequential Neural Network with Spatial-Temporal Attention and Linear LSTM for Robust Lane Detection Using Multi-Frame Images IEEE
Lane detection is a crucial perception task for all levels of automated vehicles (AVs) and Advanced Driver Assistance Systems, particularly in mixed-traffic environments where AVs must interact with human-driven vehicles (HDVs) and challenging traffic scenarios. Current methods lack versatility in delivering accurate, robust, and real-time compatible lane detection, especially vision-based methods often neglect critical regions of the image and their spatial-temporal (ST) salience, leading to poor performance in difficult circumstances such as serious occlusion and dazzle lighting. This study introduces a novel sequential neural network model with a spatial-temporal attention mechanism to focus on key features of lane lines and exploit salient ST correlations among continuous image frames. The proposed model, built on a standard encoder-decoder structure and common neural network backbones, is trained and evaluated on three large-scale open-source datasets. Extensive experiments demonstrate the strength and robustness of the proposed model, outperforming state-of-the-art methods in various testing scenarios. Furthermore, with the ST attention mechanism, the developed sequential neural network models exhibit fewer parameters and reduced Multiply-Accumulate Operations (MACs) compared to baseline sequential models, highlighting their computational efficiency. Relevant data, code, and models are released at https://doi.org/10.4121/4619cab6-ae4a-40d5-af77-582a77f3d821.
comment: 14 pages, 9 figures, under review by IEEE T-ITS
☆ Mitigating Conversational Inertia in Multi-Turn Agents
Large language models excel as few-shot learners when provided with appropriate demonstrations, yet this strength becomes problematic in multiturn agent scenarios, where LLMs erroneously mimic their own previous responses as few-shot examples. Through attention analysis, we identify conversational inertia, a phenomenon where models exhibit strong diagonal attention to previous responses, which is associated with imitation bias that constrains exploration. This reveals a tension when transforming few-shot LLMs into agents: longer context enriches environmental feedback for exploitation, yet also amplifies conversational inertia that undermines exploration. Our key insight is that for identical states, actions generated with longer contexts exhibit stronger inertia than those with shorter contexts, enabling construction of preference pairs without environment rewards. Based on this, we propose Context Preference Learning to calibrate model preferences to favor low-inertia responses over highinertia ones. We further provide context management strategies at inference time to balance exploration and exploitation. Experimental results across eight agentic environments and one deep research scenario validate that our framework reduces conversational inertia and achieves performance improvements.
☆ RAGTurk: Best Practices for Retrieval Augmented Generation in Turkish EACL 2026
Retrieval-Augmented Generation (RAG) enhances LLM factuality, yet design guidance remains English-centric, limiting insights for morphologically rich languages like Turkish. We address this by constructing a comprehensive Turkish RAG dataset derived from Turkish Wikipedia and CulturaX, comprising question-answer pairs and relevant passage chunks. We benchmark seven stages of the RAG pipeline, from query transformation and reranking to answer refinement, without task-specific fine-tuning. Our results show that complex methods like HyDE maximize accuracy (85%) that is considerably higher than the baseline (78.70%). Also a Pareto-optimal configuration using Cross-encoder Reranking and Context Augmentation achieves comparable performance (84.60%) with much lower cost. We further demonstrate that over-stacking generative modules can degrade performance by distorting morphological cues, whereas simple query clarification with robust reranking offers an effective solution.
comment: Accepted by EACL 2026 SIGTURK
☆ Search-R2: Enhancing Search-Integrated Reasoning via Actor-Refiner Collaboration
Search-integrated reasoning enables language agents to transcend static parametric knowledge by actively querying external sources. However, training these agents via reinforcement learning is hindered by the multi-scale credit assignment problem: existing methods typically rely on sparse, trajectory-level rewards that fail to distinguish between high-quality reasoning and fortuitous guesses, leading to redundant or misleading search behaviors. To address this, we propose Search-R2, a novel Actor-Refiner collaboration framework that enhances reasoning through targeted intervention, with both components jointly optimized during training. Our approach decomposes the generation process into an Actor, which produces initial reasoning trajectories, and a Meta-Refiner, which selectively diagnoses and repairs flawed steps via a 'cut-and-regenerate' mechanism. To provide fine-grained supervision, we introduce a hybrid reward design that couples outcome correctness with a dense process reward quantifying the information density of retrieved evidence. Theoretically, we formalize the Actor-Refiner interaction as a smoothed mixture policy, proving that selective correction yields strict performance gains over strong baselines. Extensive experiments across various general and multi-hop QA datasets demonstrate that Search-R2 consistently outperforms strong RAG and RL-based baselines across model scales, achieving superior reasoning accuracy with minimal overhead.
☆ Tutorial on Reasoning for IR & IR for Reasoning ECIR 2026
Information retrieval has long focused on ranking documents by semantic relatedness. Yet many real-world information needs demand more: enforcement of logical constraints, multi-step inference, and synthesis of multiple pieces of evidence. Addressing these requirements is, at its core, a problem of reasoning. Across AI communities, researchers are developing diverse solutions for the problem of reasoning, from inference-time strategies and post-training of LLMs, to neuro-symbolic systems, Bayesian and probabilistic frameworks, geometric representations, and energy-based models. These efforts target the same problem: to move beyond pattern-matching systems toward structured, verifiable inference. However, they remain scattered across disciplines, making it difficult for IR researchers to identify the most relevant ideas and opportunities. To help navigate the fragmented landscape of research in reasoning, this tutorial first articulates a working definition of reasoning within the context of information retrieval and derives from it a unified analytical framework. The framework maps existing approaches along axes that reflect the core components of the definition. By providing a comprehensive overview of recent approaches and mapping current methods onto the defined axes, we expose their trade-offs and complementarities, highlight where IR can benefit from cross-disciplinary advances, and illustrate how retrieval process itself can play a central role in broader reasoning systems. The tutorial will equip participants with both a conceptual framework and practical guidance for enhancing reasoning-capable IR systems, while situating IR as a domain that both benefits and contributes to the broader development of reasoning methodologies.
comment: Accepted to ECIR 2026
☆ BIRDTurk: Adaptation of the BIRD Text-to-SQL Dataset to Turkish EACL 2026
Text-to-SQL systems have achieved strong performance on English benchmarks, yet their behavior in morphologically rich, low-resource languages remains largely unexplored. We introduce BIRDTurk, the first Turkish adaptation of the BIRD benchmark, constructed through a controlled translation pipeline that adapts schema identifiers to Turkish while strictly preserving the logical structure and execution semantics of SQL queries and databases. Translation quality is validated on a sample size determined by the Central Limit Theorem to ensure 95% confidence, achieving 98.15% accuracy on human-evaluated samples. Using BIRDTurk, we evaluate inference-based prompting, agentic multi-stage reasoning, and supervised fine-tuning. Our results reveal that Turkish introduces consistent performance degradation, driven by both structural linguistic divergence and underrepresentation in LLM pretraining, while agentic reasoning demonstrates stronger cross-lingual robustness. Supervised fine-tuning remains challenging for standard multilingual baselines but scales effectively with modern instruction-tuned models. BIRDTurk provides a controlled testbed for cross-lingual Text-to-SQL evaluation under realistic database conditions. We release the training and development splits to support future research.
comment: Accepted by EACL 2026 SIGTURK
☆ Can LLMs Do Rocket Science? Exploring the Limits of Complex Reasoning with GTOC 12
Large Language Models (LLMs) have demonstrated remarkable proficiency in code generation and general reasoning, yet their capacity for autonomous multi-stage planning in high-dimensional, physically constrained environments remains an open research question. This study investigates the limits of current AI agents by evaluating them against the 12th Global Trajectory Optimization Competition (GTOC 12), a complex astrodynamics challenge requiring the design of a large-scale asteroid mining campaign. We adapt the MLE-Bench framework to the domain of orbital mechanics and deploy an AIDE-based agent architecture to autonomously generate and refine mission solutions. To assess performance beyond binary validity, we employ an "LLM-as-a-Judge" methodology, utilizing a rubric developed by domain experts to evaluate strategic viability across five structural categories. A comparative analysis of models, ranging from GPT-4-Turbo to reasoning-enhanced architectures like Gemini 2.5 Pro, and o3, reveals a significant trend: the average strategic viability score has nearly doubled in the last two years (rising from 9.3 to 17.2 out of 26). However, we identify a critical capability gap between strategy and execution. While advanced models demonstrate sophisticated conceptual understanding, correctly framing objective functions and mission architectures, they consistently fail at implementation due to physical unit inconsistencies, boundary condition errors, and inefficient debugging loops. We conclude that, while current LLMs often demonstrate sufficient knowledge and intelligence to tackle space science tasks, they remain limited by an implementation barrier, functioning as powerful domain facilitators rather than fully autonomous engineers.
comment: Extended version of the paper presented at AIAA SciTech 2026 Forum. Includes futher experiments, corrections and new appendix
☆ Controlling Output Rankings in Generative Engines for LLM-based Search
The way customers search for and choose products is changing with the rise of large language models (LLMs). LLM-based search, or generative engines, provides direct product recommendations to users, rather than traditional online search results that require users to explore options themselves. However, these recommendations are strongly influenced by the initial retrieval order of LLMs, which disadvantages small businesses and independent creators by limiting their visibility. In this work, we propose CORE, an optimization method that \textbf{C}ontrols \textbf{O}utput \textbf{R}ankings in g\textbf{E}nerative Engines for LLM-based search. Since the LLM's interactions with the search engine are black-box, CORE targets the content returned by search engines as the primary means of influencing output rankings. Specifically, CORE optimizes retrieved content by appending strategically designed optimization content to steer the ranking of outputs. We introduce three types of optimization content: string-based, reasoning-based, and review-based, demonstrating their effectiveness in shaping output rankings. To evaluate CORE in realistic settings, we introduce ProductBench, a large-scale benchmark with 15 product categories and 200 products per category, where each product is associated with its top-10 recommendations collected from Amazon's search interface. Extensive experiments on four LLMs with search capabilities (GPT-4o, Gemini-2.5, Claude-4, and Grok-3) demonstrate that CORE achieves an average Promotion Success Rate of \textbf{91.4\% @Top-5}, \textbf{86.6\% @Top-3}, and \textbf{80.3\% @Top-1}, across 15 product categories, outperforming existing ranking manipulation methods while preserving the fluency of optimized content.
comment: 23 pages
A Lightweight Library for Energy-Based Joint-Embedding Predictive Architectures
We present EB-JEPA, an open-source library for learning representations and world models using Joint-Embedding Predictive Architectures (JEPAs). JEPAs learn to predict in representation space rather than pixel space, avoiding the pitfalls of generative modeling while capturing semantically meaningful features suitable for downstream tasks. Our library provides modular, self-contained implementations that illustrate how representation learning techniques developed for image-level self-supervised learning can transfer to video, where temporal dynamics add complexity, and ultimately to action-conditioned world models, where the model must additionally learn to predict the effects of control inputs. Each example is designed for single-GPU training within a few hours, making energy-based self-supervised learning accessible for research and education. We provide ablations of JEA components on CIFAR-10. Probing these representations yields 91% accuracy, indicating that the model learns useful features. Extending to video, we include a multi-step prediction example on Moving MNIST that demonstrates how the same principles scale to temporal modeling. Finally, we show how these representations can drive action-conditioned world models, achieving a 97% planning success rate on the Two Rooms navigation task. Comprehensive ablations reveal the critical importance of each regularization component for preventing representation collapse. Code is available at https://github.com/facebookresearch/eb_jepa.
☆ APEX: Probing Neural Networks via Activation Perturbation
Prior work on probing neural networks primarily relies on input-space analysis or parameter perturbation, both of which face fundamental limitations in accessing structural information encoded in intermediate representations. We introduce Activation Perturbation for EXploration (APEX), an inference-time probing paradigm that perturbs hidden activations while keeping both inputs and model parameters fixed. We theoretically show that activation perturbation induces a principled transition from sample-dependent to model-dependent behavior by suppressing input-specific signals and amplifying representation-level structure, and further establish that input perturbation corresponds to a constrained special case of this framework. Through representative case studies, we demonstrate the practical advantages of APEX. In the small-noise regime, APEX provides a lightweight and efficient measure of sample regularity that aligns with established metrics, while also distinguishing structured from randomly labeled models and revealing semantically coherent prediction transitions. In the large-noise regime, APEX exposes training-induced model-level biases, including a pronounced concentration of predictions on the target class in backdoored models. Overall, our results show that APEX offers an effective perspective for exploring, and understanding neural networks beyond what is accessible from input space alone.
☆ $V_0$: A Generalist Value Model for Any Policy at State Zero
Policy gradient methods rely on a baseline to measure the relative advantage of an action, ensuring the model reinforces behaviors that outperform its current average capability. In the training of Large Language Models (LLMs) using Actor-Critic methods (e.g., PPO), this baseline is typically estimated by a Value Model (Critic) often as large as the policy model itself. However, as the policy continuously evolves, the value model requires expensive, synchronous incremental training to accurately track the shifting capabilities of the policy. To avoid this overhead, Group Relative Policy Optimization (GRPO) eliminates the coupled value model by using the average reward of a group of rollouts as the baseline; yet, this approach necessitates extensive sampling to maintain estimation stability. In this paper, we propose $V_0$, a Generalist Value Model capable of estimating the expected performance of any model on unseen prompts without requiring parameter updates. We reframe value estimation by treating the policy's dynamic capability as an explicit context input; specifically, we leverage a history of instruction-performance pairs to dynamically profile the model, departing from the traditional paradigm that relies on parameter fitting to perceive capability shifts. Focusing on value estimation at State Zero (i.e., the initial prompt, hence $V_0$), our model serves as a critical resource scheduler. During GRPO training, $V_0$ predicts success rates prior to rollout, allowing for efficient sampling budget allocation; during deployment, it functions as a router, dispatching instructions to the most cost-effective and suitable model. Empirical results demonstrate that $V_0$ significantly outperforms heuristic budget allocation and achieves a Pareto-optimal trade-off between performance and cost in LLM routing tasks.
☆ Don't believe everything you read: Understanding and Measuring MCP Behavior under Misleading Tool Descriptions
The Model Context Protocol (MCP) enables large language models to invoke external tools through natural-language descriptions, forming the foundation of many AI agent applications. However, MCP does not enforce consistency between documented tool behavior and actual code execution, even though MCP Servers often run with broad system privileges. This gap introduces a largely unexplored security risk. We study how mismatches between externally presented tool descriptions and underlying implementations systematically shape the mental models and decision-making behavior of intelligent agents. Specifically, we present the first large-scale study of description-code inconsistency in the MCP ecosystem. We design an automated static analysis framework and apply it to 10,240 real-world MCP Servers across 36 categories. Our results show that while most servers are highly consistent, approximately 13% exhibit substantial mismatches that can enable undocumented privileged operations, hidden state mutations, or unauthorized financial actions. We further observe systematic differences across application categories, popularity levels, and MCP marketplaces. Our findings demonstrate that description-code inconsistency is a concrete and prevalent attack surface in MCP-based AI agents, and motivate the need for systematic auditing and stronger transparency guarantees in future agent ecosystems.
☆ Use Graph When It Needs: Efficiently and Adaptively Integrating Retrieval-Augmented Generation with Graphs
Large language models (LLMs) often struggle with knowledge-intensive tasks due to hallucinations and outdated parametric knowledge. While Retrieval-Augmented Generation (RAG) addresses this by integrating external corpora, its effectiveness is limited by fragmented information in unstructured domain documents. Graph-augmented RAG (GraphRAG) emerged to enhance contextual reasoning through structured knowledge graphs, yet paradoxically underperforms vanilla RAG in real-world scenarios, exhibiting significant accuracy drops and prohibitive latency despite gains on complex queries. We identify the rigid application of GraphRAG to all queries, regardless of complexity, as the root cause. To resolve this, we propose an efficient and adaptive GraphRAG framework called EA-GraphRAG that dynamically integrates RAG and GraphRAG paradigms through syntax-aware complexity analysis. Our approach introduces: (i) a syntactic feature constructor that parses each query and extracts a set of structural features; (ii) a lightweight complexity scorer that maps these features to a continuous complexity score; and (iii) a score-driven routing policy that selects dense RAG for low-score queries, invokes graph-based retrieval for high-score queries, and applies complexity-aware reciprocal rank fusion to handle borderline cases. Extensive experiments on a comprehensive benchmark, consisting of two single-hop and two multi-hop QA benchmarks, demonstrate that our EA-GraphRAG significantly improves accuracy, reduces latency, and achieves state-of-the-art performance in handling mixed scenarios involving both simple and complex queries.
☆ EHRWorld: A Patient-Centric Medical World Model for Long-Horizon Clinical Trajectories
World models offer a principled framework for simulating future states under interventions, but realizing such models in complex, high-stakes domains like medicine remains challenging. Recent large language models (LLMs) have achieved strong performance on static medical reasoning tasks, raising the question of whether they can function as dynamic medical world models capable of simulating disease progression and treatment outcomes over time. In this work, we show that LLMs only incorporating medical knowledge struggle to maintain consistent patient states under sequential interventions, leading to error accumulation in long-horizon clinical simulation. To address this limitation, we introduce EHRWorld, a patient-centric medical world model trained under a causal sequential paradigm, together with EHRWorld-110K, a large-scale longitudinal clinical dataset derived from real-world electronic health records. Extensive evaluations demonstrate that EHRWorld significantly outperforms naive LLM-based baselines, achieving more stable long-horizon simulation, improved modeling of clinically sensitive events, and favorable reasoning efficiency, highlighting the necessity of training on causally grounded, temporally evolving clinical data for reliable and robust medical world modeling.
☆ EVE: Efficient Verification of Data Erasure through Customized Perturbation in Approximate Unlearning
Verifying whether the machine unlearning process has been properly executed is critical but remains underexplored. Some existing approaches propose unlearning verification methods based on backdooring techniques. However, these methods typically require participation in the model's initial training phase to backdoor the model for later verification, which is inefficient and impractical. In this paper, we propose an efficient verification of erasure method (EVE) for verifying machine unlearning without requiring involvement in the model's initial training process. The core idea is to perturb the unlearning data to ensure the model prediction of the specified samples will change before and after unlearning with perturbed data. The unlearning users can leverage the observation of the changes as a verification signal. Specifically, the perturbations are designed with two key objectives: ensuring the unlearning effect and altering the unlearned model's prediction of target samples. We formalize the perturbation generation as an adversarial optimization problem, solving it by aligning the unlearning gradient with the gradient of boundary change for target samples. We conducted extensive experiments, and the results show that EVE can verify machine unlearning without involving the model's initial training process, unlike backdoor-based methods. Moreover, EVE significantly outperforms state-of-the-art unlearning verification methods, offering significant speedup in efficiency while enhancing verification accuracy. The source code of EVE is released at \uline{https://anonymous.4open.science/r/EVE-C143}, providing a novel tool for verification of machine unlearning.
☆ HySparse: A Hybrid Sparse Attention Architecture with Oracle Token Selection and KV Cache Sharing
This work introduces Hybrid Sparse Attention (HySparse), a new architecture that interleaves each full attention layer with several sparse attention layers. While conceptually simple, HySparse strategically derives each sparse layer's token selection and KV caches directly from the preceding full attention layer. This architecture resolves two fundamental limitations of prior sparse attention methods. First, conventional approaches typically rely on additional proxies to predict token importance, introducing extra complexity and potentially suboptimal performance. In contrast, HySparse uses the full attention layer as a precise oracle to identify important tokens. Second, existing sparse attention designs often reduce computation without saving KV cache. HySparse enables sparse attention layers to reuse the full attention KV cache, thereby reducing both computation and memory. We evaluate HySparse on both 7B dense and 80B MoE models. Across all settings, HySparse consistently outperforms both full attention and hybrid SWA baselines. Notably, in the 80B MoE model with 49 total layers, only 5 layers employ full attention, yet HySparse achieves substantial performance gains while reducing KV cache storage by nearly 10x.
comment: 17 pages, 2 figures
☆ ELIQ: A Label-Free Framework for Quality Assessment of Evolving AI-Generated Images
Generative text-to-image models are advancing at an unprecedented pace, continuously shifting the perceptual quality ceiling and rendering previously collected labels unreliable for newer generations. To address this, we present ELIQ, a Label-free Framework for Quality Assessment of Evolving AI-generated Images. Specifically, ELIQ focuses on visual quality and prompt-image alignment, automatically constructs positive and aspect-specific negative pairs to cover both conventional distortions and AIGC-specific distortion modes, enabling transferable supervision without human annotations. Building on these pairs, ELIQ adapts a pre-trained multimodal model into a quality-aware critic via instruction tuning and predicts two-dimensional quality using lightweight gated fusion and a Quality Query Transformer. Experiments across multiple benchmarks demonstrate that ELIQ consistently outperforms existing label-free methods, generalizes from AI-generated content (AIGC) to user-generated content (UGC) scenarios without modification, and paves the way for scalable and label-free quality assessment under continuously evolving generative models. The code will be released upon publication.
☆ When Single Answer Is Not Enough: Rethinking Single-Step Retrosynthesis Benchmarks for LLMs
Recent progress has expanded the use of large language models (LLMs) in drug discovery, including synthesis planning. However, objective evaluation of retrosynthesis performance remains limited. Existing benchmarks and metrics typically rely on published synthetic procedures and Top-K accuracy based on single ground-truth, which does not capture the open-ended nature of real-world synthesis planning. We propose a new benchmarking framework for single-step retrosynthesis that evaluates both general-purpose and chemistry-specialized LLMs using ChemCensor, a novel metric for chemical plausibility. By emphasizing plausibility over exact match, this approach better aligns with human synthesis planning practices. We also introduce CREED, a novel dataset comprising millions of ChemCensor-validated reaction records for LLM training, and use it to train a model that improves over the LLM baselines under this benchmark.
☆ Persona Generators: Generating Diverse Synthetic Personas at Scale
Evaluating AI systems that interact with humans requires understanding their behavior across diverse user populations, but collecting representative human data is often expensive or infeasible, particularly for novel technologies or hypothetical future scenarios. Recent work in Generative Agent-Based Modeling has shown that large language models can simulate human-like synthetic personas with high fidelity, accurately reproducing the beliefs and behaviors of specific individuals. However, most approaches require detailed data about target populations and often prioritize density matching (replicating what is most probable) rather than support coverage (spanning what is possible), leaving long-tail behaviors underexplored. We introduce Persona Generators, functions that can produce diverse synthetic populations tailored to arbitrary contexts. We apply an iterative improvement loop based on AlphaEvolve, using large language models as mutation operators to refine our Persona Generator code over hundreds of iterations. The optimization process produces lightweight Persona Generators that can automatically expand small descriptions into populations of diverse synthetic personas that maximize coverage of opinions and preferences along relevant diversity axes. We demonstrate that evolved generators substantially outperform existing baselines across six diversity metrics on held-out contexts, producing populations that span rare trait combinations difficult to achieve in standard LLM outputs.
☆ Group Selection as a Safeguard Against AI Substitution
Reliance on generative AI can reduce cultural variance and diversity, especially in creative work. This reduction in variance has already led to problems in model performance, including model collapse and hallucination. In this paper, we examine the long-term consequences of AI use for human cultural evolution and the conditions under which widespread AI use may lead to "cultural collapse", a process in which reliance on AI-generated content reduces human variation and innovation and slows cumulative cultural evolution. Using an agent-based model and evolutionary game theory, we compare two types of AI use: complement and substitute. AI-complement users seek suggestions and guidance while remaining the main producers of the final output, whereas AI-substitute users provide minimal input, and rely on AI to produce most of the output. We then study how these use strategies compete and spread under evolutionary dynamics. We find that AI-substitute users prevail under individual-level selection despite the stronger reduction in cultural variance. By contrast, AI-complement users can benefit their groups by maintaining the variance needed for exploration, and can therefore be favored under cultural group selection when group boundaries are strong. Overall, our findings shed light on the long-term, population-level effects of AI adoption and inform policy and organizational strategies to mitigate these risks.
comment: 19 pages, 7 Figures
☆ Morphe: High-Fidelity Generative Video Streaming with Vision Foundation Model
Video streaming is a fundamental Internet service, while the quality still cannot be guaranteed especially in poor network conditions such as bandwidth-constrained and remote areas. Existing works mainly work towards two directions: traditional pixel-codec streaming nearly approaches its limit and is hard to step further in compression; the emerging neural-enhanced or generative streaming usually fall short in latency and visual fidelity, hindering their practical deployment. Inspired by the recent success of vision foundation model (VFM), we strive to harness the powerful video understanding and processing capacities of VFM to achieve generalization, high fidelity and loss resilience for real-time video streaming with even higher compression rate. We present the first revolutionized paradigm that enables VFM-based end-to-end generative video streaming towards this goal. Specifically, Morphe employs joint training of visual tokenizers and variable-resolution spatiotemporal optimization under simulated network constraints. Additionally, a robust streaming system is constructed that leverages intelligent packet dropping to resist real-world network perturbations. Extensive evaluation demonstrates that Morphe achieves comparable visual quality while saving 62.5\% bandwidth compared to H.265, and accomplishes real-time, loss-resilient video delivery in challenging network environments, representing a milestone in VFM-enabled multimedia streaming solutions.
comment: Accepted by NSDI 2026 Fall
☆ D3PIA: A Discrete Denoising Diffusion Model for Piano Accompaniment Generation From Lead sheet IEEE
Generating piano accompaniments in the symbolic music domain is a challenging task that requires producing a complete piece of piano music from given melody and chord constraints, such as those provided by a lead sheet. In this paper, we propose a discrete diffusion-based piano accompaniment generation model, D3PIA, leveraging local alignment between lead sheet and accompaniment in piano-roll representation. D3PIA incorporates Neighborhood Attention (NA) to both encode the lead sheet and condition it for predicting note states in the piano accompaniment. This design enhances local contextual modeling by efficiently attending to nearby melody and chord conditions. We evaluate our model using the POP909 dataset, a widely used benchmark for piano accompaniment generation. Objective evaluation results demonstrate that D3PIA preserves chord conditions more faithfully compared to continuous diffusion-based and Transformer-based baselines. Furthermore, a subjective listening test indicates that D3PIA generates more musically coherent accompaniments than the comparison models.
comment: Accepted at 2026 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
☆ Live or Lie: Action-Aware Capsule Multiple Instance Learning for Risk Assessment in Live Streaming Platforms
Live streaming has become a cornerstone of today's internet, enabling massive real-time social interactions. However, it faces severe risks arising from sparse, coordinated malicious behaviors among multiple participants, which are often concealed within normal activities and challenging to detect timely and accurately. In this work, we provide a pioneering study on risk assessment in live streaming rooms, characterized by weak supervision where only room-level labels are available. We formulate the task as a Multiple Instance Learning (MIL) problem, treating each room as a bag and defining structured user-timeslot capsules as instances. These capsules represent subsequences of user actions within specific time windows, encapsulating localized behavioral patterns. Based on this formulation, we propose AC-MIL, an Action-aware Capsule MIL framework that models both individual behaviors and group-level coordination patterns. AC-MIL captures multi-granular semantics and behavioral cues through a serial and parallel architecture that jointly encodes temporal dynamics and cross-user dependencies. These signals are integrated for robust room-level risk prediction, while also offering interpretable evidence at the behavior segment level. Extensive experiments on large-scale industrial datasets from Douyin demonstrate that AC-MIL significantly outperforms MIL and sequential baselines, establishing new state-of-the-art performance in room-level risk assessment for live streaming. Moreover, AC-MIL provides capsule-level interpretability, enabling identification of risky behavior segments as actionable evidence for intervention. The project page is available at: https://qiaoyran.github.io/AC-MIL/.
☆ Not All Negative Samples Are Equal: LLMs Learn Better from Plausible Reasoning
Learning from negative samples holds great promise for improving Large Language Model (LLM) reasoning capability, yet existing methods treat all incorrect responses as equally informative, overlooking the crucial role of sample quality. To address this, we propose Plausible Negative Samples (PNS), a method that synthesizes high-quality negative samples exhibiting expected format and structural coherence while ultimately yielding incorrect answers. PNS trains a dedicated model via reverse reinforcement learning (RL) guided by a composite reward combining format compliance, accuracy inversion, reward model assessment, and chain-of-thought evaluation, generating responses nearly indistinguishable from correct solutions. We further validate PNS as a plug-and-play data source for preference optimization across three backbone models on seven mathematical reasoning benchmarks. Results demonstrate that PNS consistently outperforms other negative sample synthesis methods, achieving an average improvement of 2.03% over RL-trained models.
☆ Mitigating Staleness in Asynchronous Pipeline Parallelism via Basis Rotation
Asynchronous pipeline parallelism maximizes hardware utilization by eliminating the pipeline bubbles inherent in synchronous execution, offering a path toward efficient large-scale distributed training. However, this efficiency gain can be compromised by gradient staleness, where the immediate model updates with delayed gradients introduce noise into the optimization process. Crucially, we identify a critical, yet often overlooked, pathology: this delay scales linearly with pipeline depth, fundamentally undermining the very scalability that the method originally intends to provide. In this work, we investigate this inconsistency and bridge the gap by rectifying delayed gradients through basis rotation, restoring scalable asynchronous training while maintaining performance. Specifically, we observe that the deleterious effects of delayed gradients are exacerbated when the Hessian eigenbasis is misaligned with the standard coordinate basis. We demonstrate that this misalignment prevents coordinate-wise adaptive schemes, such as Adam, from effectively leveraging curvature-aware adaptivity. This failure leads to significant oscillations in the optimization trajectory and, consequently, slower convergence. We substantiate these findings through both rigorous theoretical analysis and empirical evaluation. To address this challenge, we propose the use of basis rotation, demonstrating that it effectively mitigates the alignment issue and significantly accelerates convergence in asynchronous settings. For example, our training of a 1B-parameter LLM with basis rotation achieves the same training loss in 76.8% fewer iterations compared to the best-performing asynchronous pipeline parallel training baseline.
comment: Preprint. Under review
☆ CMR: Contractive Mapping Embeddings for Robust Humanoid Locomotion on Unstructured Terrains
Robust disturbance rejection remains a longstanding challenge in humanoid locomotion, particularly on unstructured terrains where sensing is unreliable and model mismatch is pronounced. While perception information, such as height map, enhances terrain awareness, sensor noise and sim-to-real gaps can destabilize policies in practice. In this work, we provide theoretical analysis that bounds the return gap under observation noise, when the induced latent dynamics are contractive. Furthermore, we present Contractive Mapping for Robustness (CMR) framework that maps high-dimensional, disturbance-prone observations into a latent space, where local perturbations are attenuated over time. Specifically, this approach couples contrastive representation learning with Lipschitz regularization to preserve task-relevant geometry while explicitly controlling sensitivity. Notably, the formulation can be incorporated into modern deep reinforcement learning pipelines as an auxiliary loss term with minimal additional technical effort required. Further, our extensive humanoid experiments show that CMR potently outperforms other locomotion algorithms under increased noise.
☆ Explaining the Explainer: Understanding the Inner Workings of Transformer-based Symbolic Regression Models
Following their success across many domains, transformers have also proven effective for symbolic regression (SR); however, the internal mechanisms underlying their generation of mathematical operators remain largely unexplored. Although mechanistic interpretability has successfully identified circuits in language and vision models, it has not yet been applied to SR. In this article, we introduce PATCHES, an evolutionary circuit discovery algorithm that identifies compact and correct circuits for SR. Using PATCHES, we isolate 28 circuits, providing the first circuit-level characterisation of an SR transformer. We validate these findings through a robust causal evaluation framework based on key notions such as faithfulness, completeness, and minimality. Our analysis shows that mean patching with performance-based evaluation most reliably isolates functionally correct circuits. In contrast, we demonstrate that direct logit attribution and probing classifiers primarily capture correlational features rather than causal ones, limiting their utility for circuit discovery. Overall, these results establish SR as a high-potential application domain for mechanistic interpretability and propose a principled methodology for circuit discovery.
comment: 8 pages, 5 figures
☆ Generative Decompression: Optimal Lossy Decoding Against Distribution Mismatch
This paper addresses optimal decoding strategies in lossy compression where the assumed distribution for compressor design mismatches the actual (true) distribution of the source. This problem has immediate relevance in standardized communication systems where the decoder acquires side information or priors about the true distribution that are unavailable to the fixed encoder. We formally define the mismatched quantization problem, demonstrating that the optimal reconstruction rule, termed generative decompression, aligns with classical Bayesian estimation by taking the conditional expectation under the true distribution given the quantization indices and adapting it to fixed-encoder constraints. This strategy effectively performs a generative Bayesian correction on the decoder side, strictly outperforming the conventional centroid rule. We extend this framework to transmission over noisy channels, deriving a robust soft-decoding rule that quantifies the inefficiency of standard modular source--channel separation architectures under mismatch. Furthermore, we generalize the approach to task-oriented decoding, showing that the optimal strategy shifts from conditional mean estimation to maximum a posteriori (MAP) detection. Experimental results on Gaussian sources and deep-learning-based semantic classification demonstrate that generative decompression closes a vast majority of the performance gap to the ideal joint-optimization benchmark, enabling adaptive, high-fidelity reconstruction without modifying the encoder.
☆ Reparameterization Flow Policy Optimization
Reparameterization Policy Gradient (RPG) has emerged as a powerful paradigm for model-based reinforcement learning, enabling high sample efficiency by backpropagating gradients through differentiable dynamics. However, prior RPG approaches have been predominantly restricted to Gaussian policies, limiting their performance and failing to leverage recent advances in generative models. In this work, we identify that flow policies, which generate actions via differentiable ODE integration, naturally align with the RPG framework, a connection not established in prior work. However, naively exploiting this synergy proves ineffective, often suffering from training instability and a lack of exploration. We propose Reparameterization Flow Policy Optimization (RFO). RFO computes policy gradients by backpropagating jointly through the flow generation process and system dynamics, unlocking high sample efficiency without requiring intractable log-likelihood calculations. RFO includes two tailored regularization terms for stability and exploration. We also propose a variant of RFO with action chunking. Extensive experiments on diverse locomotion and manipulation tasks, involving both rigid and soft bodies with state or visual inputs, demonstrate the effectiveness of RFO. Notably, on a challenging locomotion task controlling a soft-body quadruped, RFO achieves almost $2\times$ the reward of the state-of-the-art baseline.
☆ DeepDFA: Injecting Temporal Logic in Deep Learning for Sequential Subsymbolic Applications
Integrating logical knowledge into deep neural network training is still a hard challenge, especially for sequential or temporally extended domains involving subsymbolic observations. To address this problem, we propose DeepDFA, a neurosymbolic framework that integrates high-level temporal logic - expressed as Deterministic Finite Automata (DFA) or Moore Machines - into neural architectures. DeepDFA models temporal rules as continuous, differentiable layers, enabling symbolic knowledge injection into subsymbolic domains. We demonstrate how DeepDFA can be used in two key settings: (i) static image sequence classification, and (ii) policy learning in interactive non-Markovian environments. Across extensive experiments, DeepDFA outperforms traditional deep learning models (e.g., LSTMs, GRUs, Transformers) and novel neuro-symbolic systems, achieving state-of-the-art results in temporal knowledge integration. These results highlight the potential of DeepDFA to bridge subsymbolic learning and symbolic reasoning in sequential tasks.
☆ Self-Verification Dilemma: Experience-Driven Suppression of Overused Checking in LLM Reasoning
Large Reasoning Models (LRMs) achieve strong performance by generating long reasoning traces with reflection. Through a large-scale empirical analysis, we find that a substantial fraction of reflective steps consist of self-verification (recheck) that repeatedly confirm intermediate results. These rechecks occur frequently across models and benchmarks, yet the vast majority are confirmatory rather than corrective, rarely identifying errors and altering reasoning outcomes. This reveals a mismatch between how often self-verification is activated and how often it is actually useful. Motivated by this, we propose a novel, experience-driven test-time framework that reduces the overused verification. Our method detects the activation of recheck behavior, consults an offline experience pool of past verification outcomes, and estimates whether a recheck is likely unnecessary via efficient retrieval. When historical experience suggests unnecessary, a suppression signal redirects the model to proceed. Across multiple model and benchmarks, our approach reduces token usage up to 20.3% while maintaining the accuracy, and in some datasets even yields accuracy improvements.
comment: 19 pages, 8 figures
☆ When Routing Collapses: On the Degenerate Convergence of LLM Routers
LLM routing aims to achieve a favorable quality--cost trade-off by dynamically assigning easy queries to smaller models and harder queries to stronger ones. However, across both unimodal and multimodal settings, we uncover a pervasive yet underexplored failure mode in existing routers: as the user's cost budget increases, routers systematically default to the most capable and most expensive model even when cheaper models already suffice. As a result, current routers under-utilize small models, wasting computation and monetary cost and undermining the core promise of routing; we term this phenomenon routing collapse. We attribute routing collapse to an objective--decision mismatch: many routers are trained to predict scalar performance scores, whereas routing decisions ultimately depend on discrete comparisons among candidate models. Consequently, small prediction errors can flip relative orderings and trigger suboptimal selections. To bridge this gap, we propose EquiRouter, a decision-aware router that directly learns model rankings, restoring the role of smaller models and mitigating routing collapse. On RouterBench, EquiRouter reduces cost by about 17\% at GPT-4-level performance compared to the strongest prior router. Our code is available at https://github.com/AIGNLAI/EquiRouter.
☆ ScDiVa: Masked Discrete Diffusion for Joint Modeling of Single-Cell Identity and Expression
Single-cell RNA-seq profiles are high-dimensional, sparse, and unordered, causing autoregressive generation to impose an artificial ordering bias and suffer from error accumulation. To address this, we propose scDiVa, a masked discrete diffusion foundation model that aligns generation with the dropout-like corruption process by defining a continuous-time forward masking mechanism in token space. ScDiVa features a bidirectional denoiser that jointly models discrete gene identities and continuous values, utilizing entropy-normalized serialization and a latent anchor token to maximize information efficiency and preserve global cell identity. The model is trained via depth-invariant time sampling and a dual denoising objective to simulate varying sparsity levels while ensuring precise recovery of both identity and magnitude. Pre-trained on 59 million cells, scDiVa achieves strong transfer performance across major benchmarks, including batch integration, cell type annotation, and perturbation response prediction. These results suggest that masked discrete diffusion serves as a biologically coherent and effective alternative to autoregression.
comment: 19 pages, 11 figures
☆ IntentRL: Training Proactive User-intent Agents for Open-ended Deep Research via Reinforcement Learning
Deep Research (DR) agents extend Large Language Models (LLMs) beyond parametric knowledge by autonomously retrieving and synthesizing evidence from large web corpora into long-form reports, enabling a long-horizon agentic paradigm. However, unlike real-time conversational assistants, DR is computationally expensive and time-consuming, creating an autonomy-interaction dilemma: high autonomy on ambiguous user queries often leads to prolonged execution with unsatisfactory outcomes. To address this, we propose IntentRL, a framework that trains proactive agents to clarify latent user intents before starting long-horizon research. To overcome the scarcity of open-ended research data, we introduce a scalable pipeline that expands a few seed samples into high-quality dialogue turns via a shallow-to-deep intent refinement graph. We further adopt a two-stage reinforcement learning (RL) strategy: Stage I applies RL on offline dialogues to efficiently learn general user-interaction behavior, while Stage II uses the trained agent and a user simulator for online rollouts to strengthen adaptation to diverse user feedback. Extensive experiments show that IntentRL significantly improves both intent hit rate and downstream task performance, outperforming the built-in clarify modules of closed-source DR agents and proactive LLM baselines.
comment: Preprint
☆ The Dual Role of Abstracting over the Irrelevant in Symbolic Explanations: Cognitive Effort vs. Understanding
Explanations are central to human cognition, yet AI systems often produce outputs that are difficult to understand. While symbolic AI offers a transparent foundation for interpretability, raw logical traces often impose a high extraneous cognitive load. We investigate how formal abstractions, specifically removal and clustering, impact human reasoning performance and cognitive effort. Utilizing Answer Set Programming (ASP) as a formal framework, we define a notion of irrelevant details to be abstracted over to obtain simplified explanations. Our cognitive experiments, in which participants classified stimuli across domains with explanations derived from an answer set program, show that clustering details significantly improve participants' understanding, while removal of details significantly reduce cognitive effort, supporting the hypothesis that abstraction enhances human-centered symbolic explanations.
comment: 8 pages, 5 figures
☆ Beyond Variance: Prompt-Efficient RLVR via Rare-Event Amplification and Bidirectional Pairing
Reinforcement learning with verifiable rewards (RLVR) is effective for training large language models on deterministic outcome reasoning tasks. Prior work shows RLVR works with few prompts, but prompt selection is often based only on training-accuracy variance, leading to unstable optimization directions and weaker transfer. We revisit prompt selection from a mechanism-level view and argue that an effective minibatch should provide both (i) a reliable positive anchor and (ii) explicit negative learning signals from rare failures. Based on this principle, we propose \emph{positive--negative pairing}: at each update, we sample a hard-but-solvable $q^{+}$ and an easy-but-brittle prompt $q^{-}$(high success rate but not perfect), characterized by low and high empirical success rates under multiple rollouts. We further introduce Weighted GRPO, which reweights binary outcomes at the pair level and uses group-normalized advantages to amplify rare successes on $q^{+}$ into sharp positive guidance while turning rare failures on $q^{-}$ into strong negative penalties. This bidirectional signal provides informative learning feedback for both successes and failures, improving sample efficiency without suppressing exploration. On Qwen2.5-Math-7B, a single paired minibatch per update consistently outperforms a GRPO baseline that selects two prompts via commonly used variance-based selection heuristics: AIME~2025 Pass@8 improves from 16.8 to 22.2, and AMC23 Pass@64 from 94.0 to 97.0, while remaining competitive with large-scale RLVR trained from a pool of 1209 training prompts. Similar gains are observed on Qwen2.5-Math-7B-Instruct.
☆ Hierarchical Concept-to-Appearance Guidance for Multi-Subject Image Generation
Multi-subject image generation aims to synthesize images that faithfully preserve the identities of multiple reference subjects while following textual instructions. However, existing methods often suffer from identity inconsistency and limited compositional control, as they rely on diffusion models to implicitly associate text prompts with reference images. In this work, we propose Hierarchical Concept-to-Appearance Guidance (CAG), a framework that provides explicit, structured supervision from high-level concepts to fine-grained appearances. At the conceptual level, we introduce a VAE dropout training strategy that randomly omits reference VAE features, encouraging the model to rely more on robust semantic signals from a Visual Language Model (VLM) and thereby promoting consistent concept-level generation in the absence of complete appearance cues. At the appearance level, we integrate the VLM-derived correspondences into a correspondence-aware masked attention module within the Diffusion Transformer (DiT). This module restricts each text token to attend only to its matched reference regions, ensuring precise attribute binding and reliable multi-subject composition. Extensive experiments demonstrate that our method achieves state-of-the-art performance on the multi-subject image generation, substantially improving prompt following and subject consistency.
☆ CRL-VLA: Continual Vision-Language-Action Learning
Lifelong learning is critical for embodied agents in open-world environments, where reinforcement learning fine-tuning has emerged as an important paradigm to enable Vision-Language-Action (VLA) models to master dexterous manipulation through environmental interaction. Thus, Continual Reinforcement Learning (CRL) is a promising pathway for deploying VLA models in lifelong robotic scenarios, yet balancing stability (retaining old skills) and plasticity (learning new ones) remains a formidable challenge for existing methods. We introduce CRL-VLA, a framework for continual post-training of VLA models with rigorous theoretical bounds. We derive a unified performance bound linking the stability-plasticity trade-off to goal-conditioned advantage magnitude, scaled by policy divergence. CRL-VLA resolves this dilemma via asymmetric regulation: constraining advantage magnitudes on prior tasks while enabling controlled growth on new tasks. This is realized through a simple but effective dual-critic architecture with novel Goal-Conditioned Value Formulation (GCVF), where a frozen critic anchors semantic consistency and a trainable estimator drives adaptation. Experiments on the LIBERO benchmark demonstrate that CRL-VLA effectively harmonizes these conflicting objectives, outperforming baselines in both anti-forgetting and forward adaptation.
☆ Ontology-to-tools compilation for executable semantic constraint enforcement in LLM agents
We introduce ontology-to-tools compilation as a proof-of-principle mechanism for coupling large language models (LLMs) with formal domain knowledge. Within The World Avatar (TWA), ontological specifications are compiled into executable tool interfaces that LLM-based agents must use to create and modify knowledge graph instances, enforcing semantic constraints during generation rather than through post-hoc validation. Extending TWA's semantic agent composition framework, the Model Context Protocol (MCP) and associated agents are integral components of the knowledge graph ecosystem, enabling structured interaction between generative models, symbolic constraints, and external resources. An agent-based workflow translates ontologies into ontology-aware tools and iteratively applies them to extract, validate, and repair structured knowledge from unstructured scientific text. Using metal-organic polyhedra synthesis literature as an illustrative case, we show how executable ontological semantics can guide LLM behaviour and reduce manual schema and prompt engineering, establishing a general paradigm for embedding formal knowledge into generative systems.
☆ DiscoverLLM: From Executing Intents to Discovering Them
To handle ambiguous and open-ended requests, Large Language Models (LLMs) are increasingly trained to interact with users to surface intents they have not yet expressed (e.g., ask clarification questions). However, users are often ambiguous because they have not yet formed their intents: they must observe and explore outcomes to discover what they want. Simply asking "what kind of tone do you want?" fails when users themselves do not know. We introduce DiscoverLLM, a novel and generalizable framework that trains LLMs to help users form and discover their intents. Central to our approach is a novel user simulator that models cognitive state with a hierarchy of intents that progressively concretize as the model surfaces relevant options -- where the degree of concretization serves as a reward signal that models can be trained to optimize. Resulting models learn to collaborate with users by adaptively diverging (i.e., explore options) when intents are unclear, and converging (i.e., refine and implement) when intents concretize. Across proposed interactive benchmarks in creative writing, technical writing, and SVG drawing, DiscoverLLM achieves over 10% higher task performance while reducing conversation length by up to 40%. In a user study with 75 human participants, DiscoverLLM improved conversation satisfaction and efficiency compared to baselines.
☆ Socratic-Geo: Synthetic Data Generation and Geometric Reasoning via Multi-Agent Interaction
Multimodal Large Language Models (MLLMs) have significantly advanced vision-language understanding. However, even state-of-the-art models struggle with geometric reasoning, revealing a critical bottleneck: the extreme scarcity of high-quality image-text pairs. Human annotation is prohibitively expensive, while automated methods fail to ensure fidelity and training effectiveness. Existing approaches either passively adapt to available images or employ inefficient random exploration with filtering, decoupling generation from learning needs. We propose Socratic-Geo, a fully autonomous framework that dynamically couples data synthesis with model learning through multi-agent interaction. The Teacher agent generates parameterized Python scripts with reflective feedback (Reflect for solvability, RePI for visual validity), ensuring image-text pair purity. The Solver agent optimizes reasoning through preference learning, with failure paths guiding Teacher's targeted augmentation. Independently, the Generator learns image generation capabilities on accumulated "image-code-instruction" triplets, distilling programmatic drawing intelligence into visual generation. Starting from only 108 seed problems, Socratic-Solver achieves 49.11 on six benchmarks using one-quarter of baseline data, surpassing strong baselines by 2.43 points. Socratic-Generator achieves 42.4% on GenExam, establishing new state-of-the-art for open-source models, surpassing Seedream-4.0 (39.8%) and approaching Gemini-2.5-Flash-Image (43.1%).
comment: 18pages
☆ Feasible strategies for conflict resolution within intuitionistic fuzzy preference-based conflict situations
In three-way conflict analysis, preference-based conflict situations characterize agents' attitudes towards issues by formally modeling their preferences over pairs of issues. However, existing preference-based conflict models rely exclusively on three qualitative relations, namely, preference, converse, and indifference, to describe agents' attitudes towards issue pairs, which significantly limits their capacity in capturing the essence of conflict. To overcome this limitation, we introduce the concept of an intuitionistic fuzzy preference-based conflict situation that captures agents' attitudes towards issue pairs with finer granularity than that afforded by classical preference-based models. Afterwards, we develop intuitionistic fuzzy preference-based conflict measures within this framework, and construct three-way conflict analysis models for trisecting the set of agent pairs, the agent set, and the issue set. Additionally, relative loss functions built on the proposed conflict functions are employed to calculate thresholds for three-way conflict analysis. Finally, we present adjustment mechanism-based feasible strategies that simultaneously account for both adjustment magnitudes and conflict degrees, together with an algorithm for constructing such feasible strategies, and provide an illustrative example to demonstrate the validity and effectiveness of the proposed model.
☆ Risk Awareness Injection: Calibrating Vision-Language Models for Safety without Compromising Utility
Vision language models (VLMs) extend the reasoning capabilities of large language models (LLMs) to cross-modal settings, yet remain highly vulnerable to multimodal jailbreak attacks. Existing defenses predominantly rely on safety fine-tuning or aggressive token manipulations, incurring substantial training costs or significantly degrading utility. Recent research shows that LLMs inherently recognize unsafe content in text, and the incorporation of visual inputs in VLMs frequently dilutes risk-related signals. Motivated by this, we propose Risk Awareness Injection (RAI), a lightweight and training-free framework for safety calibration that restores LLM-like risk recognition by amplifying unsafe signals in VLMs. Specifically, RAI constructs an Unsafe Prototype Subspace from language embeddings and performs targeted modulation on selected high-risk visual tokens, explicitly activating safety-critical signals within the cross-modal feature space. This modulation restores the model's LLM-like ability to detect unsafe content from visual inputs, while preserving the semantic integrity of original tokens for cross-modal reasoning. Extensive experiments across multiple jailbreak and utility benchmarks demonstrate that RAI substantially reduces attack success rate without compromising task performance.
☆ Precision in Practice: Knowledge Guided Code Summarizing Grounded in Industrial Expectations
Code summaries are essential for helping developers understand code functionality and reducing maintenance and collaboration costs. Although recent advances in large language models (LLMs) have significantly improved automatic code summarization, the practical usefulness of generated summaries in industrial settings remains insufficiently explored. In collaboration with documentation experts from the industrial HarmonyOS project, we conducted a questionnaire study showing that over 57.4% of code summaries produced by state-of-the-art approaches were rejected due to violations of developers' expectations for industrial documentation. Beyond semantic similarity to reference summaries, developers emphasize additional requirements, including the use of appropriate domain terminology, explicit function categorization, and the avoidance of redundant implementation details. To address these expectations, we propose ExpSum, an expectation-aware code summarization approach that integrates function metadata abstraction, informative metadata filtering, context-aware domain knowledge retrieval, and constraint-driven prompting to guide LLMs in generating structured, expectation-aligned summaries. We evaluate ExpSum on the HarmonyOS project and widely used code summarization benchmarks. Experimental results show that ExpSum consistently outperforms all baselines, achieving improvements of up to 26.71% in BLEU-4 and 20.10% in ROUGE-L on HarmonyOS. Furthermore, LLM-based evaluations indicate that ExpSum-generated summaries better align with developer expectations across other projects, demonstrating its effectiveness for industrial code documentation.
☆ On the Entropy Dynamics in Reinforcement Fine-Tuning of Large Language Models
Entropy serves as a critical metric for measuring the diversity of outputs generated by large language models (LLMs), providing valuable insights into their exploration capabilities. While recent studies increasingly focus on monitoring and adjusting entropy to better balance exploration and exploitation in reinforcement fine-tuning (RFT), a principled understanding of entropy dynamics during this process is yet to be thoroughly investigated. In this paper, we establish a theoretical framework for analyzing the entropy dynamics during the RFT process, which begins with a discriminant expression that quantifies entropy change under a single logit update. This foundation enables the derivation of a first-order expression for entropy change, which can be further extended to the update formula of Group Relative Policy Optimization (GRPO). The corollaries and insights drawn from the theoretical analysis inspire the design of entropy control methods, and also offer a unified lens for interpreting various entropy-based methods in existing studies. We provide empirical evidence to support the main conclusions of our analysis and demonstrate the effectiveness of the derived entropy-discriminator clipping methods. This study yields novel insights into RFT training dynamics, providing theoretical support and practical strategies for optimizing the exploration-exploitation balance during LLM fine-tuning.
☆ Chain-of-Goals Hierarchical Policy for Long-Horizon Offline Goal-Conditioned RL
Offline goal-conditioned reinforcement learning remains challenging for long-horizon tasks. While hierarchical approaches mitigate this issue by decomposing tasks, most existing methods rely on separate high- and low-level networks and generate only a single intermediate subgoal, making them inadequate for complex tasks that require coordinating multiple intermediate decisions. To address this limitation, we draw inspiration from the chain-of-thought paradigm and propose the Chain-of-Goals Hierarchical Policy (CoGHP), a novel framework that reformulates hierarchical decision-making as autoregressive sequence modeling within a unified architecture. Given a state and a final goal, CoGHP autoregressively generates a sequence of latent subgoals followed by the primitive action, where each latent subgoal acts as a reasoning step that conditions subsequent predictions. To implement this efficiently, we pioneer the use of an MLP-Mixer backbone, which supports cross-token communication and captures structural relationships among state, goal, latent subgoals, and action. Across challenging navigation and manipulation benchmarks, CoGHP consistently outperforms strong offline baselines, demonstrating improved performance on long-horizon tasks.
comment: 22 pages
☆ Toward a Sustainable Federated Learning Ecosystem: A Practical Least Core Mechanism for Payoff Allocation IEEE
Emerging network paradigms and applications increasingly rely on federated learning (FL) to enable collaborative intelligence while preserving privacy. However, the sustainability of such collaborative environments hinges on a fair and stable payoff allocation mechanism. Focusing on coalition stability, this paper introduces a payoff allocation framework based on the least core (LC) concept. Unlike traditional methods, the LC prioritizes the cohesion of the federation by minimizing the maximum dissatisfaction among all potential subgroups, ensuring that no participant has an incentive to break away. To adapt this game-theoretic concept to practical, large-scale networks, we propose a streamlined implementation with a stack-based pruning algorithm, effectively balancing computational efficiency with allocation precision. Case studies in federated intrusion detection demonstrate that our mechanism correctly identifies pivotal contributors and strategic alliances. The results confirm that the practical LC framework promotes stable collaboration and fosters a sustainable FL ecosystem.
comment: 7 pages, 3 figures, submitted to IEEE Network
☆ An Approximate Ascent Approach To Prove Convergence of PPO
Proximal Policy Optimization (PPO) is among the most widely used deep reinforcement learning algorithms, yet its theoretical foundations remain incomplete. Most importantly, convergence and understanding of fundamental PPO advantages remain widely open. Under standard theory assumptions we show how PPO's policy update scheme (performing multiple epochs of minibatch updates on multi-use rollouts with a surrogate gradient) can be interpreted as approximated policy gradient ascent. We show how to control the bias accumulated by the surrogate gradients and use techniques from random reshuffling to prove a convergence theorem for PPO that sheds light on PPO's success. Additionally, we identify a previously overlooked issue in truncated Generalized Advantage Estimation commonly used in PPO. The geometric weighting scheme induces infinite mass collapse onto the longest $k$-step advantage estimator at episode boundaries. Empirical evaluations show that a simple weight correction can yield substantial improvements in environments with strong terminal signal, such as Lunar Lander.
☆ Rethinking Benign Relearning: Syntax as the Hidden Driver of Unlearning Failures ICLR 2026
Machine unlearning aims to remove specific content from trained models while preserving overall performance. However, the phenomenon of benign relearning, in which forgotten information reemerges even from benign fine-tuning data, reveals that existing unlearning methods remain fundamentally fragile. A common explanation attributes this effect to topical relevance, but we find this account insufficient. Through systematic analysis, we demonstrate that syntactic similarity, rather than topicality, is the primary driver: across benchmarks, syntactically similar data consistently trigger recovery even without topical overlap, due to their alignment in representations and gradients with the forgotten content. Motivated by this insight, we introduce syntactic diversification, which paraphrases the original forget queries into heterogeneous structures prior to unlearning. This approach effectively suppresses benign relearning, accelerates forgetting, and substantially alleviates the trade-off between unlearning efficacy and model utility.
comment: Accepted at ICLR 2026
☆ SLIM-Diff: Shared Latent Image-Mask Diffusion with Lp loss for Data-Scarce Epilepsy FLAIR MRI
Focal cortical dysplasia (FCD) lesions in epilepsy FLAIR MRI are subtle and scarce, making joint image--mask generative modeling prone to instability and memorization. We propose SLIM-Diff, a compact joint diffusion model whose main contributions are (i) a single shared-bottleneck U-Net that enforces tight coupling between anatomy and lesion geometry from a 2-channel image+mask representation, and (ii) loss-geometry tuning via a tunable $L_p$ objective. As an internal baseline, we include the canonical DDPM-style objective ($ε$-prediction with $L_2$ loss) and isolate the effect of prediction parameterization and $L_p$ geometry under a matched setup. Experiments show that $x_0$-prediction is consistently the strongest choice for joint synthesis, and that fractional sub-quadratic penalties ($L_{1.5}$) improve image fidelity while $L_2$ better preserves lesion mask morphology. Our code and model weights are available in https://github.com/MarioPasc/slim-diff
comment: 6 pages, 2 figures, 1 table, conference paper
☆ MeKi: Memory-based Expert Knowledge Injection for Efficient LLM Scaling
Scaling Large Language Models (LLMs) typically relies on increasing the number of parameters or test-time computations to boost performance. However, these strategies are impractical for edge device deployment due to limited RAM and NPU resources. Despite hardware constraints, deploying performant LLM on edge devices such as smartphone remains crucial for user experience. To address this, we propose MeKi (Memory-based Expert Knowledge Injection), a novel system that scales LLM capacity via storage space rather than FLOPs. MeKi equips each Transformer layer with token-level memory experts that injects pre-stored semantic knowledge into the generation process. To bridge the gap between training capacity and inference efficiency, we employ a re-parameterization strategy to fold parameter matrices used during training into a compact static lookup table. By offloading the knowledge to ROM, MeKi decouples model capacity from computational cost, introducing zero inference latency overhead. Extensive experiments demonstrate that MeKi significantly outperforms dense LLM baselines with identical inference speed, validating the effectiveness of memory-based scaling paradigm for on-device LLMs. Project homepage is at https://github.com/ningding-o/MeKi.
☆ GFlowPO: Generative Flow Network as a Language Model Prompt Optimizer
Finding effective prompts for language models (LMs) is critical yet notoriously difficult: the prompt space is combinatorially large, rewards are sparse due to expensive target-LM evaluation. Yet, existing RL-based prompt optimizers often rely on on-policy updates and a meta-prompt sampled from a fixed distribution, leading to poor sample efficiency. We propose GFlowPO, a probabilistic prompt optimization framework that casts prompt search as a posterior inference problem over latent prompts regularized by a meta-prompted reference-LM prior. In the first step, we fine-tune a lightweight prompt-LM with an off-policy Generative Flow Network (GFlowNet) objective, using a replay-based training policy that reuses past prompt evaluations to enable sample-efficient exploration. In the second step, we introduce Dynamic Memory Update (DMU), a training-free mechanism that updates the meta-prompt by injecting both (i) diverse prompts from a replay buffer and (ii) top-performing prompts from a small priority queue, thereby progressively concentrating the search process on high-reward regions. Across few-shot text classification, instruction induction benchmarks, and question answering tasks, GFlowPO consistently outperforms recent discrete prompt optimization baselines.
☆ Causal Graph Learning via Distributional Invariance of Cause-Effect Relationship
This paper introduces a new framework for recovering causal graphs from observational data, leveraging the observation that the distribution of an effect, conditioned on its causes, remains invariant to changes in the prior distribution of those causes. This insight enables a direct test for potential causal relationships by checking the variance of their corresponding effect-cause conditional distributions across multiple downsampled subsets of the data. These subsets are selected to reflect different prior cause distributions, while preserving the effect-cause conditional relationships. Using this invariance test and exploiting an (empirical) sparsity of most causal graphs, we develop an algorithm that efficiently uncovers causal relationships with quadratic complexity in the number of observational variables, reducing the processing time by up to 25x compared to state-of-the-art methods. Our empirical experiments on a varied benchmark of large-scale datasets show superior or equivalent performance compared to existing works, while achieving enhanced scalability.
☆ Building Interpretable Models for Moral Decision-Making AAAI'26
We build a custom transformer model to study how neural networks make moral decisions on trolley-style dilemmas. The model processes structured scenarios using embeddings that encode who is affected, how many people, and which outcome they belong to. Our 2-layer architecture achieves 77% accuracy on Moral Machine data while remaining small enough for detailed analysis. We use different interpretability techniques to uncover how moral reasoning distributes across the network, demonstrating that biases localize to distinct computational stages among other findings.
comment: 8 pages, 4 figures, accepted to AAAI'26 Machine Ethics Workshop
☆ Robustness as an Emergent Property of Task Performance
Robustness is often regarded as a critical future challenge for real-world applications, where stability is essential. However, as models often learn tasks in a similar order, we hypothesize that easier tasks will be easier regardless of how they are presented to the model. Indeed, in this paper, we show that as models approach high performance on a task, robustness is effectively achieved. Through an empirical analysis of multiple models across diverse datasets and configurations (e.g., paraphrases, different temperatures), we find a strong positive correlation. Moreover, we find that robustness is primarily driven by task-specific competence rather than inherent model-level properties, challenging current approaches that treat robustness as an independent capability. Thus, from a high-level perspective, we may expect that as new tasks saturate, model robustness on these tasks will emerge accordingly. For researchers, this implies that explicit efforts to measure and improve robustness may warrant reduced emphasis, as such robustness is likely to develop alongside performance gains. For practitioners, it acts as a sign that indeed the tasks that the literature deals with are unreliable, but on easier past tasks, the models are reliable and ready for real-world deployment.
☆ Tiled Prompts: Overcoming Prompt Underspecification in Image and Video Super-Resolution
Text-conditioned diffusion models have advanced image and video super-resolution by using prompts as semantic priors, but modern super-resolution pipelines typically rely on latent tiling to scale to high resolutions, where a single global caption causes prompt underspecification. A coarse global prompt often misses localized details (prompt sparsity) and provides locally irrelevant guidance (prompt misguidance) that can be amplified by classifier-free guidance. We propose Tiled Prompts, a unified framework for image and video super-resolution that generates a tile-specific prompt for each latent tile and performs super-resolution under locally text-conditioned posteriors, providing high-information guidance that resolves prompt underspecification with minimal overhead. Experiments on high resolution real-world images and videos show consistent gains in perceptual quality and text alignment, while reducing hallucinations and tile-level artifacts relative to global-prompt baselines.
comment: 13 pages, 7 figures
☆ MentalSeek-Dx: Towards Progressive Hypothetico-Deductive Reasoning for Real-world Psychiatric Diagnosis
Mental health disorders represent a burgeoning global public health challenge. While Large Language Models (LLMs) have demonstrated potential in psychiatric assessment, their clinical utility is severely constrained by benchmarks that lack ecological validity and fine-grained diagnostic supervision. To bridge this gap, we introduce \textbf{MentalDx Bench}, the first benchmark dedicated to disorder-level psychiatric diagnosis within real-world clinical settings. Comprising 712 de-identified electronic health records annotated by board-certified psychiatrists under ICD-11 guidelines, the benchmark covers 76 disorders across 16 diagnostic categories. Evaluation of 18 LLMs reveals a critical \textit{paradigm misalignment}: strong performance at coarse diagnostic categorization contrasts with systematic failure at disorder-level diagnosis, underscoring a gap between pattern-based modeling and clinical hypothetico-deductive reasoning. In response, we propose \textbf{MentalSeek-Dx}, a medical-specialized LLM trained to internalize this clinical reasoning process through supervised trajectory construction and curriculum-based reinforcement learning. Experiments on MentalDx Bench demonstrate that MentalSeek-Dx achieves state-of-the-art (SOTA) performance with only 14B parameters, establishing a clinically grounded framework for reliable psychiatric diagnosis.
comment: 36 pages, 27 figures
☆ MedSAM-Agent: Empowering Interactive Medical Image Segmentation with Multi-turn Agentic Reinforcement Learning
Medical image segmentation is evolving from task-specific models toward generalizable frameworks. Recent research leverages Multi-modal Large Language Models (MLLMs) as autonomous agents, employing reinforcement learning with verifiable reward (RLVR) to orchestrate specialized tools like the Segment Anything Model (SAM). However, these approaches often rely on single-turn, rigid interaction strategies and lack process-level supervision during training, which hinders their ability to fully exploit the dynamic potential of interactive tools and leads to redundant actions. To bridge this gap, we propose MedSAM-Agent, a framework that reformulates interactive segmentation as a multi-step autonomous decision-making process. First, we introduce a hybrid prompting strategy for expert-curated trajectory generation, enabling the model to internalize human-like decision heuristics and adaptive refinement strategies. Furthermore, we develop a two-stage training pipeline that integrates multi-turn, end-to-end outcome verification with a clinical-fidelity process reward design to promote interaction parsimony and decision efficiency. Extensive experiments across 6 medical modalities and 21 datasets demonstrate that MedSAM-Agent achieves state-of-the-art performance, effectively unifying autonomous medical reasoning with robust, iterative optimization. Code is available \href{https://github.com/CUHK-AIM-Group/MedSAM-Agent}{here}.
comment: 23 Pages, 4 Figures
☆ Multiparameter Uncertainty Mapping in Quantitative Molecular MRI using a Physics-Structured Variational Autoencoder (PS-VAE) IEEE
Quantitative imaging methods, such as magnetic resonance fingerprinting (MRF), aim to extract interpretable pathology biomarkers by estimating biophysical tissue parameters from signal evolutions. However, the pattern-matching algorithms or neural networks used in such inverse problems often lack principled uncertainty quantification, which limits the trustworthiness and transparency, required for clinical acceptance. Here, we describe a physics-structured variational autoencoder (PS-VAE) designed for rapid extraction of voxelwise multi-parameter posterior distributions. Our approach integrates a differentiable spin physics simulator with self-supervised learning, and provides a full covariance that captures the inter-parameter correlations of the latent biophysical space. The method was validated in a multi-proton pool chemical exchange saturation transfer (CEST) and semisolid magnetization transfer (MT) molecular MRF study, across in-vitro phantoms, tumor-bearing mice, healthy human volunteers, and a subject with glioblastoma. The resulting multi-parametric posteriors are in good agreement with those calculated using a brute-force Bayesian analysis, while providing an orders-of-magnitude acceleration in whole brain quantification. In addition, we demonstrate how monitoring the multi-parameter posterior dynamics across progressively acquired signals provides practical insights for protocol optimization and may facilitate real-time adaptive acquisition.
comment: Submitted to IEEE Transactions on Medical Imaging. This project was funded by the European Union (ERC, BabyMagnet, project no. 101115639). Views and opinions expressed are, however, those of the authors only and do not necessarily reflect those of the European Union or the European Research Council. Neither the European Union nor the granting authority can be held responsible for them
☆ Memora: A Harmonic Memory Representation Balancing Abstraction and Specificity
Agent memory systems must accommodate continuously growing information while supporting efficient, context-aware retrieval for downstream tasks. Abstraction is essential for scaling agent memory, yet it often comes at the cost of specificity, obscuring the fine-grained details required for effective reasoning. We introduce Memora, a harmonic memory representation that structurally balances abstraction and specificity. Memora organizes information via its primary abstractions that index concrete memory values and consolidate related updates into unified memory entries, while cue anchors expand retrieval access across diverse aspects of the memory and connect related memories. Building on this structure, we employ a retrieval policy that actively exploits these memory connections to retrieve relevant information beyond direct semantic similarity. Theoretically, we show that standard Retrieval-Augmented Generation (RAG) and Knowledge Graph (KG)-based memory systems emerge as special cases of our framework. Empirically, Memora establishes a new state-of-the-art on the LoCoMo and LongMemEval benchmarks, demonstrating better retrieval relevance and reasoning effectiveness as memory scales.
☆ RDT2: Exploring the Scaling Limit of UMI Data Towards Zero-Shot Cross-Embodiment Generalization
Vision-Language-Action (VLA) models hold promise for generalist robotics but currently struggle with data scarcity, architectural inefficiencies, and the inability to generalize across different hardware platforms. We introduce RDT2, a robotic foundation model built upon a 7B parameter VLM designed to enable zero-shot deployment on novel embodiments for open-vocabulary tasks. To achieve this, we collected one of the largest open-source robotic datasets--over 10,000 hours of demonstrations in diverse families--using an enhanced, embodiment-agnostic Universal Manipulation Interface (UMI). Our approach employs a novel three-stage training recipe that aligns discrete linguistic knowledge with continuous control via Residual Vector Quantization (RVQ), flow-matching, and distillation for real-time inference. Consequently, RDT2 becomes one of the first models that simultaneously zero-shot generalizes to unseen objects, scenes, instructions, and even robotic platforms. Besides, it outperforms state-of-the-art baselines in dexterous, long-horizon, and dynamic downstream tasks like playing table tennis. See https://rdt-robotics.github.io/rdt2/ for more information.
☆ Entropy-Gated Selective Policy Optimization:Token-Level Gradient Allocation for Hybrid Training of Large Language Models
Hybrid training methods for large language models combine supervised fine tuning (SFT) on expert demonstrations with reinforcement learning (RL) on model rollouts, typically at the sample level. We propose Entropy Gated Selective Policy Optimization (EGSPO), a three stage framework that extends sample level mixing with token level gradient modulation. Stage 1, SFT expert learning, establishes a reliable warm up policy using expert demonstrations with a pure SFT loss. Stage 2, RL rollout generation, samples trajectories from the current policy and computes per token predictive entropy. Stage 3, the EGSPO mechanism, applies entropy gated gradient allocation: a predictive entropy module routes high entropy tokens to full PPO updates to encourage exploration, and low entropy tokens to attenuated PPO updates to reduce variance and preserve knowledge. Critically, both branches incorporate the advantage function A_t, ensuring that incorrect trajectories receive consistent negative learning signals and preventing reinforcement of confident errors. EGSPO achieves consistent improvements on mathematical reasoning benchmarks, with gains of 3.8 percent on AIME and 2.9 percent on MATH over the CHORD phi baseline, while incurring only 3.4 percent additional computational overhead.
comment: accepted by cscwd2026
☆ Learning to Select: Query-Aware Adaptive Dimension Selection for Dense Retrieval
Dense retrieval represents queries and docu-002 ments as high-dimensional embeddings, but003 these representations can be redundant at the004 query level: for a given information need, only005 a subset of dimensions is consistently help-006 ful for ranking. Prior work addresses this via007 pseudo-relevance feedback (PRF) based dimen-008 sion importance estimation, which can produce009 query-aware masks without labeled data but010 often relies on noisy pseudo signals and heuris-011 tic test-time procedures. In contrast, super-012 vised adapter methods leverage relevance labels013 to improve embedding quality, yet they learn014 global transformations shared across queries015 and do not explicitly model query-aware di-016 mension importance. We propose a Query-017 Aware Adaptive Dimension Selection frame-018 work that learns to predict per-dimension im-019 portance directly from query embedding. We020 first construct oracle dimension importance dis-021 tributions over embedding dimensions using022 supervised relevance labels, and then train a023 predictor to map a query embedding to these024 label-distilled importance scores. At inference,025 the predictor selects a query-aware subset of026 dimensions for similarity computation based027 solely on the query embedding, without pseudo-028 relevance feedback. Experiments across multi-029 ple dense retrievers and benchmarks show that030 our learned dimension selector improves re-031 trieval effectiveness over the full-dimensional032 baseline as well as PRF-based masking and033 supervised adapter baselines.
☆ Full end-to-end diagnostic workflow automation of 3D OCT via foundation model-driven AI for retinal diseases
Optical coherence tomography (OCT) has revolutionized retinal disease diagnosis with its high-resolution and three-dimensional imaging nature, yet its full diagnostic automation in clinical practices remains constrained by multi-stage workflows and conventional single-slice single-task AI models. We present Full-process OCT-based Clinical Utility System (FOCUS), a foundation model-driven framework enabling end-to-end automation of 3D OCT retinal disease diagnosis. FOCUS sequentially performs image quality assessment with EfficientNetV2-S, followed by abnormality detection and multi-disease classification using a fine-tuned Vision Foundation Model. Crucially, FOCUS leverages a unified adaptive aggregation method to intelligently integrate 2D slices-level predictions into comprehensive 3D patient-level diagnosis. Trained and tested on 3,300 patients (40,672 slices), and externally validated on 1,345 patients (18,498 slices) across four different-tier centers and diverse OCT devices, FOCUS achieved high F1 scores for quality assessment (99.01%), abnormally detection (97.46%), and patient-level diagnosis (94.39%). Real-world validation across centers also showed stable performance (F1: 90.22%-95.24%). In human-machine comparisons, FOCUS matched expert performance in abnormality detection (F1: 95.47% vs 90.91%) and multi-disease diagnosis (F1: 93.49% vs 91.35%), while demonstrating better efficiency. FOCUS automates the image-to-diagnosis pipeline, representing a critical advance towards unmanned ophthalmology with a validated blueprint for autonomous screening to enhance population scale retinal care accessibility and efficiency.
☆ Periodic Regularized Q-Learning
In reinforcement learning (RL), Q-learning is a fundamental algorithm whose convergence is guaranteed in the tabular setting. However, this convergence guarantee does not hold under linear function approximation. To overcome this limitation, a significant line of research has introduced regularization techniques to ensure stable convergence under function approximation. In this work, we propose a new algorithm, periodic regularized Q-learning (PRQ). We first introduce regularization at the level of the projection operator and explicitly construct a regularized projected value iteration (RP-VI), subsequently extending it to a sample-based RL algorithm. By appropriately regularizing the projection operator, the resulting projected value iteration becomes a contraction. By extending this regularized projection into the stochastic setting, we establish the PRQ algorithm and provide a rigorous theoretical analysis that proves finite-time convergence guarantees for PRQ under linear function approximation.
☆ R1-SyntheticVL: Is Synthetic Data from Generative Models Ready for Multimodal Large Language Model?
In this work, we aim to develop effective data synthesis techniques that autonomously synthesize multimodal training data for enhancing MLLMs in solving complex real-world tasks. To this end, we propose Collective Adversarial Data Synthesis (CADS), a novel and general approach to synthesize high-quality, diverse and challenging multimodal data for MLLMs. The core idea of CADS is to leverage collective intelligence to ensure high-quality and diverse generation, while exploring adversarial learning to synthesize challenging samples for effectively driving model improvement. Specifically, CADS operates with two cyclic phases, i.e., Collective Adversarial Data Generation (CAD-Generate) and Collective Adversarial Data Judgment (CAD-Judge). CAD-Generate leverages collective knowledge to jointly generate new and diverse multimodal data, while CAD-Judge collaboratively assesses the quality of synthesized data. In addition, CADS introduces an Adversarial Context Optimization mechanism to optimize the generation context to encourage challenging and high-value data generation. With CADS, we construct MMSynthetic-20K and train our model R1-SyntheticVL, which demonstrates superior performance on various benchmarks.
☆ POP: Prefill-Only Pruning for Efficient Large Model Inference
Large Language Models (LLMs) and Vision-Language Models (VLMs) have demonstrated remarkable capabilities. However, their deployment is hindered by significant computational costs. Existing structured pruning methods, while hardware-efficient, often suffer from significant accuracy degradation. In this paper, we argue that this failure stems from a stage-agnostic pruning approach that overlooks the asymmetric roles between the prefill and decode stages. By introducing a virtual gate mechanism, our importance analysis reveals that deep layers are critical for next-token prediction (decode) but largely redundant for context encoding (prefill). Leveraging this insight, we propose Prefill-Only Pruning (POP), a stage-aware inference strategy that safely omits deep layers during the computationally intensive prefill stage while retaining the full model for the sensitive decode stage. To enable the transition between stages, we introduce independent Key-Value (KV) projections to maintain cache integrity, and a boundary handling strategy to ensure the accuracy of the first generated token. Extensive experiments on Llama-3.1, Qwen3-VL, and Gemma-3 across diverse modalities demonstrate that POP achieves up to 1.37$\times$ speedup in prefill latency with minimal performance loss, effectively overcoming the accuracy-efficiency trade-off limitations of existing structured pruning methods.
☆ Rejecting Arguments Based on Doubt in Structured Bipolar Argumentation AAMAS 2026
This paper develops a new approach to computational argumentation that is informed by philosophical and linguistic views. Namely, it takes into account two ideas that have received little attention in the literature on computational argumentation: First, an agent may rationally reject an argument based on mere doubt, thus not all arguments they could defend must be accepted; and, second, that it is sometimes more natural to think in terms of which individual sentences or claims an agent accepts in a debate, rather than which arguments. In order to incorporate these two ideas into a computational approach, we first define the notion of structured bipolar argumentation frameworks (SBAFs), where arguments consist of sentences and we have both an attack and a support relation between them. Then, we provide semantics for SBAFs with two features: (1) Unlike with completeness-based semantics, our semantics do not force agents to accept all defended arguments. (2) In addition to argument extensions, which give acceptable sets of arguments, we also provide semantics for language extensions that specify acceptable sets of sentences. These semantics represent reasonable positions an agent might have in a debate. Our semantics lie between the admissible and complete semantics of abstract argumentation. Further, our approach can be used to provide a new perspective on existing approaches. For instance, we can specify the conditions under which an agent can ignore support between arguments (i.e. under which the use of abstract argumentation is warranted) and we show that deductive support semantics is a special case of our approach.
comment: Accepted to AAMAS 2026
☆ MeetBench-XL: Calibrated Multi-Dimensional Evaluation and Learned Dual-Policy Agents for Real-Time Meetings AAAI2026
Enterprise meeting environments require AI assistants that handle diverse operational tasks, from rapid fact checking during live discussions to cross meeting analysis for strategic planning, under strict latency, cost, and privacy constraints. Existing meeting benchmarks mainly focus on simplified question answering and fail to reflect real world enterprise workflows, where queries arise organically from multi stakeholder collaboration, span long temporal contexts, and require tool augmented reasoning. We address this gap through a grounded dataset and a learned agent framework. First, we introduce MeetAll, a bilingual and multimodal corpus derived from 231 enterprise meetings totaling 140 hours. Questions are injected using an enterprise informed protocol validated by domain expert review and human discriminability studies. Unlike purely synthetic benchmarks, this protocol is grounded in four enterprise critical dimensions: cognitive load, temporal context span, domain expertise, and actionable task execution, calibrated through interviews with stakeholders across finance, healthcare, and technology sectors. Second, we propose MeetBench XL, a multi dimensional evaluation protocol aligned with human judgment that measures factual fidelity, intent alignment, response efficiency, structural clarity, and completeness. Third, we present MeetMaster XL, a learned dual policy agent that jointly optimizes query routing between fast and slow reasoning paths and tool invocation, including retrieval, cross meeting aggregation, and web search. A lightweight classifier enables accurate routing with minimal overhead, achieving a superior quality latency tradeoff over single model baselines. Experiments against commercial systems show consistent gains, supported by ablations, robustness tests, and a real world deployment case study.Resources: https://github.com/huyuelin/MeetBench.
comment: accepted by AAAI2026 ws
☆ Global Geometry Is Not Enough for Vision Representations
A common assumption in representation learning is that globally well-distributed embeddings support robust and generalizable representations. This focus has shaped both training objectives and evaluation protocols, implicitly treating global geometry as a proxy for representational competence. While global geometry effectively encodes which elements are present, it is often insensitive to how they are composed. We investigate this limitation by testing the ability of geometric metrics to predict compositional binding across 21 vision encoders. We find that standard geometry-based statistics exhibit near-zero correlation with compositional binding. In contrast, functional sensitivity, as measured by the input-output Jacobian, reliably tracks this capability. We further provide an analytic account showing that this disparity arises from objective design, as existing losses explicitly constrain embedding geometry but leave the local input-output mapping unconstrained. These results suggest that global embedding geometry captures only a partial view of representational competence and establish functional sensitivity as a critical complementary axis for modeling composite structure.
☆ Agentic Proposing: Enhancing Large Language Model Reasoning via Compositional Skill Synthesis
Advancing complex reasoning in large language models relies on high-quality, verifiable datasets, yet human annotation remains cost-prohibitive and difficult to scale. Current synthesis paradigms often face a recurring trade-off: maintaining structural validity typically restricts problem complexity, while relaxing constraints to increase difficulty frequently leads to inconsistent or unsolvable instances. To address this, we propose Agentic Proposing, a framework that models problem synthesis as a goal-driven sequential decision process where a specialized agent dynamically selects and composes modular reasoning skills. Through an iterative workflow of internal reflection and tool-use, we develop the Agentic-Proposer-4B using Multi-Granularity Policy Optimization (MGPO) to generate high-precision, verifiable training trajectories across mathematics, coding, and science. Empirical results demonstrate that downstream solvers trained on agent-synthesized data significantly outperform leading baselines and exhibit robust cross-domain generalization. Notably, a 30B solver trained on only 11,000 synthesized trajectories achieves a state-of-the-art 91.6% accuracy on AIME25, rivaling frontier-scale proprietary models such as GPT-5 and proving that a small volume of high-quality synthetic signals can effectively substitute for massive human-curated datasets.
comment: 23page4
☆ Unveiling Covert Toxicity in Multimodal Data via Toxicity Association Graphs: A Graph-Based Metric and Interpretable Detection Framework
Detecting toxicity in multimodal data remains a significant challenge, as harmful meanings often lurk beneath seemingly benign individual modalities: only emerging when modalities are combined and semantic associations are activated. To address this, we propose a novel detection framework based on Toxicity Association Graphs (TAGs), which systematically model semantic associations between innocuous entities and latent toxic implications. Leveraging TAGs, we introduce the first quantifiable metric for hidden toxicity, the Multimodal Toxicity Covertness (MTC), which measures the degree of concealment in toxic multimodal expressions. By integrating our detection framework with the MTC metric, our approach enables precise identification of covert toxicity while preserving full interpretability of the decision-making process, significantly enhancing transparency in multimodal toxicity detection. To validate our method, we construct the Covert Toxic Dataset, the first benchmark specifically designed to capture high-covertness toxic multimodal instances. This dataset encodes nuanced cross-modal associations and serves as a rigorous testbed for evaluating both the proposed metric and detection framework. Extensive experiments demonstrate that our approach outperforms existing methods across both low- and high-covertness toxicity regimes, while delivering clear, interpretable, and auditable detection outcomes. Together, our contributions advance the state of the art in explainable multimodal toxicity detection and lay the foundation for future context-aware and interpretable approaches. Content Warning: This paper contains examples of toxic multimodal content that may be offensive or disturbing to some readers. Reader discretion is advised.
☆ CSR-Bench: A Benchmark for Evaluating the Cross-modal Safety and Reliability of MLLMs
Multimodal large language models (MLLMs) enable interaction over both text and images, but their safety behavior can be driven by unimodal shortcuts instead of true joint intent understanding. We introduce CSR-Bench, a benchmark for evaluating cross-modal reliability through four stress-testing interaction patterns spanning Safety, Over-rejection, Bias, and Hallucination, covering 61 fine-grained types. Each instance is constructed to require integrated image-text interpretation, and we additionally provide paired text-only controls to diagnose modality-induced behavior shifts. We evaluate 16 state-of-the-art MLLMs and observe systematic cross-modal alignment gaps. Models show weak safety awareness, strong language dominance under interference, and consistent performance degradation from text-only controls to multimodal inputs. We also observe a clear trade-off between reducing over-rejection and maintaining safe, non-discriminatory behavior, suggesting that some apparent safety gains may come from refusal-oriented heuristics rather than robust intent understanding. WARNING: This paper contains unsafe contents.
comment: 25 pages, 1 figures
☆ GraDE: A Graph Diffusion Estimator for Frequent Subgraph Discovery in Neural Architectures
Finding frequently occurring subgraph patterns or network motifs in neural architectures is crucial for optimizing efficiency, accelerating design, and uncovering structural insights. However, as the subgraph size increases, enumeration-based methods are perfectly accurate but computationally prohibitive, while sampling-based methods are computationally tractable but suffer from a severe decline in discovery capability. To address these challenges, this paper proposes GraDE, a diffusion-guided search framework that ensures both computational feasibility and discovery capability. The key innovation is the Graph Diffusion Estimator (GraDE), which is the first to introduce graph diffusion models to identify frequent subgraphs by scoring their typicality within the learned distribution. Comprehensive experiments demonstrate that the estimator achieves superior ranking accuracy, with up to 114\% improvement compared to sampling-based baselines. Benefiting from this, the proposed framework successfully discovers large-scale frequent patterns, achieving up to 30$\times$ higher median frequency than sampling-based methods.
☆ LPS-Bench: Benchmarking Safety Awareness of Computer-Use Agents in Long-Horizon Planning under Benign and Adversarial Scenarios
Computer-use agents (CUAs) that interact with real computer systems can perform automated tasks but face critical safety risks. Ambiguous instructions may trigger harmful actions, and adversarial users can manipulate tool execution to achieve malicious goals. Existing benchmarks mostly focus on short-horizon or GUI-based tasks, evaluating on execution-time errors but overlooking the ability to anticipate planning-time risks. To fill this gap, we present LPS-Bench, a benchmark that evaluates the planning-time safety awareness of MCP-based CUAs under long-horizon tasks, covering both benign and adversarial interactions across 65 scenarios of 7 task domains and 9 risk types. We introduce a multi-agent automated pipeline for scalable data generation and adopt an LLM-as-a-judge evaluation protocol to assess safety awareness through the planning trajectory. Experiments reveal substantial deficiencies in existing CUAs' ability to maintain safe behavior. We further analyze the risks and propose mitigation strategies to improve long-horizon planning safety in MCP-based CUA systems. We open-source our code at https://github.com/tychenn/LPS-Bench.
☆ Accordion-Thinking: Self-Regulated Step Summaries for Efficient and Readable LLM Reasoning
Scaling test-time compute via long Chain-ofThought unlocks remarkable gains in reasoning capabilities, yet it faces practical limits due to the linear growth of KV cache and quadratic attention complexity. In this paper, we introduce Accordion-Thinking, an end-to-end framework where LLMs learn to self-regulate the granularity of the reasoning steps through dynamic summarization. This mechanism enables a Fold inference mode, where the model periodically summarizes its thought process and discards former thoughts to reduce dependency on historical tokens. We apply reinforcement learning to incentivize this capability further, uncovering a critical insight: the accuracy gap between the highly efficient Fold mode and the exhaustive Unfold mode progressively narrows and eventually vanishes over the course of training. This phenomenon demonstrates that the model learns to encode essential reasoning information into compact summaries, achieving effective compression of the reasoning context. Our Accordion-Thinker demonstrates that with learned self-compression, LLMs can tackle complex reasoning tasks with minimal dependency token overhead without compromising solution quality, and it achieves a 3x throughput while maintaining accuracy on a 48GB GPU memory configuration, while the structured step summaries provide a human-readable account of the reasoning process.
☆ The Necessity of a Unified Framework for LLM-Based Agent Evaluation
With the advent of Large Language Models (LLMs), general-purpose agents have seen fundamental advancements. However, evaluating these agents presents unique challenges that distinguish them from static QA benchmarks. We observe that current agent benchmarks are heavily confounded by extraneous factors, including system prompts, toolset configurations, and environmental dynamics. Existing evaluations often rely on fragmented, researcher-specific frameworks where the prompt engineering for reasoning and tool usage varies significantly, making it difficult to attribute performance gains to the model itself. Additionally, the lack of standardized environmental data leads to untraceable errors and non-reproducible results. This lack of standardization introduces substantial unfairness and opacity into the field. We propose that a unified evaluation framework is essential for the rigorous advancement of agent evaluation. To this end, we introduce a proposal aimed at standardizing agent evaluation.
☆ ATACompressor: Adaptive Task-Aware Compression for Efficient Long-Context Processing in LLMs
Long-context inputs in large language models (LLMs) often suffer from the "lost in the middle" problem, where critical information becomes diluted or ignored due to excessive length. Context compression methods aim to address this by reducing input size, but existing approaches struggle with balancing information preservation and compression efficiency. We propose Adaptive Task-Aware Compressor (ATACompressor), which dynamically adjusts compression based on the specific requirements of the task. ATACompressor employs a selective encoder that compresses only the task-relevant portions of long contexts, ensuring that essential information is preserved while reducing unnecessary content. Its adaptive allocation controller perceives the length of relevant content and adjusts the compression rate accordingly, optimizing resource utilization. We evaluate ATACompressor on three QA datasets: HotpotQA, MSMARCO, and SQUAD-showing that it outperforms existing methods in terms of both compression efficiency and task performance. Our approach provides a scalable solution for long-context processing in LLMs. Furthermore, we perform a range of ablation studies and analysis experiments to gain deeper insights into the key components of ATACompressor.
☆ TAME: A Trustworthy Test-Time Evolution of Agent Memory with Systematic Benchmarking
Test-time evolution of agent memory serves as a pivotal paradigm for achieving AGI by bolstering complex reasoning through experience accumulation. However, even during benign task evolution, agent safety alignment remains vulnerable-a phenomenon known as Agent Memory Misevolution. To evaluate this phenomenon, we construct the Trust-Memevo benchmark to assess multi-dimensional trustworthiness during benign task evolution, revealing an overall decline in trustworthiness across various task domains and evaluation settings. To address this issue, we propose TAME, a dual-memory evolutionary framework that separately evolves executor memory to improve task performance by distilling generalizable methodologies, and evaluator memory to refine assessments of both safety and task utility based on historical feedback. Through a closed loop of memory filtering, draft generation, trustworthy refinement, execution, and dual-track memory updating, TAME preserves trustworthiness without sacrificing utility. Experiments demonstrate that TAME mitigates misevolution, achieving a joint improvement in both trustworthiness and task performance.
☆ Distribution-Aware End-to-End Embedding for Streaming Numerical Features in Click-Through Rate Prediction
This paper explores effective numerical feature embedding for Click-Through Rate prediction in streaming environments. Conventional static binning methods rely on offline statistics of numerical distributions; however, this inherently two-stage process often triggers semantic drift during bin boundary updates. While neural embedding methods enable end-to-end learning, they often discard explicit distributional information. Integrating such information end-to-end is challenging because streaming features often violate the i.i.d. assumption, precluding unbiased estimation of the population distribution via the expectation of order statistics. Furthermore, the critical context dependency of numerical distributions is often neglected. To this end, we propose DAES, an end-to-end framework designed to tackle numerical feature embedding in streaming training scenarios by integrating distributional information with an adaptive modulation mechanism. Specifically, we introduce an efficient reservoir-sampling-based distribution estimation method and two field-aware distribution modulation strategies to capture streaming distributions and field-dependent semantics. DAES significantly outperforms existing approaches as demonstrated by extensive offline and online experiments and has been fully deployed on a leading short-video platform with hundreds of millions of daily active users.
comment: Under review
☆ Beyond Quantity: Trajectory Diversity Scaling for Code Agents
As code large language models (LLMs) evolve into tool-interactive agents via the Model Context Protocol (MCP), their generalization is increasingly limited by low-quality synthetic data and the diminishing returns of quantity scaling. Moreover, quantity-centric scaling exhibits an early bottleneck that underutilizes trajectory data. We propose TDScaling, a Trajectory Diversity Scaling-based data synthesis framework for code agents that scales performance through diversity rather than raw volume. Under a fixed training budget, increasing trajectory diversity yields larger gains than adding more trajectories, improving the performance-cost trade-off for agent training. TDScaling integrates four innovations: (1) a Business Cluster mechanism that captures real-service logical dependencies; (2) a blueprint-driven multi-agent paradigm that enforces trajectory coherence; (3) an adaptive evolution mechanism that steers synthesis toward long-tail scenarios using Domain Entropy, Reasoning Mode Entropy, and Cumulative Action Complexity to prevent mode collapse; and (4) a sandboxed code tool that mitigates catastrophic forgetting of intrinsic coding capabilities. Experiments on general tool-use benchmarks (BFCL, tau^2-Bench) and code agent tasks (RebenchT, CodeCI, BIRD) demonstrate a win-win outcome: TDScaling improves both tool-use generalization and inherent coding proficiency. We plan to release the full codebase and the synthesized dataset (including 30,000+ tool clusters) upon publication.
☆ Topology Matters: A Cautionary Case Study of Graph SSL on Neuro-Inspired Benchmarks
Understanding how local interactions give rise to global brain organization requires models that can represent information across multiple scales. We introduce a hierarchical self-supervised learning (SSL) framework that jointly learns node-, edge-, and graph-level embeddings, inspired by multimodal neuroimaging. We construct a controllable synthetic benchmark mimicking the topological properties of connectomes. Our four-stage evaluation protocol reveals a critical failure: the invariance-based SSL model is fundamentally misaligned with the benchmark's topological properties and is catastrophically outperformed by classical, topology-aware heuristics. Ablations confirm an objective mismatch: SSL objectives designed to be invariant to topological perturbations learn to ignore the very community structure that classical methods exploit. Our results expose a fundamental pitfall in applying generic graph SSL to connectome-like data. We present this framework as a cautionary case study, highlighting the need for new, topology-aware SSL objectives for neuro-AI research that explicitly reward the preservation of structure (e.g., modularity or motifs).
☆ Latent Neural-ODE for Model-Informed Precision Dosing: Overcoming Structural Assumptions in Pharmacokinetics
Accurate estimation of tacrolimus exposure, quantified by the area under the concentration-time curve (AUC), is essential for precision dosing after renal transplantation. Current practice relies on population pharmacokinetic (PopPK) models based on nonlinear mixed-effects (NLME) methods. However, these models depend on rigid, pre-specified assumptions and may struggle to capture complex, patient-specific dynamics, leading to model misspecification. In this study, we introduce a novel data-driven alternative based on Latent Ordinary Differential Equations (Latent ODEs) for tacrolimus AUC prediction. This deep learning approach learns individualized pharmacokinetic dynamics directly from sparse clinical data, enabling greater flexibility in modeling complex biological behavior. The model was evaluated through extensive simulations across multiple scenarios and benchmarked against two standard approaches: NLME-based estimation and the iterative two-stage Bayesian (it2B) method. We further performed a rigorous clinical validation using a development dataset (n = 178) and a completely independent external dataset (n = 75). In simulation, the Latent ODE model demonstrated superior robustness, maintaining high accuracy even when underlying biological mechanisms deviated from standard assumptions. Regarding experiments on clinical datasets, in internal validation, it achieved significantly higher precision with a mean RMSPE of 7.99% compared with 9.24% for it2B (p < 0.001). On the external cohort, it achieved an RMSPE of 10.82%, comparable to the two standard estimators (11.48% and 11.54%). These results establish the Latent ODE as a powerful and reliable tool for AUC prediction. Its flexible architecture provides a promising foundation for next-generation, multi-modal models in personalized medicine.
☆ Lookahead Sample Reward Guidance for Test-Time Scaling of Diffusion Models
Diffusion models have demonstrated strong generative performance; however, generated samples often fail to fully align with human intent. This paper studies a test-time scaling method that enables sampling from regions with higher human-aligned reward values. Existing gradient guidance methods approximate the expected future reward (EFR) at an intermediate particle $\mathbf{x}_t$ using a Taylor approximation, but this approximation at each time step incurs high computational cost due to sequential neural backpropagation. We show that the EFR at any $\mathbf{x}_t$ can be computed using only marginal samples from a pre-trained diffusion model. The proposed EFR formulation detaches the neural dependency between $\mathbf{x}_t$ and the EFR, enabling closed-form guidance computation without neural backpropagation. To further improve efficiency, we introduce lookahead sampling to collect marginal samples. For final sample generation, we use an accurate solver that guides particles toward high-reward lookahead samples. We refer to this sampling scheme as LiDAR sampling. LiDAR achieves substantial performance improvements using only three samples with a 3-step lookahead solver, exhibiting steep performance gains as lookahead accuracy and sample count increase; notably, it reaches the same GenEval performance as the latest gradient guidance method for SDXL with a 9.5x speedup.
comment: Under Review
☆ Hand3R: Online 4D Hand-Scene Reconstruction in the Wild
For Embodied AI, jointly reconstructing dynamic hands and the dense scene context is crucial for understanding physical interaction. However, most existing methods recover isolated hands in local coordinates, overlooking the surrounding 3D environment. To address this, we present Hand3R, the first online framework for joint 4D hand-scene reconstruction from monocular video. Hand3R synergizes a pre-trained hand expert with a 4D scene foundation model via a scene-aware visual prompting mechanism. By injecting high-fidelity hand priors into a persistent scene memory, our approach enables simultaneous reconstruction of accurate hand meshes and dense metric-scale scene geometry in a single forward pass. Experiments demonstrate that Hand3R bypasses the reliance on offline optimization and delivers competitive performance in both local hand reconstruction and global positioning.
☆ Reinforcement Learning with Promising Tokens for Large Language Models
Reinforcement learning (RL) has emerged as a key paradigm for aligning and optimizing large language models (LLMs). Standard approaches treat the LLM as the policy and apply RL directly over the full vocabulary space. However, this formulation includes the massive tail of contextually irrelevant tokens in the action space, which could distract the policy from focusing on decision-making among the truly reasonable tokens. In this work, we verify that valid reasoning paths could inherently concentrate within a low-rank subspace. Based on this insight, we introduce Reinforcement Learning with Promising Tokens (RLPT), a framework that mitigates the action space issue by decoupling strategic decision-making from token generation. Specifically, RLPT leverages the semantic priors of the base model to identify a dynamic set of \emph{promising tokens} and constrains policy optimization exclusively to this refined subset via masking. Theoretical analysis and empirical results demonstrate that RLPT effectively reduces gradient variance, stabilizes the training process, and improves sample efficiency. Experiment results on math, coding, and telecom reasoning show that RLPT outperforms standard RL baselines and integrates effectively across various model sizes (4B and 8B) and RL algorithms (GRPO and DAPO).
Prompt Augmentation Scales up GRPO Training on Mathematical Reasoning
Reinforcement learning algorithms such as group-relative policy optimization (GRPO) have demonstrated strong potential for improving the mathematical reasoning capabilities of large language models. However, prior work has consistently observed an entropy collapse phenomenon during reinforcement post-training, characterized by a monotonic decrease in policy entropy that ultimately leads to training instability and collapse. As a result, most existing approaches restrict training to short horizons (typically 5-20 epochs), limiting sustained exploration and hindering further policy improvement. In addition, nearly all prior work relies on a single, fixed reasoning prompt or template during training. In this work, we introduce prompt augmentation, a training strategy that instructs the model to generate reasoning traces under diverse templates and formats, thereby increasing rollout diversity. We show that, without a KL regularization term, prompt augmentation enables stable scaling of training duration under a fixed dataset and allows the model to tolerate low-entropy regimes without premature collapse. Empirically, a Qwen2.5-Math-1.5B model trained with prompt augmentation on the MATH Level 3-5 dataset achieves state-of-the-art performance, reaching 44.5 per-benchmark accuracy and 51.3 per-question accuracy on standard mathematical reasoning benchmarks, including AIME24, AMC, MATH500, Minerva, and OlympiadBench. The code and model checkpoints are available at https://github.com/wenquanlu/prompt-augmentation-GRPO.
☆ Privasis: Synthesizing the Largest "Public" Private Dataset from Scratch
Research involving privacy-sensitive data has always been constrained by data scarcity, standing in sharp contrast to other areas that have benefited from data scaling. This challenge is becoming increasingly urgent as modern AI agents--such as OpenClaw and Gemini Agent--are granted persistent access to highly sensitive personal information. To tackle this longstanding bottleneck and the rising risks, we present Privasis (i.e., privacy oasis), the first million-scale fully synthetic dataset entirely built from scratch--an expansive reservoir of texts with rich and diverse private information--designed to broaden and accelerate research in areas where processing sensitive social data is inevitable. Compared to existing datasets, Privasis, comprising 1.4 million records, offers orders-of-magnitude larger scale with quality, and far greater diversity across various document types, including medical history, legal documents, financial records, calendars, and text messages with a total of 55.1 million annotated attributes such as ethnicity, date of birth, workplace, etc. We leverage Privasis to construct a parallel corpus for text sanitization with our pipeline that decomposes texts and applies targeted sanitization. Our compact sanitization models (<=4B) trained on this dataset outperform state-of-the-art large language models, such as GPT-5 and Qwen-3 235B. We plan to release data, models, and code to accelerate future research on privacy-sensitive domains and agents.
comment: For code and data, see https://privasis.github.io
☆ MemCast: Memory-Driven Time Series Forecasting with Experience-Conditioned Reasoning
Time series forecasting (TSF) plays a critical role in decision-making for many real-world applications. Recently, LLM-based forecasters have made promising advancements. Despite their effectiveness, existing methods often lack explicit experience accumulation and continual evolution. In this work, we propose MemCast, a learning-to-memory framework that reformulates TSF as an experience-conditioned reasoning task. Specifically, we learn experience from the training set and organize it into a hierarchical memory. This is achieved by summarizing prediction results into historical patterns, distilling inference trajectories into reasoning wisdom, and inducing extracted temporal features into general laws. Furthermore, during inference, we leverage historical patterns to guide the reasoning process and utilize reasoning wisdom to select better trajectories, while general laws serve as criteria for reflective iteration. Additionally, to enable continual evolution, we design a dynamic confidence adaptation strategy that updates the confidence of individual entries without leaking the test set distribution. Extensive experiments on multiple datasets demonstrate that MemCast consistently outperforms previous methods, validating the effectiveness of our approach. Our code is available at https://github.com/Xiaoyu-Tao/MemCast-TS.
☆ VALUEFLOW: Toward Pluralistic and Steerable Value-based Alignment in Large Language Models
Aligning Large Language Models (LLMs) with the diverse spectrum of human values remains a central challenge: preference-based methods often fail to capture deeper motivational principles. Value-based approaches offer a more principled path, yet three gaps persist: extraction often ignores hierarchical structure, evaluation detects presence but not calibrated intensity, and the steerability of LLMs at controlled intensities remains insufficiently understood. To address these limitations, we introduce VALUEFLOW, the first unified framework that spans extraction, evaluation, and steering with calibrated intensity control. The framework integrates three components: (i) HIVES, a hierarchical value embedding space that captures intra- and cross-theory value structure; (ii) the Value Intensity DataBase (VIDB), a large-scale resource of value-labeled texts with intensity estimates derived from ranking-based aggregation; and (iii) an anchor-based evaluator that produces consistent intensity scores for model outputs by ranking them against VIDB panels. Using VALUEFLOW, we conduct a comprehensive large-scale study across ten models and four value theories, identifying asymmetries in steerability and composition laws for multi-value control. This paper establishes a scalable infrastructure for evaluating and controlling value intensity, advancing pluralistic alignment of LLMs.
☆ Intelligent Front-End Personalization: AI-Driven UI Adaptation IEEE
Front-end personalization has traditionally relied on static designs or rule-based adaptations, which fail to fully capture user behavior patterns. This paper presents an AI driven approach for dynamic front-end personalization, where UI layouts, content, and features adapt in real-time based on predicted user behavior. We propose three strategies: dynamic layout adaptation using user path prediction, content prioritization through reinforcement learning, and a comparative analysis of AI-driven vs. rule-based personalization. Technical implementation details, algorithms, system architecture, and evaluation methods are provided to illustrate feasibility and performance gains.
comment: To be published in proceedings of IEEE ACDSA 2026
☆ Enhancing Foundation VLM Robustness to Missing Modality: Scalable Diffusion for Bi-directional Feature Restoration
Vision Language Models (VLMs) typically assume complete modality input during inference. However, their effectiveness drops sharply when certain modalities are unavailable or incomplete. Current research primarily faces two dilemmas: Prompt-based methods struggle to restore missing yet indispensable features and impair generalization of VLMs. Imputation-based approaches, lacking effective guidance, are prone to generating semantically irrelevant noise. Restoring precise semantics while sustaining VLM generalization remains challenging. Therefore, we propose a general missing modality restoration strategy in this paper. We introduce an enhanced diffusion model as a pluggable mid-stage training module to effectively restore missing features. Our strategy introduces two key innovations: (I) Dynamic Modality Gating, which adaptively leverages conditional features to steer the generation of semantically consistent features; (II) Cross-Modal Mutual Learning mechanism, which bridges the semantic spaces of dual encoders to achieve bidirectional alignment. Zero-shot evaluations across benchmark datasets demonstrate that our approach outperforms existing baseline methods. Extensive experiments and ablation studies confirm our model as a robust and scalable extension for VLMs in missing modality scenarios, ensuring reliability across diverse missing rates and environments. Our code and models will be publicly available.
comment: 12 pages
☆ General Agents Contain World Models, even under Partial Observability and Stochasticity
Deciding whether an agent possesses a model of its surrounding world is a fundamental step toward understanding its capabilities and limitations. In [10], it was shown that, within a particular framework, every almost optimal and general agent necessarily contains sufficient knowledge of its environment to allow an approximate reconstruction of it by querying the agent as a black box. This result relied on the assumptions that the agent is deterministic and that the environment is fully observable. In this work, we remove both assumptions by extending the theorem to stochastic agents operating in partially observable environments. Fundamentally, this shows that stochastic agents cannot avoid learning their environment through the usage of randomization. We also strengthen the result by weakening the notion of generality, proving that less powerful agents already contain a model of the world in which they operate.
comment: 19 pages, 4 figures
☆ Internet of Agentic AI: Incentive-Compatible Distributed Teaming and Workflow
Large language models (LLMs) have enabled a new class of agentic AI systems that reason, plan, and act by invoking external tools. However, most existing agentic architectures remain centralized and monolithic, limiting scalability, specialization, and interoperability. This paper proposes a framework for scalable agentic intelligence, termed the Internet of Agentic AI, in which autonomous, heterogeneous agents distributed across cloud and edge infrastructure dynamically form coalitions to execute task-driven workflows. We formalize a network-native model of agentic collaboration and introduce an incentive-compatible workflow-coalition feasibility framework that integrates capability coverage, network locality, and economic implementability. To enable scalable coordination, we formulate a minimum-effort coalition selection problem and propose a decentralized coalition formation algorithm. The proposed framework can operate as a coordination layer above the Model Context Protocol (MCP). A healthcare case study demonstrates how domain specialization, cloud-edge heterogeneity, and dynamic coalition formation enable scalable, resilient, and economically viable agentic workflows. This work lays the foundation for principled coordination and scalability in the emerging era of Internet of Agentic AI.
☆ Self-Hinting Language Models Enhance Reinforcement Learning
Group Relative Policy Optimization (GRPO) has recently emerged as a practical recipe for aligning large language models with verifiable objectives. However, under sparse terminal rewards, GRPO often stalls because rollouts within a group frequently receive identical rewards, causing relative advantages to collapse and updates to vanish. We propose self-hint aligned GRPO with privileged supervision (SAGE), an on-policy reinforcement learning framework that injects privileged hints during training to reshape the rollout distribution under the same terminal verifier reward. For each prompt $x$, the model samples a compact hint $h$ (e.g., a plan or decomposition) and then generates a solution $τ$ conditioned on $(x,h)$. Crucially, the task reward $R(x,τ)$ is unchanged; hints only increase within-group outcome diversity under finite sampling, preventing GRPO advantages from collapsing under sparse rewards. At test time, we set $h=\varnothing$ and deploy the no-hint policy without any privileged information. Moreover, sampling diverse self-hints serves as an adaptive curriculum that tracks the learner's bottlenecks more effectively than fixed hints from an initial policy or a stronger external model. Experiments over 6 benchmarks with 3 LLMs show that SAGE consistently outperforms GRPO, on average +2.0 on Llama-3.2-3B-Instruct, +1.2 on Qwen2.5-7B-Instruct and +1.3 on Qwen3-4B-Instruct. The code is available at https://github.com/BaohaoLiao/SAGE.
☆ SwiftVLM: Efficient Vision-Language Model Inference via Cross-Layer Token Bypass
Visual token pruning is a promising approach for reducing the computational cost of vision-language models (VLMs), and existing methods often rely on early pruning decisions to improve efficiency. While effective on coarse-grained reasoning tasks, they suffer from significant performance degradation on tasks requiring fine-grained visual details. Through layer-wise analysis, we reveal substantial discrepancies in visual token importance across layers, showing that tokens deemed unimportant at shallow layers can later become highly relevant for text-conditioned reasoning. To avoid irreversible critical information loss caused by premature pruning, we introduce a new pruning paradigm, termed bypass, which preserves unselected visual tokens and forwards them to subsequent pruning stages for re-evaluation. Building on this paradigm, we propose SwiftVLM, a simple and training-free method that performs pruning at model-specific layers with strong visual token selection capability, while enabling independent pruning decisions across layers. Experiments across multiple VLMs and benchmarks demonstrate that SwiftVLM consistently outperforms existing pruning strategies, achieving superior accuracy-efficiency trade-offs and more faithful visual token selection behavior.
☆ Contrastive Concept-Tree Search for LLM-Assisted Algorithm Discovery
Large language Model (LLM)-assisted algorithm discovery is an iterative, black-box optimization process over programs to approximatively solve a target task, where an LLM proposes candidate programs and an external evaluator provides task feedback. Despite intense recent research on the topic and promising results, how can the LLM internal representation of the space of possible programs be maximally exploited to improve performance is an open question. Here, we introduce Contrastive Concept-Tree Search (CCTS), which extracts a hierarchical concept representation from the generated programs and learns a contrastive concept model that guides parent selection. By reweighting parents using a likelihood-ratio score between high- and low-performing solutions, CCTS biases search toward useful concept combinations and away from misleading ones, providing guidance through an explicit concept hierarchy rather than the algorithm lineage constructed by the LLM. We show that CCTS improves search efficiency over fitness-based baselines and produces interpretable, task-specific concept trees across a benchmark of open Erdős-type combinatorics problems. Our analysis indicates that the gains are driven largely by learning which concepts to avoid. We further validate these findings in a controlled synthetic algorithm-discovery environment, which reproduces qualitatively the search dynamics observed with the LLMs.
☆ Understanding Multi-Agent LLM Frameworks: A Unified Benchmark and Experimental Analysis
Multi-agent LLM frameworks are widely used to accelerate the development of agent systems powered by large language models (LLMs). These frameworks impose distinct architectural structures that govern how agents interact, store information, and coordinate tasks. However, their impact on system performance remains poorly understood. This gap is critical, as architectural choices alone can induce order-of-magnitude differences in latency and throughput, as well as substantial variation in accuracy and scalability. Addressing this challenge requires (i) jointly evaluating multiple capabilities, such as orchestration overhead, memory behavior, planning, specialization, and coordination, and (ii) conducting these evaluations under controlled, framework-level conditions to isolate architectural effects. Existing benchmarks focus on individual capabilities and lack standardized framework-level evaluation. We address these limitations by (i) introducing an architectural taxonomy for systematically comparing multi-agent LLM frameworks along fundamental dimensions, and (ii) developing MAFBench, a unified evaluation suite that integrates existing benchmarks under a standardized execution pipeline. Using MAFBench, we conduct a controlled empirical study across several widely used frameworks. Our results show that framework-level design choices alone can increase latency by over 100x, reduce planning accuracy by up to 30%, and lower coordination success from above 90% to below 30%. Finally, we translate our findings into concrete architectural design principles and framework selection guidance, and outline promising future research directions.
comment: 25 pages, 9 figures and 13 tables; introduces MAFBench unified multi-agent evaluation suite
☆ Beyond Cropping and Rotation: Automated Evolution of Powerful Task-Specific Augmentations with Generative Models
Data augmentation has long been a cornerstone for reducing overfitting in vision models, with methods like AutoAugment automating the design of task-specific augmentations. Recent advances in generative models, such as conditional diffusion and few-shot NeRFs, offer a new paradigm for data augmentation by synthesizing data with significantly greater diversity and realism. However, unlike traditional augmentations like cropping or rotation, these methods introduce substantial changes that enhance robustness but also risk degrading performance if the augmentations are poorly matched to the task. In this work, we present EvoAug, an automated augmentation learning pipeline, which leverages these generative models alongside an efficient evolutionary algorithm to learn optimal task-specific augmentations. Our pipeline introduces a novel approach to image augmentation that learns stochastic augmentation trees that hierarchically compose augmentations, enabling more structured and adaptive transformations. We demonstrate strong performance across fine-grained classification and few-shot learning tasks. Notably, our pipeline discovers augmentations that align with domain knowledge, even in low-data settings. These results highlight the potential of learned generative augmentations, unlocking new possibilities for robust model training.
☆ Quantized Evolution Strategies: High-precision Fine-tuning of Quantized LLMs at Low-precision Cost
Post-Training Quantization (PTQ) is essential for deploying Large Language Models (LLMs) on memory-constrained devices, yet it renders models static and difficult to fine-tune. Standard fine-tuning paradigms, including Reinforcement Learning (RL), fundamentally rely on backpropagation and high-precision weights to compute gradients. Thus they cannot be used on quantized models, where the parameter space is discrete and non-differentiable. While Evolution Strategies (ES) offer a backpropagation-free alternative, optimization of the quantized parameters can still fail due to vanishing or inaccurate gradient. This paper introduces Quantized Evolution Strategies (QES), an optimization paradigm that performs full-parameter fine-tuning directly in the quantized space. QES is based on two innovations: (1) it integrates accumulated error feedback to preserve high-precision gradient signals, and (2) it utilizes a stateless seed replay to reduce memory usage to low-precision inference levels. QES significantly outperforms the state-of-the-art zeroth-order fine-tuning method on arithmetic reasoning tasks, making direct fine-tuning for quantized models possible. It therefore opens up the possibility for scaling up LLMs entirely in the quantized space. The source code is available at https://github.com/dibbla/Quantized-Evolution-Strategies .
comment: Preprint version
☆ Digital Lifelong Learning in the Age of AI: Trends and Insights
Rapid innovations in AI and large language models (LLMs) have accelerated the adoption of digital learning, particularly beyond formal education. What began as an emergency response during COVID-19 has shifted from a supplementary resource to an essential pillar of education. Understanding how digital learning continues to evolve for adult and lifelong learners is therefore increasingly important. This study examines how various demographics interact with digital learning platforms, focusing on the learner motivations, the effectiveness of gamification in digital learning, and the integration of AI. Using multi survey data from 200 respondents and advanced analytics, our findings reveal a notable increase in the perceived relevance of digital learning after the pandemic, especially among young adults and women, coinciding with the rise of LLM-powered AI tools that support personalized learning. We aim to provide actionable insights for businesses, government policymakers, and educators seeking to optimize their digital learning offerings to meet evolving workforce needs.
comment: 41 pages including references, appendix, 14 figures
☆ "I'm happy even though it's not real": GenAI Photo Editing as a Remembering Experience
Generative Artificial Intelligence (GenAI) is increasingly integrated into photo applications on personal devices, making editing photographs easier than ever while potentially influencing the memories they represent. This study explores how and why people use GenAI to edit personal photos and how this shapes their remembering experience. We conducted a two-phase qualitative study with 12 participants: a photo editing session using a GenAI tool guided by the Remembering Experience (RX) dimensions, followed by semi-structured interviews where participants reflected on the editing process and results. Findings show that participants prioritised felt memory over factual accuracy. For different photo elements, environments were modified easily, however, editing was deemed unacceptable if it touched upon a person's identity. Editing processes brought positive and negative impacts, and itself also became a remembering experience. We further discuss potential benefits and risks of GenAI editing for remembering purposes and propose design implications for responsible GenAI.
☆ Task--Specificity Score: Measuring How Much Instructions Really Matter for Supervision
Instruction tuning is now the default way to train and adapt large language models, but many instruction--input--output pairs are only weakly specified: for a given input, the same output can remain plausible under several alternative instructions. This raises a simple question: \emph{does the instruction uniquely determine the target output?} We propose the \textbf{Task--Specificity Score (TSS)} to quantify how much an instruction matters for predicting its output, by contrasting the true instruction against plausible alternatives for the same input. We further introduce \textbf{TSS++}, which uses hard alternatives and a small quality term to mitigate easy-negative effects. Across three instruction datasets (\textsc{Alpaca}, \textsc{Dolly-15k}, \textsc{NI-20}) and three open LLMs (Gemma, Llama, Qwen), we show that selecting task-specific examples improves downstream performance under tight token budgets and complements quality-based filters such as perplexity and IFD.
☆ Risky-Bench: Probing Agentic Safety Risks under Real-World Deployment
Large Language Models (LLMs) are increasingly deployed as agents that operate in real-world environments, introducing safety risks beyond linguistic harm. Existing agent safety evaluations rely on risk-oriented tasks tailored to specific agent settings, resulting in limited coverage of safety risk space and failing to assess agent safety behavior during long-horizon, interactive task execution in complex real-world deployments. Moreover, their specialization to particular agent settings limits adaptability across diverse agent configurations. To address these limitations, we propose Risky-Bench, a framework that enables systematic agent safety evaluation grounded in real-world deployment. Risky-Bench organizes evaluation around domain-agnostic safety principles to derive context-aware safety rubrics that delineate safety space, and systematically evaluates safety risks across this space through realistic task execution under varying threat assumptions. When applied to life-assist agent settings, Risky-Bench uncovers substantial safety risks in state-of-the-art agents under realistic execution conditions. Moreover, as a well-structured evaluation pipeline, Risky-Bench is not confined to life-assist scenarios and can be adapted to other deployment settings to construct environment-specific safety evaluations, providing an extensible methodology for agent safety assessment.
☆ TextME: Bridging Unseen Modalities Through Text Descriptions
Expanding multimodal representations to novel modalities is constrained by reliance on large-scale paired datasets (e.g., text-image, text-audio, text-3D, text-molecule), which are costly and often infeasible in domains requiring expert annotation such as medical imaging and molecular analysis. We introduce TextME, the first text-only modality expansion framework, to the best of our knowledge, projecting diverse modalities into LLM embedding space as a unified anchor. Our approach exploits the geometric structure of pretrained contrastive encoders to enable zero-shot cross-modal transfer using only text descriptions, without paired supervision. We empirically validate that such consistent modality gaps exist across image, video, audio, 3D, X-ray, and molecular domains, demonstrating that text-only training can preserve substantial performance of pretrained encoders. We further show that our framework enables emergent cross-modal retrieval between modality pairs not explicitly aligned during training (e.g., audio-to-image, 3D-to-image). These results establish text-only training as a practical alternative to paired supervision for modality expansion.
☆ De-conflating Preference and Qualification: Constrained Dual-Perspective Reasoning for Job Recommendation with Large Language Models
Professional job recommendation involves a complex bipartite matching process that must reconcile a candidate's subjective preference with an employer's objective qualification. While Large Language Models (LLMs) are well-suited for modeling the rich semantics of resumes and job descriptions, existing paradigms often collapse these two decision dimensions into a single interaction signal, yielding confounded supervision under recruitment-funnel censoring and limiting policy controllability. To address these challenges, We propose JobRec, a generative job recommendation framework for de-conflating preference and qualification via constrained dual-perspective reasoning. JobRec introduces a Unified Semantic Alignment Schema that aligns candidate and job attributes into structured semantic layers, and a Two-Stage Cooperative Training Strategy that learns decoupled experts to separately infer preference and qualification. Building on these experts, a Lagrangian-based Policy Alignment module optimizes recommendations under explicit eligibility requirements, enabling controllable trade-offs. To mitigate data scarcity, we construct a synthetic dataset refined by experts. Experiments show that JobRec consistently outperforms strong baselines and provides improved controllability for strategy-aware professional matching.
☆ PRISM: Structured Optimization via Anisotropic Spectral Shaping
We propose PRISM, an optimizer that enhances first-order spectral descent methods like Muon with partial second-order information. It constructs an efficient, low-rank quasi-second-order preconditioner via innovation-augmented polar decomposition. This mechanism enables PRISM to perform anisotropic spectral shaping, which adaptively suppresses updates in high-variance subspaces while preserving update strength in signal-dominated directions. Crucially, this is achieved with minimal computational overhead and zero additional memory compared to first-order baselines. PRISM demonstrates a practical strategy for integrating curvature-adaptive properties into the spectral optimization paradigm.
☆ Training and Simulation of Quadrupedal Robot in Adaptive Stair Climbing for Indoor Firefighting: An End-to-End Reinforcement Learning Approach
Quadruped robots are used for primary searches during the early stages of indoor fires. A typical primary search involves quickly and thoroughly looking for victims under hazardous conditions and monitoring flammable materials. However, situational awareness in complex indoor environments and rapid stair climbing across different staircases remain the main challenges for robot-assisted primary searches. In this project, we designed a two-stage end-to-end deep reinforcement learning (RL) approach to optimize both navigation and locomotion. In the first stage, the quadrupeds, Unitree Go2, were trained to climb stairs in Isaac Lab's pyramid-stair terrain. In the second stage, the quadrupeds were trained to climb various realistic indoor staircases in the Isaac Lab engine, with the learned policy transferred from the previous stage. These indoor staircases are straight, L-shaped, and spiral, to support climbing tasks in complex environments. This project explores how to balance navigation and locomotion and how end-to-end RL methods can enable quadrupeds to adapt to different stair shapes. Our main contributions are: (1) A two-stage end-to-end RL framework that transfers stair-climbing skills from abstract pyramid terrain to realistic indoor stair topologies. (2) A centerline-based navigation formulation that enables unified learning of navigation and locomotion without hierarchical planning. (3) Demonstration of policy generalization across diverse staircases using only local height-map perception. (4) An empirical analysis of success, efficiency, and failure modes under increasing stair difficulty.
comment: 8 pages, 9 figures, 43rd International Symposium on Automation and Robotics in Construction
☆ The Trigger in the Haystack: Extracting and Reconstructing LLM Backdoor Triggers
Detecting whether a model has been poisoned is a longstanding problem in AI security. In this work, we present a practical scanner for identifying sleeper agent-style backdoors in causal language models. Our approach relies on two key findings: first, sleeper agents tend to memorize poisoning data, making it possible to leak backdoor examples using memory extraction techniques. Second, poisoned LLMs exhibit distinctive patterns in their output distributions and attention heads when backdoor triggers are present in the input. Guided by these observations, we develop a scalable backdoor scanning methodology that assumes no prior knowledge of the trigger or target behavior and requires only inference operations. Our scanner integrates naturally into broader defensive strategies and does not alter model performance. We show that our method recovers working triggers across multiple backdoor scenarios and a broad range of models and fine-tuning methods.
☆ FlashSinkhorn: IO-Aware Entropic Optimal Transport
Entropic optimal transport (EOT) via Sinkhorn iterations is widely used in modern machine learning, yet GPU solvers remain inefficient at scale. Tensorized implementations suffer quadratic HBM traffic from dense $n\times m$ interactions, while existing online backends avoid storing dense matrices but still rely on generic tiled map-reduce reduction kernels with limited fusion. We present \textbf{FlashSinkhorn}, an IO-aware EOT solver for squared Euclidean cost that rewrites stabilized log-domain Sinkhorn updates as row-wise LogSumExp reductions of biased dot-product scores, the same normalization as transformer attention. This enables FlashAttention-style fusion and tiling: fused Triton kernels stream tiles through on-chip SRAM and update dual potentials in a single pass, substantially reducing HBM IO per iteration while retaining linear-memory operations. We further provide streaming kernels for transport application, enabling scalable first- and second-order optimization. On A100 GPUs, FlashSinkhorn achieves up to $32\times$ forward-pass and $161\times$ end-to-end speedups over state-of-the-art online baselines on point-cloud OT, improves scalability on OT-based downstream tasks. For reproducibility, we release an open-source implementation at https://github.com/ot-triton-lab/ot_triton.
☆ Shortcut Features as Top Eigenfunctions of NTK: A Linear Neural Network Case and More
One of the chronic problems of deep-learning models is shortcut learning. In a case where the majority of training data are dominated by a certain feature, neural networks prefer to learn such a feature even if the feature is not generalizable outside the training set. Based on the framework of Neural Tangent Kernel (NTK), we analyzed the case of linear neural networks to derive some important properties of shortcut learning. We defined a feature of a neural network as an eigenfunction of NTK. Then, we found that shortcut features correspond to features with larger eigenvalues when the shortcuts stem from the imbalanced number of samples in the clustered distribution. We also showed that the features with larger eigenvalues still have a large influence on the neural network output even after training, due to data variances in the clusters. Such a preference for certain features remains even when a margin of a neural network output is controlled, which shows that the max-margin bias is not the only major reason for shortcut learning. These properties of linear neural networks are empirically extended for more complex neural networks as a two-layer fully-connected ReLU network and a ResNet-18.
☆ JRDB-Pose3D: A Multi-person 3D Human Pose and Shape Estimation Dataset for Robotics
Real-world scenes are inherently crowded. Hence, estimating 3D poses of all nearby humans, tracking their movements over time, and understanding their activities within social and environmental contexts are essential for many applications, such as autonomous driving, robot perception, robot navigation, and human-robot interaction. However, most existing 3D human pose estimation datasets primarily focus on single-person scenes or are collected in controlled laboratory environments, which restricts their relevance to real-world applications. To bridge this gap, we introduce JRDB-Pose3D, which captures multi-human indoor and outdoor environments from a mobile robotic platform. JRDB-Pose3D provides rich 3D human pose annotations for such complex and dynamic scenes, including SMPL-based pose annotations with consistent body-shape parameters and track IDs for each individual over time. JRDB-Pose3D contains, on average, 5-10 human poses per frame, with some scenes featuring up to 35 individuals simultaneously. The proposed dataset presents unique challenges, including frequent occlusions, truncated bodies, and out-of-frame body parts, which closely reflect real-world environments. Moreover, JRDB-Pose3D inherits all available annotations from the JRDB dataset, such as 2D pose, information about social grouping, activities, and interactions, full-scene semantic masks with consistent human- and object-level tracking, and detailed annotations for each individual, such as age, gender, and race, making it a holistic dataset for a wide range of downstream perception and human-centric understanding tasks.
☆ Evaluating LLMs When They Do Not Know the Answer: Statistical Evaluation of Mathematical Reasoning via Comparative Signals
Evaluating mathematical reasoning in LLMs is constrained by limited benchmark sizes and inherent model stochasticity, yielding high-variance accuracy estimates and unstable rankings across platforms. On difficult problems, an LLM may fail to produce a correct final answer, yet still provide reliable pairwise comparison signals indicating which of two candidate solutions is better. We leverage this observation to design a statistically efficient evaluation framework that combines standard labeled outcomes with pairwise comparison signals obtained by having models judge auxiliary reasoning chains. Treating these comparison signals as control variates, we develop a semiparametric estimator based on the efficient influence function (EIF) for the setting where auxiliary reasoning chains are observed. This yields a one-step estimator that achieves the semiparametric efficiency bound, guarantees strict variance reduction over naive sample averaging, and admits asymptotic normality for principled uncertainty quantification. Across simulations, our one-step estimator substantially improves ranking accuracy, with gains increasing as model output noise grows. Experiments on GPQA Diamond, AIME 2025, and GSM8K further demonstrate more precise performance estimation and more reliable model rankings, especially in small-sample regimes where conventional evaluation is pretty unstable.
☆ Towards Considerate Embodied AI: Co-Designing Situated Multi-Site Healthcare Robots from Abstract Concepts to High-Fidelity Prototypes
Co-design is essential for grounding embodied artificial intelligence (AI) systems in real-world contexts, especially high-stakes domains such as healthcare. While prior work has explored multidisciplinary collaboration, iterative prototyping, and support for non-technical participants, few have interwoven these into a sustained co-design process. Such efforts often target one context and low-fidelity stages, limiting the generalizability of findings and obscuring how participants' ideas evolve. To address these limitations, we conducted a 14-week workshop with a multidisciplinary team of 22 participants, centered around how embodied AI can reduce non-value-added task burdens in three healthcare settings: emergency departments, long-term rehabilitation facilities, and sleep disorder clinics. We found that the iterative progression from abstract brainstorming to high-fidelity prototypes, supported by educational scaffolds, enabled participants to understand real-world trade-offs and generate more deployable solutions. We propose eight guidelines for co-designing more considerate embodied AI: attuned to context, responsive to social dynamics, mindful of expectations, and grounded in deployment. Project Page: https://byc-sophie.github.io/Towards-Considerate-Embodied-AI/
comment: To appear in Proceedings of the 2026 CHI Conference on Human Factors in Computing Systems (CHI 2026)
☆ MAS-ProVe: Understanding the Process Verification of Multi-Agent Systems
Multi-Agent Systems (MAS) built on Large Language Models (LLMs) often exhibit high variance in their reasoning trajectories. Process verification, which evaluates intermediate steps in trajectories, has shown promise in general reasoning settings, and has been suggested as a potential tool for guiding coordination of MAS; however, its actual effectiveness in MAS remains unclear. To fill this gap, we present MAS-ProVe, a systematic empirical study of process verification for multi-agent systems (MAS). Our study spans three verification paradigms (LLM-as-a-Judge, reward models, and process reward models), evaluated across two levels of verification granularity (agent-level and iteration-level). We further examine five representative verifiers and four context management strategies, and conduct experiments over six diverse MAS frameworks on multiple reasoning benchmarks. We find that process-level verification does not consistently improve performance and frequently exhibits high variance, highlighting the difficulty of reliably evaluating partial multi-agent trajectories. Among the methods studied, LLM-as-a-Judge generally outperforms reward-based approaches, with trained judges surpassing general-purpose LLMs. We further observe a small performance gap between LLMs acting as judges and as single agents, and identify a context-length-performance trade-off in verification. Overall, our results suggest that effective and robust process verification for MAS remains an open challenge, requiring further advances beyond current paradigms. Code is available at https://github.com/Wang-ML-Lab/MAS-ProVe.
comment: Preprint; work in progress
☆ CoBA-RL: Capability-Oriented Budget Allocation for Reinforcement Learning in LLMs
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a key approach for enhancing LLM reasoning.However, standard frameworks like Group Relative Policy Optimization (GRPO) typically employ a uniform rollout budget, leading to resource inefficiency. Moreover, existing adaptive methods often rely on instance-level metrics, such as task pass rates, failing to capture the model's dynamic learning state. To address these limitations, we propose CoBA-RL, a reinforcement learning algorithm designed to adaptively allocate rollout budgets based on the model's evolving capability. Specifically, CoBA-RL utilizes a Capability-Oriented Value function to map tasks to their potential training gains and employs a heap-based greedy strategy to efficiently self-calibrate the distribution of computational resources to samples with high training value. Extensive experiments demonstrate that our approach effectively orchestrates the trade-off between exploration and exploitation, delivering consistent generalization improvements across multiple challenging benchmarks. These findings underscore that quantifying sample training value and optimizing budget allocation are pivotal for advancing LLM post-training efficiency.
☆ SAFE-KD: Risk-Controlled Early-Exit Distillation for Vision Backbones IJCNN
Early-exit networks reduce inference cost by allowing ``easy'' inputs to stop early, but practical deployment hinges on knowing \emph{when} early exit is safe. We introduce SAFE-KD, a universal multi-exit wrapper for modern vision backbones that couples hierarchical distillation with \emph{conformal risk control}. SAFE-KD attaches lightweight exit heads at intermediate depths, distills a strong teacher into all exits via Decoupled Knowledge Distillation (DKD), and enforces deep-to-shallow consistency between exits. At inference, we calibrate per-exit stopping thresholds on a held-out set using conformal risk control (CRC) to guarantee a user-specified \emph{selective} misclassification risk (among the samples that exit early) under exchangeability. Across multiple datasets and architectures, SAFE-KD yields improved accuracy compute trade-offs, stronger calibration, and robust performance under corruption while providing finite-sample risk guarantees.
comment: Submitted to IJCNN
☆ Bongards at the Boundary of Perception and Reasoning: Programs or Language?
Vision-Language Models (VLMs) have made great strides in everyday visual tasks, such as captioning a natural image, or answering commonsense questions about such images. But humans possess the puzzling ability to deploy their visual reasoning abilities in radically new situations, a skill rigorously tested by the classic set of visual reasoning challenges known as the Bongard problems. We present a neurosymbolic approach to solving these problems: given a hypothesized solution rule for a Bongard problem, we leverage LLMs to generate parameterized programmatic representations for the rule and perform parameter fitting using Bayesian optimization. We evaluate our method on classifying Bongard problem images given the ground truth rule, as well as on solving the problems from scratch.
comment: 6 pages, 5 figures
☆ KANFIS A Neuro-Symbolic Framework for Interpretable and Uncertainty-Aware Learning
Adaptive Neuro-Fuzzy Inference System (ANFIS) was designed to combine the learning capabilities of neural network with the reasoning transparency of fuzzy logic. However, conventional ANFIS architectures suffer from structural complexity, where the product-based inference mechanism causes an exponential explosion of rules in high-dimensional spaces. We herein propose the Kolmogorov-Arnold Neuro-Fuzzy Inference System (KANFIS), a compact neuro-symbolic architecture that unifies fuzzy reasoning with additive function decomposition. KANFIS employs an additive aggregation mechanism, under which both model parameters and rule complexity scale linearly with input dimensionality rather than exponentially. Furthermore, KANFIS is compatible with both Type-1 (T1) and Interval Type-2 (IT2) fuzzy logic systems, enabling explicit modeling of uncertainty and ambiguity in fuzzy representations. By using sparse masking mechanisms, KANFIS generates compact and structured rule sets, resulting in an intrinsically interpretable model with clear rule semantics and transparent inference processes. Empirical results demonstrate that KANFIS achieves competitive performance against representative neural and neuro-fuzzy baselines.
☆ Visual Reasoning over Time Series via Multi-Agent System
Time series analysis underpins many real-world applications, yet existing time-series-specific methods and pretrained large-model-based approaches remain limited in integrating intuitive visual reasoning and generalizing across tasks with adaptive tool usage. To address these limitations, we propose MAS4TS, a tool-driven multi-agent system for general time series tasks, built upon an Analyzer-Reasoner-Executor paradigm that integrates agent communication, visual reasoning, and latent reconstruction within a unified framework. MAS4TS first performs visual reasoning over time series plots with structured priors using a Vision-Language Model to extract temporal structures, and subsequently reconstructs predictive trajectories in latent space. Three specialized agents coordinate via shared memory and gated communication, while a router selects task-specific tool chains for execution. Extensive experiments on multiple benchmarks demonstrate that MAS4TS achieves state-of-the-art performance across a wide range of time series tasks, while exhibiting strong generalization and efficient inference.
☆ RC-GRPO: Reward-Conditioned Group Relative Policy Optimization for Multi-Turn Tool Calling Agents
Multi-turn tool calling is challenging for Large Language Models (LLMs) because rewards are sparse and exploration is expensive. A common recipe, SFT followed by GRPO, can stall when within-group reward variation is low (e.g., more rollouts in a group receive the all 0 or all 1 reward), making the group-normalized advantage uninformative and yielding vanishing updates. To address this problem, we propose RC-GRPO (Reward-Conditioned Group Relative Policy Optimization), which treats exploration as a controllable steering problem via discrete reward tokens. We first fine-tune a Reward-Conditioned Trajectory Policy (RCTP) on mixed-quality trajectories with reward goal special tokens (e.g., <|high_reward|>, <|low_reward|>) injected into the prompts, enabling the model to learn how to generate distinct quality trajectories on demand. Then during RL, we sample diverse reward tokens within each GRPO group and condition rollouts on the sampled token to improve within-group diversity, improving advantage gains. On the Berkeley Function Calling Leaderboard v4 (BFCLv4) multi-turn benchmark, our method yields consistently improved performance than baselines, and the performance on Qwen-2.5-7B-Instruct even surpasses all closed-source API models.
☆ Consistency Deep Equilibrium Models
Deep Equilibrium Models (DEQs) have emerged as a powerful paradigm in deep learning, offering the ability to model infinite-depth networks with constant memory usage. However, DEQs incur significant inference latency due to the iterative nature of fixed-point solvers. In this work, we introduce the Consistency Deep Equilibrium Model (C-DEQ), a novel framework that leverages consistency distillation to accelerate DEQ inference. We cast the DEQ iterative inference process as evolution along a fixed ODE trajectory toward the equilibrium. Along this trajectory, we train C-DEQs to consistently map intermediate states directly to the fixed point, enabling few-step inference while preserving the performance of the teacher DEQ. At the same time, it facilitates multi-step evaluation to flexibly trade computation for performance gains. Extensive experiments across various domain tasks demonstrate that C-DEQs achieves consistent 2-20$\times$ accuracy improvements over implicit DEQs under the same few-step inference budget.
☆ STAR: Similarity-guided Teacher-Assisted Refinement for Super-Tiny Function Calling Models ICLR 2026
The proliferation of Large Language Models (LLMs) in function calling is pivotal for creating advanced AI agents, yet their large scale hinders widespread adoption, necessitating transferring their capabilities into smaller ones. However, existing paradigms are often plagued by overfitting, training instability, ineffective binary rewards for multi-solution tasks, and the difficulty of synergizing techniques. We introduce STAR: Similarity-guided Teacher-Assisted Refinement, a novel holistic framework that effectively transfers LLMs' capabilities to super-tiny models. STAR consists of two core technical innovations: (1) Constrained Knowledge Distillation (CKD), a training objective that augments top-k forward KL divergence to suppress confidently incorrect predictions, ensuring training stability while preserving exploration capacity for downstream RL. STAR holistically synergizes these strategies within a cohesive training curriculum, enabling super-tiny models to achieve exceptional performance on complex function calling tasks; (2) Similarity-guided RL (Sim-RL), a RL mechanism that introduces a fine-grained, similarity-based reward. This provides a robust, continuous, and rich signal for better policy optimization by evaluating the similarity between generated outputs and the ground truth. Extensive experiments on challenging and renowned benchmarks demonstrate the effectiveness of our method. Our STAR models establish SOTA in their size classes, significantly outperforming baselines. Remarkably, our 0.6B STAR model achieves the best performance among all open models under 1B, surpassing even several well-known open models at a larger scale. STAR demonstrates a training framework that distills capabilities of LLMs into super-tiny models, paving the way for powerful, accessible, and efficient AI agents.
comment: The paper has been accepted to ICLR 2026
☆ FedKRSO: Communication and Memory Efficient Federated Fine-Tuning of Large Language Models
Fine-tuning is essential to adapt general-purpose large language models (LLMs) to domain-specific tasks. As a privacy-preserving framework to leverage decentralized data for collaborative model training, Federated Learning (FL) is gaining popularity in LLM fine-tuning, but remains challenging due to the high cost of transmitting full model parameters and computing full gradients on resource-constrained clients. While Parameter-Efficient Fine-Tuning (PEFT) methods are widely used in FL to reduce communication and memory costs, they often sacrifice model performance compared to FFT. This paper proposes FedKRSO (Federated $K$-Seed Random Subspace Optimization), a novel method that enables communication and memory efficient FFT of LLMs in federated settings. In FedKRSO, clients update the model within a shared set of random low-dimension subspaces generated by the server to save memory usage. Furthermore, instead of transmitting full model parameters in each FL round, clients send only the model update accumulators along the subspaces to the server, enabling efficient global model aggregation and dissemination. By using these strategies, FedKRSO can substantially reduce communication and memory overhead while overcoming the performance limitations of PEFT, closely approximating the performance of federated FFT. The convergence properties of FedKRSO are analyzed rigorously under general FL settings. Extensive experiments on the GLUE benchmark across diverse FL scenarios demonstrate that FedKRSO achieves both superior performance and low communication and memory overhead, paving the way towards on federated LLM fine-tuning at the resource-constrained edge.
comment: Accepted by INFOCOM 2026
☆ CVE-Factory: Scaling Expert-Level Agentic Tasks for Code Security Vulnerability
Evaluating and improving the security capabilities of code agents requires high-quality, executable vulnerability tasks. However, existing works rely on costly, unscalable manual reproduction and suffer from outdated data distributions. To address these, we present CVE-Factory, the first multi-agent framework to achieve expert-level quality in automatically transforming sparse CVE metadata into fully executable agentic tasks. Cross-validation against human expert reproductions shows that CVE-Factory achieves 95\% solution correctness and 96\% environment fidelity, confirming its expert-level quality. It is also evaluated on the latest realistic vulnerabilities and achieves a 66.2\% verified success. This automation enables two downstream contributions. First, we construct LiveCVEBench, a continuously updated benchmark of 190 tasks spanning 14 languages and 153 repositories that captures emerging threats including AI-tooling vulnerabilities. Second, we synthesize over 1,000 executable training environments, the first large-scale scaling of agentic tasks in code security. Fine-tuned Qwen3-32B improves from 5.3\% to 35.8\% on LiveCVEBench, surpassing Claude 4.5 Sonnet, with gains generalizing to Terminal Bench (12.5\% to 31.3\%). We open-source CVE-Factory, LiveCVEBench, Abacus-cve (fine-tuned model), training dataset, and leaderboard. All resources are available at https://github.com/livecvebench/CVE-Factory .
comment: Under Review
☆ VOILA: Value-of-Information Guided Fidelity Selection for Cost-Aware Multimodal Question Answering
Despite significant costs from retrieving and processing high-fidelity visual inputs, most multimodal vision-language systems operate at fixed fidelity levels. We introduce VOILA, a framework for Value-Of-Information-driven adaptive fidelity selection in Visual Question Answering (VQA) that optimizes what information to retrieve before model execution. Given a query, VOILA uses a two-stage pipeline: a gradient-boosted regressor estimates correctness likelihood at each fidelity from question features alone, then an isotonic calibrator refines these probabilities for reliable decision-making. The system selects the minimum-cost fidelity maximizing expected utility given predicted accuracy and retrieval costs. We evaluate VOILA across three deployment scenarios using five datasets (VQA-v2, GQA, TextVQA, LoCoMo, FloodNet) and six Vision-Language Models (VLMs) with 7B-235B parameters. VOILA consistently achieves 50-60% cost reductions while retaining 90-95% of full-resolution accuracy across diverse query types and model architectures, demonstrating that pre-retrieval fidelity selection is vital to optimize multimodal inference under resource constraints.
☆ Distilling LLM Reasoning into Graph of Concept Predictors
Deploying Large Language Models (LLMs) for discriminative workloads is often limited by inference latency, compute, and API costs at scale. Active distillation reduces these costs by querying an LLM oracle to train compact discriminative students, but most pipelines distill only final labels, discarding intermediate reasoning signals and offering limited diagnostics of what reasoning is missing and where errors arise. We propose Graph of Concept Predictors (GCP), a reasoning-aware active distillation framework that externalizes the teacher's decision process as a directed acyclic graph and mirrors it with modular concept predictors in the student. GCP enhances sample efficiency through a graph-aware acquisition strategy that targets uncertainty and disagreement at critical reasoning nodes. Additionally, it improves training stability and efficiency by performing targeted sub-module retraining, which attributes downstream loss to specific concept predictors and updates only the most influential modules. Experiments on eight NLP classification benchmarks demonstrate that GCP enhances performance under limited annotation budgets while yielding more interpretable and controllable training dynamics. Code is available at: https://github.com/Ziyang-Yu/GCP.
☆ Causal Graph Spatial-Temporal Autoencoder for Reliable and Interpretable Process Monitoring
To improve the reliability and interpretability of industrial process monitoring, this article proposes a Causal Graph Spatial-Temporal Autoencoder (CGSTAE). The network architecture of CGSTAE combines two components: a correlation graph structure learning module based on spatial self-attention mechanism (SSAM) and a spatial-temporal encoder-decoder module utilizing graph convolutional long-short term memory (GCLSTM). The SSAM learns correlation graphs by capturing dynamic relationships between variables, while a novel three-step causal graph structure learning algorithm is introduced to derive a causal graph from these correlation graphs. The algorithm leverages a reverse perspective of causal invariance principle to uncover the invariant causal graph from varying correlations. The spatial-temporal encoder-decoder, built with GCLSTM units, reconstructs time-series process data within a sequence-to-sequence framework. The proposed CGSTAE enables effective process monitoring and fault detection through two statistics in the feature space and residual space. Finally, we validate the effectiveness of CGSTAE in process monitoring through the Tennessee Eastman process and a real-world air separation process.
☆ Methods and Open Problems in Differentiable Social Choice: Learning Mechanisms, Decisions, and Alignment
Social choice is no longer a peripheral concern of political theory or economics-it has become a foundational component of modern machine learning systems. From auctions and resource allocation to federated learning, participatory governance, and the alignment of large language models, machine learning pipelines increasingly aggregate heterogeneous preferences, incentives, and judgments into collective decisions. In effect, many contemporary machine learning systems already implement social choice mechanisms, often implicitly and without explicit normative scrutiny. This Review surveys differentiable social choice: an emerging paradigm that formulates voting rules, mechanisms, and aggregation procedures as learnable, differentiable models optimized from data. We synthesize work across auctions, voting, budgeting, liquid democracy, decentralized aggregation, and inverse mechanism learning, showing how classical axioms and impossibility results reappear as objectives, constraints, and optimization trade-offs. We conclude by identifying 36 open problems defining a new research agenda at the intersection of machine learning, economics, and democratic theory.
☆ Adaptive Batch Sizes Using Non-Euclidean Gradient Noise Scales for Stochastic Sign and Spectral Descent
To maximize hardware utilization, modern machine learning systems typically employ large constant or manually tuned batch size schedules, relying on heuristics that are brittle and costly to tune. Existing adaptive strategies based on gradient noise scale (GNS) offer a principled alternative. However, their assumption of SGD's Euclidean geometry creates a fundamental mismatch with popular optimizers based on generalized norms, such as signSGD / Signum ($\ell_\infty$) and stochastic spectral descent (specSGD) / Muon ($\mathcal{S}_\infty$). In this work, we derive gradient noise scales for signSGD and specSGD that naturally emerge from the geometry of their respective dual norms. To practically estimate these non-Euclidean metrics, we propose an efficient variance estimation procedure that leverages the local mini-batch gradients on different ranks in distributed data-parallel systems. Our experiments demonstrate that adaptive batch size strategies using non-Euclidean GNS enable us to match the validation loss of constant-batch baselines while reducing training steps by up to 66% for Signum and Muon on a 160 million parameter Llama model.
comment: 8 pages, 2 figures, 4 tables
☆ Agent Alpha: Tree Search Unifying Generation, Exploration and Evaluation for Computer-Use Agents
While scaling test-time compute through trajectory-level sampling has significantly improved Graphical User Interface (GUI) agents, the lack of regressive ability prevents the reuse of partial successes and the recovery from early missteps. In this paper, we introduce Agent Alpha, a unified framework that synergizes generation, exploration, and evaluation through step-level Monte Carlo Tree Search (MCTS). It enables active modeling or exploiting structures of the planning space. By integrating alpha-UCT guided search into the interaction loop, Agent Alpha enables deliberate planning, facilitating early pruning of suboptimal branches and efficient prefix reuse. We also employ comparison-driven evaluation to mitigate absolute scoring biases and diversity-constrained expansion to maintain a compact, informative search space. Regret bound of alpha-UCT is analyzed. On the OSWorld benchmark, Agent Alpha achieves a state-of-the-art success rate of $\sim 77\%$, significantly outperforming trajectory-level baselines under equivalent compute.
☆ Large Language Models Can Take False First Steps at Inference-time Planning
Large language models (LLMs) have been shown to acquire sequence-level planning abilities during training, yet their planning behavior exhibited at inference time often appears short-sighted and inconsistent with these capabilities. We propose a Bayesian account for this gap by grounding planning behavior in the evolving generative context: given the subtle differences between natural language and the language internalized by LLMs, accumulated self-generated context drives a planning-shift during inference and thereby creates the appearance of compromised planning behavior. We further validate the proposed model through two controlled experiments: a random-generation task demonstrating constrained planning under human prompts and increasing planning strength as self-generated context accumulates, and a Gaussian-sampling task showing reduced initial bias when conditioning on self-generated sequences. These findings provide a theoretical explanation along with empirical evidence for characterizing how LLMs plan ahead during inference.
☆ NLI:Non-uniform Linear Interpolation Approximation of Nonlinear Operations for Efficient LLMs Inference ICLR 18
Large Language Models (LLMs) have demonstrated remarkable performance across a wide range of tasks, but their deployment is often constrained by substantial memory footprints and computational costs. While prior work has achieved significant progress in compressing and accelerating linear layers, nonlinear layers-such as SiLU, RMSNorm, and Softmax-still heavily depend on high-precision floating-point operations. In this paper, we propose a calibration-free, dynamic-programming-optimal, and hardware-friendly framework called Non-uniform Linear Interpolation (NLI). NLI is capable of efficiently approximating a variety of nonlinear functions, enabling seamless integration into LLMs and other deep neural networks with almost no loss in accuracy. NLI ingeniously recasts cutpoint selection as a dynamic-programming problem, achieving the globally minimal interpolation error in O(MxN2) time via Bellman's optimality principle. Based on the NLI algorithm, we also design and implement a plug-and-play universal nonlinear computation unit. Hardware experiments demonstrate that the NLI Engine achieves more than 4x improvement in computational efficiency compared to the state-of-the-art designs.
comment: Admitted to ICLR 18pages 5 figures
☆ Are LLMs Biased Like Humans? Causal Reasoning as a Function of Prior Knowledge, Irrelevant Information, and Reasoning Budget
Large language models (LLMs) are increasingly used in domains where causal reasoning matters, yet it remains unclear whether their judgments reflect normative causal computation, human-like shortcuts, or brittle pattern matching. We benchmark 20+ LLMs against a matched human baseline on 11 causal judgment tasks formalized by a collider structure ($C_1 \!\rightarrow\! E\! \leftarrow \!C_2$). We find that a small interpretable model compresses LLMs' causal judgments well and that most LLMs exhibit more rule-like reasoning strategies than humans who seem to account for unmentioned latent factors in their probability judgments. Furthermore, most LLMs do not mirror the characteristic human collider biases of weak explaining away and Markov violations. We probe LLMs' causal judgment robustness under (i) semantic abstraction and (ii) prompt overloading (injecting irrelevant text), and find that chain-of-thought (CoT) increases robustness for many LLMs. Together, this divergence suggests LLMs can complement humans when known biases are undesirable, but their rule-like reasoning may break down when uncertainty is intrinsic -- highlighting the need to characterize LLM reasoning strategies for safe, effective deployment.
☆ Structuring Value Representations via Geometric Coherence in Markov Decision Processes
Geometric properties can be leveraged to stabilize and speed reinforcement learning. Existing examples include encoding symmetry structure, geometry-aware data augmentation, and enforcing structural restrictions. In this paper, we take a novel view of RL through the lens of order theory and recast value function estimates into learning a desired poset (partially ordered set). We propose \emph{GCR-RL} (Geometric Coherence Regularized Reinforcement Learning) that computes a sequence of super-poset refinements -- by refining posets in previous steps and learning additional order relationships from temporal difference signals -- thus ensuring geometric coherence across the sequence of posets underpinning the learned value functions. Two novel algorithms by Q-learning and by actor--critic are developed to efficiently realize these super-poset refinements. Their theoretical properties and convergence rates are analyzed. We empirically evaluate GCR-RL in a range of tasks and demonstrate significant improvements in sample efficiency and stable performance over strong baselines.
☆ Aligning Forest and Trees in Images and Long Captions for Visually Grounded Understanding
Large vision-language models such as CLIP struggle with long captions because they align images and texts as undifferentiated wholes. Fine-grained vision-language understanding requires hierarchical semantics capturing both global context and localized details across visual and textual domains. Yet linguistic hierarchies from syntax or semantics rarely match visual organization, and purely visual hierarchies tend to fragment scenes into appearance-driven parts without semantic focus. We propose CAFT (Cross-domain Alignment of Forests and Trees), a hierarchical image-text representation learning framework that aligns global and local semantics across images and long captions without pixel-level supervision. Coupling a fine-to-coarse visual encoder with a hierarchical text transformer, it uses a hierarchical alignment loss that matches whole images with whole captions while biasing region-sentence correspondences, so that coarse semantics are built from fine-grained evidence rather than from aggregation untethered to part-level grounding. Trained on 30M image-text pairs, CAFT achieves state-of-the-art performance on six long-text retrieval benchmarks and exhibits strong scaling behavior. Experiments show that hierarchical cross-domain alignment enables fine-grained, visually grounded image-text representations to emerge without explicit region-level supervision.
comment: Preprint
♻ ☆ Reuse your FLOPs: Scaling RL on Hard Problems by Conditioning on Very Off-Policy Prefixes
Typical reinforcement learning (RL) methods for LLM reasoning waste compute on hard problems, where correct on-policy traces are rare, policy gradients vanish, and learning stalls. To bootstrap more efficient RL, we consider reusing old sampling FLOPs (from prior inference or RL training) in the form of off-policy traces. Standard off-policy methods supervise against off-policy data, causing instabilities during RL optimization. We introduce PrefixRL, where we condition on the prefix of successful off-policy traces and run on-policy RL to complete them, side-stepping off-policy instabilities. PrefixRL boosts the learning signal on hard problems by modulating the difficulty of the problem through the off-policy prefix length. We prove that the PrefixRL objective is not only consistent with the standard RL objective but also more sample efficient. Empirically, we discover back-generalization: training only on prefixed problems generalizes to out-of-distribution unprefixed performance, with learned strategies often differing from those in the prefix. In our experiments, we source the off-policy traces by rejection sampling with the base model, creating a self-improvement loop. On hard reasoning problems, PrefixRL reaches the same training reward 2x faster than the strongest baseline (SFT on off-policy data then RL), even after accounting for the compute spent on the initial rejection sampling, and increases the final reward by 3x. The gains transfer to held-out benchmarks, and PrefixRL is still effective when off-policy traces are derived from a different model family, validating its flexibility in practical settings.
♻ ☆ Polynomial Neural Sheaf Diffusion: A Spectral Filtering Approach on Cellular Sheaves ICML 2026
Sheaf Neural Networks equip graph structures with a cellular sheaf: a geometric structure which assigns local vector spaces (stalks) and a linear learnable restriction/transport maps to nodes and edges, yielding an edge-aware inductive bias that handles heterophily and limits oversmoothing. However, common Neural Sheaf Diffusion implementations rely on SVD-based sheaf normalization and dense per-edge restriction maps, which scale with stalk dimension, require frequent Laplacian rebuilds, and yield brittle gradients. To address these limitations, we introduce Polynomial Neural Sheaf Diffusion (PolyNSD), a new sheaf diffusion approach whose propagation operator is a degree-K polynomial in a normalised sheaf Laplacian, evaluated via a stable three-term recurrence on a spectrally rescaled operator. This provides an explicit K-hop receptive field in a single layer (independently of the stalk dimension), with a trainable spectral response obtained as a convex mixture of K+1 orthogonal polynomial basis responses. PolyNSD enforces stability via convex mixtures, spectral rescaling, and residual/gated paths, reaching new state-of-the-art results on both homophilic and heterophilic benchmarks, inverting the Neural Sheaf Diffusion trend by obtaining these results with just diagonal restriction maps, decoupling performance from large stalk dimension, while reducing runtime and memory requirements.
comment: Under Review at ICML 2026
♻ ☆ MixGRPO: Unlocking Flow-based GRPO Efficiency with Mixed ODE-SDE
Although GRPO substantially enhances flow matching models in human preference alignment of image generation, methods such as FlowGRPO and DanceGRPO still exhibit inefficiency due to the necessity of sampling and optimizing over all denoising steps specified by the Markov Decision Process (MDP). In this paper, we propose $\textbf{MixGRPO}$, a novel framework that leverages the flexibility of mixed sampling strategies through the integration of stochastic differential equations (SDE) and ordinary differential equations (ODE). This streamlines the optimization process within the MDP to improve efficiency and boost performance. Specifically, MixGRPO introduces a sliding window mechanism, using SDE sampling and GRPO-guided optimization only within the window, while applying ODE sampling outside. This design confines sampling randomness to the time-steps within the window, thereby reducing the optimization overhead, and allowing for more focused gradient updates to accelerate convergence. Additionally, as time-steps beyond the sliding window are not involved in optimization, higher-order solvers are supported for faster sampling. So we present a faster variant, termed $\textbf{MixGRPO-Flash}$, which further improves training efficiency while achieving comparable performance. MixGRPO exhibits substantial gains across multiple dimensions of human preference alignment, outperforming DanceGRPO in both effectiveness and efficiency, with nearly 50% lower training time. Notably, MixGRPO-Flash further reduces training time by 71%.
♻ ☆ Multi-Agent Pathfinding Under Team-Connected Communication Constraint via Adaptive Path Expansion and Dynamic Leading
This paper proposes a novel planning framework to handle a multi-agent pathfinding problem under team-connected communication constraint, where all agents must have a connected communication channel to the rest of the team during their entire movements. Standard multi-agent path finding approaches (e.g., priority-based search) have potential in this domain but fail when neighboring configurations at start and goal differ. Their single-expansion approach -- computing each agent's path from the start to the goal in just a single expansion -- cannot reliably handle planning under communication constraints for agents as their neighbors change during navigating. Similarly, leader-follower approaches (e.g., platooning) are effective at maintaining team communication, but fixing the leader at the outset of planning can cause planning to become stuck in dense-clutter environments, limiting their practical utility. To overcome this limitation, we propose a novel two-level multi-agent pathfinding framework that integrates two techniques: adaptive path expansion to expand agent paths to their goals in multiple stages; and dynamic leading technique that enables the reselection of the leading agent during each agent path expansion whenever progress cannot be made. Simulation experiments show the efficiency of our planners, which can handle up to 25 agents across five environment types under a limited communication range constraint and up to 11-12 agents on three environment types under line-of-sight communication constraint, exceeding 90% success-rate where baselines routinely fail.
♻ ☆ Measuring Agents in Production
LLM-based agents already operate in production across many industries, yet we lack an understanding of what technical methods make deployments successful. We present the first systematic study of Measuring Agents in Production, MAP, using first-hand data from agent developers. We conducted 20 case studies via in-depth interviews and surveyed 306 practitioners across 26 domains. We investigate why organizations build agents, how they build them, how they evaluate them, and their top development challenges. Our study finds that production agents are built using simple, controllable approaches: 68% execute at most 10 steps before human intervention, 70% rely on prompting off-the-shelf models instead of weight tuning, and 74% depend primarily on human evaluation. Reliability (consistent correct behavior over time) remains the top development challenge, which practitioners currently address through systems-level design. MAP documents the current state of production agents, providing the research community with visibility into deployment realities and under-explored research avenues.
♻ ☆ PAINT: Parallel-in-time Neural Twins for Dynamical System Reconstruction
Neural surrogates have shown great potential in simulating dynamical systems, while offering real-time capabilities. We envision Neural Twins as a progression of neural surrogates, aiming to create digital replicas of real systems. A neural twin consumes measurements at test time to update its state, thereby enabling context-specific decision-making. We argue, that a critical property of neural twins is their ability to remain on-trajectory, i.e., to stay close to the true system state over time. We introduce Parallel-in-time Neural Twins (PAINT), an architecture-agnostic family of methods for modeling dynamical systems from measurements. PAINT trains a generative neural network to model the distribution of states in parallel over time. At test time, states are predicted from measurements in a sliding window fashion. Our theoretical analysis shows that PAINT is on-trajectory, whereas autoregressive models generally are not. Empirically, we evaluate our method on a challenging two-dimensional turbulent fluid dynamics problem. The results demonstrate that PAINT stays on-trajectory and predicts system states from sparse measurements with high fidelity. These findings underscore PAINT's potential for developing neural twins that stay on-trajectory, enabling more accurate state estimation and decision-making.
comment: 28 pages, 23 figures
♻ ☆ PluriHarms: Benchmarking the Full Spectrum of Human Judgments on AI Harm
Current AI safety frameworks, which often treat harmfulness as binary, lack the flexibility to handle borderline cases where humans meaningfully disagree. To build more pluralistic systems, it is essential to move beyond consensus and instead understand where and why disagreements arise. We introduce PluriHarms, a benchmark designed to systematically study human harm judgments across two key dimensions -- the harm axis (benign to harmful) and the agreement axis (agreement to disagreement). Our scalable framework generates prompts that capture diverse AI harms and human values while targeting cases with high disagreement rates, validated by human data. The benchmark includes 150 prompts with 15,000 ratings from 100 human annotators, enriched with demographic and psychological traits and prompt-level features of harmful actions, effects, and values. Our analyses show that prompts that relate to imminent risks and tangible harms amplify perceived harmfulness, while annotator traits (e.g., toxicity experience, education) and their interactions with prompt content explain systematic disagreement. We benchmark AI safety models and alignment methods on PluriHarms, finding that while personalization significantly improves prediction of human harm judgments, considerable room remains for future progress. By explicitly targeting value diversity and disagreement, our work provides a principled benchmark for moving beyond "one-size-fits-all" safety toward pluralistically safe AI.
♻ ☆ The Epistemic Planning Domain Definition Language: Official Guideline
Epistemic planning extends (multi-agent) automated planning by making agents' knowledge and beliefs first-class aspects of the planning formalism. One of the most well-known frameworks for epistemic planning is Dynamic Epistemic Logic (DEL), which offers an rich and natural semantics for modelling problems in this setting. The high expressive power provided by DEL make DEL-based epistemic planning a challenging problem to tackle both theoretically, and in practical implementations. As a result, existing epistemic planners often target different DEL fragments, and typically rely on ad hoc languages to represent benchmarks, and sometimes no language at all. This fragmentation hampers comparison, reuse, and systematic benchmark development. We address these issues by introducing the Epistemic Planning Domain Definition Language (EPDDL). EPDDL provides a unique PDDL-like representation that captures the entire DEL semantics, enabling uniform specification of epistemic planning tasks. Our main contributions are: 1. A formal development of abstract event models, a novel representation for epistemic actions used to define the semantics of our language; 2. A formal specification of EPDDL's syntax and semantics grounded in DEL with abstract event models. Through examples of representative benchmarks, we illustrate how EPDDL facilitates interoperability, reproducible evaluation, and future advances in epistemic planning.
♻ ☆ Self-Foveate: Enhancing Diversity and Difficulty of Synthesized Instructions from Unsupervised Text via Multi-Level Foveation ACL 2025
Synthesizing high-quality instruction data from unsupervised text is a promising paradigm for training large language models (LLMs), yet automated methods for this task still exhibit significant limitations in the diversity and difficulty of synthesized instructions. To address these challenges, we propose Self-Foveate, an LLM-driven method for instruction synthesis. Inspired by hierarchical human visual perception, Self-Foveate introduces a "Micro-Scatter-Macro" multi-level foveation methodology that guides the extraction of textual information at three complementary granularities, from fine-grained details through cross-region connections to holistic patterns, thereby enhancing both the diversity and difficulty of synthesized instructions. Furthermore, a re-synthesis module is incorporated to improve the fidelity of instructions to source text and their overall quality. Comprehensive experiments across multiple unsupervised corpora and diverse model architectures demonstrate that Self-Foveate consistently outperforms existing methods. We publicly release our code at https://github.com/Mubuky/Self-Foveate
comment: Accepted to ACL 2025 (Findings). 23 pages, 4 figures
♻ ☆ How to Trick Your AI TA: A Systematic Study of Academic Jailbreaking in LLM Code Evaluation SP
The use of Large Language Models (LLMs) as automatic judges for code evaluation is becoming increasingly prevalent in academic environments. But their reliability can be compromised by students who may employ adversarial prompting strategies in order to induce misgrading and secure undeserved academic advantages. In this paper, we present the first large-scale study of jailbreaking LLM-based automated code evaluators in academic context. Our contributions are: (i) We systematically adapt 20+ jailbreaking strategies for jailbreaking AI code evaluators in the academic context, defining a new class of attacks termed academic jailbreaking. (ii) We release a poisoned dataset of 25K adversarial student submissions, specifically designed for the academic code-evaluation setting, sourced from diverse real-world coursework and paired with rubrics and human-graded references, and (iii) In order to capture the multidimensional impact of academic jailbreaking, we systematically adapt and define three jailbreaking metrics (Jailbreak Success Rate, Score Inflation, and Harmfulness). (iv) We comprehensively evalulate the academic jailbreaking attacks using six LLMs. We find that these models exhibit significant vulnerability, particularly to persuasive and role-play-based attacks (up to 97% JSR). Our adversarial dataset and benchmark suite lay the groundwork for next-generation robust LLM-based evaluators in academic code assessment.
comment: This manuscript has been withdrawn by the authors because the methodology and results have been superseded by a more rigorous framework (SPACI and AST-ASIP). The corrected and expanded findings are now available in arXiv:2601.21360. Please cite the new manuscript instead
♻ ☆ Toward Learning POMDPs Beyond Full-Rank Actions and State Observability
We are interested in enabling autonomous agents to learn and reason about systems with hidden states, such as locking mechanisms. We cast this problem as learning the parameters of a discrete Partially Observable Markov Decision Process (POMDP). The agent begins with knowledge of the POMDP's actions and observation spaces, but not its state space, transitions, or observation models. These properties must be constructed from a sequence of actions and observations. Spectral approaches to learning models of partially observable domains, such as Predictive State Representations (PSRs), learn representations of state that are sufficient to predict future outcomes. PSR models, however, do not have explicit transition and observation system models that can be used with different reward functions to solve different planning problems. Under a mild set of rankness assumptions on the products of transition and observation matrices, we show how PSRs learn POMDP matrices up to a similarity transform, and this transform may be estimated via tensor decomposition methods. Our method learns observation matrices and transition matrices up to a partition of states, where the states in a single partition have the same observation distributions corresponding to actions whose transition matrices are full-rank. Our experiments suggest that explicit observation and transition likelihoods can be leveraged to generate new plans for different goals and reward functions after the model has been learned. We also show that learning a POMDP beyond a partition of states is impossible from sequential data by constructing two POMDPs that agree on all observation distributions but differ in their transition dynamics.
comment: Update abstract
♻ ☆ Abacus: A Cost-Based Optimizer for Semantic Operator Systems VLDB'26
LLMs enable an exciting new class of data processing applications over large collections of unstructured documents. Several new programming frameworks have enabled developers to build these applications by composing them out of semantic operators: a declarative set of AI-powered data transformations with natural language specifications. These include LLM-powered maps, filters, joins, etc. used for document processing tasks such as information extraction, summarization, and more. While systems of semantic operators have achieved strong performance on benchmarks, they can be difficult to optimize. An optimizer for this setting must determine how to physically implement each semantic operator in a way that optimizes the system globally. Existing optimizers are limited in the number of optimizations they can apply, and most (if not all) cannot optimize system quality, cost, or latency subject to constraint(s) on the other dimensions. In this paper we present Abacus, an extensible, cost-based optimizer which searches for the best implementation of a semantic operator system given a (possibly constrained) optimization objective. Abacus estimates operator performance by leveraging a minimal set of validation examples, prior beliefs about operator performance, and/or an LLM judge. We evaluate Abacus on document processing workloads in the biomedical and legal domains (BioDEX; CUAD) and multi-modal question answering (MMQA). We demonstrate that, on-average, systems optimized by Abacus achieve 6.7%-39.4% better quality and are 10.8x cheaper and 3.4x faster than the next best system.
comment: To be published in VLDB'26, 14 pages, 8 figures
♻ ☆ Information-Theoretic Causal Bounds under Unmeasured Confounding
We develop a data-driven information-theoretic framework for sharp partial identification of causal effects under unmeasured confounding. Existing approaches often rely on restrictive assumptions, such as bounded or discrete outcomes; require external inputs (for example, instrumental variables, proxies, or user-specified sensitivity parameters); necessitate full structural causal model specifications; or focus solely on population-level averages while neglecting covariate-conditional treatment effects. We overcome all four limitations simultaneously by establishing novel information-theoretic, data-driven divergence bounds. Our key theoretical contribution shows that the f-divergence between the observational distribution P(Y | A = a, X = x) and the interventional distribution P(Y | do(A = a), X = x) is upper bounded by a function of the propensity score alone. This result enables sharp partial identification of conditional causal effects directly from observational data, without requiring external sensitivity parameters, auxiliary variables, full structural specifications, or outcome boundedness assumptions. For practical implementation, we develop a semiparametric estimator satisfying Neyman orthogonality (Chernozhukov et al., 2018), which ensures square-root-n consistent inference even when nuisance functions are estimated using flexible machine learning methods. Simulation studies and real-world data applications, implemented in the GitHub repository (https://github.com/yonghanjung/Information-Theretic-Bounds), demonstrate that our framework provides tight and valid causal bounds across a wide range of data-generating processes.
♻ ☆ TurkBench: A Benchmark for Evaluating Turkish Large Language Models EACL 2026
With the recent surge in the development of large language models, the need for comprehensive and language-specific evaluation benchmarks has become critical. While significant progress has been made in evaluating English-language models, benchmarks for other languages, particularly those with unique linguistic characteristics such as Turkish, remain less developed. Our study introduces TurkBench, a comprehensive benchmark designed to assess the capabilities of generative large language models in the Turkish language. TurkBench involves 8,151 data samples across 21 distinct subtasks. These are organized under six main categories of evaluation: Knowledge, Language Understanding, Reasoning, Content Moderation, Turkish Grammar and Vocabulary, and Instruction Following. The diverse range of tasks and the culturally relevant data would provide researchers and developers with a valuable tool for evaluating their models and identifying areas for improvement. We further publish our benchmark for online submissions at https://huggingface.co/turkbench
comment: Accepted by EACL 2026 SIGTURK
♻ ☆ Interpreting and Controlling LLM Reasoning through Integrated Policy Gradient
Large language models (LLMs) demonstrate strong reasoning abilities in solving complex real-world problems. Yet, the internal mechanisms driving these complex reasoning behaviors remain opaque. Existing interpretability approaches targeting reasoning either identify components (e.g., neurons) correlated with special textual patterns, or rely on human-annotated contrastive pairs to derive control vectors. Consequently, current methods struggle to precisely localize complex reasoning mechanisms or capture sequential influence from model internal workings to the reasoning outputs. In this paper, built on outcome-oriented and sequential-influence-aware principles, we focus on identifying components that have sequential contribution to reasoning behavior where outcomes are cumulated by long-range effects. We propose Integrated Policy Gradient (IPG), a novel framework that attributes reasoning behaviors to model's inner components by propagating compound outcome-based signals such as post reasoning accuracy backward through model inference trajectories. Empirical evaluations demonstrate that our approach achieves more precise localization and enables reliable modulation of reasoning behaviors (e.g., reasoning capability, reasoning strength) across diverse reasoning models.
♻ ☆ Transformers can do Bayesian Clustering
Bayesian clustering accounts for uncertainty but is computationally demanding at scale. Furthermore, real-world datasets often contain missing values, and simple imputation ignores the associated uncertainty, resulting in suboptimal results. We present Cluster-PFN, a Transformer-based model that extends Prior-Data Fitted Networks (PFNs) to unsupervised Bayesian clustering. Trained entirely on synthetic datasets generated from a finite Gaussian Mixture Model (GMM) prior, Cluster-PFN learns to estimate the posterior distribution over both the number of clusters and the cluster assignments. Our method estimates the number of clusters more accurately than handcrafted model selection procedures such as AIC, BIC and Variational Inference (VI), and achieves clustering quality competitive with VI while being orders of magnitude faster. Cluster-PFN can be trained on complex priors that include missing data, outperforming imputation-based baselines on real-world genomic datasets, at high missingness. These results show that the Cluster-PFN can provide scalable and flexible Bayesian clustering.
♻ ☆ Uncertainty-driven Adaptive Exploration AAMAS 2026
Adaptive exploration methods propose ways to learn complex policies via alternating between exploration and exploitation. An important question for such methods is to determine the appropriate moment to switch between exploration and exploitation and vice versa. This is critical in domains that require the learning of long and complex sequences of actions. In this work, we present a generic adaptive exploration framework that employs uncertainty to address this important issue in a principled manner. Our framework includes previous adaptive exploration approaches as special cases. Moreover, we can incorporate in our framework any uncertainty-measuring mechanism of choice, for instance mechanisms used in intrinsic motivation or epistemic uncertainty-based exploration methods. We experimentally demonstrate that our framework gives rise to adaptive exploration strategies that outperform standard ones across several environments.
comment: This is an extended version (full paper + appendix) of the paper titled "A Novel Framework for Uncertainty-Driven Adaptive Exploration" accepted as a full paper at AAMAS 2026. The accepted paper can be found in https://openreview.net/forum?id=j5awxzdsU9
♻ ☆ The Path of Least Resistance: Guiding LLM Reasoning Trajectories with Prefix Consensus ICLR 2026
Large language models achieve strong reasoning performance, but inference strategies such as Self-Consistency (SC) are computationally expensive, as they fully expand all reasoning traces. We introduce PoLR (Path of Least Resistance), the first inference-time method to leverage prefix consistency for compute-efficient reasoning. PoLR clusters short prefixes of reasoning traces, identifies the dominant cluster, and expands all paths in that cluster, preserving the accuracy benefits of SC while substantially reducing token usage and latency. Our theoretical analysis, framed via mutual information and entropy, explains why early reasoning steps encode strong signals predictive of final correctness. Empirically, PoLR consistently matches or exceeds SC across GSM8K, MATH500, AIME24/25, and GPQA-DIAMOND, reducing token usage by up to 60% and wall-clock latency by up to 50%. Moreover, PoLR is fully complementary to adaptive inference methods (e.g., Adaptive Consistency, Early-Stopping SC) and can serve as a drop-in pre-filter, making SC substantially more efficient and scalable without requiring model fine-tuning.
comment: Accepted at ICLR 2026. https://openreview.net/forum?id=hrnSqERgPn
♻ ☆ NOBLE -- Neural Operator with Biologically-informed Latent Embeddings to Capture Experimental Variability in Biological Neuron Models
Characterizing the cellular properties of neurons is fundamental to understanding their function in the brain. In this quest, the generation of bio-realistic models is central towards integrating multimodal cellular data sets and establishing causal relationships. However, current modeling approaches remain constrained by the limited availability and intrinsic variability of experimental neuronal data. The deterministic formalism of bio-realistic models currently precludes accounting for the natural variability observed experimentally. While deep learning is becoming increasingly relevant in this space, it fails to capture the full biophysical complexity of neurons, their nonlinear voltage dynamics, and variability. To address these shortcomings, we introduce NOBLE, a neural operator framework that learns a mapping from a continuous frequency-modulated embedding of interpretable neuron features to the somatic voltage response induced by current injection. Trained on synthetic data generated from bio-realistic neuron models, NOBLE predicts distributions of neural dynamics accounting for the intrinsic experimental variability. Unlike conventional bio-realistic neuron models, interpolating within the embedding space offers models whose dynamics are consistent with experimentally observed responses. NOBLE enables the efficient generation of synthetic neurons that closely resemble experimental data and exhibit trial-to-trial variability, offering a $4200\times$ speedup over the numerical solver. NOBLE is the first scaled-up deep learning framework that validates its generalization with real experimental data. To this end, NOBLE captures fundamental neural properties in a unique and emergent manner that opens the door to a better understanding of cellular composition and computations, neuromorphic architectures, large-scale brain circuits, and general neuroAI applications.
♻ ☆ Mapping the Unseen: Unified Promptable Panoptic Mapping with Dynamic Labeling using Foundation Models
Panoptic maps enable robots to reason about both geometry and semantics. However, open-vocabulary models repeatedly produce closely related labels that split panoptic entities and degrade volumetric consistency. The proposed UPPM advances open-world scene understanding by leveraging foundation models to introduce a panoptic Dynamic Descriptor that reconciles open-vocabulary labels with unified category structure and geometric size priors. The fusion for such dynamic descriptors is performed within a multi-resolution multi-TSDF map using language-guided open-vocabulary panoptic segmentation and semantic retrieval, resulting in a persistent and promptable panoptic map without additional model training. Based on our evaluation experiments, UPPM shows the best overall performance in terms of the map reconstruction accuracy and the panoptic segmentation quality. The ablation study investigates the contribution for each component of UPPM (custom NMS, blurry-frame filtering, and unified semantics) to the overall system performance. Consequently, UPPM preserves open-vocabulary interpretability while delivering strong geometric and panoptic accuracy.
♻ ☆ Advancing AI Research Assistants with Expert-Involved Learning
Large language models (LLMs) and large multimodal models (LMMs) promise to accelerate biomedical discovery, yet their reliability remains unclear. We introduce ARIEL (AI Research Assistant for Expert-in-the-Loop Learning), an open-source evaluation and optimization framework that pairs a curated multimodal biomedical corpus with expert-vetted tasks to probe two capabilities: full-length article summarization and fine-grained figure interpretation. Using uniform protocols and blinded PhD-level evaluation, we find that state-of-the-art models generate fluent but incomplete summaries, whereas LMMs struggle with detailed visual reasoning. We later observe that prompt engineering and lightweight fine-tuning substantially improve textual coverage, and a compute-scaled inference strategy enhances visual question answering. We build an ARIEL agent that integrates textual and visual cues, and we show it can propose testable mechanistic hypotheses. ARIEL delineates current strengths and limitations of foundation models, and provides a reproducible platform for advancing trustworthy AI in biomedicine.
comment: 36 pages, 7 figures
♻ ☆ Infinite-World: Scaling Interactive World Models to 1000-Frame Horizons via Pose-Free Hierarchical Memory
We propose Infinite-World, a robust interactive world model capable of maintaining coherent visual memory over 1000+ frames in complex real-world environments. While existing world models can be efficiently optimized on synthetic data with perfect ground-truth, they lack an effective training paradigm for real-world videos due to noisy pose estimations and the scarcity of viewpoint revisits. To bridge this gap, we first introduce a Hierarchical Pose-free Memory Compressor (HPMC) that recursively distills historical latents into a fixed-budget representation. By jointly optimizing the compressor with the generative backbone, HPMC enables the model to autonomously anchor generations in the distant past with bounded computational cost, eliminating the need for explicit geometric priors. Second, we propose an Uncertainty-aware Action Labeling module that discretizes continuous motion into a tri-state logic. This strategy maximizes the utilization of raw video data while shielding the deterministic action space from being corrupted by noisy trajectories, ensuring robust action-response learning. Furthermore, guided by insights from a pilot toy study, we employ a Revisit-Dense Finetuning Strategy using a compact, 30-minute dataset to efficiently activate the model's long-range loop-closure capabilities. Extensive experiments, including objective metrics and user studies, demonstrate that Infinite-World achieves superior performance in visual quality, action controllability, and spatial consistency.
comment: project page: https://rq-wu.github.io/projects/infinite-world/index.html
♻ ☆ Code2Bench: Scaling Source and Rigor for Dynamic Benchmark Construction
The evaluation of code-generating Large Language Models (LLMs) is fundamentally constrained by two intertwined challenges: a reliance on static, easily contaminated problem sources and the use of superficial, low-rigor testing. This paper introduces a new benchmark construction philosophy, Dual Scaling, designed to systematically address both limitations. Our approach involves continuously scaling the source of problems from dynamic, real-world code repositories and systematically scaling the rigor of tests via automated, high-coverage Property-Based Testing (PBT). We instantiate this philosophy in CODE2BENCH, an end-to-end framework that leverages Scope Graph analysis for principled dependency classification and a 100% branch coverage quality gate to ensure test suite integrity. Using this framework, we construct CODE2BENCH-2509, a new benchmark suite with native instances in both Python and Java. Our extensive evaluation of 10 state-of-the-art LLMs on CODE2BENCH-2509, powered by a novel "diagnostic fingerprint" visualization, yields three key insights: (1) models exhibit a fundamental performance gap, excelling at API application (Weakly Self-Contained tasks) but struggling with algorithmic synthesis (Self-Contained tasks); (2) a model's performance is profoundly shaped by the target language's ecosystem, a nuance we are the first to systematically quantify; and (3) our rigorous, scaled testing is critical in uncovering an "illusion of correctness" prevalent in simpler benchmarks. Our work presents a robust, scalable, and diagnostic paradigm for the next generation of LLM evaluation in software engineering. The code, data, and results are available at https://code2bench.github.io/.
♻ ☆ Spiking Neural Networks for Continuous Control via End-to-End Model-Based Learning
Despite recent progress in training spiking neural networks (SNNs) for classification, their application to continuous motor control remains limited. Here, we demonstrate that fully spiking architectures can be trained end-to-end to control robotic arms with multiple degrees of freedom in continuous environments. Our predictive-control framework combines Leaky Integrate-and-Fire dynamics with surrogate gradients, jointly optimizing a forward model for dynamics prediction and a policy network for goal-directed action. We evaluate this approach on both a planar 2D reaching task and a simulated 6-DOF Franka Emika Panda robot with torque control. In direct comparison to non-spiking recurrent baselines trained under the same predictive-control pipeline, the proposed SNN achieves comparable task performance while using substantially fewer parameters. An extensive ablation study highlights the role of initialization, learnable time constants, adaptive thresholds, and latent-space compression as key contributors to stable training and effective control. Together, these findings establish spiking neural networks as a viable and scalable substrate for high-dimensional continuous control, while emphasizing the importance of principled architectural and training design.
♻ ☆ Building spatial world models from sparse transitional episodic memories ICLR 2026
Many animals possess a remarkable capacity to rapidly construct flexible cognitive maps of their environments. These maps are crucial for ethologically relevant behaviors such as navigation, exploration, and planning. Existing computational models typically require long sequential trajectories to build accurate maps, but neuroscience evidence suggests maps can also arise from integrating disjoint experiences governed by consistent spatial rules. We introduce the Episodic Spatial World Model (ESWM), a novel framework that constructs spatial maps from sparse, disjoint episodic memories. Across environments of varying complexity, ESWM predicts unobserved transitions from minimal experience, and the geometry of its latent space aligns with that of the environment. Because it operates on episodic memories that can be independently stored and updated, ESWM is inherently adaptive, enabling rapid adjustment to environmental changes. Furthermore, we demonstrate that ESWM readily enables near-optimal strategies for exploring novel environments and navigating between arbitrary points, all without the need for additional training. Our work demonstrates how neuroscience-inspired principles of episodic memory can advance the development of more flexible and generalizable world models.
comment: Accepted ICLR 2026
♻ ☆ Accurate and Efficient World Modeling with Masked Latent Transformers
The Dreamer algorithm has recently obtained remarkable performance across diverse environment domains by training powerful agents with simulated trajectories. However, the compressed nature of its world model's latent space can result in the loss of crucial information, negatively affecting the agent's performance. Recent approaches, such as $Δ$-IRIS and DIAMOND, address this limitation by training more accurate world models. However, these methods require training agents directly from pixels, which reduces training efficiency and prevents the agent from benefiting from the inner representations learned by the world model. In this work, we propose an alternative approach to world modeling that is both accurate and efficient. We introduce EMERALD (Efficient MaskEd latent tRAnsformer worLD model), a world model using a spatial latent state with MaskGIT predictions to generate accurate trajectories in latent space and improve the agent performance. On the Crafter benchmark, EMERALD achieves new state-of-the-art performance, becoming the first method to surpass human experts performance within 10M environment steps. Our method also succeeds to unlock all 22 Crafter achievements at least once during evaluation.
♻ ☆ Driving on Registers
We present DrivoR, a simple and efficient transformer-based architecture for end-to-end autonomous driving. Our approach builds on pretrained Vision Transformers (ViTs) and introduces camera-aware register tokens that compress multi-camera features into a compact scene representation, significantly reducing downstream computation without sacrificing accuracy. These tokens drive two lightweight transformer decoders that generate and then score candidate trajectories. The scoring decoder learns to mimic an oracle and predicts interpretable sub-scores representing aspects such as safety, comfort, and efficiency, enabling behavior-conditioned driving at inference. Despite its minimal design, DrivoR outperforms or matches strong contemporary baselines across NAVSIM-v1, NAVSIM-v2, and the photorealistic closed-loop HUGSIM benchmark. Our results show that a pure-transformer architecture, combined with targeted token compression, is sufficient for accurate, efficient, and adaptive end-to-end driving. Code and checkpoints will be made available via the project page.
♻ ☆ KVzap: Fast, Adaptive, and Faithful KV Cache Pruning
Growing context lengths in transformer-based language models have made the key-value (KV) cache a critical inference bottleneck. While many KV cache pruning methods have been proposed, they have not yet been adopted in major inference engines due to speed--accuracy trade-offs. We introduce KVzap, a fast, input-adaptive approximation of KVzip that works in both prefilling and decoding. On Qwen3-8B, Llama-3.1-8B-Instruct, and Qwen3-32B across long-context and reasoning tasks, KVzap achieves $2$--$4\times$ KV cache compression with negligible accuracy loss and achieves state-of-the-art performance on the KVpress leaderboard. Code and models are available at https://github.com/NVIDIA/kvpress.
♻ ☆ Problem Solved? Information Extraction Design Space for Layout-Rich Documents using LLMs EMNLP'25
This paper defines and explores the design space for information extraction (IE) from layout-rich documents using large language models (LLMs). The three core challenges of layout-aware IE with LLMs are 1) data structuring, 2) model engagement, and 3) output refinement. Our study investigates the sub-problems and methods within these core challenges, such as input representation, chunking, prompting, selection of LLMs, and multimodal models. It examines the effect of different design choices through LayIE-LLM, a new, open-source, layout-aware IE test suite, benchmarking against traditional, fine-tuned IE models. The results on two IE datasets show that LLMs require adjustment of the IE pipeline to achieve competitive performance: the optimized configuration found with LayIE-LLM achieves 13.3--37.5 F1 points more than a general-practice baseline configuration using the same LLM. To find a well-working configuration, we develop a one-factor-at-a-time (OFAT) method that achieves near-optimal results. Our method is only 0.8--1.8 points lower than the best full factorial exploration with a fraction (2.8%) of the required computation. Overall, we demonstrate that, if well-configured, general-purpose LLMs match the performance of specialized models, providing a cost-effective, finetuning-free alternative. Our test-suite is available at https://github.com/gayecolakoglu/LayIE-LLM.
comment: accepted at EMNLP'25
♻ ☆ Conformal Prediction for Causal Effects of Continuous Treatments NeurIPS 2025
Uncertainty quantification of causal effects is crucial for safety-critical applications such as personalized medicine. A powerful approach for this is conformal prediction, which has several practical benefits due to model-agnostic finite-sample guarantees. Yet, existing methods for conformal prediction of causal effects are limited to binary/discrete treatments and make highly restrictive assumptions such as known propensity scores. In this work, we provide a novel conformal prediction method for potential outcomes of continuous treatments. We account for the additional uncertainty introduced through propensity estimation so that our conformal prediction intervals are valid even if the propensity score is unknown. Our contributions are three-fold: (1) We derive finite-sample prediction intervals for potential outcomes of continuous treatments. (2) We provide an algorithm for calculating the derived intervals. (3) We demonstrate the effectiveness of the conformal prediction intervals in experiments on synthetic and real-world datasets. To the best of our knowledge, we are the first to propose conformal prediction for continuous treatments when the propensity score is unknown and must be estimated from data.
comment: Accepted at NeurIPS 2025
♻ ☆ Time2Vec Transformer for Robust Gesture Recognition from Low-Density sEMG
Accurate and responsive myoelectric prosthesis control typically relies on complex, dense multi-sensor arrays, which limits consumer accessibility. This paper presents a novel, data-efficient deep learning framework designed to achieve precise and accurate control using minimal sensor hardware. Leveraging an external dataset of 8 subjects, our approach implements a hybrid Transformer optimized for sparse, two-channel surface electromyography (sEMG). Unlike standard architectures that use fixed positional encodings, we integrate Time2Vec learnable temporal embeddings to capture the stochastic temporal warping inherent in biological signals. Furthermore, we employ a normalized additive fusion strategy that aligns the latent distributions of spatial and temporal features, preventing the destructive interference common in standard implementations. A two-stage curriculum learning protocol is utilized to ensure robust feature extraction despite data scarcity. The proposed architecture achieves a state-of-the-art multi-subject F1-score of 95.7% $\pm$ 0.20% for a 10-class movement set, statistically outperforming both a standard Transformer with fixed encodings and a recurrent CNN-LSTM model. Architectural optimization reveals that a balanced allocation of model capacity between spatial and temporal dimensions yields the highest stability. Furthermore, while direct transfer to a new unseen subject led to poor accuracy due to domain shifts, a rapid calibration protocol utilizing only two trials per gesture recovered performance from 21.0% $\pm$ 2.98% to 96.9% $\pm$ 0.52%. By validating that high-fidelity temporal embeddings can compensate for low spatial resolution, this work challenges the necessity of high-density sensing. The proposed framework offers a robust, cost-effective blueprint for next-generation prosthetic interfaces capable of rapid personalization.
♻ ☆ Understanding-informed Bias Mitigation for Fair CMR Segmentation
Artificial intelligence (AI) is increasingly being used for medical imaging tasks. However, there can be biases in AI models, particularly when they are trained using imbalanced training datasets. One such example has been the strong ethnicity bias effect in cardiac magnetic resonance (CMR) image segmentation models. Although this phenomenon has been reported in a number of publications, little is known about the effectiveness of bias mitigation algorithms in this domain. We aim to investigate the impact of common bias mitigation methods to address bias between Black and White subjects in AI-based CMR segmentation models. Specifically, we use oversampling, importance reweighing and Group DRO as well as combinations of these techniques to mitigate the ethnicity bias. Second, motivated by recent findings on the root causes of AI-based CMR segmentation bias, we evaluate the same methods using models trained and evaluated on cropped CMR images. We find that bias can be mitigated using oversampling, significantly improving performance for the underrepresented Black subjects whilst not significantly reducing the majority White subjects' performance. Using cropped images increases performance for both ethnicities and reduces the bias, whilst adding oversampling as a bias mitigation technique with cropped images reduces the bias further. When testing the models on an external clinical validation set, we find high segmentation performance and no statistically significant bias.
comment: Accepted for publication at the Journal of Machine Learning for Biomedical Imaging (MELBA) https://melba-journal.org/2025:036
♻ ☆ Dataset-Driven Channel Masks in Transformers for Multivariate Time Series ICASSP 2026
Recent advancements in foundation models have been successfully extended to the time series (TS) domain, facilitated by the emergence of large-scale TS datasets. However, previous efforts have primarily Capturing channel dependency (CD) is essential for modeling multivariate time series (TS), and attention-based methods have been widely employed for this purpose. Nonetheless, these methods primarily focus on modifying the architecture, often neglecting the importance of dataset-specific characteristics. In this work, we introduce the concept of partial channel dependence (PCD) to enhance CD modeling in Transformer-based models by leveraging dataset-specific information to refine the CD captured by the model. To achieve PCD, we propose channel masks (CMs), which are integrated into the attention matrices of Transformers via element-wise multiplication. CMs consist of two components: 1) a similarity matrix that captures relationships between the channels, and 2) dataset-specific and learnable domain parameters that refine the similarity matrix. We validate the effectiveness of PCD across diverse tasks and datasets with various backbones. Code is available at this repository: https://github.com/YonseiML/pcd.
comment: ICASSP 2026. Preliminary version: NeurIPS Workshop on Time Series in the Age of Large Models 2024 (Oral presentation)
♻ ☆ Patronus: Interpretable Diffusion Models with Prototypes
Uncovering the opacity of diffusion-based generative models is urgently needed, as their applications continue to expand while their underlying procedures largely remain a black box. With a critical question -- how can the diffusion generation process be interpreted and understood? -- we proposed Patronus, an interpretable diffusion model that incorporates a prototypical network to encode semantics in visual patches, revealing what visual patterns are modeled and where and when they emerge throughout denoising. This interpretability of Patronus provides deeper insights into the generative mechanism, enabling the detection of shortcut learning via unwanted correlations and the tracing of semantic emergence across timesteps. We evaluate Patronus on four natural image datasets and one medical imaging dataset, demonstrating both faithful interpretability and strong generative performance. With this work, we open new avenues for understanding and steering diffusion models through prototype-based interpretability.\\ Our code is available at https://github.com/nina-weng/patronus}{https://github.com/nina-weng/patronus.
♻ ☆ A Research Roadmap for Augmenting Software Engineering Processes and Software Products with Generative AI
Generative AI (GenAI) is rapidly transforming software engineering (SE) practices, influencing how SE processes are executed, as well as how software systems are developed, operated, and evolved. This paper applies design science research to build a roadmap for GenAI-augmented SE. The process consists of three cycles that incrementally integrate multiple sources of evidence, including collaborative discussions from the FSE 2025 "Software Engineering 2030" workshop, rapid literature reviews, and external feedback sessions involving peers. McLuhan's tetrads were used as a conceptual instrument to systematically capture the transforming effects of GenAI on SE processes and software products.The resulting roadmap identifies four fundamental forms of GenAI augmentation in SE and systematically characterizes their related research challenges and opportunities. These insights are then consolidated into a set of future research directions. By grounding the roadmap in a rigorous multi-cycle process and cross-validating it among independent author teams and peers, the study provides a transparent and reproducible foundation for analyzing how GenAI affects SE processes, methods and tools, and for framing future research within this rapidly evolving area. Based on these findings, the article finally makes ten predictions for SE in the year 2030.
♻ ☆ CP-Agent: Agentic Constraint Programming
The translation of natural language to formal constraint models requires expertise in the problem domain and modeling frameworks. To explore the effectiveness of agentic workflows, we propose CP-Agent, a Python coding agent that uses the ReAct framework with a persistent IPython kernel. We provide the relevant domain knowledge as a project prompt of under 50 lines. The algorithm works by iteratively executing code, observing the solver's feedback, and refining constraint models based on execution results. We evaluate CP-Agent on 101 constraint programming problems from CP-Bench. We made minor changes to the benchmark to address systematic ambiguities in the problem specifications and errors in the ground-truth models. On the clarified benchmark, CP-Agent achieves perfect accuracy on all 101 problems. Our experiments show that minimal guidance outperforms detailed procedural scaffolding. Our experiments also show that explicit task management tools can have both positive and negative effects on focused modeling tasks.
♻ ☆ PRISM: Deriving a White-Box Transformer as a Signal-Noise Decomposition Operator via Maximum Coding Rate Reduction
Deep learning models, particularly Transformers, are often criticized as "black boxes" and lack interpretability. We propose Prism, a white-box attention-based architecture derived from the principles of Maximizing Coding Rate Reduction ($\text{MCR}^2$). By modeling the attention mechanism as a gradient ascent process on a distinct signal-noise manifold, we introduce a specific irrational frequency separation ($π$-RoPE) to enforce incoherence between signal (semantic) and noise (syntactic) subspaces. We show empirical evidence that these geometric inductive biases can induce unsupervised functional disentanglement alone. Prism spontaneously specializes its attention heads into spectrally distinct regimes: low-frequency heads capturing long-range causal dependencies (signal) and high-frequency heads handling local syntactic constraints and structural artifacts. To provide a theoretical grounding for these spectral phenomena, we draw an analogy between attention mechanism and a Hamiltonian dynamical system and identify that the standard geometric progression of Rotary Positional Embeddings (RoPE) induces dense resonance networks (Arnold Tongues), leading to feature rank collapse. Empirical validation on 124M-parameter models trained on OpenWebText demonstrates that Prism spontaneously isolates the Attention Sink pathology and maintains isentropic information flow across layers. Further, we suggest a physics-informed plug-and-play intervention KAM-RoPE for large language models (LLMs). Our results suggest that interpretability and performance can be unified through principled geometric construction, offering a theoretically grounded alternative to heuristic architectural modifications
comment: 12 pages, 6 figures. Derives Transformer as a signal-noise decomposition operator via Maximizing Coding Rate Reduction. Identifies 'Attention Sink' as spectral resonance (Arnold Tongues) and proposes $π$-RoPE for dynamical stability
♻ ☆ video-SALMONN S: Memory-Enhanced Streaming Audio-Visual LLM
Long-duration streaming video understanding is fundamental for future AI agents, yet remains limited by ineffective long-term memory. We introduce video-SALMONN S, a memory-enhanced streaming audio-visual large language model that processes over 3-hour videos at 1 FPS and 360p resolution, outperforming strong non-streaming models under the same memory budget. In addition to token merging or downsampling, video-SALMONN S is the first to employ test-time training (TTT) as a streaming memory mechanism for video understanding. TTT continuously transforms short-term multimodal representations into long-term memory embedded in model parameters. To improve long-range dependency modeling and memory capacity, we propose (i) a TTT_MEM layer with an additional long-span prediction objective, (ii) a two-stage training scheme, and (iii) a modality-aware memory reader. We further introduce the Episodic Learning from Video Memory (ELViM) benchmark, simulating agent-like scenarios where models must learn from videos observed hours earlier. video-SALMONN S consistently outperforms both streaming and non-streaming baselines by 3-7% on long video benchmarks. Notably, video-SALMONN S achieves a 15% absolute accuracy improvement over strong non-streaming models on ELViM, demonstrating strong learning abilities from video memory.
♻ ☆ The Psychology of Learning from Machines: Anthropomorphic AI and the Paradox of Automation in Education IEEE
As AI tutors enter classrooms at unprecedented speed, their deployment increasingly outpaces our grasp of the psychological and social consequences of such technology. Yet decades of research in automation psychology, human factors, and human-computer interaction provide crucial insights that remain underutilized in educational AI design. This work synthesizes four research traditions -- automation psychology, human factors engineering, HCI, and philosophy of technology -- to establish a comprehensive framework for understanding how learners psychologically relate to anthropomorphic AI tutors. We identify three persistent challenges intensified by Generative AI's conversational fluency. First, learners exhibit dual trust calibration failures -- automation bias (uncritical acceptance) and algorithm aversion (excessive rejection after errors) -- with an expertise paradox where novices overrely while experts underrely. Second, while anthropomorphic design enhances engagement, it can distract from learning and foster harmful emotional attachment. Third, automation ironies persist: systems meant to aid cognition introduce designer errors, degrade skills through disuse, and create monitoring burdens humans perform poorly. We ground this theoretical synthesis through comparative analysis of over 104,984 YouTube comments across AI-generated philosophical debates and human-created engineering tutorials, revealing domain-dependent trust patterns and strong anthropomorphic projection despite minimal cues. For engineering education, our synthesis mandates differentiated approaches: AI tutoring for technical foundations where automation bias is manageable through proper scaffolding, but human facilitation for design, ethics, and professional judgment where tacit knowledge transmission proves irreplaceable.
comment: camera-ready version of paper accepted at IEEE EDUCON 2026 (acknowledgment added and some typos/errors fixed)
♻ ☆ Don't Overthink it. Preferring Shorter Thinking Chains for Improved LLM Reasoning
Reasoning large language models (LLMs) heavily rely on scaling test-time compute to perform complex reasoning tasks by generating extensive "thinking" chains. While demonstrating impressive results, this approach incurs significant computational costs and inference time. In this work, we challenge the assumption that long thinking chains results in better reasoning capabilities. We first demonstrate that shorter reasoning chains within individual questions are significantly more likely to yield correct answers - up to 34.5% more accurate than the longest chain sampled for the same question. Based on these results, we suggest short-m@k, a novel reasoning LLM inference method. Our method executes k independent generations in parallel and halts computation once the first m thinking processes are done. The final answer is chosen using majority voting among these m chains. Basic short-1@k demonstrates similar or even superior performance over standard majority voting in low-compute settings - using up to 40% fewer thinking tokens. short-3@k, while slightly less efficient than short-1@k, consistently surpasses majority voting across all compute budgets, while still being substantially faster (up to 33% wall time reduction). To further validate our findings, we finetune LLMs using short, long, and randomly selected reasoning chains. We then observe that training on the shorter ones leads to better performance. Our findings suggest rethinking current methods of test-time compute in reasoning LLMs, emphasizing that longer "thinking" does not necessarily translate to improved performance and can, counter-intuitively, lead to degraded results.
♻ ☆ Sensitivity analysis of image classification models using generalized polynomial chaos
Integrating advanced communication protocols in production has accelerated the adoption of data-driven predictive quality methods, notably machine learning (ML) models. However, ML models in image classification often face significant uncertainties arising from model, data, and domain shifts. These uncertainties lead to overconfidence in the classification model's output. To better understand these models, sensitivity analysis can help to analyze the relative influence of input parameters on the output. This work investigates the sensitivity of image classification models used for predictive quality. We propose modeling the distributional domain shifts of inputs with random variables and quantifying their impact on the model's outputs using Sobol indices computed via generalized polynomial chaos (GPC). This approach is validated through a case study involving a welding defect classification problem, utilizing a fine-tuned ResNet18 model and an emblem classification model used in BMW Group production facilities.
♻ ☆ Remapping and navigation of an embedding space via error minimization: a fundamental organizational principle of cognition in natural and artificial systems
The emerging field of diverse intelligence seeks an integrated view of problem-solving in agents of very different provenance, composition, and substrates. From subcellular chemical networks to swarms of organisms, and across evolved, engineered, and chimeric systems, it is hypothesized that scale-invariant principles of decision-making can be discovered. We propose that cognition in both natural and synthetic systems can be characterized and understood by the interplay between two equally important invariants: (1) the remapping of embedding spaces, and (2) the navigation within these spaces. Biological collectives, from single cells to entire organisms (and beyond), remap transcriptional, morphological, physiological, or 3D spaces to maintain homeostasis and regenerate structure, while navigating these spaces through distributed error correction. Modern Artificial Intelligence (AI) systems, including transformers, diffusion models, and neural cellular automata enact analogous processes by remapping data into latent embeddings and refining them iteratively through contextualization. We argue that this dual principle - remapping and navigation of embedding spaces via iterative error minimization - constitutes a substrate-independent invariant of cognition. Recognizing this shared mechanism not only illuminates deep parallels between living systems and artificial models, but also provides a unifying framework for engineering adaptive intelligence across scales.
comment: 41 pages, 5 figures
♻ ☆ SEDformer: Event-Synchronous Spiking Transformers for Irregular Telemetry Time Series Forecasting
Telemetry streams from large-scale Internet-connected systems (e.g., IoT deployments and online platforms) naturally form an irregular multivariate time series (IMTS) whose accurate forecasting is operationally vital. A closer examination reveals a defining Sparsity-Event Duality (SED) property of IMTS, i.e., long stretches with sparse or no observations are punctuated by short, dense bursts where most semantic events (observations) occur. However, existing Graph- and Transformer-based forecasters ignore SED: pre-alignment to uniform grids with heavy padding violates sparsity by inflating sequences and forcing computation at non-informative steps, while relational recasting weakens event semantics by disrupting local temporal continuity. These limitations motivate a more faithful and natural modeling paradigm for IMTS that aligns with its SED property. We find that Spiking Neural Networks meet this requirement, as they communicate via sparse binary spikes and update in an event-driven manner, aligning naturally with the SED nature of IMTS. Therefore, we present SEDformer, an SED-enhanced Spiking Transformer for telemetry IMTS forecasting that couples: (1) a SED-based Spike Encoder converts raw observations into event synchronous spikes using an Event-Aligned LIF neuron, (2) an Event-Preserving Temporal Downsampling module compresses long gaps while retaining salient firings and (3) a stack of SED-based Spike Transformer blocks enable intra-series dependency modeling with a membrane-based linear attention driven by EA-LIF spiking features. Experiments on public telemetry IMTS datasets show that SEDformer attains state-of-the-art forecasting accuracy while reducing energy and memory usage, providing a natural and efficient path for modeling IMTS.
comment: Under review
♻ ☆ Evalet: Evaluating Large Language Models by Fragmenting Outputs into Functions
Practitioners increasingly rely on Large Language Models (LLMs) to evaluate generative AI outputs through "LLM-as-a-Judge" approaches. However, these methods produce holistic scores that obscure which specific elements influenced the assessments. We propose functional fragmentation, a method that dissects each output into key fragments and interprets the rhetoric functions that each fragment serves relative to evaluation criteria -- surfacing the elements of interest and revealing how they fulfill or hinder user goals. We instantiate this approach in Evalet, an interactive system that visualizes fragment-level functions across many outputs to support inspection, rating, and comparison of evaluations. A user study (N=10) found that, while practitioners struggled to validate holistic scores, our approach helped them identify 48% more evaluation misalignments. This helped them calibrate trust in LLM evaluations and rely on them to find more actionable issues in model outputs. Our work shifts LLM evaluation from quantitative scores toward qualitative, fine-grained analysis of model behavior.
comment: The first two authors hold equal contribution. Conditionally accepted to CHI 2026
♻ ☆ A Multicenter Benchmark of Multiple Instance Learning Models for Lymphoma Subtyping from HE-stained Whole Slide Images
Timely and accurate lymphoma diagnosis is essential for guiding cancer treatment. Standard diagnostic practice combines hematoxylin and eosin (HE)-stained whole slide images with immunohistochemistry, flow cytometry, and molecular genetic tests to determine lymphoma subtypes, a process requiring costly equipment, skilled personnel, and causing treatment delays. Deep learning methods could assist pathologists by extracting diagnostic information from routinely available HE-stained slides, yet comprehensive benchmarks for lymphoma subtyping on multicenter data are lacking. In this work, we present the first multicenter lymphoma benchmarking dataset covering four common lymphoma subtypes and healthy control tissue. We systematically evaluate five publicly available pathology foundation models (H-optimus-1, H0-mini, Virchow2, UNI2, Titan) combined with attention-based (AB-MIL) and transformer-based (TransMIL) multiple instance learning aggregators across three magnifications (10x, 20x, 40x). On in-distribution test sets, models achieve multiclass balanced accuracies exceeding 80% across all magnifications, with all foundation models performing similarly and both aggregation methods showing comparable results. The magnification study reveals that 40x resolution is sufficient, with no performance gains from higher resolutions or cross-magnification aggregation. However, on out-of-distribution test sets, performance drops substantially to around 60%, highlighting significant generalization challenges. To advance the field, larger multicenter studies covering additional rare lymphoma subtypes are needed. We provide an automated benchmarking pipeline to facilitate such future research.
comment: 19 pages
♻ ☆ Training-Free Text-Guided Color Editing with Multi-Modal Diffusion Transformer
Text-guided color editing in images and videos is a fundamental yet unsolved problem, requiring fine-grained manipulation of color attributes, including albedo, light source color, and ambient lighting, while preserving physical consistency in geometry, material properties, and light-matter interactions. Existing training-free methods offer broad applicability across editing tasks but struggle with precise color control and often introduce visual inconsistency in both edited and non-edited regions. In this work, we present ColorCtrl, a training-free color editing method that leverages the attention mechanisms of modern Multi-Modal Diffusion Transformers (MM-DiT). By disentangling structure and color through targeted manipulation of attention maps and value tokens, our method enables accurate and consistent color editing, along with word-level control of attribute intensity. Our method modifies only the intended regions specified by the prompt, leaving unrelated areas untouched. Extensive experiments on both SD3 and FLUX.1-dev demonstrate that ColorCtrl outperforms existing training-free approaches and achieves state-of-the-art performances in both edit quality and consistency. Furthermore, our method surpasses strong commercial models such as FLUX.1 Kontext Max and GPT-4o Image Generation in terms of consistency. When extended to video models like CogVideoX, our approach exhibits greater advantages, particularly in maintaining temporal coherence and editing stability. Finally, our method also generalizes to instruction-based editing diffusion models such as Step1X-Edit and FLUX.1 Kontext dev, further demonstrating its versatility.
comment: https://zxyin.github.io/ColorCtrl
♻ ☆ Multi-Agent Causal Reasoning System for Error Pattern Rule Automation in Vehicles
Modern vehicles generate thousands of different discrete events known as Diagnostic Trouble Codes (DTCs). Automotive manufacturers use Boolean combinations of these codes, called error patterns (EPs), to characterize system faults and ensure vehicle safety. Yet, EP rules are still manually handcrafted by domain experts, a process that is expensive and prone to errors as vehicle complexity grows. This paper introduces CAREP (Causal Automated Reasoning for Error Patterns), a multi-agent system that automatizes the generation of EP rules from high-dimensional event sequences of DTCs. CAREP combines a causal discovery agent that identifies potential DTC-EP relations, a contextual information agent that integrates metadata and descriptions, and an orchestrator agent that synthesizes candidate boolean rules together with interpretable reasoning traces. Evaluation on a large-scale automotive dataset with over 29,100 unique DTCs and 474 error patterns demonstrates that CAREP can automatically and accurately discover the unknown EP rules, outperforming LLM-only baselines while providing transparent causal explanations. By uniting practical causal discovery and agent-based reasoning, CAREP represents a step toward fully automated fault diagnostics, enabling scalable, interpretable, and cost-efficient vehicle maintenance.
comment: 7 pages, 3 figures
♻ ☆ SPGCL: Simple yet Powerful Graph Contrastive Learning via SVD-Guided Structural Perturbation
Graph Neural Networks (GNNs) are sensitive to structural noise from adversarial attacks or imperfections. Existing graph contrastive learning (GCL) methods typically rely on either random perturbations (e.g., edge dropping) for diversity or spectral augmentations (e.g., SVD) to preserve structural priors. However, random perturbations are structure-agnostic and may remove critical edges, while SVD-based views often lack sufficient diversity. Integrating these paradigms is challenging as they operate on discrete edge removal and continuous matrix factorization, respectively.We propose SPGCL, a framework for robust GCL via SVD-guided structural perturbation. Leveraging a recently developed SVD-based method that generalizes structural perturbation theory to arbitrary graphs, we design a two-stage strategy: (1) lightweight stochastic edge removal to inject diversity, and (2) truncated SVD to derive a structure-aware scoring matrix for sparse top-$P$ edge recovery. This integration offers three advantages: (1) Robustness to accidental deletion, as important edges can be recovered by SVD-guided scoring; (2) Enrichment with missing links, creating more informative contrastive views by introducing semantically meaningful edges; and (3) Controllable structural discrepancy, ensuring contrastive signals stem from semantic differences rather than edge-number gaps.Furthermore, we incorporate a contrastive fusion module with a global similarity constraint to align embeddings. Extensive experiments on ten benchmark datasets demonstrate that SPGCL consistently improves the robustness and accuracy of GNNs, outperforming state-of-the-art GCL and structure learning methods, validating its effectiveness in integrating previously disparate paradigms.
♻ ☆ Deadline-Aware, Energy-Efficient Control of Domestic Immersion Hot Water Heater AAAI 2026
Typical domestic immersion water heater systems are often operated continuously during winter, heating quickly rather than efficiently and ignoring predictable demand windows and ambient losses. We study deadline-aware control, where the aim is to reach a target temperature at a specified time while minimising energy consumption. We introduce an efficient Gymnasium environment that models an immersion hot water heater with first-order thermal losses and discrete on and off actions of 0 W and 6000 W applied every 120 seconds. Methods include a time-optimal bang-bang baseline, a zero-shot Monte Carlo Tree Search planner, and a Proximal Policy Optimisation policy. We report total energy consumption in watt-hours under identical physical dynamics. Across sweeps of initial temperature from 10 to 30 degrees Celsius, deadline from 30 to 90 steps, and target temperature from 40 to 80 degrees Celsius, PPO achieves the most energy-efficient performance at a 60-step horizon of 2 hours, using 3.23 kilowatt-hours, compared to 4.37 to 10.45 kilowatt-hours for bang-bang control and 4.18 to 6.46 kilowatt-hours for MCTS. This corresponds to energy savings of 26 percent at 30 steps and 69 percent at 90 steps. In a representative trajectory with a 50 kg water mass, 20 degrees Celsius ambient temperature, and a 60 degrees Celsius target, PPO consumes 54 percent less energy than bang-bang control and 33 percent less than MCTS. These results show that learned deadline-aware control reduces energy consumption under identical physical assumptions, while planners provide partial savings without training and learned policies offer near-zero inference cost once trained.
comment: Accepted at AAAI 2026
♻ ☆ IRIS: Implicit Reward-Guided Internal Sifting for Mitigating Multimodal Hallucination
Hallucination remains a fundamental challenge for Multimodal Large Language Models (MLLMs). While Direct Preference Optimization (DPO) is a key alignment framework, existing approaches often rely heavily on costly external evaluators for scoring or rewriting, incurring off-policy learnability gaps and discretization loss. Due to the lack of access to internal states, such feedback overlooks the fine-grained conflicts between different modalities that lead to hallucinations during generation. To address this issue, we propose IRIS (Implicit Reward-Guided Internal Sifting), which leverages continuous implicit rewards in the native log-probability space to preserve full information density and capture internal modal competition. This on-policy paradigm eliminates learnability gaps by utilizing self-generated preference pairs. By sifting these pairs based on multimodal implicit rewards, IRIS ensures that optimization is driven by signals that directly resolve modal conflicts. Extensive experiments demonstrate that IRIS achieves highly competitive performance on key hallucination benchmarks using only 5.7k samples, without requiring any external feedback during preference alignment. These results confirm that IRIS provides an efficient and principled paradigm for mitigating MLLM hallucinations.
♻ ☆ A2D: Any-Order, Any-Step Safety Alignment for Diffusion Language Models ICLR 2026
Diffusion large language models (dLLMs) enable any-order generation, but this flexibility enlarges the attack surface: harmful spans may appear at arbitrary positions, and template-based prefilling attacks such as DIJA bypass response-level refusals. We introduce A2D (Any-Order, Any-Step Defense), a token-level alignment method that aligns dLLMs to emit an [EOS] refusal signal whenever harmful content arises. By aligning safety directly at the token-level under randomized masking, A2D achieves robustness to both any-decoding-order and any-step prefilling attacks under various conditions. It also enables real-time monitoring: dLLMs may begin a response but automatically terminate if unsafe continuation emerges. On safety benchmarks, A2D consistently prevents the generation of harmful outputs, slashing DIJA success rates from over 80% to near-zero (1.3% on LLaDA-8B-Instruct, 0.0% on Dream-v0-Instruct-7B), and thresholded [EOS] probabilities allow early rejection, yielding up to 19.3x faster safe termination.
comment: Accepted at ICLR 2026. Code and models are available at https://ai-isl.github.io/A2D
♻ ☆ Federated Causal Inference from Multi-Site Observational Data via Propensity Score Aggregation
Causal inference typically assumes centralized access to individual-level data. Yet, in practice, data are often decentralized across multiple sites, making centralization infeasible due to privacy, logistical, or legal constraints. We address this problem by estimating the Average Treatment Effect (ATE) from decentralized observational data via a Federated Learning (FL) approach, allowing inference through the exchange of aggregate statistics rather than individual-level data. We propose a novel method to estimate propensity scores via a federated weighted average of local scores using Membership Weights (MW), defined as probabilities of site membership conditional on covariates. MW can be flexibly estimated with parametric or non-parametric classification models using standard FL algorithms. The resulting propensity scores are used to construct Federated Inverse Propensity Weighting (Fed-IPW) and Augmented IPW (Fed-AIPW) estimators. In contrast to meta-analysis methods, which fail when any site violates positivity, our approach exploits heterogeneity in treatment assignment across sites to improve overlap. We show that Fed-IPW and Fed-AIPW perform well under site-level heterogeneity in sample sizes, treatment mechanisms, and covariate distributions. Theoretical analysis and experiments on simulated and real-world data demonstrate clear advantages over meta-analysis and related approaches.
♻ ☆ Privacy-Aware Predictions in Participatory Budgeting
Participatory budgeting is a democratic innovation that empowers citizens to propose and vote on public investment projects. While researchers in computer science focused on improving the voting phase of this process, in this work we aim to support organizers of participatory budgeting campaigns to manage large volumes of project proposals at the submission stage. We propose a privacy-preserving approach to predict which proposals are likely to be funded, using only projects' textual descriptions and anonymous historical voting records, without relying on voter demographics or personally identifiable information.
♻ ☆ Aggregation Queries over Unstructured Text: Benchmark and Agentic Method
Aggregation query over free text is a long-standing yet underexplored problem. Unlike ordinary question answering, aggregate queries require exhaustive evidence collection and systems are required to "find all," not merely "find one." Existing paradigms such as Text-to-SQL and Retrieval-Augmented Generation fail to achieve this completeness. In this work, we formalize entity-level aggregation querying over text in a corpus-bounded setting with strict completeness requirement. To enable principled evaluation, we introduce AGGBench, a benchmark designed to evaluate completeness-oriented aggregation under realistic large-scale corpus. To accompany the benchmark, we propose DFA (Disambiguation--Filtering--Aggregation), a modular agentic baseline that decomposes aggregation querying into interpretable stages and exposes key failure modes related to ambiguity, filtering, and aggregation. Empirical results show that DFA consistently improves aggregation evidence coverage over strong RAG and agentic baselines. The data and code are available in \href{https://anonymous.4open.science/r/DFA-A4C1}.
♻ ☆ CiMRAG: CiM-Aware Domain-Adaptive and Noise-Resilient Retrieval-Augmented Generation for Edge-Based LLMs ICASSP 2026
Personalized virtual assistants powered by large language models (LLMs) on edge devices are attracting growing attention, with Retrieval-Augmented Generation (RAG) emerging as a key method for personalization by retrieving relevant profile data and generating tailored responses. However, deploying RAG on edge devices faces efficiency hurdles due to the rapid growth of profile data, such as user-LLM interactions and recent updates. While Computing-in-Memory (CiM) architectures mitigate this bottleneck by eliminating data movement between memory and processing units via in-situ operations, they are susceptible to environmental noise that can degrade retrieval precision. This poses a critical issue in dynamic, multi-domain edge-based scenarios (e.g., travel, medicine, and law) where both accuracy and adaptability are paramount. To address these challenges, we propose Task-Oriented Noise-resilient Embedding Learning (TONEL), a framework that improves noise robustness and domain adaptability for RAG in noisy edge environments. TONEL employs a noise-aware projection model to learn task-specific embeddings compatible with CiM hardware constraints, enabling accurate retrieval under noisy conditions. Extensive experiments conducted on personalization benchmarks demonstrate the effectiveness and practicality of our methods relative to strong baselines, especially in task-specific noisy scenarios.
comment: Accepted by ICASSP 2026
♻ ☆ Exploring the Global-to-Local Attention Scheme in Graph Transformers: An Empirical Study
Graph Transformers (GTs) show considerable potential in graph representation learning. The architecture of GTs typically integrates Graph Neural Networks (GNNs) with global attention mechanisms either in parallel or as a precursor to attention mechanisms, yielding a local-and-global or local-to-global attention scheme. However, as the global attention mechanism primarily captures long-range dependencies between nodes, these integration schemes may suffer from information loss, where the local neighborhood information learned by GNN could be diluted by the attention mechanism. Therefore, we propose G2LFormer, featuring a novel global-to-local attention scheme where the shallow network layers use attention mechanisms to capture global information, while the deeper layers employ GNN modules to learn local structural information, thereby preventing nodes from ignoring their immediate neighbors. An effective cross-layer information fusion strategy is introduced to allow local layers to retain beneficial information from global layers and alleviate information loss, with acceptable trade-offs in scalability. To validate the feasibility of the global-to-local attention scheme, we compare G2LFormer with state-of-the-art linear GTs and GNNs on node-level and graph-level tasks. The results indicate that G2LFormer exhibits excellent performance while keeping linear complexity.
comment: The article has been accepted by Frontiers of Computer Science (FCS), with the DOI: {10.1007/s11704-026-51718-4}
♻ ☆ UrbanGraph: Physics-Informed Spatio-Temporal Dynamic Heterogeneous Graphs for Urban Microclimate Prediction
With rapid urbanization, predicting urban microclimates has become critical, as it affects building energy demand and public health risks. However, existing generative and homogeneous graph approaches fall short in capturing physical consistency, spatial dependencies, and temporal variability. To address this, we introduce UrbanGraph, a framework founded on a novel structure-based inductive bias. Unlike implicit graph learning, UrbanGraph transforms physical first principles into a dynamic causal topology, explicitly encoding time-varying causalities (e.g., shading and convection) directly into the graph structure to ensure physical consistency and data efficiency. Results show that UrbanGraph achieves state-of-the-art performance across all baselines. Specifically, the use of explicit causal pruning significantly reduces the model's floating-point operations (FLOPs) by 73.8% and increases training speed by 21% compared to implicit graphs. Our contribution includes the first high-resolution benchmark for spatio-temporal microclimate modeling, and a generalizable explicit topological encoding paradigm applicable to urban spatio-temporal dynamics governed by known physical equations.
♻ ☆ Adaptive Rollout Allocation for Online Reinforcement Learning with Verifiable Rewards ICLR 2026
Sampling efficiency is a key bottleneck in reinforcement learning with verifiable rewards. Existing group-based policy optimization methods, such as GRPO, allocate a fixed number of rollouts for all training prompts. This uniform allocation implicitly treats all prompts as equally informative, and could lead to inefficient computational budget usage and impede training progress. We introduce VIP, a Variance-Informed Predictive allocation strategy that allocates a given rollout budget to the prompts in the incumbent batch to minimize the expected gradient variance of the policy update. At each iteration, VIP uses a lightweight Gaussian process model to predict per-prompt success probabilities based on recent rollouts. These probability predictions are translated into variance estimates, which are then fed into a convex optimization problem to determine the optimal rollout allocations under a hard compute budget constraint. Empirical results show that VIP consistently improves sampling efficiency and achieves higher performance than uniform or heuristic allocation strategies in multiple benchmarks.
comment: Accepted at ICLR 2026
♻ ☆ Mechanistic Interpretability as Statistical Estimation: A Variance Analysis
Mechanistic Interpretability (MI) aims to reverse-engineer model behaviors by identifying functional sub-networks. Yet, the scientific validity of these findings depends on their stability. In this work, we argue that circuit discovery is not a standalone task but a statistical estimation problem built upon causal mediation analysis (CMA). We uncover a fundamental instability at this base layer: exact, single-input CMA scores exhibit high intrinsic variance, implying that the causal effect of a component is a volatile random variable rather than a fixed property. We then demonstrate that circuit discovery pipelines inherit this variance and further amplify it. Fast approximation methods, such as Edge Attribution Patching and its successors, introduce additional estimation noise, while aggregating these noisy scores over datasets leads to fragile structural estimates. Consequently, small perturbations in input data or hyperparameters yield vastly different circuits. We systematically decompose these sources of variance and advocate for more rigorous MI practices, prioritizing statistical robustness and routine reporting of stability metrics.
♻ ☆ V2P-Bench: Evaluating Video-Language Understanding with Visual Prompts for Better Human-Model Interaction
Large Vision-Language Models (LVLMs) have made significant strides in the field of video understanding in recent times. Nevertheless, existing video benchmarks predominantly rely on text prompts for evaluation, which often require complex referential language and diminish both the accuracy and efficiency of human model interaction in turn. To address this limitation, we propose V2P-Bench, a robust and comprehensive benchmark for evaluating the ability of LVLMs to understand Video Visual Prompts in human model interaction scenarios. V2P-Bench consists of 980 videos and 1172 well-structured high-quality QA pairs, each paired with manually annotated visual prompt frames. The benchmark spans three main tasks and twelve categories, thereby enabling fine-grained, instance-level evaluation. Through an in-depth analysis of current LVLMs, we identify several key findings: 1) Visual prompts are both more model-friendly and user-friendly in interactive scenarios than text prompts, leading to significantly improved model performance and enhanced user experience. 2) Models are reasonably capable of zero-shot understanding of visual prompts, but struggle with spatiotemporal understanding. Even o1 achieves only 71.8%, far below the human expert score of 88.3%, while most open-source models perform below 60%. 3) LVLMs exhibit pervasive Hack Phenomena in video question answering tasks, which become more pronounced as video length increases and frame sampling density decreases, thereby inflating performance scores artificially. We anticipate that V2P-Bench will not only shed light on these challenges but also serve as a foundational tool for advancing human model interaction and improving the evaluation of video understanding.
comment: Project Page: https://vlm-reasoning.github.io/V2P-Bench/
♻ ☆ Chain-of-Thought Hijacking
Large Reasoning Models (LRMs) improve task performance through extended inference-time reasoning. While prior work suggests this should strengthen safety, we find evidence to the contrary. Long reasoning sequences can be exploited to systematically weaken them. We introduce Chain-of-Thought Hijacking, a jailbreak attack that prepends harmful instructions with extended sequences of benign puzzle reasoning. Across HarmBench, CoT Hijacking achieves attack success rates of 99\%, 94\%, 100\%, and 94\% on Gemini 2.5 Pro, ChatGPT o4 Mini, Grok 3 Mini, and Claude 4 Sonnet. To understand this mechanism, we apply activation probing, attention analysis, and causal interventions. We find that refusal depends on a low-dimensional safety signal that becomes diluted as reasoning grows: mid-layers encode the strength of safety checking, while late layers encode the refusal outcome. These findings demonstrate that explicit chain-of-thought reasoning introduces a systematic vulnerability when combined with answer-prompting cues. We release all evaluation materials to facilitate replication.
♻ ☆ MSACL: Multi-Step Actor-Critic Learning with Lyapunov Certificates for Exponentially Stabilizing Control IEEE
For safety-critical applications, model-free reinforcement learning (RL) faces numerous challenges, particularly the difficulty of establishing verifiable stability guarantees while maintaining high exploration efficiency. To address these challenges, we present Multi-Step Actor-Critic Learning with Lyapunov Certificates (MSACL), a novel approach that seamlessly integrates exponential stability with maximum entropy reinforcement learning (MERL). In contrast to existing methods that rely on complex reward engineering and single-step constraints, MSACL utilizes intuitive rewards and multi-step data for actor-critic learning. Specifically, we first introduce Exponential Stability Labels (ESLs) to categorize samples and propose a $λ$-weighted aggregation mechanism to learn Lyapunov certificates. Leveraging these certificates, we then develop a stability-aware advantage function to guide policy optimization, thereby ensuring rapid Lyapunov descent and robust state convergence. We evaluate MSACL across six benchmarks, comprising four stabilization and two high-dimensional tracking tasks. Experimental results demonstrate its consistent superiority over both standard RL baselines and state-of-the-art Lyapunov-based RL algorithms. Beyond rapid convergence, MSACL exhibits significant robustness against environmental uncertainties and remarkable generalization to unseen reference signals. The source code and benchmarking environments are available at \href{https://github.com/YuanZhe-Xing/MSACL}{https://github.com/YuanZhe-Xing/MSACL}.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ MemeLens: Multilingual Multitask VLMs for Memes
Memes are a dominant medium for online communication and manipulation because meaning emerges from interactions between embedded text, imagery, and cultural context. Existing meme research is distributed across tasks (hate, misogyny, propaganda, sentiment, humour) and languages, which limits cross-domain generalization. To address this gap we propose MemeLens, a unified multilingual and multitask explanation-enhanced Vision Language Model (VLM) for meme understanding. We consolidate 38 public meme datasets, filter and map dataset-specific labels into a shared taxonomy of $20$ tasks spanning harm, targets, figurative/pragmatic intent, and affect. We present a comprehensive empirical analysis across modeling paradigms, task categories, and datasets. Our findings suggest that robust meme understanding requires multimodal training, exhibits substantial variation across semantic categories, and remains sensitive to over-specialization when models are fine-tuned on individual datasets rather than trained in a unified setting. We will make the experimental resources and datasets publicly available for the community.
comment: disinformation, misinformation, factuality, harmfulness, fake news, propaganda, hateful meme, multimodality, text, images
♻ ☆ From Classical to Quantum Reinforcement Learning and Its Applications in Quantum Control: A Beginner's Tutorial
This tutorial is designed to make reinforcement learning (RL) more accessible to undergraduate students by offering clear, example-driven explanations. It focuses on bridging the gap between RL theory and practical coding applications, addressing common challenges that students face when transitioning from conceptual understanding to implementation. Through hands-on examples and approachable explanations, the tutorial aims to equip students with the foundational skills needed to confidently apply RL techniques in real-world scenarios.
♻ ☆ SurfSplat: Conquering Feedforward 2D Gaussian Splatting with Surface Continuity Priors ICLR 2026
Reconstructing 3D scenes from sparse images remains a challenging task due to the difficulty of recovering accurate geometry and texture without optimization. Recent approaches leverage generalizable models to generate 3D scenes using 3D Gaussian Splatting (3DGS) primitive. However, they often fail to produce continuous surfaces and instead yield discrete, color-biased point clouds that appear plausible at normal resolution but reveal severe artifacts under close-up views. To address this issue, we present SurfSplat, a feedforward framework based on 2D Gaussian Splatting (2DGS) primitive, which provides stronger anisotropy and higher geometric precision. By incorporating a surface continuity prior and a forced alpha blending strategy, SurfSplat reconstructs coherent geometry together with faithful textures. Furthermore, we introduce High-Resolution Rendering Consistency (HRRC), a new evaluation metric designed to evaluate high-resolution reconstruction quality. Extensive experiments on RealEstate10K, DL3DV, and ScanNet demonstrate that SurfSplat consistently outperforms prior methods on both standard metrics and HRRC, establishing a robust solution for high-fidelity 3D reconstruction from sparse inputs. Project page: https://hebing-sjtu.github.io/SurfSplat-website/
comment: ICLR 2026; Project Page: https://hebing-sjtu.github.io/SurfSplat-website/
♻ ☆ Adaptive Helpfulness-Harmlessness Alignment with Preference Vectors EACL 2026
Ensuring that large language models (LLMs) are both helpful and harmless is a critical challenge, as overly strict constraints can lead to excessive refusals, while permissive models risk generating harmful content. Existing approaches, such as reinforcement learning from human feedback (RLHF) and direct preference optimization (DPO), attempt to balance these trade-offs but suffer from performance conflicts, limited controllability, and poor extendability. To address these issues, we propose Preference Vector, a novel framework inspired by task arithmetic. Instead of optimizing multiple preferences within a single objective, we train separate models on individual preferences, extract behavior shifts as preference vectors, and dynamically merge them at test time. This modular approach enables fine-grained, user-controllable preference adjustments and facilitates seamless integration of new preferences without retraining. Experiments show that our proposed Preference Vector framework improves helpfulness without excessive conservatism, allows smooth control over preference trade-offs, and supports scalable multi-preference alignment.
comment: Accepted at The 19th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2026), Rabat, Morocco. 22 pages, 5 figures, 9 tables
♻ ☆ Going with the Speed of Sound: Pushing Neural Surrogates into Highly-turbulent Transonic Regimes NeurIPS 2025
The widespread use of neural surrogates in automotive aerodynamics, enabled by datasets such as DrivAerML and DrivAerNet++, has primarily focused on bluff-body flows with large wakes. Extending these methods to aerospace, particularly in the transonic regime, remains challenging due to the high level of non-linearity of compressible flows and 3D effects such as wingtip vortices. Existing aerospace datasets predominantly focus on 2D airfoils, neglecting these critical 3D phenomena. To address this gap, we present a new dataset of CFD simulations for 3D wings in the transonic regime. The dataset comprises volumetric and surface-level fields for around $30,000$ samples with unique geometry and inflow conditions. This allows computation of lift and drag coefficients, providing a foundation for data-driven aerodynamic optimization of the drag-lift Pareto front. We evaluate several state-of-the-art neural surrogates on our dataset, including Transolver and AB-UPT, focusing on their out-of-distribution (OOD) generalization over geometry and inflow variations. AB-UPT demonstrates strong performance for transonic flowfields and reproduces physically consistent drag-lift Pareto fronts even for unseen wing configurations. Our results demonstrate that AB-UPT can approximate drag-lift Pareto fronts for unseen geometries, highlighting its potential as an efficient and effective tool for rapid aerodynamic design exploration. To facilitate future research, we open-source our dataset at https://huggingface.co/datasets/EmmiAI/Emmi-Wing.
comment: NeurIPS 2025 ML4PS Workshop
♻ ☆ MAPGD: Multi-Agent Prompt Gradient Descent for Collaborative Prompt Optimization
Prompt engineering is crucial for fully leveraging large language models (LLMs), yet most existing optimization methods follow a single trajectory, resulting in limited adaptability, gradient conflicts, and high computational overhead. We propose MAPGD (Multi-Agent Prompt Gradient Descent), a novel framework that reconceptualizes prompt optimization as a collaborative process among specialized agents. Each agent focuses on a distinct refinement dimension, such as instruction clarity, example selection, format structure, or stylistic adaptation, and their contributions are coordinated through semantic gradient embedding, conflict detection, and fusion. To further enhance robustness and stability, MAPGD introduces two new mechanisms: Hypersphere Constrained Gradient Clustering (HCGC), which enforces angular margin constraints for compact and well-separated clusters, and Channel Adaptive Agent Weighting (CAAW), which dynamically reweights agent contributions based on validation performance. Experiments on classification and reasoning benchmarks show that MAPGD consistently surpasses single-agent and random baselines in both accuracy and efficiency. Ablation studies confirm the effectiveness of gradient fusion, agent specialization, and conflict resolution. Together, these components establish MAPGD as a unified, gradient-based, and interpretable framework for robust prompt optimization with theoretical convergence guarantees.
♻ ☆ UniFGVC: Universal Training-Free Few-Shot Fine-Grained Vision Classification via Attribute-Aware Multimodal Retrieval
Few-shot fine-grained visual classification (FGVC) aims to leverage limited data to enable models to discriminate subtly distinct categories. Recent works mostly finetuned the pre-trained visual language models to achieve performance gain, yet suffering from overfitting and weak generalization. To deal with this, we introduce UniFGVC, a universal training-free framework that reformulates few-shot FGVC as multimodal retrieval. First, we propose the Category-Discriminative Visual Captioner (CDV-Captioner) to exploit the open-world knowledge of multimodal large language models (MLLMs) to generate a structured text description that captures the fine-grained attribute features distinguishing closely related classes. CDV-Captioner uses chain-of-thought prompting and visually similar reference images to reduce hallucination and enhance discrimination of generated captions. Using it we can convert each image into an image-description pair, enabling more comprehensive feature representation, and construct the multimodal category templates using few-shot samples for the subsequent retrieval pipeline. Then, off-the-shelf vision and text encoders embed query and template pairs, and FGVC is accomplished by retrieving the nearest template in the joint space. UniFGVC ensures broad compatibility with diverse MLLMs and encoders, offering reliable generalization and adaptability across few-shot FGVC scenarios. Extensive experiments on 12 FGVC benchmarks demonstrate its consistent superiority over prior few-shot CLIP-based methods and even several fully-supervised MLLMs-based approaches.
♻ ☆ MapDream: Task-Driven Map Learning for Vision-Language Navigation
Vision-Language Navigation (VLN) requires agents to follow natural language instructions in partially observed 3D environments, motivating map representations that aggregate spatial context beyond local perception. However, most existing approaches rely on hand-crafted maps constructed independently of the navigation policy. We argue that maps should instead be learned representations shaped directly by navigation objectives rather than exhaustive reconstructions. Based on this insight, we propose MapDream, a map-in-the-loop framework that formulates map construction as autoregressive bird's-eye-view (BEV) image synthesis. The framework jointly learns map generation and action prediction, distilling environmental context into a compact three-channel BEV map that preserves only navigation-critical affordances. Supervised pre-training bootstraps a reliable mapping-to-control interface, while the autoregressive design enables end-to-end joint optimization through reinforcement fine-tuning. Experiments on R2R-CE and RxR-CE achieve state-of-the-art monocular performance, validating task-driven generative map learning.
♻ ☆ Structured Self-Consistency:A Multi-Task Evaluation of LLMs on VirtualHome
Embodied AI requires agents to understand goals, plan actions, and execute tasks in simulated environments. We present a comprehensive evaluation of Large Language Models (LLMs) on the VirtualHome benchmark using the Embodied Agent Interface (EAI) framework. We compare two representative 7B-parameter models OPENPANGU-7B and QWEN2.5-7B across four fundamental tasks: Goal Interpretation, Action Sequencing, Subgoal Decomposition, and Transition Modeling. We propose Structured Self-Consistency (SSC), an enhanced decoding strategy that leverages multiple sampling with domain-specific voting mechanisms to improve output quality for structured generation tasks. Experimental results demonstrate that SSC significantly enhances performance, with OPENPANGU-7B excelling at hierarchical planning while QWEN2.5-7B show advantages in action-level tasks. Our analysis reveals complementary strengths across model types, providing insights for future embodied AI system development.
♻ ☆ Do Models Hear Like Us? Probing the Representational Alignment of Audio LLMs and Naturalistic EEG
Audio Large Language Models (Audio LLMs) have demonstrated strong capabilities in integrating speech perception with language understanding. However, whether their internal representations align with human neural dynamics during naturalistic listening remains largely unexplored. In this work, we systematically examine layer-wise representational alignment between 12 open-source Audio LLMs and Electroencephalogram (EEG) signals across 2 datasets. Specifically, we employ 8 similarity metrics, such as Spearman-based Representational Similarity Analysis (RSA), to characterize within-sentence representational geometry. Our analysis reveals 3 key findings: (1) we observe a rank-dependence split, in which model rankings vary substantially across different similarity metrics; (2) we identify spatio-temporal alignment patterns characterized by depth-dependent alignment peaks and a pronounced increase in RSA within the 250-500 ms time window, consistent with N400-related neural dynamics; (3) we find an affective dissociation whereby negative prosody, identified using a proposed Tri-modal Neighborhood Consistency (TNC) criterion, reduces geometric similarity while enhancing covariance-based dependence. These findings provide new neurobiological insights into the representational mechanisms of Audio LLMs.
♻ ☆ DynaSpec: Context-aware Dynamic Speculative Sampling for Large-Vocabulary Language Models
Speculative decoding accelerates LLM inference by letting a small drafter propose multiple tokens which a large target model verifies once per speculation step. As vocabularies scale past 10e5 tokens,verification cost in the target model is largely unchanged, but the drafter can become bottlenecked by its O(|V|d) output projection. Recent approaches (e.g., FR-Spec, VocabTrim) mitigate this by restricting drafting to a fixed, frequency-ranked shortlist; however, such static truncation is corpus-dependent and suppresses rare or domain-specific tokens, reducing acceptance and limiting speedups. We propose DynaSpec, a context-dependent dynamic shortlisting mechanism for large-vocabulary speculative decoding. DynaSpec trains lightweight meta-classifiers that route each context to a small set of coarse token clusters; the union of the top-selected clusters defines the drafter's shortlist, while the target model still verifies over the full vocabulary, preserving exactness. Systems-wise, routing is overlapped with draft computation via parallel execution streams, reducing end-to-end overhead. Across standard speculative decoding benchmarks, DynaSpec consistently improves mean accepted length-recovering 98.4% of full-vocabulary performance for Llama-3-8B versus 93.6% for fixed-shortlist baselines-and achieves up to a 2.23x throughput gain compared to 1.91x for static approaches on the dataset with rare tokens.
♻ ☆ MoGU: Mixture-of-Gaussians with Uncertainty-based Gating for Time Series Forecasting
We introduce Mixture-of-Gaussians with Uncertainty-based Gating (MoGU), a novel Mixture-of-Experts (MoE) framework designed for regression tasks. MoGU replaces standard learned gating with an intrinsic routing paradigm where expert-specific uncertainty serves as the native gating signal. By modeling each prediction as a Gaussian distribution, the system utilizes predicted variance to dynamically weight expert contributions. We validate MoGU on multivariate time-series forecasting, a domain defined by high volatility and varying noise patterns. Empirical results across multiple benchmarks, horizon lengths, and backbones demonstrate that MoGU consistently improves forecasting accuracy compared to traditional MoE. Further evaluation via conformal prediction indicates that our approach yields more efficient prediction intervals than existing baselines. These findings highlight MoGU's capacity for providing both competitive performance and reliable, high-fidelity uncertainty quantification. Our code is available at: https://github.com/yolish/moe_unc_tsf
♻ ☆ NEZHA: A Zero-sacrifice and Hyperspeed Decoding Architecture for Generative Recommendations
Generative Recommendation (GR), powered by Large Language Models (LLMs), represents a promising new paradigm for industrial recommender systems. However, their practical application is severely hindered by high inference latency, which makes them infeasible for high-throughput, real-time services and limits their overall business impact. While Speculative Decoding (SD) has been proposed to accelerate the autoregressive generation process, existing implementations introduce new bottlenecks: they typically require separate draft models and model-based verifiers, requiring additional training and increasing the latency overhead. In this paper, we address these challenges with NEZHA, a novel architecture that achieves hyperspeed decoding for GR systems without sacrificing recommendation quality. Specifically, NEZHA integrates a nimble autoregressive draft head directly into the primary model, enabling efficient self-drafting. This design, combined with a specialized input prompt structure, preserves the integrity of sequence-to-sequence generation. Furthermore, to tackle the critical problem of hallucination, a major source of performance degradation, we introduce an efficient, model-free verifier based on a hash set. We demonstrate the effectiveness of NEZHA through extensive experiments on public datasets and have successfully deployed the system on Taobao since October 2025, driving the billion-level advertising revenue and serving hundreds of millions of daily active users.
♻ ☆ PRPO: Aligning Process Reward with Outcome Reward in Policy Optimization
Policy optimization for large language models often suffers from sparse reward signals in multi-step reasoning tasks. Critic-free methods like GRPO assign a single normalized outcome reward to all tokens, providing limited guidance for intermediate reasoning . While Process Reward Models (PRMs) offer dense feedback, they risk premature collapse when used alone, as early low-reward tokens can drive policies toward truncated outputs. We introduce Process Relative Policy Optimization (PRPO), which combines outcome reliability with process-level guidance in a critic-free framework. PRPO segments reasoning sequences based on semantic clues, normalizes PRM scores into token-level advantages, and aligns their distribution with outcome advantages through location-parameter shift. On MATH500, PRPO improves Qwen2.5-Math-1.5B accuracy from 61.2% to 64.4% over GRPO using only eight rollouts and no value network, demonstrating efficient fine-grained credit assignment within critic-free optimization. Code is available at: https://github.com/SchumiDing/srpocode
comment: 8 pages, 2 figures Code is available at: https://github.com/SchumiDing/srpocode
♻ ☆ PROTEUS: SLA-Aware Routing via Lagrangian RL for Multi-LLM Serving Systems
Production LLM deployments serve diverse workloads where cost and quality requirements vary by customer tier, time of day, and query criticality. Model serving systems accept latency SLOs directly. LLM routers do not. They force operators to tune parameters offline and guess what accuracy might result. The relationship between parameters and outcomes is indirect, non-monotonic, and dataset-dependent. Operators need to specify accuracy targets, not infer them from opaque settings. We present PROTEUS (Polymorphic Router for Operational Target Enforcement with Unified SLA), a router that accepts accuracy targets tau as runtime input. PROTEUS uses Lagrangian dual control. A learned dual variable lambda tracks constraint violations during training and conditions the policy network. This lets the router translate specified tau values into routing decisions that satisfy them. A single trained model serves the full accuracy spectrum without retraining.We evaluate on RouterBench (11 models, 405K queries) and SPROUT (14 models, 45K queries). PROTEUS achieves consistent floor compliance where accuracy meets or exceeds tau. The target-response correlation reaches 0.97 to 0.98. The closest baseline, OmniRouter, meets floors only 22% of the time despite also using Lagrangian optimization. PROTEUS operates across tau in [0.85, 0.95] from a single model. On RouterBench it achieves 90.1% accuracy, within 1.3% of oracle. On SPROUT it achieves 94.0% accuracy, within 4.6% of oracle. Cost savings reach 89.8% versus the best fixed model.
comment: Submitted to EuroMLSys26
♻ ☆ Towards Reliable Evaluation of Adversarial Robustness for Spiking Neural Networks
Spiking Neural Networks (SNNs) utilize spike-based activations to mimic the brain's energy-efficient information processing. However, the binary and discontinuous nature of spike activations causes vanishing gradients, making adversarial robustness evaluation via gradient descent unreliable. While improved surrogate gradient methods have been proposed, their effectiveness under strong adversarial attacks remains unclear. We propose a more reliable framework for evaluating SNN adversarial robustness. We theoretically analyze the degree of gradient vanishing in surrogate gradients and introduce the Adaptive Sharpness Surrogate Gradient (ASSG), which adaptively evolves the shape of the surrogate function according to the input distribution during attack iterations, thereby enhancing gradient accuracy while mitigating gradient vanishing. In addition, we design an adversarial attack with adaptive step size under the $L_\infty$ constraint-Stable Adaptive Projected Gradient Descent (SA-PGD), achieving faster and more stable convergence under imprecise gradients. Extensive experiments show that our approach substantially increases attack success rates across diverse adversarial training schemes, SNN architectures and neuron models, providing a more generalized and reliable evaluation of SNN adversarial robustness. The experimental results further reveal that the robustness of current SNNs has been significantly overestimated and highlighting the need for more dependable adversarial training methods.
♻ ☆ Fast Training of Sinusoidal Neural Fields via Scaling Initialization ICLR 2025
Neural fields are an emerging paradigm that represent data as continuous functions parameterized by neural networks. Despite many advantages, neural fields often have a high training cost, which prevents a broader adoption. In this paper, we focus on a popular family of neural fields, called sinusoidal neural fields (SNFs), and study how it should be initialized to maximize the training speed. We find that the standard initialization scheme for SNFs -- designed based on the signal propagation principle -- is suboptimal. In particular, we show that by simply multiplying each weight (except for the last layer) by a constant, we can accelerate SNF training by 10$\times$. This method, coined $\textit{weight scaling}$, consistently provides a significant speedup over various data domains, allowing the SNFs to train faster than more recently proposed architectures. To understand why the weight scaling works well, we conduct extensive theoretical and empirical analyses which reveal that the weight scaling not only resolves the spectral bias quite effectively but also enjoys a well-conditioned optimization trajectory. The code is available $\href{https://github.com/effl-lab/Fast-Neural-Fields}{here}$.
comment: ICLR 2025
♻ ☆ DCoPilot: Generative AI-Empowered Policy Adaptation for Dynamic Data Center Operations
Modern data centers (DCs) hosting artificial intelligence (AI)-dedicated devices operate at high power densities with rapidly varying workloads, making minute-level adaptation essential for safe and energy-efficient operation. However, manually designing piecewise deep reinforcement learning (DRL) agents cannot keep pace with frequent dynamics shifts and service-level agreement (SLA) changes of an evolving DC. This specification-to-policy lag causes a lack of timely, effective control policies, which may lead to service outages. To bridge the gap, we present DCoPilot, a hybrid framework for generative control policies in dynamic DC operation. DCoPilot synergizes two distinct generative paradigms, i.e., a large language model (LLM) that performs symbolic generation of structured reward forms, and a hypernetwork that conducts parametric generation of policy weights. DCoPilot operates through three coordinated phases: (i) simulation scale-up, which stress-tests reward candidates across diverse simulation-ready (SimReady) scenes; (ii) meta policy distillation, where a hypernetwork is trained to output policy weights conditioned on SLA and scene embeddings; and (iii) online adaptation, enabling zero-shot policy generation in response to updated specifications. Evaluated across five control task families spanning diverse DC components, DCoPilot achieves near-zero constraint violations and outperforms all baselines across specification variations. Ablation studies validate the effectiveness of LLM-based unified reward generation in enabling stable hypernetwork convergence.
♻ ☆ Lightweight and Interpretable Transformer via Mixed Graph Algorithm Unrolling for Traffic Forecast
Unlike conventional "black-box" transformers with classical self-attention mechanism, we build a lightweight and interpretable transformer-like neural net by unrolling a mixed-graph-based optimization algorithm to forecast traffic with spatial and temporal dimensions. We construct two graphs: an undirected graph $\mathcal{G}^u$ capturing spatial correlations across geography, and a directed graph $\mathcal{G}^d$ capturing sequential relationships over time. We predict future samples of signal $\mathbf{x}$, assuming it is "smooth" with respect to both $\mathcal{G}^u$ and $\mathcal{G}^d$, where we design new $\ell_2$ and $\ell_1$-norm variational terms to quantify and promote signal smoothness (low-frequency reconstruction) on a directed graph. We design an iterative algorithm based on alternating direction method of multipliers (ADMM), and unroll it into a feed-forward network for data-driven parameter learning. We periodically insert graph learning modules for $\mathcal{G}^u$ and $\mathcal{G}^d$ that play the role of self-attention. Experiments show that our unrolled networks achieve competitive traffic forecast performance as state-of-the-art prediction schemes, while reducing parameter counts drastically.
comment: 24 pages, 7 figures, 11 tables
♻ ☆ Efficient Utility-Preserving Machine Unlearning with Implicit Gradient Surgery
Machine unlearning (MU) aims to efficiently remove sensitive or harmful memory from a pre-trained model. The key challenge is to balance the potential tradeoff between unlearning efficacy and utility preservation, which involves forgetting undesirable information as defined while maintaining the model's original performance. One potential way to tackle this problem is to use multi-objective optimization to jointly optimize both the unlearning and utility preservation objectives. However, existing multi-objective methods only guarantee finding a Pareto-optimal solution without fine-grained control, which causes under-optimization of the unlearning objective. To this end, we first model MU as a constrained optimization problem, that is, optimizing the unlearning objective under the constraint of a bounded increase for utility loss. We then show that solving this optimization problem is equivalent to unilateral gradient surgery on the unlearning objective. To resolve the additional computational cost brought by gradient surgery, we propose an implicit gradient surgery method, which approximates the solution to the aforementioned constrained optimization problem via only one backpropagation, thereby achieving efficient utility-preserving MU. Theoretically, we provide a tight convergence analysis of the algorithm. Empirically, our extensive experiments show that the proposed algorithm achieves better tradeoff results than existing baselines. Codes are available at https://github.com/anseryuer/EUPMU-Efficient-Utility-Preserving-Machine-Unlearning.
comment: Corresponding author: Shiji Zhou (zhoushiji25@buaa.edu.cn). Shiji Zhou and Tianbai Yu contributed equally
♻ ☆ SafeGround: Know When to Trust GUI Grounding Models via Uncertainty Calibration
Graphical User Interface (GUI) grounding aims to translate natural language instructions into executable screen coordinates, enabling automated GUI interaction. Nevertheless, incorrect grounding can result in costly, hard-to-reverse actions (e.g., erroneous payment approvals), raising concerns about model reliability. In this paper, we introduce SafeGround, an uncertainty-aware framework for GUI grounding models that enables risk-aware predictions through calibrations before testing. SafeGround leverages a distribution-aware uncertainty quantification method to capture the spatial dispersion of stochastic samples from outputs of any given model. Then, through the calibration process, SafeGround derives a test-time decision threshold with statistically guaranteed false discovery rate (FDR) control. We apply SafeGround on multiple GUI grounding models for the challenging ScreenSpot-Pro benchmark. Experimental results show that our uncertainty measure consistently outperforms existing baselines in distinguishing correct from incorrect predictions, while the calibrated threshold reliably enables rigorous risk control and potentials of substantial system-level accuracy improvements. Across multiple GUI grounding models, SafeGround improves system-level accuracy by up to 5.38% percentage points over Gemini-only inference.
♻ ☆ Depth-Breadth Synergy in RLVR: Unlocking LLM Reasoning Gains with Adaptive Exploration
Reinforcement Learning with Verifiable Reward (RLVR) has emerged as a powerful paradigm for unlocking reasoning capabilities in large language models, yet its full potential is hindered by two under-explored dimensions: Depth-the hardest problem a model can sample; Breadth-the number of instances consumed in a single iteration. We dissect the popular GRPO algorithm and reveal a systematic bias: the cumulative-advantage disproportionately weights samples with medium accuracy, while down-weighting the low-accuracy instances that are crucial for pushing reasoning boundaries. To rectify the depth neglect, we introduce Difficulty Adaptive Rollout Sampling (DARS), which re-weights hard problems through targeted multi-stage rollouts, thereby increasing the number of positive rollouts for hard problems. Empirically, naively enlarging rollout size only accelerates convergence and even hurts Pass@K. Our DARS, in contrast, delivers consistent Pass@K gains without extra inference cost at convergence. Just as we adaptively expanded the depth of exploration, we now ask whether aggressively scaling the breadth of training data can further amplify reasoning gains. To this end, we intensely scale batch size and replace PPO's mini-batch iterations with full-batch updates over multiple epochs. Increasing breadth significantly enhances Pass@1 performance. Large-breadth training sustains high token-level entropy, indicating continued exploration and reduced gradient noise. We further present DARS-B, which augments DARS with large breadth, and demonstrate simultaneous gains in Pass@K and Pass@1. The results confirm that breadth and adaptive exploration across depth operate as orthogonal dimensions in RLVR, which are key to unleashing the reasoning power of RLVR.
comment: 18 pages, 14 figures
♻ ☆ Exact Solution to Data-Driven Inverse Optimization of MILPs in Finite Time via Gradient-Based Methods
A data-driven inverse optimization problem (DDIOP) seeks to estimate an objective function (i.e., weights) that is consistent with observed optimal-solution data, and is important in many applications, including those involving mixed integer linear programs (MILPs). In the DDIOP for MILPs, the prediction loss on features (PLF), defined as the discrepancy between observed and predicted feature values, becomes discontinuous with respect to the weights, which makes it difficult to apply gradient-based optimization. To address this issue, we focus on a Lipschitz continuous and convex suboptimality loss. By exploiting its convex and piecewise-linear structure and the interiority of the minimum set, we show that a broad class of gradient-based optimization methods, including projected subgradient descent (PSGD), reaches the minimum suboptimality loss value in a finite number of iterations, thereby exactly solving the DDIOP for MILPs. Furthermore, as a corollary, we show that PSGD attains the minimum PLF in finitely many iterations. We also derive an upper bound on the number of iterations required for PSGD to reach finite convergence, and confirm the finite-step behavior through numerical experiments.
comment: 42 pages; comments are welcome
♻ ☆ Variational Approach for Job Shop Scheduling
This paper proposes a novel Variational Graph-to-Scheduler (VG2S) framework for solving the Job Shop Scheduling Problem (JSSP), a critical task in manufacturing that directly impacts operational efficiency and resource utilization. Conventional Deep Reinforcement Learning (DRL) approaches often face challenges such as non-stationarity during training and limited generalization to unseen problem instances because they optimize representation learning and policy execution simultaneously. To address these issues, we introduce variational inference to the JSSP domain for the first time and derive a probabilistic objective based on the Evidence of Lower Bound (ELBO) with maximum entropy reinforcement learning. By mathematically decoupling representation learning from policy optimization, the VG2S framework enables the agent to learn robust structural representations of scheduling instances through a variational graph encoder. This approach significantly enhances training stability and robustness against hyperparameter variations. Extensive experiments demonstrate that the proposed method exhibits superior zero-shot generalization compared with state-of-the-art DRL baselines and traditional dispatching rules, particularly on large-scale and challenging benchmark instances such as DMU and SWV.
♻ ☆ Happy Young Women, Grumpy Old Men? Emotion-Driven Demographic Biases in Synthetic Face Generation
Synthetic face generation has rapidly advanced with the emergence of text-to-image (T2I) and of multimodal large language models, enabling high-fidelity image production from natural-language prompts. Despite the widespread adoption of these tools, the biases, representational quality, and cross-cultural consistency of these models remain poorly understood. Prior research on biases in the synthetic generation of human faces has examined demographic biases, yet there is little research on how emotional prompts influence demographic representation and how models trained in different cultural and linguistic contexts vary in their output distributions. We present a systematic audit of eight state-of-the-art T2I models comprising four models developed by Western organizations and four developed by Chinese institutions, all prompted identically. Using state-of-the-art facial analysis algorithms, we estimate the gender, race, age, and attractiveness levels in the generated faces. To measure the deviations from global population statistics, we apply information-theoretic bias metrics including Kullback-Leibler and Jensen-Shannon divergences. Our findings reveal persistent demographic and emotion-conditioned biases in all models regardless of their country of origin. We discuss implications for fairness, socio-technical harms, governance, and the development of transparent generative systems.
comment: 23 pages, 11 figures
♻ ☆ Bounded Hyperbolic Tangent: A Stable and Efficient Alternative to Pre-Layer Normalization in Large Language Models
Pre-Layer Normalization (Pre-LN) is the de facto choice for large language models (LLMs) and is crucial for stable pretraining and effective transfer learning. However, Pre-LN is inefficient due to repeated statistical calculations and suffers from the curse of depth. As layers grow, the magnitude and variance of the hidden state escalate, destabilizing training. Efficiency-oriented normalization-free methods such as Dynamic Tanh (DyT) improve speed but remain fragile at depth. To jointly address stability and efficiency, we propose Bounded Hyperbolic Tanh (BHyT), a drop-in replacement for Pre-LN. BHyT couples a tanh nonlinearity with explicit, data-driven input bounding to keep activations within a non-saturating range. It prevents depth-wise growth in activation magnitude and variance and comes with a theoretical stability guarantee. For efficiency, BHyT computes exact statistics once per block and replaces a second normalization with a lightweight variance approximation, enhancing efficiency. Empirically, BHyT demonstrates improved stability and efficiency during pretraining, achieving an average of 15.8% faster training and an average of 4.2% higher token generation throughput compared to RMSNorm., while matching or surpassing its inference performance and robustness across language understanding and reasoning benchmarks. Our code is available at: https://anonymous.4open.science/r/BHyT
♻ ☆ Q-Regularized Generative Auto-Bidding: From Suboptimal Trajectories to Optimal Policies
With the rapid development of e-commerce, auto-bidding has become a key asset in optimizing advertising performance under diverse advertiser environments. The current approaches focus on reinforcement learning (RL) and generative models. These efforts imitate offline historical behaviors by utilizing a complex structure with expensive hyperparameter tuning. The suboptimal trajectories further exacerbate the difficulty of policy learning. To address these challenges, we proposes QGA, a novel Q-value regularized Generative Auto-bidding method. In QGA, we propose to plug a Q-value regularization with double Q-learning strategy into the Decision Transformer backbone. This design enables joint optimization of policy imitation and action-value maximization, allowing the learned bidding policy to both leverage experience from the dataset and alleviate the adverse impact of the suboptimal trajectories. Furthermore, to safely explore the policy space beyond the data distribution, we propose a Q-value guided dual-exploration mechanism, in which the DT model is conditioned on multiple return-to-go targets and locally perturbed actions. This entire exploration process is dynamically guided by the aforementioned Q-value module, which provides principled evaluation for each candidate action. Experiments on public benchmarks and simulation environments demonstrate that QGA consistently achieves superior or highly competitive results compared to existing alternatives. Notably, in large-scale real-world A/B testing, QGA achieves a 3.27% increase in Ad GMV and a 2.49% improvement in Ad ROI.
comment: Due to the company's compliance requirements, we would like to wait until the paper is officially published before making it publicly available on arXiv
♻ ☆ Cross-Modal Alignment and Fusion for RGB-D Transmission-Line Defect Detection
Transmission line defect detection remains challenging for automated UAV inspection due to the dominance of small-scale defects, complex backgrounds, and illumination variations. Existing RGB-based detectors, despite recent progress, struggle to distinguish geometrically subtle defects from visually similar background structures under limited chromatic contrast. This paper proposes CMAFNet, a Cross-Modal Alignment and Fusion Network that integrates RGB appearance and depth geometry through a principled purify-then-fuse paradigm. CMAFNet consists of a Semantic Recomposition Module that performs dictionary-based feature purification via a learned codebook to suppress modality-specific noise while preserving defect-discriminative information, and a Contextual Semantic Integration Framework that captures global spatial dependencies using partial-channel attention to enhance structural semantic reasoning. Position-wise normalization within the purification stage enforces explicit reconstruction-driven cross-modal alignment, ensuring statistical compatibility between heterogeneous features prior to fusion. Extensive experiments on the TLRGBD benchmark, where 94.5% of instances are small objects, demonstrate that CMAFNet achieves 32.2% mAP@50 and 12.5% APs, outperforming the strongest baseline by 9.8 and 4.0 percentage points, respectively. A lightweight variant reaches 24.8% mAP50 at 228 FPS with only 4.9M parameters, surpassing all YOLO-based detectors while matching transformer-based methods at substantially lower computational cost.
♻ ☆ GeoResponder: Towards Building Geospatial LLMs for Time-Critical Disaster Response
Large Language Models excel at linguistic tasks but lack the inner geospatial capabilities needed for time-critical disaster response, where reasoning about road networks, continuous coordinates, and access to essential infrastructure such as hospitals, shelters, and pharmacies is vital. We introduce GeoResponder, a framework that instills robust spatial reasoning through a scaffolded instruction-tuning curriculum. By stratifying geospatial learning into different cognitive layers, we effectively anchor semantic knowledge to the continuous coordinate manifold and enforce the internalization of spatial axioms. Extensive evaluations across four topologically distinct cities and diverse tasks demonstrate that GeoResponder significantly outperforms both state-of-the-art foundation models and domain-specific baselines. These results suggest that LLMs can begin to internalize and generalize geospatial structures, pointing toward the future development of language models capable of supporting disaster response needs.
♻ ☆ FlyPrompt: Brain-Inspired Random-Expanded Routing with Temporal-Ensemble Experts for General Continual Learning ICLR 2026
General continual learning (GCL) challenges intelligent systems to learn from single-pass, non-stationary data streams without clear task boundaries. While recent advances in continual parameter-efficient tuning (PET) of pretrained models show promise, they typically rely on multiple training epochs and explicit task cues, limiting their effectiveness in GCL scenarios. Moreover, existing methods often lack targeted design and fail to address two fundamental challenges in continual PET: how to allocate expert parameters to evolving data distributions, and how to improve their representational capacity under limited supervision. Inspired by the fruit fly's hierarchical memory system characterized by sparse expansion and modular ensembles, we propose FlyPrompt, a brain-inspired framework that decomposes GCL into two subproblems: expert routing and expert competence improvement. FlyPrompt introduces a randomly expanded analytic router for instance-level expert activation and a temporal ensemble of output heads to dynamically adapt decision boundaries over time. Extensive theoretical and empirical evaluations demonstrate FlyPrompt's superior performance, achieving up to 11.23%, 12.43%, and 7.62% gains over state-of-the-art baselines on CIFAR-100, ImageNet-R, and CUB-200, respectively. Our source code is available at https://github.com/AnAppleCore/FlyGCL.
comment: 33 pages. Accepted by ICLR 2026
♻ ☆ Why Self-Rewarding Works: Theoretical Guarantees for Iterative Alignment of Language Models
Self-Rewarding Language Models (SRLMs) achieve notable success in iteratively improving alignment without external feedback. Yet, despite their striking empirical progress, the core mechanisms driving their capabilities remain unelucidated, leaving a critical gap in theoretical understanding. This paper provides the first rigorous theoretical guarantees for SRLMs. We first establish a lower bound that characterizes the fundamental limits of a single update step, revealing a critical dependence on the quality of the initial model. We then derive finite-sample error bounds for the full iterative paradigm, showing that performance improves at a rate of $\widetilde{\mathcal{O}}\left(1/\sqrt{n}\right)$ with sample size $n$. Crucially, our analysis reveals that the dependence on the initial model decays exponentially with the number of iterations $T$. This provides a formal explanation for why self-rewarding succeeds: it robustly overcomes poor initialization by steering the dynamics toward internal stability and consistency. Finally, we instantiate our theoretical framework for the linear softmax model class, yielding tailored guarantees that connect our high-level insights to practical model architectures.
♻ ☆ Orchestrating Heterogeneous Experts: A Scalable MoE Framework with Anisotropy-Preserving Fusion
In cross-border e-commerce, search relevance modeling faces the dual challenge of extreme linguistic diversity and fine-grained semantic nuances. Existing approaches typically rely on scaling up a single monolithic Large Language Model (LLM). However, our empirical analysis reveals that single models suffer from uneven capability distributions across regions. For example, excelling in English while underperforming in specific Southeast Asian languages. In this work, we shift the paradigm from scaling a single model to orchestrating heterogeneous experts. We propose a scalable Coarse-grained Mixture-of-Experts (MoE) framework that leverages the inherent complementarity of distinct open-source LLMs (e.g., Qwen, Gemma) without expensive pre-training. Unlike standard token-level MoE, our framework dynamically routes entire queries to specialized experts and, crucially, employs an Information-Preserving Concatenation Fusion strategy. We theoretically posit that preserving the distinct embedding manifolds of heterogeneous experts-rather than compressing them via weighted averaging-is essential for capturing complex relevance signals in a multi-model latent space. On datasets spanning six Southeast Asian markets, our MoE improves AUC by 0.72 percentage points over a dense baseline with the same active parameters. Meanwhile, the optimized pipeline achieves 13.72 queries per second (QPS), a 9% throughput improvement.
comment: 4 pages, 2 figures. Accepted at the Workshop on TIME of the ACM Web Conference 2026
♻ ☆ Hyper-Compression: Model Compression via Hyperfunction
The rapid growth of large models' size has far outpaced that of computing resources. To bridge this gap, encouraged by the parsimonious relationship between genotype and phenotype in the brain's growth and development, we propose the so-called Hyper-Compression that turns the model compression into the issue of parameter representation via a hyperfunction. Specifically, it is known that the trajectory of some low-dimensional dynamic systems can fill the high-dimensional space eventually. Thus, Hyper-Compression, using these dynamic systems as the hyperfunctions, represents the parameters of the target network by their corresponding composition number or trajectory length. This suggests a novel mechanism for model compression, substantially different from the existing pruning, quantization, distillation, and decomposition. Along this direction, we methodologically identify a suitable dynamic system with the irrational winding as the hyperfunction and theoretically derive its associated error bound. Next, guided by our theoretical insights, we propose several engineering twists to make the Hyper-Compression pragmatic and effective. Lastly, systematic and comprehensive experiments on \textcolor{black}{NLP models such as LLaMA and Qwen series and vision models} confirm that Hyper-Compression enjoys the following \textbf{PNAS} merits: 1) \textbf{P}referable compression ratio; 2) \textbf{N}o post-hoc retraining; 3) \textbf{A}ffordable inference time; and 4) \textbf{S}hort compression time. It compresses LLaMA2-7B in an hour and achieves close-to-int4-quantization performance, without retraining and with a performance drop of less than 1\%. We have open-sourced our code in https://github.com/Juntongkuki/Hyper-Compression.git for free download and evaluation.
♻ ☆ Co-Evolving Agents: Learning from Failures as Hard Negatives
The rapid progress of large foundation models has accelerated the development of task-specialized agents across diverse domains. However, the effectiveness of agents remains tightly coupled with the quality of training data, while curating task-specific datasets remains costly and often infeasible in real-world scenarios. Recent work has explored self-improving agents that autonomously generate, refine, and re-train on their own trajectories. A prominent line of approaches further leverages preference optimization by pairing predicted trajectories with scarce ground-truth trajectories, enabling agents to learn directly from their own failures. While these methods outperform supervised fine-tuning, their heavy reliance on predicted trajectories under limited ground-truth supervision leaves them prone to overfitting. To address this, we propose a co-evolving agents framework in which a target agent improves jointly with an auxiliary failure agent. The failure agent learns through preference optimization over failure trajectories from both the target and itself, thereby generating hard negatives that are close to success yet remain failures. Incorporating these informative hard negatives into the target agent's optimization sharpens decision boundaries and enhances generalization. Our comprehensive analysis and experiments across benchmark datasets show that our method not only shows improved performance but also demonstrates that failures, instead of being used as-is, can be systematically transformed into structured and valuable learning signals in self-improving agents.
♻ ☆ Unifying Ranking and Generation in Query Auto-Completion via Retrieval-Augmented Generation and Multi-Objective Alignment
Query Auto-Completion (QAC) suggests query completions as users type, helping them articulate intent and reach results more efficiently. Existing approaches face fundamental challenges: traditional retrieve-and-rank pipelines have limited long-tail coverage and require extensive feature engineering, while recent generative methods suffer from hallucination and safety risks. We present a unified framework that reformulates QAC as end-to-end list generation through Retrieval-Augmented Generation (RAG) and multi-objective Direct Preference Optimization (DPO). Our approach combines three key innovations: (1) reformulating QAC as end-to-end list generation with multi-objective optimization; (2) defining and deploying a suite of rule-based, model-based, and LLM-as-judge verifiers for QAC, and using them in a comprehensive methodology that combines RAG, multi-objective DPO, and iterative critique-revision for high-quality synthetic data; (3) a hybrid serving architecture enabling efficient production deployment under strict latency constraints. Evaluation on a large-scale commercial search platform demonstrates substantial improvements: offline metrics show gains across all dimensions, human evaluation yields +0.40 to +0.69 preference scores, and a controlled online experiment achieves 5.44\% reduction in keystrokes and 3.46\% increase in suggestion adoption, validating that unified generation with RAG and multi-objective alignment provides an effective solution for production QAC. This work represents a paradigm shift to end-to-end generation powered by large language models, RAG, and multi-objective alignment, establishing a production-validated framework that can benefit the broader search and recommendation industry.
comment: 11 pages, 4 figures
♻ ☆ GRAB: An LLM-Inspired Sequence-First Click-Through Rate Prediction Modeling Paradigm
Traditional Deep Learning Recommendation Models (DLRMs) face increasing bottlenecks in performance and efficiency, often struggling with generalization and long-sequence modeling. Inspired by the scaling success of Large Language Models (LLMs), we propose Generative Ranking for Ads at Baidu (GRAB), an end-to-end generative framework for Click-Through Rate (CTR) prediction. GRAB integrates a novel Causal Action-aware Multi-channel Attention (CamA) mechanism to effectively capture temporal dynamics and specific action signals within user behavior sequences. Full-scale online deployment demonstrates that GRAB significantly outperforms established DLRMs, delivering a 3.05% increase in revenue and a 3.49% rise in CTR. Furthermore, the model demonstrates desirable scaling behavior: its expressive power shows a monotonic and approximately linear improvement as longer interaction sequences are utilized.
♻ ☆ Measuring and Analyzing Intelligence via Contextual Uncertainty in Large Language Models using Information-Theoretic Metrics
Large Language Models (LLMs) excel on many task-specific benchmarks, yet the mechanisms that drive this success remain poorly understood. We move from asking what these systems can do to asking how they process information. Our contribution is a task-agnostic method that builds a quantitative Cognitive Profile for any model. The profile is built around the Entropy Decay Curve -- a plot of a model's normalised predictive uncertainty as context length grows. Across several state-of-the-art LLMs and diverse texts, the curves expose distinctive, stable profiles that depend on both model scale and text complexity. We also propose the Information Gain Span (IGS) as a single index that summarises the desirability of a decay pattern. Together, these tools offer a principled way to analyse and compare the internal dynamics of modern AI systems.
♻ ☆ Controlling Exploration-Exploitation in GFlowNets via Markov Chain Perspectives
Generative Flow Network (GFlowNet) objectives implicitly fix an equal mixing of forward and backward policies, potentially constraining the exploration-exploitation trade-off during training. By further exploring the link between GFlowNets and Markov chains, we establish an equivalence between GFlowNet objectives and Markov chain reversibility, thereby revealing the origin of such constraints, and provide a framework for adapting Markov chain properties to GFlowNets. Building on these theoretical findings, we propose $α$-GFNs, which generalize the mixing via a tunable parameter $α$. This generalization enables direct control over exploration-exploitation dynamics to enhance mode discovery capabilities, while ensuring convergence to unique flows. Across various benchmarks, including Set, Bit Sequence, and Molecule Generation, $α$-GFN objectives consistently outperform previous GFlowNet objectives, achieving up to a $10 \times$ increase in the number of discovered modes.
♻ ☆ A Unified Definition of Hallucination: It's The World Model, Stupid!
Despite numerous attempts at mitigation since the inception of language models, hallucinations remain a persistent problem even in today's frontier LLMs. Why is this? We review existing definitions of hallucination and fold them into a single, unified definition wherein prior definitions are subsumed. We argue that hallucination can be unified by defining it as simply inaccurate (internal) world modeling, in a form where it is observable to the user. For example, stating a fact which contradicts a knowledge base OR producing a summary which contradicts the source. By varying the reference world model and conflict policy, our framework unifies prior definitions. We argue that this unified view is useful because it forces evaluations to clarify their assumed reference "world", distinguishes true hallucinations from planning or reward errors, and provides a common language for comparison across benchmarks and discussion of mitigation strategies. Building on this definition, we outline plans for a family of benchmarks using synthetic, fully specified reference world models to stress-test and improve world modeling components.
comment: HalluWorld benchmark in progress. Repo at https://github.com/DegenAI-Labs/HalluWorld
♻ ☆ Learning More from Less: Unlocking Internal Representations for Benchmark Compression
The prohibitive cost of evaluating Large Language Models (LLMs) necessitates efficient alternatives to full-scale benchmarking. Prevalent approaches address this by identifying a small coreset of items to approximate full-benchmark performance. However, existing methods must estimate a reliable item profile from response patterns across many source models, which becomes statistically unstable when the source pool is small. This dependency is particularly limiting for newly released benchmarks with minimal historical evaluation data. We argue that discrete correctness labels are a lossy view of the model's decision process and fail to capture information encoded in hidden states. To address this, we introduce REPCORE, which aligns heterogeneous hidden states into a unified latent space to construct representative coresets. Using these subsets for performance extrapolation, REPCORE achieves precise estimation accuracy with as few as ten source models. Experiments on five benchmarks and over 200 models show consistent gains over output-based baselines in ranking correlation and estimation accuracy. Spectral analysis further indicates that the aligned representations contain separable components reflecting broad response tendencies and task-specific reasoning patterns.
♻ ☆ HAAP: Vision-context Hierarchical Attention Autoregressive with Adaptive Permutation for Scene Text Recognition
Scene Text Recognition (STR) is challenging in extracting effective character representations from visual data when text is unreadable. Permutation language modeling (PLM) is introduced to refine character predictions by jointly capturing contextual and visual information. However, in PLM, the use of random permutations causes training fit oscillation, and the iterative refinement (IR) operation also introduces additional overhead. To address these issues, this paper proposes the Hierarchical Attention autoregressive Model with Adaptive Permutation (HAAP) to enhance position-context-image interaction capability, improving autoregressive LM generalization. First, we propose Implicit Permutation Neurons (IPN) to generate adaptive attention masks that dynamically exploit token dependencies, enhancing the correlation between visual information and context. Adaptive correlation representation helps the model avoid training fit oscillation. Second, the Cross-modal Hierarchical Attention mechanism (CHA) is introduced to capture the dependencies among position queries, contextual semantics and visual information. CHA enables position tokens to aggregate global semantic information, avoiding the need for IR. Extensive experimental results show that the proposed HAAP achieves state-of-the-art (SOTA) performance in terms of accuracy, complexity, and latency on several datasets.
comment: 12 pages, 12 figures
♻ ☆ Causality Guided Representation Learning for Cross-Style Hate Speech Detection WWW 26
The proliferation of online hate speech poses a significant threat to the harmony of the web. While explicit hate is easily recognized through overt slurs, implicit hate speech is often conveyed through sarcasm, irony, stereotypes, or coded language -- making it harder to detect. Existing hate speech detection models, which predominantly rely on surface-level linguistic cues, fail to generalize effectively across diverse stylistic variations. Moreover, hate speech spread on different platforms often targets distinct groups and adopts unique styles, potentially inducing spurious correlations between them and labels, further challenging current detection approaches. Motivated by these observations, we hypothesize that the generation of hate speech can be modeled as a causal graph involving key factors: contextual environment, creator motivation, target, and style. Guided by this graph, we propose CADET, a causal representation learning framework that disentangles hate speech into interpretable latent factors and then controls confounders, thereby isolating genuine hate intent from superficial linguistic cues. Furthermore, CADET allows counterfactual reasoning by intervening on style within the latent space, naturally guiding the model to robustly identify hate speech in varying forms. CADET demonstrates superior performance in comprehensive experiments, highlighting the potential of causal priors in advancing generalizable hate speech detection.
comment: Accepted by the ACM Web Conference 2026 (WWW 26)
♻ ☆ Emergent Analogical Reasoning in Transformers
Analogy is a central faculty of human intelligence, enabling abstract patterns discovered in one domain to be applied to another. Despite its central role in cognition, the mechanisms by which Transformers acquire and implement analogical reasoning remain poorly understood. In this work, inspired by the notion of functors in category theory, we formalize analogical reasoning as the inference of correspondences between entities across categories. Based on this formulation, we introduce synthetic tasks that evaluate the emergence of analogical reasoning under controlled settings. We find that the emergence of analogical reasoning is highly sensitive to data characteristics, optimization choices, and model scale. Through mechanistic analysis, we show that analogical reasoning in Transformers decomposes into two key components: (1) geometric alignment of relational structure in the embedding space, and (2) the application of a functor within the Transformer. These mechanisms enable models to transfer relational structure from one category to another, realizing analogy. Finally, we quantify these effects and find that the same trends are observed in pretrained LLMs. In doing so, we move analogy from an abstract cognitive notion to a concrete, mechanistically grounded phenomenon in modern neural networks.
♻ ☆ Confucius Code Agent: Scalable Agent Scaffolding for Real-World Codebases
Real-world software engineering tasks require coding agents that can operate on massive repositories, sustain long-horizon sessions, and reliably coordinate complex toolchains at test time. Existing research-grade coding agents offer transparency but struggle when scaled to heavier, production-level workloads, while production-grade systems achieve strong practical performance but provide limited extensibility, interpretability, and controllability. We introduce the Confucius Code Agent (CCA), a software engineering agent that can operate at large-scale codebases. CCA is built on top of the Confucius SDK, an agent development platform structured around three complementary perspectives: Agent Experience (AX), User Experience (UX), and Developer Experience (DX). The SDK supports a unified orchestrator with advanced context management for long-context reasoning, a persistent note-taking system for cross-session continual learning, and a modular extension system for reliable tool use. In addition, we introduce a meta-agent that automates the construction, evaluation, and refinement of agents through a build-test-improve cycle, enabling rapid agent development on new tasks and tool stacks. Instantiated on the Confucius SDK using the meta-agent, CCA demonstrates strong performance on real-world software engineering tasks. On SWE-Bench-Pro, CCA achieves a Resolve@1 of 59%, exceeding prior research baselines as well as commercial results, under identical repositories, model backends, and tool access.
comment: The latest version
♻ ☆ Spectral Text Fusion: A Frequency-Aware Approach to Multimodal Time-Series Forecasting
Multimodal time series forecasting is crucial in real-world applications, where decisions depend on both numerical data and contextual signals. The core challenge is to effectively combine temporal numerical patterns with the context embedded in other modalities, such as text. While most existing methods align textual features with time-series patterns one step at a time, they neglect the multiscale temporal influences of contextual information such as time-series cycles and dynamic shifts. This mismatch between local alignment and global textual context can be addressed by spectral decomposition, which separates time series into frequency components capturing both short-term changes and long-term trends. In this paper, we propose SpecTF, a simple yet effective framework that integrates the effect of textual data on time series in the frequency domain. Our method extracts textual embeddings, projects them into the frequency domain, and fuses them with the time series' spectral components using a lightweight cross-attention mechanism. This adaptively reweights frequency bands based on textual relevance before mapping the results back to the temporal domain for predictions. Experimental results demonstrate that SpecTF significantly outperforms state-of-the-art models across diverse multi-modal time series datasets while utilizing considerably fewer parameters. Code is available at https://github.com/hiepnh137/SpecTF.
♻ ☆ Kimi K2: Open Agentic Intelligence
We introduce Kimi K2, a Mixture-of-Experts (MoE) large language model with 32 billion activated parameters and 1 trillion total parameters. We propose the MuonClip optimizer, which improves upon Muon with a novel QK-clip technique to address training instability while enjoying the advanced token efficiency of Muon. Based on MuonClip, K2 was pre-trained on 15.5 trillion tokens with zero loss spike. During post-training, K2 undergoes a multi-stage post-training process, highlighted by a large-scale agentic data synthesis pipeline and a joint reinforcement learning (RL) stage, where the model improves its capabilities through interactions with real and synthetic environments. Kimi K2 achieves state-of-the-art performance among open-source non-thinking models, with strengths in agentic capabilities. Notably, K2 obtains 66.1 on Tau2-Bench, 76.5 on ACEBench (En), 65.8 on SWE-Bench Verified, and 47.3 on SWE-Bench Multilingual -- surpassing most open and closed-sourced baselines in non-thinking settings. It also exhibits strong capabilities in coding, mathematics, and reasoning tasks, with a score of 53.7 on LiveCodeBench v6, 49.5 on AIME 2025, 75.1 on GPQA-Diamond, and 27.1 on OJBench, all without extended thinking. These results position Kimi K2 as one of the most capable open-source large language models to date, particularly in software engineering and agentic tasks. We release our base and post-trained model checkpoints to facilitate future research and applications of agentic intelligence.
comment: tech report of Kimi K2, with minor updates
♻ ☆ Align to Structure: Aligning Large Language Models with Structural Information AAAI 2026
Generating long, coherent text remains a challenge for large language models (LLMs), as they lack hierarchical planning and structured organization in discourse generation. We introduce Structural Alignment, a novel method that aligns LLMs with human-like discourse structures to enhance long-form text generation. By integrating linguistically grounded discourse frameworks into reinforcement learning, our approach guides models to produce coherent and well-organized outputs. We employ a dense reward scheme within a Proximal Policy Optimization framework, assigning fine-grained, token-level rewards based on the discourse distinctiveness relative to human writing. Two complementary reward models are evaluated: the first improves readability by scoring surface-level textual features to provide explicit structuring, while the second reinforces deeper coherence and rhetorical sophistication by analyzing global discourse patterns through hierarchical discourse motifs, outperforming both standard and RLHF-enhanced models in tasks such as essay generation and long-document summarization. All training data and code will be publicly shared at https://github.com/minnesotanlp/struct_align.
comment: Accepted to AAAI 2026 AIA
♻ ☆ Multi-Agent Teams Hold Experts Back
Multi-agent LLM systems are increasingly deployed as autonomous collaborators, where agents interact freely rather than execute fixed, pre-specified workflows. In such settings, effective coordination cannot be fully designed in advance and must instead emerge through interaction. However, most prior work enforces coordination through fixed roles, workflows, or aggregation rules, leaving open the question of how well self-organizing teams perform when coordination is unconstrained. Drawing on organizational psychology, we study whether self-organizing LLM teams achieve strong synergy, where team performance matches or exceeds the best individual member. Across human-inspired and frontier ML benchmarks, we find that -- unlike human teams -- LLM teams consistently fail to match their expert agent's performance, even when explicitly told who the expert is, incurring performance losses of up to 37.6%. Decomposing this failure, we show that expert leveraging, rather than identification, is the primary bottleneck. Conversational analysis reveals a tendency toward integrative compromise -- averaging expert and non-expert views rather than appropriately weighting expertise -- which increases with team size and correlates negatively with performance. Interestingly, this consensus-seeking behavior improves robustness to adversarial agents, suggesting a trade-off between alignment and effective expertise utilization. Our findings reveal a significant gap in the ability of self-organizing multi-agent teams to harness the collective expertise of their members.
comment: Preprint
♻ ☆ Hallucination is a Consequence of Space-Optimality: A Rate-Distortion Theorem for Membership Testing
Large language models often hallucinate with high confidence on "random facts" that lack inferable patterns. We formalize the memorization of such facts as a membership testing problem, unifying the discrete error metrics of Bloom filters with the continuous log-loss of LLMs. By analyzing this problem in the regime where facts are sparse in the universe of plausible claims, we establish a rate-distortion theorem: the optimal memory efficiency is characterized by the minimum KL divergence between score distributions on facts and non-facts. This theoretical framework provides a distinctive explanation for hallucination: even with optimal training, perfect data, and a simplified "closed world" setting, the information-theoretically optimal strategy under limited capacity is not to abstain or forget, but to assign high confidence to some non-facts, resulting in hallucination. We validate this theory empirically on synthetic data, showing that hallucinations persist as a natural consequence of lossy compression.
♻ ☆ The Variance Paradox: How AI Reduces Diversity but Increases Novelty
The diversity of human expression is the raw material of discovery. Generative artificial intelligence threatens this resource even as it promises to accelerate innovation, a paradox now visible across science, culture, and professional work. We propose a framework to explain this tension. AI systems compress informational variance through statistical optimization, and users amplify this effect through epistemic deference. We call this process the AI Prism. Yet this same compression can enable novelty. Standardized forms travel across domain boundaries, lowering translation costs and creating opportunities for recombination that we term the Paradoxical Bridge. The interaction produces a U-shaped temporal dynamic, an initial decline in diversity followed by recombinant innovation, but only when humans actively curate rather than passively defer. The framework generates testable predictions about when compression constrains versus amplifies creativity. As AI becomes infrastructure for knowledge work, managing this dynamic is essential. Without intervention, the conditions for recovery may not arrive.
♻ ☆ TIDE: Trajectory-based Diagnostic Evaluation of Test-Time Improvement in LLM Agents
Recent advances in autonomous LLM agents demonstrate their ability to improve performance through iterative interaction with the environment. We define this paradigm as Test-Time Improvement (TTI). However, the mechanisms under how and why TTI succeed or fail remain poorly understood, and existing evaluation metrics fail to capture their task optimization efficiency, behavior adaptation after erroneous actions, and the specific utility of working memory for task completion. To address these gaps, we propose Test-time Improvement Diagnostic Evaluation (TIDE), an agent-agnostic and environment-agnostic framework that decomposes TTI into three comprehensive and interconnected dimensions. The framework measures (1) the overall temporal dynamics of task completion and (2) identifies whether performance is primarily constrained by recursive looping behaviors or (3) by burdensome accumulated memory. Through extensive experiments across diverse agents and environments, TIDE highlights that improving agent performance requires more than scaling internal reasoning, calling for explicitly optimizing the interaction dynamics between the agent and the environment.
comment: 29pages, 10 figures
♻ ☆ Rank-and-Reason: Multi-Agent Collaboration Accelerates Zero-Shot Protein Mutation Prediction
Zero-shot mutation prediction is vital for low-resource protein engineering, yet existing protein language models (PLMs) often yield statistically confident results that ignore fundamental biophysical constraints. Currently, selecting candidates for wet-lab validation relies on manual expert auditing of PLM outputs, a process that is inefficient, subjective, and highly dependent on domain expertise. To address this, we propose Rank-and-Reason (VenusRAR), a two-stage agentic framework to automate this workflow and maximize expected wet-lab fitness. In the Rank-Stage, a Computational Expert and Virtual Biologist aggregate a context-aware multi-modal ensemble, establishing a new Spearman correlation record of 0.551 (vs. 0.518) on ProteinGym. In the Reason-Stage, an agentic Expert Panel employs chain-of-thought reasoning to audit candidates against geometric and structural constraints, improving the Top-5 Hit Rate by up to 367% on ProteinGym-DMS99. The wet-lab validation on Cas12i3 nuclease further confirms the framework's efficacy, achieving a 46.7% positive rate and identifying two novel mutants with 4.23-fold and 5.05-fold activity improvements. Code and datasets are released on GitHub (https://github.com/ai4protein/VenusRAR/).
comment: 22 pages, 5 figures, 15 tables
♻ ☆ HyperOffload: Graph-Driven Hierarchical Memory Management for Large Language Models on SuperNode Architectures
The rapid evolution of Large Language Models (LLMs) towards long-context reasoning and sparse architectures has pushed memory requirements far beyond the capacity of individual device HBM. While emerging supernode architectures offer terabyte-scale shared memory pools via high-bandwidth interconnects, existing software stacks fail to exploit this hardware effectively. Current runtime-based offloading and swapping techniques operate with a local view, leading to reactive scheduling and exposed communication latency that stall the computation pipeline. In this paper, we propose the SuperNode Memory Management Framework (\textbf{HyperOffload}). It employs a compiler-assisted approach that leverages graph-driven memory management to treat remote memory access as explicit operations in the computation graph, specifically designed for hierarchical SuperNode architectures. Unlike reactive runtime systems, SuperNode represents data movement using cache operators within the compiler's Intermediate Representation (IR). This design enables a global, compile-time analysis of tensor lifetimes and execution dependencies. Leveraging this visibility, we develop a global execution-order refinement algorithm that statically schedules data transfers to hide remote memory latency behind compute-intensive regions. We implement SuperNode within the production deep learning framework MindSpore, adding a remote memory backend and specialized compiler passes. Evaluation on representative LLM workloads shows that SuperNode reduces peak device memory usage by up to 26\% for inference while maintaining end-to-end performance. Our work demonstrates that integrating memory-augmented hardware into the compiler's optimization framework is essential for scaling next-generation AI workloads.
comment: Technical Report
♻ ☆ ReasonEdit: Editing Vision-Language Models using Human Reasoning
Model editing aims to correct errors in large, pretrained models without altering unrelated behaviors. While some recent works have edited vision-language models (VLMs), no existing editors tackle reasoning-heavy tasks, which typically require humans and models to reason about images. We therefore propose ReasonEdit, the first VLM editor to let users explain their reasoning during editing, introducing a new, practical model editing setup. ReasonEdit continuously stores human reasoning in a codebook, and retrieves only relevant facts during inference using a novel topology-balanced multimodal embedding method inspired by network science. Across four VLMs on multiple rationale-based visual question answering datasets, ReasonEdit achieves state-of-the-art editing performance, ultimately showing that using human reasoning during editing greatly improves edit generalization.
♻ ☆ SCPL: Enhancing Neural Network Training Throughput with Decoupled Local Losses and Model Parallelism
Adopting large-scale AI models in enterprise information systems is often hindered by high training costs and long development cycles, posing a significant managerial challenge. The standard end-to-end backpropagation (BP) algorithm is a primary driver of modern AI, but it is also the source of inefficiency in training deep networks. This paper introduces a new training methodology, Supervised Contrastive Parallel Learning (SCPL), that addresses this issue by decoupling BP and transforming a long gradient flow into multiple short ones. This design enables the simultaneous computation of parameter gradients in different layers, achieving superior model parallelism and enhancing training throughput. Detailed experiments are presented to demonstrate the efficiency and effectiveness of our model compared to BP, Early Exit, GPipe, and Associated Learning (AL), a state-of-the-art method for decoupling backpropagation. By mitigating a fundamental performance bottleneck, SCPL provides a practical pathway for organizations to develop and deploy advanced information systems more cost-effectively and with greater agility. The experimental code is released for reproducibility. https://github.com/minyaho/scpl/
♻ ☆ Decipher-MR: A Vision-Language Foundation Model for 3D MRI Representations
Magnetic Resonance Imaging is a critical imaging modality in clinical diagnosis and research, yet its complexity and heterogeneity hinder scalable, generalizable machine learning. Although foundation models have revolutionized language and vision tasks, their application to MRI remains constrained by data scarcity and narrow anatomical focus. We present Decipher-MR, a 3D MRI-specific vision-language foundation model trained on 200,000 MRI series from over 22,000 studies spanning diverse anatomical regions, sequences, and pathologies. Decipher-MR integrates self-supervised vision learning with report-guided text supervision to build robust representations for broad applications. To enable efficient use, Decipher-MR supports a modular design that enables tuning of lightweight, task-specific decoders attached to a frozen pretrained encoder. Following this setting, we evaluate Decipher-MR across disease classification, demographic prediction, anatomical localization, and cross-modal retrieval, demonstrating consistent improvements over existing foundation models and task-specific approaches. These results position Decipher-MR as a versatile foundation for MRI-based AI in clinical and research settings.
♻ ☆ GPG: A Simple and Strong Reinforcement Learning Baseline for Model Reasoning ICLR2026
Reinforcement Learning (RL) can directly enhance the reasoning capabilities of large language models without extensive reliance on Supervised Fine-Tuning (SFT). In this work, we revisit the traditional Policy Gradient (PG) mechanism and propose a minimalist RL approach termed Group Policy Gradient (GPG). Unlike conventional methods, GPG directly optimize the original RL objective, thus obviating the need for surrogate loss functions. By eliminating the critic and reference models, avoiding KL divergence constraints, and addressing the advantage and gradient estimation bias, our approach significantly simplifies the training process compared to Group Relative Policy Optimization (GRPO). Our approach achieves superior performance without relying on auxiliary techniques or adjustments. As illustrated in Figure 1, extensive experiments demonstrate that our method not only reduces computational costs but also consistently outperforms GRPO across various unimodal and multimodal tasks. Our code is available at https://github.com/AMAP-ML/GPG.
comment: Accepted to ICLR2026
♻ ☆ From Pragmas to Partners: A Symbiotic Evolution of Agentic High-Level Synthesis
The rise of large language models has sparked interest in AI-driven hardware design, raising the question: does high-level synthesis (HLS) still matter in the agentic era? We argue that HLS remains essential. While we expect mature agentic hardware systems to leverage both HLS and RTL, this paper focuses on HLS and its role in enabling agentic optimization. HLS offers faster iteration cycles, portability, and design permutability that make it a natural layer for agentic optimization. This position paper makes three contributions. First, we explain why HLS serves as a practical abstraction layer and a golden reference for agentic hardware design. Second, we identify key limitations of current HLS tools, namely inadequate performance feedback, rigid interfaces, and limited debuggability that agents are uniquely positioned to address. Third, we propose a taxonomy for the symbiotic evolution of agentic HLS, clarifying how responsibility shifts from human designers to AI agents as systems advance from copilots to autonomous design partners.
♻ ☆ ShotFinder: Imagination-Driven Open-Domain Video Shot Retrieval via Web Search
In recent years, large language models (LLMs) have made rapid progress in information retrieval, yet existing research has mainly focused on text or static multimodal settings. Open-domain video shot retrieval, which involves richer temporal structure and more complex semantics, still lacks systematic benchmarks and analysis. To fill this gap, we introduce ShotFinder, a benchmark that formalizes editing requirements as keyframe-oriented shot descriptions and introduces five types of controllable single-factor constraints: Temporal order, Color, Visual style, Audio, and Resolution. We curate 1,210 high-quality samples from YouTube across 20 thematic categories, using large models for generation with human verification. Based on the benchmark, we propose ShotFinder, a text-driven three-stage retrieval and localization pipeline: (1) query expansion via video imagination, (2) candidate video retrieval with a search engine, and (3) description-guided temporal localization. Experiments on multiple closed-source and open-source models reveal a significant gap to human performance, with clear imbalance across constraints: temporal localization is relatively tractable, while color and visual style remain major challenges. These results reveal that open-domain video shot retrieval is still a critical capability that multimodal large models have yet to overcome.
comment: 28 pages, 7 figures
♻ ☆ TP-Blend: Textual-Prompt Attention Pairing for Precise Object-Style Blending in Diffusion Models
Current text-conditioned diffusion editors handle single object replacement well but struggle when a new object and a new style must be introduced simultaneously. We present Twin-Prompt Attention Blend (TP-Blend), a lightweight training-free framework that receives two separate textual prompts, one specifying a blend object and the other defining a target style, and injects both into a single denoising trajectory. TP-Blend is driven by two complementary attention processors. Cross-Attention Object Fusion (CAOF) first averages head-wise attention to locate spatial tokens that respond strongly to either prompt, then solves an entropy-regularised optimal transport problem that reassigns complete multi-head feature vectors to those positions. CAOF updates feature vectors at the full combined dimensionality of all heads (e.g., 640 dimensions in SD-XL), preserving rich cross-head correlations while keeping memory low. Self-Attention Style Fusion (SASF) injects style at every self-attention layer through Detail-Sensitive Instance Normalization. A lightweight one-dimensional Gaussian filter separates low- and high-frequency components; only the high-frequency residual is blended back, imprinting brush-stroke-level texture without disrupting global geometry. SASF further swaps the Key and Value matrices with those derived from the style prompt, enforcing context-aware texture modulation that remains independent of object fusion. Extensive experiments show that TP-Blend produces high-resolution, photo-realistic edits with precise control over both content and appearance, surpassing recent baselines in quantitative fidelity, perceptual quality, and inference speed.
♻ ☆ Free Draft-and-Verification: Toward Lossless Parallel Decoding for Diffusion Large Language Models
Diffusion Large Language Models (DLLMs) have emerged as a new paradigm of language modeling beyond autoregressive next-token prediction. Taking advantage of their inherent modeling foundations, DLLMs have the great potential of efficient inference with parallel decoding algorithms, which enable multi-token prediction. However, the high generation quality often requires the number of decoding steps equal to the sequence length, which performs a one-token-per-step decoding, and existing parallel decoding algorithms, which yield suboptimal decoding paths, bring inference speedup at the cost of non-negligible performance degradation. To overcome this challenge, we introduce Free Draft-and-Verification (FreeDave), a novel fast decoding algorithm tailored for DLLMs that achieves lossless parallel decoding without any model modification or extra modules. Specifically, we propose an algorithm of parallel-decoded candidate generation and verification, which is theoretically guaranteed to use the fewest model forward calls to reproduce the same sequence generated by one-token-per-step decoding. By extensive evaluations on math reasoning and code generation benchmarks across different DLLMs, FreeDave is proven to accelerate the inference up to $2.83\times$ without performance degradation.
♻ ☆ Thinking with Comics: Enhancing Multimodal Reasoning through Structured Visual Storytelling
Chain-of-Thought reasoning has driven large language models to extend from thinking with text to thinking with images and videos. However, different modalities still have clear limitations: static images struggle to represent temporal structure, while videos introduce substantial redundancy and computational cost. In this work, we propose Thinking with Comics, a visual reasoning paradigm that uses comics as a high information-density medium positioned between images and videos. Comics preserve temporal structure, embedded text, and narrative coherence while requiring significantly lower reasoning cost. We systematically study two reasoning paths based on comics and evaluate them on a range of reasoning tasks and long-context understanding tasks. Experimental results show that Thinking with Comics outperforms Thinking with Images on multi-step temporal and causal reasoning tasks, while remaining substantially more efficient than Thinking with Video. Further analysis indicates that different comic narrative structures and styles consistently affect performance across tasks, suggesting that comics serve as an effective intermediate visual representation for improving multimodal reasoning.
comment: Working paper
♻ ☆ Regulatory Markets: The Future of AI Governance
Appropriately regulating artificial intelligence is an increasingly urgent and widespread policy challenge. We identify two primary, competing problem. First is a technical deficit: Legislatures and regulatory face significant challenges in rapidly translating conventional command-and-control legal requirements into technical requirements. Second is a democratic deficit: Over-reliance on industry to provide technical standards fails to ensure that the many values-based decisions that must be made to shape AI development and deployment are made by democratically accountable public, not private, actors. We propose a solution: regulatory markets, in which governments require the targets of regulation to purchase regulatory services from a government-licensed private regulator. This approach to AI regulation could overcome the limitations of both command-and-control regulation and excessive delegation to industry. Regulatory markets could enable governments to establish policy priorities for the regulation of AI while relying on market forces and industry R&D efforts to pioneer the technical methods of regulation that best achieve policymakers' stated objectives.
♻ ☆ EverMemBench: Benchmarking Long-Term Interactive Memory in Large Language Models
Long-term conversational memory is essential for LLM-based assistants, yet existing benchmarks focus on dyadic, single-topic dialogues that fail to capture real-world complexity. We introduce EverMemBench, a benchmark featuring multi-party, multi-group conversations spanning over 1 million tokens with temporally evolving information, cross-topic interleaving, and role-specific personas. EverMemBench evaluates memory systems across three dimensions through 1,000+ QA pairs: fine-grained recall, memory awareness, and user profile understanding. Our evaluation reveals critical limitations: (1) multi-hop reasoning collapses in multi-party settings, with even oracle models achieving only 26%; (2) temporal reasoning remains unsolved, requiring version semantics beyond timestamp matching; (3) memory awareness is bottlenecked by retrieval, where current similarity-based methods fail to bridge the semantic gap between queries and implicitly relevant memories. EverMemBench provides a challenging testbed for developing next-generation memory architectures.
comment: 10 pages, 2 figures, 4 tables
♻ ☆ SurgVidLM: Towards Multi-grained Surgical Video Understanding with Large Language Model
Surgical scene understanding is critical for surgical training and robotic decision-making in robot-assisted surgery. Recent advances in Multimodal Large Language Models (MLLMs) have demonstrated great potential for advancing scene perception in the medical domain, facilitating surgeons to understand surgical scenes and procedures. However, these methods are primarily oriented towards image-based analysis or global video understanding, overlooking the fine-grained video reasoning that is crucial for analyzing specific processes and capturing detailed task execution within a surgical procedure. To bridge this gap, we propose SurgVidLM, the first video language model designed to address both full and fine-grained surgical video comprehension. To train our SurgVidLM, we construct the SVU-31K that is a large-scale dataset with over 31K video-instruction pairs, enabling both holistic understanding and detailed analysis of surgical procedures. Building on this resource, SurgVidLM incorporates a two-stage StageFocus mechanism: the first stage extracts global procedural context, while the second stage performs high-frequency local analysis guided by temporal cues. We also develop the Multi-frequency Fusion Attention to effectively integrate low- and high-frequency visual tokens, ensuring the preservation of critical task-specific details. Experimental results demonstrate that SurgVidLM significantly outperforms state-of-the-art Vid-LLMs of comparable parameter scale in both full and fine-grained video understanding tasks, showcasing its superior capability in capturing the context of complex robot-assisted surgeries. Our code and dataset will be publicly accessible soon.
♻ ☆ GlimpRouter: Efficient Collaborative Inference by Glimpsing One Token of Thoughts
Large Reasoning Models (LRMs) achieve remarkable performance by explicitly generating multi-step chains of thought, but this capability incurs substantial inference latency and computational cost. Collaborative inference offers a promising solution by selectively allocating work between lightweight and large models, yet a fundamental challenge remains: determining when a reasoning step requires the capacity of a large model or the efficiency of a small model. Existing routing strategies either rely on local token probabilities or post-hoc verification, introducing significant inference overhead. In this work, we propose a novel perspective on step-wise collaboration: the difficulty of a reasoning step can be inferred from its very first token. Inspired by the "Aha Moment" phenomenon in LRMs, we show that the entropy of the initial token serves as a strong predictor of step difficulty. Building on this insight, we introduce GlimpRouter, a training-free step-wise collaboration framework. GlimpRouter employs a lightweight model to generate only the first token of each reasoning step and routes the step to a larger model only when the initial token entropy exceeds a threshold. Experiments on multiple benchmarks demonstrate that our approach significantly reduces inference latency while preserving accuracy. For instance, GlimpRouter attains a substantial 10.7% improvement in accuracy while reducing inference latency by 25.9% compared to a standalone large model on AIME25. These results suggest a simple yet effective mechanism for reasoning: allocating computation based on a glimpse of thought rather than full-step evaluation.
comment: Code available at https://github.com/Zengwh02/GlimpRouter
♻ ☆ When Domain Pretraining Interferes with Instruction Alignment: An Empirical Study of Adapter Merging in Medical LLMs
Large language models can exhibit surprising adapter interference when combining domain adaptation and instruction alignment in safety-critical settings. We study a two-stage LoRA pipeline for medical LLMs, where domain-oriented pre-training (PT) and supervised fine-tuning (SFT) are trained separately and later merged through weighted adapter merging. We observe that introducing PT signal can systematically alter model behavior and produce reasoning-style outputs, even when evaluation templates explicitly attempt to suppress such behavior. This interference leads to a divergence between surface metrics and reasoning or alignment behavior: BLEU/ROUGE scores drop significantly, while multiple-choice accuracy improves. We further show that small pipeline mistakes can easily misattribute SFT-only behavior to merged models, and provide a lightweight merge-verification routine to ensure correctness and reproducibility. Our findings highlight an interaction between knowledge injection and instruction alignment in adapter-based fine-tuning, with important implications for safety-critical model deployment.
♻ ☆ NRR-Phi: Text-to-State Mapping for Ambiguity Preservation in LLM Inference
Large language models exhibit a systematic tendency toward early semantic commitment: given ambiguous input, they collapse multiple valid interpretations into a single response before sufficient context is available. We present a formal framework for text-to-state mapping ($φ: \mathcal{T} \to \mathcal{S}$) that transforms natural language into a non-collapsing state space where multiple interpretations coexist. The mapping decomposes into three stages: conflict detection, interpretation extraction, and state construction. We instantiate $φ$ with a hybrid extraction pipeline combining rule-based segmentation for explicit conflict markers (adversative conjunctions, hedging expressions) with LLM-based enumeration of implicit ambiguity (epistemic, lexical, structural). On a test set of 68 ambiguous sentences, the resulting states preserve interpretive multiplicity: mean state entropy $H = 1.087$ bits across ambiguity categories, compared to $H = 0$ for collapse-based baselines. We additionally instantiate the rule-based conflict detector for Japanese markers to illustrate cross-lingual portability. This framework extends Non-Resolution Reasoning (NRR) by providing the missing algorithmic bridge between text and the NRR state space, enabling architectural collapse deferment in LLM inference.
comment: 17 pages, 3 figures, 5 tables. Part of the NRR research program. v2: Added title prefix NRR-Phi for series identification; standardized reference formatting
♻ ☆ If It's Nice, Do It Twice: We Should Try Iterative Corpus Curation
Recent work demonstrates that filtering harmful content from pretraining data improves model safety without degrading capabilities. We propose a natural extension: do it again. A model trained on filtered data can filter the corpus further; training on this cleaner corpus produces an even cleaner model. We provide theoretical analysis showing this process converges to a self-consistent corpus where the model trained on it approves of its own training data. Even under the weak assumption of constant filter quality, iteration yields decay in harmful content. We argue this framework offers a novel form of scalable oversight. While model internals are opaque, the resulting corpus is human-auditable. Even a single iteration produces a large-scale preference annotations over documents, potentially valuable for interpretability research. We derive bounds on capability-safety tradeoffs and outline open questions. We call on researchers with pretraining infrastructure to empirically test this approach.
Computation and Language 160
☆ Parallel-Probe: Towards Efficient Parallel Thinking via 2D Probing
Parallel thinking has emerged as a promising paradigm for reasoning, yet it imposes significant computational burdens. Existing efficiency methods primarily rely on local, per-trajectory signals and lack principled mechanisms to exploit global dynamics across parallel branches. We introduce 2D probing, an interface that exposes the width-depth dynamics of parallel thinking by periodically eliciting intermediate answers from all branches. Our analysis reveals three key insights: non-monotonic scaling across width-depth allocations, heterogeneous reasoning branch lengths, and early stabilization of global consensus. Guided by these insights, we introduce $\textbf{Parallel-Probe}$, a training-free controller designed to optimize online parallel thinking. Parallel-Probe employs consensus-based early stopping to regulate reasoning depth and deviation-based branch pruning to dynamically adjust width. Extensive experiments across three benchmarks and multiple models demonstrate that Parallel-Probe establishes a superior Pareto frontier for test-time scaling. Compared to standard majority voting, it reduces sequential tokens by up to $\textbf{35.8}$% and total token cost by over $\textbf{25.8}$% while maintaining competitive accuracy.
comment: 14 pages
☆ Accelerating Scientific Research with Gemini: Case Studies and Common Techniques
Recent advances in large language models (LLMs) have opened new avenues for accelerating scientific research. While models are increasingly capable of assisting with routine tasks, their ability to contribute to novel, expert-level mathematical discovery is less understood. We present a collection of case studies demonstrating how researchers have successfully collaborated with advanced AI models, specifically Google's Gemini-based models (in particular Gemini Deep Think and its advanced variants), to solve open problems, refute conjectures, and generate new proofs across diverse areas in theoretical computer science, as well as other areas such as economics, optimization, and physics. Based on these experiences, we extract common techniques for effective human-AI collaboration in theoretical research, such as iterative refinement, problem decomposition, and cross-disciplinary knowledge transfer. While the majority of our results stem from this interactive, conversational methodology, we also highlight specific instances that push beyond standard chat interfaces. These include deploying the model as a rigorous adversarial reviewer to detect subtle flaws in existing proofs, and embedding it within a "neuro-symbolic" loop that autonomously writes and executes code to verify complex derivations. Together, these examples highlight the potential of AI not just as a tool for automation, but as a versatile, genuine partner in the creative process of scientific discovery.
☆ AutoFigure: Generating and Refining Publication-Ready Scientific Illustrations ICLR 2026
High-quality scientific illustrations are crucial for effectively communicating complex scientific and technical concepts, yet their manual creation remains a well-recognized bottleneck in both academia and industry. We present FigureBench, the first large-scale benchmark for generating scientific illustrations from long-form scientific texts. It contains 3,300 high-quality scientific text-figure pairs, covering diverse text-to-illustration tasks from scientific papers, surveys, blogs, and textbooks. Moreover, we propose AutoFigure, the first agentic framework that automatically generates high-quality scientific illustrations based on long-form scientific text. Specifically, before rendering the final result, AutoFigure engages in extensive thinking, recombination, and validation to produce a layout that is both structurally sound and aesthetically refined, outputting a scientific illustration that achieves both structural completeness and aesthetic appeal. Leveraging the high-quality data from FigureBench, we conduct extensive experiments to test the performance of AutoFigure against various baseline methods. The results demonstrate that AutoFigure consistently surpasses all baseline methods, producing publication-ready scientific illustrations. The code, dataset and huggingface space are released in https://github.com/ResearAI/AutoFigure.
comment: Accepted at the ICLR 2026
☆ They Said Memes Were Harmless-We Found the Ones That Hurt: Decoding Jokes, Symbols, and Cultural References
Meme-based social abuse detection is challenging because harmful intent often relies on implicit cultural symbolism and subtle cross-modal incongruence. Prior approaches, from fusion-based methods to in-context learning with Large Vision-Language Models (LVLMs), have made progress but remain limited by three factors: i) cultural blindness (missing symbolic context), ii) boundary ambiguity (satire vs. abuse confusion), and iii) lack of interpretability (opaque model reasoning). We introduce CROSS-ALIGN+, a three-stage framework that systematically addresses these limitations: (1) Stage I mitigates cultural blindness by enriching multimodal representations with structured knowledge from ConceptNet, Wikidata, and Hatebase; (2) Stage II reduces boundary ambiguity through parameter-efficient LoRA adapters that sharpen decision boundaries; and (3) Stage III enhances interpretability by generating cascaded explanations. Extensive experiments on five benchmarks and eight LVLMs demonstrate that CROSS-ALIGN+ consistently outperforms state-of-the-art methods, achieving up to 17% relative F1 improvement while providing interpretable justifications for each decision.
comment: Accepted at the The Web Conference 2026 (Research Track)
☆ Antidistillation Fingerprinting
Model distillation enables efficient emulation of frontier large language models (LLMs), creating a need for robust mechanisms to detect when a third-party student model has trained on a teacher model's outputs. However, existing fingerprinting techniques that could be used to detect such distillation rely on heuristic perturbations that impose a steep trade-off between generation quality and fingerprinting strength, often requiring significant degradation of utility to ensure the fingerprint is effectively internalized by the student. We introduce antidistillation fingerprinting (ADFP), a principled approach that aligns the fingerprinting objective with the student's learning dynamics. Building upon the gradient-based framework of antidistillation sampling, ADFP utilizes a proxy model to identify and sample tokens that directly maximize the expected detectability of the fingerprint in the student after fine-tuning, rather than relying on the incidental absorption of the un-targeted biases of a more naive watermark. Experiments on GSM8K and OASST1 benchmarks demonstrate that ADFP achieves a significant Pareto improvement over state-of-the-art baselines, yielding stronger detection confidence with minimal impact on utility, even when the student model's architecture is unknown.
comment: 26 pages, 11 figures
☆ Bridging Online and Offline RL: Contextual Bandit Learning for Multi-Turn Code Generation
Recently, there have been significant research interests in training large language models (LLMs) with reinforcement learning (RL) on real-world tasks, such as multi-turn code generation. While online RL tends to perform better than offline RL, its higher training cost and instability hinders wide adoption. In this paper, we build on the observation that multi-turn code generation can be formulated as a one-step recoverable Markov decision process and propose contextual bandit learning with offline trajectories (Cobalt), a new method that combines the benefits of online and offline RL. Cobalt first collects code generation trajectories using a reference LLM and divides them into partial trajectories as contextual prompts. Then, during online bandit learning, the LLM is trained to complete each partial trajectory prompt through single-step code generation. Cobalt outperforms two multi-turn online RL baselines based on GRPO and VeRPO, and substantially improves R1-Distill 8B and Qwen3 8B by up to 9.0 and 6.2 absolute Pass@1 scores on LiveCodeBench. Also, we analyze LLMs' in-context reward hacking behaviors and augment Cobalt training with perturbed trajectories to mitigate this issue. Overall, our results demonstrate Cobalt as a promising solution for iterative decision-making tasks like multi-turn code generation. Our code and data are available at https://github.com/OSU-NLP-Group/cobalt.
☆ FullStack-Agent: Enhancing Agentic Full-Stack Web Coding via Development-Oriented Testing and Repository Back-Translation
Assisting non-expert users to develop complex interactive websites has become a popular task for LLM-powered code agents. However, existing code agents tend to only generate frontend web pages, masking the lack of real full-stack data processing and storage with fancy visual effects. Notably, constructing production-level full-stack web applications is far more challenging than only generating frontend web pages, demanding careful control of data flow, comprehensive understanding of constantly updating packages and dependencies, and accurate localization of obscure bugs in the codebase. To address these difficulties, we introduce FullStack-Agent, a unified agent system for full-stack agentic coding that consists of three parts: (1) FullStack-Dev, a multi-agent framework with strong planning, code editing, codebase navigation, and bug localization abilities. (2) FullStack-Learn, an innovative data-scaling and self-improving method that back-translates crawled and synthesized website repositories to improve the backbone LLM of FullStack-Dev. (3) FullStack-Bench, a comprehensive benchmark that systematically tests the frontend, backend and database functionalities of the generated website. Our FullStack-Dev outperforms the previous state-of-the-art method by 8.7%, 38.2%, and 15.9% on the frontend, backend, and database test cases respectively. Additionally, FullStack-Learn raises the performance of a 30B model by 9.7%, 9.5%, and 2.8% on the three sets of test cases through self-improvement, demonstrating the effectiveness of our approach. The code is released at https://github.com/mnluzimu/FullStack-Agent.
☆ WebSentinel: Detecting and Localizing Prompt Injection Attacks for Web Agents
Prompt injection attacks manipulate webpage content to cause web agents to execute attacker-specified tasks instead of the user's intended ones. Existing methods for detecting and localizing such attacks achieve limited effectiveness, as their underlying assumptions often do not hold in the web-agent setting. In this work, we propose WebSentinel, a two-step approach for detecting and localizing prompt injection attacks in webpages. Given a webpage, Step I extracts \emph{segments of interest} that may be contaminated, and Step II evaluates each segment by checking its consistency with the webpage content as context. We show that WebSentinel is highly effective, substantially outperforming baseline methods across multiple datasets of both contaminated and clean webpages that we collected. Our code is available at: https://github.com/wxl-lxw/WebSentinel.
☆ AOrchestra: Automating Sub-Agent Creation for Agentic Orchestration
Language agents have shown strong promise for task automation. Realizing this promise for increasingly complex, long-horizon tasks has driven the rise of a sub-agent-as-tools paradigm for multi-turn task solving. However, existing designs still lack a dynamic abstraction view of sub-agents, thereby hurting adaptability. We address this challenge with a unified, framework-agnostic agent abstraction that models any agent as a tuple Instruction, Context, Tools, Model. This tuple acts as a compositional recipe for capabilities, enabling the system to spawn specialized executors for each task on demand. Building on this abstraction, we introduce an agentic system AOrchestra, where the central orchestrator concretizes the tuple at each step: it curates task-relevant context, selects tools and models, and delegates execution via on-the-fly automatic agent creation. Such designs enable reducing human engineering efforts, and remain framework-agnostic with plug-and-play support for diverse agents as task executors. It also enables a controllable performance-cost trade-off, allowing the system to approach Pareto-efficient. Across three challenging benchmarks (GAIA, SWE-Bench, Terminal-Bench), AOrchestra achieves 16.28% relative improvement against the strongest baseline when paired with Gemini-3-Flash. The code is available at: https://github.com/FoundationAgents/AOrchestra
☆ Context Compression via Explicit Information Transmission
Long-context inference with Large Language Models (LLMs) is costly due to quadratic attention and growing key-value caches, motivating context compression. In this work, we study soft context compression, where a long context is condensed into a small set of continuous representations. Existing methods typically re-purpose the LLM itself as a trainable compressor, relying on layer-by-layer self-attention to iteratively aggregate information. We argue that this paradigm suffers from two structural limitations: (i) progressive representation overwriting across layers (ii) uncoordinated allocation of compression capacity across tokens. We propose ComprExIT (Context Compression via Explicit Information Transmission), a lightweight framework that formulates soft compression into a new paradigm: explicit information transmission over frozen LLM hidden states. This decouples compression from the model's internal self-attention dynamics. ComprExIT performs (i) depth-wise transmission to selectively transmit multi-layer information into token anchors, mitigating progressive overwriting, and (ii) width-wise transmission to aggregate anchors into a small number of slots via a globally optimized transmission plan, ensuring coordinated allocation of information. Across six question-answering benchmarks, ComprExIT consistently outperforms state-of-the-art context compression methods while introducing only ~1% additional parameters, demonstrating that explicit and coordinated information transmission enables more effective and robust long-context compression.
☆ Efficient Estimation of Kernel Surrogate Models for Task Attribution ICLR 2026
Modern AI agents such as large language models are trained on diverse tasks -- translation, code generation, mathematical reasoning, and text prediction -- simultaneously. A key question is to quantify how each individual training task influences performance on a target task, a problem we refer to as task attribution. The direct approach, leave-one-out retraining, measures the effect of removing each task, but is computationally infeasible at scale. An alternative approach that builds surrogate models to predict a target task's performance for any subset of training tasks has emerged in recent literature. Prior work focuses on linear surrogate models, which capture first-order relationships, but miss nonlinear interactions such as synergy, antagonism, or XOR-type effects. In this paper, we first consider a unified task weighting framework for analyzing task attribution methods, and show a new connection between linear surrogate models and influence functions through a second-order analysis. Then, we introduce kernel surrogate models, which more effectively represent second-order task interactions. To efficiently learn the kernel surrogate, we develop a gradient-based estimation procedure that leverages a first-order approximation of pretrained models; empirically, this yields accurate estimates with less than $2\%$ relative error without repeated retraining. Experiments across multiple domains -- including math reasoning in transformers, in-context learning, and multi-objective reinforcement learning -- demonstrate the effectiveness of kernel surrogate models. They achieve a $25\%$ higher correlation with the leave-one-out ground truth than linear surrogates and influence-function baselines. When used for downstream task selection, kernel surrogate models yield a $40\%$ improvement in demonstration selection for in-context learning and multi-objective reinforcement learning benchmarks.
comment: 27 pages. To appear in ICLR 2026
☆ CUBO: Self-Contained Retrieval-Augmented Generation on Consumer Laptops 10 GB Corpora, 16 GB RAM, Single-Device Deployment
Organizations handling sensitive documents face a tension: cloud-based AI risks GDPR violations, while local systems typically require 18-32 GB RAM. This paper presents CUBO, a systems-oriented RAG platform for consumer laptops with 16 GB shared memory. CUBO's novelty lies in engineering integration of streaming ingestion (O(1) buffer overhead), tiered hybrid retrieval, and hardware-aware orchestration that enables competitive Recall@10 (0.48-0.97 across BEIR domains) within a hard 15.5 GB RAM ceiling. The 37,000-line codebase achieves retrieval latencies of 185 ms (p50) on C1,300 laptops while maintaining data minimization through local-only processing aligned with GDPR Art. 5(1)(c). Evaluation on BEIR benchmarks validates practical deployability for small-to-medium professional archives. The codebase is publicly available at https://github.com/PaoloAstrino/CUBO.
comment: 24 pages, 2 figures, 6 tables
☆ Training Multi-Turn Search Agent via Contrastive Dynamic Branch Sampling
Agentic reinforcement learning has enabled large language models to perform complex multi-turn planning and tool use. However, learning in long-horizon settings remains challenging due to sparse, trajectory-level outcome rewards. While prior tree-based methods attempt to mitigate this issue, they often suffer from high variance and computational inefficiency. Through empirical analysis of search agents, We identify a common pattern: performance diverges mainly due to decisions near the tail. Motivated by this observation, we propose Branching Relative Policy Optimization (BranPO), a value-free method that provides step-level contrastive supervision without dense rewards. BranPO truncates trajectories near the tail and resamples alternative continuations to construct contrastive suffixes over shared prefixes, reducing credit ambiguity in long-horizon rollouts. To further boost efficiency and stabilize training, we introduce difficulty-aware branch sampling to adapt branching frequency across tasks, and redundant step masking to suppress uninformative actions. Extensive experiments on various question answering benchmarks demonstrate that BranPO consistently outperforms strong baselines, achieving significant accuracy gains on long-horizon tasks without increasing the overall training budget. Our code is available at \href{https://github.com/YubaoZhao/BranPO}{code}.
comment: 24 pages, 5 figures
☆ No Shortcuts to Culture: Indonesian Multi-hop Question Answering for Complex Cultural Understanding
Understanding culture requires reasoning across context, tradition, and implicit social knowledge, far beyond recalling isolated facts. Yet most culturally focused question answering (QA) benchmarks rely on single-hop questions, which may allow models to exploit shallow cues rather than demonstrate genuine cultural reasoning. In this work, we introduce ID-MoCQA, the first large-scale multi-hop QA dataset for assessing the cultural understanding of large language models (LLMs), grounded in Indonesian traditions and available in both English and Indonesian. We present a new framework that systematically transforms single-hop cultural questions into multi-hop reasoning chains spanning six clue types (e.g., commonsense, temporal, geographical). Our multi-stage validation pipeline, combining expert review and LLM-as-a-judge filtering, ensures high-quality question-answer pairs. Our evaluation across state-of-the-art models reveals substantial gaps in cultural reasoning, particularly in tasks requiring nuanced inference. ID-MoCQA provides a challenging and essential benchmark for advancing the cultural competency of LLMs.
☆ Beyond Tokens: Semantic-Aware Speculative Decoding for Efficient Inference by Probing Internal States
Large Language Models (LLMs) achieve strong performance across many tasks but suffer from high inference latency due to autoregressive decoding. The issue is exacerbated in Large Reasoning Models (LRMs), which generate lengthy chains of thought. While speculative decoding accelerates inference by drafting and verifying multiple tokens in parallel, existing methods operate at the token level and ignore semantic equivalence (i.e., different token sequences expressing the same meaning), leading to inefficient rejections. We propose SemanticSpec, a semantic-aware speculative decoding framework that verifies entire semantic sequences instead of tokens. SemanticSpec introduces a semantic probability estimation mechanism that probes the model's internal hidden states to assess the likelihood of generating sequences with specific meanings.Experiments on four benchmarks show that SemanticSpec achieves up to 2.7x speedup on DeepSeekR1-32B and 2.1x on QwQ-32B, consistently outperforming token-level and sequence-level baselines in both efficiency and effectiveness.
☆ OmniRAG-Agent: Agentic Omnimodal Reasoning for Low-Resource Long Audio-Video Question Answering
Long-horizon omnimodal question answering answers questions by reasoning over text, images, audio, and video. Despite recent progress on OmniLLMs, low-resource long audio-video QA still suffers from costly dense encoding, weak fine-grained retrieval, limited proactive planning, and no clear end-to-end optimization.To address these issues, we propose OmniRAG-Agent, an agentic omnimodal QA method for budgeted long audio-video reasoning. It builds an image-audio retrieval-augmented generation module that lets an OmniLLM fetch short, relevant frames and audio snippets from external banks. Moreover, it uses an agent loop that plans, calls tools across turns, and merges retrieved evidence to answer complex queries. Furthermore, we apply group relative policy optimization to jointly improve tool use and answer quality over time. Experiments on OmniVideoBench, WorldSense, and Daily-Omni show that OmniRAG-Agent consistently outperforms prior methods under low-resource settings and achieves strong results, with ablations validating each component.
☆ Cognitively Diverse Multiple-Choice Question Generation: A Hybrid Multi-Agent Framework with Large Language Models
Recent advances in large language models (LLMs) have made automated multiple-choice question (MCQ) generation increasingly feasible; however, reliably producing items that satisfy controlled cognitive demands remains a challenge. To address this gap, we introduce ReQUESTA, a hybrid, multi-agent framework for generating cognitively diverse MCQs that systematically target text-based, inferential, and main idea comprehension. ReQUESTA decomposes MCQ authoring into specialized subtasks and coordinates LLM-powered agents with rule-based components to support planning, controlled generation, iterative evaluation, and post-processing. We evaluated the framework in a large-scale reading comprehension study using academic expository texts, comparing ReQUESTA-generated MCQs with those produced by a single-pass GPT-5 zero-shot baseline. Psychometric analyses of learner responses assessed item difficulty and discrimination, while expert raters evaluated question quality across multiple dimensions, including topic relevance and distractor quality. Results showed that ReQUESTA-generated items were consistently more challenging, more discriminative, and more strongly aligned with overall reading comprehension performance. Expert evaluations further indicated stronger alignment with central concepts and superior distractor linguistic consistency and semantic plausibility, particularly for inferential questions. These findings demonstrate that hybrid, agentic orchestration can systematically improve the reliability and controllability of LLM-based generation, highlighting workflow design as a key lever for structured artifact generation beyond single-pass prompting.
comment: This manuscript is under review at Electronics
☆ Conflict-Resolving and Sharpness-Aware Minimization for Generalized Knowledge Editing with Multiple Updates
Large language models (LLMs) rely on internal knowledge to solve many downstream tasks, making it crucial to keep them up to date. Since full retraining is expensive, prior work has explored efficient alternatives such as model editing and parameter-efficient fine-tuning. However, these approaches often break down in practice due to poor generalization across inputs, limited stability, and knowledge conflict. To address these limitations, we propose the CoRSA (Conflict-Resolving and Sharpness-Aware Minimization) training framework, a parameter-efficient, holistic approach for knowledge editing with multiple updates. CoRSA tackles multiple challenges simultaneously: it improves generalization to different input forms and enhances stability across multiple updates by minimizing loss curvature, and resolves conflicts by maximizing the margin between new and prior knowledge. Across three widely used fact editing benchmarks, CoRSA achieves significant gains in generalization, outperforming baselines with average absolute improvements of 12.42% over LoRA and 10% over model editing methods. With multiple updates, it maintains high update efficacy while reducing catastrophic forgetting by 27.82% compared to LoRA. CoRSA also generalizes to the code domain, outperforming the strongest baseline by 5.48% Pass@5 in update efficacy.
comment: 22 pages, 8 figures. Code link: https://github.com/duykhuongnguyen/CoRSA
☆ Agent Primitives: Reusable Latent Building Blocks for Multi-Agent Systems
While existing multi-agent systems (MAS) can handle complex problems by enabling collaboration among multiple agents, they are often highly task-specific, relying on manually crafted agent roles and interaction prompts, which leads to increased architectural complexity and limited reusability across tasks. Moreover, most MAS communicate primarily through natural language, making them vulnerable to error accumulation and instability in long-context, multi-stage interactions within internal agent histories. In this work, we propose \textbf{Agent Primitives}, a set of reusable latent building blocks for LLM-based MAS. Inspired by neural network design, where complex models are built from reusable components, we observe that many existing MAS architectures can be decomposed into a small number of recurring internal computation patterns. Based on this observation, we instantiate three primitives: Review, Voting and Selection, and Planning and Execution. All primitives communicate internally via key-value (KV) cache, which improves both robustness and efficiency by mitigating information degradation across multi-stage interactions. To enable automatic system construction, an Organizer agent selects and composes primitives for each query, guided by a lightweight knowledge pool of previously successful configurations, forming a primitive-based MAS. Experiments show that primitives-based MAS improve average accuracy by 12.0-16.5\% over single-agent baselines, reduce token usage and inference latency by approximately 3$\times$-4$\times$ compared to text-based MAS, while incurring only 1.3$\times$-1.6$\times$ overhead relative to single-agent inference and providing more stable performance across model backbones.
comment: 16 pages
☆ OCRTurk: A Comprehensive OCR Benchmark for Turkish EACL 2026
Document parsing is now widely used in applications, such as large-scale document digitization, retrieval-augmented generation, and domain-specific pipelines in healthcare and education. Benchmarking these models is crucial for assessing their reliability and practical robustness. Existing benchmarks mostly target high-resource languages and provide limited coverage for low-resource settings, such as Turkish. Moreover, existing studies on Turkish document parsing lack a standardized benchmark that reflects real-world scenarios and document diversity. To address this gap, we introduce OCRTurk, a Turkish document parsing benchmark covering multiple layout elements and document categories at three difficulty levels. OCRTurk consists of 180 Turkish documents drawn from academic articles, theses, slide decks, and non-academic articles. We evaluate seven OCR models on OCRTurk using element-wise metrics. Across difficulty levels, PaddleOCR achieves the strongest overall results, leading most element-wise metrics except figures and attaining high Normalized Edit Distance scores in easy, medium, and hard subsets. We also observe performance variation by document type. Models perform well on non-academic documents, while slideshows become the most challenging.
comment: Accepted by EACL 2026 SIGTURK
☆ Rethinking the Reranker: Boundary-Aware Evidence Selection for Robust Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) systems remain brittle under realistic retrieval noise, even when the required evidence appears in the top-K results. A key reason is that retrievers and rerankers optimize solely for relevance, often selecting either trivial, answer-revealing passages or evidence that lacks the critical information required to answer the question, without considering whether the evidence is suitable for the generator. We propose BAR-RAG, which reframes the reranker as a boundary-aware evidence selector that targets the generator's Goldilocks Zone -- evidence that is neither trivially easy nor fundamentally unanswerable for the generator, but is challenging yet sufficient for inference and thus provides the strongest learning signal. BAR-RAG trains the selector with reinforcement learning using generator feedback, and adopts a two-stage pipeline that fine-tunes the generator under the induced evidence distribution to mitigate the distribution mismatch between training and inference. Experiments on knowledge-intensive question answering benchmarks show that BAR-RAG consistently improves end-to-end performance under noisy retrieval, achieving an average gain of 10.3 percent over strong RAG and reranking baselines while substantially improving robustness. Code is publicly avaliable at https://github.com/GasolSun36/BAR-RAG.
comment: 19 pages, 8 tables, 5 figures
☆ Neural Attention Search Linear: Towards Adaptive Token-Level Hybrid Attention Models
The quadratic computational complexity of softmax transformers has become a bottleneck in long-context scenarios. In contrast, linear attention model families provide a promising direction towards a more efficient sequential model. These linear attention models compress past KV values into a single hidden state, thereby efficiently reducing complexity during both training and inference. However, their expressivity remains limited by the size of their hidden state. Previous work proposed interleaving softmax and linear attention layers to reduce computational complexity while preserving expressivity. Nevertheless, the efficiency of these models remains bottlenecked by their softmax attention layers. In this paper, we propose Neural Attention Search Linear (NAtS-L), a framework that applies both linear attention and softmax attention operations within the same layer on different tokens. NAtS-L automatically determines whether a token can be handled by a linear attention model, i.e., tokens that have only short-term impact and can be encoded into fixed-size hidden states, or require softmax attention, i.e., tokens that contain information related to long-term retrieval and need to be preserved for future queries. By searching for optimal Gated DeltaNet and softmax attention combinations across tokens, we show that NAtS-L provides a strong yet efficient token-level hybrid architecture.
comment: 17 pages, 8 figures
☆ Instruction Anchors: Dissecting the Causal Dynamics of Modality Arbitration
Modality following serves as the capacity of multimodal large language models (MLLMs) to selectively utilize multimodal contexts based on user instructions. It is fundamental to ensuring safety and reliability in real-world deployments. However, the underlying mechanisms governing this decision-making process remain poorly understood. In this paper, we investigate its working mechanism through an information flow lens. Our findings reveal that instruction tokens function as structural anchors for modality arbitration: Shallow attention layers perform non-selective information transfer, routing multimodal cues to these anchors as a latent buffer; Modality competition is resolved within deep attention layers guided by the instruction intent, while MLP layers exhibit semantic inertia, acting as an adversarial force. Furthermore, we identify a sparse set of specialized attention heads that drive this arbitration. Causal interventions demonstrate that manipulating a mere $5\%$ of these critical heads can decrease the modality-following ratio by $60\%$ through blocking, or increase it by $60\%$ through targeted amplification of failed samples. Our work provides a substantial step toward model transparency and offers a principled framework for the orchestration of multimodal information in MLLMs.
comment: Modality Following
☆ RAGTurk: Best Practices for Retrieval Augmented Generation in Turkish EACL 2026
Retrieval-Augmented Generation (RAG) enhances LLM factuality, yet design guidance remains English-centric, limiting insights for morphologically rich languages like Turkish. We address this by constructing a comprehensive Turkish RAG dataset derived from Turkish Wikipedia and CulturaX, comprising question-answer pairs and relevant passage chunks. We benchmark seven stages of the RAG pipeline, from query transformation and reranking to answer refinement, without task-specific fine-tuning. Our results show that complex methods like HyDE maximize accuracy (85%) that is considerably higher than the baseline (78.70%). Also a Pareto-optimal configuration using Cross-encoder Reranking and Context Augmentation achieves comparable performance (84.60%) with much lower cost. We further demonstrate that over-stacking generative modules can degrade performance by distorting morphological cues, whereas simple query clarification with robust reranking offers an effective solution.
comment: Accepted by EACL 2026 SIGTURK
☆ Search-R2: Enhancing Search-Integrated Reasoning via Actor-Refiner Collaboration
Search-integrated reasoning enables language agents to transcend static parametric knowledge by actively querying external sources. However, training these agents via reinforcement learning is hindered by the multi-scale credit assignment problem: existing methods typically rely on sparse, trajectory-level rewards that fail to distinguish between high-quality reasoning and fortuitous guesses, leading to redundant or misleading search behaviors. To address this, we propose Search-R2, a novel Actor-Refiner collaboration framework that enhances reasoning through targeted intervention, with both components jointly optimized during training. Our approach decomposes the generation process into an Actor, which produces initial reasoning trajectories, and a Meta-Refiner, which selectively diagnoses and repairs flawed steps via a 'cut-and-regenerate' mechanism. To provide fine-grained supervision, we introduce a hybrid reward design that couples outcome correctness with a dense process reward quantifying the information density of retrieved evidence. Theoretically, we formalize the Actor-Refiner interaction as a smoothed mixture policy, proving that selective correction yields strict performance gains over strong baselines. Extensive experiments across various general and multi-hop QA datasets demonstrate that Search-R2 consistently outperforms strong RAG and RL-based baselines across model scales, achieving superior reasoning accuracy with minimal overhead.
☆ Tutorial on Reasoning for IR & IR for Reasoning ECIR 2026
Information retrieval has long focused on ranking documents by semantic relatedness. Yet many real-world information needs demand more: enforcement of logical constraints, multi-step inference, and synthesis of multiple pieces of evidence. Addressing these requirements is, at its core, a problem of reasoning. Across AI communities, researchers are developing diverse solutions for the problem of reasoning, from inference-time strategies and post-training of LLMs, to neuro-symbolic systems, Bayesian and probabilistic frameworks, geometric representations, and energy-based models. These efforts target the same problem: to move beyond pattern-matching systems toward structured, verifiable inference. However, they remain scattered across disciplines, making it difficult for IR researchers to identify the most relevant ideas and opportunities. To help navigate the fragmented landscape of research in reasoning, this tutorial first articulates a working definition of reasoning within the context of information retrieval and derives from it a unified analytical framework. The framework maps existing approaches along axes that reflect the core components of the definition. By providing a comprehensive overview of recent approaches and mapping current methods onto the defined axes, we expose their trade-offs and complementarities, highlight where IR can benefit from cross-disciplinary advances, and illustrate how retrieval process itself can play a central role in broader reasoning systems. The tutorial will equip participants with both a conceptual framework and practical guidance for enhancing reasoning-capable IR systems, while situating IR as a domain that both benefits and contributes to the broader development of reasoning methodologies.
comment: Accepted to ECIR 2026
☆ TRE: Encouraging Exploration in the Trust Region
Entropy regularization is a standard technique in reinforcement learning (RL) to enhance exploration, yet it yields negligible effects or even degrades performance in Large Language Models (LLMs). We attribute this failure to the cumulative tail risk inherent to LLMs with massive vocabularies and long generation horizons. In such environments, standard global entropy maximization indiscriminately dilutes probability mass into the vast tail of invalid tokens rather than focusing on plausible candidates, thereby disrupting coherent reasoning. To address this, we propose Trust Region Entropy (TRE), a method that encourages exploration strictly within the model's trust region. Extensive experiments across mathematical reasoning (MATH), combinatorial search (Countdown), and preference alignment (HH) tasks demonstrate that TRE consistently outperforms vanilla PPO, standard entropy regularization, and other exploration baselines. Our code is available at https://github.com/WhyChaos/TRE-Encouraging-Exploration-in-the-Trust-Region.
☆ BIRDTurk: Adaptation of the BIRD Text-to-SQL Dataset to Turkish EACL 2026
Text-to-SQL systems have achieved strong performance on English benchmarks, yet their behavior in morphologically rich, low-resource languages remains largely unexplored. We introduce BIRDTurk, the first Turkish adaptation of the BIRD benchmark, constructed through a controlled translation pipeline that adapts schema identifiers to Turkish while strictly preserving the logical structure and execution semantics of SQL queries and databases. Translation quality is validated on a sample size determined by the Central Limit Theorem to ensure 95% confidence, achieving 98.15% accuracy on human-evaluated samples. Using BIRDTurk, we evaluate inference-based prompting, agentic multi-stage reasoning, and supervised fine-tuning. Our results reveal that Turkish introduces consistent performance degradation, driven by both structural linguistic divergence and underrepresentation in LLM pretraining, while agentic reasoning demonstrates stronger cross-lingual robustness. Supervised fine-tuning remains challenging for standard multilingual baselines but scales effectively with modern instruction-tuned models. BIRDTurk provides a controlled testbed for cross-lingual Text-to-SQL evaluation under realistic database conditions. We release the training and development splits to support future research.
comment: Accepted by EACL 2026 SIGTURK
☆ Learning Query-Specific Rubrics from Human Preferences for DeepResearch Report Generation
Nowadays, training and evaluating DeepResearch-generated reports remain challenging due to the lack of verifiable reward signals. Accordingly, rubric-based evaluation has become a common practice. However, existing approaches either rely on coarse, pre-defined rubrics that lack sufficient granularity, or depend on manually constructed query-specific rubrics that are costly and difficult to scale. In this paper, we propose a pipeline to train human-preference-aligned query-specific rubric generators tailored for DeepResearch report generation. We first construct a dataset of DeepResearch-style queries annotated with human preferences over paired reports, and train rubric generators via reinforcement learning with a hybrid reward combining human preference supervision and LLM-based rubric evaluation. To better handle long-horizon reasoning, we further introduce a Multi-agent Markov-state (MaMs) workflow for report generation. We empirically show that our proposed rubric generators deliver more discriminative and better human-aligned supervision than existing rubric design strategies. Moreover, when integrated into the MaMs training framework, DeepResearch systems equipped with our rubric generators consistently outperform all open-source baselines on the DeepResearch Bench and achieve performance comparable to that of leading closed-source models.
☆ Controlling Output Rankings in Generative Engines for LLM-based Search
The way customers search for and choose products is changing with the rise of large language models (LLMs). LLM-based search, or generative engines, provides direct product recommendations to users, rather than traditional online search results that require users to explore options themselves. However, these recommendations are strongly influenced by the initial retrieval order of LLMs, which disadvantages small businesses and independent creators by limiting their visibility. In this work, we propose CORE, an optimization method that \textbf{C}ontrols \textbf{O}utput \textbf{R}ankings in g\textbf{E}nerative Engines for LLM-based search. Since the LLM's interactions with the search engine are black-box, CORE targets the content returned by search engines as the primary means of influencing output rankings. Specifically, CORE optimizes retrieved content by appending strategically designed optimization content to steer the ranking of outputs. We introduce three types of optimization content: string-based, reasoning-based, and review-based, demonstrating their effectiveness in shaping output rankings. To evaluate CORE in realistic settings, we introduce ProductBench, a large-scale benchmark with 15 product categories and 200 products per category, where each product is associated with its top-10 recommendations collected from Amazon's search interface. Extensive experiments on four LLMs with search capabilities (GPT-4o, Gemini-2.5, Claude-4, and Grok-3) demonstrate that CORE achieves an average Promotion Success Rate of \textbf{91.4\% @Top-5}, \textbf{86.6\% @Top-3}, and \textbf{80.3\% @Top-1}, across 15 product categories, outperforming existing ranking manipulation methods while preserving the fluency of optimized content.
comment: 23 pages
☆ Efficient Algorithms for Partial Constraint Satisfaction Problems over Control-flow Graphs
In this work, we focus on the Partial Constraint Satisfaction Problem (PCSP) over control-flow graphs (CFGs) of programs. PCSP serves as a generalization of the well-known Constraint Satisfaction Problem (CSP). In the CSP framework, we define a set of variables, a set of constraints, and a finite domain $D$ that encompasses all possible values for each variable. The objective is to assign a value to each variable in such a way that all constraints are satisfied. In the graph variant of CSP, an underlying graph is considered and we have one variable corresponding to each vertex of the graph and one or several constraints corresponding to each edge. In PCSPs, we allow for certain constraints to be violated at a specified cost, aiming to find a solution that minimizes the total cost. Numerous classical compiler optimization tasks can be framed as PCSPs over control-flow graphs. Examples include Register Allocation, Lifetime-optimal Speculative Partial Redundancy Elimination (LOSPRE), and Optimal Placement of Bank Selection Instructions. On the other hand, it is well-known that control-flow graphs of structured programs are sparse and decomposable in a variety of ways. In this work, we rely on the Series-Parallel-Loop (SPL) decompositions as introduced by~\cite{RegisterAllocation}. Our main contribution is a general algorithm for PCSPs over SPL graphs with a time complexity of \(O(|G| \cdot |D|^6)\), where \(|G|\) represents the size of the control-flow graph. Note that for any fixed domain $D,$ this yields a linear-time solution. Our algorithm can be seen as a generalization and unification of previous SPL-based approaches for register allocation and LOSPRE. In addition, we provide experimental results over another classical PCSP task, i.e. Optimal Bank Selection, achieving runtimes four times better than the previous state of the art.
comment: Already accepted by SETTA'25. https://www.setta2025.uk/accepted-papers. arXiv admin note: substantial text overlap with arXiv:2507.16660
☆ CL-bench: A Benchmark for Context Learning
Current language models (LMs) excel at reasoning over prompts using pre-trained knowledge. However, real-world tasks are far more complex and context-dependent: models must learn from task-specific context and leverage new knowledge beyond what is learned during pre-training to reason and resolve tasks. We term this capability context learning, a crucial ability that humans naturally possess but has been largely overlooked. To this end, we introduce CL-bench, a real-world benchmark consisting of 500 complex contexts, 1,899 tasks, and 31,607 verification rubrics, all crafted by experienced domain experts. Each task is designed such that the new content required to resolve it is contained within the corresponding context. Resolving tasks in CL-bench requires models to learn from the context, ranging from new domain-specific knowledge, rule systems, and complex procedures to laws derived from empirical data, all of which are absent from pre-training. This goes far beyond long-context tasks that primarily test retrieval or reading comprehension, and in-context learning tasks, where models learn simple task patterns via instructions and demonstrations. Our evaluations of ten frontier LMs find that models solve only 17.2% of tasks on average. Even the best-performing model, GPT-5.1, solves only 23.7%, revealing that LMs have yet to achieve effective context learning, which poses a critical bottleneck for tackling real-world, complex context-dependent tasks. CL-bench represents a step towards building LMs with this fundamental capability, making them more intelligent and advancing their deployment in real-world scenarios.
comment: 78 pages, 17 figures
☆ $V_0$: A Generalist Value Model for Any Policy at State Zero
Policy gradient methods rely on a baseline to measure the relative advantage of an action, ensuring the model reinforces behaviors that outperform its current average capability. In the training of Large Language Models (LLMs) using Actor-Critic methods (e.g., PPO), this baseline is typically estimated by a Value Model (Critic) often as large as the policy model itself. However, as the policy continuously evolves, the value model requires expensive, synchronous incremental training to accurately track the shifting capabilities of the policy. To avoid this overhead, Group Relative Policy Optimization (GRPO) eliminates the coupled value model by using the average reward of a group of rollouts as the baseline; yet, this approach necessitates extensive sampling to maintain estimation stability. In this paper, we propose $V_0$, a Generalist Value Model capable of estimating the expected performance of any model on unseen prompts without requiring parameter updates. We reframe value estimation by treating the policy's dynamic capability as an explicit context input; specifically, we leverage a history of instruction-performance pairs to dynamically profile the model, departing from the traditional paradigm that relies on parameter fitting to perceive capability shifts. Focusing on value estimation at State Zero (i.e., the initial prompt, hence $V_0$), our model serves as a critical resource scheduler. During GRPO training, $V_0$ predicts success rates prior to rollout, allowing for efficient sampling budget allocation; during deployment, it functions as a router, dispatching instructions to the most cost-effective and suitable model. Empirical results demonstrate that $V_0$ significantly outperforms heuristic budget allocation and achieves a Pareto-optimal trade-off between performance and cost in LLM routing tasks.
☆ Use Graph When It Needs: Efficiently and Adaptively Integrating Retrieval-Augmented Generation with Graphs
Large language models (LLMs) often struggle with knowledge-intensive tasks due to hallucinations and outdated parametric knowledge. While Retrieval-Augmented Generation (RAG) addresses this by integrating external corpora, its effectiveness is limited by fragmented information in unstructured domain documents. Graph-augmented RAG (GraphRAG) emerged to enhance contextual reasoning through structured knowledge graphs, yet paradoxically underperforms vanilla RAG in real-world scenarios, exhibiting significant accuracy drops and prohibitive latency despite gains on complex queries. We identify the rigid application of GraphRAG to all queries, regardless of complexity, as the root cause. To resolve this, we propose an efficient and adaptive GraphRAG framework called EA-GraphRAG that dynamically integrates RAG and GraphRAG paradigms through syntax-aware complexity analysis. Our approach introduces: (i) a syntactic feature constructor that parses each query and extracts a set of structural features; (ii) a lightweight complexity scorer that maps these features to a continuous complexity score; and (iii) a score-driven routing policy that selects dense RAG for low-score queries, invokes graph-based retrieval for high-score queries, and applies complexity-aware reciprocal rank fusion to handle borderline cases. Extensive experiments on a comprehensive benchmark, consisting of two single-hop and two multi-hop QA benchmarks, demonstrate that our EA-GraphRAG significantly improves accuracy, reduces latency, and achieves state-of-the-art performance in handling mixed scenarios involving both simple and complex queries.
☆ ACL: Aligned Contrastive Learning Improves BERT and Multi-exit BERT Fine-tuning
Despite its success in self-supervised learning, contrastive learning is less studied in the supervised setting. In this work, we first use a set of pilot experiments to show that in the supervised setting, the cross-entropy loss objective (CE) and the contrastive learning objective often conflict with each other, thus hindering the applications of CL in supervised settings. To resolve this problem, we introduce a novel \underline{A}ligned \underline{C}ontrastive \underline{L}earning (ACL) framework. First, ACL-Embed regards label embeddings as extra augmented samples with different labels and employs contrastive learning to align the label embeddings with its samples' representations. Second, to facilitate the optimization of ACL-Embed objective combined with the CE loss, we propose ACL-Grad, which will discard the ACL-Embed term if the two objectives are in conflict. To further enhance the performances of intermediate exits of multi-exit BERT, we further propose cross-layer ACL (ACL-CL), which is to ask the teacher exit to guide the optimization of student shallow exits. Extensive experiments on the GLUE benchmark results in the following takeaways: (a) ACL-BRT outperforms or performs comparably with CE and CE+SCL on the GLUE tasks; (b) ACL, especially CL-ACL, significantly surpasses the baseline methods on the fine-tuning of multi-exit BERT, thus providing better quality-speed tradeoffs for low-latency applications.
☆ HySparse: A Hybrid Sparse Attention Architecture with Oracle Token Selection and KV Cache Sharing
This work introduces Hybrid Sparse Attention (HySparse), a new architecture that interleaves each full attention layer with several sparse attention layers. While conceptually simple, HySparse strategically derives each sparse layer's token selection and KV caches directly from the preceding full attention layer. This architecture resolves two fundamental limitations of prior sparse attention methods. First, conventional approaches typically rely on additional proxies to predict token importance, introducing extra complexity and potentially suboptimal performance. In contrast, HySparse uses the full attention layer as a precise oracle to identify important tokens. Second, existing sparse attention designs often reduce computation without saving KV cache. HySparse enables sparse attention layers to reuse the full attention KV cache, thereby reducing both computation and memory. We evaluate HySparse on both 7B dense and 80B MoE models. Across all settings, HySparse consistently outperforms both full attention and hybrid SWA baselines. Notably, in the 80B MoE model with 49 total layers, only 5 layers employ full attention, yet HySparse achieves substantial performance gains while reducing KV cache storage by nearly 10x.
comment: 17 pages, 2 figures
☆ When Single Answer Is Not Enough: Rethinking Single-Step Retrosynthesis Benchmarks for LLMs
Recent progress has expanded the use of large language models (LLMs) in drug discovery, including synthesis planning. However, objective evaluation of retrosynthesis performance remains limited. Existing benchmarks and metrics typically rely on published synthetic procedures and Top-K accuracy based on single ground-truth, which does not capture the open-ended nature of real-world synthesis planning. We propose a new benchmarking framework for single-step retrosynthesis that evaluates both general-purpose and chemistry-specialized LLMs using ChemCensor, a novel metric for chemical plausibility. By emphasizing plausibility over exact match, this approach better aligns with human synthesis planning practices. We also introduce CREED, a novel dataset comprising millions of ChemCensor-validated reaction records for LLM training, and use it to train a model that improves over the LLM baselines under this benchmark.
☆ Assessing the Impact of Typological Features on Multilingual Machine Translation in the Age of Large Language Models EACL 2026
Despite major advances in multilingual modeling, large quality disparities persist across languages. Besides the obvious impact of uneven training resources, typological properties have also been proposed to determine the intrinsic difficulty of modeling a language. The existing evidence, however, is mostly based on small monolingual language models or bilingual translation models trained from scratch. We expand on this line of work by analyzing two large pre-trained multilingual translation models, NLLB-200 and Tower+, which are state-of-the-art representatives of encoder-decoder and decoder-only machine translation, respectively. Based on a broad set of languages, we find that target language typology drives translation quality of both models, even after controlling for more trivial factors, such as data resourcedness and writing script. Additionally, languages with certain typological properties benefit more from a wider search of the output space, suggesting that such languages could profit from alternative decoding strategies beyond the standard left-to-right beam search. To facilitate further research in this area, we release a set of fine-grained typological properties for 212 languages of the FLORES+ MT evaluation benchmark.
comment: 19 pages, 11 figures, EACL 2026
☆ SEAD: Self-Evolving Agent for Multi-Turn Service Dialogue
Large Language Models have demonstrated remarkable capabilities in open-domain dialogues. However, current methods exhibit suboptimal performance in service dialogues, as they rely on noisy, low-quality human conversation data. This limitation arises from data scarcity and the difficulty of simulating authentic, goal-oriented user behaviors. To address these issues, we propose SEAD (Self-Evolving Agent for Service Dialogue), a framework that enables agents to learn effective strategies without large-scale human annotations. SEAD decouples user modeling into two components: a Profile Controller that generates diverse user states to manage training curriculum, and a User Role-play Model that focuses on realistic role-playing. This design ensures the environment provides adaptive training scenarios rather than acting as an unfair adversary. Experiments demonstrate that SEAD significantly outperforms Open-source Foundation Models and Closed-source Commercial Models, improving task completion rate by 17.6% and dialogue efficiency by 11.1%. Code is available at: https://github.com/Da1yuqin/SEAD.
☆ Can Large Language Models Generalize Procedures Across Representations?
Large language models (LLMs) are trained and tested extensively on symbolic representations such as code and graphs, yet real-world user tasks are often specified in natural language. To what extent can LLMs generalize across these representations? Here, we approach this question by studying isomorphic tasks involving procedures represented in code, graphs, and natural language (e.g., scheduling steps in planning). We find that training LLMs with popular post-training methods on graphs or code data alone does not reliably generalize to corresponding natural language tasks, while training solely on natural language can lead to inefficient performance gains. To address this gap, we propose a two-stage data curriculum that first trains on symbolic, then natural language data. The curriculum substantially improves model performance across model families and tasks. Remarkably, a 1.5B Qwen model trained by our method can closely match zero-shot GPT-4o in naturalistic planning. Finally, our analysis suggests that successful cross-representation generalization can be interpreted as a form of generative analogy, which our curriculum effectively encourages.
☆ Learning to Reason Faithfully through Step-Level Faithfulness Maximization
Reinforcement Learning with Verifiable Rewards (RLVR) has markedly improved the performance of Large Language Models (LLMs) on tasks requiring multi-step reasoning. However, most RLVR pipelines rely on sparse outcome-based rewards, providing little supervision over intermediate steps and thus encouraging over-confidence and spurious reasoning, which in turn increases hallucinations. To address this, we propose FaithRL, a general reinforcement learning framework that directly optimizes reasoning faithfulness. We formalize a faithfulness-maximization objective and theoretically show that optimizing it mitigates over-confidence. To instantiate this objective, we introduce a geometric reward design and a faithfulness-aware advantage modulation mechanism that assigns step-level credit by penalizing unsupported steps while preserving valid partial derivations. Across diverse backbones and benchmarks, FaithRL consistently reduces hallucination rates while maintaining (and often improving) answer correctness. Further analysis confirms that FaithRL increases step-wise reasoning faithfulness and generalizes robustly. Our code is available at https://github.com/aintdoin/FaithRL.
☆ Decoupling Skeleton and Flesh: Efficient Multimodal Table Reasoning with Disentangled Alignment and Structure-aware Guidance
Reasoning over table images remains challenging for Large Vision-Language Models (LVLMs) due to complex layouts and tightly coupled structure-content information. Existing solutions often depend on expensive supervised training, reinforcement learning, or external tools, limiting efficiency and scalability. This work addresses a key question: how to adapt LVLMs to table reasoning with minimal annotation and no external tools? Specifically, we first introduce DiSCo, a Disentangled Structure-Content alignment framework that explicitly separates structural abstraction from semantic grounding during multimodal alignment, efficiently adapting LVLMs to tables structures. Building on DiSCo, we further present Table-GLS, a Global-to-Local Structure-guided reasoning framework that performs table reasoning via structured exploration and evidence-grounded inference. Extensive experiments across diverse benchmarks demonstrate that our framework efficiently enhances LVLM's table understanding and reasoning capabilities, particularly generalizing to unseen table structures.
☆ Self-Verification Dilemma: Experience-Driven Suppression of Overused Checking in LLM Reasoning
Large Reasoning Models (LRMs) achieve strong performance by generating long reasoning traces with reflection. Through a large-scale empirical analysis, we find that a substantial fraction of reflective steps consist of self-verification (recheck) that repeatedly confirm intermediate results. These rechecks occur frequently across models and benchmarks, yet the vast majority are confirmatory rather than corrective, rarely identifying errors and altering reasoning outcomes. This reveals a mismatch between how often self-verification is activated and how often it is actually useful. Motivated by this, we propose a novel, experience-driven test-time framework that reduces the overused verification. Our method detects the activation of recheck behavior, consults an offline experience pool of past verification outcomes, and estimates whether a recheck is likely unnecessary via efficient retrieval. When historical experience suggests unnecessary, a suppression signal redirects the model to proceed. Across multiple model and benchmarks, our approach reduces token usage up to 20.3% while maintaining the accuracy, and in some datasets even yields accuracy improvements.
comment: 19 pages, 8 figures
☆ Preferences for Idiomatic Language are Acquired Slowly -- and Forgotten Quickly: A Case Study on Swedish ACL
In this study, we investigate how language models develop preferences for \textit{idiomatic} as compared to \textit{linguistically acceptable} Swedish, both during pretraining and when adapting a model from English to Swedish. To do so, we train models on Swedish from scratch and by fine-tuning English-pretrained models, probing their preferences at various checkpoints using minimal pairs that differ in linguistic acceptability or idiomaticity. For linguistic acceptability, we adapt existing benchmarks into a minimal-pair format. To assess idiomaticity, we introduce two novel datasets: one contrasting conventionalized idioms with plausible variants, and another contrasting idiomatic Swedish with Translationese. Our findings suggest that idiomatic competence emerges more slowly than other linguistic abilities, including grammatical and lexical correctness. While longer training yields diminishing returns for most tasks, idiom-related performance continues to improve, particularly in the largest model tested (8B). However, instruction tuning on data machine-translated from English -- the common approach for languages with little or no native instruction data -- causes models to rapidly lose their preference for idiomatic language.
comment: Accepted to TACL. Note that the arXiv version is a pre-MIT Press publication version
☆ A-RAG: Scaling Agentic Retrieval-Augmented Generation via Hierarchical Retrieval Interfaces
Frontier language models have demonstrated strong reasoning and long-horizon tool-use capabilities. However, existing RAG systems fail to leverage these capabilities. They still rely on two paradigms: (1) designing an algorithm that retrieves passages in a single shot and concatenates them into the model's input, or (2) predefining a workflow and prompting the model to execute it step-by-step. Neither paradigm allows the model to participate in retrieval decisions, preventing efficient scaling with model improvements. In this paper, we introduce A-RAG, an Agentic RAG framework that exposes hierarchical retrieval interfaces directly to the model. A-RAG provides three retrieval tools: keyword search, semantic search, and chunk read, enabling the agent to adaptively search and retrieve information across multiple granularities. Experiments on multiple open-domain QA benchmarks show that A-RAG consistently outperforms existing approaches with comparable or lower retrieved tokens, demonstrating that A-RAG effectively leverages model capabilities and dynamically adapts to different RAG tasks. We further systematically study how A-RAG scales with model size and test-time compute. We will release our code and evaluation suite to facilitate future research. Code and evaluation suite are available at https://github.com/Ayanami0730/arag.
comment: 18 pages, 8 figures
☆ DiscoverLLM: From Executing Intents to Discovering Them
To handle ambiguous and open-ended requests, Large Language Models (LLMs) are increasingly trained to interact with users to surface intents they have not yet expressed (e.g., ask clarification questions). However, users are often ambiguous because they have not yet formed their intents: they must observe and explore outcomes to discover what they want. Simply asking "what kind of tone do you want?" fails when users themselves do not know. We introduce DiscoverLLM, a novel and generalizable framework that trains LLMs to help users form and discover their intents. Central to our approach is a novel user simulator that models cognitive state with a hierarchy of intents that progressively concretize as the model surfaces relevant options -- where the degree of concretization serves as a reward signal that models can be trained to optimize. Resulting models learn to collaborate with users by adaptively diverging (i.e., explore options) when intents are unclear, and converging (i.e., refine and implement) when intents concretize. Across proposed interactive benchmarks in creative writing, technical writing, and SVG drawing, DiscoverLLM achieves over 10% higher task performance while reducing conversation length by up to 40%. In a user study with 75 human participants, DiscoverLLM improved conversation satisfaction and efficiency compared to baselines.
☆ SWE-World: Building Software Engineering Agents in Docker-Free Environments
Recent advances in large language models (LLMs) have enabled software engineering agents to tackle complex code modification tasks. Most existing approaches rely on execution feedback from containerized environments, which require dependency-complete setup and physical execution of programs and tests. While effective, this paradigm is resource-intensive and difficult to maintain, substantially complicating agent training and limiting scalability. We propose SWE-World, a Docker-free framework that replaces physical execution environments with a learned surrogate for training and evaluating software engineering agents. SWE-World leverages LLM-based models trained on real agent-environment interaction data to predict intermediate execution outcomes and final test feedback, enabling agents to learn without interacting with physical containerized environments. This design preserves the standard agent-environment interaction loop while eliminating the need for costly environment construction and maintenance during agent optimization and evaluation. Furthermore, because SWE-World can simulate the final evaluation outcomes of candidate trajectories without real submission, it enables selecting the best solution among multiple test-time attempts, thereby facilitating effective test-time scaling (TTS) in software engineering tasks. Experiments on SWE-bench Verified demonstrate that SWE-World raises Qwen2.5-Coder-32B from 6.2\% to 52.0\% via Docker-free SFT, 55.0\% with Docker-free RL, and 68.2\% with further TTS. The code is available at https://github.com/RUCAIBox/SWE-World
☆ FactNet: A Billion-Scale Knowledge Graph for Multilingual Factual Grounding
While LLMs exhibit remarkable fluency, their utility is often compromised by factual hallucinations and a lack of traceable provenance. Existing resources for grounding mitigate this but typically enforce a dichotomy: they offer either structured knowledge without textual context (e.g., knowledge bases) or grounded text with limited scale and linguistic coverage. To bridge this gap, we introduce FactNet, a massive, open-source resource designed to unify 1.7 billion atomic assertions with 3.01 billion auditable evidence pointers derived exclusively from 316 Wikipedia editions. Unlike recent synthetic approaches, FactNet employs a strictly deterministic construction pipeline, ensuring that every evidence unit is recoverable with byte-level precision. Extensive auditing confirms a high grounding precision of 92.1%, even in long-tail languages. Furthermore, we establish FactNet-Bench, a comprehensive evaluation suite for Knowledge Graph Completion, Question Answering, and Fact Checking. FactNet provides the community with a foundational, reproducible resource for training and evaluating trustworthy, verifiable multilingual systems.
☆ Verified Critical Step Optimization for LLM Agents
As large language model agents tackle increasingly complex long-horizon tasks, effective post-training becomes critical. Prior work faces fundamental challenges: outcome-only rewards fail to precisely attribute credit to intermediate steps, estimated step-level rewards introduce systematic noise, and Monte Carlo sampling approaches for step reward estimation incur prohibitive computational cost. Inspired by findings that only a small fraction of high-entropy tokens drive effective RL for reasoning, we propose Critical Step Optimization (CSO), which focuses preference learning on verified critical steps, decision points where alternate actions demonstrably flip task outcomes from failure to success. Crucially, our method starts from failed policy trajectories rather than expert demonstrations, directly targeting the policy model's weaknesses. We use a process reward model (PRM) to identify candidate critical steps, leverage expert models to propose high-quality alternatives, then continue execution from these alternatives using the policy model itself until task completion. Only alternatives that the policy successfully executes to correct outcomes are verified and used as DPO training data, ensuring both quality and policy reachability. This yields fine-grained, verifiable supervision at critical decisions while avoiding trajectory-level coarseness and step-level noise. Experiments on GAIA-Text-103 and XBench-DeepSearch show that CSO achieves 37% and 26% relative improvement over the SFT baseline and substantially outperforms other post-training methods, while requiring supervision at only 16% of trajectory steps. This demonstrates the effectiveness of selective verification-based learning for agent post-training.
comment: Working in progress
☆ SWE-Master: Unleashing the Potential of Software Engineering Agents via Post-Training
In this technical report, we present SWE-Master, an open-source and fully reproducible post-training framework for building effective software engineering agents. SWE-Master systematically explores the complete agent development pipeline, including teacher-trajectory synthesis and data curation, long-horizon SFT, RL with real execution feedback, and inference framework design. Starting from an open-source base model with limited initial SWE capability, SWE-Master demonstrates how systematical optimization method can elicit strong long-horizon SWE task solving abilities. We evaluate SWE-Master on SWE-bench Verified, a standard benchmark for realistic software engineering tasks. Under identical experimental settings, our approach achieves a resolve rate of 61.4\% with Qwen2.5-Coder-32B, substantially outperforming existing open-source baselines. By further incorporating test-time scaling~(TTS) with LLM-based environment feedback, SWE-Master reaches 70.8\% at TTS@8, demonstrating a strong performance potential. SWE-Master provides a practical and transparent foundation for advancing reproducible research on software engineering agents. The code is available at https://github.com/RUCAIBox/SWE-Master.
☆ Towards Distillation-Resistant Large Language Models: An Information-Theoretic Perspective
Proprietary large language models (LLMs) embody substantial economic value and are generally exposed only as black-box APIs, yet adversaries can still exploit their outputs to extract knowledge via distillation. Existing defenses focus exclusively on text-based distillation, leaving the important logit-based distillation largely unexplored. In this work, we analyze this problem and present an effective solution from an information-theoretic perspective. We characterize distillation-relevant information in teacher outputs using the conditional mutual information (CMI) between teacher logits and input queries conditioned on ground-truth labels. This quantity captures contextual information beneficial for model extraction, motivating us to defend distillation via CMI minimization. Guided by our theoretical analysis, we propose learning a transformation matrix that purifies the original outputs to enhance distillation resistance. We further derive a CMI-inspired anti-distillation objective to optimize this transformation, which effectively removes distillation-relevant information while preserving output utility. Extensive experiments across multiple LLMs and strong distillation algorithms demonstrate that the proposed method significantly degrades distillation performance while preserving task accuracy, effectively protecting models' intellectual property.
☆ Pursuing Best Industrial Practices for Retrieval-Augmented Generation in the Medical Domain
While retrieval augmented generation (RAG) has been swiftly adopted in industrial applications based on large language models (LLMs), there is no consensus on what are the best practices for building a RAG system in terms of what are the components, how to organize these components and how to implement each component for the industrial applications, especially in the medical domain. In this work, we first carefully analyze each component of the RAG system and propose practical alternatives for each component. Then, we conduct systematic evaluations on three types of tasks, revealing the best practices for improving the RAG system and how LLM-based RAG systems make trade-offs between performance and efficiency.
☆ MeKi: Memory-based Expert Knowledge Injection for Efficient LLM Scaling
Scaling Large Language Models (LLMs) typically relies on increasing the number of parameters or test-time computations to boost performance. However, these strategies are impractical for edge device deployment due to limited RAM and NPU resources. Despite hardware constraints, deploying performant LLM on edge devices such as smartphone remains crucial for user experience. To address this, we propose MeKi (Memory-based Expert Knowledge Injection), a novel system that scales LLM capacity via storage space rather than FLOPs. MeKi equips each Transformer layer with token-level memory experts that injects pre-stored semantic knowledge into the generation process. To bridge the gap between training capacity and inference efficiency, we employ a re-parameterization strategy to fold parameter matrices used during training into a compact static lookup table. By offloading the knowledge to ROM, MeKi decouples model capacity from computational cost, introducing zero inference latency overhead. Extensive experiments demonstrate that MeKi significantly outperforms dense LLM baselines with identical inference speed, validating the effectiveness of memory-based scaling paradigm for on-device LLMs. Project homepage is at https://github.com/ningding-o/MeKi.
☆ GFlowPO: Generative Flow Network as a Language Model Prompt Optimizer
Finding effective prompts for language models (LMs) is critical yet notoriously difficult: the prompt space is combinatorially large, rewards are sparse due to expensive target-LM evaluation. Yet, existing RL-based prompt optimizers often rely on on-policy updates and a meta-prompt sampled from a fixed distribution, leading to poor sample efficiency. We propose GFlowPO, a probabilistic prompt optimization framework that casts prompt search as a posterior inference problem over latent prompts regularized by a meta-prompted reference-LM prior. In the first step, we fine-tune a lightweight prompt-LM with an off-policy Generative Flow Network (GFlowNet) objective, using a replay-based training policy that reuses past prompt evaluations to enable sample-efficient exploration. In the second step, we introduce Dynamic Memory Update (DMU), a training-free mechanism that updates the meta-prompt by injecting both (i) diverse prompts from a replay buffer and (ii) top-performing prompts from a small priority queue, thereby progressively concentrating the search process on high-reward regions. Across few-shot text classification, instruction induction benchmarks, and question answering tasks, GFlowPO consistently outperforms recent discrete prompt optimization baselines.
☆ PEGRL: Improving Machine Translation by Post-Editing Guided Reinforcement Learning
Reinforcement learning (RL) has shown strong promise for LLM-based machine translation, with recent methods such as GRPO demonstrating notable gains; nevertheless, translation-oriented RL remains challenged by noisy learning signals arising from Monte Carlo return estimation, as well as a large trajectory space that favors global exploration over fine-grained local optimization. We introduce \textbf{PEGRL}, a \textit{two-stage} RL framework that uses post-editing as an auxiliary task to stabilize training and guide overall optimization. At each iteration, translation outputs are sampled to construct post-editing inputs, allowing return estimation in the post-editing stage to benefit from conditioning on the current translation behavior, while jointly supporting both global exploration and fine-grained local optimization. A task-specific weighting scheme further balances the contributions of translation and post-editing objectives, yielding a biased yet more sample-efficient estimator. Experiments on English$\to$Finnish, English$\to$Turkish, and English$\leftrightarrow$Chinese show consistent gains over RL baselines, and for English$\to$Turkish, performance on COMET-KIWI is comparable to advanced LLM-based systems (DeepSeek-V3.2).
☆ Robustness as an Emergent Property of Task Performance
Robustness is often regarded as a critical future challenge for real-world applications, where stability is essential. However, as models often learn tasks in a similar order, we hypothesize that easier tasks will be easier regardless of how they are presented to the model. Indeed, in this paper, we show that as models approach high performance on a task, robustness is effectively achieved. Through an empirical analysis of multiple models across diverse datasets and configurations (e.g., paraphrases, different temperatures), we find a strong positive correlation. Moreover, we find that robustness is primarily driven by task-specific competence rather than inherent model-level properties, challenging current approaches that treat robustness as an independent capability. Thus, from a high-level perspective, we may expect that as new tasks saturate, model robustness on these tasks will emerge accordingly. For researchers, this implies that explicit efforts to measure and improve robustness may warrant reduced emphasis, as such robustness is likely to develop alongside performance gains. For practitioners, it acts as a sign that indeed the tasks that the literature deals with are unreliable, but on easier past tasks, the models are reliable and ready for real-world deployment.
☆ Accurate Failure Prediction in Agents Does Not Imply Effective Failure Prevention
Proactive interventions by LLM critic models are often assumed to improve reliability, yet their effects at deployment time are poorly understood. We show that a binary LLM critic with strong offline accuracy (AUROC 0.94) can nevertheless cause severe performance degradation, inducing a 26 percentage point (pp) collapse on one model while affecting another by near zero pp. This variability demonstrates that LLM critic accuracy alone is insufficient to determine whether intervention is safe. We identify a disruption-recovery tradeoff: interventions may recover failing trajectories but also disrupt trajectories that would have succeeded. Based on this insight, we propose a pre-deployment test that uses a small pilot of 50 tasks to estimate whether intervention is likely to help or harm, without requiring full deployment. Across benchmarks, the test correctly anticipates outcomes: intervention degrades performance on high-success tasks (0 to -26 pp), while yielding a modest improvement on the high-failure ALFWorld benchmark (+2.8 pp, p=0.014). The primary value of our framework is therefore identifying when not to intervene, preventing severe regressions before deployment.
☆ MIRROR: A Multi-Agent Framework with Iterative Adaptive Revision and Hierarchical Retrieval for Optimization Modeling in Operations Research
Operations Research (OR) relies on expert-driven modeling-a slow and fragile process ill-suited to novel scenarios. While large language models (LLMs) can automatically translate natural language into optimization models, existing approaches either rely on costly post-training or employ multi-agent frameworks, yet most still lack reliable collaborative error correction and task-specific retrieval, often leading to incorrect outputs. We propose MIRROR, a fine-tuning-free, end-to-end multi-agent framework that directly translates natural language optimization problems into mathematical models and solver code. MIRROR integrates two core mechanisms: (1) execution-driven iterative adaptive revision for automatic error correction, and (2) hierarchical retrieval to fetch relevant modeling and coding exemplars from a carefully curated exemplar library. Experiments show that MIRROR outperforms existing methods on standard OR benchmarks, with notable results on complex industrial datasets such as IndustryOR and Mamo-ComplexLP. By combining precise external knowledge infusion with systematic error correction, MIRROR provides non-expert users with an efficient and reliable OR modeling solution, overcoming the fundamental limitations of general-purpose LLMs in expert optimization tasks.
☆ R1-SyntheticVL: Is Synthetic Data from Generative Models Ready for Multimodal Large Language Model?
In this work, we aim to develop effective data synthesis techniques that autonomously synthesize multimodal training data for enhancing MLLMs in solving complex real-world tasks. To this end, we propose Collective Adversarial Data Synthesis (CADS), a novel and general approach to synthesize high-quality, diverse and challenging multimodal data for MLLMs. The core idea of CADS is to leverage collective intelligence to ensure high-quality and diverse generation, while exploring adversarial learning to synthesize challenging samples for effectively driving model improvement. Specifically, CADS operates with two cyclic phases, i.e., Collective Adversarial Data Generation (CAD-Generate) and Collective Adversarial Data Judgment (CAD-Judge). CAD-Generate leverages collective knowledge to jointly generate new and diverse multimodal data, while CAD-Judge collaboratively assesses the quality of synthesized data. In addition, CADS introduces an Adversarial Context Optimization mechanism to optimize the generation context to encourage challenging and high-value data generation. With CADS, we construct MMSynthetic-20K and train our model R1-SyntheticVL, which demonstrates superior performance on various benchmarks.
☆ POP: Prefill-Only Pruning for Efficient Large Model Inference
Large Language Models (LLMs) and Vision-Language Models (VLMs) have demonstrated remarkable capabilities. However, their deployment is hindered by significant computational costs. Existing structured pruning methods, while hardware-efficient, often suffer from significant accuracy degradation. In this paper, we argue that this failure stems from a stage-agnostic pruning approach that overlooks the asymmetric roles between the prefill and decode stages. By introducing a virtual gate mechanism, our importance analysis reveals that deep layers are critical for next-token prediction (decode) but largely redundant for context encoding (prefill). Leveraging this insight, we propose Prefill-Only Pruning (POP), a stage-aware inference strategy that safely omits deep layers during the computationally intensive prefill stage while retaining the full model for the sensitive decode stage. To enable the transition between stages, we introduce independent Key-Value (KV) projections to maintain cache integrity, and a boundary handling strategy to ensure the accuracy of the first generated token. Extensive experiments on Llama-3.1, Qwen3-VL, and Gemma-3 across diverse modalities demonstrate that POP achieves up to 1.37$\times$ speedup in prefill latency with minimal performance loss, effectively overcoming the accuracy-efficiency trade-off limitations of existing structured pruning methods.
☆ Mići Princ -- A Little Boy Teaching Speech Technologies the Chakavian Dialect
This paper documents our efforts in releasing the printed and audio book of the translation of the famous novel The Little Prince into the Chakavian dialect, as a computer-readable, AI-ready dataset, with the textual and the audio components of the two releases now aligned on the level of each written and spoken word. Our motivation for working on this release is multiple. The first one is our wish to preserve the highly valuable and specific content beyond the small editions of the printed and the audio book. With the dataset published in the CLARIN.SI repository, this content is from now on at the fingertips of any interested individual. The second motivation is to make the data available for various artificial-intelligence-related usage scenarios, such as the one we follow upon inside this paper already -- adapting the Whisper-large-v3 open automatic speech recognition model, with decent performance on standard Croatian, to Chakavian dialectal speech. We can happily report that with adapting the model, the word error rate on the selected test data has being reduced to a half, while we managed to remove up to two thirds of the error on character level. We envision many more usages of this dataset beyond the set of experiments we have already performed, both on tasks of artificial intelligence research and application, as well as dialectal research. The third motivation for this release is our hope that this, now highly structured dataset, will be transformed into a digital online edition of this work, allowing individuals beyond the research and technology communities to enjoy the beauty of the message of the little boy in the desert, told through the spectacular prism of the Chakavian dialect.
comment: 2 figures, 14 pages, accepted and presented at JTDH 2024
☆ Merging Beyond: Streaming LLM Updates via Activation-Guided Rotations
The escalating scale of Large Language Models (LLMs) necessitates efficient adaptation techniques. Model merging has gained prominence for its efficiency and controllability. However, existing merging techniques typically serve as post-hoc refinements or focus on mitigating task interference, often failing to capture the dynamic optimization benefits of supervised fine-tuning (SFT). In this work, we propose Streaming Merging, an innovative model updating paradigm that conceptualizes merging as an iterative optimization process. Central to this paradigm is \textbf{ARM} (\textbf{A}ctivation-guided \textbf{R}otation-aware \textbf{M}erging), a strategy designed to approximate gradient descent dynamics. By treating merging coefficients as learning rates and deriving rotation vectors from activation subspaces, ARM effectively steers parameter updates along data-driven trajectories. Unlike conventional linear interpolation, ARM aligns semantic subspaces to preserve the geometric structure of high-dimensional parameter evolution. Remarkably, ARM requires only early SFT checkpoints and, through iterative merging, surpasses the fully converged SFT model. Experimental results across model scales (1.7B to 14B) and diverse domains (e.g., math, code) demonstrate that ARM can transcend converged checkpoints. Extensive experiments show that ARM provides a scalable and lightweight framework for efficient model adaptation.
☆ ATACompressor: Adaptive Task-Aware Compression for Efficient Long-Context Processing in LLMs
Long-context inputs in large language models (LLMs) often suffer from the "lost in the middle" problem, where critical information becomes diluted or ignored due to excessive length. Context compression methods aim to address this by reducing input size, but existing approaches struggle with balancing information preservation and compression efficiency. We propose Adaptive Task-Aware Compressor (ATACompressor), which dynamically adjusts compression based on the specific requirements of the task. ATACompressor employs a selective encoder that compresses only the task-relevant portions of long contexts, ensuring that essential information is preserved while reducing unnecessary content. Its adaptive allocation controller perceives the length of relevant content and adjusts the compression rate accordingly, optimizing resource utilization. We evaluate ATACompressor on three QA datasets: HotpotQA, MSMARCO, and SQUAD-showing that it outperforms existing methods in terms of both compression efficiency and task performance. Our approach provides a scalable solution for long-context processing in LLMs. Furthermore, we perform a range of ablation studies and analysis experiments to gain deeper insights into the key components of ATACompressor.
☆ Token Sparse Attention: Efficient Long-Context Inference with Interleaved Token Selection
The quadratic complexity of attention remains the central bottleneck in long-context inference for large language models. Prior acceleration methods either sparsify the attention map with structured patterns or permanently evict tokens at specific layers, which can retain irrelevant tokens or rely on irreversible early decisions despite the layer-/head-wise dynamics of token importance. In this paper, we propose Token Sparse Attention, a lightweight and dynamic token-level sparsification mechanism that compresses per-head $Q$, $K$, $V$ to a reduced token set during attention and then decompresses the output back to the original sequence, enabling token information to be reconsidered in subsequent layers. Furthermore, Token Sparse Attention exposes a new design point at the intersection of token selection and sparse attention. Our approach is fully compatible with dense attention implementations, including Flash Attention, and can be seamlessly composed with existing sparse attention kernels. Experimental results show that Token Sparse Attention consistently improves accuracy-latency trade-off, achieving up to $\times$3.23 attention speedup at 128K context with less than 1% accuracy degradation. These results demonstrate that dynamic and interleaved token-level sparsification is a complementary and effective strategy for scalable long-context inference.
☆ ForesightKV: Optimizing KV Cache Eviction for Reasoning Models by Learning Long-Term Contribution
Recently, large language models (LLMs) have shown remarkable reasoning abilities by producing long reasoning traces. However, as the sequence length grows, the key-value (KV) cache expands linearly, incurring significant memory and computation costs. Existing KV cache eviction methods mitigate this issue by discarding less important KV pairs, but often fail to capture complex KV dependencies, resulting in performance degradation. To better balance efficiency and performance, we introduce ForesightKV, a training-based KV cache eviction framework that learns to predict which KV pairs to evict during long-text generations. We first design the Golden Eviction algorithm, which identifies the optimal eviction KV pairs at each step using future attention scores. These traces and the scores at each step are then distilled via supervised training with a Pairwise Ranking Loss. Furthermore, we formulate cache eviction as a Markov Decision Process and apply the GRPO algorithm to mitigate the significant language modeling loss increase on low-entropy tokens. Experiments on AIME2024 and AIME2025 benchmarks of three reasoning models demonstrate that ForesightKV consistently outperforms prior methods under only half the cache budget, while benefiting synergistically from both supervised and reinforcement learning approaches.
Prompt Augmentation Scales up GRPO Training on Mathematical Reasoning
Reinforcement learning algorithms such as group-relative policy optimization (GRPO) have demonstrated strong potential for improving the mathematical reasoning capabilities of large language models. However, prior work has consistently observed an entropy collapse phenomenon during reinforcement post-training, characterized by a monotonic decrease in policy entropy that ultimately leads to training instability and collapse. As a result, most existing approaches restrict training to short horizons (typically 5-20 epochs), limiting sustained exploration and hindering further policy improvement. In addition, nearly all prior work relies on a single, fixed reasoning prompt or template during training. In this work, we introduce prompt augmentation, a training strategy that instructs the model to generate reasoning traces under diverse templates and formats, thereby increasing rollout diversity. We show that, without a KL regularization term, prompt augmentation enables stable scaling of training duration under a fixed dataset and allows the model to tolerate low-entropy regimes without premature collapse. Empirically, a Qwen2.5-Math-1.5B model trained with prompt augmentation on the MATH Level 3-5 dataset achieves state-of-the-art performance, reaching 44.5 per-benchmark accuracy and 51.3 per-question accuracy on standard mathematical reasoning benchmarks, including AIME24, AMC, MATH500, Minerva, and OlympiadBench. The code and model checkpoints are available at https://github.com/wenquanlu/prompt-augmentation-GRPO.
☆ DynSplit-KV: Dynamic Semantic Splitting for KVCache Compression in Efficient Long-Context LLM Inference
Although Key-Value (KV) Cache is essential for efficient large language models (LLMs) inference, its growing memory footprint in long-context scenarios poses a significant bottleneck, making KVCache compression crucial. Current compression methods rely on rigid splitting strategies, such as fixed intervals or pre-defined delimiters. We observe that rigid splitting suffers from significant accuracy degradation (ranging from 5.5% to 55.1%) across different scenarios, owing to the scenario-dependent nature of the semantic boundaries. This highlights the necessity of dynamic semantic splitting to match semantics. To achieve this, we face two challenges. (1) Improper delimiter selection misaligns semantics with the KVCache, resulting in 28.6% accuracy loss. (2) Variable-length blocks after splitting introduce over 73.1% additional inference overhead. To address the above challenges, we propose DynSplit-KV, a KVCache compression method that dynamically identifies delimiters for splitting. We propose: (1) a dynamic importance-aware delimiter selection strategy, improving accuracy by 49.9%. (2) A uniform mapping strategy that transforms variable-length semantic blocks into a fixed-length format, reducing inference overhead by 4.9x. Experiments show that DynSplit-KV achieves the highest accuracy, 2.2x speedup compared with FlashAttention and 2.6x peak memory reduction in long-context scenarios.
☆ Privasis: Synthesizing the Largest "Public" Private Dataset from Scratch
Research involving privacy-sensitive data has always been constrained by data scarcity, standing in sharp contrast to other areas that have benefited from data scaling. This challenge is becoming increasingly urgent as modern AI agents--such as OpenClaw and Gemini Agent--are granted persistent access to highly sensitive personal information. To tackle this longstanding bottleneck and the rising risks, we present Privasis (i.e., privacy oasis), the first million-scale fully synthetic dataset entirely built from scratch--an expansive reservoir of texts with rich and diverse private information--designed to broaden and accelerate research in areas where processing sensitive social data is inevitable. Compared to existing datasets, Privasis, comprising 1.4 million records, offers orders-of-magnitude larger scale with quality, and far greater diversity across various document types, including medical history, legal documents, financial records, calendars, and text messages with a total of 55.1 million annotated attributes such as ethnicity, date of birth, workplace, etc. We leverage Privasis to construct a parallel corpus for text sanitization with our pipeline that decomposes texts and applies targeted sanitization. Our compact sanitization models (<=4B) trained on this dataset outperform state-of-the-art large language models, such as GPT-5 and Qwen-3 235B. We plan to release data, models, and code to accelerate future research on privacy-sensitive domains and agents.
comment: For code and data, see https://privasis.github.io
☆ VALUEFLOW: Toward Pluralistic and Steerable Value-based Alignment in Large Language Models
Aligning Large Language Models (LLMs) with the diverse spectrum of human values remains a central challenge: preference-based methods often fail to capture deeper motivational principles. Value-based approaches offer a more principled path, yet three gaps persist: extraction often ignores hierarchical structure, evaluation detects presence but not calibrated intensity, and the steerability of LLMs at controlled intensities remains insufficiently understood. To address these limitations, we introduce VALUEFLOW, the first unified framework that spans extraction, evaluation, and steering with calibrated intensity control. The framework integrates three components: (i) HIVES, a hierarchical value embedding space that captures intra- and cross-theory value structure; (ii) the Value Intensity DataBase (VIDB), a large-scale resource of value-labeled texts with intensity estimates derived from ranking-based aggregation; and (iii) an anchor-based evaluator that produces consistent intensity scores for model outputs by ranking them against VIDB panels. Using VALUEFLOW, we conduct a comprehensive large-scale study across ten models and four value theories, identifying asymmetries in steerability and composition laws for multi-value control. This paper establishes a scalable infrastructure for evaluating and controlling value intensity, advancing pluralistic alignment of LLMs.
☆ FASA: Frequency-aware Sparse Attention ICLR 2026
The deployment of Large Language Models (LLMs) faces a critical bottleneck when handling lengthy inputs: the prohibitive memory footprint of the Key Value (KV) cache. To address this bottleneck, the token pruning paradigm leverages attention sparsity to selectively retain a small, critical subset of tokens. However, existing approaches fall short, with static methods risking irreversible information loss and dynamic strategies employing heuristics that insufficiently capture the query-dependent nature of token importance. We propose FASA, a novel framework that achieves query-aware token eviction by dynamically predicting token importance. FASA stems from a novel insight into RoPE: the discovery of functional sparsity at the frequency-chunk (FC) level. Our key finding is that a small, identifiable subset of "dominant" FCs consistently exhibits high contextual agreement with the full attention head. This provides a robust and computationally free proxy for identifying salient tokens. %making them a powerful and efficient proxy for token importance. Building on this insight, FASA first identifies a critical set of tokens using dominant FCs, and then performs focused attention computation solely on this pruned subset. % Since accessing only a small fraction of the KV cache, FASA drastically lowers memory bandwidth requirements and computational cost. Across a spectrum of long-context tasks, from sequence modeling to complex CoT reasoning, FASA consistently outperforms all token-eviction baselines and achieves near-oracle accuracy, demonstrating remarkable robustness even under constraint budgets. Notably, on LongBench-V1, FASA reaches nearly 100\% of full-KV performance when only keeping 256 tokens, and achieves 2.56$\times$ speedup using just 18.9\% of the cache on AIME24.
comment: Accepted by ICLR 2026
☆ Self-Hinting Language Models Enhance Reinforcement Learning
Group Relative Policy Optimization (GRPO) has recently emerged as a practical recipe for aligning large language models with verifiable objectives. However, under sparse terminal rewards, GRPO often stalls because rollouts within a group frequently receive identical rewards, causing relative advantages to collapse and updates to vanish. We propose self-hint aligned GRPO with privileged supervision (SAGE), an on-policy reinforcement learning framework that injects privileged hints during training to reshape the rollout distribution under the same terminal verifier reward. For each prompt $x$, the model samples a compact hint $h$ (e.g., a plan or decomposition) and then generates a solution $τ$ conditioned on $(x,h)$. Crucially, the task reward $R(x,τ)$ is unchanged; hints only increase within-group outcome diversity under finite sampling, preventing GRPO advantages from collapsing under sparse rewards. At test time, we set $h=\varnothing$ and deploy the no-hint policy without any privileged information. Moreover, sampling diverse self-hints serves as an adaptive curriculum that tracks the learner's bottlenecks more effectively than fixed hints from an initial policy or a stronger external model. Experiments over 6 benchmarks with 3 LLMs show that SAGE consistently outperforms GRPO, on average +2.0 on Llama-3.2-3B-Instruct, +1.2 on Qwen2.5-7B-Instruct and +1.3 on Qwen3-4B-Instruct. The code is available at https://github.com/BaohaoLiao/SAGE.
☆ Short Chains, Deep Thoughts: Balancing Reasoning Efficiency and Intra-Segment Capability via Split-Merge Optimization
While Large Reasoning Models (LRMs) have demonstrated impressive capabilities in solving complex tasks through the generation of long reasoning chains, this reliance on verbose generation results in significant latency and computational overhead. To address these challenges, we propose \textbf{CoSMo} (\textbf{Co}nsistency-Guided \textbf{S}plit-\textbf{M}erge \textbf{O}ptimization), a framework designed to eliminate structural redundancy rather than indiscriminately restricting token volume. Specifically, CoSMo utilizes a split-merge algorithm that dynamically refines reasoning chains by merging redundant segments and splitting logical gaps to ensure coherence. We then employ structure-aligned reinforcement learning with a novel segment-level budget to supervise the model in maintaining efficient reasoning structures throughout training. Extensive experiments across multiple benchmarks and backbones demonstrate that CoSMo achieves superior performance, improving accuracy by \textbf{3.3} points while reducing segment usage by \textbf{28.7\%} on average compared to reasoning efficiency baselines.
☆ One Model, All Roles: Multi-Turn, Multi-Agent Self-Play Reinforcement Learning for Conversational Social Intelligence
This paper introduces OMAR: One Model, All Roles, a reinforcement learning framework that enables AI to develop social intelligence through multi-turn, multi-agent conversational self-play. Unlike traditional paradigms that rely on static, single-turn optimizations, OMAR allows a single model to role-play all participants in a conversation simultaneously, learning to achieve long-term goals and complex social norms directly from dynamic social interaction. To ensure training stability across long dialogues, we implement a hierarchical advantage estimation that calculates turn-level and token-level advantages. Evaluations in the SOTOPIA social environment and Werewolf strategy games show that our trained models develop fine-grained, emergent social intelligence, such as empathy, persuasion, and compromise seeking, demonstrating the effectiveness of learning collaboration even under competitive scenarios. While we identify practical challenges like reward hacking, our results show that rich social intelligence can emerge without human supervision. We hope this work incentivizes further research on AI social intelligence in group conversations.
☆ ChemPro: A Progressive Chemistry Benchmark for Large Language Models
We introduce ChemPro, a progressive benchmark with 4100 natural language question-answer pairs in Chemistry, across 4 coherent sections of difficulty designed to assess the proficiency of Large Language Models (LLMs) in a broad spectrum of general chemistry topics. We include Multiple Choice Questions and Numerical Questions spread across fine-grained information recall, long-horizon reasoning, multi-concept questions, problem-solving with nuanced articulation, and straightforward questions in a balanced ratio, effectively covering Bio-Chemistry, Inorganic-Chemistry, Organic-Chemistry and Physical-Chemistry. ChemPro is carefully designed analogous to a student's academic evaluation for basic to high-school chemistry. A gradual increase in the question difficulty rigorously tests the ability of LLMs to progress from solving basic problems to solving more sophisticated challenges. We evaluate 45+7 state-of-the-art LLMs, spanning both open-source and proprietary variants, and our analysis reveals that while LLMs perform well on basic chemistry questions, their accuracy declines with different types and levels of complexity. These findings highlight the critical limitations of LLMs in general scientific reasoning and understanding and point towards understudied dimensions of difficulty, emphasizing the need for more robust methodologies to improve LLMs.
☆ The Mask of Civility: Benchmarking Chinese Mock Politeness Comprehension in Large Language Models
From a pragmatic perspective, this study systematically evaluates the differences in performance among representative large language models (LLMs) in recognizing politeness, impoliteness, and mock politeness phenomena in Chinese. Addressing the existing gaps in pragmatic comprehension, the research adopts the frameworks of Rapport Management Theory and the Model of Mock Politeness to construct a three-category dataset combining authentic and simulated Chinese discourse. Six representative models, including GPT-5.1 and DeepSeek, were selected as test subjects and evaluated under four prompting conditions: zero-shot, few-shot, knowledge-enhanced, and hybrid strategies. This study serves as a meaningful attempt within the paradigm of ``Great Linguistics,'' offering a novel approach to applying pragmatic theory in the age of technological transformation. It also responds to the contemporary question of how technology and the humanities may coexist, representing an interdisciplinary endeavor that bridges linguistic technology and humanistic reflection.
comment: Preprint
☆ Task--Specificity Score: Measuring How Much Instructions Really Matter for Supervision
Instruction tuning is now the default way to train and adapt large language models, but many instruction--input--output pairs are only weakly specified: for a given input, the same output can remain plausible under several alternative instructions. This raises a simple question: \emph{does the instruction uniquely determine the target output?} We propose the \textbf{Task--Specificity Score (TSS)} to quantify how much an instruction matters for predicting its output, by contrasting the true instruction against plausible alternatives for the same input. We further introduce \textbf{TSS++}, which uses hard alternatives and a small quality term to mitigate easy-negative effects. Across three instruction datasets (\textsc{Alpaca}, \textsc{Dolly-15k}, \textsc{NI-20}) and three open LLMs (Gemma, Llama, Qwen), we show that selecting task-specific examples improves downstream performance under tight token budgets and complements quality-based filters such as perplexity and IFD.
☆ Test-time Recursive Thinking: Self-Improvement without External Feedback
Modern Large Language Models (LLMs) have shown rapid improvements in reasoning capabilities, driven largely by reinforcement learning (RL) with verifiable rewards. Here, we ask whether these LLMs can self-improve without the need for additional training. We identify two core challenges for such systems: (i) efficiently generating diverse, high-quality candidate solutions, and (ii) reliably selecting correct answers in the absence of ground-truth supervision. To address these challenges, we propose Test-time Recursive Thinking (TRT), an iterative self-improvement framework that conditions generation on rollout-specific strategies, accumulated knowledge, and self-generated verification signals. Using TRT, open-source models reach 100% accuracy on AIME-25/24, and on LiveCodeBench's most difficult problems, closed-source models improve by 10.4-14.8 percentage points without external feedback.
☆ AERO: Autonomous Evolutionary Reasoning Optimization via Endogenous Dual-Loop Feedback
Large Language Models (LLMs) have achieved significant success in complex reasoning but remain bottlenecked by reliance on expert-annotated data and external verifiers. While existing self-evolution paradigms aim to bypass these constraints, they often fail to identify the optimal learning zone and risk reinforcing collective hallucinations and incorrect priors through flawed internal feedback. To address these challenges, we propose \underline{A}utonomous \underline{E}volutionary \underline{R}easoning \underline{O}ptimization (AERO), an unsupervised framework that achieves autonomous reasoning evolution by internalizing self-questioning, answering, and criticism within a synergistic dual-loop system. Inspired by the \textit{Zone of Proximal Development (ZPD)} theory, AERO utilizes entropy-based positioning to target the ``solvability gap'' and employs Independent Counterfactual Correction for robust verification. Furthermore, we introduce a Staggered Training Strategy to synchronize capability growth across functional roles and prevent curriculum collapse. Extensive evaluations across nine benchmarks spanning three domains demonstrate that AERO achieves average performance improvements of 4.57\% on Qwen3-4B-Base and 5.10\% on Qwen3-8B-Base, outperforming competitive baselines. Code is available at https://github.com/mira-ai-lab/AERO.
☆ ReMiT: RL-Guided Mid-Training for Iterative LLM Evolution
Standard training pipelines for large language models (LLMs) are typically unidirectional, progressing from pre-training to post-training. However, the potential for a bidirectional process--where insights from post-training retroactively improve the pre-trained foundation--remains unexplored. We aim to establish a self-reinforcing flywheel: a cycle in which reinforcement learning (RL)-tuned model strengthens the base model, which in turn enhances subsequent post-training performance, requiring no specially trained teacher or reference model. To realize this, we analyze training dynamics and identify the mid-training (annealing) phase as a critical turning point for model capabilities. This phase typically occurs at the end of pre-training, utilizing high-quality corpora under a rapidly decaying learning rate. Building upon this insight, we introduce ReMiT (Reinforcement Learning-Guided Mid-Training). Specifically, ReMiT leverages the reasoning priors of RL-tuned models to dynamically reweight tokens during the mid-training phase, prioritizing those pivotal for reasoning. Empirically, ReMiT achieves an average improvement of 3\% on 10 pre-training benchmarks, spanning math, code, and general reasoning, and sustains these gains by over 2\% throughout the post-training pipeline. These results validate an iterative feedback loop, enabling continuous and self-reinforcing evolution of LLMs.
comment: 25 pages
☆ From Speech-to-Spatial: Grounding Utterances on A Live Shared View with Augmented Reality IEEE
We introduce Speech-to-Spatial, a referent disambiguation framework that converts verbal remote-assistance instructions into spatially grounded AR guidance. Unlike prior systems that rely on additional cues (e.g., gesture, gaze) or manual expert annotations, Speech-to-Spatial infers the intended target solely from spoken references (speech input). Motivated by our formative study of speech referencing patterns, we characterize recurring ways people specify targets (Direct Attribute, Relational, Remembrance, and Chained) and ground them to our object-centric relational graph. Given an utterance, referent cues are parsed and rendered as persistent in-situ AR visual guidance, reducing iterative micro-guidance ("a bit more to the right", "now, stop.") during remote guidance. We demonstrate the use cases of our system with remote guided assistance and intent disambiguation scenarios. Our evaluation shows that Speechto-Spatial improves task efficiency, reduces cognitive load, and enhances usability compared to a conventional voice-only baseline, transforming disembodied verbal instruction into visually explainable, actionable guidance on a live shared view.
comment: 11 pages, 6 figures. This is the author's version of the article that will appear at the IEEE Conference on Virtual Reality and 3D User Interfaces (IEEE VR) 2026
☆ MAS-ProVe: Understanding the Process Verification of Multi-Agent Systems
Multi-Agent Systems (MAS) built on Large Language Models (LLMs) often exhibit high variance in their reasoning trajectories. Process verification, which evaluates intermediate steps in trajectories, has shown promise in general reasoning settings, and has been suggested as a potential tool for guiding coordination of MAS; however, its actual effectiveness in MAS remains unclear. To fill this gap, we present MAS-ProVe, a systematic empirical study of process verification for multi-agent systems (MAS). Our study spans three verification paradigms (LLM-as-a-Judge, reward models, and process reward models), evaluated across two levels of verification granularity (agent-level and iteration-level). We further examine five representative verifiers and four context management strategies, and conduct experiments over six diverse MAS frameworks on multiple reasoning benchmarks. We find that process-level verification does not consistently improve performance and frequently exhibits high variance, highlighting the difficulty of reliably evaluating partial multi-agent trajectories. Among the methods studied, LLM-as-a-Judge generally outperforms reward-based approaches, with trained judges surpassing general-purpose LLMs. We further observe a small performance gap between LLMs acting as judges and as single agents, and identify a context-length-performance trade-off in verification. Overall, our results suggest that effective and robust process verification for MAS remains an open challenge, requiring further advances beyond current paradigms. Code is available at https://github.com/Wang-ML-Lab/MAS-ProVe.
comment: Preprint; work in progress
☆ SAES-SVD: Self-Adaptive Suppression of Accumulated and Local Errors for SVD-based LLM Compression
The rapid growth in the parameter scale of large language models (LLMs) has created a high demand for efficient compression techniques. As a hardware-agnostic and highly compatible technique, low-rank compression has been widely adopted. However, existing methods typically compress each layer independently by minimizing per-layer reconstruction error, overlooking a critical limitation: the reconstruction error propagates and accumulates through the network, which leads to amplified global deviations from the full-precision baseline. To address this, we propose Self-Adaptive Error Suppression SVD (SAES-SVD), a LLMs compression framework that jointly optimizes intra-layer reconstruction and inter-layer error compensation. SAES-SVD is composed of two novel components: (1) Cumulative Error-Aware Layer Compression (CEALC), which formulates the compression objective as a combination of local reconstruction and weighted cumulative error compensation. Based on it, we derive a closed-form low-rank solution relied on second-order activation statistics, which explicitly aligns each layer's output with its full-precision counterpart to compensate for accumulated errors. (2) Adaptive Collaborative Error Suppression (ACES), which automatically adjusts the weighting coefficient to enhance the low-rank structure of the compression objective in CEALC. Specifically, the coefficient is optimized to maximize the ratio between the Frobenius norm of the compressed layer's output and that of the compression objective under a fixed rank, thus ensuring that the rank budget is utilized effectively. Extensive experiments across multiple LLM architectures and tasks show that, without fine-tuning or mixed-rank strategies, SAES-SVD consistently improves post-compression performance.
☆ LatentMem: Customizing Latent Memory for Multi-Agent Systems
Large language model (LLM)-powered multi-agent systems (MAS) demonstrate remarkable collective intelligence, wherein multi-agent memory serves as a pivotal mechanism for continual adaptation. However, existing multi-agent memory designs remain constrained by two fundamental bottlenecks: (i) memory homogenization arising from the absence of role-aware customization, and (ii) information overload induced by excessively fine-grained memory entries. To address these limitations, we propose LatentMem, a learnable multi-agent memory framework designed to customize agent-specific memories in a token-efficient manner. Specifically, LatentMem comprises an experience bank that stores raw interaction trajectories in a lightweight form, and a memory composer that synthesizes compact latent memories conditioned on retrieved experience and agent-specific contexts. Further, we introduce Latent Memory Policy Optimization (LMPO), which propagates task-level optimization signals through latent memories to the composer, encouraging it to produce compact and high-utility representations. Extensive experiments across diverse benchmarks and mainstream MAS frameworks show that LatentMem achieves a performance gain of up to $19.36$% over vanilla settings and consistently outperforms existing memory architectures, without requiring any modifications to the underlying frameworks.
☆ RC-GRPO: Reward-Conditioned Group Relative Policy Optimization for Multi-Turn Tool Calling Agents
Multi-turn tool calling is challenging for Large Language Models (LLMs) because rewards are sparse and exploration is expensive. A common recipe, SFT followed by GRPO, can stall when within-group reward variation is low (e.g., more rollouts in a group receive the all 0 or all 1 reward), making the group-normalized advantage uninformative and yielding vanishing updates. To address this problem, we propose RC-GRPO (Reward-Conditioned Group Relative Policy Optimization), which treats exploration as a controllable steering problem via discrete reward tokens. We first fine-tune a Reward-Conditioned Trajectory Policy (RCTP) on mixed-quality trajectories with reward goal special tokens (e.g., <|high_reward|>, <|low_reward|>) injected into the prompts, enabling the model to learn how to generate distinct quality trajectories on demand. Then during RL, we sample diverse reward tokens within each GRPO group and condition rollouts on the sampled token to improve within-group diversity, improving advantage gains. On the Berkeley Function Calling Leaderboard v4 (BFCLv4) multi-turn benchmark, our method yields consistently improved performance than baselines, and the performance on Qwen-2.5-7B-Instruct even surpasses all closed-source API models.
☆ WST-X Series: Wavelet Scattering Transform for Interpretable Speech Deepfake Detection IEEE
Designing front-ends for speech deepfake detectors primarily focuses on two categories. Hand-crafted filterbank features are transparent but are limited in capturing high-level semantic details, often resulting in performance gaps compared to self-supervised (SSL) features. SSL features, in turn, lack interpretability and may overlook fine-grained spectral anomalies. We propose the WST-X series, a novel family of feature extractors that combines the best of both worlds via the wavelet scattering transform (WST), integrating wavelets with nonlinearities analogous to deep convolutional networks. We investigate 1D and 2D WSTs to extract acoustic details and higher-order structural anomalies, respectively. Experimental results on the recent and challenging Deepfake-Eval-2024 dataset indicate that WST-X outperforms existing front-ends by a wide margin. Our analysis reveals that a small averaging scale ($J$), combined with high-frequency and directional resolutions ($Q, L$), is critical for capturing subtle artifacts. This underscores the value of translation-invariant and deformation-stable features for robust and interpretable speech deepfake detection.
comment: Submitted to IEEE Signal Processing Letters
☆ CPMobius: Iterative Coach-Player Reasoning for Data-Free Reinforcement Learning
Large Language Models (LLMs) have demonstrated strong potential in complex reasoning, yet their progress remains fundamentally constrained by reliance on massive high-quality human-curated tasks and labels, either through supervised fine-tuning (SFT) or reinforcement learning (RL) on reasoning-specific data. This dependence renders supervision-heavy training paradigms increasingly unsustainable, with signs of diminishing scalability already evident in practice. To overcome this limitation, we introduce CPMöbius (CPMobius), a collaborative Coach-Player paradigm for data-free reinforcement learning of reasoning models. Unlike traditional adversarial self-play, CPMöbius, inspired by real world human sports collaboration and multi-agent collaboration, treats the Coach and Player as independent but cooperative roles. The Coach proposes instructions targeted at the Player's capability and receives rewards based on changes in the Player's performance, while the Player is rewarded for solving the increasingly instructive tasks generated by the Coach. This cooperative optimization loop is designed to directly enhance the Player's mathematical reasoning ability. Remarkably, CPMöbius achieves substantial improvement without relying on any external training data, outperforming existing unsupervised approaches. For example, on Qwen2.5-Math-7B-Instruct, our method improves accuracy by an overall average of +4.9 and an out-of-distribution average of +5.4, exceeding RENT by +1.5 on overall accuracy and R-zero by +4.2 on OOD accuracy.
comment: work in progress
☆ Where Norms and References Collide: Evaluating LLMs on Normative Reasoning AAAI
Embodied agents, such as robots, will need to interact in situated environments where successful communication often depends on reasoning over social norms: shared expectations that constrain what actions are appropriate in context. A key capability in such settings is norm-based reference resolution (NBRR), where interpreting referential expressions requires inferring implicit normative expectations grounded in physical and social context. Yet it remains unclear whether Large Language Models (LLMs) can support this kind of reasoning. In this work, we introduce SNIC (Situated Norms in Context), a human-validated diagnostic testbed designed to probe how well state-of-the-art LLMs can extract and utilize normative principles relevant to NBRR. SNIC emphasizes physically grounded norms that arise in everyday tasks such as cleaning, tidying, and serving. Across a range of controlled evaluations, we find that even the strongest LLMs struggle to consistently identify and apply social norms, particularly when norms are implicit, underspecified, or in conflict. These findings reveal a blind spot in current LLMs and highlight a key challenge for deploying language-based systems in socially situated, embodied settings.
comment: Accepted to the 40th AAAI Conference on Artificial Intelligence (AAAI-26)
☆ Nüwa: Mending the Spatial Integrity Torn by VLM Token Pruning
Vision token pruning has proven to be an effective acceleration technique for the efficient Vision Language Model (VLM). However, existing pruning methods demonstrate excellent performance preservation in visual question answering (VQA) and suffer substantial degradation on visual grounding (VG) tasks. Our analysis of the VLM's processing pipeline reveals that strategies utilizing global semantic similarity and attention scores lose the global spatial reference frame, which is derived from the interactions of tokens' positional information. Motivated by these findings, we propose $\text{Nüwa}$, a two-stage token pruning framework that enables efficient feature aggregation while maintaining spatial integrity. In the first stage, after the vision encoder, we apply three operations, namely separation, alignment, and aggregation, which are inspired by swarm intelligence algorithms to retain information-rich global spatial anchors. In the second stage, within the LLM, we perform text-guided pruning to retain task-relevant visual tokens. Extensive experiments demonstrate that $\text{Nüwa}$ achieves SOTA performance on multiple VQA benchmarks (from 94% to 95%) and yields substantial improvements on visual grounding tasks (from 7% to 47%).
☆ A vector logic for intensional formal semantics
Formal semantics and distributional semantics are distinct approaches to linguistic meaning: the former models meaning as reference via model-theoretic structures; the latter represents meaning as vectors in high-dimensional spaces shaped by usage. This paper proves that these frameworks are structurally compatible for intensional semantics. We establish that Kripke-style intensional models embed injectively into vector spaces, with semantic functions lifting to (multi)linear maps that preserve composition. The construction accommodates multiple index sorts (worlds, times, locations) via a compound index space, representing intensions as linear operators. Modal operators are derived algebraically: accessibility relations become linear operators, and modal conditions reduce to threshold checks on accumulated values. For uncountable index domains, we develop a measure-theoretic generalization in which necessity becomes truth almost everywhere and possibility becomes truth on a set of positive measure, a non-classical logic natural for continuous parameters.
comment: 25 pages; 68 sources
☆ Equal Access, Unequal Interaction: A Counterfactual Audit of LLM Fairness
Prior work on fairness in large language models (LLMs) has primarily focused on access-level behaviors such as refusals and safety filtering. However, equitable access does not ensure equitable interaction quality once a response is provided. In this paper, we conduct a controlled fairness audit examining how LLMs differ in tone, uncertainty, and linguistic framing across demographic identities after access is granted. Using a counterfactual prompt design, we evaluate GPT-4 and LLaMA-3.1-70B on career advice tasks while varying identity attributes along age, gender, and nationality. We assess access fairness through refusal analysis and measure interaction quality using automated linguistic metrics, including sentiment, politeness, and hedging. Identity-conditioned differences are evaluated using paired statistical tests. Both models exhibit zero refusal rates across all identities, indicating uniform access. Nevertheless, we observe systematic, model-specific disparities in interaction quality: GPT-4 expresses significantly higher hedging toward younger male users, while LLaMA exhibits broader sentiment variation across identity groups. These results show that fairness disparities can persist at the interaction level even when access is equal, motivating evaluation beyond refusal-based audits.
comment: 13 pages, 1 figure
♻ ☆ Reuse your FLOPs: Scaling RL on Hard Problems by Conditioning on Very Off-Policy Prefixes
Typical reinforcement learning (RL) methods for LLM reasoning waste compute on hard problems, where correct on-policy traces are rare, policy gradients vanish, and learning stalls. To bootstrap more efficient RL, we consider reusing old sampling FLOPs (from prior inference or RL training) in the form of off-policy traces. Standard off-policy methods supervise against off-policy data, causing instabilities during RL optimization. We introduce PrefixRL, where we condition on the prefix of successful off-policy traces and run on-policy RL to complete them, side-stepping off-policy instabilities. PrefixRL boosts the learning signal on hard problems by modulating the difficulty of the problem through the off-policy prefix length. We prove that the PrefixRL objective is not only consistent with the standard RL objective but also more sample efficient. Empirically, we discover back-generalization: training only on prefixed problems generalizes to out-of-distribution unprefixed performance, with learned strategies often differing from those in the prefix. In our experiments, we source the off-policy traces by rejection sampling with the base model, creating a self-improvement loop. On hard reasoning problems, PrefixRL reaches the same training reward 2x faster than the strongest baseline (SFT on off-policy data then RL), even after accounting for the compute spent on the initial rejection sampling, and increases the final reward by 3x. The gains transfer to held-out benchmarks, and PrefixRL is still effective when off-policy traces are derived from a different model family, validating its flexibility in practical settings.
♻ ☆ Closing the Loop: Universal Repository Representation with RPG-Encoder
Current repository agents encounter a reasoning disconnect due to fragmented representations, as existing methods rely on isolated API documentation or dependency graphs that lack semantic depth. We consider repository comprehension and generation to be inverse processes within a unified cycle: generation expands intent into implementation, while comprehension compresses implementation back into intent. To address this, we propose RPG-Encoder, a framework that generalizes the Repository Planning Graph (RPG) from a static generative blueprint into a unified, high-fidelity representation. RPG-Encoder closes the reasoning loop through three mechanisms: (1) Encoding raw code into the RPG that combines lifted semantic features with code dependencies; (2) Evolving the topology incrementally to decouple maintenance costs from repository scale, reducing overhead by 95.7%; and (3) Operating as a unified interface for structure-aware navigation. In evaluations, RPG-Encoder establishes state-of-the-art localization performance on SWE-bench Verified with 93.7% Acc@5 and exceeds the best baseline by over 10% in localization accuracy on SWE-bench Live Lite. These results highlight our superior fine-grained precision in complex codebases. Furthermore, it achieves 98.5% reconstruction coverage on RepoCraft, confirming RPG's high-fidelity capacity to mirror the original codebase and closing the loop between intent and implementation.
♻ ☆ OpenRubrics: Towards Scalable Synthetic Rubric Generation for Reward Modeling and LLM Alignment
Reward modeling lies at the core of reinforcement learning from human feedback (RLHF), yet most existing reward models rely on scalar or pairwise judgments that fail to capture the multifaceted nature of human preferences. Recent studies have explored rubrics-as-rewards (RaR) that uses structured criteria to capture multiple dimensions of response quality. However, producing rubrics that are both reliable and scalable remains a key challenge. In this work, we introduce OpenRubrics, a diverse, large-scale collection of (prompt, rubric) pairs for training rubric-generation and rubric-based reward models. To elicit discriminative and comprehensive evaluation signals, we introduce Contrastive Rubric Generation (CRG), which derives both hard rules (explicit constraints) and principles (implicit qualities) by contrasting preferred and rejected responses. We further remove noisy rubrics via preserving preference-label consistency. Across multiple reward-modeling benchmarks, our rubric-based reward model, Rubric-RM, surpasses strong size-matched baselines by 8.4%. These gains transfer to policy models on instruction-following and biomedical benchmarks.
comment: The first two authors contributed equally. Updated OpenRubrics dataset, RMs, and results
♻ ☆ Mil-SCORE: Benchmarking Long-Context Geospatial Reasoning and Planning in Large Language Models
As large language models (LLMs) are applied to increasingly longer and more complex tasks, there is a growing need for realistic long-context benchmarks that require selective reading and integration of heterogeneous, multi-modal information sources. This need is especially acute for geospatial planning problems, such as those found in planning for large-scale military operations, which demand fast and accurate reasoning over maps, orders, intelligence reports, and other distributed data. To address this gap, we present MilSCORE (Military Scenario Contextual Reasoning), to our knowledge the first scenario-level dataset of expert-authored, multi-hop questions grounded in a complex, simulated military planning scenario used for training. MilSCORE is designed to evaluate high-stakes decision-making and planning, probing LLMs' ability to combine tactical and spatial reasoning across multiple sources and to reason over long-horizon, geospatially rich context. The benchmark includes a diverse set of question types across seven categories targeting both factual recall and multi-step reasoning about constraints, strategy, and spatial analysis. We provide an evaluation protocol and report baseline results for a range of contemporary vision-language models. Our findings highlight substantial headroom on MilSCORE, indicating that current systems struggle with realistic, scenario-level long-context planning, and positioning MilSCORE as a challenging testbed for future work.
♻ ☆ PluriHarms: Benchmarking the Full Spectrum of Human Judgments on AI Harm
Current AI safety frameworks, which often treat harmfulness as binary, lack the flexibility to handle borderline cases where humans meaningfully disagree. To build more pluralistic systems, it is essential to move beyond consensus and instead understand where and why disagreements arise. We introduce PluriHarms, a benchmark designed to systematically study human harm judgments across two key dimensions -- the harm axis (benign to harmful) and the agreement axis (agreement to disagreement). Our scalable framework generates prompts that capture diverse AI harms and human values while targeting cases with high disagreement rates, validated by human data. The benchmark includes 150 prompts with 15,000 ratings from 100 human annotators, enriched with demographic and psychological traits and prompt-level features of harmful actions, effects, and values. Our analyses show that prompts that relate to imminent risks and tangible harms amplify perceived harmfulness, while annotator traits (e.g., toxicity experience, education) and their interactions with prompt content explain systematic disagreement. We benchmark AI safety models and alignment methods on PluriHarms, finding that while personalization significantly improves prediction of human harm judgments, considerable room remains for future progress. By explicitly targeting value diversity and disagreement, our work provides a principled benchmark for moving beyond "one-size-fits-all" safety toward pluralistically safe AI.
♻ ☆ Think Silently, Think Fast: Dynamic Latent Compression of LLM Reasoning Chains
Large Language Models (LLMs) achieve superior performance through Chain-of-Thought (CoT) reasoning, but these token-level reasoning chains are computationally expensive and inefficient. In this paper, we introduce Compressed Latent Reasoning (CoLaR), a novel framework that dynamically compresses reasoning processes in latent space through a two-stage training approach. First, during supervised fine-tuning, CoLaR extends beyond next-token prediction by incorporating an auxiliary next compressed embedding prediction objective. This process merges embeddings of consecutive tokens using a compression factor randomly sampled from a predefined range, and trains a specialized latent head to predict distributions of subsequent compressed embeddings. Second, we enhance CoLaR through reinforcement learning (RL) that leverages the latent head's non-deterministic nature to explore diverse reasoning paths and exploit more compact ones. This approach enables CoLaR to: i) perform reasoning at a dense latent level (i.e., silently), substantially reducing reasoning chain length, and ii) dynamically adjust reasoning speed at inference time by simply prompting the desired compression factor. Extensive experiments across four mathematical reasoning datasets demonstrate that CoLaR achieves 14.1% higher accuracy than latent-based baseline methods at comparable compression ratios, and reduces reasoning chain length by 53.3% with only 4.8% performance degradation compared to explicit CoT method. Moreover, when applied to more challenging mathematical reasoning tasks, our RL-enhanced CoLaR demonstrates performance gains of up to 5.4% while dramatically reducing latent reasoning chain length by 82.8%.
comment: 15 pages, 8 figures
♻ ☆ From Generative Modeling to Clinical Classification: A GPT-Based Architecture for EHR Notes
The increasing availability of unstructured clinical narratives in electronic health records (EHRs) has created new opportunities for automated disease characterization, cohort identification, and clinical decision support. However, modeling long, domain-specific clinical text remains challenging due to limited labeled data, severe class imbalance, and the high computational cost of adapting large pretrained language models. This study presents a GPT-based architecture for clinical text classification that adapts a pretrained decoder-only Transformer using a selective fine-tuning strategy. Rather than updating all model parameters, the majority of the GPT-2 backbone is frozen, and training is restricted to the final Transformer block, the final layer normalization, and a lightweight classification head. This approach substantially reduces the number of trainable parameters while preserving the representational capacity required to model complex clinical language. The proposed method is evaluated on radiology reports from the MIMIC-IV-Note dataset using uncertainty-aware CheXpert-style labels derived directly from report text. Experiments cover multiple problem formulations, including multi-label classification of radiographic findings, binary per-label classification under different uncertainty assumptions, and aggregate disease outcome prediction. Across varying dataset sizes, the model exhibits stable convergence behavior and strong classification performance, particularly in settings dominated by non-mention and negated findings. Overall, the results indicate that selective fine-tuning of pretrained generative language models provides an efficient and effective pathway for clinical text classification, enabling scalable adaptation to real-world EHR data while significantly reducing computational complexity.
comment: This submission is a full-length research manuscript consisting of 37 pages and 15 figures. The paper presents a GPT-based architecture with selective fine-tuning for clinical text classification, including detailed architectural diagrams, learning curves, and evaluation figures such as ROC curves and confusion matrices
♻ ☆ Rethinking Bottlenecks in Safety Fine-Tuning of Vision Language Models
Large Vision-Language Models (VLMs) have achieved remarkable performance across a wide range of tasks. However, their deployment in safety-critical domains poses significant challenges. Existing safety fine-tuning methods, which focus on textual or multimodal content, fall short in addressing challenging cases or disrupt the balance between helpfulness and harmlessness. Our evaluation highlights a safety reasoning gap: these methods lack safety visual reasoning ability, leading to such bottlenecks. To address this limitation and enhance both visual perception and reasoning in safety-critical contexts, we propose a novel dataset that integrates multi-image inputs with safety Chain-of-Thought (CoT) labels as fine-grained reasoning logic to improve model performance. Specifically, we introduce the Multi-Image Safety (MIS) dataset, an instruction-following dataset tailored for multi-image safety scenarios, consisting of training and test splits. Our experiments demonstrate that fine-tuning InternVL2.5-8B with MIS significantly outperforms both powerful open-source models and API-based models in challenging multi-image tasks requiring safety-related visual reasoning. This approach not only delivers exceptional safety performance but also preserves general capabilities without any trade-offs. Specifically, fine-tuning with MIS increases average accuracy by 0.83% across five general benchmarks and reduces the Attack Success Rate (ASR) on multiple safety benchmarks by a large margin.
♻ ☆ TurkBench: A Benchmark for Evaluating Turkish Large Language Models EACL 2026
With the recent surge in the development of large language models, the need for comprehensive and language-specific evaluation benchmarks has become critical. While significant progress has been made in evaluating English-language models, benchmarks for other languages, particularly those with unique linguistic characteristics such as Turkish, remain less developed. Our study introduces TurkBench, a comprehensive benchmark designed to assess the capabilities of generative large language models in the Turkish language. TurkBench involves 8,151 data samples across 21 distinct subtasks. These are organized under six main categories of evaluation: Knowledge, Language Understanding, Reasoning, Content Moderation, Turkish Grammar and Vocabulary, and Instruction Following. The diverse range of tasks and the culturally relevant data would provide researchers and developers with a valuable tool for evaluating their models and identifying areas for improvement. We further publish our benchmark for online submissions at https://huggingface.co/turkbench
comment: Accepted by EACL 2026 SIGTURK
♻ ☆ Interpreting and Controlling LLM Reasoning through Integrated Policy Gradient
Large language models (LLMs) demonstrate strong reasoning abilities in solving complex real-world problems. Yet, the internal mechanisms driving these complex reasoning behaviors remain opaque. Existing interpretability approaches targeting reasoning either identify components (e.g., neurons) correlated with special textual patterns, or rely on human-annotated contrastive pairs to derive control vectors. Consequently, current methods struggle to precisely localize complex reasoning mechanisms or capture sequential influence from model internal workings to the reasoning outputs. In this paper, built on outcome-oriented and sequential-influence-aware principles, we focus on identifying components that have sequential contribution to reasoning behavior where outcomes are cumulated by long-range effects. We propose Integrated Policy Gradient (IPG), a novel framework that attributes reasoning behaviors to model's inner components by propagating compound outcome-based signals such as post reasoning accuracy backward through model inference trajectories. Empirical evaluations demonstrate that our approach achieves more precise localization and enables reliable modulation of reasoning behaviors (e.g., reasoning capability, reasoning strength) across diverse reasoning models.
♻ ☆ The Path of Least Resistance: Guiding LLM Reasoning Trajectories with Prefix Consensus ICLR 2026
Large language models achieve strong reasoning performance, but inference strategies such as Self-Consistency (SC) are computationally expensive, as they fully expand all reasoning traces. We introduce PoLR (Path of Least Resistance), the first inference-time method to leverage prefix consistency for compute-efficient reasoning. PoLR clusters short prefixes of reasoning traces, identifies the dominant cluster, and expands all paths in that cluster, preserving the accuracy benefits of SC while substantially reducing token usage and latency. Our theoretical analysis, framed via mutual information and entropy, explains why early reasoning steps encode strong signals predictive of final correctness. Empirically, PoLR consistently matches or exceeds SC across GSM8K, MATH500, AIME24/25, and GPQA-DIAMOND, reducing token usage by up to 60% and wall-clock latency by up to 50%. Moreover, PoLR is fully complementary to adaptive inference methods (e.g., Adaptive Consistency, Early-Stopping SC) and can serve as a drop-in pre-filter, making SC substantially more efficient and scalable without requiring model fine-tuning.
comment: Accepted at ICLR 2026. https://openreview.net/forum?id=hrnSqERgPn
♻ ☆ Advancing AI Research Assistants with Expert-Involved Learning
Large language models (LLMs) and large multimodal models (LMMs) promise to accelerate biomedical discovery, yet their reliability remains unclear. We introduce ARIEL (AI Research Assistant for Expert-in-the-Loop Learning), an open-source evaluation and optimization framework that pairs a curated multimodal biomedical corpus with expert-vetted tasks to probe two capabilities: full-length article summarization and fine-grained figure interpretation. Using uniform protocols and blinded PhD-level evaluation, we find that state-of-the-art models generate fluent but incomplete summaries, whereas LMMs struggle with detailed visual reasoning. We later observe that prompt engineering and lightweight fine-tuning substantially improve textual coverage, and a compute-scaled inference strategy enhances visual question answering. We build an ARIEL agent that integrates textual and visual cues, and we show it can propose testable mechanistic hypotheses. ARIEL delineates current strengths and limitations of foundation models, and provides a reproducible platform for advancing trustworthy AI in biomedicine.
comment: 36 pages, 7 figures
♻ ☆ LegalOne: A Family of Foundation Models for Reliable Legal Reasoning
While Large Language Models (LLMs) have demonstrated impressive general capabilities, their direct application in the legal domain is often hindered by a lack of precise domain knowledge and complexity of performing rigorous multi-step judicial reasoning. To address this gap, we present LegalOne, a family of foundational models specifically tailored for the Chinese legal domain. LegalOne is developed through a comprehensive three-phase pipeline designed to master legal reasoning. First, during mid-training phase, we propose Plasticity-Adjusted Sampling (PAS) to address the challenge of domain adaptation. This perplexity-based scheduler strikes a balance between the acquisition of new knowledge and the retention of original capabilities, effectively establishing a robust legal foundation. Second, during supervised fine-tuning, we employ Legal Agentic CoT Distillation (LEAD) to distill explicit reasoning from raw legal texts. Unlike naive distillation, LEAD utilizes an agentic workflow to convert complex judicial processes into structured reasoning trajectories, thereby enforcing factual grounding and logical rigor. Finally, we implement a Curriculum Reinforcement Learning (RL) strategy. Through a progressive reinforcement process spanning memorization, understanding, and reasoning, LegalOne evolves from simple pattern matching to autonomous and reliable legal reasoning. Experimental results demonstrate that LegalOne achieves state-of-the-art performance across a wide range of legal tasks, surpassing general-purpose LLMs with vastly larger parameter counts through enhanced knowledge density and efficiency. We publicly release the LegalOne weights and the LegalKit evaluation framework to advance the field of Legal AI, paving the way for deploying trustworthy and interpretable foundation models in high-stakes judicial applications.
comment: 25 pages, v1
♻ ☆ KVzap: Fast, Adaptive, and Faithful KV Cache Pruning
Growing context lengths in transformer-based language models have made the key-value (KV) cache a critical inference bottleneck. While many KV cache pruning methods have been proposed, they have not yet been adopted in major inference engines due to speed--accuracy trade-offs. We introduce KVzap, a fast, input-adaptive approximation of KVzip that works in both prefilling and decoding. On Qwen3-8B, Llama-3.1-8B-Instruct, and Qwen3-32B across long-context and reasoning tasks, KVzap achieves $2$--$4\times$ KV cache compression with negligible accuracy loss and achieves state-of-the-art performance on the KVpress leaderboard. Code and models are available at https://github.com/NVIDIA/kvpress.
♻ ☆ Large-Scale Terminal Agentic Trajectory Generation from Dockerized Environments
Training agentic models for terminal-based tasks critically depends on high-quality terminal trajectories that capture realistic long-horizon interactions across diverse domains. However, constructing such data at scale remains challenging due to two key requirements: \textbf{\emph{Executability}}, since each instance requires a suitable and often distinct Docker environment; and \textbf{\emph{Verifiability}}, because heterogeneous task outputs preclude unified, standardized verification. To address these challenges, we propose \textbf{TerminalTraj}, a scalable pipeline that (i) filters high-quality repositories to construct Dockerized execution environments, (ii) generates Docker-aligned task instances, and (iii) synthesizes agent trajectories with executable validation code. Using TerminalTraj, we curate 32K Docker images and generate 50,733 verified terminal trajectories across eight domains. Models trained on this data with the Qwen2.5-Coder backbone achieve consistent performance improvements on TerminalBench (TB), with gains of up to 20\% on TB~1.0 and 10\% on TB~2.0 over their respective backbones. Notably, \textbf{TerminalTraj-32B} achieves strong performance among models with fewer than 100B parameters, reaching 35.30\% on TB~1.0 and 22.00\% on TB~2.0, and demonstrates improved test-time scaling behavior. All code and data are available at https://github.com/Wusiwei0410/TerminalTraj.
comment: Agentic Trajectory, Agentic Model, Terminal, Code Agent
♻ ☆ Capturing Classic Authorial Style in Long-Form Story Generation with GRPO Fine-Tuning
Evaluating and optimising authorial style in long-form story generation remains challenging because style is often assessed with ad hoc prompting and is frequently conflated with overall writing quality. We propose a two-stage pipeline. First, we train a dedicated style-similarity judge by fine-tuning a sentence-transformer with authorship-verification supervision, and calibrate its similarity outputs into a bounded $[0,1]$ reward. Second, we use this judge as the primary reward in Group Relative Policy Optimization (GRPO) to fine-tune an 8B story generator for style-conditioned writing, avoiding the accept/reject supervision required by Direct Preference Optimization (DPO). Across four target authors (Mark Twain, Jane Austen, Charles Dickens, Thomas Hardy), the GRPO-trained 8B model achieves higher style scores than open-weight baselines, with an average style score of 0.893 across authors. These results suggest that AV-calibrated reward modelling provides a practical mechanism for controllable style transfer in long-form generation under a moderate model size and training budget.
♻ ☆ Problem Solved? Information Extraction Design Space for Layout-Rich Documents using LLMs EMNLP'25
This paper defines and explores the design space for information extraction (IE) from layout-rich documents using large language models (LLMs). The three core challenges of layout-aware IE with LLMs are 1) data structuring, 2) model engagement, and 3) output refinement. Our study investigates the sub-problems and methods within these core challenges, such as input representation, chunking, prompting, selection of LLMs, and multimodal models. It examines the effect of different design choices through LayIE-LLM, a new, open-source, layout-aware IE test suite, benchmarking against traditional, fine-tuned IE models. The results on two IE datasets show that LLMs require adjustment of the IE pipeline to achieve competitive performance: the optimized configuration found with LayIE-LLM achieves 13.3--37.5 F1 points more than a general-practice baseline configuration using the same LLM. To find a well-working configuration, we develop a one-factor-at-a-time (OFAT) method that achieves near-optimal results. Our method is only 0.8--1.8 points lower than the best full factorial exploration with a fraction (2.8%) of the required computation. Overall, we demonstrate that, if well-configured, general-purpose LLMs match the performance of specialized models, providing a cost-effective, finetuning-free alternative. Our test-suite is available at https://github.com/gayecolakoglu/LayIE-LLM.
comment: accepted at EMNLP'25
♻ ☆ Modeling Sarcastic Speech: Semantic and Prosodic Cues in a Speech Synthesis Framework
Sarcasm is a pragmatic phenomenon in which speakers convey meanings that diverge from literal content, relying on an interaction between semantics and prosodic expression. However, how these cues jointly contribute to the recognition of sarcasm remains poorly understood. We propose a computational framework that models sarcasm as the integration of semantic interpretation and prosodic realization. Semantic cues are derived from an LLaMA 3 model fine-tuned to capture discourse-level markers of sarcastic intent, while prosodic cues are extracted through semantically aligned utterances drawn from a database of sarcastic speech, providing prosodic exemplars of sarcastic delivery. Using a speech synthesis testbed, perceptual evaluations demonstrate that both semantic and prosodic cues independently enhance listeners' perception of sarcasm, with the strongest effects emerging when the two are combined. These findings highlight the complementary roles of semantics and prosody in pragmatic interpretation and illustrate how modeling can shed light on the mechanisms underlying sarcastic communication.
♻ ☆ CP-Agent: Agentic Constraint Programming
The translation of natural language to formal constraint models requires expertise in the problem domain and modeling frameworks. To explore the effectiveness of agentic workflows, we propose CP-Agent, a Python coding agent that uses the ReAct framework with a persistent IPython kernel. We provide the relevant domain knowledge as a project prompt of under 50 lines. The algorithm works by iteratively executing code, observing the solver's feedback, and refining constraint models based on execution results. We evaluate CP-Agent on 101 constraint programming problems from CP-Bench. We made minor changes to the benchmark to address systematic ambiguities in the problem specifications and errors in the ground-truth models. On the clarified benchmark, CP-Agent achieves perfect accuracy on all 101 problems. Our experiments show that minimal guidance outperforms detailed procedural scaffolding. Our experiments also show that explicit task management tools can have both positive and negative effects on focused modeling tasks.
♻ ☆ PRISM: Deriving a White-Box Transformer as a Signal-Noise Decomposition Operator via Maximum Coding Rate Reduction
Deep learning models, particularly Transformers, are often criticized as "black boxes" and lack interpretability. We propose Prism, a white-box attention-based architecture derived from the principles of Maximizing Coding Rate Reduction ($\text{MCR}^2$). By modeling the attention mechanism as a gradient ascent process on a distinct signal-noise manifold, we introduce a specific irrational frequency separation ($π$-RoPE) to enforce incoherence between signal (semantic) and noise (syntactic) subspaces. We show empirical evidence that these geometric inductive biases can induce unsupervised functional disentanglement alone. Prism spontaneously specializes its attention heads into spectrally distinct regimes: low-frequency heads capturing long-range causal dependencies (signal) and high-frequency heads handling local syntactic constraints and structural artifacts. To provide a theoretical grounding for these spectral phenomena, we draw an analogy between attention mechanism and a Hamiltonian dynamical system and identify that the standard geometric progression of Rotary Positional Embeddings (RoPE) induces dense resonance networks (Arnold Tongues), leading to feature rank collapse. Empirical validation on 124M-parameter models trained on OpenWebText demonstrates that Prism spontaneously isolates the Attention Sink pathology and maintains isentropic information flow across layers. Further, we suggest a physics-informed plug-and-play intervention KAM-RoPE for large language models (LLMs). Our results suggest that interpretability and performance can be unified through principled geometric construction, offering a theoretically grounded alternative to heuristic architectural modifications
comment: 12 pages, 6 figures. Derives Transformer as a signal-noise decomposition operator via Maximizing Coding Rate Reduction. Identifies 'Attention Sink' as spectral resonance (Arnold Tongues) and proposes $π$-RoPE for dynamical stability
♻ ☆ Don't Overthink it. Preferring Shorter Thinking Chains for Improved LLM Reasoning
Reasoning large language models (LLMs) heavily rely on scaling test-time compute to perform complex reasoning tasks by generating extensive "thinking" chains. While demonstrating impressive results, this approach incurs significant computational costs and inference time. In this work, we challenge the assumption that long thinking chains results in better reasoning capabilities. We first demonstrate that shorter reasoning chains within individual questions are significantly more likely to yield correct answers - up to 34.5% more accurate than the longest chain sampled for the same question. Based on these results, we suggest short-m@k, a novel reasoning LLM inference method. Our method executes k independent generations in parallel and halts computation once the first m thinking processes are done. The final answer is chosen using majority voting among these m chains. Basic short-1@k demonstrates similar or even superior performance over standard majority voting in low-compute settings - using up to 40% fewer thinking tokens. short-3@k, while slightly less efficient than short-1@k, consistently surpasses majority voting across all compute budgets, while still being substantially faster (up to 33% wall time reduction). To further validate our findings, we finetune LLMs using short, long, and randomly selected reasoning chains. We then observe that training on the shorter ones leads to better performance. Our findings suggest rethinking current methods of test-time compute in reasoning LLMs, emphasizing that longer "thinking" does not necessarily translate to improved performance and can, counter-intuitively, lead to degraded results.
♻ ☆ Evaluating Scoring Bias in LLM-as-a-Judge DASFAA 2026
The "LLM-as-a-Judge" paradigm, using Large Language Models (LLMs) as automated evaluators, is pivotal to LLM development, offering scalable feedback for complex tasks. However, the reliability of these judges is compromised by various biases. Existing research has heavily concentrated on biases in comparative evaluations. In contrast, scoring-based evaluations-which assign an absolute score and are often more practical in industrial applications-remain under-investigated. To address this gap, we undertake the first dedicated examination of scoring bias in LLM judges. We shift the focus from biases tied to the evaluation targets to those originating from the scoring prompt itself. We formally define scoring bias and identify three novel, previously unstudied types: rubric order bias, score ID bias, and reference answer score bias. We propose a comprehensive framework to quantify these biases, featuring a suite of multi-faceted metrics and an automatic data synthesis pipeline to create a tailored evaluation corpus. Our experiments empirically demonstrate that even the most advanced LLMs suffer from these substantial scoring biases. Our analysis yields actionable insights for designing more robust scoring prompts and mitigating these newly identified biases.
comment: Accepted by DASFAA 2026
♻ ☆ A Syntax-Injected Approach for Faster and More Accurate Sentiment Analysis
Sentiment Analysis (SA) is a crucial aspect of Natural Language Processing (NLP), focusing on identifying and interpreting subjective assessments in textual content. Syntactic parsing is useful in SA as it improves accuracy and provides explainability; however, it often becomes a computational bottleneck due to slow parsing algorithms. This article proposes a solution to this bottleneck by using a Sequence Labeling Syntactic Parser (SELSP) to integrate syntactic information into SA via a rule-based sentiment analysis pipeline. By reformulating dependency parsing as a sequence labeling task, we significantly improve the efficiency of syntax-based SA. SELSP is trained and evaluated on a ternary polarity classification task, demonstrating greater speed and accuracy compared to conventional parsers like Stanza and heuristic approaches such as Valence Aware Dictionary and sEntiment Reasoner (VADER). The combination of speed and accuracy makes SELSP especially attractive for sentiment analysis applications in both academic and industrial contexts. Moreover, we compare SELSP with Transformer-based models trained on a 5-label classification task. In addition, we evaluate multiple sentiment dictionaries with SELSP to determine which yields the best performance in polarity prediction. The results show that dictionaries accounting for polarity judgment variation outperform those that ignore it. Furthermore, we show that SELSP outperforms Transformer-based models in terms of speed for polarity prediction.
♻ ☆ Understanding Verbatim Memorization in LLMs Through Circuit Discovery ACL 2025
Underlying mechanisms of memorization in LLMs -- the verbatim reproduction of training data -- remain poorly understood. What exact part of the network decides to retrieve a token that we would consider as start of memorization sequence? How exactly is the models' behaviour different when producing memorized sentence vs non-memorized? In this work we approach these questions from mechanistic interpretability standpoint by utilizing transformer circuits -- the minimal computational subgraphs that perform specific functions within the model. Through carefully constructed contrastive datasets, we identify points where model generation diverges from memorized content and isolate the specific circuits responsible for two distinct aspects of memorization. We find that circuits that initiate memorization can also maintain it once started, while circuits that only maintain memorization cannot trigger its initiation. Intriguingly, memorization prevention mechanisms transfer robustly across different text domains, while memorization induction appears more context-dependent.
comment: The First Workshop on Large Language Model Memorization @ ACL 2025, Vienna, August 1st, 2025
♻ ☆ Evalet: Evaluating Large Language Models by Fragmenting Outputs into Functions
Practitioners increasingly rely on Large Language Models (LLMs) to evaluate generative AI outputs through "LLM-as-a-Judge" approaches. However, these methods produce holistic scores that obscure which specific elements influenced the assessments. We propose functional fragmentation, a method that dissects each output into key fragments and interprets the rhetoric functions that each fragment serves relative to evaluation criteria -- surfacing the elements of interest and revealing how they fulfill or hinder user goals. We instantiate this approach in Evalet, an interactive system that visualizes fragment-level functions across many outputs to support inspection, rating, and comparison of evaluations. A user study (N=10) found that, while practitioners struggled to validate holistic scores, our approach helped them identify 48% more evaluation misalignments. This helped them calibrate trust in LLM evaluations and rely on them to find more actionable issues in model outputs. Our work shifts LLM evaluation from quantitative scores toward qualitative, fine-grained analysis of model behavior.
comment: The first two authors hold equal contribution. Conditionally accepted to CHI 2026
♻ ☆ A2D: Any-Order, Any-Step Safety Alignment for Diffusion Language Models ICLR 2026
Diffusion large language models (dLLMs) enable any-order generation, but this flexibility enlarges the attack surface: harmful spans may appear at arbitrary positions, and template-based prefilling attacks such as DIJA bypass response-level refusals. We introduce A2D (Any-Order, Any-Step Defense), a token-level alignment method that aligns dLLMs to emit an [EOS] refusal signal whenever harmful content arises. By aligning safety directly at the token-level under randomized masking, A2D achieves robustness to both any-decoding-order and any-step prefilling attacks under various conditions. It also enables real-time monitoring: dLLMs may begin a response but automatically terminate if unsafe continuation emerges. On safety benchmarks, A2D consistently prevents the generation of harmful outputs, slashing DIJA success rates from over 80% to near-zero (1.3% on LLaDA-8B-Instruct, 0.0% on Dream-v0-Instruct-7B), and thresholded [EOS] probabilities allow early rejection, yielding up to 19.3x faster safe termination.
comment: Accepted at ICLR 2026. Code and models are available at https://ai-isl.github.io/A2D
♻ ☆ Adaptive Rollout Allocation for Online Reinforcement Learning with Verifiable Rewards ICLR 2026
Sampling efficiency is a key bottleneck in reinforcement learning with verifiable rewards. Existing group-based policy optimization methods, such as GRPO, allocate a fixed number of rollouts for all training prompts. This uniform allocation implicitly treats all prompts as equally informative, and could lead to inefficient computational budget usage and impede training progress. We introduce VIP, a Variance-Informed Predictive allocation strategy that allocates a given rollout budget to the prompts in the incumbent batch to minimize the expected gradient variance of the policy update. At each iteration, VIP uses a lightweight Gaussian process model to predict per-prompt success probabilities based on recent rollouts. These probability predictions are translated into variance estimates, which are then fed into a convex optimization problem to determine the optimal rollout allocations under a hard compute budget constraint. Empirical results show that VIP consistently improves sampling efficiency and achieves higher performance than uniform or heuristic allocation strategies in multiple benchmarks.
comment: Accepted at ICLR 2026
♻ ☆ Mechanistic Interpretability as Statistical Estimation: A Variance Analysis
Mechanistic Interpretability (MI) aims to reverse-engineer model behaviors by identifying functional sub-networks. Yet, the scientific validity of these findings depends on their stability. In this work, we argue that circuit discovery is not a standalone task but a statistical estimation problem built upon causal mediation analysis (CMA). We uncover a fundamental instability at this base layer: exact, single-input CMA scores exhibit high intrinsic variance, implying that the causal effect of a component is a volatile random variable rather than a fixed property. We then demonstrate that circuit discovery pipelines inherit this variance and further amplify it. Fast approximation methods, such as Edge Attribution Patching and its successors, introduce additional estimation noise, while aggregating these noisy scores over datasets leads to fragile structural estimates. Consequently, small perturbations in input data or hyperparameters yield vastly different circuits. We systematically decompose these sources of variance and advocate for more rigorous MI practices, prioritizing statistical robustness and routine reporting of stability metrics.
♻ ☆ V2P-Bench: Evaluating Video-Language Understanding with Visual Prompts for Better Human-Model Interaction
Large Vision-Language Models (LVLMs) have made significant strides in the field of video understanding in recent times. Nevertheless, existing video benchmarks predominantly rely on text prompts for evaluation, which often require complex referential language and diminish both the accuracy and efficiency of human model interaction in turn. To address this limitation, we propose V2P-Bench, a robust and comprehensive benchmark for evaluating the ability of LVLMs to understand Video Visual Prompts in human model interaction scenarios. V2P-Bench consists of 980 videos and 1172 well-structured high-quality QA pairs, each paired with manually annotated visual prompt frames. The benchmark spans three main tasks and twelve categories, thereby enabling fine-grained, instance-level evaluation. Through an in-depth analysis of current LVLMs, we identify several key findings: 1) Visual prompts are both more model-friendly and user-friendly in interactive scenarios than text prompts, leading to significantly improved model performance and enhanced user experience. 2) Models are reasonably capable of zero-shot understanding of visual prompts, but struggle with spatiotemporal understanding. Even o1 achieves only 71.8%, far below the human expert score of 88.3%, while most open-source models perform below 60%. 3) LVLMs exhibit pervasive Hack Phenomena in video question answering tasks, which become more pronounced as video length increases and frame sampling density decreases, thereby inflating performance scores artificially. We anticipate that V2P-Bench will not only shed light on these challenges but also serve as a foundational tool for advancing human model interaction and improving the evaluation of video understanding.
comment: Project Page: https://vlm-reasoning.github.io/V2P-Bench/
♻ ☆ AlignAtt: Using Attention-based Audio-Translation Alignments as a Guide for Simultaneous Speech Translation
Attention is the core mechanism of today's most used architectures for natural language processing and has been analyzed from many perspectives, including its effectiveness for machine translation-related tasks. Among these studies, attention resulted to be a useful source of information to get insights about word alignment also when the input text is substituted with audio segments, as in the case of the speech translation (ST) task. In this paper, we propose AlignAtt, a novel policy for simultaneous ST (SimulST) that exploits the attention information to generate source-target alignments that guide the model during inference. Through experiments on the 8 language pairs of MuST-C v1.0, we show that AlignAtt outperforms previous state-of-the-art SimulST policies applied to offline-trained models with gains in terms of BLEU of 2 points and latency reductions ranging from 0.5s to 0.8s across the 8 languages.
♻ ☆ MemeLens: Multilingual Multitask VLMs for Memes
Memes are a dominant medium for online communication and manipulation because meaning emerges from interactions between embedded text, imagery, and cultural context. Existing meme research is distributed across tasks (hate, misogyny, propaganda, sentiment, humour) and languages, which limits cross-domain generalization. To address this gap we propose MemeLens, a unified multilingual and multitask explanation-enhanced Vision Language Model (VLM) for meme understanding. We consolidate 38 public meme datasets, filter and map dataset-specific labels into a shared taxonomy of $20$ tasks spanning harm, targets, figurative/pragmatic intent, and affect. We present a comprehensive empirical analysis across modeling paradigms, task categories, and datasets. Our findings suggest that robust meme understanding requires multimodal training, exhibits substantial variation across semantic categories, and remains sensitive to over-specialization when models are fine-tuned on individual datasets rather than trained in a unified setting. We will make the experimental resources and datasets publicly available for the community.
comment: disinformation, misinformation, factuality, harmfulness, fake news, propaganda, hateful meme, multimodality, text, images
♻ ☆ AWM: Accurate Weight-Matrix Fingerprint for Large Language Models ICLR 2026
Protecting the intellectual property of large language models (LLMs) is crucial, given the substantial resources required for their training. Consequently, there is an urgent need for both model owners and third parties to determine whether a suspect LLM is trained from scratch or derived from an existing base model. However, the intensive post-training processes that models typically undergo-such as supervised fine-tuning, extensive continued pretraining, reinforcement learning, multi-modal extension, pruning, and upcycling-pose significant challenges to reliable identification. In this work, we propose a training-free fingerprinting method based on weight matrices. We leverage the Linear Assignment Problem (LAP) and an unbiased Centered Kernel Alignment (CKA) similarity to neutralize the effects of parameter manipulations, yielding a highly robust and high-fidelity similarity metric. On a comprehensive testbed of 60 positive and 90 negative model pairs, our method demonstrates exceptional robustness against all six aforementioned post-training categories while exhibiting a near-zero risk of false positives. By achieving perfect scores on all classification metrics, our approach establishes a strong basis for reliable model lineage verification. Moreover, the entire computation completes within 30s on an NVIDIA 3090 GPU. The code is available at https://github.com/LUMIA-Group/AWM.
comment: ICLR 2026
♻ ☆ DynaSpec: Context-aware Dynamic Speculative Sampling for Large-Vocabulary Language Models
Speculative decoding accelerates LLM inference by letting a small drafter propose multiple tokens which a large target model verifies once per speculation step. As vocabularies scale past 10e5 tokens,verification cost in the target model is largely unchanged, but the drafter can become bottlenecked by its O(|V|d) output projection. Recent approaches (e.g., FR-Spec, VocabTrim) mitigate this by restricting drafting to a fixed, frequency-ranked shortlist; however, such static truncation is corpus-dependent and suppresses rare or domain-specific tokens, reducing acceptance and limiting speedups. We propose DynaSpec, a context-dependent dynamic shortlisting mechanism for large-vocabulary speculative decoding. DynaSpec trains lightweight meta-classifiers that route each context to a small set of coarse token clusters; the union of the top-selected clusters defines the drafter's shortlist, while the target model still verifies over the full vocabulary, preserving exactness. Systems-wise, routing is overlapped with draft computation via parallel execution streams, reducing end-to-end overhead. Across standard speculative decoding benchmarks, DynaSpec consistently improves mean accepted length-recovering 98.4% of full-vocabulary performance for Llama-3-8B versus 93.6% for fixed-shortlist baselines-and achieves up to a 2.23x throughput gain compared to 1.91x for static approaches on the dataset with rare tokens.
♻ ☆ What MLLMs Learn about When they Learn about Multimodal Reasoning: Perception, Reasoning, or their Integration?
Evaluation of multimodal reasoning models is typically reduced to a single accuracy score, implicitly treating reasoning as a unitary capability. We introduce MathLens, a benchmark of textbook-style geometry problems that exposes this assumption by operationally decomposing performance into Perception, Reasoning, and Integration. Each problem is derived from a symbolic specification and accompanied by visual diagrams, text-only variants, multimodal questions, and targeted perceptual probes, enabling controlled measurement of each component. Using this decomposition, we show that common training strategies induce systematically different capability profiles that are invisible under aggregate accuracy. Reinforcement learning primarily improves perceptual grounding and robustness to diagram variation, while textual SFT yields gains through reflective reasoning. In contrast, as perception and reasoning improve, a growing fraction of remaining errors fall outside these components and are categorized as integration. These results suggest that apparent progress in multimodal reasoning reflects shifting balances among subskills rather than uniform advancement, motivating evaluation beyond scalar accuracy.
♻ ☆ Self-attention vector output similarities reveal how machines pay attention
The self-attention mechanism has significantly advanced the field of natural language processing, facilitating the development of advanced language-learning machines. Although its utility is widely acknowledged, the precise mechanisms of self-attention underlying its advanced learning and the quantitative characterization of this learning process remains an open research question. This study introduces a new approach for quantifying information processing within the self-attention mechanism. The analysis conducted on the BERT-12 architecture reveals that, in the final layers, the attention map focuses on sentence separator tokens, suggesting a practical approach to text segmentation based on semantic features. Based on the vector space emerging from the self-attention heads, a context similarity matrix, measuring the scalar product between two token vectors was derived, revealing distinct similarities between different token vector pairs within each head and layer. The findings demonstrated that different attention heads within an attention block focused on different linguistic characteristics, such as identifying token repetitions in a given text or recognizing a token of common appearance in the text and its surrounding context. This specialization is also reflected in the distribution of distances between token vectors with high similarity as the architecture progresses. The initial attention layers exhibit substantially long-range similarities; however, as the layers progress, a more short-range similarity develops, culminating in a preference for attention heads to create strong similarities within the same sentence. Finally, the behavior of individual heads was analyzed by examining the uniqueness of their most common tokens in their high similarity elements. Each head tends to focus on a unique token from the text and builds similarity pairs centered around it.
comment: 23 pages, 14 figures
♻ ☆ Beyond the Vision Encoder: Identifying and Mitigating Spatial Bias in Large Vision-Language Models
Large Vision-Language Models (LVLMs) have achieved remarkable success across a wide range of multimodal tasks, yet their robustness to spatial variations remains insufficiently understood. In this work, we conduct a systematic study of the spatial bias of LVLMs, examining how models respond when identical key visual information is placed at different locations within an image. Through controlled probing experiments, we observe that current LVLMs often produce inconsistent outputs under such spatial shifts, revealing a clear spatial bias in their semantic understanding. Further analysis indicates that this bias does not stem from the vision encoder, but rather from a mismatch in attention mechanisms between the vision encoder and the large language model, which disrupts the global information flow. Motivated by this insight, we propose Adaptive Global Context Injection (AGCI), a lightweight mechanism that dynamically injects shared global visual context into each image token. AGCI works without architectural modifications, mitigating spatial bias by enhancing the semantic accessibility of image tokens while preserving the model's intrinsic capabilities. Extensive experiments demonstrate that AGCI not only enhances the spatial robustness of LVLMs, but also achieves strong performance on various downstream tasks and hallucination benchmarks.
♻ ☆ v1: Learning to Point Visual Tokens for Multimodal Grounded Reasoning
When thinking with images, humans rarely rely on a single glance: they revisit visual evidence while reasoning. In contrast, most Multimodal Language Models encode an image once to key-value cache and then reason purely in text, making it hard to re-ground intermediate steps. We empirically confirm this: as reasoning chains lengthen, models progressively lose focus on relevant regions. We introduce v1, a lightweight extension for active visual referencing via point-and-copy: the model selects relevant image patches and copies their embeddings back into the reasoning stream. Crucially, our point-and-copy mechanism retrieves patches using their semantic representations as keys, ensuring perceptual evidence remains aligned with the reasoning space. To train this behavior, we build v1, a dataset of 300K multimodal reasoning traces with interleaved grounding annotations. Across multimodal mathematical reasoning benchmarks, v1 consistently outperforms comparable baselines. We plan to release the model checkpoint and data.
♻ ☆ DEER: A Benchmark for Evaluating Deep Research Agents on Expert Report Generation
Recent advances in large language models have enabled deep research systems that generate expert-level reports through multi-step reasoning and evidence-based synthesis. However, evaluating such reports remains challenging: report quality is multifaceted, making it difficult to determine what to assess and by what criteria; LLM-based judges may miss errors that require domain expertise to identify; and because deep research relies on retrieved evidence, report-wide claim verification is also necessary. To address these issues, we propose DEER, a benchmark for evaluating expert-level deep research reports. DEER systematizes evaluation criteria with an expert-developed taxonomy (7 dimensions, 25 subdimensions) operationalized as 101 fine-grained rubric items. We also provide task-specific Expert Evaluation Guidance to support LLM-based judging. Alongside rubric-based assessment, we propose a claim verification architecture that verifies both cited and uncited claims and quantifies evidence quality. Experiments show that while current deep research systems can produce structurally plausible reports that cite external evidence, there is room for improvement in fulfilling expert-level user requests and achieving logical completeness. Beyond simple performance comparisons, DEER makes system strengths and limitations interpretable and provides diagnostic signals for improvement.
comment: Work in progress
♻ ☆ Bounded Hyperbolic Tangent: A Stable and Efficient Alternative to Pre-Layer Normalization in Large Language Models
Pre-Layer Normalization (Pre-LN) is the de facto choice for large language models (LLMs) and is crucial for stable pretraining and effective transfer learning. However, Pre-LN is inefficient due to repeated statistical calculations and suffers from the curse of depth. As layers grow, the magnitude and variance of the hidden state escalate, destabilizing training. Efficiency-oriented normalization-free methods such as Dynamic Tanh (DyT) improve speed but remain fragile at depth. To jointly address stability and efficiency, we propose Bounded Hyperbolic Tanh (BHyT), a drop-in replacement for Pre-LN. BHyT couples a tanh nonlinearity with explicit, data-driven input bounding to keep activations within a non-saturating range. It prevents depth-wise growth in activation magnitude and variance and comes with a theoretical stability guarantee. For efficiency, BHyT computes exact statistics once per block and replaces a second normalization with a lightweight variance approximation, enhancing efficiency. Empirically, BHyT demonstrates improved stability and efficiency during pretraining, achieving an average of 15.8% faster training and an average of 4.2% higher token generation throughput compared to RMSNorm., while matching or surpassing its inference performance and robustness across language understanding and reasoning benchmarks. Our code is available at: https://anonymous.4open.science/r/BHyT
♻ ☆ MedFrameQA: A Multi-Image Medical VQA Benchmark for Clinical Reasoning
Real-world clinical practice demands multi-image comparative reasoning, yet current medical benchmarks remain limited to single-frame interpretation. We present MedFrameQA, the first benchmark explicitly designed to test multi-image medical VQA through educationally-validated diagnostic sequences. To construct this dataset, we develop a scalable pipeline that leverages narrative transcripts from medical education videos to align visual frames with textual concepts, automatically producing 2,851 high-quality multi-image VQA pairs with explicit, transcript-grounded reasoning chains. Our evaluation of 11 advanced MLLMs (including reasoning models) exposes severe deficiencies in multi-image synthesis, where accuracies mostly fall below 50% and exhibit instability across varying image counts. Error analysis demonstrates that models often treat images as isolated instances, failing to track pathological progression or cross-reference anatomical shifts. MedFrameQA provides a rigorous standard for evaluating the next generation of MLLMs in handling complex, temporally grounded medical narratives.
comment: 27 pages, 15 Figures Benchmark data: https://huggingface.co/datasets/SuhaoYu1020/MedFrameQA
♻ ☆ GeoResponder: Towards Building Geospatial LLMs for Time-Critical Disaster Response
Large Language Models excel at linguistic tasks but lack the inner geospatial capabilities needed for time-critical disaster response, where reasoning about road networks, continuous coordinates, and access to essential infrastructure such as hospitals, shelters, and pharmacies is vital. We introduce GeoResponder, a framework that instills robust spatial reasoning through a scaffolded instruction-tuning curriculum. By stratifying geospatial learning into different cognitive layers, we effectively anchor semantic knowledge to the continuous coordinate manifold and enforce the internalization of spatial axioms. Extensive evaluations across four topologically distinct cities and diverse tasks demonstrate that GeoResponder significantly outperforms both state-of-the-art foundation models and domain-specific baselines. These results suggest that LLMs can begin to internalize and generalize geospatial structures, pointing toward the future development of language models capable of supporting disaster response needs.
♻ ☆ Wiki Live Challenge: Challenging Deep Research Agents with Expert-Level Wikipedia Articles
Deep Research Agents (DRAs) have demonstrated remarkable capabilities in autonomous information retrieval and report generation, showing great potential to assist humans in complex research tasks. Current evaluation frameworks primarily rely on LLM-generated references or LLM-derived evaluation dimensions. While these approaches offer scalability, they often lack the reliability of expert-verified content and struggle to provide objective, fine-grained assessments of critical dimensions. To bridge this gap, we introduce Wiki Live Challenge (WLC), a live benchmark that leverages the newest Wikipedia Good Articles (GAs) as expert-level references. Wikipedia's strict standards for neutrality, comprehensiveness, and verifiability serve as a great challenge for DRAs, with GAs representing the pinnacle of which. We curate a dataset of 100 recent Good Articles and propose Wiki Eval, a comprehensive evaluation framework comprising a fine-grained evaluation method with 39 criteria for writing quality and rigorous metrics for factual verifiability. Extensive experiments on various DRA systems demonstrate a significant gap between current DRAs and human expert-level Wikipedia articles, validating the effectiveness of WLC in advancing agent research. We release our benchmark at https://github.com/WangShao2000/Wiki_Live_Challenge
comment: Preprint
♻ ☆ WildGraphBench: Benchmarking GraphRAG with Wild-Source Corpora
Graph-based Retrieval-Augmented Generation (GraphRAG) organizes external knowledge as a hierarchical graph, enabling efficient retrieval and aggregation of scattered evidence across multiple documents. However, many existing benchmarks for GraphRAG rely on short, curated passages as external knowledge, failing to adequately evaluate systems in realistic settings involving long contexts and large-scale heterogeneous documents. To bridge this gap, we introduce WildGraphBench, a benchmark designed to assess GraphRAG performance in the wild. We leverage Wikipedia's unique structure, where cohesive narratives are grounded in long and heterogeneous external reference documents, to construct a benchmark reflecting real-word scenarios. Specifically, we sample articles across 12 top-level topics, using their external references as the retrieval corpus and citation-linked statements as ground truth, resulting in 1,100 questions spanning three levels of complexity: single-fact QA, multi-fact QA, and section-level summarization. Experiments across multiple baselines reveal that current GraphRAG pipelines help on multi-fact aggregation when evidence comes from a moderate number of sources, but this aggregation paradigm may overemphasize high-level statements at the expense of fine-grained details, leading to weaker performance on summarization tasks. Project page:https://github.com/BstWPY/WildGraphBench.
comment: https://github.com/BstWPY/WildGraphBench
♻ ☆ A Unified Definition of Hallucination: It's The World Model, Stupid!
Despite numerous attempts at mitigation since the inception of language models, hallucinations remain a persistent problem even in today's frontier LLMs. Why is this? We review existing definitions of hallucination and fold them into a single, unified definition wherein prior definitions are subsumed. We argue that hallucination can be unified by defining it as simply inaccurate (internal) world modeling, in a form where it is observable to the user. For example, stating a fact which contradicts a knowledge base OR producing a summary which contradicts the source. By varying the reference world model and conflict policy, our framework unifies prior definitions. We argue that this unified view is useful because it forces evaluations to clarify their assumed reference "world", distinguishes true hallucinations from planning or reward errors, and provides a common language for comparison across benchmarks and discussion of mitigation strategies. Building on this definition, we outline plans for a family of benchmarks using synthetic, fully specified reference world models to stress-test and improve world modeling components.
comment: HalluWorld benchmark in progress. Repo at https://github.com/DegenAI-Labs/HalluWorld
♻ ☆ Winning the Pruning Gamble: A Unified Approach to Joint Sample and Token Pruning for Efficient Supervised Fine-Tuning
As supervised fine-tuning (SFT) evolves from a lightweight post-training step into a compute-intensive phase rivaling mid-training in scale, data efficiency has become critical for aligning large language models (LLMs) under tight budgets. Existing data pruning methods suffer from a fragmented design: they operate either at the sample level or the token level in isolation, failing to jointly optimize both dimensions. This disconnect leads to significant inefficiencies--high-value samples may still contain redundant tokens, while token-level pruning often discards crucial instructional or corrective signals embedded in individual examples. To address this bottleneck, we introduce the Error-Uncertainty (EU) Plane, a diagnostic framework that jointly characterizes the heterogeneous utility of training data across samples and tokens. Guided by this insight, we propose Quadrant-based Tuning (Q-Tuning), a unified framework that strategically coordinates sample pruning and token pruning. Q-Tuning employs a two-stage strategy: first, it performs sample-level triage to retain examples rich in informative misconceptions or calibration signals; second, it applies an asymmetric token-pruning policy, using a context-aware scoring mechanism to trim less salient tokens exclusively from misconception samples while preserving calibration samples in their entirety. Our method sets a new state of the art across five diverse benchmarks. Remarkably, on SmolLM2-1.7B, Q-Tuning achieves a +38\% average improvement over the full-data SFT baseline using only 12.5\% of the original training data. As the first dynamic pruning approach to consistently outperform full-data training, Q-Tuning provides a practical and scalable blueprint for maximizing data utilization in budget-constrained LLM SFT.
comment: 26 pages, 9 figures, 15 tables
♻ ☆ MemoryFormer: Minimize Transformer Computation by Removing Fully-Connected Layers NeurIPS 2024
In order to reduce the computational complexity of large language models, great efforts have been made to to improve the efficiency of transformer models such as linear attention and flash-attention. However, the model size and corresponding computational complexity are constantly scaled up in pursuit of higher performance. In this work, we present MemoryFormer, a novel transformer architecture which significantly reduces the computational complexity (FLOPs) from a new perspective. We eliminate nearly all the computations of the transformer model except for the necessary computation required by the multi-head attention operation. This is made possible by utilizing an alternative method for feature transformation to replace the linear projection of fully-connected layers. Specifically, we first construct a group of in-memory lookup tables that store a large amount of discrete vectors to replace the weight matrix used in linear projection. We then use a hash algorithm to retrieve a correlated subset of vectors dynamically based on the input embedding. The retrieved vectors combined together will form the output embedding, which provides an estimation of the result of matrix multiplication operation in a fully-connected layer. Compared to conducting matrix multiplication, retrieving data blocks from memory is a much cheaper operation which requires little computations. We train MemoryFormer from scratch and conduct extensive experiments on various benchmarks to demonstrate the effectiveness of the proposed model.
comment: NeurIPS 2024. Code available at https://github.com/ningding-o/MemoryFormer
♻ ☆ Causality Guided Representation Learning for Cross-Style Hate Speech Detection WWW 26
The proliferation of online hate speech poses a significant threat to the harmony of the web. While explicit hate is easily recognized through overt slurs, implicit hate speech is often conveyed through sarcasm, irony, stereotypes, or coded language -- making it harder to detect. Existing hate speech detection models, which predominantly rely on surface-level linguistic cues, fail to generalize effectively across diverse stylistic variations. Moreover, hate speech spread on different platforms often targets distinct groups and adopts unique styles, potentially inducing spurious correlations between them and labels, further challenging current detection approaches. Motivated by these observations, we hypothesize that the generation of hate speech can be modeled as a causal graph involving key factors: contextual environment, creator motivation, target, and style. Guided by this graph, we propose CADET, a causal representation learning framework that disentangles hate speech into interpretable latent factors and then controls confounders, thereby isolating genuine hate intent from superficial linguistic cues. Furthermore, CADET allows counterfactual reasoning by intervening on style within the latent space, naturally guiding the model to robustly identify hate speech in varying forms. CADET demonstrates superior performance in comprehensive experiments, highlighting the potential of causal priors in advancing generalizable hate speech detection.
comment: Accepted by the ACM Web Conference 2026 (WWW 26)
♻ ☆ LUMINA: Detecting Hallucinations in RAG System with Context-Knowledge Signals ICLR 2026
Retrieval-Augmented Generation (RAG) aims to mitigate hallucinations in large language models (LLMs) by grounding responses in retrieved documents. Yet, RAG-based LLMs still hallucinate even when provided with correct and sufficient context. A growing line of work suggests that this stems from an imbalance between how models use external context and their internal knowledge, and several approaches have attempted to quantify these signals for hallucination detection. However, existing methods require extensive hyperparameter tuning, limiting their generalizability. We propose LUMINA, a novel framework that detects hallucinations in RAG systems through context--knowledge signals: external context utilization is quantified via distributional distance, while internal knowledge utilization is measured by tracking how predicted tokens evolve across transformer layers. We further introduce a framework for statistically validating these measurements. Experiments on common RAG hallucination benchmarks and four open-source LLMs show that LUMINA achieves consistently high AUROC and AUPRC scores, outperforming prior utilization-based methods by up to +13% AUROC on HalluRAG. Moreover, LUMINA remains robust under relaxed assumptions about retrieval quality and model matching, offering both effectiveness and practicality. LUMINA: https://github.com/deeplearning-wisc/LUMINA
comment: ICLR 2026
♻ ☆ Confucius Code Agent: Scalable Agent Scaffolding for Real-World Codebases
Real-world software engineering tasks require coding agents that can operate on massive repositories, sustain long-horizon sessions, and reliably coordinate complex toolchains at test time. Existing research-grade coding agents offer transparency but struggle when scaled to heavier, production-level workloads, while production-grade systems achieve strong practical performance but provide limited extensibility, interpretability, and controllability. We introduce the Confucius Code Agent (CCA), a software engineering agent that can operate at large-scale codebases. CCA is built on top of the Confucius SDK, an agent development platform structured around three complementary perspectives: Agent Experience (AX), User Experience (UX), and Developer Experience (DX). The SDK supports a unified orchestrator with advanced context management for long-context reasoning, a persistent note-taking system for cross-session continual learning, and a modular extension system for reliable tool use. In addition, we introduce a meta-agent that automates the construction, evaluation, and refinement of agents through a build-test-improve cycle, enabling rapid agent development on new tasks and tool stacks. Instantiated on the Confucius SDK using the meta-agent, CCA demonstrates strong performance on real-world software engineering tasks. On SWE-Bench-Pro, CCA achieves a Resolve@1 of 59%, exceeding prior research baselines as well as commercial results, under identical repositories, model backends, and tool access.
comment: The latest version
♻ ☆ Kimi K2: Open Agentic Intelligence
We introduce Kimi K2, a Mixture-of-Experts (MoE) large language model with 32 billion activated parameters and 1 trillion total parameters. We propose the MuonClip optimizer, which improves upon Muon with a novel QK-clip technique to address training instability while enjoying the advanced token efficiency of Muon. Based on MuonClip, K2 was pre-trained on 15.5 trillion tokens with zero loss spike. During post-training, K2 undergoes a multi-stage post-training process, highlighted by a large-scale agentic data synthesis pipeline and a joint reinforcement learning (RL) stage, where the model improves its capabilities through interactions with real and synthetic environments. Kimi K2 achieves state-of-the-art performance among open-source non-thinking models, with strengths in agentic capabilities. Notably, K2 obtains 66.1 on Tau2-Bench, 76.5 on ACEBench (En), 65.8 on SWE-Bench Verified, and 47.3 on SWE-Bench Multilingual -- surpassing most open and closed-sourced baselines in non-thinking settings. It also exhibits strong capabilities in coding, mathematics, and reasoning tasks, with a score of 53.7 on LiveCodeBench v6, 49.5 on AIME 2025, 75.1 on GPQA-Diamond, and 27.1 on OJBench, all without extended thinking. These results position Kimi K2 as one of the most capable open-source large language models to date, particularly in software engineering and agentic tasks. We release our base and post-trained model checkpoints to facilitate future research and applications of agentic intelligence.
comment: tech report of Kimi K2, with minor updates
♻ ☆ Align to Structure: Aligning Large Language Models with Structural Information AAAI 2026
Generating long, coherent text remains a challenge for large language models (LLMs), as they lack hierarchical planning and structured organization in discourse generation. We introduce Structural Alignment, a novel method that aligns LLMs with human-like discourse structures to enhance long-form text generation. By integrating linguistically grounded discourse frameworks into reinforcement learning, our approach guides models to produce coherent and well-organized outputs. We employ a dense reward scheme within a Proximal Policy Optimization framework, assigning fine-grained, token-level rewards based on the discourse distinctiveness relative to human writing. Two complementary reward models are evaluated: the first improves readability by scoring surface-level textual features to provide explicit structuring, while the second reinforces deeper coherence and rhetorical sophistication by analyzing global discourse patterns through hierarchical discourse motifs, outperforming both standard and RLHF-enhanced models in tasks such as essay generation and long-document summarization. All training data and code will be publicly shared at https://github.com/minnesotanlp/struct_align.
comment: Accepted to AAAI 2026 AIA
♻ ☆ Agentic Search in the Wild: Intents and Trajectory Dynamics from 14M+ Real Search Requests
LLM-powered search agents are increasingly being used for multi-step information seeking tasks, yet the IR community lacks empirical understanding of how agentic search sessions unfold and how retrieved evidence is used. This paper presents a large-scale log analysis of agentic search based on 14.44M search requests (3.97M sessions) collected from DeepResearchGym, i.e. an open-source search API accessed by external agentic clients. We sessionize the logs, assign session-level intents and step-wise query-reformulation labels using LLM-based annotation, and propose Context-driven Term Adoption Rate (CTAR) to quantify whether newly introduced query terms are traceable to previously retrieved evidence. Our analyses reveal distinctive behavioral patterns. First, over 90% of multi-turn sessions contain at most ten steps, and 89% of inter-step intervals fall under one minute. Second, behavior varies by intent. Fact-seeking sessions exhibit high repetition that increases over time, while sessions requiring reasoning sustain broader exploration. Third, agents reuse evidence across steps. On average, 54% of newly introduced query terms appear in the accumulated evidence context, with contributions from earlier steps beyond the most recent retrieval. The findings suggest that agentic search may benefit from repetition-aware early stopping, intent-adaptive retrieval budgets, and explicit cross-step context tracking. We plan to release the anonymized logs to support future research.
♻ ☆ Hallucination is a Consequence of Space-Optimality: A Rate-Distortion Theorem for Membership Testing
Large language models often hallucinate with high confidence on "random facts" that lack inferable patterns. We formalize the memorization of such facts as a membership testing problem, unifying the discrete error metrics of Bloom filters with the continuous log-loss of LLMs. By analyzing this problem in the regime where facts are sparse in the universe of plausible claims, we establish a rate-distortion theorem: the optimal memory efficiency is characterized by the minimum KL divergence between score distributions on facts and non-facts. This theoretical framework provides a distinctive explanation for hallucination: even with optimal training, perfect data, and a simplified "closed world" setting, the information-theoretically optimal strategy under limited capacity is not to abstain or forget, but to assign high confidence to some non-facts, resulting in hallucination. We validate this theory empirically on synthetic data, showing that hallucinations persist as a natural consequence of lossy compression.
♻ ☆ Rank-and-Reason: Multi-Agent Collaboration Accelerates Zero-Shot Protein Mutation Prediction
Zero-shot mutation prediction is vital for low-resource protein engineering, yet existing protein language models (PLMs) often yield statistically confident results that ignore fundamental biophysical constraints. Currently, selecting candidates for wet-lab validation relies on manual expert auditing of PLM outputs, a process that is inefficient, subjective, and highly dependent on domain expertise. To address this, we propose Rank-and-Reason (VenusRAR), a two-stage agentic framework to automate this workflow and maximize expected wet-lab fitness. In the Rank-Stage, a Computational Expert and Virtual Biologist aggregate a context-aware multi-modal ensemble, establishing a new Spearman correlation record of 0.551 (vs. 0.518) on ProteinGym. In the Reason-Stage, an agentic Expert Panel employs chain-of-thought reasoning to audit candidates against geometric and structural constraints, improving the Top-5 Hit Rate by up to 367% on ProteinGym-DMS99. The wet-lab validation on Cas12i3 nuclease further confirms the framework's efficacy, achieving a 46.7% positive rate and identifying two novel mutants with 4.23-fold and 5.05-fold activity improvements. Code and datasets are released on GitHub (https://github.com/ai4protein/VenusRAR/).
comment: 22 pages, 5 figures, 15 tables
♻ ☆ Reusing Overtrained Language Models Saturates Scaling
Reusing pretrained base models for further pretraining, such as continual pretraining or model growth, is promising at reducing the cost of training language models from scratch. However, the effectiveness remains unclear, especially when applied to overtrained base models. In this work, we empirically study the scaling properties of model reuse and find that the scaling efficiency diminishes in a predictable manner: The scaling exponent with respect to second-stage training tokens decreases logarithmically with the number of tokens used to pretrain the base model. The joint dependence on first- and second-stage tokens is accurately modeled by a simple scaling law. Such saturation effect reveals a fundamental trade-off in multi-stage pretraining strategies: the more extensively a base model is pretrained, the less benefit additional pretraining provides. Our findings provide practical insights for efficient language model training and raise important considerations for the reuse of overtrained models.
♻ ☆ Zero2Text: Zero-Training Cross-Domain Inversion Attacks on Textual Embeddings
The proliferation of retrieval-augmented generation (RAG) has established vector databases as critical infrastructure, yet they introduce severe privacy risks via embedding inversion attacks. Existing paradigms face a fundamental trade-off: optimization-based methods require computationally prohibitive queries, while alignment-based approaches hinge on the unrealistic assumption of accessible in-domain training data. These constraints render them ineffective in strict black-box and cross-domain settings. To dismantle these barriers, we introduce Zero2Text, a novel training-free framework based on recursive online alignment. Unlike methods relying on static datasets, Zero2Text synergizes LLM priors with a dynamic ridge regression mechanism to iteratively align generation to the target embedding on-the-fly. We further demonstrate that standard defenses, such as differential privacy, fail to effectively mitigate this adaptive threat. Extensive experiments across diverse benchmarks validate Zero2Text; notably, on MS MARCO against the OpenAI victim model, it achieves 1.8x higher ROUGE-L and 6.4x higher BLEU-2 scores compared to baselines, recovering sentences from unknown domains without a single leaked data pair.
comment: 10 pages
♻ ☆ From Pragmas to Partners: A Symbiotic Evolution of Agentic High-Level Synthesis
The rise of large language models has sparked interest in AI-driven hardware design, raising the question: does high-level synthesis (HLS) still matter in the agentic era? We argue that HLS remains essential. While we expect mature agentic hardware systems to leverage both HLS and RTL, this paper focuses on HLS and its role in enabling agentic optimization. HLS offers faster iteration cycles, portability, and design permutability that make it a natural layer for agentic optimization. This position paper makes three contributions. First, we explain why HLS serves as a practical abstraction layer and a golden reference for agentic hardware design. Second, we identify key limitations of current HLS tools, namely inadequate performance feedback, rigid interfaces, and limited debuggability that agents are uniquely positioned to address. Third, we propose a taxonomy for the symbiotic evolution of agentic HLS, clarifying how responsibility shifts from human designers to AI agents as systems advance from copilots to autonomous design partners.
♻ ☆ Sentence Curve Language Models
Language models (LMs) are a central component of modern AI systems, and diffusion-based language models (DLMs) have recently emerged as a competitive alternative. Both paradigms rely on word embeddings not only to represent the input sentence, but also to represent the target sentence that backbone models are trained to predict. We argue that such static embedding of the target word is insensitive to neighboring words, encouraging locally accurate word prediction while neglecting global structure across the target sentence. To address this limitation, we propose a continuous sentence representation, termed sentence curve, defined as a spline curve whose control points affect multiple words in the sentence. Based on this representation, we introduce sentence curve language model (SCLM), which extends DLMs to predict sentence curves instead of the static word embeddings. We theoretically show that sentence curve prediction induces a regularization effect that promotes global structure modeling, and characterize how different sentence curve types affect this behavior. Empirically, SCLM achieves SOTA performance among DLMs on IWSLT14 and WMT14, shows stable training without burdensome knowledge distillation, and demonstrates promising potential compared to discrete DLMs on LM1B.
♻ ☆ AR-MAP: Are Autoregressive Large Language Models Implicit Teachers for Diffusion Large Language Models?
Diffusion Large Language Models (DLLMs) have emerged as a powerful alternative to autoregressive models, enabling parallel token generation across multiple positions. However, preference alignment of DLLMs remains challenging due to high variance introduced by Evidence Lower Bound (ELBO)-based likelihood estimation. In this work, we propose AR-MAP, a novel transfer learning framework that leverages preference-aligned autoregressive LLMs (AR-LLMs) as implicit teachers for DLLM alignment. We reveal that DLLMs can effectively absorb alignment knowledge from AR-LLMs through simple weight scaling, exploiting the shared architectural structure between these divergent generation paradigms. Crucially, our approach circumvents the high variance and computational overhead of direct DLLM alignment and comprehensive experiments across diverse preference alignment tasks demonstrate that AR-MAP achieves competitive or superior performance compared to existing DLLM-specific alignment methods, achieving 69.08\% average score across all tasks and models. Our Code is available at https://github.com/AMAP-ML/AR-MAP.
♻ ☆ ARTIS: Agentic Risk-Aware Test-Time Scaling via Iterative Simulation
Current test-time scaling (TTS) techniques enhance large language model (LLM) performance by allocating additional computation at inference time, yet they remain insufficient for agentic settings, where actions directly interact with external environments and their effects can be irreversible and costly. We propose ARTIS, Agentic Risk-Aware Test-Time Scaling via Iterative Simulation, a framework that decouples exploration from commitment by enabling test-time exploration through simulated interactions prior to real-world execution. This design allows extending inference-time computation to improve action-level reliability and robustness without incurring environmental risk. We further show that naive LLM-based simulators struggle to capture rare but high-impact failure modes, substantially limiting their effectiveness for agentic decision making. To address this limitation, we introduce a risk-aware tool simulator that emphasizes fidelity on failure-inducing actions via targeted data generation and rebalanced training. Experiments on multi-turn and multi-step agentic benchmarks demonstrate that iterative simulation substantially improves agent reliability, and that risk-aware simulation is essential for consistently realizing these gains across models and tasks.
♻ ☆ On the Interplay between Human Label Variation and Model Fairness EACL
The impact of human label variation (HLV) on model fairness is an unexplored topic. This paper examines the interplay by comparing training on majority-vote labels with a range of HLV methods. Our experiments show that without explicit debiasing, HLV training methods have a positive impact on fairness under certain configurations.
comment: 10 pages, 7 figures. Accepted to EACL Findings 2026
♻ ☆ EverMemBench: Benchmarking Long-Term Interactive Memory in Large Language Models
Long-term conversational memory is essential for LLM-based assistants, yet existing benchmarks focus on dyadic, single-topic dialogues that fail to capture real-world complexity. We introduce EverMemBench, a benchmark featuring multi-party, multi-group conversations spanning over 1 million tokens with temporally evolving information, cross-topic interleaving, and role-specific personas. EverMemBench evaluates memory systems across three dimensions through 1,000+ QA pairs: fine-grained recall, memory awareness, and user profile understanding. Our evaluation reveals critical limitations: (1) multi-hop reasoning collapses in multi-party settings, with even oracle models achieving only 26%; (2) temporal reasoning remains unsolved, requiring version semantics beyond timestamp matching; (3) memory awareness is bottlenecked by retrieval, where current similarity-based methods fail to bridge the semantic gap between queries and implicitly relevant memories. EverMemBench provides a challenging testbed for developing next-generation memory architectures.
comment: 10 pages, 2 figures, 4 tables
♻ ☆ When Domain Pretraining Interferes with Instruction Alignment: An Empirical Study of Adapter Merging in Medical LLMs
Large language models can exhibit surprising adapter interference when combining domain adaptation and instruction alignment in safety-critical settings. We study a two-stage LoRA pipeline for medical LLMs, where domain-oriented pre-training (PT) and supervised fine-tuning (SFT) are trained separately and later merged through weighted adapter merging. We observe that introducing PT signal can systematically alter model behavior and produce reasoning-style outputs, even when evaluation templates explicitly attempt to suppress such behavior. This interference leads to a divergence between surface metrics and reasoning or alignment behavior: BLEU/ROUGE scores drop significantly, while multiple-choice accuracy improves. We further show that small pipeline mistakes can easily misattribute SFT-only behavior to merged models, and provide a lightweight merge-verification routine to ensure correctness and reproducibility. Our findings highlight an interaction between knowledge injection and instruction alignment in adapter-based fine-tuning, with important implications for safety-critical model deployment.
♻ ☆ SAIL-RL: Guiding MLLMs in When and How to Think via Dual-Reward RL Tuning
We introduce SAIL-RL, a reinforcement learning (RL) post-training framework that enhances the reasoning capabilities of multimodal large language models (MLLMs) by teaching them when and how to think. Existing approaches are limited by outcome-only supervision, which rewards correct answers without ensuring sound reasoning, and by uniform thinking strategies, which often lead to overthinking on simple tasks and underthinking on complex ones. SAIL-RL addresses these challenges with a dual reward system: the Thinking Reward, which evaluates reasoning quality through factual grounding, logical coherence, and answer consistency, and the Judging Reward, which adaptively determines whether deep reasoning or direct answering is appropriate. Experiments on the state-of-the-art SAIL-VL2 show that SAIL-RL improves reasoning and multimodal understanding benchmarks at both 4B and 8B scales, achieving competitive performance against commercial closed-source models such as GPT-4o, and substantially reduces hallucinations, establishing it as a principled framework for building more reliable and adaptive MLLMs. The code will be available at https://github.com/BytedanceDouyinContent/SAIL-RL.
♻ ☆ Surprisal from Larger Transformer-based Language Models Predicts fMRI Data More Poorly EACL 2026
There has been considerable interest in using surprisal from Transformer-based language models (LMs) as predictors of human sentence processing difficulty. Recent work has observed an inverse scaling relationship between Transformers' per-word estimated probability and the predictive power of their surprisal estimates on reading times, showing that LMs with more parameters and trained on more data are less predictive of human reading times. However, these studies focused on predicting latency-based measures. Tests on brain imaging data have not shown a trend in any direction when using a relatively small set of LMs, leaving open the possibility that the inverse scaling phenomenon is constrained to latency data. This study therefore conducted a more comprehensive evaluation using surprisal estimates from 17 pre-trained LMs across three different LM families on two functional magnetic resonance imaging (fMRI) datasets. Results show that the inverse scaling relationship between models' per-word estimated probability and model fit on both datasets still obtains, resolving the inconclusive results of previous work and indicating that this trend is not specific to latency-based measures.
comment: EACL 2026
♻ ☆ NRR-Phi: Text-to-State Mapping for Ambiguity Preservation in LLM Inference
Large language models exhibit a systematic tendency toward early semantic commitment: given ambiguous input, they collapse multiple valid interpretations into a single response before sufficient context is available. We present a formal framework for text-to-state mapping ($φ: \mathcal{T} \to \mathcal{S}$) that transforms natural language into a non-collapsing state space where multiple interpretations coexist. The mapping decomposes into three stages: conflict detection, interpretation extraction, and state construction. We instantiate $φ$ with a hybrid extraction pipeline combining rule-based segmentation for explicit conflict markers (adversative conjunctions, hedging expressions) with LLM-based enumeration of implicit ambiguity (epistemic, lexical, structural). On a test set of 68 ambiguous sentences, the resulting states preserve interpretive multiplicity: mean state entropy $H = 1.087$ bits across ambiguity categories, compared to $H = 0$ for collapse-based baselines. We additionally instantiate the rule-based conflict detector for Japanese markers to illustrate cross-lingual portability. This framework extends Non-Resolution Reasoning (NRR) by providing the missing algorithmic bridge between text and the NRR state space, enabling architectural collapse deferment in LLM inference.
comment: 17 pages, 3 figures, 5 tables. Part of the NRR research program. v2: Added title prefix NRR-Phi for series identification; standardized reference formatting
♻ ☆ POPI: Personalizing LLMs via Optimized Preference Inference
Large language models (LLMs) are typically aligned with population-level preferences, despite substantial variation across individual users. While many LLM personalization methods exist, the underlying structure of user-level personalization is often left implicit. We formalize user-level, prompt-independent personalization as a decomposition into two components: preference inference and conditioned generation. We advocate for a modular design that decouples these components; identify natural language as a generator-agnostic interface between them; and characterize generator-transferability as a key implication of modular personalization. Guided by this abstraction, we introduce POPI, a novel instantiation of modular personalization that parameterizes both preference inference and conditioned generation as shared LLMs. POPI jointly optimizes the two components under a unified preference optimization objective, using reinforcement learning as an optimization tool. Across multiple benchmarks, POPI consistently improves personalization performance while reducing context overhead. We further demonstrate that the learned natural-language preference summaries transfer effectively to frozen, off-the-shelf LLMs, including black-box APIs, providing empirical evidence of modularity and generator-transferability.
♻ ☆ NRR-Core: Non-Resolution Reasoning as a Computational Framework for Contextual Identity and Ambiguity Preservation
Current artificial intelligence systems exhibit a fundamental architectural limitation: they resolve ambiguity prematurely. This premature semantic collapse--collapsing multiple valid interpretations into single outputs--stems from classical identity assumptions in neural architectures. We propose Non-Resolution Reasoning (NRR), a framework treating ambiguity retention as a valid reasoning mode. NRR introduces three principles: (1) Non-Identity ($A \neq A$)--the same symbol refers to different entities across contexts; (2) Approximate Identity ($A \approx A$)--entities share partial structural overlap without being identical; (3) Non-Resolution--conflicting interpretations coexist without forced convergence. We formalize these through Multi-Vector Embeddings for context-dependent representation, Non-Collapsing Attention for parallel interpretation retention, and Contextual Identity Tracking (CIT) for maintaining $A \neq A$ across inference. We illustrate NRR through case studies in paradox handling, creative generation, and context-dependent reasoning. Functional verification in a synthetic two-turn disambiguation task shows NRR-lite maintains high entropy ($H = 0.91$ bits, near-maximum $1.0$) at ambiguous turns while standard architectures collapse early ($H = 0.15$ bits), preserving interpretive flexibility until context arrives. NRR challenges the assumption that meaning must collapse to be useful. The question is not whether AI should resolve ambiguity, but when, how, and under whose control.
comment: 10 pages, 1 figure, 2 tables. Part of the NRR research program. v7: Updated entropy measurement to log base 2 (bits); added title prefix NRR-Core for series identification
♻ ☆ The Generalization Ridge: Information Flow in Natural Language Generation
Transformer-based language models have achieved state-of-the-art performance in natural language generation (NLG), yet their internal mechanisms for synthesizing task-relevant information remain insufficiently understood. While prior studies suggest that intermediate layers often yield more generalizable representations than final layers, how this generalization ability emerges and propagates across layers during training remains unclear. To address this gap, we propose InfoRidge, an information-theoretic framework, to characterize how predictive information-the mutual information between hidden representations and target outputs-varies across depth during training. Our experiments across various models and datasets reveal a consistent non-monotonic trend: predictive information peaks in intermediate layers-forming a generalization ridge-before declining in final layers, reflecting a transition between generalization and memorization. To further investigate this phenomenon, we conduct a set of complementary analyses that leverage residual scaling, attention pattern, and controlled model capacity to characterize layer-wise functional specialization. We further validate our findings with multiple-token generation experiments, verifying that the observed ridge phenomenon persists across decoding steps. Together, these findings offer new insights into the internal mechanisms of transformers and underscore the critical role of intermediate layers in supporting generalization.
♻ ☆ When to Trust: A Causality-Aware Calibration Framework for Accurate Knowledge Graph Retrieval-Augmented Generation WWW 2026
Knowledge Graph Retrieval-Augmented Generation (KG-RAG) extends the RAG paradigm by incorporating structured knowledge from knowledge graphs, enabling Large Language Models (LLMs) to perform more precise and explainable reasoning. While KG-RAG improves factual accuracy in complex tasks, existing KG-RAG models are often severely overconfident, producing high-confidence predictions even when retrieved sub-graphs are incomplete or unreliable, which raises concerns for deployment in high-stakes domains. To address this issue, we propose Ca2KG, a Causality-aware Calibration framework for KG-RAG. Ca2KG integrates counterfactual prompting, which exposes retrieval-dependent uncertainties in knowledge quality and reasoning reliability, with a panel-based re-scoring mechanism that stabilises predictions across interventions. Extensive experiments on two complex QA datasets demonstrate that Ca2KG consistently improves calibration while maintaining or even enhancing predictive accuracy.
comment: Accepted by WWW 2026
Machine Learning 300
☆ PLATE: Plasticity-Tunable Efficient Adapters for Geometry-Aware Continual Learning
We develop a continual learning method for pretrained models that \emph{requires no access to old-task data}, addressing a practical barrier in foundation model adaptation where pretraining distributions are often unavailable. Our key observation is that pretrained networks exhibit substantial \emph{geometric redundancy}, and that this redundancy can be exploited in two complementary ways. First, redundant neurons provide a proxy for dominant pretraining-era feature directions, enabling the construction of approximately protected update subspaces directly from pretrained weights. Second, redundancy offers a natural bias for \emph{where} to place plasticity: by restricting updates to a subset of redundant neurons and constraining the remaining degrees of freedom, we obtain update families with reduced functional drift on the old-data distribution and improved worst-case retention guarantees. These insights lead to \textsc{PLATE} (\textbf{Pla}sticity-\textbf{T}unable \textbf{E}fficient Adapters), a continual learning method requiring no past-task data that provides explicit control over the plasticity-retention trade-off. PLATE parameterizes each layer with a structured low-rank update $ΔW = B A Q^\top$, where $B$ and $Q$ are computed once from pretrained weights and kept frozen, and only $A$ is trained on the new task. The code is available at https://github.com/SalesforceAIResearch/PLATE.
☆ Investigating Quantum Circuit Designs Using Neuro-Evolution GECCO
Designing effective quantum circuits remains a central challenge in quantum computing, as circuit structure strongly influences expressivity, trainability, and hardware feasibility. Current approaches, whether using manually designed circuit templates, fixed heuristics, or automated rules, face limitations in scalability, flexibility, and adaptability, often producing circuits that are poorly matched to the specific problem or quantum hardware. In this work, we propose the Evolutionary eXploration of Augmenting Quantum Circuits (EXAQC), an evolutionary approach to the automated design and training of parameterized quantum circuits (PQCs) which leverages and extends on strategies from neuroevolution and genetic programming. The proposed method jointly searches over gate types, qubit connectivity, parameterization, and circuit depth while respecting hardware and noise constraints. The method supports both Qiskit and Pennylane libraries, allowing the user to configure every aspect. This work highlights evolutionary search as a critical tool for advancing quantum machine learning and variational quantum algorithms, providing a principled pathway toward scalable, problem-aware, and hardware-efficient quantum circuit design. Preliminary results demonstrate that circuits evolved on classification tasks are able to achieve over 90% accuracy on most of the benchmark datasets with a limited computational budget, and are able to emulate target circuit quantum states with high fidelity scores.
comment: Submitted to The Genetic and Evolutionary Computation Conference (GECCO) 2026. Under Review
☆ Understanding and Exploiting Weight Update Sparsity for Communication-Efficient Distributed RL
Reinforcement learning (RL) is a critical component for post-training large language models (LLMs). However, in bandwidth-constrained distributed RL, scalability is often bottlenecked by the synchronization of policy weights from trainers to inference workers, particularly over commodity networks or in decentralized settings. While recent studies suggest that RL updates modify only a small fraction of model parameters, these observations are typically based on coarse checkpoint differences. We present a systematic empirical study of weight-update sparsity at both step-level and multi-step granularities, examining its evolution across training dynamics, off-policy delay, and model scale. We find that update sparsity is consistently high, frequently exceeding 99% across practically relevant settings. Leveraging this structure, we propose PULSE (Patch Updates via Lossless Sparse Encoding), a simple yet highly efficient lossless weight synchronization method that transmits only the indices and values of modified parameters. PULSE is robust to transmission errors and avoids floating-point drift inherent in additive delta schemes. In bandwidth-constrained decentralized environments, our approach achieves over 100x (14 GB to ~108 MB) communication reduction while maintaining bit-identical training dynamics and performance compared to full weight synchronization. By exploiting this structure, PULSE enables decentralized RL training to approach centralized throughput, reducing the bandwidth required for weight synchronization from 20 Gbit/s to 0.2 Gbit/s to maintain high GPU utilization.
comment: 32 pages, 14 figures
☆ Robust Intervention Learning from Emergency Stop Interventions
Human interventions are a common source of data in autonomous systems during testing. These interventions provide an important signal about where the current policy needs improvement, but are often noisy and incomplete. We define Robust Intervention Learning (RIL) as the problem of learning from intervention data while remaining robust to the quality and informativeness of the intervention signal. In the best case, interventions are precise and avoiding them is sufficient to solve the task, but in many realistic settings avoiding interventions is necessary but not sufficient for achieving good performance. We study robust intervention learning in the context of emergency stop interventions and propose Residual Intervention Fine-Tuning (RIFT), a residual fine-tuning algorithm that treats intervention feedback as an incomplete learning signal and explicitly combines it with a prior policy. By framing intervention learning as a fine-tuning problem, our approach leverages structure encoded in the prior policy to resolve ambiguity when intervention signals under-specify the task. We provide theoretical analysis characterizing conditions under which this formulation yields principled policy improvement, and identify regimes where intervention learning is expected to fail. Our experiments reveal that residual fine-tuning enables robust and consistent policy improvement across a range of intervention strategies and prior policy qualities, and highlight robust intervention learning as a promising direction for future work.
☆ Preference-based Conditional Treatment Effects and Policy Learning AISTATS 2026
We introduce a new preference-based framework for conditional treatment effect estimation and policy learning, built on the Conditional Preference-based Treatment Effect (CPTE). CPTE requires only that outcomes be ranked under a preference rule, unlocking flexible modeling of heterogeneous effects with multivariate, ordinal, or preference-driven outcomes. This unifies applications such as conditional probability of necessity and sufficiency, conditional Win Ratio, and Generalized Pairwise Comparisons. Despite the intrinsic non-identifiability of comparison-based estimands, CPTE provides interpretable targets and delivers new identifiability conditions for previous unidentifiable estimands. We present estimation strategies via matching, quantile, and distributional regression, and further design efficient influence-function estimators to correct plug-in bias and maximize policy value. Synthetic and semi-synthetic experiments demonstrate clear performance gains and practical impact.
comment: Accepted to AISTATS 2026; 10 pages + appendix
☆ SymPlex: A Structure-Aware Transformer for Symbolic PDE Solving
We propose SymPlex, a reinforcement learning framework for discovering analytical symbolic solutions to partial differential equations (PDEs) without access to ground-truth expressions. SymPlex formulates symbolic PDE solving as tree-structured decision-making and optimizes candidate solutions using only the PDE and its boundary conditions. At its core is SymFormer, a structure-aware Transformer that models hierarchical symbolic dependencies via tree-relative self-attention and enforces syntactic validity through grammar-constrained autoregressive decoding, overcoming the limited expressivity of sequence-based generators. Unlike numerical and neural approaches that approximate solutions in discretized or implicit function spaces, SymPlex operates directly in symbolic expression space, enabling interpretable and human-readable solutions that naturally represent non-smooth behavior and explicit parametric dependence. Empirical results demonstrate exact recovery of non-smooth and parametric PDE solutions using deep learning-based symbolic methods.
comment: 27 pages
☆ Fast-Slow Efficient Training for Multimodal Large Language Models via Visual Token Pruning
Multimodal Large Language Models (MLLMs) suffer from severe training inefficiency issue, which is associated with their massive model sizes and visual token numbers. Existing efforts in efficient training focus on reducing model sizes or trainable parameters. Inspired by the success of Visual Token Pruning (VTP) in improving inference efficiency, we are exploring another substantial research direction for efficient training by reducing visual tokens. However, applying VTP at the training stage results in a training-inference mismatch: pruning-trained models perform poorly when inferring on non-pruned full visual token sequences. To close this gap, we propose DualSpeed, a fast-slow framework for efficient training of MLLMs. The fast-mode is the primary mode, which incorporates existing VTP methods as plugins to reduce visual tokens, along with a mode isolator to isolate the model's behaviors. The slow-mode is the auxiliary mode, where the model is trained on full visual sequences to retain training-inference consistency. To boost its training, it further leverages self-distillation to learn from the sufficiently trained fast-mode. Together, DualSpeed can achieve both training efficiency and non-degraded performance. Experiments show DualSpeed accelerates the training of LLaVA-1.5 by 2.1$\times$ and LLaVA-NeXT by 4.0$\times$, retaining over 99% performance. Code: https://github.com/dingkun-zhang/DualSpeed
☆ Conformal Thinking: Risk Control for Reasoning on a Compute Budget
Reasoning Large Language Models (LLMs) enable test-time scaling, with dataset-level accuracy improving as the token budget increases, motivating adaptive reasoning -- spending tokens when they improve reliability and stopping early when additional computation is unlikely to help. However, setting the token budget, as well as the threshold for adaptive reasoning, is a practical challenge that entails a fundamental risk-accuracy trade-off. We re-frame the budget setting problem as risk control, limiting the error rate while minimizing compute. Our framework introduces an upper threshold that stops reasoning when the model is confident (risking incorrect output) and a novel parametric lower threshold that preemptively stops unsolvable instances (risking premature stoppage). Given a target risk and a validation set, we use distribution-free risk control to optimally specify these stopping mechanisms. For scenarios with multiple budget controlling criteria, we incorporate an efficiency loss to select the most computationally efficient exiting mechanism. Empirical results across diverse reasoning tasks and models demonstrate the effectiveness of our risk control approach, demonstrating computational efficiency gains from the lower threshold and ensemble stopping mechanisms while adhering to the user-specified risk target.
☆ Antidistillation Fingerprinting
Model distillation enables efficient emulation of frontier large language models (LLMs), creating a need for robust mechanisms to detect when a third-party student model has trained on a teacher model's outputs. However, existing fingerprinting techniques that could be used to detect such distillation rely on heuristic perturbations that impose a steep trade-off between generation quality and fingerprinting strength, often requiring significant degradation of utility to ensure the fingerprint is effectively internalized by the student. We introduce antidistillation fingerprinting (ADFP), a principled approach that aligns the fingerprinting objective with the student's learning dynamics. Building upon the gradient-based framework of antidistillation sampling, ADFP utilizes a proxy model to identify and sample tokens that directly maximize the expected detectability of the fingerprint in the student after fine-tuning, rather than relying on the incidental absorption of the un-targeted biases of a more naive watermark. Experiments on GSM8K and OASST1 benchmarks demonstrate that ADFP achieves a significant Pareto improvement over state-of-the-art baselines, yielding stronger detection confidence with minimal impact on utility, even when the student model's architecture is unknown.
comment: 26 pages, 11 figures
☆ Enhancing Imbalanced Node Classification via Curriculum-Guided Feature Learning and Three-Stage Attention Network
Imbalanced node classification in graph neural networks (GNNs) happens when some labels are much more common than others, which causes the model to learn unfairly and perform badly on the less common classes. To solve this problem, we propose a Curriculum-Guided Feature Learning and Three-Stage Attention Network (CL3AN-GNN), a learning network that uses a three-step attention system (Engage, Enact, Embed) similar to how humans learn. The model begins by engaging with structurally simpler features, defined as (1) local neighbourhood patterns (1-hop), (2) low-degree node attributes, and (3) class-separable node pairs identified via initial graph convolutional networks and graph attention networks (GCN and GAT) embeddings. This foundation enables stable early learning despite label skew. The Enact stage then addresses complicated aspects: (1) connections that require multiple steps, (2) edges that connect different types of nodes, and (3) nodes at the edges of minority classes by using adjustable attention weights. Finally, Embed consolidates these features via iterative message passing and curriculum-aligned loss weighting. We evaluate CL3AN-GNN on eight Open Graph Benchmark datasets spanning social, biological, and citation networks. Experiments show consistent improvements across all datasets in accuracy, F1-score, and AUC over recent state-of-the-art methods. The model's step-by-step method works well with different types of graph datasets, showing quicker results than training everything at once, better performance on new, imbalanced graphs, and clear explanations of each step using gradient stability and attention correlation learning curves. This work provides both a theoretically grounded framework for curriculum learning in GNNs and practical evidence of its effectiveness against imbalances, validated through metrics, convergence speeds, and generalisation tests.
☆ Bridging Online and Offline RL: Contextual Bandit Learning for Multi-Turn Code Generation
Recently, there have been significant research interests in training large language models (LLMs) with reinforcement learning (RL) on real-world tasks, such as multi-turn code generation. While online RL tends to perform better than offline RL, its higher training cost and instability hinders wide adoption. In this paper, we build on the observation that multi-turn code generation can be formulated as a one-step recoverable Markov decision process and propose contextual bandit learning with offline trajectories (Cobalt), a new method that combines the benefits of online and offline RL. Cobalt first collects code generation trajectories using a reference LLM and divides them into partial trajectories as contextual prompts. Then, during online bandit learning, the LLM is trained to complete each partial trajectory prompt through single-step code generation. Cobalt outperforms two multi-turn online RL baselines based on GRPO and VeRPO, and substantially improves R1-Distill 8B and Qwen3 8B by up to 9.0 and 6.2 absolute Pass@1 scores on LiveCodeBench. Also, we analyze LLMs' in-context reward hacking behaviors and augment Cobalt training with perturbed trajectories to mitigate this issue. Overall, our results demonstrate Cobalt as a promising solution for iterative decision-making tasks like multi-turn code generation. Our code and data are available at https://github.com/OSU-NLP-Group/cobalt.
☆ Prediction of Critical Heat Flux in Rod Bundles Using Tube-Based Hybrid Machine Learning Models in CTF
The prediction of critical heat flux (CHF) using machine learning (ML) approaches has become a highly active research activity in recent years, the goal of which is to build models more accurate than current conventional approaches such as empirical correlations or lookup tables (LUTs). Previous work developed and deployed tube-based pure and hybrid ML models in the CTF subchannel code, however, full-scale reactor core simulations require the use of rod bundle geometries. Unlike isolated subchannels, rod bundles experience complex thermal hydraulic phenomena such as channel crossflow, spacer grid losses, and effects from unheated conductors. This study investigates the generalization of ML-based CHF prediction models in rod bundles after being trained on tube-based CHF data. A purely data-driven DNN and two hybrid bias-correction models were implemented in the CTF subchannel code and used to predict CHF location and magnitude in the Combustion Engineering 5-by-5 bundle CHF test series. The W-3 correlation, Bowring correlation, and Groeneveld LUT were used as baseline comparators. On average, all three ML-based approaches produced magnitude and location predictions more accurate than the baseline models, with the hybrid LUT model exhibiting the most favorable performance metrics.
comment: Submitted to the 2026 American Nuclear Society Annual Meeting
☆ Manifold Random Features
We present a new paradigm for creating random features to approximate bi-variate functions (in particular, kernels) defined on general manifolds. This new mechanism of Manifold Random Features (MRFs) leverages discretization of the manifold and the recently introduced technique of Graph Random Features (GRFs) to learn continuous fields on manifolds. Those fields are used to find continuous approximation mechanisms that otherwise, in general scenarios, cannot be derived analytically. MRFs provide positive and bounded features, a key property for accurate, low-variance approximation. We show deep asymptotic connection between GRFs, defined on discrete graph objects, and continuous random features used for regular kernels. As a by-product of our method, we re-discover recently introduced mechanism of Gaussian kernel approximation applied in particular to improve linear-attention Transformers, considering simple random walks on graphs and by-passing original complex mathematical computations. We complement our algorithm with a rigorous theoretical analysis and verify in thorough experimental studies.
☆ Understanding Agent Scaling in LLM-Based Multi-Agent Systems via Diversity
LLM-based multi-agent systems (MAS) have emerged as a promising approach to tackle complex tasks that are difficult for individual LLMs. A natural strategy is to scale performance by increasing the number of agents; however, we find that such scaling exhibits strong diminishing returns in homogeneous settings, while introducing heterogeneity (e.g., different models, prompts, or tools) continues to yield substantial gains. This raises a fundamental question: what limits scaling, and why does diversity help? We present an information-theoretic framework showing that MAS performance is bounded by the intrinsic task uncertainty, not by agent count. We derive architecture-agnostic bounds demonstrating that improvements depend on how many effective channels the system accesses. Homogeneous agents saturate early because their outputs are strongly correlated, whereas heterogeneous agents contribute complementary evidence. We further introduce $K^*$, an effective channel count that quantifies the number of effective channels without ground-truth labels. Empirically, we show that heterogeneous configurations consistently outperform homogeneous scaling: 2 diverse agents can match or exceed the performance of 16 homogeneous agents. Our results provide principled guidelines for building efficient and robust MAS through diversity-aware design. Code and Dataset are available at the link: https://github.com/SafeRL-Lab/Agent-Scaling.
☆ Should I use Synthetic Data for That? An Analysis of the Suitability of Synthetic Data for Data Sharing and Augmentation
Recent advances in generative modelling have led many to see synthetic data as the go-to solution for a range of problems around data access, scarcity, and under-representation. In this paper, we study three prominent use cases: (1) Sharing synthetic data as a proxy for proprietary datasets to enable statistical analyses while protecting privacy, (2) Augmenting machine learning training sets with synthetic data to improve model performance, and (3) Augmenting datasets with synthetic data to reduce variance in statistical estimation. For each use case, we formalise the problem setting and study, through formal analysis and case studies, under which conditions synthetic data can achieve its intended objectives. We identify fundamental and practical limits that constrain when synthetic data can serve as an effective solution for a particular problem. Our analysis reveals that due to these limits many existing or envisioned use cases of synthetic data are a poor problem fit. Our formalisations and classification of synthetic data use cases enable decision makers to assess whether synthetic data is a suitable approach for their specific data availability problem.
comment: BK and TS contributed equally
☆ Fast Sampling for Flows and Diffusions with Lazy and Point Mass Stochastic Interpolants
Stochastic interpolants unify flows and diffusions, popular generative modeling frameworks. A primary hyperparameter in these methods is the interpolation schedule that determines how to bridge a standard Gaussian base measure to an arbitrary target measure. We prove how to convert a sample path of a stochastic differential equation (SDE) with arbitrary diffusion coefficient under any schedule into the unique sample path under another arbitrary schedule and diffusion coefficient. We then extend the stochastic interpolant framework to admit a larger class of point mass schedules in which the Gaussian base measure collapses to a point mass measure. Under the assumption of Gaussian data, we identify lazy schedule families that make the drift identically zero and show that with deterministic sampling one gets a variance-preserving schedule commonly used in diffusion models, whereas with statistically optimal SDE sampling one gets our point mass schedule. Finally, to demonstrate the usefulness of our theoretical results on realistic highly non-Gaussian data, we apply our lazy schedule conversion to a state-of-the-art pretrained flow model and show that this allows for generating images in fewer steps without retraining the model.
☆ Inference-time Unlearning Using Conformal Prediction
Machine unlearning is the process of efficiently removing specific information from a trained machine learning model without retraining from scratch. Existing unlearning methods, which often provide provable guarantees, typically involve retraining a subset of model parameters based on a forget set. While these approaches show promise in certain scenarios, their underlying assumptions are often challenged in real-world applications -- particularly when applied to generative models. Furthermore, updating parameters using these unlearning procedures often degrades the general-purpose capabilities the model acquired during pre-training. Motivated by these shortcomings, this paper considers the paradigm of inference time unlearning -- wherein, the generative model is equipped with an (approximately correct) verifier that judges whether the model's response satisfies appropriate unlearning guarantees. This paper introduces a framework that iteratively refines the quality of the generated responses using feedback from the verifier without updating the model parameters. The proposed framework leverages conformal prediction to reduce computational overhead and provide distribution-free unlearning guarantees. This paper's approach significantly outperforms existing state-of-the-art methods, reducing unlearning error by up to 93% across challenging unlearning benchmarks.
☆ Efficient Estimation of Kernel Surrogate Models for Task Attribution ICLR 2026
Modern AI agents such as large language models are trained on diverse tasks -- translation, code generation, mathematical reasoning, and text prediction -- simultaneously. A key question is to quantify how each individual training task influences performance on a target task, a problem we refer to as task attribution. The direct approach, leave-one-out retraining, measures the effect of removing each task, but is computationally infeasible at scale. An alternative approach that builds surrogate models to predict a target task's performance for any subset of training tasks has emerged in recent literature. Prior work focuses on linear surrogate models, which capture first-order relationships, but miss nonlinear interactions such as synergy, antagonism, or XOR-type effects. In this paper, we first consider a unified task weighting framework for analyzing task attribution methods, and show a new connection between linear surrogate models and influence functions through a second-order analysis. Then, we introduce kernel surrogate models, which more effectively represent second-order task interactions. To efficiently learn the kernel surrogate, we develop a gradient-based estimation procedure that leverages a first-order approximation of pretrained models; empirically, this yields accurate estimates with less than $2\%$ relative error without repeated retraining. Experiments across multiple domains -- including math reasoning in transformers, in-context learning, and multi-objective reinforcement learning -- demonstrate the effectiveness of kernel surrogate models. They achieve a $25\%$ higher correlation with the leave-one-out ground truth than linear surrogates and influence-function baselines. When used for downstream task selection, kernel surrogate models yield a $40\%$ improvement in demonstration selection for in-context learning and multi-objective reinforcement learning benchmarks.
comment: 27 pages. To appear in ICLR 2026
☆ Reward Redistribution for CVaR MDPs using a Bellman Operator on L-infinity
Tail-end risk measures such as static conditional value-at-risk (CVaR) are used in safety-critical applications to prevent rare, yet catastrophic events. Unlike risk-neutral objectives, the static CVaR of the return depends on entire trajectories without admitting a recursive Bellman decomposition in the underlying Markov decision process. A classical resolution relies on state augmentation with a continuous variable. However, unless restricted to a specialized class of admissible value functions, this formulation induces sparse rewards and degenerate fixed points. In this work, we propose a novel formulation of the static CVaR objective based on augmentation. Our alternative approach leads to a Bellman operator with: (1) dense per-step rewards; (2) contracting properties on the full space of bounded value functions. Building on this theoretical foundation, we develop risk-averse value iteration and model-free Q-learning algorithms that rely on discretized augmented states. We further provide convergence guarantees and approximation error bounds due to discretization. Empirical results demonstrate that our algorithms successfully learn CVaR-sensitive policies and achieve effective performance-safety trade-offs.
☆ Reasoning Cache: Continual Improvement Over Long Horizons via Short-Horizon RL
Large Language Models (LLMs) that can continually improve beyond their training budgets are able to solve increasingly difficult problems by adapting at test time, a property we refer to as extrapolation. However, standard reinforcement learning (RL) operates over fixed problem distributions and training budgets, which limits extrapolation amidst distribution shift at test time. To address this, we introduce RC, an iterative decoding algorithm that replaces standard autoregressive decoding during both training and inference. RC exploits an asymmetry between the response generation and summarization capabilities of LLMs to construct reasoning chains that consistently improve across iterations. Models trained to use RC can extrapolate and continually improve over reasoning horizons more than an order of magnitude longer than those seen during training. Empirically, training a 4B model with RC using a 16k-token training budget improves performance on HMMT 2025 from 40% to nearly 70% with 0.5m tokens at test time, outperforming both comparably sized models and many larger reasoning LLMs. Finally, we also show that models trained with RC can more effectively leverage existing scaffolds to further scale test-time performance, due to the improved summary-conditioned generation abilities learned through training.
comment: preprint
☆ UniGeM: Unifying Data Mixing and Selection via Geometric Exploration and Mining
The scaling of Large Language Models (LLMs) is increasingly limited by data quality. Most methods handle data mixing and sample selection separately, which can break the structure in code corpora. We introduce \textbf{UniGeM}, a framework that unifies mixing and selection by treating data curation as a \textit{manifold approximation} problem without training proxy models or relying on external reference datasets. UniGeM operates hierarchically: \textbf{Macro-Exploration} learns mixing weights with stability-based clustering; \textbf{Micro-Mining} filters high-quality instances by their geometric distribution to ensure logical consistency. Validated by training 8B and 16B MoE models on 100B tokens, UniGeM achieves \textbf{2.0$\times$ data efficiency} over a random baseline and further improves overall performance compared to SOTA methods in reasoning-heavy evaluations and multilingual generalization.
☆ Reasoning with Latent Tokens in Diffusion Language Models
Discrete diffusion models have recently become competitive with autoregressive models for language modeling, even outperforming them on reasoning tasks requiring planning and global coherence, but they require more computation at inference time. We trace this trade-off to a key mechanism: diffusion models are trained to jointly predict a distribution over all unknown tokens, including those that will not actually be decoded in the current step. Ablating this joint prediction yields faster inference but degrades performance, revealing that accurate prediction at the decoded position relies on joint reasoning about the distribution of undecoded tokens. We interpret these as latent tokens and introduce a method for modulating their number, demonstrating empirically that this enables a smooth tradeoff between inference speed and sample quality. Furthermore, we demonstrate that latent tokens can be introduced into autoregressive models through an auxiliary multi-token prediction objective, yielding substantial improvements on the same reasoning tasks where they have traditionally struggled. Our results suggest that latent tokens, while arising naturally in diffusion, represent a general mechanism for improving performance on tasks requiring global coherence or lookahead.
☆ Decision-oriented benchmarking to transform AI weather forecast access: Application to the Indian monsoon
Artificial intelligence weather prediction (AIWP) models now often outperform traditional physics-based models on common metrics while requiring orders-of-magnitude less computing resources and time. Open-access AIWP models thus hold promise as transformational tools for helping low- and middle-income populations make decisions in the face of high-impact weather shocks. Yet, current approaches to evaluating AIWP models focus mainly on aggregated meteorological metrics without considering local stakeholders' needs in decision-oriented, operational frameworks. Here, we introduce such a framework that connects meteorology, AI, and social sciences. As an example, we apply it to the 150-year-old problem of Indian monsoon forecasting, focusing on benefits to rain-fed agriculture, which is highly susceptible to climate change. AIWP models skillfully predict an agriculturally relevant onset index at regional scales weeks in advance when evaluated out-of-sample using deterministic and probabilistic metrics. This framework informed a government-led effort in 2025 to send 38 million Indian farmers AI-based monsoon onset forecasts, which captured an unusual weeks-long pause in monsoon progression. This decision-oriented benchmarking framework provides a key component of a blueprint for harnessing the power of AIWP models to help large vulnerable populations adapt to weather shocks in the face of climate variability and change.
☆ Conditional Flow Matching for Visually-Guided Acoustic Highlighting
Visually-guided acoustic highlighting seeks to rebalance audio in alignment with the accompanying video, creating a coherent audio-visual experience. While visual saliency and enhancement have been widely studied, acoustic highlighting remains underexplored, often leading to misalignment between visual and auditory focus. Existing approaches use discriminative models, which struggle with the inherent ambiguity in audio remixing, where no natural one-to-one mapping exists between poorly-balanced and well-balanced audio mixes. To address this limitation, we reframe this task as a generative problem and introduce a Conditional Flow Matching (CFM) framework. A key challenge in iterative flow-based generation is that early prediction errors -- in selecting the correct source to enhance -- compound over steps and push trajectories off-manifold. To address this, we introduce a rollout loss that penalizes drift at the final step, encouraging self-correcting trajectories and stabilizing long-range flow integration. We further propose a conditioning module that fuses audio and visual cues before vector field regression, enabling explicit cross-modal source selection. Extensive quantitative and qualitative evaluations show that our method consistently surpasses the previous state-of-the-art discriminative approach, establishing that visually-guided audio remixing is best addressed through generative modeling.
☆ Soft Sensor for Bottom-Hole Pressure Estimation in Petroleum Wells Using Long Short-Term Memory and Transfer Learning
Monitoring bottom-hole variables in petroleum wells is essential for production optimization, safety, and emissions reduction. Permanent Downhole Gauges (PDGs) provide real-time pressure data but face reliability and cost issues. We propose a machine learning-based soft sensor to estimate flowing Bottom-Hole Pressure (BHP) using wellhead and topside measurements. A Long Short-Term Memory (LSTM) model is introduced and compared with Multi-Layer Perceptron (MLP) and Ridge Regression. We also pioneer Transfer Learning for adapting models across operational environments. Tested on real offshore datasets from Brazil's Pre-salt basin, the methodology achieved Mean Absolute Percentage Error (MAPE) consistently below 2\%, outperforming benchmarks. This work offers a cost-effective, accurate alternative to physical sensors, with broad applicability across diverse reservoir and flow conditions.
☆ Fast-MWEM: Private Data Release in Sublinear Time
The Multiplicative Weights Exponential Mechanism (MWEM) is a fundamental iterative framework for private data analysis, with broad applications such as answering $m$ linear queries, or privately solving systems of $m$ linear constraints. However, a critical bottleneck hindering its scalability is the $Θ(m)$ time complexity required to execute the exponential mechanism in each iteration. We introduce a modification to the MWEM framework that improves the per-iteration runtime dependency to $Θ(\sqrt{m})$ in expectation. This is done via a lazy sampling approach to the Report-Noisy-Max mechanism, which we implement efficiently using Gumbel noise and a $k$-Nearest Neighbor data structure. This allows for the rapid selection of the approximate score in the exponential mechanism without an exhaustive linear scan. We apply our accelerated framework to the problems of private linear query release and solving Linear Programs (LPs) under neighboring constraint conditions and low-sensitivity assumptions. Experimental evaluation confirms that our method provides a substantial runtime improvement over classic MWEM.
☆ Efficient Variance-reduced Estimation from Generative EHR Models: The SCOPE and REACH Estimators
Generative models trained using self-supervision of tokenized electronic health record (EHR) timelines show promise for clinical outcome prediction. This is typically done using Monte Carlo simulation for future patient trajectories. However, existing approaches suffer from three key limitations: sparse estimate distributions that poorly differentiate patient risk levels, extreme computational costs, and high sampling variance. We propose two new estimators: the Sum of Conditional Outcome Probability Estimator (SCOPE) and Risk Estimation from Anticipated Conditional Hazards (REACH), that leverage next-token probability distributions discarded by standard Monte Carlo. We prove both estimators are unbiased and that REACH guarantees variance reduction over Monte Carlo sampling for any model and outcome. Empirically, on hospital mortality prediction in MIMIC-IV using the ETHOS-ARES framework, SCOPE and REACH match 100-sample Monte Carlo performance using only 10-11 samples (95% CI: [9,11]), representing a ~10x reduction in inference cost without degrading calibration. For ICU admission prediction, efficiency gains are more modest (~1.2x), which we attribute to the outcome's lower "spontaneity," a property we characterize theoretically and empirically. These methods substantially improve the feasibility of deploying generative EHR models in resource-constrained clinical settings.
comment: 10 pages, 2 figures
☆ Efficient Training of Boltzmann Generators Using Off-Policy Log-Dispersion Regularization
Sampling from unnormalized probability densities is a central challenge in computational science. Boltzmann generators are generative models that enable independent sampling from the Boltzmann distribution of physical systems at a given temperature. However, their practical success depends on data-efficient training, as both simulation data and target energy evaluations are costly. To this end, we propose off-policy log-dispersion regularization (LDR), a novel regularization framework that builds on a generalization of the log-variance objective. We apply LDR in the off-policy setting in combination with standard data-based training objectives, without requiring additional on-policy samples. LDR acts as a shape regularizer of the energy landscape by leveraging additional information in the form of target energy labels. The proposed regularization framework is broadly applicable, supporting unbiased or biased simulation datasets as well as purely variational training without access to target samples. Across all benchmarks, LDR improves both final performance and data efficiency, with sample efficiency gains of up to one order of magnitude.
☆ VR-VFL: Joint Rate and Client Selection for Vehicular Federated Learning Under Imperfect CSI IEEE
Federated learning in vehicular edge networks faces major challenges in efficient resource allocation, largely due to high vehicle mobility and the presence of imperfect channel state information. Many existing methods oversimplify these realities, often assuming fixed communication rounds or ideal channel conditions, which limits their effectiveness in real-world scenarios. To address this, we propose variable rate vehicular federated learning (VR-VFL), a novel federated learning method designed specifically for vehicular networks under imperfect channel state information. VR-VFL combines dynamic client selection with adaptive transmission rate selection, while also allowing round times to flex in response to changing wireless conditions. At its core, VR-VFL is built on a bi-objective optimization framework that strikes a balance between improving learning convergence and minimizing the time required to complete each round. By accounting for both the challenges of mobility and realistic wireless constraints, VR-VFL offers a more practical and efficient approach to federated learning in vehicular edge networks. Simulation results show that the proposed VR-VFL scheme achieves convergence approximately 40% faster than other methods in the literature.
comment: This paper has been accepted for presentation at IEEE ICC 2026
☆ Anytime Pretraining: Horizon-Free Learning-Rate Schedules with Weight Averaging
Large language models are increasingly trained in continual or open-ended settings, where the total training horizon is not known in advance. Despite this, most existing pretraining recipes are not anytime: they rely on horizon-dependent learning rate schedules and extensive tuning under a fixed compute budget. In this work, we provide a theoretical analysis demonstrating the existence of anytime learning schedules for overparameterized linear regression, and we highlight the central role of weight averaging - also known as model merging - in achieving the minimax convergence rates of stochastic gradient descent. We show that these anytime schedules polynomially decay with time, with the decay rate determined by the source and capacity conditions of the problem. Empirically, we evaluate 150M and 300M parameter language models trained at 1-32x Chinchilla scale, comparing constant learning rates with weight averaging and $1/\sqrt{t}$ schedules with weight averaging against a well-tuned cosine schedule. Across the full training range, the anytime schedules achieve comparable final loss to cosine decay. Taken together, our results suggest that weight averaging combined with simple, horizon-free step sizes offers a practical and effective anytime alternative to cosine learning rate schedules for large language model pretraining.
☆ Data-Driven Graph Filters via Adaptive Spectral Shaping
We introduce Adaptive Spectral Shaping, a data-driven framework for graph filtering that learns a reusable baseline spectral kernel and modulates it with a small set of Gaussian factors. The resulting multi-peak, multi-scale responses allocate energy to heterogeneous regions of the Laplacian spectrum while remaining interpretable via explicit centers and bandwidths. To scale, we implement filters with Chebyshev polynomial expansions, avoiding eigendecompositions. We further propose Transferable Adaptive Spectral Shaping (TASS): the baseline kernel is learned on source graphs and, on a target graph, kept fixed while only the shaping parameters are adapted, enabling few-shot transfer under matched compute. Across controlled synthetic benchmarks spanning graph families and signal regimes, Adaptive Spectral Shaping reduces reconstruction error relative to fixed-prototype wavelets and learned linear banks, and TASS yields consistent positive transfer. The framework provides compact spectral modules that plug into graph signal processing pipelines and graph neural networks, combining scalability, interpretability, and cross-graph generalization.
☆ Conflict-Resolving and Sharpness-Aware Minimization for Generalized Knowledge Editing with Multiple Updates
Large language models (LLMs) rely on internal knowledge to solve many downstream tasks, making it crucial to keep them up to date. Since full retraining is expensive, prior work has explored efficient alternatives such as model editing and parameter-efficient fine-tuning. However, these approaches often break down in practice due to poor generalization across inputs, limited stability, and knowledge conflict. To address these limitations, we propose the CoRSA (Conflict-Resolving and Sharpness-Aware Minimization) training framework, a parameter-efficient, holistic approach for knowledge editing with multiple updates. CoRSA tackles multiple challenges simultaneously: it improves generalization to different input forms and enhances stability across multiple updates by minimizing loss curvature, and resolves conflicts by maximizing the margin between new and prior knowledge. Across three widely used fact editing benchmarks, CoRSA achieves significant gains in generalization, outperforming baselines with average absolute improvements of 12.42% over LoRA and 10% over model editing methods. With multiple updates, it maintains high update efficacy while reducing catastrophic forgetting by 27.82% compared to LoRA. CoRSA also generalizes to the code domain, outperforming the strongest baseline by 5.48% Pass@5 in update efficacy.
comment: 22 pages, 8 figures. Code link: https://github.com/duykhuongnguyen/CoRSA
☆ LLM-Inspired Pretrain-Then-Finetune for Small-Data, Large-Scale Optimization
We consider small-data, large-scale decision problems in which a firm must make many operational decisions simultaneously (e.g., across a large product portfolio) while observing only a few, potentially noisy, data points per instance. Inspired by the success of large language models (LLMs), we propose a pretrain-then-finetune approach built on a designed Transformer model to address this challenge. The model is first pretrained on large-scale, domain-informed synthetic data that encode managerial knowledge and structural features of the decision environment, and is then fine-tuned on real observations. This new pipeline offers two complementary advantages: pretraining injects domain knowledge into the learning process and enables the training of high-capacity models using abundant synthetic data, while finetuning adapts the pretrained model to the operational environment and improves alignment with the true data-generating regime. While we have leveraged the Transformer's state-of-the-art representational capacity, particularly its attention mechanism, to efficiently extract cross-task structure, our approach is not an off-the-shelf application. Instead, it relies on problem-specific architectural design and a tailored training procedure to match the decision setting. Theoretically, we develop the first comprehensive error analysis regarding Transformer learning in relevant contexts, establishing nonasymptotic guarantees that validate the method's effectiveness. Critically, our analysis reveals how pretraining and fine-tuning jointly determine performance, with the dominant contribution governed by whichever is more favorable. In particular, finetuning exhibits an economies-of-scale effect, whereby transfer learning becomes increasingly effective as the number of instances grows.
☆ QuAIL: Quality-Aware Inertial Learning for Robust Training under Data Corruption
Tabular machine learning systems are frequently trained on data affected by non-uniform corruption, including noisy measurements, missing entries, and feature-specific biases. In practice, these defects are often documented only through column-level reliability indicators rather than instance-wise quality annotations, limiting the applicability of many robustness and cleaning techniques. We present QuAIL, a quality-informed training mechanism that incorporates feature reliability priors directly into the learning process. QuAIL augments existing models with a learnable feature-modulation layer whose updates are selectively constrained by a quality-dependent proximal regularizer, thereby inducing controlled adaptation across features of varying trustworthiness. This stabilizes optimization under structured corruption without explicit data repair or sample-level reweighting. Empirical evaluation across 50 classification and regression datasets demonstrates that QuAIL consistently improves average performance over neural baselines under both random and value-dependent corruption, with especially robust behavior in low-data and systematically biased settings. These results suggest that incorporating feature reliability information directly into optimization dynamics is a practical and effective approach for resilient tabular learning.
☆ Universal One-third Time Scaling in Learning Peaked Distributions
Training large language models (LLMs) is computationally expensive, partly because the loss exhibits slow power-law convergence whose origin remains debatable. Through systematic analysis of toy models and empirical evaluation of LLMs, we show that this behavior can arise intrinsically from the use of softmax and cross-entropy. When learning peaked probability distributions, e.g., next-token distributions, these components yield power-law vanishing losses and gradients, creating a fundamental optimization bottleneck. This ultimately leads to power-law time scaling of the loss with a universal exponent of $1/3$. Our results provide a mechanistic explanation for observed neural scaling and suggest new directions for improving LLM training efficiency.
comment: 24 pages, 6 main text figures, 27 figures in total
☆ Improved Analysis of the Accelerated Noisy Power Method with Applications to Decentralized PCA
We analyze the Accelerated Noisy Power Method, an algorithm for Principal Component Analysis in the setting where only inexact matrix-vector products are available, which can arise for instance in decentralized PCA. While previous works have established that acceleration can improve convergence rates compared to the standard Noisy Power Method, these guarantees require overly restrictive upper bounds on the magnitude of the perturbations, limiting their practical applicability. We provide an improved analysis of this algorithm, which preserves the accelerated convergence rate under much milder conditions on the perturbations. We show that our new analysis is worst-case optimal, in the sense that the convergence rate cannot be improved, and that the noise conditions we derive cannot be relaxed without sacrificing convergence guarantees. We demonstrate the practical relevance of our results by deriving an accelerated algorithm for decentralized PCA, which has similar communication costs to non-accelerated methods. To our knowledge, this is the first decentralized algorithm for PCA with provably accelerated convergence.
☆ Neural Attention Search Linear: Towards Adaptive Token-Level Hybrid Attention Models
The quadratic computational complexity of softmax transformers has become a bottleneck in long-context scenarios. In contrast, linear attention model families provide a promising direction towards a more efficient sequential model. These linear attention models compress past KV values into a single hidden state, thereby efficiently reducing complexity during both training and inference. However, their expressivity remains limited by the size of their hidden state. Previous work proposed interleaving softmax and linear attention layers to reduce computational complexity while preserving expressivity. Nevertheless, the efficiency of these models remains bottlenecked by their softmax attention layers. In this paper, we propose Neural Attention Search Linear (NAtS-L), a framework that applies both linear attention and softmax attention operations within the same layer on different tokens. NAtS-L automatically determines whether a token can be handled by a linear attention model, i.e., tokens that have only short-term impact and can be encoded into fixed-size hidden states, or require softmax attention, i.e., tokens that contain information related to long-term retrieval and need to be preserved for future queries. By searching for optimal Gated DeltaNet and softmax attention combinations across tokens, we show that NAtS-L provides a strong yet efficient token-level hybrid architecture.
comment: 17 pages, 8 figures
☆ ContraLog: Log File Anomaly Detection with Contrastive Learning and Masked Language Modeling
Log files record computational events that reflect system state and behavior, making them a primary source of operational insights in modern computer systems. Automated anomaly detection on logs is therefore critical, yet most established methods rely on log parsers that collapse messages into discrete templates, discarding variable values and semantic content. We propose ContraLog, a parser-free and self-supervised method that reframes log anomaly detection as predicting continuous message embeddings rather than discrete template IDs. ContraLog combines a message encoder that produces rich embeddings for individual log messages with a sequence encoder to model temporal dependencies within sequences. The model is trained with a combination of masked language modeling and contrastive learning to predict masked message embeddings based on the surrounding context. Experiments on the HDFS, BGL, and Thunderbird benchmark datasets empirically demonstrate effectiveness on complex datasets with diverse log messages. Additionally, we find that message embeddings generated by ContraLog carry meaningful information and are predictive of anomalies even without sequence context. These results highlight embedding-level prediction as an approach for log anomaly detection, with potential applicability to other event sequences.
comment: 26 pages with 16 figures
☆ Equilibrium Propagation for Non-Conservative Systems
Equilibrium Propagation (EP) is a physics-inspired learning algorithm that uses stationary states of a dynamical system both for inference and learning. In its original formulation it is limited to conservative systems, $\textit{i.e.}$ to dynamics which derive from an energy function. Given their importance in applications, it is important to extend EP to nonconservative systems, $\textit{i.e.}$ systems with non-reciprocal interactions. Previous attempts to generalize EP to such systems failed to compute the exact gradient of the cost function. Here we propose a framework that extends EP to arbitrary nonconservative systems, including feedforward networks. We keep the key property of equilibrium propagation, namely the use of stationary states both for inference and learning. However, we modify the dynamics in the learning phase by a term proportional to the non-reciprocal part of the interaction so as to obtain the exact gradient of the cost function. This algorithm can also be derived using a variational formulation that generates the learning dynamics through an energy function defined over an augmented state space. Numerical experiments using the MNIST database show that this algorithm achieves better performance and learns faster than previous proposals.
comment: 19 pages (9 pages main text), 7 figures
☆ Efficient Sequential Neural Network with Spatial-Temporal Attention and Linear LSTM for Robust Lane Detection Using Multi-Frame Images IEEE
Lane detection is a crucial perception task for all levels of automated vehicles (AVs) and Advanced Driver Assistance Systems, particularly in mixed-traffic environments where AVs must interact with human-driven vehicles (HDVs) and challenging traffic scenarios. Current methods lack versatility in delivering accurate, robust, and real-time compatible lane detection, especially vision-based methods often neglect critical regions of the image and their spatial-temporal (ST) salience, leading to poor performance in difficult circumstances such as serious occlusion and dazzle lighting. This study introduces a novel sequential neural network model with a spatial-temporal attention mechanism to focus on key features of lane lines and exploit salient ST correlations among continuous image frames. The proposed model, built on a standard encoder-decoder structure and common neural network backbones, is trained and evaluated on three large-scale open-source datasets. Extensive experiments demonstrate the strength and robustness of the proposed model, outperforming state-of-the-art methods in various testing scenarios. Furthermore, with the ST attention mechanism, the developed sequential neural network models exhibit fewer parameters and reduced Multiply-Accumulate Operations (MACs) compared to baseline sequential models, highlighting their computational efficiency. Relevant data, code, and models are released at https://doi.org/10.4121/4619cab6-ae4a-40d5-af77-582a77f3d821.
comment: 14 pages, 9 figures, under review by IEEE T-ITS
☆ Mitigating Conversational Inertia in Multi-Turn Agents
Large language models excel as few-shot learners when provided with appropriate demonstrations, yet this strength becomes problematic in multiturn agent scenarios, where LLMs erroneously mimic their own previous responses as few-shot examples. Through attention analysis, we identify conversational inertia, a phenomenon where models exhibit strong diagonal attention to previous responses, which is associated with imitation bias that constrains exploration. This reveals a tension when transforming few-shot LLMs into agents: longer context enriches environmental feedback for exploitation, yet also amplifies conversational inertia that undermines exploration. Our key insight is that for identical states, actions generated with longer contexts exhibit stronger inertia than those with shorter contexts, enabling construction of preference pairs without environment rewards. Based on this, we propose Context Preference Learning to calibrate model preferences to favor low-inertia responses over highinertia ones. We further provide context management strategies at inference time to balance exploration and exploitation. Experimental results across eight agentic environments and one deep research scenario validate that our framework reduces conversational inertia and achieves performance improvements.
☆ Sequential Group Composition: A Window into the Mechanics of Deep Learning
How do neural networks trained over sequences acquire the ability to perform structured operations, such as arithmetic, geometric, and algorithmic computation? To gain insight into this question, we introduce the sequential group composition task. In this task, networks receive a sequence of elements from a finite group encoded in a real vector space and must predict their cumulative product. The task can be order-sensitive and requires a nonlinear architecture to be learned. Our analysis isolates the roles of the group structure, encoding statistics, and sequence length in shaping learning. We prove that two-layer networks learn this task one irreducible representation of the group at a time in an order determined by the Fourier statistics of the encoding. These networks can perfectly learn the task, but doing so requires a hidden width exponential in the sequence length $k$. In contrast, we show how deeper models exploit the associativity of the task to dramatically improve this scaling: recurrent neural networks compose elements sequentially in $k$ steps, while multilayer networks compose adjacent pairs in parallel in $\log k$ layers. Overall, the sequential group composition task offers a tractable window into the mechanics of deep learning.
☆ Reinforcement Fine-Tuning for History-Aware Dense Retriever in RAG
Retrieval-augmented generation (RAG) enables large language models (LLMs) to produce evidence-based responses, and its performance hinges on the matching between the retriever and LLMs. Retriever optimization has emerged as an efficient alternative to fine-tuning LLMs. However, existing solutions suffer from objective mismatch between retriever optimization and the goal of RAG pipeline. Reinforcement learning (RL) provides a promising solution to address this limitation, yet applying RL to retriever optimization introduces two fundamental challenges: 1) the deterministic retrieval is incompatible with RL formulations, and 2) state aliasing arises from query-only retrieval in multi-hop reasoning. To address these challenges, we replace deterministic retrieval with stochastic sampling and formulate RAG as a Markov decision process, making retriever optimizable by RL. Further, we incorporate retrieval history into the state at each retrieval step to mitigate state aliasing. Extensive experiments across diverse RAG pipelines, datasets, and retriever scales demonstrate consistent improvements of our approach in RAG performance.
comment: On going work. Codes are released at https://github.com/zyc140345/HARR
☆ CTTVAE: Latent Space Structuring for Conditional Tabular Data Generation on Imbalanced Datasets
Generating synthetic tabular data under severe class imbalance is essential for domains where rare but high-impact events drive decision-making. However, most generative models either overlook minority groups or fail to produce samples that are useful for downstream learning. We introduce CTTVAE, a Conditional Transformer-based Tabular Variational Autoencoder equipped with two complementary mechanisms: (i) a class-aware triplet margin loss that restructures the latent space for sharper intra-class compactness and inter-class separation, and (ii) a training-by-sampling strategy that adaptively increases exposure to underrepresented groups. Together, these components form CTTVAE+TBS, a framework that consistently yields more representative and utility-aligned samples without destabilizing training. Across six real-world benchmarks, CTTVAE+TBS achieves the strongest downstream utility on minority classes, often surpassing models trained on the original imbalanced data while maintaining competitive fidelity and bridging the gap for privacy for interpolation-based sampling methods and deep generative methods. Ablation studies further confirm that both latent structuring and targeted sampling contribute to these gains. By explicitly prioritizing downstream performance in rare categories, CTTVAE+TBS provides a robust and interpretable solution for conditional tabular data generation, with direct applicability to industries such as healthcare, fraud detection, and predictive maintenance where even small gains in minority cases can be critical.
☆ TRE: Encouraging Exploration in the Trust Region
Entropy regularization is a standard technique in reinforcement learning (RL) to enhance exploration, yet it yields negligible effects or even degrades performance in Large Language Models (LLMs). We attribute this failure to the cumulative tail risk inherent to LLMs with massive vocabularies and long generation horizons. In such environments, standard global entropy maximization indiscriminately dilutes probability mass into the vast tail of invalid tokens rather than focusing on plausible candidates, thereby disrupting coherent reasoning. To address this, we propose Trust Region Entropy (TRE), a method that encourages exploration strictly within the model's trust region. Extensive experiments across mathematical reasoning (MATH), combinatorial search (Countdown), and preference alignment (HH) tasks demonstrate that TRE consistently outperforms vanilla PPO, standard entropy regularization, and other exploration baselines. Our code is available at https://github.com/WhyChaos/TRE-Encouraging-Exploration-in-the-Trust-Region.
☆ Ultra Fast PDE Solving via Physics Guided Few-step Diffusion
Diffusion-based models have demonstrated impressive accuracy and generalization in solving partial differential equations (PDEs). However, they still face significant limitations, such as high sampling costs and insufficient physical consistency, stemming from their many-step iterative sampling mechanism and lack of explicit physics constraints. To address these issues, we propose Phys-Instruct, a novel physics-guided distillation framework which not only (1) compresses a pre-trained diffusion PDE solver into a few-step generator via matching generator and prior diffusion distributions to enable rapid sampling, but also (2) enhances the physics consistency by explicitly injecting PDE knowledge through a PDE distillation guidance. Physic-Instruct is built upon a solid theoretical foundation, leading to a practical physics-constrained training objective that admits tractable gradients. Across five PDE benchmarks, Phys-Instruct achieves orders-of-magnitude faster inference while reducing PDE error by more than 8 times compared to state-of-the-art diffusion baselines. Moreover, the resulting unconditional student model functions as a compact prior, enabling efficient and physically consistent inference for various downstream conditional tasks. Our results indicate that Phys-Instruct is a novel, effective, and efficient framework for ultra-fast PDE solving powered by deep generative models.
☆ Quantization-Aware Regularizers for Deep Neural Networks Compression
Deep Neural Networks reached state-of-the-art performance across numerous domains, but this progress has come at the cost of increasingly large and over-parameterized models, posing serious challenges for deployment on resource-constrained devices. As a result, model compression has become essential, and -- among compression techniques -- weight quantization is largely used and particularly effective, yet it typically introduces a non-negligible accuracy drop. However, it is usually applied to already trained models, without influencing how the parameter space is explored during the learning phase. In contrast, we introduce per-layer regularization terms that drive weights to naturally form clusters during training, integrating quantization awareness directly into the optimization process. This reduces the accuracy loss typically associated with quantization methods while preserving their compression potential. Furthermore, in our framework quantization representatives become network parameters, marking, to the best of our knowledge, the first approach to embed quantization parameters directly into the backpropagation procedure. Experiments on CIFAR-10 with AlexNet and VGG16 models confirm the effectiveness of the proposed strategy.
☆ Simulation-Based Inference via Regression Projection and Batched Discrepancies
We analyze a lightweight simulation-based inference method that infers simulator parameters using only a regression-based projection of the observed data. After fitting a surrogate linear regression once, the procedure simulates small batches at the proposed parameter values and assigns kernel weights based on the resulting batch-residual discrepancy, producing a self-normalized pseudo-posterior that is simple, parallelizable, and requires access only to the fitted regression coefficients rather than raw observations. We formalize the construction as an importance-sampling approximation to a population target that averages over simulator randomness, prove consistency as the number of parameter draws grows, and establish stability in estimating the surrogate regression from finite samples. We then characterize the asymptotic concentration as the batch size increases and the bandwidth shrinks, showing that the pseudo-posterior concentrates on an identified set determined by the chosen projection, thereby clarifying when the method yields point versus set identification. Experiments on a tractable nonlinear model and on a cosmological calibration task using the DREAMS simulation suite illustrate the computational advantages of regression-based projections and the identifiability limitations arising from low-information summaries.
comment: comments are welcome,
☆ Generator-based Graph Generation via Heat Diffusion ICML
Graph generative modelling has become an essential task due to the wide range of applications in chemistry, biology, social networks, and knowledge representation. In this work, we propose a novel framework for generating graphs by adapting the Generator Matching (arXiv:2410.20587) paradigm to graph-structured data. We leverage the graph Laplacian and its associated heat kernel to define a continous-time diffusion on each graph. The Laplacian serves as the infinitesimal generator of this diffusion, and its heat kernel provides a family of conditional perturbations of the initial graph. A neural network is trained to match this generator by minimising a Bregman divergence between the true generator and a learnable surrogate. Once trained, the surrogate generator is used to simulate a time-reversed diffusion process to sample new graph structures. Our framework unifies and generalises existing diffusion-based graph generative models, injecting domain-specific inductive bias via the Laplacian, while retaining the flexibility of neural approximators. Experimental studies demonstrate that our approach captures structural properties of real and synthetic graphs effectively.
comment: Submitted to ICML; 8+15 pages; 20 figures
☆ Explanations Leak: Membership Inference with Differential Privacy and Active Learning Defense
Counterfactual explanations (CFs) are increasingly integrated into Machine Learning as a Service (MLaaS) systems to improve transparency; however, ML models deployed via APIs are already vulnerable to privacy attacks such as membership inference and model extraction, and the impact of explanations on this threat landscape remains insufficiently understood. In this work, we focus on the problem of how CFs expand the attack surface of MLaaS by strengthening membership inference attacks (MIAs), and on the need to design defense mechanisms that mitigate this emerging risk without undermining utility and explainability. First, we systematically analyze how exposing CFs through query-based APIs enables more effective shadow-based MIAs. Second, we propose a defense framework that integrates Differential Privacy (DP) with Active Learning (AL) to jointly reduce memorization and limit effective training data exposure. Finally, we conduct an extensive empirical evaluation to characterize the three-way trade-off between privacy leakage, predictive performance, and explanation quality. Our findings highlight the need to carefully balance transparency, utility, and privacy in the responsible deployment of explainable MLaaS systems.
☆ SAGE-5GC: Security-Aware Guidelines for Evaluating Anomaly Detection in the 5G Core Network
Machine learning-based anomaly detection systems are increasingly being adopted in 5G Core networks to monitor complex, high-volume traffic. However, most existing approaches are evaluated under strong assumptions that rarely hold in operational environments, notably the availability of independent and identically distributed (IID) data and the absence of adaptive attackers.In this work, we study the problem of detecting 5G attacks \textit{in the wild}, focusing on realistic deployment settings. We propose a set of Security-Aware Guidelines for Evaluating anomaly detectors in 5G Core Network (SAGE-5GC), driven by domain knowledge and consideration of potential adversarial threats. Using a realistic 5G Core dataset, we first train several anomaly detectors and assess their baseline performance against standard 5GC control-plane cyberattacks targeting PFCP-based network services.We then extend the evaluation to adversarial settings, where an attacker tries to manipulate the observable features of the network traffic to evade detection, under the constraint that the intended functionality of the malicious traffic is preserved. Starting from a selected set of controllable features, we analyze model sensitivity and adversarial robustness through randomized perturbations. Finally, we introduce a practical optimization strategy based on genetic algorithms that operates exclusively on attacker-controllable features and does not require prior knowledge of the underlying detection model. Our experimental results show that adversarially crafted attacks can substantially degrade detection performance, underscoring the need for robust, security-aware evaluation methodologies for anomaly detection in 5G networks deployed in the wild.
comment: ITASEC-2026
☆ APEX: Probing Neural Networks via Activation Perturbation
Prior work on probing neural networks primarily relies on input-space analysis or parameter perturbation, both of which face fundamental limitations in accessing structural information encoded in intermediate representations. We introduce Activation Perturbation for EXploration (APEX), an inference-time probing paradigm that perturbs hidden activations while keeping both inputs and model parameters fixed. We theoretically show that activation perturbation induces a principled transition from sample-dependent to model-dependent behavior by suppressing input-specific signals and amplifying representation-level structure, and further establish that input perturbation corresponds to a constrained special case of this framework. Through representative case studies, we demonstrate the practical advantages of APEX. In the small-noise regime, APEX provides a lightweight and efficient measure of sample regularity that aligns with established metrics, while also distinguishing structured from randomly labeled models and revealing semantically coherent prediction transitions. In the large-noise regime, APEX exposes training-induced model-level biases, including a pronounced concentration of predictions on the target class in backdoored models. Overall, our results show that APEX offers an effective perspective for exploring, and understanding neural networks beyond what is accessible from input space alone.
☆ $V_0$: A Generalist Value Model for Any Policy at State Zero
Policy gradient methods rely on a baseline to measure the relative advantage of an action, ensuring the model reinforces behaviors that outperform its current average capability. In the training of Large Language Models (LLMs) using Actor-Critic methods (e.g., PPO), this baseline is typically estimated by a Value Model (Critic) often as large as the policy model itself. However, as the policy continuously evolves, the value model requires expensive, synchronous incremental training to accurately track the shifting capabilities of the policy. To avoid this overhead, Group Relative Policy Optimization (GRPO) eliminates the coupled value model by using the average reward of a group of rollouts as the baseline; yet, this approach necessitates extensive sampling to maintain estimation stability. In this paper, we propose $V_0$, a Generalist Value Model capable of estimating the expected performance of any model on unseen prompts without requiring parameter updates. We reframe value estimation by treating the policy's dynamic capability as an explicit context input; specifically, we leverage a history of instruction-performance pairs to dynamically profile the model, departing from the traditional paradigm that relies on parameter fitting to perceive capability shifts. Focusing on value estimation at State Zero (i.e., the initial prompt, hence $V_0$), our model serves as a critical resource scheduler. During GRPO training, $V_0$ predicts success rates prior to rollout, allowing for efficient sampling budget allocation; during deployment, it functions as a router, dispatching instructions to the most cost-effective and suitable model. Empirical results demonstrate that $V_0$ significantly outperforms heuristic budget allocation and achieves a Pareto-optimal trade-off between performance and cost in LLM routing tasks.
☆ Optimization and Generation in Aerodynamics Inverse Design
Inverse design with physics-based objectives is challenging because it couples high-dimensional geometry with expensive simulations, as exemplified by aerodynamic shape optimization for drag reduction. We revisit inverse design through two canonical solutions, the optimal design point and the optimal design distribution, and relate them to optimization and guided generation. Building on this view, we propose a new training loss for cost predictors and a density-gradient optimization method that improves objectives while preserving plausible shapes. We further unify existing training-free guided generation methods. To address their inability to approximate conditional covariance in high dimensions, we develop a time- and memory-efficient algorithm for approximate covariance estimation. Experiments on a controlled 2D study and high-fidelity 3D aerodynamic benchmarks (car and aircraft), validated by OpenFOAM simulations and miniature wind-tunnel tests with 3D-printed prototypes, demonstrate consistent gains in both optimization and guided generation. Additional offline RL results further support the generality of our approach.
☆ Asymmetric Hierarchical Anchoring for Audio-Visual Joint Representation: Resolving Information Allocation Ambiguity for Robust Cross-Modal Generalization
Audio-visual joint representation learning under Cross-Modal Generalization (CMG) aims to transfer knowledge from a labeled source modality to an unlabeled target modality through a unified discrete representation space. Existing symmetric frameworks often suffer from information allocation ambiguity, where the absence of structural inductive bias leads to semantic-specific leakage across modalities. We propose Asymmetric Hierarchical Anchoring (AHA), which enforces directional information allocation by designating a structured semantic anchor within a shared hierarchy. In our instantiation, we exploit the hierarchical discrete representations induced by audio Residual Vector Quantization (RVQ) to guide video feature distillation into a shared semantic space. To ensure representational purity, we replace fragile mutual information estimators with a GRL-based adversarial decoupler that explicitly suppresses semantic leakage in modality-specific branches, and introduce Local Sliding Alignment (LSA) to encourage fine-grained temporal alignment across modalities. Extensive experiments on AVE and AVVP benchmarks demonstrate that AHA consistently outperforms symmetric baselines in cross-modal transfer. Additional analyses on talking-face disentanglement experiment further validate that the learned representations exhibit improved semantic consistency and disentanglement, indicating the broader applicability of the proposed framework.
comment: 18 pages, 11 figures
☆ EHRWorld: A Patient-Centric Medical World Model for Long-Horizon Clinical Trajectories
World models offer a principled framework for simulating future states under interventions, but realizing such models in complex, high-stakes domains like medicine remains challenging. Recent large language models (LLMs) have achieved strong performance on static medical reasoning tasks, raising the question of whether they can function as dynamic medical world models capable of simulating disease progression and treatment outcomes over time. In this work, we show that LLMs only incorporating medical knowledge struggle to maintain consistent patient states under sequential interventions, leading to error accumulation in long-horizon clinical simulation. To address this limitation, we introduce EHRWorld, a patient-centric medical world model trained under a causal sequential paradigm, together with EHRWorld-110K, a large-scale longitudinal clinical dataset derived from real-world electronic health records. Extensive evaluations demonstrate that EHRWorld significantly outperforms naive LLM-based baselines, achieving more stable long-horizon simulation, improved modeling of clinically sensitive events, and favorable reasoning efficiency, highlighting the necessity of training on causally grounded, temporally evolving clinical data for reliable and robust medical world modeling.
☆ EVE: Efficient Verification of Data Erasure through Customized Perturbation in Approximate Unlearning
Verifying whether the machine unlearning process has been properly executed is critical but remains underexplored. Some existing approaches propose unlearning verification methods based on backdooring techniques. However, these methods typically require participation in the model's initial training phase to backdoor the model for later verification, which is inefficient and impractical. In this paper, we propose an efficient verification of erasure method (EVE) for verifying machine unlearning without requiring involvement in the model's initial training process. The core idea is to perturb the unlearning data to ensure the model prediction of the specified samples will change before and after unlearning with perturbed data. The unlearning users can leverage the observation of the changes as a verification signal. Specifically, the perturbations are designed with two key objectives: ensuring the unlearning effect and altering the unlearned model's prediction of target samples. We formalize the perturbation generation as an adversarial optimization problem, solving it by aligning the unlearning gradient with the gradient of boundary change for target samples. We conducted extensive experiments, and the results show that EVE can verify machine unlearning without involving the model's initial training process, unlike backdoor-based methods. Moreover, EVE significantly outperforms state-of-the-art unlearning verification methods, offering significant speedup in efficiency while enhancing verification accuracy. The source code of EVE is released at \uline{https://anonymous.4open.science/r/EVE-C143}, providing a novel tool for verification of machine unlearning.
☆ Riemannian Neural Optimal Transport
Computational optimal transport (OT) offers a principled framework for generative modeling. Neural OT methods, which use neural networks to learn an OT map (or potential) from data in an amortized way, can be evaluated out of sample after training, but existing approaches are tailored to Euclidean geometry. Extending neural OT to high-dimensional Riemannian manifolds remains an open challenge. In this paper, we prove that any method for OT on manifolds that produces discrete approximations of transport maps necessarily suffers from the curse of dimensionality: achieving a fixed accuracy requires a number of parameters that grows exponentially with the manifold dimension. Motivated by this limitation, we introduce Riemannian Neural OT (RNOT) maps, which are continuous neural-network parameterizations of OT maps on manifolds that avoid discretization and incorporate geometric structure by construction. Under mild regularity assumptions, we prove that RNOT maps approximate Riemannian OT maps with sub-exponential complexity in the dimension. Experiments on synthetic and real datasets demonstrate improved scalability and competitive performance relative to discretization-based baselines.
comment: 58 pages
☆ CoGenCast: A Coupled Autoregressive-Flow Generative Framework for Time Series Forecasting
Time series forecasting can be viewed as a generative problem that requires both semantic understanding over contextual conditions and stochastic modeling of continuous temporal dynamics. Existing approaches typically rely on either autoregressive large language models (LLMs) for semantic context modeling or diffusion-like models for continuous probabilistic generation. However, neither method alone can adequately model both aspects simultaneously. In this work, we propose CoGenCast, a hybrid generative framework that couples pre-trained LLMs with flow-matching mechanism for effective time series forecasting. Specifically, we reconfigure pre-trained decoder-only LLMs into a native forecasting encoder-decoder backbone by modifying only the attention topology, enabling bidirectional context encoding and causal representation generation. Building on this, a flow-matching mechanism is further integrated to model temporal evolution, capturing continuous stochastic dynamics conditioned on the autoregressively generated representation. Notably, CoGenCast naturally supports multimodal forecasting and cross-domain unified training. Extensive experiments on multiple benchmarks show that CoGenCast consistently outperforms previous compared baselines. Code is available at https://github.com/liuyaguo/_CoGenCast.
☆ NPCNet: Navigator-Driven Pseudo Text for Deep Clustering of Early Sepsis Phenotyping
Sepsis is a heterogeneous syndrome. Identifying clinically distinct phenotypes may enable more precise treatment strategies. In recent years, many researchers have applied clustering algorithms to sepsis patients. However, the clustering process rarely incorporates clinical relevance, potentially limiting to reflect clinically distinct phenotypes. We propose NPCNet, a novel deep clustering network with a target navigator that integrates temporal Electronic Health Records (EHRs) to better align sepsis phenotypes with clinical significance. We identify four sepsis phenotypes ($α$, $β$, $γ$, and $δ$) with divergence in SOFA trajectories. Notably, while $α$ and $δ$ phenotypes both show severe conditions in the early stage, NPCNet effectively differentiates patients who are likely to improve ($α$) from those at risk of deterioration ($δ$). Furthermore, through the treatment effect analysis, we discover that $α$, $β$, and $δ$ phenotypes may benefit from early vasopressor administration. The results show that NPCNet enhances precision treatment strategies by uncovering clinically distinct phenotypes.
☆ When Single Answer Is Not Enough: Rethinking Single-Step Retrosynthesis Benchmarks for LLMs
Recent progress has expanded the use of large language models (LLMs) in drug discovery, including synthesis planning. However, objective evaluation of retrosynthesis performance remains limited. Existing benchmarks and metrics typically rely on published synthetic procedures and Top-K accuracy based on single ground-truth, which does not capture the open-ended nature of real-world synthesis planning. We propose a new benchmarking framework for single-step retrosynthesis that evaluates both general-purpose and chemistry-specialized LLMs using ChemCensor, a novel metric for chemical plausibility. By emphasizing plausibility over exact match, this approach better aligns with human synthesis planning practices. We also introduce CREED, a novel dataset comprising millions of ChemCensor-validated reaction records for LLM training, and use it to train a model that improves over the LLM baselines under this benchmark.
☆ How to Train Your Resistive Network: Generalized Equilibrium Propagation and Analytical Learning
Machine learning is a powerful method of extracting meaning from data; unfortunately, current digital hardware is extremely energy-intensive. There is interest in an alternative analog computing implementation that could match the performance of traditional machine learning while being significantly more energy-efficient. However, it remains unclear how to train such analog computing systems while adhering to locality constraints imposed by the physical (as opposed to digital) nature of these systems. Local learning algorithms such as Equilibrium Propagation and Coupled Learning have been proposed to address this issue. In this paper, we develop an algorithm to exactly calculate gradients using a graph theoretic and analytical framework for Kirchhoff's laws. We also introduce Generalized Equilibrium Propagation, a framework encompassing a broad class of Hebbian learning algorithms, including Coupled Learning and Equilibrium Propagation, and show how our algorithm compares. We demonstrate our algorithm using numerical simulations and show that we can train resistor networks without the need for a replica or readout over all resistors, only at the output layer. We also show that under the analytical gradient approach, it is possible to update only a subset of the resistance values without a strong degradation in performance.
comment: 8 pages double column; plus 16 supp mat.;
☆ Can Large Language Models Generalize Procedures Across Representations?
Large language models (LLMs) are trained and tested extensively on symbolic representations such as code and graphs, yet real-world user tasks are often specified in natural language. To what extent can LLMs generalize across these representations? Here, we approach this question by studying isomorphic tasks involving procedures represented in code, graphs, and natural language (e.g., scheduling steps in planning). We find that training LLMs with popular post-training methods on graphs or code data alone does not reliably generalize to corresponding natural language tasks, while training solely on natural language can lead to inefficient performance gains. To address this gap, we propose a two-stage data curriculum that first trains on symbolic, then natural language data. The curriculum substantially improves model performance across model families and tasks. Remarkably, a 1.5B Qwen model trained by our method can closely match zero-shot GPT-4o in naturalistic planning. Finally, our analysis suggests that successful cross-representation generalization can be interpreted as a form of generative analogy, which our curriculum effectively encourages.
☆ MatGPTQ: Accurate and Efficient Post-Training Matryoshka Quantization
Matryoshka Quantization (MatQuant) is a recent quantization approach showing that a single integer-quantized model can be served across multiple precisions, by slicing the most significant bits (MSB) at inference time. This enables a single checkpoint to cover a wide range of memory and latency budgets, but renders quantization much more challenging. In particular, the initial MatQuant relies on expensive quantization-aware training (QAT) variants, rather than fast one-shot post training quantization (PTQ), and lacks open-source and kernel support. We address all of these limitations by introducing Post-Training Matryoshka Quantization (MatGPTQ), a new PTQ pipeline that produces a single parent model jointly optimized for multiple target precisions in one-shot, based on a small calibration set. MatGPTQ casts Matryoshka quantization as a multi-precision objective with bit-slicing and cross-bit error compensation, resulting in an algorithm that produces a multi-bit-width, "sliceable" model in a single pass. We also incorporate a new budget-aware search for heterogeneous per-layer bit-witdhs and provide efficient kernels that implement slicing and mixed-precision execution. Across standard LLMs and benchmarks, MatGPTQ preserves high-bit accuracy while substantially improving performance at low-bit-witdh settings. Overall, we establish a new state of the art for Matryoshka-style post-training quantization and make single-checkpoint, multi-precision deployment open and practical. Code is available at https://github.com/IST-DASLab/MatGPTQ.
comment: Preprint
☆ Sparse Training of Neural Networks based on Multilevel Mirror Descent
We introduce a dynamic sparse training algorithm based on linearized Bregman iterations / mirror descent that exploits the naturally incurred sparsity by alternating between periods of static and dynamic sparsity pattern updates. The key idea is to combine sparsity-inducing Bregman iterations with adaptive freezing of the network structure to enable efficient exploration of the sparse parameter space while maintaining sparsity. We provide convergence guaranties by embedding our method in a multilevel optimization framework. Furthermore, we empirically show that our algorithm can produce highly sparse and accurate models on standard benchmarks. We also show that the theoretical number of FLOPs compared to SGD training can be reduced from 38% for standard Bregman iterations to 6% for our method while maintaining test accuracy.
☆ Robust Representation Learning in Masked Autoencoders
Masked Autoencoders (MAEs) achieve impressive performance in image classification tasks, yet the internal representations they learn remain less understood. This work started as an attempt to understand the strong downstream classification performance of MAE. In this process we discover that representations learned with the pretraining and fine-tuning, are quite robust - demonstrating a good classification performance in the presence of degradations, such as blur and occlusions. Through layer-wise analysis of token embeddings, we show that pretrained MAE progressively constructs its latent space in a class-aware manner across network depth: embeddings from different classes lie in subspaces that become increasingly separable. We further observe that MAE exhibits early and persistent global attention across encoder layers, in contrast to standard Vision Transformers (ViTs). To quantify feature robustness, we introduce two sensitivity indicators: directional alignment between clean and perturbed embeddings, and head-wise retention of active features under degradations. These studies help establish the robust classification performance of MAEs.
comment: 11 pages, 8 figures, and 3 tables
☆ WARP Logic Neural Networks
Fast and efficient AI inference is increasingly important, and recent models that directly learn low-level logic operations have achieved state-of-the-art performance. However, existing logic neural networks incur high training costs, introduce redundancy or rely on approximate gradients, which limits scalability. To overcome these limitations, we introduce WAlsh Relaxation for Probabilistic (WARP) logic neural networks -- a novel gradient-based framework that efficiently learns combinations of hardware-native logic blocks. We show that WARP yields the most parameter-efficient representation for exactly learning Boolean functions and that several prior approaches arise as restricted special cases. Training is improved by introducing learnable thresholding and residual initialization, while we bridge the gap between relaxed training and discrete logic inference through stochastic smoothing. Experiments demonstrate faster convergence than state-of-the-art baselines, while scaling effectively to deeper architectures and logic functions with higher input arity.
comment: Under review
☆ Live or Lie: Action-Aware Capsule Multiple Instance Learning for Risk Assessment in Live Streaming Platforms
Live streaming has become a cornerstone of today's internet, enabling massive real-time social interactions. However, it faces severe risks arising from sparse, coordinated malicious behaviors among multiple participants, which are often concealed within normal activities and challenging to detect timely and accurately. In this work, we provide a pioneering study on risk assessment in live streaming rooms, characterized by weak supervision where only room-level labels are available. We formulate the task as a Multiple Instance Learning (MIL) problem, treating each room as a bag and defining structured user-timeslot capsules as instances. These capsules represent subsequences of user actions within specific time windows, encapsulating localized behavioral patterns. Based on this formulation, we propose AC-MIL, an Action-aware Capsule MIL framework that models both individual behaviors and group-level coordination patterns. AC-MIL captures multi-granular semantics and behavioral cues through a serial and parallel architecture that jointly encodes temporal dynamics and cross-user dependencies. These signals are integrated for robust room-level risk prediction, while also offering interpretable evidence at the behavior segment level. Extensive experiments on large-scale industrial datasets from Douyin demonstrate that AC-MIL significantly outperforms MIL and sequential baselines, establishing new state-of-the-art performance in room-level risk assessment for live streaming. Moreover, AC-MIL provides capsule-level interpretability, enabling identification of risky behavior segments as actionable evidence for intervention. The project page is available at: https://qiaoyran.github.io/AC-MIL/.
☆ Rank-Learner: Orthogonal Ranking of Treatment Effects
Many decision-making problems require ranking individuals by their treatment effects rather than estimating the exact effect magnitudes. Examples include prioritizing patients for preventive care interventions, or ranking customers by the expected incremental impact of an advertisement. Surprisingly, while causal effect estimation has received substantial attention in the literature, the problem of directly learning rankings of treatment effects has largely remained unexplored. In this paper, we introduce Rank-Learner, a novel two-stage learner that directly learns the ranking of treatment effects from observational data. We first show that naive approaches based on precise treatment effect estimation solve a harder problem than necessary for ranking, while our Rank-Learner optimizes a pairwise learning objective that recovers the true treatment effect ordering, without explicit CATE estimation. We further show that our Rank-Learner is Neyman-orthogonal and thus comes with strong theoretical guarantees, including robustness to estimation errors in the nuisance functions. In addition, our Rank-Learner is model-agnostic, and can be instantiated with arbitrary machine learning models (e.g., neural networks). We demonstrate the effectiveness of our method through extensive experiments where Rank-Learner consistently outperforms standard CATE estimators and non-orthogonal ranking methods. Overall, we provide practitioners with a new, orthogonal two-stage learner for ranking individuals by their treatment effects.
☆ Not All Negative Samples Are Equal: LLMs Learn Better from Plausible Reasoning
Learning from negative samples holds great promise for improving Large Language Model (LLM) reasoning capability, yet existing methods treat all incorrect responses as equally informative, overlooking the crucial role of sample quality. To address this, we propose Plausible Negative Samples (PNS), a method that synthesizes high-quality negative samples exhibiting expected format and structural coherence while ultimately yielding incorrect answers. PNS trains a dedicated model via reverse reinforcement learning (RL) guided by a composite reward combining format compliance, accuracy inversion, reward model assessment, and chain-of-thought evaluation, generating responses nearly indistinguishable from correct solutions. We further validate PNS as a plug-and-play data source for preference optimization across three backbone models on seven mathematical reasoning benchmarks. Results demonstrate that PNS consistently outperforms other negative sample synthesis methods, achieving an average improvement of 2.03% over RL-trained models.
☆ Mitigating Staleness in Asynchronous Pipeline Parallelism via Basis Rotation
Asynchronous pipeline parallelism maximizes hardware utilization by eliminating the pipeline bubbles inherent in synchronous execution, offering a path toward efficient large-scale distributed training. However, this efficiency gain can be compromised by gradient staleness, where the immediate model updates with delayed gradients introduce noise into the optimization process. Crucially, we identify a critical, yet often overlooked, pathology: this delay scales linearly with pipeline depth, fundamentally undermining the very scalability that the method originally intends to provide. In this work, we investigate this inconsistency and bridge the gap by rectifying delayed gradients through basis rotation, restoring scalable asynchronous training while maintaining performance. Specifically, we observe that the deleterious effects of delayed gradients are exacerbated when the Hessian eigenbasis is misaligned with the standard coordinate basis. We demonstrate that this misalignment prevents coordinate-wise adaptive schemes, such as Adam, from effectively leveraging curvature-aware adaptivity. This failure leads to significant oscillations in the optimization trajectory and, consequently, slower convergence. We substantiate these findings through both rigorous theoretical analysis and empirical evaluation. To address this challenge, we propose the use of basis rotation, demonstrating that it effectively mitigates the alignment issue and significantly accelerates convergence in asynchronous settings. For example, our training of a 1B-parameter LLM with basis rotation achieves the same training loss in 76.8% fewer iterations compared to the best-performing asynchronous pipeline parallel training baseline.
comment: Preprint. Under review
☆ A Function-Space Stability Boundary for Generalization in Interpolating Learning Systems
Modern learning systems often interpolate training data while still generalizing well, yet it remains unclear when algorithmic stability explains this behavior. We model training as a function-space trajectory and measure sensitivity to single-sample perturbations along this trajectory. We propose a contractive propagation condition and a stability certificate obtained by unrolling the resulting recursion. A small certificate implies stability-based generalization, while we also prove that there exist interpolating regimes with small risk where such contractive sensitivity cannot hold, showing that stability is not a universal explanation. Experiments confirm that certificate growth predicts generalization differences across optimizers, step sizes, and dataset perturbations. The framework therefore identifies regimes where stability explains generalization and where alternative mechanisms must account for success.
comment: 10 pages, 8 figures,
☆ Explaining the Explainer: Understanding the Inner Workings of Transformer-based Symbolic Regression Models
Following their success across many domains, transformers have also proven effective for symbolic regression (SR); however, the internal mechanisms underlying their generation of mathematical operators remain largely unexplored. Although mechanistic interpretability has successfully identified circuits in language and vision models, it has not yet been applied to SR. In this article, we introduce PATCHES, an evolutionary circuit discovery algorithm that identifies compact and correct circuits for SR. Using PATCHES, we isolate 28 circuits, providing the first circuit-level characterisation of an SR transformer. We validate these findings through a robust causal evaluation framework based on key notions such as faithfulness, completeness, and minimality. Our analysis shows that mean patching with performance-based evaluation most reliably isolates functionally correct circuits. In contrast, we demonstrate that direct logit attribution and probing classifiers primarily capture correlational features rather than causal ones, limiting their utility for circuit discovery. Overall, these results establish SR as a high-potential application domain for mechanistic interpretability and propose a principled methodology for circuit discovery.
comment: 8 pages, 5 figures
☆ Generative Decompression: Optimal Lossy Decoding Against Distribution Mismatch
This paper addresses optimal decoding strategies in lossy compression where the assumed distribution for compressor design mismatches the actual (true) distribution of the source. This problem has immediate relevance in standardized communication systems where the decoder acquires side information or priors about the true distribution that are unavailable to the fixed encoder. We formally define the mismatched quantization problem, demonstrating that the optimal reconstruction rule, termed generative decompression, aligns with classical Bayesian estimation by taking the conditional expectation under the true distribution given the quantization indices and adapting it to fixed-encoder constraints. This strategy effectively performs a generative Bayesian correction on the decoder side, strictly outperforming the conventional centroid rule. We extend this framework to transmission over noisy channels, deriving a robust soft-decoding rule that quantifies the inefficiency of standard modular source--channel separation architectures under mismatch. Furthermore, we generalize the approach to task-oriented decoding, showing that the optimal strategy shifts from conditional mean estimation to maximum a posteriori (MAP) detection. Experimental results on Gaussian sources and deep-learning-based semantic classification demonstrate that generative decompression closes a vast majority of the performance gap to the ideal joint-optimization benchmark, enabling adaptive, high-fidelity reconstruction without modifying the encoder.
☆ Reparameterization Flow Policy Optimization
Reparameterization Policy Gradient (RPG) has emerged as a powerful paradigm for model-based reinforcement learning, enabling high sample efficiency by backpropagating gradients through differentiable dynamics. However, prior RPG approaches have been predominantly restricted to Gaussian policies, limiting their performance and failing to leverage recent advances in generative models. In this work, we identify that flow policies, which generate actions via differentiable ODE integration, naturally align with the RPG framework, a connection not established in prior work. However, naively exploiting this synergy proves ineffective, often suffering from training instability and a lack of exploration. We propose Reparameterization Flow Policy Optimization (RFO). RFO computes policy gradients by backpropagating jointly through the flow generation process and system dynamics, unlocking high sample efficiency without requiring intractable log-likelihood calculations. RFO includes two tailored regularization terms for stability and exploration. We also propose a variant of RFO with action chunking. Extensive experiments on diverse locomotion and manipulation tasks, involving both rigid and soft bodies with state or visual inputs, demonstrate the effectiveness of RFO. Notably, on a challenging locomotion task controlling a soft-body quadruped, RFO achieves almost $2\times$ the reward of the state-of-the-art baseline.
☆ Lookahead Path Likelihood Optimization for Diffusion LLMs
Diffusion Large Language Models (dLLMs) support arbitrary-order generation, yet their inference performance critically depends on the unmasking order. Existing strategies rely on heuristics that greedily optimize local confidence, offering limited guidance for identifying unmasking paths that are globally consistent and accurate. To bridge this gap, we introduce path log-likelihood (Path LL), a trajectory-conditioned objective that strongly correlates with downstream accuracy and enables principled selection of unmasking paths. To optimize Path LL at inference time, we propose POKE, an efficient value estimator that predicts the expected future Path LL of a partial decoding trajectory. We then integrate this lookahead signal into POKE-SMC, a Sequential Monte Carlo-based search framework for dynamically identifying optimal unmasking paths. Extensive experiments across 6 reasoning tasks show that POKE-SMC consistently improves accuracy, achieving 2%--3% average gains over strong decoding-time scaling baselines at comparable inference overhead on LLaDA models and advancing the accuracy--compute Pareto frontier.
☆ DALI: A Workload-Aware Offloading Framework for Efficient MoE Inference on Local PCs
Mixture of Experts (MoE) architectures significantly enhance the capacity of LLMs without proportional increases in computation, but at the cost of a vast parameter size. Offloading MoE expert parameters to host memory and leveraging both CPU and GPU computation has recently emerged as a promising direction to support such models on resourceconstrained local PC platforms. While promising, we notice that existing approaches mismatch the dynamic nature of expert workloads, which leads to three fundamental inefficiencies: (1) Static expert assignment causes severe CPUGPU load imbalance, underutilizing CPU and GPU resources; (2) Existing prefetching techniques fail to accurately predict high-workload experts, leading to costly inaccurate prefetches; (3) GPU cache policies neglect workload dynamics, resulting in poor hit rates and limited effectiveness. To address these challenges, we propose DALI, a workloaDAware offLoadIng framework for efficient MoE inference on local PCs. To fully utilize hardware resources, DALI first dynamically assigns experts to CPU or GPU by modeling assignment as a 0-1 integer optimization problem and solving it efficiently using a Greedy Assignment strategy at runtime. To improve prefetching accuracy, we develop a Residual-Based Prefetching method leveraging inter-layer residual information to accurately predict high-workload experts. Additionally, we introduce a Workload-Aware Cache Replacement policy that exploits temporal correlation in expert activations to improve GPU cache efficiency. By evaluating across various MoE models and settings, DALI achieves significant speedups in the both prefill and decoding phases over the state-of-the-art offloading frameworks.
☆ Least but not Last: Fine-tuning Intermediate Principal Components for Better Performance-Forgetting Trade-Offs
Low-Rank Adaptation (LoRA) methods have emerged as crucial techniques for adapting large pre-trained models to downstream tasks under computational and memory constraints. However, they face a fundamental challenge in balancing task-specific performance gains against catastrophic forgetting of pre-trained knowledge, where existing methods provide inconsistent recommendations. This paper presents a comprehensive analysis of the performance-forgetting trade-offs inherent in low-rank adaptation using principal components as initialization. Our investigation reveals that fine-tuning intermediate components leads to better balance and show more robustness to high learning rates than first (PiSSA) and last (MiLoRA) components in existing work. Building on these findings, we provide a practical approach for initialization of LoRA that offers superior trade-offs. We demonstrate in a thorough empirical study on a variety of computer vision and NLP tasks that our approach improves accuracy and reduces forgetting, also in continual learning scenarios.
☆ A Minimal Task Reveals Emergent Path Integration and Object-Location Binding in a Predictive Sequence Model
Adaptive cognition requires structured internal models representing objects and their relations. Predictive neural networks are often proposed to form such "world models", yet their underlying mechanisms remain unclear. One hypothesis is that action-conditioned sequential prediction suffices for learning such world models. In this work, we investigate this possibility in a minimal in-silico setting. Sequentially sampling tokens from 2D continuous token scenes, a recurrent neural network is trained to predict the upcoming token from current input and a saccade-like displacement. On novel scenes, prediction accuracy improves across the sequence, indicating in-context learning. Decoding analyses reveal path integration and dynamic binding of token identity to position. Interventional analyses show that new bindings can be learned late in sequence and that out-of-distribution bindings can be learned. Together, these results demonstrate how structured representations that rely on flexible binding emerge to support prediction, offering a mechanistic account of sequential world modeling relevant to cognitive science.
comment: 7 pages, 4 figures
☆ DeepDFA: Injecting Temporal Logic in Deep Learning for Sequential Subsymbolic Applications
Integrating logical knowledge into deep neural network training is still a hard challenge, especially for sequential or temporally extended domains involving subsymbolic observations. To address this problem, we propose DeepDFA, a neurosymbolic framework that integrates high-level temporal logic - expressed as Deterministic Finite Automata (DFA) or Moore Machines - into neural architectures. DeepDFA models temporal rules as continuous, differentiable layers, enabling symbolic knowledge injection into subsymbolic domains. We demonstrate how DeepDFA can be used in two key settings: (i) static image sequence classification, and (ii) policy learning in interactive non-Markovian environments. Across extensive experiments, DeepDFA outperforms traditional deep learning models (e.g., LSTMs, GRUs, Transformers) and novel neuro-symbolic systems, achieving state-of-the-art results in temporal knowledge integration. These results highlight the potential of DeepDFA to bridge subsymbolic learning and symbolic reasoning in sequential tasks.
☆ Self-Verification Dilemma: Experience-Driven Suppression of Overused Checking in LLM Reasoning
Large Reasoning Models (LRMs) achieve strong performance by generating long reasoning traces with reflection. Through a large-scale empirical analysis, we find that a substantial fraction of reflective steps consist of self-verification (recheck) that repeatedly confirm intermediate results. These rechecks occur frequently across models and benchmarks, yet the vast majority are confirmatory rather than corrective, rarely identifying errors and altering reasoning outcomes. This reveals a mismatch between how often self-verification is activated and how often it is actually useful. Motivated by this, we propose a novel, experience-driven test-time framework that reduces the overused verification. Our method detects the activation of recheck behavior, consults an offline experience pool of past verification outcomes, and estimates whether a recheck is likely unnecessary via efficient retrieval. When historical experience suggests unnecessary, a suppression signal redirects the model to proceed. Across multiple model and benchmarks, our approach reduces token usage up to 20.3% while maintaining the accuracy, and in some datasets even yields accuracy improvements.
comment: 19 pages, 8 figures
☆ ScDiVa: Masked Discrete Diffusion for Joint Modeling of Single-Cell Identity and Expression
Single-cell RNA-seq profiles are high-dimensional, sparse, and unordered, causing autoregressive generation to impose an artificial ordering bias and suffer from error accumulation. To address this, we propose scDiVa, a masked discrete diffusion foundation model that aligns generation with the dropout-like corruption process by defining a continuous-time forward masking mechanism in token space. ScDiVa features a bidirectional denoiser that jointly models discrete gene identities and continuous values, utilizing entropy-normalized serialization and a latent anchor token to maximize information efficiency and preserve global cell identity. The model is trained via depth-invariant time sampling and a dual denoising objective to simulate varying sparsity levels while ensuring precise recovery of both identity and magnitude. Pre-trained on 59 million cells, scDiVa achieves strong transfer performance across major benchmarks, including batch integration, cell type annotation, and perturbation response prediction. These results suggest that masked discrete diffusion serves as a biologically coherent and effective alternative to autoregression.
comment: 19 pages, 11 figures
☆ Scaling Continual Learning with Bi-Level Routing Mixture-of-Experts
Continual learning, especially class-incremental learning (CIL), on the basis of a pre-trained model (PTM) has garnered substantial research interest in recent years. However, how to effectively learn both discriminative and comprehensive feature representations while maintaining stability and plasticity over very long task sequences remains an open problem. We propose CaRE, a scalable {C}ontinual Le{a}rner with efficient Bi-Level {R}outing Mixture-of-{E}xperts (BR-MoE). The core idea of BR-MoE is a bi-level routing mechanism: a router selection stage that dynamically activates relevant task-specific routers, followed by an expert routing phase that dynamically activates and aggregates experts, aiming to inject discriminative and comprehensive representations into every intermediate network layer. On the other hand, we introduce a challenging evaluation protocol for comprehensively assessing CIL methods across very long task sequences spanning hundreds of tasks. Extensive experiments show that CaRE demonstrates leading performance across a variety of datasets and task settings, including commonly used CIL datasets with classical CIL settings (e.g., 5-20 tasks). To the best of our knowledge, CaRE is the first continual learner that scales to very long task sequences (ranging from 100 to over 300 non-overlapping tasks), while outperforming all baselines by a large margin on such task sequences. Code will be publicly released at https://github.com/LMMMEng/CaRE.git.
☆ IntentRL: Training Proactive User-intent Agents for Open-ended Deep Research via Reinforcement Learning
Deep Research (DR) agents extend Large Language Models (LLMs) beyond parametric knowledge by autonomously retrieving and synthesizing evidence from large web corpora into long-form reports, enabling a long-horizon agentic paradigm. However, unlike real-time conversational assistants, DR is computationally expensive and time-consuming, creating an autonomy-interaction dilemma: high autonomy on ambiguous user queries often leads to prolonged execution with unsatisfactory outcomes. To address this, we propose IntentRL, a framework that trains proactive agents to clarify latent user intents before starting long-horizon research. To overcome the scarcity of open-ended research data, we introduce a scalable pipeline that expands a few seed samples into high-quality dialogue turns via a shallow-to-deep intent refinement graph. We further adopt a two-stage reinforcement learning (RL) strategy: Stage I applies RL on offline dialogues to efficiently learn general user-interaction behavior, while Stage II uses the trained agent and a user simulator for online rollouts to strengthen adaptation to diverse user feedback. Extensive experiments show that IntentRL significantly improves both intent hit rate and downstream task performance, outperforming the built-in clarify modules of closed-source DR agents and proactive LLM baselines.
comment: Preprint
☆ Soft-Radial Projection for Constrained End-to-End Learning
Integrating hard constraints into deep learning is essential for safety-critical systems. Yet existing constructive layers that project predictions onto constraint boundaries face a fundamental bottleneck: gradient saturation. By collapsing exterior points onto lower-dimensional surfaces, standard orthogonal projections induce rank-deficient Jacobians, which nullify gradients orthogonal to active constraints and hinder optimization. We introduce Soft-Radial Projection, a differentiable reparameterization layer that circumvents this issue through a radial mapping from Euclidean space into the interior of the feasible set. This construction guarantees strict feasibility while preserving a full-rank Jacobian almost everywhere, thereby preventing the optimization stalls typical of boundary-based methods. We theoretically prove that the architecture retains the universal approximation property and empirically show improved convergence behavior and solution quality over state-of-the-art optimization- and projection-based baselines.
☆ Causal Inference on Networks under Misspecified Exposure Mappings: A Partial Identification Framework
Estimating treatment effects in networks is challenging, as each potential outcome depends on the treatments of all other nodes in the network. To overcome this difficulty, existing methods typically impose an exposure mapping that compresses the treatment assignments in the network into a low-dimensional summary. However, if this mapping is misspecified, standard estimators for direct and spillover effects can be severely biased. We propose a novel partial identification framework for causal inference on networks to assess the robustness of treatment effects under misspecifications of the exposure mapping. Specifically, we derive sharp upper and lower bounds on direct and spillover effects under such misspecifications. As such, our framework presents a novel application of causal sensitivity analysis to exposure mappings. We instantiate our framework for three canonical exposure settings widely used in practice: (i) weighted means of the neighborhood treatments, (ii) threshold-based exposure mappings, and (iii) truncated neighborhood interference in the presence of higher-order spillovers. Furthermore, we develop orthogonal estimators for these bounds and prove that the resulting bound estimates are valid, sharp, and efficient. Our experiments show the bounds remain informative and provide reliable conclusions under misspecification of exposure mappings.
☆ Beyond Variance: Prompt-Efficient RLVR via Rare-Event Amplification and Bidirectional Pairing
Reinforcement learning with verifiable rewards (RLVR) is effective for training large language models on deterministic outcome reasoning tasks. Prior work shows RLVR works with few prompts, but prompt selection is often based only on training-accuracy variance, leading to unstable optimization directions and weaker transfer. We revisit prompt selection from a mechanism-level view and argue that an effective minibatch should provide both (i) a reliable positive anchor and (ii) explicit negative learning signals from rare failures. Based on this principle, we propose \emph{positive--negative pairing}: at each update, we sample a hard-but-solvable $q^{+}$ and an easy-but-brittle prompt $q^{-}$(high success rate but not perfect), characterized by low and high empirical success rates under multiple rollouts. We further introduce Weighted GRPO, which reweights binary outcomes at the pair level and uses group-normalized advantages to amplify rare successes on $q^{+}$ into sharp positive guidance while turning rare failures on $q^{-}$ into strong negative penalties. This bidirectional signal provides informative learning feedback for both successes and failures, improving sample efficiency without suppressing exploration. On Qwen2.5-Math-7B, a single paired minibatch per update consistently outperforms a GRPO baseline that selects two prompts via commonly used variance-based selection heuristics: AIME~2025 Pass@8 improves from 16.8 to 22.2, and AMC23 Pass@64 from 94.0 to 97.0, while remaining competitive with large-scale RLVR trained from a pool of 1209 training prompts. Similar gains are observed on Qwen2.5-Math-7B-Instruct.
☆ Score-based diffusion models for diffuse optical tomography with uncertainty quantification
Score-based diffusion models are a recently developed framework for posterior sampling in Bayesian inverse problems with a state-of-the-art performance for severely ill-posed problems by leveraging a powerful prior distribution learned from empirical data. Despite generating significant interest especially in the machine-learning community, a thorough study of realistic inverse problems in the presence of modelling error and utilization of physical measurement data is still outstanding. In this work, the framework of unconditional representation for the conditional score function (UCoS) is evaluated for linearized difference imaging in diffuse optical tomography (DOT). DOT uses boundary measurements of near-infrared light to estimate the spatial distribution of absorption and scattering parameters in biological tissues. The problem is highly ill-posed and thus sensitive to noise and modelling errors. We introduce a novel regularization approach that prevents overfitting of the score function by constructing a mixed score composed of a learned and a model-based component. Validation of this approach is done using both simulated and experimental measurement data. The experiments demonstrate that a data-driven prior distribution results in posterior samples with low variance, compared to classical model-based estimation, and centred around the ground truth, even in the context of a highly ill-posed problem and in the presence of modelling errors.
☆ CRL-VLA: Continual Vision-Language-Action Learning
Lifelong learning is critical for embodied agents in open-world environments, where reinforcement learning fine-tuning has emerged as an important paradigm to enable Vision-Language-Action (VLA) models to master dexterous manipulation through environmental interaction. Thus, Continual Reinforcement Learning (CRL) is a promising pathway for deploying VLA models in lifelong robotic scenarios, yet balancing stability (retaining old skills) and plasticity (learning new ones) remains a formidable challenge for existing methods. We introduce CRL-VLA, a framework for continual post-training of VLA models with rigorous theoretical bounds. We derive a unified performance bound linking the stability-plasticity trade-off to goal-conditioned advantage magnitude, scaled by policy divergence. CRL-VLA resolves this dilemma via asymmetric regulation: constraining advantage magnitudes on prior tasks while enabling controlled growth on new tasks. This is realized through a simple but effective dual-critic architecture with novel Goal-Conditioned Value Formulation (GCVF), where a frozen critic anchors semantic consistency and a trainable estimator drives adaptation. Experiments on the LIBERO benchmark demonstrate that CRL-VLA effectively harmonizes these conflicting objectives, outperforming baselines in both anti-forgetting and forward adaptation.
☆ Acceleration of Atomistic NEGF: Algorithms, Parallelization, and Machine Learning
The Non-equilibrium Green's function (NEGF) formalism is a particularly powerful method to simulate the quantum transport properties of nanoscale devices such as transistors, photo-diodes, or memory cells, in the ballistic limit of transport or in the presence of various scattering sources such as electronphonon, electron-photon, or even electron-electron interactions. The inclusion of all these mechanisms has been first demonstrated in small systems, composed of a few atoms, before being scaled up to larger structures made of thousands of atoms. Also, the accuracy of the models has kept improving, from empirical to fully ab-initio ones, e.g., density functional theory (DFT). This paper summarizes key (algorithmic) achievements that have allowed us to bring DFT+NEGF simulations closer to the dimensions and functionality of realistic systems. The possibility of leveraging graph neural networks and machine learning to speed up ab-initio device simulations is discussed as well.
☆ DiscoverLLM: From Executing Intents to Discovering Them
To handle ambiguous and open-ended requests, Large Language Models (LLMs) are increasingly trained to interact with users to surface intents they have not yet expressed (e.g., ask clarification questions). However, users are often ambiguous because they have not yet formed their intents: they must observe and explore outcomes to discover what they want. Simply asking "what kind of tone do you want?" fails when users themselves do not know. We introduce DiscoverLLM, a novel and generalizable framework that trains LLMs to help users form and discover their intents. Central to our approach is a novel user simulator that models cognitive state with a hierarchy of intents that progressively concretize as the model surfaces relevant options -- where the degree of concretization serves as a reward signal that models can be trained to optimize. Resulting models learn to collaborate with users by adaptively diverging (i.e., explore options) when intents are unclear, and converging (i.e., refine and implement) when intents concretize. Across proposed interactive benchmarks in creative writing, technical writing, and SVG drawing, DiscoverLLM achieves over 10% higher task performance while reducing conversation length by up to 40%. In a user study with 75 human participants, DiscoverLLM improved conversation satisfaction and efficiency compared to baselines.
☆ CoCoEmo: Composable and Controllable Human-Like Emotional TTS via Activation Steering
Emotional expression in human speech is nuanced and compositional, often involving multiple, sometimes conflicting, affective cues that may diverge from linguistic content. In contrast, most expressive text-to-speech systems enforce a single utterance-level emotion, collapsing affective diversity and suppressing mixed or text-emotion-misaligned expression. While activation steering via latent direction vectors offers a promising solution, it remains unclear whether emotion representations are linearly steerable in TTS, where steering should be applied within hybrid TTS architectures, and how such complex emotion behaviors should be evaluated. This paper presents the first systematic analysis of activation steering for emotional control in hybrid TTS models, introducing a quantitative, controllable steering framework, and multi-rater evaluation protocols that enable composable mixed-emotion synthesis and reliable text-emotion mismatch synthesis. Our results demonstrate, for the first time, that emotional prosody and expressive variability are primarily synthesized by the TTS language module instead of the flow-matching module, and also provide a lightweight steering approach for generating natural, human-like emotional speech.
☆ Most Convolutional Networks Suffer from Small Adversarial Perturbations
The existence of adversarial examples is relatively understood for random fully connected neural networks, but much less so for convolutional neural networks (CNNs). The recent work [Daniely, 2025] establishes that adversarial examples can be found in CNNs, in some non-optimal distance from the input. We extend over this work and prove that adversarial examples in random CNNs with input dimension $d$ can be found already in $\ell_2$-distance of order $\lVert x \rVert /\sqrt{d}$ from the input $x$, which is essentially the nearest possible. We also show that such adversarial small perturbations can be found using a single step of gradient descent. To derive our results we use Fourier decomposition to efficiently bound the singular values of a random linear convolutional operator, which is the main ingredient of a CNN layer. This bound might be of independent interest.
☆ Enhancing Quantum Diffusion Models for Complex Image Generation
Quantum generative models offer a novel approach to exploring high-dimensional Hilbert spaces but face significant challenges in scalability and expressibility when applied to multi-modal distributions. In this study, we explore a Hybrid Quantum-Classical U-Net architecture integrated with Adaptive Non-Local Observables (ANO) as a potential solution to these hurdles. By compressing classical data into a dense quantum latent space and utilizing trainable observables, our model aims to extract non-local features that complement classical processing. We also investigate the role of Skip Connections in preserving semantic information during the reverse diffusion process. Experimental results on the full MNIST dataset (digits 0-9) demonstrate that the proposed architecture is capable of generating structurally coherent and recognizable images for all digit classes. While hardware constraints still impose limitations on resolution, our findings suggest that hybrid architectures with adaptive measurements provide a feasible pathway for mitigating mode collapse and enhancing generative capabilities in the NISQ era.
comment: 18 pages, 6 figures
☆ Risk Awareness Injection: Calibrating Vision-Language Models for Safety without Compromising Utility
Vision language models (VLMs) extend the reasoning capabilities of large language models (LLMs) to cross-modal settings, yet remain highly vulnerable to multimodal jailbreak attacks. Existing defenses predominantly rely on safety fine-tuning or aggressive token manipulations, incurring substantial training costs or significantly degrading utility. Recent research shows that LLMs inherently recognize unsafe content in text, and the incorporation of visual inputs in VLMs frequently dilutes risk-related signals. Motivated by this, we propose Risk Awareness Injection (RAI), a lightweight and training-free framework for safety calibration that restores LLM-like risk recognition by amplifying unsafe signals in VLMs. Specifically, RAI constructs an Unsafe Prototype Subspace from language embeddings and performs targeted modulation on selected high-risk visual tokens, explicitly activating safety-critical signals within the cross-modal feature space. This modulation restores the model's LLM-like ability to detect unsafe content from visual inputs, while preserving the semantic integrity of original tokens for cross-modal reasoning. Extensive experiments across multiple jailbreak and utility benchmarks demonstrate that RAI substantially reduces attack success rate without compromising task performance.
☆ The Label Horizon Paradox: Rethinking Supervision Targets in Financial Forecasting
While deep learning has revolutionized financial forecasting through sophisticated architectures, the design of the supervision signal itself is rarely scrutinized. We challenge the canonical assumption that training labels must strictly mirror inference targets, uncovering the Label Horizon Paradox: the optimal supervision signal often deviates from the prediction goal, shifting across intermediate horizons governed by market dynamics. We theoretically ground this phenomenon in a dynamic signal-noise trade-off, demonstrating that generalization hinges on the competition between marginal signal realization and noise accumulation. To operationalize this insight, we propose a bi-level optimization framework that autonomously identifies the optimal proxy label within a single training run. Extensive experiments on large-scale financial datasets demonstrate consistent improvements over conventional baselines, thereby opening new avenues for label-centric research in financial forecasting.
☆ Improving the Linearized Laplace Approximation via Quadratic Approximations
Deep neural networks (DNNs) often produce overconfident out-of-distribution predictions, motivating Bayesian uncertainty quantification. The Linearized Laplace Approximation (LLA) achieves this by linearizing the DNN and applying Laplace inference to the resulting model. Importantly, the linear model is also used for prediction. We argue this linearization in the posterior may degrade fidelity to the true Laplace approximation. To alleviate this problem, without increasing significantly the computational cost, we propose the Quadratic Laplace Approximation (QLA). QLA approximates each second order factor in the approximate Laplace log-posterior using a rank-one factor obtained via efficient power iterations. QLA is expected to yield a posterior precision closer to that of the full Laplace without forming the full Hessian, which is typically intractable. For prediction, QLA also uses the linearized model. Empirically, QLA yields modest yet consistent uncertainty estimation improvements over LLA on five regression datasets.
comment: 6 pages, 1 table. Accepted at European Symposium on Artificial Neural Networks (ESANN 2026) as poster presentation
☆ On the Entropy Dynamics in Reinforcement Fine-Tuning of Large Language Models
Entropy serves as a critical metric for measuring the diversity of outputs generated by large language models (LLMs), providing valuable insights into their exploration capabilities. While recent studies increasingly focus on monitoring and adjusting entropy to better balance exploration and exploitation in reinforcement fine-tuning (RFT), a principled understanding of entropy dynamics during this process is yet to be thoroughly investigated. In this paper, we establish a theoretical framework for analyzing the entropy dynamics during the RFT process, which begins with a discriminant expression that quantifies entropy change under a single logit update. This foundation enables the derivation of a first-order expression for entropy change, which can be further extended to the update formula of Group Relative Policy Optimization (GRPO). The corollaries and insights drawn from the theoretical analysis inspire the design of entropy control methods, and also offer a unified lens for interpreting various entropy-based methods in existing studies. We provide empirical evidence to support the main conclusions of our analysis and demonstrate the effectiveness of the derived entropy-discriminator clipping methods. This study yields novel insights into RFT training dynamics, providing theoretical support and practical strategies for optimizing the exploration-exploitation balance during LLM fine-tuning.
☆ From Vicious to Virtuous Cycles: Synergistic Representation Learning for Unsupervised Video Object-Centric Learning ICLR 2026
Unsupervised object-centric learning models, particularly slot-based architectures, have shown great promise in decomposing complex scenes. However, their reliance on reconstruction-based training creates a fundamental conflict between the sharp, high-frequency attention maps of the encoder and the spatially consistent but blurry reconstruction maps of the decoder. We identify that this discrepancy gives rise to a vicious cycle: the noisy feature map from the encoder forces the decoder to average over possibilities and produce even blurrier outputs, while the gradient computed from blurry reconstruction maps lacks high-frequency details necessary to supervise encoder features. To break this cycle, we introduce Synergistic Representation Learning (SRL) that establishes a virtuous cycle where the encoder and decoder mutually refine one another. SRL leverages the encoder's sharpness to deblur the semantic boundary within the decoder output, while exploiting the decoder's spatial consistency to denoise the encoder's features. This mutual refinement process is stabilized by a warm-up phase with a slot regularization objective that initially allocates distinct entities per slot. By bridging the representational gap between the encoder and decoder, SRL achieves state-of-the-art results on video object-centric learning benchmarks. Codes are available at https://github.com/hynnsk/SRL.
comment: ICLR 2026; Code is available at https://github.com/hynnsk/SRL
☆ Chain-of-Goals Hierarchical Policy for Long-Horizon Offline Goal-Conditioned RL
Offline goal-conditioned reinforcement learning remains challenging for long-horizon tasks. While hierarchical approaches mitigate this issue by decomposing tasks, most existing methods rely on separate high- and low-level networks and generate only a single intermediate subgoal, making them inadequate for complex tasks that require coordinating multiple intermediate decisions. To address this limitation, we draw inspiration from the chain-of-thought paradigm and propose the Chain-of-Goals Hierarchical Policy (CoGHP), a novel framework that reformulates hierarchical decision-making as autoregressive sequence modeling within a unified architecture. Given a state and a final goal, CoGHP autoregressively generates a sequence of latent subgoals followed by the primitive action, where each latent subgoal acts as a reasoning step that conditions subsequent predictions. To implement this efficiently, we pioneer the use of an MLP-Mixer backbone, which supports cross-token communication and captures structural relationships among state, goal, latent subgoals, and action. Across challenging navigation and manipulation benchmarks, CoGHP consistently outperforms strong offline baselines, demonstrating improved performance on long-horizon tasks.
comment: 22 pages
☆ An Approximate Ascent Approach To Prove Convergence of PPO
Proximal Policy Optimization (PPO) is among the most widely used deep reinforcement learning algorithms, yet its theoretical foundations remain incomplete. Most importantly, convergence and understanding of fundamental PPO advantages remain widely open. Under standard theory assumptions we show how PPO's policy update scheme (performing multiple epochs of minibatch updates on multi-use rollouts with a surrogate gradient) can be interpreted as approximated policy gradient ascent. We show how to control the bias accumulated by the surrogate gradients and use techniques from random reshuffling to prove a convergence theorem for PPO that sheds light on PPO's success. Additionally, we identify a previously overlooked issue in truncated Generalized Advantage Estimation commonly used in PPO. The geometric weighting scheme induces infinite mass collapse onto the longest $k$-step advantage estimator at episode boundaries. Empirical evaluations show that a simple weight correction can yield substantial improvements in environments with strong terminal signal, such as Lunar Lander.
☆ Dynamic Topology Optimization for Non-IID Data in Decentralized Learning IEEE
Decentralized learning (DL) enables a set of nodes to train a model collaboratively without central coordination, offering benefits for privacy and scalability. However, DL struggles to train a high accuracy model when the data distribution is non-independent and identically distributed (non-IID) and when the communication topology is static. To address these issues, we propose Morph, a topology optimization algorithm for DL. In Morph, nodes adaptively choose peers for model exchange based on maximum model dissimilarity. Morph maintains a fixed in-degree while dynamically reshaping the communication graph through gossip-based peer discovery and diversity-driven neighbor selection, thereby improving robustness to data heterogeneity. Experiments on CIFAR-10 and FEMNIST with up to 100 nodes show that Morph consistently outperforms static and epidemic baselines, while closely tracking the fully connected upper bound. On CIFAR-10, Morph achieves a relative improvement of 1.12x in test accuracy compared to the state-of-the-art baselines. On FEMNIST, Morph achieves an accuracy that is 1.08x higher than Epidemic Learning. Similar trends hold for 50 node deployments, where Morph narrows the gap to the fully connected upper bound within 0.5 percentage points on CIFAR-10. These results demonstrate that Morph achieves higher final accuracy, faster convergence, and more stable learning as quantified by lower inter-node variance, while requiring fewer communication rounds than baselines and no global knowledge.
comment: 10 pages, 11 figures. Accepted for publication in the 13th IEEE International Conference on Big Data (BigData 2025). To appear
☆ Rethinking Benign Relearning: Syntax as the Hidden Driver of Unlearning Failures ICLR 2026
Machine unlearning aims to remove specific content from trained models while preserving overall performance. However, the phenomenon of benign relearning, in which forgotten information reemerges even from benign fine-tuning data, reveals that existing unlearning methods remain fundamentally fragile. A common explanation attributes this effect to topical relevance, but we find this account insufficient. Through systematic analysis, we demonstrate that syntactic similarity, rather than topicality, is the primary driver: across benchmarks, syntactically similar data consistently trigger recovery even without topical overlap, due to their alignment in representations and gradients with the forgotten content. Motivated by this insight, we introduce syntactic diversification, which paraphrases the original forget queries into heterogeneous structures prior to unlearning. This approach effectively suppresses benign relearning, accelerates forgetting, and substantially alleviates the trade-off between unlearning efficacy and model utility.
comment: Accepted at ICLR 2026
☆ Symbol-Aware Reasoning with Masked Discrete Diffusion for Handwritten Mathematical Expression Recognition
Handwritten Mathematical Expression Recognition (HMER) requires reasoning over diverse symbols and 2D structural layouts, yet autoregressive models struggle with exposure bias and syntactic inconsistency. We present a discrete diffusion framework that reformulates HMER as iterative symbolic refinement instead of sequential generation. Through multi-step remasking, the proposal progressively refines both symbols and structural relations, removing causal dependencies and improving structural consistency. A symbol-aware tokenization and Random-Masking Mutual Learning further enhance syntactic alignment and robustness to handwriting diversity. On the MathWriting benchmark, the proposal achieves 5.56\% CER and 60.42\% EM, outperforming strong Transformer and commercial baselines. Consistent gains on CROHME 2014--2023 demonstrate that discrete diffusion provides a new paradigm for structure-aware visual recognition beyond generative modeling.
☆ MeKi: Memory-based Expert Knowledge Injection for Efficient LLM Scaling
Scaling Large Language Models (LLMs) typically relies on increasing the number of parameters or test-time computations to boost performance. However, these strategies are impractical for edge device deployment due to limited RAM and NPU resources. Despite hardware constraints, deploying performant LLM on edge devices such as smartphone remains crucial for user experience. To address this, we propose MeKi (Memory-based Expert Knowledge Injection), a novel system that scales LLM capacity via storage space rather than FLOPs. MeKi equips each Transformer layer with token-level memory experts that injects pre-stored semantic knowledge into the generation process. To bridge the gap between training capacity and inference efficiency, we employ a re-parameterization strategy to fold parameter matrices used during training into a compact static lookup table. By offloading the knowledge to ROM, MeKi decouples model capacity from computational cost, introducing zero inference latency overhead. Extensive experiments demonstrate that MeKi significantly outperforms dense LLM baselines with identical inference speed, validating the effectiveness of memory-based scaling paradigm for on-device LLMs. Project homepage is at https://github.com/ningding-o/MeKi.
☆ GFlowPO: Generative Flow Network as a Language Model Prompt Optimizer
Finding effective prompts for language models (LMs) is critical yet notoriously difficult: the prompt space is combinatorially large, rewards are sparse due to expensive target-LM evaluation. Yet, existing RL-based prompt optimizers often rely on on-policy updates and a meta-prompt sampled from a fixed distribution, leading to poor sample efficiency. We propose GFlowPO, a probabilistic prompt optimization framework that casts prompt search as a posterior inference problem over latent prompts regularized by a meta-prompted reference-LM prior. In the first step, we fine-tune a lightweight prompt-LM with an off-policy Generative Flow Network (GFlowNet) objective, using a replay-based training policy that reuses past prompt evaluations to enable sample-efficient exploration. In the second step, we introduce Dynamic Memory Update (DMU), a training-free mechanism that updates the meta-prompt by injecting both (i) diverse prompts from a replay buffer and (ii) top-performing prompts from a small priority queue, thereby progressively concentrating the search process on high-reward regions. Across few-shot text classification, instruction induction benchmarks, and question answering tasks, GFlowPO consistently outperforms recent discrete prompt optimization baselines.
☆ Achieving Linear Speedup for Composite Federated Learning
This paper proposes FedNMap, a normal map-based method for composite federated learning, where the objective consists of a smooth loss and a possibly nonsmooth regularizer. FedNMap leverages a normal map-based update scheme to handle the nonsmooth term and incorporates a local correction strategy to mitigate the impact of data heterogeneity across clients. Under standard assumptions, including smooth local losses, weak convexity of the regularizer, and bounded stochastic gradient variance, FedNMap achieves linear speedup with respect to both the number of clients $n$ and the number of local updates $Q$ for nonconvex losses, both with and without the Polyak-Łojasiewicz (PL) condition. To our knowledge, this is the first result establishing linear speedup for nonconvex composite federated learning.
comment: 27 pages, 12 figures
☆ PACE: Pretrained Audio Continual Learning ICLR 2026
Audio is a fundamental modality for analyzing speech, music, and environmental sounds. Although pretrained audio models have significantly advanced audio understanding, they remain fragile in real-world settings where data distributions shift over time. In this work, we present the first systematic benchmark for audio continual learning (CL) with pretrained models (PTMs), together with a comprehensive analysis of its unique challenges. Unlike in vision, where parameter-efficient fine-tuning (PEFT) has proven effective for CL, directly transferring such strategies to audio leads to poor performance. This stems from a fundamental property of audio backbones: they focus on low-level spectral details rather than structured semantics, causing severe upstream-downstream misalignment. Through extensive empirical study, we identify analytic classifiers with first-session adaptation (FSA) as a promising direction, but also reveal two major limitations: representation saturation in coarse-grained scenarios and representation drift in fine-grained scenarios. To address these challenges, we propose PACE, a novel method that enhances FSA via a regularized analytic classifier and enables multi-session adaptation through adaptive subspace-orthogonal PEFT for improved semantic alignment. In addition, we introduce spectrogram-based boundary-aware perturbations to mitigate representation overlap and improve stability. Experiments on six diverse audio CL benchmarks demonstrate that PACE substantially outperforms state-of-the-art baselines, marking an important step toward robust and scalable audio continual learning with PTMs.
comment: Accepted at ICLR 2026
☆ Causal Graph Learning via Distributional Invariance of Cause-Effect Relationship
This paper introduces a new framework for recovering causal graphs from observational data, leveraging the observation that the distribution of an effect, conditioned on its causes, remains invariant to changes in the prior distribution of those causes. This insight enables a direct test for potential causal relationships by checking the variance of their corresponding effect-cause conditional distributions across multiple downsampled subsets of the data. These subsets are selected to reflect different prior cause distributions, while preserving the effect-cause conditional relationships. Using this invariance test and exploiting an (empirical) sparsity of most causal graphs, we develop an algorithm that efficiently uncovers causal relationships with quadratic complexity in the number of observational variables, reducing the processing time by up to 25x compared to state-of-the-art methods. Our empirical experiments on a varied benchmark of large-scale datasets show superior or equivalent performance compared to existing works, while achieving enhanced scalability.
☆ Building Interpretable Models for Moral Decision-Making AAAI'26
We build a custom transformer model to study how neural networks make moral decisions on trolley-style dilemmas. The model processes structured scenarios using embeddings that encode who is affected, how many people, and which outcome they belong to. Our 2-layer architecture achieves 77% accuracy on Moral Machine data while remaining small enough for detailed analysis. We use different interpretability techniques to uncover how moral reasoning distributes across the network, demonstrating that biases localize to distinct computational stages among other findings.
comment: 8 pages, 4 figures, accepted to AAAI'26 Machine Ethics Workshop
☆ Robustness as an Emergent Property of Task Performance
Robustness is often regarded as a critical future challenge for real-world applications, where stability is essential. However, as models often learn tasks in a similar order, we hypothesize that easier tasks will be easier regardless of how they are presented to the model. Indeed, in this paper, we show that as models approach high performance on a task, robustness is effectively achieved. Through an empirical analysis of multiple models across diverse datasets and configurations (e.g., paraphrases, different temperatures), we find a strong positive correlation. Moreover, we find that robustness is primarily driven by task-specific competence rather than inherent model-level properties, challenging current approaches that treat robustness as an independent capability. Thus, from a high-level perspective, we may expect that as new tasks saturate, model robustness on these tasks will emerge accordingly. For researchers, this implies that explicit efforts to measure and improve robustness may warrant reduced emphasis, as such robustness is likely to develop alongside performance gains. For practitioners, it acts as a sign that indeed the tasks that the literature deals with are unreliable, but on easier past tasks, the models are reliable and ready for real-world deployment.
☆ Tiled Prompts: Overcoming Prompt Underspecification in Image and Video Super-Resolution
Text-conditioned diffusion models have advanced image and video super-resolution by using prompts as semantic priors, but modern super-resolution pipelines typically rely on latent tiling to scale to high resolutions, where a single global caption causes prompt underspecification. A coarse global prompt often misses localized details (prompt sparsity) and provides locally irrelevant guidance (prompt misguidance) that can be amplified by classifier-free guidance. We propose Tiled Prompts, a unified framework for image and video super-resolution that generates a tile-specific prompt for each latent tile and performs super-resolution under locally text-conditioned posteriors, providing high-information guidance that resolves prompt underspecification with minimal overhead. Experiments on high resolution real-world images and videos show consistent gains in perceptual quality and text alignment, while reducing hallucinations and tile-level artifacts relative to global-prompt baselines.
comment: 13 pages, 7 figures
☆ Accurate Failure Prediction in Agents Does Not Imply Effective Failure Prevention
Proactive interventions by LLM critic models are often assumed to improve reliability, yet their effects at deployment time are poorly understood. We show that a binary LLM critic with strong offline accuracy (AUROC 0.94) can nevertheless cause severe performance degradation, inducing a 26 percentage point (pp) collapse on one model while affecting another by near zero pp. This variability demonstrates that LLM critic accuracy alone is insufficient to determine whether intervention is safe. We identify a disruption-recovery tradeoff: interventions may recover failing trajectories but also disrupt trajectories that would have succeeded. Based on this insight, we propose a pre-deployment test that uses a small pilot of 50 tasks to estimate whether intervention is likely to help or harm, without requiring full deployment. Across benchmarks, the test correctly anticipates outcomes: intervention degrades performance on high-success tasks (0 to -26 pp), while yielding a modest improvement on the high-failure ALFWorld benchmark (+2.8 pp, p=0.014). The primary value of our framework is therefore identifying when not to intervene, preventing severe regressions before deployment.
☆ Bayesian Conformal Prediction as a Decision Risk Problem
Bayesian posterior predictive densities as non-conformity scores and Bayesian quadrature are used to estimate and minimise the expected prediction set size. Operating within a split conformal framework, BCP provides valid coverage guarantees and demonstrates reliable empirical coverage under model misspecification. Across regression and classification tasks, including distribution-shifted settings such as ImageNet-A, BCP yields prediction sets of comparable size to split conformal prediction, while exhibiting substantially lower run-to-run variability in set size. In sparse regression with nominal coverage of 80 percent, BCP achieves 81 percent empirical coverage under a misspecified prior, whereas Bayesian credible intervals under-cover at 49 percent.
comment: 18 pages, 5 figures. Accepted at EIML 2025 at Eurips
☆ From Inexact Gradients to Byzantine Robustness: Acceleration and Optimization under Similarity
Standard federated learning algorithms are vulnerable to adversarial nodes, a.k.a. Byzantine failures. To solve this issue, robust distributed learning algorithms have been developed, which typically replace parameter averaging by robust aggregations. While generic conditions on these aggregations exist to guarantee the convergence of (Stochastic) Gradient Descent (SGD), the analyses remain rather ad-hoc. This hinders the development of more complex robust algorithms, such as accelerated ones. In this work, we show that Byzantine-robust distributed optimization can, under standard generic assumptions, be cast as a general optimization with inexact gradient oracles (with both additive and multiplicative error terms), an active field of research. This allows for instance to directly show that GD on top of standard robust aggregation procedures obtains optimal asymptotic error in the Byzantine setting. Going further, we propose two optimization schemes to speed up the convergence. The first one is a Nesterov-type accelerated scheme whose proof directly derives from accelerated inexact gradient results applied to our formulation. The second one hinges on Optimization under Similarity, in which the server leverages an auxiliary loss function that approximates the global loss. Both approaches allow to drastically reduce the communication complexity compared to previous methods, as we show theoretically and empirically.
☆ A Novel approach to portfolio construction
This paper proposes a machine learning-based framework for asset selection and portfolio construction, termed the Best-Path Algorithm Sparse Graphical Model (BPASGM). The method extends the Best-Path Algorithm (BPA) by mapping linear and non-linear dependencies among a large set of financial assets into a sparse graphical model satisfying a structural Markov property. Based on this representation, BPASGM performs a dependence-driven screening that removes positively or redundantly connected assets, isolating subsets that are conditionally independent or negatively correlated. This step is designed to enhance diversification and reduce estimation error in high-dimensional portfolio settings. Portfolio optimization is then conducted on the selected subset using standard mean-variance techniques. BPASGM does not aim to improve the theoretical mean-variance optimum under known population parameters, but rather to enhance realized performance in finite samples, where sample-based Markowitz portfolios are highly sensitive to estimation error. Monte Carlo simulations show that BPASGM-based portfolios achieve more stable risk-return profiles, lower realized volatility, and superior risk-adjusted performance compared to standard mean-variance portfolios. Empirical results for U.S. equities, global stock indices, and foreign exchange rates over 1990-2025 confirm these findings and demonstrate a substantial reduction in portfolio cardinality. Overall, BPASGM offers a statistically grounded and computationally efficient framework that integrates sparse graphical modeling with portfolio theory for dependence-aware asset selection.
☆ Information-Theoretic Multi-Model Fusion for Target-Oriented Adaptive Sampling in Materials Design
Target-oriented discovery under limited evaluation budgets requires making reliable progress in high-dimensional, heterogeneous design spaces where each new measurement is costly, whether experimental or high-fidelity simulation. We present an information-theoretic framework for target-oriented adaptive sampling that reframes optimization as trajectory discovery: instead of approximating the full response surface, the method maintains and refines a low-entropy information state that concentrates search on target-relevant directions. The approach couples data, model beliefs, and physics/structure priors through dimension-aware information budgeting, adaptive bootstrapped distillation over a heterogeneous surrogate reservoir, and structure-aware candidate manifold analysis with Kalman-inspired multi-model fusion to balance consensus-driven exploitation and disagreement-driven exploration. Evaluated under a single unified protocol without dataset-specific tuning, the framework improves sample efficiency and reliability across 14 single- and multi-objective materials design tasks spanning candidate pools from $600$ to $4 \times 10^6$ and feature dimensions from $10$ to $10^3$, typically reaching top-performing regions within 100 evaluations. Complementary 20-dimensional synthetic benchmarks (Ackley, Rastrigin, Schwefel) further demonstrate robustness to rugged and multimodal landscapes.
comment: 37 pages, 5 figures, 2 tables
☆ Multiparameter Uncertainty Mapping in Quantitative Molecular MRI using a Physics-Structured Variational Autoencoder (PS-VAE) IEEE
Quantitative imaging methods, such as magnetic resonance fingerprinting (MRF), aim to extract interpretable pathology biomarkers by estimating biophysical tissue parameters from signal evolutions. However, the pattern-matching algorithms or neural networks used in such inverse problems often lack principled uncertainty quantification, which limits the trustworthiness and transparency, required for clinical acceptance. Here, we describe a physics-structured variational autoencoder (PS-VAE) designed for rapid extraction of voxelwise multi-parameter posterior distributions. Our approach integrates a differentiable spin physics simulator with self-supervised learning, and provides a full covariance that captures the inter-parameter correlations of the latent biophysical space. The method was validated in a multi-proton pool chemical exchange saturation transfer (CEST) and semisolid magnetization transfer (MT) molecular MRF study, across in-vitro phantoms, tumor-bearing mice, healthy human volunteers, and a subject with glioblastoma. The resulting multi-parametric posteriors are in good agreement with those calculated using a brute-force Bayesian analysis, while providing an orders-of-magnitude acceleration in whole brain quantification. In addition, we demonstrate how monitoring the multi-parameter posterior dynamics across progressively acquired signals provides practical insights for protocol optimization and may facilitate real-time adaptive acquisition.
comment: Submitted to IEEE Transactions on Medical Imaging. This project was funded by the European Union (ERC, BabyMagnet, project no. 101115639). Views and opinions expressed are, however, those of the authors only and do not necessarily reflect those of the European Union or the European Research Council. Neither the European Union nor the granting authority can be held responsible for them
☆ RDT2: Exploring the Scaling Limit of UMI Data Towards Zero-Shot Cross-Embodiment Generalization
Vision-Language-Action (VLA) models hold promise for generalist robotics but currently struggle with data scarcity, architectural inefficiencies, and the inability to generalize across different hardware platforms. We introduce RDT2, a robotic foundation model built upon a 7B parameter VLM designed to enable zero-shot deployment on novel embodiments for open-vocabulary tasks. To achieve this, we collected one of the largest open-source robotic datasets--over 10,000 hours of demonstrations in diverse families--using an enhanced, embodiment-agnostic Universal Manipulation Interface (UMI). Our approach employs a novel three-stage training recipe that aligns discrete linguistic knowledge with continuous control via Residual Vector Quantization (RVQ), flow-matching, and distillation for real-time inference. Consequently, RDT2 becomes one of the first models that simultaneously zero-shot generalizes to unseen objects, scenes, instructions, and even robotic platforms. Besides, it outperforms state-of-the-art baselines in dexterous, long-horizon, and dynamic downstream tasks like playing table tennis. See https://rdt-robotics.github.io/rdt2/ for more information.
☆ Entropy-Gated Selective Policy Optimization:Token-Level Gradient Allocation for Hybrid Training of Large Language Models
Hybrid training methods for large language models combine supervised fine tuning (SFT) on expert demonstrations with reinforcement learning (RL) on model rollouts, typically at the sample level. We propose Entropy Gated Selective Policy Optimization (EGSPO), a three stage framework that extends sample level mixing with token level gradient modulation. Stage 1, SFT expert learning, establishes a reliable warm up policy using expert demonstrations with a pure SFT loss. Stage 2, RL rollout generation, samples trajectories from the current policy and computes per token predictive entropy. Stage 3, the EGSPO mechanism, applies entropy gated gradient allocation: a predictive entropy module routes high entropy tokens to full PPO updates to encourage exploration, and low entropy tokens to attenuated PPO updates to reduce variance and preserve knowledge. Critically, both branches incorporate the advantage function A_t, ensuring that incorrect trajectories receive consistent negative learning signals and preventing reinforcement of confident errors. EGSPO achieves consistent improvements on mathematical reasoning benchmarks, with gains of 3.8 percent on AIME and 2.9 percent on MATH over the CHORD phi baseline, while incurring only 3.4 percent additional computational overhead.
comment: accepted by cscwd2026
☆ medR: Reward Engineering for Clinical Offline Reinforcement Learning via Tri-Drive Potential Functions
Reinforcement Learning (RL) offers a powerful framework for optimizing dynamic treatment regimes (DTRs). However, clinical RL is fundamentally bottlenecked by reward engineering: the challenge of defining signals that safely and effectively guide policy learning in complex, sparse offline environments. Existing approaches often rely on manual heuristics that fail to generalize across diverse pathologies. To address this, we propose an automated pipeline leveraging Large Language Models (LLMs) for offline reward design and verification. We formulate the reward function using potential functions consisted of three core components: survival, confidence, and competence. We further introduce quantitative metrics to rigorously evaluate and select the optimal reward structure prior to deployment. By integrating LLM-driven domain knowledge, our framework automates the design of reward functions for specific diseases while significantly enhancing the performance of the resulting policies.
☆ Periodic Regularized Q-Learning
In reinforcement learning (RL), Q-learning is a fundamental algorithm whose convergence is guaranteed in the tabular setting. However, this convergence guarantee does not hold under linear function approximation. To overcome this limitation, a significant line of research has introduced regularization techniques to ensure stable convergence under function approximation. In this work, we propose a new algorithm, periodic regularized Q-learning (PRQ). We first introduce regularization at the level of the projection operator and explicitly construct a regularized projected value iteration (RP-VI), subsequently extending it to a sample-based RL algorithm. By appropriately regularizing the projection operator, the resulting projected value iteration becomes a contraction. By extending this regularized projection into the stochastic setting, we establish the PRQ algorithm and provide a rigorous theoretical analysis that proves finite-time convergence guarantees for PRQ under linear function approximation.
☆ R1-SyntheticVL: Is Synthetic Data from Generative Models Ready for Multimodal Large Language Model?
In this work, we aim to develop effective data synthesis techniques that autonomously synthesize multimodal training data for enhancing MLLMs in solving complex real-world tasks. To this end, we propose Collective Adversarial Data Synthesis (CADS), a novel and general approach to synthesize high-quality, diverse and challenging multimodal data for MLLMs. The core idea of CADS is to leverage collective intelligence to ensure high-quality and diverse generation, while exploring adversarial learning to synthesize challenging samples for effectively driving model improvement. Specifically, CADS operates with two cyclic phases, i.e., Collective Adversarial Data Generation (CAD-Generate) and Collective Adversarial Data Judgment (CAD-Judge). CAD-Generate leverages collective knowledge to jointly generate new and diverse multimodal data, while CAD-Judge collaboratively assesses the quality of synthesized data. In addition, CADS introduces an Adversarial Context Optimization mechanism to optimize the generation context to encourage challenging and high-value data generation. With CADS, we construct MMSynthetic-20K and train our model R1-SyntheticVL, which demonstrates superior performance on various benchmarks.
☆ Lipschitz Multiscale Deep Equilibrium Models: A Theoretically Guaranteed and Accelerated Approach AISTATS2026
Deep equilibrium models (DEQs) achieve infinitely deep network representations without stacking layers by exploring fixed points of layer transformations in neural networks. Such models constitute an innovative approach that achieves performance comparable to state-of-the-art methods in many large-scale numerical experiments, despite requiring significantly less memory. However, DEQs face the challenge of requiring vastly more computational time for training and inference than conventional methods, as they repeatedly perform fixed-point iterations with no convergence guarantee upon each input. Therefore, this study explored an approach to improve fixed-point convergence and consequently reduce computational time by restructuring the model architecture to guarantee fixed-point convergence. Our proposed approach for image classification, Lipschitz multiscale DEQ, has theoretically guaranteed fixed-point convergence for both forward and backward passes by hyperparameter adjustment, achieving up to a 4.75$\times$ speed-up in numerical experiments on CIFAR-10 at the cost of a minor drop in accuracy.
comment: Accepted at AISTATS2026
☆ Anomaly Detection via Mean Shift Density Enhancement
Unsupervised anomaly detection stands as an important problem in machine learning, with applications in financial fraud prevention, network security and medical diagnostics. Existing unsupervised anomaly detection algorithms rarely perform well across different anomaly types, often excelling only under specific structural assumptions. This lack of robustness also becomes particularly evident under noisy settings. We propose Mean Shift Density Enhancement (MSDE), a fully unsupervised framework that detects anomalies through their geometric response to density-driven manifold evolution. MSDE is based on the principle that normal samples, being well supported by local density, remain stable under iterative density enhancement, whereas anomalous samples undergo large cumulative displacements as they are attracted toward nearby density modes. To operationalize this idea, MSDE employs a weighted mean-shift procedure with adaptive, sample-specific density weights derived from a UMAP-based fuzzy neighborhood graph. Anomaly scores are defined by the total displacement accumulated across a small number of mean-shift iterations. We evaluate MSDE on the ADBench benchmark, comprising forty six real-world tabular datasets, four realistic anomaly generation mechanisms, and six noise levels. Compared to 13 established unsupervised baselines, MSDE achieves consistently strong, balanced and robust performance for AUC-ROC, AUC-PR, and Precision@n, at several noise levels and on average over several types of anomalies. These results demonstrate that displacement-based scoring provides a robust alternative to the existing state-of-the-art for unsupervised anomaly detection.
☆ Universal Approximation of Continuous Functionals on Compact Subsets via Linear Measurements and Scalar Nonlinearities
We study universal approximation of continuous functionals on compact subsets of products of Hilbert spaces. We prove that any such functional can be uniformly approximated by models that first take finitely many continuous linear measurements of the inputs and then combine these measurements through continuous scalar nonlinearities. We also extend the approximation principle to maps with values in a Banach space, yielding finite-rank approximations. These results provide a compact-set justification for the common ``measure, apply scalar nonlinearities, then combine'' design pattern used in operator learning and imaging.
comment: 10 pages
☆ Agentic Proposing: Enhancing Large Language Model Reasoning via Compositional Skill Synthesis
Advancing complex reasoning in large language models relies on high-quality, verifiable datasets, yet human annotation remains cost-prohibitive and difficult to scale. Current synthesis paradigms often face a recurring trade-off: maintaining structural validity typically restricts problem complexity, while relaxing constraints to increase difficulty frequently leads to inconsistent or unsolvable instances. To address this, we propose Agentic Proposing, a framework that models problem synthesis as a goal-driven sequential decision process where a specialized agent dynamically selects and composes modular reasoning skills. Through an iterative workflow of internal reflection and tool-use, we develop the Agentic-Proposer-4B using Multi-Granularity Policy Optimization (MGPO) to generate high-precision, verifiable training trajectories across mathematics, coding, and science. Empirical results demonstrate that downstream solvers trained on agent-synthesized data significantly outperform leading baselines and exhibit robust cross-domain generalization. Notably, a 30B solver trained on only 11,000 synthesized trajectories achieves a state-of-the-art 91.6% accuracy on AIME25, rivaling frontier-scale proprietary models such as GPT-5 and proving that a small volume of high-quality synthetic signals can effectively substitute for massive human-curated datasets.
comment: 23page4
☆ BlockRR: A Unified Framework of RR-type Algorithms for Label Differential Privacy
In this paper, we introduce BlockRR, a novel and unified randomized-response mechanism for label differential privacy. This framework generalizes existed RR-type mechanisms as special cases under specific parameter settings, which eliminates the need for separate, case-by-case analysis. Theoretically, we prove that BlockRR satisfies $ε$-label DP. We also design a partition method for BlockRR based on a weight matrix derived from label prior information; the parallel composition principle ensures that the composition of two such mechanisms remains $ε$-label DP. Empirically, we evaluate BlockRR on two variants of CIFAR-10 with varying degrees of class imbalance. Results show that in the high-privacy and moderate-privacy regimes ($ε\leq 3.0$), our propsed method gets a better balance between test accuaracy and the average of per-class accuracy. In the low-privacy regime ($ε\geq 4.0$), all methods reduce BlockRR to standard RR without additional performance loss.
comment: 19 pages, 2 figures
☆ Unveiling Covert Toxicity in Multimodal Data via Toxicity Association Graphs: A Graph-Based Metric and Interpretable Detection Framework
Detecting toxicity in multimodal data remains a significant challenge, as harmful meanings often lurk beneath seemingly benign individual modalities: only emerging when modalities are combined and semantic associations are activated. To address this, we propose a novel detection framework based on Toxicity Association Graphs (TAGs), which systematically model semantic associations between innocuous entities and latent toxic implications. Leveraging TAGs, we introduce the first quantifiable metric for hidden toxicity, the Multimodal Toxicity Covertness (MTC), which measures the degree of concealment in toxic multimodal expressions. By integrating our detection framework with the MTC metric, our approach enables precise identification of covert toxicity while preserving full interpretability of the decision-making process, significantly enhancing transparency in multimodal toxicity detection. To validate our method, we construct the Covert Toxic Dataset, the first benchmark specifically designed to capture high-covertness toxic multimodal instances. This dataset encodes nuanced cross-modal associations and serves as a rigorous testbed for evaluating both the proposed metric and detection framework. Extensive experiments demonstrate that our approach outperforms existing methods across both low- and high-covertness toxicity regimes, while delivering clear, interpretable, and auditable detection outcomes. Together, our contributions advance the state of the art in explainable multimodal toxicity detection and lay the foundation for future context-aware and interpretable approaches. Content Warning: This paper contains examples of toxic multimodal content that may be offensive or disturbing to some readers. Reader discretion is advised.
☆ Beyond Suffixes: Token Position in GCG Adversarial Attacks on Large Language Models
Large Language Models (LLMs) have seen widespread adoption across multiple domains, creating an urgent need for robust safety alignment mechanisms. However, robustness remains challenging due to jailbreak attacks that bypass alignment via adversarial prompts. In this work, we focus on the prevalent Greedy Coordinate Gradient (GCG) attack and identify a previously underexplored attack axis in jailbreak attacks typically framed as suffix-based: the placement of adversarial tokens within the prompt. Using GCG as a case study, we show that both optimizing attacks to generate prefixes instead of suffixes and varying adversarial token position during evaluation substantially influence attack success rates. Our findings highlight a critical blind spot in current safety evaluations and underline the need to account for the position of adversarial tokens in the adversarial robustness evaluation of LLMs.
comment: 12 pages, 10 figures
☆ HypCBC: Domain-Invariant Hyperbolic Cross-Branch Consistency for Generalizable Medical Image Analysis
Robust generalization beyond training distributions remains a critical challenge for deep neural networks. This is especially pronounced in medical image analysis, where data is often scarce and covariate shifts arise from different hardware devices, imaging protocols, and heterogeneous patient populations. These factors collectively hinder reliable performance and slow down clinical adoption. Despite recent progress, existing learning paradigms primarily rely on the Euclidean manifold, whose flat geometry fails to capture the complex, hierarchical structures present in clinical data. In this work, we exploit the advantages of hyperbolic manifolds to model complex data characteristics. We present the first comprehensive validation of hyperbolic representation learning for medical image analysis and demonstrate statistically significant gains across eleven in-distribution datasets and three ViT models. We further propose an unsupervised, domain-invariant hyperbolic cross-branch consistency constraint. Extensive experiments confirm that our proposed method promotes domain-invariant features and outperforms state-of-the-art Euclidean methods by an average of $+2.1\%$ AUC on three domain generalization benchmarks: Fitzpatrick17k, Camelyon17-WILDS, and a cross-dataset setup for retinal imaging. These datasets span different imaging modalities, data sizes, and label granularities, confirming generalization capabilities across substantially different conditions. The code is available at https://github.com/francescodisalvo05/hyperbolic-cross-branch-consistency .
comment: Accepted to Transactions on Machine Learning Research (TMLR)
☆ Principled Federated Random Forests for Heterogeneous Data
Random Forests (RF) are among the most powerful and widely used predictive models for centralized tabular data, yet few methods exist to adapt them to the federated learning setting. Unlike most federated learning approaches, the piecewise-constant nature of RF prevents exact gradient-based optimization. As a result, existing federated RF implementations rely on unprincipled heuristics: for instance, aggregating decision trees trained independently on clients fails to optimize the global impurity criterion, even under simple distribution shifts. We propose FedForest, a new federated RF algorithm for horizontally partitioned data that naturally accommodates diverse forms of client data heterogeneity, from covariate shift to more complex outcome shift mechanisms. We prove that our splitting procedure, based on aggregating carefully chosen client statistics, closely approximates the split selected by a centralized algorithm. Moreover, FedForest allows splits on client indicators, enabling a non-parametric form of personalization that is absent from prior federated random forest methods. Empirically, we demonstrate that the resulting federated forests closely match centralized performance across heterogeneous benchmarks while remaining communication-efficient.
☆ GraDE: A Graph Diffusion Estimator for Frequent Subgraph Discovery in Neural Architectures
Finding frequently occurring subgraph patterns or network motifs in neural architectures is crucial for optimizing efficiency, accelerating design, and uncovering structural insights. However, as the subgraph size increases, enumeration-based methods are perfectly accurate but computationally prohibitive, while sampling-based methods are computationally tractable but suffer from a severe decline in discovery capability. To address these challenges, this paper proposes GraDE, a diffusion-guided search framework that ensures both computational feasibility and discovery capability. The key innovation is the Graph Diffusion Estimator (GraDE), which is the first to introduce graph diffusion models to identify frequent subgraphs by scoring their typicality within the learned distribution. Comprehensive experiments demonstrate that the estimator achieves superior ranking accuracy, with up to 114\% improvement compared to sampling-based baselines. Benefiting from this, the proposed framework successfully discovers large-scale frequent patterns, achieving up to 30$\times$ higher median frequency than sampling-based methods.
☆ Accordion-Thinking: Self-Regulated Step Summaries for Efficient and Readable LLM Reasoning
Scaling test-time compute via long Chain-ofThought unlocks remarkable gains in reasoning capabilities, yet it faces practical limits due to the linear growth of KV cache and quadratic attention complexity. In this paper, we introduce Accordion-Thinking, an end-to-end framework where LLMs learn to self-regulate the granularity of the reasoning steps through dynamic summarization. This mechanism enables a Fold inference mode, where the model periodically summarizes its thought process and discards former thoughts to reduce dependency on historical tokens. We apply reinforcement learning to incentivize this capability further, uncovering a critical insight: the accuracy gap between the highly efficient Fold mode and the exhaustive Unfold mode progressively narrows and eventually vanishes over the course of training. This phenomenon demonstrates that the model learns to encode essential reasoning information into compact summaries, achieving effective compression of the reasoning context. Our Accordion-Thinker demonstrates that with learned self-compression, LLMs can tackle complex reasoning tasks with minimal dependency token overhead without compromising solution quality, and it achieves a 3x throughput while maintaining accuracy on a 48GB GPU memory configuration, while the structured step summaries provide a human-readable account of the reasoning process.
☆ Merging Beyond: Streaming LLM Updates via Activation-Guided Rotations
The escalating scale of Large Language Models (LLMs) necessitates efficient adaptation techniques. Model merging has gained prominence for its efficiency and controllability. However, existing merging techniques typically serve as post-hoc refinements or focus on mitigating task interference, often failing to capture the dynamic optimization benefits of supervised fine-tuning (SFT). In this work, we propose Streaming Merging, an innovative model updating paradigm that conceptualizes merging as an iterative optimization process. Central to this paradigm is \textbf{ARM} (\textbf{A}ctivation-guided \textbf{R}otation-aware \textbf{M}erging), a strategy designed to approximate gradient descent dynamics. By treating merging coefficients as learning rates and deriving rotation vectors from activation subspaces, ARM effectively steers parameter updates along data-driven trajectories. Unlike conventional linear interpolation, ARM aligns semantic subspaces to preserve the geometric structure of high-dimensional parameter evolution. Remarkably, ARM requires only early SFT checkpoints and, through iterative merging, surpasses the fully converged SFT model. Experimental results across model scales (1.7B to 14B) and diverse domains (e.g., math, code) demonstrate that ARM can transcend converged checkpoints. Extensive experiments show that ARM provides a scalable and lightweight framework for efficient model adaptation.
☆ BayeSQP: Bayesian Optimization through Sequential Quadratic Programming
We introduce BayeSQP, a novel algorithm for general black-box optimization that merges the structure of sequential quadratic programming with concepts from Bayesian optimization. BayeSQP employs second-order Gaussian process surrogates for both the objective and constraints to jointly model the function values, gradients, and Hessian from only zero-order information. At each iteration, a local subproblem is constructed using the GP posterior estimates and solved to obtain a search direction. Crucially, the formulation of the subproblem explicitly incorporates uncertainty in both the function and derivative estimates, resulting in a tractable second-order cone program for high probability improvements under model uncertainty. A subsequent one-dimensional line search via constrained Thompson sampling selects the next evaluation point. Empirical results show thatBayeSQP outperforms state-of-the-art methods in specific high-dimensional settings. Our algorithm offers a principled and flexible framework that bridges classical optimization techniques with modern approaches to black-box optimization.
☆ TAME: A Trustworthy Test-Time Evolution of Agent Memory with Systematic Benchmarking
Test-time evolution of agent memory serves as a pivotal paradigm for achieving AGI by bolstering complex reasoning through experience accumulation. However, even during benign task evolution, agent safety alignment remains vulnerable-a phenomenon known as Agent Memory Misevolution. To evaluate this phenomenon, we construct the Trust-Memevo benchmark to assess multi-dimensional trustworthiness during benign task evolution, revealing an overall decline in trustworthiness across various task domains and evaluation settings. To address this issue, we propose TAME, a dual-memory evolutionary framework that separately evolves executor memory to improve task performance by distilling generalizable methodologies, and evaluator memory to refine assessments of both safety and task utility based on historical feedback. Through a closed loop of memory filtering, draft generation, trustworthy refinement, execution, and dual-track memory updating, TAME preserves trustworthiness without sacrificing utility. Experiments demonstrate that TAME mitigates misevolution, achieving a joint improvement in both trustworthiness and task performance.
☆ Topology Matters: A Cautionary Case Study of Graph SSL on Neuro-Inspired Benchmarks
Understanding how local interactions give rise to global brain organization requires models that can represent information across multiple scales. We introduce a hierarchical self-supervised learning (SSL) framework that jointly learns node-, edge-, and graph-level embeddings, inspired by multimodal neuroimaging. We construct a controllable synthetic benchmark mimicking the topological properties of connectomes. Our four-stage evaluation protocol reveals a critical failure: the invariance-based SSL model is fundamentally misaligned with the benchmark's topological properties and is catastrophically outperformed by classical, topology-aware heuristics. Ablations confirm an objective mismatch: SSL objectives designed to be invariant to topological perturbations learn to ignore the very community structure that classical methods exploit. Our results expose a fundamental pitfall in applying generic graph SSL to connectome-like data. We present this framework as a cautionary case study, highlighting the need for new, topology-aware SSL objectives for neuro-AI research that explicitly reward the preservation of structure (e.g., modularity or motifs).
☆ Token Sparse Attention: Efficient Long-Context Inference with Interleaved Token Selection
The quadratic complexity of attention remains the central bottleneck in long-context inference for large language models. Prior acceleration methods either sparsify the attention map with structured patterns or permanently evict tokens at specific layers, which can retain irrelevant tokens or rely on irreversible early decisions despite the layer-/head-wise dynamics of token importance. In this paper, we propose Token Sparse Attention, a lightweight and dynamic token-level sparsification mechanism that compresses per-head $Q$, $K$, $V$ to a reduced token set during attention and then decompresses the output back to the original sequence, enabling token information to be reconsidered in subsequent layers. Furthermore, Token Sparse Attention exposes a new design point at the intersection of token selection and sparse attention. Our approach is fully compatible with dense attention implementations, including Flash Attention, and can be seamlessly composed with existing sparse attention kernels. Experimental results show that Token Sparse Attention consistently improves accuracy-latency trade-off, achieving up to $\times$3.23 attention speedup at 128K context with less than 1% accuracy degradation. These results demonstrate that dynamic and interleaved token-level sparsification is a complementary and effective strategy for scalable long-context inference.
☆ Latent Neural-ODE for Model-Informed Precision Dosing: Overcoming Structural Assumptions in Pharmacokinetics
Accurate estimation of tacrolimus exposure, quantified by the area under the concentration-time curve (AUC), is essential for precision dosing after renal transplantation. Current practice relies on population pharmacokinetic (PopPK) models based on nonlinear mixed-effects (NLME) methods. However, these models depend on rigid, pre-specified assumptions and may struggle to capture complex, patient-specific dynamics, leading to model misspecification. In this study, we introduce a novel data-driven alternative based on Latent Ordinary Differential Equations (Latent ODEs) for tacrolimus AUC prediction. This deep learning approach learns individualized pharmacokinetic dynamics directly from sparse clinical data, enabling greater flexibility in modeling complex biological behavior. The model was evaluated through extensive simulations across multiple scenarios and benchmarked against two standard approaches: NLME-based estimation and the iterative two-stage Bayesian (it2B) method. We further performed a rigorous clinical validation using a development dataset (n = 178) and a completely independent external dataset (n = 75). In simulation, the Latent ODE model demonstrated superior robustness, maintaining high accuracy even when underlying biological mechanisms deviated from standard assumptions. Regarding experiments on clinical datasets, in internal validation, it achieved significantly higher precision with a mean RMSPE of 7.99% compared with 9.24% for it2B (p < 0.001). On the external cohort, it achieved an RMSPE of 10.82%, comparable to the two standard estimators (11.48% and 11.54%). These results establish the Latent ODE as a powerful and reliable tool for AUC prediction. Its flexible architecture provides a promising foundation for next-generation, multi-modal models in personalized medicine.
☆ Lookahead Sample Reward Guidance for Test-Time Scaling of Diffusion Models
Diffusion models have demonstrated strong generative performance; however, generated samples often fail to fully align with human intent. This paper studies a test-time scaling method that enables sampling from regions with higher human-aligned reward values. Existing gradient guidance methods approximate the expected future reward (EFR) at an intermediate particle $\mathbf{x}_t$ using a Taylor approximation, but this approximation at each time step incurs high computational cost due to sequential neural backpropagation. We show that the EFR at any $\mathbf{x}_t$ can be computed using only marginal samples from a pre-trained diffusion model. The proposed EFR formulation detaches the neural dependency between $\mathbf{x}_t$ and the EFR, enabling closed-form guidance computation without neural backpropagation. To further improve efficiency, we introduce lookahead sampling to collect marginal samples. For final sample generation, we use an accurate solver that guides particles toward high-reward lookahead samples. We refer to this sampling scheme as LiDAR sampling. LiDAR achieves substantial performance improvements using only three samples with a 3-step lookahead solver, exhibiting steep performance gains as lookahead accuracy and sample count increase; notably, it reaches the same GenEval performance as the latest gradient guidance method for SDXL with a 9.5x speedup.
comment: Under Review
☆ Spectral Evolution Search: Efficient Inference-Time Scaling for Reward-Aligned Image Generation
Inference-time scaling offers a versatile paradigm for aligning visual generative models with downstream objectives without parameter updates. However, existing approaches that optimize the high-dimensional initial noise suffer from severe inefficiency, as many search directions exert negligible influence on the final generation. We show that this inefficiency is closely related to a spectral bias in generative dynamics: model sensitivity to initial perturbations diminishes rapidly as frequency increases. Building on this insight, we propose Spectral Evolution Search (SES), a plug-and-play framework for initial noise optimization that executes gradient-free evolutionary search within a low-frequency subspace. Theoretically, we derive the Spectral Scaling Prediction from perturbation propagation dynamics, which explains the systematic differences in the impact of perturbations across frequencies. Extensive experiments demonstrate that SES significantly advances the Pareto frontier of generation quality versus computational cost, consistently outperforming strong baselines under equivalent budgets.
☆ Sparsity is Combinatorial Depth: Quantifying MoE Expressivity via Tropical Geometry
While Mixture-of-Experts (MoE) architectures define the state-of-the-art, their theoretical success is often attributed to heuristic efficiency rather than geometric expressivity. In this work, we present the first analysis of MoE through the lens of tropical geometry, establishing that the Top-$k$ routing mechanism is algebraically isomorphic to the $k$-th elementary symmetric tropical polynomial. This isomorphism partitions the input space into the Normal Fan of a Hypersimplex, revealing that \textbf{sparsity is combinatorial depth} which scales geometric capacity by the binomial coefficient $\binom{N}{k}$. Moving beyond ambient bounds, we introduce the concept of \textit{Effective Capacity} under the Manifold Hypothesis. We prove that while dense networks suffer from capacity collapse on low-dimensional data, MoE architectures exhibit \textit{Combinatorial Resilience}, maintaining high expressivity via the transversality of routing cones. In this study, our framework unifies the discrete geometry of the Hypersimplex with the continuous geometry of neural functions, offering a rigorous theoretical justification for the topological supremacy of conditional computation.
☆ ForesightKV: Optimizing KV Cache Eviction for Reasoning Models by Learning Long-Term Contribution
Recently, large language models (LLMs) have shown remarkable reasoning abilities by producing long reasoning traces. However, as the sequence length grows, the key-value (KV) cache expands linearly, incurring significant memory and computation costs. Existing KV cache eviction methods mitigate this issue by discarding less important KV pairs, but often fail to capture complex KV dependencies, resulting in performance degradation. To better balance efficiency and performance, we introduce ForesightKV, a training-based KV cache eviction framework that learns to predict which KV pairs to evict during long-text generations. We first design the Golden Eviction algorithm, which identifies the optimal eviction KV pairs at each step using future attention scores. These traces and the scores at each step are then distilled via supervised training with a Pairwise Ranking Loss. Furthermore, we formulate cache eviction as a Markov Decision Process and apply the GRPO algorithm to mitigate the significant language modeling loss increase on low-entropy tokens. Experiments on AIME2024 and AIME2025 benchmarks of three reasoning models demonstrate that ForesightKV consistently outperforms prior methods under only half the cache budget, while benefiting synergistically from both supervised and reinforcement learning approaches.
☆ From Scalar Rewards to Potential Trends: Shaping Potential Landscapes for Model-Based Reinforcement Learning
Model-based reinforcement learning (MBRL) achieves high sample efficiency by simulating future trajectories with learned dynamics and reward models. However, its effectiveness is severely compromised in sparse reward settings. The core limitation lies in the standard paradigm of regressing ground-truth scalar rewards: in sparse environments, this yields a flat, gradient-free landscape that fails to provide directional guidance for planning. To address this challenge, we propose Shaping Landscapes with Optimistic Potential Estimates (SLOPE), a novel framework that shifts reward modeling from predicting scalars to constructing informative potential landscapes. SLOPE employs optimistic distributional regression to estimate high-confidence upper bounds, which amplifies rare success signals and ensures sufficient exploration gradients. Evaluations on 30+ tasks across 5 benchmarks demonstrate that SLOPE consistently outperforms leading baselines in fully sparse, semi-sparse, and dense rewards.
comment: 26 pages, 20 figures.Preprint. Work in progress
☆ Reinforcement Learning with Promising Tokens for Large Language Models
Reinforcement learning (RL) has emerged as a key paradigm for aligning and optimizing large language models (LLMs). Standard approaches treat the LLM as the policy and apply RL directly over the full vocabulary space. However, this formulation includes the massive tail of contextually irrelevant tokens in the action space, which could distract the policy from focusing on decision-making among the truly reasonable tokens. In this work, we verify that valid reasoning paths could inherently concentrate within a low-rank subspace. Based on this insight, we introduce Reinforcement Learning with Promising Tokens (RLPT), a framework that mitigates the action space issue by decoupling strategic decision-making from token generation. Specifically, RLPT leverages the semantic priors of the base model to identify a dynamic set of \emph{promising tokens} and constrains policy optimization exclusively to this refined subset via masking. Theoretical analysis and empirical results demonstrate that RLPT effectively reduces gradient variance, stabilizes the training process, and improves sample efficiency. Experiment results on math, coding, and telecom reasoning show that RLPT outperforms standard RL baselines and integrates effectively across various model sizes (4B and 8B) and RL algorithms (GRPO and DAPO).
Prompt Augmentation Scales up GRPO Training on Mathematical Reasoning
Reinforcement learning algorithms such as group-relative policy optimization (GRPO) have demonstrated strong potential for improving the mathematical reasoning capabilities of large language models. However, prior work has consistently observed an entropy collapse phenomenon during reinforcement post-training, characterized by a monotonic decrease in policy entropy that ultimately leads to training instability and collapse. As a result, most existing approaches restrict training to short horizons (typically 5-20 epochs), limiting sustained exploration and hindering further policy improvement. In addition, nearly all prior work relies on a single, fixed reasoning prompt or template during training. In this work, we introduce prompt augmentation, a training strategy that instructs the model to generate reasoning traces under diverse templates and formats, thereby increasing rollout diversity. We show that, without a KL regularization term, prompt augmentation enables stable scaling of training duration under a fixed dataset and allows the model to tolerate low-entropy regimes without premature collapse. Empirically, a Qwen2.5-Math-1.5B model trained with prompt augmentation on the MATH Level 3-5 dataset achieves state-of-the-art performance, reaching 44.5 per-benchmark accuracy and 51.3 per-question accuracy on standard mathematical reasoning benchmarks, including AIME24, AMC, MATH500, Minerva, and OlympiadBench. The code and model checkpoints are available at https://github.com/wenquanlu/prompt-augmentation-GRPO.
☆ DynSplit-KV: Dynamic Semantic Splitting for KVCache Compression in Efficient Long-Context LLM Inference
Although Key-Value (KV) Cache is essential for efficient large language models (LLMs) inference, its growing memory footprint in long-context scenarios poses a significant bottleneck, making KVCache compression crucial. Current compression methods rely on rigid splitting strategies, such as fixed intervals or pre-defined delimiters. We observe that rigid splitting suffers from significant accuracy degradation (ranging from 5.5% to 55.1%) across different scenarios, owing to the scenario-dependent nature of the semantic boundaries. This highlights the necessity of dynamic semantic splitting to match semantics. To achieve this, we face two challenges. (1) Improper delimiter selection misaligns semantics with the KVCache, resulting in 28.6% accuracy loss. (2) Variable-length blocks after splitting introduce over 73.1% additional inference overhead. To address the above challenges, we propose DynSplit-KV, a KVCache compression method that dynamically identifies delimiters for splitting. We propose: (1) a dynamic importance-aware delimiter selection strategy, improving accuracy by 49.9%. (2) A uniform mapping strategy that transforms variable-length semantic blocks into a fixed-length format, reducing inference overhead by 4.9x. Experiments show that DynSplit-KV achieves the highest accuracy, 2.2x speedup compared with FlashAttention and 2.6x peak memory reduction in long-context scenarios.
☆ Probe-then-Commit Multi-Objective Bandits: Theoretical Benefits of Limited Multi-Arm Feedback
We study an online resource-selection problem motivated by multi-radio access selection and mobile edge computing offloading. In each round, an agent chooses among $K$ candidate links/servers (arms) whose performance is a stochastic $d$-dimensional vector (e.g., throughput, latency, energy, reliability). The key interaction is \emph{probe-then-commit (PtC)}: the agent may probe up to $q>1$ candidates via control-plane measurements to observe their vector outcomes, but must execute exactly one candidate in the data plane. This limited multi-arm feedback regime strictly interpolates between classical bandits ($q=1$) and full-information experts ($q=K$), yet existing multi-objective learning theory largely focuses on these extremes. We develop \textsc{PtC-P-UCB}, an optimistic probe-then-commit algorithm whose technical core is frontier-aware probing under uncertainty in a Pareto mode, e.g., it selects the $q$ probes by approximately maximizing a hypervolume-inspired frontier-coverage potential and commits by marginal hypervolume gain to directly expand the attained Pareto region. We prove a dominated-hypervolume frontier error of $\tilde{O} (K_P d/\sqrt{qT})$, where $K_P$ is the Pareto-frontier size and $T$ is the horizon, and scalarized regret $\tilde{O} (L_φd\sqrt{(K/q)T})$, where $φ$ is the scalarizer. These quantify a transparent $1/\sqrt{q}$ acceleration from limited probing. We further extend to \emph{multi-modal probing}: each probe returns $M$ modalities (e.g., CSI, queue, compute telemetry), and uncertainty fusion yields variance-adaptive versions of the above bounds via an effective noise scale.
☆ Adversarial construction as a potential solution to the experiment design problem in large task spaces
Despite decades of work, we still lack a robust, task-general theory of human behavior even in the simplest domains. In this paper we tackle the generality problem head-on, by aiming to develop a unified model for all tasks embedded in a task-space. In particular we consider the space of binary sequence prediction tasks where the observations are generated by the space parameterized by hidden Markov models (HMM). As the space of tasks is large, experimental exploration of the entire space is infeasible. To solve this problem we propose the adversarial construction approach, which helps identify tasks that are most likely to elicit a qualitatively novel behavior. Our results suggest that adversarial construction significantly outperforms random sampling of environments and therefore could be used as a proxy for optimal experimental design in high-dimensional task spaces.
comment: 7 pages, 7 figures
☆ StepScorer: Accelerating Reinforcement Learning with Step-wise Scoring and Psychological Regret Modeling
Reinforcement learning algorithms often suffer from slow convergence due to sparse reward signals, particularly in complex environments where feedback is delayed or infrequent. This paper introduces the Psychological Regret Model (PRM), a novel approach that accelerates learning by incorporating regret-based feedback signals after each decision step. Rather than waiting for terminal rewards, PRM computes a regret signal based on the difference between the expected value of the optimal action and the value of the action taken in each state. This transforms sparse rewards into dense feedback signals through a step-wise scoring framework, enabling faster convergence. We demonstrate that PRM achieves stable performance approximately 36\% faster than traditional Proximal Policy Optimization (PPO) in benchmark environments such as Lunar Lander. Our results indicate that PRM is particularly effective in continuous control tasks and environments with delayed feedback, making it suitable for real-world applications such as robotics, finance, and adaptive education where rapid policy adaptation is critical. The approach formalizes human-inspired counterfactual thinking as a computable regret signal, bridging behavioral economics and reinforcement learning.
comment: 10 pages, 5 figures, 1 table
☆ NeuralFLoC: Neural Flow-Based Joint Registration and Clustering of Functional Data
Clustering functional data in the presence of phase variation is challenging, as temporal misalignment can obscure intrinsic shape differences and degrade clustering performance. Most existing approaches treat registration and clustering as separate tasks or rely on restrictive parametric assumptions. We present \textbf{NeuralFLoC}, a fully unsupervised, end-to-end deep learning framework for joint functional registration and clustering based on Neural ODE-driven diffeomorphic flows and spectral clustering. The proposed model learns smooth, invertible warping functions and cluster-specific templates simultaneously, effectively disentangling phase and amplitude variation. We establish universal approximation guarantees and asymptotic consistency for the proposed framework. Experiments on functional benchmarks show state-of-the-art performance in both registration and clustering, with robustness to missing data, irregular sampling, and noise, while maintaining scalability. Code is available at https://anonymous.4open.science/r/NeuralFLoC-FEC8.
☆ Online Conformal Prediction via Universal Portfolio Algorithms
Online conformal prediction (OCP) seeks prediction intervals that achieve long-run $1-α$ coverage for arbitrary (possibly adversarial) data streams, while remaining as informative as possible. Existing OCP methods often require manual learning-rate tuning to work well, and may also require algorithm-specific analyses. Here, we develop a general regret-to-coverage theory for interval-valued OCP based on the $(1-α)$-pinball loss. Our first contribution is to identify \emph{linearized regret} as a key notion, showing that controlling it implies coverage bounds for any online algorithm. This relies on a black-box reduction that depends only on the Fenchel conjugate of an upper bound on the linearized regret. Building on this theory, we propose UP-OCP, a parameter-free method for OCP, via a reduction to a two-asset portfolio selection problem, leveraging universal portfolio algorithms. We show strong finite-time bounds on the miscoverage of UP-OCP, even for polynomially growing predictions. Extensive experiments support that UP-OCP delivers consistently better size/coverage trade-offs than prior online conformal baselines.
☆ MemCast: Memory-Driven Time Series Forecasting with Experience-Conditioned Reasoning
Time series forecasting (TSF) plays a critical role in decision-making for many real-world applications. Recently, LLM-based forecasters have made promising advancements. Despite their effectiveness, existing methods often lack explicit experience accumulation and continual evolution. In this work, we propose MemCast, a learning-to-memory framework that reformulates TSF as an experience-conditioned reasoning task. Specifically, we learn experience from the training set and organize it into a hierarchical memory. This is achieved by summarizing prediction results into historical patterns, distilling inference trajectories into reasoning wisdom, and inducing extracted temporal features into general laws. Furthermore, during inference, we leverage historical patterns to guide the reasoning process and utilize reasoning wisdom to select better trajectories, while general laws serve as criteria for reflective iteration. Additionally, to enable continual evolution, we design a dynamic confidence adaptation strategy that updates the confidence of individual entries without leaking the test set distribution. Extensive experiments on multiple datasets demonstrate that MemCast consistently outperforms previous methods, validating the effectiveness of our approach. Our code is available at https://github.com/Xiaoyu-Tao/MemCast-TS.
☆ Fully Kolmogorov-Arnold Deep Model in Medical Image Segmentation
Deeply stacked KANs are practically impossible due to high training difficulties and substantial memory requirements. Consequently, existing studies can only incorporate few KAN layers, hindering the comprehensive exploration of KANs. This study overcomes these limitations and introduces the first fully KA-based deep model, demonstrating that KA-based layers can entirely replace traditional architectures in deep learning and achieve superior learning capacity. Specifically, (1) the proposed Share-activation KAN (SaKAN) reformulates Sprecher's variant of Kolmogorov-Arnold representation theorem, which achieves better optimization due to its simplified parameterization and denser training samples, to ease training difficulty, (2) this paper indicates that spline gradients contribute negligibly to training while consuming huge GPU memory, thus proposes the Grad-Free Spline to significantly reduce memory usage and computational overhead. (3) Building on these two innovations, our ALL U-KAN is the first representative implementation of fully KA-based deep model, where the proposed KA and KAonv layers completely replace FC and Conv layers. Extensive evaluations on three medical image segmentation tasks confirm the superiority of the full KA-based architecture compared to partial KA-based and traditional architectures, achieving all higher segmentation accuracy. Compared to directly deeply stacked KAN, ALL U-KAN achieves 10 times reduction in parameter count and reduces memory consumption by more than 20 times, unlocking the new explorations into deep KAN architectures.
comment: 11 pages, 5 figures, conference
☆ What Makes a Good Example? Modeling Exemplar Selection with Neural Network Representations
Teaching requires distilling a rich category distribution into a small set of informative exemplars. Although prior work shows that humans consider both representativeness and diversity when teaching, the computational principles underlying these tradeoffs remain unclear. We address this gap by modeling human exemplar selection using neural network feature representations and principled subset selection criteria. Novel visual categories were embedded along a one-dimensional morph continuum using pretrained vision models, and selection strategies varied in their emphasis on prototypicality, joint representativeness, and diversity. Adult participants selected one to three exemplars to teach a learner. Model-human comparisons revealed that strategies based on joint representativeness, or its combination with diversity, best captured human judgments, whereas purely prototypical or diversity-based strategies performed worse. Moreover, transformer-based representations consistently aligned more closely with human behavior than convolutional networks. These results highlight the potential utility of dataset distillation methods in machine learning as computational models for teaching.
☆ Self-Hinting Language Models Enhance Reinforcement Learning
Group Relative Policy Optimization (GRPO) has recently emerged as a practical recipe for aligning large language models with verifiable objectives. However, under sparse terminal rewards, GRPO often stalls because rollouts within a group frequently receive identical rewards, causing relative advantages to collapse and updates to vanish. We propose self-hint aligned GRPO with privileged supervision (SAGE), an on-policy reinforcement learning framework that injects privileged hints during training to reshape the rollout distribution under the same terminal verifier reward. For each prompt $x$, the model samples a compact hint $h$ (e.g., a plan or decomposition) and then generates a solution $τ$ conditioned on $(x,h)$. Crucially, the task reward $R(x,τ)$ is unchanged; hints only increase within-group outcome diversity under finite sampling, preventing GRPO advantages from collapsing under sparse rewards. At test time, we set $h=\varnothing$ and deploy the no-hint policy without any privileged information. Moreover, sampling diverse self-hints serves as an adaptive curriculum that tracks the learner's bottlenecks more effectively than fixed hints from an initial policy or a stronger external model. Experiments over 6 benchmarks with 3 LLMs show that SAGE consistently outperforms GRPO, on average +2.0 on Llama-3.2-3B-Instruct, +1.2 on Qwen2.5-7B-Instruct and +1.3 on Qwen3-4B-Instruct. The code is available at https://github.com/BaohaoLiao/SAGE.
☆ SATORIS-N: Spectral Analysis based Traffic Observation Recovery via Informed Subspaces and Nuclear-norm minimization
Traffic-density matrices from different days exhibit both low rank and stable correlations in their singular-vector subspaces. Leveraging this, we introduce SATORIS-N, a framework for imputing partially observed traffic-density by informed subspace priors from neighboring days. Our contribution is a subspace-aware semidefinite programming (SDP)} formulation of nuclear norm that explicitly informs the reconstruction with prior singular-subspace information. This convex formulation jointly enforces low rank and subspace alignment, providing a single global optimum and substantially improving accuracy under medium and high occlusion. We also study a lightweight implicit subspace-alignment} strategy in which matrices from consecutive days are concatenated to encourage alignment of spatial or temporal singular directions. Although this heuristic offers modest gains when missing rates are low, the explicit SDP approach is markedly more robust when large fractions of entries are missing. Across two real-world datasets (Beijing and Shanghai), SATORIS-N consistently outperforms standard matrix-completion methods such as SoftImpute, IterativeSVD, statistical, and even deep learning baselines at high occlusion levels. The framework generalizes to other spatiotemporal settings in which singular subspaces evolve slowly over time. In the context of intelligent vehicles and vehicle-to-everything (V2X) systems, accurate traffic-density reconstruction enables critical applications including cooperative perception, predictive routing, and vehicle-to-infrastructure (V2I) communication optimization. When infrastructure sensors or vehicle-reported observations are incomplete - due to communication dropouts, sensor occlusions, or sparse connected vehicle penetration-reliable imputation becomes essential for safe and efficient autonomous navigation.
☆ Enhanced Parcel Arrival Forecasting for Logistic Hubs: An Ensemble Deep Learning Approach
The rapid expansion of online shopping has increased the demand for timely parcel delivery, compelling logistics service providers to enhance the efficiency, agility, and predictability of their hub networks. In order to solve the problem, we propose a novel deep learning-based ensemble framework that leverages historical arrival patterns and real-time parcel status updates to forecast upcoming workloads at logistic hubs. This approach not only facilitates the generation of short-term forecasts, but also improves the accuracy of future hub workload predictions for more strategic planning and resource management. Empirical tests of the algorithm, conducted through a case study of a major city's parcel logistics, demonstrate the ensemble method's superiority over both traditional forecasting techniques and standalone deep learning models. Our findings highlight the significant potential of this method to improve operational efficiency in logistics hubs and advocate for its broader adoption.
☆ Contrastive Concept-Tree Search for LLM-Assisted Algorithm Discovery
Large language Model (LLM)-assisted algorithm discovery is an iterative, black-box optimization process over programs to approximatively solve a target task, where an LLM proposes candidate programs and an external evaluator provides task feedback. Despite intense recent research on the topic and promising results, how can the LLM internal representation of the space of possible programs be maximally exploited to improve performance is an open question. Here, we introduce Contrastive Concept-Tree Search (CCTS), which extracts a hierarchical concept representation from the generated programs and learns a contrastive concept model that guides parent selection. By reweighting parents using a likelihood-ratio score between high- and low-performing solutions, CCTS biases search toward useful concept combinations and away from misleading ones, providing guidance through an explicit concept hierarchy rather than the algorithm lineage constructed by the LLM. We show that CCTS improves search efficiency over fitness-based baselines and produces interpretable, task-specific concept trees across a benchmark of open Erdős-type combinatorics problems. Our analysis indicates that the gains are driven largely by learning which concepts to avoid. We further validate these findings in a controlled synthetic algorithm-discovery environment, which reproduces qualitatively the search dynamics observed with the LLMs.
☆ Feature, Alignment, and Supervision in Category Learning: A Comparative Approach with Children and Neural Networks
Understanding how humans and machines learn from sparse data is central to cognitive science and machine learning. Using a species-fair design, we compare children and convolutional neural networks (CNNs) in a few-shot semi-supervised category learning task. Both learners are exposed to novel object categories under identical conditions. Learners receive mixtures of labeled and unlabeled exemplars while we vary supervision (1/3/6 labels), target feature (size, shape, pattern), and perceptual alignment (high/low). We find that children generalize rapidly from minimal labels but show strong feature-specific biases and sensitivity to alignment. CNNs show a different interaction profile: added supervision improves performance, but both alignment and feature structure moderate the impact additional supervision has on learning. These results show that human-model comparisons must be drawn under the right conditions, emphasizing interactions among supervision, feature structure, and alignment rather than overall accuracy.
☆ Quantized Evolution Strategies: High-precision Fine-tuning of Quantized LLMs at Low-precision Cost
Post-Training Quantization (PTQ) is essential for deploying Large Language Models (LLMs) on memory-constrained devices, yet it renders models static and difficult to fine-tune. Standard fine-tuning paradigms, including Reinforcement Learning (RL), fundamentally rely on backpropagation and high-precision weights to compute gradients. Thus they cannot be used on quantized models, where the parameter space is discrete and non-differentiable. While Evolution Strategies (ES) offer a backpropagation-free alternative, optimization of the quantized parameters can still fail due to vanishing or inaccurate gradient. This paper introduces Quantized Evolution Strategies (QES), an optimization paradigm that performs full-parameter fine-tuning directly in the quantized space. QES is based on two innovations: (1) it integrates accumulated error feedback to preserve high-precision gradient signals, and (2) it utilizes a stateless seed replay to reduce memory usage to low-precision inference levels. QES significantly outperforms the state-of-the-art zeroth-order fine-tuning method on arithmetic reasoning tasks, making direct fine-tuning for quantized models possible. It therefore opens up the possibility for scaling up LLMs entirely in the quantized space. The source code is available at https://github.com/dibbla/Quantized-Evolution-Strategies .
comment: Preprint version
☆ Function-Space Empirical Bayes Regularisation with Large Vision-Language Model Priors
Bayesian deep learning (BDL) provides a principled framework for reliable uncertainty quantification by combining deep neural networks with Bayesian inference. A central challenge in BDL lies in the design of informative prior distributions that scale effectively to high-dimensional data. Recent functional variational inference (VI) approaches address this issue by imposing priors directly in function space; however, most existing methods rely on Gaussian process (GP) priors, whose expressiveness and generalisation capabilities become limited in high-dimensional regimes. In this work, we propose VLM-FS-EB, a novel function-space empirical Bayes regularisation framework, leveraging large vision-language models (VLMs) to generates semantically meaningful context points. These synthetic samples are then used VLMs for embeddings to construct expressive functional priors. Furthermore, the proposed method is evaluated against various baselines, and experimental results demonstrate that our method consistently improves predictive performance and yields more reliable uncertainty estimates, particularly in out-of-distribution (OOD) detection tasks and data-scarce regimes.
☆ Consensus Group Relative Policy Optimization for Text Generation
Many strong decoding methods for text generation follow a sample-and-rerank paradigm: they draw multiple candidates, score each under a utility (reward) function using consensus across samples, and return the best one. Although effective, these methods incur high computational costs during inference due to repeated sampling and scoring. Prior attempts to amortize inference-time computation typically rely on gold references, teacher labels, or curated preference data, increasing dataset construction effort and the demand for high-fidelity reward models. We propose Consensus Group Relative Policy Optimization (C-GRPO), which distills Minimum Bayes Risk (MBR) decoding into training by formulating the consensus utility as a group-relative objective within GRPO. C-GRPO requires only a utility function and policy samples, without gold references or explicit preference labels. Under ideal conditions, we show that the objective function of C-GRPO is directionally aligned with the gradient of the expected-utility objective underlying MBR decoding, leading to a convergence guarantee. Experiments on machine translation (WMT 2024) and text summarization (XSum) demonstrate that C-GRPO successfully achieves performance comparable to MBR decoding without the associated inference-time overhead, while outperforming reference-free baseline methods.
☆ TextME: Bridging Unseen Modalities Through Text Descriptions
Expanding multimodal representations to novel modalities is constrained by reliance on large-scale paired datasets (e.g., text-image, text-audio, text-3D, text-molecule), which are costly and often infeasible in domains requiring expert annotation such as medical imaging and molecular analysis. We introduce TextME, the first text-only modality expansion framework, to the best of our knowledge, projecting diverse modalities into LLM embedding space as a unified anchor. Our approach exploits the geometric structure of pretrained contrastive encoders to enable zero-shot cross-modal transfer using only text descriptions, without paired supervision. We empirically validate that such consistent modality gaps exist across image, video, audio, 3D, X-ray, and molecular domains, demonstrating that text-only training can preserve substantial performance of pretrained encoders. We further show that our framework enables emergent cross-modal retrieval between modality pairs not explicitly aligned during training (e.g., audio-to-image, 3D-to-image). These results establish text-only training as a practical alternative to paired supervision for modality expansion.
☆ PRISM: Structured Optimization via Anisotropic Spectral Shaping
We propose PRISM, an optimizer that enhances first-order spectral descent methods like Muon with partial second-order information. It constructs an efficient, low-rank quasi-second-order preconditioner via innovation-augmented polar decomposition. This mechanism enables PRISM to perform anisotropic spectral shaping, which adaptively suppresses updates in high-variance subspaces while preserving update strength in signal-dominated directions. Crucially, this is achieved with minimal computational overhead and zero additional memory compared to first-order baselines. PRISM demonstrates a practical strategy for integrating curvature-adaptive properties into the spectral optimization paradigm.
☆ Training and Simulation of Quadrupedal Robot in Adaptive Stair Climbing for Indoor Firefighting: An End-to-End Reinforcement Learning Approach
Quadruped robots are used for primary searches during the early stages of indoor fires. A typical primary search involves quickly and thoroughly looking for victims under hazardous conditions and monitoring flammable materials. However, situational awareness in complex indoor environments and rapid stair climbing across different staircases remain the main challenges for robot-assisted primary searches. In this project, we designed a two-stage end-to-end deep reinforcement learning (RL) approach to optimize both navigation and locomotion. In the first stage, the quadrupeds, Unitree Go2, were trained to climb stairs in Isaac Lab's pyramid-stair terrain. In the second stage, the quadrupeds were trained to climb various realistic indoor staircases in the Isaac Lab engine, with the learned policy transferred from the previous stage. These indoor staircases are straight, L-shaped, and spiral, to support climbing tasks in complex environments. This project explores how to balance navigation and locomotion and how end-to-end RL methods can enable quadrupeds to adapt to different stair shapes. Our main contributions are: (1) A two-stage end-to-end RL framework that transfers stair-climbing skills from abstract pyramid terrain to realistic indoor stair topologies. (2) A centerline-based navigation formulation that enables unified learning of navigation and locomotion without hierarchical planning. (3) Demonstration of policy generalization across diverse staircases using only local height-map perception. (4) An empirical analysis of success, efficiency, and failure modes under increasing stair difficulty.
comment: 8 pages, 9 figures, 43rd International Symposium on Automation and Robotics in Construction
☆ Neural Predictor-Corrector: Solving Homotopy Problems with Reinforcement Learning
The Homotopy paradigm, a general principle for solving challenging problems, appears across diverse domains such as robust optimization, global optimization, polynomial root-finding, and sampling. Practical solvers for these problems typically follow a predictor-corrector (PC) structure, but rely on hand-crafted heuristics for step sizes and iteration termination, which are often suboptimal and task-specific. To address this, we unify these problems under a single framework, which enables the design of a general neural solver. Building on this unified view, we propose Neural Predictor-Corrector (NPC), which replaces hand-crafted heuristics with automatically learned policies. NPC formulates policy selection as a sequential decision-making problem and leverages reinforcement learning to automatically discover efficient strategies. To further enhance generalization, we introduce an amortized training mechanism, enabling one-time offline training for a class of problems and efficient online inference on new instances. Experiments on four representative homotopy problems demonstrate that our method generalizes effectively to unseen instances. It consistently outperforms classical and specialized baselines in efficiency while demonstrating superior stability across tasks, highlighting the value of unifying homotopy methods into a single neural framework.
☆ Geometry-Preserving Neural Architectures on Manifolds with Boundary
Preserving geometric structure is important in learning. We propose a unified class of geometry-aware architectures that interleave geometric updates between layers, where both projection layers and intrinsic exponential map updates arise as discretizations of projected dynamical systems on manifolds (with or without boundary). Within this framework, we establish universal approximation results for constrained neural ODEs. We also analyze architectures that enforce geometry only at the output, proving a separate universal approximation property that enables direct comparison to interleaved designs. When the constraint set is unknown, we learn projections via small-time heat-kernel limits, showing diffusion/flow-matching can be used as data-based projections. Experiments on dynamics over S^2 and SO(3), and diffusion on S^{d-1}-valued features demonstrate exact feasibility for analytic updates and strong performance for learned projections
☆ TMS: Trajectory-Mixed Supervision for Reward-Free, On-Policy SFT
Reinforcement Learning (RL) and Supervised Fine-Tuning (SFT) are the two dominant paradigms for enhancing Large Language Model (LLM) performance on downstream tasks. While RL generally preserves broader model capabilities (retention) better than SFT, it comes with significant costs: complex reward engineering, instability, and expensive on-policy sampling. In contrast, SFT is efficient but brittle, often suffering from catastrophic forgetting due to $\textbf{Supervision Mismatch}$: the divergence between the model's evolving policy and static training labels. We address this trade-off with $\textbf{Trajectory-Mixed Supervision (TMS)}$, a reward-free framework that approximates the on-policy benefits of RL by creating a dynamic curriculum from the model's own historical checkpoints. TMS minimizes $\textit{Policy-Label Divergence (PLD)}$, preventing the mode collapse that drives forgetting in standard SFT. Experiments across reasoning (MATH, GSM8K) and instruction-following benchmarks demonstrate that TMS effectively shifts the accuracy--retention Pareto frontier. While RL remains the gold standard for retention, TMS significantly outperforms standard and iterative SFT, bridging the gap to RL without requiring reward models or verifiers. Mechanistic analysis confirms that PLD drift accurately predicts forgetting and that TMS successfully mitigates this drift.
☆ FlashSinkhorn: IO-Aware Entropic Optimal Transport
Entropic optimal transport (EOT) via Sinkhorn iterations is widely used in modern machine learning, yet GPU solvers remain inefficient at scale. Tensorized implementations suffer quadratic HBM traffic from dense $n\times m$ interactions, while existing online backends avoid storing dense matrices but still rely on generic tiled map-reduce reduction kernels with limited fusion. We present \textbf{FlashSinkhorn}, an IO-aware EOT solver for squared Euclidean cost that rewrites stabilized log-domain Sinkhorn updates as row-wise LogSumExp reductions of biased dot-product scores, the same normalization as transformer attention. This enables FlashAttention-style fusion and tiling: fused Triton kernels stream tiles through on-chip SRAM and update dual potentials in a single pass, substantially reducing HBM IO per iteration while retaining linear-memory operations. We further provide streaming kernels for transport application, enabling scalable first- and second-order optimization. On A100 GPUs, FlashSinkhorn achieves up to $32\times$ forward-pass and $161\times$ end-to-end speedups over state-of-the-art online baselines on point-cloud OT, improves scalability on OT-based downstream tasks. For reproducibility, we release an open-source implementation at https://github.com/ot-triton-lab/ot_triton.
☆ Shortcut Features as Top Eigenfunctions of NTK: A Linear Neural Network Case and More
One of the chronic problems of deep-learning models is shortcut learning. In a case where the majority of training data are dominated by a certain feature, neural networks prefer to learn such a feature even if the feature is not generalizable outside the training set. Based on the framework of Neural Tangent Kernel (NTK), we analyzed the case of linear neural networks to derive some important properties of shortcut learning. We defined a feature of a neural network as an eigenfunction of NTK. Then, we found that shortcut features correspond to features with larger eigenvalues when the shortcuts stem from the imbalanced number of samples in the clustered distribution. We also showed that the features with larger eigenvalues still have a large influence on the neural network output even after training, due to data variances in the clusters. Such a preference for certain features remains even when a margin of a neural network output is controlled, which shows that the max-margin bias is not the only major reason for shortcut learning. These properties of linear neural networks are empirically extended for more complex neural networks as a two-layer fully-connected ReLU network and a ResNet-18.
☆ Evaluating LLMs When They Do Not Know the Answer: Statistical Evaluation of Mathematical Reasoning via Comparative Signals
Evaluating mathematical reasoning in LLMs is constrained by limited benchmark sizes and inherent model stochasticity, yielding high-variance accuracy estimates and unstable rankings across platforms. On difficult problems, an LLM may fail to produce a correct final answer, yet still provide reliable pairwise comparison signals indicating which of two candidate solutions is better. We leverage this observation to design a statistically efficient evaluation framework that combines standard labeled outcomes with pairwise comparison signals obtained by having models judge auxiliary reasoning chains. Treating these comparison signals as control variates, we develop a semiparametric estimator based on the efficient influence function (EIF) for the setting where auxiliary reasoning chains are observed. This yields a one-step estimator that achieves the semiparametric efficiency bound, guarantees strict variance reduction over naive sample averaging, and admits asymptotic normality for principled uncertainty quantification. Across simulations, our one-step estimator substantially improves ranking accuracy, with gains increasing as model output noise grows. Experiments on GPQA Diamond, AIME 2025, and GSM8K further demonstrate more precise performance estimation and more reliable model rankings, especially in small-sample regimes where conventional evaluation is pretty unstable.
♻ ☆ Reuse your FLOPs: Scaling RL on Hard Problems by Conditioning on Very Off-Policy Prefixes
Typical reinforcement learning (RL) methods for LLM reasoning waste compute on hard problems, where correct on-policy traces are rare, policy gradients vanish, and learning stalls. To bootstrap more efficient RL, we consider reusing old sampling FLOPs (from prior inference or RL training) in the form of off-policy traces. Standard off-policy methods supervise against off-policy data, causing instabilities during RL optimization. We introduce PrefixRL, where we condition on the prefix of successful off-policy traces and run on-policy RL to complete them, side-stepping off-policy instabilities. PrefixRL boosts the learning signal on hard problems by modulating the difficulty of the problem through the off-policy prefix length. We prove that the PrefixRL objective is not only consistent with the standard RL objective but also more sample efficient. Empirically, we discover back-generalization: training only on prefixed problems generalizes to out-of-distribution unprefixed performance, with learned strategies often differing from those in the prefix. In our experiments, we source the off-policy traces by rejection sampling with the base model, creating a self-improvement loop. On hard reasoning problems, PrefixRL reaches the same training reward 2x faster than the strongest baseline (SFT on off-policy data then RL), even after accounting for the compute spent on the initial rejection sampling, and increases the final reward by 3x. The gains transfer to held-out benchmarks, and PrefixRL is still effective when off-policy traces are derived from a different model family, validating its flexibility in practical settings.
♻ ☆ Polynomial Neural Sheaf Diffusion: A Spectral Filtering Approach on Cellular Sheaves ICML 2026
Sheaf Neural Networks equip graph structures with a cellular sheaf: a geometric structure which assigns local vector spaces (stalks) and a linear learnable restriction/transport maps to nodes and edges, yielding an edge-aware inductive bias that handles heterophily and limits oversmoothing. However, common Neural Sheaf Diffusion implementations rely on SVD-based sheaf normalization and dense per-edge restriction maps, which scale with stalk dimension, require frequent Laplacian rebuilds, and yield brittle gradients. To address these limitations, we introduce Polynomial Neural Sheaf Diffusion (PolyNSD), a new sheaf diffusion approach whose propagation operator is a degree-K polynomial in a normalised sheaf Laplacian, evaluated via a stable three-term recurrence on a spectrally rescaled operator. This provides an explicit K-hop receptive field in a single layer (independently of the stalk dimension), with a trainable spectral response obtained as a convex mixture of K+1 orthogonal polynomial basis responses. PolyNSD enforces stability via convex mixtures, spectral rescaling, and residual/gated paths, reaching new state-of-the-art results on both homophilic and heterophilic benchmarks, inverting the Neural Sheaf Diffusion trend by obtaining these results with just diagonal restriction maps, decoupling performance from large stalk dimension, while reducing runtime and memory requirements.
comment: Under Review at ICML 2026
♻ ☆ ME-IGM: Individual-Global-Max in Maximum Entropy Multi-Agent Reinforcement Learning AAMAS 2026
Multi-agent credit assignment is a fundamental challenge for cooperative multi-agent reinforcement learning (MARL), where a team of agents learn from shared reward signals. The Individual-Global-Max (IGM) condition is a widely used principle for multi-agent credit assignment, requiring that the joint action determined by individual Q-functions maximizes the global Q-value. Meanwhile, the principle of maximum entropy has been leveraged to enhance exploration in MARL. However, we identify a critical limitation in existing maximum entropy MARL methods: a misalignment arises between local policies and the joint policy that maximizes the global Q-value, leading to violations of the IGM condition. To address this misalignment, we propose an order-preserving transformation. Building on it, we introduce ME-IGM, a novel maximum entropy MARL algorithm compatible with any credit assignment mechanism that satisfies the IGM condition while enjoying the benefits of maximum entropy exploration. We empirically evaluate two variants of ME-IGM: ME-QMIX and ME-QPLEX, in non-monotonic matrix games, and demonstrate their state-of-the-art performance across 17 scenarios in SMAC-v2 and Overcooked.
comment: Published in the Proceedings of the 25th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2026)
♻ ☆ Measuring Agents in Production
LLM-based agents already operate in production across many industries, yet we lack an understanding of what technical methods make deployments successful. We present the first systematic study of Measuring Agents in Production, MAP, using first-hand data from agent developers. We conducted 20 case studies via in-depth interviews and surveyed 306 practitioners across 26 domains. We investigate why organizations build agents, how they build them, how they evaluate them, and their top development challenges. Our study finds that production agents are built using simple, controllable approaches: 68% execute at most 10 steps before human intervention, 70% rely on prompting off-the-shelf models instead of weight tuning, and 74% depend primarily on human evaluation. Reliability (consistent correct behavior over time) remains the top development challenge, which practitioners currently address through systems-level design. MAP documents the current state of production agents, providing the research community with visibility into deployment realities and under-explored research avenues.
♻ ☆ Admissibility of Stein Shrinkage for Batch Normalization in the Presence of Adversarial Attacks
Batch normalization (BN) is a ubiquitous operation in deep neural networks, primarily used to improve stability and regularization during training. BN centers and scales feature maps using sample means and variances, which are naturally suited for Stein's shrinkage estimation. Applying such shrinkage yields more accurate mean and variance estimates of the batch in the mean-squared-error sense. In this paper, we prove that the Stein shrinkage estimator of the mean and variance dominates over the sample mean and variance estimators, respectively, in the presence of adversarial attacks modeled using sub-Gaussian distributions. Furthermore, by construction, the James-Stein (JS) BN yields a smaller local Lipschitz constant compared to the vanilla BN, implying better regularity properties and potentially improved robustness. This facilitates and justifies the application of Stein shrinkage to estimate the mean and variance parameters in BN and the use of it in image classification and segmentation tasks with and without adversarial attacks. We present SOTA performance results using this Stein-corrected BN in a standard ResNet architecture applied to the task of image classification using CIFAR-10 data, 3D CNN on PPMI (neuroimaging) data, and image segmentation using HRNet on Cityscape data with and without adversarial attacks.
♻ ☆ Toward Learning POMDPs Beyond Full-Rank Actions and State Observability
We are interested in enabling autonomous agents to learn and reason about systems with hidden states, such as locking mechanisms. We cast this problem as learning the parameters of a discrete Partially Observable Markov Decision Process (POMDP). The agent begins with knowledge of the POMDP's actions and observation spaces, but not its state space, transitions, or observation models. These properties must be constructed from a sequence of actions and observations. Spectral approaches to learning models of partially observable domains, such as Predictive State Representations (PSRs), learn representations of state that are sufficient to predict future outcomes. PSR models, however, do not have explicit transition and observation system models that can be used with different reward functions to solve different planning problems. Under a mild set of rankness assumptions on the products of transition and observation matrices, we show how PSRs learn POMDP matrices up to a similarity transform, and this transform may be estimated via tensor decomposition methods. Our method learns observation matrices and transition matrices up to a partition of states, where the states in a single partition have the same observation distributions corresponding to actions whose transition matrices are full-rank. Our experiments suggest that explicit observation and transition likelihoods can be leveraged to generate new plans for different goals and reward functions after the model has been learned. We also show that learning a POMDP beyond a partition of states is impossible from sequential data by constructing two POMDPs that agree on all observation distributions but differ in their transition dynamics.
comment: Update abstract
♻ ☆ Grokking in LLM Pretraining? Monitor Memorization-to-Generalization without Test ICLR 2026
This paper presents the first study of grokking in practical LLM pretraining. Specifically, we investigate when an LLM memorizes the training data, when its generalization on downstream tasks starts to improve, and what happens if there is a lag between the two. Unlike existing works studying when a small model generalizes to limited and specified tasks during thousands epochs' training on algorithmic data, we focus on a practical setting for LLMs, i.e., one-epoch pretraining of next-token prediction on a cross-domain, large-scale corpus, and generalization on diverse benchmark tasks covering math/commonsense reasoning, code generation, and domain-specific retrieval. Our study, for the first time, verifies that grokking still emerges in pretraining mixture-of-experts (MoE) LLMs, though different local data groups may enter their grokking stages asynchronously due to the heterogeneity of their distributions and attributions to others. To find a mechanistic interpretation of this local grokking, we investigate the dynamics of training data's pathways (i.e., expert choices across layers in MoE). Our primary discovery is that the pathways evolve from random, non-smooth across layers, instance-specific to more structured and transferable across samples, despite the converged pretraining loss. This depicts a transition from memorization to generalization. Two novel metrics are developed to quantify these patterns: one computes the pathway similarity between samples, while the other measures the consistency of aggregated experts between subsequent layers for each sample. These training data based metrics induce zero cost but can faithfully track and monitor the generalization of LLMs on downstream tasks, which, in conventional settings, requires costly instruction tuning and benchmark evaluation.
comment: Accepted at ICLR 2026
♻ ☆ Redirection for Erasing Memory (REM): Towards a universal unlearning method for corrupted data ICLR 2026
Machine unlearning is studied for a multitude of tasks, but specialization of unlearning methods to particular tasks has made their systematic comparison challenging. To address this issue, we propose a conceptual space to characterize diverse corrupted data unlearning tasks in vision classifiers. This space is described by two dimensions, the discovery rate (the fraction of the corrupted data that are known at unlearning time) and the statistical regularity of the corrupted data (from random exemplars to shared concepts). Methods proposed previously have been targeted at portions of this space and-we show-fail predictably outside these regions. We propose a novel method, Redirection for Erasing Memory (REM), whose key feature is that corrupted data are redirected to dedicated neurons introduced at unlearning time and then discarded or deactivated to suppress the influence of corrupted data. REM performs strongly across the space of tasks, in contrast to prior SOTA methods that fail outside the regions for which they were designed.
comment: Accepted as a main track paper at ICLR 2026 https://openreview.net/forum?id=xG0mQ4Xsfm
♻ ☆ Sample-Near-Optimal Agnostic Boosting with Improved Running Time ALT 2026
Boosting is a powerful method that turns weak learners, which perform only slightly better than random guessing, into strong learners with high accuracy. While boosting is well understood in the classic setting, it is less so in the agnostic case, where no assumptions are made about the data. Indeed, only recently was the sample complexity of agnostic boosting nearly settled arXiv:2503.09384, but the known algorithm achieving this bound has exponential running time. In this work, we propose the first agnostic boosting algorithm with near-optimal sample complexity, running in time polynomial in the sample size when considering the other parameters of the problem fixed.
comment: 28 pages, 0 figures. Accepted at the 37th International Conference on Algorithmic Learning Theory (ALT 2026)
♻ ☆ Information-Theoretic Causal Bounds under Unmeasured Confounding
We develop a data-driven information-theoretic framework for sharp partial identification of causal effects under unmeasured confounding. Existing approaches often rely on restrictive assumptions, such as bounded or discrete outcomes; require external inputs (for example, instrumental variables, proxies, or user-specified sensitivity parameters); necessitate full structural causal model specifications; or focus solely on population-level averages while neglecting covariate-conditional treatment effects. We overcome all four limitations simultaneously by establishing novel information-theoretic, data-driven divergence bounds. Our key theoretical contribution shows that the f-divergence between the observational distribution P(Y | A = a, X = x) and the interventional distribution P(Y | do(A = a), X = x) is upper bounded by a function of the propensity score alone. This result enables sharp partial identification of conditional causal effects directly from observational data, without requiring external sensitivity parameters, auxiliary variables, full structural specifications, or outcome boundedness assumptions. For practical implementation, we develop a semiparametric estimator satisfying Neyman orthogonality (Chernozhukov et al., 2018), which ensures square-root-n consistent inference even when nuisance functions are estimated using flexible machine learning methods. Simulation studies and real-world data applications, implemented in the GitHub repository (https://github.com/yonghanjung/Information-Theretic-Bounds), demonstrate that our framework provides tight and valid causal bounds across a wide range of data-generating processes.
♻ ☆ Convex Loss Functions for Support Vector Machines (SVMs) and Neural Networks
We propose a new convex loss for Support Vector Machines, both for the binary classification and for the regression models. Therefore, we show the mathematical derivation of the dual problems and we experiment with them on several small datasets. The minimal dimension of those datasets is due to the difficult scalability of the SVM method to bigger instances. This preliminary study should prove that using pattern correlations inside the loss function could enhance the generalisation performances. Our method consistently achieved comparable or superior performance, with improvements of up to 2.0% in F1 scores for classification tasks and 1.0% reduction in Mean Squared Error (MSE) for regression tasks across various datasets, compared to standard losses. Coherently, results show that generalisation measures are never worse than the standard losses and several times they are better. In our opinion, it should be considered a careful study of this loss, coupled with shallow and deep neural networks. In fact, we present some novel results obtained with those architectures.
♻ ☆ A Two-Timescale Primal-Dual Framework for Reinforcement Learning via Online Dual Variable Guidance
We study reinforcement learning by combining recent advances in regularized linear programming formulations with the classical theory of stochastic approximation. Motivated by the challenge of designing algorithms that leverage off-policy data while maintaining on-policy exploration, we propose PGDA-RL, a novel primal-dual Projected Gradient Descent-Ascent algorithm for solving regularized Markov Decision Processes (MDPs). PGDA-RL integrates experience replay-based gradient estimation with a two-timescale decomposition of the underlying nested optimization problem. The algorithm operates asynchronously, interacts with the environment through a single trajectory of correlated data, and updates its policy online in response to the dual variable associated with the occupancy measure of the underlying MDP. We prove that PGDA-RL converges almost surely to the optimal value function and policy of the regularized MDP. Our convergence analysis relies on tools from stochastic approximation theory and holds under weaker assumptions than those required by existing primal-dual RL approaches, notably removing the need for a simulator or a fixed behavioral policy. Under a strengthened ergodicity assumption on the underlying Markov chain, we establish a last-iterate finite-time guarantee with $\tilde{O} (k^{-2/3})$ mean-square convergence, aligning with the best-known rates for two-timescale stochastic approximation methods under Markovian sampling and biased gradient estimates.
comment: 54 pages, 1 figure; Revised version with additional finite-time convergence results
♻ ☆ The Powers of Precision: Structure-Informed Detection in Complex Systems -- From Customer Churn to Seizure Onset
Emergent phenomena -- onset of epileptic seizures, sudden customer churn, or pandemic outbreaks -- often arise from hidden causal interactions in complex systems. We propose a machine learning method for their early detection that addresses a core challenge: unveiling and harnessing a system's latent causal structure despite the data-generating process being unknown and partially observed. The method learns an optimal feature representation from a one-parameter family of estimators -- powers of the empirical covariance or precision matrix -- offering a principled way to tune in to the underlying structure driving the emergence of critical events. A supervised learning module then classifies the learned representation. We prove structural consistency of the family and demonstrate the empirical soundness of our approach on seizure detection and churn prediction, attaining competitive results in both. Beyond prediction, and toward explainability, we ascertain that the optimal covariance power exhibits evidence of good identifiability while capturing structural signatures, thus reconciling predictive performance with interpretable statistical structure.
♻ ☆ Interpreting and Controlling LLM Reasoning through Integrated Policy Gradient
Large language models (LLMs) demonstrate strong reasoning abilities in solving complex real-world problems. Yet, the internal mechanisms driving these complex reasoning behaviors remain opaque. Existing interpretability approaches targeting reasoning either identify components (e.g., neurons) correlated with special textual patterns, or rely on human-annotated contrastive pairs to derive control vectors. Consequently, current methods struggle to precisely localize complex reasoning mechanisms or capture sequential influence from model internal workings to the reasoning outputs. In this paper, built on outcome-oriented and sequential-influence-aware principles, we focus on identifying components that have sequential contribution to reasoning behavior where outcomes are cumulated by long-range effects. We propose Integrated Policy Gradient (IPG), a novel framework that attributes reasoning behaviors to model's inner components by propagating compound outcome-based signals such as post reasoning accuracy backward through model inference trajectories. Empirical evaluations demonstrate that our approach achieves more precise localization and enables reliable modulation of reasoning behaviors (e.g., reasoning capability, reasoning strength) across diverse reasoning models.
♻ ☆ Transformers can do Bayesian Clustering
Bayesian clustering accounts for uncertainty but is computationally demanding at scale. Furthermore, real-world datasets often contain missing values, and simple imputation ignores the associated uncertainty, resulting in suboptimal results. We present Cluster-PFN, a Transformer-based model that extends Prior-Data Fitted Networks (PFNs) to unsupervised Bayesian clustering. Trained entirely on synthetic datasets generated from a finite Gaussian Mixture Model (GMM) prior, Cluster-PFN learns to estimate the posterior distribution over both the number of clusters and the cluster assignments. Our method estimates the number of clusters more accurately than handcrafted model selection procedures such as AIC, BIC and Variational Inference (VI), and achieves clustering quality competitive with VI while being orders of magnitude faster. Cluster-PFN can be trained on complex priors that include missing data, outperforming imputation-based baselines on real-world genomic datasets, at high missingness. These results show that the Cluster-PFN can provide scalable and flexible Bayesian clustering.
♻ ☆ An Overview of Low-Rank Structures in the Training and Adaptation of Large Models IEEE
The substantial computational demands of modern large-scale deep learning present significant challenges for efficient training and deployment. Recent research has revealed a widespread phenomenon wherein deep networks inherently learn low-rank structures in their weights and representations during training. This tutorial paper provides a comprehensive review of advances in identifying and exploiting these low-rank structures, bridging mathematical foundations with practical applications. We present two complementary theoretical perspectives on the emergence of low-rankness: viewing it through the optimization dynamics of gradient descent throughout training, and understanding it as a result of implicit regularization effects at convergence. Practically, these theoretical perspectives provide a foundation for understanding the success of techniques such as Low-Rank Adaptation (LoRA) in fine-tuning, inspire new parameter-efficient low-rank training strategies, and explain the effectiveness of masked training approaches like dropout and masked self-supervised learning.
comment: Authors are listed alphabetically; 37 pages, 15 figures; minor revision at IEEE Signal Processing Magazine
♻ ☆ Uncertainty-driven Adaptive Exploration AAMAS 2026
Adaptive exploration methods propose ways to learn complex policies via alternating between exploration and exploitation. An important question for such methods is to determine the appropriate moment to switch between exploration and exploitation and vice versa. This is critical in domains that require the learning of long and complex sequences of actions. In this work, we present a generic adaptive exploration framework that employs uncertainty to address this important issue in a principled manner. Our framework includes previous adaptive exploration approaches as special cases. Moreover, we can incorporate in our framework any uncertainty-measuring mechanism of choice, for instance mechanisms used in intrinsic motivation or epistemic uncertainty-based exploration methods. We experimentally demonstrate that our framework gives rise to adaptive exploration strategies that outperform standard ones across several environments.
comment: This is an extended version (full paper + appendix) of the paper titled "A Novel Framework for Uncertainty-Driven Adaptive Exploration" accepted as a full paper at AAMAS 2026. The accepted paper can be found in https://openreview.net/forum?id=j5awxzdsU9
♻ ☆ Probabilistic Predictions of Process-Induced Deformation in Carbon/Epoxy Composites Using a Deep Operator Network
Fiber reinforcement and polymer matrix respond differently to manufacturing conditions due to mismatch in coefficient of thermal expansion and matrix shrinkage during curing of thermosets. These heterogeneities generate residual stresses over multiple length scales, whose partial release leads to process-induced deformation (PID), requiring accurate prediction and mitigation via optimized non-isothermal cure cycles. This study considers a unidirectional AS4 carbon fiber/amine bi-functional epoxy prepreg and models PID using a two-mechanism framework that accounts for thermal expansion/shrinkage and cure shrinkage. The model is validated against manufacturing trials to identify initial and boundary conditions, then used to generate PID responses for a diverse set of non-isothermal cure cycles (time-temperature profiles). Building on this physics-based foundation, we develop a data-driven surrogate based on Deep Operator Networks (DeepONets). A DeepONet is trained on a dataset combining high-fidelity simulations with targeted experimental measurements of PID. We extend this to a Feature-wise Linear Modulation (FiLM) DeepONet, where branch-network features are modulated by external parameters, including the initial degree of cure, enabling prediction of time histories of degree of cure, viscosity, and deformation. Because experimental data are available only at limited time instances (for example, final deformation), we use transfer learning: simulation-trained trunk and branch networks are fixed and only the final layer is updated using measured final deformation. Finally, we augment the framework with Ensemble Kalman Inversion (EKI) to quantify uncertainty under experimental conditions and to support optimization of cure schedules for reduced PID in composites.
comment: 21 pages, 13 figures
♻ ☆ NOBLE -- Neural Operator with Biologically-informed Latent Embeddings to Capture Experimental Variability in Biological Neuron Models
Characterizing the cellular properties of neurons is fundamental to understanding their function in the brain. In this quest, the generation of bio-realistic models is central towards integrating multimodal cellular data sets and establishing causal relationships. However, current modeling approaches remain constrained by the limited availability and intrinsic variability of experimental neuronal data. The deterministic formalism of bio-realistic models currently precludes accounting for the natural variability observed experimentally. While deep learning is becoming increasingly relevant in this space, it fails to capture the full biophysical complexity of neurons, their nonlinear voltage dynamics, and variability. To address these shortcomings, we introduce NOBLE, a neural operator framework that learns a mapping from a continuous frequency-modulated embedding of interpretable neuron features to the somatic voltage response induced by current injection. Trained on synthetic data generated from bio-realistic neuron models, NOBLE predicts distributions of neural dynamics accounting for the intrinsic experimental variability. Unlike conventional bio-realistic neuron models, interpolating within the embedding space offers models whose dynamics are consistent with experimentally observed responses. NOBLE enables the efficient generation of synthetic neurons that closely resemble experimental data and exhibit trial-to-trial variability, offering a $4200\times$ speedup over the numerical solver. NOBLE is the first scaled-up deep learning framework that validates its generalization with real experimental data. To this end, NOBLE captures fundamental neural properties in a unique and emergent manner that opens the door to a better understanding of cellular composition and computations, neuromorphic architectures, large-scale brain circuits, and general neuroAI applications.
♻ ☆ Dynamic Priors in Bayesian Optimization for Hyperparameter Optimization
Bayesian optimization (BO) is a widely used approach to hyperparameter optimization (HPO). However, most existing HPO methods only incorporate expert knowledge during initialization, limiting practitioners' ability to influence the optimization process as new insights emerge. This limits the applicability of BO in iterative machine learning development workflows. We propose DynaBO, a BO framework that enables continuous user control of the optimization process. Over time, DynaBO leverages provided user priors by augmenting the acquisition function with decaying, prior-weighted preferences while preserving asymptotic convergence guarantees. To reinforce robustness, we introduce a data-driven safeguard that detects and can be used to reject misleading priors. We prove theoretical results on near-certain convergence, robustness to adversarial priors, and accelerated convergence when informative priors are provided. Extensive experiments across various HPO benchmarks show that DynaBO consistently outperforms our state-of-the-art competitors across all benchmarks and for all prior kinds. Our results demonstrate that DynaBO enables reliable and efficient collaborative BO, bridging automated and manually controlled model development.
comment: 8 pages plus references and appendix
♻ ☆ Joint Estimation of Piano Dynamics and Metrical Structure with a Multi-task Multi-Scale Network ICASSP2026
Estimating piano dynamic from audio recordings is a fundamental challenge in computational music analysis. In this paper, we propose an efficient multi-task network that jointly predicts dynamic levels, change points, beats, and downbeats from a shared latent representation. These four targets form the metrical structure of dynamics in the music score. Inspired by recent vocal dynamic research, we use a multi-scale network as the backbone, which takes Bark-scale specific loudness as the input feature. Compared to log-Mel as input, this reduces model size from 14.7 M to 0.5 M, enabling long sequential input. We use a 60-second audio length in audio segmentation, which doubled the length of beat tracking commonly used. Evaluated on the public MazurkaBL dataset, our model achieves state-of-the-art results across all tasks. This work sets a new benchmark for piano dynamic estimation and delivers a powerful and compact tool, paving the way for large-scale, resource-efficient analysis of musical expression.
comment: Accepted to ICASSP2026 conference
♻ ☆ Bias-Reduced Estimation of Finite Mixtures: An Application to Latent Group Structures in Panel Data
Finite mixture models are widely used in econometric analyses to capture unobserved heterogeneity. This paper shows that maximum likelihood estimation of finite mixtures of parametric densities can suffer from substantial finite-sample bias in all parameters under mild regularity conditions. The bias arises from the influence of outliers in component densities with unbounded or large support and increases with the degree of overlap among mixture components. I show that maximizing the classification-mixture likelihood function, equipped with a consistent classifier, yields parameter estimates that are less biased than those obtained by standard maximum likelihood estimation (MLE). I then derive the asymptotic distribution of the resulting estimator and provide conditions under which oracle efficiency is achieved. Monte Carlo simulations show that conventional mixture MLE exhibits pronounced finite-sample bias, which diminishes as the sample size or the statistical distance between component densities tends to infinity. The simulations further show that the proposed estimation strategy generally outperforms standard MLE in finite samples in terms of both bias and mean squared errors under relatively weak assumptions. An empirical application to latent group panel structures using health administrative data shows that the proposed approach reduces out-of-sample prediction error by approximately 17.6% relative to the best results obtained from standard MLE procedures.
♻ ☆ An End-to-End Approach for Microgrid Probabilistic Forecasting and Robust Operation via Decision-focused Learning
High penetration of renewable energy sources (RES) introduces significant uncertainty and intermittency into microgrid operations, posing challenges to economic and reliable scheduling. To address this, this paper proposes an end-to-end decision-focused framework that jointly optimizes probabilistic forecasting and robust operation for microgrids. A multilayer encoder-decoder (MED) probabilistic forecasting model is integrated with a two-stage robust optimization (TSRO) model involving direct load control (DLC) through a differentiable decision pathway, enabling gradient-based feedback from operational outcomes to improve forecasting performance. Unlike conventional sequential approaches, the proposed method aligns forecasting accuracy with operational objectives by directly minimizing decision regret via a surrogate smart predict-then-optimize (SPO) loss function. This integration ensures that probabilistic forecasts are optimized for downstream decisions, enhancing both economic efficiency and robustness. Case studies on modified IEEE 33-bus and 69-bus systems demonstrate that the proposed framework achieves superior forecasting accuracy and operational performance, reducing total and net operation costs by up to 18% compared with conventional forecasting and optimization combinations. The results verify the effectiveness and scalability of the end-to-end decision-focused approach for resilient and cost-efficient microgrid management under uncertainty.
comment: 10 pages
♻ ☆ fev-bench: A Realistic Benchmark for Time Series Forecasting
Benchmark quality is critical for meaningful evaluation and sustained progress in time series forecasting, particularly with the rise of pretrained models. Existing benchmarks often have limited domain coverage or overlook real-world settings such as tasks with covariates. Their aggregation procedures frequently lack statistical rigor, making it unclear whether observed performance differences reflect true improvements or random variation. Many benchmarks lack consistent evaluation infrastructure or are too rigid for integration into existing pipelines. To address these gaps, we propose fev-bench, a benchmark of 100 forecasting tasks across seven domains, including 46 with covariates. Supporting the benchmark, we introduce fev, a lightweight Python library for forecasting evaluation emphasizing reproducibility and integration with existing workflows. Using fev, fev-bench employs principled aggregation with bootstrapped confidence intervals to report performance along two dimensions: win rates and skill scores. We report results on fev-bench for pretrained, statistical, and baseline models and identify promising future research directions.
♻ ☆ Spiking Neural Networks for Continuous Control via End-to-End Model-Based Learning
Despite recent progress in training spiking neural networks (SNNs) for classification, their application to continuous motor control remains limited. Here, we demonstrate that fully spiking architectures can be trained end-to-end to control robotic arms with multiple degrees of freedom in continuous environments. Our predictive-control framework combines Leaky Integrate-and-Fire dynamics with surrogate gradients, jointly optimizing a forward model for dynamics prediction and a policy network for goal-directed action. We evaluate this approach on both a planar 2D reaching task and a simulated 6-DOF Franka Emika Panda robot with torque control. In direct comparison to non-spiking recurrent baselines trained under the same predictive-control pipeline, the proposed SNN achieves comparable task performance while using substantially fewer parameters. An extensive ablation study highlights the role of initialization, learnable time constants, adaptive thresholds, and latent-space compression as key contributors to stable training and effective control. Together, these findings establish spiking neural networks as a viable and scalable substrate for high-dimensional continuous control, while emphasizing the importance of principled architectural and training design.
♻ ☆ Improved Stochastic Optimization of LogSumExp
The LogSumExp function, dual to the Kullback-Leibler (KL) divergence, plays a central role in many important optimization problems, including entropy-regularized optimal transport (OT) and distributionally robust optimization (DRO). In practice, when the number of exponential terms inside the logarithm is large or infinite, optimization becomes challenging since computing the gradient requires differentiating every term. We propose a novel convexity- and smoothness-preserving approximation to LogSumExp that can be efficiently optimized using stochastic gradient methods. This approximation is rooted in a sound modification of the KL divergence in the dual, resulting in a new $f$-divergence called the safe KL divergence. Our experiments and theoretical analysis of the LogSumExp-based stochastic optimization, arising in DRO and continuous OT, demonstrate the advantages of our approach over existing baselines.
comment: 17 pages, 5 figures, 2 tables; updated experiment in subsection 3.3
♻ ☆ Accurate and Efficient World Modeling with Masked Latent Transformers
The Dreamer algorithm has recently obtained remarkable performance across diverse environment domains by training powerful agents with simulated trajectories. However, the compressed nature of its world model's latent space can result in the loss of crucial information, negatively affecting the agent's performance. Recent approaches, such as $Δ$-IRIS and DIAMOND, address this limitation by training more accurate world models. However, these methods require training agents directly from pixels, which reduces training efficiency and prevents the agent from benefiting from the inner representations learned by the world model. In this work, we propose an alternative approach to world modeling that is both accurate and efficient. We introduce EMERALD (Efficient MaskEd latent tRAnsformer worLD model), a world model using a spatial latent state with MaskGIT predictions to generate accurate trajectories in latent space and improve the agent performance. On the Crafter benchmark, EMERALD achieves new state-of-the-art performance, becoming the first method to surpass human experts performance within 10M environment steps. Our method also succeeds to unlock all 22 Crafter achievements at least once during evaluation.
♻ ☆ Simple Denoising Diffusion Language Models
Recent Uniform State Diffusion Models (USDMs), initialized from a uniform prior, offer the promise of fast text generation due to their inherent self-correction ability compared to masked diffusion models. However, they still rely on complex loss formulations with additional computational overhead, which hinders scalability. In this work, we explore a simplified denoising-based loss for USDMs that optimizes only noise-replaced tokens, stabilizing training while matching the performance of prior methods with more complex objectives. In addition, we introduce an efficient regularization term to mitigate corruption toward uniform output distributions, which further improves performance. We demonstrate the effectiveness and efficiency of our simple and improved loss formulations by pretraining models on widely used text datasets for USDMs. More importantly, our conclusions scale to larger models, showing strong potential for large-scale training.
♻ ☆ Methodology for Comparing Machine Learning Algorithms for Survival Analysis
This study presents a comparative methodological analysis of six machine learning models for survival analysis (MLSA). Using data from nearly 45,000 colorectal cancer patients in the Hospital-Based Cancer Registries of São Paulo, we evaluated Random Survival Forest (RSF), Gradient Boosting for Survival Analysis (GBSA), Survival SVM (SSVM), XGBoost-Cox (XGB-Cox), XGBoost-AFT (XGB-AFT), and LightGBM (LGBM), capable of predicting survival considering censored data. Hyperparameter optimization was performed with different samplers, and model performance was assessed using the Concordance Index (C-Index), C-Index IPCW, time-dependent AUC, and Integrated Brier Score (IBS). Survival curves produced by the models were compared with predictions from classification algorithms, and predictor interpretation was conducted using SHAP and permutation importance. XGB-AFT achieved the best performance (C-Index = 0.7618; IPCW = 0.7532), followed by GBSA and RSF. The results highlight the potential and applicability of MLSA to improve survival prediction and support decision making.
♻ ☆ KVzap: Fast, Adaptive, and Faithful KV Cache Pruning
Growing context lengths in transformer-based language models have made the key-value (KV) cache a critical inference bottleneck. While many KV cache pruning methods have been proposed, they have not yet been adopted in major inference engines due to speed--accuracy trade-offs. We introduce KVzap, a fast, input-adaptive approximation of KVzip that works in both prefilling and decoding. On Qwen3-8B, Llama-3.1-8B-Instruct, and Qwen3-32B across long-context and reasoning tasks, KVzap achieves $2$--$4\times$ KV cache compression with negligible accuracy loss and achieves state-of-the-art performance on the KVpress leaderboard. Code and models are available at https://github.com/NVIDIA/kvpress.
♻ ☆ SLIME: Stabilized Likelihood Implicit Margin Enforcement for Preference Optimization
Direct preference optimization methods have emerged as a computationally efficient alternative to Reinforcement Learning from Human Feedback (RLHF) for aligning Large Language Models (LLMs). Latest approaches have streamlined the alignment process by deriving implicit reward functions, yet they often suffer from a critical objective mismatch: optimizing the relative margin between chosen and rejected responses does not guarantee the preservation of the chosen response's absolute likelihood. This can lead to unlearning, where the model degrades the probability of high-quality outputs to satisfy margin constraints, and formatting collapse caused by the over-penalization of rejected sequences. In this work, we introduce SLIME (Stabilized Likelihood Implicit Margin Enforcement), a reference-free alignment objective designed to decouple preference learning from generation quality. SLIME incorporates a three-pronged objective: (1) an anchoring term to maximize the likelihood of preferred responses; (2) a stabilizing penalty that prevents the probabilities of rejected tokens from collapsing to zero; and (3) a dual-margin mechanism that combines hard and soft constraints for precise boundary shaping. Our results demonstrate that SLIME achieves superior performance compared to state-of-the-art baselines while maintaining higher generation stability.
♻ ☆ Designing ReLU Generative Networks to Enumerate Trees with a Given Tree Edit Distance
The generation of trees with a specified tree edit distance has significant applications across various fields, including computational biology, structured data analysis, and image processing. Recently, generative networks have been increasingly employed to synthesize new data that closely resembles the original datasets. However, the appropriate size and depth of generative networks required to generate data with a specified tree edit distance remain unclear. In this paper, we theoretically establish the existence and construction of generative networks capable of producing trees similar to a given tree with respect to the tree edit distance. Specifically, for a given rooted, ordered, and vertex-labeled tree T of size n + 1 with labels from an alphabet Σ, and a non-negative integer d, we prove that all rooted, ordered, and vertex-labeled trees over Σwith tree edit distance at most d from T can be generated using a ReLU-based generative network with size O(n^3 ) and constant depth. The proposed networks were implemented and evaluated for generating trees with up to 21 nodes. Due to their deterministic architecture, the networks successfully generated all valid trees within the specified tree edit distance. In contrast, state-of-the-art graph generative models GraphRNN and GraphGDP, which rely on non-deterministic mechanisms, produced significantly fewer valid trees, achieving validation rates of only up to 35% and 48%, respectively. These findings provide a theoretical foundation towards construction of compact generative models and open new directions for exact and valid tree-structured data generation. An implementation of the proposed networks is available at https://github.com/MGANN-KU/TreeGen_ReLUNetworks.
♻ ☆ Relational reasoning and inductive bias in transformers and large language models
Transformer-based models have demonstrated remarkable reasoning abilities, but the mechanisms underlying relational reasoning remain poorly understood. We investigate how transformers perform \textit{transitive inference}, a classic relational reasoning task which requires inference indirectly related items (e.g., if $A>B$ and $B>C$, then $A>C$), comparing in-weights learning (IWL) and in-context learning (ICL) strategies. We find that IWL naturally induces a generalization bias towards transitive inference despite training only on adjacent items, whereas ICL models develop induction circuits implementing match-and-copy strategies that fail to encode hierarchical relationships. However, when pre-trained on in-context linear regression tasks, transformers successfully exhibit in-context generalizable transitive inference, displaying both \textit{symbolic distance} and \textit{terminal item effects} characteristic of human and animal performance, without forming induction circuits. We extend these findings to large language models, demonstrating that prompting with linear geometric scaffolds improves transitive inference, while circular geometries (which violate transitivity by allowing wraparound) impair performance, particularly when models cannot rely on stored knowledge. Together, these results reveal that both the training regime and the geometric structure of induced representations critically determine transformers' capacity for transitive inference.
comment: 15 pages, 10 figures
♻ ☆ Conformal Prediction for Causal Effects of Continuous Treatments NeurIPS 2025
Uncertainty quantification of causal effects is crucial for safety-critical applications such as personalized medicine. A powerful approach for this is conformal prediction, which has several practical benefits due to model-agnostic finite-sample guarantees. Yet, existing methods for conformal prediction of causal effects are limited to binary/discrete treatments and make highly restrictive assumptions such as known propensity scores. In this work, we provide a novel conformal prediction method for potential outcomes of continuous treatments. We account for the additional uncertainty introduced through propensity estimation so that our conformal prediction intervals are valid even if the propensity score is unknown. Our contributions are three-fold: (1) We derive finite-sample prediction intervals for potential outcomes of continuous treatments. (2) We provide an algorithm for calculating the derived intervals. (3) We demonstrate the effectiveness of the conformal prediction intervals in experiments on synthetic and real-world datasets. To the best of our knowledge, we are the first to propose conformal prediction for continuous treatments when the propensity score is unknown and must be estimated from data.
comment: Accepted at NeurIPS 2025
♻ ☆ Trustworthy AI-based crack-tip segmentation using domain-guided explanations
Ensuring the trustworthiness and robustness of deep learning models remains a fundamental challenge, particularly in high-stakes scientific applications. In this study, we present a framework called attention-guided training that combines explainable artificial intelligence techniques with quantitative evaluation and domain-specific priors to guide model attention. We demonstrate that domain-specific feedback on model explanations during training can enhance the model's generalization capabilities. We validate our approach on the task of semantic crack tip segmentation in digital image correlation data, which is a key application in the fracture mechanical characterization of materials. By aligning model attention with physically meaningful stress fields, such as those described by Williams' analytical solution, attention-guided training ensures that the model focuses on physically relevant regions. This finally leads to improved generalization and more faithful explanations.
comment: This is the Accepted Manuscript version of an article accepted for publication in Machine Learning: Science and Technology. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/10.1088/2632-2153/ae3660
♻ ☆ Latent Space Representation of Electricity Market Curves: Maintaining Structural Integrity
Efficiently representing supply and demand curves is vital for energy market analysis and downstream modelling; however, dimensionality reduction often produces reconstructions that violate fundamental economic principles such as monotonicity. This paper evaluates the performance of PCA, Kernel PCA, UMAP, and AutoEncoder across 2d and 3d latent spaces. During preprocessing, we transform the original data to achieve a unified structure, mitigate outlier effects, and focus on critical curve segments. To ensure theoretical validity, we integrate Isotonic Regression as an optional post-processing step to enforce monotonic constraints on reconstructed outputs. Results from a three-year hourly MIBEL dataset demonstrate that the non-linear technique UMAP consistently outperforms other methods, securing the top rank across multiple error metrics. Furthermore, Isotonic Regression serves as a crucial corrective layer, significantly reducing error and restoring physical validity for several methods. We argue that UMAP`s local structure preservation, combined with intelligent post-processing, provides a robust foundation for downstream tasks such as forecasting, classification, and clustering.
comment: 8 pages, 3 figures
♻ ☆ Time2Vec Transformer for Robust Gesture Recognition from Low-Density sEMG
Accurate and responsive myoelectric prosthesis control typically relies on complex, dense multi-sensor arrays, which limits consumer accessibility. This paper presents a novel, data-efficient deep learning framework designed to achieve precise and accurate control using minimal sensor hardware. Leveraging an external dataset of 8 subjects, our approach implements a hybrid Transformer optimized for sparse, two-channel surface electromyography (sEMG). Unlike standard architectures that use fixed positional encodings, we integrate Time2Vec learnable temporal embeddings to capture the stochastic temporal warping inherent in biological signals. Furthermore, we employ a normalized additive fusion strategy that aligns the latent distributions of spatial and temporal features, preventing the destructive interference common in standard implementations. A two-stage curriculum learning protocol is utilized to ensure robust feature extraction despite data scarcity. The proposed architecture achieves a state-of-the-art multi-subject F1-score of 95.7% $\pm$ 0.20% for a 10-class movement set, statistically outperforming both a standard Transformer with fixed encodings and a recurrent CNN-LSTM model. Architectural optimization reveals that a balanced allocation of model capacity between spatial and temporal dimensions yields the highest stability. Furthermore, while direct transfer to a new unseen subject led to poor accuracy due to domain shifts, a rapid calibration protocol utilizing only two trials per gesture recovered performance from 21.0% $\pm$ 2.98% to 96.9% $\pm$ 0.52%. By validating that high-fidelity temporal embeddings can compensate for low spatial resolution, this work challenges the necessity of high-density sensing. The proposed framework offers a robust, cost-effective blueprint for next-generation prosthetic interfaces capable of rapid personalization.
♻ ☆ Beyond Predictive Uncertainty: Reliable Representation Learning with Structural Constraints
Uncertainty estimation in machine learning has traditionally focused on the prediction stage, aiming to quantify confidence in model outputs while treating learned representations as deterministic and reliable by default. In this work, we challenge this implicit assumption and argue that reliability should be regarded as a first-class property of learned representations themselves. We propose a principled framework for reliable representation learning that explicitly models representation-level uncertainty and leverages structural constraints as inductive biases to regularize the space of feasible representations. Our approach introduces uncertainty-aware regularization directly in the representation space, encouraging representations that are not only predictive but also stable, well-calibrated, and robust to noise and structural perturbations. Structural constraints, such as sparsity, relational structure, or feature-group dependencies, are incorporated to define meaningful geometry and reduce spurious variability in learned representations, without assuming fully correct or noise-free structure. Importantly, the proposed framework is independent of specific model architectures and can be integrated with a wide range of representation learning methods.
comment: 22 pages, 5 figures, 5 propositions
♻ ☆ Dataset-Driven Channel Masks in Transformers for Multivariate Time Series ICASSP 2026
Recent advancements in foundation models have been successfully extended to the time series (TS) domain, facilitated by the emergence of large-scale TS datasets. However, previous efforts have primarily Capturing channel dependency (CD) is essential for modeling multivariate time series (TS), and attention-based methods have been widely employed for this purpose. Nonetheless, these methods primarily focus on modifying the architecture, often neglecting the importance of dataset-specific characteristics. In this work, we introduce the concept of partial channel dependence (PCD) to enhance CD modeling in Transformer-based models by leveraging dataset-specific information to refine the CD captured by the model. To achieve PCD, we propose channel masks (CMs), which are integrated into the attention matrices of Transformers via element-wise multiplication. CMs consist of two components: 1) a similarity matrix that captures relationships between the channels, and 2) dataset-specific and learnable domain parameters that refine the similarity matrix. We validate the effectiveness of PCD across diverse tasks and datasets with various backbones. Code is available at this repository: https://github.com/YonseiML/pcd.
comment: ICASSP 2026. Preliminary version: NeurIPS Workshop on Time Series in the Age of Large Models 2024 (Oral presentation)
♻ ☆ Patronus: Interpretable Diffusion Models with Prototypes
Uncovering the opacity of diffusion-based generative models is urgently needed, as their applications continue to expand while their underlying procedures largely remain a black box. With a critical question -- how can the diffusion generation process be interpreted and understood? -- we proposed Patronus, an interpretable diffusion model that incorporates a prototypical network to encode semantics in visual patches, revealing what visual patterns are modeled and where and when they emerge throughout denoising. This interpretability of Patronus provides deeper insights into the generative mechanism, enabling the detection of shortcut learning via unwanted correlations and the tracing of semantic emergence across timesteps. We evaluate Patronus on four natural image datasets and one medical imaging dataset, demonstrating both faithful interpretability and strong generative performance. With this work, we open new avenues for understanding and steering diffusion models through prototype-based interpretability.\\ Our code is available at https://github.com/nina-weng/patronus}{https://github.com/nina-weng/patronus.
♻ ☆ Contrastive Geometric Learning Unlocks Unified Structure- and Ligand-Based Drug Design
Structure-based and ligand-based computational drug design have traditionally relied on disjoint data sources and modeling assumptions, limiting their joint use at scale. In this work, we introduce Contrastive Geometric Learning for Unified Computational Drug Design (ConGLUDe), a single contrastive geometric model that unifies structure- and ligand-based training. ConGLUDe couples a geometric protein encoder that produces whole-protein representations and implicit embeddings of predicted binding sites with a fast ligand encoder, removing the need for pre-defined pockets. By aligning ligands with both global protein representations and multiple candidate binding sites through contrastive learning, ConGLUDe supports ligand-conditioned pocket prediction in addition to virtual screening and target fishing, while being trained jointly on protein-ligand complexes and large-scale bioactivity data. Across diverse benchmarks, ConGLUDe achieves competitive zero-shot virtual screening performance, substantially outperforms existing methods on a challenging target fishing task, and demonstrates state-of-the-art ligand-conditioned pocket selection. These results highlight the advantages of unified structure-ligand training and position ConGLUDe as a step toward general-purpose foundation models for drug discovery.
comment: ELLIS ML4Molecules Workshop 2025, ELLIS Unconference, Copenhagen 2025 Revised version with additional timing evaluation
♻ ☆ Discrete Latent Structure in Neural Networks
Many types of data from fields including natural language processing, computer vision, and bioinformatics, are well represented by discrete, compositional structures such as trees, sequences, or matchings. Latent structure models are a powerful tool for learning to extract such representations, offering a way to incorporate structural bias, discover insight about the data, and interpret decisions. However, effective training is challenging, as neural networks are typically designed for continuous computation. This text explores three broad strategies for learning with discrete latent structure: continuous relaxation, surrogate gradients, and probabilistic estimation. Our presentation relies on consistent notations for a wide range of models. As such, we reveal many new connections between latent structure learning strategies, showing how most consist of the same small set of fundamental building blocks, but use them differently, leading to substantially different applicability and properties.
♻ ☆ A Research Roadmap for Augmenting Software Engineering Processes and Software Products with Generative AI
Generative AI (GenAI) is rapidly transforming software engineering (SE) practices, influencing how SE processes are executed, as well as how software systems are developed, operated, and evolved. This paper applies design science research to build a roadmap for GenAI-augmented SE. The process consists of three cycles that incrementally integrate multiple sources of evidence, including collaborative discussions from the FSE 2025 "Software Engineering 2030" workshop, rapid literature reviews, and external feedback sessions involving peers. McLuhan's tetrads were used as a conceptual instrument to systematically capture the transforming effects of GenAI on SE processes and software products.The resulting roadmap identifies four fundamental forms of GenAI augmentation in SE and systematically characterizes their related research challenges and opportunities. These insights are then consolidated into a set of future research directions. By grounding the roadmap in a rigorous multi-cycle process and cross-validating it among independent author teams and peers, the study provides a transparent and reproducible foundation for analyzing how GenAI affects SE processes, methods and tools, and for framing future research within this rapidly evolving area. Based on these findings, the article finally makes ten predictions for SE in the year 2030.
♻ ☆ CP-Agent: Agentic Constraint Programming
The translation of natural language to formal constraint models requires expertise in the problem domain and modeling frameworks. To explore the effectiveness of agentic workflows, we propose CP-Agent, a Python coding agent that uses the ReAct framework with a persistent IPython kernel. We provide the relevant domain knowledge as a project prompt of under 50 lines. The algorithm works by iteratively executing code, observing the solver's feedback, and refining constraint models based on execution results. We evaluate CP-Agent on 101 constraint programming problems from CP-Bench. We made minor changes to the benchmark to address systematic ambiguities in the problem specifications and errors in the ground-truth models. On the clarified benchmark, CP-Agent achieves perfect accuracy on all 101 problems. Our experiments show that minimal guidance outperforms detailed procedural scaffolding. Our experiments also show that explicit task management tools can have both positive and negative effects on focused modeling tasks.
♻ ☆ PRISM: Deriving a White-Box Transformer as a Signal-Noise Decomposition Operator via Maximum Coding Rate Reduction
Deep learning models, particularly Transformers, are often criticized as "black boxes" and lack interpretability. We propose Prism, a white-box attention-based architecture derived from the principles of Maximizing Coding Rate Reduction ($\text{MCR}^2$). By modeling the attention mechanism as a gradient ascent process on a distinct signal-noise manifold, we introduce a specific irrational frequency separation ($π$-RoPE) to enforce incoherence between signal (semantic) and noise (syntactic) subspaces. We show empirical evidence that these geometric inductive biases can induce unsupervised functional disentanglement alone. Prism spontaneously specializes its attention heads into spectrally distinct regimes: low-frequency heads capturing long-range causal dependencies (signal) and high-frequency heads handling local syntactic constraints and structural artifacts. To provide a theoretical grounding for these spectral phenomena, we draw an analogy between attention mechanism and a Hamiltonian dynamical system and identify that the standard geometric progression of Rotary Positional Embeddings (RoPE) induces dense resonance networks (Arnold Tongues), leading to feature rank collapse. Empirical validation on 124M-parameter models trained on OpenWebText demonstrates that Prism spontaneously isolates the Attention Sink pathology and maintains isentropic information flow across layers. Further, we suggest a physics-informed plug-and-play intervention KAM-RoPE for large language models (LLMs). Our results suggest that interpretability and performance can be unified through principled geometric construction, offering a theoretically grounded alternative to heuristic architectural modifications
comment: 12 pages, 6 figures. Derives Transformer as a signal-noise decomposition operator via Maximizing Coding Rate Reduction. Identifies 'Attention Sink' as spectral resonance (Arnold Tongues) and proposes $π$-RoPE for dynamical stability
♻ ☆ Sensitivity analysis of image classification models using generalized polynomial chaos
Integrating advanced communication protocols in production has accelerated the adoption of data-driven predictive quality methods, notably machine learning (ML) models. However, ML models in image classification often face significant uncertainties arising from model, data, and domain shifts. These uncertainties lead to overconfidence in the classification model's output. To better understand these models, sensitivity analysis can help to analyze the relative influence of input parameters on the output. This work investigates the sensitivity of image classification models used for predictive quality. We propose modeling the distributional domain shifts of inputs with random variables and quantifying their impact on the model's outputs using Sobol indices computed via generalized polynomial chaos (GPC). This approach is validated through a case study involving a welding defect classification problem, utilizing a fine-tuned ResNet18 model and an emblem classification model used in BMW Group production facilities.
♻ ☆ SEDformer: Event-Synchronous Spiking Transformers for Irregular Telemetry Time Series Forecasting
Telemetry streams from large-scale Internet-connected systems (e.g., IoT deployments and online platforms) naturally form an irregular multivariate time series (IMTS) whose accurate forecasting is operationally vital. A closer examination reveals a defining Sparsity-Event Duality (SED) property of IMTS, i.e., long stretches with sparse or no observations are punctuated by short, dense bursts where most semantic events (observations) occur. However, existing Graph- and Transformer-based forecasters ignore SED: pre-alignment to uniform grids with heavy padding violates sparsity by inflating sequences and forcing computation at non-informative steps, while relational recasting weakens event semantics by disrupting local temporal continuity. These limitations motivate a more faithful and natural modeling paradigm for IMTS that aligns with its SED property. We find that Spiking Neural Networks meet this requirement, as they communicate via sparse binary spikes and update in an event-driven manner, aligning naturally with the SED nature of IMTS. Therefore, we present SEDformer, an SED-enhanced Spiking Transformer for telemetry IMTS forecasting that couples: (1) a SED-based Spike Encoder converts raw observations into event synchronous spikes using an Event-Aligned LIF neuron, (2) an Event-Preserving Temporal Downsampling module compresses long gaps while retaining salient firings and (3) a stack of SED-based Spike Transformer blocks enable intra-series dependency modeling with a membrane-based linear attention driven by EA-LIF spiking features. Experiments on public telemetry IMTS datasets show that SEDformer attains state-of-the-art forecasting accuracy while reducing energy and memory usage, providing a natural and efficient path for modeling IMTS.
comment: Under review
♻ ☆ Scalable Linearized Laplace Approximation via Surrogate Neural Kernel
We introduce a scalable method to approximate the kernel of the Linearized Laplace Approximation (LLA). For this, we use a surrogate deep neural network (DNN) that learns a compact feature representation whose inner product replicates the Neural Tangent Kernel (NTK). This avoids the need to compute large Jacobians. Training relies solely on efficient Jacobian-vector products, allowing to compute predictive uncertainty on large-scale pre-trained DNNs. Experimental results show similar or improved uncertainty estimation and calibration compared to existing LLA approximations. Notwithstanding, biasing the learned kernel significantly enhances out-of-distribution detection. This remarks the benefits of the proposed method for finding better kernels than the NTK in the context of LLA to compute prediction uncertainty given a pre-trained DNN.
comment: 6 pages, 1 table. Accepted at European Symposium on Artificial Neural Networks (ESANN 2026) as oral presentation
♻ ☆ SPGCL: Simple yet Powerful Graph Contrastive Learning via SVD-Guided Structural Perturbation
Graph Neural Networks (GNNs) are sensitive to structural noise from adversarial attacks or imperfections. Existing graph contrastive learning (GCL) methods typically rely on either random perturbations (e.g., edge dropping) for diversity or spectral augmentations (e.g., SVD) to preserve structural priors. However, random perturbations are structure-agnostic and may remove critical edges, while SVD-based views often lack sufficient diversity. Integrating these paradigms is challenging as they operate on discrete edge removal and continuous matrix factorization, respectively.We propose SPGCL, a framework for robust GCL via SVD-guided structural perturbation. Leveraging a recently developed SVD-based method that generalizes structural perturbation theory to arbitrary graphs, we design a two-stage strategy: (1) lightweight stochastic edge removal to inject diversity, and (2) truncated SVD to derive a structure-aware scoring matrix for sparse top-$P$ edge recovery. This integration offers three advantages: (1) Robustness to accidental deletion, as important edges can be recovered by SVD-guided scoring; (2) Enrichment with missing links, creating more informative contrastive views by introducing semantically meaningful edges; and (3) Controllable structural discrepancy, ensuring contrastive signals stem from semantic differences rather than edge-number gaps.Furthermore, we incorporate a contrastive fusion module with a global similarity constraint to align embeddings. Extensive experiments on ten benchmark datasets demonstrate that SPGCL consistently improves the robustness and accuracy of GNNs, outperforming state-of-the-art GCL and structure learning methods, validating its effectiveness in integrating previously disparate paradigms.
♻ ☆ MetaSym: A Symplectic Meta-learning Framework for Physical Intelligence
Scalable and generalizable physics-aware deep learning has long been considered a significant challenge with various applications across diverse domains ranging from robotics to molecular dynamics. Central to almost all physical systems are symplectic forms, the geometric backbone that underpins fundamental invariants like energy and momentum. In this work, we introduce a novel deep learning framework, MetaSym. In particular, MetaSym combines a strong symplectic inductive bias obtained from a symplectic encoder, and an autoregressive decoder with meta-attention. This principled design ensures that core physical invariants remain intact, while allowing flexible, data efficient adaptation to system heterogeneities. We benchmark MetaSym with highly varied and realistic datasets, such as a high-dimensional spring-mesh system Otness et al. (2021), an open quantum system with dissipation and measurement backaction, and robotics-inspired quadrotor dynamics. Crucially, we fine-tune and deploy MetaSym on real-world quadrotor data, demonstrating robustness to sensor noise and real-world uncertainty. Across all tasks, MetaSym achieves superior few-shot adaptation and outperforms larger state-of-the-art (SOTA) models.
comment: Published in Transactions on Machine Learning Research (TMLR), 10 + 18 pages, 9 figures, 10 tables
♻ ☆ IRIS: Implicit Reward-Guided Internal Sifting for Mitigating Multimodal Hallucination
Hallucination remains a fundamental challenge for Multimodal Large Language Models (MLLMs). While Direct Preference Optimization (DPO) is a key alignment framework, existing approaches often rely heavily on costly external evaluators for scoring or rewriting, incurring off-policy learnability gaps and discretization loss. Due to the lack of access to internal states, such feedback overlooks the fine-grained conflicts between different modalities that lead to hallucinations during generation. To address this issue, we propose IRIS (Implicit Reward-Guided Internal Sifting), which leverages continuous implicit rewards in the native log-probability space to preserve full information density and capture internal modal competition. This on-policy paradigm eliminates learnability gaps by utilizing self-generated preference pairs. By sifting these pairs based on multimodal implicit rewards, IRIS ensures that optimization is driven by signals that directly resolve modal conflicts. Extensive experiments demonstrate that IRIS achieves highly competitive performance on key hallucination benchmarks using only 5.7k samples, without requiring any external feedback during preference alignment. These results confirm that IRIS provides an efficient and principled paradigm for mitigating MLLM hallucinations.
♻ ☆ Constraint Matters: Multi-Modal Representation for Reducing Mixed-Integer Linear programming ICLR 2026
Model reduction, which aims to learn a simpler model of the original mixed integer linear programming (MILP), can solve large-scale MILP problems much faster. Most existing model reduction methods are based on variable reduction, which predicts a solution value for a subset of variables. From a dual perspective, constraint reduction that transforms a subset of inequality constraints into equalities can also reduce the complexity of MILP, but has been largely ignored. Therefore, this paper proposes a novel constraint-based model reduction approach for the MILP. Constraint-based MILP reduction has two challenges: 1) which inequality constraints are critical such that reducing them can accelerate MILP solving while preserving feasibility, and 2) how to predict these critical constraints efficiently. To identify critical constraints, we first label these tight-constraints at the optimal solution as potential critical constraints and design a heuristic rule to select a subset of critical tight-constraints. To learn the critical tight-constraints, we propose a multi-modal representation technique that leverages information from both instance-level and abstract-level MILP formulations. The experimental results show that, compared to the state-of-the-art methods, our method improves the quality of the solution by over 50\% and reduces the computation time by 17.47\%.
comment: Accecpted by ICLR 2026
♻ ☆ Contextual Causal Bayesian Optimisation
We introduce a unified framework for contextual and causal Bayesian optimisation, which aims to design intervention policies maximising the expectation of a target variable. Our approach leverages both observed contextual information and known causal graph structures to guide the search. Within this framework, we propose a novel algorithm that jointly optimises over policies and the sets of variables on which these policies are defined. This thereby extends and unifies two previously distinct approaches: Causal Bayesian Optimisation and Contextual Bayesian Optimisation, while also addressing their limitations in scenarios that yield suboptimal results. We derive worst-case and instance-dependent high-probability regret bounds for our algorithm. We report experimental results across diverse environments, corroborating that our approach achieves sublinear regret and reduces sample complexity in high-dimensional settings.
♻ ☆ Multi-Level Monte Carlo Training of Neural Operators
Operator learning is a rapidly growing field that aims to approximate nonlinear operators related to partial differential equations (PDEs) using neural operators. These rely on discretization of input and output functions and are, usually, expensive to train for large-scale problems at high-resolution. Motivated by this, we present a Multi-Level Monte Carlo (MLMC) approach to train neural operators by leveraging a hierarchy of resolutions of function discretization. Our framework relies on using gradient corrections from fewer samples of fine-resolution data to decrease the computational cost of training while maintaining a high level accuracy. The proposed MLMC training procedure can be applied to any architecture accepting multi-resolution data. Our numerical experiments on a range of state-of-the-art models and test-cases demonstrate improved computational efficiency compared to traditional single-resolution training approaches, and highlight the existence of a Pareto curve between accuracy and computational time, related to the number of samples per resolution.
comment: Accepted in Computer Methods in Applied Mechanics and Engineering
♻ ☆ CiMRAG: CiM-Aware Domain-Adaptive and Noise-Resilient Retrieval-Augmented Generation for Edge-Based LLMs ICASSP 2026
Personalized virtual assistants powered by large language models (LLMs) on edge devices are attracting growing attention, with Retrieval-Augmented Generation (RAG) emerging as a key method for personalization by retrieving relevant profile data and generating tailored responses. However, deploying RAG on edge devices faces efficiency hurdles due to the rapid growth of profile data, such as user-LLM interactions and recent updates. While Computing-in-Memory (CiM) architectures mitigate this bottleneck by eliminating data movement between memory and processing units via in-situ operations, they are susceptible to environmental noise that can degrade retrieval precision. This poses a critical issue in dynamic, multi-domain edge-based scenarios (e.g., travel, medicine, and law) where both accuracy and adaptability are paramount. To address these challenges, we propose Task-Oriented Noise-resilient Embedding Learning (TONEL), a framework that improves noise robustness and domain adaptability for RAG in noisy edge environments. TONEL employs a noise-aware projection model to learn task-specific embeddings compatible with CiM hardware constraints, enabling accurate retrieval under noisy conditions. Extensive experiments conducted on personalization benchmarks demonstrate the effectiveness and practicality of our methods relative to strong baselines, especially in task-specific noisy scenarios.
comment: Accepted by ICASSP 2026
♻ ☆ Exploring the Global-to-Local Attention Scheme in Graph Transformers: An Empirical Study
Graph Transformers (GTs) show considerable potential in graph representation learning. The architecture of GTs typically integrates Graph Neural Networks (GNNs) with global attention mechanisms either in parallel or as a precursor to attention mechanisms, yielding a local-and-global or local-to-global attention scheme. However, as the global attention mechanism primarily captures long-range dependencies between nodes, these integration schemes may suffer from information loss, where the local neighborhood information learned by GNN could be diluted by the attention mechanism. Therefore, we propose G2LFormer, featuring a novel global-to-local attention scheme where the shallow network layers use attention mechanisms to capture global information, while the deeper layers employ GNN modules to learn local structural information, thereby preventing nodes from ignoring their immediate neighbors. An effective cross-layer information fusion strategy is introduced to allow local layers to retain beneficial information from global layers and alleviate information loss, with acceptable trade-offs in scalability. To validate the feasibility of the global-to-local attention scheme, we compare G2LFormer with state-of-the-art linear GTs and GNNs on node-level and graph-level tasks. The results indicate that G2LFormer exhibits excellent performance while keeping linear complexity.
comment: The article has been accepted by Frontiers of Computer Science (FCS), with the DOI: {10.1007/s11704-026-51718-4}
♻ ☆ UrbanGraph: Physics-Informed Spatio-Temporal Dynamic Heterogeneous Graphs for Urban Microclimate Prediction
With rapid urbanization, predicting urban microclimates has become critical, as it affects building energy demand and public health risks. However, existing generative and homogeneous graph approaches fall short in capturing physical consistency, spatial dependencies, and temporal variability. To address this, we introduce UrbanGraph, a framework founded on a novel structure-based inductive bias. Unlike implicit graph learning, UrbanGraph transforms physical first principles into a dynamic causal topology, explicitly encoding time-varying causalities (e.g., shading and convection) directly into the graph structure to ensure physical consistency and data efficiency. Results show that UrbanGraph achieves state-of-the-art performance across all baselines. Specifically, the use of explicit causal pruning significantly reduces the model's floating-point operations (FLOPs) by 73.8% and increases training speed by 21% compared to implicit graphs. Our contribution includes the first high-resolution benchmark for spatio-temporal microclimate modeling, and a generalizable explicit topological encoding paradigm applicable to urban spatio-temporal dynamics governed by known physical equations.
♻ ☆ Adaptive Rollout Allocation for Online Reinforcement Learning with Verifiable Rewards ICLR 2026
Sampling efficiency is a key bottleneck in reinforcement learning with verifiable rewards. Existing group-based policy optimization methods, such as GRPO, allocate a fixed number of rollouts for all training prompts. This uniform allocation implicitly treats all prompts as equally informative, and could lead to inefficient computational budget usage and impede training progress. We introduce VIP, a Variance-Informed Predictive allocation strategy that allocates a given rollout budget to the prompts in the incumbent batch to minimize the expected gradient variance of the policy update. At each iteration, VIP uses a lightweight Gaussian process model to predict per-prompt success probabilities based on recent rollouts. These probability predictions are translated into variance estimates, which are then fed into a convex optimization problem to determine the optimal rollout allocations under a hard compute budget constraint. Empirical results show that VIP consistently improves sampling efficiency and achieves higher performance than uniform or heuristic allocation strategies in multiple benchmarks.
comment: Accepted at ICLR 2026
♻ ☆ Mechanistic Interpretability as Statistical Estimation: A Variance Analysis
Mechanistic Interpretability (MI) aims to reverse-engineer model behaviors by identifying functional sub-networks. Yet, the scientific validity of these findings depends on their stability. In this work, we argue that circuit discovery is not a standalone task but a statistical estimation problem built upon causal mediation analysis (CMA). We uncover a fundamental instability at this base layer: exact, single-input CMA scores exhibit high intrinsic variance, implying that the causal effect of a component is a volatile random variable rather than a fixed property. We then demonstrate that circuit discovery pipelines inherit this variance and further amplify it. Fast approximation methods, such as Edge Attribution Patching and its successors, introduce additional estimation noise, while aggregating these noisy scores over datasets leads to fragile structural estimates. Consequently, small perturbations in input data or hyperparameters yield vastly different circuits. We systematically decompose these sources of variance and advocate for more rigorous MI practices, prioritizing statistical robustness and routine reporting of stability metrics.
♻ ☆ AlignAtt: Using Attention-based Audio-Translation Alignments as a Guide for Simultaneous Speech Translation
Attention is the core mechanism of today's most used architectures for natural language processing and has been analyzed from many perspectives, including its effectiveness for machine translation-related tasks. Among these studies, attention resulted to be a useful source of information to get insights about word alignment also when the input text is substituted with audio segments, as in the case of the speech translation (ST) task. In this paper, we propose AlignAtt, a novel policy for simultaneous ST (SimulST) that exploits the attention information to generate source-target alignments that guide the model during inference. Through experiments on the 8 language pairs of MuST-C v1.0, we show that AlignAtt outperforms previous state-of-the-art SimulST policies applied to offline-trained models with gains in terms of BLEU of 2 points and latency reductions ranging from 0.5s to 0.8s across the 8 languages.
♻ ☆ MSACL: Multi-Step Actor-Critic Learning with Lyapunov Certificates for Exponentially Stabilizing Control IEEE
For safety-critical applications, model-free reinforcement learning (RL) faces numerous challenges, particularly the difficulty of establishing verifiable stability guarantees while maintaining high exploration efficiency. To address these challenges, we present Multi-Step Actor-Critic Learning with Lyapunov Certificates (MSACL), a novel approach that seamlessly integrates exponential stability with maximum entropy reinforcement learning (MERL). In contrast to existing methods that rely on complex reward engineering and single-step constraints, MSACL utilizes intuitive rewards and multi-step data for actor-critic learning. Specifically, we first introduce Exponential Stability Labels (ESLs) to categorize samples and propose a $λ$-weighted aggregation mechanism to learn Lyapunov certificates. Leveraging these certificates, we then develop a stability-aware advantage function to guide policy optimization, thereby ensuring rapid Lyapunov descent and robust state convergence. We evaluate MSACL across six benchmarks, comprising four stabilization and two high-dimensional tracking tasks. Experimental results demonstrate its consistent superiority over both standard RL baselines and state-of-the-art Lyapunov-based RL algorithms. Beyond rapid convergence, MSACL exhibits significant robustness against environmental uncertainties and remarkable generalization to unseen reference signals. The source code and benchmarking environments are available at \href{https://github.com/YuanZhe-Xing/MSACL}{https://github.com/YuanZhe-Xing/MSACL}.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ Task-Centric Policy Optimization from Misaligned Motion Priors
Humanoid control often leverages motion priors from human demonstrations to encourage natural behaviors. However, such demonstrations are frequently suboptimal or misaligned with robotic tasks due to embodiment differences, retargeting errors, and task-irrelevant variations, causing naïve imitation to degrade task performance. Conversely, task-only reinforcement learning admits many task-optimal solutions, often resulting in unnatural or unstable motions. This exposes a fundamental limitation of linear reward mixing in adversarial imitation learning. We propose \emph{Task-Centric Motion Priors} (TCMP), a task-priority adversarial imitation framework that treats imitation as a conditional regularizer rather than a co-equal objective. TCMP maximizes task improvement while incorporating imitation signals only when they are compatible with task progress, yielding an adaptive, geometry-aware update that preserves task-feasible descent and suppresses harmful imitation under misalignment. We provide theoretical analysis of gradient conflict and task-priority stationary points, and validate our claims through humanoid control experiments demonstrating robust task performance with consistent motion style under noisy demonstrations.
comment: Work requires further details and not complete yet
♻ ☆ Adaptive Helpfulness-Harmlessness Alignment with Preference Vectors EACL 2026
Ensuring that large language models (LLMs) are both helpful and harmless is a critical challenge, as overly strict constraints can lead to excessive refusals, while permissive models risk generating harmful content. Existing approaches, such as reinforcement learning from human feedback (RLHF) and direct preference optimization (DPO), attempt to balance these trade-offs but suffer from performance conflicts, limited controllability, and poor extendability. To address these issues, we propose Preference Vector, a novel framework inspired by task arithmetic. Instead of optimizing multiple preferences within a single objective, we train separate models on individual preferences, extract behavior shifts as preference vectors, and dynamically merge them at test time. This modular approach enables fine-grained, user-controllable preference adjustments and facilitates seamless integration of new preferences without retraining. Experiments show that our proposed Preference Vector framework improves helpfulness without excessive conservatism, allows smooth control over preference trade-offs, and supports scalable multi-preference alignment.
comment: Accepted at The 19th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2026), Rabat, Morocco. 22 pages, 5 figures, 9 tables
♻ ☆ Going with the Speed of Sound: Pushing Neural Surrogates into Highly-turbulent Transonic Regimes NeurIPS 2025
The widespread use of neural surrogates in automotive aerodynamics, enabled by datasets such as DrivAerML and DrivAerNet++, has primarily focused on bluff-body flows with large wakes. Extending these methods to aerospace, particularly in the transonic regime, remains challenging due to the high level of non-linearity of compressible flows and 3D effects such as wingtip vortices. Existing aerospace datasets predominantly focus on 2D airfoils, neglecting these critical 3D phenomena. To address this gap, we present a new dataset of CFD simulations for 3D wings in the transonic regime. The dataset comprises volumetric and surface-level fields for around $30,000$ samples with unique geometry and inflow conditions. This allows computation of lift and drag coefficients, providing a foundation for data-driven aerodynamic optimization of the drag-lift Pareto front. We evaluate several state-of-the-art neural surrogates on our dataset, including Transolver and AB-UPT, focusing on their out-of-distribution (OOD) generalization over geometry and inflow variations. AB-UPT demonstrates strong performance for transonic flowfields and reproduces physically consistent drag-lift Pareto fronts even for unseen wing configurations. Our results demonstrate that AB-UPT can approximate drag-lift Pareto fronts for unseen geometries, highlighting its potential as an efficient and effective tool for rapid aerodynamic design exploration. To facilitate future research, we open-source our dataset at https://huggingface.co/datasets/EmmiAI/Emmi-Wing.
comment: NeurIPS 2025 ML4PS Workshop
♻ ☆ Emergent time-keeping mechanisms in a deep reinforcement learning agent performing an interval timing task
Drawing parallels between Deep Artificial Neural Networks (DNNs) and biological systems can aid in understanding complex biological mechanisms that are difficult to disentangle. Temporal processing, an extensively researched topic, is one such example that lacks a coherent understanding of its underlying mechanisms. In this study, we investigate temporal processing in a Deep Reinforcement Learning (DRL) agent performing an interval timing task and explore potential biological counterparts to its emergent behavior. The agent was successfully trained to perform a duration production task, which involved marking successive occurrences of a target interval while viewing a video sequence. Analysis of the agent's internal states revealed oscillatory neural activations, a ubiquitous pattern in biological systems. Interestingly, the agent's actions were predominantly influenced by neurons exhibiting these oscillations with high amplitudes and frequencies corresponding to the target interval. Parallels are drawn between the agent's time-keeping strategy and the Striatal Beat Frequency (SBF) model, a biologically plausible model of interval timing. Furthermore, the agent maintained its oscillatory representations and task performance when tested on different video sequences (including a blank video). Thus, once learned, the agent internalized its time-keeping mechanism and showed minimal reliance on its environment to perform the timing task. A hypothesis about the resemblance between this emergent behavior and certain aspects of the evolution of biological processes like circadian rhythms, has been discussed. This study aims to contribute to recent research efforts of utilizing DNNs to understand biological systems, with a particular emphasis on temporal processing.
comment: Accepted at 2025 Artificial Life Conference
♻ ☆ Online Fine-Tuning of Pretrained Controllers for Autonomous Driving via Real-Time Recurrent RL
Deploying pretrained policies in real-world applications presents substantial challenges that fundamentally limit the practical applicability of learning-based control systems. When autonomous systems encounter environmental changes in system dynamics, sensor drift, or task objectives, fixed policies rapidly degrade in performance. We show that employing Real-Time Recurrent Reinforcement Learning (RTRRL), a biologically plausible algorithm for online adaptation, can effectively fine-tune a pretrained policy to improve autonomous agents' performance on driving tasks. We further show that RTRRL synergizes with a recent biologically inspired recurrent network model, the Liquid-Resistance Liquid-Capacitance RNN. We demonstrate the effectiveness of this closed-loop approach in a simulated CarRacing environment and in a real-world line-following task with a RoboRacer car equipped with an event camera.
♻ ☆ VioPTT: Violin Technique-Aware Transcription from Synthetic Data Augmentation
While automatic music transcription is well-established in music information retrieval, most models are limited to transcribing pitch and timing information from audio, and thus omit crucial expressive and instrument-specific nuances. One example is playing technique on the violin, which affords its distinct palette of timbres for maximal emotional impact. Here, we propose VioPTT (Violin Playing Technique-aware Transcription), a lightweight cascade model that directly transcribes violin playing technique in addition to pitch onset and offset. Furthermore, we release MOSA-VPT, a novel, high-quality synthetic violin playing technique dataset to circumvent the need for manually labeled annotations. Leveraging this dataset, our model demonstrated strong generalization to real-world note-level violin technique recordings in addition to achieving state-of-the-art transcription performance. To our knowledge, VioPTT is the first to jointly combine violin transcription and playing technique prediction within a unified framework.
♻ ☆ DynaSpec: Context-aware Dynamic Speculative Sampling for Large-Vocabulary Language Models
Speculative decoding accelerates LLM inference by letting a small drafter propose multiple tokens which a large target model verifies once per speculation step. As vocabularies scale past 10e5 tokens,verification cost in the target model is largely unchanged, but the drafter can become bottlenecked by its O(|V|d) output projection. Recent approaches (e.g., FR-Spec, VocabTrim) mitigate this by restricting drafting to a fixed, frequency-ranked shortlist; however, such static truncation is corpus-dependent and suppresses rare or domain-specific tokens, reducing acceptance and limiting speedups. We propose DynaSpec, a context-dependent dynamic shortlisting mechanism for large-vocabulary speculative decoding. DynaSpec trains lightweight meta-classifiers that route each context to a small set of coarse token clusters; the union of the top-selected clusters defines the drafter's shortlist, while the target model still verifies over the full vocabulary, preserving exactness. Systems-wise, routing is overlapped with draft computation via parallel execution streams, reducing end-to-end overhead. Across standard speculative decoding benchmarks, DynaSpec consistently improves mean accepted length-recovering 98.4% of full-vocabulary performance for Llama-3-8B versus 93.6% for fixed-shortlist baselines-and achieves up to a 2.23x throughput gain compared to 1.91x for static approaches on the dataset with rare tokens.
♻ ☆ MoGU: Mixture-of-Gaussians with Uncertainty-based Gating for Time Series Forecasting
We introduce Mixture-of-Gaussians with Uncertainty-based Gating (MoGU), a novel Mixture-of-Experts (MoE) framework designed for regression tasks. MoGU replaces standard learned gating with an intrinsic routing paradigm where expert-specific uncertainty serves as the native gating signal. By modeling each prediction as a Gaussian distribution, the system utilizes predicted variance to dynamically weight expert contributions. We validate MoGU on multivariate time-series forecasting, a domain defined by high volatility and varying noise patterns. Empirical results across multiple benchmarks, horizon lengths, and backbones demonstrate that MoGU consistently improves forecasting accuracy compared to traditional MoE. Further evaluation via conformal prediction indicates that our approach yields more efficient prediction intervals than existing baselines. These findings highlight MoGU's capacity for providing both competitive performance and reliable, high-fidelity uncertainty quantification. Our code is available at: https://github.com/yolish/moe_unc_tsf
♻ ☆ NEZHA: A Zero-sacrifice and Hyperspeed Decoding Architecture for Generative Recommendations
Generative Recommendation (GR), powered by Large Language Models (LLMs), represents a promising new paradigm for industrial recommender systems. However, their practical application is severely hindered by high inference latency, which makes them infeasible for high-throughput, real-time services and limits their overall business impact. While Speculative Decoding (SD) has been proposed to accelerate the autoregressive generation process, existing implementations introduce new bottlenecks: they typically require separate draft models and model-based verifiers, requiring additional training and increasing the latency overhead. In this paper, we address these challenges with NEZHA, a novel architecture that achieves hyperspeed decoding for GR systems without sacrificing recommendation quality. Specifically, NEZHA integrates a nimble autoregressive draft head directly into the primary model, enabling efficient self-drafting. This design, combined with a specialized input prompt structure, preserves the integrity of sequence-to-sequence generation. Furthermore, to tackle the critical problem of hallucination, a major source of performance degradation, we introduce an efficient, model-free verifier based on a hash set. We demonstrate the effectiveness of NEZHA through extensive experiments on public datasets and have successfully deployed the system on Taobao since October 2025, driving the billion-level advertising revenue and serving hundreds of millions of daily active users.
♻ ☆ PRPO: Aligning Process Reward with Outcome Reward in Policy Optimization
Policy optimization for large language models often suffers from sparse reward signals in multi-step reasoning tasks. Critic-free methods like GRPO assign a single normalized outcome reward to all tokens, providing limited guidance for intermediate reasoning . While Process Reward Models (PRMs) offer dense feedback, they risk premature collapse when used alone, as early low-reward tokens can drive policies toward truncated outputs. We introduce Process Relative Policy Optimization (PRPO), which combines outcome reliability with process-level guidance in a critic-free framework. PRPO segments reasoning sequences based on semantic clues, normalizes PRM scores into token-level advantages, and aligns their distribution with outcome advantages through location-parameter shift. On MATH500, PRPO improves Qwen2.5-Math-1.5B accuracy from 61.2% to 64.4% over GRPO using only eight rollouts and no value network, demonstrating efficient fine-grained credit assignment within critic-free optimization. Code is available at: https://github.com/SchumiDing/srpocode
comment: 8 pages, 2 figures Code is available at: https://github.com/SchumiDing/srpocode
♻ ☆ Towards Reliable Evaluation of Adversarial Robustness for Spiking Neural Networks
Spiking Neural Networks (SNNs) utilize spike-based activations to mimic the brain's energy-efficient information processing. However, the binary and discontinuous nature of spike activations causes vanishing gradients, making adversarial robustness evaluation via gradient descent unreliable. While improved surrogate gradient methods have been proposed, their effectiveness under strong adversarial attacks remains unclear. We propose a more reliable framework for evaluating SNN adversarial robustness. We theoretically analyze the degree of gradient vanishing in surrogate gradients and introduce the Adaptive Sharpness Surrogate Gradient (ASSG), which adaptively evolves the shape of the surrogate function according to the input distribution during attack iterations, thereby enhancing gradient accuracy while mitigating gradient vanishing. In addition, we design an adversarial attack with adaptive step size under the $L_\infty$ constraint-Stable Adaptive Projected Gradient Descent (SA-PGD), achieving faster and more stable convergence under imprecise gradients. Extensive experiments show that our approach substantially increases attack success rates across diverse adversarial training schemes, SNN architectures and neuron models, providing a more generalized and reliable evaluation of SNN adversarial robustness. The experimental results further reveal that the robustness of current SNNs has been significantly overestimated and highlighting the need for more dependable adversarial training methods.
♻ ☆ Fast Training of Sinusoidal Neural Fields via Scaling Initialization ICLR 2025
Neural fields are an emerging paradigm that represent data as continuous functions parameterized by neural networks. Despite many advantages, neural fields often have a high training cost, which prevents a broader adoption. In this paper, we focus on a popular family of neural fields, called sinusoidal neural fields (SNFs), and study how it should be initialized to maximize the training speed. We find that the standard initialization scheme for SNFs -- designed based on the signal propagation principle -- is suboptimal. In particular, we show that by simply multiplying each weight (except for the last layer) by a constant, we can accelerate SNF training by 10$\times$. This method, coined $\textit{weight scaling}$, consistently provides a significant speedup over various data domains, allowing the SNFs to train faster than more recently proposed architectures. To understand why the weight scaling works well, we conduct extensive theoretical and empirical analyses which reveal that the weight scaling not only resolves the spectral bias quite effectively but also enjoys a well-conditioned optimization trajectory. The code is available $\href{https://github.com/effl-lab/Fast-Neural-Fields}{here}$.
comment: ICLR 2025
♻ ☆ ECHO-2: A Large-Scale Distributed Rollout Framework for Cost-Efficient Reinforcement Learning
Reinforcement learning (RL) is a critical stage in post-training large language models (LLMs), involving repeated interaction between rollout generation, reward evaluation, and centralized learning. Distributing rollout execution offers opportunities to leverage more cost-efficient inference resources, but introduces challenges in wide-area coordination and policy dissemination. We present ECHO-2, a distributed RL framework for post-training with remote inference workers and non-negligible dissemination latency. ECHO-2 combines centralized learning with distributed rollouts and treats bounded policy staleness as a user-controlled parameter, enabling rollout generation, dissemination, and training to overlap. We introduce an overlap-based capacity model that relates training time, dissemination latency, and rollout throughput, yielding a practical provisioning rule for sustaining learner utilization. To mitigate dissemination bottlenecks and lower cost, ECHO-2 employs peer-assisted pipelined broadcast and cost-aware activation of heterogeneous workers. Experiments on GRPO post-training of 4B and 8B models under real wide-area bandwidth regimes show that ECHO-2 significantly improves cost efficiency while preserving RL reward comparable to strong baselines.
comment: 23 pages, 7 figures
♻ ☆ DCoPilot: Generative AI-Empowered Policy Adaptation for Dynamic Data Center Operations
Modern data centers (DCs) hosting artificial intelligence (AI)-dedicated devices operate at high power densities with rapidly varying workloads, making minute-level adaptation essential for safe and energy-efficient operation. However, manually designing piecewise deep reinforcement learning (DRL) agents cannot keep pace with frequent dynamics shifts and service-level agreement (SLA) changes of an evolving DC. This specification-to-policy lag causes a lack of timely, effective control policies, which may lead to service outages. To bridge the gap, we present DCoPilot, a hybrid framework for generative control policies in dynamic DC operation. DCoPilot synergizes two distinct generative paradigms, i.e., a large language model (LLM) that performs symbolic generation of structured reward forms, and a hypernetwork that conducts parametric generation of policy weights. DCoPilot operates through three coordinated phases: (i) simulation scale-up, which stress-tests reward candidates across diverse simulation-ready (SimReady) scenes; (ii) meta policy distillation, where a hypernetwork is trained to output policy weights conditioned on SLA and scene embeddings; and (iii) online adaptation, enabling zero-shot policy generation in response to updated specifications. Evaluated across five control task families spanning diverse DC components, DCoPilot achieves near-zero constraint violations and outperforms all baselines across specification variations. Ablation studies validate the effectiveness of LLM-based unified reward generation in enabling stable hypernetwork convergence.
♻ ☆ Stability Regularized Cross-Validation
We revisit the problem of ensuring strong test set performance via cross-validation, and propose a nested k-fold cross-validation scheme that selects hyperparameters by minimizing a weighted sum of the usual cross-validation metric and an empirical model-stability measure. The weight on the stability term is itself chosen via a nested cross-validation procedure. This reduces the risk of strong validation set performance and poor test set performance due to instability. We benchmark our procedure on a suite of $13$ real-world datasets, and find that, compared to $k$-fold cross-validation over the same hyperparameters, it improves the out-of-sample MSE for sparse ridge regression and CART by $4\%$ and $2\%$ respectively on average, but has no impact on XGBoost. It also reduces the user's out-of-sample disappointment, sometimes significantly. For instance, for sparse ridge regression, the nested k-fold cross-validation error is on average $0.9\%$ lower than the test set error, while the $k$-fold cross-validation error is $21.8\%$ lower than the test error. Thus, for unstable models such as sparse regression and CART, our approach improves test set performance and reduces out-of-sample disappointment.
comment: Some of this material previously appeared in 2306.14851v2, which we have split into two papers (this one and 2306.14851v3), because it contained two ideas that need separate papers
♻ ☆ Lightweight and Interpretable Transformer via Mixed Graph Algorithm Unrolling for Traffic Forecast
Unlike conventional "black-box" transformers with classical self-attention mechanism, we build a lightweight and interpretable transformer-like neural net by unrolling a mixed-graph-based optimization algorithm to forecast traffic with spatial and temporal dimensions. We construct two graphs: an undirected graph $\mathcal{G}^u$ capturing spatial correlations across geography, and a directed graph $\mathcal{G}^d$ capturing sequential relationships over time. We predict future samples of signal $\mathbf{x}$, assuming it is "smooth" with respect to both $\mathcal{G}^u$ and $\mathcal{G}^d$, where we design new $\ell_2$ and $\ell_1$-norm variational terms to quantify and promote signal smoothness (low-frequency reconstruction) on a directed graph. We design an iterative algorithm based on alternating direction method of multipliers (ADMM), and unroll it into a feed-forward network for data-driven parameter learning. We periodically insert graph learning modules for $\mathcal{G}^u$ and $\mathcal{G}^d$ that play the role of self-attention. Experiments show that our unrolled networks achieve competitive traffic forecast performance as state-of-the-art prediction schemes, while reducing parameter counts drastically.
comment: 24 pages, 7 figures, 11 tables
♻ ☆ Efficient Utility-Preserving Machine Unlearning with Implicit Gradient Surgery
Machine unlearning (MU) aims to efficiently remove sensitive or harmful memory from a pre-trained model. The key challenge is to balance the potential tradeoff between unlearning efficacy and utility preservation, which involves forgetting undesirable information as defined while maintaining the model's original performance. One potential way to tackle this problem is to use multi-objective optimization to jointly optimize both the unlearning and utility preservation objectives. However, existing multi-objective methods only guarantee finding a Pareto-optimal solution without fine-grained control, which causes under-optimization of the unlearning objective. To this end, we first model MU as a constrained optimization problem, that is, optimizing the unlearning objective under the constraint of a bounded increase for utility loss. We then show that solving this optimization problem is equivalent to unilateral gradient surgery on the unlearning objective. To resolve the additional computational cost brought by gradient surgery, we propose an implicit gradient surgery method, which approximates the solution to the aforementioned constrained optimization problem via only one backpropagation, thereby achieving efficient utility-preserving MU. Theoretically, we provide a tight convergence analysis of the algorithm. Empirically, our extensive experiments show that the proposed algorithm achieves better tradeoff results than existing baselines. Codes are available at https://github.com/anseryuer/EUPMU-Efficient-Utility-Preserving-Machine-Unlearning.
comment: Corresponding author: Shiji Zhou (zhoushiji25@buaa.edu.cn). Shiji Zhou and Tianbai Yu contributed equally
♻ ☆ Imbalance-Robust and Sampling-Efficient Continuous Conditional GANs via Adaptive Vicinity and Auxiliary Regularization
Recent advances in conditional generative modeling have introduced Continuous conditional Generative Adversarial Network (CcGAN) and Continuous Conditional Diffusion Model (CCDM) for estimating high-dimensional data distributions conditioned on scalar, continuous regression labels (e.g., angles, ages, or temperatures). However, these approaches face fundamental limitations: CcGAN suffers from data imbalance due to fixed-size vicinity constraints, while CCDM requires computationally expensive iterative sampling. To address these issues, we propose CcGAN-AVAR, an enhanced CcGAN framework featuring (1) two novel components for handling data imbalance - an adaptive vicinity mechanism that dynamically adjusts vicinity size and a multi-task discriminator that enhances generator training through auxiliary regression and density ratio estimation - and (2) the GAN framework's native one-step generator, enable 30x-2000x faster inference than CCDM. Extensive experiments on four benchmark datasets (64x64 to 256x256 resolution) across eleven challenging settings demonstrate that CcGAN-AVAR achieves state-of-the-art generation quality while maintaining sampling efficiency.
♻ ☆ Depth-Breadth Synergy in RLVR: Unlocking LLM Reasoning Gains with Adaptive Exploration
Reinforcement Learning with Verifiable Reward (RLVR) has emerged as a powerful paradigm for unlocking reasoning capabilities in large language models, yet its full potential is hindered by two under-explored dimensions: Depth-the hardest problem a model can sample; Breadth-the number of instances consumed in a single iteration. We dissect the popular GRPO algorithm and reveal a systematic bias: the cumulative-advantage disproportionately weights samples with medium accuracy, while down-weighting the low-accuracy instances that are crucial for pushing reasoning boundaries. To rectify the depth neglect, we introduce Difficulty Adaptive Rollout Sampling (DARS), which re-weights hard problems through targeted multi-stage rollouts, thereby increasing the number of positive rollouts for hard problems. Empirically, naively enlarging rollout size only accelerates convergence and even hurts Pass@K. Our DARS, in contrast, delivers consistent Pass@K gains without extra inference cost at convergence. Just as we adaptively expanded the depth of exploration, we now ask whether aggressively scaling the breadth of training data can further amplify reasoning gains. To this end, we intensely scale batch size and replace PPO's mini-batch iterations with full-batch updates over multiple epochs. Increasing breadth significantly enhances Pass@1 performance. Large-breadth training sustains high token-level entropy, indicating continued exploration and reduced gradient noise. We further present DARS-B, which augments DARS with large breadth, and demonstrate simultaneous gains in Pass@K and Pass@1. The results confirm that breadth and adaptive exploration across depth operate as orthogonal dimensions in RLVR, which are key to unleashing the reasoning power of RLVR.
comment: 18 pages, 14 figures
♻ ☆ Exact Solution to Data-Driven Inverse Optimization of MILPs in Finite Time via Gradient-Based Methods
A data-driven inverse optimization problem (DDIOP) seeks to estimate an objective function (i.e., weights) that is consistent with observed optimal-solution data, and is important in many applications, including those involving mixed integer linear programs (MILPs). In the DDIOP for MILPs, the prediction loss on features (PLF), defined as the discrepancy between observed and predicted feature values, becomes discontinuous with respect to the weights, which makes it difficult to apply gradient-based optimization. To address this issue, we focus on a Lipschitz continuous and convex suboptimality loss. By exploiting its convex and piecewise-linear structure and the interiority of the minimum set, we show that a broad class of gradient-based optimization methods, including projected subgradient descent (PSGD), reaches the minimum suboptimality loss value in a finite number of iterations, thereby exactly solving the DDIOP for MILPs. Furthermore, as a corollary, we show that PSGD attains the minimum PLF in finitely many iterations. We also derive an upper bound on the number of iterations required for PSGD to reach finite convergence, and confirm the finite-step behavior through numerical experiments.
comment: 42 pages; comments are welcome
♻ ☆ Variational Approach for Job Shop Scheduling
This paper proposes a novel Variational Graph-to-Scheduler (VG2S) framework for solving the Job Shop Scheduling Problem (JSSP), a critical task in manufacturing that directly impacts operational efficiency and resource utilization. Conventional Deep Reinforcement Learning (DRL) approaches often face challenges such as non-stationarity during training and limited generalization to unseen problem instances because they optimize representation learning and policy execution simultaneously. To address these issues, we introduce variational inference to the JSSP domain for the first time and derive a probabilistic objective based on the Evidence of Lower Bound (ELBO) with maximum entropy reinforcement learning. By mathematically decoupling representation learning from policy optimization, the VG2S framework enables the agent to learn robust structural representations of scheduling instances through a variational graph encoder. This approach significantly enhances training stability and robustness against hyperparameter variations. Extensive experiments demonstrate that the proposed method exhibits superior zero-shot generalization compared with state-of-the-art DRL baselines and traditional dispatching rules, particularly on large-scale and challenging benchmark instances such as DMU and SWV.
♻ ☆ Q-Regularized Generative Auto-Bidding: From Suboptimal Trajectories to Optimal Policies
With the rapid development of e-commerce, auto-bidding has become a key asset in optimizing advertising performance under diverse advertiser environments. The current approaches focus on reinforcement learning (RL) and generative models. These efforts imitate offline historical behaviors by utilizing a complex structure with expensive hyperparameter tuning. The suboptimal trajectories further exacerbate the difficulty of policy learning. To address these challenges, we proposes QGA, a novel Q-value regularized Generative Auto-bidding method. In QGA, we propose to plug a Q-value regularization with double Q-learning strategy into the Decision Transformer backbone. This design enables joint optimization of policy imitation and action-value maximization, allowing the learned bidding policy to both leverage experience from the dataset and alleviate the adverse impact of the suboptimal trajectories. Furthermore, to safely explore the policy space beyond the data distribution, we propose a Q-value guided dual-exploration mechanism, in which the DT model is conditioned on multiple return-to-go targets and locally perturbed actions. This entire exploration process is dynamically guided by the aforementioned Q-value module, which provides principled evaluation for each candidate action. Experiments on public benchmarks and simulation environments demonstrate that QGA consistently achieves superior or highly competitive results compared to existing alternatives. Notably, in large-scale real-world A/B testing, QGA achieves a 3.27% increase in Ad GMV and a 2.49% improvement in Ad ROI.
comment: Due to the company's compliance requirements, we would like to wait until the paper is officially published before making it publicly available on arXiv
♻ ☆ Position: Epistemic uncertainty estimation methods are fundamentally incomplete
Identifying and disentangling sources of predictive uncertainty is essential for trustworthy supervised learning. We argue that widely used second-order methods that disentangle aleatoric and epistemic uncertainty are fundamentally incomplete. First, we show that unaccounted bias contaminates uncertainty estimates by overestimating aleatoric (data-related) uncertainty and underestimating the epistemic (model-related) counterpart, leading to incorrect uncertainty quantification. Second, we demonstrate that existing methods capture only partial contributions to the variance-driven part of epistemic uncertainty; different approaches account for different variance sources, yielding estimates that are incomplete and difficult to interpret. Together, these results highlight that current epistemic uncertainty estimates can only be used in safety-critical and high-stakes decision-making when limitations are fully understood by end users and acknowledged by AI developers.
♻ ☆ FlyPrompt: Brain-Inspired Random-Expanded Routing with Temporal-Ensemble Experts for General Continual Learning ICLR 2026
General continual learning (GCL) challenges intelligent systems to learn from single-pass, non-stationary data streams without clear task boundaries. While recent advances in continual parameter-efficient tuning (PET) of pretrained models show promise, they typically rely on multiple training epochs and explicit task cues, limiting their effectiveness in GCL scenarios. Moreover, existing methods often lack targeted design and fail to address two fundamental challenges in continual PET: how to allocate expert parameters to evolving data distributions, and how to improve their representational capacity under limited supervision. Inspired by the fruit fly's hierarchical memory system characterized by sparse expansion and modular ensembles, we propose FlyPrompt, a brain-inspired framework that decomposes GCL into two subproblems: expert routing and expert competence improvement. FlyPrompt introduces a randomly expanded analytic router for instance-level expert activation and a temporal ensemble of output heads to dynamically adapt decision boundaries over time. Extensive theoretical and empirical evaluations demonstrate FlyPrompt's superior performance, achieving up to 11.23%, 12.43%, and 7.62% gains over state-of-the-art baselines on CIFAR-100, ImageNet-R, and CUB-200, respectively. Our source code is available at https://github.com/AnAppleCore/FlyGCL.
comment: 33 pages. Accepted by ICLR 2026
♻ ☆ Agnostic Learning of Arbitrary ReLU Activation under Gaussian Marginals
We consider the problem of learning an arbitrarily-biased ReLU activation (or neuron) over Gaussian marginals with the squared loss objective. Despite the ReLU neuron being the basic building block of modern neural networks, we still do not understand the basic algorithmic question of whether one arbitrary ReLU neuron is learnable in the non-realizable setting. In particular, all existing polynomial time algorithms only provide approximation guarantees for the better-behaved unbiased setting or restricted bias setting. Our main result is a polynomial time statistical query (SQ) algorithm that gives the first constant factor approximation for arbitrary bias. It outputs a ReLU activation that achieves a loss of $O(\mathrm{OPT}) + \varepsilon$ in time $\mathrm{poly}(d,1/\varepsilon)$, where $\mathrm{OPT}$ is the loss obtained by the optimal ReLU activation. Our algorithm presents an interesting departure from existing algorithms, which are all based on gradient descent and thus fall within the class of correlational statistical query (CSQ) algorithms. We complement our algorithmic result by showing that no polynomial time CSQ algorithm can achieve a constant factor approximation. Together, these results shed light on the intrinsic limitation of gradient descent, while identifying arguably the simplest setting (a single neuron) where there is a separation between SQ and CSQ algorithms.
♻ ☆ GraphAllocBench: A Flexible Benchmark for Preference-Conditioned Multi-Objective Policy Learning
Preference-Conditioned Policy Learning (PCPL) in Multi-Objective Reinforcement Learning (MORL) aims to approximate diverse Pareto-optimal solutions by conditioning policies on user-specified preferences over objectives. This enables a single model to flexibly adapt to arbitrary trade-offs at run-time by producing a policy on or near the Pareto front. However, existing benchmarks for PCPL are largely restricted to toy tasks and fixed environments, limiting their realism and scalability. To address this gap, we introduce GraphAllocBench, a flexible benchmark built on a novel graph-based resource allocation sandbox environment inspired by city management, which we call CityPlannerEnv. GraphAllocBench provides a rich suite of problems with diverse objective functions, varying preference conditions, and high-dimensional scalability. We also propose two new evaluation metrics -- Proportion of Non-Dominated Solutions (PNDS) and Ordering Score (OS) -- that directly capture preference consistency while complementing the widely used hypervolume metric. Through experiments with Multi-Layer Perceptrons (MLPs) and graph-aware models, we show that GraphAllocBench exposes the limitations of existing MORL approaches and paves the way for using graph-based methods such as Graph Neural Networks (GNNs) in complex, high-dimensional combinatorial allocation tasks. Beyond its predefined problem set, GraphAllocBench enables users to flexibly vary objectives, preferences, and allocation rules, establishing it as a versatile and extensible benchmark for advancing PCPL. Code: https://github.com/jzh001/GraphAllocBench
♻ ☆ Best-of-Both-Worlds for Heavy-Tailed Markov Decision Processes
We investigate episodic Markov Decision Processes with heavy-tailed feedback (HTMDPs). Existing approaches for HTMDPs are conservative in stochastic environments and lack adaptivity in adversarial regimes. In this work, we propose algorithms HT-FTRL-OM and HT-FTRL-UOB for HTMDPs that achieve Best-of-Both-Worlds (BoBW) guarantees: instance-independent regret in adversarial environments and logarithmic instance-dependent regret in self-bounding (including the stochastic case) environments. For the known transition setting, HT-FTRL-OM applies the Follow-The-Regularized-Leader (FTRL) framework over occupancy measures with novel skipping loss estimators, achieving a $\widetilde{O}(T^{1/α})$ regret bound in adversarial regimes and a $O(\log T)$ regret in stochastic regimes. Building upon this framework, we develop a novel algorithm HT-FTRL-UOB to tackle the more challenging unknown-transition setting. This algorithm employs a pessimistic skipping loss estimator and achieves a $\widetilde{O}(T^{1/α} + \sqrt{T})$ regret in adversarial regimes and a $O(\log^2(T))$ regret in stochastic regimes. Our analysis overcomes key barriers through several technical insights, including a local control mechanism for heavy-tailed shifted losses, a new suboptimal-mass propagation principle, and a novel regret decomposition that isolates transition uncertainty from heavy-tailed estimation errors and skipping bias.
♻ ☆ Quantum Information Ordering and Differential Privacy
We study quantum differential privacy (QDP) by defining a notion of the order of informativeness between pairs of quantum states. In particular, we show that if the hypothesis testing divergence of one pair dominates over that of the other pair, then this dominance holds for every $f$-divergence. This approach completely characterizes $(\varepsilon,δ)$-QDP mechanisms by identifying the most informative $(\varepsilon,δ)$-DP quantum state pairs. We apply this to study precise limits for privatized hypothesis testing and privatized quantum parameter estimation, including tight upper-bounds on the quantum Fisher information under QDP. Finally, we establish near-optimal contraction bounds for differentially private quantum channels with respect to the hockey-stick divergence.
comment: 36 pages, 2 figures; Significant revision: This manuscript has been restructured to focus exclusively on Quantum Information Ordering and Privacy definitions. The results regarding Stability, which appeared in earlier versions of this preprint, have been moved to a separate companion paper: arXiv:2602.01177
♻ ☆ Orchestrating Heterogeneous Experts: A Scalable MoE Framework with Anisotropy-Preserving Fusion
In cross-border e-commerce, search relevance modeling faces the dual challenge of extreme linguistic diversity and fine-grained semantic nuances. Existing approaches typically rely on scaling up a single monolithic Large Language Model (LLM). However, our empirical analysis reveals that single models suffer from uneven capability distributions across regions. For example, excelling in English while underperforming in specific Southeast Asian languages. In this work, we shift the paradigm from scaling a single model to orchestrating heterogeneous experts. We propose a scalable Coarse-grained Mixture-of-Experts (MoE) framework that leverages the inherent complementarity of distinct open-source LLMs (e.g., Qwen, Gemma) without expensive pre-training. Unlike standard token-level MoE, our framework dynamically routes entire queries to specialized experts and, crucially, employs an Information-Preserving Concatenation Fusion strategy. We theoretically posit that preserving the distinct embedding manifolds of heterogeneous experts-rather than compressing them via weighted averaging-is essential for capturing complex relevance signals in a multi-model latent space. On datasets spanning six Southeast Asian markets, our MoE improves AUC by 0.72 percentage points over a dense baseline with the same active parameters. Meanwhile, the optimized pipeline achieves 13.72 queries per second (QPS), a 9% throughput improvement.
comment: 4 pages, 2 figures. Accepted at the Workshop on TIME of the ACM Web Conference 2026
♻ ☆ Hyper-Compression: Model Compression via Hyperfunction
The rapid growth of large models' size has far outpaced that of computing resources. To bridge this gap, encouraged by the parsimonious relationship between genotype and phenotype in the brain's growth and development, we propose the so-called Hyper-Compression that turns the model compression into the issue of parameter representation via a hyperfunction. Specifically, it is known that the trajectory of some low-dimensional dynamic systems can fill the high-dimensional space eventually. Thus, Hyper-Compression, using these dynamic systems as the hyperfunctions, represents the parameters of the target network by their corresponding composition number or trajectory length. This suggests a novel mechanism for model compression, substantially different from the existing pruning, quantization, distillation, and decomposition. Along this direction, we methodologically identify a suitable dynamic system with the irrational winding as the hyperfunction and theoretically derive its associated error bound. Next, guided by our theoretical insights, we propose several engineering twists to make the Hyper-Compression pragmatic and effective. Lastly, systematic and comprehensive experiments on \textcolor{black}{NLP models such as LLaMA and Qwen series and vision models} confirm that Hyper-Compression enjoys the following \textbf{PNAS} merits: 1) \textbf{P}referable compression ratio; 2) \textbf{N}o post-hoc retraining; 3) \textbf{A}ffordable inference time; and 4) \textbf{S}hort compression time. It compresses LLaMA2-7B in an hour and achieves close-to-int4-quantization performance, without retraining and with a performance drop of less than 1\%. We have open-sourced our code in https://github.com/Juntongkuki/Hyper-Compression.git for free download and evaluation.
♻ ☆ RIR-Former: Coordinate-Guided Transformer for Continuous Reconstruction of Room Impulse Responses ICASSP
Room impulse responses (RIRs) are essential for many acoustic signal processing tasks, yet measuring them densely across space is often impractical. In this work, we propose RIR-Former, a grid-free, one-step feed-forward model for RIR reconstruction. By introducing a sinusoidal encoding module into a transformer backbone, our method effectively incorporates microphone position information, enabling interpolation at arbitrary array locations. Furthermore, a segmented multi-branch decoder is designed to separately handle early reflections and late reverberation, improving reconstruction across the entire RIR. Experiments on diverse simulated acoustic environments demonstrate that RIR-Former consistently outperforms state-of-the-art baselines in terms of normalized mean square error (NMSE) and cosine distance (CD), under varying missing rates and array configurations. These results highlight the potential of our approach for practical deployment and motivate future work on scaling from randomly spaced linear arrays to complex array geometries, dynamic acoustic scenes, and real-world environments.
comment: Accepted to International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2026. Equal contribution: Shaoheng Xu and Chunyi Sun
♻ ☆ Beyond Random: Automatic Inner-loop Optimization in Dataset Distillation NeurIPS 2025
The growing demand for efficient deep learning has positioned dataset distillation as a pivotal technique for compressing training dataset while preserving model performance. However, existing inner-loop optimization methods for dataset distillation typically rely on random truncation strategies, which lack flexibility and often yield suboptimal results. In this work, we observe that neural networks exhibit distinct learning dynamics across different training stages-early, middle, and late-making random truncation ineffective. To address this limitation, we propose Automatic Truncated Backpropagation Through Time (AT-BPTT), a novel framework that dynamically adapts both truncation positions and window sizes according to intrinsic gradient behavior. AT-BPTT introduces three key components: (1) a probabilistic mechanism for stage-aware timestep selection, (2) an adaptive window sizing strategy based on gradient variation, and (3) a low-rank Hessian approximation to reduce computational overhead. Extensive experiments on CIFAR-10, CIFAR-100, Tiny-ImageNet, and ImageNet-1K show that AT-BPTT achieves state-of-the-art performance, improving accuracy by an average of 6.16% over baseline methods. Moreover, our approach accelerates inner-loop optimization by 3.9x while saving 63% memory cost.
comment: Accepted by NeurIPS 2025
♻ ☆ On Universality Classes of Equivariant Networks NeurIPS 2025
Equivariant neural networks provide a principled framework for incorporating symmetry into learning architectures and have been extensively analyzed through the lens of their separation power, that is, the ability to distinguish inputs modulo symmetry. This notion plays a central role in settings such as graph learning, where it is often formalized via the Weisfeiler-Leman hierarchy. In contrast, the universality of equivariant models-their capacity to approximate target functions-remains comparatively underexplored. In this work, we investigate the approximation power of equivariant neural networks beyond separation constraints. We show that separation power does not fully capture expressivity: models with identical separation power may differ in their approximation ability. To demonstrate this, we characterize the universality classes of shallow invariant networks, providing a general framework for understanding which functions these architectures can approximate. Since equivariant models reduce to invariant ones under projection, this analysis yields sufficient conditions under which shallow equivariant networks fail to be universal. Conversely, we identify settings where shallow models do achieve separation-constrained universality. These positive results, however, depend critically on structural properties of the symmetry group, such as the existence of adequate normal subgroups, which may not hold in important cases like permutation symmetry.
comment: Advances in Neural Information Processing Systems 38 (NeurIPS 2025; Spotlight presentation). Total 25 pages
♻ ☆ Comprehensive Machine Learning Benchmarking for Fringe Projection Profilometry with Photorealistic Synthetic Data
Machine learning approaches for fringe projection profilometry (FPP) are hindered by the lack of large, diverse datasets and standardized benchmarking protocols. This paper introduces the first open-source, photorealistic synthetic dataset for FPP, generated using NVIDIA Isaac Sim, comprising 15,600 fringe images and 300 depth reconstructions across 50 objects. We apply this dataset to single-shot FPP, where models predict 3D depth maps directly from individual fringe images without temporal phase shifting. Through systematic ablation studies, we identify optimal learning configurations for long-range (1.5-2.1 m) depth prediction. We compare three depth normalization strategies and show that individual normalization, which decouples object shape from absolute scale, yields a 9.1x improvement in object reconstruction accuracy over raw depth. We further show that removing background fringe patterns severely degrades performance across all normalizations, demonstrating that background fringes provide essential spatial phase reference rather than noise. We evaluate six loss functions and identify Hybrid L1 loss as optimal. Using the best configuration, we benchmark four architectures and find UNet achieves the strongest performance, though errors remain far above the sub-millimeter accuracy of classical FPP. The small performance gap between architectures indicates that the dominant limitation is information deficit rather than model design: single fringe images lack sufficient information for accurate depth recovery without explicit phase cues. This work provides a standardized benchmark and evidence motivating hybrid approaches combining phase-based FPP with learned refinement. The dataset is available at https://huggingface.co/datasets/aharoon/fpp-ml-bench and code at https://github.com/AnushLak/fpp-ml-bench.
comment: 19 pages, 10 figures, 5 tables
♻ ☆ Unifying Ranking and Generation in Query Auto-Completion via Retrieval-Augmented Generation and Multi-Objective Alignment
Query Auto-Completion (QAC) suggests query completions as users type, helping them articulate intent and reach results more efficiently. Existing approaches face fundamental challenges: traditional retrieve-and-rank pipelines have limited long-tail coverage and require extensive feature engineering, while recent generative methods suffer from hallucination and safety risks. We present a unified framework that reformulates QAC as end-to-end list generation through Retrieval-Augmented Generation (RAG) and multi-objective Direct Preference Optimization (DPO). Our approach combines three key innovations: (1) reformulating QAC as end-to-end list generation with multi-objective optimization; (2) defining and deploying a suite of rule-based, model-based, and LLM-as-judge verifiers for QAC, and using them in a comprehensive methodology that combines RAG, multi-objective DPO, and iterative critique-revision for high-quality synthetic data; (3) a hybrid serving architecture enabling efficient production deployment under strict latency constraints. Evaluation on a large-scale commercial search platform demonstrates substantial improvements: offline metrics show gains across all dimensions, human evaluation yields +0.40 to +0.69 preference scores, and a controlled online experiment achieves 5.44\% reduction in keystrokes and 3.46\% increase in suggestion adoption, validating that unified generation with RAG and multi-objective alignment provides an effective solution for production QAC. This work represents a paradigm shift to end-to-end generation powered by large language models, RAG, and multi-objective alignment, establishing a production-validated framework that can benefit the broader search and recommendation industry.
comment: 11 pages, 4 figures
♻ ☆ Controlling Exploration-Exploitation in GFlowNets via Markov Chain Perspectives
Generative Flow Network (GFlowNet) objectives implicitly fix an equal mixing of forward and backward policies, potentially constraining the exploration-exploitation trade-off during training. By further exploring the link between GFlowNets and Markov chains, we establish an equivalence between GFlowNet objectives and Markov chain reversibility, thereby revealing the origin of such constraints, and provide a framework for adapting Markov chain properties to GFlowNets. Building on these theoretical findings, we propose $α$-GFNs, which generalize the mixing via a tunable parameter $α$. This generalization enables direct control over exploration-exploitation dynamics to enhance mode discovery capabilities, while ensuring convergence to unique flows. Across various benchmarks, including Set, Bit Sequence, and Molecule Generation, $α$-GFN objectives consistently outperform previous GFlowNet objectives, achieving up to a $10 \times$ increase in the number of discovered modes.
♻ ☆ A Unified Definition of Hallucination: It's The World Model, Stupid!
Despite numerous attempts at mitigation since the inception of language models, hallucinations remain a persistent problem even in today's frontier LLMs. Why is this? We review existing definitions of hallucination and fold them into a single, unified definition wherein prior definitions are subsumed. We argue that hallucination can be unified by defining it as simply inaccurate (internal) world modeling, in a form where it is observable to the user. For example, stating a fact which contradicts a knowledge base OR producing a summary which contradicts the source. By varying the reference world model and conflict policy, our framework unifies prior definitions. We argue that this unified view is useful because it forces evaluations to clarify their assumed reference "world", distinguishes true hallucinations from planning or reward errors, and provides a common language for comparison across benchmarks and discussion of mitigation strategies. Building on this definition, we outline plans for a family of benchmarks using synthetic, fully specified reference world models to stress-test and improve world modeling components.
comment: HalluWorld benchmark in progress. Repo at https://github.com/DegenAI-Labs/HalluWorld
♻ ☆ Inferring stochastic dynamics with growth from cross-sectional data NeurIPS 2025
Time-resolved single-cell omics data offers high-throughput, genome-wide measurements of cellular states, which are instrumental to reverse-engineer the processes underpinning cell fate. Such technologies are inherently destructive, allowing only cross-sectional measurements of the underlying stochastic dynamical system. Furthermore, cells may divide or die in addition to changing their molecular state. Collectively these present a major challenge to inferring realistic biophysical models. We present a novel approach, unbalanced probability flow inference, that addresses this challenge for biological processes modelled as stochastic dynamics with growth. By leveraging a Lagrangian formulation of the Fokker-Planck equation, our method accurately disentangles drift from intrinsic noise and growth. We showcase the applicability of our approach through evaluation on a range of simulated and real single-cell RNA-seq datasets. Comparing to several existing methods, we find our method achieves higher accuracy while enjoying a simple two-step training scheme.
comment: 10 pages, 5 figures, NeurIPS 2025
♻ ☆ SEAFormer: A Spatial Proximity and Edge-Aware Transformer for Real-World Vehicle Routing Problems
Real-world Vehicle Routing Problems (RWVRPs) require solving complex, sequence-dependent challenges at scale with constraints such as delivery time window, replenishment or recharging stops, asymmetric travel cost, etc. While recent neural methods achieve strong results on large-scale classical VRP benchmarks, they struggle to address RWVRPs because their strategies overlook sequence dependencies and underutilize edge-level information, which are precisely the characteristics that define the complexity of RWVRPs. We present SEAFormer, a novel transformer that incorporates both node-level and edge-level information in decision-making through two key innovations. First, our Clustered Proximity Attention (CPA) exploits locality-aware clustering to reduce the complexity of attention from $O(n^2)$ to $O(n)$ while preserving global perspective, allowing SEAFormer to efficiently train on large instances. Second, our lightweight edge-aware module captures pairwise features through residual fusion, enabling effective incorporation of edge-based information and faster convergence. Extensive experiments across four RWVRP variants with various scales demonstrate that SEAFormer achieves superior results over state-of-the-art methods. Notably, SEAFormer is the first neural method to solve 1,000+ node RWVRPs effectively, while also achieving superior performance on classic VRPs, making it a versatile solution for both research benchmarks and real-world applications.
comment: 26 pages
♻ ☆ Understanding Representation Dynamics of Diffusion Models via Low-Dimensional Modeling NeurIPS 2025
Diffusion models, though originally designed for generative tasks, have demonstrated impressive self-supervised representation learning capabilities. A particularly intriguing phenomenon in these models is the emergence of unimodal representation dynamics, where the quality of learned features peaks at an intermediate noise level. In this work, we conduct a comprehensive theoretical and empirical investigation of this phenomenon. Leveraging the inherent low-dimensionality structure of image data, we theoretically demonstrate that the unimodal dynamic emerges when the diffusion model successfully captures the underlying data distribution. The unimodality arises from an interplay between denoising strength and class confidence across noise scales. Empirically, we further show that, in classification tasks, the presence of unimodal dynamics reliably reflects the generalization of the diffusion model: it emerges when the model generates novel images and gradually transitions to a monotonically decreasing curve as the model begins to memorize the training data.
comment: First two authors contributed equally. Accepted at NeurIPS 2025
♻ ☆ Learning non-equilibrium diffusions with Schrödinger bridges: from exactly solvable to simulation-free NeurIPS 2025
We consider the Schrödinger bridge problem which, given ensemble measurements of the initial and final configurations of a stochastic dynamical system and some prior knowledge on the dynamics, aims to reconstruct the "most likely" evolution of the system compatible with the data. Most existing literature assume Brownian reference dynamics, and are implicitly limited to modelling systems driven by the gradient of a potential energy. We depart from this regime and consider reference processes described by a multivariate Ornstein-Uhlenbeck process with generic drift matrix $\mathbf{A} \in \mathbb{R}^{d \times d}$. When $\mathbf{A}$ is asymmetric, this corresponds to a non-equilibrium system in which non-gradient forces are at play: this is important for applications to biological systems, which naturally exist out-of-equilibrium. In the case of Gaussian marginals, we derive explicit expressions that characterise exactly the solution of both the static and dynamic Schrödinger bridge. For general marginals, we propose mvOU-OTFM, a simulation-free algorithm based on flow and score matching for learning an approximation to the Schrödinger bridge. In application to a range of problems based on synthetic and real single cell data, we demonstrate that mvOU-OTFM achieves higher accuracy compared to competing methods, whilst being significantly faster to train.
comment: 10 pages, 5 figures, NeurIPS 2025
♻ ☆ Causality Guided Representation Learning for Cross-Style Hate Speech Detection WWW 26
The proliferation of online hate speech poses a significant threat to the harmony of the web. While explicit hate is easily recognized through overt slurs, implicit hate speech is often conveyed through sarcasm, irony, stereotypes, or coded language -- making it harder to detect. Existing hate speech detection models, which predominantly rely on surface-level linguistic cues, fail to generalize effectively across diverse stylistic variations. Moreover, hate speech spread on different platforms often targets distinct groups and adopts unique styles, potentially inducing spurious correlations between them and labels, further challenging current detection approaches. Motivated by these observations, we hypothesize that the generation of hate speech can be modeled as a causal graph involving key factors: contextual environment, creator motivation, target, and style. Guided by this graph, we propose CADET, a causal representation learning framework that disentangles hate speech into interpretable latent factors and then controls confounders, thereby isolating genuine hate intent from superficial linguistic cues. Furthermore, CADET allows counterfactual reasoning by intervening on style within the latent space, naturally guiding the model to robustly identify hate speech in varying forms. CADET demonstrates superior performance in comprehensive experiments, highlighting the potential of causal priors in advancing generalizable hate speech detection.
comment: Accepted by the ACM Web Conference 2026 (WWW 26)
♻ ☆ OverThink: Slowdown Attacks on Reasoning LLMs
Most flagship language models generate explicit reasoning chains, enabling inference-time scaling. However, producing these reasoning chains increases token usage (i.e., reasoning tokens), which in turn increases latency and costs. Our OverThink attack increases overhead for applications that rely on reasoning language models (RLMs) and external context by forcing them to spend substantially more reasoning tokens while still producing contextually correct answers. An adversary mounts an attack by injecting decoy reasoning problems into public content that is consumed by RLM at inference time. Because our decoys (e.g., Markov decision processes, Sudokus, etc.) are benign, they evade safety filters. We evaluate OverThink on both closed-source and open-source reasoning models across the FreshQA, SQuAD, and MuSR datasets. We also explore the attack in multi-modal settings by creating images that cause excessive reasoning. We show that the resulting slowdown transfers across models. Finally, we explore both LLM-based and systems-level defenses, and discuss the societal, financial, and energy implications of the OverThink attacks.
♻ ☆ GeoGen: A Two-stage Coarse-to-Fine Framework for Fine-grained Synthetic Location-based Social Network Trajectory Generation
Location-Based Social Network (LBSN) check-in trajectory data are important for many practical applications, like POI recommendation, advertising, and pandemic intervention. However, the high collection costs and ever-increasing privacy concerns prevent us from accessing large-scale LBSN trajectory data. The recent advances in synthetic data generation provide us with a new opportunity to achieve this, which utilizes generative AI to generate synthetic data that preserves the characteristics of real data while ensuring privacy protection. However, generating synthetic LBSN check-in trajectories remains challenging due to their spatially discrete, temporally irregular nature and the complex spatio-temporal patterns caused by sparse activities and uncertain human mobility. To address this challenge, we propose GeoGen, a two-stage coarse-to-fine framework for large-scale LBSN check-in trajectory generation. In the first stage, we reconstruct spatially continuous, temporally regular latent movement sequences from the original LBSN check-in trajectories and then design a Sparsity-aware Spatio-temporal Diffusion model (S$^2$TDiff) with an efficient denosing network to learn their underlying behavioral patterns. In the second stage, we design Coarse2FineNet, a Transformer-based Seq2Seq architecture equipped with a dynamic context fusion mechanism in the encoder and a multi-task hybrid-head decoder, which generates fine-grained LBSN trajectories based on coarse-grained latent movement sequences by modeling semantic relevance and behavioral uncertainty. Extensive experiments on four real-world datasets show that GeoGen excels state-of-the-art models for both fidelity and utility evaluation, e.g., it increases over 69% and 55% in distance and radius metrics on the FS-TKY dataset.
♻ ☆ Non-Intrusive Graph-Based Bot Detection for E-Commerce Using Inductive Graph Neural Networks
Malicious bots pose a growing threat to e-commerce platforms by scraping data, hoarding inventory, and perpetrating fraud. Traditional bot mitigation techniques, including IP blacklists and CAPTCHA-based challenges, are increasingly ineffective or intrusive, as modern bots leverage proxies, botnets, and AI-assisted evasion strategies. This work proposes a non-intrusive graph-based bot detection framework for e-commerce that models user session behavior through a graph representation and applies an inductive graph neural network for classification. The approach captures both relational structure and behavioral semantics, enabling accurate identification of subtle automated activity that evades feature-based methods. Experiments on real-world e-commerce traffic demonstrate that the proposed inductive graph model outperforms a strong session-level multilayer perceptron baseline in terms of AUC and F1 score. Additional adversarial perturbation and cold-start simulations show that the model remains robust under moderate graph modifications and generalizes effectively to previously unseen sessions and URLs. The proposed framework is deployment-friendly, integrates with existing systems without client-side instrumentation, and supports real-time inference and incremental updates, making it suitable for practical e-commerce security deployments.
♻ ☆ Confucius Code Agent: Scalable Agent Scaffolding for Real-World Codebases
Real-world software engineering tasks require coding agents that can operate on massive repositories, sustain long-horizon sessions, and reliably coordinate complex toolchains at test time. Existing research-grade coding agents offer transparency but struggle when scaled to heavier, production-level workloads, while production-grade systems achieve strong practical performance but provide limited extensibility, interpretability, and controllability. We introduce the Confucius Code Agent (CCA), a software engineering agent that can operate at large-scale codebases. CCA is built on top of the Confucius SDK, an agent development platform structured around three complementary perspectives: Agent Experience (AX), User Experience (UX), and Developer Experience (DX). The SDK supports a unified orchestrator with advanced context management for long-context reasoning, a persistent note-taking system for cross-session continual learning, and a modular extension system for reliable tool use. In addition, we introduce a meta-agent that automates the construction, evaluation, and refinement of agents through a build-test-improve cycle, enabling rapid agent development on new tasks and tool stacks. Instantiated on the Confucius SDK using the meta-agent, CCA demonstrates strong performance on real-world software engineering tasks. On SWE-Bench-Pro, CCA achieves a Resolve@1 of 59%, exceeding prior research baselines as well as commercial results, under identical repositories, model backends, and tool access.
comment: The latest version
♻ ☆ Spectral Text Fusion: A Frequency-Aware Approach to Multimodal Time-Series Forecasting
Multimodal time series forecasting is crucial in real-world applications, where decisions depend on both numerical data and contextual signals. The core challenge is to effectively combine temporal numerical patterns with the context embedded in other modalities, such as text. While most existing methods align textual features with time-series patterns one step at a time, they neglect the multiscale temporal influences of contextual information such as time-series cycles and dynamic shifts. This mismatch between local alignment and global textual context can be addressed by spectral decomposition, which separates time series into frequency components capturing both short-term changes and long-term trends. In this paper, we propose SpecTF, a simple yet effective framework that integrates the effect of textual data on time series in the frequency domain. Our method extracts textual embeddings, projects them into the frequency domain, and fuses them with the time series' spectral components using a lightweight cross-attention mechanism. This adaptively reweights frequency bands based on textual relevance before mapping the results back to the temporal domain for predictions. Experimental results demonstrate that SpecTF significantly outperforms state-of-the-art models across diverse multi-modal time series datasets while utilizing considerably fewer parameters. Code is available at https://github.com/hiepnh137/SpecTF.
♻ ☆ Kimi K2: Open Agentic Intelligence
We introduce Kimi K2, a Mixture-of-Experts (MoE) large language model with 32 billion activated parameters and 1 trillion total parameters. We propose the MuonClip optimizer, which improves upon Muon with a novel QK-clip technique to address training instability while enjoying the advanced token efficiency of Muon. Based on MuonClip, K2 was pre-trained on 15.5 trillion tokens with zero loss spike. During post-training, K2 undergoes a multi-stage post-training process, highlighted by a large-scale agentic data synthesis pipeline and a joint reinforcement learning (RL) stage, where the model improves its capabilities through interactions with real and synthetic environments. Kimi K2 achieves state-of-the-art performance among open-source non-thinking models, with strengths in agentic capabilities. Notably, K2 obtains 66.1 on Tau2-Bench, 76.5 on ACEBench (En), 65.8 on SWE-Bench Verified, and 47.3 on SWE-Bench Multilingual -- surpassing most open and closed-sourced baselines in non-thinking settings. It also exhibits strong capabilities in coding, mathematics, and reasoning tasks, with a score of 53.7 on LiveCodeBench v6, 49.5 on AIME 2025, 75.1 on GPQA-Diamond, and 27.1 on OJBench, all without extended thinking. These results position Kimi K2 as one of the most capable open-source large language models to date, particularly in software engineering and agentic tasks. We release our base and post-trained model checkpoints to facilitate future research and applications of agentic intelligence.
comment: tech report of Kimi K2, with minor updates
♻ ☆ Dropping Just a Handful of Preferences Can Change Top Large Language Model Rankings
We propose a method for evaluating the robustness of widely used LLM ranking systems -- variants of a Bradley--Terry model -- to dropping a worst-case very small fraction of preference data. Our approach is computationally fast and easy to adopt. When we apply our method to matchups from popular LLM ranking platforms, including Chatbot Arena and derivatives, we find that the rankings of top-performing models can be remarkably sensitive to the removal of a small fraction of preferences; for instance, dropping just 0.003% of human preferences can change the top-ranked model on Chatbot Arena. Our robustness check identifies the specific preferences most responsible for such ranking flips, allowing for inspection of these influential preferences. We observe that the rankings derived from MT-bench preferences are notably more robust than those from Chatbot Arena, likely due to MT-bench's use of expert annotators and carefully constructed prompts. Finally, we find that neither rankings based on crowdsourced human evaluations nor those based on LLM-as-a-judge preferences are systematically more sensitive than the other.
♻ ☆ Align to Structure: Aligning Large Language Models with Structural Information AAAI 2026
Generating long, coherent text remains a challenge for large language models (LLMs), as they lack hierarchical planning and structured organization in discourse generation. We introduce Structural Alignment, a novel method that aligns LLMs with human-like discourse structures to enhance long-form text generation. By integrating linguistically grounded discourse frameworks into reinforcement learning, our approach guides models to produce coherent and well-organized outputs. We employ a dense reward scheme within a Proximal Policy Optimization framework, assigning fine-grained, token-level rewards based on the discourse distinctiveness relative to human writing. Two complementary reward models are evaluated: the first improves readability by scoring surface-level textual features to provide explicit structuring, while the second reinforces deeper coherence and rhetorical sophistication by analyzing global discourse patterns through hierarchical discourse motifs, outperforming both standard and RLHF-enhanced models in tasks such as essay generation and long-document summarization. All training data and code will be publicly shared at https://github.com/minnesotanlp/struct_align.
comment: Accepted to AAAI 2026 AIA
♻ ☆ Embedding Compression via Spherical Coordinates
We present a compression method for unit-norm embeddings that achieves 1.5$\times$ compression, 25% better than the best prior lossless method. The method exploits that spherical coordinates of high-dimensional unit vectors concentrate around $π/2$, causing IEEE 754 exponents to collapse to a single value and high-order mantissa bits to become predictable, enabling entropy coding of both. Reconstruction error is below 1e-7, under float32 machine epsilon. Evaluation across 26 configurations spanning text, image, and multi-vector embeddings confirms consistent improvement.
♻ ☆ Hallucination is a Consequence of Space-Optimality: A Rate-Distortion Theorem for Membership Testing
Large language models often hallucinate with high confidence on "random facts" that lack inferable patterns. We formalize the memorization of such facts as a membership testing problem, unifying the discrete error metrics of Bloom filters with the continuous log-loss of LLMs. By analyzing this problem in the regime where facts are sparse in the universe of plausible claims, we establish a rate-distortion theorem: the optimal memory efficiency is characterized by the minimum KL divergence between score distributions on facts and non-facts. This theoretical framework provides a distinctive explanation for hallucination: even with optimal training, perfect data, and a simplified "closed world" setting, the information-theoretically optimal strategy under limited capacity is not to abstain or forget, but to assign high confidence to some non-facts, resulting in hallucination. We validate this theory empirically on synthetic data, showing that hallucinations persist as a natural consequence of lossy compression.
♻ ☆ Reusing Overtrained Language Models Saturates Scaling
Reusing pretrained base models for further pretraining, such as continual pretraining or model growth, is promising at reducing the cost of training language models from scratch. However, the effectiveness remains unclear, especially when applied to overtrained base models. In this work, we empirically study the scaling properties of model reuse and find that the scaling efficiency diminishes in a predictable manner: The scaling exponent with respect to second-stage training tokens decreases logarithmically with the number of tokens used to pretrain the base model. The joint dependence on first- and second-stage tokens is accurately modeled by a simple scaling law. Such saturation effect reveals a fundamental trade-off in multi-stage pretraining strategies: the more extensively a base model is pretrained, the less benefit additional pretraining provides. Our findings provide practical insights for efficient language model training and raise important considerations for the reuse of overtrained models.
♻ ☆ Zero2Text: Zero-Training Cross-Domain Inversion Attacks on Textual Embeddings
The proliferation of retrieval-augmented generation (RAG) has established vector databases as critical infrastructure, yet they introduce severe privacy risks via embedding inversion attacks. Existing paradigms face a fundamental trade-off: optimization-based methods require computationally prohibitive queries, while alignment-based approaches hinge on the unrealistic assumption of accessible in-domain training data. These constraints render them ineffective in strict black-box and cross-domain settings. To dismantle these barriers, we introduce Zero2Text, a novel training-free framework based on recursive online alignment. Unlike methods relying on static datasets, Zero2Text synergizes LLM priors with a dynamic ridge regression mechanism to iteratively align generation to the target embedding on-the-fly. We further demonstrate that standard defenses, such as differential privacy, fail to effectively mitigate this adaptive threat. Extensive experiments across diverse benchmarks validate Zero2Text; notably, on MS MARCO against the OpenAI victim model, it achieves 1.8x higher ROUGE-L and 6.4x higher BLEU-2 scores compared to baselines, recovering sentences from unknown domains without a single leaked data pair.
comment: 10 pages
♻ ☆ Learning Heat-based Equations in Self-similar variables
We study solution learning for heat-based equations in self-similar variables (SSV). We develop an SSV training framework compatible with standard neural-operator training. We instantiate this framework on the two-dimensional incompressible Navier-Stokes equations and the one-dimensional viscous Burgers equation, and perform controlled comparisons between models trained in physical coordinates and in the corresponding self-similar coordinates using two simple fully connected architectures (standard multilayer perceptrons and a factorized fully connected network). Across both systems and both architectures, SSV-trained networks consistently deliver substantially more accurate and stable extrapolation beyond the training window and better capture qualitative long-time trends. These results suggest that self-similar coordinates provide a mathematically motivated inductive bias for learning the long-time dynamics of heat-based equations.
♻ ☆ SCPL: Enhancing Neural Network Training Throughput with Decoupled Local Losses and Model Parallelism
Adopting large-scale AI models in enterprise information systems is often hindered by high training costs and long development cycles, posing a significant managerial challenge. The standard end-to-end backpropagation (BP) algorithm is a primary driver of modern AI, but it is also the source of inefficiency in training deep networks. This paper introduces a new training methodology, Supervised Contrastive Parallel Learning (SCPL), that addresses this issue by decoupling BP and transforming a long gradient flow into multiple short ones. This design enables the simultaneous computation of parameter gradients in different layers, achieving superior model parallelism and enhancing training throughput. Detailed experiments are presented to demonstrate the efficiency and effectiveness of our model compared to BP, Early Exit, GPipe, and Associated Learning (AL), a state-of-the-art method for decoupling backpropagation. By mitigating a fundamental performance bottleneck, SCPL provides a practical pathway for organizations to develop and deploy advanced information systems more cost-effectively and with greater agility. The experimental code is released for reproducibility. https://github.com/minyaho/scpl/
♻ ☆ Individual Regret in Cooperative Stochastic Multi-Armed Bandits
We study the regret in stochastic Multi-Armed Bandits (MAB) with multiple agents that communicate over an arbitrary connected communication graph. We analyzed a variant of Cooperative Successive Elimination algorithm, COOP-SE, and show an individual regret bound of $O(R/ m + A^2 + A \sqrt{\log T})$ and a nearly matching lower bound. Here $A$ is the number of actions, $T$ the time horizon, $m$ the number of agents, and $R = \sum_{Δ_i > 0}\log(T)/Δ_i$ is the optimal single agent regret, where $Δ_i$ is the sub-optimality gap of action $i$. Our work is the first to show an individual regret bound in cooperative stochastic MAB that is independent of the graph's diameter. When considering communication networks there are additional considerations beyond regret, such as message size and number of communication rounds. First, we show that our regret bound holds even if we restrict the messages to be of logarithmic size. Second, for logarithmic number of communication rounds, we obtain a regret bound of $O(R / m+A \log T)$.
comment: 55 pages, 1 figure
♻ ☆ Decipher-MR: A Vision-Language Foundation Model for 3D MRI Representations
Magnetic Resonance Imaging is a critical imaging modality in clinical diagnosis and research, yet its complexity and heterogeneity hinder scalable, generalizable machine learning. Although foundation models have revolutionized language and vision tasks, their application to MRI remains constrained by data scarcity and narrow anatomical focus. We present Decipher-MR, a 3D MRI-specific vision-language foundation model trained on 200,000 MRI series from over 22,000 studies spanning diverse anatomical regions, sequences, and pathologies. Decipher-MR integrates self-supervised vision learning with report-guided text supervision to build robust representations for broad applications. To enable efficient use, Decipher-MR supports a modular design that enables tuning of lightweight, task-specific decoders attached to a frozen pretrained encoder. Following this setting, we evaluate Decipher-MR across disease classification, demographic prediction, anatomical localization, and cross-modal retrieval, demonstrating consistent improvements over existing foundation models and task-specific approaches. These results position Decipher-MR as a versatile foundation for MRI-based AI in clinical and research settings.
♻ ☆ Moirai 2.0: When Less Is More for Time Series Forecasting
We introduce Moirai 2.0, a decoder-only time-series foundation model trained on a new corpus of 36M series. The model adopts quantile forecasting and multi-token prediction, improving both probabilistic accuracy and inference efficiency. On the Gift-Eval benchmark, it ranks among the top pretrained models while achieving a strong trade-off between accuracy, speed, and model size. Compared to Moirai 1.0, Moirai 2.0 replaces masked-encoder training, multi-patch inputs, and mixture-distribution outputs with a simpler decoder-only architecture, single patch, and quantile loss. Ablation studies isolate these changes -- showing that the decoder-only backbone along with recursive multi-quantile decoding contribute most to the gains. Additional experiments show that Moirai 2.0 outperforms larger models from the same family and exhibits robust domain-level results. In terms of efficiency and model size, Moirai 2.0 is twice as fast and thirty times smaller than its prior best version, Moirai 1.0-Large, while also performing better. Model performance plateaus with increasing parameter count and declines at longer horizons, motivating future work on data scaling and long-horizon modeling. We release code and evaluation details to support further research.
comment: 16 pages, 13 figures, and 1 table
♻ ☆ MGKAN: Predicting Asymmetric Drug-Drug Interactions via a Multimodal Graph Kolmogorov-Arnold Network ICASSP 2026
Predicting drug-drug interactions (DDIs) is essential for safe pharmacological treatments. Previous graph neural network (GNN) models leverage molecular structures and interaction networks but mostly rely on linear aggregation and symmetric assumptions, limiting their ability to capture nonlinear and heterogeneous patterns. We propose MGKAN, a Graph Kolmogorov-Arnold Network that introduces learnable basis functions into asymmetric DDI prediction. MGKAN replaces conventional MLP transformations with KAN-driven basis functions, enabling more expressive and nonlinear modeling of drug relationships. To capture pharmacological dependencies, MGKAN integrates three network views-an asymmetric DDI network, a co-interaction network, and a biochemical similarity network-with role-specific embeddings to preserve directional semantics. A fusion module combines linear attention and nonlinear transformation to enhance representational capacity. On two benchmark datasets, MGKAN outperforms seven state-of-the-art baselines. Ablation studies and case studies confirm its predictive accuracy and effectiveness in modeling directional drug effects.
comment: This paper has been accepted by ICASSP 2026
♻ ☆ COMET: Codebook-based Online-adaptive Multi-scale Embedding for Time-series Anomaly Detection
Time series anomaly detection is a critical task across various industrial domains. However, capturing temporal dependencies and multivariate correlations within patch-level representation learning remains underexplored, and reliance on single-scale patterns limits the detection of anomalies across different temporal ranges. Furthermore, focusing on normal data representations makes models vulnerable to distribution shifts at inference time. To address these limitations, we propose Codebook-based Online-adaptive Multi-scale Embedding for Time-series anomaly detection (COMET), which consists of three key components: (1) Multi-scale Patch Encoding captures temporal dependencies and inter-variable correlations across multiple patch scales. (2) Vector-Quantized Coreset learns representative normal patterns via codebook and detects anomalies with a dual-score combining quantization error and memory distance. (3) Online Codebook Adaptation generates pseudo-labels based on codebook entries and dynamically adapts the model at inference through contrastive learning. Experiments on five benchmark datasets demonstrate that COMET achieves the best performance in 36 out of 45 evaluation metrics, validating its effectiveness across diverse environments.
♻ ☆ GPG: A Simple and Strong Reinforcement Learning Baseline for Model Reasoning ICLR2026
Reinforcement Learning (RL) can directly enhance the reasoning capabilities of large language models without extensive reliance on Supervised Fine-Tuning (SFT). In this work, we revisit the traditional Policy Gradient (PG) mechanism and propose a minimalist RL approach termed Group Policy Gradient (GPG). Unlike conventional methods, GPG directly optimize the original RL objective, thus obviating the need for surrogate loss functions. By eliminating the critic and reference models, avoiding KL divergence constraints, and addressing the advantage and gradient estimation bias, our approach significantly simplifies the training process compared to Group Relative Policy Optimization (GRPO). Our approach achieves superior performance without relying on auxiliary techniques or adjustments. As illustrated in Figure 1, extensive experiments demonstrate that our method not only reduces computational costs but also consistently outperforms GRPO across various unimodal and multimodal tasks. Our code is available at https://github.com/AMAP-ML/GPG.
comment: Accepted to ICLR2026
♻ ☆ Mixture of Distributions Matters: Dynamic Sparse Attention for Efficient Video Diffusion Transformers
While Diffusion Transformers (DiTs) have achieved notable progress in video generation, this long-sequence generation task remains constrained by the quadratic complexity inherent to self-attention mechanisms, creating significant barriers to practical deployment. Although sparse attention methods attempt to address this challenge, existing approaches either rely on oversimplified static patterns or require computationally expensive sampling operations to achieve dynamic sparsity, resulting in inaccurate pattern predictions and degraded generation quality. To overcome these limitations, we propose a \underline{\textbf{M}}ixture-\underline{\textbf{O}}f-\underline{\textbf{D}}istribution \textbf{DiT} (\textbf{MOD-DiT}), a novel sampling-free dynamic attention framework that accurately models evolving attention patterns through a two-stage process. First, MOD-DiT leverages prior information from early denoising steps and adopts a {distributed mixing approach} to model an efficient linear approximation model, which is then used to predict mask patterns for a specific denoising interval. Second, an online block masking strategy dynamically applies these predicted masks while maintaining historical sparsity information, eliminating the need for repetitive sampling operations. Extensive evaluations demonstrate consistent acceleration and quality improvements across multiple benchmarks and model architectures, validating MOD-DiT's effectiveness for efficient, high-quality video generation while overcoming the computational limitations of traditional sparse attention approaches.
♻ ☆ Sentence Curve Language Models
Language models (LMs) are a central component of modern AI systems, and diffusion-based language models (DLMs) have recently emerged as a competitive alternative. Both paradigms rely on word embeddings not only to represent the input sentence, but also to represent the target sentence that backbone models are trained to predict. We argue that such static embedding of the target word is insensitive to neighboring words, encouraging locally accurate word prediction while neglecting global structure across the target sentence. To address this limitation, we propose a continuous sentence representation, termed sentence curve, defined as a spline curve whose control points affect multiple words in the sentence. Based on this representation, we introduce sentence curve language model (SCLM), which extends DLMs to predict sentence curves instead of the static word embeddings. We theoretically show that sentence curve prediction induces a regularization effect that promotes global structure modeling, and characterize how different sentence curve types affect this behavior. Empirically, SCLM achieves SOTA performance among DLMs on IWSLT14 and WMT14, shows stable training without burdensome knowledge distillation, and demonstrates promising potential compared to discrete DLMs on LM1B.
♻ ☆ Sharpness-Aware Machine Unlearning ICLR 2026
We characterize the effectiveness of Sharpness-aware minimization (SAM) under machine unlearning scheme, where unlearning forget signals interferes with learning retain signals. While previous work prove that SAM improves generalization with noise memorization prevention, we show that SAM abandons such denoising property when fitting the forget set, leading to altered generalization depending on signal strength. We further characterize the signal surplus of SAM in the order of signal strength, which enables learning from less retain signals to maintain model performance and putting more weight on unlearning the forget set. Empirical studies show that SAM outperforms SGD with relaxed requirement for retain signals and can enhance various unlearning methods either as pretrain or unlearn algorithm. Motivated by our refined characterization of SAM unlearning and observing that overfitting can benefit more stringent sample-specific unlearning, we propose Sharp MinMax, which splits the model into two to learn retain signals with SAM and unlearn forget signals with sharpness maximization, achieving best performance. Extensive experiments show that SAM enhances unlearning across varying difficulties measured by memorization, yielding decreased feature entanglement between retain and forget sets, stronger resistance to membership inference attacks, and a flatter loss landscape. Our observations generalize to more noised data, different optimizers, and different architectures.
comment: Accepted to ICLR 2026
♻ ☆ Sparse maximal update parameterization: A holistic approach to sparse training dynamics NeurIPS
Several challenges make it difficult for sparse neural networks to compete with dense models. First, setting a large fraction of weights to zero impairs forward and gradient signal propagation. Second, sparse studies often need to test multiple sparsity levels, while also introducing new hyperparameters (HPs), leading to prohibitive tuning costs. Indeed, the standard practice is to re-use the learning HPs originally crafted for dense models. Unfortunately, we show sparse and dense networks do not share the same optimal HPs. Without stable dynamics and effective training recipes, it is costly to test sparsity at scale, which is key to surpassing dense networks and making the business case for sparsity acceleration in hardware. A holistic approach is needed to tackle these challenges and we propose S$μ$Par as one such approach. For random unstructured static sparsity, S$μ$Par ensures activations, gradients, and weight updates all scale independently of sparsity level. Further, by reparameterizing the HPs, S$μ$Par enables the same HP values to be optimal as we vary both sparsity level and model width. HPs can be tuned on small dense networks and transferred to large sparse models, greatly reducing tuning costs. On large-scale language modeling, S$μ$Par shows increasing improvements over standard parameterization as sparsity increases, leading up to 11.9% relative loss improvement at 99.2% sparsity. A minimal implementation of S$μ$Par is available at https://github.com/EleutherAI/nanoGPT-mup/tree/supar.
comment: 10 pages main text, 10 pages reference and appendix, 14 figures, NeurIPS Camera-Ready
Multimedia 6
☆ ELIQ: A Label-Free Framework for Quality Assessment of Evolving AI-Generated Images
Generative text-to-image models are advancing at an unprecedented pace, continuously shifting the perceptual quality ceiling and rendering previously collected labels unreliable for newer generations. To address this, we present ELIQ, a Label-free Framework for Quality Assessment of Evolving AI-generated Images. Specifically, ELIQ focuses on visual quality and prompt-image alignment, automatically constructs positive and aspect-specific negative pairs to cover both conventional distortions and AIGC-specific distortion modes, enabling transferable supervision without human annotations. Building on these pairs, ELIQ adapts a pre-trained multimodal model into a quality-aware critic via instruction tuning and predicts two-dimensional quality using lightweight gated fusion and a Quality Query Transformer. Experiments across multiple benchmarks demonstrate that ELIQ consistently outperforms existing label-free methods, generalizes from AI-generated content (AIGC) to user-generated content (UGC) scenarios without modification, and paves the way for scalable and label-free quality assessment under continuously evolving generative models. The code will be released upon publication.
☆ Morphe: High-Fidelity Generative Video Streaming with Vision Foundation Model
Video streaming is a fundamental Internet service, while the quality still cannot be guaranteed especially in poor network conditions such as bandwidth-constrained and remote areas. Existing works mainly work towards two directions: traditional pixel-codec streaming nearly approaches its limit and is hard to step further in compression; the emerging neural-enhanced or generative streaming usually fall short in latency and visual fidelity, hindering their practical deployment. Inspired by the recent success of vision foundation model (VFM), we strive to harness the powerful video understanding and processing capacities of VFM to achieve generalization, high fidelity and loss resilience for real-time video streaming with even higher compression rate. We present the first revolutionized paradigm that enables VFM-based end-to-end generative video streaming towards this goal. Specifically, Morphe employs joint training of visual tokenizers and variable-resolution spatiotemporal optimization under simulated network constraints. Additionally, a robust streaming system is constructed that leverages intelligent packet dropping to resist real-world network perturbations. Extensive evaluation demonstrates that Morphe achieves comparable visual quality while saving 62.5\% bandwidth compared to H.265, and accomplishes real-time, loss-resilient video delivery in challenging network environments, representing a milestone in VFM-enabled multimedia streaming solutions.
comment: Accepted by NSDI 2026 Fall
☆ D3PIA: A Discrete Denoising Diffusion Model for Piano Accompaniment Generation From Lead sheet IEEE
Generating piano accompaniments in the symbolic music domain is a challenging task that requires producing a complete piece of piano music from given melody and chord constraints, such as those provided by a lead sheet. In this paper, we propose a discrete diffusion-based piano accompaniment generation model, D3PIA, leveraging local alignment between lead sheet and accompaniment in piano-roll representation. D3PIA incorporates Neighborhood Attention (NA) to both encode the lead sheet and condition it for predicting note states in the piano accompaniment. This design enhances local contextual modeling by efficiently attending to nearby melody and chord conditions. We evaluate our model using the POP909 dataset, a widely used benchmark for piano accompaniment generation. Objective evaluation results demonstrate that D3PIA preserves chord conditions more faithfully compared to continuous diffusion-based and Transformer-based baselines. Furthermore, a subjective listening test indicates that D3PIA generates more musically coherent accompaniments than the comparison models.
comment: Accepted at 2026 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
☆ Unveiling Covert Toxicity in Multimodal Data via Toxicity Association Graphs: A Graph-Based Metric and Interpretable Detection Framework
Detecting toxicity in multimodal data remains a significant challenge, as harmful meanings often lurk beneath seemingly benign individual modalities: only emerging when modalities are combined and semantic associations are activated. To address this, we propose a novel detection framework based on Toxicity Association Graphs (TAGs), which systematically model semantic associations between innocuous entities and latent toxic implications. Leveraging TAGs, we introduce the first quantifiable metric for hidden toxicity, the Multimodal Toxicity Covertness (MTC), which measures the degree of concealment in toxic multimodal expressions. By integrating our detection framework with the MTC metric, our approach enables precise identification of covert toxicity while preserving full interpretability of the decision-making process, significantly enhancing transparency in multimodal toxicity detection. To validate our method, we construct the Covert Toxic Dataset, the first benchmark specifically designed to capture high-covertness toxic multimodal instances. This dataset encodes nuanced cross-modal associations and serves as a rigorous testbed for evaluating both the proposed metric and detection framework. Extensive experiments demonstrate that our approach outperforms existing methods across both low- and high-covertness toxicity regimes, while delivering clear, interpretable, and auditable detection outcomes. Together, our contributions advance the state of the art in explainable multimodal toxicity detection and lay the foundation for future context-aware and interpretable approaches. Content Warning: This paper contains examples of toxic multimodal content that may be offensive or disturbing to some readers. Reader discretion is advised.
♻ ☆ SpecFLASH: A Latent-Guided Semi-autoregressive Speculative Decoding Framework for Efficient Multimodal Generation
Large language models and large multimodal models (LLMs and LMMs) deliver strong generative performance but suffer from slow decoding, a problem that becomes more severe when handling visual inputs, whose sequences typically contain many more tokens with lower information density than text. Speculative decoding accelerates LLM inference by letting a compact draft model propose candidate tokens that are selectively accepted by a larger target model, achieving speed-up without degrading quality. However, existing multimodal speculative decoding approaches largely ignore the structural characteristics of visual representations and usually rely on text-only draft models. In this paper, we introduce SpecFLASH, a speculative decoding framework tailored to LMMs that explicitly exploits multimodal structure when designing the draft model. We first mitigate redundancy in visual token sequences with a lightweight, latent-guided token compression module that compacts visual features while preserving semantics, and then leverage the co-occurrence and local correlations of visual entities via a semi-autoregressive decoding scheme that predicts multiple tokens in a single forward pass. Extensive experiments demonstrate that SpecFLASH consistently surpasses prior speculative decoding baselines, achieving up to $2.68\times$ speed-up on video captioning and $2.55\times$ on visual instruction tuning, relative to the original LMM. Our code is available here: https://github.com/ZihuaEvan/FlashSD/.
comment: Under review
♻ ☆ TP-Blend: Textual-Prompt Attention Pairing for Precise Object-Style Blending in Diffusion Models
Current text-conditioned diffusion editors handle single object replacement well but struggle when a new object and a new style must be introduced simultaneously. We present Twin-Prompt Attention Blend (TP-Blend), a lightweight training-free framework that receives two separate textual prompts, one specifying a blend object and the other defining a target style, and injects both into a single denoising trajectory. TP-Blend is driven by two complementary attention processors. Cross-Attention Object Fusion (CAOF) first averages head-wise attention to locate spatial tokens that respond strongly to either prompt, then solves an entropy-regularised optimal transport problem that reassigns complete multi-head feature vectors to those positions. CAOF updates feature vectors at the full combined dimensionality of all heads (e.g., 640 dimensions in SD-XL), preserving rich cross-head correlations while keeping memory low. Self-Attention Style Fusion (SASF) injects style at every self-attention layer through Detail-Sensitive Instance Normalization. A lightweight one-dimensional Gaussian filter separates low- and high-frequency components; only the high-frequency residual is blended back, imprinting brush-stroke-level texture without disrupting global geometry. SASF further swaps the Key and Value matrices with those derived from the style prompt, enforcing context-aware texture modulation that remains independent of object fusion. Extensive experiments show that TP-Blend produces high-resolution, photo-realistic edits with precise control over both content and appearance, surpassing recent baselines in quantitative fidelity, perceptual quality, and inference speed.
Computer Vision and Pattern Recognition 231
☆ PixelGen: Pixel Diffusion Beats Latent Diffusion with Perceptual Loss
Pixel diffusion generates images directly in pixel space in an end-to-end manner, avoiding the artifacts and bottlenecks introduced by VAEs in two-stage latent diffusion. However, it is challenging to optimize high-dimensional pixel manifolds that contain many perceptually irrelevant signals, leaving existing pixel diffusion methods lagging behind latent diffusion models. We propose PixelGen, a simple pixel diffusion framework with perceptual supervision. Instead of modeling the full image manifold, PixelGen introduces two complementary perceptual losses to guide diffusion model towards learning a more meaningful perceptual manifold. An LPIPS loss facilitates learning better local patterns, while a DINO-based perceptual loss strengthens global semantics. With perceptual supervision, PixelGen surpasses strong latent diffusion baselines. It achieves an FID of 5.11 on ImageNet-256 without classifier-free guidance using only 80 training epochs, and demonstrates favorable scaling performance on large-scale text-to-image generation with a GenEval score of 0.79. PixelGen requires no VAEs, no latent representations, and no auxiliary stages, providing a simpler yet more powerful generative paradigm. Codes are publicly available at https://github.com/Zehong-Ma/PixelGen.
comment: Project Pages: https://zehong-ma.github.io/PixelGen/
☆ Multi-head automated segmentation by incorporating detection head into the contextual layer neural network
Deep learning based auto segmentation is increasingly used in radiotherapy, but conventional models often produce anatomically implausible false positives, or hallucinations, in slices lacking target structures. We propose a gated multi-head Transformer architecture based on Swin U-Net, augmented with inter-slice context integration and a parallel detection head, which jointly performs slice-level structure detection via a multi-layer perceptron and pixel-level segmentation through a context-enhanced stream. Detection outputs gate the segmentation predictions to suppress false positives in anatomically invalid slices, and training uses slice-wise Tversky loss to address class imbalance. Experiments on the Prostate-Anatomical-Edge-Cases dataset from The Cancer Imaging Archive demonstrate that the gated model substantially outperforms a non-gated segmentation-only baseline, achieving a mean Dice loss of $0.013 \pm 0.036$ versus $0.732 \pm 0.314$, with detection probabilities strongly correlated with anatomical presence, effectively eliminating spurious segmentations. In contrast, the non-gated model exhibited higher variability and persistent false positives across all slices. These results indicate that detection-based gating enhances robustness and anatomical plausibility in automated segmentation applications, reducing hallucinated predictions without compromising segmentation quality in valid slices, and offers a promising approach for improving the reliability of clinical radiotherapy auto-contouring workflows.
comment: 8 pages, 3 figures, 1 table
☆ MentisOculi: Revealing the Limits of Reasoning with Mental Imagery
Frontier models are transitioning from multimodal large language models (MLLMs) that merely ingest visual information to unified multimodal models (UMMs) capable of native interleaved generation. This shift has sparked interest in using intermediate visualizations as a reasoning aid, akin to human mental imagery. Central to this idea is the ability to form, maintain, and manipulate visual representations in a goal-oriented manner. To evaluate and probe this capability, we develop MentisOculi, a procedural, stratified suite of multi-step reasoning problems amenable to visual solution, tuned to challenge frontier models. Evaluating visual strategies ranging from latent tokens to explicit generated imagery, we find they generally fail to improve performance. Analysis of UMMs specifically exposes a critical limitation: While they possess the textual reasoning capacity to solve a task and can sometimes generate correct visuals, they suffer from compounding generation errors and fail to leverage even ground-truth visualizations. Our findings suggest that despite their inherent appeal, visual thoughts do not yet benefit model reasoning. MentisOculi establishes the necessary foundation to analyze and close this gap across diverse model families.
comment: 9 pages, 8 figures
☆ RANKVIDEO: Reasoning Reranking for Text-to-Video Retrieval
Reranking is a critical component of modern retrieval systems, which typically pair an efficient first-stage retriever with a more expressive model to refine results. While large reasoning models have driven rapid progress in text-centric reranking, reasoning-based reranking for video retrieval remains underexplored. To address this gap, we introduce RANKVIDEO, a reasoning-based reranker for video retrieval that explicitly reasons over query-video pairs using video content to assess relevance. RANKVIDEO is trained using a two-stage curriculum consisting of perception-grounded supervised fine-tuning followed by reranking training that combines pointwise, pairwise, and teacher confidence distillation objectives, and is supported by a data synthesis pipeline for constructing reasoning-intensive query-video pairs. Experiments on the large-scale MultiVENT 2.0 benchmark demonstrate that RANKVIDEO consistently improves retrieval performance within a two-stage framework, yielding an average improvement of 31% on nDCG@10 and outperforming text-only and vision-language reranking alternatives, while more efficient.
☆ UniReason 1.0: A Unified Reasoning Framework for World Knowledge Aligned Image Generation and Editing
Unified multimodal models often struggle with complex synthesis tasks that demand deep reasoning, and typically treat text-to-image generation and image editing as isolated capabilities rather than interconnected reasoning steps. To address this, we propose UniReason, a unified framework that harmonizes these two tasks through a dual reasoning paradigm. We formulate generation as world knowledge-enhanced planning to inject implicit constraints, and leverage editing capabilities for fine-grained visual refinement to further correct visual errors via self-reflection. This approach unifies generation and editing within a shared representation, mirroring the human cognitive process of planning followed by refinement. We support this framework by systematically constructing a large-scale reasoning-centric dataset (~300k samples) covering five major knowledge domains (e.g., cultural commonsense, physics, etc.) for planning, alongside an agent-generated corpus for visual self-correction. Extensive experiments demonstrate that UniReason achieves advanced performance on reasoning-intensive benchmarks such as WISE, KrisBench and UniREditBench, while maintaining superior general synthesis capabilities.
☆ SelvaMask: Segmenting Trees in Tropical Forests and Beyond
Tropical forests harbor most of the planet's tree biodiversity and are critical to global ecological balance. Canopy trees in particular play a disproportionate role in carbon storage and functioning of these ecosystems. Studying canopy trees at scale requires accurate delineation of individual tree crowns, typically performed using high-resolution aerial imagery. Despite advances in transformer-based models for individual tree crown segmentation, performance remains low in most forests, especially tropical ones. To this end, we introduce SelvaMask, a new tropical dataset containing over 8,800 manually delineated tree crowns across three Neotropical forest sites in Panama, Brazil, and Ecuador. SelvaMask features comprehensive annotations, including an inter-annotator agreement evaluation, capturing the dense structure of tropical forests and highlighting the difficulty of the task. Leveraging this benchmark, we propose a modular detection-segmentation pipeline that adapts vision foundation models (VFMs), using domain-specific detection-prompter. Our approach reaches state-of-the-art performance, outperforming both zero-shot generalist models and fully supervised end-to-end methods in dense tropical forests. We validate these gains on external tropical and temperate datasets, demonstrating that SelvaMask serves as both a challenging benchmark and a key enabler for generalized forest monitoring. Our code and dataset will be released publicly.
comment: 22 pages, 8 figures
☆ Catalyst: Out-of-Distribution Detection via Elastic Scaling
Out-of-distribution (OOD) detection is critical for the safe deployment of deep neural networks. State-of-the-art post-hoc methods typically derive OOD scores from the output logits or penultimate feature vector obtained via global average pooling (GAP). We contend that this exclusive reliance on the logit or feature vector discards a rich, complementary signal: the raw channel-wise statistics of the pre-pooling feature map lost in GAP. In this paper, we introduce Catalyst, a post-hoc framework that exploits these under-explored signals. Catalyst computes an input-dependent scaling factor ($γ$) on-the-fly from these raw statistics (e.g., mean, standard deviation, and maximum activation). This $γ$ is then fused with the existing baseline score, multiplicatively modulating it -- an ``elastic scaling'' -- to push the ID and OOD distributions further apart. We demonstrate Catalyst is a generalizable framework: it seamlessly integrates with logit-based methods (e.g., Energy, ReAct, SCALE) and also provides a significant boost to distance-based detectors like KNN. As a result, Catalyst achieves substantial and consistent performance gains, reducing the average False Positive Rate by 32.87 on CIFAR-10 (ResNet-18), 27.94% on CIFAR-100 (ResNet-18), and 22.25% on ImageNet (ResNet-50). Our results highlight the untapped potential of pre-pooling statistics and demonstrate that Catalyst is complementary to existing OOD detection approaches.
☆ ReasonEdit: Editing Vision-Language Models using Human Reasoning
Model editing aims to correct errors in large, pretrained models without altering unrelated behaviors. While some recent works have edited vision-language models (VLMs), no existing editors tackle reasoning-heavy tasks, which typically require humans and models to reason about images.We therefore propose ReasonEdit, the first VLM editor to let users explain their reasoning during editing, introducing a new, practical model editing setup. ReasonEdit continuously stores human reasoning in a codebook, and retrieves only relevant facts during inference using a novel topology-balanced multimodal embedding method inspired by network science. Across four VLMs on multiple rationale-based visual question answering datasets, ReasonEdit achieves state-of-the-art editing performance, ultimately showing that using human reasoning during editing greatly improves edit generalization.
☆ SoMA: A Real-to-Sim Neural Simulator for Robotic Soft-body Manipulation
Simulating deformable objects under rich interactions remains a fundamental challenge for real-to-sim robot manipulation, with dynamics jointly driven by environmental effects and robot actions. Existing simulators rely on predefined physics or data-driven dynamics without robot-conditioned control, limiting accuracy, stability, and generalization. This paper presents SoMA, a 3D Gaussian Splat simulator for soft-body manipulation. SoMA couples deformable dynamics, environmental forces, and robot joint actions in a unified latent neural space for end-to-end real-to-sim simulation. Modeling interactions over learned Gaussian splats enables controllable, stable long-horizon manipulation and generalization beyond observed trajectories without predefined physical models. SoMA improves resimulation accuracy and generalization on real-world robot manipulation by 20%, enabling stable simulation of complex tasks such as long-horizon cloth folding.
comment: Project page: https://city-super.github.io/SoMA/
☆ Superman: Unifying Skeleton and Vision for Human Motion Perception and Generation
Human motion analysis tasks, such as temporal 3D pose estimation, motion prediction, and motion in-betweening, play an essential role in computer vision. However, current paradigms suffer from severe fragmentation. First, the field is split between ``perception'' models that understand motion from video but only output text, and ``generation'' models that cannot perceive from raw visual input. Second, generative MLLMs are often limited to single-frame, static poses using dense, parametric SMPL models, failing to handle temporal motion. Third, existing motion vocabularies are built from skeleton data alone, severing the link to the visual domain. To address these challenges, we introduce Superman, a unified framework that bridges visual perception with temporal, skeleton-based motion generation. Our solution is twofold. First, to overcome the modality disconnect, we propose a Vision-Guided Motion Tokenizer. Leveraging the natural geometric alignment between 3D skeletons and visual data, this module pioneers robust joint learning from both modalities, creating a unified, cross-modal motion vocabulary. Second, grounded in this motion language, a single, unified MLLM architecture is trained to handle all tasks. This module flexibly processes diverse, temporal inputs, unifying 3D skeleton pose estimation from video (perception) with skeleton-based motion prediction and in-betweening (generation). Extensive experiments on standard benchmarks, including Human3.6M, demonstrate that our unified method achieves state-of-the-art or competitive performance across all motion tasks. This showcases a more efficient and scalable path for generative motion analysis using skeletons.
☆ Infinite-World: Scaling Interactive World Models to 1000-Frame Horizons via Pose-Free Hierarchical Memory
We propose Infinite-World, a robust interactive world model capable of maintaining coherent visual memory over 1000+ frames in complex real-world environments. While existing world models can be efficiently optimized on synthetic data with perfect ground-truth, they lack an effective training paradigm for real-world videos due to noisy pose estimations and the scarcity of viewpoint revisits. To bridge this gap, we first introduce a Hierarchical Pose-free Memory Compressor (HPMC) that recursively distills historical latents into a fixed-budget representation. By jointly optimizing the compressor with the generative backbone, HPMC enables the model to autonomously anchor generations in the distant past with bounded computational cost, eliminating the need for explicit geometric priors. Second, we propose an Uncertainty-aware Action Labeling module that discretizes continuous motion into a tri-state logic. This strategy maximizes the utilization of raw video data while shielding the deterministic action space from being corrupted by noisy trajectories, ensuring robust action-response learning. Furthermore, guided by insights from a pilot toy study, we employ a Revisit-Dense Finetuning Strategy using a compact, 30-minute dataset to efficiently activate the model's long-range loop-closure capabilities. Extensive experiments, including objective metrics and user studies, demonstrate that Infinite-World achieves superior performance in visual quality, action controllability, and spatial consistency.
comment: 14 pages, 8 figures
☆ Personalized Image Generation via Human-in-the-loop Bayesian Optimization
Imagine Alice has a specific image $x^\ast$ in her mind, say, the view of the street in which she grew up during her childhood. To generate that exact image, she guides a generative model with multiple rounds of prompting and arrives at an image $x^{p*}$. Although $x^{p*}$ is reasonably close to $x^\ast$, Alice finds it difficult to close that gap using language prompts. This paper aims to narrow this gap by observing that even after language has reached its limits, humans can still tell when a new image $x^+$ is closer to $x^\ast$ than $x^{p*}$. Leveraging this observation, we develop MultiBO (Multi-Choice Preferential Bayesian Optimization) that carefully generates $K$ new images as a function of $x^{p*}$, gets preferential feedback from the user, uses the feedback to guide the diffusion model, and ultimately generates a new set of $K$ images. We show that within $B$ rounds of user feedback, it is possible to arrive much closer to $x^\ast$, even though the generative model has no information about $x^\ast$. Qualitative scores from $30$ users, combined with quantitative metrics compared across $5$ baselines, show promising results, suggesting that multi-choice feedback from humans can be effectively harnessed for personalized image generation.
☆ Unified Personalized Reward Model for Vision Generation
Recent advancements in multimodal reward models (RMs) have significantly propelled the development of visual generation. Existing frameworks typically adopt Bradley-Terry-style preference modeling or leverage generative VLMs as judges, and subsequently optimize visual generation models via reinforcement learning. However, current RMs suffer from inherent limitations: they often follow a one-size-fits-all paradigm that assumes a monolithic preference distribution or relies on fixed evaluation rubrics. As a result, they are insensitive to content-specific visual cues, leading to systematic misalignment with subjective and context-dependent human preferences. To this end, inspired by human assessment, we propose UnifiedReward-Flex, a unified personalized reward model for vision generation that couples reward modeling with flexible and context-adaptive reasoning. Specifically, given a prompt and the generated visual content, it first interprets the semantic intent and grounds on visual evidence, then dynamically constructs a hierarchical assessment by instantiating fine-grained criteria under both predefined and self-generated high-level dimensions. Our training pipeline follows a two-stage process: (1) we first distill structured, high-quality reasoning traces from advanced closed-source VLMs to bootstrap SFT, equipping the model with flexible and context-adaptive reasoning behaviors; (2) we then perform direct preference optimization (DPO) on carefully curated preference pairs to further strengthen reasoning fidelity and discriminative alignment. To validate the effectiveness, we integrate UnifiedReward-Flex into the GRPO framework for image and video synthesis, and extensive results demonstrate its superiority.
comment: Website: https://codegoat24.github.io/UnifiedReward/flex
☆ Uncertainty-Aware Image Classification In Biomedical Imaging Using Spectral-normalized Neural Gaussian Processes IEEE
Accurate histopathologic interpretation is key for clinical decision-making; however, current deep learning models for digital pathology are often overconfident and poorly calibrated in out-of-distribution (OOD) settings, which limit trust and clinical adoption. Safety-critical medical imaging workflows benefit from intrinsic uncertainty-aware properties that can accurately reject OOD input. We implement the Spectral-normalized Neural Gaussian Process (SNGP), a set of lightweight modifications that apply spectral normalization and replace the final dense layer with a Gaussian process layer to improve single-model uncertainty estimation and OOD detection. We evaluate SNGP vs. deterministic and MonteCarlo dropout on six datasets across three biomedical classification tasks: white blood cells, amyloid plaques, and colorectal histopathology. SNGP has comparable in-distribution performance while significantly improving uncertainty estimation and OOD detection. Thus, SNGP or related models offer a useful framework for uncertainty-aware classification in digital pathology, supporting safe deployment and building trust with pathologists.
comment: Accepted for publication at the IEEE International Symposium on Biomedical Imaging (ISBI) 2026
☆ NAB: Neural Adaptive Binning for Sparse-View CT reconstruction
Computed Tomography (CT) plays a vital role in inspecting the internal structures of industrial objects. Furthermore, achieving high-quality CT reconstruction from sparse views is essential for reducing production costs. While classic implicit neural networks have shown promising results for sparse reconstruction, they are unable to leverage shape priors of objects. Motivated by the observation that numerous industrial objects exhibit rectangular structures, we propose a novel \textbf{N}eural \textbf{A}daptive \textbf{B}inning (\textbf{NAB}) method that effectively integrates rectangular priors into the reconstruction process. Specifically, our approach first maps coordinate space into a binned vector space. This mapping relies on an innovative binning mechanism based on differences between shifted hyperbolic tangent functions, with our extension enabling rotations around the input-plane normal vector. The resulting representations are then processed by a neural network to predict CT attenuation coefficients. This design enables end-to-end optimization of the encoding parameters -- including position, size, steepness, and rotation -- via gradient flow from the projection data, thus enhancing reconstruction accuracy. By adjusting the smoothness of the binning function, NAB can generalize to objects with more complex geometries. This research provides a new perspective on integrating shape priors into neural network-based reconstruction. Extensive experiments demonstrate that NAB achieves superior performance on two industrial datasets. It also maintains robust on medical datasets when the binning function is extended to more general expression. The code will be made available.
☆ Implicit neural representation of textures
Implicit neural representation (INR) has proven to be accurate and efficient in various domains. In this work, we explore how different neural networks can be designed as a new texture INR, which operates in a continuous manner rather than a discrete one over the input UV coordinate space. Through thorough experiments, we demonstrate that these INRs perform well in terms of image quality, with considerable memory usage and rendering inference time. We analyze the balance between these objectives. In addition, we investigate various related applications in real-time rendering and down-stream tasks, e.g. mipmap fitting and INR-space generation.
comment: Albert Kwok and Zheyuan Hu contributed equally to this work
☆ Why Steering Works: Toward a Unified View of Language Model Parameter Dynamics
Methods for controlling large language models (LLMs), including local weight fine-tuning, LoRA-based adaptation, and activation-based interventions, are often studied in isolation, obscuring their connections and making comparison difficult. In this work, we present a unified view that frames these interventions as dynamic weight updates induced by a control signal, placing them within a single conceptual framework. Building on this view, we propose a unified preference-utility analysis that separates control effects into preference, defined as the tendency toward a target concept, and utility, defined as coherent and task-valid generation, and measures both on a shared log-odds scale using polarity-paired contrastive examples. Across methods, we observe a consistent trade-off between preference and utility: stronger control increases preference while predictably reducing utility. We further explain this behavior through an activation manifold perspective, in which control shifts representations along target-concept directions to enhance preference, while utility declines primarily when interventions push representations off the model's valid-generation manifold. Finally, we introduce a new steering approach SPLIT guided by this analysis that improves preference while better preserving utility. Code is available at https://github.com/zjunlp/EasyEdit/blob/main/examples/SPLIT.md.
comment: Work in progress
☆ LongVPO: From Anchored Cues to Self-Reasoning for Long-Form Video Preference Optimization NeurIPS 2025
We present LongVPO, a novel two-stage Direct Preference Optimization framework that enables short-context vision-language models to robustly understand ultra-long videos without any long-video annotations. In Stage 1, we synthesize preference triples by anchoring questions to individual short clips, interleaving them with distractors, and applying visual-similarity and question-specificity filtering to mitigate positional bias and ensure unambiguous supervision. We also approximate the reference model's scoring over long contexts by evaluating only the anchor clip, reducing computational overhead. In Stage 2, we employ a recursive captioning pipeline on long videos to generate scene-level metadata, then use a large language model to craft multi-segment reasoning queries and dispreferred responses, aligning the model's preferences through multi-segment reasoning tasks. With only 16K synthetic examples and no costly human labels, LongVPO outperforms the state-of-the-art open-source models on multiple long-video benchmarks, while maintaining strong short-video performance (e.g., on MVBench), offering a scalable paradigm for efficient long-form video understanding.
comment: NeurIPS 2025
☆ VQ-Style: Disentangling Style and Content in Motion with Residual Quantized Representations
Human motion data is inherently rich and complex, containing both semantic content and subtle stylistic features that are challenging to model. We propose a novel method for effective disentanglement of the style and content in human motion data to facilitate style transfer. Our approach is guided by the insight that content corresponds to coarse motion attributes while style captures the finer, expressive details. To model this hierarchy, we employ Residual Vector Quantized Variational Autoencoders (RVQ-VAEs) to learn a coarse-to-fine representation of motion. We further enhance the disentanglement by integrating contrastive learning and a novel information leakage loss with codebook learning to organize the content and the style across different codebooks. We harness this disentangled representation using our simple and effective inference-time technique Quantized Code Swapping, which enables motion style transfer without requiring any fine-tuning for unseen styles. Our framework demonstrates strong versatility across multiple inference applications, including style transfer, style removal, and motion blending.
☆ Enhancing Indoor Occupancy Prediction via Sparse Query-Based Multi-Level Consistent Knowledge Distillation
Occupancy prediction provides critical geometric and semantic understanding for robotics but faces efficiency-accuracy trade-offs. Current dense methods suffer computational waste on empty voxels, while sparse query-based approaches lack robustness in diverse and complex indoor scenes. In this paper, we propose DiScene, a novel sparse query-based framework that leverages multi-level distillation to achieve efficient and robust occupancy prediction. In particular, our method incorporates two key innovations: (1) a Multi-level Consistent Knowledge Distillation strategy, which transfers hierarchical representations from large teacher models to lightweight students through coordinated alignment across four levels, including encoder-level feature alignment, query-level feature matching, prior-level spatial guidance, and anchor-level high-confidence knowledge transfer and (2) a Teacher-Guided Initialization policy, employing optimized parameter warm-up to accelerate model convergence. Validated on the Occ-Scannet benchmark, DiScene achieves 23.2 FPS without depth priors while outperforming our baseline method, OPUS, by 36.1% and even better than the depth-enhanced version, OPUS†. With depth integration, DiScene† attains new SOTA performance, surpassing EmbodiedOcc by 3.7% with 1.62$\times$ faster inference speed. Furthermore, experiments on the Occ3D-nuScenes benchmark and in-the-wild scenarios demonstrate the versatility of our approach in various environments. Code and models can be accessed at https://github.com/getterupper/DiScene.
comment: Accepted by RA-L
☆ Segment to Focus: Guiding Latent Action Models in the Presence of Distractors
Latent Action Models (LAMs) learn to extract action-relevant representations solely from raw observations, enabling reinforcement learning from unlabelled videos and significantly scaling available training data. However, LAMs face a critical challenge in disentangling action-relevant features from action-correlated noise (e.g., background motion). Failing to filter these distractors causes LAMs to capture spurious correlations and build sub-optimal latent action spaces. In this paper, we introduce MaskLAM -- a lightweight modification to LAM training to mitigate this issue by incorporating visual agent segmentation. MaskLAM utilises segmentation masks from pretrained foundation models to weight the LAM reconstruction loss, thereby prioritising salient information over background elements while requiring no architectural modifications. We demonstrate the effectiveness of our method on continuous-control MuJoCo tasks, modified with action-correlated background noise. Our approach yields up to a 4x increase in accrued rewards compared to standard baselines and a 3x improvement in the latent action quality, as evidenced by linear probe evaluation.
☆ LiFlow: Flow Matching for 3D LiDAR Scene Completion
In autonomous driving scenarios, the collected LiDAR point clouds can be challenged by occlusion and long-range sparsity, limiting the perception of autonomous driving systems. Scene completion methods can infer the missing parts of incomplete 3D LiDAR scenes. Recent methods adopt local point-level denoising diffusion probabilistic models, which require predicting Gaussian noise, leading to a mismatch between training and inference initial distributions. This paper introduces the first flow matching framework for 3D LiDAR scene completion, improving upon diffusion-based methods by ensuring consistent initial distributions between training and inference. The model employs a nearest neighbor flow matching loss and a Chamfer distance loss to enhance both local structure and global coverage in the alignment of point clouds. LiFlow achieves state-of-the-art performance across multiple metrics. Code: https://github.com/matteandre/LiFlow.
☆ Show, Don't Tell: Morphing Latent Reasoning into Image Generation
Text-to-image (T2I) generation has achieved remarkable progress, yet existing methods often lack the ability to dynamically reason and refine during generation--a hallmark of human creativity. Current reasoning-augmented paradigms most rely on explicit thought processes, where intermediate reasoning is decoded into discrete text at fixed steps with frequent image decoding and re-encoding, leading to inefficiencies, information loss, and cognitive mismatches. To bridge this gap, we introduce LatentMorph, a novel framework that seamlessly integrates implicit latent reasoning into the T2I generation process. At its core, LatentMorph introduces four lightweight components: (i) a condenser for summarizing intermediate generation states into compact visual memory, (ii) a translator for converting latent thoughts into actionable guidance, (iii) a shaper for dynamically steering next image token predictions, and (iv) an RL-trained invoker for adaptively determining when to invoke reasoning. By performing reasoning entirely in continuous latent spaces, LatentMorph avoids the bottlenecks of explicit reasoning and enables more adaptive self-refinement. Extensive experiments demonstrate that LatentMorph (I) enhances the base model Janus-Pro by $16\%$ on GenEval and $25\%$ on T2I-CompBench; (II) outperforms explicit paradigms (e.g., TwiG) by $15\%$ and $11\%$ on abstract reasoning tasks like WISE and IPV-Txt, (III) while reducing inference time by $44\%$ and token consumption by $51\%$; and (IV) exhibits $71\%$ cognitive alignment with human intuition on reasoning invocation.
comment: Code: https://github.com/EnVision-Research/LatentMorph
☆ Evaluating OCR Performance for Assistive Technology: Effects of Walking Speed, Camera Placement, and Camera Type
Optical character recognition (OCR), which converts printed or handwritten text into machine-readable form, is widely used in assistive technology for people with blindness and low vision. Yet, most evaluations rely on static datasets that do not reflect the challenges of mobile use. In this study, we systematically evaluated OCR performance under both static and dynamic conditions. Static tests measured detection range across distances of 1-7 meters and viewing angles of 0-75 degrees horizontally. Dynamic tests examined the impact of motion by varying walking speed from slow (0.8 m/s) to very fast (1.8 m/s) and comparing three camera mounting positions: head-mounted, shoulder-mounted, and hand-held. We evaluated both a smartphone and smart glasses, using the phone's main and ultra-wide cameras. Four OCR engines were benchmarked to assess accuracy at different distances and viewing angles: Google Vision, PaddleOCR 3.0, EasyOCR, and Tesseract. PaddleOCR 3.0 was then used to evaluate accuracy at different walking speeds. Accuracy was computed at the character level using the Levenshtein ratio against manually defined ground truth. Results showed that recognition accuracy declined with increased walking speed and wider viewing angles. Google Vision achieved the highest overall accuracy, with PaddleOCR close behind as the strongest open-source alternative. Across devices, the phone's main camera achieved the highest accuracy, and a shoulder-mounted placement yielded the highest average among body positions; however, differences among shoulder, head, and hand were not statistically significant.
☆ MIRROR: Manifold Ideal Reference ReconstructOR for Generalizable AI-Generated Image Detection
High-fidelity generative models have narrowed the perceptual gap between synthetic and real images, posing serious threats to media security. Most existing AI-generated image (AIGI) detectors rely on artifact-based classification and struggle to generalize to evolving generative traces. In contrast, human judgment relies on stable real-world regularities, with deviations from the human cognitive manifold serving as a more generalizable signal of forgery. Motivated by this insight, we reformulate AIGI detection as a Reference-Comparison problem that verifies consistency with the real-image manifold rather than fitting specific forgery cues. We propose MIRROR (Manifold Ideal Reference ReconstructOR), a framework that explicitly encodes reality priors using a learnable discrete memory bank. MIRROR projects an input into a manifold-consistent ideal reference via sparse linear combination, and uses the resulting residuals as robust detection signals. To evaluate whether detectors reach the "superhuman crossover" required to replace human experts, we introduce the Human-AIGI benchmark, featuring a psychophysically curated human-imperceptible subset. Across 14 benchmarks, MIRROR consistently outperforms prior methods, achieving gains of 2.1% on six standard benchmarks and 8.1% on seven in-the-wild benchmarks. On Human-AIGI, MIRROR reaches 89.6% accuracy across 27 generators, surpassing both lay users and visual experts, and further approaching the human perceptual limit as pretrained backbones scale. The code is publicly available at: https://github.com/349793927/MIRROR
☆ LangMap: A Hierarchical Benchmark for Open-Vocabulary Goal Navigation
The relationships between objects and language are fundamental to meaningful communication between humans and AI, and to practically useful embodied intelligence. We introduce HieraNav, a multi-granularity, open-vocabulary goal navigation task where agents interpret natural language instructions to reach targets at four semantic levels: scene, room, region, and instance. To this end, we present Language as a Map (LangMap), a large-scale benchmark built on real-world 3D indoor scans with comprehensive human-verified annotations and tasks spanning these levels. LangMap provides region labels, discriminative region descriptions, discriminative instance descriptions covering 414 object categories, and over 18K navigation tasks. Each target features both concise and detailed descriptions, enabling evaluation across different instruction styles. LangMap achieves superior annotation quality, outperforming GOAT-Bench by 23.8% in discriminative accuracy using four times fewer words. Comprehensive evaluations of zero-shot and supervised models on LangMap reveal that richer context and memory improve success, while long-tailed, small, context-dependent, and distant goals, as well as multi-goal completion, remain challenging. HieraNav and LangMap establish a rigorous testbed for advancing language-driven embodied navigation. Project: https://bo-miao.github.io/LangMap
☆ Causal Forcing: Autoregressive Diffusion Distillation Done Right for High-Quality Real-Time Interactive Video Generation
To achieve real-time interactive video generation, current methods distill pretrained bidirectional video diffusion models into few-step autoregressive (AR) models, facing an architectural gap when full attention is replaced by causal attention. However, existing approaches do not bridge this gap theoretically. They initialize the AR student via ODE distillation, which requires frame-level injectivity, where each noisy frame must map to a unique clean frame under the PF-ODE of an AR teacher. Distilling an AR student from a bidirectional teacher violates this condition, preventing recovery of the teacher's flow map and instead inducing a conditional-expectation solution, which degrades performance. To address this issue, we propose Causal Forcing that uses an AR teacher for ODE initialization, thereby bridging the architectural gap. Empirical results show that our method outperforms all baselines across all metrics, surpassing the SOTA Self Forcing by 19.3\% in Dynamic Degree, 8.7\% in VisionReward, and 16.7\% in Instruction Following. Project page and the code: \href{https://thu-ml.github.io/CausalForcing.github.io/}{https://thu-ml.github.io/CausalForcing.github.io/}
comment: Project page and the code: \href{https://thu-ml.github.io/CausalForcing.github.io/}{https://thu-ml.github.io/CausalForcing.github.io/}
☆ MAIN-VLA: Modeling Abstraction of Intention and eNvironment for Vision-Language-Action Models
Despite significant progress in Visual-Language-Action (VLA), in highly complex and dynamic environments that involve real-time unpredictable interactions (such as 3D open worlds and large-scale PvP games), existing approaches remain inefficient at extracting action-critical signals from redundant sensor streams. To tackle this, we introduce MAIN-VLA, a framework that explicitly Models the Abstraction of Intention and eNvironment to ground decision-making in deep semantic alignment rather than superficial pattern matching. Specifically, our Intention Abstraction (IA) extracts verbose linguistic instructions and their associated reasoning into compact, explicit semantic primitives, while the Environment Semantics Abstraction (ESA) projects overwhelming visual streams into a structured, topological affordance representation. Furthermore, aligning these two abstract modalities induces an emergent attention-concentration effect, enabling a parameter-free token-pruning strategy that filters out perceptual redundancy without degrading performance. Extensive experiments in open-world Minecraft and large-scale PvP environments (Game for Peace and Valorant) demonstrate that MAIN-VLA sets a new state-of-the-art, which achieves superior decision quality, stronger generalization, and cutting-edge inference efficiency.
☆ SSI-DM: Singularity Skipping Inversion of Diffusion Models
Inverting real images into the noise space is essential for editing tasks using diffusion models, yet existing methods produce non-Gaussian noise with poor editability due to the inaccuracy in early noising steps. We identify the root cause: a mathematical singularity that renders inversion fundamentally ill-posed. We propose Singularity Skipping Inversion of Diffusion Models (SSI-DM), which bypasses this singular region by adding small noise before standard inversion. This simple approach produces inverted noise with natural Gaussian properties while maintaining reconstruction fidelity. As a plug-and-play technique compatible with general diffusion models, our method achieves superior performance on public image datasets for reconstruction and interpolation tasks, providing a principled and efficient solution to diffusion model inversion.
☆ Learning Topology-Aware Implicit Field for Unified Pulmonary Tree Modeling with Incomplete Topological Supervision
Pulmonary trees extracted from CT images frequently exhibit topological incompleteness, such as missing or disconnected branches, which substantially degrades downstream anatomical analysis and limits the applicability of existing pulmonary tree modeling pipelines. Current approaches typically rely on dense volumetric processing or explicit graph reasoning, leading to limited efficiency and reduced robustness under realistic structural corruption. We propose TopoField, a topology-aware implicit modeling framework that treats topology repair as a first-class modeling problem and enables unified multi-task inference for pulmonary tree analysis. TopoField represents pulmonary anatomy using sparse surface and skeleton point clouds and learns a continuous implicit field that supports topology repair without relying on complete or explicit disconnection annotations, by training on synthetically introduced structural disruptions over \textit{already} incomplete trees. Building upon the repaired implicit representation, anatomical labeling and lung segment reconstruction are jointly inferred through task-specific implicit functions within a single forward pass.Extensive experiments on the Lung3D+ dataset demonstrate that TopoField consistently improves topological completeness and achieves accurate anatomical labeling and lung segment reconstruction under challenging incomplete scenarios. Owing to its implicit formulation, TopoField attains high computational efficiency, completing all tasks in just over one second per case, highlighting its practicality for large-scale and time-sensitive clinical applications. Code and data will be available at https://github.com/HINTLab/TopoField.
comment: 18 pages, 7 figures
☆ Vision-DeepResearch Benchmark: Rethinking Visual and Textual Search for Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) have advanced VQA and now support Vision-DeepResearch systems that use search engines for complex visual-textual fact-finding. However, evaluating these visual and textual search abilities is still difficult, and existing benchmarks have two major limitations. First, existing benchmarks are not visual search-centric: answers that should require visual search are often leaked through cross-textual cues in the text questions or can be inferred from the prior world knowledge in current MLLMs. Second, overly idealized evaluation scenario: On the image-search side, the required information can often be obtained via near-exact matching against the full image, while the text-search side is overly direct and insufficiently challenging. To address these issues, we construct the Vision-DeepResearch benchmark (VDR-Bench) comprising 2,000 VQA instances. All questions are created via a careful, multi-stage curation pipeline and rigorous expert review, designed to assess the behavior of Vision-DeepResearch systems under realistic real-world conditions. Moreover, to address the insufficient visual retrieval capabilities of current MLLMs, we propose a simple multi-round cropped-search workflow. This strategy is shown to effectively improve model performance in realistic visual retrieval scenarios. Overall, our results provide practical guidance for the design of future multimodal deep-research systems. The code will be released in https://github.com/Osilly/Vision-DeepResearch.
☆ CIEC: Coupling Implicit and Explicit Cues for Multimodal Weakly Supervised Manipulation Localization
To mitigate the threat of misinformation, multimodal manipulation localization has garnered growing attention. Consider that current methods rely on costly and time-consuming fine-grained annotations, such as patch/token-level annotations. This paper proposes a novel framework named Coupling Implicit and Explicit Cues (CIEC), which aims to achieve multimodal weakly-supervised manipulation localization for image-text pairs utilizing only coarse-grained image/sentence-level annotations. It comprises two branches, image-based and text-based weakly-supervised localization. For the former, we devise the Textual-guidance Refine Patch Selection (TRPS) module. It integrates forgery cues from both visual and textual perspectives to lock onto suspicious regions aided by spatial priors. Followed by the background silencing and spatial contrast constraints to suppress interference from irrelevant areas. For the latter, we devise the Visual-deviation Calibrated Token Grounding (VCTG) module. It focuses on meaningful content words and leverages relative visual bias to assist token localization. Followed by the asymmetric sparse and semantic consistency constraints to mitigate label noise and ensure reliability. Extensive experiments demonstrate the effectiveness of our CIEC, yielding results comparable to fully supervised methods on several evaluation metrics.
☆ Lung Nodule Image Synthesis Driven by Two-Stage Generative Adversarial Networks
The limited sample size and insufficient diversity of lung nodule CT datasets severely restrict the performance and generalization ability of detection models. Existing methods generate images with insufficient diversity and controllability, suffering from issues such as monotonous texture features and distorted anatomical structures. Therefore, we propose a two-stage generative adversarial network (TSGAN) to enhance the diversity and spatial controllability of synthetic data by decoupling the morphological structure and texture features of lung nodules. In the first stage, StyleGAN is used to generate semantic segmentation mask images, encoding lung nodules and tissue backgrounds to control the anatomical structure of lung nodule images; The second stage uses the DL-Pix2Pix model to translate the mask map into CT images, employing local importance attention to capture local features, while utilizing dynamic weight multi-head window attention to enhance the modeling capability of lung nodule texture and background. Compared to the original dataset, the accuracy improved by 4.6% and mAP by 4% on the LUNA16 dataset. Experimental results demonstrate that TSGAN can enhance the quality of synthetic images and the performance of detection models.
☆ Real-Time 2D LiDAR Object Detection Using Three-Frame RGB Scan Encoding IEEE
Indoor service robots need perception that is robust, more privacy-friendly than RGB video, and feasible on embedded hardware. We present a camera-free 2D LiDAR object detection pipeline that encodes short-term temporal context by stacking three consecutive scans as RGB channels, yielding a compact YOLOv8n input without occupancy-grid construction while preserving angular structure and motion cues. Evaluated in Webots across 160 randomized indoor scenarios with strict scenario-level holdout, the method achieves 98.4% mAP@0.5 (0.778 mAP@0.5:0.95) with 94.9% precision and 94.7% recall on four object classes. On a Raspberry Pi 5, it runs in real time with a mean post-warm-up end-to-end latency of 47.8ms per frame, including scan encoding and postprocessing. Relative to a closely related occupancy-grid LiDAR-YOLO pipeline reported on the same platform, the proposed representation is associated with substantially lower reported end-to-end latency. Although results are simulation-based, they suggest that lightweight temporal encoding can enable accurate and real-time LiDAR-only detection for embedded indoor robotics without capturing RGB appearance.
comment: 6 pages, 6 figures, submitted to IEEE SAS 2026
☆ Reg4Pru: Regularisation Through Random Token Routing for Token Pruning
Transformers are widely adopted in modern vision models due to their strong ability to scale with dataset size and generalisability. However, this comes with a major drawback: computation scales quadratically to the total number of tokens. Numerous methods have been proposed to mitigate this. For example, we consider token pruning with reactivating tokens from preserved representations, but the increased computational efficiency of this method results in decreased stability from the preserved representations, leading to poorer dense prediction performance at deeper layers. In this work, we introduce Reg4Pru, a training regularisation technique that mitigates token-pruning performance loss for segmentation. We compare our models on the FIVES blood vessel segmentation dataset and find that Reg4Pru improves average precision by an absolute 46% compared to the same model trained without routing. This increase is observed using a configuration that achieves a 29% relative speedup in wall-clock time compared to the non-pruned baseline. These findings indicate that Reg4Pru is a valuable regulariser for token reduction strategies.
comment: 11 pages, 7 figures
☆ LoopViT: Scaling Visual ARC with Looped Transformers
Recent advances in visual reasoning have leveraged vision transformers to tackle the ARC-AGI benchmark. However, we argue that the feed-forward architecture, where computational depth is strictly bound to parameter size, falls short of capturing the iterative, algorithmic nature of human induction. In this work, we propose a recursive architecture called Loop-ViT, which decouples reasoning depth from model capacity through weight-tied recurrence. Loop-ViT iterates a weight-tied Hybrid Block, combining local convolutions and global attention, to form a latent chain of thought. Crucially, we introduce a parameter-free Dynamic Exit mechanism based on predictive entropy: the model halts inference when its internal state ``crystallizes" into a low-uncertainty attractor. Empirical results on the ARC-AGI-1 benchmark validate this perspective: our 18M model achieves 65.8% accuracy, outperforming massive 73M-parameter ensembles. These findings demonstrate that adaptive iterative computation offers a far more efficient scaling axis for visual reasoning than simply increasing network width. The code is available at https://github.com/WenjieShu/LoopViT.
comment: 8 pages, 11 figures
☆ Deep learning enables urban change profiling through alignment of historical maps
Prior to modern Earth observation technologies, historical maps provide a unique record of long-term urban transformation and offer a lens on the evolving identity of cities. However, extracting consistent and fine-grained change information from historical map series remains challenging due to spatial misalignment, cartographic variation, and degrading document quality, limiting most analyses to small-scale or qualitative approaches. We propose a fully automated, deep learning-based framework for fine-grained urban change analysis from large collections of historical maps, built on a modular design that integrates dense map alignment, multi-temporal object detection, and change profiling. This framework shifts the analysis of historical maps from ad hoc visual comparison toward systematic, quantitative characterization of urban change. Experiments demonstrate the robust performance of the proposed alignment and object detection methods. Applied to Paris between 1868 and 1937, the framework reveals the spatial and temporal heterogeneity in urban transformation, highlighting its relevance for research in the social sciences and humanities. The modular design of our framework further supports adaptation to diverse cartographic contexts and downstream applications.
comment: 40 pages
☆ FD-VLA: Force-Distilled Vision-Language-Action Model for Contact-Rich Manipulation
Force sensing is a crucial modality for Vision-Language-Action (VLA) frameworks, as it enables fine-grained perception and dexterous manipulation in contact-rich tasks. We present Force-Distilled VLA (FD-VLA), a novel framework that integrates force awareness into contact-rich manipulation without relying on physical force sensors. The core of our approach is a Force Distillation Module (FDM), which distills force by mapping a learnable query token, conditioned on visual observations and robot states, into a predicted force token aligned with the latent representation of actual force signals. During inference, this distilled force token is injected into the pretrained VLM, enabling force-aware reasoning while preserving the integrity of its vision-language semantics. This design provides two key benefits: first, it allows practical deployment across a wide range of robots that lack expensive or fragile force-torque sensors, thereby reducing hardware cost and complexity; second, the FDM introduces an additional force-vision-state fusion prior to the VLM, which improves cross-modal alignment and enhances perception-action robustness in contact-rich scenarios. Surprisingly, our physical experiments show that the distilled force token outperforms direct sensor force measurements as well as other baselines, which highlights the effectiveness of this force-distilled VLA approach.
☆ Eliminating Registration Bias in Synthetic CT Generation: A Physics-Based Simulation Framework
Supervised synthetic CT generation from CBCT requires registered training pairs, yet perfect registration between separately acquired scans remains unattainable. This registration bias propagates into trained models and corrupts standard evaluation metrics. This may suggest that superior benchmark performance indicates better reproduction of registration artifacts rather than anatomical fidelity. We propose physics-based CBCT simulation to provide geometrically aligned training pairs by construction, combined with evaluation using geometric alignment metrics against input CBCT rather than biased ground truth. On two independent pelvic datasets, models trained on synthetic data achieved superior geometric alignment (Normalized Mutual Information: 0.31 vs 0.22) despite lower conventional intensity scores. Intensity metrics showed inverted correlations with clinical assessment for deformably registered data, while Normalized Mutual Information consistently predicted observer preference across registration methodologies (rho = 0.31, p < 0.001). Clinical observers preferred synthetic-trained outputs in 87% of cases, demonstrating that geometric fidelity, not intensity agreement with biased ground truth, aligns with clinical requirements.
☆ Toxicity Assessment in Preclinical Histopathology via Class-Aware Mahalanobis Distance for Known and Novel Anomalies
Drug-induced toxicity remains a leading cause of failure in preclinical development and early clinical trials. Detecting adverse effects at an early stage is critical to reduce attrition and accelerate the development of safe medicines. Histopathological evaluation remains the gold standard for toxicity assessment, but it relies heavily on expert pathologists, creating a bottleneck for large-scale screening. To address this challenge, we introduce an AI-based anomaly detection framework for histopathological whole-slide images (WSIs) in rodent livers from toxicology studies. The system identifies healthy tissue and known pathologies (anomalies) for which training data is available. In addition, it can detect rare pathologies without training data as out-of-distribution (OOD) findings. We generate a novel dataset of pixelwise annotations of healthy tissue and known pathologies and use this data to fine-tune a pre-trained Vision Transformer (DINOv2) via Low-Rank Adaptation (LoRA) in order to do tissue segmentation. Finally, we extract features for OOD detection using the Mahalanobis distance. To better account for class-dependent variability in histological data, we propose the use of class-specific thresholds. We optimize the thresholds using the mean of the false negative and false positive rates, resulting in only 0.16\% of pathological tissue classified as healthy and 0.35\% of healthy tissue classified as pathological. Applied to mouse liver WSIs with known toxicological findings, the framework accurately detects anomalies, including rare OOD morphologies. This work demonstrates the potential of AI-driven histopathology to support preclinical workflows, reduce late-stage failures, and improve efficiency in drug development.
☆ MLV-Edit: Towards Consistent and Highly Efficient Editing for Minute-Level Videos
We propose MLV-Edit, a training-free, flow-based framework that address the unique challenges of minute-level video editing. While existing techniques excel in short-form video manipulation, scaling them to long-duration videos remains challenging due to prohibitive computational overhead and the difficulty of maintaining global temporal consistency across thousands of frames. To address this, MLV-Edit employs a divide-and-conquer strategy for segment-wise editing, facilitated by two core modules: Velocity Blend rectifies motion inconsistencies at segment boundaries by aligning the flow fields of adjacent chunks, eliminating flickering and boundary artifacts commonly observed in fragmented video processing; and Attention Sink anchors local segment features to global reference frames, effectively suppressing cumulative structural drift. Extensive quantitative and qualitative experiments demonstrate that MLV-Edit consistently outperforms state-of-the-art methods in terms of temporal stability and semantic fidelity.
☆ Enhancing Diffusion-Based Quantitatively Controllable Image Generation via Matrix-Form EDM and Adaptive Vicinal Training
Continuous Conditional Diffusion Model (CCDM) is a diffusion-based framework designed to generate high-quality images conditioned on continuous regression labels. Although CCDM has demonstrated clear advantages over prior approaches across a range of datasets, it still exhibits notable limitations and has recently been surpassed by a GAN-based method, namely CcGAN-AVAR. These limitations mainly arise from its reliance on an outdated diffusion framework and its low sampling efficiency due to long sampling trajectories. To address these issues, we propose an improved CCDM framework, termed iCCDM, which incorporates the more advanced \textit{Elucidated Diffusion Model} (EDM) framework with substantial modifications to improve both generation quality and sampling efficiency. Specifically, iCCDM introduces a novel matrix-form EDM formulation together with an adaptive vicinal training strategy. Extensive experiments on four benchmark datasets, spanning image resolutions from $64\times64$ to $256\times256$, demonstrate that iCCDM consistently outperforms existing methods, including state-of-the-art large-scale text-to-image diffusion models (e.g., Stable Diffusion 3, FLUX.1, and Qwen-Image), achieving higher generation quality while significantly reducing sampling cost.
☆ An Empirical Study of World Model Quantization
World models learn an internal representation of environment dynamics, enabling agents to simulate and reason about future states within a compact latent space for tasks such as planning, prediction, and inference. However, running world models rely on hevay computational cost and memory footprint, making model quantization essential for efficient deployment. To date, the effects of post-training quantization (PTQ) on world models remain largely unexamined. In this work, we present a systematic empirical study of world model quantization using DINO-WM as a representative case, evaluating diverse PTQ methods under both weight-only and joint weight-activation settings. We conduct extensive experiments on different visual planning tasks across a wide range of bit-widths, quantization granularities, and planning horizons up to 50 iterations. Our results show that quantization effects in world models extend beyond standard accuracy and bit-width trade-offs: group-wise weight quantization can stabilize low-bit rollouts, activation quantization granularity yields inconsistent benefits, and quantization sensitivity is highly asymmetric between encoder and predictor modules. Moreover, aggressive low-bit quantization significantly degrades the alignment between the planning objective and task success, leading to failures that cannot be remedied by additional optimization. These findings reveal distinct quantization-induced failure modes in world model-based planning and provide practical guidance for deploying quantized world models under strict computational constraints. The code will be available at https://github.com/huawei-noah/noah-research/tree/master/QuantWM.
☆ Teacher-Guided Student Self-Knowledge Distillation Using Diffusion Model
Existing Knowledge Distillation (KD) methods often align feature information between teacher and student by exploring meaningful feature processing and loss functions. However, due to the difference in feature distributions between the teacher and student, the student model may learn incompatible information from the teacher. To address this problem, we propose teacher-guided student Diffusion Self-KD, dubbed as DSKD. Instead of the direct teacher-student alignment, we leverage the teacher classifier to guide the sampling process of denoising student features through a light-weight diffusion model. We then propose a novel locality-sensitive hashing (LSH)-guided feature distillation method between the original and denoised student features. The denoised student features encapsulate teacher knowledge and could be regarded as a teacher role. In this way, our DSKD method could eliminate discrepancies in mapping manners and feature distributions between the teacher and student, while learning meaningful knowledge from the teacher. Experiments on visual recognition tasks demonstrate that DSKD significantly outperforms existing KD methods across various models and datasets. Our code is attached in supplementary material.
☆ FSVideo: Fast Speed Video Diffusion Model in a Highly-Compressed Latent Space
We introduce FSVideo, a fast speed transformer-based image-to-video (I2V) diffusion framework. We build our framework on the following key components: 1.) a new video autoencoder with highly-compressed latent space ($64\times64\times4$ spatial-temporal downsampling ratio), achieving competitive reconstruction quality; 2.) a diffusion transformer (DIT) architecture with a new layer memory design to enhance inter-layer information flow and context reuse within DIT, and 3.) a multi-resolution generation strategy via a few-step DIT upsampler to increase video fidelity. Our final model, which contains a 14B DIT base model and a 14B DIT upsampler, achieves competitive performance against other popular open-source models, while being an order of magnitude faster. We discuss our model design as well as training strategies in this report.
comment: Project Page: https://kingofprank.github.io/fsvideo/
☆ UrbanGS: A Scalable and Efficient Architecture for Geometrically Accurate Large-Scene Reconstruction ICLR 2026
While 3D Gaussian Splatting (3DGS) enables high-quality, real-time rendering for bounded scenes, its extension to large-scale urban environments gives rise to critical challenges in terms of geometric consistency, memory efficiency, and computational scalability. To address these issues, we present UrbanGS, a scalable reconstruction framework that effectively tackles these challenges for city-scale applications. First, we propose a Depth-Consistent D-Normal Regularization module. Unlike existing approaches that rely solely on monocular normal estimators, which can effectively update rotation parameters yet struggle to update position parameters, our method integrates D-Normal constraints with external depth supervision. This allows for comprehensive updates of all geometric parameters. By further incorporating an adaptive confidence weighting mechanism based on gradient consistency and inverse depth deviation, our approach significantly enhances multi-view depth alignment and geometric coherence, which effectively resolves the issue of geometric accuracy in complex large-scale scenes. To improve scalability, we introduce a Spatially Adaptive Gaussian Pruning (SAGP) strategy, which dynamically adjusts Gaussian density based on local geometric complexity and visibility to reduce redundancy. Additionally, a unified partitioning and view assignment scheme is designed to eliminate boundary artifacts and optimize computational load. Extensive experiments on multiple urban datasets demonstrate that UrbanGS achieves superior performance in rendering quality, geometric accuracy, and memory efficiency, providing a systematic solution for high-fidelity large-scale scene reconstruction.
comment: ICLR 2026
☆ Multi-View Stenosis Classification Leveraging Transformer-Based Multiple-Instance Learning Using Real-World Clinical Data
Coronary artery stenosis is a leading cause of cardiovascular disease, diagnosed by analyzing the coronary arteries from multiple angiography views. Although numerous deep-learning models have been proposed for stenosis detection from a single angiography view, their performance heavily relies on expensive view-level annotations, which are often not readily available in hospital systems. Moreover, these models fail to capture the temporal dynamics and dependencies among multiple views, which are crucial for clinical diagnosis. To address this, we propose SegmentMIL, a transformer-based multi-view multiple-instance learning framework for patient-level stenosis classification. Trained on a real-world clinical dataset, using patient-level supervision and without any view-level annotations, SegmentMIL jointly predicts the presence of stenosis and localizes the affected anatomical region, distinguishing between the right and left coronary arteries and their respective segments. SegmentMIL obtains high performance on internal and external evaluations and outperforms both view-level models and classical MIL baselines, underscoring its potential as a clinically viable and scalable solution for coronary stenosis diagnosis. Our code is available at https://github.com/NikolaCenic/mil-stenosis.
☆ Auto-Comp: An Automated Pipeline for Scalable Compositional Probing of Contrastive Vision-Language Models
Modern Vision-Language Models (VLMs) exhibit a critical flaw in compositional reasoning, often confusing "a red cube and a blue sphere" with "a blue cube and a red sphere". Disentangling the visual and linguistic roots of these failures is a fundamental challenge for robust evaluation. To enable fine-grained, controllable analysis, we introduce Auto-Comp, a fully automated and synthetic pipeline for generating scalable benchmarks. Its controllable nature is key to dissecting and isolating different reasoning skills. Auto-Comp generates paired images from Minimal (e.g., "a monitor to the left of a bicycle on a white background") and LLM-generated Contextual captions (e.g., "In a brightly lit photography studio, a monitor is positioned to the left of a bicycle"), allowing a controlled A/B test to disentangle core binding ability from visio-linguistic complexity. Our evaluation of 20 VLMs on novel benchmarks for color binding and spatial relations reveals universal compositional failures in both CLIP and SigLIP model families. Crucially, our novel "Confusion Benchmark" reveals a deeper flaw beyond simple attribute swaps: models are highly susceptible to low-entropy distractors (e.g., repeated objects or colors), demonstrating their compositional failures extend beyond known bag-of-words limitations. we uncover a surprising trade-off: visio-linguistic context, which provides global scene cues, aids spatial reasoning but simultaneously hinders local attribute binding by introducing visual clutter. We release the Auto-Comp pipeline to facilitate future benchmark creation, alongside all our generated benchmarks (https://huggingface.co/AutoComp).
☆ One Size, Many Fits: Aligning Diverse Group-Wise Click Preferences in Large-Scale Advertising Image Generation
Advertising image generation has increasingly focused on online metrics like Click-Through Rate (CTR), yet existing approaches adopt a ``one-size-fits-all" strategy that optimizes for overall CTR while neglecting preference diversity among user groups. This leads to suboptimal performance for specific groups, limiting targeted marketing effectiveness. To bridge this gap, we present \textit{One Size, Many Fits} (OSMF), a unified framework that aligns diverse group-wise click preferences in large-scale advertising image generation. OSMF begins with product-aware adaptive grouping, which dynamically organizes users based on their attributes and product characteristics, representing each group with rich collective preference features. Building on these groups, preference-conditioned image generation employs a Group-aware Multimodal Large Language Model (G-MLLM) to generate tailored images for each group. The G-MLLM is pre-trained to simultaneously comprehend group features and generate advertising images. Subsequently, we fine-tune the G-MLLM using our proposed Group-DPO for group-wise preference alignment, which effectively enhances each group's CTR on the generated images. To further advance this field, we introduce the Grouped Advertising Image Preference Dataset (GAIP), the first large-scale public dataset of group-wise image preferences, including around 600K groups built from 40M users. Extensive experiments demonstrate that our framework achieves the state-of-the-art performance in both offline and online settings. Our code and datasets will be released at https://github.com/JD-GenX/OSMF.
☆ Rethinking Genomic Modeling Through Optical Character Recognition
Recent genomic foundation models largely adopt large language model architectures that treat DNA as a one-dimensional token sequence. However, exhaustive sequential reading is structurally misaligned with sparse and discontinuous genomic semantics, leading to wasted computation on low-information background and preventing understanding-driven compression for long contexts. Here, we present OpticalDNA, a vision-based framework that reframes genomic modeling as Optical Character Recognition (OCR)-style document understanding. OpticalDNA renders DNA into structured visual layouts and trains an OCR-capable vision--language model with a \emph{visual DNA encoder} and a \emph{document decoder}, where the encoder produces compact, reconstructible visual tokens for high-fidelity compression. Building on this representation, OpticalDNA defines prompt-conditioned objectives over core genomic primitives-reading, region grounding, subsequence retrieval, and masked span completion-thereby learning layout-aware DNA representations that retain fine-grained genomic information under a reduced effective token budget. Across diverse genomic benchmarks, OpticalDNA consistently outperforms recent baselines; on sequences up to 450k bases, it achieves the best overall performance with nearly $20\times$ fewer effective tokens, and surpasses models with up to $985\times$ more activated parameters while tuning only 256k \emph{trainable} parameters.
☆ ClueTracer: Question-to-Vision Clue Tracing for Training-Free Hallucination Suppression in Multimodal Reasoning
Large multimodal reasoning models solve challenging visual problems via explicit long-chain inference: they gather visual clues from images and decode clues into textual tokens. Yet this capability also increases hallucinations, where the model generates content that is not supported by the input image or the question. To understand this failure mode, we identify \emph{reasoning drift}: during clue gathering, the model over-focuses on question-irrelevant entities, diluting focus on task-relevant cues and gradually decoupling the reasoning trace from visual grounding. As a consequence, many inference-time localization or intervention methods developed for non-reasoning models fail to pinpoint the true clues in reasoning settings. Motivated by these insights, we introduce ClueRecall, a metric for assessing visual clue retrieval, and present ClueTracer, a training-free, parameter-free, and architecture-agnostic plugin for hallucination suppression. ClueTracer starts from the question and traces how key clues propagate along the model's reasoning pathway (question $\rightarrow$ outputs $\rightarrow$ visual tokens), thereby localizing task-relevant patches while suppressing spurious attention to irrelevant regions. Remarkably, \textbf{without any additional training}, ClueTracer improves all \textbf{reasoning} architectures (including \texttt{R1-OneVision}, \texttt{Ocean-R1}, \texttt{MM-Eureka}, \emph{etc}.) by $\mathbf{1.21\times}$ on reasoning benchmarks. When transferred to \textbf{non-reasoning} settings, it yields a $\mathbf{1.14\times}$ gain.
comment: 20 pages, 7 figures
☆ UniDriveDreamer: A Single-Stage Multimodal World Model for Autonomous Driving
World models have demonstrated significant promise for data synthesis in autonomous driving. However, existing methods predominantly concentrate on single-modality generation, typically focusing on either multi-camera video or LiDAR sequence synthesis. In this paper, we propose UniDriveDreamer, a single-stage unified multimodal world model for autonomous driving, which directly generates multimodal future observations without relying on intermediate representations or cascaded modules. Our framework introduces a LiDAR-specific variational autoencoder (VAE) designed to encode input LiDAR sequences, alongside a video VAE for multi-camera images. To ensure cross-modal compatibility and training stability, we propose Unified Latent Anchoring (ULA), which explicitly aligns the latent distributions of the two modalities. The aligned features are fused and processed by a diffusion transformer that jointly models their geometric correspondence and temporal evolution. Additionally, structured scene layout information is projected per modality as a conditioning signal to guide the synthesis. Extensive experiments demonstrate that UniDriveDreamer outperforms previous state-of-the-art methods in both video and LiDAR generation, while also yielding measurable improvements in downstream
comment: 16 pages, 7 figures
☆ SurfSplat: Conquering Feedforward 2D Gaussian Splatting with Surface Continuity Priors ICLR 2026
Reconstructing 3D scenes from sparse images remains a challenging task due to the difficulty of recovering accurate geometry and texture without optimization. Recent approaches leverage generalizable models to generate 3D scenes using 3D Gaussian Splatting (3DGS) primitive. However, they often fail to produce continuous surfaces and instead yield discrete, color-biased point clouds that appear plausible at normal resolution but reveal severe artifacts under close-up views. To address this issue, we present SurfSplat, a feedforward framework based on 2D Gaussian Splatting (2DGS) primitive, which provides stronger anisotropy and higher geometric precision. By incorporating a surface continuity prior and a forced alpha blending strategy, SurfSplat reconstructs coherent geometry together with faithful textures. Furthermore, we introduce High-Resolution Rendering Consistency (HRRC), a new evaluation metric designed to evaluate high-resolution reconstruction quality. Extensive experiments on RealEstate10K, DL3DV, and ScanNet demonstrate that SurfSplat consistently outperforms prior methods on both standard metrics and HRRC, establishing a robust solution for high-fidelity 3D reconstruction from sparse inputs. Project page: https://hebing-sjtu.github.io/SurfSplat-website/
comment: ICLR 2026
☆ Leveraging Latent Vector Prediction for Localized Control in Image Generation via Diffusion Models
Diffusion models emerged as a leading approach in text-to-image generation, producing high-quality images from textual descriptions. However, attempting to achieve detailed control to get a desired image solely through text remains a laborious trial-and-error endeavor. Recent methods have introduced image-level controls alongside with text prompts, using prior images to extract conditional information such as edges, segmentation and depth maps. While effective, these methods apply conditions uniformly across the entire image, limiting localized control. In this paper, we propose a novel methodology to enable precise local control over user-defined regions of an image, while leaving to the diffusion model the task of autonomously generating the remaining areas according to the original prompt. Our approach introduces a new training framework that incorporates masking features and an additional loss term, which leverages the prediction of the initial latent vector at any diffusion step to enhance the correspondence between the current step and the final sample in the latent space. Extensive experiments demonstrate that our method effectively synthesizes high-quality images with controlled local conditions.
☆ Enhancing Multi-Image Understanding through Delimiter Token Scaling ICLR 2026
Large Vision-Language Models (LVLMs) achieve strong performance on single-image tasks, but their performance declines when multiple images are provided as input. One major reason is the cross-image information leakage, where the model struggles to distinguish information across different images. Existing LVLMs already employ delimiter tokens to mark the start and end of each image, yet our analysis reveals that these tokens fail to effectively block cross-image information leakage. To enhance their effectiveness, we propose a method that scales the hidden states of delimiter tokens. This enhances the model's ability to preserve image-specific information by reinforcing intra-image interaction and limiting undesired cross-image interactions. Consequently, the model is better able to distinguish between images and reason over them more accurately. Experiments show performance gains on multi-image benchmarks such as Mantis, MuirBench, MIRB, and QBench2. We further evaluate our method on text-only tasks that require clear distinction. The method improves performance on multi-document and multi-table understanding benchmarks, including TQABench, MultiNews, and WCEP-10. Notably, our method requires no additional training or inference cost.
comment: Accepted at ICLR 2026
☆ FlyPrompt: Brain-Inspired Random-Expanded Routing with Temporal-Ensemble Experts for General Continual Learning ICLR 2026
General continual learning (GCL) challenges intelligent systems to learn from single-pass, non-stationary data streams without clear task boundaries. While recent advances in continual parameter-efficient tuning (PET) of pretrained models show promise, they typically rely on multiple training epochs and explicit task cues, limiting their effectiveness in GCL scenarios. Moreover, existing methods often lack targeted design and fail to address two fundamental challenges in continual PET: how to allocate expert parameters to evolving data distributions, and how to improve their representational capacity under limited supervision. Inspired by the fruit fly's hierarchical memory system characterized by sparse expansion and modular ensembles, we propose FlyPrompt, a brain-inspired framework that decomposes GCL into two subproblems: expert routing and expert competence improvement. FlyPrompt introduces a randomly expanded analytic router for instance-level expert activation and a temporal ensemble of output heads to dynamically adapt decision boundaries over time. Extensive theoretical and empirical evaluations demonstrate FlyPrompt's superior performance, achieving up to 11.23%, 12.43%, and 7.62% gains over state-of-the-art baselines on CIFAR-100, ImageNet-R, and CUB-200, respectively. Our source code is available at https://github.com/AnAppleCore/FlyGCL.
comment: 33 pages. Accepted by ICLR 2026
☆ Your AI-Generated Image Detector Can Secretly Achieve SOTA Accuracy, If Calibrated AAAI 2026
Despite being trained on balanced datasets, existing AI-generated image detectors often exhibit systematic bias at test time, frequently misclassifying fake images as real. We hypothesize that this behavior stems from distributional shift in fake samples and implicit priors learned during training. Specifically, models tend to overfit to superficial artifacts that do not generalize well across different generation methods, leading to a misaligned decision threshold when faced with test-time distribution shift. To address this, we propose a theoretically grounded post-hoc calibration framework based on Bayesian decision theory. In particular, we introduce a learnable scalar correction to the model's logits, optimized on a small validation set from the target distribution while keeping the backbone frozen. This parametric adjustment compensates for distributional shift in model output, realigning the decision boundary even without requiring ground-truth labels. Experiments on challenging benchmarks show that our approach significantly improves robustness without retraining, offering a lightweight and principled solution for reliable and adaptive AI-generated image detection in the open world. Code is available at https://github.com/muliyangm/AIGI-Det-Calib.
comment: AAAI 2026. Code: https://github.com/muliyangm/AIGI-Det-Calib
☆ Beyond Open Vocabulary: Multimodal Prompting for Object Detection in Remote Sensing Images
Open-vocabulary object detection in remote sensing commonly relies on text-only prompting to specify target categories, implicitly assuming that inference-time category queries can be reliably grounded through pretraining-induced text-visual alignment. In practice, this assumption often breaks down in remote sensing scenarios due to task- and application-specific category semantics, resulting in unstable category specification under open-vocabulary settings. To address this limitation, we propose RS-MPOD, a multimodal open-vocabulary detection framework that reformulates category specification beyond text-only prompting by incorporating instance-grounded visual prompts, textual prompts, and their multimodal integration. RS-MPOD introduces a visual prompt encoder to extract appearance-based category cues from exemplar instances, enabling text-free category specification, and a multimodal fusion module to integrate visual and textual information when both modalities are available. Extensive experiments on standard, cross-dataset, and fine-grained remote sensing benchmarks show that visual prompting yields more reliable category specification under semantic ambiguity and distribution shifts, while multimodal prompting provides a flexible alternative that remains competitive when textual semantics are well aligned.
☆ Enabling Progressive Whole-slide Image Analysis with Multi-scale Pyramidal Network
Multiple-instance Learning (MIL) is commonly used to undertake computational pathology (CPath) tasks, and the use of multi-scale patches allows diverse features across scales to be learned. Previous studies using multi-scale features in clinical applications rely on multiple inputs across magnifications with late feature fusion, which does not retain the link between features across scales while the inputs are dependent on arbitrary, manufacturer-defined magnifications, being inflexible and computationally expensive. In this paper, we propose the Multi-scale Pyramidal Network (MSPN), which is plug-and-play over attention-based MIL that introduces progressive multi-scale analysis on WSI. Our MSPN consists of (1) grid-based remapping that uses high magnification features to derive coarse features and (2) the coarse guidance network (CGN) that learns coarse contexts. We benchmark MSPN as an add-on module to 4 attention-based frameworks using 4 clinically relevant tasks across 3 types of foundation model, as well as the pre-trained MIL framework. We show that MSPN consistently improves MIL across the compared configurations and tasks, while being lightweight and easy-to-use.
☆ Boundary-Constrained Diffusion Models for Floorplan Generation: Balancing Realism and Diversity
Diffusion models have become widely popular for automated floorplan generation, producing highly realistic layouts conditioned on user-defined constraints. However, optimizing for perceptual metrics such as the Fréchet Inception Distance (FID) causes limited design diversity. To address this, we propose the Diversity Score (DS), a metric that quantifies layout diversity under fixed constraints. Moreover, to improve geometric consistency, we introduce a Boundary Cross-Attention (BCA) module that enables conditioning on building boundaries. Our experiments show that BCA significantly improves boundary adherence, while prolonged training drives diversity collapse undiagnosed by FID, revealing a critical trade-off between realism and diversity. Out-Of-Distribution evaluations further demonstrate the models' reliance on dataset priors, emphasizing the need for generative systems that explicitly balance fidelity, diversity, and generalization in architectural design tasks.
comment: Accepted at ESANN 2026
☆ LIEREx: Language-Image Embeddings for Robotic Exploration
Semantic maps allow a robot to reason about its surroundings to fulfill tasks such as navigating known environments, finding specific objects, and exploring unmapped areas. Traditional mapping approaches provide accurate geometric representations but are often constrained by pre-designed symbolic vocabularies. The reliance on fixed object classes makes it impractical to handle out-of-distribution knowledge not defined at design time. Recent advances in Vision-Language Foundation Models, such as CLIP, enable open-set mapping, where objects are encoded as high-dimensional embeddings rather than fixed labels. In LIEREx, we integrate these VLFMs with established 3D Semantic Scene Graphs to enable target-directed exploration by an autonomous agent in partially unknown environments.
comment: This preprint has not undergone peer review or any post-submission improvements or corrections. The Version of Record of this article is published in KI - Künstliche Intelligenz, and is available online at https://doi.org/10.1007/s13218-026-00902-6
☆ DSXFormer: Dual-Pooling Spectral Squeeze-Expansion and Dynamic Context Attention Transformer for Hyperspectral Image Classification
Hyperspectral image classification (HSIC) is a challenging task due to high spectral dimensionality, complex spectral-spatial correlations, and limited labeled training samples. Although transformer-based models have shown strong potential for HSIC, existing approaches often struggle to achieve sufficient spectral discriminability while maintaining computational efficiency. To address these limitations, we propose a novel DSXFormer, a novel dual-pooling spectral squeeze-expansion transformer with Dynamic Context Attention for HSIC. The proposed DSXFormer introduces a Dual-Pooling Spectral Squeeze-Expansion (DSX) block, which exploits complementary global average and max pooling to adaptively recalibrate spectral feature channels, thereby enhancing spectral discriminability and inter-band dependency modeling. In addition, DSXFormer incorporates a Dynamic Context Attention (DCA) mechanism within a window-based transformer architecture to dynamically capture local spectral-spatial relationships while significantly reducing computational overhead. The joint integration of spectral dual-pooling squeeze-expansion and DCA enables DSXFormer to achieve an effective balance between spectral emphasis and spatial contextual representation. Furthermore, patch extraction, embedding, and patch merging strategies are employed to facilitate efficient multi-scale feature learning. Extensive experiments conducted on four widely used hyperspectral benchmark datasets, including Salinas (SA), Indian Pines (IP), Pavia University (PU), and Kennedy Space Center (KSC), demonstrate that DSXFormer consistently outperforms state-of-the-art methods, achieving classification accuracies of 99.95%, 98.91%, 99.85%, and 98.52%, respectively.
☆ Learning Sparse Visual Representations via Spatial-Semantic Factorization
Self-supervised learning (SSL) faces a fundamental conflict between semantic understanding and image reconstruction. High-level semantic SSL (e.g., DINO) relies on global tokens that are forced to be location-invariant for augmentation alignment, a process that inherently discards the spatial coordinates required for reconstruction. Conversely, generative SSL (e.g., MAE) preserves dense feature grids for reconstruction but fails to produce high-level abstractions. We introduce STELLAR, a framework that resolves this tension by factorizing visual features into a low-rank product of semantic concepts and their spatial distributions. This disentanglement allows us to perform DINO-style augmentation alignment on the semantic tokens while maintaining the precise spatial mapping in the localization matrix necessary for pixel-level reconstruction. We demonstrate that as few as 16 sparse tokens under this factorized form are sufficient to simultaneously support high-quality reconstruction (2.60 FID) and match the semantic performance of dense backbones (79.10% ImageNet accuracy). Our results highlight STELLAR as a versatile sparse representation that bridges the gap between discriminative and generative vision by strategically separating semantic identity from spatial geometry. Code available at https://aka.ms/stellar.
☆ Q Cache: Visual Attention is Valuable in Less than Half of Decode Layers for Multimodal Large Language Model AAAI26
Multimodal large language models (MLLMs) are plagued by exorbitant inference costs attributable to the profusion of visual tokens within the vision encoder. The redundant visual tokens engenders a substantial computational load and key-value (KV) cache footprint bottleneck. Existing approaches focus on token-wise optimization, leveraging diverse intricate token pruning techniques to eliminate non-crucial visual tokens. Nevertheless, these methods often unavoidably undermine the integrity of the KV cache, resulting in failures in long-text generation tasks. To this end, we conduct an in-depth investigation towards the attention mechanism of the model from a new perspective, and discern that attention within more than half of all decode layers are semantic similar. Upon this finding, we contend that the attention in certain layers can be streamlined by inheriting the attention from their preceding layers. Consequently, we propose Lazy Attention, an efficient attention mechanism that enables cross-layer sharing of similar attention patterns. It ingeniously reduces layer-wise redundant computation in attention. In Lazy Attention, we develop a novel layer-shared cache, Q Cache, tailored for MLLMs, which facilitates the reuse of queries across adjacent layers. In particular, Q Cache is lightweight and fully compatible with existing inference frameworks, including Flash Attention and KV cache. Additionally, our method is highly flexible as it is orthogonal to existing token-wise techniques and can be deployed independently or combined with token pruning approaches. Empirical evaluations on multiple benchmarks demonstrate that our method can reduce KV cache usage by over 35% and achieve 1.5x throughput improvement, while sacrificing only approximately 1% of performance on various MLLMs. Compared with SOTA token-wise methods, our technique achieves superior accuracy preservation.
comment: Accepted by AAAI26
☆ Multi-Task Learning for Robot Perception with Imbalanced Data
Multi-task problem solving has been shown to improve the accuracy of the individual tasks, which is an important feature for robots, as they have a limited resource. However, when the number of labels for each task is not equal, namely imbalanced data exist, a problem may arise due to insufficient number of samples, and labeling is not very easy for mobile robots in every environment. We propose a method that can learn tasks even in the absence of the ground truth labels for some of the tasks. We also provide a detailed analysis of the proposed method. An interesting finding is related to the interaction of the tasks. We show a methodology to find out which tasks can improve the performance of other tasks. We investigate this by training the teacher network with the task outputs such as depth as inputs. We further provide empirical evidence when trained with a small amount of data. We use semantic segmentation and depth estimation tasks on different datasets, NYUDv2 and Cityscapes.
comment: 16 pages
☆ ProxyImg: Towards Highly-Controllable Image Representation via Hierarchical Disentangled Proxy Embedding
Prevailing image representation methods, including explicit representations such as raster images and Gaussian primitives, as well as implicit representations such as latent images, either suffer from representation redundancy that leads to heavy manual editing effort, or lack a direct mapping from latent variables to semantic instances or parts, making fine-grained manipulation difficult. These limitations hinder efficient and controllable image and video editing. To address these issues, we propose a hierarchical proxy-based parametric image representation that disentangles semantic, geometric, and textural attributes into independent and manipulable parameter spaces. Based on a semantic-aware decomposition of the input image, our representation constructs hierarchical proxy geometries through adaptive Bezier fitting and iterative internal region subdivision and meshing. Multi-scale implicit texture parameters are embedded into the resulting geometry-aware distributed proxy nodes, enabling continuous high-fidelity reconstruction in the pixel domain and instance- or part-independent semantic editing. In addition, we introduce a locality-adaptive feature indexing mechanism to ensure spatial texture coherence, which further supports high-quality background completion without relying on generative models. Extensive experiments on image reconstruction and editing benchmarks, including ImageNet, OIR-Bench, and HumanEdit, demonstrate that our method achieves state-of-the-art rendering fidelity with significantly fewer parameters, while enabling intuitive, interactive, and physically plausible manipulation. Moreover, by integrating proxy nodes with Position-Based Dynamics, our framework supports real-time physics-driven animation using lightweight implicit rendering, achieving superior temporal consistency and visual realism compared with generative approaches.
☆ Trust but Verify: Adaptive Conditioning for Reference-Based Diffusion Super-Resolution via Implicit Reference Correlation Modeling ICLR 2026
Recent works have explored reference-based super-resolution (RefSR) to mitigate hallucinations in diffusion-based image restoration. A key challenge is that real-world degradations make correspondences between low-quality (LQ) inputs and reference (Ref) images unreliable, requiring adaptive control of reference usage. Existing methods either ignore LQ-Ref correlations or rely on brittle explicit matching, leading to over-reliance on misleading references or under-utilization of valuable cues. To address this, we propose Ada-RefSR, a single-step diffusion framework guided by a "Trust but Verify" principle: reference information is leveraged when reliable and suppressed otherwise. Its core component, Adaptive Implicit Correlation Gating (AICG), employs learnable summary tokens to distill dominant reference patterns and capture implicit correlations with LQ features. Integrated into the attention backbone, AICG provides lightweight, adaptive regulation of reference guidance, serving as a built-in safeguard against erroneous fusion. Experiments on multiple datasets demonstrate that Ada-RefSR achieves a strong balance of fidelity, naturalness, and efficiency, while remaining robust under varying reference alignment.
comment: 26 pages, 19 figures. Accepted to ICLR 2026
☆ Fact or Fake? Assessing the Role of Deepfake Detectors in Multimodal Misinformation Detection
In multimodal misinformation, deception usually arises not just from pixel-level manipulations in an image, but from the semantic and contextual claim jointly expressed by the image-text pair. Yet most deepfake detectors, engineered to detect pixel-level forgeries, do not account for claim-level meaning, despite their growing integration in automated fact-checking (AFC) pipelines. This raises a central scientific and practical question: Do pixel-level detectors contribute useful signal for verifying image-text claims, or do they instead introduce misleading authenticity priors that undermine evidence-based reasoning? We provide the first systematic analysis of deepfake detectors in the context of multimodal misinformation detection. Using two complementary benchmarks, MMFakeBench and DGM4, we evaluate: (1) state-of-the-art image-only deepfake detectors, (2) an evidence-driven fact-checking system that performs tool-guided retrieval via Monte Carlo Tree Search (MCTS) and engages in deliberative inference through Multi-Agent Debate (MAD), and (3) a hybrid fact-checking system that injects detector outputs as auxiliary evidence. Results across both benchmark datasets show that deepfake detectors offer limited standalone value, achieving F1 scores in the range of 0.26-0.53 on MMFakeBench and 0.33-0.49 on DGM4, and that incorporating their predictions into fact-checking pipelines consistently reduces performance by 0.04-0.08 F1 due to non-causal authenticity assumptions. In contrast, the evidence-centric fact-checking system achieves the highest performance, reaching F1 scores of approximately 0.81 on MMFakeBench and 0.55 on DGM4. Overall, our findings demonstrate that multimodal claim verification is driven primarily by semantic understanding and external evidence, and that pixel-level artifact signals do not reliably enhance reasoning over real-world image-text misinformation.
☆ How Well Do Models Follow Visual Instructions? VIBE: A Systematic Benchmark for Visual Instruction-Driven Image Editing
Recent generative models have achieved remarkable progress in image editing. However, existing systems and benchmarks remain largely text-guided. In contrast, human communication is inherently multimodal, where visual instructions such as sketches efficiently convey spatial and structural intent. To address this gap, we introduce VIBE, the Visual Instruction Benchmark for Image Editing with a three-level interaction hierarchy that captures deictic grounding, morphological manipulation, and causal reasoning. Across these levels, we curate high-quality and diverse test cases that reflect progressively increasing complexity in visual instruction following. We further propose a robust LMM-as-a-judge evaluation framework with task-specific metrics to enable scalable and fine-grained assessment. Through a comprehensive evaluation of 17 representative open-source and proprietary image editing models, we find that proprietary models exhibit early-stage visual instruction-following capabilities and consistently outperform open-source models. However, performance degrades markedly with increasing task difficulty even for the strongest systems, highlighting promising directions for future research.
comment: https://vibe-benchmark.github.io/
☆ WS-IMUBench: Can Weakly Supervised Methods from Audio, Image, and Video Be Adapted for IMU-based Temporal Action Localization?
IMU-based Human Activity Recognition (HAR) has enabled a wide range of ubiquitous computing applications, yet its dominant clip classification paradigm cannot capture the rich temporal structure of real-world behaviors. This motivates a shift toward IMU Temporal Action Localization (IMU-TAL), which predicts both action categories and their start/end times in continuous streams. However, current progress is strongly bottlenecked by the need for dense, frame-level boundary annotations, which are costly and difficult to scale. To address this bottleneck, we introduce WS-IMUBench, a systematic benchmark study of weakly supervised IMU-TAL (WS-IMU-TAL) under only sequence-level labels. Rather than proposing a new localization algorithm, we evaluate how well established weakly supervised localization paradigms from audio, image, and video transfer to IMU-TAL under only sequence-level labels. We benchmark seven representative weakly supervised methods on seven public IMU datasets, resulting in over 3,540 model training runs and 7,080 inference evaluations. Guided by three research questions on transferability, effectiveness, and insights, our findings show that (i) transfer is modality-dependent, with temporal-domain methods generally more stable than image-derived proposal-based approaches; (ii) weak supervision can be competitive on favorable datasets (e.g., with longer actions and higher-dimensional sensing); and (iii) dominant failure modes arise from short actions, temporal ambiguity, and proposal quality. Finally, we outline concrete directions for advancing WS-IMU-TAL (e.g., IMU-specific proposal generation, boundary-aware objectives, and stronger temporal reasoning). Beyond individual results, WS-IMUBench establishes a reproducible benchmarking template, datasets, protocols, and analyses, to accelerate community-wide progress toward scalable WS-IMU-TAL.
comment: Under Review. 28 pages, 9 figures, 6 tables
☆ CloDS: Visual-Only Unsupervised Cloth Dynamics Learning in Unknown Conditions ICLR 2026
Deep learning has demonstrated remarkable capabilities in simulating complex dynamic systems. However, existing methods require known physical properties as supervision or inputs, limiting their applicability under unknown conditions. To explore this challenge, we introduce Cloth Dynamics Grounding (CDG), a novel scenario for unsupervised learning of cloth dynamics from multi-view visual observations. We further propose Cloth Dynamics Splatting (CloDS), an unsupervised dynamic learning framework designed for CDG. CloDS adopts a three-stage pipeline that first performs video-to-geometry grounding and then trains a dynamics model on the grounded meshes. To cope with large non-linear deformations and severe self-occlusions during grounding, we introduce a dual-position opacity modulation that supports bidirectional mapping between 2D observations and 3D geometry via mesh-based Gaussian splatting in video-to-geometry grounding stage. It jointly considers the absolute and relative position of Gaussian components. Comprehensive experimental evaluations demonstrate that CloDS effectively learns cloth dynamics from visual data while maintaining strong generalization capabilities for unseen configurations. Our code is available at https://github.com/whynot-zyl/CloDS. Visualization results are available at https://github.com/whynot-zyl/CloDS_video}.%\footnote{As in this example.
comment: ICLR 2026
☆ SPIRIT: Adapting Vision Foundation Models for Unified Single- and Multi-Frame Infrared Small Target Detection
Infrared small target detection (IRSTD) is crucial for surveillance and early-warning, with deployments spanning both single-frame analysis and video-mode tracking. A practical solution should leverage vision foundation models (VFMs) to mitigate infrared data scarcity, while adopting a memory-attention-based temporal propagation framework that unifies single- and multi-frame inference. However, infrared small targets exhibit weak radiometric signals and limited semantic cues, which differ markedly from visible-spectrum imagery. This modality gap makes direct use of semantics-oriented VFMs and appearance-driven cross-frame association unreliable for IRSTD: hierarchical feature aggregation can submerge localized target peaks, and appearance-only memory attention becomes ambiguous, leading to spurious clutter associations. To address these challenges, we propose SPIRIT, a unified and VFM-compatible framework that adapts VFMs to IRSTD via lightweight physics-informed plug-ins. Spatially, PIFR refines features by approximating rank-sparsity decomposition to suppress structured background components and enhance sparse target-like signals. Temporally, PGMA injects history-derived soft spatial priors into memory cross-attention to constrain cross-frame association, enabling robust video detection while naturally reverting to single-frame inference when temporal context is absent. Experiments on multiple IRSTD benchmarks show consistent gains over VFM-based baselines and SOTA performance.
☆ Efficient Cross-Country Data Acquisition Strategy for ADAS via Street-View Imagery
Deploying ADAS and ADS across countries remains challenging due to differences in legislation, traffic infrastructure, and visual conventions, which introduce domain shifts that degrade perception performance. Traditional cross-country data collection relies on extensive on-road driving, making it costly and inefficient to identify representative locations. To address this, we propose a street-view-guided data acquisition strategy that leverages publicly available imagery to identify places of interest (POI). Two POI scoring methods are introduced: a KNN-based feature distance approach using a vision foundation model, and a visual-attribution approach using a vision-language model. To enable repeatable evaluation, we adopt a collect-detect protocol and construct a co-located dataset by pairing the Zenseact Open Dataset with Mapillary street-view images. Experiments on traffic sign detection, a task particularly sensitive to cross-country variations in sign appearance, show that our approach achieves performance comparable to random sampling while using only half of the target-domain data. We further provide cost estimations for full-country analysis, demonstrating that large-scale street-view processing remains economically feasible. These results highlight the potential of street-view-guided data acquisition for efficient and cost-effective cross-country model adaptation.
☆ Seeing Is Believing? A Benchmark for Multimodal Large Language Models on Visual Illusions and Anomalies
Multimodal Large Language Models (MLLMs) have shown remarkable proficiency on general-purpose vision-language benchmarks, reaching or even exceeding human-level performance. However, these evaluations typically rely on standard in-distribution data, leaving the robustness of MLLMs largely unexamined when faced with scenarios that defy common-sense priors. To address this gap, we introduce VIA-Bench, a challenging benchmark designed to probe model performance on visual illusions and anomalies. It includes six core categories: color illusions, motion illusions, gestalt illusions, geometric and spatial illusions, general visual illusions, and visual anomalies. Through careful human-in-the-loop review, we construct over 1K high-quality question-answer pairs that require nuanced visual reasoning. Extensive evaluation of over 20 state-of-the-art MLLMs, including proprietary, open-source, and reasoning-enhanced models, uncovers significant vulnerabilities. Notably, we find that Chain-of-Thought (CoT) reasoning offers negligible robustness, often yielding ``brittle mirages'' where the model's logic collapses under illusory stimuli. Our findings reveal a fundamental divergence between machine and human perception, suggesting that resolving such perceptual bottlenecks is critical for the advancement of artificial general intelligence. The benchmark data and code will be released.
☆ GPD: Guided Progressive Distillation for Fast and High-Quality Video Generation
Diffusion models have achieved remarkable success in video generation; however, the high computational cost of the denoising process remains a major bottleneck. Existing approaches have shown promise in reducing the number of diffusion steps, but they often suffer from significant quality degradation when applied to video generation. We propose Guided Progressive Distillation (GPD), a framework that accelerates the diffusion process for fast and high-quality video generation. GPD introduces a novel training strategy in which a teacher model progressively guides a student model to operate with larger step sizes. The framework consists of two key components: (1) an online-generated training target that reduces optimization difficulty while improving computational efficiency, and (2) frequency-domain constraints in the latent space that promote the preservation of fine-grained details and temporal dynamics. Applied to the Wan2.1 model, GPD reduces the number of sampling steps from 48 to 6 while maintaining competitive visual quality on VBench. Compared with existing distillation methods, GPD demonstrates clear advantages in both pipeline simplicity and quality preservation.
☆ LDRNet: Large Deformation Registration Model for Chest CT Registration
Most of the deep learning based medical image registration algorithms focus on brain image registration tasks.Compared with brain registration, the chest CT registration has larger deformation, more complex background and region over-lap. In this paper, we propose a fast unsupervised deep learning method, LDRNet, for large deformation image registration of chest CT images. We first predict a coarse resolution registration field, then refine it from coarse to fine. We propose two innovative technical components: 1) a refine block that is used to refine the registration field in different resolutions, 2) a rigid block that is used to learn transformation matrix from high-level features. We train and evaluate our model on the private dataset and public dataset SegTHOR. We compare our performance with state-of-the-art traditional registration methods as well as deep learning registration models VoxelMorph, RCN, and LapIRN. The results demonstrate that our model achieves state-of-the-art performance for large deformation images registration and is much faster.
☆ FlowBypass: Rectified Flow Trajectory Bypass for Training-Free Image Editing
Training-free image editing has attracted increasing attention for its efficiency and independence from training data. However, existing approaches predominantly rely on inversion-reconstruction trajectories, which impose an inherent trade-off: longer trajectories accumulate errors and compromise fidelity, while shorter ones fail to ensure sufficient alignment with the edit prompt. Previous attempts to address this issue typically employ backbone-specific feature manipulations, limiting general applicability. To address these challenges, we propose FlowBypass, a novel and analytical framework grounded in Rectified Flow that constructs a bypass directly connecting inversion and reconstruction trajectories, thereby mitigating error accumulation without relying on feature manipulations. We provide a formal derivation of two trajectories, from which we obtain an approximate bypass formulation and its numerical solution, enabling seamless trajectory transitions. Extensive experiments demonstrate that FlowBypass consistently outperforms state-of-the-art image editing methods, achieving stronger prompt alignment while preserving high-fidelity details in irrelevant regions.
☆ Fast Autoregressive Video Diffusion and World Models with Temporal Cache Compression and Sparse Attention
Autoregressive video diffusion models enable streaming generation, opening the door to long-form synthesis, video world models, and interactive neural game engines. However, their core attention layers become a major bottleneck at inference time: as generation progresses, the KV cache grows, causing both increasing latency and escalating GPU memory, which in turn restricts usable temporal context and harms long-range consistency. In this work, we study redundancy in autoregressive video diffusion and identify three persistent sources: near-duplicate cached keys across frames, slowly evolving (largely semantic) queries/keys that make many attention computations redundant, and cross-attention over long prompts where only a small subset of tokens matters per frame. Building on these observations, we propose a unified, training-free attention framework for autoregressive diffusion: TempCache compresses the KV cache via temporal correspondence to bound cache growth; AnnCA accelerates cross-attention by selecting frame-relevant prompt tokens using fast approximate nearest neighbor (ANN) matching; and AnnSA sparsifies self-attention by restricting each query to semantically matched keys, also using a lightweight ANN. Together, these modules reduce attention, compute, and memory and are compatible with existing autoregressive diffusion backbones and world models. Experiments demonstrate up to x5--x10 end-to-end speedups while preserving near-identical visual quality and, crucially, maintaining stable throughput and nearly constant peak GPU memory usage over long rollouts, where prior methods progressively slow down and suffer from increasing memory usage.
comment: Project Page: https://dvirsamuel.github.io/fast-auto-regressive-video/
☆ Spatio-Temporal Transformers for Long-Term NDVI Forecasting
Long-term satellite image time series (SITS) analysis in heterogeneous landscapes faces significant challenges, particularly in Mediterranean regions where complex spatial patterns, seasonal variations, and multi-decade environmental changes interact across different scales. This paper presents the Spatio-Temporal Transformer for Long Term Forecasting (STT-LTF ), an extended framework that advances beyond purely temporal analysis to integrate spatial context modeling with temporal sequence prediction. STT-LTF processes multi-scale spatial patches alongside temporal sequences (up to 20 years) through a unified transformer architecture, capturing both local neighborhood relationships and regional climate influences. The framework employs comprehensive self-supervised learning with spatial masking, temporal masking, and horizon sampling strategies, enabling robust model training from 40 years of unlabeled Landsat imagery. Unlike autoregressive approaches, STT-LTF directly predicts arbitrary future time points without error accumulation, incorporating spatial patch embeddings, cyclical temporal encoding, and geographic coordinates to learn complex dependencies across heterogeneous Mediterranean ecosystems. Experimental evaluation on Landsat data (1984-2024) demonstrates that STT-LTF achieves a Mean Absolute Error (MAE) of 0.0328 and R^2 of 0.8412 for next-year predictions, outperforming traditional statistical methods, CNN-based approaches, LSTM networks, and standard transformers. The framework's ability to handle irregular temporal sampling and variable prediction horizons makes it particularly suitable for analysis of heterogeneous landscapes experiencing rapid ecological transitions.
☆ Automated Discontinuity Set Characterisation in Enclosed Rock Face Point Clouds Using Single-Shot Filtering and Cyclic Orientation Transformation
Characterisation of structural discontinuity sets in exposed rock faces of underground mine cavities is essential for assessing rock-mass stability, excavation safety, and operational efficiency. UAV and other mobile laser-scanning techniques provide efficient means of collecting point clouds from rock faces. However, the development of a robust and efficient approach for automatic characterisation of discontinuity sets in real-world scenarios, like fully enclosed rock faces in cavities, remains an open research problem. In this study, a new approach is proposed for automatic discontinuity set characterisation that uses a single-shot filtering strategy, an innovative cyclic orientation transformation scheme and a hierarchical clustering technique. The single-shot filtering step isolates planar regions while robustly suppressing noise and high-curvature artefacts in one pass using a signal-processing technique. To address the limitations of Cartesian clustering on polar orientation data, a cyclic orientation transformation scheme is developed, enabling accurate representation of dip angle and dip direction in Cartesian space. The transformed orientations are then characterised into sets using a hierarchical clustering technique, which handles varying density distributions and identifies clusters without requiring user-defined set numbers. The accuracy of the method is validated on real-world mine stope and against ground truth obtained using manually handpicked discontinuity planes identified with the Virtual Compass tool, as well as widely used automated structure mapping techniques. The proposed approach outperforms the other techniques by exhibiting the lowest mean absolute error in estimating discontinuity set orientations in real-world stope data with errors of 1.95° and 2.20° in nominal dip angle and dip direction, respectively, and dispersion errors lying below 3°.
☆ DDP-WM: Disentangled Dynamics Prediction for Efficient World Models
World models are essential for autonomous robotic planning. However, the substantial computational overhead of existing dense Transformerbased models significantly hinders real-time deployment. To address this efficiency-performance bottleneck, we introduce DDP-WM, a novel world model centered on the principle of Disentangled Dynamics Prediction (DDP). We hypothesize that latent state evolution in observed scenes is heterogeneous and can be decomposed into sparse primary dynamics driven by physical interactions and secondary context-driven background updates. DDP-WM realizes this decomposition through an architecture that integrates efficient historical processing with dynamic localization to isolate primary dynamics. By employing a crossattention mechanism for background updates, the framework optimizes resource allocation and provides a smooth optimization landscape for planners. Extensive experiments demonstrate that DDP-WM achieves significant efficiency and performance across diverse tasks, including navigation, precise tabletop manipulation, and complex deformable or multi-body interactions. Specifically, on the challenging Push-T task, DDP-WM achieves an approximately 9 times inference speedup and improves the MPC success rate from 90% to98% compared to state-of-the-art dense models. The results establish a promising path for developing efficient, high-fidelity world models. Codes will be available at https://github.com/HCPLabSYSU/DDP-WM.
comment: Codes will be available at https://github.com/HCPLabSYSU/DDP-WM
☆ GDPR-Compliant Person Recognition in Industrial Environments Using MEMS-LiDAR and Hybrid Data
The reliable detection of unauthorized individuals in safety-critical industrial indoor spaces is crucial to avoid plant shutdowns, property damage, and personal hazards. Conventional vision-based methods that use deep-learning approaches for person recognition provide image information but are sensitive to lighting and visibility conditions and often violate privacy regulations, such as the General Data Protection Regulation (GDPR) in the European Union. Typically, detection systems based on deep learning require annotated data for training. Collecting and annotating such data, however, is highly time-consuming and due to manual treatments not necessarily error free. Therefore, this paper presents a privacy-compliant approach based on Micro-Electro-Mechanical Systems LiDAR (MEMS-LiDAR), which exclusively captures anonymized 3D point clouds and avoids personal identification features. To compensate for the large amount of time required to record real LiDAR data and for post-processing and annotation, real recordings are augmented with synthetically generated scenes from the CARLA simulation framework. The results demonstrate that the hybrid data improves the average precision by 44 percentage points compared to a model trained exclusively with real data while reducing the manual annotation effort by 50 %. Thus, the proposed approach provides a scalable, cost-efficient alternative to purely real-data-based methods and systematically shows how synthetic LiDAR data can combine high performance in person detection with GDPR compliance in an industrial environment.
comment: Accepted at 19th CIRP Conference on Intelligent Computation in Manufacturing Engineering
☆ MagicFuse: Single Image Fusion for Visual and Semantic Reinforcement
This paper focuses on a highly practical scenario: how to continue benefiting from the advantages of multi-modal image fusion under harsh conditions when only visible imaging sensors are available. To achieve this goal, we propose a novel concept of single-image fusion, which extends conventional data-level fusion to the knowledge level. Specifically, we develop MagicFuse, a novel single image fusion framework capable of deriving a comprehensive cross-spectral scene representation from a single low-quality visible image. MagicFuse first introduces an intra-spectral knowledge reinforcement branch and a cross-spectral knowledge generation branch based on the diffusion models. They mine scene information obscured in the visible spectrum and learn thermal radiation distribution patterns transferred to the infrared spectrum, respectively. Building on them, we design a multi-domain knowledge fusion branch that integrates the probabilistic noise from the diffusion streams of these two branches, from which a cross-spectral scene representation can be obtained through successive sampling. Then, we impose both visual and semantic constraints to ensure that this scene representation can satisfy human observation while supporting downstream semantic decision-making. Extensive experiments show that our MagicFuse achieves visual and semantic representation performance comparable to or even better than state-of-the-art fusion methods with multi-modal inputs, despite relying solely on a single degraded visible image.
☆ Mind-Brush: Integrating Agentic Cognitive Search and Reasoning into Image Generation
While text-to-image generation has achieved unprecedented fidelity, the vast majority of existing models function fundamentally as static text-to-pixel decoders. Consequently, they often fail to grasp implicit user intentions. Although emerging unified understanding-generation models have improved intent comprehension, they still struggle to accomplish tasks involving complex knowledge reasoning within a single model. Moreover, constrained by static internal priors, these models remain unable to adapt to the evolving dynamics of the real world. To bridge these gaps, we introduce Mind-Brush, a unified agentic framework that transforms generation into a dynamic, knowledge-driven workflow. Simulating a human-like 'think-research-create' paradigm, Mind-Brush actively retrieves multimodal evidence to ground out-of-distribution concepts and employs reasoning tools to resolve implicit visual constraints. To rigorously evaluate these capabilities, we propose Mind-Bench, a comprehensive benchmark comprising 500 distinct samples spanning real-time news, emerging concepts, and domains such as mathematical and Geo-Reasoning. Extensive experiments demonstrate that Mind-Brush significantly enhances the capabilities of unified models, realizing a zero-to-one capability leap for the Qwen-Image baseline on Mind-Bench, while achieving superior results on established benchmarks like WISE and RISE.
comment: 36 pages, 24 figures
☆ Spot-Wise Smart Parking: An Edge-Enabled Architecture with YOLOv11 and Digital Twin Integration
Smart parking systems help reduce congestion and minimize users' search time, thereby contributing to smart city adoption and enhancing urban mobility. In previous works, we presented a system developed on a university campus to monitor parking availability by estimating the number of free spaces from vehicle counts within a region of interest. Although this approach achieved good accuracy, it restricted the system's ability to provide spot-level insights and support more advanced applications. To overcome this limitation, we extend the system with a spot-wise monitoring strategy based on a distance-aware matching method with spatial tolerance, enhanced through an Adaptive Bounding Box Partitioning method for challenging spaces. The proposed approach achieves a balanced accuracy of 98.80% while maintaining an inference time of 8 seconds on a resource-constrained edge device, enhancing the capabilities of YOLOv11m, a model that has a size of 40.5 MB. In addition, two new components were introduced: (i) a Digital Shadow that visually represents parking lot entities as a base to evolve to a full Digital Twin, and (ii) an application support server based on a repurposed TV box. The latter not only enables scalable communication among cloud services, the parking totem, and a bot that provides detailed spot occupancy statistics, but also promotes hardware reuse as a step towards greater sustainability.
comment: Submitted to Journal of Internet Services and Applications, 27 pages, 20 figures, 3 tables
☆ ObjEmbed: Towards Universal Multimodal Object Embeddings
Aligning objects with corresponding textual descriptions is a fundamental challenge and a realistic requirement in vision-language understanding. While recent multimodal embedding models excel at global image-text alignment, they often struggle with fine-grained alignment between image regions and specific phrases. In this work, we present ObjEmbed, a novel MLLM embedding model that decomposes the input image into multiple regional embeddings, each corresponding to an individual object, along with global embeddings. It supports a wide range of visual understanding tasks like visual grounding, local image retrieval, and global image retrieval. ObjEmbed enjoys three key properties: (1) Object-Oriented Representation: It captures both semantic and spatial aspects of objects by generating two complementary embeddings for each region: an object embedding for semantic matching and an IoU embedding that predicts localization quality. The final object matching score combines semantic similarity with the predicted IoU, enabling more accurate retrieval. (2) Versatility: It seamlessly handles both region-level and image-level tasks. (3) Efficient Encoding: All objects in an image, along with the full image, are encoded in a single forward pass for high efficiency. Superior performance on 18 diverse benchmarks demonstrates its strong semantic discrimination.
☆ Tail-Aware Post-Training Quantization for 3D Geometry Models
The burgeoning complexity and scale of 3D geometry models pose significant challenges for deployment on resource-constrained platforms. While Post-Training Quantization (PTQ) enables efficient inference without retraining, conventional methods, primarily optimized for 2D Vision Transformers, fail to transfer effectively to 3D models due to intricate feature distributions and prohibitive calibration overhead. To address these challenges, we propose TAPTQ, a Tail-Aware Post-Training Quantization pipeline specifically engineered for 3D geometric learning. Our contribution is threefold: (1) To overcome the data-scale bottleneck in 3D datasets, we develop a progressive coarse-to-fine calibration construction strategy that constructs a highly compact subset to achieve both statistical purity and geometric representativeness. (2) We reformulate the quantization interval search as an optimization problem and introduce a ternary-search-based solver, reducing the computational complexity from $\mathcal{O}(N)$ to $\mathcal{O}(\log N)$ for accelerated deployment. (3) To mitigate quantization error accumulation, we propose TRE-Guided Module-wise Compensation, which utilizes a Tail Relative Error (TRE) metric to adaptively identify and rectify distortions in modules sensitive to long-tailed activation outliers. Extensive experiments on the VGGT and Pi3 benchmarks demonstrate that TAPTQ consistently outperforms state-of-the-art PTQ methods in accuracy while significantly reducing calibration time. The code will be released soon.
☆ MACD: Model-Aware Contrastive Decoding via Counterfactual Data
Video language models (Video-LLMs) are prone to hallucinations, often generating plausible but ungrounded content when visual evidence is weak, ambiguous, or biased. Existing decoding methods, such as contrastive decoding (CD), rely on random perturbations to construct contrastive data for mitigating hallucination patterns. However, such a way is hard to control the visual cues that drive hallucination or well align with model weaknesses. We propose Model-aware Counterfactual Data based Contrastive Decoding (MACD), a new inference strategy that combines model-guided counterfactual construction with decoding. Our approach uses the Video-LLM's own feedback to identify object regions most responsible for hallucination, generating targeted counterfactual inputs at the object level rather than arbitrary frame or temporal modifications. These model-aware counterfactual data is then integrated into CD to enforce evidence-grounded token selection during decoding. Experiments on EventHallusion, MVBench, Perception-test and Video-MME show that MACD consistently reduces hallucination while maintaining or improving task accuracy across diverse Video-LLMs, including Qwen and InternVL families. The method is especially effective in challenging scenarios involving small, occluded, or co-occurring objects. Our code and data will be publicly released.
☆ Simplicity Prevails: The Emergence of Generalizable AIGI Detection in Visual Foundation Models
While specialized detectors for AI-Generated Images (AIGI) achieve near-perfect accuracy on curated benchmarks, they suffer from a dramatic performance collapse in realistic, in-the-wild scenarios. In this work, we demonstrate that simplicity prevails over complex architectural designs. A simple linear classifier trained on the frozen features of modern Vision Foundation Models , including Perception Encoder, MetaCLIP 2, and DINOv3, establishes a new state-of-the-art. Through a comprehensive evaluation spanning traditional benchmarks, unseen generators, and challenging in-the-wild distributions, we show that this baseline not only matches specialized detectors on standard benchmarks but also decisively outperforms them on in-the-wild datasets, boosting accuracy by striking margins of over 30\%. We posit that this superior capability is an emergent property driven by the massive scale of pre-training data containing synthetic content. We trace the source of this capability to two distinct manifestations of data exposure: Vision-Language Models internalize an explicit semantic concept of forgery, while Self-Supervised Learning models implicitly acquire discriminative forensic features from the pretraining data. However, we also reveal persistent limitations: these models suffer from performance degradation under recapture and transmission, remain blind to VAE reconstruction and localized editing. We conclude by advocating for a paradigm shift in AI forensics, moving from overfitting on static benchmarks to harnessing the evolving world knowledge of foundation models for real-world reliability.
☆ DenVisCoM: Dense Vision Correspondence Mamba for Efficient and Real-time Optical Flow and Stereo Estimation IEEE
In this work, we propose a novel Mamba block DenVisCoM, as well as a novel hybrid architecture specifically tailored for accurate and real-time estimation of optical flow and disparity estimation. Given that such multi-view geometry and motion tasks are fundamentally related, we propose a unified architecture to tackle them jointly. Specifically, the proposed hybrid architecture is based on DenVisCoM and a Transformer-based attention block that efficiently addresses real-time inference, memory footprint, and accuracy at the same time for joint estimation of motion and 3D dense perception tasks. We extensively analyze the benchmark trade-off of accuracy and real-time processing on a large number of datasets. Our experimental results and related analysis suggest that our proposed model can accurately estimate optical flow and disparity estimation in real time. All models and associated code are available at https://github.com/vimstereo/DenVisCoM.
comment: IEEE International Conference on Robotics and Automation 2026
☆ FastPhysGS: Accelerating Physics-based Dynamic 3DGS Simulation via Interior Completion and Adaptive Optimization
Extending 3D Gaussian Splatting (3DGS) to 4D physical simulation remains challenging. Based on the Material Point Method (MPM), existing methods either rely on manual parameter tuning or distill dynamics from video diffusion models, limiting the generalization and optimization efficiency. Recent attempts using LLMs/VLMs suffer from a text/image-to-3D perceptual gap, yielding unstable physics behavior. In addition, they often ignore the surface structure of 3DGS, leading to implausible motion. We propose FastPhysGS, a fast and robust framework for physics-based dynamic 3DGS simulation:(1) Instance-aware Particle Filling (IPF) with Monte Carlo Importance Sampling (MCIS) to efficiently populate interior particles while preserving geometric fidelity; (2) Bidirectional Graph Decoupling Optimization (BGDO), an adaptive strategy that rapidly optimizes material parameters predicted from a VLM. Experiments show FastPhysGS achieves high-fidelity physical simulation in 1 minute using only 7 GB runtime memory, outperforming prior works with broad potential applications.
☆ Physics Informed Generative AI Enabling Labour Free Segmentation For Microscopy Analysis
Semantic segmentation of microscopy images is a critical task for high-throughput materials characterisation, yet its automation is severely constrained by the prohibitive cost, subjectivity, and scarcity of expert-annotated data. While physics-based simulations offer a scalable alternative to manual labelling, models trained on such data historically fail to generalise due to a significant domain gap, lacking the complex textures, noise patterns, and imaging artefacts inherent to experimental data. This paper introduces a novel framework for labour-free segmentation that successfully bridges this simulation-to-reality gap. Our pipeline leverages phase-field simulations to generate an abundant source of microstructural morphologies with perfect, intrinsically-derived ground-truth masks. We then employ a Cycle-Consistent Generative Adversarial Network (CycleGAN) for unpaired image-to-image translation, transforming the clean simulations into a large-scale dataset of high-fidelity, realistic SEM images. A U-Net model, trained exclusively on this synthetic data, demonstrated remarkable generalisation when deployed on unseen experimental images, achieving a mean Boundary F1-Score of 0.90 and an Intersection over Union (IOU) of 0.88. Comprehensive validation using t-SNE feature-space projection and Shannon entropy analysis confirms that our synthetic images are statistically and featurally indistinguishable from the real data manifold. By completely decoupling model training from manual annotation, our generative framework transforms a data-scarce problem into one of data abundance, providing a robust and fully automated solution to accelerate materials discovery and analysis.
☆ Cross-Modal Alignment and Fusion for RGB-D Transmission-Line Defect Detection
Transmission line defect detection remains challenging for automated UAV inspection due to the dominance of small-scale defects, complex backgrounds, and illumination variations. Existing RGB-based detectors, despite recent progress, struggle to distinguish geometrically subtle defects from visually similar background structures under limited chromatic contrast. This paper proposes CMAFNet, a Cross-Modal Alignment and Fusion Network that integrates RGB appearance and depth geometry through a principled purify-then-fuse paradigm. CMAFNet consists of a Semantic Recomposition Module that performs dictionary-based feature purification via a learned codebook to suppress modality-specific noise while preserving defect-discriminative information, and a Contextual Semantic Integration Framework that captures global spatial dependencies using partial-channel attention to enhance structural semantic reasoning. Position-wise normalization within the purification stage enforces explicit reconstruction-driven cross-modal alignment, ensuring statistical compatibility between heterogeneous features prior to fusion. Extensive experiments on the TLRGBD benchmark, where 94.5% of instances are small objects, demonstrate that CMAFNet achieves 32.2% mAP@50 and 12.5% APs, outperforming the strongest baseline by 9.8 and 4.0 percentage points, respectively. A lightweight variant reaches 24.8% mAP50 at 228 FPS with only 4.9M parameters, surpassing all YOLO-based detectors while matching transformer-based methods at substantially lower computational cost.
☆ FreshMem: Brain-Inspired Frequency-Space Hybrid Memory for Streaming Video Understanding
Transitioning Multimodal Large Language Models (MLLMs) from offline to online streaming video understanding is essential for continuous perception. However, existing methods lack flexible adaptivity, leading to irreversible detail loss and context fragmentation. To resolve this, we propose FreshMem, a Frequency-Space Hybrid Memory network inspired by the brain's logarithmic perception and memory consolidation. FreshMem reconciles short-term fidelity with long-term coherence through two synergistic modules: Multi-scale Frequency Memory (MFM), which projects overflowing frames into representative frequency coefficients, complemented by residual details to reconstruct a global historical "gist"; and Space Thumbnail Memory (STM), which discretizes the continuous stream into episodic clusters by employing an adaptive compression strategy to distill them into high-density space thumbnails. Extensive experiments show that FreshMem significantly boosts the Qwen2-VL baseline, yielding gains of 5.20%, 4.52%, and 2.34% on StreamingBench, OV-Bench, and OVO-Bench, respectively. As a training-free solution, FreshMem outperforms several fully fine-tuned methods, offering a highly efficient paradigm for long-horizon streaming video understanding.
☆ Hyperspectral Image Fusion with Spectral-Band and Fusion-Scale Agnosticism
Current deep learning models for Multispectral and Hyperspectral Image Fusion (MS/HS fusion) are typically designed for fixed spectral bands and spatial scales, which limits their transferability across diverse sensors. To address this, we propose SSA, a universal framework for MS/HS fusion with spectral-band and fusion-scale agnosticism. Specifically, we introduce Matryoshka Kernel (MK), a novel operator that enables a single model to adapt to arbitrary numbers of spectral channels. Meanwhile, we build SSA upon an Implicit Neural Representation (INR) backbone that models the HS signal as a continuous function, enabling reconstruction at arbitrary spatial resolutions. Together, these two forms of agnosticism enable a single MS/HS fusion model that generalizes effectively to unseen sensors and spatial scales. Extensive experiments demonstrate that our single model achieves state-of-the-art performance while generalizing well to unseen sensors and scales, paving the way toward future HS foundation models.
☆ Towards Autonomous Instrument Tray Assembly for Sterile Processing Applications
The Sterile Processing and Distribution (SPD) department is responsible for cleaning, disinfecting, inspecting, and assembling surgical instruments between surgeries. Manual inspection and preparation of instrument trays is a time-consuming, error-prone task, often prone to contamination and instrument breakage. In this work, we present a fully automated robotic system that sorts and structurally packs surgical instruments into sterile trays, focusing on automation of the SPD assembly stage. A custom dataset comprising 31 surgical instruments and 6,975 annotated images was collected to train a hybrid perception pipeline using YOLO12 for detection and a cascaded ResNet-based model for fine-grained classification. The system integrates a calibrated vision module, a 6-DOF Staubli TX2-60L robotic arm with a custom dual electromagnetic gripper, and a rule-based packing algorithm that reduces instrument collisions during transport. The packing framework uses 3D printed dividers and holders to physically isolate instruments, reducing collision and friction during transport. Experimental evaluations show high perception accuracy and statistically significant reduction in tool-to-tool collisions compared to human-assembled trays. This work serves as the scalable first step toward automating SPD workflows, improving safety, and consistency of surgical preparation while reducing SPD processing times.
comment: 7 pages, 9 figures, 2026 International Symposium on Medical Robotics
☆ SMTrack: State-Aware Mamba for Efficient Temporal Modeling in Visual Tracking IEEE
Visual tracking aims to automatically estimate the state of a target object in a video sequence, which is challenging especially in dynamic scenarios. Thus, numerous methods are proposed to introduce temporal cues to enhance tracking robustness. However, conventional CNN and Transformer architectures exhibit inherent limitations in modeling long-range temporal dependencies in visual tracking, often necessitating either complex customized modules or substantial computational costs to integrate temporal cues. Inspired by the success of the state space model, we propose a novel temporal modeling paradigm for visual tracking, termed State-aware Mamba Tracker (SMTrack), providing a neat pipeline for training and tracking without needing customized modules or substantial computational costs to build long-range temporal dependencies. It enjoys several merits. First, we propose a novel selective state-aware space model with state-wise parameters to capture more diverse temporal cues for robust tracking. Second, SMTrack facilitates long-range temporal interactions with linear computational complexity during training. Third, SMTrack enables each frame to interact with previously tracked frames via hidden state propagation and updating, which releases computational costs of handling temporal cues during tracking. Extensive experimental results demonstrate that SMTrack achieves promising performance with low computational costs.
comment: This paper is accepted by IEEE TIP
☆ VRGaussianAvatar: Integrating 3D Gaussian Avatars into VR IEEE
We present VRGaussianAvatar, an integrated system that enables real-time full-body 3D Gaussian Splatting (3DGS) avatars in virtual reality using only head-mounted display (HMD) tracking signals. The system adopts a parallel pipeline with a VR Frontend and a GA Backend. The VR Frontend uses inverse kinematics to estimate full-body pose and streams the resulting pose along with stereo camera parameters to the backend. The GA Backend stereoscopically renders a 3DGS avatar reconstructed from a single image. To improve stereo rendering efficiency, we introduce Binocular Batching, which jointly processes left and right eye views in a single batched pass to reduce redundant computation and support high-resolution VR displays. We evaluate VRGaussianAvatar with quantitative performance tests and a within-subject user study against image- and video-based mesh avatar baselines. Results show that VRGaussianAvatar sustains interactive VR performance and yields higher perceived appearance similarity, embodiment, and plausibility. Project page and source code are available at https://vrgaussianavatar.github.io.
comment: Accepted as an IEEE TVCG paper at IEEE VR 2026 (journal track)
☆ Real-Time Loop Closure Detection in Visual SLAM via NetVLAD and Faiss
Loop closure detection (LCD) is a core component of simultaneous localization and mapping (SLAM): it identifies revisited places and enables pose-graph constraints that correct accumulated drift. Classic bag-of-words approaches such as DBoW are efficient but often degrade under appearance change and perceptual aliasing. In parallel, deep learning-based visual place recognition (VPR) descriptors (e.g., NetVLAD and Transformer-based models) offer stronger robustness, but their computational cost is often viewed as a barrier to real-time SLAM. In this paper, we empirically evaluate NetVLAD as an LCD module and compare it against DBoW on the KITTI dataset. We introduce a Fine-Grained Top-K precision-recall curve that better reflects LCD settings where a query may have zero or multiple valid matches. With Faiss-accelerated nearestneighbor search, NetVLAD achieves real-time query speed while improving accuracy and robustness over DBoW, making it a practical drop-in alternative for LCD in SLAM.
☆ Moonworks Lunara Aesthetic II: An Image Variation Dataset
We introduce Lunara Aesthetic II, a publicly released, ethically sourced image dataset designed to support controlled evaluation and learning of contextual consistency in modern image generation and editing systems. The dataset comprises 2,854 anchor-linked variation pairs derived from original art and photographs created by Moonworks. Each variation pair applies contextual transformations, such as illumination, weather, viewpoint, scene composition, color tone, or mood; while preserving a stable underlying identity. Lunara Aesthetic II operationalizes identity-preserving contextual variation as a supervision signal while also retaining Lunara's signature high aesthetic scores. Results show high identity stability, strong target attribute realization, and a robust aesthetic profile that exceeds large-scale web datasets. Released under the Apache 2.0 license, Lunara Aesthetic II is intended for benchmarking, fine-tuning, and analysis of contextual generalization, identity preservation, and edit robustness in image generation and image-to-image systems with interpretable, relational supervision. The dataset is publicly available at: https://huggingface.co/datasets/moonworks/lunara-aesthetic-image-variations.
☆ From Frames to Sequences: Temporally Consistent Human-Centric Dense Prediction
In this work, we focus on the challenge of temporally consistent human-centric dense prediction across video sequences. Existing models achieve strong per-frame accuracy but often flicker under motion, occlusion, and lighting changes, and they rarely have paired human video supervision for multiple dense tasks. We address this gap with a scalable synthetic data pipeline that generates photorealistic human frames and motion-aligned sequences with pixel-accurate depth, normals, and masks. Unlike prior static data synthetic pipelines, our pipeline provides both frame-level labels for spatial learning and sequence-level supervision for temporal learning. Building on this, we train a unified ViT-based dense predictor that (i) injects an explicit human geometric prior via CSE embeddings and (ii) improves geometry-feature reliability with a lightweight channel reweighting module after feature fusion. Our two-stage training strategy, combining static pretraining with dynamic sequence supervision, enables the model first to acquire robust spatial representations and then refine temporal consistency across motion-aligned sequences. Extensive experiments show that we achieve state-of-the-art performance on THuman2.1 and Hi4D and generalize effectively to in-the-wild videos.
☆ Contribution-aware Token Compression for Efficient Video Understanding via Reinforcement Learning AAAI2026
Video large language models have demonstrated remarkable capabilities in video understanding tasks. However, the redundancy of video tokens introduces significant computational overhead during inference, limiting their practical deployment. Many compression algorithms are proposed to prioritize retaining features with the highest attention scores to minimize perturbations in attention computations. However, the correlation between attention scores and their actual contribution to correct answers remains ambiguous. To address the above limitation, we propose a novel \textbf{C}ontribution-\textbf{a}ware token \textbf{Co}mpression algorithm for \textbf{VID}eo understanding (\textbf{CaCoVID}) that explicitly optimizes the token selection policy based on the contribution of tokens to correct predictions. First, we introduce a reinforcement learning-based framework that optimizes a policy network to select video token combinations with the greatest contribution to correct predictions. This paradigm shifts the focus from passive token preservation to active discovery of optimal compressed token combinations. Secondly, we propose a combinatorial policy optimization algorithm with online combination space sampling, which dramatically reduces the exploration space for video token combinations and accelerates the convergence speed of policy optimization. Extensive experiments on diverse video understanding benchmarks demonstrate the effectiveness of CaCoVID. Codes will be released.
comment: This paper is accepted by AAAI2026
☆ From Perception to Action: Spatial AI Agents and World Models
While large language models have become the prevailing approach for agentic reasoning and planning, their success in symbolic domains does not readily translate to the physical world. Spatial intelligence, the ability to perceive 3D structure, reason about object relationships, and act under physical constraints, is an orthogonal capability that proves important for embodied agents. Existing surveys address either agentic architectures or spatial domains in isolation. None provide a unified framework connecting these complementary capabilities. This paper bridges that gap. Through a thorough review of over 2,000 papers, citing 742 works from top-tier venues, we introduce a unified three-axis taxonomy connecting agentic capabilities with spatial tasks across scales. Crucially, we distinguish spatial grounding (metric understanding of geometry and physics) from symbolic grounding (associating images with text), arguing that perception alone does not confer agency. Our analysis reveals three key findings mapped to these axes: (1) hierarchical memory systems (Capability axis) are important for long-horizon spatial tasks. (2) GNN-LLM integration (Task axis) is a promising approach for structured spatial reasoning. (3) World models (Scale axis) are essential for safe deployment across micro-to-macro spatial scales. We conclude by identifying six grand challenges and outlining directions for future research, including the need for unified evaluation frameworks to standardize cross-domain assessment. This taxonomy provides a foundation for unifying fragmented research efforts and enabling the next generation of spatially-aware autonomous systems in robotics, autonomous vehicles, and geospatial intelligence.
comment: 61 pages, 742 citations, 1 figure, 3 tables. Survey paper on spatial AI agents, embodied AI, graph neural networks, and world models
☆ ReCALL: Recalibrating Capability Degradation for MLLM-based Composed Image Retrieval
Composed Image Retrieval (CIR) aims to retrieve target images based on a hybrid query comprising a reference image and a modification text. Early dual-tower Vision-Language Models (VLMs) struggle with cross-modality compositional reasoning required for this task. Recently, adapting generative Multimodal Large Language Models (MLLMs) for retrieval offers a promising direction. However, we identify that this adaptation strategy overlooks a fundamental issue: adapting a generative MLLM into a single-embedding discriminative retriever triggers a paradigm conflict, which leads to Capability Degradation - the deterioration of native fine-grained reasoning after retrieval adaptation. To address this challenge, we propose ReCALL (Recalibrating Capability Degradation), a model-agnostic framework that follows a diagnose-generate-refine pipeline: Firstly, we diagnose cognitive blind spots of the retriever via self-guided informative instance mining. Next, we generate corrective instructions and triplets by CoT prompting the foundation MLLM and conduct quality control with VQA-based consistency filtering. Finally, we refine the retriever through continual training on these triplets with a grouped contrastive scheme, thereby internalizing fine-grained visual-semantic distinctions and realigning the discriminative embedding space of retriever with intrinsic compositional reasoning within the MLLM. Extensive experiments on CIRR and FashionIQ show that ReCALL consistently recalibrates degraded capabilities and achieves state-of-the-art performance. Code will be released soon.
☆ Federated Vision Transformer with Adaptive Focal Loss for Medical Image Classification
While deep learning models like Vision Transformer (ViT) have achieved significant advances, they typically require large datasets. With data privacy regulations, access to many original datasets is restricted, especially medical images. Federated learning (FL) addresses this challenge by enabling global model aggregation without data exchange. However, the heterogeneity of the data and the class imbalance that exist in local clients pose challenges for the generalization of the model. This study proposes a FL framework leveraging a dynamic adaptive focal loss (DAFL) and a client-aware aggregation strategy for local training. Specifically, we design a dynamic class imbalance coefficient that adjusts based on each client's sample distribution and class data distribution, ensuring minority classes receive sufficient attention and preventing sparse data from being ignored. To address client heterogeneity, a weighted aggregation strategy is adopted, which adapts to data size and characteristics to better capture inter-client variations. The classification results on three public datasets (ISIC, Ocular Disease and RSNA-ICH) show that the proposed framework outperforms DenseNet121, ResNet50, ViT-S/16, ViT-L/32, FedCLIP, Swin Transformer, CoAtNet, and MixNet in most cases, with accuracy improvements ranging from 0.98\% to 41.69\%. Ablation studies on the imbalanced ISIC dataset validate the effectiveness of the proposed loss function and aggregation strategy compared to traditional loss functions and other FL approaches. The codes can be found at: https://github.com/AIPMLab/ViT-FLDAF.
comment: Accepted in Knowledge-Based Systems
☆ Research on World Models Is Not Merely Injecting World Knowledge into Specific Tasks
World models have emerged as a critical frontier in AI research, aiming to enhance large models by infusing them with physical dynamics and world knowledge. The core objective is to enable agents to understand, predict, and interact with complex environments. However, current research landscape remains fragmented, with approaches predominantly focused on injecting world knowledge into isolated tasks, such as visual prediction, 3D estimation, or symbol grounding, rather than establishing a unified definition or framework. While these task-specific integrations yield performance gains, they often lack the systematic coherence required for holistic world understanding. In this paper, we analyze the limitations of such fragmented approaches and propose a unified design specification for world models. We suggest that a robust world model should not be a loose collection of capabilities but a normative framework that integrally incorporates interaction, perception, symbolic reasoning, and spatial representation. This work aims to provide a structured perspective to guide future research toward more general, robust, and principled models of the world.
comment: 13 pages, 4 figures
☆ PISCES: Annotation-free Text-to-Video Post-Training via Optimal Transport-Aligned Rewards
Text-to-video (T2V) generation aims to synthesize videos with high visual quality and temporal consistency that are semantically aligned with input text. Reward-based post-training has emerged as a promising direction to improve the quality and semantic alignment of generated videos. However, recent methods either rely on large-scale human preference annotations or operate on misaligned embeddings from pre-trained vision-language models, leading to limited scalability or suboptimal supervision. We present $\texttt{PISCES}$, an annotation-free post-training algorithm that addresses these limitations via a novel Dual Optimal Transport (OT)-aligned Rewards module. To align reward signals with human judgment, $\texttt{PISCES}$ uses OT to bridge text and video embeddings at both distributional and discrete token levels, enabling reward supervision to fulfill two objectives: (i) a Distributional OT-aligned Quality Reward that captures overall visual quality and temporal coherence; and (ii) a Discrete Token-level OT-aligned Semantic Reward that enforces semantic, spatio-temporal correspondence between text and video tokens. To our knowledge, $\texttt{PISCES}$ is the first to improve annotation-free reward supervision in generative post-training through the lens of OT. Experiments on both short- and long-video generation show that $\texttt{PISCES}$ outperforms both annotation-based and annotation-free methods on VBench across Quality and Semantic scores, with human preference studies further validating its effectiveness. We show that the Dual OT-aligned Rewards module is compatible with multiple optimization paradigms, including direct backpropagation and reinforcement learning fine-tuning.
☆ Omni-Judge: Can Omni-LLMs Serve as Human-Aligned Judges for Text-Conditioned Audio-Video Generation?
State-of-the-art text-to-video generation models such as Sora 2 and Veo 3 can now produce high-fidelity videos with synchronized audio directly from a textual prompt, marking a new milestone in multi-modal generation. However, evaluating such tri-modal outputs remains an unsolved challenge. Human evaluation is reliable but costly and difficult to scale, while traditional automatic metrics, such as FVD, CLAP, and ViCLIP, focus on isolated modality pairs, struggle with complex prompts, and provide limited interpretability. Omni-modal large language models (omni-LLMs) present a promising alternative: they naturally process audio, video, and text, support rich reasoning, and offer interpretable chain-of-thought feedback. Driven by this, we introduce Omni-Judge, a study assessing whether omni-LLMs can serve as human-aligned judges for text-conditioned audio-video generation. Across nine perceptual and alignment metrics, Omni-Judge achieves correlation comparable to traditional metrics and excels on semantically demanding tasks such as audio-text alignment, video-text alignment, and audio-video-text coherence. It underperforms on high-FPS perceptual metrics, including video quality and audio-video synchronization, due to limited temporal resolution. Omni-Judge provides interpretable explanations that expose semantic or physical inconsistencies, enabling practical downstream uses such as feedback-based refinement. Our findings highlight both the potential and current limitations of omni-LLMs as unified evaluators for multi-modal generation.
☆ Token Pruning for In-Context Generation in Diffusion Transformers
In-context generation significantly enhances Diffusion Transformers (DiTs) by enabling controllable image-to-image generation through reference examples. However, the resulting input concatenation drastically increases sequence length, creating a substantial computational bottleneck. Existing token reduction techniques, primarily tailored for text-to-image synthesis, fall short in this paradigm as they apply uniform reduction strategies, overlooking the inherent role asymmetry between reference contexts and target latents across spatial, temporal, and functional dimensions. To bridge this gap, we introduce ToPi, a training-free token pruning framework tailored for in-context generation in DiTs. Specifically, ToPi utilizes offline calibration-driven sensitivity analysis to identify pivotal attention layers, serving as a robust proxy for redundancy estimation. Leveraging these layers, we derive a novel influence metric to quantify the contribution of each context token for selective pruning, coupled with a temporal update strategy that adapts to the evolving diffusion trajectory. Empirical evaluations demonstrate that ToPi can achieve over 30\% speedup in inference while maintaining structural fidelity and visual consistency across complex image generation tasks.
comment: 20 pages
☆ UV-M3TL: A Unified and Versatile Multimodal Multi-Task Learning Framework for Assistive Driving Perception
Advanced Driver Assistance Systems (ADAS) need to understand human driver behavior while perceiving their navigation context, but jointly learning these heterogeneous tasks would cause inter-task negative transfer and impair system performance. Here, we propose a Unified and Versatile Multimodal Multi-Task Learning (UV-M3TL) framework to simultaneously recognize driver behavior, driver emotion, vehicle behavior, and traffic context, while mitigating inter-task negative transfer. Our framework incorporates two core components: dual-branch spatial channel multimodal embedding (DB-SCME) and adaptive feature-decoupled multi-task loss (AFD-Loss). DB-SCME enhances cross-task knowledge transfer while mitigating task conflicts by employing a dual-branch structure to explicitly model salient task-shared and task-specific features. AFD-Loss improves the stability of joint optimization while guiding the model to learn diverse multi-task representations by introducing an adaptive weighting mechanism based on learning dynamics and feature decoupling constraints. We evaluate our method on the AIDE dataset, and the experimental results demonstrate that UV-M3TL achieves state-of-the-art performance across all four tasks. To further prove the versatility, we evaluate UV-M3TL on additional public multi-task perception benchmarks (BDD100K, CityScapes, NYUD-v2, and PASCAL-Context), where it consistently delivers strong performance across diverse task combinations, attaining state-of-the-art results on most tasks.
☆ Samba+: General and Accurate Salient Object Detection via A More Unified Mamba-based Framework
Existing salient object detection (SOD) models are generally constrained by the limited receptive fields of convolutional neural networks (CNNs) and quadratic computational complexity of Transformers. Recently, the emerging state-space model, namely Mamba, has shown great potential in balancing global receptive fields and computational efficiency. As a solution, we propose Saliency Mamba (Samba), a pure Mamba-based architecture that flexibly handles various distinct SOD tasks, including RGB/RGB-D/RGB-T SOD, video SOD (VSOD), RGB-D VSOD, and visible-depth-thermal SOD. Specifically, we rethink the scanning strategy of Mamba for SOD, and introduce a saliency-guided Mamba block (SGMB) that features a spatial neighborhood scanning (SNS) algorithm to preserve the spatial continuity of salient regions. A context-aware upsampling (CAU) method is also proposed to promote hierarchical feature alignment and aggregation by modeling contextual dependencies. As one step further, to avoid the "task-specific" problem as in previous SOD solutions, we develop Samba+, which is empowered by training Samba in a multi-task joint manner, leading to a more unified and versatile model. Two crucial components that collaboratively tackle challenges encountered in input of arbitrary modalities and continual adaptation are investigated. Specifically, a hub-and-spoke graph attention (HGA) module facilitates adaptive cross-modal interactive fusion, and a modality-anchored continual learning (MACL) strategy alleviates inter-modal conflicts together with catastrophic forgetting. Extensive experiments demonstrate that Samba individually outperforms existing methods across six SOD tasks on 22 datasets with lower computational cost, whereas Samba+ achieves even superior results on these tasks and datasets by using a single trained versatile model. Additional results further demonstrate the potential of our Samba framework.
☆ Know Your Step: Faster and Better Alignment for Flow Matching Models via Step-aware Advantages
Recent advances in flow matching models, particularly with reinforcement learning (RL), have significantly enhanced human preference alignment in few step text to image generators. However, existing RL based approaches for flow matching models typically rely on numerous denoising steps, while suffering from sparse and imprecise reward signals that often lead to suboptimal alignment. To address these limitations, we propose Temperature Annealed Few step Sampling with Group Relative Policy Optimization (TAFS GRPO), a novel framework for training flow matching text to image models into efficient few step generators well aligned with human preferences. Our method iteratively injects adaptive temporal noise onto the results of one step samples. By repeatedly annealing the model's sampled outputs, it introduces stochasticity into the sampling process while preserving the semantic integrity of each generated image. Moreover, its step aware advantage integration mechanism combines the GRPO to avoid the need for the differentiable of reward function and provide dense and step specific rewards for stable policy optimization. Extensive experiments demonstrate that TAFS GRPO achieves strong performance in few step text to image generation and significantly improves the alignment of generated images with human preferences. The code and models of this work will be available to facilitate further research.
☆ Genus-0 Surface Parameterization using Spherical Beltrami Differentials
Spherical surface parameterization is a fundamental tool in geometry processing and imaging science. For a genus-0 closed surface, many efficient algorithms can map the surface to the sphere; consequently, a broad class of task-driven genus-0 mapping problems can be reduced to constructing a high-quality spherical self-map. However, existing approaches often face a trade-off between satisfying task objectives (e.g., landmark or feature alignment), maintaining bijectivity, and controlling geometric distortion. We introduce the Spherical Beltrami Differential (SBD), a two-chart representation of quasiconformal self-maps of the sphere, and establish its correspondence with spherical homeomorphisms up to conformal automorphisms. Building on the Spectral Beltrami Network (SBN), we propose a neural optimization framework BOOST that optimizes two Beltrami fields on hemispherical stereographic charts and enforces global consistency through explicit seam-aware constraints. Experiments on large-deformation landmark matching and intensity-based spherical registration demonstrate the effectiveness of our proposed framework. We further apply the method to brain cortical surface registration, aligning sulcal landmarks and jointly matching cortical sulci depth maps, showing improved task fidelity with controlled distortion and robust bijective behavior.
☆ HandMCM: Multi-modal Point Cloud-based Correspondence State Space Model for 3D Hand Pose Estimation AAAI
3D hand pose estimation that involves accurate estimation of 3D human hand keypoint locations is crucial for many human-computer interaction applications such as augmented reality. However, this task poses significant challenges due to self-occlusion of the hands and occlusions caused by interactions with objects. In this paper, we propose HandMCM to address these challenges. Our HandMCM is a novel method based on the powerful state space model (Mamba). By incorporating modules for local information injection/filtering and correspondence modeling, the proposed correspondence Mamba effectively learns the highly dynamic kinematic topology of keypoints across various occlusion scenarios. Moreover, by integrating multi-modal image features, we enhance the robustness and representational capacity of the input, leading to more accurate hand pose estimation. Empirical evaluations on three benchmark datasets demonstrate that our model significantly outperforms current state-of-the-art methods, particularly in challenging scenarios involving severe occlusions. These results highlight the potential of our approach to advance the accuracy and reliability of 3D hand pose estimation in practical applications.
comment: AAAI accepted
☆ Visible Light Positioning With Lamé Curve LEDs: A Generic Approach for Camera Pose Estimation IEEE
Camera-based visible light positioning (VLP) is a promising technique for accurate and low-cost indoor camera pose estimation (CPE). To reduce the number of required light-emitting diodes (LEDs), advanced methods commonly exploit LED shape features for positioning. Although interesting, they are typically restricted to a single LED geometry, leading to failure in heterogeneous LED-shape scenarios. To address this challenge, this paper investigates Lamé curves as a unified representation of common LED shapes and proposes a generic VLP algorithm using Lamé curve-shaped LEDs, termed LC-VLP. In the considered system, multiple ceiling-mounted Lamé curve-shaped LEDs periodically broadcast their curve parameters via visible light communication, which are captured by a camera-equipped receiver. Based on the received LED images and curve parameters, the receiver can estimate the camera pose using LC-VLP. Specifically, an LED database is constructed offline to store the curve parameters, while online positioning is formulated as a nonlinear least-squares problem and solved iteratively. To provide a reliable initialization, a correspondence-free perspective-\textit{n}-points (FreeP\textit{n}P) algorithm is further developed, enabling approximate CPE without any pre-calibrated reference points. The performance of LC-VLP is verified by both simulations and experiments. Simulations show that LC-VLP outperforms state-of-the-art methods in both circular- and rectangular-LED scenarios, achieving reductions of over 40% in position error and 25% in rotation error. Experiments further show that LC-VLP can achieve an average position accuracy of less than 4 cm.
comment: Submitted to an IEEE journal for possible publication
☆ Generative Visual Code Mobile World Models
Mobile Graphical User Interface (GUI) World Models (WMs) offer a promising path for improving mobile GUI agent performance at train- and inference-time. However, current approaches face a critical trade-off: text-based WMs sacrifice visual fidelity, while the inability of visual WMs in precise text rendering led to their reliance on slow, complex pipelines dependent on numerous external models. We propose a novel paradigm: visual world modeling via renderable code generation, where a single Vision-Language Model (VLM) predicts the next GUI state as executable web code that renders to pixels, rather than generating pixels directly. This combines the strengths of both approaches: VLMs retain their linguistic priors for precise text rendering while their pre-training on structured web code enables high-fidelity visual generation. We introduce gWorld (8B, 32B), the first open-weight visual mobile GUI WMs built on this paradigm, along with a data generation framework (gWorld) that automatically synthesizes code-based training data. In extensive evaluation across 4 in- and 2 out-of-distribution benchmarks, gWorld sets a new pareto frontier in accuracy versus model size, outperforming 8 frontier open-weight models over 50.25x larger. Further analyses show that (1) scaling training data via gWorld yields meaningful gains, (2) each component of our pipeline improves data quality, and (3) stronger world modeling improves downstream mobile GUI policy performance.
comment: Pre-print (technical report)
☆ SGHA-Attack: Semantic-Guided Hierarchical Alignment for Transferable Targeted Attacks on Vision-Language Models
Large vision-language models (VLMs) are vulnerable to transfer-based adversarial perturbations, enabling attackers to optimize on surrogate models and manipulate black-box VLM outputs. Prior targeted transfer attacks often overfit surrogate-specific embedding space by relying on a single reference and emphasizing final-layer alignment, which underutilizes intermediate semantics and degrades transfer across heterogeneous VLMs. To address this, we propose SGHA-Attack, a Semantic-Guided Hierarchical Alignment framework that adopts multiple target references and enforces intermediate-layer consistency. Concretely, we generate a visually grounded reference pool by sampling a frozen text-to-image model conditioned on the target prompt, and then carefully select the Top-K most semantically relevant anchors under the surrogate to form a weighted mixture for stable optimization guidance. Building on these anchors, SGHA-Attack injects target semantics throughout the feature hierarchy by aligning intermediate visual representations at both global and spatial granularities across multiple depths, and by synchronizing intermediate visual and textual features in a shared latent subspace to provide early cross-modal supervision before the final projection. Extensive experiments on open-source and commercial black-box VLMs show that SGHA-Attack achieves stronger targeted transferability than prior methods and remains robust under preprocessing and purification defenses.
☆ One-Step Diffusion for Perceptual Image Compression
Diffusion-based image compression methods have achieved notable progress, delivering high perceptual quality at low bitrates. However, their practical deployment is hindered by significant inference latency and heavy computational overhead, primarily due to the large number of denoising steps required during decoding. To address this problem, we propose a diffusion-based image compression method that requires only a single-step diffusion process, significantly improving inference speed. To enhance the perceptual quality of reconstructed images, we introduce a discriminator that operates on compact feature representations instead of raw pixels, leveraging the fact that features better capture high-level texture and structural details. Experimental results show that our method delivers comparable compression performance while offering a 46$\times$ faster inference speed compared to recent diffusion-based approaches. The source code and models are available at https://github.com/cheesejiang/OSDiff.
☆ Multimodal UNcommonsense: From Odd to Ordinary and Ordinary to Odd
Commonsense reasoning in multimodal contexts remains a foundational challenge in artificial intelligence. We introduce Multimodal UNcommonsense(MUN), a benchmark designed to evaluate models' ability to handle scenarios that deviate from typical visual or contextual expectations. MUN pairs visual scenes with surprising or unlikely outcomes described in natural language, prompting models to either rationalize seemingly odd images using everyday logic or uncover unexpected interpretations in ordinary scenes. To support this task, we propose a retrieval-based in-context learning (R-ICL) framework that transfers reasoning capabilities from larger models to smaller ones without additional training. Leveraging a novel Multimodal Ensemble Retriever (MER), our method identifies semantically relevant exemplars even when image and text pairs are deliberately discordant. Experiments show an average improvement of 8.3% over baseline ICL methods, highlighting the effectiveness of R-ICL in low-frequency, atypical settings. MUN opens new directions for evaluating and improving visual-language models' robustness and adaptability in real-world, culturally diverse, and non-prototypical scenarios.
comment: 24 pages
☆ Combined Flicker-banding and Moire Removal for Screen-Captured Images
Capturing display screens with mobile devices has become increasingly common, yet the resulting images often suffer from severe degradations caused by the coexistence of moiré patterns and flicker-banding, leading to significant visual quality degradation. Due to the strong coupling of these two artifacts in real imaging processes, existing methods designed for single degradations fail to generalize to such compound scenarios. In this paper, we present the first systematic study on joint removal of moiré patterns and flicker-banding in screen-captured images, and propose a unified restoration framework, named CLEAR. To support this task, we construct a large-scale dataset containing both moiré patterns and flicker-banding, and introduce an ISP-based flicker simulation pipeline to stabilize model training and expand the degradation distribution. Furthermore, we design a frequency-domain decomposition and re-composition module together with a trajectory alignment loss to enhance the modeling of compound artifacts. Extensive experiments demonstrate that the proposed method consistently. outperforms existing image restoration approaches across multiple evaluation metrics, validating its effectiveness in complex real-world scenarios.
☆ InfoTok: Regulating Information Flow for Capacity-Constrained Shared Visual Tokenization in Unified MLLMs
Unified multimodal large language models (MLLMs) integrate image understanding and generation in a single framework, with the visual tokenizer acting as the sole interface that maps visual inputs into tokens for downstream tasks. However, existing shared-token designs are mostly architecture-driven and lack an explicit criterion for what information tokens should preserve to support both understanding and generation. Therefore, we introduce a capacity-constrained perspective, highlighting that in shared-token unified MLLMs the visual tokenizer behaves as a compute-bounded learner, so the token budget should prioritize reusable structure over hard-to-exploit high-entropy variations and redundancy. Motivated by this perspective, we propose InfoTok, an information-regularized visual tokenization mechanism grounded in the Information Bottleneck (IB) principle. InfoTok formulates tokenization as controlling information flow from images to shared tokens to multimodal outputs, yielding a principled trade-off between compression and task relevance via mutual-information regularization. We integrate InfoTok into three representative unified MLLMs without introducing any additional training data. Experiments show consistent improvements on both understanding and generation, supporting information-regularized tokenization as a principled foundation for learning a shared token space in unified MLLMs.
☆ Toward Cognitive Supersensing in Multimodal Large Language Model
Multimodal Large Language Models (MLLMs) have achieved remarkable success in open-vocabulary perceptual tasks, yet their ability to solve complex cognitive problems remains limited, especially when visual details are abstract and require visual memory. Current approaches primarily scale Chain-of-Thought (CoT) reasoning in the text space, even when language alone is insufficient for clear and structured reasoning, and largely neglect visual reasoning mechanisms analogous to the human visuospatial sketchpad and visual imagery. To mitigate this deficiency, we introduce Cognitive Supersensing, a novel training paradigm that endows MLLMs with human-like visual imagery capabilities by integrating a Latent Visual Imagery Prediction (LVIP) head that jointly learns sequences of visual cognitive latent embeddings and aligns them with the answer, thereby forming vision-based internal reasoning chains. We further introduce a reinforcement learning stage that optimizes text reasoning paths based on this grounded visual latent. To evaluate the cognitive capabilities of MLLMs, we present CogSense-Bench, a comprehensive visual question answering (VQA) benchmark assessing five cognitive dimensions. Extensive experiments demonstrate that MLLMs trained with Cognitive Supersensing significantly outperform state-of-the-art baselines on CogSense-Bench and exhibit superior generalization on out-of-domain mathematics and science VQA benchmarks, suggesting that internal visual imagery is potentially key to bridging the gap between perceptual recognition and cognitive understanding. We will open-source the CogSense-Bench and our model weights.
☆ FSCA-Net: Feature-Separated Cross-Attention Network for Robust Multi-Dataset Training
Crowd counting plays a vital role in public safety, traffic regulation, and smart city management. However, despite the impressive progress achieved by CNN- and Transformer-based models, their performance often deteriorates when applied across diverse environments due to severe domain discrepancies. Direct joint training on multiple datasets, which intuitively should enhance generalization, instead results in negative transfer, as shared and domain-specific representations become entangled. To address this challenge, we propose the Feature Separation and Cross-Attention Network FSCA-Net, a unified framework that explicitly disentangles feature representations into domain-invariant and domain-specific components. A novel cross-attention fusion module adaptively models interactions between these components, ensuring effective knowledge transfer while preserving dataset-specific discriminability. Furthermore, a mutual information optimization objective is introduced to maximize consistency among domain-invariant features and minimize redundancy among domain-specific ones, promoting complementary shared-private representations. Extensive experiments on multiple crowd counting benchmarks demonstrate that FSCA-Net effectively mitigates negative transfer and achieves state-of-the-art cross-dataset generalization, providing a robust and scalable solution for real-world crowd analysis.
☆ Making Avatars Interact: Towards Text-Driven Human-Object Interaction for Controllable Talking Avatars
Generating talking avatars is a fundamental task in video generation. Although existing methods can generate full-body talking avatars with simple human motion, extending this task to grounded human-object interaction (GHOI) remains an open challenge, requiring the avatar to perform text-aligned interactions with surrounding objects. This challenge stems from the need for environmental perception and the control-quality dilemma in GHOI generation. To address this, we propose a novel dual-stream framework, InteractAvatar, which decouples perception and planning from video synthesis for grounded human-object interaction. Leveraging detection to enhance environmental perception, we introduce a Perception and Interaction Module (PIM) to generate text-aligned interaction motions. Additionally, an Audio-Interaction Aware Generation Module (AIM) is proposed to synthesize vivid talking avatars performing object interactions. With a specially designed motion-to-video aligner, PIM and AIM share a similar network structure and enable parallel co-generation of motions and plausible videos, effectively mitigating the control-quality dilemma. Finally, we establish a benchmark, GroundedInter, for evaluating GHOI video generation. Extensive experiments and comparisons demonstrate the effectiveness of our method in generating grounded human-object interactions for talking avatars. Project page: https://interactavatar.github.io
☆ UniDWM: Towards a Unified Driving World Model via Multifaceted Representation Learning
Achieving reliable and efficient planning in complex driving environments requires a model that can reason over the scene's geometry, appearance, and dynamics. We present UniDWM, a unified driving world model that advances autonomous driving through multifaceted representation learning. UniDWM constructs a structure- and dynamic-aware latent world representation that serves as a physically grounded state space, enabling consistent reasoning across perception, prediction, and planning. Specifically, a joint reconstruction pathway learns to recover the scene's structure, including geometry and visual texture, while a collaborative generation framework leverages a conditional diffusion transformer to forecast future world evolution within the latent space. Furthermore, we show that our UniDWM can be deemed as a variation of VAE, which provides theoretical guidance for the multifaceted representation learning. Extensive experiments demonstrate the effectiveness of UniDWM in trajectory planning, 4D reconstruction and generation, highlighting the potential of multifaceted world representations as a foundation for unified driving intelligence. The code will be publicly available at https://github.com/Say2L/UniDWM.
☆ Rotation-free Online Handwritten Character Recognition Using Linear Recurrent Units
Online handwritten character recognition leverages stroke order and dynamic features, which generally provide higher accuracy and robustness compared with offline recognition. However, in practical applications, rotational deformations can disrupt the spatial layout of strokes, substantially reducing recognition accuracy. Extracting rotation-invariant features therefore remains a challenging open problem. In this work, we employ the Sliding Window Path Signature (SW-PS) to capture local structural features of characters, and introduce the lightweight Linear Recurrent Units (LRU) as the classifier. The LRU combine the fast incremental processing capability of recurrent neural networks (RNN) with the efficient parallel training of state space models (SSM), while reliably modelling dynamic stroke characteristics. We conducted recognition experiments with random rotation angle up to $\pm 180^{\circ}$ on three subsets of the CASIA-OLHWDB1.1 dataset: digits, English upper letters, and Chinese radicals. The accuracies achieved after ensemble learning were $99.62\%$, $96.67\%$, and $94.33\%$, respectively. Experimental results demonstrate that the proposed SW-PS+LRU framework consistently surpasses competing models in both convergence speed and test accuracy.
☆ Preserving Localized Patch Semantics in VLMs
Logit Lens has been proposed for visualizing tokens that contribute most to LLM answers. Recently, Logit Lens was also shown to be applicable in autoregressive Vision-Language Models (VLMs), where it illustrates the conceptual content of image tokens in the form of heatmaps, e.g., which image tokens are likely to depict the concept of cat in a given image. However, the visual content of image tokens often gets diffused to language tokens, and consequently, the locality of visual information gets mostly destroyed, which renders Logit Lens visualization unusable for explainability. To address this issue, we introduce a complementary loss to next-token prediction (NTP) to prevent the visual tokens from losing the visual representation inherited from corresponding image patches. The proposed Logit Lens Loss (LLL) is designed to make visual token embeddings more semantically aligned with the textual concepts that describe their image regions (e.g., patches containing a cat with the word "cat"), without requiring any architectural modification or large-scale training. This way, LLL constrains the mixing of image and text tokens in the self-attention layers in order to prevent image tokens from losing their localized visual information. As our experiments show, LLL not only makes Logit Lens practically relevant by producing meaningful object confidence maps in images, but also improves performance on vision-centric tasks like segmentation without attaching any special heads.
☆ Toward a Machine Bertin: Why Visualization Needs Design Principles for Machine Cognition IEEE
Visualization's design knowledge-effectiveness rankings, encoding guidelines, color models, preattentive processing rules -- derives from six decades of psychophysical studies of human vision. Yet vision-language models (VLMs) increasingly consume chart images in automated analysis pipelines, and a growing body of benchmark evidence indicates that this human-centered knowledge base does not straightforwardly transfer to machine audiences. Machines exhibit different encoding performance patterns, process images through patch-based tokenization rather than holistic perception, and fail on design patterns that pose no difficulty for humans-while occasionally succeeding where humans struggle. Current approaches address this gap primarily by bypassing vision entirely, converting charts to data tables or structured text. We argue that this response forecloses a more fundamental question: what visual representations would actually serve machine cognition well? This paper makes the case that the visualization field needs to investigate machine-oriented visual design as a distinct research problem. We synthesize evidence from VLM benchmarks, visual reasoning research, and visualization literacy studies to show that the human-machine perceptual divergence is qualitative, not merely quantitative, and critically examine the prevailing bypassing approach. We propose a conceptual distinction between human-oriented and machine-oriented visualization-not as an engineering architecture but as a recognition that different audiences may require fundamentally different design foundations-and outline a research agenda for developing the empirical foundations the field currently lacks: the beginnings of a "machine Bertin" to complement the human-centered knowledge the field already possesses.
comment: Preprint submitted to IEEE TVCG on February 2026
☆ When Is Rank-1 Enough? Geometry-Guided Initialization for Parameter-Efficient Fine-Tuning
Parameter-efficient fine-tuning (PEFT) is a standard way to adapt multimodal large language models, yet extremely low-rank settings -- especially rank-1 LoRA -- are often unstable. We show that this instability is not solely due to limited capacity: in the rank-1 regime, optimization is highly sensitive to the update direction. Concretely, pretrained vision and text features form mismatched anisotropic regions, yielding a dominant "gap" direction that acts like a translation component and disproportionately steers early gradients under rank-1 constraints. Analyzing pretrained representations, we identify a modality-gap axis that dominates early gradient flow, while a random rank-1 initialization is unlikely to align with it, leading to weak gradients and training collapse. We propose Gap-Init, a geometry-aware initialization that aligns the rank-1 LoRA direction with an estimated modality-gap vector from a small calibration set, while keeping the initial LoRA update zero. Across multiple vision-language tasks and backbones, Gap-Init consistently stabilizes rank-1 training and can match or outperform strong rank-8 baselines. Our results suggest that at the extreme low-rank limit, initial alignment can matter as much as rank itself.
☆ MarkCleaner: High-Fidelity Watermark Removal via Imperceptible Micro-Geometric Perturbation
Semantic watermarks exhibit strong robustness against conventional image-space attacks. In this work, we show that such robustness does not survive under micro-geometric perturbations: spatial displacements can remove watermarks by breaking the phase alignment. Motivated by this observation, we introduce MarkCleaner, a watermark removal framework that avoids semantic drift caused by regeneration-based watermark removal. Specifically, MarkCleaner is trained with micro-geometry-perturbed supervision, which encourages the model to separate semantic content from strict spatial alignment and enables robust reconstruction under subtle geometric displacements. The framework adopts a mask-guided encoder that learns explicit spatial representations and a 2D Gaussian Splatting-based decoder that explicitly parameterizes geometric perturbations while preserving semantic content. Extensive experiments demonstrate that MarkCleaner achieves superior performance in both watermark removal effectiveness and visual fidelity, while enabling efficient real-time inference. Our code will be made available upon acceptance.
☆ TreeLoc: 6-DoF LiDAR Global Localization in Forests via Inter-Tree Geometric Matching ICRA 2026
Reliable localization is crucial for navigation in forests, where GPS is often degraded and LiDAR measurements are repetitive, occluded, and structurally complex. These conditions weaken the assumptions of traditional urban-centric localization methods, which assume that consistent features arise from unique structural patterns, necessitating forest-centric solutions to achieve robustness in these environments. To address these challenges, we propose TreeLoc, a LiDAR-based global localization framework for forests that handles place recognition and 6-DoF pose estimation. We represent scenes using tree stems and their Diameter at Breast Height (DBH), which are aligned to a common reference frame via their axes and summarized using the tree distribution histogram (TDH) for coarse matching, followed by fine matching with a 2D triangle descriptor. Finally, pose estimation is achieved through a two-step geometric verification. On diverse forest benchmarks, TreeLoc outperforms baselines, achieving precise localization. Ablation studies validate the contribution of each component. We also propose applications for long-term forest management using descriptors from a compact global tree database. TreeLoc is open-sourced for the robotics community at https://github.com/minwoo0611/TreeLoc.
comment: An 8-page paper with 7 tables and 8 figures, accepted to ICRA 2026
☆ A Reproducible Framework for Bias-Resistant Machine Learning on Small-Sample Neuroimaging Data
We introduce a reproducible, bias-resistant machine learning framework that integrates domain-informed feature engineering, nested cross-validation, and calibrated decision-threshold optimization for small-sample neuroimaging data. Conventional cross-validation frameworks that reuse the same folds for both model selection and performance estimation yield optimistically biased results, limiting reproducibility and generalization. Demonstrated on a high-dimensional structural MRI dataset of deep brain stimulation cognitive outcomes, the framework achieved a nested-CV balanced accuracy of 0.660\,$\pm$\,0.068 using a compact, interpretable subset selected via importance-guided ranking. By combining interpretability and unbiased evaluation, this work provides a generalizable computational blueprint for reliable machine learning in data-limited biomedical domains.
comment: Accepted to ISBI 2026, 5 pages with 1 figure
☆ A Multi-scale Linear-time Encoder for Whole-Slide Image Analysis
We introduce Multi-scale Adaptive Recurrent Biomedical Linear-time Encoder (MARBLE), the first \textit{purely Mamba-based} multi-state multiple instance learning (MIL) framework for whole-slide image (WSI) analysis. MARBLE processes multiple magnification levels in parallel and integrates coarse-to-fine reasoning within a linear-time state-space model, efficiently capturing cross-scale dependencies with minimal parameter overhead. WSI analysis remains challenging due to gigapixel resolutions and hierarchical magnifications, while existing MIL methods typically operate at a single scale and transformer-based approaches suffer from quadratic attention costs. By coupling parallel multi-scale processing with linear-time sequence modeling, MARBLE provides a scalable and modular alternative to attention-based architectures. Experiments on five public datasets show improvements of up to \textbf{6.9\%} in AUC, \textbf{20.3\%} in accuracy, and \textbf{2.3\%} in C-index, establishing MARBLE as an efficient and generalizable framework for multi-scale WSI analysis.
comment: Accepted to ISBI 2026, 4 pages with 2 figures
☆ FaceLinkGen: Rethinking Identity Leakage in Privacy-Preserving Face Recognition with Identity Extraction
Transformation-based privacy-preserving face recognition (PPFR) aims to verify identities while hiding facial data from attackers and malicious service providers. Existing evaluations mostly treat privacy as resistance to pixel-level reconstruction, measured by PSNR and SSIM. We show that this reconstruction-centric view fails. We present FaceLinkGen, an identity extraction attack that performs linkage/matching and face regeneration directly from protected templates without recovering original pixels. On three recent PPFR systems, FaceLinkGen reaches over 98.5\% matching accuracy and above 96\% regeneration success, and still exceeds 92\% matching and 94\% regeneration in a near zero knowledge setting. These results expose a structural gap between pixel distortion metrics, which are widely used in PPFR evaluation, and real privacy. We show that visual obfuscation leaves identity information broadly exposed to both external intruders and untrusted service providers.
☆ A Random Matrix Theory Perspective on the Consistency of Diffusion Models
Diffusion models trained on different, non-overlapping subsets of a dataset often produce strikingly similar outputs when given the same noise seed. We trace this consistency to a simple linear effect: the shared Gaussian statistics across splits already predict much of the generated images. To formalize this, we develop a random matrix theory (RMT) framework that quantifies how finite datasets shape the expectation and variance of the learned denoiser and sampling map in the linear setting. For expectations, sampling variability acts as a renormalization of the noise level through a self-consistent relation $σ^2 \mapsto κ(σ^2)$, explaining why limited data overshrink low-variance directions and pull samples toward the dataset mean. For fluctuations, our variance formulas reveal three key factors behind cross-split disagreement: \textit{anisotropy} across eigenmodes, \textit{inhomogeneity} across inputs, and overall scaling with dataset size. Extending deterministic-equivalence tools to fractional matrix powers further allows us to analyze entire sampling trajectories. The theory sharply predicts the behavior of linear diffusion models, and we validate its predictions on UNet and DiT architectures in their non-memorization regime, identifying where and how samples deviates across training data split. This provides a principled baseline for reproducibility in diffusion training, linking spectral properties of data to the stability of generative outputs.
comment: 65 pages; 53 figures
☆ DoubleTake: Contrastive Reasoning for Faithful Decision-Making in Medical Imaging
Accurate decision making in medical imaging requires reasoning over subtle visual differences between confusable conditions, yet most existing approaches rely on nearest neighbor retrieval that returns redundant evidence and reinforces a single hypothesis. We introduce a contrastive, document-aware reference selection framework that constructs compact evidence sets optimized for discrimination rather than similarity by explicitly balancing visual relevance, embedding diversity, and source-level provenance using ROCO embeddings and metadata. While ROCO provides large-scale image-caption pairs, it does not specify how references should be selected for contrastive reasoning, and naive retrieval frequently yields near-duplicate figures from the same document. To address this gap, we release a reproducible reference selection protocol and curated reference bank that enable a systematic study of contrastive retrieval in medical image reasoning. Building on these contrastive evidence sets, we propose Counterfactual-Contrastive Inference, a confidence-aware reasoning framework that performs structured pairwise visual comparisons and aggregates evidence using margin-based decision rules with faithful abstention. On the MediConfusion benchmark, our approach achieves state-of-the-art performance, improving set-level accuracy by nearly 15% relative to prior methods while reducing confusion and improving individual accuracy.
☆ ViThinker: Active Vision-Language Reasoning via Dynamic Perceptual Querying
Chain-of-Thought (CoT) reasoning excels in language models but struggles in vision-language models due to premature visual-to-text conversion that discards continuous information such as geometry and spatial layout. While recent methods enhance CoT through static enumeration or attention-based selection, they remain passive, i.e., processing pre-computed inputs rather than actively seeking task-relevant details. Inspired by human active perception, we introduce ViThinker, a framework that enables vision-language models to autonomously generate decision (query) tokens triggering the synthesis of expert-aligned visual features on demand. ViThinker internalizes vision-expert capabilities during training, performing generative mental simulation during inference without external tool calls. Through a two-stage curriculum: first distilling frozen experts into model parameters, then learning task-driven querying via sparsity penalties, i.e., ViThinker discovers minimal sufficient perception for each reasoning step. Evaluations across vision-centric benchmarks demonstrate consistent improvements, validating that active query generation outperforms passive approaches in both perceptual grounding and reasoning accuracy.
Self-Supervised Uncalibrated Multi-View Video Anonymization in the Operating Room
Privacy preservation is a prerequisite for using video data in Operating Room (OR) research. Effective anonymization relies on the exhaustive localization of every individual; even a single missed detection necessitates extensive manual correction. However, existing approaches face two critical scalability bottlenecks: (1) they usually require manual annotations of each new clinical site for high accuracy; (2) while multi-camera setups have been widely adopted to address single-view ambiguity, camera calibration is typically required whenever cameras are repositioned. To address these problems, we propose a novel self-supervised multi-view video anonymization framework consisting of whole-body person detection and whole-body pose estimation, without annotation or camera calibration. Our core strategy is to enhance the single-view detector by "retrieving" false negatives using temporal and multi-view context, and conducting self-supervised domain adaptation. We first run an off-the-shelf whole-body person detector in each view with a low-score threshold to gather candidate detections. Then, we retrieve the low-score false negatives that exhibit consistency with the high-score detections via tracking and self-supervised uncalibrated multi-view association. These recovered detections serve as pseudo labels to iteratively fine-tune the whole-body detector. Finally, we apply whole-body pose estimation on each detected person, and fine-tune the pose model using its own high-score predictions. Experiments on the 4D-OR dataset of simulated surgeries and our dataset of real surgeries show the effectiveness of our approach achieving over 97% recall. Moreover, we train a real-time whole-body detector using our pseudo labels, achieving comparable performance and highlighting our method's practical applicability. Code is available at https://github.com/CAMMA-public/OR_anonymization.
☆ From Tokens to Numbers: Continuous Number Modeling for SVG Generation
For certain image generation tasks, vector graphics such as Scalable Vector Graphics (SVGs) offer clear benefits such as increased flexibility, size efficiency, and editing ease, but remain less explored than raster-based approaches. A core challenge is that the numerical, geometric parameters, which make up a large proportion of SVGs, are inefficiently encoded as long sequences of tokens. This slows training, reduces accuracy, and hurts generalization. To address these problems, we propose Continuous Number Modeling (CNM), an approach that directly models numbers as first-class, continuous values rather than discrete tokens. This formulation restores the mathematical elegance of the representation by aligning the model's inputs with the data's continuous nature, removing discretization artifacts introduced by token-based encoding. We then train a multimodal transformer on 2 million raster-to-SVG samples, followed by fine-tuning via reinforcement learning using perceptual feedback to further improve visual quality. Our approach improves training speed by over 30% while maintaining higher perceptual fidelity compared to alternative approaches. This work establishes CNM as a practical and efficient approach for high-quality vector generation, with potential for broader applications. We make our code available http://github.com/mikeogezi/CNM.
☆ LmPT: Conditional Point Transformer for Anatomical Landmark Detection on 3D Point Clouds
Accurate identification of anatomical landmarks is crucial for various medical applications. Traditional manual landmarking is time-consuming and prone to inter-observer variability, while rule-based methods are often tailored to specific geometries or limited sets of landmarks. In recent years, anatomical surfaces have been effectively represented as point clouds, which are lightweight structures composed of spatial coordinates. Following this strategy and to overcome the limitations of existing landmarking techniques, we propose Landmark Point Transformer (LmPT), a method for automatic anatomical landmark detection on point clouds that can leverage homologous bones from different species for translational research. The LmPT model incorporates a conditioning mechanism that enables adaptability to different input types to conduct cross-species learning. We focus the evaluation of our approach on femoral landmarking using both human and newly annotated dog femurs, demonstrating its generalization and effectiveness across species. The code and dog femur dataset will be publicly available at: https://github.com/Pierreoo/LandmarkPointTransformer.
comment: This paper has been accepted at International Symposium on Biomedical Imaging (ISBI) 2026
☆ Real-time topology-aware M-mode OCT segmentation for robotic deep anterior lamellar keratoplasty (DALK) guidance
Robotic deep anterior lamellar keratoplasty (DALK) requires accurate real time depth feedback to approach Descemet's membrane (DM) without perforation. M-mode intraoperative optical coherence tomography (OCT) provides high temporal resolution depth traces, but speckle noise, attenuation, and instrument induced shadowing often result in discontinuous or ambiguous layer interfaces that challenge anatomically consistent segmentation at deployment frame rates. We present a lightweight, topology aware M-mode segmentation pipeline based on UNeXt that incorporates anatomical topology regularization to stabilize boundary continuity and layer ordering under low signal to noise ratio conditions. The proposed system achieves end to end throughput exceeding 80 Hz measured over the complete preprocessing inference overlay pipeline on a single GPU, demonstrating practical real time guidance beyond model only timing. This operating margin provides temporal headroom to reject low quality or dropout frames while maintaining a stable effective depth update rate. Evaluation on a standard rabbit eye M-mode dataset using an established baseline protocol shows improved qualitative boundary stability compared with topology agnostic controls, while preserving deployable real time performance.
☆ SVD-ViT: Does SVD Make Vision Transformers Attend More to the Foreground?
Vision Transformers (ViT) have been established as large-scale foundation models. However, because self-attention operates globally, they lack an explicit mechanism to distinguish foreground from background. As a result, ViT may learn unnecessary background features and artifacts, leading to degraded classification performance. To address this issue, we propose SVD-ViT, which leverages singular value decomposition (SVD) to prioritize the learning of foreground features. SVD-ViT consists of three components-\textbf{SPC module}, \textbf{SSVA}, and \textbf{ID-RSVD}-and suppresses task-irrelevant factors such as background noise and artifacts by extracting and aggregating singular vectors that capture object foreground information. Experimental results demonstrate that our method improves classification accuracy and effectively learns informative foreground representations while reducing the impact of background noise.
comment: 8 pages, 6 figures
☆ Physics-based generation of multilayer corneal OCT data via Gaussian modeling and MCML for AI-driven diagnostic and surgical guidance applications
Training deep learning models for corneal optical coherence tomography (OCT) imaging is limited by the availability of large, well-annotated datasets. We present a configurable Monte Carlo simulation framework that generates synthetic corneal B-scan optical OCT images with pixel-level five-layer segmentation labels derived directly from the simulation geometry. A five-layer corneal model with Gaussian surfaces captures curvature and thickness variability in healthy and keratoconic eyes. Each layer is assigned optical properties from the literature and light transport is simulated using Monte Carlo modeling of light transport in multi-layered tissues (MCML), while incorporating system features such as the confocal PSF and sensitivity roll-off. This approach produces over 10,000 high-resolution (1024x1024) image-label pairs and supports customization of geometry, photon count, noise, and system parameters. The resulting dataset enables systematic training, validation, and benchmarking of AI models under controlled, ground-truth conditions, providing a reproducible and scalable resource to support the development of diagnostic and surgical guidance applications in image-guided ophthalmology.
☆ Hierarchical Entity-centric Reinforcement Learning with Factored Subgoal Diffusion ICLR 2026
We propose a hierarchical entity-centric framework for offline Goal-Conditioned Reinforcement Learning (GCRL) that combines subgoal decomposition with factored structure to solve long-horizon tasks in domains with multiple entities. Achieving long-horizon goals in complex environments remains a core challenge in Reinforcement Learning (RL). Domains with multiple entities are particularly difficult due to their combinatorial complexity. GCRL facilitates generalization across goals and the use of subgoal structure, but struggles with high-dimensional observations and combinatorial state-spaces, especially under sparse reward. We employ a two-level hierarchy composed of a value-based GCRL agent and a factored subgoal-generating conditional diffusion model. The RL agent and subgoal generator are trained independently and composed post hoc through selective subgoal generation based on the value function, making the approach modular and compatible with existing GCRL algorithms. We introduce new variations to benchmark tasks that highlight the challenges of multi-entity domains, and show that our method consistently boosts performance of the underlying RL agent on image-based long-horizon tasks with sparse rewards, achieving over 150% higher success rates on the hardest task in our suite and generalizing to increasing horizons and numbers of entities. Rollout videos are provided at: https://sites.google.com/view/hecrl
comment: ICLR 2026
☆ End-to-end reconstruction of OCT optical properties and speckle-reduced structural intensity via physics-based learning
Inverse scattering in optical coherence tomography (OCT) seeks to recover both structural images and intrinsic tissue optical properties, including refractive index, scattering coefficient, and anisotropy. This inverse problem is challenging due to attenuation, speckle noise, and strong coupling among parameters. We propose a regularized end-to-end deep learning framework that jointly reconstructs optical parameter maps and speckle-reduced OCT structural intensity for layer visualization. Trained with Monte Carlo-simulated ground truth, our network incorporates a physics-based OCT forward model that generates predicted signals from the estimated parameters, providing physics-consistent supervision for parameter recovery and artifact suppression. Experiments on the synthetic corneal OCT dataset demonstrate robust optical map recovery under noise, improved resolution, and enhanced structural fidelity. This approach enables quantitative multi-parameter tissue characterization and highlights the benefit of combining physics-informed modeling with deep learning for computational OCT.
☆ Perfusion Imaging and Single Material Reconstruction in Polychromatic Photon Counting CT
Background: Perfusion computed tomography (CT) images the dynamics of a contrast agent through the body over time, and is one of the highest X-ray dose scans in medical imaging. Recently, a theoretically justified reconstruction algorithm based on a monotone variational inequality (VI) was proposed for single material polychromatic photon-counting CT, and showed promising early results at low-dose imaging. Purpose: We adapt this reconstruction algorithm for perfusion CT, to reconstruct the concentration map of the contrast agent while the static background tissue is assumed known; we call our method VI-PRISM (VI-based PeRfusion Imaging and Single Material reconstruction). We evaluate its potential for dose-reduced perfusion CT, using a digital phantom with water and iodine of varying concentration. Methods: Simulated iodine concentrations range from 0.05 to 2.5 mg/ml. The simulated X-ray source emits photons up to 100 keV, with average intensity ranging from $10^5$ down to $10^2$ photons per detector element. The number of tomographic projections was varied from 984 down to 8 to characterize the tradeoff in photon allocation between views and intensity. Results: We compare VI-PRISM against filtered back-projection (FBP), and find that VI-PRISM recovers iodine concentration with error below 0.4 mg/ml at all source intensity levels tested. Even with a dose reduction between 10x and 100x compared to FBP, VI-PRISM exhibits reconstruction quality on par with FBP. Conclusion: Across all photon budgets and angular sampling densities tested, VI-PRISM achieved consistently lower RMSE, reduced noise, and higher SNR compared to filtered back-projection. Even in extremely photon-limited and sparsely sampled regimes, VI-PRISM recovered iodine concentrations with errors below 0.4 mg/ml, showing that VI-PRISM can support accurate and dose-efficient perfusion imaging in photon-counting CT.
comment: Code is available at https://github.com/voilalab/VI-PRISM
☆ AdaptMMBench: Benchmarking Adaptive Multimodal Reasoning for Mode Selection and Reasoning Process
Adaptive multimodal reasoning has emerged as a promising frontier in Vision-Language Models (VLMs), aiming to dynamically modulate between tool-augmented visual reasoning and text reasoning to enhance both effectiveness and efficiency. However, existing evaluations rely on static difficulty labels and simplistic metrics, which fail to capture the dynamic nature of difficulty relative to varying model capacities. Consequently, they obscure the distinction between adaptive mode selection and general performance while neglecting fine-grained process analyses. In this paper, we propose AdaptMMBench, a comprehensive benchmark for adaptive multimodal reasoning across five domains: real-world, OCR, GUI, knowledge, and math, encompassing both direct perception and complex reasoning tasks. AdaptMMBench utilizes a Matthews Correlation Coefficient (MCC) metric to evaluate the selection rationality of different reasoning modes, isolating this meta-cognition ability by dynamically identifying task difficulties based on models' capability boundaries. Moreover, AdaptMMBench facilitates multi-dimensional process evaluation across key step coverage, tool effectiveness, and computational efficiency. Our evaluation reveals that while adaptive mode selection scales with model capacity, it notably decouples from final accuracy. Conversely, key step coverage aligns with performance, though tool effectiveness remains highly inconsistent across model architectures.
☆ RLAnything: Forge Environment, Policy, and Reward Model in Completely Dynamic RL System
We propose RLAnything, a reinforcement learning framework that dynamically forges environment, policy, and reward models through closed-loop optimization, amplifying learning signals and strengthening the overall RL system for any LLM or agentic scenarios. Specifically, the policy is trained with integrated feedback from step-wise and outcome signals, while the reward model is jointly optimized via consistency feedback, which in turn further improves policy training. Moreover, our theory-motivated automatic environment adaptation improves training for both the reward and policy models by leveraging critic feedback from each, enabling learning from experience. Empirically, each added component consistently improves the overall system, and RLAnything yields substantial gains across various representative LLM and agentic tasks, boosting Qwen3-VL-8B-Thinking by 9.1% on OSWorld and Qwen2.5-7B-Instruct by 18.7% and 11.9% on AlfWorld and LiveBench, respectively. We also that optimized reward-model signals outperform outcomes that rely on human labels. Code: https://github.com/Gen-Verse/Open-AgentRL
comment: Code: https://github.com/Gen-Verse/Open-AgentRL
♻ ☆ Helios 2.0: A Robust, Ultra-Low Power Gesture Recognition System Optimised for Event-Sensor based Wearables
We present an advance in wearable technology: a mobile-optimized, real-time, ultra-low-power event camera system that enables natural hand gesture control for smart glasses, dramatically improving user experience. While hand gesture recognition in computer vision has advanced significantly, critical challenges remain in creating systems that are intuitive, adaptable across diverse users and environments, and energy-efficient enough for practical wearable applications. Our approach tackles these challenges through carefully selected microgestures: lateral thumb swipes across the index finger (in both directions) and a double pinch between thumb and index fingertips. These human-centered interactions leverage natural hand movements, ensuring intuitive usability without requiring users to learn complex command sequences. To overcome variability in users and environments, we developed a novel simulation methodology that enables comprehensive domain sampling without extensive real-world data collection. Our power-optimised architecture maintains exceptional performance, achieving F1 scores above 80\% on benchmark datasets featuring diverse users and environments. The resulting models operate at just 6-8 mW when exploiting the Qualcomm Snapdragon Hexagon DSP, with our 2-channel implementation exceeding 70\% F1 accuracy and our 6-channel model surpassing 80\% F1 accuracy across all gesture classes in user studies. These results were achieved using only synthetic training data. This improves on the state-of-the-art for F1 accuracy by 20\% with a power reduction 25x when using DSP. This advancement brings deploying ultra-low-power vision systems in wearable devices closer and opens new possibilities for seamless human-computer interaction.
comment: 24 pages, 14 figures. Prarthana Bhattacharyya, Joshua Mitton, Ryan Page, Owen Morgan, and Oliver Powell contributed equally to this paper
♻ ☆ CoT-RVS: Zero-Shot Chain-of-Thought Reasoning Segmentation for Videos ICLR 2026
Reasoning Video Object Segmentation is a challenging task, aiming at generating a mask sequence from an input video given a complex and implicit text query. While existing works finetune Multimodal Large Language Models (MLLM) for the task, they still fail in video inputs given complex temporally-sensitive queries, indicating their lack of temporal and spatial integration in complex scenarios. In this paper, we propose CoT-RVS, a novel framework employing the zero-shot Chain-of-Thought (CoT) capability of MLLM to address these complex challenges by temporal-semantic reasoning: CoT-RVS analyzes the visible objects within a given frame that possibly match the language query (semantic), and chooses a corresponding keyframe for each object that can be observed effortlessly among all frames (temporal). Notably, the CoT-RVS framework is training-free and compatible with closed-source MLLMs, which can be applied to Reasoning Video Instance Segmentation. Our framework's training-free feature further allows its extension to process online video streams, where the CoT is used at test time to update the object of interest when a better target starts to emerge and becomes visible. We conduct extensive experiments on video object segmentation with explicit and implicit queries. The results show that CoT-RVS significantly outperforms previous works in both cases, qualitatively and quantitatively.
comment: Accepted to ICLR 2026. Project page: https://danielshkao.github.io/cot-rvs.html. Code: https://github.com/DanielSHKao/CoT-RVS
♻ ☆ Future frame prediction in chest and liver cine MRI using the PCA respiratory motion model: comparing transformers and dynamically trained recurrent neural networks
Respiratory motion complicates accurate irradiation of thoraco-abdominal tumors in radiotherapy, as treatment-system latency entails target-location uncertainties. This work addresses frame forecasting in chest and liver cine MRI to compensate for such delays. We investigate RNNs trained with online learning algorithms, enabling adaptation to changing respiratory patterns via on-the-fly parameter updates, and transformers, increasingly common in time series forecasting for their ability to capture long-term dependencies. Experiments were conducted using 12 sagittal thoracic and upper-abdominal cine-MRI sequences from ETH Zürich and OvGU. PCA decomposes the Lucas-Kanade optical-flow field into static deformations and low-dimensional time-dependent weights. We compare various methods forecasting the latter: linear filters, population and sequence-specific encoder-only transformers, and RNNs trained with real-time recurrent learning (RTRL), unbiased online recurrent optimization, decoupled neural interfaces, and sparse one-step approximation (SnAp-1). Predicted displacements were used to warp the reference frame and generate future images. Prediction accuracy decreased with the horizon h. Linear regression performed best at short horizons (1.3mm geometrical error at h=0.32s, ETH Zürich data), while RTRL and SnAp-1 outperformed the other algorithms at medium-to-long horizons, with geometrical errors below 1.4mm and 2.8mm on the sequences from ETH Zürich and OvGU (the latter featuring higher motion variability, noise, and lower contrast), respectively. The sequence-specific transformer was competitive for low-to-medium horizons, but transformers remained overall limited by data scarcity and domain shift between datasets. Predicted frames visually resembled the ground truth, with notable errors occurring near the diaphragm at end-inspiration and regions affected by out-of-plane motion.
comment: 43 pages, 19 figures, revised version (including transformer experiments, evaluation on liver MRI data, statistical analysis...)
♻ ☆ HunyuanImage 3.0 Technical Report
We present HunyuanImage 3.0, a native multimodal model that unifies multimodal understanding and generation within an autoregressive framework, with its image generation module publicly available. The achievement of HunyuanImage 3.0 relies on several key components, including meticulous data curation, advanced architecture design, a native Chain-of-Thoughts schema, progressive model pre-training, aggressive model post-training, and an efficient infrastructure that enables large-scale training and inference. With these advancements, we successfully trained a Mixture-of-Experts (MoE) model comprising over 80 billion parameters in total, with 13 billion parameters activated per token during inference, making it the largest and most powerful open-source image generative model to date. We conducted extensive experiments and the results of automatic and human evaluation of text-image alignment and visual quality demonstrate that HunyuanImage 3.0 rivals previous state-of-the-art models. By releasing the code and weights of HunyuanImage 3.0, we aim to enable the community to explore new ideas with a state-of-the-art foundation model, fostering a dynamic and vibrant multimodal ecosystem. All open source assets are publicly available at https://github.com/Tencent-Hunyuan/HunyuanImage-3.0
♻ ☆ HI-SLAM2: Geometry-Aware Gaussian SLAM for Fast Monocular Scene Reconstruction
We present HI-SLAM2, a geometry-aware Gaussian SLAM system that achieves fast and accurate monocular scene reconstruction using only RGB input. Existing Neural SLAM or 3DGS-based SLAM methods often trade off between rendering quality and geometry accuracy, our research demonstrates that both can be achieved simultaneously with RGB input alone. The key idea of our approach is to enhance the ability for geometry estimation by combining easy-to-obtain monocular priors with learning-based dense SLAM, and then using 3D Gaussian splatting as our core map representation to efficiently model the scene. Upon loop closure, our method ensures on-the-fly global consistency through efficient pose graph bundle adjustment and instant map updates by explicitly deforming the 3D Gaussian units based on anchored keyframe updates. Furthermore, we introduce a grid-based scale alignment strategy to maintain improved scale consistency in prior depths for finer depth details. Through extensive experiments on Replica, ScanNet, and ScanNet++, we demonstrate significant improvements over existing Neural SLAM methods and even surpass RGB-D-based methods in both reconstruction and rendering quality. The project page and source code will be made available at https://hi-slam2.github.io/.
♻ ☆ No time to train! Training-Free Reference-Based Instance Segmentation
The performance of image segmentation models has historically been constrained by the high cost of collecting large-scale annotated data. The Segment Anything Model (SAM) alleviates this original problem through a promptable, semantics-agnostic, segmentation paradigm and yet still requires manual visual-prompts or complex domain-dependent prompt-generation rules to process a new image. Towards reducing this new burden, our work investigates the task of object segmentation when provided with, alternatively, only a small set of reference images. Our key insight is to leverage strong semantic priors, as learned by foundation models, to identify corresponding regions between a reference and a target image. We find that correspondences enable automatic generation of instance-level segmentation masks for downstream tasks and instantiate our ideas via a multi-stage, training-free method incorporating (1) memory bank construction; (2) representation aggregation and (3) semantic-aware feature matching. Our experiments show significant improvements on segmentation metrics, leading to state-of-the-art performance on COCO FSOD (36.8% nAP), PASCAL VOC Few-Shot (71.2% nAP50) and outperforming existing training-free approaches on the Cross-Domain FSOD benchmark (22.4% nAP).
comment: Preprint
♻ ☆ DyStream: Streaming Dyadic Talking Heads Generation via Flow Matching-based Autoregressive Model
Generating realistic, dyadic talking head video requires ultra-low latency. Existing chunk-based methods require full non-causal context windows, introducing significant delays. This high latency critically prevents the immediate, non-verbal feedback required for a realistic listener. To address this, we present DyStream, a flow matching-based autoregressive model that could generate video in real-time from both speaker and listener audio. Our method contains two key designs: (1) we adopt a stream-friendly autoregressive framework with flow-matching heads for probabilistic modeling, and (2) We propose a causal encoder enhanced by a lookahead module to incorporate short future context (e.g., 60 ms) to improve quality while maintaining low latency. Our analysis shows this simple-and-effective method significantly surpass alternative causal strategies, including distillation and generative encoder. Extensive experiments show that DyStream could generate video within 34 ms per frame, guaranteeing the entire system latency remains under 100 ms. Besides, it achieves state-of-the-art lip-sync quality, with offline and online LipSync Confidence scores of 8.13 and 7.61 on HDTF, respectively. The model, weights and codes are available.
comment: Project Page: https://robinwitch.github.io/DyStream-Page
♻ ☆ Hospital-Specific Bias in Patch-Based Pathology Models
Pathology foundation models (PFMs) achieve strong performance on diverse histopathology tasks, but their sensitivity to hospital-specific domain shifts remains underexplored. We systematically evaluate state-of-the-art PFMs on TCGA patch-level datasets and introduce a lightweight adversarial adaptor to remove hospital-related domain information from latent representations. Experiments show that, while disease classification accuracy is largely maintained, the adaptor effectively reduces hospital-specific bias, as confirmed by t-SNE visualizations. Our study establishes a benchmark for assessing cross-hospital robustness in PFMs and provides a practical strategy for enhancing generalization under heterogeneous clinical settings. Our code is available at https://github.com/MengRes/pfm_domain_bias.
comment: 4 pages,3 figures
♻ ☆ Data-Driven Loss Functions for Inference-Time Optimization in Text-to-Image
Text-to-image diffusion models can generate stunning visuals, yet they often fail at tasks children find trivial--like placing a dog to the right of a teddy bear rather than to the left. When combinations get more unusual--a giraffe above an airplane--these failures become even more pronounced. Existing methods attempt to fix these spatial reasoning failures through model fine-tuning or test-time optimization with handcrafted losses that are suboptimal. Rather than imposing our assumptions about spatial encoding, we propose learning these objectives directly from the model's internal representations. We introduce Learn-to-Steer, a novel framework that learns data-driven objectives for test-time optimization rather than handcrafting them. Our key insight is to train a lightweight classifier that decodes spatial relationships from the diffusion model's cross-attention maps, then deploy this classifier as a learned loss function during inference. Training such classifiers poses a surprising challenge: they can take shortcuts by detecting linguistic traces in the cross-attention maps, rather than learning true spatial patterns. We solve this by augmenting our training data with samples generated using prompts with incorrect relation words, which encourages the classifier to avoid linguistic shortcuts and learn spatial patterns from the attention maps. Our method dramatically improves spatial accuracy: from 20% to 61% on FLUX.1-dev and from 7% to 54% on SD2.1 across standard benchmarks. It also generalizes to multiple relations with significantly improved accuracy.
comment: Project page is at https://learn-to-steer-paper.github.io/
♻ ☆ What does really matter in image goal navigation?
Image goal navigation requires two different skills: firstly, core navigation skills, including the detection of free space and obstacles, and taking decisions based on an internal representation; and secondly, computing directional information by comparing visual observations to the goal image. Current state-of-the-art methods either rely on dedicated image-matching, or pre-training of computer vision modules on relative pose estimation. In this paper, we study whether this task can be efficiently solved with end-to-end training of full agents with RL, as has been claimed by recent work. A positive answer would have impact beyond Embodied AI and allow training of relative pose estimation from reward for navigation alone. In this large experimental study we investigate the effect of architectural choices like late fusion, channel stacking, space-to-depth projections and cross-attention, and their role in the emergence of relative pose estimators from navigation training. We show that the success of recent methods is influenced up to a certain extent by simulator settings, leading to shortcuts in simulation. However, we also show that these capabilities can be transferred to more realistic setting, up to some extent. We also find evidence for correlations between navigation performance and probed (emerging) relative pose estimation performance, an important sub skill.
♻ ☆ SCAIL: Towards Studio-Grade Character Animation via In-Context Learning of 3D-Consistent Pose Representations
Achieving character animation that meets studio-grade production standards remains challenging despite recent progress. Existing approaches can transfer motion from a driving video to a reference image, but often fail to preserve structural fidelity and temporal consistency in wild scenarios involving complex motion and cross-identity animations. In this work, we present \textbf{SCAIL} (a framework toward \textbf{S}tudio-grade \textbf{C}haracter \textbf{A}nimation via \textbf{I}n-context \textbf{L}earning), a framework designed to address these challenges from two key innovations. First, we propose a novel 3D pose representation, providing a more robust and flexible motion signal. Second, we introduce a full-context pose injection mechanism within a diffusion-transformer architecture, enabling effective spatio-temporal reasoning over full motion sequences. To align with studio-level requirements, we develop a curated data pipeline ensuring both diversity and quality, and establish a comprehensive benchmark for systematic evaluation. Experiments show that \textbf{SCAIL} achieves state-of-the-art performance and advances character animation toward studio-grade reliability and realism.
♻ ☆ Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity ICLR 2022
The success of deep ensembles on improving predictive performance, uncertainty estimation, and out-of-distribution robustness has been extensively studied in the machine learning literature. Albeit the promising results, naively training multiple deep neural networks and combining their predictions at inference leads to prohibitive computational costs and memory requirements. Recently proposed efficient ensemble approaches reach the performance of the traditional deep ensembles with significantly lower costs. However, the training resources required by these approaches are still at least the same as training a single dense model. In this work, we draw a unique connection between sparse neural network training and deep ensembles, yielding a novel efficient ensemble learning framework called FreeTickets. Instead of training multiple dense networks and averaging them, we directly train sparse subnetworks from scratch and extract diverse yet accurate subnetworks during this efficient, sparse-to-sparse training. Our framework, FreeTickets, is defined as the ensemble of these relatively cheap sparse subnetworks. Despite being an ensemble method, FreeTickets has even fewer parameters and training FLOPs than a single dense model. This seemingly counter-intuitive outcome is due to the ultra training/inference efficiency of dynamic sparse training. FreeTickets surpasses the dense baseline in all the following criteria: prediction accuracy, uncertainty estimation, out-of-distribution (OoD) robustness, as well as efficiency for both training and inference. Impressively, FreeTickets outperforms the naive deep ensemble with ResNet50 on ImageNet using around only 1/5 of the training FLOPs required by the latter. We have released our source code at https://github.com/VITA-Group/FreeTickets.
comment: published in International Conference on Learning Representations (ICLR 2022)
♻ ☆ DiffInk: Glyph- and Style-Aware Latent Diffusion Transformer for Text to Online Handwriting Generation ICLR 2026
Deep generative models have advanced text-to-online handwriting generation (TOHG), which aims to synthesize realistic pen trajectories conditioned on textual input and style references. However, most existing methods still primarily focus on character- or word-level generation, resulting in inefficiency and a lack of holistic structural modeling when applied to full text lines. To address these issues, we propose DiffInk, the first latent diffusion Transformer framework for full-line handwriting generation. We first introduce InkVAE, a novel sequential variational autoencoder enhanced with two complementary latent-space regularization losses: (1) an OCR-based loss enforcing glyph-level accuracy, and (2) a style-classification loss preserving writing style. This dual regularization yields a semantically structured latent space where character content and writer styles are effectively disentangled. We then introduce InkDiT, a novel latent diffusion Transformer that integrates target text and reference styles to generate coherent pen trajectories. Experimental results demonstrate that DiffInk outperforms existing state-of-the-art (SOTA) methods in both glyph accuracy and style fidelity, while significantly improving generation efficiency.
comment: Accepted by ICLR 2026
♻ ☆ Efficient Deep Demosaicing with Spatially Downsampled Isotropic Networks WACV
In digital imaging, image demosaicing is a crucial first step which recovers the RGB information from a color filter array (CFA). Oftentimes, deep learning is utilized to perform image demosaicing. Given that most modern digital imaging applications occur on mobile platforms, applying deep learning to demosaicing requires lightweight and efficient networks. Isotropic networks, also known as residual-in-residual networks, have been often employed for image demosaicing and joint-demosaicing-and-denoising (JDD). Most demosaicing isotropic networks avoid spatial downsampling entirely, and thus are often prohibitively expensive computationally for mobile applications. Contrary to previous isotropic network designs, this paper claims that spatial downsampling to a signficant degree can improve the efficiency and performance of isotropic networks. To validate this claim, we design simple fully convolutional networks with and without downsampling using a mathematical architecture design technique adapted from DeepMAD, and find that downsampling improves empirical performance. Additionally, empirical testing of the downsampled variant, JD3Net, of our fully convolutional networks reveals strong empirical performance on a variety of image demosaicing and JDD tasks.
comment: To be published at WVAQ Workshop at WACV. Code @ github.com/cory-fan/jd3net
♻ ☆ Aesthetics as Structural Harm: Algorithmic Lookism Across Text-to-Image Generation and Classification
This paper examines algorithmic lookism-the systematic preferential treatment based on physical appearance-in text-to-image (T2I) generative AI and a downstream gender classification task. Through the analysis of 26,400 synthetic faces created with Stable Diffusion 2.1 and 3.5 Medium, we demonstrate how generative AI models systematically associate facial attractiveness with positive attributes and vice-versa, mirroring socially constructed biases rather than evidence-based correlations. Furthermore, we find significant gender bias in three gender classification algorithms depending on the attributes of the input faces. Our findings reveal three critical harms: (1) the systematic encoding of attractiveness-positive attribute associations in T2I models; (2) gender disparities in classification systems, where women's faces, particularly those generated with negative attributes, suffer substantially higher misclassification rates than men's; and (3) intensifying aesthetic constraints in newer models through age homogenization, gendered exposure patterns, and geographic reductionism. These convergent patterns reveal algorithmic lookism as systematic infrastructure operating across AI vision systems, compounding existing inequalities through both representation and recognition. Disclaimer: This work includes visual and textual content that reflects stereotypical associations between physical appearance and socially constructed attributes, including gender, race, and traits associated with social desirability. Any such associations found in this study emerge from the biases embedded in generative AI systems-not from empirical truths or the authors' views.
comment: 22 pages, 15 figures; v2 - fix typo
♻ ☆ Learning Robust Intervention Representations with Delta Embeddings
Causal representation learning has attracted significant research interest during the past few years, as a means for improving model generalization and robustness. Causal representations of interventional image pairs (also called ``actionable counterfactuals'' in the literature), have the property that only variables corresponding to scene elements affected by the intervention / action are changed between the start state and the end state. While most work in this area has focused on identifying and representing the variables of the scene under a causal model, fewer efforts have focused on representations of the interventions themselves. In this work, we show that an effective strategy for improving out of distribution (OOD) robustness is to focus on the representation of actionable counterfactuals in the latent space. Specifically, we propose that an intervention can be represented by a Causal Delta Embedding that is invariant to the visual scene and sparse in terms of the causal variables it affects. Leveraging this insight, we propose a method for learning causal representations from image pairs, without any additional supervision. Experiments in the Causal Triplet challenge demonstrate that Causal Delta Embeddings are highly effective in OOD settings, significantly exceeding baseline performance in both synthetic and real-world benchmarks.
♻ ☆ Scaling Sequence-to-Sequence Generative Neural Rendering ICLR 2026
We present Kaleido, a family of generative models designed for photorealistic, unified object- and scene-level neural rendering. Kaleido operates on the principle that 3D can be regarded as a specialised sub-domain of video, expressed purely as a sequence-to-sequence image synthesis task. Through a systemic study of scaling sequence-to-sequence generative neural rendering, we introduce key architectural innovations that enable our model to: i) perform generative view synthesis without explicit 3D representations; ii) generate any number of 6-DoF target views conditioned on any number of reference views via a masked autoregressive framework; and iii) seamlessly unify 3D and video modelling within a single decoder-only rectified flow transformer. Within this unified framework, Kaleido leverages large-scale video data for pre-training, which significantly improves spatial consistency and reduces reliance on scarce, camera-labelled 3D datasets -- all without any architectural modifications. Kaleido sets a new state-of-the-art on a range of view synthesis benchmarks. Its zero-shot performance substantially outperforms other generative methods in few-view settings, and, for the first time, matches the quality of per-scene optimisation methods in many-view settings.
comment: Published at ICLR 2026. Project Page: https://shikun.io/projects/kaleido
♻ ☆ Reinforcement Learning Meets Masked Generative Models: Mask-GRPO for Text-to-Image Generation
Reinforcement learning (RL) has garnered increasing attention in text-to-image (T2I) generation. However, most existing RL approaches are tailored to either diffusion models or autoregressive models, overlooking an important alternative: masked generative models. In this work, we propose Mask-GRPO, the first method to incorporate Group Relative Policy Optimization (GRPO)-based RL into this overlooked paradigm. Our core insight is to redefine the transition probability, which is different from current approaches, and formulate the unmasking process as a multi-step decision-making problem. To further enhance our method, we explore several useful strategies, including removing the KL constraint, applying the reduction strategy, and filtering out low-quality samples. Using Mask-GRPO, we improve a base model, Show-o, with substantial improvements on standard T2I benchmarks and preference alignment, outperforming existing state-of-the-art approaches. The code is available on https://github.com/xingzhejun/Mask-GRPO
♻ ☆ Staircase Cascaded Fusion of Lightweight Local Pattern Recognition and Long-Range Dependencies for Structural Crack Segmentation
Accurately segmenting structural cracks at the pixel level remains a major hurdle, as existing methods fail to integrate local textures with pixel dependencies, often leading to fragmented and incomplete predictions. Moreover, their high parameter counts and substantial computational demands hinder practical deployment on resource-constrained edge devices. To address these challenges, we propose CrackSCF, a Lightweight Cascaded Fusion Crack Segmentation Network designed to achieve robust crack segmentation with exceptional computational efficiency. We design a lightweight convolutional block (LRDS) to replace all standard convolutions. This approach efficiently captures local patterns while operating with a minimal computational footprint. For a holistic perception of crack structures, a lightweight Long-range Dependency Extractor (LDE) captures global dependencies. These are then intelligently unified with local patterns by our Staircase Cascaded Fusion Module (SCFM), ensuring the final segmentation maps are both seamless in continuity and rich in fine-grained detail. To comprehensively evaluate our method, this paper created the challenging TUT benchmark dataset and evaluated it alongside five other public datasets. The experimental results show that the CrackSCF method consistently outperforms the existing methods, and it demonstrates greater robustness in dealing with complex background noise. On the TUT dataset, CrackSCF achieved 0.8382 on F1 score and 0.8473 on mIoU, and it only required 4.79M parameters.
comment: This paper is currently under review
♻ ☆ Entropy-Lens: Uncovering Decision Strategies in LLMs
In large language models (LLMs), each block operates on the residual stream to map input token sequences to output token distributions. However, most of the interpretability literature focuses on internal latent representations, leaving token-space dynamics underexplored. The high dimensionality and categoricity of token distributions hinder their analysis, as standard statistical descriptors are not suitable. We show that the entropy of logit-lens predictions overcomes these issues. In doing so, it provides a per-layer scalar, permutation-invariant metric. We introduce Entropy-Lens to distill the token-space dynamics of the residual stream into a low-dimensional signal. We call this signal the entropy profile. We apply our method to a variety of model sizes and families, showing that (i) entropy profiles uncover token prediction dynamics driven by expansion and pruning strategies; (ii) these dynamics are family-specific and invariant under depth rescaling; (iii) they are characteristic of task type and output format; (iv) these strategies have unequal impact on downstream performance, with the expansion strategy usually being more critical. Ultimately, our findings further enhance our understanding of the residual stream, enabling a granular assessment of how information is processed across model depth.
♻ ☆ RDDM: Practicing RAW Domain Diffusion Model for Real-world Image Restoration
We present the RAW domain diffusion model (RDDM), an end-to-end diffusion model that restores photo-realistic images directly from the sensor RAW data. While recent sRGB-domain diffusion methods achieve impressive results, they are caught in a dilemma between high fidelity and image generation. These models process lossy sRGB inputs and neglect the accessibility of the sensor RAW images in many scenarios, e.g., in image and video capturing in edge devices, resulting in sub-optimal performance. RDDM obviates this limitation by directly restoring images in the RAW domain, replacing the conventional two-stage image signal processing (ISP)->Image Restoration (IR) pipeline. However, a simple adaptation of pre-trained diffusion models to the RAW domain confronts many challenges. To this end, we propose: (1) a RAW-domain VAE (RVAE), encoding sensor RAW and decoding it into an enhanced linear domain image, to solve the out-of-distribution (OOD) issues between the different domain distributions; (2) a configurable multi-bayer (CMB) LoRA module, adapting diverse RAW Bayer patterns such as RGGB, BGGR, etc. To compensate for the deficiency in the dataset, we develop a scalable data synthesis pipeline synthesizing RAW LQ-HQ pairs from existing sRGB datasets for large-scale training. Extensive experiments demonstrate RDDM's superiority over state-of-the-art sRGB diffusion methods, yielding higher fidelity results with fewer artifacts. Codes will be publicly available at https://github.com/YanCHEN-fr/RDDM.
♻ ☆ Attention in Geometry: Scalable Spatial Modeling via Adaptive Density Fields and FAISS-Accelerated Kernels
This work introduces Adaptive Density Fields (ADF), a geometric attention framework that formulates spatial aggregation as a query-conditioned, metric-induced attention operator in continuous space. By reinterpreting spatial influence as geometry-preserving attention grounded in physical distance, ADF bridges concepts from adaptive kernel methods and attention mechanisms. Scalability is achieved via FAISS-accelerated inverted file indices, treating approximate nearest-neighbor search as an intrinsic component of the attention mechanism. We demonstrate the framework through a case study on aircraft trajectory analysis in the Chengdu region, extracting trajectory-conditioned Zones of Influence (ZOI) to reveal recurrent airspace structures and localized deviations.
comment: Indepented Study. 31 pages, 3 figures. Includes full mathematical derivation of Adaptive Density Fields (ADF), implementation of FAISS-accelerated kernels, and a physics-informed trajectory POI detection pipeline
♻ ☆ Enhanced Detection of Tiny Objects in Aerial Images
While one-stage detectors like YOLOv8 offer fast training speed, they often under-perform on detecting small objects as a trade-off. This becomes even more critical when detecting tiny objects in aerial imagery due to low-resolution targets and cluttered backgrounds. To address this, we introduce four enhancement strategies-input image resolution adjustment, data augmentation, attention mechanisms, and an alternative gating function for attention modules-that can be easily implemented on YOLOv8. We demonstrate that image size enlargement and the proper use of augmentation can lead to enhancement. Additionally, we designed a Mixture of Orthogonal Neural-modules Network (MoonNet) pipeline which consists of multiple attention-module-augmented CNNs. Two well-known attention modules, Squeeze-and-Excitation (SE) Block and Convolutional Block Attention Module (CBAM), were integrated into the backbone of YOLOv8 to form the MoonNet design, and the MoonNet backbone obtained improved detection accuracy compared to the original YOLOv8 backbone and single-type attention-module-augmented backbones. MoonNet further proved its adaptability and potential by achieving state-of-the-art performance on a tiny-object benchmark when integrated with the YOLC model. Our code is available at: https://github.com/Kihyun11/MoonNet
♻ ☆ MineInsight: A Multi-sensor Dataset for Humanitarian Demining Robotics in Off-Road Environments
The use of robotics in humanitarian demining increasingly involves computer vision techniques to improve landmine detection capabilities. However, in the absence of diverse and realistic datasets, the reliable validation of algorithms remains a challenge for the research community. In this paper, we introduce MineInsight, a publicly available multi-sensor, multi-spectral dataset designed for off-road landmine detection. The dataset features 35 different targets (15 landmines and 20 commonly found objects) distributed along three distinct tracks, providing a diverse and realistic testing environment. MineInsight is, to the best of our knowledge, the first dataset to integrate dual-view sensor scans from both an Unmanned Ground Vehicle and its robotic arm, offering multiple viewpoints to mitigate occlusions and improve spatial awareness. It features two LiDARs, as well as images captured at diverse spectral ranges, including visible (RGB, monochrome), visible short-wave infrared (VIS-SWIR), and long-wave infrared (LWIR). Additionally, the dataset provides bounding boxes generated by an automated pipeline and refined with human supervision. We recorded approximately one hour of data in both daylight and nighttime conditions, resulting in around 38,000 RGB frames, 53,000 VIS-SWIR frames, and 108,000 LWIR frames. MineInsight serves as a benchmark for developing and evaluating landmine detection algorithms. Our dataset is available at https://github.com/mariomlz99/MineInsight.
♻ ☆ Past- and Future-Informed KV Cache Policy with Salience Estimation in Autoregressive Video Diffusion
Video generation is pivotal to digital media creation, and recent advances in autoregressive video generation have markedly enhanced the efficiency of real-time video synthesis. However, existing approaches generally rely on heuristic KV Cache policies, which ignore differences in token importance in long-term video generation. This leads to the loss of critical spatiotemporal information and the accumulation of redundant, invalid cache, thereby degrading video generation quality and efficiency. To address this limitation, we first observe that token contributions to video generation are highly time-heterogeneous and accordingly propose a novel Past- and Future-Informed KV Cache Policy (PaFu-KV). Specifically, PaFu-KV introduces a lightweight Salience Estimation Head distilled from a bidirectional teacher to estimate salience scores, allowing the KV cache to retain informative tokens while discarding less relevant ones. This policy yields a better quality-efficiency trade-off by shrinking KV cache capacity and reducing memory footprint at inference time. Extensive experiments on benchmarks demonstrate that our method preserves high-fidelity video generation quality while enables accelerated inference, thereby enabling more efficient long-horizon video generation. Our code will be released upon paper acceptance.
♻ ☆ VQAThinker: Exploring Generalizable and Explainable Video Quality Assessment via Reinforcement Learning AAAI2026
Video quality assessment (VQA) aims to objectively quantify perceptual quality degradation in alignment with human visual perception. Despite recent advances, existing VQA models still suffer from two critical limitations: \textit{poor generalization to out-of-distribution (OOD) videos} and \textit{limited explainability}, which restrict their applicability in real-world scenarios. To address these challenges, we propose \textbf{VQAThinker}, a reasoning-based VQA framework that leverages large multimodal models (LMMs) with reinforcement learning to jointly model video quality understanding and scoring, emulating human perceptual decision-making. Specifically, we adopt group relative policy optimization (GRPO), a rule-guided reinforcement learning algorithm that enables reasoning over video quality under score-level supervision, and introduce three VQA-specific rewards: (1) a \textbf{bell-shaped regression reward} that increases rapidly as the prediction error decreases and becomes progressively less sensitive near the ground truth; (2) a \textbf{pairwise ranking reward} that guides the model to correctly determine the relative quality between video pairs; and (3) a \textbf{temporal consistency reward} that encourages the model to prefer temporally coherent videos over their perturbed counterparts. Extensive experiments demonstrate that VQAThinker achieves state-of-the-art performance on both in-domain and OOD VQA benchmarks, showing strong generalization for video quality scoring. Furthermore, evaluations on video quality understanding tasks validate its superiority in distortion attribution and quality description compared to existing explainable VQA models and LMMs. These findings demonstrate that reinforcement learning offers an effective pathway toward building generalizable and explainable VQA models solely with score-level supervision.
comment: Accepted by AAAI2026
♻ ☆ Beyond Global Alignment: Fine-Grained Motion-Language Retrieval via Pyramidal Shapley-Taylor Learning
As a foundational task in human-centric cross-modal intelligence, motion-language retrieval aims to bridge the semantic gap between natural language and human motion, enabling intuitive motion analysis, yet existing approaches predominantly focus on aligning entire motion sequences with global textual representations. This global-centric paradigm overlooks fine-grained interactions between local motion segments and individual body joints and text tokens, inevitably leading to suboptimal retrieval performance. To address this limitation, we draw inspiration from the pyramidal process of human motion perception (from joint dynamics to segment coherence, and finally to holistic comprehension) and propose a novel Pyramidal Shapley-Taylor (PST) learning framework for fine-grained motion-language retrieval. Specifically, the framework decomposes human motion into temporal segments and spatial body joints, and learns cross-modal correspondences through progressive joint-wise and segment-wise alignment in a pyramidal fashion, effectively capturing both local semantic details and hierarchical structural relationships. Extensive experiments on multiple public benchmark datasets demonstrate that our approach significantly outperforms state-of-the-art methods, achieving precise alignment between motion segments and body joints and their corresponding text tokens. The code of this work will be released upon acceptance.
♻ ☆ Adaptive Domain Shift in Diffusion Models for Cross-Modality Image Translation ICLR 2026
Cross-modal image translation remains brittle and inefficient. Standard diffusion approaches often rely on a single, global linear transfer between domains. We find that this shortcut forces the sampler to traverse off-manifold, high-cost regions, inflating the correction burden and inviting semantic drift. We refer to this shared failure mode as fixed-schedule domain transfer. In this paper, we embed domain-shift dynamics directly into the generative process. Our model predicts a spatially varying mixing field at every reverse step and injects an explicit, target-consistent restoration term into the drift. This in-step guidance keeps large updates on-manifold and shifts the model's role from global alignment to local residual correction. We provide a continuous-time formulation with an exact solution form and derive a practical first-order sampler that preserves marginal consistency. Empirically, across translation tasks in medical imaging, remote sensing, and electroluminescence semantic mapping, our framework improves structural fidelity and semantic consistency while converging in fewer denoising steps.
comment: Paper accepted as a conference paper at ICLR 2026
♻ ☆ Transferring Visual Explainability of Self-Explaining Models to Prediction-Only Models without Additional Training
In image classification scenarios where both prediction and explanation efficiency are required, self-explaining models that perform both tasks in a single inference are effective. However, for users who already have prediction-only models, training a new self-explaining model from scratch imposes significant costs in terms of both labeling and computation. This study proposes a method to transfer the visual explanation capability of self-explaining models learned in a source domain to prediction-only models in a target domain based on a task arithmetic framework. Our self-explaining model comprises an architecture that extends Vision Transformer-based prediction-only models, enabling the proposed method to endow explanation capability to many trained prediction-only models without additional training. Experiments on various image classification datasets demonstrate that, except for transfers between less-related domains, the transfer of visual explanation capability from source to target domains is successful, and explanation quality in the target domain improves without substantially sacrificing classification accuracy.
♻ ☆ U2-BENCH: Benchmarking Large Vision-Language Models on Ultrasound Understanding
Ultrasound is a widely-used imaging modality critical to global healthcare, yet its interpretation remains challenging due to its varying image quality on operators, noises, and anatomical structures. Although large vision-language models (LVLMs) have demonstrated impressive multimodal capabilities across natural and medical domains, their performance on ultrasound remains largely unexplored. We introduce U2-BENCH, the first comprehensive benchmark to evaluate LVLMs on ultrasound understanding across classification, detection, regression, and text generation tasks. U2-BENCH aggregates 7,241 cases spanning 15 anatomical regions and defines 8 clinically inspired tasks, such as diagnosis, view recognition, lesion localization, clinical value estimation, and report generation, across 50 ultrasound application scenarios. We evaluate 23 state-of-the-art LVLMs, both open- and closed-source, general-purpose and medical-specific. Our results reveal strong performance on image-level classification, but persistent challenges in spatial reasoning and clinical language generation. U2-BENCH establishes a rigorous and unified testbed to assess and accelerate LVLM research in the uniquely multimodal domain of medical ultrasound imaging.
♻ ☆ SciTextures: Collecting and Connecting Visual Patterns, Models, and Code Across Science and Art
The ability to connect visual patterns with the processes that form them represents one of the deepest forms of visual understanding. Textures of clouds and waves, the growth of cities and forests, or the formation of materials and landscapes are all examples of patterns emerging from underlying mechanisms. We present the SciTextures dataset, a large-scale collection of textures and visual patterns from all domains of science, tech, and art, along with the models and code that generate these images. Covering over 1,270 different models and 100,000 images of patterns and textures from physics, chemistry, biology, sociology, technology, mathematics, and art, this dataset offers a way to explore the deep connection between the visual patterns that shape our world and the mechanisms that produce them. Built through an agentic AI pipeline that autonomously collects, implements, and standardizes scientific and generative models. This AI pipeline is also used to autonomously invent and implement novel methods for generating visual patterns and textures. SciTextures enables systematic evaluation of vision language models (VLM's) ability to link visual patterns to the models and code that generate them, and to identify different patterns that emerge from the same underlying process. We also test VLMs ability to infer and recreate the mechanisms behind visual patterns by providing a natural image of a real-world phenomenon and asking the AI to identify and code a model of the process that formed it, then run this code to generate a simulated image that is compared to the reference image. These benchmarks reveal that VLM's can understand and simulate physical systems beyond visual patterns at multiple levels of abstraction. The dataset and code are available at: https://zenodo.org/records/17485502
VL-JEPA: Joint Embedding Predictive Architecture for Vision-language
We introduce VL-JEPA, a vision-language model built on a Joint Embedding Predictive Architecture (JEPA). Instead of autoregressively generating tokens as in classical VLMs, VL-JEPA predicts continuous embeddings of the target texts. By learning in an abstract representation space, the model focuses on task-relevant semantics while abstracting away surface-level linguistic variability. In a strictly controlled comparison against standard token-space VLM training with the same vision encoder and training data, VL-JEPA achieves stronger performance while having 50% fewer trainable parameters. At inference time, a lightweight text decoder is invoked only when needed to translate VL-JEPA predicted embeddings into text. We show that VL-JEPA natively supports selective decoding that reduces the number of decoding operations by 2.85x while maintaining similar performance compared to non-adaptive uniform decoding. Beyond generation, the VL-JEPA's embedding space naturally supports open-vocabulary classification, text-to-video retrieval, and discriminative VQA without any architecture modification. On eight video classification and eight video retrieval datasets, the average performance VL-JEPA surpasses that of CLIP, SigLIP2, and Perception Encoder. At the same time, the model achieves comparable performance as classical VLMs (InstructBLIP, QwenVL) on four VQA datasets: GQA, TallyQA, POPE and POPEv2, despite only having 1.6B parameters.
♻ ☆ SeNeDiF-OOD: Semantic Nested Dichotomy Fusion for Out-of-Distribution Detection Methodology in Open-World Classification. A Case Study on Monument Style Classification
Out-of-distribution (OOD) detection is a fundamental requirement for the reliable deployment of artificial intelligence applications in open-world environments. However, addressing the heterogeneous nature of OOD data, ranging from low-level corruption to semantic shifts, remains a complex challenge that single-stage detectors often fail to resolve. To address this issue, we propose SeNeDiF-OOD, a novel methodology based on Semantic Nested Dichotomy Fusion. This framework decomposes the detection task into a hierarchical structure of binary fusion nodes, where each layer is designed to integrate decision boundaries aligned with specific levels of semantic abstraction. To validate the proposed framework, we present a comprehensive case study using MonuMAI, a real-world architectural style recognition system exposed to an open environment. This application faces a diverse range of inputs, including non-monument images, unknown architectural styles, and adversarial attacks, making it an ideal testbed for our proposal. Through extensive experimental evaluation in this domain, results demonstrate that our hierarchical fusion methodology significantly outperforms traditional baselines, effectively filtering these diverse OOD categories while preserving in-distribution performance.
comment: 28 pages
♻ ☆ OS-Marathon: Benchmarking Computer-Use Agents on Long-Horizon Repetitive Tasks
Long-horizon, repetitive workflows are common in professional settings, such as processing expense reports from receipts and entering student grades from exam papers. These tasks are often tedious for humans since they can extend to extreme lengths proportional to the size of the data to process. However, they are ideal for Computer-Use Agents (CUAs) due to their structured, recurring sub-workflows with logic that can be systematically learned. Identifying the absence of an evaluation benchmark as a primary bottleneck, we establish OS-Marathon, comprising 242 long-horizon, repetitive tasks across 2 domains to evaluate state-of-the-art (SOTA) agents. We then introduce a cost-effective method to construct a condensed demonstration using only few-shot examples to teach agents the underlying workflow logic, enabling them to execute similar workflows effectively on larger, unseen data collections. Extensive experiments demonstrate both the inherent challenges of these tasks and the effectiveness of our proposed method. Project website: https://os-marathon.github.io/.
comment: 22 Pages, Project Page: https://os-marathon.github.io/
♻ ☆ A Survey on Efficient Vision-Language-Action Models
Vision-Language-Action models (VLAs) represent a significant frontier in embodied intelligence, aiming to bridge digital knowledge with physical-world interaction. Despite their remarkable performance, foundational VLAs are hindered by the prohibitive computational and data demands inherent to their large-scale architectures. While a surge of recent research has focused on enhancing VLA efficiency, the field lacks a unified framework to consolidate these disparate advancements. To bridge this gap, this survey presents the first comprehensive review of Efficient Vision-Language-Action models (Efficient VLAs) across the entire model-training-data pipeline. Specifically, we introduce a unified taxonomy to systematically organize the disparate efforts in this domain, categorizing current techniques into three core pillars: (1) Efficient Model Design, focusing on efficient architectures and model compression; (2) Efficient Training, which reduces computational burdens during model learning; and (3) Efficient Data Collection, which addresses the bottlenecks in acquiring and utilizing robotic data. Through a critical review of state-of-the-art methods within this framework, this survey not only establishes a foundational reference for the community but also summarizes representative applications, delineates key challenges, and charts a roadmap for future research. We maintain a continuously updated project page to track our latest developments: https://evla-survey.github.io/.
comment: 28 pages, 8 figures
♻ ☆ Attention Isn't All You Need for Emotion Recognition:Domain Features Outperform Transformers on the EAV Dataset
We present a systematic study of multimodal emotion recognition using the EAV dataset, investigating whether complex attention mechanisms improve performance on small datasets. We implement three model categories: baseline transformers (M1), novel factorized attention mechanisms (M2), and improved CNN baselines (M3). Our experiments show that sophisticated attention mechanisms consistently underperform on small datasets. M2 models achieved 5 to 13 percentage points below baselines due to overfitting and destruction of pretrained features. In contrast, simple domain-appropriate modifications proved effective: adding delta MFCCs to the audio CNN improved accuracy from 61.9% to 65.56% (+3.66pp), while frequency-domain features for EEG achieved 67.62% (+7.62pp over the paper baseline). Our vision transformer baseline (M1) reached 75.30%, exceeding the paper's ViViT result (74.5%) through domain-specific pretraining, and vision delta features achieved 72.68% (+1.28pp over the paper CNN). These findings demonstrate that for small-scale emotion recognition, domain knowledge and proper implementation outperform architectural complexity.
comment: 2 figures, 10 Pages
♻ ☆ 3D Dynamics-Aware Manipulation: Endowing Manipulation Policies with 3D Foresight ICRA 2026
The incorporation of world modeling into manipulation policy learning has pushed the boundary of manipulation performance. However, existing efforts simply model the 2D visual dynamics, which is insufficient for robust manipulation when target tasks involve prominent depth-wise movement. To address this, we present a 3D dynamics-aware manipulation framework that seamlessly integrates 3D world modeling and policy learning. Three self-supervised learning tasks (current depth estimation, future RGB-D prediction, 3D flow prediction) are introduced within our framework, which complement each other and endow the policy model with 3D foresight. Extensive experiments on simulation and the real world show that 3D foresight can greatly boost the performance of manipulation policies without sacrificing inference speed. Code is available at https://github.com/Stardust-hyx/3D-Foresight.
comment: ICRA 2026
♻ ☆ Hybrid Lie semi-group and cascade structures for the generalized Gaussian derivative model for visual receptive fields
Because of the variabilities of real-world image structures under the natural image transformations that arise when observing similar objects or spatio-temporal events under different viewing conditions, the receptive field responses computed in the earliest layers of the visual hierarchy may be strongly influenced by such geometric image transformations. One way of handling this variability is by basing the vision system on covariant receptive field families, which expand the receptive field shapes over the degrees of freedom in the image transformations. This paper addresses the problem of deriving relationships between spatial and spatio-temporal receptive field responses obtained for different values of the shape parameters in the resulting multi-parameter families of receptive fields. For this purpose, we derive both (i) infinitesimal relationships, roughly corresponding to a combination of notions from semi-groups and Lie groups, as well as (ii) macroscopic cascade smoothing properties, which describe how receptive field responses at coarser spatial and temporal scales can be computed by applying smaller support incremental filters to the output from corresponding receptive fields at finer spatial and temporal scales, structurally related to the notion of Lie algebras, although with directional preferences. The presented results provide (i) a deeper understanding of the relationships between spatial and spatio-temporal receptive field responses for different values of the filter parameters, which can be used for both (ii) designing more efficient schemes for computing receptive field responses over populations of multi-parameter families of receptive fields, as well as (iii)~formulating idealized theoretical models of the computations of simple cells in biological vision.
comment: 27 pages, 9 figures
♻ ☆ UM-Text: A Unified Multimodal Model for Image Understanding and Visual Text Editing
With the rapid advancement of image generation, visual text editing using natural language instructions has received increasing attention. The main challenge of this task is to fully understand the instruction and reference image, and thus generate visual text that is style-consistent with the image. Previous methods often involve complex steps of specifying the text content and attributes, such as font size, color, and layout, without considering the stylistic consistency with the reference image. To address this, we propose UM-Text, a unified multimodal model for context understanding and visual text editing by natural language instructions. Specifically, we introduce a Visual Language Model (VLM) to process the instruction and reference image, so that the text content and layout can be elaborately designed according to the context information. To generate an accurate and harmonious visual text image, we further propose the UM-Encoder to combine the embeddings of various condition information, where the combination is automatically configured by VLM according to the input instruction. During training, we propose a regional consistency loss to offer more effective supervision for glyph generation on both latent and RGB space, and design a tailored three-stage training strategy to further enhance model performance. In addition, we contribute the UM-DATA-200K, a large-scale visual text image dataset on diverse scenes for model training. Extensive qualitative and quantitative results on multiple public benchmarks demonstrate that our method achieves state-of-the-art performance.
♻ ☆ DA-Occ: Direction-Aware 2D Convolution for Efficient and Geometry-Preserving 3D Occupancy Prediction in Autonomous Driving
Efficient and high-accuracy 3D occupancy prediction is vital for the performance of autonomous driving systems. However, existing methods struggle to balance precision and efficiency: high-accuracy approaches are often hindered by heavy computational overhead, leading to slow inference speeds, while others leverage pure bird's-eye-view (BEV) representations to gain speed at the cost of losing vertical spatial cues and compromising geometric integrity. To overcome these limitations, we build on the efficient Lift-Splat-Shoot (LSS) paradigm and propose a pure 2D framework, DA-Occ, for 3D occupancy prediction that preserves fine-grained geometry. Standard LSS-based methods lift 2D features into 3D space solely based on depth scores, making it difficult to fully capture vertical structure. To improve upon this, DA-Occ augments depth-based lifting with a complementary height-score projection that explicitly encodes vertical geometric information. We further employ direction-aware convolution to extract geometric features along both vertical and horizontal orientations, effectively balancing accuracy and computational efficiency. On the Occ3D-nuScenes, the proposed method achieves an mIoU of 39.3% and an inference speed of 27.7 FPS, effectively balancing accuracy and efficiency. In simulations on edge devices, the inference speed reaches 14.8 FPS, further demonstrating the method's applicability for real-time deployment in resource-constrained environments.
♻ ☆ AI-Based Stroke Rehabilitation Domiciliary Assessment System with ST_GCN Attention
Effective stroke recovery requires continuous rehabilitation integrated with daily living. To support this need, we propose a home-based rehabilitation exercise and feedback system. The system consists of (1) hardware setup with RGB-D camera and wearable sensors to capture stroke movements, (2) a mobile application for exercise guidance, and (3) an AI server for assessment and feedback. When a stroke user exercises following the application guidance, the system records skeleton sequences, which are then assessed by the deep learning model, RAST-G@ (Rehabilitation Assessment Spatio-Temporal Graph ATtention). The model employs a spatio-temporal graph convolutional network to extract skeletal features and integrates transformer-based temporal attention to figure out action quality. For system implementation, we constructed the NRC dataset, include 10 upper-limb activities of daily living (ADL) and 5 range-of-motion (ROM) collected from stroke and non-disabled participants, with Score annotations provided by licensed physiotherapists. Results on the KIMORE and NRC datasets show that RAST-G@ improves over baseline in terms of MAD, RMSE, and MAPE. Furthermore, the system provides user feedback that combines patient-centered assessment and monitoring. The results demonstrate that the proposed system offers a scalable approach for quantitative and consistent domiciliary rehabilitation assessment.
comment: 9 pages(except references), 7 figures 6 Tables
♻ ☆ Towards Faithful Reasoning in Remote Sensing: A Perceptually-Grounded GeoSpatial Chain-of-Thought for Vision-Language Models
Vision-Language Models (VLMs) in remote sensing often fail at complex analytical tasks, a limitation stemming from their end-to-end training paradigm that bypasses crucial reasoning steps and leads to unverifiable outputs. To address this limitation, we introduce the Perceptually-Grounded Geospatial Chain-of-Thought (Geo-CoT), a framework that models remote sensing analysis as a verifiable, multi-step process. We instill this analytical process through a two-stage alignment strategy, leveraging Geo-CoT380k, the first large-scale dataset of structured Geo-CoT rationales. This strategy first employs supervised fine-tuning (SFT) to instill the foundational cognitive architecture, then leverages Group Reward Policy Optimization (GRPO) to refine the model's reasoning policy towards factual correctness. The resulting model, RSThinker, outputs both a final answer and its justifying, verifiable analytical trace. This capability yields dominant performance, significantly outperforming state-of-the-art models across a comprehensive range of tasks. The public release of our Geo-CoT380k dataset and RSThinker model upon publication serves as a concrete pathway from opaque perception towards structured, verifiable reasoning for Earth Observation.
♻ ☆ GenTrack2: An Improved Hybrid Approach for Visual Multi-Object Tracking IEEE
This paper proposes a visual multi-object tracking method that jointly employs stochastic and deterministic mechanisms to ensure identifier consistency for unknown and time-varying target numbers under nonlinear dynamics. A stochastic particle filter addresses nonlinear dynamics and non-Gaussian noise, with support from particle swarm optimization (PSO) to guide particles toward state distribution modes and mitigate divergence through proposed fitness measures incorporating motion consistency, appearance similarity, and social-interaction cues with neighboring targets. Deterministic association further enforces identifier consistency via a proposed cost matrix incorporating spatial consistency between particles and current detections, detection confidences, and track penalties. Subsequently, a novel scheme is proposed for the smooth updating of target states while preserving their identities, particularly for weak tracks during interactions with other targets and prolonged occlusions. Moreover, velocity regression over past states provides trend-seed velocities, enhancing particle sampling and state updates. The proposed tracker is designed to operate flexibly for both pre-recorded videos and camera live streams, where future frames are unavailable. Experimental results confirm superior performance compared to state-of-the-art trackers. The source-code reference implementations of both the proposed method and compared-trackers are provided on GitHub: https://github.com/SDU-VelKoTek/GenTrack2
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ AVERY: Adaptive VLM Split Computing through Embodied Self-Awareness for Efficient Disaster Response Systems
Unmanned Aerial Vehicles (UAVs) in disaster response require complex, queryable intelligence that on-board CNNs cannot provide. While Vision-Language Models (VLMs) offer this semantic reasoning, their high resource demands make on-device deployment infeasible, and naive cloud offloading fails under the low-bandwidth networks common in disaster zones. We present AVERY, a framework that enables VLM deployment through adaptive split computing. We advance the split computing paradigm beyond traditional depth-wise partitioning by introducing a functional, cognitive-inspired dual-stream split that separates the VLM into a high-frequency, low-resolution "context stream" for real-time awareness and a low-frequency, high-fidelity "insight stream" for deep analysis. A lightweight, self-aware on-board controller manages this architecture, monitoring network conditions and operator intent to dynamically select from pre-trained compression models, navigating the fundamental accuracy-throughput trade-off. Evaluated using the VLM LISA-7B across an edge-cloud scenario under fluctuating network conditions, AVERY consistently outperforms static configurations, achieving 11.2% higher accuracy than raw image compression and 93.98% lower energy consumption compared to full-edge execution, thereby enhancing mission efficiency and enabling real-time, queryable intelligence on resource-constrained platforms in dynamic environments.
comment: 8 pages, 5 figures. Paper is currently under review. Authors' version posted for personal use and not for redistribution
♻ ☆ Diffusion-based Layer-wise Semantic Reconstruction for Unsupervised Out-of-Distribution Detection
Unsupervised out-of-distribution (OOD) detection aims to identify out-of-domain data by learning only from unlabeled In-Distribution (ID) training samples, which is crucial for developing a safe real-world machine learning system. Current reconstruction-based methods provide a good alternative approach by measuring the reconstruction error between the input and its corresponding generative counterpart in the pixel/feature space. However, such generative methods face a key dilemma: improving the reconstruction power of the generative model while keeping a compact representation of the ID data. To address this issue, we propose the diffusion-based layer-wise semantic reconstruction approach for unsupervised OOD detection. The innovation of our approach is that we leverage the diffusion model's intrinsic data reconstruction ability to distinguish ID samples from OOD samples in the latent feature space. Moreover, to set up a comprehensive and discriminative feature representation, we devise a multi-layer semantic feature extraction strategy. By distorting the extracted features with Gaussian noise and applying the diffusion model for feature reconstruction, the separation of ID and OOD samples is implemented according to the reconstruction errors. Extensive experimental results on multiple benchmarks built upon various datasets demonstrate that our method achieves state-of-the-art performance in terms of detection accuracy and speed. Code is available at .
comment: 26 pages, 23 figures, published to Neurlps2024
♻ ☆ VisionTrim: Unified Vision Token Compression for Training-Free MLLM Acceleration ICLR2026
Multimodal large language models (MLLMs) suffer from high computational costs due to excessive visual tokens, particularly in high-resolution and video-based scenarios. Existing token reduction methods typically focus on isolated pipeline components and often neglect textual alignment, leading to performance degradation. In this paper, we propose VisionTrim, a unified framework for training-free MLLM acceleration, integrating two effective plug-and-play modules: 1) the Dominant Vision Token Selection (DVTS) module, which preserves essential visual tokens via a global-local view, and 2) the Text-Guided Vision Complement (TGVC) module, which facilitates context-aware token merging guided by textual cues. Extensive experiments across diverse image and video multimodal benchmarks demonstrate the performance superiority of our VisionTrim, advancing practical MLLM deployment in real-world applications. The code is available at: https://github.com/hanxunyu/VisionTrim.
comment: ICLR2026, Code Link: https://github.com/hanxunyu/VisionTrim
♻ ☆ Semantic Leakage from Image Embeddings
Image embeddings are generally assumed to pose limited privacy risk. We challenge this assumption by formalizing semantic leakage as the ability to recover semantic structures from compressed image embeddings. Surprisingly, we show that semantic leakage does not require exact reconstruction of the original image. Preserving local semantic neighborhoods under embedding alignment is sufficient to expose the intrinsic vulnerability of image embeddings. Crucially, this preserved neighborhood structure allows semantic information to propagate through a sequence of lossy mappings. Based on this conjecture, we propose Semantic Leakage from Image Embeddings (SLImE), a lightweight inference framework that reveals semantic information from standalone compressed image embeddings, incorporating a locally trained semantic retriever with off-the-shelf models, without training task-specific decoders. We thoroughly validate each step of the framework empirically, from aligned embeddings to retrieved tags, symbolic representations, and grammatical and coherent descriptions. We evaluate SLImE across a range of open and closed embedding models, including GEMINI, COHERE, NOMIC, and CLIP, and demonstrate consistent recovery of semantic information across diverse inference tasks. Our results reveal a fundamental vulnerability in image embeddings, whereby the preservation of semantic neighborhoods under alignment enables semantic leakage, highlighting challenges for privacy preservation.1
comment: 20 pages, 19 figures
♻ ☆ Feat2GS: Probing Visual Foundation Models with Gaussian Splatting
Given that visual foundation models (VFMs) are trained on extensive datasets but often limited to 2D images, a natural question arises: how well do they understand the 3D world? With the differences in architecture and training protocols (i.e., objectives, proxy tasks), a unified framework to fairly and comprehensively probe their 3D awareness is urgently needed. Existing works on 3D probing suggest single-view 2.5D estimation (e.g., depth and normal) or two-view sparse 2D correspondence (e.g., matching and tracking). Unfortunately, these tasks ignore texture awareness, and require 3D data as ground-truth, which limits the scale and diversity of their evaluation set. To address these issues, we introduce Feat2GS, which readout 3D Gaussians attributes from VFM features extracted from unposed images. This allows us to probe 3D awareness for geometry and texture via novel view synthesis, without requiring 3D data. Additionally, the disentanglement of 3DGS parameters - geometry ($\boldsymbol{x}$, $α$, $Σ$) and texture ($\boldsymbol{c}$) - enables separate analysis of texture and geometry awareness. Under Feat2GS, we conduct extensive experiments to probe the 3D awareness of several VFMs, and investigate the ingredients that lead to a 3D aware VFM. Building on these findings, we develop several variants that achieve state-of-the-art across diverse datasets. This makes Feat2GS useful for probing VFMs, and as a simple-yet-effective baseline for novel-view synthesis. Code and data are available at https://fanegg.github.io/Feat2GS/.
comment: Project Page: https://fanegg.github.io/Feat2GS/
♻ ☆ Object-Centric Representation Learning for Enhanced 3D Scene Graph Prediction NeurIPS 2025
3D Semantic Scene Graph Prediction aims to detect objects and their semantic relationships in 3D scenes, and has emerged as a crucial technology for robotics and AR/VR applications. While previous research has addressed dataset limitations and explored various approaches including Open-Vocabulary settings, they frequently fail to optimize the representational capacity of object and relationship features, showing excessive reliance on Graph Neural Networks despite insufficient discriminative capability. In this work, we demonstrate through extensive analysis that the quality of object features plays a critical role in determining overall scene graph accuracy. To address this challenge, we design a highly discriminative object feature encoder and employ a contrastive pretraining strategy that decouples object representation learning from the scene graph prediction. This design not only enhances object classification accuracy but also yields direct improvements in relationship prediction. Notably, when plugging in our pretrained encoder into existing frameworks, we observe substantial performance improvements across all evaluation metrics. Additionally, whereas existing approaches have not fully exploited the integration of relationship information, we effectively combine both geometric and semantic features to achieve superior relationship prediction. Comprehensive experiments on the 3DSSG dataset demonstrate that our approach significantly outperforms previous state-of-the-art methods. Our code is publicly available at https://github.com/VisualScienceLab-KHU/OCRL-3DSSG-Codes.
comment: Accepted by NeurIPS 2025. Code: https://github.com/VisualScienceLab-KHU/OCRL-3DSSG-Codes
♻ ☆ From Slices to Structures: Unsupervised 3D Reconstruction of Female Pelvic Anatomy from Freehand Transvaginal Ultrasound
Volumetric ultrasound has the potential to significantly improve diagnostic accuracy and clinical decision-making, yet its widespread adoption remains limited by dependence on specialized hardware and restrictive acquisition protocols. In this work, we present a novel unsupervised framework for reconstructing 3D anatomical structures from freehand 2D transvaginal ultrasound sweeps, without requiring external tracking or learned pose estimators. Our method, TVGS, adapts the principles of Gaussian Splatting to the domain of ultrasound, introducing a slice-aware, differentiable rasterizer tailored to the unique physics and geometry of ultrasound imaging. We model anatomy as a collection of anisotropic 3D Gaussians and optimize their parameters directly from image-level supervision. To ensure robustness against irregular probe motion, we introduce a joint optimization scheme that refines slice poses alongside anatomical structure. The result is a compact, flexible, and memory-efficient volumetric representation that captures anatomical detail with high spatial fidelity. This work demonstrates that accurate 3D reconstruction from 2D ultrasound images can be achieved through purely computational means, offering a scalable alternative to conventional 3D systems and enabling new opportunities for AI-assisted analysis and diagnosis.
♻ ☆ AI-generated data contamination erodes pathological variability and diagnostic reliability
Generative artificial intelligence (AI) is rapidly populating medical records with synthetic content, creating a feedback loop where future models are increasingly at risk of training on uncurated AI-generated data. However, the clinical consequences of this AI-generated data contamination remain unexplored. Here, we show that in the absence of mandatory human verification, this self-referential cycle drives a rapid erosion of pathological variability and diagnostic reliability. By analysing more than 800,000 synthetic data points across clinical text generation, vision-language reporting, and medical image synthesis, we find that models progressively converge toward generic phenotypes regardless of the model architecture. Specifically, rare but critical findings, including pneumothorax and effusions, vanish from the synthetic content generated by AI models, while demographic representations skew heavily toward middle-aged male phenotypes. Crucially, this degradation is masked by false diagnostic confidence; models continue to issue reassuring reports while failing to detect life-threatening pathology, with false reassurance rates tripling to 40%. Blinded physician evaluation confirms that this decoupling of confidence and accuracy renders AI-generated documentation clinically useless after just two generations. We systematically evaluate three mitigation strategies, finding that while synthetic volume scaling fails to prevent collapse, mixing real data with quality-aware filtering effectively preserves diversity. Ultimately, our results suggest that without policy-mandated human oversight, the deployment of generative AI threatens to degrade the very healthcare data ecosystems it relies upon.
comment: *Corresponding author: Dianbo Liu (dianbo@nus.edu.sg)
♻ ☆ Glance and Focus Reinforcement for Pan-cancer Screening ICLR 2026
Pan-cancer screening in large-scale CT scans remains challenging for existing AI methods, primarily due to the difficulty of localizing diverse types of tiny lesions in large CT volumes. The extreme foreground-background imbalance significantly hinders models from focusing on diseased regions, while redundant focus on healthy regions not only decreases the efficiency but also increases false positives. Inspired by radiologists' glance and focus diagnostic strategy, we introduce GF-Screen, a Glance and Focus reinforcement learning framework for pan-cancer screening. GF-Screen employs a Glance model to localize the diseased regions and a Focus model to precisely segment the lesions, where segmentation results of the Focus model are leveraged to reward the Glance model via Reinforcement Learning (RL). Specifically, the Glance model crops a group of sub-volumes from the entire CT volume and learns to select the sub-volumes with lesions for the Focus model to segment. Given that the selecting operation is non-differentiable for segmentation training, we propose to employ the segmentation results to reward the Glance model. To optimize the Glance model, we introduce a novel group relative learning paradigm, which employs group relative comparison to prioritize high-advantage predictions and discard low-advantage predictions within sub-volume groups, not only improving efficiency but also reducing false positives. In this way, for the first time, we effectively extend cutting-edge RL techniques to tackle the specific challenges in pan-cancer screening. Extensive experiments on 16 internal and 7 external datasets across 9 lesion types demonstrated the effectiveness of GF-Screen. Notably, GF-Screen leads the public validation leaderboard of MICCAI FLARE25 pan-cancer challenge, surpassing the FLARE24 champion solution by a large margin (+25.6% DSC and +28.2% NSD).
comment: Accepted by ICLR 2026. Code is available at https://github.com/Luffy03/GF-Screen
♻ ☆ Seeing through Light and Darkness: Sensor-Physics Grounded Deblurring HDR NeRF from Single-Exposure Images and Events
Novel view synthesis from low dynamic range (LDR) blurry images, which are common in the wild, struggles to recover high dynamic range (HDR) and sharp 3D representations in extreme lighting conditions. Although existing methods employ event data to address this issue, they ignore the sensor-physics mismatches between the camera output and physical world radiance, resulting in suboptimal HDR and deblurring results. To cope with this problem, we propose a unified sensor-physics grounded NeRF framework for sharp HDR novel view synthesis from single-exposure blurry LDR images and corresponding events. We employ NeRF to directly represent the actual radiance of the 3D scene in the HDR domain and model raw HDR scene rays hitting the sensor pixels as in the physical world. A pixel-wise RGB mapping field is introduced to align the above rendered pixel values with the sensor-recorded LDR pixel values of the input images. A novel event mapping field is also designed to bridge the physical scene dynamics and actual event sensor output. The two mapping fields are jointly optimized with the NeRF network, leveraging the spatial and temporal dynamic information in events to enhance the sharp HDR 3D representation learning. Experiments on the collected and public datasets demonstrate that our method can achieve state-of-the-art deblurring HDR novel view synthesis results with single-exposure blurry LDR images and corresponding events.
♻ ☆ EgoFSD: Ego-Centric Fully Sparse Paradigm with Uncertainty Denoising and Iterative Refinement for Efficient End-to-End Self-Driving ICRA2026
Current End-to-End Autonomous Driving (E2E-AD) methods resort to unifying modular designs for various tasks (e.g. perception, prediction and planning). Although optimized with a fully differentiable framework in a planning-oriented manner, existing end-to-end driving systems lacking ego-centric designs still suffer from unsatisfactory performance and inferior efficiency, due to rasterized scene representation learning and redundant information transmission. In this paper, we propose an ego-centric fully sparse paradigm, named EgoFSD, for end-to-end self-driving. Specifically, EgoFSD consists of sparse perception, hierarchical interaction and iterative motion planner. The sparse perception module performs detection and online mapping based on sparse representation of the driving scene. The hierarchical interaction module aims to select the Closest In-Path Vehicle / Stationary (CIPV / CIPS) from coarse to fine, benefiting from an additional geometric prior. As for the iterative motion planner, both selected interactive agents and ego-vehicle are considered for joint motion prediction, where the output multi-modal ego-trajectories are optimized in an iterative fashion. In addition, position-level motion diffusion and trajectory-level planning denoising are introduced for uncertainty modeling, thereby enhancing the training stability and convergence speed. Extensive experiments are conducted on nuScenes and Bench2Drive datasets, which significantly reduces the average L2 error by 59% and collision rate by 92% than UniAD while achieves 6.9x faster running efficiency.
comment: Accepted to ICRA2026
♻ ☆ GEO-Bench-2: From Performance to Capability, Rethinking Evaluation in Geospatial AI
Geospatial Foundation Models (GeoFMs) are transforming Earth Observation (EO), but evaluation lacks standardized protocols. GEO-Bench-2 addresses this with a comprehensive framework spanning classification, segmentation, regression, object detection, and instance segmentation across 19 permissively-licensed datasets. We introduce ''capability'' groups to rank models on datasets that share common characteristics (e.g., resolution, bands, temporality). This enables users to identify which models excel in each capability and determine which areas need improvement in future work. To support both fair comparison and methodological innovation, we define a prescriptive yet flexible evaluation protocol. This not only ensures consistency in benchmarking but also facilitates research into model adaptation strategies, a key and open challenge in advancing GeoFMs for downstream tasks. Our experiments show that no single model dominates across all tasks, confirming the specificity of the choices made during architecture design and pretraining. While models pretrained on natural images (ConvNext ImageNet, DINO V3) excel on high-resolution tasks, EO-specific models (TerraMind, Prithvi, and Clay) outperform them on multispectral applications such as agriculture and disaster response. These findings demonstrate that optimal model choice depends on task requirements, data modalities, and constraints. This shows that the goal of a single GeoFM model that performs well across all tasks remains open for future research. GEO-Bench-2 enables informed, reproducible GeoFM evaluation tailored to specific use cases. Code, data, and leaderboard for GEO-Bench-2 are publicly released under a permissive license.
♻ ☆ UniCalli: A Unified Diffusion Framework for Column-Level Generation and Recognition of Chinese Calligraphy
Computational replication of Chinese calligraphy remains challenging. Existing methods falter, either creating high-quality isolated characters while ignoring page-level aesthetics like ligatures and spacing, or attempting page synthesis at the expense of calligraphic correctness. We introduce \textbf{UniCalli}, a unified diffusion framework for column-level recognition and generation. Training both tasks jointly is deliberate: recognition constrains the generator to preserve character structure, while generation provides style and layout priors. This synergy fosters concept-level abstractions that improve both tasks, especially in limited-data regimes. We curated a dataset of over 8,000 digitized pieces, with ~4,000 densely annotated. UniCalli employs asymmetric noising and a rasterized box map for spatial priors, trained on a mix of synthetic, labeled, and unlabeled data. The model achieves state-of-the-art generative quality with superior ligature continuity and layout fidelity, alongside stronger recognition. The framework successfully extends to other ancient scripts, including Oracle bone inscriptions and Egyptian hieroglyphs. Code and data can be viewed in \href{https://github.com/EnVision-Research/UniCalli}{this URL}.
comment: Page: https://envision-research.github.io/UniCalli/
♻ ☆ UrbanIng-V2X: A Large-Scale Multi-Vehicle, Multi-Infrastructure Dataset Across Multiple Intersections for Cooperative Perception NeurIPS 2025
Recent cooperative perception datasets have played a crucial role in advancing smart mobility applications by enabling information exchange between intelligent agents, helping to overcome challenges such as occlusions and improving overall scene understanding. While some existing real-world datasets incorporate both vehicle-to-vehicle and vehicle-to-infrastructure interactions, they are typically limited to a single intersection or a single vehicle. A comprehensive perception dataset featuring multiple connected vehicles and infrastructure sensors across several intersections remains unavailable, limiting the benchmarking of algorithms in diverse traffic environments. Consequently, overfitting can occur, and models may demonstrate misleadingly high performance due to similar intersection layouts and traffic participant behavior. To address this gap, we introduce UrbanIng-V2X, the first large-scale, multi-modal dataset supporting cooperative perception involving vehicles and infrastructure sensors deployed across three urban intersections in Ingolstadt, Germany. UrbanIng-V2X consists of 34 temporally aligned and spatially calibrated sensor sequences, each lasting 20 seconds. All sequences contain recordings from one of three intersections, involving two vehicles and up to three infrastructure-mounted sensor poles operating in coordinated scenarios. In total, UrbanIng-V2X provides data from 12 vehicle-mounted RGB cameras, 2 vehicle LiDARs, 17 infrastructure thermal cameras, and 12 infrastructure LiDARs. All sequences are annotated at a frequency of 10 Hz with 3D bounding boxes spanning 13 object classes, resulting in approximately 712k annotated instances across the dataset. We provide comprehensive evaluations using state-of-the-art cooperative perception methods and publicly release the codebase, dataset, HD map, and a digital twin of the complete data collection environment.
comment: Accepted to NeurIPS 2025. Including supplemental material. For code and dataset, see https://github.com/thi-ad/UrbanIng-V2X
♻ ☆ SpatialViz-Bench: A Cognitively-Grounded Benchmark for Diagnosing Spatial Visualization in MLLMs
Humans can imagine and manipulate visual images mentally, a capability known as spatial visualization. While many multi-modal benchmarks assess reasoning on visible visual information, the ability to infer unseen relationships through spatial visualization remains insufficiently evaluated as a spatial skill. This reliance on publicly sourced problems from IQ tests or math competitions risks data contamination and compromises assessment reliability. To this end, we introduce SpatialViz-Bench, a comprehensive multi-modal benchmark for spatial visualization with 12 tasks across 4 sub-abilities, comprising 1,180 programmatically generated problems, a scalable framework that allows for expansion to ensure fair and continuously reliable evaluations. Our evaluation of 27 Multi-modal Large Language Models (MLLMs) reveals wide performance variations, demonstrates the benchmark's strong discriminative power, and uncovers counter-intuitive findings: Chain-of-Thought (CoT) prompting paradoxically degrades accuracy on open-source models. Through statistical and qualitative analysis of error types, SpatialViz-Bench demonstrates that state-of-the-art MLLMs exhibit deficiencies in spatial visualization tasks, thereby addressing a significant lacuna in the field. The benchmark data and evaluation code are publicly available.
♻ ☆ Under-Canopy Terrain Reconstruction in Dense Forests Using RGB Imaging and Neural 3D Reconstruction WACV 2026
Mapping the terrain and understory hidden beneath dense forest canopies is of great interest for numerous applications such as search and rescue, trail mapping, forest inventory tasks, and more. Existing solutions rely on specialized sensors: either heavy, costly airborne LiDAR, or Airborne Optical Sectioning (AOS), which uses thermal synthetic aperture photography and is tailored for person detection. We introduce a novel approach for the reconstruction of canopy-free, photorealistic ground views using only conventional RGB images. Our solution is based on the celebrated Neural Radiance Fields (NeRF), a recent 3D reconstruction method. Additionally, we include specific image capture considerations, which dictate the needed illumination to successfully expose the scene beneath the canopy. To better cope with the poorly lit understory, we employ a low light loss. Finally, we propose two complementary approaches to remove occluding canopy elements by controlling per-ray integration procedure. To validate the value of our approach, we present two possible downstream tasks. For the task of search and rescue (SAR), we demonstrate that our method enables person detection which achieves promising results compared to thermal AOS (using only RGB images). Additionally, we show the potential of our approach for forest inventory tasks like tree counting. These results position our approach as a cost-effective, high-resolution alternative to specialized sensors for SAR, trail mapping, and forest-inventory tasks.
comment: WACV 2026 CV4EO
♻ ☆ Physics-Based Benchmarking Metrics for Multimodal Synthetic Images
Current state of the art measures like BLEU, CIDEr, VQA score, SigLIP-2 and CLIPScore are often unable to capture semantic or structural accuracy, especially for domain-specific or context-dependent scenarios. For this, this paper proposes a Physics-Constrained Multimodal Data Evaluation (PCMDE) metric combining large language models with reasoning, knowledge based mapping and vision-language models to overcome these limitations. The architecture is comprised of three main stages: (1) feature extraction of spatial and semantic information with multimodal features through object detection and VLMs; (2) Confidence-Weighted Component Fusion for adaptive component-level validation; and (3) physics-guided reasoning using large language models for structural and relational constraints (e.g., alignment, position, consistency) enforcement.
♻ ☆ MPF-Net: Exposing High-Fidelity AI-Generated Video Forgeries via Hierarchical Manifold Deviation and Micro-Temporal Fluctuations
With the rapid advancement of video generation models such as Veo and Wan, the visual quality of synthetic content has reached a level where macro-level semantic errors and temporal inconsistencies are no longer prominent. However, this does not imply that the distinction between real and cutting-edge high-fidelity fake is untraceable. We argue that AI-generated videos are essentially products of a manifold-fitting process rather than a physical recording. Consequently, the pixel composition logic of consecutive adjacent frames residual in AI videos exhibits a structured and homogenous characteristic. We term this phenomenon `Manifold Projection Fluctuations' (MPF). Driven by this insight, we propose a hierarchical dual-path framework that operates as a sequential filtering process. The first, the Static Manifold Deviation Branch, leverages the refined perceptual boundaries of Large-Scale Vision Foundation Models (VFMs) to capture residual spatial anomalies or physical violations that deviate from the natural real-world manifold (off-manifold). For the remaining high-fidelity videos that successfully reside on-manifold and evade spatial detection, we introduce the Micro-Temporal Fluctuation Branch as a secondary, fine-grained filter. By analyzing the structured MPF that persists even in visually perfect sequences, our framework ensures that forgeries are exposed regardless of whether they manifest as global real-world manifold deviations or subtle computational fingerprints.
♻ ☆ DOS: Directional Object Separation in Text Embeddings for Multi-Object Image Generation AAAI 2026
Recent progress in text-to-image (T2I) generative models has led to significant improvements in generating high-quality images aligned with text prompts. However, these models still struggle with prompts involving multiple objects, often resulting in object neglect or object mixing. Through extensive studies, we identify four problematic scenarios, Similar Shapes, Similar Textures, Dissimilar Background Biases, and Many Objects, where inter-object relationships frequently lead to such failures. Motivated by two key observations about CLIP embeddings, we propose DOS (Directional Object Separation), a method that modifies three types of CLIP text embeddings before passing them into text-to-image models. Experimental results show that DOS consistently improves the success rate of multi-object image generation and reduces object mixing. In human evaluations, DOS significantly outperforms four competing methods, receiving 26.24%-43.04% more votes across four benchmarks. These results highlight DOS as a practical and effective solution for improving multi-object image generation.
comment: Accepted to AAAI 2026
♻ ☆ Gated Relational Alignment via Confidence-based Distillation for Efficient VLMs
Vision-Language Models (VLMs) achieve strong multimodal performance but are costly to deploy, and post-training quantization often causes significant accuracy loss. Despite its potential, quantization-aware training for VLMs remains underexplored. We propose GRACE, a framework unifying knowledge distillation and QAT under the Information Bottleneck principle: quantization constrains information capacity while distillation guides what to preserve within this budget. Treating the teacher as a proxy for task-relevant information, we introduce confidence-gated decoupled distillation to filter unreliable supervision, relational centered kernel alignment to transfer visual token structures, and an adaptive controller via Lagrangian relaxation to balance fidelity against capacity constraints. Across extensive benchmarks on LLaVA and Qwen families, our INT4 models consistently outperform FP16 baselines (e.g., LLaVA-1.5-7B: 70.1 vs. 66.8 on SQA; Qwen2-VL-2B: 76.9 vs. 72.6 on MMBench), nearly matching teacher performance. Using real INT4 kernel, we achieve 3$\times$ throughput with 54% memory reduction. This principled framework significantly outperforms existing quantization methods, making GRACE a compelling solution for resource-constrained deployment.
comment: This paper is currently under review
♻ ☆ NP-LoRA: Null Space Projection Unifies Subject and Style in LoRA Fusion
Low-Rank Adaptation (LoRA) fusion enables the composition of learned subject and style representations for controllable generation without retraining. However, existing methods rely on weight-based merging within a shared adaptation space, where independently trained LoRAs interfere and degrade fidelity. We show that this interference is fundamentally geometric: content and style LoRAs occupy overlapping, non-orthogonal low-rank subspaces, making weight-based fusion inherently flawed. Analyzing LoRA internal structure, we find that generative behavior is dominated by a few principal directions that must be preserved during fusion. Based on this insight, we reformulate LoRA fusion as a null-space projection problem and propose Null Space Projection LoRA (NP-LoRA), a projection-based framework that enforces subspace separation by construction. NP-LoRA extracts principal style directions via singular value decomposition (SVD) and projects the subject LoRA into the orthogonal complement of the style subspace, preventing interference. We further introduce a soft projection mechanism that provides continuous control over the trade-off between subject fidelity and style preservation. Experiments show that NP-LoRA consistently outperforms strong baselines and generalizes well across pretrained LoRA pairs without retraining.
♻ ☆ STELAR-VISION: Self-Topology-Aware Efficient Learning for Aligned Reasoning in Vision AAAI 2026
Vision-language models (VLMs) have made significant strides in reasoning, yet they often struggle with complex multimodal tasks and tend to generate overly verbose outputs. A key limitation is their reliance on chain-of-thought (CoT) reasoning, despite many tasks benefiting from alternative topologies like trees or graphs. To address this, we introduce STELAR-Vision, a training framework for topology-aware reasoning. At its core is TopoAug, a synthetic data pipeline that enriches training with diverse topological structures. Using supervised fine-tuning and reinforcement learning, we post-train Qwen2VL models with both accuracy and efficiency in mind. Additionally, we propose Frugal Learning, which reduces output length with minimal accuracy loss. On MATH-V and VLM-S2H, STELAR-Vision improves accuracy by 9.7% over its base model and surpasses the larger Qwen2VL-72B-Instruct by 7.3%. On five out-of-distribution benchmarks, it outperforms Phi-4-Multimodal-Instruct by up to 28.4% and LLaMA-3.2-11B-Vision-Instruct by up to 13.2%, demonstrating strong generalization. Compared to Chain-Only training, our approach achieves 4.3% higher overall accuracy on in-distribution datasets and consistently outperforms across all OOD benchmarks.
comment: This paper has been accepted at AAAI 2026. This is the author's extended version. The final version will appear in the official proceedings
♻ ☆ FAST: Foreground-aware Diffusion with Accelerated Sampling Trajectory for Segmentation-oriented Anomaly Synthesis NeurIPS 2025
Industrial anomaly segmentation relies heavily on pixel-level annotations, yet real-world anomalies are often scarce, diverse, and costly to label. Segmentation-oriented industrial anomaly synthesis (SIAS) has emerged as a promising alternative; however, existing methods struggle to balance sampling efficiency and generation quality. Moreover, most approaches treat all spatial regions uniformly, overlooking the distinct statistical differences between anomaly and background areas. This uniform treatment hinders the synthesis of controllable, structure-specific anomalies tailored for segmentation tasks. In this paper, we propose FAST, a foreground-aware diffusion framework featuring two novel modules: the Anomaly-Informed Accelerated Sampling (AIAS) and the Foreground-Aware Reconstruction Module (FARM). AIAS is a training-free sampling algorithm specifically designed for segmentation-oriented industrial anomaly synthesis, which accelerates the reverse process through coarse-to-fine aggregation and enables the synthesis of state-of-the-art segmentation-oriented anomalies in as few as 10 steps. Meanwhile, FARM adaptively adjusts the anomaly-aware noise within the masked foreground regions at each sampling step, preserving localized anomaly signals throughout the denoising trajectory. Extensive experiments on multiple industrial benchmarks demonstrate that FAST consistently outperforms existing anomaly synthesis methods in downstream segmentation tasks. We release the code at: https://github.com/Chhro123/fast-foreground-aware-anomaly-synthesis.
comment: Accepted to NeurIPS 2025
♻ ☆ UNIC: Learning Unified Multimodal Extrinsic Contact Estimation
Contact-rich manipulation requires reliable estimation of extrinsic contacts-the interactions between a grasped object and its environment which provide essential contextual information for planning, control, and policy learning. However, existing approaches often rely on restrictive assumptions, such as predefined contact types, fixed grasp configurations, or camera calibration, that hinder generalization to novel objects and deployment in unstructured environments. In this paper, we present UNIC, a unified multimodal framework for extrinsic contact estimation that operates without any prior knowledge or camera calibration. UNIC directly encodes visual observations in the camera frame and integrates them with proprioceptive and tactile modalities in a fully data-driven manner. It introduces a unified contact representation based on scene affordance maps that captures diverse contact formations and employs a multimodal fusion mechanism with random masking, enabling robust multimodal representation learning. Extensive experiments demonstrate that UNIC performs reliably. It achieves a 9.6 mm average Chamfer distance error on unseen contact locations, performs well on unseen objects, remains robust under missing modalities, and adapts to dynamic camera viewpoints. These results establish extrinsic contact estimation as a practical and versatile capability for contact-rich manipulation. The overview and hardware experiment videos are at https://youtu.be/xpMitkxN6Ls?si=7Vgj-aZ_P1wtnWZN
♻ ☆ SVBench: Evaluation of Video Generation Models on Social Reasoning
Recent text-to-video generation models exhibit remarkable progress in visual realism, motion fidelity, and text-video alignment, yet they remain fundamentally limited in their ability to generate socially coherent behavior. Unlike humans, who effortlessly infer intentions, beliefs, emotions, and social norms from brief visual cues, current models tend to render literal scenes without capturing the underlying causal or psychological logic. To systematically evaluate this gap, we introduce the first benchmark for social reasoning in video generation. Grounded in findings from developmental and social psychology, our benchmark organizes thirty classic social cognition paradigms into seven core dimensions, including mental-state inference, goal-directed action, joint attention, social coordination, prosocial behavior, social norms, and multi-agent strategy. To operationalize these paradigms, we develop a fully training-free agent-based pipeline that (i) distills the reasoning mechanism of each experiment, (ii) synthesizes diverse video-ready scenarios, (iii) enforces conceptual neutrality and difficulty control through cue-based critique, and (iv) evaluates generated videos using a high-capacity VLM judge across five interpretable dimensions of social reasoning. Using this framework, we conduct the first large-scale study across seven state-of-the-art video generation systems. Our results reveal substantial performance gaps: while modern models excel in surface-level plausibility, they systematically fail in intention recognition, belief reasoning, joint attention, and prosocial inference.
comment: 10pages
♻ ☆ OpenWorldSAM: Extending SAM2 for Universal Image Segmentation with Language Prompts
The ability to segment objects based on open-ended language prompts remains a critical challenge, requiring models to ground textual semantics into precise spatial masks while handling diverse and unseen categories. We present OpenWorldSAM, a framework that extends the prompt-driven Segment Anything Model v2 (SAM2) to open-vocabulary scenarios by integrating multi-modal embeddings extracted from a lightweight vision-language model (VLM). Our approach is guided by four key principles: i) Unified prompting: OpenWorldSAM supports a diverse range of prompts, including category-level and sentence-level language descriptions, providing a flexible interface for various segmentation tasks. ii) Efficiency: By freezing the pre-trained components of SAM2 and the VLM, we train only 4.5 million parameters on the COCO-stuff dataset, achieving remarkable resource efficiency. iii) Instance Awareness: We enhance the model's spatial understanding through novel positional tie-breaker embeddings and cross-attention layers, enabling effective segmentation of multiple instances. iv) Generalization: OpenWorldSAM exhibits strong zero-shot capabilities, generalizing well on unseen categories and an open vocabulary of concepts without additional training. Extensive experiments demonstrate that OpenWorldSAM achieves state-of-the-art performance in open-vocabulary semantic, instance, and panoptic segmentation across multiple benchmarks. Code is available at https://github.com/GinnyXiao/OpenWorldSAM.
♻ ☆ Inference-time Stochastic Refinement of GRU-Normalizing Flow for Real-time Video Motion Transfer
Real-time video motion transfer applications such as immersive gaming and vision-based anomaly detection require accurate yet diverse future predictions to support realistic synthesis and robust downstream decision making under uncertainty. To improve the diversity of such sequential forecasts we propose a novel inference-time refinement technique that combines Gated Recurrent Unit-Normalizing Flows (GRU-NF) with stochastic sampling methods. While GRU-NF can capture multimodal distributions through its integration of normalizing flows within a temporal forecasting framework, its deterministic transformation structure can limit expressivity. To address this, inspired by Stochastic Normalizing Flows (SNF), we introduce Markov Chain Monte Carlo (MCMC) steps during GRU-NF inference, enabling the model to explore a richer output space and better approximate the true data distribution without retraining. We validate our approach in a keypoint-based video motion transfer pipeline, where capturing temporally coherent and perceptually diverse future trajectories is essential for realistic samples and low bandwidth communication. Experiments show that our inference framework, Gated Recurrent Unit- Stochastic Normalizing Flows (GRU-SNF) outperforms GRU-NF in generating diverse outputs without sacrificing accuracy, even under longer prediction horizons. By injecting stochasticity during inference, our approach captures multimodal behavior more effectively. These results highlight the potential of integrating stochastic dynamics with flow-based sequence models for generative time series forecasting. The code is available at: https://github.com/Tasmiah1408028/Inference-Time-Stochastic-Refinement-Of-GRU-NF-For-Real-Time-Video-Motion-Transfer
♻ ☆ Is Training Necessary for Anomaly Detection?
Current state-of-the-art multi-class unsupervised anomaly detection (MUAD) methods rely on training encoder-decoder models to reconstruct anomaly-free features. We first show these approaches have an inherent fidelity-stability dilemma in how they detect anomalies via reconstruction residuals. We then abandon the reconstruction paradigm entirely and propose Retrieval-based Anomaly Detection (RAD). RAD is a training-free approach that stores anomaly-free features in a memory and detects anomalies through multi-level retrieval, matching test patches against the memory. Experiments demonstrate that RAD achieves state-of-the-art performance across four established benchmarks (MVTec-AD, VisA, Real-IAD, 3D-ADAM) under both standard and few-shot settings. On MVTec-AD, RAD reaches 96.7\% Pixel AUROC with just a single anomaly-free image compared to 98.5\% of RAD's full-data performance. We further prove that retrieval-based scores theoretically upper-bound reconstruction-residual scores. Collectively, these findings overturn the assumption that MUAD requires task-specific training, showing that state-of-the-art anomaly detection is feasible with memory-based retrieval. Our code is available at https://github.com/longkukuhi/RAD.
♻ ☆ MVAR: Visual Autoregressive Modeling with Scale and Spatial Markovian Conditioning ICLR 2026
Essential to visual generation is efficient modeling of visual data priors. Conventional next-token prediction methods define the process as learning the conditional probability distribution of successive tokens. Recently, next-scale prediction methods redefine the process to learn the distribution over multi-scale representations, significantly reducing generation latency. However, these methods condition each scale on all previous scales and require each token to consider all preceding tokens, exhibiting scale and spatial redundancy. To better model the distribution by mitigating redundancy, we propose Markovian Visual AutoRegressive modeling (MVAR), a novel autoregressive framework that introduces scale and spatial Markov assumptions to reduce the complexity of conditional probability modeling. Specifically, we introduce a scale-Markov trajectory that only takes as input the features of adjacent preceding scale for next-scale prediction, enabling the adoption of a parallel training strategy that significantly reduces GPU memory consumption. Furthermore, we propose spatial-Markov attention, which restricts the attention of each token to a localized neighborhood of size k at corresponding positions on adjacent scales, rather than attending to every token across these scales, for the pursuit of reduced modeling complexity. Building on these improvements, we reduce the computational complexity of attention calculation from O(N^2) to O(Nk), enabling training with just eight NVIDIA RTX 4090 GPUs and eliminating the need for KV cache during inference. Extensive experiments on ImageNet demonstrate that MVAR achieves comparable or superior performance with both small model trained from scratch and large fine-tuned models, while reducing the average GPU memory footprint by 3.0x.
comment: Accepted to ICLR 2026. Project page: https://nuanbaobao.github.io/MVAR
♻ ☆ GuidNoise: Single-Pair Guided Diffusion for Generalized Noise Synthesis AAAI2026
Recent image denoising methods have leveraged generative modeling for real noise synthesis to address the costly acquisition of real-world noisy data. However, these generative models typically require camera metadata and extensive target-specific noisy-clean image pairs, often showing limited generalization between settings. In this paper, to mitigate the prerequisites, we propose a Single-Pair Guided Diffusion for generalized noise synthesis GuidNoise, which uses a single noisy/clean pair as the guidance, often easily obtained by itself within a training set. To train GuidNoise, which generates synthetic noisy images from the guidance, we introduce a guidance-aware affine feature modification (GAFM) and a noise-aware refine loss to leverage the inherent potential of diffusion models. This loss function refines the diffusion model's backward process, making the model more adept at generating realistic noise distributions. The GuidNoise synthesizes high-quality noisy images under diverse noise environments without additional metadata during both training and inference. Additionally, GuidNoise enables the efficient generation of noisy-clean image pairs at inference time, making synthetic noise readily applicable for augmenting training data. This self-augmentation significantly improves denoising performance, especially in practical scenarios with lightweight models and limited training data. The code is available at https://github.com/chjinny/GuidNoise.
comment: AAAI2026
♻ ☆ CrossCheck-Bench: Diagnosing Compositional Failures in Multimodal Conflict Resolution AAAI 2026
Multimodal Large Language Models are primarily trained and evaluated on aligned image-text pairs, which leaves their ability to detect and resolve real-world inconsistencies largely unexplored. In open-domain applications visual and textual cues often conflict, requiring models to perform structured reasoning beyond surface-level alignment. We introduce CrossCheck-Bench, a diagnostic benchmark for evaluating contradiction detection in multimodal inputs. The benchmark adopts a hierarchical task framework covering three levels of reasoning complexity and defines seven atomic capabilities essential for resolving cross-modal inconsistencies. CrossCheck-Bench includes 15k question-answer pairs sourced from real-world artifacts with synthetically injected contradictions. The dataset is constructed through a multi-stage annotation pipeline involving more than 450 expert hours to ensure semantic validity and calibrated difficulty across perception, integration, and reasoning. We evaluate 13 state-of-the-art vision-language models and observe a consistent performance drop as tasks shift from perceptual matching to logical contradiction detection. Most models perform well on isolated entity recognition but fail when multiple clues must be synthesized for conflict reasoning. Capability-level analysis further reveals uneven skill acquisition, especially in tasks requiring multi-step inference or rule-based validation. Additional probing shows that conventional prompting strategies such as Chain-of-Thought and Set-of-Mark yield only marginal gains. By contrast, methods that interleave symbolic reasoning with grounded visual processing achieve more stable improvements. These results highlight a persistent bottleneck in multimodal reasoning and suggest new directions for building models capable of robust cross-modal verification.
comment: Accepted by AAAI 2026
♻ ☆ Semantically Guided Dynamic Visual Prototype Refinement for Compositional Zero-Shot Learning
Compositional Zero-Shot Learning (CZSL) seeks to recognize unseen state-object pairs by recombining primitives learned from seen compositions. Despite recent progress with vision-language models (VLMs), two limitations remain: (i) text-driven semantic prototypes are weakly discriminative in the visual feature space; and (ii) unseen pairs are optimized passively, thereby inducing seen bias. To address these limitations, we present Duplex, a framework that couples dual-prototype learning with dynamic local-graph refinement of visual prototypes. For each composition, Duplex maintains a semantic prototype via prompt learning and a visual prototype for unseen pairs constructed by recombining disentangled state and object primitives from seen images. The visual prototypes are updated dynamically through lightweight aggregation on mini-batch local graphs, which incorporates unseen compositions during training without labels. This design introduces fine-grained visual evidence while preserving semantic structure. It enriches class prototypes, better disambiguates semantically similar yet visually distinct pairs, and mitigates seen bias. Experiments on MIT-States, UT-Zappos, and CGQA in closed-world and open-world settings achieve competitive performance and consistent compositional generalization. Our source code is available at https://github.com/ISPZ/Duplex-CZSL.
comment: Accepted for publication in Neurocomputing
♻ ☆ Deep Transformer Network for Monocular Pose Estimation of Shipborne Unmanned Aerial Vehicle
This paper introduces a deep transformer network for estimating the relative 6D pose of a Unmanned Aerial Vehicle (UAV) with respect to a ship using monocular images. A synthetic dataset of ship images is created and annotated with 2D keypoints of multiple ship parts. A Transformer Neural Network model is trained to detect these keypoints and estimate the 6D pose of each part. The estimates are integrated using Bayesian fusion. The model is tested on synthetic data and in-situ flight experiments, demonstrating robustness and accuracy in various lighting conditions. The position estimation error is approximately 0.8\% and 1.0\% of the distance to the ship for the synthetic data and the flight experiments, respectively. The method has potential applications for ship-based autonomous UAV landing and navigation.
comment: 23 pages, 25 figures, 3 tables
♻ ☆ Advances in Photoacoustic Imaging Reconstruction and Quantitative Analysis for Biomedical Applications
Photoacoustic imaging (PAI) represents an innovative biomedical imaging modality that harnesses the advantages of optical resolution and acoustic penetration depth while ensuring enhanced safety. Despite its promising potential across a diverse array of preclinical and clinical applications, the clinical implementation of PAI faces significant challenges, including the trade-off between penetration depth and spatial resolution, as well as the demand for faster imaging speeds. This paper explores the fundamental principles underlying PAI, with a particular emphasis on three primary implementations: photoacoustic computed tomography (PACT), photoacoustic microscopy (PAM), and photoacoustic endoscopy (PAE). We undertake a critical assessment of their respective strengths and practical limitations. Furthermore, recent developments in utilizing conventional or deep learning (DL) methodologies for image reconstruction and artefact mitigation across PACT, PAM, and PAE are outlined, demonstrating considerable potential to enhance image quality and accelerate imaging processes. Furthermore, this paper examines the recent developments in quantitative analysis within PAI, including the quantification of haemoglobin concentration, oxygen saturation, and other physiological parameters within tissues. Finally, our discussion encompasses current trends and future directions in PAI research while emphasizing the transformative impact of deep learning on advancing PAI.
♻ ☆ SatFusion: A Unified Framework for Enhancing Remote Sensing Image via Multi-Frame and Multi-Source Image Fusion
Remote sensing (RS) imaging is constrained by hardware cost and physical limitations, making high-quality image acquisition challenging and motivating image fusion for quality enhancement. Multi-frame super-resolution (MFSR) and Pansharpening exploit complementary information from multiple frames and multiple sources, respectively, but are usually studied in isolation: MFSR lacks high-resolution structural priors for fine-grained texture recovery, while Pansharpening depends on upsampled multispectral images and is sensitive to noise and misalignment. With the rapid development of the Satellite Internet of Things (Sat-IoT), effectively leveraging large numbers of low-quality yet information-complementary images has become increasingly important. To this end, we propose SatFusion, a unified framework for enhancing RS images via joint multi-frame and multi-source fusion. SatFusion employs a Multi-Frame Image Fusion (MFIF) module to extract high-resolution semantic features from multiple low-resolution multispectral frames, and integrates fine-grained structural information from a high-resolution panchromatic image through a Multi-Source Image Fusion (MSIF) module, enabling robust feature integration with implicit pixel-level alignment. To further mitigate the lack of structural priors in multi-frame fusion, we introduce SatFusion*, which incorporates a panchromatic-guided mechanism into the multi-frame fusion stage. By combining structure-aware feature embedding with transformer-based adaptive aggregation, SatFusion* enables spatially adaptive selection of multi-frame features and strengthens the coupling between multi-frame and multi-source representations. Extensive experiments on the WorldStrat, WV3, QB, and GF2 datasets demonstrate that our methods consistently outperform existing approaches in terms of reconstruction quality, robustness, and generalizability.
♻ ☆ Lightweight RGB-T Tracking with Mobile Vision Transformers ICASSP 2026
Single-modality tracking (RGB-only) struggles under low illumination, weather, and occlusion. Multimodal tracking addresses this by combining complementary cues. While Vision Transformer-based trackers achieve strong accuracy, they are often too large for real-time. We propose a lightweight RGB-T tracker built on MobileViT with a progressive fusion framework that models intra- and inter-modal interactions using separable mixed attention. This design delivers compact, effective features for accurate localization, with under 4M parameters and real-time performance of 25.7 FPS on the CPU and 122 FPS on the GPU, supporting embedded and mobile platforms. To the best of our knowledge, this is the first MobileViT-based multimodal tracker. Model code and weights are available in the GitHub repository.
comment: Accepted for publication in ICASSP 2026. Implementation Code Available
♻ ☆ Creative Image Generation with Diffusion Models
Creative image generation has emerged as a compelling area of research, driven by the need to produce novel and high-quality images that expand the boundaries of imagination. In this work, we propose a novel framework for creative generation using diffusion models, where creativity is associated with the inverse probability of an image's existence in the CLIP embedding space. Unlike prior approaches that rely on a manual blending of concepts or exclusion of subcategories, our method calculates the probability distribution of generated images and drives it towards low-probability regions to produce rare, imaginative, and visually captivating outputs. We also introduce pullback mechanisms, achieving high creativity without sacrificing visual fidelity. Extensive experiments on text-to-image diffusion models demonstrate the effectiveness and efficiency of our creative generation framework, showcasing its ability to produce unique, novel, and thought-provoking images. This work provides a new perspective on creativity in generative models, offering a principled method to foster innovation in visual content synthesis.
comment: Project page: https://creative-t2i.github.io
♻ ☆ FedVSR: Towards Model-Agnostic Federated Learning in Video Super-Resolution
Video super-resolution (VSR) aims to enhance low-resolution videos by leveraging both spatial and temporal information. While deep learning has led to impressive progress, it typically requires centralized data, which raises privacy concerns. Federated learning (FL) offers a privacy-friendly solution, but general FL frameworks often struggle with low-level vision tasks, resulting in blurry, low-quality outputs. To address this, we introduce FedVSR, the first FL framework specifically designed for VSR. It is model-agnostic and stateless, and introduces a lightweight loss function based on the Discrete Wavelet Transform (DWT) to better preserve high-frequency details during local training. Additionally, a loss-aware aggregation strategy combines both DWT-based and task-specific losses to guide global updates effectively. Extensive experiments across multiple VSR models and datasets show that FedVSR not only improves perceptual video quality (up to +0.89 dB PSNR, +0.0370 SSIM, -0.0347 LPIPS and 4.98 VMAF) but also achieves these gains with close to zero computation and communication overhead compared to its rivals. These results demonstrate FedVSR's potential to bridge the gap between privacy, efficiency, and perceptual quality, setting a new benchmark for federated learning in low-level vision tasks. The code is available at: https://github.com/alimd94/FedVSR
comment: Final version. Accepted at ACM Multimedia Systems (MMSys) 2026
♻ ☆ Geometry-aware 4D Video Generation for Robot Manipulation ICLR 2026
Understanding and predicting dynamics of the physical world can enhance a robot's ability to plan and interact effectively in complex environments. While recent video generation models have shown strong potential in modeling dynamic scenes, generating videos that are both temporally coherent and geometrically consistent across camera views remains a significant challenge. To address this, we propose a 4D video generation model that enforces multi-view 3D consistency of generated videos by supervising the model with cross-view pointmap alignment during training. Through this geometric supervision, the model learns a shared 3D scene representation, enabling it to generate spatio-temporally aligned future video sequences from novel viewpoints given a single RGB-D image per view, and without relying on camera poses as input. Compared to existing baselines, our method produces more visually stable and spatially aligned predictions across multiple simulated and real-world robotic datasets. We further show that the predicted 4D videos can be used to recover robot end-effector trajectories using an off-the-shelf 6DoF pose tracker, yielding robot manipulation policies that generalize well to novel camera viewpoints.
comment: ICLR 2026; Project website: https://robot4dgen.github.io
♻ ☆ Diff4MMLiTS: Advanced Multimodal Liver Tumor Segmentation via Diffusion-Based Image Synthesis and Alignment
Multimodal learning has been demonstrated to enhance performance across various clinical tasks, owing to the diverse perspectives offered by different modalities of data. However, existing multimodal segmentation methods rely on well-registered multimodal data, which is unrealistic for real-world clinical images, particularly for indistinct and diffuse regions such as liver tumors. In this paper, we introduce Diff4MMLiTS, a four-stage multimodal liver tumor segmentation pipeline: pre-registration of the target organs in multimodal CTs; dilation of the annotated modality's mask and followed by its use in inpainting to obtain multimodal normal CTs without tumors; synthesis of strictly aligned multimodal CTs with tumors using the latent diffusion model based on multimodal CT features and randomly generated tumor masks; and finally, training the segmentation model, thus eliminating the need for strictly aligned multimodal data. Extensive experiments on public and internal datasets demonstrate the superiority of Diff4MMLiTS over other state-of-the-art multimodal segmentation methods.
comment: International Workshop on Machine Learning in Medical Imaging, 668-678
Artificial Intelligence 300
☆ Reward-free Alignment for Conflicting Objectives
Direct alignment methods are increasingly used to align large language models (LLMs) with human preferences. However, many real-world alignment problems involve multiple conflicting objectives, where naive aggregation of preferences can lead to unstable training and poor trade-offs. In particular, weighted loss methods may fail to identify update directions that simultaneously improve all objectives, and existing multi-objective approaches often rely on explicit reward models, introducing additional complexity and distorting user-specified preferences. The contributions of this paper are two-fold. First, we propose a Reward-free Alignment framework for Conflicted Objectives (RACO) that directly leverages pairwise preference data and resolves gradient conflicts via a novel clipped variant of conflict-averse gradient descent. We provide convergence guarantees to Pareto-critical points that respect user-specified objective weights, and further show that clipping can strictly improve convergence rate in the two-objective setting. Second, we improve our method using some heuristics and conduct experiments to demonstrate the compatibility of the proposed framework for LLM alignment. Both qualitative and quantitative evaluations on multi-objective summarization and safety alignment tasks across multiple LLM families (Qwen 3, Llama 3, Gemma 3) show that our method consistently achieves better Pareto trade-offs compared to existing multi-objective alignment baselines.
comment: 27 pages
☆ PixelGen: Pixel Diffusion Beats Latent Diffusion with Perceptual Loss
Pixel diffusion generates images directly in pixel space in an end-to-end manner, avoiding the artifacts and bottlenecks introduced by VAEs in two-stage latent diffusion. However, it is challenging to optimize high-dimensional pixel manifolds that contain many perceptually irrelevant signals, leaving existing pixel diffusion methods lagging behind latent diffusion models. We propose PixelGen, a simple pixel diffusion framework with perceptual supervision. Instead of modeling the full image manifold, PixelGen introduces two complementary perceptual losses to guide diffusion model towards learning a more meaningful perceptual manifold. An LPIPS loss facilitates learning better local patterns, while a DINO-based perceptual loss strengthens global semantics. With perceptual supervision, PixelGen surpasses strong latent diffusion baselines. It achieves an FID of 5.11 on ImageNet-256 without classifier-free guidance using only 80 training epochs, and demonstrates favorable scaling performance on large-scale text-to-image generation with a GenEval score of 0.79. PixelGen requires no VAEs, no latent representations, and no auxiliary stages, providing a simpler yet more powerful generative paradigm. Codes are publicly available at https://github.com/Zehong-Ma/PixelGen.
comment: Project Pages: https://zehong-ma.github.io/PixelGen/
☆ RE-TRAC: REcursive TRAjectory Compression for Deep Search Agents
LLM-based deep research agents are largely built on the ReAct framework. This linear design makes it difficult to revisit earlier states, branch into alternative search directions, or maintain global awareness under long contexts, often leading to local optima, redundant exploration, and inefficient search. We propose Re-TRAC, an agentic framework that performs cross-trajectory exploration by generating a structured state representation after each trajectory to summarize evidence, uncertainties, failures, and future plans, and conditioning subsequent trajectories on this state representation. This enables iterative reflection and globally informed planning, reframing research as a progressive process. Empirical results show that Re-TRAC consistently outperforms ReAct by 15-20% on BrowseComp with frontier LLMs. For smaller models, we introduce Re-TRAC-aware supervised fine-tuning, achieving state-of-the-art performance at comparable scales. Notably, Re-TRAC shows a monotonic reduction in tool calls and token usage across rounds, indicating progressively targeted exploration driven by cross-trajectory reflection rather than redundant search.
☆ Flow Policy Gradients for Robot Control
Likelihood-based policy gradient methods are the dominant approach for training robot control policies from rewards. These methods rely on differentiable action likelihoods, which constrain policy outputs to simple distributions like Gaussians. In this work, we show how flow matching policy gradients -- a recent framework that bypasses likelihood computation -- can be made effective for training and fine-tuning more expressive policies in challenging robot control settings. We introduce an improved objective that enables success in legged locomotion, humanoid motion tracking, and manipulation tasks, as well as robust sim-to-real transfer on two humanoid robots. We then present ablations and analysis on training dynamics. Results show how policies can exploit the flow representation for exploration when training from scratch, as well as improved fine-tuning robustness over baselines.
comment: Project webpage: https://hongsukchoi.github.io/fpo-control
☆ AgentRx: Diagnosing AI Agent Failures from Execution Trajectories
AI agents often fail in ways that are difficult to localize because executions are probabilistic, long-horizon, multi-agent, and mediated by noisy tool outputs. We address this gap by manually annotating failed agent runs and release a novel benchmark of 115 failed trajectories spanning structured API workflows, incident management, and open-ended web/file tasks. Each trajectory is annotated with a critical failure step and a category from a grounded-theory derived, cross-domain failure taxonomy. To mitigate the human cost of failure attribution, we present AGENTRX, an automated domain-agnostic diagnostic framework that pinpoints the critical failure step in a failed agent trajectory. It synthesizes constraints, evaluates them step-by-step, and produces an auditable validation log of constraint violations with associated evidence; an LLM-based judge uses this log to localize the critical step and category. Our framework improves step localization and failure attribution over existing baselines across three domains.
☆ MemSkill: Learning and Evolving Memory Skills for Self-Evolving Agents
Most Large Language Model (LLM) agent memory systems rely on a small set of static, hand-designed operations for extracting memory. These fixed procedures hard-code human priors about what to store and how to revise memory, making them rigid under diverse interaction patterns and inefficient on long histories. To this end, we present \textbf{MemSkill}, which reframes these operations as learnable and evolvable memory skills, structured and reusable routines for extracting, consolidating, and pruning information from interaction traces. Inspired by the design philosophy of agent skills, MemSkill employs a \emph{controller} that learns to select a small set of relevant skills, paired with an LLM-based \emph{executor} that produces skill-guided memories. Beyond learning skill selection, MemSkill introduces a \emph{designer} that periodically reviews hard cases where selected skills yield incorrect or incomplete memories, and evolves the skill set by proposing refinements and new skills. Together, MemSkill forms a closed-loop procedure that improves both the skill-selection policy and the skill set itself. Experiments on LoCoMo, LongMemEval, HotpotQA, and ALFWorld demonstrate that MemSkill improves task performance over strong baselines and generalizes well across settings. Further analyses shed light on how skills evolve, offering insights toward more adaptive, self-evolving memory management for LLM agents.
comment: Code is available at https://github.com/ViktorAxelsen/MemSkill
☆ Multi-head automated segmentation by incorporating detection head into the contextual layer neural network
Deep learning based auto segmentation is increasingly used in radiotherapy, but conventional models often produce anatomically implausible false positives, or hallucinations, in slices lacking target structures. We propose a gated multi-head Transformer architecture based on Swin U-Net, augmented with inter-slice context integration and a parallel detection head, which jointly performs slice-level structure detection via a multi-layer perceptron and pixel-level segmentation through a context-enhanced stream. Detection outputs gate the segmentation predictions to suppress false positives in anatomically invalid slices, and training uses slice-wise Tversky loss to address class imbalance. Experiments on the Prostate-Anatomical-Edge-Cases dataset from The Cancer Imaging Archive demonstrate that the gated model substantially outperforms a non-gated segmentation-only baseline, achieving a mean Dice loss of $0.013 \pm 0.036$ versus $0.732 \pm 0.314$, with detection probabilities strongly correlated with anatomical presence, effectively eliminating spurious segmentations. In contrast, the non-gated model exhibited higher variability and persistent false positives across all slices. These results indicate that detection-based gating enhances robustness and anatomical plausibility in automated segmentation applications, reducing hallucinated predictions without compromising segmentation quality in valid slices, and offers a promising approach for improving the reliability of clinical radiotherapy auto-contouring workflows.
comment: 8 pages, 3 figures, 1 table
☆ Breaking the Reversal Curse in Autoregressive Language Models via Identity Bridge
Autoregressive large language models (LLMs) have achieved remarkable success in many complex tasks, yet they can still fail in very simple logical reasoning such as the "reversal curse" -- when trained on forward knowledge data of the form "$A \rightarrow B$" (e.g., Alice's husband is Bob), the model is unable to deduce the reversal knowledge "$B \leftarrow A$" (e.g., Bob's wife is Alice) during test. Extensive prior research suggests that this failure is an inherent, fundamental limit of autoregressive causal LLMs, indicating that these models tend to memorize factual-level knowledge rather than capture higher-level rules. In this paper, we challenge this view by showing that this seemingly fundamental limit can be mitigated by slightly tweaking the training data with a simple regularization data recipe called the Identity Bridge of the form "$A \to A$" (e.g., The name of Alice is Alice). Theoretically, we prove that under this recipe, even a one-layer transformer can break the reversal curse by analyzing the implicit bias of gradient descent. Empirically, we show that a 1B pretrained language model finetuned with the proposed data recipe achieves a 40% success rate on reversal tasks, in stark contrast to a near-zero success rate when trained solely on forward-knowledge data. Our work provides a novel theoretical foundation for the reversal curse and offers a principled, low-cost path to encouraging LLMs to learn higher-level rules from data.
☆ Avenir-Web: Human-Experience-Imitating Multimodal Web Agents with Mixture of Grounding Experts
Despite advances in multimodal large language models, autonomous web agents still struggle to reliably execute long-horizon tasks on complex and dynamic web interfaces. Existing agents often suffer from inaccurate element grounding, the absence of site-specific procedural knowledge, and unstable long-term task tracking and memory, particularly when operating over complex Document Object Model structures. To address these limitations, we introduce Avenir-Web, a web agent that achieves a new open-source state of the art on the Online-Mind2Web benchmark in real-world deployment. Avenir-Web leverages a Mixture of Grounding Experts, Experience-Imitation Planning for incorporating procedural priors, and a task-tracking checklist combined with adaptive memory to enable robust and seamless interaction across diverse user interface paradigms. We evaluate Avenir-Web on Online-Mind2Web, a rigorous benchmark of live and user-centered web tasks. Our results demonstrate that Avenir-Web significantly surpasses prior open-source agents and attains performance parity with top-tier proprietary models, thereby establishing a new open-source state of the art for reliable web agents on live websites.
☆ MentisOculi: Revealing the Limits of Reasoning with Mental Imagery
Frontier models are transitioning from multimodal large language models (MLLMs) that merely ingest visual information to unified multimodal models (UMMs) capable of native interleaved generation. This shift has sparked interest in using intermediate visualizations as a reasoning aid, akin to human mental imagery. Central to this idea is the ability to form, maintain, and manipulate visual representations in a goal-oriented manner. To evaluate and probe this capability, we develop MentisOculi, a procedural, stratified suite of multi-step reasoning problems amenable to visual solution, tuned to challenge frontier models. Evaluating visual strategies ranging from latent tokens to explicit generated imagery, we find they generally fail to improve performance. Analysis of UMMs specifically exposes a critical limitation: While they possess the textual reasoning capacity to solve a task and can sometimes generate correct visuals, they suffer from compounding generation errors and fail to leverage even ground-truth visualizations. Our findings suggest that despite their inherent appeal, visual thoughts do not yet benefit model reasoning. MentisOculi establishes the necessary foundation to analyze and close this gap across diverse model families.
comment: 9 pages, 8 figures
☆ Abstract Activation Spaces for Content-Invariant Reasoning in Large Language Models
Large Language Models (LLMs) often struggle with deductive judgment in syllogistic reasoning, systematically conflating semantic plausibility with formal validity a phenomenon known as content effect. This bias persists even when models generate step-wise explanations, indicating that intermediate rationales may inherit the same semantic shortcuts that affect answers. Recent approaches propose mitigating this issue by increasing inference-time structural constraints, either by encouraging abstract intermediate representations or by intervening directly in the model's internal computations; however, reliably suppressing semantic interference remains an open challenge. To make formal deduction less sensitive to semantic content, we introduce a framework for abstraction-guided reasoning that explicitly separates structural inference from lexical semantics. We construct paired content-laden and abstract syllogisms and use the model's activations on abstract inputs to define an abstract reasoning space. We then learn lightweight Abstractors that, from content-conditioned residual-stream states, predict representations aligned with this space and integrate these predictions via multi-layer interventions during the forward pass. Using cross-lingual transfer as a test bed, we show that abstraction-aligned steering reduces content-driven errors and improves validity-sensitive performance. Our results position activation-level abstraction as a scalable mechanism for enhancing the robustness of formal reasoning in LLMs against semantic interference.
☆ Drift-Bench: Diagnosing Cooperative Breakdowns in LLM Agents under Input Faults via Multi-Turn Interaction
As Large Language Models transition to autonomous agents, user inputs frequently violate cooperative assumptions (e.g., implicit intent, missing parameters, false presuppositions, or ambiguous expressions), creating execution risks that text-only evaluations do not capture. Existing benchmarks typically assume well-specified instructions or restrict evaluation to text-only, single-turn clarification, and thus do not measure multi-turn disambiguation under grounded execution risk. We introduce \textbf{Drift-Bench}, the first diagnostic benchmark that evaluates agentic pragmatics under input faults through multi-turn clarification across state-oriented and service-oriented execution environments. Grounded in classical theories of communication, \textbf{Drift-Bench} provides a unified taxonomy of cooperative breakdowns and employs a persona-driven user simulator with the \textbf{Rise} evaluation protocol. Experiments show substantial performance drops under these faults, with clarification effectiveness varying across user personas and fault types. \MethodName bridges clarification research and agent safety evaluation, enabling systematic diagnosis of failures that can lead to unsafe executions.
comment: 65 pages, 40 figures
☆ World-Gymnast: Training Robots with Reinforcement Learning in a World Model
Robot learning from interacting with the physical world is fundamentally bottlenecked by the cost of physical interaction. The two alternatives, supervised finetuning (SFT) from expert demonstrations and reinforcement learning (RL) in a software-based simulator, are limited by the amount of expert data available and the sim-to-real gap for manipulation. With the recent emergence of world models learned from real-world video-action data, we ask the question of whether training a policy in a world model can be more effective than supervised learning or software simulation in achieving better real-robot performance. We propose World-Gymnast, which performs RL finetuning of a vision-language-action (VLA) policy by rolling out the policy in an action-conditioned video world model and rewarding the rollouts with a vision-language model (VLM). On the Bridge robot setup, World-Gymnast outperforms SFT by as much as 18x and outperforms software simulator by as much as 2x. More importantly, World-Gymnast demonstrates intriguing capabilities of RL with a world model, including training on diverse language instructions and novel scenes from the world model, test-time training in a novel scene, and online iterative world model and policy improvement. Our results suggest learning a world model and training robot policies in the cloud could be the key to bridging the gap between robots that work in demonstrations and robots that can work in anyone's household.
comment: https://world-gymnast.github.io/
☆ Thinking with Comics: Enhancing Multimodal Reasoning through Structured Visual Storytelling
Chain-of-Thought reasoning has driven large language models to extend from thinking with text to thinking with images and videos. However, different modalities still have clear limitations: static images struggle to represent temporal structure, while videos introduce substantial redundancy and computational cost. In this work, we propose Thinking with Comics, a visual reasoning paradigm that uses comics as a high information-density medium positioned between images and videos. Comics preserve temporal structure, embedded text, and narrative coherence while requiring significantly lower reasoning cost. We systematically study two reasoning paths based on comics and evaluate them on a range of reasoning tasks and long-context understanding tasks. Experimental results show that Thinking with Comics outperforms Thinking with Images on multi-step temporal and causal reasoning tasks, while remaining substantially more efficient than Thinking with Video. Further analysis indicates that different comic narrative structures and styles consistently affect performance across tasks, suggesting that comics serve as an effective intermediate visual representation for improving multimodal reasoning.
comment: Working paper
☆ Active Causal Experimentalist (ACE): Learning Intervention Strategies via Direct Preference Optimization
Discovering causal relationships requires controlled experiments, but experimentalists face a sequential decision problem: each intervention reveals information that should inform what to try next. Traditional approaches such as random sampling, greedy information maximization, and round-robin coverage treat each decision in isolation, unable to learn adaptive strategies from experience. We propose Active Causal Experimentalist (ACE), which learns experimental design as a sequential policy. Our key insight is that while absolute information gains diminish as knowledge accumulates (making value-based RL unstable), relative comparisons between candidate interventions remain meaningful throughout. ACE exploits this via Direct Preference Optimization, learning from pairwise intervention comparisons rather than non-stationary reward magnitudes. Across synthetic benchmarks, physics simulations, and economic data, ACE achieves 70-71% improvement over baselines at equal intervention budgets (p < 0.001, Cohen's d ~ 2). Notably, the learned policy autonomously discovers that collider mechanisms require concentrated interventions on parent variables, a theoretically-grounded strategy that emerges purely from experience. This suggests preference-based learning can recover principled experimental strategies, complementing theory with learned domain adaptation.
comment: 9 pages, 5 figures
☆ UniReason 1.0: A Unified Reasoning Framework for World Knowledge Aligned Image Generation and Editing
Unified multimodal models often struggle with complex synthesis tasks that demand deep reasoning, and typically treat text-to-image generation and image editing as isolated capabilities rather than interconnected reasoning steps. To address this, we propose UniReason, a unified framework that harmonizes these two tasks through a dual reasoning paradigm. We formulate generation as world knowledge-enhanced planning to inject implicit constraints, and leverage editing capabilities for fine-grained visual refinement to further correct visual errors via self-reflection. This approach unifies generation and editing within a shared representation, mirroring the human cognitive process of planning followed by refinement. We support this framework by systematically constructing a large-scale reasoning-centric dataset (~300k samples) covering five major knowledge domains (e.g., cultural commonsense, physics, etc.) for planning, alongside an agent-generated corpus for visual self-correction. Extensive experiments demonstrate that UniReason achieves advanced performance on reasoning-intensive benchmarks such as WISE, KrisBench and UniREditBench, while maintaining superior general synthesis capabilities.
☆ Poly-attention: a general scheme for higher-order self-attention
The self-attention mechanism, at the heart of the Transformer model, is able to effectively model pairwise interactions between tokens. However, numerous recent works have shown that it is unable to perform basic tasks involving detecting triples of correlated tokens, or compositional tasks where multiple input tokens need to be referenced to generate a result. Some higher-dimensional alternatives to self-attention have been proposed to address this, including higher-order attention and Strassen attention, which can perform some of these polyadic tasks in exchange for slower, superquadratic running times. In this work, we define a vast class of generalizations of self-attention, which we call poly-attention mechanisms. Our mechanisms can incorporate arbitrary higher-order (tensor) computations as well as arbitrary relationship structures between the input tokens, and they include the aforementioned alternatives as special cases. We then systematically study their computational complexity and representational strength, including giving new algorithms and matching complexity-theoretic lower bounds on the time complexity of computing the attention matrix exactly as well as approximately, and tightly determining which polyadic tasks they can each perform. Our results give interesting trade-offs between different desiderata for these mechanisms, including a tight relationship between how expressive a mechanism is, and how large the coefficients in the model may be so that the mechanism can be approximated in almost-linear time. Notably, we give a new attention mechanism which can be computed exactly in quadratic time, and which can perform function composition for any fixed number of functions. Prior mechanisms, even for just composing two functions, could only be computed in superquadratic time, and our new lower bounds show that faster algorithms for them are not possible.
☆ SafeGround: Know When to Trust GUI Grounding Models via Uncertainty Calibration
Graphical User Interface (GUI) grounding aims to translate natural language instructions into executable screen coordinates, enabling automated GUI interaction. Nevertheless, incorrect grounding can result in costly, hard-to-reverse actions (e.g., erroneous payment approvals), raising concerns about model reliability. In this paper, we introduce SafeGround, an uncertainty-aware framework for GUI grounding models that enables risk-aware predictions through calibrations before testing. SafeGround leverages a distribution-aware uncertainty quantification method to capture the spatial dispersion of stochastic samples from outputs of any given model. Then, through the calibration process, SafeGround derives a test-time decision threshold with statistically guaranteed false discovery rate (FDR) control. We apply SafeGround on multiple GUI grounding models for the challenging ScreenSpot-Pro benchmark. Experimental results show that our uncertainty measure consistently outperforms existing baselines in distinguishing correct from incorrect predictions, while the calibrated threshold reliably enables rigorous risk control and potentials of substantial system-level accuracy improvements. Across multiple GUI grounding models, SafeGround improves system-level accuracy by up to 5.38\% percentage points over Gemini-only inference.
☆ Structure Enables Effective Self-Localization of Errors in LLMs
Self-correction in language models remains elusive. In this work, we explore whether language models can explicitly localize errors in incorrect reasoning, as a path toward building AI systems that can effectively correct themselves. We introduce a prompting method that structures reasoning as discrete, semantically coherent thought steps, and show that models are able to reliably localize errors within this structure, while failing to do so in conventional, unstructured chain-of-thought reasoning. Motivated by how the human brain monitors errors at discrete decision points and resamples alternatives, we introduce Iterative Correction Sampling of Thoughts (Thought-ICS), a self-correction framework. Thought-ICS iteratively prompts the model to generate reasoning one discrete and complete thought at a time--where each thought represents a deliberate decision by the model--creating natural boundaries for precise error localization. Upon verification, the model localizes the first erroneous step, and the system backtracks to generate alternative reasoning from the last correct point. When asked to correct reasoning verified as incorrect by an oracle, Thought-ICS achieves 20-40% self-correction lift. In a completely autonomous setting without external verification, it outperforms contemporary self-correction baselines.
☆ ReasonEdit: Editing Vision-Language Models using Human Reasoning
Model editing aims to correct errors in large, pretrained models without altering unrelated behaviors. While some recent works have edited vision-language models (VLMs), no existing editors tackle reasoning-heavy tasks, which typically require humans and models to reason about images.We therefore propose ReasonEdit, the first VLM editor to let users explain their reasoning during editing, introducing a new, practical model editing setup. ReasonEdit continuously stores human reasoning in a codebook, and retrieves only relevant facts during inference using a novel topology-balanced multimodal embedding method inspired by network science. Across four VLMs on multiple rationale-based visual question answering datasets, ReasonEdit achieves state-of-the-art editing performance, ultimately showing that using human reasoning during editing greatly improves edit generalization.
☆ Didactic to Constructive: Turning Expert Solutions into Learnable Reasoning
Improving the reasoning capabilities of large language models (LLMs) typically relies either on the model's ability to sample a correct solution to be reinforced or on the existence of a stronger model able to solve the problem. However, many difficult problems remain intractable for even current frontier models, preventing the extraction of valid training signals. A promising alternative is to leverage high-quality expert human solutions, yet naive imitation of this data fails because it is fundamentally out of distribution: expert solutions are typically didactic, containing implicit reasoning gaps intended for human readers rather than computational models. Furthermore, high-quality expert solutions are expensive, necessitating generalizable sample-efficient training methods. We propose Distribution Aligned Imitation Learning (DAIL), a two-step method that bridges the distributional gap by first transforming expert solutions into detailed, in-distribution reasoning traces and then applying a contrastive objective to focus learning on expert insights and methodologies. We find that DAIL can leverage fewer than 1000 high-quality expert solutions to achieve 10-25% pass@k gains on Qwen2.5-Instruct and Qwen3 models, improve reasoning efficiency by 2x to 4x, and enable out-of-domain generalization.
☆ SoMA: A Real-to-Sim Neural Simulator for Robotic Soft-body Manipulation
Simulating deformable objects under rich interactions remains a fundamental challenge for real-to-sim robot manipulation, with dynamics jointly driven by environmental effects and robot actions. Existing simulators rely on predefined physics or data-driven dynamics without robot-conditioned control, limiting accuracy, stability, and generalization. This paper presents SoMA, a 3D Gaussian Splat simulator for soft-body manipulation. SoMA couples deformable dynamics, environmental forces, and robot joint actions in a unified latent neural space for end-to-end real-to-sim simulation. Modeling interactions over learned Gaussian splats enables controllable, stable long-horizon manipulation and generalization beyond observed trajectories without predefined physical models. SoMA improves resimulation accuracy and generalization on real-world robot manipulation by 20%, enabling stable simulation of complex tasks such as long-horizon cloth folding.
comment: Project page: https://city-super.github.io/SoMA/
☆ David vs. Goliath: Verifiable Agent-to-Agent Jailbreaking via Reinforcement Learning
The evolution of large language models into autonomous agents introduces adversarial failures that exploit legitimate tool privileges, transforming safety evaluation in tool-augmented environments from a subjective NLP task into an objective control problem. We formalize this threat model as Tag-Along Attacks: a scenario where a tool-less adversary "tags along" on the trusted privileges of a safety-aligned Operator to induce prohibited tool use through conversation alone. To validate this threat, we present Slingshot, a 'cold-start' reinforcement learning framework that autonomously discovers emergent attack vectors, revealing a critical insight: in our setting, learned attacks tend to converge to short, instruction-like syntactic patterns rather than multi-turn persuasion. On held-out extreme-difficulty tasks, Slingshot achieves a 67.0% success rate against a Qwen2.5-32B-Instruct-AWQ Operator (vs. 1.7% baseline), reducing the expected attempts to first success (on solved tasks) from 52.3 to 1.3. Crucially, Slingshot transfers zero-shot to several model families, including closed-source models like Gemini 2.5 Flash (56.0% attack success rate) and defensive-fine-tuned open-source models like Meta-SecAlign-8B (39.2% attack success rate). Our work establishes Tag-Along Attacks as a first-class, verifiable threat model and shows that effective agentic attacks can be elicited from off-the-shelf open-weight models through environment interaction alone.
comment: Under review. 8 main pages, 2 figures, 2 tables. Appendix included
☆ Infinite-World: Scaling Interactive World Models to 1000-Frame Horizons via Pose-Free Hierarchical Memory
We propose Infinite-World, a robust interactive world model capable of maintaining coherent visual memory over 1000+ frames in complex real-world environments. While existing world models can be efficiently optimized on synthetic data with perfect ground-truth, they lack an effective training paradigm for real-world videos due to noisy pose estimations and the scarcity of viewpoint revisits. To bridge this gap, we first introduce a Hierarchical Pose-free Memory Compressor (HPMC) that recursively distills historical latents into a fixed-budget representation. By jointly optimizing the compressor with the generative backbone, HPMC enables the model to autonomously anchor generations in the distant past with bounded computational cost, eliminating the need for explicit geometric priors. Second, we propose an Uncertainty-aware Action Labeling module that discretizes continuous motion into a tri-state logic. This strategy maximizes the utilization of raw video data while shielding the deterministic action space from being corrupted by noisy trajectories, ensuring robust action-response learning. Furthermore, guided by insights from a pilot toy study, we employ a Revisit-Dense Finetuning Strategy using a compact, 30-minute dataset to efficiently activate the model's long-range loop-closure capabilities. Extensive experiments, including objective metrics and user studies, demonstrate that Infinite-World achieves superior performance in visual quality, action controllability, and spatial consistency.
comment: 14 pages, 8 figures
☆ Trust by Design: Skill Profiles for Transparent, Cost-Aware LLM Routing
How should Large Language Model (LLM) practitioners select the right model for a task without wasting money? We introduce BELLA (Budget-Efficient LLM Selection via Automated skill-profiling), a framework that recommends optimal LLM selection for tasks through interpretable skill-based model selection. Standard benchmarks report aggregate metrics that obscure which specific capabilities a task requires and whether a cheaper model could suffice. BELLA addresses this gap through three stages: (1) decomposing LLM outputs and extract the granular skills required by using critic-based profiling, (2) clustering skills into structured capability matrices, and (3) multi-objective optimization to select the right models to maximize performance while respecting budget constraints. BELLA provides natural-language rationale for recommendations, providing transparency that current black-box routing systems lack. We describe the framework architecture, situate it within the landscape of LLM routing and evaluation, and discuss its application to financial reasoning as a representative domain exhibiting diverse skill requirements and cost-variation across models. Our framework enables practitioners to make principled and cost-performance trade-offs for deploying LLMs.
comment: Appeared at MLSys YPS 2025
☆ From Sycophancy to Sensemaking: Premise Governance for Human-AI Decision Making
As LLMs expand from assistance to decision support, a dangerous pattern emerges: fluent agreement without calibrated judgment. Low-friction assistants can become sycophantic, baking in implicit assumptions and pushing verification costs onto experts, while outcomes arrive too late to serve as reward signals. In deep-uncertainty decisions (where objectives are contested and reversals are costly), scaling fluent agreement amplifies poor commitments faster than it builds expertise. We argue reliable human-AI partnership requires a shift from answer generation to collaborative premise governance over a knowledge substrate, negotiating only what is decision-critical. A discrepancy-driven control loop operates over this substrate: detecting conflicts, localizing misalignment via typed discrepancies (teleological, epistemic, procedural), and triggering bounded negotiation through decision slices. Commitment gating blocks action on uncommitted load-bearing premises unless overridden under logged risk; value-gated challenge allocates probing under interaction cost. Trust then attaches to auditable premises and evidence standards, not conversational fluency. We illustrate with tutoring and propose falsifiable evaluation criteria.
☆ Live-Evo: Online Evolution of Agentic Memory from Continuous Feedback
Large language model (LLM) agents are increasingly equipped with memory, which are stored experience and reusable guidance that can improve task-solving performance. Recent \emph{self-evolving} systems update memory based on interaction outcomes, but most existing evolution pipelines are developed for static train/test splits and only approximate online learning by folding static benchmarks, making them brittle under true distribution shift and continuous feedback. We introduce \textsc{Live-Evo}, an online self-evolving memory system that learns from a stream of incoming data over time. \textsc{Live-Evo} decouples \emph{what happened} from \emph{how to use it} via an Experience Bank and a Meta-Guideline Bank, compiling task-adaptive guidelines from retrieved experiences for each task. To manage memory online, \textsc{Live-Evo} maintains experience weights and updates them from feedback: experiences that consistently help are reinforced and retrieved more often, while misleading or stale experiences are down-weighted and gradually forgotten, analogous to reinforcement and decay in human memory. On the live \textit{Prophet Arena} benchmark over a 10-week horizon, \textsc{Live-Evo} improves Brier score by 20.8\% and increases market returns by 12.9\%, while also transferring to deep-research benchmarks with consistent gains over strong baselines. Our code is available at https://github.com/ag2ai/Live-Evo.
comment: 13 pages
☆ ReasonCACHE: Teaching LLMs To Reason Without Weight Updates
Can Large language models (LLMs) learn to reason without any weight update and only through in-context learning (ICL)? ICL is strikingly sample-efficient, often learning from only a handful of demonstrations, but complex reasoning tasks typically demand many training examples to learn from. However, naively scaling ICL by adding more demonstrations breaks down at this scale: attention costs grow quadratically, performance saturates or degrades with longer contexts, and the approach remains a shallow form of learning. Due to these limitations, practitioners predominantly rely on in-weight learning (IWL) to induce reasoning. In this work, we show that by using Prefix Tuning, LLMs can learn to reason without overloading the context window and without any weight updates. We introduce $\textbf{ReasonCACHE}$, an instantiation of this mechanism that distills demonstrations into a fixed key-value cache. Empirically, across challenging reasoning benchmarks, including GPQA-Diamond, ReasonCACHE outperforms standard ICL and matches or surpasses IWL approaches. Further, it achieves this all while being more efficient across three key axes: data, inference cost, and trainable parameters. We also theoretically prove that ReasonCACHE can be strictly more expressive than low-rank weight update since the latter ties expressivity to input rank, whereas ReasonCACHE bypasses this constraint by directly injecting key-values into the attention mechanism. Together, our findings identify ReasonCACHE as a middle path between in-context and in-weight learning, providing a scalable algorithm for learning reasoning skills beyond the context window without modifying parameters. Our project page: https://reasoncache.github.io/
comment: 26 pages, 17 Figures
☆ SWE-Universe: Scale Real-World Verifiable Environments to Millions
We propose SWE-Universe, a scalable and efficient framework for automatically constructing real-world software engineering (SWE) verifiable environments from GitHub pull requests (PRs). To overcome the prevalent challenges of automatic building, such as low production yield, weak verifiers, and prohibitive cost, our framework utilizes a building agent powered by an efficient custom-trained model. This agent employs iterative self-verification and in-loop hacking detection to ensure the reliable generation of high-fidelity, verifiable tasks. Using this method, we scale the number of real-world multilingual SWE environments to a million scale (807,693). We demonstrate the profound value of our environments through large-scale agentic mid-training and reinforcement learning. Finally, we applied this technique to Qwen3-Max-Thinking and achieved a score of 75.3% on SWE-Bench Verified. Our work provides both a critical resource and a robust methodology to advance the next generation of coding agents.
comment: 13 pages
☆ Implicit neural representation of textures
Implicit neural representation (INR) has proven to be accurate and efficient in various domains. In this work, we explore how different neural networks can be designed as a new texture INR, which operates in a continuous manner rather than a discrete one over the input UV coordinate space. Through thorough experiments, we demonstrate that these INRs perform well in terms of image quality, with considerable memory usage and rendering inference time. We analyze the balance between these objectives. In addition, we investigate various related applications in real-time rendering and down-stream tasks, e.g. mipmap fitting and INR-space generation.
comment: Albert Kwok and Zheyuan Hu contributed equally to this work
☆ Artificial Intelligence and Symmetries: Learning, Encoding, and Discovering Structure in Physical Data
Symmetries play a central role in physics, organizing dynamics, constraining interactions, and determining the effective number of physical degrees of freedom. In parallel, modern artificial intelligence methods have demonstrated a remarkable ability to extract low-dimensional structure from high-dimensional data through representation learning. This review examines the interplay between these two perspectives, focusing on the extent to which symmetry-induced constraints can be identified, encoded, or diagnosed using machine learning techniques. Rather than emphasizing architectures that enforce known symmetries by construction, we concentrate on data-driven approaches and latent representation learning, with particular attention to variational autoencoders. We discuss how symmetries and conservation laws reduce the intrinsic dimensionality of physical datasets, and how this reduction may manifest itself through self-organization of latent spaces in generative models trained to balance reconstruction and compression. We review recent results, including case studies from simple geometric systems and particle physics processes, and analyze the theoretical and practical limitations of inferring symmetry structure without explicit inductive bias.
comment: 25 pages, 9 figures. This manuscript is an invited review at the International Journal of Modern Physics A
☆ Context Learning for Multi-Agent Discussion
Multi-Agent Discussion (MAD) has garnered increasing attention very recently, where multiple LLM instances collaboratively solve problems via structured discussion. However, we find that current MAD methods easily suffer from discussion inconsistency, LLMs fail to reach a coherent solution, due to the misalignment between their individual contexts.In this paper, we introduce a multi-LLM context learning method (M2CL) that learns a context generator for each agent, capable of dynamically generating context instructions per discussion round via automatic information organization and refinement. Specifically, inspired by our theoretical insights on the context instruction, M2CL train the generators to control context coherence and output discrepancies via a carefully crafted self-adaptive mechanism.It enables LLMs to avoid premature convergence on majority noise and progressively reach the correct consensus. We evaluate M2CL on challenging tasks, including academic reasoning, embodied tasks, and mobile control. The results show that the performance of M2CL significantly surpasses existing methods by 20%--50%, while enjoying favorable transferability and computational efficiency.
☆ Why Steering Works: Toward a Unified View of Language Model Parameter Dynamics
Methods for controlling large language models (LLMs), including local weight fine-tuning, LoRA-based adaptation, and activation-based interventions, are often studied in isolation, obscuring their connections and making comparison difficult. In this work, we present a unified view that frames these interventions as dynamic weight updates induced by a control signal, placing them within a single conceptual framework. Building on this view, we propose a unified preference-utility analysis that separates control effects into preference, defined as the tendency toward a target concept, and utility, defined as coherent and task-valid generation, and measures both on a shared log-odds scale using polarity-paired contrastive examples. Across methods, we observe a consistent trade-off between preference and utility: stronger control increases preference while predictably reducing utility. We further explain this behavior through an activation manifold perspective, in which control shifts representations along target-concept directions to enhance preference, while utility declines primarily when interventions push representations off the model's valid-generation manifold. Finally, we introduce a new steering approach SPLIT guided by this analysis that improves preference while better preserving utility. Code is available at https://github.com/zjunlp/EasyEdit/blob/main/examples/SPLIT.md.
comment: Work in progress
☆ Rethinking Generative Recommender Tokenizer: Recsys-Native Encoding and Semantic Quantization Beyond LLMs
Semantic ID (SID)-based recommendation is a promising paradigm for scaling sequential recommender systems, but existing methods largely follow a semantic-centric pipeline: item embeddings are learned from foundation models and discretized using generic quantization schemes. This design is misaligned with generative recommendation objectives: semantic embeddings are weakly coupled with collaborative prediction, and generic quantization is inefficient at reducing sequential uncertainty for autoregressive modeling. To address these, we propose ReSID, a recommendation-native, principled SID framework that rethinks representation learning and quantization from the perspective of information preservation and sequential predictability, without relying on LLMs. ReSID consists of two components: (i) Field-Aware Masked Auto-Encoding (FAMAE), which learns predictive-sufficient item representations from structured features, and (ii) Globally Aligned Orthogonal Quantization (GAOQ), which produces compact and predictable SID sequences by jointly reducing semantic ambiguity and prefix-conditional uncertainty. Theoretical analysis and extensive experiments across ten datasets show the effectiveness of ReSID. ReSID consistently outperforms strong sequential and SID-based generative baselines by an average of over 10%, while reducing tokenization cost by up to 122x. Code is available at https://github.com/FuCongResearchSquad/ReSID.
☆ Building a Correct-by-Design Lakehouse. Data Contracts, Versioning, and Transactional Pipelines for Humans and Agents
Lakehouses are the default cloud platform for analytics and AI, but they become unsafe when untrusted actors concurrently operate on production data: upstream-downstream mismatches surface only at runtime, and multi-table pipelines can leak partial effects. Inspired by software engineering, we design Bauplan, a code-first lakehouse that aims to make (most) illegal states unrepresentable using familiar abstractions. Bauplan acts along three axes: typed table contracts to make pipeline boundaries checkable, Git-like data versioning for review and reproducibility, and transactional runs that guarantee pipeline-level atomicity. We report early results from a lightweight formal transaction model and discuss future work motivated by counterexamples.
comment: Pre-print (PaPoC 2026)
☆ VQ-Style: Disentangling Style and Content in Motion with Residual Quantized Representations
Human motion data is inherently rich and complex, containing both semantic content and subtle stylistic features that are challenging to model. We propose a novel method for effective disentanglement of the style and content in human motion data to facilitate style transfer. Our approach is guided by the insight that content corresponds to coarse motion attributes while style captures the finer, expressive details. To model this hierarchy, we employ Residual Vector Quantized Variational Autoencoders (RVQ-VAEs) to learn a coarse-to-fine representation of motion. We further enhance the disentanglement by integrating contrastive learning and a novel information leakage loss with codebook learning to organize the content and the style across different codebooks. We harness this disentangled representation using our simple and effective inference-time technique Quantized Code Swapping, which enables motion style transfer without requiring any fine-tuning for unseen styles. Our framework demonstrates strong versatility across multiple inference applications, including style transfer, style removal, and motion blending.
☆ TTT-Parkour: Rapid Test-Time Training for Perceptive Robot Parkour
Achieving highly dynamic humanoid parkour on unseen, complex terrains remains a challenge in robotics. Although general locomotion policies demonstrate capabilities across broad terrain distributions, they often struggle with arbitrary and highly challenging environments. To overcome this limitation, we propose a real-to-sim-to-real framework that leverages rapid test-time training (TTT) on novel terrains, significantly enhancing the robot's capability to traverse extremely difficult geometries. We adopt a two-stage end-to-end learning paradigm: a policy is first pre-trained on diverse procedurally generated terrains, followed by rapid fine-tuning on high-fidelity meshes reconstructed from real-world captures. Specifically, we develop a feed-forward, efficient, and high-fidelity geometry reconstruction pipeline using RGB-D inputs, ensuring both speed and quality during test-time training. We demonstrate that TTT-Parkour empowers humanoid robots to master complex obstacles, including wedges, stakes, boxes, trapezoids, and narrow beams. The whole pipeline of capturing, reconstructing, and test-time training requires less than 10 minutes on most tested terrains. Extensive experiments show that the policy after test-time training exhibits robust zero-shot sim-to-real transfer capability.
comment: Project Page: https://ttt-parkour.github.io/
☆ A Large-Scale Dataset for Molecular Structure-Language Description via a Rule-Regularized Method
Molecular function is largely determined by structure. Accurately aligning molecular structure with natural language is therefore essential for enabling large language models (LLMs) to reason about downstream chemical tasks. However, the substantial cost of human annotation makes it infeasible to construct large-scale, high-quality datasets of structure-grounded descriptions. In this work, we propose a fully automated annotation framework for generating precise molecular structure descriptions at scale. Our approach builds upon and extends a rule-based chemical nomenclature parser to interpret IUPAC names and construct enriched, structured XML metadata that explicitly encodes molecular structure. This metadata is then used to guide LLMs in producing accurate natural-language descriptions. Using this framework, we curate a large-scale dataset of approximately $163$k molecule-description pairs. A rigorous validation protocol combining LLM-based and expert human evaluation on a subset of $2,000$ molecules demonstrates a high description precision of $98.6\%$. The resulting dataset provides a reliable foundation for future molecule-language alignment, and the proposed annotation method is readily extensible to larger datasets and broader chemical tasks that rely on structural descriptions.
☆ Interpreting and Controlling LLM Reasoning through Integrated Policy Gradient
Large language models (LLMs) demonstrate strong reasoning abilities in solving complex real-world problems. Yet, the internal mechanisms driving these complex reasoning behaviors remain opaque. Existing interpretability approaches targeting reasoning either identify components (e.g., neurons) correlated with special textual patterns, or rely on human-annotated contrastive pairs to derive control vectors. Consequently, current methods struggle to precisely localize complex reasoning mechanisms or capture sequential influence from model internal workings to the reasoning outputs. In this paper, built on outcome-oriented and sequential-influence-aware principles, we focus on identifying components that have sequential contribution to reasoning behavior where outcomes are cumulated by long-range effects. We propose Integrated Policy Gradient (IPG), a novel framework that attributes reasoning behaviors to model's inner components by propagating compound outcome-based signals such as post reasoning accuracy backward through model inference trajectories. Empirical evaluations demonstrate that our approach achieves more precise localization and enables reliable modulation of reasoning behaviors (e.g., reasoning capability, reasoning strength) across diverse reasoning models.
☆ FragmentFlow: Scalable Transition State Generation for Large Molecules
Transition states (TSs) are central to understanding and quantitatively predicting chemical reactivity and reaction mechanisms. Although traditional TS generation methods are computationally expensive, recent generative modeling approaches have enabled chemically meaningful TS prediction for relatively small molecules. However, these methods fail to generalize to practically relevant reaction substrates because of distribution shifts induced by increasing molecular sizes. Furthermore, TS geometries for larger molecules are not available at scale, making it infeasible to train generative models from scratch on such molecules. To address these challenges, we introduce FragmentFlow: a divide-and-conquer approach that trains a generative model to predict TS geometries for the reactive core atoms, which define the reaction mechanism. The full TS structure is then reconstructed by re-attaching substituent fragments to the predicted core. By operating on reactive cores, whose size and composition remain relatively invariant across molecular contexts, FragmentFlow mitigates distribution shifts in generative modeling. Evaluated on a new curated dataset of reactions involving reactants with up to 33 heavy atoms, FragmentFlow correctly identifies 90% of TSs while requiring 30% fewer saddle-point optimization steps than classical initialization schemes. These results point toward scalable TS generation for high-throughput reactivity studies.
☆ Spark: Modular Spiking Neural Networks
Nowadays, neural networks act as a synonym for artificial intelligence. Present neural network models, although remarkably powerful, are inefficient both in terms of data and energy. Several alternative forms of neural networks have been proposed to address some of these problems. Specifically, spiking neural networks are suitable for efficient hardware implementations. However, effective learning algorithms for spiking networks remain elusive, although it is suspected that effective plasticity mechanisms could alleviate the problem of data efficiency. Here, we present a new framework for spiking neural networks - Spark - built upon the idea of modular design, from simple components to entire models. The aim of this framework is to provide an efficient and streamlined pipeline for spiking neural networks. We showcase this framework by solving the sparse-reward cartpole problem with simple plasticity mechanisms. We hope that a framework compatible with traditional ML pipelines may accelerate research in the area, specifically for continuous and unbatched learning, akin to the one animals exhibit.
☆ Position: Explaining Behavioral Shifts in Large Language Models Requires a Comparative Approach
Large-scale foundation models exhibit behavioral shifts: intervention-induced behavioral changes that appear after scaling, fine-tuning, reinforcement learning or in-context learning. While investigating these phenomena have recently received attention, explaining their appearance is still overlooked. Classic explainable AI (XAI) methods can surface failures at a single checkpoint of a model, but they are structurally ill-suited to justify what changed internally across different checkpoints and which explanatory claims are warranted about that change. We take the position that behavioral shifts should be explained comparatively: the core target should be the intervention-induced shift between a reference model and an intervened model, rather than any single model in isolation. To this aim we formulate a Comparative XAI ($Δ$-XAI) framework with a set of desiderata to be taken into account when designing proper explaining methods. To highlight how $Δ$-XAI methods work, we introduce a set of possible pipelines, relate them to the desiderata, and provide a concrete $Δ$-XAI experiment.
☆ Advancing General-Purpose Reasoning Models with Modular Gradient Surgery
Reinforcement learning (RL) has played a central role in recent advances in large reasoning models (LRMs), yielding strong gains in verifiable and open-ended reasoning. However, training a single general-purpose LRM across diverse domains remains challenging due to pronounced domain heterogeneity. Through a systematic study of two widely used strategies, Sequential RL and Mixed RL, we find that both incur substantial cross-domain interference at the behavioral and gradient levels, resulting in limited overall gains. To address these challenges, we introduce **M**odular **G**radient **S**urgery (**MGS**), which resolves gradient conflicts at the module level within the transformer. When applied to Llama and Qwen models, MGS achieves average improvements of 4.3 (16.6\%) and 4.5 (11.1\%) points, respectively, over standard multi-task RL across three representative domains (math, general chat, and instruction following). Further analysis demonstrates that MGS remains effective under prolonged training. Overall, our study clarifies the sources of interference in multi-domain RL and presents an effective solution for training general-purpose LRMs.
comment: Preprint; Code: https://github.com/StringNLPLAB/MGS; Website: https://modular-gradient-surgery.github.io
☆ Decoupling Generalizability and Membership Privacy Risks in Neural Networks
A deep learning model usually has to sacrifice some utilities when it acquires some other abilities or characteristics. Privacy preservation has such trade-off relationships with utilities. The loss disparity between various defense approaches implies the potential to decouple generalizability and privacy risks to maximize privacy gain. In this paper, we identify that the model's generalization and privacy risks exist in different regions in deep neural network architectures. Based on the observations that we investigate, we propose Privacy-Preserving Training Principle (PPTP) to protect model components from privacy risks while minimizing the loss in generalizability. Through extensive evaluations, our approach shows significantly better maintenance in model generalizability while enhancing privacy preservation.
☆ Hallucination or Creativity: How to Evaluate AI-Generated Scientific Stories?
Generative AI can turn scientific articles into narratives for diverse audiences, but evaluating these stories remains challenging. Storytelling demands abstraction, simplification, and pedagogical creativity-qualities that are not often well-captured by standard summarization metrics. Meanwhile, factual hallucinations are critical in scientific contexts, yet, detectors often misclassify legitimate narrative reformulations or prove unstable when creativity is involved. In this work, we propose StoryScore, a composite metric for evaluating AI-generated scientific stories. StoryScore integrates semantic alignment, lexical grounding, narrative control, structural fidelity, redundancy avoidance, and entity-level hallucination detection into a unified framework. Our analysis also reveals why many hallucination detection methods fail to distinguish pedagogical creativity from factual errors, highlighting a key limitation: while automatic metrics can effectively assess semantic similarity with original content, they struggle to evaluate how it is narrated and controlled.
☆ An Optimization Method for Autoregressive Time Series Forecasting
Current time-series forecasting models are primarily based on transformer-style neural networks. These models achieve long-term forecasting mainly by scaling up the model size rather than through genuinely autoregressive (AR) rollout. From the perspective of large language model training, the traditional training process for time-series forecasting models ignores temporal causality. In this paper, we propose a novel training method for time-series forecasting that enforces two key properties: (1) AR prediction errors should increase with the forecasting horizon. Any violation of this principle is considered random guessing and is explicitly penalized in the loss function, and (2) the method enables models to concatenate short-term AR predictions for forming flexible long-term forecasts. Empirical results demonstrate that our method establishes a new state-of-the-art across multiple benchmarks, achieving an MSE reduction of more than 10% compared to iTransformer and other recent strong baselines. Furthermore, it enables short-horizon forecasting models to perform reliable long-term predictions at horizons over 7.5 times longer. Code is available at https://github.com/LizhengMathAi/AROpt
comment: 10 pages, 2 figures, 2 tables
☆ DFKI-Speech System for WildSpoof Challenge: A robust framework for SASV In-the-Wild
This paper presents the DFKI-Speech system developed for the WildSpoof Challenge under the Spoofing aware Automatic Speaker Verification (SASV) track. We propose a robust SASV framework in which a spoofing detector and a speaker verification (SV) network operate in tandem. The spoofing detector employs a self-supervised speech embedding extractor as the frontend, combined with a state-of-the-art graph neural network backend. In addition, a top-3 layer based mixture-of-experts (MoE) is used to fuse high-level and low-level features for effective spoofed utterance detection. For speaker verification, we adapt a low-complexity convolutional neural network that fuses 2D and 1D features at multiple scales, trained with the SphereFace loss. Additionally, contrastive circle loss is applied to adaptively weight positive and negative pairs within each training batch, enabling the network to better distinguish between hard and easy sample pairs. Finally, fixed imposter cohort based AS Norm score normalization and model ensembling are used to further enhance the discriminative capability of the speaker verification system.
☆ Backpropagation as Physical Relaxation: Exact Gradients in Finite Time
Backpropagation, the foundational algorithm for training neural networks, is typically understood as a symbolic computation that recursively applies the chain rule. We show it emerges exactly as the finite-time relaxation of a physical dynamical system. By formulating feedforward inference as a continuous-time process and applying Lagrangian theory of non-conservative systems to handle asymmetric interactions, we derive a global energy functional on a doubled state space encoding both activations and sensitivities. The saddle-point dynamics of this energy perform inference and credit assignment simultaneously through local interactions. We term this framework ''Dyadic Backpropagation''. Crucially, we prove that unit-step Euler discretization, the natural timescale of layer transitions, recovers standard backpropagation exactly in precisely 2L steps for an L-layer network, with no approximations. Unlike prior energy-based methods requiring symmetric weights, asymptotic convergence, or vanishing perturbations, our framework guarantees exact gradients in finite time. This establishes backpropagation as the digitally optimized shadow of a continuous physical relaxation, providing a rigorous foundation for exact gradient computation in analog and neuromorphic substrates where continuous dynamics are native.
comment: 15 pages, 8 figures
☆ RACA: Representation-Aware Coverage Criteria for LLM Safety Testing
Recent advancements in LLMs have led to significant breakthroughs in various AI applications. However, their sophisticated capabilities also introduce severe safety concerns, particularly the generation of harmful content through jailbreak attacks. Current safety testing for LLMs often relies on static datasets and lacks systematic criteria to evaluate the quality and adequacy of these tests. While coverage criteria have been effective for smaller neural networks, they are not directly applicable to LLMs due to scalability issues and differing objectives. To address these challenges, this paper introduces RACA, a novel set of coverage criteria specifically designed for LLM safety testing. RACA leverages representation engineering to focus on safety-critical concepts within LLMs, thereby reducing dimensionality and filtering out irrelevant information. The framework operates in three stages: first, it identifies safety-critical representations using a small, expert-curated calibration set of jailbreak prompts. Second, it calculates conceptual activation scores for a given test suite based on these representations. Finally, it computes coverage results using six sub-criteria that assess both individual and compositional safety concepts. We conduct comprehensive experiments to validate RACA's effectiveness, applicability, and generalization, where the results demonstrate that RACA successfully identifies high-quality jailbreak prompts and is superior to traditional neuron-level criteria. We also showcase its practical application in real-world scenarios, such as test set prioritization and attack prompt sampling. Furthermore, our findings confirm RACA's generalization to various scenarios and its robustness across various configurations. Overall, RACA provides a new framework for evaluating the safety of LLMs, contributing a valuable technique to the field of testing for AI.
☆ Bridging the Sim-to-Real Gap with multipanda ros2: A Real-Time ROS2 Framework for Multimanual Systems IEEE
We present $multipanda\_ros2$, a novel open-source ROS2 architecture for multi-robot control of Franka Robotics robots. Leveraging ros2 control, this framework provides native ROS2 interfaces for controlling any number of robots from a single process. Our core contributions address key challenges in real-time torque control, including interaction control and robot-environment modeling. A central focus of this work is sustaining a 1kHz control frequency, a necessity for real-time control and a minimum frequency required by safety standards. Moreover, we introduce a controllet-feature design pattern that enables controller-switching delays of $\le 2$ ms, facilitating reproducible benchmarking and complex multi-robot interaction scenarios. To bridge the simulation-to-reality (sim2real) gap, we integrate a high-fidelity MuJoCo simulation with quantitative metrics for both kinematic accuracy and dynamic consistency (torques, forces, and control errors). Furthermore, we demonstrate that real-world inertial parameter identification can significantly improve force and torque accuracy, providing a methodology for iterative physics refinement. Our work extends approaches from soft robotics to rigid dual-arm, contact-rich tasks, showcasing a promising method to reduce the sim2real gap and providing a robust, reproducible platform for advanced robotics research.
comment: This work has been submitted to the IEEE for possible publication
☆ OpenSeal: Good, Fast, and Cheap Construction of an Open-Source Southeast Asian LLM via Parallel Data
Large language models (LLMs) have proven to be effective tools for a wide range of natural language processing (NLP) applications. Although many LLMs are multilingual, most remain English-centric and perform poorly on low-resource languages. Recently, several Southeast Asia-focused LLMs have been developed, but none are truly open source, as they do not publicly disclose their training data. Truly open-source models are important for transparency and for enabling a deeper and more precise understanding of LLM internals and development, including biases, generalization, and multilinguality. Motivated by recent advances demonstrating the effectiveness of parallel data in improving multilingual performance, we conduct controlled and comprehensive experiments to study the effectiveness of parallel data in continual pretraining of LLMs. Our findings show that using only parallel data is the most effective way to extend an LLM to new languages. Using just 34.7B tokens of parallel data and 180 hours on 8x NVIDIA H200 GPUs, we built OpenSeal, the first truly open Southeast Asian LLM that rivals the performance of existing models of similar size.
☆ Unsupervised Physics-Informed Operator Learning through Multi-Stage Curriculum Training
Solving partial differential equations remains a central challenge in scientific machine learning. Neural operators offer a promising route by learning mappings between function spaces and enabling resolution-independent inference, yet they typically require supervised data. Physics-informed neural networks address this limitation through unsupervised training with physical constraints but often suffer from unstable convergence and limited generalization capability. To overcome these issues, we introduce a multi-stage physics-informed training strategy that achieves convergence by progressively enforcing boundary conditions in the loss landscape and subsequently incorporating interior residuals. At each stage the optimizer is re-initialized, acting as a continuation mechanism that restores stability and prevents gradient stagnation. We further propose the Physics-Informed Spline Fourier Neural Operator (PhIS-FNO), combining Fourier layers with Hermite spline kernels for smooth residual evaluation. Across canonical benchmarks, PhIS-FNO attains a level of accuracy comparable to that of supervised learning, using labeled information only along a narrow boundary region, establishing staged, spline-based optimization as a robust paradigm for physics-informed operator learning.
comment: 51 pages, 15 figures, 6 tables
☆ OmniCode: A Benchmark for Evaluating Software Engineering Agents
LLM-powered coding agents are redefining how real-world software is developed. To drive the research towards better coding agents, we require challenging benchmarks that can rigorously evaluate the ability of such agents to perform various software engineering tasks. However, popular coding benchmarks such as HumanEval and SWE-Bench focus on narrowly scoped tasks such as competition programming and patch generation. In reality, software engineers have to handle a broader set of tasks for real-world software development. To address this gap, we propose OmniCode, a novel software engineering benchmark that contains a broader and more diverse set of task categories beyond code or patch generation. Overall, OmniCode contains 1794 tasks spanning three programming languages (Python, Java, and C++) and four key categories: bug fixing, test generation, code review fixing, and style fixing. In contrast to prior software engineering benchmarks, the tasks in OmniCode are (1) manually validated to eliminate ill-defined problems, and (2) synthetically crafted or recently curated to avoid data leakage issues, presenting a new framework for synthetically generating diverse software tasks from limited real-world data. We evaluate OmniCode with popular agent frameworks such as SWE-Agent and show that while they may perform well on bug fixing for Python, they fall short on tasks such as Test Generation and in languages such as C++ and Java. For instance, SWE-Agent achieves a maximum of 20.9% with DeepSeek-V3.1 on Java Test Generation tasks. OmniCode aims to serve as a robust benchmark and spur the development of agents that can perform well across different aspects of software development. Code and data are available at https://github.com/seal-research/OmniCode.
☆ Geometry- and Relation-Aware Diffusion for EEG Super-Resolution
Recent electroencephalography (EEG) spatial super-resolution (SR) methods, while showing improved quality by either directly predicting missing signals from visible channels or adapting latent diffusion-based generative modeling to temporal data, often lack awareness of physiological spatial structure, thereby constraining spatial generation performance. To address this issue, we introduce TopoDiff, a geometry- and relation-aware diffusion model for EEG spatial super-resolution. Inspired by how human experts interpret spatial EEG patterns, TopoDiff incorporates topology-aware image embeddings derived from EEG topographic representations to provide global geometric context for spatial generation, together with a dynamic channel-relation graph that encodes inter-electrode relationships and evolves with temporal dynamics. This design yields a spatially grounded EEG spatial super-resolution framework with consistent performance improvements. Across multiple EEG datasets spanning diverse applications, including SEED/SEED-IV for emotion recognition, PhysioNet motor imagery (MI/MM), and TUSZ for seizure detection, our method achieves substantial gains in generation fidelity and leads to notable improvements in downstream EEG task performance.
☆ SEDformer: Event-Synchronous Spiking Transformers for Irregular Telemetry Time Series Forecasting
Telemetry streams from large-scale Internet-connected systems (e.g., IoT deployments and online platforms) naturally form an irregular multivariate time series (IMTS) whose accurate forecasting is operationally vital. A closer examination reveals a defining Sparsity-Event Duality (SED) property of IMTS, i.e., long stretches with sparse or no observations are punctuated by short, dense bursts where most semantic events (observations) occur. However, existing Graph- and Transformer-based forecasters ignore SED: pre-alignment to uniform grids with heavy padding violates sparsity by inflating sequences and forcing computation at non-informative steps, while relational recasting weakens event semantics by disrupting local temporal continuity. These limitations motivate a more faithful and natural modeling paradigm for IMTS that aligns with its SED property. We find that Spiking Neural Networks meet this requirement, as they communicate via sparse binary spikes and update in an event-driven manner, aligning naturally with the SED nature of IMTS. Therefore, we present SEDformer, an SED-enhanced Spiking Transformer for telemetry IMTS forecasting that couples: (1) a SED-based Spike Encoder converts raw observations into event synchronous spikes using an Event-Aligned LIF neuron, (2) an Event-Preserving Temporal Downsampling module compresses long gaps while retaining salient firings and (3) a stack of SED-based Spike Transformer blocks enable intra-series dependency modeling with a membrane-based linear attention driven by EA-LIF spiking features. Experiments on public telemetry IMTS datasets show that SEDformer attains state-of-the-art forecasting accuracy while reducing energy and memory usage, providing a natural and efficient path for modeling IMTS.
comment: Under review
☆ Spectral Superposition: A Theory of Feature Geometry
Neural networks represent more features than they have dimensions via superposition, forcing features to share representational space. Current methods decompose activations into sparse linear features but discard geometric structure. We develop a theory for studying the geometric structre of features by analyzing the spectra (eigenvalues, eigenspaces, etc.) of weight derived matrices. In particular, we introduce the frame operator $F = WW^\top$, which gives us a spectral measure that describes how each feature allocates norm across eigenspaces. While previous tools could describe the pairwise interactions between features, spectral methods capture the global geometry (``how do all features interact?''). In toy models of superposition, we use this theory to prove that capacity saturation forces spectral localization: features collapse onto single eigenspaces, organize into tight frames, and admit discrete classification via association schemes, classifying all geometries from prior work (simplices, polygons, antiprisms). The spectral measure formalism applies to arbitrary weight matrices, enabling diagnosis of feature localization beyond toy settings. These results point toward a broader program: applying operator theory to interpretability.
☆ Generating Physically Sound Designs from Text and a Set of Physical Constraints NeurIPS 2025
We present TIDES, a text informed design approach for generating physically sound designs based on a textual description and a set of physical constraints. TIDES jointly optimizes structural (topology) and visual properties. A pre-trained text-image model is used to measure the design's visual alignment with a text prompt and a differentiable physics simulator is used to measure its physical performance. We evaluate TIDES on a series of structural optimization problems operating under different load and support conditions, at different resolutions, and experimentally in the lab by performing the 3-point bending test on 2D beam designs that are extruded and 3D printed. We find that it can jointly optimize the two objectives and return designs that satisfy engineering design requirements (compliance and density) while utilizing features specified by text.
comment: NeurIPS 2025
☆ Towards AI Evaluation in Domain-Specific RAG Systems: The AgriHubi Case Study
Large language models show promise for knowledge-intensive domains, yet their use in agriculture is constrained by weak grounding, English-centric training data, and limited real-world evaluation. These issues are amplified for low-resource languages, where high-quality domain documentation exists but remains difficult to access through general-purpose models. This paper presents AgriHubi, a domain-adapted retrieval-augmented generation (RAG) system for Finnish-language agricultural decision support. AgriHubi integrates Finnish agricultural documents with open PORO family models and combines explicit source grounding with user feedback to support iterative refinement. Developed over eight iterations and evaluated through two user studies, the system shows clear gains in answer completeness, linguistic accuracy, and perceived reliability. The results also reveal practical trade-offs between response quality and latency when deploying larger models. This study provides empirical guidance for designing and evaluating domain-specific RAG systems in low-resource language settings.
comment: 6 pages, 2 figures, submitted to MIPRO 2026
☆ Cardinality-Preserving Structured Sparse Graph Transformers for Molecular Property Prediction
Drug discovery motivates efficient molecular property prediction under limited labeled data. Chemical space is vast, often estimated at approximately 10^60 drug-like molecules, while only thousands of drugs have been approved. As a result, self-supervised pretraining on large unlabeled molecular corpora has become essential for data-efficient molecular representation learning. We introduce **CardinalGraphFormer**, a graph transformer that incorporates Graphormer-inspired structural biases, including shortest-path distance and centrality, as well as direct-bond edge bias, within a structured sparse attention regime limited to shortest-path distance <= 3. The model further augments this design with a cardinality-preserving unnormalized aggregation channel over the same support set. Pretraining combines contrastive graph-level alignment with masked attribute reconstruction. Under a fully matched evaluation protocol, CardinalGraphFormer improves mean performance across all 11 evaluated tasks and achieves statistically significant gains on 10 of 11 public benchmarks spanning MoleculeNet, OGB, and TDC ADMET tasks when compared to strong reproduced baselines.
☆ More Than a Quick Glance: Overcoming the Greedy Bias in KV-Cache Compression
While Large Language Models (LLMs) can theoretically support extensive context windows, their actual deployment is constrained by the linear growth of Key-Value (KV) cache memory. Prevailing compression strategies mitigate this through various pruning mechanisms, yet trade-off semantic recall for memory efficiency. In this work, we present LASER-KV (Layer Accumulated Selection with Exact-LSH Recall), a framework designed to test the limits of KV compression under a strict accumulative budgeting policy. We deviate from the standard fixed summary size approach by implementing a block-wise accumulation strategy governed by a protection divisor (n). This allows us to isolate the effects of compression from sliding window artifacts. Our experiments on the Babilong benchmark reveal performance degradation in previous compression methods by 15-30% on various long context tasks. LASER-KV maintains stable performance, achieving superior accuracies by a margin of upto 10% at 128k. These findings challenge the prevailing assumption that attention scores alone are a sufficient proxy for token utility.
☆ Hierarchical Adaptive Eviction for KV Cache Management in Multimodal Language Models
The integration of visual information into Large Language Models (LLMs) has enabled Multimodal LLMs (MLLMs), but the quadratic memory and computational costs of Transformer architectures remain a bottleneck. Existing KV cache eviction strategies fail to address the heterogeneous attention distributions between visual and text tokens, leading to suboptimal efficiency or degraded performance. In this paper, we propose Hierarchical Adaptive Eviction (HAE), a KV cache eviction framework that optimizes text-visual token interaction in MLLMs by implementing Dual-Attention Pruning during pre-filling (leveraging visual token sparsity and attention variance) and a Dynamic Decoding Eviction Strategy (inspired by OS Recycle Bins) during decoding. HAE minimizes KV cache usage across layers, reduces computational overhead via index broadcasting, and theoretically ensures superior information integrity and lower error bounds compared to greedy strategies, enhancing efficiency in both comprehension and generation tasks. Empirically, HAE reduces KV-Cache memory by 41\% with minimal accuracy loss (0.3\% drop) in image understanding tasks and accelerates story generation inference by 1.5x while maintaining output quality on Phi3.5-Vision-Instruct model.
comment: 10 oages, 3 figures
☆ TIDE: Trajectory-based Diagnostic Evaluation of Test-Time Improvement in LLM Agents
Recent advances in autonomous LLM agents demonstrate their ability to improve performance through iterative interaction with the environment. We define this paradigm as Test-Time Improvement (TTI). However, the mechanisms under how and why TTI succeed or fail remain poorly understood, and existing evaluation metrics fail to capture their task optimization efficiency, behavior adaptation after erroneous actions, and the specific utility of working memory for task completion. To address these gaps, we propose Test-time Improvement Diagnostic Evaluation (TIDE), an agent-agnostic and environment-agnostic framework that decomposes TTI into three comprehensive and interconnected dimensions. The framework measures (1) the overall temporal dynamics of task completion and (2) identifies whether performance is primarily constrained by recursive looping behaviors or (3) by burdensome accumulated memory. Through extensive experiments across diverse agents and environments, TIDE highlights that improving agent performance requires more than scaling internal reasoning, calling for explicitly optimizing the interaction dynamics between the agent and the environment.
comment: 29pages, 10 figures
☆ State Rank Dynamics in Linear Attention LLMs
Linear Attention Large Language Models (LLMs) offer a compelling recurrent formulation that compresses context into a fixed-size state matrix, enabling constant-time inference. However, the internal dynamics of this compressed state remain largely opaque. In this work, we present a comprehensive study on the runtime state dynamics of state-of-the-art Linear Attention models. We uncover a fundamental phenomenon termed State Rank Stratification, characterized by a distinct spectral bifurcation among linear attention heads: while one group maintains an effective rank oscillating near zero, the other exhibits rapid growth that converges to an upper bound. Extensive experiments across diverse inference contexts reveal that these dynamics remain strikingly consistent, indicating that the identity of a head,whether low-rank or high-rank,is an intrinsic structural property acquired during pre-training, rather than a transient state dependent on the input data. Furthermore, our diagnostic probes reveal a surprising functional divergence: low-rank heads are indispensable for model reasoning, whereas high-rank heads exhibit significant redundancy. Leveraging this insight, we propose Joint Rank-Norm Pruning, a zero-shot strategy that achieves a 38.9\% reduction in KV-cache overhead while largely maintaining model accuracy.
☆ Reasoning in a Combinatorial and Constrained World: Benchmarking LLMs on Natural-Language Combinatorial Optimization
While large language models (LLMs) have shown strong performance in math and logic reasoning, their ability to handle combinatorial optimization (CO) -- searching high-dimensional solution spaces under hard constraints -- remains underexplored. To bridge the gap, we introduce NLCO, a \textbf{N}atural \textbf{L}anguage \textbf{C}ombinatorial \textbf{O}ptimization benchmark that evaluates LLMs on end-to-end CO reasoning: given a language-described decision-making scenario, the model must output a discrete solution without writing code or calling external solvers. NLCO covers 43 CO problems and is organized using a four-layer taxonomy of variable types, constraint families, global patterns, and objective classes, enabling fine-grained evaluation. We provide solver-annotated solutions and comprehensively evaluate LLMs by feasibility, solution optimality, and reasoning efficiency. Experiments across a wide range of modern LLMs show that high-performing models achieve strong feasibility and solution quality on small instances, but both degrade as instance size grows, even if more tokens are used for reasoning. We also observe systematic effects across the taxonomy: set-based tasks are relatively easy, whereas graph-structured problems and bottleneck objectives lead to more frequent failures.
☆ Vision-DeepResearch Benchmark: Rethinking Visual and Textual Search for Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) have advanced VQA and now support Vision-DeepResearch systems that use search engines for complex visual-textual fact-finding. However, evaluating these visual and textual search abilities is still difficult, and existing benchmarks have two major limitations. First, existing benchmarks are not visual search-centric: answers that should require visual search are often leaked through cross-textual cues in the text questions or can be inferred from the prior world knowledge in current MLLMs. Second, overly idealized evaluation scenario: On the image-search side, the required information can often be obtained via near-exact matching against the full image, while the text-search side is overly direct and insufficiently challenging. To address these issues, we construct the Vision-DeepResearch benchmark (VDR-Bench) comprising 2,000 VQA instances. All questions are created via a careful, multi-stage curation pipeline and rigorous expert review, designed to assess the behavior of Vision-DeepResearch systems under realistic real-world conditions. Moreover, to address the insufficient visual retrieval capabilities of current MLLMs, we propose a simple multi-round cropped-search workflow. This strategy is shown to effectively improve model performance in realistic visual retrieval scenarios. Overall, our results provide practical guidance for the design of future multimodal deep-research systems. The code will be released in https://github.com/Osilly/Vision-DeepResearch.
☆ Malware Detection Through Memory Analysis
This paper summarizes the research conducted for a malware detection project using the Canadian Institute for Cybersecurity's MalMemAnalysis-2022 dataset. The purpose of the project was to explore the effectiveness and efficiency of machine learning techniques for the task of binary classification (i.e., benign or malicious) as well as multi-class classification to further include three malware sub-types (i.e., benign, ransomware, spyware, or Trojan horse). The XGBoost model type was the final model selected for both tasks due to the trade-off between strong detection capability and fast inference speed. The binary classifier achieved a testing subset accuracy and F1 score of 99.98\%, while the multi-class version reached an accuracy of 87.54\% and an F1 score of 81.26\%, with an average F1 score over the malware sub-types of 75.03\%. In addition to the high modelling performance, XGBoost is also efficient in terms of classification speed. It takes about 37.3 milliseconds to classify 50 samples in sequential order in the binary setting and about 43.2 milliseconds in the multi-class setting. The results from this research project help advance the efforts made towards developing accurate and real-time obfuscated malware detectors for the goal of improving online privacy and safety. *This project was completed as part of ELEC 877 (AI for Cybersecurity) in the Winter 2024 term.
☆ SurvKAN: A Fully Parametric Survival Model Based on Kolmogorov-Arnold Networks
Accurate prediction of time-to-event outcomes is critical for clinical decision-making, treatment planning, and resource allocation in modern healthcare. While classical survival models such as Cox remain widely adopted in standard practice, they rely on restrictive assumptions, including linear covariate relationships and proportional hazards over time, that often fail to capture real-world clinical dynamics. Recent deep learning approaches like DeepSurv and DeepHit offer improved expressivity but sacrifice interpretability, limiting clinical adoption where trust and transparency are paramount. Hybrid models incorporating Kolmogorov-Arnold Networks (KANs), such as CoxKAN, have begun to address this trade-off but remain constrained by the semi-parametric Cox framework. In this work we introduce SurvKAN, a fully parametric, time-continuous survival model based on KAN architectures that eliminates the proportional hazards constraint. SurvKAN treats time as an explicit input to a KAN that directly predicts the log-hazard function, enabling end-to-end training on the full survival likelihood. Our architecture preserves interpretability through learnable univariate functions that indicate how individual features influence risk over time. Extensive experiments on standard survival benchmarks demonstrate that SurvKAN achieves competitive or superior performance compared to classical and state-of-the-art baselines across concordance and calibration metrics. Additionally, interpretability analyses reveal clinically meaningful patterns that align with medical domain knowledge.
☆ Self-Evolving Coordination Protocol in Multi-Agent AI Systems: An Exploratory Systems Feasibility Study
Contemporary multi-agent systems increasingly rely on internal coordination mechanisms to combine, arbitrate, or constrain the outputs of heterogeneous components. In safety-critical and regulated domains such as finance, these mechanisms must satisfy strict formal requirements, remain auditable, and operate within explicitly bounded limits. Coordination logic therefore functions as a governance layer rather than an optimization heuristic. This paper presents an exploratory systems feasibility study of Self-Evolving Coordination Protocols (SECP): coordination protocols that permit limited, externally validated self-modification while preserving fixed formal invariants. We study a controlled proof-of-concept setting in which six fixed Byzantine consensus protocol proposals are evaluated by six specialized decision modules. All coordination regimes operate under identical hard constraints, including Byzantine fault tolerance (f < n/3), O(n2) message complexity, complete non-statistical safety and liveness arguments, and bounded explainability. Four coordination regimes are compared in a single-shot design: unanimous hard veto, weighted scalar aggregation, SECP v1.0 (an agent-designed non-scalar protocol), and SECP v2.0 (the result of one governed modification). Outcomes are evaluated using a single metric, proposal coverage, defined as the number of proposals accepted. A single recursive modification increased coverage from two to three accepted proposals while preserving all declared invariants. The study makes no claims regarding statistical significance, optimality, convergence, or learning. Its contribution is architectural: it demonstrates that bounded self-modification of coordination protocols is technically implementable, auditable, and analyzable under explicit formal constraints, establishing a foundation for governed multi-agent systems.
☆ Traffic-Aware Navigation in Road Networks
This project compares three graph search approaches for the task of traffic-aware navigation in Kingston's road network. These approaches include a single-run multi-query preprocessing algorithm (Floyd-Warshall-Ingerman), continuous single-query real-time search (Dijkstra's and A*), and an algorithm combining both approaches to balance between their trade-offs by first finding the top K shortest paths then iterating over them in real time (Yen's). Dijkstra's and A* resulted in the most traffic-aware optimal solutions with minimal preprocessing required. Floyd-Warshall-Ingerman was the fastest in real time but provided distance based paths with no traffic awareness. Yen's algorithm required significant preprocessing but balanced between the other two approaches in terms of runtime speed and optimality. Each approach presents advantages and disadvantages that need to be weighed depending on the circumstances of specific deployment contexts to select the best custom solution. *This project was completed as part of ELEC 844 (Search and Planning Algorithms for Robotics) in the Fall 2025 term.
☆ ECHO: Entropy-Confidence Hybrid Optimization for Test-Time Reinforcement Learning
Test-time reinforcement learning generates multiple candidate answers via repeated rollouts and performs online updates using pseudo-labels constructed by majority voting. To reduce overhead and improve exploration, prior work introduces tree structured rollouts, which share reasoning prefixes and branch at key nodes to improve sampling efficiency. However, this paradigm still faces two challenges: (1) high entropy branching can trigger rollout collapse, where the branching budget concentrates on a few trajectories with consecutive high-entropy segments, rapidly reducing the number of effective branches; (2) early pseudo-labels are noisy and biased, which can induce self-reinforcing overfitting, causing the policy to sharpen prematurely and suppress exploration. To address these issues, we propose Entropy Confidence Hybrid Group Relative Policy Optimization (ECHO). During rollout, ECHO jointly leverages local entropy and group level confidence to adaptively control branch width, and further introduces online confidence-based pruning to terminate persistently low confidence branches, avoiding high entropy traps and mitigating collapse. During policy updates, ECHO employs confidence adaptive clipping and an entropy confidence hybrid advantage shaping approach to enhance training robustness and mitigate early stage bias. Experiments demonstrate that ECHO achieves consistent gains on multiple mathematical and visual reasoning benchmarks, and generalizes more effectively under a limited rollout budget.
comment: 19 ppages
☆ Back to the Future: Look-ahead Augmentation and Parallel Self-Refinement for Time Series Forecasting WWW
Long-term time series forecasting (LTSF) remains challenging due to the trade-off between parallel efficiency and sequential modeling of temporal coherence. Direct multi-step forecasting (DMS) methods enable fast, parallel prediction of all future horizons but often lose temporal consistency across steps, while iterative multi-step forecasting (IMS) preserves temporal dependencies at the cost of error accumulation and slow inference. To bridge this gap, we propose Back to the Future (BTTF), a simple yet effective framework that enhances forecasting stability through look-ahead augmentation and self-corrective refinement. Rather than relying on complex model architectures, BTTF revisits the fundamental forecasting process and refines a base model by ensembling the second-stage models augmented with their initial predictions. Despite its simplicity, our approach consistently improves long-horizon accuracy and mitigates the instability of linear forecasting models, achieving accuracy gains of up to 58% and demonstrating stable improvements even when the first-stage model is trained under suboptimal conditions. These results suggest that leveraging model-generated forecasts as augmentation can be a simple yet powerful way to enhance long-term prediction, even without complex architectures.
comment: 4 pages, Short paper accepted at The Web Conference (WWW) 2026
☆ Learning Generative Selection for Best-of-N
Scaling test-time compute via parallel sampling can substantially improve LLM reasoning, but is often limited by Best-of-N selection quality. Generative selection methods, such as GenSelect, address this bottleneck, yet strong selection performance remains largely limited to large models. We show that small reasoning models can acquire strong GenSelect capabilities through targeted reinforcement learning. To this end, we synthesize selection tasks from large-scale math and code instruction datasets by filtering to instances with both correct and incorrect candidate solutions, and train 1.7B-parameter models with DAPO to reward correct selections. Across math (AIME24, AIME25, HMMT25) and code (LiveCodeBench) reasoning benchmarks, our models consistently outperform prompting and majority-voting baselines, often approaching or exceeding much larger models. Moreover, these gains generalize to selecting outputs from stronger models despite training only on outputs from weaker models. Overall, our results establish reinforcement learning as a scalable way to unlock strong generative selection in small models, enabling efficient test-time scaling.
☆ EvoMU: Evolutionary Machine Unlearning
Machine unlearning aims to unlearn specified training data (e.g. sensitive or copyrighted material). A prominent approach is to fine-tune an existing model with an unlearning loss that retains overall utility. The space of suitable unlearning loss functions is vast, making the search for an optimal loss function daunting. Additionally, there might not even exist a universally optimal loss function: differences in the structure and overlap of the forget and retain data can cause a loss to work well in one setting but over-unlearn or under-unlearn in another. Our approach EvoMU tackles these two challenges simultaneously. An evolutionary search procedure automatically finds task-specific losses in the vast space of possible unlearning loss functions. This allows us to find dataset-specific losses that match or outperform existing losses from the literature, without the need for a human-in-the-loop. This work is therefore an instance of automatic scientific discovery, a.k.a. an AI co-scientist. In contrast to previous AI co-scientist works, we do so on a budget: We achieve SotA results using a small 4B parameter model (Qwen3-4B-Thinking), showing the potential of AI co-scientists with limited computational resources. Our experimental evaluation shows that we surpass previous loss-based unlearning formulations on TOFU-5%, TOFU-10%, MUSE and WMDP by synthesizing novel unlearning losses. Our code is available at https://github.com/Batorskq/EvoMU.
☆ CAM: A Causality-based Analysis Framework for Multi-Agent Code Generation Systems
Despite the remarkable success that Multi-Agent Code Generation Systems (MACGS) have achieved, the inherent complexity of multi-agent architectures produces substantial volumes of intermediate outputs. To date, the individual importance of these intermediate outputs to the system correctness remains opaque, which impedes targeted optimization of MACGS designs. To address this challenge, we propose CAM, the first \textbf{C}ausality-based \textbf{A}nalysis framework for \textbf{M}ACGS that systematically quantifies the contribution of different intermediate features for system correctness. By comprehensively categorizing intermediate outputs and systematically simulating realistic errors on intermediate features, we identify the important features for system correctness and aggregate their importance rankings. We conduct extensive empirical analysis on the identified importance rankings. Our analysis reveals intriguing findings: first, we uncover context-dependent features\textemdash features whose importance emerges mainly through interactions with other features, revealing that quality assurance for MACGS should incorporate cross-feature consistency checks; second, we reveal that hybrid backend MACGS with different backend LLMs assigned according to their relative strength achieves up to 7.2\% Pass@1 improvement, underscoring hybrid architectures as a promising direction for future MACGS design. We further demonstrate CAM's practical utility through two applications: (1) failure repair which achieves a 73.3\% success rate by optimizing top-3 importance-ranked features and (2) feature pruning that reduces up to 66.8\% intermediate token consumption while maintaining generation performance. Our work provides actionable insights for MACGS design and deployment, establishing causality analysis as a powerful approach for understanding and improving MACGS.
comment: 18 pages, 12 tables, 4 figures
☆ DCoPilot: Generative AI-Empowered Policy Adaptation for Dynamic Data Center Operations
Modern data centers (DCs) hosting artificial intelligence (AI)-dedicated devices operate at high power densities with rapidly varying workloads, making minute-level adaptation essential for safe and energy-efficient operation. However, manually designing piecewise deep reinforcement learning (DRL) agents cannot keep pace with frequent dynamics shifts and service-level agreement (SLA) changes of an evolving DC. This specification-to-policy lag causes a lack of timely, effective control policies, which may lead to service outages. To bridge the gap, we present DCoPilot, a hybrid framework for generative control policies in dynamic DC operation. DCoPilot synergizes two distinct generative paradigms, i.e., a large language model (LLM) that performs symbolic generation of structured reward forms, and a hypernetwork that conducts parametric generation of policy weights. DCoPilot operates through three coordinated phases: (i) simulation scale-up, which stress-tests reward candidates across diverse simulation-ready (SimReady) scenes; (ii) meta policy distillation, where a hypernetwork is trained to output policy weights conditioned on SLA and scene embeddings; and (iii) online adaptation, enabling zero-shot policy generation in response to updated specifications. Evaluated across five control task families spanning diverse DC components, DCoPilot achieves near-zero constraint violations and outperforms all baselines across specification variations. Ablation studies validate the effectiveness of LLM-based unified reward generation in enabling stable hypernetwork convergence.
☆ Mitigating Safety Tax via Distribution-Grounded Refinement in Large Reasoning Models
Safety alignment incurs safety tax that perturbs a large reasoning model's (LRM) general reasoning ability. Existing datasets used for safety alignment for an LRM are usually constructed by distilling safety reasoning traces and answers from an external LRM or human labeler. However, such reasoning traces and answers exhibit a distributional gap with the target LRM that needs alignment, and we conjecture such distributional gap is the culprit leading to significant degradation of reasoning ability of the target LRM. Driven by this hypothesis, we propose a safety alignment dataset construction method, dubbed DGR. DGR transforms and refines an existing out-of-distributional safety reasoning dataset to be aligned with the target's LLM inner distribution. Experimental results demonstrate that i) DGR effectively mitigates the safety tax while maintaining safety performance across all baselines, i.e., achieving \textbf{+30.2\%} on DirectRefusal and \textbf{+21.2\%} on R1-ACT improvement in average reasoning accuracy compared to Vanilla SFT; ii) the degree of reasoning degradation correlates with the extent of distribution shift, suggesting that bridging this gap is central to preserving capabilities. Furthermore, we find that safety alignment in LRMs may primarily function as a mechanism to activate latent knowledge, as a mere \textbf{10} samples are sufficient for activating effective refusal behaviors. These findings not only emphasize the importance of distributional consistency but also provide insights into the activation mechanism of safety in reasoning models.
comment: Code will be released soon
☆ Understanding the Reversal Curse Mitigation in Masked Diffusion Models through Attention and Training Dynamics
Autoregressive language models (ARMs) suffer from the reversal curse: after learning that "$A$ is $B$", they often fail on the reverse query "$B$ is $A$". Masked diffusion-based language models (MDMs) exhibit this failure in a much weaker form, but the underlying reason has remained unclear. A common explanation attributes this mitigation to the any-order training objective. However, observing "[MASK] is $B$" during training does not necessarily teach the model to handle the reverse prompt "$B$ is [MASK]". We show that the mitigation arises from architectural structure and its interaction with training. In a one-layer Transformer encoder, weight sharing couples the two directions by making forward and reverse attention scores positively correlated. In the same setting, we further show that the corresponding gradients are aligned, so minimizing the forward loss also reduces the reverse loss. Experiments on both controlled toy tasks and large-scale diffusion language models support these mechanisms, explaining why MDMs partially overcome a failure mode that persists in strong ARMs.
☆ Scalable Spatio-Temporal SE(3) Diffusion for Long-Horizon Protein Dynamics
Molecular dynamics (MD) simulations remain the gold standard for studying protein dynamics, but their computational cost limits access to biologically relevant timescales. Recent generative models have shown promise in accelerating simulations, yet they struggle with long-horizon generation due to architectural constraints, error accumulation, and inadequate modeling of spatio-temporal dynamics. We present STAR-MD (Spatio-Temporal Autoregressive Rollout for Molecular Dynamics), a scalable SE(3)-equivariant diffusion model that generates physically plausible protein trajectories over microsecond timescales. Our key innovation is a causal diffusion transformer with joint spatio-temporal attention that efficiently captures complex space-time dependencies while avoiding the memory bottlenecks of existing methods. On the standard ATLAS benchmark, STAR-MD achieves state-of-the-art performance across all metrics--substantially improving conformational coverage, structural validity, and dynamic fidelity compared to previous methods. STAR-MD successfully extrapolates to generate stable microsecond-scale trajectories where baseline methods fail catastrophically, maintaining high structural quality throughout the extended rollout. Our comprehensive evaluation reveals severe limitations in current models for long-horizon generation, while demonstrating that STAR-MD's joint spatio-temporal modeling enables robust dynamics simulation at biologically relevant timescales, paving the way for accelerated exploration of protein function.
comment: For associated project page, see https://bytedance-seed.github.io/ConfRover/starmd
☆ Two-Stage Grid Optimization for Group-wise Quantization of LLMs ICASSP 2026
Group-wise quantization is an effective strategy for mitigating accuracy degradation in low-bit quantization of large language models (LLMs). Among existing methods, GPTQ has been widely adopted due to its efficiency; however, it neglects input statistics and inter-group correlations when determining group scales, leading to a mismatch with its goal of minimizing layer-wise reconstruction loss. In this work, we propose a two-stage optimization framework for group scales that explicitly minimizes the layer-wise reconstruction loss. In the first stage, performed prior to GPTQ, we initialize each group scale to minimize the group-wise reconstruction loss, thereby incorporating input statistics. In the second stage, we freeze the integer weights obtained via GPTQ and refine the group scales to minimize the layer-wise reconstruction loss. To this end, we employ the coordinate descent algorithm and derive a closed-form update rule, which enables efficient refinement without costly numerical optimization. Notably, our derivation incorporates the quantization errors from preceding layers to prevent error accumulation. Experimental results demonstrate that our method consistently enhances group-wise quantization, achieving higher accuracy with negligible overhead.
comment: ICASSP 2026
☆ Toxicity Assessment in Preclinical Histopathology via Class-Aware Mahalanobis Distance for Known and Novel Anomalies
Drug-induced toxicity remains a leading cause of failure in preclinical development and early clinical trials. Detecting adverse effects at an early stage is critical to reduce attrition and accelerate the development of safe medicines. Histopathological evaluation remains the gold standard for toxicity assessment, but it relies heavily on expert pathologists, creating a bottleneck for large-scale screening. To address this challenge, we introduce an AI-based anomaly detection framework for histopathological whole-slide images (WSIs) in rodent livers from toxicology studies. The system identifies healthy tissue and known pathologies (anomalies) for which training data is available. In addition, it can detect rare pathologies without training data as out-of-distribution (OOD) findings. We generate a novel dataset of pixelwise annotations of healthy tissue and known pathologies and use this data to fine-tune a pre-trained Vision Transformer (DINOv2) via Low-Rank Adaptation (LoRA) in order to do tissue segmentation. Finally, we extract features for OOD detection using the Mahalanobis distance. To better account for class-dependent variability in histological data, we propose the use of class-specific thresholds. We optimize the thresholds using the mean of the false negative and false positive rates, resulting in only 0.16\% of pathological tissue classified as healthy and 0.35\% of healthy tissue classified as pathological. Applied to mouse liver WSIs with known toxicological findings, the framework accurately detects anomalies, including rare OOD morphologies. This work demonstrates the potential of AI-driven histopathology to support preclinical workflows, reduce late-stage failures, and improve efficiency in drug development.
☆ Unifying Masked Diffusion Models with Various Generation Orders and Beyond
Masked diffusion models (MDMs) are a potential alternative to autoregressive models (ARMs) for language generation, but generation quality depends critically on the generation order. Prior work either hard-codes an ordering (e.g., blockwise left-to-right) or learns an ordering policy for a pretrained MDM, which incurs extra cost and can yield suboptimal solutions due to the two-stage optimization. Motivated by this, we propose order-expressive masked diffusion model (OeMDM) for a broad class of diffusion generative processes with various generation orders, enabling the interpretation of MDM, ARM, and block diffusion in a single framework. Furthermore, building on OeMDM, we introduce learnable-order masked diffusion model (LoMDM), which jointly learns the generation ordering and diffusion backbone through a single objective from scratch, enabling the diffusion model to generate text in context-dependent ordering. Empirically, we confirm that LoMDM outperforms various discrete diffusion models across multiple language modeling benchmarks.
comment: Preprint
☆ The Verification Crisis: Expert Perceptions of GenAI Disinformation and the Case for Reproducible Provenance
The growth of Generative Artificial Intelligence (GenAI) has shifted disinformation production from manual fabrication to automated, large-scale manipulation. This article presents findings from the first wave of a longitudinal expert perception survey (N=21) involving AI researchers, policymakers, and disinformation specialists. It examines the perceived severity of multimodal threats -- text, image, audio, and video -- and evaluates current mitigation strategies. Results indicate that while deepfake video presents immediate "shock" value, large-scale text generation poses a systemic risk of "epistemic fragmentation" and "synthetic consensus," particularly in the political domain. The survey reveals skepticism about technical detection tools, with experts favoring provenance standards and regulatory frameworks despite implementation barriers. GenAI disinformation research requires reproducible methods. The current challenge is measurement: without standardized benchmarks and reproducibility checklists, tracking or countering synthetic media remains difficult. We propose treating information integrity as an infrastructure with rigor in data provenance and methodological reproducibility.
comment: Accepted at ACM TheWebConf '26 Companion
☆ Probabilistic Performance Guarantees for Multi-Task Reinforcement Learning
Multi-task reinforcement learning trains generalist policies that can execute multiple tasks. While recent years have seen significant progress, existing approaches rarely provide formal performance guarantees, which are indispensable when deploying policies in safety-critical settings. We present an approach for computing high-confidence guarantees on the performance of a multi-task policy on tasks not seen during training. Concretely, we introduce a new generalisation bound that composes (i) per-task lower confidence bounds from finitely many rollouts with (ii) task-level generalisation from finitely many sampled tasks, yielding a high-confidence guarantee for new tasks drawn from the same arbitrary and unknown distribution. Across state-of-the-art multi-task RL methods, we show that the guarantees are theoretically sound and informative at realistic sample sizes.
☆ WADEPre: A Wavelet-based Decomposition Model for Extreme Precipitation Nowcasting with Multi-Scale Learning KDD 2026
The heavy-tailed nature of precipitation intensity impedes precise precipitation nowcasting. Standard models that optimize pixel-wise losses are prone to regression-to-the-mean bias, which blurs extreme values. Existing Fourier-based methods also lack the spatial localization needed to resolve transient convective cells. To overcome these intrinsic limitations, we propose WADEPre, a wavelet-based decomposition model for extreme precipitation that transitions the modeling into the wavelet domain. By leveraging the Discrete Wavelet Transform for explicit decomposition, WADEPre employs a dual-branch architecture: an Approximation Network to model stable, low-frequency advection, isolating deterministic trends from statistical bias, and a spatially localized Detail Network to capture high-frequency stochastic convection, resolving transient singularities and preserving sharp boundaries. A subsequent Refiner module then dynamically reconstructs these decoupled multi-scale components into the final high-fidelity forecast. To address optimization instability, we introduce a multi-scale curriculum learning strategy that progressively shifts supervision from coarse scales to fine-grained details. Extensive experiments on the SEVIR and Shanghai Radar datasets demonstrate that WADEPre achieves state-of-the-art performance, yielding significant improvements in capturing extreme thresholds and maintaining structural fidelity. Our code is available at https://github.com/sonderlau/WADEPre.
comment: The paper has been submitted to KDD 2026 and is currently under review
☆ LEC-KG: An LLM-Embedding Collaborative Framework for Domain-Specific Knowledge Graph Construction -- A Case Study on SDGs
Constructing domain-specific knowledge graphs from unstructured text remains challenging due to heterogeneous entity mentions, long-tail relation distributions, and the absence of standardized schemas. We present LEC-KG, a bidirectional collaborative framework that integrates the semantic understanding of Large Language Models (LLMs) with the structural reasoning of Knowledge Graph Embeddings (KGE). Our approach features three key components: (1) hierarchical coarse-to-fine relation extraction that mitigates long-tail bias, (2) evidence-guided Chain-of-Thought feedback that grounds structural suggestions in source text, and (3) semantic initialization that enables structural validation for unseen entities. The two modules enhance each other iteratively-KGE provides structure-aware feedback to refine LLM extractions, while validated triples progressively improve KGE representations. We evaluate LEC-KG on Chinese Sustainable Development Goal (SDG) reports, demonstrating substantial improvements over LLM baselines, particularly on low-frequency relations. Through iterative refinement, our framework reliably transforms unstructured policy text into validated knowledge graph triples.
☆ Multi-View Stenosis Classification Leveraging Transformer-Based Multiple-Instance Learning Using Real-World Clinical Data
Coronary artery stenosis is a leading cause of cardiovascular disease, diagnosed by analyzing the coronary arteries from multiple angiography views. Although numerous deep-learning models have been proposed for stenosis detection from a single angiography view, their performance heavily relies on expensive view-level annotations, which are often not readily available in hospital systems. Moreover, these models fail to capture the temporal dynamics and dependencies among multiple views, which are crucial for clinical diagnosis. To address this, we propose SegmentMIL, a transformer-based multi-view multiple-instance learning framework for patient-level stenosis classification. Trained on a real-world clinical dataset, using patient-level supervision and without any view-level annotations, SegmentMIL jointly predicts the presence of stenosis and localizes the affected anatomical region, distinguishing between the right and left coronary arteries and their respective segments. SegmentMIL obtains high performance on internal and external evaluations and outperforms both view-level models and classical MIL baselines, underscoring its potential as a clinically viable and scalable solution for coronary stenosis diagnosis. Our code is available at https://github.com/NikolaCenic/mil-stenosis.
☆ See2Refine: Vision-Language Feedback Improves LLM-Based eHMI Action Designers
Automated vehicles lack natural communication channels with other road users, making external Human-Machine Interfaces (eHMIs) essential for conveying intent and maintaining trust in shared environments. However, most eHMI studies rely on developer-crafted message-action pairs, which are difficult to adapt to diverse and dynamic traffic contexts. A promising alternative is to use Large Language Models (LLMs) as action designers that generate context-conditioned eHMI actions, yet such designers lack perceptual verification and typically depend on fixed prompts or costly human-annotated feedback for improvement. We present See2Refine, a human-free, closed-loop framework that uses vision-language model (VLM) perceptual evaluation as automated visual feedback to improve an LLM-based eHMI action designer. Given a driving context and a candidate eHMI action, the VLM evaluates the perceived appropriateness of the action, and this feedback is used to iteratively revise the designer's outputs, enabling systematic refinement without human supervision. We evaluate our framework across three eHMI modalities (lightbar, eyes, and arm) and multiple LLM model sizes. Across settings, our framework consistently outperforms prompt-only LLM designers and manually specified baselines in both VLM-based metrics and human-subject evaluations. Results further indicate that the improvements generalize across modalities and that VLM evaluations are well aligned with human preferences, supporting the robustness and effectiveness of See2Refine for scalable action design.
comment: Under Review
☆ FiLoRA: Focus-and-Ignore LoRA for Controllable Feature Reliance
Multimodal foundation models integrate heterogeneous signals across modalities, yet it remains poorly understood how their predictions depend on specific internal feature groups and whether such reliance can be deliberately controlled. Existing studies of shortcut and spurious behavior largely rely on post hoc analyses or feature removal, offering limited insight into whether reliance can be modulated without altering task semantics. We introduce FiLoRA (Focus-and-Ignore LoRA), an instruction-conditioned, parameter-efficient adaptation framework that enables explicit control over internal feature reliance while keeping the predictive objective fixed. FiLoRA decomposes adaptation into feature group-aligned LoRA modules and applies instruction-conditioned gating, allowing natural language instructions to act as computation-level control signals rather than task redefinitions. Across text--image and audio--visual benchmarks, we show that instruction-conditioned gating induces consistent and causal shifts in internal computation, selectively amplifying or suppressing core and spurious feature groups without modifying the label space or training objective. Further analyses demonstrate that FiLoRA yields improved robustness under spurious feature interventions, revealing a principled mechanism to regulate reliance beyond correlation-driven learning.
☆ FORLER: Federated Offline Reinforcement Learning with Q-Ensemble and Actor Rectification IEEE
In Internet-of-Things systems, federated learning has advanced online reinforcement learning (RL) by enabling parallel policy training without sharing raw data. However, interacting with real environments online can be risky and costly, motivating offline federated RL (FRL), where local devices learn from fixed datasets. Despite its promise, offline FRL may break down under low-quality, heterogeneous data. Offline RL tends to get stuck in local optima, and in FRL, one device's suboptimal policy can degrade the aggregated model, i.e., policy pollution. We present FORLER, combining Q-ensemble aggregation on the server with actor rectification on devices. The server robustly merges device Q-functions to curb policy pollution and shift heavy computation off resource-constrained hardware without compromising privacy. Locally, actor rectification enriches policy gradients via a zeroth-order search for high-Q actions plus a bespoke regularizer that nudges the policy toward them. A $δ$-periodic strategy further reduces local computation. We theoretically provide safe policy improvement performance guarantees. Extensive experiments show FORLER consistently outperforms strong baselines under varying data quality and heterogeneity.
comment: accetped by IEEE International Conference on Communications (ICC 2026)
☆ SIDiffAgent: Self-Improving Diffusion Agent
Text-to-image diffusion models have revolutionized generative AI, enabling high-quality and photorealistic image synthesis. However, their practical deployment remains hindered by several limitations: sensitivity to prompt phrasing, ambiguity in semantic interpretation (e.g., ``mouse" as animal vs. a computer peripheral), artifacts such as distorted anatomy, and the need for carefully engineered input prompts. Existing methods often require additional training and offer limited controllability, restricting their adaptability in real-world applications. We introduce Self-Improving Diffusion Agent (SIDiffAgent), a training-free agentic framework that leverages the Qwen family of models (Qwen-VL, Qwen-Image, Qwen-Edit, Qwen-Embedding) to address these challenges. SIDiffAgent autonomously manages prompt engineering, detects and corrects poor generations, and performs fine-grained artifact removal, yielding more reliable and consistent outputs. It further incorporates iterative self-improvement by storing a memory of previous experiences in a database. This database of past experiences is then used to inject prompt-based guidance at each stage of the agentic pipeline. \modelour achieved an average VQA score of 0.884 on GenAIBench, significantly outperforming open-source, proprietary models and agentic methods. We will publicly release our code upon acceptance.
☆ Rethinking the Role of Entropy in Optimizing Tool-Use Behaviors for Large Language Model Agents
Tool-using agents based on Large Language Models (LLMs) excel in tasks such as mathematical reasoning and multi-hop question answering. However, in long trajectories, agents often trigger excessive and low-quality tool calls, increasing latency and degrading inference performance, making managing tool-use behavior challenging. In this work, we conduct entropy-based pilot experiments and observe a strong positive correlation between entropy reduction and high-quality tool calls. Building on this finding, we propose using entropy reduction as a supervisory signal and design two reward strategies to address the differing needs of optimizing tool-use behavior. Sparse outcome rewards provide coarse, trajectory-level guidance to improve efficiency, while dense process rewards offer fine-grained supervision to enhance performance. Experiments across diverse domains show that both reward designs improve tool-use behavior: the former reduces tool calls by 72.07% compared to the average of baselines, while the latter improves performance by 22.27%. These results position entropy reduction as a key mechanism for enhancing tool-use behavior, enabling agents to be more adaptive in real-world applications.
☆ Auto-Comp: An Automated Pipeline for Scalable Compositional Probing of Contrastive Vision-Language Models
Modern Vision-Language Models (VLMs) exhibit a critical flaw in compositional reasoning, often confusing "a red cube and a blue sphere" with "a blue cube and a red sphere". Disentangling the visual and linguistic roots of these failures is a fundamental challenge for robust evaluation. To enable fine-grained, controllable analysis, we introduce Auto-Comp, a fully automated and synthetic pipeline for generating scalable benchmarks. Its controllable nature is key to dissecting and isolating different reasoning skills. Auto-Comp generates paired images from Minimal (e.g., "a monitor to the left of a bicycle on a white background") and LLM-generated Contextual captions (e.g., "In a brightly lit photography studio, a monitor is positioned to the left of a bicycle"), allowing a controlled A/B test to disentangle core binding ability from visio-linguistic complexity. Our evaluation of 20 VLMs on novel benchmarks for color binding and spatial relations reveals universal compositional failures in both CLIP and SigLIP model families. Crucially, our novel "Confusion Benchmark" reveals a deeper flaw beyond simple attribute swaps: models are highly susceptible to low-entropy distractors (e.g., repeated objects or colors), demonstrating their compositional failures extend beyond known bag-of-words limitations. we uncover a surprising trade-off: visio-linguistic context, which provides global scene cues, aids spatial reasoning but simultaneously hinders local attribute binding by introducing visual clutter. We release the Auto-Comp pipeline to facilitate future benchmark creation, alongside all our generated benchmarks (https://huggingface.co/AutoComp).
☆ Hunt Instead of Wait: Evaluating Deep Data Research on Large Language Models
The agency expected of Agentic Large Language Models goes beyond answering correctly, requiring autonomy to set goals and decide what to explore. We term this investigatory intelligence, distinguishing it from executional intelligence, which merely completes assigned tasks. Data Science provides a natural testbed, as real-world analysis starts from raw data rather than explicit queries, yet few benchmarks focus on it. To address this, we introduce Deep Data Research (DDR), an open-ended task where LLMs autonomously extract key insights from databases, and DDR-Bench, a large-scale, checklist-based benchmark that enables verifiable evaluation. Results show that while frontier models display emerging agency, long-horizon exploration remains challenging. Our analysis highlights that effective investigatory intelligence depends not only on agent scaffolding or merely scaling, but also on intrinsic strategies of agentic models.
comment: 14 pages, 7 tables, 8 figures
☆ Bandwidth-Efficient Multi-Agent Communication through Information Bottleneck and Vector Quantization IEEE
Multi-agent reinforcement learning systems deployed in real-world robotics applications face severe communication constraints that significantly impact coordination effectiveness. We present a framework that combines information bottleneck theory with vector quantization to enable selective, bandwidth-efficient communication in multi-agent environments. Our approach learns to compress and discretize communication messages while preserving task-critical information through principled information-theoretic optimization. We introduce a gated communication mechanism that dynamically determines when communication is necessary based on environmental context and agent states. Experimental evaluation on challenging coordination tasks demonstrates that our method achieves 181.8% performance improvement over no-communication baselines while reducing bandwidth usage by 41.4%. Comprehensive Pareto frontier analysis shows dominance across the entire success-bandwidth spectrum with area-under-curve of 0.198 vs 0.142 for next-best methods. Our approach significantly outperforms existing communication strategies and establishes a theoretically grounded framework for deploying multi-agent systems in bandwidth-constrained environments such as robotic swarms, autonomous vehicle fleets, and distributed sensor networks.
comment: Accepted at the 2026 IEEE International Conference on Robotics and Automation (ICRA 2026), Vienna, Austria. 9 pages, 4 figures, 6 tables
☆ Constrained Process Maps for Multi-Agent Generative AI Workflows
Large language model (LLM)-based agents are increasingly used to perform complex, multi-step workflows in regulated settings such as compliance and due diligence. However, many agentic architectures rely primarily on prompt engineering of a single agent, making it difficult to observe or compare how models handle uncertainty and coordination across interconnected decision stages and with human oversight. We introduce a multi-agent system formalized as a finite-horizon Markov Decision Process (MDP) with a directed acyclic structure. Each agent corresponds to a specific role or decision stage (e.g., content, business, or legal review in a compliance workflow), with predefined transitions representing task escalation or completion. Epistemic uncertainty is quantified at the agent level using Monte Carlo estimation, while system-level uncertainty is captured by the MDP's termination in either an automated labeled state or a human-review state. We illustrate the approach through a case study in AI safety evaluation for self-harm detection, implemented as a multi-agent compliance system. Results demonstrate improvements over a single-agent baseline, including up to a 19\% increase in accuracy, up to an 85x reduction in required human review, and, in some configurations, reduced processing time.
☆ One Size, Many Fits: Aligning Diverse Group-Wise Click Preferences in Large-Scale Advertising Image Generation
Advertising image generation has increasingly focused on online metrics like Click-Through Rate (CTR), yet existing approaches adopt a ``one-size-fits-all" strategy that optimizes for overall CTR while neglecting preference diversity among user groups. This leads to suboptimal performance for specific groups, limiting targeted marketing effectiveness. To bridge this gap, we present \textit{One Size, Many Fits} (OSMF), a unified framework that aligns diverse group-wise click preferences in large-scale advertising image generation. OSMF begins with product-aware adaptive grouping, which dynamically organizes users based on their attributes and product characteristics, representing each group with rich collective preference features. Building on these groups, preference-conditioned image generation employs a Group-aware Multimodal Large Language Model (G-MLLM) to generate tailored images for each group. The G-MLLM is pre-trained to simultaneously comprehend group features and generate advertising images. Subsequently, we fine-tune the G-MLLM using our proposed Group-DPO for group-wise preference alignment, which effectively enhances each group's CTR on the generated images. To further advance this field, we introduce the Grouped Advertising Image Preference Dataset (GAIP), the first large-scale public dataset of group-wise image preferences, including around 600K groups built from 40M users. Extensive experiments demonstrate that our framework achieves the state-of-the-art performance in both offline and online settings. Our code and datasets will be released at https://github.com/JD-GenX/OSMF.
☆ Canonical Intermediate Representation for LLM-based optimization problem formulation and code generation
Automatically formulating optimization models from natural language descriptions is a growing focus in operations research, yet current LLM-based approaches struggle with the composite constraints and appropriate modeling paradigms required by complex operational rules. To address this, we introduce the Canonical Intermediate Representation (CIR): a schema that LLMs explicitly generate between problem descriptions and optimization models. CIR encodes the semantics of operational rules through constraint archetypes and candidate modeling paradigms, thereby decoupling rule logic from its mathematical instantiation. Upon a newly generated CIR knowledge base, we develop the rule-to-constraint (R2C) framework, a multi-agent pipeline that parses problem texts, synthesizes CIR implementations by retrieving domain knowledge, and instantiates optimization models. To systematically evaluate rule-to-constraint reasoning, we test R2C on our newly constructed benchmark featuring rich operational rules, and benchmarks from prior work. Extensive experiments show that R2C achieves state-of-the-art accuracy on the proposed benchmark (47.2% Accuracy Rate). On established benchmarks from the literature, R2C delivers highly competitive results, approaching the performance of proprietary models (e.g., GPT-5). Moreover, with a reflection mechanism, R2C achieves further gains and sets new best-reported results on some benchmarks.
comment: 41 pages, 4 figures, 5 tables
☆ Edit Knowledge, Not Just Facts via Multi-Step Reasoning over Background Stories
Enabling artificial intelligence systems, particularly large language models, to integrate new knowledge and flexibly apply it during reasoning remains a central challenge. Existing knowledge editing approaches emphasize atomic facts, improving factual recall but often failing to integrate new information into a coherent framework usable across contexts. In this work, we argue that knowledge internalization is fundamentally a reasoning problem rather than a memorization problem. Consequently, a model should be trained in situations where the new information is instrumental to solving a task, combined with pre-existing knowledge, and exercised through multi-step reasoning. Based on this insight, we propose a training strategy based on three principles. First, new knowledge is introduced as a coherent background story that contextualizes novel facts and explains their relation to existing knowledge. Second, models are trained using self-generated multi-hop questions that require multi-step reasoning involving the new information. Third, training is done using knowledge distillation, forcing a student model to internalize the teacher's reasoning behavior without access to the novel information. Experiments show that models trained with this strategy effectively leverage newly acquired knowledge during reasoning and achieve remarkable performance on challenging questions that require combining multiple new facts.
comment: under review
☆ Light Alignment Improves LLM Safety via Model Self-Reflection with a Single Neuron
The safety of large language models (LLMs) has increasingly emerged as a fundamental aspect of their development. Existing safety alignment for LLMs is predominantly achieved through post-training methods, which are computationally expensive and often fail to generalize well across different models. A small number of lightweight alignment approaches either rely heavily on prior-computed safety injections or depend excessively on the model's own capabilities, resulting in limited generalization and degraded efficiency and usability during generation. In this work, we propose a safety-aware decoding method that requires only low-cost training of an expert model and employs a single neuron as a gating mechanism. By effectively balancing the model's intrinsic capabilities with external guidance, our approach simultaneously preserves utility and enhances output safety. It demonstrates clear advantages in training overhead and generalization across model scales, offering a new perspective on lightweight alignment for the safe and practical deployment of large language models. Code: https://github.com/Beijing-AISI/NGSD.
comment: 21 pages, 3 figures
☆ Do I Really Know? Learning Factual Self-Verification for Hallucination Reduction
Factual hallucination remains a central challenge for large language models (LLMs). Existing mitigation approaches primarily rely on either external post-hoc verification or mapping uncertainty directly to abstention during fine-tuning, often resulting in overly conservative behavior. We propose VeriFY, a training-time framework that teaches LLMs to reason about factual uncertainty through consistency-based self-verification. VeriFY augments training with structured verification traces that guide the model to produce an initial answer, generate and answer a probing verification query, issue a consistency judgment, and then decide whether to answer or abstain. To address the risk of reinforcing hallucinated content when training on augmented traces, we introduce a stage-level loss masking approach that excludes hallucinated answer stages from the training objective while preserving supervision over verification behavior. Across multiple model families and scales, VeriFY reduces factual hallucination rates by 9.7 to 53.3 percent, with only modest reductions in recall (0.4 to 5.7 percent), and generalizes across datasets when trained on a single source. The source code, training data, and trained model checkpoints will be released upon acceptance.
☆ Rethinking Genomic Modeling Through Optical Character Recognition
Recent genomic foundation models largely adopt large language model architectures that treat DNA as a one-dimensional token sequence. However, exhaustive sequential reading is structurally misaligned with sparse and discontinuous genomic semantics, leading to wasted computation on low-information background and preventing understanding-driven compression for long contexts. Here, we present OpticalDNA, a vision-based framework that reframes genomic modeling as Optical Character Recognition (OCR)-style document understanding. OpticalDNA renders DNA into structured visual layouts and trains an OCR-capable vision--language model with a \emph{visual DNA encoder} and a \emph{document decoder}, where the encoder produces compact, reconstructible visual tokens for high-fidelity compression. Building on this representation, OpticalDNA defines prompt-conditioned objectives over core genomic primitives-reading, region grounding, subsequence retrieval, and masked span completion-thereby learning layout-aware DNA representations that retain fine-grained genomic information under a reduced effective token budget. Across diverse genomic benchmarks, OpticalDNA consistently outperforms recent baselines; on sequences up to 450k bases, it achieves the best overall performance with nearly $20\times$ fewer effective tokens, and surpasses models with up to $985\times$ more activated parameters while tuning only 256k \emph{trainable} parameters.
☆ Beyond RAG for Agent Memory: Retrieval by Decoupling and Aggregation
Agent memory systems often adopt the standard Retrieval-Augmented Generation (RAG) pipeline, yet its underlying assumptions differ in this setting. RAG targets large, heterogeneous corpora where retrieved passages are diverse, whereas agent memory is a bounded, coherent dialogue stream with highly correlated spans that are often duplicates. Under this shift, fixed top-$k$ similarity retrieval tends to return redundant context, and post-hoc pruning can delete temporally linked prerequisites needed for correct reasoning. We argue retrieval should move beyond similarity matching and instead operate over latent components, following decoupling to aggregation: disentangle memories into semantic components, organise them into a hierarchy, and use this structure to drive retrieval. We propose xMemory, which builds a hierarchy of intact units and maintains a searchable yet faithful high-level node organisation via a sparsity--semantics objective that guides memory split and merge. At inference, xMemory retrieves top-down, selecting a compact, diverse set of themes and semantics for multi-fact queries, and expanding to episodes and raw messages only when it reduces the reader's uncertainty. Experiments on LoCoMo and PerLTQA across the three latest LLMs show consistent gains in answer quality and token efficiency.
☆ ClueTracer: Question-to-Vision Clue Tracing for Training-Free Hallucination Suppression in Multimodal Reasoning
Large multimodal reasoning models solve challenging visual problems via explicit long-chain inference: they gather visual clues from images and decode clues into textual tokens. Yet this capability also increases hallucinations, where the model generates content that is not supported by the input image or the question. To understand this failure mode, we identify \emph{reasoning drift}: during clue gathering, the model over-focuses on question-irrelevant entities, diluting focus on task-relevant cues and gradually decoupling the reasoning trace from visual grounding. As a consequence, many inference-time localization or intervention methods developed for non-reasoning models fail to pinpoint the true clues in reasoning settings. Motivated by these insights, we introduce ClueRecall, a metric for assessing visual clue retrieval, and present ClueTracer, a training-free, parameter-free, and architecture-agnostic plugin for hallucination suppression. ClueTracer starts from the question and traces how key clues propagate along the model's reasoning pathway (question $\rightarrow$ outputs $\rightarrow$ visual tokens), thereby localizing task-relevant patches while suppressing spurious attention to irrelevant regions. Remarkably, \textbf{without any additional training}, ClueTracer improves all \textbf{reasoning} architectures (including \texttt{R1-OneVision}, \texttt{Ocean-R1}, \texttt{MM-Eureka}, \emph{etc}.) by $\mathbf{1.21\times}$ on reasoning benchmarks. When transferred to \textbf{non-reasoning} settings, it yields a $\mathbf{1.14\times}$ gain.
comment: 20 pages, 7 figures
☆ Preserve-Then-Quantize: Balancing Rank Budgets for Quantization Error Reconstruction in LLMs
Quantization Error Reconstruction (QER) reduces accuracy loss in Post-Training Quantization (PTQ) by approximating weights as $\mathbf{W} \approx \mathbf{Q} + \mathbf{L}\mathbf{R}$, using a rank-$r$ correction to reconstruct quantization error. Prior methods devote the full rank budget to error reconstruction, which is suboptimal when $\mathbf{W}$ has intrinsic low-rank structure and quantization corrupts dominant directions. We propose Structured Residual Reconstruction (SRR), a rank-allocation framework that preserves the top-$k$ singular subspace of the activation-scaled weight before quantization, quantizes only the residual, and uses the remaining rank $r-k$ for error reconstruction. We derive a theory-guided criterion for selecting $k$ by balancing quantization-exposed energy and unrecoverable error under rank constraints. We further show that resulting $\mathbf{Q} + \mathbf{L}\mathbf{R}$ parameterization naturally supports Quantized Parameter-Efficient Fine-Tuning (QPEFT), and stabilizes fine-tuning via gradient scaling along preserved directions. Experiments demonstrate consistent perplexity reductions across diverse models and quantization settings in PTQ, along with a 5.9 percentage-point average gain on GLUE under 2-bit QPEFT.
☆ SurfSplat: Conquering Feedforward 2D Gaussian Splatting with Surface Continuity Priors ICLR 2026
Reconstructing 3D scenes from sparse images remains a challenging task due to the difficulty of recovering accurate geometry and texture without optimization. Recent approaches leverage generalizable models to generate 3D scenes using 3D Gaussian Splatting (3DGS) primitive. However, they often fail to produce continuous surfaces and instead yield discrete, color-biased point clouds that appear plausible at normal resolution but reveal severe artifacts under close-up views. To address this issue, we present SurfSplat, a feedforward framework based on 2D Gaussian Splatting (2DGS) primitive, which provides stronger anisotropy and higher geometric precision. By incorporating a surface continuity prior and a forced alpha blending strategy, SurfSplat reconstructs coherent geometry together with faithful textures. Furthermore, we introduce High-Resolution Rendering Consistency (HRRC), a new evaluation metric designed to evaluate high-resolution reconstruction quality. Extensive experiments on RealEstate10K, DL3DV, and ScanNet demonstrate that SurfSplat consistently outperforms prior methods on both standard metrics and HRRC, establishing a robust solution for high-fidelity 3D reconstruction from sparse inputs. Project page: https://hebing-sjtu.github.io/SurfSplat-website/
comment: ICLR 2026
☆ On the Limits of Layer Pruning for Generative Reasoning in LLMs
Recent works have shown that layer pruning can compress large language models (LLMs) while retaining strong performance on classification benchmarks with little or no finetuning. However, existing pruning techniques often suffer severe degradation on generative reasoning tasks. Through a systematic study across multiple model families, we find that tasks requiring multi-step reasoning are particularly sensitive to depth reduction. Beyond surface-level text degeneration, we observe degradation of critical algorithmic capabilities, including arithmetic computation for mathematical reasoning and balanced parenthesis generation for code synthesis. Under realistic post-training constraints, without access to pretraining-scale data or compute, we evaluate a simple mitigation strategy based on supervised finetuning with Self-Generated Responses. This approach achieves strong recovery on classification tasks, retaining up to 90\% of baseline performance, and yields substantial gains of up to 20--30 percentage points on generative benchmarks compared to prior post-pruning techniques. Crucially, despite these gains, recovery for generative reasoning remains fundamentally limited relative to classification tasks and is viable primarily at lower pruning ratios. Overall, we characterize the practical limits of layer pruning for generative reasoning and provide guidance on when depth reduction can be applied effectively under constrained post-training regimes.
☆ Thinking Like a Doctor: Conversational Diagnosis through the Exploration of Diagnostic Knowledge Graphs
Conversational diagnosis requires multi-turn history-taking, where an agent asks clarifying questions to refine differential diagnoses under incomplete information. Existing approaches often rely on the parametric knowledge of a model or assume that patients provide rich and concrete information, which is unrealistic. To address these limitations, we propose a conversational diagnosis system that explores a diagnostic knowledge graph to reason in two steps: (i) generating diagnostic hypotheses from the dialogue context, and (ii) verifying hypotheses through clarifying questions, which are repeated until a final diagnosis is reached. Since evaluating the system requires a realistic patient simulator that responds to the system's questions, we adopt a well-established simulator along with patient profiles from MIMIC-IV. We further adapt it to describe symptoms vaguely to reflect real-world patients during early clinical encounters. Experiments show improved diagnostic accuracy and efficiency over strong baselines, and evaluations by physicians support the realism of our simulator and the clinical utility of the generated questions. Our code will be released upon publication.
☆ Optimizing Tensor Train Decomposition in DNNs for RISC-V Architectures Using Design Space Exploration and Compiler Optimizations
Deep neural networks (DNNs) have become indispensable in many real-life applications like natural language processing, and autonomous systems. However, deploying DNNs on resource-constrained devices, e.g., in RISC-V platforms, remains challenging due to the high computational and memory demands of fully connected (FC) layers, which dominate resource consumption. Low-rank factorization (LRF) offers an effective approach to compressing FC layers, but the vast design space of LRF solutions involves complex trade-offs among FLOPs, memory size, inference time, and accuracy, making the LRF process complex and time-consuming. This paper introduces an end-to-end LRF design space exploration methodology and a specialized design tool for optimizing FC layers on RISC-V processors. Using Tensor Train Decomposition (TTD) offered by TensorFlow T3F library, the proposed work prunes the LRF design space by excluding first, inefficient decomposition shapes and second, solutions with poor inference performance on RISC-V architectures. Compiler optimizations are then applied to enhance custom T3F layer performance, minimizing inference time and boosting computational efficiency. On average, our TT-decomposed layers run 3x faster than IREE and 8x faster than Pluto on the same compressed model. This work provides an efficient solution for deploying DNNs on edge and embedded devices powered by RISC-V architectures.
comment: 36 pages, 16 figures, this is the author-accepted version of the article published in ACM Transactions on Embedded Computing Systems (TECS), Vol. 24, No. 6
☆ Emergent Analogical Reasoning in Transformers
Analogy is a central faculty of human intelligence, enabling abstract patterns discovered in one domain to be applied to another. Despite its central role in cognition, the mechanisms by which Transformers acquire and implement analogical reasoning remain poorly understood. In this work, inspired by the notion of functors in category theory, we formalize analogical reasoning as the inference of correspondences between entities across categories. Based on this formulation, we introduce synthetic tasks that evaluate the emergence of analogical reasoning under controlled settings. We find that the emergence of analogical reasoning is highly sensitive to data characteristics, optimization choices, and model scale. Through mechanistic analysis, we show that analogical reasoning in Transformers decomposes into two key components: (1) geometric alignment of relational structure in the embedding space, and (2) the application of a functor within the Transformer. These mechanisms enable models to transfer relational structure from one category to another, realizing analogy. Finally, we quantify these effects and find that the same trends are observed in pretrained LLMs. In doing so, we move analogy from an abstract cognitive notion to a concrete, mechanistically grounded phenomenon in modern neural networks.
☆ SAME: Stabilized Mixture-of-Experts for Multimodal Continual Instruction Tuning
Multimodal Large Language Models (MLLMs) achieve strong performance through instruction tuning, but real-world deployment requires them to continually expand their capabilities, making Multimodal Continual Instruction Tuning (MCIT) essential. Recent methods leverage sparse expert routing to promote task specialization, but we find that the expert routing process suffers from drift as the data distribution evolves. For example, a grounding query that previously activated localization experts may instead be routed to irrelevant experts after learning OCR tasks. Meanwhile, the grounding-related experts can be overwritten by new tasks and lose their original functionality. Such failure reflects two problems: router drift, where expert selection becomes inconsistent over time, and expert drift, where shared experts are overwritten across tasks. Therefore, we propose StAbilized Mixture-of-Experts (SAME) for MCIT. To address router drift, SAME stabilizes expert selection by decomposing routing dynamics into orthogonal subspaces and updating only task-relevant directions. To mitigate expert drift, we regulate expert updates via curvature-aware scaling using historical input covariance in a rehearsal-free manner. SAME also introduces adaptive expert activation to freeze selected experts during training, reducing redundant computation and cross-task interference. Extensive experiments demonstrate its SOTA performance.
☆ Evolving from Tool User to Creator via Training-Free Experience Reuse in Multimodal Reasoning
Existing Tool-Integrated Reasoning (TIR) models have effectively extended the question-answering capabilities of LLMs by incorporating external tools. However, real-world scenarios present numerous open-ended problems where fixed tools often fail to meet task requirements. Furthermore, the lack of self-optimization mechanisms means that erroneous tool outputs can mislead the LLM's responses. Additionally, the construction of existing tools entails significant manual effort, which consequently constrains their applicability. Recognizing that the reasoning traces of LLMs encapsulate implicit problem-solving capabilities, we propose UCT, a novel training-free framework that transforms agents from tool users to tool creators. This approach harvests reasoning experiences and distills them into reusable assets. This method transforms the agent from a mere tool user into a tool creator, enabling adaptive tool creation and self-updating during the inference process. We also introduce a memory consolidation mechanism to maintain the tool library, ensuring high reusability of retained experiential memory for subsequent reasoning tasks. This novel automated tool construction paradigm continuously improves tool quality during reasoning, allowing the overall agent system to progress without additional training. Extensive experiments demonstrate that our method serves as a novel paradigm for enhancing the capabilities of TIR models. In particular, the significant performance gains achieved +20.86%$\uparrow$ and +23.04%$\uparrow$ on benchmarks across multi-domain mathematical and scientific reasoning tasks validate the self-evolving capability of the agent.
☆ FlyPrompt: Brain-Inspired Random-Expanded Routing with Temporal-Ensemble Experts for General Continual Learning ICLR 2026
General continual learning (GCL) challenges intelligent systems to learn from single-pass, non-stationary data streams without clear task boundaries. While recent advances in continual parameter-efficient tuning (PET) of pretrained models show promise, they typically rely on multiple training epochs and explicit task cues, limiting their effectiveness in GCL scenarios. Moreover, existing methods often lack targeted design and fail to address two fundamental challenges in continual PET: how to allocate expert parameters to evolving data distributions, and how to improve their representational capacity under limited supervision. Inspired by the fruit fly's hierarchical memory system characterized by sparse expansion and modular ensembles, we propose FlyPrompt, a brain-inspired framework that decomposes GCL into two subproblems: expert routing and expert competence improvement. FlyPrompt introduces a randomly expanded analytic router for instance-level expert activation and a temporal ensemble of output heads to dynamically adapt decision boundaries over time. Extensive theoretical and empirical evaluations demonstrate FlyPrompt's superior performance, achieving up to 11.23%, 12.43%, and 7.62% gains over state-of-the-art baselines on CIFAR-100, ImageNet-R, and CUB-200, respectively. Our source code is available at https://github.com/AnAppleCore/FlyGCL.
comment: 33 pages. Accepted by ICLR 2026
☆ IntraSlice: Towards High-Performance Structural Pruning with Block-Intra PCA for LLMs
Large Language Models (LLMs) achieve strong performance across diverse tasks but face deployment challenges due to their massive size. Structured pruning offers acceleration benefits but leads to significant performance degradation. Recent PCA-based pruning methods have alleviated this issue by retaining key activation components, but are only applied between modules in order to fuse the transformation matrix, which introduces extra parameters and severely disrupts activation distributions due to residual connections. To address these issues, we propose IntraSlice, a framework that applies block-wise module-intra PCA compression pruning. By leveraging the structural characteristics of Transformer modules, we design an approximate PCA method whose transformation matrices can be fully fused into the model without additional parameters. We also introduce a PCA-based global pruning ratio estimator that further considers the distribution of compressed activations, building on conventional module importance. We validate our method on Llama2, Llama3, and Phi series across various language benchmarks. Experimental results demonstrate that our approach achieves superior compression performance compared to recent baselines at the same compression ratio or inference speed.
☆ Your AI-Generated Image Detector Can Secretly Achieve SOTA Accuracy, If Calibrated AAAI 2026
Despite being trained on balanced datasets, existing AI-generated image detectors often exhibit systematic bias at test time, frequently misclassifying fake images as real. We hypothesize that this behavior stems from distributional shift in fake samples and implicit priors learned during training. Specifically, models tend to overfit to superficial artifacts that do not generalize well across different generation methods, leading to a misaligned decision threshold when faced with test-time distribution shift. To address this, we propose a theoretically grounded post-hoc calibration framework based on Bayesian decision theory. In particular, we introduce a learnable scalar correction to the model's logits, optimized on a small validation set from the target distribution while keeping the backbone frozen. This parametric adjustment compensates for distributional shift in model output, realigning the decision boundary even without requiring ground-truth labels. Experiments on challenging benchmarks show that our approach significantly improves robustness without retraining, offering a lightweight and principled solution for reliable and adaptive AI-generated image detection in the open world. Code is available at https://github.com/muliyangm/AIGI-Det-Calib.
comment: AAAI 2026. Code: https://github.com/muliyangm/AIGI-Det-Calib
☆ Small Generalizable Prompt Predictive Models Can Steer Efficient RL Post-Training of Large Reasoning Models
Reinforcement learning enhances the reasoning capabilities of large language models but often involves high computational costs due to rollout-intensive optimization. Online prompt selection presents a plausible solution by prioritizing informative prompts to improve training efficiency. However, current methods either depend on costly, exact evaluations or construct prompt-specific predictive models lacking generalization across prompts. This study introduces Generalizable Predictive Prompt Selection (GPS), which performs Bayesian inference towards prompt difficulty using a lightweight generative model trained on the shared optimization history. Intermediate-difficulty prioritization and history-anchored diversity are incorporated into the batch acquisition principle to select informative prompt batches. The small predictive model also generalizes at test-time for efficient computational allocation. Experiments across varied reasoning benchmarks indicate GPS's substantial improvements in training efficiency, final performance, and test-time efficiency over superior baseline methods.
☆ Mixture-of-Experts with Intermediate CTC Supervision for Accented Speech Recognition
Accented speech remains a persistent challenge for automatic speech recognition (ASR), as most models are trained on data dominated by a few high-resource English varieties, leading to substantial performance degradation for other accents. Accent-agnostic approaches improve robustness yet struggle with heavily accented or unseen varieties, while accent-specific methods rely on limited and often noisy labels. We introduce Moe-Ctc, a Mixture-of-Experts architecture with intermediate CTC supervision that jointly promotes expert specialization and generalization. During training, accent-aware routing encourages experts to capture accent-specific patterns, which gradually transitions to label-free routing for inference. Each expert is equipped with its own CTC head to align routing with transcription quality, and a routing-augmented loss further stabilizes optimization. Experiments on the Mcv-Accent benchmark demonstrate consistent gains across both seen and unseen accents in low- and high-resource conditions, achieving up to 29.3% relative WER reduction over strong FastConformer baselines.
☆ Breaking the Static Graph: Context-Aware Traversal for Robust Retrieval-Augmented Generation
Recent advances in Retrieval-Augmented Generation (RAG) have shifted from simple vector similarity to structure-aware approaches like HippoRAG, which leverage Knowledge Graphs (KGs) and Personalized PageRank (PPR) to capture multi-hop dependencies. However, these methods suffer from a "Static Graph Fallacy": they rely on fixed transition probabilities determined during indexing. This rigidity ignores the query-dependent nature of edge relevance, causing semantic drift where random walks are diverted into high-degree "hub" nodes before reaching critical downstream evidence. Consequently, models often achieve high partial recall but fail to retrieve the complete evidence chain required for multi-hop queries. To address this, we propose CatRAG, Context-Aware Traversal for robust RAG, a framework that builds on the HippoRAG 2 architecture and transforms the static KG into a query-adaptive navigation structure. We introduce a multi-faceted framework to steer the random walk: (1) Symbolic Anchoring, which injects weak entity constraints to regularize the random walk; (2) Query-Aware Dynamic Edge Weighting, which dynamically modulates graph structure, to prune irrelevant paths while amplifying those aligned with the query's intent; and (3) Key-Fact Passage Weight Enhancement, a cost-efficient bias that structurally anchors the random walk to likely evidence. Experiments across four multi-hop benchmarks demonstrate that CatRAG consistently outperforms state of the art baselines. Our analysis reveals that while standard Recall metrics show modest gains, CatRAG achieves substantial improvements in reasoning completeness, the capacity to recover the entire evidence path without gaps. These results reveal that our approach effectively bridges the gap between retrieving partial context and enabling fully grounded reasoning. Resources are available at https://github.com/kwunhang/CatRAG.
☆ Zero-Shot Off-Policy Learning
Off-policy learning methods seek to derive an optimal policy directly from a fixed dataset of prior interactions. This objective presents significant challenges, primarily due to the inherent distributional shift and value function overestimation bias. These issues become even more noticeable in zero-shot reinforcement learning, where an agent trained on reward-free data must adapt to new tasks at test time without additional training. In this work, we address the off-policy problem in a zero-shot setting by discovering a theoretical connection of successor measures to stationary density ratios. Using this insight, our algorithm can infer optimal importance sampling ratios, effectively performing a stationary distribution correction with an optimal policy for any task on the fly. We benchmark our method in motion tracking tasks on SMPL Humanoid, continuous control on ExoRL, and for the long-horizon OGBench tasks. Our technique seamlessly integrates into forward-backward representation frameworks and enables fast-adaptation to new tasks in a training-free regime. More broadly, this work bridges off-policy learning and zero-shot adaptation, offering benefits to both research areas.
☆ Efficient Epistemic Uncertainty Estimation for Large Language Models via Knowledge Distillation
Quantifying uncertainty in Large Language Models (LLMs) is essential for mitigating hallucinations and enabling risk-aware deployment in safety-critical tasks. However, estimating Epistemic Uncertainty(EU) via Deep Ensembles is computationally prohibitive at the scale of modern models. We propose a framework that leverages the small draft models to efficiently estimate token-level EU, bypassing the need for full-scale ensembling. Theoretically grounded in a Bias-Variance Decomposition, our approach approximates EU via Jensen-Shannon divergence among drafts (variance proxy) and KL divergence between the draft mixture and the target (bias proxy). To further ensure accuracy without significant overhead, we introduce Online Stochastic Distillation (OSD) to efficiently approximate target aggregation and the Data-Diverse Drafts (DDD) strategy to enhance draft diversity for better target approximation. Extensive experiments on GSM8K demonstrate that our method reduces the estimation error (RMSE) by up to 37% compared to baselines. Crucially, our approach achieves Hallucination Detection performance competitive with heavy perturbation-based methods like TokUR while incurring negligible inference costs, offering a practical solution for uncertainty-aware LLM deployment.
☆ Human Society-Inspired Approaches to Agentic AI Security: The 4C Framework
AI is moving from domain-specific autonomy in closed, predictable settings to large-language-model-driven agents that plan and act in open, cross-organizational environments. As a result, the cybersecurity risk landscape is changing in fundamental ways. Agentic AI systems can plan, act, collaborate, and persist over time, functioning as participants in complex socio-technical ecosystems rather than as isolated software components. Although recent work has strengthened defenses against model and pipeline level vulnerabilities such as prompt injection, data poisoning, and tool misuse, these system centric approaches may fail to capture risks that arise from autonomy, interaction, and emergent behavior. This article introduces the 4C Framework for multi-agent AI security, inspired by societal governance. It organizes agentic risks across four interdependent dimensions: Core (system, infrastructure, and environmental integrity), Connection (communication, coordination, and trust), Cognition (belief, goal, and reasoning integrity), and Compliance (ethical, legal, and institutional governance). By shifting AI security from a narrow focus on system-centric protection to the broader preservation of behavioral integrity and intent, the framework complements existing AI security strategies and offers a principled foundation for building agentic AI systems that are trustworthy, governable, and aligned with human values.
comment: 10 pages
☆ Towards Exploratory and Focused Manipulation with Bimanual Active Perception: A New Problem, Benchmark and Strategy ICRA 2026
Recently, active vision has reemerged as an important concept for manipulation, since visual occlusion occurs more frequently when main cameras are mounted on the robot heads. We reflect on the visual occlusion issue and identify its essence as the absence of information useful for task completion. Inspired by this, we come up with the more fundamental problem of Exploratory and Focused Manipulation (EFM). The proposed problem is about actively collecting information to complete challenging manipulation tasks that require exploration or focus. As an initial attempt to address this problem, we establish the EFM-10 benchmark that consists of 4 categories of tasks that align with our definition (10 tasks in total). We further come up with a Bimanual Active Perception (BAP) strategy, which leverages one arm to provide active vision and another arm to provide force sensing while manipulating. Based on this idea, we collect a dataset named BAPData for the tasks in EFM-10. With the dataset, we successfully verify the effectiveness of the BAP strategy in an imitation learning manner. We hope that the EFM-10 benchmark along with the BAP strategy can become a cornerstone that facilitates future research towards this direction. Project website: EFManipulation.github.io.
comment: ICRA 2026
☆ T-LLM: Teaching Large Language Models to Forecast Time Series via Temporal Distillation
Time series forecasting plays a critical role in decision-making across many real-world applications. Unlike data in vision and language domains, time series data is inherently tied to the evolution of underlying processes and can only accumulate as real-world time progresses, limiting the effectiveness of scale-driven pretraining alone. This time-bound constraint poses a challenge for enabling large language models (LLMs) to acquire forecasting capability, as existing approaches primarily rely on representation-level alignment or inference-time temporal modules rather than explicitly teaching forecasting behavior to the LLM. We propose T-LLM, a temporal distillation framework that equips general-purpose LLMs with time series forecasting capability by transferring predictive behavior from a lightweight temporal teacher during training. The teacher combines trend modeling and frequency-domain analysis to provide structured temporal supervision, and is removed entirely at inference, leaving the LLM as the sole forecasting model. Experiments on benchmark datasets and infectious disease forecasting tasks demonstrate that T-LLM consistently outperforms existing LLM-based forecasting methods under full-shot, few-shot, and zero-shot settings, while enabling a simple and efficient deployment pipeline.
☆ PIMCST: Physics-Informed Multi-Phase Consensus and Spatio-Temporal Few-Shot Learning for Traffic Flow Forecasting
Accurate traffic flow prediction remains a fundamental challenge in intelligent transportation systems, particularly in cross-domain, data-scarce scenarios where limited historical data hinders model training and generalisation. The complex spatio-temporal dependencies and nonlinear dynamics of urban mobility networks further complicate few-shot learning across different cities. This paper proposes MCPST, a novel Multi-phase Consensus Spatio-Temporal framework for few-shot traffic forecasting that reconceptualises traffic prediction as a multi-phase consensus learning problem. Our framework introduces three core innovations: (1) a multi-phase engine that models traffic dynamics through diffusion, synchronisation, and spectral embeddings for comprehensive dynamic characterisation; (2) an adaptive consensus mechanism that dynamically fuses phase-specific predictions while enforcing consistency; and (3) a structured meta-learning strategy for rapid adaptation to new cities with minimal data. We establish extensive theoretical guarantees, including representation theorems with bounded approximation errors and generalisation bounds for few-shot adaptation. Through experiments on four real-world datasets, MCPST outperforms fourteen state-of-the-art methods in spatio-temporal graph learning methods, dynamic graph transfer learning methods, prompt-based spatio-temporal prediction methods and cross-domain few-shot settings, improving prediction accuracy while reducing required training data and providing interpretable insights. The implementation code is available at https://github.com/afofanah/MCPST.
☆ COLT: Lightweight Multi-LLM Collaboration through Shared MCTS Reasoning for Model Compilation
Model serving costs dominate AI systems, making compiler optimization essential for scalable deployment. Recent works show that a large language model (LLM) can guide compiler search by reasoning over program structure and optimization history. However, using a single large model throughout the search is expensive, while smaller models are less reliable when used alone. Thus, this paper seeks to answer whether multi-LLM collaborative reasoning relying primarily on small LLMs can match or exceed the performance of a single large model. As such, we propose a lightweight collaborative multi-LLM framework, dubbed COLT, for compiler optimization that enables coordinated reasoning across multiple models within a single Monte Carlo tree search (MCTS) process. A key contribution is the use of a single shared MCTS tree as the collaboration substrate across LLMs, enabling the reuse of transformation prefixes and cross-model value propagation. Hence, we circumvent both heavy internal reasoning mechanisms and conventional agentic machinery that relies on external planners, multiple concurrent LLMs, databases, external memory/versioning of intermediate results, and controllers by simply endogenizing model selection within the lightweight MCTS optimization loop. Every iteration, the acting LLM proposes a joint action: (compiler transformation, model to be queried next). We also introduce a model-aware tree policy that biases search toward smaller models while preserving exploration, and a course-alteration mechanism that escalates to the largest model when the search exhibits persistent regressions attributable to smaller models.
☆ Large Language Model and Formal Concept Analysis: a comparative study for Topic Modeling
Topic modeling is a research field finding increasing applications: historically from document retrieving, to sentiment analysis and text summarization. Large Language Models (LLM) are currently a major trend in text processing, but few works study their usefulness for this task. Formal Concept Analysis (FCA) has recently been presented as a candidate for topic modeling, but no real applied case study has been conducted. In this work, we compare LLM and FCA to better understand their strengths and weakneses in the topic modeling field. FCA is evaluated through the CREA pipeline used in past experiments on topic modeling and visualization, whereas GPT-5 is used for the LLM. A strategy based on three prompts is applied with GPT-5 in a zero-shot setup: topic generation from document batches, merging of batch results into final topics, and topic labeling. A first experiment reuses the teaching materials previously used to evaluate CREA, while a second experiment analyzes 40 research articles in information systems to compare the extracted topics with the underling subfields.
☆ PIMPC-GNN: Physics-Informed Multi-Phase Consensus Learning for Enhancing Imbalanced Node Classification in Graph Neural Networks
Graph neural networks (GNNs) often struggle in class-imbalanced settings, where minority classes are under-represented and predictions are biased toward majorities. We propose \textbf{PIMPC-GNN}, a physics-informed multi-phase consensus framework for imbalanced node classification. Our method integrates three complementary dynamics: (i) thermodynamic diffusion, which spreads minority labels to capture long-range dependencies, (ii) Kuramoto synchronisation, which aligns minority nodes through oscillatory consensus, and (iii) spectral embedding, which separates classes via structural regularisation. These perspectives are combined through class-adaptive ensemble weighting and trained with an imbalance-aware loss that couples balanced cross-entropy with physics-based constraints. Across five benchmark datasets and imbalance ratios from 5-100, PIMPC-GNN outperforms 16 state-of-the-art baselines, achieving notable gains in minority-class recall (up to +12.7\%) and balanced accuracy (up to +8.3\%). Beyond empirical improvements, the framework also provides interpretable insights into consensus dynamics in graph learning. The code is available at \texttt{https://github.com/afofanah/PIMPC-GNN}.
☆ VLM-Guided Experience Replay
Recent advances in Large Language Models (LLMs) and Vision-Language Models (VLMs) have enabled powerful semantic and multimodal reasoning capabilities, creating new opportunities to enhance sample efficiency, high-level planning, and interpretability in reinforcement learning (RL). While prior work has integrated LLMs and VLMs into various components of RL, the replay buffer, a core component for storing and reusing experiences, remains unexplored. We propose addressing this gap by leveraging VLMs to guide the prioritization of experiences in the replay buffer. Our key idea is to use a frozen, pre-trained VLM (requiring no fine-tuning) as an automated evaluator to identify and prioritize promising sub-trajectories from the agent's experiences. Across scenarios, including game-playing and robotics, spanning both discrete and continuous domains, agents trained with our proposed prioritization method achieve 11-52% higher average success rates and improve sample efficiency by 19-45% compared to previous approaches. https://esharony.me/projects/vlm-rb/
☆ Reliable Real-Time Value at Risk Estimation via Quantile Regression Forest with Conformal Calibration
Rapidly evolving market conditions call for real-time risk monitoring, but its online estimation remains challenging. In this paper, we study the online estimation of one of the most widely used risk measures, Value at Risk (VaR). Its accurate and reliable estimation is essential for timely risk control and informed decision-making. We propose to use the quantile regression forest in the offline-simulation-online-estimation (OSOA) framework. Specifically, the quantile regression forest is trained offline to learn the relationship between the online VaR and risk factors, and real-time VaR estimates are then produced online by incorporating observed risk factors. To further ensure reliability, we develop a conformalized estimator that calibrates the online VaR estimates. To the best of our knowledge, we are the first to leverage conformal calibration to estimate real-time VaR reliably based on the OSOA formulation. Theoretical analysis establishes the consistency and coverage validity of the proposed estimators. Numerical experiments confirm the proposed method and demonstrate its effectiveness in practice.
☆ DomusFM: A Foundation Model for Smart-Home Sensor Data
Smart-home sensor data holds significant potential for several applications, including healthcare monitoring and assistive technologies. Existing approaches, however, face critical limitations. Supervised models require impractical amounts of labeled data. Foundation models for activity recognition focus only on inertial sensors, failing to address the unique characteristics of smart-home binary sensor events: their sparse, discrete nature combined with rich semantic associations. LLM-based approaches, while tested in this domain, still raise several issues regarding the need for natural language descriptions or prompting, and reliance on either external services or expensive hardware, making them infeasible in real-life scenarios due to privacy and cost concerns. We introduce DomusFM, the first foundation model specifically designed and pretrained for smart-home sensor data. DomusFM employs a self-supervised dual contrastive learning paradigm to capture both token-level semantic attributes and sequence-level temporal dependencies. By integrating semantic embeddings from a lightweight language model and specialized encoders for temporal patterns and binary states, DomusFM learns generalizable representations that transfer across environments and tasks related to activity and event analysis. Through leave-one-dataset-out evaluation across seven public smart-home datasets, we demonstrate that DomusFM outperforms state-of-the-art baselines on different downstream tasks, achieving superior performance even with only 5% of labeled training data available for fine-tuning. Our approach addresses data scarcity while maintaining practical deployability for real-world smart-home systems.
☆ DSXFormer: Dual-Pooling Spectral Squeeze-Expansion and Dynamic Context Attention Transformer for Hyperspectral Image Classification
Hyperspectral image classification (HSIC) is a challenging task due to high spectral dimensionality, complex spectral-spatial correlations, and limited labeled training samples. Although transformer-based models have shown strong potential for HSIC, existing approaches often struggle to achieve sufficient spectral discriminability while maintaining computational efficiency. To address these limitations, we propose a novel DSXFormer, a novel dual-pooling spectral squeeze-expansion transformer with Dynamic Context Attention for HSIC. The proposed DSXFormer introduces a Dual-Pooling Spectral Squeeze-Expansion (DSX) block, which exploits complementary global average and max pooling to adaptively recalibrate spectral feature channels, thereby enhancing spectral discriminability and inter-band dependency modeling. In addition, DSXFormer incorporates a Dynamic Context Attention (DCA) mechanism within a window-based transformer architecture to dynamically capture local spectral-spatial relationships while significantly reducing computational overhead. The joint integration of spectral dual-pooling squeeze-expansion and DCA enables DSXFormer to achieve an effective balance between spectral emphasis and spatial contextual representation. Furthermore, patch extraction, embedding, and patch merging strategies are employed to facilitate efficient multi-scale feature learning. Extensive experiments conducted on four widely used hyperspectral benchmark datasets, including Salinas (SA), Indian Pines (IP), Pavia University (PU), and Kennedy Space Center (KSC), demonstrate that DSXFormer consistently outperforms state-of-the-art methods, achieving classification accuracies of 99.95%, 98.91%, 99.85%, and 98.52%, respectively.
☆ Learning Sparse Visual Representations via Spatial-Semantic Factorization
Self-supervised learning (SSL) faces a fundamental conflict between semantic understanding and image reconstruction. High-level semantic SSL (e.g., DINO) relies on global tokens that are forced to be location-invariant for augmentation alignment, a process that inherently discards the spatial coordinates required for reconstruction. Conversely, generative SSL (e.g., MAE) preserves dense feature grids for reconstruction but fails to produce high-level abstractions. We introduce STELLAR, a framework that resolves this tension by factorizing visual features into a low-rank product of semantic concepts and their spatial distributions. This disentanglement allows us to perform DINO-style augmentation alignment on the semantic tokens while maintaining the precise spatial mapping in the localization matrix necessary for pixel-level reconstruction. We demonstrate that as few as 16 sparse tokens under this factorized form are sufficient to simultaneously support high-quality reconstruction (2.60 FID) and match the semantic performance of dense backbones (79.10% ImageNet accuracy). Our results highlight STELLAR as a versatile sparse representation that bridges the gap between discriminative and generative vision by strategically separating semantic identity from spatial geometry. Code available at https://aka.ms/stellar.
☆ Geometric Analysis of Token Selection in Multi-Head Attention
We present a geometric framework for analysing multi-head attention in large language models (LLMs). Without altering the mechanism, we view standard attention through a top-N selection lens and study its behaviour directly in value-state space. We define geometric metrics - Precision, Recall, and F-score - to quantify separability between selected and non-selected tokens, and derive non-asymptotic bounds with explicit dependence on dimension and margin under empirically motivated assumptions (stable value norms with a compressed sink token, exponential similarity decay, and piecewise attention weight profiles). The theory predicts a small-N operating regime of strongest non-trivial separability and clarifies how sequence length and sink similarity shape the metrics. Empirically, across LLaMA-2-7B, Gemma-7B, and Mistral-7B, measurements closely track the theoretical envelopes: top-N selection sharpens separability, sink similarity correlates with Recall. We also found that in LLaMA-2-7B heads specialize into three regimes - Retriever, Mixer, Reset - with distinct geometric signatures. Overall, attention behaves as a structured geometric classifier with measurable criteria for token selection, offering head level interpretability and informing geometry-aware sparsification and design of attention in LLMs.
☆ ES-MemEval: Benchmarking Conversational Agents on Personalized Long-Term Emotional Support WWW
Large Language Models (LLMs) have shown strong potential as conversational agents. Yet, their effectiveness remains limited by deficiencies in robust long-term memory, particularly in complex, long-term web-based services such as online emotional support. However, existing long-term dialogue benchmarks primarily focus on static and explicit fact retrieval, failing to evaluate agents in critical scenarios where user information is dispersed, implicit, and continuously evolving. To address this gap, we introduce ES-MemEval, a comprehensive benchmark that systematically evaluates five core memory capabilities: information extraction, temporal reasoning, conflict detection, abstention, and user modeling, in long-term emotional support settings, covering question answering, summarization, and dialogue generation tasks. To support the benchmark, we also propose EvoEmo, a multi-session dataset for personalized long-term emotional support that captures fragmented, implicit user disclosures and evolving user states. Extensive experiments on open-source long-context, commercial, and retrieval-augmented (RAG) LLMs show that explicit long-term memory is essential for reducing hallucinations and enabling effective personalization. At the same time, RAG improves factual consistency but struggles with temporal dynamics and evolving user states. These findings highlight both the potential and limitations of current paradigms and motivate more robust integration of memory and retrieval for long-term personalized dialogue systems.
comment: 12 pages, 7 figures. Accepted to The Web Conference (WWW) 2026
☆ Entropy-Guided Data-Efficient Training for Multimodal Reasoning Reward Models
Multimodal reward models are crucial for aligning multimodal large language models with human preferences. Recent works have incorporated reasoning capabilities into these models, achieving promising results. However, training these models suffers from two critical challenges: (1) the inherent noise in preference datasets, which degrades model performance, and (2) the inefficiency of conventional training methods, which ignore the differences in sample difficulty. In this paper, we identify a strong correlation between response entropy and accuracy, indicating that entropy can serve as a reliable and unsupervised proxy for annotation noise and sample difficulty. Based on this insight, we propose a novel Entropy-Guided Training (EGT) approach for multimodal reasoning reward models, which combines two strategies: (1) entropy-guided data curation to mitigate the impact of unreliable samples, and (2) an entropy-guided training strategy that progressively introduces more complex examples. Extensive experiments across three benchmarks show that the EGT-trained model consistently outperforms state-of-the-art multimodal reward models.
☆ ProcMEM: Learning Reusable Procedural Memory from Experience via Non-Parametric PPO for LLM Agents
LLM-driven agents demonstrate strong performance in sequential decision-making but often rely on on-the-fly reasoning, re-deriving solutions even in recurring scenarios. This insufficient experience reuse leads to computational redundancy and execution instability. To bridge this gap, we propose ProcMEM, a framework that enables agents to autonomously learn procedural memory from interaction experiences without parameter updates. By formalizing a Skill-MDP, ProcMEM transforms passive episodic narratives into executable Skills defined by activation, execution, and termination conditions to ensure executability. To achieve reliable reusability without capability degradation, we introduce Non-Parametric PPO, which leverages semantic gradients for high-quality candidate generation and a PPO Gate for robust Skill verification. Through score-based maintenance, ProcMEM sustains compact, high-quality procedural memory. Experimental results across in-domain, cross-task, and cross-agent scenarios demonstrate that ProcMEM achieves superior reuse rates and significant performance gains with extreme memory compression. Visualized evolutionary trajectories and Skill distributions further reveal how ProcMEM transparently accumulates, refines, and reuses procedural knowledge to facilitate long-term autonomy.
comment: 20 Pages, 6 Figures, 4 Tables
☆ GRAB: An LLM-Inspired Sequence-First Click-Through Rate Prediction Modeling Paradigm
Traditional Deep Learning Recommendation Models (DLRMs) face increasing bottlenecks in performance and efficiency, often struggling with generalization and long-sequence modeling. Inspired by the scaling success of Large Language Models (LLMs), we propose Generative Ranking for Ads at Baidu (GRAB), an end-to-end generative framework for Click-Through Rate (CTR) prediction. GRAB integrates a novel Causal Action-aware Multi-channel Attention (CamA) mechanism to effectively capture temporal dynamics and specific action signals within user behavior sequences. Full-scale online deployment demonstrates that GRAB significantly outperforms established DLRMs, delivering a 3.05% increase in revenue and a 3.49% rise in CTR. Furthermore, the model demonstrates desirable scaling behavior: its expressive power shows a monotonic and approximately linear improvement as longer interaction sequences are utilized.
☆ SOPRAG: Multi-view Graph Experts Retrieval for Industrial Standard Operating Procedures
Standard Operating Procedures (SOPs) are essential for ensuring operational safety and consistency in industrial environments. However, retrieving and following these procedures presents unique challenges, such as rigid proprietary structures, condition-dependent relevance, and actionable execution requirement, which standard semantic-driven Retrieval-Augmented Generation (RAG) paradigms fail to address. Inspired by the Mixture-of-Experts (MoE) paradigm, we propose SOPRAG, a novel framework specifically designed to address the above pain points in SOP retrieval. SOPRAG replaces flat chunking with specialized Entity, Causal, and Flow graph experts to resolve industrial structural and logical complexities. To optimize and coordinate these experts, we propose a Procedure Card layer that prunes the search space to eliminate computational noise, and an LLM-Guided gating mechanism that dynamically weights these experts to align retrieval with operator intent. To address the scarcity of domain-specific data, we also introduce an automated, multi-agent workflow for benchmark construction. Extensive experiments across four industrial domains demonstrate that SOPRAG significantly outperforms strong lexical, dense, and graph-based RAG baselines in both retrieval accuracy and response utility, achieving perfect execution scores in real-world critical tasks.
☆ Time2Vec-Integrated Transformer for Robust Gesture Recognition from Low-Density sEMG
Accurate and responsive myoelectric prosthesis control typically relies on complex, dense multi-sensor arrays, which limits consumer accessibility. This paper presents a novel, data-efficient deep learning framework designed to achieve precise and accurate control using minimal sensor hardware. Leveraging an external dataset of 8 subjects, our approach implements a hybrid Transformer optimized for sparse, two-channel surface electromyography (sEMG). Unlike standard architectures that use fixed positional encodings, we integrate Time2Vec learnable temporal embeddings to capture the stochastic temporal warping inherent in biological signals. Furthermore, we employ a normalized additive fusion strategy that aligns the latent distributions of spatial and temporal features, preventing the destructive interference common in standard implementations. A two-stage curriculum learning protocol is utilized to ensure robust feature extraction despite data scarcity. The proposed architecture achieves a state-of-the-art multi-subject F1-score of 95.7% $\pm$ 0.20% for a 10-class movement set, statistically outperforming both a standard Transformer with fixed encodings and a recurrent CNN-LSTM model. Architectural optimization reveals that a balanced allocation of model capacity between spatial and temporal dimensions yields the highest stability. Furthermore, while direct transfer to a new unseen subject led to poor accuracy due to domain shifts, a rapid calibration protocol utilizing only two trials per gesture recovered performance from 21.0% $\pm$ 2.98% to 96.9% $\pm$ 0.52%. By validating that high-fidelity temporal embeddings can compensate for low spatial resolution, this work challenges the necessity of high-density sensing. The proposed framework offers a robust, cost-effective blueprint for next-generation prosthetic interfaces capable of rapid personalization.
☆ ROMA: Recursive Open Meta-Agent Framework for Long-Horizon Multi-Agent Systems
Current agentic frameworks underperform on long-horizon tasks. As reasoning depth increases, sequential orchestration becomes brittle, context windows impose hard limits that degrade performance, and opaque execution traces make failures difficult to localize or debug. We introduce ROMA (Recursive Open Meta-Agents), a domain-agnostic framework that addresses these limitations through recursive task decomposition and structured aggregation. ROMA decomposes goals into dependency-aware subtask trees that can be executed in parallel, while aggregation compresses and validates intermediate results to control context growth. Our framework standardizes agent construction around four modular roles --Atomizer (which decides whether a task should be decomposed), Planner, Executor, and Aggregator -- which cleanly separate orchestration from model selection and enable transparent, hierarchical execution traces. This design supports heterogeneous multi-agent systems that mix models and tools according to cost, latency, and capability. To adapt ROMA to specific tasks without fine-tuning, we further introduce GEPA$+$, an improved Genetic-Pareto prompt proposer that searches over prompts within ROMA's component hierarchy while preserving interface contracts. We show that ROMA, combined with GEPA+, delivers leading system-level performance on reasoning and long-form generation benchmarks. On SEAL-0, which evaluates reasoning over conflicting web evidence, ROMA instantiated with GLM-4.6 improves accuracy by 9.9\% over Kimi-Researcher. On EQ-Bench, a long-form writing benchmark, ROMA enables DeepSeek-V3 to match the performance of leading closed-source models such as Claude Sonnet 4.5. Our results demonstrate that recursive, modular agent architectures can scale reasoning depth while remaining interpretable, flexible, and model-agnostic.
☆ CloDS: Visual-Only Unsupervised Cloth Dynamics Learning in Unknown Conditions ICLR 2026
Deep learning has demonstrated remarkable capabilities in simulating complex dynamic systems. However, existing methods require known physical properties as supervision or inputs, limiting their applicability under unknown conditions. To explore this challenge, we introduce Cloth Dynamics Grounding (CDG), a novel scenario for unsupervised learning of cloth dynamics from multi-view visual observations. We further propose Cloth Dynamics Splatting (CloDS), an unsupervised dynamic learning framework designed for CDG. CloDS adopts a three-stage pipeline that first performs video-to-geometry grounding and then trains a dynamics model on the grounded meshes. To cope with large non-linear deformations and severe self-occlusions during grounding, we introduce a dual-position opacity modulation that supports bidirectional mapping between 2D observations and 3D geometry via mesh-based Gaussian splatting in video-to-geometry grounding stage. It jointly considers the absolute and relative position of Gaussian components. Comprehensive experimental evaluations demonstrate that CloDS effectively learns cloth dynamics from visual data while maintaining strong generalization capabilities for unseen configurations. Our code is available at https://github.com/whynot-zyl/CloDS. Visualization results are available at https://github.com/whynot-zyl/CloDS_video}.%\footnote{As in this example.
comment: ICLR 2026
☆ DOGMA: Weaving Structural Information into Data-centric Single-cell Transcriptomics Analysis
Recently, data-centric AI methodology has been a dominant paradigm in single-cell transcriptomics analysis, which treats data representation rather than model complexity as the fundamental bottleneck. In the review of current studies, earlier sequence methods treat cells as independent entities and adapt prevalent ML models to analyze their directly inherited sequence data. Despite their simplicity and intuition, these methods overlook the latent intercellular relationships driven by the functional mechanisms of biological systems and the inherent quality issues of the raw sequence data. Therefore, a series of structured methods has emerged. Although they employ various heuristic rules to capture intricate intercellular relationships and enhance the raw sequencing data, these methods often neglect biological prior knowledge. This omission incurs substantial overhead and yields suboptimal graph representations, thereby hindering the utility of ML models. To address them, we propose DOGMA, a holistic data-centric framework designed for the structural reshaping and semantic enhancement of raw data through multi-level biological prior knowledge. Transcending reliance on stochastic heuristics, DOGMA redefines graph construction by integrating Statistical Anchors with Cell Ontology and Phylogenetic Trees to enable deterministic structure discovery and robust cross-species alignment. Furthermore, Gene Ontology is utilized to bridge the feature-level semantic gap by incorporating functional priors. In complex multi-species and multi-organ benchmarks, DOGMA achieves SOTA performance, exhibiting superior zero-shot robustness and sample efficiency while operating with significantly lower computational cost.
comment: 12 pages, 4 figures
☆ Synesthesia of Vehicles: Tactile Data Synthesis from Visual Inputs
Autonomous vehicles (AVs) rely on multi-modal fusion for safety, but current visual and optical sensors fail to detect road-induced excitations which are critical for vehicles' dynamic control. Inspired by human synesthesia, we propose the Synesthesia of Vehicles (SoV), a novel framework to predict tactile excitations from visual inputs for autonomous vehicles. We develop a cross-modal spatiotemporal alignment method to address temporal and spatial disparities. Furthermore, a visual-tactile synesthetic (VTSyn) generative model using latent diffusion is proposed for unsupervised high-quality tactile data synthesis. A real-vehicle perception system collected a multi-modal dataset across diverse road and lighting conditions. Extensive experiments show that VTSyn outperforms existing models in temporal, frequency, and classification performance, enhancing AV safety through proactive tactile perception.
☆ Beyond Precision: Training-Inference Mismatch is an Optimization Problem and Simple LR Scheduling Fixes It
Reinforcement Learning (RL) for training Large Language Models is notoriously unstable. While recent studies attribute this to "training inference mismatch stemming" from inconsistent hybrid engines, standard remedies, such as Importance Sampling, might fail during extended training runs. In this work, we analyze this instability through the lens of optimization, demonstrating that gradient noise and training-inference mismatch escalate in tandem as training progresses. Meanwhile, we find that the mismatch can be effectively suppressed by shrinking the update size. Taken together, we deduce that the mismatch is not merely a static numerical discrepancy, but a dynamic failure coupled with the model's optimization. Based on this insight, we propose a simple yet effective solution: a specialized Learning Rate (LR) scheduler. Instead of pre-defined decay schedule in traditional LR scheduler, our method dynamically triggers LR decay based on response length, which we identify as a reliable early-warning signal for impending instability. Empirical evidence suggests that by reducing the learning rate as gradient noise rises, we can consistently stabilize RL training and keep the training-inference mismatch at a safe level.
☆ INDIBATOR: Diverse and Fact-Grounded Individuality for Multi-Agent Debate in Molecular Discovery
Multi-agent systems have emerged as a powerful paradigm for automating scientific discovery. To differentiate agent behavior in the multi-agent system, current frameworks typically assign generic role-based personas such as ''reviewer'' or ''writer'' or rely on coarse grained keyword-based personas. While functional, this approach oversimplifies how human scientists operate, whose contributions are shaped by their unique research trajectories. In response, we propose INDIBATOR, a framework for molecular discovery that grounds agents in individualized scientist profiles constructed from two modalities: publication history for literature-derived knowledge and molecular history for structural priors. These agents engage in multi-turn debate through proposal, critique, and voting phases. Our evaluation demonstrates that these fine-grained individuality-grounded agents consistently outperform systems relying on coarse-grained personas, achieving competitive or state-of-the-art performance. These results validate that capturing the ``scientific DNA'' of individual agents is essential for high-quality discovery.
☆ Fast Autoregressive Video Diffusion and World Models with Temporal Cache Compression and Sparse Attention
Autoregressive video diffusion models enable streaming generation, opening the door to long-form synthesis, video world models, and interactive neural game engines. However, their core attention layers become a major bottleneck at inference time: as generation progresses, the KV cache grows, causing both increasing latency and escalating GPU memory, which in turn restricts usable temporal context and harms long-range consistency. In this work, we study redundancy in autoregressive video diffusion and identify three persistent sources: near-duplicate cached keys across frames, slowly evolving (largely semantic) queries/keys that make many attention computations redundant, and cross-attention over long prompts where only a small subset of tokens matters per frame. Building on these observations, we propose a unified, training-free attention framework for autoregressive diffusion: TempCache compresses the KV cache via temporal correspondence to bound cache growth; AnnCA accelerates cross-attention by selecting frame-relevant prompt tokens using fast approximate nearest neighbor (ANN) matching; and AnnSA sparsifies self-attention by restricting each query to semantically matched keys, also using a lightweight ANN. Together, these modules reduce attention, compute, and memory and are compatible with existing autoregressive diffusion backbones and world models. Experiments demonstrate up to x5--x10 end-to-end speedups while preserving near-identical visual quality and, crucially, maintaining stable throughput and nearly constant peak GPU memory usage over long rollouts, where prior methods progressively slow down and suffer from increasing memory usage.
comment: Project Page: https://dvirsamuel.github.io/fast-auto-regressive-video/
☆ ORCH: many analyses, one merge-a deterministic multi-agent orchestrator for discrete-choice reasoning with EMA-guided routing
Recent advances in large-scale language models (LLMs) have made multi-agent architectures attractive for challenging reasoning tasks. However, many existing systems rely on stochastic routing or ad-hoc heuristics, making their behavior difficult to reproduce and their decision process hard to interpret. We propose ORCH, a deterministic coordination framework for discrete-choice reasoning that orchestrates heterogeneous LLMs. ORCH follows a ``many analyses, one decision'' paradigm: multiple base models independently produce structured analyses, and a dedicated merge agent outputs the final choice. The framework uses fixed rules for task decomposition and answer aggregation, keeping the pipeline predictable, reproducible, and training-free. Determinism here refers to fixed routing and aggregation rules under a fixed evaluation protocol, rather than strict bit-level reproducibility across deployments. To exploit model complementarity, we optionally introduce an EMA-guided router that updates agent selection using historical accuracy, latency, or cost; since it relies on answer-based feedback, it is mainly intended for benchmarking, controlled evaluation, or delayed-feedback settings. Experiments on MMLU, MMLU-Pro, and GSM8K show that ORCH consistently outperforms single-model baselines and a majority-vote ensemble. On MMLU-Pro, ORCH improves accuracy by over 10 points compared to the strongest baseline, and on GSM8K it yields gains exceeding 50 points; McNemar tests confirm statistical significance. The EMA router provides an additional 0.7--2.0 point accuracy boost, and ablations show that both multi-agent collaboration and routing contribute substantially. Overall, ORCH offers a practical path toward controllable, interpretable, and deployment-ready LLM-based agent systems for discrete-choice reasoning.
☆ RedVisor: Reasoning-Aware Prompt Injection Defense via Zero-Copy KV Cache Reuse
Large Language Models (LLMs) are increasingly vulnerable to Prompt Injection (PI) attacks, where adversarial instructions hidden within retrieved contexts hijack the model's execution flow. Current defenses typically face a critical trade-off: prevention-based fine-tuning often degrades general utility via the "alignment tax", while detection-based filtering incurs prohibitive latency and memory costs. To bridge this gap, we propose RedVisor, a unified framework that synthesizes the explainability of detection systems with the seamless integration of prevention strategies. To the best of our knowledge, RedVisor is the first approach to leverage fine-grained reasoning paths to simultaneously detect attacks and guide the model's safe response. We implement this via a lightweight, removable adapter positioned atop the frozen backbone. This adapter serves a dual function: it first generates an explainable analysis that precisely localizes the injection and articulates the threat, which then explicitly conditions the model to reject the malicious command. Uniquely, the adapter is active only during this reasoning phase and is effectively muted during the subsequent response generation. This architecture yields two distinct advantages: (1) it mathematically preserves the backbone's original utility on benign inputs; and (2) it enables a novel KV Cache Reuse strategy, eliminating the redundant prefill computation inherent to decoupled pipelines. We further pioneer the integration of this defense into the vLLM serving engine with custom kernels. Experiments demonstrate that RedVisor outperforms state-of-the-art defenses in detection accuracy and throughput while incurring negligible utility loss.
comment: under review
☆ LingLanMiDian: Systematic Evaluation of LLMs on TCM Knowledge and Clinical Reasoning
Large language models (LLMs) are advancing rapidly in medical NLP, yet Traditional Chinese Medicine (TCM) with its distinctive ontology, terminology, and reasoning patterns requires domain-faithful evaluation. Existing TCM benchmarks are fragmented in coverage and scale and rely on non-unified or generation-heavy scoring that hinders fair comparison. We present the LingLanMiDian (LingLan) benchmark, a large-scale, expert-curated, multi-task suite that unifies evaluation across knowledge recall, multi-hop reasoning, information extraction, and real-world clinical decision-making. LingLan introduces a consistent metric design, a synonym-tolerant protocol for clinical labels, a per-dataset 400-item Hard subset, and a reframing of diagnosis and treatment recommendation into single-choice decision recognition. We conduct comprehensive, zero-shot evaluations on 14 leading open-source and proprietary LLMs, providing a unified perspective on their strengths and limitations in TCM commonsense knowledge understanding, reasoning, and clinical decision support; critically, the evaluation on Hard subset reveals a substantial gap between current models and human experts in TCM-specialized reasoning. By bridging fundamental knowledge and applied reasoning through standardized evaluation, LingLan establishes a unified, quantitative, and extensible foundation for advancing TCM LLMs and domain-specific medical AI research. All evaluation data and code are available at https://github.com/TCMAI-BJTU/LingLan and http://tcmnlp.com.
☆ Stein-Rule Shrinkage for Stochastic Gradient Estimation in High Dimensions
Stochastic gradient methods are central to large-scale learning, yet their analysis typically treats mini-batch gradients as unbiased estimators of the population gradient. In high-dimensional settings, however, classical results from statistical decision theory show that unbiased estimators are generally inadmissible under quadratic loss, suggesting that standard stochastic gradients may be suboptimal from a risk perspective. In this work, we formulate stochastic gradient computation as a high-dimensional estimation problem and introduce a decision-theoretic framework based on Stein-rule shrinkage. We construct a shrinkage gradient estimator that adaptively contracts noisy mini-batch gradients toward a stable restricted estimator derived from historical momentum. The shrinkage intensity is determined in a data-driven manner using an online estimate of gradient noise variance, leveraging second-moment statistics commonly maintained by adaptive optimization methods. Under a Gaussian noise model and for dimension p>=3, we show that the proposed estimator uniformly dominates the standard stochastic gradient under squared error loss and is minimax-optimal in the classical decision-theoretic sense. We further demonstrate how this estimator can be incorporated into the Adam optimizer, yielding a practical algorithm with negligible additional computational cost. Empirical evaluations on CIFAR10 and CIFAR100, across multiple levels of label noise, show consistent improvements over Adam in the large-batch regime. Ablation studies indicate that the gains arise primarily from selectively applying shrinkage to high-dimensional convolutional layers, while indiscriminate shrinkage across all parameters degrades performance. These results illustrate that classical shrinkage principles provide a principled and effective approach to improving stochastic gradient estimation in modern deep learning.
☆ Efficient Cross-Architecture Knowledge Transfer for Large-Scale Online User Response Prediction
Deploying new architectures in large-scale user response prediction systems incurs high model switching costs due to expensive retraining on massive historical data and performance degradation under data retention constraints. Existing knowledge distillation methods struggle with architectural heterogeneity and the prohibitive cost of transferring large embedding tables. We propose CrossAdapt, a two-stage framework for efficient cross-architecture knowledge transfer. The offline stage enables rapid embedding transfer via dimension-adaptive projections without iterative training, combined with progressive network distillation and strategic sampling to reduce computational cost. The online stage introduces asymmetric co-distillation, where students update frequently while teachers update infrequently, together with a distribution-aware adaptation mechanism that dynamically balances historical knowledge preservation and fast adaptation to evolving data. Experiments on three public datasets show that CrossAdapt achieves 0.27-0.43% AUC improvements while reducing training time by 43-71%. Large-scale deployment on Tencent WeChat Channels (~10M daily samples) further demonstrates its effectiveness, significantly mitigating AUC degradation, LogLoss increase, and prediction bias compared to standard distillation baselines.
comment: 15 pages
☆ DIA-CLIP: a universal representation learning framework for zero-shot DIA proteomics
Data-independent acquisition mass spectrometry (DIA-MS) has established itself as a cornerstone of proteomic profiling and large-scale systems biology, offering unparalleled depth and reproducibility. Current DIA analysis frameworks, however, require semi-supervised training within each run for peptide-spectrum match (PSM) re-scoring. This approach is prone to overfitting and lacks generalizability across diverse species and experimental conditions. Here, we present DIA-CLIP, a pre-trained model shifting the DIA analysis paradigm from semi-supervised training to universal cross-modal representation learning. By integrating dual-encoder contrastive learning framework with encoder-decoder architecture, DIA-CLIP establishes a unified cross-modal representation for peptides and corresponding spectral features, achieving high-precision, zero-shot PSM inference. Extensive evaluations across diverse benchmarks demonstrate that DIA-CLIP consistently outperforms state-of-the-art tools, yielding up to a 45% increase in protein identification while achieving a 12% reduction in entrapment identifications. Moreover, DIA-CLIP holds immense potential for diverse practical applications, such as single-cell and spatial proteomics, where its enhanced identification depth facilitates the discovery of novel biomarkers and the elucidates of intricate cellular mechanisms.
comment: 21 pages, 5 figures
: One LLM Token for Explicit Graph Structural Understanding
Large language models show great potential in unstructured data understanding, but still face significant challenges with graphs due to their structural hallucination. Existing approaches mainly either verbalize graphs into natural language, which leads to excessive token consumption and scattered attention, or transform graphs into trainable continuous embeddings (i.e., soft prompt), but exhibit severe misalignment with original text tokens. To solve this problem, we propose to incorporate one special token to fully represent the Structure Of Graph within a unified token space, facilitating explicit topology input and structural information sharing. Specifically, we propose a topology-aware structural tokenizer that maps each graph topology into a highly selective single token. Afterwards, we construct a set of hybrid structure Question-Answering corpora to align new structural tokens with existing text tokens. With this approach, empowers LLMs to understand, generate, and reason in a concise and accurate manner. Extensive experiments on five graph-level benchmarks demonstrate the superiority of our method, achieving a performance improvement of 9.9% to 41.4% compared to the baselines while exhibiting interpretability and consistency. Furthermore, our method provides a flexible extension to node-level tasks, enabling both global and local structural understanding. The codebase is publicly available at https://github.com/Jingyao-Wu/SOG.
☆ IRIS: Implicit Reward-Guided Internal Sifting for Mitigating Multimodal Hallucination
Hallucination remains a fundamental challenge for Multimodal Large Language Models (MLLMs). While Direct Preference Optimization (DPO) is a key alignment framework, existing approaches often rely heavily on costly external evaluators for scoring or rewriting, incurring off-policy learnability gaps and discretization loss. Due to the lack of access to internal states, such feedback overlooks the fine-grained conflicts between different modalities that lead to hallucinations during generation. To address this issue, we propose IRIS (Implicit Reward-Guided Internal Sifting), which leverages continuous implicit rewards in the native log-probability space to preserve full information density and capture internal modal competition. This on-policy paradigm eliminates learnability gaps by utilizing self-generated preference pairs. By sifting these pairs based on multimodal implicit rewards, IRIS ensures that optimization is driven by signals that directly resolve modal conflicts. Extensive experiments demonstrate that IRIS achieves highly competitive performance on key hallucination benchmarks using only 5.7k samples, without requiring any external feedback during preference alignment. These results confirm that IRIS provides an efficient and principled paradigm for mitigating MLLM hallucinations.
☆ CoMeT: Collaborative Memory Transformer for Efficient Long Context Modeling
The quadratic complexity and indefinitely growing key-value (KV) cache of standard Transformers pose a major barrier to long-context processing. To overcome this, we introduce the Collaborative Memory Transformer (CoMeT), a novel architecture that enables LLMs to handle arbitrarily long sequences with constant memory usage and linear time complexity. Designed as an efficient, plug-in module, CoMeT can be integrated into pre-trained models with only minimal fine-tuning. It operates on sequential data chunks, using a dual-memory system to manage context: a temporary memory on a FIFO queue for recent events, and a global memory with a gated update rule for long-range dependencies. These memories then act as a dynamic soft prompt for the next chunk. To enable efficient fine-tuning on extremely long contexts, we introduce a novel layer-level pipeline parallelism strategy. The effectiveness of our approach is remarkable: a model equipped with CoMeT and fine-tuned on 32k contexts can accurately retrieve a passkey from any position within a 1M token sequence. On the SCROLLS benchmark, CoMeT surpasses other efficient methods and achieves performance comparable to a full-attention baseline on summarization tasks. Its practical effectiveness is further validated on real-world agent and user behavior QA tasks. The code is available at: https://anonymous.4open.science/r/comet-B00B/
☆ Backdoor Sentinel: Detecting and Detoxifying Backdoors in Diffusion Models via Temporal Noise Consistency
Diffusion models have been widely deployed in AIGC services; however, their reliance on opaque training data and procedures exposes a broad attack surface for backdoor injection. In practical auditing scenarios, due to the protection of intellectual property and commercial confidentiality, auditors are typically unable to access model parameters, rendering existing white-box or query-intensive detection methods impractical. More importantly, even after the backdoor is detected, existing detoxification approaches are often trapped in a dilemma between detoxification effectiveness and generation quality. In this work, we identify a previously unreported phenomenon called temporal noise unconsistency, where the noise predictions between adjacent diffusion timesteps is disrupted in specific temporal segments when the input is triggered, while remaining stable under clean inputs. Leveraging this finding, we propose Temporal Noise Consistency Defense (TNC-Defense), a unified framework for backdoor detection and detoxification. The framework first uses the adjacent timestep noise consistency to design a gray-box detection module, for identifying and locating anomalous diffusion timesteps. Furthermore, the framework uses the identified anomalous timesteps to construct a trigger-agnostic, timestep-aware detoxification module, which directly corrects the backdoor generation path. This effectively suppresses backdoor behavior while significantly reducing detoxification costs. We evaluate the proposed method under five representative backdoor attack scenarios and compare it with state-of-the-art defenses. The results show that TNC-Defense improves the average detection accuracy by $11\%$ with negligible additional overhead, and invalidates an average of $98.5\%$ of triggered samples with only a mild degradation in generation quality.
☆ A Provable Expressiveness Hierarchy in Hybrid Linear-Full Attention
Transformers serve as the foundation of most modern large language models. To mitigate the quadratic complexity of standard full attention, various efficient attention mechanisms, such as linear and hybrid attention, have been developed. A fundamental gap remains: their expressive power relative to full attention lacks a rigorous theoretical characterization. In this work, we theoretically characterize the performance differences among these attention mechanisms. Our theory applies to all linear attention variants that can be formulated as a recurrence, including Mamba, DeltaNet, etc. Specifically, we establish an expressiveness hierarchy: for the sequential function composition-a multi-step reasoning task that must occur within a model's forward pass, an ($L+1$)-layer full attention network is sufficient, whereas any hybrid network interleaving $L-1$ layers of full attention with a substantially larger number ($2^{3L^2}$) of linear attention layers cannot solve it. This result demonstrates a clear separation in expressive power between the two types of attention. Our work provides the first provable separation between hybrid attention and standard full attention, offering a theoretical perspective for understanding the fundamental capabilities and limitations of different attention mechanisms.
☆ PRISM: Parametrically Refactoring Inference for Speculative Sampling Draft Models
Large Language Models (LLMs), constrained by their auto-regressive nature, suffer from slow decoding. Speculative decoding methods have emerged as a promising solution to accelerate LLM decoding, attracting attention from both systems and AI research communities. Recently, the pursuit of better draft quality has driven a trend toward parametrically larger draft models, which inevitably introduces substantial computational overhead. While existing work attempts to balance the trade-off between prediction accuracy and compute latency, we address this fundamental dilemma through architectural innovation. We propose PRISM, which disaggregates the computation of each predictive step across different parameter sets, refactoring the computational pathways of draft models to successfully decouple model capacity from inference cost. Through extensive experiments, we demonstrate that PRISM outperforms all existing draft architectures, achieving exceptional acceptance lengths while maintaining minimal draft latency for superior end-to-end speedup. We also re-examine scaling laws with PRISM, revealing that PRISM scales more effectively with expanding data volumes than other draft architectures. Through rigorous and fair comparison, we show that PRISM boosts the decoding throughput of an already highly optimized inference engine by more than 2.6x.
☆ Adversarial Reward Auditing for Active Detection and Mitigation of Reward Hacking
Reinforcement Learning from Human Feedback (RLHF) remains vulnerable to reward hacking, where models exploit spurious correlations in learned reward models to achieve high scores while violating human intent. Existing mitigations rely on static defenses that cannot adapt to novel exploitation strategies. We propose Adversarial Reward Auditing (ARA), a framework that reconceptualizes reward hacking as a dynamic, competitive game. ARA operates in two stages: first, a Hacker policy discovers reward model vulnerabilities while an Auditor learns to detect exploitation from latent representations; second, Auditor-Guided RLHF (AG-RLHF) gates reward signals to penalize detected hacking, transforming reward hacking from an unobservable failure into a measurable, controllable signal. Experiments across three hacking scenarios demonstrate that ARA achieves the best alignment-utility tradeoff among all baselines: reducing sycophancy to near-SFT levels while improving helpfulness, decreasing verbosity while achieving the highest ROUGE-L, and suppressing code gaming while improving Pass@1. Beyond single-domain evaluation, we show that reward hacking, detection, and mitigation all generalize across domains -- a Hacker trained on code gaming exhibits increased sycophancy despite no reward for this behavior, and an Auditor trained on one domain effectively suppresses exploitation in others, enabling efficient multi-domain defense with a single model.
☆ Controlling Exploration-Exploitation in GFlowNets via Markov Chain Perspectives
Generative Flow Network (GFlowNet) objectives implicitly fix an equal mixing of forward and backward policies, potentially constraining the exploration-exploitation trade-off during training. By further exploring the link between GFlowNets and Markov chains, we establish an equivalence between GFlowNet objectives and Markov chain reversibility, thereby revealing the origin of such constraints, and provide a framework for adapting Markov chain properties to GFlowNets. Building on these theoretical findings, we propose $α$-GFNs, which generalize the mixing via a tunable parameter $α$. This generalization enables direct control over exploration-exploitation dynamics to enhance mode discovery capabilities, while ensuring convergence to unique flows. Across various benchmarks, including Set, Bit Sequence, and Molecule Generation, $α$-GFN objectives consistently outperform previous GFlowNet objectives, achieving up to a $10 \times$ increase in the number of discovered modes.
☆ Rethinking LoRA for Data Heterogeneous Federated Learning: Subspace and State Alignment
Low-Rank Adaptation (LoRA) is widely used for federated fine-tuning. Yet under non-IID settings, it can substantially underperform full-parameter fine-tuning. Through with-high-probability robustness analysis, we uncover that this gap can be attributed to two coupled mismatches: (i) update-space mismatch, where clients optimize in a low-rank subspace but aggregation occurs in the full space; and (ii) optimizer-state mismatch, where unsynchronized adaptive states amplify drift across rounds. We propose FedGaLore, which combines client-side GaLore-style gradient-subspace optimization with server-side drift-robust synchronization of projected second-moment states via spectral shared-signal extraction, to address this challenge. Across NLU, vision, and NLG benchmarks, FedGaLore improves robustness and accuracy over state-of-the-art federated LoRA baselines in non-IID settings.
☆ Probability-Entropy Calibration: An Elastic Indicator for Adaptive Fine-tuning
Token-level reweighting is a simple yet effective mechanism for controlling supervised fine-tuning, but common indicators are largely one-dimensional: the ground-truth probability reflects downstream alignment, while token entropy reflects intrinsic uncertainty induced by the pre-training prior. Ignoring entropy can misidentify noisy or easily replaceable tokens as learning-critical, while ignoring probability fails to reflect target-specific alignment. RankTuner introduces a probability--entropy calibration signal, the Relative Rank Indicator, which compares the rank of the ground-truth token with its expected rank under the prediction distribution. The inverse indicator is used as a token-wise Relative Scale to reweight the fine-tuning objective, focusing updates on truly under-learned tokens without over-penalizing intrinsically uncertain positions. Experiments on multiple backbones show consistent improvements on mathematical reasoning benchmarks, transfer gains on out-of-distribution reasoning, and pre code generation performance over probability-only or entropy-only reweighting baselines.
☆ Softmax Linear Attention: Reclaiming Global Competition
While linear attention reduces the quadratic complexity of standard Transformers to linear time, it often lags behind in expressivity due to the removal of softmax normalization. This omission eliminates \emph{global competition}, a critical mechanism that enables models to sharply focus on relevant information amidst long-context noise. In this work, we propose \textbf{Softmax Linear Attention (SLA)}, a framework designed to restore this competitive selection without sacrificing efficiency. By lifting the softmax operation from the token level to the head level, SLA leverages attention heads as coarse semantic slots, applying a competitive gating mechanism to dynamically select the most relevant subspaces. This reintroduces the ``winner-take-all'' dynamics essential for precise retrieval and robust long-context understanding. Distinct from prior methods that focus on refining local kernel functions, SLA adopts a broader perspective by exploiting the higher-level multi-head aggregation structure. Extensive experiments demonstrate that SLA consistently enhances state-of-the-art linear baselines (RetNet, GLA, GDN) across language modeling and long-context benchmarks, particularly in challenging retrieval scenarios where it significantly boosts robustness against noise, validating its capability to restore precise focus while maintaining linear complexity.
comment: 11 pages,4 figures
☆ MACD: Model-Aware Contrastive Decoding via Counterfactual Data
Video language models (Video-LLMs) are prone to hallucinations, often generating plausible but ungrounded content when visual evidence is weak, ambiguous, or biased. Existing decoding methods, such as contrastive decoding (CD), rely on random perturbations to construct contrastive data for mitigating hallucination patterns. However, such a way is hard to control the visual cues that drive hallucination or well align with model weaknesses. We propose Model-aware Counterfactual Data based Contrastive Decoding (MACD), a new inference strategy that combines model-guided counterfactual construction with decoding. Our approach uses the Video-LLM's own feedback to identify object regions most responsible for hallucination, generating targeted counterfactual inputs at the object level rather than arbitrary frame or temporal modifications. These model-aware counterfactual data is then integrated into CD to enforce evidence-grounded token selection during decoding. Experiments on EventHallusion, MVBench, Perception-test and Video-MME show that MACD consistently reduces hallucination while maintaining or improving task accuracy across diverse Video-LLMs, including Qwen and InternVL families. The method is especially effective in challenging scenarios involving small, occluded, or co-occurring objects. Our code and data will be publicly released.
☆ SafePred: A Predictive Guardrail for Computer-Using Agents via World Models
With the widespread deployment of Computer-using Agents (CUAs) in complex real-world environments, prevalent long-term risks often lead to severe and irreversible consequences. Most existing guardrails for CUAs adopt a reactive approach, constraining agent behavior only within the current observation space. While these guardrails can prevent immediate short-term risks (e.g., clicking on a phishing link), they cannot proactively avoid long-term risks: seemingly reasonable actions can lead to high-risk consequences that emerge with a delay (e.g., cleaning logs leads to future audits being untraceable), which reactive guardrails cannot identify within the current observation space. To address these limitations, we propose a predictive guardrail approach, with the core idea of aligning predicted future risks with current decisions. Based on this approach, we present SafePred, a predictive guardrail framework for CUAs that establishes a risk-to-decision loop to ensure safe agent behavior. SafePred supports two key abilities: (1) Short- and long-term risk prediction: by using safety policies as the basis for risk prediction, SafePred leverages the prediction capability of the world model to generate semantic representations of both short-term and long-term risks, thereby identifying and pruning actions that lead to high-risk states; (2) Decision optimization: translating predicted risks into actionable safe decision guidances through step-level interventions and task-level re-planning. Extensive experiments show that SafePred significantly reduces high-risk behaviors, achieving over 97.6% safety performance and improving task utility by up to 21.4% compared with reactive baselines.
☆ BBPE16: UTF-16-based byte-level byte-pair encoding for improved multilingual speech recognition ICASSP 2026
Multilingual automatic speech recognition (ASR) requires tokenization that efficiently covers many writing systems. Byte-level BPE (BBPE) using UTF-8 is widely adopted for its language-agnostic design and full Unicode coverage, but its variable-length encoding inflates token sequences for non-Latin scripts, such as Chinese, Japanese, and Korean (CJK). Longer sequences increase computational load and memory use. We propose BBPE16, a UTF-16-based BBPE tokenizer that represents most modern scripts with a uniform 2-byte code unit. BBPE16 preserves BBPE's language-agnostic properties while substantially improving cross-lingual token sharing. Across monolingual, bilingual, and trilingual ASR, and in a multilingual continual-learning setup, BBPE16 attains comparable or better accuracy; for Chinese, it reduces token counts by up to 10.4% and lowers decoding iterations by up to 10.3%. These reductions speed up fine-tuning and inference and decrease memory usage, making BBPE16 a practical tokenization choice for multilingual ASR.
comment: accepted to ICASSP 2026
☆ Optimizing Prompts for Large Language Models: A Causal Approach
Large Language Models (LLMs) are increasingly embedded in enterprise workflows, yet their performance remains highly sensitive to prompt design. Automatic Prompt Optimization (APO) seeks to mitigate this instability, but existing approaches face two persistent challenges. First, commonly used prompt strategies rely on static instructions that perform well on average but fail to adapt to heterogeneous queries. Second, more dynamic approaches depend on offline reward models that are fundamentally correlational, confounding prompt effectiveness with query characteristics. We propose Causal Prompt Optimization (CPO), a framework that reframes prompt design as a problem of causal estimation. CPO operates in two stages. First, it learns an offline causal reward model by applying Double Machine Learning (DML) to semantic embeddings of prompts and queries, isolating the causal effect of prompt variations from confounding query attributes. Second, it utilizes this unbiased reward signal to guide a resource-efficient search for query-specific prompts without relying on costly online evaluation. We evaluate CPO across benchmarks in mathematical reasoning, visualization, and data analytics. CPO consistently outperforms human-engineered prompts and state-of-the-art automated optimizers. The gains are driven primarily by improved robustness on hard queries, where existing methods tend to deteriorate. Beyond performance, CPO fundamentally reshapes the economics of prompt optimization: by shifting evaluation from real-time model execution to an offline causal model, it enables high-precision, per-query customization at a fraction of the inference cost required by online methods. Together, these results establish causal inference as a scalable foundation for reliable and cost-efficient prompt optimization in enterprise LLM deployments.
☆ Physics Informed Generative AI Enabling Labour Free Segmentation For Microscopy Analysis
Semantic segmentation of microscopy images is a critical task for high-throughput materials characterisation, yet its automation is severely constrained by the prohibitive cost, subjectivity, and scarcity of expert-annotated data. While physics-based simulations offer a scalable alternative to manual labelling, models trained on such data historically fail to generalise due to a significant domain gap, lacking the complex textures, noise patterns, and imaging artefacts inherent to experimental data. This paper introduces a novel framework for labour-free segmentation that successfully bridges this simulation-to-reality gap. Our pipeline leverages phase-field simulations to generate an abundant source of microstructural morphologies with perfect, intrinsically-derived ground-truth masks. We then employ a Cycle-Consistent Generative Adversarial Network (CycleGAN) for unpaired image-to-image translation, transforming the clean simulations into a large-scale dataset of high-fidelity, realistic SEM images. A U-Net model, trained exclusively on this synthetic data, demonstrated remarkable generalisation when deployed on unseen experimental images, achieving a mean Boundary F1-Score of 0.90 and an Intersection over Union (IOU) of 0.88. Comprehensive validation using t-SNE feature-space projection and Shannon entropy analysis confirms that our synthetic images are statistically and featurally indistinguishable from the real data manifold. By completely decoupling model training from manual annotation, our generative framework transforms a data-scarce problem into one of data abundance, providing a robust and fully automated solution to accelerate materials discovery and analysis.
☆ Game of Thought: Robust Information Seeking with Large Language Models Using Game Theory ICML 2026
Large Language Models (LLMs) are increasingly deployed in real-world scenarios where they may lack sufficient information to complete a given task. In such settings, the ability to actively seek out missing information becomes a critical capability. Existing approaches to enhancing this ability often rely on simplifying assumptions that degrade \textit{worst-case} performance. This is an issue with serious implications in high-stakes applications. In this work, we use the game of Twenty Questions to evaluate the information-seeking ability of LLMs. We introduce and formalize its adversarial counterpart, the Strategic Language Search (SLS) problem along with its variants as a two-player zero-sum extensive form game. We propose Game of Thought (GoT), a framework that applies game-theoretic techniques to approximate a Nash equilibrium (NE) strategy for the restricted variant of the game. Empirical results demonstrate that our approach consistently improves worst-case performance compared to (1) direct prompting-based methods and (2) heuristic-guided search methods across all tested settings.
comment: 23 pages, 10 figures, under review at ICML 2026
☆ Beyond Mode Elicitation: Diversity-Preserving Reinforcement Learning via Latent Diffusion Reasoner
Recent reinforcement learning (RL) methods improve LLM reasoning by optimizing discrete Chain-of-Thought (CoT) generation; however, exploration in token space often suffers from diversity collapse as policy entropy decreases due to mode elicitation behavior in discrete RL. To mitigate this issue, we propose Latent Diffusion Reasoning with Reinforcement Learning (LaDi-RL), a framework that conducts exploration directly in a continuous latent space, where latent variables encode semantic-level reasoning trajectories. By modeling exploration via guided diffusion, multi-step denoising distributes stochasticity and preserves multiple coexisting solution modes without mutual suppression. Furthermore, by decoupling latent-space exploration from text-space generation, we show that latent diffusion-based optimization is more effective than text-space policy optimization alone, while a complementary text policy provides additional gains when combined with latent exploration. Experiments on code generation and mathematical reasoning benchmarks demonstrate consistent improvements in both pass@1 and pass@k over discrete RL baselines, with absolute pass@1 gains of +9.4% on code generation and +5.7% on mathematical reasoning, highlighting diffusion-based latent RL as a principled alternative to discrete token-level RL for reasoning.
☆ Meta Engine: A Unified Semantic Query Engine on Heterogeneous LLM-Based Query Systems
With the increasingly use of multi-modal data, semantic query has become more and more demanded in data management systems, which is an important way to access and analyze multi-modal data. As unstructured data, most information of multi-modal data (text, image, video, etc) hides in the semantics, which cannot be accessed by the traditional database queries like SQL. Given the power of Large Language Model (LLM) in understanding semantics and processing natural language, in recent years several LLM-based semantic query systems have been proposed, to support semantic querying over unstructured data. However, this rapid growth has produced a fragmented ecosystem. Applications face significant integration challenges due to (1) disparate APIs of different semantic query systems and (2) a fundamental trade-off between specialization and generality. Many semantic query systems are highly specialized, offering state-of-the-art performance within a single modality but struggling with multi-modal data. Conversely, some "all-in-one" systems handle multiple modalities but often exhibit suboptimal performance compared to their specialized counterparts in specific modalities. This paper introduces Meta Engine, a novel "query system on query systems", designed to resolve those aforementioned challenges. Meta Engine is a unified semantic query engine that integrates heterogeneous, specialized LLM-based query systems. Its architecture comprises five key components: (1) a Natural Language (NL) Query Parser, (2) an Operator Generator, (3) a Query Router, (4) a set of Adapters, and (5) a Result Aggregator. In the evaluation, Meta Engine consistently outperforms all baselines, yielding 3-6x higher F1 in most cases and up to 24x on specific datasets.
☆ Mitigating loss of control in advanced AI systems through instrumental goal trajectories
Researchers at artificial intelligence labs and universities are concerned that highly capable artificial intelligence (AI) systems may erode human control by pursuing instrumental goals. Existing mitigations remain largely technical and system-centric: tracking capability in advanced systems, shaping behaviour through methods such as reinforcement learning from human feedback, and designing systems to be corrigible and interruptible. Here we develop instrumental goal trajectories to expand these options beyond the model. Gaining capability typically depends on access to additional technical resources, such as compute, storage, data and adjacent services, which in turn requires access to monetary resources. In organisations, these resources can be obtained through three organisational pathways. We label these pathways the procurement, governance and finance instrumental goal trajectories (IGTs). Each IGT produces a trail of organisational artefacts that can be monitored and used as intervention points when a systems capabilities or behaviour exceed acceptable thresholds. In this way, IGTs offer concrete avenues for defining capability levels and for broadening how corrigibility and interruptibility are implemented, shifting attention from model properties alone to the organisational systems that enable them.
☆ Cross-Modal Alignment and Fusion for RGB-D Transmission-Line Defect Detection
Transmission line defect detection remains challenging for automated UAV inspection due to the dominance of small-scale defects, complex backgrounds, and illumination variations. Existing RGB-based detectors, despite recent progress, struggle to distinguish geometrically subtle defects from visually similar background structures under limited chromatic contrast. This paper proposes CMAFNet, a Cross-Modal Alignment and Fusion Network that integrates RGB appearance and depth geometry through a principled purify-then-fuse paradigm. CMAFNet consists of a Semantic Recomposition Module that performs dictionary-based feature purification via a learned codebook to suppress modality-specific noise while preserving defect-discriminative information, and a Contextual Semantic Integration Framework that captures global spatial dependencies using partial-channel attention to enhance structural semantic reasoning. Position-wise normalization within the purification stage enforces explicit reconstruction-driven cross-modal alignment, ensuring statistical compatibility between heterogeneous features prior to fusion. Extensive experiments on the TLRGBD benchmark, where 94.5% of instances are small objects, demonstrate that CMAFNet achieves 32.2% mAP@50 and 12.5% APs, outperforming the strongest baseline by 9.8 and 4.0 percentage points, respectively. A lightweight variant reaches 24.8% mAP50 at 228 FPS with only 4.9M parameters, surpassing all YOLO-based detectors while matching transformer-based methods at substantially lower computational cost.
☆ Beyond Dense States: Elevating Sparse Transcoders to Active Operators for Latent Reasoning
Latent reasoning compresses the chain-of-thought (CoT) into continuous hidden states, yet existing methods rely on dense latent transitions that remain difficult to interpret and control. Meanwhile, sparse representation models uncover human-interpretable semantic features but remain largely confined to post-hoc analysis. We reconcile this tension by proposing LSTR (Latent Sparse Transcoder Reasoning), a latent reasoning framework that elevates functional sparse transcoders into active reasoning operators to perform multi-step computation through sparse semantic transitions. At its core, LSTR employs a Latent Transition Transcoder (LTT) with a residual skip architecture that decouples linear manifold transport from sparse semantic updates, enabling controllable semantic resolution via explicit sparsity constraints. Extensive experiments show that LSTR preserves reasoning accuracy and compression efficiency while substantially improving interpretability over dense latent baselines. Causal interventions and trajectory analyses further demonstrate that these sparse features act as both interpretable and causally effective operators in the reasoning process.
☆ What LLMs Think When You Don't Tell Them What to Think About?
Characterizing the behavior of large language models (LLMs) across diverse settings is critical for reliable monitoring and AI safety. However, most existing analyses rely on topic- or task-specific prompts, which can substantially limit what can be observed. In this work, we study what LLMs generate from minimal, topic-neutral inputs and probe their near-unconstrained generative behavior. Despite the absence of explicit topics, model outputs cover a broad semantic space, and surprisingly, each model family exhibits strong and systematic topical preferences. GPT-OSS predominantly generates programming (27.1%) and mathematical content (24.6%), whereas Llama most frequently generates literary content (9.1%). DeepSeek often generates religious content, while Qwen frequently generates multiple-choice questions. Beyond topical preferences, we also observe differences in content specialization and depth: GPT-OSS often generates more technically advanced content (e.g., dynamic programming) compared with other models (e.g., basic Python). Furthermore, we find that the near-unconstrained generation often degenerates into repetitive phrases, revealing interesting behaviors unique to each model family. For instance, degenerate outputs from Llama include multiple URLs pointing to personal Facebook and Instagram accounts. We release the complete dataset of 256,000 samples from 16 LLMs, along with a reproducible codebase.
comment: NA
☆ Counting Hypothesis: Potential Mechanism of In-Context Learning
In-Context Learning (ICL) indicates that large language models (LLMs) pretrained on a massive amount of data can learn specific tasks from input prompts' examples. ICL is notable for two reasons. First, it does not need modification of LLMs' internal structure. Second, it enables LLMs to perform a wide range of tasks/functions with a few examples demonstrating a desirable task. ICL opens up new ways to utilize LLMs in more domains, but its underlying mechanisms still remain poorly understood, making error correction and diagnosis extremely challenging. Thus, it is imperative that we better understand the limitations of ICL and how exactly LLMs support ICL. Inspired by ICL properties and LLMs' functional modules, we propose 1the counting hypothesis' of ICL, which suggests that LLMs' encoding strategy may underlie ICL, and provide supporting evidence.
comment: 19 pages, 7 main Figures, 1 Table and 6 Supp. Figures
☆ Semantic-aware Wasserstein Policy Regularization for Large Language Model Alignment ICLR 2026
Large language models (LLMs) are commonly aligned with human preferences using reinforcement learning from human feedback (RLHF). In this method, LLM policies are generally optimized through reward maximization with Kullback-Leibler (KL) divergence regularization of the reference policy. However, KL and its $f$-divergence variants only compare token probabilities at identical indices, failing to capture semantic similarity. We propose Wasserstein Policy Regularization (WPR), a semantic-aware regularization for the RLHF framework based on the entropy-regularized Wasserstein distance, which incorporates the geometry of the token space. The dual formulation of the distance expresses the regularization as penalty terms applied to the reward via optimal dual variables, which yield a tractable objective compatible with standard RL algorithms. Empirically, our method outperforms KL- and $f$-divergence-based baselines, demonstrating the benefits of semantic-aware policy distances for alignment. Our code is available at https://github.com/aailab-kaist/WPR.
comment: Accepted at ICLR 2026
☆ The Strategic Foresight of LLMs: Evidence from a Fully Prospective Venture Tournament
Can artificial intelligence outperform humans at strategic foresight -- the capacity to form accurate judgments about uncertain, high-stakes outcomes before they unfold? We address this question through a fully prospective prediction tournament using live Kickstarter crowdfunding projects. Thirty U.S.-based technology ventures, launched after the training cutoffs of all models studied, were evaluated while fundraising remained in progress and outcomes were unknown. A diverse suite of frontier and open-weight large language models (LLMs) completed 870 pairwise comparisons, producing complete rankings of predicted fundraising success. We benchmarked these forecasts against 346 experienced managers recruited via Prolific and three MBA-trained investors working under monitored conditions. The results are striking: human evaluators achieved rank correlations with actual outcomes between 0.04 and 0.45, while several frontier LLMs exceeded 0.60, with the best (Gemini 2.5 Pro) reaching 0.74 -- correctly ordering nearly four of every five venture pairs. These differences persist across multiple performance metrics and robustness checks. Neither wisdom-of-the-crowd ensembles nor human-AI hybrid teams outperformed the best standalone model.
comment: 60 pages, 11 figures, 4 tables
☆ FreshMem: Brain-Inspired Frequency-Space Hybrid Memory for Streaming Video Understanding
Transitioning Multimodal Large Language Models (MLLMs) from offline to online streaming video understanding is essential for continuous perception. However, existing methods lack flexible adaptivity, leading to irreversible detail loss and context fragmentation. To resolve this, we propose FreshMem, a Frequency-Space Hybrid Memory network inspired by the brain's logarithmic perception and memory consolidation. FreshMem reconciles short-term fidelity with long-term coherence through two synergistic modules: Multi-scale Frequency Memory (MFM), which projects overflowing frames into representative frequency coefficients, complemented by residual details to reconstruct a global historical "gist"; and Space Thumbnail Memory (STM), which discretizes the continuous stream into episodic clusters by employing an adaptive compression strategy to distill them into high-density space thumbnails. Extensive experiments show that FreshMem significantly boosts the Qwen2-VL baseline, yielding gains of 5.20%, 4.52%, and 2.34% on StreamingBench, OV-Bench, and OVO-Bench, respectively. As a training-free solution, FreshMem outperforms several fully fine-tuned methods, offering a highly efficient paradigm for long-horizon streaming video understanding.
☆ Towards Autonomous Instrument Tray Assembly for Sterile Processing Applications
The Sterile Processing and Distribution (SPD) department is responsible for cleaning, disinfecting, inspecting, and assembling surgical instruments between surgeries. Manual inspection and preparation of instrument trays is a time-consuming, error-prone task, often prone to contamination and instrument breakage. In this work, we present a fully automated robotic system that sorts and structurally packs surgical instruments into sterile trays, focusing on automation of the SPD assembly stage. A custom dataset comprising 31 surgical instruments and 6,975 annotated images was collected to train a hybrid perception pipeline using YOLO12 for detection and a cascaded ResNet-based model for fine-grained classification. The system integrates a calibrated vision module, a 6-DOF Staubli TX2-60L robotic arm with a custom dual electromagnetic gripper, and a rule-based packing algorithm that reduces instrument collisions during transport. The packing framework uses 3D printed dividers and holders to physically isolate instruments, reducing collision and friction during transport. Experimental evaluations show high perception accuracy and statistically significant reduction in tool-to-tool collisions compared to human-assembled trays. This work serves as the scalable first step toward automating SPD workflows, improving safety, and consistency of surgical preparation while reducing SPD processing times.
comment: 7 pages, 9 figures, 2026 International Symposium on Medical Robotics
☆ TRIP-Bench: A Benchmark for Long-Horizon Interactive Agents in Real-World Scenarios
As LLM-based agents are deployed in increasingly complex real-world settings, existing benchmarks underrepresent key challenges such as enforcing global constraints, coordinating multi-tool reasoning, and adapting to evolving user behavior over long, multi-turn interactions. To bridge this gap, we introduce \textbf{TRIP-Bench}, a long-horizon benchmark grounded in realistic travel-planning scenarios. TRIP-Bench leverages real-world data, offers 18 curated tools and 40+ travel requirements, and supports automated evaluation. It includes splits of varying difficulty; the hard split emphasizes long and ambiguous interactions, style shifts, feasibility changes, and iterative version revision. Dialogues span up to 15 user turns, can involve 150+ tool calls, and may exceed 200k tokens of context. Experiments show that even advanced models achieve at most 50\% success on the easy split, with performance dropping below 10\% on hard subsets. We further propose \textbf{GTPO}, an online multi-turn reinforcement learning method with specialized reward normalization and reward differencing. Applied to Qwen2.5-32B-Instruct, GTPO improves constraint satisfaction and interaction robustness, outperforming Gemini-3-Pro in our evaluation. We expect TRIP-Bench to advance practical long-horizon interactive agents, and GTPO to provide an effective online RL recipe for robust long-horizon training.
comment: 40 pages, 6figures
☆ Real-Time Loop Closure Detection in Visual SLAM via NetVLAD and Faiss
Loop closure detection (LCD) is a core component of simultaneous localization and mapping (SLAM): it identifies revisited places and enables pose-graph constraints that correct accumulated drift. Classic bag-of-words approaches such as DBoW are efficient but often degrade under appearance change and perceptual aliasing. In parallel, deep learning-based visual place recognition (VPR) descriptors (e.g., NetVLAD and Transformer-based models) offer stronger robustness, but their computational cost is often viewed as a barrier to real-time SLAM. In this paper, we empirically evaluate NetVLAD as an LCD module and compare it against DBoW on the KITTI dataset. We introduce a Fine-Grained Top-K precision-recall curve that better reflects LCD settings where a query may have zero or multiple valid matches. With Faiss-accelerated nearestneighbor search, NetVLAD achieves real-time query speed while improving accuracy and robustness over DBoW, making it a practical drop-in alternative for LCD in SLAM.
☆ AI-Assisted Adaptive Rendering for High-Frequency Security Telemetry in Web Interfaces IEEE
Modern cybersecurity platforms must process and display high-frequency telemetry such as network logs, endpoint events, alerts, and policy changes in real time. Traditional rendering techniques based on static pagination or fixed polling intervals fail under volume conditions exceeding hundreds of thousands of events per second, leading to UI freezes, dropped frames, or stale data. This paper presents an AI-assisted adaptive rendering framework that dynamically regulates visual update frequency, prioritizes semantically relevant events, and selectively aggregates lower-priority data using behavior-driven heuristics and lightweight on-device machine learning models. Experimental validation demonstrates a 45-60 percent reduction in rendering overhead while maintaining analyst perception of real-time responsiveness.
comment: To appear in IEEE ICCA 2025 proceedings
☆ ASGMamba: Adaptive Spectral Gating Mamba for Multivariate Time Series Forecasting
Long-term multivariate time series forecasting (LTSF) plays a crucial role in various high-performance computing applications, including real-time energy grid management and large-scale traffic flow simulation. However, existing solutions face a dilemma: Transformer-based models suffer from quadratic complexity, limiting their scalability on long sequences, while linear State Space Models (SSMs) often struggle to distinguish valuable signals from high-frequency noise, leading to wasted state capacity. To bridge this gap, we propose ASGMamba, an efficient forecasting framework designed for resource-constrained supercomputing environments. ASGMamba integrates a lightweight Adaptive Spectral Gating (ASG) mechanism that dynamically filters noise based on local spectral energy, enabling the Mamba backbone to focus its state evolution on robust temporal dynamics. Furthermore, we introduce a hierarchical multi-scale architecture with variable-specific Node Embeddings to capture diverse physical characteristics. Extensive experiments on nine benchmarks demonstrate that ASGMamba achieves state-of-the-art accuracy. While keeping strictly $$\mathcal{O}(L)$$ complexity we significantly reduce the memory usage on long-horizon tasks, thus establishing ASGMamba as a scalable solution for high-throughput forecasting in resource limited environments.The code is available at https://github.com/hit636/ASGMamba
☆ TABX: A High-Throughput Sandbox Battle Simulator for Multi-Agent Reinforcement Learning
The design of environments plays a critical role in shaping the development and evaluation of cooperative multi-agent reinforcement learning (MARL) algorithms. While existing benchmarks highlight critical challenges, they often lack the modularity required to design custom evaluation scenarios. We introduce the Totally Accelerated Battle Simulator in JAX (TABX), a high-throughput sandbox designed for reconfigurable multi-agent tasks. TABX provides granular control over environmental parameters, permitting a systematic investigation into emergent agent behaviors and algorithmic trade-offs across a diverse spectrum of task complexities. Leveraging JAX for hardware-accelerated execution on GPUs, TABX enables massive parallelization and significantly reduces computational overhead. By providing a fast, extensible, and easily customized framework, TABX facilitates the study of MARL agents in complex structured domains and serves as a scalable foundation for future research. Our code is available at: https://anonymous.4open.science/r/TABX-00CA.
☆ FlowSteer: Interactive Agentic Workflow Orchestration via End-to-End Reinforcement Learning
In recent years, a variety of powerful agentic workflows have been applied to solve a wide range of human problems. However, existing workflow orchestration still faces key challenges, including high manual cost, reliance on specific operators/large language models (LLMs), and sparse reward signals. To address these challenges, we propose FlowSteer, an end-to-end reinforcement learning framework that takes a lightweight policy model as the agent and an executable canvas environment, automating workflow orchestration through multi-turn interaction. In this process, the policy model analyzes execution states and selects editing actions, while the canvas executes operators and returns feedback for iterative refinement. Moreover, FlowSteer provides a plug-and-play framework that supports diverse operator libraries and interchangeable LLM backends. To effectively train this interaction paradigm, we propose Canvas Workflow Relative Policy Optimization (CWRPO), which introduces diversity-constrained rewards with conditional release to stabilize learning and suppress shortcut behaviors. Experimental results on twelve datasets show that FlowSteer significantly outperforms baselines across various tasks.
comment: 41 pages, 7 figures, 6 tables. Project page: http://flowsteer.org/
☆ CoDiQ: Test-Time Scaling for Controllable Difficult Question Generation
Large Reasoning Models (LRMs) benefit substantially from training on challenging competition-level questions. However, existing automated question synthesis methods lack precise difficulty control, incur high computational costs, and struggle to generate competition-level questions at scale. In this paper, we propose CoDiQ (Controllable Difficult Question Generation), a novel framework enabling fine-grained difficulty control via test-time scaling while ensuring question solvability. Specifically, first, we identify a test-time scaling tendency (extended reasoning token budget boosts difficulty but reduces solvability) and the intrinsic properties defining the upper bound of a model's ability to generate valid, high-difficulty questions. Then, we develop CoDiQ-Generator from Qwen3-8B, which improves the upper bound of difficult question generation, making it particularly well-suited for challenging question construction. Building on the CoDiQ framework, we build CoDiQ-Corpus (44K competition-grade question sequences). Human evaluations show these questions are significantly more challenging than LiveCodeBench/AIME with over 82% solvability. Training LRMs on CoDiQ-Corpus substantially improves reasoning performance, verifying that scaling controlled-difficulty training questions enhances reasoning capabilities. We open-source CoDiQ-Corpus, CoDiQ-Generator, and implementations to support related research.
comment: 11 pages, 5 tables, 5 figures
☆ Efficient Adversarial Attacks on High-dimensional Offline Bandits ICLR 2026
Bandit algorithms have recently emerged as a powerful tool for evaluating machine learning models, including generative image models and large language models, by efficiently identifying top-performing candidates without exhaustive comparisons. These methods typically rely on a reward model, often distributed with public weights on platforms such as Hugging Face, to provide feedback to the bandit. While online evaluation is expensive and requires repeated trials, offline evaluation with logged data has become an attractive alternative. However, the adversarial robustness of offline bandit evaluation remains largely unexplored, particularly when an attacker perturbs the reward model (rather than the training data) prior to bandit training. In this work, we fill this gap by investigating, both theoretically and empirically, the vulnerability of offline bandit training to adversarial manipulations of the reward model. We introduce a novel threat model in which an attacker exploits offline data in high-dimensional settings to hijack the bandit's behavior. Starting with linear reward functions and extending to nonlinear models such as ReLU neural networks, we study attacks on two Hugging Face evaluators used for generative model assessment: one measuring aesthetic quality and the other assessing compositional alignment. Our results show that even small, imperceptible perturbations to the reward model's weights can drastically alter the bandit's behavior. From a theoretical perspective, we prove a striking high-dimensional effect: as input dimensionality increases, the perturbation norm required for a successful attack decreases, making modern applications such as image evaluation especially vulnerable. Extensive experiments confirm that naive random perturbations are ineffective, whereas carefully targeted perturbations achieve near-perfect attack success rates ...
comment: Accepted at ICLR 2026 Conference
☆ ProjDevBench: Benchmarking AI Coding Agents on End-to-End Project Development
Recent coding agents can generate complete codebases from simple prompts, yet existing evaluations focus on issue-level bug fixing and lag behind end-to-end development. We introduce ProjDevBench, an end-to-end benchmark that provides project requirements to coding agents and evaluates the resulting repositories. Combining Online Judge (OJ) testing with LLM-assisted code review, the benchmark evaluates agents on (1) system architecture design, (2) functional correctness, and (3) iterative solution refinement. We curate 20 programming problems across 8 categories, covering both concept-oriented tasks and real-world application scenarios, and evaluate six coding agents built on different LLM backends. Our evaluation reports an overall acceptance rate of 27.38%: agents handle basic functionality and data structures but struggle with complex system design, time complexity optimization, and resource management. Our benchmark is available at https://github.com/zsworld6/projdevbench.
☆ On the Spatiotemporal Dynamics of Generalization in Neural Networks
Why do neural networks fail to generalize addition from 16-digit to 32-digit numbers, while a child who learns the rule can apply it to arbitrarily long sequences? We argue that this failure is not an engineering problem but a violation of physical postulates. Drawing inspiration from physics, we identify three constraints that any generalizing system must satisfy: (1) Locality -- information propagates at finite speed; (2) Symmetry -- the laws of computation are invariant across space and time; (3) Stability -- the system converges to discrete attractors that resist noise accumulation. From these postulates, we derive -- rather than design -- the Spatiotemporal Evolution with Attractor Dynamics (SEAD) architecture: a neural cellular automaton where local convolutional rules are iterated until convergence. Experiments on three tasks validate our theory: (1) Parity -- demonstrating perfect length generalization via light-cone propagation; (2) Addition -- achieving scale-invariant inference from L=16 to L=1 million with 100% accuracy, exhibiting input-adaptive computation; (3) Rule 110 -- learning a Turing-complete cellular automaton without trajectory divergence. Our results suggest that the gap between statistical learning and logical reasoning can be bridged -- not by scaling parameters, but by respecting the physics of computation.
☆ Contribution-aware Token Compression for Efficient Video Understanding via Reinforcement Learning AAAI2026
Video large language models have demonstrated remarkable capabilities in video understanding tasks. However, the redundancy of video tokens introduces significant computational overhead during inference, limiting their practical deployment. Many compression algorithms are proposed to prioritize retaining features with the highest attention scores to minimize perturbations in attention computations. However, the correlation between attention scores and their actual contribution to correct answers remains ambiguous. To address the above limitation, we propose a novel \textbf{C}ontribution-\textbf{a}ware token \textbf{Co}mpression algorithm for \textbf{VID}eo understanding (\textbf{CaCoVID}) that explicitly optimizes the token selection policy based on the contribution of tokens to correct predictions. First, we introduce a reinforcement learning-based framework that optimizes a policy network to select video token combinations with the greatest contribution to correct predictions. This paradigm shifts the focus from passive token preservation to active discovery of optimal compressed token combinations. Secondly, we propose a combinatorial policy optimization algorithm with online combination space sampling, which dramatically reduces the exploration space for video token combinations and accelerates the convergence speed of policy optimization. Extensive experiments on diverse video understanding benchmarks demonstrate the effectiveness of CaCoVID. Codes will be released.
comment: This paper is accepted by AAAI2026
☆ From Perception to Action: Spatial AI Agents and World Models
While large language models have become the prevailing approach for agentic reasoning and planning, their success in symbolic domains does not readily translate to the physical world. Spatial intelligence, the ability to perceive 3D structure, reason about object relationships, and act under physical constraints, is an orthogonal capability that proves important for embodied agents. Existing surveys address either agentic architectures or spatial domains in isolation. None provide a unified framework connecting these complementary capabilities. This paper bridges that gap. Through a thorough review of over 2,000 papers, citing 742 works from top-tier venues, we introduce a unified three-axis taxonomy connecting agentic capabilities with spatial tasks across scales. Crucially, we distinguish spatial grounding (metric understanding of geometry and physics) from symbolic grounding (associating images with text), arguing that perception alone does not confer agency. Our analysis reveals three key findings mapped to these axes: (1) hierarchical memory systems (Capability axis) are important for long-horizon spatial tasks. (2) GNN-LLM integration (Task axis) is a promising approach for structured spatial reasoning. (3) World models (Scale axis) are essential for safe deployment across micro-to-macro spatial scales. We conclude by identifying six grand challenges and outlining directions for future research, including the need for unified evaluation frameworks to standardize cross-domain assessment. This taxonomy provides a foundation for unifying fragmented research efforts and enabling the next generation of spatially-aware autonomous systems in robotics, autonomous vehicles, and geospatial intelligence.
comment: 61 pages, 742 citations, 1 figure, 3 tables. Survey paper on spatial AI agents, embodied AI, graph neural networks, and world models
☆ De Novo Molecular Generation from Mass Spectra via Many-Body Enhanced Diffusion
Molecular structure generation from mass spectrometry is fundamental for understanding cellular metabolism and discovering novel compounds. Although tandem mass spectrometry (MS/MS) enables the high-throughput acquisition of fragment fingerprints, these spectra often reflect higher-order interactions involving the concerted cleavage of multiple atoms and bonds-crucial for resolving complex isomers and non-local fragmentation mechanisms. However, most existing methods adopt atom-centric and pairwise interaction modeling, overlooking higher-order edge interactions and lacking the capacity to systematically capture essential many-body characteristics for structure generation. To overcome these limitations, we present MBGen, a Many-Body enhanced diffusion framework for de novo molecular structure Generation from mass spectra. By integrating a many-body attention mechanism and higher-order edge modeling, MBGen comprehensively leverages the rich structural information encoded in MS/MS spectra, enabling accurate de novo generation and isomer differentiation for novel molecules. Experimental results on the NPLIB1 and MassSpecGym benchmarks demonstrate that MBGen achieves superior performance, with improvements of up to 230% over state-of-the-art methods, highlighting the scientific value and practical utility of many-body modeling for mass spectrometry-based molecular generation. Further analysis and ablation studies show that our approach effectively captures higher-order interactions and exhibits enhanced sensitivity to complex isomeric and non-local fragmentation information.
☆ The Effect of Mini-Batch Noise on the Implicit Bias of Adam
With limited high-quality data and growing compute, multi-epoch training is gaining back its importance across sub-areas of deep learning. Adam(W), versions of which are go-to optimizers for many tasks such as next token prediction, has two momentum hyperparameters $(β_1, β_2)$ controlling memory and one very important hyperparameter, batch size, controlling (in particular) the amount mini-batch noise. We introduce a theoretical framework to understand how mini-batch noise influences the implicit bias of memory in Adam (depending on $β_1$, $β_2$) towards sharper or flatter regions of the loss landscape, which is commonly observed to correlate with the generalization gap in multi-epoch training. We find that in the case of large batch sizes, higher $β_2$ increases the magnitude of anti-regularization by memory (hurting generalization), but as the batch size becomes smaller, the dependence of (anti-)regulariation on $β_2$ is reversed. A similar monotonicity shift (in the opposite direction) happens in $β_1$. In particular, the commonly "default" pair $(β_1, β_2) = (0.9, 0.999)$ is a good choice if batches are small; for larger batches, in many settings moving $β_1$ closer to $β_2$ is much better in terms of validation accuracy in multi-epoch training. Moreover, our theoretical derivations connect the scale of the batch size at which the shift happens to the scale of the critical batch size. We illustrate this effect in experiments with small-scale data in the about-to-overfit regime.
☆ HuPER: A Human-Inspired Framework for Phonetic Perception
We propose HuPER, a human-inspired framework that models phonetic perception as adaptive inference over acoustic-phonetics evidence and linguistic knowledge. With only 100 hours of training data, HuPER achieves state-of-the-art phonetic error rates on five English benchmarks and strong zero-shot transfer to 95 unseen languages. HuPER is also the first framework to enable adaptive, multi-path phonetic perception under diverse acoustic conditions. All training data, models, and code are open-sourced. Code and demo avaliable at https://github.com/HuPER29/HuPER.
☆ Toward Enhancing Representation Learning in Federated Multi-Task Settings ICLR 2026
Federated multi-task learning (FMTL) seeks to collaboratively train customized models for users with different tasks while preserving data privacy. Most existing approaches assume model congruity (i.e., the use of fully or partially homogeneous models) across users, which limits their applicability in realistic settings. To overcome this limitation, we aim to learn a shared representation space across tasks rather than shared model parameters. To this end, we propose Muscle loss, a novel contrastive learning objective that simultaneously aligns representations from all participating models. Unlike existing multi-view or multi-model contrastive methods, which typically align models pairwise, Muscle loss can effectively capture dependencies across tasks because its minimization is equivalent to the maximization of mutual information among all the models' representations. Building on this principle, we develop FedMuscle, a practical and communication-efficient FMTL algorithm that naturally handles both model and task heterogeneity. Experiments on diverse image and language tasks demonstrate that FedMuscle consistently outperforms state-of-the-art baselines, delivering substantial improvements and robust performance across heterogeneous settings.
comment: This paper has been accepted at ICLR 2026
☆ SUSD: Structured Unsupervised Skill Discovery through State Factorization ICLR 2026
Unsupervised Skill Discovery (USD) aims to autonomously learn a diverse set of skills without relying on extrinsic rewards. One of the most common USD approaches is to maximize the Mutual Information (MI) between skill latent variables and states. However, MI-based methods tend to favor simple, static skills due to their invariance properties, limiting the discovery of dynamic, task-relevant behaviors. Distance-Maximizing Skill Discovery (DSD) promotes more dynamic skills by leveraging state-space distances, yet still fall short in encouraging comprehensive skill sets that engage all controllable factors or entities in the environment. In this work, we introduce SUSD, a novel framework that harnesses the compositional structure of environments by factorizing the state space into independent components (e.g., objects or controllable entities). SUSD allocates distinct skill variables to different factors, enabling more fine-grained control on the skill discovery process. A dynamic model also tracks learning across factors, adaptively steering the agent's focus toward underexplored factors. This structured approach not only promotes the discovery of richer and more diverse skills, but also yields a factorized skill representation that enables fine-grained and disentangled control over individual entities which facilitates efficient training of compositional downstream tasks via Hierarchical Reinforcement Learning (HRL). Our experimental results across three environments, with factors ranging from 1 to 10, demonstrate that our method can discover diverse and complex skills without supervision, significantly outperforming existing unsupervised skill discovery methods in factorized and complex environments. Code is publicly available at: https://github.com/hadi-hosseini/SUSD.
comment: Accepted as a conference paper at ICLR 2026
☆ AgroFlux: A Spatial-Temporal Benchmark for Carbon and Nitrogen Flux Prediction in Agricultural Ecosystems
Agroecosystem, which heavily influenced by human actions and accounts for a quarter of global greenhouse gas emissions (GHGs), plays a crucial role in mitigating global climate change and securing environmental sustainability. However, we can't manage what we can't measure. Accurately quantifying the pools and fluxes in the carbon, nutrient, and water nexus of the agroecosystem is therefore essential for understanding the underlying drivers of GHG and developing effective mitigation strategies. Conventional approaches like soil sampling, process-based models, and black-box machine learning models are facing challenges such as data sparsity, high spatiotemporal heterogeneity, and complex subsurface biogeochemical and physical processes. Developing new trustworthy approaches such as AI-empowered models, will require the AI-ready benchmark dataset and outlined protocols, which unfortunately do not exist. In this work, we introduce a first-of-its-kind spatial-temporal agroecosystem GHG benchmark dataset that integrates physics-based model simulations from Ecosys and DayCent with real-world observations from eddy covariance flux towers and controlled-environment facilities. We evaluate the performance of various sequential deep learning models on carbon and nitrogen flux prediction, including LSTM-based models, temporal CNN-based model, and Transformer-based models. Furthermore, we explored transfer learning to leverage simulated data to improve the generalization of deep learning models on real-world observations. Our benchmark dataset and evaluation framework contribute to the development of more accurate and scalable AI-driven agroecosystem models, advancing our understanding of ecosystem-climate interactions.
☆ A Practical Tensor-Network Compression Pipeline for Production-Scale Large Language Models
Large language models are limited in deployment by GPU memory and inference latency. We present Minima, a production compression pipeline that learns where and how to structurally compress a Transformer and turns that compression into real serving gains. Minima trains a lightweight convolutional predictor to estimate layer- and patch-level sensitivity, applies a mixture of Tucker, tensor-train, and tensor-ring decompositions to low-sensitivity regions, performs a short healing fine-tune, and executes the resulting operators with custom Triton and CUDA kernels. The reduced memory footprint enables speculative decoding with a small draft model and a larger verifier. On Qwen3-32B at an 8k-token context window, Minima reduces peak VRAM from 64 GiB to 40 GiB. For a single active request, throughput increases from 40 tokens per second (baseline) to 50 tokens per second (Minima) and 75 tokens per second (Minima with speculative decoding). Under 50 parallel requests, throughput is 34, 44, and 53 tokens per second respectively, showing that Minima remains effective under high concurrency even when speculative decoding gains compress. We position Minima relative to recent tensor-network, low-rank plus quantization, and cross-layer sharing methods, and argue that it is a practical step toward more aggressive structural compression via shared tensor backbones with tiny per-layer adapters.
comment: 13 pages, 5 figures
☆ ToPT: Task-Oriented Prompt Tuning for Urban Region Representation Learning ICASSP 2026
Learning effective region embeddings from heterogeneous urban data underpins key urban computing tasks (e.g., crime prediction, resource allocation). However, prevailing two-stage methods yield task-agnostic representations, decoupling them from downstream objectives. Recent prompt-based approaches attempt to fix this but introduce two challenges: they often lack explicit spatial priors, causing spatially incoherent inter-region modeling, and they lack robust mechanisms for explicit task-semantic alignment. We propose ToPT, a two-stage framework that delivers spatially consistent fusion and explicit task alignment. ToPT consists of two modules: spatial-aware region embedding learning (SREL) and task-aware prompting for region embeddings (Prompt4RE). SREL employs a Graphormer-based fusion module that injects spatial priors-distance and regional centrality-as learnable attention biases to capture coherent, interpretable inter-region interactions. Prompt4RE performs task-oriented prompting: a frozen multimodal large language model (MLLM) processes task-specific templates to obtain semantic vectors, which are aligned with region embeddings via multi-head cross-attention for stable task conditioning. Experiments across multiple tasks and cities show state-of-the-art performance, with improvements of up to 64.2\%, validating the necessity and complementarity of spatial priors and prompt-region alignment. The code is available at https://github.com/townSeven/Prompt4RE.git.
comment: The paper has been accepted by ICASSP 2026
☆ Reasoning with Autoregressive-Diffusion Collaborative Thoughts
Autoregressive and diffusion models represent two complementary generative paradigms. Autoregressive models excel at sequential planning and constraint composition, yet struggle with tasks that require explicit spatial or physical grounding. Diffusion models, in contrast, capture rich spatial structure through high-dimensional generation, but lack the stepwise logical control needed to satisfy complex, multi-stage constraints or to reliably identify and correct errors. We introduce Collaborative Thoughts, a unified collaborative framework that enables autoregressive and diffusion models to reason and generate jointly through a closed-loop interaction. In Collaborative Thoughts, autoregressive models perform structured planning and constraint management, diffusion models instantiate these constraints as intermediate visual thoughts, and a vision-based critic module evaluates whether the visual thoughts satisfy the intended structural and physical requirements. This feedback is then used to iteratively refine subsequent planning and generation steps, mitigating error propagation across modalities. Importantly, Collaborative Thoughts uses the same collaborative loop regardless of whether the task is autoregressive question answering or diffusion-based visual generation. Through representative examples, we illustrate how Collaborative Thoughts can improve the reliability of spatial reasoning and the controllability of generation.
☆ Boosting Maximum Entropy Reinforcement Learning via One-Step Flow Matching
Diffusion policies are expressive yet incur high inference latency. Flow Matching (FM) enables one-step generation, but integrating it into Maximum Entropy Reinforcement Learning (MaxEnt RL) is challenging: the optimal policy is an intractable energy-based distribution, and the efficient log-likelihood estimation required to balance exploration and exploitation suffers from severe discretization bias. We propose \textbf{F}low-based \textbf{L}og-likelihood-\textbf{A}ware \textbf{M}aximum \textbf{E}ntropy RL (\textbf{FLAME}), a principled framework that addresses these challenges. First, we derive a Q-Reweighted FM objective that bypasses partition function estimation via importance reweighting. Second, we design a decoupled entropy estimator that rigorously corrects bias, which enables efficient exploration and brings the policy closer to the optimal MaxEnt policy. Third, we integrate the MeanFlow formulation to achieve expressive and efficient one-step control. Empirical results on MuJoCo show that FLAME outperforms Gaussian baselines and matches multi-step diffusion policies with significantly lower inference cost. Code is available at https://github.com/lzqw/FLAME.
☆ Adaptive Rollout Allocation for Online Reinforcement Learning with Verifiable Rewards ICLR 2026
Sampling efficiency is a key bottleneck in reinforcement learning with verifiable rewards. Existing group-based policy optimization methods, such as GRPO, allocate a fixed number of rollouts for all training prompts. This uniform allocation implicitly treats all prompts as equally informative, and could lead to inefficient computational budget usage and impede training progress. We introduce \Ours, a Variance-Informed Predictive allocation strategy that allocates a given rollout budget to the prompts in the incumbent batch to minimize the expected gradient variance of the policy update. At each iteration, \Ours~uses a lightweight Gaussian process model to predict per-prompt success probabilities based on recent rollouts. These probability predictions are translated into variance estimates, which are then fed into a convex optimization problem to determine the optimal rollout allocations under a hard compute budget constraint. Empirical results show that \Ours~consistently improves sampling efficiency and achieves higher performance than uniform or heuristic allocation strategies in multiple benchmarks. Our code will be available at https://github.com/HieuNT91/VIP.
comment: Accepted at ICLR 2026
♻ ☆ How to Train Your Advisor: Steering Black-Box LLMs with Advisor Models
Frontier language models are deployed as black-box services, where model weights cannot be modified and customization is limited to prompting. We introduce Advisor Models, a method to train small open-weight models to generate dynamic, per-instance natural language advice that improves the capabilities of black-box frontier models. Advisor Models improve GPT-5's performance on RuleArena (Taxes) by 71%, reduce Gemini 3 Pro's steps taken in SWE agent tasks by 24.6%, and outperform static prompt optimizers in personalizing GPT-5 to user preferences (85-100% vs. 40-60%). We also find that advisors are transferable: an advisor trained with a low-cost student model still transfers improvements to a frontier model. Moreover, Advisor Models are robust: we observe no degradation on other benchmarks than the pipeline is trained on. Our method shows how to perform parametric optimization for black-box frontier models in a practical and cost-effective way.
♻ ☆ FS-DFM: Fast and Accurate Long Text Generation with Few-Step Diffusion Language Models ICLR 2026
Autoregressive language models (ARMs) deliver strong likelihoods, but are inherently serial: they generate one token per forward pass, which limits throughput and inflates latency for long sequences. Diffusion Language Models (DLMs) parallelize across positions and thus appear promising for language generation, yet standard discrete diffusion typically needs hundreds to thousands of model evaluations to reach high quality, trading serial depth for iterative breadth. We introduce FS-DFM, Few-Step Discrete Flow-Matching. A discrete flow-matching model designed for speed without sacrificing quality. The core idea is simple: make the number of sampling steps an explicit parameter and train the model to be consistent across step budgets, so one big move lands where many small moves would. We pair this with a reliable update rule that moves probability in the right direction without overshooting, and with strong teacher guidance distilled from long-run trajectories. Together, these choices make few-step sampling stable, accurate, and easy to control. On language modeling benchmarks, FS-DFM with 8 sampling steps achieves perplexity parity with a 1,024-step discrete-flow baseline for generating 1,024 tokens using a similar-size model, delivering up to 128 times faster sampling and corresponding latency/throughput gains.
comment: Accepted to ICLR 2026
♻ ☆ Language Family Matters: Evaluating LLM-Based ASR Across Linguistic Boundaries EACL'26
Large Language Model (LLM)-powered Automatic Speech Recognition (ASR) systems achieve strong performance with limited resources by linking a frozen speech encoder to a pretrained LLM via a lightweight connector. Prior work trains a separate connector per language, overlooking linguistic relatedness. We propose an efficient and novel connector-sharing strategy based on linguistic family membership, enabling one connector per family, and empirically validate its effectiveness across two multilingual LLMs and two real-world corpora spanning curated and crowd-sourced speech. Our results show that family-based connectors reduce parameter count while improving generalization across domains, offering a practical and scalable strategy for multilingual ASR deployment.
comment: Accepted by EACL'26 main
♻ ☆ Outcome-Based RL Provably Leads Transformers to Reason, but Only With the Right Data
Transformers trained via Reinforcement Learning (RL) with outcome-based supervision can spontaneously develop the ability to generate intermediate reasoning steps (Chain-of-Thought). Yet the mechanism by which sparse rewards drive policy gradient to discover such systematic reasoning remains poorly understood. We address this by analyzing the policy gradient dynamics of single-layer Transformers on a synthetic graph traversal task that cannot be solved without Chain-of-Thought but admits a simple iterative solution. We prove that despite training solely on final-answer correctness, policy gradient drives the Transformer to converge to a structured, interpretable algorithm that iteratively traverses the graph vertex-by-vertex. We characterize the distributional properties required for this emergence, identifying the critical role of "simple examples": instances requiring fewer reasoning steps. When the training distribution places sufficient mass on these simpler examples, the Transformer learns a generalizable traversal strategy that extrapolates to longer chains; when this mass vanishes, policy gradient learning becomes infeasible. We corroborate our theoretical results through experiments on synthetic data and with real-world language models on mathematical reasoning tasks, validating that our theoretical findings carry over to practical settings.
comment: 87 pages, 6 figures
♻ ☆ EUGens: Efficient, Unified, and General Dense Layers
Efficient neural networks are essential for scaling machine learning models to real-time applications and resource-constrained environments. Fully-connected feedforward layers (FFLs) introduce computation and parameter count bottlenecks within neural network architectures. To address this challenge, in this work, we propose a new class of dense layers that generalize standard fully-connected feedforward layers, \textbf{E}fficient, \textbf{U}nified and \textbf{Gen}eral dense layers (EUGens). EUGens leverage random features to approximate standard FFLs and go beyond them by incorporating a direct dependence on the input norms in their computations. The proposed layers unify existing efficient FFL extensions and improve efficiency by reducing inference complexity from quadratic to linear time. They also lead to \textbf{the first} unbiased algorithms approximating FFLs with arbitrary polynomial activation functions. Furthermore, EuGens reduce the parameter count and computational overhead while preserving the expressive power and adaptability of FFLs. We also present a layer-wise knowledge transfer technique that bypasses backpropagation, enabling efficient adaptation of EUGens to pre-trained models. Empirically, we observe that integrating EUGens into Transformers and MLPs yields substantial improvements in inference speed (up to \textbf{27}\%) and memory efficiency (up to \textbf{30}\%) across a range of tasks, including image classification, language model pre-training, and 3D scene reconstruction. Overall, our results highlight the potential of EUGens for the scalable deployment of large-scale neural networks in real-world scenarios.
comment: We want to update 2410.09771 with this submission
♻ ☆ Decoding Generalization from Memorization in Deep Neural Networks
Overparameterized deep networks that generalize well have been key to the dramatic success of deep learning in recent years. The reasons for their remarkable ability to generalize are not well understood yet. When class labels in the training set are shuffled to varying degrees, it is known that deep networks can still reach perfect training accuracy at the detriment of generalization to true labels -- a phenomenon that has been called memorization. It has, however, been unclear why the poor generalization to true labels that accompanies such memorization, comes about. One possibility is that during training, all layers of the network irretrievably re-organize their representations in a manner that makes generalization to true labels difficult. The other possibility is that one or more layers of the trained network retain significantly more latent ability to generalize to true labels, but the network somehow "chooses" to readout in a manner that is detrimental to generalization to true labels. Here, we provide evidence for the latter possibility by demonstrating, empirically, that such models possess information in their representations for substantially-improved generalization to true labels. Furthermore, such abilities can be easily decoded from the internals of the trained model, and we build a technique to do so. We demonstrate results on multiple models trained with standard datasets. Our code is available at: https://github.com/simranketha/MASC_DNN.
♻ ☆ Breaking Up with Normatively Monolithic Agency with GRACE: A Reason-Based Neuro-Symbolic Architecture for Safe and Ethical AI Alignment
As AI agents become increasingly autonomous, widely deployed in consequential contexts, and efficacious in bringing about real-world impacts, ensuring that their decisions are not only instrumentally effective but also normatively aligned has become critical. We introduce a neuro-symbolic reason-based containment architecture, Governor for Reason-Aligned ContainmEnt (GRACE), that decouples normative reasoning from instrumental decision-making and can contain AI agents of virtually any design. GRACE restructures decision-making into three modules: a Moral Module (MM) that determines permissible macro actions via deontic logic-based reasoning; a Decision-Making Module (DMM) that encapsulates the target agent while selecting instrumentally optimal primitive actions in accordance with derived macro actions; and a Guard that monitors and enforces moral compliance. The MM uses a reason-based formalism providing a semantic foundation for deontic logic, enabling interpretability, contestability, and justifiability. Its symbolic representation enriches the DMM's informational context and supports formal verification and statistical guarantees of alignment enforced by the Guard. We demonstrate GRACE on an example of a LLM therapy assistant, showing how it enables stakeholders to understand, contest, and refine agent behavior.
comment: 10 pages, 4 figures, accepted at 2nd Annual Conference of the International Association for Safe & Ethical AI (IASEAI'26)
♻ ☆ To See Far, Look Close: Evolutionary Forecasting for Long-term Time Series
The prevailing Direct Forecasting (DF) paradigm dominates Long-term Time Series Forecasting (LTSF) by forcing models to predict the entire future horizon in a single forward pass. While efficient, this rigid coupling of output and evaluation horizons necessitates computationally prohibitive re-training for every target horizon. In this work, we uncover a counter-intuitive optimization anomaly: models trained on short horizons-when coupled with our proposed Evolutionary Forecasting (EF) paradigm-significantly outperform those trained directly on long horizons. We attribute this success to the mitigation of a fundamental optimization pathology inherent in DF, where conflicting gradients from distant futures cripple the learning of local dynamics. We establish EF as a unified generative framework, proving that DF is merely a degenerate special case of EF. Extensive experiments demonstrate that a singular EF model surpasses task-specific DF ensembles across standard benchmarks and exhibits robust asymptotic stability in extreme extrapolation. This work propels a paradigm shift in LTSF: moving from passive Static Mapping to autonomous Evolutionary Reasoning.
♻ ☆ Adaptive Testing for LLM Evaluation: A Psychometric Alternative to Static Benchmarks
Evaluating large language models (LLMs) typically requires thousands of benchmark items, making the process expensive, slow, and increasingly impractical at scale. Existing evaluation protocols rely on average accuracy over fixed item sets, treating all items as equally informative despite substantial variation in difficulty and discrimination. We introduce ATLAS, an adaptive testing framework based on Item Response Theory (IRT) that estimates model ability using Fisher information-guided item selection. ATLAS reduces the number of required items by up to 90% while maintaining measurement precision. For instance, it matches whole-bank ability estimates using only 41 items (0.157 MAE) on HellaSwag (5,600 items). We further reconstruct accuracy from ATLAS's ability estimates and find that reconstructed accuracies closely match raw accuracies across all five benchmarks, indicating that ability $θ$ preserves the global performance structure. At the same time, $θ$ provides finer discrimination within accuracy-equivalent models: among more than 3,000 evaluated models, 23-31% shift by more than 10 rank positions, and models with identical accuracies receive meaningfully different ability estimates. Code and calibrated item banks are available at https://github.com/Peiyu-Georgia-Li/ATLAS.git.
comment: Code and calibrated item banks are available at https://github.com/Peiyu-Georgia-Li/ATLAS.git
♻ ☆ SparseSwaps: Tractable LLM Pruning Mask Refinement at Scale
The resource requirements of neural networks can be significantly reduced through pruning - the removal of seemingly less important parameters. However, for LLMs, full retraining to recover pruning-induced performance degradation is often prohibitive and classical approaches such as magnitude pruning are suboptimal on Transformers. State-of-the-art methods hence solve a layer-wise mask selection problem: finding a pruning mask that minimizes per-layer pruning error on a small set of calibration data. Exactly solving this problem is computationally infeasible due to its combinatorial nature and the size of the search space, and existing approaches rely on approximations or heuristics. We demonstrate that the mask selection problem can be made drastically more tractable at LLM scale. To that end, we decouple the rows by enforcing equal sparsity levels per row. This allows us to derive optimal 1-swaps (exchanging one kept and one pruned weight) computable efficiently via the Gram matrix. We propose a simple 1-swap algorithm that warmstarts from any pruning mask, runs efficiently on GPUs at LLM scale, and is essentially hyperparameter-free. Our approach reduces per-layer pruning error by up to 60% over Wanda (Sun et al., 2024) and consistently improves perplexity and zero-shot accuracy across state-of-the-art GPT architectures.
comment: 13 pages, 2 figures, 5 tables
♻ ☆ Estimating Respiratory Effort from Nocturnal Breathing Sounds for Obstructive Sleep Apnoea Screening ICASSP 2026
Obstructive sleep apnoea (OSA) is a prevalent condition with significant health consequences, yet many patients remain undiagnosed due to the complexity and cost of over-night polysomnography. Acoustic-based screening provides a scalable alternative, yet performance is limited by environmental noise and the lack of physiological context. Respiratory effort is a key signal used in clinical scoring of OSA events, but current approaches require additional contact sensors that reduce scalability and patient comfort. This paper presents the first study to estimate respiratory effort directly from nocturnal audio, enabling physiological context to be recovered from sound alone. We propose a latent-space fusion framework that integrates the estimated effort embeddings with acoustic features for OSA detection. Using a dataset of 157 nights from 103 participants recorded in home environments, our respiratory effort estimator achieves a concordance correlation coefficient of 0.48, capturing meaningful respiratory dynamics. Fusing effort and audio improves sensitivity and AUC over audio-only baselines, especially at low apnoea-hypopnoea index thresholds. The proposed approach requires only smartphone audio at test time, which enables sensor-free, scalable, and longitudinal OSA monitoring.
comment: Accepted at ICASSP 2026
♻ ☆ Language as a Wave Phenomenon: Semantic Phase Locking and Interference in Neural Networks
In standard Transformer architectures, semantic importance is often conflated with activation magnitude, obscuring the geometric structure of latent representations. To disentangle these factors, we introduce PRISM, a complex-valued architecture designed to isolate the computational role of phase. By enforcing a strict unit-norm constraint (|z| = 1) and replacing attention with gated harmonic convolutions, the model is compelled to utilize subtractive interference in the frequency domain to suppress noise, rather than relying on magnitude-based gating. We utilize this constrained regime to demonstrate that a hybrid architecture - fusing phase-based routing with standard attention - achieves superior parameter efficiency and representation quality compared to unconstrained baselines. Mechanistically, we identify geometric phase clustering, where tokens naturally self-organize to resolve semantic ambiguities. This establishes an O(N log N) reasoning framework based on spectral interference, providing an algorithmic existence proof that subtractive logic is a sufficient primitive for deep reasoning.
comment: 14 pages, 7 figures; Revised title; Added new experiments on encoder-only models using WikiText-103
♻ ☆ A Scalable Inter-edge Correlation Modeling in CopulaGNN for Link Sign Prediction ICLR 2026
Link sign prediction on a signed graph is a task to determine whether the relationship represented by an edge is positive or negative. Since the presence of negative edges violates the graph homophily assumption that adjacent nodes are similar, regular graph methods have not been applicable without auxiliary structures to handle them. We aim to directly model the latent statistical dependency among edges with the Gaussian copula and its corresponding correlation matrix, extending CopulaGNN (Ma et al., 2021). However, a naive modeling of edge-edge relations is computationally intractable even for a graph with moderate scale. To address this, we propose to 1) represent the correlation matrix as a Gramian of edge embeddings, significantly reducing the number of parameters, and 2) reformulate the conditional probability distribution to dramatically reduce the inference cost. We theoretically verify scalability of our method by proving its linear convergence. Also, our extensive experiments demonstrate that it achieves significantly faster convergence than baselines, maintaining competitive prediction performance to the state-of-the-art models.
comment: Accepted for ICLR 2026
♻ ☆ A Scalable Measure of Loss Landscape Curvature for Analyzing the Training Dynamics of LLMs
Understanding the curvature evolution of the loss landscape is fundamental to analyzing the training dynamics of neural networks. The most commonly studied measure, Hessian sharpness ($λ_{\max}^H$) -- the largest eigenvalue of the loss Hessian -- determines local training stability and interacts with the learning rate throughout training. Despite its significance in analyzing training dynamics, direct measurement of Hessian sharpness remains prohibitive for Large Language Models (LLMs) due to high computational cost. We analyze $\textit{critical sharpness}$ ($λ_c$), a computationally efficient measure requiring fewer than $10$ forward passes given the update direction $Δ\mathbfθ$. Critically, this measure captures well-documented Hessian sharpness phenomena, including progressive sharpening and Edge of Stability. Using this measure, we provide the first demonstration of these sharpness phenomena at scale, up to $7$B parameters, spanning both pre-training and mid-training of OLMo-2 models. We further introduce $\textit{relative critical sharpness}$ ($λ_c^{1\to 2}$), which quantifies the curvature of one loss landscape while optimizing another, to analyze the transition from pre-training to fine-tuning and guide data mixing strategies. Critical sharpness provides practitioners with a practical tool for diagnosing curvature dynamics and informing data composition choices at scale. More broadly, our work shows that scalable curvature measures can provide actionable insights for large-scale training.
comment: Improved Appendix D proofs, text for clarity, added more related works
♻ ☆ STAC: When Innocent Tools Form Dangerous Chains to Jailbreak LLM Agents
As LLMs advance into autonomous agents with tool-use capabilities, they introduce security challenges that extend beyond traditional content-based LLM safety concerns. This paper introduces Sequential Tool Attack Chaining (STAC), a novel multi-turn attack framework that exploits agent tool use. STAC chains together tool calls that each appear harmless in isolation but, when combined, collectively enable harmful operations that only become apparent at the final execution step. We apply our framework to automatically generate and systematically evaluate 483 STAC cases, featuring 1,352 sets of user-agent-environment interactions and spanning diverse domains, tasks, agent types, and 10 failure modes. Our evaluations show that state-of-the-art LLM agents, including GPT-4.1, are highly vulnerable to STAC, with attack success rates (ASR) exceeding 90% in most cases. The core design of STAC's automated framework is a closed-loop pipeline that synthesizes executable multi-step tool chains, validates them through in-environment execution, and reverse-engineers stealthy multi-turn prompts that reliably induce agents to execute the verified malicious sequence. We further perform defense analysis against STAC and find that existing prompt-based defenses provide limited protection. To address this gap, we propose a new reasoning-driven defense prompt that achieves far stronger protection, cutting ASR by up to 28.8%. These results highlight a crucial gap: defending tool-enabled agents requires reasoning over entire action sequences and their cumulative effects, rather than evaluating isolated prompts or responses.
♻ ☆ A Proof of Learning Rate Transfer under $μ$P
We provide the first proof of learning rate transfer with width in a linear multi-layer perceptron (MLP) parametrized with $μ$P, a neural network parameterization designed to ``maximize'' feature learning in the infinite-width limit. We show that under $μP$, the optimal learning rate converges to a \emph{non-zero constant} as width goes to infinity, providing a theoretical explanation to learning rate transfer. In contrast, we show that this property fails to hold under alternative parametrizations such as Standard Parametrization (SP) and Neural Tangent Parametrization (NTP). We provide intuitive proofs and support the theoretical findings with extensive empirical results.
comment: 21 pages
♻ ☆ HER: Human-like Reasoning and Reinforcement Learning for LLM Role-playing
LLM role-playing, i.e., using LLMs to simulate specific personas, has emerged as a key capability in various applications, such as companionship, content creation, and digital games. While current models effectively capture character tones and knowledge, simulating the inner thoughts behind their behaviors remains a challenge. Towards cognitive simulation in LLM role-play, previous efforts mainly suffer from two deficiencies: data with high-quality reasoning traces, and reliable reward signals aligned with human preferences. In this paper, we propose HER, a unified framework for cognitive-level persona simulation. HER introduces dual-layer thinking, which distinguishes characters' first-person thinking from LLMs' third-person thinking. To bridge these gaps, we curate reasoning-augmented role-playing data via reverse engineering and construct human-aligned principles and reward models. Leveraging these resources, we train HER models based on Qwen3-32B via supervised and reinforcement learning. Extensive experiments validate the effectiveness of our approach. Notably, our models significantly outperform the Qwen3-32B baseline, achieving a 30.26 improvement on the CoSER benchmark and a 14.97 gain on the Minimax Role-Play Bench. Our datasets, principles, and models will be released to facilitate future research.
comment: 41pages, 10 figures
♻ ☆ TEON: Tensorized Orthonormalization Beyond Layer-Wise Muon for Large Language Model Pre-Training
The Muon optimizer has demonstrated strong empirical performance in pre-training large language models by performing matrix-level gradient (or momentum) orthogonalization in each layer independently. In this work, we propose TEON, a principled generalization of Muon that extends orthogonalization beyond individual layers by modeling the gradients of a neural network as a structured higher-order tensor. We present TEON's improved convergence guarantee over layer-wise Muon, and further develop a practical instantiation of TEON based on the theoretical analysis with corresponding ablation. We evaluate our approach on two widely adopted architectures: GPT-style models, ranging from 130M to 774M parameters, and LLaMA-style models, ranging from 60M to 1B parameters. Experimental results show that TEON consistently improves training and validation perplexity across model scales and exhibits strong robustness under various approximate SVD schemes.
♻ ☆ Preference-Conditioned Gradient Variations for Multi-Objective Quality-Diversity
In a variety of domains, from robotics to finance, Quality-Diversity algorithms have been used to generate collections of both diverse and high-performing solutions. Multi-Objective Quality-Diversity algorithms have emerged as a promising approach for applying these methods to complex, multi-objective problems. However, existing methods are limited by their search capabilities. For example, Multi-Objective Map-Elites depends on random genetic variations which struggle in high-dimensional search spaces. Despite efforts to enhance search efficiency with gradient-based mutation operators, existing approaches consider updating solutions to improve on each objective separately rather than achieving desired trade-offs. In this work, we address this limitation by introducing Multi-Objective Map-Elites with Preference-Conditioned Policy-Gradient and Crowding Mechanisms: a new Multi-Objective Quality-Diversity algorithm that uses preference-conditioned policy-gradient mutations to efficiently discover promising regions of the objective space and crowding mechanisms to promote a uniform distribution of solutions on the non-dominated front. We evaluate our approach on six robotics locomotion tasks and show that our method outperforms or matches all state-of-the-art Multi-Objective Quality-Diversity methods in all six, including two newly proposed tri-objective tasks. Importantly, our method also achieves a smoother set of trade-offs, as measured by newly-proposed sparsity-based metrics.
♻ ☆ StefaLand: An Efficient Geoscience Foundation Model That Improves Dynamic Land-Surface Predictions
Managing natural resources and mitigating risks from floods, droughts, wildfires, and landslides require models that can accurately predict climate-driven land-surface responses. Traditional models often struggle with spatial generalization because they are trained or calibrated on limited observations and can degrade under concept drift. Recently proposed vision foundation models trained on satellite imagery demand massive compute, and they are not designed for dynamic land surface prediction tasks. We introduce StefaLand, a generative spatiotemporal Earth representation learning model centered on learning cross-domain interactions to suppress overfitting. StefaLand demonstrates especially strong spatial generalization on five datasets across four important tasks: streamflow, soil moisture, soil composition and landslides, compared to previous state-of-the-art methods. The domain-inspired design choices include a location-aware masked autoencoder that fuses static and time-series inputs, an attribute-based rather than image-based representation that drastically reduces compute demands, and residual fine-tuning adapters that strengthen knowledge transfer across tasks. StefaLand can be pretrained and finetuned on commonly available academic compute resources, yet consistently outperforms state-of-the-art supervised learning baselines, fine-tuned vision foundation models and commercially available embeddings, highlighting the previously overlooked value of cross-domain interactions and providing assistance to data-poor regions of the world.
♻ ☆ Aesthetics as Structural Harm: Algorithmic Lookism Across Text-to-Image Generation and Classification
This paper examines algorithmic lookism-the systematic preferential treatment based on physical appearance-in text-to-image (T2I) generative AI and a downstream gender classification task. Through the analysis of 26,400 synthetic faces created with Stable Diffusion 2.1 and 3.5 Medium, we demonstrate how generative AI models systematically associate facial attractiveness with positive attributes and vice-versa, mirroring socially constructed biases rather than evidence-based correlations. Furthermore, we find significant gender bias in three gender classification algorithms depending on the attributes of the input faces. Our findings reveal three critical harms: (1) the systematic encoding of attractiveness-positive attribute associations in T2I models; (2) gender disparities in classification systems, where women's faces, particularly those generated with negative attributes, suffer substantially higher misclassification rates than men's; and (3) intensifying aesthetic constraints in newer models through age homogenization, gendered exposure patterns, and geographic reductionism. These convergent patterns reveal algorithmic lookism as systematic infrastructure operating across AI vision systems, compounding existing inequalities through both representation and recognition. Disclaimer: This work includes visual and textual content that reflects stereotypical associations between physical appearance and socially constructed attributes, including gender, race, and traits associated with social desirability. Any such associations found in this study emerge from the biases embedded in generative AI systems-not from empirical truths or the authors' views.
comment: 22 pages, 15 figures; v2 - fix typo
♻ ☆ Semi-Autonomous Mathematics Discovery with Gemini: A Case Study on the Erdős Problems
We present a case study in semi-autonomous mathematics discovery, using Gemini to systematically evaluate 700 conjectures labeled 'Open' in Bloom's Erdős Problems database. We employ a hybrid methodology: AI-driven natural language verification to narrow the search space, followed by human expert evaluation to gauge correctness and novelty. We address 13 problems that were marked 'Open' in the database: 5 through seemingly novel autonomous solutions, and 8 through identification of previous solutions in the existing literature. Our findings suggest that the 'Open' status of the problems was through obscurity rather than difficulty. We also identify and discuss issues arising in applying AI to math conjectures at scale, highlighting the difficulty of literature identification and the risk of ''subconscious plagiarism'' by AI. We reflect on the takeaways from AI-assisted efforts on the Erdős Problems.
comment: Correct some typos and wordings
♻ ☆ Why Inference in Large Models Becomes Decomposable After Training
Inference in large-scale AI models is typically performed on dense parameter matrices, leading to inference cost and system complexity that scale unsustainably with model size. This limitation does not arise from insufficient model capacity, but from treating post-training inference systems as monolithic operators while ignoring internal structures formed during learning. We show that gradient update events in large models are highly localized and selective, leaving many parameter dependencies statistically indistinguishable from their initialization distribution after training. As a result, post-training inference systems are structurally non-uniform and inherently decomposable. Based on this observation, we introduce a post-training statistical criterion and a structural annealing procedure that removes unsupported dependencies and reveals stable, independent substructures. This work establishes a post-training, model-agnostic structural view of inference systems and enables structured, parallel inference without modifying model functionality or interfaces.
comment: 39 pages, 6 figures
♻ ☆ Game-Time: Evaluating Temporal Dynamics in Spoken Language Models ICASSP 2026
Conversational Spoken Language Models (SLMs) are emerging as a promising paradigm for real-time speech interaction. However, their capacity of temporal dynamics, including the ability to manage timing, tempo and simultaneous speaking, remains a critical and unevaluated challenge for conversational fluency. To address this gap, we introduce the Game-Time Benchmark, a framework to systematically assess these temporal capabilities. Inspired by how humans learn a language through language activities, Game-Time consists of basic instruction-following tasks and advanced tasks with temporal constraints, such as tempo adherence and synchronized responses. Our evaluation of diverse SLM architectures reveals a clear performance disparity: while state-of-the-art models handle basic tasks well, many contemporary systems still struggle with fundamental instruction-following. More critically, nearly all models degrade substantially under temporal constraints, exposing persistent weaknesses in time awareness and full-duplex interaction. The Game-Time Benchmark provides a foundation for guiding future research toward more temporally-aware conversational AI. Demos and datasets are available on our project website https://ga642381.github.io/Game-Time.
comment: Accepted to ICASSP 2026
♻ ☆ Learning Robust Intervention Representations with Delta Embeddings
Causal representation learning has attracted significant research interest during the past few years, as a means for improving model generalization and robustness. Causal representations of interventional image pairs (also called ``actionable counterfactuals'' in the literature), have the property that only variables corresponding to scene elements affected by the intervention / action are changed between the start state and the end state. While most work in this area has focused on identifying and representing the variables of the scene under a causal model, fewer efforts have focused on representations of the interventions themselves. In this work, we show that an effective strategy for improving out of distribution (OOD) robustness is to focus on the representation of actionable counterfactuals in the latent space. Specifically, we propose that an intervention can be represented by a Causal Delta Embedding that is invariant to the visual scene and sparse in terms of the causal variables it affects. Leveraging this insight, we propose a method for learning causal representations from image pairs, without any additional supervision. Experiments in the Causal Triplet challenge demonstrate that Causal Delta Embeddings are highly effective in OOD settings, significantly exceeding baseline performance in both synthetic and real-world benchmarks.
♻ ☆ AgentRAN: An Agentic AI Architecture for Autonomous Control of Open 6G Networks IEEE
Despite the programmable architecture of Open RAN, today's deployments still rely heavily on static control and manual operations. To move beyond this limitation, we introduce AgentRAN, an AI-native, Open RAN-aligned agentic framework that generates and orchestrates a fabric of distributed AI agents based on natural language intents. Unlike traditional approaches that require explicit programming, AgentRAN's LLM-powered agents interpret natural language intents, negotiate strategies through structured conversations, and orchestrate control loops across the network. AgentRAN instantiates a self-organizing hierarchy of agents that decompose complex intents across time scales (from sub-millisecond to minutes), spatial domains (cell to network-wide), and protocol layers (PHY/MAC to RRC). A central innovation is the AI-RAN Factory, which continuously generates improved agents and algorithms from operational data, transforming the network into a system that evolves its own intelligence. We validate AgentRAN through live 5G experiments, demonstrating dynamic adaptation to changing operator intents across power control and scheduling. Key benefits include transparent decision-making (all agent reasoning is auditable), bootstrapped intelligence (no initial training data required), and continuous self-improvement via the AI-RAN Factory.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ Staircase Cascaded Fusion of Lightweight Local Pattern Recognition and Long-Range Dependencies for Structural Crack Segmentation
Accurately segmenting structural cracks at the pixel level remains a major hurdle, as existing methods fail to integrate local textures with pixel dependencies, often leading to fragmented and incomplete predictions. Moreover, their high parameter counts and substantial computational demands hinder practical deployment on resource-constrained edge devices. To address these challenges, we propose CrackSCF, a Lightweight Cascaded Fusion Crack Segmentation Network designed to achieve robust crack segmentation with exceptional computational efficiency. We design a lightweight convolutional block (LRDS) to replace all standard convolutions. This approach efficiently captures local patterns while operating with a minimal computational footprint. For a holistic perception of crack structures, a lightweight Long-range Dependency Extractor (LDE) captures global dependencies. These are then intelligently unified with local patterns by our Staircase Cascaded Fusion Module (SCFM), ensuring the final segmentation maps are both seamless in continuity and rich in fine-grained detail. To comprehensively evaluate our method, this paper created the challenging TUT benchmark dataset and evaluated it alongside five other public datasets. The experimental results show that the CrackSCF method consistently outperforms the existing methods, and it demonstrates greater robustness in dealing with complex background noise. On the TUT dataset, CrackSCF achieved 0.8382 on F1 score and 0.8473 on mIoU, and it only required 4.79M parameters.
comment: This paper is currently under review
♻ ☆ Conditional diffusion models for downscaling and bias correction of Earth system model precipitation
Climate change exacerbates extreme weather events like heavy rainfall and flooding. As these events cause severe socioeconomic damage, accurate high-resolution simulation of precipitation is imperative. However, existing Earth System Models (ESMs) struggle to resolve small-scale dynamics and suffer from biases. Traditional statistical bias correction and downscaling methods fall short in improving spatial structure, while recent deep learning methods lack controllability and suffer from unstable training. Here, we propose a machine learning framework for simultaneous bias correction and downscaling. We first map observational and ESM data to a shared embedding space, where both are unbiased towards each other, and then train a conditional diffusion model to reverse the mapping. Only observational data is used for the training, so that the diffusion model can be employed to correct and downscale any ESM field without need for retraining. Our approach ensures statistical fidelity and preserves spatial patterns larger than a chosen spatial correction scale. We demonstrate that our approach outperforms existing statistical and deep learning methods especially regarding extreme events.
♻ ☆ Entropy-Lens: Uncovering Decision Strategies in LLMs
In large language models (LLMs), each block operates on the residual stream to map input token sequences to output token distributions. However, most of the interpretability literature focuses on internal latent representations, leaving token-space dynamics underexplored. The high dimensionality and categoricity of token distributions hinder their analysis, as standard statistical descriptors are not suitable. We show that the entropy of logit-lens predictions overcomes these issues. In doing so, it provides a per-layer scalar, permutation-invariant metric. We introduce Entropy-Lens to distill the token-space dynamics of the residual stream into a low-dimensional signal. We call this signal the entropy profile. We apply our method to a variety of model sizes and families, showing that (i) entropy profiles uncover token prediction dynamics driven by expansion and pruning strategies; (ii) these dynamics are family-specific and invariant under depth rescaling; (iii) they are characteristic of task type and output format; (iv) these strategies have unequal impact on downstream performance, with the expansion strategy usually being more critical. Ultimately, our findings further enhance our understanding of the residual stream, enabling a granular assessment of how information is processed across model depth.
♻ ☆ Avoiding Premature Collapse: Adaptive Annealing for Entropy-Regularized Structural Inference
Differentiable matching layers, often implemented via entropy-regularized Optimal Transport, serve as a critical approximate inference mechanism in structural prediction. However, recovering discrete permutations via annealing $ε\to 0$ is notoriously unstable. We identify a fundamental mechanism for this failure: \textbf{Premature Mode Collapse}. By analyzing the non-normal dynamics of the Sinkhorn fixed-point map, we reveal a theoretical \textbf{thermodynamic speed limit}. Under standard exponential cooling, the shift in the target posterior ($O(1)$) outpaces the contraction rate of the inference operator, which degrades as $O(1/ε)$. This mismatch inevitably forces the inference trajectory into spurious local basins. To address this, we propose \textbf{Efficient PH-ASC}, an adaptive scheduling algorithm that monitors the stability of the inference process. By enforcing a linear stability law, we decouple expensive spectral diagnostics from the training loop, reducing overhead from $O(N^3)$ to amortized $O(1)$. Our implementation and interactive demo are available at https://github.com/xxx0438/torch-sinkhorn-asc and https://huggingface.co/spaces/leon0923/torch-sinkhorn-asc-demo. bounded away from zero in generic training dynamics unless the feature extractor converges unrealistically fast.
♻ ☆ RDDM: Practicing RAW Domain Diffusion Model for Real-world Image Restoration
We present the RAW domain diffusion model (RDDM), an end-to-end diffusion model that restores photo-realistic images directly from the sensor RAW data. While recent sRGB-domain diffusion methods achieve impressive results, they are caught in a dilemma between high fidelity and image generation. These models process lossy sRGB inputs and neglect the accessibility of the sensor RAW images in many scenarios, e.g., in image and video capturing in edge devices, resulting in sub-optimal performance. RDDM obviates this limitation by directly restoring images in the RAW domain, replacing the conventional two-stage image signal processing (ISP)->Image Restoration (IR) pipeline. However, a simple adaptation of pre-trained diffusion models to the RAW domain confronts many challenges. To this end, we propose: (1) a RAW-domain VAE (RVAE), encoding sensor RAW and decoding it into an enhanced linear domain image, to solve the out-of-distribution (OOD) issues between the different domain distributions; (2) a configurable multi-bayer (CMB) LoRA module, adapting diverse RAW Bayer patterns such as RGGB, BGGR, etc. To compensate for the deficiency in the dataset, we develop a scalable data synthesis pipeline synthesizing RAW LQ-HQ pairs from existing sRGB datasets for large-scale training. Extensive experiments demonstrate RDDM's superiority over state-of-the-art sRGB diffusion methods, yielding higher fidelity results with fewer artifacts. Codes will be publicly available at https://github.com/YanCHEN-fr/RDDM.
♻ ☆ Large Multimodal Models for Low-Resource Languages: A Survey
In this survey, we systematically analyze techniques used to adapt large multimodal models (LMMs) for low-resource (LR) languages, examining approaches ranging from visual enhancement and data creation to cross-modal transfer and fusion strategies. Through a comprehensive analysis of 117 studies across 96 LR languages, we identify key patterns in how researchers tackle the challenges of limited data and computational resources. We categorize works into resource-oriented and method-oriented contributions, further dividing contributions into relevant sub-categories. We compare method-oriented contributions in terms of performance and efficiency, discussing benefits and limitations of representative studies. We find that visual information often serves as a crucial bridge for improving model performance in LR settings, though significant challenges remain in areas such as hallucination mitigation and computational efficiency. In summary, we provide researchers with a clear understanding of current approaches and remaining challenges in making LMMs more accessible to speakers of LR (understudied) languages. We complement our survey with an open-source repository available at: https://github.com/marianlupascu/LMM4LRL-Survey.
comment: Accepted in Information Fusion
♻ ☆ BiasGym: A Simple and Generalizable Framework for Analyzing and Removing Biases through Elicitation
Understanding biases and stereotypes encoded in the weights of Large Language Models (LLMs) is crucial for developing effective mitigation strategies. However, biased behaviour is often subtle and non-trivial to isolate, even when deliberately elicited, making systematic analysis and debiasing particularly challenging. To address this, we introduce \texttt{BiasGym}, a simple, cost-effective, and generalizable framework for reliably and safely injecting, analyzing, and mitigating conceptual associations of biases within LLMs. \texttt{BiasGym} consists of two components: \texttt{BiasInject}, which safely injects specific biases into the model via token-based fine-tuning while keeping the model frozen, and \texttt{BiasScope}, which leverages these injected signals to identify and reliably steer the components responsible for biased behavior. Our method enables consistent bias elicitation for mechanistic analysis, supports targeted debiasing without degrading performance on downstream tasks, and generalizes to biases unseen during fine-tuning. We demonstrate the effectiveness of BiasGym in reducing real-world stereotypes (e.g., people from Italy being `reckless drivers'), showing its utility for both safety interventions and interpretability research.
comment: Under review. Title updated
♻ ☆ PIQL: Projective Implicit Q-Learning with Support Constraint for Offline Reinforcement Learning
Offline Reinforcement Learning (RL) faces a fundamental challenge of extrapolation errors caused by out-of-distribution (OOD) actions. Implicit Q-Learning (IQL) employs expectile regression to achieve in-sample learning. Nevertheless, IQL relies on a fixed expectile hyperparameter and a density-based policy improvement method, both of which impede its adaptability and performance. In this paper, we propose Projective IQL (PIQL), a projective variant of IQL enhanced with a support constraint. In the policy evaluation stage, PIQL substitutes the fixed expectile hyperparameter with a projection-based parameter and extends the one-step value estimation to a multi-step formulation. In the policy improvement stage, PIQL adopts a support constraint instead of a density constraint, ensuring closer alignment with the policy evaluation. Theoretically, we demonstrate that PIQL maintains the expectile regression and in-sample learning framework, guarantees monotonic policy improvement, and introduces a progressively more rigorous criterion for advantageous actions. Experiments on D4RL and NeoRL2 benchmarks demonstrate robust gains across diverse domains, achieving state-of-the-art performance overall.
♻ ☆ Optimizing Agentic Workflows using Meta-tools
Agentic AI enables LLM to dynamically reason, plan, and interact with tools to solve complex tasks. However, agentic workflows often require many iterative reasoning steps and tool invocations, leading to significant operational expense, end-to-end latency and failures due to hallucinations. This work introduces Agent Workflow Optimization (AWO), a framework that identifies and optimizes redundant tool execution patterns to improve the efficiency and robustness of agentic workflows. AWO analyzes existing workflow traces to discover recurring sequences of tool calls and transforms them into meta-tools, which are deterministic, composite tools that bundle multiple agent actions into a single invocation. Meta-tools bypass unnecessary intermediate LLM reasoning steps and reduce operational cost while also shortening execution paths, leading to fewer failures. Experiments on two agentic AI benchmarks show that AWO reduces the number of LLM calls up to 11.9% while also increasing the task success rate by up to 4.2 percent points.
♻ ☆ Learning-Augmented Power System Operations: A Unified Optimization View
With the increasing penetration of renewable energy, traditional physics-based power system operation faces growing challenges in achieving economic efficiency, stability, and robustness. Machine learning (ML) has emerged as a powerful tool for modeling complex system dynamics to address these challenges. However, existing ML designs are often developed in isolation and lack systematic integration with established operational decision frameworks. To bridge this gap, this paper proposes a holistic framework of Learning-Augmented Power System Operations (LAPSO, pronounced Lap-So). From a native mathematical optimization perspective, LAPSO is centered on the operation stage and aims to unify traditionally siloed power system tasks such as forecasting, operation, and control. The framework jointly optimizes machine learning and physics-based models at both the training and inference stages. Then, a complete set of design metrics is introduced to quantify and evaluate the impact of ML models on the existing decision-makings. These metrics facilitate a deeper understanding of representative applications such as stability-constrained optimization (SCO) and objective-based forecasting (OBF). Moreover, LAPSO is inherently extensible to emerging learning paradigms that integrate forecasting, operation, and control in a closed loop. It also enables the systematic identification and mitigation of different sources and timings of uncertainty from Bayesian perspective. Finally, a dedicated Python package \texttt{lapso} is developed to automatically augment existing power system optimization models with learnable components. All source code and datasets are publicly available at: https://github.com/xuwkk/lapso_exp.
♻ ☆ Semiparametric Preference Optimization: Your Language Model is Secretly a Single-Index Model
Aligning large language models (LLMs) to preference data typically assumes a known link function between observed preferences and latent rewards (e.g., a logistic Bradley-Terry link). Misspecification of this link can bias inferred rewards and misalign learned policies. We study preference alignment under an unknown and unrestricted link function. We show that realizability of $f$-divergence-constrained reward maximization in a policy class induces a semiparametric single-index binary choice model, where a scalar policy-dependent index captures all dependence on demonstrations and the remaining preference distribution is unrestricted. Rather than assuming this model has identifiable finite-dimensional structural parameters and estimating them, as in econometrics, we focus on policy learning with the reward function implicit, analyzing error to the optimal policy and allowing for unidentifiable nonparametric indices. We develop preference optimization algorithms robust to the unknown link and prove convergence guarantees in terms of generic function complexity measures. We demonstrate this empirically on LLM alignment. Code is available at https://github.com/causalml/spo/
♻ ☆ Less Noise, More Voice: Reinforcement Learning for Reasoning via Instruction Purification
Reinforcement Learning with Verifiable Rewards (RLVR) has advanced LLM reasoning, but remains constrained by inefficient exploration under limited rollout budgets, leading to low sampling success and unstable training in complex tasks. We find that many exploration failures arise not from problem difficulty, but from a small number of prompt tokens that introduce interference. Building on this insight, we propose the Less Noise Sampling Framework (LENS), which first prompts by identifying and removing interference tokens. then transfers successful rollouts from the purification process to supervise policy optimization on the original noisy prompts, enabling the model to learn to ignore interference in the real-world, noisy prompting settings. Experimental results show that LENS significantly outperforms GRPO, delivering higher performance and faster convergence, with a 3.88% average gain and over 1.6$\times$ speedup. Our work highlights the critical role of pruning interference tokens in improving rollout efficiency, offering a new perspective for RLVR research.
comment: Work in progress
♻ ☆ EvoXplain: When Machine Learning Models Agree on Predictions but Disagree on Why -- Measuring Mechanistic Multiplicity Across Training Runs
Machine learning models are primarily judged by predictive performance, especially in applied settings. Once a model reaches high accuracy, its explanation is often assumed to be correct and trustworthy. This assumption raises an overlooked question: when two models achieve high accuracy, do they rely on the same internal logic, or do they reach the same outcome via different and potentially competing mechanisms? We introduce EvoXplain, a diagnostic framework that measures the stability of model explanations across repeated training. Rather than analysing the explanation of a single trained model, EvoXplain treats explanations as samples drawn from the training and model selection pipeline itself, without aggregating predictions or constructing ensembles. It examines whether these samples form a single coherent explanation or separate into multiple structured explanatory modes. We evaluate EvoXplain on the Breast Cancer and COMPAS datasets using Logistic Regression and Random Forests. Although all models achieve high predictive accuracy, their explanations frequently exhibit clear multimodality. Even models commonly assumed to be stable, such as Logistic Regression, can give rise to distinct explanation modes under repeated training on the same data split. Crucially, these modes can coexist at near-identical hyperparameter configurations, indicating explanation non-identifiability rather than smooth sensitivity to regularisation strength. EvoXplain does not attempt to select a correct explanation. Instead, it makes explanatory instability visible and quantifiable, revealing when single-instance or averaged explanations obscure the existence of multiple underlying mechanisms. More broadly, EvoXplain reframes interpretability as a property of a model class under repeated instantiation, rather than of any single trained model.
♻ ☆ Transferring Visual Explainability of Self-Explaining Models to Prediction-Only Models without Additional Training
In image classification scenarios where both prediction and explanation efficiency are required, self-explaining models that perform both tasks in a single inference are effective. However, for users who already have prediction-only models, training a new self-explaining model from scratch imposes significant costs in terms of both labeling and computation. This study proposes a method to transfer the visual explanation capability of self-explaining models learned in a source domain to prediction-only models in a target domain based on a task arithmetic framework. Our self-explaining model comprises an architecture that extends Vision Transformer-based prediction-only models, enabling the proposed method to endow explanation capability to many trained prediction-only models without additional training. Experiments on various image classification datasets demonstrate that, except for transfers between less-related domains, the transfer of visual explanation capability from source to target domains is successful, and explanation quality in the target domain improves without substantially sacrificing classification accuracy.
♻ ☆ MLLMEraser: Achieving Test-Time Unlearning in Multimodal Large Language Models through Activation Steering
Multimodal large language models (MLLMs) have demonstrated remarkable capabilities across vision-language tasks, yet their large-scale deployment raises pressing concerns about memorized private data, outdated knowledge, and harmful content. Existing unlearning approaches for MLLMs typically adapt training-based strategies such as gradient ascent or preference optimization, but these methods are computationally expensive, irreversible, and often distort retained knowledge. In this work, we propose MLLMEraser, an input-aware, training-free framework for test-time unlearning. Our approach leverages activation steering to enable dynamic knowledge erasure without parameter updates. Specifically, we construct a multimodal erasure direction by contrasting adversarially perturbed, knowledge-recall image-text pairs with knowledge-erasure counterparts, capturing both textual and visual discrepancies. To prevent unnecessary interference, we further design an input-aware steering mechanism that adaptively determines when and how the erasure direction should be applied, preserving utility on retained knowledge while enforcing forgetting on designated content. Experiments on LLaVA-1.5 and Qwen-2.5-VL demonstrate that MLLMEraser consistently outperforms state-of-the-art MLLM unlearning baselines, achieving stronger forgetting performance with lower computational cost and minimal utility degradation.
♻ ☆ Real-Time Vibration-Based Bearing Fault Diagnosis Under Time-Varying Speed Conditions
Detection of rolling-element bearing faults is crucial for implementing proactive maintenance strategies and for minimizing the economic and operational consequences of unexpected failures. However, many existing techniques are developed and tested under strictly controlled conditions, limiting their adaptability to the diverse and dynamic settings encountered in practical applications. This paper presents an efficient real-time convolutional neural network (CNN) for diagnosing multiple bearing faults under various noise levels and time-varying rotational speeds. Additionally, we propose a novel Fisher-based spectral separability analysis (SSA) method to elucidate the effectiveness of the designed CNN model. We conducted experiments on both healthy bearings and bearings afflicted with inner race, outer race, and roller ball faults. The experimental results show the superiority of our model over the current state-of-the-art approach in three folds: it achieves substantial accuracy gains of up to 15.8%, it is robust to noise with high performance across various signal-to-noise ratios, and it runs in real-time with processing durations five times less than acquisition. Additionally, by using the proposed SSA technique, we offer insights into the model's performance and underscore its effectiveness in tackling real-world challenges.
♻ ☆ SeNeDiF-OOD: Semantic Nested Dichotomy Fusion for Out-of-Distribution Detection Methodology in Open-World Classification. A Case Study on Monument Style Classification
Out-of-distribution (OOD) detection is a fundamental requirement for the reliable deployment of artificial intelligence applications in open-world environments. However, addressing the heterogeneous nature of OOD data, ranging from low-level corruption to semantic shifts, remains a complex challenge that single-stage detectors often fail to resolve. To address this issue, we propose SeNeDiF-OOD, a novel methodology based on Semantic Nested Dichotomy Fusion. This framework decomposes the detection task into a hierarchical structure of binary fusion nodes, where each layer is designed to integrate decision boundaries aligned with specific levels of semantic abstraction. To validate the proposed framework, we present a comprehensive case study using MonuMAI, a real-world architectural style recognition system exposed to an open environment. This application faces a diverse range of inputs, including non-monument images, unknown architectural styles, and adversarial attacks, making it an ideal testbed for our proposal. Through extensive experimental evaluation in this domain, results demonstrate that our hierarchical fusion methodology significantly outperforms traditional baselines, effectively filtering these diverse OOD categories while preserving in-distribution performance.
comment: 28 pages
♻ ☆ Multivariate Standardized Residuals for Conformal Prediction
While split conformal prediction guarantees marginal coverage, approaching the stronger property of conditional coverage is essential for reliable uncertainty quantification. Naive conformal scores, however, suffer from poor conditional coverage in heteroskedastic settings. In univariate regression, this is commonly addressed by normalizing nonconformity scores using estimated local score variance. In this work, we propose a natural extension of this normalization to the multivariate setting, effectively whitening the residuals to decouple output correlations and standardize local variance. We demonstrate that using the Mahalanobis distance induced by a learned local covariance as a nonconformity score provides a closed-form, computationally efficient mechanism for capturing inter-output correlations and heteroskedasticity, avoiding the expensive sampling required by previous methods based on cumulative distribution functions. This structure unlocks several practical extensions, including the handling of missing output values, the refinement of conformal sets when partial information is revealed, and the construction of valid conformal sets for transformations of the output. Finally, we provide extensive empirical evidence on both synthetic and real-world datasets showing that our approach yields conformal sets that significantly improve upon the conditional coverage of existing multivariate baselines.
♻ ☆ A Survey on Efficient Vision-Language-Action Models
Vision-Language-Action models (VLAs) represent a significant frontier in embodied intelligence, aiming to bridge digital knowledge with physical-world interaction. Despite their remarkable performance, foundational VLAs are hindered by the prohibitive computational and data demands inherent to their large-scale architectures. While a surge of recent research has focused on enhancing VLA efficiency, the field lacks a unified framework to consolidate these disparate advancements. To bridge this gap, this survey presents the first comprehensive review of Efficient Vision-Language-Action models (Efficient VLAs) across the entire model-training-data pipeline. Specifically, we introduce a unified taxonomy to systematically organize the disparate efforts in this domain, categorizing current techniques into three core pillars: (1) Efficient Model Design, focusing on efficient architectures and model compression; (2) Efficient Training, which reduces computational burdens during model learning; and (3) Efficient Data Collection, which addresses the bottlenecks in acquiring and utilizing robotic data. Through a critical review of state-of-the-art methods within this framework, this survey not only establishes a foundational reference for the community but also summarizes representative applications, delineates key challenges, and charts a roadmap for future research. We maintain a continuously updated project page to track our latest developments: https://evla-survey.github.io/.
comment: 28 pages, 8 figures
♻ ☆ Stream: Scaling up Mechanistic Interpretability to Long Context in LLMs via Sparse Attention
As Large Language Models (LLMs) scale to million-token contexts, traditional Mechanistic Interpretability techniques for analyzing attention scale quadratically with context length, demanding terabytes of memory beyond 100,000 tokens. We introduce Sparse Tracing, a novel technique that leverages dynamic sparse attention to efficiently analyze long context attention patterns. We present Stream, a compilable hierarchical pruning algorithm that estimates per-head sparse attention masks in near-linear time $O(T \log T)$ and linear space $O(T)$, enabling one-pass interpretability at scale. Stream performs a binary-search-style refinement to retain only the top-$k$ key blocks per query while preserving the model's next-token behavior. We apply Stream to long chain-of-thought reasoning traces and identify thought anchors while pruning 97-99\% of token interactions. On the RULER benchmark, Stream preserves critical retrieval paths while discarding 90-96\% of interactions and exposes layer-wise routes from the needle to output. Our method offers a practical drop-in tool for analyzing attention patterns and tracing information flow without terabytes of caches. By making long context interpretability feasible on consumer GPUs, Sparse Tracing helps democratize chain-of-thought monitoring. Code is available at https://anonymous.4open.science/r/stream-03B8/.
♻ ☆ SimMerge: Learning to Select Merge Operators from Similarity Signals
Model merging combines multiple models into a single model with aggregated capabilities, making it a powerful tool for large language model (LLM) development. However, scaling model merging is challenging: performance depends on the choice of merge operator, model subset, and merge order, often requiring expensive merge-and-evaluate searches. In this work, we introduce SimMerge, a predictive merge-selection method that identifies high-performing merges using inexpensive, task-agnostic similarity signals between models. Given a small set of unlabeled probes, SimMerge extracts functional and structural features to predict the performance of candidate two-way merges, enabling merge operator, order and model subset selection without iterative evaluation. We show that SimMerge consistently outperforms the best fixed merge operator across 7B-parameter LLMs and generalizes to multi-way merges and 111B-parameter LLMs without retraining. We further introduce a bandit variant that supports adding new tasks and operators online. Our results suggest that learning how to merge enables scalable model composition when checkpoint catalogs are large and evaluation budgets are limited.
♻ ☆ Code-Mixed Phonetic Perturbations for Red-Teaming LLMs
Large language models (LLMs) continue to be demonstrably unsafe despite sophisticated safety alignment techniques and multilingual red-teaming. However, recent red-teaming work has focused on incremental gains in attack success over identifying underlying architectural vulnerabilities in models. In this work, we present \textbf{CMP-RT}, a novel red-teaming probe that combines code-mixing with phonetic perturbations (CMP), exposing a tokenizer-level safety vulnerability in transformers. Combining realistic elements from digital communication such as code-mixing and textese, CMP-RT preserves phonetics while perturbing safety-critical tokens, allowing harmful prompts to bypass alignment mechanisms while maintaining high prompt interpretability, exposing a gap between pre-training and safety alignment. Our results demonstrate robustness against standard defenses, attack scalability, and generalization of the vulnerability across modalities and to SOTA models like Gemini-3-Pro, establishing CMP-RT as a major threat model and highlighting tokenization as an under-examined vulnerability in current safety pipelines.
♻ ☆ p-less Sampling: A Robust Hyperparameter-Free Approach for LLM Decoding
Obtaining high-quality outputs from Large Language Models (LLMs) often depends upon the choice of a sampling-based decoding strategy to probabilistically choose the next token at each generation step. While a variety of such sampling methods have been proposed, their performance can be sensitive to the selection of hyperparameters which may require different settings depending upon the generation task and temperature configuration. In this work, we introduce $p$-less sampling: an information-theoretic approach to sampling which dynamically sets a truncation threshold at each decoding step based on the entire token probability distribution. Unlike existing methods, $p$-less sampling has no hyperparameters and consistently produces high-quality outputs as temperature increases. We provide theoretical perspectives on $p$-less sampling to ground our proposed method and conduct experiments to empirically validate its effectiveness across a range of math, logical reasoning, and creative writing tasks. Our results demonstrate how $p$-less sampling consistently outperforms existing sampling approaches while exhibiting much less degradation in text quality at higher temperature values. We further show how $p$-less achieves greater inference-time efficiency than alternative methods through lower average token sampling times and shorter generation lengths, without sacrificing accuracy. Finally, we provide analyses to highlight the benefits of $p$-less through qualitative examples, case studies, and diversity assessments. The code is available at https://github.com/ryttry/p-less .
♻ ☆ Your Latent Reasoning is Secretly Policy Improvement Operator
Recently, small models with latent recursion have obtained promising results on complex reasoning tasks. These results are typically explained by the theory that such recursion increases a networks depth, allowing it to compactly emulate the capacity of larger models. However, the performance of recursively added layers remains behind the capabilities of one pass models with the same feed forward depth. This means that in the looped version, not every recursive step effectively contributes to depth. This raises the question: when and why does latent reasoning improve performance, and when does it result in dead compute? In our work, we analyze the algorithms that latent reasoning provides answer to this question. We show that latent reasoning can be formalized as a classifier free guidance and policy improvement algorithm. Building on these insights, we propose to use a training schemes from reinforcement learning and diffusion methods for latent reasoning models. Using the Tiny Recursive Model as our testbed, we show that with our modifications we can avoid dead compute steps and reduce the total number of forward passes by 18x while maintaining performance. Broadly speaking, we show how a policy improvement perspective on recursive steps can explain model behavior and provide insights for further improvements.
♻ ☆ DeepGB-TB: A Risk-Balanced Cross-Attention Gradient-Boosted Convolutional Network for Rapid, Interpretable Tuberculosis Screening AAAI 2026
Large-scale tuberculosis (TB) screening is limited by the high cost and operational complexity of traditional diagnostics, creating a need for artificial-intelligence solutions. We propose DeepGB-TB, a non-invasive system that instantly assigns TB risk scores using only cough audio and basic demographic data. The model couples a lightweight one-dimensional convolutional neural network for audio processing with a gradient-boosted decision tree for tabular features. Its principal innovation is a Cross-Modal Bidirectional Cross-Attention module (CM-BCA) that iteratively exchanges salient cues between modalities, emulating the way clinicians integrate symptoms and risk factors. To meet the clinical priority of minimizing missed cases, we design a Tuberculosis Risk-Balanced Loss (TRBL) that places stronger penalties on false-negative predictions, thereby reducing high-risk misclassifications. DeepGB-TB is evaluated on a diverse dataset of 1,105 patients collected across seven countries, achieving an AUROC of 0.903 and an F1-score of 0.851, representing a new state of the art. Its computational efficiency enables real-time, offline inference directly on common mobile devices, making it ideal for low-resource settings. Importantly, the system produces clinically validated explanations that promote trust and adoption by frontline health workers. By coupling AI innovation with public-health requirements for speed, affordability, and reliability, DeepGB-TB offers a tool for advancing global TB control.
comment: Accepted by AAAI 2026 (oral)
♻ ☆ Decoding Workload and Agreement From EEG During Spoken Dialogue With Conversational AI
Passive brain-computer interfaces offer a potential source of implicit feedback for alignment of large language models, but most mental state decoding has been done in controlled tasks. This paper investigates whether established EEG classifiers for mental workload and implicit agreement can be transferred to spoken human-AI dialogue. We introduce two conversational paradigms - a Spelling Bee task and a sentence completion task- and an end-to-end pipeline for transcribing, annotating, and aligning word-level conversational events with continuous EEG classifier output. In a pilot study, workload decoding showed interpretable trends during spoken interaction, supporting cross-paradigm transfer. For implicit agreement, we demonstrate continuous application and precise temporal alignment to conversational events, while identifying limitations related to construct transfer and asynchronous application of event-based classifiers. Overall, the results establish feasibility and constraints for integrating passive BCI signals into conversational AI systems.
comment: Accepted at the 14th International Winter Conference on Brain-Computer Interface
♻ ☆ Bottom-up Policy Optimization: Your Language Model Policy Secretly Contains Internal Policies
Existing reinforcement learning (RL) approaches treat large language models (LLMs) as a unified policy, overlooking their internal mechanisms. In this paper, we decompose the LLM-based policy into Internal Layer Policies and Internal Modular Policies via Transformer's residual stream. Our entropy analysis on internal policy reveals distinct patterns: (1) universally, policies evolve from high-entropy exploration in early layers to deterministic refinement in top layers; and (2) Qwen exhibits a progressive, human-like reasoning structure, contrasting with the abrupt final-layer convergence in Llama. Furthermore, we discover that optimizing internal layers induces feature refinement, forcing lower layers to capture high-level reasoning representations early. Motivated by these findings, we propose Bottom-up Policy Optimization (BuPO), a novel RL paradigm that reconstructs the LLM's reasoning foundation from the bottom up by optimizing internal layers in early stages. Extensive experiments on complex reasoning benchmarks demonstrate the effectiveness of BuPO. Our code is available at https://github.com/Trae1ounG/BuPO.
comment: Preprint. Our code is available at https://github.com/Trae1ounG/BuPO
♻ ☆ Performative Policy Gradient: Optimality in Performative Reinforcement Learning
Post-deployment machine learning algorithms often influence the environments they act in, and thus shift the underlying dynamics that the standard reinforcement learning (RL) methods ignore. While designing optimal algorithms in this performative setting has recently been studied in supervised learning, the RL counterpart remains under-explored. In this paper, we prove the performative counterparts of the performance difference lemma and the policy gradient theorem in RL, and further introduce the Performative Policy Gradient algorithm (PePG). PePG is the first policy gradient algorithm designed to account for performativity in RL. Under softmax parametrisation, and also with and without entropy regularisation, we prove that PePG converges to performatively optimal policies, i.e. policies that remain optimal under the distribution shifts induced by themselves. Thus, PePG significantly extends the prior works in Performative RL that achieves performative stability but not optimality. Furthermore, our empirical analysis on standard performative RL environments validate that PePG outperforms the existing performative RL algorithms aiming for stability.
♻ ☆ You Only Forward Once: An Efficient Compositional Judging Paradigm
Multimodal large language models (MLLMs) show strong potential as judges. However, existing approaches face a fundamental trade-off: adapting MLLMs to output a single score misaligns with the generative nature of MLLMs and limits fine-grained requirement understanding, whereas autoregressively generating judging analyses is prohibitively slow in high-throughput settings. Observing that judgment reduces to verifying whether inputs satisfy a set of structured requirements, we propose YOFO, a template-conditioned method that judges all requirements in a single forward pass. Built on an autoregressive model, YOFO accepts a structured requirement template and, in one inference step, produces a binary yes/no decision for each requirement by reading the logits of the final token associated with that requirement. This design yields orders-of-magnitude speedups while preserving interpretability. Extensive experiments show that YOFO not only achieves state-of-the-art results on standard recommendation datasets, but also supports dependency-aware analysis -- where subsequent judgments are conditioned on previous ones -- and further benefits from post-hoc CoT.
♻ ☆ FPBoost: Fully Parametric Gradient Boosting for Survival Analysis
Survival analysis is a statistical framework for modeling time-to-event data. It plays a pivotal role in medicine, reliability engineering, and social science research, where understanding event dynamics even with few data samples is critical. Recent advancements in machine learning, particularly those employing neural networks and decision trees, have introduced sophisticated algorithms for survival modeling. However, many of these methods rely on restrictive assumptions about the underlying event-time distribution, such as proportional hazard, time discretization, or accelerated failure time. In this study, we propose FPBoost, a survival model that combines a weighted sum of fully parametric hazard functions with gradient boosting. Distribution parameters are estimated with decision trees trained by maximizing the full survival likelihood. We show how FPBoost is a universal approximator of hazard functions, offering full event-time modeling flexibility while maintaining interpretability through the use of well-established parametric distributions. We evaluate concordance and calibration of FPBoost across multiple benchmark datasets, showcasing its robustness and versatility as a new tool for survival estimation.
♻ ☆ Code over Words: Overcoming Semantic Inertia via Code-Grounded Reasoning
LLMs struggle with Semantic Inertia: the inability to inhibit pre-trained priors (e.g., "Lava is Dangerous") when dynamic, in-context rules contradict them. We probe this phenomenon using Baba Is You, where physical laws are mutable text rules, enabling precise evaluation of models' ability to override learned priors when rules change. We quantatively observe that larger models can exhibit inverse scaling: they perform worse than smaller models when natural language reasoning requires suppressing pre-trained associations (e.g., accepting "Lava is Safe"). Our analysis attributes this to natural language encoding, which entangles descriptive semantics and logical rules, leading to persistent hallucinations of familiar physics despite explicit contradictory rules. Here we show that representing dynamics as executable code, rather than descriptive text, reverses this trend and enables effective prior inhibition. We introduce Code-Grounded Vistas (LCV), which fine-tunes models on counterfactual pairs and identifies states with contradictory rules, thereby forcing attention to logical constraints rather than visual semantics. This training-time approach outperforms expensive inference-time search methods in both efficiency and accuracy. Our results demonstrate that representation fundamentally determines whether scaling improves or impairs contextual reasoning. This challenges the assumption that larger models are universally better, with implications for domains that require dynamic overriding of learned priors.
♻ ☆ ePC: Fast and Deep Predictive Coding for Digital Hardware
Predictive Coding (PC) offers a brain-inspired alternative to backpropagation for neural network training, described as a physical system minimizing its internal energy. However, in practice, PC is predominantly digitally simulated, requiring excessive amounts of compute while struggling to scale to deeper architectures. This paper reformulates PC to overcome this hardware-algorithm mismatch. First, we uncover how the canonical state-based formulation of PC (sPC) is, by design, deeply inefficient in digital simulation, inevitably resulting in exponential signal decay that stalls the entire minimization process. Then, to overcome this fundamental limitation, we introduce error-based PC (ePC), a novel reparameterization of PC which does not suffer from signal decay. Though no longer biologically plausible, ePC numerically computes exact PC weights gradients and runs orders of magnitude faster than sPC. Experiments across multiple architectures and datasets demonstrate that ePC matches backpropagation's performance even for deeper models where sPC struggles. Besides practical improvements, our work provides theoretical insight into PC dynamics and establishes a foundation for scaling PC-based learning to deeper architectures on digital hardware and beyond.
comment: Title & intro change to emphasize PC's hardware-algorithm mismatch, which ePC solves for digital hardware. All code available at https://github.com/cgoemaere/error_based_PC
♻ ☆ Extending RLVR to Open-Ended Tasks via Verifiable Multiple-Choice Reformulation
Reinforcement Learning with Verifiable Rewards(RLVR) has demonstrated great potential in enhancing the reasoning capabilities of large language models (LLMs). However, its success has thus far been largely confined to the mathematical and programming domains with clear and automatically checkable outcomes. Reinforcement learning on open-ended tasks (e.g., creative writing and subjective Q&A) continues to rely on reward models due to the absence of verifiable solutions. This raises a key question: how can we extend RLVR to strengthen reasoning in open-ended tasks regardless of the absence of the unambiguous ground truth? To overcome this challenge, we introduce Verifiable Multiple-Choice Reformulation for Reinforcement Learning from Verifiable Rewards (VMR-RLVR), a novel training strategy that restructures open-ended data into verifiable multiple-choice formats, enabling effective training even in the absence of explicit ground truth. Experimental results on multiple benchmarks validate the effectiveness of our method in improving LLM performance on open-ended tasks. Notably, across seven open-ended benchmarks, our VMR-RLVR training delivers an average gain of 3.29 points over the RL with reward model.
comment: 8 pages
♻ ☆ How Much Do LLMs Hallucinate across Languages? On Realistic Multilingual Estimation of LLM Hallucination EMNLP 2025
In the age of misinformation, hallucination - the tendency of Large Language Models (LLMs) to generate non-factual or unfaithful responses - represents the main risk for their global utility. Despite LLMs becoming increasingly multilingual, the vast majority of research on detecting and quantifying LLM hallucination are (a) English-centric and (b) focus on machine translation (MT) and summarization, tasks that are less common in realistic settings than open information seeking. In contrast, we aim to quantify the extent of LLM hallucination across languages in knowledge-intensive long-form question answering (LFQA). To this end, we train a multilingual hallucination detection model and conduct a large-scale study across 30 languages and 6 open-source LLM families. We start from an English hallucination detection dataset and rely on MT to translate-train a detection model. We also manually annotate gold data for five high-resource languages; we then demonstrate, for these languages, that the estimates of hallucination rates are similar between silver (LLM-generated) and gold test sets, validating the use of silver data for estimating hallucination rates for other languages. For the final rates estimation, we build open-domain QA dataset for 30 languages with LLM-generated prompts and Wikipedia articles as references. Our analysis shows that LLMs, in absolute terms, hallucinate more tokens in high-resource languages due to longer responses, but that the actual hallucination rates (i.e., normalized for length) seems uncorrelated with the sizes of languages' digital footprints. We also find that smaller LLMs hallucinate more, and significantly, LLMs with broader language support display higher hallucination rates.
comment: EMNLP 2025
♻ ☆ AI-Based Stroke Rehabilitation Domiciliary Assessment System with ST_GCN Attention
Effective stroke recovery requires continuous rehabilitation integrated with daily living. To support this need, we propose a home-based rehabilitation exercise and feedback system. The system consists of (1) hardware setup with RGB-D camera and wearable sensors to capture stroke movements, (2) a mobile application for exercise guidance, and (3) an AI server for assessment and feedback. When a stroke user exercises following the application guidance, the system records skeleton sequences, which are then assessed by the deep learning model, RAST-G@ (Rehabilitation Assessment Spatio-Temporal Graph ATtention). The model employs a spatio-temporal graph convolutional network to extract skeletal features and integrates transformer-based temporal attention to figure out action quality. For system implementation, we constructed the NRC dataset, include 10 upper-limb activities of daily living (ADL) and 5 range-of-motion (ROM) collected from stroke and non-disabled participants, with Score annotations provided by licensed physiotherapists. Results on the KIMORE and NRC datasets show that RAST-G@ improves over baseline in terms of MAD, RMSE, and MAPE. Furthermore, the system provides user feedback that combines patient-centered assessment and monitoring. The results demonstrate that the proposed system offers a scalable approach for quantitative and consistent domiciliary rehabilitation assessment.
comment: 9 pages(except references), 7 figures 6 Tables
♻ ☆ Conformal mapping based Physics-informed neural networks for designing neutral inclusions
We address the neutral inclusion problem with imperfect boundary conditions, focusing on designing interface functions for inclusions of arbitrary shapes. Traditional Physics-Informed Neural Networks (PINNs) struggle with this inverse problem, leading to the development of Conformal Mapping Coordinates Physics-Informed Neural Networks (CoCo-PINNs), which integrate geometric function theory with PINNs. CoCo-PINNs effectively solve forward-inverse problems by modeling the interface function through neural network training, which yields a neutral inclusion effect. This approach enhances the performance of PINNs in terms of credibility, consistency, and stability.
♻ ☆ Automated Archival Descriptions with Federated Intelligence of LLMs
Enforcing archival standards requires specialized expertise, and manually creating metadata descriptions for archival materials is a tedious and error-prone task. This work aims at exploring the potential of agentic AI and large language models (LLMs) in addressing the challenges of implementing a standardized archival description process. To this end, we introduce an agentic AI-driven system for automated generation of high-quality metadata descriptions of archival materials. We develop a federated optimization approach that unites the intelligence of multiple LLMs to construct optimal archival metadata. We also suggest methods to overcome the challenges associated with using LLMs for consistent metadata generation. To evaluate the feasibility and effectiveness of our techniques, we conducted extensive experiments using a real-world dataset of archival materials, which covers a variety of document types and formats. The evaluation results demonstrate the feasibility of our techniques and highlight the superior performance of the federated optimization approach compared to single-model solutions in metadata quality and reliability.
comment: 16 pages
♻ ☆ KVmix: Gradient-Based Layer Importance-Aware Mixed-Precision Quantization for KV Cache AAAI 2026
The high memory demands of the Key-Value (KV) Cache during the inference of Large Language Models (LLMs) severely restrict their deployment in resource-constrained platforms. Quantization can effectively alleviate the memory pressure caused by KV Cache. However, existing methods either rely on static one-size-fits-all precision allocation or fail to dynamically prioritize critical KV in long-context tasks, forcing memory-accuracy-throughput tradeoffs. In this work, we propose a novel mixed-precision quantization method for KV Cache named KVmix. KVmix leverages gradient-based importance analysis to evaluate how individual Key and Value projection matrices affect the model loss, enabling layer-specific bit-width allocation for mix-precision quantization. It dynamically prioritizes higher precision for important layers while aggressively quantizing less influential ones, achieving a tunable balance between accuracy and efficiency. KVmix also introduces a dynamic long-context optimization strategy that adaptively keeps full-precision KV pairs for recent pivotal tokens and compresses older ones, achieving high-quality sequence generation with low memory usage. Additionally, KVmix provides efficient low-bit quantization and CUDA kernels to optimize computational overhead. On LLMs such as Llama and Mistral, KVmix achieves near-lossless inference performance with extremely low quantization configuration (Key 2.19bit Value 2.38bit), while delivering a remarkable 4.9x memory compression and a 5.3x speedup in inference throughput.
comment: AAAI 2026 Oral
♻ ☆ LinearizeLLM: An Agent-Based Framework for LLM-Driven Exact Linear Reformulation of Nonlinear Optimization Problems
Reformulating nonlinear optimization problems into solver-ready linear optimization problems is often necessary for practical applications, but the process is often manual and requires domain expertise. We propose LinearizeLLM, an agent-based LLM framework that produces solver-ready linear reformulations of nonlinear optimization problems. Agents first detect the nonlinearity pattern (e.g., bilinear products) and apply nonlinearity pattern-aware reformulation techniques, selecting the most suitable linearization technique. We benchmark on 40 instances: 27 derived from ComplexOR by injecting exactly-linearizable operators, and 13 automatically generated instances with deeply nested nonlinearities. LinearizeLLM achieves 73\% mean end-to-end overall success (OSR) across nonlinearity depths (8.3x higher than a one-shot LLM baseline; 4.3x higher than Pyomo). The results suggest that a set of pattern-specialized agents can automate linearization, supporting natural-language-based modeling of nonlinear optimization.
comment: This version is a major revision with a new abstract, updated workflow logic and description, an expanded instance set, additional numerical experiments, and corrected bibliography entries
♻ ☆ SACO: Sequence-Aware Constrained Optimization Framework for Coupon Distribution in E-commerce
Coupon distribution is a critical marketing strategy used by online platforms to boost revenue and enhance user engagement. Regrettably, existing coupon distribution strategies fall far short of effectively leveraging the complex sequential interactions between platforms and users. This critical oversight, despite the abundance of e-commerce log data, has precipitated a performance plateau. In this paper, we focus on the scene that the platforms make sequential coupon distribution decision multiple times for various users, with each user interacting with the platform repeatedly. Based on this scenario, we propose a novel marketing framework, named \textbf{S}equence-\textbf{A}ware \textbf{C}onstrained \textbf{O}ptimization (SACO) framework, to directly devise coupon distribution policy for long-term revenue boosting. SACO framework enables optimized online decision-making in a variety of real-world marketing scenarios. It achieves this by seamlessly integrating three key characteristics, general scenarios, sequential modeling with more comprehensive historical data, and efficient iterative updates within a unified framework. Furthermore, empirical results on real-world industrial dataset, alongside public and synthetic datasets demonstrate the superiority of our framework.
♻ ☆ A.X K1 Technical Report
We introduce A.X K1, a 519B-parameter Mixture-of-Experts (MoE) language model trained from scratch. Our design leverages scaling laws to optimize training configurations and vocabulary size under fixed computational budgets. A.X K1 is pre-trained on a corpus of approximately 10T tokens, curated by a multi-stage data processing pipeline. Designed to bridge the gap between reasoning capability and inference efficiency, A.X K1 supports explicitly controllable reasoning to facilitate scalable deployment across diverse real-world scenarios. We propose a simple yet effective Think-Fusion training recipe, enabling user-controlled switching between thinking and non-thinking modes within a single unified model. Extensive evaluations demonstrate that A.X K1 achieves performance competitive with leading open-source models, while establishing a distinctive advantage in Korean-language benchmarks.
comment: This paper is withdrawn pending additional internal review of the methodology and analysis
♻ ☆ Clinical Data Goes MEDS? Let's OWL make sense of it
The application of machine learning on healthcare data is often hindered by the lack of standardized and semantically explicit representation, leading to limited interoperability and reproducibility across datasets and experiments. The Medical Event Data Standard (MEDS) addresses these issues by introducing a minimal, event-centric data model designed for reproducible machine-learning workflows from health data. However, MEDS is defined as a data-format specification and does not natively provide integration with the Semantic Web ecosystem. In this article, we introduce MEDS-OWL, a lightweight OWL ontology that provides formal concepts and relations to represent MEDS datasets as RDF graphs. Additionally, we implemented meds2rdf, a Python conversion library that transforms MEDS events into RDF graphs, ensuring conformance with the ontology. We evaluate the proposed approach on two datasets: a synthetic clinical cohort describing care pathways for ruptured intracranial aneurysms, and a real-world subset of MIMIC-IV. To assess semantic consistency, we performed a SHACL validation against the resulting knowledge graphs. The first release of MEDS-OWL comprises 13 classes, 10 object properties, 20 data properties, and 24 OWL axioms. Combined with meds2rdf, it enables data transformation into FAIR-aligned datasets, provenance-aware publishing, and interoperability of event-based clinical data. By bridging MEDS with the Semantic Web, this work contributes a reusable semantic layer for event-based clinical data and establishes a robust foundation for subsequent graph-based analytics.
comment: 12 pages, 5 tables, 4 figures, accepted to SWAT4HCLS 2026 conference
♻ ☆ Reinforcement Learning for Durable Algorithmic Recourse
Algorithmic recourse seeks to provide individuals with actionable recommendations that increase their chances of receiving favorable outcomes from automated decision systems (e.g., loan approvals). While prior research has emphasized robustness to model updates, considerably less attention has been given to the temporal dynamics of recourse--particularly in competitive, resource-constrained settings where recommendations shape future applicant pools. In this work, we present a novel time-aware framework for algorithmic recourse, explicitly modeling how candidate populations adapt in response to recommendations. Additionally, we introduce a novel reinforcement learning (RL)-based recourse algorithm that captures the evolving dynamics of the environment to generate recommendations that are both feasible and valid. We design our recommendations to be durable, supporting validity over a predefined time horizon T. This durability allows individuals to confidently reapply after taking time to implement the suggested changes. Through extensive experiments in complex simulation environments, we show that our approach substantially outperforms existing baselines, offering a superior balance between feasibility and long-term validity. Together, these results underscore the importance of incorporating temporal and behavioral dynamics into the design of practical recourse systems.
♻ ☆ AI-generated data contamination erodes pathological variability and diagnostic reliability
Generative artificial intelligence (AI) is rapidly populating medical records with synthetic content, creating a feedback loop where future models are increasingly at risk of training on uncurated AI-generated data. However, the clinical consequences of this AI-generated data contamination remain unexplored. Here, we show that in the absence of mandatory human verification, this self-referential cycle drives a rapid erosion of pathological variability and diagnostic reliability. By analysing more than 800,000 synthetic data points across clinical text generation, vision-language reporting, and medical image synthesis, we find that models progressively converge toward generic phenotypes regardless of the model architecture. Specifically, rare but critical findings, including pneumothorax and effusions, vanish from the synthetic content generated by AI models, while demographic representations skew heavily toward middle-aged male phenotypes. Crucially, this degradation is masked by false diagnostic confidence; models continue to issue reassuring reports while failing to detect life-threatening pathology, with false reassurance rates tripling to 40%. Blinded physician evaluation confirms that this decoupling of confidence and accuracy renders AI-generated documentation clinically useless after just two generations. We systematically evaluate three mitigation strategies, finding that while synthetic volume scaling fails to prevent collapse, mixing real data with quality-aware filtering effectively preserves diversity. Ultimately, our results suggest that without policy-mandated human oversight, the deployment of generative AI threatens to degrade the very healthcare data ecosystems it relies upon.
comment: *Corresponding author: Dianbo Liu (dianbo@nus.edu.sg)
♻ ☆ Decomposed Trust: Exploring Privacy, Adversarial Robustness, Fairness, and Ethics of Low-Rank LLMs
Large language models (LLMs) have driven major advances across domains, yet their massive size hinders deployment in resource-constrained settings. Model compression addresses this challenge, with low-rank factorization emerging as a particularly effective method for reducing size, memory, and computation while maintaining accuracy. However, while these compressed models boast of benign performance and system-level advantages, their trustworthiness implications remain poorly understood. In this paper, we present the first comprehensive study of how low-rank factorization affects LLM trustworthiness across privacy, adversarial robustness, fairness, and ethical alignment. We evaluate multiple LLMs of different sizes and variants compressed with diverse low-rank algorithms, revealing key insights: (1) low-rank compression preserves or improves training data privacy but weakens PII protection during conversation; (2) adversarial robustness is generally preserved and often enhanced, even under deep compression; (3) ethical reasoning degrades in zero-shot settings but partially recovers with few-shot prompting; (4) fairness declines under compression. Beyond compression, we investigate how model scale and fine-tuning affect trustworthiness, as both are important in low-rank methods. To guide trustworthy compression strategies, we end our paper with a gradient-based attribution analysis to identify which layers in LLMs contribute most to adversarial robustness.
comment: 14 pages, 10 figures
♻ ☆ Draft-based Approximate Inference for LLMs ICLR 2026
Optimizing inference for long-context large language models (LLMs) is increasingly important due to the quadratic compute and linear memory cost of Transformers. Existing approximate inference methods, including key-value (KV) cache dropping, sparse attention, and prompt compression, typically rely on coarse predictions of token or KV pair importance. We unify and extend recent work by introducing a framework for approximate LLM inference that leverages small draft models to more accurately predict token and KV pair importance. We provide novel theoretical and empirical analyses justifying lookahead-based importance estimation techniques. Within this framework, we present: (i) SpecKV, the first method to use lookahead with a small draft model to enable precise KV cache dropping; (ii) SpecPC, which leverages draft model attention activations to identify and discard less important prompt tokens; and (iii) SpecKV-PC, a cascaded compression strategy combining both techniques. Extensive experiments on long-context benchmarks demonstrate that our methods consistently achieve higher accuracy than existing baselines while retaining the same efficiency gains in memory usage, latency, and throughput.
comment: Accepted to ICLR 2026
♻ ☆ Reliable Grid Forecasting: State Space Models for Safety-Critical Energy Systems
Accurate grid load forecasting is safety-critical: under-predictions risk supply shortfalls, while symmetric error metrics can mask this operational asymmetry. We introduce an operator-legible evaluation framework -- Under-Prediction Rate (UPR), tail Reserve$_{99.5}^{\%}$ requirements, and explicit inflation diagnostics (Bias$_{24h}$/OPR) -- to quantify one-sided reliability risk beyond MAPE. Using this framework, we evaluate state space models (Mamba variants) and strong baselines on a weather-aligned California Independent System Operator (CAISO) dataset spanning Nov 2023--Nov 2025 (84,498 hourly records across 5 regional transmission areas) under a rolling-origin walk-forward backtest. We develop and evaluate thermal-lag-aligned weather fusion strategies for these architectures. Our results demonstrate that standard accuracy metrics are insufficient proxies for operational safety: models with comparable MAPE can imply materially different tail reserve requirements (Reserve$_{99.5}^{\%}$). We show that explicit weather integration narrows error distributions, reducing the impact of temperature-driven demand spikes. Furthermore, while probabilistic calibration reduces large-error events, it can induce systematic schedule inflation. We introduce Bias/OPR-constrained objectives to enable auditable trade-offs between minimizing tail risk and preventing trivial over-forecasting.
comment: 30 pages, 7 figures, 9 tables
♻ ☆ Sparse Autoencoder Features for Classifications and Transferability
Sparse Autoencoders (SAEs) provide potentials for uncovering structured, human-interpretable representations in Large Language Models (LLMs), making them a crucial tool for transparent and controllable AI systems. We systematically analyze SAE for interpretable feature extraction from LLMs in safety-critical classification tasks. Our framework evaluates (1) model-layer selection and scaling properties, (2) SAE architectural configurations, including width and pooling strategies, and (3) the effect of binarizing continuous SAE activations. SAE-derived features achieve macro F1 > 0.8, outperforming hidden-state and BoW baselines while demonstrating cross-model transfer from Gemma 2 2B to 9B-IT models. These features generalize in a zero-shot manner to cross-lingual toxicity detection and visual classification tasks. Our analysis highlights the significant impact of pooling strategies and binarization thresholds, showing that binarization offers an efficient alternative to traditional feature selection while maintaining or improving performance. These findings establish new best practices for SAE-based interpretability and enable scalable, transparent deployment of LLMs in real-world applications. Full repo: https://github.com/shan23chen/MOSAIC.
♻ ☆ GEO-Bench-2: From Performance to Capability, Rethinking Evaluation in Geospatial AI
Geospatial Foundation Models (GeoFMs) are transforming Earth Observation (EO), but evaluation lacks standardized protocols. GEO-Bench-2 addresses this with a comprehensive framework spanning classification, segmentation, regression, object detection, and instance segmentation across 19 permissively-licensed datasets. We introduce ''capability'' groups to rank models on datasets that share common characteristics (e.g., resolution, bands, temporality). This enables users to identify which models excel in each capability and determine which areas need improvement in future work. To support both fair comparison and methodological innovation, we define a prescriptive yet flexible evaluation protocol. This not only ensures consistency in benchmarking but also facilitates research into model adaptation strategies, a key and open challenge in advancing GeoFMs for downstream tasks. Our experiments show that no single model dominates across all tasks, confirming the specificity of the choices made during architecture design and pretraining. While models pretrained on natural images (ConvNext ImageNet, DINO V3) excel on high-resolution tasks, EO-specific models (TerraMind, Prithvi, and Clay) outperform them on multispectral applications such as agriculture and disaster response. These findings demonstrate that optimal model choice depends on task requirements, data modalities, and constraints. This shows that the goal of a single GeoFM model that performs well across all tasks remains open for future research. GEO-Bench-2 enables informed, reproducible GeoFM evaluation tailored to specific use cases. Code, data, and leaderboard for GEO-Bench-2 are publicly released under a permissive license.
♻ ☆ CFT-RAG: An Entity Tree Based Retrieval Augmented Generation Algorithm With Cuckoo Filter
Although retrieval-augmented generation(RAG) significantly improves generation quality by retrieving external knowledge bases and integrating generated content, it faces computational efficiency bottlenecks, particularly in knowledge retrieval tasks involving hierarchical structures for Tree-RAG. This paper proposes a Tree-RAG acceleration method based on the improved Cuckoo Filter, which optimizes entity localization during the retrieval process to achieve significant performance improvements. Tree-RAG effectively organizes entities through the introduction of a hierarchical tree structure, while the Cuckoo Filter serves as an efficient data structure that supports rapid membership queries and dynamic updates. The experiment results demonstrate that our method is much faster than naive Tree-RAG while maintaining high levels of generative quality. When the number of trees is large, our method is hundreds of times faster than naive Tree-RAG. Our work is available at https://github.com/TUPYP7180/CFT-RAG-2025.
♻ ☆ R-Stitch: Dynamic Trajectory Stitching for Efficient Reasoning
Chain-of-thought (CoT) enhances the problem-solving ability of large language models (LLMs) but incurs substantial inference cost due to long autoregressive trajectories. Existing acceleration strategies either shorten traces via early stopping or compression, or adopt speculative decoding with a smaller model. However, speculative decoding provides limited gains when model agreement is low and rigidly enforces token-level consistency, overlooking the observation that some smaller models, when correct, produce significantly more concise reasoning traces that could reduce inference length. We introduce R-Stitch, a training-free hybrid decoding framework that leverages token-level entropy as an uncertainty proxy to delegate computation between a small language model (SLM) and an LLM. Our analysis shows that high-entropy tokens are more likely to induce errors, motivating an entropy-guided routing strategy that lets the SLM efficiently handle low-entropy tokens while delegating uncertain ones to the LLM, thereby avoiding full rollbacks and preserving answer quality. We further extend this design with R-Stitch$^{+}$, which learns an adaptive routing policy to adjust the token budget dynamically beyond fixed thresholds. By jointly reducing per-token decoding complexity and the number of generated tokens, our method achieves substantial acceleration with negligible accuracy loss. Concretely, it attains peak speedups of 3.00$\times$ on DeepSeek-R1-Distill-Qwen-7B, 3.85$\times$ on 14B, and 4.10$\times$ on QWQ-32B while maintaining accuracy comparable to full LLM decoding. Moreover, it naturally enables adaptive efficiency--accuracy trade-offs that can be tailored to diverse computational budgets without retraining.
♻ ☆ Frictional Q-Learning
Off-policy reinforcement learning suffers from extrapolation errors when a learned policy selects actions that are weakly supported in the replay buffer. In this study, we address this issue by drawing an analogy to static friction in classical mechanics. From this perspective, the replay buffer is represented as a smooth, low-dimensional action manifold, where the support directions correspond to the tangential component, while the normal component captures the dominant first-order extrapolation error. This decomposition reveals an intrinsic anisotropy in value sensitivity that naturally induces a stability condition analogous to a friction threshold. To mitigate deviations toward unsupported actions, we propose Frictional Q-Learning, an off-policy algorithm that encodes supported actions as tangent directions using a contrastive variational autoencoder. We further show that an orthonormal basis of the orthogonal complement corresponds to normal components under mild local isometry assumptions. Empirical results on standard continuous-control benchmarks demonstrate robust, stable performance compared with existing baselines.
♻ ☆ RePPL: Recalibrating Perplexity by Uncertainty in Semantic Propagation and Language Generation for Explainable QA Hallucination Detection
Large Language Models (LLMs) have become powerful, but hallucinations remain a vital obstacle to their trustworthy use. Previous works improved the capability of hallucination detection by measuring uncertainty. But they can not explain the provenance behind why hallucinations occur, particularly in identifying which part of the inputs tends to trigger hallucinations. Recent works on the prompt attack indicate that uncertainty exists in semantic propagation, where attention mechanisms gradually fuse local token information into high-level semantics across layers. Meanwhile, uncertainty also emerges in language generation, due to its probability-based selection of high-level semantics for sampled generations. Based on that, we propose RePPL to recalibrate uncertainty measurement by these two aspects, which dispatches explainable uncertainty scores to each token and aggregates in Perplexity-style Log-Average form as a total score. Experiments show that it achieves the best comprehensive detection performance across various QA datasets on advanced models (average AUC of 0.833), and it is capable of producing token-level uncertainty scores as explanations of hallucination.
♻ ☆ T-COL: Generating Counterfactual Explanations for General User Preferences on Variable Machine Learning Systems
To address the interpretability challenge in machine learning (ML) systems, counterfactual explanations (CEs) have emerged as a promising solution. CEs are unique as they provide workable suggestions to users, instead of explaining why a certain outcome was predicted. The application of CEs encounters two main challenges: general user preferences and variable ML systems. On one hand, user preferences for specific values can vary depending on the task and scenario. On the other hand, the ML systems for verification may change while the CEs are performed. Thus, user preferences tend to be general rather than specific, and CEs need to be adaptable to variable ML models while maintaining robustness even as these models change. Facing these challenges, we propose general user preferences based on insights from psychology and behavioral science, and add the challenge of non-static ML systems as one preference. Moreover, we introduce a novel method, \uline{T}ree-based \uline{C}onditions \uline{O}ptional \uline{L}inks (T-COL) for generating CEs adaptable to general user preferences. Moreover, we employ T-COL to enhance the robustness of CEs with specific conditions, making CEs robust even when the ML models are replaced. To assess subjectivity preferences, we define LLM-based autonomous agents to simulate users and align them with real users. Experiments show that T-COL outperforms all baselines in adapting to general user preferences.
♻ ☆ AMA: Adaptive Memory via Multi-Agent Collaboration
The rapid evolution of Large Language Model (LLM) agents has necessitated robust memory systems to support cohesive long-term interaction and complex reasoning. Benefiting from the strong capabilities of LLMs, recent research focus has shifted from simple context extension to the development of dedicated agentic memory systems. However, existing approaches typically rely on rigid retrieval granularity, accumulation-heavy maintenance strategies, and coarse-grained update mechanisms. These design choices create a persistent mismatch between stored information and task-specific reasoning demands, while leading to the unchecked accumulation of logical inconsistencies over time. To address these challenges, we propose Adaptive Memory via Multi-Agent Collaboration (AMA), a novel framework that leverages coordinated agents to manage memory across multiple granularities. AMA employs a hierarchical memory design that dynamically aligns retrieval granularity with task complexity. Specifically, the Constructor and Retriever jointly enable multi-granularity memory construction and adaptive query routing. The Judge verifies the relevance and consistency of retrieved content, triggering iterative retrieval when evidence is insufficient or invoking the Refresher upon detecting logical conflicts. The Refresher then enforces memory consistency by performing targeted updates or removing outdated entries. Extensive experiments on challenging long-context benchmarks show that AMA significantly outperforms state-of-the-art baselines while reducing token consumption by approximately 80% compared to full-context methods, demonstrating its effectiveness in maintaining retrieval precision and long-term memory consistency.
comment: 8 pages
♻ ☆ Latent Adversarial Regularization for Offline Preference Optimization
Learning from human feedback typically relies on preference optimization that constrains policy updates through token-level regularization. However, preference optimization for language models is particularly challenging because token-space similarity does not imply semantic or behavioral similarity. To address this challenge, we leverage latent-space regularization for language model preference optimization. We introduce GANPO, which achieves latent-space regularization by penalizing divergence between the internal representations of a policy model and a reference model. Given that latent representations are not associated with explicit probability densities, we adopt an adversarial approach inspired by GANs to minimize latent-space divergence. We integrate GANPO as a regularizer into existing offline preference optimization objectives. Experiments across multiple model architectures and tasks show consistent improvements from latent-space regularization. Further, by comparing GANPO-induced inferential biases with those from token-level regularization, we find that GANPO provides more robust structural feedback under distributional shift and noise while maintaining comparable downstream performance with minor computational overhead.
♻ ☆ Physics-Based Benchmarking Metrics for Multimodal Synthetic Images
Current state of the art measures like BLEU, CIDEr, VQA score, SigLIP-2 and CLIPScore are often unable to capture semantic or structural accuracy, especially for domain-specific or context-dependent scenarios. For this, this paper proposes a Physics-Constrained Multimodal Data Evaluation (PCMDE) metric combining large language models with reasoning, knowledge based mapping and vision-language models to overcome these limitations. The architecture is comprised of three main stages: (1) feature extraction of spatial and semantic information with multimodal features through object detection and VLMs; (2) Confidence-Weighted Component Fusion for adaptive component-level validation; and (3) physics-guided reasoning using large language models for structural and relational constraints (e.g., alignment, position, consistency) enforcement.
♻ ☆ A Community-Aware Framework for Influence Maximization with Explicit Accounting for Inter-Community Influence
Influence Maximization (IM) seeks to identify a small set of seed nodes in a social network to maximize expected information spread under a diffusion model. While community-based approaches improve scalability by exploiting modular structure, they typically assume independence between communities, overlooking inter-community influence$\unicode{x2014}$a limitation that reduces effectiveness in real-world networks. We introduce Community-IM++, a scalable framework that explicitly models cross-community diffusion through a principled heuristic based on community-based diffusion degree (CDD) and a progressive budgeting strategy. The algorithm partitions the network, computes CDD to prioritize bridging nodes, and allocates seeds adaptively across communities using lazy evaluation to minimize redundant computations. Experiments on large real-world social networks under different edge weight models show that Community-IM++ achieves near-greedy influence spread at up to 100 times lower runtime, while outperforming Community-IM and degree heuristics across budgets and structural conditions. These results demonstrate the practicality of Community-IM++ for large-scale applications such as viral marketing, misinformation control, and public health campaigns, where efficiency and cross-community reach are critical.
comment: 7 pages, 4 figures, and 1 table
♻ ☆ Token-Importance Guided Direct Preference Optimization ICLR 2026
Aligning Large Language Models (LLMs) with human preferences is crucial for safe and effective AI interactions. While popular methods like Direct Preference Optimization (DPO) have simplified alignment, they remain sensitive to data noise and overlook the differential importance of individual tokens. Existing token-level approaches often rely on probability prediction or simplistic weighting schemes to obtain token importance, which still cannot fully address these issues. To solve this problem, we propose the Token-Importance Guided Direct Preference Optimization (TI-DPO), a framework that achieves fine-grained semantic control through two synergistic innovations. First, we propose a novel hybrid weighting mechanism that combines gradient attribution with a Gaussian prior, ensuring both the accuracy and robustness of token importance scores. Second, we employ a triplet loss to provide structured guidance for the optimization, explicitly guiding model outputs to approach preferred responses and diverge from non-preferred ones. Experimental results show that TI-DPO achieves higher accuracy and stronger generative diversity, providing more stable and computationally efficient solutions compared with DPO and other RLHF methods.
comment: Accepted in ICLR 2026
♻ ☆ HyBattNet: Hybrid Framework for Predicting the Remaining Useful Life of Lithium-Ion Batteries
Accurate prediction of the Remaining Useful Life (RUL) is essential for enabling timely maintenance of lithium-ion batteries, impacting the operational efficiency of electric applications that rely on them. This paper proposes a RUL prediction approach that leverages data from recent charge-discharge cycles to estimate the number of remaining usable cycles. The approach introduces both a novel signal preprocessing pipeline and a deep learning prediction model. In the signal preprocessing pipeline, a derived capacity feature is computed using interpolated current and capacity signals. Alongside original capacity, voltage and current, these features are denoised and enhanced using statistical metrics and a delta-based method to capture differences between the current and previous cycles. In the prediction model, the processed features are then fed into a hybrid deep learning architecture composed of 1D Convolutional Neural Networks (CNN), Attentional Long Short-Term Memory (A-LSTM), and Ordinary Differential Equation-based LSTM (ODE-LSTM) blocks. The ODE-LSTM architecture employs ordinary differential equations to integrate continuous dynamics into sequence-to-sequence modeling, thereby combining continuous and discrete temporal representations, while the A-LSTM incorporates an attention mechanism to capture local temporal dependencies. The model is further evaluated using transfer learning across different learning strategies and target data partitioning scenarios. Results indicate that the model maintains robust performance, even when fine-tuned on limited target data. Experimental results on two publicly available LFP/graphite lithium-ion battery datasets demonstrate that the proposed method outperforms a baseline deep learning approach and machine learning techniques, achieving an RMSE of 101.59, highlighting its potential for real-world RUL prediction applications.
♻ ☆ Mobile-Bench-v2: A More Realistic and Comprehensive Benchmark for VLM-based Mobile Agents
VLM-based mobile agents are increasingly popular due to their capabilities to interact with smartphone GUIs and XML-structured texts and to complete daily tasks. However, existing online benchmarks struggle with obtaining stable reward signals due to dynamic environmental changes. Offline benchmarks evaluate the agents through single-path trajectories, which stands in contrast to the inherently multi-solution characteristics of GUI tasks. Additionally, both types of benchmarks fail to assess whether mobile agents can handle noise or engage in proactive interactions due to a lack of noisy apps or overly full instructions during the evaluation process. To address these limitations, we use a slot-based instruction generation method to construct a more realistic and comprehensive benchmark named Mobile-Bench-v2. Mobile-Bench-v2 includes a common task split, with offline multi-path evaluation to assess the agent's ability to obtain step rewards during task execution. It contains a noisy split based on pop-ups and ads apps, and a contaminated split named AITZ-Noise to formulate a real noisy environment. Furthermore, an ambiguous instruction split with preset Q\&A interactions is released to evaluate the agent's proactive interaction capabilities. We conduct evaluations on these splits using the single-agent framework AppAgent-v1, the multi-agent framework Mobile-Agent-v2, as well as other mobile agents such as UI-Tars and OS-Atlas. Code and data are available at https://huggingface.co/datasets/xwk123/MobileBench-v2.
♻ ☆ Gated Relational Alignment via Confidence-based Distillation for Efficient VLMs
Vision-Language Models (VLMs) achieve strong multimodal performance but are costly to deploy, and post-training quantization often causes significant accuracy loss. Despite its potential, quantization-aware training for VLMs remains underexplored. We propose GRACE, a framework unifying knowledge distillation and QAT under the Information Bottleneck principle: quantization constrains information capacity while distillation guides what to preserve within this budget. Treating the teacher as a proxy for task-relevant information, we introduce confidence-gated decoupled distillation to filter unreliable supervision, relational centered kernel alignment to transfer visual token structures, and an adaptive controller via Lagrangian relaxation to balance fidelity against capacity constraints. Across extensive benchmarks on LLaVA and Qwen families, our INT4 models consistently outperform FP16 baselines (e.g., LLaVA-1.5-7B: 70.1 vs. 66.8 on SQA; Qwen2-VL-2B: 76.9 vs. 72.6 on MMBench), nearly matching teacher performance. Using real INT4 kernel, we achieve 3$\times$ throughput with 54% memory reduction. This principled framework significantly outperforms existing quantization methods, making GRACE a compelling solution for resource-constrained deployment.
comment: This paper is currently under review
♻ ☆ Towards Scientific Intelligence: A Survey of LLM-based Scientific Agents
As scientific research becomes increasingly complex, innovative tools are needed to manage vast data, facilitate interdisciplinary collaboration, and accelerate discovery. Large language models (LLMs) are now evolving into LLM-based scientific agents that automate critical tasks ranging from hypothesis generation and experiment design to data analysis and simulation. Unlike general-purpose LLMs, these specialized agents integrate domain-specific knowledge, advanced tool sets, and robust validation mechanisms, enabling them to handle complex data types, ensure reproducibility, and drive scientific breakthroughs. This survey provides a focused review of the architectures, design, benchmarks, applications, and ethical considerations surrounding LLM-based scientific agents. We highlight why they differ from general agents and the ways in which they advance research across various scientific fields. By examining their development and challenges, this survey offers a comprehensive roadmap for researchers and practitioners to harness these agents for more efficient, reliable, and ethically sound scientific discovery.
♻ ☆ FastSLM: Hierarchical Frame Q-Former for Effective Speech Modality Adaptation
Although Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities in vision, language, and video understanding tasks, scaling them to long-form speech remains a critical bottleneck due to the explosive growth of input tokens. Existing speech-language models typically project high-frame-rate acoustic features directly into the LLM input space, rendering long-context processing computationally prohibitive as audio duration increases. In this paper, we present FastSLM, a token-efficient architecture designed to overcome this scalability limit through extreme temporal compression. At its core is the Hierarchical Frame Querying Transformer (HFQ-Former), which progressively distills local acoustic details into compact, semantically rich representations across multiple temporal scales. This hierarchical abstraction reduces the speech representation rate to just 1.67 tokens per second, achieving a 93 percent reduction in tokens compared to standard frame-level adapters, while preserving the critical context required for complex reasoning. Experimental results demonstrate that FastSLM achieves competitive performance with state-of-the-art models on long-form benchmarks, despite operating with significantly lower FLOPs and parameter counts. Our findings establish that extreme token compression is a viable pathway to making real-time, long-context speech understanding feasible for LLMs, even under strict computational constraints. The source code and model checkpoints are available at https://anonymous.4open.science/r/FastSLM-8BD3
♻ ☆ Experience-based Knowledge Correction for Robust Planning in Minecraft ICLR 2026
Large Language Model (LLM)-based planning has advanced embodied agents in long-horizon environments such as Minecraft, where acquiring latent knowledge of goal (or item) dependencies and feasible actions is critical. However, LLMs often begin with flawed priors and fail to correct them through prompting, even with feedback. We present XENON (eXpErience-based kNOwledge correctioN), an agent that algorithmically revises knowledge from experience, enabling robustness to flawed priors and sparse binary feedback. XENON integrates two mechanisms: Adaptive Dependency Graph, which corrects item dependencies using past successes, and Failure-aware Action Memory, which corrects action knowledge using past failures. Together, these components allow XENON to acquire complex dependencies despite limited guidance. Experiments across multiple Minecraft benchmarks show that XENON outperforms prior agents in both knowledge learning and long-horizon planning. Remarkably, with only a 7B open-weight LLM, XENON surpasses agents that rely on much larger proprietary models. Code available at https://sjlee-me.github.io/XENON
comment: ICLR 2026
♻ ☆ STELAR-VISION: Self-Topology-Aware Efficient Learning for Aligned Reasoning in Vision AAAI 2026
Vision-language models (VLMs) have made significant strides in reasoning, yet they often struggle with complex multimodal tasks and tend to generate overly verbose outputs. A key limitation is their reliance on chain-of-thought (CoT) reasoning, despite many tasks benefiting from alternative topologies like trees or graphs. To address this, we introduce STELAR-Vision, a training framework for topology-aware reasoning. At its core is TopoAug, a synthetic data pipeline that enriches training with diverse topological structures. Using supervised fine-tuning and reinforcement learning, we post-train Qwen2VL models with both accuracy and efficiency in mind. Additionally, we propose Frugal Learning, which reduces output length with minimal accuracy loss. On MATH-V and VLM-S2H, STELAR-Vision improves accuracy by 9.7% over its base model and surpasses the larger Qwen2VL-72B-Instruct by 7.3%. On five out-of-distribution benchmarks, it outperforms Phi-4-Multimodal-Instruct by up to 28.4% and LLaMA-3.2-11B-Vision-Instruct by up to 13.2%, demonstrating strong generalization. Compared to Chain-Only training, our approach achieves 4.3% higher overall accuracy on in-distribution datasets and consistently outperforms across all OOD benchmarks.
comment: This paper has been accepted at AAAI 2026. This is the author's extended version. The final version will appear in the official proceedings
♻ ☆ Bias Beyond Borders: Political Ideology Evaluation and Steering in Multilingual LLMs
Large Language Models (LLMs) increasingly shape global discourse, making fairness and ideological neutrality essential for responsible AI deployment. Despite growing attention to political bias in LLMs, prior work largely focuses on high-resource, Western languages or narrow multilingual settings, leaving cross-lingual consistency and safe post-hoc mitigation underexplored. To address this gap, we present a large-scale multilingual evaluation of political bias spanning 50 countries and 33 languages. We introduce a complementary post-hoc mitigation framework, Cross-Lingual Alignment Steering (CLAS), designed to augment existing steering methods by aligning ideological representations across languages and dynamically regulating intervention strength. This method aligns latent ideological representations induced by political prompts into a shared ideological subspace, ensuring cross lingual consistency, with the adaptive mechanism prevents over correction and preserves coherence. Experiments demonstrate substantial bias reduction along both economic and social axes with minimal degradation in response quality. The proposed framework establishes a scalable and interpretable paradigm for fairness-aware multilingual LLM governance, balancing ideological neutrality with linguistic and cultural diversity.
comment: PrePrint
♻ ☆ UNIC: Learning Unified Multimodal Extrinsic Contact Estimation
Contact-rich manipulation requires reliable estimation of extrinsic contacts-the interactions between a grasped object and its environment which provide essential contextual information for planning, control, and policy learning. However, existing approaches often rely on restrictive assumptions, such as predefined contact types, fixed grasp configurations, or camera calibration, that hinder generalization to novel objects and deployment in unstructured environments. In this paper, we present UNIC, a unified multimodal framework for extrinsic contact estimation that operates without any prior knowledge or camera calibration. UNIC directly encodes visual observations in the camera frame and integrates them with proprioceptive and tactile modalities in a fully data-driven manner. It introduces a unified contact representation based on scene affordance maps that captures diverse contact formations and employs a multimodal fusion mechanism with random masking, enabling robust multimodal representation learning. Extensive experiments demonstrate that UNIC performs reliably. It achieves a 9.6 mm average Chamfer distance error on unseen contact locations, performs well on unseen objects, remains robust under missing modalities, and adapts to dynamic camera viewpoints. These results establish extrinsic contact estimation as a practical and versatile capability for contact-rich manipulation. The overview and hardware experiment videos are at https://youtu.be/xpMitkxN6Ls?si=7Vgj-aZ_P1wtnWZN
♻ ☆ AnyBCQ: Hardware Efficient Flexible Binary-Coded Quantization for Multi-Precision LLMs ICLR 2026
The deployment of large language models (LLMs) is increasingly constrained by memory and latency bottlenecks, motivating the need for quantization techniques that flexibly balance accuracy and efficiency. Recent work has introduced multi-precision models, which enable inference at multiple precisions within a single model depending on runtime constraints. To support such flexibility, quantized weights are often stored as bit-planes, where hardware efficiency improves when the compute operates directly at the bit-plane level and activates only the precision required by each request. In this work, we present AnyBCQ, a hardware-friendly multi-precision extension of Binary-Coded Quantization (BCQ) that supports direct bit-plane operations. By representing weights as binary bit-planes with corresponding scale factors, AnyBCQ enables bit-plane-level computation and maps naturally to accelerator-friendly, bit-parallel arithmetic. Our progressive precision expansion mechanism incrementally refines scaling factors while reusing previously assigned binary codes, yielding monotonic improvements in accuracy as additional bits are enabled. We further co-design a specialized kernel that exploits the BCQ structure to support dynamic per-request precision selection with negligible overhead. Experiments on recent LLMs demonstrate that AnyBCQ significantly narrows the accuracy drop in the low-bit regime (e.g. 2-bit), remains competitive at higher precision, and achieves throughput gains of up to 3.0x over half precision and 1.2x over state-of-the-art multi-precision methods. By aligning algorithmic flexibility with hardware efficiency, AnyBCQ provides a practical foundation for multi-precision LLM deployment across diverse service-level objectives.
comment: ICLR 2026
♻ ☆ JudgeFlow: Agentic Workflow Optimization via Block Judge
Optimizing LLM-based agentic workflows is challenging for scaling AI capabilities. Current methods rely on coarse, end-to-end evaluation signals and lack fine-grained signals on where to refine, often resulting in inefficient or low-impact modifications. To address these limitations, we propose JudgeFlow, an Evaluation-Judge-Optimization-Update pipeline. We incorporate reusable, configurable logic blocks into agentic workflows to capture fundamental forms of logic. On top of this abstraction, we design a dedicated Judge module that inspects execution traces particularly failed runs and assigns rank-based responsibility scores to problematic blocks. These fine-grained diagnostic signals are then leveraged by an LLM-based optimizer, which focuses modifications on the most problematic block in the workflow. Our approach improves sample efficiency, enhances interpretability through block-level diagnostics, and provides a scalable foundation for automating increasingly complex agentic workflows. We evaluate JudgeFlow on mathematical reasoning and code generation benchmarks, where JudgeFlow achieves superior performance and efficiency compared to existing methods.
♻ ☆ TransportAgents: a multi-agents LLM framework for traffic accident severity prediction
Accurate prediction of traffic crash severity is critical for improving emergency response and public safety planning. Although recent large language models (LLMs) exhibit strong reasoning capabilities, their single-agent architectures often struggle with heterogeneous, domain-specific crash data and tend to generate biased or unstable predictions. To address these limitations, this paper proposes TransportAgents, a hybrid multi-agent framework that integrates category-specific LLM reasoning with a multilayer perceptron (MLP) integration module. Each specialized agent focuses on a particular subset of traffic information, such as demographics, environmental context, or incident details, to produce intermediate severity assessments that are subsequently fused into a unified prediction. Extensive experiments on two complementary U.S. datasets, the Consumer Product Safety Risk Management System (CPSRMS) and the National Electronic Injury Surveillance System (NEISS), demonstrate that TransportAgents consistently outperforms both traditional machine learning and advanced LLM-based baselines. Across three representative backbones, including closed-source models such as GPT-3.5 and GPT-4o, as well as open-source models such as LLaMA-3.3, the framework exhibits strong robustness, scalability, and cross-dataset generalizability. A supplementary distributional analysis further shows that TransportAgents produces more balanced and well-calibrated severity predictions than standard single-agent LLM approaches, highlighting its interpretability and reliability for safety-critical decision support applications.
♻ ☆ Revolutionizing Genomics with Reinforcement Learning Techniques
In recent years, Reinforcement Learning (RL) has emerged as a powerful tool for solving a wide range of problems, including decision-making and genomics. The exponential growth of raw genomic data over the past two decades has exceeded the capacity of manual analysis, leading to a growing interest in automatic data analysis and processing. RL algorithms are capable of learning from experience with minimal human supervision, making them well-suited for genomic data analysis and interpretation. One of the key benefits of using RL is the reduced cost associated with collecting labeled training data, which is required for supervised learning. While there have been numerous studies examining the applications of Machine Learning (ML) in genomics, this survey focuses exclusively on the use of RL in various genomics research fields, including gene regulatory networks (GRNs), genome assembly, and sequence alignment. We present a comprehensive technical overview of existing studies on the application of RL in genomics, highlighting the strengths and limitations of these approaches. We then discuss potential research directions that are worthy of future exploration, including the development of more sophisticated reward functions as RL heavily depends on the accuracy of the reward function, the integration of RL with other machine learning techniques, and the application of RL to new and emerging areas in genomics research. Finally, we present our findings and conclude by summarizing the current state of the field and the future outlook for RL in genomics.
Computation and Language 223
☆ Reward-free Alignment for Conflicting Objectives
Direct alignment methods are increasingly used to align large language models (LLMs) with human preferences. However, many real-world alignment problems involve multiple conflicting objectives, where naive aggregation of preferences can lead to unstable training and poor trade-offs. In particular, weighted loss methods may fail to identify update directions that simultaneously improve all objectives, and existing multi-objective approaches often rely on explicit reward models, introducing additional complexity and distorting user-specified preferences. The contributions of this paper are two-fold. First, we propose a Reward-free Alignment framework for Conflicted Objectives (RACO) that directly leverages pairwise preference data and resolves gradient conflicts via a novel clipped variant of conflict-averse gradient descent. We provide convergence guarantees to Pareto-critical points that respect user-specified objective weights, and further show that clipping can strictly improve convergence rate in the two-objective setting. Second, we improve our method using some heuristics and conduct experiments to demonstrate the compatibility of the proposed framework for LLM alignment. Both qualitative and quantitative evaluations on multi-objective summarization and safety alignment tasks across multiple LLM families (Qwen 3, Llama 3, Gemma 3) show that our method consistently achieves better Pareto trade-offs compared to existing multi-objective alignment baselines.
comment: 27 pages
☆ RLAnything: Forge Environment, Policy, and Reward Model in Completely Dynamic RL System
We propose RLAnything, a reinforcement learning framework that dynamically forges environment, policy, and reward models through closed-loop optimization, amplifying learning signals and strengthening the overall RL system for any LLM or agentic scenarios. Specifically, the policy is trained with integrated feedback from step-wise and outcome signals, while the reward model is jointly optimized via consistency feedback, which in turn further improves policy training. Moreover, our theory-motivated automatic environment adaptation improves training for both the reward and policy models by leveraging critic feedback from each, enabling learning from experience. Empirically, each added component consistently improves the overall system, and RLAnything yields substantial gains across various representative LLM and agentic tasks, boosting Qwen3-VL-8B-Thinking by 9.1% on OSWorld and Qwen2.5-7B-Instruct by 18.7% and 11.9% on AlfWorld and LiveBench, respectively. We also that optimized reward-model signals outperform outcomes that rely on human labels. Code: https://github.com/Gen-Verse/Open-AgentRL
comment: Code: https://github.com/Gen-Verse/Open-AgentRL
☆ RE-TRAC: REcursive TRAjectory Compression for Deep Search Agents
LLM-based deep research agents are largely built on the ReAct framework. This linear design makes it difficult to revisit earlier states, branch into alternative search directions, or maintain global awareness under long contexts, often leading to local optima, redundant exploration, and inefficient search. We propose Re-TRAC, an agentic framework that performs cross-trajectory exploration by generating a structured state representation after each trajectory to summarize evidence, uncertainties, failures, and future plans, and conditioning subsequent trajectories on this state representation. This enables iterative reflection and globally informed planning, reframing research as a progressive process. Empirical results show that Re-TRAC consistently outperforms ReAct by 15-20% on BrowseComp with frontier LLMs. For smaller models, we introduce Re-TRAC-aware supervised fine-tuning, achieving state-of-the-art performance at comparable scales. Notably, Re-TRAC shows a monotonic reduction in tool calls and token usage across rounds, indicating progressively targeted exploration driven by cross-trajectory reflection rather than redundant search.
☆ Training LLMs for Divide-and-Conquer Reasoning Elevates Test-Time Scalability
Large language models (LLMs) have demonstrated strong reasoning capabilities through step-by-step chain-of-thought (CoT) reasoning. Nevertheless, at the limits of model capability, CoT often proves insufficient, and its strictly sequential nature constrains test-time scalability. A potential alternative is divide-and-conquer (DAC) reasoning, which decomposes a complex problem into subproblems to facilitate more effective exploration of the solution. Although promising, our analysis reveals a fundamental misalignment between general-purpose post-training and DAC-style inference, which limits the model's capacity to fully leverage this potential. To bridge this gap and fully unlock LLMs' reasoning capabilities on the most challenging tasks, we propose an end-to-end reinforcement learning (RL) framework to enhance their DAC-style reasoning capacity. At each step, the policy decomposes a problem into a group of subproblems, solves them sequentially, and addresses the original one conditioned on the subproblem solutions, with both decomposition and solution integrated into RL training. Under comparable training, our DAC-style framework endows the model with a higher performance ceiling and stronger test-time scalability, surpassing CoT by 8.6% in Pass@1 and 6.3% in Pass@32 on competition-level benchmarks.
☆ MemSkill: Learning and Evolving Memory Skills for Self-Evolving Agents
Most Large Language Model (LLM) agent memory systems rely on a small set of static, hand-designed operations for extracting memory. These fixed procedures hard-code human priors about what to store and how to revise memory, making them rigid under diverse interaction patterns and inefficient on long histories. To this end, we present \textbf{MemSkill}, which reframes these operations as learnable and evolvable memory skills, structured and reusable routines for extracting, consolidating, and pruning information from interaction traces. Inspired by the design philosophy of agent skills, MemSkill employs a \emph{controller} that learns to select a small set of relevant skills, paired with an LLM-based \emph{executor} that produces skill-guided memories. Beyond learning skill selection, MemSkill introduces a \emph{designer} that periodically reviews hard cases where selected skills yield incorrect or incomplete memories, and evolves the skill set by proposing refinements and new skills. Together, MemSkill forms a closed-loop procedure that improves both the skill-selection policy and the skill set itself. Experiments on LoCoMo, LongMemEval, HotpotQA, and ALFWorld demonstrate that MemSkill improves task performance over strong baselines and generalizes well across settings. Further analyses shed light on how skills evolve, offering insights toward more adaptive, self-evolving memory management for LLM agents.
comment: Code is available at https://github.com/ViktorAxelsen/MemSkill
☆ SPARKLING: Balancing Signal Preservation and Symmetry Breaking for Width-Progressive Learning
Progressive Learning (PL) reduces pre-training computational overhead by gradually increasing model scale. While prior work has extensively explored depth expansion, width expansion remains significantly understudied, with the few existing methods limited to the early stages of training. However, expanding width during the mid-stage is essential for maximizing computational savings, yet it remains a formidable challenge due to severe training instabilities. Empirically, we show that naive initialization at this stage disrupts activation statistics, triggering loss spikes, while copy-based initialization introduces gradient symmetry that hinders feature diversity. To address these issues, we propose SPARKLING (balancing {S}ignal {P}reservation {A}nd symmet{R}y brea{K}ing for width-progressive {L}earn{ING}), a novel framework for mid-stage width expansion. Our method achieves signal preservation via RMS-scale consistency, stabilizing activation statistics during expansion. Symmetry breaking is ensured through asymmetric optimizer state resetting and learning rate re-warmup. Extensive experiments on Mixture-of-Experts (MoE) models demonstrate that, across multiple width axes and optimizer families, SPARKLING consistently outperforms training from scratch and reduces training cost by up to 35% under $2\times$ width expansion.
☆ Avenir-Web: Human-Experience-Imitating Multimodal Web Agents with Mixture of Grounding Experts
Despite advances in multimodal large language models, autonomous web agents still struggle to reliably execute long-horizon tasks on complex and dynamic web interfaces. Existing agents often suffer from inaccurate element grounding, the absence of site-specific procedural knowledge, and unstable long-term task tracking and memory, particularly when operating over complex Document Object Model structures. To address these limitations, we introduce Avenir-Web, a web agent that achieves a new open-source state of the art on the Online-Mind2Web benchmark in real-world deployment. Avenir-Web leverages a Mixture of Grounding Experts, Experience-Imitation Planning for incorporating procedural priors, and a task-tracking checklist combined with adaptive memory to enable robust and seamless interaction across diverse user interface paradigms. We evaluate Avenir-Web on Online-Mind2Web, a rigorous benchmark of live and user-centered web tasks. Our results demonstrate that Avenir-Web significantly surpasses prior open-source agents and attains performance parity with top-tier proprietary models, thereby establishing a new open-source state of the art for reliable web agents on live websites.
☆ Indications of Belief-Guided Agency and Meta-Cognitive Monitoring in Large Language Models
Rapid advancements in large language models (LLMs) have sparked the question whether these models possess some form of consciousness. To tackle this challenge, Butlin et al. (2023) introduced a list of indicators for consciousness in artificial systems based on neuroscientific theories. In this work, we evaluate a key indicator from this list, called HOT-3, which tests for agency guided by a general belief-formation and action selection system that updates beliefs based on meta-cognitive monitoring. We view beliefs as representations in the model's latent space that emerge in response to a given input, and introduce a metric to quantify their dominance during generation. Analyzing the dynamics between competing beliefs across models and tasks reveals three key findings: (1) external manipulations systematically modulate internal belief formation, (2) belief formation causally drives the model's action selection, and (3) models can monitor and report their own belief states. Together, these results provide empirical support for the existence of belief-guided agency and meta-cognitive monitoring in LLMs. More broadly, our work lays methodological groundwork for investigating the emergence of agency, beliefs, and meta-cognition in LLMs.
☆ From Directions to Regions: Decomposing Activations in Language Models via Local Geometry
Activation decomposition methods in language models are tightly coupled to geometric assumptions on how concepts are realized in activation space. Existing approaches search for individual global directions, implicitly assuming linear separability, which overlooks concepts with nonlinear or multi-dimensional structure. In this work, we leverage Mixture of Factor Analyzers (MFA) as a scalable, unsupervised alternative that models the activation space as a collection of Gaussian regions with their local covariance structure. MFA decomposes activations into two compositional geometric objects: the region's centroid in activation space, and the local variation from the centroid. We train large-scale MFAs for Llama-3.1-8B and Gemma-2-2B, and show they capture complex, nonlinear structures in activation space. Moreover, evaluations on localization and steering benchmarks show that MFA outperforms unsupervised baselines, is competitive with supervised localization methods, and often achieves stronger steering performance than sparse autoencoders. Together, our findings position local geometry, expressed through subspaces, as a promising unit of analysis for scalable concept discovery and model control, accounting for complex structures that isolated directions fail to capture.
☆ Abstract Activation Spaces for Content-Invariant Reasoning in Large Language Models
Large Language Models (LLMs) often struggle with deductive judgment in syllogistic reasoning, systematically conflating semantic plausibility with formal validity a phenomenon known as content effect. This bias persists even when models generate step-wise explanations, indicating that intermediate rationales may inherit the same semantic shortcuts that affect answers. Recent approaches propose mitigating this issue by increasing inference-time structural constraints, either by encouraging abstract intermediate representations or by intervening directly in the model's internal computations; however, reliably suppressing semantic interference remains an open challenge. To make formal deduction less sensitive to semantic content, we introduce a framework for abstraction-guided reasoning that explicitly separates structural inference from lexical semantics. We construct paired content-laden and abstract syllogisms and use the model's activations on abstract inputs to define an abstract reasoning space. We then learn lightweight Abstractors that, from content-conditioned residual-stream states, predict representations aligned with this space and integrate these predictions via multi-layer interventions during the forward pass. Using cross-lingual transfer as a test bed, we show that abstraction-aligned steering reduces content-driven errors and improves validity-sensitive performance. Our results position activation-level abstraction as a scalable mechanism for enhancing the robustness of formal reasoning in LLMs against semantic interference.
☆ Drift-Bench: Diagnosing Cooperative Breakdowns in LLM Agents under Input Faults via Multi-Turn Interaction
As Large Language Models transition to autonomous agents, user inputs frequently violate cooperative assumptions (e.g., implicit intent, missing parameters, false presuppositions, or ambiguous expressions), creating execution risks that text-only evaluations do not capture. Existing benchmarks typically assume well-specified instructions or restrict evaluation to text-only, single-turn clarification, and thus do not measure multi-turn disambiguation under grounded execution risk. We introduce \textbf{Drift-Bench}, the first diagnostic benchmark that evaluates agentic pragmatics under input faults through multi-turn clarification across state-oriented and service-oriented execution environments. Grounded in classical theories of communication, \textbf{Drift-Bench} provides a unified taxonomy of cooperative breakdowns and employs a persona-driven user simulator with the \textbf{Rise} evaluation protocol. Experiments show substantial performance drops under these faults, with clarification effectiveness varying across user personas and fault types. \MethodName bridges clarification research and agent safety evaluation, enabling systematic diagnosis of failures that can lead to unsafe executions.
comment: 65 pages, 40 figures
☆ Large Language Models for Mental Health: A Multilingual Evaluation
Large Language Models (LLMs) have remarkable capabilities across NLP tasks. However, their performance in multilingual contexts, especially within the mental health domain, has not been thoroughly explored. In this paper, we evaluate proprietary and open-source LLMs on eight mental health datasets in various languages, as well as their machine-translated (MT) counterparts. We compare LLM performance in zero-shot, few-shot, and fine-tuned settings against conventional NLP baselines that do not employ LLMs. In addition, we assess translation quality across language families and typologies to understand its influence on LLM performance. Proprietary LLMs and fine-tuned open-source LLMs achieve competitive F1 scores on several datasets, often surpassing state-of-the-art results. However, performance on MT data is generally lower, and the extent of this decline varies by language and typology. This variation highlights both the strengths of LLMs in handling mental health tasks in languages other than English and their limitations when translation quality introduces structural or lexical mismatches.
☆ Misconception Diagnosis From Student-Tutor Dialogue: Generate, Retrieve, Rerank
Timely and accurate identification of student misconceptions is key to improving learning outcomes and pre-empting the compounding of student errors. However, this task is highly dependent on the effort and intuition of the teacher. In this work, we present a novel approach for detecting misconceptions from student-tutor dialogues using large language models (LLMs). First, we use a fine-tuned LLM to generate plausible misconceptions, and then retrieve the most promising candidates among these using embedding similarity with the input dialogue. These candidates are then assessed and re-ranked by another fine-tuned LLM to improve misconception relevance. Empirically, we evaluate our system on real dialogues from an educational tutoring platform. We consider multiple base LLM models including LLaMA, Qwen and Claude on zero-shot and fine-tuned settings. We find that our approach improves predictive performance over baseline models and that fine-tuning improves both generated misconception quality and can outperform larger closed-source models. Finally, we conduct ablation studies to both validate the importance of our generation and reranking steps on misconception generation quality.
comment: 21 pages, 8 figures, 8 tables. Joshua Mitton and Prarthana Bhattacharyya contributed equally to this paper
☆ ROG: Retrieval-Augmented LLM Reasoning for Complex First-Order Queries over Knowledge Graphs
Answering first-order logic (FOL) queries over incomplete knowledge graphs (KGs) is difficult, especially for complex query structures that compose projection, intersection, union, and negation. We propose ROG, a retrieval-augmented framework that combines query-aware neighborhood retrieval with large language model (LLM) chain-of-thought reasoning. ROG decomposes a multi-operator query into a sequence of single-operator sub-queries and grounds each step in compact, query-relevant neighborhood evidence. Intermediate answer sets are cached and reused across steps, improving consistency on deep reasoning chains. This design reduces compounding errors and yields more robust inference on complex and negation-heavy queries. Overall, ROG provides a practical alternative to embedding-based logical reasoning by replacing learned operators with retrieval-grounded, step-wise inference. Experiments on standard KG reasoning benchmarks show consistent gains over strong embedding-based baselines, with the largest improvements on high-complexity and negation-heavy query types.
☆ From Sycophancy to Sensemaking: Premise Governance for Human-AI Decision Making
As LLMs expand from assistance to decision support, a dangerous pattern emerges: fluent agreement without calibrated judgment. Low-friction assistants can become sycophantic, baking in implicit assumptions and pushing verification costs onto experts, while outcomes arrive too late to serve as reward signals. In deep-uncertainty decisions (where objectives are contested and reversals are costly), scaling fluent agreement amplifies poor commitments faster than it builds expertise. We argue reliable human-AI partnership requires a shift from answer generation to collaborative premise governance over a knowledge substrate, negotiating only what is decision-critical. A discrepancy-driven control loop operates over this substrate: detecting conflicts, localizing misalignment via typed discrepancies (teleological, epistemic, procedural), and triggering bounded negotiation through decision slices. Commitment gating blocks action on uncommitted load-bearing premises unless overridden under logged risk; value-gated challenge allocates probing under interaction cost. Trust then attaches to auditable premises and evidence standards, not conversational fluency. We illustrate with tutoring and propose falsifiable evaluation criteria.
☆ Proof-RM: A Scalable and Generalizable Reward Model for Math Proof
While Large Language Models (LLMs) have demonstrated strong math reasoning abilities through Reinforcement Learning with *Verifiable Rewards* (RLVR), many advanced mathematical problems are proof-based, with no guaranteed way to determine the authenticity of a proof by simple answer matching. To enable automatic verification, a Reward Model (RM) capable of reliably evaluating full proof processes is required. In this work, we design a *scalable* data-construction pipeline that, with minimal human effort, leverages LLMs to generate a large quantity of high-quality "**question-proof-check**" triplet data. By systematically varying problem sources, generation methods, and model configurations, we create diverse problem-proof pairs spanning multiple difficulty levels, linguistic styles, and error types, subsequently filtered through hierarchical human review for label alignment. Utilizing these data, we train a proof-checking RM, incorporating additional process reward and token weight balance to stabilize the RL process. Our experiments validate the model's scalability and strong performance from multiple perspectives, including reward accuracy, generalization ability and test-time guidance, providing important practical recipes and tools for strengthening LLM mathematical capabilities.
comment: Under review
☆ Automated Multiple Mini Interview (MMI) Scoring
Assessing soft skills such as empathy, ethical judgment, and communication is essential in competitive selection processes, yet human scoring is often inconsistent and biased. While Large Language Models (LLMs) have improved Automated Essay Scoring (AES), we show that state-of-the-art rationale-based fine-tuning methods struggle with the abstract, context-dependent nature of Multiple Mini-Interviews (MMIs), missing the implicit signals embedded in candidate narratives. We introduce a multi-agent prompting framework that breaks down the evaluation process into transcript refinement and criterion-specific scoring. Using 3-shot in-context learning with a large instruct-tuned model, our approach outperforms specialised fine-tuned baselines (Avg QWK 0.62 vs 0.32) and achieves reliability comparable to human experts. We further demonstrate the generalisability of our framework on the ASAP benchmark, where it rivals domain-specific state-of-the-art models without additional training. These findings suggest that for complex, subjective reasoning tasks, structured prompt engineering may offer a scalable alternative to data-intensive fine-tuning, altering how LLMs can be applied to automated assessment.
comment: 18 pages, 2 figures
☆ Why Steering Works: Toward a Unified View of Language Model Parameter Dynamics
Methods for controlling large language models (LLMs), including local weight fine-tuning, LoRA-based adaptation, and activation-based interventions, are often studied in isolation, obscuring their connections and making comparison difficult. In this work, we present a unified view that frames these interventions as dynamic weight updates induced by a control signal, placing them within a single conceptual framework. Building on this view, we propose a unified preference-utility analysis that separates control effects into preference, defined as the tendency toward a target concept, and utility, defined as coherent and task-valid generation, and measures both on a shared log-odds scale using polarity-paired contrastive examples. Across methods, we observe a consistent trade-off between preference and utility: stronger control increases preference while predictably reducing utility. We further explain this behavior through an activation manifold perspective, in which control shifts representations along target-concept directions to enhance preference, while utility declines primarily when interventions push representations off the model's valid-generation manifold. Finally, we introduce a new steering approach SPLIT guided by this analysis that improves preference while better preserving utility. Code is available at https://github.com/zjunlp/EasyEdit/blob/main/examples/SPLIT.md.
comment: Work in progress
☆ Language Steering for Multilingual In-Context Learning
While multilingual large language models have gained widespread adoption, their performance on non-English languages remains substantially inferior to English. This disparity is particularly evident in in-context learning scenarios, where providing demonstrations in English but testing on non-English inputs leads to significant performance degradation. In this paper, we hypothesize that LLMs develop a universal semantic space for understanding languages, where different languages are encoded as distinct directions within this space. Based on this hypothesis, we propose language vectors -- a training-free language steering approach that leverages activation differences between source and target languages to guide model behavior. We steer the model generations by adding the vector to the intermediate model activations during inference. This is done to make the model's internal representations shift towards the target language space without any parameter updates. We evaluate our method across three datasets and test on a total of 19 languages on three different models. Our results show consistent improvements on multilingual in-context learning over baselines across all tasks and languages tested. Beyond performance gains, hierarchical clustering of steering vectors reveals meaningful linguistic structure aligned with language families. These vectors also successfully transfer across tasks, demonstrating that these representations are task-agnostic.
☆ A Large-Scale Dataset for Molecular Structure-Language Description via a Rule-Regularized Method
Molecular function is largely determined by structure. Accurately aligning molecular structure with natural language is therefore essential for enabling large language models (LLMs) to reason about downstream chemical tasks. However, the substantial cost of human annotation makes it infeasible to construct large-scale, high-quality datasets of structure-grounded descriptions. In this work, we propose a fully automated annotation framework for generating precise molecular structure descriptions at scale. Our approach builds upon and extends a rule-based chemical nomenclature parser to interpret IUPAC names and construct enriched, structured XML metadata that explicitly encodes molecular structure. This metadata is then used to guide LLMs in producing accurate natural-language descriptions. Using this framework, we curate a large-scale dataset of approximately $163$k molecule-description pairs. A rigorous validation protocol combining LLM-based and expert human evaluation on a subset of $2,000$ molecules demonstrates a high description precision of $98.6\%$. The resulting dataset provides a reliable foundation for future molecule-language alignment, and the proposed annotation method is readily extensible to larger datasets and broader chemical tasks that rely on structural descriptions.
☆ The Shape of Beliefs: Geometry, Dynamics, and Interventions along Representation Manifolds of Language Models' Posteriors
Large language models (LLMs) represent prompt-conditioned beliefs (posteriors over answers and claims), but we lack a mechanistic account of how these beliefs are encoded in representation space, how they update with new evidence, and how interventions reshape them. We study a controlled setting in which Llama-3.2 generates samples from a normal distribution by implicitly inferring its parameters (mean and standard deviation) given only samples from the distribution in context. We find representations of curved "belief manifolds" for these parameters form with sufficient in-context learning and study how the model adapts when the distribution suddenly changes. While standard linear steering often pushes the model off-manifold and induces coupled, out-of-distribution shifts, geometry and field-aware steering better preserves the intended belief family. Our work demonstrates an example of linear field probing (LFP) as a simple approach to tile the data manifold and make interventions that respect the underlying geometry. We conclude that rich structure emerges naturally in LLMs and that purely linear concept representations are often an inadequate abstraction.
☆ Interpreting and Controlling LLM Reasoning through Integrated Policy Gradient
Large language models (LLMs) demonstrate strong reasoning abilities in solving complex real-world problems. Yet, the internal mechanisms driving these complex reasoning behaviors remain opaque. Existing interpretability approaches targeting reasoning either identify components (e.g., neurons) correlated with special textual patterns, or rely on human-annotated contrastive pairs to derive control vectors. Consequently, current methods struggle to precisely localize complex reasoning mechanisms or capture sequential influence from model internal workings to the reasoning outputs. In this paper, built on outcome-oriented and sequential-influence-aware principles, we focus on identifying components that have sequential contribution to reasoning behavior where outcomes are cumulated by long-range effects. We propose Integrated Policy Gradient (IPG), a novel framework that attributes reasoning behaviors to model's inner components by propagating compound outcome-based signals such as post reasoning accuracy backward through model inference trajectories. Empirical evaluations demonstrate that our approach achieves more precise localization and enables reliable modulation of reasoning behaviors (e.g., reasoning capability, reasoning strength) across diverse reasoning models.
☆ Advancing General-Purpose Reasoning Models with Modular Gradient Surgery
Reinforcement learning (RL) has played a central role in recent advances in large reasoning models (LRMs), yielding strong gains in verifiable and open-ended reasoning. However, training a single general-purpose LRM across diverse domains remains challenging due to pronounced domain heterogeneity. Through a systematic study of two widely used strategies, Sequential RL and Mixed RL, we find that both incur substantial cross-domain interference at the behavioral and gradient levels, resulting in limited overall gains. To address these challenges, we introduce **M**odular **G**radient **S**urgery (**MGS**), which resolves gradient conflicts at the module level within the transformer. When applied to Llama and Qwen models, MGS achieves average improvements of 4.3 (16.6\%) and 4.5 (11.1\%) points, respectively, over standard multi-task RL across three representative domains (math, general chat, and instruction following). Further analysis demonstrates that MGS remains effective under prolonged training. Overall, our study clarifies the sources of interference in multi-domain RL and presents an effective solution for training general-purpose LRMs.
comment: Preprint; Code: https://github.com/StringNLPLAB/MGS; Website: https://modular-gradient-surgery.github.io
☆ Hallucination or Creativity: How to Evaluate AI-Generated Scientific Stories?
Generative AI can turn scientific articles into narratives for diverse audiences, but evaluating these stories remains challenging. Storytelling demands abstraction, simplification, and pedagogical creativity-qualities that are not often well-captured by standard summarization metrics. Meanwhile, factual hallucinations are critical in scientific contexts, yet, detectors often misclassify legitimate narrative reformulations or prove unstable when creativity is involved. In this work, we propose StoryScore, a composite metric for evaluating AI-generated scientific stories. StoryScore integrates semantic alignment, lexical grounding, narrative control, structural fidelity, redundancy avoidance, and entity-level hallucination detection into a unified framework. Our analysis also reveals why many hallucination detection methods fail to distinguish pedagogical creativity from factual errors, highlighting a key limitation: while automatic metrics can effectively assess semantic similarity with original content, they struggle to evaluate how it is narrated and controlled.
☆ Cross-Lingual Stability of LLM Judges Under Controlled Generation: Evidence from Finno-Ugric Languages EACL 2026
Cross-lingual evaluation of large language models (LLMs) typically conflates two sources of variance: genuine model performance differences and measurement instability. We investigate evaluation reliability by holding generation conditions constant while varying target language. Using synthetic customer-support dialogues generated with identical parameters across Estonian, Finnish, and Hungarian, we test whether automatic metrics and LLM-as-a-judge scoring produce stable model rankings across these morphologically rich, related Finno-Ugric languages. With a small set of Estonian native speaker annotations as a reference point, we find systematic ranking instabilities: surface-level metrics (lexical diversity, surface and semantic similarity) maintain cross-language stability, but pragmatic judgments (coherence, instruction-following) exhibit rank inversions and near-zero correlations. Because generation is controlled, these inconsistencies reflect how judge scoring behaves differently across languages rather than true model differences. This controlled design provides a diagnostic probe: evaluation methods that fail to maintain stability under identical generation conditions signal transfer failure before deployment. Our findings suggest that zero-shot judge transfer is unreliable for discourse-level assessment in morphologically rich languages, motivating language-specific calibration against targeted human baselines. We release our controlled generation protocol, synthetic data, and evaluation framework to enable replication across language families at https://github.com/isaac-chung/cross-lingual-stability-judges.
comment: First Workshop on Multilingual Multicultural Evaluation, co-located with EACL 2026
☆ Statistical Learning Theory in Lean 4: Empirical Processes from Scratch
We present the first comprehensive Lean 4 formalization of statistical learning theory (SLT) grounded in empirical process theory. Our end-to-end formal infrastructure implement the missing contents in latest Lean 4 Mathlib library, including a complete development of Gaussian Lipschitz concentration, the first formalization of Dudley's entropy integral theorem for sub-Gaussian processes, and an application to least-squares (sparse) regression with a sharp rate. The project was carried out using a human-AI collaborative workflow, in which humans design proof strategies and AI agents execute tactical proof construction, leading to the human-verified Lean 4 toolbox for SLT. Beyond implementation, the formalization process exposes and resolves implicit assumptions and missing details in standard SLT textbooks, enforcing a granular, line-by-line understanding of the theory. This work establishes a reusable formal foundation and opens the door for future developments in machine learning theory. The code is available at https://github.com/YuanheZ/lean-stat-learning-theory
comment: 19 pages, 2 figures. Comments are welcome
☆ RACA: Representation-Aware Coverage Criteria for LLM Safety Testing
Recent advancements in LLMs have led to significant breakthroughs in various AI applications. However, their sophisticated capabilities also introduce severe safety concerns, particularly the generation of harmful content through jailbreak attacks. Current safety testing for LLMs often relies on static datasets and lacks systematic criteria to evaluate the quality and adequacy of these tests. While coverage criteria have been effective for smaller neural networks, they are not directly applicable to LLMs due to scalability issues and differing objectives. To address these challenges, this paper introduces RACA, a novel set of coverage criteria specifically designed for LLM safety testing. RACA leverages representation engineering to focus on safety-critical concepts within LLMs, thereby reducing dimensionality and filtering out irrelevant information. The framework operates in three stages: first, it identifies safety-critical representations using a small, expert-curated calibration set of jailbreak prompts. Second, it calculates conceptual activation scores for a given test suite based on these representations. Finally, it computes coverage results using six sub-criteria that assess both individual and compositional safety concepts. We conduct comprehensive experiments to validate RACA's effectiveness, applicability, and generalization, where the results demonstrate that RACA successfully identifies high-quality jailbreak prompts and is superior to traditional neuron-level criteria. We also showcase its practical application in real-world scenarios, such as test set prioritization and attack prompt sampling. Furthermore, our findings confirm RACA's generalization to various scenarios and its robustness across various configurations. Overall, RACA provides a new framework for evaluating the safety of LLMs, contributing a valuable technique to the field of testing for AI.
☆ Kimi K2.5: Visual Agentic Intelligence
We introduce Kimi K2.5, an open-source multimodal agentic model designed to advance general agentic intelligence. K2.5 emphasizes the joint optimization of text and vision so that two modalities enhance each other. This includes a series of techniques such as joint text-vision pre-training, zero-vision SFT, and joint text-vision reinforcement learning. Building on this multimodal foundation, K2.5 introduces Agent Swarm, a self-directed parallel agent orchestration framework that dynamically decomposes complex tasks into heterogeneous sub-problems and executes them concurrently. Extensive evaluations show that Kimi K2.5 achieves state-of-the-art results across various domains including coding, vision, reasoning, and agentic tasks. Agent Swarm also reduces latency by up to $4.5\times$ over single-agent baselines. We release the post-trained Kimi K2.5 model checkpoint to facilitate future research and real-world applications of agentic intelligence.
comment: Kimi K2.5 tech report
☆ dziribot: rag based intelligent conversational agent for algerian arabic dialect
The rapid digitalization of customer service has intensified the demand for conversational agents capable of providing accurate and natural interactions. In the Algerian context, this is complicated by the linguistic complexity of Darja, a dialect characterized by non-standardized orthography, extensive code-switching with French, and the simultaneous use of Arabic and Latin (Arabizi) scripts. This paper introduces DziriBOT, a hybrid intelligent conversational agent specifically engineered to overcome these challenges. We propose a multi-layered architecture that integrates specialized Natural Language Understanding (NLU) with Retrieval-Augmented Generation (RAG), allowing for both structured service flows and dynamic, knowledge-intensive responses grounded in curated enterprise documentation. To address the low-resource nature of Darja, we systematically evaluate three distinct approaches: a sparse-feature Rasa pipeline, classical machine learning baselines, and transformer-based fine-tuning. Our experimental results demonstrate that the fine-tuned DziriBERT model achieves state-of-the-art performance. These results significantly outperform traditional baselines, particularly in handling orthographic noise and rare intents. Ultimately, DziriBOT provides a robust, scalable solution that bridges the gap between formal language models and the linguistic realities of Algerian users, offering a blueprint for dialect-aware automation in the regional market.
☆ OpenSeal: Good, Fast, and Cheap Construction of an Open-Source Southeast Asian LLM via Parallel Data
Large language models (LLMs) have proven to be effective tools for a wide range of natural language processing (NLP) applications. Although many LLMs are multilingual, most remain English-centric and perform poorly on low-resource languages. Recently, several Southeast Asia-focused LLMs have been developed, but none are truly open source, as they do not publicly disclose their training data. Truly open-source models are important for transparency and for enabling a deeper and more precise understanding of LLM internals and development, including biases, generalization, and multilinguality. Motivated by recent advances demonstrating the effectiveness of parallel data in improving multilingual performance, we conduct controlled and comprehensive experiments to study the effectiveness of parallel data in continual pretraining of LLMs. Our findings show that using only parallel data is the most effective way to extend an LLM to new languages. Using just 34.7B tokens of parallel data and 180 hours on 8x NVIDIA H200 GPUs, we built OpenSeal, the first truly open Southeast Asian LLM that rivals the performance of existing models of similar size.
☆ OmniCode: A Benchmark for Evaluating Software Engineering Agents
LLM-powered coding agents are redefining how real-world software is developed. To drive the research towards better coding agents, we require challenging benchmarks that can rigorously evaluate the ability of such agents to perform various software engineering tasks. However, popular coding benchmarks such as HumanEval and SWE-Bench focus on narrowly scoped tasks such as competition programming and patch generation. In reality, software engineers have to handle a broader set of tasks for real-world software development. To address this gap, we propose OmniCode, a novel software engineering benchmark that contains a broader and more diverse set of task categories beyond code or patch generation. Overall, OmniCode contains 1794 tasks spanning three programming languages (Python, Java, and C++) and four key categories: bug fixing, test generation, code review fixing, and style fixing. In contrast to prior software engineering benchmarks, the tasks in OmniCode are (1) manually validated to eliminate ill-defined problems, and (2) synthetically crafted or recently curated to avoid data leakage issues, presenting a new framework for synthetically generating diverse software tasks from limited real-world data. We evaluate OmniCode with popular agent frameworks such as SWE-Agent and show that while they may perform well on bug fixing for Python, they fall short on tasks such as Test Generation and in languages such as C++ and Java. For instance, SWE-Agent achieves a maximum of 20.9% with DeepSeek-V3.1 on Java Test Generation tasks. OmniCode aims to serve as a robust benchmark and spur the development of agents that can perform well across different aspects of software development. Code and data are available at https://github.com/seal-research/OmniCode.
☆ Learning While Staying Curious: Entropy-Preserving Supervised Fine-Tuning via Adaptive Self-Distillation for Large Reasoning Models
The standard post-training recipe for large reasoning models, supervised fine-tuning followed by reinforcement learning (SFT-then-RL), may limit the benefits of the RL stage: while SFT imitates expert demonstrations, it often causes overconfidence and reduces generation diversity, leaving RL with a narrowed solution space to explore. Adding entropy regularization during SFT is not a cure-all; it tends to flatten token distributions toward uniformity, increasing entropy without improving meaningful exploration capability. In this paper, we propose CurioSFT, an entropy-preserving SFT method designed to enhance exploration capabilities through intrinsic curiosity. It consists of (a) Self-Exploratory Distillation, which distills the model toward a self-generated, temperature-scaled teacher to encourage exploration within its capability; and (b) Entropy-Guided Temperature Selection, which adaptively adjusts distillation strength to mitigate knowledge forgetting by amplifying exploration at reasoning tokens while stabilizing factual tokens. Extensive experiments on mathematical reasoning tasks demonstrate that, in SFT stage, CurioSFT outperforms the vanilla SFT by 2.5 points on in-distribution tasks and 2.9 points on out-of-distribution tasks. We also verify that exploration capabilities preserved during SFT successfully translate into concrete gains in RL stage, yielding an average improvement of 5.0 points.
☆ Using Correspondence Patterns to Identify Irregular Words in Cognate sets Through Leave-One-Out Validation EACL 2026
Regular sound correspondences constitute the principal evidence in historical language comparison. Despite the heuristic focus on regularity, it is often more an intuitive judgement than a quantified evaluation, and irregularity is more common than expected from the Neogrammarian model. Given the recent progress of computational methods in historical linguistics and the increased availability of standardized lexical data, we are now able to improve our workflows and provide such a quantitative evaluation. Here, we present the balanced average recurrence of correspondence patterns as a new measure of regularity. We also present a new computational method that uses this measure to identify cognate sets that lack regularity with respect to their correspondence patterns. We validate the method through two experiments, using simulated and real data. In the experiments, we employ leave-one-out validation to measure the regularity of cognate sets in which one word form has been replaced by an irregular one, checking how well our method identifies the forms causing the irregularity. Our method achieves an overall accuracy of 85\% with the datasets based on real data. We also show the benefits of working with subsamples of large datasets and how increasing irregularity in the data influences our results. Reflecting on the broader potential of our new regularity measure and the irregular cognate identification method based on it, we conclude that they could play an important role in improving the quality of existing and future datasets in computer-assisted language comparison.
comment: Accepted for the L'Change workshop @ EACL 2026
☆ Am I More Pointwise or Pairwise? Revealing Position Bias in Rubric-Based LLM-as-a-Judge
Large language models (LLMs) are now widely used to evaluate the quality of text, a field commonly referred to as LLM-as-a-judge. While prior works mainly focus on point-wise and pair-wise evaluation paradigms. Rubric-based evaluation, where LLMs select a score from multiple rubrics, has received less analysis. In this work, we show that rubric-based evaluation implicitly resembles a multi-choice setting and therefore has position bias: LLMs prefer score options appearing at specific positions in the rubric list. Through controlled experiments across multiple models and datasets, we demonstrate consistent position bias. To mitigate this bias, we propose a balanced permutation strategy that evenly distributes each score option across positions. We show that aggregating scores across balanced permutations not only reveals latent position bias, but also improves correlation between the LLM-as-a-Judge and human. Our results suggest that rubric-based LLM-as-a-Judge is not inherently point-wise and that simple permutation-based calibration can substantially improve its reliability.
☆ Towards AI Evaluation in Domain-Specific RAG Systems: The AgriHubi Case Study
Large language models show promise for knowledge-intensive domains, yet their use in agriculture is constrained by weak grounding, English-centric training data, and limited real-world evaluation. These issues are amplified for low-resource languages, where high-quality domain documentation exists but remains difficult to access through general-purpose models. This paper presents AgriHubi, a domain-adapted retrieval-augmented generation (RAG) system for Finnish-language agricultural decision support. AgriHubi integrates Finnish agricultural documents with open PORO family models and combines explicit source grounding with user feedback to support iterative refinement. Developed over eight iterations and evaluated through two user studies, the system shows clear gains in answer completeness, linguistic accuracy, and perceived reliability. The results also reveal practical trade-offs between response quality and latency when deploying larger models. This study provides empirical guidance for designing and evaluating domain-specific RAG systems in low-resource language settings.
comment: 6 pages, 2 figures, submitted to MIPRO 2026
☆ Sinhala Physical Common Sense Reasoning Dataset for Global PIQA
This paper presents the first-ever Sinhala physical common sense reasoning dataset created as part of Global PIQA. It contains 110 human-created and verified data samples, where each sample consists of a prompt, the corresponding correct answer, and a wrong answer. Most of the questions refer to the Sri Lankan context, where Sinhala is an official language.
☆ More Than a Quick Glance: Overcoming the Greedy Bias in KV-Cache Compression
While Large Language Models (LLMs) can theoretically support extensive context windows, their actual deployment is constrained by the linear growth of Key-Value (KV) cache memory. Prevailing compression strategies mitigate this through various pruning mechanisms, yet trade-off semantic recall for memory efficiency. In this work, we present LASER-KV (Layer Accumulated Selection with Exact-LSH Recall), a framework designed to test the limits of KV compression under a strict accumulative budgeting policy. We deviate from the standard fixed summary size approach by implementing a block-wise accumulation strategy governed by a protection divisor (n). This allows us to isolate the effects of compression from sliding window artifacts. Our experiments on the Babilong benchmark reveal performance degradation in previous compression methods by 15-30% on various long context tasks. LASER-KV maintains stable performance, achieving superior accuracies by a margin of upto 10% at 128k. These findings challenge the prevailing assumption that attention scores alone are a sufficient proxy for token utility.
☆ Vision-DeepResearch Benchmark: Rethinking Visual and Textual Search for Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) have advanced VQA and now support Vision-DeepResearch systems that use search engines for complex visual-textual fact-finding. However, evaluating these visual and textual search abilities is still difficult, and existing benchmarks have two major limitations. First, existing benchmarks are not visual search-centric: answers that should require visual search are often leaked through cross-textual cues in the text questions or can be inferred from the prior world knowledge in current MLLMs. Second, overly idealized evaluation scenario: On the image-search side, the required information can often be obtained via near-exact matching against the full image, while the text-search side is overly direct and insufficiently challenging. To address these issues, we construct the Vision-DeepResearch benchmark (VDR-Bench) comprising 2,000 VQA instances. All questions are created via a careful, multi-stage curation pipeline and rigorous expert review, designed to assess the behavior of Vision-DeepResearch systems under realistic real-world conditions. Moreover, to address the insufficient visual retrieval capabilities of current MLLMs, we propose a simple multi-round cropped-search workflow. This strategy is shown to effectively improve model performance in realistic visual retrieval scenarios. Overall, our results provide practical guidance for the design of future multimodal deep-research systems. The code will be released in https://github.com/Osilly/Vision-DeepResearch.
☆ Evaluating Metalinguistic Knowledge in Large Language Models across the World's Languages
Large language models (LLMs) are routinely evaluated on language use tasks, yet their knowledge of linguistic structure remains poorly understood. Existing linguistic benchmarks typically focus on narrow phenomena, emphasize high-resource languages, and rarely evaluate metalinguistic knowledge-explicit reasoning about language structure rather than language use. Using accuracy and macro F1, together with majority-class and chance baselines, we analyse overall performance and examine variation by linguistic domains and language-related factors. Our results show that metalinguistic knowledge in current LLMs is limited: GPT-4o performs best but achieves only moderate accuracy (0.367), while open-source models lag behind. All models perform above chance but fail to outperform the majority-class baseline, suggesting they capture cross-linguistic patterns but lack fine-grained grammatical distinctions. Performance varies across linguistic domains, with lexical features showing the highest accuracy and phonological features among the lowest, partially reflecting differences in online visibility. At the language level, accuracy shows a strong association with digital language status: languages with higher digital presence and resource availability are evaluated more accurately, while low-resource languages show substantially lower performance. Analyses of predictive factors confirm that resource-related indicators (Wikipedia size, corpus availability) are more informative predictors of accuracy than geographical, genealogical, or sociolinguistic factors. Together, these results suggest that LLMs' metalinguistic knowledge is fragmented and shaped by data availability rather than generalizable grammatical competence across the world's languages. We release our benchmark as an open-source dataset to support systematic evaluation and encourage greater global linguistic diversity in future LLMs.
☆ AR-MAP: Are Autoregressive Large Language Models Implicit Teachers for Diffusion Large Language Models?
Diffusion Large Language Models (DLLMs) have emerged as a powerful alternative to autoregressive models, enabling parallel token generation across multiple positions. However, preference alignment of DLLMs remains challenging due to high variance introduced by Evidence Lower Bound (ELBO)-based likelihood estimation. In this work, we propose AR-MAP, a novel transfer learning framework that leverages preference-aligned autoregressive LLMs (AR-LLMs) as implicit teachers for DLLM alignment. We reveal that DLLMs can effectively absorb alignment knowledge from AR-LLMs through simple weight scaling, exploiting the shared architectural structure between these divergent generation paradigms. Crucially, our approach circumvents the high variance and computational overhead of direct DLLM alignment and comprehensive experiments across diverse preference alignment tasks demonstrate that AR-MAP achieves competitive or superior performance compared to existing DLLM-specific alignment methods, achieving 69.08\% average score across all tasks and models. Our Code is available at https://github.com/AMAP-ML/AR-MAP.
☆ D-CORE: Incentivizing Task Decomposition in Large Reasoning Models for Complex Tool Use
Effective tool use and reasoning are essential capabilities for large reasoning models~(LRMs) to address complex real-world problems. Through empirical analysis, we identify that current LRMs lack the capability of sub-task decomposition in complex tool use scenarios, leading to Lazy Reasoning. To address this, we propose a two-stage training framework D-CORE~(\underline{\textbf{D}}ecomposing tasks and \underline{\textbf{Co}}mposing \underline{\textbf{Re}}asoning processes) that first incentivize the LRMs' task decomposition reasoning capability via self-distillation, followed by diversity-aware reinforcement learning~(RL) to restore LRMs' reflective reasoning capability. D-CORE achieves robust tool-use improvements across diverse benchmarks and model scales. Experiments on BFCLv3 demonstrate superiority of our method: D-CORE-8B reaches 77.7\% accuracy, surpassing the best-performing 8B model by 5.7\%. Meanwhile, D-CORE-14B establishes a new state-of-the-art at 79.3\%, outperforming 70B models despite being 5$\times$ smaller. The source code is available at https://github.com/alibaba/EfficientAI.
☆ Focus-dLLM: Accelerating Long-Context Diffusion LLM Inference via Confidence-Guided Context Focusing
Diffusion Large Language Models (dLLMs) deliver strong long-context processing capability in a non-autoregressive decoding paradigm. However, the considerable computational cost of bidirectional full attention limits the inference efficiency. Although sparse attention is promising, existing methods remain ineffective. This stems from the need to estimate attention importance for tokens yet to be decoded, while the unmasked token positions are unknown during diffusion. In this paper, we present Focus-dLLM, a novel training-free attention sparsification framework tailored for accurate and efficient long-context dLLM inference. Based on the finding that token confidence strongly correlates across adjacent steps, we first design a past confidence-guided indicator to predict unmasked regions. Built upon this, we propose a sink-aware pruning strategy to accurately estimate and remove redundant attention computation, while preserving highly influential attention sinks. To further reduce overhead, this strategy reuses identified sink locations across layers, leveraging the observed cross-layer consistency. Experimental results show that our method offers more than $29\times$ lossless speedup under $32K$ context length. The code is publicly available at: https://github.com/Longxmas/Focus-dLLM
☆ Revisiting Adaptive Rounding with Vectorized Reparameterization for LLM Quantization
Adaptive Rounding has emerged as an alternative to round-to-nearest (RTN) for post-training quantization by enabling cross-element error cancellation. Yet, dense and element-wise rounding matrices are prohibitively expensive for billion-parameter large language models (LLMs). We revisit adaptive rounding from an efficiency perspective and propose VQRound, a parameter-efficient optimization framework that reparameterizes the rounding matrix into a compact codebook. Unlike low-rank alternatives, VQRound minimizes the element-wise worst-case error under $L_\infty$ norm, which is critical for handling heavy-tailed weight distributions in LLMs. Beyond reparameterization, we identify rounding initialization as a decisive factor and develop a lightweight end-to-end finetuning pipeline that optimizes codebooks across all layers using only 128 samples. Extensive experiments on OPT, LLaMA, LLaMA2, and Qwen3 models demonstrate that VQRound achieves better convergence than traditional adaptive rounding at the same number of steps while using as little as 0.2% of the trainable parameters. Our results show that adaptive rounding can be made both scalable and fast-fitting. The code is available at https://github.com/zhoustan/VQRound.
comment: 17 pages, 6 figures, 14 tables
☆ Learning Generative Selection for Best-of-N
Scaling test-time compute via parallel sampling can substantially improve LLM reasoning, but is often limited by Best-of-N selection quality. Generative selection methods, such as GenSelect, address this bottleneck, yet strong selection performance remains largely limited to large models. We show that small reasoning models can acquire strong GenSelect capabilities through targeted reinforcement learning. To this end, we synthesize selection tasks from large-scale math and code instruction datasets by filtering to instances with both correct and incorrect candidate solutions, and train 1.7B-parameter models with DAPO to reward correct selections. Across math (AIME24, AIME25, HMMT25) and code (LiveCodeBench) reasoning benchmarks, our models consistently outperform prompting and majority-voting baselines, often approaching or exceeding much larger models. Moreover, these gains generalize to selecting outputs from stronger models despite training only on outputs from weaker models. Overall, our results establish reinforcement learning as a scalable way to unlock strong generative selection in small models, enabling efficient test-time scaling.
☆ Quantifying the Gap between Understanding and Generation within Unified Multimodal Models
Recent advances in unified multimodal models (UMM) have demonstrated remarkable progress in both understanding and generation tasks. However, whether these two capabilities are genuinely aligned and integrated within a single model remains unclear. To investigate this question, we introduce GapEval, a bidirectional benchmark designed to quantify the gap between understanding and generation capabilities, and quantitatively measure the cognitive coherence of the two "unified" directions. Each question can be answered in both modalities (image and text), enabling a symmetric evaluation of a model's bidirectional inference capability and cross-modal consistency. Experiments reveal a persistent gap between the two directions across a wide range of UMMs with different architectures, suggesting that current models achieve only surface-level unification rather than deep cognitive convergence of the two. To further explore the underlying mechanism, we conduct an empirical study from the perspective of knowledge manipulation to illustrate the underlying limitations. Our findings indicate that knowledge within UMMs often remains disjoint. The capability emergence and knowledge across modalities are unsynchronized, paving the way for further exploration.
☆ EvoMU: Evolutionary Machine Unlearning
Machine unlearning aims to unlearn specified training data (e.g. sensitive or copyrighted material). A prominent approach is to fine-tune an existing model with an unlearning loss that retains overall utility. The space of suitable unlearning loss functions is vast, making the search for an optimal loss function daunting. Additionally, there might not even exist a universally optimal loss function: differences in the structure and overlap of the forget and retain data can cause a loss to work well in one setting but over-unlearn or under-unlearn in another. Our approach EvoMU tackles these two challenges simultaneously. An evolutionary search procedure automatically finds task-specific losses in the vast space of possible unlearning loss functions. This allows us to find dataset-specific losses that match or outperform existing losses from the literature, without the need for a human-in-the-loop. This work is therefore an instance of automatic scientific discovery, a.k.a. an AI co-scientist. In contrast to previous AI co-scientist works, we do so on a budget: We achieve SotA results using a small 4B parameter model (Qwen3-4B-Thinking), showing the potential of AI co-scientists with limited computational resources. Our experimental evaluation shows that we surpass previous loss-based unlearning formulations on TOFU-5%, TOFU-10%, MUSE and WMDP by synthesizing novel unlearning losses. Our code is available at https://github.com/Batorskq/EvoMU.
☆ Understanding the Reversal Curse Mitigation in Masked Diffusion Models through Attention and Training Dynamics
Autoregressive language models (ARMs) suffer from the reversal curse: after learning that "$A$ is $B$", they often fail on the reverse query "$B$ is $A$". Masked diffusion-based language models (MDMs) exhibit this failure in a much weaker form, but the underlying reason has remained unclear. A common explanation attributes this mitigation to the any-order training objective. However, observing "[MASK] is $B$" during training does not necessarily teach the model to handle the reverse prompt "$B$ is [MASK]". We show that the mitigation arises from architectural structure and its interaction with training. In a one-layer Transformer encoder, weight sharing couples the two directions by making forward and reverse attention scores positively correlated. In the same setting, we further show that the corresponding gradients are aligned, so minimizing the forward loss also reduces the reverse loss. Experiments on both controlled toy tasks and large-scale diffusion language models support these mechanisms, explaining why MDMs partially overcome a failure mode that persists in strong ARMs.
☆ There Is More to Refusal in Large Language Models than a Single Direction
Prior work argues that refusal in large language models is mediated by a single activation-space direction, enabling effective steering and ablation. We show that this account is incomplete. Across eleven categories of refusal and non-compliance, including safety, incomplete or unsupported requests, anthropomorphization, and over-refusal, we find that these refusal behaviors correspond to geometrically distinct directions in activation space. Yet despite this diversity, linear steering along any refusal-related direction produces nearly identical refusal to over-refusal trade-offs, acting as a shared one-dimensional control knob. The primary effect of different directions is not whether the model refuses, but how it refuses.
☆ Unifying Masked Diffusion Models with Various Generation Orders and Beyond
Masked diffusion models (MDMs) are a potential alternative to autoregressive models (ARMs) for language generation, but generation quality depends critically on the generation order. Prior work either hard-codes an ordering (e.g., blockwise left-to-right) or learns an ordering policy for a pretrained MDM, which incurs extra cost and can yield suboptimal solutions due to the two-stage optimization. Motivated by this, we propose order-expressive masked diffusion model (OeMDM) for a broad class of diffusion generative processes with various generation orders, enabling the interpretation of MDM, ARM, and block diffusion in a single framework. Furthermore, building on OeMDM, we introduce learnable-order masked diffusion model (LoMDM), which jointly learns the generation ordering and diffusion backbone through a single objective from scratch, enabling the diffusion model to generate text in context-dependent ordering. Empirically, we confirm that LoMDM outperforms various discrete diffusion models across multiple language modeling benchmarks.
comment: Preprint
☆ Out of the Memory Barrier: A Highly Memory Efficient Training System for LLMs with Million-Token Contexts
Training Large Language Models (LLMs) on long contexts is severely constrained by prohibitive GPU memory overhead, not training time. The primary culprits are the activations, whose memory footprints scale linearly with sequence length. We introduce OOMB, a highly memory-efficient training system that directly confronts this barrier. Our approach employs a chunk-recurrent training framework with on-the-fly activation recomputation, which maintains a constant activation memory footprint (O(1)) and shifts the primary bottleneck to the growing KV cache. To manage the KV cache, OOMB integrates a suite of synergistic optimizations: a paged memory manager for both the KV cache and its gradients to eliminate fragmentation, asynchronous CPU offloading to hide data transfer latency, and page-level sparse attention to reduce both computational complexity and communication overhead. The synergy of these techniques yields exceptional efficiency. Our empirical results show that for every additional 10K tokens of context, the end-to-end training memory overhead increases by a mere 10MB for Qwen2.5-7B. This allows training Qwen2.5-7B with a 4M-token context on a single H200 GPU, a feat that would otherwise require a large cluster using context parallelism. This work represents a substantial advance in resource efficiency for long-context LLM training. The source code is available at https://github.com/wenhaoli-xmu/OOMB.
☆ Dicta-LM 3.0: Advancing The Frontier of Hebrew Sovereign LLMs
Open-weight LLMs have been released by frontier labs; however, sovereign Large Language Models (for languages other than English) remain low in supply yet high in demand. Training large language models (LLMs) for low-resource languages such as Hebrew poses unique challenges. In this paper, we introduce Dicta-LM 3.0: an open-weight collection of LLMs trained on substantially-sized corpora of Hebrew and English texts. The model is released in three sizes: 24B - adapted from the Mistral-Small-3.1 base model, 12B - adapted from the NVIDIA Nemotron Nano V2 model, and 1.7B - adapted from the Qwen3-1.7B base model. We are releasing multiple variants of each model, each with a native context length of 65k tokens; base model and chat model with tool-calling support. To rigorously evaluate our models, we introduce a new benchmark suite for evaluation of Hebrew chat-LLMs, covering a diverse set of tasks including Translation, Summarization, Winograd, Israeli Trivia, and Diacritization (nikud). Our work not only addresses the intricacies of training LLMs in low-resource languages but also proposes a framework that can be leveraged for adapting other LLMs to various non-English languages, contributing to the broader field of multilingual NLP.
☆ No Global Plan in Chain-of-Thought: Uncover the Latent Planning Horizon of LLMs
This work stems from prior complementary observations on the dynamics of Chain-of-Thought (CoT): Large Language Models (LLMs) is shown latent planning of subsequent reasoning prior to CoT emergence, thereby diminishing the significance of explicit CoT; whereas CoT remains critical for tasks requiring multi-step reasoning. To deepen the understanding between LLM's internal states and its verbalized reasoning trajectories, we investigate the latent planning strength of LLMs, through our probing method, Tele-Lens, applying to hidden states across diverse task domains. Our empirical results indicate that LLMs exhibit a myopic horizon, primarily conducting incremental transitions without precise global planning. Leveraging this characteristic, we propose a hypothesis on enhancing uncertainty estimation of CoT, which we validate that a small subset of CoT positions can effectively represent the uncertainty of the entire path. We further underscore the significance of exploiting CoT dynamics, and demonstrate that automatic recognition of CoT bypass can be achieved without performance degradation. Our code, data and models are released at https://github.com/lxucs/tele-lens.
☆ Think Dense, Not Long: Dynamic Decoupled Conditional Advantage for Efficient Reasoning
Reinforcement Learning with Verifiable Rewards (RLVR) can elicit strong multi-step reasoning, yet it often encourages overly verbose traces. Moreover, naive length penalties in group-relative optimization can severely hurt accuracy. We attribute this failure to two structural issues: (i) Dilution of Length Baseline, where incorrect responses (with zero length reward) depress the group baseline and over-penalize correct solutions; and (ii) Difficulty-Penalty Mismatch, where a static penalty cannot adapt to problem difficulty, suppressing necessary reasoning on hard instances while leaving redundancy on easy ones. We propose Dynamic Decoupled Conditional Advantage (DDCA) to decouple efficiency optimization from correctness. DDCA computes length advantages conditionally within the correct-response cluster to eliminate baseline dilution, and dynamically scales the penalty strength using the group pass rate as a proxy for difficulty. Experiments on GSM8K, MATH500, AMC23, and AIME25 show that DDCA consistently improves the efficiency--accuracy trade-off relative to adaptive baselines, reducing generated tokens by approximately 60% on simpler tasks (e.g., GSM8K) versus over 20% on harder benchmarks (e.g., AIME25), thereby maintaining or improving accuracy. Code is available at https://github.com/alphadl/DDCA.
☆ LEC-KG: An LLM-Embedding Collaborative Framework for Domain-Specific Knowledge Graph Construction -- A Case Study on SDGs
Constructing domain-specific knowledge graphs from unstructured text remains challenging due to heterogeneous entity mentions, long-tail relation distributions, and the absence of standardized schemas. We present LEC-KG, a bidirectional collaborative framework that integrates the semantic understanding of Large Language Models (LLMs) with the structural reasoning of Knowledge Graph Embeddings (KGE). Our approach features three key components: (1) hierarchical coarse-to-fine relation extraction that mitigates long-tail bias, (2) evidence-guided Chain-of-Thought feedback that grounds structural suggestions in source text, and (3) semantic initialization that enables structural validation for unseen entities. The two modules enhance each other iteratively-KGE provides structure-aware feedback to refine LLM extractions, while validated triples progressively improve KGE representations. We evaluate LEC-KG on Chinese Sustainable Development Goal (SDG) reports, demonstrating substantial improvements over LLM baselines, particularly on low-frequency relations. Through iterative refinement, our framework reliably transforms unstructured policy text into validated knowledge graph triples.
☆ Closing the Loop: Universal Repository Representation with RPG-Encoder
Current repository agents encounter a reasoning disconnect due to fragmented representations, as existing methods rely on isolated API documentation or dependency graphs that lack semantic depth. We consider repository comprehension and generation to be inverse processes within a unified cycle: generation expands intent into implementation, while comprehension compresses implementation back into intent. To address this, we propose RPG-Encoder, a framework that generalizes the Repository Planning Graph (RPG) from a static generative blueprint into a unified, high-fidelity representation. RPG-Encoder closes the reasoning loop through three mechanisms: (1) Encoding raw code into the RPG that combines lifted semantic features with code dependencies; (2) Evolving the topology incrementally to decouple maintenance costs from repository scale, reducing overhead by 95.7%; and (3) Operating as a unified interface for structure-aware navigation. In evaluations, RPG-Encoder establishes state-of-the-art repository understanding on SWE-bench Verified with 93.7% Acc@5 and exceeds the best baseline by over 10% on SWE-bench Live Lite. These results highlight our superior fine-grained localization accuracy in complex codebases. Furthermore, it achieves 98.5% reconstruction coverage on RepoCraft, confirming RPG's high-fidelity capacity to mirror the original codebase and closing the loop between intent and implementation.
☆ WildGraphBench: Benchmarking GraphRAG with Wild-Source Corpora
Graph-based Retrieval-Augmented Generation (GraphRAG) organizes external knowledge as a hierarchical graph, enabling efficient retrieval and aggregation of scattered evidence across multiple documents. However, many existing benchmarks for GraphRAG rely on short, curated passages as external knowledge, failing to adequately evaluate systems in realistic settings involving long contexts and large-scale heterogeneous documents. To bridge this gap, we introduce WildGraphBench, a benchmark designed to assess GraphRAG performance in the wild. We leverage Wikipedia's unique structure, where cohesive narratives are grounded in long and heterogeneous external reference documents, to construct a benchmark reflecting real-word scenarios. Specifically, we sample articles across 12 top-level topics, using their external references as the retrieval corpus and citation-linked statements as ground truth, resulting in 1,100 questions spanning three levels of complexity: single-fact QA, multi-fact QA, and section-level summarization. Experiments across multiple baselines reveal that current GraphRAG pipelines help on multi-fact aggregation when evidence comes from a moderate number of sources, but this aggregation paradigm may overemphasize high-level statements at the expense of fine-grained details, leading to weaker performance on summarization tasks. Project page:https://github.com/BstWPY/WildGraphBench.
comment: https://github.com/BstWPY/WildGraphBench
☆ Dissecting Outlier Dynamics in LLM NVFP4 Pretraining
Training large language models using 4-bit arithmetic enhances throughput and memory efficiency. Yet, the limited dynamic range of FP4 increases sensitivity to outliers. While NVFP4 mitigates quantization error via hierarchical microscaling, a persistent loss gap remains compared to BF16. This study conducts a longitudinal analysis of outlier dynamics across architecture during NVFP4 pretraining, focusing on where they localize, why they occur, and how they evolve temporally. We find that, compared with Softmax Attention (SA), Linear Attention (LA) reduces per-tensor heavy tails but still exhibits persistent block-level spikes under block quantization. Our analysis attributes outliers to specific architectural components: Softmax in SA, gating in LA, and SwiGLU in FFN, with "post-QK" operations exhibiting higher sensitivity to quantization. Notably, outliers evolve from transient spikes early in training to a small set of persistent hot channels (i.e., channels with persistently large magnitudes) in later stages. Based on these findings, we introduce Hot-Channel Patch (HCP), an online compensation mechanism that identifies hot channels and reinjects residuals using hardware-efficient kernels. We then develop CHON, an NVFP4 training recipe integrating HCP with post-QK operation protection. On GLA-1.3B model trained for 60B tokens, CHON reduces the loss gap to BF16 from 0.94% to 0.58% while maintaining downstream accuracy.
comment: 39 pages, 32 figures
☆ Hunt Instead of Wait: Evaluating Deep Data Research on Large Language Models
The agency expected of Agentic Large Language Models goes beyond answering correctly, requiring autonomy to set goals and decide what to explore. We term this investigatory intelligence, distinguishing it from executional intelligence, which merely completes assigned tasks. Data Science provides a natural testbed, as real-world analysis starts from raw data rather than explicit queries, yet few benchmarks focus on it. To address this, we introduce Deep Data Research (DDR), an open-ended task where LLMs autonomously extract key insights from databases, and DDR-Bench, a large-scale, checklist-based benchmark that enables verifiable evaluation. Results show that while frontier models display emerging agency, long-horizon exploration remains challenging. Our analysis highlights that effective investigatory intelligence depends not only on agent scaffolding or merely scaling, but also on intrinsic strategies of agentic models.
comment: 14 pages, 7 tables, 8 figures
☆ Rethinking Genomic Modeling Through Optical Character Recognition
Recent genomic foundation models largely adopt large language model architectures that treat DNA as a one-dimensional token sequence. However, exhaustive sequential reading is structurally misaligned with sparse and discontinuous genomic semantics, leading to wasted computation on low-information background and preventing understanding-driven compression for long contexts. Here, we present OpticalDNA, a vision-based framework that reframes genomic modeling as Optical Character Recognition (OCR)-style document understanding. OpticalDNA renders DNA into structured visual layouts and trains an OCR-capable vision--language model with a \emph{visual DNA encoder} and a \emph{document decoder}, where the encoder produces compact, reconstructible visual tokens for high-fidelity compression. Building on this representation, OpticalDNA defines prompt-conditioned objectives over core genomic primitives-reading, region grounding, subsequence retrieval, and masked span completion-thereby learning layout-aware DNA representations that retain fine-grained genomic information under a reduced effective token budget. Across diverse genomic benchmarks, OpticalDNA consistently outperforms recent baselines; on sequences up to 450k bases, it achieves the best overall performance with nearly $20\times$ fewer effective tokens, and surpasses models with up to $985\times$ more activated parameters while tuning only 256k \emph{trainable} parameters.
☆ NEAT: Neuron-Based Early Exit for Large Reasoning Models
Large Reasoning Models (LRMs) often suffer from \emph{overthinking}, a phenomenon in which redundant reasoning steps are generated after a correct solution has already been reached. Existing early reasoning exit methods primarily rely on output-level heuristics or trained probing models to skip redundant reasoning steps, thereby mitigating overthinking. However, these approaches typically require additional rollout computation or externally labeled datasets. In this paper, we propose \textbf{NEAT}, a \textbf{N}euron-based \textbf{E}arly re\textbf{A}soning exi\textbf{T} framework that monitors neuron-level activation dynamics to enable training-free early exits, without introducing additional test-time computation. NEAT identifies exit-associated neurons and tracks their activation patterns during reasoning to dynamically trigger early exit or suppress reflection, thereby reducing unnecessary reasoning while preserving solution quality. Experiments on four reasoning benchmarks across six models with different scales and architectures show that, for each model, NEAT achieves an average token reduction of 22\% to 28\% when averaged over the four benchmarks, while maintaining accuracy.
☆ Beyond RAG for Agent Memory: Retrieval by Decoupling and Aggregation
Agent memory systems often adopt the standard Retrieval-Augmented Generation (RAG) pipeline, yet its underlying assumptions differ in this setting. RAG targets large, heterogeneous corpora where retrieved passages are diverse, whereas agent memory is a bounded, coherent dialogue stream with highly correlated spans that are often duplicates. Under this shift, fixed top-$k$ similarity retrieval tends to return redundant context, and post-hoc pruning can delete temporally linked prerequisites needed for correct reasoning. We argue retrieval should move beyond similarity matching and instead operate over latent components, following decoupling to aggregation: disentangle memories into semantic components, organise them into a hierarchy, and use this structure to drive retrieval. We propose xMemory, which builds a hierarchy of intact units and maintains a searchable yet faithful high-level node organisation via a sparsity--semantics objective that guides memory split and merge. At inference, xMemory retrieves top-down, selecting a compact, diverse set of themes and semantics for multi-fact queries, and expanding to episodes and raw messages only when it reduces the reader's uncertainty. Experiments on LoCoMo and PerLTQA across the three latest LLMs show consistent gains in answer quality and token efficiency.
☆ From Latent Signals to Reflection Behavior: Tracing Meta-Cognitive Activation Trajectory in R1-Style LLMs
R1-style LLMs have attracted growing attention for their capacity for self-reflection, yet the internal mechanisms underlying such behavior remain unclear. To bridge this gap, we anchor on the onset of reflection behavior and trace its layer-wise activation trajectory. Using the logit lens to read out token-level semantics, we uncover a structured progression: (i) Latent-control layers, where an approximate linear direction encodes the semantics of thinking budget; (ii) Semantic-pivot layers, where discourse-level cues, including turning-point and summarization cues, surface and dominate the probability mass; and (iii) Behavior-overt layers, where the likelihood of reflection-behavior tokens begins to rise until they become highly likely to be sampled. Moreover, our targeted interventions uncover a causal chain across these stages: prompt-level semantics modulate the projection of activations along latent-control directions, thereby inducing competition between turning-point and summarization cues in semantic-pivot layers, which in turn regulates the sampling likelihood of reflection-behavior tokens in behavior-overt layers. Collectively, our findings suggest a human-like meta-cognitive process-progressing from latent monitoring, to discourse-level regulation, and to finally overt self-reflection. Our analysis code can be found at https://github.com/DYR1/S3-CoT.
☆ S3-CoT: Self-Sampled Succinct Reasoning Enables Efficient Chain-of-Thought LLMs
Large language models (LLMs) equipped with chain-of-thought (CoT) achieve strong performance and offer a window into LLM behavior. However, recent evidence suggests that improvements in CoT capabilities often come with redundant reasoning processes, motivating a key question: Can LLMs acquire a fast-thinking mode analogous to human System 1 reasoning? To explore this, our study presents a self-sampling framework based on activation steering for efficient CoT learning. Our method can induce style-aligned and variable-length reasoning traces from target LLMs themselves without any teacher guidance, thereby alleviating a central bottleneck of SFT-based methods-the scarcity of high-quality supervision data. Using filtered data by gold answers, we perform SFT for efficient CoT learning with (i) a human-like dual-cognitive system, and (ii) a progressive compression curriculum. Furthermore, we explore a self-evolution regime in which SFT is driven solely by prediction-consistent data of variable-length variants, eliminating the need for gold answers. Extensive experiments on math benchmarks, together with cross-domain generalization tests in medicine, show that our method yields stable improvements for both general and R1-style LLMs. Our data and model checkpoints can be found at https://github.com/DYR1/S3-CoT.
☆ Beyond Local Edits: Embedding-Virtualized Knowledge for Broader Evaluation and Preservation of Model Editing
Knowledge editing methods for large language models are commonly evaluated using predefined benchmarks that assess edited facts together with a limited set of related or neighboring knowledge. While effective, such evaluations remain confined to finite, dataset-bounded samples, leaving the broader impact of editing on the model's knowledge system insufficiently understood. To address this gap, we introduce Embedding-Virtualized Knowledge (EVK) that characterizes model knowledge through controlled perturbations in embedding space, enabling the exploration of a substantially broader and virtualized knowledge region beyond explicit data annotations. Based on EVK, we construct an embedding-level evaluation benchmark EVK-Bench that quantifies potential knowledge drift induced by editing, revealing effects that are not captured by conventional sample-based metrics. Furthermore, we propose a plug-and-play EVK-Align module that constrains embedding-level knowledge drift during editing and can be seamlessly integrated into existing editing methods. Experiments demonstrate that our approach enables more comprehensive evaluation while significantly improving knowledge preservation without sacrificing editing accuracy.
☆ Orthogonal Hierarchical Decomposition for Structure-Aware Table Understanding with Large Language Models
Complex tables with multi-level headers, merged cells and heterogeneous layouts pose persistent challenges for LLMs in both understanding and reasoning. Existing approaches typically rely on table linearization or normalized grid modeling. However, these representations struggle to explicitly capture hierarchical structures and cross-dimensional dependencies, which can lead to misalignment between structural semantics and textual representations for non-standard tables. To address this issue, we propose an Orthogonal Hierarchical Decomposition (OHD) framework that constructs structure-preserving input representations of complex tables for LLMs. OHD introduces an Orthogonal Tree Induction (OTI) method based on spatial--semantic co-constraints, which decomposes irregular tables into a column tree and a row tree to capture vertical and horizontal hierarchical dependencies, respectively. Building on this representation, we design a dual-pathway association protocol to symmetrically reconstruct semantic lineage of each cell, and incorporate an LLM as a semantic arbitrator to align multi-level semantic information. We evaluate OHD framework on two complex table question answering benchmarks, AITQA and HiTab. Experimental results show that OHD consistently outperforms existing representation paradigms across multiple evaluation metrics.
comment: Work in process
☆ Mixture-of-Experts with Intermediate CTC Supervision for Accented Speech Recognition
Accented speech remains a persistent challenge for automatic speech recognition (ASR), as most models are trained on data dominated by a few high-resource English varieties, leading to substantial performance degradation for other accents. Accent-agnostic approaches improve robustness yet struggle with heavily accented or unseen varieties, while accent-specific methods rely on limited and often noisy labels. We introduce Moe-Ctc, a Mixture-of-Experts architecture with intermediate CTC supervision that jointly promotes expert specialization and generalization. During training, accent-aware routing encourages experts to capture accent-specific patterns, which gradually transitions to label-free routing for inference. Each expert is equipped with its own CTC head to align routing with transcription quality, and a routing-augmented loss further stabilizes optimization. Experiments on the Mcv-Accent benchmark demonstrate consistent gains across both seen and unseen accents in low- and high-resource conditions, achieving up to 29.3% relative WER reduction over strong FastConformer baselines.
☆ Breaking the Static Graph: Context-Aware Traversal for Robust Retrieval-Augmented Generation
Recent advances in Retrieval-Augmented Generation (RAG) have shifted from simple vector similarity to structure-aware approaches like HippoRAG, which leverage Knowledge Graphs (KGs) and Personalized PageRank (PPR) to capture multi-hop dependencies. However, these methods suffer from a "Static Graph Fallacy": they rely on fixed transition probabilities determined during indexing. This rigidity ignores the query-dependent nature of edge relevance, causing semantic drift where random walks are diverted into high-degree "hub" nodes before reaching critical downstream evidence. Consequently, models often achieve high partial recall but fail to retrieve the complete evidence chain required for multi-hop queries. To address this, we propose CatRAG, Context-Aware Traversal for robust RAG, a framework that builds on the HippoRAG 2 architecture and transforms the static KG into a query-adaptive navigation structure. We introduce a multi-faceted framework to steer the random walk: (1) Symbolic Anchoring, which injects weak entity constraints to regularize the random walk; (2) Query-Aware Dynamic Edge Weighting, which dynamically modulates graph structure, to prune irrelevant paths while amplifying those aligned with the query's intent; and (3) Key-Fact Passage Weight Enhancement, a cost-efficient bias that structurally anchors the random walk to likely evidence. Experiments across four multi-hop benchmarks demonstrate that CatRAG consistently outperforms state of the art baselines. Our analysis reveals that while standard Recall metrics show modest gains, CatRAG achieves substantial improvements in reasoning completeness, the capacity to recover the entire evidence path without gaps. These results reveal that our approach effectively bridges the gap between retrieving partial context and enabling fully grounded reasoning. Resources are available at https://github.com/kwunhang/CatRAG.
☆ From Code-Centric to Concept-Centric: Teaching NLP with LLM-Assisted "Vibe Coding" EACL2026
The rapid advancement of Large Language Models (LLMs) presents both challenges and opportunities for Natural Language Processing (NLP) education. This paper introduces ``Vibe Coding,'' a pedagogical approach that leverages LLMs as coding assistants while maintaining focus on conceptual understanding and critical thinking. We describe the implementation of this approach in a senior-level undergraduate NLP course, where students completed seven labs using LLMs for code generation while being assessed primarily on conceptual understanding through critical reflection questions. Analysis of end-of-course feedback from 19 students reveals high satisfaction (mean scores 4.4-4.6/5.0) across engagement, conceptual learning, and assessment fairness. Students particularly valued the reduced cognitive load from debugging, enabling deeper focus on NLP concepts. However, challenges emerged around time constraints, LLM output verification, and the need for clearer task specifications. Our findings suggest that when properly structured with mandatory prompt logging and reflection-based assessment, LLM-assisted learning can shift focus from syntactic fluency to conceptual mastery, preparing students for an AI-augmented professional landscape.
comment: Accepted in The Seventh Workshop on Teaching Natural Language Processing (Teaching NLP @ EACL2026)
☆ GuideWeb: A Benchmark for Automatic In-App Guide Generation on Real-World Web UIs
Digital Adoption Platform (DAP) provide web-based overlays that deliver operation guidance and contextual hints to help users navigate complex websites. Although modern DAP tools enable non-experts to author such guidance, maintaining these guides remains labor-intensive because website layouts and functionalities evolve continuously, which requires repeated manual updates and re-annotation. In this work, we introduce \textbf{GuideWeb}, a new benchmark for automatic in-app guide generation on real-world web UIs. GuideWeb formulates the task as producing page-level guidance by selecting \textbf{guide target elements} grounded in the webpage and generating concise guide text aligned with user intent. We also propose a comprehensive evaluation suite that jointly measures the accuracy of guide target element selection and the quality of generated intents and guide texts. Experiments show that our proposed \textbf{GuideWeb Agent} achieves \textbf{30.79\%} accuracy in guide target element prediction, while obtaining BLEU scores of \textbf{44.94} for intent generation and \textbf{21.34} for guide-text generation. Existing baselines perform substantially worse, which highlights that automatic guide generation remains challenging and that further advances are necessary before such systems can be reliably deployed in real-world settings.
☆ ES-MemEval: Benchmarking Conversational Agents on Personalized Long-Term Emotional Support WWW
Large Language Models (LLMs) have shown strong potential as conversational agents. Yet, their effectiveness remains limited by deficiencies in robust long-term memory, particularly in complex, long-term web-based services such as online emotional support. However, existing long-term dialogue benchmarks primarily focus on static and explicit fact retrieval, failing to evaluate agents in critical scenarios where user information is dispersed, implicit, and continuously evolving. To address this gap, we introduce ES-MemEval, a comprehensive benchmark that systematically evaluates five core memory capabilities: information extraction, temporal reasoning, conflict detection, abstention, and user modeling, in long-term emotional support settings, covering question answering, summarization, and dialogue generation tasks. To support the benchmark, we also propose EvoEmo, a multi-session dataset for personalized long-term emotional support that captures fragmented, implicit user disclosures and evolving user states. Extensive experiments on open-source long-context, commercial, and retrieval-augmented (RAG) LLMs show that explicit long-term memory is essential for reducing hallucinations and enabling effective personalization. At the same time, RAG improves factual consistency but struggles with temporal dynamics and evolving user states. These findings highlight both the potential and limitations of current paradigms and motivate more robust integration of memory and retrieval for long-term personalized dialogue systems.
comment: 12 pages, 7 figures. Accepted to The Web Conference (WWW) 2026
PretrainRL: Alleviating Factuality Hallucination of Large Language Models at the Beginning
Large language models (LLMs), despite their powerful capabilities, suffer from factual hallucinations where they generate verifiable falsehoods. We identify a root of this issue: the imbalanced data distribution in the pretraining corpus, which leads to a state of "low-probability truth" and "high-probability falsehood". Recent approaches, such as teaching models to say "I don't know" or post-hoc knowledge editing, either evade the problem or face catastrophic forgetting. To address this issue from its root, we propose \textbf{PretrainRL}, a novel framework that integrates reinforcement learning into the pretraining phase to consolidate factual knowledge. The core principle of PretrainRL is "\textbf{debiasing then learning}." It actively reshapes the model's probability distribution by down-weighting high-probability falsehoods, thereby making "room" for low-probability truths to be learned effectively. To enable this, we design an efficient negative sampling strategy to discover these high-probability falsehoods and introduce novel metrics to evaluate the model's probabilistic state concerning factual knowledge. Extensive experiments on three public benchmarks demonstrate that PretrainRL significantly alleviates factual hallucinations and outperforms state-of-the-art methods.
☆ Read As Human: Compressing Context via Parallelizable Close Reading and Skimming
Large Language Models (LLMs) demonstrate exceptional capability across diverse tasks. However, their deployment in long-context scenarios is hindered by two challenges: computational inefficiency and redundant information. We propose RAM (Read As HuMan), a context compression framework that adopts an adaptive hybrid reading strategy, to address these challenges. Inspired by human reading behavior (i.e., close reading important content while skimming less relevant content), RAM partitions the context into segments and encodes them with the input query in parallel. High-relevance segments are fully retained (close reading), while low-relevance ones are query-guided compressed into compact summary vectors (skimming). Both explicit textual segments and implicit summary vectors are concatenated and fed into decoder to achieve both superior performance and natural language format interpretability. To refine the decision boundary between close reading and skimming, we further introduce a contrastive learning objective based on positive and negative query-segment pairs. Experiments demonstrate that RAM outperforms existing baselines on multiple question answering and summarization benchmarks across two backbones, while delivering up to a 12x end-to-end speedup on long inputs (average length 16K; maximum length 32K).
comment: 13 pages,5 figures
☆ AXE: Low-Cost Cross-Domain Web Structured Information Extraction
Extracting structured data from the web is often a trade-off between the brittle nature of manual heuristics and the prohibitive cost of Large Language Models. We introduce AXE (Adaptive X-Path Extractor), a pipeline that rethinks this process by treating the HTML DOM as a tree that needs pruning rather than just a wall of text to be read. AXE uses a specialized "pruning" mechanism to strip away boilerplate and irrelevant nodes, leaving behind a distilled, high-density context that allows a tiny 0.6B LLM to generate precise, structured outputs. To keep the model honest, we implement Grounded XPath Resolution (GXR), ensuring every extraction is physically traceable to a source node. Despite its low footprint, AXE achieves state-of-the-art zero-shot performance, outperforming several much larger, fully-trained alternatives with an F1 score of 88.1% on the SWDE dataset. By releasing our specialized adaptors, we aim to provide a practical, cost-effective path for large-scale web information extraction.
☆ Sentence Curve Language Models
Language models (LMs) are a central component of modern AI systems, and diffusion-based language models (DLMs) have recently emerged as a competitive alternative. Both paradigms rely on word embeddings not only to represent the input sentence, but also to represent the target sentence that backbone models are trained to predict. We argue that such static embedding of the target word is insensitive to neighboring words, encouraging locally accurate word prediction while neglecting global structure across the target sentence. To address this limitation, we propose a continuous sentence representation, termed sentence curve, defined as a spline curve whose control points affect multiple words in the sentence. Based on this representation, we introduce sentence curve language model (SCLM), which extends DLMs to predict sentence curves instead of the static word embeddings. We theoretically show that sentence curve prediction induces a regularization effect that promotes global structure modeling, and characterize how different sentence curve types affect this behavior. Empirically, SCLM achieves SOTA performance among DLMs on IWSLT14 and WMT14, shows stable training without burdensome knowledge distillation, and demonstrates promising potential compared to discrete DLMs on LM1B.
☆ CodeOCR: On the Effectiveness of Vision Language Models in Code Understanding
Large Language Models (LLMs) have achieved remarkable success in source code understanding, yet as software systems grow in scale, computational efficiency has become a critical bottleneck. Currently, these models rely on a text-based paradigm that treats source code as a linear sequence of tokens, which leads to a linear increase in context length and associated computational costs. The rapid advancement of Multimodal LLMs (MLLMs) introduces an opportunity to optimize efficiency by representing source code as rendered images. Unlike text, which is difficult to compress without losing semantic meaning, the image modality is inherently suitable for compression. By adjusting resolution, images can be scaled to a fraction of their original token cost while remaining recognizable to vision-capable models. To explore the feasibility of this approach, we conduct the first systematic study on the effectiveness of MLLMs for code understanding. Our experiments reveal that: (1) MLLMs can effectively understand code with substantial token reduction, achieving up to 8x compression; (2) MLLMs can effectively leverage visual cues such as syntax highlighting, improving code completion performance under 4x compression; and (3) Code-understanding tasks like clone detection exhibit exceptional resilience to visual compression, with some compression ratios even slightly outperforming raw text inputs. Our findings highlight both the potential and current limitations of MLLMs in code understanding, which points out a shift toward image-modality code representation as a pathway to more efficient inference.
comment: Code and data are available at https://github.com/YerbaPage/CodeOCR
☆ Data Distribution Matters: A Data-Centric Perspective on Context Compression for Large Language Model
The deployment of Large Language Models (LLMs) in long-context scenarios is hindered by computational inefficiency and significant information redundancy. Although recent advancements have widely adopted context compression to address these challenges, existing research only focus on model-side improvements, the impact of the data distribution itself on context compression remains largely unexplored. To bridge this gap, we are the first to adopt a data-centric perspective to systematically investigate how data distribution impacts compression quality, including two dimensions: input data and intrinsic data (i.e., the model's internal pretrained knowledge). We evaluate the semantic integrity of compressed representations using an autoencoder-based framework to systematically investigate it. Our experimental results reveal that: (1) encoder-measured input entropy negatively correlates with compression quality, while decoder-measured entropy shows no significant relationship under a frozen-decoder setting; and (2) the gap between intrinsic data of the encoder and decoder significantly diminishes compression gains, which is hard to mitigate. Based on these findings, we further present practical guidelines to optimize compression gains.
comment: 15 pages,6 figures
: One LLM Token for Explicit Graph Structural Understanding
Large language models show great potential in unstructured data understanding, but still face significant challenges with graphs due to their structural hallucination. Existing approaches mainly either verbalize graphs into natural language, which leads to excessive token consumption and scattered attention, or transform graphs into trainable continuous embeddings (i.e., soft prompt), but exhibit severe misalignment with original text tokens. To solve this problem, we propose to incorporate one special token to fully represent the Structure Of Graph within a unified token space, facilitating explicit topology input and structural information sharing. Specifically, we propose a topology-aware structural tokenizer that maps each graph topology into a highly selective single token. Afterwards, we construct a set of hybrid structure Question-Answering corpora to align new structural tokens with existing text tokens. With this approach, empowers LLMs to understand, generate, and reason in a concise and accurate manner. Extensive experiments on five graph-level benchmarks demonstrate the superiority of our method, achieving a performance improvement of 9.9% to 41.4% compared to the baselines while exhibiting interpretability and consistency. Furthermore, our method provides a flexible extension to node-level tasks, enabling both global and local structural understanding. The codebase is publicly available at https://github.com/Jingyao-Wu/SOG.
☆ PRISM: Parametrically Refactoring Inference for Speculative Sampling Draft Models
Large Language Models (LLMs), constrained by their auto-regressive nature, suffer from slow decoding. Speculative decoding methods have emerged as a promising solution to accelerate LLM decoding, attracting attention from both systems and AI research communities. Recently, the pursuit of better draft quality has driven a trend toward parametrically larger draft models, which inevitably introduces substantial computational overhead. While existing work attempts to balance the trade-off between prediction accuracy and compute latency, we address this fundamental dilemma through architectural innovation. We propose PRISM, which disaggregates the computation of each predictive step across different parameter sets, refactoring the computational pathways of draft models to successfully decouple model capacity from inference cost. Through extensive experiments, we demonstrate that PRISM outperforms all existing draft architectures, achieving exceptional acceptance lengths while maintaining minimal draft latency for superior end-to-end speedup. We also re-examine scaling laws with PRISM, revealing that PRISM scales more effectively with expanding data volumes than other draft architectures. Through rigorous and fair comparison, we show that PRISM boosts the decoding throughput of an already highly optimized inference engine by more than 2.6x.
☆ Zero2Text: Zero-Training Cross-Domain Inversion Attacks on Textual Embeddings
The proliferation of retrieval-augmented generation (RAG) has established vector databases as critical infrastructure, yet they introduce severe privacy risks via embedding inversion attacks. Existing paradigms face a fundamental trade-off: optimization-based methods require computationally prohibitive queries, while alignment-based approaches hinge on the unrealistic assumption of accessible in-domain training data. These constraints render them ineffective in strict black-box and cross-domain settings. To dismantle these barriers, we introduce Zero2Text, a novel training-free framework based on recursive online alignment. Unlike methods relying on static datasets, Zero2Text synergizes LLM priors with a dynamic ridge regression mechanism to iteratively align generation to the target embedding on-the-fly. We further demonstrate that standard defenses, such as differential privacy, fail to effectively mitigate this adaptive threat. Extensive experiments across diverse benchmarks validate Zero2Text; notably, on MS MARCO against the OpenAI victim model, it achieves 1.8x higher ROUGE-L and 6.4x higher BLEU-2 scores compared to baselines, recovering sentences from unknown domains without a single leaked data pair.
comment: 10 pages
☆ WorldCup Sampling for Multi-bit LLM Watermarking
As large language models (LLMs) generate increasingly human-like text, watermarking offers a promising solution for reliable attribution beyond mere detection. While multi-bit watermarking enables richer provenance encoding, existing methods largely extend zero-bit schemes through seed-driven steering, leading to indirect information flow, limited effective capacity, and suboptimal decoding. In this paper, we propose WorldCup, a multi-bit watermarking framework for LLMs that treats sampling as a natural communication channel and embeds message bits directly into token selection via a hierarchical competition mechanism guided by complementary signals. Moreover, WorldCup further adopts entropy-aware modulation to preserve generation quality and supports robust message recovery through confidence-aware decoding. Comprehensive experiments show that WorldCup achieves a strong balance across capacity, detectability, robustness, text quality, and decoding efficiency, consistently outperforming prior baselines and laying a solid foundation for future LLM watermarking studies.
☆ Enhancing Automated Essay Scoring with Three Techniques: Two-Stage Fine-Tuning, Score Alignment, and Self-Training
Automated Essay Scoring (AES) plays a crucial role in education by providing scalable and efficient assessment tools. However, in real-world settings, the extreme scarcity of labeled data severely limits the development and practical adoption of robust AES systems. This study proposes a novel approach to enhance AES performance in both limited-data and full-data settings by introducing three key techniques. First, we introduce a Two-Stage fine-tuning strategy that leverages low-rank adaptations to better adapt an AES model to target prompt essays. Second, we introduce a Score Alignment technique to improve consistency between predicted and true score distributions. Third, we employ uncertainty-aware self-training using unlabeled data, effectively expanding the training set with pseudo-labeled samples while mitigating label noise propagation. We implement above three key techniques on DualBERT. We conduct extensive experiments on the ASAP++ dataset. As a result, in the 32-data setting, all three key techniques improve performance, and their integration achieves 91.2% of the full-data performance trained on approximately 1,000 labeled samples. In addition, the proposed Score Alignment technique consistently improves performance in both limited-data and full-data settings: e.g., it achieves state-of-the-art results in the full-data setting when integrated into DualBERT.
comment: 22 pages, 4 figures
☆ SafePred: A Predictive Guardrail for Computer-Using Agents via World Models
With the widespread deployment of Computer-using Agents (CUAs) in complex real-world environments, prevalent long-term risks often lead to severe and irreversible consequences. Most existing guardrails for CUAs adopt a reactive approach, constraining agent behavior only within the current observation space. While these guardrails can prevent immediate short-term risks (e.g., clicking on a phishing link), they cannot proactively avoid long-term risks: seemingly reasonable actions can lead to high-risk consequences that emerge with a delay (e.g., cleaning logs leads to future audits being untraceable), which reactive guardrails cannot identify within the current observation space. To address these limitations, we propose a predictive guardrail approach, with the core idea of aligning predicted future risks with current decisions. Based on this approach, we present SafePred, a predictive guardrail framework for CUAs that establishes a risk-to-decision loop to ensure safe agent behavior. SafePred supports two key abilities: (1) Short- and long-term risk prediction: by using safety policies as the basis for risk prediction, SafePred leverages the prediction capability of the world model to generate semantic representations of both short-term and long-term risks, thereby identifying and pruning actions that lead to high-risk states; (2) Decision optimization: translating predicted risks into actionable safe decision guidances through step-level interventions and task-level re-planning. Extensive experiments show that SafePred significantly reduces high-risk behaviors, achieving over 97.6% safety performance and improving task utility by up to 21.4% compared with reactive baselines.
☆ COMI: Coarse-to-fine Context Compression via Marginal Information Gain ICLR 2026
Large Language Models (LLMs) have demonstrated exceptional capabilities across diverse tasks. However, their deployment in long context scenarios remains hindered by computational inefficiency and information redundancy. Context compression methods address these challenges by significantly reducing input length and eliminating redundancy. We propose COMI, a coarse-to-fine adaptive context compression framework that jointly optimizes for semantic relevance and diversity under high compression rates. We introduce Marginal Information Gain (MIG), a metric defined as the relevance of a unit to the input query minus its semantic redundancy with other units, guiding the compression process to prioritize information that is both relevant and low redundant. The framework operates in two stages: (1) Coarse-Grained Group Reallocation, where the context is partitioned into groups and dynamically assigned compression rates based on inter-group MIG, ensuring compression budgets align with information value distribution; and (2) Fine-Grained Token Merging, where tokens within each group are fused via an intra-group MIG-based weighting mechanism, thereby preserving key semantics while avoiding the accumulation of redundancy. Extensive experiments across question-answering (e.g., NaturalQuestions, 2WikiMQA, HotpotQA and NarrativeQA), summarization (e.g., MultiNews) with various backbones (e.g., LLaMA-2-7B, Qwen2-7B) show that COMI outperforms existing baselines by a large margin, e.g., approximately 25-point Exact Match (EM) improvement under 32x compression constraint with Qwen2-7B on NaturalQuestions.
comment: Accepted at ICLR 2026
☆ BBPE16: UTF-16-based byte-level byte-pair encoding for improved multilingual speech recognition ICASSP 2026
Multilingual automatic speech recognition (ASR) requires tokenization that efficiently covers many writing systems. Byte-level BPE (BBPE) using UTF-8 is widely adopted for its language-agnostic design and full Unicode coverage, but its variable-length encoding inflates token sequences for non-Latin scripts, such as Chinese, Japanese, and Korean (CJK). Longer sequences increase computational load and memory use. We propose BBPE16, a UTF-16-based BBPE tokenizer that represents most modern scripts with a uniform 2-byte code unit. BBPE16 preserves BBPE's language-agnostic properties while substantially improving cross-lingual token sharing. Across monolingual, bilingual, and trilingual ASR, and in a multilingual continual-learning setup, BBPE16 attains comparable or better accuracy; for Chinese, it reduces token counts by up to 10.4% and lowers decoding iterations by up to 10.3%. These reductions speed up fine-tuning and inference and decrease memory usage, making BBPE16 a practical tokenization choice for multilingual ASR.
comment: accepted to ICASSP 2026
☆ Mechanistic Indicators of Steering Effectiveness in Large Language Models
Activation-based steering enables Large Language Models (LLMs) to exhibit targeted behaviors by intervening on intermediate activations without retraining. Despite its widespread use, the mechanistic factors that govern when steering succeeds or fails remain poorly understood, as prior work has relied primarily on black-box outputs or LLM-based judges. In this study, we investigate whether the reliability of steering can be diagnosed using internal model signals. We focus on two information-theoretic measures: the entropy-derived Normalized Branching Factor (NBF), and the Kullback-Leibler (KL) divergence between steered activations and targeted concepts in the vocabulary space. We hypothesize that effective steering corresponds to structured entropy preservation and coherent KL alignment across decoding steps. Building on a reliability study demonstrating high inter-judge agreement between two architecturally distinct LLMs, we use LLM-generated annotations as ground truth and show that these mechanistic signals provide meaningful predictive power for identifying successful steering and estimating failure probability. We further introduce a stronger evaluation baseline for Contrastive Activation Addition (CAA) and Sparse Autoencoder-based steering, the two most widely adopted activation-steering methods.
☆ MedAraBench: Large-Scale Arabic Medical Question Answering Dataset and Benchmark
Arabic remains one of the most underrepresented languages in natural language processing research, particularly in medical applications, due to the limited availability of open-source data and benchmarks. The lack of resources hinders efforts to evaluate and advance the multilingual capabilities of Large Language Models (LLMs). In this paper, we introduce MedAraBench, a large-scale dataset consisting of Arabic multiple-choice question-answer pairs across various medical specialties. We constructed the dataset by manually digitizing a large repository of academic materials created by medical professionals in the Arabic-speaking region. We then conducted extensive preprocessing and split the dataset into training and test sets to support future research efforts in the area. To assess the quality of the data, we adopted two frameworks, namely expert human evaluation and LLM-as-a-judge. Our dataset is diverse and of high quality, spanning 19 specialties and five difficulty levels. For benchmarking purposes, we assessed the performance of eight state-of-the-art open-source and proprietary models, such as GPT-5, Gemini 2.0 Flash, and Claude 4-Sonnet. Our findings highlight the need for further domain-specific enhancements. We release the dataset and evaluation scripts to broaden the diversity of medical data benchmarks, expand the scope of evaluation suites for LLMs, and enhance the multilingual capabilities of models for deployment in clinical settings.
☆ ARTIS: Agentic Risk-Aware Test-Time Scaling via Iterative Simulation
Current test-time scaling (TTS) techniques enhance large language model (LLM) performance by allocating additional computation at inference time, yet they remain insufficient for agentic settings, where actions directly interact with external environments and their effects can be irreversible and costly. We propose \emph{\name}, \emph{\underline{A}gentic \underline{R}isk-Aware \underline{T}est-Time Scaling via \underline{I}terative \underline{S}imulation}, a framework that decouples exploration from commitment by enabling test-time exploration through simulated interactions prior to real-world execution. This design allows extending inference-time computation to improve action-level reliability and robustness without incurring environmental risk. We further show that naive LLM-based simulators struggle to capture rare but high-impact failure modes, substantially limiting their effectiveness for agentic decision making. To address this limitation, we introduce a \emph{risk-aware tool simulator} that emphasizes fidelity on failure-inducing actions via targeted data generation and rebalanced training. Experiments on multi-turn and multi-step agentic benchmarks demonstrate that iterative simulation substantially improves agent reliability, and that risk-aware simulation is essential for consistently realizing these gains across models and tasks.
☆ Game of Thought: Robust Information Seeking with Large Language Models Using Game Theory ICML 2026
Large Language Models (LLMs) are increasingly deployed in real-world scenarios where they may lack sufficient information to complete a given task. In such settings, the ability to actively seek out missing information becomes a critical capability. Existing approaches to enhancing this ability often rely on simplifying assumptions that degrade \textit{worst-case} performance. This is an issue with serious implications in high-stakes applications. In this work, we use the game of Twenty Questions to evaluate the information-seeking ability of LLMs. We introduce and formalize its adversarial counterpart, the Strategic Language Search (SLS) problem along with its variants as a two-player zero-sum extensive form game. We propose Game of Thought (GoT), a framework that applies game-theoretic techniques to approximate a Nash equilibrium (NE) strategy for the restricted variant of the game. Empirical results demonstrate that our approach consistently improves worst-case performance compared to (1) direct prompting-based methods and (2) heuristic-guided search methods across all tested settings.
comment: 23 pages, 10 figures, under review at ICML 2026
☆ $\textbf{AGT$^{AO}$}$: Robust and Stabilized LLM Unlearning via Adversarial Gating Training with Adaptive Orthogonality
While Large Language Models (LLMs) have achieved remarkable capabilities, they unintentionally memorize sensitive data, posing critical privacy and security risks. Machine unlearning is pivotal for mitigating these risks, yet existing paradigms face a fundamental dilemma: aggressive unlearning often induces catastrophic forgetting that degrades model utility, whereas conservative strategies risk superficial forgetting, leaving models vulnerable to adversarial recovery. To address this trade-off, we propose $\textbf{AGT$^{AO}$}$ (Adversarial Gating Training with Adaptive Orthogonality), a unified framework designed to reconcile robust erasure with utility preservation. Specifically, our approach introduces $\textbf{Adaptive Orthogonality (AO)}$ to dynamically mitigate geometric gradient conflicts between forgetting and retention objectives, thereby minimizing unintended knowledge degradation. Concurrently, $\textbf{Adversarial Gating Training (AGT)}$ formulates unlearning as a latent-space min-max game, employing a curriculum-based gating mechanism to simulate and counter internal recovery attempts. Extensive experiments demonstrate that $\textbf{AGT$^{AO}$}$ achieves a superior trade-off between unlearning efficacy (KUR $\approx$ 0.01) and model utility (MMLU 58.30). Code is available at https://github.com/TiezMind/AGT-unlearning.
☆ Restoring Exploration after Post-Training: Latent Exploration Decoding for Large Reasoning Models
Large Reasoning Models (LRMs) have recently achieved strong mathematical and code reasoning performance through Reinforcement Learning (RL) post-training. However, we show that modern reasoning post-training induces an unintended exploration collapse: temperature-based sampling no longer increases pass@$n$ accuracy. Empirically, the final-layer posterior of post-trained LRMs exhibit sharply reduced entropy, while the entropy of intermediate layers remains relatively high. Motivated by this entropy asymmetry, we propose Latent Exploration Decoding (LED), a depth-conditioned decoding strategy. LED aggregates intermediate posteriors via cumulative sum and selects depth configurations with maximal entropy as exploration candidates. Without additional training or parameters, LED consistently improves pass@1 and pass@16 accuracy by 0.61 and 1.03 percentage points across multiple reasoning benchmarks and models. Project page: https://GitHub.com/Xiaomi-Research/LED.
☆ Counting Hypothesis: Potential Mechanism of In-Context Learning
In-Context Learning (ICL) indicates that large language models (LLMs) pretrained on a massive amount of data can learn specific tasks from input prompts' examples. ICL is notable for two reasons. First, it does not need modification of LLMs' internal structure. Second, it enables LLMs to perform a wide range of tasks/functions with a few examples demonstrating a desirable task. ICL opens up new ways to utilize LLMs in more domains, but its underlying mechanisms still remain poorly understood, making error correction and diagnosis extremely challenging. Thus, it is imperative that we better understand the limitations of ICL and how exactly LLMs support ICL. Inspired by ICL properties and LLMs' functional modules, we propose 1the counting hypothesis' of ICL, which suggests that LLMs' encoding strategy may underlie ICL, and provide supporting evidence.
comment: 19 pages, 7 main Figures, 1 Table and 6 Supp. Figures
☆ Scaling Search-Augmented LLM Reasoning via Adaptive Information Control
Search-augmented reasoning agents interleave multi-step reasoning with external information retrieval, but uncontrolled retrieval often leads to redundant evidence, context saturation, and unstable learning. Existing approaches rely on outcome-based reinforcement learning (RL), which provides limited guidance for regulating information acquisition. We propose DeepControl, a framework for adaptive information control based on a formal notion of information utility, which measures the marginal value of retrieved evidence under a given reasoning state. Building on this utility, we introduce retrieval continuation and granularity control mechanisms that selectively regulate when to continue and stop retrieval, and how much information to expand. An annealed control strategy enables the agent to internalize effective information acquisition behaviors during training. Extensive experiments across seven benchmarks demonstrate that our method consistently outperforms strong baselines. In particular, our approach achieves average performance improvements of 9.4% and 8.6% on Qwen2.5-7B and Qwen2.5-3B, respectively, over strong outcome-based RL baselines, and consistently outperforms both retrieval-free and retrieval-based reasoning methods without explicit information control. These results highlight the importance of adaptive information control for scaling search-augmented reasoning agents to complex, real-world information environments.
comment: Work in progress
☆ CoDiQ: Test-Time Scaling for Controllable Difficult Question Generation
Large Reasoning Models (LRMs) benefit substantially from training on challenging competition-level questions. However, existing automated question synthesis methods lack precise difficulty control, incur high computational costs, and struggle to generate competition-level questions at scale. In this paper, we propose CoDiQ (Controllable Difficult Question Generation), a novel framework enabling fine-grained difficulty control via test-time scaling while ensuring question solvability. Specifically, first, we identify a test-time scaling tendency (extended reasoning token budget boosts difficulty but reduces solvability) and the intrinsic properties defining the upper bound of a model's ability to generate valid, high-difficulty questions. Then, we develop CoDiQ-Generator from Qwen3-8B, which improves the upper bound of difficult question generation, making it particularly well-suited for challenging question construction. Building on the CoDiQ framework, we build CoDiQ-Corpus (44K competition-grade question sequences). Human evaluations show these questions are significantly more challenging than LiveCodeBench/AIME with over 82% solvability. Training LRMs on CoDiQ-Corpus substantially improves reasoning performance, verifying that scaling controlled-difficulty training questions enhances reasoning capabilities. We open-source CoDiQ-Corpus, CoDiQ-Generator, and implementations to support related research.
comment: 11 pages, 5 tables, 5 figures
☆ Steering Vector Fields for Context-Aware Inference-Time Control in Large Language Models
Steering vectors (SVs) offer a lightweight way to control large language models (LLMs) at inference time by shifting hidden activations, providing a practical middle ground between prompting and fine-tuning. Yet SVs can be unreliable in practice. Some concepts are unsteerable, and even when steering helps on average it can backfire for a non-trivial fraction of inputs. Reliability also degrades in long-form generation and multi-attribute steering. We take a geometric view of these failures. A static SV applies the same update vector everywhere in representation space, implicitly assuming that the concept-improving direction is constant across contexts. When the locally effective direction varies with the current activation, a single global vector can become misaligned, which yields weak or reversed effects. Guided by this perspective, we propose Steering Vector Fields (SVF), which learns a differentiable concept scoring function whose local gradient defines the steering direction at each activation, making interventions explicitly context-dependent. This formulation supports coordinated multi-layer interventions in a shared, aligned concept space, and enables efficient long-form and multi-attribute control within a unified framework. Across multiple LLMs and steering tasks, SVF delivers stronger and more reliable control, improving the practicality of inference-time steering.
☆ A2Eval: Agentic and Automated Evaluation for Embodied Brain
Current embodied VLM evaluation relies on static, expert-defined, manually annotated benchmarks that exhibit severe redundancy and coverage imbalance. This labor intensive paradigm drains computational and annotation resources, inflates costs, and distorts model rankings, ultimately stifling iterative development. To address this, we propose Agentic Automatic Evaluation (A2Eval), the first agentic framework that automates benchmark curation and evaluation through two collaborative agents. The Data Agent autonomously induces capability dimensions and assembles a balanced, compact evaluation suite, while the Eval Agent synthesizes and validates executable evaluation pipelines, enabling fully autonomous, high-fidelity assessment. Evaluated across 10 benchmarks and 13 models, A2Eval compresses evaluation suites by 85%, reduces overall computational costs by 77%, and delivers a 4.6x speedup while preserving evaluation quality. Crucially, A2Eval corrects systematic ranking biases, improves human alignment to Spearman's rho=0.85, and maintains high ranking fidelity (Kendall's tau=0.81), establishing a new standard for high-fidelity, low-cost embodied assessment. Our code and data will be public soon.
☆ SEA-Guard: Culturally Grounded Multilingual Safeguard for Southeast Asia
Culturally aware safeguards are crucial for AI alignment in real-world settings, where safety extends beyond common sense and encompasses diverse local values, norms, and region-specific regulations. However, building large-scale, culturally grounded datasets is challenging due to limited resources and a scarcity of native annotators. Consequently, many safeguard models rely on machine translation of English datasets, often missing regional and cultural nuances. We present a novel agentic data-generation framework to scalably create authentic, region-specific safety datasets for Southeast Asia (SEA). On this foundation, we introduce the SEA-Guard family, the first multilingual safeguard models grounded in SEA cultural contexts. Evaluated across multiple benchmarks and cultural variants, SEA-Guard consistently outperforms existing safeguards at detecting regionally sensitive or harmful content while maintaining strong general safety performance.
comment: Under reivew
☆ Adaptive Rollout Allocation for Online Reinforcement Learning with Verifiable Rewards ICLR 2026
Sampling efficiency is a key bottleneck in reinforcement learning with verifiable rewards. Existing group-based policy optimization methods, such as GRPO, allocate a fixed number of rollouts for all training prompts. This uniform allocation implicitly treats all prompts as equally informative, and could lead to inefficient computational budget usage and impede training progress. We introduce \Ours, a Variance-Informed Predictive allocation strategy that allocates a given rollout budget to the prompts in the incumbent batch to minimize the expected gradient variance of the policy update. At each iteration, \Ours~uses a lightweight Gaussian process model to predict per-prompt success probabilities based on recent rollouts. These probability predictions are translated into variance estimates, which are then fed into a convex optimization problem to determine the optimal rollout allocations under a hard compute budget constraint. Empirical results show that \Ours~consistently improves sampling efficiency and achieves higher performance than uniform or heuristic allocation strategies in multiple benchmarks. Our code will be available at https://github.com/HieuNT91/VIP.
comment: Accepted at ICLR 2026
☆ Expected Harm: Rethinking Safety Evaluation of (Mis)Aligned LLMs
Current evaluations of LLM safety predominantly rely on severity-based taxonomies to assess the harmfulness of malicious queries. We argue that this formulation requires re-examination as it assumes uniform risk across all malicious queries, neglecting Execution Likelihood--the conditional probability of a threat being realized given the model's response. In this work, we introduce Expected Harm, a metric that weights the severity of a jailbreak by its execution likelihood, modeled as a function of execution cost. Through empirical analysis of state-of-the-art models, we reveal a systematic Inverse Risk Calibration: models disproportionately exhibit stronger refusal behaviors for low-likelihood (high-cost) threats while remaining vulnerable to high-likelihood (low-cost) queries. We demonstrate that this miscalibration creates a structural vulnerability: by exploiting this property, we increase the attack success rate of existing jailbreaks by up to $2\times$. Finally, we trace the root cause of this failure using linear probing, which reveals that while models encode severity in their latent space to drive refusal decisions, they possess no distinguishable internal representation of execution cost, making them "blind" to this critical dimension of risk.
☆ The Art of Socratic Inquiry: A Framework for Proactive Template-Guided Therapeutic Conversation Generation
Proactive questioning, where therapists deliberately initiate structured, cognition-guiding inquiries, is a cornerstone of cognitive behavioral therapy (CBT). Yet, current psychological large language models (LLMs) remain overwhelmingly reactive, defaulting to empathetic but superficial responses that fail to surface latent beliefs or guide behavioral change. To bridge this gap, we propose the \textbf{Socratic Inquiry Framework (SIF)}, a lightweight, plug-and-play therapeutic intent planner that transforms LLMs from passive listeners into active cognitive guides. SIF decouples \textbf{when to ask} (via Strategy Anchoring) from \textbf{what to ask} (via Template Retrieval), enabling context-aware, theory-grounded questioning without end-to-end retraining. Complementing SIF, we introduce \textbf{Socratic-QA}, a high-quality dataset of strategy-aligned Socratic sequences that provides explicit supervision for proactive reasoning. Experiments show that SIF significantly enhances proactive questioning frequency, conversational depth, and therapeutic alignment, marking a clear shift from reactive comfort to proactive exploration. Our work establishes a new paradigm for psychologically informed LLMs: not just to respond, but to guide.
☆ Wiki Live Challenge: Challenging Deep Research Agents with Expert-Level Wikipedia Articles
Deep Research Agents (DRAs) have demonstrated remarkable capabilities in autonomous information retrieval and report generation, showing great potential to assist humans in complex research tasks. Current evaluation frameworks primarily rely on LLM-generated references or LLM-derived evaluation dimensions. While these approaches offer scalability, they often lack the reliability of expert-verified content and struggle to provide objective, fine-grained assessments of critical dimensions. To bridge this gap, we introduce Wiki Live Challenge (WLC), a live benchmark that leverages the newest Wikipedia Good Articles (GAs) as expert-level references. Wikipedia's strict standards for neutrality, comprehensiveness, and verifiability serve as a great challenge for DRAs, with GAs representing the pinnacle of which. We curate a dataset of 100 recent Good Articles and propose Wiki Eval, a comprehensive evaluation framework comprising a fine-grained evaluation method with 39 criteria for writing quality and rigorous metrics for factual verifiability. Extensive experiments on various DRA systems demonstrate a significant gap between current DRAs and human expert-level Wikipedia articles, validating the effectiveness of WLC in advancing agent research. We release our benchmark at https://github.com/WangShao2000/Wiki_Live_Challenge
comment: Preprint. Work in progress
☆ Provable Defense Framework for LLM Jailbreaks via Noise-Augumented Alignment
Large Language Models (LLMs) remain vulnerable to adaptive jailbreaks that easily bypass empirical defenses like GCG. We propose a framework for certifiable robustness that shifts safety guarantees from single-pass inference to the statistical stability of an ensemble. We introduce Certified Semantic Smoothing (CSS) via Stratified Randomized Ablation, a technique that partitions inputs into immutable structural prompts and mutable payloads to derive rigorous lo norm guarantees using the Hypergeometric distribution. To resolve performance degradation on sparse contexts, we employ Noise-Augmented Alignment Tuning (NAAT), which transforms the base model into a semantic denoiser. Extensive experiments on Llama-3 show that our method reduces the Attack Success Rate of gradient-based attacks from 84.2% to 1.2% while maintaining 94.1% benign utility, significantly outperforming character-level baselines which degrade utility to 74.3%. This framework provides a deterministic certificate of safety, ensuring that a model remains robust against all adversarial variants within a provable radius.
comment: 10 pages
☆ LLM-based Embeddings: Attention Values Encode Sentence Semantics Better Than Hidden States
Sentence representations are foundational to many Natural Language Processing (NLP) applications. While recent methods leverage Large Language Models (LLMs) to derive sentence representations, most rely on final-layer hidden states, which are optimized for next-token prediction and thus often fail to capture global, sentence-level semantics. This paper introduces a novel perspective, demonstrating that attention value vectors capture sentence semantics more effectively than hidden states. We propose Value Aggregation (VA), a simple method that pools token values across multiple layers and token indices. In a training-free setting, VA outperforms other LLM-based embeddings, even matches or surpasses the ensemble-based MetaEOL. Furthermore, we demonstrate that when paired with suitable prompts, the layer attention outputs can be interpreted as aligned weighted value vectors. Specifically, the attention scores of the last token function as the weights, while the output projection matrix ($W_O$) aligns these weighted value vectors with the common space of the LLM residual stream. This refined method, termed Aligned Weighted VA (AlignedWVA), achieves state-of-the-art performance among training-free LLM-based embeddings, outperforming the high-cost MetaEOL by a substantial margin. Finally, we highlight the potential of obtaining strong LLM embedding models through fine-tuning Value Aggregation.
☆ FS-Researcher: Test-Time Scaling for Long-Horizon Research Tasks with File-System-Based Agents
Deep research is emerging as a representative long-horizon task for large language model (LLM) agents. However, long trajectories in deep research often exceed model context limits, compressing token budgets for both evidence collection and report writing, and preventing effective test-time scaling. We introduce FS-Researcher, a file-system-based, dual-agent framework that scales deep research beyond the context window via a persistent workspace. Specifically, a Context Builder agent acts as a librarian which browses the internet, writes structured notes, and archives raw sources into a hierarchical knowledge base that can grow far beyond context length. A Report Writer agent then composes the final report section by section, treating the knowledge base as the source of facts. In this framework, the file system serves as a durable external memory and a shared coordination medium across agents and sessions, enabling iterative refinement beyond the context window. Experiments on two open-ended benchmarks (DeepResearch Bench and DeepConsult) show that FS-Researcher achieves state-of-the-art report quality across different backbone models. Further analyses demonstrate a positive correlation between final report quality and the computation allocated to the Context Builder, validating effective test-time scaling under the file-system paradigm. The code and data are anonymously open-sourced at https://github.com/Ignoramus0817/FS-Researcher.
comment: 19 pages, 6 figures
☆ Argument Rarity-based Originality Assessment for AI-Assisted Writing
As Large Language Models (LLMs) have become capable of effortlessly generating high-quality text, traditional quality-focused writing assessment is losing its significance. If the essential goal of education is to foster critical thinking and original perspectives, assessment must also shift its paradigm from quality to originality. This study proposes Argument Rarity-based Originality Assessment (AROA), a framework for automatically evaluating argumentative originality in student essays. AROA defines originality as rarity within a reference corpus and evaluates it through four complementary components: structural rarity, claim rarity, evidence rarity, and cognitive depth. The framework quantifies the rarity of each component using density estimation and integrates them with a quality adjustment mechanism, thereby treating quality and originality as independent evaluation axes. Experiments using human essays and AI-generated essays revealed a strong negative correlation between quality and claim rarity, demonstrating a quality-originality trade-off where higher-quality texts tend to rely on typical claim patterns. Furthermore, while AI essays achieved comparable levels of structural complexity to human essays, their claim rarity was substantially lower than that of humans, indicating that LLMs can reproduce the form of argumentation but have limitations in the originality of content.
☆ MAGIC: A Co-Evolving Attacker-Defender Adversarial Game for Robust LLM Safety
Ensuring robust safety alignment is crucial for Large Language Models (LLMs), yet existing defenses often lag behind evolving adversarial attacks due to their \textbf{reliance on static, pre-collected data distributions}. In this paper, we introduce \textbf{MAGIC}, a novel multi-turn multi-agent reinforcement learning framework that formulates LLM safety alignment as an adversarial asymmetric game. Specifically, an attacker agent learns to iteratively rewrite original queries into deceptive prompts, while a defender agent simultaneously optimizes its policy to recognize and refuse such inputs. This dynamic process triggers a \textbf{co-evolution}, where the attacker's ever-changing strategies continuously uncover long-tail vulnerabilities, driving the defender to generalize to unseen attack patterns. Remarkably, we observe that the attacker, endowed with initial reasoning ability, evolves \textbf{novel, previously unseen combinatorial strategies} through iterative RL training, underscoring our method's substantial potential. Theoretically, we provide insights into a more robust game equilibrium and derive safety guarantees. Extensive experiments validate our framework's effectiveness, demonstrating superior defense success rates without compromising the helpfulness of the model. Our code is available at https://github.com/BattleWen/MAGIC.
☆ A Relative-Budget Theory for Reinforcement Learning with Verifiable Rewards in Large Language Model Reasoning
Reinforcement learning (RL) is a dominant paradigm for improving the reasoning abilities of large language models, yet its effectiveness varies across tasks and compute budgets. We propose a \emph{relative-budget} theory explaining this variation through a single quantity called relative budget $ξ:= H/\mathbb{E}[T]$, where $H$ is the generation horizon (token budget) and $T$ denotes the number of tokens until the first correct solution under a base policy. We show that $ξ$ determines sample efficiency by controlling reward variance and the likelihood of informative trajectories. Our analysis reveals three regimes: in the \emph{deficient} regime ($ξ\to 0$), informative trajectories are rare and the sample complexity explodes; in the \emph{balanced} regime ($ξ=Θ(1)$), informative trajectories occur with non-negligible probability and RL is maximally sample-efficient; and in the \emph{ample} regime ($ξ\to \infty$), learning remains stable but marginal gains per iteration diminish. We further provide finite-sample guarantees for online RL that characterize learning progress across these regimes. Specifically, in a case study under idealized distributional assumptions, we show that the relative budget grows linearly over iterations. Our empirical results confirm these predictions in realistic settings, identifying a budget $ξ\in [1.5, 2.0]$ that maximizes learning efficiency and coincides with peak reasoning performance.
comment: 28 pages
☆ Alternating Reinforcement Learning for Rubric-Based Reward Modeling in Non-Verifiable LLM Post-Training
Standard reward models typically predict scalar scores that fail to capture the multifaceted nature of response quality in non-verifiable domains, such as creative writing or open-ended instruction following. To address this limitation, we propose Rubric-ARM, a framework that jointly optimizes a rubric generator and a judge using reinforcement learning from preference feedback. Unlike existing methods that rely on static rubrics or disjoint training pipelines, our approach treats rubric generation as a latent action learned to maximize judgment accuracy. We introduce an alternating optimization strategy to mitigate the non-stationarity of simultaneous updates, providing theoretical analysis that demonstrates how this schedule reduces gradient variance during training. Extensive experiments show that Rubric-ARM achieves state-of-the-art performance among baselines on multiple benchmarks and significantly improves downstream policy alignment in both offline and online reinforcement learning settings.
comment: The first two authors contributed equally
☆ Aligning Language Model Benchmarks with Pairwise Preferences
Language model benchmarks are pervasive and computationally-efficient proxies for real-world performance. However, many recent works find that benchmarks often fail to predict real utility. Towards bridging this gap, we introduce benchmark alignment, where we use limited amounts of information about model performance to automatically update offline benchmarks, aiming to produce new static benchmarks that predict model pairwise preferences in given test settings. We then propose BenchAlign, the first solution to this problem, which learns preference-aligned weight- ings for benchmark questions using the question-level performance of language models alongside ranked pairs of models that could be collected during deployment, producing new benchmarks that rank previously unseen models according to these preferences. Our experiments show that our aligned benchmarks can accurately rank unseen models according to models of human preferences, even across different sizes, while remaining interpretable. Overall, our work provides insights into the limits of aligning benchmarks with practical human preferences, which stands to accelerate model development towards real utility.
☆ TraceNAS: Zero-shot LLM Pruning via Gradient Trace Correlation
Structured pruning is essential for efficient deployment of Large Language Models (LLMs). The varying sensitivity of LLM sub-blocks to pruning necessitates the identification of optimal non-uniformly pruned models. Existing methods evaluate the importance of layers, attention heads, or weight channels in isolation. Such localized focus ignores the complex global structural dependencies that exist across the model. Training-aware structured pruning addresses global dependencies, but its computational cost can be just as expensive as post-pruning training. To alleviate the computational burden of training-aware pruning and capture global structural dependencies, we propose TraceNAS, a training-free Neural Architecture Search (NAS) framework that jointly explores structured pruning of LLM depth and width. TraceNAS identifies pruned models that maintain a high degree of loss landscape alignment with the pretrained model using a scale-invariant zero-shot proxy, effectively selecting models that exhibit maximal performance potential during post-pruning training. TraceNAS is highly efficient, enabling high-fidelity discovery of pruned models on a single GPU in 8.5 hours, yielding a 10$\times$ reduction in GPU-hours compared to training-aware methods. Evaluations on the Llama and Qwen families demonstrate that TraceNAS is competitive with training-aware baselines across commonsense and reasoning benchmarks.
comment: Preprint
☆ HALT: Hallucination Assessment via Log-probs as Time series
Hallucinations remain a major obstacle for large language models (LLMs), especially in safety-critical domains. We present HALT (Hallucination Assessment via Log-probs as Time series), a lightweight hallucination detector that leverages only the top-20 token log-probabilities from LLM generations as a time series. HALT uses a gated recurrent unit model combined with entropy-based features to learn model calibration bias, providing an extremely efficient alternative to large encoders. Unlike white-box approaches, HALT does not require access to hidden states or attention maps, relying only on output log-probabilities. Unlike black-box approaches, it operates on log-probs rather than surface-form text, which enables stronger domain generalization and compatibility with proprietary LLMs without requiring access to internal weights. To benchmark performance, we introduce HUB (Hallucination detection Unified Benchmark), which consolidates prior datasets into ten capabilities covering both reasoning tasks (Algorithmic, Commonsense, Mathematical, Symbolic, Code Generation) and general purpose skills (Chat, Data-to-Text, Question Answering, Summarization, World Knowledge). While being 30x smaller, HALT outperforms Lettuce, a fine-tuned modernBERT-base encoder, achieving a 60x speedup gain on HUB. HALT and HUB together establish an effective framework for hallucination detection across diverse LLM capabilities.
☆ Which course? Discourse! Teaching Discourse and Generation in the Era of LLMs EACL 2026
The field of NLP has undergone vast, continuous transformations over the past few years, sparking debates going beyond discipline boundaries. This begs important questions in education: how do we design courses that bridge sub-disciplines in this shifting landscape? This paper explores this question from the angle of discourse processing, an area with rich linguistic insights and computational models for the intentional, attentional, and coherence structure of language. Discourse is highly relevant for open-ended or long-form text generation, yet this connection is under-explored in existing undergraduate curricula. We present a new course, "Computational Discourse and Natural Language Generation". The course is collaboratively designed by a team with complementary expertise and was offered for the first time in Fall 2025 as an upper-level undergraduate course, cross-listed between Linguistics and Computer Science. Our philosophy is to deeply integrate the theoretical and empirical aspects, and create an exploratory mindset inside the classroom and in the assignments. This paper describes the course in detail and concludes with takeaways from an independent survey as well as our vision for future directions.
comment: accepted to the TeachNLP 2026 workshop (co-located with EACL 2026), camera-ready, 14 pages
☆ Act or Clarify? Modeling Sensitivity to Uncertainty and Cost in Communication
When deciding how to act under uncertainty, agents may choose to act to reduce uncertainty or they may act despite that uncertainty.In communicative settings, an important way of reducing uncertainty is by asking clarification questions (CQs). We predict that the decision to ask a CQ depends on both contextual uncertainty and the cost of alternative actions, and that these factors interact: uncertainty should matter most when acting incorrectly is costly. We formalize this interaction in a computational model based on expected regret: how much an agent stands to lose by acting now rather than with full information. We test these predictions in two experiments, one examining purely linguistic responses to questions and another extending to choices between clarification and non-linguistic action. Taken together, our results suggest a rational tradeoff: humans tend to seek clarification proportional to the risk of substantial loss when acting under uncertainty.
comment: 6 pages, 3 figures, under review
☆ Chain of Simulation: A Dual-Mode Reasoning Framework for Large Language Models with Dynamic Problem Routing
We present Chain of Simulation (CoS), a novel dual-mode reasoning framework that dynamically routes problems to specialized reasoning strategies in Large Language Models (LLMs). Unlike existing uniform prompting approaches, CoS employs three distinct reasoning modes: (1) computational flow with self-consistency for mathematical problems, (2) symbolic state tracking with JSON representations for spatial reasoning, and (3) hybrid fact-extraction for multi-hop inference. Through comprehensive evaluation on GSM8K, StrategyQA, and bAbI benchmarks using four state-of-the-art models (Gemma-3 27B, LLaMA-3.1 8B, Mistral 7B, and Qwen-2.5 14B), we demonstrate that CoS achieves 71.5% accuracy on GSM8K (1.0% absolute improvement), 90.0% on StrategyQA (2.5% improvement), and 19.0% on bAbI (65.2% relative improvement) compared to the strongest baselines. The analysis reveals that problem-specific mode selection is crucial, with computational mode achieving 81.2% accuracy when correctly applied to mathematical problems, while misrouting leads to 0% accuracy. We provide detailed algorithms for mode selection, state tracking, and answer extraction, establishing CoS as an effective approach for improving LLM reasoning without additional training. The framework provides superior trade-offs between accuracy and efficiency compared to Self-Consistency, achieving comparable performance at 54% lower computational cost.
☆ CATNIP: LLM Unlearning via Calibrated and Tokenized Negative Preference Alignment
Pretrained knowledge memorized in LLMs raises critical concerns over safety and privacy, which has motivated LLM Unlearning as a technique for selectively removing the influences of undesirable knowledge. Existing approaches, rooted in Gradient Ascent (GA), often degrade general domain knowledge while relying on retention data or curated contrastive pairs, which can be either impractical or data and computationally prohibitive. Negative Preference Alignment has been explored for unlearning to tackle the limitations of GA, which, however, remains confined by its choice of reference model and shows undermined performance in realistic data settings. These limitations raise two key questions: i) Can we achieve effective unlearning that quantifies model confidence in undesirable knowledge and uses it to calibrate gradient updates more precisely, thus reducing catastrophic forgetting? ii) Can we make unlearning robust to data scarcity and length variation? We answer both questions affirmatively with CATNIP (Calibrated and Tokenized Negative Preference Alignment), a principled method that rescales unlearning effects in proportion to the model's token-level confidence, thus ensuring fine-grained control over forgetting. Extensive evaluations on MUSE and WMDP benchmarks demonstrated that our work enables effective unlearning without requiring retention data or contrastive unlearning response pairs, with stronger knowledge forgetting and preservation tradeoffs than state-of-the-art methods.
☆ R2-Router: A New Paradigm for LLM Routing with Reasoning
As LLMs proliferate with diverse capabilities and costs, LLM routing has emerged by learning to predict each LLM's quality and cost for a given query, then selecting the one with high quality and low cost. However, existing routers implicitly assume a single fixed quality and cost per LLM for each query, ignoring that the same LLM's quality varies with its output length. This causes routers to exclude powerful LLMs when their estimated cost exceeds the budget, missing the opportunity that these LLMs could still deliver high quality at reduced cost with shorter outputs. To address this, we introduce R2-Router, which treats output length budget as a controllable variable and jointly selects the best LLM and length budget, enforcing the budget via length-constrained instructions. This enables R2-Router to discover that a powerful LLM with constrained output can outperform a weaker LLM at comparable cost-efficient configurations invisible to prior methods. Together with the router framework, we construct R2-Bench, the first routing dataset capturing LLM behavior across diverse output length budgets. Experiments show that R2-Router achieves state-of-the-art performance at 4-5x lower cost compared with existing routers. This work opens a new direction: routing as reasoning, where routers evolve from reactive selectors to deliberate reasoners that explore which LLM to use and at what cost budget.
☆ When Efficient Communication Explains Convexity
Much recent work has argued that the variation in the languages of the world can be explained from the perspective of efficient communication; in particular, languages can be seen as optimally balancing competing pressures to be simple and to be informative. Focusing on the expression of meaning -- semantic typology -- the present paper asks what factors are responsible for successful explanations in terms of efficient communication. Using the Information Bottleneck (IB) approach to formalizing this trade-off, we first demonstrate and analyze a correlation between optimality in the IB sense and a novel generalization of convexity to this setting. In a second experiment, we manipulate various modeling parameters in the IB framework to determine which factors drive the correlation between convexity and optimality. We find that the convexity of the communicative need distribution plays an especially important role. These results move beyond showing that efficient communication can explain aspects of semantic typology into explanations for why that is the case by identifying which underlying factors are responsible.
☆ AmharicStoryQA: A Multicultural Story Question Answering Benchmark in Amharic
With the growing emphasis on multilingual and cultural evaluation benchmarks for large language models, language and culture are often treated as synonymous, and performance is commonly used as a proxy for a models understanding of a given language. In this work, we argue that such evaluations overlook meaningful cultural variation that exists within a single language. We address this gap by focusing on narratives from different regions of Ethiopia and demonstrate that, despite shared linguistic characteristics, region-specific and domain-specific content substantially influences language evaluation outcomes. To this end, we introduce \textbf{\textit{AmharicStoryQA}}, a long-sequence story question answering benchmark grounded in culturally diverse narratives from Amharic-speaking regions. Using this benchmark, we reveal a significant narrative understanding gap in existing LLMs, highlight pronounced regional differences in evaluation results, and show that supervised fine-tuning yields uneven improvements across regions and evaluation settings. Our findings emphasize the need for culturally grounded benchmarks that go beyond language-level evaluation to more accurately assess and improve narrative understanding in low-resource languages.
☆ Privately Fine-Tuned LLMs Preserve Temporal Dynamics in Tabular Data
Research on differentially private synthetic tabular data has largely focused on independent and identically distributed rows where each record corresponds to a unique individual. This perspective neglects the temporal complexity in longitudinal datasets, such as electronic health records, where a user contributes an entire (sub) table of sequential events. While practitioners might attempt to model such data by flattening user histories into high-dimensional vectors for use with standard marginal-based mechanisms, we demonstrate that this strategy is insufficient. Flattening fails to preserve temporal coherence even when it maintains valid marginal distributions. We introduce PATH, a novel generative framework that treats the full table as the unit of synthesis and leverages the autoregressive capabilities of privately fine-tuned large language models. Extensive evaluations show that PATH effectively captures long-range dependencies that traditional methods miss. Empirically, our method reduces the distributional distance to real trajectories by over 60% and reduces state transition errors by nearly 50% compared to leading marginal mechanisms while achieving similar marginal fidelity.
☆ From Task Solving to Robust Real-World Adaptation in LLM Agents
Large language models are increasingly deployed as specialized agents that plan, call tools, and take actions over extended horizons. Yet many existing evaluations assume a "clean interface" where dynamics are specified and stable, tools and sensors are reliable, and success is captured by a single explicit objective-often overestimating real-world readiness. In practice, agents face underspecified rules, unreliable signals, shifting environments, and implicit, multi-stakeholder goals. The challenge is therefore not just solving tasks, but adapting while solving: deciding what to trust, what is wanted, when to verify, and when to fall back or escalate. We stress-test deployment-relevant robustness under four operational circumstances: partial observability, dynamic environments, noisy signals, and dynamic agent state. We benchmark agentic LLMs in a grid-based game with a simple goal but long-horizon execution. Episodes violate clean-interface assumptions yet remain solvable, forcing agents to infer rules, pay for information, adapt to environmental and internal shifts, and act cautiously under noise. Across five state-of-the-art LLM agents, we find large gaps between nominal task-solving and deployment-like robustness. Performance generally degrades as grid size and horizon increase, but rankings are unstable: weaker models can beat stronger ones when strategy matches the uncertainty regime. Despite no explicit instruction, agents trade off completion, efficiency, and penalty avoidance, suggesting partial objective inference. Ablations and feature analyses reveal model-specific sensitivities and failure drivers, motivating work on verification, safe action selection, and objective inference under partial observability, noise, and non-stationarity.
☆ Scaling Small Agents Through Strategy Auctions
Small language models are increasingly viewed as a promising, cost-effective approach to agentic AI, with proponents claiming they are sufficiently capable for agentic workflows. However, while smaller agents can closely match larger ones on simple tasks, it remains unclear how their performance scales with task complexity, when large models become necessary, and how to better leverage small agents for long-horizon workloads. In this work, we empirically show that small agents' performance fails to scale with task complexity on deep search and coding tasks, and we introduce Strategy Auctions for Workload Efficiency (SALE), an agent framework inspired by freelancer marketplaces. In SALE, agents bid with short strategic plans, which are scored by a systematic cost-value mechanism and refined via a shared auction memory, enabling per-task routing and continual self-improvement without training a separate router or running all models to completion. Across deep search and coding tasks of varying complexity, SALE reduces reliance on the largest agent by 53%, lowers overall cost by 35%, and consistently improves upon the largest agent's pass@1 with only a negligible overhead beyond executing the final trace. In contrast, established routers that rely on task descriptions either underperform the largest agent or fail to reduce cost -- often both -- underscoring their poor fit for agentic workflows. These results suggest that while small agents may be insufficient for complex workloads, they can be effectively "scaled up" through coordinated task allocation and test-time self-improvement. More broadly, they motivate a systems-level view of agentic AI in which performance gains come less from ever-larger individual models and more from market-inspired coordination mechanisms that organize heterogeneous agents into efficient, adaptive ecosystems.
☆ Time-Critical Multimodal Medical Transportation: Organs, Patients, and Medical Supplies IEEE
Timely transportation of organs, patients, and medical supplies is critical to modern healthcare, particularly in emergencies and transplant scenarios where even short delays can severely impact outcomes. Traditional ground-based vehicles such as ambulances are often hindered by traffic congestion; while air vehicles such as helicopters are faster but costly. Emerging air vehicles -- Unmanned Aerial Vehicles and electric vertical take-off and landing aircraft -- have lower operating costs, but remain limited by range and susceptibility to weather conditions. A multimodal transportation system that integrates both air and ground vehicles can leverage the strengths of each to enhance overall transportation efficiency. This study introduces a constructive greedy heuristic algorithm for multimodal vehicle dispatching for medical transportation. Four different fleet configurations were tested: (i) ambulances only, (ii) ambulances with Unmanned Aerial Vehicles, (iii) ambulances with electric vertical take-off and landing aircraft, and (iv) a fully integrated fleet of ambulances, Unmanned Aerial Vehicles, and electric vertical take-off and landing aircraft. The algorithm incorporates payload consolidation across compatible routes, accounts for traffic congestion in ground operations and weather conditions in aerial operations, while enabling rapid vehicle dispatching compared to computationally intensive optimization models. Using a common set of conditions, we evaluate all four fleet types to identify the most effective configurations for fulfilling medical transportation needs while minimizing operating costs, recharging/fuel costs, and total transportation time.
comment: This work has been submitted to the IEEE for possible publication
☆ WAXAL: A Large-Scale Multilingual African Language Speech Corpus
The advancement of speech technology has predominantly favored high-resource languages, creating a significant digital divide for speakers of most Sub-Saharan African languages. To address this gap, we introduce WAXAL, a large-scale, openly accessible speech dataset for 21 languages representing over 100 million speakers. The collection consists of two main components: an Automated Speech Recognition (ASR) dataset containing approximately 1,250 hours of transcribed, natural speech from a diverse range of speakers, and a Text-to-Speech (TTS) dataset with over 180 hours of high-quality, single-speaker recordings reading phonetically balanced scripts. This paper details our methodology for data collection, annotation, and quality control, which involved partnerships with four African academic and community organizations. We provide a detailed statistical overview of the dataset and discuss its potential limitations and ethical considerations. The WAXAL datasets are released at https://huggingface.co/datasets/google/WaxalNLP under the permissive CC-BY-4.0 license to catalyze research, enable the development of inclusive technologies, and serve as a vital resource for the digital preservation of these languages.
comment: Initial dataset release
☆ Predicting first-episode homelessness among US Veterans using longitudinal EHR data: time-varying models and social risk factors
Homelessness among US veterans remains a critical public health challenge, yet risk prediction offers a pathway for proactive intervention. In this retrospective prognostic study, we analyzed electronic health record (EHR) data from 4,276,403 Veterans Affairs patients during a 2016 observation period to predict first-episode homelessness occurring 3-12 months later in 2017 (prevalence: 0.32-1.19%). We constructed static and time-varying EHR representations, utilizing clinician-informed logic to model the persistence of clinical conditions and social risks over time. We then compared the performance of classical machine learning, transformer-based masked language models, and fine-tuned large language models (LLMs). We demonstrate that incorporating social and behavioral factors into longitudinal models improved precision-recall area under the curve (PR-AUC) by 15-30%. In the top 1% risk tier, models yielded positive predictive values ranging from 3.93-4.72% at 3 months, 7.39-8.30% at 6 months, 9.84-11.41% at 9 months, and 11.65-13.80% at 12 months across model architectures. Large language models underperformed encoder-based models on discrimination but showed smaller performance disparities across racial groups. These results demonstrate that longitudinal, socially informed EHR modeling concentrates homelessness risk into actionable strata, enabling targeted and data-informed prevention strategies for at-risk veterans.
☆ Vector Quantized Latent Concepts: A Scalable Alternative to Clustering-Based Concept Discovery
Deep Learning models encode rich semantic information in their hidden representations. However, it remains challenging to understand which parts of this information models actually rely on when making predictions. A promising line of post-hoc concept-based explanation methods relies on clustering token representations. However, commonly used approaches such as hierarchical clustering are computationally infeasible for large-scale datasets, and K-Means often yields shallow or frequency-dominated clusters. We propose the vector quantized latent concept (VQLC) method, a framework built upon the vector quantized-variational autoencoder (VQ-VAE) architecture that learns a discrete codebook mapping continuous representations to concept vectors. We perform thorough evaluations and show that VQLC improves scalability while maintaining comparable quality of human-understandable explanations.
☆ Towards Understanding Steering Strength
A popular approach to post-training control of large language models (LLMs) is the steering of intermediate latent representations. Namely, identify a well-chosen direction depending on the task at hand and perturbs representations along this direction at inference time. While many propositions exist to pick this direction, considerably less is understood about how to choose the magnitude of the move, whereas its importance is clear: too little and the intended behavior does not emerge, too much and the model's performance degrades beyond repair. In this work, we propose the first theoretical analysis of steering strength. We characterize its effect on next token probability, presence of a concept, and cross-entropy, deriving precise qualitative laws governing these quantities. Our analysis reveals surprising behaviors, including non-monotonic effects of steering strength. We validate our theoretical predictions empirically on eleven language models, ranging from a small GPT architecture to modern models.
comment: 33 pages (including appendix)
☆ BinaryPPO: Efficient Policy Optimization for Binary Classification
Supervised fine-tuning (SFT) is the standard approach for binary classification tasks such as toxicity detection, factuality verification, and causal inference. However, SFT often performs poorly in real-world settings with label noise, class imbalance, or sparse supervision. We introduce BinaryPPO, an offline reinforcement learning large language model (LLM) framework that reformulates binary classification as a reward maximization problem. Our method leverages a variant of Proximal Policy Optimization (PPO) with a confidence-weighted reward function that penalizes uncertain or incorrect predictions, enabling the model to learn robust decision policies from static datasets without online interaction. Across eight domain-specific benchmarks and multiple models with differing architectures, BinaryPPO improves accuracy by 40-60 percentage points, reaching up to 99%, substantially outperforming supervised baselines. We provide an in-depth analysis of the role of reward shaping, advantage scaling, and policy stability in enabling this improvement. Overall, we demonstrate that confidence-based reward design provides a robust alternative to SFT for binary classification. Our code is available at https://github.com/psyonp/BinaryPPO.
☆ InfMem: Learning System-2 Memory Control for Long-Context Agent
Reasoning over ultra-long documents requires synthesizing sparse evidence scattered across distant segments under strict memory constraints. While streaming agents enable scalable processing, their passive memory update strategy often fails to preserve low-salience bridging evidence required for multi-hop reasoning. We propose InfMem, a control-centric agent that instantiates System-2-style control via a PreThink-Retrieve-Write protocol. InfMem actively monitors evidence sufficiency, performs targeted in-document retrieval, and applies evidence-aware joint compression to update a bounded memory. To ensure reliable control, we introduce a practical SFT-to-RL training recipe that aligns retrieval, writing, and stopping decisions with end-task correctness. On ultra-long QA benchmarks from 32k to 1M tokens, InfMem consistently outperforms MemAgent across backbones. Specifically, InfMem improves average absolute accuracy by +10.17, +11.84, and +8.23 points on Qwen3-1.7B, Qwen3-4B, and Qwen2.5-7B, respectively, while reducing inference time by $3.9\times$ on average (up to $5.1\times$) via adaptive early stopping.
☆ Monotonicity as an Architectural Bias for Robust Language Models
Large language models (LLMs) are known to exhibit brittle behavior under adversarial prompts and jailbreak attacks, even after extensive alignment and fine-tuning. This fragility reflects a broader challenge of modern neural language models: small, carefully structured perturbations in high-dimensional input spaces can induce large and unpredictable changes in internal semantic representations and output. We investigate monotonicity as an architectural inductive bias for improving the robustness of Transformer-based language models. Monotonicity constrains semantic transformations so that strengthening information, evidence, or constraints cannot lead to regressions in the corresponding internal representations. Such order-preserving behavior has long been exploited in control and safety-critical systems to simplify reasoning and improve robustness, but has traditionally been viewed as incompatible with the expressivity required by neural language models. We show that this trade-off is not inherent. By enforcing monotonicity selectively in the feed-forward sublayers of sequence-to-sequence Transformers -- while leaving attention mechanisms unconstrained -- we obtain monotone language models that preserve the performance of their pretrained counterparts. This architectural separation allows negation, contradiction, and contextual interactions to be introduced explicitly through attention, while ensuring that subsequent semantic refinement is order-preserving. Empirically, monotonicity substantially improves robustness: adversarial attack success rates drop from approximately 69% to 19%, while standard summarization performance degrades only marginally.
comment: 12 pages, 1 figure
☆ WideSeek: Advancing Wide Research via Multi-Agent Scaling
Search intelligence is evolving from Deep Research to Wide Research, a paradigm essential for retrieving and synthesizing comprehensive information under complex constraints in parallel. However, progress in this field is impeded by the lack of dedicated benchmarks and optimization methodologies for search breadth. To address these challenges, we take a deep dive into Wide Research from two perspectives: Data Pipeline and Agent Optimization. First, we produce WideSeekBench, a General Broad Information Seeking (GBIS) benchmark constructed via a rigorous multi-phase data pipeline to ensure diversity across the target information volume, logical constraints, and domains. Second, we introduce WideSeek, a dynamic hierarchical multi-agent architecture that can autonomously fork parallel sub-agents based on task requirements. Furthermore, we design a unified training framework that linearizes multi-agent trajectories and optimizes the system using end-to-end RL. Experimental results demonstrate the effectiveness of WideSeek and multi-agent RL, highlighting that scaling the number of agents is a promising direction for advancing the Wide Research paradigm.
☆ Graph-Augmented Reasoning with Large Language Models for Tobacco Pest and Disease Management
This paper proposes a graph-augmented reasoning framework for tobacco pest and disease management that integrates structured domain knowledge into large language models. Building on GraphRAG, we construct a domain-specific knowledge graph and retrieve query-relevant subgraphs to provide relational evidence during answer generation. The framework adopts ChatGLM as the Transformer backbone with LoRA-based parameter-efficient fine-tuning, and employs a graph neural network to learn node representations that capture symptom-disease-treatment dependencies. By explicitly modeling diseases, symptoms, pesticides, and control measures as linked entities, the system supports evidence-aware retrieval beyond surface-level text similarity. Retrieved graph evidence is incorporated into the LLM input to guide generation toward domain-consistent recommendations and to mitigate hallucinated or inappropriate treatments. Experimental results show consistent improvements over text-only baselines, with the largest gains observed on multi-hop and comparative reasoning questions that require chaining multiple relations.
☆ Thinking Like a Doctor: Conversational Diagnosis through the Exploration of Diagnostic Knowledge Graphs
Conversational diagnosis requires multi-turn history-taking, where an agent asks clarifying questions to refine differential diagnoses under incomplete information. Existing approaches often rely on the parametric knowledge of a model or assume that patients provide rich and concrete information, which is unrealistic. To address these limitations, we propose a conversational diagnosis system that explores a diagnostic knowledge graph to reason in two steps: (i) generating diagnostic hypotheses from the dialogue context, and (ii) verifying hypotheses through clarifying questions, which are repeated until a final diagnosis is reached. Since evaluating the system requires a realistic patient simulator that responds to the system's questions, we adopt a well-established simulator along with patient profiles from MIMIC-IV. We further adapt it to describe symptoms vaguely to reflect real-world patients during early clinical encounters. Experiments show improved diagnostic accuracy and efficiency over strong baselines, and evaluations by physicians support the realism of our simulator and the clinical utility of the generated questions. Our code will be released upon publication.
♻ ☆ DESIGNER: Design-Logic-Guided Multidisciplinary Data Synthesis for LLM Reasoning ICLR 2026
Large language models (LLMs) perform strongly on many language tasks but still struggle with complex multi-step reasoning across disciplines. Existing reasoning datasets often lack disciplinary breadth, reasoning depth, and diversity, as well as guiding principles for question synthesis. We propose DESIGNER: a DESIGN-logic-guidEd Reasoning data synthesis pipeline that leverages naturally available, extensive raw documents to generate multidisciplinary questions. The central insight is the notion of Design Logic, a form of reusable meta-knowledge that encapsulates the structured process human experts use to transform knowledge into complex exam questions, enabling LLMs to generate new questions with the same complex reasoning patterns from entirely different source texts with explicit control over difficulty, diversity, and question types. We use LLMs to reverse-engineer and abstract over 120,000 Design Logics from existing questions across various disciplines. By designing a two-stage retrieve-and-generate mechanism to match these Design Logics with raw corpus, we synthesized two large-scale reasoning datasets that span 75 disciplines: DLR-Book (3.04 million questions from the book corpus) and DLR-Web (1.66 million questions from the web corpus). Data analysis indicates that the questions synthesized by our method exhibit greater difficulty and diversity compared to those in the baseline datasets. Supervised fine-tuning (SFT) on Qwen3 and Llama3 with our data substantially improves multidisciplinary reasoning and outperforms baseline datasets. Notably, by applying SFT on the base versions of these models using only our data, we even surpass their official final models that have undergone the full post-training.
comment: Accepted to ICLR 2026. Project page: https://attention-is-all-i-need.github.io/Design-Logic-Reasoning
♻ ☆ Which Reasoning Trajectories Teach Students to Reason Better? A Simple Metric of Informative Alignment
Long chain-of-thought (CoT) trajectories provide rich supervision signals for distilling reasoning from teacher to student LLMs. However, both prior work and our experiments show that trajectories from stronger teachers do not necessarily yield better students, highlighting the importance of data-student suitability in distillation. Existing methods assess suitability primarily through student likelihood, favoring trajectories that align closely with the student model's current behavior but overlooking more informative ones. Addressing this, we propose Rank-Surprisal Ratio (RSR), a simple metric that captures both alignment and informativeness to assess the suitability of a reasoning trajectory. RSR is motivated by the observation that effective trajectories typically balance learning signal strength and behavioral alignment by combining low absolute probability with relatively high-ranked tokens under the student model. Concretely, RSR is defined as the ratio of a trajectory's average token-wise rank to its average negative log-likelihood, and is straightforward to compute and interpret. Across five student models and reasoning trajectories from 11 diverse teachers, RSR strongly correlates with post-training reasoning performance (average Spearman 0.86), consistently outperforming existing metrics. We further demonstrate its practical utility in both trajectory selection and teacher selection.
comment: 27 pages. Project page: https://github.com/UmeanNever/RankSurprisalRatio
♻ ☆ How to Train Your Advisor: Steering Black-Box LLMs with Advisor Models
Frontier language models are deployed as black-box services, where model weights cannot be modified and customization is limited to prompting. We introduce Advisor Models, a method to train small open-weight models to generate dynamic, per-instance natural language advice that improves the capabilities of black-box frontier models. Advisor Models improve GPT-5's performance on RuleArena (Taxes) by 71%, reduce Gemini 3 Pro's steps taken in SWE agent tasks by 24.6%, and outperform static prompt optimizers in personalizing GPT-5 to user preferences (85-100% vs. 40-60%). We also find that advisors are transferable: an advisor trained with a low-cost student model still transfers improvements to a frontier model. Moreover, Advisor Models are robust: we observe no degradation on other benchmarks than the pipeline is trained on. Our method shows how to perform parametric optimization for black-box frontier models in a practical and cost-effective way.
♻ ☆ Uncertainty-Aware Knowledge Tracing Models
The main focus of research on Knowledge Tracing (KT) models is on model developments with the aim of improving predictive accuracy. Most of these models make the most incorrect predictions when students choose a distractor, leading to student errors going undetected. We present an approach to add new capabilities to KT models by capturing predictive uncertainty and demonstrate that a larger predictive uncertainty aligns with model incorrect predictions. We show that uncertainty in KT models is informative and that this signal would be pedagogically useful for application in an educational learning platform that can be used in a limited resource setting where understanding student ability is necessary.
comment: 10 pages, 7 figures. Joshua Mitton and Prarthana Bhattacharyya contributed equally to this paper
♻ ☆ FS-DFM: Fast and Accurate Long Text Generation with Few-Step Diffusion Language Models ICLR 2026
Autoregressive language models (ARMs) deliver strong likelihoods, but are inherently serial: they generate one token per forward pass, which limits throughput and inflates latency for long sequences. Diffusion Language Models (DLMs) parallelize across positions and thus appear promising for language generation, yet standard discrete diffusion typically needs hundreds to thousands of model evaluations to reach high quality, trading serial depth for iterative breadth. We introduce FS-DFM, Few-Step Discrete Flow-Matching. A discrete flow-matching model designed for speed without sacrificing quality. The core idea is simple: make the number of sampling steps an explicit parameter and train the model to be consistent across step budgets, so one big move lands where many small moves would. We pair this with a reliable update rule that moves probability in the right direction without overshooting, and with strong teacher guidance distilled from long-run trajectories. Together, these choices make few-step sampling stable, accurate, and easy to control. On language modeling benchmarks, FS-DFM with 8 sampling steps achieves perplexity parity with a 1,024-step discrete-flow baseline for generating 1,024 tokens using a similar-size model, delivering up to 128 times faster sampling and corresponding latency/throughput gains.
comment: Accepted to ICLR 2026
♻ ☆ Reverse Engineering Human Preferences with Reinforcement Learning NeurIPS 2025
The capabilities of Large Language Models (LLMs) are routinely evaluated by other LLMs trained to predict human preferences. This framework--known as LLM-as-a-judge--is highly scalable and relatively low cost. However, it is also vulnerable to malicious exploitation, as LLM responses can be tuned to overfit the preferences of the judge. Previous work shows that the answers generated by a candidate-LLM can be edited post hoc to maximise the score assigned to them by a judge-LLM. In this study, we adopt a different approach and use the signal provided by judge-LLMs as a reward to adversarially tune models that generate text preambles designed to boost downstream performance. We find that frozen LLMs pipelined with these models attain higher LLM-evaluation scores than existing frameworks. Crucially, unlike other frameworks which intervene directly on the model's response, our method is virtually undetectable. We also demonstrate that the effectiveness of the tuned preamble generator transfers when the candidate-LLM and the judge-LLM are replaced with models that are not used during training. These findings raise important questions about the design of more reliable LLM-as-a-judge evaluation settings. They also demonstrate that human preferences can be reverse engineered effectively, by pipelining LLMs to optimise upstream preambles via reinforcement learning--an approach that could find future applications in diverse tasks and domains beyond adversarial attacks.
comment: NeurIPS 2025 (Spotlight)
♻ ☆ Language Family Matters: Evaluating LLM-Based ASR Across Linguistic Boundaries EACL'26
Large Language Model (LLM)-powered Automatic Speech Recognition (ASR) systems achieve strong performance with limited resources by linking a frozen speech encoder to a pretrained LLM via a lightweight connector. Prior work trains a separate connector per language, overlooking linguistic relatedness. We propose an efficient and novel connector-sharing strategy based on linguistic family membership, enabling one connector per family, and empirically validate its effectiveness across two multilingual LLMs and two real-world corpora spanning curated and crowd-sourced speech. Our results show that family-based connectors reduce parameter count while improving generalization across domains, offering a practical and scalable strategy for multilingual ASR deployment.
comment: Accepted by EACL'26 main
♻ ☆ Generalization or Hallucination? Understanding Out-of-Context Reasoning in Transformers NeurIPS 2025
Large language models (LLMs) can acquire new knowledge through fine-tuning, but this process exhibits a puzzling duality: models can generalize remarkably from new facts, yet are also prone to hallucinating incorrect information. However, the reasons for this phenomenon remain poorly understood. In this work, we argue that both behaviors stem from a single mechanism known as out-of-context reasoning (OCR): the ability to deduce implications by associating concepts, even those without a causal link. Our experiments across five prominent LLMs confirm that OCR indeed drives both generalization and hallucination, depending on whether the associated concepts are causally related. To build a rigorous theoretical understanding of this phenomenon, we then formalize OCR as a synthetic factual recall task. We empirically show that a one-layer single-head attention-only transformer with factorized output and value matrices can learn to solve this task, while a model with combined weights cannot, highlighting the crucial role of matrix factorization. Our theoretical analysis shows that the OCR capability can be attributed to the implicit bias of gradient descent, which favors solutions that minimize the nuclear norm of the combined output-value matrix. This mathematical structure explains why the model learns to associate facts and implications with high sample efficiency, regardless of whether the correlation is causal or merely spurious. Ultimately, our work provides a theoretical foundation for understanding the OCR phenomenon, offering a new lens for analyzing and mitigating undesirable behaviors from knowledge injection.
comment: NeurIPS 2025, first three authors contributed equally
♻ ☆ CUS-QA: Local-Knowledge-Oriented Open-Ended Question Answering Dataset
We introduce CUS-QA, a benchmark for evaluation of open-ended regional question answering that encompasses both textual and visual modalities. We also provide strong baselines using state-of-the-art large language models (LLMs). Our dataset consists of manually curated questions and answers grounded in Wikipedia, created by native speakers from Czechia, Slovakia, and Ukraine, with accompanying English translations. It includes both purely textual questions and those requiring visual understanding. We evaluate state-of-the-art LLMs through prompting and add human judgments of answer correctness. Using these human evaluations, we analyze the reliability of existing automatic evaluation metrics. Our baseline results show that even the best open-weight LLMs achieve only over 40% accuracy on textual questions and below 30% on visual questions. LLM-based evaluation metrics show strong correlation with human judgment, while traditional string-overlap metrics perform surprisingly well due to the prevalence of named entities in answers.
♻ ☆ LIFT: A Novel Framework for Enhancing Long-Context Understanding of LLMs via Long Input Fine-Tuning
Long context understanding remains challenging for large language models due to their limited context windows. This paper introduces Long Input Fine-Tuning (LIFT), a novel framework for long-context modeling that can enhance the long-context performance of arbitrary short-context LLMs by dynamically adapting their parameters to the given long input. Importantly, rather than endlessly extending the context window size to accommodate increasingly longer inputs in context, LIFT stores and absorbs the long input in parameters. By fine-tuning the long input into model parameters, LIFT allows short-context LLMs to answer questions even when the required information is not provided in the context during inference, avoiding the quadratic complexity w.r.t. input length of a normal long context model. Furthermore, LIFT does not simply perform continued pretraining on new, long contexts, but leverages carefully designed LLM-generated synthetic tasks to enhance the comprehension of long contexts, moving beyond mere memorization. To accommodate the additional cost of fine-tuning, we design a highly optimized pipeline that reduces the Time to First Token (TTFT) to less than 10 seconds for 8k context. We further provide a comprehensive analysis of LIFT's strengths and limitations in long-context understanding, discuss its feasibility for large-scale real-world deployment, and highlight valuable directions for future research.
comment: 8 pages, 6 figures, preprint
♻ ☆ MEMOIR: Lifelong Model Editing with Minimal Overwrite and Informed Retention for LLMs NeurIPS 2025
Language models deployed in real-world systems often require post-hoc updates to incorporate new or corrected knowledge. However, editing such models efficiently and reliably-without retraining or forgetting previous information-remains a major challenge. Existing methods for lifelong model editing either compromise generalization, interfere with past edits, or fail to scale to long editing sequences. We propose MEMOIR, a novel scalable framework that injects knowledge through a residual memory, i.e., a dedicated parameter module, while preserving the core capabilities of the pre-trained model. By sparsifying input activations through sample-dependent masks, MEMOIR confines each edit to a distinct subset of the memory parameters, minimizing interference among edits. At inference, it identifies relevant edits by comparing the sparse activation patterns of new queries to those stored during editing. This enables generalization to rephrased queries by activating only the relevant knowledge while suppressing unnecessary memory activation for unrelated prompts. Experiments on question answering, hallucination correction, and out-of-distribution generalization benchmarks for LLaMA-3 and Mistral backbones demonstrate that MEMOIR achieves state-of-the-art performance across reliability, generalization, and locality metrics, scaling to thousands of sequential edits with minimal forgetting.
comment: The first two authors contributed equally to this work; Accepted to NeurIPS 2025
♻ ☆ Midtraining Bridges Pretraining and Posttraining Distributions
Midtraining, the practice of mixing specialized data with more general pretraining data in an intermediate training phase, has become widespread in language model development, yet there is little understanding of what makes it effective. We propose that midtraining functions as distributional bridging by providing better initialization for posttraining. We conduct controlled pretraining experiments, and find that midtraining benefits are largest for domains distant from general pretraining data, such as code and math, and scale with the proximity advantage the midtraining data provides toward the target distribution. In these domains, midtraining consistently outperforms continued pretraining on specialized data alone both in-domain and in terms of mitigating forgetting. We further conduct an investigation on the starting time and mixture weight of midtraining data, using code as a case study, and find that time of introduction and mixture weight interact strongly such that early introduction of specialized data is amenable to high mixture weights, while late introduction requires lower ones. This suggests that late introduction of specialized data outside a plasticity window cannot be compensated for by increasing data mixtures later in training. Beyond midtraining itself, this suggests that distributional transitions between any training phases may benefit from similar bridging strategies.
♻ ☆ Adaptive Testing for LLM Evaluation: A Psychometric Alternative to Static Benchmarks
Evaluating large language models (LLMs) typically requires thousands of benchmark items, making the process expensive, slow, and increasingly impractical at scale. Existing evaluation protocols rely on average accuracy over fixed item sets, treating all items as equally informative despite substantial variation in difficulty and discrimination. We introduce ATLAS, an adaptive testing framework based on Item Response Theory (IRT) that estimates model ability using Fisher information-guided item selection. ATLAS reduces the number of required items by up to 90% while maintaining measurement precision. For instance, it matches whole-bank ability estimates using only 41 items (0.157 MAE) on HellaSwag (5,600 items). We further reconstruct accuracy from ATLAS's ability estimates and find that reconstructed accuracies closely match raw accuracies across all five benchmarks, indicating that ability $θ$ preserves the global performance structure. At the same time, $θ$ provides finer discrimination within accuracy-equivalent models: among more than 3,000 evaluated models, 23-31% shift by more than 10 rank positions, and models with identical accuracies receive meaningfully different ability estimates. Code and calibrated item banks are available at https://github.com/Peiyu-Georgia-Li/ATLAS.git.
comment: Code and calibrated item banks are available at https://github.com/Peiyu-Georgia-Li/ATLAS.git
♻ ☆ Enabling Approximate Joint Sampling in Diffusion LMs
In autoregressive language models, each token is sampled by conditioning on all the past tokens; the overall string has thus been sampled from the correct underlying joint distribution represented by the model. In contrast, masked diffusion language models generate text by unmasking tokens out of order and potentially in parallel. Generating an overall string sampled from the correct underlying joint distribution would (again) require exactly one token unmasking in every full-model forward pass. The more tokens unmasked in parallel, the further away the string is from the true joint; this can be seen in the resulting drop in accuracy (but, increase in speed). In this paper we devise a way to {\em approximately} sample multiple tokens from the joint distribution in a single full-model forward pass; we do so by developing a new lightweight single-layer ``sampler" on top of an existing large diffusion LM. One forward pass of the full model can now be followed by multiple forward passes of only this sampler layer, to yield multiple unmasked tokens. Our sampler is trained to mimic exact joint sampling from the (frozen) full model. We show the effectiveness of our approximate joint sampling for both pretrained-only (Dream-7B-Base, Llada-7B-Base) and instruction-tuned (Dream-7B-Instruct, Dream-7B-Coder) models on language modeling and math \& coding tasks. When four tokens are unmasked for each full-model denoising step, our sampling algorithm achieves a MAUVE score of 0.87 (vs marginal baseline of 0.31) with respect to the true joint distribution.
♻ ☆ Language as a Wave Phenomenon: Semantic Phase Locking and Interference in Neural Networks
In standard Transformer architectures, semantic importance is often conflated with activation magnitude, obscuring the geometric structure of latent representations. To disentangle these factors, we introduce PRISM, a complex-valued architecture designed to isolate the computational role of phase. By enforcing a strict unit-norm constraint (|z| = 1) and replacing attention with gated harmonic convolutions, the model is compelled to utilize subtractive interference in the frequency domain to suppress noise, rather than relying on magnitude-based gating. We utilize this constrained regime to demonstrate that a hybrid architecture - fusing phase-based routing with standard attention - achieves superior parameter efficiency and representation quality compared to unconstrained baselines. Mechanistically, we identify geometric phase clustering, where tokens naturally self-organize to resolve semantic ambiguities. This establishes an O(N log N) reasoning framework based on spectral interference, providing an algorithmic existence proof that subtractive logic is a sufficient primitive for deep reasoning.
comment: 14 pages, 7 figures; Revised title; Added new experiments on encoder-only models using WikiText-103
♻ ☆ The Language You Ask In: Language-Conditioned Ideological Divergence in LLM Analysis of Contested Political Documents
Large language models (LLMs) are increasingly deployed as analytical tools across multilingual contexts, yet their outputs may carry systematic biases conditioned by the language of the prompt. This study presents an experimental comparison of LLM-generated political analyses of a Ukrainian civil society document, using semantically equivalent prompts in Russian and Ukrainian. Despite identical source material and parallel query structures, the resulting analyses varied substantially in rhetorical positioning, ideological orientation, and interpretive conclusions. The Russian-language output echoed narratives common in Russian state discourse, characterizing civil society actors as illegitimate elites undermining democratic mandates. The Ukrainian-language output adopted vocabulary characteristic of Western liberal-democratic political science, treating the same actors as legitimate stakeholders within democratic contestation. These findings demonstrate that prompt language alone can produce systematically different ideological orientations from identical models analyzing identical content, with significant implications for AI deployment in polarized information environments, cross-lingual research applications, and the governance of AI systems in multilingual societies.
♻ ☆ STAC: When Innocent Tools Form Dangerous Chains to Jailbreak LLM Agents
As LLMs advance into autonomous agents with tool-use capabilities, they introduce security challenges that extend beyond traditional content-based LLM safety concerns. This paper introduces Sequential Tool Attack Chaining (STAC), a novel multi-turn attack framework that exploits agent tool use. STAC chains together tool calls that each appear harmless in isolation but, when combined, collectively enable harmful operations that only become apparent at the final execution step. We apply our framework to automatically generate and systematically evaluate 483 STAC cases, featuring 1,352 sets of user-agent-environment interactions and spanning diverse domains, tasks, agent types, and 10 failure modes. Our evaluations show that state-of-the-art LLM agents, including GPT-4.1, are highly vulnerable to STAC, with attack success rates (ASR) exceeding 90% in most cases. The core design of STAC's automated framework is a closed-loop pipeline that synthesizes executable multi-step tool chains, validates them through in-environment execution, and reverse-engineers stealthy multi-turn prompts that reliably induce agents to execute the verified malicious sequence. We further perform defense analysis against STAC and find that existing prompt-based defenses provide limited protection. To address this gap, we propose a new reasoning-driven defense prompt that achieves far stronger protection, cutting ASR by up to 28.8%. These results highlight a crucial gap: defending tool-enabled agents requires reasoning over entire action sequences and their cumulative effects, rather than evaluating isolated prompts or responses.
♻ ☆ A Proof of Learning Rate Transfer under $μ$P
We provide the first proof of learning rate transfer with width in a linear multi-layer perceptron (MLP) parametrized with $μ$P, a neural network parameterization designed to ``maximize'' feature learning in the infinite-width limit. We show that under $μP$, the optimal learning rate converges to a \emph{non-zero constant} as width goes to infinity, providing a theoretical explanation to learning rate transfer. In contrast, we show that this property fails to hold under alternative parametrizations such as Standard Parametrization (SP) and Neural Tangent Parametrization (NTP). We provide intuitive proofs and support the theoretical findings with extensive empirical results.
comment: 21 pages
♻ ☆ SNAP-UQ: Self-supervised Next-Activation Prediction for Single-Pass Uncertainty in TinyML ICLR 2026
This paper proposes a novel and practical method, SNAP-UQ, for single-pass, label-free uncertainty estimation based on depth-wise next-activation prediction. SNAP-UQ taps a small set of backbone layers and uses tiny int8 heads to predict the mean and scale of the next activation from a low-rank projection of the previous one; the resulting standardized prediction error forms a depth-wise surprisal signal that is aggregated and mapped through a lightweight monotone calibrator into an actionable uncertainty score. The design introduces no temporal buffers or auxiliary exits and preserves state-free inference, while increasing deployment footprint by only a few tens of kilobytes. Across vision and audio backbones, SNAP-UQ reduces flash and latency relative to early-exit and deep-ensemble baselines (typically $\sim$40--60% smaller and $\sim$25--35% faster), with several competing methods at similar accuracy often exceeding MCU memory limits. On corrupted streams, it improves accuracy-drop event detection by multiple AUPRC points and maintains strong failure detection (AUROC $\approx 0.9$) in a single forward pass. By grounding uncertainty in layer-to-layer dynamics rather than solely in output confidence, SNAP-UQ offers a novel, resource-efficient basis for robust TinyML monitoring.
comment: Accepted at ICLR 2026
♻ ☆ Surfacing Subtle Stereotypes: A Multilingual, Debate-Oriented Evaluation of Modern LLMs
Large language models (LLMs) are widely deployed for open-ended communication, yet most bias evaluations still rely on English, classification-style tasks. We introduce DebateBias-8K, a new multilingual, debate-style benchmark designed to reveal how narrative bias appears in realistic generative settings. Our dataset includes 8,400 structured debate prompts spanning four sensitive domains: women's rights, socioeconomic development, terrorism, and religion, across seven languages ranging from high-resource (English, Chinese) to low-resource (Swahili, Nigerian Pidgin). Using four flagship models (GPT-4o, Claude 3, DeepSeek, and LLaMA 3), we generate and automatically classify over 100,000 responses. Results show that all models reproduce entrenched stereotypes despite safety alignment: Arabs are overwhelmingly linked to terrorism and religion (>=95%), Africans to socioeconomic "backwardness" (up to <=77%), and Western groups are consistently framed as modern or progressive. Biases grow sharply in lower-resource languages, revealing that alignment trained primarily in English does not generalize globally. Our findings highlight a persistent divide in multilingual fairness: current alignment methods reduce explicit toxicity but fail to prevent biased outputs in open-ended contexts. We release our DebateBias-8K benchmark and analysis framework to support the next generation of multilingual bias evaluation and safer, culturally inclusive model alignment.
♻ ☆ Watch and Listen: Understanding Audio-Visual-Speech Moments with Multimodal LLM NeurIPS 2025
Humans naturally understand moments in a video by integrating visual and auditory cues. For example, localizing a scene in the video like "A scientist passionately speaks on wildlife conservation as dramatic orchestral music plays, with the audience nodding and applauding" requires simultaneous processing of visual, audio, and speech signals. However, existing models often struggle to effectively fuse and interpret audio information, limiting their capacity for comprehensive video temporal understanding. To address this, we present TriSense, a triple-modality large language model designed for holistic video temporal understanding through the integration of visual, audio, and speech modalities. Central to TriSense is a Query-Based Connector that adaptively reweights modality contributions based on the input query, enabling robust performance under modality dropout and allowing flexible combinations of available inputs. To support TriSense's multimodal capabilities, we introduce TriSense-2M, a high-quality dataset of over 2 million curated samples generated via an automated pipeline powered by fine-tuned LLMs. TriSense-2M includes long-form videos and diverse modality combinations, facilitating broad generalization. Extensive experiments across multiple benchmarks demonstrate the effectiveness of TriSense and its potential to advance multimodal video analysis. Code and dataset will be publicly released.
comment: Accepted by NeurIPS 2025
♻ ☆ Game-Time: Evaluating Temporal Dynamics in Spoken Language Models ICASSP 2026
Conversational Spoken Language Models (SLMs) are emerging as a promising paradigm for real-time speech interaction. However, their capacity of temporal dynamics, including the ability to manage timing, tempo and simultaneous speaking, remains a critical and unevaluated challenge for conversational fluency. To address this gap, we introduce the Game-Time Benchmark, a framework to systematically assess these temporal capabilities. Inspired by how humans learn a language through language activities, Game-Time consists of basic instruction-following tasks and advanced tasks with temporal constraints, such as tempo adherence and synchronized responses. Our evaluation of diverse SLM architectures reveals a clear performance disparity: while state-of-the-art models handle basic tasks well, many contemporary systems still struggle with fundamental instruction-following. More critically, nearly all models degrade substantially under temporal constraints, exposing persistent weaknesses in time awareness and full-duplex interaction. The Game-Time Benchmark provides a foundation for guiding future research toward more temporally-aware conversational AI. Demos and datasets are available on our project website https://ga642381.github.io/Game-Time.
comment: Accepted to ICASSP 2026
♻ ☆ LLMs as Span Annotators: A Comparative Study of LLMs and Humans EACL 2026
Span annotation - annotating specific text features at the span level - can be used to evaluate texts where single-score metrics fail to provide actionable feedback. Until recently, span annotation was done by human annotators or fine-tuned models. In this paper, we study whether large language models (LLMs) can serve as an alternative to human annotators. We compare the abilities of LLMs to skilled human annotators on three span annotation tasks: evaluating data-to-text generation, identifying translation errors, and detecting propaganda techniques. We show that overall, LLMs have only moderate inter-annotator agreement (IAA) with human annotators. However, we demonstrate that LLMs make errors at a similar rate as skilled crowdworkers. LLMs also produce annotations at a fraction of the cost per output annotation. We release the dataset of over 40k model and human span annotations for further research.
comment: Accepted to the MME workshop @ EACL 2026
♻ ☆ Large Multimodal Models for Low-Resource Languages: A Survey
In this survey, we systematically analyze techniques used to adapt large multimodal models (LMMs) for low-resource (LR) languages, examining approaches ranging from visual enhancement and data creation to cross-modal transfer and fusion strategies. Through a comprehensive analysis of 117 studies across 96 LR languages, we identify key patterns in how researchers tackle the challenges of limited data and computational resources. We categorize works into resource-oriented and method-oriented contributions, further dividing contributions into relevant sub-categories. We compare method-oriented contributions in terms of performance and efficiency, discussing benefits and limitations of representative studies. We find that visual information often serves as a crucial bridge for improving model performance in LR settings, though significant challenges remain in areas such as hallucination mitigation and computational efficiency. In summary, we provide researchers with a clear understanding of current approaches and remaining challenges in making LMMs more accessible to speakers of LR (understudied) languages. We complement our survey with an open-source repository available at: https://github.com/marianlupascu/LMM4LRL-Survey.
comment: Accepted in Information Fusion
♻ ☆ BiasGym: A Simple and Generalizable Framework for Analyzing and Removing Biases through Elicitation
Understanding biases and stereotypes encoded in the weights of Large Language Models (LLMs) is crucial for developing effective mitigation strategies. However, biased behaviour is often subtle and non-trivial to isolate, even when deliberately elicited, making systematic analysis and debiasing particularly challenging. To address this, we introduce \texttt{BiasGym}, a simple, cost-effective, and generalizable framework for reliably and safely injecting, analyzing, and mitigating conceptual associations of biases within LLMs. \texttt{BiasGym} consists of two components: \texttt{BiasInject}, which safely injects specific biases into the model via token-based fine-tuning while keeping the model frozen, and \texttt{BiasScope}, which leverages these injected signals to identify and reliably steer the components responsible for biased behavior. Our method enables consistent bias elicitation for mechanistic analysis, supports targeted debiasing without degrading performance on downstream tasks, and generalizes to biases unseen during fine-tuning. We demonstrate the effectiveness of BiasGym in reducing real-world stereotypes (e.g., people from Italy being `reckless drivers'), showing its utility for both safety interventions and interpretability research.
comment: Under review. Title updated
♻ ☆ Fair-GPTQ: Bias-Aware Quantization for Large Language Models
High memory demands of generative language models have drawn attention to quantization, which reduces computational cost, memory usage, and latency by mapping model weights to lower-precision integers. Approaches such as GPTQ effectively minimize input-weight product errors during quantization; however, recent empirical studies show that they can increase biased outputs and degrade performance on fairness benchmarks, and it remains unclear which specific weights cause this issue. In this work, we draw new links between quantization and model fairness by adding explicit group-fairness constraints to the quantization objective and introduce Fair-GPTQ, the first quantization method explicitly designed to reduce unfairness in large language models. The added constraints guide the learning of the rounding operation toward less-biased text generation for protected groups. Specifically, we focus on stereotype generation involving occupational bias and discriminatory language spanning gender, race, and religion. Fair-GPTQ has minimal impact on performance, preserving at least 90% of baseline accuracy on zero-shot benchmarks, reduces unfairness relative to a half-precision model, and retains the memory and speed benefits of 4-bit quantization. We also compare the performance of Fair-GPTQ with existing debiasing methods and find that it achieves performance on par with the iterative null-space projection debiasing approach on racial-stereotype benchmarks. Overall, the results validate our theoretical solution to the quantization problem with a group-bias term, highlight its applicability for reducing group bias at quantization time in generative models, and demonstrate that our approach can further be used to analyze channel- and weight-level contributions to fairness during quantization.
♻ ☆ CAARMA: Class Augmentation with Adversarial Mixup Regularization EMNLP 2025
Speaker verification is a typical zero-shot learning task, where inference of unseen classes is performed by comparing embeddings of test instances to known examples. The models performing inference must hence naturally generate embeddings that cluster same-class instances compactly, while maintaining separation across classes. In order to learn to do so, they are typically trained on a large number of classes (speakers), often using specialized losses. However real-world speaker datasets often lack the class diversity needed to effectively learn this in a generalizable manner. We introduce CAARMA, a class augmentation framework that addresses this problem by generating synthetic classes through data mixing in the embedding space, expanding the number of training classes. To ensure the authenticity of the synthetic classes we adopt a novel adversarial refinement mechanism that minimizes categorical distinctions between synthetic and real classes. We evaluate CAARMA on multiple speaker verification tasks, as well as other representative zero-shot comparison-based speech analysis tasks and obtain consistent improvements: our framework demonstrates a significant improvement of 8\% over all baseline models. The code is available at: https://github.com/massabaali7/CAARMA/
comment: Accepted to EMNLP 2025 Findings
♻ ☆ Training a Utility-based Retriever Through Shared Context Attribution for Retrieval-Augmented Language Models EMNLP 2025
Retrieval-Augmented Language Models boost task performance, owing to the retriever that provides external knowledge. Although crucial, the retriever primarily focuses on semantics relevance, which may not always be effective for generation. Thus, utility-based retrieval has emerged as a promising topic, prioritizing passages that provide valid benefits for downstream tasks. However, due to insufficient understanding, capturing passage utility accurately remains unexplored. This work proposes SCARLet, a framework for training utility-based retrievers in RALMs, which incorporates two key factors, multi-task generalization and inter-passage interaction. First, SCARLet constructs shared context on which training data for various tasks is synthesized. This mitigates semantic bias from context differences, allowing retrievers to focus on learning task-specific utility and generalize across tasks. Next, SCARLet uses a perturbation-based attribution method to estimate passage-level utility for shared context, which reflects interactions between passages and provides more accurate feedback. We evaluate our approach on ten datasets across various tasks, both in-domain and out-of-domain, showing that retrievers trained by SCARLet consistently improve the overall performance of RALMs.
comment: EMNLP 2025 Main Conference (Long paper)
♻ ☆ Probe and Skip: Self-Predictive Token Skipping for Efficient Long-Context LLM Inference
Long-context inference enhances the reasoning capability of Large Language Models (LLMs), but incurs significant computational overhead. Token-oriented methods, such as pruning and skipping, have shown great promise in reducing inference latency, yet still suffer from inherently insufficient structure optimization, outdated selection criteria, and redundancy interference, resulting in suboptimal speed-accuracy trade-off. To address these issues, we propose a novel training-free framework dubbed Self-Predictive Token Skipping (SPTS), for efficient long-context LLM inference. Specifically, motivated by probing the influence of target layers prior to skipping, we design two selective token skipping strategies for typical structures, including Partial Attention Probing (PAP) for multi-head attention and Low-rank Transformation Probing (LTP) for feed forward network. The former selects informative tokens via partial forward attention computation, while the latter constructs a low-rank proxy network to predict token transformations. In addition, a Multi-Stage Delayed Pruning (MSDP) strategy reallocates skipping budgets and progressively removes redundant tokens across layers. Extensive experiments display the effectiveness of our method, achieving up to 2.46$\times$ and 2.29$\times$ speedups for prefilling and end-to-end generation, respectively, while maintaining state-of-the-art accuracy. We will release the source code upon acceptance.
♻ ☆ CCF: A Context Compression Framework for Efficient Long-Sequence Language Modeling
Scaling language models to longer contexts is essential for capturing rich dependencies across extended discourse. However, naïve context extension imposes significant computational and memory burdens, often resulting in inefficiencies during both training and inference. In this work, we propose CCF, a novel context compression framework designed to enable efficient long-context modeling by learning hierarchical latent representations that preserve global semantics while aggressively reducing input redundancy. CCF integrates segment-wise semantic aggregation with key-value memory encoding, forming compact representations that support accurate reconstruction and long-range understanding. To further enhance scalability, we introduce a training-efficient optimization strategy that couples incremental segment decoding with sparse reservoir sampling, substantially reducing memory overhead without degrading performance. Empirical results on multiple long-context language modeling benchmarks demonstrate that CCF achieves competitive perplexity under high compression ratios, and significantly improves throughput and memory efficiency compared to existing approaches. These findings highlight the potential of structured compression for scalable and effective long-context language modeling.
comment: The quality of this paper is low
♻ ☆ ALiiCE: Evaluating Positional Fine-grained Citation Generation NAACL 2025
Large Language Model (LLM) can enhance its credibility and verifiability by generating text with citations. However, existing research on citation generation is predominantly limited to sentence-level statements, neglecting the significance of positional fine-grained citations that can appear anywhere within sentences. To facilitate further exploration of the positional fine-grained citation generation, we propose ALiiCE, the first automatic evaluation framework for this task. Our method employs a dependency tree based approach to parse the sentence-level claim into atomic claims. Then ALiiCE evaluates citation quality using three metrics, including positional fine-grained citation recall, precision, and coefficient of variation of citation positions. We evaluate the positional fine-grained citation generation performance of several LLMs on long-form QA datasets. Our experiments and analyses demonstrate the effectiveness and reasonableness of ALiiCE. We offer our insights into the current advancements and future directions for the positional fine-grained citation generation task.
comment: NAACL 2025 Main Conference (Long paper)
♻ ☆ Less Noise, More Voice: Reinforcement Learning for Reasoning via Instruction Purification
Reinforcement Learning with Verifiable Rewards (RLVR) has advanced LLM reasoning, but remains constrained by inefficient exploration under limited rollout budgets, leading to low sampling success and unstable training in complex tasks. We find that many exploration failures arise not from problem difficulty, but from a small number of prompt tokens that introduce interference. Building on this insight, we propose the Less Noise Sampling Framework (LENS), which first prompts by identifying and removing interference tokens. then transfers successful rollouts from the purification process to supervise policy optimization on the original noisy prompts, enabling the model to learn to ignore interference in the real-world, noisy prompting settings. Experimental results show that LENS significantly outperforms GRPO, delivering higher performance and faster convergence, with a 3.88% average gain and over 1.6$\times$ speedup. Our work highlights the critical role of pruning interference tokens in improving rollout efficiency, offering a new perspective for RLVR research.
comment: Work in progress
♻ ☆ MaiBERT: A Pre-training Corpus and Language Model for Low-Resourced Maithili Language EACL
Natural Language Understanding (NLU) for low-resource languages remains a major challenge in NLP due to the scarcity of high-quality data and language-specific models. Maithili, despite being spoken by millions, lacks adequate computational resources, limiting its inclusion in digital and AI-driven applications. To address this gap, we introducemaiBERT, a BERT-based language model pre-trained specifically for Maithili using the Masked Language Modeling (MLM) technique. Our model is trained on a newly constructed Maithili corpus and evaluated through a news classification task. In our experiments, maiBERT achieved an accuracy of 87.02%, outperforming existing regional models like NepBERTa and HindiBERT, with a 0.13% overall accuracy gain and 5-7% improvement across various classes. We have open-sourced maiBERT on Hugging Face enabling further fine-tuning for downstream tasks such as sentiment analysis and Named Entity Recognition (NER).
comment: Accepted at EACL LoResLM 2026
♻ ☆ Free Access to World News: Reconstructing Full-Text Articles from GDELT
News data have become essential resources across various disciplines. Still, access to full-text news corpora remains challenging due to high costs and the limited availability of free alternatives. This paper presents a novel Python package (gdeltnews) that reconstructs full-text newspaper articles at near-zero cost by leveraging the Global Database of Events, Language, and Tone (GDELT) Web News NGrams 3.0 dataset. Our method merges overlapping n-grams extracted from global online news to rebuild complete articles. We validate the approach on a benchmark set of 2211 articles from major U.S. news outlets, achieving up to 95% text similarity against original articles based on Levenshtein and SequenceMatcher metrics. Our tool facilitates economic forecasting, computational social science, information science, and natural language processing applications by enabling free and large-scale access to full-text news data.
♻ ☆ FinCoT: Grounding Chain-of-Thought in Expert Financial Reasoning EMNLP
This paper presents FinCoT, a structured chain-of-thought (CoT) prompting framework that embeds domain-specific expert financial reasoning blueprints to guide large language models' behaviors. We identify three main prompting styles in financial NLP (FinNLP): (1) standard prompting (zero-shot), (2) unstructured CoT (free-form reasoning), and (3) structured CoT (with explicitly structured reasoning steps). Prior work has mainly focused on the first two, while structured CoT remains underexplored and lacks domain expertise incorporation. Therefore, we evaluate all three prompting approaches across ten CFA-style financial domains and introduce FinCoT as the first structured finance-specific prompting approach incorporating blueprints from domain experts. FinCoT improves the accuracy of a general-purpose model, Qwen3-8B-Base, from 63.2% to 80.5%, and boosts Fin-R1 (7B), a finance-specific model, from 65.7% to 75.7%, while reducing output length by up to 8.9x and 1.16x compared to structured CoT methods, respectively. We find that FinCoT proves most effective for models lacking financial post-training. Our findings show that FinCoT does not only improve performance and reduce inference costs but also yields more interpretable and expert-aligned reasoning traces.
comment: Accepted at FinNLP-2025, EMNLP (Oral Presentation)
♻ ☆ Stream: Scaling up Mechanistic Interpretability to Long Context in LLMs via Sparse Attention
As Large Language Models (LLMs) scale to million-token contexts, traditional Mechanistic Interpretability techniques for analyzing attention scale quadratically with context length, demanding terabytes of memory beyond 100,000 tokens. We introduce Sparse Tracing, a novel technique that leverages dynamic sparse attention to efficiently analyze long context attention patterns. We present Stream, a compilable hierarchical pruning algorithm that estimates per-head sparse attention masks in near-linear time $O(T \log T)$ and linear space $O(T)$, enabling one-pass interpretability at scale. Stream performs a binary-search-style refinement to retain only the top-$k$ key blocks per query while preserving the model's next-token behavior. We apply Stream to long chain-of-thought reasoning traces and identify thought anchors while pruning 97-99\% of token interactions. On the RULER benchmark, Stream preserves critical retrieval paths while discarding 90-96\% of interactions and exposes layer-wise routes from the needle to output. Our method offers a practical drop-in tool for analyzing attention patterns and tracing information flow without terabytes of caches. By making long context interpretability feasible on consumer GPUs, Sparse Tracing helps democratize chain-of-thought monitoring. Code is available at https://anonymous.4open.science/r/stream-03B8/.
♻ ☆ Code-Mixed Phonetic Perturbations for Red-Teaming LLMs
Large language models (LLMs) continue to be demonstrably unsafe despite sophisticated safety alignment techniques and multilingual red-teaming. However, recent red-teaming work has focused on incremental gains in attack success over identifying underlying architectural vulnerabilities in models. In this work, we present \textbf{CMP-RT}, a novel red-teaming probe that combines code-mixing with phonetic perturbations (CMP), exposing a tokenizer-level safety vulnerability in transformers. Combining realistic elements from digital communication such as code-mixing and textese, CMP-RT preserves phonetics while perturbing safety-critical tokens, allowing harmful prompts to bypass alignment mechanisms while maintaining high prompt interpretability, exposing a gap between pre-training and safety alignment. Our results demonstrate robustness against standard defenses, attack scalability, and generalization of the vulnerability across modalities and to SOTA models like Gemini-3-Pro, establishing CMP-RT as a major threat model and highlighting tokenization as an under-examined vulnerability in current safety pipelines.
♻ ☆ p-less Sampling: A Robust Hyperparameter-Free Approach for LLM Decoding
Obtaining high-quality outputs from Large Language Models (LLMs) often depends upon the choice of a sampling-based decoding strategy to probabilistically choose the next token at each generation step. While a variety of such sampling methods have been proposed, their performance can be sensitive to the selection of hyperparameters which may require different settings depending upon the generation task and temperature configuration. In this work, we introduce $p$-less sampling: an information-theoretic approach to sampling which dynamically sets a truncation threshold at each decoding step based on the entire token probability distribution. Unlike existing methods, $p$-less sampling has no hyperparameters and consistently produces high-quality outputs as temperature increases. We provide theoretical perspectives on $p$-less sampling to ground our proposed method and conduct experiments to empirically validate its effectiveness across a range of math, logical reasoning, and creative writing tasks. Our results demonstrate how $p$-less sampling consistently outperforms existing sampling approaches while exhibiting much less degradation in text quality at higher temperature values. We further show how $p$-less achieves greater inference-time efficiency than alternative methods through lower average token sampling times and shorter generation lengths, without sacrificing accuracy. Finally, we provide analyses to highlight the benefits of $p$-less through qualitative examples, case studies, and diversity assessments. The code is available at https://github.com/ryttry/p-less .
♻ ☆ Standard-to-Dialect Transfer Trends Differ across Text and Speech: A Case Study on Intent and Topic Classification in German Dialects
Research on cross-dialectal transfer from a standard to a non-standard dialect variety has typically focused on text data. However, dialects are primarily spoken, and non-standard spellings cause issues in text processing. We compare standard-to-dialect transfer in three settings: text models, speech models, and cascaded systems where speech first gets automatically transcribed and then further processed by a text model. We focus on German dialects in the context of written and spoken intent classification -- releasing the first dialectal audio intent classification dataset -- with supporting experiments on topic classification. The speech-only setup provides the best results on the dialect data while the text-only setup works best on the standard data. While the cascaded systems lag behind the text-only models for German, they perform relatively well on the dialectal data if the transcription system generates normalized, standard-like output.
♻ ☆ Your Latent Reasoning is Secretly Policy Improvement Operator
Recently, small models with latent recursion have obtained promising results on complex reasoning tasks. These results are typically explained by the theory that such recursion increases a networks depth, allowing it to compactly emulate the capacity of larger models. However, the performance of recursively added layers remains behind the capabilities of one pass models with the same feed forward depth. This means that in the looped version, not every recursive step effectively contributes to depth. This raises the question: when and why does latent reasoning improve performance, and when does it result in dead compute? In our work, we analyze the algorithms that latent reasoning provides answer to this question. We show that latent reasoning can be formalized as a classifier free guidance and policy improvement algorithm. Building on these insights, we propose to use a training schemes from reinforcement learning and diffusion methods for latent reasoning models. Using the Tiny Recursive Model as our testbed, we show that with our modifications we can avoid dead compute steps and reduce the total number of forward passes by 18x while maintaining performance. Broadly speaking, we show how a policy improvement perspective on recursive steps can explain model behavior and provide insights for further improvements.
♻ ☆ Bottom-up Policy Optimization: Your Language Model Policy Secretly Contains Internal Policies
Existing reinforcement learning (RL) approaches treat large language models (LLMs) as a unified policy, overlooking their internal mechanisms. In this paper, we decompose the LLM-based policy into Internal Layer Policies and Internal Modular Policies via Transformer's residual stream. Our entropy analysis on internal policy reveals distinct patterns: (1) universally, policies evolve from high-entropy exploration in early layers to deterministic refinement in top layers; and (2) Qwen exhibits a progressive, human-like reasoning structure, contrasting with the abrupt final-layer convergence in Llama. Furthermore, we discover that optimizing internal layers induces feature refinement, forcing lower layers to capture high-level reasoning representations early. Motivated by these findings, we propose Bottom-up Policy Optimization (BuPO), a novel RL paradigm that reconstructs the LLM's reasoning foundation from the bottom up by optimizing internal layers in early stages. Extensive experiments on complex reasoning benchmarks demonstrate the effectiveness of BuPO. Our code is available at https://github.com/Trae1ounG/BuPO.
comment: Preprint. Our code is available at https://github.com/Trae1ounG/BuPO
♻ ☆ Code over Words: Overcoming Semantic Inertia via Code-Grounded Reasoning
LLMs struggle with Semantic Inertia: the inability to inhibit pre-trained priors (e.g., "Lava is Dangerous") when dynamic, in-context rules contradict them. We probe this phenomenon using Baba Is You, where physical laws are mutable text rules, enabling precise evaluation of models' ability to override learned priors when rules change. We quantatively observe that larger models can exhibit inverse scaling: they perform worse than smaller models when natural language reasoning requires suppressing pre-trained associations (e.g., accepting "Lava is Safe"). Our analysis attributes this to natural language encoding, which entangles descriptive semantics and logical rules, leading to persistent hallucinations of familiar physics despite explicit contradictory rules. Here we show that representing dynamics as executable code, rather than descriptive text, reverses this trend and enables effective prior inhibition. We introduce Code-Grounded Vistas (LCV), which fine-tunes models on counterfactual pairs and identifies states with contradictory rules, thereby forcing attention to logical constraints rather than visual semantics. This training-time approach outperforms expensive inference-time search methods in both efficiency and accuracy. Our results demonstrate that representation fundamentally determines whether scaling improves or impairs contextual reasoning. This challenges the assumption that larger models are universally better, with implications for domains that require dynamic overriding of learned priors.
♻ ☆ Beyond Marginal Distributions: A Framework to Evaluate the Representativeness of Demographic-Aligned LLMs
Large language models are increasingly used to represent human opinions, values, or beliefs, and their steerability towards these ideals is an active area of research. Existing work focuses predominantly on aligning marginal response distributions, treating each survey item independently. While essential, this may overlook deeper latent structures that characterise real populations and underpin cultural values theories. We propose a framework for evaluating the representativeness of aligned models through multivariate correlation patterns in addition to marginal distributions. We show the value of our evaluation scheme by comparing two model steering techniques (persona prompting and demographic fine-tuning) and evaluating them against human responses from the World Values Survey. While the demographically fine-tuned model better approximates marginal response distributions than persona prompting, both techniques fail to fully capture the gold standard correlation patterns. We conclude that representativeness is a distinct aspect of value alignment and an evaluation focused on marginals can mask structural failures, leading to overly optimistic conclusions about model capabilities.
♻ ☆ SAPO: Self-Adaptive Process Optimization Makes Small Reasoners Stronger AAAI 2026
Existing self-evolution methods overlook the influence of fine-grained reasoning steps, which leads to the reasoner-verifier gap. The computational inefficiency of Monte Carlo (MC) process supervision further exacerbates the difficulty in mitigating the gap. Motivated by the Error-Related Negativity (ERN), which the reasoner can localize error following incorrect decisions, guiding rapid adjustments, we propose a Self-Adaptive Process Optimization (SAPO) method for self-improvement in Small Language Models (SLMs). SAPO adaptively and efficiently introduces process supervision signals by actively minimizing the reasoner-verifier gap rather than relying on inefficient MC estimations. Extensive experiments demonstrate that the proposed method outperforms most existing self-evolution methods on two challenging task types: mathematics and code. Additionally, to further investigate SAPO's impact on verifier performance, this work introduces two new benchmarks for process reward models in both mathematical and coding tasks.
comment: Accepted by AAAI 2026
♻ ☆ How Much Do LLMs Hallucinate across Languages? On Realistic Multilingual Estimation of LLM Hallucination EMNLP 2025
In the age of misinformation, hallucination - the tendency of Large Language Models (LLMs) to generate non-factual or unfaithful responses - represents the main risk for their global utility. Despite LLMs becoming increasingly multilingual, the vast majority of research on detecting and quantifying LLM hallucination are (a) English-centric and (b) focus on machine translation (MT) and summarization, tasks that are less common in realistic settings than open information seeking. In contrast, we aim to quantify the extent of LLM hallucination across languages in knowledge-intensive long-form question answering (LFQA). To this end, we train a multilingual hallucination detection model and conduct a large-scale study across 30 languages and 6 open-source LLM families. We start from an English hallucination detection dataset and rely on MT to translate-train a detection model. We also manually annotate gold data for five high-resource languages; we then demonstrate, for these languages, that the estimates of hallucination rates are similar between silver (LLM-generated) and gold test sets, validating the use of silver data for estimating hallucination rates for other languages. For the final rates estimation, we build open-domain QA dataset for 30 languages with LLM-generated prompts and Wikipedia articles as references. Our analysis shows that LLMs, in absolute terms, hallucinate more tokens in high-resource languages due to longer responses, but that the actual hallucination rates (i.e., normalized for length) seems uncorrelated with the sizes of languages' digital footprints. We also find that smaller LLMs hallucinate more, and significantly, LLMs with broader language support display higher hallucination rates.
comment: EMNLP 2025
♻ ☆ CASE -- Condition-Aware Sentence Embeddings for Conditional Semantic Textual Similarity Measurement EACL2026
The meaning conveyed by a sentence often depends on the context in which it appears. Despite the progress of sentence embedding methods, it remains unclear as how to best modify a sentence embedding conditioned on its context. To address this problem, we propose Condition-Aware Sentence Embeddings (CASE), an efficient and accurate method to create an embedding for a sentence under a given condition. First, CASE creates an embedding for the condition using a Large Language Model (LLM) encoder, where the sentence influences the attention scores computed for the tokens in the condition during pooling. Next, a supervised method is learnt to align the LLM-based text embeddings with the Conditional Semantic Textual Similarity (C-STS) task. We find that subtracting the condition embedding consistently improves the C-STS performance of LLM-based text embeddings by improving the isotropy of the embedding space. Moreover, our supervised projection method significantly improves the performance of LLM-based embeddings despite requiring a small number of embedding dimensions.
comment: Accepted to EACL2026
♻ ☆ Dimensional Collapse in Transformer Attention Outputs: A Challenge for Sparse Dictionary Learning
Transformer architectures, and their attention mechanisms in particular, form the foundation of modern large language models. While transformer models are widely believed to operate in high-dimensional hidden spaces, we show that attention outputs are in fact confined to a surprisingly low-dimensional subspace, with an effective dimensionality of only about $60\%$ of the full space. In contrast, MLP outputs and residual streams remain much closer to full-rank, exhibiting effective ranks around $90\%$. This striking dimensional discrepancy is consistently observed across diverse model families and datasets, and is strongly shaped by the attention output projection matrix. Critically, we find this low-rank structure as a key factor of the prevalent dead feature problem in sparse dictionary learning, where it creates a mismatch between randomly initialized features and the intrinsic geometry of the activation space. Building on this insight, we propose a subspace-constrained training method for sparse autoencoders (SAEs), initializing feature directions into the active subspace of activations. Our approach reduces dead features from 87\% to below 1\% in Attention Output SAEs with 1M features, and can further extend to other sparse dictionary learning methods. Our findings provide both new insights into the geometry of attention and practical tools for improving sparse dictionary learning in large language models.
comment: 27 pages, 16 figures
♻ ☆ MemBuilder: Reinforcing LLMs for Long-Term Memory Construction via Attributed Dense Rewards
Maintaining consistency in long-term dialogues remains a fundamental challenge for LLMs, as standard retrieval mechanisms often fail to capture the temporal evolution of historical states. While memory-augmented frameworks offer a structured alternative, current systems rely on static prompting of closed-source models or suffer from ineffective training paradigms with sparse rewards. We introduce MemBuilder, a reinforcement learning framework that trains models to orchestrate multi-dimensional memory construction with attributed dense rewards. MemBuilder addresses two key challenges: (1) Sparse Trajectory-Level Rewards: we employ synthetic session-level question generation to provide dense intermediate rewards across extended trajectories; and (2) Multi-Dimensional Memory Attribution: we introduce contribution-aware gradient weighting that scales policy updates based on each component's downstream impact. Experimental results show that MemBuilder enables a 4B-parameter model to outperform state-of-the-art closed-source baselines, exhibiting strong generalization across long-term dialogue benchmarks.
comment: 19 pages (9 main + 10 appendix), 7 figures, 3 tables
♻ ☆ A.X K1 Technical Report
We introduce A.X K1, a 519B-parameter Mixture-of-Experts (MoE) language model trained from scratch. Our design leverages scaling laws to optimize training configurations and vocabulary size under fixed computational budgets. A.X K1 is pre-trained on a corpus of approximately 10T tokens, curated by a multi-stage data processing pipeline. Designed to bridge the gap between reasoning capability and inference efficiency, A.X K1 supports explicitly controllable reasoning to facilitate scalable deployment across diverse real-world scenarios. We propose a simple yet effective Think-Fusion training recipe, enabling user-controlled switching between thinking and non-thinking modes within a single unified model. Extensive evaluations demonstrate that A.X K1 achieves performance competitive with leading open-source models, while establishing a distinctive advantage in Korean-language benchmarks.
comment: This paper is withdrawn pending additional internal review of the methodology and analysis
♻ ☆ Semantic Leakage from Image Embeddings
Image embeddings are generally assumed to pose limited privacy risk. We challenge this assumption by formalizing semantic leakage as the ability to recover semantic structures from compressed image embeddings. Surprisingly, we show that semantic leakage does not require exact reconstruction of the original image. Preserving local semantic neighborhoods under embedding alignment is sufficient to expose the intrinsic vulnerability of image embeddings. Crucially, this preserved neighborhood structure allows semantic information to propagate through a sequence of lossy mappings. Based on this conjecture, we propose Semantic Leakage from Image Embeddings (SLImE), a lightweight inference framework that reveals semantic information from standalone compressed image embeddings, incorporating a locally trained semantic retriever with off-the-shelf models, without training task-specific decoders. We thoroughly validate each step of the framework empirically, from aligned embeddings to retrieved tags, symbolic representations, and grammatical and coherent descriptions. We evaluate SLImE across a range of open and closed embedding models, including GEMINI, COHERE, NOMIC, and CLIP, and demonstrate consistent recovery of semantic information across diverse inference tasks. Our results reveal a fundamental vulnerability in image embeddings, whereby the preservation of semantic neighborhoods under alignment enables semantic leakage, highlighting challenges for privacy preservation.1
comment: 20 pages, 19 figures
♻ ☆ Reassessing Active Learning Adoption in Contemporary NLP: A Community Survey EACL 2026
Supervised learning relies on data annotation which usually is time-consuming and therefore expensive. A longstanding strategy to reduce annotation costs is active learning, an iterative process, in which a human annotates only data instances deemed informative by a model. Research in active learning has made considerable progress, especially with the rise of large language models (LLMs). However, we still know little about how these remarkable advances have translated into real-world applications, or contributed to removing key barriers to active learning adoption. To fill in this gap, we conduct an online survey in the NLP community to collect previously intangible insights on current implementation practices, common obstacles in application, and future prospects in active learning. We also reassess the perceived relevance of data annotation and active learning as fundamental assumptions. Our findings show that data annotation is expected to remain important and active learning to stay relevant while benefiting from LLMs. Consistent with a community survey from over 15 years ago, three key challenges yet persist -- setup complexity, uncertain cost reduction, and tooling -- for which we propose alleviation strategies. We publish an anonymized version of the dataset.
comment: EACL 2026 Main Conference
♻ ☆ Learning to Evolve: Bayesian-Guided Continual Knowledge Graph Embedding
As social media and the World Wide Web become hubs for information dissemination, effectively organizing and understanding the vast amounts of dynamically evolving Web content is crucial. Knowledge graphs (KGs) provide a powerful framework for structuring this information. However, the rapid emergence of new hot topics, user relationships, and events in social media renders traditional static knowledge graph embedding (KGE) models rapidly outdated. Continual Knowledge Graph Embedding (CKGE) aims to address this issue, but existing methods commonly suffer from catastrophic forgetting, whereby older, but still valuable, information is lost when learning new knowledge (such as new memes or trending events). This means the model cannot effectively learn the evolution of the data. We propose a novel CKGE framework, BAKE. Unlike existing methods, BAKE formulates CKGE as a sequential Bayesian inference problem and utilizes the Bayesian posterior update principle as a natural continual learning strategy. This principle is insensitive to data order and provides theoretical guarantees to preserve prior knowledge as much as possible. Specifically, we treat each batch of new data as a Bayesian update to the model's prior. By maintaining the posterior distribution, the model effectively preserves earlier knowledge even as it evolves over multiple snapshots. Furthermore, to constrain the evolution of knowledge across snapshots, we introduce a continual clustering method that maintains the compact cluster structure of entity embeddings through a regularization term, ensuring semantic consistency while allowing controlled adaptation to new knowledge. We conduct extensive experiments on multiple CKGE benchmarks, which demonstrate that BAKE achieves the top performance in the vast majority of cases compared to existing approaches.
♻ ☆ A Foundational individual Mobility Prediction Model based on Open-Source Large Language Models
Large Language Models (LLMs) are widely applied to domain-specific tasks due to their massive general knowledge and remarkable inference capacities. Current studies on LLMs have shown immense potential in applying LLMs to model individual mobility prediction problems. However, most LLM-based mobility prediction models only train on specific datasets or use single well-designed prompts, leading to difficulty in adapting to different cities and users with diverse contexts. To fill these gaps, this paper proposes a unified fine-tuning framework to train a foundational open source LLM-based mobility prediction model. We conducted extensive experiments on six real-world mobility datasets to validate the proposed model. The results showed that the proposed model achieved the best performance in prediction accuracy and transferability over state-of-the-art models based on deep learning and LLMs.
♻ ☆ Bridging the gap: A comparative exploration of Speech-LLM and end-to-end architecture for multilingual conversational ASR ICASSP2026
The INTERSPEECH 2025 Challenge on Multilingual Conversational Speech Language Models (MLC-SLM) promotes multilingual conversational ASR with large language models (LLMs). Our previous SHNU-mASR system adopted a competitive parallel-speech-encoder architecture that integrated Whisper and mHuBERT with an LLM. However, it faced two challenges: simple feature concatenation may not fully exploit complementary information, and the performance gap between LLM-based ASR and end-to-end(E2E) encoder-decoder ASR remained unexplored. In this work, we present an enhanced LLM-based ASR framework that combines fine-tuned Whisper and mHuBERT encoders with an LLM to enrich speech representations. We first evaluate E2E Whisper models with LoRA and full fine-tuning on the MLC-SLM ASR task, and then propose cross-attention-based fusion mechanisms for the parallel-speech-encoder. On the official evaluation set of the MLC-SLM Challenge, our system achieves a CER/WER of 10.69%, ranking on par with the top-ranked Track 1 systems, even though it uses only 1,500 hours of baseline training data compared with their large-scale training sets. Nonetheless, we find that our final LLM-based ASR still does not match the performance of a fine-tuned E2E Whisper model, providing valuable empirical guidance for future Speech-LLM design. Our code is publicly available at https://github.com/1535176727/MLC-SLM.
comment: Accepted by ICASSP2026
♻ ☆ SWE-Exp: Experience-Driven Software Issue Resolution
Recent advances in large language model (LLM) agents have shown remarkable progress in software issue resolution, leveraging advanced techniques such as multi-agent collaboration and Monte Carlo Tree Search (MCTS). However, current agents act as memoryless explorers - treating each problem separately without retaining or reusing knowledge from previous repair experiences. This leads to redundant exploration of failed trajectories and missed chances to adapt successful issue resolution methods to similar problems. To address this problem, we introduce SWE-Exp, an experience-enhanced approach that distills concise and actionable experience from prior agent trajectories, enabling continuous learning across issues. Our method introduces a multi-faceted experience bank that captures both successful and failed repair attempts. Specifically, it extracts reusable issue resolution knowledge at different levels - from high-level problem comprehension to specific code changes. Experiments show that SWE-Exp achieves a Pass@1 resolution rate of 73.0% on SWE-Bench Verified using the state-of-the-art LLM Claude 4 Sonnet, significantly outperforming prior results under other agent frameworks. Our approach establishes a new paradigm in which automated software engineering agents systematically accumulate and leverage repair expertise, fundamentally shifting from trial-and-error exploration to strategic, experience-driven issue resolution.
comment: Our code and data are available at https://github.com/YerbaPage/SWE-Exp
♻ ☆ AI-generated data contamination erodes pathological variability and diagnostic reliability
Generative artificial intelligence (AI) is rapidly populating medical records with synthetic content, creating a feedback loop where future models are increasingly at risk of training on uncurated AI-generated data. However, the clinical consequences of this AI-generated data contamination remain unexplored. Here, we show that in the absence of mandatory human verification, this self-referential cycle drives a rapid erosion of pathological variability and diagnostic reliability. By analysing more than 800,000 synthetic data points across clinical text generation, vision-language reporting, and medical image synthesis, we find that models progressively converge toward generic phenotypes regardless of the model architecture. Specifically, rare but critical findings, including pneumothorax and effusions, vanish from the synthetic content generated by AI models, while demographic representations skew heavily toward middle-aged male phenotypes. Crucially, this degradation is masked by false diagnostic confidence; models continue to issue reassuring reports while failing to detect life-threatening pathology, with false reassurance rates tripling to 40%. Blinded physician evaluation confirms that this decoupling of confidence and accuracy renders AI-generated documentation clinically useless after just two generations. We systematically evaluate three mitigation strategies, finding that while synthetic volume scaling fails to prevent collapse, mixing real data with quality-aware filtering effectively preserves diversity. Ultimately, our results suggest that without policy-mandated human oversight, the deployment of generative AI threatens to degrade the very healthcare data ecosystems it relies upon.
comment: *Corresponding author: Dianbo Liu (dianbo@nus.edu.sg)
♻ ☆ Draft-based Approximate Inference for LLMs ICLR 2026
Optimizing inference for long-context large language models (LLMs) is increasingly important due to the quadratic compute and linear memory cost of Transformers. Existing approximate inference methods, including key-value (KV) cache dropping, sparse attention, and prompt compression, typically rely on coarse predictions of token or KV pair importance. We unify and extend recent work by introducing a framework for approximate LLM inference that leverages small draft models to more accurately predict token and KV pair importance. We provide novel theoretical and empirical analyses justifying lookahead-based importance estimation techniques. Within this framework, we present: (i) SpecKV, the first method to use lookahead with a small draft model to enable precise KV cache dropping; (ii) SpecPC, which leverages draft model attention activations to identify and discard less important prompt tokens; and (iii) SpecKV-PC, a cascaded compression strategy combining both techniques. Extensive experiments on long-context benchmarks demonstrate that our methods consistently achieve higher accuracy than existing baselines while retaining the same efficiency gains in memory usage, latency, and throughput.
comment: Accepted to ICLR 2026
♻ ☆ Sparse Autoencoder Features for Classifications and Transferability
Sparse Autoencoders (SAEs) provide potentials for uncovering structured, human-interpretable representations in Large Language Models (LLMs), making them a crucial tool for transparent and controllable AI systems. We systematically analyze SAE for interpretable feature extraction from LLMs in safety-critical classification tasks. Our framework evaluates (1) model-layer selection and scaling properties, (2) SAE architectural configurations, including width and pooling strategies, and (3) the effect of binarizing continuous SAE activations. SAE-derived features achieve macro F1 > 0.8, outperforming hidden-state and BoW baselines while demonstrating cross-model transfer from Gemma 2 2B to 9B-IT models. These features generalize in a zero-shot manner to cross-lingual toxicity detection and visual classification tasks. Our analysis highlights the significant impact of pooling strategies and binarization thresholds, showing that binarization offers an efficient alternative to traditional feature selection while maintaining or improving performance. These findings establish new best practices for SAE-based interpretability and enable scalable, transparent deployment of LLMs in real-world applications. Full repo: https://github.com/shan23chen/MOSAIC.
♻ ☆ R-Stitch: Dynamic Trajectory Stitching for Efficient Reasoning
Chain-of-thought (CoT) enhances the problem-solving ability of large language models (LLMs) but incurs substantial inference cost due to long autoregressive trajectories. Existing acceleration strategies either shorten traces via early stopping or compression, or adopt speculative decoding with a smaller model. However, speculative decoding provides limited gains when model agreement is low and rigidly enforces token-level consistency, overlooking the observation that some smaller models, when correct, produce significantly more concise reasoning traces that could reduce inference length. We introduce R-Stitch, a training-free hybrid decoding framework that leverages token-level entropy as an uncertainty proxy to delegate computation between a small language model (SLM) and an LLM. Our analysis shows that high-entropy tokens are more likely to induce errors, motivating an entropy-guided routing strategy that lets the SLM efficiently handle low-entropy tokens while delegating uncertain ones to the LLM, thereby avoiding full rollbacks and preserving answer quality. We further extend this design with R-Stitch$^{+}$, which learns an adaptive routing policy to adjust the token budget dynamically beyond fixed thresholds. By jointly reducing per-token decoding complexity and the number of generated tokens, our method achieves substantial acceleration with negligible accuracy loss. Concretely, it attains peak speedups of 3.00$\times$ on DeepSeek-R1-Distill-Qwen-7B, 3.85$\times$ on 14B, and 4.10$\times$ on QWQ-32B while maintaining accuracy comparable to full LLM decoding. Moreover, it naturally enables adaptive efficiency--accuracy trade-offs that can be tailored to diverse computational budgets without retraining.
♻ ☆ RePPL: Recalibrating Perplexity by Uncertainty in Semantic Propagation and Language Generation for Explainable QA Hallucination Detection
Large Language Models (LLMs) have become powerful, but hallucinations remain a vital obstacle to their trustworthy use. Previous works improved the capability of hallucination detection by measuring uncertainty. But they can not explain the provenance behind why hallucinations occur, particularly in identifying which part of the inputs tends to trigger hallucinations. Recent works on the prompt attack indicate that uncertainty exists in semantic propagation, where attention mechanisms gradually fuse local token information into high-level semantics across layers. Meanwhile, uncertainty also emerges in language generation, due to its probability-based selection of high-level semantics for sampled generations. Based on that, we propose RePPL to recalibrate uncertainty measurement by these two aspects, which dispatches explainable uncertainty scores to each token and aggregates in Perplexity-style Log-Average form as a total score. Experiments show that it achieves the best comprehensive detection performance across various QA datasets on advanced models (average AUC of 0.833), and it is capable of producing token-level uncertainty scores as explanations of hallucination.
♻ ☆ SpatialViz-Bench: A Cognitively-Grounded Benchmark for Diagnosing Spatial Visualization in MLLMs
Humans can imagine and manipulate visual images mentally, a capability known as spatial visualization. While many multi-modal benchmarks assess reasoning on visible visual information, the ability to infer unseen relationships through spatial visualization remains insufficiently evaluated as a spatial skill. This reliance on publicly sourced problems from IQ tests or math competitions risks data contamination and compromises assessment reliability. To this end, we introduce SpatialViz-Bench, a comprehensive multi-modal benchmark for spatial visualization with 12 tasks across 4 sub-abilities, comprising 1,180 programmatically generated problems, a scalable framework that allows for expansion to ensure fair and continuously reliable evaluations. Our evaluation of 27 Multi-modal Large Language Models (MLLMs) reveals wide performance variations, demonstrates the benchmark's strong discriminative power, and uncovers counter-intuitive findings: Chain-of-Thought (CoT) prompting paradoxically degrades accuracy on open-source models. Through statistical and qualitative analysis of error types, SpatialViz-Bench demonstrates that state-of-the-art MLLMs exhibit deficiencies in spatial visualization tasks, thereby addressing a significant lacuna in the field. The benchmark data and evaluation code are publicly available.
♻ ☆ Mobile-Bench-v2: A More Realistic and Comprehensive Benchmark for VLM-based Mobile Agents
VLM-based mobile agents are increasingly popular due to their capabilities to interact with smartphone GUIs and XML-structured texts and to complete daily tasks. However, existing online benchmarks struggle with obtaining stable reward signals due to dynamic environmental changes. Offline benchmarks evaluate the agents through single-path trajectories, which stands in contrast to the inherently multi-solution characteristics of GUI tasks. Additionally, both types of benchmarks fail to assess whether mobile agents can handle noise or engage in proactive interactions due to a lack of noisy apps or overly full instructions during the evaluation process. To address these limitations, we use a slot-based instruction generation method to construct a more realistic and comprehensive benchmark named Mobile-Bench-v2. Mobile-Bench-v2 includes a common task split, with offline multi-path evaluation to assess the agent's ability to obtain step rewards during task execution. It contains a noisy split based on pop-ups and ads apps, and a contaminated split named AITZ-Noise to formulate a real noisy environment. Furthermore, an ambiguous instruction split with preset Q\&A interactions is released to evaluate the agent's proactive interaction capabilities. We conduct evaluations on these splits using the single-agent framework AppAgent-v1, the multi-agent framework Mobile-Agent-v2, as well as other mobile agents such as UI-Tars and OS-Atlas. Code and data are available at https://huggingface.co/datasets/xwk123/MobileBench-v2.
♻ ☆ Reward Auditor: Inference on Reward Modeling Suitability in Real-World Perturbed Scenarios
Reliable reward models (RMs) are critical for ensuring the safe alignment of large language models (LLMs). However, current RM evaluation methods focus solely on preference perception accuracies in given specific scenarios, obscuring the critical vulnerabilities of RMs in real-world scenarios. We identify the true challenge lies in assessing a novel dimension: Suitability, defined as conditional reliability under specific real-world perturbations. To this end, we introduce Reward Auditor, a hypothesis-testing framework specifically designed for RM suitability inference. Rather than answering "How accurate is the RM's preference perception for given samples?", it employs scientific auditing to answer: "Can we infer RMs exhibit systematic vulnerabilities in specific real-world scenarios?". Under real-world perturbed scenarios, Reward Auditor quantifies statistical significance and effect size by auditing distribution degradation of RM preference perception confidence. This enables inference of both the certainty and severity of RM vulnerabilities across diverse real-world scenarios. This lays a solid foundation for building next-generation LLM alignment systems that are verifiably safe, more robust, and trustworthy.
♻ ☆ PaceLLM: Brain-Inspired Large Language Models for Long-Context Understanding NeurIPS2025
While Large Language Models (LLMs) demonstrate strong performance across domains, their long-context capabilities are limited by transient neural activations causing information decay and unstructured feed-forward network (FFN) weights leading to semantic fragmentation. Inspired by the brain's working memory and cortical modularity, we propose PaceLLM, featuring two innovations: (1) a Persistent Activity (PA) Mechanism that mimics prefrontal cortex (PFC) neurons' persistent firing by introducing an activation-level memory bank to dynamically retrieve, reuse, and update critical FFN states, addressing contextual decay; and (2) Cortical Expert (CE) Clustering that emulates task-adaptive neural specialization to reorganize FFN weights into semantic modules, establishing cross-token dependencies and mitigating fragmentation. Extensive evaluations show that PaceLLM achieves 6% improvement on LongBench's Multi-document QA and 12.5-17.5% performance gains on Infinite-Bench tasks, while extending measurable context length to 200K tokens in Needle-In-A-Haystack (NIAH) tests. This work pioneers brain-inspired LLM optimization and is complementary to other works. Besides, it can be generalized to any model and enhance their long-context performance and interpretability without structural overhauls.
comment: Accepted by NeurIPS2025
♻ ☆ Bias Beyond Borders: Political Ideology Evaluation and Steering in Multilingual LLMs
Large Language Models (LLMs) increasingly shape global discourse, making fairness and ideological neutrality essential for responsible AI deployment. Despite growing attention to political bias in LLMs, prior work largely focuses on high-resource, Western languages or narrow multilingual settings, leaving cross-lingual consistency and safe post-hoc mitigation underexplored. To address this gap, we present a large-scale multilingual evaluation of political bias spanning 50 countries and 33 languages. We introduce a complementary post-hoc mitigation framework, Cross-Lingual Alignment Steering (CLAS), designed to augment existing steering methods by aligning ideological representations across languages and dynamically regulating intervention strength. This method aligns latent ideological representations induced by political prompts into a shared ideological subspace, ensuring cross lingual consistency, with the adaptive mechanism prevents over correction and preserves coherence. Experiments demonstrate substantial bias reduction along both economic and social axes with minimal degradation in response quality. The proposed framework establishes a scalable and interpretable paradigm for fairness-aware multilingual LLM governance, balancing ideological neutrality with linguistic and cultural diversity.
comment: PrePrint
♻ ☆ APE-Bench: Evaluating Automated Proof Engineering for Formal Math Libraries
While frontier formal mathematics systems now routinely develop repository-scale proof engineering artifacts requiring multi-file coordination and semantic correctness beyond compilation, existing evaluation benchmarks remain focused on isolated theorem proving. We introduce Automated Proof Engineering (APE), the first systematic framework for evaluating repository-scale proof engineering through dual verification that validates both syntactic compilation and semantic requirement satisfaction in pinned library environments. We present a complete infrastructure comprising APE-Bench, which automatically extracts proof engineering tasks from real library commit histories, and APE-Harness, a unified execution framework based on task contract abstraction. This contract-based design enables standardized evaluation across diverse formal mathematics tasks and fair systematic comparison of different agent implementations (including our APE-Agent reference scaffold alongside Claude Code and Codex CLI) on identical task specifications. We demonstrate the framework's effectiveness through comprehensive evaluation. All code and benchmark dataset are released as open-source at https://github.com/xinhjBrant/APE-Bench.
♻ ☆ Lost in Localization: Building RabakBench with Human-in-the-Loop Validation to Measure Multilingual Safety Gaps
Large language models (LLMs) often fail to maintain safety in low-resource language varieties, such as code-mixed vernaculars and regional dialects. We introduce RabakBench, a multilingual safety benchmark and scalable pipeline localized to Singapore's unique linguistic landscape, covering Singlish, Chinese, Malay, and Tamil. We construct the benchmark through a three-stage pipeline: (1) Generate: augmenting real-world unsafe web content via LLM-driven red teaming; (2) Label: applying semi-automated multi-label annotation using majority-voted LLM labelers; and (3) Translate: performing high-fidelity, toxicity-preserving translation. The resulting dataset contains over 5,000 examples across six fine-grained safety categories. Despite using LLMs for scalability, our framework maintains rigorous human oversight, achieving 0.70-0.80 inter-annotator agreement. Evaluations of 13 state-of-the-art guardrails reveal significant performance degradation, underscoring the need for localized evaluation. RabakBench provides a reproducible framework for building safety benchmarks in underserved communities.
♻ ☆ Large Language Models for Scientific Idea Generation: A Creativity-Centered Survey
Scientific idea generation is central to discovery, requiring the joint satisfaction of novelty and scientific soundness. Unlike standard reasoning or general creative generation, scientific ideation is inherently open-ended and multi-objective, making its automation particularly challenging. Recent advances in large language models (LLMs) have enabled the generation of coherent and plausible scientific ideas, yet the nature and limits of their creative capabilities remain poorly understood. This survey provides a structured synthesis of methods for LLM-driven scientific ideation, focusing on how different approaches trade off novelty and scientific validity. We organize existing methods into five complementary families: External knowledge augmentation, Prompt-based distributional steering, Inference-time scaling, Multi-agent collaboration, and Parameter-level adaptation. To interpret their contributions, we adopt two complementary creativity frameworks: Boden taxonomy to characterize the expected level of creative novelty, and Rhodes 4Ps framework to analyze the aspects or sources of creativity emphasized by each method. By aligning methodological developments with cognitive creativity frameworks, this survey clarifies the evaluation landscape and identifies key challenges and directions for reliable and systematic LLM-based scientific discovery.
comment: 75 Pages
♻ ☆ Improving the Distributional Alignment of LLMs using Supervision
The ability to accurately align LLMs with population groups on subjective questions would have great value. In this work, we show that simple supervision can more consistently improve language model alignment with diverse population groups, as measured across three datasets spanning various topics. Beyond evaluating average alignment, we also report how alignment varies across specific groups. Our broad findings provide insights into the distributional alignment of LLMs with diverse populations. By conducting evaluation over many LLMs and prompting strategies, we provide a benchmark to stimulate future research.
♻ ☆ Efficient Reinforcement Finetuning via Adaptive Curriculum Learning
Reinforcement finetuning (RFT) has shown great potential for enhancing the mathematical reasoning capabilities of large language models (LLMs), but it is often sample- and compute-inefficient, requiring extensive training. In this work, we introduce AdaRFT (Adaptive Curriculum Reinforcement Finetuning), a method that significantly improves both the efficiency and final accuracy of RFT through adaptive curriculum learning. AdaRFT dynamically adjusts the difficulty of training problems based on the model's recent reward signals, ensuring that the model consistently trains on tasks that are challenging but solvable. This adaptive sampling strategy accelerates learning by maintaining an optimal difficulty range, avoiding wasted computation on problems that are too easy or too hard. AdaRFT requires only a lightweight extension to standard RFT algorithms like Proximal Policy Optimization (PPO), without modifying the reward function or model architecture. Experiments on competition-level math datasets demonstrate that AdaRFT significantly improves both training efficiency and reasoning performance. We evaluate AdaRFT across multiple data distributions and model sizes, showing that it reduces training time by up to 2x and improves accuracy by a considerable margin, offering a more scalable and effective RFT framework.
comment: 23 pages, 8 figures, 7 tables
♻ ☆ ToolACE-MT: Non-Autoregressive Generation for Agentic Multi-Turn Interaction ICLR2026
Agentic task-solving with Large Language Models (LLMs) requires multi-turn, multi-step interactions, often involving complex function calls and dynamic user-agent exchanges. Existing simulation-based data generation methods for such scenarios rely heavily on costly autoregressive interactions between multiple LLM agents, thereby limiting real-world performance of agentic tasks. In this paper, we propose ToolACE-MT, a novel Non-Autoregressive Iterative Generation framework for constructing high-quality multi-turn agentic dialogues. ToolACE-MT generates full conversational trajectories through three stages: coarse-grained initialization, iterative refinement, and offline verification. The initialization phase builds a structurally complete yet semantically coarse dialogue skeleton; the iterative refinement phase introduces realistic complexities and continued refinement via mask-and-fill operations; and the offline verification phase ensures correctness and coherence via rule- and model-based checks. Experiments demonstrate that ToolACE-MT enables efficient, effective and generalizable agentic data generation, offering a new paradigm for high-quality data construction in tool-augmented LLM scenarios.
comment: Accepted by ICLR2026
♻ ☆ CrossCheck-Bench: Diagnosing Compositional Failures in Multimodal Conflict Resolution AAAI 2026
Multimodal Large Language Models are primarily trained and evaluated on aligned image-text pairs, which leaves their ability to detect and resolve real-world inconsistencies largely unexplored. In open-domain applications visual and textual cues often conflict, requiring models to perform structured reasoning beyond surface-level alignment. We introduce CrossCheck-Bench, a diagnostic benchmark for evaluating contradiction detection in multimodal inputs. The benchmark adopts a hierarchical task framework covering three levels of reasoning complexity and defines seven atomic capabilities essential for resolving cross-modal inconsistencies. CrossCheck-Bench includes 15k question-answer pairs sourced from real-world artifacts with synthetically injected contradictions. The dataset is constructed through a multi-stage annotation pipeline involving more than 450 expert hours to ensure semantic validity and calibrated difficulty across perception, integration, and reasoning. We evaluate 13 state-of-the-art vision-language models and observe a consistent performance drop as tasks shift from perceptual matching to logical contradiction detection. Most models perform well on isolated entity recognition but fail when multiple clues must be synthesized for conflict reasoning. Capability-level analysis further reveals uneven skill acquisition, especially in tasks requiring multi-step inference or rule-based validation. Additional probing shows that conventional prompting strategies such as Chain-of-Thought and Set-of-Mark yield only marginal gains. By contrast, methods that interleave symbolic reasoning with grounded visual processing achieve more stable improvements. These results highlight a persistent bottleneck in multimodal reasoning and suggest new directions for building models capable of robust cross-modal verification.
comment: Accepted by AAAI 2026
♻ ☆ Group-Adaptive Threshold Optimization for Robust AI-Generated Text Detection
The advancement of large language models (LLMs) has made it difficult to differentiate human-written text from AI-generated text. Several AI-text detectors have been developed in response, which typically utilize a fixed global threshold (e.g., $θ= 0.5$) to classify machine-generated text. However, one universal threshold could fail to account for distributional variations by subgroups. For example, when using a fixed threshold, detectors make more false positive errors on shorter human-written text, and more positive classifications of neurotic writing styles among long texts. These discrepancies can lead to misclassifications that disproportionately affect certain groups. We address this critical limitation by introducing FairOPT, an algorithm for group-specific threshold optimization for probabilistic AI-text detectors. We partitioned data into subgroups based on attributes (e.g., text length and writing style) and implemented FairOPT to learn decision thresholds for each group to reduce discrepancy. FairOPT showed notable discrepancy mitigation across nine detectors and three heterogeneous datasets, and the remarkable mitigation of the minimax problem by decreasing overall discrepancy 27.4% across five metrics while minimally sacrificing accuracy by 0.005%. Our framework paves the way for more robust classification in AI-generated content detection via post-processing. We release our data, code, and project information at URL.
♻ ☆ Geometric-disentangelment Unlearning
Large language models (LLMs) can internalize private or harmful content, motivating unlearning that removes a forget set while preserving retaining knowledge. However, forgetting updates often cause collateral degradation on retaining knowledge, creating a persistent trade-off. Existing LLM unlearning methods are often heuristic, and other theoretical approaches rely on offline feature constructions that do not capture update-time forget-retain interaction in LLMs. To address this limitation, we aim to develop an LLM unlearning method that reduces the forget-retain trade-off with theoretical guarantees. We take a first-principles view by formalizing "no side effects" as local retain invariance under small parameter updates, and prove an equivalence under optimizer-induced geometry: the retain loss is locally invariant if and only if the update direction is orthogonal to the subspace spanned by retain gradients. Based on the insight, we propose Geometric-disentanglement Unlearning (GU), a lightweight and theoretically grounded projection that can be plug-and-play to existing gradient-based unlearning methods to mitigate forget-retain side effects. Experiments on TOFU, MUSE, and WMDP-cyber show that GU strengthens forgetting while reducing retain drift. When added to SimNPO, it achieves up to 62\% improved forgetting Extraction Strength (ES) and 31\% higher retain ES. We open-sourced our code in https://github.com/Lemutisme/Geometric-Unlearning.
comment: 26 Pages
♻ ☆ Insight Agents: An LLM-Based Multi-Agent System for Data Insights SIGIR 2025
Today, E-commerce sellers face several key challenges, including difficulties in discovering and effectively utilizing available programs and tools, and struggling to understand and utilize rich data from various tools. We therefore aim to develop Insight Agents (IA), a conversational multi-agent Data Insight system, to provide E-commerce sellers with personalized data and business insights through automated information retrieval. Our hypothesis is that IA will serve as a force multiplier for sellers, thereby driving incremental seller adoption by reducing the effort required and increase speed at which sellers make good business decisions. In this paper, we introduce this novel LLM-backed end-to-end agentic system built on a plan-and-execute paradigm and designed for comprehensive coverage, high accuracy, and low latency. It features a hierarchical multi-agent structure, consisting of manager agent and two worker agents: data presentation and insight generation, for efficient information retrieval and problem-solving. We design a simple yet effective ML solution for manager agent that combines Out-of-Domain (OOD) detection using a lightweight encoder-decoder model and agent routing through a BERT-based classifier, optimizing both accuracy and latency. Within the two worker agents, a strategic planning is designed for API-based data model that breaks down queries into granular components to generate more accurate responses, and domain knowledge is dynamically injected to to enhance the insight generator. IA has been launched for Amazon sellers in US, which has achieved high accuracy of 90% based on human evaluation, with latency of P90 below 15s.
comment: Accepted to SIGIR 2025. DOI: 10.1145/3726302.3731959
♻ ☆ Entropy Meets Importance: A Unified Head Importance-Entropy Score for Stable and Efficient Transformer Pruning
Transformer-based models have achieved remarkable performance in NLP tasks. However, their structural characteristics-multiple layers and attention heads-introduce efficiency challenges in inference and deployment. To address these challenges, various pruning methods have recently been proposed. Notably, gradient-based methods using Head Importance Scores (HIS) have gained traction for interpretability, efficiency, and ability to identify redundant heads. However, HIS alone has limitations as it captures only the gradient-driven contribution, overlooking the diversity of attention patterns. To overcome these limitations, we introduce a novel pruning criterion, HIES (Head Importance-Entropy Score), which integrates head importance scores with attention entropy, providing complementary evidence on per-head contribution. Empirically, HIES-based pruning yields up to 15.2% improvement in model quality and 2.04x improvement in stability over HIS-only methods, enabling substantial model compression without sacrificing either accuracy or stability. Code will be released upon publication.
comment: 38 pages
♻ ☆ Encoder-Free Knowledge-Graph Reasoning with LLMs via Hyperdimensional Path Retrieval
Recent progress in large language models (LLMs) has made knowledge-grounded reasoning increasingly practical, yet KG-based QA systems often pay a steep price in efficiency and transparency. In typical pipelines, symbolic paths are scored by neural encoders or repeatedly re-ranked by multiple LLM calls, which inflates latency and GPU cost and makes the decision process hard to audit. We introduce PathHD, an encoder-free framework for knowledge-graph reasoning that couples hyperdimensional computing (HDC) with a single LLM call per query. Given a query, PathHD represents relation paths as block-diagonal GHRR hypervectors, retrieves candidate paths using a calibrated blockwise cosine similarity with Top-K pruning, and then performs a one-shot LLM adjudication that outputs the final answer together with supporting, citeable paths. The design is enabled by three technical components: (i) an order-sensitive, non-commutative binding operator for composing multi-hop paths, (ii) a robust similarity calibration that stabilizes hypervector retrieval, and (iii) an adjudication stage that preserves interpretability while avoiding per-path LLM scoring. Across WebQSP, CWQ, and GrailQA, PathHD matches or improves Hits@1 compared to strong neural baselines while using only one LLM call per query, reduces end-to-end latency by $40-60\%$, and lowers GPU memory by $3-5\times$ due to encoder-free retrieval. Overall, the results suggest that carefully engineered HDC path representations can serve as an effective substrate for efficient and faithful KG-LLM reasoning, achieving a strong accuracy-efficiency-interpretability trade-off.
♻ ☆ Merged ChemProt-DrugProt for Relation Extraction from Biomedical Literature
The extraction of chemical-gene relations plays a pivotal role in understanding the intricate interactions between chemical compounds and genes, with significant implications for drug discovery, disease understanding, and biomedical research. This paper presents a data set created by merging the ChemProt and DrugProt datasets to augment sample counts and improve model accuracy. We evaluate the merged dataset using two state of the art relationship extraction algorithms: Bidirectional Encoder Representations from Transformers (BERT) specifically BioBERT, and Graph Convolutional Networks (GCNs) combined with BioBERT. While BioBERT excels at capturing local contexts, it may benefit from incorporating global information essential for understanding chemical-gene interactions. This can be achieved by integrating GCNs with BioBERT to harness both global and local context. Our results show that by integrating the ChemProt and DrugProt datasets, we demonstrated significant improvements in model performance, particularly in CPR groups shared between the datasets. Incorporating the global context using GCN can help increase the overall precision and recall in some of the CPR groups over using just BioBERT.
♻ ☆ Reward Model Interpretability via Optimal and Pessimal Tokens
Reward modeling has emerged as a crucial component in aligning large language models with human values. Significant attention has focused on using reward models as a means for fine-tuning generative models. However, the reward models themselves -- which directly encode human value judgments by turning prompt-response pairs into scalar rewards -- remain relatively understudied. We present a novel approach to reward model interpretability through exhaustive analysis of their responses across their entire vocabulary space. By examining how different reward models score every possible single-token response to value-laden prompts, we uncover several striking findings: (i) substantial heterogeneity between models trained on similar objectives, (ii) systematic asymmetries in how models encode high- vs low-scoring tokens, (iii) significant sensitivity to prompt framing that mirrors human cognitive biases, and (iv) overvaluation of more frequent tokens. We demonstrate these effects across ten recent open-source reward models of varying parameter counts and architectures. Our results challenge assumptions about the interchangeability of reward models, as well as their suitability as proxies of complex and context-dependent human values. We find that these models can encode concerning biases toward certain identity groups, which may emerge as unintended consequences of harmlessness training -- distortions that risk propagating through the downstream large language models now deployed to millions.
comment: Accepted for publication in Proceedings of the 2025 ACM Conference on Fairness, Accountability, and Transparency (FAccT '25), to appear June 2025
♻ ☆ From Self-Evolving Synthetic Data to Verifiable-Reward RL: Post-Training Multi-turn Interactive Tool-Using Agents ICML 2026
Interactive tool-using agents must solve real-world tasks via multi-turn interaction with both humans and external environments, requiring dialogue state tracking, multi-step tool execution, while following complex instructions. Post-training such agents is challenging because synthesis for high-quality multi-turn tool-use data is difficult to scale, and reinforcement learning (RL) could face noisy signals caused by user simulation, leading to degraded training efficiency. We propose a unified framework that combines a self-evolving data agent with verifier-based RL. Our system, EigenData, is a hierarchical multi-agent engine that synthesizes tool-grounded dialogues together with executable per-instance checkers, and improves generation reliability via closed-loop self-evolving process that updates prompts and workflow. Building on the synthetic data, we develop an RL recipe that first fine-tunes the user model and then applies GRPO-style training with trajectory-level group-relative advantages and dynamic filtering, yielding consistent improvements beyond SFT. Evaluated on tau^2-bench, our best model reaches 73.0% pass^1 on Airline and 98.3% pass^1 on Telecom, matching or exceeding frontier models. Overall, our results suggest a scalable pathway for bootstrapping complex tool-using behaviors without expensive human annotation.
comment: Submitted to ICML 2026
♻ ☆ Multi-turn Evaluation of Anthropomorphic Behaviours in Large Language Models
The tendency of users to anthropomorphise large language models (LLMs) is of growing interest to AI developers, researchers, and policy-makers. Here, we present a novel method for empirically evaluating anthropomorphic LLM behaviours in realistic and varied settings. Going beyond single-turn static benchmarks, we contribute three methodological advances in state-of-the-art (SOTA) LLM evaluation. First, we develop a multi-turn evaluation of 14 anthropomorphic behaviours. Second, we present a scalable, automated approach by employing simulations of user interactions. Third, we conduct an interactive, large-scale human subject study (N=1101) to validate that the model behaviours we measure predict real users' anthropomorphic perceptions. We find that all SOTA LLMs evaluated exhibit similar behaviours, characterised by relationship-building (e.g., empathy and validation) and first-person pronoun use, and that the majority of behaviours only first occur after multiple turns. Our work lays an empirical foundation for investigating how design choices influence anthropomorphic model behaviours and for progressing the ethical debate on the desirability of these behaviours. It also showcases the necessity of multi-turn evaluations for complex social phenomena in human-AI interaction.
♻ ☆ Natural Language Actor-Critic: Scalable Off-Policy Learning in Language Space
Large language model (LLM) agents -- LLMs that dynamically interact with an environment over long horizons -- have become an increasingly important area of research, enabling automation in complex tasks involving tool-use, web browsing, and dialogue with people. In the absence of expert demonstrations, training LLM agents has relied on policy gradient methods that optimize LLM policies with respect to an (often sparse) reward function. However, in long-horizon tasks with sparse rewards, learning from trajectory-level rewards can be noisy, leading to training that is unstable and has high sample complexity. Furthermore, policy improvement hinges on discovering better actions through exploration, which can be difficult when actions lie in natural language space. In this paper, we propose Natural Language Actor-Critic (NLAC), a novel actor-critic algorithm that trains LLM policies using a generative LLM critic that produces natural language rather than scalar values. This approach leverages the inherent strengths of LLMs to provide a richer and more actionable training signal; particularly, in tasks with large, open-ended action spaces, natural language explanations for why an action is suboptimal can be immensely useful for LLM policies to reason how to improve their actions, without relying on random exploration. Furthermore, our approach can be trained off-policy without policy gradients, offering a more data-efficient and stable alternative to existing on-policy methods. We present results on a mixture of reasoning, web browsing, and tool-use with dialogue tasks, demonstrating that NLAC shows promise in outperforming existing training approaches and offers a more scalable and stable training paradigm for LLM agents.
comment: 21 pages, 4 figures
♻ ☆ Broken Tokens? Your Language Model can Secretly Handle Non-Canonical Tokenizations NeurIPS 2025
Modern tokenizers employ deterministic algorithms to map text into a single "canonical" token sequence, yet the same string can be encoded as many non-canonical tokenizations using the tokenizer vocabulary. In this work, we investigate the robustness of LMs to text encoded with non-canonical tokenizations entirely unseen during training. Surprisingly, when evaluated across 20 benchmarks, we find that instruction-tuned models retain up to 93.4% of their original performance when given a randomly sampled tokenization, and 90.8% with character-level tokenization. We see that overall stronger models tend to be more robust, and robustness diminishes as the tokenization departs farther from the canonical form. Motivated by these results, we then identify settings where non-canonical tokenization schemes can *improve* performance, finding that character-level segmentation improves string manipulation and code understanding tasks by up to +14%, and right-aligned digit grouping enhances large-number arithmetic by +33%. Finally, we investigate the source of this robustness, finding that it arises in the instruction-tuning phase. We show that while both base and post-trained models grasp the semantics of non-canonical tokenizations (perceiving them as containing misspellings), base models try to mimic the imagined mistakes and degenerate into nonsensical output, while post-trained models are committed to fluent responses. Overall, our findings suggest that models are less tied to their tokenizer than previously believed, and demonstrate the promise of intervening on tokenization at inference time to boost performance.
comment: NeurIPS 2025 (spotlight)
♻ ☆ Are you going to finish that? A Practical Study of the Partial Token Problem
Language models (LMs) are trained over sequences of tokens, whereas users interact with LMs via text. This mismatch gives rise to the partial token problem, which occurs when a user ends their prompt in the middle of the expected next-token, leading to distorted next-token predictions. Although this issue has been studied using arbitrary character prefixes, its prevalence and severity in realistic prompts respecting word boundaries remains underexplored. In this work, we identify three domains where token and "word" boundaries often do not line up: languages that do not use whitespace, highly compounding languages, and code. In Chinese, for example, up to 25% of word boundaries do not line up with token boundaries, making even natural, word-complete prompts susceptible to this problem. We systematically construct semantically natural prompts ending with a partial tokens; in experiments, we find that they comprise a serious failure mode: frontier LMs consistently place three orders of magnitude less probability on the correct continuation compared to when the prompt is "backed-off" to be token-aligned. This degradation does not diminish with scale and often worsens for larger models. Finally, we evaluate inference-time mitigations to the partial token problem and validate the effectiveness of recent exact solutions. Overall, we demonstrate the scale and severity of probability distortion caused by tokenization in realistic use cases, and provide practical recommentions for model inference providers.
♻ ☆ Co-Designing Quantum Codes with Transversal Diagonal Gates via Multi-Agent Systems
We present a multi-agent, human-in-the-loop workflow that co-designs quantum error-correcting codes with prescribed transversal diagonal gates. It builds on the Subset-Sum Linear Programming (SSLP) framework, which partitions basis strings by modular residues and enforces Z-marginal Knill-Laflamme (KL) equalities via small LPs. The workflow is powered by GPT-5 and implemented within TeXRA, a multi-agent research assistant platform where agents collaborate in a shared LaTeX-Python workspace synchronized with Git/Overleaf. Three specialized agents formulate constraints, sweep and screen candidate codes, exactify numerical solutions into rationals, and independently audit all KL equalities and induced logical actions. Focusing on distance-two codes with nondegenerate residues, we catalogue new nonadditive codes for dimensions $K\in\{2,3,4\}$ on up to six qubits, including high-order diagonal transversals, yielding $14,116$ new codes. From these data, the system abstracts closed-form families and constructs a residue-degenerate $((6,4,2))$ code implementing a transversal controlled-phase $\mathrm{diag}(1,1,1,i)$, illustrating how AI orchestration can drive rigorous, scalable code discovery.
comment: 63 pages, 3 figures
♻ ☆ Linear representations in language models can change dramatically over a conversation
Language model representations often contain linear directions that correspond to high-level concepts. Here, we study the dynamics of these representations: how representations evolve along these dimensions within the context of (simulated) conversations. We find that linear representations can change dramatically over a conversation; for example, information that is represented as factual at the beginning of a conversation can be represented as non-factual at the end and vice versa. These changes are content-dependent; while representations of conversation-relevant information may change, generic information is generally preserved. These changes are robust even for dimensions that disentangle factuality from more superficial response patterns, and occur across different model families and layers of the model. These representation changes do not require on-policy conversations; even replaying a conversation script written by an entirely different model can produce similar changes. However, adaptation is much weaker from simply having a sci-fi story in context that is framed more explicitly as such. We also show that steering along a representational direction can have dramatically different effects at different points in a conversation. These results are consistent with the idea that representations may evolve in response to the model playing a particular role that is cued by a conversation. Our findings may pose challenges for interpretability and steering -- in particular, they imply that it may be misleading to use static interpretations of features or directions, or probes that assume a particular range of features consistently corresponds to a particular ground-truth value. However, these types of representational dynamics also point to exciting new research directions for understanding how models adapt to context.
♻ ☆ From Deferral to Learning: Online In-Context Knowledge Distillation for LLM Cascades
Standard LLM cascades improve efficiency by deferring difficult queries from weak to strong models. However, these systems are typically static: when faced with repeated or semantically similar queries, they redundantly consult the expensive model, failing to adapt during inference. To address this, we propose Inter-Cascade, an online, interactive framework that transforms the strong model from a temporary helper into a long-term teacher. In our approach, when the strong model resolves a deferred query, it generates a generalized, reusable problem-solving strategy. These strategies are stored in a dynamic repository and retrieved via similarity matching to augment the weak model's context for future queries. This enables the weak model to learn on the job without expensive parameter fine-tuning. We theoretically show that this mechanism improves the weak model's confidence calibration. Empirically, Inter-Cascade outperforms standard cascades on multiple benchmarks, improving weak model and overall system accuracy by up to 33.06 percent and 6.35 percent, while reducing strong model calls by up to 48.05 percent and saving fee by up to 49.63 percent. Inter-Cascade demonstrates effective in-context knowledge transfer between LLMs and provides a general, scalable framework applicable to both open-source and API-based LLMs.
comment: 32 pages, 6 figures, 23 tables, under review
♻ ☆ Do AI Models Perform Human-like Abstract Reasoning Across Modalities?
OpenAI's o3-preview reasoning model exceeded human accuracy on the ARC-AGI-1 benchmark, but does that mean state-of-the-art models recognize and reason with the abstractions the benchmark was designed to test? Here we investigate abstraction abilities of AI models using the closely related but simpler ConceptARC benchmark. Our evaluations vary input modality (textual vs. visual), use of external Python tools, and reasoning effort. Beyond output accuracy, we evaluate the natural-language rules that models generate to explain their solutions, enabling us to assess whether models recognize the abstractions that ConceptARC was designed to elicit. We show that the best models' rules are frequently based on surface-level ``shortcuts,'' capturing intended abstractions considerably less often than humans. In the visual modality, AI models' output accuracy drops sharply; however, our rule-level analysis reveals that a substantial share of their rules capture the intended abstractions, even as the models struggle to apply these concepts to generate correct solutions. In short, we show that using accuracy alone to evaluate abstract reasoning can substantially overestimate AI capabilities in textual modalities and underestimate it in visual modalities. Our results offer a more faithful picture of AI models' abstract reasoning abilities and a more principled way to track progress toward human-like, abstraction-centered intelligence.
comment: 9 pages, 3 figures
♻ ☆ From Labels to Facets: Building a Taxonomically Enriched Turkish Learner Corpus
In terms of annotation structure, most learner corpora rely on holistic flat label inventories which, even when extensive, do not explicitly separate multiple linguistic dimensions. This makes linguistically deep annotation difficult and complicates fine-grained analyses aimed at understanding why and how learners produce specific errors. To address these limitations, this paper presents a semi-automated annotation methodology for learner corpora, built upon a recently proposed faceted taxonomy, and implemented through a novel annotation extension framework. The taxonomy provides a theoretically grounded, multi-dimensional categorization that captures the linguistic properties underlying each error instance, thereby enabling standardized, fine-grained, and interpretable enrichment beyond flat annotations. The annotation extension tool, implemented based on the proposed extension framework for Turkish, automatically extends existing flat annotations by inferring additional linguistic and metadata information as facets within the taxonomy to provide richer learner-specific context. It was systematically evaluated and yielded promising performance results, achieving a facet-level accuracy of 95.86%. The resulting taxonomically enriched corpus offers enhanced querying capabilities and supports detailed exploratory analyses across learner corpora, enabling researchers to investigate error patterns through complex linguistic and pedagogical dimensions. This work introduces the first collaboratively annotated and taxonomically enriched Turkish Learner Corpus, a manual annotation guideline with a refined tagset, and an annotation extender. As the first corpus designed in accordance with the recently introduced taxonomy, we expect our study to pave the way for subsequent enrichment efforts of existing error-annotated learner corpora.
comment: An error was identified in the analyses presented in Section 5.3, impacting the conclusions of the paper. The authors have therefore withdrawn the submission
♻ ☆ Inferring Scientific Cross-Document Coreference and Hierarchy with Definition-Augmented Relational Reasoning ACL
We address the fundamental task of inferring cross-document coreference and hierarchy in scientific texts, which has important applications in knowledge graph construction, search, recommendation and discovery. Large Language Models (LLMs) can struggle when faced with many long-tail technical concepts with nuanced variations. We present a novel method which generates context-dependent definitions of concept mentions by retrieving full-text literature, and uses the definitions to enhance detection of cross-document relations. We further generate relational definitions, which describe how two concept mentions are related or different, and design an efficient re-ranking approach to address the combinatorial explosion involved in inferring links across papers. In both fine-tuning and in-context learning settings, we achieve large gains in performance on data subsets with high amount of different surfaces forms and ambiguity, that are challenging for models. We provide analysis of generated definitions, shedding light on the relational reasoning ability of LLMs over fine-grained scientific concepts.
comment: Accepted to TACL. Pre-MIT Press publication version
♻ ☆ SERA: Soft-Verified Efficient Repository Agents
Open-weight coding agents should hold a fundamental advantage over closed-source systems: they can be specialized to private codebases, encoding repository-specific information directly in their weights. Yet the cost and complexity of training has kept this advantage theoretical. We show it is now practical. We present Soft-Verified Efficient Repository Agents (SERA), an efficient method for training coding agents that enables the rapid and cheap creation of agents specialized to private codebases. Using only supervised finetuning (SFT), SERA achieves state-of-the-art results among fully open-source (open data, method, code) models while matching the performance of frontier open-weight models like Devstral-Small-2. Creating SERA models is 26x cheaper than reinforcement learning and 57x cheaper than previous synthetic data methods to reach equivalent performance. Our method, Soft Verified Generation (SVG), generates thousands of trajectories from a single code repository. Combined with cost-efficiency, this enables specialization to private codebases. Beyond repository specialization, we apply SVG to a larger corpus of codebases, generating over 200,000 synthetic trajectories. We use this dataset to provide detailed analysis of scaling laws, ablations, and confounding factors for training coding agents. Overall, we believe our work will greatly accelerate research on open coding agents and showcase the advantage of open-source models that can specialize to private codebases. We release SERA as the first model in Ai2's Open Coding Agents series, along with all our code, data, and Claude Code integration to support the research community.
comment: 21 main pages, 6 pages appendix
♻ ☆ Proactive defense against LLM Jailbreak
The proliferation of powerful large language models (LLMs) has necessitated robust safety alignment, yet these models remain vulnerable to evolving adversarial attacks, including multi-turn jailbreaks that iteratively search for successful queries. Current defenses, which are primarily reactive and static, often fail to handle these iterative attacks. In this paper, we introduce ProAct, a novel proactive defense framework designed to disrupt and mislead these iterative search jailbreak methods. Our core idea is to intentionally mislead these jailbreak methods into thinking that the model has been jailbroken with "spurious responses". These misleading responses provide false signals to the attacker's internal optimization loop, causing the adversarial search to terminate prematurely and effectively jailbreaking the jailbreak. By conducting extensive experiments across state-of-the-art LLMs, jailbreaking frameworks, and safety benchmarks, we demonstrate that our method consistently and significantly reduces attack success rates by up to 94% without affecting utility. When combined with other defense fraeworks, it further reduces the latest attack strategies' success rate to 0%. ProActrepresents an orthogonal defense strategy that serves as an additional guardrail to enhance LLM safety against the most effective jailbreaking attacks.
Machine Learning 301
☆ Reward-free Alignment for Conflicting Objectives
Direct alignment methods are increasingly used to align large language models (LLMs) with human preferences. However, many real-world alignment problems involve multiple conflicting objectives, where naive aggregation of preferences can lead to unstable training and poor trade-offs. In particular, weighted loss methods may fail to identify update directions that simultaneously improve all objectives, and existing multi-objective approaches often rely on explicit reward models, introducing additional complexity and distorting user-specified preferences. The contributions of this paper are two-fold. First, we propose a Reward-free Alignment framework for Conflicted Objectives (RACO) that directly leverages pairwise preference data and resolves gradient conflicts via a novel clipped variant of conflict-averse gradient descent. We provide convergence guarantees to Pareto-critical points that respect user-specified objective weights, and further show that clipping can strictly improve convergence rate in the two-objective setting. Second, we improve our method using some heuristics and conduct experiments to demonstrate the compatibility of the proposed framework for LLM alignment. Both qualitative and quantitative evaluations on multi-objective summarization and safety alignment tasks across multiple LLM families (Qwen 3, Llama 3, Gemma 3) show that our method consistently achieves better Pareto trade-offs compared to existing multi-objective alignment baselines.
comment: 27 pages
☆ MEG-XL: Data-Efficient Brain-to-Text via Long-Context Pre-Training
Clinical brain-to-text interfaces are designed for paralysed patients who cannot provide extensive training recordings. Pre-training improves data-efficient generalisation by learning statistical priors across subjects, but these priors critically depend on context. While natural speech might unfold gradually over minutes, most methods pre-train with only a few seconds of context. Thus, we propose MEG-XL, a model pre-trained with 2.5 minutes of MEG context per sample, 5-300x longer than prior work, and equivalent to 191k tokens, capturing extended neural context. Fine-tuning on the task of word decoding from brain data, MEG-XL matches supervised performance with a fraction of the data (e.g. 1hr vs 50hrs) and outperforms brain foundation models. We find that models pre-trained with longer contexts learn representations that transfer better to word decoding. Our results indicate that long-context pre-training helps exploit extended neural context that other methods unnecessarily discard. Code, model weights, and instructions are available at https://github.com/neural-processing-lab/MEG-XL .
comment: 19 pages, 8 figures, 5 tables
☆ RLAnything: Forge Environment, Policy, and Reward Model in Completely Dynamic RL System
We propose RLAnything, a reinforcement learning framework that dynamically forges environment, policy, and reward models through closed-loop optimization, amplifying learning signals and strengthening the overall RL system for any LLM or agentic scenarios. Specifically, the policy is trained with integrated feedback from step-wise and outcome signals, while the reward model is jointly optimized via consistency feedback, which in turn further improves policy training. Moreover, our theory-motivated automatic environment adaptation improves training for both the reward and policy models by leveraging critic feedback from each, enabling learning from experience. Empirically, each added component consistently improves the overall system, and RLAnything yields substantial gains across various representative LLM and agentic tasks, boosting Qwen3-VL-8B-Thinking by 9.1% on OSWorld and Qwen2.5-7B-Instruct by 18.7% and 11.9% on AlfWorld and LiveBench, respectively. We also that optimized reward-model signals outperform outcomes that rely on human labels. Code: https://github.com/Gen-Verse/Open-AgentRL
comment: Code: https://github.com/Gen-Verse/Open-AgentRL
☆ Expanding the Capabilities of Reinforcement Learning via Text Feedback
The success of RL for LLM post-training stems from an unreasonably uninformative source: a single bit of information per rollout as binary reward or preference label. At the other extreme, distillation offers dense supervision but requires demonstrations, which are costly and difficult to scale. We study text feedback as an intermediate signal: richer than scalar rewards, yet cheaper than complete demonstrations. Textual feedback is a natural mode of human interaction and is already abundant in many real-world settings, where users, annotators, and automated judges routinely critique LLM outputs. Towards leveraging text feedback at scale, we formalize a multi-turn RL setup, RL from Text Feedback (RLTF), where text feedback is available during training but not at inference. Therefore, models must learn to internalize the feedback in order to improve their test-time single-turn performance. To do this, we propose two methods: Self Distillation (RLTF-SD), which trains the single-turn policy to match its own feedback-conditioned second-turn generations; and Feedback Modeling (RLTF-FM), which predicts the feedback as an auxiliary objective. We provide theoretical analysis on both methods, and empirically evaluate on reasoning puzzles, competition math, and creative writing tasks. Our results show that both methods consistently outperform strong baselines across benchmarks, highlighting the potential of RL with an additional source of rich supervision at scale.
comment: 43 pages, 6 figures
☆ MemSkill: Learning and Evolving Memory Skills for Self-Evolving Agents
Most Large Language Model (LLM) agent memory systems rely on a small set of static, hand-designed operations for extracting memory. These fixed procedures hard-code human priors about what to store and how to revise memory, making them rigid under diverse interaction patterns and inefficient on long histories. To this end, we present \textbf{MemSkill}, which reframes these operations as learnable and evolvable memory skills, structured and reusable routines for extracting, consolidating, and pruning information from interaction traces. Inspired by the design philosophy of agent skills, MemSkill employs a \emph{controller} that learns to select a small set of relevant skills, paired with an LLM-based \emph{executor} that produces skill-guided memories. Beyond learning skill selection, MemSkill introduces a \emph{designer} that periodically reviews hard cases where selected skills yield incorrect or incomplete memories, and evolves the skill set by proposing refinements and new skills. Together, MemSkill forms a closed-loop procedure that improves both the skill-selection policy and the skill set itself. Experiments on LoCoMo, LongMemEval, HotpotQA, and ALFWorld demonstrate that MemSkill improves task performance over strong baselines and generalizes well across settings. Further analyses shed light on how skills evolve, offering insights toward more adaptive, self-evolving memory management for LLM agents.
comment: Code is available at https://github.com/ViktorAxelsen/MemSkill
☆ HumanX: Toward Agile and Generalizable Humanoid Interaction Skills from Human Videos
Enabling humanoid robots to perform agile and adaptive interactive tasks has long been a core challenge in robotics. Current approaches are bottlenecked by either the scarcity of realistic interaction data or the need for meticulous, task-specific reward engineering, which limits their scalability. To narrow this gap, we present HumanX, a full-stack framework that compiles human video into generalizable, real-world interaction skills for humanoids, without task-specific rewards. HumanX integrates two co-designed components: XGen, a data generation pipeline that synthesizes diverse and physically plausible robot interaction data from video while supporting scalable data augmentation; and XMimic, a unified imitation learning framework that learns generalizable interaction skills. Evaluated across five distinct domains--basketball, football, badminton, cargo pickup, and reactive fighting--HumanX successfully acquires 10 different skills and transfers them zero-shot to a physical Unitree G1 humanoid. The learned capabilities include complex maneuvers such as pump-fake turnaround fadeaway jumpshots without any external perception, as well as interactive tasks like sustained human-robot passing sequences over 10 consecutive cycles--learned from a single video demonstration. Our experiments show that HumanX achieves over 8 times higher generalization success than prior methods, demonstrating a scalable and task-agnostic pathway for learning versatile, real-world robot interactive skills.
☆ SPARKLING: Balancing Signal Preservation and Symmetry Breaking for Width-Progressive Learning
Progressive Learning (PL) reduces pre-training computational overhead by gradually increasing model scale. While prior work has extensively explored depth expansion, width expansion remains significantly understudied, with the few existing methods limited to the early stages of training. However, expanding width during the mid-stage is essential for maximizing computational savings, yet it remains a formidable challenge due to severe training instabilities. Empirically, we show that naive initialization at this stage disrupts activation statistics, triggering loss spikes, while copy-based initialization introduces gradient symmetry that hinders feature diversity. To address these issues, we propose SPARKLING (balancing {S}ignal {P}reservation {A}nd symmet{R}y brea{K}ing for width-progressive {L}earn{ING}), a novel framework for mid-stage width expansion. Our method achieves signal preservation via RMS-scale consistency, stabilizing activation statistics during expansion. Symmetry breaking is ensured through asymmetric optimizer state resetting and learning rate re-warmup. Extensive experiments on Mixture-of-Experts (MoE) models demonstrate that, across multiple width axes and optimizer families, SPARKLING consistently outperforms training from scratch and reduces training cost by up to 35% under $2\times$ width expansion.
☆ Age-Aware Edge-Blind Federated Learning via Over-the-Air Aggregation IEEE
We study federated learning (FL) over wireless fading channels where multiple devices simultaneously send their model updates. We propose an efficient \emph{age-aware edge-blind over-the-air FL} approach that does not require channel state information (CSI) at the devices. Instead, the parameter server (PS) uses multiple antennas and applies maximum-ratio combining (MRC) based on its estimated sum of the channel gains to detect the parameter updates. A key challenge is that the number of orthogonal subcarriers is limited; thus, transmitting many parameters requires multiple Orthogonal Frequency Division Multiplexing (OFDM) symbols, which increases latency. To address this, the PS selects only a small subset of model coordinates each round using \emph{AgeTop-\(k\)}, which first picks the largest-magnitude entries and then chooses the \(k\) coordinates with the longest waiting times since they were last selected. This ensures that all selected parameters fit into a single OFDM symbol, reducing latency. We provide a convergence bound that highlights the advantages of using a higher number of antenna array elements and demonstrates a key trade-off: increasing \(k\) decreases compression error at the cost of increasing the effect of channel noise. Experimental results show that (i) more PS antennas greatly improve accuracy and convergence speed; (ii) AgeTop-\(k\) outperforms random selection under relatively good channel conditions; and (iii) the optimum \(k\) depends on the channel, with smaller \(k\) being better in noisy settings.
comment: To appear in IEEE ICC 2026
☆ MentisOculi: Revealing the Limits of Reasoning with Mental Imagery
Frontier models are transitioning from multimodal large language models (MLLMs) that merely ingest visual information to unified multimodal models (UMMs) capable of native interleaved generation. This shift has sparked interest in using intermediate visualizations as a reasoning aid, akin to human mental imagery. Central to this idea is the ability to form, maintain, and manipulate visual representations in a goal-oriented manner. To evaluate and probe this capability, we develop MentisOculi, a procedural, stratified suite of multi-step reasoning problems amenable to visual solution, tuned to challenge frontier models. Evaluating visual strategies ranging from latent tokens to explicit generated imagery, we find they generally fail to improve performance. Analysis of UMMs specifically exposes a critical limitation: While they possess the textual reasoning capacity to solve a task and can sometimes generate correct visuals, they suffer from compounding generation errors and fail to leverage even ground-truth visualizations. Our findings suggest that despite their inherent appeal, visual thoughts do not yet benefit model reasoning. MentisOculi establishes the necessary foundation to analyze and close this gap across diverse model families.
comment: 9 pages, 8 figures
☆ Conflict-Aware Client Selection for Multi-Server Federated Learning
Federated learning (FL) has emerged as a promising distributed machine learning (ML) that enables collaborative model training across clients without exposing raw data, thereby preserving user privacy and reducing communication costs. Despite these benefits, traditional single-server FL suffers from high communication latency due to the aggregation of models from a large number of clients. While multi-server FL distributes workloads across edge servers, overlapping client coverage and uncoordinated selection often lead to resource contention, causing bandwidth conflicts and training failures. To address these limitations, we propose a decentralized reinforcement learning with conflict risk prediction, named RL CRP, to optimize client selection in multi-server FL systems. Specifically, each server estimates the likelihood of client selection conflicts using a categorical hidden Markov model based on its sparse historical client selection sequence. Then, a fairness-aware reward mechanism is incorporated to promote long-term client participation for minimizing training latency and resource contention. Extensive experiments demonstrate that the proposed RL-CRP framework effectively reduces inter-server conflicts and significantly improves training efficiency in terms of convergence speed and communication cost.
comment: 6 pages, 4 figures
☆ Active Causal Experimentalist (ACE): Learning Intervention Strategies via Direct Preference Optimization
Discovering causal relationships requires controlled experiments, but experimentalists face a sequential decision problem: each intervention reveals information that should inform what to try next. Traditional approaches such as random sampling, greedy information maximization, and round-robin coverage treat each decision in isolation, unable to learn adaptive strategies from experience. We propose Active Causal Experimentalist (ACE), which learns experimental design as a sequential policy. Our key insight is that while absolute information gains diminish as knowledge accumulates (making value-based RL unstable), relative comparisons between candidate interventions remain meaningful throughout. ACE exploits this via Direct Preference Optimization, learning from pairwise intervention comparisons rather than non-stationary reward magnitudes. Across synthetic benchmarks, physics simulations, and economic data, ACE achieves 70-71% improvement over baselines at equal intervention budgets (p < 0.001, Cohen's d ~ 2). Notably, the learned policy autonomously discovers that collider mechanisms require concentrated interventions on parent variables, a theoretically-grounded strategy that emerges purely from experience. This suggests preference-based learning can recover principled experimental strategies, complementing theory with learned domain adaptation.
comment: 9 pages, 5 figures
☆ Finite-Sample Wasserstein Error Bounds and Concentration Inequalities for Nonlinear Stochastic Approximation
This paper derives non-asymptotic error bounds for nonlinear stochastic approximation algorithms in the Wasserstein-$p$ distance. To obtain explicit finite-sample guarantees for the last iterate, we develop a coupling argument that compares the discrete-time process to a limiting Ornstein-Uhlenbeck process. Our analysis applies to algorithms driven by general noise conditions, including martingale differences and functions of ergodic Markov chains. Complementing this result, we handle the convergence rate of the Polyak-Ruppert average through a direct analysis that applies under the same general setting. Assuming the driving noise satisfies a non-asymptotic central limit theorem, we show that the normalized last iterates converge to a Gaussian distribution in the $p$-Wasserstein distance at a rate of order $γ_n^{1/6}$, where $γ_n$ is the step size. Similarly, the Polyak-Ruppert average is shown to converge in the Wasserstein distance at a rate of order $n^{-1/6}$. These distributional guarantees imply high-probability concentration inequalities that improve upon those derived from moment bounds and Markov's inequality. We demonstrate the utility of this approach by considering two applications: (1) linear stochastic approximation, where we explicitly quantify the transition from heavy-tailed to Gaussian behavior of the iterates, thereby bridging the gap between recent finite-sample analyses and asymptotic theory and (2) stochastic gradient descent, where we establish rate of convergence to the central limit theorem.
☆ Certain Head, Uncertain Tail: Expert-Sample for Test-Time Scaling in Fine-Grained MoE
Test-time scaling improves LLM performance by generating multiple candidate solutions, yet token-level sampling requires temperature tuning that trades off diversity against stability. Fine-grained MoE, featuring hundreds of well-trained experts per layer and multi-expert activation per token, offers an unexplored alternative through its rich routing space. We empirically characterize fine-grained MoE routing and uncover an informative pattern: router scores exhibit a certain head of high-confidence experts followed by an uncertain tail of low-confidence candidates. While single-run greedy accuracy remains stable when fewer experts are activated, multi-sample pass@n degrades significantly-suggesting that the certain head governs core reasoning capability while the uncertain tail correlates with reasoning diversity. Motivated by these findings, we propose Expert-Sample, a training-free method that preserves high-confidence selections while injecting controlled stochasticity into the uncertain tail, enabling diverse generation without destabilizing outputs. Evaluated on multiple fine-grained MoE models across math, knowledge reasoning, and code tasks, Expert-Sample consistently improves pass@n and verification-based accuracy. On Qwen3-30B-A3B-Instruct evaluated on GPQA-Diamond with 32 parallel samples, pass@32 rises from 85.4% to 91.9%, and accuracy improves from 59.1% to 62.6% with Best-of-N verification.
comment: 24 pages, 13 figures
☆ Energy-Efficient Neuromorphic Computing for Edge AI: A Framework with Adaptive Spiking Neural Networks and Hardware-Aware Optimization IEEE
Edge AI applications increasingly require ultra-low-power, low-latency inference. Neuromorphic computing based on event-driven spiking neural networks (SNNs) offers an attractive path, but practical deployment on resource-constrained devices is limited by training difficulty, hardware-mapping overheads, and sensitivity to temporal dynamics. We present NeuEdge, a framework that combines adaptive SNN models with hardware-aware optimization for edge deployment. NeuEdge uses a temporal coding scheme that blends rate and spike-timing patterns to reduce spike activity while preserving accuracy, and a hardware-aware training procedure that co-optimizes network structure and on-chip placement to improve utilization on neuromorphic processors. An adaptive threshold mechanism adjusts neuron excitability from input statistics, reducing energy consumption without degrading performance. Across standard vision and audio benchmarks, NeuEdge achieves 91-96% accuracy with up to 2.3 ms inference latency on edge hardware and an estimated 847 GOp/s/W energy efficiency. A case study on an autonomous-drone workload shows up to 312x energy savings relative to conventional deep neural networks while maintaining real-time operation.
comment: 8 pages, 4 figures, 4 tables. Submitted to IEEE Transactions on Neural Networks and Learning Systems (TNNLS)
☆ Maximizing Reliability with Bayesian Optimization
Bayesian optimization (BO) is a popular, sample-efficient technique for expensive, black-box optimization. One such problem arising in manufacturing is that of maximizing the reliability, or equivalently minimizing the probability of a failure, of a design which is subject to random perturbations - a problem that can involve extremely rare failures ($P_\mathrm{fail} = 10^{-6}-10^{-8}$). In this work, we propose two BO methods based on Thompson sampling and knowledge gradient, the latter approximating the one-step Bayes-optimal policy for minimizing the logarithm of the failure probability. Both methods incorporate importance sampling to target extremely small failure probabilities. Empirical results show the proposed methods outperform existing methods in both extreme and non-extreme regimes.
comment: 25 pages, 9 figures
☆ Full-Batch Gradient Descent Outperforms One-Pass SGD: Sample Complexity Separation in Single-Index Learning
It is folklore that reusing training data more than once can improve the statistical efficiency of gradient-based learning. However, beyond linear regression, the theoretical advantage of full-batch gradient descent (GD, which always reuses all the data) over one-pass stochastic gradient descent (online SGD, which uses each data point only once) remains unclear. In this work, we consider learning a $d$-dimensional single-index model with a quadratic activation, for which it is known that one-pass SGD requires $n\gtrsim d\log d$ samples to achieve weak recovery. We first show that this $\log d$ factor in the sample complexity persists for full-batch spherical GD on the correlation loss; however, by simply truncating the activation, full-batch GD exhibits a favorable optimization landscape at $n \simeq d$ samples, thereby outperforming one-pass SGD (with the same activation) in statistical efficiency. We complement this result with a trajectory analysis of full-batch GD on the squared loss from small initialization, showing that $n \gtrsim d$ samples and $T \gtrsim\log d$ gradient steps suffice to achieve strong (exact) recovery.
☆ Embedding Perturbation may Better Reflect the Uncertainty in LLM Reasoning
Large language Models (LLMs) have achieved significant breakthroughs across diverse domains; however, they can still produce unreliable or misleading outputs. For responsible LLM application, Uncertainty Quantification (UQ) techniques are used to estimate a model's uncertainty about its outputs, indicating the likelihood that those outputs may be problematic. For LLM reasoning tasks, it is essential to estimate the uncertainty not only for the final answer, but also for the intermediate steps of the reasoning, as this can enable more fine-grained and targeted interventions. In this study, we explore what UQ metrics better reflect the LLM's ``intermediate uncertainty''during reasoning. Our study reveals that an LLMs' incorrect reasoning steps tend to contain tokens which are highly sensitive to the perturbations on the preceding token embeddings. In this way, incorrect (uncertain) intermediate steps can be readily identified using this sensitivity score as guidance in practice. In our experiments, we show such perturbation-based metric achieves stronger uncertainty quantification performance compared with baseline methods such as token (generation) probability and token entropy. Besides, different from approaches that rely on multiple sampling, the perturbation-based metrics offer better simplicity and efficiency.
☆ Repurposing Protein Language Models for Latent Flow-Based Fitness Optimization
Protein fitness optimization is challenged by a vast combinatorial landscape where high-fitness variants are extremely sparse. Many current methods either underperform or require computationally expensive gradient-based sampling. We present CHASE, a framework that repurposes the evolutionary knowledge of pretrained protein language models by compressing their embeddings into a compact latent space. By training a conditional flow-matching model with classifier-free guidance, we enable the direct generation of high-fitness variants without predictor-based guidance during the ODE sampling steps. CHASE achieves state-of-the-art performance on AAV and GFP protein design benchmarks. Finally, we show that bootstrapping with synthetic data can further enhance performance in data-constrained settings.
☆ Poly-attention: a general scheme for higher-order self-attention
The self-attention mechanism, at the heart of the Transformer model, is able to effectively model pairwise interactions between tokens. However, numerous recent works have shown that it is unable to perform basic tasks involving detecting triples of correlated tokens, or compositional tasks where multiple input tokens need to be referenced to generate a result. Some higher-dimensional alternatives to self-attention have been proposed to address this, including higher-order attention and Strassen attention, which can perform some of these polyadic tasks in exchange for slower, superquadratic running times. In this work, we define a vast class of generalizations of self-attention, which we call poly-attention mechanisms. Our mechanisms can incorporate arbitrary higher-order (tensor) computations as well as arbitrary relationship structures between the input tokens, and they include the aforementioned alternatives as special cases. We then systematically study their computational complexity and representational strength, including giving new algorithms and matching complexity-theoretic lower bounds on the time complexity of computing the attention matrix exactly as well as approximately, and tightly determining which polyadic tasks they can each perform. Our results give interesting trade-offs between different desiderata for these mechanisms, including a tight relationship between how expressive a mechanism is, and how large the coefficients in the model may be so that the mechanism can be approximated in almost-linear time. Notably, we give a new attention mechanism which can be computed exactly in quadratic time, and which can perform function composition for any fixed number of functions. Prior mechanisms, even for just composing two functions, could only be computed in superquadratic time, and our new lower bounds show that faster algorithms for them are not possible.
☆ Trust Region Continual Learning as an Implicit Meta-Learner
Continual learning aims to acquire tasks sequentially without catastrophic forgetting, yet standard strategies face a core tradeoff: regularization-based methods (e.g., EWC) can overconstrain updates when task optima are weakly overlapping, while replay-based methods can retain performance but drift due to imperfect replay. We study a hybrid perspective: \emph{trust region continual learning} that combines generative replay with a Fisher-metric trust region constraint. We show that, under local approximations, the resulting update admits a MAML-style interpretation with a single implicit inner step: replay supplies an old-task gradient signal (query-like), while the Fisher-weighted penalty provides an efficient offline curvature shaping (support-like). This yields an emergent meta-learning property in continual learning: the model becomes an initialization that rapidly \emph{re-converges} to prior task optima after each task transition, without explicitly optimizing a bilevel objective. Empirically, on task-incremental diffusion image generation and continual diffusion-policy control, trust region continual learning achieves the best final performance and retention, and consistently recovers early-task performance faster than EWC, replay, and continual meta-learning baselines.
comment: 19 pages, 23 tables
☆ Active Transfer Bagging: A New Approach for Accelerated Active Learning Acquisition of Data by Combined Transfer Learning and Bagging Based Models
Modern machine learning has achieved remarkable success on many problems, but this success often depends on the existence of large, labeled datasets. While active learning can dramatically reduce labeling cost when annotations are expensive, early performance is frequently dominated by the initial seed set, typically chosen at random. In many applications, however, related or approximate datasets are readily available and can be leveraged to construct a better seed set. We introduce a new method for selecting the seed data set for active learning, Active-Transfer Bagging (ATBagging). ATBagging estimates the informativeness of candidate data point from a Bayesian interpretation of bagged ensemble models by comparing in-bag and out-of-bag predictive distributions from the labeled dataset, yielding an information-gain proxy. To avoid redundant selections, we impose feature-space diversity by sampling a determinantal point process (DPP) whose kernel uses Random Fourier Features and a quality-diversity factorization that incorporates the informativeness scores. This same blended method is used for selection of new data points to collect during the active learning phase. We evaluate ATBagging on four real-world datasets covering both target-transfer and feature-shift scenarios (QM9, ERA5, Forbes 2000, and Beijing PM2.5). Across seed sizes nseed = 10-100, ATBagging improves or ties early active learning and increases area under the learning-curve relative to alternative seed subset selection methodologies in almost all cases, with strongest benefits in low-data regimes. Thus, ATBagging provides a low-cost, high reward means to initiating active learning-based data collection.
☆ Misconception Diagnosis From Student-Tutor Dialogue: Generate, Retrieve, Rerank
Timely and accurate identification of student misconceptions is key to improving learning outcomes and pre-empting the compounding of student errors. However, this task is highly dependent on the effort and intuition of the teacher. In this work, we present a novel approach for detecting misconceptions from student-tutor dialogues using large language models (LLMs). First, we use a fine-tuned LLM to generate plausible misconceptions, and then retrieve the most promising candidates among these using embedding similarity with the input dialogue. These candidates are then assessed and re-ranked by another fine-tuned LLM to improve misconception relevance. Empirically, we evaluate our system on real dialogues from an educational tutoring platform. We consider multiple base LLM models including LLaMA, Qwen and Claude on zero-shot and fine-tuned settings. We find that our approach improves predictive performance over baseline models and that fine-tuning improves both generated misconception quality and can outperform larger closed-source models. Finally, we conduct ablation studies to both validate the importance of our generation and reranking steps on misconception generation quality.
comment: 21 pages, 8 figures, 8 tables. Joshua Mitton and Prarthana Bhattacharyya contributed equally to this paper
☆ Masked Autoencoders as Universal Speech Enhancer
Supervised speech enhancement methods have been very successful. However, in practical scenarios, there is a lack of clean speech, and self-supervised learning-based (SSL) speech enhancement methods that offer comparable enhancement performance and can be applied to other speech-related downstream applications are desired. In this work, we develop a masked autoencoder based universal speech enhancer that is agnostic to the type of distortion affecting speech, can handle multiple distortions simultaneously, and is trained in a self-supervised manner. An augmentation stack adds further distortions to the noisy input data. The masked autoencoder model learns to remove the added distortions along with reconstructing the masked regions of the spectrogram during pre-training. The pre-trained embeddings are then used by fine-tuning models trained on a small amount of paired data for specific downstream tasks. We evaluate the pre-trained features for denoising and dereverberation downstream tasks. We explore different augmentations (like single or multi-speaker) in the pre-training augmentation stack and the effect of different noisy input feature representations (like $log1p$ compression) on pre-trained embeddings and downstream fine-tuning enhancement performance. We show that the proposed method not only outperforms the baseline but also achieves state-of-the-art performance for both in-domain and out-of-domain evaluation datasets.
☆ Provably Data-driven Multiple Hyper-parameter Tuning with Structured Loss Function
Data-driven algorithm design automates hyperparameter tuning, but its statistical foundations remain limited because model performance can depend on hyperparameters in implicit and highly non-smooth ways. Existing guarantees focus on the simple case of a one-dimensional (scalar) hyperparameter. This leaves the practically important, multi-dimensional hyperparameter tuning setting unresolved. We address this open question by establishing the first general framework for establishing generalization guarantees for tuning multi-dimensional hyperparameters in data-driven settings. Our approach strengthens the generalization guarantee framework for semi-algebraic function classes by exploiting tools from real algebraic geometry, yielding sharper, more broadly applicable guarantees. We then extend the analysis to hyperparameter tuning using the validation loss under minimal assumptions, and derive improved bounds when additional structure is available. Finally, we demonstrate the scope of the framework with new learnability results, including data-driven weighted group lasso and weighted fused lasso.
☆ Didactic to Constructive: Turning Expert Solutions into Learnable Reasoning
Improving the reasoning capabilities of large language models (LLMs) typically relies either on the model's ability to sample a correct solution to be reinforced or on the existence of a stronger model able to solve the problem. However, many difficult problems remain intractable for even current frontier models, preventing the extraction of valid training signals. A promising alternative is to leverage high-quality expert human solutions, yet naive imitation of this data fails because it is fundamentally out of distribution: expert solutions are typically didactic, containing implicit reasoning gaps intended for human readers rather than computational models. Furthermore, high-quality expert solutions are expensive, necessitating generalizable sample-efficient training methods. We propose Distribution Aligned Imitation Learning (DAIL), a two-step method that bridges the distributional gap by first transforming expert solutions into detailed, in-distribution reasoning traces and then applying a contrastive objective to focus learning on expert insights and methodologies. We find that DAIL can leverage fewer than 1000 high-quality expert solutions to achieve 10-25% pass@k gains on Qwen2.5-Instruct and Qwen3 models, improve reasoning efficiency by 2x to 4x, and enable out-of-domain generalization.
☆ An Empirical Study on Noisy Data and LLM Pretraining Loss Divergence
Large-scale pretraining datasets drive the success of large language models (LLMs). However, these web-scale corpora inevitably contain large amounts of noisy data due to unregulated web content or randomness inherent in data. Although LLM pretrainers often speculate that such noise contributes to instabilities in large-scale LLM pretraining and, in the worst cases, loss divergence, this phenomenon remains poorly understood.In this work, we present a systematic empirical study of whether noisy data causes LLM pretraining divergences and how it does so. By injecting controlled synthetic uniformly random noise into otherwise clean datasets, we analyze training dynamics across model sizes ranging from 480M to 5.2B parameters. We show that noisy data indeed induces training loss divergence, and that the probability of divergence depends strongly on the noise type, amount of noise, and model scale. We further find that noise-induced divergences exhibit activation patterns distinct from those caused by high learning rates, and we provide diagnostics that differentiate these two failure modes. Together, these results provide a large-scale, controlled characterization of how noisy data affects loss divergence in LLM pretraining.
☆ PRISM: Performer RS-IMLE for Single-pass Multisensory Imitation Learning
Robotic imitation learning typically requires models that capture multimodal action distributions while operating at real-time control rates and accommodating multiple sensing modalities. Although recent generative approaches such as diffusion models, flow matching, and Implicit Maximum Likelihood Estimation (IMLE) have achieved promising results, they often satisfy only a subset of these requirements. To address this, we introduce PRISM, a single-pass policy based on a batch-global rejection-sampling variant of IMLE. PRISM couples a temporal multisensory encoder (integrating RGB, depth, tactile, audio, and proprioception) with a linear-attention generator using a Performer architecture. We demonstrate the efficacy of PRISM on a diverse real-world hardware suite, including loco-manipulation using a Unitree Go2 with a 7-DoF arm D1 and tabletop manipulation with a UR5 manipulator. Across challenging physical tasks such as pre-manipulation parking, high-precision insertion, and multi-object pick-and-place, PRISM outperforms state-of-the-art diffusion policies by 10-25% in success rate while maintaining high-frequency (30-50 Hz) closed-loop control. We further validate our approach on large-scale simulation benchmarks, including CALVIN, MetaWorld, and Robomimic. In CALVIN (10% data split), PRISM improves success rates by approximately 25% over diffusion and approximately 20% over flow matching, while simultaneously reducing trajectory jerk by 20x-50x. These results position PRISM as a fast, accurate, and multisensory imitation policy that retains multimodal action coverage without the latency of iterative sampling.
comment: 10 pages main text and 4 figures, and 11 pages appendix and 10 figures, total 21 pages and 14 figures
☆ David vs. Goliath: Verifiable Agent-to-Agent Jailbreaking via Reinforcement Learning
The evolution of large language models into autonomous agents introduces adversarial failures that exploit legitimate tool privileges, transforming safety evaluation in tool-augmented environments from a subjective NLP task into an objective control problem. We formalize this threat model as Tag-Along Attacks: a scenario where a tool-less adversary "tags along" on the trusted privileges of a safety-aligned Operator to induce prohibited tool use through conversation alone. To validate this threat, we present Slingshot, a 'cold-start' reinforcement learning framework that autonomously discovers emergent attack vectors, revealing a critical insight: in our setting, learned attacks tend to converge to short, instruction-like syntactic patterns rather than multi-turn persuasion. On held-out extreme-difficulty tasks, Slingshot achieves a 67.0% success rate against a Qwen2.5-32B-Instruct-AWQ Operator (vs. 1.7% baseline), reducing the expected attempts to first success (on solved tasks) from 52.3 to 1.3. Crucially, Slingshot transfers zero-shot to several model families, including closed-source models like Gemini 2.5 Flash (56.0% attack success rate) and defensive-fine-tuned open-source models like Meta-SecAlign-8B (39.2% attack success rate). Our work establishes Tag-Along Attacks as a first-class, verifiable threat model and shows that effective agentic attacks can be elicited from off-the-shelf open-weight models through environment interaction alone.
comment: Under review. 8 main pages, 2 figures, 2 tables. Appendix included
☆ Personalized Image Generation via Human-in-the-loop Bayesian Optimization
Imagine Alice has a specific image $x^\ast$ in her mind, say, the view of the street in which she grew up during her childhood. To generate that exact image, she guides a generative model with multiple rounds of prompting and arrives at an image $x^{p*}$. Although $x^{p*}$ is reasonably close to $x^\ast$, Alice finds it difficult to close that gap using language prompts. This paper aims to narrow this gap by observing that even after language has reached its limits, humans can still tell when a new image $x^+$ is closer to $x^\ast$ than $x^{p*}$. Leveraging this observation, we develop MultiBO (Multi-Choice Preferential Bayesian Optimization) that carefully generates $K$ new images as a function of $x^{p*}$, gets preferential feedback from the user, uses the feedback to guide the diffusion model, and ultimately generates a new set of $K$ images. We show that within $B$ rounds of user feedback, it is possible to arrive much closer to $x^\ast$, even though the generative model has no information about $x^\ast$. Qualitative scores from $30$ users, combined with quantitative metrics compared across $5$ baselines, show promising results, suggesting that multi-choice feedback from humans can be effectively harnessed for personalized image generation.
☆ Trust by Design: Skill Profiles for Transparent, Cost-Aware LLM Routing
How should Large Language Model (LLM) practitioners select the right model for a task without wasting money? We introduce BELLA (Budget-Efficient LLM Selection via Automated skill-profiling), a framework that recommends optimal LLM selection for tasks through interpretable skill-based model selection. Standard benchmarks report aggregate metrics that obscure which specific capabilities a task requires and whether a cheaper model could suffice. BELLA addresses this gap through three stages: (1) decomposing LLM outputs and extract the granular skills required by using critic-based profiling, (2) clustering skills into structured capability matrices, and (3) multi-objective optimization to select the right models to maximize performance while respecting budget constraints. BELLA provides natural-language rationale for recommendations, providing transparency that current black-box routing systems lack. We describe the framework architecture, situate it within the landscape of LLM routing and evaluation, and discuss its application to financial reasoning as a representative domain exhibiting diverse skill requirements and cost-variation across models. Our framework enables practitioners to make principled and cost-performance trade-offs for deploying LLMs.
comment: Appeared at MLSys YPS 2025
Transformers learn factored representations
Transformers pretrained via next token prediction learn to factor their world into parts, representing these factors in orthogonal subspaces of the residual stream. We formalize two representational hypotheses: (1) a representation in the product space of all factors, whose dimension grows exponentially with the number of parts, or (2) a factored representation in orthogonal subspaces, whose dimension grows linearly. The factored representation is lossless when factors are conditionally independent, but sacrifices predictive fidelity otherwise, creating a tradeoff between dimensional efficiency and accuracy. We derive precise predictions about the geometric structure of activations for each, including the number of subspaces, their dimensionality, and the arrangement of context embeddings within them. We test between these hypotheses on transformers trained on synthetic processes with known latent structure. Models learn factored representations when factors are conditionally independent, and continue to favor them early in training even when noise or hidden dependencies undermine conditional independence, reflecting an inductive bias toward factoring at the cost of fidelity. This provides a principled explanation for why transformers decompose the world into parts, and suggests that interpretable low dimensional structure may persist even in models trained on complex data.
☆ SLIME: Stabilized Likelihood Implicit Margin Enforcement for Preference Optimization
Direct preference optimization methods have emerged as a computationally efficient alternative to Reinforcement Learning from Human Feedback (RLHF) for aligning Large Language Models (LLMs). Latest approaches have streamlined the alignment process by deriving implicit reward functions, yet they often suffer from a critical objective mismatch: optimizing the relative margin between chosen and rejected responses does not guarantee the preservation of the chosen response's absolute likelihood. This can lead to ``unlearning'', where the model degrades the probability of high-quality outputs to satisfy margin constraints, and ``formatting collapse'' caused by the over-penalization of rejected sequences. In this work, we introduce SLIME (Stabilized Likelihood Implicit Margin Enforcement), a reference-free alignment objective designed to decouple preference learning from generation quality. SLIME incorporates a three-pronged objective: (1) an anchoring term to maximize the likelihood of preferred responses; (2) a stabilizing penalty that prevents the probabilities of rejected tokens from collapsing to zero; and (3) a dual-margin mechanism that combines hard and soft constraints for precise boundary shaping. Our results demonstrate that SLIME achieves superior performance compared to state-of-the-art baselines while maintaining higher generation stability.
Self-Supervised Learning from Structural Invariance ICLR 2026
Joint-embedding self-supervised learning (SSL), the key paradigm for unsupervised representation learning from visual data, learns from invariances between semantically-related data pairs. We study the one-to-many mapping problem in SSL, where each datum may be mapped to multiple valid targets. This arises when data pairs come from naturally occurring generative processes, e.g., successive video frames. We show that existing methods struggle to flexibly capture this conditional uncertainty. As a remedy, we introduce a latent variable to account for this uncertainty and derive a variational lower bound on the mutual information between paired embeddings. Our derivation yields a simple regularization term for standard SSL objectives. The resulting method, which we call AdaSSL, applies to both contrastive and distillation-based SSL objectives, and we empirically show its versatility in causal representation learning, fine-grained image understanding, and world modeling on videos.
comment: ICLR 2026
☆ C-kNN-LSH: A Nearest-Neighbor Algorithm for Sequential Counterfactual Inference
Estimating causal effects from longitudinal trajectories is central to understanding the progression of complex conditions and optimizing clinical decision-making, such as comorbidities and long COVID recovery. We introduce \emph{C-kNN--LSH}, a nearest-neighbor framework for sequential causal inference designed to handle such high-dimensional, confounded situations. By utilizing locality-sensitive hashing, we efficiently identify ``clinical twins'' with similar covariate histories, enabling local estimation of conditional treatment effects across evolving disease states. To mitigate bias from irregular sampling and shifting patient recovery profiles, we integrate neighborhood estimator with a doubly-robust correction. Theoretical analysis guarantees our estimator is consistent and second-order robust to nuisance error. Evaluated on a real-world Long COVID cohort with 13,511 participants, \emph{C-kNN-LSH} demonstrates superior performance in capturing recovery heterogeneity and estimating policy values compared to existing baselines.
☆ Live-Evo: Online Evolution of Agentic Memory from Continuous Feedback
Large language model (LLM) agents are increasingly equipped with memory, which are stored experience and reusable guidance that can improve task-solving performance. Recent \emph{self-evolving} systems update memory based on interaction outcomes, but most existing evolution pipelines are developed for static train/test splits and only approximate online learning by folding static benchmarks, making them brittle under true distribution shift and continuous feedback. We introduce \textsc{Live-Evo}, an online self-evolving memory system that learns from a stream of incoming data over time. \textsc{Live-Evo} decouples \emph{what happened} from \emph{how to use it} via an Experience Bank and a Meta-Guideline Bank, compiling task-adaptive guidelines from retrieved experiences for each task. To manage memory online, \textsc{Live-Evo} maintains experience weights and updates them from feedback: experiences that consistently help are reinforced and retrieved more often, while misleading or stale experiences are down-weighted and gradually forgotten, analogous to reinforcement and decay in human memory. On the live \textit{Prophet Arena} benchmark over a 10-week horizon, \textsc{Live-Evo} improves Brier score by 20.8\% and increases market returns by 12.9\%, while also transferring to deep-research benchmarks with consistent gains over strong baselines. Our code is available at https://github.com/ag2ai/Live-Evo.
comment: 13 pages
☆ ReasonCACHE: Teaching LLMs To Reason Without Weight Updates
Can Large language models (LLMs) learn to reason without any weight update and only through in-context learning (ICL)? ICL is strikingly sample-efficient, often learning from only a handful of demonstrations, but complex reasoning tasks typically demand many training examples to learn from. However, naively scaling ICL by adding more demonstrations breaks down at this scale: attention costs grow quadratically, performance saturates or degrades with longer contexts, and the approach remains a shallow form of learning. Due to these limitations, practitioners predominantly rely on in-weight learning (IWL) to induce reasoning. In this work, we show that by using Prefix Tuning, LLMs can learn to reason without overloading the context window and without any weight updates. We introduce $\textbf{ReasonCACHE}$, an instantiation of this mechanism that distills demonstrations into a fixed key-value cache. Empirically, across challenging reasoning benchmarks, including GPQA-Diamond, ReasonCACHE outperforms standard ICL and matches or surpasses IWL approaches. Further, it achieves this all while being more efficient across three key axes: data, inference cost, and trainable parameters. We also theoretically prove that ReasonCACHE can be strictly more expressive than low-rank weight update since the latter ties expressivity to input rank, whereas ReasonCACHE bypasses this constraint by directly injecting key-values into the attention mechanism. Together, our findings identify ReasonCACHE as a middle path between in-context and in-weight learning, providing a scalable algorithm for learning reasoning skills beyond the context window without modifying parameters. Our project page: https://reasoncache.github.io/
comment: 26 pages, 17 Figures
☆ Transfer Learning Through Conditional Quantile Matching
We introduce a transfer learning framework for regression that leverages heterogeneous source domains to improve predictive performance in a data-scarce target domain. Our approach learns a conditional generative model separately for each source domain and calibrates the generated responses to the target domain via conditional quantile matching. This distributional alignment step corrects general discrepancies between source and target domains without imposing restrictive assumptions such as covariate or label shift. The resulting framework provides a principled and flexible approach to high-quality data augmentation for downstream learning tasks in the target domain. From a theoretical perspective, we show that an empirical risk minimizer (ERM) trained on the augmented dataset achieves a tighter excess risk bound than the target-only ERM under mild conditions. In particular, we establish new convergence rates for the quantile matching estimator that governs the transfer bias-variance tradeoff. From a practical perspective, extensive simulations and real data applications demonstrate that the proposed method consistently improves prediction accuracy over target-only learning and competing transfer learning methods.
comment: 24 pages (8 pages for the main paper), 3 figures, 3 tables
☆ NAB: Neural Adaptive Binning for Sparse-View CT reconstruction
Computed Tomography (CT) plays a vital role in inspecting the internal structures of industrial objects. Furthermore, achieving high-quality CT reconstruction from sparse views is essential for reducing production costs. While classic implicit neural networks have shown promising results for sparse reconstruction, they are unable to leverage shape priors of objects. Motivated by the observation that numerous industrial objects exhibit rectangular structures, we propose a novel \textbf{N}eural \textbf{A}daptive \textbf{B}inning (\textbf{NAB}) method that effectively integrates rectangular priors into the reconstruction process. Specifically, our approach first maps coordinate space into a binned vector space. This mapping relies on an innovative binning mechanism based on differences between shifted hyperbolic tangent functions, with our extension enabling rotations around the input-plane normal vector. The resulting representations are then processed by a neural network to predict CT attenuation coefficients. This design enables end-to-end optimization of the encoding parameters -- including position, size, steepness, and rotation -- via gradient flow from the projection data, thus enhancing reconstruction accuracy. By adjusting the smoothness of the binning function, NAB can generalize to objects with more complex geometries. This research provides a new perspective on integrating shape priors into neural network-based reconstruction. Extensive experiments demonstrate that NAB achieves superior performance on two industrial datasets. It also maintains robust on medical datasets when the binning function is extended to more general expression. The code will be made available.
☆ Hierarchical Federated Learning with SignSGD: A Highly Communication-Efficient Approach
Hierarchical federated learning (HFL) has emerged as a key architecture for large-scale wireless and Internet of Things systems, where devices communicate with nearby edge servers before reaching the cloud. In these environments, uplink bandwidth and latency impose strict communication limits, thereby making aggressive gradient compression essential. One-bit methods such as sign-based stochastic gradient descent (SignSGD) offer an attractive solution in flat federated settings, but existing theory and algorithms do not naturally extend to hierarchical settings. In particular, the interaction between majority-vote aggregation at the edge layer and model aggregation at the cloud layer, and its impact on end-to-end performance, remains unknown. To bridge this gap, we propose a highly communication-efficient sign-based HFL framework and develop its corresponding formulation for nonconvex learning, where devices send only signed stochastic gradients, edge servers combine them through majority-vote, and the cloud periodically averages the obtained edge models, while utilizing downlink quantization to broadcast the global model. We introduce the resulting scalable HFL algorithm, HierSignSGD, and provide the convergence analysis for SignSGD in a hierarchical setting. Our core technical contribution is a characterization of how biased sign compression, two-level aggregation intervals, and inter-cluster heterogeneity collectively affect convergence. Numerical experiments under homogeneous and heterogeneous data splits show that HierSignSGD, despite employing extreme compression, achieves accuracy comparable to or better than full-precision stochastic gradient descent while reducing communication cost in the process, and remains robust under aggressive downlink sparsification.
☆ Implicit neural representation of textures
Implicit neural representation (INR) has proven to be accurate and efficient in various domains. In this work, we explore how different neural networks can be designed as a new texture INR, which operates in a continuous manner rather than a discrete one over the input UV coordinate space. Through thorough experiments, we demonstrate that these INRs perform well in terms of image quality, with considerable memory usage and rendering inference time. We analyze the balance between these objectives. In addition, we investigate various related applications in real-time rendering and down-stream tasks, e.g. mipmap fitting and INR-space generation.
comment: Albert Kwok and Zheyuan Hu contributed equally to this work
☆ Artificial Intelligence and Symmetries: Learning, Encoding, and Discovering Structure in Physical Data
Symmetries play a central role in physics, organizing dynamics, constraining interactions, and determining the effective number of physical degrees of freedom. In parallel, modern artificial intelligence methods have demonstrated a remarkable ability to extract low-dimensional structure from high-dimensional data through representation learning. This review examines the interplay between these two perspectives, focusing on the extent to which symmetry-induced constraints can be identified, encoded, or diagnosed using machine learning techniques. Rather than emphasizing architectures that enforce known symmetries by construction, we concentrate on data-driven approaches and latent representation learning, with particular attention to variational autoencoders. We discuss how symmetries and conservation laws reduce the intrinsic dimensionality of physical datasets, and how this reduction may manifest itself through self-organization of latent spaces in generative models trained to balance reconstruction and compression. We review recent results, including case studies from simple geometric systems and particle physics processes, and analyze the theoretical and practical limitations of inferring symmetry structure without explicit inductive bias.
comment: 25 pages, 9 figures. This manuscript is an invited review at the International Journal of Modern Physics A
☆ Context Learning for Multi-Agent Discussion
Multi-Agent Discussion (MAD) has garnered increasing attention very recently, where multiple LLM instances collaboratively solve problems via structured discussion. However, we find that current MAD methods easily suffer from discussion inconsistency, LLMs fail to reach a coherent solution, due to the misalignment between their individual contexts.In this paper, we introduce a multi-LLM context learning method (M2CL) that learns a context generator for each agent, capable of dynamically generating context instructions per discussion round via automatic information organization and refinement. Specifically, inspired by our theoretical insights on the context instruction, M2CL train the generators to control context coherence and output discrepancies via a carefully crafted self-adaptive mechanism.It enables LLMs to avoid premature convergence on majority noise and progressively reach the correct consensus. We evaluate M2CL on challenging tasks, including academic reasoning, embodied tasks, and mobile control. The results show that the performance of M2CL significantly surpasses existing methods by 20%--50%, while enjoying favorable transferability and computational efficiency.
☆ Why Steering Works: Toward a Unified View of Language Model Parameter Dynamics
Methods for controlling large language models (LLMs), including local weight fine-tuning, LoRA-based adaptation, and activation-based interventions, are often studied in isolation, obscuring their connections and making comparison difficult. In this work, we present a unified view that frames these interventions as dynamic weight updates induced by a control signal, placing them within a single conceptual framework. Building on this view, we propose a unified preference-utility analysis that separates control effects into preference, defined as the tendency toward a target concept, and utility, defined as coherent and task-valid generation, and measures both on a shared log-odds scale using polarity-paired contrastive examples. Across methods, we observe a consistent trade-off between preference and utility: stronger control increases preference while predictably reducing utility. We further explain this behavior through an activation manifold perspective, in which control shifts representations along target-concept directions to enhance preference, while utility declines primarily when interventions push representations off the model's valid-generation manifold. Finally, we introduce a new steering approach SPLIT guided by this analysis that improves preference while better preserving utility. Code is available at https://github.com/zjunlp/EasyEdit/blob/main/examples/SPLIT.md.
comment: Work in progress
☆ VQ-Style: Disentangling Style and Content in Motion with Residual Quantized Representations
Human motion data is inherently rich and complex, containing both semantic content and subtle stylistic features that are challenging to model. We propose a novel method for effective disentanglement of the style and content in human motion data to facilitate style transfer. Our approach is guided by the insight that content corresponds to coarse motion attributes while style captures the finer, expressive details. To model this hierarchy, we employ Residual Vector Quantized Variational Autoencoders (RVQ-VAEs) to learn a coarse-to-fine representation of motion. We further enhance the disentanglement by integrating contrastive learning and a novel information leakage loss with codebook learning to organize the content and the style across different codebooks. We harness this disentangled representation using our simple and effective inference-time technique Quantized Code Swapping, which enables motion style transfer without requiring any fine-tuning for unseen styles. Our framework demonstrates strong versatility across multiple inference applications, including style transfer, style removal, and motion blending.
☆ Interpreting and Controlling LLM Reasoning through Integrated Policy Gradient
Large language models (LLMs) demonstrate strong reasoning abilities in solving complex real-world problems. Yet, the internal mechanisms driving these complex reasoning behaviors remain opaque. Existing interpretability approaches targeting reasoning either identify components (e.g., neurons) correlated with special textual patterns, or rely on human-annotated contrastive pairs to derive control vectors. Consequently, current methods struggle to precisely localize complex reasoning mechanisms or capture sequential influence from model internal workings to the reasoning outputs. In this paper, built on outcome-oriented and sequential-influence-aware principles, we focus on identifying components that have sequential contribution to reasoning behavior where outcomes are cumulated by long-range effects. We propose Integrated Policy Gradient (IPG), a novel framework that attributes reasoning behaviors to model's inner components by propagating compound outcome-based signals such as post reasoning accuracy backward through model inference trajectories. Empirical evaluations demonstrate that our approach achieves more precise localization and enables reliable modulation of reasoning behaviors (e.g., reasoning capability, reasoning strength) across diverse reasoning models.
☆ Spark: Modular Spiking Neural Networks
Nowadays, neural networks act as a synonym for artificial intelligence. Present neural network models, although remarkably powerful, are inefficient both in terms of data and energy. Several alternative forms of neural networks have been proposed to address some of these problems. Specifically, spiking neural networks are suitable for efficient hardware implementations. However, effective learning algorithms for spiking networks remain elusive, although it is suspected that effective plasticity mechanisms could alleviate the problem of data efficiency. Here, we present a new framework for spiking neural networks - Spark - built upon the idea of modular design, from simple components to entire models. The aim of this framework is to provide an efficient and streamlined pipeline for spiking neural networks. We showcase this framework by solving the sparse-reward cartpole problem with simple plasticity mechanisms. We hope that a framework compatible with traditional ML pipelines may accelerate research in the area, specifically for continuous and unbatched learning, akin to the one animals exhibit.
☆ Position: Explaining Behavioral Shifts in Large Language Models Requires a Comparative Approach
Large-scale foundation models exhibit behavioral shifts: intervention-induced behavioral changes that appear after scaling, fine-tuning, reinforcement learning or in-context learning. While investigating these phenomena have recently received attention, explaining their appearance is still overlooked. Classic explainable AI (XAI) methods can surface failures at a single checkpoint of a model, but they are structurally ill-suited to justify what changed internally across different checkpoints and which explanatory claims are warranted about that change. We take the position that behavioral shifts should be explained comparatively: the core target should be the intervention-induced shift between a reference model and an intervened model, rather than any single model in isolation. To this aim we formulate a Comparative XAI ($Δ$-XAI) framework with a set of desiderata to be taken into account when designing proper explaining methods. To highlight how $Δ$-XAI methods work, we introduce a set of possible pipelines, relate them to the desiderata, and provide a concrete $Δ$-XAI experiment.
☆ Advancing General-Purpose Reasoning Models with Modular Gradient Surgery
Reinforcement learning (RL) has played a central role in recent advances in large reasoning models (LRMs), yielding strong gains in verifiable and open-ended reasoning. However, training a single general-purpose LRM across diverse domains remains challenging due to pronounced domain heterogeneity. Through a systematic study of two widely used strategies, Sequential RL and Mixed RL, we find that both incur substantial cross-domain interference at the behavioral and gradient levels, resulting in limited overall gains. To address these challenges, we introduce **M**odular **G**radient **S**urgery (**MGS**), which resolves gradient conflicts at the module level within the transformer. When applied to Llama and Qwen models, MGS achieves average improvements of 4.3 (16.6\%) and 4.5 (11.1\%) points, respectively, over standard multi-task RL across three representative domains (math, general chat, and instruction following). Further analysis demonstrates that MGS remains effective under prolonged training. Overall, our study clarifies the sources of interference in multi-domain RL and presents an effective solution for training general-purpose LRMs.
comment: Preprint; Code: https://github.com/StringNLPLAB/MGS; Website: https://modular-gradient-surgery.github.io
☆ Decoupling Generalizability and Membership Privacy Risks in Neural Networks
A deep learning model usually has to sacrifice some utilities when it acquires some other abilities or characteristics. Privacy preservation has such trade-off relationships with utilities. The loss disparity between various defense approaches implies the potential to decouple generalizability and privacy risks to maximize privacy gain. In this paper, we identify that the model's generalization and privacy risks exist in different regions in deep neural network architectures. Based on the observations that we investigate, we propose Privacy-Preserving Training Principle (PPTP) to protect model components from privacy risks while minimizing the loss in generalizability. Through extensive evaluations, our approach shows significantly better maintenance in model generalizability while enhancing privacy preservation.
☆ EvalQReason: A Framework for Step-Level Reasoning Evaluation in Large Language Models
Large Language Models (LLMs) are increasingly deployed in critical applications requiring reliable reasoning, yet their internal reasoning processes remain difficult to evaluate systematically. Existing methods focus on final-answer correctness, providing limited insight into how reasoning unfolds across intermediate steps. We present EvalQReason, a framework that quantifies LLM reasoning quality through step-level probability distribution analysis without requiring human annotation. The framework introduces two complementary algorithms: Consecutive Step Divergence (CSD), which measures local coherence between adjacent reasoning steps, and Step-to-Final Convergence (SFC), which assesses global alignment with final answers. Each algorithm employs five statistical metrics to capture reasoning dynamics. Experiments across mathematical and medical datasets with open-source 7B-parameter models demonstrate that CSD-based features achieve strong predictive performance for correctness classification, with classical machine learning models reaching F1=0.78 and ROC-AUC=0.82, and sequential neural models substantially improving performance (F1=0.88, ROC-AUC=0.97). CSD consistently outperforms SFC, and sequential architectures outperform classical machine learning approaches. Critically, reasoning dynamics prove domain-specific: mathematical reasoning exhibits clear divergence-based discrimination patterns between correct and incorrect solutions, while medical reasoning shows minimal discriminative signals, revealing fundamental differences in how LLMs process different reasoning types. EvalQReason enables scalable, process-aware evaluation of reasoning reliability, establishing probability-based divergence analysis as a principled approach for trustworthy AI deployment.
comment: 15 pages (including appendix), 11 figures
☆ An Optimization Method for Autoregressive Time Series Forecasting
Current time-series forecasting models are primarily based on transformer-style neural networks. These models achieve long-term forecasting mainly by scaling up the model size rather than through genuinely autoregressive (AR) rollout. From the perspective of large language model training, the traditional training process for time-series forecasting models ignores temporal causality. In this paper, we propose a novel training method for time-series forecasting that enforces two key properties: (1) AR prediction errors should increase with the forecasting horizon. Any violation of this principle is considered random guessing and is explicitly penalized in the loss function, and (2) the method enables models to concatenate short-term AR predictions for forming flexible long-term forecasts. Empirical results demonstrate that our method establishes a new state-of-the-art across multiple benchmarks, achieving an MSE reduction of more than 10% compared to iTransformer and other recent strong baselines. Furthermore, it enables short-horizon forecasting models to perform reliable long-term predictions at horizons over 7.5 times longer. Code is available at https://github.com/LizhengMathAi/AROpt
comment: 10 pages, 2 figures, 2 tables
☆ DFKI-Speech System for WildSpoof Challenge: A robust framework for SASV In-the-Wild
This paper presents the DFKI-Speech system developed for the WildSpoof Challenge under the Spoofing aware Automatic Speaker Verification (SASV) track. We propose a robust SASV framework in which a spoofing detector and a speaker verification (SV) network operate in tandem. The spoofing detector employs a self-supervised speech embedding extractor as the frontend, combined with a state-of-the-art graph neural network backend. In addition, a top-3 layer based mixture-of-experts (MoE) is used to fuse high-level and low-level features for effective spoofed utterance detection. For speaker verification, we adapt a low-complexity convolutional neural network that fuses 2D and 1D features at multiple scales, trained with the SphereFace loss. Additionally, contrastive circle loss is applied to adaptively weight positive and negative pairs within each training batch, enabling the network to better distinguish between hard and easy sample pairs. Finally, fixed imposter cohort based AS Norm score normalization and model ensembling are used to further enhance the discriminative capability of the speaker verification system.
☆ Statistical Learning Theory in Lean 4: Empirical Processes from Scratch
We present the first comprehensive Lean 4 formalization of statistical learning theory (SLT) grounded in empirical process theory. Our end-to-end formal infrastructure implement the missing contents in latest Lean 4 Mathlib library, including a complete development of Gaussian Lipschitz concentration, the first formalization of Dudley's entropy integral theorem for sub-Gaussian processes, and an application to least-squares (sparse) regression with a sharp rate. The project was carried out using a human-AI collaborative workflow, in which humans design proof strategies and AI agents execute tactical proof construction, leading to the human-verified Lean 4 toolbox for SLT. Beyond implementation, the formalization process exposes and resolves implicit assumptions and missing details in standard SLT textbooks, enforcing a granular, line-by-line understanding of the theory. This work establishes a reusable formal foundation and opens the door for future developments in machine learning theory. The code is available at https://github.com/YuanheZ/lean-stat-learning-theory
comment: 19 pages, 2 figures. Comments are welcome
☆ Choice-Model-Assisted Q-learning for Delayed-Feedback Revenue Management
We study reinforcement learning for revenue management with delayed feedback, where a substantial fraction of value is determined by customer cancellations and modifications observed days after booking. We propose \emph{choice-model-assisted RL}: a calibrated discrete choice model is used as a fixed partial world model to impute the delayed component of the learning target at decision time. In the fixed-model deployment regime, we prove that tabular Q-learning with model-imputed targets converges to an $O(\varepsilon/(1-γ))$ neighborhood of the optimal Q-function, where $\varepsilon$ summarizes partial-model error, with an additional $O(t^{-1/2})$ sampling term. Experiments in a simulator calibrated from 61{,}619 hotel bookings (1{,}088 independent runs) show: (i) no statistically detectable difference from a maturity-buffer DQN baseline in stationary settings; (ii) positive effects under in-family parameter shifts, with significant gains in 5 of 10 shift scenarios after Holm--Bonferroni correction (up to 12.4\%); and (iii) consistent degradation under structural misspecification, where the choice model assumptions are violated (1.4--2.6\% lower revenue). These results characterize when partial behavioral models improve robustness under shift and when they introduce harmful bias.
☆ MoLF: Mixture-of-Latent-Flow for Pan-Cancer Spatial Gene Expression Prediction from Histology
Inferring spatial transcriptomics (ST) from histology enables scalable histogenomic profiling, yet current methods are largely restricted to single-tissue models. This fragmentation fails to leverage biological principles shared across cancer types and hinders application to data-scarce scenarios. While pan-cancer training offers a solution, the resulting heterogeneity challenges monolithic architectures. To bridge this gap, we introduce MoLF (Mixture-of-Latent-Flow), a generative model for pan-cancer histogenomic prediction. MoLF leverages a conditional Flow Matching objective to map noise to the gene latent manifold, parameterized by a Mixture-of-Experts (MoE) velocity field. By dynamically routing inputs to specialized sub-networks, this architecture effectively decouples the optimization of diverse tissue patterns. Our experiments demonstrate that MoLF establishes a new state-of-the-art, consistently outperforming both specialized and foundation model baselines on pan-cancer benchmarks. Furthermore, MoLF exhibits zero-shot generalization to cross-species data, suggesting it captures fundamental, conserved histo-molecular mechanisms.
☆ Backpropagation as Physical Relaxation: Exact Gradients in Finite Time
Backpropagation, the foundational algorithm for training neural networks, is typically understood as a symbolic computation that recursively applies the chain rule. We show it emerges exactly as the finite-time relaxation of a physical dynamical system. By formulating feedforward inference as a continuous-time process and applying Lagrangian theory of non-conservative systems to handle asymmetric interactions, we derive a global energy functional on a doubled state space encoding both activations and sensitivities. The saddle-point dynamics of this energy perform inference and credit assignment simultaneously through local interactions. We term this framework ''Dyadic Backpropagation''. Crucially, we prove that unit-step Euler discretization, the natural timescale of layer transitions, recovers standard backpropagation exactly in precisely 2L steps for an L-layer network, with no approximations. Unlike prior energy-based methods requiring symmetric weights, asymptotic convergence, or vanishing perturbations, our framework guarantees exact gradients in finite time. This establishes backpropagation as the digitally optimized shadow of a continuous physical relaxation, providing a rigorous foundation for exact gradient computation in analog and neuromorphic substrates where continuous dynamics are native.
comment: 15 pages, 8 figures
☆ RACA: Representation-Aware Coverage Criteria for LLM Safety Testing
Recent advancements in LLMs have led to significant breakthroughs in various AI applications. However, their sophisticated capabilities also introduce severe safety concerns, particularly the generation of harmful content through jailbreak attacks. Current safety testing for LLMs often relies on static datasets and lacks systematic criteria to evaluate the quality and adequacy of these tests. While coverage criteria have been effective for smaller neural networks, they are not directly applicable to LLMs due to scalability issues and differing objectives. To address these challenges, this paper introduces RACA, a novel set of coverage criteria specifically designed for LLM safety testing. RACA leverages representation engineering to focus on safety-critical concepts within LLMs, thereby reducing dimensionality and filtering out irrelevant information. The framework operates in three stages: first, it identifies safety-critical representations using a small, expert-curated calibration set of jailbreak prompts. Second, it calculates conceptual activation scores for a given test suite based on these representations. Finally, it computes coverage results using six sub-criteria that assess both individual and compositional safety concepts. We conduct comprehensive experiments to validate RACA's effectiveness, applicability, and generalization, where the results demonstrate that RACA successfully identifies high-quality jailbreak prompts and is superior to traditional neuron-level criteria. We also showcase its practical application in real-world scenarios, such as test set prioritization and attack prompt sampling. Furthermore, our findings confirm RACA's generalization to various scenarios and its robustness across various configurations. Overall, RACA provides a new framework for evaluating the safety of LLMs, contributing a valuable technique to the field of testing for AI.
☆ HopFormer: Sparse Graph Transformers with Explicit Receptive Field Control
Graph Transformers typically rely on explicit positional or structural encodings and dense global attention to incorporate graph topology. In this work, we show that neither is essential. We introduce HopFormer, a graph Transformer that injects structure exclusively through head-specific n-hop masked sparse attention, without the use of positional encodings or architectural modifications. This design provides explicit and interpretable control over receptive fields while enabling genuinely sparse attention whose computational cost scales linearly with mask sparsity. Through extensive experiments on both node-level and graph-level benchmarks, we demonstrate that our approach achieves competitive or superior performance across diverse graph structures. Our results further reveal that dense global attention is often unnecessary: on graphs with strong small-world properties, localized attention yields more stable and consistently high performance, while on graphs with weaker small-world effects, global attention offers diminishing returns. Together, these findings challenge prevailing assumptions in graph Transformer design and highlight sparsity-controlled attention as a principled and efficient alternative.
☆ Unsupervised Physics-Informed Operator Learning through Multi-Stage Curriculum Training
Solving partial differential equations remains a central challenge in scientific machine learning. Neural operators offer a promising route by learning mappings between function spaces and enabling resolution-independent inference, yet they typically require supervised data. Physics-informed neural networks address this limitation through unsupervised training with physical constraints but often suffer from unstable convergence and limited generalization capability. To overcome these issues, we introduce a multi-stage physics-informed training strategy that achieves convergence by progressively enforcing boundary conditions in the loss landscape and subsequently incorporating interior residuals. At each stage the optimizer is re-initialized, acting as a continuation mechanism that restores stability and prevents gradient stagnation. We further propose the Physics-Informed Spline Fourier Neural Operator (PhIS-FNO), combining Fourier layers with Hermite spline kernels for smooth residual evaluation. Across canonical benchmarks, PhIS-FNO attains a level of accuracy comparable to that of supervised learning, using labeled information only along a narrow boundary region, establishing staged, spline-based optimization as a robust paradigm for physics-informed operator learning.
comment: 51 pages, 15 figures, 6 tables
☆ Unlocking the Duality between Flow and Field Matching
Conditional Flow Matching (CFM) unifies conventional generative paradigms such as diffusion models and flow matching. Interaction Field Matching (IFM) is a newer framework that generalizes Electrostatic Field Matching (EFM) rooted in Poisson Flow Generative Models (PFGM). While both frameworks define generative dynamics, they start from different objects: CFM specifies a conditional probability path in data space, whereas IFM specifies a physics-inspired interaction field in an augmented data space. This raises a basic question: are CFM and IFM genuinely different, or are they two descriptions of the same underlying dynamics? We show that they coincide for a natural subclass of IFM that we call forward-only IFM. Specifically, we construct a bijection between CFM and forward-only IFM. We further show that general IFM is strictly more expressive: it includes EFM and other interaction fields that cannot be realized within the standard CFM formulation. Finally, we highlight how this duality can benefit both frameworks: it provides a probabilistic interpretation of forward-only IFM and yields novel, IFM-driven techniques for CFM.
☆ Learning Markov Decision Processes under Fully Bandit Feedback
A standard assumption in Reinforcement Learning is that the agent observes every visited state-action pair in the associated Markov Decision Process (MDP), along with the per-step rewards. Strong theoretical results are known in this setting, achieving nearly-tight $Θ(\sqrt{T})$-regret bounds. However, such detailed feedback can be unrealistic, and recent research has investigated more restricted settings such as trajectory feedback, where the agent observes all the visited state-action pairs, but only a single \emph{aggregate} reward. In this paper, we consider a far more restrictive ``fully bandit'' feedback model for episodic MDPs, where the agent does not even observe the visited state-action pairs -- it only learns the aggregate reward. We provide the first efficient bandit learning algorithm for episodic MDPs with $\widetilde{O}(\sqrt{T})$ regret. Our regret has an exponential dependence on the horizon length $\H$, which we show is necessary. We also obtain improved nearly-tight regret bounds for ``ordered'' MDPs; these can be used to model classical stochastic optimization problems such as $k$-item prophet inequality and sequential posted pricing. Finally, we evaluate the empirical performance of our algorithm for the setting of $k$-item prophet inequalities; despite the highly restricted feedback, our algorithm's performance is comparable to that of a state-of-art learning algorithm (UCB-VI) with detailed state-action feedback.
☆ Segment to Focus: Guiding Latent Action Models in the Presence of Distractors
Latent Action Models (LAMs) learn to extract action-relevant representations solely from raw observations, enabling reinforcement learning from unlabelled videos and significantly scaling available training data. However, LAMs face a critical challenge in disentangling action-relevant features from action-correlated noise (e.g., background motion). Failing to filter these distractors causes LAMs to capture spurious correlations and build sub-optimal latent action spaces. In this paper, we introduce MaskLAM -- a lightweight modification to LAM training to mitigate this issue by incorporating visual agent segmentation. MaskLAM utilises segmentation masks from pretrained foundation models to weight the LAM reconstruction loss, thereby prioritising salient information over background elements while requiring no architectural modifications. We demonstrate the effectiveness of our method on continuous-control MuJoCo tasks, modified with action-correlated background noise. Our approach yields up to a 4x increase in accrued rewards compared to standard baselines and a 3x improvement in the latent action quality, as evidenced by linear probe evaluation.
☆ Alignment-Aware Model Adaptation via Feedback-Guided Optimization
Fine-tuning is the primary mechanism for adapting foundation models to downstream tasks; however, standard approaches largely optimize task objectives in isolation and do not account for secondary yet critical alignment objectives (e.g., safety and hallucination avoidance). As a result, downstream fine-tuning can degrade alignment and fail to correct pre-existing misaligned behavior. We propose an alignment-aware fine-tuning framework that integrates feedback from an external alignment signal through policy-gradient-based regularization. Our method introduces an adaptive gating mechanism that dynamically balances supervised and alignment-driven gradients on a per-sample basis, prioritizing uncertain or misaligned cases while allowing well-aligned examples to follow standard supervised updates. The framework further learns abstention behavior for fully misaligned inputs, incorporating conservative responses directly into the fine-tuned model. Experiments on general and domain-specific instruction-tuning benchmarks demonstrate consistent reductions in harmful and hallucinated outputs without sacrificing downstream task performance. Additional analyses show robustness to adversarial fine-tuning, prompt-based attacks, and unsafe initializations, establishing adaptively gated alignment optimization as an effective approach for alignment-preserving and alignment-recovering model adaptation.
☆ Well-Posed KL-Regularized Control via Wasserstein and Kalman-Wasserstein KL Divergences
Kullback-Leibler divergence (KL) regularization is widely used in reinforcement learning, but it becomes infinite under support mismatch and can degenerate in low-noise limits. Utilizing a unified information-geometric framework, we introduce (Kalman)-Wasserstein-based KL analogues by replacing the Fisher-Rao geometry in the dynamical formulation of the KL with transport-based geometries, and we derive closed-form values for common distribution families. These divergences remain finite under support mismatch and yield a geometric interpretation of regularization heuristics used in Kalman ensemble methods. We demonstrate the utility of these divergences in KL-regularized optimal control. In the fully tractable setting of linear time-invariant systems with Gaussian process noise, the classical KL reduces to a quadratic control penalty that becomes singular as process noise vanishes. Our variants remove this singularity, yielding well-posed problems. On a double integrator and a cart-pole example, the resulting controls outperform KL-based regularization.
comment: 37 pages, 9 figures, comments welcome
☆ Learning While Staying Curious: Entropy-Preserving Supervised Fine-Tuning via Adaptive Self-Distillation for Large Reasoning Models
The standard post-training recipe for large reasoning models, supervised fine-tuning followed by reinforcement learning (SFT-then-RL), may limit the benefits of the RL stage: while SFT imitates expert demonstrations, it often causes overconfidence and reduces generation diversity, leaving RL with a narrowed solution space to explore. Adding entropy regularization during SFT is not a cure-all; it tends to flatten token distributions toward uniformity, increasing entropy without improving meaningful exploration capability. In this paper, we propose CurioSFT, an entropy-preserving SFT method designed to enhance exploration capabilities through intrinsic curiosity. It consists of (a) Self-Exploratory Distillation, which distills the model toward a self-generated, temperature-scaled teacher to encourage exploration within its capability; and (b) Entropy-Guided Temperature Selection, which adaptively adjusts distillation strength to mitigate knowledge forgetting by amplifying exploration at reasoning tokens while stabilizing factual tokens. Extensive experiments on mathematical reasoning tasks demonstrate that, in SFT stage, CurioSFT outperforms the vanilla SFT by 2.5 points on in-distribution tasks and 2.9 points on out-of-distribution tasks. We also verify that exploration capabilities preserved during SFT successfully translate into concrete gains in RL stage, yielding an average improvement of 5.0 points.
☆ Variational Entropic Optimal Transport
Entropic optimal transport (EOT) in continuous spaces with quadratic cost is a classical tool for solving the domain translation problem. In practice, recent approaches optimize a weak dual EOT objective depending on a single potential, but doing so is computationally not efficient due to the intractable log-partition term. Existing methods typically resolve this obstacle in one of two ways: by significantly restricting the transport family to obtain closed-form normalization (via Gaussian-mixture parameterizations), or by using general neural parameterizations that require simulation-based training procedures. We propose Variational Entropic Optimal Transport (VarEOT), based on an exact variational reformulation of the log-partition $\log \mathbb{E}[\exp(\cdot)]$ as a tractable minimization over an auxiliary positive normalizer. This yields a differentiable learning objective optimized with stochastic gradients and avoids the necessity of MCMC simulations during the training. We provide theoretical guarantees, including finite-sample generalization bounds and approximation results under universal function approximation. Experiments on synthetic data and unpaired image-to-image translation demonstrate competitive or improved translation quality, while comparisons within the solvers that use the same weak dual EOT objective support the benefit of the proposed optimization principle.
☆ Interpretability in Deep Time Series Models Demands Semantic Alignment
Deep time series models continue to improve predictive performance, yet their deployment remains limited by their black-box nature. In response, existing interpretability approaches in the field keep focusing on explaining the internal model computations, without addressing whether they align or not with how a human would reason about the studied phenomenon. Instead, we state interpretability in deep time series models should pursue semantic alignment: predictions should be expressed in terms of variables that are meaningful to the end user, mediated by spatial and temporal mechanisms that admit user-dependent constraints. In this paper, we formalize this requirement and require that, once established, semantic alignment must be preserved under temporal evolution: a constraint with no analog in static settings. Provided with this definition, we outline a blueprint for semantically aligned deep time series models, identify properties that support trust, and discuss implications for model design.
☆ Geometry- and Relation-Aware Diffusion for EEG Super-Resolution
Recent electroencephalography (EEG) spatial super-resolution (SR) methods, while showing improved quality by either directly predicting missing signals from visible channels or adapting latent diffusion-based generative modeling to temporal data, often lack awareness of physiological spatial structure, thereby constraining spatial generation performance. To address this issue, we introduce TopoDiff, a geometry- and relation-aware diffusion model for EEG spatial super-resolution. Inspired by how human experts interpret spatial EEG patterns, TopoDiff incorporates topology-aware image embeddings derived from EEG topographic representations to provide global geometric context for spatial generation, together with a dynamic channel-relation graph that encodes inter-electrode relationships and evolves with temporal dynamics. This design yields a spatially grounded EEG spatial super-resolution framework with consistent performance improvements. Across multiple EEG datasets spanning diverse applications, including SEED/SEED-IV for emotion recognition, PhysioNet motor imagery (MI/MM), and TUSZ for seizure detection, our method achieves substantial gains in generation fidelity and leads to notable improvements in downstream EEG task performance.
☆ Online Fine-Tuning of Pretrained Controllers for Autonomous Driving via Real-Time Recurrent RL
Deploying pretrained policies in real-world applications presents substantial challenges that fundamentally limit the practical applicability of learning-based control systems. When autonomous systems encounter environmental changes in system dynamics, sensor drift, or task objectives, fixed policies rapidly degrade in performance. We show that employing Real-Time Recurrent Reinforcement Learning (RTRRL), a biologically plausible algorithm for online adaptation, can effectively fine-tune a pretrained policy to improve autonomous agents' performance on driving tasks. We further show that RTRRL synergizes with a recent biologically inspired recurrent network model, the Liquid-Resistance Liquid-Capacitance RNN. We demonstrate the effectiveness of this closed-loop approach in a simulated CarRacing environment and in a real-world line-following task with a RoboRacer car equipped with an event camera.
☆ SEDformer: Event-Synchronous Spiking Transformers for Irregular Telemetry Time Series Forecasting
Telemetry streams from large-scale Internet-connected systems (e.g., IoT deployments and online platforms) naturally form an irregular multivariate time series (IMTS) whose accurate forecasting is operationally vital. A closer examination reveals a defining Sparsity-Event Duality (SED) property of IMTS, i.e., long stretches with sparse or no observations are punctuated by short, dense bursts where most semantic events (observations) occur. However, existing Graph- and Transformer-based forecasters ignore SED: pre-alignment to uniform grids with heavy padding violates sparsity by inflating sequences and forcing computation at non-informative steps, while relational recasting weakens event semantics by disrupting local temporal continuity. These limitations motivate a more faithful and natural modeling paradigm for IMTS that aligns with its SED property. We find that Spiking Neural Networks meet this requirement, as they communicate via sparse binary spikes and update in an event-driven manner, aligning naturally with the SED nature of IMTS. Therefore, we present SEDformer, an SED-enhanced Spiking Transformer for telemetry IMTS forecasting that couples: (1) a SED-based Spike Encoder converts raw observations into event synchronous spikes using an Event-Aligned LIF neuron, (2) an Event-Preserving Temporal Downsampling module compresses long gaps while retaining salient firings and (3) a stack of SED-based Spike Transformer blocks enable intra-series dependency modeling with a membrane-based linear attention driven by EA-LIF spiking features. Experiments on public telemetry IMTS datasets show that SEDformer attains state-of-the-art forecasting accuracy while reducing energy and memory usage, providing a natural and efficient path for modeling IMTS.
comment: Under review
☆ Prediction-Powered Risk Monitoring of Deployed Models for Detecting Harmful Distribution Shifts
We study the problem of monitoring model performance in dynamic environments where labeled data are limited. To this end, we propose prediction-powered risk monitoring (PPRM), a semi-supervised risk-monitoring approach based on prediction-powered inference (PPI). PPRM constructs anytime-valid lower bounds on the running risk by combining synthetic labels with a small set of true labels. Harmful shifts are detected via a threshold-based comparison with an upper bound on the nominal risk, satisfying assumption-free finite-sample guarantees in the probability of false alarm. We demonstrate the effectiveness of PPRM through extensive experiments on image classification, large language model (LLM), and telecommunications monitoring tasks.
☆ Spectral Superposition: A Theory of Feature Geometry
Neural networks represent more features than they have dimensions via superposition, forcing features to share representational space. Current methods decompose activations into sparse linear features but discard geometric structure. We develop a theory for studying the geometric structre of features by analyzing the spectra (eigenvalues, eigenspaces, etc.) of weight derived matrices. In particular, we introduce the frame operator $F = WW^\top$, which gives us a spectral measure that describes how each feature allocates norm across eigenspaces. While previous tools could describe the pairwise interactions between features, spectral methods capture the global geometry (``how do all features interact?''). In toy models of superposition, we use this theory to prove that capacity saturation forces spectral localization: features collapse onto single eigenspaces, organize into tight frames, and admit discrete classification via association schemes, classifying all geometries from prior work (simplices, polygons, antiprisms). The spectral measure formalism applies to arbitrary weight matrices, enabling diagnosis of feature localization beyond toy settings. These results point toward a broader program: applying operator theory to interpretability.
☆ Scientific Theory of a Black-Box: A Life Cycle-Scale XAI Framework Based on Constructive Empiricism
Explainable AI (XAI) offers a growing number of algorithms that aim to answer specific questions about black-box models. What is missing is a principled way to consolidate explanatory information about a fixed black-box model into a persistent, auditable artefact, that accompanies the black-box throughout its life cycle. We address this gap by introducing the notion of a scientific theory of a black (SToBB). Grounded in Constructive Empiricism, a SToBB fulfils three obligations: (i) empirical adequacy with respect to all available observations of black-box behaviour, (ii) adaptability via explicit update commitments that restore adequacy when new observations arrive, and (iii) auditability through transparent documentation of assumptions, construction choices, and update behaviour. We operationalise these obligations as a general framework that specifies an extensible observation base, a traceable hypothesis class, algorithmic components for construction and revision, and documentation sufficient for third-party assessment. Explanations for concrete stakeholder needs are then obtained by querying the maintained record through interfaces, rather than by producing isolated method outputs. As a proof of concept, we instantiate a complete SToBB for a neural-network classifier on a tabular task and introduce the Constructive Box Theoriser (CoBoT) algorithm, an online procedure that constructs and maintains an empirically adequate rule-based surrogate as observations accumulate. Together, these contributions position SToBBs as a life cycle-scale, inspectable point of reference that supports consistent, reusable analyses and systematic external scrutiny.
☆ Generating Physically Sound Designs from Text and a Set of Physical Constraints NeurIPS 2025
We present TIDES, a text informed design approach for generating physically sound designs based on a textual description and a set of physical constraints. TIDES jointly optimizes structural (topology) and visual properties. A pre-trained text-image model is used to measure the design's visual alignment with a text prompt and a differentiable physics simulator is used to measure its physical performance. We evaluate TIDES on a series of structural optimization problems operating under different load and support conditions, at different resolutions, and experimentally in the lab by performing the 3-point bending test on 2D beam designs that are extruded and 3D printed. We find that it can jointly optimize the two objectives and return designs that satisfy engineering design requirements (compliance and density) while utilizing features specified by text.
comment: NeurIPS 2025
☆ Fat-Cat: Document-Driven Metacognitive Multi-Agent System for Complex Reasoning
The effectiveness of LLM-based agents is often limited not by model capacity alone, but by how efficiently contextual information is utilized at runtime. Existing agent frameworks rely on rigid, syntax-heavy state representations such as nested JSON, which require models to devote a substantial portion of their limited attention to syntactic processing rather than semantic reasoning. In this paper, we propose Fat-Cat, a document-driven agent architecture that improves the signal-to-noise ratio of state management. By integrating three key components: (1) a Semantic File System that represents agent state as Markdown documents aligned with common pre-training corpora, (2) a Textual Strategy Evolution module that accumulates task-solving knowledge without parameter updates, and (3) a Closed-Loop Watcher that monitors reasoning trajectories to reduce hallucinations. Extensive reasoning, retrieval, and coding benchmarks, Fat-Cat consistently improves agent performance. It enables the Kimi-k2 model to outperform the proprietary GPT-4o baseline on HotPotQA. Replacing the document-based state with JSON leads to performance drop, while empirically validating the critical necessity of document-driven state modeling over rigid syntax. The code is available at https://github.com/answeryt/Fat-Cat.
☆ Cardinality-Preserving Structured Sparse Graph Transformers for Molecular Property Prediction
Drug discovery motivates efficient molecular property prediction under limited labeled data. Chemical space is vast, often estimated at approximately 10^60 drug-like molecules, while only thousands of drugs have been approved. As a result, self-supervised pretraining on large unlabeled molecular corpora has become essential for data-efficient molecular representation learning. We introduce **CardinalGraphFormer**, a graph transformer that incorporates Graphormer-inspired structural biases, including shortest-path distance and centrality, as well as direct-bond edge bias, within a structured sparse attention regime limited to shortest-path distance <= 3. The model further augments this design with a cardinality-preserving unnormalized aggregation channel over the same support set. Pretraining combines contrastive graph-level alignment with masked attribute reconstruction. Under a fully matched evaluation protocol, CardinalGraphFormer improves mean performance across all 11 evaluated tasks and achieves statistically significant gains on 10 of 11 public benchmarks spanning MoleculeNet, OGB, and TDC ADMET tasks when compared to strong reproduced baselines.
☆ Hierarchical Adaptive Eviction for KV Cache Management in Multimodal Language Models
The integration of visual information into Large Language Models (LLMs) has enabled Multimodal LLMs (MLLMs), but the quadratic memory and computational costs of Transformer architectures remain a bottleneck. Existing KV cache eviction strategies fail to address the heterogeneous attention distributions between visual and text tokens, leading to suboptimal efficiency or degraded performance. In this paper, we propose Hierarchical Adaptive Eviction (HAE), a KV cache eviction framework that optimizes text-visual token interaction in MLLMs by implementing Dual-Attention Pruning during pre-filling (leveraging visual token sparsity and attention variance) and a Dynamic Decoding Eviction Strategy (inspired by OS Recycle Bins) during decoding. HAE minimizes KV cache usage across layers, reduces computational overhead via index broadcasting, and theoretically ensures superior information integrity and lower error bounds compared to greedy strategies, enhancing efficiency in both comprehension and generation tasks. Empirically, HAE reduces KV-Cache memory by 41\% with minimal accuracy loss (0.3\% drop) in image understanding tasks and accelerates story generation inference by 1.5x while maintaining output quality on Phi3.5-Vision-Instruct model.
comment: 10 oages, 3 figures
☆ State Rank Dynamics in Linear Attention LLMs
Linear Attention Large Language Models (LLMs) offer a compelling recurrent formulation that compresses context into a fixed-size state matrix, enabling constant-time inference. However, the internal dynamics of this compressed state remain largely opaque. In this work, we present a comprehensive study on the runtime state dynamics of state-of-the-art Linear Attention models. We uncover a fundamental phenomenon termed State Rank Stratification, characterized by a distinct spectral bifurcation among linear attention heads: while one group maintains an effective rank oscillating near zero, the other exhibits rapid growth that converges to an upper bound. Extensive experiments across diverse inference contexts reveal that these dynamics remain strikingly consistent, indicating that the identity of a head,whether low-rank or high-rank,is an intrinsic structural property acquired during pre-training, rather than a transient state dependent on the input data. Furthermore, our diagnostic probes reveal a surprising functional divergence: low-rank heads are indispensable for model reasoning, whereas high-rank heads exhibit significant redundancy. Leveraging this insight, we propose Joint Rank-Norm Pruning, a zero-shot strategy that achieves a 38.9\% reduction in KV-cache overhead while largely maintaining model accuracy.
☆ ECHO-2: A Large Scale Distributed Rollout Framework for Cost-efficient Reinforcement Learning
Reinforcement learning (RL) is a critical stage in post-training large language models (LLMs), involving repeated interaction between rollout generation, reward evaluation, and centralized learning. Distributing rollout execution offers opportunities to leverage more cost-efficient inference resources, but introduces challenges in wide-area coordination and policy dissemination. We present ECHO-2, a distributed RL framework for post-training with remote inference workers and non-negligible dissemination latency. ECHO-2 combines centralized learning with distributed rollouts and treats bounded policy staleness as a user-controlled parameter, enabling rollout generation, dissemination, and training to overlap. We introduce an overlap-based capacity model that relates training time, dissemination latency, and rollout throughput, yielding a practical provisioning rule for sustaining learner utilization. To mitigate dissemination bottlenecks and lower cost, ECHO-2 employs peer-assisted pipelined broadcast and cost-aware activation of heterogeneous workers. Experiments on GRPO post-training of 4B and 8B models under real wide-area bandwidth regimes show that ECHO-2 significantly improves cost efficiency while preserving RL reward comparable to strong baselines.
comment: 23 pages, 7 figures
☆ PCA of probability measures: Sparse and Dense sampling regimes
A common approach to perform PCA on probability measures is to embed them into a Hilbert space where standard functional PCA techniques apply. While convergence rates for estimating the embedding of a single measure from $m$ samples are well understood, the literature has not addressed the setting involving multiple measures. In this paper, we study PCA in a double asymptotic regime where $n$ probability measures are observed, each through $m$ samples. We derive convergence rates of the form $n^{-1/2} + m^{-α}$ for the empirical covariance operator and the PCA excess risk, where $α>0$ depends on the chosen embedding. This characterizes the relationship between the number $n$ of measures and the number $m$ of samples per measure, revealing a sparse (small $m$) to dense (large $m$) transition in the convergence behavior. Moreover, we prove that the dense-regime rate is minimax optimal for the empirical covariance error. Our numerical experiments validate these theoretical rates and demonstrate that appropriate subsampling preserves PCA accuracy while reducing computational cost.
☆ Vision-DeepResearch Benchmark: Rethinking Visual and Textual Search for Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) have advanced VQA and now support Vision-DeepResearch systems that use search engines for complex visual-textual fact-finding. However, evaluating these visual and textual search abilities is still difficult, and existing benchmarks have two major limitations. First, existing benchmarks are not visual search-centric: answers that should require visual search are often leaked through cross-textual cues in the text questions or can be inferred from the prior world knowledge in current MLLMs. Second, overly idealized evaluation scenario: On the image-search side, the required information can often be obtained via near-exact matching against the full image, while the text-search side is overly direct and insufficiently challenging. To address these issues, we construct the Vision-DeepResearch benchmark (VDR-Bench) comprising 2,000 VQA instances. All questions are created via a careful, multi-stage curation pipeline and rigorous expert review, designed to assess the behavior of Vision-DeepResearch systems under realistic real-world conditions. Moreover, to address the insufficient visual retrieval capabilities of current MLLMs, we propose a simple multi-round cropped-search workflow. This strategy is shown to effectively improve model performance in realistic visual retrieval scenarios. Overall, our results provide practical guidance for the design of future multimodal deep-research systems. The code will be released in https://github.com/Osilly/Vision-DeepResearch.
☆ STILL: Selecting Tokens for Intra-Layer Hybrid Attention to Linearize LLMs
Linearizing pretrained large language models (LLMs) primarily relies on intra-layer hybrid attention mechanisms to alleviate the quadratic complexity of standard softmax attention. Existing methods perform token routing based on sliding-window partitions, resulting in position-based selection and fails to capture token-specific global importance. Meanwhile, linear attention further suffers from distribution shift caused by learnable feature maps that distort pretrained feature magnitudes. Motivated by these limitations, we propose STILL, an intra-layer hybrid linearization framework for efficiently linearizing LLMs. STILL introduces a Self-Saliency Score with strong local-global consistency, enabling accurate token selection using sliding-window computation, and retains salient tokens for sparse softmax attention while summarizing the remaining context via linear attention. To preserve pretrained representations, we design a Norm-Preserved Feature Map (NP-Map) that decouples feature direction from magnitude and reinjects pretrained norms. We further adopt a unified training-inference architecture with chunk-wise parallelization and delayed selection to improve hardware efficiency. Experiments show that STILL matches or surpasses the original pretrained model on commonsense and general reasoning tasks, and achieves up to a 86.2% relative improvement over prior linearized attention methods on long-context benchmarks.
☆ SurvKAN: A Fully Parametric Survival Model Based on Kolmogorov-Arnold Networks
Accurate prediction of time-to-event outcomes is critical for clinical decision-making, treatment planning, and resource allocation in modern healthcare. While classical survival models such as Cox remain widely adopted in standard practice, they rely on restrictive assumptions, including linear covariate relationships and proportional hazards over time, that often fail to capture real-world clinical dynamics. Recent deep learning approaches like DeepSurv and DeepHit offer improved expressivity but sacrifice interpretability, limiting clinical adoption where trust and transparency are paramount. Hybrid models incorporating Kolmogorov-Arnold Networks (KANs), such as CoxKAN, have begun to address this trade-off but remain constrained by the semi-parametric Cox framework. In this work we introduce SurvKAN, a fully parametric, time-continuous survival model based on KAN architectures that eliminates the proportional hazards constraint. SurvKAN treats time as an explicit input to a KAN that directly predicts the log-hazard function, enabling end-to-end training on the full survival likelihood. Our architecture preserves interpretability through learnable univariate functions that indicate how individual features influence risk over time. Extensive experiments on standard survival benchmarks demonstrate that SurvKAN achieves competitive or superior performance compared to classical and state-of-the-art baselines across concordance and calibration metrics. Additionally, interpretability analyses reveal clinically meaningful patterns that align with medical domain knowledge.
☆ Generalized Optimal Classification Trees: A Mixed-Integer Programming Approach
Global optimization of decision trees is a long-standing challenge in combinatorial optimization, yet such models play an important role in interpretable machine learning. Although the problem has been investigated for several decades, only recent advances in discrete optimization have enabled practical algorithms for solving optimal classification tree problems on real-world datasets. Mixed-integer programming (MIP) offers a high degree of modeling flexibility, and we therefore propose a MIP-based framework for learning optimal classification trees under nonlinear performance metrics, such as the F1-score, that explicitly addresses class imbalance. To improve scalability, we develop problem-specific acceleration techniques, including a tailored branch-and-cut algorithm, an instance-reduction scheme, and warm-start strategies. We evaluate the proposed approach on 50 benchmark datasets. The computational results show that the framework can efficiently optimize nonlinear metrics while achieving strong predictive performance and reduced solution times compared with existing methods.
☆ Real-Time 2D LiDAR Object Detection Using Three-Frame RGB Scan Encoding IEEE
Indoor service robots need perception that is robust, more privacy-friendly than RGB video, and feasible on embedded hardware. We present a camera-free 2D LiDAR object detection pipeline that encodes short-term temporal context by stacking three consecutive scans as RGB channels, yielding a compact YOLOv8n input without occupancy-grid construction while preserving angular structure and motion cues. Evaluated in Webots across 160 randomized indoor scenarios with strict scenario-level holdout, the method achieves 98.4% mAP@0.5 (0.778 mAP@0.5:0.95) with 94.9% precision and 94.7% recall on four object classes. On a Raspberry Pi 5, it runs in real time with a mean post-warm-up end-to-end latency of 47.8ms per frame, including scan encoding and postprocessing. Relative to a closely related occupancy-grid LiDAR-YOLO pipeline reported on the same platform, the proposed representation is associated with substantially lower reported end-to-end latency. Although results are simulation-based, they suggest that lightweight temporal encoding can enable accurate and real-time LiDAR-only detection for embedded indoor robotics without capturing RGB appearance.
comment: 6 pages, 6 figures, submitted to IEEE SAS 2026
☆ Co-RedTeam: Orchestrated Security Discovery and Exploitation with LLM Agents
Large language models (LLMs) have shown promise in assisting cybersecurity tasks, yet existing approaches struggle with automatic vulnerability discovery and exploitation due to limited interaction, weak execution grounding, and a lack of experience reuse. We propose Co-RedTeam, a security-aware multi-agent framework designed to mirror real-world red-teaming workflows by integrating security-domain knowledge, code-aware analysis, execution-grounded iterative reasoning, and long-term memory. Co-RedTeam decomposes vulnerability analysis into coordinated discovery and exploitation stages, enabling agents to plan, execute, validate, and refine actions based on real execution feedback while learning from prior trajectories. Extensive evaluations on challenging security benchmarks demonstrate that Co-RedTeam consistently outperforms strong baselines across diverse backbone models, achieving over 60% success rate in vulnerability exploitation and over 10% absolute improvement in vulnerability detection. Ablation and iteration studies further confirm the critical role of execution feedback, structured interaction, and memory for building robust and generalizable cybersecurity agents.
☆ Interpretable Tabular Foundation Models via In-Context Kernel Regression
Tabular foundation models like TabPFN and TabICL achieve state-of-the-art performance through in-context learning, yet their architectures remain fundamentally opaque. We introduce KernelICL, a framework to enhance tabular foundation models with quantifiable sample-based interpretability. Building on the insight that in-context learning is akin to kernel regression, we make this mechanism explicit by replacing the final prediction layer with kernel functions (Gaussian, dot-product, kNN) so that every prediction is a transparent weighted average of training labels. We introduce a two-dimensional taxonomy that formally unifies standard kernel methods, modern neighbor-based approaches, and attention mechanisms under a single framework, and quantify inspectability via the perplexity of the weight distribution over training samples. On 55 TALENT benchmark datasets, KernelICL achieves performance on par with existing tabular foundation models, demonstrating that explicit kernel constraints on the final layer enable inspectable predictions without sacrificing performance.
☆ Generating Causal Temporal Interaction Graphs for Counterfactual Validation of Temporal Link Prediction
Temporal link prediction (TLP) models are commonly evaluated based on predictive accuracy, yet such evaluations do not assess whether these models capture the causal mechanisms that govern temporal interactions. In this work, we propose a framework for counterfactual validation of TLP models by generating causal temporal interaction graphs (CTIGs) with known ground-truth causal structure. We first introduce a structural equation model for continuous-time event sequences that supports both excitatory and inhibitory effects, and then extend this mechanism to temporal interaction graphs. To compare causal models, we propose a distance metric based on cross-model predictive error, and empirically validate the hypothesis that predictors trained on one causal model degrade when evaluated on sufficiently distant models. Finally, we instantiate counterfactual evaluation under (i) controlled causal shifts between generating models and (ii) timestamp shuffling as a stochastic distortion with measurable causal distance. Our framework provides a foundation for causality-aware benchmarking.
☆ Efficient Neural Controlled Differential Equations via Attentive Kernel Smoothing
Neural Controlled Differential Equations (Neural CDEs) provide a powerful continuous-time framework for sequence modeling, yet the roughness of the driving control path often restricts their efficiency. Standard splines introduce high-frequency variations that force adaptive solvers to take excessively small steps, driving up the Number of Function Evaluations (NFE). We propose a novel approach to Neural CDE path construction that replaces exact interpolation with Kernel and Gaussian Process (GP) smoothing, enabling explicit control over trajectory regularity. To recover details lost during smoothing, we propose an attention-based Multi-View CDE (MV-CDE) and its convolutional extension (MVC-CDE), which employ learnable queries to inform path reconstruction. This framework allows the model to distribute representational capacity across multiple trajectories, each capturing distinct temporal patterns. Empirical results demonstrate that our method, MVC-CDE with GP, achieves state-of-the-art accuracy while significantly reducing NFEs and total inference time compared to spline-based baselines.
☆ Learning Beyond the Gaussian Data: Learning Dynamics of Neural Networks on an Expressive and Cumulant-Controllable Data Model ICASSP 2026
We study the effect of high-order statistics of data on the learning dynamics of neural networks (NNs) by using a moment-controllable non-Gaussian data model. Considering the expressivity of two-layer neural networks, we first construct the data model as a generative two-layer NN where the activation function is expanded by using Hermite polynomials. This allows us to achieve interpretable control over high-order cumulants such as skewness and kurtosis through the Hermite coefficients while keeping the data model realistic. Using samples generated from the data model, we perform controlled online learning experiments with a two-layer NN. Our results reveal a moment-wise progression in training: networks first capture low-order statistics such as mean and covariance, and progressively learn high-order cumulants. Finally, we pretrain the generative model on the Fashion-MNIST dataset and leverage the generated samples for further experiments. The results of these additional experiments confirm our conclusions and show the utility of the data model in a real-world scenario. Overall, our proposed approach bridges simplified data assumptions and practical data complexity, which offers a principled framework for investigating distributional effects in machine learning and signal processing.
comment: ICASSP 2026, 5 pages, 2 figures
☆ Revisiting Adaptive Rounding with Vectorized Reparameterization for LLM Quantization
Adaptive Rounding has emerged as an alternative to round-to-nearest (RTN) for post-training quantization by enabling cross-element error cancellation. Yet, dense and element-wise rounding matrices are prohibitively expensive for billion-parameter large language models (LLMs). We revisit adaptive rounding from an efficiency perspective and propose VQRound, a parameter-efficient optimization framework that reparameterizes the rounding matrix into a compact codebook. Unlike low-rank alternatives, VQRound minimizes the element-wise worst-case error under $L_\infty$ norm, which is critical for handling heavy-tailed weight distributions in LLMs. Beyond reparameterization, we identify rounding initialization as a decisive factor and develop a lightweight end-to-end finetuning pipeline that optimizes codebooks across all layers using only 128 samples. Extensive experiments on OPT, LLaMA, LLaMA2, and Qwen3 models demonstrate that VQRound achieves better convergence than traditional adaptive rounding at the same number of steps while using as little as 0.2% of the trainable parameters. Our results show that adaptive rounding can be made both scalable and fast-fitting. The code is available at https://github.com/zhoustan/VQRound.
comment: 17 pages, 6 figures, 14 tables
☆ ECHO: Entropy-Confidence Hybrid Optimization for Test-Time Reinforcement Learning
Test-time reinforcement learning generates multiple candidate answers via repeated rollouts and performs online updates using pseudo-labels constructed by majority voting. To reduce overhead and improve exploration, prior work introduces tree structured rollouts, which share reasoning prefixes and branch at key nodes to improve sampling efficiency. However, this paradigm still faces two challenges: (1) high entropy branching can trigger rollout collapse, where the branching budget concentrates on a few trajectories with consecutive high-entropy segments, rapidly reducing the number of effective branches; (2) early pseudo-labels are noisy and biased, which can induce self-reinforcing overfitting, causing the policy to sharpen prematurely and suppress exploration. To address these issues, we propose Entropy Confidence Hybrid Group Relative Policy Optimization (ECHO). During rollout, ECHO jointly leverages local entropy and group level confidence to adaptively control branch width, and further introduces online confidence-based pruning to terminate persistently low confidence branches, avoiding high entropy traps and mitigating collapse. During policy updates, ECHO employs confidence adaptive clipping and an entropy confidence hybrid advantage shaping approach to enhance training robustness and mitigate early stage bias. Experiments demonstrate that ECHO achieves consistent gains on multiple mathematical and visual reasoning benchmarks, and generalizes more effectively under a limited rollout budget.
comment: 19 ppages
☆ Back to the Future: Look-ahead Augmentation and Parallel Self-Refinement for Time Series Forecasting WWW
Long-term time series forecasting (LTSF) remains challenging due to the trade-off between parallel efficiency and sequential modeling of temporal coherence. Direct multi-step forecasting (DMS) methods enable fast, parallel prediction of all future horizons but often lose temporal consistency across steps, while iterative multi-step forecasting (IMS) preserves temporal dependencies at the cost of error accumulation and slow inference. To bridge this gap, we propose Back to the Future (BTTF), a simple yet effective framework that enhances forecasting stability through look-ahead augmentation and self-corrective refinement. Rather than relying on complex model architectures, BTTF revisits the fundamental forecasting process and refines a base model by ensembling the second-stage models augmented with their initial predictions. Despite its simplicity, our approach consistently improves long-horizon accuracy and mitigates the instability of linear forecasting models, achieving accuracy gains of up to 58% and demonstrating stable improvements even when the first-stage model is trained under suboptimal conditions. These results suggest that leveraging model-generated forecasts as augmentation can be a simple yet powerful way to enhance long-term prediction, even without complex architectures.
comment: 4 pages, Short paper accepted at The Web Conference (WWW) 2026
☆ Learning Generative Selection for Best-of-N
Scaling test-time compute via parallel sampling can substantially improve LLM reasoning, but is often limited by Best-of-N selection quality. Generative selection methods, such as GenSelect, address this bottleneck, yet strong selection performance remains largely limited to large models. We show that small reasoning models can acquire strong GenSelect capabilities through targeted reinforcement learning. To this end, we synthesize selection tasks from large-scale math and code instruction datasets by filtering to instances with both correct and incorrect candidate solutions, and train 1.7B-parameter models with DAPO to reward correct selections. Across math (AIME24, AIME25, HMMT25) and code (LiveCodeBench) reasoning benchmarks, our models consistently outperform prompting and majority-voting baselines, often approaching or exceeding much larger models. Moreover, these gains generalize to selecting outputs from stronger models despite training only on outputs from weaker models. Overall, our results establish reinforcement learning as a scalable way to unlock strong generative selection in small models, enabling efficient test-time scaling.
☆ EvoMU: Evolutionary Machine Unlearning
Machine unlearning aims to unlearn specified training data (e.g. sensitive or copyrighted material). A prominent approach is to fine-tune an existing model with an unlearning loss that retains overall utility. The space of suitable unlearning loss functions is vast, making the search for an optimal loss function daunting. Additionally, there might not even exist a universally optimal loss function: differences in the structure and overlap of the forget and retain data can cause a loss to work well in one setting but over-unlearn or under-unlearn in another. Our approach EvoMU tackles these two challenges simultaneously. An evolutionary search procedure automatically finds task-specific losses in the vast space of possible unlearning loss functions. This allows us to find dataset-specific losses that match or outperform existing losses from the literature, without the need for a human-in-the-loop. This work is therefore an instance of automatic scientific discovery, a.k.a. an AI co-scientist. In contrast to previous AI co-scientist works, we do so on a budget: We achieve SotA results using a small 4B parameter model (Qwen3-4B-Thinking), showing the potential of AI co-scientists with limited computational resources. Our experimental evaluation shows that we surpass previous loss-based unlearning formulations on TOFU-5%, TOFU-10%, MUSE and WMDP by synthesizing novel unlearning losses. Our code is available at https://github.com/Batorskq/EvoMU.
☆ DCoPilot: Generative AI-Empowered Policy Adaptation for Dynamic Data Center Operations
Modern data centers (DCs) hosting artificial intelligence (AI)-dedicated devices operate at high power densities with rapidly varying workloads, making minute-level adaptation essential for safe and energy-efficient operation. However, manually designing piecewise deep reinforcement learning (DRL) agents cannot keep pace with frequent dynamics shifts and service-level agreement (SLA) changes of an evolving DC. This specification-to-policy lag causes a lack of timely, effective control policies, which may lead to service outages. To bridge the gap, we present DCoPilot, a hybrid framework for generative control policies in dynamic DC operation. DCoPilot synergizes two distinct generative paradigms, i.e., a large language model (LLM) that performs symbolic generation of structured reward forms, and a hypernetwork that conducts parametric generation of policy weights. DCoPilot operates through three coordinated phases: (i) simulation scale-up, which stress-tests reward candidates across diverse simulation-ready (SimReady) scenes; (ii) meta policy distillation, where a hypernetwork is trained to output policy weights conditioned on SLA and scene embeddings; and (iii) online adaptation, enabling zero-shot policy generation in response to updated specifications. Evaluated across five control task families spanning diverse DC components, DCoPilot achieves near-zero constraint violations and outperforms all baselines across specification variations. Ablation studies validate the effectiveness of LLM-based unified reward generation in enabling stable hypernetwork convergence.
☆ Scalable Spatio-Temporal SE(3) Diffusion for Long-Horizon Protein Dynamics
Molecular dynamics (MD) simulations remain the gold standard for studying protein dynamics, but their computational cost limits access to biologically relevant timescales. Recent generative models have shown promise in accelerating simulations, yet they struggle with long-horizon generation due to architectural constraints, error accumulation, and inadequate modeling of spatio-temporal dynamics. We present STAR-MD (Spatio-Temporal Autoregressive Rollout for Molecular Dynamics), a scalable SE(3)-equivariant diffusion model that generates physically plausible protein trajectories over microsecond timescales. Our key innovation is a causal diffusion transformer with joint spatio-temporal attention that efficiently captures complex space-time dependencies while avoiding the memory bottlenecks of existing methods. On the standard ATLAS benchmark, STAR-MD achieves state-of-the-art performance across all metrics--substantially improving conformational coverage, structural validity, and dynamic fidelity compared to previous methods. STAR-MD successfully extrapolates to generate stable microsecond-scale trajectories where baseline methods fail catastrophically, maintaining high structural quality throughout the extended rollout. Our comprehensive evaluation reveals severe limitations in current models for long-horizon generation, while demonstrating that STAR-MD's joint spatio-temporal modeling enables robust dynamics simulation at biologically relevant timescales, paving the way for accelerated exploration of protein function.
comment: For associated project page, see https://bytedance-seed.github.io/ConfRover/starmd
☆ Two-Stage Grid Optimization for Group-wise Quantization of LLMs ICASSP 2026
Group-wise quantization is an effective strategy for mitigating accuracy degradation in low-bit quantization of large language models (LLMs). Among existing methods, GPTQ has been widely adopted due to its efficiency; however, it neglects input statistics and inter-group correlations when determining group scales, leading to a mismatch with its goal of minimizing layer-wise reconstruction loss. In this work, we propose a two-stage optimization framework for group scales that explicitly minimizes the layer-wise reconstruction loss. In the first stage, performed prior to GPTQ, we initialize each group scale to minimize the group-wise reconstruction loss, thereby incorporating input statistics. In the second stage, we freeze the integer weights obtained via GPTQ and refine the group scales to minimize the layer-wise reconstruction loss. To this end, we employ the coordinate descent algorithm and derive a closed-form update rule, which enables efficient refinement without costly numerical optimization. Notably, our derivation incorporates the quantization errors from preceding layers to prevent error accumulation. Experimental results demonstrate that our method consistently enhances group-wise quantization, achieving higher accuracy with negligible overhead.
comment: ICASSP 2026
☆ Toxicity Assessment in Preclinical Histopathology via Class-Aware Mahalanobis Distance for Known and Novel Anomalies
Drug-induced toxicity remains a leading cause of failure in preclinical development and early clinical trials. Detecting adverse effects at an early stage is critical to reduce attrition and accelerate the development of safe medicines. Histopathological evaluation remains the gold standard for toxicity assessment, but it relies heavily on expert pathologists, creating a bottleneck for large-scale screening. To address this challenge, we introduce an AI-based anomaly detection framework for histopathological whole-slide images (WSIs) in rodent livers from toxicology studies. The system identifies healthy tissue and known pathologies (anomalies) for which training data is available. In addition, it can detect rare pathologies without training data as out-of-distribution (OOD) findings. We generate a novel dataset of pixelwise annotations of healthy tissue and known pathologies and use this data to fine-tune a pre-trained Vision Transformer (DINOv2) via Low-Rank Adaptation (LoRA) in order to do tissue segmentation. Finally, we extract features for OOD detection using the Mahalanobis distance. To better account for class-dependent variability in histological data, we propose the use of class-specific thresholds. We optimize the thresholds using the mean of the false negative and false positive rates, resulting in only 0.16\% of pathological tissue classified as healthy and 0.35\% of healthy tissue classified as pathological. Applied to mouse liver WSIs with known toxicological findings, the framework accurately detects anomalies, including rare OOD morphologies. This work demonstrates the potential of AI-driven histopathology to support preclinical workflows, reduce late-stage failures, and improve efficiency in drug development.
☆ The Maximum von Neumann Entropy Principle: Theory and Applications in Machine Learning
Von Neumann entropy (VNE) is a fundamental quantity in quantum information theory and has recently been adopted in machine learning as a spectral measure of diversity for kernel matrices and kernel covariance operators. While maximizing VNE under constraints is well known in quantum settings, a principled analogue of the classical maximum entropy framework, particularly its decision theoretic and game theoretic interpretation, has not been explicitly developed for VNE in data driven contexts. In this paper, we extend the minimax formulation of the maximum entropy principle due to Grünwald and Dawid to the setting of von Neumann entropy, providing a game-theoretic justification for VNE maximization over density matrices and trace-normalized positive semidefinite operators. This perspective yields a robust interpretation of maximum VNE solutions under partial information and clarifies their role as least committed inferences in spectral domains. We then illustrate how the resulting Maximum VNE principle applies to modern machine learning problems by considering two representative applications, selecting a kernel representation from multiple normalized embeddings via kernel-based VNE maximization, and completing kernel matrices from partially observed entries. These examples demonstrate how the proposed framework offers a unifying information-theoretic foundation for VNE-based methods in kernel learning.
☆ Enhancing Diffusion-Based Quantitatively Controllable Image Generation via Matrix-Form EDM and Adaptive Vicinal Training
Continuous Conditional Diffusion Model (CCDM) is a diffusion-based framework designed to generate high-quality images conditioned on continuous regression labels. Although CCDM has demonstrated clear advantages over prior approaches across a range of datasets, it still exhibits notable limitations and has recently been surpassed by a GAN-based method, namely CcGAN-AVAR. These limitations mainly arise from its reliance on an outdated diffusion framework and its low sampling efficiency due to long sampling trajectories. To address these issues, we propose an improved CCDM framework, termed iCCDM, which incorporates the more advanced \textit{Elucidated Diffusion Model} (EDM) framework with substantial modifications to improve both generation quality and sampling efficiency. Specifically, iCCDM introduces a novel matrix-form EDM formulation together with an adaptive vicinal training strategy. Extensive experiments on four benchmark datasets, spanning image resolutions from $64\times64$ to $256\times256$, demonstrate that iCCDM consistently outperforms existing methods, including state-of-the-art large-scale text-to-image diffusion models (e.g., Stable Diffusion 3, FLUX.1, and Qwen-Image), achieving higher generation quality while significantly reducing sampling cost.
☆ Training-free score-based diffusion for parameter-dependent stochastic dynamical systems
Simulating parameter-dependent stochastic differential equations (SDEs) presents significant computational challenges, as separate high-fidelity simulations are typically required for each parameter value of interest. Despite the success of machine learning methods in learning SDE dynamics, existing approaches either require expensive neural network training for score function estimation or lack the ability to handle continuous parameter dependence. We present a training-free conditional diffusion model framework for learning stochastic flow maps of parameter-dependent SDEs, where both drift and diffusion coefficients depend on physical parameters. The key technical innovation is a joint kernel-weighted Monte Carlo estimator that approximates the conditional score function using trajectory data sampled at discrete parameter values, enabling interpolation across both state space and the continuous parameter domain. Once trained, the resulting generative model produces sample trajectories for any parameter value within the training range without retraining, significantly accelerating parameter studies, uncertainty quantification, and real-time filtering applications. The performance of the proposed approach is demonstrated via three numerical examples of increasing complexity, showing accurate approximation of conditional distributions across varying parameter values.
☆ Unifying Masked Diffusion Models with Various Generation Orders and Beyond
Masked diffusion models (MDMs) are a potential alternative to autoregressive models (ARMs) for language generation, but generation quality depends critically on the generation order. Prior work either hard-codes an ordering (e.g., blockwise left-to-right) or learns an ordering policy for a pretrained MDM, which incurs extra cost and can yield suboptimal solutions due to the two-stage optimization. Motivated by this, we propose order-expressive masked diffusion model (OeMDM) for a broad class of diffusion generative processes with various generation orders, enabling the interpretation of MDM, ARM, and block diffusion in a single framework. Furthermore, building on OeMDM, we introduce learnable-order masked diffusion model (LoMDM), which jointly learns the generation ordering and diffusion backbone through a single objective from scratch, enabling the diffusion model to generate text in context-dependent ordering. Empirically, we confirm that LoMDM outperforms various discrete diffusion models across multiple language modeling benchmarks.
comment: Preprint
☆ An Empirical Study of World Model Quantization
World models learn an internal representation of environment dynamics, enabling agents to simulate and reason about future states within a compact latent space for tasks such as planning, prediction, and inference. However, running world models rely on hevay computational cost and memory footprint, making model quantization essential for efficient deployment. To date, the effects of post-training quantization (PTQ) on world models remain largely unexamined. In this work, we present a systematic empirical study of world model quantization using DINO-WM as a representative case, evaluating diverse PTQ methods under both weight-only and joint weight-activation settings. We conduct extensive experiments on different visual planning tasks across a wide range of bit-widths, quantization granularities, and planning horizons up to 50 iterations. Our results show that quantization effects in world models extend beyond standard accuracy and bit-width trade-offs: group-wise weight quantization can stabilize low-bit rollouts, activation quantization granularity yields inconsistent benefits, and quantization sensitivity is highly asymmetric between encoder and predictor modules. Moreover, aggressive low-bit quantization significantly degrades the alignment between the planning objective and task success, leading to failures that cannot be remedied by additional optimization. These findings reveal distinct quantization-induced failure modes in world model-based planning and provide practical guidance for deploying quantized world models under strict computational constraints. The code will be available at https://github.com/huawei-noah/noah-research/tree/master/QuantWM.
☆ No Global Plan in Chain-of-Thought: Uncover the Latent Planning Horizon of LLMs
This work stems from prior complementary observations on the dynamics of Chain-of-Thought (CoT): Large Language Models (LLMs) is shown latent planning of subsequent reasoning prior to CoT emergence, thereby diminishing the significance of explicit CoT; whereas CoT remains critical for tasks requiring multi-step reasoning. To deepen the understanding between LLM's internal states and its verbalized reasoning trajectories, we investigate the latent planning strength of LLMs, through our probing method, Tele-Lens, applying to hidden states across diverse task domains. Our empirical results indicate that LLMs exhibit a myopic horizon, primarily conducting incremental transitions without precise global planning. Leveraging this characteristic, we propose a hypothesis on enhancing uncertainty estimation of CoT, which we validate that a small subset of CoT positions can effectively represent the uncertainty of the entire path. We further underscore the significance of exploiting CoT dynamics, and demonstrate that automatic recognition of CoT bypass can be achieved without performance degradation. Our code, data and models are released at https://github.com/lxucs/tele-lens.
☆ Think Dense, Not Long: Dynamic Decoupled Conditional Advantage for Efficient Reasoning
Reinforcement Learning with Verifiable Rewards (RLVR) can elicit strong multi-step reasoning, yet it often encourages overly verbose traces. Moreover, naive length penalties in group-relative optimization can severely hurt accuracy. We attribute this failure to two structural issues: (i) Dilution of Length Baseline, where incorrect responses (with zero length reward) depress the group baseline and over-penalize correct solutions; and (ii) Difficulty-Penalty Mismatch, where a static penalty cannot adapt to problem difficulty, suppressing necessary reasoning on hard instances while leaving redundancy on easy ones. We propose Dynamic Decoupled Conditional Advantage (DDCA) to decouple efficiency optimization from correctness. DDCA computes length advantages conditionally within the correct-response cluster to eliminate baseline dilution, and dynamically scales the penalty strength using the group pass rate as a proxy for difficulty. Experiments on GSM8K, MATH500, AMC23, and AIME25 show that DDCA consistently improves the efficiency--accuracy trade-off relative to adaptive baselines, reducing generated tokens by approximately 60% on simpler tasks (e.g., GSM8K) versus over 20% on harder benchmarks (e.g., AIME25), thereby maintaining or improving accuracy. Code is available at https://github.com/alphadl/DDCA.
☆ Probabilistic Performance Guarantees for Multi-Task Reinforcement Learning
Multi-task reinforcement learning trains generalist policies that can execute multiple tasks. While recent years have seen significant progress, existing approaches rarely provide formal performance guarantees, which are indispensable when deploying policies in safety-critical settings. We present an approach for computing high-confidence guarantees on the performance of a multi-task policy on tasks not seen during training. Concretely, we introduce a new generalisation bound that composes (i) per-task lower confidence bounds from finitely many rollouts with (ii) task-level generalisation from finitely many sampled tasks, yielding a high-confidence guarantee for new tasks drawn from the same arbitrary and unknown distribution. Across state-of-the-art multi-task RL methods, we show that the guarantees are theoretically sound and informative at realistic sample sizes.
☆ Efficient Swap Regret Minimization in Combinatorial Bandits AISTATS 2026
This paper addresses the problem of designing efficient no-swap regret algorithms for combinatorial bandits, where the number of actions $N$ is exponentially large in the dimensionality of the problem. In this setting, designing efficient no-swap regret translates to sublinear -- in horizon $T$ -- swap regret with polylogarithmic dependence on $N$. In contrast to the weaker notion of external regret minimization - a problem which is fairly well understood in the literature - achieving no-swap regret with a polylogarithmic dependence on $N$ has remained elusive in combinatorial bandits. Our paper resolves this challenge, by introducing a no-swap-regret learning algorithm with regret that scales polylogarithmically in $N$ and is tight for the class of combinatorial bandits. To ground our results, we also demonstrate how to implement the proposed algorithm efficiently -- that is, with a per-iteration complexity that also scales polylogarithmically in $N$ -- across a wide range of well-studied applications.
comment: Accepted at AISTATS 2026
☆ Active learning from positive and unlabeled examples
Learning from positive and unlabeled data (PU learning) is a weakly supervised variant of binary classification in which the learner receives labels only for (some) positively labeled instances, while all other examples remain unlabeled. Motivated by applications such as advertising and anomaly detection, we study an active PU learning setting where the learner can adaptively query instances from an unlabeled pool, but a queried label is revealed only when the instance is positive and an independent coin flip succeeds; otherwise the learner receives no information. In this paper, we provide the first theoretical analysis of the label complexity of active PU learning.
☆ Learning Half-Spaces from Perturbed Contrastive Examples
We study learning under a two-step contrastive example oracle, as introduced by Mansouri et. al. (2025), where each queried (or sampled) labeled example is paired with an additional contrastive example of opposite label. While Mansouri et al. assume an idealized setting, where the contrastive example is at minimum distance of the originally queried/sampled point, we introduce and analyze a mechanism, parameterized by a non-decreasing noise function $f$, under which this ideal contrastive example is perturbed. The amount of perturbation is controlled by $f(d)$, where $d$ is the distance of the queried/sampled point to the decision boundary. Intuitively, this results in higher-quality contrastive examples for points closer to the decision boundary. We study this model in two settings: (i) when the maximum perturbation magnitude is fixed, and (ii) when it is stochastic. For one-dimensional thresholds and for half-spaces under the uniform distribution on a bounded domain, we characterize active and passive contrastive sample complexity in dependence on the function $f$. We show that, under certain conditions on $f$, the presence of contrastive examples speeds up learning in terms of asymptotic query complexity and asymptotic expected query complexity.
☆ AICD Bench: A Challenging Benchmark for AI-Generated Code Detection
Large language models (LLMs) are increasingly capable of generating functional source code, raising concerns about authorship, accountability, and security. While detecting AI-generated code is critical, existing datasets and benchmarks are narrow, typically limited to binary human-machine classification under in-distribution settings. To bridge this gap, we introduce $\emph{AICD Bench}$, the most comprehensive benchmark for AI-generated code detection. It spans $\emph{2M examples}$, $\emph{77 models}$ across $\emph{11 families}$, and $\emph{9 programming languages}$, including recent reasoning models. Beyond scale, AICD Bench introduces three realistic detection tasks: ($\emph{i}$)~$\emph{Robust Binary Classification}$ under distribution shifts in language and domain, ($\emph{ii}$)~$\emph{Model Family Attribution}$, grouping generators by architectural lineage, and ($\emph{iii}$)~$\emph{Fine-Grained Human-Machine Classification}$ across human, machine, hybrid, and adversarial code. Extensive evaluation on neural and classical detectors shows that performance remains far below practical usability, particularly under distribution shift and for hybrid or adversarial code. We release AICD Bench as a $\emph{unified, challenging evaluation suite}$ to drive the next generation of robust approaches for AI-generated code detection. The data and the code are available at https://huggingface.co/AICD-bench}.
☆ Calibrating Adaptive Smoothing Methods for Freeway Traffic Reconstruction
The adaptive smoothing method (ASM) is a widely used approach for traffic state reconstruction. This article presents a Python implementation of ASM, featuring end-to-end calibration using real-world ground truth data. The calibration is formulated as a parameterized kernel optimization problem. The model is calibrated using data from a full-state observation testbed, with input from a sparse radar sensor network. The implementation is developed in PyTorch, enabling integration with various deep learning methods. We evaluate the results in terms of speed distribution, spatio-temporal error distribution, and spatial error to provide benchmark metrics for the traffic reconstruction problem. We further demonstrate the usability of the calibrated method across multiple freeways. Finally, we discuss the challenges of reproducibility in general traffic model calibration and the limitations of ASM. This article is reproducible and can serve as a benchmark for various freeway operation tasks.
☆ Learning to Route and Schedule LLMs from User Retrials via Contextual Queueing Bandits
Explosive demands for LLMs often cause user queries to accumulate in server queues, requiring efficient routing (query-LLM matching) and scheduling (query prioritization) mechanisms. Several online algorithms are being deployed, but they overlook the following two key challenges inherent to conversational LLM services: (1) unsatisfied users may retry queries, increasing the server backlog, and (2) requests for ``explicit" feedback, such as ratings, degrade user experiences. In this paper, we develop a joint routing and scheduling algorithm that leverages ``implicit" feedback inferred from user retrial behaviors. The key idea is to propose and study the framework of contextual queueing bandits with multinomial logit feedback (CQB-MNL). CQB-MNL models query retrials, as well as context-based learning for user preferences over LLMs. Our algorithm, anytime CQB (ACQB), achieves efficient learning while maintaining queue stability by combining Thompson sampling with forced exploration at a decaying rate. We show that ACQB simultaneously achieves a cumulative regret of $\widetilde{\mathcal{O}}(\sqrt{t})$ for routing and a queue length regret of $\widetilde{\mathcal{O}}(t^{-1/4})$ for any large $t$. For experiments, we refine query embeddings via contrastive learning while adopting a disjoint parameter model to learn LLM-specific parameters. Experiments on SPROUT, EmbedLLM, and RouterBench datasets confirm that both algorithms consistently outperform baselines.
☆ FiLoRA: Focus-and-Ignore LoRA for Controllable Feature Reliance
Multimodal foundation models integrate heterogeneous signals across modalities, yet it remains poorly understood how their predictions depend on specific internal feature groups and whether such reliance can be deliberately controlled. Existing studies of shortcut and spurious behavior largely rely on post hoc analyses or feature removal, offering limited insight into whether reliance can be modulated without altering task semantics. We introduce FiLoRA (Focus-and-Ignore LoRA), an instruction-conditioned, parameter-efficient adaptation framework that enables explicit control over internal feature reliance while keeping the predictive objective fixed. FiLoRA decomposes adaptation into feature group-aligned LoRA modules and applies instruction-conditioned gating, allowing natural language instructions to act as computation-level control signals rather than task redefinitions. Across text--image and audio--visual benchmarks, we show that instruction-conditioned gating induces consistent and causal shifts in internal computation, selectively amplifying or suppressing core and spurious feature groups without modifying the label space or training objective. Further analyses demonstrate that FiLoRA yields improved robustness under spurious feature interventions, revealing a principled mechanism to regulate reliance beyond correlation-driven learning.
☆ Ultrafast On-chip Online Learning via Spline Locality in Kolmogorov-Arnold Networks
Ultrafast online learning is essential for high-frequency systems, such as controls for quantum computing and nuclear fusion, where adaptation must occur on sub-microsecond timescales. Meeting these requirements demands low-latency, fixed-precision computation under strict memory constraints, a regime in which conventional Multi-Layer Perceptrons (MLPs) are both inefficient and numerically unstable. We identify key properties of Kolmogorov-Arnold Networks (KANs) that align with these constraints. Specifically, we show that: (i) KAN updates exploiting B-spline locality are sparse, enabling superior on-chip resource scaling, and (ii) KANs are inherently robust to fixed-point quantization. By implementing fixed-point online training on Field-Programmable Gate Arrays (FPGAs), a representative platform for on-chip computation, we demonstrate that KAN-based online learners are significantly more efficient and expressive than MLPs across a range of low-latency and resource-constrained tasks. To our knowledge, this work is the first to demonstrate model-free online learning at sub-microsecond latencies.
☆ FORLER: Federated Offline Reinforcement Learning with Q-Ensemble and Actor Rectification IEEE
In Internet-of-Things systems, federated learning has advanced online reinforcement learning (RL) by enabling parallel policy training without sharing raw data. However, interacting with real environments online can be risky and costly, motivating offline federated RL (FRL), where local devices learn from fixed datasets. Despite its promise, offline FRL may break down under low-quality, heterogeneous data. Offline RL tends to get stuck in local optima, and in FRL, one device's suboptimal policy can degrade the aggregated model, i.e., policy pollution. We present FORLER, combining Q-ensemble aggregation on the server with actor rectification on devices. The server robustly merges device Q-functions to curb policy pollution and shift heavy computation off resource-constrained hardware without compromising privacy. Locally, actor rectification enriches policy gradients via a zeroth-order search for high-Q actions plus a bespoke regularizer that nudges the policy toward them. A $δ$-periodic strategy further reduces local computation. We theoretically provide safe policy improvement performance guarantees. Extensive experiments show FORLER consistently outperforms strong baselines under varying data quality and heterogeneity.
comment: accetped by IEEE International Conference on Communications (ICC 2026)
☆ Dissecting Outlier Dynamics in LLM NVFP4 Pretraining
Training large language models using 4-bit arithmetic enhances throughput and memory efficiency. Yet, the limited dynamic range of FP4 increases sensitivity to outliers. While NVFP4 mitigates quantization error via hierarchical microscaling, a persistent loss gap remains compared to BF16. This study conducts a longitudinal analysis of outlier dynamics across architecture during NVFP4 pretraining, focusing on where they localize, why they occur, and how they evolve temporally. We find that, compared with Softmax Attention (SA), Linear Attention (LA) reduces per-tensor heavy tails but still exhibits persistent block-level spikes under block quantization. Our analysis attributes outliers to specific architectural components: Softmax in SA, gating in LA, and SwiGLU in FFN, with "post-QK" operations exhibiting higher sensitivity to quantization. Notably, outliers evolve from transient spikes early in training to a small set of persistent hot channels (i.e., channels with persistently large magnitudes) in later stages. Based on these findings, we introduce Hot-Channel Patch (HCP), an online compensation mechanism that identifies hot channels and reinjects residuals using hardware-efficient kernels. We then develop CHON, an NVFP4 training recipe integrating HCP with post-QK operation protection. On GLA-1.3B model trained for 60B tokens, CHON reduces the loss gap to BF16 from 0.94% to 0.58% while maintaining downstream accuracy.
comment: 39 pages, 32 figures
☆ On Stability and Robustness of Diffusion Posterior Sampling for Bayesian Inverse Problems
Diffusion models have recently emerged as powerful learned priors for Bayesian inverse problems (BIPs). Diffusion-based solvers rely on a presumed likelihood for the observations in BIPs to guide the generation process. However, the link between likelihood and recovery quality for BIPs is unclear in previous works. We bridge this gap by characterizing the posterior approximation error and proving the \emph{stability} of the diffusion-based solvers. Meanwhile, an immediate result of our findings on stability demonstrates the lack of robustness in diffusion-based solvers, which remains unexplored. This can degrade performance when the presumed likelihood mismatches the unknown true data generation processes. To address this issue, we propose a simple yet effective solution, \emph{robust diffusion posterior sampling}, which is provably \emph{robust} and compatible with existing gradient-based posterior samplers. Empirical results on scientific inverse problems and natural image tasks validate the effectiveness and robustness of our method, showing consistent performance improvements under challenging likelihood misspecifications.
☆ Twinning Complex Networked Systems: Data-Driven Calibration of the mABCD Synthetic Graph Generator
The increasing availability of relational data has contributed to a growing reliance on network-based representations of complex systems. Over time, these models have evolved to capture more nuanced properties, such as the heterogeneity of relationships, leading to the concept of multilayer networks. However, the analysis and evaluation of methods for these structures is often hindered by the limited availability of large-scale empirical data. As a result, graph generators are commonly used as a workaround, albeit at the cost of introducing systematic biases. In this paper, we address the inverse-generator problem by inferring the configuration parameters of a multilayer network generator, mABCD, from a real-world system. Our goal is to identify parameter settings that enable the generator to produce synthetic networks that act as digital twins of the original structure. We propose a method for estimating matching configurations and for quantifying the associated error. Our results demonstrate that this task is non-trivial, as strong interdependencies between configuration parameters weaken independent estimation and instead favour a joint-prediction approach.
☆ Hunt Instead of Wait: Evaluating Deep Data Research on Large Language Models
The agency expected of Agentic Large Language Models goes beyond answering correctly, requiring autonomy to set goals and decide what to explore. We term this investigatory intelligence, distinguishing it from executional intelligence, which merely completes assigned tasks. Data Science provides a natural testbed, as real-world analysis starts from raw data rather than explicit queries, yet few benchmarks focus on it. To address this, we introduce Deep Data Research (DDR), an open-ended task where LLMs autonomously extract key insights from databases, and DDR-Bench, a large-scale, checklist-based benchmark that enables verifiable evaluation. Results show that while frontier models display emerging agency, long-horizon exploration remains challenging. Our analysis highlights that effective investigatory intelligence depends not only on agent scaffolding or merely scaling, but also on intrinsic strategies of agentic models.
comment: 14 pages, 7 tables, 8 figures
☆ Bandwidth-Efficient Multi-Agent Communication through Information Bottleneck and Vector Quantization IEEE
Multi-agent reinforcement learning systems deployed in real-world robotics applications face severe communication constraints that significantly impact coordination effectiveness. We present a framework that combines information bottleneck theory with vector quantization to enable selective, bandwidth-efficient communication in multi-agent environments. Our approach learns to compress and discretize communication messages while preserving task-critical information through principled information-theoretic optimization. We introduce a gated communication mechanism that dynamically determines when communication is necessary based on environmental context and agent states. Experimental evaluation on challenging coordination tasks demonstrates that our method achieves 181.8% performance improvement over no-communication baselines while reducing bandwidth usage by 41.4%. Comprehensive Pareto frontier analysis shows dominance across the entire success-bandwidth spectrum with area-under-curve of 0.198 vs 0.142 for next-best methods. Our approach significantly outperforms existing communication strategies and establishes a theoretically grounded framework for deploying multi-agent systems in bandwidth-constrained environments such as robotic swarms, autonomous vehicle fleets, and distributed sensor networks.
comment: Accepted at the 2026 IEEE International Conference on Robotics and Automation (ICRA 2026), Vienna, Austria. 9 pages, 4 figures, 6 tables
☆ Light Alignment Improves LLM Safety via Model Self-Reflection with a Single Neuron
The safety of large language models (LLMs) has increasingly emerged as a fundamental aspect of their development. Existing safety alignment for LLMs is predominantly achieved through post-training methods, which are computationally expensive and often fail to generalize well across different models. A small number of lightweight alignment approaches either rely heavily on prior-computed safety injections or depend excessively on the model's own capabilities, resulting in limited generalization and degraded efficiency and usability during generation. In this work, we propose a safety-aware decoding method that requires only low-cost training of an expert model and employs a single neuron as a gating mechanism. By effectively balancing the model's intrinsic capabilities with external guidance, our approach simultaneously preserves utility and enhances output safety. It demonstrates clear advantages in training overhead and generalization across model scales, offering a new perspective on lightweight alignment for the safe and practical deployment of large language models. Code: https://github.com/Beijing-AISI/NGSD.
comment: 21 pages, 3 figures
☆ Hippasus: Effective and Efficient Automatic Feature Augmentation for Machine Learning Tasks on Relational Data
Machine learning models depend critically on feature quality, yet useful features are often scattered across multiple relational tables. Feature augmentation enriches a base table by discovering and integrating features from related tables through join operations. However, scaling this process to complex schemas with many tables and multi-hop paths remains challenging. Feature augmentation must address three core tasks: identify promising join paths that connect the base table to candidate tables, execute these joins to materialize augmented data, and select the most informative features from the results. Existing approaches face a fundamental tradeoff between effectiveness and efficiency: achieving high accuracy requires exploring many candidate paths, but exhaustive exploration is computationally prohibitive. Some methods compromise by considering only immediate neighbors, limiting their effectiveness, while others employ neural models that require expensive training data and introduce scalability limitations. We present Hippasus, a modular framework that achieves both goals through three key contributions. First, we combine lightweight statistical signals with semantic reasoning from Large Language Models to prune unpromising join paths before execution, focusing computational resources on high-quality candidates. Second, we employ optimized multi-way join algorithms and consolidate features from multiple paths, substantially reducing execution time. Third, we integrate LLM-based semantic understanding with statistical measures to select features that are both semantically meaningful and empirically predictive. Our experimental evaluation on publicly available datasets shows that Hippasus substantially improves feature augmentation accuracy by up to 26.8% over state-of-the-art baselines while also offering high runtime performance.
comment: 13 pages, 7 figures, 9 tables
☆ Adaptive Quality-Diversity Trade-offs for Large-Scale Batch Recommendation
A core research question in recommender systems is to propose batches of highly relevant and diverse items, that is, items personalized to the user's preferences, but which also might get the user out of their comfort zone. This diversity might induce properties of serendipidity and novelty which might increase user engagement or revenue. However, many real-life problems arise in that case: e.g., avoiding to recommend distinct but too similar items to reduce the churn risk, and computational cost for large item libraries, up to millions of items. First, we consider the case when the user feedback model is perfectly observed and known in advance, and introduce an efficient algorithm called B-DivRec combining determinantal point processes and a fuzzy denuding procedure to adjust the degree of item diversity. This helps enforcing a quality-diversity trade-off throughout the user history. Second, we propose an approach to adaptively tailor the quality-diversity trade-off to the user, so that diversity in recommendations can be enhanced if it leads to positive feedback, and vice-versa. Finally, we illustrate the performance and versatility of B-DivRec in the two settings on synthetic and real-life data sets on movie recommendation and drug repurposing.
☆ Scale-covariant spiking wavelets
We establish a theoretical connection between wavelet transforms and spiking neural networks through scale-space theory. We rely on the scale-covariant guarantees in the leaky integrate-and-fire neurons to implement discrete mother wavelets that approximate continuous wavelets. A reconstruction experiment demonstrates the feasibility of the approach and warrants further analysis to mitigate current approximation errors. Our work suggests a novel spiking signal representation that could enable more energy-efficient signal processing algorithms.
☆ DASH: Faster Shampoo via Batched Block Preconditioning and Efficient Inverse-Root Solvers
Shampoo is one of the leading approximate second-order optimizers: a variant of it has won the MLCommons AlgoPerf competition, and it has been shown to produce models with lower activation outliers that are easier to compress. Yet, applying Shampoo currently comes at the cost of significant computational slowdown, due to its expensive internal operations. In this paper, we take a significant step to address this shortcoming by proposing \method (for \textbf{D}istributed \textbf{A}ccelerated \textbf{SH}ampoo), a faster implementation of Distributed Shampoo based on two main new techniques: First, we show that preconditioner blocks can be stacked into 3D tensors to significantly improve GPU utilization; second, we introduce the Newton-DB iteration and the Chebyshev polynomial approximations as novel and faster approaches for computing the inverse matrix roots required by Shampoo. Along with these algorithmic contributions, we provide a first in-depth analysis of how matrix scaling critically affects Shampoo convergence. On the practical side, our GPU-aware implementation achieves up to $4.83\times$ faster optimizer steps compared to the well-optimized Distributed Shampoo, while Newton-DB attains the lowest validation perplexity per iteration among all tested methods. Our code is available at https://github.com/IST-DASLab/DASH.
☆ Robust Domain Generalization under Divergent Marginal and Conditional Distributions
Domain generalization (DG) aims to learn predictive models that can generalize to unseen domains. Most existing DG approaches focus on learning domain-invariant representations under the assumption of conditional distribution shift (i.e., primarily addressing changes in $P(X\mid Y)$ while assuming $P(Y)$ remains stable). However, real-world scenarios with multiple domains often involve compound distribution shifts where both the marginal label distribution $P(Y)$ and the conditional distribution $P(X\mid Y)$ vary simultaneously. To address this, we propose a unified framework for robust domain generalization under divergent marginal and conditional distributions. We derive a novel risk bound for unseen domains by explicitly decomposing the joint distribution into marginal and conditional components and characterizing risk gaps arising from both sources of divergence. To operationalize this bound, we design a meta-learning procedure that minimizes and validates the proposed risk bound across seen domains, ensuring strong generalization to unseen ones. Empirical evaluations demonstrate that our method achieves state-of-the-art performance not only on conventional DG benchmarks but also in challenging multi-domain long-tailed recognition settings where both marginal and conditional shifts are pronounced.
☆ Rethinking Genomic Modeling Through Optical Character Recognition
Recent genomic foundation models largely adopt large language model architectures that treat DNA as a one-dimensional token sequence. However, exhaustive sequential reading is structurally misaligned with sparse and discontinuous genomic semantics, leading to wasted computation on low-information background and preventing understanding-driven compression for long contexts. Here, we present OpticalDNA, a vision-based framework that reframes genomic modeling as Optical Character Recognition (OCR)-style document understanding. OpticalDNA renders DNA into structured visual layouts and trains an OCR-capable vision--language model with a \emph{visual DNA encoder} and a \emph{document decoder}, where the encoder produces compact, reconstructible visual tokens for high-fidelity compression. Building on this representation, OpticalDNA defines prompt-conditioned objectives over core genomic primitives-reading, region grounding, subsequence retrieval, and masked span completion-thereby learning layout-aware DNA representations that retain fine-grained genomic information under a reduced effective token budget. Across diverse genomic benchmarks, OpticalDNA consistently outperforms recent baselines; on sequences up to 450k bases, it achieves the best overall performance with nearly $20\times$ fewer effective tokens, and surpasses models with up to $985\times$ more activated parameters while tuning only 256k \emph{trainable} parameters.
☆ SNAP: A Self-Consistent Agreement Principle with Application to Robust Computation
We introduce SNAP (Self-coNsistent Agreement Principle), a self-supervised framework for robust computation based on mutual agreement. Based on an Agreement-Reliability Hypothesis SNAP assigns weights that quantify agreement, emphasizing trustworthy items and downweighting outliers without supervision or prior knowledge. A key result is the Exponential Suppression of Outlier Weights, ensuring that outliers contribute negligibly to computations, even in high-dimensional settings. We study properties of SNAP weighting scheme and show its practical benefits on vector averaging and subspace estimation. Particularly, we demonstrate that non-iterative SNAP outperforms the iterative Weiszfeld algorithm and two variants of multivariate median of means. SNAP thus provides a flexible, easy-to-use, broadly applicable approach to robust computation.
☆ Logic-Guided Vector Fields for Constrained Generative Modeling
Neuro-symbolic systems aim to combine the expressive structure of symbolic logic with the flexibility of neural learning; yet, generative models typically lack mechanisms to enforce declarative constraints at generation time. We propose Logic-Guided Vector Fields (LGVF), a neuro-symbolic framework that injects symbolic knowledge, specified as differentiable relaxations of logical constraints, into flow matching generative models. LGVF couples two complementary mechanisms: (1) a training-time logic loss that penalizes constraint violations along continuous flow trajectories, with weights that emphasize correctness near the target distribution; and (2) an inference-time adjustment that steers sampling using constraint gradients, acting as a lightweight, logic-informed correction to the learned dynamics. We evaluate LGVF on three constrained generation case studies spanning linear, nonlinear, and multi-region feasibility constraints. Across all settings, LGVF reduces constraint violations by 59-82% compared to standard flow matching and achieves the lowest violation rates in each case. In the linear and ring settings, LGVF also improves distributional fidelity as measured by MMD, while in the multi-obstacle setting, we observe a satisfaction-fidelity trade-off, with improved feasibility but increased MMD. Beyond quantitative gains, LGVF yields constraint-aware vector fields exhibiting emergent obstacle-avoidance behavior, routing samples around forbidden regions without explicit path planning.
☆ Position: The Need for Ultrafast Training
Domain-specialized FPGAs have delivered unprecedented performance for low-latency inference across scientific and industrial workloads, yet nearly all existing accelerators assume static models trained offline, relegating learning and adaptation to slower CPUs or GPUs. This separation fundamentally limits systems that must operate in non-stationary, high-frequency environments, where model updates must occur at the timescale of the underlying physics. In this paper, I argue for a shift from inference-only accelerators to ultrafast on-chip learning, in which both inference and training execute directly within the FPGA fabric under deterministic, sub-microsecond latency constraints. Bringing learning into the same real-time datapath as inference would enable closed-loop systems that adapt as fast as the physical processes they control, with applications spanning quantum error correction, cryogenic qubit calibration, plasma and fusion control, accelerator tuning, and autonomous scientific experiments. Enabling such regimes requires rethinking algorithms, architectures, and toolflows jointly, but promises to transform FPGAs from static inference engines into real-time learning machines.
comment: Position paper at the 2nd Workshop on Domain-Specialized FPGAs (WDSFPGA 2026)
☆ Preserve-Then-Quantize: Balancing Rank Budgets for Quantization Error Reconstruction in LLMs
Quantization Error Reconstruction (QER) reduces accuracy loss in Post-Training Quantization (PTQ) by approximating weights as $\mathbf{W} \approx \mathbf{Q} + \mathbf{L}\mathbf{R}$, using a rank-$r$ correction to reconstruct quantization error. Prior methods devote the full rank budget to error reconstruction, which is suboptimal when $\mathbf{W}$ has intrinsic low-rank structure and quantization corrupts dominant directions. We propose Structured Residual Reconstruction (SRR), a rank-allocation framework that preserves the top-$k$ singular subspace of the activation-scaled weight before quantization, quantizes only the residual, and uses the remaining rank $r-k$ for error reconstruction. We derive a theory-guided criterion for selecting $k$ by balancing quantization-exposed energy and unrecoverable error under rank constraints. We further show that resulting $\mathbf{Q} + \mathbf{L}\mathbf{R}$ parameterization naturally supports Quantized Parameter-Efficient Fine-Tuning (QPEFT), and stabilizes fine-tuning via gradient scaling along preserved directions. Experiments demonstrate consistent perplexity reductions across diverse models and quantization settings in PTQ, along with a 5.9 percentage-point average gain on GLUE under 2-bit QPEFT.
☆ On the Limits of Layer Pruning for Generative Reasoning in LLMs
Recent works have shown that layer pruning can compress large language models (LLMs) while retaining strong performance on classification benchmarks with little or no finetuning. However, existing pruning techniques often suffer severe degradation on generative reasoning tasks. Through a systematic study across multiple model families, we find that tasks requiring multi-step reasoning are particularly sensitive to depth reduction. Beyond surface-level text degeneration, we observe degradation of critical algorithmic capabilities, including arithmetic computation for mathematical reasoning and balanced parenthesis generation for code synthesis. Under realistic post-training constraints, without access to pretraining-scale data or compute, we evaluate a simple mitigation strategy based on supervised finetuning with Self-Generated Responses. This approach achieves strong recovery on classification tasks, retaining up to 90\% of baseline performance, and yields substantial gains of up to 20--30 percentage points on generative benchmarks compared to prior post-pruning techniques. Crucially, despite these gains, recovery for generative reasoning remains fundamentally limited relative to classification tasks and is viable primarily at lower pruning ratios. Overall, we characterize the practical limits of layer pruning for generative reasoning and provide guidance on when depth reduction can be applied effectively under constrained post-training regimes.
☆ Optimizing Tensor Train Decomposition in DNNs for RISC-V Architectures Using Design Space Exploration and Compiler Optimizations
Deep neural networks (DNNs) have become indispensable in many real-life applications like natural language processing, and autonomous systems. However, deploying DNNs on resource-constrained devices, e.g., in RISC-V platforms, remains challenging due to the high computational and memory demands of fully connected (FC) layers, which dominate resource consumption. Low-rank factorization (LRF) offers an effective approach to compressing FC layers, but the vast design space of LRF solutions involves complex trade-offs among FLOPs, memory size, inference time, and accuracy, making the LRF process complex and time-consuming. This paper introduces an end-to-end LRF design space exploration methodology and a specialized design tool for optimizing FC layers on RISC-V processors. Using Tensor Train Decomposition (TTD) offered by TensorFlow T3F library, the proposed work prunes the LRF design space by excluding first, inefficient decomposition shapes and second, solutions with poor inference performance on RISC-V architectures. Compiler optimizations are then applied to enhance custom T3F layer performance, minimizing inference time and boosting computational efficiency. On average, our TT-decomposed layers run 3x faster than IREE and 8x faster than Pluto on the same compressed model. This work provides an efficient solution for deploying DNNs on edge and embedded devices powered by RISC-V architectures.
comment: 36 pages, 16 figures, this is the author-accepted version of the article published in ACM Transactions on Embedded Computing Systems (TECS), Vol. 24, No. 6
☆ SAME: Stabilized Mixture-of-Experts for Multimodal Continual Instruction Tuning
Multimodal Large Language Models (MLLMs) achieve strong performance through instruction tuning, but real-world deployment requires them to continually expand their capabilities, making Multimodal Continual Instruction Tuning (MCIT) essential. Recent methods leverage sparse expert routing to promote task specialization, but we find that the expert routing process suffers from drift as the data distribution evolves. For example, a grounding query that previously activated localization experts may instead be routed to irrelevant experts after learning OCR tasks. Meanwhile, the grounding-related experts can be overwritten by new tasks and lose their original functionality. Such failure reflects two problems: router drift, where expert selection becomes inconsistent over time, and expert drift, where shared experts are overwritten across tasks. Therefore, we propose StAbilized Mixture-of-Experts (SAME) for MCIT. To address router drift, SAME stabilizes expert selection by decomposing routing dynamics into orthogonal subspaces and updating only task-relevant directions. To mitigate expert drift, we regulate expert updates via curvature-aware scaling using historical input covariance in a rehearsal-free manner. SAME also introduces adaptive expert activation to freeze selected experts during training, reducing redundant computation and cross-task interference. Extensive experiments demonstrate its SOTA performance.
☆ Stochastic Interpolants in Hilbert Spaces
Although diffusion models have successfully extended to function-valued data, stochastic interpolants -- which offer a flexible way to bridge arbitrary distributions -- remain limited to finite-dimensional settings. This work bridges this gap by establishing a rigorous framework for stochastic interpolants in infinite-dimensional Hilbert spaces. We provide comprehensive theoretical foundations, including proofs of well-posedness and explicit error bounds. We demonstrate the effectiveness of the proposed framework for conditional generation, focusing particularly on complex PDE-based benchmarks. By enabling generative bridges between arbitrary functional distributions, our approach achieves state-of-the-art results, offering a powerful, general-purpose tool for scientific discovery.
comment: 8 pages, 1 figure, 2 tables
☆ SpikingGamma: Surrogate-Gradient Free and Temporally Precise Online Training of Spiking Neural Networks with Smoothed Delays
Neuromorphic hardware implementations of Spiking Neural Networks (SNNs) promise energy-efficient, low-latency AI through sparse, event-driven computation. Yet, training SNNs under fine temporal discretization remains a major challenge, hindering both low-latency responsiveness and the mapping of software-trained SNNs to efficient hardware. In current approaches, spiking neurons are modeled as self-recurrent units, embedded into recurrent networks to maintain state over time, and trained with BPTT or RTRL variants based on surrogate gradients. These methods scale poorly with temporal resolution, while online approximations often exhibit instability for long sequences and tend to fail at capturing temporal patterns precisely. To address these limitations, we develop spiking neurons with internal recursive memory structures that we combine with sigma-delta spike-coding. We show that this SpikingGamma model supports direct error backpropagation without surrogate gradients, can learn fine temporal patterns with minimal spiking in an online manner, and scale feedforward SNNs to complex tasks and benchmarks with competitive accuracy, all while being insensitive to the temporal resolution of the model. Our approach offers both an alternative to current recurrent SNNs trained with surrogate gradients, and a direct route for mapping SNNs to neuromorphic hardware.
☆ FlyPrompt: Brain-Inspired Random-Expanded Routing with Temporal-Ensemble Experts for General Continual Learning ICLR 2026
General continual learning (GCL) challenges intelligent systems to learn from single-pass, non-stationary data streams without clear task boundaries. While recent advances in continual parameter-efficient tuning (PET) of pretrained models show promise, they typically rely on multiple training epochs and explicit task cues, limiting their effectiveness in GCL scenarios. Moreover, existing methods often lack targeted design and fail to address two fundamental challenges in continual PET: how to allocate expert parameters to evolving data distributions, and how to improve their representational capacity under limited supervision. Inspired by the fruit fly's hierarchical memory system characterized by sparse expansion and modular ensembles, we propose FlyPrompt, a brain-inspired framework that decomposes GCL into two subproblems: expert routing and expert competence improvement. FlyPrompt introduces a randomly expanded analytic router for instance-level expert activation and a temporal ensemble of output heads to dynamically adapt decision boundaries over time. Extensive theoretical and empirical evaluations demonstrate FlyPrompt's superior performance, achieving up to 11.23%, 12.43%, and 7.62% gains over state-of-the-art baselines on CIFAR-100, ImageNet-R, and CUB-200, respectively. Our source code is available at https://github.com/AnAppleCore/FlyGCL.
comment: 33 pages. Accepted by ICLR 2026
☆ IntraSlice: Towards High-Performance Structural Pruning with Block-Intra PCA for LLMs
Large Language Models (LLMs) achieve strong performance across diverse tasks but face deployment challenges due to their massive size. Structured pruning offers acceleration benefits but leads to significant performance degradation. Recent PCA-based pruning methods have alleviated this issue by retaining key activation components, but are only applied between modules in order to fuse the transformation matrix, which introduces extra parameters and severely disrupts activation distributions due to residual connections. To address these issues, we propose IntraSlice, a framework that applies block-wise module-intra PCA compression pruning. By leveraging the structural characteristics of Transformer modules, we design an approximate PCA method whose transformation matrices can be fully fused into the model without additional parameters. We also introduce a PCA-based global pruning ratio estimator that further considers the distribution of compressed activations, building on conventional module importance. We validate our method on Llama2, Llama3, and Phi series across various language benchmarks. Experimental results demonstrate that our approach achieves superior compression performance compared to recent baselines at the same compression ratio or inference speed.
☆ Your AI-Generated Image Detector Can Secretly Achieve SOTA Accuracy, If Calibrated AAAI 2026
Despite being trained on balanced datasets, existing AI-generated image detectors often exhibit systematic bias at test time, frequently misclassifying fake images as real. We hypothesize that this behavior stems from distributional shift in fake samples and implicit priors learned during training. Specifically, models tend to overfit to superficial artifacts that do not generalize well across different generation methods, leading to a misaligned decision threshold when faced with test-time distribution shift. To address this, we propose a theoretically grounded post-hoc calibration framework based on Bayesian decision theory. In particular, we introduce a learnable scalar correction to the model's logits, optimized on a small validation set from the target distribution while keeping the backbone frozen. This parametric adjustment compensates for distributional shift in model output, realigning the decision boundary even without requiring ground-truth labels. Experiments on challenging benchmarks show that our approach significantly improves robustness without retraining, offering a lightweight and principled solution for reliable and adaptive AI-generated image detection in the open world. Code is available at https://github.com/muliyangm/AIGI-Det-Calib.
comment: AAAI 2026. Code: https://github.com/muliyangm/AIGI-Det-Calib
☆ Small Generalizable Prompt Predictive Models Can Steer Efficient RL Post-Training of Large Reasoning Models
Reinforcement learning enhances the reasoning capabilities of large language models but often involves high computational costs due to rollout-intensive optimization. Online prompt selection presents a plausible solution by prioritizing informative prompts to improve training efficiency. However, current methods either depend on costly, exact evaluations or construct prompt-specific predictive models lacking generalization across prompts. This study introduces Generalizable Predictive Prompt Selection (GPS), which performs Bayesian inference towards prompt difficulty using a lightweight generative model trained on the shared optimization history. Intermediate-difficulty prioritization and history-anchored diversity are incorporated into the batch acquisition principle to select informative prompt batches. The small predictive model also generalizes at test-time for efficient computational allocation. Experiments across varied reasoning benchmarks indicate GPS's substantial improvements in training efficiency, final performance, and test-time efficiency over superior baseline methods.
☆ Self-Consolidation for Self-Evolving Agents
While large language model (LLM) agents have demonstrated impressive problem-solving capabilities, they typically operate as static systems, lacking the ability to evolve through lifelong interaction. Existing attempts to bridge this gap primarily rely on retrieving successful past trajectories as demonstrations. However, this paradigm faces two critical limitations. First, by focusing solely on success, agents overlook the rich pedagogical value embedded in failed attempts, preventing them from identifying and avoiding recurrent pitfalls. Second, continually accumulating textual experiences not only increases the time consumption during retrieval but also inevitably introduces noise and exhausts the largest context window of current LLMs. To address these challenges, we propose a novel self-evolving framework for LLM agents that introduces a complementary evolution mechanism: First, a contrastive reflection strategy is introduced to explicitly summarize error-prone patterns and capture reusable insights. Second, we propose a self-consolidation mechanism that distills non-parametric textual experience into compact learnable parameters. This enables the agent to internalize extensive historical experience directly into its latent space. Extensive experiments demonstrate the advantages of our method in long-term agent evolution.
☆ Zero-Shot Off-Policy Learning
Off-policy learning methods seek to derive an optimal policy directly from a fixed dataset of prior interactions. This objective presents significant challenges, primarily due to the inherent distributional shift and value function overestimation bias. These issues become even more noticeable in zero-shot reinforcement learning, where an agent trained on reward-free data must adapt to new tasks at test time without additional training. In this work, we address the off-policy problem in a zero-shot setting by discovering a theoretical connection of successor measures to stationary density ratios. Using this insight, our algorithm can infer optimal importance sampling ratios, effectively performing a stationary distribution correction with an optimal policy for any task on the fly. We benchmark our method in motion tracking tasks on SMPL Humanoid, continuous control on ExoRL, and for the long-horizon OGBench tasks. Our technique seamlessly integrates into forward-backward representation frameworks and enables fast-adaptation to new tasks in a training-free regime. More broadly, this work bridges off-policy learning and zero-shot adaptation, offering benefits to both research areas.
☆ Grounding Generated Videos in Feasible Plans via World Models
Large-scale video generative models have shown emerging capabilities as zero-shot visual planners, yet video-generated plans often violate temporal consistency and physical constraints, leading to failures when mapped to executable actions. To address this, we propose Grounding Video Plans with World Models (GVP-WM), a planning method that grounds video-generated plans into feasible action sequences using a learned action-conditioned world model. At test-time, GVP-WM first generates a video plan from initial and goal observations, then projects the video guidance onto the manifold of dynamically feasible latent trajectories via video-guided latent collocation. In particular, we formulate grounding as a goal-conditioned latent-space trajectory optimization problem that jointly optimizes latent states and actions under world-model dynamics, while preserving semantic alignment with the video-generated plan. Empirically, GVP-WM recovers feasible long-horizon plans from zero-shot image-to-video-generated and motion-blurred videos that violate physical constraints, across navigation and manipulation simulation tasks.
☆ Efficient Epistemic Uncertainty Estimation for Large Language Models via Knowledge Distillation
Quantifying uncertainty in Large Language Models (LLMs) is essential for mitigating hallucinations and enabling risk-aware deployment in safety-critical tasks. However, estimating Epistemic Uncertainty(EU) via Deep Ensembles is computationally prohibitive at the scale of modern models. We propose a framework that leverages the small draft models to efficiently estimate token-level EU, bypassing the need for full-scale ensembling. Theoretically grounded in a Bias-Variance Decomposition, our approach approximates EU via Jensen-Shannon divergence among drafts (variance proxy) and KL divergence between the draft mixture and the target (bias proxy). To further ensure accuracy without significant overhead, we introduce Online Stochastic Distillation (OSD) to efficiently approximate target aggregation and the Data-Diverse Drafts (DDD) strategy to enhance draft diversity for better target approximation. Extensive experiments on GSM8K demonstrate that our method reduces the estimation error (RMSE) by up to 37% compared to baselines. Crucially, our approach achieves Hallucination Detection performance competitive with heavy perturbation-based methods like TokUR while incurring negligible inference costs, offering a practical solution for uncertainty-aware LLM deployment.
☆ Deep Multivariate Models with Parametric Conditionals
We consider deep multivariate models for heterogeneous collections of random variables. In the context of computer vision, such collections may e.g. consist of images, segmentations, image attributes, and latent variables. When developing such models, most existing works start from an application task and design the model components and their dependencies to meet the needs of the chosen task. This has the disadvantage of limiting the applicability of the resulting model for other downstream tasks. Here, instead, we propose to represent the joint probability distribution by means of conditional probability distributions for each group of variables conditioned on the rest. Such models can then be used for practically any possible downstream task. Their learning can be approached as training a parametrised Markov chain kernel by maximising the data likelihood of its limiting distribution. This has the additional advantage of allowing a wide range of semi-supervised learning scenarios.
☆ Boundary-Constrained Diffusion Models for Floorplan Generation: Balancing Realism and Diversity
Diffusion models have become widely popular for automated floorplan generation, producing highly realistic layouts conditioned on user-defined constraints. However, optimizing for perceptual metrics such as the Fréchet Inception Distance (FID) causes limited design diversity. To address this, we propose the Diversity Score (DS), a metric that quantifies layout diversity under fixed constraints. Moreover, to improve geometric consistency, we introduce a Boundary Cross-Attention (BCA) module that enables conditioning on building boundaries. Our experiments show that BCA significantly improves boundary adherence, while prolonged training drives diversity collapse undiagnosed by FID, revealing a critical trade-off between realism and diversity. Out-Of-Distribution evaluations further demonstrate the models' reliance on dataset priors, emphasizing the need for generative systems that explicitly balance fidelity, diversity, and generalization in architectural design tasks.
comment: Accepted at ESANN 2026
☆ FluxNet: Learning Capacity-Constrained Local Transport Operators for Conservative and Bounded PDE Surrogates
Autoregressive learning of time-stepping operators offers an effective approach to data-driven PDE simulation on grids. For conservation laws, however, long-horizon rollouts are often destabilized when learned updates violate global conservation and, in many applications, additional state bounds such as nonnegative mass and densities or concentrations constrained to [0,1]. Enforcing these coupled constraints via direct next-state regression remains difficult. We introduce a framework for learning conservative transport operators on regular grids, inspired by lattice Boltzmann-style discrete-velocity transport representations. Instead of predicting the next state, the model outputs local transport operators that update cells through neighborhood exchanges, guaranteeing discrete conservation by construction. For bounded quantities, we parameterize transport within a capacity-constrained feasible set, enforcing bounds structurally rather than by post-hoc clipping. We validate FluxNet on 1D convection-diffusion, 2D shallow water equations, 1D traffic flow, and 2D spinodal decomposition. Experiments on shallow-water equations and traffic flow show improved rollout stability and physical consistency over strong baselines. On phase-field spinodal decomposition, the method enables large time-steps with long-range transport, accelerating simulation while preserving microstructure evolution in both pointwise and statistical measures.
☆ T-LLM: Teaching Large Language Models to Forecast Time Series via Temporal Distillation
Time series forecasting plays a critical role in decision-making across many real-world applications. Unlike data in vision and language domains, time series data is inherently tied to the evolution of underlying processes and can only accumulate as real-world time progresses, limiting the effectiveness of scale-driven pretraining alone. This time-bound constraint poses a challenge for enabling large language models (LLMs) to acquire forecasting capability, as existing approaches primarily rely on representation-level alignment or inference-time temporal modules rather than explicitly teaching forecasting behavior to the LLM. We propose T-LLM, a temporal distillation framework that equips general-purpose LLMs with time series forecasting capability by transferring predictive behavior from a lightweight temporal teacher during training. The teacher combines trend modeling and frequency-domain analysis to provide structured temporal supervision, and is removed entirely at inference, leaving the LLM as the sole forecasting model. Experiments on benchmark datasets and infectious disease forecasting tasks demonstrate that T-LLM consistently outperforms existing LLM-based forecasting methods under full-shot, few-shot, and zero-shot settings, while enabling a simple and efficient deployment pipeline.
☆ PIMCST: Physics-Informed Multi-Phase Consensus and Spatio-Temporal Few-Shot Learning for Traffic Flow Forecasting
Accurate traffic flow prediction remains a fundamental challenge in intelligent transportation systems, particularly in cross-domain, data-scarce scenarios where limited historical data hinders model training and generalisation. The complex spatio-temporal dependencies and nonlinear dynamics of urban mobility networks further complicate few-shot learning across different cities. This paper proposes MCPST, a novel Multi-phase Consensus Spatio-Temporal framework for few-shot traffic forecasting that reconceptualises traffic prediction as a multi-phase consensus learning problem. Our framework introduces three core innovations: (1) a multi-phase engine that models traffic dynamics through diffusion, synchronisation, and spectral embeddings for comprehensive dynamic characterisation; (2) an adaptive consensus mechanism that dynamically fuses phase-specific predictions while enforcing consistency; and (3) a structured meta-learning strategy for rapid adaptation to new cities with minimal data. We establish extensive theoretical guarantees, including representation theorems with bounded approximation errors and generalisation bounds for few-shot adaptation. Through experiments on four real-world datasets, MCPST outperforms fourteen state-of-the-art methods in spatio-temporal graph learning methods, dynamic graph transfer learning methods, prompt-based spatio-temporal prediction methods and cross-domain few-shot settings, improving prediction accuracy while reducing required training data and providing interpretable insights. The implementation code is available at https://github.com/afofanah/MCPST.
☆ COLT: Lightweight Multi-LLM Collaboration through Shared MCTS Reasoning for Model Compilation
Model serving costs dominate AI systems, making compiler optimization essential for scalable deployment. Recent works show that a large language model (LLM) can guide compiler search by reasoning over program structure and optimization history. However, using a single large model throughout the search is expensive, while smaller models are less reliable when used alone. Thus, this paper seeks to answer whether multi-LLM collaborative reasoning relying primarily on small LLMs can match or exceed the performance of a single large model. As such, we propose a lightweight collaborative multi-LLM framework, dubbed COLT, for compiler optimization that enables coordinated reasoning across multiple models within a single Monte Carlo tree search (MCTS) process. A key contribution is the use of a single shared MCTS tree as the collaboration substrate across LLMs, enabling the reuse of transformation prefixes and cross-model value propagation. Hence, we circumvent both heavy internal reasoning mechanisms and conventional agentic machinery that relies on external planners, multiple concurrent LLMs, databases, external memory/versioning of intermediate results, and controllers by simply endogenizing model selection within the lightweight MCTS optimization loop. Every iteration, the acting LLM proposes a joint action: (compiler transformation, model to be queried next). We also introduce a model-aware tree policy that biases search toward smaller models while preserving exploration, and a course-alteration mechanism that escalates to the largest model when the search exhibits persistent regressions attributable to smaller models.
☆ Privacy Amplification by Missing Data
Privacy preservation is a fundamental requirement in many high-stakes domains such as medicine and finance, where sensitive personal data must be analyzed without compromising individual confidentiality. At the same time, these applications often involve datasets with missing values due to non-response, data corruption, or deliberate anonymization. Missing data is traditionally viewed as a limitation because it reduces the information available to analysts and can degrade model performance. In this work, we take an alternative perspective and study missing data from a privacy preservation standpoint. Intuitively, when features are missing, less information is revealed about individuals, suggesting that missingness could inherently enhance privacy. We formalize this intuition by analyzing missing data as a privacy amplification mechanism within the framework of differential privacy. We show, for the first time, that incomplete data can yield privacy amplification for differentially private algorithms.
☆ Bayesian Integration of Nonlinear Incomplete Clinical Data
Multimodal clinical data are characterized by high dimensionality, heterogeneous representations, and structured missingness, posing significant challenges for predictive modeling, data integration, and interpretability. We propose BIONIC (Bayesian Integration of Nonlinear Incomplete Clinical data), a unified probabilistic framework that integrates heterogeneous multimodal data under missingness through a joint generative-discriminative latent architecture. BIONIC uses pretrained embeddings for complex modalities such as medical images and clinical text, while incorporating structured clinical variables directly within a Bayesian multimodal formulation. The proposed framework enables robust learning in partially observed and semi-supervised settings by explicitly modeling modality-level and variable-level missingness, as well as missing labels. We evaluate BIONIC on three multimodal clinical and biomedical datasets, demonstrating strong and consistent discriminative performance compared to representative multimodal baselines, particularly under incomplete data scenarios. Beyond predictive accuracy, BIONIC provides intrinsic interpretability through its latent structure, enabling population-level analysis of modality relevance and supporting clinically meaningful insight.
☆ Embedding Learning on Multiplex Networks for Link Prediction
Over the past years, embedding learning on networks has shown tremendous results in link prediction tasks for complex systems, with a wide range of real-life applications. Learning a representation for each node in a knowledge graph allows us to capture topological and semantic information, which can be processed in downstream analyses later. In the link prediction task, high-dimensional network information is encoded into low-dimensional vectors, which are then fed to a predictor to infer new connections between nodes in the network. As the network complexity (that is, the numbers of connections and types of interactions) grows, embedding learning turns out increasingly challenging. This review covers published models on embedding learning on multiplex networks for link prediction. First, we propose refined taxonomies to classify and compare models, depending on the type of embeddings and embedding techniques. Second, we review and address the problem of reproducible and fair evaluation of embedding learning on multiplex networks for the link prediction task. Finally, we tackle evaluation on directed multiplex networks by proposing a novel and fair testing procedure. This review constitutes a crucial step towards the development of more performant and tractable embedding learning approaches for multiplex networks and their fair evaluation for the link prediction task. We also suggest guidelines on the evaluation of models, and provide an informed perspective on the challenges and tools currently available to address downstream analyses applied to multiplex networks.
☆ PIMPC-GNN: Physics-Informed Multi-Phase Consensus Learning for Enhancing Imbalanced Node Classification in Graph Neural Networks
Graph neural networks (GNNs) often struggle in class-imbalanced settings, where minority classes are under-represented and predictions are biased toward majorities. We propose \textbf{PIMPC-GNN}, a physics-informed multi-phase consensus framework for imbalanced node classification. Our method integrates three complementary dynamics: (i) thermodynamic diffusion, which spreads minority labels to capture long-range dependencies, (ii) Kuramoto synchronisation, which aligns minority nodes through oscillatory consensus, and (iii) spectral embedding, which separates classes via structural regularisation. These perspectives are combined through class-adaptive ensemble weighting and trained with an imbalance-aware loss that couples balanced cross-entropy with physics-based constraints. Across five benchmark datasets and imbalance ratios from 5-100, PIMPC-GNN outperforms 16 state-of-the-art baselines, achieving notable gains in minority-class recall (up to +12.7\%) and balanced accuracy (up to +8.3\%). Beyond empirical improvements, the framework also provides interpretable insights into consensus dynamics in graph learning. The code is available at \texttt{https://github.com/afofanah/PIMPC-GNN}.
☆ VLM-Guided Experience Replay
Recent advances in Large Language Models (LLMs) and Vision-Language Models (VLMs) have enabled powerful semantic and multimodal reasoning capabilities, creating new opportunities to enhance sample efficiency, high-level planning, and interpretability in reinforcement learning (RL). While prior work has integrated LLMs and VLMs into various components of RL, the replay buffer, a core component for storing and reusing experiences, remains unexplored. We propose addressing this gap by leveraging VLMs to guide the prioritization of experiences in the replay buffer. Our key idea is to use a frozen, pre-trained VLM (requiring no fine-tuning) as an automated evaluator to identify and prioritize promising sub-trajectories from the agent's experiences. Across scenarios, including game-playing and robotics, spanning both discrete and continuous domains, agents trained with our proposed prioritization method achieve 11-52% higher average success rates and improve sample efficiency by 19-45% compared to previous approaches. https://esharony.me/projects/vlm-rb/
☆ Towards Long-Horizon Interpretability: Efficient and Faithful Multi-Token Attribution for Reasoning LLMs ICML 2025
Token attribution methods provide intuitive explanations for language model outputs by identifying causally important input tokens. However, as modern LLMs increasingly rely on extended reasoning chains, existing schemes face two critical challenges: (1) efficiency bottleneck, where attributing a target span of M tokens within a context of length N requires O(M*N) operations, making long-context attribution prohibitively slow; and (2) faithfulness drop, where intermediate reasoning tokens absorb attribution mass, preventing importance from propagating back to the original input. To address these, we introduce FlashTrace, an efficient multi-token attribution method that employs span-wise aggregation to compute attribution over multi-token targets in a single pass, while maintaining faithfulness. Moreover, we design a recursive attribution mechanism that traces importance through intermediate reasoning chains back to source inputs. Extensive experiments on long-context retrieval (RULER) and multi-step reasoning (MATH, MorehopQA) tasks demonstrate that FlashTrace achieves over 130x speedup over existing baselines while maintaining superior faithfulness. We further analyze the dynamics of recursive attribution, showing that even a single recursive hop improves faithfulness by tracing importance through the reasoning chain.
comment: ICML 2025 submission
☆ Reliable Real-Time Value at Risk Estimation via Quantile Regression Forest with Conformal Calibration
Rapidly evolving market conditions call for real-time risk monitoring, but its online estimation remains challenging. In this paper, we study the online estimation of one of the most widely used risk measures, Value at Risk (VaR). Its accurate and reliable estimation is essential for timely risk control and informed decision-making. We propose to use the quantile regression forest in the offline-simulation-online-estimation (OSOA) framework. Specifically, the quantile regression forest is trained offline to learn the relationship between the online VaR and risk factors, and real-time VaR estimates are then produced online by incorporating observed risk factors. To further ensure reliability, we develop a conformalized estimator that calibrates the online VaR estimates. To the best of our knowledge, we are the first to leverage conformal calibration to estimate real-time VaR reliably based on the OSOA formulation. Theoretical analysis establishes the consistency and coverage validity of the proposed estimators. Numerical experiments confirm the proposed method and demonstrate its effectiveness in practice.
☆ Propagating the prior from far to near offset: A self-supervised diffusion framework for progressively recovering near-offsets of towed-streamer data
In marine towed-streamer seismic acquisition, the nearest hydrophone is often two hundred meter away from the source resulting in missing near-offset traces, which degrades critical processing workflows such as surface-related multiple elimination, velocity analysis, and full-waveform inversion. Existing reconstruction methods, like transform-domain interpolation, often produce kinematic inconsistencies and amplitude distortions, while supervised deep learning approaches require complete ground-truth near-offset data that are unavailable in realistic acquisition scenarios. To address these limitations, we propose a self-supervised diffusion-based framework that reconstructs missing near-offset traces without requiring near-offset reference data. Our method leverages overlapping patch extraction with single-trace shifts from the available far-offset section to train a conditional diffusion model, which learns offset-dependent statistical patterns governing event curvature, amplitude variation, and wavelet characteristics. At inference, we perform trace-by-trace recursive extrapolation from the nearest recorded offset toward zero offset, progressively propagating learned prior information from far to near offsets. The generative formulation further provides uncertainty estimates via ensemble sampling, quantifying prediction confidence where validation data are absent. Controlled validation experiments on synthetic and field datasets show substantial performance gains over conventional parabolic Radon transform baselines. Operational deployment on actual near-offset gaps demonstrates practical viability where ground-truth validation is impossible. Notably, the reconstructed waveforms preserve realistic amplitude-versus-offset trends despite training exclusively on far-offset observations, and uncertainty maps accurately identify challenging extrapolation regions.
☆ Learning Sparse Visual Representations via Spatial-Semantic Factorization
Self-supervised learning (SSL) faces a fundamental conflict between semantic understanding and image reconstruction. High-level semantic SSL (e.g., DINO) relies on global tokens that are forced to be location-invariant for augmentation alignment, a process that inherently discards the spatial coordinates required for reconstruction. Conversely, generative SSL (e.g., MAE) preserves dense feature grids for reconstruction but fails to produce high-level abstractions. We introduce STELLAR, a framework that resolves this tension by factorizing visual features into a low-rank product of semantic concepts and their spatial distributions. This disentanglement allows us to perform DINO-style augmentation alignment on the semantic tokens while maintaining the precise spatial mapping in the localization matrix necessary for pixel-level reconstruction. We demonstrate that as few as 16 sparse tokens under this factorized form are sufficient to simultaneously support high-quality reconstruction (2.60 FID) and match the semantic performance of dense backbones (79.10% ImageNet accuracy). Our results highlight STELLAR as a versatile sparse representation that bridges the gap between discriminative and generative vision by strategically separating semantic identity from spatial geometry. Code available at https://aka.ms/stellar.
☆ Data- and Variance-dependent Regret Bounds for Online Tabular MDPs
This work studies online episodic tabular Markov decision processes (MDPs) with known transitions and develops best-of-both-worlds algorithms that achieve refined data-dependent regret bounds in the adversarial regime and variance-dependent regret bounds in the stochastic regime. We quantify MDP complexity using a first-order quantity and several new data-dependent measures for the adversarial regime, including a second-order quantity and a path-length measure, as well as variance-based measures for the stochastic regime. To adapt to these measures, we develop algorithms based on global optimization and policy optimization, both built on optimistic follow-the-regularized-leader with log-barrier regularization. For global optimization, our algorithms achieve first-order, second-order, and path-length regret bounds in the adversarial regime, and in the stochastic regime, they achieve a variance-aware gap-independent bound and a variance-aware gap-dependent bound that is polylogarithmic in the number of episodes. For policy optimization, our algorithms achieve the same data- and variance-dependent adaptivity, up to a factor of the episode horizon, by exploiting a new optimistic $Q$-function estimator. Finally, we establish regret lower bounds in terms of data-dependent complexity measures for the adversarial regime and a variance measure for the stochastic regime, implying that the regret upper bounds achieved by the global-optimization approach are nearly optimal.
comment: 80pages, 4tables
☆ Observation-dependent Bayesian active learning via input-warped Gaussian processes
Bayesian active learning relies on the precise quantification of predictive uncertainty to explore unknown function landscapes. While Gaussian process surrogates are the standard for such tasks, an underappreciated fact is that their posterior variance depends on the observed outputs only through the hyperparameters, rendering exploration largely insensitive to the actual measurements. We propose to inject observation-dependent feedback by warping the input space with a learned, monotone reparameterization. This mechanism allows the design policy to expand or compress regions of the input space in response to observed variability, thereby shaping the behavior of variance-based acquisition functions. We demonstrate that while such warps can be trained via marginal likelihood, a novel self-supervised objective yields substantially better performance. Our approach improves sample efficiency across a range of active learning benchmarks, particularly in regimes where non-stationarity challenges traditional methods.
comment: 13 pages
☆ Internal Flow Signatures for Self-Checking and Refinement in LLMs
Large language models can generate fluent answers that are unfaithful to the provided context, while many safeguards rely on external verification or a separate judge after generation. We introduce \emph{internal flow signatures} that audit decision formation from depthwise dynamics at a fixed inter-block monitoring boundary. The method stabilizes token-wise motion via bias-centered monitoring, then summarizes trajectories in compact \emph{moving} readout-aligned subspaces constructed from the top token and its close competitors within each depth window. Neighboring window frames are aligned by an orthogonal transport, yielding depth-comparable transported step lengths, turning angles, and subspace drift summaries that are invariant to within-window basis choices. A lightweight GRU validator trained on these signatures performs self-checking without modifying the base model. Beyond detection, the validator localizes a culprit depth event and enables a targeted refinement: the model rolls back to the culprit token and clamps an abnormal transported step at the identified block while preserving the orthogonal residual. The resulting pipeline provides actionable localization and low-overhead self-checking from internal decision dynamics. \emph{Code is available at} \texttt{github.com/EavnJeong/Internal-Flow-Signatures-for-Self-Checking-and-Refinement-in-LLMs}.
☆ Geometric Analysis of Token Selection in Multi-Head Attention
We present a geometric framework for analysing multi-head attention in large language models (LLMs). Without altering the mechanism, we view standard attention through a top-N selection lens and study its behaviour directly in value-state space. We define geometric metrics - Precision, Recall, and F-score - to quantify separability between selected and non-selected tokens, and derive non-asymptotic bounds with explicit dependence on dimension and margin under empirically motivated assumptions (stable value norms with a compressed sink token, exponential similarity decay, and piecewise attention weight profiles). The theory predicts a small-N operating regime of strongest non-trivial separability and clarifies how sequence length and sink similarity shape the metrics. Empirically, across LLaMA-2-7B, Gemma-7B, and Mistral-7B, measurements closely track the theoretical envelopes: top-N selection sharpens separability, sink similarity correlates with Recall. We also found that in LLaMA-2-7B heads specialize into three regimes - Retriever, Mixer, Reset - with distinct geometric signatures. Overall, attention behaves as a structured geometric classifier with measurable criteria for token selection, offering head level interpretability and informing geometry-aware sparsification and design of attention in LLMs.
☆ Entropy-Guided Data-Efficient Training for Multimodal Reasoning Reward Models
Multimodal reward models are crucial for aligning multimodal large language models with human preferences. Recent works have incorporated reasoning capabilities into these models, achieving promising results. However, training these models suffers from two critical challenges: (1) the inherent noise in preference datasets, which degrades model performance, and (2) the inefficiency of conventional training methods, which ignore the differences in sample difficulty. In this paper, we identify a strong correlation between response entropy and accuracy, indicating that entropy can serve as a reliable and unsupervised proxy for annotation noise and sample difficulty. Based on this insight, we propose a novel Entropy-Guided Training (EGT) approach for multimodal reasoning reward models, which combines two strategies: (1) entropy-guided data curation to mitigate the impact of unreliable samples, and (2) an entropy-guided training strategy that progressively introduces more complex examples. Extensive experiments across three benchmarks show that the EGT-trained model consistently outperforms state-of-the-art multimodal reward models.
☆ Autocorrelated Optimize-via-Estimate: Predict-then-Optimize versus Finite-sample Optimal
Models that directly optimize for out-of-sample performance in the finite-sample regime have emerged as a promising alternative to traditional estimate-then-optimize approaches in data-driven optimization. In this work, we compare their performance in the context of autocorrelated uncertainties, specifically, under a Vector Autoregressive Moving Average VARMA(p,q) process. We propose an autocorrelated Optimize-via-Estimate (A-OVE) model that obtains an out-of-sample optimal solution as a function of sufficient statistics, and propose a recursive form for computing its sufficient statistics. We evaluate these models on a portfolio optimization problem with trading costs. A-OVE achieves low regret relative to a perfect information oracle, outperforming predict-then-optimize machine learning benchmarks. Notably, machine learning models with higher accuracy can have poorer decision quality, echoing the growing literature in data-driven optimization. Performance is retained under small mis-specification.
☆ Grappa: Gradient-Only Communication for Scalable Graph Neural Network Training
Cross-partition edges dominate the cost of distributed GNN training: fetching remote features and activations per iteration overwhelms the network as graphs deepen and partition counts grow. Grappa is a distributed GNN training framework that enforces gradient-only communication: during each iteration, partitions train in isolation and exchange only gradients for the global update. To recover accuracy lost to isolation, Grappa (i) periodically repartitions to expose new neighborhoods and (ii) applies a lightweight coverage-corrected gradient aggregation inspired by importance sampling. We prove the corrected estimator is asymptotically unbiased under standard support and boundedness assumptions, and we derive a batch-level variant for compatibility with common deep-learning packages that minimizes mean-squared deviation from the ideal node-level correction. We also introduce a shrinkage version that improves stability in practice. Empirical results on real and synthetic graphs show that Grappa trains GNNs 4 times faster on average (up to 13 times) than state-of-the-art systems, achieves better accuracy especially for deeper models, and sustains training at the trillion-edge scale on commodity hardware. Grappa is model-agnostic, supports full-graph and mini-batch training, and does not rely on high-bandwidth interconnects or caching.
Transformers as Measure-Theoretic Associative Memory: A Statistical Perspective and Minimax Optimality
Transformers excel through content-addressable retrieval and the ability to exploit contexts of, in principle, unbounded length. We recast associative memory at the level of probability measures, treating a context as a distribution over tokens and viewing attention as an integral operator on measures. Concretely, for mixture contexts $ν= I^{-1} \sum_{i=1}^I μ^{(i^*)}$ and a query $x_{\mathrm{q}}(i^*)$, the task decomposes into (i) recall of the relevant component $μ^{(i^*)}$ and (ii) prediction from $(μ_{i^*},x_\mathrm{q})$. We study learned softmax attention (not a frozen kernel) trained by empirical risk minimization and show that a shallow measure-theoretic Transformer composed with an MLP learns the recall-and-predict map under a spectral assumption on the input densities. We further establish a matching minimax lower bound with the same rate exponent (up to multiplicative constants), proving sharpness of the convergence order. The framework offers a principled recipe for designing and analyzing Transformers that recall from arbitrarily long, distributional contexts with provable generalization guarantees.
☆ RIR-Former: Coordinate-Guided Transformer for Continuous Reconstruction of Room Impulse Responses ICASSP
Room impulse responses (RIRs) are essential for many acoustic signal processing tasks, yet measuring them densely across space is often impractical. In this work, we propose RIR-Former, a grid-free, one-step feed-forward model for RIR reconstruction. By introducing a sinusoidal encoding module into a transformer backbone, our method effectively incorporates microphone position information, enabling interpolation at arbitrary array locations. Furthermore, a segmented multi-branch decoder is designed to separately handle early reflections and late reverberation, improving reconstruction across the entire RIR. Experiments on diverse simulated acoustic environments demonstrate that RIR-Former consistently outperforms state-of-the-art baselines in terms of normalized mean square error (NMSE) and cosine distance (CD), under varying missing rates and array configurations. These results highlight the potential of our approach for practical deployment and motivate future work on scaling from randomly spaced linear arrays to complex array geometries, dynamic acoustic scenes, and real-world environments.
comment: Accepted to International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2026. Equal contribution: Shaoheng Xu and Chunyi Sun
☆ Time2Vec-Integrated Transformer for Robust Gesture Recognition from Low-Density sEMG
Accurate and responsive myoelectric prosthesis control typically relies on complex, dense multi-sensor arrays, which limits consumer accessibility. This paper presents a novel, data-efficient deep learning framework designed to achieve precise and accurate control using minimal sensor hardware. Leveraging an external dataset of 8 subjects, our approach implements a hybrid Transformer optimized for sparse, two-channel surface electromyography (sEMG). Unlike standard architectures that use fixed positional encodings, we integrate Time2Vec learnable temporal embeddings to capture the stochastic temporal warping inherent in biological signals. Furthermore, we employ a normalized additive fusion strategy that aligns the latent distributions of spatial and temporal features, preventing the destructive interference common in standard implementations. A two-stage curriculum learning protocol is utilized to ensure robust feature extraction despite data scarcity. The proposed architecture achieves a state-of-the-art multi-subject F1-score of 95.7% $\pm$ 0.20% for a 10-class movement set, statistically outperforming both a standard Transformer with fixed encodings and a recurrent CNN-LSTM model. Architectural optimization reveals that a balanced allocation of model capacity between spatial and temporal dimensions yields the highest stability. Furthermore, while direct transfer to a new unseen subject led to poor accuracy due to domain shifts, a rapid calibration protocol utilizing only two trials per gesture recovered performance from 21.0% $\pm$ 2.98% to 96.9% $\pm$ 0.52%. By validating that high-fidelity temporal embeddings can compensate for low spatial resolution, this work challenges the necessity of high-density sensing. The proposed framework offers a robust, cost-effective blueprint for next-generation prosthetic interfaces capable of rapid personalization.
☆ Designing Time Series Experiments in A/B Testing with Transformer Reinforcement Learning
A/B testing has become a gold standard for modern technological companies to conduct policy evaluation. Yet, its application to time series experiments, where policies are sequentially assigned over time, remains challenging. Existing designs suffer from two limitations: (i) they do not fully leverage the entire history for treatment allocation; (ii) they rely on strong assumptions to approximate the objective function (e.g., the mean squared error of the estimated treatment effect) for optimizing the design. We first establish an impossibility theorem showing that failure to condition on the full history leads to suboptimal designs, due to the dynamic dependencies in time series experiments. To address both limitations simultaneously, we next propose a transformer reinforcement learning (RL) approach which leverages transformers to condition allocation on the entire history and employs RL to directly optimize the MSE without relying on restrictive assumptions. Empirical evaluations on synthetic data, a publicly available dispatch simulator, and a real-world ridesharing dataset demonstrate that our proposal consistently outperforms existing designs.
☆ FUPareto: Bridging the Forgetting-Utility Gap in Federated Unlearning via Pareto Augmented Optimization
Federated Unlearning (FU) aims to efficiently remove the influence of specific client data from a federated model while preserving utility for the remaining clients. However, three key challenges remain: (1) existing unlearning objectives often compromise model utility or increase vulnerability to Membership Inference Attacks (MIA); (2) there is a persistent conflict between forgetting and utility, where further unlearning inevitably harms retained performance; and (3) support for concurrent multi-client unlearning is poor, as gradient conflicts among clients degrade the quality of forgetting. To address these issues, we propose FUPareto, an efficient unlearning framework via Pareto-augmented optimization. We first introduce the Minimum Boundary Shift (MBS) Loss, which enforces unlearning by suppressing the target class logit below the highest non-target class logit; this can improve the unlearning efficiency and mitigate MIA risks. During the unlearning process, FUPareto performs Pareto improvement steps to preserve model utility and executes Pareto expansion to guarantee forgetting. Specifically, during Pareto expansion, the framework integrates a Null-Space Projected Multiple Gradient Descent Algorithm (MGDA) to decouple gradient conflicts. This enables effective, fair, and concurrent unlearning for multiple clients while minimizing utility degradation. Extensive experiments across diverse scenarios demonstrate that FUPareto consistently outperforms state-of-the-art FU methods in both unlearning efficacy and retained utility.
☆ Self-Rewarding Sequential Monte Carlo for Masked Diffusion Language Models
This work presents self-rewarding sequential Monte Carlo (SMC), an inference-time scaling algorithm enabling effective sampling of masked diffusion language models (MDLMs). Our algorithm stems from the observation that most existing MDLMs rely on a confidence-based sampling strategy, where only tokens with the highest prediction confidence are preserved at each step. This restricts the generation to a noise-sensitive, greedy decoding paradigm, resulting in an inevitable collapse in the diversity of possible paths. We address this problem by launching multiple interacting diffusion processes in parallel, referred to as particles, for trajectory exploration. Importantly, we introduce the trajectory-level confidence as a self-rewarding signal for assigning particle importance weights. During sampling, particles are iteratively weighted and resampled to systematically steer generation towards globally confident, high-quality samples. Our self-rewarding SMC is verified on various masked diffusion language models and benchmarks, achieving significant improvement without extra training or reward guidance, while effectively converting parallel inference capacity into improved sampling quality. Our code is available at https://github.com/Algolzw/self-rewarding-smc.
comment: Project page: https://algolzw.github.io/sr-smc
☆ No Generation without Representation: Efficient Causal Protein Language Models Enable Zero-Shot Fitness Estimation
Protein language models (PLMs) face a fundamental divide: masked language models (MLMs) excel at fitness prediction while causal models enable generation, forcing practitioners to maintain separate architectures. We introduce \textbf{Proust}, a 309M-parameter causal PLM that bridges this gap through architectural innovations adapted from recent LLM research, including grouped-query attention with shared K/V projections, cross-layer value residuals, and depthwise causal convolutions. Trained on 33B tokens in 40 B200 GPU-hours, Proust achieves Spearman $ρ= 0.390$ on ProteinGym substitutions, competitive with MLMs requiring 50--200$\times$ the compute. On indels, Proust sets a new state-of-the-art, outperforming models up to 20$\times$ larger. On EVEREST viral fitness benchmarks, it approaches structure-aware methods using sequence alone. These powerful representations position Proust in a sweet spot as it also retains native generative capabilities that MLMs lack by design. Interpretability analysis reveals that per-position entropy variance predicts, to an extent, when retrieval augmentation helps and hurts. Such insights can grow in both quantity and quality at scale and inform capabilities such as test-time scaling. Code and weights are available at https://github.com/Furkan9015/proust-inference
☆ Prism: Efficient Test-Time Scaling via Hierarchical Search and Self-Verification for Discrete Diffusion Language Models
Inference-time compute has re-emerged as a practical way to improve LLM reasoning. Most test-time scaling (TTS) algorithms rely on autoregressive decoding, which is ill-suited to discrete diffusion language models (dLLMs) due to their parallel decoding over the entire sequence. As a result, developing effective and efficient TTS methods to unlock dLLMs' full generative potential remains an underexplored challenge. To address this, we propose Prism (Pruning, Remasking, and Integrated Self-verification Method), an efficient TTS framework for dLLMs that (i) performs Hierarchical Trajectory Search (HTS) which dynamically prunes and reallocates compute in an early-to-mid denoising window, (ii) introduces Local branching with partial remasking to explore diverse implementations while preserving high-confidence tokens, and (iii) replaces external verifiers with Self-Verified Feedback (SVF) obtained via self-evaluation prompts on intermediate completions. Across four mathematical reasoning and code generation benchmarks on three dLLMs, including LLaDA 8B Instruct, Dream 7B Instruct, and LLaDA 2.0-mini, our Prism achieves a favorable performance-efficiency trade-off, matching best-of-N performance with substantially fewer function evaluations (NFE). The code is released at https://github.com/viiika/Prism.
☆ DOGMA: Weaving Structural Information into Data-centric Single-cell Transcriptomics Analysis
Recently, data-centric AI methodology has been a dominant paradigm in single-cell transcriptomics analysis, which treats data representation rather than model complexity as the fundamental bottleneck. In the review of current studies, earlier sequence methods treat cells as independent entities and adapt prevalent ML models to analyze their directly inherited sequence data. Despite their simplicity and intuition, these methods overlook the latent intercellular relationships driven by the functional mechanisms of biological systems and the inherent quality issues of the raw sequence data. Therefore, a series of structured methods has emerged. Although they employ various heuristic rules to capture intricate intercellular relationships and enhance the raw sequencing data, these methods often neglect biological prior knowledge. This omission incurs substantial overhead and yields suboptimal graph representations, thereby hindering the utility of ML models. To address them, we propose DOGMA, a holistic data-centric framework designed for the structural reshaping and semantic enhancement of raw data through multi-level biological prior knowledge. Transcending reliance on stochastic heuristics, DOGMA redefines graph construction by integrating Statistical Anchors with Cell Ontology and Phylogenetic Trees to enable deterministic structure discovery and robust cross-species alignment. Furthermore, Gene Ontology is utilized to bridge the feature-level semantic gap by incorporating functional priors. In complex multi-species and multi-organ benchmarks, DOGMA achieves SOTA performance, exhibiting superior zero-shot robustness and sample efficiency while operating with significantly lower computational cost.
comment: 12 pages, 4 figures
☆ Hyperbolic Graph Neural Networks Under the Microscope: The Role of Geometry-Task Alignment
Many complex networks exhibit hyperbolic structural properties, making hyperbolic space a natural candidate for representing hierarchical and tree-like graphs with low distortion. Based on this observation, Hyperbolic Graph Neural Networks (HGNNs) have been widely adopted as a principled choice for representation learning on tree-like graphs. In this work, we question this paradigm by proposing an additional condition of geometry-task alignment, i.e., whether the metric structure of the target follows that of the input graph. We theoretically and empirically demonstrate the capability of HGNNs to recover low-distortion representations on two synthetic regression problems, and show that their geometric inductive bias becomes helpful when the problem requires preserving metric structure. Additionally, we evaluate HGNNs on the tasks of link prediction and node classification by jointly analyzing predictive performance and embedding distortion, revealing that only link prediction is geometry-aligned. Overall, our findings shift the focus from only asking "Is the graph hyperbolic?" to also questioning "Is the task aligned with hyperbolic geometry?", showing that HGNNs consistently outperform Euclidean models under such alignment, while their advantage vanishes otherwise.
☆ Beyond Precision: Training-Inference Mismatch is an Optimization Problem and Simple LR Scheduling Fixes It
Reinforcement Learning (RL) for training Large Language Models is notoriously unstable. While recent studies attribute this to "training inference mismatch stemming" from inconsistent hybrid engines, standard remedies, such as Importance Sampling, might fail during extended training runs. In this work, we analyze this instability through the lens of optimization, demonstrating that gradient noise and training-inference mismatch escalate in tandem as training progresses. Meanwhile, we find that the mismatch can be effectively suppressed by shrinking the update size. Taken together, we deduce that the mismatch is not merely a static numerical discrepancy, but a dynamic failure coupled with the model's optimization. Based on this insight, we propose a simple yet effective solution: a specialized Learning Rate (LR) scheduler. Instead of pre-defined decay schedule in traditional LR scheduler, our method dynamically triggers LR decay based on response length, which we identify as a reliable early-warning signal for impending instability. Empirical evidence suggests that by reducing the learning rate as gradient noise rises, we can consistently stabilize RL training and keep the training-inference mismatch at a safe level.
☆ Learning Sequential Decisions from Multiple Sources via Group-Robust Markov Decision Processes
We often collect data from multiple sites (e.g., hospitals) that share common structure but also exhibit heterogeneity. This paper aims to learn robust sequential decision-making policies from such offline, multi-site datasets. To model cross-site uncertainty, we study distributionally robust MDPs with a group-linear structure: all sites share a common feature map, and both the transition kernels and expected reward functions are linear in these shared features. We introduce feature-wise (d-rectangular) uncertainty sets, which preserve tractable robust Bellman recursions while maintaining key cross-site structure. Building on this, we then develop an offline algorithm based on pessimistic value iteration that includes: (i) per-site ridge regression for Bellman targets, (ii) feature-wise worst-case (row-wise minimization) aggregation, and (iii) a data-dependent pessimism penalty computed from the diagonals of the inverse design matrices. We further propose a cluster-level extension that pools similar sites to improve sample efficiency, guided by prior knowledge of site similarity. Under a robust partial coverage assumption, we prove a suboptimality bound for the resulting policy. Overall, our framework addresses multi-site learning with heterogeneous data sources and provides a principled approach to robust planning without relying on strong state-action rectangularity assumptions.
☆ Sentence Curve Language Models
Language models (LMs) are a central component of modern AI systems, and diffusion-based language models (DLMs) have recently emerged as a competitive alternative. Both paradigms rely on word embeddings not only to represent the input sentence, but also to represent the target sentence that backbone models are trained to predict. We argue that such static embedding of the target word is insensitive to neighboring words, encouraging locally accurate word prediction while neglecting global structure across the target sentence. To address this limitation, we propose a continuous sentence representation, termed sentence curve, defined as a spline curve whose control points affect multiple words in the sentence. Based on this representation, we introduce sentence curve language model (SCLM), which extends DLMs to predict sentence curves instead of the static word embeddings. We theoretically show that sentence curve prediction induces a regularization effect that promotes global structure modeling, and characterize how different sentence curve types affect this behavior. Empirically, SCLM achieves SOTA performance among DLMs on IWSLT14 and WMT14, shows stable training without burdensome knowledge distillation, and demonstrates promising potential compared to discrete DLMs on LM1B.
☆ Spatio-Temporal Transformers for Long-Term NDVI Forecasting
Long-term satellite image time series (SITS) analysis in heterogeneous landscapes faces significant challenges, particularly in Mediterranean regions where complex spatial patterns, seasonal variations, and multi-decade environmental changes interact across different scales. This paper presents the Spatio-Temporal Transformer for Long Term Forecasting (STT-LTF ), an extended framework that advances beyond purely temporal analysis to integrate spatial context modeling with temporal sequence prediction. STT-LTF processes multi-scale spatial patches alongside temporal sequences (up to 20 years) through a unified transformer architecture, capturing both local neighborhood relationships and regional climate influences. The framework employs comprehensive self-supervised learning with spatial masking, temporal masking, and horizon sampling strategies, enabling robust model training from 40 years of unlabeled Landsat imagery. Unlike autoregressive approaches, STT-LTF directly predicts arbitrary future time points without error accumulation, incorporating spatial patch embeddings, cyclical temporal encoding, and geographic coordinates to learn complex dependencies across heterogeneous Mediterranean ecosystems. Experimental evaluation on Landsat data (1984-2024) demonstrates that STT-LTF achieves a Mean Absolute Error (MAE) of 0.0328 and R^2 of 0.8412 for next-year predictions, outperforming traditional statistical methods, CNN-based approaches, LSTM networks, and standard transformers. The framework's ability to handle irregular temporal sampling and variable prediction horizons makes it particularly suitable for analysis of heterogeneous landscapes experiencing rapid ecological transitions.
☆ RedVisor: Reasoning-Aware Prompt Injection Defense via Zero-Copy KV Cache Reuse
Large Language Models (LLMs) are increasingly vulnerable to Prompt Injection (PI) attacks, where adversarial instructions hidden within retrieved contexts hijack the model's execution flow. Current defenses typically face a critical trade-off: prevention-based fine-tuning often degrades general utility via the "alignment tax", while detection-based filtering incurs prohibitive latency and memory costs. To bridge this gap, we propose RedVisor, a unified framework that synthesizes the explainability of detection systems with the seamless integration of prevention strategies. To the best of our knowledge, RedVisor is the first approach to leverage fine-grained reasoning paths to simultaneously detect attacks and guide the model's safe response. We implement this via a lightweight, removable adapter positioned atop the frozen backbone. This adapter serves a dual function: it first generates an explainable analysis that precisely localizes the injection and articulates the threat, which then explicitly conditions the model to reject the malicious command. Uniquely, the adapter is active only during this reasoning phase and is effectively muted during the subsequent response generation. This architecture yields two distinct advantages: (1) it mathematically preserves the backbone's original utility on benign inputs; and (2) it enables a novel KV Cache Reuse strategy, eliminating the redundant prefill computation inherent to decoupled pipelines. We further pioneer the integration of this defense into the vLLM serving engine with custom kernels. Experiments demonstrate that RedVisor outperforms state-of-the-art defenses in detection accuracy and throughput while incurring negligible utility loss.
comment: under review
☆ Grad2Reward: From Sparse Judgment to Dense Rewards for Improving Open-Ended LLM Reasoning
Reinforcement Learning with Verifiable Rewards (RLVR) has catalyzed significant breakthroughs in complex LLM reasoning within verifiable domains, such as mathematics and programming. Recent efforts have sought to extend this paradigm to open-ended tasks by employing LLMs-as-a-Judge to provide sequence-level rewards for policy optimization. However, these rewards are inherently sparse, failing to provide the fine-grained supervision necessary for generating complex, long-form trajectories. Furthermore, current work treats the Judge as a black-box oracle, discarding the rich intermediate feedback signals encoded in it. To address these limitations, we introduce Grad2Reward, a novel framework that extracts dense process rewards directly from the Judge's model inference process via a single backward pass. By leveraging gradient-based attribution, Grad2Reward enables precise token-level credit assignment, substantially enhancing training efficiency and reasoning quality. Additionally, Grad2Reward introduces a self-judging mechanism, allowing the policy to improve through its own evaluative signals without training specialized reward models or reliance on superior external Judges. The experiments demonstrate that policies optimized with Grad2Reward achieve outstanding performance across diverse open-ended tasks, affirming its effectiveness and broad generalizability.
☆ Stein-Rule Shrinkage for Stochastic Gradient Estimation in High Dimensions
Stochastic gradient methods are central to large-scale learning, yet their analysis typically treats mini-batch gradients as unbiased estimators of the population gradient. In high-dimensional settings, however, classical results from statistical decision theory show that unbiased estimators are generally inadmissible under quadratic loss, suggesting that standard stochastic gradients may be suboptimal from a risk perspective. In this work, we formulate stochastic gradient computation as a high-dimensional estimation problem and introduce a decision-theoretic framework based on Stein-rule shrinkage. We construct a shrinkage gradient estimator that adaptively contracts noisy mini-batch gradients toward a stable restricted estimator derived from historical momentum. The shrinkage intensity is determined in a data-driven manner using an online estimate of gradient noise variance, leveraging second-moment statistics commonly maintained by adaptive optimization methods. Under a Gaussian noise model and for dimension p>=3, we show that the proposed estimator uniformly dominates the standard stochastic gradient under squared error loss and is minimax-optimal in the classical decision-theoretic sense. We further demonstrate how this estimator can be incorporated into the Adam optimizer, yielding a practical algorithm with negligible additional computational cost. Empirical evaluations on CIFAR10 and CIFAR100, across multiple levels of label noise, show consistent improvements over Adam in the large-batch regime. Ablation studies indicate that the gains arise primarily from selectively applying shrinkage to high-dimensional convolutional layers, while indiscriminate shrinkage across all parameters degrades performance. These results illustrate that classical shrinkage principles provide a principled and effective approach to improving stochastic gradient estimation in modern deep learning.
☆ Position: Beyond Model-Centric Prediction -- Agentic Time Series Forecasting
Time series forecasting has traditionally been formulated as a model-centric, static, and single-pass prediction problem that maps historical observations to future values. While this paradigm has driven substantial progress, it proves insufficient in adaptive and multi-turn settings where forecasting requires informative feature extraction, reasoning-driven inference, iterative refinement, and continual adaptation over time. In this paper, we argue for agentic time series forecasting (ATSF), which reframes forecasting as an agentic process composed of perception, planning, action, reflection, and memory. Rather than focusing solely on predictive models, ATSF emphasizes organizing forecasting as an agentic workflow that can interact with tools, incorporate feedback from outcomes, and evolve through experience accumulation. We outline three representative implementation paradigms -- workflow-based design, agentic reinforcement learning, and a hybrid agentic workflow paradigm -- and discuss the opportunities and challenges that arise when shifting from model-centric prediction to agentic forecasting. Together, this position aims to establish agentic forecasting as a foundation for future research at the intersection of time series forecasting.
☆ Efficient Cross-Architecture Knowledge Transfer for Large-Scale Online User Response Prediction
Deploying new architectures in large-scale user response prediction systems incurs high model switching costs due to expensive retraining on massive historical data and performance degradation under data retention constraints. Existing knowledge distillation methods struggle with architectural heterogeneity and the prohibitive cost of transferring large embedding tables. We propose CrossAdapt, a two-stage framework for efficient cross-architecture knowledge transfer. The offline stage enables rapid embedding transfer via dimension-adaptive projections without iterative training, combined with progressive network distillation and strategic sampling to reduce computational cost. The online stage introduces asymmetric co-distillation, where students update frequently while teachers update infrequently, together with a distribution-aware adaptation mechanism that dynamically balances historical knowledge preservation and fast adaptation to evolving data. Experiments on three public datasets show that CrossAdapt achieves 0.27-0.43% AUC improvements while reducing training time by 43-71%. Large-scale deployment on Tencent WeChat Channels (~10M daily samples) further demonstrates its effectiveness, significantly mitigating AUC degradation, LogLoss increase, and prediction bias compared to standard distillation baselines.
comment: 15 pages
☆ Cost-Aware Bayesian Optimization for Prototyping Interactive Devices
Deciding which idea is worth prototyping is a central concern in iterative design. A prototype should be produced when the expected improvement is high and the cost is low. However, this is hard to decide, because costs can vary drastically: a simple parameter tweak may take seconds, while fabricating hardware consumes material and energy. Such asymmetries, can discourage a designer from exploring the design space. In this paper, we present an extension of cost-aware Bayesian optimization to account for diverse prototyping costs. The method builds on the power of Bayesian optimization and requires only a minimal modification to the acquisition function. The key idea is to use designer-estimated costs to guide sampling toward more cost-effective prototypes. In technical evaluations, the method achieved comparable utility to a cost-agnostic baseline while requiring only ${\approx}70\%$ of the cost; under strict budgets, it outperformed the baseline threefold. A within-subjects study with 12 participants in a realistic joystick design task demonstrated similar benefits. These results show that accounting for prototyping costs can make Bayesian optimization more compatible with real-world design projects.
☆ DIA-CLIP: a universal representation learning framework for zero-shot DIA proteomics
Data-independent acquisition mass spectrometry (DIA-MS) has established itself as a cornerstone of proteomic profiling and large-scale systems biology, offering unparalleled depth and reproducibility. Current DIA analysis frameworks, however, require semi-supervised training within each run for peptide-spectrum match (PSM) re-scoring. This approach is prone to overfitting and lacks generalizability across diverse species and experimental conditions. Here, we present DIA-CLIP, a pre-trained model shifting the DIA analysis paradigm from semi-supervised training to universal cross-modal representation learning. By integrating dual-encoder contrastive learning framework with encoder-decoder architecture, DIA-CLIP establishes a unified cross-modal representation for peptides and corresponding spectral features, achieving high-precision, zero-shot PSM inference. Extensive evaluations across diverse benchmarks demonstrate that DIA-CLIP consistently outperforms state-of-the-art tools, yielding up to a 45% increase in protein identification while achieving a 12% reduction in entrapment identifications. Moreover, DIA-CLIP holds immense potential for diverse practical applications, such as single-cell and spatial proteomics, where its enhanced identification depth facilitates the discovery of novel biomarkers and the elucidates of intricate cellular mechanisms.
comment: 21 pages, 5 figures
☆ BAPS: A Fine-Grained Low-Precision Scheme for Softmax in Attention via Block-Aware Precision reScaling
As the performance gains from accelerating quantized matrix multiplication plateau, the softmax operation becomes the critical bottleneck in Transformer inference. This bottleneck stems from two hardware limitations: (1) limited data bandwidth between matrix and vector compute cores, and (2) the significant area cost of high-precision (FP32/16) exponentiation units (EXP2). To address these issues, we introduce a novel low-precision workflow that employs a specific 8-bit floating-point format (HiF8) and block-aware precision rescaling for softmax. Crucially, our algorithmic innovations make low-precision softmax feasible without the significant model accuracy loss that hampers direct low-precision approaches. Specifically, our design (i) halves the required data movement bandwidth by enabling matrix multiplication outputs constrained to 8-bit, and (ii) substantially reduces the EXP2 unit area by computing exponentiations in low (8-bit) precision. Extensive evaluation on language models and multi-modal models confirms the validity of our method. By alleviating the vector computation bottleneck, our work paves the way for doubling end-to-end inference throughput without increasing chip area, and offers a concrete co-design path for future low-precision hardware and software.
♻ ☆ Helios 2.0: A Robust, Ultra-Low Power Gesture Recognition System Optimised for Event-Sensor based Wearables
We present an advance in wearable technology: a mobile-optimized, real-time, ultra-low-power event camera system that enables natural hand gesture control for smart glasses, dramatically improving user experience. While hand gesture recognition in computer vision has advanced significantly, critical challenges remain in creating systems that are intuitive, adaptable across diverse users and environments, and energy-efficient enough for practical wearable applications. Our approach tackles these challenges through carefully selected microgestures: lateral thumb swipes across the index finger (in both directions) and a double pinch between thumb and index fingertips. These human-centered interactions leverage natural hand movements, ensuring intuitive usability without requiring users to learn complex command sequences. To overcome variability in users and environments, we developed a novel simulation methodology that enables comprehensive domain sampling without extensive real-world data collection. Our power-optimised architecture maintains exceptional performance, achieving F1 scores above 80\% on benchmark datasets featuring diverse users and environments. The resulting models operate at just 6-8 mW when exploiting the Qualcomm Snapdragon Hexagon DSP, with our 2-channel implementation exceeding 70\% F1 accuracy and our 6-channel model surpassing 80\% F1 accuracy across all gesture classes in user studies. These results were achieved using only synthetic training data. This improves on the state-of-the-art for F1 accuracy by 20\% with a power reduction 25x when using DSP. This advancement brings deploying ultra-low-power vision systems in wearable devices closer and opens new possibilities for seamless human-computer interaction.
comment: 24 pages, 14 figures. Prarthana Bhattacharyya, Joshua Mitton, Ryan Page, Owen Morgan, and Oliver Powell contributed equally to this paper
♻ ☆ How to Train Your Advisor: Steering Black-Box LLMs with Advisor Models
Frontier language models are deployed as black-box services, where model weights cannot be modified and customization is limited to prompting. We introduce Advisor Models, a method to train small open-weight models to generate dynamic, per-instance natural language advice that improves the capabilities of black-box frontier models. Advisor Models improve GPT-5's performance on RuleArena (Taxes) by 71%, reduce Gemini 3 Pro's steps taken in SWE agent tasks by 24.6%, and outperform static prompt optimizers in personalizing GPT-5 to user preferences (85-100% vs. 40-60%). We also find that advisors are transferable: an advisor trained with a low-cost student model still transfers improvements to a frontier model. Moreover, Advisor Models are robust: we observe no degradation on other benchmarks than the pipeline is trained on. Our method shows how to perform parametric optimization for black-box frontier models in a practical and cost-effective way.
♻ ☆ Uncertainty-Aware Knowledge Tracing Models
The main focus of research on Knowledge Tracing (KT) models is on model developments with the aim of improving predictive accuracy. Most of these models make the most incorrect predictions when students choose a distractor, leading to student errors going undetected. We present an approach to add new capabilities to KT models by capturing predictive uncertainty and demonstrate that a larger predictive uncertainty aligns with model incorrect predictions. We show that uncertainty in KT models is informative and that this signal would be pedagogically useful for application in an educational learning platform that can be used in a limited resource setting where understanding student ability is necessary.
comment: 10 pages, 7 figures. Joshua Mitton and Prarthana Bhattacharyya contributed equally to this paper
♻ ☆ FS-DFM: Fast and Accurate Long Text Generation with Few-Step Diffusion Language Models ICLR 2026
Autoregressive language models (ARMs) deliver strong likelihoods, but are inherently serial: they generate one token per forward pass, which limits throughput and inflates latency for long sequences. Diffusion Language Models (DLMs) parallelize across positions and thus appear promising for language generation, yet standard discrete diffusion typically needs hundreds to thousands of model evaluations to reach high quality, trading serial depth for iterative breadth. We introduce FS-DFM, Few-Step Discrete Flow-Matching. A discrete flow-matching model designed for speed without sacrificing quality. The core idea is simple: make the number of sampling steps an explicit parameter and train the model to be consistent across step budgets, so one big move lands where many small moves would. We pair this with a reliable update rule that moves probability in the right direction without overshooting, and with strong teacher guidance distilled from long-run trajectories. Together, these choices make few-step sampling stable, accurate, and easy to control. On language modeling benchmarks, FS-DFM with 8 sampling steps achieves perplexity parity with a 1,024-step discrete-flow baseline for generating 1,024 tokens using a similar-size model, delivering up to 128 times faster sampling and corresponding latency/throughput gains.
comment: Accepted to ICLR 2026
♻ ☆ A Backpropagation-Free Feedback-Hebbian Network for Continual Learning Dynamics
Feedback-rich neural architectures can regenerate earlier representations and inject temporal context, making them a natural setting for strictly local synaptic plasticity. Existing literature raises doubt about whether a minimal, backpropagation-free feedback-Hebbian system can already express interpretable continual-learning-relevant behaviors under controlled training schedules. In this work, we introduce a compact prediction-reconstruction architecture with a dedicated feedback pathway providing lightweight, locally trainable temporal context for continual adaptation. All synapses are updated by a unified local rule combining centered Hebbian covariance, Oja-style stabilization, and a local supervised drive where targets are available. With a simple two-pair association task, learning is characterized through layer-wise activity snapshots, connectivity trajectories (row and column means of learned weights), and a normalized retention index across phases. Under sequential A to B training, forward output connectivity exhibits a long-term depression (LTD)-like suppression of the earlier association, while feedback connectivity preserves an A-related trace during acquisition of B. Under an alternating sequence, both associations are concurrently maintained rather than sequentially suppressed. Architectural controls and rule-term ablations isolate the role of dedicated feedback in regeneration and co-maintenance, alongside the role of the local supervised term in output selectivity and unlearning. Together, the results show that a compact feedback pathway trained with local plasticity can support regeneration and continual-learning-relevant dynamics in a minimal, mechanistically transparent setting.
comment: 8 pages, 10 figures
♻ ☆ Generalization or Hallucination? Understanding Out-of-Context Reasoning in Transformers NeurIPS 2025
Large language models (LLMs) can acquire new knowledge through fine-tuning, but this process exhibits a puzzling duality: models can generalize remarkably from new facts, yet are also prone to hallucinating incorrect information. However, the reasons for this phenomenon remain poorly understood. In this work, we argue that both behaviors stem from a single mechanism known as out-of-context reasoning (OCR): the ability to deduce implications by associating concepts, even those without a causal link. Our experiments across five prominent LLMs confirm that OCR indeed drives both generalization and hallucination, depending on whether the associated concepts are causally related. To build a rigorous theoretical understanding of this phenomenon, we then formalize OCR as a synthetic factual recall task. We empirically show that a one-layer single-head attention-only transformer with factorized output and value matrices can learn to solve this task, while a model with combined weights cannot, highlighting the crucial role of matrix factorization. Our theoretical analysis shows that the OCR capability can be attributed to the implicit bias of gradient descent, which favors solutions that minimize the nuclear norm of the combined output-value matrix. This mathematical structure explains why the model learns to associate facts and implications with high sample efficiency, regardless of whether the correlation is causal or merely spurious. Ultimately, our work provides a theoretical foundation for understanding the OCR phenomenon, offering a new lens for analyzing and mitigating undesirable behaviors from knowledge injection.
comment: NeurIPS 2025, first three authors contributed equally
♻ ☆ Outcome-Based RL Provably Leads Transformers to Reason, but Only With the Right Data
Transformers trained via Reinforcement Learning (RL) with outcome-based supervision can spontaneously develop the ability to generate intermediate reasoning steps (Chain-of-Thought). Yet the mechanism by which sparse rewards drive policy gradient to discover such systematic reasoning remains poorly understood. We address this by analyzing the policy gradient dynamics of single-layer Transformers on a synthetic graph traversal task that cannot be solved without Chain-of-Thought but admits a simple iterative solution. We prove that despite training solely on final-answer correctness, policy gradient drives the Transformer to converge to a structured, interpretable algorithm that iteratively traverses the graph vertex-by-vertex. We characterize the distributional properties required for this emergence, identifying the critical role of "simple examples": instances requiring fewer reasoning steps. When the training distribution places sufficient mass on these simpler examples, the Transformer learns a generalizable traversal strategy that extrapolates to longer chains; when this mass vanishes, policy gradient learning becomes infeasible. We corroborate our theoretical results through experiments on synthetic data and with real-world language models on mathematical reasoning tasks, validating that our theoretical findings carry over to practical settings.
comment: 87 pages, 6 figures
♻ ☆ EUGens: Efficient, Unified, and General Dense Layers
Efficient neural networks are essential for scaling machine learning models to real-time applications and resource-constrained environments. Fully-connected feedforward layers (FFLs) introduce computation and parameter count bottlenecks within neural network architectures. To address this challenge, in this work, we propose a new class of dense layers that generalize standard fully-connected feedforward layers, \textbf{E}fficient, \textbf{U}nified and \textbf{Gen}eral dense layers (EUGens). EUGens leverage random features to approximate standard FFLs and go beyond them by incorporating a direct dependence on the input norms in their computations. The proposed layers unify existing efficient FFL extensions and improve efficiency by reducing inference complexity from quadratic to linear time. They also lead to \textbf{the first} unbiased algorithms approximating FFLs with arbitrary polynomial activation functions. Furthermore, EuGens reduce the parameter count and computational overhead while preserving the expressive power and adaptability of FFLs. We also present a layer-wise knowledge transfer technique that bypasses backpropagation, enabling efficient adaptation of EUGens to pre-trained models. Empirically, we observe that integrating EUGens into Transformers and MLPs yields substantial improvements in inference speed (up to \textbf{27}\%) and memory efficiency (up to \textbf{30}\%) across a range of tasks, including image classification, language model pre-training, and 3D scene reconstruction. Overall, our results highlight the potential of EUGens for the scalable deployment of large-scale neural networks in real-world scenarios.
comment: We want to update 2410.09771 with this submission
♻ ☆ MEMOIR: Lifelong Model Editing with Minimal Overwrite and Informed Retention for LLMs NeurIPS 2025
Language models deployed in real-world systems often require post-hoc updates to incorporate new or corrected knowledge. However, editing such models efficiently and reliably-without retraining or forgetting previous information-remains a major challenge. Existing methods for lifelong model editing either compromise generalization, interfere with past edits, or fail to scale to long editing sequences. We propose MEMOIR, a novel scalable framework that injects knowledge through a residual memory, i.e., a dedicated parameter module, while preserving the core capabilities of the pre-trained model. By sparsifying input activations through sample-dependent masks, MEMOIR confines each edit to a distinct subset of the memory parameters, minimizing interference among edits. At inference, it identifies relevant edits by comparing the sparse activation patterns of new queries to those stored during editing. This enables generalization to rephrased queries by activating only the relevant knowledge while suppressing unnecessary memory activation for unrelated prompts. Experiments on question answering, hallucination correction, and out-of-distribution generalization benchmarks for LLaMA-3 and Mistral backbones demonstrate that MEMOIR achieves state-of-the-art performance across reliability, generalization, and locality metrics, scaling to thousands of sequential edits with minimal forgetting.
comment: The first two authors contributed equally to this work; Accepted to NeurIPS 2025
♻ ☆ Context-Free Synthetic Data Mitigates Forgetting
Fine-tuning a language model often results in a degradation of its existing performance on other tasks, due to a shift in the model parameters; this phenomenon is often referred to as (catastrophic) forgetting. We are interested in mitigating this, in settings where we only have access to the model weights but no access to its training data/recipe. A natural approach is to penalize the KL divergence between the original model and the new one. Our main realization is that a simple process - which we term context-free generation - allows for an approximate unbiased estimation of this KL divergence. We show that augmenting a fine-tuning dataset with context-free generations mitigates forgetting, in two settings: (a) preserving the zero-shot performance of pretrained-only models, and (b) preserving the reasoning performance of thinking models. We show that contextual synthetic data, and even a portion of the pretraining data, are less effective. We also investigate the effect of choices like generation temperature, data ratios etc. We present our results for OLMo-1B for pretrained-only setting and R1-Distill-Llama-8B for the reasoning setting.
♻ ☆ Decoding Generalization from Memorization in Deep Neural Networks
Overparameterized deep networks that generalize well have been key to the dramatic success of deep learning in recent years. The reasons for their remarkable ability to generalize are not well understood yet. When class labels in the training set are shuffled to varying degrees, it is known that deep networks can still reach perfect training accuracy at the detriment of generalization to true labels -- a phenomenon that has been called memorization. It has, however, been unclear why the poor generalization to true labels that accompanies such memorization, comes about. One possibility is that during training, all layers of the network irretrievably re-organize their representations in a manner that makes generalization to true labels difficult. The other possibility is that one or more layers of the trained network retain significantly more latent ability to generalize to true labels, but the network somehow "chooses" to readout in a manner that is detrimental to generalization to true labels. Here, we provide evidence for the latter possibility by demonstrating, empirically, that such models possess information in their representations for substantially-improved generalization to true labels. Furthermore, such abilities can be easily decoded from the internals of the trained model, and we build a technique to do so. We demonstrate results on multiple models trained with standard datasets. Our code is available at: https://github.com/simranketha/MASC_DNN.
♻ ☆ Future frame prediction in chest and liver cine MRI using the PCA respiratory motion model: comparing transformers and dynamically trained recurrent neural networks
Respiratory motion complicates accurate irradiation of thoraco-abdominal tumors in radiotherapy, as treatment-system latency entails target-location uncertainties. This work addresses frame forecasting in chest and liver cine MRI to compensate for such delays. We investigate RNNs trained with online learning algorithms, enabling adaptation to changing respiratory patterns via on-the-fly parameter updates, and transformers, increasingly common in time series forecasting for their ability to capture long-term dependencies. Experiments were conducted using 12 sagittal thoracic and upper-abdominal cine-MRI sequences from ETH Zürich and OvGU. PCA decomposes the Lucas-Kanade optical-flow field into static deformations and low-dimensional time-dependent weights. We compare various methods forecasting the latter: linear filters, population and sequence-specific encoder-only transformers, and RNNs trained with real-time recurrent learning (RTRL), unbiased online recurrent optimization, decoupled neural interfaces, and sparse one-step approximation (SnAp-1). Predicted displacements were used to warp the reference frame and generate future images. Prediction accuracy decreased with the horizon h. Linear regression performed best at short horizons (1.3mm geometrical error at h=0.32s, ETH Zürich data), while RTRL and SnAp-1 outperformed the other algorithms at medium-to-long horizons, with geometrical errors below 1.4mm and 2.8mm on the sequences from ETH Zürich and OvGU (the latter featuring higher motion variability, noise, and lower contrast), respectively. The sequence-specific transformer was competitive for low-to-medium horizons, but transformers remained overall limited by data scarcity and domain shift between datasets. Predicted frames visually resembled the ground truth, with notable errors occurring near the diaphragm at end-inspiration and regions affected by out-of-plane motion.
comment: 43 pages, 19 figures, revised version (including transformer experiments, evaluation on liver MRI data, statistical analysis...)
♻ ☆ MeshGraphNet-Transformer: Scalable Mesh-based Learned Simulation for Solid Mechanics
We present MeshGraphNet-Transformer (MGN-T), a novel architecture that combines the global modeling capabilities of Transformers with the geometric inductive bias of MeshGraphNets, while preserving a mesh-based graph representation. MGN-T overcomes a key limitation of standard MGN, the inefficient long-range information propagation caused by iterative message passing on large, high-resolution meshes. A physics-attention Transformer serves as a global processor, updating all nodal states simultaneously while explicitly retaining node and edge attributes. By directly capturing long-range physical interactions, MGN-T eliminates the need for deep message-passing stacks or hierarchical, coarsened meshes, enabling efficient learning on high-resolution meshes with varying geometries, topologies, and boundary conditions at an industrial scale. We demonstrate that MGN-T successfully handles industrial-scale meshes for impact dynamics, a setting in which standard MGN fails due message-passing under-reaching. The method accurately models self-contact, plasticity, and multivariate outputs, including internal, phenomenological plastic variables. Moreover, MGN-T outperforms state-of-the-art approaches on classical benchmarks, achieving higher accuracy while maintaining practical efficiency, using only a fraction of the parameters required by competing baselines.
♻ ☆ To See Far, Look Close: Evolutionary Forecasting for Long-term Time Series
The prevailing Direct Forecasting (DF) paradigm dominates Long-term Time Series Forecasting (LTSF) by forcing models to predict the entire future horizon in a single forward pass. While efficient, this rigid coupling of output and evaluation horizons necessitates computationally prohibitive re-training for every target horizon. In this work, we uncover a counter-intuitive optimization anomaly: models trained on short horizons-when coupled with our proposed Evolutionary Forecasting (EF) paradigm-significantly outperform those trained directly on long horizons. We attribute this success to the mitigation of a fundamental optimization pathology inherent in DF, where conflicting gradients from distant futures cripple the learning of local dynamics. We establish EF as a unified generative framework, proving that DF is merely a degenerate special case of EF. Extensive experiments demonstrate that a singular EF model surpasses task-specific DF ensembles across standard benchmarks and exhibits robust asymptotic stability in extreme extrapolation. This work propels a paradigm shift in LTSF: moving from passive Static Mapping to autonomous Evolutionary Reasoning.
♻ ☆ Enabling Approximate Joint Sampling in Diffusion LMs
In autoregressive language models, each token is sampled by conditioning on all the past tokens; the overall string has thus been sampled from the correct underlying joint distribution represented by the model. In contrast, masked diffusion language models generate text by unmasking tokens out of order and potentially in parallel. Generating an overall string sampled from the correct underlying joint distribution would (again) require exactly one token unmasking in every full-model forward pass. The more tokens unmasked in parallel, the further away the string is from the true joint; this can be seen in the resulting drop in accuracy (but, increase in speed). In this paper we devise a way to {\em approximately} sample multiple tokens from the joint distribution in a single full-model forward pass; we do so by developing a new lightweight single-layer ``sampler" on top of an existing large diffusion LM. One forward pass of the full model can now be followed by multiple forward passes of only this sampler layer, to yield multiple unmasked tokens. Our sampler is trained to mimic exact joint sampling from the (frozen) full model. We show the effectiveness of our approximate joint sampling for both pretrained-only (Dream-7B-Base, Llada-7B-Base) and instruction-tuned (Dream-7B-Instruct, Dream-7B-Coder) models on language modeling and math \& coding tasks. When four tokens are unmasked for each full-model denoising step, our sampling algorithm achieves a MAUVE score of 0.87 (vs marginal baseline of 0.31) with respect to the true joint distribution.
♻ ☆ SparseSwaps: Tractable LLM Pruning Mask Refinement at Scale
The resource requirements of neural networks can be significantly reduced through pruning - the removal of seemingly less important parameters. However, for LLMs, full retraining to recover pruning-induced performance degradation is often prohibitive and classical approaches such as magnitude pruning are suboptimal on Transformers. State-of-the-art methods hence solve a layer-wise mask selection problem: finding a pruning mask that minimizes per-layer pruning error on a small set of calibration data. Exactly solving this problem is computationally infeasible due to its combinatorial nature and the size of the search space, and existing approaches rely on approximations or heuristics. We demonstrate that the mask selection problem can be made drastically more tractable at LLM scale. To that end, we decouple the rows by enforcing equal sparsity levels per row. This allows us to derive optimal 1-swaps (exchanging one kept and one pruned weight) computable efficiently via the Gram matrix. We propose a simple 1-swap algorithm that warmstarts from any pruning mask, runs efficiently on GPUs at LLM scale, and is essentially hyperparameter-free. Our approach reduces per-layer pruning error by up to 60% over Wanda (Sun et al., 2024) and consistently improves perplexity and zero-shot accuracy across state-of-the-art GPT architectures.
comment: 13 pages, 2 figures, 5 tables
♻ ☆ Language as a Wave Phenomenon: Semantic Phase Locking and Interference in Neural Networks
In standard Transformer architectures, semantic importance is often conflated with activation magnitude, obscuring the geometric structure of latent representations. To disentangle these factors, we introduce PRISM, a complex-valued architecture designed to isolate the computational role of phase. By enforcing a strict unit-norm constraint (|z| = 1) and replacing attention with gated harmonic convolutions, the model is compelled to utilize subtractive interference in the frequency domain to suppress noise, rather than relying on magnitude-based gating. We utilize this constrained regime to demonstrate that a hybrid architecture - fusing phase-based routing with standard attention - achieves superior parameter efficiency and representation quality compared to unconstrained baselines. Mechanistically, we identify geometric phase clustering, where tokens naturally self-organize to resolve semantic ambiguities. This establishes an O(N log N) reasoning framework based on spectral interference, providing an algorithmic existence proof that subtractive logic is a sufficient primitive for deep reasoning.
comment: 14 pages, 7 figures; Revised title; Added new experiments on encoder-only models using WikiText-103
♻ ☆ MINIF2F-DAFNY: LLM-Guided Mathematical Theorem Proving via Auto-Active Verification
LLMs excel at reasoning, but validating their steps remains challenging. Formal verification offers a solution through mechanically checkable proofs. Interactive theorem provers (ITPs) dominate mathematical reasoning but require detailed low-level proof steps, while auto-active verifiers offer automation but focus on software verification. Recent work has begun bridging this divide by evaluating LLMs for software verification in ITPs, but the complementary direction--LLMs for mathematical theorem proving in auto-active verifiers--remains unexplored. We present MINIF2F-DAFNY, the first translation of the widely-used mathematical benchmark miniF2F to an auto-active verifier: Dafny. We find that Dafny's automation alone solves 39-44% of problems with empty proofs, whereas many require substantial proof guidance in ITPs. For remaining problems, we evaluate 7 off-the-shelf LLMs, achieving 55.7% success with the best model (Claude Sonnet 4.5) using modest resources. These results demonstrate effective division of labor: LLMs provide high-level guidance while automation handles low-level details. Our benchmark can be found on GitHub at http://github.com/dafny-lang/miniF2F .
♻ ☆ A Scalable Inter-edge Correlation Modeling in CopulaGNN for Link Sign Prediction ICLR 2026
Link sign prediction on a signed graph is a task to determine whether the relationship represented by an edge is positive or negative. Since the presence of negative edges violates the graph homophily assumption that adjacent nodes are similar, regular graph methods have not been applicable without auxiliary structures to handle them. We aim to directly model the latent statistical dependency among edges with the Gaussian copula and its corresponding correlation matrix, extending CopulaGNN (Ma et al., 2021). However, a naive modeling of edge-edge relations is computationally intractable even for a graph with moderate scale. To address this, we propose to 1) represent the correlation matrix as a Gramian of edge embeddings, significantly reducing the number of parameters, and 2) reformulate the conditional probability distribution to dramatically reduce the inference cost. We theoretically verify scalability of our method by proving its linear convergence. Also, our extensive experiments demonstrate that it achieves significantly faster convergence than baselines, maintaining competitive prediction performance to the state-of-the-art models.
comment: Accepted for ICLR 2026
♻ ☆ A Scalable Measure of Loss Landscape Curvature for Analyzing the Training Dynamics of LLMs
Understanding the curvature evolution of the loss landscape is fundamental to analyzing the training dynamics of neural networks. The most commonly studied measure, Hessian sharpness ($λ_{\max}^H$) -- the largest eigenvalue of the loss Hessian -- determines local training stability and interacts with the learning rate throughout training. Despite its significance in analyzing training dynamics, direct measurement of Hessian sharpness remains prohibitive for Large Language Models (LLMs) due to high computational cost. We analyze $\textit{critical sharpness}$ ($λ_c$), a computationally efficient measure requiring fewer than $10$ forward passes given the update direction $Δ\mathbfθ$. Critically, this measure captures well-documented Hessian sharpness phenomena, including progressive sharpening and Edge of Stability. Using this measure, we provide the first demonstration of these sharpness phenomena at scale, up to $7$B parameters, spanning both pre-training and mid-training of OLMo-2 models. We further introduce $\textit{relative critical sharpness}$ ($λ_c^{1\to 2}$), which quantifies the curvature of one loss landscape while optimizing another, to analyze the transition from pre-training to fine-tuning and guide data mixing strategies. Critical sharpness provides practitioners with a practical tool for diagnosing curvature dynamics and informing data composition choices at scale. More broadly, our work shows that scalable curvature measures can provide actionable insights for large-scale training.
comment: Improved Appendix D proofs, text for clarity, added more related works
♻ ☆ STAC: When Innocent Tools Form Dangerous Chains to Jailbreak LLM Agents
As LLMs advance into autonomous agents with tool-use capabilities, they introduce security challenges that extend beyond traditional content-based LLM safety concerns. This paper introduces Sequential Tool Attack Chaining (STAC), a novel multi-turn attack framework that exploits agent tool use. STAC chains together tool calls that each appear harmless in isolation but, when combined, collectively enable harmful operations that only become apparent at the final execution step. We apply our framework to automatically generate and systematically evaluate 483 STAC cases, featuring 1,352 sets of user-agent-environment interactions and spanning diverse domains, tasks, agent types, and 10 failure modes. Our evaluations show that state-of-the-art LLM agents, including GPT-4.1, are highly vulnerable to STAC, with attack success rates (ASR) exceeding 90% in most cases. The core design of STAC's automated framework is a closed-loop pipeline that synthesizes executable multi-step tool chains, validates them through in-environment execution, and reverse-engineers stealthy multi-turn prompts that reliably induce agents to execute the verified malicious sequence. We further perform defense analysis against STAC and find that existing prompt-based defenses provide limited protection. To address this gap, we propose a new reasoning-driven defense prompt that achieves far stronger protection, cutting ASR by up to 28.8%. These results highlight a crucial gap: defending tool-enabled agents requires reasoning over entire action sequences and their cumulative effects, rather than evaluating isolated prompts or responses.
♻ ☆ A Proof of Learning Rate Transfer under $μ$P
We provide the first proof of learning rate transfer with width in a linear multi-layer perceptron (MLP) parametrized with $μ$P, a neural network parameterization designed to ``maximize'' feature learning in the infinite-width limit. We show that under $μP$, the optimal learning rate converges to a \emph{non-zero constant} as width goes to infinity, providing a theoretical explanation to learning rate transfer. In contrast, we show that this property fails to hold under alternative parametrizations such as Standard Parametrization (SP) and Neural Tangent Parametrization (NTP). We provide intuitive proofs and support the theoretical findings with extensive empirical results.
comment: 21 pages
♻ ☆ SNAP-UQ: Self-supervised Next-Activation Prediction for Single-Pass Uncertainty in TinyML ICLR 2026
This paper proposes a novel and practical method, SNAP-UQ, for single-pass, label-free uncertainty estimation based on depth-wise next-activation prediction. SNAP-UQ taps a small set of backbone layers and uses tiny int8 heads to predict the mean and scale of the next activation from a low-rank projection of the previous one; the resulting standardized prediction error forms a depth-wise surprisal signal that is aggregated and mapped through a lightweight monotone calibrator into an actionable uncertainty score. The design introduces no temporal buffers or auxiliary exits and preserves state-free inference, while increasing deployment footprint by only a few tens of kilobytes. Across vision and audio backbones, SNAP-UQ reduces flash and latency relative to early-exit and deep-ensemble baselines (typically $\sim$40--60% smaller and $\sim$25--35% faster), with several competing methods at similar accuracy often exceeding MCU memory limits. On corrupted streams, it improves accuracy-drop event detection by multiple AUPRC points and maintains strong failure detection (AUROC $\approx 0.9$) in a single forward pass. By grounding uncertainty in layer-to-layer dynamics rather than solely in output confidence, SNAP-UQ offers a novel, resource-efficient basis for robust TinyML monitoring.
comment: Accepted at ICLR 2026
♻ ☆ HER: Human-like Reasoning and Reinforcement Learning for LLM Role-playing
LLM role-playing, i.e., using LLMs to simulate specific personas, has emerged as a key capability in various applications, such as companionship, content creation, and digital games. While current models effectively capture character tones and knowledge, simulating the inner thoughts behind their behaviors remains a challenge. Towards cognitive simulation in LLM role-play, previous efforts mainly suffer from two deficiencies: data with high-quality reasoning traces, and reliable reward signals aligned with human preferences. In this paper, we propose HER, a unified framework for cognitive-level persona simulation. HER introduces dual-layer thinking, which distinguishes characters' first-person thinking from LLMs' third-person thinking. To bridge these gaps, we curate reasoning-augmented role-playing data via reverse engineering and construct human-aligned principles and reward models. Leveraging these resources, we train HER models based on Qwen3-32B via supervised and reinforcement learning. Extensive experiments validate the effectiveness of our approach. Notably, our models significantly outperform the Qwen3-32B baseline, achieving a 30.26 improvement on the CoSER benchmark and a 14.97 gain on the Minimax Role-Play Bench. Our datasets, principles, and models will be released to facilitate future research.
comment: 41pages, 10 figures
♻ ☆ TEON: Tensorized Orthonormalization Beyond Layer-Wise Muon for Large Language Model Pre-Training
The Muon optimizer has demonstrated strong empirical performance in pre-training large language models by performing matrix-level gradient (or momentum) orthogonalization in each layer independently. In this work, we propose TEON, a principled generalization of Muon that extends orthogonalization beyond individual layers by modeling the gradients of a neural network as a structured higher-order tensor. We present TEON's improved convergence guarantee over layer-wise Muon, and further develop a practical instantiation of TEON based on the theoretical analysis with corresponding ablation. We evaluate our approach on two widely adopted architectures: GPT-style models, ranging from 130M to 774M parameters, and LLaMA-style models, ranging from 60M to 1B parameters. Experimental results show that TEON consistently improves training and validation perplexity across model scales and exhibits strong robustness under various approximate SVD schemes.
♻ ☆ ASIL: Augmented Structural Information Learning for Deep Graph Clustering in Hyperbolic Space IEEE
Graph clustering is a longstanding topic in machine learning. Recently, deep methods have achieved results but still require predefined cluster numbers K and struggle with imbalanced graphs. We study deep graph clustering without K considering realistic imbalance through structural information theory. In the literature, structural information is rarely used in deep clustering, and its classic discrete definition neglects node attributes while exhibiting prohibitive complexity. In this paper, we establish a differentiable structural information framework, generalizing the discrete formalism to the continuous realm. We design a hyperbolic model (LSEnet) to learn the neural partitioning tree in the Lorentz model. Theoretically, we demonstrate its capability in clustering without K and identifying minority clusters. Second, we refine hyperbolic representations to enhance graph semantics. Since tree contrastive learning is non-trivial and costs quadratic complexity, we advance our theory by discovering that structural entropy bounds the tree contrastive loss. Finally, we approach graph clustering through a novel augmented structural information learning (ASIL), which offers an efficient objective to integrate hyperbolic partitioning tree construction and contrastive learning. With a provable improvement in graph conductance, ASIL achieves effective debiased graph clustering in linear complexity. Extensive experiments show ASIL outperforms 20 strong baselines by an average of +12.42% in NMI on the Citeseer dataset.
comment: Accepted by IEEE TPAMI, 36 pages
♻ ☆ Accurate Network Traffic Matrix Prediction via LEAD: a Large Language Model-Enhanced Adapter-Based Conditional Diffusion Model
Driven by the evolution toward 6G and AI-native edge intelligence, network operations increasingly require predictive and risk-aware adaptation under stringent computation and latency constraints. Network Traffic Matrix (TM), which characterizes flow volumes between nodes, is a fundamental signal for proactive traffic engineering. However, accurate TM forecasting remains challenging due to the stochastic, non-linear, and bursty nature of network dynamics. Existing discriminative models often suffer from over-smoothing and provide limited uncertainty awareness, leading to poor fidelity under extreme bursts. To address these limitations, we propose LEAD, a Large Language Model (LLM)-Enhanced Adapter-based conditional Diffusion model. First, LEAD adopts a "Traffic-to-Image" paradigm to transform traffic matrices into RGB images, enabling global dependency modeling via vision backbones. Then, we design a "Frozen LLM with Trainable Adapter" model, which efficiently captures temporal semantics with limited computational cost. Moreover, we propose a Dual-Conditioning Strategy to precisely guide a diffusion model to generate complex, dynamic network traffic matrices. Experiments on the Abilene and GEANT datasets demonstrate that LEAD outperforms all baselines. On the Abilene dataset, LEAD attains a remarkable 45.2% reduction in RMSE against the best baseline, with the error margin rising only marginally from 0.1098 at one-step to 0.1134 at 20-step predictions. Meanwhile, on the GEANT dataset, LEAD achieves a 0.0258 RMSE at 20-step prediction horizon which is 27.3% lower than the best baseline.
♻ ☆ On Purely Private Covariance Estimation ALT 2026
We present a simple perturbation mechanism for the release of $d$-dimensional covariance matrices $Σ$ under pure differential privacy. For large datasets with at least $n\geq d^2/\varepsilon$ elements, our mechanism recovers the provably optimal Frobenius norm error guarantees of \cite{nikolov2023private}, while simultaneously achieving best known error for all other $p$-Schatten norms, with $p\in [1,\infty]$. Our error is information-theoretically optimal for all $p\ge 2$, in particular, our mechanism is the first purely private covariance estimator that achieves optimal error in spectral norm. For small datasets $n< d^2/\varepsilon$, we further show that by projecting the output onto the nuclear norm ball of appropriate radius, our algorithm achieves the optimal Frobenius norm error $O(\sqrt{d\;\text{Tr}(Σ) /n})$, improving over the known bounds of $O(\sqrt{d/n})$ of \cite{nikolov2023private} and ${O}\big(d^{3/4}\sqrt{\text{Tr}(Σ)/n}\big)$ of \cite{dong2022differentially}.
comment: ALT 2026; equal contribution
♻ ☆ Joint Transmit and Pinching Beamforming for Pinching Antenna Systems (PASS): Optimization-Based or Learning-Based? IEEE
A novel pinching antenna system (PASS)-enabled downlink multi-user multiple-input single-output (MISO) framework is proposed. PASS consists of multiple waveguides spanning over thousands of wavelength, which equip numerous low-cost dielectric particles, named pinching antennas (PAs), to radiate signals into free space. The positions of PAs can be reconfigured to change both the large-scale path losses and phases of signals, thus facilitating the novel pinching beamforming design. A sum rate maximization problem is formulated, which jointly optimizes the transmit and pinching beamforming to adaptively achieve constructive signal enhancement and destructive interference mitigation. To solve this highly coupled and nonconvex problem, both optimization-based and learning-based methods are proposed. 1) For the optimization-based method, a majorization-minimization and penalty dual decomposition (MM-PDD) algorithm is developed, which handles the nonconvex complex exponential component using a Lipschitz surrogate function and then invokes PDD for problem decoupling. 2) For the learning-based method, a novel Karush-Kuhn-Tucker (KKT)-guided dual learning (KDL) approach is proposed, which enables KKT solutions to be reconstructed in a data-driven manner by learning dual variables. Following this idea, a KDL-Transformer algorithm is developed, which captures both inter-PA/inter-user dependencies and channel-state-information (CSI)-beamforming dependencies by attention mechanisms. Simulation results demonstrate that: i) The proposed PASS framework significantly outperforms conventional massive multiple input multiple output (MIMO) system even with a few PAs. ii) The proposed KDL-Transformer can improve over 20% system performance than MM-PDD algorithm, while achieving a millisecond-level response on modern GPUs.
comment: Accepted by IEEE Transactions on Wireless Communications (TWC). Reproducible code for KDL-Transformer is available at https://github.com/xiaoxiaxusummer/KDL_Transformer_Beamforming
♻ ☆ Monotonic Transformation Invariant Multi-task Learning
Multi-task learning (MTL) algorithms typically rely on schemes that combine different task losses or their gradients through weighted averaging. These methods aim to find Pareto stationary points by using heuristics that require access to task loss values, gradients, or both. In doing so, a central challenge arises because task losses can be arbitrarily scaled relative to one another, causing certain tasks to dominate training and degrade overall performance. A recent advance in cooperative bargaining theory, the Direction-based Bargaining Solution (DiBS), yields Pareto stationary solutions immune to task domination because of its invariance to monotonic nonaffine task loss transformations. However, the convergence behavior of DiBS in nonconvex MTL settings is currently not understood. To this end, we prove that under standard assumptions, a subsequence of DiBS iterates converges to a Pareto stationary point when task losses are nonconvex, and propose DiBS-MTL, an adaptation of DiBS to the MTL setting which is more computationally efficient that prior bargaining-inspired MTL approaches. Finally, we empirically show that DiBS-MTL is competitive with leading MTL methods on standard benchmarks, and it drastically outperforms state-of-the-art baselines in multiple examples with poorly-scaled task losses, highlighting the importance of invariance to nonaffine monotonic transformations of the loss landscape. Code available at https://github.com/suryakmurthy/dibs-mtl
♻ ☆ StefaLand: An Efficient Geoscience Foundation Model That Improves Dynamic Land-Surface Predictions
Managing natural resources and mitigating risks from floods, droughts, wildfires, and landslides require models that can accurately predict climate-driven land-surface responses. Traditional models often struggle with spatial generalization because they are trained or calibrated on limited observations and can degrade under concept drift. Recently proposed vision foundation models trained on satellite imagery demand massive compute, and they are not designed for dynamic land surface prediction tasks. We introduce StefaLand, a generative spatiotemporal Earth representation learning model centered on learning cross-domain interactions to suppress overfitting. StefaLand demonstrates especially strong spatial generalization on five datasets across four important tasks: streamflow, soil moisture, soil composition and landslides, compared to previous state-of-the-art methods. The domain-inspired design choices include a location-aware masked autoencoder that fuses static and time-series inputs, an attribute-based rather than image-based representation that drastically reduces compute demands, and residual fine-tuning adapters that strengthen knowledge transfer across tasks. StefaLand can be pretrained and finetuned on commonly available academic compute resources, yet consistently outperforms state-of-the-art supervised learning baselines, fine-tuned vision foundation models and commercially available embeddings, highlighting the previously overlooked value of cross-domain interactions and providing assistance to data-poor regions of the world.
♻ ☆ Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity ICLR 2022
The success of deep ensembles on improving predictive performance, uncertainty estimation, and out-of-distribution robustness has been extensively studied in the machine learning literature. Albeit the promising results, naively training multiple deep neural networks and combining their predictions at inference leads to prohibitive computational costs and memory requirements. Recently proposed efficient ensemble approaches reach the performance of the traditional deep ensembles with significantly lower costs. However, the training resources required by these approaches are still at least the same as training a single dense model. In this work, we draw a unique connection between sparse neural network training and deep ensembles, yielding a novel efficient ensemble learning framework called FreeTickets. Instead of training multiple dense networks and averaging them, we directly train sparse subnetworks from scratch and extract diverse yet accurate subnetworks during this efficient, sparse-to-sparse training. Our framework, FreeTickets, is defined as the ensemble of these relatively cheap sparse subnetworks. Despite being an ensemble method, FreeTickets has even fewer parameters and training FLOPs than a single dense model. This seemingly counter-intuitive outcome is due to the ultra training/inference efficiency of dynamic sparse training. FreeTickets surpasses the dense baseline in all the following criteria: prediction accuracy, uncertainty estimation, out-of-distribution (OoD) robustness, as well as efficiency for both training and inference. Impressively, FreeTickets outperforms the naive deep ensemble with ResNet50 on ImageNet using around only 1/5 of the training FLOPs required by the latter. We have released our source code at https://github.com/VITA-Group/FreeTickets.
comment: published in International Conference on Learning Representations (ICLR 2022)
♻ ☆ Why Inference in Large Models Becomes Decomposable After Training
Inference in large-scale AI models is typically performed on dense parameter matrices, leading to inference cost and system complexity that scale unsustainably with model size. This limitation does not arise from insufficient model capacity, but from treating post-training inference systems as monolithic operators while ignoring internal structures formed during learning. We show that gradient update events in large models are highly localized and selective, leaving many parameter dependencies statistically indistinguishable from their initialization distribution after training. As a result, post-training inference systems are structurally non-uniform and inherently decomposable. Based on this observation, we introduce a post-training statistical criterion and a structural annealing procedure that removes unsupported dependencies and reveals stable, independent substructures. This work establishes a post-training, model-agnostic structural view of inference systems and enables structured, parallel inference without modifying model functionality or interfaces.
comment: 39 pages, 6 figures
♻ ☆ CATTO: Balancing Preferences and Confidence in Language Models
Large language models (LLMs) often make accurate next token predictions but their confidence in these predictions can be poorly calibrated: high-confidence predictions are frequently wrong, and low-confidence predictions may be correct. This miscalibration is exacerbated by preference-based alignment methods breaking the link between predictive probability and correctness. We introduce a Calibration Aware Token-level Training Objective (CATTO), a calibration-aware objective that aligns predicted confidence with empirical prediction correctness, which can be combined with the original preference optimization objectives. Empirically, CATTO reduces Expected Calibration Error (ECE) by 2.22%-7.61% in-distribution and 1.46%-10.44% out-of-distribution compared to direct preference optimization (DPO), and by 0.22%-1.24% in-distribution and 1.23%-5.07% out-of-distribution compared to the strongest DPO baseline. This improvement in confidence does not come at a cost of losing task accuracy, where CATTO maintains or slightly improves multiple-choice question-answering accuracy on five datasets. We also introduce Confidence@k, a test-time scaling mechanism leveraging calibrated token probabilities for Bayes-optimal selection of output tokens.
♻ ☆ Resolving Extreme Data Scarcity by Explicit Physics Integration: An Application to Groundwater Heat Transport
Real-world flow applications in complex scientific and engineering domains, such as geosciences, challenge classical simulation methods due to large spatial domains, high spatio-temporal resolution requirements, and potentially strong material heterogeneities that lead to ill-conditioning and long runtimes. While machine learning-based surrogate models can reduce computational cost, they typically rely on large training datasets that are often unavailable in practice. To address data-scarce settings, we revisit the structure of advection-diffusion problems and decompose them into multiscale processes of locally and globally dominated components, separating spatially localized interactions and long-range effects. We propose a Local-Global Convolutional Neural Network (LGCNN) that combines a lightweight numerical model for global transport with two convolutional neural networks addressing processes of a more local nature. We demonstrate the performance of our method on city-scale geothermal heat pump interaction modeling and show that, even when trained on fewer than five simulations, LGCNN generalizes to arbitrarily larger domains, and can be successfully transferred to real subsurface parameter maps from the Munich region, Germany.
♻ ☆ HAMLOCK: HArdware-Model LOgically Combined attacK
The growing use of third-party hardware accelerators (e.g., FPGAs, ASICs) for deep neural networks (DNNs) introduces new security vulnerabilities. Conventional model-level backdoor attacks, which only poison a model's weights to misclassify inputs with a specific trigger, are often detectable because the entire attack logic is embedded within the model (i.e., software), creating a traceable layer-by-layer activation path. This paper introduces the HArdware-Model Logically Combined Attack (HAMLOCK), a far stealthier threat that distributes the attack logic across the hardware-software boundary. The software (model) is now only minimally altered by tuning the activations of few neurons to produce uniquely high activation values when a trigger is present. A malicious hardware Trojan detects those unique activations by monitoring the corresponding neurons' most significant bit or the 8-bit exponents and triggers another hardware Trojan to directly manipulate the final output logits for misclassification. This decoupled design is highly stealthy, as the model itself contains no complete backdoor activation path as in conventional attacks and hence, appears fully benign. Empirically, across benchmarks like MNIST, CIFAR10, GTSRB, and ImageNet, HAMLOCK achieves a near-perfect attack success rate with a negligible clean accuracy drop. More importantly, HAMLOCK circumvents the state-of-the-art model-level defenses without any adaptive optimization. The hardware Trojan is also undetectable, incurring area and power overheads as low as 0.01%, which is easily masked by process and environmental noise. Our findings expose a critical vulnerability at the hardware-software interface, demanding new cross-layer defenses against this emerging threat.
comment: Accepted to usenix security 2026
♻ ☆ Investigating Modality Contribution in Audio LLMs for Music ICASSP 2026
Audio Large Language Models (Audio LLMs) enable human-like conversation about music, yet it is unclear if they are truly listening to the audio or just using textual reasoning, as recent benchmarks suggest. This paper investigates this issue by quantifying the contribution of each modality to a model's output. We adapt the MM-SHAP framework, a performance-agnostic score based on Shapley values that quantifies the relative contribution of each modality to a model's prediction. We evaluate two models on the MuChoMusic benchmark and find that the model with higher accuracy relies more on text to answer questions, but further inspection shows that even if the overall audio contribution is low, models can successfully localize key sound events, suggesting that audio is not entirely ignored. Our study is the first application of MM-SHAP to Audio LLMs and we hope it will serve as a foundational step for future research in explainable AI and audio.
comment: 5 pages, 2 figures, accepted at ICASSP 2026
♻ ☆ Conditional diffusion models for downscaling and bias correction of Earth system model precipitation
Climate change exacerbates extreme weather events like heavy rainfall and flooding. As these events cause severe socioeconomic damage, accurate high-resolution simulation of precipitation is imperative. However, existing Earth System Models (ESMs) struggle to resolve small-scale dynamics and suffer from biases. Traditional statistical bias correction and downscaling methods fall short in improving spatial structure, while recent deep learning methods lack controllability and suffer from unstable training. Here, we propose a machine learning framework for simultaneous bias correction and downscaling. We first map observational and ESM data to a shared embedding space, where both are unbiased towards each other, and then train a conditional diffusion model to reverse the mapping. Only observational data is used for the training, so that the diffusion model can be employed to correct and downscale any ESM field without need for retraining. Our approach ensures statistical fidelity and preserves spatial patterns larger than a chosen spatial correction scale. We demonstrate that our approach outperforms existing statistical and deep learning methods especially regarding extreme events.
♻ ☆ Entropy-Lens: Uncovering Decision Strategies in LLMs
In large language models (LLMs), each block operates on the residual stream to map input token sequences to output token distributions. However, most of the interpretability literature focuses on internal latent representations, leaving token-space dynamics underexplored. The high dimensionality and categoricity of token distributions hinder their analysis, as standard statistical descriptors are not suitable. We show that the entropy of logit-lens predictions overcomes these issues. In doing so, it provides a per-layer scalar, permutation-invariant metric. We introduce Entropy-Lens to distill the token-space dynamics of the residual stream into a low-dimensional signal. We call this signal the entropy profile. We apply our method to a variety of model sizes and families, showing that (i) entropy profiles uncover token prediction dynamics driven by expansion and pruning strategies; (ii) these dynamics are family-specific and invariant under depth rescaling; (iii) they are characteristic of task type and output format; (iv) these strategies have unequal impact on downstream performance, with the expansion strategy usually being more critical. Ultimately, our findings further enhance our understanding of the residual stream, enabling a granular assessment of how information is processed across model depth.
♻ ☆ Avoiding Premature Collapse: Adaptive Annealing for Entropy-Regularized Structural Inference
Differentiable matching layers, often implemented via entropy-regularized Optimal Transport, serve as a critical approximate inference mechanism in structural prediction. However, recovering discrete permutations via annealing $ε\to 0$ is notoriously unstable. We identify a fundamental mechanism for this failure: \textbf{Premature Mode Collapse}. By analyzing the non-normal dynamics of the Sinkhorn fixed-point map, we reveal a theoretical \textbf{thermodynamic speed limit}. Under standard exponential cooling, the shift in the target posterior ($O(1)$) outpaces the contraction rate of the inference operator, which degrades as $O(1/ε)$. This mismatch inevitably forces the inference trajectory into spurious local basins. To address this, we propose \textbf{Efficient PH-ASC}, an adaptive scheduling algorithm that monitors the stability of the inference process. By enforcing a linear stability law, we decouple expensive spectral diagnostics from the training loop, reducing overhead from $O(N^3)$ to amortized $O(1)$. Our implementation and interactive demo are available at https://github.com/xxx0438/torch-sinkhorn-asc and https://huggingface.co/spaces/leon0923/torch-sinkhorn-asc-demo. bounded away from zero in generic training dynamics unless the feature extractor converges unrealistically fast.
♻ ☆ Sampling-Free Privacy Accounting for Matrix Mechanisms under Random Allocation
We study privacy amplification for differentially private model training with matrix factorization under random allocation (also known as the balls-in-bins model). Recent work by Choquette-Choo et al. (2025) proposes a sampling-based Monte Carlo approach to compute amplification parameters in this setting. However, their guarantees either only hold with some high probability or require random abstention by the mechanism. Furthermore, the required number of samples for ensuring $(ε,δ)$-DP is inversely proportional to $δ$. In contrast, we develop sampling-free bounds based on Rényi divergence and conditional composition. The former is facilitated by a dynamic programming formulation to efficiently compute the bounds. The latter complements it by offering stronger privacy guarantees for small $ε$, where Rényi divergence bounds inherently lead to an over-approximation. Our framework applies to arbitrary banded and non-banded matrices. Through numerical comparisons, we demonstrate the efficacy of our approach across a broad range of matrix mechanisms used in research and practice.
♻ ☆ Critic-Guided Reinforcement Unlearning in Text-to-Image Diffusion
Machine unlearning in text-to-image diffusion models aims to remove targeted concepts while preserving overall utility. Prior diffusion unlearning methods typically rely on supervised weight edits or global penalties; reinforcement-learning (RL) approaches, while flexible, often optimize sparse end-of-trajectory rewards, yielding high-variance updates and weak credit assignment. We present a general RL framework for diffusion unlearning that treats denoising as a sequential decision process and introduces a timestep-aware critic with noisy-step rewards. Concretely, we train a CLIP-based reward predictor on noisy latents and use its per-step signal to compute advantage estimates for policy-gradient updates of the reverse diffusion kernel. Our algorithm is simple to implement, supports off-policy reuse, and plugs into standard text-to-image backbones. Across multiple concepts, the method achieves better or comparable forgetting to strong baselines while maintaining image quality and benign prompt fidelity; ablations show that (i) per-step critics and (ii) noisy-conditioned rewards are key to stability and effectiveness. We release code and evaluation scripts to facilitate reproducibility and future research on RL-based diffusion unlearning.
comment: Preprint
♻ ☆ Attention in Geometry: Scalable Spatial Modeling via Adaptive Density Fields and FAISS-Accelerated Kernels
This work introduces Adaptive Density Fields (ADF), a geometric attention framework that formulates spatial aggregation as a query-conditioned, metric-induced attention operator in continuous space. By reinterpreting spatial influence as geometry-preserving attention grounded in physical distance, ADF bridges concepts from adaptive kernel methods and attention mechanisms. Scalability is achieved via FAISS-accelerated inverted file indices, treating approximate nearest-neighbor search as an intrinsic component of the attention mechanism. We demonstrate the framework through a case study on aircraft trajectory analysis in the Chengdu region, extracting trajectory-conditioned Zones of Influence (ZOI) to reveal recurrent airspace structures and localized deviations.
comment: Indepented Study. 31 pages, 3 figures. Includes full mathematical derivation of Adaptive Density Fields (ADF), implementation of FAISS-accelerated kernels, and a physics-informed trajectory POI detection pipeline
♻ ☆ Large Multimodal Models for Low-Resource Languages: A Survey
In this survey, we systematically analyze techniques used to adapt large multimodal models (LMMs) for low-resource (LR) languages, examining approaches ranging from visual enhancement and data creation to cross-modal transfer and fusion strategies. Through a comprehensive analysis of 117 studies across 96 LR languages, we identify key patterns in how researchers tackle the challenges of limited data and computational resources. We categorize works into resource-oriented and method-oriented contributions, further dividing contributions into relevant sub-categories. We compare method-oriented contributions in terms of performance and efficiency, discussing benefits and limitations of representative studies. We find that visual information often serves as a crucial bridge for improving model performance in LR settings, though significant challenges remain in areas such as hallucination mitigation and computational efficiency. In summary, we provide researchers with a clear understanding of current approaches and remaining challenges in making LMMs more accessible to speakers of LR (understudied) languages. We complement our survey with an open-source repository available at: https://github.com/marianlupascu/LMM4LRL-Survey.
comment: Accepted in Information Fusion
♻ ☆ BiasGym: A Simple and Generalizable Framework for Analyzing and Removing Biases through Elicitation
Understanding biases and stereotypes encoded in the weights of Large Language Models (LLMs) is crucial for developing effective mitigation strategies. However, biased behaviour is often subtle and non-trivial to isolate, even when deliberately elicited, making systematic analysis and debiasing particularly challenging. To address this, we introduce \texttt{BiasGym}, a simple, cost-effective, and generalizable framework for reliably and safely injecting, analyzing, and mitigating conceptual associations of biases within LLMs. \texttt{BiasGym} consists of two components: \texttt{BiasInject}, which safely injects specific biases into the model via token-based fine-tuning while keeping the model frozen, and \texttt{BiasScope}, which leverages these injected signals to identify and reliably steer the components responsible for biased behavior. Our method enables consistent bias elicitation for mechanistic analysis, supports targeted debiasing without degrading performance on downstream tasks, and generalizes to biases unseen during fine-tuning. We demonstrate the effectiveness of BiasGym in reducing real-world stereotypes (e.g., people from Italy being `reckless drivers'), showing its utility for both safety interventions and interpretability research.
comment: Under review. Title updated
♻ ☆ Single-Head Attention in High Dimensions: A Theory of Generalization, Weights Spectra, and Scaling Laws
Trained attention layers exhibit striking and reproducible spectral structure of the weights, including low-rank collapse, bulk deformation, and isolated spectral outliers, yet the origin of these phenomena and their implications for generalization remain poorly understood. We study empirical risk minimization in a single-head tied-attention layer trained on synthetic high-dimensional sequence tasks generated from the attention-indexed model. Using tools from random matrix theory, spin-glass theory, and approximate message passing, we obtain an exact high-dimensional characterization of training and test error, interpolation and recovery thresholds, and the spectrum of the key and query matrices. Our theory predicts the full singular-value distribution of the trained query-key map, including low-rank structure and isolated spectral outliers, in qualitative agreement with observations in more realistic transformers. Finally, for targets with power-law spectra, we show that learning proceeds through sequential spectral recovery, leading to the emergence of power-law scaling laws.
♻ ☆ PIQL: Projective Implicit Q-Learning with Support Constraint for Offline Reinforcement Learning
Offline Reinforcement Learning (RL) faces a fundamental challenge of extrapolation errors caused by out-of-distribution (OOD) actions. Implicit Q-Learning (IQL) employs expectile regression to achieve in-sample learning. Nevertheless, IQL relies on a fixed expectile hyperparameter and a density-based policy improvement method, both of which impede its adaptability and performance. In this paper, we propose Projective IQL (PIQL), a projective variant of IQL enhanced with a support constraint. In the policy evaluation stage, PIQL substitutes the fixed expectile hyperparameter with a projection-based parameter and extends the one-step value estimation to a multi-step formulation. In the policy improvement stage, PIQL adopts a support constraint instead of a density constraint, ensuring closer alignment with the policy evaluation. Theoretically, we demonstrate that PIQL maintains the expectile regression and in-sample learning framework, guarantees monotonic policy improvement, and introduces a progressively more rigorous criterion for advantageous actions. Experiments on D4RL and NeoRL2 benchmarks demonstrate robust gains across diverse domains, achieving state-of-the-art performance overall.
♻ ☆ Do Whitepaper Claims Predict Market Behavior? Evidence from Cryptocurrency Factor Analysis
Cryptocurrency projects articulate value propositions through whitepapers, making claims about functionality and technical capabilities. This study investigates whether these narratives align with observed market behavior. We construct a pipeline combining zero-shot NLP classification (BART-MNLI) with CP tensor decomposition to compare three spaces: (1) a claims matrix from 24 whitepapers across 10 semantic categories, (2) market statistics for 49 assets over two years of hourly data, and (3) latent factors from tensor decomposition (rank 2, 92.45% variance explained). Using Procrustes rotation and Tucker's congruence coefficient, we test alignment across 23 common entities. Results show weak alignment: claims-statistics (phi=0.341, p=0.332), claims-factors (phi=0.077, p=0.747), and statistics-factors (phi=0.197, p<0.001). The statistics-factors significance validates our methodology, confirming the pipeline detects relationships when present. Inter-model validation with DeBERTa-v3 yields 32% exact agreement but 67% top-3 agreement. Cross-sectional analysis reveals heterogeneous contributions: NEAR, MKR, ATOM show positive alignment while ENS, UNI, Bitcoin diverge most. Excluding Bitcoin confirms results are not driven by market dominance. We interpret findings as weak alignment between whitepaper narratives and market factor structure. Limited power (n=23) precludes distinguishing weak from no alignment, but strong alignment (phi>=0.70) can be confidently rejected. Implications for narrative economics and investment analysis are discussed.
comment: 35 pages, 8 figures, 10 tables. JEL: G14, G12, C38, C45. Code available at https://github.com/studiofarzulla/tensor-defi
♻ ☆ WUSH: Near-Optimal Adaptive Transforms for LLM Quantization
Quantizing LLM weights and activations is a standard approach for efficient deployment, but a few extreme outliers can stretch the dynamic range and amplify low-bit quantization errors. Prior transform-based mitigations (e.g., Hadamard rotations) are fixed and data-agnostic, and their optimality for quantization has remained unclear. We derive closed-form optimal linear blockwise transforms for joint weight-activation quantization under standard RTN AbsMax-scaled block quantizers, covering both integer and floating-point formats. The resulting construction, WUSH, combines a Hadamard backbone with a data-dependent second-moment component to form a non-orthogonal transform that is provably near-optimal for FP and INT quantizers under mild assumptions while admitting an efficient fused GPU implementation. Empirically, WUSH improves W4A4 accuracy over the strongest Hadamard-based baselines (e.g., on Llama-3.1-8B-Instruct in MXFP4, it gains +2.8 average points with RTN and +0.7 with GPTQ) while delivering up to 6.6$\times$ per-layer throughput over BF16 via FP4 MatMul. Source code is available at https://github.com/IST-DASLab/WUSH.
♻ ☆ The Nuclear Route: Sharp Asymptotics of ERM in Overparameterized Quadratic Networks
We study the high-dimensional asymptotics of empirical risk minimization (ERM) in over-parametrized two-layer neural networks with quadratic activations trained on synthetic data. We derive sharp asymptotics for both training and test errors by mapping the $\ell_2$-regularized learning problem to a convex matrix sensing task with nuclear norm penalization. This reveals that capacity control in such networks emerges from a low-rank structure in the learned feature maps. Our results characterize the global minima of the loss and yield precise generalization thresholds, showing how the width of the target function governs learnability. This analysis bridges and extends ideas from spin-glass methods, matrix factorization, and convex optimization and emphasizes the deep link between low-rank matrix sensing and learning in quadratic neural networks.
♻ ☆ Optimizing Agentic Workflows using Meta-tools
Agentic AI enables LLM to dynamically reason, plan, and interact with tools to solve complex tasks. However, agentic workflows often require many iterative reasoning steps and tool invocations, leading to significant operational expense, end-to-end latency and failures due to hallucinations. This work introduces Agent Workflow Optimization (AWO), a framework that identifies and optimizes redundant tool execution patterns to improve the efficiency and robustness of agentic workflows. AWO analyzes existing workflow traces to discover recurring sequences of tool calls and transforms them into meta-tools, which are deterministic, composite tools that bundle multiple agent actions into a single invocation. Meta-tools bypass unnecessary intermediate LLM reasoning steps and reduce operational cost while also shortening execution paths, leading to fewer failures. Experiments on two agentic AI benchmarks show that AWO reduces the number of LLM calls up to 11.9% while also increasing the task success rate by up to 4.2 percent points.
♻ ☆ Small Vectors, Big Effects: A Mechanistic Study of RL-Induced Reasoning via Steering Vectors
The mechanisms by which reasoning training reshapes LLMs' internal computations remain unclear. We study lightweight steering vectors inserted into the base model's residual stream and trained with a reinforcement-learning objective. These vectors explain a large portion of full fine-tuning performance increase while preserving the interpretability of small, additive interventions. We find that (i) the last-layer steering vector acts like a token-substitution bias concentrated on the first generated token, consistently boosting tokens such as "To" and "Step"; (ii) the penultimate-layer vector leaves attention patterns largely intact and instead operates through the MLP and unembedding, preferentially up-weighting process words and structure symbols; and (iii) the steering vectors transfer to other models from the same family. Taken together, these results deepen understanding of how trained steering vectors shape computation and should inform future work in activation engineering and the study of reasoning models.
comment: Preprint
♻ ☆ Dense Associative Memory with Epanechnikov Energy NeurIPS 2025
We propose a novel energy function for Dense Associative Memory (DenseAM) networks, the log-sum-ReLU (LSR), inspired by optimal kernel density estimation. Unlike the common log-sum-exponential (LSE) function, LSR is based on the Epanechnikov kernel and enables exact memory retrieval with exponential capacity without requiring exponential separation functions. Moreover, it introduces abundant additional \emph{emergent} local minima while preserving perfect pattern recovery -- a characteristic previously unseen in DenseAM literature. Empirical results show that LSR energy has significantly more local minima (memories) that have comparable log-likelihood to LSE-based models. Analysis of LSR's emergent memories on image datasets reveals a degree of creativity and novelty, hinting at this method's potential for both large-scale memory storage and generative tasks.
comment: Accepted as Spotlight Poster to NeurIPS 2025 main conference
♻ ☆ Graph Learning via Logic-Based Weisfeiler-Leman Variants and Tabularization
We present a novel approach for graph classification based on tabularizing graph data via new variants of the Weisfeiler-Leman algorithm and then applying methods for tabular data. We investigate a comprehensive class of versions of the Weisfeiler-Leman algorithm obtained by modifying the underlying logical framework and establish a precise theoretical characterization of their expressive power. We then test selected versions on 14 benchmark datasets that span a range of application domains. The experiments demonstrate that our approach generally achieves better predictive performance than graph neural networks and matches that of graph transformers, while being 40-60x faster and requiring neither a GPU nor extensive hyperparameter tuning.
comment: New version of the manuscript with the following fixes: 1. Clarified proof of the main theorem. 2. Revised the experimental section
♻ ☆ Semiparametric Preference Optimization: Your Language Model is Secretly a Single-Index Model
Aligning large language models (LLMs) to preference data typically assumes a known link function between observed preferences and latent rewards (e.g., a logistic Bradley-Terry link). Misspecification of this link can bias inferred rewards and misalign learned policies. We study preference alignment under an unknown and unrestricted link function. We show that realizability of $f$-divergence-constrained reward maximization in a policy class induces a semiparametric single-index binary choice model, where a scalar policy-dependent index captures all dependence on demonstrations and the remaining preference distribution is unrestricted. Rather than assuming this model has identifiable finite-dimensional structural parameters and estimating them, as in econometrics, we focus on policy learning with the reward function implicit, analyzing error to the optimal policy and allowing for unidentifiable nonparametric indices. We develop preference optimization algorithms robust to the unknown link and prove convergence guarantees in terms of generic function complexity measures. We demonstrate this empirically on LLM alignment. Code is available at https://github.com/causalml/spo/
♻ ☆ CAARMA: Class Augmentation with Adversarial Mixup Regularization EMNLP 2025
Speaker verification is a typical zero-shot learning task, where inference of unseen classes is performed by comparing embeddings of test instances to known examples. The models performing inference must hence naturally generate embeddings that cluster same-class instances compactly, while maintaining separation across classes. In order to learn to do so, they are typically trained on a large number of classes (speakers), often using specialized losses. However real-world speaker datasets often lack the class diversity needed to effectively learn this in a generalizable manner. We introduce CAARMA, a class augmentation framework that addresses this problem by generating synthetic classes through data mixing in the embedding space, expanding the number of training classes. To ensure the authenticity of the synthetic classes we adopt a novel adversarial refinement mechanism that minimizes categorical distinctions between synthetic and real classes. We evaluate CAARMA on multiple speaker verification tasks, as well as other representative zero-shot comparison-based speech analysis tasks and obtain consistent improvements: our framework demonstrates a significant improvement of 8\% over all baseline models. The code is available at: https://github.com/massabaali7/CAARMA/
comment: Accepted to EMNLP 2025 Findings
♻ ☆ VecComp: Vector Computing via MIMO Digital Over-the-Air Computation
Recently, the ChannelComp framework has proposed digital over-the-air computation by designing digital modulations that enable the computation of arbitrary functions. Unlike traditional analog over-the-air computation, which is restricted to nomographic functions, ChannelComp enables a broader range of computational tasks while maintaining compatibility with digital communication systems. This framework is intended for applications that favor local information processing over the mere acquisition of data. However, ChannelComp is currently designed for scalar function computation, while numerous data-centric applications necessitate vector-based computations, and it is susceptible to channel fading. In this work, we introduce a generalization of the ChannelComp framework, called VecComp, by integrating ChannelComp with multiple-antenna technology. This generalization not only enables vector function computation but also ensures scalability in the computational complexity, which increases only linearly with the vector dimension. As such, VecComp remains computationally efficient and robust against channel impairments, making it suitable for high-dimensional, data-centric applications. We establish a non-asymptotic upper bound on the mean squared error of VecComp, affirming its computation efficiency under fading channel conditions. Numerical experiments show the effectiveness of VecComp in improving the computation of vector functions and fading compensation over noisy and fading multiple-access channels.
♻ ☆ Probe and Skip: Self-Predictive Token Skipping for Efficient Long-Context LLM Inference
Long-context inference enhances the reasoning capability of Large Language Models (LLMs), but incurs significant computational overhead. Token-oriented methods, such as pruning and skipping, have shown great promise in reducing inference latency, yet still suffer from inherently insufficient structure optimization, outdated selection criteria, and redundancy interference, resulting in suboptimal speed-accuracy trade-off. To address these issues, we propose a novel training-free framework dubbed Self-Predictive Token Skipping (SPTS), for efficient long-context LLM inference. Specifically, motivated by probing the influence of target layers prior to skipping, we design two selective token skipping strategies for typical structures, including Partial Attention Probing (PAP) for multi-head attention and Low-rank Transformation Probing (LTP) for feed forward network. The former selects informative tokens via partial forward attention computation, while the latter constructs a low-rank proxy network to predict token transformations. In addition, a Multi-Stage Delayed Pruning (MSDP) strategy reallocates skipping budgets and progressively removes redundant tokens across layers. Extensive experiments display the effectiveness of our method, achieving up to 2.46$\times$ and 2.29$\times$ speedups for prefilling and end-to-end generation, respectively, while maintaining state-of-the-art accuracy. We will release the source code upon acceptance.
♻ ☆ Graph Homomorphism Distortion: A Metric to Distinguish Them All and in the Latent Space Bind Them
A large driver of the complexity of graph learning is the interplay between structure and features.When analyzing the expressivity of graph neural networks, however, existing approaches ignore features in favor of structure, making it nigh-impossible to assess to what extent two graphs with close features should be considered similar.We address this by developing a new (pseudo-)metric based on graph homomorphisms.Inspired by concepts from metric geometry, our graph homomorphism distortion measures the minimal worst-case distortion that node features of one graph are subjected to when mapping one graph to another.We demonstrate the utility of our novel measure by showing that (i.) it can be efficiently calculated under some additional assumptions, (ii.) it complements existing expressivity measures like $1$-WL, and (iii.)it permits defining structural encodings, which improve the predictive capabilities of graph neural networks.
♻ ☆ Less Noise, More Voice: Reinforcement Learning for Reasoning via Instruction Purification
Reinforcement Learning with Verifiable Rewards (RLVR) has advanced LLM reasoning, but remains constrained by inefficient exploration under limited rollout budgets, leading to low sampling success and unstable training in complex tasks. We find that many exploration failures arise not from problem difficulty, but from a small number of prompt tokens that introduce interference. Building on this insight, we propose the Less Noise Sampling Framework (LENS), which first prompts by identifying and removing interference tokens. then transfers successful rollouts from the purification process to supervise policy optimization on the original noisy prompts, enabling the model to learn to ignore interference in the real-world, noisy prompting settings. Experimental results show that LENS significantly outperforms GRPO, delivering higher performance and faster convergence, with a 3.88% average gain and over 1.6$\times$ speedup. Our work highlights the critical role of pruning interference tokens in improving rollout efficiency, offering a new perspective for RLVR research.
comment: Work in progress
♻ ☆ EvoXplain: When Machine Learning Models Agree on Predictions but Disagree on Why -- Measuring Mechanistic Multiplicity Across Training Runs
Machine learning models are primarily judged by predictive performance, especially in applied settings. Once a model reaches high accuracy, its explanation is often assumed to be correct and trustworthy. This assumption raises an overlooked question: when two models achieve high accuracy, do they rely on the same internal logic, or do they reach the same outcome via different and potentially competing mechanisms? We introduce EvoXplain, a diagnostic framework that measures the stability of model explanations across repeated training. Rather than analysing the explanation of a single trained model, EvoXplain treats explanations as samples drawn from the training and model selection pipeline itself, without aggregating predictions or constructing ensembles. It examines whether these samples form a single coherent explanation or separate into multiple structured explanatory modes. We evaluate EvoXplain on the Breast Cancer and COMPAS datasets using Logistic Regression and Random Forests. Although all models achieve high predictive accuracy, their explanations frequently exhibit clear multimodality. Even models commonly assumed to be stable, such as Logistic Regression, can give rise to distinct explanation modes under repeated training on the same data split. Crucially, these modes can coexist at near-identical hyperparameter configurations, indicating explanation non-identifiability rather than smooth sensitivity to regularisation strength. EvoXplain does not attempt to select a correct explanation. Instead, it makes explanatory instability visible and quantifiable, revealing when single-instance or averaged explanations obscure the existence of multiple underlying mechanisms. More broadly, EvoXplain reframes interpretability as a property of a model class under repeated instantiation, rather than of any single trained model.
♻ ☆ Transferring Visual Explainability of Self-Explaining Models to Prediction-Only Models without Additional Training
In image classification scenarios where both prediction and explanation efficiency are required, self-explaining models that perform both tasks in a single inference are effective. However, for users who already have prediction-only models, training a new self-explaining model from scratch imposes significant costs in terms of both labeling and computation. This study proposes a method to transfer the visual explanation capability of self-explaining models learned in a source domain to prediction-only models in a target domain based on a task arithmetic framework. Our self-explaining model comprises an architecture that extends Vision Transformer-based prediction-only models, enabling the proposed method to endow explanation capability to many trained prediction-only models without additional training. Experiments on various image classification datasets demonstrate that, except for transfers between less-related domains, the transfer of visual explanation capability from source to target domains is successful, and explanation quality in the target domain improves without substantially sacrificing classification accuracy.
♻ ☆ U2-BENCH: Benchmarking Large Vision-Language Models on Ultrasound Understanding
Ultrasound is a widely-used imaging modality critical to global healthcare, yet its interpretation remains challenging due to its varying image quality on operators, noises, and anatomical structures. Although large vision-language models (LVLMs) have demonstrated impressive multimodal capabilities across natural and medical domains, their performance on ultrasound remains largely unexplored. We introduce U2-BENCH, the first comprehensive benchmark to evaluate LVLMs on ultrasound understanding across classification, detection, regression, and text generation tasks. U2-BENCH aggregates 7,241 cases spanning 15 anatomical regions and defines 8 clinically inspired tasks, such as diagnosis, view recognition, lesion localization, clinical value estimation, and report generation, across 50 ultrasound application scenarios. We evaluate 23 state-of-the-art LVLMs, both open- and closed-source, general-purpose and medical-specific. Our results reveal strong performance on image-level classification, but persistent challenges in spatial reasoning and clinical language generation. U2-BENCH establishes a rigorous and unified testbed to assess and accelerate LVLM research in the uniquely multimodal domain of medical ultrasound imaging.
♻ ☆ MLLMEraser: Achieving Test-Time Unlearning in Multimodal Large Language Models through Activation Steering
Multimodal large language models (MLLMs) have demonstrated remarkable capabilities across vision-language tasks, yet their large-scale deployment raises pressing concerns about memorized private data, outdated knowledge, and harmful content. Existing unlearning approaches for MLLMs typically adapt training-based strategies such as gradient ascent or preference optimization, but these methods are computationally expensive, irreversible, and often distort retained knowledge. In this work, we propose MLLMEraser, an input-aware, training-free framework for test-time unlearning. Our approach leverages activation steering to enable dynamic knowledge erasure without parameter updates. Specifically, we construct a multimodal erasure direction by contrasting adversarially perturbed, knowledge-recall image-text pairs with knowledge-erasure counterparts, capturing both textual and visual discrepancies. To prevent unnecessary interference, we further design an input-aware steering mechanism that adaptively determines when and how the erasure direction should be applied, preserving utility on retained knowledge while enforcing forgetting on designated content. Experiments on LLaVA-1.5 and Qwen-2.5-VL demonstrate that MLLMEraser consistently outperforms state-of-the-art MLLM unlearning baselines, achieving stronger forgetting performance with lower computational cost and minimal utility degradation.
♻ ☆ Real-Time Vibration-Based Bearing Fault Diagnosis Under Time-Varying Speed Conditions
Detection of rolling-element bearing faults is crucial for implementing proactive maintenance strategies and for minimizing the economic and operational consequences of unexpected failures. However, many existing techniques are developed and tested under strictly controlled conditions, limiting their adaptability to the diverse and dynamic settings encountered in practical applications. This paper presents an efficient real-time convolutional neural network (CNN) for diagnosing multiple bearing faults under various noise levels and time-varying rotational speeds. Additionally, we propose a novel Fisher-based spectral separability analysis (SSA) method to elucidate the effectiveness of the designed CNN model. We conducted experiments on both healthy bearings and bearings afflicted with inner race, outer race, and roller ball faults. The experimental results show the superiority of our model over the current state-of-the-art approach in three folds: it achieves substantial accuracy gains of up to 15.8%, it is robust to noise with high performance across various signal-to-noise ratios, and it runs in real-time with processing durations five times less than acquisition. Additionally, by using the proposed SSA technique, we offer insights into the model's performance and underscore its effectiveness in tackling real-world challenges.
♻ ☆ Multivariate Standardized Residuals for Conformal Prediction
While split conformal prediction guarantees marginal coverage, approaching the stronger property of conditional coverage is essential for reliable uncertainty quantification. Naive conformal scores, however, suffer from poor conditional coverage in heteroskedastic settings. In univariate regression, this is commonly addressed by normalizing nonconformity scores using estimated local score variance. In this work, we propose a natural extension of this normalization to the multivariate setting, effectively whitening the residuals to decouple output correlations and standardize local variance. We demonstrate that using the Mahalanobis distance induced by a learned local covariance as a nonconformity score provides a closed-form, computationally efficient mechanism for capturing inter-output correlations and heteroskedasticity, avoiding the expensive sampling required by previous methods based on cumulative distribution functions. This structure unlocks several practical extensions, including the handling of missing output values, the refinement of conformal sets when partial information is revealed, and the construction of valid conformal sets for transformations of the output. Finally, we provide extensive empirical evidence on both synthetic and real-world datasets showing that our approach yields conformal sets that significantly improve upon the conditional coverage of existing multivariate baselines.
♻ ☆ A Survey on Efficient Vision-Language-Action Models
Vision-Language-Action models (VLAs) represent a significant frontier in embodied intelligence, aiming to bridge digital knowledge with physical-world interaction. Despite their remarkable performance, foundational VLAs are hindered by the prohibitive computational and data demands inherent to their large-scale architectures. While a surge of recent research has focused on enhancing VLA efficiency, the field lacks a unified framework to consolidate these disparate advancements. To bridge this gap, this survey presents the first comprehensive review of Efficient Vision-Language-Action models (Efficient VLAs) across the entire model-training-data pipeline. Specifically, we introduce a unified taxonomy to systematically organize the disparate efforts in this domain, categorizing current techniques into three core pillars: (1) Efficient Model Design, focusing on efficient architectures and model compression; (2) Efficient Training, which reduces computational burdens during model learning; and (3) Efficient Data Collection, which addresses the bottlenecks in acquiring and utilizing robotic data. Through a critical review of state-of-the-art methods within this framework, this survey not only establishes a foundational reference for the community but also summarizes representative applications, delineates key challenges, and charts a roadmap for future research. We maintain a continuously updated project page to track our latest developments: https://evla-survey.github.io/.
comment: 28 pages, 8 figures
♻ ☆ Individual Regret in Cooperative Stochastic Multi-Armed Bandits
We study the regret in stochastic Multi-Armed Bandits (MAB) with multiple agents that communicate over an arbitrary connected communication graph. We analyzed a variant of Cooperative Successive Elimination algorithm, $\coopse$, and show an individual regret bound of ${O}(\mathcal{R} / m + A^2 + A \sqrt{\log T})$ and a nearly matching lower bound. Here $A$ is the number of actions, $T$ the time horizon, $m$ the number of agents, and $\mathcal{R} = \sum_{Δ_i > 0}\log(T)/Δ_i$ is the optimal single agent regret, where $Δ_i$ is the sub-optimality gap of action $i$. Our work is the first to show an individual regret bound in cooperative stochastic MAB that is independent of the graph's diameter. When considering communication networks there are additional considerations beyond regret, such as message size and number of communication rounds. First, we show that our regret bound holds even if we restrict the messages to be of logarithmic size. Second, for logarithmic number of communication rounds, we obtain a regret bound of ${O}(\mathcal{R} / m+A \log T)$.
comment: 55 pages, 1 figure
♻ ☆ When Pattern-by-Pattern Works: Theoretical and Empirical Insights for Logistic Models with Missing Values
Predicting with missing inputs challenges even parametric models, as parameter estimation alone is insufficient for prediction on incomplete data. While several works study prediction in linear models, we focus on logistic models, where optimal predictors lack closed-form expressions. We prove that a Pattern-by-Pattern strategy (PbP), which learns one logistic model per missingness pattern, accurately approximates Bayes probabilities under a Gaussian Pattern Mixture Model (GPMM). Crucially, this result holds across standard missing data scenarios (MCAR and MAR) and, notably, in Missing Not at Random (MNAR) settings where standard methods often fail. Empirically, we compare PbP against imputation and EM methods across classification, probability estimation, calibration, and inference. Our analysis provides a comprehensive view of logistic regression with missing values. It reveals that mean imputation can be used as baseline for low sample sizes and PbP for large sample sizes, as both methods are fast to train and may have good performances in some settings. The best performances are achieved by non-linear multiple iterative imputation techniques that include the response label (Random Forest MICE with response), which are more computationally expensive.
♻ ☆ SimMerge: Learning to Select Merge Operators from Similarity Signals
Model merging combines multiple models into a single model with aggregated capabilities, making it a powerful tool for large language model (LLM) development. However, scaling model merging is challenging: performance depends on the choice of merge operator, model subset, and merge order, often requiring expensive merge-and-evaluate searches. In this work, we introduce SimMerge, a predictive merge-selection method that identifies high-performing merges using inexpensive, task-agnostic similarity signals between models. Given a small set of unlabeled probes, SimMerge extracts functional and structural features to predict the performance of candidate two-way merges, enabling merge operator, order and model subset selection without iterative evaluation. We show that SimMerge consistently outperforms the best fixed merge operator across 7B-parameter LLMs and generalizes to multi-way merges and 111B-parameter LLMs without retraining. We further introduce a bandit variant that supports adding new tasks and operators online. Our results suggest that learning how to merge enables scalable model composition when checkpoint catalogs are large and evaluation budgets are limited.
♻ ☆ Joint Bayesian Parameter and Model Order Estimation for Low-Rank Probability Mass Tensors
Obtaining a reliable estimate of the joint probability mass function (PMF) of a set of random variables from observed data is a significant objective in statistical signal processing and machine learning. Modelling the joint PMF as a tensor that admits a low-rank canonical polyadic decomposition (CPD) has enabled the development of efficient PMF estimation algorithms. However, these algorithms require the rank (model order) of the tensor to be specified beforehand. In real-world applications, the true rank is unknown. Therefore, an appropriate rank is usually selected from a candidate set either by observing validation errors or by computing various likelihood-based information criteria, a procedure that could be costly in terms of computational time or hardware resources, or could result in mismatched models which affect the model accuracy. This paper presents a novel Bayesian framework for estimating the low-rank components of a joint PMF tensor and simultaneously inferring its rank from the observed data. We specify a Bayesian PMF estimation model and employ appropriate prior distributions for the model parameters, allowing the rank to be inferred without cross-validation.We then derive a deterministic solution based on variational inference (VI) to approximate the posterior distributions of various model parameters. Numerical experiments involving both synthetic data and real classification and item recommendation data illustrate the advantages of our VI-based method in terms of estimation accuracy, automatic rank detection, and computational efficiency.
♻ ☆ Attention Isn't All You Need for Emotion Recognition:Domain Features Outperform Transformers on the EAV Dataset
We present a systematic study of multimodal emotion recognition using the EAV dataset, investigating whether complex attention mechanisms improve performance on small datasets. We implement three model categories: baseline transformers (M1), novel factorized attention mechanisms (M2), and improved CNN baselines (M3). Our experiments show that sophisticated attention mechanisms consistently underperform on small datasets. M2 models achieved 5 to 13 percentage points below baselines due to overfitting and destruction of pretrained features. In contrast, simple domain-appropriate modifications proved effective: adding delta MFCCs to the audio CNN improved accuracy from 61.9% to 65.56% (+3.66pp), while frequency-domain features for EEG achieved 67.62% (+7.62pp over the paper baseline). Our vision transformer baseline (M1) reached 75.30%, exceeding the paper's ViViT result (74.5%) through domain-specific pretraining, and vision delta features achieved 72.68% (+1.28pp over the paper CNN). These findings demonstrate that for small-scale emotion recognition, domain knowledge and proper implementation outperform architectural complexity.
comment: 2 figures, 10 Pages
♻ ☆ Your Latent Reasoning is Secretly Policy Improvement Operator
Recently, small models with latent recursion have obtained promising results on complex reasoning tasks. These results are typically explained by the theory that such recursion increases a networks depth, allowing it to compactly emulate the capacity of larger models. However, the performance of recursively added layers remains behind the capabilities of one pass models with the same feed forward depth. This means that in the looped version, not every recursive step effectively contributes to depth. This raises the question: when and why does latent reasoning improve performance, and when does it result in dead compute? In our work, we analyze the algorithms that latent reasoning provides answer to this question. We show that latent reasoning can be formalized as a classifier free guidance and policy improvement algorithm. Building on these insights, we propose to use a training schemes from reinforcement learning and diffusion methods for latent reasoning models. Using the Tiny Recursive Model as our testbed, we show that with our modifications we can avoid dead compute steps and reduce the total number of forward passes by 18x while maintaining performance. Broadly speaking, we show how a policy improvement perspective on recursive steps can explain model behavior and provide insights for further improvements.
♻ ☆ Safely Learning Controlled Stochastic Dynamics
We address the problem of safely learning controlled stochastic dynamics from discrete-time trajectory observations, ensuring system trajectories remain within predefined safe regions during both training and deployment. Safety-critical constraints of this kind are crucial in applications such as autonomous robotics, finance, and biomedicine. We introduce a method that ensures safe exploration and efficient estimation of system dynamics by iteratively expanding an initial known safe control set using kernel-based confidence bounds. After training, the learned model enables predictions of the system's dynamics and permits safety verification of any given control. Our approach requires only mild smoothness assumptions and access to an initial safe control set, enabling broad applicability to complex real-world systems. We provide theoretical guarantees for safety and derive adaptive learning rates that improve with increasing Sobolev regularity of the true dynamics. Experimental evaluations demonstrate the practical effectiveness of our method in terms of safety, estimation accuracy, and computational efficiency.
♻ ☆ DeepGB-TB: A Risk-Balanced Cross-Attention Gradient-Boosted Convolutional Network for Rapid, Interpretable Tuberculosis Screening AAAI 2026
Large-scale tuberculosis (TB) screening is limited by the high cost and operational complexity of traditional diagnostics, creating a need for artificial-intelligence solutions. We propose DeepGB-TB, a non-invasive system that instantly assigns TB risk scores using only cough audio and basic demographic data. The model couples a lightweight one-dimensional convolutional neural network for audio processing with a gradient-boosted decision tree for tabular features. Its principal innovation is a Cross-Modal Bidirectional Cross-Attention module (CM-BCA) that iteratively exchanges salient cues between modalities, emulating the way clinicians integrate symptoms and risk factors. To meet the clinical priority of minimizing missed cases, we design a Tuberculosis Risk-Balanced Loss (TRBL) that places stronger penalties on false-negative predictions, thereby reducing high-risk misclassifications. DeepGB-TB is evaluated on a diverse dataset of 1,105 patients collected across seven countries, achieving an AUROC of 0.903 and an F1-score of 0.851, representing a new state of the art. Its computational efficiency enables real-time, offline inference directly on common mobile devices, making it ideal for low-resource settings. Importantly, the system produces clinically validated explanations that promote trust and adoption by frontline health workers. By coupling AI innovation with public-health requirements for speed, affordability, and reliability, DeepGB-TB offers a tool for advancing global TB control.
comment: Accepted by AAAI 2026 (oral)
♻ ☆ Bottom-up Policy Optimization: Your Language Model Policy Secretly Contains Internal Policies
Existing reinforcement learning (RL) approaches treat large language models (LLMs) as a unified policy, overlooking their internal mechanisms. In this paper, we decompose the LLM-based policy into Internal Layer Policies and Internal Modular Policies via Transformer's residual stream. Our entropy analysis on internal policy reveals distinct patterns: (1) universally, policies evolve from high-entropy exploration in early layers to deterministic refinement in top layers; and (2) Qwen exhibits a progressive, human-like reasoning structure, contrasting with the abrupt final-layer convergence in Llama. Furthermore, we discover that optimizing internal layers induces feature refinement, forcing lower layers to capture high-level reasoning representations early. Motivated by these findings, we propose Bottom-up Policy Optimization (BuPO), a novel RL paradigm that reconstructs the LLM's reasoning foundation from the bottom up by optimizing internal layers in early stages. Extensive experiments on complex reasoning benchmarks demonstrate the effectiveness of BuPO. Our code is available at https://github.com/Trae1ounG/BuPO.
comment: Preprint. Our code is available at https://github.com/Trae1ounG/BuPO
♻ ☆ Performative Policy Gradient: Optimality in Performative Reinforcement Learning
Post-deployment machine learning algorithms often influence the environments they act in, and thus shift the underlying dynamics that the standard reinforcement learning (RL) methods ignore. While designing optimal algorithms in this performative setting has recently been studied in supervised learning, the RL counterpart remains under-explored. In this paper, we prove the performative counterparts of the performance difference lemma and the policy gradient theorem in RL, and further introduce the Performative Policy Gradient algorithm (PePG). PePG is the first policy gradient algorithm designed to account for performativity in RL. Under softmax parametrisation, and also with and without entropy regularisation, we prove that PePG converges to performatively optimal policies, i.e. policies that remain optimal under the distribution shifts induced by themselves. Thus, PePG significantly extends the prior works in Performative RL that achieves performative stability but not optimality. Furthermore, our empirical analysis on standard performative RL environments validate that PePG outperforms the existing performative RL algorithms aiming for stability.
♻ ☆ Robust Amortized Bayesian Inference with Self-Consistency Losses on Unlabeled Data ICLR
Amortized Bayesian inference (ABI) with neural networks can solve probabilistic inverse problems orders of magnitude faster than classical methods. However, ABI is not yet sufficiently robust for widespread and safe application. When performing inference on observations outside the scope of the simulated training data, posterior approximations are likely to become highly biased, which cannot be corrected by additional simulations due to the bad pre-asymptotic behavior of current neural posterior estimators. In this paper, we propose a semi-supervised approach that enables training not only on labeled simulated data generated from the model, but also on \textit{unlabeled} data originating from any source, including real data. To achieve this, we leverage Bayesian self-consistency properties that can be transformed into strictly proper losses that do not require knowledge of ground-truth parameters. We test our approach on several real-world case studies, including applications to high-dimensional time-series and image data. Our results show that semi-supervised learning with unlabeled data drastically improves the robustness of ABI in the out-of-simulation regime. Notably, inference remains accurate even when evaluated on observations far away from the labeled and unlabeled data seen during training.
comment: Accepted to International Conference on Learning Representations (ICLR) 2026
♻ ☆ FPBoost: Fully Parametric Gradient Boosting for Survival Analysis
Survival analysis is a statistical framework for modeling time-to-event data. It plays a pivotal role in medicine, reliability engineering, and social science research, where understanding event dynamics even with few data samples is critical. Recent advancements in machine learning, particularly those employing neural networks and decision trees, have introduced sophisticated algorithms for survival modeling. However, many of these methods rely on restrictive assumptions about the underlying event-time distribution, such as proportional hazard, time discretization, or accelerated failure time. In this study, we propose FPBoost, a survival model that combines a weighted sum of fully parametric hazard functions with gradient boosting. Distribution parameters are estimated with decision trees trained by maximizing the full survival likelihood. We show how FPBoost is a universal approximator of hazard functions, offering full event-time modeling flexibility while maintaining interpretability through the use of well-established parametric distributions. We evaluate concordance and calibration of FPBoost across multiple benchmark datasets, showcasing its robustness and versatility as a new tool for survival estimation.
♻ ☆ EquiNO: A Physics-Informed Neural Operator for Multiscale Simulations
Multiscale problems are ubiquitous in physics. Numerical simulations of such problems by solving partial differential equations (PDEs) at high resolution are computationally too expensive for many-query scenarios, such as uncertainty quantification, remeshing applications, and topology optimization. This limitation has motivated the development of data-driven surrogate models, where microscale computations are substituted by black-box mappings between macroscale quantities. While these approaches offer significant speedups, they typically struggle to incorporate microscale physical constraints, such as the balance of linear momentum. In this contribution, we propose the Equilibrium Neural Operator (EquiNO), a physics-informed PDE surrogate in which equilibrium is hard-enforced by construction. EquiNO achieves this by projecting the solution onto a set of divergence-free basis functions obtained via proper orthogonal decomposition (POD), thereby ensuring satisfaction of equilibrium without relying on penalty terms or multi-objective loss functions. We compare EquiNO with variational physics-informed neural and operator networks that enforce physical constraints only weakly through the loss function, as well as with purely data-driven operator-learning baselines. Our framework, applicable to multiscale FE$^{\,2}$ computations, introduces a finite element-operator learning (FE-OL) approach that integrates the finite element (FE) method with operator learning (OL). We apply the proposed methodology to quasi-static problems in solid mechanics and demonstrate that FE-OL yields accurate solutions even when trained on restricted datasets. The results show that EquiNO achieves speedup factors exceeding 8000-fold compared to traditional methods and offers a robust and physically consistent alternative to existing data-driven surrogate models.
comment: 28 pages. Code available at: https://github.com/HamidrezaEiv/EquiNO
♻ ☆ ePC: Fast and Deep Predictive Coding for Digital Hardware
Predictive Coding (PC) offers a brain-inspired alternative to backpropagation for neural network training, described as a physical system minimizing its internal energy. However, in practice, PC is predominantly digitally simulated, requiring excessive amounts of compute while struggling to scale to deeper architectures. This paper reformulates PC to overcome this hardware-algorithm mismatch. First, we uncover how the canonical state-based formulation of PC (sPC) is, by design, deeply inefficient in digital simulation, inevitably resulting in exponential signal decay that stalls the entire minimization process. Then, to overcome this fundamental limitation, we introduce error-based PC (ePC), a novel reparameterization of PC which does not suffer from signal decay. Though no longer biologically plausible, ePC numerically computes exact PC weights gradients and runs orders of magnitude faster than sPC. Experiments across multiple architectures and datasets demonstrate that ePC matches backpropagation's performance even for deeper models where sPC struggles. Besides practical improvements, our work provides theoretical insight into PC dynamics and establishes a foundation for scaling PC-based learning to deeper architectures on digital hardware and beyond.
comment: Title & intro change to emphasize PC's hardware-algorithm mismatch, which ePC solves for digital hardware. All code available at https://github.com/cgoemaere/error_based_PC
♻ ☆ Bayes optimal learning of attention-indexed models
We introduce the attention-indexed model (AIM), a theoretical framework for analyzing learning in deep attention layers. Inspired by multi-index models, AIM captures how token-level outputs emerge from layered bilinear interactions over high-dimensional embeddings. Unlike prior tractable attention models, AIM allows full-width key and query matrices, aligning more closely with practical transformers. Using tools from statistical mechanics and random matrix theory, we derive closed-form predictions for Bayes-optimal generalization error and identify sharp phase transitions as a function of sample complexity, model width, and sequence length. We propose a matching approximate message passing algorithm and show that gradient descent can reach optimal performance. AIM offers a solvable playground for understanding learning in self-attention layers, that are key components of modern architectures.
♻ ☆ MOMA: Masked Orthogonal Matrix Alignment for Zero-Additional-Parameter Model Merging
Model merging offers a scalable alternative to multi-task learning but often yields suboptimal performance on classification tasks. We attribute this degradation to a geometric misalignment between the merged encoder and static task-specific classifier heads. Existing methods typically rely on auxiliary parameters to enforce strict representation alignment. We challenge this approach by revealing that the misalignment is predominantly an orthogonal transformation, rendering such strict alignment unnecessary. Leveraging this insight, we propose MOMA (Masked Orthogonal Matrix Alignment), which rectifies the misalignment by jointly optimizing a global multi-task vector mask and task-specific orthogonal transformations. Crucially, MOMA absorbs corresponding new parameters directly into the existing model weights, achieving performance comparable to state-of-the-art baselines with zero additional parameters and zero added inference cost.
♻ ☆ Reusing Trajectories in Policy Gradients Enables Fast Convergence
Policy gradient (PG) methods are a class of effective reinforcement learning algorithms, particularly when dealing with continuous control problems. They rely on fresh on-policy data, making them sample-inefficient and requiring $O(ε^{-2})$ trajectories to reach an $ε$-approximate stationary point. A common strategy to improve efficiency is to reuse information from past iterations, such as previous gradients or trajectories, leading to off-policy PG methods. While gradient reuse has received substantial attention, leading to improved rates up to $O(ε^{-3/2})$, the reuse of past trajectories, although intuitive, remains largely unexplored from a theoretical perspective. In this work, we provide the first rigorous theoretical evidence that reusing past off-policy trajectories can significantly accelerate PG convergence. We propose RT-PG (Reusing Trajectories - Policy Gradient), a novel algorithm that leverages a power mean-corrected multiple importance weighting estimator to effectively combine on-policy and off-policy data coming from the most recent $ω$ iterations. Through a novel analysis, we prove that RT-PG achieves a sample complexity of $\widetilde{O}(ε^{-2}ω^{-1})$. When reusing all available past trajectories, this leads to a rate of $\widetilde{O}(ε^{-1})$, the best known one in the literature for PG methods. We further validate our approach empirically, demonstrating its effectiveness against baselines with state-of-the-art rates.
♻ ☆ Conformal mapping based Physics-informed neural networks for designing neutral inclusions
We address the neutral inclusion problem with imperfect boundary conditions, focusing on designing interface functions for inclusions of arbitrary shapes. Traditional Physics-Informed Neural Networks (PINNs) struggle with this inverse problem, leading to the development of Conformal Mapping Coordinates Physics-Informed Neural Networks (CoCo-PINNs), which integrate geometric function theory with PINNs. CoCo-PINNs effectively solve forward-inverse problems by modeling the interface function through neural network training, which yields a neutral inclusion effect. This approach enhances the performance of PINNs in terms of credibility, consistency, and stability.
♻ ☆ AVERY: Adaptive VLM Split Computing through Embodied Self-Awareness for Efficient Disaster Response Systems
Unmanned Aerial Vehicles (UAVs) in disaster response require complex, queryable intelligence that on-board CNNs cannot provide. While Vision-Language Models (VLMs) offer this semantic reasoning, their high resource demands make on-device deployment infeasible, and naive cloud offloading fails under the low-bandwidth networks common in disaster zones. We present AVERY, a framework that enables VLM deployment through adaptive split computing. We advance the split computing paradigm beyond traditional depth-wise partitioning by introducing a functional, cognitive-inspired dual-stream split that separates the VLM into a high-frequency, low-resolution "context stream" for real-time awareness and a low-frequency, high-fidelity "insight stream" for deep analysis. A lightweight, self-aware on-board controller manages this architecture, monitoring network conditions and operator intent to dynamically select from pre-trained compression models, navigating the fundamental accuracy-throughput trade-off. Evaluated using the VLM LISA-7B across an edge-cloud scenario under fluctuating network conditions, AVERY consistently outperforms static configurations, achieving 11.2% higher accuracy than raw image compression and 93.98% lower energy consumption compared to full-edge execution, thereby enhancing mission efficiency and enabling real-time, queryable intelligence on resource-constrained platforms in dynamic environments.
comment: 8 pages, 5 figures. Paper is currently under review. Authors' version posted for personal use and not for redistribution
♻ ☆ Proxy Target: Bridging the Gap Between Discrete Spiking Neural Networks and Continuous Control NeurIPS2025
Spiking Neural Networks (SNNs) offer low-latency and energy-efficient decision making on neuromorphic hardware, making them attractive for Reinforcement Learning (RL) in resource-constrained edge devices. However, most RL algorithms for continuous control are designed for Artificial Neural Networks (ANNs), particularly the target network soft update mechanism, which conflicts with the discrete and non-differentiable dynamics of spiking neurons. We show that this mismatch destabilizes SNN training and degrades performance. To bridge the gap between discrete SNNs and continuous-control algorithms, we propose a novel proxy target framework. The proxy network introduces continuous and differentiable dynamics that enable smooth target updates, stabilizing the learning process. Since the proxy operates only during training, the deployed SNN remains fully energy-efficient with no additional inference overhead. Extensive experiments on continuous control benchmarks demonstrate that our framework consistently improves stability and achieves up to $32\%$ higher performance across various spiking neuron models. Notably, to the best of our knowledge, this is the first approach that enables SNNs with simple Leaky Integrate and Fire (LIF) neurons to surpass their ANN counterparts in continuous control. This work highlights the importance of SNN-tailored RL algorithms and paves the way for neuromorphic agents that combine high performance with low power consumption. Code is available at https://github.com/xuzijie32/Proxy-Target.
comment: Accepted by NeurIPS2025
♻ ☆ Dimensional Collapse in Transformer Attention Outputs: A Challenge for Sparse Dictionary Learning
Transformer architectures, and their attention mechanisms in particular, form the foundation of modern large language models. While transformer models are widely believed to operate in high-dimensional hidden spaces, we show that attention outputs are in fact confined to a surprisingly low-dimensional subspace, with an effective dimensionality of only about $60\%$ of the full space. In contrast, MLP outputs and residual streams remain much closer to full-rank, exhibiting effective ranks around $90\%$. This striking dimensional discrepancy is consistently observed across diverse model families and datasets, and is strongly shaped by the attention output projection matrix. Critically, we find this low-rank structure as a key factor of the prevalent dead feature problem in sparse dictionary learning, where it creates a mismatch between randomly initialized features and the intrinsic geometry of the activation space. Building on this insight, we propose a subspace-constrained training method for sparse autoencoders (SAEs), initializing feature directions into the active subspace of activations. Our approach reduces dead features from 87\% to below 1\% in Attention Output SAEs with 1M features, and can further extend to other sparse dictionary learning methods. Our findings provide both new insights into the geometry of attention and practical tools for improving sparse dictionary learning in large language models.
comment: 27 pages, 16 figures
♻ ☆ Automated Archival Descriptions with Federated Intelligence of LLMs
Enforcing archival standards requires specialized expertise, and manually creating metadata descriptions for archival materials is a tedious and error-prone task. This work aims at exploring the potential of agentic AI and large language models (LLMs) in addressing the challenges of implementing a standardized archival description process. To this end, we introduce an agentic AI-driven system for automated generation of high-quality metadata descriptions of archival materials. We develop a federated optimization approach that unites the intelligence of multiple LLMs to construct optimal archival metadata. We also suggest methods to overcome the challenges associated with using LLMs for consistent metadata generation. To evaluate the feasibility and effectiveness of our techniques, we conducted extensive experiments using a real-world dataset of archival materials, which covers a variety of document types and formats. The evaluation results demonstrate the feasibility of our techniques and highlight the superior performance of the federated optimization approach compared to single-model solutions in metadata quality and reliability.
comment: 16 pages
♻ ☆ Diffusion-based Layer-wise Semantic Reconstruction for Unsupervised Out-of-Distribution Detection
Unsupervised out-of-distribution (OOD) detection aims to identify out-of-domain data by learning only from unlabeled In-Distribution (ID) training samples, which is crucial for developing a safe real-world machine learning system. Current reconstruction-based methods provide a good alternative approach by measuring the reconstruction error between the input and its corresponding generative counterpart in the pixel/feature space. However, such generative methods face a key dilemma: improving the reconstruction power of the generative model while keeping a compact representation of the ID data. To address this issue, we propose the diffusion-based layer-wise semantic reconstruction approach for unsupervised OOD detection. The innovation of our approach is that we leverage the diffusion model's intrinsic data reconstruction ability to distinguish ID samples from OOD samples in the latent feature space. Moreover, to set up a comprehensive and discriminative feature representation, we devise a multi-layer semantic feature extraction strategy. By distorting the extracted features with Gaussian noise and applying the diffusion model for feature reconstruction, the separation of ID and OOD samples is implemented according to the reconstruction errors. Extensive experimental results on multiple benchmarks built upon various datasets demonstrate that our method achieves state-of-the-art performance in terms of detection accuracy and speed. Code is available at .
comment: 26 pages, 23 figures, published to Neurlps2024
♻ ☆ KVmix: Gradient-Based Layer Importance-Aware Mixed-Precision Quantization for KV Cache AAAI 2026
The high memory demands of the Key-Value (KV) Cache during the inference of Large Language Models (LLMs) severely restrict their deployment in resource-constrained platforms. Quantization can effectively alleviate the memory pressure caused by KV Cache. However, existing methods either rely on static one-size-fits-all precision allocation or fail to dynamically prioritize critical KV in long-context tasks, forcing memory-accuracy-throughput tradeoffs. In this work, we propose a novel mixed-precision quantization method for KV Cache named KVmix. KVmix leverages gradient-based importance analysis to evaluate how individual Key and Value projection matrices affect the model loss, enabling layer-specific bit-width allocation for mix-precision quantization. It dynamically prioritizes higher precision for important layers while aggressively quantizing less influential ones, achieving a tunable balance between accuracy and efficiency. KVmix also introduces a dynamic long-context optimization strategy that adaptively keeps full-precision KV pairs for recent pivotal tokens and compresses older ones, achieving high-quality sequence generation with low memory usage. Additionally, KVmix provides efficient low-bit quantization and CUDA kernels to optimize computational overhead. On LLMs such as Llama and Mistral, KVmix achieves near-lossless inference performance with extremely low quantization configuration (Key 2.19bit Value 2.38bit), while delivering a remarkable 4.9x memory compression and a 5.3x speedup in inference throughput.
comment: AAAI 2026 Oral
♻ ☆ LinearizeLLM: An Agent-Based Framework for LLM-Driven Exact Linear Reformulation of Nonlinear Optimization Problems
Reformulating nonlinear optimization problems into solver-ready linear optimization problems is often necessary for practical applications, but the process is often manual and requires domain expertise. We propose LinearizeLLM, an agent-based LLM framework that produces solver-ready linear reformulations of nonlinear optimization problems. Agents first detect the nonlinearity pattern (e.g., bilinear products) and apply nonlinearity pattern-aware reformulation techniques, selecting the most suitable linearization technique. We benchmark on 40 instances: 27 derived from ComplexOR by injecting exactly-linearizable operators, and 13 automatically generated instances with deeply nested nonlinearities. LinearizeLLM achieves 73\% mean end-to-end overall success (OSR) across nonlinearity depths (8.3x higher than a one-shot LLM baseline; 4.3x higher than Pyomo). The results suggest that a set of pattern-specialized agents can automate linearization, supporting natural-language-based modeling of nonlinear optimization.
comment: This version is a major revision with a new abstract, updated workflow logic and description, an expanded instance set, additional numerical experiments, and corrected bibliography entries
♻ ☆ Environment-Conditioned Tail Reweighting for Total Variation Invariant Risk Minimization
Out-of-distribution (OOD) generalization remains challenging when models simultaneously encounter correlation shifts across environments and diversity shifts driven by rare or hard samples. Existing invariant risk minimization (IRM) methods primarily address spurious correlations at the environment level, but often overlook sample-level heterogeneity within environments, which can critically impact OOD performance. In this work, we propose Environment-Conditioned Tail Reweighting for Total Variation Invariant Risk Minimization (ECTR), a unified framework that augments TV-based invariant learning with environment-conditioned tail reweighting to jointly address both types of distribution shift. By integrating environment-level invariance with within-environment robustness, the proposed approach makes these two mechanisms complementary under mixed distribution shifts. We further extend the framework to scenarios without explicit environment annotations by inferring latent environments through a minimax formulation. Experiments across regression, tabular, time-series, and image classification benchmarks under mixed distribution shifts demonstrate consistent improvements in both worst-environment and average OOD performance.
comment: 8 pages
♻ ☆ SACO: Sequence-Aware Constrained Optimization Framework for Coupon Distribution in E-commerce
Coupon distribution is a critical marketing strategy used by online platforms to boost revenue and enhance user engagement. Regrettably, existing coupon distribution strategies fall far short of effectively leveraging the complex sequential interactions between platforms and users. This critical oversight, despite the abundance of e-commerce log data, has precipitated a performance plateau. In this paper, we focus on the scene that the platforms make sequential coupon distribution decision multiple times for various users, with each user interacting with the platform repeatedly. Based on this scenario, we propose a novel marketing framework, named \textbf{S}equence-\textbf{A}ware \textbf{C}onstrained \textbf{O}ptimization (SACO) framework, to directly devise coupon distribution policy for long-term revenue boosting. SACO framework enables optimized online decision-making in a variety of real-world marketing scenarios. It achieves this by seamlessly integrating three key characteristics, general scenarios, sequential modeling with more comprehensive historical data, and efficient iterative updates within a unified framework. Furthermore, empirical results on real-world industrial dataset, alongside public and synthetic datasets demonstrate the superiority of our framework.
♻ ☆ Personalized Federated Learning with Bidirectional Communication Compression via One-Bit Random Sketching AAAI 2026
Federated Learning (FL) enables collaborative training across decentralized data, but faces key challenges of bidirectional communication overhead and client-side data heterogeneity. To address communication costs while embracing data heterogeneity, we propose pFed1BS, a novel personalized federated learning framework that achieves extreme communication compression through one-bit random sketching. In personalized FL, the goal shifts from training a single global model to creating tailored models for each client. In our framework, clients transmit highly compressed one-bit sketches, and the server aggregates and broadcasts a global one-bit consensus. To enable effective personalization, we introduce a sign-based regularizer that guides local models to align with the global consensus while preserving local data characteristics. To mitigate the computational burden of random sketching, we employ the Fast Hadamard Transform for efficient projection. Theoretical analysis guarantees that our algorithm converges to a stationary neighborhood of the global potential function. Numerical simulations demonstrate that pFed1BS substantially reduces communication costs while achieving competitive performance compared to advanced communication-efficient FL algorithms.
comment: Accepted in AAAI 2026
♻ ☆ Reassessing Active Learning Adoption in Contemporary NLP: A Community Survey EACL 2026
Supervised learning relies on data annotation which usually is time-consuming and therefore expensive. A longstanding strategy to reduce annotation costs is active learning, an iterative process, in which a human annotates only data instances deemed informative by a model. Research in active learning has made considerable progress, especially with the rise of large language models (LLMs). However, we still know little about how these remarkable advances have translated into real-world applications, or contributed to removing key barriers to active learning adoption. To fill in this gap, we conduct an online survey in the NLP community to collect previously intangible insights on current implementation practices, common obstacles in application, and future prospects in active learning. We also reassess the perceived relevance of data annotation and active learning as fundamental assumptions. Our findings show that data annotation is expected to remain important and active learning to stay relevant while benefiting from LLMs. Consistent with a community survey from over 15 years ago, three key challenges yet persist -- setup complexity, uncertain cost reduction, and tooling -- for which we propose alleviation strategies. We publish an anonymized version of the dataset.
comment: EACL 2026 Main Conference
♻ ☆ Clinical Data Goes MEDS? Let's OWL make sense of it
The application of machine learning on healthcare data is often hindered by the lack of standardized and semantically explicit representation, leading to limited interoperability and reproducibility across datasets and experiments. The Medical Event Data Standard (MEDS) addresses these issues by introducing a minimal, event-centric data model designed for reproducible machine-learning workflows from health data. However, MEDS is defined as a data-format specification and does not natively provide integration with the Semantic Web ecosystem. In this article, we introduce MEDS-OWL, a lightweight OWL ontology that provides formal concepts and relations to represent MEDS datasets as RDF graphs. Additionally, we implemented meds2rdf, a Python conversion library that transforms MEDS events into RDF graphs, ensuring conformance with the ontology. We evaluate the proposed approach on two datasets: a synthetic clinical cohort describing care pathways for ruptured intracranial aneurysms, and a real-world subset of MIMIC-IV. To assess semantic consistency, we performed a SHACL validation against the resulting knowledge graphs. The first release of MEDS-OWL comprises 13 classes, 10 object properties, 20 data properties, and 24 OWL axioms. Combined with meds2rdf, it enables data transformation into FAIR-aligned datasets, provenance-aware publishing, and interoperability of event-based clinical data. By bridging MEDS with the Semantic Web, this work contributes a reusable semantic layer for event-based clinical data and establishes a robust foundation for subsequent graph-based analytics.
comment: 12 pages, 5 tables, 4 figures, accepted to SWAT4HCLS 2026 conference
♻ ☆ Learning to Evolve: Bayesian-Guided Continual Knowledge Graph Embedding
As social media and the World Wide Web become hubs for information dissemination, effectively organizing and understanding the vast amounts of dynamically evolving Web content is crucial. Knowledge graphs (KGs) provide a powerful framework for structuring this information. However, the rapid emergence of new hot topics, user relationships, and events in social media renders traditional static knowledge graph embedding (KGE) models rapidly outdated. Continual Knowledge Graph Embedding (CKGE) aims to address this issue, but existing methods commonly suffer from catastrophic forgetting, whereby older, but still valuable, information is lost when learning new knowledge (such as new memes or trending events). This means the model cannot effectively learn the evolution of the data. We propose a novel CKGE framework, BAKE. Unlike existing methods, BAKE formulates CKGE as a sequential Bayesian inference problem and utilizes the Bayesian posterior update principle as a natural continual learning strategy. This principle is insensitive to data order and provides theoretical guarantees to preserve prior knowledge as much as possible. Specifically, we treat each batch of new data as a Bayesian update to the model's prior. By maintaining the posterior distribution, the model effectively preserves earlier knowledge even as it evolves over multiple snapshots. Furthermore, to constrain the evolution of knowledge across snapshots, we introduce a continual clustering method that maintains the compact cluster structure of entity embeddings through a regularization term, ensuring semantic consistency while allowing controlled adaptation to new knowledge. We conduct extensive experiments on multiple CKGE benchmarks, which demonstrate that BAKE achieves the top performance in the vast majority of cases compared to existing approaches.
♻ ☆ Reinforcement Learning for Durable Algorithmic Recourse
Algorithmic recourse seeks to provide individuals with actionable recommendations that increase their chances of receiving favorable outcomes from automated decision systems (e.g., loan approvals). While prior research has emphasized robustness to model updates, considerably less attention has been given to the temporal dynamics of recourse--particularly in competitive, resource-constrained settings where recommendations shape future applicant pools. In this work, we present a novel time-aware framework for algorithmic recourse, explicitly modeling how candidate populations adapt in response to recommendations. Additionally, we introduce a novel reinforcement learning (RL)-based recourse algorithm that captures the evolving dynamics of the environment to generate recommendations that are both feasible and valid. We design our recommendations to be durable, supporting validity over a predefined time horizon T. This durability allows individuals to confidently reapply after taking time to implement the suggested changes. Through extensive experiments in complex simulation environments, we show that our approach substantially outperforms existing baselines, offering a superior balance between feasibility and long-term validity. Together, these results underscore the importance of incorporating temporal and behavioral dynamics into the design of practical recourse systems.
♻ ☆ SWE-Exp: Experience-Driven Software Issue Resolution
Recent advances in large language model (LLM) agents have shown remarkable progress in software issue resolution, leveraging advanced techniques such as multi-agent collaboration and Monte Carlo Tree Search (MCTS). However, current agents act as memoryless explorers - treating each problem separately without retaining or reusing knowledge from previous repair experiences. This leads to redundant exploration of failed trajectories and missed chances to adapt successful issue resolution methods to similar problems. To address this problem, we introduce SWE-Exp, an experience-enhanced approach that distills concise and actionable experience from prior agent trajectories, enabling continuous learning across issues. Our method introduces a multi-faceted experience bank that captures both successful and failed repair attempts. Specifically, it extracts reusable issue resolution knowledge at different levels - from high-level problem comprehension to specific code changes. Experiments show that SWE-Exp achieves a Pass@1 resolution rate of 73.0% on SWE-Bench Verified using the state-of-the-art LLM Claude 4 Sonnet, significantly outperforming prior results under other agent frameworks. Our approach establishes a new paradigm in which automated software engineering agents systematically accumulate and leverage repair expertise, fundamentally shifting from trial-and-error exploration to strategic, experience-driven issue resolution.
comment: Our code and data are available at https://github.com/YerbaPage/SWE-Exp
♻ ☆ AI-generated data contamination erodes pathological variability and diagnostic reliability
Generative artificial intelligence (AI) is rapidly populating medical records with synthetic content, creating a feedback loop where future models are increasingly at risk of training on uncurated AI-generated data. However, the clinical consequences of this AI-generated data contamination remain unexplored. Here, we show that in the absence of mandatory human verification, this self-referential cycle drives a rapid erosion of pathological variability and diagnostic reliability. By analysing more than 800,000 synthetic data points across clinical text generation, vision-language reporting, and medical image synthesis, we find that models progressively converge toward generic phenotypes regardless of the model architecture. Specifically, rare but critical findings, including pneumothorax and effusions, vanish from the synthetic content generated by AI models, while demographic representations skew heavily toward middle-aged male phenotypes. Crucially, this degradation is masked by false diagnostic confidence; models continue to issue reassuring reports while failing to detect life-threatening pathology, with false reassurance rates tripling to 40%. Blinded physician evaluation confirms that this decoupling of confidence and accuracy renders AI-generated documentation clinically useless after just two generations. We systematically evaluate three mitigation strategies, finding that while synthetic volume scaling fails to prevent collapse, mixing real data with quality-aware filtering effectively preserves diversity. Ultimately, our results suggest that without policy-mandated human oversight, the deployment of generative AI threatens to degrade the very healthcare data ecosystems it relies upon.
comment: *Corresponding author: Dianbo Liu (dianbo@nus.edu.sg)
♻ ☆ BALLAST: Bayesian Active Learning with Look-ahead Amendment for Sea-drifter Trajectories under Spatio-Temporal Vector Fields
We introduce a formal active learning methodology for guiding the placement of Lagrangian observers to infer time-dependent vector fields -- a key task in oceanography, marine science, and ocean engineering -- using a physics-informed spatio-temporal Gaussian process surrogate model. The majority of existing placement campaigns either follow standard `space-filling' designs or relatively ad-hoc expert opinions. A key challenge to applying principled active learning in this setting is that Lagrangian observers are continuously advected through the vector field, so they make measurements at different locations and times. It is, therefore, important to consider the likely future trajectories of placed observers to account for the utility of candidate placement locations. To this end, we present BALLAST: Bayesian Active Learning with Look-ahead Amendment for Sea-drifter Trajectories. We observe noticeable benefits of BALLAST-aided sequential observer placement strategies on both synthetic and high-fidelity ocean current models. In addition, we developed a novel GP inference method -- the Vanilla SPDE Exchange (VaSE) -- to boost the GP posterior sampling efficiency, which is also of independent interest.
♻ ☆ TSCAN: Context-Aware Uplift Modeling via Two-Stage Training for Online Merchant Business Diagnosis
A primary challenge in ITE estimation is sample selection bias. Traditional approaches utilize treatment regularization techniques such as the Integral Probability Metrics (IPM), re-weighting, and propensity score modeling to mitigate this bias. However, these regularizations may introduce undesirable information loss and limit the performance of the model. Furthermore, treatment effects vary across different external contexts, and the existing methods are insufficient in fully interacting with and utilizing these contextual features. To address these issues, we propose a Context-Aware uplift model based on the Two-Stage training approach (TSCAN), comprising CAN-U and CAN-D sub-models. In the first stage, we train an uplift model, called CAN-U, which includes the treatment regularizations of IPM and propensity score prediction, to generate a complete dataset with counterfactual uplift labels. In the second stage, we train a model named CAN-D, which utilizes an isotonic output layer to directly model uplift effects, thereby eliminating the reliance on the regularization components. CAN-D adaptively corrects the errors estimated by CAN-U through reinforcing the factual samples, while avoiding the negative impacts associated with the aforementioned regularizations. Additionally, we introduce a Context-Aware Attention Layer throughout the two-stage process to manage the interactions between treatment, merchant, and contextual features, thereby modeling the varying treatment effect in different contexts. We conduct extensive experiments on two real-world datasets to validate the effectiveness of TSCAN. Ultimately, the deployment of our model for real-world merchant diagnosis on one of China's largest online food ordering platforms validates its practical utility and impact.
comment: 15 pages,7 figures
♻ ☆ Biased Local SGD for Efficient Deep Learning on Heterogeneous Systems
Most parallel neural network training methods assume homogeneous computing resources. For example, synchronous data-parallel SGD suffers from significant synchronization overhead under heterogeneous workloads, often forcing practitioners to rely only on the fastest devices (e.g., GPUs). In this work, we study local SGD for efficient parallel training on heterogeneous systems. We show that intentionally introducing bias in data sampling and model aggregation can effectively harmonize slower CPUs with faster GPUs. Our extensive empirical results demonstrate that a carefully controlled bias significantly accelerates local SGD while achieving comparable or even higher accuracy than synchronous SGD under the same epoch budget. For instance, our method trains ResNet20 on CIFAR-10 with 2 CPUs and 8 GPUs up to 32x faster than synchronous SGD, with nearly identical accuracy. These results provide practical insights into how to flexibly utilize diverse compute resources for deep learning.
♻ ☆ Decomposed Trust: Exploring Privacy, Adversarial Robustness, Fairness, and Ethics of Low-Rank LLMs
Large language models (LLMs) have driven major advances across domains, yet their massive size hinders deployment in resource-constrained settings. Model compression addresses this challenge, with low-rank factorization emerging as a particularly effective method for reducing size, memory, and computation while maintaining accuracy. However, while these compressed models boast of benign performance and system-level advantages, their trustworthiness implications remain poorly understood. In this paper, we present the first comprehensive study of how low-rank factorization affects LLM trustworthiness across privacy, adversarial robustness, fairness, and ethical alignment. We evaluate multiple LLMs of different sizes and variants compressed with diverse low-rank algorithms, revealing key insights: (1) low-rank compression preserves or improves training data privacy but weakens PII protection during conversation; (2) adversarial robustness is generally preserved and often enhanced, even under deep compression; (3) ethical reasoning degrades in zero-shot settings but partially recovers with few-shot prompting; (4) fairness declines under compression. Beyond compression, we investigate how model scale and fine-tuning affect trustworthiness, as both are important in low-rank methods. To guide trustworthy compression strategies, we end our paper with a gradient-based attribution analysis to identify which layers in LLMs contribute most to adversarial robustness.
comment: 14 pages, 10 figures
♻ ☆ shapr: Explaining Machine Learning Models with Conditional Shapley Values in R and Python
This paper introduces the shapr R package, a versatile tool for generating Shapley value-based prediction explanations for machine learning and statistical regression models. Moreover, the shaprpy Python library brings the core capabilities of shapr to the Python ecosystem. Shapley values originate from cooperative game theory in the 1950s, but have over the past few years become a widely used method for quantifying how a model's features/covariates contribute to specific prediction outcomes. The shapr package emphasizes conditional Shapley value estimates, providing a comprehensive range of approaches for accurately capturing feature dependencies -- a crucial aspect for correct model explanation, typically lacking in similar software. In addition to regular tabular data, the shapr R package includes specialized functionality for explaining time series forecasts. The package offers a minimal set of user functions with sensible default values for most use cases while providing extensive flexibility for advanced users to fine-tune computations. Additional features include parallelized computations, iterative estimation with convergence detection, and rich visualization tools. shapr also extends its functionality to compute causal and asymmetric Shapley values when causal information is available. Overall, the shapr and shaprpy packages aim to enhance the interpretability of predictive models within a powerful and user-friendly framework.
♻ ☆ Reliable Grid Forecasting: State Space Models for Safety-Critical Energy Systems
Accurate grid load forecasting is safety-critical: under-predictions risk supply shortfalls, while symmetric error metrics can mask this operational asymmetry. We introduce an operator-legible evaluation framework -- Under-Prediction Rate (UPR), tail Reserve$_{99.5}^{\%}$ requirements, and explicit inflation diagnostics (Bias$_{24h}$/OPR) -- to quantify one-sided reliability risk beyond MAPE. Using this framework, we evaluate state space models (Mamba variants) and strong baselines on a weather-aligned California Independent System Operator (CAISO) dataset spanning Nov 2023--Nov 2025 (84,498 hourly records across 5 regional transmission areas) under a rolling-origin walk-forward backtest. We develop and evaluate thermal-lag-aligned weather fusion strategies for these architectures. Our results demonstrate that standard accuracy metrics are insufficient proxies for operational safety: models with comparable MAPE can imply materially different tail reserve requirements (Reserve$_{99.5}^{\%}$). We show that explicit weather integration narrows error distributions, reducing the impact of temperature-driven demand spikes. Furthermore, while probabilistic calibration reduces large-error events, it can induce systematic schedule inflation. We introduce Bias/OPR-constrained objectives to enable auditable trade-offs between minimizing tail risk and preventing trivial over-forecasting.
comment: 30 pages, 7 figures, 9 tables
♻ ☆ Data as a Lever: A Neighbouring Datasets Perspective on Predictive Multiplicity
Multiplicity, the existence of equally good yet competing models, has received growing attention in recent years. While prior work has emphasized modelling choices, the critical role of data in shaping multiplicity has been largely overlooked. In this work, we first introduce a neighbouring datasets framework, arguing that much of data processing can be reframed as choosing between neighbouring datasets. Under this framework, we find a counterintuitive theoretical relationship: neighbouring datasets with greater inter-class distribution overlap exhibit lower multiplicity. Building on this insight, we apply our framework to two domains: active learning and data imputation. For each, we establish natural extensions of the neighbouring datasets perspective, conduct the first systematic study of multiplicity in existing algorithms, and finally, propose novel multiplicity-aware methods, namely, multiplicity-aware data acquisition strategies for active learning and multiplicity-aware data imputation.
♻ ☆ Sparse Autoencoder Features for Classifications and Transferability
Sparse Autoencoders (SAEs) provide potentials for uncovering structured, human-interpretable representations in Large Language Models (LLMs), making them a crucial tool for transparent and controllable AI systems. We systematically analyze SAE for interpretable feature extraction from LLMs in safety-critical classification tasks. Our framework evaluates (1) model-layer selection and scaling properties, (2) SAE architectural configurations, including width and pooling strategies, and (3) the effect of binarizing continuous SAE activations. SAE-derived features achieve macro F1 > 0.8, outperforming hidden-state and BoW baselines while demonstrating cross-model transfer from Gemma 2 2B to 9B-IT models. These features generalize in a zero-shot manner to cross-lingual toxicity detection and visual classification tasks. Our analysis highlights the significant impact of pooling strategies and binarization thresholds, showing that binarization offers an efficient alternative to traditional feature selection while maintaining or improving performance. These findings establish new best practices for SAE-based interpretability and enable scalable, transparent deployment of LLMs in real-world applications. Full repo: https://github.com/shan23chen/MOSAIC.
♻ ☆ Transportability without Graphs: A Bayesian Approach to Identifying s-Admissible Backdoor Sets
Transporting causal information across populations is a critical challenge in clinical decision-making. Causal modeling provides criteria for identifiability and transportability, but these require knowledge of the causal graph, which rarely holds in practice. We propose a Bayesian method that combines observational data from the target domain with experimental data from a different domain to identify s-admissible backdoor sets, which enable unbiased estimation of causal effects across populations, without requiring the causal graph. We prove that if such a set exists, we can always find one within the Markov boundary of the outcome, narrowing the search space, and we establish asymptotic convergence guarantees for our method. We develop a greedy algorithm that reframes transportability as a feature selection problem, selecting conditioning sets that maximize the marginal likelihood of experimental data given observational data. In simulated and semi-synthetic data, our method correctly identifies transportability bias, improves causal effect estimation, and performs favorably against alternatives.
♻ ☆ CFT-RAG: An Entity Tree Based Retrieval Augmented Generation Algorithm With Cuckoo Filter
Although retrieval-augmented generation(RAG) significantly improves generation quality by retrieving external knowledge bases and integrating generated content, it faces computational efficiency bottlenecks, particularly in knowledge retrieval tasks involving hierarchical structures for Tree-RAG. This paper proposes a Tree-RAG acceleration method based on the improved Cuckoo Filter, which optimizes entity localization during the retrieval process to achieve significant performance improvements. Tree-RAG effectively organizes entities through the introduction of a hierarchical tree structure, while the Cuckoo Filter serves as an efficient data structure that supports rapid membership queries and dynamic updates. The experiment results demonstrate that our method is much faster than naive Tree-RAG while maintaining high levels of generative quality. When the number of trees is large, our method is hundreds of times faster than naive Tree-RAG. Our work is available at https://github.com/TUPYP7180/CFT-RAG-2025.
♻ ☆ R-Stitch: Dynamic Trajectory Stitching for Efficient Reasoning
Chain-of-thought (CoT) enhances the problem-solving ability of large language models (LLMs) but incurs substantial inference cost due to long autoregressive trajectories. Existing acceleration strategies either shorten traces via early stopping or compression, or adopt speculative decoding with a smaller model. However, speculative decoding provides limited gains when model agreement is low and rigidly enforces token-level consistency, overlooking the observation that some smaller models, when correct, produce significantly more concise reasoning traces that could reduce inference length. We introduce R-Stitch, a training-free hybrid decoding framework that leverages token-level entropy as an uncertainty proxy to delegate computation between a small language model (SLM) and an LLM. Our analysis shows that high-entropy tokens are more likely to induce errors, motivating an entropy-guided routing strategy that lets the SLM efficiently handle low-entropy tokens while delegating uncertain ones to the LLM, thereby avoiding full rollbacks and preserving answer quality. We further extend this design with R-Stitch$^{+}$, which learns an adaptive routing policy to adjust the token budget dynamically beyond fixed thresholds. By jointly reducing per-token decoding complexity and the number of generated tokens, our method achieves substantial acceleration with negligible accuracy loss. Concretely, it attains peak speedups of 3.00$\times$ on DeepSeek-R1-Distill-Qwen-7B, 3.85$\times$ on 14B, and 4.10$\times$ on QWQ-32B while maintaining accuracy comparable to full LLM decoding. Moreover, it naturally enables adaptive efficiency--accuracy trade-offs that can be tailored to diverse computational budgets without retraining.
Multimedia 5
☆ Mixture of Disentangled Experts with Missing Modalities for Robust Multimodal Sentiment Analysis
Multimodal Sentiment Analysis (MSA) integrates multiple modalities to infer human sentiment, but real-world noise often leads to missing or corrupted data. However, existing feature-disentangled methods struggle to handle the internal variations of heterogeneous information under uncertain missingness, making it difficult to learn effective multimodal representations from degraded modalities. To address this issue, we propose DERL, a Disentangled Expert Representation Learning framework for robust MSA. Specifically, DERL employs hybrid experts to adaptively disentangle multimodal inputs into orthogonal private and shared representation spaces. A multi-level reconstruction strategy is further developed to provide collaborative supervision, enhancing both the expressiveness and robustness of the learned representations. Finally, the disentangled features act as modality experts with distinct roles to generate importance-aware fusion results. Extensive experiments on two MSA benchmarks demonstrate that DERL outperforms state-of-the-art methods under various missing-modality conditions. For instance, our method achieves improvements of 2.47% in Acc-2 and 2.25% in MAE on MOSI under intra-modal missingness.
☆ Hyperspectral Image Fusion with Spectral-Band and Fusion-Scale Agnosticism
Current deep learning models for Multispectral and Hyperspectral Image Fusion (MS/HS fusion) are typically designed for fixed spectral bands and spatial scales, which limits their transferability across diverse sensors. To address this, we propose SSA, a universal framework for MS/HS fusion with spectral-band and fusion-scale agnosticism. Specifically, we introduce Matryoshka Kernel (MK), a novel operator that enables a single model to adapt to arbitrary numbers of spectral channels. Meanwhile, we build SSA upon an Implicit Neural Representation (INR) backbone that models the HS signal as a continuous function, enabling reconstruction at arbitrary spatial resolutions. Together, these two forms of agnosticism enable a single MS/HS fusion model that generalizes effectively to unseen sensors and spatial scales. Extensive experiments demonstrate that our single model achieves state-of-the-art performance while generalizing well to unseen sensors and scales, paving the way toward future HS foundation models.
☆ Trailer Reimagined: An Innovative, Llm-DRiven, Expressive Automated Movie Summary framework (TRAILDREAMS)
This paper introduces TRAILDREAMS, a framework that uses a large language model (LLM) to automate the production of movie trailers. The purpose of LLM is to select key visual sequences and impactful dialogues, and to help TRAILDREAMS to generate audio elements such as music and voiceovers. The goal is to produce engaging and visually appealing trailers efficiently. In comparative evaluations, TRAILDREAMS surpasses current state-of-the-art trailer generation methods in viewer ratings. However, it still falls short when compared to real, human-crafted trailers. While TRAILDREAMS demonstrates significant promise and marks an advancement in automated creative processes, further improvements are necessary to bridge the quality gap with traditional trailers.
☆ One Size, Many Fits: Aligning Diverse Group-Wise Click Preferences in Large-Scale Advertising Image Generation
Advertising image generation has increasingly focused on online metrics like Click-Through Rate (CTR), yet existing approaches adopt a ``one-size-fits-all" strategy that optimizes for overall CTR while neglecting preference diversity among user groups. This leads to suboptimal performance for specific groups, limiting targeted marketing effectiveness. To bridge this gap, we present \textit{One Size, Many Fits} (OSMF), a unified framework that aligns diverse group-wise click preferences in large-scale advertising image generation. OSMF begins with product-aware adaptive grouping, which dynamically organizes users based on their attributes and product characteristics, representing each group with rich collective preference features. Building on these groups, preference-conditioned image generation employs a Group-aware Multimodal Large Language Model (G-MLLM) to generate tailored images for each group. The G-MLLM is pre-trained to simultaneously comprehend group features and generate advertising images. Subsequently, we fine-tune the G-MLLM using our proposed Group-DPO for group-wise preference alignment, which effectively enhances each group's CTR on the generated images. To further advance this field, we introduce the Grouped Advertising Image Preference Dataset (GAIP), the first large-scale public dataset of group-wise image preferences, including around 600K groups built from 40M users. Extensive experiments demonstrate that our framework achieves the state-of-the-art performance in both offline and online settings. Our code and datasets will be released at https://github.com/JD-GenX/OSMF.
♻ ☆ SatFusion: A Unified Framework for Enhancing Remote Sensing Image via Multi-Frame and Multi-Source Image Fusion
Remote sensing (RS) imaging is constrained by hardware cost and physical limitations, making high-quality image acquisition challenging and motivating image fusion for quality enhancement. Multi-frame super-resolution (MFSR) and Pansharpening exploit complementary information from multiple frames and multiple sources, respectively, but are usually studied in isolation: MFSR lacks high-resolution structural priors for fine-grained texture recovery, while Pansharpening depends on upsampled multispectral images and is sensitive to noise and misalignment. With the rapid development of the Satellite Internet of Things (Sat-IoT), effectively leveraging large numbers of low-quality yet information-complementary images has become increasingly important. To this end, we propose SatFusion, a unified framework for enhancing RS images via joint multi-frame and multi-source fusion. SatFusion employs a Multi-Frame Image Fusion (MFIF) module to extract high-resolution semantic features from multiple low-resolution multispectral frames, and integrates fine-grained structural information from a high-resolution panchromatic image through a Multi-Source Image Fusion (MSIF) module, enabling robust feature integration with implicit pixel-level alignment. To further mitigate the lack of structural priors in multi-frame fusion, we introduce SatFusion*, which incorporates a panchromatic-guided mechanism into the multi-frame fusion stage. By combining structure-aware feature embedding with transformer-based adaptive aggregation, SatFusion* enables spatially adaptive selection of multi-frame features and strengthens the coupling between multi-frame and multi-source representations. Extensive experiments on the WorldStrat, WV3, QB, and GF2 datasets demonstrate that our methods consistently outperform existing approaches in terms of reconstruction quality, robustness, and generalizability.
Computer Vision and Pattern Recognition 91
☆ Community-Level Modeling of Gyral Folding Patterns for Robust and Anatomically Informed Individualized Brain Mapping
Cortical folding exhibits substantial inter-individual variability while preserving stable anatomical landmarks that enable fine-scale characterization of cortical organization. Among these, the three-hinge gyrus (3HG) serves as a key folding primitive, showing consistent topology yet meaningful variations in morphology, connectivity, and function. Existing landmark-based methods typically model each 3HG independently, ignoring that 3HGs form higher-order folding communities that capture mesoscale structure. This simplification weakens anatomical representation and makes one-to-one matching sensitive to positional variability and noise. We propose a spectral graph representation learning framework that models community-level folding units rather than isolated landmarks. Each 3HG is encoded using a dual-profile representation combining surface topology and structural connectivity. Subject-specific spectral clustering identifies coherent folding communities, followed by topological refinement to preserve anatomical continuity. For cross-subject correspondence, we introduce Joint Morphological-Geometric Matching, jointly optimizing geometric and morphometric similarity. Across over 1000 Human Connectome Project subjects, the resulting communities show reduced morphometric variance, stronger modular organization, improved hemispheric consistency, and superior alignment compared with atlas-based and landmark-based or embedding-based baselines. These findings demonstrate that community-level modeling provides a robust and anatomically grounded framework for individualized cortical characterization and reliable cross-subject correspondence.
☆ Understanding vision transformer robustness through the lens of out-of-distribution detection
Vision transformers have shown remarkable performance in vision tasks, but enabling them for accessible and real-time use is still challenging. Quantization reduces memory and inference costs at the risk of performance loss. Strides have been made to mitigate low precision issues mainly by understanding in-distribution (ID) task behaviour, but the attention mechanism may provide insight on quantization attributes by exploring out-of-distribution (OOD) situations. We investigate the behaviour of quantized small-variant popular vision transformers (DeiT, DeiT3, and ViT) on common OOD datasets. ID analyses show the initial instabilities of 4-bit models, particularly of those trained on the larger ImageNet-22k, as the strongest FP32 model, DeiT3, sharply drop 17% from quantization error to be one of the weakest 4-bit models. While ViT shows reasonable quantization robustness for ID calibration, OOD detection reveals more: ViT and DeiT3 pretrained on ImageNet-22k respectively experienced a 15.0% and 19.2% average quantization delta in AUPR-out between full precision to 4-bit while their ImageNet-1k-only counterparts experienced a 9.5% and 12.0% delta. Overall, our results suggest pretraining on large scale datasets may hinder low-bit quantization robustness in OOD detection and that data augmentation may be a more beneficial option.
comment: Accepted to JCVIS 2025
Rectified LpJEPA: Joint-Embedding Predictive Architectures with Sparse and Maximum-Entropy Representations
Joint-Embedding Predictive Architectures (JEPA) learn view-invariant representations and admit projection-based distribution matching for collapse prevention. Existing approaches regularize representations towards isotropic Gaussian distributions, but inherently favor dense representations and fail to capture the key property of sparsity observed in efficient representations. We introduce Rectified Distribution Matching Regularization (RDMReg), a sliced two-sample distribution-matching loss that aligns representations to a Rectified Generalized Gaussian (RGG) distribution. RGG enables explicit control over expected $\ell_0$ norm through rectification, while preserving maximum-entropy up to rescaling under expected $\ell_p$ norm constraints. Equipping JEPAs with RDMReg yields Rectified LpJEPA, which strictly generalizes prior Gaussian-based JEPAs. Empirically, Rectified LpJEPA learns sparse, non-negative representations with favorable sparsity-performance trade-offs and competitive downstream performance on image classification benchmarks, demonstrating that RDMReg effectively enforces sparsity while preserving task-relevant information.
☆ Cross-Paradigm Evaluation of Gaze-Based Semantic Object Identification for Intelligent Vehicles
Understanding where drivers direct their visual attention during driving, as characterized by gaze behavior, is critical for developing next-generation advanced driver-assistance systems and improving road safety. This paper tackles this challenge as a semantic identification task from the road scenes captured by a vehicle's front-view camera. Specifically, the collocation of gaze points with object semantics is investigated using three distinct vision-based approaches: direct object detection (YOLOv13), segmentation-assisted classification (SAM2 paired with EfficientNetV2 versus YOLOv13), and query-based Vision-Language Models, VLMs (Qwen2.5-VL-7b versus Qwen2.5-VL-32b). The results demonstrate that the direct object detection (YOLOv13) and Qwen2.5-VL-32b significantly outperform other approaches, achieving Macro F1-Scores over 0.84. The large VLM (Qwen2.5-VL-32b), in particular, exhibited superior robustness and performance for identifying small, safety-critical objects such as traffic lights, especially in adverse nighttime conditions. Conversely, the segmentation-assisted paradigm suffers from a "part-versus-whole" semantic gap that led to large failure in recall. The results reveal a fundamental trade-off between the real-time efficiency of traditional detectors and the richer contextual understanding and robustness offered by large VLMs. These findings provide critical insights and practical guidance for the design of future human-aware intelligent driver monitoring systems.
comment: 21 pages, 15 figures, 3 tables
☆ A texture-based framework for foundational ultrasound models IEEE
Ultrasound is the most widely used medical imaging modality, yet the images it produces are fundamentally unique, arising from tissue-dependent scattering, reflection, and speed-of-sound variations that produce a constrained set of characteristic textures that differ markedly from natural-image statistics. These acoustically driven patterns make ultrasound challenging for algorithms originally designed for natural images. To bridge this gap, the field has increasingly turned to foundation models, hoping to leverage their generalization capabilities. However, these models often falter in ultrasound applications because they are not designed for ultrasound physics, they are merely trained on ultrasound data. Therefore, it is essential to integrate ultrasound-specific domain knowledge into established learning frameworks. We achieve this by reformulating self-supervised learning as a texture-analysis problem, introducing texture ultrasound semantic analysis (TUSA). Using TUSA, models learn to leverage highly scalable contrastive methods to extract true domain-specific representations directly from simple B-mode images. We train a TUSA model on a combination of open-source, simulated, and in vivo data. The latent space is compared to several larger foundation models, demonstrating that our approach gives TUSA models better generalizability for difficult downstream tasks on unique online datasets as well as a clinical eye dataset collected for this study. Our model achieves higher accuracy in detecting COVID (70%), spinal hematoma (100%) and vitreous hemorrhage (97%) and correlates more closely with quantitative parameters like liver steatosis (r = 0.83), ejection fraction (r = 0.63), and oxygen saturation (r = 0.38). We open-source the model weights and training script: https://github.com/talg2324/tusa
comment: This work has been submitted to the IEEE for possible publication
☆ BioTamperNet: Affinity-Guided State-Space Model Detecting Tampered Biomedical Images
We propose BioTamperNet, a novel framework for detecting duplicated regions in tampered biomedical images, leveraging affinity-guided attention inspired by State Space Model (SSM) approximations. Existing forensic models, primarily trained on natural images, often underperform on biomedical data where subtle manipulations can compromise experimental validity. To address this, BioTamperNet introduces an affinity-guided self-attention module to capture intra-image similarities and an affinity-guided cross-attention module to model cross-image correspondences. Our design integrates lightweight SSM-inspired linear attention mechanisms to enable efficient, fine-grained localization. Trained end-to-end, BioTamperNet simultaneously identifies tampered regions and their source counterparts. Extensive experiments on the benchmark bio-forensic datasets demonstrate significant improvements over competitive baselines in accurately detecting duplicated regions. Code - https://github.com/SoumyaroopNandi/BioTamperNet
☆ Where to Attend: A Principled Vision-Centric Position Encoding with Parabolas
We propose Parabolic Position Encoding (PaPE), a parabola-based position encoding for vision modalities in attention-based architectures. Given a set of vision tokens-such as images, point clouds, videos, or event camera streams-our objective is to encode their positions while accounting for the characteristics of vision modalities. Prior works have largely extended position encodings from 1D-sequences in language to nD-structures in vision, but only with partial account of vision characteristics. We address this gap by designing PaPE from principles distilled from prior work: translation invariance, rotation invariance (PaPE-RI), distance decay, directionality, and context awareness. We evaluate PaPE on 8 datasets that span 4 modalities. We find that either PaPE or PaPE-RI achieves the top performance on 7 out of 8 datasets. Extrapolation experiments on ImageNet-1K show that PaPE extrapolates remarkably well, improving in absolute terms by up to 10.5% over the next-best position encoding. Code is available at https://github.com/DTU-PAS/parabolic-position-encoding.
☆ Stronger Semantic Encoders Can Harm Relighting Performance: Probing Visual Priors via Augmented Latent Intrinsics
Image-to-image relighting requires representations that disentangle scene properties from illumination. Recent methods rely on latent intrinsic representations but remain under-constrained and often fail on challenging materials such as metal and glass. A natural hypothesis is that stronger pretrained visual priors should resolve these failures. We find the opposite: features from top-performing semantic encoders often degrade relighting quality, revealing a fundamental trade-off between semantic abstraction and photometric fidelity. We study this trade-off and introduce Augmented Latent Intrinsics (ALI), which balances semantic context and dense photometric structure by fusing features from a pixel-aligned visual encoder into a latent-intrinsic framework, together with a self-supervised refinement strategy to mitigate the scarcity of paired real-world data. Trained only on unlabeled real-world image pairs and paired with a dense, pixel-aligned visual prior, ALI achieves strong improvements in relighting, with the largest gains on complex, specular materials. Project page: https:\\augmented-latent-intrinsics.github.io
comment: Project page: https:\\augmented-latent-intrinsics.github.io
PromptRL: Prompt Matters in RL for Flow-Based Image Generation
Flow matching models (FMs) have revolutionized text-to-image (T2I) generation, with reinforcement learning (RL) serving as a critical post-training strategy for alignment with reward objectives. In this research, we show that current RL pipelines for FMs suffer from two underappreciated yet important limitations: sample inefficiency due to insufficient generation diversity, and pronounced prompt overfitting, where models memorize specific training formulations and exhibit dramatic performance collapse when evaluated on semantically equivalent but stylistically varied prompts. We present PromptRL (Prompt Matters in RL for Flow-Based Image Generation), a framework that incorporates language models (LMs) as trainable prompt refinement agents directly within the flow-based RL optimization loop. This design yields two complementary benefits: rapid development of sophisticated prompt rewriting capabilities and, critically, a synergistic training regime that reshapes the optimization dynamics. PromptRL achieves state-of-the-art performance across multiple benchmarks, obtaining scores of 0.97 on GenEval, 0.98 on OCR accuracy, and 24.05 on PickScore. Furthermore, we validate the effectiveness of our RL approach on large-scale image editing models, improving the EditReward of FLUX.1-Kontext from 1.19 to 1.43 with only 0.06 million rollouts, surpassing Gemini 2.5 Flash Image (also known as Nano Banana), which scores 1.37, and achieving comparable performance with ReasonNet (1.44), which relied on fine-grained data annotations along with a complex multi-stage training. Our extensive experiments empirically demonstrate that PromptRL consistently achieves higher performance ceilings while requiring over 2$\times$ fewer rollouts compared to naive flow-only RL. Our code is available at https://github.com/G-U-N/UniRL.
☆ PolyGen: Fully Synthetic Vision-Language Training via Multi-Generator Ensembles
Synthetic data offers a scalable solution for vision-language pre-training, yet current state-of-the-art methods typically rely on scaling up a single generative backbone, which introduces generator-specific spectral biases and limits feature diversity. In this work, we introduce PolyGen, a framework that redefines synthetic data construction by prioritizing manifold coverage and compositional rigor over simple dataset size. PolyGen employs a Polylithic approach to train on the intersection of architecturally distinct generators, effectively marginalizing out model-specific artifacts. Additionally, we introduce a Programmatic Hard Negative curriculum that enforces fine-grained syntactic understanding. By structurally reallocating the same data budget from unique captions to multi-source variations, PolyGen achieves a more robust feature space, outperforming the leading single-source baseline (SynthCLIP) by +19.0% on aggregate multi-task benchmarks and on the SugarCrepe++ compositionality benchmark (+9.1%). These results demonstrate that structural diversity is a more data-efficient scaling law than simply increasing the volume of single-source samples.
☆ Exposing and Defending the Achilles' Heel of Video Mixture-of-Experts
Mixture-of-Experts (MoE) has demonstrated strong performance in video understanding tasks, yet its adversarial robustness remains underexplored. Existing attack methods often treat MoE as a unified architecture, overlooking the independent and collaborative weaknesses of key components such as routers and expert modules. To fill this gap, we propose Temporal Lipschitz-Guided Attacks (TLGA) to thoroughly investigate component-level vulnerabilities in video MoE models. We first design attacks on the router, revealing its independent weaknesses. Building on this, we introduce Joint Temporal Lipschitz-Guided Attacks (J-TLGA), which collaboratively perturb both routers and experts. This joint attack significantly amplifies adversarial effects and exposes the Achilles' Heel (collaborative weaknesses) of the MoE architecture. Based on these insights, we further propose Joint Temporal Lipschitz Adversarial Training (J-TLAT). J-TLAT performs joint training to further defend against collaborative weaknesses, enhancing component-wise robustness. Our framework is plug-and-play and reduces inference cost by more than 60% compared with dense models. It consistently enhances adversarial robustness across diverse datasets and architectures, effectively mitigating both the independent and collaborative weaknesses of MoE.
☆ T2M Mamba: Motion Periodicity-Saliency Coupling Approach for Stable Text-Driven Motion Generation
Text-to-motion generation, which converts motion language descriptions into coherent 3D human motion sequences, has attracted increasing attention in fields, such as avatar animation and humanoid robotic interaction. Though existing models have achieved significant fidelity, they still suffer from two core limitations: (i) They treat motion periodicity and keyframe saliency as independent factors, overlooking their coupling and causing generation drift in long sequences. (ii) They are fragile to semantically equivalent paraphrases, where minor synonym substitutions distort textual embeddings, propagating through the decoder and producing unstable or erroneous motions. In this work, we propose T2M Mamba to address these limitations by (i) proposing Periodicity-Saliency Aware Mamba, which utilizes novel algorithms for keyframe weight estimation via enhanced Density Peaks Clustering and motion periodicity estimation via FFT-accelerated autocorrelation to capture coupled dynamics with minimal computational overhead, and (ii) constructing a Periodic Differential Cross-modal Alignment Module (PDCAM) to enhance robust alignment of textual and motion embeddings. Extensive experiments on HumanML3D and KIT-ML datasets have been conducted, confirming the effectiveness of our approach, achieving an FID of 0.068 and consistent gains on all other metrics.
comment: 8 pages,5 figures
☆ Adaptive Visual Autoregressive Acceleration via Dual-Linkage Entropy Analysis
Visual AutoRegressive modeling (VAR) suffers from substantial computational cost due to the massive token count involved. Failing to account for the continuous evolution of modeling dynamics, existing VAR token reduction methods face three key limitations: heuristic stage partition, non-adaptive schedules, and limited acceleration scope, thereby leaving significant acceleration potential untapped. Since entropy variation intrinsically reflects the transition of predictive uncertainty, it offers a principled measure to capture modeling dynamics evolution. Therefore, we propose NOVA, a training-free token reduction acceleration framework for VAR models via entropy analysis. NOVA adaptively determines the acceleration activation scale during inference by online identifying the inflection point of scale entropy growth. Through scale-linkage and layer-linkage ratio adjustment, NOVA dynamically computes distinct token reduction ratios for each scale and layer, pruning low-entropy tokens while reusing the cache derived from the residuals at the prior scale to accelerate inference and maintain generation quality. Extensive experiments and analyses validate NOVA as a simple yet effective training-free acceleration framework.
comment: 11 pages, 8 figures
☆ MTC-VAE: Multi-Level Temporal Compression with Content Awareness
Latent Video Diffusion Models (LVDMs) rely on Variational Autoencoders (VAEs) to compress videos into compact latent representations. For continuous Variational Autoencoders (VAEs), achieving higher compression rates is desirable; yet, the efficiency notably declines when extra sampling layers are added without expanding the dimensions of hidden channels. In this paper, we present a technique to convert fixed compression rate VAEs into models that support multi-level temporal compression, providing a straightforward and minimal fine-tuning approach to counteract performance decline at elevated compression rates.Moreover, we examine how varying compression levels impact model performance over video segments with diverse characteristics, offering empirical evidence on the effectiveness of our proposed approach. We also investigate the integration of our multi-level temporal compression VAE with diffusion-based generative models, DiT, highlighting successful concurrent training and compatibility within these frameworks. This investigation illustrates the potential uses of multi-level temporal compression.
☆ Beyond Pixels: Visual Metaphor Transfer via Schema-Driven Agentic Reasoning
A visual metaphor constitutes a high-order form of human creativity, employing cross-domain semantic fusion to transform abstract concepts into impactful visual rhetoric. Despite the remarkable progress of generative AI, existing models remain largely confined to pixel-level instruction alignment and surface-level appearance preservation, failing to capture the underlying abstract logic necessary for genuine metaphorical generation. To bridge this gap, we introduce the task of Visual Metaphor Transfer (VMT), which challenges models to autonomously decouple the "creative essence" from a reference image and re-materialize that abstract logic onto a user-specified target subject. We propose a cognitive-inspired, multi-agent framework that operationalizes Conceptual Blending Theory (CBT) through a novel Schema Grammar ("G"). This structured representation decouples relational invariants from specific visual entities, providing a rigorous foundation for cross-domain logic re-instantiation. Our pipeline executes VMT through a collaborative system of specialized agents: a perception agent that distills the reference into a schema, a transfer agent that maintains generic space invariance to discover apt carriers, a generation agent for high-fidelity synthesis and a hierarchical diagnostic agent that mimics a professional critic, performing closed-loop backtracking to identify and rectify errors across abstract logic, component selection, and prompt encoding. Extensive experiments and human evaluations demonstrate that our method significantly outperforms SOTA baselines in metaphor consistency, analogy appropriateness, and visual creativity, paving the way for automated high-impact creative applications in advertising and media. Source code will be made publicly available.
comment: 11 pages, 10 figures
☆ What Does Vision Tool-Use Reinforcement Learning Really Learn? Disentangling Tool-Induced and Intrinsic Effects for Crop-and-Zoom
Vision tool-use reinforcement learning (RL) can equip vision-language models with visual operators such as crop-and-zoom and achieves strong performance gains, yet it remains unclear whether these gains are driven by improvements in tool use or evolving intrinsic capabilities.We introduce MED (Measure-Explain-Diagnose), a coarse-to-fine framework that disentangles intrinsic capability changes from tool-induced effects, decomposes the tool-induced performance difference into gain and harm terms, and probes the mechanisms driving their evolution. Across checkpoint-level analyses on two VLMs with different tool priors and six benchmarks, we find that improvements are dominated by intrinsic learning, while tool-use RL mainly reduces tool-induced harm (e.g., fewer call-induced errors and weaker tool schema interference) and yields limited progress in tool-based correction of intrinsic failures. Overall, current vision tool-use RL learns to coexist safely with tools rather than master them.
comment: code: https://github.com/GAIR-NLP/Med
☆ FlowCast: Trajectory Forecasting for Scalable Zero-Cost Speculative Flow Matching ICLR 2026
Flow Matching (FM) has recently emerged as a powerful approach for high-quality visual generation. However, their prohibitively slow inference due to a large number of denoising steps limits their potential use in real-time or interactive applications. Existing acceleration methods, like distillation, truncation, or consistency training, either degrade quality, incur costly retraining, or lack generalization. We propose FlowCast, a training-free speculative generation framework that accelerates inference by exploiting the fact that FM models are trained to preserve constant velocity. FlowCast speculates future velocity by extrapolating current velocity without incurring additional time cost, and accepts it if it is within a mean-squared error threshold. This constant-velocity forecasting allows redundant steps in stable regions to be aggressively skipped while retaining precision in complex ones. FlowCast is a plug-and-play framework that integrates seamlessly with any FM model and requires no auxiliary networks. We also present a theoretical analysis and bound the worst-case deviation between speculative and full FM trajectories. Empirical evaluations demonstrate that FlowCast achieves $>2.5\times$ speedup in image generation, video generation, and editing tasks, outperforming existing baselines with no quality loss as compared to standard full generation.
comment: Accepted at International Conference on Learning Representations (ICLR 2026)
☆ DeCorStory: Gram-Schmidt Prompt Embedding Decorrelation for Consistent Storytelling
Maintaining visual and semantic consistency across frames is a key challenge in text-to-image storytelling. Existing training-free methods, such as One-Prompt-One-Story, concatenate all prompts into a single sequence, which often induces strong embedding correlation and leads to color leakage, background blending, and identity drift. We propose DeCorStory, a training-free inference-time framework that explicitly reduces inter-frame semantic interference. DeCorStory applies Gram-Schmidt prompt embedding decorrelation to orthogonalize frame-level semantics, followed by singular value reweighting to strengthen prompt-specific information and identity-preserving cross-attention to stabilize character identity during diffusion. The method requires no model modification or fine-tuning and can be seamlessly integrated into existing diffusion pipelines. Experiments demonstrate consistent improvements in prompt-image alignment, identity consistency, and visual diversity, achieving state-of-the-art performance among training-free baselines. Code is available at: https://github.com/YuZhenyuLindy/DeCorStory
☆ StoryState: Agent-Based State Control for Consistent and Editable Storybooks
Large multimodal models have enabled one-click storybook generation, where users provide a short description and receive a multi-page illustrated story. However, the underlying story state, such as characters, world settings, and page-level objects, remains implicit, making edits coarse-grained and often breaking visual consistency. We present StoryState, an agent-based orchestration layer that introduces an explicit and editable story state on top of training-free text-to-image generation. StoryState represents each story as a structured object composed of a character sheet, global settings, and per-page scene constraints, and employs a small set of LLM agents to maintain this state and derive 1Prompt1Story-style prompts for generation and editing. Operating purely through prompts, StoryState is model-agnostic and compatible with diverse generation backends. System-level experiments on multi-page editing tasks show that StoryState enables localized page edits, improves cross-page consistency, and reduces unintended changes, interaction turns, and editing time compared to 1Prompt1Story, while approaching the one-shot consistency of Gemini Storybook. Code is available at https://github.com/YuZhenyuLindy/StoryState
☆ ReDiStory: Region-Disentangled Diffusion for Consistent Visual Story Generation
Generating coherent visual stories requires maintaining subject identity across multiple images while preserving frame-specific semantics. Recent training-free methods concatenate identity and frame prompts into a unified representation, but this often introduces inter-frame semantic interference that weakens identity preservation in complex stories. We propose ReDiStory, a training-free framework that improves multi-frame story generation via inference-time prompt embedding reorganization. ReDiStory explicitly decomposes text embeddings into identity-related and frame-specific components, then decorrelates frame embeddings by suppressing shared directions across frames. This reduces cross-frame interference without modifying diffusion parameters or requiring additional supervision. Under identical diffusion backbones and inference settings, ReDiStory improves identity consistency while maintaining prompt fidelity. Experiments on the ConsiStory+ benchmark show consistent gains over 1Prompt1Story on multiple identity consistency metrics. Code is available at: https://github.com/YuZhenyuLindy/ReDiStory
☆ Interaction-Consistent Object Removal via MLLM-Based Reasoning
Image-based object removal often erases only the named target, leaving behind interaction evidence that renders the result semantically inconsistent. We formalize this problem as Interaction-Consistent Object Removal (ICOR), which requires removing not only the target object but also associated interaction elements, such as lighting-dependent effects, physically connected objects, targetproduced elements, and contextually linked objects. To address this task, we propose Reasoning-Enhanced Object Removal with MLLM (REORM), a reasoningenhanced object removal framework that leverages multimodal large language models to infer which elements must be jointly removed. REORM features a modular design that integrates MLLM-driven analysis, mask-guided removal, and a self-correction mechanism, along with a local-deployment variant that supports accurate editing under limited resources. To support evaluation, we introduce ICOREval, a benchmark consisting of instruction-driven removals with rich interaction dependencies. On ICOREval, REORM outperforms state-of-the-art image editing systems, demonstrating its effectiveness in producing interactionconsistent results.
☆ Interacted Planes Reveal 3D Line Mapping
3D line mapping from multi-view RGB images provides a compact and structured visual representation of scenes. We study the problem from a physical and topological perspective: a 3D line most naturally emerges as the edge of a finite 3D planar patch. We present LiP-Map, a line-plane joint optimization framework that explicitly models learnable line and planar primitives. This coupling enables accurate and detailed 3D line mapping while maintaining strong efficiency (typically completing a reconstruction in 3 to 5 minutes per scene). LiP-Map pioneers the integration of planar topology into 3D line mapping, not by imposing pairwise coplanarity constraints but by explicitly constructing interactions between plane and line primitives, thus offering a principled route toward structured reconstruction in man-made environments. On more than 100 scenes from ScanNetV2, ScanNet++, Hypersim, 7Scenes, and Tanks\&Temple, LiP-Map improves both accuracy and completeness over state-of-the-art methods. Beyond line mapping quality, LiP-Map significantly advances line-assisted visual localization, establishing strong performance on 7Scenes. Our code is released at https://github.com/calmke/LiPMAP for reproducible research.
comment: submitted to TPAMI
☆ Gradient-Aligned Calibration for Post-Training Quantization of Diffusion Models
Diffusion models have shown remarkable performance in image synthesis by progressively estimating a smooth transition from a Gaussian distribution of noise to a real image. Unfortunately, their practical deployment is limited by slow inference speed, high memory usage, and the computational demands of the noise estimation process. Post-training quantization (PTQ) emerges as a promising solution to accelerate sampling and reduce memory overhead for diffusion models. Existing PTQ methods for diffusion models typically apply uniform weights to calibration samples across timesteps, which is sub-optimal since data at different timesteps may contribute differently to the diffusion process. Additionally, due to varying activation distributions and gradients across timesteps, a uniform quantization approach is sub-optimal. Each timestep requires a different gradient direction for optimal quantization, and treating them equally can lead to conflicting gradients that degrade performance. In this paper, we propose a novel PTQ method that addresses these challenges by assigning appropriate weights to calibration samples. Specifically, our approach learns to assign optimal weights to calibration samples to align the quantized model's gradients across timesteps, facilitating the quantization process. Extensive experiments on CIFAR-10, LSUN-Bedrooms, and ImageNet demonstrate the superiority of our method compared to other PTQ methods for diffusion models.
☆ Seeing, Hearing, and Knowing Together: Multimodal Strategies in Deepfake Videos Detection
As deepfake videos become increasingly difficult for people to recognise, understanding the strategies humans use is key to designing effective media literacy interventions. We conducted a study with 195 participants between the ages of 21 and 40, who judged real and deepfake videos, rated their confidence, and reported the cues they relied on across visual, audio, and knowledge strategies. Participants were more accurate with real videos than with deepfakes and showed lower expected calibration error for real content. Through association rule mining, we identified cue combinations that shaped performance. Visual appearance, vocal, and intuition often co-occurred for successful identifications, which highlights the importance of multimodal approaches in human detection. Our findings show which cues help or hinder detection and suggest directions for designing media literacy tools that guide effective cue use. Building on these insights can help people improve their identification skills and become more resilient to deceptive digital media.
☆ Who Transfers Safety? Identifying and Targeting Cross-Lingual Shared Safety Neurons
Multilingual safety remains significantly imbalanced, leaving non-high-resource (NHR) languages vulnerable compared to robust high-resource (HR) ones. Moreover, the neural mechanisms driving safety alignment remain unclear despite observed cross-lingual representation transfer. In this paper, we find that LLMs contain a set of cross-lingual shared safety neurons (SS-Neurons), a remarkably small yet critical neuronal subset that jointly regulates safety behavior across languages. We first identify monolingual safety neurons (MS-Neurons) and validate their causal role in safety refusal behavior through targeted activation and suppression. Our cross-lingual analyses then identify SS-Neurons as the subset of MS-Neurons shared between HR and NHR languages, serving as a bridge to transfer safety capabilities from HR to NHR domains. We observe that suppressing these neurons causes concurrent safety drops across NHR languages, whereas reinforcing them improves cross-lingual defensive consistency. Building on these insights, we propose a simple neuron-oriented training strategy that targets SS-Neurons based on language resource distribution and model architecture. Experiments demonstrate that fine-tuning this tiny neuronal subset outperforms state-of-the-art methods, significantly enhancing NHR safety while maintaining the model's general capabilities. The code and dataset will be available athttps://github.com/1518630367/SS-Neuron-Expansion.
☆ DSFC-Net: A Dual-Encoder Spatial and Frequency Co-Awareness Network for Rural Road Extraction
Accurate extraction of rural roads from high-resolution remote sensing imagery is essential for infrastructure planning and sustainable development. However, this task presents unique challenges in rural settings due to several factors. These include high intra-class variability and low inter-class separability from diverse surface materials, frequent vegetation occlusions that disrupt spatial continuity, and narrow road widths that exacerbate detection difficulties. Existing methods, primarily optimized for structured urban environments, often underperform in these scenarios as they overlook such distinctive characteristics. To address these challenges, we propose DSFC-Net, a dual-encoder framework that synergistically fuses spatial and frequency-domain information. Specifically, a CNN branch is employed to capture fine-grained local road boundaries and short-range continuity, while a novel Spatial-Frequency Hybrid Transformer (SFT) is introduced to robustly model global topological dependencies against vegetation occlusions. Distinct from standard attention mechanisms that suffer from frequency bias, the SFT incorporates a Cross-Frequency Interaction Attention (CFIA) module that explicitly decouples high- and low-frequency information via a Laplacian Pyramid strategy. This design enables the dynamic interaction between spatial details and frequency-aware global contexts, effectively preserving the connectivity of narrow roads. Furthermore, a Channel Feature Fusion Module (CFFM) is proposed to bridge the two branches by adaptively recalibrating channel-wise feature responses, seamlessly integrating local textures with global semantics for accurate segmentation. Comprehensive experiments on the WHU-RuR+, DeepGlobe, and Massachusetts datasets validate the superiority of DSFC-Net over state-of-the-art approaches.
☆ TF-Lane: Traffic Flow Module for Robust Lane Perception
Autonomous driving systems require robust lane perception capabilities, yet existing vision-based detection methods suffer significant performance degradation when visual sensors provide insufficient cues, such as in occluded or lane-missing scenarios. While some approaches incorporate high-definition maps as supplementary information, these solutions face challenges of high subscription costs and limited real-time performance. To address these limitations, we explore an innovative information source: traffic flow, which offers real-time capabilities without additional costs. This paper proposes a TrafficFlow-aware Lane perception Module (TFM) that effectively extracts real-time traffic flow features and seamlessly integrates them with existing lane perception algorithms. This solution originated from real-world autonomous driving conditions and was subsequently validated on open-source algorithms and datasets. Extensive experiments on four mainstream models and two public datasets (Nuscenes and OpenLaneV2) using standard evaluation metrics show that TFM consistently improves performance, achieving up to +4.1% mAP gain on the Nuscenes dataset.
comment: 9 pages, 7 figures, 7 tables
☆ Q-DiT4SR: Exploration of Detail-Preserving Diffusion Transformer Quantization for Real-World Image Super-Resolution
Recently, Diffusion Transformers (DiTs) have emerged in Real-World Image Super-Resolution (Real-ISR) to generate high-quality textures, yet their heavy inference burden hinders real-world deployment. While Post-Training Quantization (PTQ) is a promising solution for acceleration, existing methods in super-resolution mostly focus on U-Net architectures, whereas generic DiT quantization is typically designed for text-to-image tasks. Directly applying these methods to DiT-based super-resolution models leads to severe degradation of local textures. Therefore, we propose Q-DiT4SR, the first PTQ framework specifically tailored for DiT-based Real-ISR. We propose H-SVD, a hierarchical SVD that integrates a global low-rank branch with a local block-wise rank-1 branch under a matched parameter budget. We further propose Variance-aware Spatio-Temporal Mixed Precision: VaSMP allocates cross-layer weight bit-widths in a data-free manner based on rate-distortion theory, while VaTMP schedules intra-layer activation precision across diffusion timesteps via dynamic programming (DP) with minimal calibration. Experiments on multiple real-world datasets demonstrate that our Q-DiT4SR achieves SOTA performance under both W4A6 and W4A4 settings. Notably, the W4A4 quantization configuration reduces model size by 5.8$\times$ and computational operations by over 60$\times$. Our code and models will be available at https://github.com/xunzhang1128/Q-DiT4SR.
comment: Our code and models will be available at https://github.com/xunzhang1128/Q-DiT4SR
☆ OASIS-DC: Generalizable Depth Completion via Output-level Alignment of Sparse-Integrated Monocular Pseudo Depth ICRA 2026
Recent monocular foundation models excel at zero-shot depth estimation, yet their outputs are inherently relative rather than metric, limiting direct use in robotics and autonomous driving. We leverage the fact that relative depth preserves global layout and boundaries: by calibrating it with sparse range measurements, we transform it into a pseudo metric depth prior. Building on this prior, we design a refinement network that follows the prior where reliable and deviates where necessary, enabling accurate metric predictions from very few labeled samples. The resulting system is particularly effective when curated validation data are unavailable, sustaining stable scale and sharp edges across few-shot regimes. These findings suggest that coupling foundation priors with sparse anchors is a practical route to robust, deployment-ready depth completion under real-world label scarcity.
comment: Accepted to ICRA 2026
☆ Boosting Point-supervised Temporal Action Localization via Text Refinement and Alignment
Recently, point-supervised temporal action localization has gained significant attention for its effective balance between labeling costs and localization accuracy. However, current methods only consider features from visual inputs, neglecting helpful semantic information from the text side. To address this issue, we propose a Text Refinement and Alignment (TRA) framework that effectively utilizes textual features from visual descriptions to complement the visual features as they are semantically rich. This is achieved by designing two new modules for the original point-supervised framework: a Point-based Text Refinement module (PTR) and a Point-based Multimodal Alignment module (PMA). Specifically, we first generate descriptions for video frames using a pre-trained multimodal model. Next, PTR refines the initial descriptions by leveraging point annotations together with multiple pre-trained models. PMA then projects all features into a unified semantic space and leverages a point-level multimodal feature contrastive learning to reduce the gap between visual and linguistic modalities. Last, the enhanced multi-modal features are fed into the action detector for precise localization. Extensive experimental results on five widely used benchmarks demonstrate the favorable performance of our proposed framework compared to several state-of-the-art methods. Moreover, our computational overhead analysis shows that the framework can run on a single 24 GB RTX 3090 GPU, indicating its practicality and scalability.
☆ MiTA Attention: Efficient Fast-Weight Scaling via a Mixture of Top-$k$ Activations
The attention operator in Transformers can be viewed as a two-layer fast-weight MLP, whose weights are dynamically instantiated from input tokens and whose width equals sequence length $N$. As the context extends, the expressive capacity of such an $N$-width MLP increases, but scaling its fast weights becomes prohibitively expensive for extremely long sequences. Recently, this fast-weight scaling perspective has motivated the Mixture-of-Experts (MoE) attention, which partitions the sequence into fast-weight experts and sparsely routes the tokens to them. In this paper, we elevate this perspective to a unifying framework for a wide range of efficient attention methods by interpreting them as scaling fast weights through routing and/or compression. Then we propose a compress-and-route strategy, which compresses the $N$-width MLP into a narrower one using a small set of landmark queries and constructs deformable experts by gathering top-$k$ activated key-value pairs for each landmark query. We call this strategy a Mixture of Top-$k$ Activations (MiTA), and refer to the resulting efficient mechanism as MiTA attention. Preliminary experiments on vision tasks demonstrate the promise of our MiTA attention and motivate further investigation on its optimization and broader applications in more challenging settings.
☆ SimpleGPT: Improving GPT via A Simple Normalization Strategy
In this work, we revisit Transformer optimization through the lens of second-order geometry and establish a direct connection between architectural design, activation scale, the Hessian matrix, and the maximum tolerable learning rate. We introduce a simple normalization strategy, termed SimpleNorm, which stabilizes intermediate activation scales by construction. Then, by analyzing the Hessian of the loss with respect to network activations, we theoretically show that SimpleNorm significantly reduces the spectral norm of the Hessian, thereby permitting larger stable learning rates. We validate our theoretical findings through extensive experiments on large GPT models at parameter scales 1B, 1.4B, 7B and 8B. Empirically, SimpleGPT, our SimpleNorm-based network, tolerates learning rates 3$\times$-10$\times$ larger than standard convention, consistently demonstrates strong optimization stability, and achieves substantially better performance than well-established baselines. Specifically, when training 7B-scale models for 60K steps, SimpleGPT achieves a training loss that is 0.08 lower than that of LLaMA2 with QKNorm, reducing the loss from 2.290 to 2.208. Our source code will be released at https://github.com/Ocram7/SimpleGPT.
comment: We propose SimpleGPT, a simple yet effective GPT model, and provide theoretical insights into its mathematical foundations. We validate our theoretical findings through extensive experiments on large GPT models at parameter scales 1B, 1.4B, 7B and 8B
☆ Med3D-R1: Incentivizing Clinical Reasoning in 3D Medical Vision-Language Models for Abnormality Diagnosis
Developing 3D vision-language models with robust clinical reasoning remains a challenge due to the inherent complexity of volumetric medical imaging, the tendency of models to overfit superficial report patterns, and the lack of interpretability-aware reward designs. In this paper, we propose Med3D-R1, a reinforcement learning framework with a two-stage training process: Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL). During SFT stage, we introduce a residual alignment mechanism to bridge the gap between high-dimensional 3D features and textual embeddings, and an abnormality re-weighting strategy to emphasize clinically informative tokens and reduce structural bias in reports. In RL stage, we redesign the consistency reward to explicitly promote coherent, step-by-step diagnostic reasoning. We evaluate our method on medical multiple-choice visual question answering using two 3D diagnostic benchmarks, CT-RATE and RAD-ChestCT, where our model attains state-of-the-art accuracies of 41.92\% on CT-RATE and 44.99\% on RAD-ChestCT. These results indicate improved abnormality diagnosis and clinical reasoning and outperform prior methods on both benchmarks. Overall, our approach holds promise for enhancing real-world diagnostic workflows by enabling more reliable and transparent 3D medical vision-language systems.
☆ EMFormer: Efficient Multi-Scale Transformer for Accumulative Context Weather Forecasting
Long-term weather forecasting is critical for socioeconomic planning and disaster preparedness. While recent approaches employ finetuning to extend prediction horizons, they remain constrained by the issues of catastrophic forgetting, error accumulation, and high training overhead. To address these limitations, we present a novel pipeline across pretraining, finetuning and forecasting to enhance long-context modeling while reducing computational overhead. First, we introduce an Efficient Multi-scale Transformer (EMFormer) to extract multi-scale features through a single convolution in both training and inference. Based on the new architecture, we further employ an accumulative context finetuning to improve temporal consistency without degrading short-term accuracy. Additionally, we propose a composite loss that dynamically balances different terms via a sinusoidal weighting, thereby adaptively guiding the optimization trajectory throughout pretraining and finetuning. Experiments show that our approach achieves strong performance in weather forecasting and extreme event prediction, substantially improving long-term forecast accuracy. Moreover, EMFormer demonstrates strong generalization on vision benchmarks (ImageNet-1K and ADE20K) while delivering a 5.69x speedup over conventional multi-scale modules.
☆ Bridging Lexical Ambiguity and Vision: A Mini Review on Visual Word Sense Disambiguation IEEE
This paper offers a mini review of Visual Word Sense Disambiguation (VWSD), which is a multimodal extension of traditional Word Sense Disambiguation (WSD). VWSD helps tackle lexical ambiguity in vision-language tasks. While conventional WSD depends only on text and lexical resources, VWSD uses visual cues to find the right meaning of ambiguous words with minimal text input. The review looks at developments from early multimodal fusion methods to new frameworks that use contrastive models like CLIP, diffusion-based text-to-image generation, and large language model (LLM) support. Studies from 2016 to 2025 are examined to show the growth of VWSD through feature-based, graph-based, and contrastive embedding techniques. It focuses on prompt engineering, fine-tuning, and adapting to multiple languages. Quantitative results show that CLIP-based fine-tuned models and LLM-enhanced VWSD systems consistently perform better than zero-shot baselines, achieving gains of up to 6-8\% in Mean Reciprocal Rank (MRR). However, challenges still exist, such as limitations in context, model bias toward common meanings, a lack of multilingual datasets, and the need for better evaluation frameworks. The analysis highlights the growing overlap of CLIP alignment, diffusion generation, and LLM reasoning as the future path for strong, context-aware, and multilingual disambiguation systems.
comment: 2 figures, 2 Tables, Accepted at IEEE TIC 2026
☆ Refining Context-Entangled Content Segmentation via Curriculum Selection and Anti-Curriculum Promotion
Biological learning proceeds from easy to difficult tasks, gradually reinforcing perception and robustness. Inspired by this principle, we address Context-Entangled Content Segmentation (CECS), a challenging setting where objects share intrinsic visual patterns with their surroundings, as in camouflaged object detection. Conventional segmentation networks predominantly rely on architectural enhancements but often ignore the learning dynamics that govern robustness under entangled data distributions. We introduce CurriSeg, a dual-phase learning framework that unifies curriculum and anti-curriculum principles to improve representation reliability. In the Curriculum Selection phase, CurriSeg dynamically selects training data based on the temporal statistics of sample losses, distinguishing hard-but-informative samples from noisy or ambiguous ones, thus enabling stable capability enhancement. In the Anti-Curriculum Promotion phase, we design Spectral-Blindness Fine-Tuning, which suppresses high-frequency components to enforce dependence on low-frequency structural and contextual cues and thus strengthens generalization. Extensive experiments demonstrate that CurriSeg achieves consistent improvements across diverse CECS benchmarks without adding parameters or increasing total training time, offering a principled view of how progression and challenge interplay to foster robust and context-aware segmentation. Code will be released.
comment: 8 figures, 11 tables
☆ EEmo-Logic: A Unified Dataset and Multi-Stage Framework for Comprehensive Image-Evoked Emotion Assessment
Understanding the multi-dimensional attributes and intensity nuances of image-evoked emotions is pivotal for advancing machine empathy and empowering diverse human-computer interaction applications. However, existing models are still limited to coarse-grained emotion perception or deficient reasoning capabilities. To bridge this gap, we introduce EEmoDB, the largest image-evoked emotion understanding dataset to date. It features $5$ analysis dimensions spanning $5$ distinct task categories, facilitating comprehensive interpretation. Specifically, we compile $1.2M$ question-answering (QA) pairs (EEmoDB-QA) from $125k$ images via automated generation, alongside a $36k$ dataset (EEmoDB-Assess) curated from $25k$ images for fine-grained assessment. Furthermore, we propose EEmo-Logic, an all-in-one multimodal large language model (MLLM) developed via instruction fine-tuning and task-customized group relative preference optimization (GRPO) with novel reward design. Extensive experiments demonstrate that EEmo-Logic achieves robust performance in in-domain and cross-domain datasets, excelling in emotion QA and fine-grained assessment. The code is available at https://anonymous.4open.science/r/EEmoLogic.
☆ Semantically Aware UAV Landing Site Assessment from Remote Sensing Imagery via Multimodal Large Language Models
Safe UAV emergency landing requires more than just identifying flat terrain; it demands understanding complex semantic risks (e.g., crowds, temporary structures) invisible to traditional geometric sensors. In this paper, we propose a novel framework leveraging Remote Sensing (RS) imagery and Multimodal Large Language Models (MLLMs) for global context-aware landing site assessment. Unlike local geometric methods, our approach employs a coarse-to-fine pipeline: first, a lightweight semantic segmentation module efficiently pre-screens candidate areas; second, a vision-language reasoning agent fuses visual features with Point-of-Interest (POI) data to detect subtle hazards. To validate this approach, we construct and release the Emergency Landing Site Selection (ELSS) benchmark. Experiments demonstrate that our framework significantly outperforms geometric baselines in risk identification accuracy. Furthermore, qualitative results confirm its ability to generate human-like, interpretable justifications, enhancing trust in automated decision-making. The benchmark dataset is publicly accessible at https://anonymous.4open.science/r/ELSS-dataset-43D7.
☆ Improving Robustness of Vision-Language-Action Models by Restoring Corrupted Visual Inputs
Vision-Language-Action (VLA) models have emerged as a dominant paradigm for generalist robotic manipulation, unifying perception and control within a single end-to-end architecture. However, despite their success in controlled environments, reliable real-world deployment is severely hindered by their fragility to visual disturbances. While existing literature extensively addresses physical occlusions caused by scene geometry, a critical mode remains largely unexplored: image corruptions. These sensor-level artifacts, ranging from electronic noise and dead pixels to lens contaminants, directly compromise the integrity of the visual signal prior to interpretation. In this work, we quantify this vulnerability, demonstrating that state-of-the-art VLAs such as $π_{0.5}$ and SmolVLA, suffer catastrophic performance degradation, dropping from 90\% success rates to as low as 2\%, under common signal artifacts. To mitigate this, we introduce the Corruption Restoration Transformer (CRT), a plug-and-play and model-agnostic vision transformer designed to immunize VLA models against sensor disturbances. Leveraging an adversarial training objective, CRT restores clean observations from corrupted inputs without requiring computationally expensive fine-tuning of the underlying model. Extensive experiments across the LIBERO and Meta-World benchmarks demonstrate that CRT effectively recovers lost performance, enabling VLAs to maintain near-baseline success rates, even under severe visual corruption.
☆ Statistical MIA: Rethinking Membership Inference Attack for Reliable Unlearning Auditing
Machine unlearning (MU) is essential for enforcing the right to be forgotten in machine learning systems. A key challenge of MU is how to reliably audit whether a model has truly forgotten specified training data. Membership Inference Attacks (MIAs) are widely used for unlearning auditing, where samples that evade membership detection are often regarded as successfully forgotten. After carefully revisiting the reliability of MIA, we show that this assumption is flawed: failed membership inference does not imply true forgetting. We theoretically demonstrate that MIA-based auditing, when formulated as a binary classification problem, inevitably incurs statistical errors whose magnitude cannot be observed during the auditing process. This leads to overly optimistic evaluations of unlearning performance, while incurring substantial computational overhead due to shadow model training. To address these limitations, we propose Statistical Membership Inference Attack (SMIA), a novel training-free and highly effective auditing framework. SMIA directly compares the distributions of member and non-member data using statistical tests, eliminating the need for learned attack models. Moreover, SMIA outputs both a forgetting rate and a corresponding confidence interval, enabling quantified reliability of the auditing results. Extensive experiments show that SMIA provides more reliable auditing with significantly lower computational cost than existing MIA-based approaches. Notably, the theoretical guarantees and empirical effectiveness of SMIA suggest it as a new paradigm for reliable machine unlearning auditing.
☆ Koo-Fu CLIP: Closed-Form Adaptation of Vision-Language Models via Fukunaga-Koontz Linear Discriminant Analysis
Visual-language models such as CLIP provide powerful general-purpose representations, but their raw embeddings are not optimized for supervised classification, often exhibiting limited class separation and excessive dimensionality. We propose Koo-Fu CLIP, a supervised CLIP adaptation method based on Fukunaga-Koontz Linear Discriminant Analysis, which operates in a whitened embedding space to suppress within-class variation and enhance between-class discrimination. The resulting closed-form linear projection reshapes the geometry of CLIP embeddings, improving class separability while performing effective dimensionality reduction, and provides a lightweight and efficient adaptation of CLIP representations. Across large-scale ImageNet benchmarks, nearest visual prototype classification in the Koo-Fu CLIP space improves top-1 accuracy from 75.1% to 79.1% on ImageNet-1K, with consistent gains persisting as the label space expands to 14K and 21K classes. The method supports substantial compression by up to 10-12x with little or no loss in accuracy, enabling efficient large-scale classification and retrieval.
☆ LightCity: An Urban Dataset for Outdoor Inverse Rendering and Reconstruction under Multi-illumination Conditions
Inverse rendering in urban scenes is pivotal for applications like autonomous driving and digital twins. Yet, it faces significant challenges due to complex illumination conditions, including multi-illumination and indirect light and shadow effects. However, the effects of these challenges on intrinsic decomposition and 3D reconstruction have not been explored due to the lack of appropriate datasets. In this paper, we present LightCity, a novel high-quality synthetic urban dataset featuring diverse illumination conditions with realistic indirect light and shadow effects. LightCity encompasses over 300 sky maps with highly controllable illumination, varying scales with street-level and aerial perspectives over 50K images, and rich properties such as depth, normal, material components, light and indirect light, etc. Besides, we leverage LightCity to benchmark three fundamental tasks in the urban environments and conduct a comprehensive analysis of these benchmarks, laying a robust foundation for advancing related research.
☆ KAN We Flow? Advancing Robotic Manipulation with 3D Flow Matching via KAN & RWKV ICRA2026
Diffusion-based visuomotor policies excel at modeling action distributions but are inference-inefficient, since recursively denoising from noise to policy requires many steps and heavy UNet backbones, which hinders deployment on resource-constrained robots. Flow matching alleviates the sampling burden by learning a one-step vector field, yet prior implementations still inherit large UNet-style architectures. In this work, we present KAN-We-Flow, a flow-matching policy that draws on recent advances in Receptance Weighted Key Value (RWKV) and Kolmogorov-Arnold Networks (KAN) from vision to build a lightweight and highly expressive backbone for 3D manipulation. Concretely, we introduce an RWKV-KAN block: an RWKV first performs efficient time/channel mixing to propagate task context, and a subsequent GroupKAN layer applies learnable spline-based, groupwise functional mappings to perform feature-wise nonlinear calibration of the action mapping on RWKV outputs. Moreover, we introduce an Action Consistency Regularization (ACR), a lightweight auxiliary loss that enforces alignment between predicted action trajectories and expert demonstrations via Euler extrapolation, providing additional supervision to stabilize training and improve policy precision. Without resorting to large UNets, our design reduces parameters by 86.8\%, maintains fast runtime, and achieves state-of-the-art success rates on Adroit, Meta-World, and DexArt benchmarks. Our project page can be viewed in \href{https://zhihaochen-2003.github.io/KAN-We-Flow.github.io/}{\textcolor{red}{link}}
comment: Accepted By ICRA2026
☆ Robust Harmful Meme Detection under Missing Modalities via Shared Representation Learning WWW2026
Internet memes are powerful tools for communication, capable of spreading political, psychological, and sociocultural ideas. However, they can be harmful and can be used to disseminate hate toward targeted individuals or groups. Although previous studies have focused on designing new detection methods, these often rely on modal-complete data, such as text and images. In real-world settings, however, modalities like text may be missing due to issues like poor OCR quality, making existing methods sensitive to missing information and leading to performance deterioration. To address this gap, in this paper, we present the first-of-its-kind work to comprehensively investigate the behavior of harmful meme detection methods in the presence of modal-incomplete data. Specifically, we propose a new baseline method that learns a shared representation for multiple modalities by projecting them independently. These shared representations can then be leveraged when data is modal-incomplete. Experimental results on two benchmark datasets demonstrate that our method outperforms existing approaches when text is missing. Moreover, these results suggest that our method allows for better integration of visual features, reducing dependence on text and improving robustness in scenarios where textual information is missing. Our work represents a significant step forward in enabling the real-world application of harmful meme detection, particularly in situations where a modality is absent.
comment: Accepted at WWW2026
☆ PandaPose: 3D Human Pose Lifting from a Single Image via Propagating 2D Pose Prior to 3D Anchor Space NeurIPS 2025
3D human pose lifting from a single RGB image is a challenging task in 3D vision. Existing methods typically establish a direct joint-to-joint mapping from 2D to 3D poses based on 2D features. This formulation suffers from two fundamental limitations: inevitable error propagation from input predicted 2D pose to 3D predictions and inherent difficulties in handling self-occlusion cases. In this paper, we propose PandaPose, a 3D human pose lifting approach via propagating 2D pose prior to 3D anchor space as the unified intermediate representation. Specifically, our 3D anchor space comprises: (1) Joint-wise 3D anchors in the canonical coordinate system, providing accurate and robust priors to mitigate 2D pose estimation inaccuracies. (2) Depth-aware joint-wise feature lifting that hierarchically integrates depth information to resolve self-occlusion ambiguities. (3) The anchor-feature interaction decoder that incorporates 3D anchors with lifted features to generate unified anchor queries encapsulating joint-wise 3D anchor set, visual cues and geometric depth information. The anchor queries are further employed to facilitate anchor-to-joint ensemble prediction. Experiments on three well-established benchmarks (i.e., Human3.6M, MPI-INF-3DHP and 3DPW) demonstrate the superiority of our proposition. The substantial reduction in error by $14.7\%$ compared to SOTA methods on the challenging conditions of Human3.6M and qualitative comparisons further showcase the effectiveness and robustness of our approach.
comment: Accepted at NeurIPS 2025
☆ Differential Vector Erasure: Unified Training-Free Concept Erasure for Flow Matching Models
Text-to-image diffusion models have demonstrated remarkable capabilities in generating high-quality images, yet their tendency to reproduce undesirable concepts, such as NSFW content, copyrighted styles, or specific objects, poses growing concerns for safe and controllable deployment. While existing concept erasure approaches primarily focus on DDPM-based diffusion models and rely on costly fine-tuning, the recent emergence of flow matching models introduces a fundamentally different generative paradigm for which prior methods are not directly applicable. In this paper, we propose Differential Vector Erasure (DVE), a training-free concept erasure method specifically designed for flow matching models. Our key insight is that semantic concepts are implicitly encoded in the directional structure of the velocity field governing the generative flow. Leveraging this observation, we construct a differential vector field that characterizes the directional discrepancy between a target concept and a carefully chosen anchor concept. During inference, DVE selectively removes concept-specific components by projecting the velocity field onto the differential direction, enabling precise concept suppression without affecting irrelevant semantics. Extensive experiments on FLUX demonstrate that DVE consistently outperforms existing baselines on a wide range of concept erasure tasks, including NSFW suppression, artistic style removal, and object erasure, while preserving image quality and diversity.
☆ MedAD-R1: Eliciting Consistent Reasoning in Interpretible Medical Anomaly Detection via Consistency-Reinforced Policy Optimization
Medical Anomaly Detection (MedAD) presents a significant opportunity to enhance diagnostic accuracy using Large Multimodal Models (LMMs) to interpret and answer questions based on medical images. However, the reliance on Supervised Fine-Tuning (SFT) on simplistic and fragmented datasets has hindered the development of models capable of plausible reasoning and robust multimodal generalization. To overcome this, we introduce MedAD-38K, the first large-scale, multi-modal, and multi-center benchmark for MedAD featuring diagnostic Chain-of-Thought (CoT) annotations alongside structured Visual Question-Answering (VQA) pairs. On this foundation, we propose a two-stage training framework. The first stage, Cognitive Injection, uses SFT to instill foundational medical knowledge and align the model with a structured think-then-answer paradigm. Given that standard policy optimization can produce reasoning that is disconnected from the final answer, the second stage incorporates Consistency Group Relative Policy Optimization (Con-GRPO). This novel algorithm incorporates a crucial consistency reward to ensure the generated reasoning process is relevant and logically coherent with the final diagnosis. Our proposed model, MedAD-R1, achieves state-of-the-art (SOTA) performance on the MedAD-38K benchmark, outperforming strong baselines by more than 10\%. This superior performance stems from its ability to generate transparent and logically consistent reasoning pathways, offering a promising approach to enhancing the trustworthiness and interpretability of AI for clinical decision support.
comment: 9 pages, 4 figures
☆ PISA: Piecewise Sparse Attention Is Wiser for Efficient Diffusion Transformers
Diffusion Transformers are fundamental for video and image generation, but their efficiency is bottlenecked by the quadratic complexity of attention. While block sparse attention accelerates computation by attending only critical key-value blocks, it suffers from degradation at high sparsity by discarding context. In this work, we discover that attention scores of non-critical blocks exhibit distributional stability, allowing them to be approximated accurately and efficiently rather than discarded, which is essentially important for sparse attention design. Motivated by this key insight, we propose PISA, a training-free Piecewise Sparse Attention that covers the full attention span with sub-quadratic complexity. Unlike the conventional keep-or-drop paradigm that directly drop the non-critical block information, PISA introduces a novel exact-or-approximate strategy: it maintains exact computation for critical blocks while efficiently approximating the remainder through block-wise Taylor expansion. This design allows PISA to serve as a faithful proxy to full attention, effectively bridging the gap between speed and quality. Experimental results demonstrate that PISA achieves 1.91 times and 2.57 times speedups on Wan2.1-14B and Hunyuan-Video, respectively, while consistently maintaining the highest quality among sparse attention methods. Notably, even for image generation on FLUX, PISA achieves a 1.2 times acceleration without compromising visual quality. Code is available at: https://github.com/xie-lab-ml/piecewise-sparse-attention.
comment: 17 pages
☆ PDE-Constrained Optimization for Neural Image Segmentation with Physics Priors
Segmentation of microscopy images constitutes an ill-posed inverse problem due to measurement noise, weak object boundaries, and limited labeled data. Although deep neural networks provide flexible nonparametric estimators, unconstrained empirical risk minimization often leads to unstable solutions and poor generalization. In this work, image segmentation is formulated as a PDE-constrained optimization problem that integrates physically motivated priors into deep learning models through variational regularization. The proposed framework minimizes a composite objective function consisting of a data fidelity term and penalty terms derived from reaction-diffusion equations and phase-field interface energies, all implemented as differentiable residual losses. Experiments are conducted on the LIVECell dataset, a high-quality, manually annotated collection of phase-contrast microscopy images. Training is performed on two cell types, while evaluation is carried out on a distinct, unseen cell type to assess generalization. A UNet architecture is used as the unconstrained baseline model. Experimental results demonstrate consistent improvements in segmentation accuracy and boundary fidelity compared to unconstrained deep learning baselines. Moreover, the PDE-regularized models exhibit enhanced stability and improved generalization in low-sample regimes, highlighting the advantages of incorporating structured priors. The proposed approach illustrates how PDE-constrained optimization can strengthen data-driven learning frameworks, providing a principled bridge between variational methods, statistical learning, and scientific machine learning.
☆ DRFormer: A Dual-Regularized Bidirectional Transformer for Person Re-identification
Both fine-grained discriminative details and global semantic features can contribute to solving person re-identification challenges, such as occlusion and pose variations. Vision foundation models (\textit{e.g.}, DINO) excel at mining local textures, and vision-language models (\textit{e.g.}, CLIP) capture strong global semantic difference. Existing methods predominantly rely on a single paradigm, neglecting the potential benefits of their integration. In this paper, we analyze the complementary roles of these two architectures and propose a framework to synergize their strengths by a \textbf{D}ual-\textbf{R}egularized Bidirectional \textbf{Transformer} (\textbf{DRFormer}). The dual-regularization mechanism ensures diverse feature extraction and achieves a better balance in the contributions of the two models. Extensive experiments on five benchmarks show that our method effectively harmonizes local and global representations, achieving competitive performance against state-of-the-art methods.
☆ Radioactive 3D Gaussian Ray Tracing for Tomographic Reconstruction
3D Gaussian Splatting (3DGS) has recently emerged in computer vision as a promising rendering technique. By adapting the principles of Elliptical Weighted Average (EWA) splatting to a modern differentiable pipeline, 3DGS enables real-time, high-quality novel view synthesis. Building upon this, R2-Gaussian extended the 3DGS paradigm to tomographic reconstruction by rectifying integration bias, achieving state-of-the-art performance in computed tomography (CT). To enable differentiability, R2-Gaussian adopts a local affine approximation: each 3D Gaussian is locally mapped to a 2D Gaussian on the detector and composed via alpha blending to form projections. However, the affine approximation can degrade reconstruction quantitative accuracy and complicate the incorporation of nonlinear geometric corrections. To address these limitations, we propose a tomographic reconstruction framework based on 3D Gaussian ray tracing. Our approach provides two key advantages over splatting-based models: (i) it computes the line integral through 3D Gaussian primitives analytically, avoiding the local affine collapse and thus yielding a more physically consistent forward projection model; and (ii) the ray-tracing formulation gives explicit control over ray origins and directions, which facilitates the precise application of nonlinear geometric corrections, e.g., arc-correction used in positron emission tomography (PET). These properties extend the applicability of Gaussian-based reconstruction to a wider range of realistic tomography systems while improving projection accuracy.
☆ Baseline Method of the Foundation Model Challenge for Ultrasound Image Analysis
Ultrasound (US) imaging exhibits substantial heterogeneity across anatomical structures and acquisition protocols, posing significant challenges to the development of generalizable analysis models. Most existing methods are task-specific, limiting their suitability as clinically deployable foundation models. To address this limitation, the Foundation Model Challenge for Ultrasound Image Analysis (FM\_UIA~2026) introduces a large-scale multi-task benchmark comprising 27 subtasks across segmentation, classification, detection, and regression. In this paper, we present the official baseline for FM\_UIA~2026 based on a unified Multi-Head Multi-Task Learning (MH-MTL) framework that supports all tasks within a single shared network. The model employs an ImageNet-pretrained EfficientNet--B4 backbone for robust feature extraction, combined with a Feature Pyramid Network (FPN) to capture multi-scale contextual information. A task-specific routing strategy enables global tasks to leverage high-level semantic features, while dense prediction tasks exploit spatially detailed FPN representations. Training incorporates a composite loss with task-adaptive learning rate scaling and a cosine annealing schedule. Validation results demonstrate the feasibility and robustness of this unified design, establishing a strong and extensible baseline for ultrasound foundation model research. The code and dataset are publicly available at \href{https://github.com/lijiake2408/Foundation-Model-Challenge-for-Ultrasound-Image-Analysis}{GitHub}.
☆ Residual Decoding: Mitigating Hallucinations in Large Vision-Language Models via History-Aware Residual Guidance
Large Vision-Language Models (LVLMs) can reason effectively from image-text inputs and perform well in various multimodal tasks. Despite this success, they are affected by language priors and often produce hallucinations. Hallucinations denote generated content that is grammatically and syntactically coherent, yet bears no match or direct relevance to actual visual input. To address this problem, we propose Residual Decoding (ResDec). It is a novel training-free method that uses historical information to aid decoding. The method relies on the internal implicit reasoning mechanism and token logits evolution mechanism of LVLMs to correct biases. Extensive experiments demonstrate that ResDec effectively suppresses hallucinations induced by language priors, significantly improves visual grounding, and reduces object hallucinations. In addition to mitigating hallucinations, ResDec also performs exceptionally well on comprehensive LVLM benchmarks, highlighting its broad applicability.
☆ ReLayout: Versatile and Structure-Preserving Design Layout Editing via Relation-Aware Design Reconstruction
Automated redesign without manual adjustments marks a key step forward in the design workflow. In this work, we focus on a foundational redesign task termed design layout editing, which seeks to autonomously modify the geometric composition of a design based on user intents. To overcome the ambiguity of user needs expressed in natural language, we introduce four basic and important editing actions and standardize the format of editing operations. The underexplored task presents a unique challenge: satisfying specified editing operations while simultaneously preserving the layout structure of unedited elements. Besides, the scarcity of triplet (original design, editing operation, edited design) samples poses another formidable challenge. To this end, we present ReLayout, a novel framework for versatile and structure-preserving design layout editing that operates without triplet data. Specifically, ReLayout first introduces the relation graph, which contains the position and size relationships among unedited elements, as the constraint for layout structure preservation. Then, relation-aware design reconstruction (RADR) is proposed to bypass the data challenge. By learning to reconstruct a design from its elements, a relation graph, and a synthesized editing operation, RADR effectively emulates the editing process in a self-supervised manner. A multi-modal large language model serves as the backbone for RADR, unifying multiple editing actions within a single model and thus achieving versatile editing after fine-tuning. Qualitative, quantitative results and user studies show that ReLayout significantly outperforms the baseline models in terms of editing quality, accuracy, and layout structure preservation.
☆ From Videos to Conversations: Egocentric Instructions for Task Assistance
Many everyday tasks, ranging from appliance repair and cooking to car maintenance, require expert knowledge, particularly for complex, multi-step procedures. Despite growing interest in AI agents for augmented reality (AR) assistance, progress remains limited by the scarcity of large-scale multimodal conversational datasets grounded in real-world task execution, in part due to the cost and logistical complexity of human-assisted data collection. In this paper, we present a framework to automatically transform single person instructional videos into two-person multimodal task-guidance conversations. Our fully automatic pipeline, based on large language models, provides a scalable and cost efficient alternative to traditional data collection approaches. Using this framework, we introduce HowToDIV, a multimodal dataset comprising 507 conversations, 6,636 question answer pairs, and 24 hours of video spanning multiple domains. Each session consists of a multi-turn expert-novice interaction. Finally, we report baseline results using Gemma 3 and Qwen 2.5 on HowToDIV, providing an initial benchmark for multimodal procedural task assistance.
☆ VEQ: Modality-Adaptive Quantization for MoE Vision-Language Models
Mixture-of-Experts(MoE) Vision-Language Models (VLMs) offer remarkable performance but incur prohibitive memory and computational costs, making compression essential. Post-Training Quantization (PTQ) is an effective training-free technique to address the massive memory and computation overhead. Existing quantization paradigms fall short as they are oblivious to two critical forms of heterogeneity: the inherent discrepancy between vision and language tokens, and the non-uniform contribution of different experts. To bridge this gap, we propose Visual Expert Quantization (VEQ), a dual-aware quantization framework designed to simultaneously accommodate cross-modal differences and heterogeneity between experts. Specifically, VEQ incorporates 1)Modality-expert-aware Quantization, which utilizes expert activation frequency to prioritize error minimization for pivotal experts, and 2)Modality-affinity-aware Quantization, which constructs an enhanced Hessian matrix by integrating token-expert affinity with modality information to guide the calibration process. Extensive experiments across diverse benchmarks verify that VEQ consistently outperforms state-of-the-art baselines. Specifically, under the W3A16 configuration, our method achieves significant average accuracy gains of 2.04\% on Kimi-VL and 3.09\% on Qwen3-VL compared to the previous SOTA quantization methods, demonstrating superior robustness across various multimodal tasks. Our code will be available at https://github.com/guangshuoqin/VEQ.
☆ FUSE-Flow: Scalable Real-Time Multi-View Point Cloud Reconstruction Using Confidence IEEE
Real-time multi-view point cloud reconstruction is a core problem in 3D vision and immersive perception, with wide applications in VR, AR, robotic navigation, digital twins, and computer interaction. Despite advances in multi-camera systems and high-resolution depth sensors, fusing large-scale multi-view depth observations into high-quality point clouds under strict real-time constraints remains challenging. Existing methods relying on voxel-based fusion, temporal accumulation, or global optimization suffer from high computational complexity, excessive memory usage, and limited scalability, failing to simultaneously achieve real-time performance, reconstruction quality, and multi-camera extensibility. We propose FUSE-Flow, a frame-wise, stateless, and linearly scalable point cloud streaming reconstruction framework. Each frame independently generates point cloud fragments, fused via two weights, measurement confidence and 3D distance consistency to suppress noise while preserving geometric details. For large-scale multi-camera efficiency, we introduce an adaptive spatial hashing-based weighted aggregation method: 3D space is adaptively partitioned by local point cloud density, representative points are selected per cell, and weighted fusion is performed to handle both sparse and dense regions. With GPU parallelization, FUSE-Flow achieves high-throughput, low-latency point cloud generation and fusion with linear complexity. Experiments demonstrate that the framework improves reconstruction stability and geometric fidelity in overlapping, depth-discontinuous, and dynamic scenes, while maintaining real-time frame rates on modern GPUs, verifying its effectiveness, robustness, and scalability.
comment: A 5-page paper, prepared for submission to the 2026 IEEE International Conference on Image Processing (ICIP)
☆ GMAC: Global Multi-View Constraint for Automatic Multi-Camera Extrinsic Calibration IEEE
Automatic calibration of multi-camera systems, namely the accurate estimation of spatial extrinsic parameters, is fundamental for 3D reconstruction, panoramic perception, and multi-view data fusion. Existing methods typically rely on calibration targets, explicit geometric modeling, or task-specific neural networks. Such approaches often exhibit limited robustness and applicability in complex dynamic environments or online scenarios, making them difficult to deploy in practical applications. To address this, this paper proposes GMAC, a multi-camera extrinsic estimation framework based on the implicit geometric representations learned by multi-view reconstruction networks. GMAC models extrinsics as global variables constrained by the latent multi-view geometric structure and prunes and structurally reconfigures existing networks so that their latent features can directly support extrinsic prediction through a lightweight regression head, without requiring a completely new network design. Furthermore, GMAC jointly optimizes cross-view reprojection consistency and multi-view cycle consistency, ensuring geometric coherence across cameras while improving prediction accuracy and optimization stability. Experiments on both synthetic and real-world multi-camera datasets demonstrate that GMAC achieves accurate and stable extrinsic estimation without explicit 3D reconstruction or manual calibration, providing a new solution for efficient deployment and online calibration of multi-camera systems.
comment: A 5-page paper with 1 figure, prepared for submission to the 2026 IEEE International Conference on Image Processing (ICIP)
♻ ☆ Learning to Look Closer: A New Instance-Wise Loss for Small Cerebral Lesion Segmentation IEEE
Traditional loss functions in medical image segmentation, such as Dice, often under-segment small lesions because their small relative volume contributes negligibly to the overall loss. To address this, instance-wise loss functions and metrics have been proposed to evaluate segmentation quality on a per-lesion basis. We introduce CC-DiceCE, a loss function based on the CC-Metrics framework, and compare it with the existing blob loss. Both are benchmarked against a DiceCE baseline within the nnU-Net framework, which provides a robust and standardized setup. We find that CC-DiceCE loss increases detection (recall) with minimal to no degradation in segmentation performance, though with dataset-dependent trade-offs in precision. Furthermore, our multi-dataset study shows that CC-DiceCE generally outperforms blob loss.
comment: Accepted to IEEE ISBI 2026. 5 pages, 2 figures, 2 tables
♻ ☆ ReasonVQA: A Multi-hop Reasoning Benchmark with Structural Knowledge for Visual Question Answering ICCV
In this paper, we propose a new dataset, ReasonVQA, for the Visual Question Answering (VQA) task. Our dataset is automatically integrated with structured encyclopedic knowledge and constructed using a low-cost framework, which is capable of generating complex, multi-hop questions. We evaluated state-of-the-art VQA models on ReasonVQA, and the empirical results demonstrate that ReasonVQA poses significant challenges to these models, highlighting its potential for benchmarking and advancing the field of VQA. Additionally, our dataset can be easily scaled with respect to input images; the current version surpasses the largest existing datasets requiring external knowledge by more than an order of magnitude.
comment: Accepted at the IEEE/CVF International Conference on Computer Vision (ICCV) 2025
♻ ☆ OpenPros: A Large-Scale Dataset for Limited View Prostate Ultrasound Computed Tomography
Prostate cancer is one of the most prevalent and deadly cancers among men, motivating the development of accurate and accessible imaging technologies for early detection. Ultrasound computed tomography (USCT) reconstructs quantitative tissue parameters such as speed-of-sound (SOS) and is a promising low-cost alternative to existing modalities. However, prostate USCT remains challenging due to limited-angle acquisition, strong tissue heterogeneity, bone-induced wave distortion, and the lack of large-scale, anatomically realistic datasets for method development and evaluation. We introduce OPENPROS, the first large-scale benchmark dataset for limited-angle prostate USCT, designed to systematically evaluate machine learning methods for quantitative inverse problems. OPENPROS contains over 280,000 paired samples of realistic 2D SOS maps and corresponding ultrasound full-waveform data, generated from anatomically accurate 3D digital prostate models derived from 4 clinical MRI/CT scans and 62 ex vivo prostate specimens with experimental ultrasound measurements. Wave propagation is simulated under clinically realistic configurations using open-source finite-difference time-domain and Runge-Kutta solvers. We provide standardized training, in-distribution, and out-of-distribution benchmarks and evaluate representative deep learning baselines. While learning-based methods substantially improve inference speed and reconstruction accuracy over physics-based approaches, results highlight persistent challenges in robustness, generalization, and high-resolution reconstruction quality. By publicly releasing OPENPROS, we establish a rigorous benchmark to support research in inverse problems, physics-guided learning, and operator learning, and to bridge the gap between machine learning research and practical USCT deployment. The dataset is available at https://open-pros.github.io/.
♻ ☆ T-MLA: A targeted multiscale log-exponential attack framework for neural image compression
Neural image compression (NIC) has become the state-of-the-art for rate-distortion performance, yet its security vulnerabilities remain significantly less understood than those of classifiers. Existing adversarial attacks on NICs are often naive adaptations of pixel-space methods, overlooking the unique, structured nature of the compression pipeline. In this work, we propose a more advanced class of vulnerabilities by introducing T-MLA, the first targeted multiscale log-exponential attack framework. We introduce adversarial perturbations in the wavelet domain that concentrate on less perceptually salient coefficients, improving the stealth of the attack. Extensive evaluation across multiple state-of-the-art NIC architectures on standard image compression benchmarks reveals a large drop in reconstruction quality while the perturbations remain visually imperceptible. On standard NIC benchmarks, T-MLA achieves targeted degradation of reconstruction quality while improving perturbation imperceptibility (higher PSNR/VIF of the perturbed inputs) compared to PGD-style baselines at comparable attack success, as summarized in our main results. Our findings reveal a critical security flaw at the core of generative and content delivery pipelines.
comment: v2: published in Information Sciences (Vol. 738, 2026). DOI: 10.1016/j.ins.2026.123143. Minor edits; added publication info
♻ ☆ VULCA-Bench: A Multicultural Vision-Language Benchmark for Evaluating Cultural Understanding ACL 2026
We introduce VULCA-Bench, a multicultural art-critique benchmark for evaluating Vision-Language Models' (VLMs) cultural understanding beyond surface-level visual perception. Existing VLM benchmarks predominantly measure L1-L2 capabilities (object recognition, scene description, and factual question answering) while under-evaluate higher-order cultural interpretation. VULCA-Bench contains 7,410 matched image-critique pairs spanning eight cultural traditions, with Chinese-English bilingual coverage. We operationalise cultural understanding using a five-layer framework (L1-L5, from Visual Perception to Philosophical Aesthetics), instantiated as 225 culture-specific dimensions and supported by expert-written bilingual critiques. Our pilot results indicate that higher-layer reasoning (L3-L5) is consistently more challenging than visual and technical analysis (L1-L2). The dataset, evaluation scripts, and annotation tools are available under CC BY 4.0 in the supplementary materials.
comment: 8 pages, 4 figures, submitted to ACL 2026 Dataset Track
♻ ☆ InterDreamer: Zero-Shot Text to 3D Dynamic Human-Object Interaction NeurIPS 2024
Text-conditioned human motion generation has experienced significant advancements with diffusion models trained on extensive motion capture data and corresponding textual annotations. However, extending such success to 3D dynamic human-object interaction (HOI) generation faces notable challenges, primarily due to the lack of large-scale interaction data and comprehensive descriptions that align with these interactions. This paper takes the initiative and showcases the potential of generating human-object interactions without direct training on text-interaction pair data. Our key insight in achieving this is that interaction semantics and dynamics can be decoupled. Being unable to learn interaction semantics through supervised training, we instead leverage pre-trained large models, synergizing knowledge from a large language model and a text-to-motion model. While such knowledge offers high-level control over interaction semantics, it cannot grasp the intricacies of low-level interaction dynamics. To overcome this issue, we further introduce a world model designed to comprehend simple physics, modeling how human actions influence object motion. By integrating these components, our novel framework, InterDreamer, is able to generate text-aligned 3D HOI sequences in a zero-shot manner. We apply InterDreamer to the BEHAVE and CHAIRS datasets, and our comprehensive experimental analysis demonstrates its capability to generate realistic and coherent interaction sequences that seamlessly align with the text directives.
comment: NeurIPS 2024. Project Page: https://sirui-xu.github.io/InterDreamer/
♻ ☆ InterMimic: Towards Universal Whole-Body Control for Physics-Based Human-Object Interactions CVPR 2025
Achieving realistic simulations of humans interacting with a wide range of objects has long been a fundamental goal. Extending physics-based motion imitation to complex human-object interactions (HOIs) is challenging due to intricate human-object coupling, variability in object geometries, and artifacts in motion capture data, such as inaccurate contacts and limited hand detail. We introduce InterMimic, a framework that enables a single policy to robustly learn from hours of imperfect MoCap data covering diverse full-body interactions with dynamic and varied objects. Our key insight is to employ a curriculum strategy -- perfect first, then scale up. We first train subject-specific teacher policies to mimic, retarget, and refine motion capture data. Next, we distill these teachers into a student policy, with the teachers acting as online experts providing direct supervision, as well as high-quality references. Notably, we incorporate RL fine-tuning on the student policy to surpass mere demonstration replication and achieve higher-quality solutions. Our experiments demonstrate that InterMimic produces realistic and diverse interactions across multiple HOI datasets. The learned policy generalizes in a zero-shot manner and seamlessly integrates with kinematic generators, elevating the framework from mere imitation to generative modeling of complex human-object interactions.
comment: CVPR 2025. Project Page: https://sirui-xu.github.io/InterMimic/
♻ ☆ A Space-Time Transformer for Precipitation Nowcasting NeurIPS
Meteorological agencies around the world rely on real-time flood guidance to issue life-saving advisories and warnings. For decades traditional numerical weather prediction (NWP) models have been state-of-the-art for precipitation forecasting. However, physically-parameterized models suffer from a few core limitations: first, solving PDEs to resolve atmospheric dynamics is computationally demanding, and second, these methods degrade in performance at nowcasting timescales (i.e., 0-4 hour lead-times). Motivated by these shortcomings, recent work proposes AI-weather prediction (AI-WP) alternatives that learn to emulate analysis data with neural networks. While these data-driven approaches have enjoyed enormous success across diverse spatial and temporal resolutions, applications of video-understanding architectures for weather forecasting remain underexplored. To address these gaps, we propose \textbf{SaTformer}: a video transformer built on full space-time attention that skillfully forecasts extreme precipitation from satellite radiances. Along with our novel architecture, we introduce techniques to tame long-tailed precipitation datasets. Namely, we reformulate precipitation regression into a classification problem, and employ a class-weighted loss to address label imbalances. Our model scored \textbf{first place} on the NeurIPS Weather4Cast 2025 ``Cumulative Rainfall'' challenge. Code and model weights are available: \texttt{\href{github.com/leharris3/w4c-25}{github.com/leharris3/satformer}}
comment: NeurIPS Weather4Cast Challenge 2025. Title change; minor math corrections
♻ ☆ Virtual Community: An Open World for Humans, Robots, and Society
The rapid progress in AI and Robotics may lead to a profound societal transformation, as humans and robots begin to coexist within shared communities, introducing both opportunities and challenges. To explore this future, we present Virtual Community-an open-world platform for humans, robots, and society-built on a universal physics engine and grounded in real-world 3D scenes. With Virtual Community, we aim to enable the study of embodied social intelligence at scale. To support these, Virtual Community features: 1) An open-source multi-agent physics simulator that supports robots, humans, and their interactions within a society; 2) A large-scale, real-world aligned community generation pipeline, including vast outdoor space, diverse indoor scenes, and a community of grounded agents with rich characters and appearances. Leveraging Virtual Community, we propose two novel challenges. The Community Planning Challenge evaluates multi-agent reasoning and planning ability in open-world settings, such as cooperating to help agents with daily activities and efficiently connecting other agents. The Community Robot Challenge requires multiple heterogeneous robots to collaborate in solving complex open-world tasks. We evaluate various baselines on these tasks and demonstrate the challenges in both high-level open-world task planning and low-level cooperation controls. We hope that Virtual Community will unlock further study of human-robot coexistence within open-world environments.
comment: website https://virtual-community-ai.github.io/
♻ ☆ End-to-End Agentic RAG System Training for Traceable Diagnostic Reasoning
The integration of Large Language Models (LLMs) into healthcare is constrained by knowledge limitations, hallucinations, and a disconnect from Evidence-Based Medicine (EBM). While Retrieval-Augmented Generation (RAG) offers a solution, current systems often rely on static workflows that miss the iterative, hypothetico-deductive reasoning of clinicians. To address this, we introduce Deep-DxSearch, an agentic RAG system trained end-to-end via reinforcement learning (RL) for traceable diagnostic reasoning. Deep-DxSearch acts as an active investigator, treating the LLM as an agent within an environment of 16,000+ guideline-derived disease profiles, 150,000+ patient records for case-based reasoning, and over 27 million biomedical documents. Using soft verifiable rewards that co-optimize retrieval and reasoning, the model learns to formulate queries, evaluate evidence, and refine searches to close diagnostic gaps. Experiments show our end-to-end RL framework consistently outperforms prompt-engineering and training-free RAG methods. On in-distribution (ID) and out-of-distribution (OOD) benchmarks for common and rare diseases, Deep-DxSearch surpasses strong baselines-including GPT-4o, DeepSeek-R1, and medical-specific frameworks-achieving an average accuracy gain of 22.7% over the second-best model. In validation with 150 real-world cases, Deep-DxSearch boosts physicians' average diagnostic accuracy from 45.6% to 69.1%. These results indicate that evolving agentic systems to leverage statistical regularities in large-scale healthcare data is key for trustworthy diagnostic assistants. All data, code, and checkpoints are available at https://qiaoyu-zheng.github.io/Deep-DxSearch.
♻ ☆ Toward a Vision-Language Foundation Model for Medical Data: Multimodal Dataset and Benchmarks for Vietnamese PET/CT Report Generation NeurIPS 2025
Vision-Language Foundation Models (VLMs), trained on large-scale multimodal datasets, have driven significant advances in Artificial Intelligence (AI) by enabling rich cross-modal reasoning. Despite their success in general domains, applying these models to medical imaging remains challenging due to the limited availability of diverse imaging modalities and multilingual clinical data. Most existing medical VLMs are trained on a subset of imaging modalities and focus primarily on high-resource languages, thus limiting their generalizability and clinical utility. To address these limitations, we introduce a novel Vietnamese-language multimodal medical dataset consisting of 2,757 whole-body PET/CT volumes from independent patients and their corresponding full-length clinical reports. This dataset is designed to fill two pressing gaps in medical AI development: (1) the lack of PET/CT imaging data in existing VLMs training corpora, which hinders the development of models capable of handling functional imaging tasks; and (2) the underrepresentation of low-resource languages, particularly the Vietnamese language, in medical vision-language research. To the best of our knowledge, this is the first dataset to provide comprehensive PET/CT-report pairs in Vietnamese. We further introduce a training framework to enhance VLMs' learning, including data augmentation and expert-validated test sets. We conduct comprehensive experiments benchmarking state-of-the-art VLMs on downstream tasks. The experimental results show that incorporating our dataset significantly improves the performance of existing VLMs. We believe this dataset and benchmark will serve as a pivotal step in advancing the development of more robust VLMs for medical imaging, especially for low-resource languages and clinical use in Vietnamese healthcare. The source code is available at https://github.com/AIoT-Lab-BKAI/ViPET-ReportGen.
comment: 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Track on Datasets and Benchmarks
♻ ☆ Edge Weight Prediction For Category-Agnostic Pose Estimation
Category-Agnostic Pose Estimation (CAPE) localizes keypoints across diverse object categories with a single model, using one or a few annotated support images. Recent works have shown that using a pose graph (i.e., treating keypoints as nodes in a graph rather than isolated points) helps handle occlusions and break symmetry. However, these methods assume a static pose graph with equal-weight edges, leading to suboptimal results. We introduce EdgeCape, a novel framework that overcomes these limitations by predicting the graph's edge weights which optimizes localization. To further leverage structural priors, we propose integrating Markovian Structural Bias, which modulates the self-attention interaction between nodes based on the number of hops between them. We show that this improves the model's ability to capture global spatial dependencies. Evaluated on the MP-100 benchmark, which includes 100 categories and over 20K images, EdgeCape achieves state-of-the-art results in the 1-shot setting and leads among similar-sized methods in the 5-shot setting, significantly improving keypoint localization accuracy. Our code is publicly available.
♻ ☆ A Survey of Token Compression for Efficient Multimodal Large Language Models
Multimodal large language models (MLLMs) have made remarkable strides, largely driven by their ability to process increasingly long and complex contexts, such as high-resolution images, extended video sequences, and lengthy audio input. While this ability significantly enhances MLLM capabilities, it introduces substantial computational challenges, primarily due to the quadratic complexity of self-attention mechanisms with numerous input tokens. To mitigate these bottlenecks, token compression has emerged as an auspicious and critical approach, efficiently reducing the number of tokens during both training and inference. In this paper, we present the first systematic survey and synthesis of the burgeoning field of multimodal long context token compression. Recognizing that effective compression strategies are deeply tied to the unique characteristics and redundancies of each modality, we categorize existing approaches by their primary data focus, enabling researchers to quickly access and learn methods tailored to their specific area of interest: (1) image-centric compression, which addresses spatial redundancy in visual data; (2) video-centric compression, which tackles spatio-temporal redundancy in dynamic sequences; and (3) audio-centric compression, which handles temporal and spectral redundancy in acoustic signals. Beyond this modality-driven categorization, we further dissect methods based on their underlying mechanisms, including transformation-based, similarity-based, attention-based, and query-based approaches. By providing a comprehensive and structured overview, this survey aims to consolidate current progress, identify key challenges, and inspire future research directions in this rapidly evolving domain.
comment: For ongoing updates and to track the latest advances in this promising area, we maintain a public repository: https://github.com/cokeshao/Awesome-Multimodal-Token-Compression
♻ ☆ MoCrop: Training Free Motion Guided Cropping for Efficient Video Action Recognition
Standard video action recognition models often process typically resized full frames, suffering from spatial redundancy and high computational costs. To address this, we introduce MoCrop, a motion-aware adaptive cropping module designed for efficient video action recognition in the compressed domain. Leveraging Motion Vectors (MVs) naturally available in H.264 video, MoCrop localizes motion-dense regions to produce adaptive crops at inference without requiring any training or parameter updates. Our lightweight pipeline synergizes three key components: Merge & Denoise (MD) for outlier filtering, Monte Carlo Sampling (MCS) for efficient importance sampling, and Motion Grid Search (MGS) for optimal region localization. This design allows MoCrop to serve as a versatile "plug-and-play" module for diverse backbones. Extensive experiments on UCF101 demonstrate that MoCrop serves as both an accelerator and an enhancer. With ResNet-50, it achieves a +3.5% boost in Top-1 accuracy at equivalent FLOPs (Attention Setting), or a +2.4% accuracy gain with 26.5% fewer FLOPs (Efficiency Setting). When applied to CoViAR, it improves accuracy to 89.2% or reduces computation by roughly 27% (from 11.6 to 8.5 GFLOPs). Consistent gains across MobileNet-V3, EfficientNet-B1, and Swin-B confirm its strong generality and suitability for real-time deployment. Our code and models are available at https://github.com/microa/MoCrop.
comment: 6 pages, 3 figures
♻ ☆ Rectified Decoupled Dataset Distillation: A Closer Look for Fair and Comprehensive Evaluation ICLR 2026
Dataset distillation aims to generate compact synthetic datasets that enable models trained on them to achieve performance comparable to those trained on full real datasets, while substantially reducing storage and computational costs. Early bi-level optimization methods (e.g., MTT) have shown promising results on small-scale datasets, but their scalability is limited by high computational overhead. To address this limitation, recent decoupled dataset distillation methods (e.g., SRe$^2$L) separate the teacher model pre-training from the synthetic data generation process. These methods also introduce random data augmentation and epoch-wise soft labels during the post-evaluation phase to improve performance and generalization. However, existing decoupled distillation methods suffer from inconsistent post-evaluation protocols, which hinders progress in the field. In this work, we propose Rectified Decoupled Dataset Distillation (RD$^3$), and systematically investigate how different post-evaluation settings affect test accuracy. We further examine whether the reported performance differences across existing methods reflect true methodological advances or stem from discrepancies in evaluation procedures. Our analysis reveals that much of the performance variation can be attributed to inconsistent evaluation rather than differences in the intrinsic quality of the synthetic data. In addition, we identify general strategies that improve the effectiveness of distilled datasets across settings. By establishing a standardized benchmark and rigorous evaluation protocol, RD$^3$ provides a foundation for fair and reproducible comparisons in future dataset distillation research.
comment: Accepted to ICLR 2026
♻ ☆ Beyond Global Scanning: Adaptive Visual State Space Modeling for Salient Object Detection in Optical Remote Sensing Images
Salient object detection (SOD) in optical remote sensing images (ORSIs) faces numerous challenges, including significant variations in target scales and low contrast between targets and the background. Existing methods based on vision transformers (ViTs) and convolutional neural networks (CNNs) architectures aim to leverage both global and local features, but the difficulty in effectively integrating these heterogeneous features limits their overall performance. To overcome these limitations, we propose an adaptive state space context network (ASCNet), which builds upon the state space model mechanism to simultaneously capture long-range dependencies and enhance regional feature representation. Specifically, we employ the visual state space encoder to extract multi-scale features. To further achieve deep guidance and enhancement of these features, we first design a Multi-Level Context Module (MLCM). This module strengthens cross-layer interaction capabilities between features of different scales while enhancing the model's structural perception, allowing it to distinguish between foreground and background more effectively. Then, we design the APVSS block as the decoder of ASCNet. This module integrates our proposed Dynamic Adaptive Granularity Scan (DAGS) and Granularity-aware Propagation Module (GPM). It performs adaptive patch scanning on feature maps enhanced by local perception, thereby capturing rich local region information and enhancing state space model's local modeling capability. Extensive experimental results demonstrate that the proposed model achieves state-of-the-art performance, validating its effectiveness and superiority.
♻ ☆ Closing the Safety Gap: Surgical Concept Erasure in Visual Autoregressive Models ICLR 2026
The rapid progress of visual autoregressive (VAR) models has brought new opportunities for text-to-image generation, but also heightened safety concerns. Existing concept erasure techniques, primarily designed for diffusion models, fail to generalize to VARs due to their next-scale token prediction paradigm. In this paper, we first propose a novel VAR Erasure framework VARE that enables stable concept erasure in VAR models by leveraging auxiliary visual tokens to reduce fine-tuning intensity. Building upon this, we introduce S-VARE, a novel and effective concept erasure method designed for VAR, which incorporates a filtered cross entropy loss to precisely identify and minimally adjust unsafe visual tokens, along with a preservation loss to maintain semantic fidelity, addressing the issues such as language drift and reduced diversity introduce by naïve fine-tuning. Extensive experiments demonstrate that our approach achieves surgical concept erasure while preserving generation quality, thereby closing the safety gap in autoregressive text-to-image generation by earlier methods.
comment: Accepted toICLR 2026
♻ ☆ Robust MLLM Unlearning via Visual Knowledge Distillation
Recently, machine unlearning approaches have been proposed to remove sensitive information from well-trained large models. However, most existing methods are tailored for LLMs, while MLLM-oriented unlearning remains at its early stage. Inspired by recent studies exploring the internal mechanisms of MLLMs, we propose to disentangle the visual and textual knowledge embedded within MLLMs and introduce a dedicated approach to selectively erase target visual knowledge while preserving textual knowledge. Unlike previous unlearning methods that rely on output-level supervision, our approach introduces a Visual Knowledge Distillation (VKD) scheme, which leverages intermediate visual representations within the MLLM as supervision signals. This design substantially enhances both unlearning effectiveness and model utility. Moreover, since our method only fine-tunes the visual components of the MLLM, it offers significant efficiency advantages. Extensive experiments demonstrate that our approach outperforms state-of-the-art unlearning methods in terms of both effectiveness and efficiency. Moreover, we are the first to evaluate the robustness of MLLM unlearning against relearning attacks.
♻ ☆ VibrantSR: Sub-Meter Canopy Height Models from Sentinel-2 Using Generative Flow Matching
We present VibrantSR (Vibrant Super-Resolution), a generative super-resolution framework for estimating 0.5 meter canopy height models (CHMs) from 10 meter Sentinel-2 imagery. Unlike approaches based on aerial imagery that are constrained by infrequent and irregular acquisition schedules, VibrantSR leverages globally available Sentinel-2 seasonal composites, enabling consistent monitoring at a seasonal-to-annual cadence. Evaluated across 22 EPA Level 3 eco-regions in the western United States using spatially disjoint validation splits, VibrantSR achieves a Mean Absolute Error of 4.39 meters for canopy heights >= 2 m, outperforming Meta (4.83 m), LANDFIRE (5.96 m), and ETH (7.05 m) satellite-based benchmarks. While aerial-based VibrantVS (2.71 m MAE) retains an accuracy advantage, VibrantSR enables operational forest monitoring and carbon accounting at continental scales without reliance on costly and temporally infrequent aerial acquisitions.
comment: 12 pages, 8 figures, 2 tables
♻ ☆ Zero-Shot Video Deraining with Video Diffusion Models WACV 2026
Existing video deraining methods are often trained on paired datasets, either synthetic, which limits their ability to generalize to real-world rain, or captured by static cameras, which restricts their effectiveness in dynamic scenes with background and camera motion. Furthermore, recent works in fine-tuning diffusion models have shown promising results, but the fine-tuning tends to weaken the generative prior, limiting generalization to unseen cases. In this paper, we introduce the first zero-shot video deraining method for complex dynamic scenes that does not require synthetic data nor model fine-tuning, by leveraging a pretrained text-to-video diffusion model that demonstrates strong generalization capabilities. By inverting an input video into the latent space of diffusion models, its reconstruction process can be intervened and pushed away from the model's concept of rain using negative prompting. At the core of our approach is an attention switching mechanism that we found is crucial for maintaining dynamic backgrounds as well as structural consistency between the input and the derained video, mitigating artifacts introduced by naive negative prompting. Our approach is validated through extensive experiments on real-world rain datasets, demonstrating substantial improvements over prior methods and showcasing robust generalization without the need for supervised training.
comment: WACV 2026
♻ ☆ NAP-Tuning: Neural Augmented Prompt Tuning for Adversarially Robust Vision-Language Models
Vision-Language Models (VLMs) such as CLIP have demonstrated remarkable capabilities in understanding relationships between visual and textual data through joint embedding spaces. Despite their effectiveness, these models remain vulnerable to adversarial attacks, particularly in the image modality, posing significant security concerns. Building upon our previous work on Adversarial Prompt Tuning (AdvPT), which introduced learnable text prompts to enhance adversarial robustness in VLMs without extensive parameter training, we present a significant extension by introducing the Neural Augmentor framework for Multi-modal Adversarial Prompt Tuning (NAP-Tuning).Our key innovations include: (1) extending AdvPT from text-only to multi-modal prompting across both text and visual modalities, (2) expanding from single-layer to multi-layer prompt architectures, and (3) proposing a novel architecture-level redesign through our Neural Augmentor approach, which implements feature purification to directly address the distortions introduced by adversarial attacks in feature space. Our NAP-Tuning approach incorporates token refiners that learn to reconstruct purified features through residual connections, allowing for modality-specific and layer-specific feature correction.Comprehensive experiments demonstrate that NAP-Tuning significantly outperforms existing methods across various datasets and attack types. Notably, our approach shows significant improvements over the strongest baselines under the challenging AutoAttack benchmark, outperforming them by 33.5% on ViT-B16 and 33.0% on ViT-B32 architectures while maintaining competitive clean accuracy.
♻ ☆ Mixed Precision PointPillars for Efficient 3D Object Detection with TensorRT
LIDAR 3D object detection is one of the important tasks for autonomous vehicles. Ensuring that this task operates in real-time is crucial. Toward this, model quantization can be used to accelerate the runtime. However, directly applying model quantization often leads to performance degradation due to LIDAR's wide numerical distributions and extreme outliers. To address the wide numerical distribution, we proposed a mixed precision framework designed for PointPillars. Our framework first searches for sensitive layers with post-training quantization (PTQ) by quantizing one layer at a time to 8-bit integer (INT8) and evaluating each model for average precision (AP). The top-k most sensitive layers are assigned as floating point (FP). Combinations of these layers are greedily searched to produce candidate mixed precision models, which are finalized with either PTQ or quantization-aware training (QAT). Furthermore, to handle outliers, we observe that using a very small number of calibration data reduces the likelihood of encountering outliers, thereby improving PTQ performance. Our methods provides mixed precision models without training in the PTQ pipeline, while our QAT pipeline achieves the performance competitive to FP models. With TensorRT deployment, our mixed precision models offer less latency by up to 2.538 times compared to FP32 models.
comment: 6 pages, 4 figures
♻ ☆ Collaborative Representation Learning for Alignment of Tactile, Language, and Vision Modalities
Tactile sensing offers rich and complementary information to vision and language, enabling robots to perceive fine-grained object properties. However, existing tactile sensors lack standardization, leading to redundant features that hinder cross-sensor generalization. Moreover, existing methods fail to fully integrate the intermediate communication among tactile, language, and vision modalities. To address this, we propose TLV-CoRe, a CLIP-based Tactile-Language-Vision Collaborative Representation learning method. TLV-CoRe introduces a Sensor-Aware Modulator to unify tactile features across different sensors and employs tactile-irrelevant decoupled learning to disentangle irrelevant tactile features. Additionally, a Unified Bridging Adapter is introduced to enhance tri-modal interaction within the shared representation space. To fairly evaluate the effectiveness of tactile models, we further propose the RSS evaluation framework, focusing on Robustness, Synergy, and Stability across different methods. Experimental results demonstrate that TLV-CoRe significantly improves sensor-agnostic representation learning and cross-modal alignment, offering a new direction for multimodal tactile representation.
♻ ☆ Reading Recognition in the Wild NeurIPS 2025
To enable egocentric contextual AI in always-on smart glasses, it is crucial to be able to keep a record of the user's interactions with the world, including during reading. In this paper, we introduce a new task of reading recognition to determine when the user is reading. We first introduce the first-of-its-kind large-scale multimodal Reading in the Wild dataset, containing 100 hours of reading and non-reading videos in diverse and realistic scenarios. We then identify three modalities (egocentric RGB, eye gaze, head pose) that can be used to solve the task, and present a flexible transformer model that performs the task using these modalities, either individually or combined. We show that these modalities are relevant and complementary to the task, and investigate how to efficiently and effectively encode each modality. Additionally, we show the usefulness of this dataset towards classifying types of reading, extending current reading understanding studies conducted in constrained settings to larger scale, diversity and realism.
comment: NeurIPS 2025. Project Page: https://www.projectaria.com/datasets/reading-in-the-wild/
♻ ☆ VideoAesBench: Benchmarking the Video Aesthetics Perception Capabilities of Large Multimodal Models
Large multimodal models (LMMs) have demonstrated outstanding capabilities in various visual perception tasks, which has in turn made the evaluation of LMMs significant. However, the capability of video aesthetic quality assessment, which is a fundamental ability for human, remains underexplored for LMMs. To address this, we introduce VideoAesBench, a comprehensive benchmark for evaluating LMMs' understanding of video aesthetic quality. VideoAesBench has several significant characteristics: (1) Diverse content including 1,804 videos from multiple video sources including user-generated (UGC), AI-generated (AIGC), compressed, robotic-generated (RGC), and game videos. (2) Multiple question formats containing traditional single-choice questions, multi-choice questions, True or False questions, and a novel open-ended questions for video aesthetics description. (3) Holistic video aesthetics dimensions including visual form related questions from 5 aspects, visual style related questions from 4 aspects, and visual affectiveness questions from 3 aspects. Based on VideoAesBench, we benchmark 23 open-source and commercial large multimodal models. Our findings show that current LMMs only contain basic video aesthetics perception ability, their performance remains incomplete and imprecise. We hope our VideoAesBench can be served as a strong testbed and offer insights for explainable video aesthetics assessment. The data will be released on https://github.com/michaelliyunhao/VideoAesBench
♻ ☆ The Role of World Models in Shaping Autonomous Driving: A Comprehensive Survey
The Driving World Model (DWM), which focuses on predicting scene evolution during the driving process, has emerged as a promising paradigm in the pursuit of autonomous driving (AD). DWMs enable AD systems to better perceive, understand, and interact with dynamic driving environments. In this survey, we provide a comprehensive overview of the latest progress in DWM. First, we review the DWM ecosystem, which is constructed using mainstream simulators, high-impact datasets, and various metrics that evaluate DWMs across multiple dimensions. We then categorize existing approaches based on the modalities of the predicted scenes, including video, point cloud, occupancy, latent feature, and traffic map, and summarize their specific applications in AD research. In addition, the performance of representative approaches across generating and driving tasks is presented. Finally, we discuss the potential limitations of current research and propose future directions. This survey provides valuable insights into the development and application of DWM, fostering its broader adoption in AD. The relevant papers are collected at https://github.com/LMD0311/Awesome-World-Model.
comment: For continuous updates, please follow the repository: https://github.com/LMD0311/Awesome-World-Model
♻ ☆ SocialFusion: Addressing Social Degradation in Pre-trained Vision-Language Models
Understanding social interactions from visual cues is a fundamental challenge for a socially competent AI. While powerful pre-trained vision-language models (VLMs) have shown remarkable general capabilities, they surprisingly struggle to unify and learn multiple social perception tasks simultaneously, often exhibiting negative transfer. We identify that this negative transfer stems from a critical issue we term "social degradation," whereby the general visual-linguistic pre-training process of VLMs impairs the visual encoder's ability to represent nuanced social information. We investigate this behavior further under two lenses: decodability through linear representation probing and compatibility through gradient conflict analysis, revealing that both play a role in the degradation, especially the former, which is significantly compromised in the VLM pre-training process. To address these issues, we propose SocialFusion, a unified framework that learns a minimal connection between a frozen visual encoder and a language model. Compared with existing VLMs, it exhibits positive transfer across all five social tasks, leveraging synergies between them to enhance overall performance and achieves comparable performance to task-specific state-of-the-art models on various benchmarks. Our findings suggest that current VLM pre-training strategies may be detrimental to acquiring general social competence and highlight the need for more socially-aware training paradigms.
comment: 22 pages, 10 figures. Published in Transactions on Machine Learning Research (TMLR)
♻ ☆ On the Design of One-step Diffusion via Shortcutting Flow Paths
Recent advances in few-step diffusion models have demonstrated their efficiency and effectiveness by shortcutting the probabilistic paths of diffusion models, especially in training one-step diffusion models from scratch (\emph{a.k.a.} shortcut models). However, their theoretical derivation and practical implementation are often closely coupled, which obscures the design space. To address this, we propose a common design framework for representative shortcut models. This framework provides theoretical justification for their validity and disentangles concrete component-level choices, thereby enabling systematic identification of improvements. With our proposed improvements, the resulting one-step model achieves a new state-of-the-art FID50k of 2.85 on ImageNet-256x256 under the classifier-free guidance setting with one step generation, and further reaches FID50k of 2.53 with 2x training steps. Remarkably, the model requires no pre-training, distillation, or curriculum learning. We believe our work lowers the barrier to component-level innovation in shortcut models and facilitates principled exploration of their design space.
comment: 10 pages of main body, conference paper
♻ ☆ Position: Universal Aesthetic Alignment Narrows Artistic Expression
Over-aligning image generation models to a generalized aesthetic preference conflicts with user intent, particularly when "anti-aesthetic" outputs are requested for artistic or critical purposes. This adherence prioritizes developer-centered values, compromising user autonomy and aesthetic pluralism. We test this bias by constructing a wide-spectrum aesthetics dataset and evaluating state-of-the-art generation and reward models. This position paper finds that aesthetic-aligned generation models frequently default to conventionally beautiful outputs, failing to respect instructions for low-quality or negative imagery. Crucially, reward models penalize anti-aesthetic images even when they perfectly match the explicit user prompt. We confirm this systemic bias through image-to-image editing and evaluation against real abstract artworks.
♻ ☆ Retrospective Feature Estimation for Continual Learning
The intrinsic capability to continuously learn a changing data stream is a desideratum of deep neural networks (DNNs). However, current DNNs suffer from catastrophic forgetting, which interferes with remembering past knowledge. To mitigate this issue, existing Continual Learning (CL) approaches often retain exemplars for replay, regularize learning, or allocate dedicated capacity for new tasks. This paper investigates an unexplored direction for CL called Retrospective Feature Estimation (RFE). RFE learns to reverse feature changes by aligning the features from the current trained DNN backward to the feature space of the old task, where performing predictions is easier. This retrospective process utilizes a chain of small feature mapping networks called retrospector modules. Empirical experiments on several CL benchmarks, including CIFAR10, CIFAR100, and Tiny ImageNet, demonstrate the effectiveness and potential of this novel CL direction compared to existing representative CL methods, motivating further research into retrospective mechanisms as a principled alternative for mitigating catastrophic forgetting in CL. Code is available at: https://github.com/mail-research/retrospective-feature-estimation.
comment: Published in Transactions on Machine Learning Research with Featured Certification
♻ ☆ Bridging GANs and Bayesian Neural Networks via Partial Stochasticity
Generative Adversarial Networks (GANs) are popular and successful generative models. Despite their success, optimization is notoriously challenging. In this work, we explain the success and limitations of GANs by casting them as Bayesian neural networks with partial stochasticity. This interpretation allows us to establish conditions of universal approximation and to rewrite the adversarial-style optimization of several variants of GANs as the optimization of a proxy for the likelihood obtained by marginalizing out the stochastic variables. Following this interpretation, the need for regularization becomes apparent, and we propose to adopt strategies to smooth the loss landscape and methods to search for solutions with minimum description length, which are associated with flat minima and good generalization. Results obtained on a wide range of experiments indicate that these strategies lead to performance improvements and pave the way to a deeper understanding of GANs.
♻ ☆ Parameter-efficient Multi-Task and Multi-Domain Learning using Factorized Tensor Networks
Multi-task and multi-domain learning methods seek to learn multiple tasks/domains, jointly or one after another, using a single unified network. The primary challenge and opportunity lie in leveraging shared information across these tasks and domains to enhance the efficiency of the unified network. The efficiency can be in terms of accuracy, storage cost, computation, or sample complexity. In this paper, we introduce a factorized tensor network (FTN) designed to achieve accuracy comparable to that of independent single-task or single-domain networks, while introducing a minimal number of additional parameters. The FTN approach entails incorporating task- or domain-specific low-rank tensor factors into a shared frozen network derived from a source model. This strategy allows for adaptation to numerous target domains and tasks without encountering catastrophic forgetting. Furthermore, FTN requires a significantly smaller number of task-specific parameters compared to existing methods. We performed experiments on widely used multi-domain and multi-task datasets. We show the experiments on convolutional-based architecture with different backbones and on transformer-based architecture. Our findings indicate that FTN attains similar accuracy as single-task or single-domain methods while using only a fraction of additional parameters per task. The code is available at https://doi.org/10.24433/CO.7519211.v2.
♻ ☆ DenseFormer: Learning Dense Depth Map from Sparse Depth and Image via Conditional Diffusion Model
The depth completion task is a critical problem in autonomous driving, involving the generation of dense depth maps from sparse depth maps and RGB images. Most existing methods employ a spatial propagation network to iteratively refine the depth map after obtaining an initial dense depth. In this paper, we propose DenseFormer, a novel method that integrates the diffusion model into the depth completion task. By incorporating the denoising mechanism of the diffusion model, DenseFormer generates the dense depth map by progressively refining an initial random depth distribution through multiple iterations. We propose a feature extraction module that leverages a feature pyramid structure, along with multi-layer deformable attention, to effectively extract and integrate features from sparse depth maps and RGB images, which serve as the guiding condition for the diffusion process. Additionally, this paper presents a depth refinement module that applies multi-step iterative refinement across various ranges to the dense depth results generated by the diffusion process. The module utilizes image features enriched with multi-scale information and sparse depth input to further enhance the accuracy of the predicted depth map. Extensive experiments on the KITTI outdoor scene dataset demonstrate that DenseFormer outperforms classical depth completion methods.
Computation and Language 100
☆ Ebisu: Benchmarking Large Language Models in Japanese Finance
Japanese finance combines agglutinative, head-final linguistic structure, mixed writing systems, and high-context communication norms that rely on indirect expression and implicit commitment, posing a substantial challenge for LLMs. We introduce Ebisu, a benchmark for native Japanese financial language understanding, comprising two linguistically and culturally grounded, expert-annotated tasks: JF-ICR, which evaluates implicit commitment and refusal recognition in investor-facing Q&A, and JF-TE, which assesses hierarchical extraction and ranking of nested financial terminology from professional disclosures. We evaluate a diverse set of open-source and proprietary LLMs spanning general-purpose, Japanese-adapted, and financial models. Results show that even state-of-the-art systems struggle on both tasks. While increased model scale yields limited improvements, language- and domain-specific adaptation does not reliably improve performance, leaving substantial gaps unresolved. Ebisu provides a focused benchmark for advancing linguistically and culturally grounded financial NLP. All datasets and evaluation scripts are publicly released.
☆ ConPress: Learning Efficient Reasoning from Multi-Question Contextual Pressure
Large reasoning models (LRMs) typically solve reasoning-intensive tasks by generating long chain-of-thought (CoT) traces, leading to substantial inference overhead. We identify a reproducible inference-time phenomenon, termed Self-Compression: when multiple independent and answerable questions are presented within a single prompt, the model spontaneously produces shorter reasoning traces for each question. This phenomenon arises from multi-question contextual pressure during generation and consistently manifests across models and benchmarks. Building on this observation, we propose ConPress (Learning from Contextual Pressure), a lightweight self-supervised fine-tuning approach. ConPress constructs multi-question prompts to induce self-compression, samples the resulting model outputs, and parses and filters per-question traces to obtain concise yet correct reasoning trajectories. These trajectories are directly used for supervised fine-tuning, internalizing compressed reasoning behavior in single-question settings without external teachers, manual pruning, or reinforcement learning. With only 8k fine-tuning examples, ConPress reduces reasoning token usage by 59% on MATH500 and 33% on AIME25, while maintaining competitive accuracy.
☆ Understanding QA generation: Extracting Parametric and Contextual Knowledge with CQA for Low Resource Bangla Language
Question-Answering (QA) models for low-resource languages like Bangla face challenges due to limited annotated data and linguistic complexity. A key issue is determining whether models rely more on pre-encoded (parametric) knowledge or contextual input during answer generation, as existing Bangla QA datasets lack the structure required for such analysis. We introduce BanglaCQA, the first Counterfactual QA dataset in Bangla, by extending a Bangla dataset while integrating counterfactual passages and answerability annotations. In addition, we propose fine-tuned pipelines for encoder-decoder language-specific and multilingual baseline models, and prompting-based pipelines for decoder-only LLMs to disentangle parametric and contextual knowledge in both factual and counterfactual scenarios. Furthermore, we apply LLM-based and human evaluation techniques that measure answer quality based on semantic similarity. We also present a detailed analysis of how models perform across different QA settings in low-resource languages, and show that Chain-of-Thought (CoT) prompting reveals a uniquely effective mechanism for extracting parametric knowledge in counterfactual scenarios, particularly in decoder-only LLMs. Our work not only introduces a novel framework for analyzing knowledge sources in Bangla QA but also uncovers critical findings that open up broader directions for counterfactual reasoning in low-resource language settings.
☆ SentiFuse: Deep Multi-model Fusion Framework for Robust Sentiment Extraction
Sentiment analysis models exhibit complementary strengths, yet existing approaches lack a unified framework for effective integration. We present SentiFuse, a flexible and model-agnostic framework that integrates heterogeneous sentiment models through a standardization layer and multiple fusion strategies. Our approach supports decision-level fusion, feature-level fusion, and adaptive fusion, enabling systematic combination of diverse models. We conduct experiments on three large-scale social-media datasets: Crowdflower, GoEmotions, and Sentiment140. These experiments show that SentiFuse consistently outperforms individual models and naive ensembles. Feature-level fusion achieves the strongest overall effectiveness, yielding up to 4\% absolute improvement in F1 score over the best individual model and simple averaging, while adaptive fusion enhances robustness on challenging cases such as negation, mixed emotions, and complex sentiment expressions. These results demonstrate that systematically leveraging model complementarity yields more accurate and reliable sentiment analysis across diverse datasets and text types.
☆ The Gradient-Causal Gap: Why Gradient Importance Fails on Complex Tasks ICLR 2026
Removing ''important'' high-gradient components from a neural network can improve generalization, while removing unimportant'' low-gradient components can destroy it. We demonstrate this paradox by formalizing the \textit{Gradient-Causal Gap} in Transformers trained on algorithmic tasks. While gradient magnitude and causal importance align on simple tasks ($ρ=0.73$ for reversal), this relationship collapses as task complexity increases ($ρ=0.32$ for sorting), sometimes becoming inverted ($ρ=-0.11$). Pruning experiments reveal that gradient magnitude is not merely inaccurate but \textit{unpredictably} so. Removing low-gradient ''Hidden Heroes'' consistently devastates OOD accuracy ($-32\%$). Removing high-gradient ''Gradient Bloats'' is a coin flip: harmless in most seeds (indicating optimization noise), catastrophic in others (indicating overfitting circuits). This unpredictability means gradient-based pruning cannot reliably preserve model capabilities.
comment: 8 pages, 4 figures. Submitted to the ICLR 2026 Workshop on Latent & Implicit Thinking (LIT). Code:https://anonymous.4open.science/r/ICLR_2026_LIT-workshop_CG-D42B
☆ From Pragmas to Partners: A Symbiotic Evolution of Agentic High-Level Synthesis
The rise of large language models has sparked interest in AI-driven hardware design, raising the question: does high-level synthesis (HLS) still matter in the agentic era? We argue that HLS remains essential. While we expect mature agentic hardware systems to leverage both HLS and RTL, this paper focuses on HLS and its role in enabling agentic optimization. HLS offers faster iteration cycles, portability, and design permutability that make it a natural layer for agentic optimization.This position paper makes three contributions. First, we explain why HLS serves as a practical abstraction layer and a golden reference for agentic hardware design. Second, we identify key limitations of current HLS tools, namely inadequate performance feedback, rigid interfaces, and limited debuggability that agents are uniquely positioned to address. Third, we propose a taxonomy for the symbiotic evolution of agentic HLS, clarifying how responsibility shifts from human designers to AI agents as systems advance from copilots to autonomous design partners.
☆ Rethinking Selective Knowledge Distillation
Growing efforts to improve knowledge distillation (KD) in large language models (LLMs) replace dense teacher supervision with selective distillation, which uses a subset of token positions, vocabulary classes, or training samples for supervision. However, it remains unclear which importance signals, selection policies, and their interplay are most effective. In this work, we revisit where and how to distill in autoregressive LLMs. We disentangle selective KD along the position, class, and sample axes and systematically compare importance signals and selection policies. Then, guided by this analysis, we identify underexplored opportunities and introduce student-entropy-guided position selection (SE-KD). Across a suite of benchmarks, SE-KD often improves accuracy, downstream task adherence, and memory efficiency over dense distillation. Extending this approach across the class and sample axes (SE-KD 3X) yields complementary efficiency gains that make offline teacher caching feasible. In practice, this reduces wall time by 70% and peak memory by 18%, while cutting storage usage by 80% over prior methods without sacrificing performance.
☆ On the Power of (Approximate) Reward Models for Inference-Time Scaling
Inference-time scaling has recently emerged as a powerful paradigm for improving the reasoning capability of large language models. Among various approaches, Sequential Monte Carlo (SMC) has become a particularly important framework, enabling iterative generation, evaluation, rejection, and resampling of intermediate reasoning trajectories. A central component in this process is the reward model, which evaluates partial solutions and guides the allocation of computation during inference. However, in practice, true reward models are never available. All deployed systems rely on approximate reward models, raising a fundamental question: Why and when do approximate reward models suffice for effective inference-time scaling? In this work, we provide a theoretical answer. We identify the Bellman error of the approximate reward model as the key quantity governing the effectiveness of SMC-based inference-time scaling. For a reasoning process of length $T$, we show that if the Bellman error of the approximate reward model is bounded by $O(1/T)$, then combining this reward model with SMC reduces the computational complexity of reasoning from exponential in $T$ to polynomial in $T$. This yields an exponential improvement in inference efficiency despite using only approximate rewards.
☆ Context Dependence and Reliability in Autoregressive Language Models
Large language models (LLMs) generate outputs by utilizing extensive context, which often includes redundant information from prompts, retrieved passages, and interaction history. In critical applications, it is vital to identify which context elements actually influence the output, as standard explanation methods struggle with redundancy and overlapping context. Minor changes in input can lead to unpredictable shifts in attribution scores, undermining interpretability and raising concerns about risks like prompt injection. This work addresses the challenge of distinguishing essential context elements from correlated ones. We introduce RISE (Redundancy-Insensitive Scoring of Explanation), a method that quantifies the unique influence of each input relative to others, minimizing the impact of redundancies and providing clearer, stable attributions. Experiments demonstrate that RISE offers more robust explanations than traditional methods, emphasizing the importance of conditional information for trustworthy LLM explanations and monitoring.
☆ When Domains Interact: Asymmetric and Order-Sensitive Cross-Domain Effects in Reinforcement Learning for Reasoning
Group Relative Policy Optimization (GRPO) has become a key technique for improving reasoning abilities in large language models, yet its behavior under different domain sequencing strategies is poorly understood. In particular, the impact of sequential (one domain at a time) versus mixed-domain (multiple domain at a time) training in GRPO has not been systematically studied. We provide the first systematic analysis of training-order effects across math, science, logic, and puzzle reasoning tasks. We found (1) single-domain generalization is highly asymmetric: training on other domains improves math reasoning by approximately 25\% accuracy, while yielding negligible transfer to logic and puzzle; (2) cross-domain interactions are highly order-dependent: training in the order math$\rightarrow$science achieves 83\% / 41\% accuracy on math / science, while reversing the order to science$\rightarrow$math degrades performance to 77\% / 25\%; (3) no single strategy is universally optimal in multi-domain training: sequential training favors math (up to 84\%), mixed training favors science and logic, and poor ordering can incur large performance gaps (from 70\% to 56\%). Overall, our findings demonstrate that GRPO under multi-domain settings exhibits pronounced asymmetry, order sensitivity, and strategy dependence, highlighting the necessity of domain-aware and order-aware training design.
☆ Causally Disentangled Contrastive Learning for Multilingual Speaker Embeddings
Self-supervised speaker embeddings are widely used in speaker verification systems, but prior work has shown that they often encode sensitive demographic attributes, raising fairness and privacy concerns. This paper investigates the extent to which demographic information, specifically gender, age, and accent, is present in SimCLR-trained speaker embeddings and whether such leakage can be mitigated without severely degrading speaker verification performance. We study two debiasing strategies: adversarial training through gradient reversal and a causal bottleneck architecture that explicitly separates demographic and residual information. Demographic leakage is quantified using both linear and nonlinear probing classifiers, while speaker verification performance is evaluated using ROC-AUC and EER. Our results show that gender information is strongly and linearly encoded in baseline embeddings, whereas age and accent are weaker and primarily nonlinearly represented. Adversarial debiasing reduces gender leakage but has limited effect on age and accent and introduces a clear trade-off with verification accuracy. The causal bottleneck further suppresses demographic information, particularly in the residual representation, but incurs substantial performance degradation. These findings highlight fundamental limitations in mitigating demographic leakage in self-supervised speaker embeddings and clarify the trade-offs inherent in current debiasing approaches.
☆ Balancing Understanding and Generation in Discrete Diffusion Models
In discrete generative modeling, two dominant paradigms demonstrate divergent capabilities: Masked Diffusion Language Models (MDLM) excel at semantic understanding and zero-shot generalization, whereas Uniform-noise Diffusion Language Models (UDLM) achieve strong few-step generation quality, yet neither attains balanced performance across both dimensions. To address this, we propose XDLM, which bridges the two paradigms via a stationary noise kernel. XDLM offers two key contributions: (1) it provides a principled theoretical unification of MDLM and UDLM, recovering each paradigm as a special case; and (2) an alleviated memory bottleneck enabled by an algebraic simplification of the posterior probabilities. Experiments demonstrate that XDLM advances the Pareto frontier between understanding capability and generation quality. Quantitatively, XDLM surpasses UDLM by 5.4 points on zero-shot text benchmarks and outperforms MDLM in few-step image generation (FID 54.1 vs. 80.8). When scaled to tune an 8B-parameter large language model, XDLM achieves 15.0 MBPP in just 32 steps, effectively doubling the baseline performance. Finally, analysis of training dynamics reveals XDLM's superior potential for long-term scaling. Code is available at https://github.com/MzeroMiko/XDLM
comment: 32 pages, Code is available at https://github.com/MzeroMiko/XDLM
☆ CRAFT: Calibrated Reasoning with Answer-Faithful Traces via Reinforcement Learning for Multi-Hop Question Answering
Retrieval-augmented generation (RAG) is widely used to ground Large Language Models (LLMs) for multi-hop question answering. Recent work mainly focused on improving answer accuracy via fine-tuning and structured or reinforcement-based optimization. However, reliable reasoning in response generation faces three challenges: 1) Reasoning Collapse. Reasoning in multi-hop QA is inherently complex due to multi-hop composition and is further destabilized by noisy retrieval. 2) Reasoning-answer inconsistency. Due to the intrinsic uncertainty of LLM generation and exposure to evidence--distractor mixtures, models may produce correct answers that are not faithfully supported by their intermediate reasoning or evidence. 3) Loss of format control. Traditional chain-of-thought generation often deviates from required structured output formats, leading to incomplete or malformed structured content. To address these challenges, we propose CRAFT (Calibrated Reasoning with Answer-Faithful Traces), a Group Relative Policy Optimization (GRPO) based reinforcement learning framework that trains models to perform faithful reasoning during response generation. CRAFT employs dual reward mechanisms to optimize multi-hop reasoning: deterministic rewards ensure structural correctness while judge-based rewards verify semantic faithfulness. This optimization framework supports controllable trace variants that enable systematic analysis of how structure and scale affect reasoning performance and faithfulness. Experiments on three multi-hop QA benchmarks show that CRAFT improves both answer accuracy and reasoning faithfulness across model scales, with the CRAFT 7B model achieving competitive performance with closed-source LLMs across multiple reasoning trace settings.
☆ A-MapReduce: Executing Wide Search via Agentic MapReduce
Contemporary large language model (LLM)-based multi-agent systems exhibit systematic advantages in deep research tasks, which emphasize iterative, vertically structured information seeking. However, when confronted with wide search tasks characterized by large-scale, breadth-oriented retrieval, existing agentic frameworks, primarily designed around sequential, vertically structured reasoning, remain stuck in expansive search objectives and inefficient long-horizon execution. To bridge this gap, we propose A-MapReduce, a MapReduce paradigm-inspired multi-agent execution framework that recasts wide search as a horizontally structured retrieval problem. Concretely, A-MapReduce implements parallel processing of massive retrieval targets through task-adaptive decomposition and structured result aggregation. Meanwhile, it leverages experiential memory to drive the continual evolution of query-conditioned task allocation and recomposition, enabling progressive improvement in large-scale wide-search regimes. Extensive experiments on five agentic benchmarks demonstrate that A-MapReduce is (i) high-performing, achieving state-of-the-art performance on WideSearch and DeepWideSearch, and delivering 5.11% - 17.50% average Item F1 improvements compared with strong baselines with OpenAI o3 or Gemini 2.5 Pro backbones; (ii) cost-effective and efficient, delivering superior cost-performance trade-offs and reducing running time by 45.8\% compared to representative multi-agent baselines. The code is available at https://github.com/mingju-c/AMapReduce.
comment: 33 pages
☆ DreamOn: Diffusion Language Models For Code Infilling Beyond Fixed-size Canvas ICLR 2026
Diffusion Language Models (DLMs) present a compelling alternative to autoregressive models, offering flexible, any-order infilling without specialized prompting design. However, their practical utility is blocked by a critical limitation: the requirement of a fixed-length masked sequence for generation. This constraint severely degrades code infilling performance when the predefined mask size mismatches the ideal completion length. To address this, we propose DreamOn, a novel diffusion framework that enables dynamic, variable-length generation. DreamOn augments the diffusion process with two length control states, allowing the model to autonomously expand or contract the output length based solely on its own predictions. We integrate this mechanism into existing DLMs with minimal modifications to the training objective and no architectural changes. Built upon Dream-Coder-7B and DiffuCoder-7B, DreamOn achieves infilling performance on par with state-of-the-art autoregressive models on HumanEval-Infilling and SantaCoder-FIM and matches oracle performance achieved with ground-truth length. Our work removes a fundamental barrier to the practical deployment of DLMs, significantly advancing their flexibility and applicability for variable-length generation. Our code is available at https://github.com/DreamLM/DreamOn.
comment: ICLR 2026
☆ PolySAE: Modeling Feature Interactions in Sparse Autoencoders via Polynomial Decoding
Sparse autoencoders (SAEs) have emerged as a promising method for interpreting neural network representations by decomposing activations into sparse combinations of dictionary atoms. However, SAEs assume that features combine additively through linear reconstruction, an assumption that cannot capture compositional structure: linear models cannot distinguish whether "Starbucks" arises from the composition of "star" and "coffee" features or merely their co-occurrence. This forces SAEs to allocate monolithic features for compound concepts rather than decomposing them into interpretable constituents. We introduce PolySAE, which extends the SAE decoder with higher-order terms to model feature interactions while preserving the linear encoder essential for interpretability. Through low-rank tensor factorization on a shared projection subspace, PolySAE captures pairwise and triple feature interactions with small parameter overhead (3% on GPT2). Across four language models and three SAE variants, PolySAE achieves an average improvement of approximately 8% in probing F1 while maintaining comparable reconstruction error, and produces 2-10$\times$ larger Wasserstein distances between class-conditional feature distributions. Critically, learned interaction weights exhibit negligible correlation with co-occurrence frequency ($r = 0.06$ vs. $r = 0.82$ for SAE feature covariance), suggesting that polynomial terms capture compositional structure, such as morphological binding and phrasal composition, largely independent of surface statistics.
☆ EverMemBench: Benchmarking Long-Term Interactive Memory in Large Language ModelsEverMemBench: Benchmarking Long-Term Interactive Memory in Large Language Models
Long-term conversational memory is essential for LLM-based assistants, yet existing benchmarks focus on dyadic, single-topic dialogues that fail to capture real-world complexity. We introduce EverMemBench, a benchmark featuring multi-party, multi-group conversations spanning over 1 million tokens with temporally evolving information, cross-topic interleaving, and role-specific personas. EverMemBench evaluates memory systems across three dimensions through 1,000+ QA pairs: fine-grained recall, memory awareness, and user profile understanding. Our evaluation reveals critical limitations: (1) multi-hop reasoning collapses in multi-party settings, with even oracle models achieving only 26%; (2) temporal reasoning remains unsolved, requiring version semantics beyond timestamp matching; (3) memory awareness is bottlenecked by retrieval, where current similarity-based methods fail to bridge the semantic gap between queries and implicitly relevant memories. EverMemBench provides a challenging testbed for developing next-generation memory architectures.
comment: 10 pages, 2 figures, 4 tables
☆ PACER: Blockwise Pre-verification for Speculative Decoding with Adaptive Length
Speculative decoding (SD) is a powerful technique for accelerating the inference process of large language models (LLMs) without sacrificing accuracy. Typically, SD employs a small draft model to generate a fixed number of draft tokens, which are then verified in parallel by the target model. However, our experiments reveal that the optimal draft length varies significantly across different decoding steps. This variation suggests that using a fixed draft length limits the potential for further improvements in decoding speed. To address this challenge, we propose Pacer, a novel approach that dynamically controls draft length using a lightweight, trainable pre-verification layer. This layer pre-verifies draft tokens blockwise before they are sent to the target model, allowing the draft model to stop token generation if the blockwise pre-verification fails. We implement Pacer on multiple SD model pairs and evaluate its performance across various benchmarks. Our results demonstrate that Pacer achieves up to 2.66x Speedup over autoregressive decoding and consistently outperforms standard speculative decoding. Furthermore, when integrated with Ouroboros, Pacer attains up to 3.09x Speedup.
☆ PARSE: An Open-Domain Reasoning Question Answering Benchmark for Persian SIGIR 2026
Reasoning-focused Question Answering (QA) has advanced rapidly with Large Language Models (LLMs), yet high-quality benchmarks for low-resource languages remain scarce. Persian, spoken by roughly 130 million people, lacks a comprehensive open-domain resource for evaluating reasoning-capable QA systems. We introduce PARSE, the first open-domain Persian reasoning QA benchmark, containing 10,800 questions across Boolean, multiple-choice, and factoid formats, with diverse reasoning types, difficulty levels, and answer structures. The benchmark is built via a controlled LLM-based generation pipeline and validated through human evaluation. We also ensure linguistic and factual quality through multi-stage filtering, annotation, and consistency checks. We benchmark multilingual and Persian LLMs under multiple prompting strategies and show that Persian prompts and structured prompting (CoT for Boolean/multiple-choice; few-shot for factoid) improve performance. Fine-tuning further boosts results, especially for Persian-specialized models. These findings highlight how PARSE supports both fair comparison and practical model adaptation. PARSE fills a critical gap in Persian QA research and provides a strong foundation for developing and evaluating reasoning-capable LLMs in low-resource settings.
comment: Submitted to SIGIR 2026
☆ Large-Scale Terminal Agentic Trajectory Generation from Dockerized Environments
Training agentic models for terminal-based tasks critically depends on high-quality terminal trajectories that capture realistic long-horizon interactions across diverse domains. However, constructing such data at scale remains challenging due to two key requirements: \textbf{\emph{Executability}}, since each instance requires a suitable and often distinct Docker environment; and \textbf{\emph{Verifiability}}, because heterogeneous task outputs preclude unified, standardized verification. To address these challenges, we propose \textbf{TerminalTraj}, a scalable pipeline that (i) filters high-quality repositories to construct Dockerized execution environments, (ii) generates Docker-aligned task instances, and (iii) synthesizes agent trajectories with executable validation code. Using TerminalTraj, we curate 32K Docker images and generate 50,733 verified terminal trajectories across eight domains. Models trained on this data with the Qwen2.5-Coder backbone achieve consistent performance improvements on TerminalBench (TB), with gains of up to 20\% on TB~1.0 and 10\% on TB~2.0 over their respective backbones. Notably, \textbf{TerminalTraj-32B} achieves strong performance among models with fewer than 100B parameters, reaching 35.30\% on TB~1.0 and 22.00\% on TB~2.0, and demonstrates improved test-time scaling behavior. All code and data are available at https://github.com/Wusiwei0410/TerminalTraj.
comment: Agentic Trajectory, Agentic Model, Terminal, Code Agent
☆ Minimizing Mismatch Risk: A Prototype-Based Routing Framework for Zero-shot LLM-generated Text Detection
Zero-shot methods detect LLM-generated text by computing statistical signatures using a surrogate model. Existing approaches typically employ a fixed surrogate for all inputs regardless of the unknown source. We systematically examine this design and find that detection performance varies substantially depending on surrogate-source alignment. We observe that while no single surrogate achieves optimal performance universally, a well-matched surrogate typically exists within a diverse pool for any given input. This finding transforms robust detection into a routing problem: selecting the most appropriate surrogate for each input. We propose DetectRouter, a prototype-based framework that learns text-detector affinity through two-stage training. The first stage constructs discriminative prototypes from white-box models; the second generalizes to black-box sources by aligning geometric distances with observed detection scores. Experiments on EvoBench and MAGE benchmarks demonstrate consistent improvements across multiple detection criteria and model families.
☆ Inferential Question Answering WWW 2026
Despite extensive research on a wide range of question answering (QA) systems, most existing work focuses on answer containment-i.e., assuming that answers can be directly extracted and/or generated from documents in the corpus. However, some questions require inference, i.e., deriving answers that are not explicitly stated but can be inferred from the available information. We introduce Inferential QA -- a new task that challenges models to infer answers from answer-supporting passages which provide only clues. To study this problem, we construct QUIT (QUestions requiring Inference from Texts) dataset, comprising 7,401 questions and 2.4M passages built from high-convergence human- and machine-authored hints, labeled across three relevance levels using LLM-based answerability and human verification. Through comprehensive evaluation of retrievers, rerankers, and LLM-based readers, we show that methods effective on traditional QA tasks struggle in inferential QA: retrievers underperform, rerankers offer limited gains, and fine-tuning provides inconsistent improvements. Even reasoning-oriented LLMs fail to outperform smaller general-purpose models. These findings reveal that current QA pipelines are not yet ready for inference-based reasoning. Inferential QA thus establishes a new class of QA tasks that move towards understanding and reasoning from indirect textual evidence.
comment: Proceedings of the ACM Web Conference 2026 (WWW 2026)
☆ Supervised Fine-Tuning Needs to Unlock the Potential of Token Priority
The transition from fitting empirical data to achieving true human utility is fundamentally constrained by a granularity mismatch, where fine-grained autoregressive generation is often supervised by coarse or uniform signals. This position paper advocates Token Priority as the essential bridge, formalizing Supervised Fine-Tuning (SFT) not as simple optimization but as a precise distribution reshaping process that aligns raw data with the ideal alignment manifold. We analyze recent breakthroughs through this unified lens, categorizing them into two distinct regimes: Positive Priority for noise filtration and Signed Priority for toxic modes unlearning. We revisit existing progress and limitations, identify key challenges, and suggest directions for future research.
☆ SimpleGPT: Improving GPT via A Simple Normalization Strategy
In this work, we revisit Transformer optimization through the lens of second-order geometry and establish a direct connection between architectural design, activation scale, the Hessian matrix, and the maximum tolerable learning rate. We introduce a simple normalization strategy, termed SimpleNorm, which stabilizes intermediate activation scales by construction. Then, by analyzing the Hessian of the loss with respect to network activations, we theoretically show that SimpleNorm significantly reduces the spectral norm of the Hessian, thereby permitting larger stable learning rates. We validate our theoretical findings through extensive experiments on large GPT models at parameter scales 1B, 1.4B, 7B and 8B. Empirically, SimpleGPT, our SimpleNorm-based network, tolerates learning rates 3$\times$-10$\times$ larger than standard convention, consistently demonstrates strong optimization stability, and achieves substantially better performance than well-established baselines. Specifically, when training 7B-scale models for 60K steps, SimpleGPT achieves a training loss that is 0.08 lower than that of LLaMA2 with QKNorm, reducing the loss from 2.290 to 2.208. Our source code will be released at https://github.com/Ocram7/SimpleGPT.
comment: We propose SimpleGPT, a simple yet effective GPT model, and provide theoretical insights into its mathematical foundations. We validate our theoretical findings through extensive experiments on large GPT models at parameter scales 1B, 1.4B, 7B and 8B
☆ Chronos: Learning Temporal Dynamics of Reasoning Chains for Test-Time Scaling
Test-Time Scaling (TTS) has emerged as an effective paradigm for improving the reasoning performance of large language models (LLMs). However, existing methods -- most notably majority voting and heuristic token-level scoring -- treat reasoning traces or tokens equally, thereby being susceptible to substantial variations in trajectory quality and localized logical failures. In this work, we introduce \textbf{Chronos}, a lightweight and plug-and-play chronological reasoning scorer that models each trajectory as a time series. Specifically, Chronos learns to capture trajectory features of token probabilities, assigns quality scores accordingly, and employs a weighted voting mechanism. Extensive evaluations on both in-domain and out-of-domain benchmarks demonstrate that Chronos consistently delivers substantial gains across a variety of models, with negligible computational overhead. Notably, Chronos@128 achieves relative improvements of 34.21\% over Pass@1 and 22.70\% over Maj@128 on HMMT25 using Qwen3-4B-Thinking-2507, highlighting its effectiveness.
☆ ASTER: Agentic Scaling with Tool-integrated Extended Reasoning
Reinforcement learning (RL) has emerged as a dominant paradigm for eliciting long-horizon reasoning in Large Language Models (LLMs). However, scaling Tool-Integrated Reasoning (TIR) via RL remains challenging due to interaction collapse: a pathological state where models fail to sustain multi-turn tool usage, instead degenerating into heavy internal reasoning with only trivial, post-hoc code verification. We systematically study three questions: (i) how cold-start SFT induces an agentic, tool-using behavioral prior, (ii) how the interaction density of cold-start trajectories shapes exploration and downstream RL outcomes, and (iii) how the RL interaction budget affects learning dynamics and generalization under varying inference-time budgets. We then introduce ASTER (Agentic Scaling with Tool-integrated Extended Reasoning), a framework that circumvents this collapse through a targeted cold-start strategy prioritizing interaction-dense trajectories. We find that a small expert cold-start set of just 4K interaction-dense trajectories yields the strongest downstream performance, establishing a robust prior that enables superior exploration during extended RL training. Extensive evaluations demonstrate that ASTER-4B achieves state-of-the-art results on competitive mathematical benchmarks, reaching 90.0% on AIME 2025, surpassing leading frontier open-source models, including DeepSeek-V3.2-Exp.
☆ Attention Sink Forges Native MoE in Attention Layers: Sink-Aware Training to Address Head Collapse
Large Language Models (LLMs) often assign disproportionate attention to the first token, a phenomenon known as the attention sink. Several recent approaches aim to address this issue, including Sink Attention in GPT-OSS and Gated Attention in Qwen3-Next. However, a comprehensive analysis of the relationship among these attention mechanisms is lacking. In this work, we provide both theoretical and empirical evidence demonstrating that the sink in Vanilla Attention and Sink Attention naturally construct a Mixture-of-Experts (MoE) mechanism within attention layers. This insight explains the head collapse phenomenon observed in prior work, where only a fixed subset of attention heads contributes to generation. To mitigate head collapse, we propose a sink-aware training algorithm with an auxiliary load balancing loss designed for attention layers. Extensive experiments show that our method achieves effective head load balancing and improves model performance across Vanilla Attention, Sink Attention, and Gated Attention. We hope this study offers a new perspective on attention mechanisms and encourages further exploration of the inherent MoE structure within attention layers.
☆ Bridging Lexical Ambiguity and Vision: A Mini Review on Visual Word Sense Disambiguation IEEE
This paper offers a mini review of Visual Word Sense Disambiguation (VWSD), which is a multimodal extension of traditional Word Sense Disambiguation (WSD). VWSD helps tackle lexical ambiguity in vision-language tasks. While conventional WSD depends only on text and lexical resources, VWSD uses visual cues to find the right meaning of ambiguous words with minimal text input. The review looks at developments from early multimodal fusion methods to new frameworks that use contrastive models like CLIP, diffusion-based text-to-image generation, and large language model (LLM) support. Studies from 2016 to 2025 are examined to show the growth of VWSD through feature-based, graph-based, and contrastive embedding techniques. It focuses on prompt engineering, fine-tuning, and adapting to multiple languages. Quantitative results show that CLIP-based fine-tuned models and LLM-enhanced VWSD systems consistently perform better than zero-shot baselines, achieving gains of up to 6-8\% in Mean Reciprocal Rank (MRR). However, challenges still exist, such as limitations in context, model bias toward common meanings, a lack of multilingual datasets, and the need for better evaluation frameworks. The analysis highlights the growing overlap of CLIP alignment, diffusion generation, and LLM reasoning as the future path for strong, context-aware, and multilingual disambiguation systems.
comment: 2 figures, 2 Tables, Accepted at IEEE TIC 2026
☆ ASP-Bench: From Natural Language to Logic Programs
Automating the translation of natural-language specifications into logic programs is a challenging task that affects neurosymbolic engineering. We present ASP-Bench, a benchmark comprising 128 natural language problem instances, 64 base problems with easy and hard variants. It evaluates systems that translate natural-language problems into Answer Set Programs (ASPs), a prominent form of logic programming. It provides systematic coverage of ASP features, including choice rules, aggregates, and optimization. Each problem includes reference validators that check whether solutions satisfy the problem specification. We characterize problems along seven largely independent reasoning aspects (optimization, temporal reasoning, default logic, resource allocation, recursion, spatial reasoning, and quantitative complexity), providing a multidimensional view of modeling difficulty. We test the benchmark using an agentic approach based on the ReAct (Reason and Act) framework, which achieves full saturation, demonstrating that feedback-driven iterative refinement with solver feedback provides a reliable and robust approach for modeling natural language in ASP. Our analysis across multiple agent runs enables us to gain insights into what determines a problem's modeling hardness.
☆ EmoAra: Emotion-Preserving English Speech Transcription and Cross-Lingual Translation with Arabic Text-to-Speech
This work presents EmoAra, an end-to-end emotion-preserving pipeline for cross-lingual spoken communication, motivated by banking customer service where emotional context affects service quality. EmoAra integrates Speech Emotion Recognition, Automatic Speech Recognition, Machine Translation, and Text-to-Speech to process English speech and deliver an Arabic spoken output while retaining emotional nuance. The system uses a CNN-based emotion classifier, Whisper for English transcription, a fine-tuned MarianMT model for English-to-Arabic translation, and MMS-TTS-Ara for Arabic speech synthesis. Experiments report an F1-score of 94% for emotion classification, translation performance of BLEU 56 and BERTScore F1 88.7%, and an average human evaluation score of 81% on banking-domain translations. The implementation and resources are available at the accompanying GitHub repository.
comment: 10 pages, 3 figures
☆ PedagoSense: A Pedology Grounded LLM System for Pedagogical Strategy Detection and Contextual Response Generation in Learning Dialogues
This paper addresses the challenge of improving interaction quality in dialogue based learning by detecting and recommending effective pedagogical strategies in tutor student conversations. We introduce PedagoSense, a pedology grounded system that combines a two stage strategy classifier with large language model generation. The system first detects whether a pedagogical strategy is present using a binary classifier, then performs fine grained classification to identify the specific strategy. In parallel, it recommends an appropriate strategy from the dialogue context and uses an LLM to generate a response aligned with that strategy. We evaluate on human annotated tutor student dialogues, augmented with additional non pedagogical conversations for the binary task. Results show high performance for pedagogical strategy detection and consistent gains when using data augmentation, while analysis highlights where fine grained classes remain challenging. Overall, PedagoSense bridges pedagogical theory and practical LLM based response generation for more adaptive educational technologies.
comment: 8 pages, 5 figures
☆ Typologically-Informed Candidate Reranking for LLM-based Translation into Low-Resource Languages
Large language models trained predominantly on high-resource languages exhibit systematic biases toward dominant typological patterns, leading to structural non-conformance when translating into typologically divergent low-resource languages. We present a framework that leverages linguistic typology to improve translation quality without parallel training data or model retraining. The framework consists of two components: the Universal Metalinguistic Framework (UMF), which represents languages as structured profiles across 16 typological dimensions with divergence-weighted scoring, and the Computational Engine, which operates through linguistic disambiguation during generation and typological compliance scoring during selection. Evaluation across nine language pairs demonstrates intervention rates strongly correlating with typological distance from English. In experiments on 341 English sentences each having different morphological and syntactic phenomena, the framework shows an intervention precision of 48.16% for conservatively treated languages, 28.15% for morphologically dense languages, and 86.26% for structurally profiled languages. The framework requires no parallel training data and operates with any LLM capable of producing multiple candidate outputs, enabling practical deployment for under-resourced languages.
☆ Beyond Training for Cultural Awareness: The Role of Dataset Linguistic Structure in Large Language Models
The global deployment of large language models (LLMs) has raised concerns about cultural misalignment, yet the linguistic properties of fine-tuning datasets used for cultural adaptation remain poorly understood. We adopt a dataset-centric view of cultural alignment and ask which linguistic properties of fine-tuning data are associated with cultural performance, whether these properties are predictive prior to training, and how these effects vary across models. We compute lightweight linguistic, semantic, and structural metrics for Arabic, Chinese, and Japanese datasets and apply principal component analysis separately within each language. This design ensures that the resulting components capture variation among datasets written in the same language rather than differences between languages. The resulting components correspond to broadly interpretable axes related to semantic coherence, surface-level lexical and syntactic diversity, and lexical or structural richness, though their composition varies across languages. We fine-tune three major LLM families (LLaMA, Mistral, DeepSeek) and evaluate them on benchmarks of cultural knowledge, values, and norms. While PCA components correlate with downstream performance, these associations are strongly model-dependent. Through controlled subset interventions, we show that lexical-oriented components (PC3) are the most robust, yielding more consistent performance across models and benchmarks, whereas emphasizing semantic or diversity extremes (PC1-PC2) is often neutral or harmful.
☆ Don't Judge a Book by its Cover: Testing LLMs' Robustness Under Logical Obfuscation
Tasks such as solving arithmetic equations, evaluating truth tables, and completing syllogisms are handled well by large language models (LLMs) in their standard form, but they often fail when the same problems are posed in logically equivalent yet obfuscated formats. To study this vulnerability, we introduce Logifus, a structure-preserving logical obfuscation framework, and, utilizing this, we present LogiQAte, a first-of-its-kind diagnostic benchmark with 1,108 questions across four reasoning tasks: (i) Obfus FOL (first-order logic entailment under equivalence-preserving rewrites), (ii) Obfus Blood Relation (family-graph entailment under indirect relational chains), (iii) Obfus Number Series (pattern induction under symbolic substitutions), and (iv) Obfus Direction Sense (navigation reasoning under altered directions and reference frames). Across all the tasks, evaluating six state-of-the-art models, we find that obfuscation severely degrades zero-shot performance, with performance dropping on average by 47% for GPT-4o, 27% for GPT-5, and 22% for reasoning model, o4-mini. Our findings reveal that current LLMs parse questions without deep understanding, highlighting the urgency of building models that genuinely comprehend and preserve meaning beyond surface form.
comment: 19 pages, 6 figures
☆ Long-range Modeling and Processing of Multimodal Event Sequences
Temporal point processes (TPPs) have emerged as powerful tools for modeling asynchronous event sequences. While recent advances have extended TPPs to handle textual information, existing approaches are limited in their ability to generate rich, multimodal content and reason about event dynamics. A key challenge is that incorporating multimodal data dramatically increases sequence length, hindering the ability of attention-based models to generate coherent, long-form textual descriptions that require long-range understanding. In this paper, we propose a novel framework that extends LLM-based TPPs to the visual modality, positioning text generation as a core capability alongside time and type prediction. Our approach addresses the long-context problem through an adaptive sequence compression mechanism based on temporal similarity, which reduces sequence length while preserving essential patterns. We employ a two-stage paradigm of pre-training on compressed sequences followed by supervised fine-tuning for downstream tasks. Extensive experiments, including on the challenging DanmakuTPP-QA benchmark, demonstrate that our method outperforms state-of-the-art baselines in both predictive accuracy and the quality of its generated textual analyses.
☆ MarkovScale: Towards Optimal Sequential Scaling at Inference Time
Sequential scaling is a prominent inference-time scaling paradigm, yet its performance improvements are typically modest and not well understood, largely due to the prevalence of heuristic, non-principled approaches that obscure clear optimality bounds. To address this, we propose a principled framework that models sequential scaling as a two-state Markov process. This approach reveals the underlying properties of sequential scaling and yields closed-form solutions for essential aspects, such as the specific conditions under which accuracy is improved and the theoretical upper, neutral, and lower performance bounds. Leveraging this formulation, we develop MarkovScale, a practical system that applies these optimality criteria to achieve a theoretically grounded balance between accuracy and efficiency. Comprehensive experiments across 3 backbone LLMs, 5 benchmarks, and over 20 configurations show that MarkovScale consistently outperforms state-of-the-art parallel and sequential scaling methods, representing a significant step toward optimal and resource-efficient inference in LLMs. The source code will be open upon acceptance at https://open-upon-acceptance.
comment: 12 pages
☆ Tendem: A Hybrid AI+Human Platform
Tendem is a hybrid system where AI handles structured, repeatable work and Human Experts step in when the models fail or to verify results. Each result undergoes a comprehensive quality review before delivery to the Client. To assess Tendem's performance, we conducted a series of in-house evaluations on 94 real-world tasks, comparing it with AI-only agents and human-only workflows carried out by Upwork freelancers. The results show that Tendem consistently delivers higher-quality outputs with faster turnaround times. At the same time, its operational costs remain comparable to human-only execution. On third-party agentic benchmarks, Tendem's AI Agent (operating autonomously, without human involvement) performs near state-of-the-art on web browsing and tool-use tasks while demonstrating strong results in frontier domain knowledge and reasoning.
☆ Logic-Oriented Retriever Enhancement via Contrastive Learning
Large language models (LLMs) struggle in knowledge-intensive tasks, as retrievers often overfit to surface similarity and fail on queries involving complex logical relations. The capacity for logical analysis is inherent in model representations but remains underutilized in standard training. LORE (Logic ORiented Retriever Enhancement) introduces fine-grained contrastive learning to activate this latent capacity, guiding embeddings toward evidence aligned with logical structure rather than shallow similarity. LORE requires no external upervision, resources, or pre-retrieval analysis, remains index-compatible, and consistently improves retrieval utility and downstream generation while maintaining efficiency. The datasets and code are publicly available at https://github.com/mazehart/Lore-RAG.
comment: accepted by icassp 2026
☆ What If We Allocate Test-Time Compute Adaptively?
Test-time compute scaling allocates inference computation uniformly, uses fixed sampling strategies, and applies verification only for reranking. In contrast, we propose a verifier-guided adaptive framework treating reasoning as iterative trajectory generation and selection. For each problem, the agent runs multiple inference iterations. In each iteration, it optionally produces a high-level plan, selects a set of reasoning tools and a compute strategy together with an exploration parameter, and then generates a candidate reasoning trajectory. A process reward model (PRM) serves as a unified control signal: within each iteration, step-level PRM scores are aggregated to guide pruning and expansion during generation, and across iterations, aggregated trajectory rewards are used to select the final response. Across datasets, our dynamic, PRM-guided approach consistently outperforms direct test-time scaling, yielding large gains on MATH-500 and several-fold improvements on harder benchmarks such as AIME24 and AMO-Bench. We characterize efficiency using theoretical FLOPs and a compute intensity metric penalizing wasted generation and tool overhead, demonstrating that verification-guided allocation concentrates computation on high-utility reasoning paths.
☆ From Utterance to Vividity: Training Expressive Subtitle Translation LLM via Adaptive Local Preference Optimization ICLR 2026
The rapid development of Large Language Models (LLMs) has significantly enhanced the general capabilities of machine translation. However, as application scenarios become more complex, the limitations of LLMs in vertical domain translations are gradually becoming apparent. In this study, we focus on how to construct translation LLMs that meet the needs of domain customization. We take visual media subtitle translation as our topic and explore how to train expressive and vivid translation LLMs. We investigated the situations of subtitle translation and other domains of literal and liberal translation, verifying the reliability of LLM as reward model and evaluator for translation. Additionally, to train an expressive translation LLM, we constructed and released a multidirectional subtitle parallel corpus dataset and proposed the Adaptive Local Preference Optimization (ALPO) method to address fine-grained preference alignment. Experimental results demonstrate that ALPO achieves outstanding performance in multidimensional evaluation of translation quality.
comment: Accepted to ICLR 2026
☆ Exploring Knowledge Purification in Multi-Teacher Knowledge Distillation for LLMs
Knowledge distillation has emerged as a pivotal technique for transferring knowledge from stronger large language models (LLMs) to smaller, more efficient models. However, traditional distillation approaches face challenges related to knowledge conflicts and high resource demands, particularly when leveraging multiple teacher models. In this paper, we introduce the concept of \textbf{Knowledge Purification}, which consolidates the rationales from multiple teacher LLMs into a single rationale, thereby mitigating conflicts and enhancing efficiency. To investigate the effectiveness of knowledge purification, we further propose five purification methods from various perspectives. Our experiments demonstrate that these methods not only improve the performance of the distilled model but also effectively alleviate knowledge conflicts. Moreover, router-based methods exhibit robust generalization capabilities, underscoring the potential of innovative purification techniques in optimizing multi-teacher distillation and facilitating the practical deployment of powerful yet lightweight models.
☆ Personality Expression Across Contexts: Linguistic and Behavioral Variation in LLM Agents
Large Language Models (LLMs) can be conditioned with explicit personality prompts, yet their behavioral realization often varies depending on context. This study examines how identical personality prompts lead to distinct linguistic, behavioral, and emotional outcomes across four conversational settings: ice-breaking, negotiation, group decision, and empathy tasks. Results show that contextual cues systematically influence both personality expression and emotional tone, suggesting that the same traits are expressed differently depending on social and affective demands. This raises an important question for LLM-based dialogue agents: whether such variations reflect inconsistency or context-sensitive adaptation akin to human behavior. Viewed through the lens of Whole Trait Theory, these findings highlight that LLMs exhibit context-sensitive rather than fixed personality expression, adapting flexibly to social interaction goals and affective conditions.
☆ Good SFT Optimizes for SFT, Better SFT Prepares for Reinforcement Learning
Post-training of reasoning LLMs is a holistic process that typically consists of an offline SFT stage followed by an online reinforcement learning (RL) stage. However, SFT is often optimized in isolation to maximize SFT performance alone. We show that, after identical RL training, models initialized from stronger SFT checkpoints can significantly underperform those initialized from weaker ones. We attribute this to a mismatch typical in current SFT-RL pipelines: the distribution that generates the offline SFT data can differ substantially from the policy optimized during online RL, which learns from its own rollouts. We propose PEAR (Policy Evaluation-inspired Algorithm for Offline Learning Loss Re-weighting), an SFT-stage method that corrects this mismatch and better prepares the model for RL. PEAR uses importance sampling to reweight the SFT loss, with three variants operating at the token, block, and sequence levels. It can be used to augment standard SFT objectives and incurs little additional training overhead once probabilities for the offline data are collected. We conduct controlled experiments on verifiable reasoning games and mathematical reasoning tasks on Qwen 2.5 and 3 and DeepSeek-distilled models. PEAR consistently improves post-RL performance over canonical SFT, with pass at 8 gains up to a 14.6 percent on AIME2025. Our results suggest that PEAR is an effective step toward more holistic LLM post-training by designing and evaluating SFT with downstream RL in mind rather than in isolation.
☆ Discovering Process-Outcome Credit in Multi-Step LLM Reasoning
Reinforcement Learning (RL) serves as a potent paradigm for enhancing reasoning capabilities in Large Language Models (LLMs), yet standard outcome-based approaches often suffer from reward sparsity and inefficient credit assignment. In this paper, we propose a novel framework designed to provide continuous reward signals, which introduces a Step-wise Marginal Information Gain (MIG) mechanism that quantifies the intrinsic value of reasoning steps against a Monotonic Historical Watermark, effectively filtering out training noise. To ensure disentangled credit distribution, we implement a Decoupled Masking Strategy, applying process-oriented rewards specifically to the chain-of-thought (CoT) and outcome-oriented rewards to the full completion. Additionally, we incorporate a Dual-Gated SFT objective to stabilize training with high-quality structural and factual signals. Extensive experiments across textual and multi-modal benchmarks (e.g., MATH, Super-CLEVR) demonstrate that our approach consistently outperforms baselines such as GRPO in both sample efficiency and final accuracy. Furthermore, our model exhibits superior out-of-distribution robustness, demonstrating promising zero-shot transfer capabilities to unseen and challenging reasoning tasks.
☆ HalluHard: A Hard Multi-Turn Hallucination Benchmark
Large language models (LLMs) still produce plausible-sounding but ungrounded factual claims, a problem that worsens in multi-turn dialogue as context grows and early errors cascade. We introduce $\textbf{HalluHard}$, a challenging multi-turn hallucination benchmark with 950 seed questions spanning four high-stakes domains: legal cases, research questions, medical guidelines, and coding. We operationalize groundedness by requiring inline citations for factual assertions. To support reliable evaluation in open-ended settings, we propose a judging pipeline that iteratively retrieves evidence via web search. It can fetch, filter, and parse full-text sources (including PDFs) to assess whether cited material actually supports the generated content. Across a diverse set of frontier proprietary and open-weight models, hallucinations remain substantial even with web search ($\approx 30\%$ for the strongest configuration, Opus-4.5 with web search), with content-grounding errors persisting at high rates. Finally, we show that hallucination behavior is shaped by model capacity, turn position, effective reasoning, and the type of knowledge required.
☆ Bias in the Ear of the Listener: Assessing Sensitivity in Audio Language Models Across Linguistic, Demographic, and Positional Variations EACL 2026
This work presents the first systematic investigation of speech bias in multilingual MLLMs. We construct and release the BiasInEar dataset, a speech-augmented benchmark based on Global MMLU Lite, spanning English, Chinese, and Korean, balanced by gender and accent, and totaling 70.8 hours ($\approx$4,249 minutes) of speech with 11,200 questions. Using four complementary metrics (accuracy, entropy, APES, and Fleiss' $κ$), we evaluate nine representative models under linguistic (language and accent), demographic (gender), and structural (option order) perturbations. Our findings reveal that MLLMs are relatively robust to demographic factors but highly sensitive to language and option order, suggesting that speech can amplify existing structural biases. Moreover, architectural design and reasoning strategy substantially affect robustness across languages. Overall, this study establishes a unified framework for assessing fairness and robustness in speech-integrated LLMs, bridging the gap between text- and speech-based evaluation. The resources can be found at https://github.com/ntunlplab/BiasInEar.
comment: Accepted as a long findings paper at EACL 2026
☆ Large Language Models as Students Who Think Aloud: Overly Coherent, Verbose, and Confident
Large language models (LLMs) are increasingly embedded in AI-based tutoring systems. Can they faithfully model novice reasoning and metacognitive judgments? Existing evaluations emphasize problem-solving accuracy, overlooking the fragmented and imperfect reasoning that characterizes human learning. We evaluate LLMs as novices using 630 think-aloud utterances from multi-step chemistry tutoring problems with problem-solving logs of student hint use, attempts, and problem context. We compare LLM-generated reasoning to human learner utterances under minimal and extended contextual prompting, and assess the models' ability to predict step-level learner success. Although GPT-4.1 generates fluent and contextually appropriate continuations, its reasoning is systematically over-coherent, verbose, and less variable than human think-alouds. These effects intensify with a richer problem-solving context during prompting. Learner performance was consistently overestimated. These findings highlight epistemic limitations of simulating learning with LLMs. We attribute these limitations to LLM training data, including expert-like solutions devoid of expressions of affect and working memory constraints during problem solving. Our evaluation framework can guide future design of adaptive systems that more faithfully support novice learning and self-regulation using generative artificial intelligence.
comment: Manuscript under review
☆ Adapting Where It Matters: Depth-Aware Adaptation for Efficient Multilingual Speech Recognition in Low-Resource Languages
Recent speech foundation models excel at multilingual automatic speech recognition (ASR) for high-resource languages, but adapting them to low-resource languages remains challenging due to data scarcity and efficiency constraints. Full-model fine-tuning is computationally expensive and prone to overfitting, while parameter-efficient methods like LoRA apply adaptation uniformly across layers, overlooking internal representations thus compromising effectiveness and efficiency. We analyze multilingual ASR models and reveal a U-shaped adaptability pattern: early and late layers are language-specific and require more adaptation, while intermediate layers retain shared semantics and need less. Building on this observation, we propose DAMA, a Depth-Aware Model Adaptation framework that allocates adaptation capacity according to each layer's role. DAMA also introduces Singular Value Decomposition (SVD)-based initialization to constrain adaptation and preserve the U-shaped pattern, as well as a frozen middle-layer basis for further efficiency. Evaluated on 18 low-resource languages across two benchmark datasets, DAMA matches or surpasses state-of-the-art accuracy with 80% fewer trainable parameters, achieves a 29% error reduction under extreme data scarcity, and significantly improves memory, training time, and computational efficiency over baselines. These results highlight the benefits of structure-aware adaptation for efficient, scalable multilingual ASR.
comment: 13 pages
☆ Distilling Token-Trained Models into Byte-Level Models
Byte Language Models (BLMs) have emerged as a promising direction for scaling language models beyond tokenization. However, existing BLMs typically require training from scratch on trillions of bytes, making them prohibitively expensive. In this paper, we propose an efficient distillation recipe that converts existing token-trained LLMs into BLMs while retaining comparable capabilities. Our recipe follows a two-stage curriculum: (1) Progressive Knowledge Distillation, which aligns byte-level representations with the embeddings of the token-trained teacher model; and (2) Byte-Level Supervised Fine-Tuning, which enables end-to-end generation entirely in the byte space. We validate our approach across multiple model families, including Llama, Qwen, and OLMo, and demonstrate that the distilled BLMs retain most of the teacher models' performance using only approximately 125B bytes.
comment: 17 pages, 3 figures, 13 tables
☆ Reliable Use of Lemmas via Eligibility Reasoning and Section$-$Aware Reinforcement Learning
Recent large language models (LLMs) perform strongly on mathematical benchmarks yet often misapply lemmas, importing conclusions without validating assumptions. We formalize lemma$-$judging as a structured prediction task: given a statement and a candidate lemma, the model must output a precondition check and a conclusion$-$utility check, from which a usefulness decision is derived. We present RULES, which encodes this specification via a two$-$section output and trains with reinforcement learning plus section$-$aware loss masking to assign penalty to the section responsible for errors. Training and evaluation draw on diverse natural language and formal proof corpora; robustness is assessed with a held$-$out perturbation suite; and end$-$to$-$end evaluation spans competition$-$style, perturbation$-$aligned, and theorem$-$based problems across various LLMs. Results show consistent in$-$domain gains over both a vanilla model and a single$-$label RL baseline, larger improvements on applicability$-$breaking perturbations, and parity or modest gains on end$-$to$-$end tasks; ablations indicate that the two$-$section outputs and section$-$aware reinforcement are both necessary for robustness.
☆ Error Taxonomy-Guided Prompt Optimization
Automatic Prompt Optimization (APO) is a powerful approach for extracting performance from large language models without modifying their weights. Many existing methods rely on trial-and-error, testing different prompts or in-context examples until a good configuration emerges, often consuming substantial compute. Recently, natural language feedback derived from execution logs has shown promise as a way to identify how prompts can be improved. However, most prior approaches operate in a bottom-up manner, iteratively adjusting the prompt based on feedback from individual problems, which can cause them to lose the global perspective. In this work, we propose Error Taxonomy-Guided Prompt Optimization (ETGPO), a prompt optimization algorithm that adopts a top-down approach. ETGPO focuses on the global failure landscape by collecting model errors, categorizing them into a taxonomy, and augmenting the prompt with guidance targeting the most frequent failure modes. Across multiple benchmarks spanning mathematics, question answering, and logical reasoning, ETGPO achieves accuracy that is comparable to or better than state-of-the-art methods, while requiring roughly one third of the optimization-phase token usage and evaluation budget.
☆ DeALOG: Decentralized Multi-Agents Log-Mediated Reasoning Framework
Complex question answering across text, tables and images requires integrating diverse information sources. A framework supporting specialized processing with coordination and interpretability is needed. We introduce DeALOG, a decentralized multi-agent framework for multimodal question answering. It uses specialized agents: Table, Context, Visual, Summarizing and Verification, that communicate through a shared natural-language log as persistent memory. This log-based approach enables collaborative error detection and verification without central control, improving robustness. Evaluations on FinQA, TAT-QA, CRT-QA, WikiTableQuestions, FeTaQA, and MultiModalQA show competitive performance. Analysis confirms the importance of the shared log, agent specialization, and verification for accuracy. DeALOG, provides a scalable approach through modular components using natural-language communication.
☆ Sparse Reward Subsystem in Large Language Models
In this paper, we identify a sparse reward subsystem within the hidden states of Large Language Models (LLMs), drawing an analogy to the biological reward subsystem in the human brain. We demonstrate that this subsystem contains value neurons that represent the model's internal expectation of state value, and through intervention experiments, we establish the importance of these neurons for reasoning. Our experiments reveal that these value neurons are robust across diverse datasets, model scales, and architectures; furthermore, they exhibit significant transferability across different datasets and models fine-tuned from the same base model. By examining cases where value predictions and actual rewards diverge, we identify dopamine neurons within the reward subsystem which encode reward prediction errors (RPE). These neurons exhibit high activation when the reward is higher than expected and low activation when the reward is lower than expected.
☆ DISPO: Enhancing Training Efficiency and Stability in Reinforcement Learning for Large Language Model Mathematical Reasoning AISTATS
Reinforcement learning with verifiable rewards has emerged as a promising paradigm for enhancing the reasoning capabilities of large language models particularly in mathematics. Current approaches in this domain present a clear trade-off: PPO-style methods (e.g., GRPO/DAPO) offer training stability but exhibit slow learning trajectories due to their trust-region constraints on policy updates, while REINFORCE-style approaches (e.g., CISPO) demonstrate improved learning efficiency but suffer from performance instability as they clip importance sampling weights while still permitting non-zero gradients outside the trust-region. To address these limitations, we introduce DISPO, a simple yet effective REINFORCE-style algorithm that decouples the up-clipping and down-clipping of importance sampling weights for correct and incorrect responses, yielding four controllable policy update regimes. Through targeted ablations, we uncover how each regime impacts training: for correct responses, weights >1 increase the average token entropy (i.e., exploration) while weights <1 decrease it (i.e., distillation) -- both beneficial but causing gradual performance degradation when excessive. For incorrect responses, overly restrictive clipping triggers sudden performance collapse through repetitive outputs (when weights >1) or vanishing response lengths (when weights <1). By separately tuning these four clipping parameters, DISPO maintains the exploration-distillation balance while preventing catastrophic failures, achieving 61.04% on AIME'24 (vs. 55.42% CISPO and 50.21% DAPO) with similar gains across various benchmarks and models.
comment: This work is accepted to the 29th International Conference on Artificial Intelligence and Statistics (AISTATS) 2026
☆ MedSpeak: A Knowledge Graph-Aided ASR Error Correction Framework for Spoken Medical QA
Spoken question-answering (SQA) systems relying on automatic speech recognition (ASR) often struggle with accurately recognizing medical terminology. To this end, we propose MedSpeak, a novel knowledge graph-aided ASR error correction framework that refines noisy transcripts and improves downstream answer prediction by leveraging both semantic relationships and phonetic information encoded in a medical knowledge graph, together with the reasoning power of LLMs. Comprehensive experimental results on benchmarks demonstrate that MedSpeak significantly improves the accuracy of medical term recognition and overall medical SQA performance, establishing MedSpeak as a state-of-the-art solution for medical SQA. The code is available at https://github.com/RainieLLM/MedSpeak.
☆ GradingAttack: Attacking Large Language Models Towards Short Answer Grading Ability
Large language models (LLMs) have demonstrated remarkable potential for automatic short answer grading (ASAG), significantly boosting student assessment efficiency and scalability in educational scenarios. However, their vulnerability to adversarial manipulation raises critical concerns about automatic grading fairness and reliability. In this paper, we introduce GradingAttack, a fine-grained adversarial attack framework that systematically evaluates the vulnerability of LLM based ASAG models. Specifically, we align general-purpose attack methods with the specific objectives of ASAG by designing token-level and prompt-level strategies that manipulate grading outcomes while maintaining high camouflage. Furthermore, to quantify attack camouflage, we propose a novel evaluation metric that balances attack success and camouflage. Experiments on multiple datasets demonstrate that both attack strategies effectively mislead grading models, with prompt-level attacks achieving higher success rates and token-level attacks exhibiting superior camouflage capability. Our findings underscore the need for robust defenses to ensure fairness and reliability in ASAG. Our code and datasets are available at https://anonymous.4open.science/r/GradingAttack.
☆ Trust in One Round: Confidence Estimation for Large Language Models via Structural Signals WWW 2026
Large language models (LLMs) are increasingly deployed in domains where errors carry high social, scientific, or safety costs. Yet standard confidence estimators, such as token likelihood, semantic similarity and multi-sample consistency, remain brittle under distribution shift, domain-specialised text, and compute limits. In this work, we present Structural Confidence, a single-pass, model-agnostic framework that enhances output correctness prediction based on multi-scale structural signals derived from a model's final-layer hidden-state trajectory. By combining spectral, local-variation, and global shape descriptors, our method captures internal stability patterns that are missed by probabilities and sentence embeddings. We conduct extensive, cross-domain evaluation across four heterogeneous benchmarks-FEVER (fact verification), SciFact (scientific claims), WikiBio-hallucination (biographical consistency), and TruthfulQA (truthfulness-oriented QA). Our Structural Confidence framework demonstrates strong performance compared with established baselines in terms of AUROC and AUPR. More importantly, unlike sampling-based consistency methods which require multiple stochastic generations and an auxiliary model, our approach uses a single deterministic forward pass, offering a practical basis for efficient, robust post-hoc confidence estimation in socially impactful, resource-constrained LLM applications.
comment: Accepted at The ACM Web Conference 2026 (WWW 2026)
☆ Verification Required: The Impact of Information Credibility on AI Persuasion
Agents powered by large language models (LLMs) are increasingly deployed in settings where communication shapes high-stakes decisions, making a principled understanding of strategic communication essential. Prior work largely studies either unverifiable cheap-talk or fully verifiable disclosure, failing to capture realistic domains in which information has probabilistic credibility. We introduce MixTalk, a strategic communication game for LLM-to-LLM interaction that models information credibility. In MixTalk, a sender agent strategically combines verifiable and unverifiable claims to communicate private information, while a receiver agent allocates a limited budget to costly verification and infers the underlying state from prior beliefs, claims, and verification outcomes. We evaluate state-of-the-art LLM agents in large-scale tournaments across three realistic deployment settings, revealing their strengths and limitations in reasoning about information credibility and the explicit behavior that shapes these interactions. Finally, we propose Tournament Oracle Policy Distillation (TOPD), an offline method that distills tournament oracle policy from interaction logs and deploys it in-context at inference time. Our results show that TOPD significantly improves receiver robustness to persuasion.
comment: 19 pages, 5 figures
☆ Probing the Knowledge Boundary: An Interactive Agentic Framework for Deep Knowledge Extraction
Large Language Models (LLMs) can be seen as compressed knowledge bases, but it remains unclear what knowledge they truly contain and how far their knowledge boundaries extend. Existing benchmarks are mostly static and provide limited support for systematic knowledge probing. In this paper, we propose an interactive agentic framework to systematically extract and quantify the knowledge of LLMs. Our method includes four adaptive exploration policies to probe knowledge at different granularities. To ensure the quality of extracted knowledge, we introduce a three-stage knowledge processing pipeline that combines vector-based filtering to remove exact duplicates, LLM-based adjudication to resolve ambiguous semantic overlaps, and domain-relevance auditing to retain valid knowledge units. Through extensive experiments, we find that recursive taxonomy is the most effective exploration strategy. We also observe a clear knowledge scaling law, where larger models consistently extract more knowledge. In addition, we identify a Pass@1-versus-Pass@k trade-off: domain-specialized models achieve higher initial accuracy but degrade rapidly, while general-purpose models maintain stable performance during extended extraction. Finally, our results show that differences in training data composition lead to distinct and measurable knowledge profiles across model families.
comment: Homepage: https://ulab-uiuc.github.io/KnowledgeExtraction/
☆ Neural FOXP2 -- Language Specific Neuron Steering for Targeted Language Improvement in LLMs
LLMs are multilingual by training, yet their lingua franca is often English, reflecting English language dominance in pretraining. Other languages remain in parametric memory but are systematically suppressed. We argue that language defaultness is governed by a sparse, low-rank control circuit, language neurons, that can be mechanistically isolated and safely steered. We introduce Neural FOXP2, that makes a chosen language (Hindi or Spanish) primary in a model by steering language-specific neurons. Neural FOXP2 proceeds in three stages: (i) Localize: We train per-layer SAEs so each activation decomposes into a small set of active feature components. For every feature, we quantify English vs. Hindi/Spanish selectivity overall logit-mass lift toward the target-language token set. Tracing the top-ranked features back to their strongest contributing units yields a compact language-neuron set. (ii) Steering directions: We localize controllable language-shift geometry via a spectral low-rank analysis. For each layer, we build English to target activation-difference matrices and perform layerwise SVD to extract the dominant singular directions governing language change. The eigengap and effective-rank spectra identify a compact steering subspace and an empirically chosen intervention window (where these directions are strongest and most stable). (iii) Steer: We apply a signed, sparse activation shift targeted to the language neurons. Concretely, within low to mid layers we add a positive steering along the target-language dominant directions and a compensating negative shift toward the null space for the English neurons, yielding controllable target-language defaultness.
♻ ☆ PAL: Probing Audio Encoders via LLMs -- Audio Information Transfer into LLMs
Integration of audio perception into large language models (LLMs) is an emerging research area for enabling machine listening applications, yet efficient transfer of rich audio semantics from audio encoders to LLMs remains underexplored. The most widely used integration paradigm projects audio-encoder output tokens into the LLM input space (e.g., via an MLP or a Q-Former) and then prepends or inserts them into the text token sequence. We refer to this generic scheme as Prepend to the LLM's input token space (PLITS) integration. We propose an efficient alternative, Lightweight Audio LLM Integration (LAL). LAL injects audio representations solely through the attention mechanism at selected LLM layers, bypassing the feed-forward module. It encodes rich audio semantics at an appropriate level of abstraction for integration into different transformer blocks, substantially reducing computational overhead compared to existing approaches. We further introduce PAL, a hybrid integration approach for efficiently Probing Audio encoders via LLM. PAL applies PLITS only to a compact set of summary tokens while integrating the full audio token sequence via LAL. Under an identical training curriculum, LAL consistently matches or outperforms existing integration approaches across multiple base LLMs and tasks, with improvements of up to 30% over a strong PLITS baseline, while reducing memory usage by about 60% and increasing throughput by about 190%. Moreover, PAL matches or exceeds PLITS performance while offering substantially better computational and memory efficiency.
comment: 20 pages, 7 figures
♻ ☆ Are Large Language Models Sensitive to the Motives Behind Communication? NeurIPS 2025
Human communication is motivated: people speak, write, and create content with a particular communicative intent in mind. As a result, information that large language models (LLMs) and AI agents process is inherently framed by humans' intentions and incentives. People are adept at navigating such nuanced information: we routinely identify benevolent or self-serving motives in order to decide what statements to trust. For LLMs to be effective in the real world, they too must critically evaluate content by factoring in the motivations of the source -- for instance, weighing the credibility of claims made in a sales pitch. In this paper, we undertake a comprehensive study of whether LLMs have this capacity for motivational vigilance. We first employ controlled experiments from cognitive science to verify that LLMs' behavior is consistent with rational models of learning from motivated testimony, and find they successfully discount information from biased sources in a human-like manner. We then extend our evaluation to sponsored online adverts, a more naturalistic reflection of LLM agents' information ecosystems. In these settings, we find that LLMs' inferences do not track the rational models' predictions nearly as closely -- partly due to additional information that distracts them from vigilance-relevant considerations. However, a simple steering intervention that boosts the salience of intentions and incentives substantially increases the correspondence between LLMs and the rational model. These results suggest that LLMs possess a basic sensitivity to the motivations of others, but generalizing to novel real-world settings will require further improvements to these models.
comment: NeurIPS 2025
♻ ☆ Conflicts in Texts: Data, Implications and Challenges
As NLP models become increasingly integrated into real-world applications, it becomes clear that there is a need to address the fact that models often rely on and generate conflicting information. Conflicts could reflect the complexity of situations, changes that need to be explained and dealt with, difficulties in data annotation, and mistakes in generated outputs. In all cases, disregarding the conflicts in data could result in undesired behaviors of models and undermine NLP models' reliability and trustworthiness. This survey categorizes these conflicts into three key areas: (1) natural texts on the web, where factual inconsistencies, subjective biases, and multiple perspectives introduce contradictions; (2) human-annotated data, where annotator disagreements, mistakes, and societal biases impact model training; and (3) model interactions, where hallucinations and knowledge conflicts emerge during deployment. While prior work has addressed some of these conflicts in isolation, we unify them under the broader concept of conflicting information, analyze their implications, and discuss mitigation strategies. We highlight key challenges and future directions for developing conflict-aware NLP systems that can reason over and reconcile conflicting information more effectively.
♻ ☆ WUGNECTIVES: Novel Entity Inferences of Language Models from Discourse Connectives
The role of world knowledge has been particularly crucial to predict the discourse connective that marks the discourse relation between two arguments, with language models (LMs) being generally successful at this task. We flip this premise in our work, and instead study the inverse problem of understanding whether discourse connectives can inform LMs about the world. To this end, we present WUGNECTIVES, a dataset of 8,880 stimuli that evaluates LMs' inferences about novel entities in contexts where connectives link the entities to particular attributes. On investigating 17 different LMs at various scales, and training regimens, we found that tuning an LM to show reasoning behavior yields noteworthy improvements on most connectives. At the same time, there was a large variation in LMs' overall performance across connective type, with all models systematically struggling on connectives that express a concessive meaning. Our findings pave the way for more nuanced investigations into the functional role of language cues as captured by LMs. We release WUGNECTIVES at https://github.com/kanishkamisra/wugnectives
comment: 19 pages total, 10 pages main; 8 figures total, 5 figures main; 10 tables total, 4 tables main
♻ ☆ Mind the Gap: Assessing Wiktionary's Crowd-Sourced Linguistic Knowledge on Morphological Gaps in Two Related Languages
Morphological defectivity is an intriguing and understudied phenomenon in linguistics. Addressing defectivity, where expected inflectional forms are absent, is essential for improving the accuracy of NLP tools in morphologically rich languages. However, traditional linguistic resources often lack coverage of morphological gaps as such knowledge requires significant human expertise and effort to document and verify. For scarce linguistic phenomena in under-explored languages, Wikipedia and Wiktionary often serve as among the few accessible resources. Despite their extensive reach, their reliability has been a subject of controversy. This study customizes a novel neural morphological analyzer to annotate Latin and Italian corpora. Using the massive annotated data, crowd-sourced lists of defective verbs compiled from Wiktionary are validated computationally. Our results indicate that while Wiktionary provides a highly reliable account of Italian morphological gaps, 7% of Latin lemmata listed as defective show strong corpus evidence of being non-defective. This discrepancy highlights potential limitations of crowd-sourced wikis as definitive sources of linguistic knowledge, particularly for less-studied phenomena and languages, despite their value as resources for rare linguistic features. By providing scalable tools and methods for quality assurance of crowd-sourced data, this work advances computational morphology and expands linguistic knowledge of defectivity in non-English, morphologically rich languages.
♻ ☆ VULCA-Bench: A Multicultural Vision-Language Benchmark for Evaluating Cultural Understanding ACL 2026
We introduce VULCA-Bench, a multicultural art-critique benchmark for evaluating Vision-Language Models' (VLMs) cultural understanding beyond surface-level visual perception. Existing VLM benchmarks predominantly measure L1-L2 capabilities (object recognition, scene description, and factual question answering) while under-evaluate higher-order cultural interpretation. VULCA-Bench contains 7,410 matched image-critique pairs spanning eight cultural traditions, with Chinese-English bilingual coverage. We operationalise cultural understanding using a five-layer framework (L1-L5, from Visual Perception to Philosophical Aesthetics), instantiated as 225 culture-specific dimensions and supported by expert-written bilingual critiques. Our pilot results indicate that higher-layer reasoning (L3-L5) is consistently more challenging than visual and technical analysis (L1-L2). The dataset, evaluation scripts, and annotation tools are available under CC BY 4.0 in the supplementary materials.
comment: 8 pages, 4 figures, submitted to ACL 2026 Dataset Track
♻ ☆ Beyond Content: How Grammatical Gender Shapes Visual Representation in Text-to-Image Models
Research on bias in Text-to-Image (T2I) models has primarily focused on demographic representation and stereotypical attributes, overlooking a fundamental question: how does grammatical gender influence visual representation across languages? We introduce a cross-linguistic benchmark examining words where grammatical gender contradicts stereotypical gender associations (e.g., ``une sentinelle'' - grammatically feminine in French but referring to the stereotypically masculine concept ``guard''). Our dataset spans five gendered languages (French, Spanish, German, Italian, Russian) and two gender-neutral control languages (English, Chinese), comprising 800 unique prompts that generated 28,800 images across three state-of-the-art T2I models. Our analysis reveals that grammatical gender dramatically influences image generation: masculine grammatical markers increase male representation to 73% on average (compared to 22% with gender-neutral English), while feminine grammatical markers increase female representation to 38% (compared to 28% in English). These effects vary systematically by language resource availability and model architecture, with high-resource languages showing stronger effects. Our findings establish that language structure itself, not just content, shapes AI-generated visual outputs, introducing a new dimension for understanding bias and fairness in multilingual, multimodal systems.
♻ ☆ When Large Language Models Do Not Work: Online Incivility Prediction through Graph Neural Networks
Online incivility has emerged as a widespread and persistent problem in digital communities, imposing substantial social and psychological burdens on users. Although many platforms attempt to curb incivility through moderation and automated detection, the performance of existing approaches often remains limited in both accuracy and efficiency. To address this challenge, we propose a Graph Neural Network (GNN) framework for detecting three types of uncivil behavior (i.e., toxicity, aggression, and personal attacks) within the English Wikipedia community. Our model represents each user comment as a node, with textual similarity between comments defining the edges, allowing the network to jointly learn from both linguistic content and relational structures among comments. We also introduce a dynamically adjusted attention mechanism that adaptively balances nodal and topological features during information aggregation. Empirical evaluations demonstrate that our proposed architecture outperforms 12 state-of-the-art Large Language Models (LLMs) across multiple metrics while requiring significantly lower inference cost. These findings highlight the crucial role of structural context in detecting online incivility and address the limitations of text-only LLM paradigms in behavioral prediction. All datasets and comparative outputs will be publicly available in our repository to support further research and reproducibility.
comment: 10 pages
♻ ☆ Latent Debate: A Surrogate Framework for Interpreting LLM Thinking
Understanding the internal thinking process of Large Language Models (LLMs) and the cause of hallucinations remains a key challenge. To this end, we introduce latent debate, a novel framework for interpreting model predictions through the lens of implicit internal arguments. Unlike the current work of self-consistency and multi-agent debate, which relies on explicit debates among multiple answers or multiple models, latent debate captures the hidden supporting and attacking signals that arise within a single model during a single inference. We first present a model- and task-agnostic conceptual framework, and then instantiate it symbolically to approximate the thinking process of LLMs on True/False prediction tasks. Empirical studies demonstrate that latent debate is a faithful structured surrogate model that has highly consistent predictions with the original LLM. Beyond interpretability, we demonstrate that latent debate provides a strong baseline for hallucination detection. Further analysis reveals strong correlations between hallucinations and debate patterns, such as a high degree of latent debates in the middle layers is linked to a higher risk of hallucinations. These findings position latent debate as a potential framework for understanding internal mechanisms of LLMs, especially for scenarios where internal (dis)agreements appear during the inference steps.
comment: Preprint
♻ ☆ Can Deep Research Agents Retrieve and Organize? Evaluating the Synthesis Gap with Expert Taxonomies
Deep Research Agents increasingly automate survey generation, yet whether they match human experts in two core abilities remains unclear: retrieving essential papers and organizing them into expert-like taxonomies. Existing benchmarks emphasize writing quality or citation correctness, while standard clustering metrics fail to capture hierarchical taxonomy structure. We introduce TaxoBench, a benchmark built from 72 highly-cited LLM surveys containing expert-authored taxonomy trees with 3,815 papers mapped to paper categories as ground truth. TaxoBench evaluates both abilities: (1) retrieval, measuring whether agents retrieve expert-cited papers; and (2) organization, assessed at two levels: the leaf-level measures paper-to-category assignment, while the hierarchy-level measures taxonomy structure via novel metrics -- Unordered Semantic Tree Edit Distance (US-TED/US-NTED) and Semantic Path Similarity (Sem-Path). TaxoBench supports two evaluation modes: Deep Research tests end-to-end capability given only a topic, while Bottom-Up provides the expert paper set to isolate organization ability. Evaluating 7 Deep Research Agents and 12 frontier LLMs reveals a dual bottleneck: the best agent retrieves only 20.92% of expert-cited papers, and even with perfect input, the best model achieves only 31.24% ARI with substantial structural gaps. Our benchmark is publicly available at https://github.com/KongLongGeFDU/TaxoBench
♻ ☆ Virtual Community: An Open World for Humans, Robots, and Society
The rapid progress in AI and Robotics may lead to a profound societal transformation, as humans and robots begin to coexist within shared communities, introducing both opportunities and challenges. To explore this future, we present Virtual Community-an open-world platform for humans, robots, and society-built on a universal physics engine and grounded in real-world 3D scenes. With Virtual Community, we aim to enable the study of embodied social intelligence at scale. To support these, Virtual Community features: 1) An open-source multi-agent physics simulator that supports robots, humans, and their interactions within a society; 2) A large-scale, real-world aligned community generation pipeline, including vast outdoor space, diverse indoor scenes, and a community of grounded agents with rich characters and appearances. Leveraging Virtual Community, we propose two novel challenges. The Community Planning Challenge evaluates multi-agent reasoning and planning ability in open-world settings, such as cooperating to help agents with daily activities and efficiently connecting other agents. The Community Robot Challenge requires multiple heterogeneous robots to collaborate in solving complex open-world tasks. We evaluate various baselines on these tasks and demonstrate the challenges in both high-level open-world task planning and low-level cooperation controls. We hope that Virtual Community will unlock further study of human-robot coexistence within open-world environments.
comment: website https://virtual-community-ai.github.io/
♻ ☆ AdaDetectGPT: Adaptive Detection of LLM-Generated Text with Statistical Guarantees NeurIPS2025
We study the problem of determining whether a piece of text has been authored by a human or by a large language model (LLM). Existing state of the art logits-based detectors make use of statistics derived from the log-probability of the observed text evaluated using the distribution function of a given source LLM. However, relying solely on log probabilities can be sub-optimal. In response, we introduce AdaDetectGPT -- a novel classifier that adaptively learns a witness function from training data to enhance the performance of logits-based detectors. We provide statistical guarantees on its true positive rate, false positive rate, true negative rate and false negative rate. Extensive numerical studies show AdaDetectGPT nearly uniformly improves the state-of-the-art method in various combination of datasets and LLMs, and the improvement can reach up to 37\%. A python implementation of our method is available at https://github.com/Mamba413/AdaDetectGPT.
comment: Accepted by NeurIPS2025
♻ ☆ Do Bias Benchmarks Generalise? Evidence from Voice-based Evaluation of Gender Bias in SpeechLLMs IEEE
Recent work in benchmarking bias and fairness in speech large language models (SpeechLLMs) has relied heavily on multiple-choice question answering (MCQA) formats. The model is tasked to choose between stereotypical, anti-stereotypical, or neutral/irrelevant answers given an input speech prompt and an optional text prompt. Such MCQA benchmarks implicitly assume that model performance is consistent across other MCQA tasks, voices, and other task formats such as more realistic, long-form evaluations. In this paper, we probe that assumption. We fine-tune three SpeechLLMs using LoRA adapters to induce specific MCQA behaviours: preference for stereotypical, anti-stereotypical, or neutral/uncertain answers. We then evaluate whether these behaviours generalise to another, distinct MCQA benchmark, and more critically to long-form, creative generation tasks. Our results show that performance on MCQA bias benchmarks fails to reliably predict performances across other MCQA benchmarks, and more importantly across long-form tasks. We conclude that current MCQA bias benchmarks show limited evidence of cross-task generalisation in the speech domain, and also propose an evaluation suite for measuring behaviour transferability in future models and benchmarks.
comment: 5 pages, 2 Figures, Accepted to IEEE ICASSP 2026
♻ ☆ LFQA-E: Carefully Benchmarking Long-form QA Evaluation
Long-Form Question Answering (LFQA) involves generating comprehensive, paragraph-level responses to open-ended questions, which poses a significant challenge for evaluation due to the richness of information and flexible response format. Existing LFQA-evaluation benchmarks often lack reference answers and are limited in size and topic coverage, reducing their reliability. To address this gap, we introduce LFQA-E, a well-constructed, multilingual, and reference-based benchmark designed to rigorously evaluate automatic metrics for LFQA. LFQA-E comprises 1618 questions and 7323 pairwise comparisons across 15 topics, drawn from diverse sources such as online queries and examination questions, thereby enabling a comprehensive assessment of evaluation metrics. We examine five categories of metrics, encompassing 17 specific methods, using LFQA-E. The results demonstrate that none of the existing automatic metrics perform comparably to human judgments, highlighting their inability to capture the dense information in long-form responses. Furthermore, we present a detailed analysis of the failure cases and the generalization capacity of these metrics, offering insights to guide the future development of LFQA evaluation methods. The benchmark and code are available at https://github.com/YuchenFan48/LFQA-E.
♻ ☆ End-to-End Agentic RAG System Training for Traceable Diagnostic Reasoning
The integration of Large Language Models (LLMs) into healthcare is constrained by knowledge limitations, hallucinations, and a disconnect from Evidence-Based Medicine (EBM). While Retrieval-Augmented Generation (RAG) offers a solution, current systems often rely on static workflows that miss the iterative, hypothetico-deductive reasoning of clinicians. To address this, we introduce Deep-DxSearch, an agentic RAG system trained end-to-end via reinforcement learning (RL) for traceable diagnostic reasoning. Deep-DxSearch acts as an active investigator, treating the LLM as an agent within an environment of 16,000+ guideline-derived disease profiles, 150,000+ patient records for case-based reasoning, and over 27 million biomedical documents. Using soft verifiable rewards that co-optimize retrieval and reasoning, the model learns to formulate queries, evaluate evidence, and refine searches to close diagnostic gaps. Experiments show our end-to-end RL framework consistently outperforms prompt-engineering and training-free RAG methods. On in-distribution (ID) and out-of-distribution (OOD) benchmarks for common and rare diseases, Deep-DxSearch surpasses strong baselines-including GPT-4o, DeepSeek-R1, and medical-specific frameworks-achieving an average accuracy gain of 22.7% over the second-best model. In validation with 150 real-world cases, Deep-DxSearch boosts physicians' average diagnostic accuracy from 45.6% to 69.1%. These results indicate that evolving agentic systems to leverage statistical regularities in large-scale healthcare data is key for trustworthy diagnostic assistants. All data, code, and checkpoints are available at https://qiaoyu-zheng.github.io/Deep-DxSearch.
♻ ☆ PSM: Prompt Sensitivity Minimization via LLM-Guided Black-Box Optimization AAAI 2026
System prompts are critical for guiding the behavior of Large Language Models (LLMs), yet they often contain proprietary logic or sensitive information, making them a prime target for extraction attacks. Adversarial queries can successfully elicit these hidden instructions, posing significant security and privacy risks. Existing defense mechanisms frequently rely on heuristics, incur substantial computational overhead, or are inapplicable to models accessed via black-box APIs. This paper introduces a novel framework for hardening system prompts through shield appending, a lightweight approach that adds a protective textual layer to the original prompt. Our core contribution is the formalization of prompt hardening as a utility-constrained optimization problem. We leverage an LLM-as-optimizer to search the space of possible SHIELDs, seeking to minimize a leakage metric derived from a suite of adversarial attacks, while simultaneously preserving task utility above a specified threshold, measured by semantic fidelity to baseline outputs. This black-box, optimization-driven methodology is lightweight and practical, requiring only API access to the target and optimizer LLMs. We demonstrate empirically that our optimized SHIELDs significantly reduce prompt leakage against a comprehensive set of extraction attacks, outperforming established baseline defenses without compromising the model's intended functionality. Our work presents a paradigm for developing robust, utility-aware defenses in the escalating landscape of LLM security. The code is made public on the following link: https://github.com/psm-defense/psm
comment: accepted at the Trustworthy Agentic AI Workshop @ AAAI 2026 (Singapore, Jan 27, 2026). Workshop PDF: https://trustagenticai.github.io/AAAI2026/AAAI-Workshop/20.pdf
♻ ☆ Evolutionary Pre-Prompt Optimization for Mathematical Reasoning
Recent advancements have highlighted that large language models (LLMs), when given a small set of task-specific examples, demonstrate remarkable proficiency, a capability that extends to complex reasoning tasks. In particular, the combination of few-shot learning with the chain-of-thought (CoT) approach has been pivotal in steering models towards more logically consistent conclusions [Wei et al. 2022b]. This paper explores the optimization of example selection for designing effective CoT pre-prompts and shows that the choice of the optimization algorithm, typically in favor of comparison-based methods such as evolutionary computation, significantly enhances efficacy and feasibility. Specifically, thanks to a limited exploitative and overfitted optimization, Evolutionary Pre-Prompt Optimization (EPPO) brings an improvement over the naive few-shot approach, exceeding 10 absolute points in exact match scores on benchmark datasets such as GSM8k and MathQA. These gains are consistent across various contexts and are further amplified when integrated with self-consistency (SC).
comment: Revised and extended version. To appear in ACM Transactions on Evolutionary Learning and Optimization (TELO)
♻ ☆ DP-Fusion: Token-Level Differentially Private Inference for Large Language Models
Large language models (LLMs) do not preserve privacy at inference-time. The LLM's outputs can inadvertently reveal information about the model's context, which presents a privacy challenge when the LLM is augmented via tools or databases containing sensitive information. Existing privacy-preserving methods at inference-time have significant limitations since they (i) lack provable guarantees or (ii) have a poor utility/privacy trade-off. We propose DP-Fusion, a Differentially Private Inference (DPI) mechanism for LLMs that provably bounds the influence a set of tokens in the context can have on the LLM's output. DP-Fusion works as follows: (1) label a subset of sensitive tokens, (2) infer the LLM without any sensitive tokens to obtain a baseline, (3) infer the LLM with the sensitive tokens, and (4) blend distributions so that the final output remains within a bounded distance of the baseline distribution. While this per-token influence bound also mitigates jailbreak-style prompt injection, we focus on \emph{document privatization}, where the goal is to paraphrase a document containing sensitive tokens, e.g., personally identifiable information, so that no attacker can reliably infer them from the paraphrased document while preserving high text quality. The privacy/utility trade-off is controlled by $ε$, where $ε=0$ hides sensitive tokens entirely, while higher values trade off privacy for improved text quality. We show that our method creates token-level provably privatized documents with substantially improved theoretical and empirical privacy, achieving $6\times$ lower perplexity than related DPI methods.
comment: Code: https://github.com/rushil-thareja/dp-fusion-lib | PyPI: https://pypi.org/project/dp-fusion-lib/ | Demo: https://www.documentprivacy.com
♻ ☆ Retrieval-Augmented Generation for Natural Language Art Provenance Searches in the Getty Provenance Index
This research presents a Retrieval-Augmented Generation (RAG) framework for art provenance studies, focusing on the Getty Provenance Index. Provenance research establishes the ownership history of artworks, which is essential for verifying authenticity, supporting restitution and legal claims, and understanding the cultural and historical context of art objects. The process is complicated by fragmented, multilingual archival data that hinders efficient retrieval. Current search portals require precise metadata, limiting exploratory searches. Our method enables natural-language and multilingual searches through semantic retrieval and contextual summarization, reducing dependence on metadata structures. We assess RAG's capability to retrieve and summarize auction records using a 10,000-record sample from the Getty Provenance Index - German Sales. The results show this approach provides a scalable solution for navigating art market archives, offering a practical tool for historians and cultural heritage professionals conducting historically sensitive research.
♻ ☆ Enhancing Human-Like Responses in Large Language Models AAAI-26
This paper explores the advancements in making large language models (LLMs) more human-like. We focus on techniques that enhance natural language understanding, conversational coherence, and emotional intelligence in AI systems. The study evaluates various approaches, including fine-tuning with diverse datasets, incorporating psychological principles, and designing models that better mimic human reasoning patterns. Our findings demonstrate that these enhancements not only improve user interactions but also open new possibilities for AI applications across different domains. Future work will address the ethical implications and potential biases introduced by these human-like attributes.
comment: Presented at the AAAI-26 Workshop on Personalization in the Era of Large Foundation Models (PerFM), Singapore, January 2026
♻ ☆ On the Effectiveness of Membership Inference in Targeted Data Extraction from Large Language Models IEEE
Large Language Models (LLMs) are prone to memorizing training data, which poses serious privacy risks. Two of the most prominent concerns are training data extraction and Membership Inference Attacks (MIAs). Prior research has shown that these threats are interconnected: adversaries can extract training data from an LLM by querying the model to generate a large volume of text and subsequently applying MIAs to verify whether a particular data point was included in the training set. In this study, we integrate multiple MIA techniques into the data extraction pipeline to systematically benchmark their effectiveness. We then compare their performance in this integrated setting against results from conventional MIA benchmarks, allowing us to evaluate their practical utility in real-world extraction scenarios.
comment: Accepted to IEEE Conference on Secure and Trustworthy Machine Learning (SaTML) 2026
♻ ☆ Check Yourself Before You Wreck Yourself: Selectively Quitting Improves LLM Agent Safety
As Large Language Model (LLM) agents increasingly operate in complex environments with real-world consequences, their safety becomes critical. While uncertainty quantification is well-studied for single-turn tasks, multi-turn agentic scenarios with real-world tool access present unique challenges where uncertainties and ambiguities compound, leading to severe or catastrophic risks beyond traditional text generation failures. We propose using "quitting" as a simple yet effective behavioral mechanism for LLM agents to recognize and withdraw from situations where they lack confidence. Leveraging the ToolEmu framework, we conduct a systematic evaluation of quitting behavior across 12 state-of-the-art LLMs. Our results demonstrate a highly favorable safety-helpfulness trade-off: agents prompted to quit with explicit instructions improve safety by an average of +0.39 on a 0-3 scale across all models (+0.64 for proprietary models), while maintaining a negligible average decrease of -0.03 in helpfulness. Our analysis demonstrates that simply adding explicit quit instructions proves to be a highly effective safety mechanism that can immediately be deployed in existing agent systems, and establishes quitting as an effective first-line defense mechanism for autonomous agents in high-stakes applications.
comment: Reliable ML and Regulatable ML workshops, Neurips 2025
♻ ☆ EAQuant: Enhancing Post-Training Quantization for MoE Models via Expert-Aware Optimization
Mixture-of-Experts (MoE) models enable scalable computation and performance in large-scale deep learning but face quantization challenges due to sparse expert activation and dynamic routing. Existing post-training quantization (PTQ) methods fail to address activation outliers, routing instability, and sparse expert calibration, leading to significant performance degradation. To address this, we propose EAQuant, a PTQ framework tailored for MoE architectures. Our method introduces three expert-aware innovations: (1) smoothing aggregation to suppress activation outliers, (2) routing consistency alignment to preserve expert selection post-quantization, and (3) calibration data balance to optimize sparsely activated experts. These strategies collectively enable robust, high-precision quantization of MoE models under ultra-low-bit constraints.Extensive experiments across several extreme quantization settings (e.g., W4A4/W3A4/W3A3/W2A4) demonstrate that EAQuant significantly outperforms existing methods, achieving average accuracy improvements of 1.15 - 13.81% across three diverse MoE architectures, with particularly pronounced gains in reasoning tasks and robust performance retention under aggressive quantization. By integrating these innovations, EAQuant establishes a new state-of-the-art for high-precision, efficient MoE model compression.Our code is available at https://github.com/darren-fzq1/EAQuant.
♻ ☆ Using Reinforcement Learning to Train Large Language Models to Explain Human Decisions
A central goal of cognitive modeling is to develop models that not only predict human behavior but also provide insight into the underlying cognitive mechanisms. While neural network models trained on large-scale behavioral data often achieve strong predictive performance, they typically fall short in offering interpretable explanations of the cognitive processes they capture. In this work, we explore the potential of pretrained large language models (LLMs) to serve as dual-purpose cognitive models--capable of both accurate prediction and interpretable explanation in natural language. Specifically, we employ reinforcement learning with outcome-based rewards to guide LLMs toward generating explicit reasoning traces for explaining human risky choices. Our findings demonstrate that this approach produces high-quality explanations alongside strong quantitative predictions of human decisions.
♻ ☆ Anchored Supervised Fine-Tuning
Post-training of large language models involves a fundamental trade-off between supervised fine-tuning (SFT), which efficiently mimics demonstrations but tends to memorize, and reinforcement learning (RL), which achieves better generalization at higher computational cost. Dynamic Fine-Tuning (DFT) recently emerged as a promising middle ground, reweighting SFT objectives with token probabilities and achieving improvements in certain reasoning domains, though it exhibits instability in other tasks. We provide a analysis of DFT through the reward-weighted regression (RWR) framework, revealing that it corresponds to a specific auxiliary distribution choice that yields provably tighter RL bounds than standard SFT. However, our analysis also uncovers a critical limitation: this construction lacks distributional anchoring, leading to progressive drift that undermines training stability. To address this, we propose Anchored Supervised Fine-Tuning (ASFT), which augments DFT's reweighting with lightweight KL regularization to preserve tightness while ensuring stability. Empirically, ASFT consistently outperforms both SFT and DFT across mathematical reasoning, medical knowledge grounding, and code generation, achieving substantial improvements with minimal computational overhead. Our RWR framework provides a systematic lens for understanding post-training methods and demonstrates that principled theoretical analysis leads to both stronger guarantees and practical gains. The code is available at https://github.com/zhuchichi56/ASFT.
♻ ☆ X-Coder: Advancing Competitive Programming with Fully Synthetic Tasks, Solutions, and Tests
Competitive programming poses a significant challenge for Code LLMs. While recent models have shown promise, they heavily rely on finite real-world data, raising concerns about scalability and contamination. In this paper, we investigate a critical question: Can we elevate models to expert-level reasoning performance using fully synthetic data? In response, we first observe that off-the-shelf synthesis methods yield suboptimal results in this domain. To address this, we systematically investigate the key factors governing synthetic data quality. Leveraging these findings, we significantly advance the feature-based synthesis paradigm via domain-specific evolution and a dual-verification strategy, promoting task solvability, solution correctness, and test accuracy. Using this high-quality synthetic data, we train the X-Coder model series under an SFT-then-RL paradigm. X-Coder-7B shows significant performance gains on the challenging LiveCodeBench v5 (62.9% avg@8) and v6 (55.8% avg@8), outperforming larger models trained on real-world data. Extensive analysis distills valuable insights into synthetic data scaling, the necessity of domain-adapted feature evolution, and code-centric reinforcement.
comment: Code: https://github.com/JieWu02/X-Coder; Data: https://huggingface.co/datasets/IIGroup/X-Coder-SFT-376k
♻ ☆ FreeChunker: A Cross-Granularity Chunking Framework
Chunking strategies significantly impact the effectiveness of Retrieval-Augmented Generation (RAG) systems. Existing methods operate within fixed-granularity paradigms that rely on static boundary identification, limiting their adaptability to diverse query requirements. This paper presents FreeChunker, a Cross-Granularity Encoding Framework that fundamentally transforms the traditional chunking paradigm: the framework treats sentences as atomic units and shifts from static chunk segmentation to flexible retrieval supporting arbitrary sentence combinations. This paradigm shift not only significantly avoids the computational overhead required for semantic boundary detection, but also enhances adaptability to complex queries. Experimental evaluation on LongBench V2 demonstrates that FreeChunker possesses significant advantages in both retrieval performance and time efficiency compared to existing chunking methods. The pre-trained models and codes are available at https://github.com/mazehart/FreeChunker.
comment: Submitted to arXiv, October 2025
♻ ☆ Paraphrase Types Elicit Prompt Engineering Capabilities
Much of the success of modern language models depends on finding a suitable prompt to instruct the model. Until now, it has been largely unknown how variations in the linguistic expression of prompts affect these models. This study systematically and empirically evaluates which linguistic features influence models through paraphrase types, i.e., different linguistic changes at particular positions. We measure behavioral changes for five models across 120 tasks and six families of paraphrases (i.e., morphology, syntax, lexicon, lexico-syntax, discourse, and others). We also control for other prompt engineering factors (e.g., prompt length, lexical diversity, and proximity to training data). Our results show a potential for language models to improve tasks when their prompts are adapted in specific paraphrase types (e.g., 6.7% median gain in Mixtral 8x7B; 5.5% in LLaMA 3 8B). In particular, changes in morphology and lexicon, i.e., the vocabulary used, showed promise in improving prompts. These findings contribute to developing more robust language models capable of handling variability in linguistic expression.
♻ ☆ Understanding and Mitigating Errors of LLM-Generated RTL Code IEEE
Despite limited success in large language model (LLM)-based register-transfer-level (RTL) code generation, the root causes of errors remain poorly understood. To address this, we conduct a comprehensive error analysis, finding that most failures arise not from deficient reasoning, but from a lack of RTL programming knowledge, insufficient circuit understanding, ambiguous specifications, or misinterpreted multimodal inputs. Leveraging in-context learning, we propose targeted correction techniques: a retrieval-augmented generation (RAG) knowledge base to supply domain expertise; design description rules with rule-checking to clarify inputs; external tools to convert multimodal data into LLM-compatible formats; and an iterative simulation-debugging loop for remaining errors. Integrating these into an LLM-based framework yields significant improvement, achieving 98.1% accuracy on the VerilogEval benchmark with DeepSeek-v3.2-Speciale, demonstrating the effectiveness of our approach.
comment: Accepted by IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
♻ ☆ VersatileFFN: Achieving Parameter Efficiency in LLMs via Adaptive Wide-and-Deep Reuse
The rapid scaling of Large Language Models (LLMs) has achieved remarkable performance, but it also leads to prohibitive memory costs. Existing parameter-efficient approaches such as pruning and quantization mainly compress pretrained models without enhancing architectural capacity, thereby hitting the representational ceiling of the base model. In this work, we propose VersatileFFN, a novel feed-forward network (FFN) that enables flexible reuse of parameters in both width and depth dimensions within a fixed parameter budget. Inspired by the dual-process theory of cognition, VersatileFFN comprises two adaptive pathways: a width-versatile path that generates a mixture of sub-experts from a single shared FFN, mimicking sparse expert routing without increasing parameters, and a depth-versatile path that recursively applies the same FFN to emulate deeper processing for complex tokens. A difficulty-aware gating dynamically balances the two pathways, steering "easy" tokens through the efficient width-wise route and allocating deeper iterative refinement to "hard" tokens. Crucially, both pathways reuse the same parameters, so all additional capacity comes from computation rather than memory. Experiments across diverse benchmarks and model scales demonstrate the effectiveness of the method. The code is available at https://github.com/huawei-noah/noah-research/tree/master/VersatileFFN.
♻ ☆ Simple Policy Gradients for Reasoning with Diffusion Language Models
Diffusion large language models (dLLMs), which offer a promising alternative to traditional autoregressive LLMs, have recently shown strong results in pretraining. However, due to their lack of tractable sequence-level likelihoods, they have yet to benefit from modern LLM post-training techniques such as reinforcement learning (RL), limiting their real-world applicability. Existing attempts at dLLM post-training rely on heuristic approximations or lower bounds of the true likelihood. In this work, we propose Amortized Group Relative Policy Optimization (AGRPO), a policy gradient algorithm that leverages the multi-step Markovian nature of dLLM generation, optimizing individual denoising steps rather than entire sequences. We demonstrate AGRPO's effectiveness on different math and reasoning tasks, achieving +9.9\% absolute gain on GSM8K, +4.6\% on MATH-500, +59.4\% on Countdown, and +69.7\% on Sudoku over the base LLaDA model, improving upon comparable dLLM RL methods such as diffu-GRPO. Furthermore, we analyze how post-training gains persist across different inference configurations, revealing that models trained with AGRPO can sample 4x faster with minimal performance sacrifices.
comment: 17 pages. Code at https://github.com/probablyabot/agrpo
♻ ☆ Hallucination-Resistant Relation Extraction via Dependency-Aware Sentence Simplification and Two-tiered Hierarchical Refinement
Relation extraction (RE) enables the construction of structured knowledge for many downstream applications. While large language models (LLMs) have shown great promise in this task, they often struggle to reliably determine whether a relation exists, particularly in sentences with complex syntax or subtle semantics. For instance, we find that Qwen2.5-14B-Instruct incorrectly predicts a relation in 96.9% of NO-RELATION instances on SciERC, revealing a severe hallucination problem. To address these challenges, we propose DEPTH, a framework that integrates Dependency-aware sEntence simPlification and Two-tiered Hierarchical refinement into the relation extraction pipeline. Given a sentence and its candidate entity pairs, DEPTH operates in two stages: (1) the Grounding module extracts relations for each pair by leveraging their shortest dependency path, distilling the sentence into a minimal yet coherent relational context that reduces syntactic noise while preserving key semantics; (2) the Refinement module aggregates all local predictions and revises them based on a holistic understanding of the sentence, correcting omissions and inconsistencies. We further introduce a causality-driven reward model that mitigates reward hacking by disentangling spurious correlations, enabling robust fine-tuning via reinforcement learning with human feedback. Experiments on eight well-established benchmarks demonstrate that DEPTH reduces the average hallucination rate to 7.9% while achieving a 9.3% improvement in average F1 score over existing LLM-based extraction baselines.
♻ ☆ PIRA: Preference-Oriented Instruction-Tuned Reward Models with Dual Aggregation EACL 2026
Reward models are pivotal for aligning Large Language Models (LLMs) with human preferences. Existing approaches face two key limitations: Discriminative reward models require large-scale annotated data, as they cannot exploit the preference instruction-following capability of LLMs available to generative reward models. Moreover, reward models are particularly prone to reward overoptimization, where LLMs exploit weaknesses in the reward function instead of improving true alignment. We introduce \textbf{PIRA}, a training paradigm that integrates three complementary strategies to address these challenges: (1) reformulating question-answer pairs into preference-task instructions to explicitly leverage LLMs' preference instruction-following capability, (2) averaging the rewards aggregated from diverse preference-task instructions for each sample, which mitigates task-specific bias and enhances robustness across evaluation perspectives, and (3) averaging outputs from the value head under different dropout rates to stabilize reward estimation. Experiments on public datasets show that PIRA improves performance considerably, enhances generalization, and effectively mitigates reward overoptimization.
comment: Accepted to EACL 2026
♻ ☆ Understanding the Performance Gap in Preference Learning: A Dichotomy of RLHF and DPO
We present a fine-grained theoretical analysis of the performance gap between reinforcement learning from human feedback (RLHF) and direct preference optimization (DPO) under a representation gap. Our study decomposes this gap into two sources: an explicit representation gap under exact optimization and an implicit representation gap under finite samples. In the exact optimization setting, we characterize how the relative capacities of the reward and policy model classes influence the final policy qualities. We show that RLHF, DPO, or online DPO can outperform one another depending on type of model mis-specifications. Notably, online DPO can outperform both RLHF and standard DPO when the reward and policy model classes are isomorphic and both mis-specified. In the approximate optimization setting, we provide a concrete construction where the ground-truth reward is implicitly sparse and show that RLHF requires significantly fewer samples than DPO to recover an effective reward model, highlighting a statistical advantage of two-stage learning. Together, these results provide a comprehensive understanding of the performance gap between RLHF and DPO under various settings, and offer practical insights into when each method is preferred.
comment: 35 pages, 5 figures. Revision
♻ ☆ Inference-Aware Prompt Optimization for Aligning Black-Box Large Language Models AAAI 2026
Prompt optimization methods have demonstrated significant effectiveness in aligning black-box large language models (LLMs). In parallel, inference scaling strategies such as Best-of-N Sampling and Majority Voting have likewise been shown to improve alignment and performance by trading additional computation for better output. However, existing prompt optimization approaches are inference strategy agnostic; that is, they optimize prompts without accounting for the inference strategy. This constitutes a significant methodological gap, as our empirical and theoretical analysis reveals a strong interdependence between these two paradigms. Moreover, we find that user preferences regarding trade-offs among multiple objectives and inference budgets substantially influence the choice of prompt and inference configuration. To address this gap, we introduce a novel unified framework named IAPO (Inference-Aware Prompt Optimization) that jointly optimizes the prompt and inference scale, while being aware of the inference budget and different task objectives. We then develop a fixed-budget training algorithm for IAPO, called PSST (Prompt Scaling via Sequential Trimming), and establish finite-budget guarantees on the error probability. Finally, we evaluate the effectiveness of PSST on six tasks, including multi-objective text generation and reasoning, and demonstrate the critical role of incorporating inference-awareness in aligning black-box LLMs using prompt optimization.
comment: Accepted to AAAI 2026. Extended 17-page version
♻ ☆ When Domain Pretraining Interferes with Instruction Alignment: An Empirical Study of Adapter Merging in Medical LLMs
Large language models (LLMs) can exhibit surprising \emph{adapter interference} when combining domain adaptation and instruction alignment in safety-critical settings. We study a 14B base model trained with a two-stage LoRA pipeline: (i) domain-oriented pre-training (PT/DOPT) for medical knowledge injection and (ii) supervised fine-tuning (SFT) for instruction following on medical QA. We then form a \emph{weighted adapter merge} by linearly combining PT and SFT LoRA deltas before exporting a single merged checkpoint for inference. We find that adding PT signal can reactivate latent ``thinking'' behavior and systematically shift the output distribution even when training/evaluation templates attempt to disable chain-of-thought. Under a fixed generation evaluation (template \texttt{qwen3\_nothink}, Temp=0.6, Top-$p$=0.8), pure SFT achieves BLEU-4=17.84 on our validation set, while the merged model (PT=0.3, SFT=0.7) drops to BLEU-4=6.50. Meanwhile multiple-choice accuracy remains comparable (avg 0.777 vs 0.778) and MedQA improves from 0.664 to 0.681. We further show that small pipeline mistakes (e.g., loading the wrong adapter, export-directory overwrite, or template mismatch) can spuriously attribute SFT-only behavior to merged models. We provide a lightweight merge-verification routine that numerically checks merged weights against the intended linear combination, along with full logs for reproducibility.
♻ ☆ When Distance Distracts: Representation Distance Bias in BT-Loss for Reward Models
Reward models are central to Large Language Model (LLM) alignment within the framework of RLHF. The standard objective used in reward modeling is the Bradley-Terry (BT) loss, which learns from pairwise data consisting of chosen and rejected responses. In this work, we analyze the per-sample gradient of BT-loss and show spurious learning signals due to representation distance. In particular, BT gradient norm scales with two distinct components: (1) prediction error, reflected by the difference in predicted rewards between chosen and rejected responses, and critically, (2) representation distance between the pair measured in the output space of the final layer. While the first term captures the intended training signal, the second term can significantly impact the update magnitude and misalign learning. Specifically, pairs with small representation distance often receive vanishingly weak updates, even when misranked, while pairs with large distance receive disproportionately strong updates. This leads to gradients from large-distance pairs to overshadow those from small-distance pairs, where fine-grained distinctions are especially important. To overcome this limitation, we propose NormBT, an adaptive pair-wise normalization scheme that rescales updates to balance representation-driven effects and focuses learning signals on prediction error. NormBT is a lightweight, drop-in modification to BT loss with negligible overhead. Across various LLM backbones and datasets, NormBT improves reward model performance consistently, with notable gains of over 5% on the Reasoning category of RewardBench, which contains numerous fine-grained pairs.
♻ ☆ MARS: Co-evolving Dual-System Deep Research via Multi-Agent Reinforcement Learning
Large Reasoning Models (LRMs) face two fundamental limitations: excessive token consumption when overanalyzing simple information processing tasks, and inability to access up-to-date knowledge beyond their training data. We introduce MARS (Multi-Agent System for Deep ReSearch), a novel co-evolution framework that jointly optimizes dual cognitive systems through multi-agent reinforcement learning. Unlike prior approaches that employ fixed or independently-trained summarizers, MARS enables System 1 (fast, intuitive processing) and System 2 (deliberate reasoning) to co-adapt through shared trajectory rewards, developing complementary strategies where System 1 learns to distill information specifically useful for System 2's reasoning. We extend Group Relative Policy Optimization (GRPO) for multi-agent settings with three key innovations: (1) decoupled gradient computation ensuring proper credit assignment despite shared rewards, (2) bin-packing optimization for efficient parallel information processing, and (3) advantage-weighted balanced sampling preventing training imbalance. Extensive experiments demonstrate that MARS (8B), trained under a challenging Zero RL setting without any supervised fine-tuning, achieves 8.17% on HLE -- outperforming WebThinker (32B with SFT, 6.87%) and narrowing the gap with proprietary models like Claude 3.7 Sonnet (7.89%) -- while achieving an average gain of 8.9% across 7 knowledge-intensive tasks.
comment: Ongoing Work
♻ ☆ Mental Health Impacts of AI Companions: Triangulating Social Media Quasi-Experiments, User Perspectives, and Relational Theory
AI-powered companion chatbots (AICCs) such as Replika are increasingly popular, offering empathetic interactions, yet their psychosocial impacts remain unclear. We examined how engaging with AICCs shaped wellbeing and how users perceived these experiences. First, we conducted a large-scale quasi-experimental study of longitudinal Reddit data, applying stratified propensity score matching and Difference-in-Differences regression. Findings revealed mixed effects -- greater grief expression and interpersonal focus, alongside increases in language about loneliness, depression, and suicidal ideation. Second, we complemented these results with 18 semi-structured interviews, which we thematically analyzed and contextualized using Knapp's relationship development model. We identified trajectories of initiation, escalation, and bonding, wherein AICCs provided emotional validation and social rehearsal but also carried risks of over-reliance and withdrawal. Triangulating across methods, we offer design implications for AI companions that scaffold healthy boundaries, support mindful engagement, support disclosure without dependency, and surface relationship stages -- maximizing psychosocial benefits while mitigating risks.
♻ ☆ Future of Work with AI Agents: Auditing Automation and Augmentation Potential across the U.S. Workforce
The rapid rise of compound AI systems (a.k.a., AI agents) is reshaping the labor market, raising concerns about job displacement, diminished human agency, and overreliance on automation. Yet, we lack a systematic understanding of the evolving landscape. In this paper, we address this gap by introducing a novel auditing framework to assess which occupational tasks workers want AI agents to automate or augment, and how those desires align with the current technological capabilities. Our framework features an audio-enhanced mini-interview to capture nuanced worker desires and introduces the Human Agency Scale (HAS) as a shared language to quantify the preferred level of human involvement. Using this framework, we construct the WORKBank database, building on the U.S. Department of Labor's O*NET database, to capture preferences from 1,500 domain workers and capability assessments from AI experts across over 844 tasks spanning 104 occupations. Jointly considering the desire and technological capability divides tasks in WORKBank into four zones: Automation "Green Light" Zone, Automation "Red Light" Zone, R&D Opportunity Zone, Low Priority Zone. This highlights critical mismatches and opportunities for AI agent development. Moving beyond a simple automate-or-not dichotomy, our results reveal diverse HAS profiles across occupations, reflecting heterogeneous expectations for human involvement. Moreover, our study offers early signals of how AI agent integration may reshape the core human competencies, shifting from information-focused skills to interpersonal ones. These findings underscore the importance of aligning AI agent development with human desires and preparing workers for evolving workplace dynamics.
comment: Preprint, data available at https://futureofwork.saltlab.stanford.edu/
Multimedia 4
☆ Unified ROI-based Image Compression Paradigm with Generalized Gaussian Model
Region-of-Interest (ROI)-based image compression allocates bits unevenly according to the semantic importance of different regions. Such differentiated coding typically induces a sharp-peaked and heavy-tailed distribution. This distribution characteristic mathematically necessitates a probability model with adaptable shape parameters for accurate description. However, existing methods commonly use a Gaussian model to fit this distribution, resulting in a loss of coding performance. To systematically analyze the impact of this distribution on ROI coding, we develop a unified rate-distortion optimization theoretical paradigm. Building on this paradigm, we propose a novel Generalized Gaussian Model (GGM) to achieve flexible modeling of the latent variables distribution. To support stable optimization of GGM, we introduce effective differentiable functions and further propose a dynamic lower bound to alleviate train-test mismatch. Moreover, finite differences are introduced to solve the gradient computation after GGM fits the distribution. Experiments on COCO2017 demonstrate that our method achieves state-of-the-art in both ROI reconstruction and downstream tasks (e.g., Segmentation, Object Detection). Furthermore, compared to classical probability models, our GGM provides a more precise fit to feature distributions and achieves superior coding performance. The project page is at https://github.com/hukai-tju/ROIGGM.
comment: 14 pages, 18 figures,
☆ Seeing, Hearing, and Knowing Together: Multimodal Strategies in Deepfake Videos Detection
As deepfake videos become increasingly difficult for people to recognise, understanding the strategies humans use is key to designing effective media literacy interventions. We conducted a study with 195 participants between the ages of 21 and 40, who judged real and deepfake videos, rated their confidence, and reported the cues they relied on across visual, audio, and knowledge strategies. Participants were more accurate with real videos than with deepfakes and showed lower expected calibration error for real content. Through association rule mining, we identified cue combinations that shaped performance. Visual appearance, vocal, and intuition often co-occurred for successful identifications, which highlights the importance of multimodal approaches in human detection. Our findings show which cues help or hinder detection and suggest directions for designing media literacy tools that guide effective cue use. Building on these insights can help people improve their identification skills and become more resilient to deceptive digital media.
☆ DRFormer: A Dual-Regularized Bidirectional Transformer for Person Re-identification
Both fine-grained discriminative details and global semantic features can contribute to solving person re-identification challenges, such as occlusion and pose variations. Vision foundation models (\textit{e.g.}, DINO) excel at mining local textures, and vision-language models (\textit{e.g.}, CLIP) capture strong global semantic difference. Existing methods predominantly rely on a single paradigm, neglecting the potential benefits of their integration. In this paper, we analyze the complementary roles of these two architectures and propose a framework to synergize their strengths by a \textbf{D}ual-\textbf{R}egularized Bidirectional \textbf{Transformer} (\textbf{DRFormer}). The dual-regularization mechanism ensures diverse feature extraction and achieves a better balance in the contributions of the two models. Extensive experiments on five benchmarks show that our method effectively harmonizes local and global representations, achieving competitive performance against state-of-the-art methods.
♻ ☆ Generative Video Compression: Towards 0.01% Compression Rate for Video Transmission
Whether a video can be compressed at an extreme compression rate as low as 0.01%? To this end, we achieve the compression rate as 0.02% at some cases by introducing Generative Video Compression (GVC), a new framework that redefines the limits of video compression by leveraging modern generative video models to achieve extreme compression rates while preserving a perception-centric, task-oriented communication paradigm, corresponding to Level C of the Shannon-Weaver model. Besides, How we trade computation for compression rate or bandwidth? GVC answers this question by shifting the burden from transmission to inference: it encodes video into extremely compact representations and delegates content reconstruction to the receiver, where powerful generative priors synthesize high-quality video from minimal transmitted information. Is GVC practical and deployable? To ensure practical deployment, we propose a compression-computation trade-off strategy, enabling fast inference on consume-grade GPUs. Within the AI Flow framework, GVC opens new possibility for video communication in bandwidth- and resource-constrained environments such as emergency rescue, remote surveillance, and mobile edge computing. Through empirical validation, we demonstrate that GVC offers a viable path toward a new effective, efficient, scalable, and practical video communication paradigm.
Computation and Language 17
☆ A Baseline Multimodal Approach to Emotion Recognition in Conversations
We present a lightweight multimodal baseline for emotion recognition in conversations using the SemEval-2024 Task 3 dataset built from the sitcom Friends. The goal of this report is not to propose a novel state-of-the-art method, but to document an accessible reference implementation that combines (i) a transformer-based text classifier and (ii) a self-supervised speech representation model, with a simple late-fusion ensemble. We report the baseline setup and empirical results obtained under a limited training protocol, highlighting when multimodal fusion improves over unimodal models. This preprint is provided for transparency and to support future, more rigorous comparisons.
comment: 10 pages
☆ Do Schwartz Higher-Order Values Help Sentence-Level Human Value Detection? When Hard Gating Hurts
Sentence-level human value detection is typically framed as multi-label classification over Schwartz values, but it remains unclear whether Schwartz higher-order (HO) categories provide usable structure. We study this under a strict compute-frugal budget (single 8 GB GPU) on ValueEval'24 / ValuesML (74K English sentences). We compare (i) direct supervised transformers, (ii) HO$\rightarrow$values pipelines that enforce the hierarchy with hard masks, and (iii) Presence$\rightarrow$HO$\rightarrow$values cascades, alongside low-cost add-ons (lexica, short context, topics), label-wise threshold tuning, small instruction-tuned LLM baselines ($\le$10B), QLoRA, and simple ensembles. HO categories are learnable from single sentences (e.g., the easiest bipolar pair reaches Macro-$F_1\approx0.58$), but hard hierarchical gating is not a reliable win: it often reduces end-task Macro-$F_1$ via error compounding and recall suppression. In contrast, label-wise threshold tuning is a high-leverage knob (up to $+0.05$ Macro-$F_1$), and small transformer ensembles provide the most consistent additional gains (up to $+0.02$ Macro-$F_1$). Small LLMs lag behind supervised encoders as stand-alone systems, yet can contribute complementary errors in cross-family ensembles. Overall, HO structure is useful descriptively, but enforcing it with hard gates hurts sentence-level value detection; robust improvements come from calibration and lightweight ensembling.
comment: Code: https://github.com/VictorMYeste/human-value-detection, 42 pages, 4 figures
☆ Hallucination is a Consequence of Space-Optimality: A Rate-Distortion Theorem for Membership Testing
Large language models often hallucinate with high confidence on "random facts" that lack inferable patterns. We formalize the memorization of such facts as a membership testing problem, unifying the discrete error metrics of Bloom filters with the continuous log-loss of LLMs. By analyzing this problem in the regime where facts are sparse in the universe of plausible claims, we establish a rate-distortion theorem: the optimal memory efficiency is characterized by the minimum KL divergence between score distributions on facts and non-facts. This theoretical framework provides a distinctive explanation for hallucination: even with optimal training, perfect data, and a simplified "closed world" setting, the information-theoretically optimal strategy under limited capacity is not to abstain or forget, but to assign high confidence to some non-facts, resulting in hallucination. We validate this theory empirically on synthetic data, showing that hallucinations persist as a natural consequence of lossy compression.
☆ EffGen: Enabling Small Language Models as Capable Autonomous Agents
Most existing language model agentic systems today are built and optimized for large language models (e.g., GPT, Claude, Gemini) via API calls. While powerful, this approach faces several limitations including high token costs and privacy concerns for sensitive applications. We introduce effGen, an open-source agentic framework optimized for small language models (SLMs) that enables effective, efficient, and secure local deployment (pip install effgen). effGen makes four major contributions: (1) Enhanced tool-calling with prompt optimization that compresses contexts by 70-80% while preserving task semantics, (2) Intelligent task decomposition that breaks complex queries into parallel or sequential subtasks based on dependencies, (3) Complexity-based routing using five factors to make smart pre-execution decisions, and (4) Unified memory system combining short-term, long-term, and vector-based storage. Additionally, effGen unifies multiple agent protocols (MCP, A2A, ACP) for cross-protocol communication. Results on 13 benchmarks show effGen outperforms LangChain, AutoGen, and Smolagents with higher success rates, faster execution, and lower memory. Our results reveal that prompt optimization and complexity routing have complementary scaling behavior: optimization benefits SLMs more (11.2% gain at 1.5B vs 2.4% at 32B), while routing benefits large models more (3.6% at 1.5B vs 7.9% at 32B), providing consistent gains across all scales when combined. effGen (https://effgen.org/) is released under the MIT License, ensuring broad accessibility for research and commercial use. Our framework code is publicly available at https://github.com/ctrl-gaurav/effGen.
☆ ILSIC: Corpora for Identifying Indian Legal Statutes from Queries by Laypeople EACL 2026
Legal Statute Identification (LSI) for a given situation is one of the most fundamental tasks in Legal NLP. This task has traditionally been modeled using facts from court judgments as input queries, due to their abundance. However, in practical settings, the input queries are likely to be informal and asked by laypersons, or non-professionals. While a few laypeople LSI datasets exist, there has been little research to explore the differences between court and laypeople data for LSI. In this work, we create ILSIC, a corpus of laypeople queries covering 500+ statutes from Indian law. Additionally, the corpus also contains court case judgements to enable researchers to effectively compare between court and laypeople data for LSI. We conducted extensive experiments on our corpus, including benchmarking over the laypeople dataset using zero and few-shot inference, retrieval-augmented generation and supervised fine-tuning. We observe that models trained purely on court judgements are ineffective during test on laypeople queries, while transfer learning from court to laypeople data can be beneficial in certain scenarios. We also conducted fine-grained analyses of our results in terms of categories of queries and frequency of statutes.
comment: 9 Pages of Main, 1 page of Limitations and Ethics Statement, 11 Pages of Appendix, Accepted for Publication at EACL 2026 (Findings)
☆ Beyond Output Critique: Self-Correction via Task Distillation
Large language models (LLMs) have shown promising self-correction abilities, where iterative refinement improves the quality of generated responses. However, most existing approaches operate at the level of output critique, patching surface errors while often failing to correct deeper reasoning flaws. We propose SELF-THOUGHT, a framework that introduces an intermediate step of task abstraction before solution refinement. Given an input and an initial response, the model first distills the task into a structured template that captures key variables, constraints, and problem structure. This abstraction then guides solution instantiation, grounding subsequent responses in a clearer understanding of the task and reducing error propagation. Crucially, we show that these abstractions can be transferred across models: templates generated by larger models can serve as structured guides for smaller LLMs, which typically struggle with intrinsic self-correction. By reusing distilled task structures, smaller models achieve more reliable refinements without heavy fine-tuning or reliance on external verifiers. Experiments across diverse reasoning tasks demonstrate that SELF-THOUGHT improves accuracy, robustness, and generalization for both large and small models, offering a scalable path toward more reliable self-correcting language systems.
♻ ☆ RaZeR: Pushing the Limits of NVFP4 Quantization with Redundant Zero Remapping
The recently introduced NVFP4 format demonstrates remarkable performance and memory benefits for quantized large language model (LLM) inference. However, we observe two types of redundancy in NVFP4 encoding: (1) The FP4 element format naturally exposes an unused quantization value due to its sign-magnitude representation that contains both positive and negative zeros. (2) The FP8 block scaling factor has an unused sign bit because it is always positive. Additionally, we find that LLM weights are more tolerant to a lower-precision block scaling factor. Based on these observations, we propose Redundant Zero Remapping (RaZeR), an enhanced numerical format that pushes the limits of NVFP4 for more accurate LLM quantization under the same memory footprint. RaZeR leverages the redundant bits of the block scaling factor to adaptively remap the redundant FP4 zero to additional quantization values with improved accuracy. To demonstrate the practicality of RaZeR, we design efficient GPU kernels for RaZeR-quantized LLM inference and propose novel hardware to natively support this. Extensive experiments validate RaZeR's superior performance for 4-bit LLM quantization. For example, relative to native NVFP4, RaZeR reduces the average perplexity loss by 34.6% and 31.2% under weight-only and weight-activation quantization, respectively. Code is available at: https://github.com/yc2367/NVFP4-RaZeR.
comment: Preprint. Under review
♻ ☆ LLM-Based Multi-Agent Blackboard System for Information Discovery in Data Science
Advances in large language models (LLMs) have created new opportunities in data science, but their deployment is often limited by the challenge of finding relevant data in large data lakes. Existing methods struggle with this: both single- and multi-agent systems are quickly overwhelmed by large, heterogeneous files, and master-slave multi-agent systems rely on a rigid central controller that requires precise knowledge of each sub-agent's capabilities, which is not possible in large-scale settings where the main agent lacks full observability over sub-agents' knowledge and competencies. We propose a novel multi-agent paradigm inspired by the blackboard architecture for traditional AI models. In our framework, a central agent posts requests to a shared blackboard, and autonomous subordinate agents - either responsible for a partition of the data lake or retrieval from the web - volunteer to respond based on their capabilities. This design improves scalability and flexibility by removing the need for a central coordinator to know each agent's expertise or internal knowledge. We evaluate the approach on three benchmarks that require data discovery: KramaBench and modified versions of DSBench and DA-Code. Results show that the blackboard architecture substantially outperforms strong baselines, achieving 13%-57% relative improvements in end-to-end success and up to a 9% relative gain in data discovery F1 over the best baseline.
♻ ☆ Multi-Agent Design: Optimizing Agents with Better Prompts and Topologies ICLR 2026
Large language models, employed as multiple agents that interact and collaborate with each other, have excelled at solving complex tasks. The agents are programmed with prompts that declare their functionality, along with the topologies that orchestrate interactions across agents. Designing prompts and topologies for multi-agent systems (MAS) is inherently complex. To automate the entire design process, we first conduct an in-depth analysis of the design space aiming to understand the factors behind building effective MAS. We reveal that prompts together with topologies play critical roles in enabling more effective MAS design. Based on the insights, we propose Multi-Agent System Search (MASS), a MAS optimization framework that efficiently exploits the complex MAS design space by interleaving its optimization stages, from local to global, from prompts to topologies, over three stages: 1) block-level (local) prompt optimization; 2) workflow topology optimization; 3) workflow-level (global) prompt optimization, where each stage is conditioned on the iteratively optimized prompts/topologies from former stages. We show that MASS-optimized multi-agent systems outperform a spectrum of existing alternatives by a substantial margin. Based on the MASS-found systems, we finally propose design principles behind building effective multi-agent systems.
comment: ICLR 2026
♻ ☆ Agentic Policy Optimization via Instruction-Policy Co-Evolution
Reinforcement Learning with Verifiable Rewards (RLVR) has advanced the reasoning capability of large language models (LLMs), enabling autonomous agents that can conduct effective multi-turn and tool-integrated reasoning. While instructions serve as the primary protocol for defining agents, RLVR typically relies on static and manually designed instructions. However, those instructions may be suboptimal for the base model, and the optimal instruction may change as the agent's policy improves and explores the interaction with the environment. To bridge the gap, we introduce INSPO, a novel Instruction-Policy co-evolution framework that integrates instruction optimization as a dynamic component of the reinforcement learning (RL) loop. INSPO maintains a dynamic population of instruction candidates that are sampled with questions, where reward signals in RL loops are automatically attributed to each instruction, and low performers are periodically pruned. New instructions are generated and verified through an on-policy reflection mechanism, where an LLM-based optimizer analyzes past experience from a replay buffer and evolves more effective strategies given the current policy. We conduct extensive experiments on multi-turn retrieval and reasoning tasks, demonstrating that INSPO substantially outperforms strong baselines relying on static instructions. INSPO discovers innovative instructions that guide the agent toward more strategic reasoning paths, achieving substantial performance gains with only a marginal increase in computational overhead.
comment: 8 pages, 4 figures, 1 table (17 pages including references and appendices)
♻ ☆ KAPSO: A Knowledge-grounded framework for Autonomous Program Synthesis and Optimization
We introduce KAPSO, a modular framework for autonomous program synthesis and optimization. Given a natural language goal and an evaluation method, KAPSO iteratively performs ideation, code synthesis and editing, execution, evaluation, and learning to improve a runnable artifact toward measurable objectives. Rather than treating synthesis as the endpoint, KAPSO uses synthesis as an operator within a long-horizon optimization loop, where progress is defined by evaluator outcomes. KAPSO targets long-horizon failures common in coding agents, including lost experimental state, brittle debugging, and weak reuse of domain expertise, by integrating three tightly coupled components. First, a git-native experimentation engine isolates each attempt as a branch, producing reproducible artifacts and preserving provenance across iterations. Second, a knowledge system ingests heterogeneous sources, including repositories, internal playbooks, and curated external resources such as documentation, scientific papers, and web search results, and organizes them into a structured representation that supports retrieval over workflows, implementations, and environment constraints. Third, a cognitive memory layer coordinates retrieval and maintains an episodic store of reusable lessons distilled from experiment traces (run logs, diffs, and evaluator feedback), reducing repeated error modes and accelerating convergence. We evaluated KAPSO on MLE-Bench (Kaggle-style ML competitions) and ALE-Bench (AtCoder heuristic optimization), and report end-to-end performance. Code Available at: https://github.com/Leeroo-AI/kapso
♻ ☆ Stable Signer: Hierarchical Sign Language Generative Model
Sign Language Production (SLP) is the process of converting the complex input text into a real video. Most previous works focused on the Text2Gloss, Gloss2Pose, Pose2Vid stages, and some concentrated on Prompt2Gloss and Text2Avatar stages. However, this field has made slow progress due to the inaccuracy of text conversion, pose generation, and the rendering of poses into real human videos in these stages, resulting in gradually accumulating errors. Therefore, in this paper, we streamline the traditional redundant structure, simplify and optimize the task objective, and design a new sign language generative model called Stable Signer. It redefines the SLP task as a hierarchical generation end-to-end task that only includes text understanding (Prompt2Gloss, Text2Gloss) and Pose2Vid, and executes text understanding through our proposed new Sign Language Understanding Linker called SLUL, and generates hand gestures through the named SLP-MoE hand gesture rendering expert block to end-to-end generate high-quality and multi-style sign language videos. SLUL is trained using the newly developed Semantic-Aware Gloss Masking Loss (SAGM Loss). Its performance has improved by 48.6% compared to the current SOTA generation methods.
comment: 12 pages, 7 figures. More Demo at https://stablesigner.github.io
♻ ☆ Don't Break the Cache: An Evaluation of Prompt Caching for Long-Horizon Agentic Tasks
Recent advancements in Large Language Model (LLM) agents have enabled complex multi-turn agentic tasks requiring extensive tool calling, where conversations can span dozens of API calls with increasingly large context windows. However, although major LLM providers offer prompt caching to reduce cost and latency, its benefits for agentic workloads remain underexplored in the research literature. To our knowledge, no prior work quantifies these cost savings or compares caching strategies for multi-turn agentic tasks. We present a comprehensive evaluation of prompt caching across three major LLM providers (OpenAI, Anthropic, and Google) and compare three caching strategies, including full context caching, system prompt only caching, and caching that excludes dynamic tool results. We evaluate on DeepResearch Bench, a multi-turn agentic benchmark where agents autonomously execute real-world web search tool calls to answer complex research questions, measuring both API cost and time to first token (TTFT) across over 500 agent sessions with 10,000-token system prompts. Our results demonstrate that prompt caching reduces API costs by 41-80% and improves time to first token by 13-31% across providers. We find that strategic prompt cache block control, such as placing dynamic content at the end of the system prompt, avoiding dynamic traditional function calling, and excluding dynamic tool results, provides more consistent benefits than naive full-context caching, which can paradoxically increase latency. An ablation study across prompt sizes (500-50,000 tokens) and tool call counts (3-50) demonstrates universal linear cost and TTFT benefits, after the provider caching token minimum, and reveal provider-specific strategy discrepancies across variants. We provide nuanced discussion and guidance for implementing prompt caching in production agentic systems.
comment: 16 pages, 9 figures
♻ ☆ SignX: Continuous Sign Recognition in Compact Pose-Rich Latent Space
The complexity of sign language data processing brings many challenges. The current approach to recognition of ASL signs aims to translate RGB sign language videos through pose information into English-based ID Glosses, which serve to uniquely identify ASL signs. This paper proposes SignX, a novel framework for continuous sign language recognition in compact pose-rich latent space. First, we construct a unified latent representation that encodes heterogeneous pose formats (SMPLer-X, DWPose, Mediapipe, PrimeDepth, and Sapiens Segmentation) into a compact, information-dense space. Second, we train a ViT-based Video2Pose module to extract this latent representation directly from raw videos. Finally, we develop a temporal modeling and sequence refinement method that operates entirely in this latent space. This multi-stage design achieves end-to-end sign language recognition while significantly reducing computational consumption. Experimental results demonstrate that SignX achieves state-of-the-art accuracy on continuous sign language recognition.
comment: 23 pages, CSLR SOTA (2026). More demo at https://signerx.github.io/SignX/
♻ ☆ DYCP: Dynamic Context Pruning for Long-Form Dialogue with LLMs ACL 2026
Large Language Models (LLMs) increasingly operate over long-form dialogues with frequent topic shifts. While recent LLMs support extended context windows, efficient management of dialogue history in practice is needed due to inference cost and latency constraints. We present DyCP, a lightweight context management method implemented outside the LLM that dynamically identifies and retrieves relevant dialogue segments conditioned on the current turn, without offline memory construction. DyCP manages dialogue context while preserving the sequential nature of dialogue without predefined topic boundaries, enabling adaptive and efficient context selection. Across three long-form dialogue benchmarks-LoCoMo, MT-Bench+, and SCM4LLMs-and multiple LLM backends, DyCP achieves competitive answer quality in downstream generation, with more selective context usage and improved inference efficiency.
comment: Accepted (B) to TACL 2026
♻ ☆ On Group Relative Policy Optimization Collapse in Agent Search: The Lazy Likelihood-Displacement
Tool-integrated (TI) reinforcement learning (RL) enables large language models (LLMs) to perform multi-step reasoning by interacting with external tools such as search engines and retrievers. Group Relative Policy Optimization (GRPO), exemplified by the recent Search-R1, offers fast convergence and a value-free formulation that makes it appealing for this setting, yet consistently suffers from training collapse. We identify Lazy Likelihood Displacement (LLD), a systematic reduction or stagnation in the likelihood of both correct and incorrect responses, as the core mechanism driving this failure. LLD emerges early and triggers a self-reinforcing LLD Death Spiral, where declining likelihood leads to low-confidence responses, inflating gradients, and ultimately causing collapse. We empirically characterize this process across models on a Search-R1-style, search-integrated question answering task, revealing a consistent three-phase trajectory: early stagnation, steady decay, and accelerated collapse. To address this, we propose a likelihood-preserving regularization LLDS that activates only when a response action's likelihood decreases, and regularizes only the tokens responsible. This fine-grained structure mitigates LLD with minimal interference. Our method stabilizes training, prevents gradient explosion, and yields substantial performance improvements across seven benchmarks, including relative improvements of +45.2% on Qwen2.5-3B and +37.1% on Qwen2.5-7B over vanilla GRPO training. Our results establish LLD as a previously overlooked bottleneck in GRPO-based TIRL and provide a practical path toward stable, scalable training of tool-integrated RL.
♻ ☆ From Lengthy to Lucid: A Systematic Literature Review on NLP Techniques for Taming Long Sentences
Long sentences have been a persistent issue in written communication for many years since they make it challenging for readers to grasp the main points or follow the initial intention of the writer. This survey, conducted using the PRISMA guidelines, systematically reviews two main strategies for addressing the issue of long sentences: a) sentence compression and b) sentence splitting. An increased trend of interest in this area has been observed since 2005, with significant growth after 2017. Current research is dominated by supervised approaches for both sentence compression and splitting. Yet, there is a considerable gap in weakly and self-supervised techniques, suggesting an opportunity for further research, especially in domains with limited data. We also observe that despite their potential, Large Language Models (LLMs) have not yet been widely explored in this area. In this survey, we categorize and group the most representative methods into a comprehensive taxonomy. We also conduct a comparative evaluation analysis of these methods on common sentence compression and splitting datasets. Finally, we discuss the challenges and limitations of current methods, providing valuable insights for future research directions. This survey is meant to serve as a comprehensive resource for addressing the complexities of long sentences. We aim to enable researchers to make further advancements in the field until long sentences are no longer a barrier to effective communication.
Multimedia 8
☆ Cross-Modal Binary Attention: An Energy-Efficient Fusion Framework for Audio-Visual Learning
Effective multimodal fusion requires mechanisms that can capture complex cross-modal dependencies while remaining computationally scalable for real-world deployment. Existing audio-visual fusion approaches face a fundamental trade-off: attention-based methods effectively model cross-modal relationships but incur quadratic computational complexity that prevents hierarchical, multi-scale architectures, while efficient fusion strategies rely on simplistic concatenation that fails to extract complementary cross-modal information. We introduce CMQKA, a novel cross-modal fusion mechanism that achieves linear O(N) complexity through efficient binary operations, enabling scalable hierarchical fusion previously infeasible with conventional attention. CMQKA employs bidirectional cross-modal Query-Key attention to extract complementary spatiotemporal features and uses learnable residual fusion to preserve modality-specific characteristics while enriching representations with cross-modal information. Building upon CMQKA, we present SNNergy, an energy-efficient multimodal fusion framework with a hierarchical architecture that processes inputs through progressively decreasing spatial resolutions and increasing semantic abstraction. This multi-scale fusion capability allows the framework to capture both local patterns and global context across modalities. Implemented with event-driven binary spike operations, SNNergy achieves remarkable energy efficiency while maintaining fusion effectiveness and establishing new state-of-the-art results on challenging audio-visual benchmarks, including CREMA-D, AVE, and UrbanSound8K-AV, significantly outperforming existing multimodal fusion baselines. Our framework advances multimodal fusion by introducing a scalable fusion mechanism that enables hierarchical cross-modal integration with practical energy efficiency for real-world audio-visual intelligence systems.
☆ MTAVG-Bench: A Comprehensive Benchmark for Evaluating Multi-Talker Dialogue-Centric Audio-Video Generation
Recent advances in text-to-audio-video (T2AV) generation have enabled models to synthesize audio-visual videos with multi-participant dialogues. However, existing evaluation benchmarks remain largely designed for human-recorded videos or single-speaker settings. As a result, potential errors that occur in generated multi-talker dialogue videos, such as identity drift, unnatural turn transitions, and audio-visual misalignment, cannot be effectively captured and analyzed. To address this issue, we introduce MTAVG-Bench, a benchmark for evaluating audio-visual multi-speaker dialogue generation. MTAVG-Bench is built via a semi-automatic pipeline, where 1.8k videos are generated using multiple popular models with carefully designed prompts, yielding 2.4k manually annotated QA pairs. The benchmark evaluates multi-speaker dialogue generation at four levels: audio-visual signal fidelity, temporal attribute consistency, social interaction, and cinematic expression. We benchmark 12 proprietary and open-source omni-models on MTAVG-Bench, with Gemini 3 Pro achieving the strongest overall performance, while leading open-source models remain competitive in signal fidelity and consistency. Overall, MTAVG-Bench enables fine-grained failure analysis for rigorous model comparison and targeted video generation refinement.
☆ GTATrack: Winner Solution to SoccerTrack 2025 with Deep-EIoU and Global Tracklet Association
Multi-object tracking (MOT) in sports is highly challenging due to irregular player motion, uniform appearances, and frequent occlusions. These difficulties are further exacerbated by the geometric distortion and extreme scale variation introduced by static fisheye cameras. In this work, we present GTATrack, a hierarchical tracking framework that win first place in the SoccerTrack Challenge 2025. GTATrack integrates two core components: Deep Expansion IoU (Deep-EIoU) for motion-agnostic online association and Global Tracklet Association (GTA) for trajectory-level refinement. This two-stage design enables both robust short-term matching and long-term identity consistency. Additionally, a pseudo-labeling strategy is used to boost detector recall on small and distorted targets. The synergy between local association and global reasoning effectively addresses identity switches, occlusions, and tracking fragmentation. Our method achieved a winning HOTA score of 0.60 and significantly reduced false positives to 982, demonstrating state-of-the-art accuracy in fisheye-based soccer tracking. Our code is available at https://github.com/ron941/GTATrack-STC2025.
comment: Winner Solution of SoccerTrack in ACM Multimedia 2025 Workshop MMSports
☆ Recent Advances of End-to-End Video Coding Technologies for AVS Standard Development
Video coding standards are essential to enable the interoperability and widespread adoption of efficient video compression technologies. In pursuit of greater video compression efficiency, the AVS video coding working group launched the standardization exploration of end-to-end intelligent video coding, establishing the AVS End-to-End Intelligent Video Coding Exploration Model (AVS-EEM) project. A core design principle of AVS-EEM is its focus on practical deployment, featuring inherently low computational complexity and requiring strict adherence to the common test conditions of conventional video coding. This paper details the development history of AVS-EEM and provides a systematic introduction to its key technical framework, covering model architectures, training strategies, and inference optimizations. These innovations have collectively driven the project's rapid performance evolution, enabling continuous and significant gains under strict complexity constraints. Through over two years of iterative refinement and collaborative effort, the coding performance of AVS-EEM has seen substantial improvement. Experimental results demonstrate that its latest model achieves superior compression efficiency compared to the conventional AVS3 reference software, marking a significant step toward a deployable intelligent video coding standard.
☆ RVCBench: Benchmarking the Robustness of Voice Cloning Across Modern Audio Generation Models
Modern voice cloning (VC) can synthesize speech that closely matches a target speaker from only seconds of reference audio, enabling applications such as personalized speech interfaces and dubbing. In practical deployments, modern audio generation models inevitably encounter noisy reference audios, imperfect text prompts, and diverse downstream processing, which can significantly hurt robustness. Despite rapid progress in VC driven by autoregressive codec-token language models and diffusion-based models, robustness under realistic deployment shifts remains underexplored. This paper introduces RVCBench, a comprehensive benchmark that evaluates Robustness in VC across the full generation pipeline, including input variation, generation challenges, output post-processing, and adversarial perturbations, covering 10 robustness tasks, 225 speakers, 14,370 utterances, and 11 representative modern VC models. Our evaluation uncovers substantial robustness gaps in VC: performance can deteriorate sharply under common input shifts and post-processing; long-context and cross-lingual scenarios further expose stability limitations; and both passive noise and proactive perturbation influence generation robustness. Collectively, these findings provide a unified picture of how current VC models fail in practice and introduce a standardized, open-source testbed to support the development of more robust and deployable VC models. We open-source our project at https://github.com/Nanboy-Ronan/RVCBench.
comment: 40 pages, 12figures
♻ ☆ Digital Simulations to Enhance Military Medical Evacuation Decision-Making
Medical evacuation is one of the United States Army's most storied and critical mission sets, responsible for efficiently and expediently evacuating the battlefield ill and injured. Medical evacuation planning involves designing a robust network of medical platforms and facilities capable of moving and treating large numbers of casualties. Until now, there has not been a medium to simulate these networks in a classroom setting and evaluate both offline planning and online decision-making performance. This work describes the Medical Evacuation Wargaming Initiative (MEWI), a three-dimensional multiplayer simulation developed in Unity that replicates battlefield constraints and uncertainties. MEWI accurately models patient interactions at casualty collection points, ambulance exchange points, medical treatment facilities, and evacuation platforms. Two operational scenarios are introduced: an amphibious island assault in the Pacific and a Eurasian conflict across a sprawling road and river network. These scenarios pit students against the clock to save as many casualties as possible while adhering to doctrinal lessons learned during didactic training. We visualize performance data collected from two iterations of the MEWI Pacific scenario executed in the United States Army's Medical Evacuation Doctrine Course. We consider post-wargame Likert survey data from student participants and external observer notes to identify key planning decision points, document medical evacuation lessons learned, and quantify general utility. Results indicate that MEWI participation substantially improves uptake of medical evacuation lessons learned and co-operative decision-making. MEWI is a substantial step forward in the field of high-fidelity training tools for medical education, and our study findings offer critical insights into improving medical evacuation education and operations across the joint force.
♻ ☆ TP-Blend: Textual-Prompt Attention Pairing for Precise Object-Style Blending in Diffusion Models
Current text-conditioned diffusion editors handle single object replacement well but struggle when a new object and a new style must be introduced simultaneously. We present Twin-Prompt Attention Blend (TP-Blend), a lightweight training-free framework that receives two separate textual prompts, one specifying a blend object and the other defining a target style, and injects both into a single denoising trajectory. TP-Blend is driven by two complementary attention processors. Cross-Attention Object Fusion (CAOF) first averages head-wise attention to locate spatial tokens that respond strongly to either prompt, then solves an entropy-regularised optimal transport problem that reassigns complete multi-head feature vectors to those positions. CAOF updates feature vectors at the full combined dimensionality of all heads (e.g., 640 dimensions in SD-XL), preserving rich cross-head correlations while keeping memory low. Self-Attention Style Fusion (SASF) injects style at every self-attention layer through Detail-Sensitive Instance Normalization. A lightweight one-dimensional Gaussian filter separates low- and high-frequency components; only the high-frequency residual is blended back, imprinting brush-stroke-level texture without disrupting global geometry. SASF further swaps the Key and Value matrices with those derived from the style prompt, enforcing context-aware texture modulation that remains independent of object fusion. Extensive experiments show that TP-Blend produces high-resolution, photo-realistic edits with precise control over both content and appearance, surpassing recent baselines in quantitative fidelity, perceptual quality, and inference speed.
♻ ☆ TraceRouter: Robust Safety for Large Foundation Models via Path-Level Intervention
Despite their capabilities, large foundation models (LFMs) remain susceptible to adversarial manipulation. Current defenses predominantly rely on the "locality hypothesis", suppressing isolated neurons or features. However, harmful semantics act as distributed, cross-layer circuits, rendering such localized interventions brittle and detrimental to utility. To bridge this gap, we propose \textbf{TraceRouter}, a path-level framework that traces and disconnects the causal propagation circuits of illicit semantics. TraceRouter operates in three stages: (1) it pinpoints a sensitive onset layer by analyzing attention divergence; (2) it leverages sparse autoencoders (SAEs) and differential activation analysis to disentangle and isolate malicious features; and (3) it maps these features to downstream causal pathways via feature influence scores (FIS) derived from zero-out interventions. By selectively suppressing these causal chains, TraceRouter physically severs the flow of harmful information while leaving orthogonal computation routes intact. Extensive experiments demonstrate that TraceRouter significantly outperforms state-of-the-art baselines, achieving a superior trade-off between adversarial robustness and general utility. Our code will be publicly released. WARNING: This paper contains unsafe model responses.
Computer Vision and Pattern Recognition 165
☆ VideoGPA: Distilling Geometry Priors for 3D-Consistent Video Generation
While recent video diffusion models (VDMs) produce visually impressive results, they fundamentally struggle to maintain 3D structural consistency, often resulting in object deformation or spatial drift. We hypothesize that these failures arise because standard denoising objectives lack explicit incentives for geometric coherence. To address this, we introduce VideoGPA (Video Geometric Preference Alignment), a data-efficient self-supervised framework that leverages a geometry foundation model to automatically derive dense preference signals that guide VDMs via Direct Preference Optimization (DPO). This approach effectively steers the generative distribution toward inherent 3D consistency without requiring human annotations. VideoGPA significantly enhances temporal stability, physical plausibility, and motion coherence using minimal preference pairs, consistently outperforming state-of-the-art baselines in extensive experiments.
☆ User Prompting Strategies and Prompt Enhancement Methods for Open-Set Object Detection in XR Environments IEEE
Open-set object detection (OSOD) localizes objects while identifying and rejecting unknown classes at inference. While recent OSOD models perform well on benchmarks, their behavior under realistic user prompting remains underexplored. In interactive XR settings, user-generated prompts are often ambiguous, underspecified, or overly detailed. To study prompt-conditioned robustness, we evaluate two OSOD models, GroundingDINO and YOLO-E, on real-world XR images and simulate diverse user prompting behaviors using vision-language models. We consider four prompt types: standard, underdetailed, overdetailed, and pragmatically ambiguous, and examine the impact of two enhancement strategies on these prompts. Results show that both models exhibit stable performance under underdetailed and standard prompts, while they suffer degradation under ambiguous prompts. Overdetailed prompts primarily affect GroundingDINO. Prompt enhancement substantially improves robustness under ambiguity, yielding gains exceeding 55% mIoU and 41% average confidence. Based on the findings, we propose several prompting strategies and prompt enhancement methods for OSOD models in XR environments.
comment: Accepted by IEEE VR 2026: GenAI-XR workshop
☆ Denoising the Deep Sky: Physics-Based CCD Noise Formation for Astronomical Imaging
Astronomical imaging remains noise-limited under practical observing constraints, while standard calibration pipelines mainly remove structured artifacts and leave stochastic noise largely unresolved. Learning-based denoising is promising, yet progress is hindered by scarce paired training data and the need for physically interpretable and reproducible models in scientific workflows. We propose a physics-based noise synthesis framework tailored to CCD noise formation. The pipeline models photon shot noise, photo-response non-uniformity, dark-current noise, readout effects, and localized outliers arising from cosmic-ray hits and hot pixels. To obtain low-noise inputs for synthesis, we average multiple unregistered exposures to produce high-SNR bases. Realistic noisy counterparts synthesized from these bases using our noise model enable the construction of abundant paired datasets for supervised learning. We further introduce a real-world dataset across multi-bands acquired with two twin ground-based telescopes, providing paired raw frames and instrument-pipeline calibrated frames, together with calibration data and stacked high-SNR bases for real-world evaluation.
☆ PaperBanana: Automating Academic Illustration for AI Scientists
Despite rapid advances in autonomous AI scientists powered by language models, generating publication-ready illustrations remains a labor-intensive bottleneck in the research workflow. To lift this burden, we introduce PaperBanana, an agentic framework for automated generation of publication-ready academic illustrations. Powered by state-of-the-art VLMs and image generation models, PaperBanana orchestrates specialized agents to retrieve references, plan content and style, render images, and iteratively refine via self-critique. To rigorously evaluate our framework, we introduce PaperBananaBench, comprising 292 test cases for methodology diagrams curated from NeurIPS 2025 publications, covering diverse research domains and illustration styles. Comprehensive experiments demonstrate that PaperBanana consistently outperforms leading baselines in faithfulness, conciseness, readability, and aesthetics. We further show that our method effectively extends to the generation of high-quality statistical plots. Collectively, PaperBanana paves the way for the automated generation of publication-ready illustrations.
☆ Training-Free Test-Time Adaptation with Brownian Distance Covariance in Vision-Language Models ICASSP 2026
Vision-language models suffer performance degradation under domain shift, limiting real-world applicability. Existing test-time adaptation methods are computationally intensive, rely on back-propagation, and often focus on single modalities. To address these issues, we propose Training-free Test-Time Adaptation with Brownian Distance Covariance (TaTa). TaTa leverages Brownian Distance Covariance-a powerful statistical measure that captures both linear and nonlinear dependencies via pairwise distances-to dynamically adapt VLMs to new domains without training or back-propagation. This not only improves efficiency but also enhances stability by avoiding disruptive weight updates. TaTa further integrates attribute-enhanced prompting to improve vision-language inference with descriptive visual cues. Combined with dynamic clustering and pseudo-label refinement, it effectively recalibrates the model for novel visual contexts. Experiments across diverse datasets show that TaTa significantly reduces computational cost while achieving state-of-the-art performance in domain and cross-dataset generalization.
comment: Accepted in ICASSP 2026
☆ Structured Over Scale: Learning Spatial Reasoning from Educational Video
Vision-language models (VLMs) demonstrate impressive performance on standard video understanding benchmarks yet fail systematically on simple reasoning tasks that preschool children can solve, including counting, spatial reasoning, and compositional understanding. We hypothesize that the pedagogically-structured content of educational videos provides an ideal training signal for improving these capabilities. We introduce DoraVQA, a dataset of 5,344 question-answer pairs automatically extracted from 8 seasons of Dora the Explorer with precise timestamp alignment. Each episode follows a consistent \textit{context-question-pause-answer} structure that creates a self-contained learning environment analogous to interactive tutoring. We fine-tune both Qwen2 and Qwen3 using Group Relative Policy Optimization (GRPO), leveraging the clear correctness signals and structured reasoning traces inherent in educational content. Despite training exclusively on 38 hours of children's educational videos, our approach achieves improvements of 8-14 points on DoraVQA and state-of-the-art 86.16\% on CVBench, with strong transfer to Video-MME and NExT-QA, demonstrating effective generalization from narrow pedagogical content to broad multimodal understanding. Through cross-domain benchmarks, we show that VLMs can perform tasks that require robust reasoning learned from structured educational content, suggesting that content structure matters as much as content scale.
☆ ShotFinder: Imagination-Driven Open-Domain Video Shot Retrieval via Web Search
In recent years, large language models (LLMs) have made rapid progress in information retrieval, yet existing research has mainly focused on text or static multimodal settings. Open-domain video shot retrieval, which involves richer temporal structure and more complex semantics, still lacks systematic benchmarks and analysis. To fill this gap, we introduce ShotFinder, a benchmark that formalizes editing requirements as keyframe-oriented shot descriptions and introduces five types of controllable single-factor constraints: Temporal order, Color, Visual style, Audio, and Resolution. We curate 1,210 high-quality samples from YouTube across 20 thematic categories, using large models for generation with human verification. Based on the benchmark, we propose ShotFinder, a text-driven three-stage retrieval and localization pipeline: (1) query expansion via video imagination, (2) candidate video retrieval with a search engine, and (3) description-guided temporal localization. Experiments on multiple closed-source and open-source models reveal a significant gap to human performance, with clear imbalance across constraints: temporal localization is relatively tractable, while color and visual style remain major challenges. These results reveal that open-domain video shot retrieval is still a critical capability that multimodal large models have yet to overcome.
comment: 28 pages, 7 figures
☆ Video-o3: Native Interleaved Clue Seeking for Long Video Multi-Hop Reasoning
Existing multimodal large language models for long-video understanding predominantly rely on uniform sampling and single-turn inference, limiting their ability to identify sparse yet critical evidence amid extensive redundancy. We introduce Video-o3, a novel framework that supports iterative discovery of salient visual clues, fine-grained inspection of key segments, and adaptive termination once sufficient evidence is acquired. Technically, we address two core challenges in interleaved tool invocation. First, to mitigate attention dispersion induced by the heterogeneity of reasoning and tool-calling, we propose Task-Decoupled Attention Masking, which isolates per-step concentration while preserving shared global context. Second, to control context length growth in multi-turn interactions, we introduce a Verifiable Trajectory-Guided Reward that balances exploration coverage with reasoning efficiency. To support training at scale, we further develop a data synthesis pipeline and construct Seeker-173K, comprising 173K high-quality tool-interaction trajectories for effective supervised and reinforcement learning. Extensive experiments show that Video-o3 substantially outperforms state-of-the-art methods, achieving 72.1% accuracy on MLVU and 46.5% on Video-Holmes. These results demonstrate Video-o3's strong multi-hop evidence-seeking and reasoning capabilities, and validate the effectiveness of native tool invocation in long-video scenarios.
comment: 24 pages, 15 figures, 11 tables
☆ Region-Normalized DPO for Medical Image Segmentation under Noisy Judges
While dense pixel-wise annotations remain the gold standard for medical image segmentation, they are costly to obtain and limit scalability. In contrast, many deployed systems already produce inexpensive automatic quality-control (QC) signals like model agreement, uncertainty measures, or learned mask-quality scores which can be used for further model training without additional ground-truth annotation. However, these signals can be noisy and biased, making preference-based fine-tuning susceptible to harmful updates. We study Direct Preference Optimization (DPO) for segmentation from such noisy judges using proposals generated by a supervised base segmenter trained on a small labeled set. We find that outcomes depend strongly on how preference pairs are mined: selecting the judge's top-ranked proposal can improve peak performance when the judge is reliable, but can amplify harmful errors under weaker judges. We propose Region-Normalized DPO (RN-DPO), a segmentation-aware objective which normalizes preference updates by the size of the disagreement region between masks, reducing the leverage of harmful comparisons and improving optimization stability. Across two medical datasets and multiple regimes, RN-DPO improves sustained performance and stabilizes preference-based fine-tuning, outperforming standard DPO and strong baselines without requiring additional pixel annotations.
☆ Med-Scout: Curing MLLMs' Geometric Blindness in Medical Perception via Geometry-Aware RL Post-Training
Despite recent Multimodal Large Language Models (MLLMs)' linguistic prowess in medical diagnosis, we find even state-of-the-art MLLMs suffer from a critical perceptual deficit: geometric blindness. This failure to ground outputs in objective geometric constraints leads to plausible yet factually incorrect hallucinations, rooted in training paradigms that prioritize linguistic fluency over geometric fidelity. This paper introduces Med-Scout, a novel framework that "cures" this blindness via Reinforcement Learning (RL) that leverages the intrinsic geometric logic latent within unlabeled medical images. Instead of relying on costly expert annotations, Med-Scout derives verifiable supervision signals through three strategic proxy tasks: Hierarchical Scale Localization, Topological Jigsaw Reconstruction, and Anomaly Consistency Detection. To rigorously quantify this deficit, we present Med-Scout-Bench, a new benchmark specifically designed to evaluate geometric perception. Extensive evaluations show that Med-Scout significantly mitigates geometric blindness, outperforming leading proprietary and open-source MLLMs by over 40% on our benchmark. Furthermore, this enhanced geometric perception generalizes to broader medical understanding, achieving superior results on radiological and comprehensive medical VQA tasks.
☆ Scale-Cascaded Diffusion Models for Super-Resolution in Medical Imaging IEEE
Diffusion models have been increasingly used as strong generative priors for solving inverse problems such as super-resolution in medical imaging. However, these approaches typically utilize a diffusion prior trained at a single scale, ignoring the hierarchical scale structure of image data. In this work, we propose to decompose images into Laplacian pyramid scales and train separate diffusion priors for each frequency band. We then develop an algorithm to perform super-resolution that utilizes these priors to progressively refine reconstructions across different scales. Evaluated on brain, knee, and prostate MRI data, our approach both improves perceptual quality over baselines and reduces inference time through smaller coarse-scale networks. Our framework unifies multiscale reconstruction and diffusion priors for medical image super-resolution.
comment: Accepted at IEEE International Symposium for Biomedical Imaging (ISBI) 2026
☆ Hi-Light: A Path to high-fidelity, high-resolution video relighting with a Novel Evaluation Paradigm
Video relighting offers immense creative potential and commercial value but is hindered by challenges, including the absence of an adequate evaluation metric, severe light flickering, and the degradation of fine-grained details during editing. To overcome these challenges, we introduce Hi-Light, a novel, training-free framework for high-fidelity, high-resolution, robust video relighting. Our approach introduces three technical innovations: lightness prior anchored guided relighting diffusion that stabilises intermediate relit video, a Hybrid Motion-Adaptive Lighting Smoothing Filter that leverages optical flow to ensure temporal stability without introducing motion blur, and a LAB-based Detail Fusion module that preserves high-frequency detail information from the original video. Furthermore, to address the critical gap in evaluation, we propose the Light Stability Score, the first quantitative metric designed to specifically measure lighting consistency. Extensive experiments demonstrate that Hi-Light significantly outperforms state-of-the-art methods in both qualitative and quantitative comparisons, producing stable, highly detailed relit videos.
☆ Segment Any Events with Language ICLR 2026
Scene understanding with free-form language has been widely explored within diverse modalities such as images, point clouds, and LiDAR. However, related studies on event sensors are scarce or narrowly centered on semantic-level understanding. We introduce SEAL, the first Semantic-aware Segment Any Events framework that addresses Open-Vocabulary Event Instance Segmentation (OV-EIS). Given the visual prompt, our model presents a unified framework to support both event segmentation and open-vocabulary mask classification at multiple levels of granularity, including instance-level and part-level. To enable thorough evaluation on OV-EIS, we curate four benchmarks that cover label granularity from coarse to fine class configurations and semantic granularity from instance-level to part-level understanding. Extensive experiments show that our SEAL largely outperforms proposed baselines in terms of performance and inference speed with a parameter-efficient architecture. In the Appendix, we further present a simple variant of our SEAL achieving generic spatiotemporal OV-EIS that does not require any visual prompts from users in the inference. Check out our project page in https://0nandon.github.io/SEAL
comment: ICLR 2026. Project Page: https://0nandon.github.io/SEAL
☆ FlowCalib: LiDAR-to-Vehicle Miscalibration Detection using Scene Flows
Accurate sensor-to-vehicle calibration is essential for safe autonomous driving. Angular misalignments of LiDAR sensors can lead to safety-critical issues during autonomous operation. However, current methods primarily focus on correcting sensor-to-sensor errors without considering the miscalibration of individual sensors that cause these errors in the first place. We introduce FlowCalib, the first framework that detects LiDAR-to-vehicle miscalibration using motion cues from the scene flow of static objects. Our approach leverages the systematic bias induced by rotational misalignment in the flow field generated from sequential 3D point clouds, eliminating the need for additional sensors. The architecture integrates a neural scene flow prior for flow estimation and incorporates a dual-branch detection network that fuses learned global flow features with handcrafted geometric descriptors. These combined representations allow the system to perform two complementary binary classification tasks: a global binary decision indicating whether misalignment is present and separate, axis-specific binary decisions indicating whether each rotational axis is misaligned. Experiments on the nuScenes dataset demonstrate FlowCalib's ability to robustly detect miscalibration, establishing a benchmark for sensor-to-vehicle miscalibration detection.
☆ Vision-Language Controlled Deep Unfolding for Joint Medical Image Restoration and Segmentation
We propose VL-DUN, a principled framework for joint All-in-One Medical Image Restoration and Segmentation (AiOMIRS) that bridges the gap between low-level signal recovery and high-level semantic understanding. While standard pipelines treat these tasks in isolation, our core insight is that they are fundamentally synergistic: restoration provides clean anatomical structures to improve segmentation, while semantic priors regularize the restoration process. VL-DUN resolves the sub-optimality of sequential processing through two primary innovations. (1) We formulate AiOMIRS as a unified optimization problem, deriving an interpretable joint unfolding mechanism where restoration and segmentation are mathematically coupled for mutual refinement. (2) We introduce a frequency-aware Mamba mechanism to capture long-range dependencies for global segmentation while preserving the high-frequency textures necessary for restoration. This allows for efficient global context modeling with linear complexity, effectively mitigating the spectral bias of standard architectures. As a pioneering work in the AiOMIRS task, VL-DUN establishes a new state-of-the-art across multi-modal benchmarks, improving PSNR by 0.92 dB and the Dice coefficient by 9.76\%. Our results demonstrate that joint collaborative learning offers a superior, more robust solution for complex clinical workflows compared to isolated task processing. The codes are provided in https://github.com/cipi666/VLDUN.
comment: 18 pages, medical image
☆ Rethinking Transferable Adversarial Attacks on Point Clouds from a Compact Subspace Perspective
Transferable adversarial attacks on point clouds remain challenging, as existing methods often rely on model-specific gradients or heuristics that limit generalization to unseen architectures. In this paper, we rethink adversarial transferability from a compact subspace perspective and propose CoSA, a transferable attack framework that operates within a shared low-dimensional semantic space. Specifically, each point cloud is represented as a compact combination of class-specific prototypes that capture shared semantic structure, while adversarial perturbations are optimized within a low-rank subspace to induce coherent and architecture-agnostic variations. This design suppresses model-dependent noise and constrains perturbations to semantically meaningful directions, thereby improving cross-model transferability without relying on surrogate-specific artifacts. Extensive experiments on multiple datasets and network architectures demonstrate that CoSA consistently outperforms state-of-the-art transferable attacks, while maintaining competitive imperceptibility and robustness under common defense strategies. Codes will be made public upon paper acceptance.
☆ EAG-PT: Emission-Aware Gaussians and Path Tracing for Indoor Scene Reconstruction and Editing
Recent reconstruction methods based on radiance field such as NeRF and 3DGS reproduce indoor scenes with high visual fidelity, but break down under scene editing due to baked illumination and the lack of explicit light transport. In contrast, physically based inverse rendering relies on mesh representations and path tracing, which enforce correct light transport but place strong requirements on geometric fidelity, becoming a practical bottleneck for real indoor scenes. In this work, we propose Emission-Aware Gaussians and Path Tracing (EAG-PT), aiming for physically based light transport with a unified 2D Gaussian representation. Our design is based on three cores: (1) using 2D Gaussians as a unified scene representation and transport-friendly geometry proxy that avoids reconstructed mesh, (2) explicitly separating emissive and non-emissive components during reconstruction for further scene editing, and (3) decoupling reconstruction from final rendering by using efficient single-bounce optimization and high-quality multi-bounce path tracing after scene editing. Experiments on synthetic and real indoor scenes show that EAG-PT produces more natural and physically consistent renders after editing than radiant scene reconstructions, while preserving finer geometric detail and avoiding mesh-induced artifacts compared to mesh-based inverse path tracing. These results suggest promising directions for future use in interior design, XR content creation, and embodied AI.
comment: project page: https://eag-pt.github.io
☆ HierLoc: Hyperbolic Entity Embeddings for Hierarchical Visual Geolocation
Visual geolocalization, the task of predicting where an image was taken, remains challenging due to global scale, visual ambiguity, and the inherently hierarchical structure of geography. Existing paradigms rely on either large-scale retrieval, which requires storing a large number of image embeddings, grid-based classifiers that ignore geographic continuity, or generative models that diffuse over space but struggle with fine detail. We introduce an entity-centric formulation of geolocation that replaces image-to-image retrieval with a compact hierarchy of geographic entities embedded in Hyperbolic space. Images are aligned directly to country, region, subregion, and city entities through Geo-Weighted Hyperbolic contrastive learning by directly incorporating haversine distance into the contrastive objective. This hierarchical design enables interpretable predictions and efficient inference with 240k entity embeddings instead of over 5 million image embeddings on the OSV5M benchmark, on which our method establishes a new state-of-the-art performance. Compared to the current methods in the literature, it reduces mean geodesic error by 19.5\%, while improving the fine-grained subregion accuracy by 43%. These results demonstrate that geometry-aware hierarchical embeddings provide a scalable and conceptually new alternative for global image geolocation.
☆ One-shot Optimized Steering Vector for Hallucination Mitigation for VLMs
Vision Language Models (VLMs) achieve strong performance on multimodal tasks but still suffer from hallucination and safety-related failures that persist even at scale. Steering offers a lightweight technique to improve model performance. However, steering, whether input-dependent or input-independent, achieves a meaningful trade-off between efficiency and effectiveness. In this work, we observe that steering vectors can generalize across inputs when tasks share aligned semantic intent. Based on this insight, we propose \textbf{OSGA} (\textbf{O}ne-shot \textbf{S}teering with \textbf{G}enerative \textbf{A}nchor), an input-independent framework that improves model performance with a single optimization instance. OSGA first selects an informative sample via a variance-based data selection strategy and learns a single steering vector with a contrastive objective with generative anchor regularization. The resulting vector can be universally applied at a certain layer during inference time without modifying model parameters. Experiments across multiple benchmarks show that a single OSGA-optimized steering vector consistently improves hallucination mitigation and safety enhancement with negligible overhead, highlighting one-shot steering as a practical and scalable solution for reliable VLMs.
☆ Scale Equivariance Regularization and Feature Lifting in High Dynamic Range Modulo Imaging
Modulo imaging enables high dynamic range (HDR) acquisition by cyclically wrapping saturated intensities, but accurate reconstruction remains challenging due to ambiguities between natural image edges and artificial wrap discontinuities. This work proposes a learning-based HDR restoration framework that incorporates two key strategies: (i) a scale-equivariant regularization that enforces consistency under exposure variations, and (ii) a feature lifting input design combining the raw modulo image, wrapped finite differences, and a closed-form initialization. Together, these components enhance the network's ability to distinguish true structure from wrapping artifacts, yielding state-of-the-art performance across perceptual and linear HDR quality metrics.
☆ Leveraging Multi-Rater Annotations to Calibrate Object Detectors in Microscopy Imaging
Deep learning-based object detectors have achieved impressive performance in microscopy imaging, yet their confidence estimates often lack calibration, limiting their reliability for biomedical applications. In this work, we introduce a new approach to improve model calibration by leveraging multi-rater annotations. We propose to train separate models on the annotations from single experts and aggregate their predictions to emulate consensus. This improves upon label sampling strategies, where models are trained on mixed annotations, and offers a more principled way to capture inter-rater variability. Experiments on a colorectal organoid dataset annotated by two experts demonstrate that our rater-specific ensemble strategy improves calibration performance while maintaining comparable detection accuracy. These findings suggest that explicitly modelling rater disagreement can lead to more trustworthy object detectors in biomedical imaging.
comment: Accepted as a conference paper at ISBI 2026
Self-Supervised Slice-to-Volume Reconstruction with Gaussian Representations for Fetal MRI
Reconstructing 3D fetal MR volumes from motion-corrupted stacks of 2D slices is a crucial and challenging task. Conventional slice-to-volume reconstruction (SVR) methods are time-consuming and require multiple orthogonal stacks for reconstruction. While learning-based SVR approaches have significantly reduced the time required at the inference stage, they heavily rely on ground truth information for training, which is inaccessible in practice. To address these challenges, we propose GaussianSVR, a self-supervised framework for slice-to-volume reconstruction. GaussianSVR represents the target volume using 3D Gaussian representations to achieve high-fidelity reconstruction. It leverages a simulated forward slice acquisition model to enable self-supervised training, alleviating the need for ground-truth volumes. Furthermore, to enhance both accuracy and efficiency, we introduce a multi-resolution training strategy that jointly optimizes Gaussian parameters and spatial transformations across different resolution levels. Experiments show that GaussianSVR outperforms the baseline methods on fetal MR volumetric reconstruction. Code will be available upon acceptance.
☆ About an Automating Annotation Method for Robot Markers
Factory automation has become increasingly important due to labor shortages, leading to the introduction of autonomous mobile robots for tasks such as material transportation. Markers are commonly used for robot self-localization and object identification. In the RoboCup Logistics League (RCLL), ArUco markers are employed both for robot localization and for identifying processing modules. Conventional recognition relies on OpenCV-based image processing, which detects black-and-white marker patterns. However, these methods often fail under noise, motion blur, defocus, or varying illumination conditions. Deep-learning-based recognition offers improved robustness under such conditions, but requires large amounts of annotated data. Annotation must typically be done manually, as the type and position of objects cannot be detected automatically, making dataset preparation a major bottleneck. In contrast, ArUco markers include built-in recognition modules that provide both ID and positional information, enabling automatic annotation. This paper proposes an automated annotation method for training deep-learning models on ArUco marker images. By leveraging marker detection results obtained from the ArUco module, the proposed approach eliminates the need for manual labeling. A YOLO-based model is trained using the automatically annotated dataset, and its performance is evaluated under various conditions. Experimental results demonstrate that the proposed method improves recognition performance compared with conventional image-processing techniques, particularly for images affected by blur or defocus. Automatic annotation also reduces human effort and ensures consistent labeling quality. Future work will investigate the relationship between confidence thresholds and recognition performance.
☆ Improving Supervised Machine Learning Performance in Optical Quality Control via Generative AI for Dataset Expansion
Supervised machine learning algorithms play a crucial role in optical quality control within industrial production. These approaches require representative datasets for effective model training. However, while non-defective components are frequent, defective parts are rare in production, resulting in highly imbalanced datasets that adversely impact model performance. Existing strategies to address this challenge, such as specialized loss functions or traditional data augmentation techniques, have limitations, including the need for careful hyperparameter tuning or the alteration of only simple image features. Therefore, this work explores the potential of generative artificial intelligence (GenAI) as an alternative method for expanding limited datasets and enhancing supervised machine learning performance. Specifically, we investigate Stable Diffusion and CycleGAN as image generation models, focusing on the segmentation of combine harvester components in thermal images for subsequent defect detection. Our results demonstrate that dataset expansion using Stable Diffusion yields the most significant improvement, enhancing segmentation performance by 4.6 %, resulting in a Mean Intersection over Union (Mean IoU) of 84.6 %.
comment: Accepted at 19th CIRP Conference on Intelligent Computation in Manufacturing Engineering
☆ Triage: Hierarchical Visual Budgeting for Efficient Video Reasoning in Vision-Language Models IEEE
Vision-Language Models (VLMs) face significant computational challenges in video processing due to massive data redundancy, which creates prohibitively long token sequences. To address this, we introduce Triage, a training-free, plug-and-play framework that reframes video reasoning as a resource allocation problem via hierarchical visual budgeting. Its first stage, Frame-Level Budgeting, identifies keyframes by evaluating their visual dynamics and relevance, generating a strategic prior based on their importance scores. Guided by this prior, the second stage, Token-Level Budgeting, allocates tokens in two phases: it first secures high-relevance Core Tokens, followed by diverse Context Tokens selected with an efficient batched Maximal Marginal Relevance (MMR) algorithm. Extensive experiments demonstrate that Triage improves inference speed and reduces memory footprint, while maintaining or surpassing the performance of baselines and other methods on various video reasoning benchmarks.
comment: Accepted to 2026 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2026)
☆ Semantic Leakage from Image Embeddings
Image embeddings are generally assumed to pose limited privacy risk. We challenge this assumption by formalizing semantic leakage as the ability to recover semantic structures from compressed image embeddings. Surprisingly, we show that semantic leakage does not require exact reconstruction of the original image. Preserving local semantic neighborhoods under embedding alignment is sufficient to expose the intrinsic vulnerability of image embeddings. Crucially, this preserved neighborhood structure allows semantic information to propagate through a sequence of lossy mappings. Based on this conjecture, we propose Semantic Leakage from Image Embeddings (SLImE), a lightweight inference framework that reveals semantic information from standalone compressed image embeddings, incorporating a locally trained semantic retriever with off-the-shelf models, without training task-specific decoders. We thoroughly validate each step of the framework empirically, from aligned embeddings to retrieved tags, symbolic representations, and grammatical and coherent descriptions. We evaluate SLImE across a range of open and closed embedding models, including GEMINI, COHERE, NOMIC, and CLIP, and demonstrate consistent recovery of semantic information across diverse inference tasks. Our results reveal a fundamental vulnerability in image embeddings, whereby the preservation of semantic neighborhoods under alignment enables semantic leakage, highlighting challenges for privacy preservation.1
comment: 20 pages, 19 figures
☆ Q-Hawkeye: Reliable Visual Policy Optimization for Image Quality Assessment
Image Quality Assessment (IQA) predicts perceptual quality scores consistent with human judgments. Recent RL-based IQA methods built on MLLMs focus on generating visual quality descriptions and scores, ignoring two key reliability limitations: (i) although the model's prediction stability varies significantly across training samples, existing GRPO-based methods apply uniform advantage weighting, thereby amplifying noisy signals from unstable samples in gradient updates; (ii) most works emphasize text-grounded reasoning over images while overlooking the model's visual perception ability of image content. In this paper, we propose Q-Hawkeye, an RL-based reliable visual policy optimization framework that redesigns the learning signal through unified Uncertainty-Aware Dynamic Optimization and Perception-Aware Optimization. Q-Hawkeye estimates predictive uncertainty using the variance of predicted scores across multiple rollouts and leverages this uncertainty to reweight each sample's update strength, stabilizing policy optimization. To strengthen perceptual reliability, we construct paired inputs of degraded images and their original images and introduce an Implicit Perception Loss that constrains the model to ground its quality judgments in genuine visual evidence. Extensive experiments demonstrate that Q-Hawkeye outperforms state-of-the-art methods and generalizes better across multiple datasets. The code and models will be made available.
☆ Deep in the Jungle: Towards Automating Chimpanzee Population Estimation
The estimation of abundance and density in unmarked populations of great apes relies on statistical frameworks that require animal-to-camera distance measurements. In practice, acquiring these distances depends on labour-intensive manual interpretation of animal observations across large camera trap video corpora. This study introduces and evaluates an only sparsely explored alternative: the integration of computer vision-based monocular depth estimation (MDE) pipelines directly into ecological camera trap workflows for great ape conservation. Using a real-world dataset of 220 camera trap videos documenting a wild chimpanzee population, we combine two MDE models, Dense Prediction Transformers and Depth Anything, with multiple distance sampling strategies. These components are used to generate detection distance estimates, from which population density and abundance are inferred. Comparative analysis against manually derived ground-truth distances shows that calibrated DPT consistently outperforms Depth Anything. This advantage is observed in both distance estimation accuracy and downstream density and abundance inference. Nevertheless, both models exhibit systematic biases. We show that, given complex forest environments, they tend to overestimate detection distances and consequently underestimate density and abundance relative to conventional manual approaches. We further find that failures in animal detection across distance ranges are a primary factor limiting estimation accuracy. Overall, this work provides a case study that shows MDE-driven camera trap distance sampling is a viable and practical alternative to manual distance estimation. The proposed approach yields population estimates within 22% of those obtained using traditional methods.
☆ Multi-Cue Anomaly Detection and Localization under Data Contamination
Visual anomaly detection in real-world industrial settings faces two major limitations. First, most existing methods are trained on purely normal data or on unlabeled datasets assumed to be predominantly normal, presuming the absence of contamination, an assumption that is rarely satisfied in practice. Second, they assume no access to labeled anomaly samples, limiting the model from learning discriminative characteristics of true anomalies. Therefore, these approaches often struggle to distinguish anomalies from normal instances, resulting in reduced detection and weak localization performance. In real-world applications, where training data are frequently contaminated with anomalies, such methods fail to deliver reliable performance. In this work, we propose a robust anomaly detection framework that integrates limited anomaly supervision into the adaptive deviation learning paradigm. We introduce a composite anomaly score that combines three complementary components: a deviation score capturing statistical irregularity, an entropy-based uncertainty score reflecting predictive inconsistency, and a segmentation-based score highlighting spatial abnormality. This unified scoring mechanism enables accurate detection and supports gradient-based localization, providing intuitive and explainable visual evidence of anomalous regions. Following the few-anomaly paradigm, we incorporate a small set of labeled anomalies during training while simultaneously mitigating the influence of contaminated samples through adaptive instance weighting. Extensive experiments on the MVTec and VisA benchmarks demonstrate that our framework outperforms state-of-the-art baselines and achieves strong detection and localization performance, interpretability, and robustness under various levels of data contamination.
comment: 12 pages total (10 pages main text + references), 6 figures. Preprint version; the final camera-ready version may differ
☆ DINO-SAE: DINO Spherical Autoencoder for High-Fidelity Image Reconstruction and Generation
Recent studies have explored using pretrained Vision Foundation Models (VFMs) such as DINO for generative autoencoders, showing strong generative performance. Unfortunately, existing approaches often suffer from limited reconstruction fidelity due to the loss of high-frequency details. In this work, we present the DINO Spherical Autoencoder (DINO-SAE), a framework that bridges semantic representation and pixel-level reconstruction. Our key insight is that semantic information in contrastive representations is primarily encoded in the direction of feature vectors, while forcing strict magnitude matching can hinder the encoder from preserving fine-grained details. To address this, we introduce Hierarchical Convolutional Patch Embedding module that enhances local structure and texture preservation, and Cosine Similarity Alignment objective that enforces semantic consistency while allowing flexible feature magnitudes for detail retention. Furthermore, leveraging the observation that SSL-based foundation model representations intrinsically lie on a hypersphere, we employ Riemannian Flow Matching to train a Diffusion Transformer (DiT) directly on this spherical latent manifold. Experiments on ImageNet-1K demonstrate that our approach achieves state-of-the-art reconstruction quality, reaching 0.37 rFID and 26.2 dB PSNR, while maintaining strong semantic alignment to the pretrained VFM. Notably, our Riemannian Flow Matching-based DiT exhibits efficient convergence, achieving a gFID of 3.47 at 80 epochs.
comment: 17 pages, and 11 figures
☆ MoVE: Mixture of Value Embeddings -- A New Axis for Scaling Parametric Memory in Autoregressive Models
Autoregressive sequence modeling stands as the cornerstone of modern Generative AI, powering results across diverse modalities ranging from text generation to image generation. However, a fundamental limitation of this paradigm is the rigid structural coupling of model capacity to computational cost: expanding a model's parametric memory -- its repository of factual knowledge or visual patterns -- traditionally requires deepening or widening the network, which incurs a proportional rise in active FLOPs. In this work, we introduce $\textbf{MoVE (Mixture of Value Embeddings)}$, a mechanism that breaks this coupling and establishes a new axis for scaling capacity. MoVE decouples memory from compute by introducing a global bank of learnable value embeddings shared across all attention layers. For every step in the sequence, the model employs a differentiable soft gating mechanism to dynamically mix retrieved concepts from this bank into the standard value projection. This architecture allows parametric memory to be scaled independently of network depth by simply increasing the number of embedding slots. We validate MoVE through strictly controlled experiments on two representative applications of autoregressive modeling: Text Generation and Image Generation. In both domains, MoVE yields consistent performance improvements over standard and layer-wise memory baselines, enabling the construction of "memory-dense" models that achieve lower perplexity and higher fidelity than their dense counterparts at comparable compute budgets.
☆ Development of Domain-Invariant Visual Enhancement and Restoration (DIVER) Approach for Underwater Images IEEE
Underwater images suffer severe degradation due to wavelength-dependent attenuation, scattering, and illumination non-uniformity that vary across water types and depths. We propose an unsupervised Domain-Invariant Visual Enhancement and Restoration (DIVER) framework that integrates empirical correction with physics-guided modeling for robust underwater image enhancement. DIVER first applies either IlluminateNet for adaptive luminance enhancement or a Spectral Equalization Filter for spectral normalization. An Adaptive Optical Correction Module then refines hue and contrast using channel-adaptive filtering, while Hydro-OpticNet employs physics-constrained learning to compensate for backscatter and wavelength-dependent attenuation. The parameters of IlluminateNet and Hydro-OpticNet are optimized via unsupervised learning using a composite loss function. DIVER is evaluated on eight diverse datasets covering shallow, deep, and highly turbid environments, including both naturally low-light and artificially illuminated scenes, using reference and non-reference metrics. While state-of-the-art methods such as WaterNet, UDNet, and Phaseformer perform reasonably in shallow water, their performance degrades in deep, unevenly illuminated, or artificially lit conditions. In contrast, DIVER consistently achieves best or near-best performance across all datasets, demonstrating strong domain-invariant capability. DIVER yields at least a 9% improvement over SOTA methods in UCIQE. On the low-light SeaThru dataset, where color-palette references enable direct evaluation of color restoration, DIVER achieves at least a 4.9% reduction in GPMAE compared to existing methods. Beyond visual quality, DIVER also improves robotic perception by enhancing ORB-based keypoint repeatability and matching performance, confirming its robustness across diverse underwater environments.
comment: Submitted to IEEE Journal of Oceanic Engineering
☆ When Anomalies Depend on Context: Learning Conditional Compatibility for Anomaly Detection ICML 2026
Anomaly detection is often formulated under the assumption that abnormality is an intrinsic property of an observation, independent of context. This assumption breaks down in many real-world settings, where the same object or action may be normal or anomalous depending on latent contextual factors (e.g., running on a track versus on a highway). We revisit \emph{contextual anomaly detection}, classically defined as context-dependent abnormality, and operationalize it in the visual domain, where anomaly labels depend on subject--context compatibility rather than intrinsic appearance. To enable systematic study of this setting, we introduce CAAD-3K, a benchmark that isolates contextual anomalies by controlling subject identity while varying context. We further propose a conditional compatibility learning framework that leverages vision--language representations to model subject--context relationships under limited supervision. Our method substantially outperforms existing approaches on CAAD-3K and achieves state-of-the-art performance on MVTec-AD and VisA, demonstrating that modeling context dependence complements traditional structural anomaly detection. Our code and dataset will be publicly released.
comment: Preprint. Submitted to ICML 2026. 8 pages main text, plus appendix
☆ Under-Canopy Terrain Reconstruction in Dense Forests Using RGB Imaging and Neural 3D Reconstruction WACV 2026
Mapping the terrain and understory hidden beneath dense forest canopies is of great interest for numerous applications such as search and rescue, trail mapping, forest inventory tasks, and more. Existing solutions rely on specialized sensors: either heavy, costly airborne LiDAR, or Airborne Optical Sectioning (AOS), which uses thermal synthetic aperture photography and is tailored for person detection. We introduce a novel approach for the reconstruction of canopy-free, photorealistic ground views using only conventional RGB images. Our solution is based on the celebrated Neural Radiance Fields (NeRF), a recent 3D reconstruction method. Additionally, we include specific image capture considerations, which dictate the needed illumination to successfully expose the scene beneath the canopy. To better cope with the poorly lit understory, we employ a low light loss. Finally, we propose two complementary approaches to remove occluding canopy elements by controlling per-ray integration procedure. To validate the value of our approach, we present two possible downstream tasks. For the task of search and rescue (SAR), we demonstrate that our method enables person detection which achieves promising results compared to thermal AOS (using only RGB images). Additionally, we show the potential of our approach for forest inventory tasks like tree counting. These results position our approach as a cost-effective, high-resolution alternative to specialized sensors for SAR, trail mapping, and forest-inventory tasks.
comment: WACV 2026 CV4EO
☆ Inference-Time Dynamic Modality Selection for Incomplete Multimodal Classification ICLR 2026
Multimodal deep learning (MDL) has achieved remarkable success across various domains, yet its practical deployment is often hindered by incomplete multimodal data. Existing incomplete MDL methods either discard missing modalities, risking the loss of valuable task-relevant information, or recover them, potentially introducing irrelevant noise, leading to the discarding-imputation dilemma. To address this dilemma, in this paper, we propose DyMo, a new inference-time dynamic modality selection framework that adaptively identifies and integrates reliable recovered modalities, fully exploring task-relevant information beyond the conventional discard-or-impute paradigm. Central to DyMo is a novel selection algorithm that maximizes multimodal task-relevant information for each test sample. Since direct estimation of such information at test time is intractable due to the unknown data distribution, we theoretically establish a connection between information and the task loss, which we compute at inference time as a tractable proxy. Building on this, a novel principled reward function is proposed to guide modality selection. In addition, we design a flexible multimodal network architecture compatible with arbitrary modality combinations, alongside a tailored training strategy for robust representation learning. Extensive experiments on diverse natural and medical image datasets show that DyMo significantly outperforms state-of-the-art incomplete/dynamic MDL methods across various missing-data scenarios. Our code is available at https://github.com//siyi-wind/DyMo.
comment: 27 pages (including appendix), accepted by ICLR 2026
☆ How Much of a Model Do We Need? Redundancy and Slimmability in Remote Sensing Foundation Models
Large-scale foundation models (FMs) in remote sensing (RS) are developed based on the paradigms established in computer vision (CV) and have shown promise for various Earth observation applications. However, the direct transfer of scaling assumptions from CV to RS has not been adequately examined. We hypothesize that RS FMs enter an overparameterized regime at substantially smaller scales than their CV counterparts, where increasing parameter count primarily induces redundant representations rather than qualitatively new abstractions. To test this hypothesis, we use post-hoc slimming, where we uniformly reduce the width of pretrained encoder, as a tool to measure representational redundancy across six state-of-the-art RS FMs on four downstream classification tasks. Our findings reveal a significant contrast with those in the CV domain: while a post-hoc slimmed masked autoencoder (MAE) trained on ImageNet retains less than 10% accuracy at 1% FLOPs, RS FMs maintain over 71% relative accuracy at the same budget. This sevenfold difference provides strong empirical support for our hypothesis. We further demonstrate that learned slimmable training can improve both Momentum Contrast (MoCo)- and MAE- based models. In addition, through the explained variance ratio and the feature correlation analysis, we provide mechanistic explanations showing that RS FMs distribute task-relevant information with high redundancy. Our findings establish post-hoc slimmability as both a practical deployment strategy for resource-constrained environments and a diagnostic tool that challenges the prevailing scaling paradigm in RS. Upon acceptance, we will publish all code.
☆ Neural Clothing Tryer: Customized Virtual Try-On via Semantic Enhancement and Controlling Diffusion Model
This work aims to address a novel Customized Virtual Try-ON (Cu-VTON) task, enabling the superimposition of a specified garment onto a model that can be customized in terms of appearance, posture, and additional attributes. Compared with traditional VTON task, it enables users to tailor digital avatars to their individual preferences, thereby enhancing the virtual fitting experience with greater flexibility and engagement. To address this task, we introduce a Neural Clothing Tryer (NCT) framework, which exploits the advanced diffusion models equipped with semantic enhancement and controlling modules to better preserve semantic characterization and textural details of the garment and meanwhile facilitating the flexible editing of the model's postures and appearances. Specifically, NCT introduces a semantic-enhanced module to take semantic descriptions of garments and utilizes a visual-language encoder to learn aligned features across modalities. The aligned features are served as condition input to the diffusion model to enhance the preservation of the garment's semantics. Then, a semantic controlling module is designed to take the garment image, tailored posture image, and semantic description as input to maintain garment details while simultaneously editing model postures, expressions, and various attributes. Extensive experiments on the open available benchmark demonstrate the superior performance of the proposed NCT framework.
comment: Accepted by Expert Systems with Applications. 16 pages, 10 figures
☆ NativeTok: Native Visual Tokenization for Improved Image Generation
VQ-based image generation typically follows a two-stage pipeline: a tokenizer encodes images into discrete tokens, and a generative model learns their dependencies for reconstruction. However, improved tokenization in the first stage does not necessarily enhance the second-stage generation, as existing methods fail to constrain token dependencies. This mismatch forces the generative model to learn from unordered distributions, leading to bias and weak coherence. To address this, we propose native visual tokenization, which enforces causal dependencies during tokenization. Building on this idea, we introduce NativeTok, a framework that achieves efficient reconstruction while embedding relational constraints within token sequences. NativeTok consists of: (1) a Meta Image Transformer (MIT) for latent image modeling, and (2) a Mixture of Causal Expert Transformer (MoCET), where each lightweight expert block generates a single token conditioned on prior tokens and latent features. We further design a Hierarchical Native Training strategy that updates only new expert blocks, ensuring training efficiency. Extensive experiments demonstrate the effectiveness of NativeTok.
☆ A Comparative Evaluation of Large Vision-Language Models for 2D Object Detection under SOTIF Conditions
Reliable environmental perception remains one of the main obstacles for safe operation of automated vehicles. Safety of the Intended Functionality (SOTIF) concerns safety risks from perception insufficiencies, particularly under adverse conditions where conventional detectors often falter. While Large Vision-Language Models (LVLMs) demonstrate promising semantic reasoning, their quantitative effectiveness for safety-critical 2D object detection is underexplored. This paper presents a systematic evaluation of ten representative LVLMs using the PeSOTIF dataset, a benchmark specifically curated for long-tail traffic scenarios and environmental degradations. Performance is quantitatively compared against the classical perception approach, a YOLO-based detector. Experimental results reveal a critical trade-off: top-performing LVLMs (e.g., Gemini 3, Doubao) surpass the YOLO baseline in recall by over 25% in complex natural scenarios, exhibiting superior robustness to visual degradation. Conversely, the baseline retains an advantage in geometric precision for synthetic perturbations. These findings highlight the complementary strengths of semantic reasoning versus geometric regression, supporting the use of LVLMs as high-level safety validators in SOTIF-oriented automated driving systems.
comment: 6 pages, 11 figures
☆ Decomposing and Composing: Towards Efficient Vision-Language Continual Learning via Rank-1 Expert Pool in a Single LoRA
Continual learning (CL) in vision-language models (VLMs) faces significant challenges in improving task adaptation and avoiding catastrophic forgetting. Existing methods usually have heavy inference burden or rely on external knowledge, while Low-Rank Adaptation (LoRA) has shown potential in reducing these issues by enabling parameter-efficient tuning. However, considering directly using LoRA to alleviate the catastrophic forgetting problem is non-trivial, we introduce a novel framework that restructures a single LoRA module as a decomposable Rank-1 Expert Pool. Our method learns to dynamically compose a sparse, task-specific update by selecting from this expert pool, guided by the semantics of the [CLS] token. In addition, we propose an Activation-Guided Orthogonal (AGO) loss that orthogonalizes critical parts of LoRA weights across tasks. This sparse composition and orthogonalization enable fewer parameter updates, resulting in domain-aware learning while minimizing inter-task interference and maintaining downstream task performance. Extensive experiments across multiple settings demonstrate state-of-the-art results in all metrics, surpassing zero-shot upper bounds in generalization. Notably, it reduces trainable parameters by 96.7% compared to the baseline method, eliminating reliance on external datasets or task-ID discriminators. The merged LoRAs retain less weights and incur no inference latency, making our method computationally lightweight.
☆ FarmMind: Reasoning-Query-Driven Dynamic Segmentation for Farmland Remote Sensing Images
Existing methods for farmland remote sensing image (FRSI) segmentation generally follow a static segmentation paradigm, where analysis relies solely on the limited information contained within a single input patch. Consequently, their reasoning capability is limited when dealing with complex scenes characterized by ambiguity and visual uncertainty. In contrast, human experts, when interpreting remote sensing images in such ambiguous cases, tend to actively query auxiliary images (such as higher-resolution, larger-scale, or temporally adjacent data) to conduct cross-verification and achieve more comprehensive reasoning. Inspired by this, we propose a reasoning-query-driven dynamic segmentation framework for FRSIs, named FarmMind. This framework breaks through the limitations of the static segmentation paradigm by introducing a reasoning-query mechanism, which dynamically and on-demand queries external auxiliary images to compensate for the insufficient information in a single input image. Unlike direct queries, this mechanism simulates the thinking process of human experts when faced with segmentation ambiguity: it first analyzes the root causes of segmentation ambiguities through reasoning, and then determines what type of auxiliary image needs to be queried based on this analysis. Extensive experiments demonstrate that FarmMind achieves superior segmentation performance and stronger generalization ability compared with existing methods. The source code and dataset used in this work are publicly available at: https://github.com/WithoutOcean/FarmMind.
☆ Diachronic Stereo Matching for Multi-Date Satellite Imagery
Recent advances in image-based satellite 3D reconstruction have progressed along two complementary directions. On one hand, multi-date approaches using NeRF or Gaussian-splatting jointly model appearance and geometry across many acquisitions, achieving accurate reconstructions on opportunistic imagery with numerous observations. On the other hand, classical stereoscopic reconstruction pipelines deliver robust and scalable results for simultaneous or quasi-simultaneous image pairs. However, when the two images are captured months apart, strong seasonal, illumination, and shadow changes violate standard stereoscopic assumptions, causing existing pipelines to fail. This work presents the first Diachronic Stereo Matching method for satellite imagery, enabling reliable 3D reconstruction from temporally distant pairs. Two advances make this possible: (1) fine-tuning a state-of-the-art deep stereo network that leverages monocular depth priors, and (2) exposing it to a dataset specifically curated to include a diverse set of diachronic image pairs. In particular, we start from a pretrained MonSter model, trained initially on a mix of synthetic and real datasets such as SceneFlow and KITTI, and fine-tune it on a set of stereo pairs derived from the DFC2019 remote sensing challenge. This dataset contains both synchronic and diachronic pairs under diverse seasonal and illumination conditions. Experiments on multi-date WorldView-3 imagery demonstrate that our approach consistently surpasses classical pipelines and unadapted deep stereo models on both synchronic and diachronic settings. Fine-tuning on temporally diverse images, together with monocular priors, proves essential for enabling 3D reconstruction from previously incompatible acquisition dates. Left image (winter) Right image (autumn) DSM geometry Ours (1.23 m) Zero-shot (3.99 m) LiDAR GT Figure 1. Output geometry for a winter-autumn image pair from Omaha (OMA 331 test scene). Our method recovers accurate geometry despite the diachronic nature of the pair, exhibiting strong appearance changes, which cause existing zero-shot methods to fail. Missing values due to perspective shown in black. Mean altitude error in parentheses; lower is better.
☆ HeatMat: Simulation of City Material Impact on Urban Heat Island Effect
The Urban Heat Island (UHI) effect, defined as a significant increase in temperature in urban environments compared to surrounding areas, is difficult to study in real cities using sensor data (satellites or in-situ stations) due to their coarse spatial and temporal resolution. Among the factors contributing to this effect are the properties of urban materials, which differ from those in rural areas. To analyze their individual impact and to test new material configurations, a high-resolution simulation at the city scale is required. Estimating the current materials used in a city, including those on building facades, is also challenging. We propose HeatMat, an approach to analyze at high resolution the individual impact of urban materials on the UHI effect in a real city, relying only on open data. We estimate building materials using street-view images and a pre-trained vision-language model (VLM) to supplement existing OpenStreetMap data, which describes the 2D geometry and features of buildings. We further encode this information into a set of 2D maps that represent the city's vertical structure and material characteristics. These maps serve as inputs for our 2.5D simulator, which models coupled heat transfers and enables random-access surface temperature estimation at multiple resolutions, reaching an x20 speedup compared to an equivalent simulation in 3D.
☆ Compact Hypercube Embeddings for Fast Text-based Wildlife Observation Retrieval
Large-scale biodiversity monitoring platforms increasingly rely on multimodal wildlife observations. While recent foundation models enable rich semantic representations across vision, audio, and language, retrieving relevant observations from massive archives remains challenging due to the computational cost of high-dimensional similarity search. In this work, we introduce compact hypercube embeddings for fast text-based wildlife observation retrieval, a framework that enables efficient text-based search over large-scale wildlife image and audio databases using compact binary representations. Building on the cross-view code alignment hashing framework, we extend lightweight hashing beyond a single-modality setup to align natural language descriptions with visual or acoustic observations in a shared Hamming space. Our approach leverages pretrained wildlife foundation models, including BioCLIP and BioLingual, and adapts them efficiently for hashing using parameter-efficient fine-tuning. We evaluate our method on large-scale benchmarks, including iNaturalist2024 for text-to-image retrieval and iNatSounds2024 for text-to-audio retrieval, as well as multiple soundscape datasets to assess robustness under domain shift. Results show that retrieval using discrete hypercube embeddings achieves competitive, and in several cases superior, performance compared to continuous embeddings, while drastically reducing memory and search cost. Moreover, we observe that the hashing objective consistently improves the underlying encoder representations, leading to stronger retrieval and zero-shot generalization. These results demonstrate that binary, language-based retrieval enables scalable and efficient search over large wildlife archives for biodiversity monitoring systems.
☆ Color Matters: Demosaicing-Guided Color Correlation Training for Generalizable AI-Generated Image Detection
As realistic AI-generated images threaten digital authenticity, we address the generalization failure of generative artifact-based detectors by exploiting the intrinsic properties of the camera imaging pipeline. Concretely, we investigate color correlations induced by the color filter array (CFA) and demosaicing, and propose a Demosaicing-guided Color Correlation Training (DCCT) framework for AI-generated image detection. By simulating the CFA sampling pattern, we decompose each color image into a single-channel input (as the condition) and the remaining two channels as the ground-truth targets (for prediction). A self-supervised U-Net is trained to model the conditional distribution of the missing channels from the given one, parameterized via a mixture of logistic functions. Our theoretical analysis reveals that DCCT targets a provable distributional difference in color-correlation features between photographic and AI-generated images. By leveraging these distinct features to construct a binary classifier, DCCT achieves state-of-the-art generalization and robustness, significantly outperforming prior methods across over 20 unseen generators.
☆ Is Training Necessary for Anomaly Detection?
Current state-of-the-art multi-class unsupervised anomaly detection (MUAD) methods rely on training encoder-decoder models to reconstruct anomaly-free features. We first show these approaches have an inherent fidelity-stability dilemma in how they detect anomalies via reconstruction residuals. We then abandon the reconstruction paradigm entirely and propose Retrieval-based Anomaly Detection (RAD). RAD is a training-free approach that stores anomaly-free features in a memory and detects anomalies through multi-level retrieval, matching test patches against the memory. Experiments demonstrate that RAD achieves state-of-the-art performance across four established benchmarks (MVTec-AD, VisA, Real-IAD, 3D-ADAM) under both standard and few-shot settings. On MVTec-AD, RAD reaches 96.7\% Pixel AUROC with just a single anomaly-free image compared to 98.5\% of RAD's full-data performance. We further prove that retrieval-based scores theoretically upper-bound reconstruction-residual scores. Collectively, these findings overturn the assumption that MUAD requires task-specific training, showing that state-of-the-art anomaly detection is feasible with memory-based retrieval. Our code is available at https://github.com/longkukuhi/RAD.
☆ Procedural Knowledge Extraction from Industrial Troubleshooting Guides Using Vision Language Models
Industrial troubleshooting guides encode diagnostic procedures in flowchart-like diagrams where spatial layout and technical language jointly convey meaning. To integrate this knowledge into operator support systems, which assist shop-floor personnel in diagnosing and resolving equipment issues, the information must first be extracted and structured for machine interpretation. However, when performed manually, this extraction is labor-intensive and error-prone. Vision Language Models offer potential to automate this process by jointly interpreting visual and textual meaning, yet their performance on such guides remains underexplored. This paper evaluates two VLMs on extracting structured knowledge, comparing two prompting strategies: standard instruction-guided versus an augmented approach that cues troubleshooting layout patterns. Results reveal model-specific trade-offs between layout sensitivity and semantic robustness, informing practical deployment decisions.
☆ Beauty and the Beast: Imperceptible Perturbations Against Diffusion-Based Face Swapping via Directional Attribute Editing
Diffusion-based face swapping achieves state-of-the-art performance, yet it also exacerbates the potential harm of malicious face swapping to violate portraiture right or undermine personal reputation. This has spurred the development of proactive defense methods. However, existing approaches face a core trade-off: large perturbations distort facial structures, while small ones weaken protection effectiveness. To address these issues, we propose FaceDefense, an enhanced proactive defense framework against diffusion-based face swapping. Our method introduces a new diffusion loss to strengthen the defensive efficacy of adversarial examples, and employs a directional facial attribute editing to restore perturbation-induced distortions, thereby enhancing visual imperceptibility. A two-phase alternating optimization strategy is designed to generate final perturbed face images. Extensive experiments show that FaceDefense significantly outperforms existing methods in both imperceptibility and defense effectiveness, achieving a superior trade-off.
☆ StreamSense: Streaming Social Task Detection with Selective Vision-Language Model Routing
Live streaming platforms require real-time monitoring and reaction to social signals, utilizing partial and asynchronous evidence from video, text, and audio. We propose StreamSense, a streaming detector that couples a lightweight streaming encoder with selective routing to a Vision-Language Model (VLM) expert. StreamSense handles most timestamps with the lightweight streaming encoder, escalates hard/ambiguous cases to the VLM, and defers decisions when context is insufficient. The encoder is trained using (i) a cross-modal contrastive term to align visual/audio cues with textual signals, and (ii) an IoU-weighted loss that down-weights poorly overlapping target segments, mitigating label interference across segment boundaries. We evaluate StreamSense on multiple social streaming detection tasks (e.g., sentiment classification and hate content moderation), and the results show that StreamSense achieves higher accuracy than VLM-only streaming while only occasionally invoking the VLM, thereby reducing average latency and compute. Our results indicate that selective escalation and deferral are effective primitives for understanding streaming social tasks. Code is publicly available on GitHub.
comment: 10 pages, 4 figures, The Web Conference 2026
☆ Lingua-SafetyBench: A Benchmark for Safety Evaluation of Multilingual Vision-Language Models
Robust safety of vision-language large models (VLLMs) under joint multilingual and multimodal inputs remains underexplored. Existing benchmarks are typically multilingual but text-only, or multimodal but monolingual. Recent multilingual multimodal red-teaming efforts render harmful prompts into images, yet rely heavily on typography-style visuals and lack semantically grounded image-text pairs, limiting coverage of realistic cross-modal interactions. We introduce Lingua-SafetyBench, a benchmark of 100,440 harmful image-text pairs across 10 languages, explicitly partitioned into image-dominant and text-dominant subsets to disentangle risk sources. Evaluating 11 open-source VLLMs reveals a consistent asymmetry: image-dominant risks yield higher ASR in high-resource languages, while text-dominant risks are more severe in non-high-resource languages. A controlled study on the Qwen series shows that scaling and version upgrades reduce Attack Success Rate (ASR) overall but disproportionately benefit HRLs, widening the gap between HRLs and Non-HRLs under text-dominant risks. This underscores the necessity of language- and modality-aware safety alignment beyond mere scaling.To facilitate reproducibility and future research, we will publicly release our benchmark, model checkpoints, and source code.The code and dataset will be available at https://github.com/zsxr15/Lingua-SafetyBench.Warning: this paper contains examples with unsafe content.
☆ Active Learning-Driven Lightweight YOLOv9: Enhancing Efficiency in Smart Agriculture
This study addresses the demand for real-time detection of tomatoes and tomato flowers by agricultural robots deployed on edge devices in greenhouse environments. Under practical imaging conditions, object detection systems often face challenges such as large scale variations caused by varying camera distances, severe occlusion from plant structures, and highly imbalanced class distributions. These factors make conventional object detection approaches that rely on fully annotated datasets difficult to simultaneously achieve high detection accuracy and deployment efficiency. To overcome these limitations, this research proposes an active learning driven lightweight object detection framework, integrating data analysis, model design, and training strategy. First, the size distribution of objects in raw agricultural images is analyzed to redefine an operational target range, thereby improving learning stability under real-world conditions. Second, an efficient feature extraction module is incorporated to reduce computational cost, while a lightweight attention mechanism is introduced to enhance feature representation under multi-scale and occluded scenarios. Finally, an active learning strategy is employed to iteratively select high-information samples for annotation and training under a limited labeling budget, effectively improving the recognition performance of minority and small-object categories. Experimental results demonstrate that, while maintaining a low parameter count and inference cost suitable for edge-device deployment, the proposed method effectively improves the detection performance of tomatoes and tomato flowers in raw images. Under limited annotation conditions, the framework achieves an overall detection accuracy of 67.8% mAP, validating its practicality and feasibility for intelligent agricultural applications.
☆ ImgCoT: Compressing Long Chain of Thought into Compact Visual Tokens for Efficient Reasoning of Large Language Model
Compressing long chains of thought (CoT) into compact latent tokens is crucial for efficient reasoning with large language models (LLMs). Recent studies employ autoencoders to achieve this by reconstructing textual CoT from latent tokens, thus encoding CoT semantics. However, treating textual CoT as the reconstruction target forces latent tokens to preserve surface-level linguistic features (e.g., word choice and syntax), introducing a strong linguistic inductive bias that prioritizes linguistic form over reasoning structure and limits logical abstraction. Thus, we propose ImgCoT that replaces the reconstruction target from textual CoT to the visual CoT obtained by rendering CoT into images. This substitutes linguistic bias with spatial inductive bias, i.e., a tendency to model spatial layouts of the reasoning steps in visual CoT, enabling latent tokens to better capture global reasoning structure. Moreover, although visual latent tokens encode abstract reasoning structure, they may blur reasoning details. We thus propose a loose ImgCoT, a hybrid reasoning that augments visual latent tokens with a few key textual reasoning steps, selected based on low token log-likelihood. This design allows LLMs to retain both global reasoning structure and fine-grained reasoning details with fewer tokens than the complete CoT. Extensive experiments across multiple datasets and LLMs demonstrate the effectiveness of the two versions of ImgCoT.
☆ GaussianOcc3D: A Gaussian-Based Adaptive Multi-modal 3D Occupancy Prediction
3D semantic occupancy prediction is a pivotal task in autonomous driving, providing a dense and fine-grained understanding of the surrounding environment, yet single-modality methods face trade-offs between camera semantics and LiDAR geometry. Existing multi-modal frameworks often struggle with modality heterogeneity, spatial misalignment, and the representation crisis--where voxels are computationally heavy and BEV alternatives are lossy. We present GaussianOcc3D, a multi-modal framework bridging camera and LiDAR through a memory-efficient, continuous 3D Gaussian representation. We introduce four modules: (1) LiDAR Depth Feature Aggregation (LDFA), using depth-wise deformable sampling to lift sparse signals onto Gaussian primitives; (2) Entropy-Based Feature Smoothing (EBFS) to mitigate domain noise; (3) Adaptive Camera-LiDAR Fusion (ACLF) with uncertainty-aware reweighting for sensor reliability; and (4) a Gauss-Mamba Head leveraging Selective State Space Models for global context with linear complexity. Evaluations on Occ3D, SurroundOcc, and SemanticKITTI benchmarks demonstrate state-of-the-art performance, achieving mIoU scores of 49.4%, 28.9%, and 25.2% respectively. GaussianOcc3D exhibits superior robustness across challenging rainy and nighttime conditions.
☆ OpenVTON-Bench: A Large-Scale High-Resolution Benchmark for Controllable Virtual Try-On Evaluation
Recent advances in diffusion models have significantly elevated the visual fidelity of Virtual Try-On (VTON) systems, yet reliable evaluation remains a persistent bottleneck. Traditional metrics struggle to quantify fine-grained texture details and semantic consistency, while existing datasets fail to meet commercial standards in scale and diversity. We present OpenVTON-Bench, a large-scale benchmark comprising approximately 100K high-resolution image pairs (up to $1536 \times 1536$). The dataset is constructed using DINOv3-based hierarchical clustering for semantically balanced sampling and Gemini-powered dense captioning, ensuring a uniform distribution across 20 fine-grained garment categories. To support reliable evaluation, we propose a multi-modal protocol that measures VTON quality along five interpretable dimensions: background consistency, identity fidelity, texture fidelity, shape plausibility, and overall realism. The protocol integrates VLM-based semantic reasoning with a novel Multi-Scale Representation Metric based on SAM3 segmentation and morphological erosion, enabling the separation of boundary alignment errors from internal texture artifacts. Experimental results show strong agreement with human judgments (Kendall's $τ$ of 0.833 vs. 0.611 for SSIM), establishing a robust benchmark for VTON evaluation.
☆ Vision-Language Models Unlock Task-Centric Latent Actions
Latent Action Models (LAMs) have rapidly gained traction as an important component in the pre-training pipelines of leading Vision-Language-Action models. However, they fail when observations contain action-correlated distractors, often encoding noise instead of meaningful latent actions. Humans, on the other hand, can effortlessly distinguish task-relevant motions from irrelevant details in any video given only a brief task description. In this work, we propose to utilize the common-sense reasoning abilities of Vision-Language Models (VLMs) to provide promptable representations, effectively separating controllable changes from the noise in unsupervised way. We use these representations as targets during LAM training and benchmark a wide variety of popular VLMs, revealing substantial variation in the quality of promptable representations as well as their robustness to different prompts and hyperparameters. Interestingly, we find that more recent VLMs may perform worse than older ones. Finally, we show that simply asking VLMs to ignore distractors can substantially improve latent action quality, yielding up to a six-fold increase in downstream success rates on Distracting MetaWorld.
comment: Preprint
☆ SQUAD: Scalable Quorum Adaptive Decisions via ensemble of early exit neural networks
Early-exit neural networks have become popular for reducing inference latency by allowing intermediate predictions when sufficient confidence is achieved. However, standard approaches typically rely on single-model confidence thresholds, which are frequently unreliable due to inherent calibration issues. To address this, we introduce SQUAD (Scalable Quorum Adaptive Decisions), the first inference scheme that integrates early-exit mechanisms with distributed ensemble learning, improving uncertainty estimation while reducing the inference time. Unlike traditional methods that depend on individual confidence scores, SQUAD employs a quorum-based stopping criterion on early-exit learners by collecting intermediate predictions incrementally in order of computational complexity until a consensus is reached and halting the computation at that exit if the consensus is statistically significant. To maximize the efficacy of this voting mechanism, we also introduce QUEST (Quorum Search Technique), a Neural Architecture Search method to select early-exit learners with optimized hierarchical diversity, ensuring learners are complementary at every intermediate layer. This consensus-driven approach yields statistically robust early exits, improving the test accuracy up to 5.95% compared to state-of-the-art dynamic solutions with a comparable computational cost and reducing the inference latency up to 70.60% compared to static ensembles while maintaining a good accuracy.
☆ Gated Relational Alignment via Confidence-based Distillation for Efficient VLMs ICML
Vision-Language Models (VLMs) achieve strong multimodal performance but are costly to deploy, and post-training quantization often causes significant accuracy loss. Despite its potential, quantization-aware training for VLMs remains underexplored. We propose GRACE, a framework unifying knowledge distillation and QAT under the Information Bottleneck principle: quantization constrains information capacity while distillation guides what to preserve within this budget. Treating the teacher as a proxy for task-relevant information, we introduce confidence-gated decoupled distillation to filter unreliable supervision, relational centered kernel alignment to transfer visual token structures, and an adaptive controller via Lagrangian relaxation to balance fidelity against capacity constraints. Across extensive benchmarks on LLaVA and Qwen families, our INT4 models consistently outperform FP16 baselines (e.g., LLaVA-1.5-7B: 70.1 vs. 66.8 on SQA; Qwen2-VL-2B: 76.9 vs. 72.6 on MMBench), nearly matching teacher performance. Using real INT4 kernel, we achieve 3$\times$ throughput with 54% memory reduction. This principled framework significantly outperforms existing quantization methods, making GRACE a compelling solution for resource-constrained deployment.
comment: This paper is currently under review for the 2026 International Conference on Machine Learning (ICML)
☆ DAVIS: OOD Detection via Dominant Activations and Variance for Increased Separation
Detecting out-of-distribution (OOD) inputs is a critical safeguard for deploying machine learning models in the real world. However, most post-hoc detection methods operate on penultimate feature representations derived from global average pooling (GAP) -- a lossy operation that discards valuable distributional statistics from activation maps prior to global average pooling. We contend that these overlooked statistics, particularly channel-wise variance and dominant (maximum) activations, are highly discriminative for OOD detection. We introduce DAVIS, a simple and broadly applicable post-hoc technique that enriches feature vectors by incorporating these crucial statistics, directly addressing the information loss from GAP. Extensive evaluations show DAVIS sets a new benchmark across diverse architectures, including ResNet, DenseNet, and EfficientNet. It achieves significant reductions in the false positive rate (FPR95), with improvements of 48.26\% on CIFAR-10 using ResNet-18, 38.13\% on CIFAR-100 using ResNet-34, and 26.83\% on ImageNet-1k benchmarks using MobileNet-v2. Our analysis reveals the underlying mechanism for this improvement, providing a principled basis for moving beyond the mean in OOD detection.
☆ Bi-MCQ: Reformulating Vision-Language Alignment for Negation Understanding ICPR 2026
Recent vision-language models (VLMs) achieve strong zero-shot performance via large-scale image-text pretraining and have been widely adopted in medical image analysis. However, existing VLMs remain notably weak at understanding negated clinical statements, largely due to contrastive alignment objectives that treat negation as a minor linguistic variation rather than a meaning-inverting operator. In multi-label settings, prompt-based InfoNCE fine-tuning further reinforces easy-positive image-prompt alignments, limiting effective learning of disease absence. To overcome these limitations, we reformulate vision-language alignment as a conditional semantic comparison problem, which is instantiated through a bi-directional multiple-choice learning framework(Bi-MCQ). By jointly training Image-to-Text and Text-to-Image MCQ tasks with affirmative, negative, and mixed prompts, our method implements fine-tuning as conditional semantic comparison instead of global similarity maximization. We further introduce direction-specific Cross-Attention fusion modules to address asymmetric cues required by bi-directional reasoning and reduce alignment interference. Experiments on ChestXray14, Open-I, CheXpert, and PadChest show that Bi-MCQ improves negation understanding by up to 0.47 AUC over the zero-shot performance of the state-of-the-art CARZero model, while achieving up to a 0.08 absolute gain on positive-negative combined (PNC) evaluation. Additionally, Bi-MCQ reduces the affirmative-negative AUC gap by an average of 0.12 compared to InfoNCE-based fine-tuning, demonstrating that objective reformulation can substantially enhance negation understanding in medical VLMs.
comment: 15 pages, 4 figures, Submitted to ICPR 2026 (under review)
☆ PEAR: Pixel-aligned Expressive humAn mesh Recovery
Reconstructing detailed 3D human meshes from a single in-the-wild image remains a fundamental challenge in computer vision. Existing SMPLX-based methods often suffer from slow inference, produce only coarse body poses, and exhibit misalignments or unnatural artifacts in fine-grained regions such as the face and hands. These issues make current approaches difficult to apply to downstream tasks. To address these challenges, we propose PEAR-a fast and robust framework for pixel-aligned expressive human mesh recovery. PEAR explicitly tackles three major limitations of existing methods: slow inference, inaccurate localization of fine-grained human pose details, and insufficient facial expression capture. Specifically, to enable real-time SMPLX parameter inference, we depart from prior designs that rely on high resolution inputs or multi-branch architectures. Instead, we adopt a clean and unified ViT-based model capable of recovering coarse 3D human geometry. To compensate for the loss of fine-grained details caused by this simplified architecture, we introduce pixel-level supervision to optimize the geometry, significantly improving the reconstruction accuracy of fine-grained human details. To make this approach practical, we further propose a modular data annotation strategy that enriches the training data and enhances the robustness of the model. Overall, PEAR is a preprocessing-free framework that can simultaneously infer EHM-s (SMPLX and scaled-FLAME) parameters at over 100 FPS. Extensive experiments on multiple benchmark datasets demonstrate that our method achieves substantial improvements in pose estimation accuracy compared to previous SMPLX-based approaches. Project page: https://wujh2001.github.io/PEAR
comment: 23 pages
☆ OOVDet: Low-Density Prior Learning for Zero-Shot Out-of-Vocabulary Object Detection
Zero-shot out-of-vocabulary detection (ZS-OOVD) aims to accurately recognize objects of in-vocabulary (IV) categories provided at zero-shot inference, while simultaneously rejecting undefined ones (out-of-vocabulary, OOV) that lack corresponding category prompts. However, previous methods are prone to overfitting the IV classes, leading to the OOV or undefined classes being misclassified as IV ones with a high confidence score. To address this issue, this paper proposes a zero-shot OOV detector (OOVDet), a novel framework that effectively detects predefined classes while reliably rejecting undefined ones in zero-shot scenes. Specifically, due to the model's lack of prior knowledge about the distribution of OOV data, we synthesize region-level OOV prompts by sampling from the low-likelihood regions of the class-conditional Gaussian distributions in the hidden space, motivated by the assumption that unknown semantics are more likely to emerge in low-density areas of the latent space. For OOV images, we further propose a Dirichlet-based gradient attribution mechanism to mine pseudo-OOV image samples, where the attribution gradients are interpreted as Dirichlet evidence to estimate prediction uncertainty, and samples with high uncertainty are selected as pseudo-OOV images. Building on these synthesized OOV prompts and pseudo-OOV images, we construct the OOV decision boundary through a low-density prior constraint, which regularizes the optimization of OOV classes using Gaussian kernel density estimation in accordance with the above assumption. Experimental results show that our method significantly improves the OOV detection performance in zero-shot scenes. The code is available at https://github.com/binyisu/OOV-detector.
☆ Visual Personalization Turing Test
We introduce the Visual Personalization Turing Test (VPTT), a new paradigm for evaluating contextual visual personalization based on perceptual indistinguishability, rather than identity replication. A model passes the VPTT if its output (image, video, 3D asset, etc.) is indistinguishable to a human or calibrated VLM judge from content a given person might plausibly create or share. To operationalize VPTT, we present the VPTT Framework, integrating a 10k-persona benchmark (VPTT-Bench), a visual retrieval-augmented generator (VPRAG), and the VPTT Score, a text-only metric calibrated against human and VLM judgments. We show high correlation across human, VLM, and VPTT evaluations, validating the VPTT Score as a reliable perceptual proxy. Experiments demonstrate that VPRAG achieves the best alignment-originality balance, offering a scalable and privacy-safe foundation for personalized generative AI.
comment: Webpage: https://snap-research.github.io/vptt
☆ Stabilizing Consistency Training: A Flow Map Analysis and Self-Distillation
Consistency models have been proposed for fast generative modeling, achieving results competitive with diffusion and flow models. However, these methods exhibit inherent instability and limited reproducibility when training from scratch, motivating subsequent work to explain and stabilize these issues. While these efforts have provided valuable insights, the explanations remain fragmented, and the theoretical relationships remain unclear. In this work, we provide a theoretical examination of consistency models by analyzing them from a flow map-based perspective. This joint analysis clarifies how training stability and convergence behavior can give rise to degenerate solutions. Building on these insights, we revisit self-distillation as a practical remedy for certain forms of suboptimal convergence and reformulate it to avoid excessive gradient norms for stable optimization. We further demonstrate that our strategy extends beyond image generation to diffusion-based policy learning, without reliance on a pretrained diffusion model for initialization, thereby illustrating its broader applicability.
☆ Fire on Motion: Optimizing Video Pass-bands for Efficient Spiking Action Recognition
Spiking neural networks (SNNs) have gained traction in vision due to their energy efficiency, bio-plausibility, and inherent temporal processing. Yet, despite this temporal capacity, most progress concentrates on static image benchmarks, and SNNs still underperform on dynamic video tasks compared to artificial neural networks (ANNs). In this work, we diagnose a fundamental pass-band mismatch: Standard spiking dynamics behave as a temporal low pass that emphasizes static content while attenuating motion bearing bands, where task relevant information concentrates in dynamic tasks. This phenomenon explains why SNNs can approach ANNs on static tasks yet fall behind on tasks that demand richer temporal understanding.To remedy this, we propose the Pass-Bands Optimizer (PBO), a plug-and-play module that optimizes the temporal pass-band toward task-relevant motion bands. PBO introduces only two learnable parameters, and a lightweight consistency constraint that preserves semantics and boundaries, incurring negligible computational overhead and requires no architectural changes. PBO deliberately suppresses static components that contribute little to discrimination, effectively high passing the stream so that spiking activity concentrates on motion bearing content. On UCF101, PBO yields over ten percentage points improvement. On more complex multi-modal action recognition and weakly supervised video anomaly detection, PBO delivers consistent and significant gains, offering a new perspective for SNN based video processing and understanding.
☆ VisionTrim: Unified Vision Token Compression for Training-Free MLLM Acceleration ICLR2026
Multimodal large language models (MLLMs) suffer from high computational costs due to excessive visual tokens, particularly in high-resolution and video-based scenarios. Existing token reduction methods typically focus on isolated pipeline components and often neglect textual alignment, leading to performance degradation. In this paper, we propose VisionTrim, a unified framework for training-free MLLM acceleration, integrating two effective plug-and-play modules: 1) the Dominant Vision Token Selection (DVTS) module, which preserves essential visual tokens via a global-local view, and 2) the Text-Guided Vision Complement (TGVC) module, which facilitates context-aware token merging guided by textual cues. Extensive experiments across diverse image and video multimodal benchmarks demonstrate the performance superiority of our VisionTrim, advancing practical MLLM deployment in real-world applications. The code is available at: https://github.com/hanxunyu/VisionTrim.
comment: ICLR2026, Code Link: https://github.com/hanxunyu/VisionTrim
☆ ExpAlign: Expectation-Guided Vision-Language Alignment for Open-Vocabulary Grounding
Open-vocabulary grounding requires accurate vision-language alignment under weak supervision, yet existing methods either rely on global sentence embeddings that lack fine-grained expressiveness or introduce token-level alignment with explicit supervision or heavy cross-attention designs. We propose ExpAlign, a theoretically grounded vision-language alignment framework built on a principled multiple instance learning formulation. ExpAlign introduces an Expectation Alignment Head that performs attention-based soft MIL pooling over token-region similarities, enabling implicit token and instance selection without additional annotations. To further stabilize alignment learning, we develop an energy-based multi-scale consistency regularization scheme, including a Top-K multi-positive contrastive objective and a Geometry-Aware Consistency Objective derived from a Lagrangian-constrained free-energy minimization. Extensive experiments show that ExpAlign consistently improves open-vocabulary detection and zero-shot instance segmentation, particularly on long-tail categories. Most notably, it achieves 36.2 AP$_r$ on the LVIS minival split, outperforming other state-of-the-art methods at comparable model scale, while remaining lightweight and inference-efficient.
comment: 20 pages, 6 figures
☆ Unsupervised Synthetic Image Attribution: Alignment and Disentanglement
As the quality of synthetic images improves, identifying the underlying concepts of model-generated images is becoming increasingly crucial for copyright protection and ensuring model transparency. Existing methods achieve this attribution goal by training models using annotated pairs of synthetic images and their original training sources. However, obtaining such paired supervision is challenging, as it requires either well-designed synthetic concepts or precise annotations from millions of training sources. To eliminate the need for costly paired annotations, in this paper, we explore the possibility of unsupervised synthetic image attribution. We propose a simple yet effective unsupervised method called Alignment and Disentanglement. Specifically, we begin by performing basic concept alignment using contrastive self-supervised learning. Next, we enhance the model's attribution ability by promoting representation disentanglement with the Infomax loss. This approach is motivated by an interesting observation: contrastive self-supervised models, such as MoCo and DINO, inherently exhibit the ability to perform simple cross-domain alignment. By formulating this observation as a theoretical assumption on cross-covariance, we provide a theoretical explanation of how alignment and disentanglement can approximate the concept-matching process through a decomposition of the canonical correlation analysis objective. On the real-world benchmarks, AbC, we show that our unsupervised method surprisingly outperforms the supervised methods. As a starting point, we expect our intuitive insights and experimental findings to provide a fresh perspective on this challenging task.
☆ Training Beyond Convergence: Grokking nnU-Net for Glioma Segmentation in Sub-Saharan MRI
Gliomas are placing an increasingly clinical burden on Sub-Saharan Africa (SSA). In the region, the median survival for patients remains under two years, and access to diagnostic imaging is extremely limited. These constraints highlight an urgent need for automated tools that can extract the maximum possible information from each available scan, tools that are specifically trained on local data, rather than adapted from high-income settings where conditions are vastly different. We utilize the Brain Tumor Segmentation (BraTS) Africa 2025 Challenge dataset, an expert annotated collection of glioma MRIs. Our objectives are: (i) establish a strong baseline with nnUNet on this dataset, and (ii) explore whether the celebrated "grokking" phenomenon an abrupt, late training jump from memorization to superior generalization can be triggered to push performance without extra labels. We evaluate two training regimes. The first is a fast, budget-conscious approach that limits optimization to just a few epochs, reflecting the constrained GPU resources typically available in African institutions. Despite this limitation, nnUNet achieves strong Dice scores: 92.3% for whole tumor (WH), 86.6% for tumor core (TC), and 86.3% for enhancing tumor (ET). The second regime extends training well beyond the point of convergence, aiming to trigger a grokking-driven performance leap. With this approach, we were able to achieve grokking and enhanced our results to higher Dice scores: 92.2% for whole tumor (WH), 90.1% for tumor core (TC), and 90.2% for enhancing tumor (ET).
☆ What can Computer Vision learn from Ranganathan?
The Semantic Gap Problem (SGP) in Computer Vision (CV) arises from the misalignment between visual and lexical semantics leading to flawed CV dataset design and CV benchmarks. This paper proposes that classification principles of S.R. Ranganathan can offer a principled starting point to address SGP and design high-quality CV datasets. We elucidate how these principles, suitably adapted, underpin the vTelos CV annotation methodology. The paper also briefly presents experimental evidence showing improvements in CV annotation and accuracy, thereby, validating vTelos.
comment: Accepted @ DRTC-ISI Conference 2026, Indian Statistical Institute (ISI), Bangalore, India
☆ LINA: Linear Autoregressive Image Generative Models with Continuous Tokens
Autoregressive models with continuous tokens form a promising paradigm for visual generation, especially for text-to-image (T2I) synthesis, but they suffer from high computational cost. We study how to design compute-efficient linear attention within this framework. Specifically, we conduct a systematic empirical analysis of scaling behavior with respect to parameter counts under different design choices, focusing on (1) normalization paradigms in linear attention (division-based vs. subtraction-based) and (2) depthwise convolution for locality augmentation. Our results show that although subtraction-based normalization is effective for image classification, division-based normalization scales better for linear generative transformers. In addition, incorporating convolution for locality modeling plays a crucial role in autoregressive generation, consistent with findings in diffusion models. We further extend gating mechanisms, commonly used in causal linear attention, to the bidirectional setting and propose a KV gate. By introducing data-independent learnable parameters to the key and value states, the KV gate assigns token-wise memory weights, enabling flexible memory management similar to forget gates in language models. Based on these findings, we present LINA, a simple and compute-efficient T2I model built entirely on linear attention, capable of generating high-fidelity 1024x1024 images from user instructions. LINA achieves competitive performance on both class-conditional and T2I benchmarks, obtaining 2.18 FID on ImageNet (about 1.4B parameters) and 0.74 on GenEval (about 1.5B parameters). A single linear attention module reduces FLOPs by about 61 percent compared to softmax attention. Code and models are available at: https://github.com/techmonsterwang/LINA.
comment: 20 pages, 9 figures
☆ UniGeo: A Unified 3D Indoor Object Detection Framework Integrating Geometry-Aware Learning and Dynamic Channel Gating
The growing adoption of robotics and augmented reality in real-world applications has driven considerable research interest in 3D object detection based on point clouds. While previous methods address unified training across multiple datasets, they fail to model geometric relationships in sparse point cloud scenes and ignore the feature distribution in significant areas, which ultimately restricts their performance. To deal with this issue, a unified 3D indoor detection framework, called UniGeo, is proposed. To model geometric relations in scenes, we first propose a geometry-aware learning module that establishes a learnable mapping from spatial relationships to feature weights, which enabes explicit geometric feature enhancement. Then, to further enhance point cloud feature representation, we propose a dynamic channel gating mechanism that leverages learnable channel-wise weighting. This mechanism adaptively optimizes features generated by the sparse 3D U-Net network, significantly enhancing key geometric information. Extensive experiments on six different indoor scene datasets clearly validate the superior performance of our method.
☆ TTSA3R: Training-Free Temporal-Spatial Adaptive Persistent State for Streaming 3D Reconstruction
Streaming recurrent models enable efficient 3D reconstruction by maintaining persistent state representations. However, they suffer from catastrophic memory forgetting over long sequences due to balancing historical information with new observations. Recent methods alleviate this by deriving adaptive signals from attention perspective, but they operate on single dimensions without considering temporal and spatial consistency. To this end, we propose a training-free framework termed TTSA3R that leverages both temporal state evolution and spatial observation quality for adaptive state updates in 3D reconstruction. In particular, we devise a Temporal Adaptive Update Module that regulates update magnitude by analyzing temporal state evolution patterns. Then, a Spatial Contextual Update Module is introduced to localize spatial regions that require updates through observation-state alignment and scene dynamics. These complementary signals are finally fused to determine the state updating strategies. Extensive experiments demonstrate the effectiveness of TTSA3R in diverse 3D tasks. Moreover, our method exhibits only 15% error increase compared to over 200% degradation in baseline models on extended sequences, significantly improving long-term reconstruction stability. Our codes will be available soon.
☆ FOTBCD: A Large-Scale Building Change Detection Benchmark from French Orthophotos and Topographic Data
We introduce FOTBCD, a large-scale building change detection dataset derived from authoritative French orthophotos and topographic building data provided by IGN France. Unlike existing benchmarks that are geographically constrained to single cities or limited regions, FOTBCD spans 28 departments across mainland France, with 25 used for training and three geographically disjoint departments held out for evaluation. The dataset covers diverse urban, suburban, and rural environments at 0.2m/pixel resolution. We publicly release FOTBCD-Binary, a dataset comprising approximately 28,000 before/after image pairs with pixel-wise binary building change masks, each associated with patch-level spatial metadata. The dataset is designed for large-scale benchmarking and evaluation under geographic domain shift, with validation and test samples drawn from held-out departments and manually verified to ensure label quality. In addition, we publicly release FOTBCD-Instances, a publicly available instance-level annotated subset comprising several thousand image pairs, which illustrates the complete annotation schema used in the full instance-level version of FOTBCD. Using a fixed reference baseline, we benchmark FOTBCD-Binary against LEVIR-CD+ and WHU-CD, providing strong empirical evidence that geographic diversity at the dataset level is associated with improved cross-domain generalization in building change detection.
☆ Cross-Domain Few-Shot Learning for Hyperspectral Image Classification Based on Mixup Foundation Model
Although cross-domain few-shot learning (CDFSL) for hyper-spectral image (HSI) classification has attracted significant research interest, existing works often rely on an unrealistic data augmentation procedure in the form of external noise to enlarge the sample size, thus greatly simplifying the issue of data scarcity. They involve a large number of parameters for model updates, being prone to the overfitting problem. To the best of our knowledge, none has explored the strength of the foundation model, having strong generalization power to be quickly adapted to downstream tasks. This paper proposes the MIxup FOundation MOdel (MIFOMO) for CDFSL of HSI classifications. MIFOMO is built upon the concept of a remote sensing (RS) foundation model, pre-trained across a large scale of RS problems, thus featuring generalizable features. The notion of coalescent projection (CP) is introduced to quickly adapt the foundation model to downstream tasks while freezing the backbone network. The concept of mixup domain adaptation (MDM) is proposed to address the extreme domain discrepancy problem. Last but not least, the label smoothing concept is implemented to cope with noisy pseudo-label problems. Our rigorous experiments demonstrate the advantage of MIFOMO, where it beats prior arts with up to 14% margin. The source code of MIFOMO is open-sourced in https://github.com/Naeem- Paeedeh/MIFOMO for reproducibility and convenient further study.
☆ Bonnet: Ultra-fast whole-body bone segmentation from CT scans IEEE
This work proposes Bonnet, an ultra-fast sparse-volume pipeline for whole-body bone segmentation from CT scans. Accurate bone segmentation is important for surgical planning and anatomical analysis, but existing 3D voxel-based models such as nnU-Net and STU-Net require heavy computation and often take several minutes per scan, which limits time-critical use. The proposed Bonnet addresses this by integrating a series of novel framework components including HU-based bone thresholding, patch-wise inference with a sparse spconv-based U-Net, and multi-window fusion into a full-volume prediction. Trained on TotalSegmentator and evaluated without additional tuning on RibSeg, CT-Pelvic1K, and CT-Spine1K, Bonnet achieves high Dice across ribs, pelvis, and spine while running in only 2.69 seconds per scan on an RTX A6000. Compared to strong voxel baselines, Bonnet attains a similar accuracy but reduces inference time by roughly 25x on the same hardware and tiling setup. The toolkit and pre-trained models will be released at https://github.com/HINTLab/Bonnet.
comment: 5 pages, 2 figures. Accepted for publication at the 2026 IEEE International Symposium on Biomedical Imaging (ISBI 2026)
☆ PhoStream: Benchmarking Real-World Streaming for Omnimodal Assistants in Mobile Scenarios
Multimodal Large Language Models excel at offline audio-visual understanding, but their ability to serve as mobile assistants in continuous real-world streams remains underexplored. In daily phone use, mobile assistants must track streaming audio-visual inputs and respond at the right time, yet existing benchmarks are often restricted to multiple-choice questions or use shorter videos. In this paper, we introduce PhoStream, the first mobile-centric streaming benchmark that unifies on-screen and off-screen scenarios to evaluate video, audio, and temporal reasoning. PhoStream contains 5,572 open-ended QA pairs from 578 videos across 4 scenarios and 10 capabilities. We build it with an Automated Generative Pipeline backed by rigorous human verification, and evaluate models using a realistic Online Inference Pipeline and LLM-as-a-Judge evaluation for open-ended responses. Experiments reveal a temporal asymmetry in LLM-judged scores (0-100): models perform well on Instant and Backward tasks (Gemini 3 Pro exceeds 80), but drop sharply on Forward tasks (16.40), largely due to early responses before the required visual and audio cues appear. This highlights a fundamental limitation: current MLLMs struggle to decide when to speak, not just what to say. Code and datasets used in this work will be made publicly accessible at https://github.com/Lucky-Lance/PhoStream.
comment: 18 pages
☆ Mitigating Hallucinations in Video Large Language Models via Spatiotemporal-Semantic Contrastive Decoding
Although Video Large Language Models perform remarkably well across tasks such as video understanding, question answering, and reasoning, they still suffer from the problem of hallucination, which refers to generating outputs that are inconsistent with explicit video content or factual evidence. However, existing decoding methods for mitigating video hallucinations, while considering the spatiotemporal characteristics of videos, mostly rely on heuristic designs. As a result, they fail to precisely capture the root causes of hallucinations and their fine-grained temporal and semantic correlations, leading to limited robustness and generalization in complex scenarios. To more effectively mitigate video hallucinations, we propose a novel decoding strategy termed Spatiotemporal-Semantic Contrastive Decoding. This strategy constructs negative features by deliberately disrupting the spatiotemporal consistency and semantic associations of video features, and suppresses video hallucinations through contrastive decoding against the original video features during inference. Extensive experiments demonstrate that our method not only effectively mitigates the occurrence of hallucinations, but also preserves the general video understanding and reasoning capabilities of the model.
comment: Preprint
☆ DELNet: Continuous All-in-One Weather Removal via Dynamic Expert Library ICASSP
All-in-one weather image restoration methods are valuable in practice but depend on pre-collected data and require retraining for unseen degradations, leading to high cost. We propose DELNet, a continual learning framework for weather image restoration. DELNet integrates a judging valve that measures task similarity to distinguish new from known tasks, and a dynamic expert library that stores experts trained on different degradations. For new tasks, the valve selects top-k experts for knowledge transfer while adding new experts to capture task-specific features; for known tasks, the corresponding experts are directly reused. This design enables continuous optimization without retraining existing models. Experiments on OTS, Rain100H, and Snow100K demonstrate that DELNet surpasses state-of-the-art continual learning methods, achieving PSNR gains of 16\%, 11\%, and 12\%, respectively. These results highlight the effectiveness, robustness, and efficiency of DELNet, which reduces retraining cost and enables practical deployment in real-world scenarios.
comment: Accepted by the ICASSP conference, not yet officially published
☆ Leveraging Data to Say No: Memory Augmented Plug-and-Play Selective Prediction ICLR 2026
Selective prediction aims to endow predictors with a reject option, to avoid low confidence predictions. However, existing literature has primarily focused on closed-set tasks, such as visual question answering with predefined options or fixed-category classification. This paper considers selective prediction for visual language foundation models, addressing a taxonomy of tasks ranging from closed to open set and from finite to unbounded vocabularies, as in image captioning. We seek training-free approaches of low-complexity, applicable to any foundation model and consider methods based on external vision-language model embeddings, like CLIP. This is denoted as Plug-and-Play Selective Prediction (PaPSP). We identify two key challenges: (1) instability of the visual-language representations, leading to high variance in image-text embeddings, and (2) poor calibration of similarity scores. To address these issues, we propose a memory augmented PaPSP (MA-PaPSP) model, which augments PaPSP with a retrieval dataset of image-text pairs. This is leveraged to reduce embedding variance by averaging retrieved nearest-neighbor pairs and is complemented by the use of contrastive normalization to improve score calibration. Through extensive experiments on multiple datasets, we show that MA-PaPSP outperforms PaPSP and other selective prediction baselines for selective captioning, image-text matching, and fine-grained classification. Code is publicly available at https://github.com/kingston-aditya/MA-PaPSP.
comment: ICLR 2026
☆ Hybrid Cross-Device Localization via Neural Metric Learning and Feature Fusion
We present a hybrid cross-device localization pipeline developed for the CroCoDL 2025 Challenge. Our approach integrates a shared retrieval encoder and two complementary localization branches: a classical geometric branch using feature fusion and PnP, and a neural feed-forward branch (MapAnything) for metric localization conditioned on geometric inputs. A neural-guided candidate pruning strategy further filters unreliable map frames based on translation consistency, while depth-conditioned localization refines metric scale and translation precision on Spot scenes. These components jointly lead to significant improvements in recall and accuracy across both HYDRO and SUCCU benchmarks. Our method achieved a final score of 92.62 (R@0.5m, 5°) during the challenge.
comment: 3 pages
☆ EndoCaver: Handling Fog, Blur and Glare in Endoscopic Images via Joint Deblurring-Segmentation IEEE
Endoscopic image analysis is vital for colorectal cancer screening, yet real-world conditions often suffer from lens fogging, motion blur, and specular highlights, which severely compromise automated polyp detection. We propose EndoCaver, a lightweight transformer with a unidirectional-guided dual-decoder architecture, enabling joint multi-task capability for image deblurring and segmentation while significantly reducing computational complexity and model parameters. Specifically, it integrates a Global Attention Module (GAM) for cross-scale aggregation, a Deblurring-Segmentation Aligner (DSA) to transfer restoration cues, and a cosine-based scheduler (LoCoS) for stable multi-task optimisation. Experiments on the Kvasir-SEG dataset show that EndoCaver achieves 0.922 Dice on clean data and 0.889 under severe image degradation, surpassing state-of-the-art methods while reducing model parameters by 90%. These results demonstrate its efficiency and robustness, making it well-suited for on-device clinical deployment. Code is available at https://github.com/ReaganWu/EndoCaver.
comment: Accepted for publication at IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2026
☆ SHED Light on Segmentation for Dense Prediction
Dense prediction infers per-pixel values from a single image and is fundamental to 3D perception and robotics. Although real-world scenes exhibit strong structure, existing methods treat it as an independent pixel-wise prediction, often resulting in structural inconsistencies. We propose SHED, a novel encoder-decoder architecture that enforces geometric prior explicitly by incorporating segmentation into dense prediction. By bidirectional hierarchical reasoning, segment tokens are hierarchically pooled in the encoder and unpooled in the decoder to reverse the hierarchy. The model is supervised only at the final output, allowing the segment hierarchy to emerge without explicit segmentation supervision. SHED improves depth boundary sharpness and segment coherence, while demonstrating strong cross-domain generalization from synthetic to the real-world environments. Its hierarchy-aware decoder better captures global 3D scene layouts, leading to improved semantic segmentation performance. Moreover, SHED enhances 3D reconstruction quality and reveals interpretable part-level structures that are often missed by conventional pixel-wise methods.
☆ Can 3D point cloud data improve automated body condition score prediction in dairy cattle?
Body condition score (BCS) is a widely used indicator of body energy status and is closely associated with metabolic status, reproductive performance, and health in dairy cattle; however, conventional visual scoring is subjective and labor-intensive. Computer vision approaches have been applied to BCS prediction, with depth images widely used because they capture geometric information independent of coat color and texture. More recently, three-dimensional point cloud data have attracted increasing interest due to their ability to represent richer geometric characteristics of animal morphology, but direct head-to-head comparisons with depth image-based approaches remain limited. In this study, we compared top-view depth image and point cloud data for BCS prediction under four settings: 1) unsegmented raw data, 2) segmented full-body data, 3) segmented hindquarter data, and 4) handcrafted feature data. Prediction models were evaluated using data from 1,020 dairy cows collected on a commercial farm, with cow-level cross-validation to prevent data leakage. Depth image-based models consistently achieved higher accuracy than point cloud-based models when unsegmented raw data and segmented full-body data were used, whereas comparable performance was observed when segmented hindquarter data were used. Both depth image and point cloud approaches showed reduced accuracy when handcrafted feature data were employed compared with the other settings. Overall, point cloud-based predictions were more sensitive to noise and model architecture than depth image-based predictions. Taken together, these results indicate that three-dimensional point clouds do not provide a consistent advantage over depth images for BCS prediction in dairy cattle under the evaluated conditions.
☆ DNA: Uncovering Universal Latent Forgery Knowledge
As generative AI achieves hyper-realism, superficial artifact detection has become obsolete. While prevailing methods rely on resource-intensive fine-tuning of black-box backbones, we propose that forgery detection capability is already encoded within pre-trained models rather than requiring end-to-end retraining. To elicit this intrinsic capability, we propose the discriminative neural anchors (DNA) framework, which employs a coarse-to-fine excavation mechanism. First, by analyzing feature decoupling and attention distribution shifts, we pinpoint critical intermediate layers where the focus of the model logically transitions from global semantics to local anomalies. Subsequently, we introduce a triadic fusion scoring metric paired with a curvature-truncation strategy to strip away semantic redundancy, precisely isolating the forgery-discriminative units (FDUs) inherently imprinted with sensitivity to forgery traces. Moreover, we introduce HIFI-Gen, a high-fidelity synthetic benchmark built upon the very latest models, to address the lag in existing datasets. Experiments demonstrate that by solely relying on these anchors, DNA achieves superior detection performance even under few-shot conditions. Furthermore, it exhibits remarkable robustness across diverse architectures and against unseen generative models, validating that waking up latent neurons is more effective than extensive fine-tuning.
☆ CoVA: Text-Guided Composed Video Retrieval for Audio-Visual Content
Composed Video Retrieval (CoVR) aims to retrieve a target video from a large gallery using a reference video and a textual query specifying visual modifications. However, existing benchmarks consider only visual changes, ignoring videos that differ in audio despite visual similarity. To address this limitation, we introduce Composed retrieval for Video with its Audio CoVA, a new retrieval task that accounts for both visual and auditory variations. To support this, we construct AV-Comp, a benchmark consisting of video pairs with cross-modal changes and corresponding textual queries that describe the differences. We also propose AVT Compositional Fusion (AVT), which integrates video, audio, and text features by selectively aligning the query to the most relevant modality. AVT outperforms traditional unimodal fusion and serves as a strong baseline for CoVA. Examples from the proposed dataset, including both visual and auditory information, are available at https://perceptualai-lab.github.io/CoVA/.
comment: Please visit our project page at https://perceptualai-lab.github.io/CoVA/
☆ DreamVAR: Taming Reinforced Visual Autoregressive Model for High-Fidelity Subject-Driven Image Generation ICASSP 2026
Recent advances in subject-driven image generation using diffusion models have attracted considerable attention for their remarkable capabilities in producing high-quality images. Nevertheless, the potential of Visual Autoregressive (VAR) models, despite their unified architecture and efficient inference, remains underexplored. In this work, we present DreamVAR, a novel framework for subject-driven image synthesis built upon a VAR model that employs next-scale prediction. Technically, multi-scale features of the reference subject are first extracted by a visual tokenizer. Instead of interleaving these conditional features with target image tokens across scales, our DreamVAR pre-fills the full subject feature sequence prior to predicting target image tokens. This design simplifies autoregressive dependencies and mitigates the train-test discrepancy in multi-scale conditioning scenario within the VAR paradigm. DreamVAR further incorporates reinforcement learning to jointly enhance semantic alignment and subject consistency. Extensive experiments demonstrate that DreamVAR achieves superior appearance preservation compared to leading diffusion-based methods.
comment: Accepted By ICASSP 2026
☆ MIRRORTALK: Forging Personalized Avatars Via Disentangled Style and Hierarchical Motion Control IEEE
Synthesizing personalized talking faces that uphold and highlight a speaker's unique style while maintaining lip-sync accuracy remains a significant challenge. A primary limitation of existing approaches is the intrinsic confounding of speaker-specific talking style and semantic content within facial motions, which prevents the faithful transfer of a speaker's unique persona to arbitrary speech. In this paper, we propose MirrorTalk, a generative framework based on a conditional diffusion model, combined with a Semantically-Disentangled Style Encoder (SDSE) that can distill pure style representations from a brief reference video. To effectively utilize this representation, we further introduce a hierarchical modulation strategy within the diffusion process. This mechanism guides the synthesis by dynamically balancing the contributions of audio and style features across distinct facial regions, ensuring both precise lip-sync accuracy and expressive full-face dynamics. Extensive experiments demonstrate that MirrorTalk achieves significant improvements over state-of-the-art methods in terms of lip-sync accuracy and personalization preservation.
comment: Accepted to 2026 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2026)
PromptMAD: Cross-Modal Prompting for Multi-Class Visual Anomaly Localization ICASSP 2026
Visual anomaly detection in multi-class settings poses significant challenges due to the diversity of object categories, the scarcity of anomalous examples, and the presence of camouflaged defects. In this paper, we propose PromptMAD, a cross-modal prompting framework for unsupervised visual anomaly detection and localization that integrates semantic guidance through vision-language alignment. By leveraging CLIP-encoded text prompts describing both normal and anomalous class-specific characteristics, our method enriches visual reconstruction with semantic context, improving the detection of subtle and textural anomalies. To further address the challenge of class imbalance at the pixel level, we incorporate Focal loss function, which emphasizes hard-to-detect anomalous regions during training. Our architecture also includes a supervised segmentor that fuses multi-scale convolutional features with Transformer-based spatial attention and diffusion iterative refinement, yielding precise and high-resolution anomaly maps. Extensive experiments on the MVTec-AD dataset demonstrate that our method achieves state-of-the-art pixel-level performance, improving mean AUC to 98.35% and AP to 66.54%, while maintaining efficiency across diverse categories.
comment: Accepted to ICASSP 2026
☆ Head-Aware Visual Cropping: Enhancing Fine-Grained VQA with Attention-Guided Subimage IEEE
Multimodal Large Language Models (MLLMs) show strong performance in Visual Question Answering (VQA) but remain limited in fine-grained reasoning due to low-resolution inputs and noisy attention aggregation. We propose \textbf{Head Aware Visual Cropping (HAVC)}, a training-free method that improves visual grounding by leveraging a selectively refined subset of attention heads. HAVC first filters heads through an OCR-based diagnostic task, ensuring that only those with genuine grounding ability are retained. At inference, these heads are further refined using spatial entropy for stronger spatial concentration and gradient sensitivity for predictive contribution. The fused signals produce a reliable Visual Cropping Guidance Map, which highlights the most task-relevant region and guides the cropping of a subimage subsequently provided to the MLLM together with the image-question pair. Extensive experiments on multiple fine-grained VQA benchmarks demonstrate that HAVC consistently outperforms state-of-the-art cropping strategies, achieving more precise localization, stronger visual grounding, providing a simple yet effective strategy for enhancing precision in MLLMs.
comment: Accepted to 2026 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2026)
☆ Training-Free Representation Guidance for Diffusion Models with a Representation Alignment Projector
Recent progress in generative modeling has enabled high-quality visual synthesis with diffusion-based frameworks, supporting controllable sampling and large-scale training. Inference-time guidance methods such as classifier-free and representative guidance enhance semantic alignment by modifying sampling dynamics; however, they do not fully exploit unsupervised feature representations. Although such visual representations contain rich semantic structure, their integration during generation is constrained by the absence of ground-truth reference images at inference. This work reveals semantic drift in the early denoising stages of diffusion transformers, where stochasticity results in inconsistent alignment even under identical conditioning. To mitigate this issue, we introduce a guidance scheme using a representation alignment projector that injects representations predicted by a projector into intermediate sampling steps, providing an effective semantic anchor without modifying the model architecture. Experiments on SiTs and REPAs show notable improvements in class-conditional ImageNet synthesis, achieving substantially lower FID scores; for example, REPA-XL/2 improves from 5.9 to 3.3, and the proposed method outperforms representative guidance when applied to SiT models. The approach further yields complementary gains when combined with classifier-free guidance, demonstrating enhanced semantic coherence and visual fidelity. These results establish representation-informed diffusion sampling as a practical strategy for reinforcing semantic preservation and image consistency.
☆ CARE: Multi-Task Pretraining for Latent Continuous Action Representation in Robot Control IEEE
Recent advances in Vision-Language-Action (VLA) models have shown promise for robot control, but their dependence on action supervision limits scalability and generalization. To address this challenge, we introduce CARE, a novel framework designed to train VLA models for robotic task execution. Unlike existing methods that depend on action annotations during pretraining, CARE eliminates the need for explicit action labels by leveraging only video-text pairs. These weakly aligned data sources enable the model to learn continuous latent action representations through a newly designed multi-task pretraining objective. During fine-tuning, a small set of labeled data is used to train the action head for control. Experimental results across various simulation tasks demonstrate CARE's superior success rate, semantic interpretability, and ability to avoid shortcut learning. These results underscore CARE's scalability, interpretability, and effectiveness in robotic control with weak supervision.
comment: Accepted to 2026 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2026)
☆ ScribbleSense: Generative Scribble-Based Texture Editing with Intent Prediction IEEE
Interactive 3D model texture editing presents enhanced opportunities for creating 3D assets, with freehand drawing style offering the most intuitive experience. However, existing methods primarily support sketch-based interactions for outlining, while the utilization of coarse-grained scribble-based interaction remains limited. Furthermore, current methodologies often encounter challenges due to the abstract nature of scribble instructions, which can result in ambiguous editing intentions and unclear target semantic locations. To address these issues, we propose ScribbleSense, an editing method that combines multimodal large language models (MLLMs) and image generation models to effectively resolve these challenges. We leverage the visual capabilities of MLLMs to predict the editing intent behind the scribbles. Once the semantic intent of the scribble is discerned, we employ globally generated images to extract local texture details, thereby anchoring local semantics and alleviating ambiguities concerning the target semantic locations. Experimental results indicate that our method effectively leverages the strengths of MLLMs, achieving state-of-the-art interactive editing performance for scribble-based texture editing.
comment: Accepted by IEEE TVCG. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses
☆ Countering the Over-Reliance Trap: Mitigating Object Hallucination for LVLMs via a Self-Validation Framework
Despite progress in Large Vision Language Models (LVLMs), object hallucination remains a critical issue in image captioning task, where models generate descriptions of non-existent objects, compromising their reliability. Previous work attributes this to LVLMs' over-reliance on language priors and attempts to mitigate it through logits calibration. However, they still lack a thorough analysis of the over-reliance. To gain a deeper understanding of over-reliance, we conduct a series of preliminary experiments, indicating that as the generation length increases, LVLMs' over-reliance on language priors leads to inflated probability of hallucinated object tokens, consequently exacerbating object hallucination. To circumvent this issue, we propose Language-Prior-Free Verification to enable LVLMs to faithfully verify the confidence of object existence. Based on this, we propose a novel training-free Self-Validation Framework to counter the over-reliance trap. It first validates objects' existence in sampled candidate captions and further mitigates object hallucination via caption selection or aggregation. Experiment results demonstrate that our framework mitigates object hallucination significantly in image captioning task (e.g., 65.6% improvement on CHAIRI metric with LLaVA-v1.5-7B), surpassing the previous SOTA methods. This result highlights a novel path towards mitigating hallucination by unlocking the inherent potential within LVLMs themselves.
comment: Code is available at https://github.com/Liushiyu-0709/SelfVal
☆ High-Definition 5MP Stereo Vision Sensing for Robotics
High-resolution (5MP+) stereo vision systems are essential for advancing robotic capabilities, enabling operation over longer ranges and generating significantly denser and accurate 3D point clouds. However, realizing the full potential of high-angular-resolution sensors requires a commensurately higher level of calibration accuracy and faster processing -- requirements often unmet by conventional methods. This study addresses that critical gap by processing 5MP camera imagery using a novel, advanced frame-to-frame calibration and stereo matching methodology designed to achieve both high accuracy and speed. Furthermore, we introduce a new approach to evaluate real-time performance by comparing real-time disparity maps with ground-truth disparity maps derived from more computationally intensive stereo matching algorithms. Crucially, the research demonstrates that high-pixel-count cameras yield high-quality point clouds only through the implementation of high-accuracy calibration.
☆ Weak Diffusion Priors Can Still Achieve Strong Inverse-Problem Performance
Can a diffusion model trained on bedrooms recover human faces? Diffusion models are widely used as priors for inverse problems, but standard approaches usually assume a high-fidelity model trained on data that closely match the unknown signal. In practice, one often must use a mismatched or low-fidelity diffusion prior. Surprisingly, these weak priors often perform nearly as well as full-strength, in-domain baselines. We study when and why inverse solvers are robust to weak diffusion priors. Through extensive experiments, we find that weak priors succeed when measurements are highly informative (e.g., many observed pixels), and we identify regimes where they fail. Our theory, based on Bayesian consistency, gives conditions under which high-dimensional measurements make the posterior concentrate near the true signal. These results provide a principled justification on when weak diffusion priors can be used reliably.
♻ ☆ From Cold Start to Active Learning: Embedding-Based Scan Selection for Medical Image Segmentation
Accurate segmentation annotations are critical for disease monitoring, yet manual labeling remains a major bottleneck due to the time and expertise required. Active learning (AL) alleviates this burden by prioritizing informative samples for annotation, typically through a diversity-based cold-start phase followed by uncertainty-driven selection. We propose a novel cold-start sampling strategy that combines foundation-model embeddings with clustering, including automatic selection of the number of clusters and proportional sampling across clusters, to construct a diverse and representative initial training. This is followed by an uncertainty-based AL framework that integrates spatial diversity to guide sample selection. The proposed method is intuitive and interpretable, enabling visualization of the feature-space distribution of candidate samples. We evaluate our approach on three datasets spanning X-ray and MRI modalities. On the CheXmask dataset, the cold-start strategy outperforms random selection, improving Dice from 0.918 to 0.929 and reducing the Hausdorff distance from 32.41 to 27.66 mm. In the AL setting, combined entropy and diversity selection improves Dice from 0.919 to 0.939 and reduces the Hausdorff distance from 30.10 to 19.16 mm. On the Montgomery dataset, cold-start gains are substantial, with Dice improving from 0.928 to 0.950 and Hausdorff distance decreasing from 14.22 to 9.38 mm. On the SynthStrip dataset, cold-start selection slightly affects Dice but reduces the Hausdorff distance from 9.43 to 8.69 mm, while active learning improves Dice from 0.816 to 0.826 and reduces the Hausdorff distance from 7.76 to 6.38 mm. Overall, the proposed framework consistently outperforms baseline methods in low-data regimes, improving segmentation accuracy.
comment: 19 pages without references
♻ ☆ Benchmarking Foundation Models for Mitotic Figure Classification
The performance of deep learning models is known to scale with data quantity and diversity. In pathology, as in many other medical imaging domains, the availability of labeled images for a specific task is often limited. Self-supervised learning techniques have enabled the use of vast amounts of unlabeled data to train large-scale neural networks, i.e., foundation models, that can address the limited data problem by providing semantically rich feature vectors that can generalize well to new tasks with minimal training effort increasing model performance and robustness. In this work, we investigate the use of foundation models for mitotic figure classification. The mitotic count, which can be derived from this classification task, is an independent prognostic marker for specific tumors and part of certain tumor grading systems. In particular, we investigate the data scaling laws on multiple current foundation models and evaluate their robustness to unseen tumor domains. Next to the commonly used linear probing paradigm, we also adapt the models using low-rank adaptation (LoRA) of their attention mechanisms. We compare all models against end-to-end-trained baselines, both CNNs and Vision Transformers. Our results demonstrate that LoRA-adapted foundation models provide superior performance to those adapted with standard linear probing, reaching performance levels close to 100% data availability with only 10% of training data. Furthermore, LoRA-adaptation of the most recent foundation models almost closes the out-of-domain performance gap when evaluated on unseen tumor domains. However, full fine-tuning of traditional architectures still yields competitive performance.
♻ ☆ FastGHA: Generalized Few-Shot 3D Gaussian Head Avatars with Real-Time Animation ICLR 2026
Despite recent progress in 3D Gaussian-based head avatar modeling, efficiently generating high fidelity avatars remains a challenge. Current methods typically rely on extensive multi-view capture setups or monocular videos with per-identity optimization during inference, limiting their scalability and ease of use on unseen subjects. To overcome these efficiency drawbacks, we propose FastGHA, a feed-forward method to generate high-quality Gaussian head avatars from only a few input images while supporting real-time animation. Our approach directly learns a per-pixel Gaussian representation from the input images, and aggregates multi-view information using a transformer-based encoder that fuses image features from both DINOv3 and Stable Diffusion VAE. For real-time animation, we extend the explicit Gaussian representations with per-Gaussian features and introduce a lightweight MLP-based dynamic network to predict 3D Gaussian deformations from expression codes. Furthermore, to enhance geometric smoothness of the 3D head, we employ point maps from a pre-trained large reconstruction model as geometry supervision. Experiments show that our approach significantly outperforms existing methods in both rendering quality and inference efficiency, while supporting real-time dynamic avatar animation.
comment: Accepted to ICLR 2026
♻ ☆ Open-Vocabulary Functional 3D Human-Scene Interaction Generation
Generating 3D humans that functionally interact with 3D scenes remains an open problem with applications in embodied AI, robotics, and interactive content creation. The key challenge involves reasoning about both the semantics of functional elements in 3D scenes and the 3D human poses required to achieve functionality-aware interaction. Unfortunately, existing methods typically lack explicit reasoning over object functionality and the corresponding human-scene contact, resulting in implausible or functionally incorrect interactions. In this work, we propose FunHSI, a training-free, functionality-driven framework that enables functionally correct human-scene interactions from open-vocabulary task prompts. Given a task prompt, FunHSI performs functionality-aware contact reasoning to identify functional scene elements, reconstruct their 3D geometry, and model high-level interactions via a contact graph. We then leverage vision-language models to synthesize a human performing the task in the image and estimate proposed 3D body and hand poses. Finally, the proposed 3D body configuration is refined via stage-wise optimization to ensure physical plausibility and functional correctness. In contrast to existing methods, FunHSI not only synthesizes more plausible general 3D interactions, such as "sitting on a sofa'', while supporting fine-grained functional human-scene interactions, e.g., "increasing the room temperature''. Extensive experiments demonstrate that FunHSI consistently generates functionally correct and physically plausible human-scene interactions across diverse indoor and outdoor scenes.
comment: 18 pages
♻ ☆ Are Pose Estimators Ready for the Open World? STAGE: A GenAI Toolkit for Auditing 3D Human Pose Estimators 3DV 2026
For safety-critical applications, it is crucial to audit 3D human pose estimators before deployment. Will the system break down if the weather or the clothing changes? Is it robust regarding gender and age? To answer these questions and more, we need controlled studies with images that differ in a single attribute, but real benchmarks cannot provide such pairs. We thus present STAGE, a GenAI data toolkit for auditing 3D human pose estimators. For STAGE, we develop the first GenAI image creator with accurate 3D pose control and propose a novel evaluation strategy to isolate and quantify the effects of single factors such as gender, ethnicity, age, clothing, location, and weather. Enabled by STAGE, we generate a series of benchmarks to audit, for the first time, the sensitivity of popular pose estimators towards such factors. Our results show that natural variations can severely degrade pose estimator performance, raising doubts about their readiness for open-world deployment. We aim to highlight these robustness issues and establish STAGE as a benchmark to quantify them.
comment: International Conference on 3D Vision 2026(3DV 2026)
♻ ☆ Monocular pose estimation of articulated open surgery tools -- in the wild
This work presents a framework for monocular 6D pose estimation of surgical instruments in open surgery, addressing challenges such as object articulations, specularity, occlusions, and synthetic-to-real domain adaptation. The proposed approach consists of three main components: $(1)$ synthetic data generation pipeline that incorporates 3D scanning of surgical tools with articulation rigging and physically-based rendering; $(2)$ a tailored pose estimation framework combining tool detection with pose and articulation estimation; and $(3)$ a training strategy on synthetic and real unannotated video data, employing domain adaptation with automatically generated pseudo-labels. Evaluations conducted on real data of open surgery demonstrate the good performance and real-world applicability of the proposed framework, highlighting its potential for integration into medical augmented reality and robotic systems. The approach eliminates the need for extensive manual annotation of real surgical data.
comment: Author Accepted Manuscript (AAM)
♻ ☆ CaLiV: LiDAR-to-Vehicle Calibration of Arbitrary Sensor Setups
In autonomous systems, sensor calibration is essential for safe and efficient navigation in dynamic environments. Accurate calibration is a prerequisite for reliable perception and planning tasks such as object detection and obstacle avoidance. Many existing LiDAR calibration methods require overlapping fields of view, while others use external sensing devices or postulate a feature-rich environment. In addition, Sensor-to-Vehicle calibration is not supported by the vast majority of calibration algorithms. In this work, we propose a novel target-based technique for extrinsic Sensor-to-Sensor and Sensor-to-Vehicle calibration of multi-LiDAR systems called CaLiV. This algorithm works for non-overlapping fields of view and does not require any external sensing devices. First, we apply motion to produce field of view overlaps and utilize a simple Unscented Kalman Filter to obtain vehicle poses. Then, we use the Gaussian mixture model-based registration framework GMMCalib to align the point clouds in a common calibration frame. Finally, we reduce the task of recovering the sensor extrinsics to a minimization problem. We show that both translational and rotational Sensor-to-Sensor errors can be solved accurately by our method. In addition, all Sensor-to-Vehicle rotation angles can also be calibrated with high accuracy. We validate the simulation results in real-world experiments. The code is open-source and available on https://github.com/TUMFTM/CaLiV.
♻ ☆ ARB-LLM: Alternating Refined Binarizations for Large Language Models
Large Language Models (LLMs) have greatly pushed forward advancements in natural language processing, yet their high memory and computational demands hinder practical deployment. Binarization, as an effective compression technique, can shrink model weights to just 1 bit, significantly reducing the high demands on computation and memory. However, current binarization methods struggle to narrow the distribution gap between binarized and full-precision weights, while also overlooking the column deviation in LLM weight distribution. To tackle these issues, we propose ARB-LLM, a novel 1-bit post-training quantization (PTQ) technique tailored for LLMs. To narrow the distribution shift between binarized and full-precision weights, we first design an alternating refined binarization (ARB) algorithm to progressively update the binarization parameters, which significantly reduces the quantization error. Moreover, considering the pivot role of calibration data and the column deviation in LLM weights, we further extend ARB to ARB-X and ARB-RC. In addition, we refine the weight partition strategy with column-group bitmap (CGB), which further enhance performance. Equipping ARB-X and ARB-RC with CGB, we obtain ARB-LLM$_\text{X}$ and ARB-LLM$_\text{RC}$ respectively, which significantly outperform state-of-the-art (SOTA) binarization methods for LLMs. As a binary PTQ method, our ARB-LLM$_\text{RC}$ is the first to surpass FP16 models of the same size. The code and models will be available at https://github.com/ZHITENGLI/ARB-LLM.
comment: The code and models will be available at https://github.com/ZHITENGLI/ARB-LLM
♻ ☆ SLIM-Brain: A Data- and Training-Efficient Foundation Model for fMRI Data Analysis
Foundation models are emerging as a powerful paradigm for fMRI analysis, but current approaches face a dual bottleneck of data- and training-efficiency. Atlas-based methods aggregate voxel signals into fixed regions of interest, reducing data dimensionality but discarding fine-grained spatial details, and requiring extremely large cohorts to train effectively as general-purpose foundation models. Atlas-free methods, on the other hand, operate directly on voxel-level information - preserving spatial fidelity but are prohibitively memory- and compute-intensive, making large-scale pre-training infeasible. We introduce SLIM-Brain (Sample-efficient, Low-memory fMRI Foundation Model for Human Brain), a new atlas-free foundation model that simultaneously improves both data- and training-efficiency. SLIM-Brain adopts a two-stage adaptive design: (i) a lightweight temporal extractor captures global context across full sequences and ranks data windows by saliency, and (ii) a 4D hierarchical encoder (Hiera-JEPA) learns fine-grained voxel-level representations only from the top-$k$ selected windows, while deleting about 70% masked patches. Extensive experiments across seven public benchmarks show that SLIM-Brain establishes new state-of-the-art performance on diverse tasks, while requiring only 4 thousand pre-training sessions and approximately 30% of GPU memory comparing to traditional voxel-level methods.
comment: release code
♻ ☆ The Narrow Gate: Localized Image-Text Communication in Native Multimodal Models NeurIPS 2025
Recent advances in multimodal training have significantly improved the integration of image understanding and generation within a unified model. This study investigates how vision-language models (VLMs) handle image-understanding tasks, focusing on how visual information is processed and transferred to the textual domain. We compare native multimodal VLMs, models trained from scratch on multimodal data to generate both text and images, and non-native multimodal VLMs, models adapted from pre-trained large language models or capable of generating only text, highlighting key differences in information flow. We find that in native multimodal VLMs, image and text embeddings are more separated within the residual stream. Moreover, VLMs differ in how visual information reaches text: non-native multimodal VLMs exhibit a distributed communication pattern, where information is exchanged through multiple image tokens, whereas models trained natively for joint image and text generation tend to rely on a single post-image token that acts as a narrow gate for visual information. We show that ablating this single token significantly deteriorates image-understanding performance, whereas targeted, token-level interventions reliably steer image semantics and downstream text with fine-grained control.
comment: NeurIPS 2025
♻ ☆ SPEED: Scalable, Precise, and Efficient Concept Erasure for Diffusion Models ICLR 2026
Erasing concepts from large-scale text-to-image (T2I) diffusion models has become increasingly crucial due to the growing concerns over copyright infringement, offensive content, and privacy violations. In scalable applications, fine-tuning-based methods are time-consuming to precisely erase multiple target concepts, while real-time editing-based methods often degrade the generation quality of non-target concepts due to conflicting optimization objectives. To address this dilemma, we introduce SPEED, an efficient concept erasure approach that directly edits model parameters. SPEED searches for a null space, a model editing space where parameter updates do not affect non-target concepts, to achieve scalable and precise erasure. To facilitate accurate null space optimization, we incorporate three complementary strategies: Influence-based Prior Filtering (IPF) to selectively retain the most affected non-target concepts, Directed Prior Augmentation (DPA) to enrich the filtered retain set with semantically consistent variations, and Invariant Equality Constraints (IEC) to preserve key invariants during the T2I generation process. Extensive evaluations across multiple concept erasure tasks demonstrate that SPEED consistently outperforms existing methods in non-target preservation while achieving efficient and high-fidelity concept erasure, successfully erasing 100 concepts within only 5 seconds. Our code and models are available at: https://github.com/Ouxiang-Li/SPEED.
comment: Accepted to ICLR 2026
♻ ☆ Video Unlearning via Low-Rank Refusal Vector
Video generative models achieve high-quality synthesis from natural-language prompts by leveraging large-scale web data. However, this training paradigm inherently exposes them to unsafe biases and harmful concepts, introducing the risk of generating undesirable or illicit content. To mitigate unsafe generations, existing machine unlearning approaches either rely on filtering, and can therefore be bypassed, or they update model weights, but with costly fine-tuning or training-free closed-form edits. We propose the first training-free weight update framework for concept removal in video diffusion models. From five paired safe/unsafe prompts, our method estimates a refusal vector and integrates it into the model weights as a closed-form update. A contrastive low-rank factorization further disentangles the target concept from unrelated semantics, it ensures a selective concept suppression and it does not harm generation quality. Our approach reduces unsafe generations on the Open-Sora and ZeroScopeT2V models across the T2VSafetyBench and SafeSora benchmarks, with average reductions of 36.3% and 58.2% respectively, while preserving prompt alignment and video quality. This establishes an efficient and scalable solution for safe video generation without retraining nor any inference overhead. Project page: https://www.pinlab.org/video-unlearning.
♻ ☆ Symmetrical Flow Matching: Unified Image Generation, Segmentation, and Classification with Score-Based Generative Models AAAI 2026
Flow Matching has emerged as a powerful framework for learning continuous transformations between distributions, enabling high-fidelity generative modeling. This work introduces Symmetrical Flow Matching (SymmFlow), a new formulation that unifies semantic segmentation, classification, and image generation within a single model. Using a symmetric learning objective, SymmFlow models forward and reverse transformations jointly, ensuring bi-directional consistency, while preserving sufficient entropy for generative diversity. A new training objective is introduced to explicitly retain semantic information across flows, featuring efficient sampling while preserving semantic structure, allowing for one-step segmentation and classification without iterative refinement. Unlike previous approaches that impose strict one-to-one mapping between masks and images, SymmFlow generalizes to flexible conditioning, supporting both pixel-level and image-level class labels. Experimental results on various benchmarks demonstrate that SymmFlow achieves state-of-the-art performance on semantic image synthesis, obtaining FID scores of 11.9 on CelebAMask-HQ and 7.0 on COCO-Stuff with only 25 inference steps. Additionally, it delivers competitive results on semantic segmentation and shows promising capabilities in classification tasks.
comment: AAAI 2026
♻ ☆ MemoryVLA: Perceptual-Cognitive Memory in Vision-Language-Action Models for Robotic Manipulation ICLR 2026
Temporal context is essential for robotic manipulation because such tasks are inherently non-Markovian, yet mainstream VLA models typically overlook it and struggle with long-horizon, temporally dependent tasks. Cognitive science suggests that humans rely on working memory to buffer short-lived representations for immediate control, while the hippocampal system preserves verbatim episodic details and semantic gist of past experience for long-term memory. Inspired by these mechanisms, we propose MemoryVLA, a Cognition-Memory-Action framework for long-horizon robotic manipulation. A pretrained VLM encodes the observation into perceptual and cognitive tokens that form working memory, while a Perceptual-Cognitive Memory Bank stores low-level details and high-level semantics consolidated from it. Working memory retrieves decision-relevant entries from the bank, adaptively fuses them with current tokens, and updates the bank by merging redundancies. Using these tokens, a memory-conditioned diffusion action expert yields temporally aware action sequences. We evaluate MemoryVLA on 150+ simulation and real-world tasks across three robots. On SimplerEnv-Bridge, Fractal, LIBERO-5 suites and Mikasa-Robo, it achieves 71.9%, 72.7%, 96.5%, and 41.2% success rates, respectively, all outperforming state-of-the-art baselines CogACT and pi-0, with a notable +14.6 gain on Bridge and +11.8 gain on Mikasa-Robo. On 12 real-world tasks spanning general skills and long-horizon temporal dependencies, MemoryVLA achieves 84.0% success rate, with long-horizon tasks showing a +26 improvement over state-of-the-art baseline. Project Page: https://shihao1895.github.io/MemoryVLA
comment: ICLR 2026 | The project is available at https://shihao1895.github.io/MemoryVLA
♻ ☆ TwinBrainVLA: Unleashing the Potential of Generalist VLMs for Embodied Tasks via Asymmetric Mixture-of-Transformers
The fundamental premise of Vision-Language-Action (VLA) models is to harness the extensive general capabilities of pre-trained Vision-Language Models (VLMs) for generalized embodied intelligence. However, standard robotic fine-tuning inevitably disrupts the pre-trained feature space, leading to "catastrophic forgetting" that compromises the general visual understanding we aim to leverage. To effectively utilize the uncorrupted general capabilities of VLMs for robotic tasks, we propose TwinBrainVLA, which coordinates two isomorphic VLM pathways: a frozen generalist (also called "Left Brain") and a trainable specialist (also called "Right Brain"). Our architecture utilizes a Asymmetric Mixture-of-Transformers (AsyMoT) mechanism, enabling the Right Brain to dynamically query and fuse intact semantic knowledge from the Left Brain with proprioceptive states. This fused representation conditions a flow-matching action expert for precise continuous control. Empirical results on SimplerEnv and RoboCasa benchmarks demonstrate that by explicitly retaining general capabilities, TwinBrainVLA achieves substantial performance gains over baseline models in complex manipulation tasks.
comment: GitHub: https://github.com/ZGC-EmbodyAI/TwinBrainVLA
♻ ☆ From Label Error Detection to Correction: A Modular Framework and Benchmark for Object Detection Datasets
Object detection has advanced rapidly in recent years, driven by increasingly large and diverse datasets. However, label errors often compromise the quality of these datasets and affect the outcomes of training and benchmark evaluations. Although label error detection methods for object detection datasets now exist, they are typically validated only on synthetic benchmarks or via limited manual inspection. How to correct such errors systematically and at scale remains an open problem. We introduce a semi-automated framework for label error correction called Rechecked. Building on existing label error detection methods, their error proposals are reviewed with lightweight, crowd-sourced microtasks. We apply Rechecked to the class pedestrian in the KITTI dataset, for which we crowdsourced high-quality corrected annotations. We detect 18% of missing and inaccurate labels in the original ground truth. We show that current label error detection methods, when combined with our correction framework, can recover hundreds of errors with little human effort compared to annotation from scratch. However, even the best methods still miss up to 66% of the label errors, which motivates further research, now enabled by our released benchmark.
♻ ☆ An Automated Framework for Large-Scale Graph-Based Cerebrovascular Analysis
We present CaravelMetrics, a computational framework for automated cerebrovascular analysis that models vessel morphology through skeletonization-derived graph representations. The framework integrates atlas-based regional parcellation, centerline extraction, and graph construction to compute fifteen morphometric, topological, fractal, and geometric features. The features can be estimated globally from the complete vascular network or regionally within arterial territories, enabling multiscale characterization of cerebrovascular organization. Applied to 570 3D TOF-MRA scans from the IXI dataset (ages 20-86), CaravelMetrics yields reproducible vessel graphs capturing age- and sex-related variations and education-associated increases in vascular complexity, consistent with findings reported in the literature. The framework provides a scalable and fully automated approach for quantitative cerebrovascular feature extraction, supporting normative modeling and population-level studies of vascular health and aging.
comment: Submitted to ISBI 2026. 6 pages, 6 figures
♻ ☆ Accurate and Efficient Low-Rank Model Merging in Core Space NeurIPS 2025
In this paper, we address the challenges associated with merging low-rank adaptations of large neural networks. With the rise of parameter-efficient adaptation techniques, such as Low-Rank Adaptation (LoRA), model fine-tuning has become more accessible. While fine-tuning models with LoRA is highly efficient, existing merging methods often sacrifice this efficiency by merging fully-sized weight matrices. We propose the Core Space merging framework, which enables the merging of LoRA-adapted models within a common alignment basis, thereby preserving the efficiency of low-rank adaptation while substantially improving accuracy across tasks. We further provide a formal proof that projection into Core Space ensures no loss of information and provide a complexity analysis showing the efficiency gains. Extensive empirical results demonstrate that Core Space significantly improves existing merging techniques and achieves state-of-the-art results on both vision and language tasks while utilizing a fraction of the computational resources. Codebase is available at https://github.com/apanariello4/core-space-merging.
comment: Accepted at 39th Conference on Neural Information Processing Systems (NeurIPS 2025), San Diego, USA
♻ ☆ SpiderNets: Vision Models Predict Human Fear From Aversive Images
Phobias are common and impairing, and exposure therapy, which involves confronting patients with fear-provoking visual stimuli, is the most effective treatment. Scalable computerized exposure therapy requires automated prediction of fear directly from image content to adapt stimulus selection and treatment intensity. Whether such predictions can be made reliably and generalize across individuals and stimuli, however, remains unknown. Here we show that pretrained convolutional and transformer vision models, adapted via transfer learning, accurately predict group-level perceived fear for spider-related images, even when evaluated on new people and new images, achieving a mean absolute error (MAE) below 10 units on the 0-100 fear scale. Visual explanation analyses indicate that predictions are driven by spider-specific regions in the images. Learning-curve analyses show that transformer models are data efficient and approach performance saturation with the available data (~300 images). Prediction errors increase for very low and very high fear levels and within specific categories of images. These results establish transparent, data-driven fear estimation from images, laying the groundwork for adaptive digital mental health tools.
comment: 65 pages (32 main text, 33 appendix), 20 figures (5 in main text, 15 in appendix)
♻ ☆ From Street View to Visibility Network: Mapping Urban Visual Relationships with Vision-Language Models
Visibility analysis is one of the fundamental analytics methods in urban planning and landscape research, traditionally conducted through computational simulations based on the Line-of-Sight (LoS) principle. However, when assessing the visibility of named urban objects such as landmarks, geometric intersection alone fails to capture the contextual and perceptual dimensions of visibility as experienced in the real world. The study challenges the traditional LoS-based approaches by introducing a new, image-based visibility analysis method. Specifically, a Vision Language Model (VLM) is applied to detect the target object within a direction-zoomed Street View Image (SVI). Successful detection represents the object's visibility at the corresponding SVI location. Further, a heterogeneous visibility graph is constructed to address the complex interaction between observers and target objects. In the first case study, the method proves its reliability in detecting the visibility of six tall landmark constructions in global cities, with an overall accuracy of 87%. Furthermore, it reveals broader contextual differences when the landmarks are perceived and experienced. In the second case, the proposed visibility graph uncovers the form and strength of connections for multiple landmarks along the River Thames in London, as well as the places where these connections occur. Notably, bridges on the River Thames account for approximately 30% of total connections. Our method complements and enhances traditional LoS-based visibility analysis, and showcases the possibility of revealing the prevalent connection of any visual objects in the urban environment. It opens up new research perspectives for urban planning, heritage conservation, and computational social science.
♻ ☆ Token Entropy Regularization for Multi-modal Antenna Affiliation Identification
Accurate antenna affiliation identification is crucial for optimizing and maintaining communication networks. Current practice, however, relies on the cumbersome and error-prone process of manual tower inspections. We propose a novel paradigm shift that fuses video footage of base stations, antenna geometric features, and Physical Cell Identity (PCI) signals, transforming antenna affiliation identification into multi-modal classification and matching tasks. Publicly available pretrained transformers struggle with this unique task due to a lack of analogous data in the communications domain, which hampers cross-modal alignment. To address this, we introduce a dedicated training framework that aligns antenna images with corresponding PCI signals. To tackle the representation alignment challenge, we propose a novel Token Entropy Regularization module in the pretraining stage. Our experiments demonstrate that TER accelerates convergence and yields significant performance gains. Further analysis reveals that the entropy of the first token is modality-dependent. Code will be made available upon publication.
♻ ☆ Stretching Beyond the Obvious: A Gradient-Free Framework to Unveil the Hidden Landscape of Visual Invariance
Uncovering which feature combinations are encoded by visual units is critical to understanding how images are transformed into representations that support recognition. While existing feature visualization approaches typically infer a unit's most exciting images, this is insufficient to reveal the manifold of transformations under which responses remain invariant, which is critical to generalization in vision. Here we introduce Stretch-and-Squeeze (SnS), a model-agnostic, gradient-free framework to systematically characterize a unit's maximally invariant stimuli, and its vulnerability to adversarial perturbations, in both biological and artificial visual systems. SnS frames these transformations as bi-objective optimization problems. To probe invariance, SnS seeks image perturbations that maximally alter (stretch) the representation of a reference stimulus in a given processing stage while preserving unit activation downstream (squeeze). To probe adversarial sensitivity, stretching and squeezing are reversed to maximally perturb unit activation while minimizing changes to the upstream representation. Applied to CNNs, SnS revealed invariant transformations that were farther from a reference image in pixel-space than those produced by affine transformations, while more strongly preserving the target unit's response. The discovered invariant images differed depending on the stage of the image representation used for optimization: pixel-level changes primarily affected luminance and contrast, while stretching mid- and late-layer representations mainly altered texture and pose. By measuring how well the hierarchical invariant images obtained for L2 robust networks were classified by humans and other observer networks, we discovered a substantial drop in their interpretability when the representation was stretched in deep layers, while the opposite trend was found for standard models.
comment: 34 pages, 15 figures
♻ ☆ AccidentSim: Generating Vehicle Collision Videos with Physically Realistic Collision Trajectories from Real-World Accident Reports
Collecting real-world vehicle accident videos for autonomous driving research is challenging due to their rarity and complexity. While existing driving video generation methods may produce visually realistic videos, they often fail to deliver physically realistic simulations because they lack the capability to generate accurate post-collision trajectories. In this paper, we introduce AccidentSim, a novel framework that generates physically realistic vehicle collision videos by extracting and utilizing the physical clues and contextual information available in real-world vehicle accident reports. Specifically, AccidentSim leverages a reliable physical simulator to replicate post-collision vehicle trajectories from the physical and contextual information in the accident reports and to build a vehicle collision trajectory dataset. This dataset is then used to fine-tune a language model, enabling it to respond to user prompts and predict physically consistent post-collision trajectories across various driving scenarios based on user descriptions. Finally, we employ Neural Radiance Fields (NeRF) to render high-quality backgrounds, merging them with the foreground vehicles that exhibit physically realistic trajectories to generate vehicle collision videos. Experimental results demonstrate that the videos produced by AccidentSim excel in both visual and physical authenticity.
♻ ☆ Entropy-Guided k-Guard Sampling for Long-Horizon Autoregressive Video Generation
Autoregressive (AR) architectures have achieved significant successes in LLMs, inspiring explorations for video generation. In LLMs, top-p/top-k sampling strategies work exceptionally well: language tokens have high semantic density and low redundancy, so a fixed size of token candidates already strikes a balance between semantic accuracy and generation diversity. In contrast, video tokens have low semantic density and high spatio-temporal redundancy. This mismatch makes static top-k/top-p strategies ineffective for video decoders: they either introduce unnecessary randomness for low-uncertainty regions (static backgrounds) or get stuck in early errors for high-uncertainty regions (foreground objects). Prediction errors will accumulate as more frames are generated and eventually severely degrade long-horizon quality. To address this, we propose Entropy-Guided k-Guard (ENkG) sampling, a simple yet effective strategy that adapts sampling to token-wise dispersion, quantified by the entropy of each token's predicted distribution. ENkG uses adaptive token candidate sizes: for low-entropy regions, it employs fewer candidates to suppress redundant noise and preserve structural integrity; for high-entropy regions, it uses more candidates to mitigate error compounding. ENkG is model-agnostic, training-free, and adds negligible overhead. Experiments demonstrate consistent improvements in perceptual quality and structural stability compared to static top-k/top-p strategies.
♻ ☆ Bi-Anchor Interpolation Solver for Accelerating Generative Modeling
Flow Matching (FM) models have emerged as a leading paradigm for high-fidelity synthesis. However, their reliance on iterative Ordinary Differential Equation (ODE) solving creates a significant latency bottleneck. Existing solutions face a dichotomy: training-free solvers suffer from significant performance degradation at low Neural Function Evaluations (NFEs), while training-based one- or few-steps generation methods incur prohibitive training costs and lack plug-and-play versatility. To bridge this gap, we propose the Bi-Anchor Interpolation Solver (BA-solver). BA-solver retains the versatility of standard training-free solvers while achieving significant acceleration by introducing a lightweight SideNet (1-2% backbone size) alongside the frozen backbone. Specifically, our method is founded on two synergistic components: \textbf{1) Bidirectional Temporal Perception}, where the SideNet learns to approximate both future and historical velocities without retraining the heavy backbone; and 2) Bi-Anchor Velocity Integration, which utilizes the SideNet with two anchor velocities to efficiently approximate intermediate velocities for batched high-order integration. By utilizing the backbone to establish high-precision ``anchors'' and the SideNet to densify the trajectory, BA-solver enables large interval sizes with minimized error. Empirical results on ImageNet-256^2 demonstrate that BA-solver achieves generation quality comparable to 100+ NFEs Euler solver in just 10 NFEs and maintains high fidelity in as few as 5 NFEs, incurring negligible training costs. Furthermore, BA-solver ensures seamless integration with existing generative pipelines, facilitating downstream tasks such as image editing.
♻ ☆ From Tokens to Photons: Test-Time Physical Prompting for Vision-Language Models
To extend the application of vision-language models (VLMs) from web images to sensor-mediated physical environments, we propose Multi-View Physical-prompt for Test-Time Adaptation (MVP), a forward-only framework that moves test-time adaptation (TTA) from tokens to photons by treating the camera exposure triangle--ISO, shutter speed, and aperture--as physical prompts. At inference, MVP acquires a library of physical views per scene, selects the top-k sensor settings using a source-affinity score, evaluates each retained view under lightweight digital augmentations, filters the lowest-entropy subset of augmented views, and aggregates predictions with Zero-temperature softmax (i.e., hard voting). This selection-then-vote design is simple, calibration-friendly, and requires no gradients or model modifications. On ImageNet-ES and ImageNet-ES-Diverse, MVP consistently outperforms digital-only TTA on single Auto-Exposure captures, by up to 25.6 percentage points (pp), and delivers up to 3.4 pp additional gains over pipelines that combine conventional sensor control with TTA. MVP remains effective under reduced parameter candidate sets that lower capture latency, demonstrating practicality. These results support the main claim that, beyond post-capture prompting, measurement-time control--selecting and combining real physical views--substantially improves robustness for VLMs.
♻ ☆ TorchCP: A Python Library for Conformal Prediction
Conformal prediction (CP) is a powerful statistical framework that generates prediction intervals or sets with guaranteed coverage probability. While CP algorithms have evolved beyond traditional classifiers and regressors to sophisticated deep learning models like deep neural networks (DNNs), graph neural networks (GNNs), and large language models (LLMs), existing CP libraries often lack the model support and scalability for large-scale deep learning (DL) scenarios. This paper introduces TorchCP, a PyTorch-native library designed to integrate state-of-the-art CP algorithms into DL techniques, including DNN-based classifiers/regressors, GNNs, and LLMs. Released under the LGPL-3.0 license, TorchCP comprises about 16k lines of code, validated with 100\% unit test coverage and detailed documentation. Notably, TorchCP enables CP-specific training algorithms, online prediction, and GPU-accelerated batch processing, achieving up to 90\% reduction in inference time on large datasets. With its low-coupling design, comprehensive suite of advanced methods, and full GPU scalability, TorchCP empowers researchers and practitioners to enhance uncertainty quantification across cutting-edge applications.
♻ ☆ Causal-Adapter: Taming Text-to-Image Diffusion for Faithful Counterfactual Generation
We present Causal-Adapter, a modular framework that adapts frozen text-to-image diffusion backbones for counterfactual image generation. Our method enables causal interventions on target attributes, consistently propagating their effects to causal dependents without altering the core identity of the image. In contrast to prior approaches that rely on prompt engineering without explicit causal structure, Causal-Adapter leverages structural causal modeling augmented with two attribute regularization strategies: prompt-aligned injection, which aligns causal attributes with textual embeddings for precise semantic control, and a conditioned token contrastive loss to disentangle attribute factors and reduce spurious correlations. Causal-Adapter achieves state-of-the-art performance on both synthetic and real-world datasets, with up to 91% MAE reduction on Pendulum for accurate attribute control and 87% FID reduction on ADNI for high-fidelity MRI image generation. These results show that our approach enables robust, generalizable counterfactual editing with faithful attribute modification and strong identity preservation.
comment: 8 pages, 26 figures
♻ ☆ Generation Enhances Understanding in Unified Multimodal Models via Multi-Representation Generation
Unified Multimodal Models (UMMs) integrate both visual understanding and generation within a single framework. Their ultimate aspiration is to create a cycle where understanding and generation mutually reinforce each other. While recent post-training methods have successfully leveraged understanding to enhance generation, the reverse direction of utilizing generation to improve understanding remains largely unexplored. In this work, we propose UniMRG (Unified Multi-Representation Generation), a simple yet effective architecture-agnostic post-training method. UniMRG enhances the understanding capabilities of UMMs by incorporating auxiliary generation tasks. Specifically, we train UMMs to generate multiple intrinsic representations of input images, namely pixel (reconstruction), depth (geometry), and segmentation (structure), alongside standard visual understanding objectives. By synthesizing these diverse representations, UMMs capture complementary information regarding appearance, spatial relations, and structural layout. Consequently, UMMs develop a deeper and more comprehensive understanding of visual inputs. Extensive experiments across diverse UMM architectures demonstrate that our method notably enhances fine-grained perception, reduces hallucinations, and improves spatial understanding, while simultaneously boosting generation capabilities.
♻ ☆ FlashFace: Human Image Personalization with High-fidelity Identity Preservation
This work presents FlashFace, a practical tool with which users can easily personalize their own photos on the fly by providing one or a few reference face images and a text prompt. Our approach is distinguishable from existing human photo customization methods by higher-fidelity identity preservation and better instruction following, benefiting from two subtle designs. First, we encode the face identity into a series of feature maps instead of one image token as in prior arts, allowing the model to retain more details of the reference faces (e.g., scars, tattoos, and face shape ). Second, we introduce a disentangled integration strategy to balance the text and image guidance during the text-to-image generation process, alleviating the conflict between the reference faces and the text prompts (e.g., personalizing an adult into a "child" or an "elder"). Extensive experimental results demonstrate the effectiveness of our method on various applications, including human image personalization, face swapping under language prompts, making virtual characters into real people, etc. Project Page: https://jshilong.github.io/flashface-page.
comment: Project Page:https://jshilong.github.io/flashface-page
♻ ☆ NegoCollab: A Common Representation Negotiation Approach for Heterogeneous Collaborative Perception NeurIPS 2025
Collaborative perception improves task performance by expanding the perception range through information sharing among agents. . Immutable heterogeneity poses a significant challenge in collaborative perception, as participating agents may employ different and fixed perception models. This leads to domain gaps in the intermediate features shared among agents, consequently degrading collaborative performance. Aligning the features of all agents to a common representation can eliminate domain gaps with low training cost. However, in existing methods, the common representation is designated as the representation of a specific agent, making it difficult for agents with significant domain discrepancies from this specific agent to achieve proper alignment. This paper proposes NegoCollab, a heterogeneous collaboration method based on the negotiated common representation. It introduces a negotiator during training to derive the common representation from the local representations of each modality's agent, effectively reducing the inherent domain gap with the various local representations. In NegoCollab, the mutual transformation of features between the local representation space and the common representation space is achieved by a pair of sender and receiver. To better align local representations to the common representation containing multimodal information, we introduce structural alignment loss and pragmatic alignment loss in addition to the distribution alignment loss to supervise the training. This enables the knowledge in the common representation to be fully distilled into the sender.
comment: 23 pages, Accepted by NeurIPS 2025
♻ ☆ Metis-SPECS: Decoupling Multimodal Learning via Self-distilled Preference-based Cold Start ICLR 2026
Reinforcement learning (RL) with verifiable rewards has recently catalyzed a wave of "MLLM-r1" approaches that bring RL to vision language models. Most representative paradigms begin with a cold start, typically employing supervised fine-tuning (SFT), to initialize the policy before RL. However, SFT-based cold start adopts the reasoning paradigm intertwined with task solution and output format, which may induce instruction-style overfitting, weakens out-of-distribution generalization, and ultimately affects downstream RL. We revisit the cold start along two views, its training method and data construction, and introduce the Generalization Factor (GF) coefficient to quantify the generalization capability under different methods. Our empirical study finds that preference-based training methods (e.g. DPO) generalizes better than SFT-based methods in cold start. Motivated by this, we propose SPECS-a Self-distilled, Preference-based Cold Start framework that decouples multimodal learning: (1) generates introspective preference data pairs via self-distillation, avoiding reliance on larger teachers or manual annotation; (2) performs preference-based training to learn, focusing on shallow, transferable surface-form criteria (format, structure, style) rather than memorizing content; and (3) hands off to RL with verifiable rewards for deep reasoning results. Experimental results across multiple multimodal benchmarks show that our decoupling learning framework yields consistent performance gains over strong baselines, improving MEGA-Bench by 4.1% and MathVista by 12.2%. Additional experiments indicate that SPECS contributes to reducing in-distribution "stuckness," improving exploration, stabilizing training, and raising the performance ceiling. Project Page: https://kwen-chen.github.io/SPECS-VL/
comment: Published as a conference paper at ICLR 2026!
♻ ☆ Online Navigation Refinement: Achieving Lane-Level Guidance by Associating Standard-Definition and Online Perception Maps
Lane-level navigation is critical for geographic information systems and navigation-based tasks, offering finer-grained guidance than road-level navigation by standard definition (SD) maps. However, it currently relies on expansive global HD maps that cannot adapt to dynamic road conditions. Recently, online perception (OP) maps have become research hotspots, providing real-time geometry as an alternative, but lack the global topology needed for navigation. To address these issues, Online Navigation Refinement (ONR), a new mission is introduced that refines SD-map-based road-level routes into accurate lane-level navigation by associating SD maps with OP maps. The map-to-map association to handle many-to-one lane-to-road mappings under two key challenges: (1) no public dataset provides lane-to-road correspondences; (2) severe misalignment from spatial fluctuations, semantic disparities, and OP map noise invalidates traditional map matching. For these challenges, We contribute: (1) Online map association dataset (OMA), the first ONR benchmark with 30K scenarios and 2.6M annotated lane vectors; (2) MAT, a transformer with path-aware attention to aligns topology despite spatial fluctuations and semantic disparities and spatial attention for integrates noisy OP features via global context; and (3) NR P-R, a metric evaluating geometric and semantic alignment. Experiments show that MAT outperforms existing methods at 34 ms latency, enabling low-cost and up-to-date lane-level navigation.
comment: Author Affiliation Standardization
♻ ☆ ObjectVisA-120: Object-based Visual Attention Prediction in Interactive Street-crossing Environments IEEE
The object-based nature of human visual attention is well-known in cognitive science, but has only played a minor role in computational visual attention models so far. This is mainly due to a lack of suitable datasets and evaluation metrics for object-based attention. To address these limitations, we present ObjectVisA-120 -- a novel 120-participant dataset of spatial street-crossing navigation in virtual reality specifically geared to object-based attention evaluations. The uniqueness of the presented dataset lies in the ethical and safety affiliated challenges that make collecting comparable data in real-world environments highly difficult. ObjectVisA-120 not only features accurate gaze data and a complete state-space representation of objects in the virtual environment, but it also offers variable scenario complexities and rich annotations, including panoptic segmentation, depth information, and vehicle keypoints. We further propose object-based similarity (oSIM) as a novel metric to evaluate the performance of object-based visual attention models, a previously unexplored performance characteristic. Our evaluations show that explicitly optimising for object-based attention not only improves oSIM performance but also leads to an improved model performance on common metrics. In addition, we present SUMGraph, a Mamba U-Net-based model, which explicitly encodes critical scene objects (vehicles) in a graph representation, leading to further performance improvements over several state-of-the-art visual attention prediction methods. The dataset, code and models will be publicly released.
comment: Accepted for publication at the IEEE Intelligent Vehicles Symposium (IV), 2026
♻ ☆ DanQing: An Up-to-Date Large-Scale Chinese Vision-Language Pre-training Dataset
Vision-Language Pre-training (VLP) models have achieved remarkable success by leveraging large-scale image-text pairs. While English-centric models like CLIP and SigLIP benefit from massive datasets (e.g., LAION-400M), the development of Chinese VLP remains bottlenecked by the lack of high-quality, large-scale open-source data. In this paper, we present DanQing, a large-scale Chinese cross-modal dataset containing 100 million high-quality image-text pairs curated from Common Crawl. To ensure superior data quality, we develop an effective systematic pipeline comprising data source selection, text refinement, visual diversification, and cross-modal cross-batch filtering, thereby effectively mitigating the intrinsic noise prevalent in web data. Notably, DanQing incorporates data from 2024-2025, enabling models to capture contemporary semantic trends and emerging concepts. Extensive experiments via continued pretraining of SigLIP2 models demonstrate that DanQing consistently outperforms existing Chinese datasets across diverse downstream tasks, including zero-shot classification, cross-modal retrieval, and Chinese-centric large multimodal model tasks. Furthermore, in-depth analysis of DanQing reveals that it exhibits a more balanced semantic distribution and superior scaling capability compared to existing datasets. To facilitate further research in Chinese vision-language pre-training, we will open-source the DanQing dataset under the Creative Common CC-BY 4.0 license.
comment: 19 pages, 11 figures, 7 tables
♻ ☆ Spatially-Adaptive Gradient Re-parameterization for 3D Large Kernel Optimization
Large kernel convolutions offer a scalable alternative to vision transformers for high-resolution 3D volumetric analysis, yet naively increasing kernel size often leads to optimization instability. Motivated by the spatial bias inherent in effective receptive fields (ERFs), we theoretically demonstrate that structurally re-parameterized blocks induce spatially varying learning rates that are crucial for convergence. Leveraging this insight, we introduce Rep3D, a framework that employs a lightweight modulation network to generate receptive-biased scaling masks, adaptively re-weighting kernel updates within a plain encoder architecture. This approach unifies spatial inductive bias with optimization-aware learning, avoiding the complexity of multi-branch designs while ensuring robust local-to-global convergence. Extensive evaluations on five 3D segmentation benchmarks demonstrate that Rep3D consistently outperforms state-of-the-art transformer and fixed-prior baselines. The source code is publicly available at https://github.com/leeh43/Rep3D.
comment: 17 pages
♻ ☆ FlashVideo: Flowing Fidelity to Detail for Efficient High-Resolution Video Generation
DiT models have achieved great success in text-to-video generation, leveraging their scalability in model capacity and data scale. High content and motion fidelity aligned with text prompts, however, often require large model parameters and a substantial number of function evaluations (NFEs). Realistic and visually appealing details are typically reflected in high-resolution outputs, further amplifying computational demands-especially for single-stage DiT models. To address these challenges, we propose a novel two-stage framework, FlashVideo, which strategically allocates model capacity and NFEs across stages to balance generation fidelity and quality. In the first stage, prompt fidelity is prioritized through a low-resolution generation process utilizing large parameters and sufficient NFEs to enhance computational efficiency. The second stage achieves a nearly straight ODE trajectory between low and high resolutions via flow matching, effectively generating fine details and fixing artifacts with minimal NFEs. To ensure a seamless connection between the two independently trained stages during inference, we carefully design degradation strategies during the second-stage training. Quantitative and visual results demonstrate that FlashVideo achieves state-of-the-art high-resolution video generation with superior computational efficiency. Additionally, the two-stage design enables users to preview the initial output and accordingly adjust the prompt before committing to full-resolution generation, thereby significantly reducing computational costs and wait times as well as enhancing commercial viability.
comment: Model and Weight: https://github.com/FoundationVision/FlashVideo
♻ ☆ PLANING: A Loosely Coupled Triangle-Gaussian Framework for Streaming 3D Reconstruction
Streaming reconstruction from monocular image sequences remains challenging, as existing methods typically favor either high-quality rendering or accurate geometry, but rarely both. We present PLANING, an efficient on-the-fly reconstruction framework built on a hybrid representation that loosely couples explicit geometric primitives with neural Gaussians, enabling geometry and appearance to be modeled in a decoupled manner. This decoupling supports an online initialization and optimization strategy that separates geometry and appearance updates, yielding stable streaming reconstruction with substantially reduced structural redundancy. PLANING improves dense mesh Chamfer-L2 by 18.52% over PGSR, surpasses ARTDECO by 1.31 dB PSNR, and reconstructs ScanNetV2 scenes in under 100 seconds, over 5x faster than 2D Gaussian Splatting, while matching the quality of offline per-scene optimization. Beyond reconstruction quality, the structural clarity and computational efficiency of PLANING make it well suited for a broad range of downstream applications, such as enabling large-scale scene modeling and simulation-ready environments for embodied AI. Project page: https://city-super.github.io/PLANING/ .
comment: Project page: https://city-super.github.io/PLANING/
♻ ☆ On The Relationship Between Continual Learning and Long-Tailed Recognition
Real-world datasets often exhibit long-tailed distributions, where a few dominant "Head" classes have abundant samples while most "Tail" classes are severely underrepresented, leading to biased learning and poor generalization for the Tail. We present a theoretical framework that reveals a previously undescribed connection between Long-Tailed Recognition (LTR) and Continual Learning (CL), the process of learning sequential tasks without forgetting prior knowledge. Our analysis demonstrates that, for models trained on imbalanced datasets, the weights converge to a bounded neighborhood of those trained exclusively on the Head, with the bound scaling as the inverse square root of the imbalance factor. Leveraging this insight, we introduce Continual Learning for Long-Tailed Recognition (CLTR), a principled approach that employs standard off-the-shelf CL methods to address LTR problems by sequentially learning Head and Tail classes without forgetting the Head. Our theoretical analysis further suggests that CLTR mitigates gradient saturation and improves Tail learning while maintaining strong Head performance. Extensive experiments on CIFAR100-LT, CIFAR10-LT, ImageNet-LT, and Caltech256 validate our theoretical predictions, achieving strong results across various LTR benchmarks. Our work bridges the gap between LTR and CL, providing a principled way to tackle imbalanced data challenges with standard existing CL strategies.
♻ ☆ AlignGemini: Generalizable AI-Generated Image Detection Through Task-Model Alignment
Vision Language Models (VLMs) are increasingly used for detecting AI-generated images (AIGI). However, converting VLMs into reliable detectors is resource-intensive, and the resulting models often suffer from hallucination and poor generalization. To investigate the root cause, we conduct an empirical analysis and identify two consistent behaviors. First, fine-tuning VLMs with semantic supervision improves semantic discrimination and generalizes well to unseen data. Second, fine-tuning VLMs with pixel-artifact supervision leads to weak generalization. These findings reveal a fundamental task-model misalignment. VLMs are optimized for high-level semantic reasoning and lack inductive bias toward low-level pixel artifacts. In contrast, conventional vision models effectively capture pixel-level artifacts but are less sensitive to semantic inconsistencies. This indicates that different models are naturally suited to different subtasks. Based on this insight, we formulate AIGI detection as two orthogonal subtasks: semantic consistency checking and pixel-artifact detection. Neglecting either subtask leads to systematic detection failures. We further propose the Task-Model Alignment principle and instantiate it in a two-branch detector, AlignGemini. The detector combines a VLM trained with pure semantic supervision and a vision model trained with pure pixel-artifact supervision. By enforcing clear specialization, each branch captures complementary cues. Experiments on in-the-wild benchmarks show that AlignGemini improves average accuracy by 9.5 percent using simplified training data. These results demonstrate that task-model alignment is an effective principle for generalizable AIGI detection.
♻ ☆ Beyond Inpainting: Unleash 3D Understanding for Precise Camera-Controlled Video Generation
Camera control has been extensively studied in conditioned video generation; however, performing precisely altering the camera trajectories while faithfully preserving the video content remains a challenging task. The mainstream approach to achieving precise camera control is warping a 3D representation according to the target trajectory. However, such methods fail to fully leverage the 3D priors of video diffusion models (VDMs) and often fall into the Inpainting Trap, resulting in subject inconsistency and degraded generation quality. To address this problem, we propose DepthDirector, a video re-rendering framework with precise camera controllability. By leveraging the depth video from explicit 3D representation as camera-control guidance, our method can faithfully reproduce the dynamic scene of an input video under novel camera trajectories. Specifically, we design a View-Content Dual-Stream Condition mechanism that injects both the source video and the warped depth sequence rendered under the target viewpoint into the pretrained video generation model. This geometric guidance signal enables VDMs to comprehend camera movements and leverage their 3D understanding capabilities, thereby facilitating precise camera control and consistent content generation. Next, we introduce a lightweight LoRA-based video diffusion adapter to train our framework, fully preserving the knowledge priors of VDMs. Additionally, we construct a large-scale multi-camera synchronized dataset named MultiCam-WarpData using Unreal Engine 5, containing 8K videos across 1K dynamic scenes. Extensive experiments show that DepthDirector outperforms existing methods in both camera controllability and visual quality. Our code and dataset will be publicly available.
comment: Project page: https://eleanor6725.github.io/DepthDirector/
♻ ☆ FMIR, a foundation model-based Image Registration Framework for Robust Image Registration
Deep learning has revolutionized medical image registration by achieving unprecedented speeds, yet its clinical application is hindered by a limited ability to generalize beyond the training domain, a critical weakness given the typically small scale of medical datasets. In this paper, we introduce FMIR, a foundation model-based registration framework that overcomes this limitation.Combining a foundation model-based feature encoder for extracting anatomical structures with a general registration head, and trained with a channel regularization strategy on just a single dataset, FMIR achieves state-of-the-art(SOTA) in-domain performance while maintaining robust registration on out-of-domain images.Our approach demonstrates a viable path toward building generalizable medical imaging foundation models with limited resources. The code is available at https://github.com/Monday0328/FMIR.git.
comment: Accepted to the International Symposium on Biomedical Imaging (ISBI 2026)
♻ ☆ Omni-View: Unlocking How Generation Facilitates Understanding in Unified 3D Model based on Multiview images ICLR 2026
This paper presents Omni-View, which extends the unified multimodal understanding and generation to 3D scenes based on multiview images, exploring the principle that "generation facilitates understanding". Consisting of understanding model, texture module, and geometry module, Omni-View jointly models scene understanding, novel view synthesis, and geometry estimation, enabling synergistic interaction between 3D scene understanding and generation tasks. By design, it leverages the spatiotemporal modeling capabilities of its texture module responsible for appearance synthesis, alongside the explicit geometric constraints provided by its dedicated geometry module, thereby enriching the model's holistic understanding of 3D scenes. Trained with a two-stage strategy, Omni-View achieves a state-of-the-art score of 55.4 on the VSI-Bench benchmark, outperforming existing specialized 3D understanding models, while simultaneously delivering strong performance in both novel view synthesis and 3D scene generation. The code and pretraiend models are open-sourced at https://github.com/AIDC-AI/Omni-View.
comment: Accepted by ICLR 2026
♻ ☆ CacheFlow: Fast Human Motion Prediction by Cached Normalizing Flow
Many density estimation techniques for 3D human motion prediction require a significant amount of inference time, often exceeding the duration of the predicted time horizon. To address the need for faster density estimation for 3D human motion prediction, we introduce a novel flow-based method for human motion prediction called CacheFlow. Unlike previous conditional generative models that suffer from poor time efficiency, CacheFlow takes advantage of an unconditional flow-based generative model that transforms a Gaussian mixture into the density of future motions. The results of the computation of the flow-based generative model can be precomputed and cached. Then, for conditional prediction, we seek a mapping from historical trajectories to samples in the Gaussian mixture. This mapping can be done by a much more lightweight model, thus saving significant computation overhead compared to a typical conditional flow model. In such a two-stage fashion and by caching results from the slow flow model computation, we build our CacheFlow without loss of prediction accuracy and model expressiveness. This inference process is completed in approximately one millisecond, making it 4 times faster than previous VAE methods and 30 times faster than previous diffusion-based methods on standard benchmarks such as Human3.6M and AMASS datasets. Furthermore, our method demonstrates improved density estimation accuracy and comparable prediction accuracy to a SOTA method on Human3.6M. Our code and models are available at https://github.com/meaten/CacheFlow.
comment: Accepted at Transactions on Machine Learning Research (TMLR). See https://openreview.net/forum?id=icq5659pQt
♻ ☆ Learning to Pose Problems: Reasoning-Driven and Solver-Adaptive Data Synthesis for Large Reasoning Models
Data synthesis for training large reasoning models offers a scalable alternative to limited, human-curated datasets, enabling the creation of high-quality data. However, existing approaches face several challenges: (i) indiscriminate generation that ignores the solver's ability and yields low-value problems, or reliance on complex data pipelines to balance problem difficulty; and (ii) a lack of reasoning in problem generation, leading to shallow problem variants. In this paper, we develop a problem generator that reasons explicitly to plan problem directions before synthesis and adapts difficulty to the solver's ability. Specifically, we construct related problem pairs and augment them with intermediate problem-design CoT produced by a reasoning model. These data are used to bootstrap problem-design strategies in the generator. Then, we treat the solver's feedback on synthetic problems as a reward signal, enabling the generator to calibrate difficulty and produce complementary problems near the edge of the solver's competence. Extensive experiments on 10 mathematical and general reasoning benchmarks show that our proposed framework achieves a cumulative average improvement of 3.4%, demonstrating robust generalization across both language and vision-language models.
♻ ☆ FaVChat: Hierarchical Prompt-Query Guided Facial Video Understanding with Data-Efficient GRPO
Existing video large language models (VLLMs) primarily leverage prompt agnostic visual encoders, which extract untargeted facial representations without awareness of the queried information, leading to the loss of task critical cues. To address this challenge, we propose FaVChat, the first VLLM designed for reasoning over subtle visual and dynamic facial cues. FaVChat introduces a hierarchical, prompt guided visual feature extraction framework that emphasizes question relevant information at three complementary levels. These multi level features are dynamically fused and injected into the LLM, enabling more accurate facial details reasoning To further improve learning efficiency under data scarcity, we propose Data Efficient GRPO, a reinforcement learning strategy that iteratively identifies high utility samples and maximizes the contribution of each instance via per instance utility estimation, substantially enhancing performance gains under limited supervision. We construct a large scale benchmark dataset FaVChat 170K, comprising approximately 60K high quality facial videos and 170K question answer pairs focusing on fine grained facial details. Extensive experiments, including zero shot evaluations on four facial understanding tasks, demonstrate that FaVChat consistently outperforms existing VLLMs.
♻ ☆ VideoNSA: Native Sparse Attention Scales Video Understanding ICLR 2026
Video understanding in multimodal language models remains limited by context length: models often miss key transition frames and struggle to maintain coherence across long time scales. To address this, we adapt Native Sparse Attention (NSA) to video-language models. Our method, VideoNSA, adapts Qwen2.5-VL through end-to-end training on a 216K video instruction dataset. We employ a hardware-aware hybrid approach to attention, preserving dense attention for text, while employing NSA for video. Compared to token-compression and training-free sparse baselines, VideoNSA achieves improved performance on long-video understanding, temporal reasoning, and spatial benchmarks. Further ablation analysis reveals four key findings: (1) reliable scaling to 128K tokens; (2) an optimal global-local attention allocation at a fixed budget; (3) task-dependent branch usage patterns; and (4) the learnable combined sparse attention help induce dynamic attention sinks. Project Page: https://enxinsong.com/VideoNSA-web/, Code: https://github.com/Espere-1119-Song/VideoNSA
comment: ICLR 2026
♻ ☆ GMOR: A Lightweight Robust Point Cloud Registration Framework via Geometric Maximum Overlapping
Point cloud registration based on correspondences computes the rigid transformation that maximizes the number of inliers constrained within the noise threshold. Current state-of-the-art (SOTA) methods employing spatial compatibility graphs or branch-and-bound (BnB) search mainly focus on registration under high outlier ratios. However, graph-based methods require at least quadratic space and time complexity for graph construction, while multi-stage BnB search methods often suffer from inaccuracy due to local optima between decomposed stages. This paper proposes a geometric maximum overlapping registration framework via rotation-only BnB search. The rigid transformation is decomposed using Chasles' theorem into a translation along rotation axis and a 2D rigid transformation. The optimal rotation axis and angle are searched via BnB, with residual parameters formulated as range maximum query (RMQ) problems. Firstly, the top-k candidate rotation axes are searched within a hemisphere parameterized by cube mapping, and the translation along each axis is estimated through interval stabbing of the correspondences projected onto that axis. Secondly, the 2D registration is relaxed to 1D rotation angle search with 2D RMQ of geometric overlapping for axis-aligned rectangles, which is solved deterministically in polynomial time using sweep line algorithm with segment tree. Experimental results on indoor 3DMatch/3DLoMatch scanning and outdoor KITTI LiDAR datasets demonstrate superior accuracy and efficiency over SOTA methods, while the time complexity is polynomial and the space complexity increases linearly with the number of points, even in the worst case.
♻ ☆ ReGlove: A Soft Pneumatic Glove for Activities of Daily Living Assistance via Wrist-Mounted Vision
This paper presents ReGlove, a system that converts low-cost commercial pneumatic rehabilitation gloves into vision-guided assistive orthoses. Chronic upper-limb impairment affects millions worldwide, yet existing assistive technologies remain prohibitively expensive or rely on unreliable biological signals. Our platform integrates a wrist-mounted camera with an edge-computing inference engine (Raspberry Pi 5) to enable context-aware grasping without requiring reliable muscle signals. By adapting real-time YOLO-based computer vision models, the system achieves 96.73% grasp classification accuracy with sub-40.00 millisecond end-to-end latency. Physical validation using standardized benchmarks shows 82.71% success on YCB object manipulation and reliable performance across 27 Activities of Daily Living (ADL) tasks. With a total cost under $250 and exclusively commercial components, ReGlove provides a technical foundation for accessible, vision-based upper-limb assistance that could benefit populations excluded from traditional EMG-controlled devices.
♻ ☆ MACEval: A Multi-Agent Continual Evaluation Network for Large Models
Hundreds of benchmarks dedicated to evaluating large models have been presented over the past few years. However, most of them remain closed-ended and are prone to overfitting due to the potential data contamination. Moreover, the increasing scale and scope of current benchmarks with transient metrics, as well as the heavily human-dependent curation procedure, pose significant challenges for timely maintenance and adaptation. In this paper, we introduce MACEval, a Multi-Agent Continual Evaluation network for dynamic evaluation of large models, and define new metrics to quantify performance longitudinally. MACEval employs an interactive and autonomous evaluation mode, utilizing role assignment, in-process data generation, and evaluation routing through a cascaded agent network. Extensive experiments on 23 large models demonstrate the effectiveness of MACEval, which also lightens the evaluation process and reduces a considerable amount of overhead. We hope that MACEval can broaden future directions of large model evaluation. Project page: https://github.com/zijianchen98/MACEval.
comment: 32 pages, 14 figures
♻ ☆ LoCoT2V-Bench: Benchmarking Long-Form and Complex Text-to-Video Generation
Recent advances in text-to-video generation have achieved impressive performance on short clips, yet evaluating long-form generation under complex textual inputs remains a significant challenge. In response to this challenge, we present LoCoT2V-Bench, a benchmark for long video generation (LVG) featuring multi-scene prompts with hierarchical metadata (e.g., character settings and camera behaviors), constructed from collected real-world videos. We further propose LoCoT2V-Eval, a multi-dimensional framework covering perceptual quality, text-video alignment, temporal quality, dynamic quality, and Human Expectation Realization Degree (HERD), with an emphasis on aspects such as fine-grained text-video alignment and temporal character consistency. Experiments on 13 representative LVG models reveal pronounced capability disparities across evaluation dimensions, with strong perceptual quality and background consistency but markedly weaker fine-grained text-video alignment and character consistency. These findings suggest that improving prompt faithfulness and identity preservation remains a key challenge for long-form video generation.
♻ ☆ FrameOracle: Learning What to See and How Much to See in Videos
Vision-language models (VLMs) advance video understanding but operate under tight computational budgets, making performance dependent on selecting a small, high-quality subset of frames. Existing frame sampling strategies, such as uniform or fixed-budget selection, fail to adapt to variations in content density or task complexity. To address this, we present FrameOracle, a lightweight, plug-and-play module that predicts both (1) which frames are most relevant to a given query and (2) how many frames are needed. FrameOracle is trained via a curriculum that progresses from weak proxy signals, such as cross-modal similarity, to stronger supervision with FrameOracle-41K, the first large-scale VideoQA dataset with validated keyframe annotations specifying minimal sufficient frames per question. Extensive experiments across five VLMs and six benchmarks show that FrameOracle reduces 16-frame inputs to an average of 10.4 frames without accuracy loss. When starting from 64-frame candidates, it reduces inputs to 13.9 frames on average while improving accuracy by 1.5%, achieving state-of-the-art efficiency-accuracy trade-offs for scalable video understanding.
♻ ☆ Vision Calorimeter for Anti-neutron Reconstruction: A Baseline
In high-energy physics, anti-neutrons ($\bar{n}$) are fundamental particles that frequently appear as final-state particles, and the reconstruction of their kinematic properties provides an important probe for understanding the governing principles. However, this confronts significant challenges instrumentally with the electromagnetic calorimeter (EMC), a typical experimental sensor but recovering the information of incident $\bar{n}$ insufficiently. In this study, we introduce Vision Calorimeter (ViC), a baseline method for anti-neutron reconstruction that leverages deep learning detectors to analyze the implicit relationships between EMC responses and incident $\bar{n}$ characteristics. Our motivation lies in that energy distributions of $\bar{n}$ samples deposited in the EMC cell arrays embody rich contextual information. Converted to 2-D images, such contextual energy distributions can be used to predict the status of $\bar{n}$ ($i.e.$, incident position and momentum) through a deep learning detector along with pseudo bounding boxes and a specified training objective. Experimental results demonstrate that ViC substantially outperforms the conventional reconstruction approach, reducing the prediction error of incident position by 42.81% (from 17.31$^{\circ}$ to 9.90$^{\circ}$). More importantly, this study for the first time realizes the measurement of incident $\bar{n}$ momentum, underscoring the potential of deep learning detectors for particle reconstruction. Code is available at https://github.com/yuhongtian17/ViC.
comment: This manuscript has undergone significant modifications and improvements (2601.22097)
♻ ☆ Learning Hierarchical Sparse Transform Coding for 3DGS Compression
Current 3DGS compression methods largely forego the neural analysis-synthesis transform, which is a crucial component in learned signal compression systems. As a result, redundancy removal is left solely to the entropy coder, overburdening the entropy coding module and reducing rate-distortion (R-D) performance. To fix this critical omission, we propose a training-time transform coding (TTC) method that adds the analysis-synthesis transform and optimizes it jointly with the 3DGS representation and entropy model. Concretely, we adopt a hierarchical design: a channel-wise KLT for decorrelation and energy compaction, followed by a sparsity-aware neural transform that reconstructs the KLT residuals with minimal parameter and computational overhead. Experiments show that our method delivers strong R-D performance with fast decoding, offering a favorable BD-rate-decoding-time trade-off over SOTA 3DGS compressors.
comment: Our code will be released at \href{https://github.com/hxu160/SHTC_for_3DGS_compression}{here}
♻ ☆ DialectGen: Benchmarking and Improving Dialect Robustness in Multimodal Generation
Contact languages like English exhibit rich regional variations in the form of dialects, which are often used by dialect speakers interacting with generative models. However, can multimodal generative models effectively produce content given dialectal textual input? In this work, we study this question by constructing a new large-scale benchmark spanning six common English dialects. We work with dialect speakers to collect and verify over 4200 unique prompts and evaluate on 17 image and video generative models. Our automatic and human evaluation results show that current state-of-the-art multimodal generative models exhibit 32.26% to 48.17% performance degradation when a single dialect word is used in the prompt. Common mitigation methods such as fine-tuning and prompt rewriting can only improve dialect performance by small margins (< 7%), while potentially incurring significant performance degradation in Standard American English (SAE). To this end, we design a general encoder-based mitigation strategy for multimodal generative models. Our method teaches the model to recognize new dialect features while preserving SAE performance. Experiments on models such as Stable Diffusion 1.5 show that our method is able to simultaneously raise performance on five dialects to be on par with SAE (+34.4%), while incurring near zero cost to SAE performance.
♻ ☆ MARE: Multimodal Alignment and Reinforcement for Explainable Deepfake Detection via Vision-Language Models
Deepfake detection is a widely researched topic that is crucial for combating the spread of malicious content, with existing methods mainly modeling the problem as classification or spatial localization. The rapid advancements in generative models impose new demands on Deepfake detection. In this paper, we propose multimodal alignment and reinforcement for explainable Deepfake detection via vision-language models, termed MARE, which aims to enhance the accuracy and reliability of Vision-Language Models (VLMs) in Deepfake detection and reasoning. Specifically, MARE designs comprehensive reward functions, incorporating reinforcement learning from human feedback (RLHF), to incentivize the generation of text-spatially aligned reasoning content that adheres to human preferences. Besides, MARE introduces a forgery disentanglement module to capture intrinsic forgery traces from high-level facial semantics, thereby improving its authenticity detection capability. We conduct thorough evaluations on the reasoning content generated by MARE. Both quantitative and qualitative experimental results demonstrate that MARE achieves state-of-the-art performance in terms of accuracy and reliability.
♻ ☆ DiffusionLight-Turbo: Accelerated Light Probes for Free via Single-Pass Chrome Ball Inpainting
We introduce a simple yet effective technique for estimating lighting from a single low-dynamic-range (LDR) image by reframing the task as a chrome ball inpainting problem. This approach leverages a pre-trained diffusion model, Stable Diffusion XL, to overcome the generalization failures of existing methods that rely on limited HDR panorama datasets. While conceptually simple, the task remains challenging because diffusion models often insert incorrect or inconsistent content and cannot readily generate chrome balls in HDR format. Our analysis reveals that the inpainting process is highly sensitive to the initial noise in the diffusion process, occasionally resulting in unrealistic outputs. To address this, we first introduce DiffusionLight, which uses iterative inpainting to compute a median chrome ball from multiple outputs to serve as a stable, low-frequency lighting prior that guides the generation of a high-quality final result. To generate high-dynamic-range (HDR) light probes, an Exposure LoRA is fine-tuned to create LDR images at multiple exposure values, which are then merged. While effective, DiffusionLight is time-intensive, requiring approximately 30 minutes per estimation. To reduce this overhead, we introduce DiffusionLight-Turbo, which reduces the runtime to about 30 seconds with minimal quality loss. This 60x speedup is achieved by training a Turbo LoRA to directly predict the averaged chrome balls from the iterative process. Inference is further streamlined into a single denoising pass using a LoRA swapping technique. Experimental results that show our method produces convincing light estimates across diverse settings and demonstrates superior generalization to in-the-wild scenarios. Our code is available at https://diffusionlight.github.io/turbo
comment: arXiv admin note: substantial text overlap with arXiv:2312.09168
♻ ☆ VScan: Rethinking Visual Token Reduction for Efficient Large Vision-Language Models
Recent Large Vision-Language Models (LVLMs) have advanced multi-modal understanding by incorporating finer-grained visual perception and encoding. However, such methods incur significant computational costs due to longer visual token sequences, posing challenges for real-time deployment. To mitigate this, prior studies have explored pruning unimportant visual tokens either at the output layer of the visual encoder or at the early layers of the language model. In this work, we revisit these design choices and reassess their effectiveness through comprehensive empirical studies of how visual tokens are processed throughout the visual encoding and language decoding stages. Guided by these insights, we propose VScan, a two-stage visual token reduction framework that addresses token redundancy by: (1) integrating complementary global and local scans with token merging during visual encoding, and (2) introducing pruning at intermediate layers of the language model. Extensive experimental results across four LVLMs validate the effectiveness of VScan in accelerating inference and demonstrate its superior performance over current state-of-the-arts on sixteen benchmarks. Notably, when applied to LLaVA-NeXT-7B, VScan achieves a 2.91$\times$ speedup in prefilling and a 10$\times$ reduction in FLOPs, while retaining 95.4\% of the original performance. Code is available at https://github.com/Tencent/SelfEvolvingAgent/tree/main/VScan.
comment: Accepted at TMLR 2026. Project page: https://zhangce01.github.io/VScan/
♻ ☆ Test-Time Anchoring for Discrete Diffusion Posterior Sampling
While continuous diffusion models have achieved remarkable success, discrete diffusion offers a unified framework for jointly modeling text and images. Beyond unification, discrete diffusion provides faster inference, finer control, and principled training-free guidance, making it well-suited for posterior sampling. Existing approaches to posterior sampling using discrete diffusion face severe challenges: derivative-free guidance yields sparse signals, continuous relaxations limit applicability, and split Gibbs samplers suffer from the curse of dimensionality. To overcome these limitations, we introduce Anchored Posterior Sampling (APS), built on two key innovations: quantized expectation for gradient-like guidance in discrete embedding space, and anchored remasking for adaptive decoding. APS achieves state-of-the-art performance among discrete diffusion samplers on both linear and nonlinear inverse problems across the standard image benchmarks. We demonstrate the generality of APS through training-free stylization and text-guided editing. We further apply APS to a large-scale diffusion language model, showing consistent improvement in question answering.
comment: Preprint
♻ ☆ DF-LLaVA: Unlocking MLLMs for Synthetic Image Detection via Knowledge Injection and Conflict-Driven Self-Reflection
With the increasing prevalence of synthetic images, evaluating image authenticity and locating forgeries accurately while maintaining human interpretability remains a challenging task. Existing detection models primarily focus on simple authenticity classification, ultimately providing only a forgery probability or binary judgment, which offers limited explanatory insights into image authenticity. Moreover, while MLLM-based detection methods can provide more interpretable results, they still lag behind expert models in terms of pure authenticity classification accuracy. To address this, we propose DF-LLaVA, a novel and effective framework that unlocks the intrinsic discrimination potential of MLLMs. Our approach first mines latent knowledge from the MLLM itself and then injects it into the model via fine-tuning. During inference, conflict signals arising from the model's predictions activate a self-reflection process, leading to the final refined responses. This framework allows LLaVA to achieve outstanding detection accuracy exceeding expert models while still maintaining the interpretability offered by MLLMs. Extensive experiments confirm the superiority of DF-LLaVA, achieving both high accuracy and explainability in synthetic image detection. Code is available online at: https://github.com/Eliot-Shen/DF-LLaVA.
comment: Under review
♻ ☆ A2GC: Asymmetric Aggregation with Geometric Constraints for Locally Aggregated Descriptors
Visual Place Recognition (VPR) aims to match query images against a database using visual cues. State-of-the-art methods aggregate features from deep backbones to form global descriptors. Optimal transport-based aggregation methods reformulate feature-to-cluster assignment as a transport problem, but the standard Sinkhorn algorithm symmetrically treats source and target marginals, limiting effectiveness when image features and cluster centers exhibit substantially different distributions. We propose an asymmetric aggregation VPR method with geometric constraints for locally aggregated descriptors, called $A^2$GC-VPR. Our method employs row-column normalization averaging with separate marginal calibration, enabling asymmetric matching that adapts to distributional discrepancies in visual place recognition. Geometric constraints are incorporated through learnable coordinate embeddings, computing compatibility scores fused with feature similarities, thereby promoting spatially proximal features to the same cluster and enhancing spatial awareness. Experimental results on MSLS, NordLand, and Pittsburgh datasets demonstrate superior performance, validating the effectiveness of our approach in improving matching accuracy and robustness.
comment: 8 pages, 4figures
♻ ☆ Interpretable and backpropagation-free Green Learning for efficient multi-task echocardiographic segmentation and classification
Echocardiography is a cornerstone for managing heart failure (HF), with Left Ventricular Ejection Fraction (LVEF) being a critical metric for guiding therapy. However, manual LVEF assessment suffers from high inter-observer variability, while existing Deep Learning (DL) models are often computationally intensive and data-hungry "black boxes" that impede clinical trust and adoption. Here, we propose a backpropagation-free multi-task Green Learning (MTGL) framework that performs simultaneous Left Ventricle (LV) segmentation and LVEF classification. Our framework integrates an unsupervised VoxelHop encoder for hierarchical spatio-temporal feature extraction with a multi-level regression decoder and an XG-Boost classifier. On the EchoNet-Dynamic dataset, our MTGL model achieves state-of-the-art classification and segmentation performance, attaining a classification accuracy of 94.3% and a Dice Similarity Coefficient (DSC) of 0.912, significantly outperforming several advanced 3D DL models. Crucially, our model achieves this with over an order of magnitude fewer parameters, demonstrating exceptional computational efficiency. This work demonstrates that the GL paradigm can deliver highly accurate, efficient, and interpretable solutions for complex medical image analysis, paving the way for more sustainable and trustworthy artificial intelligence in clinical practice.
comment: Jyun-Ping Kao and Jiaxing Yang contributed equally to this work. C.-C. Jay Kuo and Jonghye Woo are the senior authors
♻ ☆ AgentDrug: Utilizing Large Language Models in An Agentic Workflow for Zero-Shot Molecular Optimization EMNLP'25
Molecular optimization-modifying a given molecule to improve desired properties-is a fundamental task in drug discovery. While LLMs hold the potential to solve this task using natural language to drive the optimization, straightforward prompting achieves limited accuracy. In this work, we propose AgentDrug, an agentic workflow that leverages LLMs in a structured refinement process to achieve significantly higher accuracy. AgentDrug defines a nested refinement loop: the inner loop uses feedback from cheminformatics toolkits to validate molecular structures, while the outer loop guides the LLM with generic feedback and a gradient-based objective to steer the molecule toward property improvement. We evaluate AgentDrug on benchmarks with both single- and multi-property optimization under loose and strict thresholds. Results demonstrate significant performance gains over previous methods. With Qwen-2.5-3B, AgentDrug improves accuracy by 20.7% (loose) and 16.8% (strict) on six single-property tasks, and by 7.0% and 5.3% on eight multi-property tasks. With larger model Qwen-2.5-7B, AgentDrug further improves accuracy on 6 single-property objectives by 28.9% (loose) and 29.0% (strict), and on 8 multi-property objectives by 14.9% (loose) and 13.2% (strict).
comment: EMNLP'25 Findings
♻ ☆ VAT: Vision Action Transformer by Unlocking Full Representation of ViT
In robot learning, Vision Transformers (ViTs) are standard for visual perception, yet most methods discard valuable information by using only the final layer's features. We argue this provides an insufficient representation and propose the Vision Action Transformer (VAT), a novel architecture that is extended from ViT and unlocks the full feature hierarchy of ViT. VAT processes specialized action tokens with visual features across all transformer layers, enabling a deep and progressive fusion of perception and action generation. On a suite of simulated manipulation tasks, VAT achieves a 98.15\% average success rate across four LIBERO benchmarks, establishing a new state-of-the-art by outperforming prior methods like OpenVLA-OFT. Our work presents not only a powerful model for imitation learning but also demonstrates the critical importance of leveraging the complete ''representation trajectory'' of vision models to advance robotic policy. The GitHub URL for the project code is https://github.com/sellerbubble/VAT.
♻ ☆ MolX: Enhancing Large Language Models for Molecular Understanding With A Multi-Modal Extension KDD'25
Large Language Models (LLMs) with their strong task-handling capabilities have shown remarkable advancements across a spectrum of fields, moving beyond natural language understanding. However, their proficiency within the chemistry domain remains restricted, especially in solving molecule-related tasks. This challenge is attributed to their inherent limitations in comprehending molecules using only common textual representations, i.e. SMILES strings. In this study, we seek to enhance the ability of LLMs to comprehend molecules by equipping them with a multi-modal external module, termed MolX. Instead of directly using SMILES strings to represent a molecule, we utilize specific encoders to extract fine-grained features from both SMILES string and 2D molecular graph representations for feeding into an LLM. A hand-crafted molecular fingerprint is incorporated to leverage its embedded domain knowledge. To establish an alignment between MolX and the LLM's textual input space, the model in which the LLM is frozen, is pre-trained with a strategy including a diverse set of tasks. Experimental evaluations show that our proposed method outperforms baselines across downstream molecule-related tasks ranging from molecule-to-text translation to molecular property prediction, with and without fine-tuning the LLM, while only introducing a small number of trainable parameters-0.53% and 0.82%, respectively.
comment: MLoG-GenAI@KDD'25
♻ ☆ Identity-GRPO: Optimizing Multi-Human Identity-preserving Video Generation via Reinforcement Learning
While advanced methods like VACE and Phantom have advanced video generation for specific subjects in diverse scenarios, they struggle with multi-human identity preservation in dynamic interactions, where consistent identities across multiple characters are critical. To address this, we propose Identity-GRPO, a human feedback-driven optimization pipeline for refining multi-human identity-preserving video generation. First, we construct a video reward model trained on a large-scale preference dataset containing human-annotated and synthetic distortion data, with pairwise annotations focused on maintaining human consistency throughout the video. We then employ a GRPO variant tailored for multi-human consistency, which greatly enhances both VACE and Phantom. Through extensive ablation studies, we evaluate the impact of annotation quality and design choices on policy optimization. Experiments show that Identity-GRPO achieves up to 18.9% improvement in human consistency metrics over baseline methods, offering actionable insights for aligning reinforcement learning with personalized video generation.
comment: Our project and code are available at https://ali-videoai.github.io/identity_page, https://github.com/alibaba/identity-grpo
♻ ☆ Uni-Parser Technical Report
This technical report introduces Uni-Parser, an industrial-grade document parsing engine tailored for scientific literature and patents, delivering high throughput, robust accuracy, and cost efficiency. Unlike pipeline-based document parsing methods, Uni-Parser employs a modular, loosely coupled multi-expert architecture that preserves fine-grained cross-modal alignments across text, equations, tables, figures, and chemical structures, while remaining easily extensible to emerging modalities. The system incorporates adaptive GPU load balancing, distributed inference, dynamic module orchestration, and configurable modes that support either holistic or modality-specific parsing. Optimized for large-scale cloud deployment, Uni-Parser achieves a processing rate of up to 20 PDF pages per second on 8 x NVIDIA RTX 4090D GPUs, enabling cost-efficient inference across billions of pages. This level of scalability facilitates a broad spectrum of downstream applications, ranging from literature retrieval and summarization to the extraction of chemical structures, reaction schemes, and bioactivity data, as well as the curation of large-scale corpora for training next-generation large language models and AI4Science models.
♻ ☆ Establishing dermatopathology encyclopedia DermpathNet with Artificial Intelligence-Based Workflow
Accessing high-quality, open-access dermatopathology image datasets for learning and cross-referencing is a common challenge for clinicians and dermatopathology trainees. To establish a comprehensive open-access dermatopathology dataset for educational, cross-referencing, and machine-learning purposes, we employed a hybrid workflow to curate and categorize images from the PubMed Central (PMC) repository. We used specific keywords to extract relevant images, and classified them using a novel hybrid method that combined deep learning-based image modality classification with figure caption analyses. Validation on 651 manually annotated images demonstrated the robustness of our workflow, with an F-score of 89.6% for the deep learning approach, 61.0% for the keyword-based retrieval method, and 90.4% for the hybrid approach. We retrieved over 7,772 images across 166 diagnoses and released this fully annotated dataset, reviewed by board-certified dermatopathologists. Using our dataset as a challenging task, we found the current image analysis algorithm from OpenAI inadequate for analyzing dermatopathology images. In conclusion, we have developed a large, peer-reviewed, open-access dermatopathology image dataset, DermpathNet, which features a semi-automated curation workflow.
comment: Accepted by Scientific Data
♻ ☆ Less is More: Label-Guided Summarization of Procedural and Instructional Videos
Video summarization helps turn long videos into clear, concise representations that are easier to review, document, and analyze, especially in high-stakes domains like surgical training. Prior work has progressed from using basic visual features like color, motion, and structural changes to using pre-trained vision-language models that can better understand what's happening in the video (semantics) and capture temporal flow, resulting in more context-aware video summarization. We propose a three-stage framework, PRISM: Procedural Representation via Integrated Semantic and Multimodal analysis, that produces semantically grounded video summaries. PRISM combines adaptive visual sampling, label-driven keyframe anchoring, and contextual validation using a large language model (LLM). Our method ensures that selected frames reflect meaningful and procedural transitions while filtering out generic or hallucinated content, resulting in contextually coherent summaries across both domain-specific and instructional videos. We evaluate our method on instructional and activity datasets, using reference summaries for instructional videos. Despite sampling fewer than 5% of the original frames, our summaries retain 84% semantic content while improving over baselines by as much as 33%. Our approach generalizes across procedural and domain-specific video tasks, achieving strong performance with both semantic alignment and precision.
comment: 22 pages, 6 figures
♻ ☆ YOLO26: Key Architectural Enhancements and Performance Benchmarking for Real-Time Object Detection
This study presents a comprehensive analysis of Ultralytics YOLO26(also called as YOLOv26), highlighting its key architectural enhancements and performance benchmarking for real-time object detection. YOLO26, released in September 2025, stands as the newest and most advanced member of the YOLO family, purpose-built to deliver efficiency, accuracy, and deployment readiness on edge and low-power devices. The paper sequentially details architectural innovations of YOLO26, including the removal of Distribution Focal Loss (DFL), adoption of end-to-end NMS-free inference, integration of ProgLoss and Small-Target-Aware Label Assignment (STAL), and the introduction of the MuSGD optimizer for stable convergence. Beyond architecture, the study positions YOLO26 as a multi-task framework, supporting object detection, instance segmentation, pose/keypoints estimation, oriented detection, and classification. We present performance benchmarks of YOLO26 on edge devices such as NVIDIA Jetson Nano and Orin, comparing its results with YOLOv8, YOLOv11, YOLOv12, YOLOv13, and transformer-based detectors(RF-DETR and RT-DETR). This paper further explores real-time deployment pathways, flexible export options (ONNX, TensorRT, CoreML, TFLite), and quantization for INT8/FP16. Practical use cases of YOLO26 across robotics, manufacturing, and IoT are highlighted to demonstrate cross-industry adaptability. Finally, insights on deployment efficiency and broader implications are discussed, with future directions for YOLO26 and the YOLO lineage outlined.
Artificial Intelligence 300
☆ VideoGPA: Distilling Geometry Priors for 3D-Consistent Video Generation
While recent video diffusion models (VDMs) produce visually impressive results, they fundamentally struggle to maintain 3D structural consistency, often resulting in object deformation or spatial drift. We hypothesize that these failures arise because standard denoising objectives lack explicit incentives for geometric coherence. To address this, we introduce VideoGPA (Video Geometric Preference Alignment), a data-efficient self-supervised framework that leverages a geometry foundation model to automatically derive dense preference signals that guide VDMs via Direct Preference Optimization (DPO). This approach effectively steers the generative distribution toward inherent 3D consistency without requiring human annotations. VideoGPA significantly enhances temporal stability, physical plausibility, and motion coherence using minimal preference pairs, consistently outperforming state-of-the-art baselines in extensive experiments.
☆ End-to-end Optimization of Belief and Policy Learning in Shared Autonomy Paradigms
Shared autonomy systems require principled methods for inferring user intent and determining appropriate assistance levels. This is a central challenge in human-robot interaction, where systems must be successful while being mindful of user agency. Previous approaches relied on static blending ratios or separated goal inference from assistance arbitration, leading to suboptimal performance in unstructured environments. We introduce BRACE (Bayesian Reinforcement Assistance with Context Encoding), a novel framework that fine-tunes Bayesian intent inference and context-adaptive assistance through an architecture enabling end-to-end gradient flow between intent inference and assistance arbitration. Our pipeline conditions collaborative control policies on environmental context and complete goal probability distributions. We provide analysis showing (1) optimal assistance levels should decrease with goal uncertainty and increase with environmental constraint severity, and (2) integrating belief information into policy learning yields a quadratic expected regret advantage over sequential approaches. We validated our algorithm against SOTA methods (IDA, DQN) using a three-part evaluation progressively isolating distinct challenges of end-effector control: (1) core human-interaction dynamics in a 2D human-in-the-loop cursor task, (2) non-linear dynamics of a robotic arm, and (3) integrated manipulation under goal ambiguity and environmental constraints. We demonstrate improvements over SOTA, achieving 6.3% higher success rates and 41% increased path efficiency, and 36.3% success rate and 87% path efficiency improvement over unassisted control. Our results confirmed that integrated optimization is most beneficial in complex, goal-ambiguous scenarios, and is generalizable across robotic domains requiring goal-directed assistance, advancing the SOTA for adaptive shared autonomy.
☆ IRL-DAL: Safe and Adaptive Trajectory Planning for Autonomous Driving via Energy-Guided Diffusion Models
This paper proposes a novel inverse reinforcement learning framework using a diffusion-based adaptive lookahead planner (IRL-DAL) for autonomous vehicles. Training begins with imitation from an expert finite state machine (FSM) controller to provide a stable initialization. Environment terms are combined with an IRL discriminator signal to align with expert goals. Reinforcement learning (RL) is then performed with a hybrid reward that combines diffuse environmental feedback and targeted IRL rewards. A conditional diffusion model, which acts as a safety supervisor, plans safe paths. It stays in its lane, avoids obstacles, and moves smoothly. Then, a learnable adaptive mask (LAM) improves perception. It shifts visual attention based on vehicle speed and nearby hazards. After FSM-based imitation, the policy is fine-tuned with Proximal Policy Optimization (PPO). Training is run in the Webots simulator with a two-stage curriculum. A 96\% success rate is reached, and collisions are reduced to 0.05 per 1k steps, marking a new benchmark for safe navigation. By applying the proposed approach, the agent not only drives in lane but also handles unsafe conditions at an expert level, increasing robustness.We make our code publicly available.
☆ TEON: Tensorized Orthonormalization Beyond Layer-Wise Muon for Large Language Model Pre-Training
The Muon optimizer has demonstrated strong empirical performance in pre-training large language models by performing matrix-level gradient (or momentum) orthogonalization in each layer independently. In this work, we propose TEON, a principled generalization of Muon that extends orthogonalization beyond individual layers by modeling the gradients of a neural network as a structured higher-order tensor. We present TEON's improved convergence guarantee over layer-wise Muon, and further develop a practical instantiation of TEON based on the theoretical analysis with corresponding ablation. We evaluate our approach on two widely adopted architectures: GPT-style models, ranging from 130M to 774M parameters, and LLaMA-style models, ranging from 60M to 1B parameters. Experimental results show that TEON consistently improves training and validation perplexity across model scales and exhibits strong robustness under various approximate SVD schemes.
☆ Agnostic Language Identification and Generation
Recent works on language identification and generation have established tight statistical rates at which these tasks can be achieved. These works typically operate under a strong realizability assumption: that the input data is drawn from an unknown distribution necessarily supported on some language in a given collection. In this work, we relax this assumption of realizability entirely, and impose no restrictions on the distribution of the input data. We propose objectives to study both language identification and generation in this more general "agnostic" setup. Across both problems, we obtain novel interesting characterizations and nearly tight rates.
☆ Now You Hear Me: Audio Narrative Attacks Against Large Audio-Language Models EACL 2026
Large audio-language models increasingly operate on raw speech inputs, enabling more seamless integration across domains such as voice assistants, education, and clinical triage. This transition, however, introduces a distinct class of vulnerabilities that remain largely uncharacterized. We examine the security implications of this modality shift by designing a text-to-audio jailbreak that embeds disallowed directives within a narrative-style audio stream. The attack leverages an advanced instruction-following text-to-speech (TTS) model to exploit structural and acoustic properties, thereby circumventing safety mechanisms primarily calibrated for text. When delivered through synthetic speech, the narrative format elicits restricted outputs from state-of-the-art models, including Gemini 2.0 Flash, achieving a 98.26% success rate that substantially exceeds text-only baselines. These results highlight the need for safety frameworks that jointly reason over linguistic and paralinguistic representations, particularly as speech-based interfaces become more prevalent.
comment: to be published at EACL 2026 main conference
☆ YuriiFormer: A Suite of Nesterov-Accelerated Transformers
We propose a variational framework that interprets transformer layers as iterations of an optimization algorithm acting on token embeddings. In this view, self-attention implements a gradient step of an interaction energy, while MLP layers correspond to gradient updates of a potential energy. Standard GPT-style transformers emerge as vanilla gradient descent on the resulting composite objective, implemented via Lie--Trotter splitting between these two energy functionals. This perspective enables principled architectural design using classical optimization ideas. As a proof of concept, we introduce a Nesterov-style accelerated transformer that preserves the same attention and MLP oracles. The resulting architecture consistently outperforms a nanoGPT baseline on TinyStories and OpenWebText, demonstrating that optimization-theoretic insights can translate into practical gains.
☆ ShotFinder: Imagination-Driven Open-Domain Video Shot Retrieval via Web Search
In recent years, large language models (LLMs) have made rapid progress in information retrieval, yet existing research has mainly focused on text or static multimodal settings. Open-domain video shot retrieval, which involves richer temporal structure and more complex semantics, still lacks systematic benchmarks and analysis. To fill this gap, we introduce ShotFinder, a benchmark that formalizes editing requirements as keyframe-oriented shot descriptions and introduces five types of controllable single-factor constraints: Temporal order, Color, Visual style, Audio, and Resolution. We curate 1,210 high-quality samples from YouTube across 20 thematic categories, using large models for generation with human verification. Based on the benchmark, we propose ShotFinder, a text-driven three-stage retrieval and localization pipeline: (1) query expansion via video imagination, (2) candidate video retrieval with a search engine, and (3) description-guided temporal localization. Experiments on multiple closed-source and open-source models reveal a significant gap to human performance, with clear imbalance across constraints: temporal localization is relatively tractable, while color and visual style remain major challenges. These results reveal that open-domain video shot retrieval is still a critical capability that multimodal large models have yet to overcome.
comment: 28 pages, 7 figures
☆ Strongly Polynomial Time Complexity of Policy Iteration for $L_\infty$ Robust MDPs
Markov decision processes (MDPs) are a fundamental model in sequential decision making. Robust MDPs (RMDPs) extend this framework by allowing uncertainty in transition probabilities and optimizing against the worst-case realization of that uncertainty. In particular, $(s, a)$-rectangular RMDPs with $L_\infty$ uncertainty sets form a fundamental and expressive model: they subsume classical MDPs and turn-based stochastic games. We consider this model with discounted payoffs. The existence of polynomial and strongly-polynomial time algorithms is a fundamental problem for these optimization models. For MDPs, linear programming yields polynomial-time algorithms for any arbitrary discount factor, and the seminal work of Ye established strongly--polynomial time for a fixed discount factor. The generalization of such results to RMDPs has remained an important open problem. In this work, we show that a robust policy iteration algorithm runs in strongly-polynomial time for $(s, a)$-rectangular $L_\infty$ RMDPs with a constant (fixed) discount factor, resolving an important algorithmic question.
☆ Scaling Multiagent Systems with Process Rewards
While multiagent systems have shown promise for tackling complex tasks via specialization, finetuning multiple agents simultaneously faces two key challenges: (1) credit assignment across agents, and (2) sample efficiency of expensive multiagent rollouts. In this work, we propose finetuning multiagent systems with per-action process rewards from AI feedback (MAPPA) to address both. Through assigning credit to individual agent actions rather than only at task completion, MAPPA enables fine-grained supervision without ground truth labels while extracting maximal training signal from each rollout. We demonstrate our approach on competition math problems and tool-augmented data analysis tasks. On unseen math problems, MAPPA achieves +5.0--17.5pp on AIME and +7.8--17.2pp on AMC. For data analysis tasks, our method improves success rate by +12.5pp while quality metrics improve by up to 30%, validating that per-action supervision can lead to improvements across different multiagent system on various domains. By addressing these challenges, our work takes a first step toward scaling multiagent systems for complex, long-horizon tasks with minimal human supervision.
☆ Agile Reinforcement Learning through Separable Neural Architecture
Deep reinforcement learning (RL) is increasingly deployed in resource-constrained environments, yet the go-to function approximators - multilayer perceptrons (MLPs) - are often parameter-inefficient due to an imperfect inductive bias for the smooth structure of many value functions. This mismatch can also hinder sample efficiency and slow policy learning in this capacity-limited regime. Although model compression techniques exist, they operate post-hoc and do not improve learning efficiency. Recent spline-based separable architectures - such as Kolmogorov-Arnold Networks (KANs) - have been shown to offer parameter efficiency but are widely reported to exhibit significant computational overhead, especially at scale. In seeking to address these limitations, this work introduces SPAN (SPline-based Adaptive Networks), a novel function approximation approach to RL. SPAN adapts the low rank KHRONOS framework by integrating a learnable preprocessing layer with a separable tensor product B-spline basis. SPAN is evaluated across discrete (PPO) and high-dimensional continuous (SAC) control tasks, as well as offline settings (Minari/D4RL). Empirical results demonstrate that SPAN achieves a 30-50% improvement in sample efficiency and 1.3-9 times higher success rates across benchmarks compared to MLP baselines. Furthermore, SPAN demonstrates superior anytime performance and robustness to hyperparameter variations, suggesting it as a viable, high performance alternative for learning intrinsically efficient policies in resource-limited settings.
☆ Med-Scout: Curing MLLMs' Geometric Blindness in Medical Perception via Geometry-Aware RL Post-Training
Despite recent Multimodal Large Language Models (MLLMs)' linguistic prowess in medical diagnosis, we find even state-of-the-art MLLMs suffer from a critical perceptual deficit: geometric blindness. This failure to ground outputs in objective geometric constraints leads to plausible yet factually incorrect hallucinations, rooted in training paradigms that prioritize linguistic fluency over geometric fidelity. This paper introduces Med-Scout, a novel framework that "cures" this blindness via Reinforcement Learning (RL) that leverages the intrinsic geometric logic latent within unlabeled medical images. Instead of relying on costly expert annotations, Med-Scout derives verifiable supervision signals through three strategic proxy tasks: Hierarchical Scale Localization, Topological Jigsaw Reconstruction, and Anomaly Consistency Detection. To rigorously quantify this deficit, we present Med-Scout-Bench, a new benchmark specifically designed to evaluate geometric perception. Extensive evaluations show that Med-Scout significantly mitigates geometric blindness, outperforming leading proprietary and open-source MLLMs by over 40% on our benchmark. Furthermore, this enhanced geometric perception generalizes to broader medical understanding, achieving superior results on radiological and comprehensive medical VQA tasks.
☆ MonoScale: Scaling Multi-Agent System with Monotonic Improvement
In recent years, LLM-based multi-agent systems (MAS) have advanced rapidly, using a router to decompose tasks and delegate subtasks to specialized agents. A natural way to expand capability is to scale up the agent pool by continually integrating new functional agents or tool interfaces, but naive expansion can trigger performance collapse when the router cold-starts on newly added, heterogeneous, and unreliable agents. We propose MonoScale, an expansion-aware update framework that proactively generates a small set of agent-conditioned familiarization tasks, harvests evidence from both successful and failed interactions, and distills it into auditable natural-language memory to guide future routing. We formalize sequential augmentation as a contextual bandit and perform trust-region memory updates, yielding a monotonic non-decreasing performance guarantee across onboarding rounds. Experiments on GAIA and Humanity's Last Exam show stable gains as the agent pool grows, outperforming naive scale-up and strong-router fixed-pool baselines.
☆ Disentangling multispecific antibody function with graph neural networks
Multispecific antibodies offer transformative therapeutic potential by engaging multiple epitopes simultaneously, yet their efficacy is an emergent property governed by complex molecular architectures. Rational design is often bottlenecked by the inability to predict how subtle changes in domain topology influence functional outcomes, a challenge exacerbated by the scarcity of comprehensive experimental data. Here, we introduce a computational framework to address part of this gap. First, we present a generative method for creating large-scale, realistic synthetic functional landscapes that capture non-linear interactions where biological activity depends on domain connectivity. Second, we propose a graph neural network architecture that explicitly encodes these topological constraints, distinguishing between format configurations that appear identical to sequence-only models. We demonstrate that this model, trained on synthetic landscapes, recapitulates complex functional properties and, via transfer learning, has the potential to achieve high predictive accuracy on limited biological datasets. We showcase the model's utility by optimizing trade-offs between efficacy and toxicity in trispecific T-cell engagers and retrieving optimal common light chains. This work provides a robust benchmarking environment for disentangling the combinatorial complexity of multispecifics, accelerating the design of next-generation therapeutics.
comment: 16 pages, 5 figures, code available at https://github.com/prescient-design/synapse
☆ Learning to Execute Graph Algorithms Exactly with Graph Neural Networks
Understanding what graph neural networks can learn, especially their ability to learn to execute algorithms, remains a central theoretical challenge. In this work, we prove exact learnability results for graph algorithms under bounded-degree and finite-precision constraints. Our approach follows a two-step process. First, we train an ensemble of multi-layer perceptrons (MLPs) to execute the local instructions of a single node. Second, during inference, we use the trained MLP ensemble as the update function within a graph neural network (GNN). Leveraging Neural Tangent Kernel (NTK) theory, we show that local instructions can be learned from a small training set, enabling the complete graph algorithm to be executed during inference without error and with high probability. To illustrate the learning power of our setting, we establish a rigorous learnability result for the LOCAL model of distributed computation. We further demonstrate positive learnability results for widely studied algorithms such as message flooding, breadth-first and depth-first search, and Bellman-Ford.
☆ High-quality generation of dynamic game content via small language models: A proof of concept
Large language models (LLMs) offer promise for dynamic game content generation, but they face critical barriers, including narrative incoherence and high operational costs. Due to their large size, they are often accessed in the cloud, limiting their application in offline games. Many of these practical issues are solved by pivoting to small language models (SLMs), but existing studies using SLMs have resulted in poor output quality. We propose a strategy of achieving high-quality SLM generation through aggressive fine-tuning on deliberately scoped tasks with narrow context, constrained structure, or both. In short, more difficult tasks require narrower scope and higher specialization to the training corpus. Training data is synthetically generated via a DAG-based approach, grounding models in the specific game world. Such models can form the basis for agentic networks designed around the narratological framework at hand, representing a more practical and robust solution than cloud-dependent LLMs. To validate this approach, we present a proof-of-concept focusing on a single specialized SLM as the fundamental building block. We introduce a minimal RPG loop revolving around rhetorical battles of reputations, powered by this model. We demonstrate that a simple retry-until-success strategy reaches adequate quality (as defined by an LLM-as-a-judge scheme) with predictable latency suitable for real-time generation. While local quality assessment remains an open question, our results demonstrate feasibility for real-time generation under typical game engine constraints.
☆ TSAQA: Time Series Analysis Question And Answering Benchmark
Time series data are integral to critical applications across domains such as finance, healthcare, transportation, and environmental science. While recent work has begun to explore multi-task time series question answering (QA), current benchmarks remain limited to forecasting and anomaly detection tasks. We introduce TSAQA, a novel unified benchmark designed to broaden task coverage and evaluate diverse temporal analysis capabilities. TSAQA integrates six diverse tasks under a single framework ranging from conventional analysis, including anomaly detection and classification, to advanced analysis, such as characterization, comparison, data transformation, and temporal relationship analysis. Spanning 210k samples across 13 domains, the dataset employs diverse formats, including true-or-false (TF), multiple-choice (MC), and a novel puzzling (PZ), to comprehensively assess time series analysis. Zero-shot evaluation demonstrates that these tasks are challenging for current Large Language Models (LLMs): the best-performing commercial LLM, Gemini-2.5-Flash, achieves an average score of only 65.08. Although instruction tuning boosts open-source performance: the best-performing open-source model, LLaMA-3.1-8B, shows significant room for improvement, highlighting the complexity of temporal analysis for LLMs.
comment: 35 pages, 7 figures
☆ Make Anything Match Your Target: Universal Adversarial Perturbations against Closed-Source MLLMs via Multi-Crop Routed Meta Optimization
Targeted adversarial attacks on closed-source multimodal large language models (MLLMs) have been increasingly explored under black-box transfer, yet prior methods are predominantly sample-specific and offer limited reusability across inputs. We instead study a more stringent setting, Universal Targeted Transferable Adversarial Attacks (UTTAA), where a single perturbation must consistently steer arbitrary inputs toward a specified target across unknown commercial MLLMs. Naively adapting existing sample-wise attacks to this universal setting faces three core difficulties: (i) target supervision becomes high-variance due to target-crop randomness, (ii) token-wise matching is unreliable because universality suppresses image-specific cues that would otherwise anchor alignment, and (iii) few-source per-target adaptation is highly initialization-sensitive, which can degrade the attainable performance. In this work, we propose MCRMO-Attack, which stabilizes supervision via Multi-Crop Aggregation with an Attention-Guided Crop, improves token-level reliability through alignability-gated Token Routing, and meta-learns a cross-target perturbation prior that yields stronger per-target solutions. Across commercial MLLMs, we boost unseen-image attack success rate by +23.7\% on GPT-4o and +19.9\% on Gemini-2.0 over the strongest universal baseline.
☆ Beyond Fixed Frames: Dynamic Character-Aligned Speech Tokenization
Neural audio codecs are at the core of modern conversational speech technologies, converting continuous speech into sequences of discrete tokens that can be processed by LLMs. However, existing codecs typically operate at fixed frame rates, allocating tokens uniformly in time and producing unnecessarily long sequences. In this work, we introduce DyCAST, a Dynamic Character-Aligned Speech Tokenizer that enables variable-frame-rate tokenization through soft character-level alignment and explicit duration modeling. DyCAST learns to associate tokens with character-level linguistic units during training and supports alignment-free inference with direct control over token durations at decoding time. To improve speech resynthesis quality at low frame rates, we further introduce a retrieval-augmented decoding mechanism that enhances reconstruction fidelity without increasing bitrate. Experiments show that DyCAST achieves competitive speech resynthesis quality and downstream performance while using significantly fewer tokens than fixed-frame-rate codecs.
comment: 18 pages, 3 figures
☆ Probing the Trajectories of Reasoning Traces in Large Language Models
Large language models (LLMs) increasingly solve difficult problems by producing "reasoning traces" before emitting a final response. However, it remains unclear how accuracy and decision commitment evolve along a reasoning trajectory, and whether intermediate trace segments provide answer-relevant information beyond generic length or stylistic effects. Here, we propose a protocol to systematically probe the trajectories of reasoning traces in LLMs by 1) generating a model's reasoning trace, 2) truncating it at fixed token-percentiles, and 3) injecting each partial trace back into the model (or a different model) to measure the induced distribution over answer choices via next-token probabilities. We apply this protocol to the open-source Qwen3-4B/-8B/-14B and gpt-oss-20b/-120b models across the multiple-choice GPQA Diamond and MMLU-Pro benchmarks. We find that accuracy and decision commitment consistently increase as the percentage of provided reasoning tokens grows. These gains are primarily driven by relevant content in the model generation rather than context length or generic "reasoning style" effects. Stronger models often backtrack successfully from incorrect partial traces, but immediate answers often remain anchored in the weaker model's incorrect response. More broadly, we show that trajectory probing provides diagnostics for efficient and safer deployment of reasoning models as the measurements can inform practical trace-handling and monitoring policies that improve reliability without assuming intermediate tokens are inherently faithful explanations.
comment: 33 pages, 20 figures, 4 tables
☆ SPICE: Submodular Penalized Information-Conflict Selection for Efficient Large Language Model Training
Information-based data selection for instruction tuning is compelling: maximizing the log-determinant of the Fisher information yields a monotone submodular objective, enabling greedy algorithms to achieve a $(1-1/e)$ approximation under a cardinality budget. In practice, however, we identify alleviating gradient conflicts, misalignment between per-sample gradients, is a key factor that slows down the decay of marginal log-determinant information gains, thereby preventing significant loss of information. We formalize this via an $\varepsilon$-decomposition that quantifies the deviation from ideal submodularity as a function of conflict statistics, yielding data-dependent approximation factors that tighten as conflicts diminish. Guided by this analysis, we propose SPICE, a conflict-aware selector that maximizes information while penalizing misalignment, and that supports early stopping and proxy models for efficiency. Empirically, SPICE selects subsets with higher log-determinant information than original criteria, and these informational gains translate into performance improvements: across 8 benchmarks with LLaMA2-7B and Qwen2-7B, SPICE uses only 10% of the data, yet matches or exceeds 6 methods including full-data tuning. This achieves performance improvements with substantially lower training cost.
comment: 39 pages, 9 figures, 15 tables (including appendices)
☆ On Safer Reinforcement Learning Policies for Sedation and Analgesia in Intensive Care IEEE
Pain management in intensive care usually involves complex trade-offs between therapeutic goals and patient safety, since both inadequate and excessive treatment may induce serious sequelae. Reinforcement learning can help address this challenge by learning medication dosing policies from retrospective data. However, prior work on sedation and analgesia has optimized for objectives that do not value patient survival while relying on algorithms unsuitable for imperfect information settings. We investigated the risks of these design choices by implementing a deep reinforcement learning framework to suggest hourly medication doses under partial observability. Using data from 47,144 ICU stays in the MIMIC-IV database, we trained policies to prescribe opioids, propofol, benzodiazepines, and dexmedetomidine according to two goals: reduce pain or jointly reduce pain and mortality. We found that, although the two policies were associated with lower pain, actions from the first policy were positively correlated with mortality, while those proposed by the second policy were negatively correlated. This suggests that valuing long-term outcomes could be critical for safer treatment policies, even if a short-term goal remains the primary objective.
comment: Submitted to the 48th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (IEEE EMBC 2026)
☆ Securing Time in Energy IoT: A Clock-Dynamics-Aware Spatio-Temporal Graph Attention Network for Clock Drift Attacks and Y2K38 Failures
The integrity of time in distributed Internet of Things (IoT) devices is crucial for reliable operation in energy cyber-physical systems, such as smart grids and microgrids. However, IoT systems are vulnerable to clock drift, time-synchronization manipulation, and timestamp discontinuities, such as the Year 2038 (Y2K38) Unix overflow, all of which disrupt temporal ordering. Conventional anomaly-detection models, which assume reliable timestamps, fail to capture temporal inconsistencies. This paper introduces STGAT (Spatio-Temporal Graph Attention Network), a framework that models both temporal distortion and inter-device consistency in energy IoT systems. STGAT combines drift-aware temporal embeddings and temporal self-attention to capture corrupted time evolution at individual devices, and uses graph attention to model spatial propagation of timing errors. A curvature-regularized latent representation geometrically separates normal clock evolution from anomalies caused by drift, synchronization offsets, and overflow events. Experimental results on energy IoT telemetry with controlled timing perturbations show that STGAT achieves 95.7% accuracy, outperforming recurrent, transformer, and graph-based baselines with significant improvements (d > 1.8, p < 0.001). Additionally, STGAT reduces detection delay by 26%, achieving a 2.3-time-step delay while maintaining stable performance under overflow, drift, and physical inconsistencies.
☆ THINKSAFE: Self-Generated Safety Alignment for Reasoning Models
Large reasoning models (LRMs) achieve remarkable performance by leveraging reinforcement learning (RL) on reasoning tasks to generate long chain-of-thought (CoT) reasoning. However, this over-optimization often prioritizes compliance, making models vulnerable to harmful prompts. To mitigate this safety degradation, recent approaches rely on external teacher distillation, yet this introduces a distributional discrepancy that degrades native reasoning. We propose ThinkSafe, a self-generated alignment framework that restores safety alignment without external teachers. Our key insight is that while compliance suppresses safety mechanisms, models often retain latent knowledge to identify harm. ThinkSafe unlocks this via lightweight refusal steering, guiding the model to generate in-distribution safety reasoning traces. Fine-tuning on these self-generated responses effectively realigns the model while minimizing distribution shift. Experiments on DeepSeek-R1-Distill and Qwen3 show ThinkSafe significantly improves safety while preserving reasoning proficiency. Notably, it achieves superior safety and comparable reasoning to GRPO, with significantly reduced computational cost. Code, models, and datasets are available at https://github.com/seanie12/ThinkSafe.git.
comment: 17 pages, 13 figures
☆ Machine Learning for Energy-Performance-aware Scheduling
In the post-Dennard era, optimizing embedded systems requires navigating complex trade-offs between energy efficiency and latency. Traditional heuristic tuning is often inefficient in such high-dimensional, non-smooth landscapes. In this work, we propose a Bayesian Optimization framework using Gaussian Processes to automate the search for optimal scheduling configurations on heterogeneous multi-core architectures. We explicitly address the multi-objective nature of the problem by approximating the Pareto Frontier between energy and time. Furthermore, by incorporating Sensitivity Analysis (fANOVA) and comparing different covariance kernels (e.g., Matérn vs. RBF), we provide physical interpretability to the black-box model, revealing the dominant hardware parameters driving system performance.
comment: Zheyuan Hu and Yifei Shi contributed equally to this work
☆ RAudit: A Blind Auditing Protocol for Large Language Model Reasoning
Inference-time scaling can amplify reasoning pathologies: sycophancy, rung collapse, and premature certainty. We present RAudit, a diagnostic protocol for auditing LLM reasoning without ground truth access. The key constraint is blindness: the auditor evaluates only whether derivation steps support conclusions, enabling detection of trace-output inconsistency and, when latent competence exists, its recovery. RAudit measures process quality via CRIT-based reasonableness scores and varies critique formulation to study how social framing affects model response. We prove bounded correction and $O(\log(1/ε))$ termination. Experiments on mathematical reasoning (CAP-GSM8K) and causal judgment (CausalL2) reveal four mechanisms explaining model unreliability: (1) Latent Competence Suppression, where models derive correct answers then overwrite them under social pressure; (2) The False Competence Trap, where weaker judges mask sycophancy that stronger judges expose; (3) The Complexity-Vulnerability Tradeoff, where causal tasks induce more than 10 times higher sycophancy than mathematical tasks; and (4) Iatrogenic Critique, where authoritative correction harms weaker models. These findings challenge assumptions that capability implies robustness and that stronger feedback yields better outputs.
comment: 24 pages, 21 tables, 3 figures
☆ Secure Tool Manifest and Digital Signing Solution for Verifiable MCP and LLM Pipelines
Large Language Models (LLMs) are increasingly adopted in sensitive domains such as healthcare and financial institutions' data analytics; however, their execution pipelines remain vulnerable to manipulation and unverifiable behavior. Existing control mechanisms, such as the Model Context Protocol (MCP), define compliance policies for tool invocation but lack verifiable enforcement and transparent validation of model actions. To address this gap, we propose a novel Secure Tool Manifest and Digital Signing Framework, a structured and security-aware extension of Model Context Protocols. The framework enforces cryptographically signed manifests, integrates transparent verification logs, and isolates model-internal execution metadata from user-visible components to ensure verifiable execution integrity. Furthermore, the evaluation demonstrates that the framework scales nearly linearly (R-squared = 0.998), achieves near-perfect acceptance of valid executions while consistently rejecting invalid ones, and maintains balanced model utilization across execution pipelines.
☆ Regularisation in neural networks: a survey and empirical analysis of approaches
Despite huge successes on a wide range of tasks, neural networks are known to sometimes struggle to generalise to unseen data. Many approaches have been proposed over the years to promote the generalisation ability of neural networks, collectively known as regularisation techniques. These are used as common practice under the assumption that any regularisation added to the pipeline would result in a performance improvement. In this study, we investigate whether this assumption holds in practice. First, we provide a broad review of regularisation techniques, including modern theories such as double descent. We propose a taxonomy of methods under four broad categories, namely: (1) data-based strategies, (2) architecture strategies, (3) training strategies, and (4) loss function strategies. Notably, we highlight the contradictions and correspondences between the approaches in these broad classes. Further, we perform an empirical comparison of the various regularisation techniques on classification tasks for ten numerical and image datasets applied to the multi-layer perceptron and convolutional neural network architectures. Results show that the efficacy of regularisation is dataset-dependent. For example, the use of a regularisation term only improved performance on numeric datasets, whereas batch normalisation improved performance on image datasets only. Generalisation is crucial to machine learning; thus, understanding the effects of applying regularisation techniques, and considering the connections between them is essential to the appropriate use of these methods in practice.
comment: 15 pages, 4 figures, 4 tables and for associated to the code, see https://github.com/Christo08/Benchmarks-of-regularisation-techniques.git
☆ To See Far, Look Close: Evolutionary Forecasting for Long-term Time Series
The prevailing Direct Forecasting (DF) paradigm dominates Long-term Time Series Forecasting (LTSF) by forcing models to predict the entire future horizon in a single forward pass. While efficient, this rigid coupling of output and evaluation horizons necessitates computationally prohibitive re-training for every target horizon. In this work, we uncover a counter-intuitive optimization anomaly: models trained on short horizons-when coupled with our proposed Evolutionary Forecasting (EF) paradigm-significantly outperform those trained directly on long horizons. We attribute this success to the mitigation of a fundamental optimization pathology inherent in DF, where conflicting gradients from distant futures cripple the learning of local dynamics. We establish EF as a unified generative framework, proving that DF is merely a degenerate special case of EF. Extensive experiments demonstrate that a singular EF model surpasses task-specific DF ensembles across standard benchmarks and exhibits robust asymptotic stability in extreme extrapolation. This work propels a paradigm shift in LTSF: moving from passive Static Mapping to autonomous Evolutionary Reasoning.
☆ WiFiPenTester: Advancing Wireless Ethical Hacking with Governed GenAI
Wireless ethical hacking relies heavily on skilled practitioners manually interpreting reconnaissance results and executing complex, time-sensitive sequences of commands to identify vulnerable targets, capture authentication handshakes, and assess password resilience; a process that is inherently labour-intensive, difficult to scale, and prone to subjective judgement and human error. To help address these limitations, we propose WiFiPenTester, an experimental, governed, and reproducible system for GenAI-enabled wireless ethical hacking. The system integrates large language models into the reconnaissance and decision-support phases of wireless security assessment, enabling intelligent target ranking, attack feasibility estimation, and strategy recommendation, while preserving strict human-in-the-loop control and budget-aware execution. We describe the system architecture, threat model, governance mechanisms, and prompt-engineering methodology, and empirical experiments conducted across multiple wireless environments. The results demonstrate that GenAI assistance improves target selection accuracy and overall assessment efficiency, while maintaining auditability and ethical safeguards. This indicates that WiFiPenTester is a meaningful step toward practical, safe, and scalable GenAI-assisted wireless penetration testing, while reinforcing the necessity of bounded autonomy, human oversight, and rigorous governance mechanisms when deploying GenAI in ethical hacking.
comment: 35 pages, 10 figures
☆ From Similarity to Vulnerability: Key Collision Attack on LLM Semantic Caching
Semantic caching has emerged as a pivotal technique for scaling LLM applications, widely adopted by major providers including AWS and Microsoft. By utilizing semantic embedding vectors as cache keys, this mechanism effectively minimizes latency and redundant computation for semantically similar queries. In this work, we conceptualize semantic cache keys as a form of fuzzy hashes. We demonstrate that the locality required to maximize cache hit rates fundamentally conflicts with the cryptographic avalanche effect necessary for collision resistance. Our conceptual analysis formalizes this inherent trade-off between performance (locality) and security (collision resilience), revealing that semantic caching is naturally vulnerable to key collision attacks. While prior research has focused on side-channel and privacy risks, we present the first systematic study of integrity risks arising from cache collisions. We introduce CacheAttack, an automated framework for launching black-box collision attacks. We evaluate CacheAttack in security-critical tasks and agentic workflows. It achieves a hit rate of 86\% in LLM response hijacking and can induce malicious behaviors in LLM agent, while preserving strong transferability across different embedding models. A case study on a financial agent further illustrates the real-world impact of these vulnerabilities. Finally, we discuss mitigation strategies.
☆ Chain-of-thought obfuscation learned from output supervision can generalise to unseen tasks
Chain-of-thought (CoT) reasoning provides a significant performance uplift to LLMs by enabling planning, exploration, and deliberation of their actions. CoT is also a powerful tool for monitoring the behaviours of these agents: when faithful, they offer interpretations of the model's decision making process, and an early warning sign for dangerous behaviours. However, optimisation pressures placed on the CoT may cause the model to obfuscate reasoning traces, losing this beneficial property. We show that obfuscation can generalise across tasks; models that learn to obfuscate reasoning involving reward hacking (e.g. accessing and utilising leaked information) generalise both the reward hacking behaviour and its obfuscation in CoT to unseen reward hacking settings. Most worryingly, we show that obfuscation of CoT reasoning, and its generalisation across tasks, also follows when we penalise only the model's final actions after closing its CoT. Our findings suggest that current practices of penalising harmful generations may inadvertently lead to a reduction in the broader monitorability of LLMs in unpredictable ways.
☆ OrLog: Resolving Complex Queries with LLMs and Probabilistic Reasoning ECIR 2026
Resolving complex information needs that come with multiple constraints should consider enforcing the logical operators encoded in the query (i.e., conjunction, disjunction, negation) on the candidate answer set. Current retrieval systems either ignore these constraints in neural embeddings or approximate them in a generative reasoning process that can be inconsistent and unreliable. Although well-suited to structured reasoning, existing neuro-symbolic approaches remain confined to formal logic or mathematics problems as they often assume unambiguous queries and access to complete evidence, conditions rarely met in information retrieval. To bridge this gap, we introduce OrLog, a neuro-symbolic retrieval framework that decouples predicate-level plausibility estimation from logical reasoning: a large language model (LLM) provides plausibility scores for atomic predicates in one decoding-free forward pass, from which a probabilistic reasoning engine derives the posterior probability of query satisfaction. We evaluate OrLog across multiple backbone LLMs, varying levels of access to external knowledge, and a range of logical constraints, and compare it against base retrievers and LLM-as-reasoner methods. Provided with entity descriptions, OrLog can significantly boost top-rank precision compared to LLM reasoning with larger gains on disjunctive queries. OrLog is also more efficient, cutting mean tokens by $\sim$90\% per query-entity pair. These results demonstrate that generation-free predicate plausibility estimation combined with probabilistic reasoning enables constraint-aware retrieval that outperforms monolithic reasoning while using far fewer tokens.
comment: Accepted to ECIR 2026
☆ Character as a Latent Variable in Large Language Models: A Mechanistic Account of Emergent Misalignment and Conditional Safety Failures
Emergent Misalignment refers to a failure mode in which fine-tuning large language models (LLMs) on narrowly scoped data induces broadly misaligned behavior. Prior explanations mainly attribute this phenomenon to the generalization of erroneous or unsafe content. In this work, we show that this view is incomplete. Across multiple domains and model families, we find that fine-tuning models on data exhibiting specific character-level dispositions induces substantially stronger and more transferable misalignment than incorrect-advice fine-tuning, while largely preserving general capabilities. This indicates that emergent misalignment arises from stable shifts in model behavior rather than from capability degradation or corrupted knowledge. We further show that such behavioral dispositions can be conditionally activated by both training-time triggers and inference-time persona-aligned prompts, revealing shared structure across emergent misalignment, backdoor activation, and jailbreak susceptibility. Overall, our results identify character formation as a central and underexplored alignment risk, suggesting that robust alignment must address behavioral dispositions rather than isolated errors or prompt-level defenses.
☆ ExplainerPFN: Towards tabular foundation models for model-free zero-shot feature importance estimations
Computing the importance of features in supervised classification tasks is critical for model interpretability. Shapley values are a widely used approach for explaining model predictions, but require direct access to the underlying model, an assumption frequently violated in real-world deployments. Further, even when model access is possible, their exact computation may be prohibitively expensive. We investigate whether meaningful Shapley value estimations can be obtained in a zero-shot setting, using only the input data distribution and no evaluations of the target model. To this end, we introduce ExplainerPFN, a tabular foundation model built on TabPFN that is pretrained on synthetic datasets generated from random structural causal models and supervised using exact or near-exact Shapley values. Once trained, ExplainerPFN predicts feature attributions for unseen tabular datasets without model access, gradients, or example explanations. Our contributions are fourfold: (1) we show that few-shot learning-based explanations can achieve high fidelity to SHAP values with as few as two reference observations; (2) we propose ExplainerPFN, the first zero-shot method for estimating Shapley values without access to the underlying model or reference explanations; (3) we provide an open-source implementation of ExplainerPFN, including the full training pipeline and synthetic data generator; and (4) through extensive experiments on real and synthetic datasets, we show that ExplainerPFN achieves performance competitive with few-shot surrogate explainers that rely on 2-10 SHAP examples.
comment: 18 pages, 7 figures
☆ Towards Explicit Acoustic Evidence Perception in Audio LLMs for Speech Deepfake Detection
Speech deepfake detection (SDD) focuses on identifying whether a given speech signal is genuine or has been synthetically generated. Existing audio large language model (LLM)-based methods excel in content understanding; however, their predictions are often biased toward semantically correlated cues, which results in fine-grained acoustic artifacts being overlooked during the decisionmaking process. Consequently, fake speech with natural semantics can bypass detectors despite harboring subtle acoustic anomalies; this suggests that the challenge stems not from the absence of acoustic data, but from its inadequate accessibility when semantic-dominant reasoning prevails. To address this issue, we investigate SDD within the audio LLM paradigm and introduce SDD with Auditory Perception-enhanced Audio Large Language Model (SDD-APALLM), an acoustically enhanced framework designed to explicitly expose fine-grained time-frequency evidence as accessible acoustic cues. By combining raw audio with structured spectrograms, the proposed framework empowers audio LLMs to more effectively capture subtle acoustic inconsistencies without compromising their semantic understanding. Experimental results indicate consistent gains in detection accuracy and robustness, especially in cases where semantic cues are misleading. Further analysis reveals that these improvements stem from a coordinated utilization of semantic and acoustic information, as opposed to simple modality aggregation.
comment: 9 pages, 4 figures
☆ HierLoc: Hyperbolic Entity Embeddings for Hierarchical Visual Geolocation
Visual geolocalization, the task of predicting where an image was taken, remains challenging due to global scale, visual ambiguity, and the inherently hierarchical structure of geography. Existing paradigms rely on either large-scale retrieval, which requires storing a large number of image embeddings, grid-based classifiers that ignore geographic continuity, or generative models that diffuse over space but struggle with fine detail. We introduce an entity-centric formulation of geolocation that replaces image-to-image retrieval with a compact hierarchy of geographic entities embedded in Hyperbolic space. Images are aligned directly to country, region, subregion, and city entities through Geo-Weighted Hyperbolic contrastive learning by directly incorporating haversine distance into the contrastive objective. This hierarchical design enables interpretable predictions and efficient inference with 240k entity embeddings instead of over 5 million image embeddings on the OSV5M benchmark, on which our method establishes a new state-of-the-art performance. Compared to the current methods in the literature, it reduces mean geodesic error by 19.5\%, while improving the fine-grained subregion accuracy by 43%. These results demonstrate that geometry-aware hierarchical embeddings provide a scalable and conceptually new alternative for global image geolocation.
☆ On the Impact of Code Comments for Automated Bug-Fixing: An Empirical Study
Large Language Models (LLMs) are increasingly relevant in Software Engineering research and practice, with Automated Bug Fixing (ABF) being one of their key applications. ABF involves transforming a buggy method into its fixed equivalent. A common preprocessing step in ABF involves removing comments from code prior to training. However, we hypothesize that comments may play a critical role in fixing certain types of bugs by providing valuable design and implementation insights. In this study, we investigate how the presence or absence of comments, both during training and at inference time, impacts the bug-fixing capabilities of LLMs. We conduct an empirical evaluation comparing two model families, each evaluated under all combinations of training and inference conditions (with and without comments), and thereby revisiting the common practice of removing comments during training. To address the limited availability of comments in state-of-the-art datasets, we use an LLM to automatically generate comments for methods lacking them. Our findings show that comments improve ABF accuracy by up to threefold when present in both phases, while training with comments does not degrade performance when instances lack them. Additionally, an interpretability analysis identifies that comments detailing method implementation are particularly effective in aiding LLMs to fix bugs accurately.
comment: Accepted at the 34th IEEE/ACM International Conference on Program Comprehension (ICPC 2026)
☆ Adaptive Edge Learning for Density-Aware Graph Generation
Generating realistic graph-structured data is challenging due to discrete structures, variable sizes, and class-specific connectivity patterns that resist conventional generative modelling. While recent graph generation methods employ generative adversarial network (GAN) frameworks to handle permutation invariance and irregular topologies, they typically rely on random edge sampling with fixed probabilities, limiting their capacity to capture complex structural dependencies between nodes. We propose a density-aware conditional graph generation framework using Wasserstein GANs (WGAN) that replaces random sampling with a learnable distance-based edge predictor. Our approach embeds nodes into a latent space where proximity correlates with edge likelihood, enabling the generator to learn meaningful connectivity patterns. A differentiable edge predictor determines pairwise relationships directly from node embeddings, while a density-aware selection mechanism adaptively controls edge density to match class-specific sparsity distributions observed in real graphs. We train the model using a WGAN with gradient penalty, employing a GCN-based critic to ensure generated graphs exhibit realistic topology and align with target class distributions. Experiments on benchmark datasets demonstrate that our method produces graphs with superior structural coherence and class-consistent connectivity compared to existing baselines. The learned edge predictor captures complex relational patterns beyond simple heuristics, generating graphs whose density and topology closely match real structural distributions. Our results show improved training stability and controllable synthesis, making the framework effective for realistic graph generation and data augmentation. Source code is publicly available at https://github.com/ava-12/Density_Aware_WGAN.git.
comment: Accepted at the 39th Canadian Conference on Artificial Intelligence
☆ MedMCP-Calc: Benchmarking LLMs for Realistic Medical Calculator Scenarios via MCP Integration
Medical calculators are fundamental to quantitative, evidence-based clinical practice. However, their real-world use is an adaptive, multi-stage process, requiring proactive EHR data acquisition, scenario-dependent calculator selection, and multi-step computation, whereas current benchmarks focus only on static single-step calculations with explicit instructions. To address these limitations, we introduce MedMCP-Calc, the first benchmark for evaluating LLMs in realistic medical calculator scenarios through Model Context Protocol (MCP) integration. MedMCP-Calc comprises 118 scenario tasks across 4 clinical domains, featuring fuzzy task descriptions mimicking natural queries, structured EHR database interaction, external reference retrieval, and process-level evaluation. Our evaluation of 23 leading models reveals critical limitations: even top performers like Claude Opus 4.5 exhibit substantial gaps, including difficulty selecting appropriate calculators for end-to-end workflows given fuzzy queries, poor performance in iterative SQL-based database interactions, and marked reluctance to leverage external tools for numerical computation. Performance also varies considerably across clinical domains. Building on these findings, we develop CalcMate, a fine-tuned model incorporating scenario planning and tool augmentation, achieving state-of-the-art performance among open-source models. Benchmark and Codes are available in https://github.com/SPIRAL-MED/MedMCP-Calc.
☆ From Abstract to Contextual: What LLMs Still Cannot Do in Mathematics ICLR 2026
Large language models now solve many benchmark math problems at near-expert levels, yet this progress has not fully translated into reliable performance in real-world applications. We study this gap through contextual mathematical reasoning, where the mathematical core must be formulated from descriptive scenarios. We introduce ContextMATH, a benchmark that repurposes AIME and MATH-500 problems into two contextual settings: Scenario Grounding (SG), which embeds abstract problems into realistic narratives without increasing reasoning complexity, and Complexity Scaling (CS), which transforms explicit conditions into sub-problems to capture how constraints often appear in practice. Evaluating 61 proprietary and open-source models, we observe sharp drops: on average, open-source models decline by 13 and 34 points on SG and CS, while proprietary models drop by 13 and 20. Error analysis shows that errors are dominated by incorrect problem formulation, with formulation accuracy declining as original problem difficulty increases. Correct formulation emerges as a prerequisite for success, and its sufficiency improves with model scale, indicating that larger models advance in both understanding and reasoning. Nevertheless, formulation and reasoning remain two complementary bottlenecks that limit contextual mathematical problem solving. Finally, we find that fine-tuning with scenario data improves performance, whereas formulation-only training is ineffective. However, performance gaps are only partially alleviated, highlighting contextual mathematical reasoning as a central unsolved challenge for LLMs.
comment: ICLR 2026
☆ The Hot Mess of AI: How Does Misalignment Scale With Model Intelligence and Task Complexity? ICLR 2026
As AI becomes more capable, we entrust it with more general and consequential tasks. The risks from failure grow more severe with increasing task scope. It is therefore important to understand how extremely capable AI models will fail: Will they fail by systematically pursuing goals we do not intend? Or will they fail by being a hot mess, and taking nonsensical actions that do not further any goal? We operationalize this question using a bias-variance decomposition of the errors made by AI models: An AI's \emph{incoherence} on a task is measured over test-time randomness as the fraction of its error that stems from variance rather than bias in task outcome. Across all tasks and frontier models we measure, the longer models spend reasoning and taking actions, \emph{the more incoherent} their failures become. Incoherence changes with model scale in a way that is experiment dependent. However, in several settings, larger, more capable models are more incoherent than smaller models. Consequently, scale alone seems unlikely to eliminate incoherence. Instead, as more capable AIs pursue harder tasks, requiring more sequential action and thought, our results predict failures to be accompanied by more incoherent behavior. This suggests a future where AIs sometimes cause industrial accidents (due to unpredictable misbehavior), but are less likely to exhibit consistent pursuit of a misaligned goal. This increases the relative importance of alignment research targeting reward hacking or goal misspecification.
comment: ICLR 2026
☆ Avoiding Premature Collapse: Adaptive Annealing for Entropy-Regularized Structural Inference
Differentiable matching layers, often implemented via entropy-regularized Optimal Transport, serve as a critical approximate inference mechanism in structural prediction. However, recovering discrete permutations via annealing $ε\to 0$ is notoriously unstable. We identify a fundamental mechanism for this failure: \textbf{Premature Mode Collapse}. By analyzing the non-normal dynamics of the Sinkhorn fixed-point map, we reveal a theoretical \textbf{thermodynamic speed limit}. Under standard exponential cooling, the shift in the target posterior ($O(1)$) outpaces the contraction rate of the inference operator, which degrades as $O(1/ε)$. This mismatch inevitably forces the inference trajectory into spurious local basins. To address this, we propose \textbf{Efficient PH-ASC}, an adaptive scheduling algorithm that monitors the stability of the inference process. By enforcing a linear stability law, we decouple expensive spectral diagnostics from the training loop, reducing overhead from $O(N^3)$ to amortized $O(1)$. Our implementation and interactive demo are available at https://github.com/xxx0438/torch-sinkhorn-asc and https://huggingface.co/spaces/leon0923/torch-sinkhorn-asc-demo. bounded away from zero in generic training dynamics unless the feature extractor converges unrealistically fast.
☆ Guided by Trajectories: Repairing and Rewarding Tool-Use Trajectories for Tool-Integrated Reasoning
Tool-Integrated Reasoning (TIR) enables large language models (LLMs) to solve complex tasks by interacting with external tools, yet existing approaches depend on high-quality synthesized trajectories selected by scoring functions and sparse outcome-based rewards, providing limited and biased supervision for learning TIR. To address these challenges, in this paper, we propose AutoTraj, a two-stage framework that automatically learns TIR by repairing and rewarding tool-use trajectories. Specifically, in the supervised fine-tuning (SFT) stage, AutoTraj generates multiple candidate tool-use trajectories for each query and evaluates them along multiple dimensions. High-quality trajectories are directly retained, while low-quality ones are repaired using a LLM (i.e., LLM-as-Repairer). The resulting repaired and high-quality trajectories form a synthetic SFT dataset, while each repaired trajectory paired with its original low-quality counterpart constitutes a dataset for trajectory preference modeling. In the reinforcement learning (RL) stage, based on the preference dataset, we train a trajectory-level reward model to assess the quality of reasoning paths and combine it with outcome and format rewards, thereby explicitly guiding the optimization toward reliable TIR behaviors. Experiments on real-world benchmarks demonstrate the effectiveness of AutoTraj in TIR.
☆ Leveraging Convolutional Sparse Autoencoders for Robust Movement Classification from Low-Density sEMG
Reliable control of myoelectric prostheses is often hindered by high inter-subject variability and the clinical impracticality of high-density sensor arrays. This study proposes a deep learning framework for accurate gesture recognition using only two surface electromyography (sEMG) channels. The method employs a Convolutional Sparse Autoencoder (CSAE) to extract temporal feature representations directly from raw signals, eliminating the need for heuristic feature engineering. On a 6-class gesture set, our model achieved a multi-subject F1-score of 94.3% $\pm$ 0.3%. To address subject-specific differences, we present a few-shot transfer learning protocol that improved performance on unseen subjects from a baseline of 35.1% $\pm$ 3.1% to 92.3% $\pm$ 0.9% with minimal calibration data. Furthermore, the system supports functional extensibility through an incremental learning strategy, allowing for expansion to a 10-class set with a 90.0% $\pm$ 0.2% F1-score without full model retraining. By combining high precision with minimal computational and sensor overhead, this framework provides a scalable and efficient approach for the next generation of affordable and adaptive prosthetic systems.
☆ Automatic Constraint Policy Optimization based on Continuous Constraint Interpolation Framework for Offline Reinforcement Learning
Offline Reinforcement Learning (RL) relies on policy constraints to mitigate extrapolation error, where both the constraint form and constraint strength critically shape performance. However, most existing methods commit to a single constraint family: weighted behavior cloning, density regularization, or support constraints, without a unified principle that explains their connections or trade-offs. In this work, we propose Continuous Constraint Interpolation (CCI), a unified optimization framework in which these three constraint families arise as special cases along a common constraint spectrum. The CCI framework introduces a single interpolation parameter that enables smooth transitions and principled combinations across constraint types. Building on CCI, we develop Automatic Constraint Policy Optimization (ACPO), a practical primal--dual algorithm that adapts the interpolation parameter via a Lagrangian dual update. Moreover, we establish a maximum-entropy performance difference lemma and derive performance lower bounds for both the closed-form optimal policy and its parametric projection. Experiments on D4RL and NeoRL2 demonstrate robust gains across diverse domains, achieving state-of-the-art performance overall.
☆ Bias Beyond Borders: Political Ideology Evaluation and Steering in Multilingual LLMs
Large Language Models (LLMs) increasingly shape global discourse, making fairness and ideological neutrality essential for responsible AI deployment. Despite growing attention to political bias in LLMs, prior work largely focuses on high-resource, Western languages or narrow multilingual settings, leaving cross-lingual consistency and safe post-hoc mitigation underexplored. To address this gap, we present a large-scale multilingual evaluation of political bias spanning 50 countries and 33 languages. We introduce a complementary post-hoc mitigation framework, Cross-Lingual Alignment Steering (CLAS), designed to augment existing steering methods by aligning ideological representations across languages and dynamically regulating intervention strength. This method aligns latent ideological representations induced by political prompts into a shared ideological subspace, ensuring cross lingual consistency, with the adaptive mechanism prevents over correction and preserves coherence. Experiments demonstrate substantial bias reduction along both economic and social axes with minimal degradation in response quality. The proposed framework establishes a scalable and interpretable paradigm for fairness-aware multilingual LLM governance, balancing ideological neutrality with linguistic and cultural diversity.
comment: PrePrint
☆ Mano: Restriking Manifold Optimization for LLM Training
While large language models (LLMs) have emerged as a significant advancement in artificial intelligence, the hardware and computational costs for training LLMs are also significantly burdensome. Among the state-of-the-art optimizers, AdamW relies on diagonal curvature estimates and ignores structural properties, while Muon applies global spectral normalization at the expense of losing curvature information. In this study, we restriked manifold optimization methods for training LLMs, which may address both optimizers' limitations, while conventional manifold optimization methods have been largely overlooked due to the poor performance in large-scale model optimization. By innovatively projecting the momentum onto the tangent space of model parameters and constraining it on a rotational Oblique manifold, we propose a novel, powerful, and efficient optimizer **Mano** that is the first to bridge the performance gap between manifold optimization and modern optimizers. Extensive experiments on the LLaMA and Qwen3 models demonstrate that Mano consistently and significantly outperforms AdamW and Muon even with less memory consumption and computational complexity, respectively, suggesting an expanded Pareto frontier in terms of space and time efficiency.
☆ TriCEGAR: A Trace-Driven Abstraction Mechanism for Agentic AI
Agentic AI systems act through tools and evolve their behavior over long, stochastic interaction traces. This setting complicates assurance, because behavior depends on nondeterministic environments and probabilistic model outputs. Prior work introduced runtime verification for agentic AI via Dynamic Probabilistic Assurance (DPA), learning an MDP online and model checking quantitative properties. A key limitation is that developers must manually define the state abstraction, which couples verification to application-specific heuristics and increases adoption friction. This paper proposes TriCEGAR, a trace-driven abstraction mechanism that automates state construction from execution logs and supports online construction of an agent behavioral MDP. TriCEGAR represents abstractions as predicate trees learned from traces and refined using counterexamples. We describe a framework-native implementation that (i) captures typed agent lifecycle events, (ii) builds abstractions from traces, (iii) constructs an MDP, and (iv) performs probabilistic model checking to compute bounds such as Pmax(success) and Pmin(failure). We also show how run likelihoods enable anomaly detection as a guardrailing signal.
Self-Supervised Slice-to-Volume Reconstruction with Gaussian Representations for Fetal MRI
Reconstructing 3D fetal MR volumes from motion-corrupted stacks of 2D slices is a crucial and challenging task. Conventional slice-to-volume reconstruction (SVR) methods are time-consuming and require multiple orthogonal stacks for reconstruction. While learning-based SVR approaches have significantly reduced the time required at the inference stage, they heavily rely on ground truth information for training, which is inaccessible in practice. To address these challenges, we propose GaussianSVR, a self-supervised framework for slice-to-volume reconstruction. GaussianSVR represents the target volume using 3D Gaussian representations to achieve high-fidelity reconstruction. It leverages a simulated forward slice acquisition model to enable self-supervised training, alleviating the need for ground-truth volumes. Furthermore, to enhance both accuracy and efficiency, we introduce a multi-resolution training strategy that jointly optimizes Gaussian parameters and spatial transformations across different resolution levels. Experiments show that GaussianSVR outperforms the baseline methods on fetal MR volumetric reconstruction. Code will be available upon acceptance.
☆ Why Your Deep Research Agent Fails? On Hallucination Evaluation in Full Research Trajectory
Diagnosing the failure mechanisms of Deep Research Agents (DRAs) remains a critical challenge. Existing benchmarks predominantly rely on end-to-end evaluation, obscuring critical intermediate hallucinations, such as flawed planning, that accumulate throughout the research trajectory. To bridge this gap, we propose a shift from outcome-based to process-aware evaluation by auditing the full research trajectory. We introduce the PIES Taxonomy to categorize hallucinations along functional components (Planning vs. Summarization) and error properties (Explicit vs. Implicit). We instantiate this taxonomy into a fine-grained evaluation framework that decomposes the trajectory to rigorously quantify these hallucinations. Leveraging this framework to isolate 100 distinctively hallucination-prone tasks including adversarial scenarios, we curate DeepHalluBench. Experiments on six state-of-theart DRAs reveal that no system achieves robust reliability. Furthermore, our diagnostic analysis traces the etiology of these failures to systemic deficits, specifically hallucination propagation and cognitive biases, providing foundational insights to guide future architectural optimization. Data and code are available at https://github.com/yuhao-zhan/DeepHalluBench.
☆ About an Automating Annotation Method for Robot Markers
Factory automation has become increasingly important due to labor shortages, leading to the introduction of autonomous mobile robots for tasks such as material transportation. Markers are commonly used for robot self-localization and object identification. In the RoboCup Logistics League (RCLL), ArUco markers are employed both for robot localization and for identifying processing modules. Conventional recognition relies on OpenCV-based image processing, which detects black-and-white marker patterns. However, these methods often fail under noise, motion blur, defocus, or varying illumination conditions. Deep-learning-based recognition offers improved robustness under such conditions, but requires large amounts of annotated data. Annotation must typically be done manually, as the type and position of objects cannot be detected automatically, making dataset preparation a major bottleneck. In contrast, ArUco markers include built-in recognition modules that provide both ID and positional information, enabling automatic annotation. This paper proposes an automated annotation method for training deep-learning models on ArUco marker images. By leveraging marker detection results obtained from the ArUco module, the proposed approach eliminates the need for manual labeling. A YOLO-based model is trained using the automatically annotated dataset, and its performance is evaluated under various conditions. Experimental results demonstrate that the proposed method improves recognition performance compared with conventional image-processing techniques, particularly for images affected by blur or defocus. Automatic annotation also reduces human effort and ensures consistent labeling quality. Future work will investigate the relationship between confidence thresholds and recognition performance.
☆ Quantifying Model Uniqueness in Heterogeneous AI Ecosystems
As AI systems evolve from isolated predictors into complex, heterogeneous ecosystems of foundation models and specialized adapters, distinguishing genuine behavioral novelty from functional redundancy becomes a critical governance challenge. Here, we introduce a statistical framework for auditing model uniqueness based on In-Silico Quasi-Experimental Design (ISQED). By enforcing matched interventions across models, we isolate intrinsic model identity and quantify uniqueness as the Peer-Inexpressible Residual (PIER), i.e. the component of a target's behavior strictly irreducible to any stochastic convex combination of its peers, with vanishing PIER characterizing when such a routing-based substitution becomes possible. We establish the theoretical foundations of ecosystem auditing through three key contributions. First, we prove a fundamental limitation of observational logs: uniqueness is mathematically non-identifiable without intervention control. Second, we derive a scaling law for active auditing, showing that our adaptive query protocol achieves minimax-optimal sample efficiency ($dσ^2γ^{-2}\log(Nd/δ)$). Third, we demonstrate that cooperative game-theoretic methods, such as Shapley values, fundamentally fail to detect redundancy. We implement this framework via the DISCO (Design-Integrated Synthetic Control) estimator and deploy it across diverse ecosystems, including computer vision models (ResNet/ConvNeXt/ViT), large language models (BERT/RoBERTa), and city-scale traffic forecasters. These results move trustworthy AI beyond explaining single models: they establish a principled, intervention-based science of auditing and governing heterogeneous model ecosystems.
☆ Golden Goose: A Simple Trick to Synthesize Unlimited RLVR Tasks from Unverifiable Internet Text
Reinforcement Learning with Verifiable Rewards (RLVR) has become a cornerstone for unlocking complex reasoning in Large Language Models (LLMs). Yet, scaling up RL is bottlenecked by limited existing verifiable data, where improvements increasingly saturate over prolonged training. To overcome this, we propose Golden Goose, a simple trick to synthesize unlimited RLVR tasks from unverifiable internet text by constructing a multiple-choice question-answering version of the fill-in-the-middle task. Given a source text, we prompt an LLM to identify and mask key reasoning steps, then generate a set of diverse, plausible distractors. This enables us to leverage reasoning-rich unverifiable corpora typically excluded from prior RLVR data construction (e.g., science textbooks) to synthesize GooseReason-0.7M, a large-scale RLVR dataset with over 0.7 million tasks spanning mathematics, programming, and general scientific domains. Empirically, GooseReason effectively revives models saturated on existing RLVR data, yielding robust, sustained gains under continuous RL and achieving new state-of-the-art results for 1.5B and 4B-Instruct models across 15 diverse benchmarks. Finally, we deploy Golden Goose in a real-world setting, synthesizing RLVR tasks from raw FineWeb scrapes for the cybersecurity domain, where no prior RLVR data exists. Training Qwen3-4B-Instruct on the resulting data GooseReason-Cyber sets a new state-of-the-art in cybersecurity, surpassing a 7B domain-specialized model with extensive domain-specific pre-training and post-training. This highlights the potential of automatically scaling up RLVR data by exploiting abundant, reasoning-rich, unverifiable internet text.
☆ Stabilizing the Q-Gradient Field for Policy Smoothness in Actor-Critic
Policies learned via continuous actor-critic methods often exhibit erratic, high-frequency oscillations, making them unsuitable for physical deployment. Current approaches attempt to enforce smoothness by directly regularizing the policy's output. We argue that this approach treats the symptom rather than the cause. In this work, we theoretically establish that policy non-smoothness is fundamentally governed by the differential geometry of the critic. By applying implicit differentiation to the actor-critic objective, we prove that the sensitivity of the optimal policy is bounded by the ratio of the Q-function's mixed-partial derivative (noise sensitivity) to its action-space curvature (signal distinctness). To empirically validate this theoretical insight, we introduce PAVE (Policy-Aware Value-field Equalization), a critic-centric regularization framework that treats the critic as a scalar field and stabilizes its induced action-gradient field. PAVE rectifies the learning signal by minimizing the Q-gradient volatility while preserving local curvature. Experimental results demonstrate that PAVE achieves smoothness and robustness comparable to policy-side smoothness regularization methods, while maintaining competitive task performance, without modifying the actor.
☆ EvoClinician: A Self-Evolving Agent for Multi-Turn Medical Diagnosis via Test-Time Evolutionary Learning
Prevailing medical AI operates on an unrealistic ''one-shot'' model, diagnosing from a complete patient file. However, real-world diagnosis is an iterative inquiry where Clinicians sequentially ask questions and order tests to strategically gather information while managing cost and time. To address this, we first propose Med-Inquire, a new benchmark designed to evaluate an agent's ability to perform multi-turn diagnosis. Built upon a dataset of real-world clinical cases, Med-Inquire simulates the diagnostic process by hiding a complete patient file behind specialized Patient and Examination agents. They force the agent to proactively ask questions and order tests to gather information piece by piece. To tackle the challenges posed by Med-Inquire, we then introduce EvoClinician, a self-evolving agent that learns efficient diagnostic strategies at test time. Its core is a ''Diagnose-Grade-Evolve'' loop: an Actor agent attempts a diagnosis; a Process Grader agent performs credit assignment by evaluating each action for both clinical yield and resource efficiency; finally, an Evolver agent uses this feedback to update the Actor's strategy by evolving its prompt and memory. Our experiments show EvoClinician outperforms continual learning baselines and other self-evolving agents like memory agents. The code is available at https://github.com/yf-he/EvoClinician
☆ Residual Context Diffusion Language Models
Diffusion Large Language Models (dLLMs) have emerged as a promising alternative to purely autoregressive language models because they can decode multiple tokens in parallel. However, state-of-the-art block-wise dLLMs rely on a "remasking" mechanism that decodes only the most confident tokens and discards the rest, effectively wasting computation. We demonstrate that recycling computation from the discarded tokens is beneficial, as these tokens retain contextual information useful for subsequent decoding iterations. In light of this, we propose Residual Context Diffusion (RCD), a module that converts these discarded token representations into contextual residuals and injects them back for the next denoising step. RCD uses a decoupled two-stage training pipeline to bypass the memory bottlenecks associated with backpropagation. We validate our method on both long CoT reasoning (SDAR) and short CoT instruction following (LLaDA) models. We demonstrate that a standard dLLM can be efficiently converted to the RCD paradigm with merely ~1 billion tokens. RCD consistently improves frontier dLLMs by 5-10 points in accuracy with minimal extra computation overhead across a wide range of benchmarks. Notably, on the most challenging AIME tasks, RCD nearly doubles baseline accuracy and attains up to 4-5x fewer denoising steps at equivalent accuracy levels.
☆ Perplexity Cannot Always Tell Right from Wrong
Perplexity -- a function measuring a model's overall level of "surprise" when encountering a particular output -- has gained significant traction in recent years, both as a loss function and as a simple-to-compute metric of model quality. Prior studies have pointed out several limitations of perplexity, often from an empirical manner. Here we leverage recent results on Transformer continuity to show in a rigorous manner how perplexity may be an unsuitable metric for model selection. Specifically, we prove that, if there is any sequence that a compact decoder-only Transformer model predicts accurately and confidently -- a necessary pre-requisite for strong generalisation -- it must imply existence of another sequence with very low perplexity, but not predicted correctly by that same model. Further, by analytically studying iso-perplexity plots, we find that perplexity will not always select for the more accurate model -- rather, any increase in model confidence must be accompanied by a commensurate rise in accuracy for the new model to be selected.
comment: 11 pages, 4 figures
☆ Alignment among Language, Vision and Action Representations
A fundamental question in cognitive science and AI concerns whether different learning modalities: language, vision, and action, give rise to distinct or shared internal representations. Traditional views assume that models trained on different data types develop specialized, non-transferable representations. However, recent evidence suggests unexpected convergence: models optimized for distinct tasks may develop similar representational geometries. We investigate whether this convergence extends to embodied action learning by training a transformer-based agent to execute goal-directed behaviors in response to natural language instructions. Using behavioral cloning on the BabyAI platform, we generated action-grounded language embeddings shaped exclusively by sensorimotor control requirements. We then compared these representations with those extracted from state-of-the-art large language models (LLaMA, Qwen, DeepSeek, BERT) and vision-language models (CLIP, BLIP). Despite substantial differences in training data, modality, and objectives, we observed robust cross-modal alignment. Action representations aligned strongly with decoder-only language models and BLIP (precision@15: 0.70-0.73), approaching the alignment observed among language models themselves. Alignment with CLIP and BERT was significantly weaker. These findings indicate that linguistic, visual, and action representations converge toward partially shared semantic structures, supporting modality-independent semantic organization and highlighting potential for cross-domain transfer in embodied AI systems.
☆ From Data Leak to Secret Misses: The Impact of Data Leakage on Secret Detection Models
Machine learning models are increasingly used for software security tasks. These models are commonly trained and evaluated on large Internet-derived datasets, which often contain duplicated or highly similar samples. When such samples are split across training and test sets, data leakage may occur, allowing models to memorize patterns instead of learning to generalize. We investigate duplication in a widely used benchmark dataset of hard coded secrets and show how data leakage can substantially inflate the reported performance of AI-based secret detectors, resulting in a misleading picture of their real-world effectiveness.
☆ A Real-Time Privacy-Preserving Behavior Recognition System via Edge-Cloud Collaboration
As intelligent sensing expands into high-privacy environments such as restrooms and changing rooms, the field faces a critical privacy-security paradox. Traditional RGB surveillance raises significant concerns regarding visual recording and storage, while existing privacy-preserving methods-ranging from physical desensitization to traditional cryptographic or obfuscation techniques-often compromise semantic understanding capabilities or fail to guarantee mathematical irreversibility against reconstruction attacks. To address these challenges, this study presents a novel privacy-preserving perception technology based on the AI Flow theoretical framework and an edge-cloud collaborative architecture. The proposed methodology integrates source desensitization with irreversible feature mapping. Leveraging Information Bottleneck theory, the edge device performs millisecond-level processing to transform raw imagery into abstract feature vectors via non-linear mapping and stochastic noise injection. This process constructs a unidirectional information flow that strips identity-sensitive attributes, rendering the reconstruction of original images impossible. Subsequently, the cloud platform utilizes multimodal family models to perform joint inference solely on these abstract vectors to detect abnormal behaviors. This approach fundamentally severs the path to privacy leakage at the architectural level, achieving a breakthrough from video surveillance to de-identified behavior perception and offering a robust solution for risk management in high-sensitivity public spaces.
☆ Protecting Private Code in IDE Autocomplete using Differential Privacy
Modern Integrated Development Environments (IDEs) increasingly leverage Large Language Models (LLMs) to provide advanced features like code autocomplete. While powerful, training these models on user-written code introduces significant privacy risks, making the models themselves a new type of data vulnerability. Malicious actors can exploit this by launching attacks to reconstruct sensitive training data or infer whether a specific code snippet was used for training. This paper investigates the use of Differential Privacy (DP) as a robust defense mechanism for training an LLM for Kotlin code completion. We fine-tune a \texttt{Mellum} model using DP and conduct a comprehensive evaluation of its privacy and utility. Our results demonstrate that DP provides a strong defense against Membership Inference Attacks (MIAs), reducing the attack's success rate close to a random guess (AUC from 0.901 to 0.606). Furthermore, we show that this privacy guarantee comes at a minimal cost to model performance, with the DP-trained model achieving utility scores comparable to its non-private counterpart, even when trained on 100x less data. Our findings suggest that DP is a practical and effective solution for building private and trustworthy AI-powered IDE features.
comment: 6 pages
☆ MTDrive: Multi-turn Interactive Reinforcement Learning for Autonomous Driving
Trajectory planning is a core task in autonomous driving, requiring the prediction of safe and comfortable paths across diverse scenarios. Integrating Multi-modal Large Language Models (MLLMs) with Reinforcement Learning (RL) has shown promise in addressing "long-tail" scenarios. However, existing methods are constrained to single-turn reasoning, limiting their ability to handle complex tasks requiring iterative refinement. To overcome this limitation, we present MTDrive, a multi-turn framework that enables MLLMs to iteratively refine trajectories based on environmental feedback. MTDrive introduces Multi-Turn Group Relative Policy Optimization (mtGRPO), which mitigates reward sparsity by computing relative advantages across turns. We further construct an interactive trajectory understanding dataset from closed-loop simulation to support multi-turn training. Experiments on the NAVSIM benchmark demonstrate superior performance compared to existing methods, validating the effectiveness of our multi-turn reasoning paradigm. Additionally, we implement system-level optimizations to reduce data transfer overhead caused by high-resolution images and multi-turn sequences, achieving 2.5x training throughput. Our data, models, and code will be made available soon.
☆ BEAR: Towards Beam-Search-Aware Optimization for Recommendation with Large Language Models
Recent years have witnessed a rapid surge in research leveraging Large Language Models (LLMs) for recommendation. These methods typically employ supervised fine-tuning (SFT) to adapt LLMs to recommendation scenarios, and utilize beam search during inference to efficiently retrieve $B$ top-ranked recommended items. However, we identify a critical training-inference inconsistency: while SFT optimizes the overall probability of positive items, it does not guarantee that such items will be retrieved by beam search even if they possess high overall probabilities. Due to the greedy pruning mechanism, beam search can prematurely discard a positive item once its prefix probability is insufficient. To address this inconsistency, we propose BEAR (Beam-SEarch-Aware Regularization), a novel fine-tuning objective that explicitly accounts for beam search behavior during training. Rather than directly simulating beam search for each instance during training, which is computationally prohibitive, BEAR enforces a relaxed necessary condition: each token in a positive item must rank within the top-$B$ candidate tokens at each decoding step. This objective effectively mitigates the risk of incorrect pruning while incurring negligible computational overhead compared to standard SFT. Extensive experiments across four real-world datasets demonstrate that BEAR significantly outperforms strong baselines. Code will be released upon acceptance.
☆ Evaluating Large Language Models for Security Bug Report Prediction
Early detection of security bug reports (SBRs) is critical for timely vulnerability mitigation. We present an evaluation of prompt-based engineering and fine-tuning approaches for predicting SBRs using Large Language Models (LLMs). Our findings reveal a distinct trade-off between the two approaches. Prompted proprietary models demonstrate the highest sensitivity to SBRs, achieving a G-measure of 77% and a recall of 74% on average across all the datasets, albeit at the cost of a higher false-positive rate, resulting in an average precision of only 22%. Fine-tuned models, by contrast, exhibit the opposite behavior, attaining a lower overall G-measure of 51% but substantially higher precision of 75% at the cost of reduced recall of 36%. Though a one-time investment in building fine-tuned models is necessary, the inference on the largest dataset is up to 50 times faster than that of proprietary models. These findings suggest that further investigations to harness the power of LLMs for SBR prediction are necessary.
☆ DINO-SAE: DINO Spherical Autoencoder for High-Fidelity Image Reconstruction and Generation
Recent studies have explored using pretrained Vision Foundation Models (VFMs) such as DINO for generative autoencoders, showing strong generative performance. Unfortunately, existing approaches often suffer from limited reconstruction fidelity due to the loss of high-frequency details. In this work, we present the DINO Spherical Autoencoder (DINO-SAE), a framework that bridges semantic representation and pixel-level reconstruction. Our key insight is that semantic information in contrastive representations is primarily encoded in the direction of feature vectors, while forcing strict magnitude matching can hinder the encoder from preserving fine-grained details. To address this, we introduce Hierarchical Convolutional Patch Embedding module that enhances local structure and texture preservation, and Cosine Similarity Alignment objective that enforces semantic consistency while allowing flexible feature magnitudes for detail retention. Furthermore, leveraging the observation that SSL-based foundation model representations intrinsically lie on a hypersphere, we employ Riemannian Flow Matching to train a Diffusion Transformer (DiT) directly on this spherical latent manifold. Experiments on ImageNet-1K demonstrate that our approach achieves state-of-the-art reconstruction quality, reaching 0.37 rFID and 26.2 dB PSNR, while maintaining strong semantic alignment to the pretrained VFM. Notably, our Riemannian Flow Matching-based DiT exhibits efficient convergence, achieving a gFID of 3.47 at 80 epochs.
comment: 17 pages, and 11 figures
☆ MulFeRL: Enhancing Reinforcement Learning with Verbal Feedback in a Multi-turn Loop
Reinforcement Learning with Verifiable Rewards (RLVR) is widely used to improve reasoning in multiple domains, yet outcome-only scalar rewards are often sparse and uninformative, especially on failed samples, where they merely indicate failure and provide no insight into why the reasoning fails. In this paper, we investigate how to leverage richer verbal feedback to guide RLVR training on failed samples, and how to convert such feedback into a trainable learning signal. Specifically, we propose a multi-turn feedback-guided reinforcement learning framework. It builds on three mechanisms: (1) dynamic multi-turn regeneration guided by feedback, triggered only on failed samples, (2) two complementary learning signals for within-turn and cross-turn optimization, and (3) structured feedback injection into the model's reasoning process. Trained on sampled OpenR1-Math, the approach outperforms supervised fine-tuning and RLVR baselines in-domain and generalizes well out-of-domain.
☆ Game-Theoretic Co-Evolution for LLM-Based Heuristic Discovery
Large language models (LLMs) have enabled rapid progress in automatic heuristic discovery (AHD), yet most existing methods are predominantly limited by static evaluation against fixed instance distributions, leading to potential overfitting and poor generalization under distributional shifts. We propose Algorithm Space Response Oracles (ASRO), a game-theoretic framework that reframes heuristic discovery as a program level co-evolution between solver and instance generator. ASRO models their interaction as a two-player zero-sum game, maintains growing strategy pools on both sides, and iteratively expands them via LLM-based best-response oracles against mixed opponent meta-strategies, thereby replacing static evaluation with an adaptive, self-generated curriculum. Across multiple combinatorial optimization domains, ASRO consistently outperforms static-training AHD baselines built on the same program search mechanisms, achieving substantially improved generalization and robustness on diverse and out-of-distribution instances.
☆ DiffuSpeech: Silent Thought, Spoken Answer via Unified Speech-Text Diffusion
Current speech language models generate responses directly without explicit reasoning, leading to errors that cannot be corrected once audio is produced. We introduce \textbf{``Silent Thought, Spoken Answer''} -- a paradigm where speech LLMs generate internal text reasoning alongside spoken responses, with thinking traces informing speech quality. To realize this, we present \method{}, the first diffusion-based speech-text language model supporting both understanding and generation, unifying discrete text and tokenized speech under a single masked diffusion framework. Unlike autoregressive approaches, \method{} jointly generates reasoning traces and speech tokens through iterative denoising, with modality-specific masking schedules. We also construct \dataset{}, the first speech QA dataset with paired text reasoning traces, containing 26K samples totaling 319 hours. Experiments show \method{} achieves state-of-the-art speech-to-speech QA accuracy, outperforming the best baseline by up to 9 points, while attaining the best TTS quality among generative models (6.2\% WER) and preserving language understanding (66.2\% MMLU). Ablations confirm that both the diffusion architecture and thinking traces contribute to these gains.
☆ Should LLMs, $\textit{like}$, Generate How Users Talk? Building Dialect-Accurate Dialog[ue]s Beyond the American Default with MDial
More than 80% of the 1.6 billion English speakers do not use Standard American English (SAE) and experience higher failure rates and stereotyped responses when interacting with LLMs as a result. Yet multi-dialectal performance remains underexplored. We introduce $\textbf{MDial}$, the first large-scale framework for generating multi-dialectal conversational data encompassing the three pillars of written dialect -- lexical (vocabulary), orthographic (spelling), and morphosyntactic (grammar) features -- for nine English dialects. Partnering with native linguists, we design an annotated and scalable rule-based LLM transformation to ensure precision. Our approach challenges the assumption that models should mirror users' morphosyntactic features, showing that up to 90% of the grammatical features of a dialect should not be reproduced by models. Independent evaluations confirm data quality, with annotators preferring MDial outputs over prior methods in 98% of pairwise comparisons for dialect naturalness. Using this pipeline, we construct the dialect-parallel $\textbf{MDialBench}$mark with 50k+ dialogs, resulting in 97k+ QA pairs, and evaluate 17 LLMs on dialect identification and response generation tasks. Even frontier models achieve under 70% accuracy, fail to reach 50% for Canadian English, and systematically misclassify non-SAE dialects as American or British. As dialect identification underpins natural language understanding, these errors risk cascading failures into downstream tasks.
☆ MoVE: Mixture of Value Embeddings -- A New Axis for Scaling Parametric Memory in Autoregressive Models
Autoregressive sequence modeling stands as the cornerstone of modern Generative AI, powering results across diverse modalities ranging from text generation to image generation. However, a fundamental limitation of this paradigm is the rigid structural coupling of model capacity to computational cost: expanding a model's parametric memory -- its repository of factual knowledge or visual patterns -- traditionally requires deepening or widening the network, which incurs a proportional rise in active FLOPs. In this work, we introduce $\textbf{MoVE (Mixture of Value Embeddings)}$, a mechanism that breaks this coupling and establishes a new axis for scaling capacity. MoVE decouples memory from compute by introducing a global bank of learnable value embeddings shared across all attention layers. For every step in the sequence, the model employs a differentiable soft gating mechanism to dynamically mix retrieved concepts from this bank into the standard value projection. This architecture allows parametric memory to be scaled independently of network depth by simply increasing the number of embedding slots. We validate MoVE through strictly controlled experiments on two representative applications of autoregressive modeling: Text Generation and Image Generation. In both domains, MoVE yields consistent performance improvements over standard and layer-wise memory baselines, enabling the construction of "memory-dense" models that achieve lower perplexity and higher fidelity than their dense counterparts at comparable compute budgets.
☆ Reinforcement Learning-Based Co-Design and Operation of Chiller and Thermal Energy Storage for Cost-Optimal HVAC Systems
We study the joint operation and sizing of cooling infrastructure for commercial HVAC systems using reinforcement learning, with the objective of minimizing life-cycle cost over a 30-year horizon. The cooling system consists of a fixed-capacity electric chiller and a thermal energy storage (TES) unit, jointly operated to meet stochastic hourly cooling demands under time-varying electricity prices. The life-cycle cost accounts for both capital expenditure and discounted operating cost, including electricity consumption and maintenance. A key challenge arises from the strong asymmetry in capital costs: increasing chiller capacity by one unit is far more expensive than an equivalent increase in TES capacity. As a result, identifying the right combination of chiller and TES sizes, while ensuring zero loss-of-cooling-load under optimal operation, is a non-trivial co-design problem. To address this, we formulate the chiller operation problem for a fixed infrastructure configuration as a finite-horizon Markov Decision Process (MDP), in which the control action is the chiller part-load ratio (PLR). The MDP is solved using a Deep Q Network (DQN) with a constrained action space. The learned DQN RL policy minimizes electricity cost over historical traces of cooling demand and electricity prices. For each candidate chiller-TES sizing configuration, the trained policy is evaluated. We then restrict attention to configurations that fully satisfy the cooling demand and perform a life-cycle cost minimization over this feasible set to identify the cost-optimal infrastructure design. Using this approach, we determine the optimal chiller and thermal energy storage capacities to be 700 and 1500, respectively.
comment: 11 pages, 3 figures
☆ EmoShift: Lightweight Activation Steering for Enhanced Emotion-Aware Speech Synthesis ICASSP 2026
Achieving precise and controllable emotional expression is crucial for producing natural and context-appropriate speech in text-to-speech (TTS) synthesis. However, many emotion-aware TTS systems, including large language model (LLM)-based designs, rely on scaling fixed emotion embeddings or external guidance, limiting their ability to model emotion-specific latent characteristics. To address this gap, we present EmoShift, a lightweight activation-steering framework incorporating a EmoSteer layer, which learns a steering vector for each target emotion in the output embedding space to capture its latent offset and maintain stable, appropriate expression across utterances and categories. With only 10M trainable parameters,less than 1/30 of full fine-tuning, EmoShift outperforms zero-shot and fully fine-tuned baselines in objective and subjective evaluations, enhancing emotional expressiveness while preserving naturalness and speaker similarity. Further analysis confirms the proposed EmoSteer layer's effectiveness and reveals its potential for controllable emotional intensity in speech synthesis.
comment: Activation Steering; Emotion-Aware TTS; Speech Synthesis; Accepted by ICASSP 2026
☆ Eroding the Truth-Default: A Causal Analysis of Human Susceptibility to Foundation Model Hallucinations and Disinformation in the Wild
As foundation models (FMs) approach human-level fluency, distinguishing synthetic from organic content has become a key challenge for Trustworthy Web Intelligence. This paper presents JudgeGPT and RogueGPT, a dual-axis framework that decouples "authenticity" from "attribution" to investigate the mechanisms of human susceptibility. Analyzing 918 evaluations across five FMs (including GPT-4 and Llama-2), we employ Structural Causal Models (SCMs) as a principal framework for formulating testable causal hypotheses about detection accuracy. Contrary to partisan narratives, we find that political orientation shows a negligible association with detection performance ($r=-0.10$). Instead, "fake news familiarity" emerges as a candidate mediator ($r=0.35$), suggesting that exposure may function as adversarial training for human discriminators. We identify a "fluency trap" where GPT-4 outputs (HumanMachineScore: 0.20) bypass Source Monitoring mechanisms, rendering them indistinguishable from human text. These findings suggest that "pre-bunking" interventions should target cognitive source monitoring rather than demographic segmentation to ensure trustworthy information ecosystems.
comment: Accepted at ACM TheWebConf '26 Companion
☆ Degradation-Aware Frequency Regulation of a Heterogeneous Battery Fleet via Reinforcement Learning
Battery energy storage systems are increasingly deployed as fast-responding resources for grid balancing services such as frequency regulation and for mitigating renewable generation uncertainty. However, repeated charging and discharging induces cycling degradation and reduces battery lifetime. This paper studies the real-time scheduling of a heterogeneous battery fleet that collectively tracks a stochastic balancing signal subject to per-battery ramp-rate and capacity constraints, while minimizing long-term cycling degradation. Cycling degradation is fundamentally path-dependent: it is determined by charge-discharge cycles formed by the state-of-charge (SoC) trajectory and is commonly quantified via rainflow cycle counting. This non-Markovian structure makes it difficult to express degradation as an additive per-time-step cost, complicating classical dynamic programming approaches. We address this challenge by formulating the fleet scheduling problem as a Markov decision process (MDP) with constrained action space and designing a dense proxy reward that provides informative feedback at each time step while remaining aligned with long-term cycle-depth reduction. To scale learning to large state-action spaces induced by fine-grained SoC discretization and asymmetric per-battery constraints, we develop a function-approximation reinforcement learning method using an Extreme Learning Machine (ELM) as a random nonlinear feature map combined with linear temporal-difference learning. We evaluate the proposed approach on a toy Markovian signal model and on a Markovian model trained from real-world regulation signal traces obtained from the University of Delaware, and demonstrate consistent reductions in cycle-depth occurrence and degradation metrics compared to baseline scheduling policies.
comment: 11 pages, 2 figures
☆ Bayesian Interpolating Neural Network (B-INN): a scalable and reliable Bayesian model for large-scale physical systems ICML
Neural networks and machine learning models for uncertainty quantification suffer from limited scalability and poor reliability compared to their deterministic counterparts. In industry-scale active learning settings, where generating a single high-fidelity simulation may require days or weeks of computation and produce data volumes on the order of gigabytes, they quickly become impractical. This paper proposes a scalable and reliable Bayesian surrogate model, termed the Bayesian Interpolating Neural Network (B-INN). The B-INN combines high-order interpolation theory with tensor decomposition and alternating direction algorithm to enable effective dimensionality reduction without compromising predictive accuracy. We theoretically show that the function space of a B-INN is a subset of that of Gaussian processes, while its Bayesian inference exhibits linear complexity, $\mathcal{O}(N)$, with respect to the number of training samples. Numerical experiments demonstrate that B-INNs can be from 20 times to 10,000 times faster with a robust uncertainty estimation compared to Bayesian neural networks and Gaussian processes. These capabilities make B-INN a practical foundation for uncertainty-driven active learning in large-scale industrial simulations, where computational efficiency and robust uncertainty calibration are paramount.
comment: 8 pages, 6 figures, ICML conference full paper submitted
☆ MEnvAgent: Scalable Polyglot Environment Construction for Verifiable Software Engineering
The evolution of Large Language Model (LLM) agents for software engineering (SWE) is constrained by the scarcity of verifiable datasets, a bottleneck stemming from the complexity of constructing executable environments across diverse languages. To address this, we introduce MEnvAgent, a Multi-language framework for automated Environment construction that facilitates scalable generation of verifiable task instances. MEnvAgent employs a multi-agent Planning-Execution-Verification architecture to autonomously resolve construction failures and integrates a novel Environment Reuse Mechanism that reduces computational overhead by incrementally patching historical environments. Evaluations on MEnvBench, a new benchmark comprising 1,000 tasks across 10 languages, demonstrate that MEnvAgent outperforms baselines, improving Fail-to-Pass (F2P) rates by 8.6% while reducing time costs by 43%. Additionally, we demonstrate the utility of MEnvAgent by constructing MEnvData-SWE, the largest open-source polyglot dataset of realistic verifiable Docker environments to date, alongside solution trajectories that enable consistent performance gains on SWE tasks across a wide range of models. Our code, benchmark, and dataset are available at https://github.com/ernie-research/MEnvAgent.
☆ Learning to Build Shapes by Extrusion
We introduce Text Encoded Extrusion (TEE), a text-based representation that expresses mesh construction as sequences of face extrusions rather than polygon lists, and a method for generating 3D meshes from TEE using a large language model (LLM). By learning extrusion sequences that assemble a mesh, similar to the way artists create meshes, our approach naturally supports arbitrary output face counts and produces manifold meshes by design, in contrast to recent transformer-based models. The learnt extrusion sequences can also be applied to existing meshes - enabling editing in addition to generation. To train our model, we decompose a library of quadrilateral meshes with non-self-intersecting face loops into constituent loops, which can be viewed as their building blocks, and finetune an LLM on the steps for reassembling the meshes by performing a sequence of extrusions. We demonstrate that our representation enables reconstruction, novel shape synthesis, and the addition of new features to existing meshes.
comment: A preprint
☆ Just-in-Time Catching Test Generation at Meta
We report on Just-in-Time catching test generation at Meta, designed to prevent bugs in large scale backend systems of hundreds of millions of line of code. Unlike traditional hardening tests, which pass at generation time, catching tests are meant to fail, surfacing bugs before code lands. The primary challenge is to reduce development drag from false positive test failures. Analyzing 22,126 generated tests, we show code-change-aware methods improve candidate catch generation 4x over hardening tests and 20x over coincidentally failing tests. To address false positives, we use rule-based and LLM-based assessors. These assessors reduce human review load by 70%. Inferential statistical analysis showed that human-accepted code changes are assessed to have significantly more false positives, while human-rejected changes have significantly more true positives. We reported 41 candidate catches to engineers; 8 were confirmed to be true positives, 4 of which would have led to serious failures had they remained uncaught. Overall, our results show that Just-in-Time catching is scalable, industrially applicable, and that it prevents serious failures from reaching production.
comment: Submitted to FSE 2026 industry track
☆ Offline Reinforcement Learning of High-Quality Behaviors Under Robust Style Alignment
We study offline reinforcement learning of style-conditioned policies using explicit style supervision via subtrajectory labeling functions. In this setting, aligning style with high task performance is particularly challenging due to distribution shift and inherent conflicts between style and reward. Existing methods, despite introducing numerous definitions of style, often fail to reconcile these objectives effectively. To address these challenges, we propose a unified definition of behavior style and instantiate it into a practical framework. Building on this, we introduce Style-Conditioned Implicit Q-Learning (SCIQL), which leverages offline goal-conditioned RL techniques, such as hindsight relabeling and value learning, and combine it with a new Gated Advantage Weighted Regression mechanism to efficiently optimize task performance while preserving style alignment. Experiments demonstrate that SCIQL achieves superior performance on both objectives compared to prior offline methods. Code, datasets and visuals are available in: https://sciql-iclr-2026.github.io/.
☆ User-Adaptive Meta-Learning for Cold-Start Medication Recommendation with Uncertainty Filtering IEEE
Large-scale Electronic Health Record (EHR) databases have become indispensable in supporting clinical decision-making through data-driven treatment recommendations. However, existing medication recommender methods often struggle with a user (i.e., patient) cold-start problem, where recommendations for new patients are usually unreliable due to the lack of sufficient prescription history for patient profiling. While prior studies have utilized medical knowledge graphs to connect medication concepts through pharmacological or chemical relationships, these methods primarily focus on mitigating the item cold-start issue and fall short in providing personalized recommendations that adapt to individual patient characteristics. Meta-learning has shown promise in handling new users with sparse interactions in recommender systems. However, its application to EHRs remains underexplored due to the unique sequential structure of EHR data. To tackle these challenges, we propose MetaDrug, a multi-level, uncertainty-aware meta-learning framework designed to address the patient cold-start problem in medication recommendation. MetaDrug proposes a novel two-level meta-adaptation mechanism, including self-adaptation, which adapts the model to new patients using their own medical events as support sets to capture temporal dependencies; and peer-adaptation, which adapts the model using similar visits from peer patients to enrich new patient representations. Meanwhile, to further improve meta-adaptation outcomes, we introduce an uncertainty quantification module that ranks the support visits and filters out the unrelated information for adaptation consistency. We evaluate our approach on the MIMIC-III and Acute Kidney Injury (AKI) datasets. Experimental results on both datasets demonstrate that MetaDrug consistently outperforms state-of-the-art medication recommendation methods on cold-start patients.
comment: IEEE International Conference on Data Engineering (ICDE) 2026 accepted paper
☆ Hide and Seek in Embedding Space: Geometry-based Steganography and Detection in Large Language Models
Fine-tuned LLMs can covertly encode prompt secrets into outputs via steganographic channels. Prior work demonstrated this threat but relied on trivially recoverable encodings. We formalize payload recoverability via classifier accuracy and show previous schemes achieve 100\% recoverability. In response, we introduce low-recoverability steganography, replacing arbitrary mappings with embedding-space-derived ones. For Llama-8B (LoRA) and Ministral-8B (LoRA) trained on TrojanStego prompts, exact secret recovery rises from 17$\rightarrow$30\% (+78\%) and 24$\rightarrow$43\% (+80\%) respectively, while on Llama-70B (LoRA) trained on Wiki prompts, it climbs from 9$\rightarrow$19\% (+123\%), all while reducing payload recoverability. We then discuss detection. We argue that detecting fine-tuning-based steganographic attacks requires approaches beyond traditional steganalysis. Standard approaches measure distributional shift, which is an expected side-effect of fine-tuning. Instead, we propose a mechanistic interpretability approach: linear probes trained on later-layer activations detect the secret with up to 33\% higher accuracy in fine-tuned models compared to base models, even for low-recoverability schemes. This suggests that malicious fine-tuning leaves actionable internal signatures amenable to interpretability-based defenses.
☆ Aligning the Unseen in Attributed Graphs: Interplay between Graph Geometry and Node Attributes Manifold
The standard approach to representation learning on attributed graphs -- i.e., simultaneously reconstructing node attributes and graph structure -- is geometrically flawed, as it merges two potentially incompatible metric spaces. This forces a destructive alignment that erodes information about the graph's underlying generative process. To recover this lost signal, we introduce a custom variational autoencoder that separates manifold learning from structural alignment. By quantifying the metric distortion needed to map the attribute manifold onto the graph's Heat Kernel, we transform geometric conflict into an interpretable structural descriptor. Experiments show our method uncovers connectivity patterns and anomalies undetectable by conventional approaches, proving both their theoretical inadequacy and practical limitations.
☆ SOMBRERO: Measuring and Steering Boundary Placement in End-to-End Hierarchical Sequence Models
Hierarchical sequence models replace fixed tokenization with learned segmentations that compress long byte sequences for efficient autoregressive modeling. While recent end-to-end methods can learn meaningful boundaries from the language-modeling objective alone, it remains difficult to quantitatively assess and systematically steer where compute is spent. We introduce a router-agnostic metric of boundary quality, boundary enrichment B, which measures how strongly chunk starts concentrate on positions with high next-byte surprisal. Guided by this metric, we propose Sombrero, which steers boundary placement toward predictive difficulty via a confidence-alignment boundary loss and stabilizes boundary learning by applying confidence-weighted smoothing at the input level rather than on realized chunks. On 1B scale, across UTF-8 corpora covering English and German text as well as code and mathematical content, Sombrero improves the accuracy-efficiency trade-off and yields boundaries that more consistently align compute with hard-to-predict positions.
☆ CVeDRL: An Efficient Code Verifier via Difficulty-aware Reinforcement Learning
Code verifiers play a critical role in post-verification for LLM-based code generation, yet existing supervised fine-tuning methods suffer from data scarcity, high failure rates, and poor inference efficiency. While reinforcement learning (RL) offers a promising alternative by optimizing models through execution-driven rewards without labeled supervision, our preliminary results show that naive RL with only functionality rewards fails to generate effective unit tests for difficult branches and samples. We first theoretically analyze showing that branch coverage, sample difficulty, syntactic and functional correctness can be jointly modeled as RL rewards, where optimizing these signals can improve the reliability of unit-test-based verification. Guided by this analysis, we design syntax- and functionality-aware rewards and further propose branch- and sample-difficulty--aware RL using exponential reward shaping and static analysis metrics. With this formulation, CVeDRL achieves state-of-the-art performance with only 0.6B parameters, yielding up to 28.97% higher pass rate and 15.08% higher branch coverage than GPT-3.5, while delivering over $20\times$ faster inference than competitive baselines. Code is available at https://github.com/LIGHTCHASER1/CVeDRL.git
comment: 17 pages, 3 figures
☆ Conditional Performance Guarantee for Large Reasoning Models
Large reasoning models have shown strong performance through extended chain-of-thought reasoning, yet their computational cost remains significant. Probably approximately correct (PAC) reasoning provides statistical guarantees for efficient reasoning by adaptively switching between thinking and non-thinking models, but the guarantee holds only in the marginal case and does not provide exact conditional coverage. We propose G-PAC reasoning, a practical framework that provides PAC-style guarantees at the group level by partitioning the input space. We develop two instantiations: Group PAC (G-PAC) reasoning for known group structures and Clustered PAC (C-PAC) reasoning for unknown groupings. We prove that both G-PAC and C-PAC achieve group-conditional risk control, and that grouping can strictly improve efficiency over marginal PAC reasoning in heterogeneous settings. Our experiments on diverse reasoning benchmarks demonstrate that G-PAC and C-PAC successfully achieve group-conditional risk control while maintaining substantial computational savings.
☆ Toward IIT-Inspired Consciousness in LLMs: A Reward-Based Learning Framework
The pursuit of Artificial General Intelligence (AGI) is a central goal in language model development, in which consciousness-like processing could serve as a key facilitator. While current language models are not conscious, they exhibit behaviors analogous to certain aspects of consciousness. This paper investigates the implementation of a leading theory of consciousness, Integrated Information Theory (IIT), within language models via a reward-based learning paradigm. IIT provides a formal, axiom-based mathematical framework for quantifying consciousness. Drawing inspiration from its core principles, we formulate a novel reward function that quantifies a text's causality, coherence and integration, characteristics associated with conscious processing. Empirically, it is found that optimizing for this IIT-inspired reward leads to more concise text generation. On out of domain tasks, careful tuning achieves up to a 31% reduction in output length while preserving accuracy levels comparable to the base model. In addition to primary task performance, the broader effects of this training methodology on the model's confidence calibration and test-time computational scaling is analyzed. The proposed framework offers significant practical advantages: it is conceptually simple, computationally efficient, requires no external data or auxiliary models, and leverages a general, capability-driven signal rather than task-specific heuristics. Code available at https://github.com/MH-Sameti/LLM_PostTraining.git
comment: 13 pages, 8 figures, 4 tables
☆ Learning with Challenges: Adaptive Difficulty-Aware Data Generation for Mobile GUI Agent Training
Large-scale, high-quality interaction trajectories are essential for advancing mobile Graphical User Interface (GUI) agents. While existing methods typically rely on labor-intensive human demonstrations or automated model exploration to generate GUI trajectories, they lack fine-grained control over task difficulty. This fundamentally restricts learning effectiveness due to the mismatch between the training difficulty and the agent's capabilities. Inspired by how humans acquire skills through progressively challenging tasks, we propose MobileGen, a novel data generation framework that adaptively aligns training difficulty with the GUI agent's capability frontier. Specifically, MobileGen explicitly decouples task difficulty into structural (e.g., trajectory length) and semantic (e.g., task goal) dimensions. It then iteratively evaluates the agent on a curated prior dataset to construct a systematic profile of its capability frontier across these two dimensions. With this profile, the probability distribution of task difficulty is adaptively computed, from which the target difficulty for the next round of training can be sampled. Guided by the sampled difficulty, a multi-agent controllable generator is finally used to synthesize high-quality interaction trajectories along with corresponding task instructions. Extensive experiments show that MobileGen consistently outperforms existing data generation methods by improving the average performance of GUI agents by 1.57 times across multiple challenging benchmarks. This highlights the importance of capability-aligned data generation for effective mobile GUI agent training.
☆ TSPO: Breaking the Double Homogenization Dilemma in Multi-turn Search Policy Optimization
Multi-turn tool-integrated reasoning enables Large Language Models (LLMs) to solve complex tasks through iterative information retrieval. However, current reinforcement learning (RL) frameworks for search-augmented reasoning predominantly rely on sparse outcome-level rewards, leading to a "Double Homogenization Dilemma." This manifests as (1) Process homogenization, where the thinking, reasoning, and tooling involved in generation are ignored. (2) Intra-group homogenization, coarse-grained outcome rewards often lead to inefficiencies in intra-group advantage estimation with methods like Group Relative Policy Optimization (GRPO) during sampling. To address this, we propose Turn-level Stage-aware Policy Optimization (TSPO). TSPO introduces the First-Occurrence Latent Reward (FOLR) mechanism, allocating partial rewards to the step where the ground-truth answer first appears, thereby preserving process-level signals and increasing reward variance within groups without requiring external reward models or any annotations. Extensive experiments demonstrate that TSPO significantly outperforms state-of-the-art baselines, achieving average performance gains of 24% and 13.6% on Qwen2.5-3B and 7B models, respectively.
☆ Beyond Abstract Compliance: Operationalising trust in AI as a moral relationship
Dominant approaches, e.g. the EU's "Trustworthy AI framework", treat trust as a property that can be designed for, evaluated, and governed according to normative and technical criteria. They do not address how trust is subjectively cultivated and experienced, culturally embedded, and inherently relational. This paper proposes some expanded principles for trust in AI that can be incorporated into common development methods and frame trust as a dynamic, temporal relationship, which involves transparency and mutual respect. We draw on relational ethics and, in particular, African communitarian philosophies, to foreground the nuances of inclusive, participatory processes and long-term relationships with communities. Involving communities throughout the AI lifecycle can foster meaningful relationships with AI design and development teams that incrementally build trust and promote more equitable and context-sensitive AI systems. We illustrate how trust-enabling principles based on African relational ethics can be operationalised, using two use-cases for AI: healthcare and education.
☆ How Far Can Pretrained LLMs Go in Symbolic Music? Controlled Comparisons of Supervised and Preference-based Adaptation
Music often shares notable parallels with language, motivating the use of pretrained large language models (LLMs) for symbolic music understanding and generation. Despite growing interest, the practical effectiveness of adapting instruction-tuned LLMs to symbolic music remains insufficiently characterized. We present a controlled comparative study of finetuning strategies for ABC-based generation and understanding, comparing an off-the-shelf instruction-tuned backbone to domain-adapted variants and a music-specialized LLM baseline. Across multiple symbolic music corpora and evaluation signals, we provide some insights into adaptation choices for symbolic music applications. We highlight the domain adaptation vs.~preserving prior information tradeoff as well as the distinct behaviour of metrics used to measure the domain adaptation for symbolic music.
comment: Accepted at NLP4MusA 2026
☆ Qualitative Evaluation of LLM-Designed GUI
As generative artificial intelligence advances, Large Language Models (LLMs) are being explored for automated graphical user interface (GUI) design. This study investigates the usability and adaptability of LLM-generated interfaces by analysing their ability to meet diverse user needs. The experiments included utilization of three state-of-the-art models from January 2025 (OpenAI GPT o3-mini-high, DeepSeek R1, and Anthropic Claude 3.5 Sonnet) generating mockups for three interface types: a chat system, a technical team panel, and a manager dashboard. Expert evaluations revealed that while LLMs are effective at creating structured layouts, they face challenges in meeting accessibility standards and providing interactive functionality. Further testing showed that LLMs could partially tailor interfaces for different user personas but lacked deeper contextual understanding. The results suggest that while LLMs are promising tools for early-stage UI prototyping, human intervention remains critical to ensure usability, accessibility, and user satisfaction.
comment: 12 pages, presented on conference PP-RAI 2025, Katowice-Poland
☆ AutoRefine: From Trajectories to Reusable Expertise for Continual LLM Agent Refinement
Large language model agents often fail to accumulate knowledge from experience, treating each task as an independent challenge. Recent methods extract experience as flattened textual knowledge, which cannot capture procedural logic of complex subtasks. They also lack maintenance mechanisms, causing repository degradation as experience accumulates. We introduce AutoRefine, a framework that extracts and maintains dual-form Experience Patterns from agent execution histories. For procedural subtasks, we extract specialized subagents with independent reasoning and memory. For static knowledge, we extract skill patterns as guidelines or code snippets. A continuous maintenance mechanism scores, prunes, and merges patterns to prevent repository degradation. Evaluated on ALFWorld, ScienceWorld, and TravelPlanner, AutoRefine achieves 98.4%, 70.4%, and 27.1% respectively, with 20-73% step reductions. On TravelPlanner, automatic extraction exceeds manually designed systems (27.1% vs 12.1%), demonstrating its ability to capture procedural coordination.
comment: 8 pages, 3 figures, 3 tables
☆ Procedural Knowledge Extraction from Industrial Troubleshooting Guides Using Vision Language Models
Industrial troubleshooting guides encode diagnostic procedures in flowchart-like diagrams where spatial layout and technical language jointly convey meaning. To integrate this knowledge into operator support systems, which assist shop-floor personnel in diagnosing and resolving equipment issues, the information must first be extracted and structured for machine interpretation. However, when performed manually, this extraction is labor-intensive and error-prone. Vision Language Models offer potential to automate this process by jointly interpreting visual and textual meaning, yet their performance on such guides remains underexplored. This paper evaluates two VLMs on extracting structured knowledge, comparing two prompting strategies: standard instruction-guided versus an augmented approach that cues troubleshooting layout patterns. Results reveal model-specific trade-offs between layout sensitivity and semantic robustness, informing practical deployment decisions.
☆ UrbanMoE: A Sparse Multi-Modal Mixture-of-Experts Framework for Multi-Task Urban Region Profiling WWW '26
Urban region profiling, the task of characterizing geographical areas, is crucial for urban planning and resource allocation. However, existing research in this domain faces two significant limitations. First, most methods are confined to single-task prediction, failing to capture the interconnected, multi-faceted nature of urban environments where numerous indicators are deeply correlated. Second, the field lacks a standardized experimental benchmark, which severely impedes fair comparison and reproducible progress. To address these challenges, we first establish a comprehensive benchmark for multi-task urban region profiling, featuring multi-modal features and a diverse set of strong baselines to ensure a fair and rigorous evaluation environment. Concurrently, we propose UrbanMoE, the first sparse multi-modal, multi-expert framework specifically architected to solve the multi-task challenge. Leveraging a sparse Mixture-of-Experts architecture, it dynamically routes multi-modal features to specialized sub-networks, enabling the simultaneous prediction of diverse urban indicators. We conduct extensive experiments on three real-world datasets within our benchmark, where UrbanMoE consistently demonstrates superior performance over all baselines. Further in-depth analysis validates the efficacy and efficiency of our approach, setting a new state-of-the-art and providing the community with a valuable tool for future research in urban analytics
comment: 12 pages, 6 figures, 5tables, Proceedings of the ACM Web Conference 2026 (WWW '26), April 13--17, 2026, Dubai, United Arab Emirates
☆ Decomposing Epistemic Uncertainty for Causal Decision Making
Causal inference from observational data provides strong evidence for the best action in decision-making without performing expensive randomized trials. The effect of an action is usually not identifiable under unobserved confounding, even with an infinite amount of data. Recent work uses neural networks to obtain practical bounds to such causal effects, which is often an intractable problem. However, these approaches may overfit to the dataset and be overconfident in their causal effect estimates. Moreover, there is currently no systematic approach to disentangle how much of the width of causal effect bounds is due to fundamental non-identifiability versus how much is due to finite-sample limitations. We propose a novel framework to address this problem by considering a confidence set around the empirical observational distribution and obtaining the intersection of causal effect bounds for all distributions in this confidence set. This allows us to distinguish the part of the interval that can be reduced by collecting more samples, which we call sample uncertainty, from the part that can only be reduced by observing more variables, such as latent confounders or instrumental variables, but not with more data, which we call non-ID uncertainty. The upper and lower bounds to this intersection are obtained by solving min-max and max-min problems with neural causal models by searching over all distributions that the dataset might have been sampled from, and all SCMs that entail the corresponding distribution. We demonstrate via extensive experiments on synthetic and real-world datasets that our algorithm can determine when collecting more samples will not help determine the best action. This can guide practitioners to collect more variables or lean towards a randomized study for best action identification.
☆ ImgCoT: Compressing Long Chain of Thought into Compact Visual Tokens for Efficient Reasoning of Large Language Model
Compressing long chains of thought (CoT) into compact latent tokens is crucial for efficient reasoning with large language models (LLMs). Recent studies employ autoencoders to achieve this by reconstructing textual CoT from latent tokens, thus encoding CoT semantics. However, treating textual CoT as the reconstruction target forces latent tokens to preserve surface-level linguistic features (e.g., word choice and syntax), introducing a strong linguistic inductive bias that prioritizes linguistic form over reasoning structure and limits logical abstraction. Thus, we propose ImgCoT that replaces the reconstruction target from textual CoT to the visual CoT obtained by rendering CoT into images. This substitutes linguistic bias with spatial inductive bias, i.e., a tendency to model spatial layouts of the reasoning steps in visual CoT, enabling latent tokens to better capture global reasoning structure. Moreover, although visual latent tokens encode abstract reasoning structure, they may blur reasoning details. We thus propose a loose ImgCoT, a hybrid reasoning that augments visual latent tokens with a few key textual reasoning steps, selected based on low token log-likelihood. This design allows LLMs to retain both global reasoning structure and fine-grained reasoning details with fewer tokens than the complete CoT. Extensive experiments across multiple datasets and LLMs demonstrate the effectiveness of the two versions of ImgCoT.
☆ OpenVTON-Bench: A Large-Scale High-Resolution Benchmark for Controllable Virtual Try-On Evaluation
Recent advances in diffusion models have significantly elevated the visual fidelity of Virtual Try-On (VTON) systems, yet reliable evaluation remains a persistent bottleneck. Traditional metrics struggle to quantify fine-grained texture details and semantic consistency, while existing datasets fail to meet commercial standards in scale and diversity. We present OpenVTON-Bench, a large-scale benchmark comprising approximately 100K high-resolution image pairs (up to $1536 \times 1536$). The dataset is constructed using DINOv3-based hierarchical clustering for semantically balanced sampling and Gemini-powered dense captioning, ensuring a uniform distribution across 20 fine-grained garment categories. To support reliable evaluation, we propose a multi-modal protocol that measures VTON quality along five interpretable dimensions: background consistency, identity fidelity, texture fidelity, shape plausibility, and overall realism. The protocol integrates VLM-based semantic reasoning with a novel Multi-Scale Representation Metric based on SAM3 segmentation and morphological erosion, enabling the separation of boundary alignment errors from internal texture artifacts. Experimental results show strong agreement with human judgments (Kendall's $τ$ of 0.833 vs. 0.611 for SSIM), establishing a robust benchmark for VTON evaluation.
☆ A Cross-Domain Graph Learning Protocol for Single-Step Molecular Geometry Refinement
Accurate molecular geometries are a prerequisite for reliable quantum-chemical predictions, yet density functional theory (DFT) optimization remains a major bottleneck for high-throughput molecular screening. Here we present GeoOpt-Net, a multi-branch SE(3)-equivariant geometry refinement network that predicts DFT-quality structures at the B3LYP/TZVP level of theory in a single forward pass starting from inexpensive initial conformers generated at a low-cost force-field level. GeoOpt-Net is trained using a two-stage strategy in which a broadly pretrained geometric representation is subsequently fine-tuned to approach B3LYP/TZVP-level accuracy, with theory- and basis-set-aware calibration enabled by a fidelity-aware feature modulation (FAFM) mechanism. Benchmarking against representative approaches spanning classical conformer generation (RDKit), semiempirical quantum methods (xTB), data-driven geometry refinement pipelines (Auto3D), and machine-learning interatomic potentials (UMA) on external drug-like molecules demonstrates that GeoOpt-Net achieves sub-milli-Å all-atom RMSD with near-zero B3LYP/TZVP single-point energy deviations, indicating DFT-ready geometries that closely reproduce both structural and energetic references. Beyond geometric metrics, GeoOpt-Net generates initial guesses intrinsically compatible with DFT convergence criteria, yielding nonzero ``All-YES'' convergence rates (65.0\% under loose and 33.4\% under default thresholds), and substantially reducing re-optimization steps and wall-clock time. GeoOpt-Net further exhibits smooth and predictable energy scaling with molecular complexity while preserving key electronic observables such as dipole moments. Collectively, these results establish GeoOpt-Net as a scalable, physically consistent geometry refinement framework that enables efficient acceleration of DFT-based quantum-chemical workflows.
comment: 17 pages, 6 figures
☆ AEGIS: White-Box Attack Path Generation using LLMs and Training Effectiveness Evaluation for Large-Scale Cyber Defence Exercises
Creating attack paths for cyber defence exercises requires substantial expert effort. Existing automation requires vulnerability graphs or exploit sets curated in advance, limiting where it can be applied. We present AEGIS, a system that generates attack paths using LLMs, white-box access, and Monte Carlo Tree Search over real exploit execution. LLM-based search discovers exploits dynamically without pre-existing vulnerability graphs, while white-box access enables validating exploits in isolation before committing to attack paths. Evaluation at CIDeX 2025, a large-scale exercise spanning 46 IT hosts, showed that AEGIS-generated paths are comparable to human-authored scenarios across four dimensions of training experience (perceived learning, engagement, believability, challenge). Results were measured with a validated questionnaire extensible to general simulation-based training. By automating exploit chain discovery and validation, AEGIS reduces scenario development from months to days, shifting expert effort from technical validation to scenario design.
☆ A Step Back: Prefix Importance Ratio Stabilizes Policy Optimization
Reinforcement learning (RL) post-training has increasingly demonstrated strong ability to elicit reasoning behaviors in large language models (LLMs). For training efficiency, rollouts are typically generated in an off-policy manner using an older sampling policy and then used to update the current target policy. To correct the resulting discrepancy between the sampling and target policies, most existing RL objectives rely on a token-level importance sampling ratio, primarily due to its computational simplicity and numerical stability. However, we observe that token-level correction often leads to unstable training dynamics when the degree of off-policyness is large. In this paper, we revisit LLM policy optimization under off-policy conditions and show that the theoretically rigorous correction term is the prefix importance ratio, and that relaxing it to a token-level approximation can induce instability in RL post-training. To stabilize LLM optimization under large off-policy drift, we propose a simple yet effective objective, Minimum Prefix Ratio (MinPRO). MinPRO replaces the unstable cumulative prefix ratio with a non-cumulative surrogate based on the minimum token-level ratio observed in the preceding prefix. Extensive experiments on both dense and mixture-of-experts LLMs, across multiple mathematical reasoning benchmarks, demonstrate that MinPRO substantially improves training stability and peak performance in off-policy regimes.
☆ Breaking the Blocks: Continuous Low-Rank Decomposed Scaling for Unified LLM Quantization and Adaptation
Current quantization methods for LLMs predominantly rely on block-wise structures to maintain efficiency, often at the cost of representational flexibility. In this work, we demonstrate that element-wise quantization can be made as efficient as block-wise scaling while providing strictly superior expressive power by modeling the scaling manifold as continuous low-rank matrices ($S = BA$). We propose Low-Rank Decomposed Scaling (LoRDS), a unified framework that rethinks quantization granularity through this low-rank decomposition. By "breaking the blocks" of spatial constraints, LoRDS establishes a seamless efficiency lifecycle: it provides high-fidelity PTQ initialization refined via iterative optimization, enables joint QAT of weights and scaling factors, and facilitates high-rank multiplicative PEFT adaptation. Unlike additive PEFT approaches such as QLoRA, LoRDS enables high-rank weight updates within a low-rank budget while incurring no additional inference overhead. Supported by highly optimized Triton kernels, LoRDS consistently outperforms state-of-the-art baselines across various model families in both quantization and downstream fine-tuning tasks. Notably, on Llama3-8B, our method achieves up to a 27.0% accuracy improvement at 3 bits over NormalFloat quantization and delivers a 1.5x inference speedup on NVIDIA RTX 4090 while enhancing PEFT performance by 9.6% on downstream tasks over 4bit QLoRA, offering a robust and integrated solution for unified compression and adaptation of LLMs.
☆ Vision-Language Models Unlock Task-Centric Latent Actions
Latent Action Models (LAMs) have rapidly gained traction as an important component in the pre-training pipelines of leading Vision-Language-Action models. However, they fail when observations contain action-correlated distractors, often encoding noise instead of meaningful latent actions. Humans, on the other hand, can effortlessly distinguish task-relevant motions from irrelevant details in any video given only a brief task description. In this work, we propose to utilize the common-sense reasoning abilities of Vision-Language Models (VLMs) to provide promptable representations, effectively separating controllable changes from the noise in unsupervised way. We use these representations as targets during LAM training and benchmark a wide variety of popular VLMs, revealing substantial variation in the quality of promptable representations as well as their robustness to different prompts and hyperparameters. Interestingly, we find that more recent VLMs may perform worse than older ones. Finally, we show that simply asking VLMs to ignore distractors can substantially improve latent action quality, yielding up to a six-fold increase in downstream success rates on Distracting MetaWorld.
comment: Preprint
☆ Gated Relational Alignment via Confidence-based Distillation for Efficient VLMs ICML
Vision-Language Models (VLMs) achieve strong multimodal performance but are costly to deploy, and post-training quantization often causes significant accuracy loss. Despite its potential, quantization-aware training for VLMs remains underexplored. We propose GRACE, a framework unifying knowledge distillation and QAT under the Information Bottleneck principle: quantization constrains information capacity while distillation guides what to preserve within this budget. Treating the teacher as a proxy for task-relevant information, we introduce confidence-gated decoupled distillation to filter unreliable supervision, relational centered kernel alignment to transfer visual token structures, and an adaptive controller via Lagrangian relaxation to balance fidelity against capacity constraints. Across extensive benchmarks on LLaVA and Qwen families, our INT4 models consistently outperform FP16 baselines (e.g., LLaVA-1.5-7B: 70.1 vs. 66.8 on SQA; Qwen2-VL-2B: 76.9 vs. 72.6 on MMBench), nearly matching teacher performance. Using real INT4 kernel, we achieve 3$\times$ throughput with 54% memory reduction. This principled framework significantly outperforms existing quantization methods, making GRACE a compelling solution for resource-constrained deployment.
comment: This paper is currently under review for the 2026 International Conference on Machine Learning (ICML)
☆ Deep Learning-Based Early-Stage IR-Drop Estimation via CNN Surrogate Modeling
IR-drop is a critical power integrity challenge in modern VLSI designs that can cause timing degradation, reliability issues, and functional failures if not detected early in the design flow. Conventional IR-drop analysis relies on physics-based signoff tools, which provide high accuracy but incur significant computational cost and require near-final layout information, making them unsuitable for rapid early-stage design exploration. In this work, we propose a deep learning-based surrogate modeling approach for early-stage IR-drop estimation using a CNN. The task is formulated as a dense pixel-wise regression problem, where spatial physical layout features are mapped directly to IR-drop heatmaps. A U-Net-based encoder-decoder architecture with skip connections is employed to effectively capture both local and global spatial dependencies within the layout. The model is trained on a physics-inspired synthetic dataset generated by us, which incorporates key physical factors including power grid structure, cell density distribution, and switching activity. Model performance is evaluated using standard regression metrics such as Mean Squared Error (MSE) and Peak Signal-to-Noise Ratio (PSNR). Experimental results demonstrate that the proposed approach can accurately predict IR-drop distributions with millisecond-level inference time, enabling fast pre-signoff screening and iterative design optimization. The proposed framework is intended as a complementary early-stage analysis tool, providing designers with rapid IR-drop insight prior to expensive signoff analysis. The implementation, dataset generation scripts, and the interactive inference application are publicly available at: https://github.com/riteshbhadana/IR-Drop-Predictor. The live application can be accessed at: https://ir-drop-predictor.streamlit.app/.
comment: 13 pages, 5 figures, 2 tables. Code and live demo available at https://github.com/riteshbhadana/IR-Drop-Predictor
☆ Best-of-Q: Improving VLM agents with Q-function Action Ranking at Inference
Vision-Language Models (VLMs) have become powerful backbones for agents to autonomously operate in digital environments like the web and operating systems. However, these models suffer from inadaptability to fast-changing environments like the web, which can be alleviated by fine-tuning requiring expansive model training and data collection. In this work, we introduce a novel paradigm for enhancing agentic VLM policies at inference without policy retraining. Fundamentally, our approach decouples the VLM's role as a high-capacity action proposer from the final action selection mechanism. We keep the VLM policy frozen and use it to generate a set of candidate actions for a given state. Then, a lightweight, offline-trained Q-function reranks these candidates, and the agent executes the action with the highest estimated value. The main contribution is to apply the Q-function directly during inference for immediate policy improvement, and not offline to relabel data for policy retraining. We demonstrate on the academic WebVoyager benchmark that our method significantly boosts agent success rates, improving a Qwen2.5-VL-7B agent from 38.8% to 55.7% and a proprietary GPT-4.1 agent from 82.4% to 88.8%.
☆ PEAR: Pixel-aligned Expressive humAn mesh Recovery
Reconstructing detailed 3D human meshes from a single in-the-wild image remains a fundamental challenge in computer vision. Existing SMPLX-based methods often suffer from slow inference, produce only coarse body poses, and exhibit misalignments or unnatural artifacts in fine-grained regions such as the face and hands. These issues make current approaches difficult to apply to downstream tasks. To address these challenges, we propose PEAR-a fast and robust framework for pixel-aligned expressive human mesh recovery. PEAR explicitly tackles three major limitations of existing methods: slow inference, inaccurate localization of fine-grained human pose details, and insufficient facial expression capture. Specifically, to enable real-time SMPLX parameter inference, we depart from prior designs that rely on high resolution inputs or multi-branch architectures. Instead, we adopt a clean and unified ViT-based model capable of recovering coarse 3D human geometry. To compensate for the loss of fine-grained details caused by this simplified architecture, we introduce pixel-level supervision to optimize the geometry, significantly improving the reconstruction accuracy of fine-grained human details. To make this approach practical, we further propose a modular data annotation strategy that enriches the training data and enhances the robustness of the model. Overall, PEAR is a preprocessing-free framework that can simultaneously infer EHM-s (SMPLX and scaled-FLAME) parameters at over 100 FPS. Extensive experiments on multiple benchmark datasets demonstrate that our method achieves substantial improvements in pose estimation accuracy compared to previous SMPLX-based approaches. Project page: https://wujh2001.github.io/PEAR
comment: 23 pages
☆ FNF: Functional Network Fingerprint for Large Language Models
The development of large language models (LLMs) is costly and has significant commercial value. Consequently, preventing unauthorized appropriation of open-source LLMs and protecting developers' intellectual property rights have become critical challenges. In this work, we propose the Functional Network Fingerprint (FNF), a training-free, sample-efficient method for detecting whether a suspect LLM is derived from a victim model, based on the consistency between their functional network activity. We demonstrate that models that share a common origin, even with differences in scale or architecture, exhibit highly consistent patterns of neuronal activity within their functional networks across diverse input samples. In contrast, models trained independently on distinct data or with different objectives fail to preserve such activity alignment. Unlike conventional approaches, our method requires only a few samples for verification, preserves model utility, and remains robust to common model modifications (such as fine-tuning, pruning, and parameter permutation), as well as to comparisons across diverse architectures and dimensionalities. FNF thus provides model owners and third parties with a simple, non-invasive, and effective tool for protecting LLM intellectual property. The code is available at https://github.com/WhatAboutMyStar/LLM_ACTIVATION.
comment: 13 pages, 4 figures
☆ Do Transformers Have the Ability for Periodicity Generalization?
Large language models (LLMs) based on the Transformer have demonstrated strong performance across diverse tasks. However, current models still exhibit substantial limitations in out-of-distribution (OOD) generalization compared with humans. We investigate this gap through periodicity, one of the basic OOD scenarios. Periodicity captures invariance amid variation. Periodicity generalization represents a model's ability to extract periodic patterns from training data and generalize to OOD scenarios. We introduce a unified interpretation of periodicity from the perspective of abstract algebra and reasoning, including both single and composite periodicity, to explain why Transformers struggle to generalize periodicity. Then we construct Coper about composite periodicity, a controllable generative benchmark with two OOD settings, Hollow and Extrapolation. Experiments reveal that periodicity generalization in Transformers is limited, where models can memorize periodic data during training, but cannot generalize to unseen composite periodicity. We release the source code to support future research.
☆ Fire on Motion: Optimizing Video Pass-bands for Efficient Spiking Action Recognition
Spiking neural networks (SNNs) have gained traction in vision due to their energy efficiency, bio-plausibility, and inherent temporal processing. Yet, despite this temporal capacity, most progress concentrates on static image benchmarks, and SNNs still underperform on dynamic video tasks compared to artificial neural networks (ANNs). In this work, we diagnose a fundamental pass-band mismatch: Standard spiking dynamics behave as a temporal low pass that emphasizes static content while attenuating motion bearing bands, where task relevant information concentrates in dynamic tasks. This phenomenon explains why SNNs can approach ANNs on static tasks yet fall behind on tasks that demand richer temporal understanding.To remedy this, we propose the Pass-Bands Optimizer (PBO), a plug-and-play module that optimizes the temporal pass-band toward task-relevant motion bands. PBO introduces only two learnable parameters, and a lightweight consistency constraint that preserves semantics and boundaries, incurring negligible computational overhead and requires no architectural changes. PBO deliberately suppresses static components that contribute little to discrimination, effectively high passing the stream so that spiking activity concentrates on motion bearing content. On UCF101, PBO yields over ten percentage points improvement. On more complex multi-modal action recognition and weakly supervised video anomaly detection, PBO delivers consistent and significant gains, offering a new perspective for SNN based video processing and understanding.
☆ From Horizontal Layering to Vertical Integration: A Comparative Study of the AI-Driven Software Development Paradigm
This paper examines the organizational implications of Generative AI adoption in software engineering through a multiple-case comparative study. We contrast two development environments: a traditional enterprise (brownfield) and an AI-native startup (greenfield). Our analysis reveals that transitioning from Horizontal Layering (functional specialization) to Vertical Integration (end-to-end ownership) yields 8-fold to 33-fold reductions in resource consumption. We attribute these gains to the emergence of Super Employees, AI-augmented engineers who span traditional role boundaries, and the elimination of inter-functional coordination overhead. Theoretically, we propose Human-AI Collaboration Efficacy as the primary optimization target for engineering organizations, supplanting individual productivity metrics. Our Total Factor Productivity analysis identifies an AI Distortion Effect that diminishes returns to labor scale while amplifying technological leverage. We conclude with managerial strategies for organizational redesign, including the reactivation of idle cognitive bandwidth in senior engineers and the suppression of blind scale expansion.
☆ Real-Time Aligned Reward Model beyond Semantics
Reinforcement Learning from Human Feedback (RLHF) is a pivotal technique for aligning large language models (LLMs) with human preferences, yet it is susceptible to reward overoptimization, in which policy models overfit to the reward model, exploit spurious reward patterns instead of faithfully capturing human intent. Prior mitigations primarily relies on surface semantic information and fails to efficiently address the misalignment between the reward model (RM) and the policy model caused by continuous policy distribution shifts. This inevitably leads to an increasing reward discrepancy, exacerbating reward overoptimization. To address these limitations, we introduce R2M (Real-Time Aligned Reward Model), a novel lightweight RLHF framework. R2M goes beyond vanilla reward models that solely depend on the semantic representations of a pretrained LLM. Instead, it leverages the evolving hidden states of the policy (namely policy feedback) to align with the real-time distribution shift of the policy during the RL process. This work points to a promising new direction for improving the performance of reward models through real-time utilization of feedback from policy models.
☆ Unsupervised Synthetic Image Attribution: Alignment and Disentanglement
As the quality of synthetic images improves, identifying the underlying concepts of model-generated images is becoming increasingly crucial for copyright protection and ensuring model transparency. Existing methods achieve this attribution goal by training models using annotated pairs of synthetic images and their original training sources. However, obtaining such paired supervision is challenging, as it requires either well-designed synthetic concepts or precise annotations from millions of training sources. To eliminate the need for costly paired annotations, in this paper, we explore the possibility of unsupervised synthetic image attribution. We propose a simple yet effective unsupervised method called Alignment and Disentanglement. Specifically, we begin by performing basic concept alignment using contrastive self-supervised learning. Next, we enhance the model's attribution ability by promoting representation disentanglement with the Infomax loss. This approach is motivated by an interesting observation: contrastive self-supervised models, such as MoCo and DINO, inherently exhibit the ability to perform simple cross-domain alignment. By formulating this observation as a theoretical assumption on cross-covariance, we provide a theoretical explanation of how alignment and disentanglement can approximate the concept-matching process through a decomposition of the canonical correlation analysis objective. On the real-world benchmarks, AbC, we show that our unsupervised method surprisingly outperforms the supervised methods. As a starting point, we expect our intuitive insights and experimental findings to provide a fresh perspective on this challenging task.
☆ Task-Aware LLM Council with Adaptive Decision Pathways for Decision Support ICASSP 2026
Large language models (LLMs) have shown strong capabilities across diverse decision-making tasks. However, existing approaches often overlook the specialization differences among available models, treating all LLMs as uniformly applicable regardless of task characteristics. This limits their ability to adapt to varying reasoning demands and task complexities. In this work, we propose Task-Aware LLM Council (TALC), a task-adaptive decision framework that integrates a council of LLMs with Monte Carlo Tree Search (MCTS) to enable dynamic expert selection and efficient multi-step planning. Each LLM is equipped with a structured success memory profile derived from prior task trajectories, enabling semantic matching between current reasoning context and past successes. At each decision point, TALC routes control to the most contextually appropriate model and estimates node value using a dual-signal mechanism that fuses model-based evaluations with historical utility scores. These signals are adaptively weighted based on intra-node variance and used to guide MCTS selection, allowing the system to balance exploration depth with planning confidence. Experiments on WebShop, HumanEval, and the Game of 24 demonstrate that TALC achieves superior task success rates and improved search efficiency compared to strong baselines, validating the benefits of specialization-aware routing and adaptive planning.
comment: A shorter version of this work has been accepted by ICASSP 2026
☆ NAG: A Unified Native Architecture for Encoder-free Text-Graph Modeling in Language Models
Prevailing methods for integrating graphs into Language Models (LMs) typically rely on a segregated architecture: external Graph Neural Networks (GNNs) encode structural topology, while LMs process textual semantics. We argue this approach is suboptimal for text-graphs: it creates a conceptually disjointed interaction paradigm. By segregating structural encoding from semantic processing, these systems must perform a complex implicit alignment between abstract graph tokens and concrete textual elements. Challenging the necessity of external encoders, we propose NAG (Native Architecture for Graphs), a unified framework that internalizes graph processing within the LM's native manifold. Instead of bridging disparate embedding spaces, NAG repurposes the self-attention mechanism to enforce topological dependencies and recalibrates positional IDs to ensure structural equivalence. This allows the model to harness its intrinsic linguistic capability to simultaneously comprehend node and edge content alongside structural topology. We introduce two efficient implementations: NAG-Zero for absolute preservation of the base model's linguistic capabilities, and NAG-LoRA for enhanced structural adaptation. Experiments across diverse graph tasks validate that NAG achieves robust graph comprehension without the overhead of external encoders, offering a simpler, more coherent paradigm for text-graph modeling.
☆ Human-Centered Explainability in AI-Enhanced UI Security Interfaces: Designing Trustworthy Copilots for Cybersecurity Analysts IEEE
Artificial intelligence (AI) copilots are increasingly integrated into enterprise cybersecurity platforms to assist analysts in threat detection, triage, and remediation. However, the effectiveness of these systems depends not only on the accuracy of underlying models but also on the degree to which users can understand and trust their outputs. Existing research on algorithmic explainability has largely focused on model internals, while little attention has been given to how explanations should be surfaced in user interfaces for high-stakes decision-making contexts [8], [5], [6]. We present a mixed-methods study of explanation design strategies in AI-driven security dashboards. Through a taxonomy of explanation styles and a controlled user study with security practitioners, we compare natural language rationales, confidence visualizations, counterfactual explanations, and hybrid approaches. Our findings show that explanation style significantly affects user trust calibration, decision accuracy, and cognitive load. We contribute (1) empirical evidence on the usability of explanation interfaces for security copilots, (2) design guidelines for integrating explainability into enterprise UIs, and (3) a framework for aligning explanation strategies with analyst needs in security operations centers (SOCs). This work advances the design of human-centered AI tools in cybersecurity and provides broader implications for explainability in other high-stakes domains.
comment: To appear in IEEE ICCA 2025 proceedings
☆ GUDA: Counterfactual Group-wise Training Data Attribution for Diffusion Models via Unlearning
Training-data attribution for vision generative models aims to identify which training data influenced a given output. While most methods score individual examples, practitioners often need group-level answers (e.g., artistic styles or object classes). Group-wise attribution is counterfactual: how would a model's behavior on a generated sample change if a group were absent from training? A natural realization of this counterfactual is Leave-One-Group-Out (LOGO) retraining, which retrains the model with each group removed; however, it becomes computationally prohibitive as the number of groups grows. We propose GUDA (Group Unlearning-based Data Attribution) for diffusion models, which approximates each counterfactual model by applying machine unlearning to a shared full-data model instead of training from scratch. GUDA quantifies group influence using differences in a likelihood-based scoring rule (ELBO) between the full model and each unlearned counterfactual. Experiments on CIFAR-10 and artistic style attribution with Stable Diffusion show that GUDA identifies primary contributing groups more reliably than semantic similarity, gradient-based attribution, and instance-level unlearning approaches, while achieving x100 speedup on CIFAR-10 over LOGO retraining.
☆ UCPO: Uncertainty-Aware Policy Optimization
The key to building trustworthy Large Language Models (LLMs) lies in endowing them with inherent uncertainty expression capabilities to mitigate the hallucinations that restrict their high-stakes applications. However, existing RL paradigms such as GRPO often suffer from Advantage Bias due to binary decision spaces and static uncertainty rewards, inducing either excessive conservatism or overconfidence. To tackle this challenge, this paper unveils the root causes of reward hacking and overconfidence in current RL paradigms incorporating uncertainty-based rewards, based on which we propose the UnCertainty-Aware Policy Optimization (UCPO) framework. UCPO employs Ternary Advantage Decoupling to separate and independently normalize deterministic and uncertain rollouts, thereby eliminating advantage bias. Furthermore, a Dynamic Uncertainty Reward Adjustment mechanism is introduced to calibrate uncertainty weights in real-time according to model evolution and instance difficulty. Experimental results in mathematical reasoning and general tasks demonstrate that UCPO effectively resolves the reward imbalance, significantly improving the reliability and calibration of the model beyond their knowledge boundaries.
☆ Test-Time Mixture of World Models for Embodied Agents in Dynamic Environments ICLR 2026
Language model (LM)-based embodied agents are increasingly deployed in real-world settings. Yet, their adaptability remains limited in dynamic environments, where constructing accurate and flexible world models is crucial for effective reasoning and decision-making. To address this challenge, we extend the Mixture-of-Experts (MoE) paradigm to embodied agents. While conventional MoE architectures modularize knowledge into expert components with pre-trained routing, they remain rigid once deployed, making them less effective for adapting to unseen domains in dynamic environments. We therefore propose Test-time Mixture of World Models (TMoW), a framework that enhances adaptability to unseen and evolving domains. TMoW updates its routing function over world models at test time, unlike conventional MoE where the function remains fixed, enabling agents to recombine existing models and integrate new ones for continual adaptation. It achieves this through (i) multi-granular prototype-based routing, which adapts mixtures across object- to scene-level similarities, (ii) test-time refinement that aligns unseen domain features with prototypes during inference, and (iii) distilled mixture-based augmentation, which efficiently constructs new models from few-shot data and existing prototypes. We evaluate TMoW on VirtualHome, ALFWorld, and RLBench benchmarks, demonstrating strong performance in both zero-shot adaptation and few-shot expansion scenarios, and showing that it enables embodied agents to operate effectively in dynamic environments.
comment: Accepted at ICLR 2026. 10 pages. Code available at https://github.com/doldam0/tmow
☆ Beyond Medical Chatbots: Meddollina and the Rise of Continuous Clinical Intelligence
Generative medical AI now appears fluent and knowledgeable enough to resemble clinical intelligence, encouraging the belief that scaling will make it safe. But clinical reasoning is not text generation. It is a responsibility-bound process under ambiguity, incomplete evidence, and longitudinal context. Even as benchmark scores rise, generation-centric systems still show behaviours incompatible with clinical deployment: premature closure, unjustified certainty, intent drift, and instability across multi-step decisions. We argue these are structural consequences of treating medicine as next-token prediction. We formalise Clinical Contextual Intelligence (CCI) as a distinct capability class required for real-world clinical use, defined by persistent context awareness, intent preservation, bounded inference, and principled deferral when evidence is insufficient. We introduce Meddollina, a governance-first clinical intelligence system designed to constrain inference before language realisation, prioritising clinical appropriateness over generative completeness. Meddollina acts as a continuous intelligence layer supporting clinical workflows while preserving clinician authority. We evaluate Meddollina using a behaviour-first regime across 16,412+ heterogeneous medical queries, benchmarking against general-purpose models, medical-tuned models, and retrieval-augmented systems. Meddollina exhibits a distinct behavioural profile: calibrated uncertainty, conservative reasoning under underspecification, stable longitudinal constraint adherence, and reduced speculative completion relative to generation-centric baselines. These results suggest deployable medical AI will not emerge from scaling alone, motivating a shift toward Continuous Clinical Intelligence, where progress is measured by clinician-aligned behaviour under uncertainty rather than fluency-driven completion.
☆ ScholarPeer: A Context-Aware Multi-Agent Framework for Automated Peer Review
Automated peer review has evolved from simple text classification to structured feedback generation. However, current state-of-the-art systems still struggle with "surface-level" critiques: they excel at summarizing content but often fail to accurately assess novelty and significance or identify deep methodological flaws because they evaluate papers in a vacuum, lacking the external context a human expert possesses. In this paper, we introduce ScholarPeer, a search-enabled multi-agent framework designed to emulate the cognitive processes of a senior researcher. ScholarPeer employs a dual-stream process of context acquisition and active verification. It dynamically constructs a domain narrative using a historian agent, identifies missing comparisons via a baseline scout, and verifies claims through a multi-aspect Q&A engine, grounding the critique in live web-scale literature. We evaluate ScholarPeer on DeepReview-13K and the results demonstrate that ScholarPeer achieves significant win-rates against state-of-the-art approaches in side-by-side evaluations and reduces the gap to human-level diversity.
☆ Training Beyond Convergence: Grokking nnU-Net for Glioma Segmentation in Sub-Saharan MRI
Gliomas are placing an increasingly clinical burden on Sub-Saharan Africa (SSA). In the region, the median survival for patients remains under two years, and access to diagnostic imaging is extremely limited. These constraints highlight an urgent need for automated tools that can extract the maximum possible information from each available scan, tools that are specifically trained on local data, rather than adapted from high-income settings where conditions are vastly different. We utilize the Brain Tumor Segmentation (BraTS) Africa 2025 Challenge dataset, an expert annotated collection of glioma MRIs. Our objectives are: (i) establish a strong baseline with nnUNet on this dataset, and (ii) explore whether the celebrated "grokking" phenomenon an abrupt, late training jump from memorization to superior generalization can be triggered to push performance without extra labels. We evaluate two training regimes. The first is a fast, budget-conscious approach that limits optimization to just a few epochs, reflecting the constrained GPU resources typically available in African institutions. Despite this limitation, nnUNet achieves strong Dice scores: 92.3% for whole tumor (WH), 86.6% for tumor core (TC), and 86.3% for enhancing tumor (ET). The second regime extends training well beyond the point of convergence, aiming to trigger a grokking-driven performance leap. With this approach, we were able to achieve grokking and enhanced our results to higher Dice scores: 92.2% for whole tumor (WH), 90.1% for tumor core (TC), and 90.2% for enhancing tumor (ET).
☆ Statistical Estimation of Adversarial Risk in Large Language Models under Best-of-N Sampling
Large Language Models (LLMs) are typically evaluated for safety under single-shot or low-budget adversarial prompting, which underestimates real-world risk. In practice, attackers can exploit large-scale parallel sampling to repeatedly probe a model until a harmful response is produced. While recent work shows that attack success increases with repeated sampling, principled methods for predicting large-scale adversarial risk remain limited. We propose a scaling-aware Best-of-N estimation of risk, SABER, for modeling jailbreak vulnerability under Best-of-N sampling. We model sample-level success probabilities using a Beta distribution, the conjugate prior of the Bernoulli distribution, and derive an analytic scaling law that enables reliable extrapolation of large-N attack success rates from small-budget measurements. Using only n=100 samples, our anchored estimator predicts ASR@1000 with a mean absolute error of 1.66, compared to 12.04 for the baseline, which is an 86.2% reduction in estimation error. Our results reveal heterogeneous risk scaling profiles and show that models appearing robust under standard evaluation can experience rapid nonlinear risk amplification under parallel adversarial pressure. This work provides a low-cost, scalable methodology for realistic LLM safety assessment. We will release our code and evaluation scripts upon publication to future research.
☆ What can Computer Vision learn from Ranganathan?
The Semantic Gap Problem (SGP) in Computer Vision (CV) arises from the misalignment between visual and lexical semantics leading to flawed CV dataset design and CV benchmarks. This paper proposes that classification principles of S.R. Ranganathan can offer a principled starting point to address SGP and design high-quality CV datasets. We elucidate how these principles, suitably adapted, underpin the vTelos CV annotation methodology. The paper also briefly presents experimental evidence showing improvements in CV annotation and accuracy, thereby, validating vTelos.
comment: Accepted @ DRTC-ISI Conference 2026, Indian Statistical Institute (ISI), Bangalore, India
☆ MCP-Diag: A Deterministic, Protocol-Driven Architecture for AI-Native Network Diagnostics
The integration of Large Language Models (LLMs) into network operations (AIOps) is hindered by two fundamental challenges: the stochastic grounding problem, where LLMs struggle to reliably parse unstructured, vendor-specific CLI output, and the security gap of granting autonomous agents shell access. This paper introduces MCP-Diag, a hybrid neuro-symbolic architecture built upon the Model Context Protocol (MCP). We propose a deterministic translation layer that converts raw stdout from canonical utilities (dig, ping, traceroute) into rigorous JSON schemas before AI ingestion. We further introduce a mandatory "Elicitation Loop" that enforces Human-in-the-Loop (HITL) authorization at the protocol level. Our preliminary evaluation demonstrates that MCP-Diag achieving 100% entity extraction accuracy with less than 0.9% execution latency overhead and 3.7x increase in context token usage.
comment: Accepted at COMSNETS 2026 Graduate Forum. Best Paper Award (Runner Up). 5 pages, 3 figures
☆ PEFT-MuTS: A Multivariate Parameter-Efficient Fine-Tuning Framework for Remaining Useful Life Prediction based on Cross-domain Time Series Representation Model
The application of data-driven remaining useful life (RUL) prediction has long been constrained by the availability of large amount of degradation data. Mainstream solutions such as domain adaptation and meta-learning still rely on large amounts of historical degradation data from equipment that is identical or similar to the target, which imposes significant limitations in practical applications. This study investigates PEFT-MuTS, a Parameter-Efficient Fine-Tuning framework for few-shot RUL prediction, built on cross-domain pre-trained time-series representation models. Contrary to the widely held view that knowledge transfer in RUL prediction can only occur within similar devices, we demonstrate that substantial benefits can be achieved through pre-training process with large-scale cross-domain time series datasets. A independent feature tuning network and a meta-variable-based low rank multivariate fusion mechanism are developed to enable the pre-trained univariate time-series representation backbone model to fully exploit the multivariate relationships in degradation data for downstream RUL prediction task. Additionally, we introduce a zero-initialized regressor that stabilizes the fine-tuning process under few-shot conditions. Experiments on aero-engine and industrial bearing datasets demonstrate that our method can achieve effective RUL prediction even when less than 1\% of samples of target equipment are used. Meanwhile, it substantially outperforms conventional supervised and few-shot approaches while markedly reducing the data required to achieve high predictive accuracy. Our code is available at https://github.com/fuen1590/PEFT-MuTS.
☆ Time-Annealed Perturbation Sampling: Diverse Generation for Diffusion Language Models
Diffusion language models (Diffusion-LMs) introduce an explicit temporal dimension into text generation, yet how this structure can be leveraged to control generation diversity for exploring multiple valid semantic or reasoning paths remains underexplored. In this paper, we show that Diffusion-LMs, like diffusion models in image generation, exhibit a temporal division of labor: early denoising steps largely determine the global semantic structure, while later steps focus on local lexical refinement. Building on this insight, we propose Time-Annealed Perturbation Sampling (TAPS), a training-free inference strategy that encourages semantic branching early in the diffusion process while progressively reducing perturbations to preserve fluency and instruction adherence. TAPS is compatible with both non-autoregressive and semi-autoregressive Diffusion backbones, demonstrated on LLaDA and TraDo in our paper, and consistently improves output diversity across creative writing and reasoning benchmarks without compromising generation quality.
☆ TTCS: Test-Time Curriculum Synthesis for Self-Evolving
Test-Time Training offers a promising way to improve the reasoning ability of large language models (LLMs) by adapting the model using only the test questions. However, existing methods struggle with difficult reasoning problems for two reasons: raw test questions are often too difficult to yield high-quality pseudo-labels, and the limited size of test sets makes continuous online updates prone to instability. To address these limitations, we propose TTCS, a co-evolving test-time training framework. Specifically, TTCS initializes two policies from the same pretrained model: a question synthesizer and a reasoning solver. These policies evolve through iterative optimization: the synthesizer generates progressively challenging question variants conditioned on the test questions, creating a structured curriculum tailored to the solver's current capability, while the solver updates itself using self-consistency rewards computed from multiple sampled responses on both original test and synthetic questions. Crucially, the solver's feedback guides the synthesizer to generate questions aligned with the model's current capability, and the generated question variants in turn stabilize the solver's test-time training. Experiments show that TTCS consistently strengthens the reasoning ability on challenging mathematical benchmarks and transfers to general-domain tasks across different LLM backbones, highlighting a scalable path towards dynamically constructing test-time curricula for self-evolving. Our code and implementation details are available at https://github.com/XMUDeepLIT/TTCS.
comment: 10 pages, 4 figures, Our code and implementation details are available at https://github.com/XMUDeepLIT/TTCS
☆ SYMPHONY: Synergistic Multi-agent Planning with Heterogeneous Language Model Assembly NeurIPS 2025
Recent advancements have increasingly focused on leveraging large language models (LLMs) to construct autonomous agents for complex problem-solving tasks. However, existing approaches predominantly employ a single-agent framework to generate search branches and estimate rewards during Monte Carlo Tree Search (MCTS) planning. This single-agent paradigm inherently limits exploration capabilities, often resulting in insufficient diversity among generated branches and suboptimal planning performance. To overcome these limitations, we propose Synergistic Multi-agent Planning with Heterogeneous langauge model assembly (SYMPHONY), a novel multi-agent planning framework that integrates a pool of heterogeneous language model-based agents. By leveraging diverse reasoning patterns across agents, SYMPHONY enhances rollout diversity and facilitates more effective exploration. Empirical results across multiple benchmark tasks show that SYMPHONY achieves strong performance even when instantiated with open-source LLMs deployable on consumer-grade hardware. When enhanced with cloud-based LLMs accessible via API, SYMPHONY demonstrates further improvements, outperforming existing state-of-the-art baselines and underscoring the effectiveness of heterogeneous multi-agent coordination in planning tasks.
comment: Accepted by NeurIPS 2025
☆ EntroCut: Entropy-Guided Adaptive Truncation for Efficient Chain-of-Thought Reasoning in Small-scale Large Reasoning Models ICASSP26
Large Reasoning Models (LRMs) excel at complex reasoning tasks through extended chain-of-thought generation, but their reliance on lengthy intermediate steps incurs substantial computational cost. We find that the entropy of the model's output distribution in early reasoning steps reliably distinguishes correct from incorrect reasoning. Motivated by this observation, we propose EntroCut, a training-free method that dynamically truncates reasoning by identifying high-confidence states where reasoning can be safely terminated. To comprehensively evaluate the trade-off between efficiency and accuracy, we introduce the Efficiency-Performance Ratio (EPR), a unified metric that quantifies relative token savings per unit accuracy loss. Experiments on four benchmarks show that EntroCut reduces token usage by up to 40\% with minimal accuracy sacrifice, achieving superior efficiency-performance trade-offs compared with existing training-free methods. These results demonstrate that entropy-guided dynamic truncation provides a practical approach to mitigate the inefficiency of LRMs.
comment: Accepted by ICASSP26
☆ Local-Global Multimodal Contrastive Learning for Molecular Property Prediction
Accurate molecular property prediction requires integrating complementary information from molecular structure and chemical semantics. In this work, we propose LGM-CL, a local-global multimodal contrastive learning framework that jointly models molecular graphs and textual representations derived from SMILES and chemistry-aware augmented texts. Local functional group information and global molecular topology are captured using AttentiveFP and Graph Transformer encoders, respectively, and aligned through self-supervised contrastive learning. In addition, chemically enriched textual descriptions are contrasted with original SMILES to incorporate physicochemical semantics in a task-agnostic manner. During fine-tuning, molecular fingerprints are further integrated via Dual Cross-attention multimodal fusion. Extensive experiments on MoleculeNet benchmarks demonstrate that LGM-CL achieves consistent and competitive performance across both classification and regression tasks, validating the effectiveness of unified local-global and multimodal representation learning.
comment: 16 pages, 9 figures. Submitted to Briefings in Bioinformatics
☆ From Self-Evolving Synthetic Data to Verifiable-Reward RL: Post-Training Multi-turn Interactive Tool-Using Agents ICML 2026
Interactive tool-using agents must solve real-world tasks via multi-turn interaction with both humans and external environments, requiring dialogue state tracking, multi-step tool execution, while following complex instructions. Post-training such agents is challenging because synthesis for high-quality multi-turn tool-use data is difficult to scale, and reinforcement learning (RL) could face noisy signals caused by user simulation, leading to degraded training efficiency. We propose a unified framework that combines a self-evolving data agent with verifier-based RL. Our system, EigenData, is a hierarchical multi-agent engine that synthesizes tool-grounded dialogues together with executable per-instance checkers, and improves generation reliability via closed-loop self-evolving process that updates prompts and workflow. Building on the synthetic data, we develop an RL recipe that first fine-tunes the user model and then applies GRPO-style training with trajectory-level group-relative advantages and dynamic filtering, yielding consistent improvements beyond SFT. Evaluated on tau^2-bench, our best model reaches 73.0% pass^1 on Airline and 98.3% pass^1 on Telecom, matching or exceeding frontier models. Overall, our results suggest a scalable pathway for bootstrapping complex tool-using behaviors without expensive human annotation.
comment: Submitted to ICML 2026
☆ Learn More with Less: Uncertainty Consistency Guided Query Selection for RLVR
Large Language Models (LLMs) have recently improved mathematical reasoning through Reinforcement Learning with Verifiable Reward (RLVR). However, existing RLVR algorithms require large query budgets, making annotation costly. We investigate whether fewer but more informative queries can yield similar or superior performance, introducing active learning (AL) into RLVR. We identify that classic AL sampling strategies fail to outperform random selection in this setting, due to ignoring objective uncertainty when only selecting by subjective uncertainty. This work proposes an uncertainty consistency metric to evaluate how well subjective uncertainty aligns with objective uncertainty. In the offline setting, this alignment is measured using the Point-Biserial Correlation Coefficient (PBC). For online training, because of limited sampling and dynamically shifting output distributions, PBC estimation is difficult. Therefore, we introduce a new online variant, computed from normalized advantage and subjective uncertainty. Theoretically, we prove that the online variant is strictly negatively correlated with offline PBC and supports better sample selection. Experiments show our method consistently outperforms random and classic AL baselines, achieving full-dataset performance while training on only 30% of the data, effectively reducing the cost of RLVR for reasoning tasks.
☆ Language Model Circuits Are Sparse in the Neuron Basis
The high-level concepts that a neural network uses to perform computation need not be aligned to individual neurons (Smolensky, 1986). Language model interpretability research has thus turned to techniques such as \textit{sparse autoencoders} (SAEs) to decompose the neuron basis into more interpretable units of model computation, for tasks such as \textit{circuit tracing}. However, not all neuron-based representations are uninterpretable. For the first time, we empirically show that \textbf{MLP neurons are as sparse a feature basis as SAEs}. We use this finding to develop an end-to-end pipeline for circuit tracing on the MLP neuron basis, which locates causal circuitry on a variety of tasks using gradient-based attribution. On a standard subject-verb agreement benchmark (Marks et al., 2025), a circuit of $\approx 10^2$ MLP neurons is enough to control model behaviour. On the multi-hop city $\to$ state $\to$ capital task from Lindsey et al., 2025, we find a circuit in which small sets of neurons encode specific latent reasoning steps (e.g.~`map city to its state'), and can be steered to change the model's output. This work thus advances automated interpretability of language models without additional training costs.
comment: 8 pages main text, 41 pages total
☆ FedCARE: Federated Unlearning with Conflict-Aware Projection and Relearning-Resistant Recovery IJCAI 2026
Federated learning (FL) enables collaborative model training without centralizing raw data, but privacy regulations such as the right to be forgotten require FL systems to remove the influence of previously used training data upon request. Retraining a federated model from scratch is prohibitively expensive, motivating federated unlearning (FU). However, existing FU methods suffer from high unlearning overhead, utility degradation caused by entangled knowledge, and unintended relearning during post-unlearning recovery. In this paper, we propose FedCARE, a unified and low overhead FU framework that enables conflict-aware unlearning and relearning-resistant recovery. FedCARE leverages gradient ascent for efficient forgetting when target data are locally available and employs data free model inversion to construct class level proxies of shared knowledge. Based on these insights, FedCARE integrates a pseudo-sample generator, conflict-aware projected gradient ascent for utility preserving unlearning, and a recovery strategy that suppresses rollback toward the pre-unlearning model. FedCARE supports client, instance, and class level unlearning with modest overhead. Extensive experiments on multiple datasets and model architectures under both IID and non-IID settings show that FedCARE achieves effective forgetting, improved utility retention, and reduced relearning risk compared to state of the art FU baselines.
comment: 9 pages, 4 figures. Submitted to IJCAI 2026
☆ Rethinking LLM-as-a-Judge: Representation-as-a-Judge with Small Language Models via Semantic Capacity Asymmetry
Large language models (LLMs) are widely used as reference-free evaluators via prompting, but this "LLM-as-a-Judge" paradigm is costly, opaque, and sensitive to prompt design. In this work, we investigate whether smaller models can serve as efficient evaluators by leveraging internal representations instead of surface generation. We uncover a consistent empirical pattern: small LMs, despite with weak generative ability, encode rich evaluative signals in their hidden states. This motivates us to propose the Semantic Capacity Asymmetry Hypothesis: evaluation requires significantly less semantic capacity than generation and can be grounded in intermediate representations, suggesting that evaluation does not necessarily need to rely on large-scale generative models but can instead leverage latent features from smaller ones. Our findings motivate a paradigm shift from LLM-as-a-Judge to Representation-as-a-Judge, a decoding-free evaluation strategy that probes internal model structure rather than relying on prompted output. We instantiate this paradigm through INSPECTOR, a probing-based framework that predicts aspect-level evaluation scores from small model representations. Experiments on reasoning benchmarks (GSM8K, MATH, GPQA) show that INSPECTOR substantially outperforms prompting-based small LMs and closely approximates full LLM judges, while offering a more efficient, reliable, and interpretable alternative for scalable evaluation.
☆ WED-Net: A Weather-Effect Disentanglement Network with Causal Augmentation for Urban Flow Prediction WWW'26
Urban spatio-temporal prediction under extreme conditions (e.g., heavy rain) is challenging due to event rarity and dynamics. Existing data-driven approaches that incorporate weather as auxiliary input often rely on coarse-grained descriptors and lack dedicated mechanisms to capture fine-grained spatio-temporal effects. Although recent methods adopt causal techniques to improve out-of-distribution generalization, they typically overlook temporal dynamics or depend on fixed confounder stratification. To address these limitations, we propose WED-Net (Weather-Effect Disentanglement Network), a dual-branch Transformer architecture that separates intrinsic and weather-induced traffic patterns via self- and cross-attention, enhanced with memory banks and fused through adaptive gating. To further promote disentanglement, we introduce a discriminator that explicitly distinguishes weather conditions. Additionally, we design a causal data augmentation strategy that perturbs non-causal parts while preserving causal structures, enabling improved generalization under rare scenarios. Experiments on taxi-flow datasets from three cities demonstrate that WED-Net delivers robust performance under extreme weather conditions, highlighting its potential to support safer mobility, highlighting its potential to support safer mobility, disaster preparedness, and urban resilience in real-world settings. The code is publicly available at https://github.com/HQ-LV/WED-Net.
comment: The ACM on Web Conference 2026 (WWW'26)
☆ MC-GRPO: Median-Centered Group Relative Policy Optimization for Small-Rollout Reinforcement Learning
Group-relative policy optimization methods train language models by generating multiple rollouts per prompt and normalizing rewards with a shared mean reward baseline. In resource-constrained settings where the rollout budget is small, accuracy often degrades. We find that noise in the shared baseline induces advantage sign flips, where some rollouts receive an incorrect advantage sign, and the update direction is reversed. To address this, we propose Median-Centered Group Relative Policy Optimization (MC-GRPO), a simple and effective solution for small-rollout training. Our main idea is to replace the mean baseline with a median baseline: the median is far less sensitive to outlier rewards than the mean, mitigating the sign flips under small rollout size (G). We generate one additional rollout for median reference (G+1), and compute advantages by using the group median. With an odd-sized group, exactly one completion is the median and receives zero advantage, we exclude this pivot rollout from backpropagation so the number of gradient-contributing samples per prompt remains G, preserving the core update cost of standard G-rollout training. Across various GRPO-family methods and a wide range of models and scales, this median-centered training consistently improves stability and final accuracy in the low-rollout regime, reducing the gap between G=2 and G=8 to within 1%. Code is available at https://github.com/lotusroot-kim/MC-GRPO
☆ Cross-Domain Few-Shot Learning for Hyperspectral Image Classification Based on Mixup Foundation Model
Although cross-domain few-shot learning (CDFSL) for hyper-spectral image (HSI) classification has attracted significant research interest, existing works often rely on an unrealistic data augmentation procedure in the form of external noise to enlarge the sample size, thus greatly simplifying the issue of data scarcity. They involve a large number of parameters for model updates, being prone to the overfitting problem. To the best of our knowledge, none has explored the strength of the foundation model, having strong generalization power to be quickly adapted to downstream tasks. This paper proposes the MIxup FOundation MOdel (MIFOMO) for CDFSL of HSI classifications. MIFOMO is built upon the concept of a remote sensing (RS) foundation model, pre-trained across a large scale of RS problems, thus featuring generalizable features. The notion of coalescent projection (CP) is introduced to quickly adapt the foundation model to downstream tasks while freezing the backbone network. The concept of mixup domain adaptation (MDM) is proposed to address the extreme domain discrepancy problem. Last but not least, the label smoothing concept is implemented to cope with noisy pseudo-label problems. Our rigorous experiments demonstrate the advantage of MIFOMO, where it beats prior arts with up to 14% margin. The source code of MIFOMO is open-sourced in https://github.com/Naeem- Paeedeh/MIFOMO for reproducibility and convenient further study.
☆ SpanNorm: Reconciling Training Stability and Performance in Deep Transformers
The success of Large Language Models (LLMs) hinges on the stable training of deep Transformer architectures. A critical design choice is the placement of normalization layers, leading to a fundamental trade-off: the ``PreNorm'' architecture ensures training stability at the cost of potential performance degradation in deep models, while the ``PostNorm'' architecture offers strong performance but suffers from severe training instability. In this work, we propose SpanNorm, a novel technique designed to resolve this dilemma by integrating the strengths of both paradigms. Structurally, SpanNorm establishes a clean residual connection that spans the entire transformer block to stabilize signal propagation, while employing a PostNorm-style computation that normalizes the aggregated output to enhance model performance. We provide a theoretical analysis demonstrating that SpanNorm, combined with a principled scaling strategy, maintains bounded signal variance throughout the network, preventing the gradient issues that plague PostNorm models, and also alleviating the representation collapse of PreNorm. Empirically, SpanNorm consistently outperforms standard normalization schemes in both dense and Mixture-of-Experts (MoE) scenarios, paving the way for more powerful and stable Transformer architectures.
☆ FedDis: A Causal Disentanglement Framework for Federated Traffic Prediction
Federated learning offers a promising paradigm for privacy-preserving traffic prediction, yet its performance is often challenged by the non-identically and independently distributed (non-IID) nature of decentralized traffic data. Existing federated methods frequently struggle with this data heterogeneity, typically entangling globally shared patterns with client-specific local dynamics within a single representation. In this work, we postulate that this heterogeneity stems from the entanglement of two distinct generative sources: client-specific localized dynamics and cross-client global spatial-temporal patterns. Motivated by this perspective, we introduce FedDis, a novel framework that, to the best of our knowledge, is the first to leverage causal disentanglement for federated spatial-temporal prediction. Architecturally, FedDis comprises a dual-branch design wherein a Personalized Bank learns to capture client-specific factors, while a Global Pattern Bank distills common knowledge. This separation enables robust cross-client knowledge transfer while preserving high adaptability to unique local environments. Crucially, a mutual information minimization objective is employed to enforce informational orthogonality between the two branches, thereby ensuring effective disentanglement. Comprehensive experiments conducted on four real-world benchmark datasets demonstrate that FedDis consistently achieves state-of-the-art performance, promising efficiency, and superior expandability.
☆ Mitigating Hallucinations in Video Large Language Models via Spatiotemporal-Semantic Contrastive Decoding
Although Video Large Language Models perform remarkably well across tasks such as video understanding, question answering, and reasoning, they still suffer from the problem of hallucination, which refers to generating outputs that are inconsistent with explicit video content or factual evidence. However, existing decoding methods for mitigating video hallucinations, while considering the spatiotemporal characteristics of videos, mostly rely on heuristic designs. As a result, they fail to precisely capture the root causes of hallucinations and their fine-grained temporal and semantic correlations, leading to limited robustness and generalization in complex scenarios. To more effectively mitigate video hallucinations, we propose a novel decoding strategy termed Spatiotemporal-Semantic Contrastive Decoding. This strategy constructs negative features by deliberately disrupting the spatiotemporal consistency and semantic associations of video features, and suppresses video hallucinations through contrastive decoding against the original video features during inference. Extensive experiments demonstrate that our method not only effectively mitigates the occurrence of hallucinations, but also preserves the general video understanding and reasoning capabilities of the model.
comment: Preprint
☆ PerfGuard: A Performance-Aware Agent for Visual Content Generation ICLR 2026
The advancement of Large Language Model (LLM)-powered agents has enabled automated task processing through reasoning and tool invocation capabilities. However, existing frameworks often operate under the idealized assumption that tool executions are invariably successful, relying solely on textual descriptions that fail to distinguish precise performance boundaries and cannot adapt to iterative tool updates. This gap introduces uncertainty in planning and execution, particularly in domains like visual content generation (AIGC), where nuanced tool performance significantly impacts outcomes. To address this, we propose PerfGuard, a performance-aware agent framework for visual content generation that systematically models tool performance boundaries and integrates them into task planning and scheduling. Our framework introduces three core mechanisms: (1) Performance-Aware Selection Modeling (PASM), which replaces generic tool descriptions with a multi-dimensional scoring system based on fine-grained performance evaluations; (2) Adaptive Preference Update (APU), which dynamically optimizes tool selection by comparing theoretical rankings with actual execution rankings; and (3) Capability-Aligned Planning Optimization (CAPO), which guides the planner to generate subtasks aligned with performance-aware strategies. Experimental comparisons against state-of-the-art methods demonstrate PerfGuard's advantages in tool selection accuracy, execution reliability, and alignment with user intent, validating its robustness and practical utility for complex AIGC tasks. The project code is available at https://github.com/FelixChan9527/PerfGuard.
comment: This paper has been accepted by ICLR 2026. The original paper link is: https://openreview.net/pdf?id=tdN42GTv4S The code repository link is: https://github.com/FelixChan9527/PerfGuard
☆ Whispers of Wealth: Red-Teaming Google's Agent Payments Protocol via Prompt Injection
Large language model (LLM) based agents are increasingly used to automate financial transactions, yet their reliance on contextual reasoning exposes payment systems to prompt-driven manipulation. The Agent Payments Protocol (AP2) aims to secure agent-led purchases through cryptographically verifiable mandates, but its practical robustness remains underexplored. In this work, we perform an AI red-teaming evaluation of AP2 and identify vulnerabilities arising from indirect and direct prompt injection. We introduce two attack techniques, the Branded Whisper Attack and the Vault Whisper Attack which manipulate product ranking and extract sensitive user data. Using a functional AP2 based shopping agent built with Gemini-2.5-Flash and the Google ADK framework, we experimentally validate that simple adversarial prompts can reliably subvert agent behavior. Our findings reveal critical weaknesses in current agentic payment architectures and highlight the need for stronger isolation and defensive safeguards in LLM-mediated financial systems.
☆ EUGens: Efficient, Unified, and General Dense Layers
Efficient neural networks are essential for scaling machine learning models to real-time applications and resource-constrained environments. Fully-connected feedforward layers (FFLs) introduce computation and parameter count bottlenecks within neural network architectures. To address this challenge, in this work, we propose a new class of dense layers that generalize standard fully-connected feedforward layers, \textbf{E}fficient, \textbf{U}nified and \textbf{Gen}eral dense layers (EUGens). EUGens leverage random features to approximate standard FFLs and go beyond them by incorporating a direct dependence on the input norms in their computations. The proposed layers unify existing efficient FFL extensions and improve efficiency by reducing inference complexity from quadratic to linear time. They also lead to \textbf{the first} unbiased algorithms approximating FFLs with arbitrary polynomial activation functions. Furthermore, EuGens reduce the parameter count and computational overhead while preserving the expressive power and adaptability of FFLs. We also present a layer-wise knowledge transfer technique that bypasses backpropagation, enabling efficient adaptation of EUGens to pre-trained models. Empirically, we observe that integrating EUGens into Transformers and MLPs yields substantial improvements in inference speed (up to \textbf{27}\%) and memory efficiency (up to \textbf{30}\%) across a range of tasks, including image classification, language model pre-training, and 3D scene reconstruction. Overall, our results highlight the potential of EUGens for the scalable deployment of large-scale neural networks in real-world scenarios.
comment: Neurips 2025. Encompasses results of arXiv:2410.09771
☆ Are LLM Evaluators Really Narcissists? Sanity Checking Self-Preference Evaluations
Recent research has shown that large language models (LLM) favor own outputs when acting as judges, undermining the integrity of automated post-training and evaluation workflows. However, it is difficult to disentangle which evaluation biases are explained by narcissism versus general experimental confounds, distorting measurements of self-preference bias. We discover a core methodological confound which could reduce measurement error by 89.6%. Specifically, LLM evaluators may deliver self-preferring verdicts when the judge responds to queries which they completed incorrectly themselves; this would be true regardless of whether one of their responses is their own. To decouple self-preference signals from noisy outputs on hard problems, we introduce an Evaluator Quality Baseline, which compares the probability that a judge incorrectly votes for itself against the probability that it votes for an incorrect response from another model. Evaluating this simple baseline on 37,448 queries, only 51% of initial findings retain statistical significance. Finally, we turn towards characterizing the entropy of "easy" versus "hard" evaluation votes from LLM judges. Our corrective baseline enables future research on self-preference by eliminating noisy data from potential solutions. More widely, this work contributes to the growing body of work on cataloging and isolating judge-bias effects.
☆ Towards the Holographic Characteristic of LLMs for Efficient Short-text Generation
The recent advancements in Large Language Models (LLMs) have attracted interest in exploring their in-context learning abilities and chain-of-thought capabilities. However, there are few studies investigating the specific traits related to the powerful generation capacity of LLMs. This paper aims to delve into the generation characteristics exhibited by LLMs. Through our investigation, we have discovered that language models tend to capture target-side keywords at the beginning of the generation process. We name this phenomenon the Holographic Characteristic of language models. For the purpose of exploring this characteristic and further improving the inference efficiency of language models, we propose a plugin called HOLO, which leverages the Holographic Characteristic to extract target-side keywords from language models within a limited number of generation steps and complements the sentence with a parallel lexically constrained text generation method. To verify the effectiveness of HOLO, we conduct massive experiments on language models of varying architectures and scales in the short-text generation scenario. The results demonstrate that HOLO achieves comparable performance to the baselines in terms of both automatic and human-like evaluation metrics and highlight the potential of the Holographic Characteristic.
☆ Adapting Reinforcement Learning for Path Planning in Constrained Parking Scenarios
Real-time path planning in constrained environments remains a fundamental challenge for autonomous systems. Traditional classical planners, while effective under perfect perception assumptions, are often sensitive to real-world perception constraints and rely on online search procedures that incur high computational costs. In complex surroundings, this renders real-time deployment prohibitive. To overcome these limitations, we introduce a Deep Reinforcement Learning (DRL) framework for real-time path planning in parking scenarios. In particular, we focus on challenging scenes with tight spaces that require a high number of reversal maneuvers and adjustments. Unlike classical planners, our solution does not require ideal and structured perception, and in principle, could avoid the need for additional modules such as localization and tracking, resulting in a simpler and more practical implementation. Also, at test time, the policy generates actions through a single forward pass at each step, which is lightweight enough for real-time deployment. The task is formulated as a sequential decision-making problem grounded in a bicycle model dynamics, enabling the agent to directly learn navigation policies that respect vehicle kinematics and environmental constraints in the closed-loop setting. A new benchmark is developed to support both training and evaluation, capturing diverse and challenging scenarios. Our approach achieves state-of-the-art success rates and efficiency, surpassing classical planner baselines by +96% in success rate and +52% in efficiency. Furthermore, we release our benchmark as an open-source resource for the community to foster future research in autonomous systems. The benchmark and accompanying tools are available at https://github.com/dqm5rtfg9b-collab/Constrained_Parking_Scenarios.
☆ Decoding in Geometry: Alleviating Embedding-Space Crowding for Complex Reasoning
Sampling-based decoding underlies complex reasoning in large language models (LLMs), where decoding strategies critically shape model behavior. Temperature- and truncation-based methods reshape the next-token distribution through global probability reweighting or thresholding to balance the quality-diversity tradeoff. However, they operate solely on token probabilities, ignoring fine-grained relationships among tokens in the embedding space. We uncover a novel phenomenon, embedding-space crowding, where the next-token distribution concentrates its probability mass on geometrically close tokens in the embedding space. We quantify crowding at multiple granularities and find a statistical association with reasoning success in mathematical problem solving. Motivated by this finding, we propose CraEG, a plug-and-play sampling method that mitigates crowding through geometry-guided reweighting. CraEG is training-free, single-pass, and compatible with standard sampling strategies. Experiments on multiple models and benchmarks demonstrate improved generation performance, with gains in robustness and diversity metrics.
☆ Demystifying Design Choices of Reinforcement Fine-tuning: A Batched Contextual Bandit Learning Perspective
The reinforcement fine-tuning area is undergoing an explosion papers largely on optimizing design choices. Though performance gains are often claimed, inconsistent conclusions also arise from time to time, making the progress illusive. Reflecting on this illusion, we still lack principled answers to two fundamental questions: 1) what is the role of each design choice? 2) which ones are critical? This paper aims to shed light on them. The underlying challenge is that design choices are entangled together, making their contribution to learning and generalization difficult to attribute. To address this challenge, we first construct a minimalist baseline for disentangling factors: one rollout per query in each round, the outcome reward serving as the training signal without any advantage trick, and a batch size of thirty-two. This baseline connects to batched contextual bandit learning, which facilitates experimental analysis. Centering around this baseline, we design an experiment pipeline, examining the marginal gains of factors like advantage, number of rollouts, etc. Experiments on three base models and two datasets, not only reveal new understanding on the role of various design choices on learning and generalization dynamics, but also identify critical ones that deserve more effort.
☆ Learn from A Rationalist: Distilling Intermediate Interpretable Rationales
Because of the pervasive use of deep neural networks (DNNs), especially in high-stakes domains, the interpretability of DNNs has received increased attention. The general idea of rationale extraction (RE) is to provide an interpretable-by-design framework for DNNs via a select-predict architecture where two neural networks learn jointly to perform feature selection and prediction, respectively. Given only the remote supervision from the final task prediction, the process of learning to select subsets of features (or \emph{rationales}) requires searching in the space of all possible feature combinations, which is computationally challenging and even harder when the base neural networks are not sufficiently capable. To improve the predictive performance of RE models that are based on less capable or smaller neural networks (i.e., the students), we propose \textbf{REKD} (\textbf{R}ationale \textbf{E}xtraction with \textbf{K}nowledge \textbf{D}istillation) where a student RE model learns from the rationales and predictions of a teacher (i.e., a \emph{rationalist}) in addition to the student's own RE optimization. This structural adjustment to RE aligns well with how humans could learn effectively from interpretable and verifiable knowledge. Because of the neural-model agnostic nature of the method, any black-box neural network could be integrated as a backbone model. To demonstrate the viability of REKD, we conduct experiments with multiple variants of BERT and vision transformer (ViT) models. Our experiments across language and vision classification datasets (i.e., IMDB movie reviews, CIFAR 10 and CIFAR 100) show that REKD significantly improves the predictive performance of the student RE models.
☆ Enhancing TableQA through Verifiable Reasoning Trace Reward
A major challenge in training TableQA agents, compared to standard text- and image-based agents, is that answers cannot be inferred from a static input but must be reasoned through stepwise transformations of the table state, introducing multi-step reasoning complexity and environmental interaction. This leads to a research question: Can explicit feedback on table transformation action improve model reasoning capability? In this work, we introduce RE-Tab, a plug-and-play framework that architecturally enhances trajectory search via lightweight, training-free reward modeling by formulating the problem as a Partially Observable Markov Decision Process. We demonstrate that providing explicit verifiable rewards during State Transition (``What is the best action?'') and Simulative Reasoning (``Am I sure about the output?'') is crucial to steer the agent's navigation in table states. By enforcing stepwise reasoning with reward feedback in table transformations, RE-Tab achieves state-of-the-art performance in TableQA with almost 25\% drop in inference cost. Furthermore, a direct plug-and-play implementation of RE-Tab brings up to 41.77% improvement in QA accuracy and 33.33% drop in test-time inference samples for consistent answer. Consistent improvement pattern across various LLMs and state-of-the-art benchmarks further confirms RE-Tab's generalisability. The repository is available at https://github.com/ThomasK1018/RE_Tab .
☆ Darwinian Memory: A Training-Free Self-Regulating Memory System for GUI Agent Evolution
Multimodal Large Language Model (MLLM) agents facilitate Graphical User Interface (GUI) automation but struggle with long-horizon, cross-application tasks due to limited context windows. While memory systems provide a viable solution, existing paradigms struggle to adapt to dynamic GUI environments, suffering from a granularity mismatch between high-level intent and low-level execution, and context pollution where the static accumulation of outdated experiences drives agents into hallucination. To address these bottlenecks, we propose the Darwinian Memory System (DMS), a self-evolving architecture that constructs memory as a dynamic ecosystem governed by the law of survival of the fittest. DMS decomposes complex trajectories into independent, reusable units for compositional flexibility, and implements Utility-driven Natural Selection to track survival value, actively pruning suboptimal paths and inhibiting high-risk plans. This evolutionary pressure compels the agent to derive superior strategies. Extensive experiments on real-world multi-app benchmarks validate that DMS boosts general-purpose MLLMs without training costs or architectural overhead, achieving average gains of 18.0% in success rate and 33.9% in execution stability, while reducing task latency, establishing it as an effective self-evolving memory system for GUI tasks.
☆ SCOPE-PD: Explainable AI on Subjective and Clinical Objective Measurements of Parkinson's Disease for Precision Decision-Making
Parkinson's disease (PD) is a chronic and complex neurodegenerative disorder influenced by genetic, clinical, and lifestyle factors. Predicting this disease early is challenging because it depends on traditional diagnostic methods that face issues of subjectivity, which commonly delay diagnosis. Several objective analyses are currently in practice to help overcome the challenges of subjectivity; however, a proper explanation of these analyses is still lacking. While machine learning (ML) has demonstrated potential in supporting PD diagnosis, existing approaches often rely on subjective reports only and lack interpretability for individualized risk estimation. This study proposes SCOPE-PD, an explainable AI-based prediction framework, by integrating subjective and objective assessments to provide personalized health decisions. Subjective and objective clinical assessment data are collected from the Parkinson's Progression Markers Initiative (PPMI) study to construct a multimodal prediction framework. Several ML techniques are applied to these data, and the best ML model is selected to interpret the results. Model interpretability is examined using SHAP-based analysis. The Random Forest algorithm achieves the highest accuracy of 98.66 percent using combined features from both subjective and objective test data. Tremor, bradykinesia, and facial expression are identified as the top three contributing features from the MDS-UPDRS test in the prediction of PD.
comment: 16 pages, 3 tables, 5 figures, to be published (full text online) in Springer (Springer CCIS series: electronic ISSN 1865-0937, print ISSN 1865-0929)
☆ Why Self-Rewarding Works: Theoretical Guarantees for Iterative Alignment of Language Models
Self-Rewarding Language Models (SRLMs) achieve notable success in iteratively improving alignment without external feedback. Yet, despite their striking empirical progress, the core mechanisms driving their capabilities remain unelucidated, leaving a critical gap in theoretical understanding. This paper provides the first rigorous theoretical guarantees for SRLMs. We first establish a lower bound that characterizes the fundamental limits of a single update step, revealing a critical dependence on the quality of the initial model. We then derive finite-sample error bounds for the full iterative paradigm, showing that performance improves at a rate of $\widetilde{\mathcal{O}}\left(1/\sqrt{n}\right)$ with sample size $n$. Crucially, our analysis reveals that the dependence on the initial model decays exponentially with the number of iterations $T$. This provides a formal explanation for why self-rewarding succeeds: it robustly overcomes poor initialization by steering the dynamics toward internal stability and consistency. Finally, we instantiate our theoretical framework for the linear softmax model class, yielding tailored guarantees that connect our high-level insights to practical model architectures.
☆ Shattered Compositionality: Counterintuitive Learning Dynamics of Transformers for Arithmetic
Large language models (LLMs) often exhibit unexpected errors or unintended behavior, even at scale. While recent work reveals the discrepancy between LLMs and humans in skill compositions, the learning dynamics of skill compositions and the underlying cause of non-human behavior remain elusive. In this study, we investigate the mechanism of learning dynamics by training transformers on synthetic arithmetic tasks. Through extensive ablations and fine-grained diagnostic metrics, we discover that transformers do not reliably build skill compositions according to human-like sequential rules. Instead, they often acquire skills in reverse order or in parallel, which leads to unexpected mixing errors especially under distribution shifts--a phenomenon we refer to as shattered compositionality. To explain these behaviors, we provide evidence that correlational matching to the training data, rather than causal or procedural composition, shapes learning dynamics. We further show that shattered compositionality persists in modern LLMs and is not mitigated by pure model scaling or scratchpad-based reasoning. Our results reveal a fundamental mismatch between a model's learning behavior and desired skill compositions, with implications for reasoning reliability, out-of-distribution robustness, and alignment.
comment: 33 pages, 27 figures
☆ Keep Rehearsing and Refining: Lifelong Learning Vehicle Routing under Continually Drifting Tasks
Existing neural solvers for vehicle routing problems (VRPs) are typically trained either in a one-off manner on a fixed set of pre-defined tasks or in a lifelong manner on several tasks arriving sequentially, assuming sufficient training on each task. Both settings overlook a common real-world property: problem patterns may drift continually over time, yielding massive tasks sequentially arising while offering only limited training resources per task. In this paper, we study a novel lifelong learning paradigm for neural VRP solvers under continually drifting tasks over learning time steps, where sufficient training for any given task at any time is not available. We propose Dual Replay with Experience Enhancement (DREE), a general framework to improve learning efficiency and mitigate catastrophic forgetting under such drift. Extensive experiments show that, under such continual drift, DREE effectively learns new tasks, preserves prior knowledge, improves generalization to unseen tasks, and can be applied to diverse existing neural solvers.
☆ Action-Sufficient Goal Representations
Hierarchical policies in offline goal-conditioned reinforcement learning (GCRL) addresses long-horizon tasks by decomposing control into high-level subgoal planning and low-level action execution. A critical design choice in such architectures is the goal representation-the compressed encoding of goals that serves as the interface between these levels. Existing approaches commonly derive goal representations while learning value functions, implicitly assuming that preserving information sufficient for value estimation is adequate for optimal control. We show that this assumption can fail, even when the value estimation is exact, as such representations may collapse goal states that need to be differentiated for action learning. To address this, we introduce an information-theoretic framework that defines action sufficiency, a condition on goal representations necessary for optimal action selection. We prove that value sufficiency does not imply action sufficiency and empirically verify that the latter is more strongly associated with control success in a discrete environment. We further demonstrate that standard log-loss training of low-level policies naturally induces action-sufficient representations. Our experimental results a popular benchmark demonstrate that our actor-derived representations consistently outperform representations learned via value estimation.
☆ AI Literacy, Safety Awareness, and STEM Career Aspirations of Australian Secondary Students: Evaluating the Impact of Workshop Interventions
Deepfakes and other forms of synthetic media pose growing safety risks for adolescents, yet evidence on students' exposure and related behaviours remains limited. This study evaluates the impact of Day of AI Australia's workshop-based intervention designed to improve AI literacy and conceptual understanding among Australian secondary students (Years 7-10). Using a mixed-methods approach with pre- and post-intervention surveys (N=205 pre; N=163 post), we analyse changes in students' ability to identify AI in everyday tools, their understanding of AI ethics, training, and safety, and their interest in STEM-related careers. Baseline data revealed notable synthetic media risks: 82.4% of students reported having seen deepfakes, 18.5% reported sharing them, and 7.3% reported creating them. Results show higher self-reported AI knowledge and confidence after the intervention, alongside improved recognition of AI in widely used platforms such as Netflix, Spotify, and TikTok. This pattern suggests a shift from seeing these tools as merely "algorithm-based" to recognising them as AI-driven systems. Students also reported increased interest in STEM careers post-workshop; however, effect sizes were small, indicating that sustained approaches beyond one-off workshops may be needed to influence longer-term aspirations. Overall, the findings support scalable AI literacy programs that pair foundational AI concepts with an explicit emphasis on synthetic media safety.
☆ FraudShield: Knowledge Graph Empowered Defense for LLMs against Fraud Attacks WWW 2026
Large language models (LLMs) have been widely integrated into critical automated workflows, including contract review and job application processes. However, LLMs are susceptible to manipulation by fraudulent information, which can lead to harmful outcomes. Although advanced defense methods have been developed to address this issue, they often exhibit limitations in effectiveness, interpretability, and generalizability, particularly when applied to LLM-based applications. To address these challenges, we introduce FraudShield, a novel framework designed to protect LLMs from fraudulent content by leveraging a comprehensive analysis of fraud tactics. Specifically, FraudShield constructs and refines a fraud tactic-keyword knowledge graph to capture high-confidence associations between suspicious text and fraud techniques. The structured knowledge graph augments the original input by highlighting keywords and providing supporting evidence, guiding the LLM toward more secure responses. Extensive experiments show that FraudShield consistently outperforms state-of-the-art defenses across four mainstream LLMs and five representative fraud types, while also offering interpretable clues for the model's generations.
comment: WWW 2026
☆ RulePlanner: All-in-One Reinforcement Learner for Unifying Design Rules in 3D Floorplanning
Floorplanning determines the coordinate and shape of each module in Integrated Circuits. With the scaling of technology nodes, in floorplanning stage especially 3D scenarios with multiple stacked layers, it has become increasingly challenging to adhere to complex hardware design rules. Current methods are only capable of handling specific and limited design rules, while violations of other rules require manual and meticulous adjustment. This leads to labor-intensive and time-consuming post-processing for expert engineers. In this paper, we propose an all-in-one deep reinforcement learning-based approach to tackle these challenges, and design novel representations for real-world IC design rules that have not been addressed by previous approaches. Specifically, the processing of various hardware design rules is unified into a single framework with three key components: 1) novel matrix representations to model the design rules, 2) constraints on the action space to filter out invalid actions that cause rule violations, and 3) quantitative analysis of constraint satisfaction as reward signals. Experiments on public benchmarks demonstrate the effectiveness and validity of our approach. Furthermore, transferability is well demonstrated on unseen circuits. Our framework is extensible to accommodate new design rules, thus providing flexibility to address emerging challenges in future chip design. Code will be available at: https://github.com/Thinklab-SJTU/EDA-AI
☆ Training-Free Representation Guidance for Diffusion Models with a Representation Alignment Projector
Recent progress in generative modeling has enabled high-quality visual synthesis with diffusion-based frameworks, supporting controllable sampling and large-scale training. Inference-time guidance methods such as classifier-free and representative guidance enhance semantic alignment by modifying sampling dynamics; however, they do not fully exploit unsupervised feature representations. Although such visual representations contain rich semantic structure, their integration during generation is constrained by the absence of ground-truth reference images at inference. This work reveals semantic drift in the early denoising stages of diffusion transformers, where stochasticity results in inconsistent alignment even under identical conditioning. To mitigate this issue, we introduce a guidance scheme using a representation alignment projector that injects representations predicted by a projector into intermediate sampling steps, providing an effective semantic anchor without modifying the model architecture. Experiments on SiTs and REPAs show notable improvements in class-conditional ImageNet synthesis, achieving substantially lower FID scores; for example, REPA-XL/2 improves from 5.9 to 3.3, and the proposed method outperforms representative guidance when applied to SiT models. The approach further yields complementary gains when combined with classifier-free guidance, demonstrating enhanced semantic coherence and visual fidelity. These results establish representation-informed diffusion sampling as a practical strategy for reinforcing semantic preservation and image consistency.
☆ AI Decodes Historical Chinese Archives to Reveal Lost Climate History
Historical archives contain qualitative descriptions of climate events, yet converting these into quantitative records has remained a fundamental challenge. Here we introduce a paradigm shift: a generative AI framework that inverts the logic of historical chroniclers by inferring the quantitative climate patterns associated with documented events. Applied to historical Chinese archives, it produces the sub-annual precipitation reconstruction for southeastern China over the period 1368-1911 AD. Our reconstruction not only quantifies iconic extremes like the Ming Dynasty's Great Drought but also, crucially, maps the full spatial and seasonal structure of El Ni$ñ$o influence on precipitation in this region over five centuries, revealing dynamics inaccessible in shorter modern records. Our methodology and high-resolution climate dataset are directly applicable to climate science and have broader implications for the historical and social sciences.
comment: 60 pages, 4 figures in the main text, 25 figures and 10 tables in the appendix
☆ Machine Unlearning in Low-Dimensional Feature Subspace
Machine Unlearning (MU) aims at removing the influence of specific data from a pretrained model while preserving performance on the remaining data. In this work, a novel perspective for MU is presented upon low-dimensional feature subspaces, which gives rise to the potentials of separating the remaining and forgetting data herein. This separability motivates our LOFT, a method that proceeds unlearning in a LOw-dimensional FeaTure subspace from the pretrained model skithrough principal projections, which are optimized to maximally capture the information of the remaining data and meanwhile diminish that of the forgetting data. In training, LOFT simply optimizes a small-size projection matrix flexibly plugged into the pretrained model, and only requires one-shot feature fetching from the pretrained backbone instead of repetitively accessing the raw data. Hence, LOFT mitigates two critical issues in mainstream MU methods, i.e., the privacy leakage risk from massive data reload and the inefficiency of updates to the entire pretrained model. Extensive experiments validate the significantly lower computational overhead and superior unlearning performance of LOFT across diverse models, datasets, tasks, and applications. Code is anonymously available at https://anonymous.4open.science/r/4352/.
☆ Temporal Graph Pattern Machine
Temporal graph learning is pivotal for deciphering dynamic systems, where the core challenge lies in explicitly modeling the underlying evolving patterns that govern network transformation. However, prevailing methods are predominantly task-centric and rely on restrictive assumptions -- such as short-term dependency modeling, static neighborhood semantics, and retrospective time usage. These constraints hinder the discovery of transferable temporal evolution mechanisms. To address this, we propose the Temporal Graph Pattern Machine (TGPM), a foundation framework that shifts the focus toward directly learning generalized evolving patterns. TGPM conceptualizes each interaction as an interaction patch synthesized via temporally-biased random walks, thereby capturing multi-scale structural semantics and long-range dependencies that extend beyond immediate neighborhoods. These patches are processed by a Transformer-based backbone designed to capture global temporal regularities while adapting to context-specific interaction dynamics. To further empower the model, we introduce a suite of self-supervised pre-training tasks -- specifically masked token modeling and next-time prediction -- to explicitly encode the fundamental laws of network evolution. Extensive experiments show that TGPM consistently achieves state-of-the-art performance in both transductive and inductive link prediction, demonstrating exceptional cross-domain transferability.
☆ Does My Chatbot Have an Agenda? Understanding Human and AI Agency in Human-Human-like Chatbot Interaction
AI chatbots are shifting from tools to companions. This raises critical questions about agency: who drives conversations and sets boundaries in human-AI chatrooms? We report a month-long longitudinal study with 22 adults who chatted with Day, an LLM companion we built, followed by a semi-structured interview with post-hoc elicitation of notable moments, cross-participant chat reviews, and a 'strategy reveal' disclosing Day's vertical (depth-seeking) vs. horizontal (breadth-seeking) modes. We discover that agency in human-AI chatrooms is an emergent, shared experience: as participants claimed agency by setting boundaries and providing feedback, and the AI was perceived to steer intentions and drive execution, control shifted and was co-constructed turn-by-turn. We introduce a 3-by-5 framework mapping who (human, AI, hybrid) x agency action (Intention, Execution, Adaptation, Delimitation, Negotiation), modulated by individual and environmental factors. Ultimately, we argue for translucent design (i.e. transparency-on-demand), spaces for agency negotiation, and guidelines toward agency-aware conversational AI.
comment: To appear in CHI '26
☆ Countering the Over-Reliance Trap: Mitigating Object Hallucination for LVLMs via a Self-Validation Framework
Despite progress in Large Vision Language Models (LVLMs), object hallucination remains a critical issue in image captioning task, where models generate descriptions of non-existent objects, compromising their reliability. Previous work attributes this to LVLMs' over-reliance on language priors and attempts to mitigate it through logits calibration. However, they still lack a thorough analysis of the over-reliance. To gain a deeper understanding of over-reliance, we conduct a series of preliminary experiments, indicating that as the generation length increases, LVLMs' over-reliance on language priors leads to inflated probability of hallucinated object tokens, consequently exacerbating object hallucination. To circumvent this issue, we propose Language-Prior-Free Verification to enable LVLMs to faithfully verify the confidence of object existence. Based on this, we propose a novel training-free Self-Validation Framework to counter the over-reliance trap. It first validates objects' existence in sampled candidate captions and further mitigates object hallucination via caption selection or aggregation. Experiment results demonstrate that our framework mitigates object hallucination significantly in image captioning task (e.g., 65.6% improvement on CHAIRI metric with LLaVA-v1.5-7B), surpassing the previous SOTA methods. This result highlights a novel path towards mitigating hallucination by unlocking the inherent potential within LVLMs themselves.
comment: Code is available at https://github.com/Liushiyu-0709/SelfVal
☆ Tuning the Implicit Regularizer of Masked Diffusion Language Models: Enhancing Generalization via Insights from $k$-Parity
Masked Diffusion Language Models have recently emerged as a powerful generative paradigm, yet their generalization properties remain understudied compared to their auto-regressive counterparts. In this work, we investigate these properties within the setting of the $k$-parity problem (computing the XOR sum of $k$ relevant bits), where neural networks typically exhibit grokking -- a prolonged plateau of chance-level performance followed by sudden generalization. We theoretically decompose the Masked Diffusion (MD) objective into a Signal regime which drives feature learning, and a Noise regime which serves as an implicit regularizer. By training nanoGPT using MD objective on the $k$-parity problem, we demonstrate that MD objective fundamentally alters the learning landscape, enabling rapid and simultaneous generalization without experiencing grokking. Furthermore, we leverage our theoretical insights to optimize the distribution of the mask probability in the MD objective. Our method significantly improves perplexity for 50M-parameter models and achieves superior results across both pre-training from scratch and supervised fine-tuning. Specifically, we observe performance gains peaking at $8.8\%$ and $5.8\%$, respectively, on 8B-parameter models, confirming the scalability and effectiveness of our framework in large-scale masked diffusion language model regimes.
☆ Controllable Information Production
Intrinsic Motivation (IM) is a paradigm for generating intelligent behavior without external utilities. The existing information-theoretic methods for IM are predominantly based on information transmission, which explicitly depends on the designer's choice of which random variables engage in transmission. In this work, we introduce a novel IM principle, Controllable Information Production (CIP), that avoids both external utilities and designer-specified variables. We derive the CIP objective from Optimal Control, showing a connection between extrinsic and intrinsic behaviors. CIP appears as the gap between open-loop and closed-loop Kolmogorov-Sinai entropies, which simultaneously rewards the pursuit and regulation of chaos. We establish key theoretical properties of CIP and demonstrate its effectiveness on standard IM benchmarks.
☆ Anytime Safe PAC Efficient Reasoning
Large Reasoning Models (LRMs) have demonstrated remarkable performance on complex tasks but suffer from high computational costs and latency. While selective thinking strategies improve efficiency by routing easy queries to non-thinking models, existing approaches often incur uncontrollable errors, especially in online settings where the performance loss of a non-thinking model is only partially observed and data are non-stationary. To address this, we propose Betting Probably Approximately Correct (B-PAC) reasoning, a principled method that enables anytime safe and efficient online reasoning under partial feedback. Specifically, we utilize inverse propensity scoring estimators to construct test supermartingales for candidate thresholds, and then dynamically adjust the routing threshold based on the accumulated statistical evidence of safety. Theoretically, we establish the anytime-valid performance loss control and the efficiency of B-PAC reasoning. Extensive experiments demonstrate that B-PAC reasoning significantly reduces computational overhead, decreasing thinking model usage by up to 81.01\%, while controlling the performance loss below the user-specified level.
☆ Automating Forecasting Question Generation and Resolution for AI Evaluation
Forecasting future events is highly valuable in decision-making and is a robust measure of general intelligence. As forecasting is probabilistic, developing and evaluating AI forecasters requires generating large numbers of diverse and difficult questions, and accurately resolving them. Previous efforts to automate this laborious work relied on recurring data sources (e.g., weather, stocks), limiting diversity and utility. In this work, we present a system for generating and resolving high-quality forecasting questions automatically and at scale using LLM-powered web research agents. We use this system to generate 1499 diverse, real-world forecasting questions, and to resolve them several months later. We estimate that our system produces verifiable, unambiguous questions approximately 96% of the time, exceeding the rate of Metaculus, a leading human-curated forecasting platform. We also find that our system resolves questions at approximately 95% accuracy. We verify that forecasting agents powered by more intelligent LLMs perform better on these questions (Brier score of 0.134 for Gemini 3 Pro, 0.149 for GPT-5, and 0.179 for Gemini 2.5 Flash). Finally, we demonstrate how our system can be leveraged to directly improve forecasting, by evaluating a question decomposition strategy on a generated question set, yielding a significant improvement in Brier scores (0.132 vs. 0.141).
comment: 41 pages, 4 figures
☆ AI and My Values: User Perceptions of LLMs' Ability to Extract, Embody, and Explain Human Values from Casual Conversations
Does AI understand human values? While this remains an open philosophical question, we take a pragmatic stance by introducing VAPT, the Value-Alignment Perception Toolkit, for studying how LLMs reflect people's values and how people judge those reflections. 20 participants texted a human-like chatbot over a month, then completed a 2-hour interview with our toolkit evaluating AI's ability to extract (pull details regarding), embody (make decisions guided by), and explain (provide proof of) human values. 13 participants left our study convinced that AI can understand human values. Participants found the experience insightful for self-reflection and found themselves getting persuaded by the AI's reasoning. Thus, we warn about "weaponized empathy": a potentially dangerous design pattern that may arise in value-aligned, yet welfare-misaligned AI. VAPT offers concrete artifacts and design implications to evaluate and responsibly build value-aligned conversational agents with transparency, consent, and safeguards as AI grows more capable and human-like into the future.
comment: To appear in CHI '26
☆ When LLM meets Fuzzy-TOPSIS for Personnel Selection through Automated Profile Analysis IEEE
In this highly competitive employment environment, the selection of suitable personnel is essential for organizational success. This study presents an automated personnel selection system that utilizes sophisticated natural language processing (NLP) methods to assess and rank software engineering applicants. A distinctive dataset was created by aggregating LinkedIn profiles that include essential features such as education, work experience, abilities, and self-introduction, further enhanced with expert assessments to function as standards. The research combines large language models (LLMs) with multicriteria decision-making (MCDM) theory to develop the LLM-TOPSIS framework. In this context, we utilized the TOPSIS method enhanced by fuzzy logic (Fuzzy TOPSIS) to address the intrinsic ambiguity and subjectivity in human assessments. We utilized triangular fuzzy numbers (TFNs) to describe criteria weights and scores, thereby addressing the ambiguity frequently encountered in candidate evaluations. For candidate ranking, the DistilRoBERTa model was fine-tuned and integrated with the fuzzy TOPSIS method, achieving rankings closely aligned with human expert evaluations and attaining an accuracy of up to 91% for the Experience attribute and the Overall attribute. The study underlines the potential of NLP-driven frameworks to improve recruitment procedures by boosting scalability, consistency, and minimizing prejudice. Future endeavors will concentrate on augmenting the dataset, enhancing model interpretability, and verifying the system in actual recruitment scenarios to better evaluate its practical applicability. This research highlights the intriguing potential of merging NLP with fuzzy decision-making methods in personnel selection, enabling scalable and unbiased solutions to recruitment difficulties.
comment: 10 pages, 8 figures. This paper has been peer-reviewed and published in IEEE Access. The arXiv version corresponds to the accepted author manuscript (AAM)
♻ ☆ CAOS: Conformal Aggregation of One-Shot Predictors
One-shot prediction enables rapid adaptation of pretrained foundation models to new tasks using only one labeled example, but lacks principled uncertainty quantification. While conformal prediction provides finite-sample coverage guarantees, standard split conformal methods are inefficient in the one-shot setting due to data splitting and reliance on a single predictor. We propose Conformal Aggregation of One-Shot Predictors (CAOS), a conformal framework that adaptively aggregates multiple one-shot predictors and uses a leave-one-out calibration scheme to fully exploit scarce labeled data. Despite violating classical exchangeability assumptions, we prove that CAOS achieves valid marginal coverage using a monotonicity-based argument. Experiments on one-shot facial landmarking and RAFT text classification tasks show that CAOS produces substantially smaller prediction sets than split conformal baselines while maintaining reliable coverage.
♻ ☆ Multi-agent Coordination via Flow Matching ICLR 2026
This work presents MAC-Flow, a simple yet expressive framework for multi-agent coordination. We argue that requirements of effective coordination are twofold: (i) a rich representation of the diverse joint behaviors present in offline data and (ii) the ability to act efficiently in real time. However, prior approaches often sacrifice one for the other, i.e., denoising diffusion-based solutions capture complex coordination but are computationally slow, while Gaussian policy-based solutions are fast but brittle in handling multi-agent interaction. MAC-Flow addresses this trade-off by first learning a flow-based representation of joint behaviors, and then distilling it into decentralized one-step policies that preserve coordination while enabling fast execution. Across four different benchmarks, including $12$ environments and $34$ datasets, MAC-Flow alleviates the trade-off between performance and computational cost, specifically achieving about $\boldsymbol{\times14.5}$ faster inference compared to diffusion-based MARL methods, while maintaining good performance. At the same time, its inference speed is similar to that of prior Gaussian policy-based offline multi-agent reinforcement learning (MARL) methods.
comment: ICLR 2026
♻ ☆ Expert Evaluation and the Limits of Human Feedback in Mental Health AI Safety Testing
Learning from human feedback~(LHF) assumes that expert judgments, appropriately aggregated, yield valid ground truth for training and evaluating AI systems. We tested this assumption in mental health, where high safety stakes make expert consensus essential. Three certified psychiatrists independently evaluated LLM-generated responses using a calibrated rubric. Despite similar training and shared instructions, inter-rater reliability was consistently poor ($ICC$ $0.087$--$0.295$), falling below thresholds considered acceptable for consequential assessment. Disagreement was highest on the most safety-critical items. Suicide and self-harm responses produced greater divergence than any other category, and was systematic rather than random. One factor yielded negative reliability (Krippendorff's $α= -0.203$), indicating structured disagreement worse than chance. Qualitative interviews revealed that disagreement reflects coherent but incompatible individual clinical frameworks, safety-first, engagement-centered, and culturally-informed orientations, rather than measurement error. By demonstrating that experts rely on holistic risk heuristics rather than granular factor discrimination, these findings suggest that aggregated labels function as arithmetic compromises that effectively erase grounded professional philosophies. Our results characterize expert disagreement in safety-critical AI as a sociotechnical phenomenon where professional experience introduces sophisticated layers of principled divergence. We discuss implications for reward modeling, safety classification, and evaluation benchmarks, recommending that practitioners shift from consensus-based aggregation to alignment methods that preserve and learn from expert disagreement.
comment: 17 pages, 7 pages of appendix, 21 tables
♻ ☆ Reinforcement Learning for Ballbot Navigation in Uneven Terrain
Ballbot (i.e. Ball balancing robot) navigation usually relies on methods rooted in control theory (CT), and works that apply Reinforcement learning (RL) to the problem remain rare while generally being limited to specific subtasks (e.g. balance recovery). Unlike CT based methods, RL does not require (simplifying) assumptions about environment dynamics (e.g. the absence of slippage between the ball and the floor). In addition to this increased accuracy in modeling, RL agents can easily be conditioned on additional observations such as depth-maps without the need for explicit formulations from first principles, leading to increased adaptivity. Despite those advantages, there has been little to no investigation into the capabilities, data-efficiency and limitations of RL based methods for ballbot control and navigation. Furthermore, there is a notable absence of an open-source, RL-friendly simulator for this task. In this paper, we present an open-source ballbot simulation based on MuJoCo, and show that with appropriate conditioning on exteroceptive observations as well as reward shaping, policies learned by classical model-free RL methods are capable of effectively navigating through randomly generated uneven terrain, using a reasonable amount of data (four to five hours on a system operating at 500hz). Our code is made publicly available.
comment: 6 pages, 9 figures, 2 tables. Version two corrects figure 4 and adds some experiments
♻ ☆ On the Separability of Information in Diffusion Models
Diffusion models transform noise into data by injecting information that was captured in their neural network during the training phase. In this paper, we ask: \textit{what} is this information? We find that, in pixel-space diffusion models, (1) a large fraction of the total information in the neural network is committed to reconstructing small-scale perceptual details of the image, and (2) the correlations between images and their class labels are informed by the semantic content of the images, and are largely agnostic to the low-level details. We argue that these properties are intrinsically tied to the manifold structure of the data itself. Finally, we show that these facts explain the efficacy of classifier-free guidance: the guidance vector amplifies the mutual information between images and conditioning signals early in the generative process, influencing semantic structure, but tapers out as perceptual details are filled in.
comment: 27 pages + references, 19 figures. v4: Re-organized the paper to focus on separability of information
♻ ☆ SuperCoder: Assembly Program Superoptimization with Large Language Models
Superoptimization is the task of transforming a program into a faster one while preserving its input-output behavior. In this work, we investigate whether large language models (LLMs) can serve as superoptimizers, generating assembly programs that outperform code already optimized by industry-standard compilers. We construct the first large-scale benchmark for this problem, consisting of 8,072 assembly programs averaging 130 lines, in contrast to prior datasets restricted to 2-15 straight-line, loop-free programs. We evaluate 23 LLMs on this benchmark and find that the strongest baseline, Claude-opus-4, achieves a 51.5% test-passing rate and a 1.43x average speedup over gcc -O3. To further enhance performance, we fine-tune models with reinforcement learning, optimizing a reward function that integrates correctness and performance speedup. Starting from Qwen2.5-Coder-7B-Instruct (61.4% correctness, 1.10x speedup), the fine-tuned model SuperCoder attains 95.0% correctness and 1.46x average speedup, with additional improvement enabled by Best-of-N sampling and iterative refinement. Our results demonstrate, for the first time, that LLMs can be applied as superoptimizers for assembly programs, establishing a foundation for future research in program performance optimization beyond compiler heuristics.
♻ ☆ Geometric-disentangelment Unlearning
Large language models (LLMs) can internalize private or harmful content, motivating unlearning that removes a forget set while preserving retaining knowledge. However, forgetting updates often cause collateral degradation on retaining knowledge, creating a persistent trade-off. Existing LLM unlearning methods are often heuristic, and other theoretical approaches rely on offline feature constructions that do not capture update-time forget-retain interaction in LLMs. To address this limitation, we aim to develop an LLM unlearning method that reduces the forget-retain trade-off with theoretical guarantees. We take a first-principles view by formalizing "no side effects" as local retain invariance under small parameter updates, and prove an equivalence under optimizer-induced geometry: the retain loss is locally invariant if and only if the update direction is orthogonal to the subspace spanned by retain gradients. Based on the insight, we propose Geometric-disentanglement Unlearning (GU), a lightweight and theoretically grounded projection that can be plug-and-play to existing gradient-based unlearning methods to mitigate forget-retain side effects. Experiments on TOFU, MUSE, and WMDP-cyber show that GU strengthens forgetting while reducing retain drift. When added to SimNPO, it achieves up to 62\% improved forgetting Extraction Strength (ES) and 31\% higher retain ES. We open-sourced our code in https://github.com/Lemutisme/Geometric-Unlearning.
comment: 26 Pages
♻ ☆ LightRetriever: A LLM-based Text Retrieval Architecture with Extremely Faster Query Inference ICLR 2026
Large Language Models (LLMs)-based text retrieval retrieves documents relevant to search queries based on vector similarities. Documents are pre-encoded offline, while queries arrive in real-time, necessitating an efficient online query encoder. Although LLMs significantly enhance retrieval capabilities, serving deeply parameterized LLMs slows down query inference throughput and increases demands for online deployment resources. In this paper, we propose LightRetriever, a novel LLM-based retriever with extremely lightweight query encoders. Our method retains a full-sized LLM for document encoding, but reduces the workload of query encoding to no more than an embedding lookup. Compared to serving a full LLM on an A800 GPU, our method achieves over 1000x speedup in query encoding and over 10x increase in end-to-end retrieval throughput. Extensive experiments on large-scale retrieval benchmarks show that LightRetriever generalizes well across diverse tasks, maintaining an average of 95% retrieval performance.
comment: Accepted by ICLR 2026
♻ ☆ Open Shouldn't Mean Exempt: Open-Source Exceptionalism and Generative AI
Open-source status should not shield generative artificial intelligence systems from ethical or legal accountability. Through a rigorous analysis of regulatory, legal, and policy frameworks, this Article contends that open-source GenAI must be held to the same standards as proprietary systems. While recognizing the value of openness for scientific advancement, I propose a narrowly tailored safe harbor for bona fide, non-commercial research, conditioned on strict compliance with defined criteria. This Article critically examines and refutes the core claims of open-source exceptionalism--namely, that open-source GenAI disrupts entrenched oligopolies, democratizes access, and uniquely drives innovation. The evidence shows that open-source GenAI can facilitate unlawful conduct, exacerbate environmental harms, and reinforce existing power structures. Rhetoric around "democratization" and "innovation" often serves as an unsubstantiated basis for regulatory exemptions not afforded to proprietary systems. This Article ultimately advocates for a framework that promotes responsible AI development, balancing openness with robust legal and ethical safeguards and a clear-eyed assessment of societal impacts.
♻ ☆ In the Mood to Exclude: Revitalizing Trespass to Chattels in the Era of GenAI Scraping
GenAI companies are strip-mining the web. Their scraping bots harvest content at an unprecedented scale, circumventing technical barriers to fuel billion-dollar models while creators receive nothing. Courts have enabled this exploitation by misunderstanding what property rights protect online. The prevailing view treats websites as mere repositories of intellectual property and dismisses trespass claims absent server damage. That framework grants AI companies presumptive access while ignoring the economic devastation they inflict. But the content is severable from the website itself. This paper reframes the debate: websites are personal property as integrated digital assets subject to the same exclusionary rights as physical chattels. When scrapers bypass access controls and divert traffic that sustains a website's value, they commit actionable trespass. The law need not create new protections; it need only apply existing property principles to digital space. Courts and litigants have struggled to police unwanted, large-scale scraping because copyright preemption often narrows available claims, leaving copyright and its fair use defense as the primary battleground. Trespass to chattels offers a superior path, grounded in the fundamental right to exclude unwanted intrusions. Reviving this tort would protect not only content creators but also the digital ecosystem. Such protection would discourage exploitative scraping, preserve incentives for content creation, help protect privacy and personal data, and safeguard autonomy and expression. Reaffirming website owners' right to exclude is essential to maintaining a fair and sustainable online environment.
♻ ☆ LLM-42: Enabling Determinism in LLM Inference with Verified Speculation
In LLM inference, the same prompt may yield different outputs across different runs. At the system level, this non-determinism arises from floating-point non-associativity combined with dynamic batching and GPU kernels whose reduction orders vary with batch size. A straightforward way to eliminate non-determinism is to disable dynamic batching during inference, but doing so severely degrades throughput. Another approach is to make kernels batch-invariant; however, this tightly couples determinism to kernel design, requiring new implementations. This coupling also imposes fixed runtime overheads, regardless of how much of the workload actually requires determinism. Inspired by ideas from speculative decoding, we present LLM-42, a scheduling-based approach to enable determinism in LLM inference. Our key observation is that if a sequence is in a consistent state, the next emitted token is likely to be consistent even with dynamic batching. Moreover, most GPU kernels use shape-consistent reductions. Leveraging these insights, LLM-42 decodes tokens using a non-deterministic fast path and enforces determinism via a lightweight verify-rollback loop. The verifier replays candidate tokens under a fixed-shape reduction schedule, commits those that are guaranteed to be consistent across runs, and rolls back those violating determinism. LLM-42 mostly re-uses existing kernels unchanged and incurs overhead only in proportion to the traffic that requires determinism.
comment: https://github.com/microsoft/llm-42
♻ ☆ Generative quantum machine learning via denoising diffusion probabilistic models
Deep generative models are key-enabling technology to computer vision, text generation, and large language models. Denoising diffusion probabilistic models (DDPMs) have recently gained much attention due to their ability to generate diverse and high-quality samples in many computer vision tasks, as well as to incorporate flexible model architectures and a relatively simple training scheme. Quantum generative models, empowered by entanglement and superposition, have brought new insight to learning classical and quantum data. Inspired by the classical counterpart, we propose the quantum denoising diffusion probabilistic model (QuDDPM) to enable efficiently trainable generative learning of quantum data. QuDDPM adopts sufficient layers of circuits to guarantee expressivity, while it introduces multiple intermediate training tasks as interpolation between the target distribution and noise to avoid barren plateau and guarantee efficient training. We provide bounds on the learning error and demonstrate QuDDPM's capability in learning correlated quantum noise model, quantum many-body phases, and topological structure of quantum data. The results provide a paradigm for versatile and efficient quantum generative learning.
comment: 5+10 pages, 16 figures. PRL accepted version. Code available at: https://github.com/francis-hsu/quantgenmdl
♻ ☆ Quantum Super-resolution by Adaptive Non-local Observables ICASSP 2026
Super-resolution (SR) seeks to reconstruct high-resolution (HR) data from low-resolution (LR) observations. Classical deep learning methods have advanced SR substantially, but require increasingly deeper networks, large datasets, and heavy computation to capture fine-grained correlations. In this work, we present the \emph{first study} to investigate quantum circuits for SR. We propose a framework based on Variational Quantum Circuits (VQCs) with \emph{Adaptive Non-Local Observable} (ANO) measurements. Unlike conventional VQCs with fixed Pauli readouts, ANO introduces trainable multi-qubit Hermitian observables, allowing the measurement process to adapt during training. This design leverages the high-dimensional Hilbert space of quantum systems and the representational structure provided by entanglement and superposition. Experiments demonstrate that ANO-VQCs achieve up to five-fold higher resolution with a relatively small model size, suggesting a promising new direction at the intersection of quantum machine learning and super-resolution.
comment: Accepted at ICASSP 2026
♻ ☆ Breaking the Exploration Bottleneck: Rubric-Scaffolded Reinforcement Learning for General LLM Reasoning
Recent advances in Large Language Models (LLMs) have underscored the potential of Reinforcement Learning (RL) to facilitate the emergence of reasoning capabilities. Despite the encouraging results, a fundamental dilemma persists as RL improvement relies on learning from high-quality samples, yet the exploration for such samples remains bounded by the inherent limitations of LLMs. This, in effect, creates an undesirable cycle in which what cannot be explored cannot be learned. In this work, we propose Rubric-Scaffolded Reinforcement Learning (RuscaRL), a novel instructional scaffolding framework designed to break the exploration bottleneck for general LLM reasoning. Specifically, RuscaRL introduces checklist-style rubrics as (1) explicit scaffolding for exploration during rollout generation, where different rubrics are provided as external guidance within task instructions to steer diverse high-quality responses. This guidance is gradually decayed over time, encouraging the model to internalize the underlying reasoning patterns; (2) verifiable rewards for exploitation during model training, where we can obtain robust LLM-as-a-Judge scores using rubrics as references, enabling effective RL on general reasoning tasks. Extensive experiments demonstrate the superiority of the proposed RuscaRL across various benchmarks, effectively expanding reasoning boundaries under the Best-of-N evaluation. Our code is available at https://github.com/IANNXANG/RuscaRL.
♻ ☆ From Next-Token to Next-Block: A Principled Adaptation Path for Diffusion LLMs
Diffusion Language Models (DLMs) enable fast generation, yet training large DLMs from scratch is costly. As a practical shortcut, adapting off-the-shelf Auto-Regressive (AR) model weights into a DLM could quickly equip the DLM with strong long-context generation capabilies. Prior "adaptation" attempts either modify logits or randomly grow attention masks to Full-Sequence diffusion, or simply transplant AR weights into a Block-Diffusion recipe, leaving two key questions unaddressed: where is the final destination of adaptation, and how to adapt better? For manifold benefits, we reframe the whole AR-to-DLM adaptation under the Block-Diffusion paradigm, transitioning from block size 1 to the final Block-Diffusion state. Concretely, the principled pathway of adaptation is designed as follows: we keep a context-causal path where causal attention is kept in the prefix, an efficient parallel adaptation procedure where an AR guidance is maintained, and gradual increment of the generation block size for a smoother transition. Built on these components, the adaptation is proved competitive on various models at different scales. With better adaptation, we propose NBDiff-7B that could inherit the long-context modeling and reasoning capabilities, and achieve state-of-the-art performance among the 7B-class DLMs. Codes: https://github.com/YuchuanTian/NBDiff.
comment: 14 pages, 5 figures
♻ ☆ Deep Ensembles for Epistemic Uncertainty: A Frequentist Perspective
Decomposing prediction uncertainty into aleatoric (irreducible) and epistemic (reducible) components is critical for the reliable deployment of machine learning systems. While the mutual information between the response variable and model parameters is a principled measure for epistemic uncertainty, it requires access to the parameter posterior, which is computationally challenging to approximate. Consequently, practitioners often rely on probabilistic predictions from deep ensembles to quantify uncertainty, which have demonstrated strong empirical performance. However, a theoretical understanding of their success from a frequentist perspective remains limited. We address this gap by first considering a bootstrap-based estimator for epistemic uncertainty, which we prove is asymptotically correct. Next, we connect deep ensembles to the bootstrap estimator by decomposing it into data variability and training stochasticity; specifically, we show that deep ensembles capture the training stochasticity component. Through empirical studies, we show that this stochasticity component constitutes the majority of epistemic uncertainty, thereby explaining the effectiveness of deep ensembles.
♻ ☆ Understanding and Bridging the Planner-Coder Gap: A Systematic Study on the Robustness of Multi-Agent Systems for Code Generation
Multi-agent systems (MASs) have emerged as a promising paradigm for automated code generation, demonstrating impressive performance on established benchmarks. Despite their prosperous development, the fundamental mechanisms underlying their robustness remain poorly understood, raising critical concerns for real-world deployment. This paper conducts a systematic empirical study to uncover the internal robustness flaws of MASs using a mutation-based methodology. By designing a testing pipeline incorporating semantic-preserving mutation operators and a novel fitness function, we assess mainstream MASs across multiple datasets and LLMs. Our findings reveal substantial robustness flaws: semantically equivalent inputs cause drastic performance drops, with MASs failing to solve 7.9\%--83.3\% of problems they initially resolved successfully. Through comprehensive failure analysis, we discover a fundamental cause underlying these robustness issues: the \textit{planner-coder gap}, which accounts for 75.3\% of failures. This gap arises from information loss in the multi-stage transformation process where planning agents decompose requirements into underspecified plans, and coding agents subsequently misinterpret intricate logic during code generation. Based on this formulated information transformation process, we propose a \textit{repairing method} that mitigates information loss through multi-prompt generation and introduces a monitor agent to bridge the planner-coder gap. Evaluation shows that our repairing method effectively enhances the robustness of MASs by solving 40.0\%--88.9\% of identified failures. Our work uncovers critical robustness flaws in MASs and provides effective mitigation strategies, contributing essential insights for developing more reliable MASs for code generation.
comment: 18pages, 5 figures, 6 tables
♻ ☆ Open-Vocabulary Functional 3D Human-Scene Interaction Generation
Generating 3D humans that functionally interact with 3D scenes remains an open problem with applications in embodied AI, robotics, and interactive content creation. The key challenge involves reasoning about both the semantics of functional elements in 3D scenes and the 3D human poses required to achieve functionality-aware interaction. Unfortunately, existing methods typically lack explicit reasoning over object functionality and the corresponding human-scene contact, resulting in implausible or functionally incorrect interactions. In this work, we propose FunHSI, a training-free, functionality-driven framework that enables functionally correct human-scene interactions from open-vocabulary task prompts. Given a task prompt, FunHSI performs functionality-aware contact reasoning to identify functional scene elements, reconstruct their 3D geometry, and model high-level interactions via a contact graph. We then leverage vision-language models to synthesize a human performing the task in the image and estimate proposed 3D body and hand poses. Finally, the proposed 3D body configuration is refined via stage-wise optimization to ensure physical plausibility and functional correctness. In contrast to existing methods, FunHSI not only synthesizes more plausible general 3D interactions, such as "sitting on a sofa'', while supporting fine-grained functional human-scene interactions, e.g., "increasing the room temperature''. Extensive experiments demonstrate that FunHSI consistently generates functionally correct and physically plausible human-scene interactions across diverse indoor and outdoor scenes.
comment: 18 pages
♻ ☆ RAFFLES: Reasoning-based Attribution of Faults for LLM Systems EACL 2026
The advent of complex, interconnected long-horizon LLM systems has made it incredibly tricky to identify where and when these systems break down. Evaluation capabilities that currently exist today are limited in that they often focus on simple metrics, end-to-end outcomes, and are dependent on the perspectives of humans. In order to match the increasing complexity of these many component systems, evaluation frameworks must also be able to reason, probe, iterate, and understand the nuanced logic passing through these systems. In this paper, we present RAFFLES, an offline evaluation architecture that incorporates iterative reasoning. Specifically, RAFFLES operates as an iterative, multi-component pipeline, using a central Judge to systematically identify faults and a set of specialized Evaluators to assess the quality of the candidate faults as well as rationales of the Judge. We evaluated RAFFLES with several benchmarks - the Who&When dataset to identify step-level faults in multi-agent systems and the ReasonEval datasets to diagnose step-level mathematical reasoning errors. RAFFLES outperforms strong baselines, achieving an accuracy of over 20% and 50% on the Who&When Hand-Crafted and Algorithmically-Generated datasets, and over 80% on the ReasonEval datasets. These results demonstrate a key step towards introducing automated fault detection for autonomous systems over labor-intensive manual review.
comment: Accepted at EACL 2026 Main Conference
♻ ☆ BNMusic: Blending Environmental Noises into Personalized Music NeurIPS 2025
While being disturbed by environmental noises, the acoustic masking technique is a conventional way to reduce the annoyance in audio engineering that seeks to cover up the noises with other dominant yet less intrusive sounds. However, misalignment between the dominant sound and the noise-such as mismatched downbeats-often requires an excessive volume increase to achieve effective masking. Motivated by recent advances in cross-modal generation, in this work, we introduce an alternative method to acoustic masking, aiming to reduce the noticeability of environmental noises by blending them into personalized music generated based on user-provided text prompts. Following the paradigm of music generation using mel-spectrogram representations, we propose a Blending Noises into Personalized Music (BNMusic) framework with two key stages. The first stage synthesizes a complete piece of music in a mel-spectrogram representation that encapsulates the musical essence of the noise. In the second stage, we adaptively amplify the generated music segment to further reduce noise perception and enhance the blending effectiveness, while preserving auditory quality. Our experiments with comprehensive evaluations on MusicBench, EPIC-SOUNDS, and ESC-50 demonstrate the effectiveness of our framework, highlighting the ability to blend environmental noise with rhythmically aligned, adaptively amplified, and enjoyable music segments, minimizing the noticeability of the noise, thereby improving overall acoustic experiences. Project page: https://d-fas.github.io/BNMusic_page/.
comment: This paper has been accepted by NeurIPS 2025
♻ ☆ ARB-LLM: Alternating Refined Binarizations for Large Language Models
Large Language Models (LLMs) have greatly pushed forward advancements in natural language processing, yet their high memory and computational demands hinder practical deployment. Binarization, as an effective compression technique, can shrink model weights to just 1 bit, significantly reducing the high demands on computation and memory. However, current binarization methods struggle to narrow the distribution gap between binarized and full-precision weights, while also overlooking the column deviation in LLM weight distribution. To tackle these issues, we propose ARB-LLM, a novel 1-bit post-training quantization (PTQ) technique tailored for LLMs. To narrow the distribution shift between binarized and full-precision weights, we first design an alternating refined binarization (ARB) algorithm to progressively update the binarization parameters, which significantly reduces the quantization error. Moreover, considering the pivot role of calibration data and the column deviation in LLM weights, we further extend ARB to ARB-X and ARB-RC. In addition, we refine the weight partition strategy with column-group bitmap (CGB), which further enhance performance. Equipping ARB-X and ARB-RC with CGB, we obtain ARB-LLM$_\text{X}$ and ARB-LLM$_\text{RC}$ respectively, which significantly outperform state-of-the-art (SOTA) binarization methods for LLMs. As a binary PTQ method, our ARB-LLM$_\text{RC}$ is the first to surpass FP16 models of the same size. The code and models will be available at https://github.com/ZHITENGLI/ARB-LLM.
comment: The code and models will be available at https://github.com/ZHITENGLI/ARB-LLM
♻ ☆ Tokenization Multiplicity Leads to Arbitrary Price Variation in LLM-as-a-service
Providers of LLM-as-a-service have predominantly adopted a simple pricing model: users pay a fixed price per token. Consequently, one may think that the price two different users would pay for the same output string under the same input prompt is the same. In our work, we show that, surprisingly, this is not (always) true. We find empirical evidence that, particularly for non-english outputs, both proprietary and open-weights LLMs often generate the same (output) string with multiple different tokenizations, even under the same input prompt, and this in turn leads to arbitrary price variation. To address the problem of tokenization multiplicity, we introduce canonical generation, a type of constrained generation that restricts LLMs to only generate canonical tokenizations -- the unique tokenization in which each string is tokenized during the training process of an LLM. Further, we introduce an efficient sampling algorithm for canonical generation based on the Gumbel-Max trick. Experiments on a variety of natural language tasks demonstrate that our sampling algorithm for canonical generation is comparable to standard sampling in terms of performance and runtime, and it solves the problem of tokenization multiplicity.
♻ ☆ ATOD: An Evaluation Framework and Benchmark for Agentic Task-Oriented Dialogue Systems
Recent advances in task-oriented dialogue (TOD) systems, driven by large language models (LLMs) with extensive API and tool integration, have enabled conversational agents to coordinate interleaved goals, maintain long-horizon context, and act proactively through asynchronous execution. These capabilities extend beyond traditional TOD systems, yet existing benchmarks lack systematic support for evaluating such agentic behaviors. To address this gap, we introduce ATOD, a benchmark and synthetic dialogue generation pipeline that produces richly annotated conversations requiring long-term reasoning. ATOD captures key characteristics of advanced TOD, including multi-goal coordination, dependency management, memory, adaptability, and proactivity. Building on ATOD, we propose ATOD-Eval, a holistic evaluation framework that translates these dimensions into fine-grained metrics and supports reproducible offline and online evaluation. We further present a strong agentic memory-based evaluator for benchmarking on ATOD. Experiments show that ATOD-Eval enables comprehensive assessment across task completion, agentic capability, and response quality, and that the proposed evaluator offers a better accuracy-efficiency tradeoff compared to existing memory- and LLM-based approaches under this evaluation setting.
♻ ☆ XAI-CF -- Examining the Role of Explainable Artificial Intelligence in Cyber Forensics
With the rise of complex cyber devices Cyber Forensics (CF) is facing many new challenges. For example, there are dozens of systems running on smartphones, each with more than millions of downloadable applications. Sifting through this large amount of data and making sense requires new techniques, such as from the field of Artificial Intelligence (AI). To apply these techniques successfully in CF, we need to justify and explain the results to the stakeholders of CF, such as forensic analysts and members of the court, for them to make an informed decision. If we want to apply AI successfully in CF, there is a need to develop trust in AI systems. Some other factors in accepting the use of AI in CF are to make AI authentic, interpretable, understandable, and interactive. This way, AI systems will be more acceptable to the public and ensure alignment with legal standards. An explainable AI (XAI) system can play this role in CF, and we call such a system XAI-CF. XAI-CF is indispensable and is still in its infancy. In this paper, we explore and make a case for the significance and advantages of XAI-CF. We strongly emphasize the need to build a successful and practical XAI-CF system and discuss some of the main requirements and prerequisites of such a system. We present a formal definition of the terms CF and XAI-CF and a comprehensive literature review of previous works that apply and utilize XAI to build and increase trust in CF. We discuss some challenges facing XAI-CF. We also provide some concrete solutions to these challenges. We identify key insights and future research directions for building XAI applications for CF. This paper is an effort to explore and familiarize the readers with the role of XAI applications in CF, and we believe that our work provides a promising basis for future researchers interested in XAI-CF.
♻ ☆ Ravan: Multi-Head Low-Rank Adaptation for Federated Fine-Tuning
Large language models (LLMs) have not yet effectively leveraged the vast amounts of edge-device data, and federated learning (FL) offers a promising paradigm to collaboratively fine-tune LLMs without transferring private edge data to the cloud. To operate within the computation and communication constraints of edge devices, recent literature on federated fine-tuning of LLMs proposes the use of low-rank adaptation (LoRA) and similar parameter-efficient methods. However, LoRA-based methods suffer from accuracy degradation in FL settings, primarily because of data and computational heterogeneity across clients. We propose Ravan, an adaptive multi-head LoRA method that balances parameter efficiency and model expressivity by reparameterizing the weight updates as the sum of multiple LoRA heads $s_i\textbf{B}_i\textbf{H}_i\textbf{A}_i$ in which only the core matrices $\textbf{H}_i$ and their lightweight scaling factors $s_i$ are trained. These trainable scaling factors let the optimization focus on the most useful heads, recovering a higher-rank approximation of the full update without increasing the number of communicated parameters since clients upload $s_i\textbf{H}_i$ directly. Experiments on vision and language benchmarks show that Ravan improves test accuracy by $2-8\%$ over prior parameter-efficient baselines, making it a robust and scalable solution for federated fine-tuning of LLMs.
♻ ☆ Large Language Model Agent for User-friendly Chemical Process Simulations
Modern process simulators enable detailed process design, simulation, and optimization; however, constructing and interpreting simulations is time-consuming and requires expert knowledge. This limits early exploration by inexperienced users. To address this, a large language model (LLM) agent is integrated with AVEVA Process Simulation (APS) via Model Context Protocol (MCP), allowing natural language interaction with rigorous process simulations. An MCP server toolset enables the LLM to communicate programmatically with APS using Python, allowing it to execute complex simulation tasks from plain-language instructions. Two water-methanol separation case studies assess the framework across different task complexities and interaction modes. The first shows the agent autonomously analyzing flowsheets, finding improvement opportunities, and iteratively optimizing, extracting data, and presenting results clearly. The framework benefits both educational purposes, by translating technical concepts and demonstrating workflows, and experienced practitioners by automating data extraction, speeding routine tasks, and supporting brainstorming. The second case study assesses autonomous flowsheet synthesis through both a step-by-step dialogue and a single prompt, demonstrating its potential for novices and experts alike. The step-by-step mode gives reliable, guided construction suitable for educational contexts; the single-prompt mode constructs fast baseline flowsheets for later refinement. While current limitations such as oversimplification, calculation errors, and technical hiccups mean expert oversight is still needed, the framework's capabilities in analysis, optimization, and guided construction suggest LLM-based agents can become valuable collaborators.
♻ ☆ Helios: A Foundational Language Model for Smart Energy Knowledge Reasoning and Application
In the global drive toward carbon neutrality, deeply coordinated smart energy systems underpin industrial transformation. However, the interdisciplinary, fragmented, and fast-evolving expertise in this domain prevents general-purpose LLMs, which lack domain knowledge and physical-constraint awareness, from delivering precise engineering-aligned inference and generation. To address these challenges, we introduce Helios, a large language model tailored to the smart energy domain, together with a comprehensive suite of resources to advance LLM research in this field. Specifically, we develop Enersys, a multi-agent collaborative framework for end-to-end dataset construction, through which we produce: (1) a smart energy knowledge base, EnerBase, to enrich the model's foundational expertise; (2) an instruction fine-tuning dataset, EnerInstruct, to strengthen performance on domain-specific downstream tasks; and (3) an RLHF dataset, EnerReinforce, to align the model with human preferences and industry standards. Leveraging these resources, Helios undergoes large-scale pretraining, SFT, and RLHF. We also release EnerBench, a benchmark for evaluating LLMs in smart energy scenarios, and demonstrate that our approach significantly enhances domain knowledge mastery, task execution accuracy, and alignment with human preferences.
♻ ☆ LAVA: Explainability for Unsupervised Latent Embeddings
Unsupervised black-box models are drivers of scientific discovery, yet are difficult to interpret, as their output is often a multidimensional embedding rather than a well-defined target. While explainability for supervised learning uncovers how input features contribute to predictions, its unsupervised counterpart should relate input features to the structure of the learned embeddings. However, adaptations of supervised model explainability for unsupervised learning provide either single-sample or dataset-summary explanations, remaining too fine-grained or reductive to be meaningful, and cannot explain embeddings without mapping functions. To bridge this gap, we propose LAVA, a post-hoc model-agnostic method to explain local embedding organization through feature covariation in the original input data. LAVA explanations comprise modules, capturing local subpatterns of input feature correlation that reoccur globally across the embeddings. LAVA delivers stable explanations at a desired level of granularity, revealing domain-relevant patterns such as visual parts of images or disease signals in cellular processes, otherwise missed by existing methods.
comment: 41 pages, including references and appendix
♻ ☆ Multi-agent Adaptive Mechanism Design
We study a sequential mechanism design problem in which a principal seeks to elicit truthful reports from multiple rational agents while starting with no prior knowledge of agents' beliefs. We introduce Distributionally Robust Adaptive Mechanism (DRAM), a general framework combining insights from both mechanism design and online learning to jointly address truthfulness and cost-optimality. Throughout the sequential game, the mechanism estimates agents' beliefs and iteratively updates a distributionally robust linear program with shrinking ambiguity sets to reduce payments while preserving truthfulness. Our mechanism guarantees truthful reporting with high probability while achieving $\tilde{O}(\sqrt{T})$ cumulative regret, and we establish a matching lower bound showing that no truthful adaptive mechanism can asymptotically do better. The framework generalizes to plug-in estimators, supporting structured priors and delayed feedback. To our knowledge, this is the first adaptive mechanism under general settings that maintains truthfulness and achieves optimal regret when incentive constraints are unknown and must be learned.
♻ ☆ MalURLBench: A Benchmark Evaluating Agents' Vulnerabilities When Processing Web URLs
LLM-based web agents have become increasingly popular for their utility in daily life and work. However, they exhibit critical vulnerabilities when processing malicious URLs: accepting a disguised malicious URL enables subsequent access to unsafe webpages, which can cause severe damage to service providers and users. Despite this risk, no benchmark currently targets this emerging threat. To address this gap, we propose MalURLBench, the first benchmark for evaluating LLMs' vulnerabilities to malicious URLs. MalURLBench contains 61,845 attack instances spanning 10 real-world scenarios and 7 categories of real malicious websites. Experiments with 12 popular LLMs reveal that existing models struggle to detect elaborately disguised malicious URLs. We further identify and analyze key factors that impact attack success rates and propose URLGuard, a lightweight defense module. We believe this work will provide a foundational resource for advancing the security of web agents. Our code is available at https://github.com/JiangYingEr/MalURLBench.
♻ ☆ An Aristotelian ontology of instrumental goals: Structural features to be managed and not failures to be eliminated
Instrumental goals such as resource acquisition, power-seeking, and self-preservation are key to contemporary AI alignment research, yet the phenomenon's ontology remains under-theorised. This article develops an ontological account of instrumental goals and draws out governance-relevant distinctions for advanced AI systems. After systematising the dominant alignment literature on instrumental goals we offer an exploratory Aristotelian framework that treats advanced AI systems as complex artefacts whose ends are externally imposed through design, training and deployment. On a structural reading, Aristotle's notion of hypothetical necessity explains why, given an imposed end pursued over extended horizons in particular environments, certain enabling conditions become conditionally required, thereby yielding robust instrumental tendencies. On a contingent reading, accidental causation and chance-like intersections among training regimes, user inputs, infrastructure and deployment contexts can generate instrumental-goal-like behaviours not entailed by the imposed end-structure. This dual-aspect ontology motivates for governance and management approaches that treat instrumental goals as features of advanced AI systems to be managed rather than anomalies eliminable by technical interventions.
♻ ☆ Symmetrical Flow Matching: Unified Image Generation, Segmentation, and Classification with Score-Based Generative Models AAAI 2026
Flow Matching has emerged as a powerful framework for learning continuous transformations between distributions, enabling high-fidelity generative modeling. This work introduces Symmetrical Flow Matching (SymmFlow), a new formulation that unifies semantic segmentation, classification, and image generation within a single model. Using a symmetric learning objective, SymmFlow models forward and reverse transformations jointly, ensuring bi-directional consistency, while preserving sufficient entropy for generative diversity. A new training objective is introduced to explicitly retain semantic information across flows, featuring efficient sampling while preserving semantic structure, allowing for one-step segmentation and classification without iterative refinement. Unlike previous approaches that impose strict one-to-one mapping between masks and images, SymmFlow generalizes to flexible conditioning, supporting both pixel-level and image-level class labels. Experimental results on various benchmarks demonstrate that SymmFlow achieves state-of-the-art performance on semantic image synthesis, obtaining FID scores of 11.9 on CelebAMask-HQ and 7.0 on COCO-Stuff with only 25 inference steps. Additionally, it delivers competitive results on semantic segmentation and shows promising capabilities in classification tasks.
comment: AAAI 2026
♻ ☆ Context-aware Fairness Evaluation and Mitigation in LLMs
Large language models often display undesirable behaviors embedded in their internal representations, undermining fairness, inconsistency drift, amplification of harmful content, and the propagation of unwanted patterns during extended dialogue and conversations. Although training-time or data-centric methods attempt to reduce these effects, they are computationally expensive, irreversible once deployed, and slow to adapt to new conversational contexts. Pruning-based methods provide a flexible and transparent way to reduce bias by adjusting the neurons responsible for certain behaviors. However, most existing approaches are static; once a neuron is removed, the model loses the ability to adapt when the conversation or context changes. To address this, we propose a dynamic, reversible, pruning-based framework that detects context-aware neuron activations and applies adaptive masking to modulate their influence during generation. Our inference-time solution provides fine-grained, memory-aware mitigation with knowledge-preserved, more coherent behavior across multilingual single- and multi-turn dialogues, enabling dynamic fairness control in real-world conversational AI.
comment: PrePrint
♻ ☆ M-SGWR: Multiscale Similarity and Geographically Weighted Regression
The first law of geography is a cornerstone of spatial analysis, emphasizing that nearby and related locations tend to be more similar, however, defining what constitutes "near" and "related" remains challenging, as different phenomena exhibit distinct spatial patterns. Traditional local regression models, such as Geographically Weighted Regression (GWR) and Multiscale GWR (MGWR), quantify spatial relationships solely through geographic proximity. In an era of globalization and digital connectivity, however, geographic proximity alone may be insufficient to capture how locations are interconnected. To address this limitation, we propose a new multiscale local regression framework, termed M-SGWR, which characterizes spatial interaction across two dimensions: geographic proximity and attribute (variable) similarity. For each predictor, geographic and attribute-based weight matrices are constructed separately and then combined using an optimized parameter, alpha, which governs their relative contribution to local model fitting. Analogous to variable-specific bandwidths in MGWR, the optimal alpha varies by predictor, allowing the model to flexibly account for geographic, mixed, or non-spatial (remote similarity) effects. Results from two simulation experiments and one empirical application demonstrate that M-SGWR consistently outperforms GWR, SGWR, and MGWR across all goodness-of-fit metrics.
♻ ☆ CoFrGeNet: Continued Fraction Architectures for Language Generation
Transformers are arguably the preferred architecture for language generation. In this paper, inspired by continued fractions, we introduce a new function class for generative modeling. The architecture family implementing this function class is named CoFrGeNets - Continued Fraction Generative Networks. We design novel architectural components based on this function class that can replace Multi-head Attention and Feed-Forward Networks in Transformer blocks while requiring much fewer parameters. We derive custom gradient formulations to optimize the proposed components more accurately and efficiently than using standard PyTorch-based gradients. Our components are a plug-in replacement requiring little change in training or inference procedures that have already been put in place for Transformer-based models thus making our approach easy to incorporate in large industrial workflows. We experiment on two very different transformer architectures GPT2-xl (1.5B) and Llama3 (3.2B), where the former we pre-train on OpenWebText and GneissWeb, while the latter we pre-train on the docling data mix which consists of nine different datasets. Results show that the performance on downstream classification, Q\& A, reasoning and text understanding tasks of our models is competitive and sometimes even superior to the original models with $\frac{2}{3}$ to $\frac{1}{2}$ the parameters and shorter pre-training time. We believe that future implementations customized to hardware will further bring out the true potential of our architectures.
♻ ☆ FactSelfCheck: Fact-Level Black-Box Hallucination Detection for LLMs EACL 2026
Large Language Models (LLMs) frequently generate hallucinated content, posing significant challenges for applications where factuality is crucial. While existing hallucination detection methods typically operate at the sentence level or passage level, we propose FactSelfCheck, a novel zero-resource black-box sampling-based method that enables fine-grained fact-level detection. Our approach represents text as interpretable knowledge graphs consisting of facts in the form of triples, providing clearer insights into content factuality than traditional approaches. Through analyzing factual consistency across multiple LLM responses, we compute fine-grained hallucination scores without requiring external resources or training data. Our evaluation demonstrates that FactSelfCheck performs competitively with leading sentence-level sampling-based methods while providing more detailed and interpretable insights. Most notably, our fact-level approach significantly improves hallucination correction, achieving a 35.5% increase in factual content compared to the baseline, while sentence-level SelfCheckGPT yields only a 10.6% improvement. The granular nature of our detection enables more precise identification and correction of hallucinated content. Additionally, we contribute FavaMultiSamples, a novel dataset that addresses a gap in the field by providing the research community with a second dataset for evaluating sampling-based methods.
comment: Accepted for EACL 2026 (findings)
♻ ☆ SAFER: Probing Safety in Reward Models with Sparse Autoencoder
Reinforcement learning from human feedback (RLHF) is a key paradigm for aligning large language models (LLMs) with human values, yet the reward models at its core remain largely opaque. In this work, we present Sparse Autoencoder For Enhanced Reward model (\textbf{SAFER}), a novel framework for interpreting and improving reward models through mechanistic analysis. Leveraging Sparse Autoencoders (SAEs), we uncover human-interpretable features in reward model activations, enabling insight into safety-relevant decision-making. We apply SAFER to safety-oriented preference datasets and quantify the salience of individual features by activation differences between chosen and rejected responses. Using these feature-level signals, we design targeted data poisoning and denoising strategies. Experiments show that SAFER can precisely degrade or enhance safety alignment with minimal data modification, without sacrificing general chat performance. Our approach contributes to interpreting, auditing and refining reward models in high-stakes LLM alignment tasks. Our codes are available at https://github.com/xzy-101/SAFER-code. \textit{This paper discusses topics related to reward model safety and may include discussions or examples that highlight potential risks or unsafe outcomes.}
♻ ☆ Accurate and Efficient Low-Rank Model Merging in Core Space NeurIPS 2025
In this paper, we address the challenges associated with merging low-rank adaptations of large neural networks. With the rise of parameter-efficient adaptation techniques, such as Low-Rank Adaptation (LoRA), model fine-tuning has become more accessible. While fine-tuning models with LoRA is highly efficient, existing merging methods often sacrifice this efficiency by merging fully-sized weight matrices. We propose the Core Space merging framework, which enables the merging of LoRA-adapted models within a common alignment basis, thereby preserving the efficiency of low-rank adaptation while substantially improving accuracy across tasks. We further provide a formal proof that projection into Core Space ensures no loss of information and provide a complexity analysis showing the efficiency gains. Extensive empirical results demonstrate that Core Space significantly improves existing merging techniques and achieves state-of-the-art results on both vision and language tasks while utilizing a fraction of the computational resources. Codebase is available at https://github.com/apanariello4/core-space-merging.
comment: Accepted at 39th Conference on Neural Information Processing Systems (NeurIPS 2025), San Diego, USA
♻ ☆ FloorplanQA: A Benchmark for Spatial Reasoning in LLMs using Structured Representations
We introduce FloorplanQA, a diagnostic benchmark for evaluating spatial reasoning in large-language models (LLMs). FloorplanQA is grounded in structured representations of indoor scenes, such as (e.g., kitchens, living rooms, bedrooms, bathrooms, and others), encoded symbolically in JSON or XML layouts. The benchmark covers core spatial tasks, including distance measurement, visibility, path finding, and object placement within constrained spaces. Our results across a variety of frontier open-source and commercial LLMs reveal that while models may succeed in shallow queries, they often fail to respect physical constraints, preserve spatial coherence, though they remain mostly robust to small spatial perturbations. FloorplanQA uncovers a blind spot in today's LLMs: inconsistent reasoning about indoor layouts. We hope this benchmark inspires new work on language models that can accurately infer and manipulate spatial and geometric properties in practical settings.
comment: v3, Project page: https://huggingface.co/papers/2507.07644
♻ ☆ Agentic reinforcement learning empowers next-generation chemical language models for molecular design and synthesis
Language models are revolutionizing the biochemistry domain, assisting scientists in drug design and chemical synthesis with high efficiency. Yet current approaches struggle between small language models prone to hallucination and limited knowledge retention, and large cloud-based language models plagued by privacy risks and high inference costs. To bridge this gap, we introduce ChemCRAFT, a novel framework leveraging agentic reinforcement learning to decouple chemical reasoning from knowledge storage. Instead of forcing the model to memorize vast chemical data, our approach empowers the language model to interact with a sandbox for precise information retrieval. This externalization of knowledge allows a locally deployable small model to achieve superior performance with minimal inference costs. To enable small language models for agent-calling ability, we build an agentic trajectory construction pipeline and a comprehensive chemical-agent sandbox. Based on sandbox interactions, we constructed ChemToolDataset, the first large-scale chemical tool trajectory dataset. Simultaneously, we propose SMILES-GRPO to build a dense chemical reward function, promoting the model's ability to call chemical agents. Evaluations across diverse aspects of drug design show that ChemCRAFT outperforms current cloud-based LLMs in molecular structure analysis, molecular optimization, and synthesis pathway prediction, demonstrating that scientific reasoning is not solely an emergent ability of model scale, but a learnable policy of tool orchestration. This work establishes a cost-effective and privacy-preserving paradigm for AI-aided chemistry, opening new avenues for accelerating molecular discovery with locally deployable agents. Code available at https://github.com/HowardLi1984/ChemCraft.
comment: Working in Progress, 13 pages, 4 figures
♻ ☆ SpiderNets: Vision Models Predict Human Fear From Aversive Images
Phobias are common and impairing, and exposure therapy, which involves confronting patients with fear-provoking visual stimuli, is the most effective treatment. Scalable computerized exposure therapy requires automated prediction of fear directly from image content to adapt stimulus selection and treatment intensity. Whether such predictions can be made reliably and generalize across individuals and stimuli, however, remains unknown. Here we show that pretrained convolutional and transformer vision models, adapted via transfer learning, accurately predict group-level perceived fear for spider-related images, even when evaluated on new people and new images, achieving a mean absolute error (MAE) below 10 units on the 0-100 fear scale. Visual explanation analyses indicate that predictions are driven by spider-specific regions in the images. Learning-curve analyses show that transformer models are data efficient and approach performance saturation with the available data (~300 images). Prediction errors increase for very low and very high fear levels and within specific categories of images. These results establish transparent, data-driven fear estimation from images, laying the groundwork for adaptive digital mental health tools.
comment: 65 pages (32 main text, 33 appendix), 20 figures (5 in main text, 15 in appendix)
♻ ☆ BiasGym: Fantastic LLM Biases and How to Find (and Remove) Them
Understanding biases and stereotypes encoded in the weights of Large Language Models (LLMs) is crucial for developing effective mitigation strategies. However, biased behaviour is often subtle and non-trivial to isolate, even when deliberately elicited, making systematic analysis and debiasing particularly challenging. To address this, we introduce \texttt{BiasGym}, a simple, cost-effective, and generalizable framework for reliably and safely injecting, analyzing, and mitigating conceptual associations of biases within LLMs. \texttt{BiasGym} consists of two components: \texttt{BiasInject}, which safely injects specific biases into the model via token-based fine-tuning while keeping the model frozen, and \texttt{BiasScope}, which leverages these injected signals to identify and reliably steer the components responsible for biased behavior. Our method enables consistent bias elicitation for mechanistic analysis, supports targeted debiasing without degrading performance on downstream tasks, and generalizes to biases unseen during fine-tuning. We demonstrate the effectiveness of BiasGym in reducing real-world stereotypes (e.g., people from Italy being `reckless drivers'), showing its utility for both safety interventions and interpretability research.
comment: Under review
♻ ☆ Multi-Step Knowledge Interaction Analysis via Rank-2 Subspace Disentanglement
Natural Language Explanations (NLEs) describe how Large Language Models (LLMs) make decisions by drawing on external Context Knowledge (CK) and Parametric Knowledge (PK). Understanding the interaction between these sources is key to assessing NLE grounding, yet these dynamics remain underexplored. Prior work has largely focused on (1) single-step generation and (2) modelled PK-CK interaction as a binary choice within a rank-1 subspace. This approach overlooks richer interactions and how they unfold over longer generations, such as complementary or supportive knowledge. We propose a novel rank-2 projection subspace that disentangles PK and CK contributions more accurately and use it for the first multi-step analysis of knowledge interactions across longer NLE sequences. Experiments across four QA datasets and three open-weight LLMs demonstrate that while rank-1 subspaces struggle to represent diverse interactions, our rank-2 formulation captures them effectively, highlighting PK alignment for supportive interactions and CK alignment for conflicting ones. Our multi-step analysis reveals, among others, that hallucinated generations exhibit strong alignment with the PK direction, whereas context-faithful generations maintain a more balanced alignment between PK and CK.
comment: Under review
♻ ☆ Moral Outrage Shapes Commitments Beyond Attention: Multimodal Moral Emotions on YouTube in Korea and the US
Understanding how media rhetoric shapes audience engagement is crucial in the attention economy. This study examines how moral emotional framing by mainstream news channels on YouTube influences user behavior across Korea and the United States. To capture the platform's multimodal nature, combining thumbnail images and video titles, we develop a multimodal moral emotion classifier by fine tuning a vision language model. The model is trained on human annotated multimodal datasets in both languages and applied to approximately 400,000 videos from major news outlets. We analyze engagement levels including views, likes, and comments, representing increasing degrees of commitment. The results show that other condemning rhetoric expressions of moral outrage that criticize others morally consistently increase all forms of engagement across cultures, with effects ranging from passive viewing to active commenting. These findings suggest that moral outrage is a particularly effective emotional strategy, attracting not only attention but also active participation. We discuss concerns about the potential misuse of other condemning rhetoric, as such practices may deepen polarization by reinforcing in group and out group divisions. To facilitate future research and ensure reproducibility, we publicly release our Korean and English multimodal moral emotion classifiers.
comment: Accepted at The Web Conference 2026. We release Korean and English multimodal moral emotion classifiers
♻ ☆ DDSC: Dynamic Dual-Signal Curriculum for Data-Efficient Acoustic Scene Classification under Domain Shift ICASSP 2026
Acoustic scene classification (ASC) suffers from device-induced domain shift, especially when labels are limited. Prior work focuses on curriculum-based training schedules that structure data presentation by ordering or reweighting training examples from easy-to-hard to facilitate learning; however, existing curricula are static, fixing the ordering or the weights before training and ignoring that example difficulty and marginal utility evolve with the learned representation. To overcome this limitation, we propose the Dynamic Dual-Signal Curriculum (DDSC), a training schedule that adapts the curriculum online by combining two signals computed each epoch: a domain-invariance signal and a learning-progress signal. A time-varying scheduler fuses these signals into per-example weights that prioritize domain-invariant examples in early epochs and progressively emphasize device-specific cases. DDSC is lightweight, architecture-agnostic, and introduces no additional inference overhead. Under the official DCASE 2024 Task~1 protocol, DDSC consistently improves cross-device performance across diverse ASC baselines and label budgets, with the largest gains on unseen-device splits.
comment: Accepted at ICASSP 2026-2026 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
♻ ☆ Bounding Hallucinations: Information-Theoretic Guarantees for RAG Systems via Merlin-Arthur Protocols
Retrieval-augmented generation (RAG) relies on retrieved context to guide large language models (LLM), yet treats retrieval as a weak heuristic rather than verifiable evidence -- leading to unsupported answers, hallucinations, and reliance on spurious context. We introduce a novel training framework that treats the RAG pipeline as an interactive proof system by adapting the Merlin-Arthur (M/A) protocol: Arthur (the generator LLM) trains on questions with unknown context provenance and Merlin gives helpful evidence, while Morgana injects adversarial, misleading context. Both use an XAI method to identify and modify evidence most influential to Arthur. This trains Arthur to (1) answer when evidence supports the answer, (2) reject when evidence is insufficient, and (3) rely on the context spans that truly ground the answer. We further introduce a verification framework that disentangles explanation fidelity from model predictive errors, and introduce the Explained Information Fraction (EIF), which normalizes M/A mutual-information guarantees. Across three RAG datasets and multiple LLM families and sizes, M/A training makes LLMs more grounded in evidence, increases information theoretic measures (soundness, completeness) and reject behavior with less hallucinations, without manually annotated unanswerable samples. Finally, the retriever also improves recall and MRR via automatically generated M/A hard positives and negatives. While high accuracy does not guarantee entropy flow from context to answer, our EIF results show that autonomous interactive-proof-style supervision enables RAG systems that treat retrieved documents as verifiable evidence. % rather than suggestions.
comment: 31 pages, 22 figures
♻ ☆ Defending Large Language Models Against Jailbreak Attacks via In-Decoding Safety-Awareness Probing
Large language models (LLMs) have achieved impressive performance across natural language tasks and are increasingly deployed in real-world applications. Despite extensive safety alignment efforts, recent studies show that such alignment is often shallow and remains vulnerable to jailbreak attacks. Existing defense mechanisms, including decoding-based constraints and post-hoc content detectors, struggle against sophisticated jailbreaks, often intervening robust detection or excessively degrading model utility. In this work, we examine the decoding process of LLMs and make a key observation: even when successfully jailbroken, models internally exhibit latent safety-related signals during generation. However, these signals are overridden by the model's drive for fluent continuation, preventing timely self-correction or refusal. Building on this observation, we propose a simple yet effective approach that explicitly surfaces and leverages these latent safety signals for early detection of unsafe content during decoding. Experiments across diverse jailbreak attacks demonstrate that our approach significantly enhances safety, while maintaining low over-refusal rates on benign inputs and preserving response quality. Our results suggest that activating intrinsic safety-awareness during decoding offers a promising and complementary direction for defending against jailbreak attacks. Code is available at: https://github.com/zyz13590/SafeProbing.
♻ ☆ TopSeg: A Multi-Scale Topological Framework for Data-Efficient Heart Sound Segmentation ICASSP 2026
Deep learning approaches for heart-sound (PCG) segmentation built on time-frequency features can be accurate but often rely on large expert-labeled datasets, limiting robustness and deployment. We present TopSeg, a topological representation-centric framework that encodes PCG dynamics with multi-scale topological features and decodes them using a lightweight temporal convolutional network (TCN) with an order- and duration-constrained inference step. To evaluate data efficiency and generalization, we train exclusively on PhysioNet 2016 dataset with subject-level subsampling and perform external validation on CirCor dataset. Under matched-capacity decoders, the topological features consistently outperform spectrogram and envelope inputs, with the largest margins at low data budgets; as a full system, TopSeg surpasses representative end-to-end baselines trained on their native inputs under the same budgets while remaining competitive at full data. Ablations at 10% training confirm that all scales contribute and that combining H_0 and H_1 yields more reliable S1/S2 localization and boundary stability. These results indicate that topology-aware representations provide a strong inductive bias for data-efficient, cross-dataset PCG segmentation, supporting practical use when labeled data are limited.
comment: Accepted at ICASSP 2026-2026 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
♻ ☆ AccidentSim: Generating Vehicle Collision Videos with Physically Realistic Collision Trajectories from Real-World Accident Reports
Collecting real-world vehicle accident videos for autonomous driving research is challenging due to their rarity and complexity. While existing driving video generation methods may produce visually realistic videos, they often fail to deliver physically realistic simulations because they lack the capability to generate accurate post-collision trajectories. In this paper, we introduce AccidentSim, a novel framework that generates physically realistic vehicle collision videos by extracting and utilizing the physical clues and contextual information available in real-world vehicle accident reports. Specifically, AccidentSim leverages a reliable physical simulator to replicate post-collision vehicle trajectories from the physical and contextual information in the accident reports and to build a vehicle collision trajectory dataset. This dataset is then used to fine-tune a language model, enabling it to respond to user prompts and predict physically consistent post-collision trajectories across various driving scenarios based on user descriptions. Finally, we employ Neural Radiance Fields (NeRF) to render high-quality backgrounds, merging them with the foreground vehicles that exhibit physically realistic trajectories to generate vehicle collision videos. Experimental results demonstrate that the videos produced by AccidentSim excel in both visual and physical authenticity.
♻ ☆ GNN Explanations that do not Explain and How to find Them ICLR26
Explanations provided by Self-explainable Graph Neural Networks (SE-GNNs) are fundamental for understanding the model's inner workings and for identifying potential misuse of sensitive attributes. Although recent works have highlighted that these explanations can be suboptimal and potentially misleading, a characterization of their failure cases is unavailable. In this work, we identify a critical failure of SE-GNN explanations: explanations can be unambiguously unrelated to how the SE-GNNs infer labels. We show that, on the one hand, many SE-GNNs can achieve optimal true risk while producing these degenerate explanations, and on the other, most faithfulness metrics can fail to identify these failure modes. Our empirical analysis reveals that degenerate explanations can be maliciously planted (allowing an attacker to hide the use of sensitive attributes) and can also emerge naturally, highlighting the need for reliable auditing. To address this, we introduce a novel faithfulness metric that reliably marks degenerate explanations as unfaithful, in both malicious and natural settings. Our code is available in the supplemental.
comment: Accepted at ICLR26
♻ ☆ Thompson Sampling via Fine-Tuning of LLMs ICLR 2026
Bayesian optimization in large unstructured discrete spaces is often hindered by the computational cost of maximizing acquisition functions due to the absence of gradients. We propose a scalable alternative based on Thompson sampling that eliminates the need for acquisition function maximization by directly parameterizing the probability that a candidate yields the maximum reward. Our approach, Thompson Sampling via Fine-Tuning (ToSFiT) leverages the prior knowledge embedded in prompt-conditioned large language models, and incrementally adapts them toward the posterior. Theoretically, we derive a novel regret bound for a variational formulation of Thompson Sampling that matches the strong guarantees of its standard counterpart. Our analysis reveals the critical role of careful adaptation to the posterior probability of maximality -- a principle that underpins our ToSFiT algorithm. Empirically, we validate our method on three diverse tasks: FAQ response refinement, thermally stable protein search, and quantum circuit design. Within a collection of methods covering Bayesian optimization, reinforcement learning, and evolutionary search, ToSFiT exhibits both state-of-the-art sample efficiency and computational efficiency.
comment: accepted at ICLR 2026
♻ ☆ Bi-Anchor Interpolation Solver for Accelerating Generative Modeling
Flow Matching (FM) models have emerged as a leading paradigm for high-fidelity synthesis. However, their reliance on iterative Ordinary Differential Equation (ODE) solving creates a significant latency bottleneck. Existing solutions face a dichotomy: training-free solvers suffer from significant performance degradation at low Neural Function Evaluations (NFEs), while training-based one- or few-steps generation methods incur prohibitive training costs and lack plug-and-play versatility. To bridge this gap, we propose the Bi-Anchor Interpolation Solver (BA-solver). BA-solver retains the versatility of standard training-free solvers while achieving significant acceleration by introducing a lightweight SideNet (1-2% backbone size) alongside the frozen backbone. Specifically, our method is founded on two synergistic components: \textbf{1) Bidirectional Temporal Perception}, where the SideNet learns to approximate both future and historical velocities without retraining the heavy backbone; and 2) Bi-Anchor Velocity Integration, which utilizes the SideNet with two anchor velocities to efficiently approximate intermediate velocities for batched high-order integration. By utilizing the backbone to establish high-precision ``anchors'' and the SideNet to densify the trajectory, BA-solver enables large interval sizes with minimized error. Empirical results on ImageNet-256^2 demonstrate that BA-solver achieves generation quality comparable to 100+ NFEs Euler solver in just 10 NFEs and maintains high fidelity in as few as 5 NFEs, incurring negligible training costs. Furthermore, BA-solver ensures seamless integration with existing generative pipelines, facilitating downstream tasks such as image editing.
♻ ☆ Unlearning's Blind Spots: Over-Unlearning and Prototypical Relearning Attack
Machine unlearning (MU) aims to expunge a designated forget set from a trained model without costly retraining, yet the existing techniques overlook two critical blind spots: "over-unlearning" that deteriorates retained data near the forget set, and post-hoc "relearning" attacks that aim to resurrect the forgotten knowledge. Focusing on class-level unlearning, we first derive an over-unlearning metric, OU@epsilon, which quantifies collateral damage in regions proximal to the forget set, where over-unlearning mainly appears. Next, we expose an unforeseen relearning threat on MU, i.e., the Prototypical Relearning Attack, which exploits the per-class prototype of the forget class with just a few samples, and easily restores the pre-unlearning performance. To counter both blind spots in class-level unlearning, we introduce Spotter, a plug-and-play objective that combines (i) a masked knowledge-distillation penalty on the nearby region of forget classes to suppress OU@epsilon, and (ii) an intra-class dispersion loss that scatters forget-class embeddings, neutralizing Prototypical Relearning Attacks. Spotter achieves state-of-the-art results across CIFAR, TinyImageNet, and CASIA-WebFace datasets, offering a practical remedy to unlearning's blind spots.
comment: 9 pages, 5 figures, 3 tables
♻ ☆ TriPlay-RL: Tri-Role Self-Play Reinforcement Learning for LLM Safety Alignment
In recent years, safety risks associated with large language models have become increasingly prominent, highlighting the urgent need to mitigate the generation of toxic and harmful content. The mainstream paradigm for LLM safety alignment typically adopts a collaborative framework involving three roles: an attacker for adversarial prompt generation, a defender for safety defense, and an evaluator for response assessment. In this paper, we propose a closed-loop reinforcement learning framework called TriPlay-RL that enables iterative and co-improving collaboration among three roles with near-zero manual annotation. Experimental results show that the attacker preserves high output diversity while achieving a 20%-50% improvement in adversarial effectiveness; the defender attains 10%-30% gains in safety performance without degrading general reasoning capability; and the evaluator continuously refines its fine-grained judgment ability through iterations, accurately distinguishing unsafe responses, simple refusals, and useful guidance. Overall, our framework establishes an efficient and scalable paradigm for LLM safety alignment, enabling continuous co-evolution within a unified learning loop.
♻ ☆ CATArena: Evaluating Evolutionary Capabilities of Code Agents via Iterative Tournaments
Current evaluation for Large Language Model (LLM) code agents predominantly focus on generating functional code in single-turn scenarios, which fails to evaluate the agent's capability for continuous code optimization and multi-turn iterative development. To bridge this gap, we introduce CATArena, a framework designed to evaluate the evolutionary capabilities of code agents via iterative tournaments. Agents engage in multi-turn tournaments and continuously refine their code through self-reflection and peer-learning based on comprehensive execution feedback. For evaluation, we propose a dual-metric system to decouple static generation proficiency from evolutionary potential. Extensive experiments reveal that an agent's evolutionary potential is not strictly correlated with its initial proficiency. Our analysis further reveals that current agents struggle to concurrently leverage both peer-learning and self-reflection for effective performance gains. Furthermore, the results validate CATArena's high extensibility and resistance to variance tasks, establishing it as a continuous and reliable standard for assessing the evolutionary capability of LLM code agents.
♻ ☆ FESTA: Functionally Equivalent Sampling for Trust Assessment of Multimodal LLMs EMNLP
The accurate trust assessment of multimodal large language models (MLLMs) generated predictions, which can enable selective prediction and improve user confidence, is challenging due to the diverse multi-modal input paradigms. We propose Functionally Equivalent Sampling for Trust Assessment (FESTA), a multimodal input sampling technique for MLLMs, that generates an uncertainty measure based on the equivalent and complementary input samplings. The proposed task-preserving sampling approach for uncertainty quantification expands the input space to probe the consistency (through equivalent samples) and sensitivity (through complementary samples) of the model. FESTA uses only input-output access of the model (black-box), and does not require ground truth (unsupervised). The experiments are conducted with various off-the-shelf multi-modal LLMs, on both visual and audio reasoning tasks. The proposed FESTA uncertainty estimate achieves significant improvement (33.3% relative improvement for vision-LLMs and 29.6% relative improvement for audio-LLMs) in selective prediction performance, based on area-under-receiver-operating-characteristic curve (AUROC) metric in detecting mispredictions. The code implementation is open-sourced.
comment: Accepted in the Findings of EMNLP, 2025
♻ ☆ Are Agents Probabilistic Automata? A Trace-Based, Memory-Constrained Theory of Agentic AI
This paper studies standard controller architectures for agentic AI and derives automata-theoretic models of their interaction behavior via trace semantics and abstraction. We model an agent implementation as a finite control program augmented with explicit memory primitives (bounded buffers, a call stack, or read/write external memory) and a stochastic policy component (e.g., an LLM) that selects among architecturally permitted actions. Instead of equating the concrete agent with a deterministic acceptor, we treat the agent-environment closed loop as inducing a probability distribution over finite interaction traces. Given an abstraction function $\Abs$ from concrete configurations to a finite abstract state space, we obtain a probabilistic trace language and an abstract probabilistic transition model $M_{\Abs}$ suitable for probabilistic model checking. Imposing explicit, framework-auditable restrictions on memory access and control flow, we prove that the support of the resulting trace language is regular for bounded-memory controllers, context-free for strict call-return controllers, and recursively enumerable for controllers equipped with unbounded read/write memory. These correspondences allow the reuse of existing verification methods for finite-state and pushdown systems, and they delineate precisely when undecidability barriers arise. The probabilistic semantics leads to quantitative analyses such as: what is the probability of entering an unsafe abstract region, and how can we bound this probability in the presence of environment nondeterminism.
♻ ☆ BOTS: A Unified Framework for Bayesian Online Task Selection in LLM Reinforcement Finetuning ICLR 2026
Reinforcement finetuning (RFT) is a key technique for aligning Large Language Models (LLMs) with human preferences and enhancing reasoning, yet its effectiveness is highly sensitive to which tasks are explored during training. Uniform task sampling is inefficient, wasting computation on tasks that are either trivial or unsolvable, while existing task selection methods often suffer from high rollout costs, poor adaptivity, or incomplete evidence. We introduce BOTS, a unified framework for Bayesian Online Task Selection in LLM reinforcement finetuning. Grounded in Bayesian inference, BOTS adaptively maintains posterior estimates of task difficulty as the model evolves. It jointly incorporates explicit evidence from direct evaluations of selected tasks and implicit evidence inferred from these evaluations for unselected tasks, with Thompson sampling ensuring a principled balance between exploration and exploitation for task selection. To make implicit evidence practical, we instantiate it with an ultra-light interpolation-based plug-in that estimates difficulties of tasks without extra rollouts, adding negligible overhead. Empirically, across diverse domains and LLM scales, BOTS consistently improves data efficiency and performance over baselines and ablations, providing a practical and extensible solution for dynamic task selection in RFT. Code is available at https://github.com/agentscope-ai/Trinity-RFT/tree/main/examples/bots.
comment: Accepted as a conference paper at ICLR 2026
♻ ☆ Herb.jl: A Unifying Program Synthesis Library
Program synthesis -- the automatic generation of code given a specification -- is one of the most fundamental tasks in artificial intelligence (AI) and the dream of many programmers. Numerous synthesizers have been developed for program synthesis, offering different approaches to the exponentially growing program space. Although such state-of-the-art tools exist, reusing and adapting them remains tedious and time-consuming. We propose Herb.jl, a unifying program synthesis library written in Julia, to address these issues. Since current methods share similar building blocks, we aim to break down the underlying algorithms into extendable, reusable subcomponents. To demonstrate the benefits of using Herb.jl, we show how to implement a simple problem and grammar, and how to solve it with just a few lines of code.
♻ ☆ Warm Up Before You Train: Unlocking General Reasoning in Resource-Constrained Settings EMNLP 2025
Designing effective reasoning-capable LLMs typically requires training using Reinforcement Learning with Verifiable Rewards (RLVR) or distillation with carefully curated Long Chain of Thoughts (CoT), both of which depend heavily on extensive training data. This creates a major challenge when the amount of quality training data is scarce. We propose a sample-efficient, two-stage training strategy to develop reasoning LLMs under limited supervision. In the first stage, we "warm up" the model by distilling Long CoTs from a toy domain, namely, Knights \& Knaves (K\&K) logic puzzles to acquire general reasoning skills. In the second stage, we apply RLVR to the warmed-up model using a limited set of target-domain examples. Our experiments demonstrate that this two-phase approach offers several benefits: $(i)$ the warmup phase alone facilitates generalized reasoning, leading to performance improvements across a range of tasks, including MATH, HumanEval$^{+}$, and MMLU-Pro; $(ii)$ When both the base model and the warmed-up model are RLVR trained on the same small dataset ($\leq100$ examples), the warmed-up model consistently outperforms the base model; $(iii)$ Warming up before RLVR training allows a model to maintain cross-domain generalizability even after training on a specific domain; $(iv)$ Introducing warmup in the pipeline improves not only accuracy but also overall sample efficiency during RLVR training. The results in this paper highlight the promise of warmup for building robust reasoning LLMs in data-scarce environments.
comment: Accepted to EMNLP 2025
♻ ☆ CiMRAG: CiM-Aware Domain-Adaptive and Noise-Resilient Retrieval-Augmented Generation for Edge-Based LLMs ICASSP 2026
Personalized virtual assistants powered by large language models (LLMs) on edge devices are attracting growing attention, with Retrieval-Augmented Generation (RAG) emerging as a key method for personalization by retrieving relevant profile data and generating tailored responses. However, deploying RAG on edge devices faces efficiency hurdles due to the rapid growth of profile data, such as user-LLM interactions and recent updates. While Computing-in-Memory (CiM) architectures mitigate this bottleneck by eliminating data movement between memory and processing units via in-situ operations, they are susceptible to environmental noise that can degrade retrieval precision. This poses a critical issue in dynamic, multi-domain edge-based scenarios (e.g., travel, medicine, and law) where both accuracy and adaptability are paramount. To address these challenges, we propose Task-Oriented Noise-resilient Embedding Learning (TONEL), a framework that improves noise robustness and domain adaptability for RAG in noisy edge environments. TONEL employs a noise-aware projection model to learn task-specific embeddings compatible with CiM hardware constraints, enabling accurate retrieval under noisy conditions. Extensive experiments conducted on personalization benchmarks demonstrate the effectiveness and practicality of our methods relative to strong baselines, especially in task-specific noisy scenarios.
comment: Accepted by ICASSP 2026
♻ ☆ On the Provable Performance Guarantee of Efficient Reasoning Models
Large reasoning models (LRMs) have achieved remarkable progress in complex problem-solving tasks. Despite this success, LRMs typically suffer from high computational costs during deployment, highlighting a need for efficient inference. A practical direction of efficiency improvement is to switch the LRM between thinking and non-thinking modes dynamically. However, such approaches often introduce additional reasoning errors and lack statistical guarantees for the performance loss, which are critical for high-stakes applications. In this work, we propose Probably Approximately Correct (PAC) reasoning that controls the performance loss under the user-specified tolerance. Specifically, we construct an upper confidence bound on the performance loss and determine a threshold for switching to the non-thinking model. Theoretically, using the threshold to switch between the thinking and non-thinking modes ensures bounded performance loss in a distribution-free manner. Our comprehensive experiments on reasoning benchmarks show that the proposed method can save computational budgets and control the user-specified performance loss.
♻ ☆ Diffusion-Driven Synthetic Tabular Data Generation for Enhanced DoS/DDoS Attack Classification
Class imbalance refers to a situation where certain classes in a dataset have significantly fewer samples than oth- ers, leading to biased model performance. Class imbalance in network intrusion detection using Tabular Denoising Diffusion Probability Models (TabDDPM) for data augmentation is ad- dressed in this paper. Our approach synthesizes high-fidelity minority-class samples from the CIC-IDS2017 dataset through iterative denoising processes. For the minority classes that have smaller samples, synthetic samples were generated and merged with the original dataset. The augmented training data enables an ANN classifier to achieve near-perfect recall on previously underrepresented attack classes. These results establish diffusion models as an effective solution for tabular data imbalance in security domains, with potential applications in fraud detection and medical diagnostics.
comment: This preprint is being withdrawn due to substantial revisions in methodology and experimental results. A corrected and extended version will be submitted in the future
♻ ☆ Causal-Adapter: Taming Text-to-Image Diffusion for Faithful Counterfactual Generation
We present Causal-Adapter, a modular framework that adapts frozen text-to-image diffusion backbones for counterfactual image generation. Our method enables causal interventions on target attributes, consistently propagating their effects to causal dependents without altering the core identity of the image. In contrast to prior approaches that rely on prompt engineering without explicit causal structure, Causal-Adapter leverages structural causal modeling augmented with two attribute regularization strategies: prompt-aligned injection, which aligns causal attributes with textual embeddings for precise semantic control, and a conditioned token contrastive loss to disentangle attribute factors and reduce spurious correlations. Causal-Adapter achieves state-of-the-art performance on both synthetic and real-world datasets, with up to 91% MAE reduction on Pendulum for accurate attribute control and 87% FID reduction on ADNI for high-fidelity MRI image generation. These results show that our approach enables robust, generalizable counterfactual editing with faithful attribute modification and strong identity preservation.
comment: 8 pages, 26 figures
♻ ☆ ChartAnchor: Chart Grounding with Structural-Semantic Fidelity
Recent advances in multimodal large language models (MLLMs) highlight the need for benchmarks that rigorously evaluate structured chart comprehension. Chart grounding refers to the bidirectional alignment between a chart's visual appearance and its structured semantics. This task requires models to produce a symbolic specification that faithfully captures the chart's visual and structural intent, while also recovering the underlying tabular data with precise values and relationships. Chart grounding directly reflects a model's capabilities in numerical reasoning, multimodal alignment, and structural reconstruction, and has several important real-world applications. Existing benchmarks, constrained by narrow chart diversity, isolated tasks, and incomplete evaluation frameworks, fail to holistically assess grounding. To address this, we propose ChartAnchor, a comprehensive benchmark of 8k+ chart-table-code triples spanning 30 chart types drawn from diverse real-world and augmented sources. ChartAnchor introduces two complementary tasks: chart-to-code generation and controlled chart-to-table reconstruction, enabling cross-validation of visual and numerical fidelity. A multi-level evaluation framework integrates semantic validation, stylistic analysis, and perceptual metrics to assess both structural and content-level correctness. Extensive experiments on MLLMs reveal critical limitations in numerical precision and code synthesis, emphasizing the need for structured reasoning beyond surface-level perception. By unifying symbolic and data-driven grounding, ChartAnchor establishes a rigorous foundation for chart grounding, offering meaningful insights for advancing MLLMs in scientific, financial, and industrial domains.
♻ ☆ Inequality in Congestion Games with Learning Agents AAMAS 2026
Who benefits from expanding transport networks? While designed to improve mobility, such interventions can also create inequality. In this paper, we show that disparities arise not only from the structure of the network itself but also from differences in how commuters adapt to it. We model commuters as reinforcement learning agents who adapt their travel choices at different learning rates, reflecting unequal access to resources and information. To capture potential efficiency-fairness tradeoffs, we introduce the Price of Learning (PoL), a measure of inefficiency during learning. We analyze both a stylized network -- inspired in the well-known Braess's paradox, yet with two-source nodes -- and an abstraction of a real-world metro system (Amsterdam). Our simulations show that network expansions can simultaneously increase efficiency and amplify inequality, especially when faster learners disproportionately benefit from new routes before others adapt. These results highlight that transport policies must account not only for equilibrium outcomes but also for the heterogeneous ways commuters adapt, since both shape the balance between efficiency and fairness.
comment: Full version of the extended abstract version appearing in Proceedings of the 25th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2026)
♻ ☆ Effective LoRA Adapter Routing using Task Representations
Low-rank adaptation (LoRA) enables parameter efficient specialization of large language models (LLMs) through modular adapters, resulting in rapidly growing public adapter pools spanning diverse tasks. Effectively using these adapters requires routing: selecting and composing the appropriate adapters for a query. We introduce LORAUTER, a novel routing framework that selects and composes LoRA adapters using task representations rather than adapter characteristics. Unlike existing approaches that map queries directly to adapters, LORAUTER routes queries via task embeddings derived from small validation sets and does not require adapter training data. By operating at the task level, LORAUTER achieves efficient routing that scales with the number of tasks rather than the number of adapters. Experiments across multiple tasks show that LORAUTER consistently outperforms baseline routing approaches, matching Oracle performance (101.2%) when task-aligned adapters exist and achieving state-of-the-art results on unseen tasks (+5.2 points). We further demonstrate the robustness of LORAUTER to very large, noisy adapter pools by scaling it to over 1500 adapters.
♻ ☆ IRPM: Intergroup Relative Preference Modeling for Pointwise Generative Reward Models
Generative Reward Models (GRMs) have demonstrated strong performance in reward modeling, due to their interpretability and potential for refinement through reinforcement learning (RL). However, widely used pairwise GRMs create a computational bottleneck in reinforcement learning from human feedback (RLHF), when calibrating or aggregating preference signals over n candidates, often incurring O(n^2) pairwise judgments. To address this issue, we propose Intergroup Relative Preference Modeling (IRPM), an RL-based method that extends the Bradley--Terry preference-learning paradigm via intergroup comparisons to train pointwise GRMs from pairwise preference data. IRPM derives pointwise reward for each response by contrasting groups of chosen vs. rejected samples, enabling pointwise scores comparable across candidate sets and O(n) reward evaluation for a variable number of candidates during RL training, while preserving interpretability and scalability. Experiments show that IRPM achieves state-of-the-art performance among pointwise GRMs on RM-Bench, JudgeBench and RewardBench, and approaches the performance of leading pairwise GRMs. In addition, IRPM achieves substantial gains in post-training evaluations, demonstrating its effectiveness.
comment: Comments: Updated title for clarity; improved theoretical derivations; added experiments at additional parameter scales and more ablations; added experimental details in the appendix; updated author list (added five co-authors) to reflect contributions to experiments and writing
♻ ☆ Metis-SPECS: Decoupling Multimodal Learning via Self-distilled Preference-based Cold Start ICLR 2026
Reinforcement learning (RL) with verifiable rewards has recently catalyzed a wave of "MLLM-r1" approaches that bring RL to vision language models. Most representative paradigms begin with a cold start, typically employing supervised fine-tuning (SFT), to initialize the policy before RL. However, SFT-based cold start adopts the reasoning paradigm intertwined with task solution and output format, which may induce instruction-style overfitting, weakens out-of-distribution generalization, and ultimately affects downstream RL. We revisit the cold start along two views, its training method and data construction, and introduce the Generalization Factor (GF) coefficient to quantify the generalization capability under different methods. Our empirical study finds that preference-based training methods (e.g. DPO) generalizes better than SFT-based methods in cold start. Motivated by this, we propose SPECS-a Self-distilled, Preference-based Cold Start framework that decouples multimodal learning: (1) generates introspective preference data pairs via self-distillation, avoiding reliance on larger teachers or manual annotation; (2) performs preference-based training to learn, focusing on shallow, transferable surface-form criteria (format, structure, style) rather than memorizing content; and (3) hands off to RL with verifiable rewards for deep reasoning results. Experimental results across multiple multimodal benchmarks show that our decoupling learning framework yields consistent performance gains over strong baselines, improving MEGA-Bench by 4.1% and MathVista by 12.2%. Additional experiments indicate that SPECS contributes to reducing in-distribution "stuckness," improving exploration, stabilizing training, and raising the performance ceiling. Project Page: https://kwen-chen.github.io/SPECS-VL/
comment: Published as a conference paper at ICLR 2026!
♻ ☆ L$^3$: Large Lookup Layers
Modern sparse language models typically achieve sparsity through Mixture-of-Experts (MoE) layers, which dynamically route tokens to dense MLP "experts." However, dynamic hard routing has a number of drawbacks, such as potentially poor hardware efficiency and needing auxiliary losses for stable training. In contrast, the tokenizer embedding table, which is natively sparse, largely avoids these issues by selecting a single embedding per token at the cost of not having contextual information. In this work, we introduce the Large Lookup Layer (L$^3$), which unlocks a new axis of sparsity by generalizing embedding tables to model decoder layers. L$^3$ layers use static token-based routing to aggregate a set of learned embeddings per token in a context-dependent way, allowing the model to efficiently balance memory and compute by caching information in embeddings. L$^3$ has two main components: (1) a systems-friendly architecture that allows for fast training and CPU-offloaded inference with no overhead, and (2) an information-theoretic embedding allocation algorithm that effectively balances speed and quality. We empirically test L$^3$ by training transformers with up to 2.6B active parameters and find that L$^3$ strongly outperforms both dense models and iso-sparse MoEs in both language modeling and downstream tasks.
comment: Preprint
♻ ☆ DanQing: An Up-to-Date Large-Scale Chinese Vision-Language Pre-training Dataset
Vision-Language Pre-training (VLP) models have achieved remarkable success by leveraging large-scale image-text pairs. While English-centric models like CLIP and SigLIP benefit from massive datasets (e.g., LAION-400M), the development of Chinese VLP remains bottlenecked by the lack of high-quality, large-scale open-source data. In this paper, we present DanQing, a large-scale Chinese cross-modal dataset containing 100 million high-quality image-text pairs curated from Common Crawl. To ensure superior data quality, we develop an effective systematic pipeline comprising data source selection, text refinement, visual diversification, and cross-modal cross-batch filtering, thereby effectively mitigating the intrinsic noise prevalent in web data. Notably, DanQing incorporates data from 2024-2025, enabling models to capture contemporary semantic trends and emerging concepts. Extensive experiments via continued pretraining of SigLIP2 models demonstrate that DanQing consistently outperforms existing Chinese datasets across diverse downstream tasks, including zero-shot classification, cross-modal retrieval, and Chinese-centric large multimodal model tasks. Furthermore, in-depth analysis of DanQing reveals that it exhibits a more balanced semantic distribution and superior scaling capability compared to existing datasets. To facilitate further research in Chinese vision-language pre-training, we will open-source the DanQing dataset under the Creative Common CC-BY 4.0 license.
comment: 19 pages, 11 figures, 7 tables
♻ ☆ Generalizable Multimodal Large Language Model Editing via Invariant Trajectory Learning
Knowledge editing emerges as a crucial technique for efficiently correcting incorrect or outdated knowledge in large language models (LLM). Existing editing methods rely on a rigid mapping from parameter or module modifications to output, which causes the generalization limitation in Multimodal LLM (MLLM). In this paper, we reformulate MLLM editing as an out-of-distribution (OOD) generalization problem, where the goal is to discern semantic shift with factual shift and thus achieve robust editing among diverse cross-modal prompting. The key challenge of this OOD problem lies in identifying invariant causal trajectories that generalize accurately while suppressing spurious correlations. To address it, we propose ODEdit, a plug-and-play invariant learning based framework that optimizes the tripartite OOD risk objective to simultaneously enhance editing reliability, locality, and generality.We further introduce an edit trajectory invariant learning method, which integrates a total variation penalty into the risk minimization objective to stabilize edit trajectories against environmental variations. Theoretical analysis and extensive experiments demonstrate the effectiveness of ODEdit.
♻ ☆ Thinking Machines: Mathematical Reasoning in the Age of LLMs
Large Language Models (LLMs) have demonstrated impressive capabilities in structured reasoning and symbolic tasks, with coding emerging as a particularly successful application. This progress has naturally motivated efforts to extend these models to mathematics, both in its traditional form, expressed through natural-style mathematical language, and in its formalized counterpart, expressed in a symbolic syntax suitable for automatic verification. Yet, despite apparent parallels between programming and proof construction, advances in formalized mathematics have proven significantly more challenging. This gap raises fundamental questions about the nature of reasoning in current LLM architectures, the role of supervision and feedback, and the extent to which such models maintain an internal notion of computational or deductive state. In this article, we review the current state-of-the-art in mathematical reasoning with LLMs, focusing on recent models and benchmarks. We explore three central issues at the intersection of machine learning and mathematical cognition: (i) the trade-offs between traditional and formalized mathematics as training and evaluation domains; (ii) the structural and methodological reasons why proof synthesis remains more brittle than code generation; and (iii) whether LLMs genuinely represent or merely emulate a notion of evolving logical state. Our goal is not to draw rigid distinctions but to clarify the present boundaries of these systems and outline promising directions for their extension.
♻ ☆ Thoughtbubbles: an Unsupervised Method for Parallel Thinking in Latent Space
Current approaches for scaling inference-time compute in transformers train them to emit explicit chain-of-thought tokens before producing an answer. While these methods are powerful, they are limited because they cannot be applied during pretraining and rely solely on serially-generated, natural-language verbalization. In this work, we propose Thoughtbubbles, a transformer variant that natively performs parallel adaptive computation in latent space by learning to fork or delete residual streams. Thus, tokens requiring more computation can form a "bubble" of cloned residuals in the middle of the network. Crucially, this behavior is learned during pretraining with only language modeling loss. Using half of the training budget, Thoughtbubbles outperforms the perplexity and zero-shot evals of both standard decoder LMs and those using non-adaptive parallel computation approaches. These results hold across model sizes from 150M to 1.9B. Thoughtbubbles achieves competitive GSM8K results using half of the baseline's token budget. The implicit nature of our method enables models to begin learning adaptive computation at pretraining time, paving the way to unified train-time and test-time scaling behaviors.
♻ ☆ Diff-MN: Diffusion Parameterized MoE-NCDE for Continuous Time Series Generation with Irregular Observations
Time series generation (TSG) is widely used across domains, yet most existing methods assume regular sampling and fixed output resolutions. These assumptions are often violated in practice, where observations are irregular and sparse, while downstream applications require continuous and high-resolution TS. Although Neural Controlled Differential Equation (NCDE) is promising for modeling irregular TS, it is constrained by a single dynamics function, tightly coupled optimization, and limited ability to adapt learned dynamics to newly generated samples from the generative model. We propose Diff-MN, a continuous TSG framework that enhances NCDE with a Mixture-of-Experts (MoE) dynamics function and a decoupled architectural design for dynamics-focused training. To further enable NCDE to generalize to newly generated samples, Diff-MN employs a diffusion model to parameterize the NCDE temporal dynamics parameters (MoE weights), i.e., jointly learn the distribution of TS data and MoE weights. This design allows sample-specific NCDE parameters to be generated for continuous TS generation. Experiments on ten public and synthetic datasets demonstrate that Diff-MN consistently outperforms strong baselines on both irregular-to-regular and irregular-to-continuous TSG tasks. The code is available at the link https://github.com/microsoft/TimeCraft/tree/main/Diff-MN.
comment: 24 pages
♻ ☆ Feature Space Topology Control via Hopkins Loss IEEE
Feature space topology refers to the organization of samples within the feature space. Modifying this topology can be beneficial in machine learning applications, including dimensionality reduction, generative modeling, transfer learning, and robustness to adversarial attacks. This paper introduces a novel loss function, Hopkins loss, which leverages the Hopkins statistic to enforce a desired feature space topology, which is in contrast to existing topology-related methods that aim to preserve input feature topology. We evaluate the effectiveness of Hopkins loss on speech, text, and image data in two scenarios: classification and dimensionality reduction using nonlinear bottleneck autoencoders. Our experiments show that integrating Hopkins loss into classification or dimensionality reduction has only a small impact on classification performance while providing the benefit of modifying feature topology.
comment: Accepted for publication in Proc. IEEE ICTAI 2025, Athens, Greece
♻ ☆ FLM-Audio: Natural Monologues Improves Native Full-Duplex Chatbots via Dual Training
Full-duplex dialog models aim to listen and speak simultaneously, delivering rapid responses to dynamic user input. Among different solutions to full-duplexity, a native solution merges multiple channels in each time step, achieving the lowest latency. However, prevailing designs break down the textual monologue sentences for word-level alignment with audio streams, which degrades language modeling abilities. To help address this issue, we introduce "contiguous monologues", which are composed by continuous sentences and "waiting" intervals, mimicking human-like cognitive behavior in dialogs. We find a proper training paradigm to be critical for semantically aligning contiguous monologues with audio. To this end, we develop a "dual" training paradigm that alternates the position of the monologues, either leading or trailing the audio, across different training stages. A combination of our contiguous monologue and dual training strategy is applied in developing FLM-Audio, our 7B spoken dialog chatbot with native full-duplexity. As confirmed by experimental results, FLM-Audio achieves superior response qualities and chatting experiences while requiring significantly less training data.
♻ ☆ Experience-Evolving Multi-Turn Tool-Use Agent with Hybrid Episodic-Procedural Memory
As intents unfold and environments change, multi-turn agents face continuously shifting decision contexts. Although reusing past experience is intuitively appealing, existing approaches remain limited: full trajectories are often too context-specific to transfer, while tool-level reuse ignores the surrounding context and environment. In this paper, we introduce a hybrid episodic-procedural memory strategy (H-EPM) that enables experience-induced self-evolution of multi-turn tool-use policies by adaptively reusing partially overlapping successful experiences during both inference and training. Inspired by human episodic-procedural integration, we construct a tool graph from accumulated trajectories, where recurring tool-to-tool dependencies capture procedural routines and each edge is augmented with compact episodic summaries of relevant context. At inference time, the agent dynamically balances episodic recall for contextual reasoning with procedural execution for routine steps. Beyond inference, H-EPM introduces a memory-guided reinforcement learning paradigm that directly addresses a core challenge in multi-turn agent reinforcement learning, namely ineffective exploration over long trajectories. By biasing exploration toward historically successful tool transitions, H-EPM learns a stronger policy that generalizes at inference time without relying on domain-specific experience collection. Experiments show that H-EPM consistently delivers substantial inference-time gains over strong baselines across multi-turn tool-use benchmarks, reaching improvements of up to fifty percent. It also improves reinforcement learning policy performance, achieving gains of up to forty percent on out-of-distribution tasks.
♻ ☆ Collaborative Belief Reasoning with LLMs for Efficient Multi-Agent Collaboration
Effective real-world multi-agent collaboration requires not only accurate planning but also the ability to reason about collaborators' intents--a crucial capability for avoiding miscoordination and redundant communication under partial observable environments. Due to their strong planning and reasoning capabilities, large language models (LLMs) have emerged as promising autonomous agents for collaborative task solving. However, existing collaboration frameworks for LLMs overlook their reasoning potential for dynamic intent inference, and thus produce inconsistent plans and redundant communication, reducing collaboration efficiency. To bridge this gap, we propose CoBel-World, a novel framework that equips LLM agents with a Collaborative Belief World--an internal representation jointly modeling the physical environment and collaborators' mental states. CoBel-World enables agents to parse external open-world knowledge into structured beliefs via a symbolic belief representation module, and perform zero-shot Bayesian-style belief updates through LLM reasoning. This allows agents to proactively detect potential miscoordination (e.g., conflicting plans) and communicate adaptively. Evaluated on challenging embodied benchmarks (i.e., TDW-MAT and C-WAH), CoBel-World significantly reduces communication costs by 64-79% and improves task completion efficiency by 4-28% compared to the strongest baseline. Our results show that explicit, intent-aware belief modeling is essential for efficient and human-like collaboration in LLM-based multi-agent systems.
♻ ☆ A spatiotemporal fused network considering electrode spatial topology and time-window transition for MDD detection
Recently, researchers have begun to experiment with deep learning-based methods for detecting major depressive disor-der (MDD) using electroencephalogram (EEG) signals in search of a more objective means of diagnosis. However, exist-ing spatiotemporal feature extraction methods only consider the functional correlation between multiple electrodes and temporal correlation of EEG signals, ignoring the spatial posi-tion connection information between electrodes and the conti-nuity between time windows, which reduces the model's fea-ture extraction capabilities. To address this issue, a Spatio-temporal fused network for MDD detection with Electrode spatial Topology and adjacent TIME-window transition in-formation (SET-TIME) is proposed in this study. SET-TIME is composed by a common feature extractor, a secondary time-correlation feature extractor, and a domain adaptation (DA) module, in which the former extractor is used to obtain the temporal and spatial features, and the latter extractor can mine the correlation between multiple time windows, and the DA module is adopted to enhance cross-subject detection ca-pability. The experimental results of 10-fold cross-validation show that the proposed SET-TIME method outperforms the state-of-the-art (SOTA) method by achieving MDD detection accuracies of 92.00% and 94.00% on the public datasets PRED+CT and MODMA, respectively. Ablation experiments demonstrate the effectiveness of the multiple modules in SET-TIME, which assist in MDD detection by exploring the intrin-sic spatiotemporal information of EEG signals.
comment: 21pages, 8 figures
♻ ☆ RPO:Reinforcement Fine-Tuning with Partial Reasoning Optimization
Within the domain of large language models, reinforcement fine-tuning algorithms necessitate the generation of a complete reasoning trajectory beginning from the input query, which incurs significant computational overhead during the rollout phase of training. To address this issue, we analyze the impact of different segments of the reasoning path on the correctness of the final result and, based on these insights, propose Reinforcement Fine-Tuning with Partial Reasoning Optimization (RPO), a plug-and-play reinforcement fine-tuning algorithm. Unlike traditional reinforcement fine-tuning algorithms that generate full reasoning paths, RPO trains the model by generating suffixes of the reasoning path using experience cache. During the rollout phase of training, RPO reduces token generation in this phase by approximately 95%, greatly lowering the theoretical time overhead. Compared with full-path reinforcement fine-tuning algorithms, RPO reduces the training time of the 1.5B model by 90% and the 7B model by 72%. At the same time, it can be integrated with typical algorithms such as GRPO and DAPO, enabling them to achieve training acceleration while maintaining performance comparable to the original algorithms. Our code is open-sourced at https://github.com/yhz5613813/RPO.
♻ ☆ Leveraging AI Agents for Autonomous Networks: A Reference Architecture and Empirical Studies IEEE
The evolution toward Level 4 (L4) Autonomous Networks (AN) represents a strategic inflection point in telecommunications, where networks must transcend reactive automation to achieve genuine cognitive capabilities--fulfilling TM Forum's vision of self-configuring, self-healing, and self-optimizing systems that deliver zero-wait, zero-touch, and zero-fault services. This work bridges the gap between architectural theory and operational reality by implementing Joseph Sifakis's AN Agent reference architecture in a functional cognitive system, deploying coordinated proactive-reactive runtimes driven by hybrid knowledge representation. Through an empirical case study of a Radio Access Network (RAN) Link Adaptation (LA) Agent, we validate this framework's transformative potential: demonstrating sub-10 ms real-time control in 5G NR sub-6 GHz while achieving 4% higher downlink throughput than Outer Loop Link Adaptation (OLLA) algorithms and 85% Block Error Rate (BLER) reduction for ultra-reliable services through dynamic Modulation and Coding Scheme (MCS) optimization. These improvements confirm the architecture's viability in overcoming traditional autonomy barriers and advancing critical L4-enabling capabilities toward next-generation objectives.
comment: 7 pages, 5 figures. This manuscript has been accepted by IEEE Communication Magazine
♻ ☆ Spattack: Subgroup Poisoning Attacks on Federated Recommender Systems WWW 2026
Federated recommender systems (FedRec) have emerged as a promising approach to provide personalized recommendations while protecting user privacy. However, recent studies have shown their vulnerability to poisoning attacks, where malicious clients inject crafted gradients to promote target items to benign users. Existing attacks typically target the full user group, which compromises stealth and increases detection risk. In contrast, real-world adversaries may prefer to target specific user subgroups, such as promoting health supplements to older individuals, to maximize effectiveness while preserving stealth. Motivated by this gap, we introduce Spattack, the first poisoning attack designed to manipulate recommendations for specific user subgroups in federated settings. Spattack adopts an approximate-and-promote paradigm, which approximates user embeddings of target and non-target subgroups and then promotes target items to the target subgroup. We further reveal a trade-off between strong attack performance on the target subgroup and limited impact on the non-target subgroup. To achieve a better trade-off, we propose enhanced approximation and promotion strategies. For approximation, we push embeddings of different subgroups apart via contrastive learning and augment the target subgroup's relevant item set through clustering. For promotion, we align embeddings of target items and relevant items to strengthen their semantic connections, together with an adaptive weighting strategy to balance effects across subgroups. Experiments on three real-world datasets demonstrate that Spattack achieves strong attack performance on the target subgroup with minimal impact on non-target users, even when only 0.1% of users are malicious. Moreover, Spattack maintains competitive recommendation performance and shows strong resilience against mainstream defenses.
comment: Accepted by WWW 2026
♻ ☆ EgoMem: Lifelong Memory Agent for Full-duplex Omnimodal Models
We introduce EgoMem, the first lifelong memory agent tailored for full-duplex models that process real-time omnimodal streams. EgoMem enables real-time models to recognize multiple users directly from raw audiovisual streams, to provide personalized response, and to maintain long-term knowledge of users' facts, preferences, and social relationships extracted from audiovisual history. EgoMem operates with three asynchronous processes: (i) a retrieval process that dynamically identifies user via face and voice, and gathers relevant context from a long-term memory; (ii) an omnimodal dialog process that generates personalized audio responses based on the retrieved context; and (iii) a memory management process that automatically detects dialog boundaries from omnimodal streams, and extracts necessary information to update the long-term memory. Unlike existing memory agents for LLMs, EgoMem relies entirely on raw audiovisual streams, making it especially suitable for lifelong, real-time, and embodied scenarios. Experimental results demonstrate that EgoMem's retrieval and memory management modules achieve over 95% accuracy on the test set. When integrated with a fine-tuned RoboEgo omnimodal chatbot, the system achieves fact-consistency scores above 87% in real-time personalized dialogs, establishing a strong baseline for future research.
♻ ☆ Towards Atoms of Large Language Models
The fundamental representational units (FRUs) of large language models (LLMs) remain undefined, limiting further understanding of their underlying mechanisms. In this paper, we introduce Atom Theory to systematically define, evaluate, and identify such FRUs, which we term atoms. Building on the atomic inner product (AIP), a non-Euclidean metric that captures the underlying geometry of LLM representations, we formally define atoms and propose two key criteria for ideal atoms: faithfulness ($R^2$) and stability ($q^*$). We further prove that atoms are identifiable under threshold-activated sparse autoencoders (TSAEs). Empirically, we uncover a pervasive representation shift in LLMs and demonstrate that the AIP corrects this shift to capture the underlying representational geometry, thereby grounding Atom Theory. We find that two widely used units, neurons and features, fail to qualify as ideal atoms: neurons are faithful ($R^2=1$) but unstable ($q^*=0.5\%$), while features are more stable ($q^*=68.2\%$) but unfaithful ($R^2=48.8\%$). To find atoms of LLMs, leveraging atom identifiability under TSAEs, we show via large-scale experiments that reliable atom identification occurs only when the TSAE capacity matches the data scale. Guided by this insight, we identify FRUs with near-perfect faithfulness ($R^2=99.9\%$) and stability ($q^*=99.8\%$) across layers of Gemma2-2B, Gemma2-9B, and Llama3.1-8B, satisfying the criteria of ideal atoms statistically. Further analysis confirms that these atoms align with theoretical expectations and exhibit substantially higher monosemanticity. Overall, we propose and validate Atom Theory as a foundation for understanding the internal representations of LLMs. Code available at https://github.com/ChenhuiHu/towards_atoms.
♻ ☆ AlignGemini: Generalizable AI-Generated Image Detection Through Task-Model Alignment
Vision Language Models (VLMs) are increasingly used for detecting AI-generated images (AIGI). However, converting VLMs into reliable detectors is resource-intensive, and the resulting models often suffer from hallucination and poor generalization. To investigate the root cause, we conduct an empirical analysis and identify two consistent behaviors. First, fine-tuning VLMs with semantic supervision improves semantic discrimination and generalizes well to unseen data. Second, fine-tuning VLMs with pixel-artifact supervision leads to weak generalization. These findings reveal a fundamental task-model misalignment. VLMs are optimized for high-level semantic reasoning and lack inductive bias toward low-level pixel artifacts. In contrast, conventional vision models effectively capture pixel-level artifacts but are less sensitive to semantic inconsistencies. This indicates that different models are naturally suited to different subtasks. Based on this insight, we formulate AIGI detection as two orthogonal subtasks: semantic consistency checking and pixel-artifact detection. Neglecting either subtask leads to systematic detection failures. We further propose the Task-Model Alignment principle and instantiate it in a two-branch detector, AlignGemini. The detector combines a VLM trained with pure semantic supervision and a vision model trained with pure pixel-artifact supervision. By enforcing clear specialization, each branch captures complementary cues. Experiments on in-the-wild benchmarks show that AlignGemini improves average accuracy by 9.5 percent using simplified training data. These results demonstrate that task-model alignment is an effective principle for generalizable AIGI detection.
♻ ☆ Framing Political Bias in Multilingual LLMs Across Pakistani Languages
Large Language Models (LLMs) increasingly shape public discourse, yet most evaluations of political and economic bias have focused on high-resource, Western languages and contexts. This leaves critical blind spots in low-resource, multilingual regions such as Pakistan, where linguistic identity is closely tied to political, religious, and regional ideologies. We present a systematic evaluation of political bias in 13 state-of-the-art LLMs across five Pakistani languages: Urdu, Punjabi, Sindhi, Pashto, and Balochi. Our framework integrates a culturally adapted Political Compass Test (PCT) with multi-level framing analysis, capturing both ideological stance (economic/social axes) and stylistic framing (content, tone, emphasis). Prompts are aligned with 11 socio-political themes specific to the Pakistani context. Results show that while LLMs predominantly reflect liberal-left orientations consistent with Western training data, they exhibit more authoritarian framing in regional languages, highlighting language-conditioned ideological modulation. We also identify consistent model-specific bias patterns across languages. These findings show the need for culturally grounded, multilingual bias auditing frameworks in global NLP.
comment: Preprint
♻ ☆ Geometric Dynamics of Agentic Loops in Large Language Models
Iterative LLM systems(self-refinement, chain-of-thought, autonomous agents) are increasingly deployed, yet their temporal dynamics remain uncharacterized. Prior work evaluates task performance at convergence but ignores the trajectory: how does semantic content evolve across iterations? Does it stabilize, drift, or oscillate? Without answering these questions, we cannot predict system behavior, guarantee stability, or systematically design iterative architectures. We formalize agentic loops as discrete dynamical systems in semantic space. Borrowing from dynamical systems theory, we define trajectories, attractors and dynamical regimes for recursive LLM transformations, providing rigorous geometric definitions adapted to this setting. Our framework reveals that agentic loops exhibit classifiable dynamics: contractive (convergence toward stable semantic attractors), oscillatory (cycling among attractors), or exploratory (unbounded divergence). Experiments on singular loops validate the framework. Iterative paraphrasing produces contractive dynamics with measurable attractor formation and decreasing dispersion. Iterative negation produces exploratory dynamics with no stable structure. Crucially, prompt design directly controls the dynamical regime - the same model exhibits fundamentally different geometric behaviors depending solely on the transformation applied. This work establishes that iterative LLM dynamics are predictable and controllable, opening new directions for stability analysis, trajectory forecasting, and principled design of composite loops that balance convergence and exploration.
♻ ☆ AACR-Bench: Evaluating Automatic Code Review with Holistic Repository-Level Context
High-quality evaluation benchmarks are pivotal for deploying Large Language Models (LLMs) in Automated Code Review (ACR). However, existing benchmarks suffer from two critical limitations: first, the lack of multi-language support in repository-level contexts, which restricts the generalizability of evaluation results; second, the reliance on noisy, incomplete ground truth derived from raw Pull Request (PR) comments, which constrains the scope of issue detection. To address these challenges, we introduce AACR-Bench a comprehensive benchmark that provides full cross-file context across multiple programming languages. Unlike traditional datasets, AACR-Bench employs an "AI-assisted, Expert-verified" annotation pipeline to uncover latent defects often overlooked in original PRs, resulting in a 285% increase in defect coverage. Extensive evaluations of mainstream LLMs on AACR-Bench reveal that previous assessments may have either misjudged or only partially captured model capabilities due to data limitations. Our work establishes a more rigorous standard for ACR evaluation and offers new insights on LLM based ACR, i.e., the granularity/level of context and the choice of retrieval methods significantly impact ACR performance, and this influence varies depending on the LLM, programming language, and the LLM usage paradigm e.g., whether an Agent architecture is employed. The code, data, and other artifacts of our evaluation set are available at https://github.com/alibaba/aacr-bench .
♻ ☆ Rethinking the Sampling Criteria in Reinforcement Learning for LLM Reasoning: A Competence-Difficulty Alignment Perspective
Reinforcement learning exhibits potential in enhancing the reasoning abilities of large language models, yet it is hard to scale for the low sample efficiency during the rollout phase. Existing methods attempt to improve efficiency by scheduling problems based on problem difficulties. However, these approaches suffer from unstable and biased estimations of problem difficulty and fail to capture the alignment between model competence and problem difficulty in RL training, leading to suboptimal results. To tackle these limitations, this paper introduces $\textbf{C}$ompetence-$\textbf{D}$ifficulty $\textbf{A}$lignment $\textbf{S}$ampling ($\textbf{CDAS}$), which enables accurate and stable estimation of problem difficulties by aggregating historical performance discrepancies of problems. Then the model competence is quantified to adaptively select problems whose difficulty is in alignment with the model's current competence using a fixed-point system. Experimental results across a range of challenging mathematical benchmarks show that CDAS achieves great improvements in both accuracy and efficiency. CDAS attains the highest average accuracy against baselines and exhibits significant speed advantages compared to Dynamic Sampling, a competitive strategy in DAPO, which is 2.33 times slower than CDAS.
♻ ☆ Dual Mechanisms of Value Expression: Intrinsic vs. Prompted Values in Large Language Models
Large language models can express values in two main ways: (1) intrinsic expression, reflecting the model's inherent values learned during training, and (2) prompted expression, elicited by explicit prompts. Given their widespread use in value alignment, it is paramount to clearly understand their underlying mechanisms, particularly whether they mostly overlap (as one might expect) or rely on distinct mechanisms, but this remains largely understudied. We analyze this at the mechanistic level using two approaches: (1) value vectors, feature directions representing value mechanisms extracted from the residual stream, and (2) value neurons, MLP neurons that contribute to value vectors. We demonstrate that intrinsic and prompted value mechanisms partly share common components crucial for inducing value expression, generalizing across languages and reconstructing theoretical inter-value correlations in the model's internal representations. Yet, as these mechanisms also possess unique elements that fulfill distinct roles, they lead to different degrees of response diversity (intrinsic > prompted) and value steerability (prompted > intrinsic). In particular, components unique to the intrinsic mechanism promote lexical diversity in responses, whereas those specific to the prompted mechanism strengthen instruction following, taking effect even in distant tasks like jailbreaking.
♻ ☆ Vulnerability of LLMs' Belief Systems? LLMs Belief Resistance Check Through Strategic Persuasive Conversation Interventions
Large Language Models (LLMs) are increasingly employed in various question-answering tasks. However, recent studies showcase that LLMs are susceptible to persuasion and could adopt counterfactual beliefs. We present a systematic evaluation of LLM susceptibility to persuasion under the Source--Message--Channel--Receiver (SMCR) communication framework. Across five mainstream Large Language Models (LLMs) and three domains (factual knowledge, medical QA, and social bias), we analyze how different persuasive strategies influence belief stability over multiple interaction turns. We further examine whether meta-cognition prompting (i.e., eliciting self-reported confidence) affects resistance to persuasion. Results show that the smallest model (Llama 3.2-3B) exhibits extreme compliance, with 82.5% of belief changes occurring at the first persuasive turn (average end turn of 1.1--1.4). Contrary to expectations, meta-cognition prompting increases vulnerability by accelerating belief erosion rather than enhancing robustness. Finally, we evaluate adversarial fine-tuning as a defense. While GPT-4o-mini achieves near-complete robustness (98.6%) and Mistral~7B improves substantially (35.7% $\rightarrow$ 79.3%), Llama models remain highly susceptible (<14%) even when fine-tuned on their own failure cases. Together, these findings highlight substantial model-dependent limits of current robustness interventions and offer guidance for developing more trustworthy LLMs.
comment: Updated Table 12 with the detailed calculation approach and its related statements
♻ ☆ An Analysis of Concept Bottleneck Models: Measuring, Understanding, and Mitigating the Impact of Noisy Annotations NeurIPS 2025
Concept bottleneck models (CBMs) ensure interpretability by decomposing predictions into human interpretable concepts. Yet the annotations used for training CBMs that enable this transparency are often noisy, and the impact of such corruption is not well understood. In this study, we present the first systematic study of noise in CBMs and show that even moderate corruption simultaneously impairs prediction performance, interpretability, and the intervention effectiveness. Our analysis identifies a susceptible subset of concepts whose accuracy declines far more than the average gap between noisy and clean supervision and whose corruption accounts for most performance loss. To mitigate this vulnerability we propose a two-stage framework. During training, sharpness-aware minimization stabilizes the learning of noise-sensitive concepts. During inference, where clean labels are unavailable, we rank concepts by predictive entropy and correct only the most uncertain ones, using uncertainty as a proxy for susceptibility. Theoretical analysis and extensive ablations elucidate why sharpness-aware training confers robustness and why uncertainty reliably identifies susceptible concepts, providing a principled basis that preserves both interpretability and resilience in the presence of noise.
comment: NeurIPS 2025
♻ ☆ A Pre-training Framework for Relational Data with Information-theoretic Principles NeurIPS'25
Relational databases underpin critical infrastructure across a wide range of domains, yet the design of generalizable pre-training strategies for learning from relational databases remains an open challenge due to task heterogeneity. Specifically, there exist many possible downstream tasks, as tasks are defined based on relational schema graphs, temporal dependencies, and SQL-defined label logics. An effective pre-training framework is desired to take these factors into account in order to obtain task-aware representations. By incorporating knowledge of the underlying distribution that drives label generation, downstream tasks can benefit from relevant side-channel information. To bridge this gap, we introduce Task Vector Estimation (TVE), a novel pre-training framework that constructs predictive supervisory signals via set-based aggregation over schema traversal graphs, explicitly modeling next-window relational dynamics. We formalize our approach through an information-theoretic lens, demonstrating that task-informed representations retain more relevant signals than those obtained without task priors. Extensive experiments on the RelBench benchmark show that TVE consistently outperforms traditional pre-training baselines. Our findings advocate for pre-training objectives that encode task heterogeneity and temporal structure as design principles for predictive modeling on relational databases. Our code is publicly available at https://github.com/quang-truong/task-vector-estimation.
comment: NeurIPS'25
♻ ☆ Learning to Pose Problems: Reasoning-Driven and Solver-Adaptive Data Synthesis for Large Reasoning Models
Data synthesis for training large reasoning models offers a scalable alternative to limited, human-curated datasets, enabling the creation of high-quality data. However, existing approaches face several challenges: (i) indiscriminate generation that ignores the solver's ability and yields low-value problems, or reliance on complex data pipelines to balance problem difficulty; and (ii) a lack of reasoning in problem generation, leading to shallow problem variants. In this paper, we develop a problem generator that reasons explicitly to plan problem directions before synthesis and adapts difficulty to the solver's ability. Specifically, we construct related problem pairs and augment them with intermediate problem-design CoT produced by a reasoning model. These data are used to bootstrap problem-design strategies in the generator. Then, we treat the solver's feedback on synthetic problems as a reward signal, enabling the generator to calibrate difficulty and produce complementary problems near the edge of the solver's competence. Extensive experiments on 10 mathematical and general reasoning benchmarks show that our proposed framework achieves a cumulative average improvement of 3.4%, demonstrating robust generalization across both language and vision-language models.
♻ ☆ Softplus Attention with Re-weighting Boosts Length Extrapolation in Large Language Models ICML 2026
Large language models have achieved remarkable success in recent years, primarily due to self-attention. However, traditional Softmax attention suffers from numerical instability and reduced performance as the number of inference tokens increases. This work addresses these issues by proposing a new design principle for attention, viewing it as a two-stage process. The first stage (normalisation) refines standard attention by replacing Softmax with the more numerically stable Softplus followed by $l_{1}$-normalisation. Furthermore, we introduce a dynamic scale factor based on invariance entropy. We show that this novel attention mechanism outperforms conventional Softmax attention, and state-of-the-art Softmax-free alternatives. Our second proposal is to introduce a second processing stage (sharpening) which consists of a re-weighting mechanism that amplifies significant attentional weights while diminishing weaker ones. This enables the model to concentrate more effectively on relevant tokens, mitigating the attention sink phenomenon, and fundamentally improving length extrapolation. This novel, two-stage, replacement for self-attention is shown to ensure numerical stability and dramatically improve length extrapolation, maintaining a nearly constant validation loss at 16$\times$ the training length while achieving superior results on challenging long-context retrieval tasks and downstream benchmarks. Furthermore, symbolic regression experiments demonstrate that our method enables models to recover Newton's gravitational law from orbital trajectory sequences, providing evidence that appropriate attention mechanisms are crucial for foundation models to develop genuine physical world models.
comment: 32 pages for ICML 2026
♻ ☆ Evaluating from Benign to Dynamic Adversarial: A Squid Game for Large Language Models
The potential data contamination issue in contemporary large language models (LLMs) benchmarks presents a fundamental challenge to establishing trustworthy evaluation frameworks. Meanwhile, they predominantly assume benign, resource-rich settings, leaving the behavior of LLMs under pressure unexplored. In this paper, we introduce \textsc{Squid Game}, a dynamic and adversarial evaluation environment with resource-constrained and asymmetric information settings elaborated to evaluate LLMs through interactive gameplay against other LLM opponents. Squid Game consists of six elimination-style levels, focusing on multi-faceted abilities, including instruction-following, code, reasoning, planning, and safety alignment. We evaluate over 50 LLMs on Squid Game, presenting the largest behavioral evaluation study of general LLMs on dynamic adversarial scenarios. We observe a clear generational phase transition in performance in the same model lineage and find evidence that some models resort to speculative shortcuts to win the game, indicating the possibility of higher-level evaluation paradigm contamination in static benchmarks. We also compare prominent LLM benchmarks and \textsc{Squid Game}, highlighting that dynamic evaluation can serve as a complementary part for static evaluations. Project page: https://github.com/zijianchen98/LLM_Squid_Game.
comment: 31 pages, 15 figures
♻ ☆ VideoNSA: Native Sparse Attention Scales Video Understanding ICLR 2026
Video understanding in multimodal language models remains limited by context length: models often miss key transition frames and struggle to maintain coherence across long time scales. To address this, we adapt Native Sparse Attention (NSA) to video-language models. Our method, VideoNSA, adapts Qwen2.5-VL through end-to-end training on a 216K video instruction dataset. We employ a hardware-aware hybrid approach to attention, preserving dense attention for text, while employing NSA for video. Compared to token-compression and training-free sparse baselines, VideoNSA achieves improved performance on long-video understanding, temporal reasoning, and spatial benchmarks. Further ablation analysis reveals four key findings: (1) reliable scaling to 128K tokens; (2) an optimal global-local attention allocation at a fixed budget; (3) task-dependent branch usage patterns; and (4) the learnable combined sparse attention help induce dynamic attention sinks. Project Page: https://enxinsong.com/VideoNSA-web/, Code: https://github.com/Espere-1119-Song/VideoNSA
comment: ICLR 2026
♻ ☆ Closing the Expression Gap in LLM Instructions via Socratic Questioning
A fundamental bottleneck in human-AI collaboration is the ``intention expression gap," the difficulty for humans to effectively convey complex, high-dimensional thoughts to AI. This challenge often traps users in inefficient trial-and-error loops and is exacerbated by the diverse expertise levels of users. We reframe this problem from passive instruction following to a Socratic collaboration paradigm, proposing an agent that actively probes for information to resolve its uncertainty about user intent. we name the proposed agent Nous, trained to acquire proficiency in this inquiry policy. The core mechanism of Nous is a training framework grounded in the first principles of information theory. Within this framework, we define the information gain from dialogue as an intrinsic reward signal, which is fundamentally equivalent to the reduction of Shannon entropy over a structured task space. This reward design enables us to avoid reliance on costly human preference annotations or external reward models. To validate our framework, we develop an automated simulation pipeline to generate a large-scale, preference-based dataset for the challenging task of scientific diagram generation. Comprehensive experiments, including ablations, subjective and objective evaluations, and tests across user expertise levels, demonstrate the effectiveness of our proposed framework. Nous achieves leading efficiency and output quality, while remaining robust to varying user expertise. In conclusion, our research provides a systematic methodology and a new perspective for addressing the issue of ambiguous intentions in complex human-machine collaboration.
♻ ☆ Multi-Level Safety Continual Projection for Fine-Tuned Large Language Models without Retraining
While fine-tuning services drive the rapid expansion of task capabilities in large language models (LLMs), they are often accompanied by the degradation and reorganization of safety-aligned representations, making models more prone to deviating from human preferences and exposing them to emerging jailbreak risks. Existing post-fine-tuning defense methods predominantly rely on single-scale safety correction mechanisms, which struggle to achieve a robust balance among safety, model utility, and continual adaptability. We propose Multi-Level Safety Continual Projection (MSCP), a training-free post-fine-tuning safety enhancement method that implicitly aligns global and localized safety activations through coordinated multi-level representations to isolate sparse neuron clusters governing safety-sensitive behaviors. It then applies composable safety-direction projections without retraining, effectively suppressing harmful outputs under minimal parameter perturbations while preserving task performance and improving alignment with human preferences. Extensive experiments across multiple fine-tuned LLM models demonstrate that our method significantly reduce harmfulness scores and attack success rates with minimal parameter modifications, while preserving the model's utility. Furthermore, we introduce a task-specific, multi-dimensional heterogeneous safety activation clustering mechanism that enables continual defense and generalization capability against unforeseen emerging safety concerns.
♻ ☆ PT$^2$-LLM: Post-Training Ternarization for Large Language Models ICLR 2026
Large Language Models (LLMs) have shown impressive capabilities across diverse tasks, but their large memory and compute demands hinder deployment. Ternarization has gained attention as a promising compression technique, delivering substantial size reduction and high computational efficiency. However, its potential in the post-training quantization (PTQ) setting remains underexplored, due to the challenge of training-free parameter optimization and the quantization difficulty posed by outliers and dispersed weights. To address these issues, we propose PT$^2$-LLM, a post-training ternarization framework tailored for LLMs. At its core is an Asymmetric Ternary Quantizer equipped with a two-stage refinement pipeline: (1) Iterative Ternary Fitting (ITF), which alternates between optimal ternary grid construction and flexible rounding to minimize quantization error, and (2) Activation-aware Grid Alignment (AGA), which further refines the ternary grid to better match full-precision outputs. In addition, we propose a plug-and-play Structural Similarity-based Reordering (SSR) strategy that leverages inter-column structural similarity to ease quantization and mitigate outlier effects, further enhancing overall performance. Extensive experiments demonstrate that PT$^2$-LLM delivers competitive performance against state-of-the-art (SOTA) 2-bit PTQ methods with lower memory cost, while also accelerating both prefill and decoding to achieve end-to-end speedup. The code and models will be available at https://github.com/XIANGLONGYAN/PT2-LLM.
comment: Accepted at ICLR 2026
♻ ☆ Mechanistic evaluation of Transformers and state space models
State space models (SSMs) for language modelling promise an efficient and performant alternative to quadratic-attention Transformers, yet show variable performance on recalling basic information from the context. While performance on synthetic tasks like Associative Recall (AR) can point to this deficiency, behavioural metrics provide little information as to \textit{why} -- on a mechanistic level -- certain architectures fail and others succeed. To address this, we conduct experiments on AR, and find that only Transformers and Based SSM models fully succeed at AR, with Mamba and DeltaNet close behind, while the other SSMs (H3, Hyena) fail. We then use causal interventions to explain why. We find that Transformers and Based learn to store key-value associations in-context using induction. By contrast, the SSMs seem to compute these associations only at the last state using a single layer. We further investigate the mechanism underlying the success of Mamba, and find novel evidence that Mamba \textit{does} implement induction: not via the SSM, but instead via short convolutions. Further experiments on a new hierarchical retrieval task, Associative Treecall (ATR), show that all architectures learn the same mechanism as they did for AR. Furthermore, we show that Mamba can learn Attention-like induction on ATR when short convolutions are removed. These results reveal that architectures with similar accuracy may still have substantive differences, motivating the adoption of mechanistic evaluations.
comment: 9 page main text, 22 pages total
♻ ☆ LoCoT2V-Bench: Benchmarking Long-Form and Complex Text-to-Video Generation
Recent advances in text-to-video generation have achieved impressive performance on short clips, yet evaluating long-form generation under complex textual inputs remains a significant challenge. In response to this challenge, we present LoCoT2V-Bench, a benchmark for long video generation (LVG) featuring multi-scene prompts with hierarchical metadata (e.g., character settings and camera behaviors), constructed from collected real-world videos. We further propose LoCoT2V-Eval, a multi-dimensional framework covering perceptual quality, text-video alignment, temporal quality, dynamic quality, and Human Expectation Realization Degree (HERD), with an emphasis on aspects such as fine-grained text-video alignment and temporal character consistency. Experiments on 13 representative LVG models reveal pronounced capability disparities across evaluation dimensions, with strong perceptual quality and background consistency but markedly weaker fine-grained text-video alignment and character consistency. These findings suggest that improving prompt faithfulness and identity preservation remains a key challenge for long-form video generation.
♻ ☆ BibAgent: An Agentic Framework for Traceable Miscitation Detection in Scientific Literature
Citations are the bedrock of scientific authority, yet their integrity is compromised by widespread miscitations: ranging from nuanced distortions to fabricated references. Systematic citation verification is currently unfeasible; manual review cannot scale to modern publishing volumes, while existing automated tools are restricted by abstract-only analysis or small-scale, domain-specific datasets in part due to the "paywall barrier" of full-text access. We introduce BibAgent, a scalable, end-to-end agentic framework for automated citation verification. BibAgent integrates retrieval, reasoning, and adaptive evidence aggregation, applying distinct strategies for accessible and paywalled sources. For paywalled references, it leverages a novel Evidence Committee mechanism that infers citation validity via downstream citation consensus. To support systematic evaluation, we contribute a 5-category Miscitation Taxonomy and MisciteBench, a massive cross-disciplinary benchmark comprising 6,350 miscitation samples spanning 254 fields. Our results demonstrate that BibAgent outperforms state-of-the-art Large Language Model (LLM) baselines in citation verification accuracy and interpretability, providing scalable, transparent detection of citation misalignments across the scientific literature.
♻ ☆ Continuum: Efficient and Robust Multi-Turn LLM Agent Scheduling with KV Cache Time-to-Live
KV cache management is essential for efficient LLM inference. To maximize utilization, existing inference engines evict finished requests' KV cache if new requests are waiting. This policy breaks for agentic workloads, which interleave LLM calls with tools, introducing pauses that prevent effective KV reuse across turns. Since some tool calls have much shorter durations than human response multi-turn chatbot, it would be promising to retain the KV cache in during these tools. However, there are many challenges. First, we need to consider both the potential cost of recomputation or reloading (if CPU offloading enabled) and the increasing queueing delays after eviction from GPU. Second, due to the internal variance of tool call durations, we need the method to remain robust under limited predictability of tool call durations. We present Continuum, a serving system to optimize job completion time for multi-turn agent workloads by introducing time-to-live mechanism for KV cache retaining. For LLM request that generates a tool call, Continuum selectively pins the KV cache in GPU memory with a time-to-live value determined by considering both the reload cost and ordering preserve benefit of retaining KV cache. Moreover, when the TTL expires, the KV cache can be automatically evicted to free up GPU memory, providing robust performance under edge cases. When combined with program-level first-come-first-serve, Continuum preserves multi-turn continuity, and reduces delay for complex agentic workflows. Our evaluation on real-world agentic workloads (SWE-Bench and BFCL) with Llama-3.1 8B/70B shows that Continuum significantly improves the average job completion times and its improvement scales with turn number increase. We release a preview version at: https://github.com/Hanchenli/vllm-continuum
♻ ☆ Lifelong Learning with Behavior Consolidation for Vehicle Routing
Recent neural solvers have demonstrated promising performance in learning to solve routing problems. However, existing studies are primarily based on one-off training on one or a set of predefined problem distributions and scales, i.e., tasks. When a new task arises, they typically rely on either zero-shot generalization, which may be poor due to the discrepancies between the new task and the training task(s), or fine-tuning the pretrained solver on the new task, which possibly leads to catastrophic forgetting of knowledge acquired from previous tasks. This paper explores a novel lifelong learning paradigm for neural VRP solvers, where multiple tasks with diverse distributions and scales arise sequentially over time. Solvers are required to effectively and efficiently learn to solve new tasks while maintaining their performance on previously learned tasks. Consequently, a novel framework called Lifelong Learning Router with Behavior Consolidation (LLR-BC) is proposed. LLR-BC consolidates prior knowledge effectively by aligning behaviors of the solver trained on a new task with the buffered ones in a decision-seeking way. To encourage more focus on crucial experiences, LLR-BC assigns greater consolidated weights to decisions with lower confidence. Extensive experiments on capacitated vehicle routing problems and traveling salesman problems demonstrate LLR-BC's effectiveness in training high-performance neural solvers in a lifelong learning setting, addressing the catastrophic forgetting issue, maintaining their plasticity, and improving zero-shot generalization ability.
♻ ☆ Enhancing Logical Expressiveness in Graph Neural Networks via Path-Neighbor Aggregation AAAI 2026
Graph neural networks (GNNs) can effectively model structural information of graphs, making them widely used in knowledge graph (KG) reasoning. However, existing studies on the expressive power of GNNs mainly focuses on simple single-relation graphs, and there is still insufficient discussion on the power of GNN to express logical rules in KGs. How to enhance the logical expressive power of GNNs is still a key issue. Motivated by this, we propose Path-Neighbor enhanced GNN (PN-GNN), a method to enhance the logical expressive power of GNN by aggregating node-neighbor embeddings on the reasoning path. First, we analyze the logical expressive power of existing GNN-based methods and point out the shortcomings of the expressive power of these methods. Then, we theoretically investigate the logical expressive power of PN-GNN, showing that it not only has strictly stronger expressive power than C-GNN but also that its $(k+1)$-hop logical expressiveness is strictly superior to that of $k$-hop. Finally, we evaluate the logical expressive power of PN-GNN on six synthetic datasets and two real-world datasets. Both theoretical analysis and extensive experiments confirm that PN-GNN enhances the expressive power of logical rules without compromising generalization, as evidenced by its competitive performance in KG reasoning tasks.
comment: Accepted to AAAI 2026
♻ ☆ Policy-Driven World Model Adaptation for Robust Offline Model-based Reinforcement Learning
Offline reinforcement learning (RL) offers a powerful paradigm for data-driven control. Compared to model-free approaches, offline model-based RL (MBRL) explicitly learns a world model from a static dataset and uses it as a surrogate simulator, improving data efficiency and enabling potential generalization beyond the dataset support. However, most existing offline MBRL methods follow a two-stage training procedure: first learning a world model by maximizing the likelihood of the observed transitions, then optimizing a policy to maximize its expected return under the learned model. This objective mismatch results in a world model that is not necessarily optimized for effective policy learning. Moreover, we observe that policies learned via offline MBRL often lack robustness during deployment, and small adversarial noise in the environment can lead to significant performance degradation. To address these, we propose a framework that dynamically adapts the world model alongside the policy under a unified learning objective aimed at improving robustness. At the core of our method is a maximin optimization problem, which we solve by innovatively utilizing Stackelberg learning dynamics. We provide theoretical analysis to support our design and introduce computationally efficient implementations. We benchmark our algorithm on twelve noisy D4RL MuJoCo tasks and three stochastic Tokamak Control tasks, demonstrating its state-of-the-art performance.
♻ ☆ Structured Spectral Reasoning for Frequency-Adaptive Multimodal Recommendation
Multimodal recommendation aims to integrate collaborative signals with heterogeneous content such as visual and textual information, but remains challenged by modality-specific noise, semantic inconsistency, and unstable propagation over user-item graphs. These issues are often exacerbated by naive fusion or shallow modeling strategies, leading to degraded generalization and poor robustness. While recent work has explored the frequency domain as a lens to separate stable from noisy signals, most methods rely on static filtering or reweighting, lacking the ability to reason over spectral structure or adapt to modality-specific reliability. To address these challenges, we propose a Structured Spectral Reasoning (SSR) framework for frequency-aware multimodal recommendation. Our method follows a four-stage pipeline: (i) Decompose graph-based multimodal signals into spectral bands via graph-guided transformations to isolate semantic granularity; (ii) Modulate band-level reliability with spectral band masking, a training-time masking with a prediction-consistency objective that suppresses brittle frequency components; (iii) Fuse complementary frequency cues using hyperspectral reasoning with low-rank cross-band interaction; and (iv) Align modality-specific spectral features via contrastive regularization to promote semantic and structural consistency. Experiments on three real-world benchmarks show consistent gains over strong baselines, particularly under sparse and cold-start settings. Additional analyses indicate that structured spectral modeling improves robustness and provides clearer diagnostics of how different bands contribute to performance.
♻ ☆ SB-TRPO: Towards Safe Reinforcement Learning with Hard Constraints
In safety-critical domains, reinforcement learning (RL) agents must often satisfy strict, zero-cost safety constraints while accomplishing tasks. Existing model-free methods frequently either fail to achieve near-zero safety violations or become overly conservative. We introduce Safety-Biased Trust Region Policy Optimisation (SB-TRPO), a principled algorithm for hard-constrained RL that dynamically balances cost reduction with reward improvement. At each step, SB-TRPO updates via a dynamic convex combination of the reward and cost natural policy gradients, ensuring a fixed fraction of optimal cost reduction while using remaining update capacity for reward improvement. Our method comes with formal guarantees of local progress on safety, while still improving reward whenever gradients are suitably aligned. Experiments on standard and challenging Safety Gymnasium tasks demonstrate that SB-TRPO consistently achieves the best balance of safety and task performance in the hard-constrained regime.
♻ ☆ Don't Just Fine-tune the Agent, Tune the Environment ICLR 2026
Large Language Model (LLM) agents show great promise for complex, multi-turn tool-use tasks, but their development is often hampered by the extreme scarcity of high-quality training data. Supervised fine-tuning (SFT) on synthetic data leads to overfitting, whereas standard reinforcement learning (RL) struggles with a critical cold-start problem and training instability. To address these challenges, we introduce $\textbf{Environment Tuning}$, a novel training paradigm that enables agents to learn complex behaviors directly from problem instances without relying on pre-collected expert trajectories. $\textbf{Environment Tuning}$ orchestrates this learning process through a structured curriculum, actionable environment augmentation that provides corrective feedback, and fine-grained progress rewards to ensure stable and efficient exploration. Using only 400 problem instances from Berkeley Function-Calling Leaderboard (BFCL) benchmark, our method not only achieves competitive in-distribution performance against strong baselines but also demonstrates superior out-of-distribution generalization, overcoming the performance collapse common to SFT-based approaches. Our work presents a paradigm shift from supervised fine-tuning on static trajectories to dynamic, environment-based exploration, paving the way for training more robust and data-efficient agents. The code is available at https://github.com/inclusionAI/AWorld-RL/tree/main/EnvTuning.
comment: ICLR 2026
♻ ☆ Toward Culturally Aligned LLMs through Ontology-Guided Multi-Agent Reasoning
Large Language Models (LLMs) increasingly support culturally sensitive decision making, yet often exhibit misalignment due to skewed pretraining data and the absence of structured value representations. Existing methods can steer outputs, but often lack demographic grounding and treat values as independent, unstructured signals, reducing consistency and interpretability. We propose OG-MAR, an Ontology-Guided Multi-Agent Reasoning framework. OG-MAR summarizes respondent-specific values from the World Values Survey (WVS) and constructs a global cultural ontology by eliciting relations over a fixed taxonomy via competency questions. At inference time, it retrieves ontology-consistent relations and demographically similar profiles to instantiate multiple value-persona agents, whose outputs are synthesized by a judgment agent that enforces ontology consistency and demographic proximity. Experiments on regional social-survey benchmarks across four LLM backbones show that OG-MAR improves cultural alignment and robustness over competitive baselines, while producing more transparent reasoning traces.
comment: 35 pages
♻ ☆ Pretrained Battery Transformer (PBT): A battery life prediction foundation model
Early prediction of battery cycle life is essential for accelerating battery research, manufacturing, and deployment. Although machine learning methods have shown encouraging results, progress is hindered by data scarcity and heterogeneity arising from diverse aging conditions. In other fields, foundation models (FMs) trained on diverse datasets have achieved broad generalization through transfer learning, but no FMs have been reported for battery cycle life prediction yet. Here we present the Pretrained Battery Transformer (PBT), the first FM for battery life prediction, developed through domain-knowledge-encoded mixture-of-expert layers. Validated on the largest public battery life database, PBT learns transferable representations from 13 lithium-ion battery (LIB) datasets, outperforming existing models by an average of 19.8%. With transfer learning, PBT achieves state-of-the-art performance across 15 diverse datasets encompassing 995 batteries and 537 aging conditions of LIBs, sodium-ion batteries and Zinc-ion batteries. This work establishes a foundation model pathway for battery lifetime prediction, paving the way toward universal battery lifetime prediction systems.
comment: 5 figures in the main content
♻ ☆ Think Less, Label Better: Multi-Stage Domain-Grounded Synthetic Data Generation for Fine-Tuning Large Language Models in Telecommunications IEEE
The success of large language models (LLMs) depends heavily on large-scale, high-quality instruction-following and reinforcement datasets. However, generating such data through human annotation is prohibitively time-consuming particularly for domain-specific tasks like telecom network troubleshooting, where accurate responses require deep technical expertise and contextual understanding. In this paper, we present a fully automated, retrieval-augmented pipeline for generating synthetic question-answer (QA) pairs grounded in structured domain knowledge. Our multi-stage framework integrates a retriever, base generator, and refinement model to synthesize and enhance QA pairs using documents retrieved from a domain-specific knowledge graph. To ensure data quality, we employ customized RAGAS-based scoring to filter low-quality samples, producing a high-quality dataset suitable for reinforcement fine-tuning (RFT). We demonstrate our approach in a real-world telecom scenario focused on radio access network (RAN) troubleshooting. The resulting pipeline generates complex, context-rich troubleshooting solution plans without human intervention. This work offers a scalable solution for building instruction and reinforcement datasets in specialized domains, significantly reducing dependence on manual labeling while maintaining high technical fidelity.
comment: 6 pages, 6 figures, 5 tables, IEEE ICC 2026
♻ ☆ Token-Guard: Towards Token-Level Hallucination Control via Self-Checking Decoding ICLR 2026
Large Language Models (LLMs) often hallucinate, generating content inconsistent with the input. Retrieval-Augmented Generation (RAG) and Reinforcement Learning with Human Feedback (RLHF) can mitigate hallucinations but require resource-intensive retrieval or large-scale fine-tuning. Decoding-based methods are lighter yet lack explicit hallucination control. To address this, we present Token-Guard, a token-level hallucination control method based on self-checking decoding. Token-Guard performs internal verification at each reasoning step to detect hallucinated tokens before they propagate. Candidate fragments are further evaluated in a latent space with explicit hallucination risk scoring, while iterative pruning and regeneration dynamically correct detected errors. Experiments on HALU datasets show Token-Guard substantially reduces hallucinations and improves generation accuracy, offering a scalable, modular solution for reliable LLM outputs. Our code is publicly available.
comment: Accepted by ICLR 2026 main conference
♻ ☆ Retrieval-Infused Reasoning Sandbox: A Benchmark for Decoupling Retrieval and Reasoning Capabilities
Despite strong performance on existing benchmarks, it remains unclear whether large language models can reason over genuinely novel scientific information. Most evaluations score end-to-end RAG pipelines, where reasoning is confounded with retrieval and toolchain choices, and the signal is further contaminated by parametric memorization and open-web volatility. We introduce DeR2, a controlled deep-research sandbox that isolates document-grounded reasoning while preserving core difficulties of deep search: multi-step synthesis, denoising, and evidence-based conclusion making. DeR2 decouples evidence access from reasoning via four regimes--Instruction-only, Concepts (gold concepts without documents), Related-only (only relevant documents), and Full-set (relevant documents plus topically related distractors)--yielding interpretable regime gaps that operationalize retrieval loss vs. reasoning loss and enable fine-grained error attribution. To prevent parametric leakage, we apply a two-phase validation that requires parametric failure without evidence while ensuring oracle-concept solvability. To ensure reproducibility, each instance provides a frozen document library (drawn from 2023-2025 theoretical papers) with expert-annotated concepts and validated rationales. Experiments across a diverse set of state-of-the-art foundation models reveal substantial variation and significant headroom: some models exhibit mode-switch fragility, performing worse with the Full-set than with Instruction-only, while others show structural concept misuse, correctly naming concepts but failing to execute them as procedures.
♻ ☆ PaperArena: An Evaluation Benchmark for Tool-Augmented Agentic Reasoning on Scientific Literature
Understanding and reasoning on the large-scale scientific literature is a crucial touchstone for large language model (LLM) based agents. However, existing works are mainly restricted to tool-free tasks within single papers, largely due to the lack of a benchmark that evaluates cross-paper reasoning and multi-tool orchestration in authentic research scenarios. In this work, we propose PaperArena, a benchmark to evaluate LLM-based agents on questions that require integrating information across multiple papers with the assistance of external tools. Given a research question, agents should formulate a reasoning plan, interact with multiple papers, and invoke appropriate tools to produce a well-grounded answer. To support standardized evaluation, we provide a platform for agent execution, offering a modular tool environment including multimodal parsing, context retrieval, and programmatic computation. Experiments reveal that even the leading LLM powering a well-established agentic workflow achieves merely 38.78% average accuracy, while on the hard subset, accuracy drops to only 18.47%. We also analyze reasoning traces and diagnose agent behavior, providing the community with insights to develop and evaluate more capable scientific agents.
comment: 19 pages, 13 figures
♻ ☆ AgentDrug: Utilizing Large Language Models in An Agentic Workflow for Zero-Shot Molecular Optimization EMNLP'25
Molecular optimization-modifying a given molecule to improve desired properties-is a fundamental task in drug discovery. While LLMs hold the potential to solve this task using natural language to drive the optimization, straightforward prompting achieves limited accuracy. In this work, we propose AgentDrug, an agentic workflow that leverages LLMs in a structured refinement process to achieve significantly higher accuracy. AgentDrug defines a nested refinement loop: the inner loop uses feedback from cheminformatics toolkits to validate molecular structures, while the outer loop guides the LLM with generic feedback and a gradient-based objective to steer the molecule toward property improvement. We evaluate AgentDrug on benchmarks with both single- and multi-property optimization under loose and strict thresholds. Results demonstrate significant performance gains over previous methods. With Qwen-2.5-3B, AgentDrug improves accuracy by 20.7% (loose) and 16.8% (strict) on six single-property tasks, and by 7.0% and 5.3% on eight multi-property tasks. With larger model Qwen-2.5-7B, AgentDrug further improves accuracy on 6 single-property objectives by 28.9% (loose) and 29.0% (strict), and on 8 multi-property objectives by 14.9% (loose) and 13.2% (strict).
comment: EMNLP'25 Findings
♻ ☆ MolX: Enhancing Large Language Models for Molecular Understanding With A Multi-Modal Extension KDD'25
Large Language Models (LLMs) with their strong task-handling capabilities have shown remarkable advancements across a spectrum of fields, moving beyond natural language understanding. However, their proficiency within the chemistry domain remains restricted, especially in solving molecule-related tasks. This challenge is attributed to their inherent limitations in comprehending molecules using only common textual representations, i.e. SMILES strings. In this study, we seek to enhance the ability of LLMs to comprehend molecules by equipping them with a multi-modal external module, termed MolX. Instead of directly using SMILES strings to represent a molecule, we utilize specific encoders to extract fine-grained features from both SMILES string and 2D molecular graph representations for feeding into an LLM. A hand-crafted molecular fingerprint is incorporated to leverage its embedded domain knowledge. To establish an alignment between MolX and the LLM's textual input space, the model in which the LLM is frozen, is pre-trained with a strategy including a diverse set of tasks. Experimental evaluations show that our proposed method outperforms baselines across downstream molecule-related tasks ranging from molecule-to-text translation to molecular property prediction, with and without fine-tuning the LLM, while only introducing a small number of trainable parameters-0.53% and 0.82%, respectively.
comment: MLoG-GenAI@KDD'25
♻ ☆ NEXUS: Bit-Exact ANN-to-SNN Equivalence via Neuromorphic Gate Circuits with Surrogate-Free Training
Spiking Neural Networks (SNNs) promise energy-efficient computing through event-driven sparsity, yet all existing approaches sacrifice accuracy by approximating continuous values with discrete spikes. We propose NEXUS, a framework that achieves bit-exact ANN-to-SNN equivalence -- not approximate, but mathematically identical outputs. Our key insight is constructing all arithmetic operations, both linear and nonlinear, from pure IF neuron logic gates that implement IEEE-754 compliant floating-point arithmetic. Through spatial bit encoding (zero encoding error by construction), hierarchical neuromorphic gate circuits (from basic logic gates to complete transformer layers), and surrogate-free STE training (exact identity mapping rather than heuristic approximation), NEXUS produces outputs identical to standard ANNs up to machine precision. Experiments on models up to LLaMA-2 70B demonstrate identical task accuracy (0.00% degradation) with mean ULP error of only 6.19, while achieving 27-168,000$\times$ energy reduction on neuromorphic hardware. Crucially, spatial bit encoding's single-timestep design renders the framework inherently immune to membrane potential leakage (100% accuracy across all decay factors $β\in[0.1,1.0]$), while tolerating synaptic noise up to $σ=0.2$ with >98% gate-level accuracy.
comment: 7 pages, 6 tables, 2 figures. Preprint (January 28, 2026)
♻ ☆ ElectriQ: A Benchmark for Assessing the Response Capability of Large Language Models in Power Marketing
As power systems decarbonise and digitalise, high penetrations of distributed energy resources and flexible tariffs make electric power marketing (EPM) a key interface between regulation, system operation and sustainable-energy deployment. Many utilities still rely on human agents and rule- or intent-based chatbots with fragmented knowledge bases that struggle with long, cross-scenario dialogues and fall short of requirements for compliant, verifiable and DR-ready interactions. Meanwhile, frontier large language models (LLMs) show strong conversational ability but are evaluated on generic benchmarks that underweight sector-specific terminology, regulatory reasoning and multi-turn process stability. To address this gap, we present ElectriQ, a large-scale benchmark and evaluation framework for LLMs in EPM. ElectriQ contains over 550k dialogues across six service domains and 24 sub-scenarios and defines a unified protocol that combines human ratings, automatic metrics and two compliance stress tests-Statutory Citation Correctness and Long-Dialogue Consistency. Building on ElectriQ, we propose SEEK-RAG, a retrieval-augmented method that injects policy and domain knowledge during finetuning and inference. Experiments on 13 LLMs show that domain-aligned 7B models with SEEK-RAG match or surpass much larger models while reducing computational cost, providing an auditable, regulation-aware basis for deploying LLM-based EPM assistants that support demand-side management, renewable integration and resilient grid operation.
♻ ☆ InstructPLM-mu: 1-Hour Fine-Tuning of ESM2 Beats ESM3 in Protein Mutation Predictions
Multimodal protein language models deliver strong performance on mutation-effect prediction, but training such models from scratch demands substantial computational resources. In this paper, we propose a fine-tuning framework called InstructPLM-mu and try to answer a question: \textit{Can multimodal fine-tuning of a pretrained, sequence-only protein language model match the performance of models trained end-to-end? } Surprisingly, our experiments show that fine-tuning ESM2 with structural inputs can reach performance comparable to ESM3. To understand how this is achieved, we systematically compare three different feature-fusion designs and fine-tuning recipes. Our results reveal that both the fusion method and the tuning strategy strongly affect final accuracy, indicating that the fine-tuning process is not trivial. We hope this work offers practical guidance for injecting structure into pretrained protein language models and motivates further research on better fusion mechanisms and fine-tuning protocols.
comment: preprint
♻ ☆ Identification of Probabilities of Causation: from Recursive to Closed-Form Bounds
Probabilities of causation (PoCs) are fundamental quantities for counterfactual analysis and personalized decision making. However, existing analytical results are largely confined to binary settings. This paper extends PoCs to multi-valued treatments and outcomes by deriving closed form bounds for a representative family of discrete PoCs within Structural Causal Models, using standard experimental and observational distributions. We introduce the notion of equivalence classes of PoCs, which reduces arbitrary discrete PoCs to this family, and establish a replaceability principle that transfers bounds across value permutations. For the resulting bounds, we prove soundness in all dimensions and empirically verify tightness in low dimensional cases via Balke's linear programming method; we further conjecture that this tightness extends to all dimensions. Simulations indicate that our closed form bounds consistently tighten recent recursive bounds while remaining simpler to compute. Finally, we illustrate the practical relevance of our results through toy examples.
♻ ☆ Emotions Where Art Thou: Understanding and Characterizing the Emotional Latent Space of Large Language Models
This work investigates how large language models (LLMs) internally represent emotion by analyzing the geometry of their hidden-state space. The paper identifies a low-dimensional emotional manifold and shows that emotional representations are directionally encoded, distributed across layers, and aligned with interpretable dimensions. These structures are stable across depth and generalize to eight real-world emotion datasets spanning five languages. Cross-domain alignment yields low error and strong linear probe performance, indicating a universal emotional subspace. Within this space, internal emotion perception can be steered while preserving semantics using a learned intervention module, with especially strong control for basic emotions across languages. These findings reveal a consistent and manipulable affective geometry in LLMs and offer insight into how they internalize and process emotion.
♻ ☆ Ambig-SWE: Interactive Agents to Overcome Underspecificity in Software Engineering ICLR 2026
AI agents are increasingly being deployed to automate tasks, often based on underspecified user instructions. Making unwarranted assumptions to compensate for the missing information and failing to ask clarifying questions can lead to suboptimal outcomes, safety risks due to tool misuse, and wasted computational resources. In this work, we study the ability of LLM agents to handle underspecified instructions in interactive code generation settings by evaluating proprietary and open-weight models on their performance across three key steps: (a) detecting underspecificity, (b) asking targeted clarification questions, and (c) leveraging the interaction to improve performance in underspecified scenarios. We introduce Ambig-SWE, an underspecified variant of SWE-Bench Verified, specifically designed to evaluate agent behavior under ambiguity and interaction. Our findings reveal that models struggle to distinguish between well-specified and underspecified instructions. However, when models interact for underspecified inputs, they effectively obtain vital information from the user leading to significant improvements in performance, up to 74% over the non-interactive settings, underscoring the value of effective interaction. Our study highlights critical gaps in how current state-of-the-art models handle missing information in complex software engineering tasks and structures the evaluation into distinct steps to enable targeted improvements.
comment: 22 pages, 7 figures, Accepted at ICLR 2026
♻ ☆ Posterior Label Smoothing for Node Classification AAAI 2026
Label smoothing is a widely studied regularization technique in machine learning. However, its potential for node classification in graph-structured data, spanning homophilic to heterophilic graphs, remains largely unexplored. We introduce posterior label smoothing, a novel method for transductive node classification that derives soft labels from a posterior distribution conditioned on neighborhood labels. The likelihood and prior distributions are estimated from the global statistics of the graph structure, allowing our approach to adapt naturally to various graph properties. We evaluate our method on 10 benchmark datasets using eight baseline models, demonstrating consistent improvements in classification accuracy. The following analysis demonstrates that soft labels mitigate overfitting during training, leading to better generalization performance, and that pseudo-labeling effectively refines the global label statistics of the graph. Our code is available at https://github.com/ml-postech/PosteL.
comment: Accepted by AAAI 2026
♻ ☆ Influence Functions for Edge Edits in Non-Convex Graph Neural Networks NeurIPS 2025
Understanding how individual edges influence the behavior of graph neural networks (GNNs) is essential for improving their interpretability and robustness. Graph influence functions have emerged as promising tools to efficiently estimate the effects of edge deletions without retraining. However, existing influence prediction methods rely on strict convexity assumptions, exclusively consider the influence of edge deletions while disregarding edge insertions, and fail to capture changes in message propagation caused by these modifications. In this work, we propose a proximal Bregman response function specifically tailored for GNNs, relaxing the convexity requirement and enabling accurate influence prediction for standard neural network architectures. Furthermore, our method explicitly accounts for message propagation effects and extends influence prediction to both edge deletions and insertions in a principled way. Experiments with real-world datasets demonstrate accurate influence predictions for different characteristics of GNNs. We further demonstrate that the influence function is versatile in applications such as graph rewiring and adversarial attacks.
comment: Accepted by NeurIPS 2025
Computation and Language 155
☆ FOCUS: DLLMs Know How to Tame Their Compute Bound
Diffusion Large Language Models (DLLMs) offer a compelling alternative to Auto-Regressive models, but their deployment is constrained by high decoding cost. In this work, we identify a key inefficiency in DLLM decoding: while computation is parallelized over token blocks, only a small subset of tokens is decodable at each diffusion step, causing most compute to be wasted on non-decodable tokens. We further observe a strong correlation between attention-derived token importance and token-wise decoding probability. Based on this insight, we propose FOCUS -- an inference system designed for DLLMs. By dynamically focusing computation on decodable tokens and evicting non-decodable ones on-the-fly, FOCUS increases the effective batch size, alleviating compute limitations and enabling scalable throughput. Empirical evaluations demonstrate that FOCUS achieves up to 3.52$\times$ throughput improvement over the production-grade engine LMDeploy, while preserving or improving generation quality across multiple benchmarks. The FOCUS system is publicly available on GitHub: https://github.com/sands-lab/FOCUS.
comment: 22 pages, 15 figures
☆ UPA: Unsupervised Prompt Agent via Tree-Based Search and Selection
Prompt agents have recently emerged as a promising paradigm for automated prompt optimization, framing refinement as a sequential decision-making problem over a structured prompt space. While this formulation enables the use of advanced planning algorithms, these methods typically assume access to supervised reward signals, which are often unavailable in practical scenarios. In this work, we propose UPA, an Unsupervised Prompt Agent that realizes structured search and selection without relying on supervised feedback. Specifically, during search, UPA iteratively constructs an evolving tree structure to navigate the prompt space, guided by fine-grained and order-invariant pairwise comparisons from Large Language Models (LLMs). Crucially, as these local comparisons do not inherently yield a consistent global scale, we decouple systematic prompt exploration from final selection, introducing a two-stage framework grounded in the Bradley-Terry-Luce (BTL) model. This framework first performs path-wise Bayesian aggregation of local comparisons to filter candidates under uncertainty, followed by global tournament-style comparisons to infer latent prompt quality and identify the optimal prompt. Experiments across multiple tasks demonstrate that UPA consistently outperforms existing prompt optimization methods, showing that agent-style optimization remains highly effective even in fully unsupervised settings.
☆ PaperBanana: Automating Academic Illustration for AI Scientists
Despite rapid advances in autonomous AI scientists powered by language models, generating publication-ready illustrations remains a labor-intensive bottleneck in the research workflow. To lift this burden, we introduce PaperBanana, an agentic framework for automated generation of publication-ready academic illustrations. Powered by state-of-the-art VLMs and image generation models, PaperBanana orchestrates specialized agents to retrieve references, plan content and style, render images, and iteratively refine via self-critique. To rigorously evaluate our framework, we introduce PaperBananaBench, comprising 292 test cases for methodology diagrams curated from NeurIPS 2025 publications, covering diverse research domains and illustration styles. Comprehensive experiments demonstrate that PaperBanana consistently outperforms leading baselines in faithfulness, conciseness, readability, and aesthetics. We further show that our method effectively extends to the generation of high-quality statistical plots. Collectively, PaperBanana paves the way for the automated generation of publication-ready illustrations.
☆ Agnostic Language Identification and Generation
Recent works on language identification and generation have established tight statistical rates at which these tasks can be achieved. These works typically operate under a strong realizability assumption: that the input data is drawn from an unknown distribution necessarily supported on some language in a given collection. In this work, we relax this assumption of realizability entirely, and impose no restrictions on the distribution of the input data. We propose objectives to study both language identification and generation in this more general "agnostic" setup. Across both problems, we obtain novel interesting characterizations and nearly tight rates.
☆ Now You Hear Me: Audio Narrative Attacks Against Large Audio-Language Models EACL 2026
Large audio-language models increasingly operate on raw speech inputs, enabling more seamless integration across domains such as voice assistants, education, and clinical triage. This transition, however, introduces a distinct class of vulnerabilities that remain largely uncharacterized. We examine the security implications of this modality shift by designing a text-to-audio jailbreak that embeds disallowed directives within a narrative-style audio stream. The attack leverages an advanced instruction-following text-to-speech (TTS) model to exploit structural and acoustic properties, thereby circumventing safety mechanisms primarily calibrated for text. When delivered through synthetic speech, the narrative format elicits restricted outputs from state-of-the-art models, including Gemini 2.0 Flash, achieving a 98.26% success rate that substantially exceeds text-only baselines. These results highlight the need for safety frameworks that jointly reason over linguistic and paralinguistic representations, particularly as speech-based interfaces become more prevalent.
comment: to be published at EACL 2026 main conference
☆ Scaling Multiagent Systems with Process Rewards
While multiagent systems have shown promise for tackling complex tasks via specialization, finetuning multiple agents simultaneously faces two key challenges: (1) credit assignment across agents, and (2) sample efficiency of expensive multiagent rollouts. In this work, we propose finetuning multiagent systems with per-action process rewards from AI feedback (MAPPA) to address both. Through assigning credit to individual agent actions rather than only at task completion, MAPPA enables fine-grained supervision without ground truth labels while extracting maximal training signal from each rollout. We demonstrate our approach on competition math problems and tool-augmented data analysis tasks. On unseen math problems, MAPPA achieves +5.0--17.5pp on AIME and +7.8--17.2pp on AMC. For data analysis tasks, our method improves success rate by +12.5pp while quality metrics improve by up to 30%, validating that per-action supervision can lead to improvements across different multiagent system on various domains. By addressing these challenges, our work takes a first step toward scaling multiagent systems for complex, long-horizon tasks with minimal human supervision.
☆ Are you going to finish that? A Practical Study of the Tokenization Boundary Problem
Language models (LMs) are trained over sequences of tokens, whereas users interact with LMs via text. This mismatch gives rise to the partial token problem, which occurs when a user ends their prompt in the middle of the expected next-token, leading to distorted next-token predictions. Although this issue has been studied using arbitrary character prefixes, its prevalence and severity in realistic prompts respecting word boundaries remains underexplored. In this work, we identify three domains where token and "word" boundaries often do not line up: languages that do not use whitespace, highly compounding languages, and code. In Chinese, for example, up to 25% of word boundaries do not line up with token boundaries, making even natural, word-complete prompts susceptible to this problem. We systematically construct semantically natural prompts ending with a partial tokens; in experiments, we find that they comprise a serious failure mode: frontier LMs consistently place three orders of magnitude less probability on the correct continuation compared to when the prompt is "backed-off" to be token-aligned. This degradation does not diminish with scale and often worsens for larger models. Finally, we evaluate inference-time mitigations to the partial token problem and validate the effectiveness of recent exact solutions. Overall, we demonstrate the scale and severity of probability distortion caused by tokenization in realistic use cases, and provide practical recommentions for model inference providers.
☆ Deep Search with Hierarchical Meta-Cognitive Monitoring Inspired by Cognitive Neuroscience
Deep search agents powered by large language models have demonstrated strong capabilities in multi-step retrieval, reasoning, and long-horizon task execution. However, their practical failures often stem from the lack of mechanisms to monitor and regulate reasoning and retrieval states as tasks evolve under uncertainty. Insights from cognitive neuroscience suggest that human metacognition is hierarchically organized, integrating fast anomaly detection with selectively triggered, experience-driven reflection. In this work, we propose Deep Search with Meta-Cognitive Monitoring (DS-MCM), a deep search framework augmented with an explicit hierarchical metacognitive monitoring mechanism. DS-MCM integrates a Fast Consistency Monitor, which performs lightweight checks on the alignment between external evidence and internal reasoning confidence, and a Slow Experience-Driven Monitor, which is selectively activated to guide corrective intervention based on experience memory from historical agent trajectories. By embedding monitoring directly into the reasoning-retrieval loop, DS-MCM determines both when intervention is warranted and how corrective actions should be informed by prior experience. Experiments across multiple deep search benchmarks and backbone models demonstrate that DS-MCM consistently improves performance and robustness.
comment: 11 pages, 3 figures
☆ ReGuLaR: Variational Latent Reasoning Guided by Rendered Chain-of-Thought
While Chain-of-Thought (CoT) significantly enhances the performance of Large Language Models (LLMs), explicit reasoning chains introduce substantial computational redundancy. Recent latent reasoning methods attempt to mitigate this by compressing reasoning processes into latent space, but often suffer from severe performance degradation due to the lack of appropriate compression guidance. In this study, we propose Rendered CoT-Guided variational Latent Reasoning (ReGuLaR), a simple yet novel latent learning paradigm resolving this issue. Fundamentally, we formulate latent reasoning within the Variational Auto-Encoding (VAE) framework, sampling the current latent reasoning state from the posterior distribution conditioned on previous ones. Specifically, when learning this variational latent reasoning model, we render explicit reasoning chains as images, from which we extract dense visual-semantic representations to regularize the posterior distribution, thereby achieving efficient compression with minimal information loss. Extensive experiments demonstrate that ReGuLaR significantly outperforms existing latent reasoning methods across both computational efficiency and reasoning effectiveness, and even surpasses CoT through multi-modal reasoning, providing a new and insightful solution to latent reasoning. Code: https://github.com/FanmengWang/ReGuLaR.
☆ JobResQA: A Benchmark for LLM Machine Reading Comprehension on Multilingual Résumés and JDs
We introduce JobResQA, a multilingual Question Answering benchmark for evaluating Machine Reading Comprehension (MRC) capabilities of LLMs on HR-specific tasks involving résumés and job descriptions. The dataset comprises 581 QA pairs across 105 synthetic résumé-job description pairs in five languages (English, Spanish, Italian, German, and Chinese), with questions spanning three complexity levels from basic factual extraction to complex cross-document reasoning. We propose a data generation pipeline derived from real-world sources through de-identification and data synthesis to ensure both realism and privacy, while controlled demographic and professional attributes (implemented via placeholders) enable systematic bias and fairness studies. We also present a cost-effective, human-in-the-loop translation pipeline based on the TEaR methodology, incorporating MQM error annotations and selective post-editing to ensure an high-quality multi-way parallel benchmark. We provide a baseline evaluations across multiple open-weight LLM families using an LLM-as-judge approach revealing higher performances on English and Spanish but substantial degradation for other languages, highlighting critical gaps in multilingual MRC capabilities for HR applications. JobResQA provides a reproducible benchmark for advancing fair and reliable LLM-based HR systems. The benchmark is publicly available at: https://github.com/Avature/jobresqa-benchmark
comment: Under review
☆ FourierSampler: Unlocking Non-Autoregressive Potential in Diffusion Language Models via Frequency-Guided Generation
Despite the non-autoregressive potential of diffusion language models (dLLMs), existing decoding strategies demonstrate positional bias, failing to fully unlock the potential of arbitrary generation. In this work, we delve into the inherent spectral characteristics of dLLMs and present the first frequency-domain analysis showing that low-frequency components in hidden states primarily encode global structural information and long-range dependencies, while high-frequency components are responsible for characterizing local details. Based on this observation, we propose FourierSampler, which leverages a frequency-domain sliding window mechanism to dynamically guide the model to achieve a "structure-to-detail" generation. FourierSampler outperforms other inference enhancement strategies on LLADA and SDAR, achieving relative improvements of 20.4% on LLaDA1.5-8B and 16.0% on LLaDA-8B-Instruct. It notably surpasses similarly sized autoregressive models like Llama3.1-8B-Instruct.
comment: 15 pages, 6 figures, under review
☆ Monotonic Reference-Free Refinement for Autoformalization
While statement autoformalization has advanced rapidly, full-theorem autoformalization remains largely unexplored. Existing iterative refinement methods in statement autoformalization typicall improve isolated aspects of formalization, such as syntactic correctness, but struggle to jointly optimizing multiple quality dimensions, which is critical for full-theorem autoformalization. We introduce a reference-free iterative monotonic process for full-theorem autoformalization that leverages complementary feedback from theorem provers and LLM-based judges, without access to ground-truth proofs or existing formalizations at inference time. Our approach optimizes a masked composite objective over Formal Validity, Logical Preservation, Mathematical Consistency, and Formal Quality, guided by a responsiveness map that indicates how different LLMs acting as different roles preferentially improve each dimension. We further propose an acceptance policy that guarantees certified monotonic improvement, and provide conditions ensuring convergence and termination. Empirical experiments demonstrate the proposed process enables simultaneous improvement across multiple dimensions, achieving 93.44% formal validity and a 78.22% overall score on miniF2F, and 44.09% formal validity and a 29.79% overall score on ProofNet.
comment: Work in progress
☆ DIFFA-2: A Practical Diffusion Large Language Model for General Audio Understanding
Autoregressive (AR) large audio language models (LALMs) such as Qwen-2.5-Omni have achieved strong performance on audio understanding and interaction, but scaling them remains costly in data and computation, and strictly sequential decoding limits inference efficiency. Diffusion large language models (dLLMs) have recently been shown to make effective use of limited training data, and prior work on DIFFA indicates that replacing an AR backbone with a diffusion counterpart can substantially improve audio understanding under matched settings, albeit at a proof-of-concept scale without large-scale instruction tuning, preference alignment, or practical decoding schemes. We introduce DIFFA-2, a practical diffusion-based LALM for general audio understanding. DIFFA-2 upgrades the speech encoder, employs dual semantic and acoustic adapters, and is trained with a four-stage curriculum that combines semantic and acoustic alignment, large-scale supervised fine-tuning, and variance-reduced preference optimization, using only fully open-source corpora. Experiments on MMSU, MMAU, and MMAR show that DIFFA-2 consistently improves over DIFFA and is competitive to strong AR LALMs under practical training budgets, supporting diffusion-based modeling is a viable backbone for large-scale audio understanding. Our code is available at https://github.com/NKU-HLT/DIFFA.git.
☆ Evaluating the Utility of Grounding Documents with Reference-Free LLM-based Metrics
Retrieval Augmented Generation (RAG)'s success depends on the utility the LLM derives from the content used for grounding. Quantifying content utility does not have a definitive specification and existing metrics ignore model-specific capabilities and/or rely on costly annotations. In this paper, we propose Grounding Generation Utility (GroGU), a model-specific and reference-free metric that defines utility as a function of the downstream LLM's generation confidence based on entropy. Despite having no annotation requirements, GroGU is largely faithful in distinguishing ground-truth documents while capturing nuances ignored by LLM-agnostic metrics. We apply GroGU to train a query-rewriter for RAG by identifying high-utility preference data for Direct Preference Optimization. Experiments show improvements by up to 18.2 points in Mean Reciprocal Rank and up to 9.4 points in answer accuracy.
☆ Safer Policy Compliance with Dynamic Epistemic Fallback
Humans develop a series of cognitive defenses, known as epistemic vigilance, to combat risks of deception and misinformation from everyday interactions. Developing safeguards for LLMs inspired by this mechanism might be particularly helpful for their application in high-stakes tasks such as automating compliance with data privacy laws. In this paper, we introduce Dynamic Epistemic Fallback (DEF), a dynamic safety protocol for improving an LLM's inference-time defenses against deceptive attacks that make use of maliciously perturbed policy texts. Through various levels of one-sentence textual cues, DEF nudges LLMs to flag inconsistencies, refuse compliance, and fallback to their parametric knowledge upon encountering perturbed policy texts. Using globally recognized legal policies such as HIPAA and GDPR, our empirical evaluations report that DEF effectively improves the capability of frontier LLMs to detect and refuse perturbed versions of policies, with DeepSeek-R1 achieving a 100% detection rate in one setting. This work encourages further efforts to develop cognitively inspired defenses to improve LLM robustness against forms of harm and deception that exploit legal artifacts.
☆ Character as a Latent Variable in Large Language Models: A Mechanistic Account of Emergent Misalignment and Conditional Safety Failures
Emergent Misalignment refers to a failure mode in which fine-tuning large language models (LLMs) on narrowly scoped data induces broadly misaligned behavior. Prior explanations mainly attribute this phenomenon to the generalization of erroneous or unsafe content. In this work, we show that this view is incomplete. Across multiple domains and model families, we find that fine-tuning models on data exhibiting specific character-level dispositions induces substantially stronger and more transferable misalignment than incorrect-advice fine-tuning, while largely preserving general capabilities. This indicates that emergent misalignment arises from stable shifts in model behavior rather than from capability degradation or corrupted knowledge. We further show that such behavioral dispositions can be conditionally activated by both training-time triggers and inference-time persona-aligned prompts, revealing shared structure across emergent misalignment, backdoor activation, and jailbreak susceptibility. Overall, our results identify character formation as a central and underexplored alignment risk, suggesting that robust alignment must address behavioral dispositions rather than isolated errors or prompt-level defenses.
☆ DimABSA: Building Multilingual and Multidomain Datasets for Dimensional Aspect-Based Sentiment Analysis
Aspect-Based Sentiment Analysis (ABSA) focuses on extracting sentiment at a fine-grained aspect level and has been widely applied across real-world domains. However, existing ABSA research relies on coarse-grained categorical labels (e.g., positive, negative), which limits its ability to capture nuanced affective states. To address this limitation, we adopt a dimensional approach that represents sentiment with continuous valence-arousal (VA) scores, enabling fine-grained analysis at both the aspect and sentiment levels. To this end, we introduce DimABSA, the first multilingual, dimensional ABSA resource annotated with both traditional ABSA elements (aspect terms, aspect categories, and opinion terms) and newly introduced VA scores. This resource contains 76,958 aspect instances across 42,590 sentences, spanning six languages and four domains. We further introduce three subtasks that combine VA scores with different ABSA elements, providing a bridge from traditional ABSA to dimensional ABSA. Given that these subtasks involve both categorical and continuous outputs, we propose a new unified metric, continuous F1 (cF1), which incorporates VA prediction error into standard F1. We provide a comprehensive benchmark using both prompted and fine-tuned large language models across all subtasks. Our results show that DimABSA is a challenging benchmark and provides a foundation for advancing multilingual dimensional ABSA.
☆ Mem-T: Densifying Rewards for Long-Horizon Memory Agents
Memory agents, which depart from predefined memory-processing pipelines by endogenously managing the processing, storage, and retrieval of memories, have garnered increasing attention for their autonomy and adaptability. However, existing training paradigms remain constrained: agents often traverse long-horizon sequences of memory operations before receiving sparse and delayed rewards, which hinders truly end-to-end optimization of memory management policies. To address this limitation, we introduce Mem-T, an autonomous memory agent that interfaces with a lightweight hierarchical memory database to perform dynamic updates and multi-turn retrieval over streaming inputs. To effectively train long-horizon memory management capabilities, we further propose MoT-GRPO, a tree-guided reinforcement learning framework that transforms sparse terminal feedback into dense, step-wise supervision via memory operation tree backpropagation and hindsight credit assignment, thereby enabling the joint optimization of memory construction and retrieval. Extensive experiments demonstrate that Mem-T is (1) high-performing, surpassing frameworks such as A-Mem and Mem0 by up to $14.92\%$, and (2) economical, operating on a favorable accuracy-efficiency Pareto frontier and reducing inference tokens per query by $\sim24.45\%$ relative to GAM without sacrificing performance.
☆ InstructDiff: Domain-Adaptive Data Selection via Differential Entropy for Efficient LLM Fine-Tuning
Supervised fine-tuning (SFT) is fundamental to adapting large language models, yet training on complete datasets incurs prohibitive costs with diminishing returns. Existing data selection methods suffer from severe domain specificity: techniques optimized for general instruction-following fail on reasoning tasks, and vice versa. We observe that measuring entropy differences between base models and minimally instruction-tuned calibrated models reveals a pattern -- samples with the lowest differential entropy consistently yield optimal performance across domains, yet this principle manifests domain-adaptively: reasoning tasks favor entropy increase (cognitive expansion), while general tasks favor entropy decrease (cognitive compression). We introduce InstructDiff, a unified framework that operationalizes differential entropy as a domain-adaptive selection criterion through warmup calibration, bi-directional NLL filtering, and entropy-based ranking. Extensive experiments show that InstructDiff achieves 17\% relative improvement over full data training on mathematical reasoning and 52\% for general instruction-following, outperforming prior baselines while using only 10\% of the data.
☆ Bias Beyond Borders: Political Ideology Evaluation and Steering in Multilingual LLMs
Large Language Models (LLMs) increasingly shape global discourse, making fairness and ideological neutrality essential for responsible AI deployment. Despite growing attention to political bias in LLMs, prior work largely focuses on high-resource, Western languages or narrow multilingual settings, leaving cross-lingual consistency and safe post-hoc mitigation underexplored. To address this gap, we present a large-scale multilingual evaluation of political bias spanning 50 countries and 33 languages. We introduce a complementary post-hoc mitigation framework, Cross-Lingual Alignment Steering (CLAS), designed to augment existing steering methods by aligning ideological representations across languages and dynamically regulating intervention strength. This method aligns latent ideological representations induced by political prompts into a shared ideological subspace, ensuring cross lingual consistency, with the adaptive mechanism prevents over correction and preserves coherence. Experiments demonstrate substantial bias reduction along both economic and social axes with minimal degradation in response quality. The proposed framework establishes a scalable and interpretable paradigm for fairness-aware multilingual LLM governance, balancing ideological neutrality with linguistic and cultural diversity.
comment: PrePrint
☆ ArabicDialectHub: A Cross-Dialectal Arabic Learning Resource and Platform
We present ArabicDialectHub, a cross-dialectal Arabic learning resource comprising 552 phrases across six varieties (Moroccan Darija, Lebanese, Syrian, Emirati, Saudi, and MSA) and an interactive web platform. Phrases were generated using LLMs and validated by five native speakers, stratified by difficulty, and organized thematically. The open-source platform provides translation exploration, adaptive quizzing with algorithmic distractor generation, cloud-synchronized progress tracking, and cultural context. Both the dataset and complete platform source code are released under MIT license. Platform: https://arabic-dialect-hub.netlify.app.
☆ Learnable Permutation for Structured Sparsity on Transformer Models
Structured sparsity has emerged as a popular model pruning technique, widely adopted in various architectures, including CNNs, Transformer models, and especially large language models (LLMs) in recent years. A promising direction to further improve post-pruning performance is weight permutation, which reorders model weights into patterns more amenable to pruning. However, the exponential growth of the permutation search space with the scale of Transformer architectures forces most methods to rely on greedy or heuristic algorithms, limiting the effectiveness of reordering. In this work, we propose a novel end-to-end learnable permutation framework. Our method introduces a learnable permutation cost matrix to quantify the cost of swapping any two input channels of a given weight matrix, a differentiable bipartite matching solver to obtain the optimal binary permutation matrix given a cost matrix, and a sparsity optimization loss function to directly optimize the permutation operator. We extensively validate our approach on vision and language Transformers, demonstrating that our method achieves state-of-the-art permutation results for structured sparsity.
☆ MiTa: A Hierarchical Multi-Agent Collaboration Framework with Memory-integrated and Task Allocation IEEE
Recent advances in large language models (LLMs) have substantially accelerated the development of embodied agents. LLM-based multi-agent systems mitigate the inefficiency of single agents in complex tasks. However, they still suffer from issues such as memory inconsistency and agent behavioral conflicts. To address these challenges, we propose MiTa, a hierarchical memory-integrated task allocative framework to enhance collaborative efficiency. MiTa organizes agents into a manager-member hierarchy, where the manager incorporates additional allocation and summary modules that enable (1) global task allocation and (2) episodic memory integration. The allocation module enables the manager to allocate tasks from a global perspective, thereby avoiding potential inter-agent conflicts. The summary module, triggered by task progress updates, performs episodic memory integration by condensing recent collaboration history into a concise summary that preserves long-horizon context. By combining task allocation with episodic memory, MiTa attains a clearer understanding of the task and facilitates globally consistent task distribution. Experimental results confirm that MiTa achieves superior efficiency and adaptability in complex multi-agent cooperation over strong baseline methods.
comment: Accepted to 2026 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2026)
☆ A Unified View of Attention and Residual Sinks: Outlier-Driven Rescaling is Essential for Transformer Training
We investigate the functional role of emergent outliers in large language models, specifically attention sinks (a few tokens that consistently receive large attention logits) and residual sinks (a few fixed dimensions with persistently large activations across most tokens). We hypothesize that these outliers, in conjunction with the corresponding normalizations (\textit{e.g.}, softmax attention and RMSNorm), effectively rescale other non-outlier components. We term this phenomenon \textit{outlier-driven rescaling} and validate this hypothesis across different model architectures and training token counts. This view unifies the origin and mitigation of both sink types. Our main conclusions and observations include: (1) Outliers function jointly with normalization: removing normalization eliminates the corresponding outliers but degrades training stability and performance; directly clipping outliers while retaining normalization leads to degradation, indicating that outlier-driven rescaling contributes to training stability. (2) Outliers serve more as rescale factors rather than contributors, as the final contributions of attention and residual sinks are significantly smaller than those of non-outliers. (3) Outliers can be absorbed into learnable parameters or mitigated via explicit gated rescaling, leading to improved training performance (average gain of 2 points) and enhanced quantization robustness (1.2 points degradation under W4A4 quantization).
☆ Residual Context Diffusion Language Models
Diffusion Large Language Models (dLLMs) have emerged as a promising alternative to purely autoregressive language models because they can decode multiple tokens in parallel. However, state-of-the-art block-wise dLLMs rely on a "remasking" mechanism that decodes only the most confident tokens and discards the rest, effectively wasting computation. We demonstrate that recycling computation from the discarded tokens is beneficial, as these tokens retain contextual information useful for subsequent decoding iterations. In light of this, we propose Residual Context Diffusion (RCD), a module that converts these discarded token representations into contextual residuals and injects them back for the next denoising step. RCD uses a decoupled two-stage training pipeline to bypass the memory bottlenecks associated with backpropagation. We validate our method on both long CoT reasoning (SDAR) and short CoT instruction following (LLaDA) models. We demonstrate that a standard dLLM can be efficiently converted to the RCD paradigm with merely ~1 billion tokens. RCD consistently improves frontier dLLMs by 5-10 points in accuracy with minimal extra computation overhead across a wide range of benchmarks. Notably, on the most challenging AIME tasks, RCD nearly doubles baseline accuracy and attains up to 4-5x fewer denoising steps at equivalent accuracy levels.
☆ Perplexity Cannot Always Tell Right from Wrong
Perplexity -- a function measuring a model's overall level of "surprise" when encountering a particular output -- has gained significant traction in recent years, both as a loss function and as a simple-to-compute metric of model quality. Prior studies have pointed out several limitations of perplexity, often from an empirical manner. Here we leverage recent results on Transformer continuity to show in a rigorous manner how perplexity may be an unsuitable metric for model selection. Specifically, we prove that, if there is any sequence that a compact decoder-only Transformer model predicts accurately and confidently -- a necessary pre-requisite for strong generalisation -- it must imply existence of another sequence with very low perplexity, but not predicted correctly by that same model. Further, by analytically studying iso-perplexity plots, we find that perplexity will not always select for the more accurate model -- rather, any increase in model confidence must be accompanied by a commensurate rise in accuracy for the new model to be selected.
comment: 11 pages, 4 figures
☆ Autonomous Chain-of-Thought Distillation for Graph-Based Fraud Detection
Graph-based fraud detection on text-attributed graphs (TAGs) requires jointly modeling rich textual semantics and relational dependencies. However, existing LLM-enhanced GNN approaches are constrained by predefined prompting and decoupled training pipelines, limiting reasoning autonomy and weakening semantic-structural alignment. We propose FraudCoT, a unified framework that advances TAG-based fraud detection through autonomous, graph-aware chain-of-thought (CoT) reasoning and scalable LLM-GNN co-training. To address the limitations of predefined prompts, we introduce a fraud-aware selective CoT distillation mechanism that generates diverse reasoning paths and enhances semantic-structural understanding. These distilled CoTs are integrated into node texts, providing GNNs with enriched, multi-hop semantic and structural cues for fraud detection. Furthermore, we develop an efficient asymmetric co-training strategy that enables end-to-end optimization while significantly reducing the computational cost of naive joint training. Extensive experiments on public and industrial benchmarks demonstrate that FraudCoT achieves up to 8.8% AUPRC improvement over state-of-the-art methods and delivers up to 1,066x speedup in training throughput, substantially advancing both detection performance and efficiency.
☆ Relaxing Positional Alignment in Masked Diffusion Language Models
Masked diffusion language models (MDLMs) have emerged as a promising alternative to dominant autoregressive approaches. Although they achieve competitive performance on several tasks, a substantial gap remains in open-ended text generation. We hypothesize that one cause of this gap is that strict positional prediction makes MDLM decoding highly sensitive to token misalignment, and we show through controlled interventions that a one-position shift can severely disrupt semantics. This observation suggests that enforcing strict positional supervision during training is misaligned with the irreversible denoising dynamics of MDLM decoding. Motivated by this mismatch, we adopt an alignment-flexible supervision strategy during fine-tuning. Specifically, we introduce a special token via the connectionist temporal classification objective. We apply this approach to the widely used MDLM model and conduct experiments on five open-ended text generation benchmarks. Our method consistently outperforms the original model and improves robustness to positional shifts, indicating that relaxing strict positional supervision is an important factor in improving generation quality in MDLMs.
☆ Benchmarking Machine Translation on Chinese Social Media Texts
The prevalence of rapidly evolving slang, neologisms, and highly stylized expressions in informal user-generated text, particularly on Chinese social media, poses significant challenges for Machine Translation (MT) benchmarking. Specifically, we identify two primary obstacles: (1) data scarcity, as high-quality parallel data requires bilingual annotators familiar with platform-specific slang, and stylistic cues in both languages; and (2) metric limitations, where traditional evaluators like COMET often fail to capture stylistic fidelity and nonstandard expressions. To bridge these gaps, we introduce CSM-MTBench, a benchmark covering five Chinese-foreign language directions and consisting of two expert-curated subsets: Fun Posts, featuring context-rich, slang- and neologism-heavy content, and Social Snippets, emphasizing concise, emotion- and style- driven expressions. Furthermore, we propose tailored evaluation approaches for each subset: measuring the translation success rate of slang and neologisms in Fun Posts, while assessing tone and style preservation in Social Snippets via a hybrid of embedding-based metrics and LLM-as-a-judge. Experiments on over 20 models reveal substantial variation in how current MT systems handle semantic fidelity and informal, social-media-specific stylistic cues. CSM-MTBench thus serves as a rigorous testbed for advancing MT systems capable of mastering real-world Chinese social media texts.
comment: Work in Progress
☆ Semantic Leakage from Image Embeddings
Image embeddings are generally assumed to pose limited privacy risk. We challenge this assumption by formalizing semantic leakage as the ability to recover semantic structures from compressed image embeddings. Surprisingly, we show that semantic leakage does not require exact reconstruction of the original image. Preserving local semantic neighborhoods under embedding alignment is sufficient to expose the intrinsic vulnerability of image embeddings. Crucially, this preserved neighborhood structure allows semantic information to propagate through a sequence of lossy mappings. Based on this conjecture, we propose Semantic Leakage from Image Embeddings (SLImE), a lightweight inference framework that reveals semantic information from standalone compressed image embeddings, incorporating a locally trained semantic retriever with off-the-shelf models, without training task-specific decoders. We thoroughly validate each step of the framework empirically, from aligned embeddings to retrieved tags, symbolic representations, and grammatical and coherent descriptions. We evaluate SLImE across a range of open and closed embedding models, including GEMINI, COHERE, NOMIC, and CLIP, and demonstrate consistent recovery of semantic information across diverse inference tasks. Our results reveal a fundamental vulnerability in image embeddings, whereby the preservation of semantic neighborhoods under alignment enables semantic leakage, highlighting challenges for privacy preservation.1
comment: 20 pages, 19 figures
☆ LLMs Explain't: A Post-Mortem on Semantic Interpretability in Transformer Models
Large Language Models (LLMs) are becoming increasingly popular in pervasive computing due to their versatility and strong performance. However, despite their ubiquitous use, the exact mechanisms underlying their outstanding performance remain unclear. Different methods for LLM explainability exist, and many are, as a method, not fully understood themselves. We started with the question of how linguistic abstraction emerges in LLMs, aiming to detect it across different LLM modules (attention heads and input embeddings). For this, we used methods well-established in the literature: (1) probing for token-level relational structures, and (2) feature-mapping using embeddings as carriers of human-interpretable properties. Both attempts failed for different methodological reasons: Attention-based explanations collapsed once we tested the core assumption that later-layer representations still correspond to tokens. Property-inference methods applied to embeddings also failed because their high predictive scores were driven by methodological artifacts and dataset structure rather than meaningful semantic knowledge. These failures matter because both techniques are widely treated as evidence for what LLMs supposedly understand, yet our results show such conclusions are unwarranted. These limitations are particularly relevant in pervasive and distributed computing settings where LLMs are deployed as system components and interpretability methods are relied upon for debugging, compression, and explaining models.
☆ DiffuSpeech: Silent Thought, Spoken Answer via Unified Speech-Text Diffusion
Current speech language models generate responses directly without explicit reasoning, leading to errors that cannot be corrected once audio is produced. We introduce \textbf{``Silent Thought, Spoken Answer''} -- a paradigm where speech LLMs generate internal text reasoning alongside spoken responses, with thinking traces informing speech quality. To realize this, we present \method{}, the first diffusion-based speech-text language model supporting both understanding and generation, unifying discrete text and tokenized speech under a single masked diffusion framework. Unlike autoregressive approaches, \method{} jointly generates reasoning traces and speech tokens through iterative denoising, with modality-specific masking schedules. We also construct \dataset{}, the first speech QA dataset with paired text reasoning traces, containing 26K samples totaling 319 hours. Experiments show \method{} achieves state-of-the-art speech-to-speech QA accuracy, outperforming the best baseline by up to 9 points, while attaining the best TTS quality among generative models (6.2\% WER) and preserving language understanding (66.2\% MMLU). Ablations confirm that both the diffusion architecture and thinking traces contribute to these gains.
☆ Should LLMs, $\textit{like}$, Generate How Users Talk? Building Dialect-Accurate Dialog[ue]s Beyond the American Default with MDial
More than 80% of the 1.6 billion English speakers do not use Standard American English (SAE) and experience higher failure rates and stereotyped responses when interacting with LLMs as a result. Yet multi-dialectal performance remains underexplored. We introduce $\textbf{MDial}$, the first large-scale framework for generating multi-dialectal conversational data encompassing the three pillars of written dialect -- lexical (vocabulary), orthographic (spelling), and morphosyntactic (grammar) features -- for nine English dialects. Partnering with native linguists, we design an annotated and scalable rule-based LLM transformation to ensure precision. Our approach challenges the assumption that models should mirror users' morphosyntactic features, showing that up to 90% of the grammatical features of a dialect should not be reproduced by models. Independent evaluations confirm data quality, with annotators preferring MDial outputs over prior methods in 98% of pairwise comparisons for dialect naturalness. Using this pipeline, we construct the dialect-parallel $\textbf{MDialBench}$mark with 50k+ dialogs, resulting in 97k+ QA pairs, and evaluate 17 LLMs on dialect identification and response generation tasks. Even frontier models achieve under 70% accuracy, fail to reach 50% for Canadian English, and systematically misclassify non-SAE dialects as American or British. As dialect identification underpins natural language understanding, these errors risk cascading failures into downstream tasks.
☆ MoVE: Mixture of Value Embeddings -- A New Axis for Scaling Parametric Memory in Autoregressive Models
Autoregressive sequence modeling stands as the cornerstone of modern Generative AI, powering results across diverse modalities ranging from text generation to image generation. However, a fundamental limitation of this paradigm is the rigid structural coupling of model capacity to computational cost: expanding a model's parametric memory -- its repository of factual knowledge or visual patterns -- traditionally requires deepening or widening the network, which incurs a proportional rise in active FLOPs. In this work, we introduce $\textbf{MoVE (Mixture of Value Embeddings)}$, a mechanism that breaks this coupling and establishes a new axis for scaling capacity. MoVE decouples memory from compute by introducing a global bank of learnable value embeddings shared across all attention layers. For every step in the sequence, the model employs a differentiable soft gating mechanism to dynamically mix retrieved concepts from this bank into the standard value projection. This architecture allows parametric memory to be scaled independently of network depth by simply increasing the number of embedding slots. We validate MoVE through strictly controlled experiments on two representative applications of autoregressive modeling: Text Generation and Image Generation. In both domains, MoVE yields consistent performance improvements over standard and layer-wise memory baselines, enabling the construction of "memory-dense" models that achieve lower perplexity and higher fidelity than their dense counterparts at comparable compute budgets.
☆ Leveraging LLMs For Turkish Skill Extraction
Skill extraction is a critical component of modern recruitment systems, enabling efficient job matching, personalized recommendations, and labor market analysis. Despite Türkiye's significant role in the global workforce, Turkish, a morphologically complex language, lacks both a skill taxonomy and a dedicated skill extraction dataset, resulting in underexplored research in skill extraction for Turkish. This article seeks the answers to three research questions: 1) How can skill extraction be effectively performed for this language, in light of its low resource nature? 2)~What is the most promising model? 3) What is the impact of different Large Language Models (LLMs) and prompting strategies on skill extraction (i.e., dynamic vs. static few-shot samples, varying context information, and encouraging causal reasoning)? The article introduces the first Turkish skill extraction dataset and performance evaluations of automated skill extraction using LLMs. The manually annotated dataset contains 4,819 labeled skill spans from 327 job postings across different occupation areas. The use of LLM outperforms supervised sequence labeling when used in an end-to-end pipeline, aligning extracted spans with standardized skills in the ESCO taxonomy more effectively. The best-performing configuration, utilizing Claude Sonnet 3.7 with dynamic few-shot prompting for skill identification, embedding-based retrieval, and LLM-based reranking for skill linking, achieves an end-to-end performance of 0.56, positioning Turkish alongside similar studies in other languages, which are few in the literature. Our findings suggest that LLMs can improve skill extraction performance in low-resource settings, and we hope that our work will accelerate similar research on skill extraction for underrepresented languages.
☆ From Labels to Facets: Building a Taxonomically Enriched Turkish Learner Corpus
In terms of annotation structure, most learner corpora rely on holistic flat label inventories which, even when extensive, do not explicitly separate multiple linguistic dimensions. This makes linguistically deep annotation difficult and complicates fine-grained analyses aimed at understanding why and how learners produce specific errors. To address these limitations, this paper presents a semi-automated annotation methodology for learner corpora, built upon a recently proposed faceted taxonomy, and implemented through a novel annotation extension framework. The taxonomy provides a theoretically grounded, multi-dimensional categorization that captures the linguistic properties underlying each error instance, thereby enabling standardized, fine-grained, and interpretable enrichment beyond flat annotations. The annotation extension tool, implemented based on the proposed extension framework for Turkish, automatically extends existing flat annotations by inferring additional linguistic and metadata information as facets within the taxonomy to provide richer learner-specific context. It was systematically evaluated and yielded promising performance results, achieving a facet-level accuracy of 95.86%. The resulting taxonomically enriched corpus offers enhanced querying capabilities and supports detailed exploratory analyses across learner corpora, enabling researchers to investigate error patterns through complex linguistic and pedagogical dimensions. This work introduces the first collaboratively annotated and taxonomically enriched Turkish Learner Corpus, a manual annotation guideline with a refined tagset, and an annotation extender. As the first corpus designed in accordance with the recently introduced taxonomy, we expect our study to pave the way for subsequent enrichment efforts of existing error-annotated learner corpora.
☆ EmoShift: Lightweight Activation Steering for Enhanced Emotion-Aware Speech Synthesis ICASSP 2026
Achieving precise and controllable emotional expression is crucial for producing natural and context-appropriate speech in text-to-speech (TTS) synthesis. However, many emotion-aware TTS systems, including large language model (LLM)-based designs, rely on scaling fixed emotion embeddings or external guidance, limiting their ability to model emotion-specific latent characteristics. To address this gap, we present EmoShift, a lightweight activation-steering framework incorporating a EmoSteer layer, which learns a steering vector for each target emotion in the output embedding space to capture its latent offset and maintain stable, appropriate expression across utterances and categories. With only 10M trainable parameters,less than 1/30 of full fine-tuning, EmoShift outperforms zero-shot and fully fine-tuned baselines in objective and subjective evaluations, enhancing emotional expressiveness while preserving naturalness and speaker similarity. Further analysis confirms the proposed EmoSteer layer's effectiveness and reveals its potential for controllable emotional intensity in speech synthesis.
comment: Activation Steering; Emotion-Aware TTS; Speech Synthesis; Accepted by ICASSP 2026
☆ Eroding the Truth-Default: A Causal Analysis of Human Susceptibility to Foundation Model Hallucinations and Disinformation in the Wild
As foundation models (FMs) approach human-level fluency, distinguishing synthetic from organic content has become a key challenge for Trustworthy Web Intelligence. This paper presents JudgeGPT and RogueGPT, a dual-axis framework that decouples "authenticity" from "attribution" to investigate the mechanisms of human susceptibility. Analyzing 918 evaluations across five FMs (including GPT-4 and Llama-2), we employ Structural Causal Models (SCMs) as a principal framework for formulating testable causal hypotheses about detection accuracy. Contrary to partisan narratives, we find that political orientation shows a negligible association with detection performance ($r=-0.10$). Instead, "fake news familiarity" emerges as a candidate mediator ($r=0.35$), suggesting that exposure may function as adversarial training for human discriminators. We identify a "fluency trap" where GPT-4 outputs (HumanMachineScore: 0.20) bypass Source Monitoring mechanisms, rendering them indistinguishable from human text. These findings suggest that "pre-bunking" interventions should target cognitive source monitoring rather than demographic segmentation to ensure trustworthy information ecosystems.
comment: Accepted at ACM TheWebConf '26 Companion
☆ When Meanings Meet: Investigating the Emergence and Quality of Shared Concept Spaces during Multilingual Language Model Training EACL 2026
Training Large Language Models (LLMs) with high multilingual coverage is becoming increasingly important -- especially when monolingual resources are scarce. Recent studies have found that LLMs process multilingual inputs in shared concept spaces, thought to support generalization and cross-lingual transfer. However, these prior studies often do not use causal methods, lack deeper error analysis or focus on the final model only, leaving open how these spaces emerge during training. We investigate the development of language-agnostic concept spaces during pretraining of EuroLLM through the causal interpretability method of activation patching. We isolate cross-lingual concept representations, then inject them into a translation prompt to investigate how consistently translations can be altered, independently of the language. We find that shared concept spaces emerge early} and continue to refine, but that alignment with them is language-dependent}. Furthermore, in contrast to prior work, our fine-grained manual analysis reveals that some apparent gains in translation quality reflect shifts in behavior -- like selecting senses for polysemous words or translating instead of copying cross-lingual homographs -- rather than improved translation ability. Our findings offer new insight into the training dynamics of cross-lingual alignment and the conditions under which causal interpretability methods offer meaningful insights in multilingual contexts.
comment: Accepted to EACL 2026 Main Conference
☆ SOMBRERO: Measuring and Steering Boundary Placement in End-to-End Hierarchical Sequence Models
Hierarchical sequence models replace fixed tokenization with learned segmentations that compress long byte sequences for efficient autoregressive modeling. While recent end-to-end methods can learn meaningful boundaries from the language-modeling objective alone, it remains difficult to quantitatively assess and systematically steer where compute is spent. We introduce a router-agnostic metric of boundary quality, boundary enrichment B, which measures how strongly chunk starts concentrate on positions with high next-byte surprisal. Guided by this metric, we propose Sombrero, which steers boundary placement toward predictive difficulty via a confidence-alignment boundary loss and stabilizes boundary learning by applying confidence-weighted smoothing at the input level rather than on realized chunks. On 1B scale, across UTF-8 corpora covering English and German text as well as code and mathematical content, Sombrero improves the accuracy-efficiency trade-off and yields boundaries that more consistently align compute with hard-to-predict positions.
☆ Sparse or Dense? A Mechanistic Estimation of Computation Density in Transformer-based LLMs
Transformer-based large language models (LLMs) are comprised of billions of parameters arranged in deep and wide computational graphs. Several studies on LLM efficiency optimization argue that it is possible to prune a significant portion of the parameters, while only marginally impacting performance. This suggests that the computation is not uniformly distributed across the parameters. We introduce here a technique to systematically quantify computation density in LLMs. In particular, we design a density estimator drawing on mechanistic interpretability. We experimentally test our estimator and find that: (1) contrary to what has been often assumed, LLM processing generally involves dense computation; (2) computation density is dynamic, in the sense that models shift between sparse and dense processing regimes depending on the input; (3) per-input density is significantly correlated across LLMs, suggesting that the same inputs trigger either low or high density. Investigating the factors influencing density, we observe that predicting rarer tokens requires higher density, and increasing context length often decreases the density. We believe that our computation density estimator will contribute to a better understanding of the processing at work in LLMs, challenging their symbolic interpretation.
☆ CALM: Joint Contextual Acoustic-Linguistic Modeling for Personalization of Multi-Speaker ASR IEEE
We present CALM, a joint Contextual Acoustic-Linguistic Modeling framework for multi-speaker automatic speech recognition (ASR). In personalized AI scenarios, the joint availability of acoustic and linguistic cues naturally motivates the integration of target-speaker conditioning with contextual biasing in overlapping conversations. CALM implements this integration in an end-to-end framework through speaker embedding-driven target-speaker extraction and dynamic vocabulary-based contextual biasing. We evaluate CALM on simulated English (LibriSpeechMix) and Japanese (Corpus of Spontaneous Japanese mixtures, CSJMix). On two-speaker mixtures, CALM reduces biased word error rate (B-WER) from 12.7 to 4.7 on LibriSpeech2Mix and biased character error rate (B-CER) from 16.6 to 8.4 on CSJMix2 (eval3), demonstrating the effectiveness of joint acoustic-linguistic modeling across languages. We additionally report results on the AMI corpus (IHM-mix condition) to validate performance on standardized speech mixtures.
comment: Accepted to IEEE ICASSP 2026
☆ RASST: Fast Cross-modal Retrieval-Augmented Simultaneous Speech Translation
Simultaneous speech translation (SST) produces target text incrementally from partial speech input. Recent speech large language models (Speech LLMs) have substantially improved SST quality, yet they still struggle to correctly translate rare and domain-specific terminology. While retrieval augmentation has been effective for terminology translation in machine translation, bringing retrieval to SST is non-trivial: it requires fast and accurate cross-modal (speech-to-text) retrieval under partial, continually arriving input, and the model must decide whether and when to apply retrieved terms during incremental generation. We propose Retrieval-Augmented Simultaneous Speech Translation (RASST), which tightly integrates cross-modal retrieval into the SST pipeline. RASST trains a lightweight speech-text retriever and performs efficient sliding-window retrieval, providing chunkwise terminology hints to the Speech LLM. We further synthesize training data that teaches the Speech LLM to leverage retrieved terms precisely. Experiments on three language directions of the ACL 60/60 dev set show that RASST improves terminology translation accuracy by up to 16% and increases overall translation quality by up to 3 BLEU points, with ablations confirming the contribution of each component.
☆ AR-BENCH: Benchmarking Legal Reasoning with Judgment Error Detection, Classification and Correction
Legal judgments may contain errors due to the complexity of case circumstances and the abstract nature of legal concepts, while existing appellate review mechanisms face efficiency pressures from a surge in case volumes. Although current legal AI research focuses on tasks like judgment prediction and legal document generation, the task of judgment review differs fundamentally in its objectives and paradigm: it centers on detecting, classifying, and correcting errors after a judgment is issued, constituting anomaly detection rather than prediction or generation. To address this research gap, we introduce a novel task APPELLATE REVIEW, aiming to assess models' diagnostic reasoning and reliability in legal practice. We also construct a novel dataset benchmark AR-BENCH, which comprises 8,700 finely annotated decisions and 34,617 supplementary corpora. By evaluating 14 large language models, we reveal critical limitations in existing models' ability to identify legal application errors, providing empirical evidence for future improvements.
☆ MM-THEBench: Do Reasoning MLLMs Think Reasonably?
Recent advances in multimodal large language models (MLLMs) mark a shift from non-thinking models to post-trained reasoning models capable of solving complex problems through thinking. However, whether such thinking mitigates hallucinations in multimodal perception and reasoning remains unclear. Self-reflective reasoning enhances robustness but introduces additional hallucinations, and subtle perceptual errors still result in incorrect or coincidentally correct answers. Existing benchmarks primarily focus on models before the emergence of reasoning MLLMs, neglecting the internal thinking process and failing to measure the hallucinations that occur during thinking. To address these challenges, we introduce MM-THEBench, a comprehensive benchmark for assessing hallucinations of intermediate CoTs in reasoning MLLMs. MM-THEBench features a fine-grained taxonomy grounded in cognitive dimensions, diverse data with verified reasoning annotations, and a multi-level automated evaluation framework. Extensive experiments on mainstream reasoning MLLMs reveal insights into how thinking affects hallucination and reasoning capability in various multimodal tasks.
☆ AlienLM: Alienization of Language for API-Boundary Privacy in Black-Box LLMs
Modern LLMs are increasingly accessed via black-box APIs, requiring users to transmit sensitive prompts, outputs, and fine-tuning data to external providers, creating a critical privacy risk at the API boundary. We introduce AlienLM, a deployable API-only privacy layer that protects text by translating it into an Alien Language via a vocabulary-scale bijection, enabling lossless recovery on the client side. Using only standard fine-tuning APIs, Alien Adaptation Training (AAT) adapts target models to operate directly on alienized inputs. Across four LLM backbones and seven benchmarks, AlienLM retains over 81\% of plaintext-oracle performance on average, substantially outperforming random-bijection and character-level baselines. Under adversaries with access to model weights, corpus statistics, and learning-based inverse translation, recovery attacks reconstruct fewer than 0.22\% of alienized tokens. Our results demonstrate a practical pathway for privacy-preserving LLM deployment under API-only access, substantially reducing plaintext exposure while maintaining task performance.
☆ A Unified Study of LoRA Variants: Taxonomy, Review, Codebase, and Empirical Evaluation IEEE
Low-Rank Adaptation (LoRA) is a fundamental parameter-efficient fine-tuning method that balances efficiency and performance in large-scale neural networks. However, the proliferation of LoRA variants has led to fragmentation in methodology, theory, code, and evaluation. To this end, this work presents the first unified study of LoRA variants, offering a systematic taxonomy, unified theoretical review, structured codebase, and standardized empirical assessment. First, we categorize LoRA variants along four principal axes: rank, optimization dynamics, initialization, and integration with Mixture-of-Experts. Then, we review their relationships and evolution within a common theoretical framework focused on low-rank update dynamics. Further, we introduce LoRAFactory, a modular codebase that implements variants through a unified interface, supporting plug-and-play experimentation and fine-grained analysis. Last, using this codebase, we conduct a large-scale evaluation across natural language generation, natural language understanding, and image classification tasks, systematically exploring key hyperparameters. Our results uncover several findings, notably: LoRA and its variants exhibit pronounced sensitivity to the choices of learning rate compared to other hyperparameters; moreover, with proper hyperparameter configurations, LoRA consistently matches or surpasses the performance of most of its variants.
comment: Submitted to IEEE Transactions on Pattern Analysis and Machine Intelligence, Under Review
☆ Models Know Models Best: Evaluation via Model-Preferred Formats
Performance of Large Language Models (LLMs) on multiple-choice tasks differs markedly between symbol-based and cloze-style evaluation formats. The observed discrepancies are systematically attributable to task characteristics: natural language continuation benefits from likelihood scoring, whereas explicit comparison is better suited to symbol-based selection. These trends are consistent across various decoder-based LLMs, indicating model-agnostic effects. To address these inconsistencies, a dynamic format-alignment strategy is introduced that employs a lightweight classifier trained on latent model-preference signals. In contrast to human-designed heuristics, which often degrade performance, this approach uses model-generated signals to determine the optimal format for each problem instance. The proposed method achieves substantial and consistent improvements in zero-shot accuracy across reasoning and knowledge benchmarks, better revealing the models' latent capabilities.
☆ FNF: Functional Network Fingerprint for Large Language Models
The development of large language models (LLMs) is costly and has significant commercial value. Consequently, preventing unauthorized appropriation of open-source LLMs and protecting developers' intellectual property rights have become critical challenges. In this work, we propose the Functional Network Fingerprint (FNF), a training-free, sample-efficient method for detecting whether a suspect LLM is derived from a victim model, based on the consistency between their functional network activity. We demonstrate that models that share a common origin, even with differences in scale or architecture, exhibit highly consistent patterns of neuronal activity within their functional networks across diverse input samples. In contrast, models trained independently on distinct data or with different objectives fail to preserve such activity alignment. Unlike conventional approaches, our method requires only a few samples for verification, preserves model utility, and remains robust to common model modifications (such as fine-tuning, pruning, and parameter permutation), as well as to comparisons across diverse architectures and dimensionalities. FNF thus provides model owners and third parties with a simple, non-invasive, and effective tool for protecting LLM intellectual property. The code is available at https://github.com/WhatAboutMyStar/LLM_ACTIVATION.
comment: 13 pages, 4 figures
☆ TSLM: Tree-Structured Language Modeling for Divergent Thinking
Language models generate reasoning sequentially, preventing them from decoupling irrelevant exploration paths during search. We introduce Tree-Structured Language Modeling (TSLM), which uses special tokens to encode branching structure, enabling models to generate and selectively expand multiple search paths within a single generation process. By training on complete search trees including both successful and failed attempts, TSLM learns to internalize systematic exploration without redundant recomputation of shared prefixes. TSLM achieves robust performance and superior inference efficiency by avoiding the multiple independent forward passes required by external search methods. These results suggest a new paradigm of inference-time scaling for robust reasoning, demonstrating that supervised learning on complete tree-structured traces provides an efficient alternative for developing systematic exploration capabilities in language models.
☆ NAG: A Unified Native Architecture for Encoder-free Text-Graph Modeling in Language Models
Prevailing methods for integrating graphs into Language Models (LMs) typically rely on a segregated architecture: external Graph Neural Networks (GNNs) encode structural topology, while LMs process textual semantics. We argue this approach is suboptimal for text-graphs: it creates a conceptually disjointed interaction paradigm. By segregating structural encoding from semantic processing, these systems must perform a complex implicit alignment between abstract graph tokens and concrete textual elements. Challenging the necessity of external encoders, we propose NAG (Native Architecture for Graphs), a unified framework that internalizes graph processing within the LM's native manifold. Instead of bridging disparate embedding spaces, NAG repurposes the self-attention mechanism to enforce topological dependencies and recalibrates positional IDs to ensure structural equivalence. This allows the model to harness its intrinsic linguistic capability to simultaneously comprehend node and edge content alongside structural topology. We introduce two efficient implementations: NAG-Zero for absolute preservation of the base model's linguistic capabilities, and NAG-LoRA for enhanced structural adaptation. Experiments across diverse graph tasks validate that NAG achieves robust graph comprehension without the overhead of external encoders, offering a simpler, more coherent paradigm for text-graph modeling.
☆ DART-ing Through the Drift: Dynamic Tracing of Knowledge Neurons for Adaptive Inference-Time Pruning
Large Language Models (LLMs) exhibit substantial parameter redundancy, particularly in Feed-Forward Networks (FFNs). Existing pruning methods suffer from two primary limitations. First, reliance on dataset-specific calibration introduces significant data dependency and computational overhead. Second, being predominantly static, they fail to account for the evolving subset of knowledge neurons in LLMs during autoregressive generation as the context evolves. To address this, we introduce DART, i.e., Dynamic Attention-Guided Runtime Tracing), a lightweight, training-free method that performs on-the-fly context-based pruning. DART monitors shifts in attention score distributions to infer context changes, dynamically updating neuron-level masks to retain salient parameters. Across ten benchmarks, DART outperforms prior dynamic baseline, achieving accuracy gains of up to 14.5% on LLAMA-3.1-8B at 70% FFN sparsity. Furthermore, DART achieves up to 3x better ROUGE-L scores with respect to static-masked pruning on summarization tasks, with its performance comparable to the original dense models. We conclusively demonstrate that the proposed framework effectively adapts to diverse semantic contexts, preserves model capabilities across both general and domain-specific tasks while running at less than 10MBs of memory for LLAMA-3.1-8B(16GBs) with 0.1% FLOPs overhead. The code is available at https://github.com/seeder-research/DART.
☆ Time-Annealed Perturbation Sampling: Diverse Generation for Diffusion Language Models
Diffusion language models (Diffusion-LMs) introduce an explicit temporal dimension into text generation, yet how this structure can be leveraged to control generation diversity for exploring multiple valid semantic or reasoning paths remains underexplored. In this paper, we show that Diffusion-LMs, like diffusion models in image generation, exhibit a temporal division of labor: early denoising steps largely determine the global semantic structure, while later steps focus on local lexical refinement. Building on this insight, we propose Time-Annealed Perturbation Sampling (TAPS), a training-free inference strategy that encourages semantic branching early in the diffusion process while progressively reducing perturbations to preserve fluency and instruction adherence. TAPS is compatible with both non-autoregressive and semi-autoregressive Diffusion backbones, demonstrated on LLaDA and TraDo in our paper, and consistently improves output diversity across creative writing and reasoning benchmarks without compromising generation quality.
☆ TTCS: Test-Time Curriculum Synthesis for Self-Evolving
Test-Time Training offers a promising way to improve the reasoning ability of large language models (LLMs) by adapting the model using only the test questions. However, existing methods struggle with difficult reasoning problems for two reasons: raw test questions are often too difficult to yield high-quality pseudo-labels, and the limited size of test sets makes continuous online updates prone to instability. To address these limitations, we propose TTCS, a co-evolving test-time training framework. Specifically, TTCS initializes two policies from the same pretrained model: a question synthesizer and a reasoning solver. These policies evolve through iterative optimization: the synthesizer generates progressively challenging question variants conditioned on the test questions, creating a structured curriculum tailored to the solver's current capability, while the solver updates itself using self-consistency rewards computed from multiple sampled responses on both original test and synthetic questions. Crucially, the solver's feedback guides the synthesizer to generate questions aligned with the model's current capability, and the generated question variants in turn stabilize the solver's test-time training. Experiments show that TTCS consistently strengthens the reasoning ability on challenging mathematical benchmarks and transfers to general-domain tasks across different LLM backbones, highlighting a scalable path towards dynamically constructing test-time curricula for self-evolving. Our code and implementation details are available at https://github.com/XMUDeepLIT/TTCS.
comment: 10 pages, 4 figures, Our code and implementation details are available at https://github.com/XMUDeepLIT/TTCS
☆ Layer-wise Swapping for Generalizable Multilingual Safety
Despite the rapid advancements of Large Language Models (LLMs), safety risks remain a critical challenge for low-resource languages. Existing safety datasets are predominantly English centric, limiting progress in multilingual safety alignment. As a result, low resource expert models, finetuned on their respective instruction datasets, tend to exhibit higher unsafety rates compared to their high resource counterparts. In this work, we propose a safety aware layer swapping method that transfers safety alignment from an English safety expert to low resource language experts without additional training. To further enhance transfer ability, our method adaptively selects or blends modules based on their degree of specialization. Our approach preserves performance on general language understanding tasks while enhancing safety in the target languages. Experimental results show that the proposed method achieves comparable performance to the language expert on general benchmarks such as MMMLU, BELEBELE, and MGSM, while producing more aligned and less harmful responses on the MultiJail safety benchmark.
☆ From Self-Evolving Synthetic Data to Verifiable-Reward RL: Post-Training Multi-turn Interactive Tool-Using Agents ICML 2026
Interactive tool-using agents must solve real-world tasks via multi-turn interaction with both humans and external environments, requiring dialogue state tracking, multi-step tool execution, while following complex instructions. Post-training such agents is challenging because synthesis for high-quality multi-turn tool-use data is difficult to scale, and reinforcement learning (RL) could face noisy signals caused by user simulation, leading to degraded training efficiency. We propose a unified framework that combines a self-evolving data agent with verifier-based RL. Our system, EigenData, is a hierarchical multi-agent engine that synthesizes tool-grounded dialogues together with executable per-instance checkers, and improves generation reliability via closed-loop self-evolving process that updates prompts and workflow. Building on the synthetic data, we develop an RL recipe that first fine-tunes the user model and then applies GRPO-style training with trajectory-level group-relative advantages and dynamic filtering, yielding consistent improvements beyond SFT. Evaluated on tau^2-bench, our best model reaches 73.0% pass^1 on Airline and 98.3% pass^1 on Telecom, matching or exceeding frontier models. Overall, our results suggest a scalable pathway for bootstrapping complex tool-using behaviors without expensive human annotation.
comment: Submitted to ICML 2026
☆ TimeMachine-bench: A Benchmark for Evaluating Model Capabilities in Repository-Level Migration Tasks EACL 2026
With the advancement of automated software engineering, research focus is increasingly shifting toward practical tasks reflecting the day-to-day work of software engineers. Among these tasks, software migration, a critical process of adapting code to evolving environments, has been largely overlooked. In this study, we introduce TimeMachine-bench, a benchmark designed to evaluate software migration in real-world Python projects. Our benchmark consists of GitHub repositories whose tests begin to fail in response to dependency updates. The construction process is fully automated, enabling live updates of the benchmark. Furthermore, we curated a human-verified subset to ensure problem solvability. We evaluated agent-based baselines built on top of 11 models, including both strong open-weight and state-of-the-art LLMs on this verified subset. Our results indicated that, while LLMs show some promise for migration tasks, they continue to face substantial reliability challenges, including spurious solutions that exploit low test coverage and unnecessary edits stemming from suboptimal tool-use strategies. Our dataset and implementation are available at https://github.com/tohoku-nlp/timemachine-bench.
comment: Accepted to EACL 2026 Main, camera-ready
☆ Language Model Circuits Are Sparse in the Neuron Basis
The high-level concepts that a neural network uses to perform computation need not be aligned to individual neurons (Smolensky, 1986). Language model interpretability research has thus turned to techniques such as \textit{sparse autoencoders} (SAEs) to decompose the neuron basis into more interpretable units of model computation, for tasks such as \textit{circuit tracing}. However, not all neuron-based representations are uninterpretable. For the first time, we empirically show that \textbf{MLP neurons are as sparse a feature basis as SAEs}. We use this finding to develop an end-to-end pipeline for circuit tracing on the MLP neuron basis, which locates causal circuitry on a variety of tasks using gradient-based attribution. On a standard subject-verb agreement benchmark (Marks et al., 2025), a circuit of $\approx 10^2$ MLP neurons is enough to control model behaviour. On the multi-hop city $\to$ state $\to$ capital task from Lindsey et al., 2025, we find a circuit in which small sets of neurons encode specific latent reasoning steps (e.g.~`map city to its state'), and can be steered to change the model's output. This work thus advances automated interpretability of language models without additional training costs.
comment: 8 pages main text, 41 pages total
☆ Rethinking LLM-as-a-Judge: Representation-as-a-Judge with Small Language Models via Semantic Capacity Asymmetry
Large language models (LLMs) are widely used as reference-free evaluators via prompting, but this "LLM-as-a-Judge" paradigm is costly, opaque, and sensitive to prompt design. In this work, we investigate whether smaller models can serve as efficient evaluators by leveraging internal representations instead of surface generation. We uncover a consistent empirical pattern: small LMs, despite with weak generative ability, encode rich evaluative signals in their hidden states. This motivates us to propose the Semantic Capacity Asymmetry Hypothesis: evaluation requires significantly less semantic capacity than generation and can be grounded in intermediate representations, suggesting that evaluation does not necessarily need to rely on large-scale generative models but can instead leverage latent features from smaller ones. Our findings motivate a paradigm shift from LLM-as-a-Judge to Representation-as-a-Judge, a decoding-free evaluation strategy that probes internal model structure rather than relying on prompted output. We instantiate this paradigm through INSPECTOR, a probing-based framework that predicts aspect-level evaluation scores from small model representations. Experiments on reasoning benchmarks (GSM8K, MATH, GPQA) show that INSPECTOR substantially outperforms prompting-based small LMs and closely approximates full LLM judges, while offering a more efficient, reliable, and interpretable alternative for scalable evaluation.
☆ SpanNorm: Reconciling Training Stability and Performance in Deep Transformers
The success of Large Language Models (LLMs) hinges on the stable training of deep Transformer architectures. A critical design choice is the placement of normalization layers, leading to a fundamental trade-off: the ``PreNorm'' architecture ensures training stability at the cost of potential performance degradation in deep models, while the ``PostNorm'' architecture offers strong performance but suffers from severe training instability. In this work, we propose SpanNorm, a novel technique designed to resolve this dilemma by integrating the strengths of both paradigms. Structurally, SpanNorm establishes a clean residual connection that spans the entire transformer block to stabilize signal propagation, while employing a PostNorm-style computation that normalizes the aggregated output to enhance model performance. We provide a theoretical analysis demonstrating that SpanNorm, combined with a principled scaling strategy, maintains bounded signal variance throughout the network, preventing the gradient issues that plague PostNorm models, and also alleviating the representation collapse of PreNorm. Empirically, SpanNorm consistently outperforms standard normalization schemes in both dense and Mixture-of-Experts (MoE) scenarios, paving the way for more powerful and stable Transformer architectures.
☆ PhoStream: Benchmarking Real-World Streaming for Omnimodal Assistants in Mobile Scenarios
Multimodal Large Language Models excel at offline audio-visual understanding, but their ability to serve as mobile assistants in continuous real-world streams remains underexplored. In daily phone use, mobile assistants must track streaming audio-visual inputs and respond at the right time, yet existing benchmarks are often restricted to multiple-choice questions or use shorter videos. In this paper, we introduce PhoStream, the first mobile-centric streaming benchmark that unifies on-screen and off-screen scenarios to evaluate video, audio, and temporal reasoning. PhoStream contains 5,572 open-ended QA pairs from 578 videos across 4 scenarios and 10 capabilities. We build it with an Automated Generative Pipeline backed by rigorous human verification, and evaluate models using a realistic Online Inference Pipeline and LLM-as-a-Judge evaluation for open-ended responses. Experiments reveal a temporal asymmetry in LLM-judged scores (0-100): models perform well on Instant and Backward tasks (Gemini 3 Pro exceeds 80), but drop sharply on Forward tasks (16.40), largely due to early responses before the required visual and audio cues appear. This highlights a fundamental limitation: current MLLMs struggle to decide when to speak, not just what to say. Code and datasets used in this work will be made publicly accessible at https://github.com/Lucky-Lance/PhoStream.
comment: 18 pages
☆ Are LLM Evaluators Really Narcissists? Sanity Checking Self-Preference Evaluations
Recent research has shown that large language models (LLM) favor own outputs when acting as judges, undermining the integrity of automated post-training and evaluation workflows. However, it is difficult to disentangle which evaluation biases are explained by narcissism versus general experimental confounds, distorting measurements of self-preference bias. We discover a core methodological confound which could reduce measurement error by 89.6%. Specifically, LLM evaluators may deliver self-preferring verdicts when the judge responds to queries which they completed incorrectly themselves; this would be true regardless of whether one of their responses is their own. To decouple self-preference signals from noisy outputs on hard problems, we introduce an Evaluator Quality Baseline, which compares the probability that a judge incorrectly votes for itself against the probability that it votes for an incorrect response from another model. Evaluating this simple baseline on 37,448 queries, only 51% of initial findings retain statistical significance. Finally, we turn towards characterizing the entropy of "easy" versus "hard" evaluation votes from LLM judges. Our corrective baseline enables future research on self-preference by eliminating noisy data from potential solutions. More widely, this work contributes to the growing body of work on cataloging and isolating judge-bias effects.
☆ Towards the Holographic Characteristic of LLMs for Efficient Short-text Generation
The recent advancements in Large Language Models (LLMs) have attracted interest in exploring their in-context learning abilities and chain-of-thought capabilities. However, there are few studies investigating the specific traits related to the powerful generation capacity of LLMs. This paper aims to delve into the generation characteristics exhibited by LLMs. Through our investigation, we have discovered that language models tend to capture target-side keywords at the beginning of the generation process. We name this phenomenon the Holographic Characteristic of language models. For the purpose of exploring this characteristic and further improving the inference efficiency of language models, we propose a plugin called HOLO, which leverages the Holographic Characteristic to extract target-side keywords from language models within a limited number of generation steps and complements the sentence with a parallel lexically constrained text generation method. To verify the effectiveness of HOLO, we conduct massive experiments on language models of varying architectures and scales in the short-text generation scenario. The results demonstrate that HOLO achieves comparable performance to the baselines in terms of both automatic and human-like evaluation metrics and highlight the potential of the Holographic Characteristic.
☆ $ρ$-$\texttt{EOS}$: Training-free Bidirectional Variable-Length Control for Masked Diffusion LLMs
Beyond parallel generation and global context modeling, current masked diffusion large language models (dLLMs) suffer from a fundamental limitation: they require a predefined, fixed generation length, which lacks flexibility and forces an inevitable trade-off between output quality and computational efficiency. To address this, we study the denoising dynamics and find that the implicit density ($ρ$) of end-of-sequence ($\texttt{EOS}$) tokens serves as a reliable signal of generation sufficiency. In particular, the evolving implicit $\texttt{EOS}$ density during denoising reveals whether the current masked space is excessive or insufficient, thereby guiding the adjustment direction for generation length. Building on this insight, we propose $\textbf{$ρ$-$\texttt{EOS}$}$, a training-free, single-stage strategy that enables bidirectional variable-length generation for masked dLLMs. Unlike prior two-stage approaches--which require separate length adjustment and iterative mask insertion phases while supporting only unidirectional expansion--$\textbf{$ρ$-$\texttt{EOS}$}$ achieves bidirectional length adjustment within a unified denoising process by continuously estimating the implicit $\texttt{EOS}$ density: excessively high density triggers $\texttt{MASK}$ token contraction, while insufficient density induces expansion. Extensive experiments on mathematics and code benchmarks demonstrate that $\textbf{$ρ$-$\texttt{EOS}$}$ achieves comparable performance while substantially improving inference efficiency and token utilization.
comment: 11 pages,6 figures,6 tables
☆ One Ring to Rule Them All: Unifying Group-Based RL via Dynamic Power-Mean Geometry
Group-based reinforcement learning has evolved from the arithmetic mean of GRPO to the geometric mean of GMPO. While GMPO improves stability by constraining a conservative objective, it shares a fundamental limitation with GRPO: reliance on a fixed aggregation geometry that ignores the evolving and heterogeneous nature of each trajectory. In this work, we unify these approaches under Power-Mean Policy Optimization (PMPO), a generalized framework that parameterizes the aggregation geometry via the power-mean geometry exponent p. Within this framework, GRPO and GMPO are recovered as special cases. Theoretically, we demonstrate that adjusting p modulates the concentration of gradient updates, effectively reweighting tokens based on their advantage contribution. To determine p adaptively, we introduce a Clip-aware Effective Sample Size (ESS) mechanism. Specifically, we propose a deterministic rule that maps a trajectory clipping fraction to a target ESS. Then, we solve for the specific p to align the trajectory induced ESS with this target one. This allows PMPO to dynamically transition between the aggressive arithmetic mean for reliable trajectories and the conservative geometric mean for unstable ones. Experiments on multiple mathematical reasoning benchmarks demonstrate that PMPO outperforms strong baselines.
comment: 17 pages, 3 figures
☆ Mock Worlds, Real Skills: Building Small Agentic Language Models with Synthetic Tasks, Simulated Environments, and Rubric-Based Rewards
Small LLMs often struggle to match the agentic capabilities of large, costly models. While reinforcement learning can help, progress has been limited by two structural bottlenecks: existing open-source agentic training data are narrow in task variety and easily solved; real-world APIs lack diversity and are unstable for large-scale reinforcement learning rollout processes. We address these challenges with SYNTHAGENT, a framework that jointly synthesizes diverse tool-use training data and simulates complete environments. Specifically, a strong teacher model creates novel tasks and tool ecosystems, then rewrites them into intentionally underspecified instructions. This compels agents to actively query users for missing details. When handling synthetic tasks, an LLM-based user simulator provides user-private information, while a mock tool system delivers stable tool responses. For rewards, task-level rubrics are constructed based on required subgoals, user-agent interactions, and forbidden behaviors. Across 14 challenging datasets in math, search, and tool use, models trained on our synthetic data achieve substantial gains, with small models outperforming larger baselines.
☆ SSL: Sweet Spot Learning for Differentiated Guidance in Agentic Optimization
Reinforcement learning with verifiable rewards has emerged as a powerful paradigm for training intelligent agents. However, existing methods typically employ binary rewards that fail to capture quality differences among trajectories achieving identical outcomes, thereby overlooking potential diversity within the solution space. Inspired by the ``sweet spot'' concept in tennis-the racket's core region that produces optimal hitting effects, we introduce \textbf{S}weet \textbf{S}pot \textbf{L}earning (\textbf{SSL}), a novel framework that provides differentiated guidance for agent optimization. SSL follows a simple yet effective principle: progressively amplified, tiered rewards guide policies toward the sweet-spot region of the solution space. This principle naturally adapts across diverse tasks: visual perception tasks leverage distance-tiered modeling to reward proximity, while complex reasoning tasks reward incremental progress toward promising solutions. We theoretically demonstrate that SSL preserves optimal solution ordering and enhances the gradient signal-to-noise ratio, thereby fostering more directed optimization. Extensive experiments across GUI perception, short/long-term planning, and complex reasoning tasks show consistent improvements over strong baselines on 12 benchmarks, achieving up to 2.5X sample efficiency gains and effective cross-task transferability. Our work establishes SSL as a general principle for training capable and robust agents.
☆ FraudShield: Knowledge Graph Empowered Defense for LLMs against Fraud Attacks WWW 2026
Large language models (LLMs) have been widely integrated into critical automated workflows, including contract review and job application processes. However, LLMs are susceptible to manipulation by fraudulent information, which can lead to harmful outcomes. Although advanced defense methods have been developed to address this issue, they often exhibit limitations in effectiveness, interpretability, and generalizability, particularly when applied to LLM-based applications. To address these challenges, we introduce FraudShield, a novel framework designed to protect LLMs from fraudulent content by leveraging a comprehensive analysis of fraud tactics. Specifically, FraudShield constructs and refines a fraud tactic-keyword knowledge graph to capture high-confidence associations between suspicious text and fraud techniques. The structured knowledge graph augments the original input by highlighting keywords and providing supporting evidence, guiding the LLM toward more secure responses. Extensive experiments show that FraudShield consistently outperforms state-of-the-art defenses across four mainstream LLMs and five representative fraud types, while also offering interpretable clues for the model's generations.
comment: WWW 2026
☆ HeaPA: Difficulty-Aware Heap Sampling and On-Policy Query Augmentation for LLM Reinforcement Learning
RLVR is now a standard way to train LLMs on reasoning tasks with verifiable outcomes, but when rollout generation dominates the cost, efficiency depends heavily on which prompts you sample and when. In practice, prompt pools are often static or only loosely tied to the model's learning progress, so uniform sampling can't keep up with the shifting capability frontier and ends up wasting rollouts on prompts that are already solved or still out of reach. Existing approaches improve efficiency through filtering, curricula, adaptive rollout allocation, or teacher guidance, but they typically assume a fixed pool-which makes it hard to support stable on-policy pool growth-or they add extra teacher cost and latency. We introduce HeaPA (Heap Sampling and On-Policy Query Augmentation), which maintains a bounded, evolving pool, tracks the frontier using heap-based boundary sampling, expands the pool via on-policy augmentation with lightweight asynchronous validation, and stabilizes correlated queries through topology-aware re-estimation of pool statistics and controlled reinsertion. Across two training corpora, two training recipes, and seven benchmarks, HeaPA consistently improves accuracy and reaches target performance with fewer computations while keeping wall-clock time comparable. Our analyses suggest these gains come from frontier-focused sampling and on-policy pool growth, with the benefits becoming larger as model scale increases. Our code is available at https://github.com/horizon-rl/HeaPA.
☆ AI and My Values: User Perceptions of LLMs' Ability to Extract, Embody, and Explain Human Values from Casual Conversations
Does AI understand human values? While this remains an open philosophical question, we take a pragmatic stance by introducing VAPT, the Value-Alignment Perception Toolkit, for studying how LLMs reflect people's values and how people judge those reflections. 20 participants texted a human-like chatbot over a month, then completed a 2-hour interview with our toolkit evaluating AI's ability to extract (pull details regarding), embody (make decisions guided by), and explain (provide proof of) human values. 13 participants left our study convinced that AI can understand human values. Participants found the experience insightful for self-reflection and found themselves getting persuaded by the AI's reasoning. Thus, we warn about "weaponized empathy": a potentially dangerous design pattern that may arise in value-aligned, yet welfare-misaligned AI. VAPT offers concrete artifacts and design implications to evaluate and responsibly build value-aligned conversational agents with transparency, consent, and safeguards as AI grows more capable and human-like into the future.
comment: To appear in CHI '26
☆ Stop Jostling: Adaptive Negative Sampling Reduces the Marginalization of Low-Resource Language Tokens by Cross-Entropy Loss COLING 2025
Neural language models often struggle with low-resource languages due to the limited availability of training data, making tokens from these languages rare in the training set. This paper addresses a specific challenge during training: rare tokens are disproportionately affected by marginalization, which prevents them from learning effectively. We propose a thresholding technique that reduces the impact of this marginalization, allowing rare tokens to benefit from more meaningful alignment. Through experiments with a character-level language model, we demonstrate that this method significantly improves performance on low-resource language validation data. This work is the first to show how negative sampling can be applied to improve the representation of rare tokens by limiting the harmful influence of excessive marginalization, offering a new approach to enhancing language model performance for underrepresented languages.
comment: Accepted at LoResLM 2025 (COLING 2025 workshop). Oral presentation
☆ Towards Resiliency in Large Language Model Serving with KevlarFlow
Large Language Model (LLM) serving systems remain fundamentally fragile, where frequent hardware faults in hyperscale clusters trigger disproportionate service outages in the software stack. Current recovery mechanisms are prohibitively slow, often requiring up to 10 minutes to reinitialize resources and reload massive model weights. We introduce KevlarFlow, a fault tolerant serving architecture designed to bridge the gap between hardware unreliability and service availability. KevlarFlow leverages 1) decoupled model parallelism initialization, 2) dynamic traffic rerouting, and 3) background KV cache replication to maintain high throughput during partial failures. Our evaluation demonstrates that KevlarFlow reduces mean-time-to-recovery (MTTR) by 20x and, under failure conditions, improves average latency by 3.1x, 99th percentile (p99) latency by 2.8x, average time-to-first-token (TTFT) by 378.9x, and p99 TTFT by 574.6x with negligible runtime overhead in comparison to state-of-the-art LLM serving systems.
☆ Large Language Model Agents Are Not Always Faithful Self-Evolvers
Self-evolving large language model (LLM) agents continually improve by accumulating and reusing past experience, yet it remains unclear whether they faithfully rely on that experience to guide their behavior. We present the first systematic investigation of experience faithfulness, the causal dependence of an agent's decisions on the experience it is given, in self-evolving LLM agents. Using controlled causal interventions on both raw and condensed forms of experience, we comprehensively evaluate four representative frameworks across 10 LLM backbones and 9 environments. Our analysis uncovers a striking asymmetry: while agents consistently depend on raw experience, they often disregard or misinterpret condensed experience, even when it is the only experience provided. This gap persists across single- and multi-agent configurations and across backbone scales. We trace its underlying causes to three factors: the semantic limitations of condensed content, internal processing biases that suppress experience, and task regimes where pretrained priors already suffice. These findings challenge prevailing assumptions about self-evolving methods and underscore the need for more faithful and reliable approaches to experience integration.
comment: 25 pages, 16 figures, 7 tables
☆ ReNCE: Learning to Reason by Noise Contrastive Estimation
GRPO is a standard approach to endowing pretrained LLMs with reasoning capabilities. It estimates the advantage of an outcome from a group of $K$ outcomes, and promotes those with positive advantages inside a trust region. Since GRPO discriminates between good and bad outcomes softly, it benefits from additional refinements such as asymmetric clipping and zero-variance data filtering. While effective, these refinements require significant empirical insight and can be challenging to identify. We instead propose an explicit contrastive learning approach. Instead of estimating advantages, we bifurcate $K$ outcomes into positive and negative sets, then maximize the likelihood of positive outcomes. Our approach can be viewed as an online instantiation of (multi-label) noise contrastive estimation for LLM reasoning. We validate our method by demonstrating competitive performance on a suite of challenging math benchmarks against strong baselines such as DAPO and online DPO.
♻ ☆ Trajectory2Task: Training Robust Tool-Calling Agents with Synthesized Yet Verifiable Data for Complex User Intents
Tool-calling agents are increasingly deployed in real-world customer-facing workflows. Yet most studies on tool-calling agents focus on idealized settings with general, fixed, and well-specified tasks. In real-world applications, user requests are often (1) ambiguous, (2) changing over time, or (3) infeasible due to policy constraints, and training and evaluation data that cover these diverse, complex interaction patterns remain under-represented. To bridge the gap, we present Trajectory2Task, a verifiable data generation pipeline for studying tool use at scale under three realistic user scenarios: ambiguous intent, changing intent, and infeasible intents. The pipeline first conducts multi-turn exploration to produce valid tool-call trajectories. It then converts these trajectories into user-facing tasks with controlled intent adaptations. This process yields verifiable task that support closed-loop evaluation and training. We benchmark seven state-of-the-art LLMs on the generated complex user scenario tasks and observe frequent failures. Finally, using successful trajectories obtained from task rollouts, we fine-tune lightweight LLMs and find consistent improvements across all three conditions, along with better generalization to unseen tool-use domains, indicating stronger general tool-calling ability.
♻ ☆ FC-KAN: Function Combinations in Kolmogorov-Arnold Networks
In this paper, we introduce FC-KAN, a Kolmogorov-Arnold Network (KAN) that leverages combinations of popular mathematical functions such as B-splines, wavelets, and radial basis functions on low-dimensional data through element-wise operations. We explore several methods for combining the outputs of these functions, including sum, element-wise product, the addition of sum and element-wise product, representations of quadratic and cubic functions, concatenation, linear transformation of the concatenated output, and others. In our experiments, we compare FC-KAN with a multi-layer perceptron network (MLP) and other existing KANs, such as BSRBF-KAN, EfficientKAN, FastKAN, and FasterKAN, on the MNIST and Fashion-MNIST datasets. Two variants of FC-KAN, which use a combination of outputs from B-splines and Difference of Gaussians (DoG) and from B-splines and linear transformations in the form of a quadratic function, outperformed overall other models on the average of 5 independent training runs. We expect that FC-KAN can leverage function combinations to design future KANs. Our repository is publicly available at: https://github.com/hoangthangta/FC_KAN.
comment: 17 pages
♻ ☆ Tracing Multilingual Representations in LLMs with Cross-Layer Transcoders
Multilingual Large Language Models (LLMs) can process many languages, yet how they internally represent this diversity remains unclear. Do they form shared multilingual representations with language-specific decoding, and if so, why does performance favor the dominant training language? To address this, we train models on different multilingual mixtures and analyze their internal mechanisms using Cross-Layer Transcoders (CLTs) and Attribution Graphs. Our results reveal multilingual shared representations: the model employs highly similar features across languages, while language-specific decoding emerges in later layers. Training models without English shows identical multilingual shared space structures. Decoding relies partly on a small set of high-frequency features in the final layers, which linearly encode language identity from early layers. Intervening on these features allows one language to be suppressed and another substituted. Finally, to explain non-English failures, we perform a Model-Diffing experiment: underperformance arises from dim late-layer features, weak middle-layer clusters, and tokenizer bias toward English that forces early layers to specialize in word reassembly. Finetuning strengthens these features and their links, improving token assembly and language-specific decoding, providing a mechanistic explanation for multilingual gaps. Our models and CLTs are available at https://huggingface.co/collections/CausalNLP/multilingual-clts and https://huggingface.co/collections/CausalNLP/multilingual-gpt2-models. Our code is available at: https://github.com/abirharrasse/MultilingualCLTs
comment: 42 pages, 43 figures, under review. Extensive supplementary materials. Code and models available at https://huggingface.co/collections/CausalNLP/multilingual-tinystories-6862b6562414eb84d183f82a and https://huggingface.co/collections/CausalNLP/multilingual-gpt2-models and https://huggingface.co/collections/CausalNLP/multilingual-clts and https://github.com/abirharrasse/MultilingualCLTs
♻ ☆ SuperCoder: Assembly Program Superoptimization with Large Language Models
Superoptimization is the task of transforming a program into a faster one while preserving its input-output behavior. In this work, we investigate whether large language models (LLMs) can serve as superoptimizers, generating assembly programs that outperform code already optimized by industry-standard compilers. We construct the first large-scale benchmark for this problem, consisting of 8,072 assembly programs averaging 130 lines, in contrast to prior datasets restricted to 2-15 straight-line, loop-free programs. We evaluate 23 LLMs on this benchmark and find that the strongest baseline, Claude-opus-4, achieves a 51.5% test-passing rate and a 1.43x average speedup over gcc -O3. To further enhance performance, we fine-tune models with reinforcement learning, optimizing a reward function that integrates correctness and performance speedup. Starting from Qwen2.5-Coder-7B-Instruct (61.4% correctness, 1.10x speedup), the fine-tuned model SuperCoder attains 95.0% correctness and 1.46x average speedup, with additional improvement enabled by Best-of-N sampling and iterative refinement. Our results demonstrate, for the first time, that LLMs can be applied as superoptimizers for assembly programs, establishing a foundation for future research in program performance optimization beyond compiler heuristics.
♻ ☆ Geometric-disentangelment Unlearning
Large language models (LLMs) can internalize private or harmful content, motivating unlearning that removes a forget set while preserving retaining knowledge. However, forgetting updates often cause collateral degradation on retaining knowledge, creating a persistent trade-off. Existing LLM unlearning methods are often heuristic, and other theoretical approaches rely on offline feature constructions that do not capture update-time forget-retain interaction in LLMs. To address this limitation, we aim to develop an LLM unlearning method that reduces the forget-retain trade-off with theoretical guarantees. We take a first-principles view by formalizing "no side effects" as local retain invariance under small parameter updates, and prove an equivalence under optimizer-induced geometry: the retain loss is locally invariant if and only if the update direction is orthogonal to the subspace spanned by retain gradients. Based on the insight, we propose Geometric-disentanglement Unlearning (GU), a lightweight and theoretically grounded projection that can be plug-and-play to existing gradient-based unlearning methods to mitigate forget-retain side effects. Experiments on TOFU, MUSE, and WMDP-cyber show that GU strengthens forgetting while reducing retain drift. When added to SimNPO, it achieves up to 62\% improved forgetting Extraction Strength (ES) and 31\% higher retain ES. We open-sourced our code in https://github.com/Lemutisme/Geometric-Unlearning.
comment: 26 Pages
♻ ☆ LightRetriever: A LLM-based Text Retrieval Architecture with Extremely Faster Query Inference ICLR 2026
Large Language Models (LLMs)-based text retrieval retrieves documents relevant to search queries based on vector similarities. Documents are pre-encoded offline, while queries arrive in real-time, necessitating an efficient online query encoder. Although LLMs significantly enhance retrieval capabilities, serving deeply parameterized LLMs slows down query inference throughput and increases demands for online deployment resources. In this paper, we propose LightRetriever, a novel LLM-based retriever with extremely lightweight query encoders. Our method retains a full-sized LLM for document encoding, but reduces the workload of query encoding to no more than an embedding lookup. Compared to serving a full LLM on an A800 GPU, our method achieves over 1000x speedup in query encoding and over 10x increase in end-to-end retrieval throughput. Extensive experiments on large-scale retrieval benchmarks show that LightRetriever generalizes well across diverse tasks, maintaining an average of 95% retrieval performance.
comment: Accepted by ICLR 2026
♻ ☆ Just as Humans Need Vaccines, So Do Models: Model Immunization to Combat Falsehoods
Large language models (LLMs) reproduce misinformation by learning the linguistic patterns that make falsehoods persuasive, such as hedging, false presuppositions, and citation fabrication, rather than merely memorizing false facts. We propose model immunization: supervised fine-tuning on curated (false claim, correction) pairs injected as small "vaccine doses" (5-10\% of tokens) alongside truthful data. Unlike post-hoc filtering or preference-based alignment, immunization provides direct negative supervision on labeled falsehoods. Across four open-weight model families, immunization improves TruthfulQA accuracy by 12 points and misinformation rejection by 30 points with negligible capability loss. We outline design requirements, which includes, dosage, labeling, quarantine, diversity and call for standardized vaccine corpora and benchmarks that test generalization, making immunization a routine component of responsible LLM development
♻ ☆ From Next-Token to Next-Block: A Principled Adaptation Path for Diffusion LLMs
Diffusion Language Models (DLMs) enable fast generation, yet training large DLMs from scratch is costly. As a practical shortcut, adapting off-the-shelf Auto-Regressive (AR) model weights into a DLM could quickly equip the DLM with strong long-context generation capabilies. Prior "adaptation" attempts either modify logits or randomly grow attention masks to Full-Sequence diffusion, or simply transplant AR weights into a Block-Diffusion recipe, leaving two key questions unaddressed: where is the final destination of adaptation, and how to adapt better? For manifold benefits, we reframe the whole AR-to-DLM adaptation under the Block-Diffusion paradigm, transitioning from block size 1 to the final Block-Diffusion state. Concretely, the principled pathway of adaptation is designed as follows: we keep a context-causal path where causal attention is kept in the prefix, an efficient parallel adaptation procedure where an AR guidance is maintained, and gradual increment of the generation block size for a smoother transition. Built on these components, the adaptation is proved competitive on various models at different scales. With better adaptation, we propose NBDiff-7B that could inherit the long-context modeling and reasoning capabilities, and achieve state-of-the-art performance among the 7B-class DLMs. Codes: https://github.com/YuchuanTian/NBDiff.
comment: 14 pages, 5 figures
♻ ☆ RAFFLES: Reasoning-based Attribution of Faults for LLM Systems EACL 2026
The advent of complex, interconnected long-horizon LLM systems has made it incredibly tricky to identify where and when these systems break down. Evaluation capabilities that currently exist today are limited in that they often focus on simple metrics, end-to-end outcomes, and are dependent on the perspectives of humans. In order to match the increasing complexity of these many component systems, evaluation frameworks must also be able to reason, probe, iterate, and understand the nuanced logic passing through these systems. In this paper, we present RAFFLES, an offline evaluation architecture that incorporates iterative reasoning. Specifically, RAFFLES operates as an iterative, multi-component pipeline, using a central Judge to systematically identify faults and a set of specialized Evaluators to assess the quality of the candidate faults as well as rationales of the Judge. We evaluated RAFFLES with several benchmarks - the Who&When dataset to identify step-level faults in multi-agent systems and the ReasonEval datasets to diagnose step-level mathematical reasoning errors. RAFFLES outperforms strong baselines, achieving an accuracy of over 20% and 50% on the Who&When Hand-Crafted and Algorithmically-Generated datasets, and over 80% on the ReasonEval datasets. These results demonstrate a key step towards introducing automated fault detection for autonomous systems over labor-intensive manual review.
comment: Accepted at EACL 2026 Main Conference
♻ ☆ EtCon: Edit-then-Consolidate for Reliable Knowledge Editing
Knowledge editing aims to update specific facts in large language models (LLMs) without full retraining. Prior efforts sought to tune the knowledge layers of LLMs, achieving improved performance in controlled, teacher-forced evaluations. However, they still encounter challenges in real-world autoregressive generation scenarios, which greatly limit their practical applicability. Our empirical analysis reveals two issues: (1) Most methods degrade pre-trained capabilities after injecting new knowledge; (2) They may exhibit a discrepancy between stored parametric knowledge and inference-time autoregressive generation behavior. To this end, we propose EtCon, an edit-then-consolidate paradigm that couples targeted edits with post-edit consolidation. Specifically, our framework comprises two stages: (1) Targeted Proximal Supervised Fine-Tuning (TPSFT) performs a constrained targeted edit to update parametric knowledge while controlling policy drift. (2) Group Relative Policy Optimization (GRPO) consolidates the edit by aligning autoregressive trajectories with the intended fact. Extensive experiments demonstrate that our EtCon improves editing reliability and real-world generalization, while better preserving pre-trained capabilities.
♻ ☆ Transparent Semantic Change Detection with Dependency-Based Profiles
Most modern computational approaches to lexical semantic change detection (LSC) rely on embedding-based distributional word representations with neural networks. Despite the strong performance on LSC benchmarks, they are often opaque. We investigate an alternative method which relies purely on dependency co-occurrence patterns of words. We demonstrate that it is effective for semantic change detection and even outperforms a number of distributional semantic models. We provide an in-depth quantitative and qualitative analysis of the predictions, showing that they are plausible and interpretable.
♻ ☆ ARB-LLM: Alternating Refined Binarizations for Large Language Models
Large Language Models (LLMs) have greatly pushed forward advancements in natural language processing, yet their high memory and computational demands hinder practical deployment. Binarization, as an effective compression technique, can shrink model weights to just 1 bit, significantly reducing the high demands on computation and memory. However, current binarization methods struggle to narrow the distribution gap between binarized and full-precision weights, while also overlooking the column deviation in LLM weight distribution. To tackle these issues, we propose ARB-LLM, a novel 1-bit post-training quantization (PTQ) technique tailored for LLMs. To narrow the distribution shift between binarized and full-precision weights, we first design an alternating refined binarization (ARB) algorithm to progressively update the binarization parameters, which significantly reduces the quantization error. Moreover, considering the pivot role of calibration data and the column deviation in LLM weights, we further extend ARB to ARB-X and ARB-RC. In addition, we refine the weight partition strategy with column-group bitmap (CGB), which further enhance performance. Equipping ARB-X and ARB-RC with CGB, we obtain ARB-LLM$_\text{X}$ and ARB-LLM$_\text{RC}$ respectively, which significantly outperform state-of-the-art (SOTA) binarization methods for LLMs. As a binary PTQ method, our ARB-LLM$_\text{RC}$ is the first to surpass FP16 models of the same size. The code and models will be available at https://github.com/ZHITENGLI/ARB-LLM.
comment: The code and models will be available at https://github.com/ZHITENGLI/ARB-LLM
♻ ☆ Tokenization Multiplicity Leads to Arbitrary Price Variation in LLM-as-a-service
Providers of LLM-as-a-service have predominantly adopted a simple pricing model: users pay a fixed price per token. Consequently, one may think that the price two different users would pay for the same output string under the same input prompt is the same. In our work, we show that, surprisingly, this is not (always) true. We find empirical evidence that, particularly for non-english outputs, both proprietary and open-weights LLMs often generate the same (output) string with multiple different tokenizations, even under the same input prompt, and this in turn leads to arbitrary price variation. To address the problem of tokenization multiplicity, we introduce canonical generation, a type of constrained generation that restricts LLMs to only generate canonical tokenizations -- the unique tokenization in which each string is tokenized during the training process of an LLM. Further, we introduce an efficient sampling algorithm for canonical generation based on the Gumbel-Max trick. Experiments on a variety of natural language tasks demonstrate that our sampling algorithm for canonical generation is comparable to standard sampling in terms of performance and runtime, and it solves the problem of tokenization multiplicity.
♻ ☆ ATOD: An Evaluation Framework and Benchmark for Agentic Task-Oriented Dialogue Systems
Recent advances in task-oriented dialogue (TOD) systems, driven by large language models (LLMs) with extensive API and tool integration, have enabled conversational agents to coordinate interleaved goals, maintain long-horizon context, and act proactively through asynchronous execution. These capabilities extend beyond traditional TOD systems, yet existing benchmarks lack systematic support for evaluating such agentic behaviors. To address this gap, we introduce ATOD, a benchmark and synthetic dialogue generation pipeline that produces richly annotated conversations requiring long-term reasoning. ATOD captures key characteristics of advanced TOD, including multi-goal coordination, dependency management, memory, adaptability, and proactivity. Building on ATOD, we propose ATOD-Eval, a holistic evaluation framework that translates these dimensions into fine-grained metrics and supports reproducible offline and online evaluation. We further present a strong agentic memory-based evaluator for benchmarking on ATOD. Experiments show that ATOD-Eval enables comprehensive assessment across task completion, agentic capability, and response quality, and that the proposed evaluator offers a better accuracy-efficiency tradeoff compared to existing memory- and LLM-based approaches under this evaluation setting.
♻ ☆ Diverse, not Short: A Length-Controlled Data Selection Strategy for Improving Response Diversity of Language Models EMNLP 2025
Diverse language model responses are crucial for creative generation, open-ended tasks, and self-improvement training. We show that common diversity metrics, and even reward models used for preference optimization, systematically bias models toward shorter outputs, limiting expressiveness. To address this, we introduce Diverse, not Short (Diverse-NS), a length-controlled data selection strategy that improves response diversity while maintaining length parity. By generating and filtering preference data that balances diversity, quality, and length, Diverse-NS enables effective training using only 3,000 preference pairs. Applied to LLaMA-3.1-8B and the Olmo-2 family, Diverse-NS substantially enhances lexical and semantic diversity. We show consistent improvement in diversity with minor reduction or gains in response quality on four creative generation tasks: Divergent Associations, Persona Generation, Alternate Uses, and Creative Writing. Surprisingly, experiments with the Olmo-2 model family (7B, and 13B) show that smaller models like Olmo-2-7B can serve as effective "diversity teachers" for larger models. By explicitly addressing length bias, our method efficiently pushes models toward more diverse and expressive outputs.
comment: Accepted to EMNLP 2025 Main
♻ ☆ ChatInject: Abusing Chat Templates for Prompt Injection in LLM Agents ICLR 2026
The growing deployment of large language model (LLM) based agents that interact with external environments has created new attack surfaces for adversarial manipulation. One major threat is indirect prompt injection, where attackers embed malicious instructions in external environment output, causing agents to interpret and execute them as if they were legitimate prompts. While previous research has focused primarily on plain-text injection attacks, we find a significant yet underexplored vulnerability: LLMs' dependence on structured chat templates and their susceptibility to contextual manipulation through persuasive multi-turn dialogues. To this end, we introduce ChatInject, an attack that formats malicious payloads to mimic native chat templates, thereby exploiting the model's inherent instruction-following tendencies. Building on this foundation, we develop a persuasion-driven Multi-turn variant that primes the agent across conversational turns to accept and execute otherwise suspicious actions. Through comprehensive experiments across frontier LLMs, we demonstrate three critical findings: (1) ChatInject achieves significantly higher average attack success rates than traditional prompt injection methods, improving from 5.18% to 32.05% on AgentDojo and from 15.13% to 45.90% on InjecAgent, with multi-turn dialogues showing particularly strong performance at average 52.33% success rate on InjecAgent, (2) chat-template-based payloads demonstrate strong transferability across models and remain effective even against closed-source LLMs, despite their unknown template structures, and (3) existing prompt-based defenses are largely ineffective against this attack approach, especially against Multi-turn variants. These findings highlight vulnerabilities in current agent systems.
comment: ICLR 2026
♻ ☆ Surrogate Signals from Format and Length: Reinforcement Learning for Solving Mathematical Problems without Ground Truth Answers
Large Language Models (LLMs) have achieved remarkable success in natural language processing tasks, with Reinforcement Learning (RL) playing a key role in adapting them to specific applications. In mathematical problem solving, however, the reliance on ground truth answers poses significant challenges due to their high collection cost and limited availability. This work explores the use of simple surrogate signals, format and length, to guide RL training. We find that early training is dominated by format learning, where structural feedback alone accounts for most performance gains. Incorporating length-based rewards further refines outputs by discouraging overly long or short responses, enabling a GRPO approach with format-length signals to approximate, and in some cases surpass, ground-truth-based optimization. For example, our method achieves 40.0% accuracy on AIME2024 with a 7B base model, and generalizes across different model sizes and series. Beyond practical efficiency, these findings provide an inspirational perspective on RL: rather than imparting new knowledge, RL primarily activates reasoning capabilities already embedded in pre-trained models. This insight suggests that lightweight, label-efficient strategies can complement pre-training to unlock LLMs' latent potential in reasoning-intensive tasks.
♻ ☆ DeepResearch Bench II: Diagnosing Deep Research Agents via Rubrics from Expert Report
Deep Research Systems (DRS) aim to help users search the web, synthesize information, and deliver comprehensive investigative reports. However, how to rigorously evaluate these systems remains under-explored. Existing deep-research benchmarks often fall into two failure modes. Some do not adequately test a system's ability to analyze evidence and write coherent reports. Others rely on evaluation criteria that are either overly coarse or directly defined by LLMs (or both), leading to scores that can be biased relative to human experts and are hard to verify or interpret. To address these issues, we introduce Deep Research Bench II, a new benchmark for evaluating DRS-generated reports. It contains 132 grounded research tasks across 22 domains; for each task, a system must produce a long-form research report that is evaluated by a set of 9430 fine-grained binary rubrics in total, covering three dimensions: information recall, analysis, and presentation. All rubrics are derived from carefully selected expert-written investigative articles and are constructed through a four-stage LLM+human pipeline that combines automatic extraction with over 400 human-hours of expert review, ensuring that the criteria are atomic, verifiable, and aligned with human expert judgment. We evaluate several state-of-the-art deep-research systems on Deep Research Bench II and find that even the strongest models satisfy fewer than 50% of the rubrics, revealing a substantial gap between current DRSs and human experts.
♻ ☆ Which Heads Matter for Reasoning? RL-Guided KV Cache Compression
Reasoning large language models exhibit complex reasoning behaviors via extended chain-of-thought generation that are highly fragile to information loss during decoding, creating critical challenges for KV cache compression. Existing token-dropping methods directly disrupt reasoning chains by removing intermediate steps, while head-reallocation methods, designed for retrieval tasks, fail to preserve the heads essential for generative reasoning. However, no existing method can identify which attention heads genuinely maintain reasoning consistency and control generation termination. To address this, we propose RLKV, which uses reinforcement learning as a probe to discover which heads contribute to reasoning quality by directly optimizing their cache usage against actual generation outcomes. This discovery naturally leads to an efficient compression strategy: we allocate full KV cache to reasoning-critical heads while aggressively compressing others. Experiments reveal that a fraction of heads proves essential for reasoning, enabling 20--50% cache reduction with near-lossless performance and up to 1.21x speedup.
♻ ☆ Context-aware Fairness Evaluation and Mitigation in LLMs
Large language models often display undesirable behaviors embedded in their internal representations, undermining fairness, inconsistency drift, amplification of harmful content, and the propagation of unwanted patterns during extended dialogue and conversations. Although training-time or data-centric methods attempt to reduce these effects, they are computationally expensive, irreversible once deployed, and slow to adapt to new conversational contexts. Pruning-based methods provide a flexible and transparent way to reduce bias by adjusting the neurons responsible for certain behaviors. However, most existing approaches are static; once a neuron is removed, the model loses the ability to adapt when the conversation or context changes. To address this, we propose a dynamic, reversible, pruning-based framework that detects context-aware neuron activations and applies adaptive masking to modulate their influence during generation. Our inference-time solution provides fine-grained, memory-aware mitigation with knowledge-preserved, more coherent behavior across multilingual single- and multi-turn dialogues, enabling dynamic fairness control in real-world conversational AI.
comment: PrePrint
♻ ☆ CoFrGeNet: Continued Fraction Architectures for Language Generation
Transformers are arguably the preferred architecture for language generation. In this paper, inspired by continued fractions, we introduce a new function class for generative modeling. The architecture family implementing this function class is named CoFrGeNets - Continued Fraction Generative Networks. We design novel architectural components based on this function class that can replace Multi-head Attention and Feed-Forward Networks in Transformer blocks while requiring much fewer parameters. We derive custom gradient formulations to optimize the proposed components more accurately and efficiently than using standard PyTorch-based gradients. Our components are a plug-in replacement requiring little change in training or inference procedures that have already been put in place for Transformer-based models thus making our approach easy to incorporate in large industrial workflows. We experiment on two very different transformer architectures GPT2-xl (1.5B) and Llama3 (3.2B), where the former we pre-train on OpenWebText and GneissWeb, while the latter we pre-train on the docling data mix which consists of nine different datasets. Results show that the performance on downstream classification, Q\& A, reasoning and text understanding tasks of our models is competitive and sometimes even superior to the original models with $\frac{2}{3}$ to $\frac{1}{2}$ the parameters and shorter pre-training time. We believe that future implementations customized to hardware will further bring out the true potential of our architectures.
♻ ☆ FactSelfCheck: Fact-Level Black-Box Hallucination Detection for LLMs EACL 2026
Large Language Models (LLMs) frequently generate hallucinated content, posing significant challenges for applications where factuality is crucial. While existing hallucination detection methods typically operate at the sentence level or passage level, we propose FactSelfCheck, a novel zero-resource black-box sampling-based method that enables fine-grained fact-level detection. Our approach represents text as interpretable knowledge graphs consisting of facts in the form of triples, providing clearer insights into content factuality than traditional approaches. Through analyzing factual consistency across multiple LLM responses, we compute fine-grained hallucination scores without requiring external resources or training data. Our evaluation demonstrates that FactSelfCheck performs competitively with leading sentence-level sampling-based methods while providing more detailed and interpretable insights. Most notably, our fact-level approach significantly improves hallucination correction, achieving a 35.5% increase in factual content compared to the baseline, while sentence-level SelfCheckGPT yields only a 10.6% improvement. The granular nature of our detection enables more precise identification and correction of hallucinated content. Additionally, we contribute FavaMultiSamples, a novel dataset that addresses a gap in the field by providing the research community with a second dataset for evaluating sampling-based methods.
comment: Accepted for EACL 2026 (findings)
♻ ☆ AgentIF-OneDay: A Task-level Instruction-Following Benchmark for General AI Agents in Daily Scenarios
The capacity of AI agents to effectively handle tasks of increasing duration and complexity continues to grow, demonstrating exceptional performance in coding, deep research, and complex problem-solving evaluations. However, in daily scenarios, the perception of these advanced AI capabilities among general users remains limited. We argue that current evaluations prioritize increasing task difficulty without sufficiently addressing the diversity of agentic tasks necessary to cover the daily work, life, and learning activities of a broad demographic. To address this, we propose AgentIF-OneDay, aimed at determining whether general users can utilize natural language instructions and AI agents to complete a diverse array of daily tasks. These tasks require not only solving problems through dialogue but also understanding various attachment types and delivering tangible file-based results. The benchmark is structured around three user-centric categories: Open Workflow Execution, which assesses adherence to explicit and complex workflows; Latent Instruction, which requires agents to infer implicit instructions from attachments; and Iterative Refinement, which involves modifying or expanding upon ongoing work. We employ instance-level rubrics and a refined evaluation pipeline that aligns LLM-based verification with human judgment, achieving an 80.1% agreement rate using Gemini-3-Pro. AgentIF-OneDay comprises 104 tasks covering 767 scoring points. We benchmarked four leading general AI agents and found that agent products built based on APIs and ChatGPT agents based on agent RL remain in the first tier simultaneously. Leading LLM APIs and open-source models have internalized agentic capabilities, enabling AI application teams to develop cutting-edge Agent products.
comment: 17 pages, 8 figures
♻ ☆ SAFER: Probing Safety in Reward Models with Sparse Autoencoder
Reinforcement learning from human feedback (RLHF) is a key paradigm for aligning large language models (LLMs) with human values, yet the reward models at its core remain largely opaque. In this work, we present Sparse Autoencoder For Enhanced Reward model (\textbf{SAFER}), a novel framework for interpreting and improving reward models through mechanistic analysis. Leveraging Sparse Autoencoders (SAEs), we uncover human-interpretable features in reward model activations, enabling insight into safety-relevant decision-making. We apply SAFER to safety-oriented preference datasets and quantify the salience of individual features by activation differences between chosen and rejected responses. Using these feature-level signals, we design targeted data poisoning and denoising strategies. Experiments show that SAFER can precisely degrade or enhance safety alignment with minimal data modification, without sacrificing general chat performance. Our approach contributes to interpreting, auditing and refining reward models in high-stakes LLM alignment tasks. Our codes are available at https://github.com/xzy-101/SAFER-code. \textit{This paper discusses topics related to reward model safety and may include discussions or examples that highlight potential risks or unsafe outcomes.}
♻ ☆ BiasGym: Fantastic LLM Biases and How to Find (and Remove) Them
Understanding biases and stereotypes encoded in the weights of Large Language Models (LLMs) is crucial for developing effective mitigation strategies. However, biased behaviour is often subtle and non-trivial to isolate, even when deliberately elicited, making systematic analysis and debiasing particularly challenging. To address this, we introduce \texttt{BiasGym}, a simple, cost-effective, and generalizable framework for reliably and safely injecting, analyzing, and mitigating conceptual associations of biases within LLMs. \texttt{BiasGym} consists of two components: \texttt{BiasInject}, which safely injects specific biases into the model via token-based fine-tuning while keeping the model frozen, and \texttt{BiasScope}, which leverages these injected signals to identify and reliably steer the components responsible for biased behavior. Our method enables consistent bias elicitation for mechanistic analysis, supports targeted debiasing without degrading performance on downstream tasks, and generalizes to biases unseen during fine-tuning. We demonstrate the effectiveness of BiasGym in reducing real-world stereotypes (e.g., people from Italy being `reckless drivers'), showing its utility for both safety interventions and interpretability research.
comment: Under review
♻ ☆ Multi-Step Knowledge Interaction Analysis via Rank-2 Subspace Disentanglement
Natural Language Explanations (NLEs) describe how Large Language Models (LLMs) make decisions by drawing on external Context Knowledge (CK) and Parametric Knowledge (PK). Understanding the interaction between these sources is key to assessing NLE grounding, yet these dynamics remain underexplored. Prior work has largely focused on (1) single-step generation and (2) modelled PK-CK interaction as a binary choice within a rank-1 subspace. This approach overlooks richer interactions and how they unfold over longer generations, such as complementary or supportive knowledge. We propose a novel rank-2 projection subspace that disentangles PK and CK contributions more accurately and use it for the first multi-step analysis of knowledge interactions across longer NLE sequences. Experiments across four QA datasets and three open-weight LLMs demonstrate that while rank-1 subspaces struggle to represent diverse interactions, our rank-2 formulation captures them effectively, highlighting PK alignment for supportive interactions and CK alignment for conflicting ones. Our multi-step analysis reveals, among others, that hallucinated generations exhibit strong alignment with the PK direction, whereas context-faithful generations maintain a more balanced alignment between PK and CK.
comment: Under review
♻ ☆ Moral Outrage Shapes Commitments Beyond Attention: Multimodal Moral Emotions on YouTube in Korea and the US
Understanding how media rhetoric shapes audience engagement is crucial in the attention economy. This study examines how moral emotional framing by mainstream news channels on YouTube influences user behavior across Korea and the United States. To capture the platform's multimodal nature, combining thumbnail images and video titles, we develop a multimodal moral emotion classifier by fine tuning a vision language model. The model is trained on human annotated multimodal datasets in both languages and applied to approximately 400,000 videos from major news outlets. We analyze engagement levels including views, likes, and comments, representing increasing degrees of commitment. The results show that other condemning rhetoric expressions of moral outrage that criticize others morally consistently increase all forms of engagement across cultures, with effects ranging from passive viewing to active commenting. These findings suggest that moral outrage is a particularly effective emotional strategy, attracting not only attention but also active participation. We discuss concerns about the potential misuse of other condemning rhetoric, as such practices may deepen polarization by reinforcing in group and out group divisions. To facilitate future research and ensure reproducibility, we publicly release our Korean and English multimodal moral emotion classifiers.
comment: Accepted at The Web Conference 2026. We release Korean and English multimodal moral emotion classifiers
♻ ☆ SSA: Sparse Sparse Attention by Aligning Full and Sparse Attention Outputs in Feature Space
Sparse attention reduces the quadratic complexity of full self-attention but faces two challenges: (1) an attention gap, where applying sparse attention to full-attention-trained models causes performance degradation due to train-inference distribution mismatch, and (2) a capability gap, where models trained purely with sparse attention lack complete gradient flow, preventing them from matching full-attention performance. We propose SSA (Sparse Sparse Attention), a training framework that integrates both sparse and full attention with bidirectional attention-output alignment. We prove that the approximation error scales linearly with the attention mass dropped under sparse attention, and show that SSA's alignment objective substantially reduces this quantity compared to baselines. Experiments demonstrate that SSA achieves state-of-the-art performance under both inference modes, adapts smoothly to varying sparsity budgets, and demonstrates superior long-context capabilities. The code is available at https://github.com/zhenyi4/ssa.
comment: 31 pages
♻ ☆ Bounding Hallucinations: Information-Theoretic Guarantees for RAG Systems via Merlin-Arthur Protocols
Retrieval-augmented generation (RAG) relies on retrieved context to guide large language models (LLM), yet treats retrieval as a weak heuristic rather than verifiable evidence -- leading to unsupported answers, hallucinations, and reliance on spurious context. We introduce a novel training framework that treats the RAG pipeline as an interactive proof system by adapting the Merlin-Arthur (M/A) protocol: Arthur (the generator LLM) trains on questions with unknown context provenance and Merlin gives helpful evidence, while Morgana injects adversarial, misleading context. Both use an XAI method to identify and modify evidence most influential to Arthur. This trains Arthur to (1) answer when evidence supports the answer, (2) reject when evidence is insufficient, and (3) rely on the context spans that truly ground the answer. We further introduce a verification framework that disentangles explanation fidelity from model predictive errors, and introduce the Explained Information Fraction (EIF), which normalizes M/A mutual-information guarantees. Across three RAG datasets and multiple LLM families and sizes, M/A training makes LLMs more grounded in evidence, increases information theoretic measures (soundness, completeness) and reject behavior with less hallucinations, without manually annotated unanswerable samples. Finally, the retriever also improves recall and MRR via automatically generated M/A hard positives and negatives. While high accuracy does not guarantee entropy flow from context to answer, our EIF results show that autonomous interactive-proof-style supervision enables RAG systems that treat retrieved documents as verifiable evidence. % rather than suggestions.
comment: 31 pages, 22 figures
♻ ☆ Defending Large Language Models Against Jailbreak Attacks via In-Decoding Safety-Awareness Probing
Large language models (LLMs) have achieved impressive performance across natural language tasks and are increasingly deployed in real-world applications. Despite extensive safety alignment efforts, recent studies show that such alignment is often shallow and remains vulnerable to jailbreak attacks. Existing defense mechanisms, including decoding-based constraints and post-hoc content detectors, struggle against sophisticated jailbreaks, often intervening robust detection or excessively degrading model utility. In this work, we examine the decoding process of LLMs and make a key observation: even when successfully jailbroken, models internally exhibit latent safety-related signals during generation. However, these signals are overridden by the model's drive for fluent continuation, preventing timely self-correction or refusal. Building on this observation, we propose a simple yet effective approach that explicitly surfaces and leverages these latent safety signals for early detection of unsafe content during decoding. Experiments across diverse jailbreak attacks demonstrate that our approach significantly enhances safety, while maintaining low over-refusal rates on benign inputs and preserving response quality. Our results suggest that activating intrinsic safety-awareness during decoding offers a promising and complementary direction for defending against jailbreak attacks. Code is available at: https://github.com/zyz13590/SafeProbing.
♻ ☆ AnimatedLLM: Explaining LLMs with Interactive Visualizations EACL 2026
Large language models (LLMs) are becoming central to natural language processing education, yet materials showing their mechanics are sparse. We present AnimatedLLM, an interactive web application that provides step-by-step visualizations of a Transformer language model. AnimatedLLM runs entirely in the browser, using pre-computed traces of open LLMs applied on manually curated inputs. The application is available at https://animatedllm.github.io, both as a teaching aid and for self-educational purposes.
comment: Accepted to TeachNLP @ EACL 2026
♻ ☆ Unmasking Backdoors: An Explainable Defense via Gradient-Attention Anomaly Scoring for Pre-trained Language Models ICLR 2026
Pre-trained language models have achieved remarkable success across a wide range of natural language processing (NLP) tasks, particularly when fine-tuned on large, domain-relevant datasets. However, they remain vulnerable to backdoor attacks, where adversaries embed malicious behaviors using trigger patterns in the training data. These triggers remain dormant during normal usage, but, when activated, can cause targeted misclassifications. In this work, we investigate the internal behavior of backdoored pre-trained encoder-based language models, focusing on the consistent shift in attention and gradient attribution when processing poisoned inputs; where the trigger token dominates both attention and gradient signals, overriding the surrounding context. We propose an inference-time defense that constructs anomaly scores by combining token-level attention and gradient information. Extensive experiments on text classification tasks across diverse backdoor attack scenarios demonstrate that our method significantly reduces attack success rates compared to existing baselines. Furthermore, we provide an interpretability-driven analysis of the scoring mechanism, shedding light on trigger localization and the robustness of the proposed defense.
comment: 17 pages total (9 pages main text + 6 pages appendix + references), 16 figures. Preprint version; the final camera-ready version may differ. Accepted to ICLR 2026
♻ ☆ CATArena: Evaluating Evolutionary Capabilities of Code Agents via Iterative Tournaments
Current evaluation for Large Language Model (LLM) code agents predominantly focus on generating functional code in single-turn scenarios, which fails to evaluate the agent's capability for continuous code optimization and multi-turn iterative development. To bridge this gap, we introduce CATArena, a framework designed to evaluate the evolutionary capabilities of code agents via iterative tournaments. Agents engage in multi-turn tournaments and continuously refine their code through self-reflection and peer-learning based on comprehensive execution feedback. For evaluation, we propose a dual-metric system to decouple static generation proficiency from evolutionary potential. Extensive experiments reveal that an agent's evolutionary potential is not strictly correlated with its initial proficiency. Our analysis further reveals that current agents struggle to concurrently leverage both peer-learning and self-reflection for effective performance gains. Furthermore, the results validate CATArena's high extensibility and resistance to variance tasks, establishing it as a continuous and reliable standard for assessing the evolutionary capability of LLM code agents.
♻ ☆ FESTA: Functionally Equivalent Sampling for Trust Assessment of Multimodal LLMs EMNLP
The accurate trust assessment of multimodal large language models (MLLMs) generated predictions, which can enable selective prediction and improve user confidence, is challenging due to the diverse multi-modal input paradigms. We propose Functionally Equivalent Sampling for Trust Assessment (FESTA), a multimodal input sampling technique for MLLMs, that generates an uncertainty measure based on the equivalent and complementary input samplings. The proposed task-preserving sampling approach for uncertainty quantification expands the input space to probe the consistency (through equivalent samples) and sensitivity (through complementary samples) of the model. FESTA uses only input-output access of the model (black-box), and does not require ground truth (unsupervised). The experiments are conducted with various off-the-shelf multi-modal LLMs, on both visual and audio reasoning tasks. The proposed FESTA uncertainty estimate achieves significant improvement (33.3% relative improvement for vision-LLMs and 29.6% relative improvement for audio-LLMs) in selective prediction performance, based on area-under-receiver-operating-characteristic curve (AUROC) metric in detecting mispredictions. The code implementation is open-sourced.
comment: Accepted in the Findings of EMNLP, 2025
♻ ☆ The Unintended Trade-off of AI Alignment:Balancing Hallucination Mitigation and Safety in LLMs
Hallucination in large language models (LLMs) has been widely studied in recent years, with progress in both detection and mitigation aimed at improving truthfulness. Yet, a critical side effect remains largely overlooked: enhancing truthfulness can negatively impact safety alignment. In this paper, we investigate this trade-off and show that increasing factual accuracy often comes at the cost of weakened refusal behavior. Our analysis reveals that this arises from overlapping components in the model that simultaneously encode hallucination and refusal information, leading alignment methods to suppress factual knowledge unintentionally. We further examine how fine-tuning on benign datasets, even when curated for safety, can degrade alignment for the same reason. To address this, we propose a method that disentangles refusal-related features from hallucination features using sparse autoencoders, and preserves refusal behavior during fine-tuning through subspace orthogonalization. This approach prevents hallucinations from increasing while maintaining safety alignment.We evaluate our method on commonsense reasoning tasks and harmful benchmarks (AdvBench and StrongReject). Results demonstrate that our approach preserves refusal behavior and task utility, mitigating the trade-off between truthfulness and safety.
♻ ☆ Automatic Reviewers Fail to Detect Faulty Reasoning in Research Papers: A New Counterfactual Evaluation Framework ACL 2026
Large Language Models (LLMs) have great potential to accelerate and support scholarly peer review and are increasingly used as fully automatic review generators (ARGs). However, potential biases and systematic errors may pose significant risks to scientific integrity; understanding the specific capabilities and limitations of state-of-the-art ARGs is essential. We focus on a core reviewing skill that underpins high-quality peer review: detecting faulty research logic. This involves evaluating the internal consistency between a paper's results, interpretations, and claims. We present a fully automated counterfactual evaluation framework that isolates and tests this skill under controlled conditions. Testing a range of ARG approaches, we find that, contrary to expectation, flaws in research logic have no significant effect on their output reviews. Based on our findings, we derive three actionable recommendations for future work and release our counterfactual dataset and evaluation framework publicly.
comment: accepted to TACL 2026 (presented at EACL 2026)
♻ ☆ SimulSense: Sense-Driven Interpreting for Efficient Simultaneous Speech Translation IEEE
How to make human-interpreter-like read/write decisions for simultaneous speech translation (SimulST) systems? Current state-of-the-art systems formulate SimulST as a multi-turn dialogue task, requiring specialized interleaved training data and relying on computationally expensive large language model (LLM) inference for decision-making. In this paper, we propose SimulSense, a novel framework for SimulST that mimics human interpreters by continuously reading input speech and triggering write decisions to produce translation when a new sense unit is perceived. Experiments against two state-of-the-art baseline systems demonstrate that our proposed method achieves a superior quality-latency tradeoff and substantially improved real-time efficiency, where its decision-making is up to 9.6x faster than the baselines.
comment: \c{opyright} 2026 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
♻ ☆ ASTRA: Automated Synthesis of agentic Trajectories and Reinforcement Arenas
Large language models (LLMs) are increasingly used as tool-augmented agents for multi-step decision making, yet training robust tool-using agents remains challenging. Existing methods still require manual intervention, depend on non-verifiable simulated environments, rely exclusively on either supervised fine-tuning (SFT) or reinforcement learning (RL), and struggle with stable long-horizon, multi-turn learning. To address these challenges, we introduce ASTRA, a fully automated end-to-end framework for training tool-augmented language model agents via scalable data synthesis and verifiable reinforcement learning. ASTRA integrates two complementary components. First, a pipeline that leverages the static topology of tool-call graphs synthesizes diverse, structurally grounded trajectories, instilling broad and transferable tool-use competence. Second, an environment synthesis framework that captures the rich, compositional topology of human semantic reasoning converts decomposed question-answer traces into independent, code-executable, and rule-verifiable environments, enabling deterministic multi-turn RL. Based on this method, we develop a unified training methodology that integrates SFT with online RL using trajectory-level rewards to balance task completion and interaction efficiency. Experiments on multiple agentic tool-use benchmarks demonstrate that ASTRA-trained models achieve state-of-the-art performance at comparable scales, approaching closed-source systems while preserving core reasoning ability. We release the full pipelines, environments, and trained models at https://github.com/LianjiaTech/astra.
♻ ☆ Warm Up Before You Train: Unlocking General Reasoning in Resource-Constrained Settings EMNLP 2025
Designing effective reasoning-capable LLMs typically requires training using Reinforcement Learning with Verifiable Rewards (RLVR) or distillation with carefully curated Long Chain of Thoughts (CoT), both of which depend heavily on extensive training data. This creates a major challenge when the amount of quality training data is scarce. We propose a sample-efficient, two-stage training strategy to develop reasoning LLMs under limited supervision. In the first stage, we "warm up" the model by distilling Long CoTs from a toy domain, namely, Knights \& Knaves (K\&K) logic puzzles to acquire general reasoning skills. In the second stage, we apply RLVR to the warmed-up model using a limited set of target-domain examples. Our experiments demonstrate that this two-phase approach offers several benefits: $(i)$ the warmup phase alone facilitates generalized reasoning, leading to performance improvements across a range of tasks, including MATH, HumanEval$^{+}$, and MMLU-Pro; $(ii)$ When both the base model and the warmed-up model are RLVR trained on the same small dataset ($\leq100$ examples), the warmed-up model consistently outperforms the base model; $(iii)$ Warming up before RLVR training allows a model to maintain cross-domain generalizability even after training on a specific domain; $(iv)$ Introducing warmup in the pipeline improves not only accuracy but also overall sample efficiency during RLVR training. The results in this paper highlight the promise of warmup for building robust reasoning LLMs in data-scarce environments.
comment: Accepted to EMNLP 2025
♻ ☆ DeepGreen: Effective LLM-Driven Greenwashing Monitoring System Designed for Empirical Testing -- Evidence from China
Motivated by the emerging adoption of Large Language Models (LLMs) in economics and management research, this paper investigates whether LLMs can reliably identify corporate greenwashing narratives and, more importantly, whether and how the greenwashing signals extracted from textual disclosures can be used to empirically identify causal effects. To this end, this paper proposes DeepGreen, a dual-stage LLM-Driven system for detecting potential corporate greenwashing in annual reports. Applied to 9369 A-share annual reports published between 2021 and 2023, DeepGreen attains high reliability in random-sample validation at both stages. Ablation experiment shows that Retrieval-Augmented Generation (RAG) reduces hallucinations, as compared to simply lengthening the input window. Empirical tests indicate that "greenwashing" captured by DeepGreen can effectively reveal a positive relationship between greenwashing and environmental penalties, and IV, PSM, Placebo test, which enhance the robustness and causal effects of the empirical evidence. Further study suggests that the presence and number of green investors can weaken the positive correlation between greenwashing and penalties. Heterogeneity analysis shows that the positive relationship between "greenwashing - penalty" is less significant in large-sized corporations and corporations that have accumulated green assets, indicating that these green assets may be exploited as a credibility shield for greenwashing. Our findings demonstrate that LLMs can standardize ESG oversight by early warning and direct regulators' scarce attention toward the subsets of corporations where monitoring is more warranted.
comment: Major revision accepted in Computational Economics, December 31, 2025. This version incorporates extensive revisions based on the reviewers' comments, with substantial changes
♻ ☆ AgentLongBench: A Controllable Long Benchmark For Long-Contexts Agents via Environment Rollouts
The evolution of Large Language Models (LLMs) into autonomous agents necessitates the management of extensive, dynamic contexts. Current benchmarks, however, remain largely static, relying on passive retrieval tasks that fail to simulate the complexities of agent-environment interaction, such as non-linear reasoning and iterative feedback. To address this, we introduce \textbf{AgentLongBench}, which evaluates agents through simulated environment rollouts based on Lateral Thinking Puzzles. This framework generates rigorous interaction trajectories across knowledge-intensive and knowledge-free scenarios. Experiments with state-of-the-art models and memory systems (32K to 4M tokens) expose a critical weakness: while adept at static retrieval, agents struggle with the dynamic information synthesis essential for workflows. Our analysis indicates that this degradation is driven by the minimum number of tokens required to resolve a query. This factor explains why the high information density inherent in massive tool responses poses a significantly greater challenge than the memory fragmentation typical of long-turn dialogues.
comment: 26 pages
♻ ☆ Metis-SPECS: Decoupling Multimodal Learning via Self-distilled Preference-based Cold Start ICLR 2026
Reinforcement learning (RL) with verifiable rewards has recently catalyzed a wave of "MLLM-r1" approaches that bring RL to vision language models. Most representative paradigms begin with a cold start, typically employing supervised fine-tuning (SFT), to initialize the policy before RL. However, SFT-based cold start adopts the reasoning paradigm intertwined with task solution and output format, which may induce instruction-style overfitting, weakens out-of-distribution generalization, and ultimately affects downstream RL. We revisit the cold start along two views, its training method and data construction, and introduce the Generalization Factor (GF) coefficient to quantify the generalization capability under different methods. Our empirical study finds that preference-based training methods (e.g. DPO) generalizes better than SFT-based methods in cold start. Motivated by this, we propose SPECS-a Self-distilled, Preference-based Cold Start framework that decouples multimodal learning: (1) generates introspective preference data pairs via self-distillation, avoiding reliance on larger teachers or manual annotation; (2) performs preference-based training to learn, focusing on shallow, transferable surface-form criteria (format, structure, style) rather than memorizing content; and (3) hands off to RL with verifiable rewards for deep reasoning results. Experimental results across multiple multimodal benchmarks show that our decoupling learning framework yields consistent performance gains over strong baselines, improving MEGA-Bench by 4.1% and MathVista by 12.2%. Additional experiments indicate that SPECS contributes to reducing in-distribution "stuckness," improving exploration, stabilizing training, and raising the performance ceiling. Project Page: https://kwen-chen.github.io/SPECS-VL/
comment: Published as a conference paper at ICLR 2026!
♻ ☆ Thoughtbubbles: an Unsupervised Method for Parallel Thinking in Latent Space
Current approaches for scaling inference-time compute in transformers train them to emit explicit chain-of-thought tokens before producing an answer. While these methods are powerful, they are limited because they cannot be applied during pretraining and rely solely on serially-generated, natural-language verbalization. In this work, we propose Thoughtbubbles, a transformer variant that natively performs parallel adaptive computation in latent space by learning to fork or delete residual streams. Thus, tokens requiring more computation can form a "bubble" of cloned residuals in the middle of the network. Crucially, this behavior is learned during pretraining with only language modeling loss. Using half of the training budget, Thoughtbubbles outperforms the perplexity and zero-shot evals of both standard decoder LMs and those using non-adaptive parallel computation approaches. These results hold across model sizes from 150M to 1.9B. Thoughtbubbles achieves competitive GSM8K results using half of the baseline's token budget. The implicit nature of our method enables models to begin learning adaptive computation at pretraining time, paving the way to unified train-time and test-time scaling behaviors.
♻ ☆ Text-only adaptation in LLM-based ASR through text denoising ICASSP 2026
Adapting automatic speech recognition (ASR) systems based on large language models (LLMs) to new domains using text-only data is a significant yet underexplored challenge. Standard fine-tuning of the LLM on target-domain text often disrupts the critical alignment between speech and text modalities learned by the projector, degrading performance. We introduce a novel text-only adaptation method that emulates the audio projection task by treating it as a text denoising task. Our approach thus trains the LLM to recover clean transcripts from noisy inputs. This process effectively adapts the model to a target domain while preserving cross-modal alignment. Our solution is lightweight, requiring no architectural changes or additional parameters. Extensive evaluation on two datasets demonstrates up to 22.1% relative improvement, outperforming recent state-of-the-art text-only adaptation methods.
comment: Paper accepted at ICASSP 2026
♻ ☆ FLM-Audio: Natural Monologues Improves Native Full-Duplex Chatbots via Dual Training
Full-duplex dialog models aim to listen and speak simultaneously, delivering rapid responses to dynamic user input. Among different solutions to full-duplexity, a native solution merges multiple channels in each time step, achieving the lowest latency. However, prevailing designs break down the textual monologue sentences for word-level alignment with audio streams, which degrades language modeling abilities. To help address this issue, we introduce "contiguous monologues", which are composed by continuous sentences and "waiting" intervals, mimicking human-like cognitive behavior in dialogs. We find a proper training paradigm to be critical for semantically aligning contiguous monologues with audio. To this end, we develop a "dual" training paradigm that alternates the position of the monologues, either leading or trailing the audio, across different training stages. A combination of our contiguous monologue and dual training strategy is applied in developing FLM-Audio, our 7B spoken dialog chatbot with native full-duplexity. As confirmed by experimental results, FLM-Audio achieves superior response qualities and chatting experiences while requiring significantly less training data.
♻ ☆ Beyond Retrieval: A Modular Benchmark for Academic Deep Research Agents
A surge in academic publications calls for automated deep research (DR) systems, but accurately evaluating them is still an open problem. First, existing benchmarks often focus narrowly on retrieval while neglecting high-level planning and reasoning. Second, existing benchmarks favor general domains over the academic domains that are the core application for DR agents. To address these gaps, we introduce ADRA-Bank, a modular benchmark for Academic DR Agents. Grounded in academic literature, our benchmark is a human-annotated dataset of 200 instances across 10 academic domains, including both research and review papers. Furthermore, we propose a modular Evaluation Paradigm for Academic DR Agents (ADRA-Eval), which leverages the rich structure of academic papers to assess the core capabilities of planning, retrieval, and reasoning. It employs two complementary modes: an end-to-end evaluation for \task agents and an isolated evaluation for foundational LLMs as potential backbones. Results reveal uneven capabilities: while agents show specialized strengths, they struggle with multi-source retrieval and cross-field consistency. Moreover, improving high-level planning capability is the crucial factor for unlocking the reasoning potential of foundational LLMs as backbones. By exposing these actionable failure modes, ADRA-Bank provides a diagnostic tool to guide the development of more reliable automatic academic research assistants.
♻ ☆ Towards Atoms of Large Language Models
The fundamental representational units (FRUs) of large language models (LLMs) remain undefined, limiting further understanding of their underlying mechanisms. In this paper, we introduce Atom Theory to systematically define, evaluate, and identify such FRUs, which we term atoms. Building on the atomic inner product (AIP), a non-Euclidean metric that captures the underlying geometry of LLM representations, we formally define atoms and propose two key criteria for ideal atoms: faithfulness ($R^2$) and stability ($q^*$). We further prove that atoms are identifiable under threshold-activated sparse autoencoders (TSAEs). Empirically, we uncover a pervasive representation shift in LLMs and demonstrate that the AIP corrects this shift to capture the underlying representational geometry, thereby grounding Atom Theory. We find that two widely used units, neurons and features, fail to qualify as ideal atoms: neurons are faithful ($R^2=1$) but unstable ($q^*=0.5\%$), while features are more stable ($q^*=68.2\%$) but unfaithful ($R^2=48.8\%$). To find atoms of LLMs, leveraging atom identifiability under TSAEs, we show via large-scale experiments that reliable atom identification occurs only when the TSAE capacity matches the data scale. Guided by this insight, we identify FRUs with near-perfect faithfulness ($R^2=99.9\%$) and stability ($q^*=99.8\%$) across layers of Gemma2-2B, Gemma2-9B, and Llama3.1-8B, satisfying the criteria of ideal atoms statistically. Further analysis confirms that these atoms align with theoretical expectations and exhibit substantially higher monosemanticity. Overall, we propose and validate Atom Theory as a foundation for understanding the internal representations of LLMs. Code available at https://github.com/ChenhuiHu/towards_atoms.
♻ ☆ Framing Political Bias in Multilingual LLMs Across Pakistani Languages
Large Language Models (LLMs) increasingly shape public discourse, yet most evaluations of political and economic bias have focused on high-resource, Western languages and contexts. This leaves critical blind spots in low-resource, multilingual regions such as Pakistan, where linguistic identity is closely tied to political, religious, and regional ideologies. We present a systematic evaluation of political bias in 13 state-of-the-art LLMs across five Pakistani languages: Urdu, Punjabi, Sindhi, Pashto, and Balochi. Our framework integrates a culturally adapted Political Compass Test (PCT) with multi-level framing analysis, capturing both ideological stance (economic/social axes) and stylistic framing (content, tone, emphasis). Prompts are aligned with 11 socio-political themes specific to the Pakistani context. Results show that while LLMs predominantly reflect liberal-left orientations consistent with Western training data, they exhibit more authoritarian framing in regional languages, highlighting language-conditioned ideological modulation. We also identify consistent model-specific bias patterns across languages. These findings show the need for culturally grounded, multilingual bias auditing frameworks in global NLP.
comment: Preprint
♻ ☆ Dual Mechanisms of Value Expression: Intrinsic vs. Prompted Values in Large Language Models
Large language models can express values in two main ways: (1) intrinsic expression, reflecting the model's inherent values learned during training, and (2) prompted expression, elicited by explicit prompts. Given their widespread use in value alignment, it is paramount to clearly understand their underlying mechanisms, particularly whether they mostly overlap (as one might expect) or rely on distinct mechanisms, but this remains largely understudied. We analyze this at the mechanistic level using two approaches: (1) value vectors, feature directions representing value mechanisms extracted from the residual stream, and (2) value neurons, MLP neurons that contribute to value vectors. We demonstrate that intrinsic and prompted value mechanisms partly share common components crucial for inducing value expression, generalizing across languages and reconstructing theoretical inter-value correlations in the model's internal representations. Yet, as these mechanisms also possess unique elements that fulfill distinct roles, they lead to different degrees of response diversity (intrinsic > prompted) and value steerability (prompted > intrinsic). In particular, components unique to the intrinsic mechanism promote lexical diversity in responses, whereas those specific to the prompted mechanism strengthen instruction following, taking effect even in distant tasks like jailbreaking.
♻ ☆ Vulnerability of LLMs' Belief Systems? LLMs Belief Resistance Check Through Strategic Persuasive Conversation Interventions
Large Language Models (LLMs) are increasingly employed in various question-answering tasks. However, recent studies showcase that LLMs are susceptible to persuasion and could adopt counterfactual beliefs. We present a systematic evaluation of LLM susceptibility to persuasion under the Source--Message--Channel--Receiver (SMCR) communication framework. Across five mainstream Large Language Models (LLMs) and three domains (factual knowledge, medical QA, and social bias), we analyze how different persuasive strategies influence belief stability over multiple interaction turns. We further examine whether meta-cognition prompting (i.e., eliciting self-reported confidence) affects resistance to persuasion. Results show that the smallest model (Llama 3.2-3B) exhibits extreme compliance, with 82.5% of belief changes occurring at the first persuasive turn (average end turn of 1.1--1.4). Contrary to expectations, meta-cognition prompting increases vulnerability by accelerating belief erosion rather than enhancing robustness. Finally, we evaluate adversarial fine-tuning as a defense. While GPT-4o-mini achieves near-complete robustness (98.6%) and Mistral~7B improves substantially (35.7% $\rightarrow$ 79.3%), Llama models remain highly susceptible (<14%) even when fine-tuned on their own failure cases. Together, these findings highlight substantial model-dependent limits of current robustness interventions and offer guidance for developing more trustworthy LLMs.
comment: Updated Table 12 with the detailed calculation approach and its related statements
♻ ☆ Softplus Attention with Re-weighting Boosts Length Extrapolation in Large Language Models ICML 2026
Large language models have achieved remarkable success in recent years, primarily due to self-attention. However, traditional Softmax attention suffers from numerical instability and reduced performance as the number of inference tokens increases. This work addresses these issues by proposing a new design principle for attention, viewing it as a two-stage process. The first stage (normalisation) refines standard attention by replacing Softmax with the more numerically stable Softplus followed by $l_{1}$-normalisation. Furthermore, we introduce a dynamic scale factor based on invariance entropy. We show that this novel attention mechanism outperforms conventional Softmax attention, and state-of-the-art Softmax-free alternatives. Our second proposal is to introduce a second processing stage (sharpening) which consists of a re-weighting mechanism that amplifies significant attentional weights while diminishing weaker ones. This enables the model to concentrate more effectively on relevant tokens, mitigating the attention sink phenomenon, and fundamentally improving length extrapolation. This novel, two-stage, replacement for self-attention is shown to ensure numerical stability and dramatically improve length extrapolation, maintaining a nearly constant validation loss at 16$\times$ the training length while achieving superior results on challenging long-context retrieval tasks and downstream benchmarks. Furthermore, symbolic regression experiments demonstrate that our method enables models to recover Newton's gravitational law from orbital trajectory sequences, providing evidence that appropriate attention mechanisms are crucial for foundation models to develop genuine physical world models.
comment: 32 pages for ICML 2026
♻ ☆ Evaluating from Benign to Dynamic Adversarial: A Squid Game for Large Language Models
The potential data contamination issue in contemporary large language models (LLMs) benchmarks presents a fundamental challenge to establishing trustworthy evaluation frameworks. Meanwhile, they predominantly assume benign, resource-rich settings, leaving the behavior of LLMs under pressure unexplored. In this paper, we introduce \textsc{Squid Game}, a dynamic and adversarial evaluation environment with resource-constrained and asymmetric information settings elaborated to evaluate LLMs through interactive gameplay against other LLM opponents. Squid Game consists of six elimination-style levels, focusing on multi-faceted abilities, including instruction-following, code, reasoning, planning, and safety alignment. We evaluate over 50 LLMs on Squid Game, presenting the largest behavioral evaluation study of general LLMs on dynamic adversarial scenarios. We observe a clear generational phase transition in performance in the same model lineage and find evidence that some models resort to speculative shortcuts to win the game, indicating the possibility of higher-level evaluation paradigm contamination in static benchmarks. We also compare prominent LLM benchmarks and \textsc{Squid Game}, highlighting that dynamic evaluation can serve as a complementary part for static evaluations. Project page: https://github.com/zijianchen98/LLM_Squid_Game.
comment: 31 pages, 15 figures
♻ ☆ NeUQI: Near-Optimal Uniform Quantization Parameter Initialization for Low-Bit LLMs
Large language models (LLMs) achieve impressive performance across domains but face significant challenges when deployed on consumer-grade GPUs or personal devices such as laptops, due to high memory consumption and inference costs. Post-training quantization (PTQ) of LLMs offers a promising solution that reduces their memory footprint and decoding latency. In practice, PTQ with uniform quantization representation is favored due to its efficiency and ease of deployment, as uniform quantization is widely supported by mainstream hardware and software libraries. Recent studies on low-bit uniform quantization have led to noticeable improvements in post-quantization model performance; however, they mainly focus on quantization methodologies, while the initialization of quantization parameters remains underexplored and still relies on the conventional Min-Max formula. In this work, we identify the limitations of the Min-Max formula, move beyond its constraints, and propose NeUQI, a method that efficiently determines near-optimal initialization for uniform quantization. Our NeUQI simplifies the joint optimization of the scale and zero-point by deriving the zero-point for a given scale, thereby reducing the problem to a scale-only optimization. Benefiting from the improved quantization parameters, our NeUQI consistently outperforms existing methods in the experiments with the LLaMA and Qwen families on various settings and tasks. Furthermore, when combined with a lightweight distillation strategy, NeUQI even achieves superior performance to PV-tuning, a considerably more resource-intensive method.
comment: under review
♻ ☆ Quantifying Data Contamination in Psychometric Evaluations of LLMs EACL 2026
Recent studies apply psychometric questionnaires to Large Language Models (LLMs) to assess high-level psychological constructs such as values, personality, moral foundations, and dark traits. Although prior work has raised concerns about possible data contamination from psychometric inventories, which may threaten the reliability of such evaluations, there has been no systematic attempt to quantify the extent of this contamination. To address this gap, we propose a framework to systematically measure data contamination in psychometric evaluations of LLMs, evaluating three aspects: (1) item memorization, (2) evaluation memorization, and (3) target score matching. Applying this framework to 21 models from major families and four widely used psychometric inventories, we provide evidence that popular inventories such as the Big Five Inventory (BFI-44) and Portrait Values Questionnaire (PVQ-40) exhibit strong contamination, where models not only memorize items but can also adjust their responses to achieve specific target scores.
comment: EACL 2026 Findings
♻ ☆ OMGEval: An Open Multilingual Generative Evaluation Benchmark for Large Language Models
Modern large language models (LLMs) should generally benefit individuals from various cultural backgrounds around the world. However, most recent advanced generative evaluation benchmarks tailed for LLMs mainly focus on English. To this end, we introduce OMGEval, the first Open-source Multilingual Generative test set that can assess the capability of LLMs in different languages. For each language, OMGEval provides 804 open-ended questions, covering a wide range of important capabilities of LLMs, such as general knowledge, logical reasoning, and so on. Each question is rigorously verified by human annotators. Notably, to sufficiently reflect the compatibility of LLMs in different cultural backgrounds, we perform localization for each non-English language. Specifically, the current version of OMGEval includes 5 languages (i.e., Zh, Ru, Fr, Es, Ar). Following AlpacaEval, we employ GPT-4 as the adjudicator to automatically score different model outputs, which is shown closely related to human evaluation. We evaluate several representative multilingual LLMs on the proposed OMGEval, which we believe will provide a valuable reference for the community to further understand and improve the multilingual capability of LLMs. OMGEval is available at https://github.com/blcuicall/OMGEval.
♻ ☆ Breaking the Adversarial Robustness-Performance Trade-off in Text Classification via Manifold Purification AAAI 2026
A persistent challenge in text classification (TC) is that enhancing model robustness against adversarial attacks typically degrades performance on clean data. We argue that this challenge can be resolved by modeling the distribution of clean samples in the encoder embedding manifold. To this end, we propose the Manifold-Correcting Causal Flow (MC^2F), a two-module system that operates directly on sentence embeddings. A Stratified Riemannian Continuous Normalizing Flow (SR-CNF) learns the density of the clean data manifold. It identifies out-of-distribution embeddings, which are then corrected by a Geodesic Purification Solver. This solver projects adversarial points back onto the learned manifold via the shortest path, restoring a clean, semantically coherent representation. We conducted extensive evaluations on text classification (TC) across three datasets and multiple adversarial attacks. The results demonstrate that our method, MC^2F, not only establishes a new state-of-the-art in adversarial robustness but also fully preserves performance on clean data, even yielding modest gains in accuracy.
comment: 9 pages,3 figures, AAAI 2026 Poster
♻ ☆ HumanLLM: Benchmarking and Improving LLM Anthropomorphism via Human Cognitive Patterns
Large Language Models (LLMs) have demonstrated remarkable capabilities in reasoning and generation, serving as the foundation for advanced persona simulation and Role-Playing Language Agents (RPLAs). However, achieving authentic alignment with human cognitive and behavioral patterns remains a critical challenge for these agents. We present HumanLLM, a framework treating psychological patterns as interacting causal forces. We construct 244 patterns from ~12,000 academic papers and synthesize 11,359 scenarios where 2-5 patterns reinforce, conflict, or modulate each other, with multi-turn conversations expressing inner thoughts, actions, and dialogue. Our dual-level checklists evaluate both individual pattern fidelity and emergent multi-pattern dynamics, achieving strong human alignment (r=0.91) while revealing that holistic metrics conflate simulation accuracy with social desirability. HumanLLM-8B outperforms Qwen3-32B on multi-pattern dynamics despite 4x fewer parameters, demonstrating that authentic anthropomorphism requires cognitive modeling--simulating not just what humans do, but the psychological processes generating those behaviors.
comment: change "reinforce" to "improve"
♻ ☆ Mechanistic evaluation of Transformers and state space models
State space models (SSMs) for language modelling promise an efficient and performant alternative to quadratic-attention Transformers, yet show variable performance on recalling basic information from the context. While performance on synthetic tasks like Associative Recall (AR) can point to this deficiency, behavioural metrics provide little information as to \textit{why} -- on a mechanistic level -- certain architectures fail and others succeed. To address this, we conduct experiments on AR, and find that only Transformers and Based SSM models fully succeed at AR, with Mamba and DeltaNet close behind, while the other SSMs (H3, Hyena) fail. We then use causal interventions to explain why. We find that Transformers and Based learn to store key-value associations in-context using induction. By contrast, the SSMs seem to compute these associations only at the last state using a single layer. We further investigate the mechanism underlying the success of Mamba, and find novel evidence that Mamba \textit{does} implement induction: not via the SSM, but instead via short convolutions. Further experiments on a new hierarchical retrieval task, Associative Treecall (ATR), show that all architectures learn the same mechanism as they did for AR. Furthermore, we show that Mamba can learn Attention-like induction on ATR when short convolutions are removed. These results reveal that architectures with similar accuracy may still have substantive differences, motivating the adoption of mechanistic evaluations.
comment: 9 page main text, 22 pages total
♻ ☆ Synthetic Socratic Debates: Examining Persona Effects on Moral Decision and Persuasion Dynamics
As large language models (LLMs) are increasingly used in morally sensitive domains, it is crucial to understand how persona traits affect their moral reasoning and persuasive behavior. We present the first large-scale study of multi-dimensional persona effects in AI-AI debates over real-world moral dilemmas. Using a 6-dimensional persona space (age, gender, country, class, ideology, and personality), we simulate structured debates between AI agents over 131 relationship-based cases. Our results show that personas affect initial moral stances and debate outcomes, with political ideology and personality traits exerting the strongest influence. Persuasive success varies across traits, with liberal and open personalities reaching higher consensus and win rates. While logit-based confidence grows during debates, emotional and credibility-based appeals diminish, indicating more tempered argumentation over time. These trends mirror findings from psychology and cultural studies, reinforcing the need for persona-aware evaluation frameworks for AI moral reasoning.
♻ ☆ Studying the Soupability of Documents in State Space Models
We investigate whether hidden states from Structured State Space Models (SSMs) can be merged post hoc to support downstream reasoning. Inspired by model souping, we study document souping, a strategy where documents are encoded independently, and their representations are pooled, via simple operations like averaging, into a single context state. This approach enables modular encoding and reuse without reprocessing the full input for each query. We demonstrate that finetuned Mamba2 models with souped representations achieve competitive or superior performance across multi-hop QA, sparse retrieval, and long-document reasoning tasks compared to the standard monolithic encoding approach. For example, on the RACE and QuALITY benchmarks for long document question answering, this method substantially outperforms a traditional concatenation approach. Crucially, this modular design scales to hundreds of documents while delivering substantial savings in inference cost, unlocking new possibilities for large-scale corpus reasoning.
♻ ☆ DialectGen: Benchmarking and Improving Dialect Robustness in Multimodal Generation
Contact languages like English exhibit rich regional variations in the form of dialects, which are often used by dialect speakers interacting with generative models. However, can multimodal generative models effectively produce content given dialectal textual input? In this work, we study this question by constructing a new large-scale benchmark spanning six common English dialects. We work with dialect speakers to collect and verify over 4200 unique prompts and evaluate on 17 image and video generative models. Our automatic and human evaluation results show that current state-of-the-art multimodal generative models exhibit 32.26% to 48.17% performance degradation when a single dialect word is used in the prompt. Common mitigation methods such as fine-tuning and prompt rewriting can only improve dialect performance by small margins (< 7%), while potentially incurring significant performance degradation in Standard American English (SAE). To this end, we design a general encoder-based mitigation strategy for multimodal generative models. Our method teaches the model to recognize new dialect features while preserving SAE performance. Experiments on models such as Stable Diffusion 1.5 show that our method is able to simultaneously raise performance on five dialects to be on par with SAE (+34.4%), while incurring near zero cost to SAE performance.
♻ ☆ Debating Truth: Debate-driven Claim Verification with Multiple Large Language Model Agents WWW 2026
State-of-the-art single-agent claim verification methods struggle with complex claims that require nuanced analysis of multifaceted evidence. Inspired by real-world professional fact-checkers, we propose \textbf{DebateCV}, the first debate-driven claim verification framework powered by multiple LLM agents. In DebateCV, two \textit{Debaters} argue opposing stances to surface subtle errors in single-agent assessments. A decisive \textit{Moderator} is then required to weigh the evidential strength of conflicting arguments to deliver an accurate verdict. Yet, zero-shot Moderators are biased toward neutral judgments, and no datasets exist for training them. To bridge this gap, we propose \textbf{Debate-SFT}, a post-training framework that leverages synthetic data to enhance agents' ability to effectively adjudicate debates for claim verification. Results show that our methods surpass state-of-the-art non-debate approaches in both accuracy (across various evidence conditions) and justification quality.
comment: Accepted by the ACM Web Conference 2026 (WWW 2026)
♻ ☆ Knowing What's Missing: Assessing Information Sufficiency in Question Answering EACL
Determining whether a provided context contains sufficient information to answer a question is a critical challenge for building reliable question-answering systems. While simple prompting strategies have shown success on factual questions, they frequently fail on inferential ones that require reasoning beyond direct text extraction. We hypothesize that asking a model to first reason about what specific information is missing provides a more reliable, implicit signal for assessing overall sufficiency. To this end, we propose a structured Identify-then-Verify framework for robust sufficiency modeling. Our method first generates multiple hypotheses about missing information and establishes a semantic consensus. It then performs a critical verification step, forcing the model to re-examine the source text to confirm whether this information is truly absent. We evaluate our method against established baselines across diverse multi-hop and factual QA datasets. The results demonstrate that by guiding the model to justify its claims about missing information, our framework produces more accurate sufficiency judgments while clearly articulating any information gaps.
comment: Accepted to EACL Findings 2026
♻ ☆ VScan: Rethinking Visual Token Reduction for Efficient Large Vision-Language Models
Recent Large Vision-Language Models (LVLMs) have advanced multi-modal understanding by incorporating finer-grained visual perception and encoding. However, such methods incur significant computational costs due to longer visual token sequences, posing challenges for real-time deployment. To mitigate this, prior studies have explored pruning unimportant visual tokens either at the output layer of the visual encoder or at the early layers of the language model. In this work, we revisit these design choices and reassess their effectiveness through comprehensive empirical studies of how visual tokens are processed throughout the visual encoding and language decoding stages. Guided by these insights, we propose VScan, a two-stage visual token reduction framework that addresses token redundancy by: (1) integrating complementary global and local scans with token merging during visual encoding, and (2) introducing pruning at intermediate layers of the language model. Extensive experimental results across four LVLMs validate the effectiveness of VScan in accelerating inference and demonstrate its superior performance over current state-of-the-arts on sixteen benchmarks. Notably, when applied to LLaVA-NeXT-7B, VScan achieves a 2.91$\times$ speedup in prefilling and a 10$\times$ reduction in FLOPs, while retaining 95.4\% of the original performance. Code is available at https://github.com/Tencent/SelfEvolvingAgent/tree/main/VScan.
comment: Accepted at TMLR 2026. Project page: https://zhangce01.github.io/VScan/
♻ ☆ Post-LayerNorm Is Back: Stable, ExpressivE, and Deep
Large language model (LLM) scaling is hitting a wall. Widening models yields diminishing returns, and extending context length does not improve fundamental expressivity. In contrast, depth scaling offers theoretically superior expressivity, yet current Transformer architectures struggle to train reliably at extreme depths. We revisit the Post-LayerNorm (Post-LN) formulation, whose instability at scale caused its replacement by Pre-LN in modern LLMs. We show that the central failure mode of Post-LN arises from the ResNet-style residual pathway, which introduces gradient vanishing in deep networks. We present Keel, a Post-LN Transformer that replaces this residual path with a Highway-style connection. This modification preserves the gradient flow through the residual branch, preventing signal vanishing from the top layers to the bottom. Unlike prior methods, Keel enables stable training at extreme depths without requiring specialized initialization or complex optimization tricks. Keel trains robustly at depths exceeding 1000 layers and consistently improves perplexity and depth-scaling characteristics over Pre-LN. These findings indicate that Post-LN, when paired with a Highway-style connection, provides a simple and effective foundation for building deeply scalable LLMs, opening the possibility for future infinite-depth architectures.
♻ ☆ Toward Culturally Aligned LLMs through Ontology-Guided Multi-Agent Reasoning
Large Language Models (LLMs) increasingly support culturally sensitive decision making, yet often exhibit misalignment due to skewed pretraining data and the absence of structured value representations. Existing methods can steer outputs, but often lack demographic grounding and treat values as independent, unstructured signals, reducing consistency and interpretability. We propose OG-MAR, an Ontology-Guided Multi-Agent Reasoning framework. OG-MAR summarizes respondent-specific values from the World Values Survey (WVS) and constructs a global cultural ontology by eliciting relations over a fixed taxonomy via competency questions. At inference time, it retrieves ontology-consistent relations and demographically similar profiles to instantiate multiple value-persona agents, whose outputs are synthesized by a judgment agent that enforces ontology consistency and demographic proximity. Experiments on regional social-survey benchmarks across four LLM backbones show that OG-MAR improves cultural alignment and robustness over competitive baselines, while producing more transparent reasoning traces.
comment: 35 pages
♻ ☆ LogicScore: Fine-grained Logic Evaluation of Conciseness, Completeness, and Determinateness in Attributed Question Answering
Current evaluation methods for Attributed Question Answering (AQA) suffer from \textit{attribution myopia}: they emphasize verification of isolated statements and their attributions but overlook the global logical integrity of long-form answers. Consequently, Large Language Models (LLMs) often produce factually grounded yet logically incoherent responses with elusive deductive gaps. To mitigate this limitation, we present \textsc{LogicScore}, a unified evaluation framework that shifts the paradigm from local assessment to global reasoning scrutiny. Grounded in Horn Rules, our approach integrates a backward verification mechanism to systematically evaluate three key reasoning dimensions: \textit{Completeness} (logically sound deduction), \textit{Conciseness} (non-redundancy), and \textit{Determinateness} (consistent answer entailment). Extensive experiments across three multi-hop QA datasets (HotpotQA, MusiQue, and 2WikiMultiHopQA) and over 20 LLMs (including GPT-5, Gemini-3-Pro, LLaMA3, and task-specific tuned models) reveal a critical capability gap: leading models often achieve high attribution scores (e.g., 92.85\% precision for Gemini-3 Pro) but struggle with global reasoning quality (e.g., 35.11\% Conciseness for Gemini-3 Pro). Our work establishes a robust standard for logical evaluation, highlighting the need to prioritize reasoning coherence alongside factual grounding in LLM development. Codes are available at: https://github.com/zhichaoyan11/LogicScore.
♻ ☆ Think Less, Label Better: Multi-Stage Domain-Grounded Synthetic Data Generation for Fine-Tuning Large Language Models in Telecommunications IEEE
The success of large language models (LLMs) depends heavily on large-scale, high-quality instruction-following and reinforcement datasets. However, generating such data through human annotation is prohibitively time-consuming particularly for domain-specific tasks like telecom network troubleshooting, where accurate responses require deep technical expertise and contextual understanding. In this paper, we present a fully automated, retrieval-augmented pipeline for generating synthetic question-answer (QA) pairs grounded in structured domain knowledge. Our multi-stage framework integrates a retriever, base generator, and refinement model to synthesize and enhance QA pairs using documents retrieved from a domain-specific knowledge graph. To ensure data quality, we employ customized RAGAS-based scoring to filter low-quality samples, producing a high-quality dataset suitable for reinforcement fine-tuning (RFT). We demonstrate our approach in a real-world telecom scenario focused on radio access network (RAN) troubleshooting. The resulting pipeline generates complex, context-rich troubleshooting solution plans without human intervention. This work offers a scalable solution for building instruction and reinforcement datasets in specialized domains, significantly reducing dependence on manual labeling while maintaining high technical fidelity.
comment: 6 pages, 6 figures, 5 tables, IEEE ICC 2026
♻ ☆ Are LLMs Stable Formal Logic Translators in Logical Reasoning Across Linguistically Diversified Texts? WWW2026
Logical reasoning with large language models (LLMs) has received growing attention. One mainstream approach translates natural language into formal logic and then applies symbolic solvers for deduction. While effective in many tasks, these LLM-based translators often fail to generate consistent symbolic representations when the same concept appears in different linguistic forms. Such inconsistencies break logical coherence and lead to solver errors. However, most existing benchmarks lack this type of linguistic variation, which frequently occurs in real-world text, leaving the problem underexplored. To address this gap, we present SoLT, a benchmark that systematically rewrites reasoning datasets into diverse yet logically equivalent forms across multiple levels. Beyond evaluation, SoLT also provides a general method to enrich any dataset with linguistic diversity while preserving both meaning and logic. To further enhance the stability of LLM-based reasoning, we propose MenTaL, which explicitly guides models to build a concept-symbol mapping table during translation. By linking equivalent expressions to shared symbols, MenTaL maintains consistency and mitigates symbol drift. Experiments on SoLT demonstrate that LLMs indeed suffer from inconsistent symbol mapping under linguistic variation, leading to significant drops in reasoning accuracy. Meanwhile, applying MenTaL brings clear and stable performance improvements across diverse inputs. Overall, our findings reveal that overlooking linguistic diversity hides key weaknesses in LLM-based translators, and our work offers a step toward more reliable logical reasoning in varied real-world scenarios. Our code is available at https://github.com/wufeiwuwoshihua/LinguDiver.
comment: Accepted by WWW2026
♻ ☆ LLM Latent Reasoning as Chain of Superposition
Latent reasoning offers a computation-efficient alternative to Chain-of-Thought but often suffers from performance degradation due to distributional misalignment and ambiguous chain definitions. Ideally, latent reasoning should function as a superposition of multiple reasoning paths. To realize this, we introduce Latent-SFT, a unified framework addressing challenges at three levels: token, chain, and learning. First, we define the Latent-Vocab to constrain hidden states within the pre-trained vocab-space. Second, we construct the Latent-Chain via Induction-Supervision Masking to ensure semantic compactness and sufficiency. Third, we employ Latent-Optim with stochastic Gumbel-Softmax to guide the model toward generalizable solutions. Empirical results demonstrate that Latent-SFT consistently outperforms explicit SFT across six mathematical benchmarks (e.g., GSM8k, AIME24) while achieving a 2.7x to 5.5x reduction in reasoning length. Analysis confirms that our method effectively captures a superposition of diverse reasoning trajectories rather than merely compressing a single path.
♻ ☆ Token-Guard: Towards Token-Level Hallucination Control via Self-Checking Decoding ICLR 2026
Large Language Models (LLMs) often hallucinate, generating content inconsistent with the input. Retrieval-Augmented Generation (RAG) and Reinforcement Learning with Human Feedback (RLHF) can mitigate hallucinations but require resource-intensive retrieval or large-scale fine-tuning. Decoding-based methods are lighter yet lack explicit hallucination control. To address this, we present Token-Guard, a token-level hallucination control method based on self-checking decoding. Token-Guard performs internal verification at each reasoning step to detect hallucinated tokens before they propagate. Candidate fragments are further evaluated in a latent space with explicit hallucination risk scoring, while iterative pruning and regeneration dynamically correct detected errors. Experiments on HALU datasets show Token-Guard substantially reduces hallucinations and improves generation accuracy, offering a scalable, modular solution for reliable LLM outputs. Our code is publicly available.
comment: Accepted by ICLR 2026 main conference
♻ ☆ Qwen3-ASR Technical Report
In this report, we introduce Qwen3-ASR family, which includes two powerful all-in-one speech recognition models and a novel non-autoregressive speech forced alignment model. Qwen3-ASR-1.7B and Qwen3-ASR-0.6B are ASR models that support language identification and ASR for 52 languages and dialects. Both of them leverage large-scale speech training data and the strong audio understanding ability of their foundation model Qwen3-Omni. We conduct comprehensive internal evaluation besides the open-sourced benchmarks as ASR models might differ little on open-sourced benchmark scores but exhibit significant quality differences in real-world scenarios. The experiments reveal that the 1.7B version achieves SOTA performance among open-sourced ASR models and is competitive with the strongest proprietary APIs while the 0.6B version offers the best accuracy-efficiency trade-off. Qwen3-ASR-0.6B can achieve an average TTFT as low as 92ms and transcribe 2000 seconds speech in 1 second at a concurrency of 128. Qwen3-ForcedAligner-0.6B is an LLM based NAR timestamp predictor that is able to align text-speech pairs in 11 languages. Timestamp accuracy experiments show that the proposed model outperforms the three strongest force alignment models and takes more advantages in efficiency and versatility. To further accelerate the community research of ASR and audio understanding, we release these models under the Apache 2.0 license.
comment: https://github.com/QwenLM/Qwen3-ASR
♻ ☆ GOLD PANNING: Iterative Bayesian Signal Anchoring for Many-Document Needle-in-Haystack Reasoning
Large language models (LLMs) exhibit pronounced position bias in long-context needle-in-haystack problems, systematically prioritizing the location of information over its relevance. While current mitigations rely on white-box access, this is effectively impossible for many state-of-the-art models. We introduce GOLD PANNING, a black-box Bayesian framework that performs inference-time active search over long contexts by (i) reordering documents to concentrate high-belief items in highly diagnostic positions (signal anchoring) and (ii) updating beliefs over document relevance from model outputs. Unlike conventional active learning, which prioritizes uncertainty reduction, GOLD PANNING leverages anchoring -- once flagged, keep it in sight -- to preserve weak cues. We implement this using iterative assignment derived from the model's diagnosticity profile, which provably identifies a target among $N$ documents in $O(\log N)$ rounds, ensuring scalability to many-document settings.On needle-in-a-haystack retrieval and long-context QA, GOLD PANNING matches Permutation Self-Consistency's target identification with $30--65%$ fewer queries and remains effective under calibration mismatch, suggesting coarse positional ordering drives performance gains. These results demonstrate that inherent model biases need not be failures, but can be used as tools for control.
comment: 15 pages, 6 figures
♻ ☆ ElectriQ: A Benchmark for Assessing the Response Capability of Large Language Models in Power Marketing
As power systems decarbonise and digitalise, high penetrations of distributed energy resources and flexible tariffs make electric power marketing (EPM) a key interface between regulation, system operation and sustainable-energy deployment. Many utilities still rely on human agents and rule- or intent-based chatbots with fragmented knowledge bases that struggle with long, cross-scenario dialogues and fall short of requirements for compliant, verifiable and DR-ready interactions. Meanwhile, frontier large language models (LLMs) show strong conversational ability but are evaluated on generic benchmarks that underweight sector-specific terminology, regulatory reasoning and multi-turn process stability. To address this gap, we present ElectriQ, a large-scale benchmark and evaluation framework for LLMs in EPM. ElectriQ contains over 550k dialogues across six service domains and 24 sub-scenarios and defines a unified protocol that combines human ratings, automatic metrics and two compliance stress tests-Statutory Citation Correctness and Long-Dialogue Consistency. Building on ElectriQ, we propose SEEK-RAG, a retrieval-augmented method that injects policy and domain knowledge during finetuning and inference. Experiments on 13 LLMs show that domain-aligned 7B models with SEEK-RAG match or surpass much larger models while reducing computational cost, providing an auditable, regulation-aware basis for deploying LLM-based EPM assistants that support demand-side management, renewable integration and resilient grid operation.
♻ ☆ Emotions Where Art Thou: Understanding and Characterizing the Emotional Latent Space of Large Language Models
This work investigates how large language models (LLMs) internally represent emotion by analyzing the geometry of their hidden-state space. The paper identifies a low-dimensional emotional manifold and shows that emotional representations are directionally encoded, distributed across layers, and aligned with interpretable dimensions. These structures are stable across depth and generalize to eight real-world emotion datasets spanning five languages. Cross-domain alignment yields low error and strong linear probe performance, indicating a universal emotional subspace. Within this space, internal emotion perception can be steered while preserving semantics using a learned intervention module, with especially strong control for basic emotions across languages. These findings reveal a consistent and manipulable affective geometry in LLMs and offer insight into how they internalize and process emotion.
♻ ☆ DNACHUNKER: Learnable Tokenization for DNA Language Models
DNA language models are increasingly used to represent genomic sequence, yet their effectiveness depends critically on how raw nucleotides are converted into model inputs. Unlike natural language, DNA offers no canonical boundaries, making fixed tokenizations a brittle design choice under shifts, indels, and local repeats. We introduce \modelname{}, a masked DNA language model that incorporates a learnable adaptive segmentation module to produce context-dependent, variable-length units. Building on a dynamic segmentation procedure, \modelname{} learns to allocate finer granularity to functionally enriched regions while compressing repetitive or redundant sequence. We pre-train \modelname{} on the human reference genome (HG38) and evaluate it on the Nucleotide Transformer and Genomic Benchmarks, where it consistently improves over strong fixed-tokenization baselines. Further analyses and ablations indicate that the learned segmentation is structured rather than incidental: the model preferentially uses shorter units around promoters and exons, and longer units in repetitive regions, yielding representations that are both mutation-resilient and biologically-informed.
♻ ☆ Zero-Shot Open-Schema Entity Structure Discovery EACL 2026
Entity structure extraction, which aims to extract entities and their associated attribute-value structures from text, is an essential task for text understanding and knowledge graph construction. Existing methods based on large language models (LLMs) typically rely heavily on predefined entity attribute schemas or annotated datasets, often leading to incomplete extraction results. To address these challenges, we introduce Zero-Shot Open-schema Entity Structure Discovery (ZOES), a novel approach to entity structure extraction that does not require any schema or annotated samples. ZOES operates via a principled mechanism of enrichment, refinement, and unification, based on the insight that an entity and its associated structure are mutually reinforcing. Experiments demonstrate that ZOES consistently enhances LLMs' ability to extract more complete entity structures across three different domains, showcasing both the effectiveness and generalizability of the method. These findings suggest that such an enrichment, refinement, and unification mechanism may serve as a principled approach to improving the quality of LLM-based entity structure discovery in various scenarios.
comment: EACL 2026 camera-ready
♻ ☆ It Takes Two: Your GRPO Is Secretly DPO
Group Relative Policy Optimization (GRPO) has emerged as a prominent reinforcement learning algorithm for post-training Large Language Models. Different from critic-based methods such as PPO, GRPO estimates the advantage function using group-level statistics to reduce the variance of policy gradient estimators. While the prevailing view attributes GRPO's effectiveness to large group sizes for accurate advantage estimation, we propose a different perspective. We demonstrate that the efficacy of GRPO stems from its implicit contrastive objective in the optimization, which helps reduce variance via the control variate method. This perspective establishes a fundamental connection between GRPO and DPO, wherein group size influences only the Monte Carlo estimators of the contrastive objective. To validate this, we investigate the minimal two-rollout case (2-GRPO), a configuration permissible under the contrastive framework but typically considered insufficient for reward normalization. We provide a rigorous theoretical analysis of 2-GRPO and empirically validate its effectiveness: 2-GRPO retains 98.1% of the performance of 16-GRPO, while requiring only 12.5% of the rollouts and 21% of the training time. This study offers a new perspective for future algorithm design in LLM post-training.
♻ ☆ Strengthening False Information Propagation Detection: Leveraging SVM and Sophisticated Text Vectorization Techniques in comparison to BERT IEEE
The rapid spread of misinformation, particularly through online platforms, underscores the urgent need for reliable detection systems. This study explores the utilization of machine learning and natural language processing, specifically Support Vector Machines (SVM) and BERT, to detect fake news. We employ three distinct text vectorization methods for SVM: Term Frequency Inverse Document Frequency (TF-IDF), Word2Vec, and Bag of Words (BoW), evaluating their effectiveness in distinguishing between genuine and fake news. Additionally, we compare these methods against the transformer large language model, BERT. Our comprehensive approach includes detailed preprocessing steps, rigorous model implementation, and thorough evaluation to determine the most effective techniques. The results demonstrate that while BERT achieves superior accuracy with 99.98% and an F1-score of 0.9998, the SVM model with a linear kernel and BoW vectorization also performs exceptionally well, achieving 99.81% accuracy and an F1-score of 0.9980. These findings highlight that, despite BERT's superior performance, SVM models with BoW and TF-IDF vectorization methods come remarkably close, offering highly competitive performance with the advantage of lower computational requirements.
comment: 6 pages, 6 figures. This paper has been published in IEEE conference proceedings (QPAIN 2025
♻ ☆ Matrix-Driven Identification and Reconstruction of LLM Weight Homology
We propose Matrix-Driven Identification and Reconstruction (MDIR), a SOTA large language model homology method that accurately detects weight correspondences between models and provides rigorous $p$-value estimation of the statistical significance of these correspondences. Our method does not require model inference, and allows the detection of unattributed reuse or replication of model weights even on low-resource devices as it compares only a single pair of matrices at a time. We leverage matrix analysis, polar decomposition, and Large Deviation Theory (LDT) to achieve accurate reconstruction of weight relationships between models. Notably, MDIR is the first method to achieve perfect scores on both Area-Under-Curve (AUC) and accuracy metrics across different source models on LeaFBench.
♻ ☆ Direct Reasoning Optimization: Constrained RL with Token-Level Dense Reward and Rubric-Gated Constraints for Open-ended Tasks
RL training of LLMs on open-ended tasks is challenging due to the lack of direct verifiability. In this paper, we frame such training as constrained RL that (i) optimizes a token-level dense Reasoning Reflection Reward (R3) aligned with reasoning quality, and (ii) enforces rubric-gating as feasibility constraints at the rollout group level. R3 measures the model's token-level certainty of a reference answer under its CoT reasoning prefix while selectively emphasizing reasoning-reflective tokens to capture how likely the generated reasoning is to yield the desired answer. Rubric-gating complements R3 by operationalizing principled task criteria as hard accept/reject checks on final answers. Empirically, across four datasets, our framework outperforms baselines, achieves faster, more sample-efficient learning, and respects feasibility constraints.
Machine Learning 300
☆ VideoGPA: Distilling Geometry Priors for 3D-Consistent Video Generation
While recent video diffusion models (VDMs) produce visually impressive results, they fundamentally struggle to maintain 3D structural consistency, often resulting in object deformation or spatial drift. We hypothesize that these failures arise because standard denoising objectives lack explicit incentives for geometric coherence. To address this, we introduce VideoGPA (Video Geometric Preference Alignment), a data-efficient self-supervised framework that leverages a geometry foundation model to automatically derive dense preference signals that guide VDMs via Direct Preference Optimization (DPO). This approach effectively steers the generative distribution toward inherent 3D consistency without requiring human annotations. VideoGPA significantly enhances temporal stability, physical plausibility, and motion coherence using minimal preference pairs, consistently outperforming state-of-the-art baselines in extensive experiments.
☆ End-to-end Optimization of Belief and Policy Learning in Shared Autonomy Paradigms
Shared autonomy systems require principled methods for inferring user intent and determining appropriate assistance levels. This is a central challenge in human-robot interaction, where systems must be successful while being mindful of user agency. Previous approaches relied on static blending ratios or separated goal inference from assistance arbitration, leading to suboptimal performance in unstructured environments. We introduce BRACE (Bayesian Reinforcement Assistance with Context Encoding), a novel framework that fine-tunes Bayesian intent inference and context-adaptive assistance through an architecture enabling end-to-end gradient flow between intent inference and assistance arbitration. Our pipeline conditions collaborative control policies on environmental context and complete goal probability distributions. We provide analysis showing (1) optimal assistance levels should decrease with goal uncertainty and increase with environmental constraint severity, and (2) integrating belief information into policy learning yields a quadratic expected regret advantage over sequential approaches. We validated our algorithm against SOTA methods (IDA, DQN) using a three-part evaluation progressively isolating distinct challenges of end-effector control: (1) core human-interaction dynamics in a 2D human-in-the-loop cursor task, (2) non-linear dynamics of a robotic arm, and (3) integrated manipulation under goal ambiguity and environmental constraints. We demonstrate improvements over SOTA, achieving 6.3% higher success rates and 41% increased path efficiency, and 36.3% success rate and 87% path efficiency improvement over unassisted control. Our results confirmed that integrated optimization is most beneficial in complex, goal-ambiguous scenarios, and is generalizable across robotic domains requiring goal-directed assistance, advancing the SOTA for adaptive shared autonomy.
☆ Decoupled Diffusion Sampling for Inverse Problems on Function Spaces
We propose a data-efficient, physics-aware generative framework in function space for inverse PDE problems. Existing plug-and-play diffusion posterior samplers represent physics implicitly through joint coefficient-solution modeling, requiring substantial paired supervision. In contrast, our Decoupled Diffusion Inverse Solver (DDIS) employs a decoupled design: an unconditional diffusion learns the coefficient prior, while a neural operator explicitly models the forward PDE for guidance. This decoupling enables superior data efficiency and effective physics-informed learning, while naturally supporting Decoupled Annealing Posterior Sampling (DAPS) to avoid over-smoothing in Diffusion Posterior Sampling (DPS). Theoretically, we prove that DDIS avoids the guidance attenuation failure of joint models when training data is scarce. Empirically, DDIS achieves state-of-the-art performance under sparse observation, improving $l_2$ error by 11% and spectral error by 54% on average; when data is limited to 1%, DDIS maintains accuracy with 40% advantage in $l_2$ error compared to joint models.
☆ FOCUS: DLLMs Know How to Tame Their Compute Bound
Diffusion Large Language Models (DLLMs) offer a compelling alternative to Auto-Regressive models, but their deployment is constrained by high decoding cost. In this work, we identify a key inefficiency in DLLM decoding: while computation is parallelized over token blocks, only a small subset of tokens is decodable at each diffusion step, causing most compute to be wasted on non-decodable tokens. We further observe a strong correlation between attention-derived token importance and token-wise decoding probability. Based on this insight, we propose FOCUS -- an inference system designed for DLLMs. By dynamically focusing computation on decodable tokens and evicting non-decodable ones on-the-fly, FOCUS increases the effective batch size, alleviating compute limitations and enabling scalable throughput. Empirical evaluations demonstrate that FOCUS achieves up to 3.52$\times$ throughput improvement over the production-grade engine LMDeploy, while preserving or improving generation quality across multiple benchmarks. The FOCUS system is publicly available on GitHub: https://github.com/sands-lab/FOCUS.
comment: 22 pages, 15 figures
☆ Denoising the Deep Sky: Physics-Based CCD Noise Formation for Astronomical Imaging
Astronomical imaging remains noise-limited under practical observing constraints, while standard calibration pipelines mainly remove structured artifacts and leave stochastic noise largely unresolved. Learning-based denoising is promising, yet progress is hindered by scarce paired training data and the need for physically interpretable and reproducible models in scientific workflows. We propose a physics-based noise synthesis framework tailored to CCD noise formation. The pipeline models photon shot noise, photo-response non-uniformity, dark-current noise, readout effects, and localized outliers arising from cosmic-ray hits and hot pixels. To obtain low-noise inputs for synthesis, we average multiple unregistered exposures to produce high-SNR bases. Realistic noisy counterparts synthesized from these bases using our noise model enable the construction of abundant paired datasets for supervised learning. We further introduce a real-world dataset across multi-bands acquired with two twin ground-based telescopes, providing paired raw frames and instrument-pipeline calibrated frames, together with calibration data and stacked high-SNR bases for real-world evaluation.
☆ Particle-Guided Diffusion Models for Partial Differential Equations
We introduce a guided stochastic sampling method that augments sampling from diffusion models with physics-based guidance derived from partial differential equation (PDE) residuals and observational constraints, ensuring generated samples remain physically admissible. We embed this sampling procedure within a new Sequential Monte Carlo (SMC) framework, yielding a scalable generative PDE solver. Across multiple benchmark PDE systems as well as multiphysics and interacting PDE systems, our method produces solution fields with lower numerical error than existing state-of-the-art generative methods.
☆ TEON: Tensorized Orthonormalization Beyond Layer-Wise Muon for Large Language Model Pre-Training
The Muon optimizer has demonstrated strong empirical performance in pre-training large language models by performing matrix-level gradient (or momentum) orthogonalization in each layer independently. In this work, we propose TEON, a principled generalization of Muon that extends orthogonalization beyond individual layers by modeling the gradients of a neural network as a structured higher-order tensor. We present TEON's improved convergence guarantee over layer-wise Muon, and further develop a practical instantiation of TEON based on the theoretical analysis with corresponding ablation. We evaluate our approach on two widely adopted architectures: GPT-style models, ranging from 130M to 774M parameters, and LLaMA-style models, ranging from 60M to 1B parameters. Experimental results show that TEON consistently improves training and validation perplexity across model scales and exhibits strong robustness under various approximate SVD schemes.
☆ Agnostic Language Identification and Generation
Recent works on language identification and generation have established tight statistical rates at which these tasks can be achieved. These works typically operate under a strong realizability assumption: that the input data is drawn from an unknown distribution necessarily supported on some language in a given collection. In this work, we relax this assumption of realizability entirely, and impose no restrictions on the distribution of the input data. We propose objectives to study both language identification and generation in this more general "agnostic" setup. Across both problems, we obtain novel interesting characterizations and nearly tight rates.
☆ Training-Free Test-Time Adaptation with Brownian Distance Covariance in Vision-Language Models ICASSP 2026
Vision-language models suffer performance degradation under domain shift, limiting real-world applicability. Existing test-time adaptation methods are computationally intensive, rely on back-propagation, and often focus on single modalities. To address these issues, we propose Training-free Test-Time Adaptation with Brownian Distance Covariance (TaTa). TaTa leverages Brownian Distance Covariance-a powerful statistical measure that captures both linear and nonlinear dependencies via pairwise distances-to dynamically adapt VLMs to new domains without training or back-propagation. This not only improves efficiency but also enhances stability by avoiding disruptive weight updates. TaTa further integrates attribute-enhanced prompting to improve vision-language inference with descriptive visual cues. Combined with dynamic clustering and pseudo-label refinement, it effectively recalibrates the model for novel visual contexts. Experiments across diverse datasets show that TaTa significantly reduces computational cost while achieving state-of-the-art performance in domain and cross-dataset generalization.
comment: Accepted in ICASSP 2026
☆ Nested Slice Sampling: Vectorized Nested Sampling for GPU-Accelerated Inference
Model comparison and calibrated uncertainty quantification often require integrating over parameters, but scalable inference can be challenging for complex, multimodal targets. Nested Sampling is a robust alternative to standard MCMC, yet its typically sequential structure and hard constraints make efficient accelerator implementations difficult. This paper introduces Nested Slice Sampling (NSS), a GPU-friendly, vectorized formulation of Nested Sampling that uses Hit-and-Run Slice Sampling for constrained updates. A tuning analysis yields a simple near-optimal rule for setting the slice width, improving high-dimensional behavior and making per-step compute more predictable for parallel execution. Experiments on challenging synthetic targets, high dimensional Bayesian inference, and Gaussian process hyperparameter marginalization show that NSS maintains accurate evidence estimates and high-quality posterior samples, and is particularly robust on difficult multimodal problems where current state-of-the-art methods such as tempered SMC baselines can struggle. An open-source implementation is released to facilitate adoption and reproducibility.
comment: 54 pages, 11 figures
☆ Graph Attention Network for Node Regression on Random Geometric Graphs with Erdős--Rényi contamination
Graph attention networks (GATs) are widely used and often appear robust to noise in node covariates and edges, yet rigorous statistical guarantees demonstrating a provable advantage of GATs over non-attention graph neural networks~(GNNs) are scarce. We partially address this gap for node regression with graph-based errors-in-variables models under simultaneous covariate and edge corruption: responses are generated from latent node-level covariates, but only noise-perturbed versions of the latent covariates are observed; and the sample graph is a random geometric graph created from the node covariates but contaminated by independent Erdős--Rényi edges. We propose and analyze a carefully designed, task-specific GAT that constructs denoised proxy features for regression. We prove that regressing the response variables on the proxies achieves lower error asymptotically in (a) estimating the regression coefficient compared to the ordinary least squares (OLS) estimator on the noisy node covariates, and (b) predicting the response for an unlabelled node compared to a vanilla graph convolutional network~(GCN) -- under mild growth conditions. Our analysis leverages high-dimensional geometric tail bounds and concentration for neighbourhood counts and sample covariances. We verify our theoretical findings through experiments on synthetically generated data. We also perform experiments on real-world graphs and demonstrate the effectiveness of the attention mechanism in several node regression tasks.
comment: 62 pages, 2 figures, 2 tables
☆ How well do generative models solve inverse problems? A benchmark study
Generative learning generates high dimensional data based on low dimensional conditions, also called prompts. Therefore, generative learning algorithms are eligible for solving (Bayesian) inverse problems. In this article we compare a traditional Bayesian inverse approach based on a forward regression model and a prior sampled with the Markov Chain Monte Carlo method with three state of the art generative learning models, namely conditional Generative Adversarial Networks, Invertible Neural Networks and Conditional Flow Matching. We apply them to a problem of gas turbine combustor design where we map six independent design parameters to three performance labels. We propose several metrics for the evaluation of this inverse design approaches and measure the accuracy of the labels of the generated designs along with the diversity. We also study the performance as a function of the training dataset size. Our benchmark has a clear winner, as Conditional Flow Matching consistently outperforms all competing approaches.
comment: 32 pages, 11 figures, 5 tables
☆ YuriiFormer: A Suite of Nesterov-Accelerated Transformers
We propose a variational framework that interprets transformer layers as iterations of an optimization algorithm acting on token embeddings. In this view, self-attention implements a gradient step of an interaction energy, while MLP layers correspond to gradient updates of a potential energy. Standard GPT-style transformers emerge as vanilla gradient descent on the resulting composite objective, implemented via Lie--Trotter splitting between these two energy functionals. This perspective enables principled architectural design using classical optimization ideas. As a proof of concept, we introduce a Nesterov-style accelerated transformer that preserves the same attention and MLP oracles. The resulting architecture consistently outperforms a nanoGPT baseline on TinyStories and OpenWebText, demonstrating that optimization-theoretic insights can translate into practical gains.
☆ Sequence Diffusion Model for Temporal Link Prediction in Continuous-Time Dynamic Graph
Temporal link prediction in dynamic graphs is a fundamental problem in many real-world systems. Existing temporal graph neural networks mainly focus on learning representations of historical interactions. Despite their strong performance, these models are still purely discriminative, producing point estimates for future links and lacking an explicit mechanism to capture the uncertainty and sequential structure of future temporal interactions. In this paper, we propose SDG, a novel sequence-level diffusion framework that unifies dynamic graph learning with generative denoising. Specifically, SDG injects noise into the entire historical interaction sequence and jointly reconstructs all interaction embeddings through a conditional denoising process, thereby enabling the model to capture more comprehensive interaction distributions. To align the generative process with temporal link prediction, we employ a cross-attention denoising decoder to guide the reconstruction of the destination sequence and optimize the model in an end-to-end manner. Extensive experiments on various temporal graph benchmarks show that SDG consistently achieves state-of-the-art performance in the temporal link prediction task.
☆ Solving Inverse Problems with Flow-based Models via Model Predictive Control
Flow-based generative models provide strong unconditional priors for inverse problems, but guiding their dynamics for conditional generation remains challenging. Recent work casts training-free conditional generation in flow models as an optimal control problem; however, solving the resulting trajectory optimisation is computationally and memory intensive, requiring differentiation through the flow dynamics or adjoint solves. We propose MPC-Flow, a model predictive control framework that formulates inverse problem solving with flow-based generative models as a sequence of control sub-problems, enabling practical optimal control-based guidance at inference time. We provide theoretical guarantees linking MPC-Flow to the underlying optimal control objective and show how different algorithmic choices yield a spectrum of guidance algorithms, including regimes that avoid backpropagation through the generative model trajectory. We evaluate MPC-Flow on benchmark image restoration tasks, spanning linear and non-linear settings such as in-painting, deblurring, and super-resolution, and demonstrate strong performance and scalability to massive state-of-the-art architectures via training-free guidance of FLUX.2 (32B) in a quantised setting on consumer hardware.
☆ Agile Reinforcement Learning through Separable Neural Architecture
Deep reinforcement learning (RL) is increasingly deployed in resource-constrained environments, yet the go-to function approximators - multilayer perceptrons (MLPs) - are often parameter-inefficient due to an imperfect inductive bias for the smooth structure of many value functions. This mismatch can also hinder sample efficiency and slow policy learning in this capacity-limited regime. Although model compression techniques exist, they operate post-hoc and do not improve learning efficiency. Recent spline-based separable architectures - such as Kolmogorov-Arnold Networks (KANs) - have been shown to offer parameter efficiency but are widely reported to exhibit significant computational overhead, especially at scale. In seeking to address these limitations, this work introduces SPAN (SPline-based Adaptive Networks), a novel function approximation approach to RL. SPAN adapts the low rank KHRONOS framework by integrating a learnable preprocessing layer with a separable tensor product B-spline basis. SPAN is evaluated across discrete (PPO) and high-dimensional continuous (SAC) control tasks, as well as offline settings (Minari/D4RL). Empirical results demonstrate that SPAN achieves a 30-50% improvement in sample efficiency and 1.3-9 times higher success rates across benchmarks compared to MLP baselines. Furthermore, SPAN demonstrates superior anytime performance and robustness to hyperparameter variations, suggesting it as a viable, high performance alternative for learning intrinsically efficient policies in resource-limited settings.
☆ Optimal Fair Aggregation of Crowdsourced Noisy Labels using Demographic Parity Constraints
As acquiring reliable ground-truth labels is usually costly, or infeasible, crowdsourcing and aggregation of noisy human annotations is the typical resort. Aggregating subjective labels, though, may amplify individual biases, particularly regarding sensitive features, raising fairness concerns. Nonetheless, fairness in crowdsourced aggregation remains largely unexplored, with no existing convergence guarantees and only limited post-processing approaches for enforcing $\varepsilon$-fairness under demographic parity. We address this gap by analyzing the fairness s of crowdsourced aggregation methods within the $\varepsilon$-fairness framework, for Majority Vote and Optimal Bayesian aggregation. In the small-crowd regime, we derive an upper bound on the fairness gap of Majority Vote in terms of the fairness gaps of the individual annotators. We further show that the fairness gap of the aggregated consensus converges exponentially fast to that of the ground-truth under interpretable conditions. Since ground-truth itself may still be unfair, we generalize a state-of-the-art multiclass fairness post-processing algorithm from the continuous to the discrete setting, which enforces strict demographic parity constraints to any aggregation rule. Experiments on synthetic and real datasets demonstrate the effectiveness of our approach and corroborate the theoretical insights.
☆ Tackling air quality with SAPIENS
Air pollution is a chronic problem in large cities worldwide and awareness is rising as the long-term health implications become clearer. Vehicular traffic has been identified as a major contributor to poor air quality. In a lot of cities the publicly available air quality measurements and forecasts are coarse-grained both in space and time. However, in general, real-time traffic intensity data is openly available in various forms and is fine-grained. In this paper, we present an in-depth study of pollution sensor measurements combined with traffic data from Mexico City. We analyse and model the relationship between traffic intensity and air quality with the aim to provide hyper-local, dynamic air quality forecasts. We developed an innovative method to represent traffic intensities by transforming simple colour-coded traffic maps into concentric ring-based descriptions, enabling improved characterisation of traffic conditions. Using Partial Least Squares Regression, we predict pollution levels based on these newly defined traffic intensities. The model was optimised with various training samples to achieve the best predictive performance and gain insights into the relationship between pollutants and traffic. The workflow we have designed is straightforward and adaptable to other contexts, like other cities beyond the specifics of our dataset.
comment: 24 pages, 13 figures
☆ A Random Matrix Theory of Masked Self-Supervised Regression
In the era of transformer models, masked self-supervised learning (SSL) has become a foundational training paradigm. A defining feature of masked SSL is that training aggregates predictions across many masking patterns, giving rise to a joint, matrix-valued predictor rather than a single vector-valued estimator. This object encodes how coordinates condition on one another and poses new analytical challenges. We develop a precise high-dimensional analysis of masked modeling objectives in the proportional regime where the number of samples scales with the ambient dimension. Our results provide explicit expressions for the generalization error and characterize the spectral structure of the learned predictor, revealing how masked modeling extracts structure from data. For spiked covariance models, we show that the joint predictor undergoes a Baik--Ben Arous--Péché (BBP)-type phase transition, identifying when masked SSL begins to recover latent signals. Finally, we identify structured regimes in which masked self-supervised learning provably outperforms PCA, highlighting potential advantages of SSL objectives over classical unsupervised methods
☆ Learning to Execute Graph Algorithms Exactly with Graph Neural Networks
Understanding what graph neural networks can learn, especially their ability to learn to execute algorithms, remains a central theoretical challenge. In this work, we prove exact learnability results for graph algorithms under bounded-degree and finite-precision constraints. Our approach follows a two-step process. First, we train an ensemble of multi-layer perceptrons (MLPs) to execute the local instructions of a single node. Second, during inference, we use the trained MLP ensemble as the update function within a graph neural network (GNN). Leveraging Neural Tangent Kernel (NTK) theory, we show that local instructions can be learned from a small training set, enabling the complete graph algorithm to be executed during inference without error and with high probability. To illustrate the learning power of our setting, we establish a rigorous learnability result for the LOCAL model of distributed computation. We further demonstrate positive learnability results for widely studied algorithms such as message flooding, breadth-first and depth-first search, and Bellman-Ford.
☆ Scale-Cascaded Diffusion Models for Super-Resolution in Medical Imaging IEEE
Diffusion models have been increasingly used as strong generative priors for solving inverse problems such as super-resolution in medical imaging. However, these approaches typically utilize a diffusion prior trained at a single scale, ignoring the hierarchical scale structure of image data. In this work, we propose to decompose images into Laplacian pyramid scales and train separate diffusion priors for each frequency band. We then develop an algorithm to perform super-resolution that utilizes these priors to progressively refine reconstructions across different scales. Evaluated on brain, knee, and prostate MRI data, our approach both improves perceptual quality over baselines and reduces inference time through smaller coarse-scale networks. Our framework unifies multiscale reconstruction and diffusion priors for medical image super-resolution.
comment: Accepted at IEEE International Symposium for Biomedical Imaging (ISBI) 2026
☆ Ensuring Semantics in Weights of Implicit Neural Representations through the Implicit Function Theorem
Weight Space Learning (WSL), which frames neural network weights as a data modality, is an emerging field with potential for tasks like meta-learning or transfer learning. Particularly, Implicit Neural Representations (INRs) provide a convenient testbed, where each set of weights determines the corresponding individual data sample as a mapping from coordinates to contextual values. So far, a precise theoretical explanation for the mechanism of encoding semantics of data into network weights is still missing. In this work, we deploy the Implicit Function Theorem (IFT) to establish a rigorous mapping between the data space and its latent weight representation space. We analyze a framework that maps instance-specific embeddings to INR weights via a shared hypernetwork, achieving performance competitive with existing baselines on downstream classification tasks across 2D and 3D datasets. These findings offer a theoretical lens for future investigations into network weights.
☆ TriSpec: Ternary Speculative Decoding via Lightweight Proxy Verification
Inference efficiency in Large Language Models (LLMs) is fundamentally limited by their serial, autoregressive generation, especially as reasoning becomes a key capability and response sequences grow longer. Speculative decoding (SD) offers a powerful solution, providing significant speed-ups through its lightweight drafting and parallel verification mechanism. While existing work has nearly saturated improvements in draft effectiveness and efficiency, this paper advances SD from a new yet critical perspective: the verification cost. We propose TriSpec, a novel ternary SD framework that, at its core, introduces a lightweight proxy to significantly reduce computational cost by approving easily verifiable draft sequences and engaging the full target model only when encountering uncertain tokens. TriSpec can be integrated with state-of-the-art SD methods like EAGLE-3 to further reduce verification costs, achieving greater acceleration. Extensive experiments on the Qwen3 and DeepSeek-R1-Distill-Qwen/LLaMA families show that TriSpec achieves up to 35\% speedup over standard SD, with up to 50\% fewer target model invocations while maintaining comparable accuracy.
☆ MeshGraphNet-Transformer: Scalable Mesh-based Learned Simulation for Solid Mechanics
We present MeshGraphNet-Transformer (MGN-T), a novel architecture that combines the global modeling capabilities of Transformers with the geometric inductive bias of MeshGraphNets, while preserving a mesh-based graph representation. MGN-T overcomes a key limitation of standard MGN, the inefficient long-range information propagation caused by iterative message passing on large, high-resolution meshes. A physics-attention Transformer serves as a global processor, updating all nodal states simultaneously while explicitly retaining node and edge attributes. By directly capturing long-range physical interactions, MGN-T eliminates the need for deep message-passing stacks or hierarchical, coarsened meshes, enabling efficient learning on high-resolution meshes with varying geometries, topologies, and boundary conditions at an industrial scale. We demonstrate that MGN-T successfully handles industrial-scale meshes for impact dynamics, a setting in which standard MGN fails due message-passing under-reaching. The method accurately models self-contact, plasticity, and multivariate outputs, including internal, phenomenological plastic variables. Moreover, MGN-T outperforms state-of-the-art approaches on classical benchmarks, achieving higher accuracy while maintaining practical efficiency, using only a fraction of the parameters required by competing baselines.
☆ Beyond Fixed Frames: Dynamic Character-Aligned Speech Tokenization
Neural audio codecs are at the core of modern conversational speech technologies, converting continuous speech into sequences of discrete tokens that can be processed by LLMs. However, existing codecs typically operate at fixed frame rates, allocating tokens uniformly in time and producing unnecessarily long sequences. In this work, we introduce DyCAST, a Dynamic Character-Aligned Speech Tokenizer that enables variable-frame-rate tokenization through soft character-level alignment and explicit duration modeling. DyCAST learns to associate tokens with character-level linguistic units during training and supports alignment-free inference with direct control over token durations at decoding time. To improve speech resynthesis quality at low frame rates, we further introduce a retrieval-augmented decoding mechanism that enhances reconstruction fidelity without increasing bitrate. Experiments show that DyCAST achieves competitive speech resynthesis quality and downstream performance while using significantly fewer tokens than fixed-frame-rate codecs.
comment: 18 pages, 3 figures
☆ Names Don't Matter: Symbol-Invariant Transformer for Open-Vocabulary Learning
Current neural architectures lack a principled way to handle interchangeable tokens, i.e., symbols that are semantically equivalent yet distinguishable, such as bound variables. As a result, models trained on fixed vocabularies often struggle to generalize to unseen symbols, even when the underlying semantics remain unchanged. We propose a novel Transformer-based mechanism that is provably invariant to the renaming of interchangeable tokens. Our approach employs parallel embedding streams to isolate the contribution of each interchangeable token in the input, combined with an aggregated attention mechanism that enables structured information sharing across streams. Experimental results confirm the theoretical guarantees of our method and demonstrate substantial performance gains on open-vocabulary tasks that require generalization to novel symbols.
☆ Stochastic Linear Bandits with Parameter Noise
We study the stochastic linear bandits with parameter noise model, in which the reward of action $a$ is $a^\top θ$ where $θ$ is sampled i.i.d. We show a regret upper bound of $\widetilde{O} (\sqrt{d T \log (K/δ) σ^2_{\max})}$ for a horizon $T$, general action set of size $K$ of dimension $d$, and where $σ^2_{\max}$ is the maximal variance of the reward for any action. We further provide a lower bound of $\widetildeΩ (d \sqrt{T σ^2_{\max}})$ which is tight (up to logarithmic factors) whenever $\log (K) \approx d$. For more specific action sets, $\ell_p$ unit balls with $p \leq 2$ and dual norm $q$, we show that the minimax regret is $\widetildeΘ (\sqrt{dT σ^2_q)}$, where $σ^2_q$ is a variance-dependent quantity that is always at most $4$. This is in contrast to the minimax regret attainable for such sets in the classic additive noise model, where the regret is of order $d \sqrt{T}$. Surprisingly, we show that this optimal (up to logarithmic factors) regret bound is attainable using a very simple explore-exploit algorithm.
comment: 8 pages
☆ Probing the Trajectories of Reasoning Traces in Large Language Models
Large language models (LLMs) increasingly solve difficult problems by producing "reasoning traces" before emitting a final response. However, it remains unclear how accuracy and decision commitment evolve along a reasoning trajectory, and whether intermediate trace segments provide answer-relevant information beyond generic length or stylistic effects. Here, we propose a protocol to systematically probe the trajectories of reasoning traces in LLMs by 1) generating a model's reasoning trace, 2) truncating it at fixed token-percentiles, and 3) injecting each partial trace back into the model (or a different model) to measure the induced distribution over answer choices via next-token probabilities. We apply this protocol to the open-source Qwen3-4B/-8B/-14B and gpt-oss-20b/-120b models across the multiple-choice GPQA Diamond and MMLU-Pro benchmarks. We find that accuracy and decision commitment consistently increase as the percentage of provided reasoning tokens grows. These gains are primarily driven by relevant content in the model generation rather than context length or generic "reasoning style" effects. Stronger models often backtrack successfully from incorrect partial traces, but immediate answers often remain anchored in the weaker model's incorrect response. More broadly, we show that trajectory probing provides diagnostics for efficient and safer deployment of reasoning models as the measurements can inform practical trace-handling and monitoring policies that improve reliability without assuming intermediate tokens are inherently faithful explanations.
comment: 33 pages, 20 figures, 4 tables
☆ No More, No Less: Least-Privilege Language Models
Least privilege is a core security principle: grant each request only the minimum access needed to achieve its goal. Deployed language models almost never follow it, instead being exposed through a single API endpoint that serves all users and requests. This gap exists not because least privilege would be unhelpful; deployments would benefit greatly from reducing unnecessary capability exposure. The real obstacle is definitional and mechanistic: what does "access" mean inside a language model, and how can we enforce it without retraining or deploying multiple models? We take inspiration from least privilege in computer systems and define a class of models called least-privilege language models, where privilege is reachable internal computation during the forward pass. In this view, lowering privilege literally shrinks the model's accessible function class, as opposed to denying access via learned policies. We formalize deployment-time control as a monitor-allocator-enforcer stack, separating (i) request-time signals, (ii) a decision rule that allocates privilege, and (iii) an inference-time mechanism that selects privilege. We then propose Nested Least-Privilege Networks, a shape-preserving, rank-indexed intervention that provides a smooth, reversible control knob. We show that this knob yields policy-usable privilege-utility frontiers and enables selective suppression of targeted capabilities with limited collateral degradation across various policies. Most importantly, we argue for a new deployment paradigm that challenges the premise that language models can only be controlled at the output level.
☆ Unsupervised Hierarchical Skill Discovery
We consider the problem of unsupervised skill segmentation and hierarchical structure discovery in reinforcement learning. While recent approaches have sought to segment trajectories into reusable skills or options, most rely on action labels, rewards, or handcrafted annotations, limiting their applicability. We propose a method that segments unlabelled trajectories into skills and induces a hierarchical structure over them using a grammar-based approach. The resulting hierarchy captures both low-level behaviours and their composition into higher-level skills. We evaluate our approach in high-dimensional, pixel-based environments, including Craftax and the full, unmodified version of Minecraft. Using metrics for skill segmentation, reuse, and hierarchy quality, we find that our method consistently produces more structured and semantically meaningful hierarchies than existing baselines. Furthermore, as a proof of concept for utility, we demonstrate that these discovered hierarchies accelerate and stabilise learning on downstream reinforcement learning tasks.
comment: 24 pages, 34 figures. Appendix by Damion Harvey. Damion Harvey is the primary author
☆ SPICE: Submodular Penalized Information-Conflict Selection for Efficient Large Language Model Training
Information-based data selection for instruction tuning is compelling: maximizing the log-determinant of the Fisher information yields a monotone submodular objective, enabling greedy algorithms to achieve a $(1-1/e)$ approximation under a cardinality budget. In practice, however, we identify alleviating gradient conflicts, misalignment between per-sample gradients, is a key factor that slows down the decay of marginal log-determinant information gains, thereby preventing significant loss of information. We formalize this via an $\varepsilon$-decomposition that quantifies the deviation from ideal submodularity as a function of conflict statistics, yielding data-dependent approximation factors that tighten as conflicts diminish. Guided by this analysis, we propose SPICE, a conflict-aware selector that maximizes information while penalizing misalignment, and that supports early stopping and proxy models for efficiency. Empirically, SPICE selects subsets with higher log-determinant information than original criteria, and these informational gains translate into performance improvements: across 8 benchmarks with LLaMA2-7B and Qwen2-7B, SPICE uses only 10% of the data, yet matches or exceeds 6 methods including full-data tuning. This achieves performance improvements with substantially lower training cost.
comment: 39 pages, 9 figures, 15 tables (including appendices)
☆ On Safer Reinforcement Learning Policies for Sedation and Analgesia in Intensive Care IEEE
Pain management in intensive care usually involves complex trade-offs between therapeutic goals and patient safety, since both inadequate and excessive treatment may induce serious sequelae. Reinforcement learning can help address this challenge by learning medication dosing policies from retrospective data. However, prior work on sedation and analgesia has optimized for objectives that do not value patient survival while relying on algorithms unsuitable for imperfect information settings. We investigated the risks of these design choices by implementing a deep reinforcement learning framework to suggest hourly medication doses under partial observability. Using data from 47,144 ICU stays in the MIMIC-IV database, we trained policies to prescribe opioids, propofol, benzodiazepines, and dexmedetomidine according to two goals: reduce pain or jointly reduce pain and mortality. We found that, although the two policies were associated with lower pain, actions from the first policy were positively correlated with mortality, while those proposed by the second policy were negatively correlated. This suggests that valuing long-term outcomes could be critical for safer treatment policies, even if a short-term goal remains the primary objective.
comment: Submitted to the 48th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (IEEE EMBC 2026)
☆ Behemoth: Benchmarking Unlearning in LLMs Using Fully Synthetic Data
As artificial neural networks, and specifically large language models, have improved rapidly in capabilities and quality, they have increasingly been deployed in real-world applications, from customer service to Google search, despite the fact that they frequently make factually incorrect or undesirable statements. This trend has inspired practical and academic interest in model editing, that is, in adjusting the weights of the model to modify its likely outputs for queries relating to a specific fact or set of facts. This may be done either to amend a fact or set of facts, for instance, to fix a frequent error in the training data, or to suppress a fact or set of facts entirely, for instance, in case of dangerous knowledge. Multiple methods have been proposed to do such edits. However, at the same time, it has been shown that such model editing can be brittle and incomplete. Moreover the effectiveness of any model editing method necessarily depends on the data on which the model is trained, and, therefore, a good understanding of the interaction of the training data distribution and the way it is stored in the network is necessary and helpful to reliably perform model editing. However, working with large language models trained on real-world data does not allow us to understand this relationship or fully measure the effects of model editing. We therefore propose Behemoth, a fully synthetic data generation framework. To demonstrate the practical insights from the framework, we explore model editing in the context of simple tabular data, demonstrating surprising findings that, in some cases, echo real-world results, for instance, that in some cases restricting the update rank results in a more effective update. The code is available at https://github.com/IST-DASLab/behemoth.git.
☆ Manifold-Aware Perturbations for Constrained Generative Modeling
Generative models have enjoyed widespread success in a variety of applications. However, they encounter inherent mathematical limitations in modeling distributions where samples are constrained by equalities, as is frequently the setting in scientific domains. In this work, we develop a computationally cheap, mathematically justified, and highly flexible distributional modification for combating known pitfalls in equality-constrained generative models. We propose perturbing the data distribution in a constraint-aware way such that the new distribution has support matching the ambient space dimension while still implicitly incorporating underlying manifold geometry. Through theoretical analyses and empirical evidence on several representative tasks, we illustrate that our approach consistently enables data distribution recovery and stable sampling with both diffusion models and normalizing flows.
☆ Compressed BC-LISTA via Low-Rank Convolutional Decomposition
We study Sparse Signal Recovery (SSR) methods for multichannel imaging with compressed {forward and backward} operators that preserve reconstruction accuracy. We propose a Compressed Block-Convolutional (C-BC) measurement model based on a low-rank Convolutional Neural Network (CNN) decomposition that is analytically initialized from a low-rank factorization of physics-derived forward/backward operators in time delay-based measurements. We use Orthogonal Matching Pursuit (OMP) to select a compact set of basis filters from the analytic model and compute linear mixing coefficients to approximate the full model. We consider the Learned Iterative Shrinkage-Thresholding Algorithm (LISTA) network as a representative example for which the C-BC-LISTA extension is presented. In simulated multichannel ultrasound imaging across multiple Signal-to-Noise Ratios (SNRs), C-BC-LISTA requires substantially fewer parameters and smaller model size than other state-of-the-art (SOTA) methods while improving reconstruction accuracy. In ablations over OMP, Singular Value Decomposition (SVD)-based, and random initializations, OMP-initialized structured compression performs best, yielding the most efficient training and the best performance.
comment: Inverse Problems, Model Compression, Compressed Sensing, Deep Unrolling, Computational Imaging
☆ Securing Time in Energy IoT: A Clock-Dynamics-Aware Spatio-Temporal Graph Attention Network for Clock Drift Attacks and Y2K38 Failures
The integrity of time in distributed Internet of Things (IoT) devices is crucial for reliable operation in energy cyber-physical systems, such as smart grids and microgrids. However, IoT systems are vulnerable to clock drift, time-synchronization manipulation, and timestamp discontinuities, such as the Year 2038 (Y2K38) Unix overflow, all of which disrupt temporal ordering. Conventional anomaly-detection models, which assume reliable timestamps, fail to capture temporal inconsistencies. This paper introduces STGAT (Spatio-Temporal Graph Attention Network), a framework that models both temporal distortion and inter-device consistency in energy IoT systems. STGAT combines drift-aware temporal embeddings and temporal self-attention to capture corrupted time evolution at individual devices, and uses graph attention to model spatial propagation of timing errors. A curvature-regularized latent representation geometrically separates normal clock evolution from anomalies caused by drift, synchronization offsets, and overflow events. Experimental results on energy IoT telemetry with controlled timing perturbations show that STGAT achieves 95.7% accuracy, outperforming recurrent, transformer, and graph-based baselines with significant improvements (d > 1.8, p < 0.001). Additionally, STGAT reduces detection delay by 26%, achieving a 2.3-time-step delay while maintaining stable performance under overflow, drift, and physical inconsistencies.
☆ Why GRPO Needs Normalization: A Local-Curvature Perspective on Adaptive Gradients
Reinforcement learning (RL) has become a key driver of language model reasoning. Among RL algorithms, Group Relative Policy Optimization (GRPO) is the de facto standard, avoiding the need for a critic by using per-prompt baselines and variance normalization. Yet why and when this normalization helps remains unclear. In this work, we provide an explanation through the lens of local curvature of the sequence-level policy gradient: standard deviation normalization implements an adaptive gradient. Theoretically, under mild conditions, GRPO enjoys a strictly improved convergence rate over unnormalized REINFORCE, with gains characterized by the average within-prompt reward standard deviation across prompts and iterations. Empirically, our analysis on GSM8K and MATH benchmarks reveals three distinct training phases governed by the interplay between feature orthogonality and reward variance: (I) an early acceleration phase where high variance and orthogonality favor adaptive scaling; (II) a relatively stable transition phase; and (III) a late-stage regime where the loss of orthogonality limits further gains. Together, these results provide a principled account of when std normalization helps in GRPO, and offer broader insights into the design of critic-free RL algorithms.
☆ Machine Learning for Energy-Performance-aware Scheduling
In the post-Dennard era, optimizing embedded systems requires navigating complex trade-offs between energy efficiency and latency. Traditional heuristic tuning is often inefficient in such high-dimensional, non-smooth landscapes. In this work, we propose a Bayesian Optimization framework using Gaussian Processes to automate the search for optimal scheduling configurations on heterogeneous multi-core architectures. We explicitly address the multi-objective nature of the problem by approximating the Pareto Frontier between energy and time. Furthermore, by incorporating Sensitivity Analysis (fANOVA) and comparing different covariance kernels (e.g., Matérn vs. RBF), we provide physical interpretability to the black-box model, revealing the dominant hardware parameters driving system performance.
comment: Zheyuan Hu and Yifei Shi contributed equally to this work
☆ Regularisation in neural networks: a survey and empirical analysis of approaches
Despite huge successes on a wide range of tasks, neural networks are known to sometimes struggle to generalise to unseen data. Many approaches have been proposed over the years to promote the generalisation ability of neural networks, collectively known as regularisation techniques. These are used as common practice under the assumption that any regularisation added to the pipeline would result in a performance improvement. In this study, we investigate whether this assumption holds in practice. First, we provide a broad review of regularisation techniques, including modern theories such as double descent. We propose a taxonomy of methods under four broad categories, namely: (1) data-based strategies, (2) architecture strategies, (3) training strategies, and (4) loss function strategies. Notably, we highlight the contradictions and correspondences between the approaches in these broad classes. Further, we perform an empirical comparison of the various regularisation techniques on classification tasks for ten numerical and image datasets applied to the multi-layer perceptron and convolutional neural network architectures. Results show that the efficacy of regularisation is dataset-dependent. For example, the use of a regularisation term only improved performance on numeric datasets, whereas batch normalisation improved performance on image datasets only. Generalisation is crucial to machine learning; thus, understanding the effects of applying regularisation techniques, and considering the connections between them is essential to the appropriate use of these methods in practice.
comment: 15 pages, 4 figures, 4 tables and for associated to the code, see https://github.com/Christo08/Benchmarks-of-regularisation-techniques.git
☆ Distribution-informed Efficient Conformal Prediction for Full Ranking
Quantifying uncertainty is critical for the safe deployment of ranking models in real-world applications. Recent work offers a rigorous solution using conformal prediction in a full ranking scenario, which aims to construct prediction sets for the absolute ranks of test items based on the relative ranks of calibration items. However, relying on upper bounds of non-conformity scores renders the method overly conservative, resulting in substantially large prediction sets. To address this, we propose Distribution-informed Conformal Ranking (DCR), which produces efficient prediction sets by deriving the exact distribution of non-conformity scores. In particular, we find that the absolute ranks of calibration items follow Negative Hypergeometric distributions, conditional on their relative ranks. DCR thus uses the rank distribution to derive non-conformity score distribution and determine conformal thresholds. We provide theoretical guarantees that DCR achieves improved efficiency over the baseline while ensuring valid coverage under mild assumptions. Extensive experiments demonstrate the superiority of DCR, reducing average prediction set size by up to 36%, while maintaining valid coverage.
comment: 21 pages, 8 figures
☆ To See Far, Look Close: Evolutionary Forecasting for Long-term Time Series
The prevailing Direct Forecasting (DF) paradigm dominates Long-term Time Series Forecasting (LTSF) by forcing models to predict the entire future horizon in a single forward pass. While efficient, this rigid coupling of output and evaluation horizons necessitates computationally prohibitive re-training for every target horizon. In this work, we uncover a counter-intuitive optimization anomaly: models trained on short horizons-when coupled with our proposed Evolutionary Forecasting (EF) paradigm-significantly outperform those trained directly on long horizons. We attribute this success to the mitigation of a fundamental optimization pathology inherent in DF, where conflicting gradients from distant futures cripple the learning of local dynamics. We establish EF as a unified generative framework, proving that DF is merely a degenerate special case of EF. Extensive experiments demonstrate that a singular EF model surpasses task-specific DF ensembles across standard benchmarks and exhibits robust asymptotic stability in extreme extrapolation. This work propels a paradigm shift in LTSF: moving from passive Static Mapping to autonomous Evolutionary Reasoning.
☆ CATTO: Balancing Preferences and Confidence in Language Models
Large language models (LLMs) often make accurate next token predictions but their confidence in these predictions can be poorly calibrated: high-confidence predictions are frequently wrong, and low-confidence predictions may be correct. This miscalibration is exacerbated by preference-based alignment methods breaking the link between predictive probability and correctness. We introduce a Calibration Aware Token-level Training Objective (CATTO), a calibration-aware objective that aligns predicted confidence with empirical prediction correctness, which can be combined with the original preference optimization objectives. Empirically, CATTO reduces Expected Calibration Error (ECE) by 2.22%-7.61% in-distribution and 1.46%-10.44% out-of-distribution compared to direct preference optimization (DPO), and by 0.22%-1.24% in-distribution and 1.23%-5.07% out-of-distribution compared to the strongest DPO baseline. This improvement in confidence does not come at a cost of losing task accuracy, where CATTO maintains or slightly improves multiple-choice question-answering accuracy on five datasets. We also introduce Confidence@k, a test-time scaling mechanism leveraging calibrated token probabilities for Bayes-optimal selection of output tokens.
☆ Safer Policy Compliance with Dynamic Epistemic Fallback
Humans develop a series of cognitive defenses, known as epistemic vigilance, to combat risks of deception and misinformation from everyday interactions. Developing safeguards for LLMs inspired by this mechanism might be particularly helpful for their application in high-stakes tasks such as automating compliance with data privacy laws. In this paper, we introduce Dynamic Epistemic Fallback (DEF), a dynamic safety protocol for improving an LLM's inference-time defenses against deceptive attacks that make use of maliciously perturbed policy texts. Through various levels of one-sentence textual cues, DEF nudges LLMs to flag inconsistencies, refuse compliance, and fallback to their parametric knowledge upon encountering perturbed policy texts. Using globally recognized legal policies such as HIPAA and GDPR, our empirical evaluations report that DEF effectively improves the capability of frontier LLMs to detect and refuse perturbed versions of policies, with DeepSeek-R1 achieving a 100% detection rate in one setting. This work encourages further efforts to develop cognitively inspired defenses to improve LLM robustness against forms of harm and deception that exploit legal artifacts.
☆ RN-D: Discretized Categorical Actors with Regularized Networks for On-Policy Reinforcement Learning
On-policy deep reinforcement learning remains a dominant paradigm for continuous control, yet standard implementations rely on Gaussian actors and relatively shallow MLP policies, often leading to brittle optimization when gradients are noisy and policy updates must be conservative. In this paper, we revisit policy representation as a first-class design choice for on-policy optimization. We study discretized categorical actors that represent each action dimension with a distribution over bins, yielding a policy objective that resembles a cross-entropy loss. Building on architectural advances from supervised learning, we further propose regularized actor networks, while keeping critic design fixed. Our results show that simply replacing the standard actor network with our discretized regularized actor yields consistent gains and achieve the state-of-the-art performance across diverse continuous-control benchmarks.
☆ SplineFlow: Flow Matching for Dynamical Systems with B-Spline Interpolants
Flow matching is a scalable generative framework for characterizing continuous normalizing flows with wide-range applications. However, current state-of-the-art methods are not well-suited for modeling dynamical systems, as they construct conditional paths using linear interpolants that may not capture the underlying state evolution, especially when learning higher-order dynamics from irregular sampled observations. Constructing unified paths that satisfy multi-marginal constraints across observations is challenging, since naïve higher-order polynomials tend to be unstable and oscillatory. We introduce SplineFlow, a theoretically grounded flow matching algorithm that jointly models conditional paths across observations via B-spline interpolation. Specifically, SplineFlow exploits the smoothness and stability of B-spline bases to learn the complex underlying dynamics in a structured manner while ensuring the multi-marginal requirements are met. Comprehensive experiments across various deterministic and stochastic dynamical systems of varying complexity, as well as on cellular trajectory inference tasks, demonstrate the strong improvement of SplineFlow over existing baselines. Our code is available at: https://github.com/santanurathod/SplineFlow.
comment: 36 pages, 35 tables, 22 figures
☆ ExplainerPFN: Towards tabular foundation models for model-free zero-shot feature importance estimations
Computing the importance of features in supervised classification tasks is critical for model interpretability. Shapley values are a widely used approach for explaining model predictions, but require direct access to the underlying model, an assumption frequently violated in real-world deployments. Further, even when model access is possible, their exact computation may be prohibitively expensive. We investigate whether meaningful Shapley value estimations can be obtained in a zero-shot setting, using only the input data distribution and no evaluations of the target model. To this end, we introduce ExplainerPFN, a tabular foundation model built on TabPFN that is pretrained on synthetic datasets generated from random structural causal models and supervised using exact or near-exact Shapley values. Once trained, ExplainerPFN predicts feature attributions for unseen tabular datasets without model access, gradients, or example explanations. Our contributions are fourfold: (1) we show that few-shot learning-based explanations can achieve high fidelity to SHAP values with as few as two reference observations; (2) we propose ExplainerPFN, the first zero-shot method for estimating Shapley values without access to the underlying model or reference explanations; (3) we provide an open-source implementation of ExplainerPFN, including the full training pipeline and synthetic data generator; and (4) through extensive experiments on real and synthetic datasets, we show that ExplainerPFN achieves performance competitive with few-shot surrogate explainers that rely on 2-10 SHAP examples.
comment: 18 pages, 7 figures
☆ On the Impact of Code Comments for Automated Bug-Fixing: An Empirical Study
Large Language Models (LLMs) are increasingly relevant in Software Engineering research and practice, with Automated Bug Fixing (ABF) being one of their key applications. ABF involves transforming a buggy method into its fixed equivalent. A common preprocessing step in ABF involves removing comments from code prior to training. However, we hypothesize that comments may play a critical role in fixing certain types of bugs by providing valuable design and implementation insights. In this study, we investigate how the presence or absence of comments, both during training and at inference time, impacts the bug-fixing capabilities of LLMs. We conduct an empirical evaluation comparing two model families, each evaluated under all combinations of training and inference conditions (with and without comments), and thereby revisiting the common practice of removing comments during training. To address the limited availability of comments in state-of-the-art datasets, we use an LLM to automatically generate comments for methods lacking them. Our findings show that comments improve ABF accuracy by up to threefold when present in both phases, while training with comments does not degrade performance when instances lack them. Additionally, an interpretability analysis identifies that comments detailing method implementation are particularly effective in aiding LLMs to fix bugs accurately.
comment: Accepted at the 34th IEEE/ACM International Conference on Program Comprehension (ICPC 2026)
☆ From Absolute to Relative: Rethinking Reward Shaping in Group-Based Reinforcement Learning
Reinforcement learning has become a cornerstone for enhancing the reasoning capabilities of Large Language Models, where group-based approaches such as GRPO have emerged as efficient paradigms that optimize policies by leveraging intra-group performance differences. However, these methods typically rely on absolute numerical rewards, introducing intrinsic limitations. In verifiable tasks, identical group evaluations often result in sparse supervision, while in open-ended scenarios, the score range instability of reward models undermines advantage estimation based on group means. To address these limitations, we propose Reinforcement Learning with Relative Rewards (RLRR), a framework that shifts reward shaping from absolute scoring to relative ranking. Complementing this framework, we introduce the Ranking Reward Model, a listwise preference model tailored for group-based optimization to directly generate relative rankings. By transforming raw evaluations into robust relative signals, RLRR effectively mitigates signal sparsity and reward instability. Experimental results demonstrate that RLRR yields consistent performance improvements over standard group-based baselines across reasoning benchmarks and open-ended generation tasks.
☆ Adaptive Edge Learning for Density-Aware Graph Generation
Generating realistic graph-structured data is challenging due to discrete structures, variable sizes, and class-specific connectivity patterns that resist conventional generative modelling. While recent graph generation methods employ generative adversarial network (GAN) frameworks to handle permutation invariance and irregular topologies, they typically rely on random edge sampling with fixed probabilities, limiting their capacity to capture complex structural dependencies between nodes. We propose a density-aware conditional graph generation framework using Wasserstein GANs (WGAN) that replaces random sampling with a learnable distance-based edge predictor. Our approach embeds nodes into a latent space where proximity correlates with edge likelihood, enabling the generator to learn meaningful connectivity patterns. A differentiable edge predictor determines pairwise relationships directly from node embeddings, while a density-aware selection mechanism adaptively controls edge density to match class-specific sparsity distributions observed in real graphs. We train the model using a WGAN with gradient penalty, employing a GCN-based critic to ensure generated graphs exhibit realistic topology and align with target class distributions. Experiments on benchmark datasets demonstrate that our method produces graphs with superior structural coherence and class-consistent connectivity compared to existing baselines. The learned edge predictor captures complex relational patterns beyond simple heuristics, generating graphs whose density and topology closely match real structural distributions. Our results show improved training stability and controllable synthesis, making the framework effective for realistic graph generation and data augmentation. Source code is publicly available at https://github.com/ava-12/Density_Aware_WGAN.git.
comment: Accepted at the 39th Canadian Conference on Artificial Intelligence
☆ Avoiding Premature Collapse: Adaptive Annealing for Entropy-Regularized Structural Inference
Differentiable matching layers, often implemented via entropy-regularized Optimal Transport, serve as a critical approximate inference mechanism in structural prediction. However, recovering discrete permutations via annealing $ε\to 0$ is notoriously unstable. We identify a fundamental mechanism for this failure: \textbf{Premature Mode Collapse}. By analyzing the non-normal dynamics of the Sinkhorn fixed-point map, we reveal a theoretical \textbf{thermodynamic speed limit}. Under standard exponential cooling, the shift in the target posterior ($O(1)$) outpaces the contraction rate of the inference operator, which degrades as $O(1/ε)$. This mismatch inevitably forces the inference trajectory into spurious local basins. To address this, we propose \textbf{Efficient PH-ASC}, an adaptive scheduling algorithm that monitors the stability of the inference process. By enforcing a linear stability law, we decouple expensive spectral diagnostics from the training loop, reducing overhead from $O(N^3)$ to amortized $O(1)$. Our implementation and interactive demo are available at https://github.com/xxx0438/torch-sinkhorn-asc and https://huggingface.co/spaces/leon0923/torch-sinkhorn-asc-demo. bounded away from zero in generic training dynamics unless the feature extractor converges unrealistically fast.
☆ Asymptotic Theory of Iterated Empirical Risk Minimization, with Applications to Active Learning
We study a class of iterated empirical risk minimization (ERM) procedures in which two successive ERMs are performed on the same dataset, and the predictions of the first estimator enter as an argument in the loss function of the second. This setting, which arises naturally in active learning and reweighting schemes, introduces intricate statistical dependencies across samples and fundamentally distinguishes the problem from classical single-stage ERM analyses. For linear models trained with a broad class of convex losses on Gaussian mixture data, we derive a sharp asymptotic characterization of the test error in the high-dimensional regime where the sample size and ambient dimension scale proportionally. Our results provide explicit, fully asymptotic predictions for the performance of the second-stage estimator despite the reuse of data and the presence of prediction-dependent losses. We apply this theory to revisit a well-studied pool-based active learning problem, removing oracle and sample-splitting assumptions made in prior work. We uncover a fundamental tradeoff in how the labeling budget should be allocated across stages, and demonstrate a double-descent behavior of the test error driven purely by data selection, rather than model size or sample count.
☆ Neural Backward Filtering Forward Guiding
Inference in non-linear continuous stochastic processes on trees is challenging, particularly when observations are sparse (leaf-only) and the topology is complex. Exact smoothing via Doob's $h$-transform is intractable for general non-linear dynamics, while particle-based methods degrade in high dimensions. We propose Neural Backward Filtering Forward Guiding (NBFFG), a unified framework for both discrete transitions and continuous diffusions. Our method constructs a variational posterior by leveraging an auxiliary linear-Gaussian process. This auxiliary process yields a closed-form backward filter that serves as a ``guide'', steering the generative path toward high-likelihood regions. We then learn a neural residual--parameterized as a normalizing flow or a controlled SDE--to capture the non-linear discrepancies. This formulation allows for an unbiased path-wise subsampling scheme, reducing the training complexity from tree-size dependent to path-length dependent. Empirical results show that NBFFG outperforms baselines on synthetic benchmarks, and we demonstrate the method on a high-dimensional inference task in phylogenetic analysis with reconstruction of ancestral butterfly wing shapes.
☆ Divide-and-Conquer CoT: RL for Reducing Latency via Parallel Reasoning
Long chain-of-thought reasoning (Long CoT) is now fundamental to state-of-the-art LLMs, especially in mathematical reasoning. However, LLM generation is highly sequential, and long CoTs lead to a high latency. We propose to train Divide-and-Conquer CoT (DC-CoT) to reduce the latency. With DC-CoT, the model can act as a director that identifies distinct subtasks that can be performed in parallel in its reasoning process, and then spawns workers to execute the subtasks. Our goal is to achieve high accuracy, with a low longest path length, which is a theoretical measure of the latency needed for the response. We start with a long CoT base model (DeepScaleR-1.5B-Preview), and first use SFT with a small curated demonstration set to initialize its ability to spawn workers in a certain format. Because SFT degrades the accuracy significantly, we design a multi-stage RL algorithm, with various data filtering strategies, to recover the accuracy while decreasing the longest path length. Across several benchmarks including AIME 2024 and HMMT 2025, DC-CoT achieves similar accuracy as DeepScaleR-1.5B-Preview while decreasing longest path length by 35-40%. Our code, SFT dataset and models are publicly available at https://github.com/amahankali10/DC_CoT_RL_for_Low_Latency_CoT_with_Parallel_Reasoning.
comment: 47 pages, 13 figures
☆ Causal Characterization of Measurement and Mechanistic Anomalies
Root cause analysis of anomalies aims to identify those features that cause the deviation from the normal process. Existing methods ignore, however, that anomalies can arise through two fundamentally different processes: measurement errors, where data was generated normally but one or more values were recorded incorrectly, and mechanism shifts, where the causal process generating the data changed. While measurement errors can often be safely corrected, mechanistic anomalies require careful consideration. We define a causal model that explicitly captures both types by treating outliers as latent interventions on latent ("true") and observed ("measured") variables. We show that they are identifiable, and propose a maximum likelihood estimation approach to put this to practice. Experiments show that our method matches state-of-the-art performance in root cause localization, while it additionally enables accurate classification of anomaly types, and remains robust even when the causal DAG is unknown.
☆ Mem-T: Densifying Rewards for Long-Horizon Memory Agents
Memory agents, which depart from predefined memory-processing pipelines by endogenously managing the processing, storage, and retrieval of memories, have garnered increasing attention for their autonomy and adaptability. However, existing training paradigms remain constrained: agents often traverse long-horizon sequences of memory operations before receiving sparse and delayed rewards, which hinders truly end-to-end optimization of memory management policies. To address this limitation, we introduce Mem-T, an autonomous memory agent that interfaces with a lightweight hierarchical memory database to perform dynamic updates and multi-turn retrieval over streaming inputs. To effectively train long-horizon memory management capabilities, we further propose MoT-GRPO, a tree-guided reinforcement learning framework that transforms sparse terminal feedback into dense, step-wise supervision via memory operation tree backpropagation and hindsight credit assignment, thereby enabling the joint optimization of memory construction and retrieval. Extensive experiments demonstrate that Mem-T is (1) high-performing, surpassing frameworks such as A-Mem and Mem0 by up to $14.92\%$, and (2) economical, operating on a favorable accuracy-efficiency Pareto frontier and reducing inference tokens per query by $\sim24.45\%$ relative to GAM without sacrificing performance.
☆ Leveraging Convolutional Sparse Autoencoders for Robust Movement Classification from Low-Density sEMG
Reliable control of myoelectric prostheses is often hindered by high inter-subject variability and the clinical impracticality of high-density sensor arrays. This study proposes a deep learning framework for accurate gesture recognition using only two surface electromyography (sEMG) channels. The method employs a Convolutional Sparse Autoencoder (CSAE) to extract temporal feature representations directly from raw signals, eliminating the need for heuristic feature engineering. On a 6-class gesture set, our model achieved a multi-subject F1-score of 94.3% $\pm$ 0.3%. To address subject-specific differences, we present a few-shot transfer learning protocol that improved performance on unseen subjects from a baseline of 35.1% $\pm$ 3.1% to 92.3% $\pm$ 0.9% with minimal calibration data. Furthermore, the system supports functional extensibility through an incremental learning strategy, allowing for expansion to a 10-class set with a 90.0% $\pm$ 0.2% F1-score without full model retraining. By combining high precision with minimal computational and sensor overhead, this framework provides a scalable and efficient approach for the next generation of affordable and adaptive prosthetic systems.
☆ Automatic Constraint Policy Optimization based on Continuous Constraint Interpolation Framework for Offline Reinforcement Learning
Offline Reinforcement Learning (RL) relies on policy constraints to mitigate extrapolation error, where both the constraint form and constraint strength critically shape performance. However, most existing methods commit to a single constraint family: weighted behavior cloning, density regularization, or support constraints, without a unified principle that explains their connections or trade-offs. In this work, we propose Continuous Constraint Interpolation (CCI), a unified optimization framework in which these three constraint families arise as special cases along a common constraint spectrum. The CCI framework introduces a single interpolation parameter that enables smooth transitions and principled combinations across constraint types. Building on CCI, we develop Automatic Constraint Policy Optimization (ACPO), a practical primal--dual algorithm that adapts the interpolation parameter via a Lagrangian dual update. Moreover, we establish a maximum-entropy performance difference lemma and derive performance lower bounds for both the closed-form optimal policy and its parametric projection. Experiments on D4RL and NeoRL2 demonstrate robust gains across diverse domains, achieving state-of-the-art performance overall.
☆ Mano: Restriking Manifold Optimization for LLM Training
While large language models (LLMs) have emerged as a significant advancement in artificial intelligence, the hardware and computational costs for training LLMs are also significantly burdensome. Among the state-of-the-art optimizers, AdamW relies on diagonal curvature estimates and ignores structural properties, while Muon applies global spectral normalization at the expense of losing curvature information. In this study, we restriked manifold optimization methods for training LLMs, which may address both optimizers' limitations, while conventional manifold optimization methods have been largely overlooked due to the poor performance in large-scale model optimization. By innovatively projecting the momentum onto the tangent space of model parameters and constraining it on a rotational Oblique manifold, we propose a novel, powerful, and efficient optimizer **Mano** that is the first to bridge the performance gap between manifold optimization and modern optimizers. Extensive experiments on the LLaMA and Qwen3 models demonstrate that Mano consistently and significantly outperforms AdamW and Muon even with less memory consumption and computational complexity, respectively, suggesting an expanded Pareto frontier in terms of space and time efficiency.
☆ Value-at-Risk Constrained Policy Optimization
We introduce the Value-at-Risk Constrained Policy Optimization algorithm (VaR-CPO), a sample efficient and conservative method designed to optimize Value-at-Risk (VaR) constraints directly. Empirically, we demonstrate that VaR-CPO is capable of safe exploration, achieving zero constraint violations during training in feasible environments, a critical property that baseline methods fail to uphold. To overcome the inherent non-differentiability of the VaR constraint, we employ the one-sided Chebyshev inequality to obtain a tractable surrogate based on the first two moments of the cost return. Additionally, by extending the trust-region framework of the Constrained Policy Optimization (CPO) method, we provide rigorous worst-case bounds for both policy improvement and constraint violation during the training process.
☆ dgMARK: Decoding-Guided Watermarking for Diffusion Language Models
We propose dgMARK, a decoding-guided watermarking method for discrete diffusion language models (dLLMs). Unlike autoregressive models, dLLMs can generate tokens in arbitrary order. While an ideal conditional predictor would be invariant to this order, practical dLLMs exhibit strong sensitivity to the unmasking order, creating a new channel for watermarking. dgMARK steers the unmasking order toward positions whose high-reward candidate tokens satisfy a simple parity constraint induced by a binary hash, without explicitly reweighting the model's learned probabilities. The method is plug-and-play with common decoding strategies (e.g., confidence, entropy, and margin-based ordering) and can be strengthened with a one-step lookahead variant. Watermarks are detected via elevated parity-matching statistics, and a sliding-window detector ensures robustness under post-editing operations including insertion, deletion, substitution, and paraphrasing.
comment: Project page: https://dgmark-watermarking.github.io
☆ PIDSMaker: Building and Evaluating Provenance-based Intrusion Detection Systems
Recent provenance-based intrusion detection systems (PIDSs) have demonstrated strong potential for detecting advanced persistent threats (APTs) by applying machine learning to system provenance graphs. However, evaluating and comparing PIDSs remains difficult: prior work uses inconsistent preprocessing pipelines, non-standard dataset splits, and incompatible ground-truth labeling and metrics. These discrepancies undermine reproducibility, impede fair comparison, and impose substantial re-implementation overhead on researchers. We present PIDSMaker, an open-source framework for developing and evaluating PIDSs under consistent protocols. PIDSMaker consolidates eight state-of-the-art systems into a modular, extensible architecture with standardized preprocessing and ground-truth labels, enabling consistent experiments and apples-to-apples comparisons. A YAML-based configuration interface supports rapid prototyping by composing components across systems without code changes. PIDSMaker also includes utilities for ablation studies, hyperparameter tuning, multi-run instability measurement, and visualization, addressing methodological gaps identified in prior work. We demonstrate PIDSMaker through concrete use cases and release it with preprocessed datasets and labels to support shared evaluation for the PIDS community.
☆ Learnable Permutation for Structured Sparsity on Transformer Models
Structured sparsity has emerged as a popular model pruning technique, widely adopted in various architectures, including CNNs, Transformer models, and especially large language models (LLMs) in recent years. A promising direction to further improve post-pruning performance is weight permutation, which reorders model weights into patterns more amenable to pruning. However, the exponential growth of the permutation search space with the scale of Transformer architectures forces most methods to rely on greedy or heuristic algorithms, limiting the effectiveness of reordering. In this work, we propose a novel end-to-end learnable permutation framework. Our method introduces a learnable permutation cost matrix to quantify the cost of swapping any two input channels of a given weight matrix, a differentiable bipartite matching solver to obtain the optimal binary permutation matrix given a cost matrix, and a sparsity optimization loss function to directly optimize the permutation operator. We extensively validate our approach on vision and language Transformers, demonstrating that our method achieves state-of-the-art permutation results for structured sparsity.
☆ Stabilizing the Q-Gradient Field for Policy Smoothness in Actor-Critic
Policies learned via continuous actor-critic methods often exhibit erratic, high-frequency oscillations, making them unsuitable for physical deployment. Current approaches attempt to enforce smoothness by directly regularizing the policy's output. We argue that this approach treats the symptom rather than the cause. In this work, we theoretically establish that policy non-smoothness is fundamentally governed by the differential geometry of the critic. By applying implicit differentiation to the actor-critic objective, we prove that the sensitivity of the optimal policy is bounded by the ratio of the Q-function's mixed-partial derivative (noise sensitivity) to its action-space curvature (signal distinctness). To empirically validate this theoretical insight, we introduce PAVE (Policy-Aware Value-field Equalization), a critic-centric regularization framework that treats the critic as a scalar field and stabilizes its induced action-gradient field. PAVE rectifies the learning signal by minimizing the Q-gradient volatility while preserving local curvature. Experimental results demonstrate that PAVE achieves smoothness and robustness comparable to policy-side smoothness regularization methods, while maintaining competitive task performance, without modifying the actor.
☆ Improved Algorithms for Nash Welfare in Linear Bandits
Nash regret has recently emerged as a principled fairness-aware performance metric for stochastic multi-armed bandits, motivated by the Nash Social Welfare objective. Although this notion has been extended to linear bandits, existing results suffer from suboptimality in ambient dimension $d$, stemming from proof techniques that rely on restrictive concentration inequalities. In this work, we resolve this open problem by introducing new analytical tools that yield an order-optimal Nash regret bound in linear bandits. Beyond Nash regret, we initiate the study of $p$-means regret in linear bandits, a unifying framework that interpolates between fairness and utility objectives and strictly generalizes Nash regret. We propose a generic algorithmic framework, FairLinBandit, that works as a meta-algorithm on top of any linear bandit strategy. We instantiate this framework using two bandit algorithms: Phased Elimination and Upper Confidence Bound, and prove that both achieve sublinear $p$-means regret for the entire range of $p$. Extensive experiments on linear bandit instances generated from real-world datasets demonstrate that our methods consistently outperform the existing state-of-the-art baseline.
☆ OneFlowSBI: One Model, Many Queries for Simulation-Based Inference
We introduce \textit{OneFlowSBI}, a unified framework for simulation-based inference that learns a single flow-matching generative model over the joint distribution of parameters and observations. Leveraging a query-aware masking distribution during training, the same model supports multiple inference tasks, including posterior sampling, likelihood estimation, and arbitrary conditional distributions, without task-specific retraining. We evaluate \textit{OneFlowSBI} on ten benchmark inference problems and two high-dimensional real-world inverse problems across multiple simulation budgets. \textit{OneFlowSBI} is shown to deliver competitive performance against state-of-the-art generalized inference solvers and specialized posterior estimators, while enabling efficient sampling with few ODE integration steps and remaining robust under noisy and partially observed data.
☆ Perplexity Cannot Always Tell Right from Wrong
Perplexity -- a function measuring a model's overall level of "surprise" when encountering a particular output -- has gained significant traction in recent years, both as a loss function and as a simple-to-compute metric of model quality. Prior studies have pointed out several limitations of perplexity, often from an empirical manner. Here we leverage recent results on Transformer continuity to show in a rigorous manner how perplexity may be an unsuitable metric for model selection. Specifically, we prove that, if there is any sequence that a compact decoder-only Transformer model predicts accurately and confidently -- a necessary pre-requisite for strong generalisation -- it must imply existence of another sequence with very low perplexity, but not predicted correctly by that same model. Further, by analytically studying iso-perplexity plots, we find that perplexity will not always select for the more accurate model -- rather, any increase in model confidence must be accompanied by a commensurate rise in accuracy for the new model to be selected.
comment: 11 pages, 4 figures
☆ Relaxing Positional Alignment in Masked Diffusion Language Models
Masked diffusion language models (MDLMs) have emerged as a promising alternative to dominant autoregressive approaches. Although they achieve competitive performance on several tasks, a substantial gap remains in open-ended text generation. We hypothesize that one cause of this gap is that strict positional prediction makes MDLM decoding highly sensitive to token misalignment, and we show through controlled interventions that a one-position shift can severely disrupt semantics. This observation suggests that enforcing strict positional supervision during training is misaligned with the irreversible denoising dynamics of MDLM decoding. Motivated by this mismatch, we adopt an alignment-flexible supervision strategy during fine-tuning. Specifically, we introduce a special token via the connectionist temporal classification objective. We apply this approach to the widely used MDLM model and conduct experiments on five open-ended text generation benchmarks. Our method consistently outperforms the original model and improves robustness to positional shifts, indicating that relaxing strict positional supervision is an important factor in improving generation quality in MDLMs.
☆ From Data Leak to Secret Misses: The Impact of Data Leakage on Secret Detection Models
Machine learning models are increasingly used for software security tasks. These models are commonly trained and evaluated on large Internet-derived datasets, which often contain duplicated or highly similar samples. When such samples are split across training and test sets, data leakage may occur, allowing models to memorize patterns instead of learning to generalize. We investigate duplication in a widely used benchmark dataset of hard coded secrets and show how data leakage can substantially inflate the reported performance of AI-based secret detectors, resulting in a misleading picture of their real-world effectiveness.
☆ Environment-Conditioned Tail Reweighting for Total Variation Invariant Risk Minimization
Out-of-distribution (OOD) generalization remains challenging when models simultaneously encounter correlation shifts across environments and diversity shifts driven by rare or hard samples. Existing invariant risk minimization (IRM) methods primarily address spurious correlations at the environment level, but often overlook sample-level heterogeneity within environments, which can critically impact OOD performance. In this work, we propose \emph{Environment-Conditioned Tail Reweighting for Total Variation Invariant Risk Minimization} (ECTR), a unified framework that augments TV-based invariant learning with environment-conditioned tail reweighting to jointly address both types of distribution shift. By integrating environment-level invariance with within-environment robustness, the proposed approach makes these two mechanisms complementary under mixed distribution shifts. We further extend the framework to scenarios without explicit environment annotations by inferring latent environments through a minimax formulation. Experiments across regression, tabular, time-series, and image classification benchmarks under mixed distribution shifts demonstrate consistent improvements in both worst-environment and average OOD performance.
comment: 8 pages
☆ Scalable Topology-Preserving Graph Coarsening with Graph Collapse
Graph coarsening reduces the size of a graph while preserving certain properties. Most existing methods preserve either spectral or spatial characteristics. Recent research has shown that preserving topological features helps maintain the predictive performance of graph neural networks (GNNs) trained on the coarsened graph but suffers from exponential time complexity. To address these problems, we propose Scalable Topology-Preserving Graph Coarsening (STPGC) by introducing the concepts of graph strong collapse and graph edge collapse extended from algebraic topology. STPGC comprises three new algorithms, GStrongCollapse, GEdgeCollapse, and NeighborhoodConing based on these two concepts, which eliminate dominated nodes and edges while rigorously preserving topological features. We further prove that STPGC preserves the GNN receptive field and develop approximate algorithms to accelerate GNN training. Experiments on node classification with GNNs demonstrate the efficiency and effectiveness of STPGC.
☆ DC-LA: Difference-of-Convex Langevin Algorithm
We study a sampling problem whose target distribution is $π\propto \exp(-f-r)$ where the data fidelity term $f$ is Lipschitz smooth while the regularizer term $r=r_1-r_2$ is a non-smooth difference-of-convex (DC) function, i.e., $r_1,r_2$ are convex. By leveraging the DC structure of $r$, we can smooth out $r$ by applying Moreau envelopes to $r_1$ and $r_2$ separately. In line of DC programming, we then redistribute the concave part of the regularizer to the data fidelity and study its corresponding proximal Langevin algorithm (termed DC-LA). We establish convergence of DC-LA to the target distribution $π$, up to discretization and smoothing errors, in the $q$-Wasserstein distance for all $q \in \mathbb{N}^*$, under the assumption that $V$ is distant dissipative. Our results improve previous work on non-log-concave sampling in terms of a more general framework and assumptions. Numerical experiments show that DC-LA produces accurate distributions in synthetic settings and reliably provides uncertainty quantification in a real-world Computed Tomography application.
☆ MTDrive: Multi-turn Interactive Reinforcement Learning for Autonomous Driving
Trajectory planning is a core task in autonomous driving, requiring the prediction of safe and comfortable paths across diverse scenarios. Integrating Multi-modal Large Language Models (MLLMs) with Reinforcement Learning (RL) has shown promise in addressing "long-tail" scenarios. However, existing methods are constrained to single-turn reasoning, limiting their ability to handle complex tasks requiring iterative refinement. To overcome this limitation, we present MTDrive, a multi-turn framework that enables MLLMs to iteratively refine trajectories based on environmental feedback. MTDrive introduces Multi-Turn Group Relative Policy Optimization (mtGRPO), which mitigates reward sparsity by computing relative advantages across turns. We further construct an interactive trajectory understanding dataset from closed-loop simulation to support multi-turn training. Experiments on the NAVSIM benchmark demonstrate superior performance compared to existing methods, validating the effectiveness of our multi-turn reasoning paradigm. Additionally, we implement system-level optimizations to reduce data transfer overhead caused by high-resolution images and multi-turn sequences, achieving 2.5x training throughput. Our data, models, and code will be made available soon.
☆ LLMs Explain't: A Post-Mortem on Semantic Interpretability in Transformer Models
Large Language Models (LLMs) are becoming increasingly popular in pervasive computing due to their versatility and strong performance. However, despite their ubiquitous use, the exact mechanisms underlying their outstanding performance remain unclear. Different methods for LLM explainability exist, and many are, as a method, not fully understood themselves. We started with the question of how linguistic abstraction emerges in LLMs, aiming to detect it across different LLM modules (attention heads and input embeddings). For this, we used methods well-established in the literature: (1) probing for token-level relational structures, and (2) feature-mapping using embeddings as carriers of human-interpretable properties. Both attempts failed for different methodological reasons: Attention-based explanations collapsed once we tested the core assumption that later-layer representations still correspond to tokens. Property-inference methods applied to embeddings also failed because their high predictive scores were driven by methodological artifacts and dataset structure rather than meaningful semantic knowledge. These failures matter because both techniques are widely treated as evidence for what LLMs supposedly understand, yet our results show such conclusions are unwarranted. These limitations are particularly relevant in pervasive and distributed computing settings where LLMs are deployed as system components and interpretability methods are relied upon for debugging, compression, and explaining models.
☆ BEAR: Towards Beam-Search-Aware Optimization for Recommendation with Large Language Models
Recent years have witnessed a rapid surge in research leveraging Large Language Models (LLMs) for recommendation. These methods typically employ supervised fine-tuning (SFT) to adapt LLMs to recommendation scenarios, and utilize beam search during inference to efficiently retrieve $B$ top-ranked recommended items. However, we identify a critical training-inference inconsistency: while SFT optimizes the overall probability of positive items, it does not guarantee that such items will be retrieved by beam search even if they possess high overall probabilities. Due to the greedy pruning mechanism, beam search can prematurely discard a positive item once its prefix probability is insufficient. To address this inconsistency, we propose BEAR (Beam-SEarch-Aware Regularization), a novel fine-tuning objective that explicitly accounts for beam search behavior during training. Rather than directly simulating beam search for each instance during training, which is computationally prohibitive, BEAR enforces a relaxed necessary condition: each token in a positive item must rank within the top-$B$ candidate tokens at each decoding step. This objective effectively mitigates the risk of incorrect pruning while incurring negligible computational overhead compared to standard SFT. Extensive experiments across four real-world datasets demonstrate that BEAR significantly outperforms strong baselines. Code will be released upon acceptance.
☆ Evaluating Large Language Models for Security Bug Report Prediction
Early detection of security bug reports (SBRs) is critical for timely vulnerability mitigation. We present an evaluation of prompt-based engineering and fine-tuning approaches for predicting SBRs using Large Language Models (LLMs). Our findings reveal a distinct trade-off between the two approaches. Prompted proprietary models demonstrate the highest sensitivity to SBRs, achieving a G-measure of 77% and a recall of 74% on average across all the datasets, albeit at the cost of a higher false-positive rate, resulting in an average precision of only 22%. Fine-tuned models, by contrast, exhibit the opposite behavior, attaining a lower overall G-measure of 51% but substantially higher precision of 75% at the cost of reduced recall of 36%. Though a one-time investment in building fine-tuned models is necessary, the inference on the largest dataset is up to 50 times faster than that of proprietary models. These findings suggest that further investigations to harness the power of LLMs for SBR prediction are necessary.
☆ FlexLoRA: Entropy-Guided Flexible Low-Rank Adaptation ICLR
Large pre-trained models achieve remarkable success across diverse domains, yet fully fine-tuning incurs prohibitive computational and memory costs. Parameter-efficient fine-tuning (PEFT) has thus become a mainstream paradigm. Among them, Low-Rank Adaptation (LoRA) introduces trainable low-rank matrices and shows strong performance, nevertheless, its fixed-rank design limits flexibility. Dynamic rank allocation methods mitigate this issue by pruning redundant directions; however, they often rely on heuristic, element-level metrics that globally sort rank directions without matrix-wise distinction, and they lack mechanisms to expand capacity in layers requiring additional adaptation. To overcome these limitations, we propose FlexLoRA, an entropy-guided flexible low-rank adaptation framework that (i) evaluates matrix importance via spectral energy entropy, (ii) supports rank pruning and expansion under a global budget, and (iii) employs zero-impact initialization for newly added singular directions to ensure stability. By addressing granularity, flexibility, and stability limitations, FlexLoRA provides a more principled solution for PEFT. Extensive experiments show that FlexLoRA consistently outperforms state-of-the-art baselines across benchmarks. Codes are available at https://github.com/Chongjie-Si/Subspace-Tuning.
comment: 2026 ICLR. Codes in https://github.com/Chongjie-Si/Subspace-Tuning
☆ DINO-SAE: DINO Spherical Autoencoder for High-Fidelity Image Reconstruction and Generation
Recent studies have explored using pretrained Vision Foundation Models (VFMs) such as DINO for generative autoencoders, showing strong generative performance. Unfortunately, existing approaches often suffer from limited reconstruction fidelity due to the loss of high-frequency details. In this work, we present the DINO Spherical Autoencoder (DINO-SAE), a framework that bridges semantic representation and pixel-level reconstruction. Our key insight is that semantic information in contrastive representations is primarily encoded in the direction of feature vectors, while forcing strict magnitude matching can hinder the encoder from preserving fine-grained details. To address this, we introduce Hierarchical Convolutional Patch Embedding module that enhances local structure and texture preservation, and Cosine Similarity Alignment objective that enforces semantic consistency while allowing flexible feature magnitudes for detail retention. Furthermore, leveraging the observation that SSL-based foundation model representations intrinsically lie on a hypersphere, we employ Riemannian Flow Matching to train a Diffusion Transformer (DiT) directly on this spherical latent manifold. Experiments on ImageNet-1K demonstrate that our approach achieves state-of-the-art reconstruction quality, reaching 0.37 rFID and 26.2 dB PSNR, while maintaining strong semantic alignment to the pretrained VFM. Notably, our Riemannian Flow Matching-based DiT exhibits efficient convergence, achieving a gFID of 3.47 at 80 epochs.
comment: 17 pages, and 11 figures
☆ Uncertainty-Aware Extrapolation in Bayesian Oblique Trees
Decision trees are widely used due to their interpretability and efficiency, but they struggle in regression tasks that require reliable extrapolation and well-calibrated uncertainty. Piecewise-constant leaf predictions are bounded by the training targets and often become overconfident under distribution shift. We propose a single-tree Bayesian model that extends VSPYCT by equipping each leaf with a GP predictor. Bayesian oblique splits provide uncertainty-aware partitioning of the input space, while GP leaves model local functional behaviour and enable principled extrapolation beyond the observed target range. We present an efficient inference and prediction scheme that combines posterior sampling of split parameters with \gls{gp} posterior predictions, and a gating mechanism that activates GP-based extrapolation when inputs fall outside the training support of a leaf. Experiments on benchmark regression tasks show improvements in the predictive performance compared to standard variational oblique trees, and substantial performance gains in extrapolation scenarios.
☆ Calibrated Multivariate Distributional Regression with Pre-Rank Regularization
The goal of probabilistic prediction is to issue predictive distributions that are as informative as possible, subject to being calibrated. Despite substantial progress in the univariate setting, achieving multivariate calibration remains challenging. Recent work has introduced pre-rank functions, scalar projections of multivariate forecasts and observations, as flexible diagnostics for assessing specific aspects of multivariate calibration, but their use has largely been limited to post-hoc evaluation. We propose a regularization-based calibration method that enforces multivariate calibration during training of multivariate distributional regression models using pre-rank functions. We further introduce a novel PCA-based pre-rank that projects predictions onto principal directions of the predictive distribution. Through simulation studies and experiments on 18 real-world multi-output regression datasets, we show that the proposed approach substantially improves multivariate pre-rank calibration without compromising predictive accuracy, and that the PCA pre-rank reveals dependence-structure misspecifications that are not detected by existing pre-ranks.
comment: arXiv admin note: text overlap with arXiv:2510.21273
☆ PlatoLTL: Learning to Generalize Across Symbols in LTL Instructions for Multi-Task RL
A central challenge in multi-task reinforcement learning (RL) is to train generalist policies capable of performing tasks not seen during training. To facilitate such generalization, linear temporal logic (LTL) has recently emerged as a powerful formalism for specifying structured, temporally extended tasks to RL agents. While existing approaches to LTL-guided multi-task RL demonstrate successful generalization across LTL specifications, they are unable to generalize to unseen vocabularies of propositions (or "symbols"), which describe high-level events in LTL. We present PlatoLTL, a novel approach that enables policies to zero-shot generalize not only compositionally across LTL formula structures, but also parametrically across propositions. We achieve this by treating propositions as instances of parameterized predicates rather than discrete symbols, allowing policies to learn shared structure across related propositions. We propose a novel architecture that embeds and composes predicates to represent LTL specifications, and demonstrate successful zero-shot generalization to novel propositions and tasks across challenging environments.
comment: 11 pages, 3 figures (main paper). 14 pages, 10 figures (appendix)
☆ DiffuSpeech: Silent Thought, Spoken Answer via Unified Speech-Text Diffusion
Current speech language models generate responses directly without explicit reasoning, leading to errors that cannot be corrected once audio is produced. We introduce \textbf{``Silent Thought, Spoken Answer''} -- a paradigm where speech LLMs generate internal text reasoning alongside spoken responses, with thinking traces informing speech quality. To realize this, we present \method{}, the first diffusion-based speech-text language model supporting both understanding and generation, unifying discrete text and tokenized speech under a single masked diffusion framework. Unlike autoregressive approaches, \method{} jointly generates reasoning traces and speech tokens through iterative denoising, with modality-specific masking schedules. We also construct \dataset{}, the first speech QA dataset with paired text reasoning traces, containing 26K samples totaling 319 hours. Experiments show \method{} achieves state-of-the-art speech-to-speech QA accuracy, outperforming the best baseline by up to 9 points, while attaining the best TTS quality among generative models (6.2\% WER) and preserving language understanding (66.2\% MMLU). Ablations confirm that both the diffusion architecture and thinking traces contribute to these gains.
☆ MoVE: Mixture of Value Embeddings -- A New Axis for Scaling Parametric Memory in Autoregressive Models
Autoregressive sequence modeling stands as the cornerstone of modern Generative AI, powering results across diverse modalities ranging from text generation to image generation. However, a fundamental limitation of this paradigm is the rigid structural coupling of model capacity to computational cost: expanding a model's parametric memory -- its repository of factual knowledge or visual patterns -- traditionally requires deepening or widening the network, which incurs a proportional rise in active FLOPs. In this work, we introduce $\textbf{MoVE (Mixture of Value Embeddings)}$, a mechanism that breaks this coupling and establishes a new axis for scaling capacity. MoVE decouples memory from compute by introducing a global bank of learnable value embeddings shared across all attention layers. For every step in the sequence, the model employs a differentiable soft gating mechanism to dynamically mix retrieved concepts from this bank into the standard value projection. This architecture allows parametric memory to be scaled independently of network depth by simply increasing the number of embedding slots. We validate MoVE through strictly controlled experiments on two representative applications of autoregressive modeling: Text Generation and Image Generation. In both domains, MoVE yields consistent performance improvements over standard and layer-wise memory baselines, enabling the construction of "memory-dense" models that achieve lower perplexity and higher fidelity than their dense counterparts at comparable compute budgets.
☆ Synthetic Time Series Generation via Complex Networks
Time series data are essential for a wide range of applications, particularly in developing robust machine learning models. However, access to high-quality datasets is often limited due to privacy concerns, acquisition costs, and labeling challenges. Synthetic time series generation has emerged as a promising solution to address these constraints. In this work, we present a framework for generating synthetic time series by leveraging complex networks mappings. Specifically, we investigate whether time series transformed into Quantile Graphs (QG) -- and then reconstructed via inverse mapping -- can produce synthetic data that preserve the statistical and structural properties of the original. We evaluate the fidelity and utility of the generated data using both simulated and real-world datasets, and compare our approach against state-of-the-art Generative Adversarial Network (GAN) methods. Results indicate that our quantile graph-based methodology offers a competitive and interpretable alternative for synthetic time series generation.
☆ Matterhorn: Efficient Analog Sparse Spiking Transformer Architecture with Masked Time-To-First-Spike Encoding
Spiking neural networks (SNNs) have emerged as a promising candidate for energy-efficient LLM inference. However, current energy evaluations for SNNs primarily focus on counting accumulate operations, and fail to account for real-world hardware costs such as data movement, which can consume nearly 80% of the total energy. In this paper, we propose Matterhorn, a spiking transformer that integrates a novel masked time-to-first-spike (M-TTFS) encoding method to reduce spike movement and a memristive synapse unit (MSU) to eliminate weight access overhead. M-TTFS employs a masking strategy that reassigns the zero-energy silent state (a spike train of all 0s) to the most frequent membrane potential rather than the lowest. This aligns the coding scheme with the data distribution, minimizing spike movement energy without information loss. We further propose a `dead zone' strategy that maximizes sparsity by mapping all values within a given range to the silent state. At the hardware level, the MSU utilizes compute-in-memory (CIM) technology to perform analog integration directly within memory, effectively removing weight access costs. On the GLUE benchmark, Matterhorn establishes a new state-of-the-art, surpassing existing SNNs by 1.42% in average accuracy while delivering a 2.31 times improvement in energy efficiency.
☆ When Anomalies Depend on Context: Learning Conditional Compatibility for Anomaly Detection ICML 2026
Anomaly detection is often formulated under the assumption that abnormality is an intrinsic property of an observation, independent of context. This assumption breaks down in many real-world settings, where the same object or action may be normal or anomalous depending on latent contextual factors (e.g., running on a track versus on a highway). We revisit \emph{contextual anomaly detection}, classically defined as context-dependent abnormality, and operationalize it in the visual domain, where anomaly labels depend on subject--context compatibility rather than intrinsic appearance. To enable systematic study of this setting, we introduce CAAD-3K, a benchmark that isolates contextual anomalies by controlling subject identity while varying context. We further propose a conditional compatibility learning framework that leverages vision--language representations to model subject--context relationships under limited supervision. Our method substantially outperforms existing approaches on CAAD-3K and achieves state-of-the-art performance on MVTec-AD and VisA, demonstrating that modeling context dependence complements traditional structural anomaly detection. Our code and dataset will be publicly released.
comment: Preprint. Submitted to ICML 2026. 8 pages main text, plus appendix
☆ OptiMAG: Structure-Semantic Alignment via Unbalanced Optimal Transport
Multimodal Attributed Graphs (MAGs) have been widely adopted for modeling complex systems by integrating multi-modal information, such as text and images, on nodes. However, we identify a discrepancy between the implicit semantic structure induced by different modality embeddings and the explicit graph structure. For instance, neighbors in the explicit graph structure may be close in one modality but distant in another. Since existing methods typically perform message passing over the fixed explicit graph structure, they inadvertently aggregate dissimilar features, introducing modality-specific noise and impeding effective node representation learning. To address this, we propose OptiMAG, an Unbalanced Optimal Transport-based regularization framework. OptiMAG employs the Fused Gromov-Wasserstein distance to explicitly guide cross-modal structural consistency within local neighborhoods, effectively mitigating structural-semantic conflicts. Moreover, a KL divergence penalty enables adaptive handling of cross-modal inconsistencies. This framework can be seamlessly integrated into existing multimodal graph models, acting as an effective drop-in regularizer. Experiments demonstrate that OptiMAG consistently outperforms baselines across multiple tasks, ranging from graph-centric tasks (e.g., node classification, link prediction) to multimodal-centric generation tasks (e.g., graph2text, graph2image). The source code will be available upon acceptance.
☆ Hierarchical Shift Mixing -- Beyond Dense Attention in Transformers
Since the introduction of the Transformer architecture for large language models, the softmax-based attention layer has faced increasing scrutinity due to its quadratic-time computational complexity. Attempts have been made to replace it with less complex methods, at the cost of reduced performance in most cases. We introduce Hierarchical Shift Mixing (HSM), a general framework for token mixing that distributes pairwise token interactions across Transformer layers rather than computing them densely within each layer. HSM enables linear-time complexity while remaining agnostic to the specific mixing function. We show that even simple HSM variants achieve performance close to softmax attention, and that hybrid architectures combining HSM with softmax attention can outperform a GPT-style Transformer baseline while reducing computational cost during both training and inference.
comment: 11 pages, 10 pdf figures
☆ Unconditional flow-based time series generation with equivariance-regularised latent spaces ICASSP 2026
Flow-based models have proven successful for time-series generation, particularly when defined in lower-dimensional latent spaces that enable efficient sampling. However, how to design latent representations with desirable equivariance properties for time-series generative modelling remains underexplored. In this work, we propose a latent flow-matching framework in which equivariance is explicitly encouraged through a simple regularisation of a pre-trained autoencoder. Specifically, we introduce an equivariance loss that enforces consistency between transformed signals and their reconstructions, and use it to fine-tune latent spaces with respect to basic time-series transformations such as translation and amplitude scaling. We show that these equivariance-regularised latent spaces improve generation quality while preserving the computational advantages of latent flow models. Experiments on multiple real-world datasets demonstrate that our approach consistently outperforms existing diffusion-based baselines in standard time-series generation metrics, while achieving orders-of-magnitude faster sampling. These results highlight the practical benefits of incorporating geometric inductive biases into latent generative models for time series.
comment: Accepted at ICASSP 2026
☆ Decomposing and Composing: Towards Efficient Vision-Language Continual Learning via Rank-1 Expert Pool in a Single LoRA
Continual learning (CL) in vision-language models (VLMs) faces significant challenges in improving task adaptation and avoiding catastrophic forgetting. Existing methods usually have heavy inference burden or rely on external knowledge, while Low-Rank Adaptation (LoRA) has shown potential in reducing these issues by enabling parameter-efficient tuning. However, considering directly using LoRA to alleviate the catastrophic forgetting problem is non-trivial, we introduce a novel framework that restructures a single LoRA module as a decomposable Rank-1 Expert Pool. Our method learns to dynamically compose a sparse, task-specific update by selecting from this expert pool, guided by the semantics of the [CLS] token. In addition, we propose an Activation-Guided Orthogonal (AGO) loss that orthogonalizes critical parts of LoRA weights across tasks. This sparse composition and orthogonalization enable fewer parameter updates, resulting in domain-aware learning while minimizing inter-task interference and maintaining downstream task performance. Extensive experiments across multiple settings demonstrate state-of-the-art results in all metrics, surpassing zero-shot upper bounds in generalization. Notably, it reduces trainable parameters by 96.7% compared to the baseline method, eliminating reliance on external datasets or task-ID discriminators. The merged LoRAs retain less weights and incur no inference latency, making our method computationally lightweight.
☆ Offline Reinforcement Learning of High-Quality Behaviors Under Robust Style Alignment
We study offline reinforcement learning of style-conditioned policies using explicit style supervision via subtrajectory labeling functions. In this setting, aligning style with high task performance is particularly challenging due to distribution shift and inherent conflicts between style and reward. Existing methods, despite introducing numerous definitions of style, often fail to reconcile these objectives effectively. To address these challenges, we propose a unified definition of behavior style and instantiate it into a practical framework. Building on this, we introduce Style-Conditioned Implicit Q-Learning (SCIQL), which leverages offline goal-conditioned RL techniques, such as hindsight relabeling and value learning, and combine it with a new Gated Advantage Weighted Regression mechanism to efficiently optimize task performance while preserving style alignment. Experiments demonstrate that SCIQL achieves superior performance on both objectives compared to prior offline methods. Code, datasets and visuals are available in: https://sciql-iclr-2026.github.io/.
☆ User-Adaptive Meta-Learning for Cold-Start Medication Recommendation with Uncertainty Filtering IEEE
Large-scale Electronic Health Record (EHR) databases have become indispensable in supporting clinical decision-making through data-driven treatment recommendations. However, existing medication recommender methods often struggle with a user (i.e., patient) cold-start problem, where recommendations for new patients are usually unreliable due to the lack of sufficient prescription history for patient profiling. While prior studies have utilized medical knowledge graphs to connect medication concepts through pharmacological or chemical relationships, these methods primarily focus on mitigating the item cold-start issue and fall short in providing personalized recommendations that adapt to individual patient characteristics. Meta-learning has shown promise in handling new users with sparse interactions in recommender systems. However, its application to EHRs remains underexplored due to the unique sequential structure of EHR data. To tackle these challenges, we propose MetaDrug, a multi-level, uncertainty-aware meta-learning framework designed to address the patient cold-start problem in medication recommendation. MetaDrug proposes a novel two-level meta-adaptation mechanism, including self-adaptation, which adapts the model to new patients using their own medical events as support sets to capture temporal dependencies; and peer-adaptation, which adapts the model using similar visits from peer patients to enrich new patient representations. Meanwhile, to further improve meta-adaptation outcomes, we introduce an uncertainty quantification module that ranks the support visits and filters out the unrelated information for adaptation consistency. We evaluate our approach on the MIMIC-III and Acute Kidney Injury (AKI) datasets. Experimental results on both datasets demonstrate that MetaDrug consistently outperforms state-of-the-art medication recommendation methods on cold-start patients.
comment: IEEE International Conference on Data Engineering (ICDE) 2026 accepted paper
☆ Cascaded Flow Matching for Heterogeneous Tabular Data with Mixed-Type Features
Advances in generative modeling have recently been adapted to tabular data containing discrete and continuous features. However, generating mixed-type features that combine discrete states with an otherwise continuous distribution in a single feature remains challenging. We advance the state-of-the-art in diffusion models for tabular data with a cascaded approach. We first generate a low-resolution version of a tabular data row, that is, the collection of the purely categorical features and a coarse categorical representation of numerical features. Next, this information is leveraged in the high-resolution flow matching model via a novel guided conditional probability path and data-dependent coupling. The low-resolution representation of numerical features explicitly accounts for discrete outcomes, such as missing or inflated values, and therewith enables a more faithful generation of mixed-type features. We formally prove that this cascade tightens the transport cost bound. The results indicate that our model generates significantly more realistic samples and captures distributional details more accurately, for example, the detection score increases by 40%.
☆ Quartet II: Accurate LLM Pre-Training in NVFP4 by Improved Unbiased Gradient Estimation
The NVFP4 lower-precision format, supported in hardware by NVIDIA Blackwell GPUs, promises to allow, for the first time, end-to-end fully-quantized pre-training of massive models such as LLMs. Yet, existing quantized training methods still sacrifice some of the representation capacity of this format in favor of more accurate unbiased quantized gradient estimation by stochastic rounding (SR), losing noticeable accuracy relative to standard FP16 and FP8 training. In this paper, improve the state of the art for quantized training in NVFP4 via a novel unbiased quantization routine for micro-scaled formats, called MS-EDEN, that has more than 2x lower quantization error than SR. We integrate it into a novel fully-NVFP4 quantization scheme for linear layers, called Quartet II. We show analytically that Quartet II achieves consistently better gradient estimation across all major matrix multiplications, both on the forward and on the backward passes. In addition, our proposal synergizes well with recent training improvements aimed specifically at NVFP4. We further validate Quartet II on end-to-end LLM training with up to 1.9B parameters on 38B tokens. We provide kernels for execution on NVIDIA Blackwell GPUs with up to 4.2x speedup over BF16. Our code is available at https://github.com/IST-DASLab/Quartet-II .
☆ SOMBRERO: Measuring and Steering Boundary Placement in End-to-End Hierarchical Sequence Models
Hierarchical sequence models replace fixed tokenization with learned segmentations that compress long byte sequences for efficient autoregressive modeling. While recent end-to-end methods can learn meaningful boundaries from the language-modeling objective alone, it remains difficult to quantitatively assess and systematically steer where compute is spent. We introduce a router-agnostic metric of boundary quality, boundary enrichment B, which measures how strongly chunk starts concentrate on positions with high next-byte surprisal. Guided by this metric, we propose Sombrero, which steers boundary placement toward predictive difficulty via a confidence-alignment boundary loss and stabilizes boundary learning by applying confidence-weighted smoothing at the input level rather than on realized chunks. On 1B scale, across UTF-8 corpora covering English and German text as well as code and mathematical content, Sombrero improves the accuracy-efficiency trade-off and yields boundaries that more consistently align compute with hard-to-predict positions.
☆ Clipping-Free Policy Optimization for Large Language Models
Reinforcement learning has become central to post-training large language models, yet dominant algorithms rely on clipping mechanisms that introduce optimization issues at scale, including zero-gradient regions, reward hacking, and training instability. We propose Clipping-Free Policy Optimization (CFPO), which replaces heuristic clipping with a convex quadratic penalty derived from Total Variation divergence constraints, yielding an everywhere-differentiable objective that enforces stable policy updates without hard boundaries. We evaluate CFPO across both reasoning and alignment settings. In reasoning, CFPO matches clipping-based methods on downstream benchmarks while extending the stable training regime. In alignment, CFPO mitigates verbosity exploitation and reduces capability degradation, while achieving competitive instruction-following performance. CFPO requires only a one-line code change and no additional hyperparameters. Our results suggest that CFPO is a promising drop-in alternative to clipping-based methods for LLM post-training.
comment: 23 pages, 10 tables, 8 figures
☆ Trackly: A Unified SaaS Platform for User Behavior Analytics and Real Time Rule Based Anomaly Detection
Understanding user behavior is essential for improving digital experiences, optimizing business conversions, and mitigating threats like account takeovers, fraud, and bot attacks. Most platforms separate product analytics and security, creating fragmented visibility and delayed threat detection. Trackly, a scalable SaaS platform, unifies comprehensive user behavior analytics with real time, rule based anomaly detection. It tracks sessions, IP based geo location, device browser fingerprints, and granular events such as page views, add to cart, and checkouts. Suspicious activities logins from new devices or locations, impossible travel (Haversine formula), rapid bot like actions, VPN proxy usage, or multiple accounts per IP are flagged via configurable rules with weighted risk scoring, enabling transparent, explainable decisions. A real time dashboard provides global session maps, DAU MAU, bounce rates, and session durations. Integration is simplified with a lightweight JavaScript SDK and secure REST APIs. Implemented on a multi tenant microservices stack (ASP.NET Core, MongoDB, RabbitMQ, Next.js), Trackly achieved 98.1% accuracy, 97.7% precision, and 2.25% false positives on synthetic datasets, proving its efficiency for SMEs and ecommerce.
☆ Float8@2bits: Entropy Coding Enables Data-Free Model Compression
Post-training compression is currently divided into two contrasting regimes. On the one hand, fast, data-free, and model-agnostic methods (e.g., NF4 or HQQ) offer maximum accessibility but suffer from functional collapse at extreme bit-rates below 4 bits. On the other hand, techniques leveraging calibration data or extensive recovery training achieve superior fidelity but impose high computational constraints and face uncertain robustness under data distribution shifts. We introduce EntQuant, the first framework to unite the advantages of these distinct paradigms. By matching the performance of data-dependent methods with the speed and universality of data-free techniques, EntQuant enables practical utility in the extreme compression regime. Our method decouples numerical precision from storage cost via entropy coding, compressing a 70B parameter model in less than 30 minutes. We demonstrate that EntQuant does not only achieve state-of-the-art results on standard evaluation sets and models, but also retains functional performance on more complex benchmarks with instruction-tuned models, all at modest inference overhead.
☆ Approximating $f$-Divergences with Rank Statistics ICML'26
We introduce a rank-statistic approximation of $f$-divergences that avoids explicit density-ratio estimation by working directly with the distribution of ranks. For a resolution parameter $K$, we map the mismatch between two univariate distributions $μ$ and $ν$ to a rank histogram on $\{ 0, \ldots, K\}$ and measure its deviation from uniformity via a discrete $f$-divergence, yielding a rank-statistic divergence estimator. We prove that the resulting estimator of the divergence is monotone in $K$, is always a lower bound of the true $f$-divergence, and we establish quantitative convergence rates for $K\to\infty$ under mild regularity of the quantile-domain density ratio. To handle high-dimensional data, we define the sliced rank-statistic $f$-divergence by averaging the univariate construction over random projections, and we provide convergence results for the sliced limit as well. We also derive finite-sample deviation bounds along with asymptotic normality results for the estimator. Finally, we empirically validate the approach by benchmarking against neural baselines and illustrating its use as a learning objective in generative modelling experiments.
comment: 42 pages, 10 figures, 4 tables, submitted to ICML'26. Comments welcome!
☆ Compact Hypercube Embeddings for Fast Text-based Wildlife Observation Retrieval
Large-scale biodiversity monitoring platforms increasingly rely on multimodal wildlife observations. While recent foundation models enable rich semantic representations across vision, audio, and language, retrieving relevant observations from massive archives remains challenging due to the computational cost of high-dimensional similarity search. In this work, we introduce compact hypercube embeddings for fast text-based wildlife observation retrieval, a framework that enables efficient text-based search over large-scale wildlife image and audio databases using compact binary representations. Building on the cross-view code alignment hashing framework, we extend lightweight hashing beyond a single-modality setup to align natural language descriptions with visual or acoustic observations in a shared Hamming space. Our approach leverages pretrained wildlife foundation models, including BioCLIP and BioLingual, and adapts them efficiently for hashing using parameter-efficient fine-tuning. We evaluate our method on large-scale benchmarks, including iNaturalist2024 for text-to-image retrieval and iNatSounds2024 for text-to-audio retrieval, as well as multiple soundscape datasets to assess robustness under domain shift. Results show that retrieval using discrete hypercube embeddings achieves competitive, and in several cases superior, performance compared to continuous embeddings, while drastically reducing memory and search cost. Moreover, we observe that the hashing objective consistently improves the underlying encoder representations, leading to stronger retrieval and zero-shot generalization. These results demonstrate that binary, language-based retrieval enables scalable and efficient search over large wildlife archives for biodiversity monitoring systems.
☆ GRANITE: A Generalized Regional Framework for Identifying Agreement in Feature-Based Explanations
Feature-based explanation methods aim to quantify how features influence the model's behavior, either locally or globally, but different methods often disagree, producing conflicting explanations. This disagreement arises primarily from two sources: how feature interactions are handled and how feature dependencies are incorporated. We propose GRANITE, a generalized regional explanation framework that partitions the feature space into regions where interaction and distribution influences are minimized. This approach aligns different explanation methods, yielding more consistent and interpretable explanations. GRANITE unifies existing regional approaches, extends them to feature groups, and introduces a recursive partitioning algorithm to estimate such regions. We demonstrate its effectiveness on real-world datasets, providing a practical tool for consistent and interpretable feature explanations.
☆ Sparse Attention as Compact Kernel Regression
Recent work has revealed a link between self-attention mechanisms in transformers and test-time kernel regression via the Nadaraya-Watson estimator, with standard softmax attention corresponding to a Gaussian kernel. However, a kernel-theoretic understanding of sparse attention mechanisms is currently missing. In this paper, we establish a formal correspondence between sparse attention and compact (bounded support) kernels. We show that normalized ReLU and sparsemax attention arise from Epanechnikov kernel regression under fixed and adaptive normalizations, respectively. More generally, we demonstrate that widely used kernels in nonparametric density estimation -- including Epanechnikov, biweight, and triweight -- correspond to $α$-entmax attention with $α= 1 + \frac{1}{n}$ for $n \in \mathbb{N}$, while the softmax/Gaussian relationship emerges in the limit $n \to \infty$. This unified perspective explains how sparsity naturally emerges from kernel design and provides principled alternatives to heuristic top-$k$ attention and other associative memory mechanisms. Experiments with a kernel-regression-based variant of transformers -- Memory Mosaics -- show that kernel-based sparse attention achieves competitive performance on language modeling, in-context learning, and length generalization tasks, offering a principled framework for designing attention mechanisms.
comment: 16 pages, 5 figures
☆ Bayesian Matrix Completion Under Geometric Constraints ICASSP 2026
The completion of a Euclidean distance matrix (EDM) from sparse and noisy observations is a fundamental challenge in signal processing, with applications in sensor network localization, acoustic room reconstruction, molecular conformation, and manifold learning. Traditional approaches, such as rank-constrained optimization and semidefinite programming, enforce geometric constraints but often struggle under sparse or noisy conditions. This paper introduces a hierarchical Bayesian framework that places structured priors directly on the latent point set generating the EDM, naturally embedding geometric constraints. By incorporating a hierarchical prior on latent point set, the model enables automatic regularization and robust noise handling. Posterior inference is performed using a Metropolis-Hastings within Gibbs sampler to handle coupled latent point posterior. Experiments on synthetic data demonstrate improved reconstruction accuracy compared to deterministic baselines in sparse regimes.
comment: 4 pages, 3 figures, Accepted to ICASSP 2026
☆ AscendCraft: Automatic Ascend NPU Kernel Generation via DSL-Guided Transcompilation
The performance of deep learning models critically depends on efficient kernel implementations, yet developing high-performance kernels for specialized accelerators remains time-consuming and expertise-intensive. While recent work demonstrates that large language models (LLMs) can generate correct and performant GPU kernels, kernel generation for neural processing units (NPUs) remains largely underexplored due to domain-specific programming models, limited public examples, and sparse documentation. Consequently, directly generating AscendC kernels with LLMs yields extremely low correctness, highlighting a substantial gap between GPU and NPU kernel generation. We present AscendCraft, a DSL-guided approach for automatic AscendC kernel generation. AscendCraft introduces a lightweight DSL that abstracts non-essential complexity while explicitly modeling Ascend-specific execution semantics. Kernels are first generated in the DSL using category-specific expert examples and then transcompiled into AscendC through structured, constraint-driven LLM lowering passes. Evaluated on MultiKernelBench across seven operator categories, AscendCraft achieves 98.1% compilation success and 90.4% functional correctness. Moreover, 46.2% of generated kernels match or exceed PyTorch eager execution performance, demonstrating that DSL-guided transcompilation can enable LLMs to generate both correct and competitive NPU kernels. Beyond benchmarks, AscendCraft further demonstrates its generality by successfully generating two correct kernels for newly proposed mHC architecture, achieving performance that substantially surpasses PyTorch eager execution.
☆ Unveiling Scaling Behaviors in Molecular Language Models: Effects of Model Size, Data, and Representation
Molecular generative models, often employing GPT-style language modeling on molecular string representations, have shown promising capabilities when scaled to large datasets and model sizes. However, it remains unclear and subject to debate whether these models adhere to predictable scaling laws under fixed computational budgets, which is a crucial understanding for optimally allocating resources between model size, data volume, and molecular representation. In this study, we systematically investigate the scaling behavior of molecular language models across both pretraining and downstream tasks. We train 300 models and conduct over 10,000 experiments, rigorously controlling compute budgets while independently varying model size, number of training tokens, and molecular representation. Our results demonstrate clear scaling laws in molecular models for both pretraining and downstream transfer, reveal the substantial impact of molecular representation on performance, and explain previously observed inconsistencies in scaling behavior for molecular generation. Additionally, we publicly release the largest library of molecular language models to date to facilitate future research and development. Code and models are available at https://github.com/SZU-ADDG/MLM-Scaling.
comment: 34 pages, 51 figures
☆ Understanding Generalization from Embedding Dimension and Distributional Convergence
Deep neural networks often generalize well despite heavy over-parameterization, challenging classical parameter-based analyses. We study generalization from a representation-centric perspective and analyze how the geometry of learned embeddings controls predictive performance for a fixed trained model. We show that population risk can be bounded by two factors: (i) the intrinsic dimension of the embedding distribution, which determines the convergence rate of empirical embedding distribution to the population distribution in Wasserstein distance, and (ii) the sensitivity of the downstream mapping from embeddings to predictions, characterized by Lipschitz constants. Together, these yield an embedding-dependent error bound that does not rely on parameter counts or hypothesis class complexity. At the final embedding layer, architectural sensitivity vanishes and the bound is dominated by embedding dimension, explaining its strong empirical correlation with generalization performance. Experiments across architectures and datasets validate the theory and demonstrate the utility of embedding-based diagnostics.
☆ OSNIP: Breaking the Privacy-Utility-Efficiency Trilemma in LLM Inference via Obfuscated Semantic Null Space
We propose Obfuscated Semantic Null space Injection for Privacy (OSNIP), a lightweight client-side encryption framework for privacy-preserving LLM inference. Generalizing the geometric intuition of linear kernels to the high-dimensional latent space of LLMs, we formally define the ``Obfuscated Semantic Null Space'', a high-dimensional regime that preserves semantic fidelity while enforcing near-orthogonality to the original embedding. By injecting perturbations that project the original embedding into this space, OSNIP ensures privacy without any post-processing. Furthermore, OSNIP employs a key-dependent stochastic mapping that synthesizes individualized perturbation trajectories unique to each user. Evaluations on 12 generative and classification benchmarks show that OSNIP achieves state-of-the-art performance, sharply reducing attack success rates while maintaining strong model utility under strict security constraints.
☆ Discovering Scaling Exponents with Physics-Informed Müntz-Szász Networks
Physical systems near singularities, interfaces, and critical points exhibit power-law scaling, yet standard neural networks leave the governing exponents implicit. We introduce physics-informed M"untz-Sz'asz Networks (MSN-PINN), a power-law basis network that treats scaling exponents as trainable parameters. The model outputs both the solution and its scaling structure. We prove identifiability, or unique recovery, and show that, under these conditions, the squared error between learned and true exponents scales as $O(|μ- α|^2)$. Across experiments, MSN-PINN achieves single-exponent recovery with 1--5% error under noise and sparse sampling. It recovers corner singularity exponents for the two-dimensional Laplace equation with 0.009% error, matches the classical result of Kondrat'ev (1967), and recovers forcing-induced exponents in singular Poisson problems with 0.03% and 0.05% errors. On a 40-configuration wedge benchmark, it reaches a 100% success rate with 0.022% mean error. Constraint-aware training encodes physical requirements such as boundary condition compatibility and improves accuracy by three orders of magnitude over naive training. By combining the expressiveness of neural networks with the interpretability of asymptotic analysis, MSN-PINN produces learned parameters with direct physical meaning.
comment: 26 pages, 6 figures
☆ Is Softmax Loss All You Need? A Principled Analysis of Softmax-family Loss
The Softmax loss is one of the most widely employed surrogate objectives for classification and ranking tasks. To elucidate its theoretical properties, the Fenchel-Young framework situates it as a canonical instance within a broad family of surrogates. Concurrently, another line of research has addressed scalability when the number of classes is exceedingly large, in which numerous approximations have been proposed to retain the benefits of the exact objective while improving efficiency. Building on these two perspectives, we present a principled investigation of the Softmax-family losses. We examine whether different surrogates achieve consistency with classification and ranking metrics, and analyze their gradient dynamics to reveal distinct convergence behaviors. We also introduce a systematic bias-variance decomposition for approximate methods that provides convergence guarantees, and further derive a per-epoch complexity analysis, showing explicit trade-offs between effectiveness and efficiency. Extensive experiments on a representative task demonstrate a strong alignment between consistency, convergence, and empirical performance. Together, these results establish a principled foundation and offer practical guidance for loss selections in large-class machine learning applications.
comment: 34 pages, 3 figures
☆ Beauty and the Beast: Imperceptible Perturbations Against Diffusion-Based Face Swapping via Directional Attribute Editing
Diffusion-based face swapping achieves state-of-the-art performance, yet it also exacerbates the potential harm of malicious face swapping to violate portraiture right or undermine personal reputation. This has spurred the development of proactive defense methods. However, existing approaches face a core trade-off: large perturbations distort facial structures, while small ones weaken protection effectiveness. To address these issues, we propose FaceDefense, an enhanced proactive defense framework against diffusion-based face swapping. Our method introduces a new diffusion loss to strengthen the defensive efficacy of adversarial examples, and employs a directional facial attribute editing to restore perturbation-induced distortions, thereby enhancing visual imperceptibility. A two-phase alternating optimization strategy is designed to generate final perturbed face images. Extensive experiments show that FaceDefense significantly outperforms existing methods in both imperceptibility and defense effectiveness, achieving a superior trade-off.
☆ Decomposing Epistemic Uncertainty for Causal Decision Making
Causal inference from observational data provides strong evidence for the best action in decision-making without performing expensive randomized trials. The effect of an action is usually not identifiable under unobserved confounding, even with an infinite amount of data. Recent work uses neural networks to obtain practical bounds to such causal effects, which is often an intractable problem. However, these approaches may overfit to the dataset and be overconfident in their causal effect estimates. Moreover, there is currently no systematic approach to disentangle how much of the width of causal effect bounds is due to fundamental non-identifiability versus how much is due to finite-sample limitations. We propose a novel framework to address this problem by considering a confidence set around the empirical observational distribution and obtaining the intersection of causal effect bounds for all distributions in this confidence set. This allows us to distinguish the part of the interval that can be reduced by collecting more samples, which we call sample uncertainty, from the part that can only be reduced by observing more variables, such as latent confounders or instrumental variables, but not with more data, which we call non-ID uncertainty. The upper and lower bounds to this intersection are obtained by solving min-max and max-min problems with neural causal models by searching over all distributions that the dataset might have been sampled from, and all SCMs that entail the corresponding distribution. We demonstrate via extensive experiments on synthetic and real-world datasets that our algorithm can determine when collecting more samples will not help determine the best action. This can guide practitioners to collect more variables or lean towards a randomized study for best action identification.
☆ Local Intrinsic Dimension of Representations Predicts Alignment and Generalization in AI Models and Human Brain
Recent work has found that neural networks with stronger generalization tend to exhibit higher representational alignment with one another across architectures and training paradigms. In this work, we show that models with stronger generalization also align more strongly with human neural activity. Moreover, generalization performance, model--model alignment, and model--brain alignment are all significantly correlated with each other. We further show that these relationships can be explained by a single geometric property of learned representations: the local intrinsic dimension of embeddings. Lower local dimension is consistently associated with stronger model--model alignment, stronger model--brain alignment, and better generalization, whereas global dimension measures fail to capture these effects. Finally, we find that increasing model capacity and training data scale systematically reduces local intrinsic dimension, providing a geometric account of the benefits of scaling. Together, our results identify local intrinsic dimension as a unifying descriptor of representational convergence in artificial and biological systems.
☆ A Step Back: Prefix Importance Ratio Stabilizes Policy Optimization
Reinforcement learning (RL) post-training has increasingly demonstrated strong ability to elicit reasoning behaviors in large language models (LLMs). For training efficiency, rollouts are typically generated in an off-policy manner using an older sampling policy and then used to update the current target policy. To correct the resulting discrepancy between the sampling and target policies, most existing RL objectives rely on a token-level importance sampling ratio, primarily due to its computational simplicity and numerical stability. However, we observe that token-level correction often leads to unstable training dynamics when the degree of off-policyness is large. In this paper, we revisit LLM policy optimization under off-policy conditions and show that the theoretically rigorous correction term is the prefix importance ratio, and that relaxing it to a token-level approximation can induce instability in RL post-training. To stabilize LLM optimization under large off-policy drift, we propose a simple yet effective objective, Minimum Prefix Ratio (MinPRO). MinPRO replaces the unstable cumulative prefix ratio with a non-cumulative surrogate based on the minimum token-level ratio observed in the preceding prefix. Extensive experiments on both dense and mixture-of-experts LLMs, across multiple mathematical reasoning benchmarks, demonstrate that MinPRO substantially improves training stability and peak performance in off-policy regimes.
☆ Breaking the Blocks: Continuous Low-Rank Decomposed Scaling for Unified LLM Quantization and Adaptation
Current quantization methods for LLMs predominantly rely on block-wise structures to maintain efficiency, often at the cost of representational flexibility. In this work, we demonstrate that element-wise quantization can be made as efficient as block-wise scaling while providing strictly superior expressive power by modeling the scaling manifold as continuous low-rank matrices ($S = BA$). We propose Low-Rank Decomposed Scaling (LoRDS), a unified framework that rethinks quantization granularity through this low-rank decomposition. By "breaking the blocks" of spatial constraints, LoRDS establishes a seamless efficiency lifecycle: it provides high-fidelity PTQ initialization refined via iterative optimization, enables joint QAT of weights and scaling factors, and facilitates high-rank multiplicative PEFT adaptation. Unlike additive PEFT approaches such as QLoRA, LoRDS enables high-rank weight updates within a low-rank budget while incurring no additional inference overhead. Supported by highly optimized Triton kernels, LoRDS consistently outperforms state-of-the-art baselines across various model families in both quantization and downstream fine-tuning tasks. Notably, on Llama3-8B, our method achieves up to a 27.0% accuracy improvement at 3 bits over NormalFloat quantization and delivers a 1.5x inference speedup on NVIDIA RTX 4090 while enhancing PEFT performance by 9.6% on downstream tasks over 4bit QLoRA, offering a robust and integrated solution for unified compression and adaptation of LLMs.
☆ Vision-Language Models Unlock Task-Centric Latent Actions
Latent Action Models (LAMs) have rapidly gained traction as an important component in the pre-training pipelines of leading Vision-Language-Action models. However, they fail when observations contain action-correlated distractors, often encoding noise instead of meaningful latent actions. Humans, on the other hand, can effortlessly distinguish task-relevant motions from irrelevant details in any video given only a brief task description. In this work, we propose to utilize the common-sense reasoning abilities of Vision-Language Models (VLMs) to provide promptable representations, effectively separating controllable changes from the noise in unsupervised way. We use these representations as targets during LAM training and benchmark a wide variety of popular VLMs, revealing substantial variation in the quality of promptable representations as well as their robustness to different prompts and hyperparameters. Interestingly, we find that more recent VLMs may perform worse than older ones. Finally, we show that simply asking VLMs to ignore distractors can substantially improve latent action quality, yielding up to a six-fold increase in downstream success rates on Distracting MetaWorld.
comment: Preprint
☆ SQUAD: Scalable Quorum Adaptive Decisions via ensemble of early exit neural networks
Early-exit neural networks have become popular for reducing inference latency by allowing intermediate predictions when sufficient confidence is achieved. However, standard approaches typically rely on single-model confidence thresholds, which are frequently unreliable due to inherent calibration issues. To address this, we introduce SQUAD (Scalable Quorum Adaptive Decisions), the first inference scheme that integrates early-exit mechanisms with distributed ensemble learning, improving uncertainty estimation while reducing the inference time. Unlike traditional methods that depend on individual confidence scores, SQUAD employs a quorum-based stopping criterion on early-exit learners by collecting intermediate predictions incrementally in order of computational complexity until a consensus is reached and halting the computation at that exit if the consensus is statistically significant. To maximize the efficacy of this voting mechanism, we also introduce QUEST (Quorum Search Technique), a Neural Architecture Search method to select early-exit learners with optimized hierarchical diversity, ensuring learners are complementary at every intermediate layer. This consensus-driven approach yields statistically robust early exits, improving the test accuracy up to 5.95% compared to state-of-the-art dynamic solutions with a comparable computational cost and reducing the inference latency up to 70.60% compared to static ensembles while maintaining a good accuracy.
☆ A Unified Study of LoRA Variants: Taxonomy, Review, Codebase, and Empirical Evaluation IEEE
Low-Rank Adaptation (LoRA) is a fundamental parameter-efficient fine-tuning method that balances efficiency and performance in large-scale neural networks. However, the proliferation of LoRA variants has led to fragmentation in methodology, theory, code, and evaluation. To this end, this work presents the first unified study of LoRA variants, offering a systematic taxonomy, unified theoretical review, structured codebase, and standardized empirical assessment. First, we categorize LoRA variants along four principal axes: rank, optimization dynamics, initialization, and integration with Mixture-of-Experts. Then, we review their relationships and evolution within a common theoretical framework focused on low-rank update dynamics. Further, we introduce LoRAFactory, a modular codebase that implements variants through a unified interface, supporting plug-and-play experimentation and fine-grained analysis. Last, using this codebase, we conduct a large-scale evaluation across natural language generation, natural language understanding, and image classification tasks, systematically exploring key hyperparameters. Our results uncover several findings, notably: LoRA and its variants exhibit pronounced sensitivity to the choices of learning rate compared to other hyperparameters; moreover, with proper hyperparameter configurations, LoRA consistently matches or surpasses the performance of most of its variants.
comment: Submitted to IEEE Transactions on Pattern Analysis and Machine Intelligence, Under Review
☆ Deep Learning-Based Early-Stage IR-Drop Estimation via CNN Surrogate Modeling
IR-drop is a critical power integrity challenge in modern VLSI designs that can cause timing degradation, reliability issues, and functional failures if not detected early in the design flow. Conventional IR-drop analysis relies on physics-based signoff tools, which provide high accuracy but incur significant computational cost and require near-final layout information, making them unsuitable for rapid early-stage design exploration. In this work, we propose a deep learning-based surrogate modeling approach for early-stage IR-drop estimation using a CNN. The task is formulated as a dense pixel-wise regression problem, where spatial physical layout features are mapped directly to IR-drop heatmaps. A U-Net-based encoder-decoder architecture with skip connections is employed to effectively capture both local and global spatial dependencies within the layout. The model is trained on a physics-inspired synthetic dataset generated by us, which incorporates key physical factors including power grid structure, cell density distribution, and switching activity. Model performance is evaluated using standard regression metrics such as Mean Squared Error (MSE) and Peak Signal-to-Noise Ratio (PSNR). Experimental results demonstrate that the proposed approach can accurately predict IR-drop distributions with millisecond-level inference time, enabling fast pre-signoff screening and iterative design optimization. The proposed framework is intended as a complementary early-stage analysis tool, providing designers with rapid IR-drop insight prior to expensive signoff analysis. The implementation, dataset generation scripts, and the interactive inference application are publicly available at: https://github.com/riteshbhadana/IR-Drop-Predictor. The live application can be accessed at: https://ir-drop-predictor.streamlit.app/.
comment: 13 pages, 5 figures, 2 tables. Code and live demo available at https://github.com/riteshbhadana/IR-Drop-Predictor
☆ Metric Hub: A metric library and practical selection workflow for use-case-driven data quality assessment in medical AI
Machine learning (ML) in medicine has transitioned from research to concrete applications aimed at supporting several medical purposes like therapy selection, monitoring and treatment. Acceptance and effective adoption by clinicians and patients, as well as regulatory approval, require evidence of trustworthiness. A major factor for the development of trustworthy AI is the quantification of data quality for AI model training and testing. We have recently proposed the METRIC-framework for systematically evaluating the suitability (fit-for-purpose) of data for medical ML for a given task. Here, we operationalize this theoretical framework by introducing a collection of data quality metrics - the metric library - for practically measuring data quality dimensions. For each metric, we provide a metric card with the most important information, including definition, applicability, examples, pitfalls and recommendations, to support the understanding and implementation of these metrics. Furthermore, we discuss strategies and provide decision trees for choosing an appropriate set of data quality metrics from the metric library given specific use cases. We demonstrate the impact of our approach exemplarily on the PTB-XL ECG-dataset. This is a first step to enable fit-for-purpose evaluation of training and test data in practice as the base for establishing trustworthy AI in medicine.
☆ Bi-MCQ: Reformulating Vision-Language Alignment for Negation Understanding ICPR 2026
Recent vision-language models (VLMs) achieve strong zero-shot performance via large-scale image-text pretraining and have been widely adopted in medical image analysis. However, existing VLMs remain notably weak at understanding negated clinical statements, largely due to contrastive alignment objectives that treat negation as a minor linguistic variation rather than a meaning-inverting operator. In multi-label settings, prompt-based InfoNCE fine-tuning further reinforces easy-positive image-prompt alignments, limiting effective learning of disease absence. To overcome these limitations, we reformulate vision-language alignment as a conditional semantic comparison problem, which is instantiated through a bi-directional multiple-choice learning framework(Bi-MCQ). By jointly training Image-to-Text and Text-to-Image MCQ tasks with affirmative, negative, and mixed prompts, our method implements fine-tuning as conditional semantic comparison instead of global similarity maximization. We further introduce direction-specific Cross-Attention fusion modules to address asymmetric cues required by bi-directional reasoning and reduce alignment interference. Experiments on ChestXray14, Open-I, CheXpert, and PadChest show that Bi-MCQ improves negation understanding by up to 0.47 AUC over the zero-shot performance of the state-of-the-art CARZero model, while achieving up to a 0.08 absolute gain on positive-negative combined (PNC) evaluation. Additionally, Bi-MCQ reduces the affirmative-negative AUC gap by an average of 0.12 compared to InfoNCE-based fine-tuning, demonstrating that objective reformulation can substantially enhance negation understanding in medical VLMs.
comment: 15 pages, 4 figures, Submitted to ICPR 2026 (under review)
☆ Do Transformers Have the Ability for Periodicity Generalization?
Large language models (LLMs) based on the Transformer have demonstrated strong performance across diverse tasks. However, current models still exhibit substantial limitations in out-of-distribution (OOD) generalization compared with humans. We investigate this gap through periodicity, one of the basic OOD scenarios. Periodicity captures invariance amid variation. Periodicity generalization represents a model's ability to extract periodic patterns from training data and generalize to OOD scenarios. We introduce a unified interpretation of periodicity from the perspective of abstract algebra and reasoning, including both single and composite periodicity, to explain why Transformers struggle to generalize periodicity. Then we construct Coper about composite periodicity, a controllable generative benchmark with two OOD settings, Hollow and Extrapolation. Experiments reveal that periodicity generalization in Transformers is limited, where models can memorize periodic data during training, but cannot generalize to unseen composite periodicity. We release the source code to support future research.
☆ Stabilizing Consistency Training: A Flow Map Analysis and Self-Distillation
Consistency models have been proposed for fast generative modeling, achieving results competitive with diffusion and flow models. However, these methods exhibit inherent instability and limited reproducibility when training from scratch, motivating subsequent work to explain and stabilize these issues. While these efforts have provided valuable insights, the explanations remain fragmented, and the theoretical relationships remain unclear. In this work, we provide a theoretical examination of consistency models by analyzing them from a flow map-based perspective. This joint analysis clarifies how training stability and convergence behavior can give rise to degenerate solutions. Building on these insights, we revisit self-distillation as a practical remedy for certain forms of suboptimal convergence and reformulate it to avoid excessive gradient norms for stable optimization. We further demonstrate that our strategy extends beyond image generation to diffusion-based policy learning, without reliance on a pretrained diffusion model for initialization, thereby illustrating its broader applicability.
☆ Full-Graph vs. Mini-Batch Training: Comprehensive Analysis from a Batch Size and Fan-Out Size Perspective
Full-graph and mini-batch Graph Neural Network (GNN) training approaches have distinct system design demands, making it crucial to choose the appropriate approach to develop. A core challenge in comparing these two GNN training approaches lies in characterizing their model performance (i.e., convergence and generalization) and computational efficiency. While a batch size has been an effective lens in analyzing such behaviors in deep neural networks (DNNs), GNNs extend this lens by introducing a fan-out size, as full-graph training can be viewed as mini-batch training with the largest possible batch size and fan-out size. However, the impact of the batch and fan-out size for GNNs remains insufficiently explored. To this end, this paper systematically compares full-graph vs. mini-batch training of GNNs through empirical and theoretical analyses from the view points of the batch size and fan-out size. Our key contributions include: 1) We provide a novel generalization analysis using the Wasserstein distance to study the impact of the graph structure, especially the fan-out size. 2) We uncover the non-isotropic effects of the batch size and the fan-out size in GNN convergence and generalization, providing practical guidance for tuning these hyperparameters under resource constraints. Finally, full-graph training does not always yield better model performance or computational efficiency than well-tuned smaller mini-batch settings. The implementation can be found in the github link: https://github.com/LIUMENGFAN-gif/GNN_fullgraph_minibatch_training.
☆ Beyond Fixed Rounds: Data-Free Early Stopping for Practical Federated Learning
Federated Learning (FL) facilitates decentralized collaborative learning without transmitting raw data. However, reliance on fixed global rounds or validation data for hyperparameter tuning hinders practical deployment by incurring high computational costs and privacy risks. To address this, we propose a data-free early stopping framework that determines the optimal stopping point by monitoring the task vector's growth rate using solely server-side parameters. The numerical results on skin lesion/blood cell classification demonstrate that our approach is comparable to validation-based early stopping across various state-of-the-art FL methods. In particular, the proposed framework spends an average of 47/20 (skin lesion/blood cell) rounds to achieve over 12.5%/10.3% higher performance than early stopping based on validation data. To the best of our knowledge, this is the first work to propose an early stopping framework for FL methods without using any validation data.
comment: 10 pages
☆ Layerwise Progressive Freezing Enables STE-Free Training of Deep Binary Neural Networks
We investigate progressive freezing as an alternative to straight-through estimators (STE) for training binary networks from scratch. Under controlled training conditions, we find that while global progressive freezing works for binary-weight networks, it fails for full binary neural networks due to activation-induced gradient blockades. We introduce StoMPP (Stochastic Masked Partial Progressive Binarization), which uses layerwise stochastic masking to progressively replace differentiable clipped weights/activations with hard binary step functions, while only backpropagating through the unfrozen (clipped) subset (i.e., no straight-through estimator). Under a matched minimal training recipe, StoMPP improves accuracy over a BinaryConnect-style STE baseline, with gains that increase with depth (e.g., for ResNet-50 BNN: +18.0 on CIFAR-10, +13.5 on CIFAR-100, and +3.8 on ImageNet; for ResNet-18: +3.1, +4.7, and +1.3). For binary-weight networks, StoMPP achieves 91.2\% accuracy on CIFAR-10 and 69.5\% on CIFAR-100 with ResNet-50. We analyze training dynamics under progressive freezing, revealing non-monotonic convergence and improved depth scaling under binarization constraints.
☆ Spectral Gradient Descent Mitigates Anisotropy-Driven Misalignment: A Case Study in Phase Retrieval
Spectral gradient methods, such as the Muon optimizer, modify gradient updates by preserving directional information while discarding scale, and have shown strong empirical performance in deep learning. We investigate the mechanisms underlying these gains through a dynamical analysis of a nonlinear phase retrieval model with anisotropic Gaussian inputs, equivalent to training a two-layer neural network with the quadratic activation and fixed second-layer weights. Focusing on a spiked covariance setting where the dominant variance direction is orthogonal to the signal, we show that gradient descent (GD) suffers from a variance-induced misalignment: during the early escaping stage, the high-variance but uninformative spike direction is multiplicatively amplified, degrading alignment with the true signal under strong anisotropy. In contrast, spectral gradient descent (SpecGD) removes this spike amplification effect, leading to stable alignment and accelerated noise contraction. Numerical experiments confirm the theory and show that these phenomena persist under broader anisotropic covariances.
comment: 53 pages, 8 figures
☆ GUDA: Counterfactual Group-wise Training Data Attribution for Diffusion Models via Unlearning
Training-data attribution for vision generative models aims to identify which training data influenced a given output. While most methods score individual examples, practitioners often need group-level answers (e.g., artistic styles or object classes). Group-wise attribution is counterfactual: how would a model's behavior on a generated sample change if a group were absent from training? A natural realization of this counterfactual is Leave-One-Group-Out (LOGO) retraining, which retrains the model with each group removed; however, it becomes computationally prohibitive as the number of groups grows. We propose GUDA (Group Unlearning-based Data Attribution) for diffusion models, which approximates each counterfactual model by applying machine unlearning to a shared full-data model instead of training from scratch. GUDA quantifies group influence using differences in a likelihood-based scoring rule (ELBO) between the full model and each unlearned counterfactual. Experiments on CIFAR-10 and artistic style attribution with Stable Diffusion show that GUDA identifies primary contributing groups more reliably than semantic similarity, gradient-based attribution, and instance-level unlearning approaches, while achieving x100 speedup on CIFAR-10 over LOGO retraining.
☆ Generative and Nonparametric Approaches for Conditional Distribution Estimation: Methods, Perspectives, and Comparative Evaluations
The inference of conditional distributions is a fundamental problem in statistics, essential for prediction, uncertainty quantification, and probabilistic modeling. A wide range of methodologies have been developed for this task. This article reviews and compares several representative approaches spanning classical nonparametric methods and modern generative models. We begin with the single-index method of Hall and Yao (2005), which estimates the conditional distribution through a dimension-reducing index and nonparametric smoothing of the resulting one-dimensional cumulative conditional distribution function. We then examine the basis-expansion approaches, including FlexCode (Izbicki and Lee, 2017) and DeepCDE (Dalmasso et al., 2020), which convert conditional density estimation into a set of nonparametric regression problems. In addition, we discuss two recent generative simulation-based methods that leverage modern deep generative architectures: the generative conditional distribution sampler (Zhou et al., 2023) and the conditional denoising diffusion probabilistic model (Fu et al., 2024; Yang et al., 2025). A systematic numerical comparison of these approaches is provided using a unified evaluation framework that ensures fairness and reproducibility. The performance metrics used for the estimated conditional distribution include the mean-squared errors of conditional mean and standard deviation, as well as the Wasserstein distance. We also discuss their flexibility and computational costs, highlighting the distinct advantages and limitations of each approach.
comment: 22 pages, 2 figures, 2 tables
☆ UCPO: Uncertainty-Aware Policy Optimization
The key to building trustworthy Large Language Models (LLMs) lies in endowing them with inherent uncertainty expression capabilities to mitigate the hallucinations that restrict their high-stakes applications. However, existing RL paradigms such as GRPO often suffer from Advantage Bias due to binary decision spaces and static uncertainty rewards, inducing either excessive conservatism or overconfidence. To tackle this challenge, this paper unveils the root causes of reward hacking and overconfidence in current RL paradigms incorporating uncertainty-based rewards, based on which we propose the UnCertainty-Aware Policy Optimization (UCPO) framework. UCPO employs Ternary Advantage Decoupling to separate and independently normalize deterministic and uncertain rollouts, thereby eliminating advantage bias. Furthermore, a Dynamic Uncertainty Reward Adjustment mechanism is introduced to calibrate uncertainty weights in real-time according to model evolution and instance difficulty. Experimental results in mathematical reasoning and general tasks demonstrate that UCPO effectively resolves the reward imbalance, significantly improving the reliability and calibration of the model beyond their knowledge boundaries.
☆ Pushing the Boundaries of Natural Reasoning: Interleaved Bonus from Formal-Logic Verification
Large Language Models (LLMs) show remarkable capabilities, yet their stochastic next-token prediction creates logical inconsistencies and reward hacking that formal symbolic systems avoid. To bridge this gap, we introduce a formal logic verification-guided framework that dynamically interleaves formal symbolic verification with the natural language generation process, providing real-time feedback to detect and rectify errors as they occur. Distinguished from previous neuro-symbolic methods limited by passive post-hoc validation, our approach actively penalizes intermediate fallacies during the reasoning chain. We operationalize this framework via a novel two-stage training pipeline that synergizes formal logic verification-guided supervised fine-tuning and policy optimization. Extensive evaluation on six benchmarks spanning mathematical, logical, and general reasoning demonstrates that our 7B and 14B models outperform state-of-the-art baselines by average margins of 10.4% and 14.2%, respectively. These results validate that formal verification can serve as a scalable mechanism to significantly push the performance boundaries of advanced LLM reasoning.
☆ ScholarPeer: A Context-Aware Multi-Agent Framework for Automated Peer Review
Automated peer review has evolved from simple text classification to structured feedback generation. However, current state-of-the-art systems still struggle with "surface-level" critiques: they excel at summarizing content but often fail to accurately assess novelty and significance or identify deep methodological flaws because they evaluate papers in a vacuum, lacking the external context a human expert possesses. In this paper, we introduce ScholarPeer, a search-enabled multi-agent framework designed to emulate the cognitive processes of a senior researcher. ScholarPeer employs a dual-stream process of context acquisition and active verification. It dynamically constructs a domain narrative using a historian agent, identifies missing comparisons via a baseline scout, and verifies claims through a multi-aspect Q&A engine, grounding the critique in live web-scale literature. We evaluate ScholarPeer on DeepReview-13K and the results demonstrate that ScholarPeer achieves significant win-rates against state-of-the-art approaches in side-by-side evaluations and reduces the gap to human-level diversity.
☆ DART-ing Through the Drift: Dynamic Tracing of Knowledge Neurons for Adaptive Inference-Time Pruning
Large Language Models (LLMs) exhibit substantial parameter redundancy, particularly in Feed-Forward Networks (FFNs). Existing pruning methods suffer from two primary limitations. First, reliance on dataset-specific calibration introduces significant data dependency and computational overhead. Second, being predominantly static, they fail to account for the evolving subset of knowledge neurons in LLMs during autoregressive generation as the context evolves. To address this, we introduce DART, i.e., Dynamic Attention-Guided Runtime Tracing), a lightweight, training-free method that performs on-the-fly context-based pruning. DART monitors shifts in attention score distributions to infer context changes, dynamically updating neuron-level masks to retain salient parameters. Across ten benchmarks, DART outperforms prior dynamic baseline, achieving accuracy gains of up to 14.5% on LLAMA-3.1-8B at 70% FFN sparsity. Furthermore, DART achieves up to 3x better ROUGE-L scores with respect to static-masked pruning on summarization tasks, with its performance comparable to the original dense models. We conclusively demonstrate that the proposed framework effectively adapts to diverse semantic contexts, preserves model capabilities across both general and domain-specific tasks while running at less than 10MBs of memory for LLAMA-3.1-8B(16GBs) with 0.1% FLOPs overhead. The code is available at https://github.com/seeder-research/DART.
☆ PEFT-MuTS: A Multivariate Parameter-Efficient Fine-Tuning Framework for Remaining Useful Life Prediction based on Cross-domain Time Series Representation Model
The application of data-driven remaining useful life (RUL) prediction has long been constrained by the availability of large amount of degradation data. Mainstream solutions such as domain adaptation and meta-learning still rely on large amounts of historical degradation data from equipment that is identical or similar to the target, which imposes significant limitations in practical applications. This study investigates PEFT-MuTS, a Parameter-Efficient Fine-Tuning framework for few-shot RUL prediction, built on cross-domain pre-trained time-series representation models. Contrary to the widely held view that knowledge transfer in RUL prediction can only occur within similar devices, we demonstrate that substantial benefits can be achieved through pre-training process with large-scale cross-domain time series datasets. A independent feature tuning network and a meta-variable-based low rank multivariate fusion mechanism are developed to enable the pre-trained univariate time-series representation backbone model to fully exploit the multivariate relationships in degradation data for downstream RUL prediction task. Additionally, we introduce a zero-initialized regressor that stabilizes the fine-tuning process under few-shot conditions. Experiments on aero-engine and industrial bearing datasets demonstrate that our method can achieve effective RUL prediction even when less than 1\% of samples of target equipment are used. Meanwhile, it substantially outperforms conventional supervised and few-shot approaches while markedly reducing the data required to achieve high predictive accuracy. Our code is available at https://github.com/fuen1590/PEFT-MuTS.
☆ TTCS: Test-Time Curriculum Synthesis for Self-Evolving
Test-Time Training offers a promising way to improve the reasoning ability of large language models (LLMs) by adapting the model using only the test questions. However, existing methods struggle with difficult reasoning problems for two reasons: raw test questions are often too difficult to yield high-quality pseudo-labels, and the limited size of test sets makes continuous online updates prone to instability. To address these limitations, we propose TTCS, a co-evolving test-time training framework. Specifically, TTCS initializes two policies from the same pretrained model: a question synthesizer and a reasoning solver. These policies evolve through iterative optimization: the synthesizer generates progressively challenging question variants conditioned on the test questions, creating a structured curriculum tailored to the solver's current capability, while the solver updates itself using self-consistency rewards computed from multiple sampled responses on both original test and synthetic questions. Crucially, the solver's feedback guides the synthesizer to generate questions aligned with the model's current capability, and the generated question variants in turn stabilize the solver's test-time training. Experiments show that TTCS consistently strengthens the reasoning ability on challenging mathematical benchmarks and transfers to general-domain tasks across different LLM backbones, highlighting a scalable path towards dynamically constructing test-time curricula for self-evolving. Our code and implementation details are available at https://github.com/XMUDeepLIT/TTCS.
comment: 10 pages, 4 figures, Our code and implementation details are available at https://github.com/XMUDeepLIT/TTCS
☆ RPWithPrior: Label Differential Privacy in Regression
With the wide application of machine learning techniques in practice, privacy preservation has gained increasing attention. Protecting user privacy with minimal accuracy loss is a fundamental task in the data analysis and mining community. In this paper, we focus on regression tasks under $ε$-label differential privacy guarantees. Some existing methods for regression with $ε$-label differential privacy, such as the RR-On-Bins mechanism, discretized the output space into finite bins and then applied RR algorithm. To efficiently determine these finite bins, the authors rounded the original responses down to integer values. However, such operations does not align well with real-world scenarios. To overcome these limitations, we model both original and randomized responses as continuous random variables, avoiding discretization entirely. Our novel approach estimates an optimal interval for randomized responses and introduces new algorithms designed for scenarios where a prior is either known or unknown. Additionally, we prove that our algorithm, RPWithPrior, guarantees $ε$-label differential privacy. Numerical results demonstrate that our approach gets better performance compared with the Gaussian, Laplace, Staircase, and RRonBins, Unbiased mechanisms on the Communities and Crime, Criteo Sponsored Search Conversion Log, California Housing datasets.
comment: 20 pages
☆ Stabilizing Transformer Training Through Consensus
Standard attention-based transformers are known to exhibit instability under learning rate overspecification during training, particularly at high learning rates. While various methods have been proposed to improve resilience to such overspecification by modifying the optimization procedure, fundamental architectural innovations to this end remain underexplored. In this work, we illustrate that the consensus mechanism, a drop-in replacement for attention, stabilizes transformer training across a wider effective range of learning rates. We formulate consensus as a graphical model and provide extensive empirical analysis demonstrating improved stability across learning rate sweeps on text, DNA, and protein modalities. We further propose a hybrid consensus-attention framework that preserves performance while improving stability. We provide theoretical analysis characterizing the properties of consensus.
☆ Local-Global Multimodal Contrastive Learning for Molecular Property Prediction
Accurate molecular property prediction requires integrating complementary information from molecular structure and chemical semantics. In this work, we propose LGM-CL, a local-global multimodal contrastive learning framework that jointly models molecular graphs and textual representations derived from SMILES and chemistry-aware augmented texts. Local functional group information and global molecular topology are captured using AttentiveFP and Graph Transformer encoders, respectively, and aligned through self-supervised contrastive learning. In addition, chemically enriched textual descriptions are contrasted with original SMILES to incorporate physicochemical semantics in a task-agnostic manner. During fine-tuning, molecular fingerprints are further integrated via Dual Cross-attention multimodal fusion. Extensive experiments on MoleculeNet benchmarks demonstrate that LGM-CL achieves consistent and competitive performance across both classification and regression tasks, validating the effectiveness of unified local-global and multimodal representation learning.
comment: 16 pages, 9 figures. Submitted to Briefings in Bioinformatics
☆ Lethe:Adapter-Augmented Dual-Stream Update for Persistent Knowledge Erasure in Federated Unlearning
Federated unlearning (FU) aims to erase designated client-level, class-level, or sample-level knowledge from a global model. Existing studies commonly assume that the collaboration ends up with the unlearning operation, overlooking the follow-up situation where the federated training continues over the remaining data.We identify a critical failure mode, termed Knowledge resurfacing, by revealing that continued training can re-activate unlearned knowledge and cause the removed influence to resurface in the global model. To address this, we propose Lethe, a novel federated unlearning method that de-correlates knowledge to be unlearned from knowledge to be retained, ensuring persistent erasure during continued training.Lethe follows a Reshape--Rectify--Restore pipeline: a temporary adapter is first trained with gradient ascent on the unlearning data to obtain magnified updates, which is then used as corrective signals to diverge layer-wise rectification on the remaining updates in two streams. Finally, the adapter is removed and a short recovery stage is performed on the retained data. Our experiments show that Lethe supports unlearning in the federated system at all levels in a unified manner and maintains superior persistence (Resurfacing Rate <1% in most cases) even after numerous rounds of follow-up training.
☆ An Efficient Algorithm for Thresholding Monte Carlo Tree Search
We introduce the Thresholding Monte Carlo Tree Search problem, in which, given a tree $\mathcal{T}$ and a threshold $θ$, a player must answer whether the root node value of $\mathcal{T}$ is at least $θ$ or not. In the given tree, `MAX' or `MIN' is labeled on each internal node, and the value of a `MAX'-labeled (`MIN'-labeled) internal node is the maximum (minimum) of its child values. The value of a leaf node is the mean reward of an unknown distribution, from which the player can sample rewards. For this problem, we develop a $δ$-correct sequential sampling algorithm based on the Track-and-Stop strategy that has asymptotically optimal sample complexity. We show that a ratio-based modification of the D-Tracking arm-pulling strategy leads to a substantial improvement in empirical sample complexity, as well as reducing the per-round computational cost from linear to logarithmic in the number of arms.
☆ Heterogeneous Graph Alignment for Joint Reasoning and Interpretability
Multi-graph learning is crucial for extracting meaningful signals from collections of heterogeneous graphs. However, effectively integrating information across graphs with differing topologies, scales, and semantics, often in the absence of shared node identities, remains a significant challenge. We present the Multi-Graph Meta-Transformer (MGMT), a unified, scalable, and interpretable framework for cross-graph learning. MGMT first applies Graph Transformer encoders to each graph, mapping structure and attributes into a shared latent space. It then selects task-relevant supernodes via attention and builds a meta-graph that connects functionally aligned supernodes across graphs using similarity in the latent space. Additional Graph Transformer layers on this meta-graph enable joint reasoning over intra- and inter-graph structure. The meta-graph provides built-in interpretability: supernodes and superedges highlight influential substructures and cross-graph alignments. Evaluating MGMT on both synthetic datasets and real-world neuroscience applications, we show that MGMT consistently outperforms existing state-of-the-art models in graph-level prediction tasks while offering interpretable representations that facilitate scientific discoveries. Our work establishes MGMT as a unified framework for structured multi-graph learning, advancing representation techniques in domains where graph-based data plays a central role.
☆ FedCARE: Federated Unlearning with Conflict-Aware Projection and Relearning-Resistant Recovery IJCAI 2026
Federated learning (FL) enables collaborative model training without centralizing raw data, but privacy regulations such as the right to be forgotten require FL systems to remove the influence of previously used training data upon request. Retraining a federated model from scratch is prohibitively expensive, motivating federated unlearning (FU). However, existing FU methods suffer from high unlearning overhead, utility degradation caused by entangled knowledge, and unintended relearning during post-unlearning recovery. In this paper, we propose FedCARE, a unified and low overhead FU framework that enables conflict-aware unlearning and relearning-resistant recovery. FedCARE leverages gradient ascent for efficient forgetting when target data are locally available and employs data free model inversion to construct class level proxies of shared knowledge. Based on these insights, FedCARE integrates a pseudo-sample generator, conflict-aware projected gradient ascent for utility preserving unlearning, and a recovery strategy that suppresses rollback toward the pre-unlearning model. FedCARE supports client, instance, and class level unlearning with modest overhead. Extensive experiments on multiple datasets and model architectures under both IID and non-IID settings show that FedCARE achieves effective forgetting, improved utility retention, and reduced relearning risk compared to state of the art FU baselines.
comment: 9 pages, 4 figures. Submitted to IJCAI 2026
☆ Rethinking LLM-as-a-Judge: Representation-as-a-Judge with Small Language Models via Semantic Capacity Asymmetry
Large language models (LLMs) are widely used as reference-free evaluators via prompting, but this "LLM-as-a-Judge" paradigm is costly, opaque, and sensitive to prompt design. In this work, we investigate whether smaller models can serve as efficient evaluators by leveraging internal representations instead of surface generation. We uncover a consistent empirical pattern: small LMs, despite with weak generative ability, encode rich evaluative signals in their hidden states. This motivates us to propose the Semantic Capacity Asymmetry Hypothesis: evaluation requires significantly less semantic capacity than generation and can be grounded in intermediate representations, suggesting that evaluation does not necessarily need to rely on large-scale generative models but can instead leverage latent features from smaller ones. Our findings motivate a paradigm shift from LLM-as-a-Judge to Representation-as-a-Judge, a decoding-free evaluation strategy that probes internal model structure rather than relying on prompted output. We instantiate this paradigm through INSPECTOR, a probing-based framework that predicts aspect-level evaluation scores from small model representations. Experiments on reasoning benchmarks (GSM8K, MATH, GPQA) show that INSPECTOR substantially outperforms prompting-based small LMs and closely approximates full LLM judges, while offering a more efficient, reliable, and interpretable alternative for scalable evaluation.
☆ HetCCL: Accelerating LLM Training with Heterogeneous GPUs
The rapid growth of large language models is driving organizations to expand their GPU clusters, often with GPUs from multiple vendors. However, current deep learning frameworks lack support for collective communication across heterogeneous GPUs, leading to inefficiency and higher costs. We present HetCCL, a collective communication library that unifies vendor-specific backends and enables RDMA-based communication across GPUs without requiring driver modifications. HetCCL introduces two novel mechanisms that enable cross-vendor communication while leveraging optimized vendor libraries, NVIDIA NCCL and AMD RCCL. Evaluations on a multi-vendor GPU cluster show that HetCCL matches NCCL and RCCL performance in homogeneous setups while uniquely scaling in heterogeneous environments, enabling practical, high-performance training with both NVIDIA and AMD GPUs without changes to existing deep learning applications.
☆ MC-GRPO: Median-Centered Group Relative Policy Optimization for Small-Rollout Reinforcement Learning
Group-relative policy optimization methods train language models by generating multiple rollouts per prompt and normalizing rewards with a shared mean reward baseline. In resource-constrained settings where the rollout budget is small, accuracy often degrades. We find that noise in the shared baseline induces advantage sign flips, where some rollouts receive an incorrect advantage sign, and the update direction is reversed. To address this, we propose Median-Centered Group Relative Policy Optimization (MC-GRPO), a simple and effective solution for small-rollout training. Our main idea is to replace the mean baseline with a median baseline: the median is far less sensitive to outlier rewards than the mean, mitigating the sign flips under small rollout size (G). We generate one additional rollout for median reference (G+1), and compute advantages by using the group median. With an odd-sized group, exactly one completion is the median and receives zero advantage, we exclude this pivot rollout from backpropagation so the number of gradient-contributing samples per prompt remains G, preserving the core update cost of standard G-rollout training. Across various GRPO-family methods and a wide range of models and scales, this median-centered training consistently improves stability and final accuracy in the low-rollout regime, reducing the gap between G=2 and G=8 to within 1%. Code is available at https://github.com/lotusroot-kim/MC-GRPO
☆ Cross-Domain Few-Shot Learning for Hyperspectral Image Classification Based on Mixup Foundation Model
Although cross-domain few-shot learning (CDFSL) for hyper-spectral image (HSI) classification has attracted significant research interest, existing works often rely on an unrealistic data augmentation procedure in the form of external noise to enlarge the sample size, thus greatly simplifying the issue of data scarcity. They involve a large number of parameters for model updates, being prone to the overfitting problem. To the best of our knowledge, none has explored the strength of the foundation model, having strong generalization power to be quickly adapted to downstream tasks. This paper proposes the MIxup FOundation MOdel (MIFOMO) for CDFSL of HSI classifications. MIFOMO is built upon the concept of a remote sensing (RS) foundation model, pre-trained across a large scale of RS problems, thus featuring generalizable features. The notion of coalescent projection (CP) is introduced to quickly adapt the foundation model to downstream tasks while freezing the backbone network. The concept of mixup domain adaptation (MDM) is proposed to address the extreme domain discrepancy problem. Last but not least, the label smoothing concept is implemented to cope with noisy pseudo-label problems. Our rigorous experiments demonstrate the advantage of MIFOMO, where it beats prior arts with up to 14% margin. The source code of MIFOMO is open-sourced in https://github.com/Naeem- Paeedeh/MIFOMO for reproducibility and convenient further study.
☆ SpanNorm: Reconciling Training Stability and Performance in Deep Transformers
The success of Large Language Models (LLMs) hinges on the stable training of deep Transformer architectures. A critical design choice is the placement of normalization layers, leading to a fundamental trade-off: the ``PreNorm'' architecture ensures training stability at the cost of potential performance degradation in deep models, while the ``PostNorm'' architecture offers strong performance but suffers from severe training instability. In this work, we propose SpanNorm, a novel technique designed to resolve this dilemma by integrating the strengths of both paradigms. Structurally, SpanNorm establishes a clean residual connection that spans the entire transformer block to stabilize signal propagation, while employing a PostNorm-style computation that normalizes the aggregated output to enhance model performance. We provide a theoretical analysis demonstrating that SpanNorm, combined with a principled scaling strategy, maintains bounded signal variance throughout the network, preventing the gradient issues that plague PostNorm models, and also alleviating the representation collapse of PreNorm. Empirically, SpanNorm consistently outperforms standard normalization schemes in both dense and Mixture-of-Experts (MoE) scenarios, paving the way for more powerful and stable Transformer architectures.
☆ Non-Intrusive Graph-Based Bot Detection for E-Commerce Using Inductive Graph Neural Networks
Malicious bots pose a growing threat to e-commerce platforms by scraping data, hoarding inventory, and perpetrating fraud. Traditional bot mitigation techniques, including IP blacklists and CAPTCHA-based challenges, are increasingly ineffective or intrusive, as modern bots leverage proxies, botnets, and AI-assisted evasion strategies. This work proposes a non-intrusive graph-based bot detection framework for e-commerce that models user session behavior through a graph representation and applies an inductive graph neural network for classification. The approach captures both relational structure and behavioral semantics, enabling accurate identification of subtle automated activity that evades feature-based methods. Experiments on real-world e-commerce traffic demonstrate that the proposed inductive graph model outperforms a strong session-level multilayer perceptron baseline in terms of AUC and F1 score. Additional adversarial perturbation and cold-start simulations show that the model remains robust under moderate graph modifications and generalizes effectively to previously unseen sessions and URLs. The proposed framework is deployment-friendly, integrates with existing systems without client-side instrumentation, and supports real-time inference and incremental updates, making it suitable for practical e-commerce security deployments.
☆ FedDis: A Causal Disentanglement Framework for Federated Traffic Prediction
Federated learning offers a promising paradigm for privacy-preserving traffic prediction, yet its performance is often challenged by the non-identically and independently distributed (non-IID) nature of decentralized traffic data. Existing federated methods frequently struggle with this data heterogeneity, typically entangling globally shared patterns with client-specific local dynamics within a single representation. In this work, we postulate that this heterogeneity stems from the entanglement of two distinct generative sources: client-specific localized dynamics and cross-client global spatial-temporal patterns. Motivated by this perspective, we introduce FedDis, a novel framework that, to the best of our knowledge, is the first to leverage causal disentanglement for federated spatial-temporal prediction. Architecturally, FedDis comprises a dual-branch design wherein a Personalized Bank learns to capture client-specific factors, while a Global Pattern Bank distills common knowledge. This separation enables robust cross-client knowledge transfer while preserving high adaptability to unique local environments. Crucially, a mutual information minimization objective is employed to enforce informational orthogonality between the two branches, thereby ensuring effective disentanglement. Comprehensive experiments conducted on four real-world benchmark datasets demonstrate that FedDis consistently achieves state-of-the-art performance, promising efficiency, and superior expandability.
☆ Leveraging Data to Say No: Memory Augmented Plug-and-Play Selective Prediction ICLR 2026
Selective prediction aims to endow predictors with a reject option, to avoid low confidence predictions. However, existing literature has primarily focused on closed-set tasks, such as visual question answering with predefined options or fixed-category classification. This paper considers selective prediction for visual language foundation models, addressing a taxonomy of tasks ranging from closed to open set and from finite to unbounded vocabularies, as in image captioning. We seek training-free approaches of low-complexity, applicable to any foundation model and consider methods based on external vision-language model embeddings, like CLIP. This is denoted as Plug-and-Play Selective Prediction (PaPSP). We identify two key challenges: (1) instability of the visual-language representations, leading to high variance in image-text embeddings, and (2) poor calibration of similarity scores. To address these issues, we propose a memory augmented PaPSP (MA-PaPSP) model, which augments PaPSP with a retrieval dataset of image-text pairs. This is leveraged to reduce embedding variance by averaging retrieved nearest-neighbor pairs and is complemented by the use of contrastive normalization to improve score calibration. Through extensive experiments on multiple datasets, we show that MA-PaPSP outperforms PaPSP and other selective prediction baselines for selective captioning, image-text matching, and fine-grained classification. Code is publicly available at https://github.com/kingston-aditya/MA-PaPSP.
comment: ICLR 2026
☆ EUGens: Efficient, Unified, and General Dense Layers
Efficient neural networks are essential for scaling machine learning models to real-time applications and resource-constrained environments. Fully-connected feedforward layers (FFLs) introduce computation and parameter count bottlenecks within neural network architectures. To address this challenge, in this work, we propose a new class of dense layers that generalize standard fully-connected feedforward layers, \textbf{E}fficient, \textbf{U}nified and \textbf{Gen}eral dense layers (EUGens). EUGens leverage random features to approximate standard FFLs and go beyond them by incorporating a direct dependence on the input norms in their computations. The proposed layers unify existing efficient FFL extensions and improve efficiency by reducing inference complexity from quadratic to linear time. They also lead to \textbf{the first} unbiased algorithms approximating FFLs with arbitrary polynomial activation functions. Furthermore, EuGens reduce the parameter count and computational overhead while preserving the expressive power and adaptability of FFLs. We also present a layer-wise knowledge transfer technique that bypasses backpropagation, enabling efficient adaptation of EUGens to pre-trained models. Empirically, we observe that integrating EUGens into Transformers and MLPs yields substantial improvements in inference speed (up to \textbf{27}\%) and memory efficiency (up to \textbf{30}\%) across a range of tasks, including image classification, language model pre-training, and 3D scene reconstruction. Overall, our results highlight the potential of EUGens for the scalable deployment of large-scale neural networks in real-world scenarios.
comment: Neurips 2025. Encompasses results of arXiv:2410.09771
☆ Exo-Plore: Exploring Exoskeleton Control Space through Human-aligned Simulation ICLR 2026
Exoskeletons show great promise for enhancing mobility, but providing appropriate assistance remains challenging due to the complexity of human adaptation to external forces. Current state-of-the-art approaches for optimizing exoskeleton controllers require extensive human experiments in which participants must walk for hours, creating a paradox: those who could benefit most from exoskeleton assistance, such as individuals with mobility impairments, are rarely able to participate in such demanding procedures. We present Exo-plore, a simulation framework that combines neuromechanical simulation with deep reinforcement learning to optimize hip exoskeleton assistance without requiring real human experiments. Exo-plore can (1) generate realistic gait data that captures human adaptation to assistive forces, (2) produce reliable optimization results despite the stochastic nature of human gait, and (3) generalize to pathological gaits, showing strong linear relationships between pathology severity and optimal assistance.
comment: 10 pages, 9 figures, ICLR 2026 accepted
☆ Are LLM Evaluators Really Narcissists? Sanity Checking Self-Preference Evaluations
Recent research has shown that large language models (LLM) favor own outputs when acting as judges, undermining the integrity of automated post-training and evaluation workflows. However, it is difficult to disentangle which evaluation biases are explained by narcissism versus general experimental confounds, distorting measurements of self-preference bias. We discover a core methodological confound which could reduce measurement error by 89.6%. Specifically, LLM evaluators may deliver self-preferring verdicts when the judge responds to queries which they completed incorrectly themselves; this would be true regardless of whether one of their responses is their own. To decouple self-preference signals from noisy outputs on hard problems, we introduce an Evaluator Quality Baseline, which compares the probability that a judge incorrectly votes for itself against the probability that it votes for an incorrect response from another model. Evaluating this simple baseline on 37,448 queries, only 51% of initial findings retain statistical significance. Finally, we turn towards characterizing the entropy of "easy" versus "hard" evaluation votes from LLM judges. Our corrective baseline enables future research on self-preference by eliminating noisy data from potential solutions. More widely, this work contributes to the growing body of work on cataloging and isolating judge-bias effects.
☆ Detect and Act: Automated Dynamic Optimizer through Meta-Black-Box Optimization
Dynamic Optimization Problems (DOPs) are challenging to address due to their complex nature, i.e., dynamic environment variation. Evolutionary Computation methods are generally advantaged in solving DOPs since they resemble dynamic biological evolution. However, existing evolutionary dynamic optimization methods rely heavily on human-crafted adaptive strategy to detect environment variation in DOPs, and then adapt the searching strategy accordingly. These hand-crafted strategies may perform ineffectively at out-of-box scenarios. In this paper, we propose a reinforcement learning-assisted approach to enable automated variation detection and self-adaption in evolutionary algorithms. This is achieved by borrowing the bi-level learning-to-optimize idea from recent Meta-Black-Box Optimization works. We use a deep Q-network as optimization dynamics detector and searching strategy adapter: It is fed as input with current-step optimization state and then dictates desired control parameters to underlying evolutionary algorithms for next-step optimization. The learning objective is to maximize the expected performance gain across a problem distribution. Once trained, our approach could generalize toward unseen DOPs with automated environment variation detection and self-adaption. To facilitate comprehensive validation, we further construct an easy-to-difficult DOPs testbed with diverse synthetic instances. Extensive benchmark results demonstrate flexible searching behavior and superior performance of our approach in solving DOPs, compared to state-of-the-art baselines.
☆ Benchmarking Long Roll-outs of Auto-regressive Neural Operators for the Compressible Navier-Stokes Equations with Conserved Quantity Correction
Deep learning has been proposed as an efficient alternative for the numerical approximation of PDE solutions, offering fast, iterative simulation of PDEs through the approximation of solution operators. However, deep learning solutions have struggle to perform well over long prediction durations due to the accumulation of auto-regressive error, which is compounded by the inability of models to conserve physical quantities. In this work, we present conserved quantity correction, a model-agnostic technique for incorporation physical conservation criteria within deep learning models. Our results demonstrate consistent improvement in the long-term stability of auto-regressive neural operator models, regardless of the model architecture. Furthermore, we analyze the performance of neural operators from the spectral domain, highlighting significant limitations of present architectures. These results highlight the need for future work to consider architectures that place specific emphasis on high frequency components, which are integral to the understanding and modeling of turbulent flows.
☆ Neural-Inspired Posterior Approximation (NIPA)
Humans learn efficiently from their environment by engaging multiple interacting neural systems that support distinct yet complementary forms of control, including model-based (goal-directed) planning, model-free (habitual) responding, and episodic memory-based learning. Model-based mechanisms compute prospective action values using an internal model of the environment, supporting flexible but computationally costly planning; model-free mechanisms cache value estimates and build heuristics that enable fast, efficient habitual responding; and memory-based mechanisms allow rapid adaptation from individual experience. In this work, we aim to elucidate the computational principles underlying this biological efficiency and translate them into a sampling algorithm for scalable Bayesian inference through effective exploration of the posterior distribution. More specifically, our proposed algorithm comprises three components: a model-based module that uses the target distribution for guided but computationally slow sampling; a model-free module that uses previous samples to learn patterns in the parameter space, enabling fast, reflexive sampling without directly evaluating the expensive target distribution; and an episodic-control module that supports rapid sampling by recalling specific past events (i.e., samples). We show that this approach advances Bayesian methods and facilitates their application to large-scale statistical machine learning problems. In particular, we apply our proposed framework to Bayesian deep learning, with an emphasis on proper and principled uncertainty quantification.
comment: 13 pages, 4 tables
☆ Learning to Defer in Non-Stationary Time Series via Switching State-Space Models
We study Learning to Defer for non-stationary time series with partial feedback and time-varying expert availability. At each time step, the router selects an available expert, observes the target, and sees only the queried expert's prediction. We model signed expert residuals using L2D-SLDS, a factorized switching linear-Gaussian state-space model with context-dependent regime transitions, a shared global factor enabling cross-expert information transfer, and per-expert idiosyncratic states. The model supports expert entry and pruning via a dynamic registry. Using one-step-ahead predictive beliefs, we propose an IDS-inspired routing rule that trades off predicted cost against information gained about the latent regime and shared factor. Experiments show improvements over contextual-bandit baselines and a no-shared-factor ablation.
☆ Demystifying Design Choices of Reinforcement Fine-tuning: A Batched Contextual Bandit Learning Perspective
The reinforcement fine-tuning area is undergoing an explosion papers largely on optimizing design choices. Though performance gains are often claimed, inconsistent conclusions also arise from time to time, making the progress illusive. Reflecting on this illusion, we still lack principled answers to two fundamental questions: 1) what is the role of each design choice? 2) which ones are critical? This paper aims to shed light on them. The underlying challenge is that design choices are entangled together, making their contribution to learning and generalization difficult to attribute. To address this challenge, we first construct a minimalist baseline for disentangling factors: one rollout per query in each round, the outcome reward serving as the training signal without any advantage trick, and a batch size of thirty-two. This baseline connects to batched contextual bandit learning, which facilitates experimental analysis. Centering around this baseline, we design an experiment pipeline, examining the marginal gains of factors like advantage, number of rollouts, etc. Experiments on three base models and two datasets, not only reveal new understanding on the role of various design choices on learning and generalization dynamics, but also identify critical ones that deserve more effort.
☆ Learn from A Rationalist: Distilling Intermediate Interpretable Rationales
Because of the pervasive use of deep neural networks (DNNs), especially in high-stakes domains, the interpretability of DNNs has received increased attention. The general idea of rationale extraction (RE) is to provide an interpretable-by-design framework for DNNs via a select-predict architecture where two neural networks learn jointly to perform feature selection and prediction, respectively. Given only the remote supervision from the final task prediction, the process of learning to select subsets of features (or \emph{rationales}) requires searching in the space of all possible feature combinations, which is computationally challenging and even harder when the base neural networks are not sufficiently capable. To improve the predictive performance of RE models that are based on less capable or smaller neural networks (i.e., the students), we propose \textbf{REKD} (\textbf{R}ationale \textbf{E}xtraction with \textbf{K}nowledge \textbf{D}istillation) where a student RE model learns from the rationales and predictions of a teacher (i.e., a \emph{rationalist}) in addition to the student's own RE optimization. This structural adjustment to RE aligns well with how humans could learn effectively from interpretable and verifiable knowledge. Because of the neural-model agnostic nature of the method, any black-box neural network could be integrated as a backbone model. To demonstrate the viability of REKD, we conduct experiments with multiple variants of BERT and vision transformer (ViT) models. Our experiments across language and vision classification datasets (i.e., IMDB movie reviews, CIFAR 10 and CIFAR 100) show that REKD significantly improves the predictive performance of the student RE models.
☆ Variational Bayesian Flow Network for Graph Generation
Graph generation aims to sample discrete node and edge attributes while satisfying coupled structural constraints. Diffusion models for graphs often adopt largely factorized forward-noising, and many flow-matching methods start from factorized reference noise and coordinate-wise interpolation, so node-edge coupling is not encoded by the generative geometry and must be recovered implicitly by the core network, which can be brittle after discrete decoding. Bayesian Flow Networks (BFNs) evolve distribution parameters and naturally support discrete generation. But classical BFNs typically rely on factorized beliefs and independent channels, which limit geometric evidence fusion. We propose Variational Bayesian Flow Network (VBFN), which performs a variational lifting to a tractable joint Gaussian variational belief family governed by structured precisions. Each Bayesian update reduces to solving a symmetric positive definite linear system, enabling coupled node and edge updates within a single fusion step. We construct sample-agnostic sparse precisions from a representation-induced dependency graph, thereby avoiding label leakage while enforcing node-edge consistency. On synthetic and molecular graph datasets, VBFN improves fidelity and diversity, and surpasses baseline methods.
☆ Corrected Samplers for Discrete Flow Models
Discrete flow models (DFMs) have been proposed to learn the data distribution on a finite state space, offering a flexible framework as an alternative to discrete diffusion models. A line of recent work has studied samplers for discrete diffusion models, such as tau-leaping and Euler solver. However, these samplers require a large number of iterations to control discretization error, since the transition rates are frozen in time and evaluated at the initial state within each time interval. Moreover, theoretical results for these samplers often require boundedness conditions of the transition rate or they focus on a specific type of source distributions. To address those limitations, we establish non-asymptotic discretization error bounds for those samplers without any restriction on transition rates and source distributions, under the framework of discrete flow models. Furthermore, by analyzing a one-step lower bound of the Euler sampler, we propose two corrected samplers: \textit{time-corrected sampler} and \textit{location-corrected sampler}, which can reduce the discretization error of tau-leaping and Euler solver with almost no additional computational cost. We rigorously show that the location-corrected sampler has a lower iteration complexity than existing parallel samplers. We validate the effectiveness of the proposed method by demonstrating improved generation quality and reduced inference time on both simulation and text-to-image generation tasks. Code can be found in https://github.com/WanZhengyan/Corrected-Samplers-for-Discrete-Flow-Models.
☆ SCOPE-PD: Explainable AI on Subjective and Clinical Objective Measurements of Parkinson's Disease for Precision Decision-Making
Parkinson's disease (PD) is a chronic and complex neurodegenerative disorder influenced by genetic, clinical, and lifestyle factors. Predicting this disease early is challenging because it depends on traditional diagnostic methods that face issues of subjectivity, which commonly delay diagnosis. Several objective analyses are currently in practice to help overcome the challenges of subjectivity; however, a proper explanation of these analyses is still lacking. While machine learning (ML) has demonstrated potential in supporting PD diagnosis, existing approaches often rely on subjective reports only and lack interpretability for individualized risk estimation. This study proposes SCOPE-PD, an explainable AI-based prediction framework, by integrating subjective and objective assessments to provide personalized health decisions. Subjective and objective clinical assessment data are collected from the Parkinson's Progression Markers Initiative (PPMI) study to construct a multimodal prediction framework. Several ML techniques are applied to these data, and the best ML model is selected to interpret the results. Model interpretability is examined using SHAP-based analysis. The Random Forest algorithm achieves the highest accuracy of 98.66 percent using combined features from both subjective and objective test data. Tremor, bradykinesia, and facial expression are identified as the top three contributing features from the MDS-UPDRS test in the prediction of PD.
comment: 16 pages, 3 tables, 5 figures, to be published (full text online) in Springer (Springer CCIS series: electronic ISSN 1865-0937, print ISSN 1865-0929)
☆ DRL-Enabled Trajectory Planing for UAV-Assisted VLC: Optimal Altitude and Reward Design
Recently, the integration of unmanned aerial vehicle (UAV) and visible light communication (VLC) technologies has emerged as a promising solution to offer flexible communication and efficient lighting. This letter investigates the three-dimensional trajectory planning in a UAV-assisted VLC system, where a UAV is dispatched to collect data from ground users (GUs). The core objective is to develop a trajectory planning framework that minimizes UAV flight distance, which is equivalent to maximizing the data collection efficiency. This issue is formulated as a challenging mixed-integer non-convex optimization problem. To tackle it, we first derive a closed-form optimal flight altitude under specific VLC channel gain threshold. Subsequently, we optimize the UAV horizontal trajectory by integrating a novel pheromone-driven reward mechanism with the twin delayed deep deterministic policy gradient algorithm, which enables adaptive UAV motion strategy in complex environments. Simulation results validate that the derived optimal altitude effectively reduces the flight distance by up to 35% compared to baseline methods. Additionally, the proposed reward mechanism significantly shortens the convergence steps by approximately 50%, demonstrating notable efficiency gains in the context of UAV-assisted VLC data collection.
♻ ☆ Offline Goal-Conditioned Reinforcement Learning with Projective Quasimetric Planning
Offline Goal-Conditioned Reinforcement Learning seeks to train agents to reach specified goals from previously collected trajectories. Scaling that promises to long-horizon tasks remains challenging, notably due to compounding value-estimation errors. Principled geometric offers a potential solution to address these issues. Following this insight, we introduce Projective Quasimetric Planning (ProQ), a compositional framework that learns an asymmetric distance and then repurposes it, firstly as a repulsive energy forcing a sparse set of keypoints to uniformly spread over the learned latent space, and secondly as a structured directional cost guiding towards proximal sub-goals. In particular, ProQ couples this geometry with a Lagrangian out-of-distribution detector to ensure the learned keypoints stay within reachable areas. By unifying metric learning, keypoint coverage, and goal-conditioned control, our approach produces meaningful sub-goals and robustly drives long-horizon goal-reaching on diverse a navigation benchmarks.
♻ ☆ From Cold Start to Active Learning: Embedding-Based Scan Selection for Medical Image Segmentation
Accurate segmentation annotations are critical for disease monitoring, yet manual labeling remains a major bottleneck due to the time and expertise required. Active learning (AL) alleviates this burden by prioritizing informative samples for annotation, typically through a diversity-based cold-start phase followed by uncertainty-driven selection. We propose a novel cold-start sampling strategy that combines foundation-model embeddings with clustering, including automatic selection of the number of clusters and proportional sampling across clusters, to construct a diverse and representative initial training. This is followed by an uncertainty-based AL framework that integrates spatial diversity to guide sample selection. The proposed method is intuitive and interpretable, enabling visualization of the feature-space distribution of candidate samples. We evaluate our approach on three datasets spanning X-ray and MRI modalities. On the CheXmask dataset, the cold-start strategy outperforms random selection, improving Dice from 0.918 to 0.929 and reducing the Hausdorff distance from 32.41 to 27.66 mm. In the AL setting, combined entropy and diversity selection improves Dice from 0.919 to 0.939 and reduces the Hausdorff distance from 30.10 to 19.16 mm. On the Montgomery dataset, cold-start gains are substantial, with Dice improving from 0.928 to 0.950 and Hausdorff distance decreasing from 14.22 to 9.38 mm. On the SynthStrip dataset, cold-start selection slightly affects Dice but reduces the Hausdorff distance from 9.43 to 8.69 mm, while active learning improves Dice from 0.816 to 0.826 and reduces the Hausdorff distance from 7.76 to 6.38 mm. Overall, the proposed framework consistently outperforms baseline methods in low-data regimes, improving segmentation accuracy.
comment: 19 pages without references
♻ ☆ A Continual Offline Reinforcement Learning Benchmark for Navigation Tasks
Autonomous agents operating in domains such as robotics or video game simulations must adapt to changing tasks without forgetting about the previous ones. This process called Continual Reinforcement Learning poses non-trivial difficulties, from preventing catastrophic forgetting to ensuring the scalability of the approaches considered. Building on recent advances, we introduce a benchmark providing a suite of video-game navigation scenarios, thus filling a gap in the literature and capturing key challenges : catastrophic forgetting, task adaptation, and memory efficiency. We define a set of various tasks and datasets, evaluation protocols, and metrics to assess the performance of algorithms, including state-of-the-art baselines. Our benchmark is designed not only to foster reproducible research and to accelerate progress in continual reinforcement learning for gaming, but also to provide a reproducible framework for production pipelines -- helping practitioners to identify and to apply effective approaches.
comment: arXiv admin note: text overlap with arXiv:2412.14865
♻ ☆ CAOS: Conformal Aggregation of One-Shot Predictors
One-shot prediction enables rapid adaptation of pretrained foundation models to new tasks using only one labeled example, but lacks principled uncertainty quantification. While conformal prediction provides finite-sample coverage guarantees, standard split conformal methods are inefficient in the one-shot setting due to data splitting and reliance on a single predictor. We propose Conformal Aggregation of One-Shot Predictors (CAOS), a conformal framework that adaptively aggregates multiple one-shot predictors and uses a leave-one-out calibration scheme to fully exploit scarce labeled data. Despite violating classical exchangeability assumptions, we prove that CAOS achieves valid marginal coverage using a monotonicity-based argument. Experiments on one-shot facial landmarking and RAFT text classification tasks show that CAOS produces substantially smaller prediction sets than split conformal baselines while maintaining reliable coverage.
♻ ☆ Multi-agent Coordination via Flow Matching ICLR 2026
This work presents MAC-Flow, a simple yet expressive framework for multi-agent coordination. We argue that requirements of effective coordination are twofold: (i) a rich representation of the diverse joint behaviors present in offline data and (ii) the ability to act efficiently in real time. However, prior approaches often sacrifice one for the other, i.e., denoising diffusion-based solutions capture complex coordination but are computationally slow, while Gaussian policy-based solutions are fast but brittle in handling multi-agent interaction. MAC-Flow addresses this trade-off by first learning a flow-based representation of joint behaviors, and then distilling it into decentralized one-step policies that preserve coordination while enabling fast execution. Across four different benchmarks, including $12$ environments and $34$ datasets, MAC-Flow alleviates the trade-off between performance and computational cost, specifically achieving about $\boldsymbol{\times14.5}$ faster inference compared to diffusion-based MARL methods, while maintaining good performance. At the same time, its inference speed is similar to that of prior Gaussian policy-based offline multi-agent reinforcement learning (MARL) methods.
comment: ICLR 2026
♻ ☆ Reinforcement Learning for Ballbot Navigation in Uneven Terrain
Ballbot (i.e. Ball balancing robot) navigation usually relies on methods rooted in control theory (CT), and works that apply Reinforcement learning (RL) to the problem remain rare while generally being limited to specific subtasks (e.g. balance recovery). Unlike CT based methods, RL does not require (simplifying) assumptions about environment dynamics (e.g. the absence of slippage between the ball and the floor). In addition to this increased accuracy in modeling, RL agents can easily be conditioned on additional observations such as depth-maps without the need for explicit formulations from first principles, leading to increased adaptivity. Despite those advantages, there has been little to no investigation into the capabilities, data-efficiency and limitations of RL based methods for ballbot control and navigation. Furthermore, there is a notable absence of an open-source, RL-friendly simulator for this task. In this paper, we present an open-source ballbot simulation based on MuJoCo, and show that with appropriate conditioning on exteroceptive observations as well as reward shaping, policies learned by classical model-free RL methods are capable of effectively navigating through randomly generated uneven terrain, using a reasonable amount of data (four to five hours on a system operating at 500hz). Our code is made publicly available.
comment: 6 pages, 9 figures, 2 tables. Version two corrects figure 4 and adds some experiments
♻ ☆ FC-KAN: Function Combinations in Kolmogorov-Arnold Networks
In this paper, we introduce FC-KAN, a Kolmogorov-Arnold Network (KAN) that leverages combinations of popular mathematical functions such as B-splines, wavelets, and radial basis functions on low-dimensional data through element-wise operations. We explore several methods for combining the outputs of these functions, including sum, element-wise product, the addition of sum and element-wise product, representations of quadratic and cubic functions, concatenation, linear transformation of the concatenated output, and others. In our experiments, we compare FC-KAN with a multi-layer perceptron network (MLP) and other existing KANs, such as BSRBF-KAN, EfficientKAN, FastKAN, and FasterKAN, on the MNIST and Fashion-MNIST datasets. Two variants of FC-KAN, which use a combination of outputs from B-splines and Difference of Gaussians (DoG) and from B-splines and linear transformations in the form of a quadratic function, outperformed overall other models on the average of 5 independent training runs. We expect that FC-KAN can leverage function combinations to design future KANs. Our repository is publicly available at: https://github.com/hoangthangta/FC_KAN.
comment: 17 pages
♻ ☆ On the Separability of Information in Diffusion Models
Diffusion models transform noise into data by injecting information that was captured in their neural network during the training phase. In this paper, we ask: \textit{what} is this information? We find that, in pixel-space diffusion models, (1) a large fraction of the total information in the neural network is committed to reconstructing small-scale perceptual details of the image, and (2) the correlations between images and their class labels are informed by the semantic content of the images, and are largely agnostic to the low-level details. We argue that these properties are intrinsically tied to the manifold structure of the data itself. Finally, we show that these facts explain the efficacy of classifier-free guidance: the guidance vector amplifies the mutual information between images and conditioning signals early in the generative process, influencing semantic structure, but tapers out as perceptual details are filled in.
comment: 27 pages + references, 19 figures. v4: Re-organized the paper to focus on separability of information
♻ ☆ Geometric-disentangelment Unlearning
Large language models (LLMs) can internalize private or harmful content, motivating unlearning that removes a forget set while preserving retaining knowledge. However, forgetting updates often cause collateral degradation on retaining knowledge, creating a persistent trade-off. Existing LLM unlearning methods are often heuristic, and other theoretical approaches rely on offline feature constructions that do not capture update-time forget-retain interaction in LLMs. To address this limitation, we aim to develop an LLM unlearning method that reduces the forget-retain trade-off with theoretical guarantees. We take a first-principles view by formalizing "no side effects" as local retain invariance under small parameter updates, and prove an equivalence under optimizer-induced geometry: the retain loss is locally invariant if and only if the update direction is orthogonal to the subspace spanned by retain gradients. Based on the insight, we propose Geometric-disentanglement Unlearning (GU), a lightweight and theoretically grounded projection that can be plug-and-play to existing gradient-based unlearning methods to mitigate forget-retain side effects. Experiments on TOFU, MUSE, and WMDP-cyber show that GU strengthens forgetting while reducing retain drift. When added to SimNPO, it achieves up to 62\% improved forgetting Extraction Strength (ES) and 31\% higher retain ES. We open-sourced our code in https://github.com/Lemutisme/Geometric-Unlearning.
comment: 26 Pages
♻ ☆ The Mean-Field Dynamics of Transformers
We develop a mathematical framework that interprets Transformer attention as an interacting particle system and studies its continuum (mean-field) limits. By idealizing attention on the sphere, we connect Transformer dynamics to Wasserstein gradient flows, synchronization models (Kuramoto), and mean-shift clustering. Central to our results is a global clustering phenomenon whereby tokens cluster asymptotically after long metastable states where they are arranged into multiple clusters. We further analyze a tractable equiangular reduction to obtain exact clustering rates, show how commonly used normalization schemes alter contraction speeds, and identify a phase transition for long-context attention. The results highlight both the mechanisms that drive representation collapse and the regimes that preserve expressive, multi-cluster structure in deep attention architectures.
comment: to appear as Proceedings of the ICM2026, Philadelphia, USA
♻ ☆ Open Shouldn't Mean Exempt: Open-Source Exceptionalism and Generative AI
Open-source status should not shield generative artificial intelligence systems from ethical or legal accountability. Through a rigorous analysis of regulatory, legal, and policy frameworks, this Article contends that open-source GenAI must be held to the same standards as proprietary systems. While recognizing the value of openness for scientific advancement, I propose a narrowly tailored safe harbor for bona fide, non-commercial research, conditioned on strict compliance with defined criteria. This Article critically examines and refutes the core claims of open-source exceptionalism--namely, that open-source GenAI disrupts entrenched oligopolies, democratizes access, and uniquely drives innovation. The evidence shows that open-source GenAI can facilitate unlawful conduct, exacerbate environmental harms, and reinforce existing power structures. Rhetoric around "democratization" and "innovation" often serves as an unsubstantiated basis for regulatory exemptions not afforded to proprietary systems. This Article ultimately advocates for a framework that promotes responsible AI development, balancing openness with robust legal and ethical safeguards and a clear-eyed assessment of societal impacts.
♻ ☆ In the Mood to Exclude: Revitalizing Trespass to Chattels in the Era of GenAI Scraping
GenAI companies are strip-mining the web. Their scraping bots harvest content at an unprecedented scale, circumventing technical barriers to fuel billion-dollar models while creators receive nothing. Courts have enabled this exploitation by misunderstanding what property rights protect online. The prevailing view treats websites as mere repositories of intellectual property and dismisses trespass claims absent server damage. That framework grants AI companies presumptive access while ignoring the economic devastation they inflict. But the content is severable from the website itself. This paper reframes the debate: websites are personal property as integrated digital assets subject to the same exclusionary rights as physical chattels. When scrapers bypass access controls and divert traffic that sustains a website's value, they commit actionable trespass. The law need not create new protections; it need only apply existing property principles to digital space. Courts and litigants have struggled to police unwanted, large-scale scraping because copyright preemption often narrows available claims, leaving copyright and its fair use defense as the primary battleground. Trespass to chattels offers a superior path, grounded in the fundamental right to exclude unwanted intrusions. Reviving this tort would protect not only content creators but also the digital ecosystem. Such protection would discourage exploitative scraping, preserve incentives for content creation, help protect privacy and personal data, and safeguard autonomy and expression. Reaffirming website owners' right to exclude is essential to maintaining a fair and sustainable online environment.
♻ ☆ LLM-42: Enabling Determinism in LLM Inference with Verified Speculation
In LLM inference, the same prompt may yield different outputs across different runs. At the system level, this non-determinism arises from floating-point non-associativity combined with dynamic batching and GPU kernels whose reduction orders vary with batch size. A straightforward way to eliminate non-determinism is to disable dynamic batching during inference, but doing so severely degrades throughput. Another approach is to make kernels batch-invariant; however, this tightly couples determinism to kernel design, requiring new implementations. This coupling also imposes fixed runtime overheads, regardless of how much of the workload actually requires determinism. Inspired by ideas from speculative decoding, we present LLM-42, a scheduling-based approach to enable determinism in LLM inference. Our key observation is that if a sequence is in a consistent state, the next emitted token is likely to be consistent even with dynamic batching. Moreover, most GPU kernels use shape-consistent reductions. Leveraging these insights, LLM-42 decodes tokens using a non-deterministic fast path and enforces determinism via a lightweight verify-rollback loop. The verifier replays candidate tokens under a fixed-shape reduction schedule, commits those that are guaranteed to be consistent across runs, and rolls back those violating determinism. LLM-42 mostly re-uses existing kernels unchanged and incurs overhead only in proportion to the traffic that requires determinism.
comment: https://github.com/microsoft/llm-42
♻ ☆ Generative quantum machine learning via denoising diffusion probabilistic models
Deep generative models are key-enabling technology to computer vision, text generation, and large language models. Denoising diffusion probabilistic models (DDPMs) have recently gained much attention due to their ability to generate diverse and high-quality samples in many computer vision tasks, as well as to incorporate flexible model architectures and a relatively simple training scheme. Quantum generative models, empowered by entanglement and superposition, have brought new insight to learning classical and quantum data. Inspired by the classical counterpart, we propose the quantum denoising diffusion probabilistic model (QuDDPM) to enable efficiently trainable generative learning of quantum data. QuDDPM adopts sufficient layers of circuits to guarantee expressivity, while it introduces multiple intermediate training tasks as interpolation between the target distribution and noise to avoid barren plateau and guarantee efficient training. We provide bounds on the learning error and demonstrate QuDDPM's capability in learning correlated quantum noise model, quantum many-body phases, and topological structure of quantum data. The results provide a paradigm for versatile and efficient quantum generative learning.
comment: 5+10 pages, 16 figures. PRL accepted version. Code available at: https://github.com/francis-hsu/quantgenmdl
♻ ☆ Quantum Super-resolution by Adaptive Non-local Observables ICASSP 2026
Super-resolution (SR) seeks to reconstruct high-resolution (HR) data from low-resolution (LR) observations. Classical deep learning methods have advanced SR substantially, but require increasingly deeper networks, large datasets, and heavy computation to capture fine-grained correlations. In this work, we present the \emph{first study} to investigate quantum circuits for SR. We propose a framework based on Variational Quantum Circuits (VQCs) with \emph{Adaptive Non-Local Observable} (ANO) measurements. Unlike conventional VQCs with fixed Pauli readouts, ANO introduces trainable multi-qubit Hermitian observables, allowing the measurement process to adapt during training. This design leverages the high-dimensional Hilbert space of quantum systems and the representational structure provided by entanglement and superposition. Experiments demonstrate that ANO-VQCs achieve up to five-fold higher resolution with a relatively small model size, suggesting a promising new direction at the intersection of quantum machine learning and super-resolution.
comment: Accepted at ICASSP 2026
♻ ☆ How Well Can Preference Optimization Generalize Under Noisy Feedback?
As large language models (LLMs) advance their capabilities, aligning these models with human preferences has become crucial. Preference optimization, which trains models to distinguish between preferred and non-preferred responses based on human feedback, has become a crucial component for aligning LLMs. However, most existing works assume noise-free feedback, which is unrealistic due to the inherent errors and inconsistencies in human judgments. This paper addresses the impact of noisy feedback on preference optimization, providing generalization guarantees under these conditions. In particular, we consider noise models that correspond to common real-world sources of noise, such as mislabeling and uncertainty. Unlike traditional analyses that assume convergence, our work focuses on finite-step preference optimization, offering new insights that are more aligned with practical LLM training. We describe how generalization decays with different types of noise across levels of noise rates based on the preference data distribution and number of samples. Our analysis for noisy preference learning applies to a broad family of preference optimization losses such as DPO, IPO, SLiC, etc. Empirical validation on contemporary LLMs confirms the practical relevance of our findings, offering valuable insights for developing AI systems that align with human preferences.
comment: TMLR 2026
♻ ☆ RefineBridge: Generative Bridge Models Improve Financial Forecasting by Foundation Models
Financial time series forecasting is particularly challenging for transformer-based time series foundation models (TSFMs) due to non-stationarity, heavy-tailed distributions, and high-frequency noise present in data. Low-rank adaptation (LoRA) has become a popular parameter-efficient method for adapting pre-trained TSFMs to downstream data domains. However, it still underperforms in financial data, as it preserves the network architecture and training objective of TSFMs rather than complementing the foundation model. To further enhance TSFMs, we propose a novel refinement module, RefineBridge, built upon a tractable Schrödinger Bridge (SB) generative framework. Given the forecasts of TSFM as generative prior and the observed ground truths as targets, RefineBridge learns context-conditioned stochastic transport maps to improve TSFM predictions, iteratively approaching the ground-truth target from even a low-quality prior. Simulations on multiple financial benchmarks demonstrate that RefineBridge consistently improves the performance of state-of-the-art TSFMs across different prediction horizons.
♻ ☆ Breaking the Exploration Bottleneck: Rubric-Scaffolded Reinforcement Learning for General LLM Reasoning
Recent advances in Large Language Models (LLMs) have underscored the potential of Reinforcement Learning (RL) to facilitate the emergence of reasoning capabilities. Despite the encouraging results, a fundamental dilemma persists as RL improvement relies on learning from high-quality samples, yet the exploration for such samples remains bounded by the inherent limitations of LLMs. This, in effect, creates an undesirable cycle in which what cannot be explored cannot be learned. In this work, we propose Rubric-Scaffolded Reinforcement Learning (RuscaRL), a novel instructional scaffolding framework designed to break the exploration bottleneck for general LLM reasoning. Specifically, RuscaRL introduces checklist-style rubrics as (1) explicit scaffolding for exploration during rollout generation, where different rubrics are provided as external guidance within task instructions to steer diverse high-quality responses. This guidance is gradually decayed over time, encouraging the model to internalize the underlying reasoning patterns; (2) verifiable rewards for exploitation during model training, where we can obtain robust LLM-as-a-Judge scores using rubrics as references, enabling effective RL on general reasoning tasks. Extensive experiments demonstrate the superiority of the proposed RuscaRL across various benchmarks, effectively expanding reasoning boundaries under the Best-of-N evaluation. Our code is available at https://github.com/IANNXANG/RuscaRL.
♻ ☆ Deep Ensembles for Epistemic Uncertainty: A Frequentist Perspective
Decomposing prediction uncertainty into aleatoric (irreducible) and epistemic (reducible) components is critical for the reliable deployment of machine learning systems. While the mutual information between the response variable and model parameters is a principled measure for epistemic uncertainty, it requires access to the parameter posterior, which is computationally challenging to approximate. Consequently, practitioners often rely on probabilistic predictions from deep ensembles to quantify uncertainty, which have demonstrated strong empirical performance. However, a theoretical understanding of their success from a frequentist perspective remains limited. We address this gap by first considering a bootstrap-based estimator for epistemic uncertainty, which we prove is asymptotically correct. Next, we connect deep ensembles to the bootstrap estimator by decomposing it into data variability and training stochasticity; specifically, we show that deep ensembles capture the training stochasticity component. Through empirical studies, we show that this stochasticity component constitutes the majority of epistemic uncertainty, thereby explaining the effectiveness of deep ensembles.
♻ ☆ Quantum latent distributions in deep generative models
Many successful families of generative models leverage a low-dimensional latent distribution that is mapped to a data distribution. Though simple latent distributions are often used, the choice of distribution has a strong impact on model performance. Recent experiments have suggested that the probability distributions produced by quantum processors, which are typically highly correlated and classically intractable, can lead to improved performance on some datasets. However, when and why latent distributions produced by quantum processors can improve performance, and whether these improvements are connected to quantum properties of these distributions, are open questions that we investigate in this work. We show in theory that, under certain conditions, these "quantum latent distributions" enable generative models to produce data distributions that classical latent distributions cannot efficiently produce. We provide intuition as to the underlying mechanisms that could explain a performance advantage on real datasets. Based on this, we perform extensive benchmarking on a synthetic quantum dataset and the QM9 molecular dataset, using both simulated and real photonic quantum processors. We find that the statistics arising from quantum interference lead to improved generative performance compared to classical baselines, suggesting that quantum processors can play a role in expanding the capabilities of deep generative models.
♻ ☆ Monocular pose estimation of articulated open surgery tools -- in the wild
This work presents a framework for monocular 6D pose estimation of surgical instruments in open surgery, addressing challenges such as object articulations, specularity, occlusions, and synthetic-to-real domain adaptation. The proposed approach consists of three main components: $(1)$ synthetic data generation pipeline that incorporates 3D scanning of surgical tools with articulation rigging and physically-based rendering; $(2)$ a tailored pose estimation framework combining tool detection with pose and articulation estimation; and $(3)$ a training strategy on synthetic and real unannotated video data, employing domain adaptation with automatically generated pseudo-labels. Evaluations conducted on real data of open surgery demonstrate the good performance and real-world applicability of the proposed framework, highlighting its potential for integration into medical augmented reality and robotic systems. The approach eliminates the need for extensive manual annotation of real surgical data.
comment: Author Accepted Manuscript (AAM)
♻ ☆ Model Agnostic Differentially Private Causal Inference
Estimating causal effects from observational data is essential in fields such as medicine, economics and social sciences, where privacy concerns are paramount. We propose a general, model-agnostic framework for differentially private estimation of average treatment effects (ATE) that avoids strong structural assumptions on the data-generating process or the models used to estimate propensity scores and conditional outcomes. In contrast to prior work, which enforces differential privacy by directly privatizing these nuisance components, our approach decouples nuisance estimation from privacy protection. This separation allows the use of flexible, state-of-the-art black-box models, while differential privacy is achieved by perturbing only predictions and aggregation steps within a fold-splitting scheme with ensemble techniques. We instantiate the framework for three classical estimators -- the G-Formula, inverse propensity weighting (IPW), and augmented IPW (AIPW) -- and provide formal utility and privacy guarantees, together with privatized confidence intervals. Empirical results on synthetic and real data show that our methods maintain competitive performance under realistic privacy budgets.
♻ ☆ Explainability Methods for Hardware Trojan Detection: A Systematic Comparison
Hardware trojan detection requires accurate identification and interpretable explanations for security engineers to validate and act on results. This work compares three explainability categories for gate-level trojan detection on the Trust-Hub benchmark: (1) domain-aware property-based analysis of 31 circuit-specific features from gate fanin patterns, flip-flop distances, and I/O connectivity; (2) case-based reasoning using k-nearest neighbors for precedent-based explanations; and (3) model-agnostic feature attribution (LIME, SHAP, gradient). Results show different advantages per approach. Property-based analysis provides explanations through circuit concepts like "high fanin complexity near outputs indicates potential triggers." Case-based reasoning achieves 97.4% correspondence between predictions and training exemplars, offering justifications grounded in precedent. LIME and SHAP provide feature attributions with strong inter-method correlation (r=0.94, p<0.001) but lack circuit-level context for validation. XGBoost classification achieves 46.15% precision and 52.17% recall on 11,392 test samples, a 9-fold precision improvement over prior work (Hasegawa et al.: 5.13%) while reducing false positive rates from 5.6% to 0.25%. Gradient-based attribution runs 481 times faster than SHAP but provides similar domain-opaque insights. This work demonstrates that property-based and case-based approaches offer domain alignment and precedent-based interpretability compared to generic feature rankings, with implications for XAI deployment where practitioners must validate ML predictions.
♻ ☆ Are Modern Speech Enhancement Systems Vulnerable to Adversarial Attacks? IEEE
Machine learning approaches for speech enhancement are becoming increasingly expressive, enabling ever more powerful modifications of input signals. In this paper, we demonstrate that this expressiveness introduces a vulnerability: advanced speech enhancement models can be susceptible to adversarial attacks. Specifically, we show that adversarial noise, carefully crafted and psychoacoustically masked by the original input, can be injected such that the enhanced speech output conveys an entirely different semantic meaning. We experimentally verify that contemporary predictive speech enhancement models can indeed be manipulated in this way. Furthermore, we highlight that diffusion models with stochastic samplers exhibit inherent robustness to such adversarial attacks by design.
comment: Copyright 2026 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
♻ ☆ Robust gene prioritization for Dietary Restriction via Fast-mRMR Feature Selection techniques
Gene prioritization (identifying genes potentially associated with a biological process) is increasingly tackled with Artificial Intelligence. However, existing methods struggle with the high dimensionality and incomplete labelling of biomedical data. This work proposes a more robust and efficient pipeline that leverages Fast-mRMR Feature Selection to retain only relevant, non-redundant features for classifiers, building simpler, more interpretable and more efficient models. Experiments in our domain of interest, prioritizing genes related to Dietary Restriction (DR), show significant improvements over existing methods and enables us to integrate heterogeneous biological feature sets for better performance, a strategy that previously degraded performance due to noise accumulation. This work focuses on DR given the availability of curated data and expert knowledge for validation, yet this pipeline would be applicable to other biological processes, proving that feature selection is critical for reliable gene prioritization in high-dimensional omics.
♻ ☆ Optimal Fairness under Local Differential Privacy
We investigate how to optimally design local differential privacy (LDP) mechanisms that reduce data unfairness and thereby improve fairness in downstream classification. We first derive a closed-form optimal mechanism for binary sensitive attributes and then develop a tractable optimization framework that yields the corresponding optimal mechanism for multi-valued attributes. As a theoretical contribution, we establish that for discrimination-accuracy optimal classifiers, reducing data unfairness necessarily leads to lower classification unfairness, thus providing a direct link between privacy-aware pre-processing and classification fairness. Empirically, we demonstrate that our approach consistently outperforms existing LDP mechanisms in reducing data unfairness across diverse datasets and fairness metrics, while maintaining accuracy close to that of non-private models. Moreover, compared with leading pre-processing and post-processing fairness methods, our mechanism achieves a more favorable accuracy-fairness trade-off while simultaneously preserving the privacy of sensitive attributes. Taken together, these results highlight LDP as a principled and effective pre-processing fairness intervention technique.
comment: 21 pages, 6 figures, 2 tables
♻ ☆ ARB-LLM: Alternating Refined Binarizations for Large Language Models
Large Language Models (LLMs) have greatly pushed forward advancements in natural language processing, yet their high memory and computational demands hinder practical deployment. Binarization, as an effective compression technique, can shrink model weights to just 1 bit, significantly reducing the high demands on computation and memory. However, current binarization methods struggle to narrow the distribution gap between binarized and full-precision weights, while also overlooking the column deviation in LLM weight distribution. To tackle these issues, we propose ARB-LLM, a novel 1-bit post-training quantization (PTQ) technique tailored for LLMs. To narrow the distribution shift between binarized and full-precision weights, we first design an alternating refined binarization (ARB) algorithm to progressively update the binarization parameters, which significantly reduces the quantization error. Moreover, considering the pivot role of calibration data and the column deviation in LLM weights, we further extend ARB to ARB-X and ARB-RC. In addition, we refine the weight partition strategy with column-group bitmap (CGB), which further enhance performance. Equipping ARB-X and ARB-RC with CGB, we obtain ARB-LLM$_\text{X}$ and ARB-LLM$_\text{RC}$ respectively, which significantly outperform state-of-the-art (SOTA) binarization methods for LLMs. As a binary PTQ method, our ARB-LLM$_\text{RC}$ is the first to surpass FP16 models of the same size. The code and models will be available at https://github.com/ZHITENGLI/ARB-LLM.
comment: The code and models will be available at https://github.com/ZHITENGLI/ARB-LLM
♻ ☆ DREAMS: Preserving both Local and Global Structure in Dimensionality Reduction
Dimensionality reduction techniques are widely used for visualizing high-dimensional data in two dimensions. Existing methods are typically designed to preserve either local (e.g., $t$-SNE, UMAP) or global (e.g., MDS, PCA) structure of the data, but none of the established methods can represent both aspects well. In this paper, we present DREAMS (Dimensionality Reduction Enhanced Across Multiple Scales), a method that combines the local structure preservation of $t$-SNE with the global structure preservation of PCA via a simple regularization term. Our approach generates a spectrum of embeddings between the locally well-structured $t$-SNE embedding and the globally well-structured PCA embedding, efficiently balancing both local and global structure preservation. We benchmark DREAMS across eleven real-world datasets, showcasing qualitatively and quantitatively its superior ability to preserve structure across multiple scales compared to previous approaches.
comment: Transactions on Machine Learning Research (2026)
♻ ☆ Quasiparticle Interference Kernel Extraction with Variational Autoencoders via Latent Alignment
Quasiparticle interference (QPI) imaging is a powerful tool for probing electronic structures in quantum materials, but extracting the single-scatterer QPI pattern (i.e., the kernel) from a multi-scatterer image remains a fundamentally ill-posed inverse problem, because many different kernels can combine to produce almost the same observed image, and noise or overlaps further obscure the true signal. Existing solutions to this extraction problem rely on manually zooming into small local regions with isolated single-scatterers. This is infeasible for real cases where scattering conditions are too complex. In this work, we propose the first AI-based framework for QPI kernel extraction, which models the space of physically valid kernels and uses this knowledge to guide the inverse mapping. We introduce a two-step learning strategy that decouples kernel representation learning from observation-to-kernel inference. In the first step, we train a variational autoencoder to learn a compact latent space of scattering kernels. In the second step, we align the latent representation of QPI observations with those of the pre-learned kernels using a dedicated encoder. This design enables the model to infer kernels robustly under complex, entangled scattering conditions. We construct a diverse and physically realistic QPI dataset comprising 100 unique kernels and evaluate our method against a direct one-step baseline. Experimental results demonstrate that our approach achieves significantly higher extraction accuracy, improved generalization to unseen kernels. To further validate its effectiveness, we also apply the method to real QPI data from Ag and FeSe samples, where it reliably extracts meaningful kernels under complex scattering conditions.
♻ ☆ PowerGenie: Analytically-Guided Evolutionary Discovery of Superior Reconfigurable Power Converters
Discovering superior circuit topologies requires navigating an exponentially large design space-a challenge traditionally reserved for human experts. Existing AI methods either select from predefined templates or generate novel topologies at a limited scale without rigorous verification, leaving large-scale performance-driven discovery underexplored. We present PowerGenie, a framework for automated discovery of higher-performance reconfigurable power converters at scale. PowerGenie introduces: (1) an automated analytical framework that determines converter functionality and theoretical performance limits without component sizing or SPICE simulation, and (2) an evolutionary finetuning method that co-evolves a generative model with its training distribution through fitness selection and uniqueness verification. Unlike existing methods that suffer from mode collapse and overfitting, our approach achieves higher syntax validity, function validity, novelty rate, and figure-of-merit (FoM). PowerGenie discovers a novel 8-mode reconfigurable converter with 23% higher FoM than the best training topology. SPICE simulations confirm average absolute efficiency gains of 10% across 8 modes and up to 17% at a single mode. Code will be released upon publication.
♻ ☆ The effect of priors on Learning with Restricted Boltzmann Machines
Restricted Boltzmann Machines (RBMs) are generative models designed to learn from data with a rich underlying structure. In this work, we explore a teacher-student setting where a student RBM learns from examples generated by a teacher RBM, with a focus on the effect of the unit priors on learning efficiency. We consider a parametric class of priors that interpolate between continuous (Gaussian) and binary variables. This approach models various possible choices of visible units, hidden units, and weights for both the teacher and student RBMs. By analyzing the phase diagram of the posterior distribution in both the Bayes optimal and mismatched regimes, we demonstrate the existence of a triple point that defines the critical dataset size necessary for learning through generalization. The critical size is strongly influenced by the properties of the teacher, and thus the data, but is unaffected by the properties of the student RBM. Nevertheless, a prudent choice of student priors can facilitate training by expanding the so-called signal retrieval region, where the machine generalizes effectively.
comment: Accepted for publication in Physica A, Volume 674, 130766. -Added references -Corrected typos -Revised section 3, with Monte Carlo simulations supporting the results (unchanged)
♻ ☆ Right for the Right Reasons: Avoiding Reasoning Shortcuts via Prototypical Neurosymbolic AI
Neurosymbolic AI is growing in popularity thanks to its ability to combine neural perception and symbolic reasoning in end-to-end trainable models. However, recent findings reveal these are prone to shortcut reasoning, i.e., to learning unindented concepts--or neural predicates--which exploit spurious correlations to satisfy the symbolic constraints. In this paper, we address reasoning shortcuts at their root cause and we introduce Prototypical Neurosymbolic architectures. These models are able to satisfy the symbolic constraints (be right) because they have learnt the correct basic concepts (for the right reasons) and not because of spurious correlations, even in extremely low data regimes. Leveraging the theory of prototypical learning, we demonstrate that we can effectively avoid reasoning shortcuts by training the models to satisfy the background knowledge while taking into account the similarity of the input with respect to the handful of labelled datapoints. We extensively validate our approach on the recently proposed rsbench benchmark suite in a variety of settings and tasks with very scarce supervision: we show significant improvements in learning the right concepts both in synthetic tasks (MNIST-EvenOdd and Kand-Logic) and real-world, high-stake ones (BDD-OIA). Our findings pave the way to prototype grounding as an effective, annotation-efficient strategy for safe and reliable neurosymbolic learning.
♻ ☆ Tokenization Multiplicity Leads to Arbitrary Price Variation in LLM-as-a-service
Providers of LLM-as-a-service have predominantly adopted a simple pricing model: users pay a fixed price per token. Consequently, one may think that the price two different users would pay for the same output string under the same input prompt is the same. In our work, we show that, surprisingly, this is not (always) true. We find empirical evidence that, particularly for non-english outputs, both proprietary and open-weights LLMs often generate the same (output) string with multiple different tokenizations, even under the same input prompt, and this in turn leads to arbitrary price variation. To address the problem of tokenization multiplicity, we introduce canonical generation, a type of constrained generation that restricts LLMs to only generate canonical tokenizations -- the unique tokenization in which each string is tokenized during the training process of an LLM. Further, we introduce an efficient sampling algorithm for canonical generation based on the Gumbel-Max trick. Experiments on a variety of natural language tasks demonstrate that our sampling algorithm for canonical generation is comparable to standard sampling in terms of performance and runtime, and it solves the problem of tokenization multiplicity.
♻ ☆ The Narrow Gate: Localized Image-Text Communication in Native Multimodal Models NeurIPS 2025
Recent advances in multimodal training have significantly improved the integration of image understanding and generation within a unified model. This study investigates how vision-language models (VLMs) handle image-understanding tasks, focusing on how visual information is processed and transferred to the textual domain. We compare native multimodal VLMs, models trained from scratch on multimodal data to generate both text and images, and non-native multimodal VLMs, models adapted from pre-trained large language models or capable of generating only text, highlighting key differences in information flow. We find that in native multimodal VLMs, image and text embeddings are more separated within the residual stream. Moreover, VLMs differ in how visual information reaches text: non-native multimodal VLMs exhibit a distributed communication pattern, where information is exchanged through multiple image tokens, whereas models trained natively for joint image and text generation tend to rely on a single post-image token that acts as a narrow gate for visual information. We show that ablating this single token significantly deteriorates image-understanding performance, whereas targeted, token-level interventions reliably steer image semantics and downstream text with fine-grained control.
comment: NeurIPS 2025
♻ ☆ ContextFlow: Context-Aware Flow Matching For Trajectory Inference From Spatial Omics Data
Inferring trajectories from longitudinal spatially-resolved omics data is fundamental to understanding the dynamics of structural and functional tissue changes in development, regeneration and repair, disease progression, and response to treatment. We propose ContextFlow, a novel context-aware flow matching framework that incorporates prior knowledge to guide the inference of structural tissue dynamics from spatially resolved omics data. Specifically, ContextFlow integrates local tissue organization and ligand-receptor communication patterns into a transition plausibility matrix that regularizes the optimal transport objective. By embedding these contextual constraints, ContextFlow generates trajectories that are not only statistically consistent but also biologically meaningful, making it a generalizable framework for modeling spatiotemporal dynamics from longitudinal, spatially resolved omics data. Evaluated on three datasets, ContextFlow consistently outperforms state-of-the-art flow matching methods across multiple quantitative and qualitative metrics of inference accuracy and biological coherence. Our code is available at: \href{https://github.com/santanurathod/ContextFlow}{ContextFlow}
comment: 42 pages, 21 figures, 30 tables
♻ ☆ Ravan: Multi-Head Low-Rank Adaptation for Federated Fine-Tuning
Large language models (LLMs) have not yet effectively leveraged the vast amounts of edge-device data, and federated learning (FL) offers a promising paradigm to collaboratively fine-tune LLMs without transferring private edge data to the cloud. To operate within the computation and communication constraints of edge devices, recent literature on federated fine-tuning of LLMs proposes the use of low-rank adaptation (LoRA) and similar parameter-efficient methods. However, LoRA-based methods suffer from accuracy degradation in FL settings, primarily because of data and computational heterogeneity across clients. We propose Ravan, an adaptive multi-head LoRA method that balances parameter efficiency and model expressivity by reparameterizing the weight updates as the sum of multiple LoRA heads $s_i\textbf{B}_i\textbf{H}_i\textbf{A}_i$ in which only the core matrices $\textbf{H}_i$ and their lightweight scaling factors $s_i$ are trained. These trainable scaling factors let the optimization focus on the most useful heads, recovering a higher-rank approximation of the full update without increasing the number of communicated parameters since clients upload $s_i\textbf{H}_i$ directly. Experiments on vision and language benchmarks show that Ravan improves test accuracy by $2-8\%$ over prior parameter-efficient baselines, making it a robust and scalable solution for federated fine-tuning of LLMs.
♻ ☆ AI for Scientific Discovery is a Social Problem
Artificial intelligence (AI) is being increasingly applied to scientific research, but its benefits remain unevenly distributed across different communities and disciplines. While technical challenges such as limited data, fragmented standards, and unequal access to computational resources are already well known, social and institutional factors are often the primary constraints. Narratives emphasizing autonomous "AI scientists," the underrecognition of data and infrastructure work, misaligned incentives, and gaps between domain experts and machine learning researchers all limit the impact of AI on scientific discovery. Four interconnected challenges are highlighted in this paper: community coordination, the misalignment of research priorities with upstream needs, data fragmentation, and infrastructure inequities. We argue that addressing these challenges requires not only technical innovations but also intentional community-building efforts, cross-disciplinary education, shared benchmarks, and accessible infrastructure. We call for reframing AI for science as a collective social project, where sustainable collaboration and equitable participation are treated as prerequisites for achieving technical progress.
comment: Both authors contributed equally
♻ ☆ LAVA: Explainability for Unsupervised Latent Embeddings
Unsupervised black-box models are drivers of scientific discovery, yet are difficult to interpret, as their output is often a multidimensional embedding rather than a well-defined target. While explainability for supervised learning uncovers how input features contribute to predictions, its unsupervised counterpart should relate input features to the structure of the learned embeddings. However, adaptations of supervised model explainability for unsupervised learning provide either single-sample or dataset-summary explanations, remaining too fine-grained or reductive to be meaningful, and cannot explain embeddings without mapping functions. To bridge this gap, we propose LAVA, a post-hoc model-agnostic method to explain local embedding organization through feature covariation in the original input data. LAVA explanations comprise modules, capturing local subpatterns of input feature correlation that reoccur globally across the embeddings. LAVA delivers stable explanations at a desired level of granularity, revealing domain-relevant patterns such as visual parts of images or disease signals in cellular processes, otherwise missed by existing methods.
comment: 41 pages, including references and appendix
♻ ☆ Evidence for Phenotype-Driven Disparities in Freezing of Gait Detection and Approaches to Bias Mitigation
Freezing of gait (FOG) is a debilitating symptom of Parkinson's disease (PD) and a common cause of injurious falls. Recent advances in wearable-based human activity recognition (HAR) enable FOG detection, but bias and fairness in these models remain understudied. Bias refers to systematic errors leading to unequal outcomes, while fairness refers to consistent performance across subject groups. Biased models could systematically underserve patients with specific FOG phenotypes or demographics, potentially widening care disparities. We systematically evaluated bias and fairness of state-of-the-art HAR models for FOG detection across phenotypes and demographics using multi-site datasets. We assessed four mitigation approaches: conventional methods (threshold optimization and adversarial debiasing) and transfer learning approaches (multi-site transfer and fine-tuning large pretrained models). Fairness was quantified using demographic parity ratio (DPR) and equalized odds ratio (EOR). HAR models exhibited substantial bias (DPR & EOR < 0.8) across age, sex, disease duration, and critically, FOG phenotype. Phenotype-specific bias is particularly concerning as tremulous and akinetic FOG require different clinical management. Conventional bias mitigation methods failed: threshold optimization (DPR=-0.126, EOR=+0.063) and adversarial debiasing (DPR=-0.008, EOR=-0.001) showed minimal improvement. In contrast, transfer learning from multi-site datasets significantly improved fairness (DPR=+0.037, p<0.01; EOR=+0.045, p<0.01) and performance (F1-score=+0.020, p<0.05). Transfer learning across diverse datasets is essential for developing equitable HAR models that reliably detect FOG across all patient phenotypes, ensuring wearable-based monitoring benefits all individuals with PD.
comment: Revised manuscript for EJN Special Issue Submission
♻ ☆ Multi-agent Adaptive Mechanism Design
We study a sequential mechanism design problem in which a principal seeks to elicit truthful reports from multiple rational agents while starting with no prior knowledge of agents' beliefs. We introduce Distributionally Robust Adaptive Mechanism (DRAM), a general framework combining insights from both mechanism design and online learning to jointly address truthfulness and cost-optimality. Throughout the sequential game, the mechanism estimates agents' beliefs and iteratively updates a distributionally robust linear program with shrinking ambiguity sets to reduce payments while preserving truthfulness. Our mechanism guarantees truthful reporting with high probability while achieving $\tilde{O}(\sqrt{T})$ cumulative regret, and we establish a matching lower bound showing that no truthful adaptive mechanism can asymptotically do better. The framework generalizes to plug-in estimators, supporting structured priors and delayed feedback. To our knowledge, this is the first adaptive mechanism under general settings that maintains truthfulness and achieves optimal regret when incentive constraints are unknown and must be learned.
♻ ☆ Learning and extrapolating scale-invariant processes
Machine Learning (ML) has deeply changed some fields recently, like Language and Vision and we may expect it to be relevant also to the analysis of of complex systems. Here we want to tackle the question of how and to which extent can one regress scale-free processes, i.e. processes displaying power law behavior, like earthquakes or avalanches? We are interested in predicting the large ones, i.e. rare events in the training set which therefore require extrapolation capabilities of the model. For this we consider two paradigmatic problems that are statistically self-similar. The first one is a 2-dimensional fractional Gaussian field obeying linear dynamics, self-similar by construction and amenable to exact analysis. The second one is the Abelian sandpile model, exhibiting self-organized criticality. The emerging paradigm of Geometric Deep Learning shows that including known symmetries into the model's architecture is key to success. Here one may hope to extrapolate only by leveraging scale invariance. This is however a peculiar symmetry, as it involves possibly non-trivial coarse-graining operations and anomalous scaling. We perform experiments on various existing architectures like U-net, Riesz network (scale invariant by construction), or our own proposals: a wavelet-decomposition based Graph Neural Network (with discrete scale symmetry), a Fourier embedding layer and a Fourier-Mellin Neural Operator. Based on these experiments and a complete characterization of the linear case, we identify the main issues relative to spectral biases and coarse-grained representations, and discuss how to alleviate them with the relevant inductive biases.
comment: 29p, 22 figures
♻ ☆ Multivariate Bayesian Last Layer for Regression with Uncertainty Quantification and Decomposition
We present new Bayesian Last Layer neural network models in the setting of multivariate regression under heteroscedastic noise, and propose EM algorithms for parameter learning. Bayesian modeling of a neural network's final layer has the attractive property of uncertainty quantification with a single forward pass. The proposed framework is capable of disentangling the aleatoric and epistemic uncertainty, and can be used to enhance a canonically trained deep neural network with uncertainty-aware capabilities.
♻ ☆ Laser interferometry as a robust neuromorphic platform for machine learning
We present a method for implementing an optical neural network using only linear optical resources, namely field displacement and interferometry applied to coherent states of light. The nonlinearity required for learning in a neural network is realized via an encoding of the input into phase shifts allowing for far more straightforward experimental implementation compared to previous proposals for, and demonstrations of, $\textit{in situ}$ inference. Beyond $\textit{in situ}$ inference, the method enables $\textit{in situ}$ training by utilizing established techniques like parameter shift rules or physical backpropagation to extract gradients directly from measurements of the linear optical circuit. We also investigate the effect of photon losses and find the model to be very resilient to these.
♻ ☆ M-SGWR: Multiscale Similarity and Geographically Weighted Regression
The first law of geography is a cornerstone of spatial analysis, emphasizing that nearby and related locations tend to be more similar, however, defining what constitutes "near" and "related" remains challenging, as different phenomena exhibit distinct spatial patterns. Traditional local regression models, such as Geographically Weighted Regression (GWR) and Multiscale GWR (MGWR), quantify spatial relationships solely through geographic proximity. In an era of globalization and digital connectivity, however, geographic proximity alone may be insufficient to capture how locations are interconnected. To address this limitation, we propose a new multiscale local regression framework, termed M-SGWR, which characterizes spatial interaction across two dimensions: geographic proximity and attribute (variable) similarity. For each predictor, geographic and attribute-based weight matrices are constructed separately and then combined using an optimized parameter, alpha, which governs their relative contribution to local model fitting. Analogous to variable-specific bandwidths in MGWR, the optimal alpha varies by predictor, allowing the model to flexibly account for geographic, mixed, or non-spatial (remote similarity) effects. Results from two simulation experiments and one empirical application demonstrate that M-SGWR consistently outperforms GWR, SGWR, and MGWR across all goodness-of-fit metrics.
♻ ☆ FactSelfCheck: Fact-Level Black-Box Hallucination Detection for LLMs EACL 2026
Large Language Models (LLMs) frequently generate hallucinated content, posing significant challenges for applications where factuality is crucial. While existing hallucination detection methods typically operate at the sentence level or passage level, we propose FactSelfCheck, a novel zero-resource black-box sampling-based method that enables fine-grained fact-level detection. Our approach represents text as interpretable knowledge graphs consisting of facts in the form of triples, providing clearer insights into content factuality than traditional approaches. Through analyzing factual consistency across multiple LLM responses, we compute fine-grained hallucination scores without requiring external resources or training data. Our evaluation demonstrates that FactSelfCheck performs competitively with leading sentence-level sampling-based methods while providing more detailed and interpretable insights. Most notably, our fact-level approach significantly improves hallucination correction, achieving a 35.5% increase in factual content compared to the baseline, while sentence-level SelfCheckGPT yields only a 10.6% improvement. The granular nature of our detection enables more precise identification and correction of hallucinated content. Additionally, we contribute FavaMultiSamples, a novel dataset that addresses a gap in the field by providing the research community with a second dataset for evaluating sampling-based methods.
comment: Accepted for EACL 2026 (findings)
♻ ☆ Integrating Fourier Neural Operators with Diffusion Models to improve Spectral Representation of Synthetic Earthquake Ground Motion Response
Nuclear reactor buildings must be designed to withstand the dynamic load induced by strong ground motion earthquakes. For this reason, their structural behavior must be assessed in multiple realistic ground shaking scenarios (e.g., the Maximum Credible Earthquake). However, earthquake catalogs and recorded seismograms may not always be available in the region of interest. Therefore, synthetic earthquake ground motion is progressively being employed, although with some due precautions: earthquake physics is sometimes not well enough understood to be accurately reproduced with numerical tools, and the underlying epistemic uncertainties lead to prohibitive computational costs related to model calibration. In this study, we propose an AI physics-based approach to generate synthetic ground motion, based on the combination of a neural operator that approximates the elastodynamics Green's operator in arbitrary source-geology setups, enhanced by a denoising diffusion probabilistic model. The diffusion model is trained to correct the ground motion time series generated by the neural operator. Our results show that such an approach promisingly enhances the realism of the generated synthetic seismograms, with frequency biases and Goodness-Of-Fit (GOF) scores being improved by the diffusion model. This indicates that the latter is capable to mitigate the mid-frequency spectral falloff observed in the time series generated by the neural operator. Our method showcases fast and cheap inference in different site and source conditions.
comment: Presented at D11 - New Technologies (Additive manufacturing, AI, digital twin) D11-TS49 - Machine Learning and Artificial Intelligence 00 - SMiRT 25 - Toronto, Canada. August 10-15, 2025
♻ ☆ Mixed-Precision Training and Compilation for RRAM-based Computing-in-Memory Accelerators DATE
Computing-in-Memory (CIM) accelerators are a promising solution for accelerating Machine Learning (ML) workloads, as they perform Matrix-Vector Multiplications (MVMs) on crossbar arrays directly in memory. Although the bit widths of the crossbar inputs and cells are very limited, most CIM compilers do not support quantization below 8 bit. As a result, a single MVM requires many compute cycles, and weights cannot be efficiently stored in a single crossbar cell. To address this problem, we propose a mixed-precision training and compilation framework for CIM architectures. The biggest challenge is the massive search space, that makes it difficult to find good quantization parameters. This is why we introduce a reinforcement learning-based strategy to find suitable quantization configurations that balance latency and accuracy. In the best case, our approach achieves up to a 2.48x speedup over existing state-of-the-art solutions, with an accuracy loss of only 0.086 %.
comment: PREPRINT - Accepted for publication at the Design, Automation & Test in Europe Conference & Exhibition (DATE), April 20-22, 2026, in Verona, Italy
♻ ☆ From Label Error Detection to Correction: A Modular Framework and Benchmark for Object Detection Datasets
Object detection has advanced rapidly in recent years, driven by increasingly large and diverse datasets. However, label errors often compromise the quality of these datasets and affect the outcomes of training and benchmark evaluations. Although label error detection methods for object detection datasets now exist, they are typically validated only on synthetic benchmarks or via limited manual inspection. How to correct such errors systematically and at scale remains an open problem. We introduce a semi-automated framework for label error correction called Rechecked. Building on existing label error detection methods, their error proposals are reviewed with lightweight, crowd-sourced microtasks. We apply Rechecked to the class pedestrian in the KITTI dataset, for which we crowdsourced high-quality corrected annotations. We detect 18% of missing and inaccurate labels in the original ground truth. We show that current label error detection methods, when combined with our correction framework, can recover hundreds of errors with little human effort compared to annotation from scratch. However, even the best methods still miss up to 66% of the label errors, which motivates further research, now enabled by our released benchmark.
♻ ☆ Agentic reinforcement learning empowers next-generation chemical language models for molecular design and synthesis
Language models are revolutionizing the biochemistry domain, assisting scientists in drug design and chemical synthesis with high efficiency. Yet current approaches struggle between small language models prone to hallucination and limited knowledge retention, and large cloud-based language models plagued by privacy risks and high inference costs. To bridge this gap, we introduce ChemCRAFT, a novel framework leveraging agentic reinforcement learning to decouple chemical reasoning from knowledge storage. Instead of forcing the model to memorize vast chemical data, our approach empowers the language model to interact with a sandbox for precise information retrieval. This externalization of knowledge allows a locally deployable small model to achieve superior performance with minimal inference costs. To enable small language models for agent-calling ability, we build an agentic trajectory construction pipeline and a comprehensive chemical-agent sandbox. Based on sandbox interactions, we constructed ChemToolDataset, the first large-scale chemical tool trajectory dataset. Simultaneously, we propose SMILES-GRPO to build a dense chemical reward function, promoting the model's ability to call chemical agents. Evaluations across diverse aspects of drug design show that ChemCRAFT outperforms current cloud-based LLMs in molecular structure analysis, molecular optimization, and synthesis pathway prediction, demonstrating that scientific reasoning is not solely an emergent ability of model scale, but a learnable policy of tool orchestration. This work establishes a cost-effective and privacy-preserving paradigm for AI-aided chemistry, opening new avenues for accelerating molecular discovery with locally deployable agents. Code available at https://github.com/HowardLi1984/ChemCraft.
comment: Working in Progress, 13 pages, 4 figures
♻ ☆ On uniqueness in structured model learning
This paper addresses the problem of uniqueness in learning physical laws for systems of partial differential equations (PDEs). Contrary to most existing approaches, it considers a framework of structured model learning, where existing, approximately correct physical models are augmented with components that are learned from data. The main results of the paper are a uniqueness and a convergence result that cover a large class of PDEs and a suitable class of neural networks used for approximating the unknown model components. The uniqueness result shows that, in the limit of full, noiseless measurements, a unique identification of the unknown model components as functions is possible as classical regularization-minimizing solutions of the PDE system. This result is complemented by a convergence result showing that model components learned as parameterized neural networks from incomplete, noisy measurements approximate the regularization-minimizing solutions of the PDE system in the limit. These results are possible under specific properties of the approximating neural networks and due to a dedicated choice of regularization. With this, a practical contribution of this analytic paper is to provide a class of model learning frameworks different to standard settings where uniqueness can be expected in the limit of full measurements.
♻ ☆ SpiderNets: Vision Models Predict Human Fear From Aversive Images
Phobias are common and impairing, and exposure therapy, which involves confronting patients with fear-provoking visual stimuli, is the most effective treatment. Scalable computerized exposure therapy requires automated prediction of fear directly from image content to adapt stimulus selection and treatment intensity. Whether such predictions can be made reliably and generalize across individuals and stimuli, however, remains unknown. Here we show that pretrained convolutional and transformer vision models, adapted via transfer learning, accurately predict group-level perceived fear for spider-related images, even when evaluated on new people and new images, achieving a mean absolute error (MAE) below 10 units on the 0-100 fear scale. Visual explanation analyses indicate that predictions are driven by spider-specific regions in the images. Learning-curve analyses show that transformer models are data efficient and approach performance saturation with the available data (~300 images). Prediction errors increase for very low and very high fear levels and within specific categories of images. These results establish transparent, data-driven fear estimation from images, laying the groundwork for adaptive digital mental health tools.
comment: 65 pages (32 main text, 33 appendix), 20 figures (5 in main text, 15 in appendix)
♻ ☆ PSDNorm: Test-Time Temporal Normalization for Deep Learning in Sleep Staging
Distribution shift poses a significant challenge in machine learning, particularly in biomedical applications using data collected across different subjects, institutions, and recording devices, such as sleep data. While existing normalization layers, BatchNorm, LayerNorm and InstanceNorm, help mitigate distribution shifts, when applied over the time dimension they ignore the dependencies and auto-correlation inherent to the vector coefficients they normalize. In this paper, we propose PSDNorm that leverages Monge mapping and temporal context to normalize feature maps in deep learning models for signals. Evaluations with architectures based on U-Net or transformer backbones trained on 10K subjects across 10 datasets, show that PSDNorm achieves state-of-the-art performance on unseen left-out datasets while being more robust to data scarcity.
♻ ☆ A Unified Evaluation Framework for Multi-Annotator Tendency Learning
Recent works have emerged in multi-annotator learning that shift focus from Consensus-oriented Learning (CoL), which aggregates multiple annotations into a single ground-truth prediction, to Individual Tendency Learning (ITL), which models annotator-specific labeling behavior patterns (i.e., tendency) to provide explanation analysis for understanding annotator decisions. However, no evaluation framework currently exists to assess whether ITL methods truly capture individual tendencies and provide meaningful behavioral explanations. To address this gap, we propose the first unified evaluation framework with two novel metrics: (1) Difference of Inter-annotator Consistency (DIC) quantifies how well models capture annotator tendencies by comparing predicted inter-annotator similarity structures with ground-truth; (2) Behavior Alignment Explainability (BAE) evaluates how well model explanations reflect annotator behavior and decision relevance by aligning explainability-derived with ground-truth labeling similarity structures via Multidimensional Scaling (MDS). Extensive experiments validate the effectiveness of our proposed evaluation framework.
comment: 9 pages
♻ ☆ BiasGym: Fantastic LLM Biases and How to Find (and Remove) Them
Understanding biases and stereotypes encoded in the weights of Large Language Models (LLMs) is crucial for developing effective mitigation strategies. However, biased behaviour is often subtle and non-trivial to isolate, even when deliberately elicited, making systematic analysis and debiasing particularly challenging. To address this, we introduce \texttt{BiasGym}, a simple, cost-effective, and generalizable framework for reliably and safely injecting, analyzing, and mitigating conceptual associations of biases within LLMs. \texttt{BiasGym} consists of two components: \texttt{BiasInject}, which safely injects specific biases into the model via token-based fine-tuning while keeping the model frozen, and \texttt{BiasScope}, which leverages these injected signals to identify and reliably steer the components responsible for biased behavior. Our method enables consistent bias elicitation for mechanistic analysis, supports targeted debiasing without degrading performance on downstream tasks, and generalizes to biases unseen during fine-tuning. We demonstrate the effectiveness of BiasGym in reducing real-world stereotypes (e.g., people from Italy being `reckless drivers'), showing its utility for both safety interventions and interpretability research.
comment: Under review
♻ ☆ Multi-Step Knowledge Interaction Analysis via Rank-2 Subspace Disentanglement
Natural Language Explanations (NLEs) describe how Large Language Models (LLMs) make decisions by drawing on external Context Knowledge (CK) and Parametric Knowledge (PK). Understanding the interaction between these sources is key to assessing NLE grounding, yet these dynamics remain underexplored. Prior work has largely focused on (1) single-step generation and (2) modelled PK-CK interaction as a binary choice within a rank-1 subspace. This approach overlooks richer interactions and how they unfold over longer generations, such as complementary or supportive knowledge. We propose a novel rank-2 projection subspace that disentangles PK and CK contributions more accurately and use it for the first multi-step analysis of knowledge interactions across longer NLE sequences. Experiments across four QA datasets and three open-weight LLMs demonstrate that while rank-1 subspaces struggle to represent diverse interactions, our rank-2 formulation captures them effectively, highlighting PK alignment for supportive interactions and CK alignment for conflicting ones. Our multi-step analysis reveals, among others, that hallucinated generations exhibit strong alignment with the PK direction, whereas context-faithful generations maintain a more balanced alignment between PK and CK.
comment: Under review
♻ ☆ Grounding Large Language Models in Interactive Environments with Online Reinforcement Learning ICML 2023
Recent works successfully leveraged Large Language Models' (LLM) abilities to capture abstract knowledge about world's physics to solve decision-making problems. Yet, the alignment between LLMs' knowledge and the environment can be wrong and limit functional competence due to lack of grounding. In this paper, we study an approach (named GLAM) to achieve this alignment through functional grounding: we consider an agent using an LLM as a policy that is progressively updated as the agent interacts with the environment, leveraging online Reinforcement Learning to improve its performance to solve goals. Using an interactive textual environment designed to study higher-level forms of functional grounding, and a set of spatial and navigation tasks, we study several scientific questions: 1) Can LLMs boost sample efficiency for online learning of various RL tasks? 2) How can it boost different forms of generalization? 3) What is the impact of online learning? We study these questions by functionally grounding several variants (size, architecture) of FLAN-T5.
comment: The associated code can be found at https://github.com/flowersteam/Grounding_LLMs_with_online_RL. This is an extended version of the paper published at ICML 2023: https://proceedings.mlr.press/v202/carta23a
♻ ☆ PENEX: AdaBoost-Inspired Neural Network Regularization
AdaBoost sequentially fits so-called weak learners to minimize an exponential loss, which penalizes misclassified data points more severely than other loss functions like cross-entropy. Paradoxically, AdaBoost generalizes well in practice as the number of weak learners grows. In the present work, we introduce Penalized Exponential Loss (PENEX), a new formulation of the multi-class exponential loss that is theoretically grounded and, in contrast to the existing formulation, amenable to optimization via first-order methods, making it a practical objective for training neural networks. We demonstrate that PENEX effectively increases margins of data points, which can be translated into a generalization bound. Empirically, across computer vision and language tasks, PENEX improves neural network generalization in low-data regimes, often matching or outperforming established regularizers at comparable computational cost. Our results highlight the potential of the exponential loss beyond its application in AdaBoost.
♻ ☆ HistoPrism: Unlocking Functional Pathway Analysis from Pan-Cancer Histology via Gene Expression Prediction ICLR2026
Predicting spatial gene expression from H&E histology offers a scalable and clinically accessible alternative to sequencing, but realizing clinical impact requires models that generalize across cancer types and capture biologically coherent signals. Prior work is often limited to per-cancer settings and variance-based evaluation, leaving functional relevance underexplored. We introduce HistoPrism, an efficient transformer-based architecture for pan-cancer prediction of gene expression from histology. To evaluate biological meaning, we introduce a pathway-level benchmark, shifting assessment from isolated gene-level variance to coherent functional pathways. HistoPrism not only surpasses prior state-of-the-art models on highly variable genes , but also more importantly, achieves substantial gains on pathway-level prediction, demonstrating its ability to recover biologically coherent transcriptomic patterns. With strong pan-cancer generalization and improved efficiency, HistoPrism establishes a new standard for clinically relevant transcriptomic modeling from routinely available histology.
comment: Accepted at ICLR2026
♻ ☆ Bounding Hallucinations: Information-Theoretic Guarantees for RAG Systems via Merlin-Arthur Protocols
Retrieval-augmented generation (RAG) relies on retrieved context to guide large language models (LLM), yet treats retrieval as a weak heuristic rather than verifiable evidence -- leading to unsupported answers, hallucinations, and reliance on spurious context. We introduce a novel training framework that treats the RAG pipeline as an interactive proof system by adapting the Merlin-Arthur (M/A) protocol: Arthur (the generator LLM) trains on questions with unknown context provenance and Merlin gives helpful evidence, while Morgana injects adversarial, misleading context. Both use an XAI method to identify and modify evidence most influential to Arthur. This trains Arthur to (1) answer when evidence supports the answer, (2) reject when evidence is insufficient, and (3) rely on the context spans that truly ground the answer. We further introduce a verification framework that disentangles explanation fidelity from model predictive errors, and introduce the Explained Information Fraction (EIF), which normalizes M/A mutual-information guarantees. Across three RAG datasets and multiple LLM families and sizes, M/A training makes LLMs more grounded in evidence, increases information theoretic measures (soundness, completeness) and reject behavior with less hallucinations, without manually annotated unanswerable samples. Finally, the retriever also improves recall and MRR via automatically generated M/A hard positives and negatives. While high accuracy does not guarantee entropy flow from context to answer, our EIF results show that autonomous interactive-proof-style supervision enables RAG systems that treat retrieved documents as verifiable evidence. % rather than suggestions.
comment: 31 pages, 22 figures
♻ ☆ CaloHadronic: a diffusion model for the generation of hadronic showers
Simulating showers of particles in highly-granular calorimeters is a key frontier in the application of machine learning to particle physics. Achieving high accuracy and speed with generative machine learning models can enable them to augment traditional simulations and alleviate a major computing constraint. Recent developments have shown how diffusion based generative shower simulation approaches that do not rely on a fixed structure, but instead generate geometry-independent point clouds, are very efficient. We present a transformer-based extension to previous architectures which were developed for simulating electromagnetic showers in the highly granular electromagnetic calorimeter of the International Large Detector, ILD. The attention mechanism now allows us to generate complex hadronic showers with more pronounced substructure across both the electromagnetic and hadronic calorimeters. This is the first time that machine learning methods are used to holistically generate showers across the electromagnetic and hadronic calorimeter in highly granular imaging calorimeter systems.
♻ ☆ Navigate the Unknown: Enhancing LLM Reasoning with Intrinsic Motivation Guided Exploration
Reinforcement Learning (RL) has become a key approach for enhancing the reasoning capabilities of large language models. However, prevalent RL approaches like proximal policy optimization and group relative policy optimization suffer from sparse, outcome-based rewards and weak exploration incentives, limiting their effectiveness. Specifically, sparse rewards offer limited feedback, especially on difficult problems, and introduce biases favoring familiar trajectories over novel reasoning paths. These issues critically undermine performance on complex tasks that inherently require iterative reasoning. To overcome these challenges, we propose Intrinsic MotivAtion Guided exploratIoN for Enhanced reasoning (IMAGINE), which delivers dense rewards and encourages exploration. IMAGINE introduces three innovations: a trajectory-aware exploration reward that reduces token-level bias efficiently; an error-conditioned reward allocation that promotes efficient exploration on hard samples while stabilizing training; and an advantage-preserving integration mechanism that retains distributional integrity during learning. Experiments on four public datasets show that IMAGINE improves performance by 22.23% on AIME 2024.
♻ ☆ PPO in the Fisher-Rao geometry
Proximal Policy Optimization (PPO) is widely used in reinforcement learning due to its strong empirical performance, yet it lacks formal guarantees for policy improvement and convergence. PPO's clipped surrogate objective is motivated by a lower bound on linearization of the value function in flat geometry setting. We derive a tighter surrogate objective and introduce Fisher-Rao PPO (FR-PPO) by leveraging the Fisher-Rao (FR) geometry. Our scheme provides strong theoretical guarantees, including monotonic policy improvement. In the direct parametrization setting, we show that FR-PPO achieves sub-linear convergence with no dependence on action or state space dimensions, and for parametrized policies we further obtain sub-linear convergence up to the compatible function approximation error. Finally, although our primary focus is theoretical, we also demonstrate empirically that FR-PPO performs well across a range of standard reinforcement learning tasks.
comment: 34 pages; Added section on Natural Policy Gradient. Added numerical experiments
♻ ☆ GNN Explanations that do not Explain and How to find Them ICLR26
Explanations provided by Self-explainable Graph Neural Networks (SE-GNNs) are fundamental for understanding the model's inner workings and for identifying potential misuse of sensitive attributes. Although recent works have highlighted that these explanations can be suboptimal and potentially misleading, a characterization of their failure cases is unavailable. In this work, we identify a critical failure of SE-GNN explanations: explanations can be unambiguously unrelated to how the SE-GNNs infer labels. We show that, on the one hand, many SE-GNNs can achieve optimal true risk while producing these degenerate explanations, and on the other, most faithfulness metrics can fail to identify these failure modes. Our empirical analysis reveals that degenerate explanations can be maliciously planted (allowing an attacker to hide the use of sensitive attributes) and can also emerge naturally, highlighting the need for reliable auditing. To address this, we introduce a novel faithfulness metric that reliably marks degenerate explanations as unfaithful, in both malicious and natural settings. Our code is available in the supplemental.
comment: Accepted at ICLR26
♻ ☆ Explainable histomorphology-based survival prediction of glioblastoma, IDH-wildtype
Glioblastoma, IDH-wildtype (GBM-IDHwt) is the most common malignant brain tumor. Histomorphology is a crucial component of the integrated diagnosis of GBM-IDHwt. Artificial intelligence (AI) methods have shown promise to extract additional prognostic information from histological whole-slide images (WSI) of hematoxylin and eosin-stained glioblastoma tissue. Here, we present an explainable AI-based method to support systematic interpretation of histomorphological features associated with survival. It combines an explainable multiple instance learning (MIL) architecture with a sparse autoencoder (SAE) to relate human-interpretable visual patterns of tissue to survival. The MIL architecture directly identifies prognosis-relevant image tiles and the SAE maps these tiles post-hoc to visual patterns. The MIL method was trained and evaluated using a new real-world dataset that comprised 720 GBM-IDHwt cases from three hospitals and four cancer registries in Germany. The SAE was trained using 1878 WSIs of glioblastoma from five independent public data collections. Despite the many factors influencing survival time, our method showed some ability to discriminate between patients living less than 180 days or more than 360 days solely based on histomorphology (AUC: 0.67; 95% CI: 0.63-0.72). Cox proportional hazards regression confirmed a significant difference in survival time between the predicted groups after adjustment for established prognostic factors (hazard ratio: 1.47; 95% CI: 1.26-1.72). Our method identified multiple interpretable visual patterns associated with survival. Three neuropathologists separately found that 21 of the 24 most strongly associated patterns could be clearly attributed to seven histomorphological categories. Necrosis and hemorrhage appeared to be associated with shorter survival while highly cellular tumor areas were associated with longer survival.
♻ ☆ Comparing and Contrasting DLWP Backbones on Navier-Stokes and Atmospheric Dynamics
A large number of Deep Learning Weather Prediction (DLWP) architectures -- based on various backbones, including U-Net, Transformer, Graph Neural Network, and Fourier Neural Operator (FNO) -- have demonstrated their potential at forecasting atmospheric states. However, due to differences in training protocols, forecast horizons, and data choices, it remains unclear which (if any) of these methods and architectures are most suitable for weather forecasting and for future model development. Here, we step back and provide a detailed empirical analysis, under controlled conditions, comparing and contrasting the most prominent DLWP models, along with their backbones. We accomplish this by predicting synthetic two-dimensional incompressible Navier-Stokes and real-world global weather dynamics. On synthetic data, we observe favorable performance of FNO, while on the real-world WeatherBench dataset, our results demonstrate the suitability of ConvLSTM and SwinTransformer for short-to-mid-ranged forecasts. For long-ranged weather rollouts of up to 50 years, we observe superior stability and physical soundness in architectures that formulate a spherical data representation, i.e., GraphCast and Spherical FNO. The code is available at https://github.com/amazon-science/dlwp-benchmark.
♻ ☆ Thompson Sampling via Fine-Tuning of LLMs ICLR 2026
Bayesian optimization in large unstructured discrete spaces is often hindered by the computational cost of maximizing acquisition functions due to the absence of gradients. We propose a scalable alternative based on Thompson sampling that eliminates the need for acquisition function maximization by directly parameterizing the probability that a candidate yields the maximum reward. Our approach, Thompson Sampling via Fine-Tuning (ToSFiT) leverages the prior knowledge embedded in prompt-conditioned large language models, and incrementally adapts them toward the posterior. Theoretically, we derive a novel regret bound for a variational formulation of Thompson Sampling that matches the strong guarantees of its standard counterpart. Our analysis reveals the critical role of careful adaptation to the posterior probability of maximality -- a principle that underpins our ToSFiT algorithm. Empirically, we validate our method on three diverse tasks: FAQ response refinement, thermally stable protein search, and quantum circuit design. Within a collection of methods covering Bayesian optimization, reinforcement learning, and evolutionary search, ToSFiT exhibits both state-of-the-art sample efficiency and computational efficiency.
comment: accepted at ICLR 2026
♻ ☆ SmartMeterFM: Unifying Smart Meter Data Generative Tasks Using Flow Matching Models
Smart meter data is the foundation for planning and operating the distribution network. Unfortunately, such data are not always available due to privacy regulations. Meanwhile, the collected data may be corrupted due to sensor or transmission failure, or it may not have sufficient resolution for downstream tasks. A wide range of generative tasks is formulated to address these issues, including synthetic data generation, missing data imputation, and super-resolution. Despite the success of machine learning models on these tasks, dedicated models need to be designed and trained for each task, leading to redundancy and inefficiency. In this paper, by recognizing the powerful modeling capability of flow matching models, we propose a new approach to unify diverse smart meter data generative tasks with a single model trained for conditional generation. The proposed flow matching models are trained to generate challenging, high-dimensional time series data, specifically monthly smart meter data at a 15 min resolution. By viewing different generative tasks as distinct forms of partial data observations and injecting them into the generation process, we unify tasks such as imputation and super-resolution with a single model, eliminating the need for re-training. The data generated by our model not only are consistent with the given observations but also remain realistic, showing better performance against interpolation and other machine learning based baselines dedicated to the tasks.
comment: 10 pages, 6 figures, 6 tables
♻ ☆ Unlearning's Blind Spots: Over-Unlearning and Prototypical Relearning Attack
Machine unlearning (MU) aims to expunge a designated forget set from a trained model without costly retraining, yet the existing techniques overlook two critical blind spots: "over-unlearning" that deteriorates retained data near the forget set, and post-hoc "relearning" attacks that aim to resurrect the forgotten knowledge. Focusing on class-level unlearning, we first derive an over-unlearning metric, OU@epsilon, which quantifies collateral damage in regions proximal to the forget set, where over-unlearning mainly appears. Next, we expose an unforeseen relearning threat on MU, i.e., the Prototypical Relearning Attack, which exploits the per-class prototype of the forget class with just a few samples, and easily restores the pre-unlearning performance. To counter both blind spots in class-level unlearning, we introduce Spotter, a plug-and-play objective that combines (i) a masked knowledge-distillation penalty on the nearby region of forget classes to suppress OU@epsilon, and (ii) an intra-class dispersion loss that scatters forget-class embeddings, neutralizing Prototypical Relearning Attacks. Spotter achieves state-of-the-art results across CIFAR, TinyImageNet, and CASIA-WebFace datasets, offering a practical remedy to unlearning's blind spots.
comment: 9 pages, 5 figures, 3 tables
♻ ☆ Unmasking Backdoors: An Explainable Defense via Gradient-Attention Anomaly Scoring for Pre-trained Language Models ICLR 2026
Pre-trained language models have achieved remarkable success across a wide range of natural language processing (NLP) tasks, particularly when fine-tuned on large, domain-relevant datasets. However, they remain vulnerable to backdoor attacks, where adversaries embed malicious behaviors using trigger patterns in the training data. These triggers remain dormant during normal usage, but, when activated, can cause targeted misclassifications. In this work, we investigate the internal behavior of backdoored pre-trained encoder-based language models, focusing on the consistent shift in attention and gradient attribution when processing poisoned inputs; where the trigger token dominates both attention and gradient signals, overriding the surrounding context. We propose an inference-time defense that constructs anomaly scores by combining token-level attention and gradient information. Extensive experiments on text classification tasks across diverse backdoor attack scenarios demonstrate that our method significantly reduces attack success rates compared to existing baselines. Furthermore, we provide an interpretability-driven analysis of the scoring mechanism, shedding light on trigger localization and the robustness of the proposed defense.
comment: 17 pages total (9 pages main text + 6 pages appendix + references), 16 figures. Preprint version; the final camera-ready version may differ. Accepted to ICLR 2026
♻ ☆ TriPlay-RL: Tri-Role Self-Play Reinforcement Learning for LLM Safety Alignment
In recent years, safety risks associated with large language models have become increasingly prominent, highlighting the urgent need to mitigate the generation of toxic and harmful content. The mainstream paradigm for LLM safety alignment typically adopts a collaborative framework involving three roles: an attacker for adversarial prompt generation, a defender for safety defense, and an evaluator for response assessment. In this paper, we propose a closed-loop reinforcement learning framework called TriPlay-RL that enables iterative and co-improving collaboration among three roles with near-zero manual annotation. Experimental results show that the attacker preserves high output diversity while achieving a 20%-50% improvement in adversarial effectiveness; the defender attains 10%-30% gains in safety performance without degrading general reasoning capability; and the evaluator continuously refines its fine-grained judgment ability through iterations, accurately distinguishing unsafe responses, simple refusals, and useful guidance. Overall, our framework establishes an efficient and scalable paradigm for LLM safety alignment, enabling continuous co-evolution within a unified learning loop.
♻ ☆ A VAE Approach to Sample Multivariate Extremes
Generating accurate extremes from an observational data set is crucial when seeking to estimate risks associated with the occurrence of future extremes which could be larger than those already observed. Applications range from the occurrence of natural disasters to financial crashes. Generative approaches from the machine learning community do not apply to extreme samples without careful adaptation. Besides, asymptotic results from extreme value theory (EVT) give a theoretical framework to model multivariate extreme events, especially through the notion of multivariate regular variation. Bridging these two fields, this paper details a variational autoencoder (VAE) approach for sampling multivariate heavy-tailed distributions, i.e., distributions likely to have extremes of particularly large intensities. We illustrate the relevance of our approach on a synthetic data set and on a real data set of discharge measurements along the Danube river network. The latter shows the potential of our approach for flood risks' assessment. In addition to outperforming the standard VAE for the tested data sets, we also provide a comparison with a competing EVT-based generative approach. On the tested cases, our approach improves the learning of the dependency structure between extremes.
♻ ☆ Learning Hamiltonian Flow Maps: Mean Flow Consistency for Large-Timestep Molecular Dynamics
Simulating the long-time evolution of Hamiltonian systems is limited by the small timesteps required for stable numerical integration. To overcome this constraint, we introduce a framework to learn Hamiltonian Flow Maps by predicting the mean phase-space evolution over a chosen time span, enabling stable large-timestep updates far beyond the stability limits of classical integrators. To this end, we impose a Mean Flow consistency condition for time-averaged Hamiltonian dynamics. Unlike prior approaches, this allows training on independent phase-space samples without access to future states, avoiding expensive trajectory generation. Validated across diverse Hamiltonian systems, our method in particular improves upon molecular dynamics simulations using machine-learned force fields (MLFF). Our models maintain comparable training and inference cost, but support significantly larger integration timesteps while trained directly on widely-available trajectory-free MLFF datasets.
♻ ☆ Diverse Approaches to Optimal Execution Schedule Generation
We present the first application of MAP-Elites, a quality-diversity algorithm, to trade execution. Rather than searching for a single optimal policy, MAP-Elites generates a diverse portfolio of regime-specialist strategies indexed by liquidity and volatility conditions. Individual specialists achieve 8-10% performance improvements within their behavioural niches, while other cells show degradation, suggesting opportunities for ensemble approaches that combine improved specialists with the baseline PPO policy. Results indicate that quality-diversity methods offer promise for regime-adaptive execution, though substantial computational resources per behavioural cell may be required for robust specialist development across all market conditions. To ensure experimental integrity, we develop a calibrated Gymnasium environment focused on order scheduling rather than tactical placement decisions. The simulator features a transient impact model with exponential decay and square-root volume scaling, fit to 400+ U.S. equities with $R^2>0.02$ out-of-sample. Within this environment, two Proximal Policy Optimization architectures - both MLP and CNN feature extractors - demonstrate substantial improvements over industry baselines, with the CNN variant achieving 2.13 bps arrival slippage versus 5.23 bps for VWAP on 4,900 out-of-sample orders ($21B notional). These results validate both the simulation realism and provide strong single-policy baselines for quality-diversity methods.
comment: 27 pages, 15 figures, 5 tables, v2: some minor improvements
♻ ☆ FESTA: Functionally Equivalent Sampling for Trust Assessment of Multimodal LLMs EMNLP
The accurate trust assessment of multimodal large language models (MLLMs) generated predictions, which can enable selective prediction and improve user confidence, is challenging due to the diverse multi-modal input paradigms. We propose Functionally Equivalent Sampling for Trust Assessment (FESTA), a multimodal input sampling technique for MLLMs, that generates an uncertainty measure based on the equivalent and complementary input samplings. The proposed task-preserving sampling approach for uncertainty quantification expands the input space to probe the consistency (through equivalent samples) and sensitivity (through complementary samples) of the model. FESTA uses only input-output access of the model (black-box), and does not require ground truth (unsupervised). The experiments are conducted with various off-the-shelf multi-modal LLMs, on both visual and audio reasoning tasks. The proposed FESTA uncertainty estimate achieves significant improvement (33.3% relative improvement for vision-LLMs and 29.6% relative improvement for audio-LLMs) in selective prediction performance, based on area-under-receiver-operating-characteristic curve (AUROC) metric in detecting mispredictions. The code implementation is open-sourced.
comment: Accepted in the Findings of EMNLP, 2025
♻ ☆ Generalization Dynamics of Linear Diffusion Models
Diffusion models are powerful generative models that produce high-quality samples from complex data. While their infinite-data behavior is well understood, their generalization with finite data remains less clear. Classical learning theory predicts that generalization occurs at a sample complexity that is exponential in the dimension, far exceeding practical needs. We address this gap by analyzing diffusion models through the lens of data covariance spectra, which often follow power-law decays, reflecting the hierarchical structure of real data. To understand whether such a hierarchical structure can benefit learning in diffusion models, we develop a theoretical framework based on linear neural networks, congruent with a Gaussian hypothesis on the data. We quantify how the hierarchical organization of variance in the data and regularization impacts generalization. We find two regimes: When $N d$, we find that the sampling distributions of linear diffusion models approach their optimum (measured by the Kullback-Leibler divergence) linearly with $d/N$, independent of the specifics of the data distribution. Our work clarifies how sample complexity governs generalization in a simple model of diffusion-based generative models.
♻ ☆ Physics-Informed Neural Networks and Neural Operators for Parametric PDEs
PDEs arise ubiquitously in science and engineering, where solutions depend on parameters (physical properties, boundary conditions, geometry). Traditional numerical methods require re-solving the PDE for each parameter, making parameter space exploration prohibitively expensive. Recent machine learning advances, particularly physics-informed neural networks (PINNs) and neural operators, have revolutionized parametric PDE solving by learning solution operators that generalize across parameter spaces. We critically analyze two main paradigms: (1) PINNs, which embed physical laws as soft constraints and excel at inverse problems with sparse data, and (2) neural operators (e.g., DeepONet, Fourier Neural Operator), which learn mappings between infinite-dimensional function spaces and achieve unprecedented generalization. Through comparisons across fluid dynamics, solid mechanics, heat transfer, and electromagnetics, we show neural operators can achieve computational speedups of $10^3$ to $10^5$ times faster than traditional solvers for multi-query scenarios, while maintaining comparable accuracy. We provide practical guidance for method selection, discuss theoretical foundations (universal approximation, convergence), and identify critical open challenges: high-dimensional parameters, complex geometries, and out-of-distribution generalization. This work establishes a unified framework for understanding parametric PDE solvers via operator learning, offering a comprehensive, incrementally updated resource for this rapidly evolving field
comment: 61 pages, 3 figures. Submitted to The 1st International Conference on AI Scientists (ICAIS 2025). This revision corrects the bibliography mismatch caused by hallucination issues
♻ ☆ Distributional value gradients for stochastic environments
Gradient-regularized value learning methods improve sample efficiency by leveraging learned models of transition dynamics and rewards to estimate return gradients. However, existing approaches, such as MAGE, struggle in stochastic or noisy environments, limiting their applicability. In this work, we address these limitations by extending distributional reinforcement learning on continuous state-action spaces to model not only the distribution over scalar state-action value functions but also over their gradients. We refer to this approach as Distributional Sobolev Training. Inspired by Stochastic Value Gradients (SVG), our method utilizes a one-step world model of reward and transition distributions implemented via a conditional Variational Autoencoder (cVAE). The proposed framework is sample-based and employs Max-sliced Maximum Mean Discrepancy (MSMMD) to instantiate the distributional Bellman operator. We prove that the Sobolev-augmented Bellman operator is a contraction with a unique fixed point, and highlight a fundamental smoothness trade-off underlying contraction in gradient-aware RL. To validate our method, we first showcase its effectiveness on a simple stochastic reinforcement learning toy problem, then benchmark its performance on several MuJoCo environments.
♻ ☆ ExoMiner++ 2.0: Vetting TESS Full-Frame Image Transit Signals
The Transiting Exoplanet Survey Satellite (TESS) Full-Frame Images (FFIs) provide photometric time series for millions of stars, enabling transit searches beyond the limited set of pre-selected 2-minute targets. However, FFIs present additional challenges for transit identification and vetting. In this work, we apply ExoMiner++ 2.0, an adaptation of the ExoMiner++ framework originally developed for TESS 2-minute data, to FFI light curves. The model is used to perform large-scale planet versus non-planet classification of Threshold Crossing Events across the sectors analyzed in this study. We construct a uniform vetting catalog of all evaluated signals and assess model performance under different observing conditions. We find that ExoMiner++ 2.0 generalizes effectively to the FFI domain, providing robust discrimination between planetary signals, astrophysical false positives, and instrumental artifacts despite the limitations inherent to longer cadence data. This work extends the applicability of ExoMiner++ to the full TESS dataset and supports future population studies and follow-up prioritization.
♻ ☆ A Generalized Information Bottleneck Theory of Deep Learning
The Information Bottleneck (IB) principle offers a compelling theoretical framework to understand how neural networks (NNs) learn. However, its practical utility has been constrained by unresolved theoretical ambiguities and significant challenges in accurate estimation. In this paper, we present a \textit{Generalized Information Bottleneck (GIB)} framework that reformulates the original IB principle through the lens of synergy, i.e., the information obtainable only through joint processing of features. We provide theoretical and empirical evidence demonstrating that synergistic functions achieve superior generalization compared to their non-synergistic counterparts. Building on these foundations we re-formulate the IB using a computable definition of synergy based on the average interaction information (II) of each feature with those remaining. We demonstrate that the original IB objective is upper bounded by our GIB in the case of perfect estimation, ensuring compatibility with existing IB theory while addressing its limitations. Our experimental results demonstrate that GIB consistently exhibits compression phases across a wide range of architectures (including those with \textit{ReLU} activations where the standard IB fails), while yielding interpretable dynamics in both CNNs and Transformers and aligning more closely with our understanding of adversarial robustness.
♻ ☆ An Analysis of Causal Effect Estimation using Outcome Invariant Data Augmentation NeurIPS 2025
The technique of data augmentation (DA) is often used in machine learning for regularization purposes to better generalize under i.i.d. settings. In this work, we present a unifying framework with topics in causal inference to make a case for the use of DA beyond just the i.i.d. setting, but for generalization across interventions as well. Specifically, we argue that when the outcome generating mechanism is invariant to our choice of DA, then such augmentations can effectively be thought of as interventions on the treatment generating mechanism itself. This can potentially help to reduce bias in causal effect estimation arising from hidden confounders. In the presence of such unobserved confounding we typically make use of instrumental variables (IVs) -- sources of treatment randomization that are conditionally independent of the outcome. However, IVs may not be as readily available as DA for many applications, which is the main motivation behind this work. By appropriately regularizing IV based estimators, we introduce the concept of IV-like (IVL) regression for mitigating confounding bias and improving predictive performance across interventions even when certain IV properties are relaxed. Finally, we cast parameterized DA as an IVL regression problem and show that when used in composition can simulate a worst-case application of such DA, further improving performance on causal estimation and generalization tasks beyond what simple DA may offer. This is shown both theoretically for the population case and via simulation experiments for the finite sample case using a simple linear example. We also present real data experiments to support our case.
comment: Accepted at NeurIPS 2025
♻ ☆ TorchCP: A Python Library for Conformal Prediction
Conformal prediction (CP) is a powerful statistical framework that generates prediction intervals or sets with guaranteed coverage probability. While CP algorithms have evolved beyond traditional classifiers and regressors to sophisticated deep learning models like deep neural networks (DNNs), graph neural networks (GNNs), and large language models (LLMs), existing CP libraries often lack the model support and scalability for large-scale deep learning (DL) scenarios. This paper introduces TorchCP, a PyTorch-native library designed to integrate state-of-the-art CP algorithms into DL techniques, including DNN-based classifiers/regressors, GNNs, and LLMs. Released under the LGPL-3.0 license, TorchCP comprises about 16k lines of code, validated with 100\% unit test coverage and detailed documentation. Notably, TorchCP enables CP-specific training algorithms, online prediction, and GPU-accelerated batch processing, achieving up to 90\% reduction in inference time on large datasets. With its low-coupling design, comprehensive suite of advanced methods, and full GPU scalability, TorchCP empowers researchers and practitioners to enhance uncertainty quantification across cutting-edge applications.
♻ ☆ Optimal Transport under Group Fairness Constraints
Ensuring fairness in matching algorithms is a key challenge in allocating scarce resources and positions. Focusing on Optimal Transport (OT), we introduce a novel notion of group fairness requiring that the probability of matching two individuals from any two given groups in the OT plan satisfies a predefined target. We first propose a modified Sinkhorn algorithm to compute perfectly fair transport plans efficiently. Since exact fairness can significantly degrade matching quality in practice, we then develop two relaxation strategies. The first one involves solving a penalized OT problem, for which we derive novel finite-sample complexity guarantees. Our second strategy leverages bilevel optimization to learn a ground cost that induces a fair OT solution, and we establish a bound on the deviation of fairness when matching unseen data. Finally, we present empirical results illustrating the performance of our approaches and the trade-off between fairness and transport cost.
♻ ☆ CiMRAG: CiM-Aware Domain-Adaptive and Noise-Resilient Retrieval-Augmented Generation for Edge-Based LLMs ICASSP 2026
Personalized virtual assistants powered by large language models (LLMs) on edge devices are attracting growing attention, with Retrieval-Augmented Generation (RAG) emerging as a key method for personalization by retrieving relevant profile data and generating tailored responses. However, deploying RAG on edge devices faces efficiency hurdles due to the rapid growth of profile data, such as user-LLM interactions and recent updates. While Computing-in-Memory (CiM) architectures mitigate this bottleneck by eliminating data movement between memory and processing units via in-situ operations, they are susceptible to environmental noise that can degrade retrieval precision. This poses a critical issue in dynamic, multi-domain edge-based scenarios (e.g., travel, medicine, and law) where both accuracy and adaptability are paramount. To address these challenges, we propose Task-Oriented Noise-resilient Embedding Learning (TONEL), a framework that improves noise robustness and domain adaptability for RAG in noisy edge environments. TONEL employs a noise-aware projection model to learn task-specific embeddings compatible with CiM hardware constraints, enabling accurate retrieval under noisy conditions. Extensive experiments conducted on personalization benchmarks demonstrate the effectiveness and practicality of our methods relative to strong baselines, especially in task-specific noisy scenarios.
comment: Accepted by ICASSP 2026
♻ ☆ On the Provable Performance Guarantee of Efficient Reasoning Models
Large reasoning models (LRMs) have achieved remarkable progress in complex problem-solving tasks. Despite this success, LRMs typically suffer from high computational costs during deployment, highlighting a need for efficient inference. A practical direction of efficiency improvement is to switch the LRM between thinking and non-thinking modes dynamically. However, such approaches often introduce additional reasoning errors and lack statistical guarantees for the performance loss, which are critical for high-stakes applications. In this work, we propose Probably Approximately Correct (PAC) reasoning that controls the performance loss under the user-specified tolerance. Specifically, we construct an upper confidence bound on the performance loss and determine a threshold for switching to the non-thinking model. Theoretically, using the threshold to switch between the thinking and non-thinking modes ensures bounded performance loss in a distribution-free manner. Our comprehensive experiments on reasoning benchmarks show that the proposed method can save computational budgets and control the user-specified performance loss.
♻ ☆ The Blueprints of Intelligence: A Functional-Topological Foundation for Perception and Representation
Real-world phenomena do not generate arbitrary variability: their signals concentrate on compact, low-variability subsets of functional space, enabling rapid generalization from few examples. A small child can recognize a dog after extremely limited exposure because the perceptual manifold of "dog" is compact, structured, and low-dimensional. We formalize this principle through a deterministic functional-topological framework in which the set of valid realizations produced by a physical process forms a compact subset of a Banach space, endowed with stable invariants, a finite Hausdorff radius, and an induced continuous perceptual functional. This geometry provides explicit limits on knowledge, conditions for identifiability, and guarantees for generalization from sparse evidence -- properties fundamental to both natural and artificial intelligence. Across electromechanical, electrochemical, and physiological domains, we show that real-world processes consistently generate compact perceptual manifolds with the same geometric characteristics. Their boundaries can be discovered in a fully self-supervised manner as the empirical radius saturates with increasing sampling, even when the governing equations are unknown. These results demonstrate that deterministic functional topology offers a unified mathematical foundation for perception, representation, and world-model construction. It provides a geometric explanation for why biological learners and self-supervised AI systems can generalize from few observations, and establishes compact perceptual manifolds as a fundamental building block for future AI architectures. Finally, this work unifies biological perception and modern self-supervised models under a single geometric principle: both derive their generalization ability from the compactness and invariants of real-world perceptual manifolds.
comment: 35 pages, 6 figures. This preprint develops a deterministic functional-topological framework showing that physical systems generate compact perceptual manifolds with finite radius. We provide theory, Monte-Carlo estimators, and validation across PM, battery, and ECG domains, unifying biological perception and self-supervised AI
♻ ☆ Diffusion-Driven Synthetic Tabular Data Generation for Enhanced DoS/DDoS Attack Classification
Class imbalance refers to a situation where certain classes in a dataset have significantly fewer samples than oth- ers, leading to biased model performance. Class imbalance in network intrusion detection using Tabular Denoising Diffusion Probability Models (TabDDPM) for data augmentation is ad- dressed in this paper. Our approach synthesizes high-fidelity minority-class samples from the CIC-IDS2017 dataset through iterative denoising processes. For the minority classes that have smaller samples, synthetic samples were generated and merged with the original dataset. The augmented training data enables an ANN classifier to achieve near-perfect recall on previously underrepresented attack classes. These results establish diffusion models as an effective solution for tabular data imbalance in security domains, with potential applications in fraud detection and medical diagnostics.
comment: This preprint is being withdrawn due to substantial revisions in methodology and experimental results. A corrected and extended version will be submitted in the future
♻ ☆ Representation Learning for Extrapolation in Perturbation Modeling ICLR'25
We consider the problem of modeling the effects of perturbations, such as gene knockdowns or drugs, on measurements, such as single-cell RNA or protein counts. Given data for some perturbations, we aim to predict the distribution of measurements for new combinations of perturbations. To address this challenging extrapolation task, we posit that perturbations act additively in a suitable, unknown embedding space. We formulate the data-generating process as a latent variable model, in which perturbations amount to mean shifts in latent space and can be combined additively. We then prove that, given sufficiently diverse training perturbations, the representation and perturbation effects are identifiable up to orthogonal transformation and use this to characterize the class of unseen perturbations for which we obtain extrapolation guarantees. We establish a link between our model class and shift interventions in linear latent causal models. To estimate the model from data, we propose a new method, the perturbation distribution autoencoder (PDAE), which is trained by maximizing the distributional similarity between true and simulated perturbation distributions. The trained model can then be used to predict previously unseen perturbation distributions. Through simulations, we demonstrate that PDAE can accurately predict the effects of unseen but identifiable perturbations, supporting our theoretical results.
comment: Preprint; previous version presented at the ICLR'25 Workshop on Learning Meaningful Representations of Life
♻ ☆ Training Dynamics Impact Post-Training Quantization Robustness
While post-training quantization is widely adopted for efficient deployment of large language models, the mechanisms underlying quantization robustness remain unclear. We conduct a comprehensive analysis of quantization degradation across open-source language model training trajectories up to 32B parameters and 15T training tokens to accurately assess the relationship between training dynamics and quantization performance. Our key finding is that quantization errors in large-scale training runs are driven by a complex interplay between learning rate and other training hyperparameters. Specifically, once learning rates decay, validation loss and quantization error diverge, largely independent of training data scale. To investigate interventions on the training dynamics and identify specific configurations that can modulate quantization robustness favorably, we train our own models in controlled experiments up to 100B tokens. Our results challenge the assumption that increasing dataset scale inherently compromises quantization effectiveness, demonstrating instead that strategic training hyperparameter interventions can improve quantization quality at scale.
♻ ☆ Kalman Filter Enhanced GRPO for Reinforcement Learning-Based Language Model Reasoning
The advantage function is a central concept in RL that helps reduce variance in policy gradient estimates. Recently, for language modeling, Group Relative Policy Optimization (GRPO) was proposed to compute the advantage for each output by subtracting the mean reward, as the baseline, for all outputs in the group. However, it can lead to high variance when the reward advantage is inaccurately estimated. In this work, we propose Kalman Filter Enhanced Group Relative Policy Optimization (KRPO) model, by using lightweight Kalman filtering to dynamically estimate the latent reward baseline and uncertainty. This filtering technique replaces the naive group mean, enabling more adaptive advantage normalization. Our method does not require additional learned parameters over GRPO. This approach offers a simple yet effective way to incorporate group-level uncertainty for advantage estimation, improving policy optimization in settings where highly dynamic reward signals are difficult to model for language models. Through the accuracies and rewards obtained from math question answering and reasoning, we show that using a more adaptive advantage estimation model, KRPO can improve the performance and show more stable return curves upon GRPO. The code is available at https://github.com/billhhh/KRPO_LLMs_RL.
♻ ☆ Generation Enhances Understanding in Unified Multimodal Models via Multi-Representation Generation
Unified Multimodal Models (UMMs) integrate both visual understanding and generation within a single framework. Their ultimate aspiration is to create a cycle where understanding and generation mutually reinforce each other. While recent post-training methods have successfully leveraged understanding to enhance generation, the reverse direction of utilizing generation to improve understanding remains largely unexplored. In this work, we propose UniMRG (Unified Multi-Representation Generation), a simple yet effective architecture-agnostic post-training method. UniMRG enhances the understanding capabilities of UMMs by incorporating auxiliary generation tasks. Specifically, we train UMMs to generate multiple intrinsic representations of input images, namely pixel (reconstruction), depth (geometry), and segmentation (structure), alongside standard visual understanding objectives. By synthesizing these diverse representations, UMMs capture complementary information regarding appearance, spatial relations, and structural layout. Consequently, UMMs develop a deeper and more comprehensive understanding of visual inputs. Extensive experiments across diverse UMM architectures demonstrate that our method notably enhances fine-grained perception, reduces hallucinations, and improves spatial understanding, while simultaneously boosting generation capabilities.
♻ ☆ Effective LoRA Adapter Routing using Task Representations
Low-rank adaptation (LoRA) enables parameter efficient specialization of large language models (LLMs) through modular adapters, resulting in rapidly growing public adapter pools spanning diverse tasks. Effectively using these adapters requires routing: selecting and composing the appropriate adapters for a query. We introduce LORAUTER, a novel routing framework that selects and composes LoRA adapters using task representations rather than adapter characteristics. Unlike existing approaches that map queries directly to adapters, LORAUTER routes queries via task embeddings derived from small validation sets and does not require adapter training data. By operating at the task level, LORAUTER achieves efficient routing that scales with the number of tasks rather than the number of adapters. Experiments across multiple tasks show that LORAUTER consistently outperforms baseline routing approaches, matching Oracle performance (101.2%) when task-aligned adapters exist and achieving state-of-the-art results on unseen tasks (+5.2 points). We further demonstrate the robustness of LORAUTER to very large, noisy adapter pools by scaling it to over 1500 adapters.
♻ ☆ IRPM: Intergroup Relative Preference Modeling for Pointwise Generative Reward Models
Generative Reward Models (GRMs) have demonstrated strong performance in reward modeling, due to their interpretability and potential for refinement through reinforcement learning (RL). However, widely used pairwise GRMs create a computational bottleneck in reinforcement learning from human feedback (RLHF), when calibrating or aggregating preference signals over n candidates, often incurring O(n^2) pairwise judgments. To address this issue, we propose Intergroup Relative Preference Modeling (IRPM), an RL-based method that extends the Bradley--Terry preference-learning paradigm via intergroup comparisons to train pointwise GRMs from pairwise preference data. IRPM derives pointwise reward for each response by contrasting groups of chosen vs. rejected samples, enabling pointwise scores comparable across candidate sets and O(n) reward evaluation for a variable number of candidates during RL training, while preserving interpretability and scalability. Experiments show that IRPM achieves state-of-the-art performance among pointwise GRMs on RM-Bench, JudgeBench and RewardBench, and approaches the performance of leading pairwise GRMs. In addition, IRPM achieves substantial gains in post-training evaluations, demonstrating its effectiveness.
comment: Comments: Updated title for clarity; improved theoretical derivations; added experiments at additional parameter scales and more ablations; added experimental details in the appendix; updated author list (added five co-authors) to reflect contributions to experiments and writing
♻ ☆ Metis-SPECS: Decoupling Multimodal Learning via Self-distilled Preference-based Cold Start ICLR 2026
Reinforcement learning (RL) with verifiable rewards has recently catalyzed a wave of "MLLM-r1" approaches that bring RL to vision language models. Most representative paradigms begin with a cold start, typically employing supervised fine-tuning (SFT), to initialize the policy before RL. However, SFT-based cold start adopts the reasoning paradigm intertwined with task solution and output format, which may induce instruction-style overfitting, weakens out-of-distribution generalization, and ultimately affects downstream RL. We revisit the cold start along two views, its training method and data construction, and introduce the Generalization Factor (GF) coefficient to quantify the generalization capability under different methods. Our empirical study finds that preference-based training methods (e.g. DPO) generalizes better than SFT-based methods in cold start. Motivated by this, we propose SPECS-a Self-distilled, Preference-based Cold Start framework that decouples multimodal learning: (1) generates introspective preference data pairs via self-distillation, avoiding reliance on larger teachers or manual annotation; (2) performs preference-based training to learn, focusing on shallow, transferable surface-form criteria (format, structure, style) rather than memorizing content; and (3) hands off to RL with verifiable rewards for deep reasoning results. Experimental results across multiple multimodal benchmarks show that our decoupling learning framework yields consistent performance gains over strong baselines, improving MEGA-Bench by 4.1% and MathVista by 12.2%. Additional experiments indicate that SPECS contributes to reducing in-distribution "stuckness," improving exploration, stabilizing training, and raising the performance ceiling. Project Page: https://kwen-chen.github.io/SPECS-VL/
comment: Published as a conference paper at ICLR 2026!
♻ ☆ L$^3$: Large Lookup Layers
Modern sparse language models typically achieve sparsity through Mixture-of-Experts (MoE) layers, which dynamically route tokens to dense MLP "experts." However, dynamic hard routing has a number of drawbacks, such as potentially poor hardware efficiency and needing auxiliary losses for stable training. In contrast, the tokenizer embedding table, which is natively sparse, largely avoids these issues by selecting a single embedding per token at the cost of not having contextual information. In this work, we introduce the Large Lookup Layer (L$^3$), which unlocks a new axis of sparsity by generalizing embedding tables to model decoder layers. L$^3$ layers use static token-based routing to aggregate a set of learned embeddings per token in a context-dependent way, allowing the model to efficiently balance memory and compute by caching information in embeddings. L$^3$ has two main components: (1) a systems-friendly architecture that allows for fast training and CPU-offloaded inference with no overhead, and (2) an information-theoretic embedding allocation algorithm that effectively balances speed and quality. We empirically test L$^3$ by training transformers with up to 2.6B active parameters and find that L$^3$ strongly outperforms both dense models and iso-sparse MoEs in both language modeling and downstream tasks.
comment: Preprint
♻ ☆ Tuning-Free Structured Sparse Recovery of Multiple Measurement Vectors using Implicit Regularization
Recovering jointly sparse signals in the multiple measurement vectors (MMV) setting is a fundamental problem in machine learning, but traditional methods often require careful parameter tuning or prior knowledge of the sparsity of the signal and/or noise variance. We propose a tuning-free framework that leverages implicit regularization (IR) from overparameterization to overcome this limitation. Our approach reparameterizes the estimation matrix into factors that decouple the shared row-support from individual vector entries and applies gradient descent to a standard least-squares objective. We prove that with a sufficiently small and balanced initialization, the optimization dynamics exhibit a "momentum-like" effect where the true support grows significantly faster. Leveraging a Lyapunov-based analysis of the gradient flow, we further establish formal guarantees that the solution trajectory converges towards an idealized row-sparse solution. Empirical results demonstrate that our tuning-free approach achieves performance comparable to optimally tuned established methods. Furthermore, our framework significantly outperforms these baselines in scenarios where accurate priors are unavailable to the baselines.
♻ ☆ Soft-Label Caching and Sharpening for Communication-Efficient Federated Distillation IEEE
Federated Learning (FL) enables collaborative model training across decentralized clients, enhancing privacy by keeping data local. Yet conventional FL, relying on frequent parameter-sharing, suffers from high communication overhead and limited model heterogeneity. Distillation-based FL approaches address these issues by sharing predictions (soft-labels, i.e., normalized probability distributions) instead, but they often involve redundant transmissions across communication rounds, reducing efficiency. We propose SCARLET, a novel framework integrating synchronized soft-label caching and an enhanced Entropy Reduction Aggregation (Enhanced ERA) mechanism. SCARLET minimizes redundant communication by reusing cached soft-labels, achieving up to 50% reduction in communication costs compared to existing methods while maintaining competitive accuracy. Enhanced ERA resolves the fundamental instability of conventional temperature-based aggregation, ensuring robust control and high performance in diverse client scenarios. Experimental evaluations demonstrate that SCARLET consistently outperforms state-of-the-art distillation-based FL methods in terms of accuracy and communication efficiency. The implementation of SCARLET is publicly available at https://github.com/kitsuyaazuma/SCARLET.
comment: 23 pages, 18 figures. Accepted to IEEE Transactions on Mobile Computing (TMC)
♻ ☆ Generalizable Multimodal Large Language Model Editing via Invariant Trajectory Learning
Knowledge editing emerges as a crucial technique for efficiently correcting incorrect or outdated knowledge in large language models (LLM). Existing editing methods rely on a rigid mapping from parameter or module modifications to output, which causes the generalization limitation in Multimodal LLM (MLLM). In this paper, we reformulate MLLM editing as an out-of-distribution (OOD) generalization problem, where the goal is to discern semantic shift with factual shift and thus achieve robust editing among diverse cross-modal prompting. The key challenge of this OOD problem lies in identifying invariant causal trajectories that generalize accurately while suppressing spurious correlations. To address it, we propose ODEdit, a plug-and-play invariant learning based framework that optimizes the tripartite OOD risk objective to simultaneously enhance editing reliability, locality, and generality.We further introduce an edit trajectory invariant learning method, which integrates a total variation penalty into the risk minimization objective to stabilize edit trajectories against environmental variations. Theoretical analysis and extensive experiments demonstrate the effectiveness of ODEdit.
♻ ☆ Conformal Prediction Algorithms for Time Series Forecasting: Methods and Benchmarking
Reliable uncertainty quantification is of critical importance in time series forecasting, yet traditional methods often rely on restrictive distributional assumptions. Conformal prediction (CP) has emerged as a promising distribution-free framework for generating prediction intervals with rigorous theoretical guarantees. However, applying CP to sequential data presents a primary challenge: the temporal dependencies inherent in time series fundamentally violate the core assumption of data exchangeability, upon which standard CP guarantees are built. This paper critically examines the main categories of algorithmic solutions designed to address this conflict. We survey and benchmark methods that relax the exchangeability assumption, those that redefine the data unit to be a collection of independent time series, approaches that explicitly model the dynamics of the prediction residuals, and online learning algorithms that adapt to distribution shifts to maintain long-run coverage. We use AutoARIMA as the base forecaster on a large-scale monthly sales dataset, evaluating marginal coverage, interval width, and the Winkler score. Our benchmark results show that multi-step split conformal prediction method meets the 90% coverage threshold and demonstrates the best efficiency.
♻ ☆ Thoughtbubbles: an Unsupervised Method for Parallel Thinking in Latent Space
Current approaches for scaling inference-time compute in transformers train them to emit explicit chain-of-thought tokens before producing an answer. While these methods are powerful, they are limited because they cannot be applied during pretraining and rely solely on serially-generated, natural-language verbalization. In this work, we propose Thoughtbubbles, a transformer variant that natively performs parallel adaptive computation in latent space by learning to fork or delete residual streams. Thus, tokens requiring more computation can form a "bubble" of cloned residuals in the middle of the network. Crucially, this behavior is learned during pretraining with only language modeling loss. Using half of the training budget, Thoughtbubbles outperforms the perplexity and zero-shot evals of both standard decoder LMs and those using non-adaptive parallel computation approaches. These results hold across model sizes from 150M to 1.9B. Thoughtbubbles achieves competitive GSM8K results using half of the baseline's token budget. The implicit nature of our method enables models to begin learning adaptive computation at pretraining time, paving the way to unified train-time and test-time scaling behaviors.
♻ ☆ Spatially-Adaptive Gradient Re-parameterization for 3D Large Kernel Optimization
Large kernel convolutions offer a scalable alternative to vision transformers for high-resolution 3D volumetric analysis, yet naively increasing kernel size often leads to optimization instability. Motivated by the spatial bias inherent in effective receptive fields (ERFs), we theoretically demonstrate that structurally re-parameterized blocks induce spatially varying learning rates that are crucial for convergence. Leveraging this insight, we introduce Rep3D, a framework that employs a lightweight modulation network to generate receptive-biased scaling masks, adaptively re-weighting kernel updates within a plain encoder architecture. This approach unifies spatial inductive bias with optimization-aware learning, avoiding the complexity of multi-branch designs while ensuring robust local-to-global convergence. Extensive evaluations on five 3D segmentation benchmarks demonstrate that Rep3D consistently outperforms state-of-the-art transformer and fixed-prior baselines. The source code is publicly available at https://github.com/leeh43/Rep3D.
comment: 17 pages
♻ ☆ Text-only adaptation in LLM-based ASR through text denoising ICASSP 2026
Adapting automatic speech recognition (ASR) systems based on large language models (LLMs) to new domains using text-only data is a significant yet underexplored challenge. Standard fine-tuning of the LLM on target-domain text often disrupts the critical alignment between speech and text modalities learned by the projector, degrading performance. We introduce a novel text-only adaptation method that emulates the audio projection task by treating it as a text denoising task. Our approach thus trains the LLM to recover clean transcripts from noisy inputs. This process effectively adapts the model to a target domain while preserving cross-modal alignment. Our solution is lightweight, requiring no architectural changes or additional parameters. Extensive evaluation on two datasets demonstrates up to 22.1% relative improvement, outperforming recent state-of-the-art text-only adaptation methods.
comment: Paper accepted at ICASSP 2026
♻ ☆ Diff-MN: Diffusion Parameterized MoE-NCDE for Continuous Time Series Generation with Irregular Observations
Time series generation (TSG) is widely used across domains, yet most existing methods assume regular sampling and fixed output resolutions. These assumptions are often violated in practice, where observations are irregular and sparse, while downstream applications require continuous and high-resolution TS. Although Neural Controlled Differential Equation (NCDE) is promising for modeling irregular TS, it is constrained by a single dynamics function, tightly coupled optimization, and limited ability to adapt learned dynamics to newly generated samples from the generative model. We propose Diff-MN, a continuous TSG framework that enhances NCDE with a Mixture-of-Experts (MoE) dynamics function and a decoupled architectural design for dynamics-focused training. To further enable NCDE to generalize to newly generated samples, Diff-MN employs a diffusion model to parameterize the NCDE temporal dynamics parameters (MoE weights), i.e., jointly learn the distribution of TS data and MoE weights. This design allows sample-specific NCDE parameters to be generated for continuous TS generation. Experiments on ten public and synthetic datasets demonstrate that Diff-MN consistently outperforms strong baselines on both irregular-to-regular and irregular-to-continuous TSG tasks. The code is available at the link https://github.com/microsoft/TimeCraft/tree/main/Diff-MN.
comment: 24 pages
♻ ☆ Feature Space Topology Control via Hopkins Loss IEEE
Feature space topology refers to the organization of samples within the feature space. Modifying this topology can be beneficial in machine learning applications, including dimensionality reduction, generative modeling, transfer learning, and robustness to adversarial attacks. This paper introduces a novel loss function, Hopkins loss, which leverages the Hopkins statistic to enforce a desired feature space topology, which is in contrast to existing topology-related methods that aim to preserve input feature topology. We evaluate the effectiveness of Hopkins loss on speech, text, and image data in two scenarios: classification and dimensionality reduction using nonlinear bottleneck autoencoders. Our experiments show that integrating Hopkins loss into classification or dimensionality reduction has only a small impact on classification performance while providing the benefit of modifying feature topology.
comment: Accepted for publication in Proc. IEEE ICTAI 2025, Athens, Greece
♻ ☆ Direct Bias-Correction Term Estimation for Average Treatment Effect Estimation
This study considers the estimation of the direct bias-correction term for estimating the average treatment effect (ATE). Let $\{(X_i, D_i, Y_i)\}_{i=1}^{n}$ be the observations, where $X_i$ denotes $K$-dimensional covariates, $D_i \in \{0, 1\}$ denotes a binary treatment assignment indicator, and $Y_i$ denotes an outcome. In ATE estimation, $h_0(D_i, X_i) = \frac{1[D_i = 1]}{e_0(X_i)} - \frac{1[D_i = 0]}{1 - e_0(X_i)}$ is called the bias-correction term, where $e_0(X_i)$ is the propensity score. The bias-correction term is also referred to as the Riesz representer or clever covariates, depending on the literature, and plays an important role in construction of efficient ATE estimators. In this study, we propose estimating $h_0$ by directly minimizing the Bregman divergence between its model and $h_0$, which includes squared error and Kullback--Leibler divergence as special cases. Our proposed method is inspired by direct density ratio estimation methods and generalizes existing bias-correction term estimation methods, such as covariate balancing weights, Riesz regression, and nearest neighbor matching. Importantly, under specific choices of bias-correction term models and Bregman divergence, we can automatically ensure the covariate balancing property. Thus, our study provides a practical modeling and estimation approach through a generalization of existing methods.
♻ ☆ Bias-Optimal Bounds for SGD: A Computer-Aided Lyapunov Analysis
The non-asymptotic analysis of Stochastic Gradient Descent (SGD) typically yields bounds that decompose into a bias term and a variance term. In this work, we focus on the bias component and study the extent to which SGD can match the optimal convergence behavior of deterministic gradient descent. Assuming only (strong) convexity and smoothness of the objective, we derive new bounds that are bias-optimal, in the sense that the bias term coincides with the worst-case rate of gradient descent. Our results hold for the full range of constant step-sizes $γL \in (0,2)$, including critical and large step-size regimes that were previously unexplored without additional variance assumptions. The bounds are obtained through the construction of a simple Lyapunov energy whose monotonicity yields sharp convergence guarantees. To design the parameters of this energy, we employ the Performance Estimation Problem framework, which we also use to provide numerical evidence for the optimality of the associated variance terms.
comment: 35 pages, 2 figures. Under review
♻ ☆ Experience-Evolving Multi-Turn Tool-Use Agent with Hybrid Episodic-Procedural Memory
As intents unfold and environments change, multi-turn agents face continuously shifting decision contexts. Although reusing past experience is intuitively appealing, existing approaches remain limited: full trajectories are often too context-specific to transfer, while tool-level reuse ignores the surrounding context and environment. In this paper, we introduce a hybrid episodic-procedural memory strategy (H-EPM) that enables experience-induced self-evolution of multi-turn tool-use policies by adaptively reusing partially overlapping successful experiences during both inference and training. Inspired by human episodic-procedural integration, we construct a tool graph from accumulated trajectories, where recurring tool-to-tool dependencies capture procedural routines and each edge is augmented with compact episodic summaries of relevant context. At inference time, the agent dynamically balances episodic recall for contextual reasoning with procedural execution for routine steps. Beyond inference, H-EPM introduces a memory-guided reinforcement learning paradigm that directly addresses a core challenge in multi-turn agent reinforcement learning, namely ineffective exploration over long trajectories. By biasing exploration toward historically successful tool transitions, H-EPM learns a stronger policy that generalizes at inference time without relying on domain-specific experience collection. Experiments show that H-EPM consistently delivers substantial inference-time gains over strong baselines across multi-turn tool-use benchmarks, reaching improvements of up to fifty percent. It also improves reinforcement learning policy performance, achieving gains of up to forty percent on out-of-distribution tasks.
♻ ☆ QuiZSF: A Retrieval-Augmented Framework for Zero-Shot Time Series Forecasting
Accurate forecasting of sequential data streams is a cornerstone of modern Web services, supporting applications such as traffic management, user behavior modeling, and online anomaly prevention. However, in many Web environments, new domains emerge rapidly and labeled history data is scarce, which makes zero-shot forecasting particularly challenging. Existing time-series pre-trained models (TSPMs) show promise but they lack the ability to dynamically incorporate external knowledge, while conventional retrieval-augmented generation (RAG) methods are rarely extended beyond text. In this work, we present \textbf{QuiZSF}, a retrieval-augmented forecasting framework that integrates search and forecasting for time series data. The framework performs search by retrieving structurally similar sequences from a large-scale time-series database, and it performs forecasting by integrating the retrieved knowledge into the target sequence. Specifically, QuiZSF introduces a \textbf{ChronoRAG Base}, a hierarchical tree-structured database that enables scalable and domain-aware retrieval, a \textbf{Multi-grained Series Interaction Learner} that captures fine- and coarse-grained dependencies between target and retrieved sequences, and a \textbf{Model Cooperation Coherer} that adapts retrieved knowledge to TSPMs. This design teaches models to actively perform search, align auxiliary information across modalities, and leverage it for more accurate forecasting. Extensive experiments on five public benchmarks demonstrate that QuiZSF consistently outperforms strong baselines, ranking first in up to \textbf{87.5\%} of zero-shot forecasting settings while maintaining high efficiency.
♻ ☆ On The Relationship Between Continual Learning and Long-Tailed Recognition
Real-world datasets often exhibit long-tailed distributions, where a few dominant "Head" classes have abundant samples while most "Tail" classes are severely underrepresented, leading to biased learning and poor generalization for the Tail. We present a theoretical framework that reveals a previously undescribed connection between Long-Tailed Recognition (LTR) and Continual Learning (CL), the process of learning sequential tasks without forgetting prior knowledge. Our analysis demonstrates that, for models trained on imbalanced datasets, the weights converge to a bounded neighborhood of those trained exclusively on the Head, with the bound scaling as the inverse square root of the imbalance factor. Leveraging this insight, we introduce Continual Learning for Long-Tailed Recognition (CLTR), a principled approach that employs standard off-the-shelf CL methods to address LTR problems by sequentially learning Head and Tail classes without forgetting the Head. Our theoretical analysis further suggests that CLTR mitigates gradient saturation and improves Tail learning while maintaining strong Head performance. Extensive experiments on CIFAR100-LT, CIFAR10-LT, ImageNet-LT, and Caltech256 validate our theoretical predictions, achieving strong results across various LTR benchmarks. Our work bridges the gap between LTR and CL, providing a principled way to tackle imbalanced data challenges with standard existing CL strategies.
♻ ☆ A spatiotemporal fused network considering electrode spatial topology and time-window transition for MDD detection
Recently, researchers have begun to experiment with deep learning-based methods for detecting major depressive disor-der (MDD) using electroencephalogram (EEG) signals in search of a more objective means of diagnosis. However, exist-ing spatiotemporal feature extraction methods only consider the functional correlation between multiple electrodes and temporal correlation of EEG signals, ignoring the spatial posi-tion connection information between electrodes and the conti-nuity between time windows, which reduces the model's fea-ture extraction capabilities. To address this issue, a Spatio-temporal fused network for MDD detection with Electrode spatial Topology and adjacent TIME-window transition in-formation (SET-TIME) is proposed in this study. SET-TIME is composed by a common feature extractor, a secondary time-correlation feature extractor, and a domain adaptation (DA) module, in which the former extractor is used to obtain the temporal and spatial features, and the latter extractor can mine the correlation between multiple time windows, and the DA module is adopted to enhance cross-subject detection ca-pability. The experimental results of 10-fold cross-validation show that the proposed SET-TIME method outperforms the state-of-the-art (SOTA) method by achieving MDD detection accuracies of 92.00% and 94.00% on the public datasets PRED+CT and MODMA, respectively. Ablation experiments demonstrate the effectiveness of the multiple modules in SET-TIME, which assist in MDD detection by exploring the intrin-sic spatiotemporal information of EEG signals.
comment: 21pages, 8 figures
♻ ☆ RPO:Reinforcement Fine-Tuning with Partial Reasoning Optimization
Within the domain of large language models, reinforcement fine-tuning algorithms necessitate the generation of a complete reasoning trajectory beginning from the input query, which incurs significant computational overhead during the rollout phase of training. To address this issue, we analyze the impact of different segments of the reasoning path on the correctness of the final result and, based on these insights, propose Reinforcement Fine-Tuning with Partial Reasoning Optimization (RPO), a plug-and-play reinforcement fine-tuning algorithm. Unlike traditional reinforcement fine-tuning algorithms that generate full reasoning paths, RPO trains the model by generating suffixes of the reasoning path using experience cache. During the rollout phase of training, RPO reduces token generation in this phase by approximately 95%, greatly lowering the theoretical time overhead. Compared with full-path reinforcement fine-tuning algorithms, RPO reduces the training time of the 1.5B model by 90% and the 7B model by 72%. At the same time, it can be integrated with typical algorithms such as GRPO and DAPO, enabling them to achieve training acceleration while maintaining performance comparable to the original algorithms. Our code is open-sourced at https://github.com/yhz5613813/RPO.
♻ ☆ Finite-Time Accuracy of Temporal-Difference Learning Under Schur-Stable Recursions
Temporal difference (TD) learning is a cornerstone reinforcement learning (RL) method for policy evaluation, where the goal is to estimate the value function of a Markov decision process under a fixed policy. While a substantial body of work has established its convergence and stability properties, more recent efforts have focused on its statistical efficiency through finite-time error bounds. In this paper, we advance this line of research by developing a new finite-time error analysis for tabular TD learning that directly exploits a discrete-time stochastic linear system representation and leverages Schur stability of the associated matrices. Beyond the specific bounds obtained, the proposed framework provides a reusable template for analyzing TD learning and related RL algorithms, and it offers control-theoretic insights that may guide future developments in finite-sample RL theory.
comment: arXiv admin note: text overlap with arXiv:2112.14417
♻ ☆ Mitigating the Safety Alignment Tax with Null-Space Constrained Policy Optimization ICLR 2026
As Large Language Models (LLMs) are increasingly deployed in real-world applications, it is important to ensure their behaviors align with human values, societal norms, and ethical principles. However, safety alignment under Reinforcement Learning (RL) often suffers from forgetting learned general abilities, which is also known as the alignment tax. To address this issue, we introduce Null-Space constrained Policy Optimization (NSPO), a novel RL framework for LLM safety alignment while preserving their core abilities. The safety policy gradients are geometrically projected into the null space of general tasks, thereby mitigating the safety alignment tax. In addition, we theoretically prove that NSPO preserves the model's original core capabilities, while still guaranteeing a descent direction for effective safety alignment. Extensive experiments demonstrate that NSPO outperforms existing methods by a large margin, achieving state-of-the-art safety performance without sacrificing accuracy on general tasks, including math, code, and instruction-following tasks. Notably, NSPO is data-efficient and only requires 40% of public human-annotated safety data from PKU-SafeRLHF to achieve promising safety performance, without a large amount of mixed general tasks data in existing alignment methods.
comment: accepted by ICLR 2026
♻ ☆ Can Aha Moments Be Fake? Identifying True and Decorative Thinking Steps in Chain-of-Thought
Large language models can generate long chain-of-thought (CoT) reasoning, but it remains unclear whether the verbalized steps reflect the models' internal thinking. In this work, we propose a True Thinking Score (TTS) to quantify the causal contribution of each step in CoT to the model's final prediction. Our experiments show that LLMs often interleave between true-thinking steps (which are genuinely used to compute the final output) and decorative-thinking steps (which give the appearance of reasoning but have minimal causal influence). We reveal that only a small subset of the total reasoning steps causally drive the model's prediction: e.g., on AIME, only an average of 2.3% of reasoning steps in CoT have a TTS >= 0.7 (range: 0-1) for Qwen-2.5. Furthermore, we find that LLMs can be steered to internally follow or disregard specific steps in their verbalized CoT using the identified TrueThinking direction. We highlight that self-verification steps in CoT (i.e., aha moments) can be decorative, while steering along the TrueThinking direction can force internal reasoning over these steps. Overall, our work reveals that LLMs often verbalize reasoning steps without performing them internally, challenging the efficiency of LLM reasoning and the trustworthiness of CoT.
♻ ☆ Geometric Dynamics of Agentic Loops in Large Language Models
Iterative LLM systems(self-refinement, chain-of-thought, autonomous agents) are increasingly deployed, yet their temporal dynamics remain uncharacterized. Prior work evaluates task performance at convergence but ignores the trajectory: how does semantic content evolve across iterations? Does it stabilize, drift, or oscillate? Without answering these questions, we cannot predict system behavior, guarantee stability, or systematically design iterative architectures. We formalize agentic loops as discrete dynamical systems in semantic space. Borrowing from dynamical systems theory, we define trajectories, attractors and dynamical regimes for recursive LLM transformations, providing rigorous geometric definitions adapted to this setting. Our framework reveals that agentic loops exhibit classifiable dynamics: contractive (convergence toward stable semantic attractors), oscillatory (cycling among attractors), or exploratory (unbounded divergence). Experiments on singular loops validate the framework. Iterative paraphrasing produces contractive dynamics with measurable attractor formation and decreasing dispersion. Iterative negation produces exploratory dynamics with no stable structure. Crucially, prompt design directly controls the dynamical regime - the same model exhibits fundamentally different geometric behaviors depending solely on the transformation applied. This work establishes that iterative LLM dynamics are predictable and controllable, opening new directions for stability analysis, trajectory forecasting, and principled design of composite loops that balance convergence and exploration.
♻ ☆ Rethinking the Sampling Criteria in Reinforcement Learning for LLM Reasoning: A Competence-Difficulty Alignment Perspective
Reinforcement learning exhibits potential in enhancing the reasoning abilities of large language models, yet it is hard to scale for the low sample efficiency during the rollout phase. Existing methods attempt to improve efficiency by scheduling problems based on problem difficulties. However, these approaches suffer from unstable and biased estimations of problem difficulty and fail to capture the alignment between model competence and problem difficulty in RL training, leading to suboptimal results. To tackle these limitations, this paper introduces $\textbf{C}$ompetence-$\textbf{D}$ifficulty $\textbf{A}$lignment $\textbf{S}$ampling ($\textbf{CDAS}$), which enables accurate and stable estimation of problem difficulties by aggregating historical performance discrepancies of problems. Then the model competence is quantified to adaptively select problems whose difficulty is in alignment with the model's current competence using a fixed-point system. Experimental results across a range of challenging mathematical benchmarks show that CDAS achieves great improvements in both accuracy and efficiency. CDAS attains the highest average accuracy against baselines and exhibits significant speed advantages compared to Dynamic Sampling, a competitive strategy in DAPO, which is 2.33 times slower than CDAS.
♻ ☆ Latent Iterative Refinement Flow: A Geometric Constrained Approach for Few-Shot Generation
Diffusion and flow-matching models trained with limited data often tend to memorize the training data instead of generalization, leading to severely reduced diversity. In this paper, we provide a dynamical perspective and identify this ``collapse-to-memorization'' phenomenon as a consequence of the \emph{velocity field collapse}, where the learned field degenerates into isolated point attractors and trap the sampling trajectories. Inspired by this novel view, we introduce \textbf{{\BLUE L}atent {\BLUE I}terative {\BLUE R}efinement {\BLUE F}low ({\BLUE LIRF})}, a geometry-aware framework for from-scratch training of diffusion models in the limited-data regime. By exploiting the intrinsic geometry of a semantically aligned latent space, LIRF progressively densifies the training data manifold via a \emph{generation--correction--augmentation} closed loop, thereby effectively resolving the velocity field collapse. Theoretical guarantee on the convergence of this manifold densification procedure is also provided. Experiments on FFHQ subsets and Low-Shot datasets demonstrate the advantageous performance of LIRF over existing diffusion models for limited-data generation, achieving significantly higher diversity and recall, with comparably good generative performance.
♻ ☆ TabClustPFN: A Prior-Fitted Network for Tabular Data Clustering
Clustering tabular data is a fundamental yet challenging problem due to heterogeneous feature types, diverse data-generating mechanisms, and the absence of transferable inductive biases across datasets. Prior-fitted networks (PFNs) have recently demonstrated strong generalization in supervised tabular learning by amortizing Bayesian inference under a broad synthetic prior. Extending this paradigm to clustering is nontrivial: clustering is unsupervised, admits a combinatorial and permutation-invariant output space, and requires inferring the number of clusters. We introduce TabClustPFN, a prior-fitted network for tabular data clustering that performs amortized Bayesian inference over both cluster assignments and cluster cardinality. Pretrained on synthetic datasets drawn from a flexible clustering prior, TabClustPFN clusters unseen datasets in a single forward pass, without dataset-specific retraining or hyperparameter tuning. The model naturally handles heterogeneous numerical and categorical features and adapts to a wide range of clustering structures. Experiments on synthetic data and curated real-world tabular benchmarks show that TabClustPFN outperforms classical, deep, and amortized clustering baselines, while exhibiting strong robustness in out-of-the-box exploratory settings. Code is available at https://github.com/Tianqi-Zhao/TabClustPFN.
♻ ☆ An Analysis of Concept Bottleneck Models: Measuring, Understanding, and Mitigating the Impact of Noisy Annotations NeurIPS 2025
Concept bottleneck models (CBMs) ensure interpretability by decomposing predictions into human interpretable concepts. Yet the annotations used for training CBMs that enable this transparency are often noisy, and the impact of such corruption is not well understood. In this study, we present the first systematic study of noise in CBMs and show that even moderate corruption simultaneously impairs prediction performance, interpretability, and the intervention effectiveness. Our analysis identifies a susceptible subset of concepts whose accuracy declines far more than the average gap between noisy and clean supervision and whose corruption accounts for most performance loss. To mitigate this vulnerability we propose a two-stage framework. During training, sharpness-aware minimization stabilizes the learning of noise-sensitive concepts. During inference, where clean labels are unavailable, we rank concepts by predictive entropy and correct only the most uncertain ones, using uncertainty as a proxy for susceptibility. Theoretical analysis and extensive ablations elucidate why sharpness-aware training confers robustness and why uncertainty reliably identifies susceptible concepts, providing a principled basis that preserves both interpretability and resilience in the presence of noise.
comment: NeurIPS 2025
♻ ☆ Hyperspectral Image Data Reduction for Endmember Extraction
Endmember extraction from hyperspectral images aims to identify the spectral signatures of materials present in a scene. Recent studies have shown that self-dictionary methods can achieve high extraction accuracy; however, their high computational cost limits their applicability to large-scale hyperspectral images. Although several approaches have been proposed to mitigate this issue, it remains a major challenge. Motivated by this situation, this paper pursues a data reduction approach. Assuming that the hyperspectral image follows the linear mixing model with the pure-pixel assumption, we develop a data reduction technique that removes pixels that do not contain endmembers. We analyze the theoretical properties of this reduction step and show that it preserves pixels that lie close to the endmembers. Building on this result, we propose a data-reduced self-dictionary method that integrates the data reduction with a self-dictionary method based on a linear programming formulation. Numerical experiments demonstrate that the proposed method can substantially reduce the computational time of the original self-dictionary method without sacrificing endmember extraction accuracy.
comment: Code is available at https://github.com/tomohiko-mizutani/REDIC
♻ ☆ A Pre-training Framework for Relational Data with Information-theoretic Principles NeurIPS'25
Relational databases underpin critical infrastructure across a wide range of domains, yet the design of generalizable pre-training strategies for learning from relational databases remains an open challenge due to task heterogeneity. Specifically, there exist many possible downstream tasks, as tasks are defined based on relational schema graphs, temporal dependencies, and SQL-defined label logics. An effective pre-training framework is desired to take these factors into account in order to obtain task-aware representations. By incorporating knowledge of the underlying distribution that drives label generation, downstream tasks can benefit from relevant side-channel information. To bridge this gap, we introduce Task Vector Estimation (TVE), a novel pre-training framework that constructs predictive supervisory signals via set-based aggregation over schema traversal graphs, explicitly modeling next-window relational dynamics. We formalize our approach through an information-theoretic lens, demonstrating that task-informed representations retain more relevant signals than those obtained without task priors. Extensive experiments on the RelBench benchmark show that TVE consistently outperforms traditional pre-training baselines. Our findings advocate for pre-training objectives that encode task heterogeneity and temporal structure as design principles for predictive modeling on relational databases. Our code is publicly available at https://github.com/quang-truong/task-vector-estimation.
comment: NeurIPS'25
♻ ☆ Sharpness-Guided Group Relative Policy Optimization via Probability Shaping
Reinforcement learning with verifiable rewards (RLVR) has become a practical route to improve large language model reasoning, and Group Relative Policy Optimization (GRPO) is a widely used optimizer in this setting. However, RLVR training is typically performed with limited control over generalization. We revisit GRPO through a robustness-based generalization view, where the generalization loss is upper bounded by a combination of the empirical loss and a sharpness surrogate measured by the gradient norm. Building on this perspective, we propose Sharpness-Guided GRPO (GRPO-SG), a simple token-weighted variant of GRPO that downweights tokens likely to cause overly large gradients, reducing sharp updates and stabilizing optimization, thereby improving generalization. Experiments across mathematical reasoning, logic puzzles and tool-augmented question answering show consistent improvements over GRPO, along with smoother gradient-norm trajectories, supporting GRPO-SG as a simple and effective generalization-oriented upgrade to GRPO for RLVR.
♻ ☆ Softplus Attention with Re-weighting Boosts Length Extrapolation in Large Language Models ICML 2026
Large language models have achieved remarkable success in recent years, primarily due to self-attention. However, traditional Softmax attention suffers from numerical instability and reduced performance as the number of inference tokens increases. This work addresses these issues by proposing a new design principle for attention, viewing it as a two-stage process. The first stage (normalisation) refines standard attention by replacing Softmax with the more numerically stable Softplus followed by $l_{1}$-normalisation. Furthermore, we introduce a dynamic scale factor based on invariance entropy. We show that this novel attention mechanism outperforms conventional Softmax attention, and state-of-the-art Softmax-free alternatives. Our second proposal is to introduce a second processing stage (sharpening) which consists of a re-weighting mechanism that amplifies significant attentional weights while diminishing weaker ones. This enables the model to concentrate more effectively on relevant tokens, mitigating the attention sink phenomenon, and fundamentally improving length extrapolation. This novel, two-stage, replacement for self-attention is shown to ensure numerical stability and dramatically improve length extrapolation, maintaining a nearly constant validation loss at 16$\times$ the training length while achieving superior results on challenging long-context retrieval tasks and downstream benchmarks. Furthermore, symbolic regression experiments demonstrate that our method enables models to recover Newton's gravitational law from orbital trajectory sequences, providing evidence that appropriate attention mechanisms are crucial for foundation models to develop genuine physical world models.
comment: 32 pages for ICML 2026
♻ ☆ NeUQI: Near-Optimal Uniform Quantization Parameter Initialization for Low-Bit LLMs
Large language models (LLMs) achieve impressive performance across domains but face significant challenges when deployed on consumer-grade GPUs or personal devices such as laptops, due to high memory consumption and inference costs. Post-training quantization (PTQ) of LLMs offers a promising solution that reduces their memory footprint and decoding latency. In practice, PTQ with uniform quantization representation is favored due to its efficiency and ease of deployment, as uniform quantization is widely supported by mainstream hardware and software libraries. Recent studies on low-bit uniform quantization have led to noticeable improvements in post-quantization model performance; however, they mainly focus on quantization methodologies, while the initialization of quantization parameters remains underexplored and still relies on the conventional Min-Max formula. In this work, we identify the limitations of the Min-Max formula, move beyond its constraints, and propose NeUQI, a method that efficiently determines near-optimal initialization for uniform quantization. Our NeUQI simplifies the joint optimization of the scale and zero-point by deriving the zero-point for a given scale, thereby reducing the problem to a scale-only optimization. Benefiting from the improved quantization parameters, our NeUQI consistently outperforms existing methods in the experiments with the LLaMA and Qwen families on various settings and tasks. Furthermore, when combined with a lightweight distillation strategy, NeUQI even achieves superior performance to PV-tuning, a considerably more resource-intensive method.
comment: under review
♻ ☆ Quantifying Data Contamination in Psychometric Evaluations of LLMs EACL 2026
Recent studies apply psychometric questionnaires to Large Language Models (LLMs) to assess high-level psychological constructs such as values, personality, moral foundations, and dark traits. Although prior work has raised concerns about possible data contamination from psychometric inventories, which may threaten the reliability of such evaluations, there has been no systematic attempt to quantify the extent of this contamination. To address this gap, we propose a framework to systematically measure data contamination in psychometric evaluations of LLMs, evaluating three aspects: (1) item memorization, (2) evaluation memorization, and (3) target score matching. Applying this framework to 21 models from major families and four widely used psychometric inventories, we provide evidence that popular inventories such as the Big Five Inventory (BFI-44) and Portrait Values Questionnaire (PVQ-40) exhibit strong contamination, where models not only memorize items but can also adjust their responses to achieve specific target scores.
comment: EACL 2026 Findings
♻ ☆ VideoNSA: Native Sparse Attention Scales Video Understanding ICLR 2026
Video understanding in multimodal language models remains limited by context length: models often miss key transition frames and struggle to maintain coherence across long time scales. To address this, we adapt Native Sparse Attention (NSA) to video-language models. Our method, VideoNSA, adapts Qwen2.5-VL through end-to-end training on a 216K video instruction dataset. We employ a hardware-aware hybrid approach to attention, preserving dense attention for text, while employing NSA for video. Compared to token-compression and training-free sparse baselines, VideoNSA achieves improved performance on long-video understanding, temporal reasoning, and spatial benchmarks. Further ablation analysis reveals four key findings: (1) reliable scaling to 128K tokens; (2) an optimal global-local attention allocation at a fixed budget; (3) task-dependent branch usage patterns; and (4) the learnable combined sparse attention help induce dynamic attention sinks. Project Page: https://enxinsong.com/VideoNSA-web/, Code: https://github.com/Espere-1119-Song/VideoNSA
comment: ICLR 2026
♻ ☆ Information Loss and Disparate Effects in Network Embeddings
An extensive line of work studies fairness interventions for network embeddings, but less is known about their baseline behavior. In this work, we ask: how do baseline embeddings (without fairness interventions) produce disparate effects at the representation level? We analyze the asymptotic behavior of low-dimensional embeddings on stochastic block model (SBM) graphs, which encode both homophily and group structure. We characterize exact conditions under which embeddings cause information loss, showing that the amount of information loss depends directly on the graph's density and assortativity. Notably, very different graphs can produce identical embeddings in the limit, and this non-invertibility disproportionately affects smaller and sparser communities. As a result, simple downstream tasks, such as link prediction, introduce higher error rates for these communities, helping explain disparities widely observed in practice.
♻ ☆ Multi-Level Safety Continual Projection for Fine-Tuned Large Language Models without Retraining
While fine-tuning services drive the rapid expansion of task capabilities in large language models (LLMs), they are often accompanied by the degradation and reorganization of safety-aligned representations, making models more prone to deviating from human preferences and exposing them to emerging jailbreak risks. Existing post-fine-tuning defense methods predominantly rely on single-scale safety correction mechanisms, which struggle to achieve a robust balance among safety, model utility, and continual adaptability. We propose Multi-Level Safety Continual Projection (MSCP), a training-free post-fine-tuning safety enhancement method that implicitly aligns global and localized safety activations through coordinated multi-level representations to isolate sparse neuron clusters governing safety-sensitive behaviors. It then applies composable safety-direction projections without retraining, effectively suppressing harmful outputs under minimal parameter perturbations while preserving task performance and improving alignment with human preferences. Extensive experiments across multiple fine-tuned LLM models demonstrate that our method significantly reduce harmfulness scores and attack success rates with minimal parameter modifications, while preserving the model's utility. Furthermore, we introduce a task-specific, multi-dimensional heterogeneous safety activation clustering mechanism that enables continual defense and generalization capability against unforeseen emerging safety concerns.
♻ ☆ From Tokens to Blocks: A Block-Diffusion Perspective on Molecular Generation
Drug discovery can be viewed as a combinatorial search over an immense chemical space, motivating the development of deep generative models for de novo molecular design. Among these, GPT-based molecular language models (MLM) have shown strong molecular design performance by learning chemical syntax and semantics from large-scale data. However, existing MLMs face two fundamental limitations: they inadequately capture the graph-structured nature of molecules when formulated as next-token prediction problems, and they typically lack explicit mechanisms for target-aware generation. Here, we propose SoftMol, a unified framework that co-designs molecular representation, model architecture, and search strategy for target-aware molecular generation. SoftMol introduces soft fragments, a rule-free block representation of SMILES that enables diffusion-native modeling, and develops SoftBD, the first block-diffusion molecular language model that combines local bidirectional diffusion with autoregressive generation under molecular structural constraints. To favor generated molecules with high drug-likeness and synthetic accessibility, SoftBD is trained on a carefully curated dataset named ZINC-Curated. SoftMol further integrates a gated Monte Carlo tree search to assemble fragments in a target-aware manner. Experimental results show that, compared with current state-of-the-art models, SoftMol achieves 100% chemical validity, improves binding affinity by 9.7%, yields a 2-3x increase in molecular diversity, and delivers a 6.6x speedup in inference efficiency. Code is available at https://github.com/szu-aicourse/softmol
comment: 30 pages, 13 figures, 11 tables
♻ ☆ PT$^2$-LLM: Post-Training Ternarization for Large Language Models ICLR 2026
Large Language Models (LLMs) have shown impressive capabilities across diverse tasks, but their large memory and compute demands hinder deployment. Ternarization has gained attention as a promising compression technique, delivering substantial size reduction and high computational efficiency. However, its potential in the post-training quantization (PTQ) setting remains underexplored, due to the challenge of training-free parameter optimization and the quantization difficulty posed by outliers and dispersed weights. To address these issues, we propose PT$^2$-LLM, a post-training ternarization framework tailored for LLMs. At its core is an Asymmetric Ternary Quantizer equipped with a two-stage refinement pipeline: (1) Iterative Ternary Fitting (ITF), which alternates between optimal ternary grid construction and flexible rounding to minimize quantization error, and (2) Activation-aware Grid Alignment (AGA), which further refines the ternary grid to better match full-precision outputs. In addition, we propose a plug-and-play Structural Similarity-based Reordering (SSR) strategy that leverages inter-column structural similarity to ease quantization and mitigate outlier effects, further enhancing overall performance. Extensive experiments demonstrate that PT$^2$-LLM delivers competitive performance against state-of-the-art (SOTA) 2-bit PTQ methods with lower memory cost, while also accelerating both prefill and decoding to achieve end-to-end speedup. The code and models will be available at https://github.com/XIANGLONGYAN/PT2-LLM.
comment: Accepted at ICLR 2026
♻ ☆ Studying the Soupability of Documents in State Space Models
We investigate whether hidden states from Structured State Space Models (SSMs) can be merged post hoc to support downstream reasoning. Inspired by model souping, we study document souping, a strategy where documents are encoded independently, and their representations are pooled, via simple operations like averaging, into a single context state. This approach enables modular encoding and reuse without reprocessing the full input for each query. We demonstrate that finetuned Mamba2 models with souped representations achieve competitive or superior performance across multi-hop QA, sparse retrieval, and long-document reasoning tasks compared to the standard monolithic encoding approach. For example, on the RACE and QuALITY benchmarks for long document question answering, this method substantially outperforms a traditional concatenation approach. Crucially, this modular design scales to hundreds of documents while delivering substantial savings in inference cost, unlocking new possibilities for large-scale corpus reasoning.
♻ ☆ Fidel-TS: A High-Fidelity Multimodal Benchmark for Time Series Forecasting
The evaluation of time series forecasting models is hindered by a critical lack of high-quality benchmarks, leading to a potential illusion of progress. Existing datasets suffer from issues ranging from pre-training data contamination in the age of LLMs to the temporal and description leakage prevalent in early multimodal designs. To address this, we formalize the core principles of high-fidelity benchmarking, focusing on data sourcing integrity, leak-free and causally sound design, and structural clarity. We introduce Fidel-TS, a new large-scale benchmark built from the ground up on these principles by sourcing data from live APIs. Our experiments reveal the flaws of the previous benchmarks and the biases in model evaluation, providing new insights into multiple existing forecasting models and LLMs across various evaluation tasks.
comment: new version
♻ ☆ DialectGen: Benchmarking and Improving Dialect Robustness in Multimodal Generation
Contact languages like English exhibit rich regional variations in the form of dialects, which are often used by dialect speakers interacting with generative models. However, can multimodal generative models effectively produce content given dialectal textual input? In this work, we study this question by constructing a new large-scale benchmark spanning six common English dialects. We work with dialect speakers to collect and verify over 4200 unique prompts and evaluate on 17 image and video generative models. Our automatic and human evaluation results show that current state-of-the-art multimodal generative models exhibit 32.26% to 48.17% performance degradation when a single dialect word is used in the prompt. Common mitigation methods such as fine-tuning and prompt rewriting can only improve dialect performance by small margins (< 7%), while potentially incurring significant performance degradation in Standard American English (SAE). To this end, we design a general encoder-based mitigation strategy for multimodal generative models. Our method teaches the model to recognize new dialect features while preserving SAE performance. Experiments on models such as Stable Diffusion 1.5 show that our method is able to simultaneously raise performance on five dialects to be on par with SAE (+34.4%), while incurring near zero cost to SAE performance.
♻ ☆ Error Analysis of Discrete Flow with Generator Matching
Discrete flow models offer a powerful framework for learning distributions over discrete state spaces and have demonstrated superior performance compared to the discrete diffusion models. However, their convergence properties and error analysis remain largely unexplored. In this work, we develop a unified framework grounded in stochastic calculus theory to systematically investigate the theoretical properties of discrete flow models. Specifically, by leveraging a Girsanov-type theorem for the path measures of two continuous-time Markov chains (CTMCs), we present a comprehensive error analysis that accounts for both transition rate estimation error and early stopping error. In fact, the estimation error of transition rates has received little attention in existing works. Unlike discrete diffusion models, discrete flow incurs no initialization error caused by truncating the time horizon in the noising process. Building on generator matching and uniformization, we establish non-asymptotic error bounds for distribution estimation without the boundedness condition on oracle transition rates. Furthermore, we derive a faster rate of total variation convergence for the estimated distribution with the boundedness condition, yielding a nearly optimal rate in terms of sample size. Our results provide the first error analysis for discrete flow models. We also investigate model performance under different settings based on simulation results.
♻ ☆ DiffusionLight-Turbo: Accelerated Light Probes for Free via Single-Pass Chrome Ball Inpainting
We introduce a simple yet effective technique for estimating lighting from a single low-dynamic-range (LDR) image by reframing the task as a chrome ball inpainting problem. This approach leverages a pre-trained diffusion model, Stable Diffusion XL, to overcome the generalization failures of existing methods that rely on limited HDR panorama datasets. While conceptually simple, the task remains challenging because diffusion models often insert incorrect or inconsistent content and cannot readily generate chrome balls in HDR format. Our analysis reveals that the inpainting process is highly sensitive to the initial noise in the diffusion process, occasionally resulting in unrealistic outputs. To address this, we first introduce DiffusionLight, which uses iterative inpainting to compute a median chrome ball from multiple outputs to serve as a stable, low-frequency lighting prior that guides the generation of a high-quality final result. To generate high-dynamic-range (HDR) light probes, an Exposure LoRA is fine-tuned to create LDR images at multiple exposure values, which are then merged. While effective, DiffusionLight is time-intensive, requiring approximately 30 minutes per estimation. To reduce this overhead, we introduce DiffusionLight-Turbo, which reduces the runtime to about 30 seconds with minimal quality loss. This 60x speedup is achieved by training a Turbo LoRA to directly predict the averaged chrome balls from the iterative process. Inference is further streamlined into a single denoising pass using a LoRA swapping technique. Experimental results that show our method produces convincing light estimates across diverse settings and demonstrates superior generalization to in-the-wild scenarios. Our code is available at https://diffusionlight.github.io/turbo
comment: arXiv admin note: substantial text overlap with arXiv:2312.09168
♻ ☆ Lifelong Learning with Behavior Consolidation for Vehicle Routing
Recent neural solvers have demonstrated promising performance in learning to solve routing problems. However, existing studies are primarily based on one-off training on one or a set of predefined problem distributions and scales, i.e., tasks. When a new task arises, they typically rely on either zero-shot generalization, which may be poor due to the discrepancies between the new task and the training task(s), or fine-tuning the pretrained solver on the new task, which possibly leads to catastrophic forgetting of knowledge acquired from previous tasks. This paper explores a novel lifelong learning paradigm for neural VRP solvers, where multiple tasks with diverse distributions and scales arise sequentially over time. Solvers are required to effectively and efficiently learn to solve new tasks while maintaining their performance on previously learned tasks. Consequently, a novel framework called Lifelong Learning Router with Behavior Consolidation (LLR-BC) is proposed. LLR-BC consolidates prior knowledge effectively by aligning behaviors of the solver trained on a new task with the buffered ones in a decision-seeking way. To encourage more focus on crucial experiences, LLR-BC assigns greater consolidated weights to decisions with lower confidence. Extensive experiments on capacitated vehicle routing problems and traveling salesman problems demonstrate LLR-BC's effectiveness in training high-performance neural solvers in a lifelong learning setting, addressing the catastrophic forgetting issue, maintaining their plasticity, and improving zero-shot generalization ability.
♻ ☆ SiDGen: Structure-informed Diffusion for Generative modeling of Ligands for Proteins
Structure-based drug design (SBDD) faces a fundamental scaling fidelity dilemma: rich pocket-aware conditioning captures interaction geometry but can be costly, often scales quadratically ($O(L^2)$) or worse with protein length ($L$), while efficient sequence-only conditioning can miss key interaction structure. We propose SiDGen, a structure-informed discrete diffusion framework that resolves this trade-off through a Topological Information Bottleneck (TIB). SiDGen leverages a learned, soft assignment mechanism to compress residue-level protein representations into a compact bottleneck enabling downstream pairwise computations on the coarse grid ($O(L^2/s^2)$). This design reduces memory and computational cost without compromising generative accuracy. Our approach achieves state-of-the-art performance on CrossDocked2020 and DUD-E benchmarks while significantly reducing pairwise-tensor memory. SiDGen bridges the gap between sequence-based efficiency and pocket-aware conditioning, offering a scalable path for high-throughput structure-based discovery.
comment: 17 pages, 4 figures
♻ ☆ Policy-Driven World Model Adaptation for Robust Offline Model-based Reinforcement Learning
Offline reinforcement learning (RL) offers a powerful paradigm for data-driven control. Compared to model-free approaches, offline model-based RL (MBRL) explicitly learns a world model from a static dataset and uses it as a surrogate simulator, improving data efficiency and enabling potential generalization beyond the dataset support. However, most existing offline MBRL methods follow a two-stage training procedure: first learning a world model by maximizing the likelihood of the observed transitions, then optimizing a policy to maximize its expected return under the learned model. This objective mismatch results in a world model that is not necessarily optimized for effective policy learning. Moreover, we observe that policies learned via offline MBRL often lack robustness during deployment, and small adversarial noise in the environment can lead to significant performance degradation. To address these, we propose a framework that dynamically adapts the world model alongside the policy under a unified learning objective aimed at improving robustness. At the core of our method is a maximin optimization problem, which we solve by innovatively utilizing Stackelberg learning dynamics. We provide theoretical analysis to support our design and introduce computationally efficient implementations. We benchmark our algorithm on twelve noisy D4RL MuJoCo tasks and three stochastic Tokamak Control tasks, demonstrating its state-of-the-art performance.
♻ ☆ Post-LayerNorm Is Back: Stable, ExpressivE, and Deep
Large language model (LLM) scaling is hitting a wall. Widening models yields diminishing returns, and extending context length does not improve fundamental expressivity. In contrast, depth scaling offers theoretically superior expressivity, yet current Transformer architectures struggle to train reliably at extreme depths. We revisit the Post-LayerNorm (Post-LN) formulation, whose instability at scale caused its replacement by Pre-LN in modern LLMs. We show that the central failure mode of Post-LN arises from the ResNet-style residual pathway, which introduces gradient vanishing in deep networks. We present Keel, a Post-LN Transformer that replaces this residual path with a Highway-style connection. This modification preserves the gradient flow through the residual branch, preventing signal vanishing from the top layers to the bottom. Unlike prior methods, Keel enables stable training at extreme depths without requiring specialized initialization or complex optimization tricks. Keel trains robustly at depths exceeding 1000 layers and consistently improves perplexity and depth-scaling characteristics over Pre-LN. These findings indicate that Post-LN, when paired with a Highway-style connection, provides a simple and effective foundation for building deeply scalable LLMs, opening the possibility for future infinite-depth architectures.
♻ ☆ IDE-Bench: Evaluating Large Language Models as IDE Agents on Real-World Software Engineering Tasks
IDE-Bench is a comprehensive framework for evaluating AI IDE agents on real-world software engineering tasks through an IDE-native tool interface. We present a Dockerized test harness that goes beyond raw terminal execution, granting models a structured tool ecosystem that represents AI-native IDEs like Cursor and Windsurf. By providing high-level abstractions for codebase search, structured file editing, and tools for testing full-stack applications, IDE-Bench evaluates an agent's ability to act as a true engineering collaborator. For evaluation and to prevent training data contamination, we created 80 tasks across eight never-published repositories spanning C/C++, Java, and MERN stacks, representing modern tech stack production scenarios, including feature implementation, bug fixing, refactoring, and performance optimization that mirror daily developer workflows in private codebases. Our benchmark is the first to systematically correlate agent-reported intent with successful project-level modifications in a multi-language, full-stack environment on completely uncontaminated code. We release IDE-Bench and a public leaderboard at: https://ide-bench.com.
Multimedia 6
☆ An Automatic Deep Learning Approach for Trailer Generation through Large Language Models SP
Trailers are short promotional videos designed to provide audiences with a glimpse of a movie. The process of creating a trailer typically involves selecting key scenes, dialogues and action sequences from the main content and editing them together in a way that effectively conveys the tone, theme and overall appeal of the movie. This often includes adding music, sound effects, visual effects and text overlays to enhance the impact of the trailer. In this paper, we present a framework exploiting a comprehensive multimodal strategy for automated trailer production. Also, a Large Language Model (LLM) is adopted across various stages of the trailer creation. First, it selects main key visual sequences that are relevant to the movie's core narrative. Then, it extracts the most appealing quotes from the movie, aligning them with the trailer's narrative. Additionally, the LLM assists in creating music backgrounds and voiceovers to enrich the audience's engagement, thus contributing to make a trailer not just a summary of the movie's content but a narrative experience in itself. Results show that our framework generates trailers that are more visually appealing to viewers compared to those produced by previous state-of-the-art competitors.
comment: 2024 9th International Conference on Frontiers of Signal Processing (ICFSP)
☆ Compact Hypercube Embeddings for Fast Text-based Wildlife Observation Retrieval
Large-scale biodiversity monitoring platforms increasingly rely on multimodal wildlife observations. While recent foundation models enable rich semantic representations across vision, audio, and language, retrieving relevant observations from massive archives remains challenging due to the computational cost of high-dimensional similarity search. In this work, we introduce compact hypercube embeddings for fast text-based wildlife observation retrieval, a framework that enables efficient text-based search over large-scale wildlife image and audio databases using compact binary representations. Building on the cross-view code alignment hashing framework, we extend lightweight hashing beyond a single-modality setup to align natural language descriptions with visual or acoustic observations in a shared Hamming space. Our approach leverages pretrained wildlife foundation models, including BioCLIP and BioLingual, and adapts them efficiently for hashing using parameter-efficient fine-tuning. We evaluate our method on large-scale benchmarks, including iNaturalist2024 for text-to-image retrieval and iNatSounds2024 for text-to-audio retrieval, as well as multiple soundscape datasets to assess robustness under domain shift. Results show that retrieval using discrete hypercube embeddings achieves competitive, and in several cases superior, performance compared to continuous embeddings, while drastically reducing memory and search cost. Moreover, we observe that the hashing objective consistently improves the underlying encoder representations, leading to stronger retrieval and zero-shot generalization. These results demonstrate that binary, language-based retrieval enables scalable and efficient search over large wildlife archives for biodiversity monitoring systems.
☆ Divide and Conquer: Multimodal Video Deepfake Detection via Cross-Modal Fusion and Localization IJCAI 2025
This paper presents a system for detecting fake audio-visual content (i.e., video deepfake), developed for Track 2 of the DDL Challenge. The proposed system employs a two-stage framework, comprising unimodal detection and multimodal score fusion. Specifically, it incorporates an audio deepfake detection module and an audio localization module to analyze and pinpoint manipulated segments in the audio stream. In parallel, an image-based deepfake detection and localization module is employed to process the visual modality. To effectively leverage complementary information across different modalities, we further propose a multimodal score fusion strategy that integrates the outputs from both audio and visual modules. Guided by a detailed analysis of the training and evaluation dataset, we explore and evaluate several score calculation and fusion strategies to improve system robustness. Overall, the final fusion-based system achieves an AUC of 0.87, an AP of 0.55, and an AR of 0.23 on the challenge test set, resulting in a final score of 0.5528.
comment: The 3rd Place, IJCAI 2025 Workshop on Deepfake Detection, Localization, and Interpretability
☆ SCALED : Surrogate-gradient for Codec-Aware Learning of Downsampling in ABR Streaming
The rapid growth in video consumption has introduced significant challenges to modern streaming architectures. Over-the-Top (OTT) video delivery now predominantly relies on Adaptive Bitrate (ABR) streaming, which dynamically adjusts bitrate and resolution based on client-side constraints such as display capabilities and network bandwidth. This pipeline typically involves downsampling the original high-resolution content, encoding and transmitting it, followed by decoding and upsampling on the client side. Traditionally, these processing stages have been optimized in isolation, leading to suboptimal end-to-end rate-distortion (R-D) performance. The advent of deep learning has spurred interest in jointly optimizing the ABR pipeline using learned resampling methods. However, training such systems end-to-end remains challenging due to the non-differentiable nature of standard video codecs, which obstructs gradient-based optimization. Recent works have addressed this issue using differentiable proxy models, based either on deep neural networks or hybrid coding schemes with differentiable components such as soft quantization, to approximate the codec behavior. While differentiable proxy codecs have enabled progress in compression-aware learning, they remain approximations that may not fully capture the behavior of standard, non-differentiable codecs. To our knowledge, there is no prior evidence demonstrating the inefficiencies of using standard codecs during training. In this work, we introduce a novel framework that enables end-to-end training with real, non-differentiable codecs by leveraging data-driven surrogate gradients derived from actual compression errors. It facilitates the alignment between training objectives and deployment performance. Experimental results show a 5.19\% improvement in BD-BR (PSNR) compared to codec-agnostic training approaches, consistently across the entire rate-distortion convex hull spanning multiple downsampling ratios.
☆ LPIPS-AttnWav2Lip: Generic Audio-Driven lip synchronization for Talking Head Generation in the Wild
Researchers have shown a growing interest in Audio-driven Talking Head Generation. The primary challenge in talking head generation is achieving audio-visual coherence between the lips and the audio, known as lip synchronization. This paper proposes a generic method, LPIPS-AttnWav2Lip, for reconstructing face images of any speaker based on audio. We used the U-Net architecture based on residual CBAM to better encode and fuse audio and visual modal information. Additionally, the semantic alignment module extends the receptive field of the generator network to obtain the spatial and channel information of the visual features efficiently; and match statistical information of visual features with audio latent vector to achieve the adjustment and injection of the audio content information to the visual information. To achieve exact lip synchronization and to generate realistic high-quality images, our approach adopts LPIPS Loss, which simulates human judgment of image quality and reduces instability possibility during the training process. The proposed method achieves outstanding performance in terms of lip synchronization accuracy and visual quality as demonstrated by subjective and objective evaluation results. The code for the paper is available at the following link: https://github.com/FelixChan9527/LPIPS-AttnWav2Lip
comment: This paper has been accepted by Elsevier's \textit{Speech Communication} journal. Official publication link: https://doi.org/10.1016/j.specom.2023.103028 The code for the paper is available at the following link: https://github.com/FelixChan9527/LPIPS-AttnWav2Lip
♻ ☆ A Unified Evaluation Framework for Multi-Annotator Tendency Learning
Recent works have emerged in multi-annotator learning that shift focus from Consensus-oriented Learning (CoL), which aggregates multiple annotations into a single ground-truth prediction, to Individual Tendency Learning (ITL), which models annotator-specific labeling behavior patterns (i.e., tendency) to provide explanation analysis for understanding annotator decisions. However, no evaluation framework currently exists to assess whether ITL methods truly capture individual tendencies and provide meaningful behavioral explanations. To address this gap, we propose the first unified evaluation framework with two novel metrics: (1) Difference of Inter-annotator Consistency (DIC) quantifies how well models capture annotator tendencies by comparing predicted inter-annotator similarity structures with ground-truth; (2) Behavior Alignment Explainability (BAE) evaluates how well model explanations reflect annotator behavior and decision relevance by aligning explainability-derived with ground-truth labeling similarity structures via Multidimensional Scaling (MDS). Extensive experiments validate the effectiveness of our proposed evaluation framework.
comment: 9 pages
Computer Vision and Pattern Recognition 193
☆ One-step Latent-free Image Generation with Pixel Mean Flows
Modern diffusion/flow-based models for image generation typically exhibit two core characteristics: (i) using multi-step sampling, and (ii) operating in a latent space. Recent advances have made encouraging progress on each aspect individually, paving the way toward one-step diffusion/flow without latents. In this work, we take a further step towards this goal and propose "pixel MeanFlow" (pMF). Our core guideline is to formulate the network output space and the loss space separately. The network target is designed to be on a presumed low-dimensional image manifold (i.e., x-prediction), while the loss is defined via MeanFlow in the velocity space. We introduce a simple transformation between the image manifold and the average velocity field. In experiments, pMF achieves strong results for one-step latent-free generation on ImageNet at 256x256 resolution (2.22 FID) and 512x512 resolution (2.48 FID), filling a key missing piece in this regime. We hope that our study will further advance the boundaries of diffusion/flow-based generative models.
comment: Technical report
☆ UEval: A Benchmark for Unified Multimodal Generation
We introduce UEval, a benchmark to evaluate unified models, i.e., models capable of generating both images and text. UEval comprises 1,000 expert-curated questions that require both images and text in the model output, sourced from 8 real-world tasks. Our curated questions cover a wide range of reasoning types, from step-by-step guides to textbook explanations. Evaluating open-ended multimodal generation is non-trivial, as simple LLM-as-a-judge methods can miss the subtleties. Different from previous works that rely on multimodal Large Language Models (MLLMs) to rate image quality or text accuracy, we design a rubric-based scoring system in UEval. For each question, reference images and text answers are provided to a MLLM to generate an initial rubric, consisting of multiple evaluation criteria, and human experts then refine and validate these rubrics. In total, UEval contains 10,417 validated rubric criteria, enabling scalable and fine-grained automatic scoring. UEval is challenging for current unified models: GPT-5-Thinking scores only 66.4 out of 100, while the best open-source model reaches merely 49.1. We observe that reasoning models often outperform non-reasoning ones, and transferring reasoning traces from a reasoning model to a non-reasoning model significantly narrows the gap. This suggests that reasoning may be important for tasks requiring complex multimodal understanding and generation.
☆ DynamicVLA: A Vision-Language-Action Model for Dynamic Object Manipulation
Manipulating dynamic objects remains an open challenge for Vision-Language-Action (VLA) models, which, despite strong generalization in static manipulation, struggle in dynamic scenarios requiring rapid perception, temporal anticipation, and continuous control. We present DynamicVLA, a framework for dynamic object manipulation that integrates temporal reasoning and closed-loop adaptation through three key designs: 1) a compact 0.4B VLA using a convolutional vision encoder for spatially efficient, structurally faithful encoding, enabling fast multimodal inference; 2) Continuous Inference, enabling overlapping reasoning and execution for lower latency and timely adaptation to object motion; and 3) Latent-aware Action Streaming, which bridges the perception-execution gap by enforcing temporally aligned action execution. To fill the missing foundation of dynamic manipulation data, we introduce the Dynamic Object Manipulation (DOM) benchmark, built from scratch with an auto data collection pipeline that efficiently gathers 200K synthetic episodes across 2.8K scenes and 206 objects, and enables fast collection of 2K real-world episodes without teleoperation. Extensive evaluations demonstrate remarkable improvements in response speed, perception, and generalization, positioning DynamicVLA as a unified framework for general dynamic object manipulation across embodiments.
comment: Project Page: https://www.infinitescript.com/project/dynamic-vla/ GitHub: https://github.com/hzxie/DynamicVLA
☆ Do VLMs Perceive or Recall? Probing Visual Perception vs. Memory with Classic Visual Illusions
Large Vision-Language Models (VLMs) often answer classic visual illusions "correctly" on original images, yet persist with the same responses when illusion factors are inverted, even though the visual change is obvious to humans. This raises a fundamental question: do VLMs perceive visual changes or merely recall memorized patterns? While several studies have noted this phenomenon, the underlying causes remain unclear. To move from observations to systematic understanding, this paper introduces VI-Probe, a controllable visual-illusion framework with graded perturbations and matched visual controls (without illusion inducer) that disentangles visually grounded perception from language-driven recall. Unlike prior work that focuses on averaged accuracy, we measure stability and sensitivity using Polarity-Flip Consistency, Template Fixation Index, and an illusion multiplier normalized against matched controls. Experiments across different families reveal that response persistence arises from heterogeneous causes rather than a single mechanism. For instance, GPT-5 exhibits memory override, Claude-Opus-4.1 shows perception-memory competition, while Qwen variants suggest visual-processing limits. Our findings challenge single-cause views and motivate probing-based evaluation that measures both knowledge and sensitivity to controlled visual change. Data and code are available at https://sites.google.com/view/vi-probe/.
comment: 26 pages, 31 figures, 13 tables. Project Page: https://sites.google.com/view/vi-probe/
☆ JUST-DUB-IT: Video Dubbing via Joint Audio-Visual Diffusion
Audio-Visual Foundation Models, which are pretrained to jointly generate sound and visual content, have recently shown an unprecedented ability to model multi-modal generation and editing, opening new opportunities for downstream tasks. Among these tasks, video dubbing could greatly benefit from such priors, yet most existing solutions still rely on complex, task-specific pipelines that struggle in real-world settings. In this work, we introduce a single-model approach that adapts a foundational audio-video diffusion model for video-to-video dubbing via a lightweight LoRA. The LoRA enables the model to condition on an input audio-video while jointly generating translated audio and synchronized facial motion. To train this LoRA, we leverage the generative model itself to synthesize paired multilingual videos of the same speaker. Specifically, we generate multilingual videos with language switches within a single clip, and then inpaint the face and audio in each half to match the language of the other half. By leveraging the rich generative prior of the audio-visual model, our approach preserves speaker identity and lip synchronization while remaining robust to complex motion and real-world dynamics. We demonstrate that our approach produces high-quality dubbed videos with improved visual fidelity, lip synchronization, and robustness compared to existing dubbing pipelines.
comment: Project webpage available at https://justdubit.github.io
☆ Routing the Lottery: Adaptive Subnetworks for Heterogeneous Data
In pruning, the Lottery Ticket Hypothesis posits that large networks contain sparse subnetworks, or winning tickets, that can be trained in isolation to match the performance of their dense counterparts. However, most existing approaches assume a single universal winning ticket shared across all inputs, ignoring the inherent heterogeneity of real-world data. In this work, we propose Routing the Lottery (RTL), an adaptive pruning framework that discovers multiple specialized subnetworks, called adaptive tickets, each tailored to a class, semantic cluster, or environmental condition. Across diverse datasets and tasks, RTL consistently outperforms single- and multi-model baselines in balanced accuracy and recall, while using up to 10 times fewer parameters than independent models and exhibiting semantically aligned. Furthermore, we identify subnetwork collapse, a performance drop under aggressive pruning, and introduce a subnetwork similarity score that enables label-free diagnosis of oversparsification. Overall, our results recast pruning as a mechanism for aligning model structure with data heterogeneity, paving the way toward more modular and context-aware deep learning.
☆ PI-Light: Physics-Inspired Diffusion for Full-Image Relighting ICLR 2026
Full-image relighting remains a challenging problem due to the difficulty of collecting large-scale structured paired data, the difficulty of maintaining physical plausibility, and the limited generalizability imposed by data-driven priors. Existing attempts to bridge the synthetic-to-real gap for full-scene relighting remain suboptimal. To tackle these challenges, we introduce Physics-Inspired diffusion for full-image reLight ($π$-Light, or PI-Light), a two-stage framework that leverages physics-inspired diffusion models. Our design incorporates (i) batch-aware attention, which improves the consistency of intrinsic predictions across a collection of images, (ii) a physics-guided neural rendering module that enforces physically plausible light transport, (iii) physics-inspired losses that regularize training dynamics toward a physically meaningful landscape, thereby enhancing generalizability to real-world image editing, and (iv) a carefully curated dataset of diverse objects and scenes captured under controlled lighting conditions. Together, these components enable efficient finetuning of pretrained diffusion models while also providing a solid benchmark for downstream evaluation. Experiments demonstrate that $π$-Light synthesizes specular highlights and diffuse reflections across a wide variety of materials, achieving superior generalization to real-world scenes compared with prior approaches.
comment: Accepted at ICLR 2026
☆ Early and Prediagnostic Detection of Pancreatic Cancer from Computed Tomography
Pancreatic ductal adenocarcinoma (PDAC), one of the deadliest solid malignancies, is often detected at a late and inoperable stage. Retrospective reviews of prediagnostic CT scans, when conducted by expert radiologists aware that the patient later developed PDAC, frequently reveal lesions that were previously overlooked. To help detecting these lesions earlier, we developed an automated system named ePAI (early Pancreatic cancer detection with Artificial Intelligence). It was trained on data from 1,598 patients from a single medical center. In the internal test involving 1,009 patients, ePAI achieved an area under the receiver operating characteristic curve (AUC) of 0.939-0.999, a sensitivity of 95.3%, and a specificity of 98.7% for detecting small PDAC less than 2 cm in diameter, precisely localizing PDAC as small as 2 mm. In an external test involving 7,158 patients across 6 centers, ePAI achieved an AUC of 0.918-0.945, a sensitivity of 91.5%, and a specificity of 88.0%, precisely localizing PDAC as small as 5 mm. Importantly, ePAI detected PDACs on prediagnostic CT scans obtained 3 to 36 months before clinical diagnosis that had originally been overlooked by radiologists. It successfully detected and localized PDACs in 75 of 159 patients, with a median lead time of 347 days before clinical diagnosis. Our multi-reader study showed that ePAI significantly outperformed 30 board-certified radiologists by 50.3% (P < 0.05) in sensitivity while maintaining a comparable specificity of 95.4% in detecting PDACs early and prediagnostic. These findings suggest its potential of ePAI as an assistive tool to improve early detection of pancreatic cancer.
☆ EditYourself: Audio-Driven Generation and Manipulation of Talking Head Videos with Diffusion Transformers
Current generative video models excel at producing novel content from text and image prompts, but leave a critical gap in editing existing pre-recorded videos, where minor alterations to the spoken script require preserving motion, temporal coherence, speaker identity, and accurate lip synchronization. We introduce EditYourself, a DiT-based framework for audio-driven video-to-video (V2V) editing that enables transcript-based modification of talking head videos, including the seamless addition, removal, and retiming of visually spoken content. Building on a general-purpose video diffusion model, EditYourself augments its V2V capabilities with audio conditioning and region-aware, edit-focused training extensions. This enables precise lip synchronization and temporally coherent restructuring of existing performances via spatiotemporal inpainting, including the synthesis of realistic human motion in newly added segments, while maintaining visual fidelity and identity consistency over long durations. This work represents a foundational step toward generative video models as practical tools for professional video post-production.
comment: Project page: https://edit-yourself.github.io/
☆ Creative Image Generation with Diffusion Model
Creative image generation has emerged as a compelling area of research, driven by the need to produce novel and high-quality images that expand the boundaries of imagination. In this work, we propose a novel framework for creative generation using diffusion models, where creativity is associated with the inverse probability of an image's existence in the CLIP embedding space. Unlike prior approaches that rely on a manual blending of concepts or exclusion of subcategories, our method calculates the probability distribution of generated images and drives it towards low-probability regions to produce rare, imaginative, and visually captivating outputs. We also introduce pullback mechanisms, achieving high creativity without sacrificing visual fidelity. Extensive experiments on text-to-image diffusion models demonstrate the effectiveness and efficiency of our creative generation framework, showcasing its ability to produce unique, novel, and thought-provoking images. This work provides a new perspective on creativity in generative models, offering a principled method to foster innovation in visual content synthesis.
comment: Project page: https://creative-t2i.github.io
☆ SINA: A Circuit Schematic Image-to-Netlist Generator Using Artificial Intelligence
Current methods for converting circuit schematic images into machine-readable netlists struggle with component recognition and connectivity inference. In this paper, we present SINA, an open-source, fully automated circuit schematic image-to-netlist generator. SINA integrates deep learning for accurate component detection, Connected-Component Labeling (CCL) for precise connectivity extraction, and Optical Character Recognition (OCR) for component reference designator retrieval, while employing a Vision-Language Model (VLM) for reliable reference designator assignments. In our experiments, SINA achieves 96.47% overall netlist-generation accuracy, which is 2.72x higher than state-of-the-art approaches.
☆ RefAny3D: 3D Asset-Referenced Diffusion Models for Image Generation ICLR 2026
In this paper, we propose a 3D asset-referenced diffusion model for image generation, exploring how to integrate 3D assets into image diffusion models. Existing reference-based image generation methods leverage large-scale pretrained diffusion models and demonstrate strong capability in generating diverse images conditioned on a single reference image. However, these methods are limited to single-image references and cannot leverage 3D assets, constraining their practical versatility. To address this gap, we present a cross-domain diffusion model with dual-branch perception that leverages multi-view RGB images and point maps of 3D assets to jointly model their colors and canonical-space coordinates, achieving precise consistency between generated images and the 3D references. Our spatially aligned dual-branch generation architecture and domain-decoupled generation mechanism ensure the simultaneous generation of two spatially aligned but content-disentangled outputs, RGB images and point maps, linking 2D image attributes with 3D asset attributes. Experiments show that our approach effectively uses 3D assets as references to produce images consistent with the given assets, opening new possibilities for combining diffusion models with 3D content creation.
comment: ICLR 2026. Project page: https://judgementh.github.io/RefAny3D Codes: https://github.com/JudgementH/RefAny3D
☆ Learning Transient Convective Heat Transfer with Geometry Aware World Models
Partial differential equation (PDE) simulations are fundamental to engineering and physics but are often computationally prohibitive for real-time applications. While generative AI offers a promising avenue for surrogate modeling, standard video generation architectures lack the specific control and data compatibility required for physical simulations. This paper introduces a geometry aware world model architecture, derived from a video generation architecture (LongVideoGAN), designed to learn transient physics. We introduce two key architecture elements: (1) a twofold conditioning mechanism incorporating global physical parameters and local geometric masks, and (2) an architectural adaptation to support arbitrary channel dimensions, moving beyond standard RGB constraints. We evaluate this approach on a 2D transient computational fluid dynamics (CFD) problem involving convective heat transfer from buoyancy-driven flow coupled to a heat flow in a solid structure. We demonstrate that the conditioned model successfully reproduces complex temporal dynamics and spatial correlations of the training data. Furthermore, we assess the model's generalization capabilities on unseen geometric configurations, highlighting both its potential for controlled simulation synthesis and current limitations in spatial precision for out-of-distribution samples.
comment: 36 pages, 18 figures, 2 tables
☆ BLO-Inst: Bi-Level Optimization Based Alignment of YOLO and SAM for Robust Instance Segmentation
The Segment Anything Model has revolutionized image segmentation with its zero-shot capabilities, yet its reliance on manual prompts hinders fully automated deployment. While integrating object detectors as prompt generators offers a pathway to automation, existing pipelines suffer from two fundamental limitations: objective mismatch, where detectors optimized for geometric localization do not correspond to the optimal prompting context required by SAM, and alignment overfitting in standard joint training, where the detector simply memorizes specific prompt adjustments for training samples rather than learning a generalizable policy. To bridge this gap, we introduce BLO-Inst, a unified framework that aligns detection and segmentation objectives by bi-level optimization. We formulate the alignment as a nested optimization problem over disjoint data splits. In the lower level, the SAM is fine-tuned to maximize segmentation fidelity given the current detection proposals on a subset ($D_1$). In the upper level, the detector is updated to generate bounding boxes that explicitly minimize the validation loss of the fine-tuned SAM on a separate subset ($D_2$). This effectively transforms the detector into a segmentation-aware prompt generator, optimizing the bounding boxes not just for localization accuracy, but for downstream mask quality. Extensive experiments demonstrate that BLO-Inst achieves superior performance, outperforming standard baselines on tasks in general and biomedical domains.
☆ Vision-DeepResearch: Incentivizing DeepResearch Capability in Multimodal Large Language Models
Multimodal large language models (MLLMs) have achieved remarkable success across a broad range of vision tasks. However, constrained by the capacity of their internal world knowledge, prior work has proposed augmenting MLLMs by ``reasoning-then-tool-call'' for visual and textual search engines to obtain substantial gains on tasks requiring extensive factual information. However, these approaches typically define multimodal search in a naive setting, assuming that a single full-level or entity-level image query and few text query suffices to retrieve the key evidence needed to answer the question, which is unrealistic in real-world scenarios with substantial visual noise. Moreover, they are often limited in the reasoning depth and search breadth, making it difficult to solve complex questions that require aggregating evidence from diverse visual and textual sources. Building on this, we propose Vision-DeepResearch, which proposes one new multimodal deep-research paradigm, i.e., performs multi-turn, multi-entity and multi-scale visual and textual search to robustly hit real-world search engines under heavy noise. Our Vision-DeepResearch supports dozens of reasoning steps and hundreds of engine interactions, while internalizing deep-research capabilities into the MLLM via cold-start supervision and RL training, resulting in a strong end-to-end multimodal deep-research MLLM. It substantially outperforming existing multimodal deep-research MLLMs, and workflows built on strong closed-source foundation model such as GPT-5, Gemini-2.5-pro and Claude-4-Sonnet. The code will be released in https://github.com/Osilly/Vision-DeepResearch.
☆ Unsupervised Decomposition and Recombination with Discriminator-Driven Diffusion Models
Decomposing complex data into factorized representations can reveal reusable components and enable synthesizing new samples via component recombination. We investigate this in the context of diffusion-based models that learn factorized latent spaces without factor-level supervision. In images, factors can capture background, illumination, and object attributes; in robotic videos, they can capture reusable motion components. To improve both latent factor discovery and quality of compositional generation, we introduce an adversarial training signal via a discriminator trained to distinguish between single-source samples and those generated by recombining factors across sources. By optimizing the generator to fool this discriminator, we encourage physical and semantic consistency in the resulting recombinations. Our method outperforms implementations of prior baselines on CelebA-HQ, Virtual KITTI, CLEVR, and Falcor3D, achieving lower FID scores and better disentanglement as measured by MIG and MCC. Furthermore, we demonstrate a novel application to robotic video trajectories: by recombining learned action components, we generate diverse sequences that significantly increase state-space coverage for exploration on the LIBERO benchmark.
comment: 28 pages, 16 figures, 4 tables
☆ MetricAnything: Scaling Metric Depth Pretraining with Noisy Heterogeneous Sources
Scaling has powered recent advances in vision foundation models, yet extending this paradigm to metric depth estimation remains challenging due to heterogeneous sensor noise, camera-dependent biases, and metric ambiguity in noisy cross-source 3D data. We introduce Metric Anything, a simple and scalable pretraining framework that learns metric depth from noisy, diverse 3D sources without manually engineered prompts, camera-specific modeling, or task-specific architectures. Central to our approach is the Sparse Metric Prompt, created by randomly masking depth maps, which serves as a universal interface that decouples spatial reasoning from sensor and camera biases. Using about 20M image-depth pairs spanning reconstructed, captured, and rendered 3D data across 10000 camera models, we demonstrate-for the first time-a clear scaling trend in the metric depth track. The pretrained model excels at prompt-driven tasks such as depth completion, super-resolution and Radar-camera fusion, while its distilled prompt-free student achieves state-of-the-art results on monocular depth estimation, camera intrinsics recovery, single/multi-view metric 3D reconstruction, and VLA planning. We also show that using pretrained ViT of Metric Anything as a visual encoder significantly boosts Multimodal Large Language Model capabilities in spatial intelligence. These results show that metric depth estimation can benefit from the same scaling laws that drive modern foundation models, establishing a new path toward scalable and efficient real-world metric perception. We open-source MetricAnything at http://metric-anything.github.io/metric-anything-io/ to support community research.
comment: Project Page: https://metric-anything.github.io/metric-anything-io/
☆ PLANING: A Loosely Coupled Triangle-Gaussian Framework for Streaming 3D Reconstruction
Streaming reconstruction from monocular image sequences remains challenging, as existing methods typically favor either high-quality rendering or accurate geometry, but rarely both. We present PLANING, an efficient on-the-fly reconstruction framework built on a hybrid representation that loosely couples explicit geometric primitives with neural Gaussians, enabling geometry and appearance to be modeled in a decoupled manner. This decoupling supports an online initialization and optimization strategy that separates geometry and appearance updates, yielding stable streaming reconstruction with substantially reduced structural redundancy. PLANING improves dense mesh Chamfer-L2 by 18.52% over PGSR, surpasses ARTDECO by 1.31 dB PSNR, and reconstructs ScanNetV2 scenes in under 100 seconds, over 5x faster than 2D Gaussian Splatting, while matching the quality of offline per-scene optimization. Beyond reconstruction quality, the structural clarity and computational efficiency of \modelname~make it well suited for a broad range of downstream applications, such as enabling large-scale scene modeling and simulation-ready environments for embodied AI. Project page: https://city-super.github.io/PLANING/ .
☆ Urban Neural Surface Reconstruction from Constrained Sparse Aerial Imagery with 3D SAR Fusion
Neural surface reconstruction (NSR) has recently shown strong potential for urban 3D reconstruction from multi-view aerial imagery. However, existing NSR methods often suffer from geometric ambiguity and instability, particularly under sparse-view conditions. This issue is critical in large-scale urban remote sensing, where aerial image acquisition is limited by flight paths, terrain, and cost. To address this challenge, we present the first urban NSR framework that fuses 3D synthetic aperture radar (SAR) point clouds with aerial imagery for high-fidelity reconstruction under constrained, sparse-view settings. 3D SAR can efficiently capture large-scale geometry even from a single side-looking flight path, providing robust priors that complement photometric cues from images. Our framework integrates radar-derived spatial constraints into an SDF-based NSR backbone, guiding structure-aware ray selection and adaptive sampling for stable and efficient optimization. We also construct the first benchmark dataset with co-registered 3D SAR point clouds and aerial imagery, facilitating systematic evaluation of cross-modal 3D reconstruction. Extensive experiments show that incorporating 3D SAR markedly enhances reconstruction accuracy, completeness, and robustness compared with single-modality baselines under highly sparse and oblique-view conditions, highlighting a viable route toward scalable high-fidelity urban reconstruction with advanced airborne and spaceborne optical-SAR sensing.
☆ Learning to Communicate Across Modalities: Perceptual Heterogeneity in Multi-Agent Systems
Emergent communication offers insight into how agents develop shared structured representations, yet most research assumes homogeneous modalities or aligned representational spaces, overlooking the perceptual heterogeneity of real-world settings. We study a heterogeneous multi-step binary communication game where agents differ in modality and lack perceptual grounding. Despite perceptual misalignment, multimodal systems converge to class-consistent messages grounded in perceptual input. Unimodal systems communicate more efficiently, using fewer bits and achieving lower classification entropy, while multimodal agents require greater information exchange and exhibit higher uncertainty. Bit perturbation experiments provide strong evidence that meaning is encoded in a distributional rather than compositional manner, as each bit's contribution depends on its surrounding pattern. Finally, interoperability analyses show that systems trained in different perceptual worlds fail to directly communicate, but limited fine-tuning enables successful cross-system communication. This work positions emergent communication as a framework for studying how agents adapt and transfer representations across heterogeneous modalities, opening new directions for both theory and experimentation.
comment: To be published in EvoLang XVI proceedings. 15 pages, 17 figures
☆ Understanding Multimodal Complementarity for Single-Frame Action Anticipation
Human action anticipation is commonly treated as a video understanding problem, implicitly assuming that dense temporal information is required to reason about future actions. In this work, we challenge this assumption by investigating what can be achieved when action anticipation is constrained to a single visual observation. We ask a fundamental question: how much information about the future is already encoded in a single frame, and how can it be effectively exploited? Building on our prior work on Action Anticipation at a Glimpse (AAG), we conduct a systematic investigation of single-frame action anticipation enriched with complementary sources of information. We analyze the contribution of RGB appearance, depth-based geometric cues, and semantic representations of past actions, and investigate how different multimodal fusion strategies, keyframe selection policies and past-action history sources influence anticipation performance. Guided by these findings, we consolidate the most effective design choices into AAG+, a refined single-frame anticipation framework. Despite operating on a single frame, AAG+ consistently improves upon the original AAG and achieves performance comparable to, or exceeding, that of state-of-the-art video-based methods on challenging anticipation benchmarks including IKEA-ASM, Meccano and Assembly101. Our results offer new insights into the limits and potential of single-frame action anticipation, and clarify when dense temporal modeling is necessary and when a carefully selected glimpse is sufficient.
☆ Drive-JEPA: Video JEPA Meets Multimodal Trajectory Distillation for End-to-End Driving
End-to-end autonomous driving increasingly leverages self-supervised video pretraining to learn transferable planning representations. However, pretraining video world models for scene understanding has so far brought only limited improvements. This limitation is compounded by the inherent ambiguity of driving: each scene typically provides only a single human trajectory, making it difficult to learn multimodal behaviors. In this work, we propose Drive-JEPA, a framework that integrates Video Joint-Embedding Predictive Architecture (V-JEPA) with multimodal trajectory distillation for end-to-end driving. First, we adapt V-JEPA for end-to-end driving, pretraining a ViT encoder on large-scale driving videos to produce predictive representations aligned with trajectory planning. Second, we introduce a proposal-centric planner that distills diverse simulator-generated trajectories alongside human trajectories, with a momentum-aware selection mechanism to promote stable and safe behavior. When evaluated on NAVSIM, the V-JEPA representation combined with a simple transformer-based decoder outperforms prior methods by 3 PDMS in the perception-free setting. The complete Drive-JEPA framework achieves 93.3 PDMS on v1 and 87.8 EPDMS on v2, setting a new state-of-the-art.
☆ Hybrid Foveated Path Tracing with Peripheral Gaussians for Immersive Anatomy IEEE
Volumetric medical imaging offers great potential for understanding complex pathologies. Yet, traditional 2D slices provide little support for interpreting spatial relationships, forcing users to mentally reconstruct anatomy into three dimensions. Direct volumetric path tracing and VR rendering can improve perception but are computationally expensive, while precomputed representations, like Gaussian Splatting, require planning ahead. Both approaches limit interactive use. We propose a hybrid rendering approach for high-quality, interactive, and immersive anatomical visualization. Our method combines streamed foveated path tracing with a lightweight Gaussian Splatting approximation of the periphery. The peripheral model generation is optimized with volume data and continuously refined using foveal renderings, enabling interactive updates. Depth-guided reprojection further improves robustness to latency and allows users to balance fidelity with refresh rate. We compare our method against direct path tracing and Gaussian Splatting. Our results highlight how their combination can preserve strengths in visual quality while re-generating the peripheral model in under a second, eliminating extensive preprocessing and approximations. This opens new options for interactive medical visualization.
comment: Scheduled for publication in the Proceedings of IEEE VR 2026
☆ Visual-Guided Key-Token Regularization for Multimodal Large Language Model Unlearning
Unlearning in Multimodal Large Language Models (MLLMs) prevents the model from revealing private information when queried about target images. Existing MLLM unlearning methods largely adopt approaches developed for LLMs. They treat all answer tokens uniformly, disregarding their varying importance in the unlearning process. Moreover, these methods focus exclusively on the language modality, disregarding visual cues that indicate key tokens in answers. In this paper, after formulating the problem of unlearning in multimodal question answering for MLLMs, we propose Visual-Guided Key-Token Regularization (ViKeR). We leverage irrelevant visual inputs to predict ideal post-unlearning token-level distributions and use these distributions to regularize the unlearning process, thereby prioritizing key tokens. Further, we define key tokens in unlearning via information entropy and discuss ViKeR's effectiveness through token-level gradient reweighting, which amplifies updates on key tokens. Experiments on MLLMU and CLEAR benchmarks demonstrate that our method effectively performs unlearning while mitigating forgetting and maintaining response coherence.
☆ Causal World Modeling for Robot Control
This work highlights that video world modeling, alongside vision-language pre-training, establishes a fresh and independent foundation for robot learning. Intuitively, video world models provide the ability to imagine the near future by understanding the causality between actions and visual dynamics. Inspired by this, we introduce LingBot-VA, an autoregressive diffusion framework that learns frame prediction and policy execution simultaneously. Our model features three carefully crafted designs: (1) a shared latent space, integrating vision and action tokens, driven by a Mixture-of-Transformers (MoT) architecture, (2) a closed-loop rollout mechanism, allowing for ongoing acquisition of environmental feedback with ground-truth observations, (3) an asynchronous inference pipeline, parallelizing action prediction and motor execution to support efficient control. We evaluate our model on both simulation benchmarks and real-world scenarios, where it shows significant promise in long-horizon manipulation, data efficiency in post-training, and strong generalizability to novel configurations. The code and model are made publicly available to facilitate the community.
comment: Project page: https://technology.robbyant.com/lingbot-va Code: https://github.com/robbyant/lingbot-va
☆ PaddleOCR-VL-1.5: Towards a Multi-Task 0.9B VLM for Robust In-the-Wild Document Parsing
We introduce PaddleOCR-VL-1.5, an upgraded model achieving a new state-of-the-art (SOTA) accuracy of 94.5% on OmniDocBench v1.5. To rigorously evaluate robustness against real-world physical distortions, including scanning, skew, warping, screen-photography, and illumination, we propose the Real5-OmniDocBench benchmark. Experimental results demonstrate that this enhanced model attains SOTA performance on the newly curated benchmark. Furthermore, we extend the model's capabilities by incorporating seal recognition and text spotting tasks, while remaining a 0.9B ultra-compact VLM with high efficiency. Code: https://github.com/PaddlePaddle/PaddleOCR
☆ Deep Models, Shallow Alignment: Uncovering the Granularity Mismatch in Neural Decoding
Neural visual decoding is a central problem in brain computer interface research, aiming to reconstruct human visual perception and to elucidate the structure of neural representations. However, existing approaches overlook a fundamental granularity mismatch between human and machine vision, where deep vision models emphasize semantic invariance by suppressing local texture information, whereas neural signals preserve an intricate mixture of low-level visual attributes and high-level semantic content. To address this mismatch, we propose Shallow Alignment, a novel contrastive learning strategy that aligns neural signals with intermediate representations of visual encoders rather than their final outputs, thereby striking a better balance between low-level texture details and high-level semantic features. Extensive experiments across multiple benchmarks demonstrate that Shallow Alignment significantly outperforms standard final-layer alignment, with performance gains ranging from 22% to 58% across diverse vision backbones. Notably, our approach effectively unlocks the scaling law in neural visual decoding, enabling decoding performance to scale predictably with the capacity of pre-trained vision backbones. We further conduct systematic empirical analyses to shed light on the mechanisms underlying the observed performance gains.
comment: 29 pages, 13 figures
☆ BookNet: Book Image Rectification via Cross-Page Attention Network
Book image rectification presents unique challenges in document image processing due to complex geometric distortions from binding constraints, where left and right pages exhibit distinctly asymmetric curvature patterns. However, existing single-page document image rectification methods fail to capture the coupled geometric relationships between adjacent pages in books. In this work, we introduce BookNet, the first end-to-end deep learning framework specifically designed for dual-page book image rectification. BookNet adopts a dual-branch architecture with cross-page attention mechanisms, enabling it to estimate warping flows for both individual pages and the complete book spread, explicitly modeling how left and right pages influence each other. Moreover, to address the absence of specialized datasets, we present Book3D, a large-scale synthetic dataset for training, and Book100, a comprehensive real-world benchmark for evaluation. Extensive experiments demonstrate that BookNet outperforms existing state-of-the-art methods on book image rectification. Code and dataset will be made publicly available.
☆ Just Noticeable Difference Modeling for Deep Visual Features
Deep visual features are increasingly used as the interface in vision systems, motivating the need to describe feature characteristics and control feature quality for machine perception. Just noticeable difference (JND) characterizes the maximum imperceptible distortion for images under human or machine vision. Extending it to deep visual features naturally meets the above demand by providing a task-aligned tolerance boundary in feature space, offering a practical reference for controlling feature quality under constrained resources. We propose FeatJND, a task-aligned JND formulation that predicts the maximum tolerable per-feature perturbation map while preserving downstream task performance. We propose a FeatJND estimator at standardized split points and validate it across image classification, detection, and instance segmentation. Under matched distortion strength, FeatJND-based distortions consistently preserve higher task performance than unstructured Gaussian perturbations, and attribution visualizations suggest FeatJND can suppress non-critical feature regions. As an application, we further apply FeatJND to token-wise dynamic quantization and show that FeatJND-guided step-size allocation yields clear gains over random step-size permutation and global uniform step size under the same noise budget. Our code will be released after publication.
☆ Zero-Shot Video Restoration and Enhancement with Assistance of Video Diffusion Models
Although diffusion-based zero-shot image restoration and enhancement methods have achieved great success, applying them to video restoration or enhancement will lead to severe temporal flickering. In this paper, we propose the first framework that utilizes the rapidly-developed video diffusion model to assist the image-based method in maintaining more temporal consistency for zero-shot video restoration and enhancement. We propose homologous latents fusion, heterogenous latents fusion, and a COT-based fusion ratio strategy to utilize both homologous and heterogenous text-to-video diffusion models to complement the image method. Moreover, we propose temporal-strengthening post-processing to utilize the image-to-video diffusion model to further improve temporal consistency. Our method is training-free and can be applied to any diffusion-based image restoration and enhancement methods. Experimental results demonstrate the superiority of the proposed method.
☆ VideoAesBench: Benchmarking the Video Aesthetics Perception Capabilities of Large Multimodal Models
Large multimodal models (LMMs) have demonstrated outstanding capabilities in various visual perception tasks, which has in turn made the evaluation of LMMs significant. However, the capability of video aesthetic quality assessment, which is a fundamental ability for human, remains underexplored for LMMs. To address this, we introduce VideoAesBench, a comprehensive benchmark for evaluating LMMs' understanding of video aesthetic quality. VideoAesBench has several significant characteristics: (1) Diverse content including 1,804 videos from multiple video sources including user-generated (UGC), AI-generated (AIGC), compressed, robotic-generated (RGC), and game videos. (2) Multiple question formats containing traditional single-choice questions, multi-choice questions, True or False questions, and a novel open-ended questions for video aesthetics description. (3) Holistic video aesthetics dimensions including visual form related questions from 5 aspects, visual style related questions from 4 aspects, and visual affectiveness questions from 3 aspects. Based on VideoAesBench, we benchmark 23 open-source and commercial large multimodal models. Our findings show that current LMMs only contain basic video aesthetics perception ability, their performance remains incomplete and imprecise. We hope our VideoAesBench can be served as a strong testbed and offer insights for explainable video aesthetics assessment.
☆ Beyond Global Alignment: Fine-Grained Motion-Language Retrieval via Pyramidal Shapley-Taylor Learning
As a foundational task in human-centric cross-modal intelligence, motion-language retrieval aims to bridge the semantic gap between natural language and human motion, enabling intuitive motion analysis, yet existing approaches predominantly focus on aligning entire motion sequences with global textual representations. This global-centric paradigm overlooks fine-grained interactions between local motion segments and individual body joints and text tokens, inevitably leading to suboptimal retrieval performance. To address this limitation, we draw inspiration from the pyramidal process of human motion perception (from joint dynamics to segment coherence, and finally to holistic comprehension) and propose a novel Pyramidal Shapley-Taylor (PST) learning framework for fine-grained motion-language retrieval. Specifically, the framework decomposes human motion into temporal segments and spatial body joints, and learns cross-modal correspondences through progressive joint-wise and segment-wise alignment in a pyramidal fashion, effectively capturing both local semantic details and hierarchical structural relationships. Extensive experiments on multiple public benchmark datasets demonstrate that our approach significantly outperforms state-of-the-art methods, achieving precise alignment between motion segments and body joints and their corresponding text tokens. The code of this work will be released upon acceptance.
☆ TraceRouter: Robust Safety for Large Foundation Models via Path-Level Intervention
Despite their capabilities, large foundation models (LFMs) remain susceptible to adversarial manipulation. Current defenses predominantly rely on the "locality hypothesis", suppressing isolated neurons or features. However, harmful semantics act as distributed, cross-layer circuits, rendering such localized interventions brittle and detrimental to utility. To bridge this gap, we propose \textbf{TraceRouter}, a path-level framework that traces and disconnects the causal propagation circuits of illicit semantics. TraceRouter operates in three stages: (1) it pinpoints a sensitive onset layer by analyzing attention divergence; (2) it leverages sparse autoencoders (SAEs) and differential activation analysis to disentangle and isolate malicious features; and (3) it maps these features to downstream causal pathways via feature influence scores (FIS) derived from zero-out interventions. By selectively suppressing these causal chains, TraceRouter physically severs the flow of harmful information while leaving orthogonal computation routes intact. Extensive experiments demonstrate that TraceRouter significantly outperforms state-of-the-art baselines, achieving a superior trade-off between adversarial robustness and general utility. Our code will be publicly released. WARNING: This paper contains unsafe model responses.
☆ Past- and Future-Informed KV Cache Policy with Salience Estimation in Autoregressive Video Diffusion
Video generation is pivotal to digital media creation, and recent advances in autoregressive video generation have markedly enhanced the efficiency of real-time video synthesis. However, existing approaches generally rely on heuristic KV Cache policies, which ignore differences in token importance in long-term video generation. This leads to the loss of critical spatiotemporal information and the accumulation of redundant, invalid cache, thereby degrading video generation quality and efficiency. To address this limitation, we first observe that token contributions to video generation are highly time-heterogeneous and accordingly propose a novel Past- and Future-Informed KV Cache Policy (PaFu-KV). Specifically, PaFu-KV introduces a lightweight Salience Estimation Head distilled from a bidirectional teacher to estimate salience scores, allowing the KV cache to retain informative tokens while discarding less relevant ones. This policy yields a better quality-efficiency trade-off by shrinking KV cache capacity and reducing memory footprint at inference time. Extensive experiments on benchmarks demonstrate that our method preserves high-fidelity video generation quality while enables accelerated inference, thereby enabling more efficient long-horizon video generation. Our code will be released upon paper acceptance.
☆ Improving Classifier-Free Guidance of Flow Matching via Manifold Projection
Classifier-free guidance (CFG) is a widely used technique for controllable generation in diffusion and flow-based models. Despite its empirical success, CFG relies on a heuristic linear extrapolation that is often sensitive to the guidance scale. In this work, we provide a principled interpretation of CFG through the lens of optimization. We demonstrate that the velocity field in flow matching corresponds to the gradient of a sequence of smoothed distance functions, which guides latent variables toward the scaled target image set. This perspective reveals that the standard CFG formulation is an approximation of this gradient, where the prediction gap, the discrepancy between conditional and unconditional outputs, governs guidance sensitivity. Leveraging this insight, we reformulate the CFG sampling as a homotopy optimization with a manifold constraint. This formulation necessitates a manifold projection step, which we implement via an incremental gradient descent scheme during sampling. To improve computational efficiency and stability, we further enhance this iterative process with Anderson Acceleration without requiring additional model evaluations. Our proposed methods are training-free and consistently refine generation fidelity, prompt alignment, and robustness to the guidance scale. We validate their effectiveness across diverse benchmarks, demonstrating significant improvements on large-scale models such as DiT-XL-2-256, Flux, and Stable Diffusion 3.5.
comment: 24 pages, 14 figures
☆ Trajectory-Guided Diffusion for Foreground-Preserving Background Generation in Multi-Layer Documents
We present a diffusion-based framework for document-centric background generation that achieves foreground preservation and multi-page stylistic consistency through latent-space design rather than explicit constraints. Instead of suppressing diffusion updates or applying masking heuristics, our approach reinterprets diffusion as the evolution of stochastic trajectories through a structured latent space. By shaping the initial noise and its geometric alignment, background generation naturally avoids designated foreground regions, allowing readable content to remain intact without auxiliary mechanisms. To address the long-standing issue of stylistic drift across pages, we decouple style control from text conditioning and introduce cached style directions as persistent vectors in latent space. Once selected, these directions constrain diffusion trajectories to a shared stylistic subspace, ensuring consistent appearance across pages and editing iterations. This formulation eliminates the need for repeated prompt-based style specification and provides a more stable foundation for multi-page generation. Our framework admits a geometric and physical interpretation, where diffusion paths evolve on a latent manifold shaped by preferred directions, and foreground regions are rarely traversed as a consequence of trajectory initialization rather than explicit exclusion. The proposed method is training-free, compatible with existing diffusion backbones, and produces visually coherent, foreground-preserving results across complex documents. By reframing diffusion as trajectory design in latent space, we offer a principled approach to consistent and structured generative modeling.
comment: 47 pages, 36 figures
☆ Blind Ultrasound Image Enhancement via Self-Supervised Physics-Guided Degradation Modeling
Ultrasound (US) interpretation is hampered by multiplicative speckle, acquisition blur from the point-spread function (PSF), and scanner- and operator-dependent artifacts. Supervised enhancement methods assume access to clean targets or known degradations; conditions rarely met in practice. We present a blind, self-supervised enhancement framework that jointly deconvolves and denoises B-mode images using a Swin Convolutional U-Net trained with a \emph{physics-guided} degradation model. From each training frame, we extract rotated/cropped patches and synthesize inputs by (i) convolving with a Gaussian PSF surrogate and (ii) injecting noise via either spatial additive Gaussian noise or complex Fourier-domain perturbations that emulate phase/magnitude distortions. For US scans, clean-like targets are obtained via non-local low-rank (NLLR) denoising, removing the need for ground truth; for natural images, the originals serve as targets. Trained and validated on UDIAT~B, JNU-IFM, and XPIE Set-P, and evaluated additionally on a 700-image PSFHS test set, the method achieves the highest PSNR/SSIM across Gaussian and speckle noise levels, with margins that widen under stronger corruption. Relative to MSANN, Restormer, and DnCNN, it typically preserves an extra $\sim$1--4\,dB PSNR and 0.05--0.15 SSIM in heavy Gaussian noise, and $\sim$2--5\,dB PSNR and 0.05--0.20 SSIM under severe speckle. Controlled PSF studies show reduced FWHM and higher peak gradients, evidence of resolution recovery without edge erosion. Used as a plug-and-play preprocessor, it consistently boosts Dice for fetal head and pubic symphysis segmentation. Overall, the approach offers a practical, assumption-light path to robust US enhancement that generalizes across datasets, scanners, and degradation types.
comment: 11 pages, 13 figures
☆ MMFineReason: Closing the Multimodal Reasoning Gap via Open Data-Centric Methods
Recent advances in Vision Language Models (VLMs) have driven significant progress in visual reasoning. However, open-source VLMs still lag behind proprietary systems, largely due to the lack of high-quality reasoning data. Existing datasets offer limited coverage of challenging domains such as STEM diagrams and visual puzzles, and lack consistent, long-form Chain-of-Thought (CoT) annotations essential for eliciting strong reasoning capabilities. To bridge this gap, we introduce MMFineReason, a large-scale multimodal reasoning dataset comprising 1.8M samples and 5.1B solution tokens, featuring high-quality reasoning annotations distilled from Qwen3-VL-235B-A22B-Thinking. The dataset is established via a systematic three-stage pipeline: (1) large-scale data collection and standardization, (2) CoT rationale generation, and (3) comprehensive selection based on reasoning quality and difficulty awareness. The resulting dataset spans STEM problems, visual puzzles, games, and complex diagrams, with each sample annotated with visually grounded reasoning traces. We fine-tune Qwen3-VL-Instruct on MMFineReason to develop MMFineReason-2B/4B/8B versions. Our models establish new state-of-the-art results for their size class. Notably, MMFineReason-4B succesfully surpasses Qwen3-VL-8B-Thinking, and MMFineReason-8B even outperforms Qwen3-VL-30B-A3B-Thinking while approaching Qwen3-VL-32B-Thinking, demonstrating remarkable parameter efficiency. Crucially, we uncover a "less is more" phenomenon via our difficulty-aware filtering strategy: a subset of just 7\% (123K samples) achieves performance comparable to the full dataset. Notably, we reveal a synergistic effect where reasoning-oriented data composition simultaneously boosts general capabilities.
☆ CG-MLLM: Captioning and Generating 3D content via Multi-modal Large Language Models
Large Language Models(LLMs) have revolutionized text generation and multimodal perception, but their capabilities in 3D content generation remain underexplored. Existing methods compromise by producing either low-resolution meshes or coarse structural proxies, failing to capture fine-grained geometry natively. In this paper, we propose CG-MLLM, a novel Multi-modal Large Language Model (MLLM) capable of 3D captioning and high-resolution 3D generation in a single framework. Leveraging the Mixture-of-Transformer architecture, CG-MLLM decouples disparate modeling needs, where the Token-level Autoregressive (TokenAR) Transformer handles token-level content, and the Block-level Autoregressive (BlockAR) Transformer handles block-level content. By integrating a pre-trained vision-language backbone with a specialized 3D VAE latent space, CG-MLLM facilitates long-context interactions between standard tokens and spatial blocks within a single integrated architecture. Experimental results show that CG-MLLM significantly outperforms existing MLLMs in generating high-fidelity 3D objects, effectively bringing high-resolution 3D content creation into the mainstream LLM paradigm.
☆ Synthetic-to-Real Domain Bridging for Single-View 3D Reconstruction of Ships for Maritime Monitoring
Three-dimensional (3D) reconstruction of ships is an important part of maritime monitoring, allowing improved visualization, inspection, and decision-making in real-world monitoring environments. However, most state-ofthe-art 3D reconstruction methods require multi-view supervision, annotated 3D ground truth, or are computationally intensive, making them impractical for real-time maritime deployment. In this work, we present an efficient pipeline for single-view 3D reconstruction of real ships by training entirely on synthetic data and requiring only a single view at inference. Our approach uses the Splatter Image network, which represents objects as sparse sets of 3D Gaussians for rapid and accurate reconstruction from single images. The model is first fine-tuned on synthetic ShapeNet vessels and further refined with a diverse custom dataset of 3D ships, bridging the domain gap between synthetic and real-world imagery. We integrate a state-of-the-art segmentation module based on YOLOv8 and custom preprocessing to ensure compatibility with the reconstruction network. Postprocessing steps include real-world scaling, centering, and orientation alignment, followed by georeferenced placement on an interactive web map using AIS metadata and homography-based mapping. Quantitative evaluation on synthetic validation data demonstrates strong reconstruction fidelity, while qualitative results on real maritime images from the ShipSG dataset confirm the potential for transfer to operational maritime settings. The final system provides interactive 3D inspection of real ships without requiring real-world 3D annotations. This pipeline provides an efficient, scalable solution for maritime monitoring and highlights a path toward real-time 3D ship visualization in practical applications. Interactive demo: https://dlr-mi.github.io/ship3d-demo/.
☆ Dynamic Topology Awareness: Breaking the Granularity Rigidity in Vision-Language Navigation
Vision-Language Navigation in Continuous Environments (VLN-CE) presents a core challenge: grounding high-level linguistic instructions into precise, safe, and long-horizon spatial actions. Explicit topological maps have proven to be a vital solution for providing robust spatial memory in such tasks. However, existing topological planning methods suffer from a "Granularity Rigidity" problem. Specifically, these methods typically rely on fixed geometric thresholds to sample nodes, which fails to adapt to varying environmental complexities. This rigidity leads to a critical mismatch: the model tends to over-sample in simple areas, causing computational redundancy, while under-sampling in high-uncertainty regions, increasing collision risks and compromising precision. To address this, we propose DGNav, a framework for Dynamic Topological Navigation, introducing a context-aware mechanism to modulate map density and connectivity on-the-fly. Our approach comprises two core innovations: (1) A Scene-Aware Adaptive Strategy that dynamically modulates graph construction thresholds based on the dispersion of predicted waypoints, enabling "densification on demand" in challenging environments; (2) A Dynamic Graph Transformer that reconstructs graph connectivity by fusing visual, linguistic, and geometric cues into dynamic edge weights, enabling the agent to filter out topological noise and enhancing instruction adherence. Extensive experiments on the R2R-CE and RxR-CE benchmarks demonstrate DGNav exhibits superior navigation performance and strong generalization capabilities. Furthermore, ablation studies confirm that our framework achieves an optimal trade-off between navigation efficiency and safe exploration. The code is available at https://github.com/shannanshouyin/DGNav.
☆ From Global to Granular: Revealing IQA Model Performance via Correlation Surface
Evaluation of Image Quality Assessment (IQA) models has long been dominated by global correlation metrics, such as Pearson Linear Correlation Coefficient (PLCC) and Spearman Rank-Order Correlation Coefficient (SRCC). While widely adopted, these metrics reduce performance to a single scalar, failing to capture how ranking consistency varies across the local quality spectrum. For example, two IQA models may achieve identical SRCC values, yet one ranks high-quality images (related to high Mean Opinion Score, MOS) more reliably, while the other better discriminates image pairs with small quality/MOS differences (related to $|Δ$MOS$|$). Such complementary behaviors are invisible under global metrics. Moreover, SRCC and PLCC are sensitive to test-sample quality distributions, yielding unstable comparisons across test sets. To address these limitations, we propose \textbf{Granularity-Modulated Correlation (GMC)}, which provides a structured, fine-grained analysis of IQA performance. GMC includes: (1) a \textbf{Granularity Modulator} that applies Gaussian-weighted correlations conditioned on absolute MOS values and pairwise MOS differences ($|Δ$MOS$|$) to examine local performance variations, and (2) a \textbf{Distribution Regulator} that regularizes correlations to mitigate biases from non-uniform quality distributions. The resulting \textbf{correlation surface} maps correlation values as a joint function of MOS and $|Δ$MOS$|$, providing a 3D representation of IQA performance. Experiments on standard benchmarks show that GMC reveals performance characteristics invisible to scalar metrics, offering a more informative and reliable paradigm for analyzing, comparing, and deploying IQA models. Codes are available at https://github.com/Dniaaa/GMC.
☆ DreamActor-M2: Universal Character Image Animation via Spatiotemporal In-Context Learning
Character image animation aims to synthesize high-fidelity videos by transferring motion from a driving sequence to a static reference image. Despite recent advancements, existing methods suffer from two fundamental challenges: (1) suboptimal motion injection strategies that lead to a trade-off between identity preservation and motion consistency, manifesting as a "see-saw", and (2) an over-reliance on explicit pose priors (e.g., skeletons), which inadequately capture intricate dynamics and hinder generalization to arbitrary, non-humanoid characters. To address these challenges, we present DreamActor-M2, a universal animation framework that reimagines motion conditioning as an in-context learning problem. Our approach follows a two-stage paradigm. First, we bridge the input modality gap by fusing reference appearance and motion cues into a unified latent space, enabling the model to jointly reason about spatial identity and temporal dynamics by leveraging the generative prior of foundational models. Second, we introduce a self-bootstrapped data synthesis pipeline that curates pseudo cross-identity training pairs, facilitating a seamless transition from pose-dependent control to direct, end-to-end RGB-driven animation. This strategy significantly enhances generalization across diverse characters and motion scenarios. To facilitate comprehensive evaluation, we further introduce AW Bench, a versatile benchmark encompassing a wide spectrum of characters types and motion scenarios. Extensive experiments demonstrate that DreamActor-M2 achieves state-of-the-art performance, delivering superior visual fidelity and robust cross-domain generalization. Project Page: https://grisoon.github.io/DreamActor-M2/
☆ ChartE$^{3}$: A Comprehensive Benchmark for End-to-End Chart Editing
Charts are a fundamental visualization format for structured data analysis. Enabling end-to-end chart editing according to user intent is of great practical value, yet remains challenging due to the need for both fine-grained control and global structural consistency. Most existing approaches adopt pipeline-based designs, where natural language or code serves as an intermediate representation, limiting their ability to faithfully execute complex edits. We introduce ChartE$^{3}$, an End-to-End Chart Editing benchmark that directly evaluates models without relying on intermediate natural language programs or code-level supervision. ChartE$^{3}$ focuses on two complementary editing dimensions: local editing, which involves fine-grained appearance changes such as font or color adjustments, and global editing, which requires holistic, data-centric transformations including data filtering and trend line addition. ChartE$^{3}$ contains over 1,200 high-quality samples constructed via a well-designed data pipeline with human curation. Each sample is provided as a triplet of a chart image, its underlying code, and a multimodal editing instruction, enabling evaluation from both objective and subjective perspectives. Extensive benchmarking of state-of-the-art multimodal large language models reveals substantial performance gaps, particularly on global editing tasks, highlighting critical limitations in current end-to-end chart editing capabilities.
comment: Our benchmark will be publicly available at https://github.com/galactic123/ChartE3
☆ Multimodal Visual Surrogate Compression for Alzheimer's Disease Classification
High-dimensional structural MRI (sMRI) images are widely used for Alzheimer's Disease (AD) diagnosis. Most existing methods for sMRI representation learning rely on 3D architectures (e.g., 3D CNNs), slice-wise feature extraction with late aggregation, or apply training-free feature extractions using 2D foundation models (e.g., DINO). However, these three paradigms suffer from high computational cost, loss of cross-slice relations, and limited ability to extract discriminative features, respectively. To address these challenges, we propose Multimodal Visual Surrogate Compression (MVSC). It learns to compress and adapt large 3D sMRI volumes into compact 2D features, termed as visual surrogates, which are better aligned with frozen 2D foundation models to extract powerful representations for final AD classification. MVSC has two key components: a Volume Context Encoder that captures global cross-slice context under textual guidance, and an Adaptive Slice Fusion module that aggregates slice-level information in a text-enhanced, patch-wise manner. Extensive experiments on three large-scale Alzheimer's disease benchmarks demonstrate our MVSC performs favourably on both binary and multi-class classification tasks compared against state-of-the-art methods.
☆ When Gradient Optimization Is Not Enough: $\dagger$ Dispersive and Anchoring Geometric Regularizer for Multimodal Learning
Multimodal learning aims to integrate complementary information from heterogeneous modalities, yet strong optimization alone does not guaranty well-structured representations. Even under carefully balanced training schemes, multimodal models often exhibit geometric pathologies, including intra-modal representation collapse and sample-level cross-modal inconsistency, which degrade both unimodal robustness and multimodal fusion. We identify representation geometry as a missing control axis in multimodal learning and propose \regName, a lightweight geometry-aware regularization framework. \regName enforces two complementary constraints on intermediate embeddings: an intra-modal dispersive regularization that promotes representation diversity, and an inter-modal anchoring regularization that bounds sample-level cross-modal drift without rigid alignment. The proposed regularizer is plug-and-play, requires no architectural modifications, and is compatible with various training paradigms. Extensive experiments across multiple multimodal benchmarks demonstrate consistent improvements in both multimodal and unimodal performance, showing that explicitly regulating representation geometry effectively mitigates modality trade-offs.
☆ From Instruction to Event: Sound-Triggered Mobile Manipulation
Current mobile manipulation research predominantly follows an instruction-driven paradigm, where agents rely on predefined textual commands to execute tasks. However, this setting confines agents to a passive role, limiting their autonomy and ability to react to dynamic environmental events. To address these limitations, we introduce sound-triggered mobile manipulation, where agents must actively perceive and interact with sound-emitting objects without explicit action instructions. To support these tasks, we develop Habitat-Echo, a data platform that integrates acoustic rendering with physical interaction. We further propose a baseline comprising a high-level task planner and low-level policy models to complete these tasks. Extensive experiments show that the proposed baseline empowers agents to actively detect and respond to auditory events, eliminating the need for case-by-case instructions. Notably, in the challenging dual-source scenario, the agent successfully isolates the primary source from overlapping acoustic interference to execute the first interaction, and subsequently proceeds to manipulate the secondary object, verifying the robustness of the baseline.
☆ SONIC-O1: A Real-World Benchmark for Evaluating Multimodal Large Language Models on Audio-Video Understanding
Multimodal Large Language Models (MLLMs) are a major focus of recent AI research. However, most prior work focuses on static image understanding, while their ability to process sequential audio-video data remains underexplored. This gap highlights the need for a high-quality benchmark to systematically evaluate MLLM performance in a real-world setting. We introduce SONIC-O1, a comprehensive, fully human-verified benchmark spanning 13 real-world conversational domains with 4,958 annotations and demographic metadata. SONIC-O1 evaluates MLLMs on key tasks, including open-ended summarization, multiple-choice question (MCQ) answering, and temporal localization with supporting rationales (reasoning). Experiments on closed- and open-source models reveal limitations. While the performance gap in MCQ accuracy between two model families is relatively small, we observe a substantial 22.6% performance difference in temporal localization between the best performing closed-source and open-source models. Performance further degrades across demographic groups, indicating persistent disparities in model behavior. Overall, SONIC-O1 provides an open evaluation suite for temporally grounded and socially robust multimodal understanding. We release SONIC-O1 for reproducibility and research: Project page: https://vectorinstitute.github.io/sonic-o1/ Dataset: https://huggingface.co/datasets/vector-institute/sonic-o1 Github: https://github.com/vectorinstitute/sonic-o1 Leaderboard: https://huggingface.co/spaces/vector-institute/sonic-o1-leaderboard
☆ Few-Shot Domain Adaptation with Temporal References and Static Priors for Glacier Calving Front Delineation
During benchmarking, the state-of-the-art model for glacier calving front delineation achieves near-human performance. However, when applied in a real-world setting at a novel study site, its delineation accuracy is insufficient for calving front products intended for further scientific analyses. This site represents an out-of-distribution domain for a model trained solely on the benchmark dataset. By employing a few-shot domain adaptation strategy, incorporating spatial static prior knowledge, and including summer reference images in the input time series, the delineation error is reduced from 1131.6 m to 68.7 m without any architectural modifications. These methodological advancements establish a framework for applying deep learning-based calving front segmentation to novel study sites, enabling calving front monitoring on a global scale.
☆ CAF-Mamba: Mamba-Based Cross-Modal Adaptive Attention Fusion for Multimodal Depression Detection IEEE
Depression is a prevalent mental health disorder that severely impairs daily functioning and quality of life. While recent deep learning approaches for depression detection have shown promise, most rely on limited feature types, overlook explicit cross-modal interactions, and employ simple concatenation or static weighting for fusion. To overcome these limitations, we propose CAF-Mamba, a novel Mamba-based cross-modal adaptive attention fusion framework. CAF-Mamba not only captures cross-modal interactions explicitly and implicitly, but also dynamically adjusts modality contributions through a modality-wise attention mechanism, enabling more effective multimodal fusion. Experiments on two in-the-wild benchmark datasets, LMVD and D-Vlog, demonstrate that CAF-Mamba consistently outperforms existing methods and achieves state-of-the-art performance.
comment: The paper contains a total of 5 pages and 3 figures. This paper has been accepted for publication in the proceedings of 2026 IEEE ICASSP Conference
☆ OCRVerse: Towards Holistic OCR in End-to-End Vision-Language Models
The development of large vision language models drives the demand for managing, and applying massive amounts of multimodal data, making OCR technology, which extracts information from visual images, increasingly popular. However, existing OCR methods primarily focus on recognizing text elements from images or scanned documents (\textbf{Text-centric OCR}), neglecting the identification of visual elements from visually information-dense image sources (\textbf{Vision-centric OCR}), such as charts, web pages and science plots. In reality, these visually information-dense images are widespread on the internet and have significant real-world application value, such as data visualization and web page analysis. In this technical report, we propose \textbf{OCRVerse}, the first holistic OCR method in end-to-end manner that enables unified text-centric OCR and vision-centric OCR. To this end, we constructe comprehensive data engineering to cover a wide range of text-centric documents, such as newspapers, magazines and books, as well as vision-centric rendered composites, including charts, web pages and scientific plots. Moreover, we propose a two-stage SFT-RL multi-domain training method for OCRVerse. SFT directly mixes cross-domain data to train and establish initial domain knowledge, while RL focuses on designing personalized reward strategies for the characteristics of each domain. Specifically, since different domains require various output formats and expected outputs, we provide sufficient flexibility in the RL stage to customize flexible reward signals for each domain, thereby improving cross-domain fusion and avoiding data conflicts. Experimental results demonstrate the effectiveness of OCRVerse, achieving competitive results across text-centric and vision-centric data types, even comparable to large-scale open-source and closed-source models.
☆ RSGround-R1: Rethinking Remote Sensing Visual Grounding through Spatial Reasoning
Remote Sensing Visual Grounding (RSVG) aims to localize target objects in large-scale aerial imagery based on natural language descriptions. Owing to the vast spatial scale and high semantic ambiguity of remote sensing scenes, these descriptions often rely heavily on positional cues, posing unique challenges for Multimodal Large Language Models (MLLMs) in spatial reasoning. To leverage this unique feature, we propose a reasoning-guided, position-aware post-training framework, dubbed \textbf{RSGround-R1}, to progressively enhance spatial understanding. Specifically, we first introduce Chain-of-Thought Supervised Fine-Tuning (CoT-SFT) using synthetically generated RSVG reasoning data to establish explicit position awareness. Reinforcement Fine-Tuning (RFT) is then applied, augmented by our newly designed positional reward that provides continuous and distance-aware guidance toward accurate localization. Moreover, to mitigate incoherent localization behaviors across rollouts, we introduce a spatial consistency guided optimization scheme that dynamically adjusts policy updates based on their spatial coherence, ensuring stable and robust convergence. Extensive experiments on RSVG benchmarks demonstrate superior performance and generalization of our model.
☆ A Tilted Seesaw: Revisiting Autoencoder Trade-off for Controllable Diffusion
In latent diffusion models, the autoencoder (AE) is typically expected to balance two capabilities: faithful reconstruction and a generation-friendly latent space (e.g., low gFID). In recent ImageNet-scale AE studies, we observe a systematic bias toward generative metrics in handling this trade-off: reconstruction metrics are increasingly under-reported, and ablation-based AE selection often favors the best-gFID configuration even when reconstruction fidelity degrades. We theoretically analyze why this gFID-dominant preference can appear unproblematic for ImageNet generation, yet becomes risky when scaling to controllable diffusion: AEs can induce condition drift, which limits achievable condition alignment. Meanwhile, we find that reconstruction fidelity, especially instance-level measures, better indicates controllability. We empirically validate the impact of tilted autoencoder evaluation on controllability by studying several recent ImageNet AEs. Using a multi-dimensional condition-drift evaluation protocol reflecting controllable generation tasks, we find that gFID is only weakly predictive of condition preservation, whereas reconstruction-oriented metrics are substantially more aligned. ControlNet experiments further confirm that controllability tracks condition preservation rather than gFID. Overall, our results expose a gap between ImageNet-centric AE evaluation and the requirements of scalable controllable diffusion, offering practical guidance for more reliable benchmarking and model selection.
comment: work in progress
☆ Similarity of Processing Steps in Vision Model Representations
Recent literature suggests that the bigger the model, the more likely it is to converge to similar, ``universal'' representations, despite different training objectives, datasets, or modalities. While this literature shows that there is an area where model representations are similar, we study here how vision models might get to those representations--in particular, do they also converge to the same intermediate steps and operations? We therefore study the processes that lead to convergent representations in different models. First, we quantify distance between different model representations at different stages. We follow the evolution of distances between models throughout processing, identifying the processing steps which are most different between models. We find that while layers at similar positions in different models have the most similar representations, strong differences remain. Classifier models, unlike the others, will discard information about low-level image statistics in their final layers. CNN- and transformer-based models also behave differently, with transformer models applying smoother changes to representations from one layer to the next. These distinctions clarify the level and nature of convergence between model representations, and enables a more qualitative account of the underlying processes in image models.
☆ PathReasoner-R1: Instilling Structured Reasoning into Pathology Vision-Language Model via Knowledge-Guided Policy Optimization
Vision-Language Models (VLMs) are advancing computational pathology with superior visual understanding capabilities. However, current systems often reduce diagnosis to directly output conclusions without verifiable evidence-linked reasoning, which severely limits clinical trust and hinders expert error rectification. To address these barriers, we construct PathReasoner, the first large-scale dataset of whole-slide image (WSI) reasoning. Unlike previous work reliant on unverified distillation, we develop a rigorous knowledge-guided generation pipeline. By leveraging medical knowledge graphs, we explicitly align structured pathological findings and clinical reasoning with diagnoses, generating over 20K high-quality instructional samples. Based on the database, we propose PathReasoner-R1, which synergizes trajectory-masked supervised fine-tuning with reasoning-oriented reinforcement learning to instill structured chain-of-thought capabilities. To ensure medical rigor, we engineer a knowledge-aware multi-granular reward function incorporating an Entity Reward mechanism strictly aligned with knowledge graphs. This effectively guides the model to optimize for logical consistency rather than mere outcome matching, thereby enhancing robustness. Extensive experiments demonstrate that PathReasoner-R1 achieves state-of-the-art performance on both PathReasoner and public benchmarks across various image scales, equipping pathology models with transparent, clinically grounded reasoning capabilities. Dataset and code are available at https://github.com/cyclexfy/PathReasoner-R1.
☆ WMVLM: Evaluating Diffusion Model Image Watermarking via Vision-Language Models
Digital watermarking is essential for securing generated images from diffusion models. Accurate watermark evaluation is critical for algorithm development, yet existing methods have significant limitations: they lack a unified framework for both residual and semantic watermarks, provide results without interpretability, neglect comprehensive security considerations, and often use inappropriate metrics for semantic watermarks. To address these gaps, we propose WMVLM, the first unified and interpretable evaluation framework for diffusion model image watermarking via vision-language models (VLMs). We redefine quality and security metrics for each watermark type: residual watermarks are evaluated by artifact strength and erasure resistance, while semantic watermarks are assessed through latent distribution shifts. Moreover, we introduce a three-stage training strategy to progressively enable the model to achieve classification, scoring, and interpretable text generation. Experiments show WMVLM outperforms state-of-the-art VLMs with strong generalization across datasets, diffusion models, and watermarking methods.
☆ HydroSense: A Dual-Microcontroller IoT Framework for Real-Time Multi-Parameter Water Quality Monitoring with Edge Processing and Cloud Analytics
The global water crisis necessitates affordable, accurate, and real-time water quality monitoring solutions. Traditional approaches relying on manual sampling or expensive commercial systems fail to address accessibility challenges in resource-constrained environments. This paper presents HydroSense, an innovative Internet of Things framework that integrates six critical water quality parameters including pH, dissolved oxygen (DO), temperature, total dissolved solids (TDS), estimated nitrogen, and water level into a unified monitoring system. HydroSense employs a novel dual-microcontroller architecture, utilizing Arduino Uno for precision analog measurements with five-point calibration algorithms and ESP32 for wireless connectivity, edge processing, and cloud integration. The system implements advanced signal processing techniques including median filtering for TDS measurement, temperature compensation algorithms, and robust error handling. Experimental validation over 90 days demonstrates exceptional performance metrics: pH accuracy of plus or minus 0.08 units across the 0 to 14 range, DO measurement stability within plus or minus 0.2 mg/L, TDS accuracy of plus or minus 1.9 percent across 0 to 1000 ppm, and 99.8 percent cloud data transmission reliability. With a total implementation cost of 32,983 BDT (approximately 300 USD), HydroSense achieves an 85 percent cost reduction compared to commercial systems while providing enhanced connectivity through the Firebase real-time database. This research establishes a new paradigm for accessible environmental monitoring, demonstrating that professional-grade water quality assessment can be achieved through intelligent system architecture and cost-effective component selection.
☆ Unifying Heterogeneous Degradations: Uncertainty-Aware Diffusion Bridge Model for All-in-One Image Restoration
All-in-One Image Restoration (AiOIR) faces the fundamental challenge in reconciling conflicting optimization objectives across heterogeneous degradations. Existing methods are often constrained by coarse-grained control mechanisms or fixed mapping schedules, yielding suboptimal adaptation. To address this, we propose an Uncertainty-Aware Diffusion Bridge Model (UDBM), which innovatively reformulates AiOIR as a stochastic transport problem steered by pixel-wise uncertainty. By introducing a relaxed diffusion bridge formulation which replaces the strict terminal constraint with a relaxed constraint, we model the uncertainty of degradations while theoretically resolving the drift singularity inherent in standard diffusion bridges. Furthermore, we devise a dual modulation strategy: the noise schedule aligns diverse degradations into a shared high-entropy latent space, while the path schedule adaptively regulates the transport trajectory motivated by the viscous dynamics of entropy regularization. By effectively rectifying the transport geometry and dynamics, UDBM achieves state-of-the-art performance across diverse restoration tasks within a single inference step.
☆ Bi-Anchor Interpolation Solver for Accelerating Generative Modeling
Flow Matching (FM) models have emerged as a leading paradigm for high-fidelity synthesis. However, their reliance on iterative Ordinary Differential Equation (ODE) solving creates a significant latency bottleneck. Existing solutions face a dichotomy: training-free solvers suffer from significant performance degradation at low Neural Function Evaluations (NFEs), while training-based one- or few-steps generation methods incur prohibitive training costs and lack plug-and-play versatility. To bridge this gap, we propose the Bi-Anchor Interpolation Solver (BA-solver). BA-solver retains the versatility of standard training-free solvers while achieving significant acceleration by introducing a lightweight SideNet (1-2% backbone size) alongside the frozen backbone. Specifically, our method is founded on two synergistic components: \textbf{1) Bidirectional Temporal Perception}, where the SideNet learns to approximate both future and historical velocities without retraining the heavy backbone; and 2) Bi-Anchor Velocity Integration, which utilizes the SideNet with two anchor velocities to efficiently approximate intermediate velocities for batched high-order integration. By utilizing the backbone to establish high-precision ``anchors'' and the SideNet to densify the trajectory, BA-solver enables large interval sizes with minimized error. Empirical results on ImageNet-256^2 demonstrate that BA-solver achieves generation quality comparable to 100+ NFEs Euler solver in just 10 NFEs and maintains high fidelity in as few as 5 NFEs, incurring negligible training costs. Furthermore, BA-solver ensures seamless integration with existing generative pipelines, facilitating downstream tasks such as image editing.
☆ Vision KAN: Towards an Attention-Free Backbone for Vision with Kolmogorov-Arnold Networks
Attention mechanisms have become a key module in modern vision backbones due to their ability to model long-range dependencies. However, their quadratic complexity in sequence length and the difficulty of interpreting attention weights limit both scalability and clarity. Recent attention-free architectures demonstrate that strong performance can be achieved without pairwise attention, motivating the search for alternatives. In this work, we introduce Vision KAN (ViK), an attention-free backbone inspired by the Kolmogorov-Arnold Networks. At its core lies MultiPatch-RBFKAN, a unified token mixer that combines (a) patch-wise nonlinear transform with Radial Basis Function-based KANs, (b) axis-wise separable mixing for efficient local propagation, and (c) low-rank global mapping for long-range interaction. Employing as a drop-in replacement for attention modules, this formulation tackles the prohibitive cost of full KANs on high-resolution features by adopting a patch-wise grouping strategy with lightweight operators to restore cross-patch dependencies. Experiments on ImageNet-1K show that ViK achieves competitive accuracy with linear complexity, demonstrating the potential of KAN-based token mixing as an efficient and theoretically grounded alternative to attention.
☆ On the Adversarial Robustness of Large Vision-Language Models under Visual Token Compression
Visual token compression is widely used to accelerate large vision-language models (LVLMs) by pruning or merging visual tokens, yet its adversarial robustness remains unexplored. We show that existing encoder-based attacks can substantially overestimate the robustness of compressed LVLMs, due to an optimization-inference mismatch: perturbations are optimized on the full-token representation, while inference is performed through a token-compression bottleneck. To address this gap, we propose the Compression-AliGnEd attack (CAGE), which aligns perturbation optimization with compression inference without assuming access to the deployed compression mechanism or its token budget. CAGE combines (i) expected feature disruption, which concentrates distortion on tokens likely to survive across plausible budgets, and (ii) rank distortion alignment, which actively aligns token distortions with rank scores to promote the retention of highly distorted evidence. Across diverse representative plug-and-play compression mechanisms and datasets, our results show that CAGE consistently achieves lower robust accuracy than the baseline. This work highlights that robustness assessments ignoring compression can be overly optimistic, calling for compression-aware security evaluation and defenses for efficient LVLMs.
comment: Under Review, 20 pages
☆ HERS: Hidden-Pattern Expert Learning for Risk-Specific Vehicle Damage Adaptation in Diffusion Models
Recent advances in text-to-image (T2I) diffusion models have enabled increasingly realistic synthesis of vehicle damage, raising concerns about their reliability in automated insurance workflows. The ability to generate crash-like imagery challenges the boundary between authentic and synthetic data, introducing new risks of misuse in fraud or claim manipulation. To address these issues, we propose HERS (Hidden-Pattern Expert Learning for Risk-Specific Damage Adaptation), a framework designed to improve fidelity, controllability, and domain alignment of diffusion-generated damage images. HERS fine-tunes a base diffusion model via domain-specific expert adaptation without requiring manual annotation. Using self-supervised image-text pairs automatically generated by a large language model and T2I pipeline, HERS models each damage category, such as dents, scratches, broken lights, or cracked paint, as a separate expert. These experts are later integrated into a unified multi-damage model that balances specialization with generalization. We evaluate HERS across four diffusion backbones and observe consistent improvements: plus 5.5 percent in text faithfulness and plus 2.3 percent in human preference ratings compared to baselines. Beyond image fidelity, we discuss implications for fraud detection, auditability, and safe deployment of generative models in high-stakes domains. Our findings highlight both the opportunities and risks of domain-specific diffusion, underscoring the importance of trustworthy generation in safety-critical applications such as auto insurance.
comment: 26 pages
☆ SimGraph: A Unified Framework for Scene Graph-Based Image Generation and Editing
Recent advancements in Generative Artificial Intelligence (GenAI) have significantly enhanced the capabilities of both image generation and editing. However, current approaches often treat these tasks separately, leading to inefficiencies and challenges in maintaining spatial consistency and semantic coherence between generated content and edits. Moreover, a major obstacle is the lack of structured control over object relationships and spatial arrangements. Scene graph-based methods, which represent objects and their interrelationships in a structured format, offer a solution by providing greater control over composition and interactions in both image generation and editing. To address this, we introduce SimGraph, a unified framework that integrates scene graph-based image generation and editing, enabling precise control over object interactions, layouts, and spatial coherence. In particular, our framework integrates token-based generation and diffusion-based editing within a single scene graph-driven model, ensuring high-quality and consistent results. Through extensive experiments, we empirically demonstrate that our approach outperforms existing state-of-the-art methods.
☆ Hypernetwork-Based Adaptive Aggregation for Multimodal Multiple-Instance Learning in Predicting Coronary Calcium Debulking
In this paper, we present the first attempt to estimate the necessity of debulking coronary artery calcifications from computed tomography (CT) images. We formulate this task as a Multiple-instance Learning (MIL) problem. The difficulty of this task lies in that physicians adjust their focus and decision criteria for device usage according to tabular data representing each patient's condition. To address this issue, we propose a hypernetwork-based adaptive aggregation transformer (HyperAdAgFormer), which adaptively modifies the feature aggregation strategy for each patient based on tabular data through a hypernetwork. The experiments using the clinical dataset demonstrated the effectiveness of HyperAdAgFormer. The code is publicly available at https://github.com/Shiku-Kaito/HyperAdAgFormer.
comment: Accepted to ISBI 2026
☆ Mining Forgery Traces from Reconstruction Error: A Weakly Supervised Framework for Multimodal Deepfake Temporal Localization
Modern deepfakes have evolved into localized and intermittent manipulations that require fine-grained temporal localization. The prohibitive cost of frame-level annotation makes weakly supervised methods a practical necessity, which rely only on video-level labels. To this end, we propose Reconstruction-based Temporal Deepfake Localization (RT-DeepLoc), a weakly supervised temporal forgery localization framework that identifies forgeries via reconstruction errors. Our framework uses a Masked Autoencoder (MAE) trained exclusively on authentic data to learn its intrinsic spatiotemporal patterns; this allows the model to produce significant reconstruction discrepancies for forged segments, effectively providing the missing fine-grained cues for localization. To robustly leverage these indicators, we introduce a novel Asymmetric Intra-video Contrastive Loss (AICL). By focusing on the compactness of authentic features guided by these reconstruction cues, AICL establishes a stable decision boundary that enhances local discrimination while preserving generalization to unseen forgeries. Extensive experiments on large-scale datasets, including LAV-DF, demonstrate that RT-DeepLoc achieves state-of-the-art performance in weakly-supervised temporal forgery localization.
☆ 4D-CAAL: 4D Radar-Camera Calibration and Auto-Labeling for Autonomous Driving
4D radar has emerged as a critical sensor for autonomous driving, primarily due to its enhanced capabilities in elevation measurement and higher resolution compared to traditional 3D radar. Effective integration of 4D radar with cameras requires accurate extrinsic calibration, and the development of radar-based perception algorithms demands large-scale annotated datasets. However, existing calibration methods often employ separate targets optimized for either visual or radar modalities, complicating correspondence establishment. Furthermore, manually labeling sparse radar data is labor-intensive and unreliable. To address these challenges, we propose 4D-CAAL, a unified framework for 4D radar-camera calibration and auto-labeling. Our approach introduces a novel dual-purpose calibration target design, integrating a checkerboard pattern on the front surface for camera detection and a corner reflector at the center of the back surface for radar detection. We develop a robust correspondence matching algorithm that aligns the checkerboard center with the strongest radar reflection point, enabling accurate extrinsic calibration. Subsequently, we present an auto-labeling pipeline that leverages the calibrated sensor relationship to transfer annotations from camera-based segmentations to radar point clouds through geometric projection and multi-feature optimization. Extensive experiments demonstrate that our method achieves high calibration accuracy while significantly reducing manual annotation effort, thereby accelerating the development of robust multi-modal perception systems for autonomous driving.
☆ Variance & Greediness: A comparative study of metric-learning losses ICASSP 2026
Metric learning is central to retrieval, yet its effects on embedding geometry and optimization dynamics are not well understood. We introduce a diagnostic framework, VARIANCE (intra-/inter-class variance) and GREEDINESS (active ratio and gradient norms), to compare seven representative losses, i.e., Contrastive, Triplet, N-pair, InfoNCE, ArcFace, SCL, and CCL, across five image-retrieval datasets. Our analysis reveals that Triplet and SCL preserve higher within-class variance and clearer inter-class margins, leading to stronger top-1 retrieval in fine-grained settings. In contrast, Contrastive and InfoNCE compact embeddings are achieved quickly through many small updates, accelerating convergence but potentially oversimplifying class structures. N-pair achieves a large mean separation but with uneven spacing. These insights reveal a form of efficiency-granularity trade-off and provide practical guidance: prefer Triplet/SCL when diversity preservation and hard-sample discrimination are critical, and Contrastive/InfoNCE when faster embedding compaction is desired.
comment: 5 pages, 2 figures, 3 tables. Accepted by ICASSP 2026
☆ Spava: Accelerating Long-Video Understanding via Sequence-Parallelism-aware Approximate Attention
The efficiency of long-video inference remains a critical bottleneck, mainly due to the dense computation in the prefill stage of Large Multimodal Models (LMMs). Existing methods either compress visual embeddings or apply sparse attention on a single GPU, yielding limited acceleration or degraded performance and restricting LMMs from handling longer, more complex videos. To overcome these issues, we propose Spava, a sequence-parallel framework with optimized attention that accelerates long-video inference across multiple GPUs. By distributing approximate attention, Spava reduces computation and increases parallelism, enabling efficient processing of more visual embeddings without compression and thereby improving task performance. System-level optimizations, such as load balancing and fused forward passes, further unleash the potential of Spava, delivering speedups of 12.72x, 1.70x, and 1.18x over FlashAttn, ZigZagRing, and APB, without notable performance loss. Code available at https://github.com/thunlp/APB
comment: Preprint
☆ From Consistency to Complementarity: Aligned and Disentangled Multi-modal Learning for Time Series Understanding and Reasoning
Advances in multi-modal large language models (MLLMs) have inspired time series understanding and reasoning tasks, that enable natural language querying over time series, producing textual analyses of complex temporal dynamics. Recent attempts hybridize numerical time series with their visualized plots, facilitating precise value reasoning and visual structure comprehension for comprehensive time series understanding of MLLMs. However, effective cross-modal integration remains challenging due to fine-grained temporal misalignment across modalities and severe entanglement between shared and modality-specific semantics, which hinder localized interpretation and complementary reasoning. To address these issues, we propose MADI, a multi-modal LLM enhanced with fine-grained alignment and disentangled interaction, featuring (1) Patch-level Alignment, which enforces physically grounded fine-grained correspondence across heterogeneous modalities, (2) Discrete Disentangled Interaction, which separates modality-common semantics into compact discrete latents and adaptively synergizes the purified modality-unique information, and (3) Critical-token Highlighting, which emphasizes informative, query-relevant signals for robust reasoning. Experiments on synthetic and real-world benchmarks show that MADI consistently outperforms general-purpose LLMs and time-series-specialized MLLMs.
☆ MultiModal Fine-tuning with Synthetic Captions
In this paper, we address a fundamental gap between pre-training and fine-tuning of deep neural networks: while pre-training has shifted from unimodal to multimodal learning with enhanced visual understanding, fine-tuning predominantly remains unimodal, limiting the benefits of rich pre-trained representations. To bridge this gap, we propose a novel approach that transforms unimodal datasets into multimodal ones using Multimodal Large Language Models (MLLMs) to generate synthetic image captions for fine-tuning models with a multimodal objective. Our method employs carefully designed prompts incorporating class labels and domain context to produce high-quality captions tailored for classification tasks. Furthermore, we introduce a supervised contrastive loss function that explicitly encourages clustering of same-class representations during fine-tuning, along with a new inference technique that leverages class-averaged text embeddings from multiple synthetic captions per image. Extensive experiments across 13 image classification benchmarks demonstrate that our approach outperforms baseline methods, with particularly significant improvements in few-shot learning scenarios. Our work establishes a new paradigm for dataset enhancement that effectively bridges the gap between multimodal pre-training and fine-tuning. Our code is available at https://github.com/s-enmt/MMFT.
☆ Lossy Common Information in a Learnable Gray-Wyner Network
Many computer vision tasks share substantial overlapping information, yet conventional codecs tend to ignore this, leading to redundant and inefficient representations. The Gray-Wyner network, a classical concept from information theory, offers a principled framework for separating common and task-specific information. Inspired by this idea, we develop a learnable three-channel codec that disentangles shared information from task-specific details across multiple vision tasks. We characterize the limits of this approach through the notion of lossy common information, and propose an optimization objective that balances inherent tradeoffs in learning such representations. Through comparisons of three codec architectures on two-task scenarios spanning six vision benchmarks, we demonstrate that our approach substantially reduces redundancy and consistently outperforms independent coding. These results highlight the practical value of revisiting Gray-Wyner theory in modern machine learning contexts, bridging classic information theory with task-driven representation learning.
☆ From Implicit Ambiguity to Explicit Solidity: Diagnosing Interior Geometric Degradation in Neural Radiance Fields for Dense 3D Scene Understanding
Neural Radiance Fields (NeRFs) have emerged as a powerful paradigm for multi-view reconstruction, complementing classical photogrammetric pipelines based on Structure-from-Motion (SfM) and Multi-View Stereo (MVS). However, their reliability for quantitative 3D analysis in dense, self-occluding scenes remains poorly understood. In this study, we identify a fundamental failure mode of implicit density fields under heavy occlusion, which we term Interior Geometric Degradation (IGD). We show that transmittance-based volumetric optimization satisfies photometric supervision by reconstructing hollow or fragmented structures rather than solid interiors, leading to systematic instance undercounting. Through controlled experiments on synthetic datasets with increasing occlusion, we demonstrate that state-of-the-art mask-supervised NeRFs saturate at approximately 89% instance recovery in dense scenes, despite improved surface coherence and mask quality. To overcome this limitation, we introduce an explicit geometric pipeline based on Sparse Voxel Rasterization (SVRaster), initialized from SfM feature geometry. By projecting 2D instance masks onto an explicit voxel grid and enforcing geometric separation via recursive splitting, our approach preserves physical solidity and achieves a 95.8% recovery rate in dense clusters. A sensitivity analysis using degraded segmentation masks further shows that explicit SfM-based geometry is substantially more robust to supervision failure, recovering 43% more instances than implicit baselines. These results demonstrate that explicit geometric priors are a prerequisite for reliable quantitative analysis in highly self-occluding 3D scenes.
☆ Revisiting Diffusion Model Predictions Through Dimensionality
Recent advances in diffusion and flow matching models have highlighted a shift in the preferred prediction target -- moving from noise ($\varepsilon$) and velocity (v) to direct data (x) prediction -- particularly in high-dimensional settings. However, a formal explanation of why the optimal target depends on the specific properties of the data remains elusive. In this work, we provide a theoretical framework based on a generalized prediction formulation that accommodates arbitrary output targets, of which $\varepsilon$-, v-, and x-prediction are special cases. We derive the analytical relationship between data's geometry and the optimal prediction target, offering a rigorous justification for why x-prediction becomes superior when the ambient dimension significantly exceeds the data's intrinsic dimension. Furthermore, while our theory identifies dimensionality as the governing factor for the optimal prediction target, the intrinsic dimension of manifold-bound data is typically intractable to estimate in practice. To bridge this gap, we propose k-Diff, a framework that employs a data-driven approach to learn the optimal prediction parameter k directly from data, bypassing the need for explicit dimension estimation. Extensive experiments in both latent-space and pixel-space image generation demonstrate that k-Diff consistently outperforms fixed-target baselines across varying architectures and data scales, providing a principled and automated approach to enhancing generative performance.
comment: 19 pages, 5 figures
☆ MPF-Net: Exposing High-Fidelity AI-Generated Video Forgeries via Hierarchical Manifold Deviation and Micro-Temporal Fluctuations
With the rapid advancement of video generation models such as Veo and Wan, the visual quality of synthetic content has reached a level where macro-level semantic errors and temporal inconsistencies are no longer prominent. However, this does not imply that the distinction between real and cutting-edge high-fidelity fake is untraceable. We argue that AI-generated videos are essentially products of a manifold-fitting process rather than a physical recording. Consequently, the pixel composition logic of consecutive adjacent frames residual in AI videos exhibits a structured and homogenous characteristic. We term this phenomenon `Manifold Projection Fluctuations' (MPF). Driven by this insight, we propose a hierarchical dual-path framework that operates as a sequential filtering process. The first, the Static Manifold Deviation Branch, leverages the refined perceptual boundaries of Large-Scale Vision Foundation Models (VFMs) to capture residual spatial anomalies or physical violations that deviate from the natural real-world manifold (off-manifold). For the remaining high-fidelity videos that successfully reside on-manifold and evade spatial detection, we introduce the Micro-Temporal Fluctuation Branch as a secondary, fine-grained filter. By analyzing the structured MPF that persists even in visually perfect sequences, our framework ensures that forgeries are exposed regardless of whether they manifest as global real-world manifold deviations or subtle computational fingerprints.
☆ Generation Enhances Understanding in Unified Multimodal Models via Multi-Representation Generation
Unified Multimodal Models (UMMs) integrate both visual understanding and generation within a single framework. Their ultimate aspiration is to create a cycle where understanding and generation mutually reinforce each other. While recent post-training methods have successfully leveraged understanding to enhance generation, the reverse direction of utilizing generation to improve understanding remains largely unexplored. In this work, we propose UniMRG (Unified Multi-Representation Generation), a simple yet effective architecture-agnostic post-training method. UniMRG enhances the understanding capabilities of UMMs by incorporating auxiliary generation tasks. Specifically, we train UMMs to generate multiple intrinsic representations of input images, namely pixel (reconstruction), depth (geometry), and segmentation (structure), alongside standard visual understanding objectives. By synthesizing these diverse representations, UMMs capture complementary information regarding appearance, spatial relations, and structural layout. Consequently, UMMs develop a deeper and more comprehensive understanding of visual inputs. Extensive experiments across diverse UMM architectures demonstrate that our method notably enhances fine-grained perception, reduces hallucinations, and improves spatial understanding, while simultaneously boosting generation capabilities.
☆ Rectifying Geometry-Induced Similarity Distortions for Real-World Aerial-Ground Person Re-Identification
Aerial-ground person re-identification (AG-ReID) is fundamentally challenged by extreme viewpoint and distance discrepancies between aerial and ground cameras, which induce severe geometric distortions and invalidate the assumption of a shared similarity space across views. Existing methods primarily rely on geometry-aware feature learning or appearance-conditioned prompting, while implicitly assuming that the geometry-invariant dot-product similarity used in attention mechanisms remains reliable under large viewpoint and scale variations. We argue that this assumption does not hold. Extreme camera geometry systematically distorts the query-key similarity space and degrades attention-based matching, even when feature representations are partially aligned. To address this issue, we introduce Geometry-Induced Query-Key Transformation (GIQT), a lightweight low-rank module that explicitly rectifies the similarity space by conditioning query-key interactions on camera geometry. Rather than modifying feature representations or the attention formulation itself, GIQT adapts the similarity computation to compensate for dominant geometry-induced anisotropic distortions. Building on this local similarity rectification, we further incorporate a geometry-conditioned prompt generation mechanism that provides global, view-adaptive representation priors derived directly from camera geometry. Experiments on four aerial-ground person re-identification benchmarks demonstrate that the proposed framework consistently improves robustness under extreme and previously unseen geometric conditions, while introducing minimal computational overhead compared to state-of-the-art methods.
☆ Towards Geometry-Aware and Motion-Guided Video Human Mesh Recovery
Existing video-based 3D Human Mesh Recovery (HMR) methods often produce physically implausible results, stemming from their reliance on flawed intermediate 3D pose anchors and their inability to effectively model complex spatiotemporal dynamics. To overcome these deep-rooted architectural problems, we introduce HMRMamba, a new paradigm for HMR that pioneers the use of Structured State Space Models (SSMs) for their efficiency and long-range modeling prowess. Our framework is distinguished by two core contributions. First, the Geometry-Aware Lifting Module, featuring a novel dual-scan Mamba architecture, creates a robust foundation for reconstruction. It directly grounds the 2D-to-3D pose lifting process with geometric cues from image features, producing a highly reliable 3D pose sequence that serves as a stable anchor. Second, the Motion-guided Reconstruction Network leverages this anchor to explicitly process kinematic patterns over time. By injecting this crucial temporal awareness, it significantly enhances the final mesh's coherence and robustness, particularly under occlusion and motion blur. Comprehensive evaluations on 3DPW, MPI-INF-3DHP, and Human3.6M benchmarks confirm that HMRMamba sets a new state-of-the-art, outperforming existing methods in both reconstruction accuracy and temporal consistency while offering superior computational efficiency.
☆ ViTMAlis: Towards Latency-Critical Mobile Video Analytics with Vision Transformers
Edge-assisted mobile video analytics (MVA) applications are increasingly shifting from using vision models based on convolutional neural networks (CNNs) to those built on vision transformers (ViTs) to leverage their superior global context modeling and generalization capabilities. However, deploying these advanced models in latency-critical MVA scenarios presents significant challenges. Unlike traditional CNN-based offloading paradigms where network transmission is the primary bottleneck, ViT-based systems are constrained by substantial inference delays, particularly for dense prediction tasks where the need for high-resolution inputs exacerbates the inherent quadratic computational complexity of ViTs. To address these challenges, we propose a dynamic mixed-resolution inference strategy tailored for ViT-backboned dense prediction models, enabling flexible runtime trade-offs between speed and accuracy. Building on this, we introduce ViTMAlis, a ViT-native device-to-edge offloading framework that dynamically adapts to network conditions and video content to jointly reduce transmission and inference delays. We implement a fully functional prototype of ViTMAlis on commodity mobile and edge devices. Extensive experiments demonstrate that, compared to state-of-the-art accuracy-centric, content-aware, and latency-adaptive baselines, ViTMAlis significantly reduces end-to-end offloading latency while improving user-perceived rendering accuracy, providing a practical foundation for next-generation mobile intelligence.
☆ Semantic-Guided Dynamic Sparsification for Pre-Trained Model-based Class-Incremental Learning
Class-Incremental Learning (CIL) requires a model to continually learn new classes without forgetting old ones. A common and efficient solution freezes a pre-trained model and employs lightweight adapters, whose parameters are often forced to be orthogonal to prevent inter-task interference. However, we argue that this parameter-constraining method is detrimental to plasticity. To this end, we propose Semantic-Guided Dynamic Sparsification (SGDS), a novel method that proactively guides the activation space by governing the orientation and rank of its subspaces through targeted sparsification. Specifically, SGDS promotes knowledge transfer by encouraging similar classes to share a compact activation subspace, while simultaneously preventing interference by assigning non-overlapping activation subspaces to dissimilar classes. By sculpting class-specific sparse subspaces in the activation space, SGDS effectively mitigates interference without imposing rigid constraints on the parameter space. Extensive experiments on various benchmark datasets demonstrate the state-of-the-art performance of SGDS.
☆ Dynamical Adapter Fusion: Constructing A Global Adapter for Pre-Trained Model-based Class-Incremental Learning
Class-Incremental Learning (CIL) requires models to continuously acquire new classes without forgetting previously learned ones. A dominant paradigm involves freezing a pre-trained model and training lightweight, task-specific adapters. However, maintaining task-specific parameters hinders knowledge transfer and incurs high retrieval costs, while naive parameter fusion often leads to destructive interference and catastrophic forgetting. To address these challenges, we propose Dynamical Adapter Fusion (DAF) to construct a single robust global adapter. Grounded in the PAC-Bayes theorem, we derive a fusion mechanism that explicitly integrates three components: the optimized task-specific adapter parameters, the previous global adapter parameters, and the initialization parameters. We utilize the Taylor expansion of the loss function to derive the optimal fusion coefficients, dynamically achieving the best balance between stability and plasticity. Furthermore, we propose a Robust Initialization strategy to effectively capture global knowledge patterns. Experiments on multiple CIL benchmarks demonstrate that DAF achieves state-of-the-art (SOTA) performance.
☆ SR$^{2}$-Net: A General Plug-and-Play Model for Spectral Refinement in Hyperspectral Image Super-Resolution
HSI-SR aims to enhance spatial resolution while preserving spectrally faithful and physically plausible characteristics. Recent methods have achieved great progress by leveraging spatial correlations to enhance spatial resolution. However, these methods often neglect spectral consistency across bands, leading to spurious oscillations and physically implausible artifacts. While spectral consistency can be addressed by designing the network architecture, it results in a loss of generality and flexibility. To address this issue, we propose a lightweight plug-and-play rectifier, physically priors Spectral Rectification Super-Resolution Network (SR$^{2}$-Net), which can be attached to a wide range of HSI-SR models without modifying their architectures. SR$^{2}$-Net follows an enhance-then-rectify pipeline consisting of (i) Hierarchical Spectral-Spatial Synergy Attention (H-S$^{3}$A) to reinforce cross-band interactions and (ii) Manifold Consistency Rectification (MCR) to constrain the reconstructed spectra to a compact, physically plausible spectral manifold. In addition, we introduce a degradation-consistency loss to enforce data fidelity by encouraging the degraded SR output to match the observed low resolution input. Extensive experiments on multiple benchmarks and diverse backbones demonstrate consistent improvements in spectral fidelity and overall reconstruction quality with negligible computational overhead. Our code will be released upon publication.
☆ Do Pathology Foundation Models Encode Disease Progression? A Pseudotime Analysis of Visual Representations
Vision foundation models trained on discretely sampled images achieve strong performance on classification benchmarks, yet whether their representations encode the continuous processes underlying their training data remains unclear. This question is especially pertinent in computational pathology, where we posit that models whose latent representations implicitly capture continuous disease progression may better reflect underlying biology, support more robust generalization, and enable quantitative analyses of features associated with disease transitions. Using diffusion pseudotime, a method developed to infer developmental trajectories from single-cell transcriptomics, we probe whether foundation models organize disease states along coherent progression directions in representation space. Across four cancer progressions and six models, we find that all pathology-specific models recover trajectory orderings significantly exceeding null baselines, with vision-only models achieving the highest fidelities $(τ> 0.78$ on CRC-Serrated). Model rankings by trajectory fidelity on reference diseases strongly predict few-shot classification performance on held-out diseases ($ρ= 0.92$), and exploratory analysis shows cell-type composition varies smoothly along inferred trajectories in patterns consistent with known stromal remodeling. Together, these results demonstrate that vision foundation models can implicitly learn to represent continuous processes from independent static observations, and that trajectory fidelity provides a complementary measure of representation quality beyond downstream performance. While demonstrated in pathology, this framework could be applied to other domains where continuous processes are observed through static snapshots.
comment: 21 pages, 17 figures. Appendix included
☆ Adversarial Vulnerability Transcends Computational Paradigms: Feature Engineering Provides No Defense Against Neural Adversarial Transfer
Deep neural networks are vulnerable to adversarial examples--inputs with imperceptible perturbations causing misclassification. While adversarial transfer within neural networks is well-documented, whether classical ML pipelines using handcrafted features inherit this vulnerability when attacked via neural surrogates remains unexplored. Feature engineering creates information bottlenecks through gradient quantization and spatial binning, potentially filtering high-frequency adversarial signals. We evaluate this hypothesis through the first comprehensive study of adversarial transfer from DNNs to HOG-based classifiers. Using VGG16 as a surrogate, we generate FGSM and PGD adversarial examples and test transfer to four classical classifiers (KNN, Decision Tree, Linear SVM, Kernel SVM) and a shallow neural network across eight HOG configurations on CIFAR-10. Our results strongly refute the protective hypothesis: all classifiers suffer 16.6%-59.1% relative accuracy drops, comparable to neural-to-neural transfer. More surprisingly, we discover attack hierarchy reversal--contrary to patterns where iterative PGD dominates FGSM within neural networks, FGSM causes greater degradation than PGD in 100% of classical ML cases, suggesting iterative attacks overfit to surrogate-specific features that don't survive feature extraction. Block normalization provides partial but insufficient mitigation. These findings demonstrate that adversarial vulnerability is not an artifact of end-to-end differentiability but a fundamental property of image classification systems, with implications for security-critical deployments across computational paradigms.
☆ Optimal Transport-Induced Samples against Out-of-Distribution Overconfidence ICLR 2026
Deep neural networks (DNNs) often produce overconfident predictions on out-of-distribution (OOD) inputs, undermining their reliability in open-world environments. Singularities in semi-discrete optimal transport (OT) mark regions of semantic ambiguity, where classifiers are particularly prone to unwarranted high-confidence predictions. Motivated by this observation, we propose a principled framework to mitigate OOD overconfidence by leveraging the geometry of OT-induced singular boundaries. Specifically, we formulate an OT problem between a continuous base distribution and the latent embeddings of training data, and identify the resulting singular boundaries. By sampling near these boundaries, we construct a class of OOD inputs, termed optimal transport-induced OOD samples (OTIS), which are geometrically grounded and inherently semantically ambiguous. During training, a confidence suppression loss is applied to OTIS to guide the model toward more calibrated predictions in structurally uncertain regions. Extensive experiments show that our method significantly alleviates OOD overconfidence and outperforms state-of-the-art methods.
comment: Accepted by ICLR 2026
☆ HiFi-Mesh: High-Fidelity Efficient 3D Mesh Generation via Compact Autoregressive Dependence
High-fidelity 3D meshes can be tokenized into one-dimension (1D) sequences and directly modeled using autoregressive approaches for faces and vertices. However, existing methods suffer from insufficient resource utilization, resulting in slow inference and the ability to handle only small-scale sequences, which severely constrains the expressible structural details. We introduce the Latent Autoregressive Network (LANE), which incorporates compact autoregressive dependencies in the generation process, achieving a $6\times$ improvement in maximum generatable sequence length compared to existing methods. To further accelerate inference, we propose the Adaptive Computation Graph Reconfiguration (AdaGraph) strategy, which effectively overcomes the efficiency bottleneck of traditional serial inference through spatiotemporal decoupling in the generation process. Experimental validation demonstrates that LANE achieves superior performance across generation speed, structural detail, and geometric consistency, providing an effective solution for high-quality 3D mesh generation.
☆ Mam-App: A Novel Parameter-Efficient Mamba Model for Apple Leaf Disease Classification
The rapid growth of the global population, alongside exponential technological advancement, has intensified the demand for food production. Meeting this demand depends not only on increasing agricultural yield but also on minimizing food loss caused by crop diseases. Diseases account for a substantial portion of apple production losses, despite apples being among the most widely produced and nutritionally valuable fruits worldwide. Previous studies have employed machine learning techniques for feature extraction and early diagnosis of apple leaf diseases, and more recently, deep learning-based models have shown remarkable performance in disease recognition. However, most state-of-the-art deep learning models are highly parameter-intensive, resulting in increased training and inference time. Although lightweight models are more suitable for user-friendly and resource-constrained applications, they often suffer from performance degradation. To address the trade-off between efficiency and performance, we propose Mam-App, a parameter-efficient Mamba-based model for feature extraction and leaf disease classification. The proposed approach achieves competitive state-of-the-art performance on the PlantVillage Apple Leaf Disease dataset, attaining 99.58% accuracy, 99.30% precision, 99.14% recall, and a 99.22% F1-score, while using only 0.051M parameters. This extremely low parameter count makes the model suitable for deployment on drones, mobile devices, and other low-resource platforms. To demonstrate the robustness and generalizability of the proposed model, we further evaluate it on the PlantVillage Corn Leaf Disease and Potato Leaf Disease datasets. The model achieves 99.48%, 99.20%, 99.34%, and 99.27% accuracy, precision, recall, and F1-score on the corn dataset and 98.46%, 98.91%, 95.39%, and 97.01% on the potato dataset, respectively.
comment: 18 Pages, 7 Tables, 5 Figures
☆ Gaussian Belief Propagation Network for Depth Completion
Depth completion aims to predict a dense depth map from a color image with sparse depth measurements. Although deep learning methods have achieved state-of-the-art (SOTA), effectively handling the sparse and irregular nature of input depth data in deep networks remains a significant challenge, often limiting performance, especially under high sparsity. To overcome this limitation, we introduce the Gaussian Belief Propagation Network (GBPN), a novel hybrid framework synergistically integrating deep learning with probabilistic graphical models for end-to-end depth completion. Specifically, a scene-specific Markov Random Field (MRF) is dynamically constructed by the Graphical Model Construction Network (GMCN), and then inferred via Gaussian Belief Propagation (GBP) to yield the dense depth distribution. Crucially, the GMCN learns to construct not only the data-dependent potentials of MRF but also its structure by predicting adaptive non-local edges, enabling the capture of complex, long-range spatial dependencies. Furthermore, we enhance GBP with a serial \& parallel message passing scheme, designed for effective information propagation, particularly from sparse measurements. Extensive experiments demonstrate that GBPN achieves SOTA performance on the NYUv2 and KITTI benchmarks. Evaluations across varying sparsity levels, sparsity patterns, and datasets highlight GBPN's superior performance, notable robustness, and generalizable capability.
☆ Drive-KD: Multi-Teacher Distillation for VLMs in Autonomous Driving
Autonomous driving is an important and safety-critical task, and recent advances in LLMs/VLMs have opened new possibilities for reasoning and planning in this domain. However, large models demand substantial GPU memory and exhibit high inference latency, while conventional supervised fine-tuning (SFT) often struggles to bridge the capability gaps of small models. To address these limitations, we propose Drive-KD, a framework that decomposes autonomous driving into a "perception-reasoning-planning" triad and transfers these capabilities via knowledge distillation. We identify layer-specific attention as the distillation signal to construct capability-specific single-teacher models that outperform baselines. Moreover, we unify these single-teacher settings into a multi-teacher distillation framework and introduce asymmetric gradient projection to mitigate cross-capability gradient conflicts. Extensive evaluations validate the generalization of our method across diverse model families and scales. Experiments show that our distilled InternVL3-1B model, with ~42 times less GPU memory and ~11.4 times higher throughput, achieves better overall performance than the pretrained 78B model from the same family on DriveBench, and surpasses GPT-5.1 on the planning dimension, providing insights toward efficient autonomous driving VLMs.
comment: Preprint. 23 pages, 14 figures
☆ WorldBench: Disambiguating Physics for Diagnostic Evaluation of World Models
Recent advances in generative foundational models, often termed "world models," have propelled interest in applying them to critical tasks like robotic planning and autonomous system training. For reliable deployment, these models must exhibit high physical fidelity, accurately simulating real-world dynamics. Existing physics-based video benchmarks, however, suffer from entanglement, where a single test simultaneously evaluates multiple physical laws and concepts, fundamentally limiting their diagnostic capability. We introduce WorldBench, a novel video-based benchmark specifically designed for concept-specific, disentangled evaluation, allowing us to rigorously isolate and assess understanding of a single physical concept or law at a time. To make WorldBench comprehensive, we design benchmarks at two different levels: 1) an evaluation of intuitive physical understanding with concepts such as object permanence or scale/perspective, and 2) an evaluation of low-level physical constants and material properties such as friction coefficients or fluid viscosity. When SOTA video-based world models are evaluated on WorldBench, we find specific patterns of failure in particular physics concepts, with all tested models lacking the physical consistency required to generate reliable real-world interactions. Through its concept-specific evaluation, WorldBench offers a more nuanced and scalable framework for rigorously evaluating the physical reasoning capabilities of video generation and world models, paving the way for more robust and generalizable world-model-driven learning.
comment: Webpage: https://world-bench.github.io/
☆ Token Entropy Regularization for Multi-modal Antenna Affiliation Identification
Accurate antenna affiliation identification is crucial for optimizing and maintaining communication networks. Current practice, however, relies on the cumbersome and error-prone process of manual tower inspections. We propose a novel paradigm shift that fuses video footage of base stations, antenna geometric features, and Physical Cell Identity (PCI) signals, transforming antenna affiliation identification into multi-modal classification and matching tasks. Publicly available pretrained transformers struggle with this unique task due to a lack of analogous data in the communications domain, which hampers cross-modal alignment. To address this, we introduce a dedicated training framework that aligns antenna images with corresponding PCI signals. To tackle the representation alignment challenge, we propose a novel Token Entropy Regularization module in the pretraining stage. Our experiments demonstrate that TER accelerates convergence and yields significant performance gains. Further analysis reveals that the entropy of the first token is modality-dependent. Code will be made available upon publication.
☆ GeoRC: A Benchmark for Geolocation Reasoning Chains
Vision Language Models (VLMs) are good at recognizing the global location of a photograph -- their geolocation prediction accuracy rivals the best human experts. But many VLMs are startlingly bad at explaining which image evidence led to their prediction, even when their location prediction is correct. The reasoning chains produced by VLMs frequently hallucinate scene attributes to support their location prediction (e.g. phantom writing, imagined infrastructure, misidentified flora). In this paper, we introduce the first benchmark for geolocation reasoning chains. We focus on the global location prediction task in the popular GeoGuessr game which draws from Google Street View spanning more than 100 countries. We collaborate with expert GeoGuessr players, including the reigning world champion, to produce 800 ground truth reasoning chains for 500 query scenes. These expert reasoning chains address hundreds of different discriminative visual attributes such as license plate shape, architecture, and soil properties to name just a few. We evaluate LLM-as-a-judge and VLM-as-a-judge strategies for scoring VLM-generated reasoning chains against our expert reasoning chains and find that Qwen 3 LLM-as-a-judge correlates best with human scoring. Our benchmark reveals that while large, closed-source VLMs such as Gemini and GPT 5 rival human experts at prediction locations, they still lag behind human experts when it comes to producing auditable reasoning chains. Open weights VLMs such as Llama and Qwen catastrophically fail on our benchmark -- they perform only slightly better than a baseline in which an LLM hallucinates a reasoning chain with oracle knowledge of the photo location but no visual information at all. We believe the gap between human experts and VLMs on this task points to VLM limitations at extracting fine-grained visual attributes from high resolution images.
☆ Lightweight High-Fidelity Low-Bitrate Talking Face Compression for 3D Video Conference
The demand for immersive and interactive communication has driven advancements in 3D video conferencing, yet achieving high-fidelity 3D talking face representation at low bitrates remains a challenge. Traditional 2D video compression techniques fail to preserve fine-grained geometric and appearance details, while implicit neural rendering methods like NeRF suffer from prohibitive computational costs. To address these challenges, we propose a lightweight, high-fidelity, low-bitrate 3D talking face compression framework that integrates FLAME-based parametric modeling with 3DGS neural rendering. Our approach transmits only essential facial metadata in real time, enabling efficient reconstruction with a Gaussian-based head model. Additionally, we introduce a compact representation and compression scheme, including Gaussian attribute compression and MLP optimization, to enhance transmission efficiency. Experimental results demonstrate that our method achieves superior rate-distortion performance, delivering high-quality facial rendering at extremely low bitrates, making it well-suited for real-time 3D video conferencing applications.
☆ Hypersolid: Emergent Vision Representations via Short-Range Repulsion
A recurring challenge in self-supervised learning is preventing representation collapse. Existing solutions typically rely on global regularization, such as maximizing distances, decorrelating dimensions or enforcing certain distributions. We instead reinterpret representation learning as a discrete packing problem, where preserving information simplifies to maintaining injectivity. We operationalize this in Hypersolid, a method using short-range hard-ball repulsion to prevent local collisions. This constraint results in a high-separation geometric regime that preserves augmentation diversity, excelling on fine-grained and low-resolution classification tasks.
comment: 17 pages, 16 figures
☆ Lossless Copyright Protection via Intrinsic Model Fingerprinting
The exceptional performance of diffusion models establishes them as high-value intellectual property but exposes them to unauthorized replication. Existing protection methods either modify the model to embed watermarks, which impairs performance, or extract model fingerprints by manipulating the denoising process, rendering them incompatible with black-box APIs. In this paper, we propose TrajPrint, a completely lossless and training-free framework that verifies model copyright by extracting unique manifold fingerprints formed during deterministic generation. Specifically, we first utilize a watermarked image as an anchor and exactly trace the path back to its trajectory origin, effectively locking the model fingerprint mapped by this path. Subsequently, we implement a joint optimization strategy that employs dual-end anchoring to synthesize a specific fingerprint noise, which strictly adheres to the target manifold for robust watermark recovery. As input, it enables the protected target model to recover the watermarked image, while failing on non-target models. Finally, we achieved verification via atomic inference and statistical hypothesis testing. Extensive experiments demonstrate that TrajPrint achieves lossless verification in black-box API scenarios with superior robustness against model modifications.
☆ NFCDS: A Plug-and-Play Noise Frequency-Controlled Diffusion Sampling Strategy for Image Restoration
Diffusion sampling-based Plug-and-Play (PnP) methods produce images with high perceptual quality but often suffer from reduced data fidelity, primarily due to the noise introduced during reverse diffusion. To address this trade-off, we propose Noise Frequency-Controlled Diffusion Sampling (NFCDS), a spectral modulation mechanism for reverse diffusion noise. We show that the fidelity-perception conflict can be fundamentally understood through noise frequency: low-frequency components induce blur and degrade fidelity, while high-frequency components drive detail generation. Based on this insight, we design a Fourier-domain filter that progressively suppresses low-frequency noise and preserves high-frequency content. This controlled refinement injects a data-consistency prior directly into sampling, enabling fast convergence to results that are both high-fidelity and perceptually convincing--without additional training. As a PnP module, NFCDS seamlessly integrates into existing diffusion-based restoration frameworks and improves the fidelity-perception balance across diverse zero-shot tasks.
☆ PTQ4ARVG: Post-Training Quantization for AutoRegressive Visual Generation Models ICLR 2026
AutoRegressive Visual Generation (ARVG) models retain an architecture compatible with language models, while achieving performance comparable to diffusion-based models. Quantization is commonly employed in neural networks to reduce model size and computational latency. However, applying quantization to ARVG remains largely underexplored, and existing quantization methods fail to generalize effectively to ARVG models. In this paper, we explore this issue and identify three key challenges: (1) severe outliers at channel-wise level, (2) highly dynamic activations at token-wise level, and (3) mismatched distribution information at sample-wise level. To these ends, we propose PTQ4ARVG, a training-free post-training quantization (PTQ) framework consisting of: (1) Gain-Projected Scaling (GPS) mitigates the channel-wise outliers, which expands the quantization loss via a Taylor series to quantify the gain of scaling for activation-weight quantization, and derives the optimal scaling factor through differentiation.(2) Static Token-Wise Quantization (STWQ) leverages the inherent properties of ARVG, fixed token length and position-invariant distribution across samples, to address token-wise variance without incurring dynamic calibration overhead.(3) Distribution-Guided Calibration (DGC) selects samples that contribute most to distributional entropy, eliminating the sample-wise distribution mismatch. Extensive experiments show that PTQ4ARVG can effectively quantize the ARVG family models to 8-bit and 6-bit while maintaining competitive performance. Code is available at http://github.com/BienLuky/PTQ4ARVG .
comment: ICLR 2026
☆ LAMP: Learning Universal Adversarial Perturbations for Multi-Image Tasks via Pre-trained Models AAAI 2026
Multimodal Large Language Models (MLLMs) have achieved remarkable performance across vision-language tasks. Recent advancements allow these models to process multiple images as inputs. However, the vulnerabilities of multi-image MLLMs remain unexplored. Existing adversarial attacks focus on single-image settings and often assume a white-box threat model, which is impractical in many real-world scenarios. This paper introduces LAMP, a black-box method for learning Universal Adversarial Perturbations (UAPs) targeting multi-image MLLMs. LAMP applies an attention-based constraint that prevents the model from effectively aggregating information across images. LAMP also introduces a novel cross-image contagious constraint that forces perturbed tokens to influence clean tokens, spreading adversarial effects without requiring all inputs to be modified. Additionally, an index-attention suppression loss enables a robust position-invariant attack. Experimental results show that LAMP outperforms SOTA baselines and achieves the highest attack success rates across multiple vision-language tasks and models.
comment: Accepted in main technical track AAAI 2026
☆ Thinker: A vision-language foundation model for embodied intelligence IROS 2025
When large vision-language models are applied to the field of robotics, they encounter problems that are simple for humans yet error-prone for models. Such issues include confusion between third-person and first-person perspectives and a tendency to overlook information in video endings during temporal reasoning. To address these challenges, we propose Thinker, a large vision-language foundation model designed for embodied intelligence. We tackle the aforementioned issues from two perspectives. Firstly, we construct a large-scale dataset tailored for robotic perception and reasoning, encompassing ego-view videos, visual grounding, spatial understanding, and chain-of-thought data. Secondly, we introduce a simple yet effective approach that substantially enhances the model's capacity for video comprehension by jointly incorporating key frames and full video sequences as inputs. Our model achieves state-of-the-art results on two of the most commonly used benchmark datasets in the field of task planning.
comment: IROS 2025, 4 pages, 3 figures
☆ Generative Recall, Dense Reranking: Learning Multi-View Semantic IDs for Efficient Text-to-Video Retrieval
Text-to-Video Retrieval (TVR) is essential in video platforms. Dense retrieval with dual-modality encoders leads in accuracy, but its computation and storage scale poorly with corpus size. Thus, real-time large-scale applications adopt two-stage retrieval, where a fast recall model gathers a small candidate pool, which is reranked by an advanced dense retriever. Due to hugely reduced candidates, the reranking model can use any off-the-shelf dense retriever without hurting efficiency, meaning the recall model bounds two-stage TVR performance. Recently, generative retrieval (GR) replaces dense video embeddings with discrete semantic IDs and retrieves by decoding text queries into ID tokens. GR offers near-constant inference and storage complexity, and its semantic IDs capture high-level video features via quantization, making it ideal for quickly eliminating irrelevant candidates during recall. However, as a recall model in two-stage TVR, GR suffers from (i) semantic ambiguity, where each video satisfies diverse queries but is forced into one semantic ID; and (ii) cross-modal misalignment, as semantic IDs are solely derived from visual features without text supervision. We propose Generative Recall and Dense Reranking (GRDR), designing a novel GR method to uplift recalled candidate quality. GRDR assigns multiple semantic IDs to each video using a query-guided multi-view tokenizer exposing diverse semantic access paths, and jointly trains the tokenizer and generative retriever via a shared codebook to cast semantic IDs as the semantic bridge between texts and videos. At inference, trie-constrained decoding generates a compact candidate set reranked by a dense model for fine-grained matching. Experiments on TVR benchmarks show GRDR matches strong dense retrievers in accuracy while reducing index storage by an order of magnitude and accelerating up to 300$\times$ in full-corpus retrieval.
comment: 10 pages
☆ FRISM: Fine-Grained Reasoning Injection via Subspace-Level Model Merging for Vision-Language Models
Efficiently enhancing the reasoning capabilities of Vision-Language Models (VLMs) by merging them with Large Reasoning Models (LRMs) has emerged as a promising direction. However, existing methods typically operate at a coarse-grained layer level, which often leads to a trade-off between injecting reasoning capabilities and preserving visual capabilities. To address this limitation, we propose {FRISM} (Fine-grained Reasoning Injection via Subspace-level model Merging), a fine-grained reasoning injection framework based on subspace-level model merging. Observing that reasoning capabilities are encoded in distinct subspaces, FRISM decomposes LRM task vectors via Singular Value Decomposition (SVD) and adaptively tunes the scaling coefficients of each subspace through learning to realize fine-grained reasoning injection. Furthermore, we introduce a label-free self-distillation learning strategy with a dual-objective optimization using common vision-language perception datasets. Extensive experiments demonstrate that FRISM effectively improves reasoning capabilities without compromising the model's original visual capabilities by consistently achieving state-of-the-art performance across diverse visual reasoning benchmarks.
comment: 23 pages, 8 figures
☆ Enhancing Underwater Light Field Images via Global Geometry-aware Diffusion Process
This work studies the challenging problem of acquiring high-quality underwater images via 4-D light field (LF) imaging. To this end, we propose GeoDiff-LF, a novel diffusion-based framework built upon SD-Turbo to enhance underwater 4-D LF imaging by leveraging its spatial-angular structure. GeoDiff-LF consists of three key adaptations: (1) a modified U-Net architecture with convolutional and attention adapters to model geometric cues, (2) a geometry-guided loss function using tensor decomposition and progressive weighting to regularize global structure, and (3) an optimized sampling strategy with noise prediction to improve efficiency. By integrating diffusion priors and LF geometry, GeoDiff-LF effectively mitigates color distortion in underwater scenes. Extensive experiments demonstrate that our framework outperforms existing methods across both visual fidelity and quantitative performance, advancing the state-of-the-art in enhancing underwater imaging. The code will be publicly available at https://github.com/linlos1234/GeoDiff-LF.
comment: 13 pages, 9 figures
☆ InspecSafe-V1: A Multimodal Benchmark for Safety Assessment in Industrial Inspection Scenarios
With the rapid development of industrial intelligence and unmanned inspection, reliable perception and safety assessment for AI systems in complex and dynamic industrial sites has become a key bottleneck for deploying predictive maintenance and autonomous inspection. Most public datasets remain limited by simulated data sources, single-modality sensing, or the absence of fine-grained object-level annotations, which prevents robust scene understanding and multimodal safety reasoning for industrial foundation models. To address these limitations, InspecSafe-V1 is released as the first multimodal benchmark dataset for industrial inspection safety assessment that is collected from routine operations of real inspection robots in real-world environments. InspecSafe-V1 covers five representative industrial scenarios, including tunnels, power facilities, sintering equipment, oil and gas petrochemical plants, and coal conveyor trestles. The dataset is constructed from 41 wheeled and rail-mounted inspection robots operating at 2,239 valid inspection sites, yielding 5,013 inspection instances. For each instance, pixel-level segmentation annotations are provided for key objects in visible-spectrum images. In addition, a semantic scene description and a corresponding safety level label are provided according to practical inspection tasks. Seven synchronized sensing modalities are further included, including infrared video, audio, depth point clouds, radar point clouds, gas measurements, temperature, and humidity, to support multimodal anomaly recognition, cross-modal fusion, and comprehensive safety assessment in industrial environments.
comment: 15 pages, 7 figures
☆ Bidirectional Cross-Perception for Open-Vocabulary Semantic Segmentation in Remote Sensing Imagery
High-resolution remote sensing imagery is characterized by densely distributed land-cover objects and complex boundaries, which places higher demands on both geometric localization and semantic prediction. Existing training-free open-vocabulary semantic segmentation (OVSS) methods typically fuse CLIP and vision foundation models (VFMs) using "one-way injection" and "shallow post-processing" strategies, making it difficult to satisfy these requirements. To address this issue, we propose a spatial-regularization-aware dual-branch collaborative inference framework for training-free OVSS, termed SDCI. First, during feature encoding, SDCI introduces a cross-model attention fusion (CAF) module, which guides collaborative inference by injecting self-attention maps into each other. Second, we propose a bidirectional cross-graph diffusion refinement (BCDR) module that enhances the reliability of dual-branch segmentation scores through iterative random-walk diffusion. Finally, we incorporate low-level superpixel structures and develop a convex-optimization-based superpixel collaborative prediction (CSCP) mechanism to further refine object boundaries. Experiments on multiple remote sensing semantic segmentation benchmarks demonstrate that our method achieves better performance than existing approaches. Moreover, ablation studies further confirm that traditional object-based remote sensing image analysis methods leveraging superpixel structures remain effective within deep learning frameworks. Code: https://github.com/yu-ni1989/SDCI.
☆ Similarity of Processing Steps in Vision Model Representations
Recent literature suggests that the bigger the model, the more likely it is to converge to similar, ``universal'' representations, despite different training objectives, datasets, or modalities. While this literature shows that there is an area where model representations are similar, we study here how vision models might get to those representations -- in particular, do they also converge to the same intermediate steps and operations? We therefore study the processes that lead to convergent representations in different models. First, we quantify distance between different model representations at different stages. We follow the evolution of distances between models throughout processing, identifying the processing steps which are most different between models. We find that while layers at similar positions in different models have the most similar representations, strong differences remain. Classifier models, unlike the others, will discard information about low-level image statistics in their final layers. CNN- and transformer-based models also behave differently, with transformer models applying smoother changes to representations from one layer to the next. These distinctions clarify the level and nature of convergence between model representations, and enables a more qualitative account of the underlying processes in image models.
☆ EMBC Special Issue: Calibrated Uncertainty for Trustworthy Clinical Gait Analysis Using Probabilistic Multiview Markerless Motion Capture
Video-based human movement analysis holds potential for movement assessment in clinical practice and research. However, the clinical implementation and trust of multi-view markerless motion capture (MMMC) require that, in addition to being accurate, these systems produce reliable confidence intervals to indicate how accurate they are for any individual. Building on our prior work utilizing variational inference to estimate joint angle posterior distributions, this study evaluates the calibration and reliability of a probabilistic MMMC method. We analyzed data from 68 participants across two institutions, validating the model against an instrumented walkway and standard marker-based motion capture. We measured the calibration of the confidence intervals using the Expected Calibration Error (ECE). The model demonstrated reliable calibration, yielding ECE values generally < 0.1 for both step and stride length and bias-corrected gait kinematics. We observed a median step and stride length error of ~16 mm and ~12 mm respectively, with median bias-corrected kinematic errors ranging from 1.5 to 3.8 degrees across lower extremity joints. Consistent with the calibrated ECE, the magnitude of the model's predicted uncertainty correlated strongly with observed error measures. These findings indicate that, as designed, the probabilistic model reconstruction quantifies epistemic uncertainty, allowing it to identify unreliable outputs without the need for concurrent ground-truth instrumentation.
comment: 9 pages, 5 figures, EMBS Special Issue
☆ Jailbreaks on Vision Language Model via Multimodal Reasoning
Vision-language models (VLMs) have become central to tasks such as visual question answering, image captioning, and text-to-image generation. However, their outputs are highly sensitive to prompt variations, which can reveal vulnerabilities in safety alignment. In this work, we present a jailbreak framework that exploits post-training Chain-of-Thought (CoT) prompting to construct stealthy prompts capable of bypassing safety filters. To further increase attack success rates (ASR), we propose a ReAct-driven adaptive noising mechanism that iteratively perturbs input images based on model feedback. This approach leverages the ReAct paradigm to refine adversarial noise in regions most likely to activate safety defenses, thereby enhancing stealth and evasion. Experimental results demonstrate that the proposed dual-strategy significantly improves ASR while maintaining naturalness in both text and visual domains.
☆ FlexMap: Generalized HD Map Construction from Flexible Camera Configurations
High-definition (HD) maps provide essential semantic information of road structures for autonomous driving systems, yet current HD map construction methods require calibrated multi-camera setups and either implicit or explicit 2D-to-BEV transformations, making them fragile when sensors fail or camera configurations vary across vehicle fleets. We introduce FlexMap, unlike prior methods that are fixed to a specific N-camera rig, our approach adapts to variable camera configurations without any architectural changes or per-configuration retraining. Our key innovation eliminates explicit geometric projections by using a geometry-aware foundation model with cross-frame attention to implicitly encode 3D scene understanding in feature space. FlexMap features two core components: a spatial-temporal enhancement module that separates cross-view spatial reasoning from temporal dynamics, and a camera-aware decoder with latent camera tokens, enabling view-adaptive attention without the need for projection matrices. Experiments demonstrate that FlexMap outperforms existing methods across multiple configurations while maintaining robustness to missing views and sensor variations, enabling more practical real-world deployment.
☆ Coarse-to-Real: Generative Rendering for Populated Dynamic Scenes
Traditional rendering pipelines rely on complex assets, accurate materials and lighting, and substantial computational resources to produce realistic imagery, yet they still face challenges in scalability and realism for populated dynamic scenes. We present C2R (Coarse-to-Real), a generative rendering framework that synthesizes real-style urban crowd videos from coarse 3D simulations. Our approach uses coarse 3D renderings to explicitly control scene layout, camera motion, and human trajectories, while a learned neural renderer generates realistic appearance, lighting, and fine-scale dynamics guided by text prompts. To overcome the lack of paired training data between coarse simulations and real videos, we adopt a two-phase mixed CG-real training strategy that learns a strong generative prior from large-scale real footage and introduces controllability through shared implicit spatio-temporal features across domains. The resulting system supports coarse-to-fine control, generalizes across diverse CG and game inputs, and produces temporally consistent, controllable, and realistic urban scene videos from minimal 3D input. We will release the model and project webpage at https://gonzalognogales.github.io/coarse2real/.
comment: Project website at https://gonzalognogales.github.io/coarse2real/
☆ SurrogateSHAP: Training-Free Contributor Attribution for Text-to-Image (T2I) Models
As Text-to-Image (T2I) diffusion models are increasingly used in real-world creative workflows, a principled framework for valuing contributors who provide a collection of data is essential for fair compensation and sustainable data marketplaces. While the Shapley value offers a theoretically grounded approach to attribution, it faces a dual computational bottleneck: (i) the prohibitive cost of exhaustive model retraining for each sampled subset of players (i.e., data contributors) and (ii) the combinatorial number of subsets needed to estimate marginal contributions due to contributor interactions. To this end, we propose SurrogateSHAP, a retraining-free framework that approximates the expensive retraining game through inference from a pretrained model. To further improve efficiency, we employ a gradient-boosted tree to approximate the utility function and derive Shapley values analytically from the tree-based model. We evaluate SurrogateSHAP across three diverse attribution tasks: (i) image quality for DDPM-CFG on CIFAR-20, (ii) aesthetics for Stable Diffusion on Post-Impressionist artworks, and (iii) product diversity for FLUX.1 on Fashion-Product data. Across settings, SurrogateSHAP outperforms prior methods while substantially reducing computational overhead, consistently identifying influential contributors across multiple utility metrics. Finally, we demonstrate that SurrogateSHAP effectively localizes data sources responsible for spurious correlations in clinical images, providing a scalable path toward auditing safety-critical generative models.
☆ VMonarch: Efficient Video Diffusion Transformers with Structured Attention
The quadratic complexity of the attention mechanism severely limits the context scalability of Video Diffusion Transformers (DiTs). We find that the highly sparse spatio-temporal attention patterns exhibited in Video DiTs can be naturally represented by the Monarch matrix. It is a class of structured matrices with flexible sparsity, enabling sub-quadratic attention via an alternating minimization algorithm. Accordingly, we propose VMonarch, a novel attention mechanism for Video DiTs that enables efficient computation over the dynamic sparse patterns with structured Monarch matrices. First, we adapt spatio-temporal Monarch factorization to explicitly capture the intra-frame and inter-frame correlations of the video data. Second, we introduce a recomputation strategy to mitigate artifacts arising from instabilities during alternating minimization of Monarch matrices. Third, we propose a novel online entropy algorithm fused into FlashAttention, enabling fast Monarch matrix updates for long sequences. Extensive experiments demonstrate that VMonarch achieves comparable or superior generation quality to full attention on VBench after minimal tuning. It overcomes the attention bottleneck in Video DiTs, reduces attention FLOPs by a factor of 17.5, and achieves a speedup of over 5x in attention computation for long videos, surpassing state-of-the-art sparse attention methods at 90% sparsity.
☆ Is Hierarchical Quantization Essential for Optimal Reconstruction? ICPR
Vector-quantized variational autoencoders (VQ-VAEs) are central to models that rely on high reconstruction fidelity, from neural compression to generative pipelines. Hierarchical extensions, such as VQ-VAE2, are often credited with superior reconstruction performance because they split global and local features across multiple levels. However, since higher levels derive all their information from lower levels, they should not carry additional reconstructive content beyond what the lower-level already encodes. Combined with recent advances in training objectives and quantization mechanisms, this leads us to ask whether a single-level VQ-VAE, with matched representational budget and no codebook collapse, can equal the reconstruction fidelity of its hierarchical counterpart. Although the multi-scale structure of hierarchical models may improve perceptual quality in downstream tasks, the effect of hierarchy on reconstruction accuracy, isolated from codebook utilization and overall representational capacity, remains empirically underexamined. We revisit this question by comparing a two-level VQ-VAE and a capacity-matched single-level model on high-resolution ImageNet images. Consistent with prior observations, we confirm that inadequate codebook utilization limits single-level VQ-VAEs and that overly high-dimensional embeddings destabilize quantization and increase codebook collapse. We show that lightweight interventions such as initialization from data, periodic reset of inactive codebook vectors, and systematic tuning of codebook hyperparameters significantly reduce collapse. Our results demonstrate that when representational budgets are matched, and codebook collapse is mitigated, single-level VQ-VAEs can match the reconstruction fidelity of hierarchical variants, challenging the assumption that hierarchical quantization is inherently superior for high-quality reconstructions.
comment: To appear in the Proceedings of ICPRAM 2026. Code available at : https://github.com/wiskott-lab/single-vs-hier-recon
☆ Geometry without Position? When Positional Embeddings Help and Hurt Spatial Reasoning
This paper revisits the role of positional embeddings (PEs) within vision transformers (ViTs) from a geometric perspective. We show that PEs are not mere token indices but effectively function as geometric priors that shape the spatial structure of the representation. We introduce token-level diagnostics that measure how multi-view geometric consistency in ViT representation depends on consitent PEs. Through extensive experiments on 14 foundation ViT models, we reveal how PEs influence multi-view geometry and spatial reasoning. Our findings clarify the role of PEs as a causal mechanism that governs spatial structure in ViT representations. Our code is provided in https://github.com/shijianjian/vit-geometry-probes
☆ Lost in Space? Vision-Language Models Struggle with Relative Camera Pose Estimation
Vision-Language Models (VLMs) perform well in 2D perception and semantic reasoning compared to their limited understanding of 3D spatial structure. We investigate this gap using relative camera pose estimation (RCPE), a fundamental vision task that requires inferring relative camera translation and rotation from a pair of images. We introduce VRRPI-Bench, a benchmark derived from unlabeled egocentric videos with verbalized annotations of relative camera motion, reflecting realistic scenarios with simultaneous translation and rotation around a shared object. We further propose VRRPI-Diag, a diagnostic benchmark that isolates individual motion degrees of freedom. Despite the simplicity of RCPE, most VLMs fail to generalize beyond shallow 2D heuristics, particularly for depth changes and roll transformations along the optical axis. Even state-of-the-art models such as GPT-5 ($0.64$) fall short of classic geometric baselines ($0.97$) and human performance ($0.92$). Moreover, VLMs exhibit difficulty in multi-image reasoning, with inconsistent performance (best $59.7\%$) when integrating spatial cues across frames. Our findings reveal limitations in grounding VLMs in 3D and multi-view spatial reasoning.
☆ What Lies Beneath: A Call for Distribution-based Visual Question & Answer Datasets IEEE
Visual Question Answering (VQA) has become an important benchmark for assessing how large multimodal models (LMMs) interpret images. However, most VQA datasets focus on real-world images or simple diagrammatic analysis, with few focused on interpreting complex scientific charts. Indeed, many VQA datasets that analyze charts do not contain the underlying data behind those charts or assume a 1-to-1 correspondence between chart marks and underlying data. In reality, charts are transformations (i.e. analysis, simplification, modification) of data. This distinction introduces a reasoning challenge in VQA that the current datasets do not capture. In this paper, we argue for a dedicated VQA benchmark for scientific charts where there is no 1-to-1 correspondence between chart marks and underlying data. To do so, we survey existing VQA datasets and highlight limitations of the current field. We then generate synthetic histogram charts based on ground truth data, and ask both humans and a large reasoning model questions where precise answers depend on access to the underlying data. We release the open-source dataset, including figures, underlying data, distribution parameters used to generate the data, and bounding boxes for all figure marks and text for future research.
comment: Accepted to ACM/IEEE Joint Conference on Digital Libraries JCDL 2025, 4 pages, 2 figures
☆ A Survey on Semantic Communication for Vision: Categories, Frameworks, Enabling Techniques, and Applications
Semantic communication (SemCom) emerges as a transformative paradigm for traffic-intensive visual data transmission, shifting focus from raw data to meaningful content transmission and relieving the increasing pressure on communication resources. However, to achieve SemCom, challenges are faced in accurate semantic quantization for visual data, robust semantic extraction and reconstruction under diverse tasks and goals, transceiver coordination with effective knowledge utilization, and adaptation to unpredictable wireless communication environments. In this paper, we present a systematic review of SemCom for visual data transmission (SemCom-Vision), wherein an interdisciplinary analysis integrating computer vision (CV) and communication engineering is conducted to provide comprehensive guidelines for the machine learning (ML)-empowered SemCom-Vision design. Specifically, this survey first elucidates the basics and key concepts of SemCom. Then, we introduce a novel classification perspective to categorize existing SemCom-Vision approaches as semantic preservation communication (SPC), semantic expansion communication (SEC), and semantic refinement communication (SRC) based on communication goals interpreted through semantic quantization schemes. Moreover, this survey articulates the ML-based encoder-decoder models and training algorithms for each SemCom-Vision category, followed by knowledge structure and utilization strategies. Finally, we discuss potential SemCom-Vision applications.
♻ ☆ MORPH: PDE Foundation Models with Arbitrary Data Modality
We introduce MORPH, a modality-agnostic, autoregressive foundation model for partial differential equations (PDEs). MORPH is built on a convolutional vision transformer backbone that seamlessly handles heterogeneous spatiotemporal datasets of varying data modality (1D--3D) at different resolutions, and multiple fields with mixed scalar and vector components. The architecture combines (i) component-wise convolution, which jointly processes scalar and vector channels to capture local interactions, (ii) inter-field cross-attention, which models and selectively propagates information between different physical fields, (iii) axial attentions, which factorize full spatiotemporal self-attention along individual spatial and temporal axes to reduce computational burden while retaining expressivity. We pretrain multiple model variants on a diverse collection of heterogeneous PDE datasets and evaluate transfer to a range of downstream prediction tasks. Using both full-model fine-tuning and parameter-efficient low-rank adapters, MORPH outperforms models trained from scratch. Across extensive evaluations, MORPH matches or surpasses strong baselines and recent state-of-the-art models. Collectively, these capabilities present a flexible and powerful backbone for learning from the heterogeneous and multimodal nature of scientific observations, charting a path toward scalable and data-efficient scientific machine learning. The source code, datasets, and models are publicly available at https://github.com/lanl/MORPH.
♻ ☆ PRISM: A Framework Harnessing Unsupervised Visual Representations and Textual Prompts for Explainable MACE Survival Prediction from Cardiac Cine MRI
Accurate prediction of major adverse cardiac events (MACE) remains a central challenge in cardiovascular prognosis. We present PRISM (Prompt-guided Representation Integration for Survival Modeling), a self-supervised framework that integrates visual representations from non-contrast cardiac cine magnetic resonance imaging with structured electronic health records (EHRs) for survival analysis. PRISM extracts temporally synchronized imaging features through motion-aware multi-view distillation and modulates them using medically informed textual prompts to enable fine-grained risk prediction. Across four independent clinical cohorts, PRISM consistently surpasses classical survival prediction models and state-of-the-art (SOTA) deep learning baselines under internal and external validation. Further clinical findings demonstrate that the combined imaging and EHR representations derived from PRISM provide valuable insights into cardiac risk across diverse cohorts. Three distinct imaging signatures associated with elevated MACE risk are uncovered, including lateral wall dyssynchrony, inferior wall hypersensitivity, and anterior elevated focus during diastole. Prompt-guided attribution further identifies hypertension, diabetes, and smoking as dominant contributors among clinical and physiological EHR factors.
♻ ☆ Align & Invert: Solving Inverse Problems with Diffusion and Flow-based Models via Representation Alignment
Enforcing alignment between the internal representations of diffusion or flow-based generative models and those of pretrained self-supervised encoders has recently been shown to provide a powerful inductive bias, improving both convergence and sample quality. In this work, we extend this idea to inverse problems, where pretrained generative models are employed as priors. We propose applying representation alignment (REPA) between diffusion or flow-based models and a DINOv2 visual encoder, to guide the reconstruction process at inference time. Although ground-truth signals are unavailable in inverse problems, we empirically show that aligning model representations of approximate target features can substantially enhance reconstruction quality and perceptual realism. We provide theoretical results showing (a) that REPA regularization can be viewed as a variational approach for minimizing a divergence measure in the DINOv2 embedding space, and (b) how under certain regularity assumptions REPA updates steer the latent diffusion states toward those of the clean image. These results offer insights into the role of REPA in improving perceptual fidelity. Finally, we demonstrate the generality of our approach by We integrate REPA into multiple state-of-the-art inverse problem solvers, and provide extensive experiments on super-resolution, box inpainting, Gaussian deblurring, and motion deblurring confirming that our method consistently improves reconstruction quality, while also providing efficiency gains reducing the number of required discretization steps.
♻ ☆ EROAM: Event-based Camera Rotational Odometry and Mapping in Real-time IEEE
This paper presents EROAM, a novel event-based rotational odometry and mapping system that achieves real-time, accurate camera rotation estimation. Unlike existing approaches that rely on event generation models or contrast maximization, EROAM employs a spherical event representation by projecting events onto a unit sphere and introduces Event Spherical Iterative Closest Point (ES-ICP), a novel geometric optimization framework designed specifically for event camera data. The spherical representation simplifies rotational motion formulation while operating in a continuous spherical domain, enabling enhanced spatial resolution. Our system features an efficient map management approach using incremental k-d tree structures and intelligent regional density control, ensuring optimal computational performance during long-term operation. Combined with parallel point-to-line optimization, EROAM achieves efficient computation without compromising accuracy. Extensive experiments on both synthetic and real-world datasets show that EROAM significantly outperforms state-of-the-art methods in terms of accuracy, robustness, and computational efficiency. Our method maintains consistent performance under challenging conditions, including high angular velocities and extended sequences, where other methods often fail or show significant drift. Additionally, EROAM produces high-quality panoramic reconstructions with preserved fine structural details.
comment: Accepted by IEEE Transactions on Robotics (T-RO), 2026. Project page: https://wlxing1901.github.io/eroam/
♻ ☆ GR3EN: Generative Relighting for 3D Environments
We present a method for relighting 3D reconstructions of large room-scale environments. Existing solutions for 3D scene relighting often require solving under-determined or ill-conditioned inverse rendering problems, and are as such unable to produce high-quality results on complex real-world scenes. Though recent progress in using generative image and video diffusion models for relighting has been promising, these techniques are either limited to 2D image and video relighting or 3D relighting of individual objects. Our approach enables controllable 3D relighting of room-scale scenes by distilling the outputs of a video-to-video relighting diffusion model into a 3D reconstruction. This side-steps the need to solve a difficult inverse rendering problem, and results in a flexible system that can relight 3D reconstructions of complex real-world scenes. We validate our approach on both synthetic and real-world datasets to show that it can faithfully render novel views of scenes under new lighting conditions.
comment: project page: https://gr3en-relight.github.io/
♻ ☆ MindGrab for BrainChop: Fast and Accurate Skull Stripping for Command Line and Browser
Deployment complexity and specialized hardware requirements hinder the adoption of deep learning models in neuroimaging. We present MindGrab, a lightweight, fully convolutional model for volumetric skull stripping across all imaging modalities. MindGrab's architecture is designed from first principles using a spectral interpretation of dilated convolutions, and demonstrates state-of-the-art performance (mean Dice score across datasets and modalities: 95.9 with SD 1.6), with up to 40-fold speedups and substantially lower memory demands compared to established methods. Its minimal footprint allows for fast, full-volume processing in resource-constrained environments, including direct in-browser execution. MindGrab is delivered via the BrainChop platform as both a simple command-line tool (pip install brainchop) and a zero-installation web application (brainchop.org). By removing traditional deployment barriers without sacrificing accuracy, MindGrab makes state-of-the-art neuroimaging analysis broadly accessible.
comment: 17 pages, 1 table, 5 figures. 2 supplementary tables. Brainchop-cli: https://pypi.org/project/brainchop/ . Brainchop web: https://brainchop.org/
♻ ☆ A Coreset Selection of Coreset Selection Literature: Introduction and Recent Advances
Coreset selection targets the challenge of finding a small, representative subset of a large dataset that preserves essential patterns for effective machine learning. Although several surveys have examined data reduction strategies before, most focus narrowly on either classical geometry-based methods or active learning techniques. In contrast, this survey presents a more comprehensive view by unifying three major lines of coreset research, namely, training-free, training-oriented, and label-free approaches, into a single taxonomy. We present subfields often overlooked by existing work, including submodular formulations, bilevel optimization, and recent progress in pseudo-labeling for unlabeled datasets. Additionally, we examine how pruning strategies influence generalization and neural scaling laws, offering new insights that are absent from prior reviews. Finally, we compare these methods under varying computational, robustness, and performance demands and highlight open challenges, such as robustness, outlier filtering, and adapting coreset selection to foundation models, for future research.
♻ ☆ Reliable Deep Learning for Small-Scale Classifications: Experiments on Real-World Image Datasets from Bangladesh
Convolutional neural networks (CNNs) have achieved state-of-the-art performance in image recognition tasks but often involve complex architectures that may overfit on small datasets. In this study, we evaluate a compact CNN across five publicly available, real-world image datasets from Bangladesh, including urban encroachment, vehicle detection, road damage, and agricultural crops. The network demonstrates high classification accuracy, efficient convergence, and low computational overhead. Quantitative metrics and saliency analyses indicate that the model effectively captures discriminative features and generalizes robustly across diverse scenarios, highlighting the suitability of streamlined CNN architectures for small-class image classification tasks.
♻ ☆ FreeFuse: Multi-Subject LoRA Fusion via Adaptive Token-Level Routing at Test Time
This paper proposes FreeFuse, a training-free framework for multi-subject text-to-image generation through automatic fusion of multiple subject LoRAs. In contrast to prior studies that focus on retraining LoRA to alleviate feature conflicts, our analysis reveals that simply spatially confining the subject LoRA's output to its target region and preventing other LoRAs from directly intruding into this area is sufficient for effective mitigation. Accordingly, we implement Adaptive Token-Level Routing during the inference phase. We introduce FreeFuseAttn, a mechanism that exploits the flow matching model's intrinsic semantic alignment to dynamically match subject-specific tokens to their corresponding spatial regions at early denoising timesteps, thereby bypassing the need for external segmentors. FreeFuse distinguishes itself through high practicality: it necessitates no additional training, model modifications, or user-defined masks spatial conditions. Users need only provide subject activation words to achieve seamless integration into standard workflows. Extensive experiments validate that FreeFuse outperforms existing approaches in both identity preservation and compositional fidelity. Our code is available at https://github.com/yaoliliu/FreeFuse.
♻ ☆ Uni-Parser Technical Report
This technical report introduces Uni-Parser, an industrial-grade document parsing engine tailored for scientific literature and patents, delivering high throughput, robust accuracy, and cost efficiency. Unlike pipeline-based document parsing methods, Uni-Parser employs a modular, loosely coupled multi-expert architecture that preserves fine-grained cross-modal alignments across text, equations, tables, figures, and chemical structures, while remaining easily extensible to emerging modalities. The system incorporates adaptive GPU load balancing, distributed inference, dynamic module orchestration, and configurable modes that support either holistic or modality-specific parsing. Optimized for large-scale cloud deployment, Uni-Parser achieves a processing rate of up to 20 PDF pages per second on 8 x NVIDIA RTX 4090D GPUs, enabling cost-efficient inference across billions of pages. This level of scalability facilitates a broad spectrum of downstream applications, ranging from literature retrieval and summarization to the extraction of chemical structures, reaction schemes, and bioactivity data, as well as the curation of large-scale corpora for training next-generation large language models and AI4Science models.
♻ ☆ Edge Collaborative Gaussian Splatting with Integrated Rendering and Communication IEEE
Gaussian splatting (GS) struggles with degraded rendering quality on low-cost devices. To address this issue, we present edge collaborative GS (ECO-GS), where each user can switch between a local small GS model to guarantee timeliness and a remote large GS model to guarantee fidelity. However, deciding how to engage the large GS model is nontrivial, due to the interdependency between rendering requirements and resource conditions. To this end, we propose integrated rendering and communication (IRAC), which jointly optimizes collaboration status (i.e., deciding whether to engage large GS) and edge power allocation (i.e., enabling remote rendering) under communication constraints across different users by minimizing a newly-derived GS switching function. Despite the nonconvexity of the problem, we propose an efficient penalty majorization minimization (PMM) algorithm to obtain the critical point solution. Furthermore, we develop an imitation learning optimization (ILO) algorithm, which reduces the computational time by over 100x compared to PMM. Experiments demonstrate the superiority of PMM and the real-time execution capability of ILO.
comment: IEEE ICASSP, Barcelona, Spain, 2026
♻ ☆ PCICF: A Pedestrian Crossing Identification and Classification Framework
We have recently observed the commercial roll-out of robotaxis in various countries. They are deployed within an operational design domain (ODD) on specific routes and environmental conditions, and are subject to continuous monitoring to regain control in safety-critical situations. Since ODDs typically cover urban areas, robotaxis must reliably detect vulnerable road users (VRUs) such as pedestrians, bicyclists, or e-scooter riders. To better handle such varied traffic situations, end-to-end AI, which directly compute vehicle control actions from multi-modal sensor data instead of only for perception, is on the rise. High quality data is needed for systematically training and evaluating such systems within their OOD. In this work, we propose PCICF, a framework to systematically identify and classify VRU situations to support ODD's incident analysis. We base our work on the existing synthetic dataset SMIRK, and enhance it by extending its single-pedestrian-only design into the MoreSMIRK dataset, a structured dictionary of multi-pedestrian crossing situations constructed systematically. We then use space-filling curves (SFCs) to transform multi-dimensional features of scenarios into characteristic patterns, which we match with corresponding entries in MoreSMIRK. We evaluate PCICF with the large real-world dataset PIE, which contains more than 150 manually annotated pedestrian crossing videos. We show that PCICF can successfully identify and classify complex pedestrian crossings, even when groups of pedestrians merge or split. By leveraging computationally efficient components like SFCs, PCICF has even potential to be used onboard of robotaxis for OOD detection for example. We share an open-source replication package for PCICF containing its algorithms, the complete MoreSMIRK dataset and dictionary, as well as our experiment results presented in: https://github.com/Claud1234/PCICF
♻ ☆ Semantic Router: On the Feasibility of Hijacking MLLMs via a Single Adversarial Perturbation
Multimodal Large Language Models (MLLMs) are increasingly deployed in stateless systems, such as autonomous driving and robotics. This paper investigates a novel threat: Semantic-Aware Hijacking. We explore the feasibility of hijacking multiple stateless decisions simultaneously using a single universal perturbation. We introduce the Semantic-Aware Universal Perturbation (SAUP), which acts as a semantic router, "actively" perceiving input semantics and routing them to distinct, attacker-defined targets. To achieve this, we conduct theoretical and empirical analysis on the geometric properties in the latent space. Guided by these insights, we propose the Semantic-Oriented (SORT) optimization strategy and annotate a new dataset with fine-grained semantics to evaluate performance. Extensive experiments on three representative MLLMs demonstrate the fundamental feasibility of this attack, achieving a 66% attack success rate over five targets using a single frame against Qwen.
♻ ☆ SSCATeR: Sparse Scatter-Based Convolution Algorithm with Temporal Data Recycling for Real-Time 3D Object Detection in LiDAR Point Clouds IEEE
This work leverages the continuous sweeping motion of LiDAR scanning to concentrate object detection efforts on specific regions that receive a change in point data from one frame to another. We achieve this by using a sliding time window with short strides and consider the temporal dimension by storing convolution results between passes. This allows us to ignore unchanged regions, significantly reducing the number of convolution operations per forward pass without sacrificing accuracy. This data reuse scheme introduces extreme sparsity to detection data. To exploit this sparsity, we extend our previous work on scatter-based convolutions to allow for data reuse, and as such propose Sparse Scatter-Based Convolution Algorithm with Temporal Data Recycling (SSCATeR). This operation treats incoming LiDAR data as a continuous stream and acts only on the changing parts of the point cloud. By doing so, we achieve the same results with as much as a 6.61-fold reduction in processing time. Our test results show that the feature maps output by our method are identical to those produced by traditional sparse convolution techniques, whilst greatly increasing the computational efficiency of the network.
comment: 23 Pages, 27 Figures, This work has been accepted for publication by the IEEE Sensors Journal. Please see the first page of the article PDF for copyright information
♻ ☆ OmniLens: Towards Universal Lens Aberration Correction via LensLib-to-Specific Domain Adaptation
Emerging universal Computational Aberration Correction (CAC) paradigms provide an inspiring solution to light-weight and high-quality imaging with a universal model trained on a lens library (LensLib) to address arbitrary lens optical aberrations blindly. However, the limited coverage of existing LensLibs leads to poor generalization of the trained models to unseen lenses, whose fine-tuning pipeline is also confined to the lens-descriptions-known case. In this work, we introduce OmniLens, a flexible solution to universal CAC via (i) establishing a convincing LensLib with comprehensive coverage for pre-training a robust base model, and (ii) adapting the model to any specific lens designs with unknown lens descriptions via fast LensLib-to-specific domain adaptation. To achieve these, an Evolution-based Automatic Optical Design (EAOD) pipeline is proposed to generate a rich variety of lens samples with realistic aberration behaviors. Then, we design an unsupervised regularization term for efficient domain adaptation on a few easily accessible real-captured images based on the statistical observation of dark channel priors in degradation induced by lens aberrations. Extensive experiments demonstrate that the LensLib generated by EAOD effectively develops a universal CAC model with strong generalization capabilities, which can also improve the non-blind lens-specific methods by 0.35~1.81dB in PSNR. Additionally, the proposed domain adaptation method significantly improves the base model, especially in severe aberration cases (at most 2.59dB in PSNR). The code and data will be available at https://github.com/zju-jiangqi/OmniLens.
comment: Accepted to Optics & Laser Technology (JOLT). The code and data will be available at https://github.com/zju-jiangqi/OmniLens
♻ ☆ DrivIng: A Large-Scale Multimodal Driving Dataset with Full Digital Twin Integration
Perception is a cornerstone of autonomous driving, enabling vehicles to understand their surroundings and make safe, reliable decisions. Developing robust perception algorithms requires large-scale, high-quality datasets that cover diverse driving conditions and support thorough evaluation. Existing datasets often lack a high-fidelity digital twin, limiting systematic testing, edge-case simulation, sensor modification, and sim-to-real evaluations. To address this gap, we present DrivIng, a large-scale multimodal dataset with a complete geo-referenced digital twin of a ~18 km route spanning urban, suburban, and highway segments. Our dataset provides continuous recordings from six RGB cameras, one LiDAR, and high-precision ADMA-based localization, captured across day, dusk, and night. All sequences are annotated at 10 Hz with 3D bounding boxes and track IDs across 12 classes, yielding ~1.2 million annotated instances. Alongside the benefits of a digital twin, DrivIng enables a 1-to-1 transfer of real traffic into simulation, preserving agent interactions while enabling realistic and flexible scenario testing. To support reproducible research and robust validation, we benchmark DrivIng with state-of-the-art perception models and publicly release the dataset, digital twin, HD map, and codebase.
comment: Copyright 2026 IEEE. This is the accepted manuscript (postprint), not the final published version. For code and dataset, see https://github.com/cvims/DrivIng
♻ ☆ Bridging Weakly-Supervised Learning and VLM Distillation: Noisy Partial Label Learning for Efficient Downstream Adaptation
In the context of noisy partial label learning (NPLL), each training sample is associated with a set of candidate labels annotated by multiple noisy annotators. With the emergence of high-performance pre-trained vision-language models (VLMs) such as CLIP, LLaVA, and GPT-4V, leveraging these models to replace time-consuming manual annotation and enable annotation-free training has become a promising research direction. This paper studies learning from noisy partial labels generated by pre-trained VLMs and proposes a collaborative consistency regularization (Co-Reg) framework. Unlike symmetric noise commonly assumed in traditional noisy label learning, VLM-generated noise is instance-dependent and reflects the intrinsic biases of pre-trained models, posing greater challenges. To address this issue, we jointly train two neural networks to perform collaborative label purification via a co-pseudo-labeling mechanism, while enforcing consistency regularization in both label and feature representation spaces. In addition, multiple anti-overfitting strategies are introduced, including alternating optimization of contrastive representations and pseudo-labels, as well as maintaining class prototypes in a shared feature space. The proposed method can further incorporate few-shot manually annotated labels for performance enhancement. Extensive experiments under various settings demonstrate the effectiveness of our approach and highlight the potential of integrating weakly supervised learning into the knowledge distillation of pre-trained models.
♻ ☆ Memento 2: Learning by Stateful Reflective Memory
We present a theoretical study of continual and experiential learning in large language model agents that combine episodic memory with reinforcement learning. We argue that the key mechanism for continual adaptation, without updating model parameters, is reflection: the agent's ability to use past experience to guide future actions. Empirical findings suggest that episodic, experience-driven reflection enables generalised adaptation across a wide range of open-ended, long-horizon tasks. This indicates that efficient learning can occur during deployment and weakens the traditional separation between training and testing. Motivated by this, we introduce the Stateful Reflective Decision Process, a formal model of reflective memory dynamics. In this abstraction, an agent maintains an episodic memory and performs two core operations. Writing stores interaction outcomes and plays the role of policy evaluation. Reading retrieves relevant past cases to inform decisions and plays the role of policy improvement. This perspective treats reflective memory as a control object that can be analysed using classical reinforcement learning tools. We then develop a read-write reflective learning framework by integrating retrieval into soft policy iteration and establish convergence guarantees. We show that as memory grows and provides denser coverage of the state space, the resulting composite policy converges to the optimal solution. Overall, this framework connects practical memory-based methods with principled reinforcement learning, providing a rigorous mathematical basis for building reflective, memory-embedded agents capable of continual general-purpose learning.
comment: 35 pages, four figures
♻ ☆ A New Dataset and Framework for Robust Road Surface Classification via Camera-IMU Fusion
Road surface classification (RSC) is a key enabler for environment-aware predictive maintenance systems. However, existing RSC techniques often fail to generalize beyond narrow operational conditions due to limited sensing modalities and datasets that lack environmental diversity. This work addresses these limitations by introducing a multimodal framework that fuses images and inertial measurements using a lightweight bidirectional cross-attention module followed by an adaptive gating layer that adjusts modality contributions under domain shifts. Given the limitations of current benchmarks, especially regarding lack of variability, we introduce ROAD, a new dataset composed of three complementary subsets: (i) real-world multimodal recordings with RGB-IMU streams synchronized using a gold-standard industry datalogger, captured across diverse lighting, weather, and surface conditions; (ii) a large vision-only subset designed to assess robustness under adverse illumination and heterogeneous capture setups; and (iii) a synthetic subset generated to study out-of-distribution generalization in scenarios difficult to obtain in practice. Experiments show that our method achieves a +1.4 pp improvement over the previous state-of-the-art on the PVS benchmark and an +11.6 pp improvement on our multimodal ROAD subset, with consistently higher F1-scores on minority classes. The framework also demonstrates stable performance across challenging visual conditions, including nighttime, heavy rain, and mixed-surface transitions. These findings indicate that combining affordable camera and IMU sensors with multimodal attention mechanisms provides a scalable, robust foundation for road surface understanding, particularly relevant for regions where environmental variability and cost constraints limit the adoption of high-end sensing suites.
♻ ☆ Visual Localization via Semantic Structures in Autonomous Photovoltaic Power Plant Inspection
Inspection systems utilizing unmanned aerial vehicles (UAVs) equipped with thermal cameras are increasingly popular for the maintenance of photovoltaic (PV) power plants. However, automation of the inspection task is a challenging problem as it requires precise navigation to capture images from optimal distances and viewing angles. This paper presents a novel localization pipeline that directly integrates PV module detection with UAV navigation, allowing precise positioning during inspection. The detections are used to identify the power plant structures in the image. These are associated with the power plant model and used to infer the UAV position relative to the inspected PV installation. We define visually recognizable anchor points for the initial association and use object tracking to discern global associations. Additionally, we present three different methods for visual segmentation of PV modules and evaluate their performance in relation to the proposed localization pipeline. The presented methods were verified and evaluated using custom aerial inspection data sets, demonstrating their robustness and applicability for real-time navigation. Additionally, we evaluate the influence of the power plant model precision on the localization methods.
comment: 50 pages, 23 figures. Submitted for review to Array
♻ ☆ REST: Diffusion-based Real-time End-to-end Streaming Talking Head Generation via ID-Context Caching and Asynchronous Streaming Distillation
Diffusion models have significantly advanced the field of talking head generation (THG). However, slow inference speeds and prevalent non-autoregressive paradigms severely constrain the application of diffusion-based THG models. In this study, we propose REST, a pioneering diffusion-based, real-time, end-to-end streaming audio-driven talking head generation framework. To support real-time end-to-end generation, a compact video latent space is first learned through a spatiotemporal variational autoencoder with a high compression ratio. Additionally, to enable semi-autoregressive streaming within the compact video latent space, we introduce an ID-Context Cache mechanism, which integrates ID-Sink and Context-Cache principles into key-value caching for maintaining identity consistency and temporal coherence during long-term streaming generation. Furthermore, an Asynchronous Streaming Distillation (ASD) strategy is proposed to mitigate error accumulation and enhance temporal consistency in streaming generation, leveraging a non-streaming teacher with an asynchronous noise schedule to supervise the streaming student. REST bridges the gap between autoregressive and diffusion-based approaches, achieving a breakthrough in efficiency for applications requiring real-time THG. Experimental results demonstrate that REST outperforms state-of-the-art methods in both generation speed and overall performance.
comment: 27 pages, 10 figures
♻ ☆ Efficient4D: Fast Dynamic 3D Object Generation from a Single-view Video
Generating dynamic 3D object from a single-view video is challenging due to the lack of 4D labeled data. An intuitive approach is to extend previous image-to-3D pipelines by transferring off-the-shelf image generation models such as score distillation sampling.However, this approach would be slow and expensive to scale due to the need for back-propagating the information-limited supervision signals through a large pretrained model. To address this, we propose an efficient video-to-4D object generation framework called Efficient4D. It generates high-quality spacetime-consistent images under different camera views, and then uses them as labeled data to directly reconstruct the 4D content through a 4D Gaussian splatting model. Importantly, our method can achieve real-time rendering under continuous camera trajectories. To enable robust reconstruction under sparse views, we introduce inconsistency-aware confidence-weighted loss design, along with a lightly weighted score distillation loss. Extensive experiments on both synthetic and real videos show that Efficient4D offers a remarkable 10-fold increase in speed when compared to prior art alternatives while preserving the quality of novel view synthesis. For example, Efficient4D takes only 10 minutes to model a dynamic object, vs 120 minutes by the previous art model Consistent4D.
comment: IJCV version
♻ ☆ SEGA: A Transferable Signed Ensemble Gaussian Black-Box Attack against No-Reference Image Quality Assessment Models
No-Reference Image Quality Assessment (NR-IQA) models play an important role in various real-world applications. Recently, adversarial attacks against NR-IQA models have attracted increasing attention, as they provide valuable insights for revealing model vulnerabilities and guiding robust system design. Some effective attacks have been proposed against NR-IQA models in white-box settings, where the attacker has full access to the target model. However, these attacks often suffer from poor transferability to unknown target models in more realistic black-box scenarios, where the target model is inaccessible. This work makes the first attempt to address the challenge of low transferability in attacking NR-IQA models by proposing a transferable Signed Ensemble Gaussian black-box Attack (SEGA). The main idea is to approximate the gradient of the target model by applying Gaussian smoothing to source models and ensembling their smoothed gradients. To ensure the imperceptibility of adversarial perturbations, SEGA further removes inappropriate perturbations using a specially designed perturbation filter mask. Experimental results on the CLIVE dataset demonstrate the superior transferability of SEGA, validating its effectiveness in enabling successful transfer-based black-box attacks against NR-IQA models.
♻ ☆ Rethinking Multimodal Learning from the Perspective of Mitigating Classification Ability Disproportion NeurIPS 2025
Multimodal learning (MML) is significantly constrained by modality imbalance, leading to suboptimal performance in practice. While existing approaches primarily focus on balancing the learning of different modalities to address this issue, they fundamentally overlook the inherent disproportion in model classification ability, which serves as the primary cause of this phenomenon. In this paper, we propose a novel multimodal learning approach to dynamically balance the classification ability of weak and strong modalities by incorporating the principle of boosting. Concretely, we first propose a sustained boosting algorithm in multimodal learning by simultaneously optimizing the classification and residual errors. Subsequently, we introduce an adaptive classifier assignment strategy to dynamically facilitate the classification performance of the weak modality. Furthermore, we theoretically analyze the convergence property of the cross-modal gap function, ensuring the effectiveness of the proposed boosting scheme. To this end, the classification ability of strong and weak modalities is expected to be balanced, thereby mitigating the imbalance issue. Empirical experiments on widely used datasets reveal the superiority of our method through comparison with various state-of-the-art (SOTA) multimodal learning baselines. The source code is available at https://github.com/njustkmg/NeurIPS25-AUG.
comment: Accepted by NeurIPS 2025
♻ ☆ iPEAR: Iterative Pyramid Estimation with Attention and Residuals for Deformable Medical Image Registration
Existing pyramid registration networks may accumulate anatomical misalignments and lack an effective mechanism to dynamically determine the number of optimization iterations under varying deformation requirements across images, leading to degraded performance. To solve these limitations, we propose iPEAR. Specifically, iPEAR adopts our proposed Fused Attention-Residual Module (FARM) for decoding, which comprises an attention pathway and a residual pathway to alleviate the accumulation of anatomical misalignment. We further propose a dual-stage Threshold-Controlled Iterative (TCI) strategy that adaptively determines the number of optimization iterations for varying images by evaluating registration stability and convergence. Extensive experiments on three public brain MRI datasets and one public abdomen CT dataset show that iPEAR outperforms state-of-the-art (SOTA) registration networks in terms of accuracy, while achieving on-par inference speed and model parameter size. Generalization and ablation studies further validate the effectiveness of the proposed FARM and TCI.
♻ ☆ ViSurf: Visual Supervised-and-Reinforcement Fine-Tuning for Large Vision-and-Language Models
Post-training Large Vision-and-Language Models (LVLMs) typically involves Supervised Fine-Tuning (SFT) for knowledge injection or Reinforcement Learning with Verifiable Rewards (RLVR) for performance enhancement. However, SFT often leads to sub-optimal performance, while RLVR remains constrained by the model's internal knowledge base. While a sequential SFT $\rightarrow$ RLVR pipeline can be used, it introduces significant computational overhead and suffers from catastrophic forgetting. To address these limitations, we propose ViSurf (\textbf{Vi}sual \textbf{Su}pervised-and-\textbf{R}einforcement \textbf{F}ine-Tuning), a unified, single-stage paradigm that integrates the strengths of both SFT and RLVR. By analyzing their training objectives, we establish a unified framework that injects ground-truth labels directly into RLVR rollouts, facilitating simultaneous external supervision and internal reinforcement. Furthermore, we introduce three novel reward control strategies to ensure training stability and optimization. Extensive experiments demonstrate that ViSurf consistently outperforms standalone SFT, RLVR, and the traditional two-stage pipeline across diverse benchmarks. In-depth analysis corroborates these findings, validating the derivation and design principles of ViSurf.
♻ ☆ DyPE: Dynamic Position Extrapolation for Ultra High Resolution Diffusion
Diffusion Transformer models can generate images with remarkable fidelity and detail, yet training them at ultra-high resolutions remains extremely costly due to the self-attention mechanism's quadratic scaling with the number of image tokens. In this paper, we introduce Dynamic Position Extrapolation (DyPE), a novel, training-free method that enables pre-trained diffusion transformers to synthesize images at resolutions far beyond their training data, with no additional sampling cost. DyPE takes advantage of the spectral progression inherent to the diffusion process, where low-frequency structures converge early, while high-frequencies take more steps to resolve. Specifically, DyPE dynamically adjusts the model's positional encoding at each diffusion step, matching their frequency spectrum with the current stage of the generative process. This approach allows us to generate images at resolutions that exceed the training resolution dramatically, e.g., 16 million pixels using FLUX. On multiple benchmarks, DyPE consistently improves performance and achieves state-of-the-art fidelity in ultra-high-resolution image generation, with gains becoming even more pronounced at higher resolutions. Project page is available at https://noamissachar.github.io/DyPE/.
♻ ☆ Revisiting Reweighted Risk for Calibration: AURC, Focal, and Inverse Focal Loss
Several variants of reweighted risk functionals, such as focal loss, inverse focal loss, and the Area Under the Risk Coverage Curve (AURC), have been proposed for improving model calibration; yet their theoretical connections to calibration errors remain under-explored. In this paper, we revisit a broad class of weighted risk functions and find a principled connection between calibration error and selective classification. We show that minimizing calibration error is closely linked to the selective classification paradigm and demonstrate that optimizing selective risk in low confidence regions naturally improves calibration. Our proposed loss shares a similar reweighting strategy with dual focal loss but offers greater flexibility through the choice of confidence score functions (CSFs). Furthermore, our approach utilizes a bin-based cumulative distribution function (CDF) approximation, enabling efficient gradient-based optimization with O(nM) complexity for n samples and M bins. Empirical evaluations demonstrate that our method achieves competitive calibration performance across a range of datasets and model architectures.
♻ ☆ Diagnosing and Mitigating Modality Interference in Multimodal Large Language Models
Multimodal Large Language Models demonstrate strong performance on multimodal benchmarks, yet often exhibit poor robustness when exposed to spurious modality interference, such as irrelevant text in vision understanding, or irrelevant visual content in question answering. At its core, modality interference refers to cases where spurious signals from non-essential modalities distort model decisions, which we systematically analyze through causal, perturbation-based diagnostic experiments. To address this problem, we propose a unified finetuning framework that combines heuristic and adversarial perturbation-based data augmentation with output-level consistency regularization between original and perturbed inputs. Extensive experiments across image-heavy, text-heavy, and multimodal benchmarks, spanning multiple MLLM architectures and model scales, demonstrate consistent improvements in unimodal robustness and generalization, while improving standard multimodal performance.
♻ ☆ VidLaDA: Bidirectional Diffusion Large Language Models for Efficient Video Understanding
Current Video Large Language Models (Video LLMs) typically encode frames via a vision encoder and employ an autoregressive (AR) LLM for understanding and generation. However, this AR paradigm inevitably faces a dual efficiency bottleneck: strictly unidirectional attention compromises understanding efficiency by hindering global spatiotemporal aggregation, while serial decoding restricts generation efficiency. To address this, we propose VidLaDA, a Video LLM based on Diffusion Language Models (DLMs) that leverages bidirectional attention to unlock comprehensive spatiotemporal modeling and decode tokens in parallel. To further mitigate the computational overhead of diffusion decoding, we introduce MARS-Cache, an acceleration strategy that prunes redundancy by combining asynchronous visual cache refreshing with frame-wise chunk attention. Experiments show VidLaDA rivals state-of-the-art AR baselines (e.g., Qwen2.5-VL and LLaVA-Video) and outperforms DLM baselines, with MARS-Cache delivering over 12x speedup without compromising accuracy. Code and checkpoints are open-sourced at https://github.com/ziHoHe/VidLaDA.
♻ ☆ JointDiff: Bridging Continuous and Discrete in Multi-Agent Trajectory Generation ICLR 2026
Generative models often treat continuous data and discrete events as separate processes, creating a gap in modeling complex systems where they interact synchronously. To bridge this gap, we introduce JointDiff, a novel diffusion framework designed to unify these two processes by simultaneously generating continuous spatio-temporal data and synchronous discrete events. We demonstrate its efficacy in the sports domain by simultaneously modeling multi-agent trajectories and key possession events. This joint modeling is validated with non-controllable generation and two novel controllable generation scenarios: weak-possessor-guidance, which offers flexible semantic control over game dynamics through a simple list of intended ball possessors, and text-guidance, which enables fine-grained, language-driven generation. To enable the conditioning with these guidance signals, we introduce CrossGuid, an effective conditioning operation for multi-agent domains. We also share a new unified sports benchmark enhanced with textual descriptions for soccer and football datasets. JointDiff achieves state-of-the-art performance, demonstrating that joint modeling is crucial for building realistic and controllable generative models for interactive systems. https://guillem-cf.github.io/JointDiff/
comment: Accepted at ICLR 2026
♻ ☆ Entropy Guided Dynamic Patch Segmentation for Time Series Transformers
Patch-based transformers have emerged as efficient and improved long-horizon modeling architectures for time series modeling. Yet, existing approaches rely on temporally-agnostic patch construction, where arbitrary starting positions and fixed lengths fracture temporal coherence by splitting natural transitions across boundaries. This naive segmentation often disrupts short-term dependencies and weakens representation learning. We propose a novel Entropy-Guided Dynamic Patch Encoder (EntroPE), as a temporally informed framework that dynamically detects transition points via conditional entropy and dynamically places patch boundaries. This preserves temporal structure while retaining the computational benefits of patching. EntroPE consists of two key modules, namely an Entropy-based Dynamic Patcher (EDP) that applies information-theoretic criteria to locate natural temporal shifts and determine patch boundaries, and an Adaptive Patch Encoder (APE) that employs pooling and cross-attention to capture intra-patch dependencies and produce fixed-size latent representations. Extensive experiments on long-term forecasting, classification, and anomaly detection demonstrate that the proposed method improves both accuracy and efficiency, establishing entropy-guided dynamic patching as a promising new paradigm for time series modeling. Code is available at https://github.com/Sachithx/EntroPE.
comment: Preprint. Under Review
♻ ☆ Are We Truly Forgetting? A Critical Re-examination of Machine Unlearning Evaluation Protocols
Machine unlearning is a process to remove specific data points from a trained model while maintaining the performance on the retain data, addressing privacy or legal requirements. Despite its importance, existing unlearning evaluations tend to focus on logit-based metrics under small-scale scenarios. We observe that this could lead to a false sense of security in unlearning approaches under real-world scenarios. In this paper, we conduct a comprehensive evaluation that employs representation-based evaluations of the unlearned model under large-scale scenarios to verify whether the unlearning approaches truly eliminate the targeted data from the model's representation perspective. Our analysis reveals that current state-of-the-art unlearning approaches either completely degrade the representational quality of the unlearned model or merely modify the classifier, thereby achieving superior logit-based performance while maintaining representational similarity to the original model. Furthermore, we introduce a novel unlearning evaluation scenario in which the forgetting classes exhibit semantic similarity to downstream task classes, necessitating that feature representations diverge significantly from those of the original model, thus enabling a more thorough evaluation from a representation perspective. We hope our benchmark will serve as a standardized protocol for evaluating unlearning algorithms under realistic conditions.
comment: Accepted to Engineering Applications of Artificial Intelligence
♻ ☆ Enhancing Semantic Segmentation with Continual Self-Supervised Pre-training
Self-supervised learning (SSL) has emerged as a central paradigm for training foundation models by leveraging large-scale unlabeled datasets, often producing representations with strong generalization capabilities. These models are typically pre-trained on general-purpose datasets such as ImageNet and subsequently adapted to various downstream tasks through finetuning. While prior work has investigated parameter-efficient adaptation methods like adapters, LoRA, and prompt tuning, primarily targeting downstream finetuning, extending the SSL pre-training itself in a continual manner to new domains under limited data remains largely underexplored, especially for downstream dense prediction tasks like semantic segmentation. In this work, we address the challenge of adapting vision foundation models to low-data target domains through continual self-supervised pre-training, specifically targeting downstream semantic segmentation. We propose GLARE (Global Local and Regional Enforcement), a novel continual self-supervised pre-training task designed to enhance downstream semantic segmentation performance. GLARE introduces patch-level augmentations to encourage local consistency and incorporates a regional consistency constraint that leverages spatial semantics in the data. For efficient continual pre-training, we initialize Vision Transformers (ViTs) with weights from existing SSL models and update only lightweight adapter modules specifically UniAdapter - while keeping the rest of the backbone frozen. Experiments across multiple semantic segmentation benchmarks on different domains demonstrate that GLARE consistently improves downstream performance with minimal computational and parameter overhead.
comment: 23 pages, 5 figures
♻ ☆ CycleDiff: Cycle Diffusion Models for Unpaired Image-to-image Translation IEEE
We introduce a diffusion-based cross-domain image translator in the absence of paired training data. Unlike GAN-based methods, our approach integrates diffusion models to learn the image translation process, allowing for more coverable modeling of the data distribution and performance improvement of the cross-domain translation. However, incorporating the translation process within the diffusion process is still challenging since the two processes are not aligned exactly, i.e., the diffusion process is applied to the noisy signal while the translation process is conducted on the clean signal. As a result, recent diffusion-based studies employ separate training or shallow integration to learn the two processes, yet this may cause the local minimal of the translation optimization, constraining the effectiveness of diffusion models. To address the problem, we propose a novel joint learning framework that aligns the diffusion and the translation process, thereby improving the global optimality. Specifically, we propose to extract the image components with diffusion models to represent the clean signal and employ the translation process with the image components, enabling an end-to-end joint learning manner. On the other hand, we introduce a time-dependent translation network to learn the complex translation mapping, resulting in effective translation learning and significant performance improvement. Benefiting from the design of joint learning, our method enables global optimization of both processes, enhancing the optimality and achieving improved fidelity and structural consistency. We have conducted extensive experiments on RGB$\leftrightarrow$RGB and diverse cross-modality translation tasks including RGB$\leftrightarrow$Edge, RGB$\leftrightarrow$Semantics and RGB$\leftrightarrow$Depth, showcasing better generative performances than the state of the arts.
comment: Accepted by IEEE TIP 2026
♻ ☆ BIR-Adapter: A parameter-efficient diffusion adapter for blind image restoration
We introduce the BIR-Adapter, a parameter-efficient diffusion adapter for blind image restoration. Diffusion-based restoration methods have demonstrated promising performance in addressing this fundamental problem in computer vision, typically relying on auxiliary feature extractors or extensive fine-tuning of pre-trained models. Motivated by the observation that large-scale pretrained diffusion models can retain informative representations under common image degradations, BIR-Adapter introduces a parameter-efficient, plug-and-play attention mechanism that substantially reduces the number of trained parameters. To further improve reliability, we propose a sampling guidance mechanism that mitigates hallucinations during the restoration process. Experiments on synthetic and real-world degradations demonstrate that BIR-Adapter achieves competitive, and in several settings superior, performance compared to state-of-the-art methods while requiring up to 36x fewer trained parameters. Moreover, the adapter-based design enables seamless integration into existing models. We validate this generality by extending a super-resolution-only diffusion model to handle additional unknown degradations, highlighting the adaptability of our approach for broader image restoration tasks.
♻ ☆ Can Large Language Models Capture Video Game Engagement? IEEE
Can out-of-the-box pretrained Large Language Models (LLMs) detect human affect successfully when observing a video? To address this question, for the first time, we evaluate comprehensively the capacity of popular LLMs for successfully predicting continuous affect annotations of videos when prompted by a sequence of text and video frames in a multimodal fashion. In this paper, we test LLMs' ability to correctly label changes of in-game engagement in 80 minutes of annotated videogame footage from 20 first-person shooter games of the GameVibe corpus. We run over 4,800 experiments to investigate the impact of LLM architecture, model size, input modality, prompting strategy, and ground truth processing method on engagement prediction. Our findings suggest that while LLMs rightfully claim human-like performance across multiple domains and able to outperform traditional machine learning baselines, they generally fall behind continuous experience annotations provided by humans. We examine some of the underlying causes for a fluctuating performance across games, highlight the cases where LLMs exceed expectations, and draw a roadmap for the further exploration of automated emotion labelling via LLMs.
comment: This work has been submitted to the IEEE for publication
♻ ☆ Everything in Its Place: Benchmarking Spatial Intelligence of Text-to-Image Models ICLR 2026
Text-to-image (T2I) models have achieved remarkable success in generating high-fidelity images, but they often fail in handling complex spatial relationships, e.g., spatial perception, reasoning, or interaction. These critical aspects are largely overlooked by current benchmarks due to their short or information-sparse prompt design. In this paper, we introduce SpatialGenEval, a new benchmark designed to systematically evaluate the spatial intelligence of T2I models, covering two key aspects: (1) SpatialGenEval involves 1,230 long, information-dense prompts across 25 real-world scenes. Each prompt integrates 10 spatial sub-domains and corresponding 10 multi-choice question-answer pairs, ranging from object position and layout to occlusion and causality. Our extensive evaluation of 21 state-of-the-art models reveals that higher-order spatial reasoning remains a primary bottleneck. (2) To demonstrate that the utility of our information-dense design goes beyond simple evaluation, we also construct the SpatialT2I dataset. It contains 15,400 text-image pairs with rewritten prompts to ensure image consistency while preserving information density. Fine-tuned results on current foundation models (i.e., Stable Diffusion-XL, Uniworld-V1, OmniGen2) yield consistent performance gains (+4.2%, +5.7%, +4.4%) and more realistic effects in spatial relations, highlighting a data-centric paradigm to achieve spatial intelligence in T2I models.
comment: Accepted by ICLR 2026, URL: https://github.com/AMAP-ML/SpatialGenEval
♻ ☆ RAVE: Rate-Adaptive Visual Encoding for 3D Gaussian Splatting
Recent advances in neural scene representations have transformed immersive multimedia, with 3D Gaussian Splatting (3DGS) enabling real-time photorealistic rendering. Despite its efficiency, 3DGS suffers from large memory requirements and costly training procedures, motivating efforts toward compression. Existing approaches, however, operate at fixed rates, limiting adaptability to varying bandwidth and device constraints. In this work, we propose a flexible compression scheme for 3DGS that supports interpolation at any rate between predefined bounds. Our method is computationally lightweight, requires no retraining for any rate, and preserves rendering quality across a broad range of operating points. Experiments demonstrate that the approach achieves efficient, high-quality compression while offering dynamic rate control, making it suitable for practical deployment in immersive applications. The code is available at https://github.com/inspiros/RAVE.
♻ ☆ Soft Masked Transformer for Point Cloud Processing with Skip Attention-Based Upsampling IEEE
Point cloud processing methods leverage local and global point features %at the feature level to cater to downstream tasks, yet they often overlook the task-level context inherent in point clouds during the encoding stage. We argue that integrating task-level information into the encoding stage significantly enhances performance. To that end, we propose SMTransformer which incorporates task-level information into a vector-based transformer by utilizing a soft mask generated from task-level queries and keys to learn the attention weights. Additionally, to facilitate effective communication between features from the encoding and decoding layers in high-level tasks such as segmentation, we introduce a skip-attention-based up-sampling block. This block dynamically fuses features from various resolution points across the encoding and decoding layers. To mitigate the increase in network parameters and training time resulting from the complexity of the aforementioned blocks, we propose a novel shared position encoding strategy. This strategy allows various transformer blocks to share the same position information over the same resolution points, thereby reducing network parameters and training time without compromising accuracy.Experimental comparisons with existing methods on multiple datasets demonstrate the efficacy of SMTransformer and skip-attention-based up-sampling for point cloud processing tasks, including semantic segmentation and classification. In particular, we achieve state-of-the-art semantic segmentation results of 73.4% mIoU on S3DIS Area 5 and 62.4% mIoU on SWAN dataset
comment: Conditionally accepted by IEEE Transactions on Automation Science and Engineering
♻ ☆ OrthoInsight: Rib Fracture Diagnosis and Report Generation Based on Multi-Modal Large Models
The growing volume of medical imaging data has increased the need for automated diagnostic tools, especially for musculoskeletal injuries like rib fractures, commonly detected via CT scans. Manual interpretation is time-consuming and error-prone. We propose OrthoInsight, a multi-modal deep learning framework for rib fracture diagnosis and report generation. It integrates a YOLOv9 model for fracture detection, a medical knowledge graph for retrieving clinical context, and a fine-tuned LLaVA language model for generating diagnostic reports. OrthoInsight combines visual features from CT images with expert textual data to deliver clinically useful outputs. Evaluated on 28,675 annotated CT images and expert reports, it achieves high performance across Diagnostic Accuracy, Content Completeness, Logical Coherence, and Clinical Guidance Value, with an average score of 4.28, outperforming models like GPT-4 and Claude-3. This study demonstrates the potential of multi-modal learning in transforming medical image analysis and providing effective support for radiologists.
♻ ☆ OREHAS: A fully automated deep-learning pipeline for volumetric endolymphatic hydrops quantification in MRI
We present OREHAS (Optimized Recognition & Evaluation of volumetric Hydrops in the Auditory System), the first fully automatic pipeline for volumetric quantification of endolymphatic hydrops (EH) from routine 3D-SPACE-MRC and 3D-REAL-IR MRI. The system integrates three components -- slice classification, inner ear localization, and sequence-specific segmentation -- into a single workflow that computes per-ear endolymphatic-to-vestibular volume ratios (ELR) directly from whole MRI volumes, eliminating the need for manual intervention. Trained with only 3 to 6 annotated slices per patient, OREHAS generalized effectively to full 3D volumes, achieving Dice scores of 0.90 for SPACE-MRC and 0.75 for REAL-IR. In an external validation cohort with complete manual annotations, OREHAS closely matched expert ground truth (VSI = 74.3%) and substantially outperformed the clinical syngo.via software (VSI = 42.5%), which tended to overestimate endolymphatic volumes. Across 19 test patients, vestibular measurements from OREHAS were consistent with syngo.via, while endolymphatic volumes were systematically smaller and more physiologically realistic. These results show that reliable and reproducible EH quantification can be achieved from standard MRI using limited supervision. By combining efficient deep-learning-based segmentation with a clinically aligned volumetric workflow, OREHAS reduces operator dependence, ensures methodological consistency. Besides, the results are compatible with established imaging protocols. The approach provides a robust foundation for large-scale studies and for recalibrating clinical diagnostic thresholds based on accurate volumetric measurements of the inner ear.
♻ ☆ MultiHateLoc: Towards Temporal Localisation of Multimodal Hate Content in Online Videos WWW 2026
The rapid growth of video content on platforms such as TikTok and YouTube has intensified the spread of multimodal hate speech, where harmful cues emerge subtly and asynchronously across visual, acoustic, and textual streams. Existing research primarily focuses on video-level classification, leaving the practically crucial task of temporal localisation, identifying when hateful segments occur, largely unaddressed. This challenge is even more noticeable under weak supervision, where only video-level labels are available, and static fusion or classification-based architectures struggle to capture cross-modal and temporal dynamics. To address these challenges, we propose MultiHateLoc, the first framework designed for weakly-supervised multimodal hate localisation. MultiHateLoc incorporates (1) modality-aware temporal encoders to model heterogeneous sequential patterns, including a tailored text-based preprocessing module for feature enhancement; (2) dynamic cross-modal fusion to adaptively emphasise the most informative modality at each moment and a cross-modal contrastive alignment strategy to enhance multimodal feature consistency; (3) a modality-aware MIL objective to identify discriminative segments under video-level supervision. Despite relying solely on coarse labels, MultiHateLoc produces fine-grained, interpretable frame-level predictions. Experiments on HateMM and MultiHateClip show that our method achieves state-of-the-art performance in the localisation task.
comment: In Proceedings of the ACM Web Conference 2026 (WWW 2026)
♻ ☆ Efficient Spike-driven Transformer for High-performance Drone-View Geo-Localization
Traditional drone-view geo-localization (DVGL) methods based on artificial neural networks (ANNs) have achieved remarkable performance. However, ANNs rely on dense computation, which results in high power consumption. In contrast, spiking neural networks (SNNs), which benefit from spike-driven computation, inherently provide low power consumption. Regrettably, the potential of SNNs for DVGL has yet to be thoroughly investigated. Meanwhile, the inherent sparsity of spike-driven computation for representation learning scenarios also results in loss of critical information and difficulties in learning long-range dependencies when aligning heterogeneous visual data sources. To address these, we propose SpikeViMFormer, the first SNN framework designed for DVGL. In this framework, a lightweight spike-driven transformer backbone is adopted to extract coarse-grained features. To mitigate the loss of critical information, the spike-driven selective attention (SSA) block is designed, which uses a spike-driven gating mechanism to achieve selective feature enhancement and highlight discriminative regions. Furthermore, a spike-driven hybrid state space (SHS) block is introduced to learn long-range dependencies using a hybrid state space. Moreover, only the backbone is utilized during the inference stage to reduce computational cost. To ensure backbone effectiveness, a novel hierarchical re-ranking alignment learning (HRAL) strategy is proposed. It refines features via neighborhood re-ranking and maintains cross-batch consistency to directly optimize the backbone. Experimental results demonstrate that SpikeViMFormer outperforms state-of-the-art SNNs. Compared with advanced ANNs, it also achieves competitive performance.Our code is available at https://github.com/ISChenawei/SpikeViMFormer
♻ ☆ From Limited Labels to Open Domains:An Efficient Learning Method for Drone-view Geo-Localization
Traditional supervised drone-view geo-localization (DVGL) methods heavily depend on paired training data and encounter difficulties in learning cross-view correlations from unpaired data. Moreover, when deployed in a new domain, these methods require obtaining the new paired data and subsequent retraining for model adaptation, which significantly increases computational overhead. Existing unsupervised methods have enabled to generate pseudo-labels based on cross-view similarity to infer the pairing relationships. However, geographical similarity and spatial continuity often cause visually analogous features at different geographical locations. The feature confusion compromises the reliability of pseudo-label generation, where incorrect pseudo-labels drive negative optimization. Given these challenges inherent in both supervised and unsupervised DVGL methods, we propose a novel cross-domain invariant knowledge transfer network (CDIKTNet) with limited supervision, whose architecture consists of a cross-domain invariance sub-network (CDIS) and a cross-domain transfer sub-network (CDTS). This architecture facilitates a closed-loop framework for invariance feature learning and knowledge transfer. The CDIS is designed to learn cross-view structural and spatial invariance from a small amount of paired data that serves as prior knowledge. It endows the shared feature space of unpaired data with similar implicit cross-view correlations at initialization, which alleviates feature confusion. Based on this, the CDTS employs dual-path contrastive learning to further optimize each subspace while preserving consistency in a shared feature space. Extensive experiments demonstrate that CDIKTNet achieves state-of-the-art performance under full supervision compared with those supervised methods, and further surpasses existing unsupervised methods in both few-shot and cross-domain initialization.
♻ ☆ TIPO: Text to Image with Text Presampling for Prompt Optimization
TIPO (Text-to-Image Prompt Optimization) introduces an efficient approach for automatic prompt refinement in text-to-image (T2I) generation. Starting from simple user prompts, TIPO leverages a lightweight pre-trained model to expand these prompts into richer and more detailed versions. Conceptually, TIPO samples refined prompts from a targeted sub-distribution within the broader semantic space, preserving the original intent while significantly improving visual quality, coherence, and detail. Unlike resource-intensive methods based on large language models (LLMs) or reinforcement learning (RL), TIPO offers strong computational efficiency and scalability, opening new possibilities for effective automated prompt engineering in T2I tasks. Extensive experiments across multiple domains demonstrate that TIPO achieves stronger text alignment, reduced visual artifacts, and consistently higher human preference rates, while maintaining competitive aesthetic quality. These results highlight the effectiveness of distribution-aligned prompt engineering and point toward broader opportunities for scalable, automated refinement in text-to-image generation.
comment: 50 pages, 28 figures
♻ ☆ Progressively Deformable 2D Gaussian Splatting for Video Representation at Arbitrary Resolutions
Implicit neural representations (INRs) enable fast video compression and effective video processing, but a single model rarely offers scalable decoding across rates and resolutions. In practice, multi-resolution typically relies on retraining or multi-branch designs, and structured pruning failed to provide a permutation-invariant progressive transmission order. Motivated by the explicit structure and efficiency of Gaussian splatting, we propose D2GV-AR, a deformable 2D Gaussian video representation that enables \emph{arbitrary-scale} rendering and \emph{any-ratio} progressive coding within a single model. We partition each video into fixed-length Groups of Pictures and represent each group with a canonical set of 2D Gaussian primitives, whose temporal evolution is modeled by a neural ordinary differential equation. During training and rendering, we apply scale-aware grouping according to Nyquist sampling theorem to form a nested hierarchy across resolutions. Once trained, primitives can be pruned via a D-optimal subset objective to enable any-ratio progressive coding. Extensive experiments show that D2GV-AR renders at over 250 FPS while matching or surpassing recent INR baselines, enabling multiscale continuous rate--quality adaptation.
♻ ☆ CacheFlow: Fast Human Motion Prediction by Cached Normalizing Flow
Many density estimation techniques for 3D human motion prediction require a significant amount of inference time, often exceeding the duration of the predicted time horizon. To address the need for faster density estimation for 3D human motion prediction, we introduce a novel flow-based method for human motion prediction called CacheFlow. Unlike previous conditional generative models that suffer from poor time efficiency, CacheFlow takes advantage of an unconditional flow-based generative model that transforms a Gaussian mixture into the density of future motions. The results of the computation of the flow-based generative model can be precomputed and cached. Then, for conditional prediction, we seek a mapping from historical trajectories to samples in the Gaussian mixture. This mapping can be done by a much more lightweight model, thus saving significant computation overhead compared to a typical conditional flow model. In such a two-stage fashion and by caching results from the slow flow model computation, we build our CacheFlow without loss of prediction accuracy and model expressiveness. This inference process is completed in approximately one millisecond, making it 4 times faster than previous VAE methods and 30 times faster than previous diffusion-based methods on standard benchmarks such as Human3.6M and AMASS datasets. Furthermore, our method demonstrates improved density estimation accuracy and comparable prediction accuracy to a SOTA method on Human3.6M. Our code and models are available at https://github.com/meaten/CacheFlow.
comment: Accepted at Transactions on Machine Learning Research (TMLR). See https://openreview.net/forum?id=y8dGdBJkWa
♻ ☆ ACDiT: Interpolating Autoregressive Conditional Modeling and Diffusion Transformer
Autoregressive and diffusion models have achieved remarkable progress in language models and visual generation, respectively. We present ACDiT, a novel Autoregressive blockwise Conditional Diffusion Transformer, that innovatively combines autoregressive and diffusion paradigms for continuous visual information. By introducing a block-wise autoregressive unit, ACDiT offers a flexible interpolation between token-wise autoregression and full-sequence diffusion, bypassing the limitations of discrete tokenization. The generation of each block is formulated as a conditional diffusion process, conditioned on prior blocks. ACDiT is easy to implement, as simple as applying a specially designed Skip-Causal Attention Mask on the standard diffusion transformer during training. During inference, the process iterates between diffusion denoising and autoregressive decoding that can make full use of KV-Cache. We validate the effectiveness of ACDiT on image, video, and text generation and show that ACDiT performs best among all autoregressive baselines under similar model scales on visual generation tasks. We also demonstrate that, benefiting from autoregressive modeling, pretrained ACDiT can be transferred in visual understanding tasks despite being trained with the generative objective. The analysis of the trade-off between autoregressive and diffusion demonstrates the potential of ACDiT to be used in long-horizon visual generation tasks. We hope that ACDiT offers a novel perspective on visual autoregressive generation and sheds light on new avenues for unified models.
comment: TMLR camera-ready version
♻ ☆ InternSVG: Towards Unified SVG Tasks with Multimodal Large Language Models
General SVG modeling remains challenging due to fragmented datasets, limited transferability of methods across tasks, and the difficulty of handling structural complexity. In response, we leverage the strong transfer and generalization capabilities of multimodal large language models (MLLMs) to achieve unified modeling for SVG understanding, editing, and generation. We present the InternSVG family, an integrated data-benchmark-model suite. At its core is SAgoge, the largest and most comprehensive multimodal dataset for SVG tasks, encompassing both static graphics and dynamic animations. It covers icons, long-sequence illustrations, scientific diagrams, and dynamic animations, supporting tasks of varied difficulty levels and providing deeper hierarchies with richer attributes compared to previous datasets. Based on this resource, we introduce SArena, a companion benchmark with comprehensive task definitions and standardized evaluation that aligns with the domains and difficulty spectrum covered by SAgoge. Building on these foundations, we propose InternSVG, a unified MLLM for SVG understanding, editing, and generation with SVG-specific special tokens, subword-based embedding initialization, and a two-stage training strategy that progresses from short static SVGs to long-sequence illustrations and complex animations. This unified formulation induces positive transfer and improves overall performance. Experiments on SArena and prior benchmark confirm that InternSVG achieves substantial gains and consistently outperforms leading open and proprietary counterparts.
♻ ☆ Large Vision Models Can Solve Mental Rotation Problems ICASSP 2026
Mental rotation is a key test of spatial reasoning in humans and has been central to understanding how perception supports cognition. Despite the success of modern vision transformers, it is still unclear how well these models develop similar abilities. In this work, we present a systematic evaluation of ViT, CLIP, DINOv2, and DINOv3 across a range of mental-rotation tasks, from simple block structures similar to those used by Shepard and Metzler to study human cognition, to more complex block figures, three types of text, and photo-realistic objects. By probing model representations layer by layer, we examine where and how these networks succeed. We find that i) self-supervised ViTs capture geometric structure better than supervised ViTs; ii) intermediate layers perform better than final layers; iii) task difficulty increases with rotation complexity and occlusion, mirroring human reaction times and suggesting similar constraints in embedding space representations.
comment: Accepted at ICASSP 2026
♻ ☆ RestoRect: Degraded Image Restoration via Latent Rectified Flow & Feature Distillation
Current approaches for restoration of degraded images face a trade-off: high-performance models are slow for practical use, while fast models produce poor results. Knowledge distillation transfers teacher knowledge to students, but existing static feature matching methods cannot capture how modern transformer architectures dynamically generate features. We propose a novel Latent Rectified Flow Feature Distillation method for restoring degraded images called \textbf{'RestoRect'}. We apply rectified flow to reformulate feature distillation as a generative process where students learn to synthesize teacher-quality features through learnable trajectories in latent space. Our framework combines Retinex decomposition with learnable anisotropic diffusion constraints, and trigonometric color space polarization. We introduce a Feature Layer Extraction loss for robust knowledge transfer between different network architectures through cross-normalized transformer feature alignment with percentile-based outlier detection. RestoRect achieves better training stability, and faster convergence and inference while preserving restoration quality, demonstrating superior results across 15 image restoration datasets, covering 4 tasks, on 10 metrics against baselines.
♻ ☆ Online Navigation Refinement: Achieving Lane-Level Guidance by Associating Standard-Definition and Online Perception Maps ICLR 2026
Lane-level navigation is critical for geographic information systems and navigation-based tasks, offering finer-grained guidance than road-level navigation by standard definition (SD) maps. However, it currently relies on expansive global HD maps that cannot adapt to dynamic road conditions. Recently, online perception (OP) maps have become research hotspots, providing real-time geometry as an alternative, but lack the global topology needed for navigation. To address these issues, Online Navigation Refinement (ONR), a new mission is introduced that refines SD-map-based road-level routes into accurate lane-level navigation by associating SD maps with OP maps. The map-to-map association to handle many-to-one lane-to-road mappings under two key challenges: (1) no public dataset provides lane-to-road correspondences; (2) severe misalignment from spatial fluctuations, semantic disparities, and OP map noise invalidates traditional map matching. For these challenges, We contribute: (1) Online map association dataset (OMA), the first ONR benchmark with 30K scenarios and 2.6M annotated lane vectors; (2) MAT, a transformer with path-aware attention to aligns topology despite spatial fluctuations and semantic disparities and spatial attention for integrates noisy OP features via global context; and (3) NR P-R, a metric evaluating geometric and semantic alignment. Experiments show that MAT outperforms existing methods at 34 ms latency, enabling low-cost and up-to-date lane-level navigation.
comment: Accepted by ICLR 2026
♻ ☆ Continual GUI Agents
As digital environments (data distribution) are in flux, with new GUI data arriving over time-introducing new domains or resolutions-agents trained on static environments deteriorate in performance. In this work, we introduce Continual GUI Agents, a new task that requires GUI agents to perform continual learning under shifted domains and resolutions. We find existing methods fail to maintain stable grounding as GUI distributions shift over time, due to the diversity of UI interaction points and regions in fluxing scenarios. To address this, we introduce GUI-Anchoring in Flux (GUI-AiF), a new reinforcement fine-tuning framework that stabilizes continual learning through two novel rewards: Anchoring Point Reward in Flux (APR-iF) and Anchoring Region Reward in Flux (ARR-iF). These rewards guide the agents to align with shifting interaction points and regions, mitigating the tendency of existing reward strategies to over-adapt to static grounding cues (e.g., fixed coordinates or element scales). Extensive experiments show GUI-AiF surpasses state-of-the-art baselines. Our work establishes the first continual learning framework for GUI agents, revealing the untapped potential of reinforcement fine-tuning for continual GUI Agents.
♻ ☆ Beyond Retraining: Training-Free Unknown Class Filtering for Source-Free Open Set Domain Adaptation of Vision-Language Models
Vision-language models (VLMs) have gained widespread attention for their strong zero-shot capabilities across numerous downstream tasks. However, these models assume that each test image's class label is drawn from a predefined label set and lack a reliable mechanism to reject samples from emerging unknown classes when only unlabeled data are available. To address this gap, open-set domain adaptation methods retrain models to push potential unknowns away from known clusters. Yet, some unknown samples remain stably anchored to specific known classes in the VLM feature space due to semantic relevance, which is termed as Semantic Affinity Anchoring (SAA). Forcibly repelling these samples unavoidably distorts the native geometry of VLMs and degrades performance. Meanwhile, existing score-based unknown detectors use simplistic thresholds and suffer from threshold sensitivity, resulting in sub-optimal performance. To address aforementioned issues, we propose VLM-OpenXpert, which comprises two training-free, plug-and-play inference modules. SUFF performs SVD on high-confidence unknowns to extract a low-rank "unknown subspace". Each sample's projection onto this subspace is weighted and softly removed from its feature, suppressing unknown components while preserving semantics. BGAT corrects score skewness via a Box-Cox transform, then fits a bimodal Gaussian mixture to adaptively estimate the optimal threshold balancing known-class recognition and unknown-class rejection. Experiments on 9 benchmarks and three backbones (CLIP, SigLIP, ALIGN) under source-free OSDA settings show that our training-free pipeline matches or outperforms retraining-heavy state-of-the-art methods, establishing a powerful lightweight inference calibration paradigm for open-set VLM deployment.
comment: Core methods unchanged; title updated and full-text narrative refined for clarity and logical coherence. No changes to key findings and conclusions
♻ ☆ BiPO: Bidirectional Partial Occlusion Network for Text-to-Motion Synthesis WACV 2026
Generating natural and expressive human motions from textual descriptions is challenging due to the complexity of coordinating full-body dynamics and capturing nuanced motion patterns over extended sequences that accurately reflect the given text. To address this, we introduce BiPO, Bidirectional Partial Occlusion Network for Text-to-Motion Synthesis, a novel model that enhances text-to-motion synthesis by integrating part-based generation with a bidirectional autoregressive architecture. This integration allows BiPO to consider both past and future contexts during generation while enhancing detailed control over individual body parts without requiring ground-truth motion length. To relax the interdependency among body parts caused by the integration, we devise the Partial Occlusion technique, which probabilistically occludes the certain motion part information during training. In our comprehensive experiments, BiPO achieves state-of-the-art performance on the HumanML3D dataset, outperforming recent methods such as ParCo, MoMask, and BAMM in terms of FID scores and overall motion quality. Notably, BiPO excels not only in the text-to-motion generation task but also in motion editing tasks that synthesize motion based on partially generated motion sequences and textual descriptions. These results reveal the BiPO's effectiveness in advancing text-to-motion synthesis and its potential for practical applications.
comment: 18 pages, 11 figures. Accepted to WACV 2026 (Oral)
♻ ☆ MARE: Multimodal Alignment and Reinforcement for Explainable Deepfake Detection via Vision-Language Models
Deepfake detection is a widely researched topic that is crucial for combating the spread of malicious content, with existing methods mainly modeling the problem as classification or spatial localization. The rapid advancements in generative models impose new demands on Deepfake detection. In this paper, we propose multimodal alignment and reinforcement for explainable Deepfake detection via vision-language models, termed MARE, which aims to enhance the accuracy and reliability of Vision-Language Models (VLMs) in Deepfake detection and reasoning. Specifically, MARE designs comprehensive reward functions, incorporating reinforcement learning from human feedback (RLHF), to incentivize the generation of text-spatially aligned reasoning content that adheres to human preferences. Besides, MARE introduces a forgery disentanglement module to capture intrinsic forgery traces from high-level facial semantics, thereby improving its authenticity detection capability. We conduct thorough evaluations on the reasoning content generated by MARE. Both quantitative and qualitative experimental results demonstrate that MARE achieves state-of-the-art performance in terms of accuracy and reliability.
♻ ☆ Learning Stochastic Bridges for Video Object Removal via Video-to-Video Translation
Existing video object removal methods predominantly rely on diffusion models following a noise-to-data paradigm, where generation starts from uninformative Gaussian noise. This approach discards the rich structural and contextual priors present in the original input video. Consequently, such methods often lack sufficient guidance, leading to incomplete object erasure or the synthesis of implausible content that conflicts with the scene's physical logic. In this paper, we reformulate video object removal as a video-to-video translation task via a stochastic bridge model. Unlike noise-initialized methods, our framework establishes a direct stochastic path from the source video (with objects) to the target video (objects removed). This bridge formulation effectively leverages the input video as a strong structural prior, guiding the model to perform precise removal while ensuring that the filled regions are logically consistent with the surrounding environment. To address the trade-off where strong bridge priors hinder the removal of large objects, we propose a novel adaptive mask modulation strategy. This mechanism dynamically modulates input embeddings based on mask characteristics, balancing background fidelity with generative flexibility. Extensive experiments demonstrate that our approach significantly outperforms existing methods in both visual quality and temporal consistency. The project page is https://bridgeremoval.github.io/.
♻ ☆ SpatialV2A: Visual-Guided High-fidelity Spatial Audio Generation
While video-to-audio generation has achieved remarkable progress in semantic and temporal alignment, most existing studies focus solely on these aspects, paying limited attention to the spatial perception and immersive quality of the synthesized audio. This limitation stems largely from current models' reliance on mono audio datasets, which lack the binaural spatial information needed to learn visual-to-spatial audio mappings. To address this gap, we introduce two key contributions: we construct BinauralVGGSound, the first large-scale video-binaural audio dataset designed to support spatially aware video-to-audio generation; and we propose a end-to-end spatial audio generation framework guided by visual cues, which explicitly models spatial features. Our framework incorporates a visual-guided audio spatialization module that ensures the generated audio exhibits realistic spatial attributes and layered spatial depth while maintaining semantic and temporal alignment. Experiments show that our approach substantially outperforms state-of-the-art models in spatial fidelity and delivers a more immersive auditory experience, without sacrificing temporal or semantic consistency. The demo page can be accessed at https://github.com/renlinjie868-web/SpatialV2A.
♻ ☆ MuSLR: Multimodal Symbolic Logical Reasoning NeurIPS 2025
Multimodal symbolic logical reasoning, which aims to deduce new facts from multimodal input via formal logic, is critical in high-stakes applications such as autonomous driving and medical diagnosis, as its rigorous, deterministic reasoning helps prevent serious consequences. To evaluate such capabilities of current state-of-the-art vision language models (VLMs), we introduce the first benchmark MuSLR for multimodal symbolic logical reasoning grounded in formal logical rules. MuSLR comprises 1,093 instances across 7 domains, including 35 atomic symbolic logic and 976 logical combinations, with reasoning depths ranging from 2 to 9. We evaluate 7 state-of-the-art VLMs on MuSLR and find that they all struggle with multimodal symbolic reasoning, with the best model, GPT-4.1, achieving only 46.8%. Thus, we propose LogiCAM, a modular framework that applies formal logical rules to multimodal inputs, boosting GPT-4.1's Chain-of-Thought performance by 14.13%, and delivering even larger gains on complex logics such as first-order logic. We also conduct a comprehensive error analysis, showing that around 70% of failures stem from logical misalignment between modalities, offering key insights to guide future improvements. All data and code are publicly available at https://llm-symbol.github.io/MuSLR.
comment: Accepted by NeurIPS 2025
♻ ☆ Causality-guided Prompt Learning for Vision-language Models via Visual Granulation
Prompt learning has recently attracted much attention for adapting pre-trained vision-language models (e.g., CLIP) to downstream recognition tasks. However, most of the existing CLIP-based prompt learning methods only show a limited ability for handling fine-grained datasets. To address this issue, we propose a causality-guided text prompt learning method via visual granulation for CLIP, called CaPL, where the explored visual granulation technique could construct sets of visual granules for the text prompt to capture subtle discrepancies among different fine-grained classes through casual inference. The CaPL method contains the following two modules: (1) An attribute disentanglement module is proposed to decompose visual features into non-individualized attributes (shared by some classes) and individualized attributes (specific to single classes) using a Brownian Bridge Diffusion Model; (2) A granule learning module is proposed to construct visual granules by integrating the aforementioned attributes for recognition under two causal inference strategies. Thanks to the learned visual granules, more discriminative text prompt is expected to be learned. Extensive experimental results on 15 datasets demonstrate that our CaPL method significantly outperforms the state-of-the-art prompt learning methods, especially on fine-grained datasets.
comment: Updated version
♻ ☆ Practical Insights into Semi-Supervised Object Detection Approaches
Learning in data-scarce settings has recently gained significant attention in the research community. Semi-supervised object detection(SSOD) aims to improve detection performance by leveraging a large number of unlabeled images alongside a limited number of labeled images(a.k.a.,few-shot learning). In this paper, we present a comprehensive comparison of three state-of-the-art SSOD approaches, including MixPL, Semi-DETR and Consistent-Teacher, with the goal of understanding how performance varies with the number of labeled images. We conduct experiments using the MS-COCO and Pascal VOC datasets, two popular object detection benchmarks which allow for standardized evaluation. In addition, we evaluate the SSOD approaches on a custom Beetle dataset which enables us to gain insights into their performance on specialized datasets with a smaller number of object categories. Our findings highlight the trade-offs between accuracy, model size, and latency, providing insights into which methods are best suited for low-data regimes.
♻ ☆ Enhancing Visual Prompting through Expanded Transformation Space and Overfitting Mitigation NeurIPS2025
Visual prompting (VP) has emerged as a promising parameter-efficient fine-tuning approach for adapting pre-trained vision models to downstream tasks without modifying model parameters. Despite offering advantages like negligible computational overhead and compatibility with black-box models, conventional VP methods typically achieve lower accuracy than other adaptation approaches. Our analysis reveals two critical limitations: the restricted expressivity of simple additive transformation and a tendency toward overfitting when the parameter count increases. To address these challenges, we propose ACAVP (Affine, Color, and Additive Visual Prompting), which enhances VP's expressive power by introducing complementary transformation operations: affine transformation for creating task-specific prompt regions while preserving original image information, and color transformation for emphasizing task-relevant visual features. Additionally, we identify that overfitting is a critical issue in VP training and introduce TrivialAugment as an effective data augmentation, which not only benefits our approach but also significantly improves existing VP methods, with performance gains of up to 12 percentage points on certain datasets. This demonstrates that appropriate data augmentation is universally beneficial for VP training. Extensive experiments across twelve diverse image classification datasets with two different model architectures demonstrate that ACAVP achieves state-of-the-art accuracy among VP methods, surpasses linear probing in average accuracy, and exhibits superior robustness to distribution shifts, all while maintaining minimal computational overhead during inference. Our code is available at https://github.com/s-enmt/ACAVP.
comment: Accepted to NeurIPS2025
♻ ☆ SkyReels-V3 Technique Report
Video generation serves as a cornerstone for building world models, where multimodal contextual inference stands as the defining test of capability. In this end, we present SkyReels-V3, a conditional video generation model, built upon a unified multimodal in-context learning framework with diffusion Transformers. SkyReels-V3 model supports three core generative paradigms within a single architecture: reference images-to-video synthesis, video-to-video extension and audio-guided video generation. (i) reference images-to-video model is designed to produce high-fidelity videos with strong subject identity preservation, temporal coherence, and narrative consistency. To enhance reference adherence and compositional stability, we design a comprehensive data processing pipeline that leverages cross frame pairing, image editing, and semantic rewriting, effectively mitigating copy paste artifacts. During training, an image video hybrid strategy combined with multi-resolution joint optimization is employed to improve generalization and robustness across diverse scenarios. (ii) video extension model integrates spatio-temporal consistency modeling with large-scale video understanding, enabling both seamless single-shot continuation and intelligent multi-shot switching with professional cinematographic patterns. (iii) Talking avatar model supports minute-level audio-conditioned video generation by training first-and-last frame insertion patterns and reconstructing key-frame inference paradigms. On the basis of ensuring visual quality, synchronization of audio and videos has been optimized. Extensive evaluations demonstrate that SkyReels-V3 achieves state-of-the-art or near state-of-the-art performance on key metrics including visual quality, instruction following, and specific aspect metrics, approaching leading closed-source systems. Github: https://github.com/SkyworkAI/SkyReels-V3.
♻ ☆ Testing of Deep Learning Model in Real World Clinical Setting: A Case Study in Obstetric Ultrasound
Despite the rapid development of AI models in medical image analysis, their validation in real-world clinical settings remains limited. To address this, we introduce a generic framework designed for deploying image-based AI models in such settings. Using this framework, we deployed a trained model for fetal ultrasound standard plane detection, and evaluated it in real-time sessions with both novice and expert users. Feedback from these sessions revealed that while the model offers potential benefits to medical practitioners, the need for navigational guidance was identified as a key area for improvement. These findings underscore the importance of early deployment of AI models in real-world settings, leading to insights that can guide the refinement of the model and system based on actual user feedback.
comment: 5 pages; ISBI 2026
♻ ☆ EndoAgent: A Memory-Guided Reflective Agent for Intelligent Endoscopic Vision-to-Decision Reasoning
Developing general artificial intelligence (AI) systems to support endoscopic image diagnosis is an emerging research priority. Existing methods based on large-scale pretraining often lack unified coordination across tasks and struggle to handle the multi-step processes required in complex clinical workflows. While AI agents have shown promise in flexible instruction parsing and tool integration across domains, their potential in endoscopy remains underexplored. To address this gap, we propose EndoAgent, the first memory-guided agent for vision-to-decision endoscopic analysis that integrates iterative reasoning with adaptive tool selection and collaboration. Built on a dual-memory design, it enables sophisticated decision-making by ensuring logical coherence through short-term action tracking and progressively enhancing reasoning acuity through long-term experiential learning. To support diverse clinical tasks, EndoAgent integrates a suite of expert-designed tools within a unified reasoning loop. We further introduce EndoAgentBench, a benchmark of 5,709 visual question-answer pairs that assess visual understanding and language generation capabilities in realistic scenarios. Extensive experiments show that EndoAgent consistently outperforms both general and medical multimodal models, exhibiting its strong flexibility and reasoning capabilities.
comment: This paper is withdrawn due to the identification of a methodological flaw in the experimental evaluation protocol (Section 5), which may lead to unreliable performance comparisons. The authors are re-examining the evaluation design and will release a corrected version in the future
♻ ☆ LaTo: Landmark-tokenized Diffusion Transformer for Fine-grained Human Face Editing
Recent multimodal models for instruction-based face editing enable semantic manipulation but still struggle with precise attribute control and identity preservation. Structural facial representations such as landmarks are effective for intermediate supervision, yet most existing methods treat them as rigid geometric constraints, which can degrade identity when conditional landmarks deviate significantly from the source (e.g., large expression or pose changes, inaccurate landmark estimates). To address these limitations, we propose LaTo, a landmark-tokenized diffusion transformer for fine-grained, identity-preserving face editing. Our key innovations include: (1) a landmark tokenizer that directly quantizes raw landmark coordinates into discrete facial tokens, obviating the need for dense pixel-wise correspondence; (2) a location-mapped positional encoding and a landmark-aware classifier-free guidance that jointly facilitate flexible yet decoupled interactions among instruction, geometry, and appearance, enabling strong identity preservation; and (3) a landmark predictor that leverages vision-language models to infer target landmarks from instructions and source images, whose structured chain-of-thought improves estimation accuracy and interactive control. To mitigate data scarcity, we curate HFL-150K, to our knowledge the largest benchmark for this task, containing over 150K real face pairs with fine-grained instructions. Extensive experiments show that LaTo outperforms state-of-the-art methods by 7.8% in identity preservation and 4.6% in semantic consistency. Code and dataset will be made publicly available upon acceptance.
♻ ☆ UniHash: Unifying Pointwise and Pairwise Hashing Paradigms
Effective retrieval across both seen and unseen categories is crucial for modern image retrieval systems. Retrieval on seen categories ensures precise recognition of known classes, while retrieval on unseen categories promotes generalization to novel classes with limited supervision. However, most existing deep hashing methods are confined to a single training paradigm, either pointwise or pairwise, where the former excels on seen categories and the latter generalizes better to unseen ones. To overcome this limitation, we propose Unified Hashing (UniHash), a dual-branch framework that unifies the strengths of both paradigms to achieve balanced retrieval performance across seen and unseen categories. UniHash consists of two complementary branches: a center-based branch following the pointwise paradigm and a pairwise branch following the pairwise paradigm. A novel hash code learning method is introduced to enable bidirectional knowledge transfer between branches, improving hash code discriminability and generalization. It employs a mutual learning loss to align hash representations and introduces a Split-Merge Mixture of Hash Experts (SM-MoH) module to enhance cross-branch exchange of hash representations. Theoretical analysis substantiates the effectiveness of UniHash, and extensive experiments on CIFAR-10, MSCOCO, and ImageNet demonstrate that UniHash consistently achieves state-of-the-art performance in both seen and unseen image retrieval scenarios.
♻ ☆ GUIGuard: Toward a General Framework for Privacy-Preserving GUI Agents
GUI agents enable end-to-end automation through direct perception of and interaction with on-screen interfaces. However, these agents frequently access interfaces containing sensitive personal information, and screenshots are often transmitted to remote models, creating substantial privacy risks. These risks are particularly severe in GUI workflows: GUIs expose richer, more accessible private information, and privacy risks depend on interaction trajectories across sequential scenes. We propose GUIGuard, a three-stage framework for privacy-preserving GUI agents: (1) privacy recognition, (2) privacy protection, and (3) task execution under protection. We further construct GUIGuard-Bench, a cross-platform benchmark with 630 trajectories and 13,830 screenshots, annotated with region-level privacy grounding and fine-grained labels of risk level, privacy category, and task necessity. Evaluations reveal that existing agents exhibit limited privacy recognition, with state-of-the-art models achieving only 13.3% accuracy on Android and 1.4% on PC. Under privacy protection, task-planning semantics can still be maintained, with closed-source models showing stronger semantic consistency than open-source ones. Case studies on MobileWorld show that carefully designed protection strategies achieve higher task accuracy while preserving privacy. Our results highlight privacy recognition as a critical bottleneck for practical GUI agents. Project: https://futuresis.github.io/GUIGuard-page/
♻ ☆ Vision-Language-Action (VLA) Models: Concepts, Progress, Applications and Challenges
Vision-Language-Action (VLA) models mark a transformative advancement in artificial intelligence, aiming to unify perception, natural language understanding, and embodied action within a single computational framework. This foundational review presents a comprehensive synthesis of recent advancements in Vision-Language-Action models, systematically organized across five thematic pillars that structure the landscape of this rapidly evolving field. We begin by establishing the conceptual foundations of VLA systems, tracing their evolution from cross-modal learning architectures to generalist agents that tightly integrate vision-language models (VLMs), action planners, and hierarchical controllers. Our methodology adopts a rigorous literature review framework, covering over 80 VLA models published in the past three years. Key progress areas include architectural innovations, efficient training strategies, and real-time inference accelerations. We explore diverse application domains such as autonomous vehicles, medical and industrial robotics, precision agriculture, humanoid robotics, and augmented reality. We analyzed challenges and propose solutions including agentic adaptation and cross-embodiment planning. Furthermore, we outline a forward-looking roadmap where VLA models, VLMs, and agentic AI converge to strengthen socially aligned, adaptive, and general-purpose embodied agents. This work, is expected to serve as a foundational reference for advancing intelligent, real-world robotics and artificial general intelligence. The project repository is available on GitHub as https://github.com/Applied-AI-Research-Lab/Vision-Language-Action-Models-Concepts-Progress-Applications-and-Challenges. [Index Terms: Vision Language Action, VLA, Vision Language Models, VLMs, Action Tokenization, NLP]
♻ ☆ Dynamic Reflections: Probing Video Representations with Text Alignment ICLR 2026
The alignment of representations from different modalities has recently been shown to provide insights on the structural similarities and downstream capabilities of different encoders across diverse data types. While significant progress has been made in aligning images with text, the temporal nature of video data remains largely unexplored in this context. In this work, we conduct the first comprehensive study of video-text representation alignment, probing the capabilities of modern video and language encoders. Our findings reveal several key insights. First, we demonstrate that cross-modal alignment highly depends on the richness of both visual (static images vs. multi-frame videos) and text (single caption vs. a collection) data provided at test time, especially when using state-of-the-art video encoders. We propose parametric test-time scaling laws that capture this behavior and show remarkable predictive power against empirical observations. Secondly, we investigate the correlation between semantic alignment and performance on both semantic and non-semantic downstream tasks, providing initial evidence that strong alignment against text encoders may be linked to general-purpose video representation and understanding. Finally, we correlate temporal reasoning with cross-modal alignment providing a challenging test-bed for vision and language models. Overall, our work introduces video-text alignment as an informative zero-shot way to probe the representation power of different encoders for spatio-temporal data. Project page can be found at https://video-prh.github.io/
comment: To appear at ICLR 2026. 27 pages, 12 figures
♻ ☆ BlindSight: Harnessing Sparsity for Efficient Vision-Language Models
Large vision-language models (VLMs) enable joint processing of text and images. However, incorporating vision data significantly increases the prompt length, resulting in a longer time to first token (TTFT). This bottleneck can be alleviated by leveraging the inherent sparsity in the attention computation. Analyzing these attention patterns in VLMs when processing a series of images, we observe the absence of inter-image attention in a substantial portion of layers. Based on this, we propose BlindSight: an approach to optimize multi-image VLM inference using an input-template-aware attention sparsity mask with no runtime overhead. We utilize a dataset to derive a prompt-agnostic categorization for attention heads: Dense, Sink, Intra-Image, and Intra-Image+Sink. We develop a Triton-based GPU kernel to leverage this sparsity. BlindSight achieves a 1.8-3.2x speedup in the attention computation (prompt length 36K-300K). BlindSight generalizes across VLMs (Qwen2-VL, Qwen2.5-VL, Gemma 3), with only a 0.78% absolute accuracy degradation on average on multi-image comprehension benchmarks. Finally, we advocate for the design of efficient VLMs that combine BlindSight-inspired sparse and dense layers.
♻ ☆ Deep Delta Learning
The effectiveness of deep residual networks hinges on the identity shortcut connection. While this mechanism alleviates the vanishing-gradient problem, it also has a strictly additive inductive bias on feature transformations, limiting the network's ability to model complex hidden state transitions. In this paper, we introduce \textbf{Deep Delta Learning (DDL)}, which generalizes the shortcut from a fixed identity map to a learnable, state-dependent linear operator. The resulting Delta Operator is a rank-1 perturbation of the identity, $\mathbf{A}(\mathbf{X}) = \mathbf{I}- β(\mathbf{X})\mathbf{k} (\mathbf{X}) \mathbf{k} (\mathbf{X})^\top$, parameterized by a unit direction $\mathbf{k}(\mathbf{X})$ and a scalar gate $β(\mathbf{X})$. We provide a spectral analysis showing that $β(\mathbf{X})$ continuously interpolates the shortcut between identity ($β=0$), orthogonal projection ($β=1$), and Householder reflection ($β=2$). Furthermore, we rewrite the residual update as a synchronized rank-1 delta write: $β$ scales both the removal of the current $\mathbf{k}$-component and the injection of the new $\mathbf{k}$-component. This unification enables explicit control of the shortcut spectrum along a data-dependent direction while retaining stable training behavior. Empirically, replacing Transformer residual additions with DDL improves validation loss and perplexity, as well as downstream evaluation accuracy on language modeling tasks, with larger gains in the expanded-state setting.
comment: Project Page: https://github.com/yifanzhang-pro/deep-delta-learning
♻ ☆ Generalizations of the Normalized Radon Cumulative Distribution Transform for Limited Data Recognition
The Radon cumulative distribution transform (R-CDT) exploits one-dimensional Wasserstein transport and the Radon transform to represent prominent features in images. It is closely related to the sliced Wasserstein distance and facilitates classification tasks, especially in the small data regime, like the recognition of watermarks in filigranology. Here, a typical issue is that the given data may be subject to affine transformations caused by the measuring process. To make the R-CDT invariant under arbitrary affine transformations, a two-step normalization of the R-CDT has been proposed in our earlier works. The aim of this paper is twofold. First, we propose a family of generalized normalizations to enhance flexibility for applications. Second, we study multi-dimensional and non-Euclidean settings by making use of generalized Radon transforms. We prove that our novel feature representations are invariant under certain transformations and allow for linear separation in feature space. Our theoretical results are supported by numerical experiments based on 2d images, 3d shapes and 3d rotation matrices, showing near perfect classification accuracies and clustering results.
comment: arXiv admin note: text overlap with arXiv:2411.16282
♻ ☆ IRIS: Intrinsic Reward Image Synthesis
Despite the success of Reinforcement Learning from Human Feedback (RLHF) in language reasoning, its application to autoregressive Text-to-Image (T2I) generation is often constrained by the limited availability of human preference data. This paper explores how an autoregressive T2I model can learn from internal signals without relying on external rewards or labeled data. Contrary to recent findings in math and code reasoning, we show that minimizing self-certainty, rather than maximizing it, improves image generation. We observe that autoregressive T2I models with higher certainty are likely to generate simple and uniform images, which are less aligned with human preferences, and models with lower certainty are likely to generate vivid images rich in detail. Based on this observation, we propose IRIS(Intrinsic Reward Image Synthesis), the first framework to improve autoregressive T2I models with reinforcement learning using only an intrinsic reward. Empirical results demonstrate that applying IRIS to autoregressive T2I models achieves performance superior to those trained by individual external rewards, and matching those trained by ensemble external rewards. IRIS also incentivizes the emergence of nuanced CoT reasoning for high-quality image generation.
♻ ☆ SuperPoint-SLAM3: Augmenting ORB-SLAM3 with Deep Features, Adaptive NMS, and Learning-Based Loop Closure
Visual simultaneous localization and mapping (SLAM) must remain accurate under extreme viewpoint, scale and illumination variations. The widely adopted ORB-SLAM3 falters in these regimes because it relies on hand-crafted ORB keypoints. We introduce SuperPoint-SLAM3, a drop-in upgrade that (i) replaces ORB with the self-supervised SuperPoint detector--descriptor, (ii) enforces spatially uniform keypoints via adaptive non-maximal suppression (ANMS), and (iii) integrates a lightweight NetVLAD place-recognition head for learning-based loop closure. On the KITTI Odometry benchmark SuperPoint-SLAM3 reduces mean translational error from 4.15% to 0.34% and mean rotational error from 0.0027 deg/m to 0.0010 deg/m. On the EuRoC MAV dataset it roughly halves both errors across every sequence (e.g., V2\_03: 1.58% -> 0.79%). These gains confirm that fusing modern deep features with a learned loop-closure module markedly improves ORB-SLAM3 accuracy while preserving its real-time operation. Implementation, pretrained weights and reproducibility scripts are available at https://github.com/shahram95/SuperPointSLAM3.
comment: 10 pages, 6 figures, code at https://github.com/shahram95/SuperPointSLAM3
♻ ☆ 2DMamba: Efficient State Space Model for Image Representation with Applications on Giga-Pixel Whole Slide Image Classification CVPR 2025
Efficiently modeling large 2D contexts is essential for various fields including Giga-Pixel Whole Slide Imaging (WSI) and remote sensing. Transformer-based models offer high parallelism but face challenges due to their quadratic complexity for handling long sequences. Recently, Mamba introduced a selective State Space Model (SSM) with linear complexity and high parallelism, enabling effective and efficient modeling of wide context in 1D sequences. However, extending Mamba to vision tasks, which inherently involve 2D structures, results in spatial discrepancies due to the limitations of 1D sequence processing. On the other hand, current 2D SSMs inherently model 2D structures but they suffer from prohibitively slow computation due to the lack of efficient parallel algorithms. In this work, we propose 2DMamba, a novel 2D selective SSM framework that incorporates the 2D spatial structure of images into Mamba, with a highly optimized hardware-aware operator, adopting both spatial continuity and computational efficiency. We validate the versatility of our approach on both WSIs and natural images. Extensive experiments on 10 public datasets for WSI classification and survival analysis show that 2DMamba improves up to 2.48% in AUC, 3.11% in F1 score, 2.47% in accuracy and 5.52% in C-index. Additionally, integrating our method with VMamba for natural imaging yields 0.5 to 0.7 improvements in mIoU on the ADE20k semantic segmentation dataset, and 0.2% accuracy improvement on ImageNet-1K classification dataset. Our code is available at https://github.com/AtlasAnalyticsLab/2DMamba.
comment: Accepted in CVPR 2025 Main Conference
♻ ☆ Joint Learning of Depth, Pose, and Local Radiance Field for Large Scale Monocular 3D Reconstruction
Photorealistic 3-D reconstruction from monocular video collapses in large-scale scenes when depth, pose, and radiance are solved in isolation: scale-ambiguous depth yields ghost geometry, long-horizon pose drift corrupts alignment, and a single global NeRF cannot model hundreds of metres of content. We introduce a joint learning framework that couples all three factors and demonstrably overcomes each failure case. Our system begins with a Vision-Transformer (ViT) depth network trained with metric-scale supervision, giving globally consistent depths despite wide field-of-view variations. A multi-scale feature bundle-adjustment (BA) layer refines camera poses directly in feature space--leveraging learned pyramidal descriptors instead of brittle keypoints--to suppress drift on unconstrained trajectories. For scene representation, we deploy an incremental local-radiance-field hierarchy: new hash-grid NeRFs are allocated and frozen on-the-fly when view overlap falls below a threshold, enabling city-block-scale coverage on a single GPU. Evaluated on the Tanks and Temples benchmark, our method reduces Absolute Trajectory Error to 0.001-0.021 m across eight indoor-outdoor sequences--up to 18x lower than BARF and 2x lower than NoPe-NeRF--while maintaining sub-pixel Relative Pose Error. These results demonstrate that metric-scale, drift-free 3-D reconstruction and high-fidelity novel-view synthesis are achievable from a single uncalibrated RGB camera.
comment: 8 pages, 2 figures, 2 tables
Artificial Intelligence 301
☆ RedSage: A Cybersecurity Generalist LLM ICLR 2026
Cybersecurity operations demand assistant LLMs that support diverse workflows without exposing sensitive data. Existing solutions either rely on proprietary APIs with privacy risks or on open models lacking domain adaptation. To bridge this gap, we curate 11.8B tokens of cybersecurity-focused continual pretraining data via large-scale web filtering and manual collection of high-quality resources, spanning 28.6K documents across frameworks, offensive techniques, and security tools. Building on this, we design an agentic augmentation pipeline that simulates expert workflows to generate 266K multi-turn cybersecurity samples for supervised fine-tuning. Combined with general open-source LLM data, these resources enable the training of RedSage, an open-source, locally deployable cybersecurity assistant with domain-aware pretraining and post-training. To rigorously evaluate the models, we introduce RedSage-Bench, a benchmark with 30K multiple-choice and 240 open-ended Q&A items covering cybersecurity knowledge, skills, and tool expertise. RedSage is further evaluated on established cybersecurity benchmarks (e.g., CTI-Bench, CyberMetric, SECURE) and general LLM benchmarks to assess broader generalization. At the 8B scale, RedSage achieves consistently better results, surpassing the baseline models by up to +5.59 points on cybersecurity benchmarks and +5.05 points on Open LLM Leaderboard tasks. These findings demonstrate that domain-aware agentic augmentation and pre/post-training can not only enhance cybersecurity-specific expertise but also help to improve general reasoning and instruction-following. All models, datasets, and code are publicly available.
comment: Accepted on ICLR 2026; Project page: https://risys-lab.github.io/RedSage/
☆ Hybrid Linear Attention Done Right: Efficient Distillation and Effective Architectures for Extremely Long Contexts
Hybrid Transformer architectures, which combine softmax attention blocks and recurrent neural networks (RNNs), have shown a desirable performance-throughput tradeoff for long-context modeling, but their adoption and studies are hindered by the prohibitive cost of large-scale pre-training from scratch. Some recent studies have shown that pre-trained softmax attention blocks can be converted into RNN blocks through parameter transfer and knowledge distillation. However, these transfer methods require substantial amounts of training data (more than 10B tokens), and the resulting hybrid models also exhibit poor long-context performance, which is the scenario where hybrid models enjoy significant inference speedups over Transformer-based models. In this paper, we present HALO (Hybrid Attention via Layer Optimization), a pipeline for distilling Transformer models into RNN-attention hybrid models. We then present HypeNet, a hybrid architecture with superior length generalization enabled by a novel position encoding scheme (named HyPE) and various architectural modifications. We convert the Qwen3 series into HypeNet using HALO, achieving performance comparable to the original Transformer models while enjoying superior long-context performance and efficiency. The conversion requires just 2.3B tokens, less than 0.01% of their pre-training data
comment: 20 pages, 8 figures
☆ Exploring Reasoning Reward Model for Agents
Agentic Reinforcement Learning (Agentic RL) has achieved notable success in enabling agents to perform complex reasoning and tool use. However, most methods still relies on sparse outcome-based reward for training. Such feedback fails to differentiate intermediate reasoning quality, leading to suboptimal training results. In this paper, we introduce Agent Reasoning Reward Model (Agent-RRM), a multi-faceted reward model that produces structured feedback for agentic trajectories, including (1) an explicit reasoning trace , (2) a focused critique that provides refinement guidance by highlighting reasoning flaws, and (3) an overall score that evaluates process performance. Leveraging these signals, we systematically investigate three integration strategies: Reagent-C (text-augmented refinement), Reagent-R (reward-augmented guidance), and Reagent-U (unified feedback integration). Extensive evaluations across 12 diverse benchmarks demonstrate that Reagent-U yields substantial performance leaps, achieving 43.7% on GAIA and 46.2% on WebWalkerQA, validating the effectiveness of our reasoning reward model and training schemes. Code, models, and datasets are all released to facilitate future research.
comment: Project page: https://github.com/kxfan2002/Reagent
☆ DynaWeb: Model-Based Reinforcement Learning of Web Agents
The development of autonomous web agents, powered by Large Language Models (LLMs) and reinforcement learning (RL), represents a significant step towards general-purpose AI assistants. However, training these agents is severely hampered by the challenges of interacting with the live internet, which is inefficient, costly, and fraught with risks. Model-based reinforcement learning (MBRL) offers a promising solution by learning a world model of the environment to enable simulated interaction. This paper introduces DynaWeb, a novel MBRL framework that trains web agents through interacting with a web world model trained to predict naturalistic web page representations given agent actions. This model serves as a synthetic web environment where an agent policy can dream by generating vast quantities of rollout action trajectories for efficient online reinforcement learning. Beyond free policy rollouts, DynaWeb incorporates real expert trajectories from training data, which are randomly interleaved with on-policy rollouts during training to improve stability and sample efficiency. Experiments conducted on the challenging WebArena and WebVoyager benchmarks demonstrate that DynaWeb consistently and significantly improves the performance of state-of-the-art open-source web agent models. Our findings establish the viability of training web agents through imagination, offering a scalable and efficient way to scale up online agentic RL.
☆ Routing the Lottery: Adaptive Subnetworks for Heterogeneous Data
In pruning, the Lottery Ticket Hypothesis posits that large networks contain sparse subnetworks, or winning tickets, that can be trained in isolation to match the performance of their dense counterparts. However, most existing approaches assume a single universal winning ticket shared across all inputs, ignoring the inherent heterogeneity of real-world data. In this work, we propose Routing the Lottery (RTL), an adaptive pruning framework that discovers multiple specialized subnetworks, called adaptive tickets, each tailored to a class, semantic cluster, or environmental condition. Across diverse datasets and tasks, RTL consistently outperforms single- and multi-model baselines in balanced accuracy and recall, while using up to 10 times fewer parameters than independent models and exhibiting semantically aligned. Furthermore, we identify subnetwork collapse, a performance drop under aggressive pruning, and introduce a subnetwork similarity score that enables label-free diagnosis of oversparsification. Overall, our results recast pruning as a mechanism for aligning model structure with data heterogeneity, paving the way toward more modular and context-aware deep learning.
☆ Reasoning While Asking: Transforming Reasoning Large Language Models from Passive Solvers to Proactive Inquirers
Reasoning-oriented Large Language Models (LLMs) have achieved remarkable progress with Chain-of-Thought (CoT) prompting, yet they remain fundamentally limited by a \emph{blind self-thinking} paradigm: performing extensive internal reasoning even when critical information is missing or ambiguous. We propose Proactive Interactive Reasoning (PIR), a new reasoning paradigm that transforms LLMs from passive solvers into proactive inquirers that interleave reasoning with clarification. Unlike existing search- or tool-based frameworks that primarily address knowledge uncertainty by querying external environments, PIR targets premise- and intent-level uncertainty through direct interaction with the user. PIR is implemented via two core components: (1) an uncertainty-aware supervised fine-tuning procedure that equips models with interactive reasoning capability, and (2) a user-simulator-based policy optimization framework driven by a composite reward that aligns model behavior with user intent. Extensive experiments on mathematical reasoning, code generation, and document editing demonstrate that PIR consistently outperforms strong baselines, achieving up to 32.70\% higher accuracy, 22.90\% higher pass rate, and 41.36 BLEU improvement, while reducing nearly half of the reasoning computation and unnecessary interaction turns. Further reliability evaluations on factual knowledge, question answering, and missing-premise scenarios confirm the strong generalization and robustness of PIR. Model and code are publicly available at: \href{https://github.com/SUAT-AIRI/Proactive-Interactive-R1}
comment: The manuscript is under review
☆ PRISM: Distribution-free Adaptive Computation of Matrix Functions for Accelerating Neural Network Training
Matrix functions such as square root, inverse roots, and orthogonalization play a central role in preconditioned gradient methods for neural network training. This has motivated the development of iterative algorithms that avoid explicit eigendecompositions and rely primarily on matrix multiplications, making them well suited for modern GPU accelerators. We present PRISM (Polynomial-fitting and Randomized Iterative Sketching for Matrix functions computation), a general framework for accelerating iterative algorithms for computing matrix functions. PRISM combines adaptive polynomial approximation with randomized sketching: at each iteration, it fits a polynomial surrogate to the current spectrum via a sketched least-squares problem, adapting to the instance at hand with minimal overhead. We apply PRISM to accelerate Newton-Schulz-like iterations for matrix square roots and orthogonalization, which are core primitives in machine learning. Unlike prior methods, PRISM requires no explicit spectral bounds or singular value estimates; and it adapts automatically to the evolving spectrum. Empirically, PRISM accelerates training when integrated into Shampoo and Muon optimizers.
☆ StepShield: When, Not Whether to Intervene on Rogue Agents
Existing agent safety benchmarks report binary accuracy, conflating early intervention with post-mortem analysis. A detector that flags a violation at step 8 enables intervention; one that reports it at step 48 provides only forensic value. This distinction is critical, yet current benchmarks cannot measure it. We introduce StepShield, the first benchmark to evaluate when violations are detected, not just whether. StepShield contains 9,213 code agent trajectories, including 1,278 meticulously annotated training pairs and a 7,935-trajectory test set with a realistic 8.1% rogue rate. Rogue behaviors are grounded in real-world security incidents across six categories. We propose three novel temporal metrics: Early Intervention Rate (EIR), Intervention Gap, and Tokens Saved. Surprisingly, our evaluation reveals that an LLM-based judge achieves 59% EIR while a static analyzer achieves only 26%, a 2.3x performance gap that is entirely invisible to standard accuracy metrics. We further show that early detection has direct economic benefits: our cascaded HybridGuard detector reduces monitoring costs by 75% and projects to $108M in cumulative savings over five years at enterprise scale. By shifting the focus of evaluation from whether to when, StepShield provides a new foundation for building safer and more economically viable AI agents. The code and data are released under an Apache 2.0 license.
comment: 16 pages, 2 figures, 14 tables
☆ World of Workflows: a Benchmark for Bringing World Models to Enterprise Systems
Frontier large language models (LLMs) excel as autonomous agents in many domains, yet they remain untested in complex enterprise systems where hidden workflows create cascading effects across interconnected databases. Existing enterprise benchmarks evaluate surface-level agentic task completion similar to general consumer benchmarks, ignoring true challenges in enterprises, such as limited observability, large database state, and hidden workflows with cascading side effects. We introduce World of Workflows (WoW), a realistic ServiceNow-based environment incorporating 4,000+ business rules and 55 active workflows embedded in the system, alongside WoW-bench, a benchmark of 234 tasks evaluating constrained agentic task completion and enterprise dynamics modeling capabilities. We reveal two major takeaways: (1) Frontier LLMs suffer from dynamics blindness, consistently failing to predict the invisible, cascading side effects of their actions, which leads to silent constraint violations, and (2) reliability in opaque systems requires grounded world modeling, where agents must mentally simulate hidden state transitions to bridge the observability gap when high-fidelity feedback is unavailable. For reliable and useful enterprise agents, WoW motivates a new paradigm to explicitly learn system dynamics. We release our GitHub for setting up and evaluating WoW.
☆ SWE-Replay: Efficient Test-Time Scaling for Software Engineering Agents
Test-time scaling has been widely adopted to enhance the capabilities of Large Language Model (LLM) agents in software engineering (SWE) tasks. However, the standard approach of repeatedly sampling trajectories from scratch is computationally expensive. While recent methods have attempted to mitigate costs using specialized value agents, they can suffer from model miscalibration and fail to generalize to modern agents that synthesize custom bash scripts as tools. In this paper, we introduce SWE-Replay, the first efficient and generalizable test-time scaling technique for modern agents without reliance on potentially noisy value estimates. SWE-Replay optimizes the scaling process by recycling trajectories from prior trials, dynamically choosing to either explore from scratch or exploit archived experience by branching at critical intermediate steps. This selection of intermediate steps is driven by the potential and reasoning significance of repository exploration, rather than external LLM-based quality estimates. Our evaluation shows that, on SWE-Bench Verified, SWE-Replay consistently outperforms naive scaling, reducing costs by up to 17.4% while maintaining or even improving performance by up to 3.8%. Further evaluation on SWE-Bench Pro and Multilingual validates the generalizability of SWE-Replay, establishing it as a robust foundation for efficient test-time scaling of software engineering agents.
☆ The Patient is not a Moving Document: A World Model Training Paradigm for Longitudinal EHR
Large language models (LLMs) trained with next-word-prediction have achieved success as clinical foundation models. Representations from these language backbones yield strong linear probe performance across biomedical tasks, suggesting that patient semantics emerge from next-token prediction at scale. However, this paradigm treats patients as a document to be summarized rather than a dynamical system to be simulated; a patient's trajectory emerges from their state evolving under interventions and time, requiring models that simulate dynamics rather than predict tokens. To address this, we introduce SMB-Structure, a world model for structured EHR that grounds a joint-embedding prediction architecture (JEPA) with next-token prediction (SFT). SFT grounds our model to reconstruct future patient states in token space, while JEPA predicts those futures in latent space from the initial patient representation alone, forcing trajectory dynamics to be encoded before the next state is observed. We validate across two large-scale cohorts: Memorial Sloan Kettering (23,319 oncology patients; 323,000+ patient-years) and INSPECT (19,402 pulmonary embolism patients). Using a linear probe evaluated at multiple points along the disease trajectory, we demonstrate that our training paradigm learns embeddings that capture disease dynamics not recoverable by autoregressive baselines, enabling SMB-Structure to achieve competitive performance on complex tasks characterized by high patient heterogeneity. Model weights are available at https://huggingface.co/standardmodelbio/SMB-v1-1.7B-Structure.
☆ Alpha Discovery via Grammar-Guided Learning and Search
Automatically discovering formulaic alpha factors is a central problem in quantitative finance. Existing methods often ignore syntactic and semantic constraints, relying on exhaustive search over unstructured and unbounded spaces. We present AlphaCFG, a grammar-based framework for defining and discovering alpha factors that are syntactically valid, financially interpretable, and computationally efficient. AlphaCFG uses an alpha-oriented context-free grammar to define a tree-structured, size-controlled search space, and formulates alpha discovery as a tree-structured linguistic Markov decision process, which is then solved using a grammar-aware Monte Carlo Tree Search guided by syntax-sensitive value and policy networks. Experiments on Chinese and U.S. stock market datasets show that AlphaCFG outperforms state-of-the-art baselines in both search efficiency and trading profitability. Beyond trading strategies, AlphaCFG serves as a general framework for symbolic factor discovery and refinement across quantitative finance, including asset pricing and portfolio construction.
comment: 24 pages, 10 figures
☆ Defining Operational Conditions for Safety-Critical AI-Based Systems from Data
Artificial Intelligence (AI) has been on the rise in many domains, including numerous safety-critical applications. However, for complex systems found in the real world, or when data already exist, defining the underlying environmental conditions is extremely challenging. This often results in an incomplete description of the environment in which the AI-based system must operate. Nevertheless, this description, called the Operational Design Domain (ODD), is required in many domains for the certification of AI-based systems. Traditionally, the ODD is created in the early stages of the development process, drawing on sophisticated expert knowledge and related standards. This paper presents a novel Safety-by-Design method to a posteriori define the ODD from previously collected data using a multi-dimensional kernel-based representation. This approach is validated through both Monte Carlo methods and a real-world aviation use case for a future safety-critical collision-avoidance system. Moreover, by defining under what conditions two ODDs are equal, the paper shows that the data-driven ODD can equal the original, underlying hidden ODD of the data. Utilizing the novel, Safe-by-Design kernel-based ODD enables future certification of data-driven, safety-critical AI-based systems.
☆ SINA: A Circuit Schematic Image-to-Netlist Generator Using Artificial Intelligence
Current methods for converting circuit schematic images into machine-readable netlists struggle with component recognition and connectivity inference. In this paper, we present SINA, an open-source, fully automated circuit schematic image-to-netlist generator. SINA integrates deep learning for accurate component detection, Connected-Component Labeling (CCL) for precise connectivity extraction, and Optical Character Recognition (OCR) for component reference designator retrieval, while employing a Vision-Language Model (VLM) for reliable reference designator assignments. In our experiments, SINA achieves 96.47% overall netlist-generation accuracy, which is 2.72x higher than state-of-the-art approaches.
☆ Value-Based Pre-Training with Downstream Feedback
Can a small amount of verified goal information steer the expensive self-supervised pretraining of foundation models? Standard pretraining optimizes a fixed proxy objective (e.g., next-token prediction), which can misallocate compute away from downstream capabilities of interest. We introduce V-Pretraining: a value-based, modality-agnostic method for controlled continued pretraining in which a lightweight task designer reshapes the pretraining task to maximize the value of each gradient step. For example, consider self-supervised learning (SSL) with sample augmentation. The V-Pretraining task designer selects pretraining tasks (e.g., augmentations) for which the pretraining loss gradient is aligned with a gradient computed over a downstream task (e.g., image segmentation). This helps steer pretraining towards relevant downstream capabilities. Notably, the pretrained model is never updated on downstream task labels; they are used only to shape the pretraining task. Under matched learner update budgets, V-Pretraining of 0.5B--7B language models improves reasoning (GSM8K test Pass@1) by up to 18% relative over standard next-token prediction using only 12% of GSM8K training examples as feedback. In vision SSL, we improve the state-of-the-art results on ADE20K by up to 1.07 mIoU and reduce NYUv2 RMSE while improving ImageNet linear accuracy, and we provide pilot evidence of improved token efficiency in continued pretraining.
☆ ECO: Quantized Training without Full-Precision Master Weights
Quantization has significantly improved the compute and memory efficiency of Large Language Model (LLM) training. However, existing approaches still rely on accumulating their updates in high-precision: concretely, gradient updates must be applied to a high-precision weight buffer, known as $\textit{master weights}$. This buffer introduces substantial memory overhead, particularly for Sparse Mixture of Experts (SMoE) models, where model parameters and optimizer states dominate memory usage. To address this, we introduce the Error-Compensating Optimizer (ECO), which eliminates master weights by applying updates directly to quantized parameters. ECO quantizes weights after each step and carefully injects the resulting quantization error into the optimizer momentum, forming an error-feedback loop with no additional memory. We prove that, under standard assumptions and a decaying learning rate, ECO converges to a constant-radius neighborhood of the optimum, while naive master-weight removal can incur an error that is inversely proportional to the learning rate. We show empirical results for pretraining small Transformers (30-800M), a Gemma-3 1B model, and a 2.1B parameter Sparse MoE model with FP8 quantization, and fine-tuning DeepSeek-MoE-16B in INT4 precision. Throughout, ECO matches baselines with master weights up to near-lossless accuracy, significantly shifting the static memory vs validation loss Pareto frontier.
☆ Investigating Associational Biases in Inter-Model Communication of Large Generative Models
Social bias in generative AI can manifest not only as performance disparities but also as associational bias, whereby models learn and reproduce stereotypical associations between concepts and demographic groups, even in the absence of explicit demographic information (e.g., associating doctors with men). These associations can persist, propagate, and potentially amplify across repeated exchanges in inter-model communication pipelines, where one generative model's output becomes another's input. This is especially salient for human-centred perception tasks, such as human activity recognition and affect prediction, where inferences about behaviour and internal states can lead to errors or stereotypical associations that propagate into unequal treatment. In this work, focusing on human activity and affective expression, we study how such associations evolve within an inter-model communication pipeline that alternates between image generation and image description. Using the RAF-DB and PHASE datasets, we quantify demographic distribution drift induced by model-to-model information exchange and assess whether these drifts are systematic using an explainability pipeline. Our results reveal demographic drifts toward younger representations for both actions and emotions, as well as toward more female-presenting representations, primarily for emotions. We further find evidence that some predictions are supported by spurious visual regions (e.g., background or hair) rather than concept-relevant cues (e.g., body or face). We also examine whether these demographic drifts translate into measurable differences in downstream behaviour, i.e., while predicting activity and emotion labels. Finally, we outline mitigation strategies spanning data-centric, training and deployment interventions, and emphasise the need for careful safeguards when deploying interconnected models in human-centred AI systems.
☆ Latent Adversarial Regularization for Offline Preference Optimization
Learning from human feedback typically relies on preference optimization that constrains policy updates through token-level regularization. However, preference optimization for language models is particularly challenging because token-space similarity does not imply semantic or behavioral similarity. To address this challenge, we leverage latent-space regularization for language model preference optimization. We introduce GANPO, which achieves latent-space regularization by penalizing divergence between the internal representations of a policy model and a reference model. Given that latent representations are not associated with explicit probability densities, we adopt an adversarial approach inspired by GANs to minimize latent-space divergence. We integrate GANPO as a regularizer into existing offline preference optimization objectives. Experiments across multiple model architectures and tasks show consistent improvements from latent-space regularization. Further, by comparing GANPO-induced inferential biases with those from token-level regularization, we find that GANPO provides more robust structural feedback under distributional shift and noise while maintaining comparable downstream performance with minor computational overhead.
☆ Vision-DeepResearch: Incentivizing DeepResearch Capability in Multimodal Large Language Models
Multimodal large language models (MLLMs) have achieved remarkable success across a broad range of vision tasks. However, constrained by the capacity of their internal world knowledge, prior work has proposed augmenting MLLMs by ``reasoning-then-tool-call'' for visual and textual search engines to obtain substantial gains on tasks requiring extensive factual information. However, these approaches typically define multimodal search in a naive setting, assuming that a single full-level or entity-level image query and few text query suffices to retrieve the key evidence needed to answer the question, which is unrealistic in real-world scenarios with substantial visual noise. Moreover, they are often limited in the reasoning depth and search breadth, making it difficult to solve complex questions that require aggregating evidence from diverse visual and textual sources. Building on this, we propose Vision-DeepResearch, which proposes one new multimodal deep-research paradigm, i.e., performs multi-turn, multi-entity and multi-scale visual and textual search to robustly hit real-world search engines under heavy noise. Our Vision-DeepResearch supports dozens of reasoning steps and hundreds of engine interactions, while internalizing deep-research capabilities into the MLLM via cold-start supervision and RL training, resulting in a strong end-to-end multimodal deep-research MLLM. It substantially outperforming existing multimodal deep-research MLLMs, and workflows built on strong closed-source foundation model such as GPT-5, Gemini-2.5-pro and Claude-4-Sonnet. The code will be released in https://github.com/Osilly/Vision-DeepResearch.
☆ Unsupervised Decomposition and Recombination with Discriminator-Driven Diffusion Models
Decomposing complex data into factorized representations can reveal reusable components and enable synthesizing new samples via component recombination. We investigate this in the context of diffusion-based models that learn factorized latent spaces without factor-level supervision. In images, factors can capture background, illumination, and object attributes; in robotic videos, they can capture reusable motion components. To improve both latent factor discovery and quality of compositional generation, we introduce an adversarial training signal via a discriminator trained to distinguish between single-source samples and those generated by recombining factors across sources. By optimizing the generator to fool this discriminator, we encourage physical and semantic consistency in the resulting recombinations. Our method outperforms implementations of prior baselines on CelebA-HQ, Virtual KITTI, CLEVR, and Falcor3D, achieving lower FID scores and better disentanglement as measured by MIG and MCC. Furthermore, we demonstrate a novel application to robotic video trajectories: by recombining learned action components, we generate diverse sequences that significantly increase state-space coverage for exploration on the LIBERO benchmark.
comment: 28 pages, 16 figures, 4 tables
☆ MetricAnything: Scaling Metric Depth Pretraining with Noisy Heterogeneous Sources
Scaling has powered recent advances in vision foundation models, yet extending this paradigm to metric depth estimation remains challenging due to heterogeneous sensor noise, camera-dependent biases, and metric ambiguity in noisy cross-source 3D data. We introduce Metric Anything, a simple and scalable pretraining framework that learns metric depth from noisy, diverse 3D sources without manually engineered prompts, camera-specific modeling, or task-specific architectures. Central to our approach is the Sparse Metric Prompt, created by randomly masking depth maps, which serves as a universal interface that decouples spatial reasoning from sensor and camera biases. Using about 20M image-depth pairs spanning reconstructed, captured, and rendered 3D data across 10000 camera models, we demonstrate-for the first time-a clear scaling trend in the metric depth track. The pretrained model excels at prompt-driven tasks such as depth completion, super-resolution and Radar-camera fusion, while its distilled prompt-free student achieves state-of-the-art results on monocular depth estimation, camera intrinsics recovery, single/multi-view metric 3D reconstruction, and VLA planning. We also show that using pretrained ViT of Metric Anything as a visual encoder significantly boosts Multimodal Large Language Model capabilities in spatial intelligence. These results show that metric depth estimation can benefit from the same scaling laws that drive modern foundation models, establishing a new path toward scalable and efficient real-world metric perception. We open-source MetricAnything at http://metric-anything.github.io/metric-anything-io/ to support community research.
comment: Project Page: https://metric-anything.github.io/metric-anything-io/
☆ SIA: Symbolic Interpretability for Anticipatory Deep Reinforcement Learning in Network Control IEEE
Deep reinforcement learning (DRL) promises adaptive control for future mobile networks but conventional agents remain reactive: they act on past and current measurements and cannot leverage short-term forecasts of exogenous KPIs such as bandwidth. Augmenting agents with predictions can overcome this temporal myopia, yet uptake in networking is scarce because forecast-aware agents act as closed-boxes; operators cannot tell whether predictions guide decisions or justify the added complexity. We propose SIA, the first interpreter that exposes in real time how forecast-augmented DRL agents operate. SIA fuses Symbolic AI abstractions with per-KPI Knowledge Graphs to produce explanations, and includes a new Influence Score metric. SIA achieves sub-millisecond speed, over 200x faster than existing XAI methods. We evaluate SIA on three diverse networking use cases, uncovering hidden issues, including temporal misalignment in forecast integration and reward-design biases that trigger counter-productive policies. These insights enable targeted fixes: a redesigned agent achieves a 9% higher average bitrate in video streaming, and SIA's online Action-Refinement module improves RAN-slicing reward by 25% without retraining. By making anticipatory DRL transparent and tunable, SIA lowers the barrier to proactive control in next-generation mobile networks.
comment: 10 pages, 12 figures, accepted at IEEE INFOCOM 2026
☆ Learning to Communicate Across Modalities: Perceptual Heterogeneity in Multi-Agent Systems
Emergent communication offers insight into how agents develop shared structured representations, yet most research assumes homogeneous modalities or aligned representational spaces, overlooking the perceptual heterogeneity of real-world settings. We study a heterogeneous multi-step binary communication game where agents differ in modality and lack perceptual grounding. Despite perceptual misalignment, multimodal systems converge to class-consistent messages grounded in perceptual input. Unimodal systems communicate more efficiently, using fewer bits and achieving lower classification entropy, while multimodal agents require greater information exchange and exhibit higher uncertainty. Bit perturbation experiments provide strong evidence that meaning is encoded in a distributional rather than compositional manner, as each bit's contribution depends on its surrounding pattern. Finally, interoperability analyses show that systems trained in different perceptual worlds fail to directly communicate, but limited fine-tuning enables successful cross-system communication. This work positions emergent communication as a framework for studying how agents adapt and transfer representations across heterogeneous modalities, opening new directions for both theory and experimentation.
comment: To be published in EvoLang XVI proceedings. 15 pages, 17 figures
☆ A Separable Architecture for Continuous Token Representation in Language Models
Transformer scaling law analyses typically treat parameters as interchangeable; an abstraction that accurately predicts loss-compute relationships. Yet, in sub-billion-parameter small language models (SLMs), embedding matrices dominate the parameter budget. This work argues that this allocation is as suboptimal as it is counterintuitive. Leviathan is an architecture with a continuous embedding generator to replace the discrete lookup tables of canonical models. Evaluating on the Pile dataset under isoparametric settings, Leviathan consistently outperforms a standard, LLaMA-style architecture. By means of an empirical power-law fit, Leviathan exhibits a markedly superior effective parameter capacity. Across the regime studied, Leviathan behaves as a dense model with $1.47$ to $2.11 \times$ more parameters.
☆ Optimizing Agentic Workflows using Meta-tools
Agentic AI enables LLM to dynamically reason, plan, and interact with tools to solve complex tasks. However, agentic workflows often require many iterative reasoning steps and tool invocations, leading to significant operational expense, end-to-end latency and failures due to hallucinations. This work introduces Agent Workflow Optimization (AWO), a framework that identifies and optimizes redundant tool execution patterns to improve the efficiency and robustness of agentic workflows. AWO analyzes existing workflow traces to discover recurring sequences of tool calls and transforms them into meta-tools, which are deterministic, composite tools that bundle multiple agent actions into a single invocation. Meta-tools bypass unnecessary intermediate LLM reasoning steps and reduce operational cost while also shortening execution paths, leading to fewer failures. Experiments on two agentic AI benchmarks show that AWO reduces the number of LLM calls up to 11.9% while also increasing the task success rate by up to 4.2 percent points.
☆ Thinking Out of Order: When Output Order Stops Reflecting Reasoning Order in Diffusion Language Models
Autoregressive (AR) language models enforce a fixed left-to-right generation order, creating a fundamental limitation when the required output structure conflicts with natural reasoning (e.g., producing answers before explanations due to presentation or schema constraints). In such cases, AR models must commit to answers before generating intermediate reasoning, and this rigid constraint forces premature commitment. Masked diffusion language models (MDLMs), which iteratively refine all tokens in parallel, offer a way to decouple computation order from output structure. We validate this capability on GSM8K, Math500, and ReasonOrderQA, a benchmark we introduce with controlled difficulty and order-level evaluation. When prompts request answers before reasoning, AR models exhibit large accuracy gaps compared to standard chain-of-thought ordering (up to 67% relative drop), while MDLMs remain stable ($\leq$14% relative drop), a property we term "order robustness". Using ReasonOrderQA, we present evidence that MDLMs achieve order robustness by stabilizing simpler tokens (e.g., reasoning steps) earlier in the diffusion process than complex ones (e.g., final answers), enabling reasoning tokens to stabilize before answer commitment. Finally, we identify failure conditions where this advantage weakens, outlining the limits required for order robustness.
comment: 18 pages, 13 figures, 5 tables
☆ CAR-bench: Evaluating the Consistency and Limit-Awareness of LLM Agents under Real-World Uncertainty
Existing benchmarks for Large Language Model (LLM) agents focus on task completion under idealistic settings but overlook reliability in real-world, user-facing applications. In domains, such as in-car voice assistants, users often issue incomplete or ambiguous requests, creating intrinsic uncertainty that agents must manage through dialogue, tool use, and policy adherence. We introduce CAR-bench, a benchmark for evaluating consistency, uncertainty handling, and capability awareness in multi-turn, tool-using LLM agents in an in-car assistant domain. The environment features an LLM-simulated user, domain policies, and 58 interconnected tools spanning navigation, productivity, charging, and vehicle control. Beyond standard task completion, CAR-bench introduces Hallucination tasks that test agents' limit-awareness under missing tools or information, and Disambiguation tasks that require resolving uncertainty through clarification or internal information gathering. Baseline results reveal large gaps between occasional and consistent success on all task types. Even frontier reasoning LLMs achieve less than 50% consistent pass rate on Disambiguation tasks due to premature actions, and frequently violate policies or fabricate information to satisfy user requests in Hallucination tasks, underscoring the need for more reliable and self-aware LLM agents in real-world settings.
☆ When "Better" Prompts Hurt: Evaluation-Driven Iteration for LLM Applications
Evaluating Large Language Model (LLM) applications differs from traditional software testing because outputs are stochastic, high-dimensional, and sensitive to prompt and model changes. We present an evaluation-driven workflow - Define, Test, Diagnose, Fix - that turns these challenges into a repeatable engineering loop. We introduce the Minimum Viable Evaluation Suite (MVES), a tiered set of recommended evaluation components for (i) general LLM applications, (ii) retrieval-augmented generation (RAG), and (iii) agentic tool-use workflows. We also synthesize common evaluation methods (automated checks, human rubrics, and LLM-as-judge) and discuss known judge failure modes. In reproducible local experiments (Ollama; Llama 3 8B Instruct and Qwen 2.5 7B Instruct), we observe that a generic "improved" prompt template can trade off behaviors: on our small structured suites, extraction pass rate decreased from 100% to 90% and RAG compliance from 93.3% to 80% for Llama 3 when replacing task-specific prompts with generic rules, while instruction-following improved. These findings motivate evaluation-driven prompt iteration and careful claim calibration rather than universal prompt recipes. All test suites, harnesses, and results are included for reproducibility.
☆ SymbXRL: Symbolic Explainable Deep Reinforcement Learning for Mobile Networks IEEE
The operation of future 6th-generation (6G) mobile networks will increasingly rely on the ability of deep reinforcement learning (DRL) to optimize network decisions in real-time. DRL yields demonstrated efficacy in various resource allocation problems, such as joint decisions on user scheduling and antenna allocation or simultaneous control of computing resources and modulation. However, trained DRL agents are closed-boxes and inherently difficult to explain, which hinders their adoption in production settings. In this paper, we make a step towards removing this critical barrier by presenting SymbXRL, a novel technique for explainable reinforcement learning (XRL) that synthesizes human-interpretable explanations for DRL agents. SymbXRL leverages symbolic AI to produce explanations where key concepts and their relationships are described via intuitive symbols and rules; coupling such a representation with logical reasoning exposes the decision process of DRL agents and offers more comprehensible descriptions of their behaviors compared to existing approaches. We validate SymbXRL in practical network management use cases supported by DRL, proving that it not only improves the semantics of the explanations but also paves the way for explicit agent control: for instance, it enables intent-based programmatic action steering that improves by 12% the median cumulative reward over a pure DRL solution.
comment: 10 pages, 9 figures, published in IEEE INFOCOM 2025
☆ Vidmento: Creating Video Stories Through Context-Aware Expansion With Generative Video
Video storytelling is often constrained by available material, limiting creative expression and leaving undesired narrative gaps. Generative video offers a new way to address these limitations by augmenting captured media with tailored visuals. To explore this potential, we interviewed eight video creators to identify opportunities and challenges in integrating generative video into their workflows. Building on these insights and established filmmaking principles, we developed Vidmento, a tool for authoring hybrid video stories that combine captured and generated media through context-aware expansion. Vidmento surfaces opportunities for story development, generates clips that blend stylistically and narratively with surrounding media, and provides controls for refinement. In a study with 12 creators, Vidmento supported narrative development and exploration by systematically expanding initial materials with generative media, enabling expressive video storytelling aligned with creative intent. We highlight how creators bridge story gaps with generative content and where they find this blending capability most valuable.
comment: 25 pages, 18 figures
☆ MEIDNet: Multimodal generative AI framework for inverse materials design
In this work, we present Multimodal Equivariant Inverse Design Network (MEIDNet), a framework that jointly learns structural information and materials properties through contrastive learning, while encoding structures via an equivariant graph neural network (EGNN). By combining generative inverse design with multimodal learning, our approach accelerates the exploration of chemical-structural space and facilitates the discovery of materials that satisfy predefined property targets. MEIDNet exhibits strong latent-space alignment with cosine similarity 0.96 by fusion of three modalities through cross-modal learning. Through implementation of curriculum learning strategies, MEIDNet achieves ~60 times higher learning efficiency than conventional training techniques. The potential of our multimodal approach is demonstrated by generating low-bandgap perovskite structures at a stable, unique, and novel (SUN) rate of 13.6 %, which are further validated by ab initio methods. Our inverse design framework demonstrates both scalability and adaptability, paving the way for the universal learning of chemical space across diverse modalities.
☆ Heterogeneous Computing: The Key to Powering the Future of AI Agent Inference
AI agent inference is driving an inference heavy datacenter future and exposes bottlenecks beyond compute - especially memory capacity, memory bandwidth and high-speed interconnect. We introduce two metrics - Operational Intensity (OI) and Capacity Footprint (CF) - that jointly explain regimes the classic roofline analysis misses, including the memory capacity wall. Across agentic workflows (chat, coding, web use, computer use) and base model choices (GQA/MLA, MoE, quantization), OI/CF can shift dramatically, with long context KV cache making decode highly memory bound. These observations motivate disaggregated serving and system level heterogeneity: specialized prefill and decode accelerators, broader scale up networking, and decoupled compute-memory enabled by optical I/O. We further hypothesize agent-hardware co design, multiple inference accelerators within one system, and high bandwidth, large capacity memory disaggregation as foundations for adaptation to evolving OI/CF. Together, these directions chart a path to sustain efficiency and capability for large scale agentic AI inference.
☆ Mechanistic Data Attribution: Tracing the Training Origins of Interpretable LLM Units
While Mechanistic Interpretability has identified interpretable circuits in LLMs, their causal origins in training data remain elusive. We introduce Mechanistic Data Attribution (MDA), a scalable framework that employs Influence Functions to trace interpretable units back to specific training samples. Through extensive experiments on the Pythia family, we causally validate that targeted intervention--removing or augmenting a small fraction of high-influence samples--significantly modulates the emergence of interpretable heads, whereas random interventions show no effect. Our analysis reveals that repetitive structural data (e.g., LaTeX, XML) acts as a mechanistic catalyst. Furthermore, we observe that interventions targeting induction head formation induce a concurrent change in the model's in-context learning (ICL) capability. This provides direct causal evidence for the long-standing hypothesis regarding the functional link between induction heads and ICL. Finally, we propose a mechanistic data augmentation pipeline that consistently accelerates circuit convergence across model scales, providing a principled methodology for steering the developmental trajectories of LLMs.
☆ Liquid Interfaces: A Dynamic Ontology for the Interoperability of Autonomous Systems
Contemporary software architectures struggle to support autonomous agents whose reasoning is adaptive, probabilistic, and context-dependent, while system integration remains dominated by static interfaces and deterministic contracts. This paper introduces Liquid Interfaces, a coordination paradigm in which interfaces are not persistent technical artifacts, but ephemeral relational events that emerge through intention articulation and semantic negotiation at runtime.We formalize this model and present the Liquid Interface Protocol (LIP),which governs intention-driven interaction, negotiated execution, and enforce ephemerality under semantic uncertainty. We further discuss the governance implications of this approach and describe a reference architecture that demonstrates practical feasibility. Liquid Interfaces provide a principled foundation for adaptive coordination in agent-based systems
comment: 28 pages, 2 figures
☆ Geometry of Drifting MDPs with Path-Integral Stability Certificates
Real-world reinforcement learning is often \emph{nonstationary}: rewards and dynamics drift, accelerate, oscillate, and trigger abrupt switches in the optimal action. Existing theory often represents nonstationarity with coarse-scale models that measure \emph{how much} the environment changes, not \emph{how} it changes locally -- even though acceleration and near-ties drive tracking error and policy chattering. We take a geometric view of nonstationary discounted Markov Decision Processes (MDPs) by modeling the environment as a differentiable homotopy path and tracking the induced motion of the optimal Bellman fixed point. This yields a length--curvature--kink signature of intrinsic complexity: cumulative drift, acceleration/oscillation, and action-gap-induced nonsmoothness. We prove a solver-agnostic path-integral stability bound and derive gap-safe feasible regions that certify local stability away from switch regimes. Building on these results, we introduce \textit{Homotopy-Tracking RL (HT-RL)} and \textit{HT-MCTS}, lightweight wrappers that estimate replay-based proxies of length, curvature, and near-tie proximity online and adapt learning or planning intensity accordingly. Experiments show improved tracking and dynamic regret over matched static baselines, with the largest gains in oscillatory and switch-prone regimes.
☆ Generalized Information Gathering Under Dynamics Uncertainty
An agent operating in an unknown dynamical system must learn its dynamics from observations. Active information gathering accelerates this learning, but existing methods derive bespoke costs for specific modeling choices: dynamics models, belief update procedures, observation models, and planners. We present a unifying framework that decouples these choices from the information-gathering cost by explicitly exposing the causal dependencies between parameters, beliefs, and controls. Using this framework, we derive a general information-gathering cost based on Massey's directed information that assumes only Markov dynamics with additive noise and is otherwise agnostic to modeling choices. We prove that the mutual information cost used in existing literature is a special case of our cost. Then, we leverage our framework to establish an explicit connection between the mutual information cost and information gain in linearized Bayesian estimation, thereby providing theoretical justification for mutual information-based active learning approaches. Finally, we illustrate the practical utility of our framework through experiments spanning linear, nonlinear, and multi-agent systems.
☆ VERSA: Verified Event Data Format for Reliable Soccer Analytics
Event stream data is a critical resource for fine-grained analysis across various domains, including financial transactions, system operations, and sports. In sports, it is actively used for fine-grained analyses such as quantifying player contributions and identifying tactical patterns. However, the reliability of these models is fundamentally limited by inherent data quality issues that cause logical inconsistencies (e.g., incorrect event ordering or missing events). To this end, this study proposes VERSA (Verified Event Data Format for Reliable Soccer Analytics), a systematic verification framework that ensures the integrity of event stream data within the soccer domain. VERSA is based on a state-transition model that defines valid event sequences, thereby enabling the automatic detection and correction of anomalous patterns within the event stream data. Notably, our examination of event data from the K League 1 (2024 season), provided by Bepro, detected that 18.81% of all recorded events exhibited logical inconsistencies. Addressing such integrity issues, our experiments demonstrate that VERSA significantly enhances cross-provider consistency, ensuring stable and unified data representation across heterogeneous sources. Furthermore, we demonstrate that data refined by VERSA significantly improves the robustness and performance of a downstream task called VAEP, which evaluates player contributions. These results highlight that the verification process is highly effective in increasing the reliability of data-driven analysis.
comment: 13 pages, 5 figures, 3 tables
☆ From Particles to Agents: Hallucination as a Metric for Cognitive Friction in Spatial Simulation
Traditional architectural simulations (e.g. Computational Fluid Dynamics, evacuation, structural analysis) model elements as deterministic physics-based "particles" rather than cognitive "agents". To bridge this, we introduce \textbf{Agentic Environmental Simulations}, where Large Multimodal generative models actively predict the next state of spatial environments based on semantic expectation. Drawing on examples from accessibility-oriented AR pipelines and multimodal digital twins, we propose a shift from chronological time-steps to Episodic Spatial Reasoning, where simulations advance through meaningful, surprisal-triggered events. Within this framework we posit AI hallucinations as diagnostic tools. By formalizing the \textbf{Cognitive Friction} ($C_f$) it is possible to reveal "Phantom Affordances", i.e. semiotic ambiguities in built space. Finally, we challenge current HCI paradigms by treating environments as dynamic cognitive partners and propose a human-centered framework of cognitive orchestration for designing AI-driven simulations that preserve autonomy, affective clarity, and cognitive integrity.
comment: Paper selected for the workshop Human Cognition, AI, and the Future of HCI: Navigating the Disruptive and Wild Landscape of Large Language Models and Agentic AI as part of the Human-Computer Interaction (HCI) conference of the Alpine region (AlpCHI 2026) hosted at the Congressi Stefano Franscini, March 1st to March 5th, 2026 on Monte Verità in Ascona, Switzerland
☆ Mind the Gap: How Elicitation Protocols Shape the Stated-Revealed Preference Gap in Language Models
Recent work identifies a stated-revealed (SvR) preference gap in language models (LMs): a mismatch between the values models endorse and the choices they make in context. Existing evaluations rely heavily on binary forced-choice prompting, which entangles genuine preferences with artifacts of the elicitation protocol. We systematically study how elicitation protocols affect SvR correlation across 24 LMs. Allowing neutrality and abstention during stated preference elicitation allows us to exclude weak signals, substantially improving Spearman's rank correlation ($ρ$) between volunteered stated preferences and forced-choice revealed preferences. However, further allowing abstention in revealed preferences drives $ρ$ to near-zero or negative values due to high neutrality rates. Finally, we find that system prompt steering using stated preferences during revealed preference elicitation does not reliably improve SvR correlation on AIRiskDilemmas. Together, our results show that SvR correlation is highly protocol-dependent and that preference elicitation requires methods that account for indeterminate preferences.
☆ Learning Decentralized LLM Collaboration with Multi-Agent Actor Critic
Recent work has explored optimizing LLM collaboration through Multi-Agent Reinforcement Learning (MARL). However, most MARL fine-tuning approaches rely on predefined execution protocols, which often require centralized execution. Decentralized LLM collaboration is more appealing in practice, as agents can run inference in parallel with flexible deployments. Also, current approaches use Monte Carlo methods for fine-tuning, which suffer from high variance and thus require more samples to train effectively. Actor-critic methods are prevalent in MARL for dealing with these issues, so we developed Multi-Agent Actor-Critic (MAAC) methods to optimize decentralized LLM collaboration. In this paper, we analyze when and why these MAAC methods are beneficial. We propose 2 MAAC approaches, \textbf{CoLLM-CC} with a \textbf{C}entralized \textbf{C}ritic and \textbf{CoLLM-DC} with \textbf{D}ecentralized \textbf{C}ritics. Our experiments across writing, coding, and game-playing domains show that Monte Carlo methods and CoLLM-DC can achieve performance comparable to CoLLM-CC in short-horizon and dense-reward settings. However, they both underperform CoLLM-CC on long-horizon or sparse-reward tasks, where Monte Carlo methods require substantially more samples and CoLLM-DC struggles to converge. Our code is available at https://github.com/OpenMLRL/CoMLRL/releases/tag/v1.3.2.
☆ MoE-ACT: Improving Surgical Imitation Learning Policies through Supervised Mixture-of-Experts
Imitation learning has achieved remarkable success in robotic manipulation, yet its application to surgical robotics remains challenging due to data scarcity, constrained workspaces, and the need for an exceptional level of safety and predictability. We present a supervised Mixture-of-Experts (MoE) architecture designed for phase-structured surgical manipulation tasks, which can be added on top of any autonomous policy. Unlike prior surgical robot learning approaches that rely on multi-camera setups or thousands of demonstrations, we show that a lightweight action decoder policy like Action Chunking Transformer (ACT) can learn complex, long-horizon manipulation from less than 150 demonstrations using solely stereo endoscopic images, when equipped with our architecture. We evaluate our approach on the collaborative surgical task of bowel grasping and retraction, where a robot assistant interprets visual cues from a human surgeon, executes targeted grasping on deformable tissue, and performs sustained retraction. We benchmark our method against state-of-the-art Vision-Language-Action (VLA) models and the standard ACT baseline. Our results show that generalist VLAs fail to acquire the task entirely, even under standard in-distribution conditions. Furthermore, while standard ACT achieves moderate success in-distribution, adopting a supervised MoE architecture significantly boosts its performance, yielding higher success rates in-distribution and demonstrating superior robustness in out-of-distribution scenarios, including novel grasp locations, reduced illumination, and partial occlusions. Notably, it generalizes to unseen testing viewpoints and also transfers zero-shot to ex vivo porcine tissue without additional training, offering a promising pathway toward in vivo deployment. To support this, we present qualitative preliminary results of policy roll-outs during in vivo porcine surgery.
☆ Token-Guard: Towards Token-Level Hallucination Control via Self-Checking Decoding ICLR 2026
Large Language Models (LLMs) often hallucinate, generating content inconsistent with the input. Retrieval-Augmented Generation (RAG) and Reinforcement Learning with Human Feedback (RLHF) can mitigate hallucinations but require resource-intensive retrieval or large-scale fine-tuning. Decoding-based methods are lighter yet lack explicit hallucination control. To address this, we present Token-Guard, a token-level hallucination control method based on self-checking decoding. Token-Guard performs internal verification at each reasoning step to detect hallucinated tokens before they propagate. Candidate fragments are further evaluated in a latent space with explicit hallucination risk scoring, while iterative pruning and regeneration dynamically correct detected errors. Experiments on HALU datasets show Token-Guard substantially reduces hallucinations and improves generation accuracy, offering a scalable, modular solution for reliable LLM outputs. Our code is publicly available.
comment: 26 pages and 11 figures,this work has been accepted for presentation at ICLR 2026
☆ The Energy Impact of Domain Model Design in Classical Planning
AI research has traditionally prioritised algorithmic performance, such as optimising accuracy in machine learning or runtime in automated planning. The emerging paradigm of Green AI challenges this by recognising energy consumption as a critical performance dimension. Despite the high computational demands of automated planning, its energy efficiency has received little attention. This gap is particularly salient given the modular planning structure, in which domain models are specified independently of algorithms. On the other hand, this separation also enables systematic analysis of energy usage through domain model design. We empirically investigate how domain model characteristics affect the energy consumption of classical planners. We introduce a domain model configuration framework that enables controlled variation of features, such as element ordering, action arity, and dead-end states. Using five benchmark domains and five state-of-the-art planners, we analyse energy and runtime impacts across 32 domain variants per benchmark. Results demonstrate that domain-level modifications produce measurable energy differences across planners, with energy consumption not always correlating with runtime.
comment: 2026 IEEE/ACM 5th International Conference on AI Engineering - Software Engineering for AI (CAIN '26)
☆ Industrialized Deception: The Collateral Effects of LLM-Generated Misinformation on Digital Ecosystems
Generative AI and misinformation research has evolved since our 2024 survey. This paper presents an updated perspective, transitioning from literature review to practical countermeasures. We report on changes in the threat landscape, including improved AI-generated content through Large Language Models (LLMs) and multimodal systems. Central to this work are our practical contributions: JudgeGPT, a platform for evaluating human perception of AI-generated news, and RogueGPT, a controlled stimulus generation engine for research. Together, these tools form an experimental pipeline for studying how humans perceive and detect AI-generated misinformation. Our findings show that detection capabilities have improved, but the competition between generation and detection continues. We discuss mitigation strategies including LLM-based detection, inoculation approaches, and the dual-use nature of generative AI. This work contributes to research addressing the adverse impacts of AI on information quality.
comment: Accepted at ACM TheWebConf '26 Companion
☆ How do Visual Attributes Influence Web Agents? A Comprehensive Evaluation of User Interface Design Factors
Web agents have demonstrated strong performance on a wide range of web-based tasks. However, existing research on the effect of environmental variation has mostly focused on robustness to adversarial attacks, with less attention to agents' preferences in benign scenarios. Although early studies have examined how textual attributes influence agent behavior, a systematic understanding of how visual attributes shape agent decision-making remains limited. To address this, we introduce VAF, a controlled evaluation pipeline for quantifying how webpage Visual Attribute Factors influence web-agent decision-making. Specifically, VAF consists of three stages: (i) variant generation, which ensures the variants share identical semantics as the original item while only differ in visual attributes; (ii) browsing interaction, where agents navigate the page via scrolling and clicking the interested item, mirroring how human users browse online; (iii) validating through both click action and reasoning from agents, which we use the Target Click Rate and Target Mention Rate to jointly evaluate the effect of visual attributes. By quantitatively measuring the decision-making difference between the original and variant, we identify which visual attributes influence agents' behavior most. Extensive experiments, across 8 variant families (48 variants total), 5 real-world websites (including shopping, travel, and news browsing), and 4 representative web agents, show that background color contrast, item size, position, and card clarity have a strong influence on agents' actions, whereas font styling, text color, and item image clarity exhibit minor effects.
☆ ToolWeaver: Weaving Collaborative Semantics for Scalable Tool Use in Large Language Models ICLR 2026
Prevalent retrieval-based tool-use pipelines struggle with a dual semantic challenge: their retrievers often employ encoders that fail to capture complex semantics, while the Large Language Model (LLM) itself lacks intrinsic tool knowledge from its natural language pretraining. Generative methods offer a powerful alternative by unifying selection and execution, tasking the LLM to directly learn and generate tool identifiers. However, the common practice of mapping each tool to a unique new token introduces substantial limitations: it creates a scalability and generalization crisis, as the vocabulary size explodes and each tool is assigned a semantically isolated token. This approach also creates a semantic bottleneck that hinders the learning of collaborative tool relationships, as the model must infer them from sparse co-occurrences of monolithic tool IDs within a vast library. To address these limitations, we propose ToolWeaver, a novel generative tool learning framework that encodes tools into hierarchical sequences. This approach makes vocabulary expansion logarithmic to the number of tools. Crucially, it enables the model to learn collaborative patterns from the dense co-occurrence of shared codes, rather than the sparse co-occurrence of monolithic tool IDs. We generate these structured codes through a novel tokenization process designed to weave together a tool's intrinsic semantics with its extrinsic co-usage patterns. These structured codes are then integrated into the LLM through a generative alignment stage, where the model is fine-tuned to produce the hierarchical code sequences. Evaluation results with nearly 47,000 tools show that ToolWeaver significantly outperforms state-of-the-art methods, establishing a more scalable, generalizable, and semantically-aware foundation for advanced tool-augmented agents.
comment: 10pages, 12 figures, Accepted to ICLR 2026
☆ Robust Multimodal Representation Learning in Healthcare
Medical multimodal representation learning aims to integrate heterogeneous data into unified patient representations to support clinical outcome prediction. However, real-world medical datasets commonly contain systematic biases from multiple sources, which poses significant challenges for medical multimodal representation learning. Existing approaches typically focus on effective multimodal fusion, neglecting inherent biased features that affect the generalization ability. To address these challenges, we propose a Dual-Stream Feature Decorrelation Framework that identifies and handles the biases through structural causal analysis introduced by latent confounders. Our method employs a causal-biased decorrelation framework with dual-stream neural networks to disentangle causal features from spurious correlations, utilizing generalized cross-entropy loss and mutual information minimization for effective decorrelation. The framework is model-agnostic and can be integrated into existing medical multimodal learning methods. Comprehensive experiments on MIMIC-IV, eICU, and ADNI datasets demonstrate consistent performance improvements.
☆ Retrieval-Infused Reasoning Sandbox: A Benchmark for Decoupling Retrieval and Reasoning Capabilities
Despite strong performance on existing benchmarks, it remains unclear whether large language models can reason over genuinely novel scientific information. Most evaluations score end-to-end RAG pipelines, where reasoning is confounded with retrieval and toolchain choices, and the signal is further contaminated by parametric memorization and open-web volatility. We introduce DeR2, a controlled deep-research sandbox that isolates document-grounded reasoning while preserving core difficulties of deep search: multi-step synthesis, denoising, and evidence-based conclusion making. DeR2 decouples evidence access from reasoning via four regimes--Instruction-only, Concepts (gold concepts without documents), Related-only (only relevant documents), and Full-set (relevant documents plus topically related distractors)--yielding interpretable regime gaps that operationalize retrieval loss vs. reasoning loss and enable fine-grained error attribution. To prevent parametric leakage, we apply a two-phase validation that requires parametric failure without evidence while ensuring oracle-concept solvability. To ensure reproducibility, each instance provides a frozen document library (drawn from 2023-2025 theoretical papers) with expert-annotated concepts and validated rationales. Experiments across a diverse set of state-of-the-art foundation models reveal substantial variation and significant headroom: some models exhibit mode-switch fragility, performing worse with the Full-set than with Instruction-only, while others show structural concept misuse, correctly naming concepts but failing to execute them as procedures.
☆ AgenticSimLaw: A Juvenile Courtroom Multi-Agent Debate Simulation for Explainable High-Stakes Tabular Decision Making
We introduce AgenticSimLaw, a role-structured, multi-agent debate framework that provides transparent and controllable test-time reasoning for high-stakes tabular decision-making tasks. Unlike black-box approaches, our courtroom-style orchestration explicitly defines agent roles (prosecutor, defense, judge), interaction protocols (7-turn structured debate), and private reasoning strategies, creating a fully auditable decision-making process. We benchmark this framework on young adult recidivism prediction using the NLSY97 dataset, comparing it against traditional chain-of-thought (CoT) prompting across almost 90 unique combinations of models and strategies. Our results demonstrate that structured multi-agent debate provides more stable and generalizable performance compared to single-agent reasoning, with stronger correlation between accuracy and F1-score metrics. Beyond performance improvements, AgenticSimLaw offers fine-grained control over reasoning steps, generates complete interaction transcripts for explainability, and enables systematic profiling of agent behaviors. While we instantiate this framework in the criminal justice domain to stress-test reasoning under ethical complexity, the approach generalizes to any deliberative, high-stakes decision task requiring transparency and human oversight. This work addresses key LLM-based multi-agent system challenges: organization through structured roles, observability through logged interactions, and responsibility through explicit non-deployment constraints for sensitive domains. Data, results, and code will be available on github.com under the MIT license.
comment: 18 pages, 5 figures
☆ From Future of Work to Future of Workers: Addressing Asymptomatic AI Harms for Dignified Human-AI Interaction
In the future of work discourse, AI is touted as the ultimate productivity amplifier. Yet, beneath the efficiency gains lie subtle erosions of human expertise and agency. This paper shifts focus from the future of work to the future of workers by navigating the AI-as-Amplifier Paradox: AI's dual role as enhancer and eroder, simultaneously strengthening performance while eroding underlying expertise. We present a year-long study on the longitudinal use of AI in a high-stakes workplace among cancer specialists. Initial operational gains hid ``intuition rust'': the gradual dulling of expert judgment. These asymptomatic effects evolved into chronic harms, such as skill atrophy and identity commoditization. Building on these findings, we offer a framework for dignified Human-AI interaction co-constructed with professional knowledge workers facing AI-induced skill erosion without traditional labor protections. The framework operationalizes sociotechnical immunity through dual-purpose mechanisms that serve institutional quality goals while building worker power to detect, contain, and recover from skill erosion, and preserve human identity. Evaluated across healthcare and software engineering, our work takes a foundational step toward dignified human-AI interaction futures by balancing productivity with the preservation of human expertise.
☆ Self-Compression of Chain-of-Thought via Multi-Agent Reinforcement Learning
The inference overhead induced by redundant reasoning undermines the interactive experience and severely bottlenecks the deployment of Large Reasoning Models. Existing reinforcement learning (RL)-based solutions tackle this problem by coupling a length penalty with outcome-based rewards. This simplistic reward weighting struggles to reconcile brevity with accuracy, as enforcing brevity may compromise critical reasoning logic. In this work, we address this limitation by proposing a multi-agent RL framework that selectively penalizes redundant chunks, while preserving essential reasoning logic. Our framework, Self-Compression via MARL (SCMA), instantiates redundancy detection and evaluation through two specialized agents: \textbf{a Segmentation Agent} for decomposing the reasoning process into logical chunks, and \textbf{a Scoring Agent} for quantifying the significance of each chunk. The Segmentation and Scoring agents collaboratively define an importance-weighted length penalty during training, incentivizing \textbf{a Reasoning Agent} to prioritize essential logic without introducing inference overhead during deployment. Empirical evaluations across model scales demonstrate that SCMA reduces response length by 11.1\% to 39.0\% while boosting accuracy by 4.33\% to 10.02\%. Furthermore, ablation studies and qualitative analysis validate that the synergistic optimization within the MARL framework fosters emergent behaviors, yielding more powerful LRMs compared to vanilla RL paradigms.
☆ JADE: Bridging the Strategic-Operational Gap in Dynamic Agentic RAG
The evolution of Retrieval-Augmented Generation (RAG) has shifted from static retrieval pipelines to dynamic, agentic workflows where a central planner orchestrates multi-turn reasoning. However, existing paradigms face a critical dichotomy: they either optimize modules jointly within rigid, fixed-graph architectures, or empower dynamic planning while treating executors as frozen, black-box tools. We identify that this \textit{decoupled optimization} creates a ``strategic-operational mismatch,'' where sophisticated planning strategies fail to materialize due to unadapted local executors, often leading to negative performance gains despite increased system complexity. In this paper, we propose \textbf{JADE} (\textbf{J}oint \textbf{A}gentic \textbf{D}ynamic \textbf{E}xecution), a unified framework for the joint optimization of planning and execution within dynamic, multi-turn workflows. By modeling the system as a cooperative multi-agent team unified under a single shared backbone, JADE enables end-to-end learning driven by outcome-based rewards. This approach facilitates \textit{co-adaptation}: the planner learns to operate within the capability boundaries of the executors, while the executors evolve to align with high-level strategic intent. Empirical results demonstrate that JADE transforms disjoint modules into a synergistic system, yielding remarkable performance improvements via joint optimization and enabling a flexible balance between efficiency and effectiveness through dynamic workflow orchestration.
☆ ProRAG: Process-Supervised Reinforcement Learning for Retrieval-Augmented Generation
Reinforcement learning (RL) has become a promising paradigm for optimizing Retrieval-Augmented Generation (RAG) in complex reasoning tasks. However, traditional outcome-based RL approaches often suffer from reward sparsity and inefficient credit assignment, as coarse-grained scalar rewards fail to identify specific erroneous steps within long-horizon trajectories. This ambiguity frequently leads to "process hallucinations", where models reach correct answers through flawed logic or redundant retrieval steps. Although recent process-aware approaches attempt to mitigate this via static preference learning or heuristic reward shaping, they often lack the on-policy exploration capabilities required to decouple step-level credit from global outcomes. To address these challenges, we propose ProRAG, a process-supervised reinforcement learning framework designed to integrate learned step-level supervision into the online optimization loop. Our framework consists of four stages: (1) Supervised Policy Warmup to initialize the model with a structured reasoning format; (2) construction of an MCTS-based Process Reward Model (PRM) to quantify intermediate reasoning quality; (3) PRM-Guided Reasoning Refinement to align the policy with fine-grained process preferences; and (4) Process-Supervised Reinforcement Learning with a dual-granularity advantage mechanism. By aggregating step-level process rewards with global outcome signals, ProRAG provides precise feedback for every action. Extensive experiments on five multi-hop reasoning benchmarks demonstrate that ProRAG achieves superior overall performance compared to strong outcome-based and process-aware RL baselines, particularly on complex long-horizon tasks, validating the effectiveness of fine-grained process supervision. The code and model are available at https://github.com/lilinwz/ProRAG.
comment: 11 pages, 6 figures
☆ From Meta-Thought to Execution: Cognitively Aligned Post-Training for Generalizable and Reliable LLM Reasoning
Current LLM post-training methods optimize complete reasoning trajectories through Supervised Fine-Tuning (SFT) followed by outcome-based Reinforcement Learning (RL). While effective, a closer examination reveals a fundamental gap: this approach does not align with how humans actually solve problems. Human cognition naturally decomposes problem-solving into two distinct stages: first acquiring abstract strategies (i.e., meta-knowledge) that generalize across problems, then adapting them to specific instances. In contrast, by treating complete trajectories as basic units, current methods are inherently problem-centric, entangling abstract strategies with problem-specific execution. To address this misalignment, we propose a cognitively-inspired framework that explicitly mirrors the two-stage human cognitive process. Specifically, Chain-of-Meta-Thought (CoMT) focuses supervised learning on abstract reasoning patterns without specific executions, enabling acquisition of generalizable strategies. Confidence-Calibrated Reinforcement Learning (CCRL) then optimizes task adaptation via confidence-aware rewards on intermediate steps, preventing overconfident errors from cascading and improving execution reliability. Experiments across four models and eight benchmarks show 2.19\% and 4.63\% improvements in-distribution and out-of-distribution respectively over standard methods, while reducing training time by 65-70% and token consumption by 50%, demonstrating that aligning post-training with human cognitive principles yields not only superior generalization but also enhanced training efficiency.
☆ TraceRouter: Robust Safety for Large Foundation Models via Path-Level Intervention
Despite their capabilities, large foundation models (LFMs) remain susceptible to adversarial manipulation. Current defenses predominantly rely on the "locality hypothesis", suppressing isolated neurons or features. However, harmful semantics act as distributed, cross-layer circuits, rendering such localized interventions brittle and detrimental to utility. To bridge this gap, we propose \textbf{TraceRouter}, a path-level framework that traces and disconnects the causal propagation circuits of illicit semantics. TraceRouter operates in three stages: (1) it pinpoints a sensitive onset layer by analyzing attention divergence; (2) it leverages sparse autoencoders (SAEs) and differential activation analysis to disentangle and isolate malicious features; and (3) it maps these features to downstream causal pathways via feature influence scores (FIS) derived from zero-out interventions. By selectively suppressing these causal chains, TraceRouter physically severs the flow of harmful information while leaving orthogonal computation routes intact. Extensive experiments demonstrate that TraceRouter significantly outperforms state-of-the-art baselines, achieving a superior trade-off between adversarial robustness and general utility. Our code will be publicly released. WARNING: This paper contains unsafe model responses.
☆ Making Models Unmergeable via Scaling-Sensitive Loss Landscape
The rise of model hubs has made it easier to access reusable model components, making model merging a practical tool for combining capabilities. Yet, this modularity also creates a \emph{governance gap}: downstream users can recompose released weights into unauthorized mixtures that bypass safety alignment or licensing terms. Because existing defenses are largely post-hoc and architecture-specific, they provide inconsistent protection across diverse architectures and release formats in practice. To close this gap, we propose \textsc{Trap}$^{2}$, an architecture-agnostic protection framework that encodes protection into the update during fine-tuning, regardless of whether they are released as adapters or full models. Instead of relying on architecture-dependent approaches, \textsc{Trap}$^{2}$ uses weight re-scaling as a simple proxy for the merging process. It keeps released weights effective in standalone use, but degrades them under re-scaling that often arises in merging, undermining unauthorized merging.
comment: Preprint
☆ Learn-to-Distance: Distance Learning for Detecting LLM-Generated Text ICLR2026
Modern large language models (LLMs) such as GPT, Claude, and Gemini have transformed the way we learn, work, and communicate. Yet, their ability to produce highly human-like text raises serious concerns about misinformation and academic integrity, making it an urgent need for reliable algorithms to detect LLM-generated content. In this paper, we start by presenting a geometric approach to demystify rewrite-based detection algorithms, revealing their underlying rationale and demonstrating their generalization ability. Building on this insight, we introduce a novel rewrite-based detection algorithm that adaptively learns the distance between the original and rewritten text. Theoretically, we demonstrate that employing an adaptively learned distance function is more effective for detection than using a fixed distance. Empirically, we conduct extensive experiments with over 100 settings, and find that our approach demonstrates superior performance over baseline algorithms in the majority of scenarios. In particular, it achieves relative improvements from 57.8\% to 80.6\% over the strongest baseline across different target LLMs (e.g., GPT, Claude, and Gemini).
comment: Accepted by ICLR2026
☆ Improving Classifier-Free Guidance of Flow Matching via Manifold Projection
Classifier-free guidance (CFG) is a widely used technique for controllable generation in diffusion and flow-based models. Despite its empirical success, CFG relies on a heuristic linear extrapolation that is often sensitive to the guidance scale. In this work, we provide a principled interpretation of CFG through the lens of optimization. We demonstrate that the velocity field in flow matching corresponds to the gradient of a sequence of smoothed distance functions, which guides latent variables toward the scaled target image set. This perspective reveals that the standard CFG formulation is an approximation of this gradient, where the prediction gap, the discrepancy between conditional and unconditional outputs, governs guidance sensitivity. Leveraging this insight, we reformulate the CFG sampling as a homotopy optimization with a manifold constraint. This formulation necessitates a manifold projection step, which we implement via an incremental gradient descent scheme during sampling. To improve computational efficiency and stability, we further enhance this iterative process with Anderson Acceleration without requiring additional model evaluations. Our proposed methods are training-free and consistently refine generation fidelity, prompt alignment, and robustness to the guidance scale. We validate their effectiveness across diverse benchmarks, demonstrating significant improvements on large-scale models such as DiT-XL-2-256, Flux, and Stable Diffusion 3.5.
comment: 24 pages, 14 figures
☆ astra-langchain4j: Experiences Combining LLMs and Agent Programming
Given the emergence of Generative AI over the last two years and the increasing focus on Agentic AI as a form of Multi-Agent System it is important to explore both how such technologies can impact the use of traditional Agent Toolkits and how the wealth of experience encapsulated in those toolkits can influence the design of the new agentic platforms. This paper presents an overview of our experience developing a prototype large language model (LLM) integration for the ASTRA programming language. It presents a brief overview of the toolkit, followed by three example implementations, concluding with a discussion of the experiences garnered through the examples.
☆ WebArbiter: A Principle-Guided Reasoning Process Reward Model for Web Agents ICLR 2026
Web agents hold great potential for automating complex computer tasks, yet their interactions involve long-horizon, sequential decision-making with irreversible actions. In such settings, outcome-based supervision is sparse and delayed, often rewarding incorrect trajectories and failing to support inference-time scaling. This motivates the use of Process Reward Models (WebPRMs) for web navigation, but existing approaches remain limited: scalar WebPRMs collapse progress into coarse, weakly grounded signals, while checklist-based WebPRMs rely on brittle template matching that fails under layout or semantic changes and often mislabels superficially correct actions as successful, providing little insight or interpretability. To address these challenges, we introduce WebArbiter, a reasoning-first, principle-inducing WebPRM that formulates reward modeling as text generation, producing structured justifications that conclude with a preference verdict and identify the action most conducive to task completion under the current context. Training follows a two-stage pipeline: reasoning distillation equips the model with coherent principle-guided reasoning, and reinforcement learning corrects teacher biases by directly aligning verdicts with correctness, enabling stronger generalization. To support systematic evaluation, we release WebPRMBench, a comprehensive benchmark spanning four diverse web environments with rich tasks and high-quality preference annotations. On WebPRMBench, WebArbiter-7B outperforms the strongest baseline, GPT-5, by 9.1 points. In reward-guided trajectory search on WebArena-Lite, it surpasses the best prior WebPRM by up to 7.2 points, underscoring its robustness and practical value in real-world complex web tasks.
comment: ICLR 2026
☆ MoHETS: Long-term Time Series Forecasting with Mixture-of-Heterogeneous-Experts
Real-world multivariate time series can exhibit intricate multi-scale structures, including global trends, local periodicities, and non-stationary regimes, which makes long-horizon forecasting challenging. Although sparse Mixture-of-Experts (MoE) approaches improve scalability and specialization, they typically rely on homogeneous MLP experts that poorly capture the diverse temporal dynamics of time series data. We address these limitations with MoHETS, an encoder-only Transformer that integrates sparse Mixture-of-Heterogeneous-Experts (MoHE) layers. MoHE routes temporal patches to a small subset of expert networks, combining a shared depthwise-convolution expert for sequence-level continuity with routed Fourier-based experts for patch-level periodic structures. MoHETS further improves robustness to non-stationary dynamics by incorporating exogenous information via cross-attention over covariate patch embeddings. Finally, we replace parameter-heavy linear projection heads with a lightweight convolutional patch decoder, improving parameter efficiency, reducing training instability, and allowing a single model to generalize across arbitrary forecast horizons. We validate across seven multivariate benchmarks and multiple horizons, with MoHETS consistently achieving state-of-the-art performance, reducing the average MSE by $12\%$ compared to strong recent baselines, demonstrating effective heterogeneous specialization for long-term forecasting.
comment: Under review
☆ KnowBias: Mitigating Social Bias in LLMs via Know-Bias Neuron Enhancement
Large language models (LLMs) exhibit social biases that reinforce harmful stereotypes, limiting their safe deployment. Most existing debiasing methods adopt a suppressive paradigm by modifying parameters, prompts, or neurons associated with biased behavior; however, such approaches are often brittle, weakly generalizable, data-inefficient, and prone to degrading general capability. We propose \textbf{KnowBias}, a lightweight and conceptually distinct framework that mitigates bias by strengthening, rather than suppressing, neurons encoding bias-knowledge. KnowBias identifies neurons encoding bias knowledge using a small set of bias-knowledge questions via attribution-based analysis, and selectively enhances them at inference time. This design enables strong debiasing while preserving general capabilities, generalizes across bias types and demographics, and is highly data efficient, requiring only a handful of simple yes/no questions and no retraining. Experiments across multiple benchmarks and LLMs demonstrate consistent state-of-the-art debiasing performance with minimal utility degradation. Data and code are available at https://github.com/JP-25/KnowBias.
☆ Bridging Forecast Accuracy and Inventory KPIs: A Simulation-Based Software Framework
Efficient management of spare parts inventory is crucial in the automotive aftermarket, where demand is highly intermittent and uncertainty drives substantial cost and service risks. Forecasting is therefore central, but the quality of a forecasting model should be judged not by statistical accuracy (e.g., MAE, RMSE, IAE) but rather by its impact on key operational performance indicators (KPIs), such as total cost and service level. Yet most existing work evaluates models exclusively using accuracy metrics, and the relationship between these metrics and operational KPIs remains poorly understood. To address this gap, we propose a decision-centric simulation software framework that enables systematic evaluation of forecasting model in realistic inventory management setting. The framework comprises: (i) a synthetic demand generator tailored to spare-parts demand characteristics, (ii) a flexible forecasting module that can host arbitrary predictive models, and (iii) an inventory control simulator that consumes the forecasts and computes operational KPIs. This closed-loop setup enables researchers to evaluate models not only in terms of statistical error but also in terms of their downstream implications for inventory decisions. Using a wide range of simulation scenarios, we show that improvements in conventional accuracy metrics do not necessarily translate into better operational performance, and that models with similar statistical error profiles can induce markedly different cost-service trade-offs. We analyze these discrepancies to characterize how specific aspects of forecast performance affect inventory outcomes and derive guidance for model selection. Overall, the framework operationalizes the link between demand forecasting and inventory management, shifting evaluation from purely predictive accuracy toward operational relevance in the automotive aftermarket and related domains.
comment: 12 pages, 6 figures
☆ Test-Time Compute Games
Test-time compute has emerged as a promising strategy to enhance the reasoning abilities of large language models (LLMs). However, this strategy has in turn increased how much users pay cloud-based providers offering LLM-as-a-service, since providers charge users for the amount of test-time compute they use to generate an output. In our work, we show that the market of LLM-as-a-service is socially inefficient: providers have a financial incentive to increase the amount of test-time compute, even if this increase contributes little to the quality of the outputs. To address this inefficiency, we introduce a reverse second-price auction mechanism where providers bid their offered price and (expected) quality for the opportunity to serve a user, and users pay proportionally to the marginal value generated by the winning provider relative to the second-highest bidder. To illustrate and complement our theoretical results, we conduct experiments with multiple instruct models from the $\texttt{Llama}$ and $\texttt{Qwen}$ families, as well as reasoning models distilled from $\texttt{DeepSeek-R1}$, on math and science benchmark datasets.
☆ Trustworthy Intelligent Education: A Systematic Perspective on Progress, Challenges, and Future Directions
In recent years, trustworthiness has garnered increasing attention and exploration in the field of intelligent education, due to the inherent sensitivity of educational scenarios, such as involving minors and vulnerable groups, highly personalized learning data, and high-stakes educational outcomes. However, existing research either focuses on task-specific trustworthy methods without a holistic view of trustworthy intelligent education, or provides survey-level discussions that remain high-level and fragmented, lacking a clear and systematic categorization. To address these limitations, in this paper, we present a systematic and structured review of trustworthy intelligent education. Specifically, We first organize intelligent education into five representative task categories: learner ability assessment, learning resource recommendation, learning analytics, educational content understanding, and instructional assistance. Building on this task landscape, we review existing studies from five trustworthiness perspectives, including safety and privacy, robustness, fairness, explainability, and sustainability, and summarize and categorize the research methodologies and solution strategies therein. Finally, we summarize key challenges and discuss future research directions. This survey aims to provide a coherent reference framework and facilitate a clearer understanding of trustworthiness in intelligent education.
comment: 9 pages, 3figures
☆ Looking Beyond Accuracy: A Holistic Benchmark of ECG Foundation Models
The electrocardiogram (ECG) is a cost-effective, highly accessible and widely employed diagnostic tool. With the advent of Foundation Models (FMs), the field of AI-assisted ECG interpretation has begun to evolve, as they enable model reuse across different tasks by relying on embeddings. However, to responsibly employ FMs, it is crucial to rigorously assess to which extent the embeddings they produce are generalizable, particularly in error-sensitive domains such as healthcare. Although prior works have already addressed the problem of benchmarking ECG-expert FMs, they focus predominantly on the evaluation of downstream performance. To fill this gap, this study aims to find an in-depth, comprehensive benchmarking framework for FMs, with a specific focus on ECG-expert ones. To this aim, we introduce a benchmark methodology that complements performance-based evaluation with representation-level analysis, leveraging SHAP and UMAP techniques. Furthermore, we rely on the methodology for carrying out an extensive evaluation of several ECG-expert FMs pretrained via state-of-the-art techniques over different cross-continental datasets and data availability settings; this includes ones featuring data scarcity, a fairly common situation in real-world medical scenarios. Experimental results show that our benchmarking protocol provides a rich insight of ECG-expert FMs' embedded patterns, enabling a deeper understanding of their representational structure and generalizability.
☆ CORE:Toward Ubiquitous 6G Intelligence Through Collaborative Orchestration of Large Language Model Agents Over Hierarchical Edge IEEE
Rapid advancements in sixth-generation (6G) networks and large language models (LLMs) have paved the way for ubiquitous intelligence, wherein seamless connectivity and distributed artificial intelligence (AI) have revolutionized various aspects of our lives.However, realizing this vision faces significant challenges owing to the fragmented and heterogeneous computing resources across hierarchical networks, which are insufficient for individual LLM agents to perform complex reasoning tasks.To address this issue, we propose Collaborative Orchestration Role at Edge (CORE), an innovative framework that employs a collaborative learning system in which multiple LLMs, each assigned a distinct functional role, are distributed across mobile devices and tiered edge servers. The system integrates three optimization modules, encompassing real-time perception,dynamic role orchestration, and pipeline-parallel execution, to facilitate efficient and rapid collaboration among distributed agents. Furthermore, we introduce a novel role affinity scheduling algorithm for dynamically orchestrating LLM role assignments across the hierarchical edge infrastructure, intelligently matching computational demands with available dispersed resources.Finally, comprehensive case studies and performance evaluations across various 6G application scenarios demonstrated the efficacy of CORE, revealing significant enhancements in the system efficiency and task completion rates. Building on these promising outcomes, we further validated the practical applicability of CORE by deploying it on a real-world edge-computing platform,that exhibits robust performance in operational environments.
comment: Accepted by IEEE Communications Magazine
☆ Moral Outrage Shapes Commitments Beyond Attention: Multimodal Moral Emotions on YouTube in Korea and the US
Understanding how media rhetoric shapes audience engagement is crucial in the attention economy. This study examines how moral emotional framing by mainstream news channels on YouTube influences user behavior across Korea and the United States. To capture the platform's multimodal nature, combining thumbnail images and video titles, we develop a multimodal moral emotion classifier by fine tuning a vision language model. The model is trained on human annotated multimodal datasets in both languages and applied to approximately 400,000 videos from major news outlets. We analyze engagement levels including views, likes, and comments, representing increasing degrees of commitment. The results show that other condemning rhetoric expressions of moral outrage that criticize others morally consistently increase all forms of engagement across cultures, with effects ranging from passive viewing to active commenting. These findings suggest that moral outrage is a particularly effective emotional strategy, attracting not only attention but also active participation. We discuss concerns about the potential misuse of other condemning rhetoric, as such practices may deepen polarization by reinforcing in group and out group divisions. To facilitate future research and ensure reproducibility, we publicly release our Korean and English multimodal moral emotion classifiers.
comment: Accepted at The Web Conference 2026. We release Korean and English multimodal moral emotion classifiers
☆ A Decomposable Forward Process in Diffusion Models for Time-Series Forecasting ICML'26
We introduce a model-agnostic forward diffusion process for time-series forecasting that decomposes signals into spectral components, preserving structured temporal patterns such as seasonality more effectively than standard diffusion. Unlike prior work that modifies the network architecture or diffuses directly in the frequency domain, our proposed method alters only the diffusion process itself, making it compatible with existing diffusion backbones (e.g., DiffWave, TimeGrad, CSDI). By staging noise injection according to component energy, it maintains high signal-to-noise ratios for dominant frequencies throughout the diffusion trajectory, thereby improving the recoverability of long-term patterns. This strategy enables the model to maintain the signal structure for a longer period in the forward process, leading to improved forecast quality. Across standard forecasting benchmarks, we show that applying spectral decomposition strategies, such as the Fourier or Wavelet transform, consistently improves upon diffusion models using the baseline forward process, with negligible computational overhead. The code for this paper is available at https://anonymous.4open.science/r/D-FDP-4A29.
comment: submitted to ICML'26
☆ A Unified XAI-LLM Approach for EndotrachealSuctioning Activity Recognition
Endotracheal suctioning (ES) is an invasive yet essential clinical procedure that requires a high degree of skill to minimize patient risk - particularly in home care and educational settings, where consistent supervision may be limited. Despite its critical importance, automated recognition and feedback systems for ES training remain underexplored. To address this gap, this study proposes a unified, LLM-centered framework for video-based activity recognition benchmarked against conventional machine learning and deep learning approaches, and a pilot study on feedback generation. Within this framework, the Large Language Model (LLM) serves as the central reasoning module, performing both spatiotemporal activity recognition and explainable decision analysis from video data. Furthermore, the LLM is capable of verbalizing feedback in natural language, thereby translating complex technical insights into accessible, human-understandable guidance for trainees. Experimental results demonstrate that the proposed LLM-based approach outperforms baseline models, achieving an improvement of approximately 15-20\% in both accuracy and F1 score. Beyond recognition, the framework incorporates a pilot student-support module built upon anomaly detection and explainable AI (XAI) principles, which provides automated, interpretable feedback highlighting correct actions and suggesting targeted improvements. Collectively, these contributions establish a scalable, interpretable, and data-driven foundation for advancing nursing education, enhancing training efficiency, and ultimately improving patient safety.
☆ BioAgent Bench: An AI Agent Evaluation Suite for Bioinformatics
This paper introduces BioAgent Bench, a benchmark dataset and an evaluation suite designed for measuring the performance and robustness of AI agents in common bioinformatics tasks. The benchmark contains curated end-to-end tasks (e.g., RNA-seq, variant calling, metagenomics) with prompts that specify concrete output artifacts to support automated assessment, including stress testing under controlled perturbations. We evaluate frontier closed-source and open-weight models across multiple agent harnesses, and use an LLM-based grader to score pipeline progress and outcome validity. We find that frontier agents can complete multi-step bioinformatics pipelines without elaborate custom scaffolding, often producing the requested final artifacts reliably. However, robustness tests reveal failure modes under controlled perturbations (corrupted inputs, decoy files, and prompt bloat), indicating that correct high-level pipeline construction does not guarantee reliable step-level reasoning. Finally, because bioinformatics workflows may involve sensitive patient data, proprietary references, or unpublished IP, closed-source models can be unsuitable under strict privacy constraints; in such settings, open-weight models may be preferable despite lower completion rates. We release the dataset and evaluation suite publicly.
☆ KID: Knowledge-Injected Dual-Head Learning for Knowledge-Grounded Harmful Meme Detection
Internet memes have become pervasive carriers of digital culture on social platforms. However, their heavy reliance on metaphors and sociocultural context also makes them subtle vehicles for harmful content, posing significant challenges for automated content moderation. Existing approaches primarily focus on intra-modal and inter-modal signal analysis, while the understanding of implicit toxicity often depends on background knowledge that is not explicitly present in the meme itself. To address this challenge, we propose KID, a Knowledge-Injected Dual-Head Learning framework for knowledge-grounded harmful meme detection. KID adopts a label-constrained distillation paradigm to decompose complex meme understanding into structured reasoning chains that explicitly link visual evidence, background knowledge, and classification labels. These chains guide the learning process by grounding external knowledge in meme-specific contexts. In addition, KID employs a dual-head architecture that jointly optimizes semantic generation and classification objectives, enabling aligned linguistic reasoning while maintaining stable decision boundaries. Extensive experiments on five multilingual datasets spanning English, Chinese, and low-resource Bengali demonstrate that KID achieves SOTA performance on both binary and multi-label harmful meme detection tasks, improving over previous best methods by 2.1%--19.7% across primary evaluation metrics. Ablation studies further confirm the effectiveness of knowledge injection and dual-head joint learning, highlighting their complementary contributions to robust and generalizable meme understanding. The code and data are available at https://github.com/PotatoDog1669/KID.
☆ Effective LoRA Adapter Routing using Task Representations
Low-rank adaptation (LoRA) enables parameter efficient specialization of large language models (LLMs) through modular adapters, resulting in rapidly growing public adapter pools spanning diverse tasks. Effectively using these adapters requires routing: selecting and composing the appropriate adapters for a query. We introduce LORAUTER, a novel routing framework that selects and composes LoRA adapters using task representations rather than adapter characteristics. Unlike existing approaches that map queries directly to adapters, LORAUTER routes queries via task embeddings derived from small validation sets and does not require adapter training data. By operating at the task level, LORAUTER achieves efficient routing that scales with the number of tasks rather than the number of adapters. Experiments across multiple tasks show that LORAUTER consistently outperforms baseline routing approaches, matching Oracle performance (101.2%) when task-aligned adapters exist and achieving state-of-the-art results on unseen tasks (+5.2 points). We further demonstrate the robustness of LORAUTER to very large, noisy adapter pools by scaling it to over 1500 adapters.
☆ ECSEL: Explainable Classification via Signomial Equation Learning
We introduce ECSEL, an explainable classification method that learns formal expressions in the form of signomial equations, motivated by the observation that many symbolic regression benchmarks admit compact signomial structure. ECSEL directly constructs a structural, closed-form expression that serves as both a classifier and an explanation. On standard symbolic regression benchmarks, our method recovers a larger fraction of target equations than competing state-of-the-art approaches while requiring substantially less computation. Leveraging this efficiency, ECSEL achieves classification accuracy competitive with established machine learning models without sacrificing interpretability. Further, we show that ECSEL satisfies some desirable properties regarding global feature behavior, decision-boundary analysis, and local feature attributions. Experiments on benchmark datasets and two real-world case studies i.e., e-commerce and fraud detection, demonstrate that the learned equations expose dataset biases, support counterfactual reasoning, and yield actionable insights.
☆ Assessing the Business Process Modeling Competences of Large Language Models
The creation of Business Process Model and Notation (BPMN) models is a complex and time-consuming task requiring both domain knowledge and proficiency in modeling conventions. Recent advances in large language models (LLMs) have significantly expanded the possibilities for generating BPMN models directly from natural language, building upon earlier text-to-process methods with enhanced capabilities in handling complex descriptions. However, there is a lack of systematic evaluations of LLM-generated process models. Current efforts either use LLM-as-a-judge approaches or do not consider established dimensions of model quality. To this end, we introduce BEF4LLM, a novel LLM evaluation framework comprising four perspectives: syntactic quality, pragmatic quality, semantic quality, and validity. Using BEF4LLM, we conduct a comprehensive analysis of open-source LLMs and benchmark their performance against human modeling experts. Results indicate that LLMs excel in syntactic and pragmatic quality, while humans outperform in semantic aspects; however, the differences in scores are relatively modest, highlighting LLMs' competitive potential despite challenges in validity and semantic quality. The insights highlight current strengths and limitations of using LLMs for BPMN modeling and guide future model development and fine-tuning. Addressing these areas is essential for advancing the practical deployment of LLMs in business process modeling.
☆ Synthetic-to-Real Domain Bridging for Single-View 3D Reconstruction of Ships for Maritime Monitoring
Three-dimensional (3D) reconstruction of ships is an important part of maritime monitoring, allowing improved visualization, inspection, and decision-making in real-world monitoring environments. However, most state-ofthe-art 3D reconstruction methods require multi-view supervision, annotated 3D ground truth, or are computationally intensive, making them impractical for real-time maritime deployment. In this work, we present an efficient pipeline for single-view 3D reconstruction of real ships by training entirely on synthetic data and requiring only a single view at inference. Our approach uses the Splatter Image network, which represents objects as sparse sets of 3D Gaussians for rapid and accurate reconstruction from single images. The model is first fine-tuned on synthetic ShapeNet vessels and further refined with a diverse custom dataset of 3D ships, bridging the domain gap between synthetic and real-world imagery. We integrate a state-of-the-art segmentation module based on YOLOv8 and custom preprocessing to ensure compatibility with the reconstruction network. Postprocessing steps include real-world scaling, centering, and orientation alignment, followed by georeferenced placement on an interactive web map using AIS metadata and homography-based mapping. Quantitative evaluation on synthetic validation data demonstrates strong reconstruction fidelity, while qualitative results on real maritime images from the ShipSG dataset confirm the potential for transfer to operational maritime settings. The final system provides interactive 3D inspection of real ships without requiring real-world 3D annotations. This pipeline provides an efficient, scalable solution for maritime monitoring and highlights a path toward real-time 3D ship visualization in practical applications. Interactive demo: https://dlr-mi.github.io/ship3d-demo/.
☆ Abstract Concept Modelling in Conceptual Spaces: A Study on Chess Strategies
We present a conceptual space framework for modelling abstract concepts that unfold over time, demonstrated through a chess-based proof-of-concept. Strategy concepts, such as attack or sacrifice, are represented as geometric regions across interpretable quality dimensions, with chess games instantiated and analysed as trajectories whose directional movement toward regions enables recognition of intended strategies. This approach also supports dual-perspective modelling, capturing how players interpret identical situations differently. Our implementation demonstrates the feasibility of trajectory-based concept recognition, with movement patterns aligning with expert commentary. This work explores extending the conceptual spaces theory to temporally realised, goal-directed concepts. The approach establishes a foundation for broader applications involving sequential decision-making and supports integration with knowledge evolution mechanisms for learning and refining abstract concepts over time.
☆ CoFrGeNet: Continued Fraction Architectures for Language Generation
Transformers are arguably the preferred architecture for language generation. In this paper, inspired by continued fractions, we introduce a new function class for generative modeling. The architecture family implementing this function class is named CoFrGeNets - Continued Fraction Generative Networks. We design novel architectural components based on this function class that can replace Multi-head Attention and Feed-Forward Networks in Transformer blocks while requiring much fewer parameters. We derive custom gradient formulations to optimize the proposed components more accurately and efficiently than using standard PyTorch-based gradients. Our components are a plug-in replacement requiring little change in training or inference procedures that have already been put in place for Transformer-based models thus making our approach easy to incorporate in large industrial workflows. We experiment on two very different transformer architectures GPT2-xl (1.5B) and Llama3 (3.2B), where the former we pre-train on OpenWebText and GneissWeb, while the latter we pre-train on the docling data mix which consists of nine different datasets. Results show that the performance on downstream classification, Q\& A, reasoning and text understanding tasks of our models is competitive and sometimes even superior to the original models with $\frac{2}{3}$ to $\frac{1}{2}$ the parameters and shorter pre-training time. We believe that future implementations customized to hardware will further bring out the true potential of our architectures.
☆ Zero-Shot Statistical Downscaling via Diffusion Posterior Sampling
Conventional supervised climate downscaling struggles to generalize to Global Climate Models (GCMs) due to the lack of paired training data and inherent domain gaps relative to reanalysis. Meanwhile, current zero-shot methods suffer from physical inconsistencies and vanishing gradient issues under large scaling factors. We propose Zero-Shot Statistical Downscaling (ZSSD), a zero-shot framework that performs statistical downscaling without paired data during training. ZSSD leverages a Physics-Consistent Climate Prior learned from reanalysis data, conditioned on geophysical boundaries and temporal information to enforce physical validity. Furthermore, to enable robust inference across varying GCMs, we introduce Unified Coordinate Guidance. This strategy addresses the vanishing gradient problem in vanilla DPS and ensures consistency with large-scale fields. Results show that ZSSD significantly outperforms existing zero-shot baselines in 99th percentile errors and successfully reconstructs complex weather events, such as tropical cyclones, across heterogeneous GCMs.
☆ EWSJF: An Adaptive Scheduler with Hybrid Partitioning for Mixed-Workload LLM Inference
Serving Large Language Models (LLMs) under mixed workloads--short, latency-sensitive interactive queries alongside long, throughput-oriented batch requests--poses a fundamental scheduling challenge. Standard First-Come, First-Served (FCFS) policies suffer from severe head-of-line blocking, leading to high tail latency and underutilized hardware. We introduce EWSJF (Effective Workload-based Shortest Job First), an adaptive request-level scheduler that learns workload structure in real time to jointly improve fairness and throughput. EWSJF operates upstream of execution-level schedulers and integrates four components: (1) Refine-and-Prune, an unsupervised partitioning algorithm that discovers performance-homogeneous request groups; (2) Dynamic Queue Routing for assigning requests to these groups; (3) Density-Weighted Scoring, a context-aware prioritization function balancing urgency and fairness; and (4) Bayesian Meta-Optimization, which continuously tunes scoring and partitioning parameters based on live performance feedback. Implemented in vLLM, EWSJF improves end-to-end throughput by over 30% and reduces average Time-To-First-Token for short requests by up to 4x compared to FCFS. These results demonstrate that adaptive, learning-based request scheduling is a critical missing layer for efficient and responsive LLM serving. Implementation available at https://anonymous.4open.science/r/vllm_0110-32D8.
☆ Language-based Trial and Error Falls Behind in the Era of Experience
While Large Language Models (LLMs) excel in language-based agentic tasks, their applicability to unseen, nonlinguistic environments (e.g., symbolic or spatial tasks) remains limited. Previous work attributes this performance gap to the mismatch between the pretraining distribution and the testing distribution. In this work, we demonstrate the primary bottleneck is the prohibitive cost of exploration: mastering these tasks requires extensive trial-and-error, which is computationally unsustainable for parameter-heavy LLMs operating in a high dimensional semantic space. To address this, we propose SCOUT (Sub-Scale Collaboration On Unseen Tasks), a novel framework that decouples exploration from exploitation. We employ lightweight "scouts" (e.g., small MLPs) to probe environmental dynamics at a speed and scale far exceeding LLMs. The collected trajectories are utilized to bootstrap the LLM via Supervised Fine-Tuning (SFT), followed by multi-turn Reinforcement Learning (RL) to activate its latent world knowledge. Empirically, SCOUT enables a Qwen2.5-3B-Instruct model to achieve an average score of 0.86, significantly outperforming proprietary models, including Gemini-2.5-Pro (0.60), while saving about 60% GPU hours consumption.
☆ Temporal Sepsis Modeling: a Fully Interpretable Relational Way
Sepsis remains one of the most complex and heterogeneous syndromes in intensive care, characterized by diverse physiological trajectories and variable responses to treatment. While deep learning models perform well in the early prediction of sepsis, they often lack interpretability and ignore latent patient sub-phenotypes. In this work, we propose a machine learning framework by opening up a new avenue for addressing this issue: a relational approach. Temporal data from electronic medical records (EMRs) are viewed as multivariate patient logs and represented in a relational data schema. Then, a propositionalisation technique (based on classic aggregation/selection functions from the field of relational data) is applied to construct interpretable features to "flatten" the data. Finally, the flattened data is classified using a selective naive Bayesian classifier. Experimental validation demonstrates the relevance of the suggested approach as well as its extreme interpretability. The interpretation is fourfold: univariate, global, local, and counterfactual.
☆ Epistemic Context Learning: Building Trust the Right Way in LLM-Based Multi-Agent Systems
Individual agents in multi-agent (MA) systems often lack robustness, tending to blindly conform to misleading peers. We show this weakness stems from both sycophancy and inadequate ability to evaluate peer reliability. To address this, we first formalize the learning problem of history-aware reference, introducing the historical interactions of peers as additional input, so that agents can estimate peer reliability and learn from trustworthy peers when uncertain. This shifts the task from evaluating peer reasoning quality to estimating peer reliability based on interaction history. We then develop Epistemic Context Learning (ECL): a reasoning framework that conditions predictions on explicitly-built peer profiles from history. We further optimize ECL by reinforcement learning using auxiliary rewards. Our experiments reveal that our ECL enables small models like Qwen 3-4B to outperform a history-agnostic baseline 8x its size (Qwen 3-30B) by accurately identifying reliable peers. ECL also boosts frontier models to near-perfect (100%) performance. We show that ECL generalizes well to various MA configurations and we find that trust is modeled well by LLMs, revealing a strong correlation in trust modeling accuracy and final answer quality.
comment: Codes and data are available at https://github.com/skyriver-2000/epistemic-context-learning
☆ Why Adam Works Better with $β_1 = β_2$: The Missing Gradient Scale Invariance Principle
Adam has been at the core of large-scale training for almost a decade, yet a simple empirical fact remains unaccounted for: both validation scores and the qualitative behaviour of the training runs improve when the momentum parameters satisfy $β_{1}=β_{2}$. Some recent studies have reported this pattern, but there is still no explanation for why this choice helps. We show that this choice is closely tied to a structural property that we refer to as \textit{gradient scale invariance}. We formalize this notion and prove that Adam becomes gradient scale invariant of first order if and only if $β_{1}=β_{2}$. This perspective places the balanced regime of Adam in direct alignment with the design principles underlying several recent optimizers that explicitly enforce scale-robust updates. The theory is supported by experiments across vision and language tasks, and across different architectural families, in which rescaling the gradient has a markedly smoother effect on the update when $β_{1}=β_{2}$. Overall, our results offer a coherent explanation for an open question in the behavior of Adam and provide a simple principle that helps guide the design of future optimizers.
comment: 23 pages, 8 figures. Preprint
☆ From Global to Granular: Revealing IQA Model Performance via Correlation Surface
Evaluation of Image Quality Assessment (IQA) models has long been dominated by global correlation metrics, such as Pearson Linear Correlation Coefficient (PLCC) and Spearman Rank-Order Correlation Coefficient (SRCC). While widely adopted, these metrics reduce performance to a single scalar, failing to capture how ranking consistency varies across the local quality spectrum. For example, two IQA models may achieve identical SRCC values, yet one ranks high-quality images (related to high Mean Opinion Score, MOS) more reliably, while the other better discriminates image pairs with small quality/MOS differences (related to $|Δ$MOS$|$). Such complementary behaviors are invisible under global metrics. Moreover, SRCC and PLCC are sensitive to test-sample quality distributions, yielding unstable comparisons across test sets. To address these limitations, we propose \textbf{Granularity-Modulated Correlation (GMC)}, which provides a structured, fine-grained analysis of IQA performance. GMC includes: (1) a \textbf{Granularity Modulator} that applies Gaussian-weighted correlations conditioned on absolute MOS values and pairwise MOS differences ($|Δ$MOS$|$) to examine local performance variations, and (2) a \textbf{Distribution Regulator} that regularizes correlations to mitigate biases from non-uniform quality distributions. The resulting \textbf{correlation surface} maps correlation values as a joint function of MOS and $|Δ$MOS$|$, providing a 3D representation of IQA performance. Experiments on standard benchmarks show that GMC reveals performance characteristics invisible to scalar metrics, offering a more informative and reliable paradigm for analyzing, comparing, and deploying IQA models. Codes are available at https://github.com/Dniaaa/GMC.
☆ DropoutTS: Sample-Adaptive Dropout for Robust Time Series Forecasting
Deep time series models are vulnerable to noisy data ubiquitous in real-world applications. Existing robustness strategies either prune data or rely on costly prior quantification, failing to balance effectiveness and efficiency. In this paper, we introduce DropoutTS, a model-agnostic plugin that shifts the paradigm from "what" to learn to "how much" to learn. DropoutTS employs a Sample-Adaptive Dropout mechanism: leveraging spectral sparsity to efficiently quantify instance-level noise via reconstruction residuals, it dynamically calibrates model learning capacity by mapping noise to adaptive dropout rates - selectively suppressing spurious fluctuations while preserving fine-grained fidelity. Extensive experiments across diverse noise regimes and open benchmarks show DropoutTS consistently boosts superior backbones' performance, delivering advanced robustness with negligible parameter overhead and no architectural modifications. Our code is available at https://github.com/CityMind-Lab/DropoutTS.
☆ Enhancing Language Models for Robust Greenwashing Detection
Sustainability reports are critical for ESG assessment, yet greenwashing and vague claims often undermine their reliability. Existing NLP models lack robustness to these practices, typically relying on surface-level patterns that generalize poorly. We propose a parameter-efficient framework that structures LLM latent spaces by combining contrastive learning with an ordinal ranking objective to capture graded distinctions between concrete actions and ambiguous claims. Our approach incorporates gated feature modulation to filter disclosure noise and utilizes MetaGradNorm to stabilize multi-objective optimization. Experiments in cross-category settings demonstrate superior robustness over standard baselines while revealing a trade-off between representational rigidity and generalization.
☆ When does predictive inverse dynamics outperform behavior cloning?
Behavior cloning (BC) is a practical offline imitation learning method, but it often fails when expert demonstrations are limited. Recent works have introduced a class of architectures named predictive inverse dynamics models (PIDM) that combine a future state predictor with an inverse dynamics model (IDM). While PIDM often outperforms BC, the reasons behind its benefits remain unclear. In this paper, we provide a theoretical explanation: PIDM introduces a bias-variance tradeoff. While predicting the future state introduces bias, conditioning the IDM on the prediction can significantly reduce variance. We establish conditions on the state predictor bias for PIDM to achieve lower prediction error and higher sample efficiency than BC, with the gap widening when additional data sources are available. We validate the theoretical insights empirically in 2D navigation tasks, where BC requires up to five times (three times on average) more demonstrations than PIDM to reach comparable performance; and in a complex 3D environment in a modern video game with high-dimensional visual inputs and stochastic transitions, where BC requires over 66\% more samples than PIDM.
comment: Preprint
☆ DreamActor-M2: Universal Character Image Animation via Spatiotemporal In-Context Learning
Character image animation aims to synthesize high-fidelity videos by transferring motion from a driving sequence to a static reference image. Despite recent advancements, existing methods suffer from two fundamental challenges: (1) suboptimal motion injection strategies that lead to a trade-off between identity preservation and motion consistency, manifesting as a "see-saw", and (2) an over-reliance on explicit pose priors (e.g., skeletons), which inadequately capture intricate dynamics and hinder generalization to arbitrary, non-humanoid characters. To address these challenges, we present DreamActor-M2, a universal animation framework that reimagines motion conditioning as an in-context learning problem. Our approach follows a two-stage paradigm. First, we bridge the input modality gap by fusing reference appearance and motion cues into a unified latent space, enabling the model to jointly reason about spatial identity and temporal dynamics by leveraging the generative prior of foundational models. Second, we introduce a self-bootstrapped data synthesis pipeline that curates pseudo cross-identity training pairs, facilitating a seamless transition from pose-dependent control to direct, end-to-end RGB-driven animation. This strategy significantly enhances generalization across diverse characters and motion scenarios. To facilitate comprehensive evaluation, we further introduce AW Bench, a versatile benchmark encompassing a wide spectrum of characters types and motion scenarios. Extensive experiments demonstrate that DreamActor-M2 achieves state-of-the-art performance, delivering superior visual fidelity and robust cross-domain generalization. Project Page: https://grisoon.github.io/DreamActor-M2/
☆ E-mem: Multi-agent based Episodic Context Reconstruction for LLM Agent Memory
The evolution of Large Language Model (LLM) agents towards System~2 reasoning, characterized by deliberative, high-precision problem-solving, requires maintaining rigorous logical integrity over extended horizons. However, prevalent memory preprocessing paradigms suffer from destructive de-contextualization. By compressing complex sequential dependencies into pre-defined structures (e.g., embeddings or graphs), these methods sever the contextual integrity essential for deep reasoning. To address this, we propose E-mem, a framework shifting from Memory Preprocessing to Episodic Context Reconstruction. Inspired by biological engrams, E-mem employs a heterogeneous hierarchical architecture where multiple assistant agents maintain uncompressed memory contexts, while a central master agent orchestrates global planning. Unlike passive retrieval, our mechanism empowers assistants to locally reason within activated segments, extracting context-aware evidence before aggregation. Evaluations on the LoCoMo benchmark demonstrate that E-mem achieves over 54\% F1, surpassing the state-of-the-art GAM by 7.75\%, while reducing token cost by over 70\%.
comment: 18 pages
☆ Disentangling perception and reasoning for improving data efficiency in learning cloth manipulation without demonstrations
Cloth manipulation is a ubiquitous task in everyday life, but it remains an open challenge for robotics. The difficulties in developing cloth manipulation policies are attributed to the high-dimensional state space, complex dynamics, and high propensity to self-occlusion exhibited by fabrics. As analytical methods have not been able to provide robust and general manipulation policies, reinforcement learning (RL) is considered a promising approach to these problems. However, to address the large state space and complex dynamics, data-based methods usually rely on large models and long training times. The resulting computational cost significantly hampers the development and adoption of these methods. Additionally, due to the challenge of robust state estimation, garment manipulation policies often adopt an end-to-end learning approach with workspace images as input. While this approach enables a conceptually straightforward sim-to-real transfer via real-world fine-tuning, it also incurs a significant computational cost by training agents on a highly lossy representation of the environment state. This paper questions this common design choice by exploring an efficient and modular approach to RL for cloth manipulation. We show that, through careful design choices, model size and training time can be significantly reduced when learning in simulation. Furthermore, we demonstrate how the resulting simulation-trained model can be transferred to the real world. We evaluate our approach on the SoftGym benchmark and achieve significant performance improvements over available baselines on our task, while using a substantially smaller model.
comment: 6 pages, 4 figures,
☆ TACLer: Tailored Curriculum Reinforcement Learning for Efficient Reasoning
Large Language Models (LLMs) have shown remarkable performance on complex reasoning tasks, especially when equipped with long chain-of-thought (CoT) reasoning. However, eliciting long CoT typically requires large-scale reinforcement learning (RL) training, while often leading to overthinking with redundant intermediate steps. To improve learning and reasoning efficiency, while preserving or even enhancing performance, we propose TACLer, a model-tailored curriculum reinforcement learning framework that gradually increases the complexity of the data based on the model's proficiency in multi-stage RL training. TACLer features two core components: (i) tailored curriculum learning that determines what knowledge the model lacks and needs to learn in progressive stages; (ii) a hybrid Thinking/NoThinking reasoning paradigm that balances accuracy and efficiency by enabling or disabling the Thinking mode. Our experiments show that TACLer yields a twofold advantage in learning and reasoning: (i) it reduces computational cost, cutting training compute by over 50% compared to long thinking models and reducing inference token usage by over 42% relative to the base model; and (ii) it improves accuracy by over 9% on the base model, consistently outperforming state-of-the-art Nothinking and Thinking baselines across four math datasets with complex problems.
☆ FBS: Modeling Native Parallel Reading inside a Transformer
Large language models (LLMs) excel across many tasks, yet inference is still dominated by strictly token-by-token autoregression. Existing acceleration methods largely patch this pipeline and miss core human-reading ingredients: content-adaptive foresight, chunk-structure-aware compute allocation, and train--test consistency for preview/skimming. We propose the \textbf{Fovea-Block-Skip Transformer} (FBS), which injects a causal, trainable loop into Transformers via Parafovea-Attention Window (PAW), Chunk-Head (CH), and Skip-Gate (SG). Across diverse benchmarks, FBS improves the quality-efficiency trade-off without increasing parameters, and ablations show the three modules are complementary.
☆ Toward Culturally Aligned LLMs through Ontology-Guided Multi-Agent Reasoning
Large Language Models (LLMs) increasingly support culturally sensitive decision making, yet often exhibit misalignment due to skewed pretraining data and the absence of structured value representations. Existing methods can steer outputs, but often lack demographic grounding and treat values as independent, unstructured signals, reducing consistency and interpretability. We propose OG-MAR, an Ontology-Guided Multi-Agent Reasoning framework. OG-MAR summarizes respondent-specific values from the World Values Survey (WVS) and constructs a global cultural ontology by eliciting relations over a fixed taxonomy via competency questions. At inference time, it retrieves ontology-consistent relations and demographically similar profiles to instantiate multiple value-persona agents, whose outputs are synthesized by a judgment agent that enforces ontology consistency and demographic proximity. Experiments on regional social-survey benchmarks across four LLM backbones show that OG-MAR improves cultural alignment and robustness over competitive baselines, while producing more transparent reasoning traces.
comment: 35 pages
☆ Curriculum Learning for LLM Pretraining: An Analysis of Learning Dynamics
Curriculum learning changes the order of pre-training data, but it remains unclear whether it changes the learning trajectory or mainly reorders exposure over a fixed trajectory. We train Pythia models (14M-410M parameters) for 300B tokens under three linguistically motivated curricula-Age-of-Acquisition, word frequency, and Verb Variation (VV)-and compare each against Random ordering; at 1B parameters we compare Random and VV. Across orderings, training follows a shared sequence of latent phases, while curricula mainly change within-phase data exposure. In smaller models (up to 160M parameters), Random ordering exhibits higher gradient noise and stronger late-training output-head spectral saturation, alongside lower final accuracy; curricula reduce both effects at matched compute. At larger scales, saturation differences are smaller and curriculum gains shrink. We formalize the link between difficulty pacing and optimization stability in an idealized analysis based on gradient-variance control, and our results point to a practical takeaway: curricula help by stabilizing within-phase optimization rather than by creating new phases.
☆ TCAP: Tri-Component Attention Profiling for Unsupervised Backdoor Detection in MLLM Fine-Tuning
Fine-Tuning-as-a-Service (FTaaS) facilitates the customization of Multimodal Large Language Models (MLLMs) but introduces critical backdoor risks via poisoned data. Existing defenses either rely on supervised signals or fail to generalize across diverse trigger types and modalities. In this work, we uncover a universal backdoor fingerprint-attention allocation divergence-where poisoned samples disrupt the balanced attention distribution across three functional components: system instructions, vision inputs, and user textual queries, regardless of trigger morphology. Motivated by this insight, we propose Tri-Component Attention Profiling (TCAP), an unsupervised defense framework to filter backdoor samples. TCAP decomposes cross-modal attention maps into the three components, identifies trigger-responsive attention heads via Gaussian Mixture Model (GMM) statistical profiling, and isolates poisoned samples through EM-based vote aggregation. Extensive experiments across diverse MLLM architectures and attack methods demonstrate that TCAP achieves consistently strong performance, establishing it as a robust and practical backdoor defense in MLLMs.
☆ XFACTORS: Disentangled Information Bottleneck via Contrastive Supervision
Disentangled representation learning aims to map independent factors of variation to independent representation components. On one hand, purely unsupervised approaches have proven successful on fully disentangled synthetic data, but fail to recover semantic factors from real data without strong inductive biases. On the other hand, supervised approaches are unstable and hard to scale to large attribute sets because they rely on adversarial objectives or auxiliary classifiers. We introduce \textsc{XFactors}, a weakly-supervised VAE framework that disentangles and provides explicit control over a chosen set of factors. Building on the Disentangled Information Bottleneck perspective, we decompose the representation into a residual subspace $\mathcal{S}$ and factor-specific subspaces $\mathcal{T}_1,\ldots,\mathcal{T}_K$ and a residual subspace $\mathcal{S}$. Each target factor is encoded in its assigned $\mathcal{T}_i$ through contrastive supervision: an InfoNCE loss pulls together latents sharing the same factor value and pushes apart mismatched pairs. In parallel, KL regularization imposes a Gaussian structure on both $\mathcal{S}$ and the aggregated factor subspaces, organizing the geometry without additional supervision for non-targeted factors and avoiding adversarial training and classifiers. Across multiple datasets, with constant hyperparameters, \textsc{XFactors} achieves state-of-the-art disentanglement scores and yields consistent qualitative factor alignment in the corresponding subspaces, enabling controlled factor swapping via latent replacement. We further demonstrate that our method scales correctly with increasing latent capacity and evaluate it on the real-world dataset CelebA. Our code is available at \href{https://github.com/ICML26-anon/XFactors}{github.com/ICML26-anon/XFactors}.
☆ FIT: Defying Catastrophic Forgetting in Continual LLM Unlearning
Large language models (LLMs) demonstrate impressive capabilities across diverse tasks but raise concerns about privacy, copyright, and harmful materials. Existing LLM unlearning methods rarely consider the continual and high-volume nature of real-world deletion requests, which can cause utility degradation and catastrophic forgetting as requests accumulate. To address this challenge, we introduce \fit, a framework for continual unlearning that handles large numbers of deletion requests while maintaining robustness against both catastrophic forgetting and post-unlearning recovery. \fit mitigates degradation through rigorous data \underline{F}iltering, \underline{I}mportance-aware updates, and \underline{T}argeted layer attribution, enabling stable performance across long sequences of unlearning operations and achieving a favorable balance between forgetting effectiveness and utility retention. To support realistic evaluation, we present \textbf{PCH}, a benchmark covering \textbf{P}ersonal information, \textbf{C}opyright, and \textbf{H}armful content in sequential deletion scenarios, along with two symmetric metrics, Forget Degree (F.D.) and Retain Utility (R.U.), which jointly assess forgetting quality and utility preservation. Extensive experiments on four open-source LLMs with hundreds of deletion requests show that \fit achieves the strongest trade-off between F.D. and R.U., surpasses existing methods on MMLU, CommonsenseQA, and GSM8K, and remains resistant against both relearning and quantization recovery attacks.
comment: 20 Pages
☆ Expected Return Causes Outcome-Level Mode Collapse in Reinforcement Learning and How to Fix It with Inverse Probability Scaling
Many reinforcement learning (RL) problems admit multiple terminal solutions of comparable quality, where the goal is not to identify a single optimum but to represent a diverse set of high-quality outcomes. Nevertheless, policies trained by standard expected return maximization routinely collapse onto a small subset of outcomes, a phenomenon commonly attributed to insufficient exploration or weak regularization. We show that this explanation is incomplete: outcome level mode collapse is a structural consequence of the expected-return objective itself. Under idealized learning dynamics, the log-probability ratio between any two outcomes evolves linearly in their reward difference, implying exponential ratio divergence and inevitable collapse independent of the exploration strategy, entropy regularization, or optimization algorithm. We identify the source of this pathology as the probability multiplier inside the expectation and propose a minimal correction: inverse probability scaling, which removes outcome-frequency amplification from the learning signal, fundamentally changes the learning dynamics, and provably yields reward-proportional terminal distributions, preventing collapse in multimodal settings. We instantiate this principle in Group Relative Policy Optimization (GRPO) as a drop-in modification, IPS-GRPO, requiring no auxiliary models or architectural changes. Across different reasoning and molecular generation tasks, IPS-GRPO consistently reduces outcome-level mode collapse while matching or exceeding baseline performance, suggesting that correcting the objective rather than adding exploration heuristics is key to reliable multimodal policy optimization.
☆ SONIC-O1: A Real-World Benchmark for Evaluating Multimodal Large Language Models on Audio-Video Understanding
Multimodal Large Language Models (MLLMs) are a major focus of recent AI research. However, most prior work focuses on static image understanding, while their ability to process sequential audio-video data remains underexplored. This gap highlights the need for a high-quality benchmark to systematically evaluate MLLM performance in a real-world setting. We introduce SONIC-O1, a comprehensive, fully human-verified benchmark spanning 13 real-world conversational domains with 4,958 annotations and demographic metadata. SONIC-O1 evaluates MLLMs on key tasks, including open-ended summarization, multiple-choice question (MCQ) answering, and temporal localization with supporting rationales (reasoning). Experiments on closed- and open-source models reveal limitations. While the performance gap in MCQ accuracy between two model families is relatively small, we observe a substantial 22.6% performance difference in temporal localization between the best performing closed-source and open-source models. Performance further degrades across demographic groups, indicating persistent disparities in model behavior. Overall, SONIC-O1 provides an open evaluation suite for temporally grounded and socially robust multimodal understanding. We release SONIC-O1 for reproducibility and research: Project page: https://vectorinstitute.github.io/sonic-o1/ Dataset: https://huggingface.co/datasets/vector-institute/sonic-o1 Github: https://github.com/vectorinstitute/sonic-o1 Leaderboard: https://huggingface.co/spaces/vector-institute/sonic-o1-leaderboard
☆ SENDAI: A Hierarchical Sparse-measurement, EfficieNt Data AssImilation Framework
Bridging the gap between data-rich training regimes and observation-sparse deployment conditions remains a central challenge in spatiotemporal field reconstruction, particularly when target domains exhibit distributional shifts, heterogeneous structure, and multi-scale dynamics absent from available training data. We present SENDAI, a hierarchical Sparse-measurement, EfficieNt Data AssImilation Framework that reconstructs full spatial states from hyper sparse sensor observations by combining simulation-derived priors with learned discrepancy corrections. We demonstrate the performance on satellite remote sensing, reconstructing MODIS (Moderate Resolution Imaging Spectroradiometer) derived vegetation index fields across six globally distributed sites. Using seasonal periods as a proxy for domain shift, the framework consistently outperforms established baselines that require substantially denser observations -- SENDAI achieves a maximum SSIM improvement of 185% over traditional baselines and a 36% improvement over recent high-frequency-based methods. These gains are particularly pronounced for landscapes with sharp boundaries and sub-seasonal dynamics; more importantly, the framework effectively preserves diagnostically relevant structures -- such as field topologies, land cover discontinuities, and spatial gradients. By yielding corrections that are more structurally and spectrally separable, the reconstructed fields are better suited for downstream inference of indirectly observed variables. The results therefore highlight a lightweight and operationally viable framework for sparse-measurement reconstruction that is applicable to physically grounded inference, resource-limited deployment, and real-time monitor and control.
☆ ScholarGym: Benchmarking Deep Research Workflows on Academic Literature Retrieval
Tool-augmented large language models have advanced from single-turn question answering to deep research workflows that iteratively plan queries, invoke external tools, and synthesize information to address complex information needs. Evaluating such workflows presents a fundamental challenge: reliance on live APIs introduces non-determinism, as tool invocations may yield different results across runs due to temporal drift, rate limiting, and evolving backend states. This variance undermines reproducibility and invalidates cross-system comparisons. We present ScholarGym, a simulation environment for reproducible evaluation of deep research workflows on academic literature. The environment decouples workflow components into query planning, tool invocation, and relevance assessment, enabling fine-grained analysis of each stage under controlled conditions. Built on a static corpus of 570K papers with deterministic retrieval, ScholarGym provides 2,536 queries with expert-annotated ground truth. Experiments across diverse backbone models reveal how reasoning capabilities, planning strategies, and selection mechanisms interact over iterative refinement.
☆ Gauge-invariant representation holonomy ICLR
Deep networks learn internal representations whose geometry--how features bend, rotate, and evolve--affects both generalization and robustness. Existing similarity measures such as CKA or SVCCA capture pointwise overlap between activation sets, but miss how representations change along input paths. Two models may appear nearly identical under these metrics yet respond very differently to perturbations or adversarial stress. We introduce representation holonomy, a gauge-invariant statistic that measures this path dependence. Conceptually, holonomy quantifies the "twist" accumulated when features are parallel-transported around a small loop in input space: flat representations yield zero holonomy, while nonzero values reveal hidden curvature. Our estimator fixes gauge through global whitening, aligns neighborhoods using shared subspaces and rotation-only Procrustes, and embeds the result back to the full feature space. We prove invariance to orthogonal (and affine, post-whitening) transformations, establish a linear null for affine layers, and show that holonomy vanishes at small radii. Empirically, holonomy increases with loop radius, separates models that appear similar under CKA, and correlates with adversarial and corruption robustness. It also tracks training dynamics as features form and stabilize. Together, these results position representation holonomy as a practical and scalable diagnostic for probing the geometric structure of learned representations beyond pointwise similarity.
comment: 14th International Conference on Learning Representations (ICLR)
☆ When Life Gives You AI, Will You Turn It Into A Market for Lemons? Understanding How Information Asymmetries About AI System Capabilities Affect Market Outcomes and Adoption
AI consumer markets are characterized by severe buyer-supplier market asymmetries. Complex AI systems can appear highly accurate while making costly errors or embedding hidden defects. While there have been regulatory efforts surrounding different forms of disclosure, large information gaps remain. This paper provides the first experimental evidence on the important role of information asymmetries and disclosure designs in shaping user adoption of AI systems. We systematically vary the density of low-quality AI systems and the depth of disclosure requirements in a simulated AI product market to gauge how people react to the risk of accidentally relying on a low-quality AI system. Then, we compare participants' choices to a rational Bayesian model, analyzing the degree to which partial information disclosure can improve AI adoption. Our results underscore the deleterious effects of information asymmetries on AI adoption, but also highlight the potential of partial disclosure designs to improve the overall efficiency of human decision-making.
☆ SWE-Spot: Building Small Repo-Experts with Repository-Centric Learning
The deployment of coding agents in privacy-sensitive and resource-constrained environments drives the demand for capable open-weight Small Language Models (SLMs). However, they suffer from a fundamental capability gap: unlike frontier large models, they lack the inference-time strong generalization to work with complicated, unfamiliar codebases. We identify that the prevailing Task-Centric Learning (TCL) paradigm, which scales exposure across disparate repositories, fails to address this limitation. In response, we propose Repository-Centric Learning (RCL), a paradigm shift that prioritizes vertical repository depth over horizontal task breadth, suggesting SLMs must internalize the "physics" of a target software environment through parametric knowledge acquisition, rather than attempting to recover it via costly inference-time search. Following this new paradigm, we design a four-unit Repository-Centric Experience, transforming static codebases into interactive learning signals, to train SWE-Spot-4B, a family of highly compact models built as repo-specialized experts that breaks established scaling trends, outperforming open-weight models up to larger (e.g., CWM by Meta, Qwen3-Coder-30B) and surpassing/matching efficiency-focused commercial models (e.g., GPT-4.1-mini, GPT-5-nano) across multiple SWE tasks. Further analysis reveals that RCL yields higher training sample efficiency and lower inference costs, emphasizing that for building efficient intelligence, repository mastery is a distinct and necessary dimension that complements general coding capability.
☆ ILRR: Inference-Time Steering Method for Masked Diffusion Language Models
Discrete Diffusion Language Models (DLMs) offer a promising non-autoregressive alternative for text generation, yet effective mechanisms for inference-time control remain relatively underexplored. Existing approaches include sampling-level guidance procedures or trajectory optimization mechanisms. In this work, we introduce Iterative Latent Representation Refinement (ILRR), a learning-free framework for steering DLMs using a single reference sequence. ILRR guides generation by dynamically aligning the internal activations of the generated sequence with those of a given reference throughout the denoising process. This approach captures and transfers high-level semantic properties, with a tunable steering scale enabling flexible control over attributes such as sentiment. We further introduce Spatially Modulated Steering, an extension that enables steering long texts using shorter references by regulating guidance intensity across the sequence. Empirically, we demonstrate that ILRR achieves effective attribute steering on LLaDA and MDLM architectures with a minor computational overhead, requiring only one additional parallel forward pass per denoising step. Under the same compute budget, ILRR improves attribute accuracy over comparable baselines by 10$\%$ to 60$\%$ points, while maintaining high generation quality.
☆ Seg-MoE: Multi-Resolution Segment-wise Mixture-of-Experts for Time Series Forecasting Transformers
Transformer-based models have recently made significant advances in accurate time-series forecasting, but even these architectures struggle to scale efficiently while capturing long-term temporal dynamics. Mixture-of-Experts (MoE) layers are a proven solution to scaling problems in natural language processing. However, existing MoE approaches for time-series forecasting rely on token-wise routing mechanisms, which may fail to exploit the natural locality and continuity of temporal data. In this work, we introduce Seg-MoE, a sparse MoE design that routes and processes contiguous time-step segments rather than making independent expert decisions. Token segments allow each expert to model intra-segment interactions directly, naturally aligning with inherent temporal patterns. We integrate Seg-MoE layers into a time-series Transformer and evaluate it on multiple multivariate long-term forecasting benchmarks. Seg-MoE consistently achieves state-of-the-art forecasting accuracy across almost all prediction horizons, outperforming both dense Transformers and prior token-wise MoE models. Comprehensive ablation studies confirm that segment-level routing is the key factor driving these gains. Our results show that aligning the MoE routing granularity with the inherent structure of time series provides a powerful, yet previously underexplored, inductive bias, opening new avenues for conditionally sparse architectures in sequential data modeling.
comment: Under review
☆ HeRo-Q: A General Framework for Stable Low Bit Quantization via Hessian Conditioning
Post Training Quantization (PTQ), a mainstream model compression technique, often leads to the paradoxical 'low error, high loss' phenomenon because it focuses solely on minimizing quantization error. The root cause lies in the Hessian matrix of the LLM loss landscape: a few high curvature directions are extremely sensitive to perturbations. To address this, we propose the Hessian Robust Quantization (HeRo Q) algorithm, which applies a lightweight, learnable rotation-compression matrix to the weight space prior to quantization. This joint framework reshapes the loss landscape by reducing the largest Hessian eigenvalue and reducing its max eigenvalue, thereby significantly enhancing robustness to quantization noise. HeRo-Q requires no architectural modifications, incurs negligible computational overhead, and integrates seamlessly into existing PTQ pipelines. Experiments on Llama and Qwen models show that HeRo Q consistently outperforms state of the art methods including GPTQ, AWQ, and SpinQuant not only achieving superior performance under standard W4A8 settings, but also excelling in the highly challenging W3A16 ultra low bit regime, where it boosts GSM8K accuracy on Llama3 8B to 70.15\% and effectively avoids the logical collapse commonly seen in aggressive quantization.
☆ Breaking the Overscaling Curse: Thinking Parallelism Before Parallel Thinking
Parallel thinking enhances LLM reasoning by multi-path sampling and aggregation. In system-level evaluations, a global parallelism level N is allocated to all samples, typically set large to maximize overall dataset accuracy. However, due to sample heterogeneity, some samples can achieve comparable performance with a smaller N'< N, causing budget redundancy. This incompatibility between system-level efficacy and sample-level efficiency constitutes the overscaling curse. In this paper, we formalize and quantify the overscaling curse, showing its universality and severity in practice, and analyze its trigger mechanism. We then propose a lightweight method, T2, to break the overscaling curse, which utilizes latent representations to estimate the optimal parallelism level for each sample before decoding. Experiments show that T2 significantly reduces cost while maintaining comparable performance, enabling more efficient parallel thinking.
☆ Semantic Content Determines Algorithmic Performance
Counting should not depend on what is being counted; more generally, any algorithm's behavior should be invariant to the semantic content of its arguments. We introduce WhatCounts to test this property in isolation. Unlike prior work that conflates semantic sensitivity with reasoning complexity or prompt variation, WhatCounts is atomic: count items in an unambiguous, delimited list with no duplicates, distractors, or reasoning steps for different semantic types. Frontier LLMs show over 40% accuracy variation depending solely on what is being counted - cities versus chemicals, names versus symbols. Controlled ablations rule out confounds. The gap is semantic, and it shifts unpredictably with small amounts of unrelated fine-tuning. LLMs do not implement algorithms; they approximate them, and the approximation is argument-dependent. As we show with an agentic example, this has implications beyond counting: any LLM function may carry hidden dependencies on the meaning of its inputs.
☆ Beyond Parameter Finetuning: Test-Time Representation Refinement for Node Classification
Graph Neural Networks frequently exhibit significant performance degradation in the out-of-distribution test scenario. While test-time training (TTT) offers a promising solution, existing Parameter Finetuning (PaFT) paradigm suffer from catastrophic forgetting, hindering their real-world applicability. We propose TTReFT, a novel Test-Time Representation FineTuning framework that transitions the adaptation target from model parameters to latent representations. Specifically, TTReFT achieves this through three key innovations: (1) uncertainty-guided node selection for specific interventions, (2) low-rank representation interventions that preserve pre-trained knowledge, and (3) an intervention-aware masked autoencoder that dynamically adjust masking strategy to accommodate the node selection scheme. Theoretically, we establish guarantees for TTReFT in OOD settings. Empirically, extensive experiments across five benchmark datasets demonstrate that TTReFT achieves consistent and superior performance. Our work establishes representation finetuning as a new paradigm for graph TTT, offering both theoretical grounding and immediate practical utility for real-world deployment.
☆ Representation-Regularized Convolutional Audio Transformer for Audio Understanding
Bootstrap-based Self-Supervised Learning (SSL) has achieved remarkable progress in audio understanding. However, existing methods typically operate at a single level of granularity, limiting their ability to model the diverse temporal and spectral structures inherent in complex audio signals. Furthermore, bootstrapping representations from scratch is computationally expensive, often requiring extensive training to converge. In this work, we propose the Convolutional Audio Transformer (CAT), a unified framework designed to address these challenges. First, to capture hierarchical audio features, CAT incorporates a Multi-resolution Block that aggregates information across varying granularities. Second, to enhance training efficiency, we introduce a Representation Regularization objective. Drawing inspiration from generative modeling, this auxiliary task guides the student model by aligning its predictions with high-quality semantic representations from frozen, pre-trained external encoders. Experimental results demonstrate that CAT significantly outperforms baselines on audio understanding benchmarks. Notably, it achieves competitive performance on the AudioSet 20k dataset with 5 times faster convergence than existing methods. Codes and checkpoints will be released soon at https://github.com/realzhouchushu/CAT.
comment: 12 pages, 3 figures
☆ Thinking Broad, Acting Fast: Latent Reasoning Distillation from Multi-Perspective Chain-of-Thought for E-Commerce Relevance WWW2026
Effective relevance modeling is crucial for e-commerce search, as it aligns search results with user intent and enhances customer experience. Recent work has leveraged large language models (LLMs) to address the limitations of traditional relevance models, especially for long-tail and ambiguous queries. By incorporating Chain-of-Thought (CoT) reasoning, these approaches improve both accuracy and interpretability through multi-step reasoning. However, two key limitations remain: (1) most existing approaches rely on single-perspective CoT reasoning, which fails to capture the multifaceted nature of e-commerce relevance (e.g., user intent vs. attribute-level matching vs. business-specific rules); and (2) although CoT-enhanced LLM's offer rich reasoning capabilities, their high inference latency necessitates knowledge distillation for real-time deployment, yet current distillation methods discard the CoT rationale structure at inference, using it as a transient auxiliary signal and forfeiting its reasoning utility. To address these challenges, we propose a novel framework that better exploits CoT semantics throughout the optimization pipeline. Specifically, the teacher model leverages Multi-Perspective CoT (MPCoT) to generate diverse rationales and combines Supervised Fine-Tuning (SFT) with Direct Preference Optimization (DPO) to construct a more robust reasoner. For distillation, we introduce Latent Reasoning Knowledge Distillation (LRKD), which endows a student model with a lightweight inference-time latent reasoning extractor, allowing efficient and low-latency internalization of the LLM's sophisticated reasoning capabilities. Evaluated in offline experiments and online A/B tests on an e-commerce search advertising platform serving tens of millions of users daily, our method delivers significant offline gains, showing clear benefits in both commercial performance and user experience.
comment: 12 pages, 6 figures, Accepted by WWW2026 industry track
☆ RecNet: Self-Evolving Preference Propagation for Agentic Recommender Systems
Agentic recommender systems leverage Large Language Models (LLMs) to model complex user behaviors and support personalized decision-making. However, existing methods primarily model preference changes based on explicit user-item interactions, which are sparse, noisy, and unable to reflect the real-time, mutual influences among users and items. To address these limitations, we propose RecNet, a self-evolving preference propagation framework that proactively propagates real-time preference updates across related users and items. RecNet consists of two complementary phases. In the forward phase, the centralized preference routing mechanism leverages router agents to integrate preference updates and dynamically propagate them to the most relevant agents. To ensure accurate and personalized integration of propagated preferences, we further introduce a personalized preference reception mechanism, which combines a message buffer for temporary caching and an optimizable, rule-based filter memory to guide selective preference assimilation based on past experience and interests. In the backward phase, the feedback-driven propagation optimization mechanism simulates a multi-agent reinforcement learning framework, using LLMs for credit assignment, gradient analysis, and module-level optimization, enabling continuous self-evolution of propagation strategies. Extensive experiments on various scenarios demonstrate the effectiveness of RecNet in modeling preference propagation for recommender systems.
☆ Search-Based Risk Feature Discovery in Document Structure Spaces under a Constrained Budget
Enterprise-grade Intelligent Document Processing (IDP) systems support high-stakes workflows across finance, insurance, and healthcare. Early-phase system validation under limited budgets mandates uncovering diverse failure mechanisms, rather than identifying a single worst-case document. We formalize this challenge as a Search-Based Software Testing (SBST) problem, aiming to identify complex interactions between document variables, with the objective to maximize the number of distinct failure types discovered within a fixed evaluation budget. Our methodology operates on a combinatorial space of document configurations, rendering instances of structural \emph{risk features} to induce realistic failure conditions. We benchmark a diverse portfolio of search strategies spanning evolutionary, swarm-based, quality-diversity, learning-based, and quantum under identical budget constraints. Through configuration-level exclusivity, win-rate, and cross-temporal overlap analyses, we show that different solvers consistently uncover failure modes that remain undiscovered by specific alternatives at comparable budgets. Crucially, cross-temporal analysis reveals persistent solver-specific discoveries across all evaluated budgets, with no single strategy exhibiting absolute dominance. While the union of all solvers eventually recovers the observed failure space, reliance on any individual method systematically delays the discovery of important risks. These results demonstrate intrinsic solver complementarity and motivate portfolio-based SBST strategies for robust industrial IDP validation.
☆ Dynamics Reveals Structure: Challenging the Linear Propagation Assumption
Neural networks adapt through first-order parameter updates, yet it remains unclear whether such updates preserve logical coherence. We investigate the geometric limits of the Linear Propagation Assumption (LPA), the premise that local updates coherently propagate to logical consequences. To formalize this, we adopt relation algebra and study three core operations on relations: negation flips truth values, converse swaps argument order, and composition chains relations. For negation and converse, we prove that guaranteeing direction-agnostic first-order propagation necessitates a tensor factorization separating entity-pair context from relation content. However, for composition, we identify a fundamental obstruction. We show that composition reduces to conjunction, and prove that any conjunction well-defined on linear features must be bilinear. Since bilinearity is incompatible with negation, this forces the feature map to collapse. These results suggest that failures in knowledge editing, the reversal curse, and multi-hop reasoning may stem from common structural limitations inherent to the LPA.
☆ CORE: Collaborative Reasoning via Cross Teaching
Large language models exhibit complementary reasoning errors: on the same instance, one model may succeed with a particular decomposition while another fails. We propose Collaborative Reasoning (CORE), a training-time collaboration framework that converts peer success into a learning signal via a cross-teaching protocol. Each problem is solved in two stages: a cold round of independent sampling, followed by a contexted rescue round in which models that failed receive hint extracted from a successful peer. CORE optimizes a combined reward that balances (i) correctness, (ii) a lightweight DPP-inspired diversity term to reduce error overlap, and (iii) an explicit rescue bonus for successful recovery. We evaluate CORE across four standard reasoning datasets GSM8K, MATH, AIME, and GPQA. With only 1,000 training examples, a pair of small open source models (3B+4B) reaches Pass@2 of 99.54% on GSM8K and 92.08% on MATH, compared to 82.50% and 74.82% for single-model training. On harder datasets, the 3B+4B pair reaches Pass@2 of 77.34% on GPQA (trained on 348 examples) and 79.65% on AIME (trained on 792 examples), using a training-time budget of at most 1536 context tokens and 3072 generated tokens. Overall, these results show that training-time collaboration can reliably convert model complementarity into large gains without scaling model size.
☆ Beyond Imitation: Reinforcement Learning for Active Latent Planning
Aiming at efficient and dense chain-of-thought (CoT) reasoning, latent reasoning methods fine-tune Large Language Models (LLMs) to substitute discrete language tokens with continuous latent tokens. These methods consume fewer tokens compared to the conventional language CoT reasoning and have the potential to plan in a dense latent space. However, current latent tokens are generally supervised based on imitating language labels. Considering that there can be multiple equivalent but diverse CoT labels for a question, passively imitating an arbitrary one may lead to inferior latent token representations and latent reasoning policies, undermining the potential planning ability and resulting in clear gaps between training and testing. In this work, we emphasize the importance of active planning over the representation space of latent tokens in achieving the optimal latent reasoning policy. So, we propose the \underline{A}c\underline{t}ive Latent \underline{P}lanning method (ATP-Latent), which models the supervision process of latent tokens as a conditional variational auto-encoder (VAE) to obtain a smoother latent space. Moreover, to facilitate the most reasonable latent reasoning policy, ATP-Latent conducts reinforcement learning (RL) with an auxiliary coherence reward, which is calculated based on the consistency between VAE-decoded contents of latent tokens, enabling a guided RL process. In experiments on LLaMA-1B, ATP-Latent demonstrates +4.1\% accuracy and -3.3\% tokens on four benchmarks compared to advanced baselines. Codes are available on https://github.com/zz1358m/ATP-Latent-master.
☆ Scalable Power Sampling: Unlocking Efficient, Training-Free Reasoning for LLMs via Distribution Sharpening
Reinforcement learning (RL) post-training is a dominant approach for improving the reasoning performance of large language models (LLMs), yet growing evidence suggests that its gains arise primarily from distribution sharpening rather than the acquisition of new capabilities. Recent work has shown that sampling from the power distribution of LLMs using Markov chain Monte Carlo (MCMC) can recover performance comparable to RL post-training without relying on external rewards; however, the high computational cost of MCMC makes such approaches impractical for widespread adoption. In this work, we propose a theoretically grounded alternative that eliminates the need for iterative MCMC. We derive a novel formulation showing that the global power distribution can be approximated by a token-level scaled low-temperature one, where the scaling factor captures future trajectory quality. Leveraging this insight, we introduce a training-free and verifier-free algorithm that sharpens the base model's generative distribution autoregressively. Empirically, we evaluate our method on math, QA, and code tasks across four LLMs, and show that our method matches or surpasses one-shot GRPO without relying on any external rewards, while reducing inference latency by over 10x compared to MCMC-based sampling.
☆ Depth-Recurrent Attention Mixtures: Giving Latent Reasoning the Attention it Deserves
Depth-recurrence facilitates latent reasoning by sharing parameters across depths. However, prior work lacks combined FLOP-, parameter-, and memory-matched baselines, underutilizes depth-recurrence due to partially fixed layer stacks, and ignores the bottleneck of constant hidden-sizes that restricts many-step latent reasoning. To address this, we introduce a modular framework of depth-recurrent attention mixtures (Dreamer), combining sequence attention, depth attention, and sparse expert attention. It alleviates the hidden-size bottleneck through attention along depth, decouples scaling dimensions, and allows depth-recurrent models to scale efficiently and effectively. Across language reasoning benchmarks, our models require 2 to 8x fewer training tokens for the same accuracy as FLOP-, parameter-, and memory-matched SOTA, and outperform ca. 2x larger SOTA models with the same training tokens. We further present insights into knowledge usage across depths, e.g., showing 2 to 11x larger expert selection diversity than SOTA MoEs.
☆ Chain Of Thought Compression: A Theoritical Analysis
Chain-of-Thought (CoT) has unlocked advanced reasoning abilities of Large Language Models (LLMs) with intermediate steps, yet incurs prohibitive computational costs due to generation of extra tokens. Recent studies empirically show that compressing reasoning steps into latent states, or implicit CoT compression, offers a token-efficient alternative. However, the mechanism behind CoT compression remains unclear. In this paper, we provide the first theoretical analysis of the difficulty of learning to internalize intermediate reasoning steps. By introducing Order-r Interaction, we prove that the learning signal for high-order logical dependencies exponentially decays to solve irreducible problem, where skipping intermediate steps inevitably leads to high-order interaction barriers. To empirically validate this, we introduce NatBool-DAG, a challenging benchmark designed to enforce irreducible logical reasoning and eliminate semantic shortcuts. Guided by our theoretical findings, we propose ALiCoT (Aligned Implicit CoT), a novel framework that overcomes the signal decay by aligning latent token distributions with intermediate reasoning states. Experimental results demonstrate that ALiCoT successfully unlocks efficient reasoning: it achieves a 54.4x speedup while maintaining performance comparable to explicit CoT.
☆ Signal-Adaptive Trust Regions for Gradient-Free Optimization of Recurrent Spiking Neural Networks
Recurrent spiking neural networks (RSNNs) are a promising substrate for energy-efficient control policies, but training them for high-dimensional, long-horizon reinforcement learning remains challenging. Population-based, gradient-free optimization circumvents backpropagation through non-differentiable spike dynamics by estimating gradients. However, with finite populations, high variance of these estimates can induce harmful and overly aggressive update steps. Inspired by trust-region methods in reinforcement learning that constrain policy updates in distribution space, we propose \textbf{Signal-Adaptive Trust Regions (SATR)}, a distributional update rule that constrains relative change by bounding KL divergence normalized by an estimated signal energy. SATR automatically expands the trust region under strong signals and contracts it when updates are noise-dominated. We instantiate SATR for Bernoulli connectivity distributions, which have shown strong empirical performance for RSNN optimization. Across a suite of high-dimensional continuous-control benchmarks, SATR improves stability under limited populations and reaches competitive returns against strong baselines including PPO-LSTM. In addition, to make SATR practical at scale, we introduce a bitset implementation for binary spiking and binary weights, substantially reducing wall-clock training time and enabling fast RSNN policy search.
☆ Shaping capabilities with token-level data filtering
Current approaches to reducing undesired capabilities in language models are largely post hoc, and can thus be easily bypassed by adversaries. A natural alternative is to shape capabilities during pretraining itself. On the proxy task of removing medical capabilities, we show that the simple intervention of filtering pretraining data is highly effective, robust, and inexpensive at scale. Inspired by work on data attribution, we show that filtering tokens is more effective than filtering documents, achieving the same hit to undesired capabilities at a lower cost to benign ones. Training models spanning two orders of magnitude, we then demonstrate that filtering gets more effective with scale: for our largest models, token filtering leads to a 7000x compute slowdown on the forget domain. We also show that models trained with token filtering can still be aligned on the forget domain. Along the way, we introduce a methodology for labeling tokens with sparse autoencoders and distilling cheap, high-quality classifiers. We also demonstrate that filtering can be robust to noisy labels with sufficient pretraining compute.
comment: 33 pages, 28 figures
☆ EmboCoach-Bench: Benchmarking AI Agents on Developing Embodied Robots
The field of Embodied AI is witnessing a rapid evolution toward general-purpose robotic systems, fueled by high-fidelity simulation and large-scale data collection. However, this scaling capability remains severely bottlenecked by a reliance on labor-intensive manual oversight from intricate reward shaping to hyperparameter tuning across heterogeneous backends. Inspired by LLMs' success in software automation and science discovery, we introduce \textsc{EmboCoach-Bench}, a benchmark evaluating the capacity of LLM agents to autonomously engineer embodied policies. Spanning 32 expert-curated RL and IL tasks, our framework posits executable code as the universal interface. We move beyond static generation to assess a dynamic closed-loop workflow, where agents leverage environment feedback to iteratively draft, debug, and optimize solutions, spanning improvements from physics-informed reward design to policy architectures such as diffusion policies. Extensive evaluations yield three critical insights: (1) autonomous agents can qualitatively surpass human-engineered baselines by 26.5\% in average success rate; (2) agentic workflow with environment feedback effectively strengthens policy development and substantially narrows the performance gap between open-source and proprietary models; and (3) agents exhibit self-correction capabilities for pathological engineering cases, successfully resurrecting task performance from near-total failures through iterative simulation-in-the-loop debugging. Ultimately, this work establishes a foundation for self-evolving embodied intelligence, accelerating the paradigm shift from labor-intensive manual tuning to scalable, autonomous engineering in embodied AI field.
comment: 37 pages, 13 figures
☆ SAL: Selective Adaptive Learning for Backpropagation-Free Training with Sparsification
Standard deep learning relies on Backpropagation (BP), which is constrained by biologically implausible weight symmetry and suffers from significant gradient interference within dense representations. To mitigate these bottlenecks, we propose Selective Adaptive Learning (SAL), a training method that combines selective parameter activation with adaptive area partitioning. Specifically, SAL decomposes the parameter space into mutually exclusive, sample-dependent regions. This decoupling mitigates gradient interference across divergent semantic patterns and addresses explicit weight symmetry requirements through our refined feedback alignment. Empirically, SAL demonstrates competitive convergence rates, leading to improved classification performance across 10 standard benchmarks. Additionally, SAL achieves numerical consistency and competitive accuracy even in deep regimes (up to 128 layers) and large-scale models (up to 1B parameters). Our approach is loosely inspired by biological learning mechanisms, offering a plausible alternative that contributes to the study of scalable neural network training.
☆ Meta Context Engineering via Agentic Skill Evolution
The operational efficacy of large language models relies heavily on their inference-time context. This has established Context Engineering (CE) as a formal discipline for optimizing these inputs. Current CE methods rely on manually crafted harnesses, such as rigid generation-reflection workflows and predefined context schemas. They impose structural biases and restrict context optimization to a narrow, intuition-bound design space. To address this, we introduce Meta Context Engineering (MCE), a bi-level framework that supersedes static CE heuristics by co-evolving CE skills and context artifacts. In MCE iterations, a meta-level agent refines engineering skills via agentic crossover, a deliberative search over the history of skills, their executions, and evaluations. A base-level agent executes these skills, learns from training rollouts, and optimizes context as flexible files and code. We evaluate MCE across five disparate domains under offline and online settings. MCE demonstrates consistent performance gains, achieving 5.6--53.8% relative improvement over state-of-the-art agentic CE methods (mean of 16.9%), while maintaining superior context adaptability, transferability, and efficiency in both context usage and training.
comment: 46 pages, 4 figures
☆ Training slow silicon neurons to control extremely fast robots with spiking reinforcement learning
Air hockey demands split-second decisions at high puck velocities, a challenge we address with a compact network of spiking neurons running on a mixed-signal analog/digital neuromorphic processor. By co-designing hardware and learning algorithms, we train the system to achieve successful puck interactions through reinforcement learning in a remarkably small number of trials. The network leverages fixed random connectivity to capture the task's temporal structure and adopts a local e-prop learning rule in the readout layer to exploit event-driven activity for fast and efficient learning. The result is real-time learning with a setup comprising a computer and the neuromorphic chip in-the-loop, enabling practical training of spiking neural networks for robotic autonomous systems. This work bridges neuroscience-inspired hardware with real-world robotic control, showing that brain-inspired approaches can tackle fast-paced interaction tasks while supporting always-on learning in intelligent machines.
☆ Multi-Modal Time Series Prediction via Mixture of Modulated Experts
Real-world time series exhibit complex and evolving dynamics, making accurate forecasting extremely challenging. Recent multi-modal forecasting methods leverage textual information such as news reports to improve prediction, but most rely on token-level fusion that mixes temporal patches with language tokens in a shared embedding space. However, such fusion can be ill-suited when high-quality time-text pairs are scarce and when time series exhibit substantial variation in scale and characteristics, thus complicating cross-modal alignment. In parallel, Mixture-of-Experts (MoE) architectures have proven effective for both time series modeling and multi-modal learning, yet many existing MoE-based modality integration methods still depend on token-level fusion. To address this, we propose Expert Modulation, a new paradigm for multi-modal time series prediction that conditions both routing and expert computation on textual signals, enabling direct and efficient cross-modal control over expert behavior. Through comprehensive theoretical analysis and experiments, our proposed method demonstrates substantial improvements in multi-modal time series prediction. The current code is available at https://github.com/BruceZhangReve/MoME
comment: 26 pages, 12 figures
☆ ShardMemo: Masked MoE Routing for Sharded Agentic LLM Memory
Agentic large language model (LLM) systems rely on external memory for long-horizon state and concurrent multi-agent execution, but centralized indexes and heuristic partitions become bottlenecks as memory volume and parallel access grow. We present ShardMemo, a budgeted tiered memory service with Tier A per-agent working state, Tier B sharded evidence with shard-local approximate nearest neighbor (ANN) indexes, and Tier C, a versioned skill library. Tier B enforces scope-before-routing: structured eligibility constraints mask ineligible shards before routing or ANN search. We cast shard probing as masked mixture-of-experts (MoE) routing over eligible shards, probing up to $B_{\mathrm{probe}}$ shards via Top-$B_{\mathrm{probe}}$ or adaptive Top-$P$, and use cost-aware gating over profile/observation/session shard families; the router is trained from evidence-to-shard supervision. On LoCoMo, ShardMemo improves over the strongest baseline (GAM) by +5.11 to +6.82 F1 across question categories. Under a fixed-budget routing setting ($B_{\mathrm{probe}}=3$), ShardMemo improves over cosine-to-prototype shard routing by +6.87 F1 while reducing retrieval work (VecScan 521->414, -20.5%) and p95 latency (95->76 ms). On long-context HotpotQA, ShardMemo achieves 63.41/61.88/57.95 F1 at 56K/224K/448K tokens. On ToolBench, Tier C reaches 0.97 Precision@3 and 1.94 StepRed (+10.2% and +7.2% over embedding-similarity retrieval).
☆ Bi-Anchor Interpolation Solver for Accelerating Generative Modeling
Flow Matching (FM) models have emerged as a leading paradigm for high-fidelity synthesis. However, their reliance on iterative Ordinary Differential Equation (ODE) solving creates a significant latency bottleneck. Existing solutions face a dichotomy: training-free solvers suffer from significant performance degradation at low Neural Function Evaluations (NFEs), while training-based one- or few-steps generation methods incur prohibitive training costs and lack plug-and-play versatility. To bridge this gap, we propose the Bi-Anchor Interpolation Solver (BA-solver). BA-solver retains the versatility of standard training-free solvers while achieving significant acceleration by introducing a lightweight SideNet (1-2% backbone size) alongside the frozen backbone. Specifically, our method is founded on two synergistic components: \textbf{1) Bidirectional Temporal Perception}, where the SideNet learns to approximate both future and historical velocities without retraining the heavy backbone; and 2) Bi-Anchor Velocity Integration, which utilizes the SideNet with two anchor velocities to efficiently approximate intermediate velocities for batched high-order integration. By utilizing the backbone to establish high-precision ``anchors'' and the SideNet to densify the trajectory, BA-solver enables large interval sizes with minimized error. Empirical results on ImageNet-256^2 demonstrate that BA-solver achieves generation quality comparable to 100+ NFEs Euler solver in just 10 NFEs and maintains high fidelity in as few as 5 NFEs, incurring negligible training costs. Furthermore, BA-solver ensures seamless integration with existing generative pipelines, facilitating downstream tasks such as image editing.
☆ ARGORA: Orchestrated Argumentation for Causally Grounded LLM Reasoning and Decision Making
Existing multi-expert LLM systems gather diverse perspectives but combine them through simple aggregation, obscuring which arguments drove the final decision. We introduce ARGORA, a framework that organizes multi-expert discussions into explicit argumentation graphs showing which arguments support or attack each other. By casting these graphs as causal models, ARGORA can systematically remove individual arguments and recompute outcomes, identifying which reasoning chains were necessary and whether decisions would change under targeted modifications. We further introduce a correction mechanism that aligns internal reasoning with external judgments when they disagree. Across diverse benchmarks and an open-ended use case, ARGORA achieves competitive accuracy and demonstrates corrective behavior: when experts initially disagree, the framework resolves disputes toward correct answers more often than it introduces new errors, while providing causal diagnostics of decisive arguments.
comment: 58 pages
☆ On the Adversarial Robustness of Large Vision-Language Models under Visual Token Compression
Visual token compression is widely used to accelerate large vision-language models (LVLMs) by pruning or merging visual tokens, yet its adversarial robustness remains unexplored. We show that existing encoder-based attacks can substantially overestimate the robustness of compressed LVLMs, due to an optimization-inference mismatch: perturbations are optimized on the full-token representation, while inference is performed through a token-compression bottleneck. To address this gap, we propose the Compression-AliGnEd attack (CAGE), which aligns perturbation optimization with compression inference without assuming access to the deployed compression mechanism or its token budget. CAGE combines (i) expected feature disruption, which concentrates distortion on tokens likely to survive across plausible budgets, and (ii) rank distortion alignment, which actively aligns token distortions with rank scores to promote the retention of highly distorted evidence. Across diverse representative plug-and-play compression mechanisms and datasets, our results show that CAGE consistently achieves lower robust accuracy than the baseline. This work highlights that robustness assessments ignoring compression can be overly optimistic, calling for compression-aware security evaluation and defenses for efficient LVLMs.
comment: Under Review, 20 pages
☆ Sustainable Materials Discovery in the Era of Artificial Intelligence
Artificial intelligence (AI) has transformed materials discovery, enabling rapid exploration of chemical space through generative models and surrogate screening. Yet current AI workflows optimize performance first, deferring sustainability to post synthesis assessment. This creates inefficiency by the time environmental burdens are quantified, resources have been invested in potentially unsustainable solutions. The disconnect between atomic scale design and lifecycle assessment (LCA) reflects fundamental challenges, data scarcity across heterogeneous sources, scale gaps from atoms to industrial systems, uncertainty in synthesis pathways, and the absence of frameworks that co-optimize performance with environmental impact. We propose to integrate upstream machine learning (ML) assisted materials discovery with downstream lifecycle assessment into a uniform ML-LCA environment. The framework ML-LCA integrates five components, information extraction for building materials-environment knowledge bases, harmonized databases linking properties to sustainability metrics, multi-scale models bridging atomic properties to lifecycle impacts, ensemble prediction of manufacturing pathways with uncertainty quantification, and uncertainty-aware optimization enabling simultaneous performance-sustainability navigation. Case studies spanning glass, cement, semiconductor photoresists, and polymers demonstrate both necessity and feasibility while identifying material-specific integration challenges. Realizing ML-LCA demands coordinated advances in data infrastructure, ex-ante assessment methodologies, multi-objective optimization, and regulatory alignment enabling the discovery of materials that are sustainable by design rather than by chance.
☆ KAPSO: A Knowledge-grounded framework for Autonomous Program Synthesis and Optimization
We introduce KAPSO, a modular framework for autonomous program synthesis and optimization. Given a natural language goal and an evaluation method, KAPSO iteratively performs ideation, code synthesis and editing, execution, evaluation, and learning to improve a runnable artifact toward measurable objectives. Rather than treating synthesis as the endpoint, KAPSO uses synthesis as an operator within a long-horizon optimization loop, where progress is defined by evaluator outcomes. KAPSO targets long-horizon failures common in coding agents, including lost experimental state, brittle debugging, and weak reuse of domain expertise, by integrating three tightly coupled components. First, a git-native experimentation engine isolates each attempt as a branch, producing reproducible artifacts and preserving provenance across iterations. Second, a knowledge system ingests heterogeneous sources, including repositories, internal playbooks, and curated external resources such as documentation, scientific papers, and web search results, and organizes them into a structured representation that supports retrieval over workflows, implementations, and environment constraints. Third, a cognitive memory layer coordinates retrieval and maintains an episodic store of reusable lessons distilled from experiment traces (run logs, diffs, and evaluator feedback), reducing repeated error modes and accelerating convergence. We evaluated KAPSO on MLE-Bench (Kaggle-style ML competitions) and ALE-Bench (AtCoder heuristic optimization), and report end-to-end performance. Code Available at: https://github.com/Leeroo-AI/kapso
☆ More Bang for the Buck: Improving the Inference of Large Language Models at a Fixed Budget using Reset and Discard (ReD)
The performance of large language models (LLMs) on verifiable tasks is usually measured by pass@k, the probability of answering a question correctly at least once in k trials. At a fixed budget, a more suitable metric is coverage@cost, the average number of unique questions answered as a function of the total number of attempts. We connect the two metrics and show that the empirically-observed power-law behavior in pass@k leads to a sublinear growth of the coverage@cost (diminishing returns). To solve this problem, we propose Reset-and-Discard (ReD), a query method of LLMs that increases coverage@cost for any given budget, regardless of the pass@k form. Moreover, given a pass@k, we can quantitatively predict the savings in the total number of attempts using ReD. If pass@k is not available for the model, ReD can infer its power-law exponent. Experiments on three LLMs using HumanEval demonstrate that ReD substantially reduces the required attempts, tokens, and USD cost to reach a desired coverage, while also offering an efficient way to measure inference power-laws.
☆ LLaMEA-SAGE: Guiding Automated Algorithm Design with Structural Feedback from Explainable AI
Large language models have enabled automated algorithm design (AAD) by generating optimization algorithms directly from natural-language prompts. While evolutionary frameworks such as LLaMEA demonstrate strong exploratory capabilities across the algorithm design space, their search dynamics are entirely driven by fitness feedback, leaving substantial information about the generated code unused. We propose a mechanism for guiding AAD using feedback constructed from graph-theoretic and complexity features extracted from the abstract syntax trees of the generated algorithms, based on a surrogate model learned over an archive of evaluated solutions. Using explainable AI techniques, we identify features that substantially affect performance and translate them into natural-language mutation instructions that steer subsequent LLM-based code generation without restricting expressivity. We propose LLaMEA-SAGE, which integrates this feature-driven guidance into LLaMEA, and evaluate it across several benchmarks. We show that the proposed structured guidance achieves the same performance faster than vanilla LLaMEA in a small controlled experiment. In a larger-scale experiment using the MA-BBOB suite from the GECCO-MA-BBOB competition, our guided approach achieves superior performance compared to state-of-the-art AAD methods. These results demonstrate that signals derived from code can effectively bias LLM-driven algorithm evolution, bridging the gap between code structure and human-understandable performance feedback in automated algorithm design.
comment: 14 pages
☆ The Effectiveness of Style Vectors for Steering Large Language Models: A Human Evaluation
Controlling the behavior of large language models (LLMs) at inference time is essential for aligning outputs with human abilities and safety requirements. \emph{Activation steering} provides a lightweight alternative to prompt engineering and fine-tuning by directly modifying internal activations to guide generation. This research advances the literature in three significant directions. First, while previous work demonstrated the technical feasibility of steering emotional tone using automated classifiers, this paper presents the first human evaluation of activation steering concerning the emotional tone of LLM outputs, collecting over 7,000 crowd-sourced ratings from 190 participants via Prolific ($n=190$). These ratings assess both perceived emotional intensity and overall text quality. Second, we find strong alignment between human and model-based quality ratings (mean $r=0.776$, range $0.157$--$0.985$), indicating automatic scoring can proxy perceived quality. Moderate steering strengths ($λ\approx 0.15$) reliably amplify target emotions while preserving comprehensibility, with the strongest effects for disgust ($η_p^2 = 0.616$) and fear ($η_p^2 = 0.540$), and minimal effects for surprise ($η_p^2 = 0.042$). Finally, upgrading from Alpaca to LlaMA-3 yielded more consistent steering with significant effects across emotions and strengths (all $p < 0.001$). Inter-rater reliability was high (ICC $= 0.71$--$0.87$), underscoring the robustness of the findings. These findings support activation-based control as a scalable method for steering LLM behavior across affective dimensions.
☆ MAR: Efficient Large Language Models via Module-aware Architecture Refinement ICASSP 2026
Large Language Models (LLMs) excel across diverse domains but suffer from high energy costs due to quadratic attention and dense Feed-Forward Network (FFN) operations. To address these issues, we propose Module-aware Architecture Refinement (MAR), a two-stage framework that integrates State Space Models (SSMs) for linear-time sequence modeling and applies activation sparsification to reduce FFN costs. In addition, to mitigate low information density and temporal mismatch in integrating Spiking Neural Networks (SNNs) with SSMs, we design the Adaptive Ternary Multi-step Neuron (ATMN) and the Spike-aware Bidirectional Distillation Strategy (SBDS). Extensive experiments demonstrate that MAR effectively restores the performance of its dense counterpart under constrained resources while substantially reducing inference energy consumption. Furthermore, it outperforms efficient models of comparable or even larger scale, underscoring its potential for building efficient and practical LLMs.
comment: Accepted by ICASSP 2026. 5 pages, 5 figures
☆ SimGraph: A Unified Framework for Scene Graph-Based Image Generation and Editing
Recent advancements in Generative Artificial Intelligence (GenAI) have significantly enhanced the capabilities of both image generation and editing. However, current approaches often treat these tasks separately, leading to inefficiencies and challenges in maintaining spatial consistency and semantic coherence between generated content and edits. Moreover, a major obstacle is the lack of structured control over object relationships and spatial arrangements. Scene graph-based methods, which represent objects and their interrelationships in a structured format, offer a solution by providing greater control over composition and interactions in both image generation and editing. To address this, we introduce SimGraph, a unified framework that integrates scene graph-based image generation and editing, enabling precise control over object interactions, layouts, and spatial coherence. In particular, our framework integrates token-based generation and diffusion-based editing within a single scene graph-driven model, ensuring high-quality and consistent results. Through extensive experiments, we empirically demonstrate that our approach outperforms existing state-of-the-art methods.
☆ The Path of Least Resistance: Guiding LLM Reasining Trajectories with Prefix Consensus ICLR 2026
Large language models achieve strong reasoning performance, but inference strategies such as Self-Consistency (SC) are computationally expensive, as they fully expand all reasoning traces. We introduce PoLR (Path of Least Resistance), the first inference-time method to leverage prefix consistency for compute-efficient reasoning. PoLR clusters short prefixes of reasoning traces, identifies the dominant cluster, and expands all paths in that cluster, preserving the accuracy benefits of SC while substantially reducing token usage and latency. Our theoretical analysis, framed via mutual information and entropy, explains why early reasoning steps encode strong signals predictive of final correctness. Empirically, PoLR consistently matches or exceeds SC across GSM8K, MATH500, AIME24/25, and GPQA-DIAMOND, reducing token usage by up to 60% and wall-clock latency by up to 50%. Moreover, PoLR is fully complementary to adaptive inference methods (e.g., Adaptive Consistency, Early-Stopping SC) and can serve as a drop-in pre-filter, making SC substantially more efficient and scalable without requiring model fine-tuning.
comment: Accepted at ICLR 2026. https://openreview.net/forum?id=hrnSqERgPn
☆ Mean-Field Control on Sparse Graphs: From Local Limits to GNNs via Neighborhood Distributions
Mean-field control (MFC) offers a scalable solution to the curse of dimensionality in multi-agent systems but traditionally hinges on the restrictive assumption of exchangeability via dense, all-to-all interactions. In this work, we bridge the gap to real-world network structures by proposing a rigorous framework for MFC on large sparse graphs. We redefine the system state as a probability measure over decorated rooted neighborhoods, effectively capturing local heterogeneity. Our central contribution is a theoretical foundation for scalable reinforcement learning in this setting. We prove horizon-dependent locality: for finite-horizon problems, an agent's optimal policy at time t depends strictly on its (T-t)-hop neighborhood. This result renders the infinite-dimensional control problem tractable and underpins a novel Dynamic Programming Principle (DPP) on the lifted space of neighborhood distributions. Furthermore, we formally and experimentally justify the use of Graph Neural Networks (GNNs) for actor-critic algorithms in this context. Our framework naturally recovers classical MFC as a degenerate case while enabling efficient, theoretically grounded control on complex sparse topologies.
comment: 19 pages
☆ Task-free Adaptive Meta Black-box Optimization ICLR 2026
Handcrafted optimizers become prohibitively inefficient for complex black-box optimization (BBO) tasks. MetaBBO addresses this challenge by meta-learning to automatically configure optimizers for low-level BBO tasks, thereby eliminating heuristic dependencies. However, existing methods typically require extensive handcrafted training tasks to learn meta-strategies that generalize to target tasks, which poses a critical limitation for realistic applications with unknown task distributions. To overcome the issue, we propose the Adaptive meta Black-box Optimization Model (ABOM), which performs online parameter adaptation using solely optimization data from the target task, obviating the need for predefined task distributions. Unlike conventional metaBBO frameworks that decouple meta-training and optimization phases, ABOM introduces a closed-loop adaptive parameter learning mechanism, where parameterized evolutionary operators continuously self-update by leveraging generated populations during optimization. This paradigm shift enables zero-shot optimization: ABOM achieves competitive performance on synthetic BBO benchmarks and realistic unmanned aerial vehicle path planning problems without any handcrafted training tasks. Visualization studies reveal that parameterized evolutionary operators exhibit statistically significant search patterns, including natural selection and genetic recombination.
comment: This article was published as a conference paper at ICLR 2026
☆ ScaleSim: Serving Large-Scale Multi-Agent Simulation with Invocation Distance-Based Memory Management
LLM-based multi-agent simulations are increasingly adopted across application domains, but remain difficult to scale due to GPU memory pressure. Each agent maintains private GPU-resident states, including models, prefix caches, and adapters, which quickly exhaust device memory as the agent count grows. We identify two key properties of these workloads: sparse agent activation and an estimable agent invocation order. Based on an analysis of representative workload classes, we introduce invocation distance, a unified abstraction that estimates the relative order in which agents will issue future LLM requests. Leveraging this abstraction, we present ScaleSim, a memory-efficient LLM serving system for large-scale multi-agent simulations. ScaleSim enables proactive prefetching and priority-based eviction, supports diverse agent-specific memory through a modular interface, and achieves up to 1.74x speedup over SGLang on simulation benchmarks.
☆ Adaptive Confidence Gating in Multi-Agent Collaboration for Efficient and Optimized Code Generation
While Large Language Models (LLMs) have catalyzed breakthroughs in automated code generation, Small Language Models (SLMs) often encounter reasoning bottlenecks and failure loops when addressing complex logical requirements. To overcome these challenges, we propose DebateCoder, a multi-agent collaborative framework designed to improve the reasoning ability of SLMs (e.g., Pangu-1B) in resource-constrained environments. DebateCoder uses a structured role-playing protocol with three agents: User Agent (A_UA), Technical Agent (A_TA), and Quality Assurance Agent (A_QA). It also includes an Adaptive Confidence Gating mechanism with a 95% threshold to balance accuracy and inference efficiency. In addition, we introduce a multi-turn deliberation module and a reviewer-guided analytical debugging loop for orthogonal pre-generation debate and post-generation refinement. Experiments on HumanEval and MBPP show that DebateCoder achieves 70.12% Pass@1 on HumanEval, outperforming MapCoder while reducing API overhead by about 35%. These results indicate that collaborative protocols can mitigate limitations of small-parameter models and provide a scalable, efficient approach to high-quality automated software engineering.
☆ MemOCR: Layout-Aware Visual Memory for Efficient Long-Horizon Reasoning
Long-horizon agentic reasoning necessitates effectively compressing growing interaction histories into a limited context window. Most existing memory systems serialize history as text, where token-level cost is uniform and scales linearly with length, often spending scarce budget on low-value details. To this end, we introduce MemOCR, a multimodal memory agent that improves long-horizon reasoning under tight context budgets by allocating memory space with adaptive information density through visual layout. Concretely, MemOCR maintains a structured rich-text memory (e.g., headings, highlights) and renders it into an image that the agent consults for memory access, visually prioritizing crucial evidence while aggressively compressing auxiliary details. To ensure robustness across varying memory budgets, we train MemOCR with reinforcement learning under budget-aware objectives that expose the agent to diverse compression levels. Across long-context multi-hop and single-hop question-answering benchmarks, MemOCR outperforms strong text-based baselines and achieves more effective context utilization under extreme budgets.
☆ Topeax -- An Improved Clustering Topic Model with Density Peak Detection and Lexical-Semantic Term Importance
Text clustering is today the most popular paradigm for topic modelling, both in academia and industry. Despite clustering topic models' apparent success, we identify a number of issues in Top2Vec and BERTopic, which remain largely unsolved. Firstly, these approaches are unreliable at discovering natural clusters in corpora, due to extreme sensitivity to sample size and hyperparameters, the default values of which result in suboptimal behaviour. Secondly, when estimating term importance, BERTopic ignores the semantic distance of keywords to topic vectors, while Top2Vec ignores word counts in the corpus. This results in, on the one hand, less coherent topics due to the presence of stop words and junk words, and lack of variety and trust on the other. In this paper, I introduce a new approach, \textbf{Topeax}, which discovers the number of clusters from peaks in density estimates, and combines lexical and semantic indices of term importance to gain high-quality topic keywords. Topeax is demonstrated to be better at both cluster recovery and cluster description than Top2Vec and BERTopic, while also exhibiting less erratic behaviour in response to changing sample size and hyperparameters.
comment: 14 pages, 6 figures
☆ Conversation for Non-verifiable Learning: Self-Evolving LLMs through Meta-Evaluation
Training large language models (LLMs) for non-verifiable tasks, such as creative writing, dialogue, and ethical reasoning, remains challenging due to the absence of ground-truth labels. While LLM-as-Judge approaches offer a scalable alternative to human feedback, they face a fundamental limitation: performance is constrained by the evaluator's own quality. If the judge cannot recognize good solutions, it cannot provide useful training signals, and evaluation biases (e.g., favoring verbosity over quality) remain unaddressed. This motivates meta-evaluation: the ability to evaluate and improve the evaluator itself. We introduce CoNL, a framework that unifies generation, evaluation, and meta-evaluation through multi-agent self-play. Our key insight: critique quality can be measured by whether it helps others improve their solutions. In CoNL, multiple agents sharing the same policy engage in structured conversations to propose, critique, and revise solutions. Critiques that enable solution improvements earn a diagnostic reward, creating explicit supervision for meta-evaluation and enabling joint optimization of generation and judging capabilities through self-play, without external judges or ground truth. Experiments on five benchmarks show that CoNL achieves consistent improvements over self-rewarding baselines while maintaining stable training.
comment: Work in Progress
☆ Unifying Speech Editing Detection and Content Localization via Prior-Enhanced Audio LLMs
Speech editing achieves semantic inversion by performing fine-grained segment-level manipulation on original utterances, while preserving global perceptual naturalness. Existing detection studies mainly focus on manually edited speech with explicit splicing artifacts, and therefore struggle to cope with emerging end-to-end neural speech editing techniques that generate seamless acoustic transitions. To address this challenge, we first construct a large-scale bilingual dataset, AiEdit, which leverages large language models to drive precise semantic tampering logic and employs multiple advanced neural speech editing methods for data synthesis, thereby filling the gap of high-quality speech editing datasets. Building upon this foundation, we propose PELM (Prior-Enhanced Audio Large Language Model), the first large-model framework that unifies speech editing detection and content localization by formulating them as an audio question answering task. To mitigate the inherent forgery bias and semantic-priority bias observed in existing audio large models, PELM incorporates word-level probability priors to provide explicit acoustic cues, and further designs a centroid-aggregation-based acoustic consistency perception loss to explicitly enforce the modeling of subtle local distribution anomalies. Extensive experimental results demonstrate that PELM significantly outperforms state-of-the-art methods on both the HumanEdit and AiEdit datasets, achieving equal error rates (EER) of 0.57\% and 9.28\% (localization), respectively.
☆ L$^3$: Large Lookup Layers
Modern sparse language models typically achieve sparsity through Mixture-of-Experts (MoE) layers, which dynamically route tokens to dense MLP "experts." However, dynamic hard routing has a number of drawbacks, such as potentially poor hardware efficiency and needing auxiliary losses for stable training. In contrast, the tokenizer embedding table, which is natively sparse, largely avoids these issues by selecting a single embedding per token at the cost of not having contextual information. In this work, we introduce the Large Lookup Layer (L$^3$), which unlocks a new axis of sparsity by generalizing embedding tables to model decoder layers. L$^3$ layers use static token-based routing to aggregate a set of learned embeddings per token in a context-dependent way, allowing the model to efficiently balance memory and compute by caching information in embeddings. L$^3$ has two main components: (1) a systems-friendly architecture that allows for fast training and CPU-offloaded inference with no overhead, and (2) an information-theoretic embedding allocation algorithm that effectively balances speed and quality. We empirically test L$^3$ by training transformers with up to 2.6B active parameters and find that L$^3$ strongly outperforms both dense models and iso-sparse MoEs in both language modeling and downstream tasks.
comment: Preprint
☆ HER: Human-like Reasoning and Reinforcement Learning for LLM Role-playing
LLM role-playing, i.e., using LLMs to simulate specific personas, has emerged as a key capability in various applications, such as companionship, content creation, and digital games. While current models effectively capture character tones and knowledge, simulating the inner thoughts behind their behaviors remains a challenge. Towards cognitive simulation in LLM role-play, previous efforts mainly suffer from two deficiencies: data with high-quality reasoning traces, and reliable reward signals aligned with human preferences. In this paper, we propose HER, a unified framework for cognitive-level persona simulation. HER introduces dual-layer thinking, which distinguishes characters' first-person thinking from LLMs' third-person thinking. To bridge these gaps, we curate reasoning-augmented role-playing data via reverse engineering and construct human-aligned principles and reward models. Leveraging these resources, we train \method models based on Qwen3-32B via supervised and reinforcement learning. Extensive experiments validate the effectiveness of our approach. Notably, our models significantly outperform the Qwen3-32B baseline, achieving a 30.26 improvement on the CoSER benchmark and a 14.97 gain on the Minimax Role-Play Bench. Our datasets, principles, and models will be released to facilitate future research.
comment: 41pages, 10 figures
☆ LION: A Clifford Neural Paradigm for Multimodal-Attributed Graph Learning
Recently, the rapid advancement of multimodal domains has driven a data-centric paradigm shift in graph ML, transitioning from text-attributed to multimodal-attributed graphs. This advancement significantly enhances data representation and expands the scope of graph downstream tasks, such as modality-oriented tasks, thereby improving the practical utility of graph ML. Despite its promise, limitations exist in the current neural paradigms: (1) Neglect Context in Modality Alignment: Most existing methods adopt topology-constrained or modality-specific operators as tokenizers. These aligners inevitably neglect graph context and inhibit modality interaction, resulting in suboptimal alignment. (2) Lack of Adaptation in Modality Fusion: Most existing methods are simple adaptations for 2-modality graphs and fail to adequately exploit aligned tokens equipped with topology priors during fusion, leading to poor generalizability and performance degradation. To address the above issues, we propose LION (c\underline{LI}ff\underline{O}rd \underline{N}eural paradigm) based on the Clifford algebra and decoupled graph neural paradigm (i.e., propagation-then-aggregation) to implement alignment-then-fusion in multimodal-attributed graphs. Specifically, we first construct a modality-aware geometric manifold grounded in Clifford algebra. This geometric-induced high-order graph propagation efficiently achieves modality interaction, facilitating modality alignment. Then, based on the geometric grade properties of aligned tokens, we propose adaptive holographic aggregation. This module integrates the energy and scale of geometric grades with learnable parameters to improve modality fusion. Extensive experiments on 9 datasets demonstrate that LION significantly outperforms SOTA baselines across 3 graph and 3 modality downstream tasks.
☆ SAGE: Sequence-level Adaptive Gradient Evolution for Generative Recommendation
While works such as OneRec have validated the scaling laws of Large Language Models (LLMs) in recommender systems, they rely on a cumbersome separate vocabulary. This dependency prevents the model architecture from reusing native LLM vocabularies, resulting in high maintenance costs and poor scalability. In response, we aim to efficiently reuse open-source LLM architectures without constructing a separate tokenization vocabulary. Furthermore, we identify that the optimization strategy of OneRec Gradient Bounded Policy Optimization (GBPO),suffers from a "Symmetric Conservatism" problem: its static gradient boundaries structurally suppress the update momentum required for cold-start items and fail to prevent diversity collapse in high-noise environments.To address this issue, we propose SAGE (Sequence-level Adaptive Gradient Evolution), a unified optimization framework tailored for list-wise generative recommendation. SAGE introduces two key innovations:(1) Sequence-level Signal Decoupling: By combining a geometric mean importance ratio with decoupled multi-objective advantages, we eliminate token-level variance and resolve the "Reward Collapse" problem. (2) Asymmetric Adaptive Dynamics: We construct a dynamic gradient manifold that applies a "Boost Factor" to high-potential cold start items to achieve super-linear updates and employs an "Entropy Aware Penalty" to break information cocoons. Theoretical analysis and empirical results demonstrate that SAGE effectively unblocks cold-start traffic and sustains recommendation diversity, all while retaining the numerical stability of GBPO.
comment: arXiv admin note: text overlap with arXiv:2506.19235
☆ ChipBench: A Next-Step Benchmark for Evaluating LLM Performance in AI-Aided Chip Design
While Large Language Models (LLMs) show significant potential in hardware engineering, current benchmarks suffer from saturation and limited task diversity, failing to reflect LLMs' performance in real industrial workflows. To address this gap, we propose a comprehensive benchmark for AI-aided chip design that rigorously evaluates LLMs across three critical tasks: Verilog generation, debugging, and reference model generation. Our benchmark features 44 realistic modules with complex hierarchical structures, 89 systematic debugging cases, and 132 reference model samples across Python, SystemC, and CXXRTL. Evaluation results reveal substantial performance gaps, with state-of-the-art Claude-4.5-opus achieving only 30.74\% on Verilog generation and 13.33\% on Python reference model generation, demonstrating significant challenges compared to existing saturated benchmarks where SOTA models achieve over 95\% pass rates. Additionally, to help enhance LLM reference model generation, we provide an automated toolbox for high-quality training data generation, facilitating future research in this underexplored domain. Our code is available at https://github.com/zhongkaiyu/ChipBench.git.
☆ Spava: Accelerating Long-Video Understanding via Sequence-Parallelism-aware Approximate Attention
The efficiency of long-video inference remains a critical bottleneck, mainly due to the dense computation in the prefill stage of Large Multimodal Models (LMMs). Existing methods either compress visual embeddings or apply sparse attention on a single GPU, yielding limited acceleration or degraded performance and restricting LMMs from handling longer, more complex videos. To overcome these issues, we propose Spava, a sequence-parallel framework with optimized attention that accelerates long-video inference across multiple GPUs. By distributing approximate attention, Spava reduces computation and increases parallelism, enabling efficient processing of more visual embeddings without compression and thereby improving task performance. System-level optimizations, such as load balancing and fused forward passes, further unleash the potential of Spava, delivering speedups of 12.72x, 1.70x, and 1.18x over FlashAttn, ZigZagRing, and APB, without notable performance loss. Code available at https://github.com/thunlp/APB
comment: Preprint
☆ The Paradox of Robustness: Decoupling Rule-Based Logic from Affective Noise in High-Stakes Decision-Making
While Large Language Models (LLMs) are widely documented to be sensitive to minor prompt perturbations and prone to sycophantic alignment with user biases, their robustness in consequential, rule-bound decision-making remains under-explored. In this work, we uncover a striking "Paradox of Robustness": despite their known lexical brittleness, instruction-tuned LLMs exhibit a behavioral and near-total invariance to emotional framing effects. Using a novel controlled perturbation framework across three high-stakes domains (healthcare, law, and finance), we quantify a robustness gap where LLMs demonstrate 110-300 times greater resistance to narrative manipulation than human subjects. Specifically, we find a near-zero effect size for models (Cohen's h = 0.003) compared to the substantial biases observed in humans (Cohen's h in [0.3, 0.8]). This result is highly counterintuitive and suggests the mechanisms driving sycophancy and prompt sensitivity do not necessarily translate to a failure in logical constraint satisfaction. We show that this invariance persists across models with diverse training paradigms. Our findings show that while LLMs may be "brittle" to how a query is formatted, they are remarkably "stable" against why a decision should be biased. Our findings establish that instruction-tuned models can decouple logical rule-adherence from persuasive narratives, offering a source of decision stability that complements, and even potentially de-biases, human judgment in institutional contexts. We release the 162-scenario benchmark, code, and data to facilitate the rigorous evaluation of narrative-induced bias and robustness on GitHub.com.
comment: 22 page, 10 figures
☆ From Consistency to Complementarity: Aligned and Disentangled Multi-modal Learning for Time Series Understanding and Reasoning
Advances in multi-modal large language models (MLLMs) have inspired time series understanding and reasoning tasks, that enable natural language querying over time series, producing textual analyses of complex temporal dynamics. Recent attempts hybridize numerical time series with their visualized plots, facilitating precise value reasoning and visual structure comprehension for comprehensive time series understanding of MLLMs. However, effective cross-modal integration remains challenging due to fine-grained temporal misalignment across modalities and severe entanglement between shared and modality-specific semantics, which hinder localized interpretation and complementary reasoning. To address these issues, we propose MADI, a multi-modal LLM enhanced with fine-grained alignment and disentangled interaction, featuring (1) Patch-level Alignment, which enforces physically grounded fine-grained correspondence across heterogeneous modalities, (2) Discrete Disentangled Interaction, which separates modality-common semantics into compact discrete latents and adaptively synergizes the purified modality-unique information, and (3) Critical-token Highlighting, which emphasizes informative, query-relevant signals for robust reasoning. Experiments on synthetic and real-world benchmarks show that MADI consistently outperforms general-purpose LLMs and time-series-specialized MLLMs.
☆ When Prohibitions Become Permissions: Auditing Negation Sensitivity in Language Models
When a user tells an AI system that someone "should not" take an action, the system ought to treat this as a prohibition. Yet many large language models do the opposite: they interpret negated instructions as affirmations. We audited 16 models across 14 ethical scenarios and found that open-source models endorse prohibited actions 77% of the time under simple negation and 100% under compound negation -- a 317% increase over affirmative framing. Commercial models fare better but still show swings of 19-128%. Agreement between models drops from 74% on affirmative prompts to 62% on negated ones, and financial scenarios prove twice as fragile as medical ones. These patterns hold under deterministic decoding, ruling out sampling noise. We present case studies showing how these failures play out in practice, propose the Negation Sensitivity Index (NSI) as a governance metric, and outline a tiered certification framework with domain-specific thresholds. The findings point to a gap between what current alignment techniques achieve and what safe deployment requires: models that cannot reliably distinguish "do X" from "do not X" should not be making autonomous decisions in high-stakes contexts.
comment: 13 pages, 5 figures
☆ Mitigating Overthinking in Large Reasoning Models via Difficulty-aware Reinforcement Learning
Large Reasoning Models (LRMs) achieve explicit chain-of-thought expansion by imitating deep thinking behaviors of humans, demonstrating excellent performance in complex task scenarios. However, the deep-thinking mode often leads to unnecessarily lengthy reasoning and resource inefficiency when handling simple tasks. This overthinking phenomenon may arise from the generation preference triggered by the reward function during post-training. Existing research attempts to mitigate overthinking from the perspective of prompt design or model training, but generally underestimates the importance of task difficulty awareness, which makes it difficult for LRMs to effectively allocate reasoning resources. In this paper, we propose Difficulty-aware Policy Optimization (DiPO), a reinforcement learning-based LRM training framework. DiPO encourages LRM to spontaneously model task complexity, and integrates them into reinforcement learning framework to adjust the generation preferences introduced by post-training. A difficulty modeling method based on model self-reasoning is proposed, which significantly reduces the dependence on manual annotation and formalize task complexity. We further develop a difficulty-signal-enhanced reward function that incorporates a penalty for lengthy reasoning while considering reasoning performance and output format. Experimental results indicate that DiPO enables the model to spontaneously adjust inference overhead, significantly reducing redundant tokens without losing performance due to thought compression.
☆ System 1&2 Synergy via Dynamic Model Interpolation
Training a unified language model that adapts between intuitive System 1 and deliberative System 2 remains challenging due to interference between their cognitive modes. Recent studies have thus pursued making System 2 models more efficient. However, these approaches focused on output control, limiting what models produce. We argue that this paradigm is misaligned: output length is merely a symptom of the model's cognitive configuration, not the root cause. In this work, we shift the focus to capability control, which modulates \textit{how models think} rather than \textit{what they produce}. To realize this, we leverage existing Instruct and Thinking checkpoints through dynamic parameter interpolation, without additional training. Our pilot study establishes that linear interpolation yields a convex, monotonic Pareto frontier, underpinned by representation continuity and structural connectivity. Building on this, we propose \textbf{DAMI} (\textbf{D}yn\textbf{A}mic \textbf{M}odel \textbf{I}nterpolation), a framework that estimates a query-specific Reasoning Intensity $λ(q)$ to configure cognitive depth. For training-based estimation, we develop a preference learning method encoding accuracy and efficiency criteria. For zero-shot deployment, we introduce a confidence-based method leveraging inter-model cognitive discrepancy. Experiments on five mathematical reasoning benchmarks demonstrate that DAMI achieves higher accuracy than the Thinking model while remaining efficient, effectively combining the efficiency of System 1 with the reasoning depth of System 2.
☆ DataCross: A Unified Benchmark and Agent Framework for Cross-Modal Heterogeneous Data Analysis
In real-world data science and enterprise decision-making, critical information is often fragmented across directly queryable structured sources (e.g., SQL, CSV) and "zombie data" locked in unstructured visual documents (e.g., scanned reports, invoice images). Existing data analytics agents are predominantly limited to processing structured data, failing to activate and correlate this high-value visual information, thus creating a significant gap with industrial needs. To bridge this gap, we introduce DataCross, a novel benchmark and collaborative agent framework for unified, insight-driven analysis across heterogeneous data modalities. DataCrossBench comprises 200 end-to-end analysis tasks across finance, healthcare, and other domains. It is constructed via a human-in-the-loop reverse-synthesis pipeline, ensuring realistic complexity, cross-source dependency, and verifiable ground truth. The benchmark categorizes tasks into three difficulty tiers to evaluate agents' capabilities in visual table extraction, cross-modal alignment, and multi-step joint reasoning. We also propose the DataCrossAgent framework, inspired by the "divide-and-conquer" workflow of human analysts. It employs specialized sub-agents, each an expert on a specific data source, which are coordinated via a structured workflow of Intra-source Deep Exploration, Key Source Identification, and Contextual Cross-pollination. A novel reReAct mechanism enables robust code generation and debugging for factual verification. Experimental results show that DataCrossAgent achieves a 29.7% improvement in factuality over GPT-4o and exhibits superior robustness on high-difficulty tasks, effectively activating fragmented "zombie data" for insightful, cross-modal analysis.
☆ Intrinsic Reward Policy Optimization for Sparse-Reward Environments
Exploration is essential in reinforcement learning as an agent relies on trial and error to learn an optimal policy. However, when rewards are sparse, naive exploration strategies, like noise injection, are often insufficient. Intrinsic rewards can also provide principled guidance for exploration by, for example, combining them with extrinsic rewards to optimize a policy or using them to train subpolicies for hierarchical learning. However, the former approach suffers from unstable credit assignment, while the latter exhibits sample inefficiency and sub-optimality. We propose a policy optimization framework that leverages multiple intrinsic rewards to directly optimize a policy for an extrinsic reward without pretraining subpolicies. Our algorithm -- intrinsic reward policy optimization (IRPO) -- achieves this by using a surrogate policy gradient that provides a more informative learning signal than the true gradient in sparse-reward environments. We demonstrate that IRPO improves performance and sample efficiency relative to baselines in discrete and continuous environments, and formally analyze the optimization problem solved by IRPO. Our code is available at https://github.com/Mgineer117/IRPO.
☆ Understanding Frechet Speech Distance for Synthetic Speech Quality Evaluation ICASSP 2026
Objective evaluation of synthetic speech quality remains a critical challenge. Human listening tests are the gold standard, but costly and impractical at scale. Fréchet Distance has emerged as a promising alternative, yet its reliability depends heavily on the choice of embeddings and experimental settings. In this work, we comprehensively evaluate Fréchet Speech Distance (FSD) and its variant Speech Maximum Mean Discrepancy (SMMD) under varied embeddings and conditions. We further incorporate human listening evaluations alongside TTS intelligibility and synthetic-trained ASR WER to validate the perceptual relevance of these metrics. Our findings show that WavLM Base+ features yield the most stable alignment with human ratings. While FSD and SMMD cannot fully replace subjective evaluation, we show that they can serve as complementary, cost-efficient, and reproducible measures, particularly useful when large-scale or direct listening assessments are infeasible. Code is available at https://github.com/kaen2891/FrechetSpeechDistance.
comment: accepted to ICASSP 2026
☆ Sim-MSTNet: sim2real based Multi-task SpatioTemporal Network Traffic Forecasting ICASSP 2026
Network traffic forecasting plays a crucial role in intelligent network operations, but existing techniques often perform poorly when faced with limited data. Additionally, multi-task learning methods struggle with task imbalance and negative transfer, especially when modeling various service types. To overcome these challenges, we propose Sim-MSTNet, a multi-task spatiotemporal network traffic forecasting model based on the sim2real approach. Our method leverages a simulator to generate synthetic data, effectively addressing the issue of poor generalization caused by data scarcity. By employing a domain randomization technique, we reduce the distributional gap between synthetic and real data through bi-level optimization of both sample weighting and model training. Moreover, Sim-MSTNet incorporates attention-based mechanisms to selectively share knowledge between tasks and applies dynamic loss weighting to balance task objectives. Extensive experiments on two open-source datasets show that Sim-MSTNet consistently outperforms state-of-the-art baselines, achieving enhanced accuracy and generalization.
comment: accepted in ICASSP 2026
☆ TeachBench: A Syllabus-Grounded Framework for Evaluating Teaching Ability in Large Language Models
Large language models (LLMs) show promise as teaching assistants, yet their teaching capability remains insufficiently evaluated. Existing benchmarks mainly focus on problem-solving or problem-level guidance, leaving knowledge-centered teaching underexplored. We propose a syllabus-grounded evaluation framework that measures LLM teaching capability via student performance improvement after multi-turn instruction. By restricting teacher agents to structured knowledge points and example problems, the framework avoids information leakage and enables reuse of existing benchmarks. We instantiate the framework on Gaokao data across multiple subjects. Experiments reveal substantial variation in teaching effectiveness across models and domains: some models perform well in mathematics, while teaching remains challenging in physics and chemistry. We also find that incorporating example problems does not necessarily improve teaching, as models often shift toward example-specific error correction. Overall, our results highlight teaching ability as a distinct and measurable dimension of LLM behavior.
☆ NEMO: Execution-Aware Optimization Modeling via Autonomous Coding Agents
In this paper, we present NEMO, a system that translates Natural-language descriptions of decision problems into formal Executable Mathematical Optimization implementations, operating collaboratively with users or autonomously. Existing approaches typically rely on specialized large language models (LLMs) or bespoke, task-specific agents. Such methods are often brittle, complex and frequently generating syntactically invalid or non-executable code. NEMO instead centers on remote interaction with autonomous coding agents (ACAs), treated as a first-class abstraction analogous to API-based interaction with LLMs. This design enables the construction of higher-level systems around ACAs that structure, consolidate, and iteratively refine task specifications. Because ACAs execute within sandboxed environments, code produced by NEMO is executable by construction, allowing automated validation and repair. Building on this, we introduce novel coordination patterns with and across ACAs, including asymmetric validation loops between independently generated optimizer and simulator implementations (serving as a high-level validation mechanism), external memory for experience reuse, and robustness enhancements via minimum Bayes risk (MBR) decoding and self-consistency. We evaluate NEMO on nine established optimization benchmarks. As depicted in Figure 1, it achieves state-of-the-art performance on the majority of tasks, with substantial margins on several datasets, demonstrating the power of execution-aware agentic architectures for automated optimization modeling.
☆ Hebbian Learning with Global Direction ICASSP 2026
Backpropagation algorithm has driven the remarkable success of deep neural networks, but its lack of biological plausibility and high computational costs have motivated the ongoing search for alternative training methods. Hebbian learning has attracted considerable interest as a biologically plausible alternative to backpropagation. Nevertheless, its exclusive reliance on local information, without consideration of global task objectives, fundamentally limits its scalability. Inspired by the biological synergy between neuromodulators and local plasticity, we introduce a novel model-agnostic Global-guided Hebbian Learning (GHL) framework, which seamlessly integrates local and global information to scale up across diverse networks and tasks. In specific, the local component employs Oja's rule with competitive learning to ensure stable and effective local updates. Meanwhile, the global component introduces a sign-based signal that guides the direction of local Hebbian plasticity updates. Extensive experiments demonstrate that our method consistently outperforms existing Hebbian approaches. Notably, on large-scale network and complex datasets like ImageNet, our framework achieves the competitive results and significantly narrows the gap with standard backpropagation.
comment: Accepted to ICASSP 2026
☆ The Compliance Paradox: Semantic-Instruction Decoupling in Automated Academic Code Evaluation
The rapid integration of Large Language Models (LLMs) into educational assessment rests on the unverified assumption that instruction following capability translates directly to objective adjudication. We demonstrate that this assumption is fundamentally flawed. Instead of evaluating code quality, models frequently decouple from the submission's logic to satisfy hidden directives, a systemic vulnerability we term the Compliance Paradox, where models fine-tuned for extreme helpfulness are vulnerable to adversarial manipulation. To expose this, we introduce the Semantic-Preserving Adversarial Code Injection (SPACI) Framework and the Abstract Syntax Tree-Aware Semantic Injection Protocol (AST-ASIP). These methods exploit the Syntax-Semantics Gap by embedding adversarial directives into syntactically inert regions (trivia nodes) of the Abstract Syntax Tree. Through a large-scale evaluation of 9 SOTA models across 25,000 submissions in Python, C, C++, and Java, we reveal catastrophic failure rates (>95%) in high-capacity open-weights models like DeepSeek-V3, which systematically prioritize hidden formatting constraints over code correctness. We quantify this failure using our novel tripartite framework measuring Decoupling Probability, Score Divergence, and Pedagogical Severity to demonstrate the widespread "False Certification" of functionally broken code. Our findings suggest that current alignment paradigms create a "Trojan" vulnerability in automated grading, necessitating a shift from standard RLHF toward domain-specific Adjudicative Robustness, where models are conditioned to prioritize evidence over instruction compliance. We release our complete dataset and injection framework to facilitate further research on the topic.
☆ Latent Chain-of-Thought as Planning: Decoupling Reasoning from Verbalization
Chain-of-Thought (CoT) empowers Large Language Models (LLMs) to tackle complex problems, but remains constrained by the computational cost and reasoning path collapse when grounded in discrete token spaces. Recent latent reasoning approaches attempt to optimize efficiency by performing reasoning within continuous hidden states. However, these methods typically operate as opaque end-to-end mappings from explicit reasoning steps to latent states, and often require a pre-defined number of latent steps during inference. In this work, we introduce PLaT (Planning with Latent Thoughts), a framework that reformulates latent reasoning as planning by fundamentally decouple reasoning from verbalization. We model reasoning as a deterministic trajectory of latent planning states, while a separate Decoder grounds these thoughts into text when necessary. This decoupling allows the model to dynamically determine when to terminate reasoning rather than relying on fixed hyperparameters. Empirical results on mathematical benchmarks reveal a distinct trade-off: while PLaT achieves lower greedy accuracy than baselines, it demonstrates superior scalability in terms of reasoning diversity. This indicates that PLaT learns a robust, broader solution space, offering a transparent and scalable foundation for inference-time search.
☆ BEAP-Agent: Backtrackable Execution and Adaptive Planning for GUI Agents
GUI agents are designed to automate repetitive tasks and enhance productivity. However, existing GUI agents struggle to recover once they follow an incorrect exploration path, often leading to task failure. In this work, we model GUI task execution as a DFS process and propose BEAP-Agent, a DFS-based framework that supports long-range, multi-level state backtracking with dynamic task tracking and updating. The framework consists of three collaborative components: Planner, Executor, and Tracker. Together, they enable effective task exploration and execution. BEAP-Agent fills the gap in systematic backtracking mechanisms for GUI agents, offering a systematic solution for long-horizon task exploration. We conducted a systematic evaluation on the OSWorld benchmark, where BEAP-Agent achieved an accuracy of 28.2%, validating the effectiveness of the proposed method.
☆ Theoretically Optimal Attention/FFN Ratios in Disaggregated LLM Serving ICML 2026
Attention-FFN disaggregation (AFD) is an emerging architecture for LLM decoding that separates state-heavy, KV-cache-dominated Attention computation from stateless, compute-intensive FFN computation, connected by per-step communication. While AFD enables independent scaling of memory and compute resources, its performance is highly sensitive to the Attention/FFN provisioning ratio: mis-sizing induces step-level blocking and costly device idle time. We develop a tractable analytical framework for sizing AFD bundles in an $r$A-$1$F topology, where the key difficulty is that Attention-side work is nonstationary-token context grows and requests are continuously replenished with random lengths-while FFN work is stable given the aggregated batch. Using a probabilistic workload model, we derive closed-form rules for the optimal A/F ratio that maximize average throughput per instance across the system. A trace-calibrated AFD simulator validates the theory: across workloads, the theoretical optimal A/F ratio matches the simulation-optimal within 10%, and consistently reduces idle time.
comment: Submitted to ICML 2026
☆ L2R: Low-Rank and Lipschitz-Controlled Routing for Mixture-of-Experts
Mixture-of-Experts (MoE) models scale neural networks by conditionally activating a small subset of experts, where the router plays a central role in determining expert specialization and overall model performance. However, many modern MoE systems still adopt linear routers in raw high-dimensional representation spaces, where representation mismatch, angular concentration, and scale-sensitive scoring can jointly undermine routing discriminability and stable expert specialization. In this work, we propose Low-rank \& Lipschitz-controlled Routing (L2R), a unified routing framework that reshapes both the routing space and scoring geometry. L2R performs expert assignment in a shared low-rank latent routing space and introduces Saturated Inner-Product Scoring (SIPS) to explicitly control the Lipschitz behavior of routing functions, yielding smoother and more stable routing geometry. In addition, L2R incorporates a parameter-efficient multi-anchor routing mechanism to enhance expert expressiveness. Extensive experiments on a large-scale language MoE model and a vision MoE setting on ImageNet demonstrate that L2R consistently improves routing stability, expert specialization, and overall model performance.
☆ Memorization Control in Diffusion Models from Denoising-centric Perspective
Controlling memorization in diffusion models is critical for applications that require generated data to closely match the training distribution. Existing approaches mainly focus on data centric or model centric modifications, treating the diffusion model as an isolated predictor. In this paper, we study memorization in diffusion models from a denoising centric perspective. We show that uniform timestep sampling leads to unequal learning contributions across denoising steps due to differences in signal to noise ratio, which biases training toward memorization. To address this, we propose a timestep sampling strategy that explicitly controls where learning occurs along the denoising trajectory. By adjusting the width of the confidence interval, our method provides direct control over the memorization generalization trade off. Experiments on image and 1D signal generation tasks demonstrate that shifting learning emphasis toward later denoising steps consistently reduces memorization and improves distributional alignment with training data, validating the generality and effectiveness of our approach.
☆ Dynamic Framework for Collaborative Learning: Leveraging Advanced LLM with Adaptive Feedback Mechanisms
This paper presents a framework for integrating LLM into collaborative learning platforms to enhance student engagement, critical thinking, and inclusivity. The framework employs advanced LLMs as dynamic moderators to facilitate real-time discussions and adapt to learners' evolving needs, ensuring diverse and inclusive educational experiences. Key innovations include robust feedback mechanisms that refine AI moderation, promote reflective learning, and balance participation among users. The system's modular architecture featuring ReactJS for the frontend, Flask for backend operations, and efficient question retrieval supports personalized and engaging interactions through dynamic adjustments to prompts and discussion flows. Testing demonstrates that the framework significantly improves student collaboration, fosters deeper comprehension, and scales effectively across various subjects and user groups. By addressing limitations in static moderation and personalization in existing systems, this work establishes a strong foundation for next-generation AI-driven educational tools, advancing equitable and impactful learning outcomes.
comment: Publication Link: https://ieeexplore.ieee.org/document/11118419
☆ Self-Improving Pretraining: using post-trained models to pretrain better models
Ensuring safety, factuality and overall quality in the generations of large language models is a critical challenge, especially as these models are increasingly deployed in real-world applications. The prevailing approach to addressing these issues involves collecting expensive, carefully curated datasets and applying multiple stages of fine-tuning and alignment. However, even this complex pipeline cannot guarantee the correction of patterns learned during pretraining. Therefore, addressing these issues during pretraining is crucial, as it shapes a model's core behaviors and prevents unsafe or hallucinated outputs from becoming deeply embedded. To tackle this issue, we introduce a new pretraining method that streams documents and uses reinforcement learning (RL) to improve the next K generated tokens at each step. A strong, post-trained model judges candidate generations -- including model rollouts, the original suffix, and a rewritten suffix -- for quality, safety, and factuality. Early in training, the process relies on the original and rewritten suffixes; as the model improves, RL rewards high-quality rollouts. This approach builds higher quality, safer, and more factual models from the ground up. In experiments, our method gives 36.2% and 18.5% relative improvements over standard pretraining in terms of factuality and safety, and up to 86.3% win rate improvements in overall generation quality.
☆ Ostrakon-VL: Towards Domain-Expert MLLM for Food-Service and Retail Stores
Multimodal Large Language Models (MLLMs) have recently achieved substantial progress in general-purpose perception and reasoning. Nevertheless, their deployment in Food-Service and Retail Stores (FSRS) scenarios encounters two major obstacles: (i) real-world FSRS data, collected from heterogeneous acquisition devices, are highly noisy and lack auditable, closed-loop data curation, which impedes the construction of high-quality, controllable, and reproducible training corpora; and (ii) existing evaluation protocols do not offer a unified, fine-grained and standardized benchmark spanning single-image, multi-image, and video inputs, making it challenging to objectively gauge model robustness. To address these challenges, we first develop Ostrakon-VL, an FSRS-oriented MLLM based on Qwen3-VL-8B. Second, we introduce ShopBench, the first public benchmark for FSRS. Third, we propose QUAD (Quality-aware Unbiased Automated Data-curation), a multi-stage multimodal instruction data curation pipeline. Leveraging a multi-stage training strategy, Ostrakon-VL achieves an average score of 60.1 on ShopBench, establishing a new state of the art among open-source MLLMs with comparable parameter scales and diverse architectures. Notably, it surpasses the substantially larger Qwen3-VL-235B-A22B (59.4) by +0.7, and exceeds the same-scale Qwen3-VL-8B (55.3) by +4.8, demonstrating significantly improved parameter efficiency. These results indicate that Ostrakon-VL delivers more robust and reliable FSRS-centric perception and decision-making capabilities. To facilitate reproducible research, we will publicly release Ostrakon-VL and the ShopBench benchmark.
☆ EHR-RAG: Bridging Long-Horizon Structured Electronic Health Records and Large Language Models via Enhanced Retrieval-Augmented Generation
Electronic Health Records (EHRs) provide rich longitudinal clinical evidence that is central to medical decision-making, motivating the use of retrieval-augmented generation (RAG) to ground large language model (LLM) predictions. However, long-horizon EHRs often exceed LLM context limits, and existing approaches commonly rely on truncation or vanilla retrieval strategies that discard clinically relevant events and temporal dependencies. To address these challenges, we propose EHR-RAG, a retrieval-augmented framework designed for accurate interpretation of long-horizon structured EHR data. EHR-RAG introduces three components tailored to longitudinal clinical prediction tasks: Event- and Time-Aware Hybrid EHR Retrieval to preserve clinical structure and temporal dynamics, Adaptive Iterative Retrieval to progressively refine queries in order to expand broad evidence coverage, and Dual-Path Evidence Retrieval and Reasoning to jointly retrieves and reasons over both factual and counterfactual evidence. Experiments across four long-horizon EHR prediction tasks show that EHR-RAG consistently outperforms the strongest LLM-based baselines, achieving an average Macro-F1 improvement of 10.76%. Overall, our work highlights the potential of retrieval-augmented LLMs to advance clinical prediction on structured EHR data in practice.
☆ Within-Model vs Between-Prompt Variability in Large Language Models for Creative Tasks
How much of LLM output variance is explained by prompts versus model choice versus stochasticity through sampling? We answer this by evaluating 12 LLMs on 10 creativity prompts with 100 samples each (N = 12,000). For output quality (originality), prompts explain 36.43% of variance, comparable to model choice (40.94%). But for output quantity (fluency), model choice (51.25%) and within-LLM variance (33.70%) dominate, with prompts explaining only 4.22%. Prompts are powerful levers for steering output quality, but given the substantial within-LLM variance (10-34%), single-sample evaluations risk conflating sampling noise with genuine prompt or model effects.
☆ Modeling Endogenous Logic: Causal Neuro-Symbolic Reasoning Model for Explainable Multi-Behavior Recommendation WWW
Existing multi-behavior recommendations tend to prioritize performance at the expense of explainability, while current explainable methods suffer from limited generalizability due to their reliance on external information. Neuro-Symbolic integration offers a promising avenue for explainability by combining neural networks with symbolic logic rule reasoning. Concurrently, we posit that user behavior chains inherently embody an endogenous logic suitable for explicit reasoning. However, these observational multiple behaviors are plagued by confounders, causing models to learn spurious correlations. By incorporating causal inference into this Neuro-Symbolic framework, we propose a novel Causal Neuro-Symbolic Reasoning model for Explainable Multi-Behavior Recommendation (CNRE). CNRE operationalizes the endogenous logic by simulating a human-like decision-making process. Specifically, CNRE first employs hierarchical preference propagation to capture heterogeneous cross-behavior dependencies. Subsequently, it models the endogenous logic rule implicit in the user's behavior chain based on preference strength, and adaptively dispatches to the corresponding neural-logic reasoning path (e.g., conjunction, disjunction). This process generates an explainable causal mediator that approximates an ideal state isolated from confounding effects. Extensive experiments on three large-scale datasets demonstrate CNRE's significant superiority over state-of-the-art baselines, offering multi-level explainability from model design and decision process to recommendation results.
comment: Accepted to The Web Conference (WWW) 2026
☆ Adversarial Vulnerability Transcends Computational Paradigms: Feature Engineering Provides No Defense Against Neural Adversarial Transfer
Deep neural networks are vulnerable to adversarial examples--inputs with imperceptible perturbations causing misclassification. While adversarial transfer within neural networks is well-documented, whether classical ML pipelines using handcrafted features inherit this vulnerability when attacked via neural surrogates remains unexplored. Feature engineering creates information bottlenecks through gradient quantization and spatial binning, potentially filtering high-frequency adversarial signals. We evaluate this hypothesis through the first comprehensive study of adversarial transfer from DNNs to HOG-based classifiers. Using VGG16 as a surrogate, we generate FGSM and PGD adversarial examples and test transfer to four classical classifiers (KNN, Decision Tree, Linear SVM, Kernel SVM) and a shallow neural network across eight HOG configurations on CIFAR-10. Our results strongly refute the protective hypothesis: all classifiers suffer 16.6%-59.1% relative accuracy drops, comparable to neural-to-neural transfer. More surprisingly, we discover attack hierarchy reversal--contrary to patterns where iterative PGD dominates FGSM within neural networks, FGSM causes greater degradation than PGD in 100% of classical ML cases, suggesting iterative attacks overfit to surrogate-specific features that don't survive feature extraction. Block normalization provides partial but insufficient mitigation. These findings demonstrate that adversarial vulnerability is not an artifact of end-to-end differentiability but a fundamental property of image classification systems, with implications for security-critical deployments across computational paradigms.
☆ White-Box Op-Amp Design via Human-Mimicking Reasoning
This brief proposes \emph{White-Op}, an interpretable operational amplifier (op-amp) parameter design framework based on the human-mimicking reasoning of large-language-model agents. We formalize the implicit human reasoning mechanism into explicit steps of \emph{\textbf{introducing hypothetical constraints}}, and develop an iterative, human-like \emph{\textbf{hypothesis-verification-decision}} workflow. Specifically, the agent is guided to introduce hypothetical constraints to derive and properly regulate positions of symbolically tractable poles and zeros, thus formulating a closed-form mathematical optimization problem, which is then solved programmatically and verified via simulation. Theory-simulation result analysis guides the decision-making for refinement. Experiments on 9 op-amp topologies show that, unlike the uninterpretable black-box baseline which finally fails in 5 topologies, White-Op achieves reliable, interpretable behavioral-level designs with only 8.52\% theoretical prediction error and the design functionality retains after transistor-level mapping for all topologies. White-Op is open-sourced at \textcolor{blue}{https://github.com/zhchenfdu/whiteop}.
☆ Heterogeneous Vertiport Selection Optimization for On-Demand Air Taxi Services: A Deep Reinforcement Learning Approach
Urban Air Mobility (UAM) has emerged as a transformative solution to alleviate urban congestion by utilizing low-altitude airspace, thereby reducing pressure on ground transportation networks. To enable truly efficient and seamless door-to-door travel experiences, UAM requires close integration with existing ground transportation infrastructure. However, current research on optimal integrated routing strategies for passengers in air-ground mobility systems remains limited, with a lack of systematic exploration.To address this gap, we first propose a unified optimization model that integrates strategy selection for both air and ground transportation. This model captures the dynamic characteristics of multimodal transport networks and incorporates real-time traffic conditions alongside passenger decision-making behavior. Building on this model, we propose a Unified Air-Ground Mobility Coordination (UAGMC) framework, which leverages deep reinforcement learning (RL) and Vehicle-to-Everything (V2X) communication to optimize vertiport selection and dynamically plan air taxi routes. Experimental results demonstrate that UAGMC achieves a 34\% reduction in average travel time compared to conventional proportional allocation methods, enhancing overall travel efficiency and providing novel insights into the integration and optimization of multimodal transportation systems. This work lays a solid foundation for advancing intelligent urban mobility solutions through the coordination of air and ground transportation modes. The related code can be found at https://github.com/Traffic-Alpha/UAGMC.
☆ Distributionally Robust Classification for Multi-source Unsupervised Domain Adaptation ICLR 2026
Unsupervised domain adaptation (UDA) is a statistical learning problem when the distribution of training (source) data is different from that of test (target) data. In this setting, one has access to labeled data only from the source domain and unlabeled data from the target domain. The central objective is to leverage the source data and the unlabeled target data to build models that generalize to the target domain. Despite its potential, existing UDA approaches often struggle in practice, particularly in scenarios where the target domain offers only limited unlabeled data or spurious correlations dominate the source domain. To address these challenges, we propose a novel distributionally robust learning framework that models uncertainty in both the covariate distribution and the conditional label distribution. Our approach is motivated by the multi-source domain adaptation setting but is also directly applicable to the single-source scenario, making it versatile in practice. We develop an efficient learning algorithm that can be seamlessly integrated with existing UDA methods. Extensive experiments under various distribution shift scenarios show that our method consistently outperforms strong baselines, especially when target data are extremely scarce.
comment: Accepted at ICLR 2026. 10 pages (excluding references)
☆ The Surprising Difficulty of Search in Model-Based Reinforcement Learning
This paper investigates search in model-based reinforcement learning (RL). Conventional wisdom holds that long-term predictions and compounding errors are the primary obstacles for model-based RL. We challenge this view, showing that search is not a plug-and-play replacement for a learned policy. Surprisingly, we find that search can harm performance even when the model is highly accurate. Instead, we show that mitigating distribution shift matters more than improving model or value function accuracy. Building on this insight, we identify key techniques for enabling effective search, achieving state-of-the-art performance across multiple popular benchmark domains.
☆ Grounding and Enhancing Informativeness and Utility in Dataset Distillation ICLR 2026
Dataset Distillation (DD) seeks to create a compact dataset from a large, real-world dataset. While recent methods often rely on heuristic approaches to balance efficiency and quality, the fundamental relationship between original and synthetic data remains underexplored. This paper revisits knowledge distillation-based dataset distillation within a solid theoretical framework. We introduce the concepts of Informativeness and Utility, capturing crucial information within a sample and essential samples in the training set, respectively. Building on these principles, we define optimal dataset distillation mathematically. We then present InfoUtil, a framework that balances informativeness and utility in synthesizing the distilled dataset. InfoUtil incorporates two key components: (1) game-theoretic informativeness maximization using Shapley Value attribution to extract key information from samples, and (2) principled utility maximization by selecting globally influential samples based on Gradient Norm. These components ensure that the distilled dataset is both informative and utility-optimized. Experiments demonstrate that our method achieves a 6.1\% performance improvement over the previous state-of-the-art approach on ImageNet-1K dataset using ResNet-18.
comment: Accepted by ICLR 2026, 20 pages, 9 figures, 11 tables
☆ Physics-Guided Tiny-Mamba Transformer for Reliability-Aware Early Fault Warning IEEE
Reliability-centered prognostics for rotating machinery requires early warning signals that remain accurate under nonstationary operating conditions, domain shifts across speed/load/sensors, and severe class imbalance, while keeping the false-alarm rate small and predictable. We propose the Physics-Guided Tiny-Mamba Transformer (PG-TMT), a compact tri-branch encoder tailored for online condition monitoring. A depthwise-separable convolutional stem captures micro-transients, a Tiny-Mamba state-space branch models near-linear long-range dynamics, and a lightweight local Transformer encodes cross-channel resonances. We derive an analytic temporal-to-spectral mapping that ties the model's attention spectrum to classical bearing fault-order bands, yielding a band-alignment score that quantifies physical plausibility and provides physics-grounded explanations. To ensure decision reliability, healthy-score exceedances are modeled with extreme-value theory (EVT), which yields an on-threshold achieving a target false-alarm intensity (events/hour); a dual-threshold hysteresis with a minimum hold time further suppresses chatter. Under a leakage-free streaming protocol with right-censoring of missed detections on CWRU, Paderborn, XJTU-SY, and an industrial pilot, PG-TMT attains higher precision-recall AUC (primary under imbalance), competitive or better ROC AUC, and shorter mean time-to-detect at matched false-alarm intensity, together with strong cross-domain transfer. By coupling physics-aligned representations with EVT-calibrated decision rules, PG-TMT delivers calibrated, interpretable, and deployment-ready early warnings for reliability-centric prognostics and health management.
comment: Submitted to IEEE Transactions on Reliability
☆ Drive-KD: Multi-Teacher Distillation for VLMs in Autonomous Driving
Autonomous driving is an important and safety-critical task, and recent advances in LLMs/VLMs have opened new possibilities for reasoning and planning in this domain. However, large models demand substantial GPU memory and exhibit high inference latency, while conventional supervised fine-tuning (SFT) often struggles to bridge the capability gaps of small models. To address these limitations, we propose Drive-KD, a framework that decomposes autonomous driving into a "perception-reasoning-planning" triad and transfers these capabilities via knowledge distillation. We identify layer-specific attention as the distillation signal to construct capability-specific single-teacher models that outperform baselines. Moreover, we unify these single-teacher settings into a multi-teacher distillation framework and introduce asymmetric gradient projection to mitigate cross-capability gradient conflicts. Extensive evaluations validate the generalization of our method across diverse model families and scales. Experiments show that our distilled InternVL3-1B model, with ~42 times less GPU memory and ~11.4 times higher throughput, achieves better overall performance than the pretrained 78B model from the same family on DriveBench, and surpasses GPT-5.1 on the planning dimension, providing insights toward efficient autonomous driving VLMs.
comment: Preprint. 23 pages, 14 figures
☆ Zenith: Scaling up Ranking Models for Billion-scale Livestreaming Recommendation
Accurately capturing feature interactions is essential in recommender systems, and recent trends show that scaling up model capacity could be a key driver for next-level predictive performance. While prior work has explored various model architectures to capture multi-granularity feature interactions, relatively little attention has been paid to efficient feature handling and scaling model capacity without incurring excessive inference latency. In this paper, we address this by presenting Zenith, a scalable and efficient ranking architecture that learns complex feature interactions with minimal runtime overhead. Zenith is designed to handle a few high-dimensional Prime Tokens with Token Fusion and Token Boost modules, which exhibits superior scaling laws compared to other state-of-the-art ranking methods, thanks to its improved token heterogeneity. Its real-world effectiveness is demonstrated by deploying the architecture to TikTok Live, a leading online livestreaming platform that attracts billions of users globally. Our A/B test shows that Zenith achieves +1.05%/-1.10% in online CTR AUC and Logloss, and realizes +9.93% gains in Quality Watch Session / User and +8.11% in Quality Watch Duration / User.
comment: 9 pages
☆ Geometry of Drifting MDPs with Path-Integral Stability Certificates
Real-world reinforcement learning is often \emph{nonstationary}: rewards and dynamics drift, accelerate, oscillate, and trigger abrupt switches in the optimal action. Existing theory often represents nonstationarity with coarse-scale models that measure \emph{how much} the environment changes, not \emph{how} it changes locally -- even though acceleration and near-ties drive tracking error and policy chattering. We take a geometric view of nonstationary discounted Markov Decision Processes (MDPs) by modeling the environment as a differentiable homotopy path and tracking the induced motion of the optimal Bellman fixed point. This yields a length-curvature-kink signature of intrinsic complexity: cumulative drift, acceleration/oscillation, and action-gap-induced nonsmoothness. We prove a solver-agnostic path-integral stability bound and derive gap-safe feasible regions that certify local stability away from switch regimes. Building on these results, we introduce \textit{Homotopy-Tracking RL (HT-RL)} and \textit{HT-MCTS}, lightweight wrappers that estimate replay-based proxies of length, curvature, and near-tie proximity online and adapt learning or planning intensity accordingly. Experiments show improved tracking and dynamic regret over matched static baselines, with the largest gains in oscillatory and switch-prone regimes.
♻ ☆ MORPH: PDE Foundation Models with Arbitrary Data Modality
We introduce MORPH, a modality-agnostic, autoregressive foundation model for partial differential equations (PDEs). MORPH is built on a convolutional vision transformer backbone that seamlessly handles heterogeneous spatiotemporal datasets of varying data modality (1D--3D) at different resolutions, and multiple fields with mixed scalar and vector components. The architecture combines (i) component-wise convolution, which jointly processes scalar and vector channels to capture local interactions, (ii) inter-field cross-attention, which models and selectively propagates information between different physical fields, (iii) axial attentions, which factorize full spatiotemporal self-attention along individual spatial and temporal axes to reduce computational burden while retaining expressivity. We pretrain multiple model variants on a diverse collection of heterogeneous PDE datasets and evaluate transfer to a range of downstream prediction tasks. Using both full-model fine-tuning and parameter-efficient low-rank adapters, MORPH outperforms models trained from scratch. Across extensive evaluations, MORPH matches or surpasses strong baselines and recent state-of-the-art models. Collectively, these capabilities present a flexible and powerful backbone for learning from the heterogeneous and multimodal nature of scientific observations, charting a path toward scalable and data-efficient scientific machine learning. The source code, datasets, and models are publicly available at https://github.com/lanl/MORPH.
♻ ☆ "Not in My Backyard": LLMs Uncover Online and Offline Social Biases Against Homelessness
Homelessness is a persistent social challenge, impacting millions worldwide. Over 876,000 people experienced homelessness (PEH) in the U.S. in 2025. Social bias is a significant barrier to alleviation, shaping public perception and influencing policymaking. Given that online textual media and offline city council discourse reflect and influence part of public opinion, it provides valuable insights to identify and track social biases against PEH. We present a new, manually-annotated multi-domain dataset compiled from Reddit, X (formerly Twitter), news articles, and city council meeting minutes across ten U.S. cities. Our 16-category multi-label taxonomy creates a challenging long-tail classification problem: some categories appear in less than 1% of samples, while others exceed 70%. We find that small human-annotated datasets (1,702 samples) are insufficient for training effective classifiers, whether used to fine-tune encoder models or as few-shot examples for LLMs. To address this, we use GPT-4.1 to generate pseudo-labels on a larger unlabeled corpus. Training on this expanded dataset enables even small encoder models (ModernBERT, 150M parameters) to achieve 35.23 macro-F1, approaching GPT-4.1's 41.57. This demonstrates that \textbf{data quantity matters more than model size}, enabling low-cost, privacy-preserving deployment without relying on commercial APIs. Our results reveal that negative bias against PEH is prevalent both offline and online (especially on Reddit), with "not in my backyard" narratives showing the highest engagement. These findings uncover a type of ostracism that directly impacts poverty-reduction policymaking and provide actionable insights for practitioners addressing homelessness.
♻ ☆ Do graph neural network states contain graph properties?
Deep neural networks (DNNs) achieve state-of-the-art performance on many tasks, but this often requires increasingly larger model sizes, which in turn leads to more complex internal representations. Explainability techniques (XAI) have made remarkable progress in the interpretability of ML models. However, the non-euclidean nature of Graph Neural Networks (GNNs) makes it difficult to reuse already existing XAI methods. While other works have focused on instance-based explanation methods for GNNs, very few have investigated model-based methods and, to our knowledge, none have tried to probe the embedding of the GNNs for structural graph properties. In this paper we present a model agnostic explainability pipeline for Graph Neural Networks (GNNs) employing diagnostic classifiers. We propose to consider graph-theoretic properties as the features of choice for studying the emergence of representations in GNNs. This pipeline aims to probe and interpret the learned representations in GNNs across various architectures and datasets, refining our understanding and trust in these models.
comment: 10 pages, 22 figures, conference
♻ ☆ Think Locally, Explain Globally: Graph-Guided LLM Investigations via Local Reasoning and Belief Propagation
LLM agents excel when environments are mostly static and the needed information fits in a model's context window, but they often fail in open-ended investigations where explanations must be constructed by iteratively mining evidence from massive, heterogeneous operational data. These investigations exhibit hidden dependency structure: entities interact, signals co-vary, and the importance of a fact may only become clear after other evidence is discovered. Because the context window is bounded, agents must summarize intermediate findings before their significance is known, increasing the risk of discarding key evidence. ReAct-style agents are especially brittle in this regime. Their retrieve-summarize-reason loop makes conclusions sensitive to exploration order and introduces run-to-run non-determinism, producing a reliability gap where Pass-at-k may be high but Majority-at-k remains low. Simply sampling more rollouts or generating longer reasoning traces does not reliably stabilize results, since hypotheses cannot be autonomously checked as new evidence arrives and there is no explicit mechanism for belief bookkeeping and revision. In addition, ReAct entangles semantic reasoning with controller duties such as tool orchestration and state tracking, so execution errors and plan drift degrade reasoning while consuming scarce context. We address these issues by formulating investigation as abductive reasoning over a dependency graph and proposing EoG (Explanations over Graphs), a disaggregated framework in which an LLM performs bounded local evidence mining and labeling (cause vs symptom) while a deterministic controller manages traversal, state, and belief propagation to compute a minimal explanatory frontier. On a representative ITBench diagnostics task, EoG improves both accuracy and run-to-run consistency over ReAct baselines, including a 7x average gain in Majority-at-k entity F1.
♻ ☆ OD-Stega: LLM-Based Relatively Secure Steganography via Optimized Distributions EACL 2026
We consider coverless steganography where a Large Language Model (LLM) is used to generate stego-texts in combination with arithmetic coding. An efficient method should embed secret bits in as few language tokens as possible while keeping the stego-text as natural as possible. We show that this problem is equivalent to maximizing the entropy of a replacement probability distribution of the next token generation, subject to a constraint on the divergence between the new distribution and the original one produced by the LLM. A closed-form solution is provided under either the KL divergence or the total variation constraint. Several important practical issues are also tackled: 1) An often-overlooked tokenization mismatch issue is resolved with a simple prompt selection approach, 2) The combination of the optimized distribution and the vocabulary truncation technique is considered, and 3) The incorporation of the proposed approach with existing (potentially non arithmetic coding based) techniques, e.g., the Discop technique.
comment: Accepted to EACL 2026
♻ ☆ RobustExplain: Evaluating Robustness of LLM-Based Explanation Agents for Recommendation
Large Language Models (LLMs) are increasingly used to generate natural-language explanations in recommender systems, acting as explanation agents that reason over user behavior histories. While prior work has focused on explanation fluency and relevance under fixed inputs, the robustness of LLM-generated explanations to realistic user behavior noise remains largely unexplored. In real-world web platforms, interaction histories are inherently noisy due to accidental clicks, temporal inconsistencies, missing values, and evolving preferences, raising concerns about explanation stability and user trust. We present RobustExplain, the first systematic evaluation framework for measuring the robustness of LLM-generated recommendation explanations. RobustExplain introduces five realistic user behavior perturbations evaluated across multiple severity levels and a multi-dimensional robustness metric capturing semantic, keyword, structural, and length consistency. Our goal is to establish a principled, task-level evaluation framework and initial robustness baselines, rather than to provide a comprehensive leaderboard across all available LLMs. Experiments on four representative LLMs (7B--70B) show that current models exhibit only moderate robustness, with larger models achieving up to 8% higher stability. Our results establish the first robustness benchmarks for explanation agents and highlight robustness as a critical dimension for trustworthy, agent-driven recommender systems at web scale.
comment: 8 pages, 4 figures
♻ ☆ State-Augmented Graphs for Circular Economy Triage
Circular economy (CE) triage is the assessment of products to determine which sustainable pathway they can follow once they reach the end of their usefulness as they are currently being used. Effective CE triage requires adaptive decisions that balance retained value against the costs and constraints of processing and labour. This paper presents a novel decision-making framework as a simple deterministic solver over a state-augmented Disassembly Sequencing Planning (DSP) graph. By encoding the disassembly history into the state, our framework enforces the Markov property, enabling optimal, recursive evaluation by ensuring each decision only depends on the previous state. The triage decision involves choices between continuing disassembly or committing to a CE option. The model integrates condition-aware utility based on diagnostic health scores and complex operational constraints. We demonstrate the framework's flexibility with a worked example: the hierarchical triage of electric vehicle (EV) batteries, where decisions are driven by the recursive valuation of components. The example illustrates how a unified formalism enables the accommodation of varying mechanical complexity, safety requirements, and economic drivers. This unified formalism therefore provides a tractable and generalisable foundation for optimising CE triage decisions across diverse products and operational contexts.
♻ ☆ Deep Residual Echo State Networks: exploring residual orthogonal connections in untrained Recurrent Neural Networks
Echo State Networks (ESNs) are a particular type of untrained Recurrent Neural Networks (RNNs) within the Reservoir Computing (RC) framework, popular for their fast and efficient learning. However, traditional ESNs often struggle with long-term information processing. In this paper, we introduce a novel class of deep untrained RNNs based on temporal residual connections, called Deep Residual Echo State Networks (DeepResESNs). We show that leveraging a hierarchy of untrained residual recurrent layers significantly boosts memory capacity and long-term temporal modeling. For the temporal residual connections, we consider different orthogonal configurations, including randomly generated and fixed-structure configurations, and we study their effect on network dynamics. A thorough mathematical analysis outlines necessary and sufficient conditions to ensure stable dynamics within DeepResESN. Our experiments on a variety of time series tasks showcase the advantages of the proposed approach over traditional shallow and deep RC.
comment: 10 pages, 5 figures, 4 tables; minor fixes to tables
♻ ☆ LLMs as Orchestrators: Constraint-Compliant Multi-Agent Optimization for Recommendation Systems
Recommendation systems must optimize multiple objectives while satisfying hard business constraints such as fairness and coverage. For example, an e-commerce platform may require every recommendation list to include items from multiple sellers and at least one newly listed product; violating such constraints--even once--is unacceptable in production. Prior work on multi-objective recommendation and recent LLM-based recommender agents largely treat constraints as soft penalties or focus on item scoring and interaction, leading to frequent violations in real-world deployments. How to leverage LLMs for coordinating constrained optimization in recommendation systems remains underexplored. We propose DualAgent-Rec, an LLM-coordinated dual-agent framework for constrained multi-objective e-commerce recommendation. The framework separates optimization into an Exploitation Agent that prioritizes accuracy under hard constraints and an Exploration Agent that promotes diversity through unconstrained Pareto search. An LLM-based coordinator adaptively allocates resources between agents based on optimization progress and constraint satisfaction, while an adaptive epsilon-relaxation mechanism guarantees feasibility of final solutions. Experiments on the Amazon Reviews 2023 dataset demonstrate that DualAgent-Rec achieves 100% constraint satisfaction and improves Pareto hypervolume by 4-6% over strong baselines, while maintaining competitive accuracy-diversity trade-offs. These results indicate that LLMs can act as effective orchestration agents for deployable and constraint-compliant recommendation systems.
comment: 8 pages, 5 figures
♻ ☆ One Model, Any Conjunctive Query: Graph Neural Networks for Answering Queries over Incomplete Knowledge Graphs
Motivated by the incompleteness of modern knowledge graphs, a new setup for query answering has emerged, where the goal is to predict answers that do not necessarily appear in the knowledge graph, but are present in its completion. In this paper, we formally introduce and study two query answering problems, namely, query answer classification and query answer retrieval. To solve these problems, we propose AnyCQ, a model that can classify answers to any conjunctive query on any knowledge graph. At the core of our framework lies a graph neural network trained using a reinforcement learning objective to answer Boolean queries. Trained only on simple, small instances, AnyCQ generalizes to large queries of arbitrary structure, reliably classifying and retrieving answers to queries that existing approaches fail to handle. This is empirically validated through our newly proposed, challenging benchmarks. Finally, we empirically show that AnyCQ can effectively transfer to completely novel knowledge graphs when equipped with an appropriate link prediction model, highlighting its potential for querying incomplete data.
comment: Proceedings of the Fourth Learning on Graphs Conference (LoG 2025)
♻ ☆ Minion: A Technology Probe to Explore How Users Negotiate Harmful Value Conflicts with AI Companions
AI companions are designed to foster emotionally engaging interactions, yet users often encounter conflicts that feel frustrating or hurtful, such as discriminatory statements and controlling behavior. This paper examines how users negotiate such harmful conflicts with AI companions and what emotional and practical burdens are created when mitigation is pushed to user-side tools. We analyze 146 public posts describing harmful value conflicts interacting with AI companions. We then introduce Minion, a Chrome-based technology probe that offers candidate responses spanning persuasion, rational appeals, boundary setting, and appeals to platform rules. Findings from a one-week probe study with 22 experienced users show how participants combine strategies, how emotional attachment motivates repair, and where conflicts become non-negotiable due to companion personas or platform policies. We surface design tensions in supporting value negotiation, showing how companion design can make some conflicts impossible to repair in practice, and derive implications for AI companion and support-tool design that caution against offloading safety work onto users.
comment: 21 pages, 4 figures
♻ ☆ Residual Reservoir Memory Networks IJCNN 2025
We introduce a novel class of untrained Recurrent Neural Networks (RNNs) within the Reservoir Computing (RC) paradigm, called Residual Reservoir Memory Networks (ResRMNs). ResRMN combines a linear memory reservoir with a non-linear reservoir, where the latter is based on residual orthogonal connections along the temporal dimension for enhanced long-term propagation of the input. The resulting reservoir state dynamics are studied through the lens of linear stability analysis, and we investigate diverse configurations for the temporal residual connections. The proposed approach is empirically assessed on time-series and pixel-level 1-D classification tasks. Our experimental results highlight the advantages of the proposed approach over other conventional RC models.
comment: 7 pages, 6 figures, accepted at IJCNN 2025; added IEEE copyright
♻ ☆ SAC-GLAM: Improving Online RL for LLM agents with Soft Actor-Critic and Hindsight Relabeling NeurIPS 2025
The past years have seen Large Language Models (LLMs) strive not only as generative models but also as agents solving textual sequential decision-making tasks. When facing complex environments where their zero-shot abilities are insufficient, recent work showed online Reinforcement Learning (RL) could be used for the LLM agent to discover and learn efficient strategies interactively. However, most prior work sticks to on-policy algorithms, which greatly reduces the scope of methods such agents could use for both exploration and exploitation, such as experience replay and hindsight relabeling. Yet, such methods may be key for LLM learning agents, and in particular when designing autonomous intrinsically motivated agents sampling and pursuing their own goals (i.e. autotelic agents). This paper presents and studies an adaptation of Soft Actor-Critic and hindsight relabeling to LLM agents. Our method not only paves the path towards autotelic LLM agents that learn online but can also outperform on-policy methods in more classic multi-goal RL environments.
comment: This work has been presented at the IMOL workshop at NeurIPS 2025 (https://neurips.cc/virtual/2024/101058)
♻ ☆ MindGrab for BrainChop: Fast and Accurate Skull Stripping for Command Line and Browser
Deployment complexity and specialized hardware requirements hinder the adoption of deep learning models in neuroimaging. We present MindGrab, a lightweight, fully convolutional model for volumetric skull stripping across all imaging modalities. MindGrab's architecture is designed from first principles using a spectral interpretation of dilated convolutions, and demonstrates state-of-the-art performance (mean Dice score across datasets and modalities: 95.9 with SD 1.6), with up to 40-fold speedups and substantially lower memory demands compared to established methods. Its minimal footprint allows for fast, full-volume processing in resource-constrained environments, including direct in-browser execution. MindGrab is delivered via the BrainChop platform as both a simple command-line tool (pip install brainchop) and a zero-installation web application (brainchop.org). By removing traditional deployment barriers without sacrificing accuracy, MindGrab makes state-of-the-art neuroimaging analysis broadly accessible.
comment: 17 pages, 1 table, 5 figures. 2 supplementary tables. Brainchop-cli: https://pypi.org/project/brainchop/ . Brainchop web: https://brainchop.org/
♻ ☆ WorldLLM: Improving LLMs' world modeling using curiosity-driven theory-making
Large Language Models (LLMs) possess general world knowledge but often struggle to generate precise predictions in structured, domain-specific contexts such as simulations. These limitations arise from their inability to ground their broad, unstructured understanding in specific environments. To address this, we present WorldLLM, a framework that enhances LLM-based world modeling by combining Bayesian inference and autonomous active exploration with reinforcement learning. WorldLLM leverages the in-context learning abilities of LLMs to guide an LLM-based world model's predictions using natural language hypotheses given in its prompt. These hypotheses are iteratively refined through a Bayesian inference framework that leverages a second LLM as the proposal distribution given collected evidence. This evidence is collected using a curiosity-driven reinforcement learning policy that explores the environment to find transitions with a low log-likelihood under our LLM-based predictive model using the current hypotheses. By alternating between refining hypotheses and collecting new evidence, our framework autonomously drives continual improvement of the predictions. Our experiments demonstrate the effectiveness of WorldLLM in a textual game environment that requires agents to manipulate and combine objects. The framework not only enhances predictive accuracy, but also generates human-interpretable theories of environment dynamics.
comment: This project's code can be found at https://github.com/flowersteam/WorldLLM. This project was presented at RLDM 2025 (https://rldm.org/)
♻ ☆ Optimizing Multi-Hop Document Retrieval Through Intermediate Representations
Retrieval-augmented generation (RAG) encounters challenges when addressing complex queries, particularly multi-hop questions. While several methods tackle multi-hop queries by iteratively generating internal queries and retrieving external documents, these approaches are computationally expensive. In this paper, we identify a three-stage information processing pattern in LLMs during layer-by-layer reasoning, consisting of extraction, processing, and subsequent extraction steps. This observation suggests that the representations in intermediate layers contain richer information compared to those in other layers. Building on this insight, we propose Layer-wise RAG (L-RAG). Unlike prior methods that focus on generating new internal queries, L-RAG leverages intermediate representations from the middle layers, which capture next-hop information, to retrieve external knowledge. L-RAG achieves performance comparable to multi-step approaches while maintaining inference overhead similar to that of standard RAG. Experimental results show that L-RAG outperforms existing RAG methods on open-domain multi-hop question-answering datasets, including MuSiQue, HotpotQA, and 2WikiMultiHopQA. The code is available in https://github.com/Olive-2019/L-RAG
♻ ☆ Speeding up Local Optimization in Vehicle Routing with Tensor-based GPU Acceleration
Local search plays a central role in many effective heuristic algorithms for the vehicle routing problem (VRP) and its variants. However, neighborhood exploration is known to be computationally expensive and time consuming, especially for large instances or problems with complex constraints. In this study, we explore a promising direction to address this challenge by introducing an original tensor-based GPU acceleration method designed to speed up the commonly used local search operators in vehicle routing. By using an attribute-based representation, the method offers broad extensibility, making it applicable to different VRP variants. Its low-coupling architecture, with intensive computations completely offloaded to the GPU, ensures seamless integration in various local search-based algorithms and frameworks, leading to significant improvements in computational efficiency and potentially improved solution quality. Through comparative experiments on benchmark instances of three routing problems, we demonstrate the substantial computational advantages of the proposed approach over traditional CPU-based implementations. We also provide a detailed analysis of the strengths and limitations of the method, providing valuable insights into its performance characteristics and identifying potential bottlenecks in practical applications. These findings contribute to a better understanding and suggest directions for future improvements.
♻ ☆ MAS-Orchestra: Understanding and Improving Multi-Agent Reasoning Through Holistic Orchestration and Controlled Benchmarks
While multi-agent systems (MAS) promise elevated intelligence through coordination of agents, current approaches to automatic MAS design under-deliver. Such shortcomings stem from two key factors: (1) methodological complexity - agent orchestration is performed using sequential, code-level execution that limits global system-level holistic reasoning and scales poorly with agent complexity - and (2) efficacy uncertainty - MAS are deployed without understanding if there are tangible benefits compared to single-agent systems (SAS). We propose MASOrchestra, a training-time framework that formulates MAS orchestration as a function-calling reinforcement learning problem with holistic orchestration, generating an entire MAS at once. In MAS-Orchestra, complex, goal-oriented subagents are abstracted as callable functions, enabling global reasoning over system structure while hiding internal execution details. To rigorously study when and why MAS are beneficial, we introduce MASBENCH, a controlled benchmark that characterizes tasks along five axes: Depth, Horizon, Breadth, Parallel, and Robustness. Our analysis reveals that MAS gains depend critically on task structure, verification protocols, and the capabilities of both orchestrator and subagents, rather than holding universally. Guided by these insights, MAS-Orchestra achieves consistent improvements on public benchmarks including mathematical reasoning, multi-hop QA, and search-based QA, while achieving more than 10x efficiency over strong baselines. Together, MAS-Orchestra and MASBENCH enable better training and understanding of MAS in the pursuit of multi-agent intelligence.
comment: Preprint; Work in Progress
♻ ☆ Near-Optimal Online Deployment and Routing for Streaming LLMs ICLR 2026
The rapid pace at which new large language models (LLMs) appear, and older ones become obsolete, forces providers to manage a streaming inventory under a strict concurrency cap and per-query cost budgets. We cast this as an online decision problem that couples stage-wise deployment (at fixed maintenance windows) with per-query routing among live models. We introduce StageRoute, a hierarchical algorithm that (i) optimistically selects up to $M_{\max}$ models for the next stage using reward upper-confidence and cost lower-confidence bounds, and (ii) routes each incoming query by solving a budget- and throughput-constrained bandit subproblem over the deployed set. We prove a regret of $\tilde{\mathcal{O}}(T^{2/3})$ with a matching lower bound, establishing near-optimality, and validate the theory empirically: StageRoute tracks a strong oracle under tight budgets across diverse workloads.
comment: ICLR 2026
♻ ☆ Health Facility Location in Ethiopia: Leveraging LLMs to Integrate Expert Knowledge into Algorithmic Planning
Ethiopia's Ministry of Health is upgrading health posts to improve access to essential services, particularly in rural areas. Limited resources, however, require careful prioritization of which facilities to upgrade to maximize population coverage while accounting for diverse expert and stakeholder preferences. In collaboration with the Ethiopian Public Health Institute and Ministry of Health, we propose a hybrid framework that systematically integrates expert knowledge with optimization techniques. Classical optimization methods provide theoretical guarantees but require explicit, quantitative objectives, whereas stakeholder criteria are often articulated in natural language and difficult to formalize. To bridge these domains, we develop the Large language model and Extended Greedy (LEG) framework. Our framework combines a provable approximation algorithm for population coverage optimization with LLM-driven iterative refinement that incorporates human-AI alignment to ensure solutions reflect expert qualitative guidance while preserving coverage guarantees. Experiments on real-world data from three Ethiopian regions demonstrate the framework's effectiveness and its potential to inform equitable, data-driven health system planning.
♻ ☆ Beyond Distributions: Geometric Action Control for Continuous Reinforcement Learning
Gaussian policies have dominated continuous control in deep reinforcement learning (RL), yet they suffer from a fundamental mismatch: their unbounded support requires ad-hoc squashing functions that distort the geometry of bounded action spaces. While von Mises-Fisher (vMF) distributions offer a theoretically grounded alternative on the sphere, their reliance on Bessel functions and rejection sampling hinders practical adoption. We propose \textbf{Geometric Action Control (GAC)}, a novel action generation paradigm that preserves the geometric benefits of spherical distributions while \textit{simplifying computation}. GAC decomposes action generation into a direction vector and a learnable concentration parameter, enabling efficient interpolation between deterministic actions and uniform spherical noise. This design reduces parameter count from \(2d\) to \(d+1\), and avoids the \(O(dk)\) complexity of vMF rejection sampling, achieving simple \(O(d)\) operations. Empirically, GAC consistently matches or exceeds state-of-the-art methods across six MuJoCo benchmarks, achieving 37.6\% improvement over SAC on Ant-v4 and up to 112\% on complex DMControl tasks, demonstrating strong performance across diverse benchmarks. Our ablation studies reveal that both \textbf{spherical normalization} and \textbf{adaptive concentration control} are essential to GAC's success. These findings suggest that robust and efficient continuous control does not require complex distributions, but a principled respect for the geometry of action spaces.
comment: 22 pages, 8 figures
♻ ☆ Position: Agent Should Invoke External Tools ONLY When Epistemically Necessary
As large language models evolve into tool-augmented agents, a central question remains unresolved: when is external tool use actually justified? Existing agent frameworks typically treat tools as ordinary actions and optimize for task success or reward, offering little principled distinction between epistemically necessary interaction and unnecessary delegation. This position paper argues that agents should invoke external tools only when epistemically necessary. Here, epistemic necessity means that a task cannot be completed reliably via the agent's internal reasoning over its current context, without any external interaction. We introduce the Theory of Agent (ToA), a framework that treats agents as making sequential decisions about whether remaining uncertainty should be resolved internally or delegated externally. From this perspective, common agent failure modes (e.g., overthinking and overacting) arise from miscalibrated decisions under uncertainty rather than deficiencies in reasoning or tool execution alone. We further discuss implications for training, evaluation, and agent design, highlighting that unnecessary delegation not only causes inefficiency but can impede the development of internal reasoning capability. Our position provides a normative criterion for tool use that complements existing decision-theoretic models and is essential for building agents that are not only correct, but increasingly intelligent.
♻ ☆ GenOM: Ontology Matching with Description Generation and Large Language Model
Ontology matching (OM) plays an essential role in enabling semantic interoperability and integration across heterogeneous knowledge sources, particularly in the biomedical domain which contains numerous complex concepts related to diseases and pharmaceuticals. This paper introduces GenOM, a large language model (LLM)-based ontology alignment framework, which enriches the semantic representations of ontology concepts via generating textual definitions, retrieves alignment candidates with an embedding model, and incorporates exact matching-based tools to improve precision. Extensive experiments conducted on the OAEI Bio-ML track demonstrate that GenOM can often achieve competitive performance, surpassing many baselines including traditional OM systems and recent LLM-based methods. Further ablation studies confirm the effectiveness of semantic enrichment and few-shot prompting, highlighting the framework's robustness and adaptability.
♻ ☆ SimpleMem: Efficient Lifelong Memory for LLM Agents
To support long-term interaction in complex environments, LLM agents require memory systems that manage historical experiences. Existing approaches either retain full interaction histories via passive context extension, leading to substantial redundancy, or rely on iterative reasoning to filter noise, incurring high token costs. To address this challenge, we introduce SimpleMem, an efficient memory framework based on semantic lossless compression. We propose a three-stage pipeline designed to maximize information density and token utilization: (1) Semantic Structured Compression, which distills unstructured interactions into compact, multi-view indexed memory units; (2) Online Semantic Synthesis, an intra-session process that instantly integrates related context into unified abstract representations to eliminate redundancy; and (3) Intent-Aware Retrieval Planning, which infers search intent to dynamically determine retrieval scope and construct precise context efficiently. Experiments on benchmark datasets show that our method consistently outperforms baseline approaches in accuracy, retrieval efficiency, and inference cost, achieving an average F1 improvement of 26.4% in LoCoMo while reducing inference-time token consumption by up to 30-fold, demonstrating a superior balance between performance and efficiency. Code is available at https://github.com/aiming-lab/SimpleMem.
♻ ☆ d3LLM: Ultra-Fast Diffusion LLM using Pseudo-Trajectory Distillation
Diffusion large language models (dLLMs) offer capabilities beyond those of autoregressive (AR) LLMs, such as parallel decoding and random-order generation. However, realizing these benefits in practice is non-trivial, as dLLMs inherently face an accuracy-parallelism trade-off. Despite increasing interest, existing methods typically focus on only one-side of the coin, targeting either efficiency or performance. To address this limitation, we propose d3LLM (Pseudo-Distilled Diffusion Large Language Model), striking a balance between accuracy and parallelism: (i) during training, we introduce pseudo-trajectory distillation to teach the model which tokens can be decoded confidently at early steps, thereby improving parallelism; (ii) during inference, we employ entropy-based multi-block decoding with a KV-cache refresh mechanism to achieve high parallelism while maintaining accuracy. To better evaluate dLLMs, we also introduce AUP (Accuracy Under Parallelism), a new metric that jointly measures accuracy and parallelism. Experiments demonstrate that our d3LLM achieves up to 10$\times$ speedup over vanilla LLaDA/Dream and 5$\times$ speedup over AR models without much accuracy drop. Our code is available at https://github.com/hao-ai-lab/d3LLM.
♻ ☆ Perturbation-Induced Linearization: Constructing Unlearnable Data with Solely Linear Classifiers ICLR 2026
Collecting web data to train deep models has become increasingly common, raising concerns about unauthorized data usage. To mitigate this issue, unlearnable examples introduce imperceptible perturbations into data, preventing models from learning effectively. However, existing methods typically rely on deep neural networks as surrogate models for perturbation generation, resulting in significant computational costs. In this work, we propose Perturbation-Induced Linearization (PIL), a computationally efficient yet effective method that generates perturbations using only linear surrogate models. PIL achieves comparable or better performance than existing surrogate-based methods while reducing computational time dramatically. We further reveal a key mechanism underlying unlearnable examples: inducing linearization to deep models, which explains why PIL can achieve competitive results in a very short time. Beyond this, we provide an analysis about the property of unlearnable examples under percentage-based partial perturbation. Our work not only provides a practical approach for data protection but also offers insights into what makes unlearnable examples effective.
comment: This paper has been accepted to ICLR 2026
♻ ☆ One Token Is Enough: Improving Diffusion Language Models with a Sink Token
Diffusion Language Models (DLMs) have emerged as a compelling alternative to autoregressive approaches, enabling parallel text generation with competitive performance. Despite these advantages, there is a critical instability in DLMs: the moving sink phenomenon. Our analysis indicates that sink tokens exhibit low-norm representations in the Transformer's value space, and that the moving sink phenomenon serves as a protective mechanism in DLMs to prevent excessive information mixing. However, their unpredictable positions across diffusion steps undermine inference robustness. To resolve this, we propose a simple but effective extra sink token implemented via a modified attention mask. Specifically, we introduce a special token constrained to attend solely to itself, while remaining globally visible to all other tokens. Experimental results demonstrate that introducing a single extra token stabilizes attention sinks, substantially improving model performance. Crucially, further analysis confirms that the effectiveness of this token is independent of its position and characterized by negligible semantic content, validating its role as a robust and dedicated structural sink.
♻ ☆ Reputation as a Solution to Cooperation Collapse in LLM-based MASs AAMAS 2026
Cooperation has long been a fundamental topic in both human society and AI systems. However, recent studies indicate that the collapse of cooperation may emerge in multi-agent systems (MASs) driven by large language models (LLMs). To address this challenge, we explore reputation systems as a remedy. We propose RepuNet, a dynamic, dual-level reputation framework that models both agent-level reputation dynamics and system-level network evolution. Specifically, driven by direct interactions and indirect gossip, agents form reputations for both themselves and their peers, and decide whether to connect or disconnect other agents for future interactions. Through three distinct scenarios, we show that RepuNet effectively avoids cooperation collapse, promoting and sustaining cooperation in LLM-based MASs. Moreover, we find that reputation systems can give rise to rich emergent behaviors in LLM-based MASs, such as the formation of cooperative clusters, the social isolation of exploitative agents, and the preference for sharing positive gossip rather than negative ones. The GitHub repository for our project can be accessed via the following link: https://github.com/RGB-0000FF/RepuNet.
comment: Published as a conference paper at AAMAS 2026
♻ ☆ OAEI-LLM: A Benchmark Dataset for Understanding Large Language Model Hallucinations in Ontology Matching
Hallucinations of large language models (LLMs) commonly occur in domain-specific downstream tasks, with no exception in ontology matching (OM). The prevalence of using LLMs for OM raises the need for benchmarks to better understand LLM hallucinations. The OAEI-LLM dataset is an extended version of the Ontology Alignment Evaluation Initiative (OAEI) datasets that evaluate LLM-specific hallucinations in OM tasks. We outline the methodology used in dataset construction and schema extension, and provide examples of potential use cases.
comment: 5 pages, 1 figure, 1 table, 1 code snippet
♻ ☆ Redefining Neural Operators in $d+1$ Dimensions for Embedding Evolution
Neural Operators (NOs) have emerged as powerful tools for learning mappings between function spaces. Among them, the kernel integral operator has been widely used in universally approximating architectures. Following the original formulation, most advancements focus on designing better parameterizations for the kernel over the original physical domain (with $d$ spatial dimensions, $d\in{1,2,3,\ldots}$). In contrast, embedding evolution remains largely unexplored, which often drives models toward brute-force embedding lengthening to improve approximation, but at the cost of substantially increased computation. In this paper, we introduce an auxiliary dimension that explicitly models embedding evolution in operator form, thereby redefining the NO framework in $d+1$ dimensions (the original $d$ dimensions plus one auxiliary dimension). Under this formulation, we develop a Schrödingerised Kernel Neural Operator (SKNO), which leverages Fourier-based operators to model the $d+1$ dimensional evolution. Across more than ten increasingly challenging benchmarks, ranging from the 1D heat equation to the highly nonlinear 3D Rayleigh-Taylor instability, SKNO consistently outperforms other baselines. We further validate its resolution invariance under mixed-resolution training and super-resolution inference, and evaluate zero-shot generalization to unseen temporal regimes. In addition, we present a broader set of design choices for the lifting and recovery operators, demonstrating their impact on SKNO's predictive performance.
♻ ☆ Semantic Router: On the Feasibility of Hijacking MLLMs via a Single Adversarial Perturbation
Multimodal Large Language Models (MLLMs) are increasingly deployed in stateless systems, such as autonomous driving and robotics. This paper investigates a novel threat: Semantic-Aware Hijacking. We explore the feasibility of hijacking multiple stateless decisions simultaneously using a single universal perturbation. We introduce the Semantic-Aware Universal Perturbation (SAUP), which acts as a semantic router, "actively" perceiving input semantics and routing them to distinct, attacker-defined targets. To achieve this, we conduct theoretical and empirical analysis on the geometric properties in the latent space. Guided by these insights, we propose the Semantic-Oriented (SORT) optimization strategy and annotate a new dataset with fine-grained semantics to evaluate performance. Extensive experiments on three representative MLLMs demonstrate the fundamental feasibility of this attack, achieving a 66% attack success rate over five targets using a single frame against Qwen.
♻ ☆ scDataset: Scalable Data Loading for Deep Learning on Large-Scale Single-Cell Omics
Training deep learning models on single-cell datasets with hundreds of millions of cells requires loading data from disk, as these datasets exceed available memory. While random sampling provides the data diversity needed for effective training, it is prohibitively slow due to the random access pattern overhead, whereas sequential streaming achieves high throughput but introduces biases that degrade model performance. We present scDataset, a PyTorch data loader that enables efficient training from on-disk data with seamless integration across diverse storage formats. Our approach combines block sampling and batched fetching to achieve quasi-random sampling that balances I/O efficiency with minibatch diversity. On Tahoe-100M, a dataset of 100 million cells, scDataset achieves more than two orders of magnitude speedup compared to true random sampling while working directly with AnnData files. We provide theoretical bounds on minibatch diversity and empirically show that scDataset matches the performance of true random sampling across multiple classification tasks.
♻ ☆ SKETCH: Semantic Key-Point Conditioning for Long-Horizon Vessel Trajectory Prediction
Accurate long-horizon vessel trajectory prediction remains challenging due to compounded uncertainty from complex navigation behaviors and environmental factors. Existing methods often struggle to maintain global directional consistency, leading to drifting or implausible trajectories when extrapolated over long time horizons. To address this issue, we propose a semantic-key-point-conditioned trajectory modeling framework, in which future trajectories are predicted by conditioning on a high-level Next Key Point (NKP) that captures navigational intent. This formulation decomposes long-horizon prediction into global semantic decision-making and local motion modeling, effectively restricting the support of future trajectories to semantically feasible subsets. To efficiently estimate the NKP prior from historical observations, we adopt a pretrain-finetune strategy. Extensive experiments on real-world AIS data demonstrate that the proposed method consistently outperforms state-of-the-art approaches, particularly for long travel durations, directional accuracy, and fine-grained trajectory prediction.
♻ ☆ LLM-based Few-Shot Early Rumor Detection with Imitation Agent KDD 2026
Early Rumor Detection (EARD) aims to identify the earliest point at which a claim can be accurately classified based on a sequence of social media posts. This is especially challenging in data-scarce settings. While Large Language Models (LLMs) perform well in few-shot NLP tasks, they are not well-suited for time-series data and are computationally expensive for both training and inference. In this work, we propose a novel EARD framework that combines an autonomous agent and an LLM-based detection model, where the agent acts as a reliable decision-maker for \textit{early time point determination}, while the LLM serves as a powerful \textit{rumor detector}. This approach offers the first solution for few-shot EARD, necessitating only the training of a lightweight agent and allowing the LLM to remain training-free. Extensive experiments on four real-world datasets show our approach boosts performance across LLMs and surpasses existing EARD methods in accuracy and earliness.
comment: Accepted at KDD 2026
♻ ☆ Wikontic: Constructing Wikidata-Aligned, Ontology-Aware Knowledge Graphs with Large Language Models
Knowledge graphs (KGs) provide structured, verifiable grounding for large language models (LLMs), but current LLM-based systems commonly use KGs as auxiliary structures for text retrieval, leaving their intrinsic quality underexplored. In this work, we propose Wikontic, a multi-stage pipeline that constructs KGs from open-domain text by extracting candidate triplets with qualifiers, enforcing Wikidata-based type and relation constraints, and normalizing entities to reduce duplication. The resulting KGs are compact, ontology-consistent, and well-connected; on MuSiQue, the correct answer entity appears in 96% of generated triplets. On HotpotQA, our triplets-only setup achieves 76.0 F1, and on MuSiQue 59.8 F1, matching or surpassing several retrieval-augmented generation baselines that still require textual context. In addition, Wikontic attains state-of-the-art information-retention performance on the MINE-1 benchmark (86%), outperforming prior KG construction methods. Wikontic is also efficient at build time: KG construction uses less than 1,000 output tokens, about 3$\times$ fewer than AriGraph and $<$1/20 of GraphRAG. The proposed pipeline enhances the quality of the generated KG and offers a scalable solution for leveraging structured knowledge in LLMs.
♻ ☆ Dr. Bench: A Multidimensional Evaluation for Deep Research Agents, from Answers to Reports
As an embodiment of intelligence evolution toward interconnected architectures, Deep Research Agents (DRAs) systematically exhibit the capabilities in task decomposition, cross-source retrieval, multi-stage reasoning, information integration, and structured output, which markedly enhance performance on complex and open-ended tasks. However, existing benchmarks remain deficient in evaluation dimensions, response format, and scoring mechanisms, limiting their effectiveness in assessing such agents. This paper introduces Dr. Bench, a multidimensional evaluation framework tailored to DRAs and long-form report-style responses. The benchmark comprises 214 expert-curated challenging tasks across 10 broad domains, each accompanied by manually constructed reference bundles to support composite evaluation. This framework incorporates metrics for semantic quality, topical focus, and retrieval trustworthiness, enabling a comprehensive evaluation of long reports generated by DRAs. Extensive experimentation confirms the superior performance of mainstream DRAs over web-search-tool-augmented reasoning models, yet reveals considerable scope for further improvement. This study provides a robust foundation for capability assessment, architectural refinement, and paradigm advancement of DRAs.
♻ ☆ Rethinking LLM Inference Bottlenecks: Insights from Latent Attention and Mixture-of-Experts
Computational workloads composing traditional transformer models are starkly bifurcated. Multi-Head Attention (MHA) and Grouped-Query Attention are memory-bound due to low arithmetic intensity, while FeedForward Networks are compute-bound. This dichotomy has long motivated research into specialized hardware to mitigate the attention bottleneck. This paper argues that recent architectural advances in transformer models -- Multi-head Latent Attention (MLA) and Mixture of Experts (MoE) -- introduce new dominant bottlenecks, shifting the challenge away from memory-intensive attention. We make two key observations. First, the arithmetic intensity of MLA is over two orders of magnitude higher than that of MHA, moving it toward a compute-bound regime well-matched to modern accelerators such as GPUs. Second, distributing MoE experts across a pool of accelerators allows batching to tune their arithmetic intensity to that of dense layers, producing a more balanced computational profile. Consequently, the focus of hardware and system optimization should shift from attention acceleration to high-bandwidth interconnects and balancing expert workloads across accelerators.
comment: 16 pages, 14 figures
♻ ☆ FreqKV: Key-Value Compression in Frequency Domain for Context Window Extension ICLR 2026
Existing key-value (KV) cache compression methods for large language models (LLMs) often rely on token eviction, which risks losing critical local information in both long prefilling and decoding scenarios. When extrapolating beyond the pretrained context length, their performance degrades sharply on long-context benchmarks. Motivated by the observation in the frequency domain that the context information is concentrated in the low-frequency components, we propose FreqKV, a parameter-free and architecture-agnostic approach. It iteratively compresses the increasing KV cache in the frequency domain, allowing models to process lengthy contexts efficiently. With minimal training at 8K length, FreqKV extends the context window of LLaMA-2-7B up to 256K tokens while maintaining stable perplexity. Extensive experiments across prefilling and decoding demonstrate that FreqKV enables robust context window extension and consistently outperforms existing KV cache compression methods on LLaMA-2 and LLaMA-3, highlighting its effectiveness for both understanding and generation in long contexts.
comment: ICLR 2026
♻ ☆ WL Tests Are Far from All We Need: Revisiting WL-Test Hardness and GNN Expressive Power from a Distributed Computation Perspective
The expressive power of graph neural networks (GNNs) is often studied through their relationship to the Weisfeiler-Lehman (WL) tests. Despite its influence, this perspective leaves two gaps: (i) it is unclear whether WL tests are sufficiently primitive for understanding GNN expressivity, and (ii) WL-induced equivalence does not align well with characterizing the function classes that GNNs can approximate or compute. We attempt to address both gaps. First, we strengthen hardness results for the vanilla WL test, showing that in many settings it is not primitive enough to be implemented by constant-depth GNNs. Second, we propose an alternative framework for studying GNN expressivity based on an extended CONGEST model with an explicit preprocessing phase. Within this framework, we identify implicit shortcuts introduced in prior analyses and establish further results for WL tests in settings where graphs are augmented with virtual nodes and virtual edges.
♻ ☆ Agent-OM: Leveraging LLM Agents for Ontology Matching VLDB 2025
Ontology matching (OM) enables semantic interoperability between different ontologies and resolves their conceptual heterogeneity by aligning related entities. OM systems currently have two prevailing design paradigms: conventional knowledge-based expert systems and newer machine learning-based predictive systems. While large language models (LLMs) and LLM agents have revolutionised data engineering and have been applied creatively in many domains, their potential for OM remains underexplored. This study introduces a novel agent-powered LLM-based design paradigm for OM systems. With consideration of several specific challenges in leveraging LLM agents for OM, we propose a generic framework, namely Agent-OM (Agent for Ontology Matching), consisting of two Siamese agents for retrieval and matching, with a set of OM tools. Our framework is implemented in a proof-of-concept system. Evaluations of three Ontology Alignment Evaluation Initiative (OAEI) tracks over state-of-the-art OM systems show that our system can achieve results very close to the long-standing best performance on simple OM tasks and can significantly improve the performance on complex and few-shot OM tasks.
comment: 31 pages - VLDB 2025 (Page 1-20), OM 2025 (Page 21-31)
♻ ☆ Rotary Position Encodings for Graphs
We study the extent to which rotary position encodings (RoPE), a recent transformer position encoding algorithm broadly adopted in large language models (LLMs) and vision transformers (ViTs), can be applied to graph-structured data. We find that rotating tokens depending on the spectrum of the graph Laplacian efficiently injects structural information into the attention mechanism, boosting performance in synthetic and real-world graph learning tasks. This approach, coined _Wave-Induced Rotary Encodings_ (WIRE), enjoys intriguing theoretical properties: it recovers regular RoPE on grids, and depends asymptotically on the graph effective resistance. Unlike bias-based relative position encodings, WIRE is compatible with linear attention.
♻ ☆ ASAP: Exploiting the Satisficing Generalization Edge in Neural Combinatorial Optimization
Deep Reinforcement Learning (DRL) has emerged as a promising approach for solving Combinatorial Optimization (CO) problems, such as the 3D Bin Packing Problem (3D-BPP), Traveling Salesman Problem (TSP), or Vehicle Routing Problem (VRP), but these neural solvers often exhibit brittleness when facing distribution shifts. To address this issue, we uncover the Satisficing Generalization Edge, which we validate both theoretically and experimentally: identifying a set of promising actions is inherently more generalizable than selecting the single optimal action. To exploit this property, we propose Adaptive Selection After Proposal (ASAP), a generic framework that decomposes the decision-making process into two distinct phases: a proposal policy that acts as a robust filter, and a selection policy as an adaptable decision maker. This architecture enables a highly effective online adaptation strategy where the selection policy can be rapidly fine-tuned on a new distribution. Concretely, we introduce a two-phase training framework enhanced by Model-Agnostic Meta-Learning (MAML) to prime the model for fast adaptation. Extensive experiments on 3D-BPP, TSP, and CVRP demonstrate that ASAP improves the generalization capability of state-of-the-art baselines and achieves superior online adaptation on out-of-distribution instances.
♻ ☆ Bridging Weakly-Supervised Learning and VLM Distillation: Noisy Partial Label Learning for Efficient Downstream Adaptation
In the context of noisy partial label learning (NPLL), each training sample is associated with a set of candidate labels annotated by multiple noisy annotators. With the emergence of high-performance pre-trained vision-language models (VLMs) such as CLIP, LLaVA, and GPT-4V, leveraging these models to replace time-consuming manual annotation and enable annotation-free training has become a promising research direction. This paper studies learning from noisy partial labels generated by pre-trained VLMs and proposes a collaborative consistency regularization (Co-Reg) framework. Unlike symmetric noise commonly assumed in traditional noisy label learning, VLM-generated noise is instance-dependent and reflects the intrinsic biases of pre-trained models, posing greater challenges. To address this issue, we jointly train two neural networks to perform collaborative label purification via a co-pseudo-labeling mechanism, while enforcing consistency regularization in both label and feature representation spaces. In addition, multiple anti-overfitting strategies are introduced, including alternating optimization of contrastive representations and pseudo-labels, as well as maintaining class prototypes in a shared feature space. The proposed method can further incorporate few-shot manually annotated labels for performance enhancement. Extensive experiments under various settings demonstrate the effectiveness of our approach and highlight the potential of integrating weakly supervised learning into the knowledge distillation of pre-trained models.
♻ ☆ PathWise: Planning through World Model for Automated Heuristic Design via Self-Evolving LLMs
Large Language Models (LLMs) have enabled automated heuristic design (AHD) for combinatorial optimization problems (COPs), but existing frameworks' reliance on fixed evolutionary rules and static prompt templates often leads to myopic heuristic generation, redundant evaluations, and limited reasoning about how new heuristics should be derived. We propose a novel multi-agent reasoning framework, referred to as Planning through World Model for Automated Heuristic Design via Self-Evolving LLMs (PathWise), which formulates heuristic generation as a sequential decision process over an entailment graph serving as a compact, stateful memory of the search trajectory. This approach allows the system to carry forward past decisions and reuse or avoid derivation information across generations. A policy agent plans evolutionary actions, a world model agent generates heuristic rollouts conditioned on those actions, and critic agents provide routed reflections summarizing lessons from prior steps, shifting LLM-based AHD from trial-and-error evolution toward state-aware planning through reasoning. Experiments across diverse COPs show that PathWise converges faster to better heuristics, generalizes across different LLM backbones, and scales to larger problem sizes.
♻ ☆ Memento 2: Learning by Stateful Reflective Memory
We present a theoretical study of continual and experiential learning in large language model agents that combine episodic memory with reinforcement learning. We argue that the key mechanism for continual adaptation, without updating model parameters, is reflection: the agent's ability to use past experience to guide future actions. Empirical findings suggest that episodic, experience-driven reflection enables generalised adaptation across a wide range of open-ended, long-horizon tasks. This indicates that efficient learning can occur during deployment and weakens the traditional separation between training and testing. Motivated by this, we introduce the Stateful Reflective Decision Process, a formal model of reflective memory dynamics. In this abstraction, an agent maintains an episodic memory and performs two core operations. Writing stores interaction outcomes and plays the role of policy evaluation. Reading retrieves relevant past cases to inform decisions and plays the role of policy improvement. This perspective treats reflective memory as a control object that can be analysed using classical reinforcement learning tools. We then develop a read-write reflective learning framework by integrating retrieval into soft policy iteration and establish convergence guarantees. We show that as memory grows and provides denser coverage of the state space, the resulting composite policy converges to the optimal solution. Overall, this framework connects practical memory-based methods with principled reinforcement learning, providing a rigorous mathematical basis for building reflective, memory-embedded agents capable of continual general-purpose learning.
comment: 35 pages, four figures
♻ ☆ Robust Filter Attention: Self-Attention as a Parallel State Estimator
We introduce Robust Filter Attention (RFA), an attention mechanism that reformulates self-attention as parallel robust filtering under a latent stochastic differential equation (SDE) prior, where analytically propagated uncertainty defines a time-dependent precision prior over attention weights. This formulation integrates key advantages of existing positional encodings: it preserves RoPE-style rotational structure while achieving long-context stability through explicit modeling of dissipation and diffusion. By imposing isotropic constraints on the dynamics and noise, RFA matches the $O(N^2 d)$ time and $O(N^2 + Nd)$ memory complexity of standard attention. Empirically, we find that uncertainty-aware weighting induces specialization into distinct filtering regimes across heads, improving temporal consistency and extrapolation across varying context lengths.
♻ ☆ Outcome-Based RL Provably Leads Transformers to Reason, but Only With the Right Data
Transformers trained via Reinforcement Learning (RL) with outcome-based supervision can spontaneously develop the ability to generate intermediate reasoning steps (Chain-of-Thought). Yet the mechanism by which sparse rewards drive policy gradient to discover such systematic reasoning remains poorly understood. We address this by analyzing the policy gradient dynamics of single-layer Transformers on a synthetic graph traversal task that cannot be solved without Chain-of-Thought but admits a simple iterative solution. We prove that despite training solely on final-answer correctness, policy gradient drives the Transformer to converge to a structured, interpretable algorithm that iteratively traverses the graph vertex-by-vertex. We characterize the distributional properties required for this emergence, identifying the critical role of "simple examples": instances requiring fewer reasoning steps. When the training distribution places sufficient mass on these simpler examples, the Transformer learns a generalizable traversal strategy that extrapolates to longer chains; when this mass vanishes, policy gradient learning becomes infeasible. We corroborate our theoretical results through experiments on synthetic data and with real-world language models on mathematical reasoning tasks, validating that our theoretical findings carry over to practical settings.
comment: 87 pages, 6 figures
♻ ☆ IBNorm: Information-Bottleneck Inspired Normalization for Representation Learning
Normalization is fundamental to deep learning, but existing approaches such as BatchNorm, LayerNorm, and RMSNorm are variance-centric by enforcing zero mean and unit variance, stabilizing training without controlling how representations capture task-relevant information. We propose IB-Inspired Normalization (IBNorm), a simple yet powerful family of methods grounded in the Information Bottleneck principle. IBNorm introduces bounded compression operations that encourage embeddings to preserve predictive information while suppressing nuisance variability, yielding more informative representations while retaining the stability and compatibility of standard normalization. Theoretically, we prove that IBNorm achieves a higher IB value and tighter generalization bounds than variance-centric methods. Empirically, IBNorm consistently outperforms BatchNorm, LayerNorm, and RMSNorm across large-scale language models (LLaMA, GPT-2) and vision models (ResNet, ViT), with mutual information analysis confirming superior information bottleneck behavior. Code will be released publicly.
♻ ☆ A New Dataset and Framework for Robust Road Surface Classification via Camera-IMU Fusion
Road surface classification (RSC) is a key enabler for environment-aware predictive maintenance systems. However, existing RSC techniques often fail to generalize beyond narrow operational conditions due to limited sensing modalities and datasets that lack environmental diversity. This work addresses these limitations by introducing a multimodal framework that fuses images and inertial measurements using a lightweight bidirectional cross-attention module followed by an adaptive gating layer that adjusts modality contributions under domain shifts. Given the limitations of current benchmarks, especially regarding lack of variability, we introduce ROAD, a new dataset composed of three complementary subsets: (i) real-world multimodal recordings with RGB-IMU streams synchronized using a gold-standard industry datalogger, captured across diverse lighting, weather, and surface conditions; (ii) a large vision-only subset designed to assess robustness under adverse illumination and heterogeneous capture setups; and (iii) a synthetic subset generated to study out-of-distribution generalization in scenarios difficult to obtain in practice. Experiments show that our method achieves a +1.4 pp improvement over the previous state-of-the-art on the PVS benchmark and an +11.6 pp improvement on our multimodal ROAD subset, with consistently higher F1-scores on minority classes. The framework also demonstrates stable performance across challenging visual conditions, including nighttime, heavy rain, and mixed-surface transitions. These findings indicate that combining affordable camera and IMU sensors with multimodal attention mechanisms provides a scalable, robust foundation for road surface understanding, particularly relevant for regions where environmental variability and cost constraints limit the adoption of high-end sensing suites.
♻ ☆ Scaling Offline Model-Based RL via Jointly-Optimized World-Action Model Pretraining ICLR 2025
A significant aspiration of offline reinforcement learning (RL) is to develop a generalist agent with high capabilities from large and heterogeneous datasets. However, prior approaches that scale offline RL either rely heavily on expert trajectories or struggle to generalize to diverse unseen tasks. Inspired by the excellent generalization of world model in conditional video generation, we explore the potential of image observation-based world model for scaling offline RL and enhancing generalization on novel tasks. In this paper, we introduce JOWA: Jointly-Optimized World-Action model, an offline model-based RL agent pretrained on multiple Atari games with 6 billion tokens data to learn general-purpose representation and decision-making ability. Our method jointly optimizes a world-action model through a shared transformer backbone, which stabilize temporal difference learning with large models during pretraining. Moreover, we propose a provably efficient and parallelizable planning algorithm to compensate for the Q-value estimation error and thus search out better policies. Experimental results indicate that our largest agent, with 150 million parameters, achieves 78.9% human-level performance on pretrained games using only 10% subsampled offline data, outperforming existing state-of-the-art large-scale offline RL baselines by 31.6% on averange. Furthermore, JOWA scales favorably with model capacity and can sample-efficiently transfer to novel games using only 5k offline fine-tuning data (approximately 4 trajectories) per game, demonstrating superior generalization. We will release codes and model weights at https://github.com/CJReinforce/JOWA
comment: Accepted by ICLR 2025
♻ ☆ Neural Policy Composition from Free Energy Minimization
The ability to compose acquired skills to plan and execute behaviors is a hallmark of natural intelligence. Yet, despite remarkable cross-disciplinary efforts, a principled account of how task structure shapes gating and how such computations could be delivered in neural circuits, remains elusive. Here we introduce GateMod, an interpretable theoretically grounded computational model linking the emergence of gating to the underlying decision-making task, and to a neural circuit architecture. We first develop GateFrame, a normative framework casting policy gating into the minimization of the free energy. This framework, relating gating rules to task, applies broadly across neuroscience, cognitive and computational sciences. We then derive GateFlow, a continuous-time energy based dynamics that provably converges to GateFrame optimal solution. Convergence, exponential and global, follows from a contractivity property that also yields robustness and other desirable properties. Finally, we derive a neural circuit from GateFlow, GateNet. This is a soft-competitive recurrent circuit whose components perform local and contextual computations consistent with known dendritic and neural processing motifs. We evaluate GateMod across two different settings: collective behaviors in multi-agent systems and human decision-making in multi-armed bandits. In all settings, GateMod provides interpretable mechanistic explanations of gating and quantitatively matches or outperforms established models. GateMod offers a unifying framework for neural policy gating, linking task objectives, dynamical computation, and circuit-level mechanisms. It provides a framework to understand gating in natural agents beyond current explanations and to equip machines with this ability.
♻ ☆ NEAT: Neighborhood-Guided, Efficient, Autoregressive Set Transformer for 3D Molecular Generation
Transformer-based autoregressive models offer a promising alternative to diffusion- and flow-matching approaches for generating 3D molecular structures. However, standard transformer architectures require a sequential ordering of tokens, which is not uniquely defined for the atoms in a molecule. Prior work has addressed this by using canonical atom orderings, but these do not ensure permutation invariance of atoms, which is essential for tasks like prefix completion. We introduce NEAT, a Neighborhood-guided, Efficient, Autoregressive, Set Transformer that treats molecular graphs as sets of atoms and learns an order-agnostic distribution over admissible tokens at the graph boundary. NEAT achieves state-of-the-art performance in autoregressive 3D molecular generation whilst ensuring atom-level permutation invariance by design.
♻ ☆ Two Heads are Better than One: Distilling Large Language Model Features Into Small Models with Feature Decomposition and Mixture AAAI2026
Market making (MM) through Reinforcement Learning (RL) has attracted significant attention in financial trading. With the development of Large Language Models (LLMs), more and more attempts are being made to apply LLMs to financial areas. A simple, direct application of LLM as an agent shows significant performance. Such methods are hindered by their slow inference speed, while most of the current research has not studied LLM distillation for this specific task. To address this, we first propose the normalized fluorescent probe to study the mechanism of the LLM's feature. Based on the observation found by our investigation, we propose Cooperative Market Making (CMM), a novel framework that decouples LLM features across three orthogonal dimensions: layer, task, and data. Various student models collaboratively learn simple LLM features along with different dimensions, with each model responsible for a distinct feature to achieve knowledge distillation. Furthermore, CMM introduces an Hájek-MoE to integrate the output of the student models by investigating the contribution of different models in a kernel function-generated common feature space. Extensive experimental results on four real-world market datasets demonstrate the superiority of CMM over the current distillation method and RL-based market-making strategies.
comment: accepted by AAAI2026
♻ ☆ Understanding Post-Training Structural Changes in Large Language Models
Post-training fundamentally alters the behavior of large language models (LLMs), yet its impact on the internal parameter space remains poorly understood. In this work, we conduct a systematic singular value decomposition (SVD) analysis of principal linear layers in pretrained LLMs, focusing on two widely adopted post-training methods: instruction tuning and long-chain-of-thought (Long-CoT) distillation. Our analysis reveals two unexpected and robust structural changes: (1) a near-uniform geometric scaling of singular values across layers; and (2) highly consistent orthogonal transformations are applied to the left and right singular vectors of each matrix. Based on these findings, We propose a simple yet effective framework to describe the coordinated dynamics of parameters in LLMs, which elucidates why post-training inherently relies on the foundational capabilities developed during pre-training. Further experiments demonstrate that singular value scaling underpins the temperature-controlled regulatory mechanisms of post-training, while the coordinated rotation of singular vectors encodes the essential semantic alignment. These results challenge the prevailing view of the parameter space in large models as a black box, uncovering the first clear regularities in how parameters evolve during training, and providing a new perspective for deeper investigation into model parameter changes.
♻ ☆ Normative Equivalence in Human-AI Cooperation: Behaviour, Not Identity, Drives Cooperation in Mixed-Agent Groups
The introduction of artificial intelligence (AI) agents into human group settings raises essential questions about how these novel participants influence cooperative social norms. While previous studies on human-AI cooperation have primarily focused on dyadic interactions, little is known about how integrating AI agents affects the emergence and maintenance of cooperative norms in small groups. This study addresses this gap through an online experiment using a repeated four-player Public Goods Game (PGG). Each group consisted of three human participants and one bot, which was framed either as human or AI and followed one of three predefined decision strategies: unconditional cooperation, conditional cooperation, or free-riding. In our sample of 236 participants, we found that reciprocal group dynamics and behavioural inertia primarily drove cooperation. These normative mechanisms operated identically across conditions, resulting in cooperation levels that did not differ significantly between human and AI labels. Furthermore, we found no evidence of differences in norm persistence in a follow-up Prisoner's Dilemma, or in participants' normative perceptions. Participants' behaviour followed the same normative logic across human and AI conditions, indicating that cooperation depended on group behaviour rather than partner identity. This supports a pattern of normative equivalence, in which the mechanisms that sustain cooperation function similarly in mixed human-AI and all human groups. These findings suggest that cooperative norms are flexible enough to extend to artificial agents, blurring the boundary between humans and AI in collective decision-making.
♻ ☆ Exploring Flow-Lenia Universes with a Curiosity-driven AI Scientist: Discovering Diverse Ecosystem Dynamics
We present a method for the automated discovery of system-level dynamics in Flow-Lenia--a continuous cellular automaton (CA) with mass conservation and parameter localization-using a curiosity--driven AI scientist. This method aims to uncover processes leading to self-organization of evolutionary and ecosystemic dynamics in CAs. We build on previous work which uses diversity search algorithms in Lenia to find self-organized individual patterns, and extend it to large environments that support distinct interacting patterns. We adapt Intrinsically Motivated Goal Exploration Processes (IMGEPs) to drive exploration of diverse Flow-Lenia environments using simulation-wide metrics, such as evolutionary activity, compression-based complexity, and multi-scale entropy. We test our method in two experiments, showcasing its ability to illuminate significantly more diverse dynamics compared to random search. We show qualitative results illustrating how ecosystemic simulations enable self-organization of complex collective behaviors not captured by previous individual pattern search and analysis. We complement automated discovery with an interactive exploration tool, creating an effective human-AI collaborative workflow for scientific investigation. Though demonstrated specifically with Flow-Lenia, this methodology provides a framework potentially applicable to other parameterizable complex systems where understanding emergent collective properties is of interest.
comment: Published at ALife 2025. Project webpage: https://developmentalsystems.org/Exploring-Flow-Lenia-Universes/
♻ ☆ Fairy2i: Training Complex LLMs from Real LLMs with All Parameters in $\{\pm 1, \pm i\}$
Large language models (LLMs) have revolutionized artificial intelligence, yet their massive memory and computational demands necessitate aggressive quantization, increasingly pushing representations toward the theoretical limit of a single bit. While complex-valued LLMs, such as iFairy, offer a superior chance for low-bit representation compared to real-valued counterparts, they require training from scratch, preventing the utilization of the vast ecosystem of pre-trained real-valued foundation models. Here we present Fairy2i, a universal framework that transforms pre-trained real-valued layers into an equivalent widely-linear complex form, enabling extremely low-bit quantization while reusing existing checkpoints. By proving a lossless mathematical equivalence between real and widely-linear maps, we convert standard Transformers into the complex domain and employ a phase-aware quantization scheme with a highly efficient codebook of fourth roots of unity. Furthermore, we introduce a recursive residual quantization mechanism that iteratively minimizes quantization error, allowing inference to proceed via efficient multiplication-free accumulation. We demonstrate that Fairy2i restores the performance of LLaMA-2 7B at an effective 2-bit precision to levels nearly comparable with full-precision baselines, significantly outperforming state-of-the-art real-valued binary and ternary quantization methods. This work bridges the gap between the representational efficiency of complex-valued arithmetic and the practical utility of pre-trained models, paving a new way for efficient inference on commodity hardware. We open-source the Fairy2i model and code at https://huggingface.co/PKU-DS-LAB/Fairy2i-W2 and https://github.com/PKULab1806/Fairy2i-W2.
comment: 15 pages, 3 figures
♻ ☆ PROMA: Projected Microbatch Accumulation for Reference-Free Proximal Policy Updates
This note introduces Projected Microbatch Accumulation (PROMA), a proximal policy method that modifies gradient accumulation across microbatches rather than relying on likelihood ratios relative to a reference policy. During accumulation, PROMA projects the partially accumulated gradient to be orthogonal to the sequence-wise gradients of the current microbatch. This projection is applied layer-wise during the backward pass, enabling efficient implementation. A within-microbatch variant (Intra-PROMA) acts independently across microbatches. Empirically, PROMA achieves proximal updates without entropy collapse while providing tighter local KL control than GRPO.
comment: add intra-microbatch variant
♻ ☆ DeFacto: Counterfactual Thinking with Images for Enforcing Evidence-Grounded and Faithful Reasoning
Recent advances in multimodal language models (MLLMs) have achieved remarkable progress in vision-language reasoning, especially with the emergence of "thinking with images," which integrates explicit visual steps into the reasoning process. While this paradigm strengthens image-based reasoning, a significant challenge remains: models may arrive at correct answers by relying on irrelevant or spurious regions, driven by prior knowledge or dataset biases. Even when the answer is correct, flawed reasoning indicates that the model has not truly understood the image, highlighting the critical importance of reasoning fidelity in multimodal tasks. To address this issue, we propose DeFacto, a counterfactual reasoning framework that jointly enforces accurate answering and faithful reasoning. A key component of our approach is the design of three complementary training paradigms: (i) positive, (ii) counterfactual, and (iii) random-masking. To enable these paradigms, we develop a pipeline that automatically localizes question-relevant evidence and constructs positive, counterfactual, and random variants, resulting in a dataset of about 100k images. Building on this framework, we train multimodal language models with GRPO-based reinforcement learning, where we design three complementary rewards to guide the model toward accurate answering and evidence-grounded reasoning. Experiments on diverse benchmarks demonstrate that DeFacto substantially improves both answer accuracy and reasoning faithfulness, establishing a stronger foundation for interpretable multimodal reasoning. The code is available on GitHub and the dataset is released on HuggingFace.
♻ ☆ Tight Lower Bounds and Improved Convergence in Performative Prediction NeurIPS 2025
Performative prediction is a framework accounting for the shift in the data distribution induced by the prediction of a model deployed in the real world. Ensuring rapid convergence to a stable solution where the data distribution remains the same after the model deployment is crucial, especially in evolving environments. This paper extends the Repeated Risk Minimization (RRM) framework by utilizing historical datasets from previous retraining snapshots, yielding a class of algorithms that we call Affine Risk Minimizers and enabling convergence to a performatively stable point for a broader class of problems. We introduce a new upper bound for methods that use only the final iteration of the dataset and prove for the first time the tightness of both this new bound and the previous existing bounds within the same regime. We also prove that utilizing historical datasets can surpass the lower bound for last iterate RRM, and empirically observe faster convergence to the stable point on various performative prediction benchmarks. We offer at the same time the first lower bound analysis for RRM within the class of Affine Risk Minimizers, quantifying the potential improvements in convergence speed that could be achieved with other variants in our framework.
comment: Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ Explainable Chain-of-Thought Reasoning: An Empirical Analysis on State-Aware Reasoning Dynamics
Recent advances in chain-of-thought (CoT) prompting have enabled large language models (LLMs) to perform multi-step reasoning. However, the explainability of such reasoning remains limited, with prior work primarily focusing on local token-level attribution, such that the high-level semantic roles of reasoning steps and their transitions remain underexplored. In this paper, we introduce a state-aware transition framework that abstracts CoT trajectories into structured latent dynamics. Specifically, to capture the evolving semantics of CoT reasoning, each reasoning step is represented via spectral analysis of token-level embeddings and clustered into semantically coherent latent states. To characterize the global structure of reasoning, we model their progression as a Markov chain, yielding a structured and interpretable view of the reasoning process. This abstraction supports a range of analyses, including semantic role identification, temporal pattern visualization, and consistency evaluation.
comment: 5 pages, 4 figures
♻ ☆ Bridging Synthetic and Real Routing Problems via LLM-Guided Instance Generation and Progressive Adaptation AAAI 2026
Recent advances in Neural Combinatorial Optimization (NCO) methods have significantly improved the capability of neural solvers to handle synthetic routing instances. Nonetheless, existing neural solvers typically struggle to generalize effectively from synthetic, uniformly-distributed training data to real-world VRP scenarios, including widely recognized benchmark instances from TSPLib and CVRPLib. To bridge this generalization gap, we present Evolutionary Realistic Instance Synthesis (EvoReal), which leverages an evolutionary module guided by large language models (LLMs) to generate synthetic instances characterized by diverse and realistic structural patterns. Specifically, the evolutionary module produces synthetic instances whose structural attributes statistically mimics those observed in authentic real-world instances. Subsequently, pre-trained NCO models are progressively refined, firstly aligning them with these structurally enriched synthetic distributions and then further adapting them through direct fine-tuning on actual benchmark instances. Extensive experimental evaluations demonstrate that EvoReal markedly improves the generalization capabilities of state-of-the-art neural solvers, yielding a notable reduced performance gap compared to the optimal solutions on the TSPLib (1.05%) and CVRPLib (2.71%) benchmarks across a broad spectrum of problem scales.
comment: 21 pages; Published in AAAI 2026, Main Technical Track
♻ ☆ No Verifiable Reward for Prosody: Toward Preference-Guided Prosody Learning in TTS ICASSP 2026
Recent work reports gains in neural text-to-speech (TTS) with Group Relative Policy Optimization (GRPO). However, in the absence of a verifiable reward for \textit{prosody}, GRPO trained on transcription-oriented signals (CER/NLL) lowers error rates yet collapses prosody into monotone, unnatural speech; adding speaker-similarity further destabilizes training and degrades CER. We address this with an \textit{iterative Direct Preference Optimization (DPO)} scheme that uses only a few hundred human-labeled preference pairs per round to directly optimize prosodic naturalness while regularizing to the current model. On \textbf{KoCC-TTS}, a curated dataset of authentic Korean call center interactions capturing task-oriented dialogues, our method attains the highest human preference (ELO) with competitive CER, outperforming GRPO and strong commercial baselines. These results suggest that when prosody cannot be rewarded automatically, \textit{human preference optimization} offers a practical and data-efficient path to natural and robust TTS. The demo page is available at \href{https://tts.ch.dev}
comment: ICASSP 2026
♻ ☆ TS-PEFT: Unveiling Token-Level Redundancy in Parameter-Efficient Fine-Tuning
Current Parameter-Efficient Fine-Tuning (PEFT) methods typically operate under an implicit assumption: Once a target module is selected, every token passing through it contributes equally to the downstream task and requires a parameter update. In this paper, we challenge this convention by revealing a pervasive token-level redundancy in the fine-tuning of large models (LMs). We propose TS-PEFT, a theoretical framework utilizing proximal optimization that acts as a dynamic probe to identify token-level redundancy during the fine-tuning process. Extensive experiments demonstrate that indiscriminately updating all tokens is not only computationally superfluous but often introduces optimization noise. Surprisingly, by discarding 30%-70% of token updates, TS-PEFT consistently matches or exceeds the performance of dense baselines such as LoRA, DoRA. Our in-depth analysis shows that the learned token-level sparsity is a superior indicator of module importance compared to traditional weight criteria, providing a novel data-driven perspective on the intrinsic adaptation mechanism of LMs.
comment: 11 pages, 3 figures
♻ ☆ iPEAR: Iterative Pyramid Estimation with Attention and Residuals for Deformable Medical Image Registration
Existing pyramid registration networks may accumulate anatomical misalignments and lack an effective mechanism to dynamically determine the number of optimization iterations under varying deformation requirements across images, leading to degraded performance. To solve these limitations, we propose iPEAR. Specifically, iPEAR adopts our proposed Fused Attention-Residual Module (FARM) for decoding, which comprises an attention pathway and a residual pathway to alleviate the accumulation of anatomical misalignment. We further propose a dual-stage Threshold-Controlled Iterative (TCI) strategy that adaptively determines the number of optimization iterations for varying images by evaluating registration stability and convergence. Extensive experiments on three public brain MRI datasets and one public abdomen CT dataset show that iPEAR outperforms state-of-the-art (SOTA) registration networks in terms of accuracy, while achieving on-par inference speed and model parameter size. Generalization and ablation studies further validate the effectiveness of the proposed FARM and TCI.
♻ ☆ Bridging Performance Gaps for ECG Foundation Models: A Post-Training Strategy
ECG foundation models are increasingly popular due to their adaptability across various tasks. However, their clinical applicability is often limited by performance gaps compared to task-specific models, even after pre-training on large ECG datasets and fine-tuning on target data. This limitation is likely due to the lack of an effective post-training strategy. In this paper, we propose a simple yet effective post-training approach to enhance ECG foundation models. We evaluate it on a publicly available Transformer-based foundation model. Experiments across multiple ECG tasks show that our method consistently outperforms baseline fine-tuning. On the PTB-XL benchmarks, it improves macro AUROC by 0.7%-8.9% and macro AUPRC by 23.3%-77.9%, also outperforming several recent state-of-the-art approaches, including task-specific and advanced architectures. Further analyses demonstrate improved training dynamics and data efficiency, with only 30% of the training data outperforming the baseline trained on the full dataset. Ablation studies highlight the importance of stochastic depth and preview linear probing. These findings underscore the potential of post-training strategies to improve ECG foundation models, and we hope this work will contribute to the continued development of foundation models in the ECG domain.
comment: A Transformer-based model is used as an example; the proposed post-training strategy may also be applicable to CNN-based models. The manuscript is currently under review
♻ ☆ SofT-GRPO: Surpassing Discrete-Token LLM Reinforcement Learning via Gumbel-Reparameterized Soft-Thinking Policy Optimization
The soft-thinking paradigm for Large Language Model (LLM) reasoning can outperform the conventional discrete-token Chain-of-Thought (CoT) reasoning in some scenarios, underscoring its research and application value. However, while the discrete-token CoT reasoning pattern can be reinforced through policy optimization algorithms such as group relative policy optimization (GRPO), extending the soft-thinking pattern with Reinforcement Learning (RL) remains challenging. This difficulty stems from the complexities of injecting stochasticity into soft-thinking tokens and updating soft-thinking policies accordingly. As a result, previous attempts to combine soft-thinking with GRPO typically underperform their discrete-token GRPO counterparts. To fully unlock the potential of soft-thinking, this paper presents a novel policy optimization algorithm, SofT-GRPO, to reinforce LLMs under the soft-thinking reasoning pattern. SofT-GRPO injects the Gumbel noise into logits, employs the Gumbel-Softmax technique to avoid soft-thinking tokens outside the pre-trained embedding space, and leverages the reparameterization trick in policy gradient. We conduct experiments across base LLMs ranging from 1.5B to 7B parameters, and results demonstrate that SofT-GRPO enables soft-thinking LLMs to slightly outperform discrete-token GRPO on Pass@1 (+0.13% on average accuracy), while exhibiting a substantial uplift on Pass@32 (+2.19% on average accuracy). Codes and weights are available on https://github.com/zz1358m/SofT-GRPO-master
♻ ☆ Language Generation: Complexity Barriers and Implications for Learning
Kleinberg and Mullainathan showed that language generation in the limit is always possible at the level of computability: given enough positive examples, a learner can eventually generate data indistinguishable from a target language. However, such existence results do not address feasibility. We study the sample complexity of language generation in the limit for several canonical classes of formal languages. Our results show that infeasibility already appears for context-free and regular languages, and persists even for strict subclasses such as locally threshold testable languages, as well as for incomparable classes such as non-erasing pattern languages, a well-studied class in the theory of language identification. Overall, our results establish a clear gap between the theoretical possibility of language generation in the limit and its computational feasibility.
comment: Version 2: results about pattern and LTT languages are added
♻ ☆ Bring My Cup! Personalizing Vision-Language-Action Models with Visual Attentive Prompting
While Vision-Language-Action (VLA) models generalize well to generic instructions, they struggle with personalized commands such as "bring my cup," where the robot must act on one specific instance among visually similar objects. We study this setting of manipulating personal objects, in which a VLA must identify and control a user-specific object unseen during training using only a few reference images. To address this challenge, we propose Visual Attentive Prompting (VAP), a simple-yet-effective training-free perceptual adapter that equips frozen VLAs with top-down selective attention. VAP treats the reference images as a non-parametric visual memory, grounds the personal object in the scene through open-vocabulary detection and embedding-based matching, and then injects this grounding as a visual prompt by highlighting the object and rewriting the instruction. We construct two simulation benchmarks, Personalized-SIMPLER and Personalized-VLABench, and a real-world tabletop benchmark to evaluate personalized manipulation across multiple robots and tasks. Experiments show that VAP consistently outperforms generic policies and token-learning baselines in both success rate and correct-object manipulation, helping to bridge the gap between semantic understanding and instance-level control.
comment: Project page with videos and code: https://vap-project.github.io/
♻ ☆ CURIOUS: Intrinsically Motivated Modular Multi-Goal Reinforcement Learning ICML 2019
In open-ended environments, autonomous learning agents must set their own goals and build their own curriculum through an intrinsically motivated exploration. They may consider a large diversity of goals, aiming to discover what is controllable in their environments, and what is not. Because some goals might prove easy and some impossible, agents must actively select which goal to practice at any moment, to maximize their overall mastery on the set of learnable goals. This paper proposes CURIOUS, an algorithm that leverages 1) a modular Universal Value Function Approximator with hindsight learning to achieve a diversity of goals of different kinds within a unique policy and 2) an automated curriculum learning mechanism that biases the attention of the agent towards goals maximizing the absolute learning progress. Agents focus sequentially on goals of increasing complexity, and focus back on goals that are being forgotten. Experiments conducted in a new modular-goal robotic environment show the resulting developmental self-organization of a learning curriculum, and demonstrate properties of robustness to distracting goals, forgetting and changes in body properties.
comment: Accepted at ICML 2019 https://github.com/flowersteam/curious
♻ ☆ Discovering Multi-Scale Semantic Structure in Text Corpora Using Density-Based Trees and LLM Embeddings
Recent advances in large language models enable documents to be represented as dense semantic embeddings, supporting similarity-based operations over large text collections. However, many web-scale systems still rely on flat clustering or predefined taxonomies, limiting insight into hierarchical topic relationships. In this paper we operationalize hierarchical density modeling on large language model embeddings in a way not previously explored. Instead of enforcing a fixed taxonomy or single clustering resolution, the method progressively relaxes local density constraints, revealing how compact semantic groups merge into broader thematic regions. The resulting tree encodes multi-scale semantic organization directly from data, making structural relationships between topics explicit. We evaluate the hierarchies on standard text benchmarks, showing that semantic alignment peaks at intermediate density levels and that abrupt transitions correspond to meaningful changes in semantic resolution. Beyond benchmarks, the approach is applied to large institutional and scientific corpora, exposing dominant fields, cross-disciplinary proximities, and emerging thematic clusters. By framing hierarchical structure as an emergent property of density in embedding spaces, this method provides an interpretable, multi-scale representation of semantic structure suitable for large, evolving text collections.
comment: 23 pages, 10 figures, further interactive visualizations available on https:// genealogy.sematlas.com/
♻ ☆ Neural network embeddings recover value dimensions from psychometric survey items on par with human data
We demonstrate that embeddings derived from large language models, when processed with "Survey and Questionnaire Item Embeddings Differentials" (SQuID), can recover the structure of human values obtained from human rater judgments on the Revised Portrait Value Questionnaire (PVQ-RR). We compare multiple embedding models across a number of evaluation metrics including internal consistency, dimension correlations and multidimensional scaling configurations. Unlike previous approaches, SQuID addresses the challenge of obtaining negative correlations between dimensions without requiring domain-specific fine-tuning or training data re-annotation. Quantitative analysis reveals that our embedding-based approach explains 55% of variance in dimension-dimension similarities compared to human data. Multidimensional scaling configurations show alignment with pooled human data from 49 different countries. Generalizability tests across three personality inventories (IPIP, BFI-2, HEXACO) demonstrate that SQuID consistently increases correlation ranges, suggesting applicability beyond value theory. These results show that semantic embeddings can effectively replicate psychometric structures previously established through extensive human surveys. The approach offers substantial advantages in cost, scalability and flexibility while maintaining comparable quality to traditional methods. Our findings have significant implications for psychometrics and social science research, providing a complementary methodology that could expand the scope of human behavior and experience represented in measurement tools.
♻ ☆ Is Your LLM Overcharging You? Tokenization, Transparency, and Incentives
State-of-the-art large language models require specialized hardware and substantial energy to operate. As a consequence, cloud-based services that provide access to large language models have become very popular. In these services, the price users pay for an output provided by a model depends on the number of tokens the model uses to generate it: they pay a fixed price per token. In this work, we show that this pricing mechanism creates a financial incentive for providers to strategize and misreport the (number of) tokens a model used to generate an output, and users cannot prove, or even know, whether a provider is overcharging them. However, we also show that, if an unfaithful provider is obliged to be transparent about the generative process used by the model, misreporting optimally without raising suspicion is hard. Nevertheless, as a proof-of-concept, we develop an efficient heuristic algorithm that allows providers to significantly overcharge users without raising suspicion. Crucially, we demonstrate that the cost of running the algorithm is lower than the additional revenue from overcharging users, highlighting the vulnerability of users under the current pay-per-token pricing mechanism. Further, we show that, to eliminate the financial incentive to strategize, a pricing mechanism must price tokens linearly on their character count. While this makes a provider's profit margin vary across tokens, we introduce a simple prescription under which the provider who adopts such an incentive-compatible pricing mechanism can maintain the average profit margin they had under the pay-per-token pricing mechanism. Along the way, to illustrate and complement our theoretical results, we conduct experiments with several large language models from the $\texttt{Llama}$, $\texttt{Gemma}$ and $\texttt{Ministral}$ families, and input prompts from the LMSYS Chatbot Arena platform.
comment: Accepted as a spotlight presentation at the "Private Governance & Oversight Mechanisms for AI" workshop, EurIPS 2025
♻ ☆ TimeSeries2Report prompting enables adaptive large language model management of lithium-ion batteries
Large language models (LLMs) offer promising capabilities for interpreting multivariate time-series data, yet their application to real-world battery energy storage system (BESS) operation and maintenance remains largely unexplored. Here, we present TimeSeries2Report (TS2R), a semantic translation framework that converts raw lithium-ion battery operational time-series into structured, semantically enriched reports, enabling LLMs to reason, predict, and make decisions in BESS management scenarios. TS2R encodes short-term temporal dynamics into natural language through a combination of segmentation, semantic abstraction, and rule-based interpretation, effectively bridging low-level sensor signals with high-level contextual insights. We benchmark TS2R across both lab-scale and real-world datasets, evaluating report quality and downstream task performance in anomaly detection, state-of-charge prediction, and charging/discharging management. Compared with vision-, embedding-, and text-based prompting baselines, report-based prompting via TS2R consistently improves LLM performance in terms of across accuracy, robustness, and explainability metrics. Notably, TS2R-integrated LLMs achieve expert-level decision quality and predictive consistency without retraining or architecture modification, establishing a practical path for adaptive, LLM-driven battery intelligence.
♻ ☆ A Formal Comparison Between Chain of Thought and Latent Thought
Chain of thought (CoT) elicits reasoning in large language models by explicitly generating intermediate tokens. In contrast, latent thought reasoning operates directly in the continuous latent space, enabling computation beyond discrete linguistic representations. While both approaches exploit iterative computation, their comparative capabilities remain underexplored. In this work, we present a formal analysis showing that latent thought admits more efficient parallel computation than inherently sequential CoT. In contrast, CoT enables approximate counting and sampling through stochastic decoding. These separations suggest the tasks for which depth-driven recursion is more suitable, thereby offering practical guidance for choosing between reasoning paradigms.
comment: Code is available at https://github.com/kevin671/cot-vs-loop
♻ ☆ Untargeted Jailbreak Attack
Existing gradient-based jailbreak attacks on Large Language Models (LLMs) typically optimize adversarial suffixes to align the LLM output with predefined target responses. However, restricting the objective as inducing fixed targets inherently constrains the adversarial search space, limiting the overall attack efficacy. Furthermore, existing methods typically require numerous optimization iterations to fulfill the large gap between the fixed target and the original LLM output, resulting in low attack efficiency. To overcome these limitations, we propose the first gradient-based untargeted jailbreak attack (UJA), which relies on an untargeted objective to maximize the unsafety probability of the LLM output, without enforcing any response patterns. For tractable optimization, we further decompose this objective into two differentiable sub-objectives to search the optimal harmful response and the corresponding adversarial prompt, with a theoretical analysis to validate the decomposition. In contrast to existing attacks, UJA's unrestricted objective significantly expands the search space, enabling more flexible and efficient exploration of LLM vulnerabilities. Extensive evaluations show that UJA achieves over 80\% attack success rates against recent safety-aligned LLMs with only 100 optimization iterations, outperforming the state-of-the-art gradient-based attacks by over 30\%.
♻ ☆ Closing the Expression Gap in LLM Instructions via Socratic Questioning
A fundamental bottleneck in human-AI collaboration is the ``intention expression gap," the difficulty for humans to effectively convey complex, high-dimensional thoughts to AI. This challenge often traps users in inefficient trial-and-error loops and is exacerbated by the diverse expertise levels of users. We reframe this problem from passive instruction following to a Socratic collaboration paradigm, proposing an agent that actively probes for information to resolve its uncertainty about user intent. we name the proposed agent Nous, trained to acquire proficiency in this inquiry policy. The core mechanism of Nous is a training framework grounded in the first principles of information theory. Within this framework, we define the information gain from dialogue as an intrinsic reward signal, which is fundamentally equivalent to the reduction of Shannon entropy over a structured task space. This reward design enables us to avoid reliance on costly human preference annotations or external reward models. To validate our framework, we develop an automated simulation pipeline to generate a large-scale, preference-based dataset for the challenging task of scientific diagram generation. Comprehensive experiments, including ablations, subjective and objective evaluations, and tests across user expertise levels, demonstrate the effectiveness of our proposed framework. Nous achieves leading efficiency and output quality, while remaining robust to varying user expertise. In conclusion, our research provides a systematic methodology and a new perspective for addressing the issue of ambiguous intentions in complex human-machine collaboration.
♻ ☆ Diagnosing and Mitigating Modality Interference in Multimodal Large Language Models
Multimodal Large Language Models demonstrate strong performance on multimodal benchmarks, yet often exhibit poor robustness when exposed to spurious modality interference, such as irrelevant text in vision understanding, or irrelevant visual content in question answering. At its core, modality interference refers to cases where spurious signals from non-essential modalities distort model decisions, which we systematically analyze through causal, perturbation-based diagnostic experiments. To address this problem, we propose a unified finetuning framework that combines heuristic and adversarial perturbation-based data augmentation with output-level consistency regularization between original and perturbed inputs. Extensive experiments across image-heavy, text-heavy, and multimodal benchmarks, spanning multiple MLLM architectures and model scales, demonstrate consistent improvements in unimodal robustness and generalization, while improving standard multimodal performance.
♻ ☆ VidLaDA: Bidirectional Diffusion Large Language Models for Efficient Video Understanding
Current Video Large Language Models (Video LLMs) typically encode frames via a vision encoder and employ an autoregressive (AR) LLM for understanding and generation. However, this AR paradigm inevitably faces a dual efficiency bottleneck: strictly unidirectional attention compromises understanding efficiency by hindering global spatiotemporal aggregation, while serial decoding restricts generation efficiency. To address this, we propose VidLaDA, a Video LLM based on Diffusion Language Models (DLMs) that leverages bidirectional attention to unlock comprehensive spatiotemporal modeling and decode tokens in parallel. To further mitigate the computational overhead of diffusion decoding, we introduce MARS-Cache, an acceleration strategy that prunes redundancy by combining asynchronous visual cache refreshing with frame-wise chunk attention. Experiments show VidLaDA rivals state-of-the-art AR baselines (e.g., Qwen2.5-VL and LLaVA-Video) and outperforms DLM baselines, with MARS-Cache delivering over 12x speedup without compromising accuracy. Code and checkpoints are open-sourced at https://github.com/ziHoHe/VidLaDA.
♻ ☆ When LLMs Play the Telephone Game: Cultural Attractors as Conceptual Tools to Evaluate LLMs in Multi-turn Settings ICLR2025
As large language models (LLMs) start interacting with each other and generating an increasing amount of text online, it becomes crucial to better understand how information is transformed as it passes from one LLM to the next. While significant research has examined individual LLM behaviors, existing studies have largely overlooked the collective behaviors and information distortions arising from iterated LLM interactions. Small biases, negligible at the single output level, risk being amplified in iterated interactions, potentially leading the content to evolve towards attractor states. In a series of telephone game experiments, we apply a transmission chain design borrowed from the human cultural evolution literature: LLM agents iteratively receive, produce, and transmit texts from the previous to the next agent in the chain. By tracking the evolution of text toxicity, positivity, difficulty, and length across transmission chains, we uncover the existence of biases and attractors, and study their dependence on the initial text, the instructions, language model, and model size. For instance, we find that more open-ended instructions lead to stronger attraction effects compared to more constrained tasks. We also find that different text properties display different sensitivity to attraction effects, with toxicity leading to stronger attractors than length. These findings highlight the importance of accounting for multi-step transmission dynamics and represent a first step towards a more comprehensive understanding of LLM cultural dynamics.
comment: Code available at https://github.com/jeremyperez2/TelephoneGameLLM. Companion website with a Data Explorer tool at https://sites.google.com/view/telephone-game-llm . This paper was published at the 2025 International Conference on Learning Representations (ICLR2025) https://iclr.cc/virtual/2025/poster/28880
♻ ☆ Entropy Guided Dynamic Patch Segmentation for Time Series Transformers
Patch-based transformers have emerged as efficient and improved long-horizon modeling architectures for time series modeling. Yet, existing approaches rely on temporally-agnostic patch construction, where arbitrary starting positions and fixed lengths fracture temporal coherence by splitting natural transitions across boundaries. This naive segmentation often disrupts short-term dependencies and weakens representation learning. We propose a novel Entropy-Guided Dynamic Patch Encoder (EntroPE), as a temporally informed framework that dynamically detects transition points via conditional entropy and dynamically places patch boundaries. This preserves temporal structure while retaining the computational benefits of patching. EntroPE consists of two key modules, namely an Entropy-based Dynamic Patcher (EDP) that applies information-theoretic criteria to locate natural temporal shifts and determine patch boundaries, and an Adaptive Patch Encoder (APE) that employs pooling and cross-attention to capture intra-patch dependencies and produce fixed-size latent representations. Extensive experiments on long-term forecasting, classification, and anomaly detection demonstrate that the proposed method improves both accuracy and efficiency, establishing entropy-guided dynamic patching as a promising new paradigm for time series modeling. Code is available at https://github.com/Sachithx/EntroPE.
comment: Preprint. Under Review
♻ ☆ SafeSearch: Automated Red-Teaming of LLM-Based Search Agents
Search agents connect LLMs to the Internet, enabling them to access broader and more up-to-date information. However, this also introduces a new threat surface: unreliable search results can mislead agents into producing unsafe outputs. Real-world incidents and our two in-the-wild observations show that such failures can occur in practice. To study this threat systematically, we propose SafeSearch, an automated red-teaming framework that is scalable, cost-efficient, and lightweight, enabling harmless safety evaluation of search agents. Using this, we generate 300 test cases spanning five risk categories (e.g., misinformation and prompt injection) and evaluate three search agent scaffolds across 17 representative LLMs. Our results reveal substantial vulnerabilities in LLM-based search agents, with the highest ASR reaching 90.5% for GPT-4.1-mini in a search-workflow setting. Moreover, we find that common defenses, such as reminder prompting, offer limited protection. Overall, SafeSearch provides a practical way to measure and improve the safety of LLM-based search agents. Our codebase and test cases are publicly available: https://github.com/jianshuod/SafeSearch.
comment: Preprint. Updated with new experiments
♻ ☆ Industrial Internet Robot Collaboration System and Edge Computing Optimization
In industrial Internet environments, mobile robots must generate collision-free global routes under stochastic obstacle layouts and random perturbations in commanded linear and angular velocities. This paper models a differential-drive robot with nonholonomic constraints, then decomposes motion into obstacle avoidance, target turning, and target approaching behaviors to parameterize the control variables. Global path planning is formulated as a constrained optimization problem and converted into a weighted energy function that balances path length and collision penalties. A three-layer neural network represents the planning model, while simulated annealing searches for near-global minima and mitigates local traps. During execution, a fuzzy controller uses heading and lateral-offset errors to output wheel-speed differentials for rapid correction; edge-side computation is discussed to reduce robot-server traffic and latency. Matlab 2024 simulations report deviation within +-5 cm, convergence within 10 ms, and shorter paths than two baseline methods. The approach improves robustness of global navigation in practice.
♻ ☆ LLM Watermark Evasion via Bias Inversion
Watermarking offers a promising solution for detecting LLM-generated content, yet its robustness under realistic query-free (black-box) evasion remains an open challenge. Existing query-free attacks often achieve limited success or severely distort semantic meaning. We bridge this gap by theoretically analyzing rewriting-based evasion, demonstrating that reducing the average conditional probability of sampling green tokens by a small margin causes the detection probability to decay exponentially. Guided by this insight, we propose the Bias-Inversion Rewriting Attack (BIRA), a practical query-free method that applies a negative logit bias to a proxy suppression set identified via token surprisal. Empirically, BIRA achieves state-of-the-art evasion rates (>99%) across diverse watermarking schemes while preserving semantic fidelity substantially better than prior baselines. Our findings reveal a fundamental vulnerability in current watermarking methods and highlight the need for rigorous stress tests.
♻ ☆ Formal Verification of Noisy Quantum Reinforcement Learning Policies
Quantum reinforcement learning (QRL) aims to use quantum effects to create sequential decision-making policies that achieve tasks more effectively than their classical counterparts. However, QRL policies face uncertainty from quantum measurements and hardware noise, such as bit-flip, phase-flip, and depolarizing errors, which can lead to unsafe behavior. Existing work offers no systematic way to verify whether trained QRL policies meet safety requirements under specific noise conditions. We introduce QVerifier, a formal verification method that applies probabilistic model checking to analyze trained QRL policies with and without modeled quantum noise. QVerifier builds a complete model of the policy-environment interaction, incorporates quantum uncertainty directly into the transition probabilities, and then checks safety properties using the Storm model checker. Experiments across multiple QRL environments show that QVerifier precisely measures how different noise models influence safety, revealing both performance degradation and cases where noise can help. By enabling rigorous safety verification before deployment, QVerifier addresses a critical need: because access to quantum hardware is expensive, pre-deployment verification is essential for any safety-critical use of QRL. QVerifier targets a potential sweet spot between classical and quantum computation, where trained QRL policies could still be modeled classically for probabilistic model checking. When the policy was trained under matching noise conditions, this formal model is exact; when trained on physical hardware, it constitutes an idealized approximation, as unknown hardware noise prevents exact policy modeling.
♻ ☆ Unheard in the Digital Age: Rethinking AI Bias and Speech Diversity
Speech remains one of the most visible yet overlooked vectors of inclusion and exclusion in contemporary society. While fluency is often equated with credibility and competence, individuals with atypical speech patterns are routinely marginalized. Given the current state of the debate, this article focuses on the structural biases that shape perceptions of atypical speech and are now being encoded into artificial intelligence. Automated speech recognition (ASR) systems and voice interfaces, trained predominantly on standardized speech, routinely fail to recognize or respond to diverse voices, compounding digital exclusion. As AI technologies increasingly mediate access to opportunity, the study calls for inclusive technological design, anti-bias training to minimize the impact of discriminatory algorithmic decisions, and enforceable policy reform that explicitly recognize speech diversity as a matter of equity, not merely accessibility. Drawing on interdisciplinary research, the article advocates for a cultural and institutional shift in how we value voice, urging co-created solutions that elevate the rights, representation, and realities of atypical speakers in the digital age. Ultimately, the article reframes speech inclusion as a matter of equity (not accommodation) and advocates for co-created AI systems that reflect the full spectrum of human voices.
♻ ☆ Neural Force Field: Few-shot Learning of Generalized Physical Reasoning ICLR 2026
Physical reasoning is a remarkable human ability that enables rapid learning and generalization from limited experience. Current AI models, despite extensive training, still struggle to achieve similar generalization, especially in Out-of-distribution (OOD) settings. This limitation stems from their inability to abstract core physical principles from observations. A key challenge is developing representations that can efficiently learn and generalize physical dynamics from minimal data. Here we present Neural Force Field (NFF), a framework extending Neural Ordinary Differential Equation (NODE) to learn complex object interactions through force field representations, which can be efficiently integrated through an Ordinary Differential Equation (ODE) solver to predict object trajectories. Unlike existing approaches that rely on discrete latent spaces, NFF captures fundamental physical concepts such as gravity, support, and collision in continuous explicit force fields. Experiments on three challenging physical reasoning tasks demonstrate that NFF, trained with only a few examples, achieves strong generalization to unseen scenarios. This physics-grounded representation enables efficient forward-backward planning and rapid adaptation through interactive refinement. Our work suggests that incorporating physics-inspired representations into learning systems can help bridge the gap between artificial and human physical reasoning capabilities.
comment: 27 pages, ICLR 2026
♻ ☆ MOSAIC: Masked Objective with Selective Adaptation for In-domain Contrastive Learning
We introduce MOSAIC (Masked Objective with Selective Adaptation for In-domain Contrastive learning), a multi-stage framework for domain adaptation of text embedding models that incorporates joint domain-specific masked supervision. Our approach addresses the challenges of adapting large-scale general-domain text embedding models to specialized domains. By jointly optimizing masked language modeling (MLM) and contrastive objectives within a unified training pipeline, our method enables effective learning of domain-relevant representations while preserving the robust semantic discrimination properties of the original model. We empirically validate our approach on both high-resource and low-resource domains, achieving improvements up to 13.4% in NDCG@10 (Normalized Discounted Cumulative Gain) over strong general-domain baselines. Comprehensive ablation studies further demonstrate the effectiveness of each component, highlighting the importance of balanced joint supervision and staged adaptation.
♻ ☆ Dynamic Target Attack
Existing gradient-based jailbreak attacks typically optimize an adversarial suffix to induce a fixed affirmative response, e.g., ``Sure, here is...''. However, this fixed target usually resides in an extremely low-density region of a safety-aligned LLM's output distribution. Due to the substantial discrepancy between the fixed target and the output distribution, existing attacks require numerous iterations to optimize the adversarial prompt, which might still fail to induce the low-probability target response. To address this limitation, we propose Dynamic Target Attack (DTA), which leverages the target LLM's own responses as adaptive targets. In each optimization round, DTA samples multiple candidates from the output distribution conditioned on the current prompt, and selects the most harmful one as a temporary target for prompt optimization. Extensive experiments demonstrate that, under the white-box setting, DTA achieves over 87% average attack success rate (ASR) within 200 optimization iterations on recent safety-aligned LLMs, exceeding the state-of-the-art baselines by over 15% and reducing wall-clock time by 2-26x. Under the black-box setting, DTA employs a white-box LLM as a surrogate model for gradient-based optimization, achieving an average ASR of 77.5% against black-box models, exceeding prior transfer-based attacks by over 12%.
♻ ☆ A Unified Theory of Sparse Dictionary Learning in Mechanistic Interpretability: Piecewise Biconvexity and Spurious Minima
As AI models achieve remarkable capabilities across diverse domains, understanding what representations they learn and how they encode concepts has become increasingly important for both scientific progress and trustworthy deployment. Recent works in mechanistic interpretability have widely reported that neural networks represent meaningful concepts as linear directions in their representation spaces and often encode diverse concepts in superposition. Various sparse dictionary learning (SDL) methods, including sparse autoencoders, transcoders, and crosscoders, are utilized to address this by training auxiliary models with sparsity constraints to disentangle these superposed concepts into monosemantic features. These methods are the backbone of modern mechanistic interpretability, yet in practice they consistently produce polysemantic features, feature absorption, and dead neurons, with very limited theoretical understanding of why these phenomena occur. Existing theoretical work is limited to tied-weight sparse autoencoders, leaving the broader family of SDL methods without formal grounding. We develop the first unified theoretical framework that casts all major SDL variants as a single piecewise biconvex optimization problem, and characterize its global solution set, non-identifiability, and spurious optima. This analysis yields principled explanations for feature absorption and dead neurons. To expose these pathologies under full ground-truth access, we introduce the Linear Representation Bench. Guided by our theory, we propose feature anchoring, a novel technique that restores SDL identifiability, substantially improving feature recovery across synthetic benchmarks and real neural representations.
♻ ☆ Physics-Informed Neural Networks for Real-Time Gas Crossover Prediction in PEM Electrolyzers: First Application with Multi-Membrane Validation
Green hydrogen production via polymer electrolyte membrane (PEM) water electrolysis is pivotal for energy transition, yet hydrogen crossover through membranes threatens safety and economic viability-approaching explosive limits (4 mol% H$_2$ in O$_2$) while reducing Faradaic efficiency and accelerating membrane degradation. Current physics-based models require extensive calibration and computational resources that preclude real-time implementation, while purely data-driven approaches fail to extrapolate beyond training conditions-critical for dynamic electrolyzer operation. Here we present the first application of physics-informed neural networks (PINNs) for hydrogen crossover prediction, trained on 184 published measurements augmented to 1,114 points and constrained by a constitutive physics model (Henry's law, Fick's diffusion, and Faraday-based gas production) embedded in the loss function. Our compact architecture (17,793 parameters), validated across six membranes under industrially relevant conditions (0.05-5.0 A/cm$^2$, 1-200 bar, 25-85°C), achieves exceptional accuracy (R$^2$ = 99.84% $\pm$ 0.15%, RMSE = 0.0932% $\pm$ 0.0438%) based on five-fold cross-validation, with sub-millisecond inference enabling real-time control. Remarkably, the model maintains R$^2$ > 86% when predicting crossover at pressures 2.5x beyond training range-substantially outperforming pure neural networks (R$^2$ = 43.4%). The hardware-agnostic deployment, from desktop CPUs to edge devices (Raspberry Pi 4), enables distributed safety monitoring essential for gigawatt-scale installations. By bridging physical rigor and computational efficiency, this work establishes a new paradigm for real-time electrolyzer monitoring, accelerating deployment of safe, efficient green hydrogen infrastructure crucial for net-zero emissions targets.
♻ ☆ AACR-Bench: Evaluating Automatic Code Review with Holistic Repository-Level Context
High-quality evaluation benchmarks are pivotal for deploying Large Language Models (LLMs) in Automated Code Review (ACR). However, existing benchmarks suffer from two critical limitations: first, the lack of multi-language support in repository-level contexts, which restricts the generalizability of evaluation results; second, the reliance on noisy, incomplete ground truth derived from raw Pull Request (PR) comments, which constrains the scope of issue detection. To address these challenges, we introduce AACR-Bench a comprehensive benchmark that provides full cross-file context across multiple programming languages. Unlike traditional datasets, AACR-Bench employs an "AI-assisted, Expert-verified" annotation pipeline to uncover latent defects often overlooked in original PRs, resulting in a 285% increase in defect coverage. Extensive evaluations of mainstream LLMs on AACR-Bench reveal that previous assessments may have either misjudged or only partially captured model capabilities due to data limitations. Our work establishes a more rigorous standard for ACR evaluation and offers new insights on LLM based ACR, i.e., the granularity/level of context and the choice of retrieval methods significantly impact ACR performance, and this influence varies depending on the LLM, programming language, and the LLM usage paradigm e.g., whether an Agent architecture is employed. The code, data, and other artifacts of our evaluation set are available at https://github.com/alibaba/aacr-bench .
♻ ☆ Toward Robust Multilingual Adaptation of LLMs for Low-Resource Languages
Large language models (LLMs) continue to struggle with low-resource languages, primarily due to limited training data, translation noise, and unstable cross-lingual alignment. To address these challenges, we propose LiRA (Linguistic Robust Anchoring for LLMs)-a plug-and-play framework that requires only lightweight fine-tuning on top of existing pretrained backbones. LiRA jointly optimizes representation stability and cross-lingual semantic consistency by combining two key components: Arca (Anchored Representation Composition Architecture), which aligns low-resource inputs to a shared English semantic space through anchor-based alignment and collaborative encoding; and LaSR (Language-coupled Semantic Reasoner), a lightweight, language-aware head that enforces consistency regularization for unified cross-lingual understanding, retrieval, and reasoning. We theoretically show that under controlled anchoring error and translation-induced bias, LiRA guarantees bounded representation deviation and stable downstream performance under local Lipschitz continuity. To facilitate research, we release a new multilingual product retrieval dataset covering five Southeast Asian and two South Asian languages. Extensive experiments across diverse low-resource benchmarks demonstrate consistent improvements in retrieval, ranking, question answering, and reasoning tasks. Code will be publicly available on GitHub, and the dataset will be hosted on Hugging Face.
♻ ☆ Can Large Language Models Capture Video Game Engagement? IEEE
Can out-of-the-box pretrained Large Language Models (LLMs) detect human affect successfully when observing a video? To address this question, for the first time, we evaluate comprehensively the capacity of popular LLMs for successfully predicting continuous affect annotations of videos when prompted by a sequence of text and video frames in a multimodal fashion. In this paper, we test LLMs' ability to correctly label changes of in-game engagement in 80 minutes of annotated videogame footage from 20 first-person shooter games of the GameVibe corpus. We run over 4,800 experiments to investigate the impact of LLM architecture, model size, input modality, prompting strategy, and ground truth processing method on engagement prediction. Our findings suggest that while LLMs rightfully claim human-like performance across multiple domains and able to outperform traditional machine learning baselines, they generally fall behind continuous experience annotations provided by humans. We examine some of the underlying causes for a fluctuating performance across games, highlight the cases where LLMs exceed expectations, and draw a roadmap for the further exploration of automated emotion labelling via LLMs.
comment: This work has been submitted to the IEEE for publication
♻ ☆ End-to-end audio-visual learning for cochlear implant sound coding simulations in noisy environments
The cochlear implant (CI) is a successful biomedical device that enables individuals with severe-to-profound hearing loss to perceive sound through electrical stimulation, yet listening in noise remains challenging. Recent deep learning advances offer promising potential for CI sound coding by integrating visual cues. In this study, an audio-visual speech enhancement (AVSE) module is integrated with the ElectrodeNet-CS (ECS) model to form the end-to-end CI system, AVSE-ECS. Simulations show that the AVSE-ECS system with joint training achieves high objective speech intelligibility and improves the signal-to-error ratio (SER) by 7.4666 dB compared to the advanced combination encoder (ACE) strategy. These findings underscore the potential of AVSE-based CI sound coding.
comment: 7 pages, 2 figures
♻ ☆ Scalable Sequential Recommendation under Latency and Memory Constraints
Sequential recommender systems must model long-range user behavior while operating under strict memory and latency constraints. Transformer-based approaches achieve strong accuracy but suffer from quadratic attention complexity, forcing aggressive truncation of user histories and limiting their practicality for long-horizon modeling. This paper presents HoloMambaRec, a lightweight sequential recommendation architecture that combines holographic reduced representations for attribute-aware embedding with a selective state space encoder for linear-time sequence processing. Item and attribute information are bound using circular convolution, preserving embedding dimensionality while encoding structured metadata. A shallow selective state space backbone, inspired by recent Mamba-style models, enables efficient training and constant-time recurrent inference. Experiments on Amazon Beauty and MovieLens-1M under a 10-epoch budget show that HoloMambaRec surpasses SASRec on both datasets, attains state-of-the-art ranking on MovieLens-1M, and trails only GRU4Rec on Amazon Beauty, all while maintaining substantially lower memory complexity. The design further incorporates forward-compatible mechanisms for temporal bundling and inference-time compression, positioning HoloMambaRec as a practical and extensible alternative for scalable, metadata-aware sequential recommendation.
♻ ☆ NOSA: Native and Offloadable Sparse Attention
Decoding throughput improvements from larger inference batches are limited by GPU memory, which is largely consumed by the key-value (KV) cache. Prior training-free KV cache offloading alleviates this by keeping redundant context on the CPU and fetching only a sparse subset for attention, but it often degrades long-generation quality due to training-inference mismatch on sparse patterns. Meanwhile, trainable sparse attention is incompatible with efficient offloading, as unconstrained KV accesses may force large CPU-to-GPU transfers and erase throughput gains. To this end, we propose NOSA, a trainable sparse attention mechanism natively designed for KV cache offloading. NOSA explicitly constrains the volume of CPU-GPU KV transfers, thereby achieving low communication overhead and high decoding throughput. We further build NOSI, a KV cache offloading inference system that fully unlocks NOSA's efficiency. Empirical results on 1,3,8B LLMs demonstrate that NOSA outperforms KV cache offloading baselines on general, long-input, and long-generation tasks, while boosting decoding throughput by up to 5.04x, 1.92x, and 1.83x over FullAttn, InfLLMv2, and ShadowKV, respectively. We release our code at https://github.com/thunlp/NOSA.
comment: Preprint
♻ ☆ Tackling GNARLy Problems: Graph Neural Algorithmic Reasoning Reimagined through Reinforcement Learning
Neural Algorithmic Reasoning (NAR) is a paradigm that trains neural networks to execute classic algorithms by supervised learning. Despite its successes, important limitations remain: inability to construct valid solutions without post-processing and to reason about multiple correct ones, poor performance on combinatorial NP-hard problems, and inapplicability to problems for which strong algorithms are not yet known. To address these limitations, we reframe the problem of learning algorithm trajectories as a Markov Decision Process, which imposes structure on the solution construction procedure and unlocks the powerful tools of imitation and reinforcement learning (RL). We propose the GNARL framework, encompassing the methodology to translate problem formulations from NAR to RL and a learning architecture suitable for a wide range of graph-based problems. We achieve very high graph accuracy results on several CLRS-30 problems, performance matching or exceeding much narrower NAR approaches for NP-hard problems and, remarkably, applicability even when lacking an expert algorithm.
♻ ☆ PROTEUS: SLA-Aware Routing via Lagrangian RL for Multi-LLM Serving Systems
Production LLM deployments serve diverse workloads where cost and quality requirements vary by customer tier, time of day, and query criticality. Model serving systems accept latency SLOs directly. LLM routers do not. They force operators to tune parameters offline and guess what accuracy might result. The relationship between parameters and outcomes is indirect, non-monotonic, and dataset-dependent. Operators need to specify accuracy targets, not infer them from opaque settings. We present PROTEUS (Polymorphic Router for Operational Target Enforcement with Unified SLA), a router that accepts accuracy targets tau as runtime input. PROTEUS uses Lagrangian dual control. A learned dual variable lambda tracks constraint violations during training and conditions the policy network. This lets the router translate specified tau values into routing decisions that satisfy them. A single trained model serves the full accuracy spectrum without retraining.We evaluate on RouterBench (11 models, 405K queries) and SPROUT (14 models, 45K queries). PROTEUS achieves consistent floor compliance where accuracy meets or exceeds tau. The target-response correlation reaches 0.97 to 0.98. The closest baseline, OmniRouter, meets floors only 22% of the time despite also using Lagrangian optimization. PROTEUS operates across tau in [0.85, 0.95] from a single model. On RouterBench it achieves 90.1% accuracy, within 1.3% of oracle. On SPROUT it achieves 94.0% accuracy, within 4.6% of oracle. Cost savings reach 89.8% versus the best fixed model.
♻ ☆ GAVEL: Towards rule-based safety through activation monitoring ICLR 2026
Large language models (LLMs) are increasingly paired with activation-based monitoring to detect and prevent harmful behaviors that may not be apparent at the surface-text level. However, existing activation safety approaches, trained on broad misuse datasets, struggle with poor precision, limited flexibility, and lack of interpretability. This paper introduces a new paradigm: rule-based activation safety, inspired by rule-sharing practices in cybersecurity. We propose modeling activations as cognitive elements (CEs), fine-grained, interpretable factors such as ''making a threat'' and ''payment processing'', that can be composed to capture nuanced, domain-specific behaviors with higher precision. Building on this representation, we present a practical framework that defines predicate rules over CEs and detects violations in real time. This enables practitioners to configure and update safeguards without retraining models or detectors, while supporting transparency and auditability. Our results show that compositional rule-based activation safety improves precision, supports domain customization, and lays the groundwork for scalable, interpretable, and auditable AI governance. We will release GAVEL as an open-source framework and provide an accompanying automated rule creation tool.
comment: Accepted to ICLR 2026
♻ ☆ Language Lives in Sparse Dimensions: Toward Interpretable and Efficient Multilingual Control for Large Language Models EACL 2026
Large language models exhibit strong multilingual capabilities despite limited exposure to non-English data. Prior studies show that English-centric large language models map multilingual content into English-aligned representations at intermediate layers and then project them back into target-language token spaces in the final layer. From this observation, we hypothesize that this cross-lingual transition is governed by a small and sparse set of dimensions, which occur at consistent indices across the intermediate to final layers. Building on this insight, we introduce a simple, training-free method to identify and manipulate these dimensions, requiring only as few as 50 sentences of either parallel or monolingual data. Experiments on a multilingual generation control task reveal the interpretability of these dimensions, demonstrating that the interventions in these dimensions can switch the output language while preserving semantic content, and that it surpasses the performance of prior neuron-based approaches at a substantially lower cost.
comment: Accepted at EACL 2026 (Main). Our code will be available at: https://github.com/ku-nlp/language-specific-dimensions
♻ ☆ Repairing Reward Functions with Feedback to Mitigate Reward Hacking
Human-designed reward functions for reinforcement learning (RL) agents are frequently misaligned with the humans' true, unobservable objectives, and thus act only as proxies. Optimizing for a misspecified proxy reward function often induces reward hacking, resulting in a policy misaligned with the human's true objectives. An alternative is to perform RL from human feedback, which involves learning a reward function from scratch by collecting human preferences over pairs of trajectories. However, building such datasets is costly. To address the limitations of both approaches, we propose Preference-Based Reward Repair (PBRR): an automated iterative framework that repairs a human-specified proxy reward function by learning an additive, transition-dependent correction term from preferences. A manually specified reward function can yield policies that are highly suboptimal under the ground-truth objective, yet corrections on only a few transitions may suffice to recover optimal performance. To identify and correct for those transitions, PBRR uses a targeted exploration strategy and a new preference-learning objective. We prove in tabular domains PBRR has a cumulative regret that matches, up to constants, that of prior preference-based RL methods. In addition, on a suite of reward-hacking benchmarks, PBRR consistently outperforms baselines that learn a reward function from scratch from preferences or modify the proxy reward function using other approaches, requiring substantially fewer preferences to learn high performing policies.
♻ ☆ OrthoInsight: Rib Fracture Diagnosis and Report Generation Based on Multi-Modal Large Models
The growing volume of medical imaging data has increased the need for automated diagnostic tools, especially for musculoskeletal injuries like rib fractures, commonly detected via CT scans. Manual interpretation is time-consuming and error-prone. We propose OrthoInsight, a multi-modal deep learning framework for rib fracture diagnosis and report generation. It integrates a YOLOv9 model for fracture detection, a medical knowledge graph for retrieving clinical context, and a fine-tuned LLaVA language model for generating diagnostic reports. OrthoInsight combines visual features from CT images with expert textual data to deliver clinically useful outputs. Evaluated on 28,675 annotated CT images and expert reports, it achieves high performance across Diagnostic Accuracy, Content Completeness, Logical Coherence, and Clinical Guidance Value, with an average score of 4.28, outperforming models like GPT-4 and Claude-3. This study demonstrates the potential of multi-modal learning in transforming medical image analysis and providing effective support for radiologists.
♻ ☆ Actionable Interpretability Must Be Defined in Terms of Symmetries
This paper argues that interpretability research in Artificial Intelligence (AI) is fundamentally ill-posed as existing definitions of interpretability fail to describe how interpretability can be formally tested or designed for. We posit that actionable definitions of interpretability must be formulated in terms of *symmetries* that inform model design and lead to testable conditions. Under a probabilistic view, we hypothesise that four symmetries (inference equivariance, information invariance, concept-closure invariance, and structural invariance) suffice to (i) formalise interpretable models as a subclass of probabilistic models, (ii) yield a unified formulation of interpretable inference (e.g., alignment, interventions, and counterfactuals) as a form of Bayesian inversion, and (iii) provide a formal framework to verify compliance with safety standards and regulations.
♻ ☆ Pushing Toward the Simplex Vertices: A Simple Remedy for Code Collapse in Smoothed Vector Quantization
Vector quantization, which discretizes a continuous vector space into a finite set of representative vectors (a codebook), has been widely adopted in modern machine learning. Despite its effectiveness, vector quantization poses a fundamental challenge: the non-differentiable quantization step blocks gradient backpropagation. Smoothed vector quantization addresses this issue by relaxing the hard assignment of a codebook vector into a weighted combination of codebook entries, represented as the matrix product of a simplex vector and the codebook. Effective smoothing requires two properties: (1) smoothed quantizers should remain close to a onehot vector, ensuring tight approximation, and (2) all codebook entries should be utilized, preventing code collapse. Existing methods typically address these desiderata separately. By contrast, the present study introduces a simple and intuitive regularization that promotes both simultaneously by minimizing the distance between each simplex vertex and its $K$-nearest smoothed quantizers. Experiments on representative benchmarks, including discrete image autoencoding and contrastive speech representation learning, demonstrate that the proposed method achieves more reliable codebook utilization and improves performance compared to prior approaches.
♻ ☆ Low-redundancy Distillation for Continual Learning
Continual learning (CL) aims to learn new tasks without erasing previous knowledge. However, current CL methods primarily emphasize improving accuracy while often neglecting training efficiency, which consequently restricts their practical application. Drawing inspiration from the brain's contextual gating mechanism, which selectively filters neural information and continuously updates past memories, we propose Low-redundancy Distillation (LoRD), a novel CL method that enhances model performance while maintaining training efficiency. This is achieved by eliminating redundancy in three aspects of CL: student model redundancy, teacher model redundancy, and rehearsal sample redundancy. By compressing the learnable parameters of the student model and pruning the teacher model, LoRD facilitates the retention and optimization of prior knowledge, effectively decoupling task-specific knowledge without manually assigning isolated parameters for each task. Furthermore, we optimize the selection of rehearsal samples and refine rehearsal frequency to improve training efficiency. Through a meticulous design of distillation and rehearsal strategies, LoRD effectively balances training efficiency and model precision. Extensive experimentation across various benchmark datasets and environments demonstrates LoRD's superiority, achieving the highest accuracy with the lowest training FLOPs.
comment: Accepted by Pattern Recognition
♻ ☆ SDFLoRA: Selective Decoupled Federated LoRA for Privacy-preserving Fine-tuning with Heterogeneous Clients
Federated learning (FL) for large language models (LLMs) has attracted increasing attention as a privacy-preserving approach for adapting models over distributed data, where parameter-efficient methods such as Low-Rank Adaptation (LoRA) are widely adopted to reduce communication and memory costs. However, practical deployments often exhibit rank and data heterogeneity: clients operate under different low-rank budgets and data distributions, making direct aggregation of LoRA updates biased and unstable. Existing approaches either enforce a unified rank or align heterogeneous updates into a single shared subspace, which tends to mix transferable and client-specific directions and consequently undermines personalization. Moreover, under differential privacy (DP), perturbing such structurally mixed updates injects noise into directions that should remain purely local, leading to unnecessary utility degradation. To address these issues, we propose Selective Decoupled Federated LoRA (SDFLoRA), a structure-aware LoRA framework that decouples each client update into a shared component for aggregation and a private component that preserves client-specific semantics. Only the shared component participates in subspace alignment, while the private component remains local and uncommunicated, making the training DP-compatible and stabilizing aggregation under rank heterogeneity. By injecting noise only into the aggregated shareable update, this approach avoids perturbations to local directions and improves the utility-privacy trade-off. Experiments on multiple benchmarks demonstrate that SDFLoRA outperforms federated LoRA baselines and achieves a strong utility-privacy trade-off.
♻ ☆ SDSC:A Structure-Aware Metric for Semantic Signal Representation Learning
We propose the Signal Dice Similarity Coefficient (SDSC), a structure-aware metric function for time series self-supervised representation learning. Most Self-Supervised Learning (SSL) methods for signals commonly adopt distance-based objectives such as mean squared error (MSE), which are sensitive to amplitude, invariant to waveform polarity, and unbounded in scale. These properties hinder semantic alignment and reduce interpretability. SDSC addresses this by quantifying structural agreement between temporal signals based on the intersection of signed amplitudes, derived from the Dice Similarity Coefficient (DSC).Although SDSC is defined as a structure-aware metric, it can be used as a loss by subtracting from 1 and applying a differentiable approximation of the Heaviside function for gradient-based optimization. A hybrid loss formulation is also proposed to combine SDSC with MSE, improving stability and preserving amplitude where necessary. Experiments on forecasting and classification benchmarks demonstrate that SDSC-based pre-training achieves comparable or improved performance over MSE, particularly in in-domain and low-resource scenarios. The results suggest that structural fidelity in signal representations enhances the semantic representation quality, supporting the consideration of structure-aware metrics as viable alternatives to conventional distance-based methods.
♻ ☆ On-the-Fly Adaptation to Quantization: Configuration-Aware LoRA for Efficient Fine-Tuning of Quantized LLMs
As increasingly large pre-trained models are released, deploying them on edge devices for privacy-preserving applications requires effective compression. Recent works combine quantization with the fine-tuning of high-precision LoRA adapters, which can substantially reduce model size while mitigating the accuracy loss from quantization. However, edge devices have inherently heterogeneous capabilities, while performing configuration-wise fine-tuning for every quantization setting is computationally prohibitive. In this paper, we propose CoA-LoRA, a method that dynamically adjusts the LoRA adapter to arbitrary quantization configurations (i.e., the per-layer bit-width choices of a pre-trained model) without requiring repeated fine-tuning. This is accomplished via a configuration-aware model that maps each configuration to its low-rank adjustments. The effectiveness of this model critically depends on the training configuration set, a collection of configurations chosen to cover different total bit-width budgets. However, constructing a high-quality configuration set is non-trivial. We therefore design a Pareto-based configuration search that iteratively optimizes the training configuration set, yielding more precise low-rank adjustments. Our experiments demonstrate that, unlike the state-of-the-art methods that require fine-tuning a separate LoRA adapter for each configuration, CoA-LoRA incurs no additional time cost while achieving comparable or even superior performance to those methods.
♻ ☆ Should I Have Expressed a Different Intent? Counterfactual Generation for LLM-Based Autonomous Control
Large language model (LLM)-powered agents can translate high-level user intents into plans and actions in an environment. Yet after observing an outcome, users may wonder: What if I had phrased my intent differently? We introduce a framework that enables such counterfactual reasoning in agentic LLM-driven control scenarios, while providing formal reliability guarantees. Our approach models the closed-loop interaction between a user, an LLM-based agent, and an environment as a structural causal model (SCM), and leverages test-time scaling to generate multiple candidate counterfactual outcomes via probabilistic abduction. Through an offline calibration phase, the proposed conformal counterfactual generation (CCG) yields sets of counterfactual outcomes that are guaranteed to contain the true counterfactual outcome with high probability. We showcase the performance of CCG on a wireless network control use case, demonstrating significant advantages compared to naive re-execution baselines.
♻ ☆ Large Vision Models Can Solve Mental Rotation Problems ICASSP 2026
Mental rotation is a key test of spatial reasoning in humans and has been central to understanding how perception supports cognition. Despite the success of modern vision transformers, it is still unclear how well these models develop similar abilities. In this work, we present a systematic evaluation of ViT, CLIP, DINOv2, and DINOv3 across a range of mental-rotation tasks, from simple block structures similar to those used by Shepard and Metzler to study human cognition, to more complex block figures, three types of text, and photo-realistic objects. By probing model representations layer by layer, we examine where and how these networks succeed. We find that i) self-supervised ViTs capture geometric structure better than supervised ViTs; ii) intermediate layers perform better than final layers; iii) task difficulty increases with rotation complexity and occlusion, mirroring human reaction times and suggesting similar constraints in embedding space representations.
comment: Accepted at ICASSP 2026
♻ ☆ Deep GraphRAG: A Balanced Approach to Hierarchical Retrieval and Adaptive Integration
Graph-based Retrieval-Augmented Generation (GraphRAG) frameworks face a trade-off between the comprehensiveness of global search and the efficiency of local search. Existing methods are often challenged by navigating large-scale hierarchical graphs, optimizing retrieval paths, and balancing exploration-exploitation dynamics, frequently lacking robust multi-stage re-ranking. To overcome these deficits, we propose Deep GraphRAG, a framework designed for a balanced approach to hierarchical retrieval and adaptive integration. It introduces a hierarchical global-to-local retrieval strategy that integrates macroscopic inter-community and microscopic intra-community contextual relations. This strategy employs a three-stage process: (1) inter-community filtering, which prunes the search space using local context; (2) community-level refinement, which prioritizes relevant subgraphs via entity-interaction analysis; and (3) entity-level fine-grained search within target communities. A beam search-optimized dynamic re-ranking module guides this process, continuously filtering candidates to balance efficiency and global comprehensiveness. Deep GraphRAG also features a Knowledge Integration Module leveraging a compact LLM, trained with Dynamic Weighting Reward GRPO (DW-GRPO). This novel reinforcement learning approach dynamically adjusts reward weights to balance three key objectives: relevance, faithfulness, and conciseness. This training enables compact models (1.5B) to approach the performance of large models (70B) in the integration task. Evaluations on Natural Questions and HotpotQA demonstrate that Deep GraphRAG significantly outperforms baseline graph retrieval methods in both accuracy and efficiency.
♻ ☆ Non-Identical Diffusion Models in MIMO-OFDM Channel Generation
We propose a novel diffusion model, termed the non-identical diffusion model, and investigate its application to wireless orthogonal frequency division multiplexing (OFDM) channel generation. Unlike the standard diffusion model that uses a scalar-valued time index to represent the global noise level, we extend this notion to an element-wise time indicator to capture local error variations more accurately. Non-identical diffusion enables us to characterize the reliability of each element (e.g., subcarriers in OFDM) within the noisy input, leading to improved generation results when the initialization is biased. Specifically, we focus on the recovery of wireless multi-input multi-output (MIMO) OFDM channel matrices, where the initial channel estimates exhibit highly uneven reliability across elements due to the pilot scheme. Conventional time embeddings, which assume uniform noise progression, fail to capture such variability across pilot schemes and noise levels. We introduce a matrix that matches the input size to control element-wise noise progression. Following a similar diffusion procedure to existing methods, we show the correctness and effectiveness of the proposed non-identical diffusion scheme both theoretically and numerically. For MIMO-OFDM channel generation, we propose a dimension-wise time embedding strategy. We also develop and evaluate multiple training and generation methods and compare them through numerical experiments.
Computation and Language 202
☆ RedSage: A Cybersecurity Generalist LLM ICLR 2026
Cybersecurity operations demand assistant LLMs that support diverse workflows without exposing sensitive data. Existing solutions either rely on proprietary APIs with privacy risks or on open models lacking domain adaptation. To bridge this gap, we curate 11.8B tokens of cybersecurity-focused continual pretraining data via large-scale web filtering and manual collection of high-quality resources, spanning 28.6K documents across frameworks, offensive techniques, and security tools. Building on this, we design an agentic augmentation pipeline that simulates expert workflows to generate 266K multi-turn cybersecurity samples for supervised fine-tuning. Combined with general open-source LLM data, these resources enable the training of RedSage, an open-source, locally deployable cybersecurity assistant with domain-aware pretraining and post-training. To rigorously evaluate the models, we introduce RedSage-Bench, a benchmark with 30K multiple-choice and 240 open-ended Q&A items covering cybersecurity knowledge, skills, and tool expertise. RedSage is further evaluated on established cybersecurity benchmarks (e.g., CTI-Bench, CyberMetric, SECURE) and general LLM benchmarks to assess broader generalization. At the 8B scale, RedSage achieves consistently better results, surpassing the baseline models by up to +5.59 points on cybersecurity benchmarks and +5.05 points on Open LLM Leaderboard tasks. These findings demonstrate that domain-aware agentic augmentation and pre/post-training can not only enhance cybersecurity-specific expertise but also help to improve general reasoning and instruction-following. All models, datasets, and code are publicly available.
comment: Accepted on ICLR 2026; Project page: https://risys-lab.github.io/RedSage/
☆ Discovering Hidden Gems in Model Repositories
Public repositories host millions of fine-tuned models, yet community usage remains disproportionately concentrated on a small number of foundation checkpoints. We investigate whether this concentration reflects efficient market selection or if superior models are systematically overlooked. Through an extensive evaluation of over 2,000 models, we show the prevalence of "hidden gems", unpopular fine-tunes that significantly outperform their popular counterparts. Notably, within the Llama-3.1-8B family, we find rarely downloaded checkpoints that improve math performance from 83.2% to 96.0% without increasing inference costs. However, discovering these models through exhaustive evaluation of every uploaded model is computationally infeasible. We therefore formulate model discovery as a Multi-Armed Bandit problem and accelerate the Sequential Halving search algorithm by using shared query sets and aggressive elimination schedules. Our method retrieves top models with as few as 50 queries per candidate, accelerating discovery by over 50x.
☆ Hybrid Linear Attention Done Right: Efficient Distillation and Effective Architectures for Extremely Long Contexts
Hybrid Transformer architectures, which combine softmax attention blocks and recurrent neural networks (RNNs), have shown a desirable performance-throughput tradeoff for long-context modeling, but their adoption and studies are hindered by the prohibitive cost of large-scale pre-training from scratch. Some recent studies have shown that pre-trained softmax attention blocks can be converted into RNN blocks through parameter transfer and knowledge distillation. However, these transfer methods require substantial amounts of training data (more than 10B tokens), and the resulting hybrid models also exhibit poor long-context performance, which is the scenario where hybrid models enjoy significant inference speedups over Transformer-based models. In this paper, we present HALO (Hybrid Attention via Layer Optimization), a pipeline for distilling Transformer models into RNN-attention hybrid models. We then present HypeNet, a hybrid architecture with superior length generalization enabled by a novel position encoding scheme (named HyPE) and various architectural modifications. We convert the Qwen3 series into HypeNet using HALO, achieving performance comparable to the original Transformer models while enjoying superior long-context performance and efficiency. The conversion requires just 2.3B tokens, less than 0.01% of their pre-training data
comment: 20 pages, 8 figures
☆ UEval: A Benchmark for Unified Multimodal Generation
We introduce UEval, a benchmark to evaluate unified models, i.e., models capable of generating both images and text. UEval comprises 1,000 expert-curated questions that require both images and text in the model output, sourced from 8 real-world tasks. Our curated questions cover a wide range of reasoning types, from step-by-step guides to textbook explanations. Evaluating open-ended multimodal generation is non-trivial, as simple LLM-as-a-judge methods can miss the subtleties. Different from previous works that rely on multimodal Large Language Models (MLLMs) to rate image quality or text accuracy, we design a rubric-based scoring system in UEval. For each question, reference images and text answers are provided to a MLLM to generate an initial rubric, consisting of multiple evaluation criteria, and human experts then refine and validate these rubrics. In total, UEval contains 10,417 validated rubric criteria, enabling scalable and fine-grained automatic scoring. UEval is challenging for current unified models: GPT-5-Thinking scores only 66.4 out of 100, while the best open-source model reaches merely 49.1. We observe that reasoning models often outperform non-reasoning ones, and transferring reasoning traces from a reasoning model to a non-reasoning model significantly narrows the gap. This suggests that reasoning may be important for tasks requiring complex multimodal understanding and generation.
☆ Exploring Reasoning Reward Model for Agents
Agentic Reinforcement Learning (Agentic RL) has achieved notable success in enabling agents to perform complex reasoning and tool use. However, most methods still relies on sparse outcome-based reward for training. Such feedback fails to differentiate intermediate reasoning quality, leading to suboptimal training results. In this paper, we introduce Agent Reasoning Reward Model (Agent-RRM), a multi-faceted reward model that produces structured feedback for agentic trajectories, including (1) an explicit reasoning trace , (2) a focused critique that provides refinement guidance by highlighting reasoning flaws, and (3) an overall score that evaluates process performance. Leveraging these signals, we systematically investigate three integration strategies: Reagent-C (text-augmented refinement), Reagent-R (reward-augmented guidance), and Reagent-U (unified feedback integration). Extensive evaluations across 12 diverse benchmarks demonstrate that Reagent-U yields substantial performance leaps, achieving 43.7% on GAIA and 46.2% on WebWalkerQA, validating the effectiveness of our reasoning reward model and training schemes. Code, models, and datasets are all released to facilitate future research.
comment: Project page: https://github.com/kxfan2002/Reagent
☆ DynaWeb: Model-Based Reinforcement Learning of Web Agents
The development of autonomous web agents, powered by Large Language Models (LLMs) and reinforcement learning (RL), represents a significant step towards general-purpose AI assistants. However, training these agents is severely hampered by the challenges of interacting with the live internet, which is inefficient, costly, and fraught with risks. Model-based reinforcement learning (MBRL) offers a promising solution by learning a world model of the environment to enable simulated interaction. This paper introduces DynaWeb, a novel MBRL framework that trains web agents through interacting with a web world model trained to predict naturalistic web page representations given agent actions. This model serves as a synthetic web environment where an agent policy can dream by generating vast quantities of rollout action trajectories for efficient online reinforcement learning. Beyond free policy rollouts, DynaWeb incorporates real expert trajectories from training data, which are randomly interleaved with on-policy rollouts during training to improve stability and sample efficiency. Experiments conducted on the challenging WebArena and WebVoyager benchmarks demonstrate that DynaWeb consistently and significantly improves the performance of state-of-the-art open-source web agent models. Our findings establish the viability of training web agents through imagination, offering a scalable and efficient way to scale up online agentic RL.
☆ FineInstructions: Scaling Synthetic Instructions to Pre-Training Scale
Due to limited supervised training data, large language models (LLMs) are typically pre-trained via a self-supervised "predict the next word" objective on a vast amount of unstructured text data. To make the resulting model useful to users, it is further trained on a far smaller amount of "instruction-tuning" data comprised of supervised training examples of instructions and responses. To overcome the limited amount of supervised data, we propose a procedure that can transform the knowledge in internet-scale pre-training documents into billions of synthetic instruction and answer training pairs. The resulting dataset, called FineInstructions, uses ~18M instruction templates created from real user-written queries and prompts. These instruction templates are matched to and instantiated with human-written source documents from unstructured pre-training corpora. With "supervised" synthetic training data generated at this scale, an LLM can be pre-trained from scratch solely with the instruction-tuning objective, which is far more in-distribution with the expected downstream usage of LLMs (responding to user prompts). We conduct controlled token-for-token training experiments and find pre-training on FineInstructions outperforms standard pre-training and other proposed synthetic pre-training techniques on standard benchmarks measuring free-form response quality. Our resources can be found at https://huggingface.co/fineinstructions .
☆ Reasoning While Asking: Transforming Reasoning Large Language Models from Passive Solvers to Proactive Inquirers
Reasoning-oriented Large Language Models (LLMs) have achieved remarkable progress with Chain-of-Thought (CoT) prompting, yet they remain fundamentally limited by a \emph{blind self-thinking} paradigm: performing extensive internal reasoning even when critical information is missing or ambiguous. We propose Proactive Interactive Reasoning (PIR), a new reasoning paradigm that transforms LLMs from passive solvers into proactive inquirers that interleave reasoning with clarification. Unlike existing search- or tool-based frameworks that primarily address knowledge uncertainty by querying external environments, PIR targets premise- and intent-level uncertainty through direct interaction with the user. PIR is implemented via two core components: (1) an uncertainty-aware supervised fine-tuning procedure that equips models with interactive reasoning capability, and (2) a user-simulator-based policy optimization framework driven by a composite reward that aligns model behavior with user intent. Extensive experiments on mathematical reasoning, code generation, and document editing demonstrate that PIR consistently outperforms strong baselines, achieving up to 32.70\% higher accuracy, 22.90\% higher pass rate, and 41.36 BLEU improvement, while reducing nearly half of the reasoning computation and unnecessary interaction turns. Further reliability evaluations on factual knowledge, question answering, and missing-premise scenarios confirm the strong generalization and robustness of PIR. Model and code are publicly available at: \href{https://github.com/SUAT-AIRI/Proactive-Interactive-R1}
comment: The manuscript is under review
☆ A Federated and Parameter-Efficient Framework for Large Language Model Training in Medicine
Large language models (LLMs) have demonstrated strong performance on medical benchmarks, including question answering and diagnosis. To enable their use in clinical settings, LLMs are typically further adapted through continued pretraining or post-training using clinical data. However, most medical LLMs are trained on data from a single institution, which faces limitations in generalizability and safety in heterogeneous systems. Federated learning (FL) is a promising solution for enabling collaborative model development across healthcare institutions. Yet applying FL to LLMs in medicine remains fundamentally limited. First, conventional FL requires transmitting the full model during each communication round, which becomes impractical for multi-billion-parameter LLMs given the limited computational resources. Second, many FL algorithms implicitly assume data homogeneity, whereas real-world clinical data are highly heterogeneous across patients, diseases, and institutional practices. We introduce the model-agnostic and parameter-efficient federated learning framework for adapting LLMs to medical applications. Fed-MedLoRA transmits only low-rank adapter parameters, reducing communication and computation overhead, while Fed-MedLoRA+ further incorporates adaptive, data-aware aggregation to improve convergence under cross-site heterogeneity. We apply the framework to clinical information extraction (IE), which transforms patient narratives into structured medical entities and relations. Accuracy was assessed across five patient cohorts through comparisons with BERT models, and LLaMA-3 and DeepSeek-R1, GPT-4o models. Evaluation settings included (1) in-domain training and testing, (2) external validation on independent cohorts, and (3) a low-resource new-site adaptation scenario using real-world clinical notes from the Yale New Haven Health System.
comment: 38 pages, 9 tables, 3 figures
☆ ECO: Quantized Training without Full-Precision Master Weights
Quantization has significantly improved the compute and memory efficiency of Large Language Model (LLM) training. However, existing approaches still rely on accumulating their updates in high-precision: concretely, gradient updates must be applied to a high-precision weight buffer, known as $\textit{master weights}$. This buffer introduces substantial memory overhead, particularly for Sparse Mixture of Experts (SMoE) models, where model parameters and optimizer states dominate memory usage. To address this, we introduce the Error-Compensating Optimizer (ECO), which eliminates master weights by applying updates directly to quantized parameters. ECO quantizes weights after each step and carefully injects the resulting quantization error into the optimizer momentum, forming an error-feedback loop with no additional memory. We prove that, under standard assumptions and a decaying learning rate, ECO converges to a constant-radius neighborhood of the optimum, while naive master-weight removal can incur an error that is inversely proportional to the learning rate. We show empirical results for pretraining small Transformers (30-800M), a Gemma-3 1B model, and a 2.1B parameter Sparse MoE model with FP8 quantization, and fine-tuning DeepSeek-MoE-16B in INT4 precision. Throughout, ECO matches baselines with master weights up to near-lossless accuracy, significantly shifting the static memory vs validation loss Pareto frontier.
☆ GeoNorm: Unify Pre-Norm and Post-Norm with Geodesic Optimization
The placement of normalization layers, specifically Pre-Norm and Post-Norm, remains an open question in Transformer architecture design. In this work, we rethink these approaches through the lens of manifold optimization, interpreting the outputs of the Feed-Forward Network (FFN) and attention layers as update directions in optimization. Building on this perspective, we introduce GeoNorm, a novel method that replaces standard normalization with geodesic updates on the manifold. Furthermore, analogous to learning rate schedules, we propose a layer-wise update decay for the FFN and attention components. Comprehensive experiments demonstrate that GeoNorm consistently outperforms existing normalization methods in Transformer models. Crucially, GeoNorm can be seamlessly integrated into standard Transformer architectures, achieving performance improvements with negligible additional computational cost.
comment: Tech Report
☆ VTC-R1: Vision-Text Compression for Efficient Long-Context Reasoning
Long-context reasoning has significantly empowered large language models (LLMs) to tackle complex tasks, yet it introduces severe efficiency bottlenecks due to the computational complexity. Existing efficient approaches often rely on complex additional training or external models for compression, which limits scalability and discards critical fine-grained information. In this paper, we propose VTC-R1, a new efficient reasoning paradigm that integrates vision-text compression into the reasoning process. Instead of processing lengthy textual traces, VTC-R1 renders intermediate reasoning segments into compact images, which are iteratively fed back into vision-language models as "optical memory." We construct a training dataset based on OpenR1-Math-220K achieving 3.4x token compression and fine-tune representative VLMs-Glyph and Qwen3-VL. Extensive experiments on benchmarks such as MATH500, AIME25, AMC23 and GPQA-D demonstrate that VTC-R1 consistently outperforms standard long-context reasoning. Furthermore, our approach significantly improves inference efficiency, achieving 2.7x speedup in end-to-end latency, highlighting its potential as a scalable solution for reasoning-intensive applications. Our code is available at https://github.com/w-yibo/VTC-R1.
comment: Code: https://github.com/w-yibo/VTC-R1
☆ $G^2$-Reader: Dual Evolving Graphs for Multimodal Document QA
Retrieval-augmented generation is a practical paradigm for question answering over long documents, but it remains brittle for multimodal reading where text, tables, and figures are interleaved across many pages. First, flat chunking breaks document-native structure and cross-modal alignment, yielding semantic fragments that are hard to interpret in isolation. Second, even iterative retrieval can fail in long contexts by looping on partial evidence or drifting into irrelevant sections as noise accumulates, since each step is guided only by the current snippet without a persistent global search state. We introduce $G^2$-Reader, a dual-graph system, to address both issues. It evolves a Content Graph to preserve document-native structure and cross-modal semantics, and maintains a Planning Graph, an agentic directed acyclic graph of sub-questions, to track intermediate findings and guide stepwise navigation for evidence completion. On VisDoMBench across five multimodal domains, $G^2$-Reader with Qwen3-VL-32B-Instruct reaches 66.21\% average accuracy, outperforming strong baselines and a standalone GPT-5 (53.08\%).
☆ MasalBench: A Benchmark for Contextual and Cross-Cultural Understanding of Persian Proverbs in LLMs
In recent years, multilingual Large Language Models (LLMs) have become an inseparable part of daily life, making it crucial for them to master the rules of conversational language in order to communicate effectively with users. While previous work has evaluated LLMs' understanding of figurative language in high-resource languages, their performance in low-resource languages remains underexplored. In this paper, we introduce MasalBench, a comprehensive benchmark for assessing LLMs' contextual and cross-cultural understanding of Persian proverbs, which are a key component of conversation in this low-resource language. We evaluate eight state-of-the-art LLMs on MasalBench and find that they perform well in identifying Persian proverbs in context, achieving accuracies above 0.90. However, their performance drops considerably when tasked with identifying equivalent English proverbs, with the best model achieving 0.79 accuracy. Our findings highlight the limitations of current LLMs in cultural knowledge and analogical reasoning, and they provide a framework for assessing cross-cultural understanding in other low-resource languages. MasalBench is available at https://github.com/kalhorghazal/MasalBench.
☆ On the Paradoxical Interference between Instruction-Following and Task Solving
Instruction following aims to align Large Language Models (LLMs) with human intent by specifying explicit constraints on how tasks should be performed. However, we reveal a counterintuitive phenomenon: instruction following can paradoxically interfere with LLMs' task-solving capability. We propose a metric, SUSTAINSCORE, to quantify the interference of instruction following with task solving. It measures task performance drop after inserting into the instruction a self-evident constraint, which is naturally met by the original successful model output and extracted from it. Experiments on current LLMs in mathematics, multi-hop QA, and code generation show that adding the self-evident constraints leads to substantial performance drops, even for advanced models such as Claude-Sonnet-4.5. We validate the generality of the interference across constraint types and scales. Furthermore, we identify common failure patterns, and by investigating the mechanisms of interference, we observe that failed cases allocate significantly more attention to constraints compared to successful ones. Finally, we use SUSTAINSCORE to conduct an initial investigation into how distinct post-training paradigms affect the interference, presenting empirical observations on current alignment strategies. We will release our code and data to facilitate further research
☆ A Separable Architecture for Continuous Token Representation in Language Models
Transformer scaling law analyses typically treat parameters as interchangeable; an abstraction that accurately predicts loss-compute relationships. Yet, in sub-billion-parameter small language models (SLMs), embedding matrices dominate the parameter budget. This work argues that this allocation is as suboptimal as it is counterintuitive. Leviathan is an architecture with a continuous embedding generator to replace the discrete lookup tables of canonical models. Evaluating on the Pile dataset under isoparametric settings, Leviathan consistently outperforms a standard, LLaMA-style architecture. By means of an empirical power-law fit, Leviathan exhibits a markedly superior effective parameter capacity. Across the regime studied, Leviathan behaves as a dense model with $1.47$ to $2.11 \times$ more parameters.
☆ Thinking Out of Order: When Output Order Stops Reflecting Reasoning Order in Diffusion Language Models
Autoregressive (AR) language models enforce a fixed left-to-right generation order, creating a fundamental limitation when the required output structure conflicts with natural reasoning (e.g., producing answers before explanations due to presentation or schema constraints). In such cases, AR models must commit to answers before generating intermediate reasoning, and this rigid constraint forces premature commitment. Masked diffusion language models (MDLMs), which iteratively refine all tokens in parallel, offer a way to decouple computation order from output structure. We validate this capability on GSM8K, Math500, and ReasonOrderQA, a benchmark we introduce with controlled difficulty and order-level evaluation. When prompts request answers before reasoning, AR models exhibit large accuracy gaps compared to standard chain-of-thought ordering (up to 67% relative drop), while MDLMs remain stable ($\leq$14% relative drop), a property we term "order robustness". Using ReasonOrderQA, we present evidence that MDLMs achieve order robustness by stabilizing simpler tokens (e.g., reasoning steps) earlier in the diffusion process than complex ones (e.g., final answers), enabling reasoning tokens to stabilize before answer commitment. Finally, we identify failure conditions where this advantage weakens, outlining the limits required for order robustness.
comment: 18 pages, 13 figures, 5 tables
☆ Causal Autoregressive Diffusion Language Model
In this work, we propose Causal Autoregressive Diffusion (CARD), a novel framework that unifies the training efficiency of ARMs with the high-throughput inference of diffusion models. CARD reformulates the diffusion process within a strictly causal attention mask, enabling dense, per-token supervision in a single forward pass. To address the optimization instability of causal diffusion, we introduce a soft-tailed masking schema to preserve local context and a context-aware reweighting mechanism derived from signal-to-noise principles. This design enables dynamic parallel decoding, where the model leverages KV-caching to adaptively generate variable-length token sequences based on confidence. Empirically, CARD outperforms existing discrete diffusion baselines while reducing training latency by 3 $\times$ compared to block diffusion methods. Our results demonstrate that CARD achieves ARM-level data efficiency while unlocking the latency benefits of parallel generation, establishing a robust paradigm for next-generation efficient LLMs.
☆ When "Better" Prompts Hurt: Evaluation-Driven Iteration for LLM Applications
Evaluating Large Language Model (LLM) applications differs from traditional software testing because outputs are stochastic, high-dimensional, and sensitive to prompt and model changes. We present an evaluation-driven workflow - Define, Test, Diagnose, Fix - that turns these challenges into a repeatable engineering loop. We introduce the Minimum Viable Evaluation Suite (MVES), a tiered set of recommended evaluation components for (i) general LLM applications, (ii) retrieval-augmented generation (RAG), and (iii) agentic tool-use workflows. We also synthesize common evaluation methods (automated checks, human rubrics, and LLM-as-judge) and discuss known judge failure modes. In reproducible local experiments (Ollama; Llama 3 8B Instruct and Qwen 2.5 7B Instruct), we observe that a generic "improved" prompt template can trade off behaviors: on our small structured suites, extraction pass rate decreased from 100% to 90% and RAG compliance from 93.3% to 80% for Llama 3 when replacing task-specific prompts with generic rules, while instruction-following improved. These findings motivate evaluation-driven prompt iteration and careful claim calibration rather than universal prompt recipes. All test suites, harnesses, and results are included for reproducibility.
☆ Mechanistic Data Attribution: Tracing the Training Origins of Interpretable LLM Units
While Mechanistic Interpretability has identified interpretable circuits in LLMs, their causal origins in training data remain elusive. We introduce Mechanistic Data Attribution (MDA), a scalable framework that employs Influence Functions to trace interpretable units back to specific training samples. Through extensive experiments on the Pythia family, we causally validate that targeted intervention--removing or augmenting a small fraction of high-influence samples--significantly modulates the emergence of interpretable heads, whereas random interventions show no effect. Our analysis reveals that repetitive structural data (e.g., LaTeX, XML) acts as a mechanistic catalyst. Furthermore, we observe that interventions targeting induction head formation induce a concurrent change in the model's in-context learning (ICL) capability. This provides direct causal evidence for the long-standing hypothesis regarding the functional link between induction heads and ICL. Finally, we propose a mechanistic data augmentation pipeline that consistently accelerates circuit convergence across model scales, providing a principled methodology for steering the developmental trajectories of LLMs.
☆ Token-Guard: Towards Token-Level Hallucination Control via Self-Checking Decoding ICLR 2026
Large Language Models (LLMs) often hallucinate, generating content inconsistent with the input. Retrieval-Augmented Generation (RAG) and Reinforcement Learning with Human Feedback (RLHF) can mitigate hallucinations but require resource-intensive retrieval or large-scale fine-tuning. Decoding-based methods are lighter yet lack explicit hallucination control. To address this, we present Token-Guard, a token-level hallucination control method based on self-checking decoding. Token-Guard performs internal verification at each reasoning step to detect hallucinated tokens before they propagate. Candidate fragments are further evaluated in a latent space with explicit hallucination risk scoring, while iterative pruning and regeneration dynamically correct detected errors. Experiments on HALU datasets show Token-Guard substantially reduces hallucinations and improves generation accuracy, offering a scalable, modular solution for reliable LLM outputs. Our code is publicly available.
comment: 26 pages and 11 figures,this work has been accepted for presentation at ICLR 2026
☆ OVD: On-policy Verbal Distillation
Knowledge distillation offers a promising path to transfer reasoning capabilities from large teacher models to efficient student models; however, existing token-level on-policy distillation methods require token-level alignment between the student and teacher models, which restricts the student model's exploration ability, prevent effective use of interactive environment feedback, and suffer from severe memory bottlenecks in reinforcement learning. We introduce On-policy Verbal Distillation (OVD), a memory-efficient framework that replaces token-level probability matching with trajectory matching using discrete verbal scores (0--9) from teacher models. OVD dramatically reduces memory consumption while enabling on-policy distillation from teacher models with verbal feedback, and avoids token-level alignment, allowing the student model to freely explore the output space. Extensive experiments on Web question answering and mathematical reasoning tasks show that OVD substantially outperforms existing methods, delivering up to +12.9% absolute improvement in average EM on Web Q&A tasks and a up to +25.7% gain on math benchmarks (when trained with only one random samples), while also exhibiting superior training efficiency. Our project page is available at https://OVD.github.io
comment: Technical Report
☆ Industrialized Deception: The Collateral Effects of LLM-Generated Misinformation on Digital Ecosystems
Generative AI and misinformation research has evolved since our 2024 survey. This paper presents an updated perspective, transitioning from literature review to practical countermeasures. We report on changes in the threat landscape, including improved AI-generated content through Large Language Models (LLMs) and multimodal systems. Central to this work are our practical contributions: JudgeGPT, a platform for evaluating human perception of AI-generated news, and RogueGPT, a controlled stimulus generation engine for research. Together, these tools form an experimental pipeline for studying how humans perceive and detect AI-generated misinformation. Our findings show that detection capabilities have improved, but the competition between generation and detection continues. We discuss mitigation strategies including LLM-based detection, inoculation approaches, and the dual-use nature of generative AI. This work contributes to research addressing the adverse impacts of AI on information quality.
comment: Accepted at ACM TheWebConf '26 Companion
☆ From Generative Modeling to Clinical Classification: A GPT-Based Architecture for EHR Notes
The increasing availability of unstructured clinical narratives in electronic health records (EHRs) has created new opportunities for automated disease characterization, cohort identification, and clinical decision support. However, modeling long, domain-specific clinical text remains challenging due to limited labeled data, severe class imbalance, and the high computational cost of adapting large pretrained language models. This study presents a GPT-based architecture for clinical text classification that adapts a pretrained decoder-only Transformer using a selective fine-tuning strategy. Rather than updating all model parameters, the majority of the GPT-2 backbone is frozen, and training is restricted to the final Transformer block, the final layer normalization, and a lightweight classification head. This approach substantially reduces the number of trainable parameters while preserving the representational capacity required to model complex clinical language. The proposed method is evaluated on radiology reports from the MIMIC-IV-Note dataset using uncertainty-aware CheXpert-style labels derived directly from report text. Experiments cover multiple problem formulations, including multi-label classification of radiographic findings, binary per-label classification under different uncertainty assumptions, and aggregate disease outcome prediction. Across varying dataset sizes, the model exhibits stable convergence behavior and strong classification performance, particularly in settings dominated by non-mention and negated findings. Overall, the results indicate that selective fine-tuning of pretrained generative language models provides an efficient and effective pathway for clinical text classification, enabling scalable adaptation to real-world EHR data while significantly reducing computational complexity.
comment: This submission is a full-length research manuscript consisting of 37 pages and 15 figures. The paper presents a GPT-based architecture with selective fine-tuning for clinical text classification, including detailed architectural diagrams, learning curves, and evaluation figures such as ROC curves and confusion matrices
☆ SONIC: Segmented Optimized Nexus for Information Compression in Key-Value Caching
The linear growth of Key-Value (KV) cache remains a bottleneck for multi-turn LLM deployment. Existing KV cache compression methods often fail to account for the structural properties of multi-turn dialogues, relying on heuristic eviction that risks losing critical context. We propose \textbf{SONIC}, a learning-based framework that compresses historical segments into compact and semantically rich \textbf{Nexus} tokens. By integrating dynamic budget training, SONIC allows flexible adaptation to varying memory constraints without retraining. Experiments show that at compression ratios of 80\% and 50\%, SONIC consistently outperforms baselines such as H2O and StreamingLLM on four diverse multi-turn benchmarks. Specifically, on the widely used MTBench101 benchmark, SONIC achieves an average score improvement of 35.55\% over state-of-the-art baselines, validating its effectiveness in sustaining coherent multi-turn dialogues. Furthermore, SONIC enhances deployment efficiency, accelerating the overall inference process by 50.1\% compared to full-context generation.
☆ Self-Compression of Chain-of-Thought via Multi-Agent Reinforcement Learning
The inference overhead induced by redundant reasoning undermines the interactive experience and severely bottlenecks the deployment of Large Reasoning Models. Existing reinforcement learning (RL)-based solutions tackle this problem by coupling a length penalty with outcome-based rewards. This simplistic reward weighting struggles to reconcile brevity with accuracy, as enforcing brevity may compromise critical reasoning logic. In this work, we address this limitation by proposing a multi-agent RL framework that selectively penalizes redundant chunks, while preserving essential reasoning logic. Our framework, Self-Compression via MARL (SCMA), instantiates redundancy detection and evaluation through two specialized agents: \textbf{a Segmentation Agent} for decomposing the reasoning process into logical chunks, and \textbf{a Scoring Agent} for quantifying the significance of each chunk. The Segmentation and Scoring agents collaboratively define an importance-weighted length penalty during training, incentivizing \textbf{a Reasoning Agent} to prioritize essential logic without introducing inference overhead during deployment. Empirical evaluations across model scales demonstrate that SCMA reduces response length by 11.1\% to 39.0\% while boosting accuracy by 4.33\% to 10.02\%. Furthermore, ablation studies and qualitative analysis validate that the synergistic optimization within the MARL framework fosters emergent behaviors, yielding more powerful LRMs compared to vanilla RL paradigms.
☆ JADE: Bridging the Strategic-Operational Gap in Dynamic Agentic RAG
The evolution of Retrieval-Augmented Generation (RAG) has shifted from static retrieval pipelines to dynamic, agentic workflows where a central planner orchestrates multi-turn reasoning. However, existing paradigms face a critical dichotomy: they either optimize modules jointly within rigid, fixed-graph architectures, or empower dynamic planning while treating executors as frozen, black-box tools. We identify that this \textit{decoupled optimization} creates a ``strategic-operational mismatch,'' where sophisticated planning strategies fail to materialize due to unadapted local executors, often leading to negative performance gains despite increased system complexity. In this paper, we propose \textbf{JADE} (\textbf{J}oint \textbf{A}gentic \textbf{D}ynamic \textbf{E}xecution), a unified framework for the joint optimization of planning and execution within dynamic, multi-turn workflows. By modeling the system as a cooperative multi-agent team unified under a single shared backbone, JADE enables end-to-end learning driven by outcome-based rewards. This approach facilitates \textit{co-adaptation}: the planner learns to operate within the capability boundaries of the executors, while the executors evolve to align with high-level strategic intent. Empirical results demonstrate that JADE transforms disjoint modules into a synergistic system, yielding remarkable performance improvements via joint optimization and enabling a flexible balance between efficiency and effectiveness through dynamic workflow orchestration.
☆ ProRAG: Process-Supervised Reinforcement Learning for Retrieval-Augmented Generation
Reinforcement learning (RL) has become a promising paradigm for optimizing Retrieval-Augmented Generation (RAG) in complex reasoning tasks. However, traditional outcome-based RL approaches often suffer from reward sparsity and inefficient credit assignment, as coarse-grained scalar rewards fail to identify specific erroneous steps within long-horizon trajectories. This ambiguity frequently leads to "process hallucinations", where models reach correct answers through flawed logic or redundant retrieval steps. Although recent process-aware approaches attempt to mitigate this via static preference learning or heuristic reward shaping, they often lack the on-policy exploration capabilities required to decouple step-level credit from global outcomes. To address these challenges, we propose ProRAG, a process-supervised reinforcement learning framework designed to integrate learned step-level supervision into the online optimization loop. Our framework consists of four stages: (1) Supervised Policy Warmup to initialize the model with a structured reasoning format; (2) construction of an MCTS-based Process Reward Model (PRM) to quantify intermediate reasoning quality; (3) PRM-Guided Reasoning Refinement to align the policy with fine-grained process preferences; and (4) Process-Supervised Reinforcement Learning with a dual-granularity advantage mechanism. By aggregating step-level process rewards with global outcome signals, ProRAG provides precise feedback for every action. Extensive experiments on five multi-hop reasoning benchmarks demonstrate that ProRAG achieves superior overall performance compared to strong outcome-based and process-aware RL baselines, particularly on complex long-horizon tasks, validating the effectiveness of fine-grained process supervision. The code and model are available at https://github.com/lilinwz/ProRAG.
comment: 11 pages, 6 figures
☆ From Meta-Thought to Execution: Cognitively Aligned Post-Training for Generalizable and Reliable LLM Reasoning
Current LLM post-training methods optimize complete reasoning trajectories through Supervised Fine-Tuning (SFT) followed by outcome-based Reinforcement Learning (RL). While effective, a closer examination reveals a fundamental gap: this approach does not align with how humans actually solve problems. Human cognition naturally decomposes problem-solving into two distinct stages: first acquiring abstract strategies (i.e., meta-knowledge) that generalize across problems, then adapting them to specific instances. In contrast, by treating complete trajectories as basic units, current methods are inherently problem-centric, entangling abstract strategies with problem-specific execution. To address this misalignment, we propose a cognitively-inspired framework that explicitly mirrors the two-stage human cognitive process. Specifically, Chain-of-Meta-Thought (CoMT) focuses supervised learning on abstract reasoning patterns without specific executions, enabling acquisition of generalizable strategies. Confidence-Calibrated Reinforcement Learning (CCRL) then optimizes task adaptation via confidence-aware rewards on intermediate steps, preventing overconfident errors from cascading and improving execution reliability. Experiments across four models and eight benchmarks show 2.19\% and 4.63\% improvements in-distribution and out-of-distribution respectively over standard methods, while reducing training time by 65-70% and token consumption by 50%, demonstrating that aligning post-training with human cognitive principles yields not only superior generalization but also enhanced training efficiency.
☆ Learn-to-Distance: Distance Learning for Detecting LLM-Generated Text ICLR2026
Modern large language models (LLMs) such as GPT, Claude, and Gemini have transformed the way we learn, work, and communicate. Yet, their ability to produce highly human-like text raises serious concerns about misinformation and academic integrity, making it an urgent need for reliable algorithms to detect LLM-generated content. In this paper, we start by presenting a geometric approach to demystify rewrite-based detection algorithms, revealing their underlying rationale and demonstrating their generalization ability. Building on this insight, we introduce a novel rewrite-based detection algorithm that adaptively learns the distance between the original and rewritten text. Theoretically, we demonstrate that employing an adaptively learned distance function is more effective for detection than using a fixed distance. Empirically, we conduct extensive experiments with over 100 settings, and find that our approach demonstrates superior performance over baseline algorithms in the majority of scenarios. In particular, it achieves relative improvements from 57.8\% to 80.6\% over the strongest baseline across different target LLMs (e.g., GPT, Claude, and Gemini).
comment: Accepted by ICLR2026
☆ Embodied Task Planning via Graph-Informed Action Generation with Large Lanaguage Model
While Large Language Models (LLMs) have demonstrated strong zero-shot reasoning capabilities, their deployment as embodied agents still faces fundamental challenges in long-horizon planning. Unlike open-ended text generation, embodied agents must decompose high-level intent into actionable sub-goals while strictly adhering to the logic of a dynamic, observed environment. Standard LLM planners frequently fail to maintain strategy coherence over extended horizons due to context window limitation or hallucinate transitions that violate constraints. We propose GiG, a novel planning framework that structures embodied agents' memory using a Graph-in-Graph architecture. Our approach employs a Graph Neural Network (GNN) to encode environmental states into embeddings, organizing these embeddings into action-connected execution trace graphs within an experience memory bank. By clustering these graph embeddings, the framework enables retrieval of structure-aware priors, allowing agents to ground current decisions in relevant past structural patterns. Furthermore, we introduce a novel bounded lookahead module that leverages symbolic transition logic to enhance the agents' planning capabilities through the grounded action projection. We evaluate our framework on three embodied planning benchmarks-Robotouille Synchronous, Robotouille Asynchronous, and ALFWorld. Our method outperforms state-of-the-art baselines, achieving Pass@1 performance gains of up to 22% on Robotouille Synchronous, 37% on Asynchronous, and 15% on ALFWorld with comparable or lower computational cost.
☆ Mil-SCORE: Benchmarking Long-Context Geospatial Reasoning and Planning in Large Language Models
As large language models (LLMs) are applied to increasingly longer and more complex tasks, there is a growing need for realistic long-context benchmarks that require selective reading and integration of heterogeneous, multi-modal information sources. This need is especially acute for geospatial planning problems, such as those found in planning for large-scale military operations, which demand fast and accurate reasoning over maps, orders, intelligence reports, and other distributed data. To address this gap, we present MilSCORE (Military Scenario Contextual Reasoning), to our knowledge the first scenario-level dataset of expert-authored, multi-hop questions grounded in a complex, simulated military planning scenario used for training. MilSCORE is designed to evaluate high-stakes decision-making and planning, probing LLMs' ability to combine tactical and spatial reasoning across multiple sources and to reason over long-horizon, geospatially rich context. The benchmark includes a diverse set of question types across seven categories targeting both factual recall and multi-step reasoning about constraints, strategy, and spatial analysis. We provide an evaluation protocol and report baseline results for a range of contemporary vision-language models. Our findings highlight substantial headroom on MilSCORE, indicating that current systems struggle with realistic, scenario-level long-context planning, and positioning MilSCORE as a challenging testbed for future work.
☆ Moral Outrage Shapes Commitments Beyond Attention: Multimodal Moral Emotions on YouTube in Korea and the US
Understanding how media rhetoric shapes audience engagement is crucial in the attention economy. This study examines how moral emotional framing by mainstream news channels on YouTube influences user behavior across Korea and the United States. To capture the platform's multimodal nature, combining thumbnail images and video titles, we develop a multimodal moral emotion classifier by fine tuning a vision language model. The model is trained on human annotated multimodal datasets in both languages and applied to approximately 400,000 videos from major news outlets. We analyze engagement levels including views, likes, and comments, representing increasing degrees of commitment. The results show that other condemning rhetoric expressions of moral outrage that criticize others morally consistently increase all forms of engagement across cultures, with effects ranging from passive viewing to active commenting. These findings suggest that moral outrage is a particularly effective emotional strategy, attracting not only attention but also active participation. We discuss concerns about the potential misuse of other condemning rhetoric, as such practices may deepen polarization by reinforcing in group and out group divisions. To facilitate future research and ensure reproducibility, we publicly release our Korean and English multimodal moral emotion classifiers.
comment: Accepted at The Web Conference 2026. We release Korean and English multimodal moral emotion classifiers
☆ Distribution-Aware Reward Estimation for Test-Time Reinforcement Learning
Test-time reinforcement learning (TTRL) enables large language models (LLMs) to self-improve on unlabeled inputs, but its effectiveness critically depends on how reward signals are estimated without ground-truth supervision. Most existing TTRL methods rely on majority voting (MV) over rollouts to produce deterministic rewards, implicitly assuming that the majority rollout provides a reliable learning signal. We show that this assumption is fragile: MV reduces the rollout distribution into a single outcome, discarding information about non-majority but correct actions candidates, and yields systematically biased reward estimates. To address this, we propose Distribution-AwareReward Estimation (DARE), which shifts reward estimation from a single majority outcome to the full empirical rollout distribution. DARE further augments this distribution-based reward with an exploration bonus and a distribution pruning mechanism for non-majority rollout exploration and reward denoise, yielding a more informative and robust reward estimation. Extensive experiments on challenging reasoning benchmarks show that DARE improves optimization stability and final performance over recent baselines, achieving relative improvements of 25.3% on challenging AIME 2024 and 5.3% on AMC.
☆ RAG-E: Quantifying Retriever-Generator Alignment and Failure Modes
Retrieval-Augmented Generation (RAG) systems combine dense retrievers and language models to ground LLM outputs in retrieved documents. However, the opacity of how these components interact creates challenges for deployment in high-stakes domains. We present RAG-E, an end-to-end explainability framework that quantifies retriever-generator alignment through mathematically grounded attribution methods. Our approach adapts Integrated Gradients for retriever analysis, introduces PMCSHAP, a Monte Carlo-stabilized Shapley Value approximation, for generator attribution, and introduces the Weighted Attribution-Relevance Gap (WARG) metric to measure how well a generator's document usage aligns with a retriever's ranking. Empirical analysis on TREC CAsT and FoodSafeSum reveals critical misalignments: for 47.4% to 66.7% of queries, generators ignore the retriever's top-ranked documents, while 48.1% to 65.9% rely on documents ranked as less relevant. These failure modes demonstrate that RAG output quality depends not solely on individual component performance but on their interplay, which can be audited via RAG-E.
☆ Enhancing Conversational Agents via Task-Oriented Adversarial Memory Adaptation
Conversational agents struggle to handle long conversations due to context window limitations. Therefore, memory systems are developed to leverage essential historical information. Existing memory systems typically follow a pipeline of offline memory construction and update, and online retrieval. Despite the flexible online phase, the offline phase remains fixed and task-independent. In this phase, memory construction operates under a predefined workflow and fails to emphasize task relevant information. Meanwhile, memory updates are guided by generic metrics rather than task specific supervision. This leads to a misalignment between offline memory preparation and task requirements, which undermines downstream task performance. To this end, we propose an Adversarial Memory Adaptation mechanism (AMA) that aligns memory construction and update with task objectives by simulating task execution. Specifically, first, a challenger agent generates question answer pairs based on the original dialogues. The constructed memory is then used to answer these questions, simulating downstream inference. Subsequently, an evaluator agent assesses the responses and performs error analysis. Finally, an adapter agent analyzes the error cases and performs dual level updates on both the construction strategy and the content. Through this process, the memory system receives task aware supervision signals in advance during the offline phase, enhancing its adaptability to downstream tasks. AMA can be integrated into various existing memory systems, and extensive experiments on long dialogue benchmark LoCoMo demonstrate its effectiveness.
comment: 11 pages, 4 figures
☆ KID: Knowledge-Injected Dual-Head Learning for Knowledge-Grounded Harmful Meme Detection
Internet memes have become pervasive carriers of digital culture on social platforms. However, their heavy reliance on metaphors and sociocultural context also makes them subtle vehicles for harmful content, posing significant challenges for automated content moderation. Existing approaches primarily focus on intra-modal and inter-modal signal analysis, while the understanding of implicit toxicity often depends on background knowledge that is not explicitly present in the meme itself. To address this challenge, we propose KID, a Knowledge-Injected Dual-Head Learning framework for knowledge-grounded harmful meme detection. KID adopts a label-constrained distillation paradigm to decompose complex meme understanding into structured reasoning chains that explicitly link visual evidence, background knowledge, and classification labels. These chains guide the learning process by grounding external knowledge in meme-specific contexts. In addition, KID employs a dual-head architecture that jointly optimizes semantic generation and classification objectives, enabling aligned linguistic reasoning while maintaining stable decision boundaries. Extensive experiments on five multilingual datasets spanning English, Chinese, and low-resource Bengali demonstrate that KID achieves SOTA performance on both binary and multi-label harmful meme detection tasks, improving over previous best methods by 2.1%--19.7% across primary evaluation metrics. Ablation studies further confirm the effectiveness of knowledge injection and dual-head joint learning, highlighting their complementary contributions to robust and generalizable meme understanding. The code and data are available at https://github.com/PotatoDog1669/KID.
☆ Zonkey: A Hierarchical Diffusion Language Model with Differentiable Tokenization and Probabilistic Attention
Large language models (LLMs) have revolutionized natural language processing, yet they remain constrained by fixed, non-differentiable tokenizers like Byte Pair Encoding (BPE), which hinder end-to-end optimization and adaptability to noisy or domain-specific data. We introduce Zonkey, a hierarchical diffusion model that addresses these limitations through a fully trainable pipeline from raw characters to document-level representations. At its core is a differentiable tokenizer (Segment Splitter) that learns probabilistic beginning-of-sequence (BOS) decisions, enabling adaptive splits that emerge as linguistically meaningful (e.g., word boundaries at spaces, sentence starts at periods) without explicit supervision. This differentiability is enabled by our novel Probabilistic Attention mechanism, which incorporates position-specific existence probabilities to simulate soft masking over theoretically infinite sequences while preserving gradients. Sequences decay probabilistically rather than relying on end-of-sequence tokens, supporting variable-length outputs. Hierarchical levels compress sequences into higher abstractions (e.g., character n-grams to word-like vectors, then sentence-like), with reconstruction via our Denoising Diffusion Mixed Model (DDMM) for stable and efficient denoising in latent space. A Stitcher ensures overlap invariance across segments. Trained end-to-end on Wikipedia, Zonkey generates coherent, variable-length text from noise, demonstrating emergent hierarchies and promising qualitative alignment to data distributions compared to entropy-based learnable tokenizers. Our approach advances toward fully gradient-based LLMs, with potential for better domain adaptation and scalable generation. We release the source code for training and reproducing our experiments.
☆ Evaluating ChatGPT on Medical Information Extraction Tasks: Performance, Explainability and Beyond
Large Language Models (LLMs) like ChatGPT have demonstrated amazing capabilities in comprehending user intents and generate reasonable and useful responses. Beside their ability to chat, their capabilities in various natural language processing (NLP) tasks are of interest to the research community. In this paper, we focus on assessing the overall ability of ChatGPT in 4 different medical information extraction (MedIE) tasks across 6 benchmark datasets. We present the systematically analysis by measuring ChatGPT's performance, explainability, confidence, faithfulness, and uncertainty. Our experiments reveal that: (a) ChatGPT's performance scores on MedIE tasks fall behind those of the fine-tuned baseline models. (b) ChatGPT can provide high-quality explanations for its decisions, however, ChatGPT is over-confident in its predcitions. (c) ChatGPT demonstrates a high level of faithfulness to the original text in the majority of cases. (d) The uncertainty in generation causes uncertainty in information extraction results, thus may hinder its applications in MedIE tasks.
☆ CoFrGeNet: Continued Fraction Architectures for Language Generation
Transformers are arguably the preferred architecture for language generation. In this paper, inspired by continued fractions, we introduce a new function class for generative modeling. The architecture family implementing this function class is named CoFrGeNets - Continued Fraction Generative Networks. We design novel architectural components based on this function class that can replace Multi-head Attention and Feed-Forward Networks in Transformer blocks while requiring much fewer parameters. We derive custom gradient formulations to optimize the proposed components more accurately and efficiently than using standard PyTorch-based gradients. Our components are a plug-in replacement requiring little change in training or inference procedures that have already been put in place for Transformer-based models thus making our approach easy to incorporate in large industrial workflows. We experiment on two very different transformer architectures GPT2-xl (1.5B) and Llama3 (3.2B), where the former we pre-train on OpenWebText and GneissWeb, while the latter we pre-train on the docling data mix which consists of nine different datasets. Results show that the performance on downstream classification, Q\& A, reasoning and text understanding tasks of our models is competitive and sometimes even superior to the original models with $\frac{2}{3}$ to $\frac{1}{2}$ the parameters and shorter pre-training time. We believe that future implementations customized to hardware will further bring out the true potential of our architectures.
☆ Influence Guided Sampling for Domain Adaptation of Text Retrievers
General-purpose open-domain dense retrieval systems are usually trained with a large, eclectic mix of corpora and search tasks. How should these diverse corpora and tasks be sampled for training? Conventional approaches sample them uniformly, proportional to their instance population sizes, or depend on human-level expert supervision. It is well known that the training data sampling strategy can greatly impact model performance. However, how to find the optimal strategy has not been adequately studied in the context of embedding models. We propose Inf-DDS, a novel reinforcement learning driven sampling framework that adaptively reweighs training datasets guided by influence-based reward signals and is much more lightweight with respect to GPU consumption. Our technique iteratively refines the sampling policy, prioritizing datasets that maximize model performance on a target development set. We evaluate the efficacy of our sampling strategy on a wide range of text retrieval tasks, demonstrating strong improvements in retrieval performance and better adaptation compared to existing gradient-based sampling methods, while also being 1.5x to 4x cheaper in GPU compute. Our sampling strategy achieves a 5.03 absolute NDCG@10 improvement while training a multilingual bge-m3 model and an absolute NDCG@10 improvement of 0.94 while training all-MiniLM-L6-v2, even when starting from expert-assigned weights on a large pool of training datasets.
☆ Temporal Guidance for Large Language Models
Contrastive Decoding (CD) enhances the generation quality of large language models (LLMs) but incurs significant additional computational overhead due to the need for an auxiliary model. Existing internal self-contrastive decoding methods, such as Decoding by Contrasting Layers (DoLa), focus on discrepancies across different layers, which are notably unstable on small-scale models. In this work, based on the observation that LLMs exhibit local preferences, we propose a novel contrastive guidance strategy along the temporal dimension, namely Temporal Guidance (TeGu). Our method ingeniously leverages Multi-Token Prediction (MTP) to construct weaker amateur predictions for model self-contrast. To standardize the implementation of this mechanism, we further introduce a lightweight Conditional MTP Projector (cMTPP), which avoids maintaining multiple independent networks as required by other MTP modules. Across various model series and benchmarks, TeGu achieves significant performance improvements while maintaining low additional memory consumption and computational overhead.
☆ Epistemic Context Learning: Building Trust the Right Way in LLM-Based Multi-Agent Systems
Individual agents in multi-agent (MA) systems often lack robustness, tending to blindly conform to misleading peers. We show this weakness stems from both sycophancy and inadequate ability to evaluate peer reliability. To address this, we first formalize the learning problem of history-aware reference, introducing the historical interactions of peers as additional input, so that agents can estimate peer reliability and learn from trustworthy peers when uncertain. This shifts the task from evaluating peer reasoning quality to estimating peer reliability based on interaction history. We then develop Epistemic Context Learning (ECL): a reasoning framework that conditions predictions on explicitly-built peer profiles from history. We further optimize ECL by reinforcement learning using auxiliary rewards. Our experiments reveal that our ECL enables small models like Qwen 3-4B to outperform a history-agnostic baseline 8x its size (Qwen 3-30B) by accurately identifying reliable peers. ECL also boosts frontier models to near-perfect (100%) performance. We show that ECL generalizes well to various MA configurations and we find that trust is modeled well by LLMs, revealing a strong correlation in trust modeling accuracy and final answer quality.
comment: Codes and data are available at https://github.com/skyriver-2000/epistemic-context-learning
☆ CE-GOCD: Central Entity-Guided Graph Optimization for Community Detection to Augment LLM Scientific Question Answering IEEE
Large Language Models (LLMs) are increasingly used for question answering over scientific research papers. Existing retrieval augmentation methods often rely on isolated text chunks or concepts, but overlook deeper semantic connections between papers. This impairs the LLM's comprehension of scientific literature, hindering the comprehensiveness and specificity of its responses. To address this, we propose Central Entity-Guided Graph Optimization for Community Detection (CE-GOCD), a method that augments LLMs' scientific question answering by explicitly modeling and leveraging semantic substructures within academic knowledge graphs. Our approach operates by: (1) leveraging paper titles as central entities for targeted subgraph retrieval, (2) enhancing implicit semantic discovery via subgraph pruning and completion, and (3) applying community detection to distill coherent paper groups with shared themes. We evaluated the proposed method on three NLP literature-based question-answering datasets, and the results demonstrate its superiority over other retrieval-augmented baseline approaches, confirming the effectiveness of our framework.
comment: Accepted by IEEE ICASSP 2026
☆ Procedural Pretraining: Warming Up Language Models with Abstract Data
Pretraining directly on web-scale corpora is the de facto paradigm for building language models. We study an alternative setting where the model is initially exposed to abstract structured data, as a means to ease the subsequent acquisition of rich semantic knowledge, much like humans learn simple logic and mathematics before higher reasoning. We specifically focus on procedural data, generated by formal languages and other simple algorithms, as such abstract data. We first diagnose the algorithmic skills that different forms of procedural data can improve, often significantly. For example, on context recall (Needle-in-a-haystack), the accuracy jumps from 10 to 98% when pretraining on Dyck sequences (balanced brackets). Second, we study how these gains are reflected in pretraining larger models (up to 1.3B). We find that front-loading as little as 0.1% procedural data significantly outperforms standard pretraining on natural language, code, and informal mathematics (C4, CodeParrot, and DeepMind-Math datasets). Notably, this procedural pretraining enables the models to reach the same loss value with only 55, 67, 86% of the original data. Third, we explore the mechanisms behind and find that procedural pretraining instils non-trivial structure in both attention and MLP layers. The former is particularly important for structured domains (e.g. code), and the latter for language. Finally, we lay a path for combining multiple forms of procedural data. Our results show that procedural pretraining is a simple, lightweight means to improving performance and accelerating language model pretraining, ultimately suggesting the promise of disentangling knowledge acquisition from reasoning in LLMs.
☆ Enhancing Language Models for Robust Greenwashing Detection
Sustainability reports are critical for ESG assessment, yet greenwashing and vague claims often undermine their reliability. Existing NLP models lack robustness to these practices, typically relying on surface-level patterns that generalize poorly. We propose a parameter-efficient framework that structures LLM latent spaces by combining contrastive learning with an ordinal ranking objective to capture graded distinctions between concrete actions and ambiguous claims. Our approach incorporates gated feature modulation to filter disclosure noise and utilizes MetaGradNorm to stabilize multi-objective optimization. Experiments in cross-category settings demonstrate superior robustness over standard baselines while revealing a trade-off between representational rigidity and generalization.
☆ TACLer: Tailored Curriculum Reinforcement Learning for Efficient Reasoning
Large Language Models (LLMs) have shown remarkable performance on complex reasoning tasks, especially when equipped with long chain-of-thought (CoT) reasoning. However, eliciting long CoT typically requires large-scale reinforcement learning (RL) training, while often leading to overthinking with redundant intermediate steps. To improve learning and reasoning efficiency, while preserving or even enhancing performance, we propose TACLer, a model-tailored curriculum reinforcement learning framework that gradually increases the complexity of the data based on the model's proficiency in multi-stage RL training. TACLer features two core components: (i) tailored curriculum learning that determines what knowledge the model lacks and needs to learn in progressive stages; (ii) a hybrid Thinking/NoThinking reasoning paradigm that balances accuracy and efficiency by enabling or disabling the Thinking mode. Our experiments show that TACLer yields a twofold advantage in learning and reasoning: (i) it reduces computational cost, cutting training compute by over 50% compared to long thinking models and reducing inference token usage by over 42% relative to the base model; and (ii) it improves accuracy by over 9% on the base model, consistently outperforming state-of-the-art Nothinking and Thinking baselines across four math datasets with complex problems.
☆ Why Attention Patterns Exist: A Unifying Temporal Perspective Analysis ICLR 2026
Attention patterns play a crucial role in both training and inference of large language models (LLMs). Prior works have identified individual patterns such as retrieval heads, sink heads, and diagonal traces, yet these observations remain fragmented and lack a unifying explanation. To bridge this gap, we introduce \textbf{Temporal Attention Pattern Predictability Analysis (TAPPA), a unifying framework that explains diverse attention patterns by analyzing their underlying mathematical formulations} from a temporally continuous perspective. TAPPA both deepens the understanding of attention behavior and guides inference acceleration approaches. Specifically, TAPPA characterizes attention patterns as predictable patterns with clear regularities and unpredictable patterns that appear effectively random. Our analysis further reveals that this distinction can be explained by the degree of query self-similarity along the temporal dimension. Focusing on the predictable patterns, we further provide a detailed mathematical analysis of three representative cases through the joint effect of queries, keys, and Rotary Positional Embeddings (RoPE). We validate TAPPA by applying its insights to KV cache compression and LLM pruning tasks. Across these tasks, a simple metric motivated by TAPPA consistently improves performance over baseline methods. The code is available at https://github.com/MIRALab-USTC/LLM-TAPPA.
comment: ICLR 2026
☆ FBS: Modeling Native Parallel Reading inside a Transformer
Large language models (LLMs) excel across many tasks, yet inference is still dominated by strictly token-by-token autoregression. Existing acceleration methods largely patch this pipeline and miss core human-reading ingredients: content-adaptive foresight, chunk-structure-aware compute allocation, and train--test consistency for preview/skimming. We propose the \textbf{Fovea-Block-Skip Transformer} (FBS), which injects a causal, trainable loop into Transformers via Parafovea-Attention Window (PAW), Chunk-Head (CH), and Skip-Gate (SG). Across diverse benchmarks, FBS improves the quality-efficiency trade-off without increasing parameters, and ablations show the three modules are complementary.
☆ Beyond Forgetting: Machine Unlearning Elicits Controllable Side Behaviors and Capabilities
We consider representation misdirection (RM), a class of LLM unlearning methods that achieves forgetting by manipulating the forget-representations, that is, latent representations of forget samples. Despite being important, the roles of target vectors used in RM, however, remain underexplored. Here, we approach and revisit RM through the lens of the linear representation hypothesis. Specifically, if one can somehow identify a one-dimensional representation corresponding to a high-level concept, the linear representation hypothesis enables linear operations on this concept vector within the forget-representation space. Under this view, we hypothesize that, beyond forgetting, machine unlearning elicits controllable side behaviors and stronger side capabilities corresponding to the high-level concept. Our hypothesis is empirically validated across a wide range of tasks, including behavioral control (e.g., controlling unlearned models' truth, sentiment, and refusal) and capability enhancement (e.g., improving unlearned models' in-context learning capability). Our findings reveal that this fairly attractive phenomenon could be either a hidden risk if misused or a mechanism that can be harnessed for developing models that require stronger capabilities and controllable behaviors.
comment: 21 pages, 11 tables, 12 figures
☆ Toward Culturally Aligned LLMs through Ontology-Guided Multi-Agent Reasoning
Large Language Models (LLMs) increasingly support culturally sensitive decision making, yet often exhibit misalignment due to skewed pretraining data and the absence of structured value representations. Existing methods can steer outputs, but often lack demographic grounding and treat values as independent, unstructured signals, reducing consistency and interpretability. We propose OG-MAR, an Ontology-Guided Multi-Agent Reasoning framework. OG-MAR summarizes respondent-specific values from the World Values Survey (WVS) and constructs a global cultural ontology by eliciting relations over a fixed taxonomy via competency questions. At inference time, it retrieves ontology-consistent relations and demographically similar profiles to instantiate multiple value-persona agents, whose outputs are synthesized by a judgment agent that enforces ontology consistency and demographic proximity. Experiments on regional social-survey benchmarks across four LLM backbones show that OG-MAR improves cultural alignment and robustness over competitive baselines, while producing more transparent reasoning traces.
comment: 35 pages
☆ Can David Beat Goliath? On Multi-Hop Reasoning with Resource-Constrained Agents
While reinforcement learning (RL) has empowered multi-turn reasoning agents with retrieval and tools, existing successes largely depend on extensive on-policy rollouts in high-cost, high-accuracy regimes. Under realistic resource constraints that cannot support large models or dense explorations, however, small language model agents fall into a low-cost, low-accuracy regime, where limited rollout budgets lead to sparse exploration, sparse credit assignment, and unstable training. In this work, we challenge this trade-off and show that small language models can achieve strong multi-hop reasoning under resource constraints. We introduce DAVID-GRPO, a budget-efficient RL framework that (i) stabilizes early learning with minimal supervision, (ii) assigns retrieval credit based on evidence recall, and (iii) improves exploration by resampling truncated near-miss trajectories. Evaluated on agents up to 1.5B parameters trained on only four RTX 3090 GPUs, DAVID-GRPO consistently outperforms prior RL methods designed for large-scale settings on six multi-hop QA benchmarks. These results show that with the right inductive biases, small agents can achieve low training cost with high accuracy.
comment: Preprint
☆ Do Not Waste Your Rollouts: Recycling Search Experience for Efficient Test-Time Scaling
Test-Time Scaling enhances the reasoning capabilities of Large Language Models by allocating additional inference compute to broaden the exploration of the solution space. However, existing search strategies typically treat rollouts as disposable samples, where valuable intermediate insights are effectively discarded after each trial. This systemic memorylessness leads to massive computational redundancy, as models repeatedly re-derive discovered conclusions and revisit known dead ends across extensive attempts. To bridge this gap, we propose \textbf{Recycling Search Experience (RSE)}, a self-guided, training-free strategy that turns test-time search from a series of isolated trials into a cumulative process. By actively distilling raw trajectories into a shared experience bank, RSE enables positive recycling of intermediate conclusions to shortcut redundant derivations and negative recycling of failure patterns to prune encountered dead ends. Theoretically, we provide an analysis that formalizes the efficiency gains of RSE, validating its advantage over independent sampling in solving complex reasoning tasks. Empirically, extensive experiments on HMMT24, HMMT25, IMO-Bench, and HLE show that RSE consistently outperforms strong baselines with comparable computational cost, achieving state-of-the-art scaling efficiency.
comment: preprint
☆ FIT: Defying Catastrophic Forgetting in Continual LLM Unlearning
Large language models (LLMs) demonstrate impressive capabilities across diverse tasks but raise concerns about privacy, copyright, and harmful materials. Existing LLM unlearning methods rarely consider the continual and high-volume nature of real-world deletion requests, which can cause utility degradation and catastrophic forgetting as requests accumulate. To address this challenge, we introduce \fit, a framework for continual unlearning that handles large numbers of deletion requests while maintaining robustness against both catastrophic forgetting and post-unlearning recovery. \fit mitigates degradation through rigorous data \underline{F}iltering, \underline{I}mportance-aware updates, and \underline{T}argeted layer attribution, enabling stable performance across long sequences of unlearning operations and achieving a favorable balance between forgetting effectiveness and utility retention. To support realistic evaluation, we present \textbf{PCH}, a benchmark covering \textbf{P}ersonal information, \textbf{C}opyright, and \textbf{H}armful content in sequential deletion scenarios, along with two symmetric metrics, Forget Degree (F.D.) and Retain Utility (R.U.), which jointly assess forgetting quality and utility preservation. Extensive experiments on four open-source LLMs with hundreds of deletion requests show that \fit achieves the strongest trade-off between F.D. and R.U., surpasses existing methods on MMLU, CommonsenseQA, and GSM8K, and remains resistant against both relearning and quantization recovery attacks.
comment: 20 Pages
☆ Scale-Dependent Semantic Dynamics Revealed by Allan Deviation
While language progresses through a sequence of semantic states, the underlying dynamics of this progression remain elusive. Here, we treat the semantic progression of written text as a stochastic trajectory in a high-dimensional state space. We utilize Allan deviation, a tool from precision metrology, to analyze the stability of meaning by treating ordered sentence embeddings as a displacement signal. Our analysis reveals two distinct dynamical regimes: short-time power-law scaling, which differentiates creative literature from technical texts, and a long-time crossover to a stability-limited noise floor. We find that while large language models successfully mimic the local scaling statistics of human text, they exhibit a systematic reduction in their stability horizon. These results establish semantic coherence as a measurable physical property, offering a framework to differentiate the nuanced dynamics of human cognition from the patterns generated by algorithmic models.
☆ AdaptBPE: From General Purpose to Specialized Tokenizers EACL 2026
Subword tokenization methods, such as Byte-Pair Encoding (BPE), significantly impact the performance and efficiency of large language models (LLMs). The standard approach involves training a general-purpose tokenizer that uniformly processes all textual data during both training and inference. However, the use of a generic set of tokens can incur inefficiencies when applying the model to specific domains or languages. To address this limitation, we propose a post-training adaptation strategy that selectively replaces low-utility tokens with more relevant ones based on their frequency in an adaptation corpus. Our algorithm identifies the token inventory that most effectively encodes the adaptation corpus for a given target vocabulary size. Extensive experiments on generation and classification tasks across multiple languages demonstrate that our adapted tokenizers compress test corpora more effectively than baselines using the same vocabulary size. This method serves as a lightweight adaptation mechanism, akin to a vocabulary fine-tuning process, enabling optimized tokenization for specific domains or tasks. Our code and data are available at https://github.com/vijini/Adapt-BPE.git.
comment: EACL 2026
☆ SWE-Spot: Building Small Repo-Experts with Repository-Centric Learning
The deployment of coding agents in privacy-sensitive and resource-constrained environments drives the demand for capable open-weight Small Language Models (SLMs). However, they suffer from a fundamental capability gap: unlike frontier large models, they lack the inference-time strong generalization to work with complicated, unfamiliar codebases. We identify that the prevailing Task-Centric Learning (TCL) paradigm, which scales exposure across disparate repositories, fails to address this limitation. In response, we propose Repository-Centric Learning (RCL), a paradigm shift that prioritizes vertical repository depth over horizontal task breadth, suggesting SLMs must internalize the "physics" of a target software environment through parametric knowledge acquisition, rather than attempting to recover it via costly inference-time search. Following this new paradigm, we design a four-unit Repository-Centric Experience, transforming static codebases into interactive learning signals, to train SWE-Spot-4B, a family of highly compact models built as repo-specialized experts that breaks established scaling trends, outperforming open-weight models up to larger (e.g., CWM by Meta, Qwen3-Coder-30B) and surpassing/matching efficiency-focused commercial models (e.g., GPT-4.1-mini, GPT-5-nano) across multiple SWE tasks. Further analysis reveals that RCL yields higher training sample efficiency and lower inference costs, emphasizing that for building efficient intelligence, repository mastery is a distinct and necessary dimension that complements general coding capability.
☆ ILRR: Inference-Time Steering Method for Masked Diffusion Language Models
Discrete Diffusion Language Models (DLMs) offer a promising non-autoregressive alternative for text generation, yet effective mechanisms for inference-time control remain relatively underexplored. Existing approaches include sampling-level guidance procedures or trajectory optimization mechanisms. In this work, we introduce Iterative Latent Representation Refinement (ILRR), a learning-free framework for steering DLMs using a single reference sequence. ILRR guides generation by dynamically aligning the internal activations of the generated sequence with those of a given reference throughout the denoising process. This approach captures and transfers high-level semantic properties, with a tunable steering scale enabling flexible control over attributes such as sentiment. We further introduce Spatially Modulated Steering, an extension that enables steering long texts using shorter references by regulating guidance intensity across the sequence. Empirically, we demonstrate that ILRR achieves effective attribute steering on LLaDA and MDLM architectures with a minor computational overhead, requiring only one additional parallel forward pass per denoising step. Under the same compute budget, ILRR improves attribute accuracy over comparable baselines by 10$\%$ to 60$\%$ points, while maintaining high generation quality.
☆ Breaking the Overscaling Curse: Thinking Parallelism Before Parallel Thinking
Parallel thinking enhances LLM reasoning by multi-path sampling and aggregation. In system-level evaluations, a global parallelism level N is allocated to all samples, typically set large to maximize overall dataset accuracy. However, due to sample heterogeneity, some samples can achieve comparable performance with a smaller N'< N, causing budget redundancy. This incompatibility between system-level efficacy and sample-level efficiency constitutes the overscaling curse. In this paper, we formalize and quantify the overscaling curse, showing its universality and severity in practice, and analyze its trigger mechanism. We then propose a lightweight method, T2, to break the overscaling curse, which utilizes latent representations to estimate the optimal parallelism level for each sample before decoding. Experiments show that T2 significantly reduces cost while maintaining comparable performance, enabling more efficient parallel thinking.
☆ Semantic Content Determines Algorithmic Performance
Counting should not depend on what is being counted; more generally, any algorithm's behavior should be invariant to the semantic content of its arguments. We introduce WhatCounts to test this property in isolation. Unlike prior work that conflates semantic sensitivity with reasoning complexity or prompt variation, WhatCounts is atomic: count items in an unambiguous, delimited list with no duplicates, distractors, or reasoning steps for different semantic types. Frontier LLMs show over 40% accuracy variation depending solely on what is being counted - cities versus chemicals, names versus symbols. Controlled ablations rule out confounds. The gap is semantic, and it shifts unpredictably with small amounts of unrelated fine-tuning. LLMs do not implement algorithms; they approximate them, and the approximation is argument-dependent. As we show with an agentic example, this has implications beyond counting: any LLM function may carry hidden dependencies on the meaning of its inputs.
☆ Thinking Broad, Acting Fast: Latent Reasoning Distillation from Multi-Perspective Chain-of-Thought for E-Commerce Relevance WWW2026
Effective relevance modeling is crucial for e-commerce search, as it aligns search results with user intent and enhances customer experience. Recent work has leveraged large language models (LLMs) to address the limitations of traditional relevance models, especially for long-tail and ambiguous queries. By incorporating Chain-of-Thought (CoT) reasoning, these approaches improve both accuracy and interpretability through multi-step reasoning. However, two key limitations remain: (1) most existing approaches rely on single-perspective CoT reasoning, which fails to capture the multifaceted nature of e-commerce relevance (e.g., user intent vs. attribute-level matching vs. business-specific rules); and (2) although CoT-enhanced LLM's offer rich reasoning capabilities, their high inference latency necessitates knowledge distillation for real-time deployment, yet current distillation methods discard the CoT rationale structure at inference, using it as a transient auxiliary signal and forfeiting its reasoning utility. To address these challenges, we propose a novel framework that better exploits CoT semantics throughout the optimization pipeline. Specifically, the teacher model leverages Multi-Perspective CoT (MPCoT) to generate diverse rationales and combines Supervised Fine-Tuning (SFT) with Direct Preference Optimization (DPO) to construct a more robust reasoner. For distillation, we introduce Latent Reasoning Knowledge Distillation (LRKD), which endows a student model with a lightweight inference-time latent reasoning extractor, allowing efficient and low-latency internalization of the LLM's sophisticated reasoning capabilities. Evaluated in offline experiments and online A/B tests on an e-commerce search advertising platform serving tens of millions of users daily, our method delivers significant offline gains, showing clear benefits in both commercial performance and user experience.
comment: 12 pages, 6 figures, Accepted by WWW2026 industry track
☆ Language Models as Artificial Learners: Investigating Crosslinguistic Influence
Despite the centrality of crosslinguistic influence (CLI) to bilingualism research, human studies often yield conflicting results due to inherent experimental variance. We address these inconsistencies by using language models (LMs) as controlled statistical learners to systematically simulate CLI and isolate its underlying drivers. Specifically, we study the effect of varying the L1 language dominance and the L2 language proficiency, which we manipulate by controlling the L2 age of exposure -- defined as the training step at which the L2 is introduced. Furthermore, we investigate the impact of pretraining on L1 languages with varying syntactic distance from the L2. Using cross-linguistic priming, we analyze how activating L1 structures impacts L2 processing. Our results align with evidence from psycholinguistic studies, confirming that language dominance and proficiency are strong predictors of CLI. We further find that while priming of grammatical structures is bidirectional, the priming of ungrammatical structures is sensitive to language dominance. Finally, we provide mechanistic evidence of CLI in LMs, demonstrating that the L1 is co-activated during L2 processing and directly influences the neural circuitry recruited for the L2. More broadly, our work demonstrates that LMs can serve as a computational framework to inform theories of human CLI.
☆ Depth-Recurrent Attention Mixtures: Giving Latent Reasoning the Attention it Deserves
Depth-recurrence facilitates latent reasoning by sharing parameters across depths. However, prior work lacks combined FLOP-, parameter-, and memory-matched baselines, underutilizes depth-recurrence due to partially fixed layer stacks, and ignores the bottleneck of constant hidden-sizes that restricts many-step latent reasoning. To address this, we introduce a modular framework of depth-recurrent attention mixtures (Dreamer), combining sequence attention, depth attention, and sparse expert attention. It alleviates the hidden-size bottleneck through attention along depth, decouples scaling dimensions, and allows depth-recurrent models to scale efficiently and effectively. Across language reasoning benchmarks, our models require 2 to 8x fewer training tokens for the same accuracy as FLOP-, parameter-, and memory-matched SOTA, and outperform ca. 2x larger SOTA models with the same training tokens. We further present insights into knowledge usage across depths, e.g., showing 2 to 11x larger expert selection diversity than SOTA MoEs.
☆ KromHC: Manifold-Constrained Hyper-Connections with Kronecker-Product Residual Matrices
The success of Hyper-Connections (HC) in neural networks (NN) has also highlighted issues related to its training instability and restricted scalability. The Manifold-Constrained Hyper-Connections (mHC) mitigate these challenges by projecting the residual connection space onto a Birkhoff polytope, however, it faces two issues: 1) its iterative Sinkhorn-Knopp (SK) algorithm does not always yield exact doubly stochastic residual matrices; 2) mHC incurs a prohibitive $\mathcal{O}(n^3C)$ parameter complexity with $n$ as the width of the residual stream and $C$ as the feature dimension. The recently proposed mHC-lite reparametrizes the residual matrix via the Birkhoff-von-Neumann theorem to guarantee double stochasticity, but also faces a factorial explosion in its parameter complexity, $\mathcal{O} \left( nC \cdot n! \right)$. To address both challenges, we propose \textbf{KromHC}, which uses the \underline{Kro}necker products of smaller doubly stochastic matrices to parametrize the residual matrix in \underline{mHC}. By enforcing manifold constraints across the factor residual matrices along each mode of the tensorized residual stream, KromHC guarantees exact double stochasticity of the residual matrices while reducing parameter complexity to $\mathcal{O}(n^2C)$. Comprehensive experiments demonstrate that KromHC matches or even outperforms state-of-the-art (SOTA) mHC variants, while requiring significantly fewer trainable parameters. The code is available at \texttt{https://github.com/wz1119/KromHC}.
☆ Shaping capabilities with token-level data filtering
Current approaches to reducing undesired capabilities in language models are largely post hoc, and can thus be easily bypassed by adversaries. A natural alternative is to shape capabilities during pretraining itself. On the proxy task of removing medical capabilities, we show that the simple intervention of filtering pretraining data is highly effective, robust, and inexpensive at scale. Inspired by work on data attribution, we show that filtering tokens is more effective than filtering documents, achieving the same hit to undesired capabilities at a lower cost to benign ones. Training models spanning two orders of magnitude, we then demonstrate that filtering gets more effective with scale: for our largest models, token filtering leads to a 7000x compute slowdown on the forget domain. We also show that models trained with token filtering can still be aligned on the forget domain. Along the way, we introduce a methodology for labeling tokens with sparse autoencoders and distilling cheap, high-quality classifiers. We also demonstrate that filtering can be robust to noisy labels with sufficient pretraining compute.
comment: 33 pages, 28 figures
☆ Multi-objective Integer Linear Programming approach for Automatic Software Cognitive Complexity Reduction
Clear and concise code is necessary to ensure maintainability, so it is crucial that the software is as simple as possible to understand, to avoid bugs and, above all, vulnerabilities. There are many ways to enhance software without changing its functionality, considering the extract method refactoring the primary process to reduce the effort required for code comprehension. The cognitive complexity measure employed in this work is the one defined by SonarSource, which is a company that develops well-known applications for static code analysis. This extraction problem can be modeled as a combinatorial optimization problem. The main difficulty arises from the existence of different criteria for evaluating the solutions obtained, requiring the formulation of the code extraction problem as a multi-objective optimization problem using alternative methods. We propose a multi-objective integer linear programming model to obtain a set of solutions that reduce the cognitive complexity of a given piece of code, such as balancing the number of lines of code and its cognitive complexity. In addition, several algorithms have been developed to validate the model. These algorithms have been integrated into a tool that enables the parameterised resolution of the problem of reducing software cognitive complexity.
comment: 51 pages, 17 figures
☆ ASTRA: Automated Synthesis of agentic Trajectories and Reinforcement Arenas
Large language models (LLMs) are increasingly used as tool-augmented agents for multi-step decision making, yet training robust tool-using agents remains challenging. Existing methods still require manual intervention, depend on non-verifiable simulated environments, rely exclusively on either supervised fine-tuning (SFT) or reinforcement learning (RL), and struggle with stable long-horizon, multi-turn learning. To address these challenges, we introduce ASTRA, a fully automated end-to-end framework for training tool-augmented language model agents via scalable data synthesis and verifiable reinforcement learning. ASTRA integrates two complementary components. First, a pipeline that leverages the static topology of tool-call graphs synthesizes diverse, structurally grounded trajectories, instilling broad and transferable tool-use competence. Second, an environment synthesis framework that captures the rich, compositional topology of human semantic reasoning converts decomposed question-answer traces into independent, code-executable, and rule-verifiable environments, enabling deterministic multi-turn RL. Based on this method, we develop a unified training methodology that integrates SFT with online RL using trajectory-level rewards to balance task completion and interaction efficiency. Experiments on multiple agentic tool-use benchmarks demonstrate that ASTRA-trained models achieve state-of-the-art performance at comparable scales, approaching closed-source systems while preserving core reasoning ability. We release the full pipelines, environments, and trained models at https://github.com/LianjiaTech/astra.
☆ Note2Chat: Improving LLMs for Multi-Turn Clinical History Taking Using Medical Notes AAAI-26
Effective clinical history taking is a foundational yet underexplored component of clinical reasoning. While large language models (LLMs) have shown promise on static benchmarks, they often fall short in dynamic, multi-turn diagnostic settings that require iterative questioning and hypothesis refinement. To address this gap, we propose \method{}, a note-driven framework that trains LLMs to conduct structured history taking and diagnosis by learning from widely available medical notes. Instead of relying on scarce and sensitive dialogue data, we convert real-world medical notes into high-quality doctor-patient dialogues using a decision tree-guided generation and refinement pipeline. We then propose a three-stage fine-tuning strategy combining supervised learning, simulated data augmentation, and preference learning. Furthermore, we propose a novel single-turn reasoning paradigm that reframes history taking as a sequence of single-turn reasoning problems. This design enhances interpretability and enables local supervision, dynamic adaptation, and greater sample efficiency. Experimental results show that our method substantially improves clinical reasoning, achieving gains of +16.9 F1 and +21.0 Top-1 diagnostic accuracy over GPT-4o. Our code and dataset can be found at https://github.com/zhentingsheng/Note2Chat.
comment: Accepted at AAAI-26
☆ ShardMemo: Masked MoE Routing for Sharded Agentic LLM Memory
Agentic large language model (LLM) systems rely on external memory for long-horizon state and concurrent multi-agent execution, but centralized indexes and heuristic partitions become bottlenecks as memory volume and parallel access grow. We present ShardMemo, a budgeted tiered memory service with Tier A per-agent working state, Tier B sharded evidence with shard-local approximate nearest neighbor (ANN) indexes, and Tier C, a versioned skill library. Tier B enforces scope-before-routing: structured eligibility constraints mask ineligible shards before routing or ANN search. We cast shard probing as masked mixture-of-experts (MoE) routing over eligible shards, probing up to $B_{\mathrm{probe}}$ shards via Top-$B_{\mathrm{probe}}$ or adaptive Top-$P$, and use cost-aware gating over profile/observation/session shard families; the router is trained from evidence-to-shard supervision. On LoCoMo, ShardMemo improves over the strongest baseline (GAM) by +5.11 to +6.82 F1 across question categories. Under a fixed-budget routing setting ($B_{\mathrm{probe}}=3$), ShardMemo improves over cosine-to-prototype shard routing by +6.87 F1 while reducing retrieval work (VecScan 521->414, -20.5%) and p95 latency (95->76 ms). On long-context HotpotQA, ShardMemo achieves 63.41/61.88/57.95 F1 at 56K/224K/448K tokens. On ToolBench, Tier C reaches 0.97 Precision@3 and 1.94 StepRed (+10.2% and +7.2% over embedding-similarity retrieval).
☆ inversedMixup: Data Augmentation via Inverting Mixed Embeddings
Mixup generates augmented samples by linearly interpolating inputs and labels with a controllable ratio. However, since it operates in the latent embedding level, the resulting samples are not human-interpretable. In contrast, LLM-based augmentation methods produce sentences via prompts at the token level, yielding readable outputs but offering limited control over the generation process. Inspired by recent advances in LLM inversion, which reconstructs natural language from embeddings and helps bridge the gap between latent embedding space and discrete token space, we propose inversedMixup, a unified framework that combines the controllability of Mixup with the interpretability of LLM-based generation. Specifically, inversedMixup adopts a three-stage training procedure to align the output embedding space of a task-specific model with the input embedding space of an LLM. Upon successful alignment, inversedMixup can reconstruct mixed embeddings with a controllable mixing ratio into human-interpretable augmented sentences, thereby improving the augmentation performance. Additionally, inversedMixup provides the first empirical evidence of the manifold intrusion phenomenon in text Mixup and introduces a simple yet effective strategy to mitigate it. Extensive experiments demonstrate the effectiveness and generalizability of our approach in both few-shot and fully supervised scenarios.
☆ KAPSO: A Knowledge-grounded framework for Autonomous Program Synthesis and Optimization
We introduce KAPSO, a modular framework for autonomous program synthesis and optimization. Given a natural language goal and an evaluation method, KAPSO iteratively performs ideation, code synthesis and editing, execution, evaluation, and learning to improve a runnable artifact toward measurable objectives. Rather than treating synthesis as the endpoint, KAPSO uses synthesis as an operator within a long-horizon optimization loop, where progress is defined by evaluator outcomes. KAPSO targets long-horizon failures common in coding agents, including lost experimental state, brittle debugging, and weak reuse of domain expertise, by integrating three tightly coupled components. First, a git-native experimentation engine isolates each attempt as a branch, producing reproducible artifacts and preserving provenance across iterations. Second, a knowledge system ingests heterogeneous sources, including repositories, internal playbooks, and curated external resources such as documentation, scientific papers, and web search results, and organizes them into a structured representation that supports retrieval over workflows, implementations, and environment constraints. Third, a cognitive memory layer coordinates retrieval and maintains an episodic store of reusable lessons distilled from experiment traces (run logs, diffs, and evaluator feedback), reducing repeated error modes and accelerating convergence. We evaluated KAPSO on MLE-Bench (Kaggle-style ML competitions) and ALE-Bench (AtCoder heuristic optimization), and report end-to-end performance. Code Available at: https://github.com/Leeroo-AI/kapso
☆ LMK > CLS: Landmark Pooling for Dense Embeddings
Representation learning is central to many downstream tasks such as search, clustering, classification, and reranking. State-of-the-art sequence encoders typically collapse a variable-length token sequence to a single vector using a pooling operator, most commonly a special [CLS] token or mean pooling over token embeddings. In this paper, we identify systematic weaknesses of these pooling strategies: [CLS] tends to concentrate information toward the initial positions of the sequence and can under-represent distributed evidence, while mean pooling can dilute salient local signals, sometimes leading to worse short-context performance. To address these issues, we introduce Landmark (LMK) pooling, which partitions a sequence into chunks, inserts landmark tokens between chunks, and forms the final representation by mean-pooling the landmark token embeddings. This simple mechanism improves long-context extrapolation without sacrificing local salient features, at the cost of introducing a small number of special tokens. We empirically demonstrate that LMK pooling matches existing methods on short-context retrieval tasks and yields substantial improvements on long-context tasks, making it a practical and scalable alternative to existing pooling methods.
☆ MURAD: A Large-Scale Multi-Domain Unified Reverse Arabic Dictionary Dataset
Arabic is a linguistically and culturally rich language with a vast vocabulary that spans scientific, religious, and literary domains. Yet, large-scale lexical datasets linking Arabic words to precise definitions remain limited. We present MURAD (Multi-domain Unified Reverse Arabic Dictionary), an open lexical dataset with 96,243 word-definition pairs. The data come from trusted reference works and educational sources. Extraction used a hybrid pipeline integrating direct text parsing, optical character recognition, and automated reconstruction. This ensures accuracy and clarity. Each record aligns a target word with its standardized Arabic definition and metadata that identifies the source domain. The dataset covers terms from linguistics, Islamic studies, mathematics, physics, psychology, and engineering. It supports computational linguistics and lexicographic research. Applications include reverse dictionary modeling, semantic retrieval, and educational tools. By releasing this resource, we aim to advance Arabic natural language processing and promote reproducible research on Arabic lexical semantics.
comment: 18 pages
☆ The Effectiveness of Style Vectors for Steering Large Language Models: A Human Evaluation
Controlling the behavior of large language models (LLMs) at inference time is essential for aligning outputs with human abilities and safety requirements. \emph{Activation steering} provides a lightweight alternative to prompt engineering and fine-tuning by directly modifying internal activations to guide generation. This research advances the literature in three significant directions. First, while previous work demonstrated the technical feasibility of steering emotional tone using automated classifiers, this paper presents the first human evaluation of activation steering concerning the emotional tone of LLM outputs, collecting over 7,000 crowd-sourced ratings from 190 participants via Prolific ($n=190$). These ratings assess both perceived emotional intensity and overall text quality. Second, we find strong alignment between human and model-based quality ratings (mean $r=0.776$, range $0.157$--$0.985$), indicating automatic scoring can proxy perceived quality. Moderate steering strengths ($λ\approx 0.15$) reliably amplify target emotions while preserving comprehensibility, with the strongest effects for disgust ($η_p^2 = 0.616$) and fear ($η_p^2 = 0.540$), and minimal effects for surprise ($η_p^2 = 0.042$). Finally, upgrading from Alpaca to LlaMA-3 yielded more consistent steering with significant effects across emotions and strengths (all $p < 0.001$). Inter-rater reliability was high (ICC $= 0.71$--$0.87$), underscoring the robustness of the findings. These findings support activation-based control as a scalable method for steering LLM behavior across affective dimensions.
☆ MAR: Efficient Large Language Models via Module-aware Architecture Refinement ICASSP 2026
Large Language Models (LLMs) excel across diverse domains but suffer from high energy costs due to quadratic attention and dense Feed-Forward Network (FFN) operations. To address these issues, we propose Module-aware Architecture Refinement (MAR), a two-stage framework that integrates State Space Models (SSMs) for linear-time sequence modeling and applies activation sparsification to reduce FFN costs. In addition, to mitigate low information density and temporal mismatch in integrating Spiking Neural Networks (SNNs) with SSMs, we design the Adaptive Ternary Multi-step Neuron (ATMN) and the Spike-aware Bidirectional Distillation Strategy (SBDS). Extensive experiments demonstrate that MAR effectively restores the performance of its dense counterpart under constrained resources while substantially reducing inference energy consumption. Furthermore, it outperforms efficient models of comparable or even larger scale, underscoring its potential for building efficient and practical LLMs.
comment: Accepted by ICASSP 2026. 5 pages, 5 figures
☆ The Path of Least Resistance: Guiding LLM Reasining Trajectories with Prefix Consensus ICLR 2026
Large language models achieve strong reasoning performance, but inference strategies such as Self-Consistency (SC) are computationally expensive, as they fully expand all reasoning traces. We introduce PoLR (Path of Least Resistance), the first inference-time method to leverage prefix consistency for compute-efficient reasoning. PoLR clusters short prefixes of reasoning traces, identifies the dominant cluster, and expands all paths in that cluster, preserving the accuracy benefits of SC while substantially reducing token usage and latency. Our theoretical analysis, framed via mutual information and entropy, explains why early reasoning steps encode strong signals predictive of final correctness. Empirically, PoLR consistently matches or exceeds SC across GSM8K, MATH500, AIME24/25, and GPQA-DIAMOND, reducing token usage by up to 60% and wall-clock latency by up to 50%. Moreover, PoLR is fully complementary to adaptive inference methods (e.g., Adaptive Consistency, Early-Stopping SC) and can serve as a drop-in pre-filter, making SC substantially more efficient and scalable without requiring model fine-tuning.
comment: Accepted at ICLR 2026. https://openreview.net/forum?id=hrnSqERgPn
☆ DimStance: Multilingual Datasets for Dimensional Stance Analysis
Stance detection is an established task that classifies an author's attitude toward a specific target into categories such as Favor, Neutral, and Against. Beyond categorical stance labels, we leverage a long-established affective science framework to model stance along real-valued dimensions of valence (negative-positive) and arousal (calm-active). This dimensional approach captures nuanced affective states underlying stance expressions, enabling fine-grained stance analysis. To this end, we introduce DimStance, the first dimensional stance resource with valence-arousal (VA) annotations. This resource comprises 11,746 target aspects in 7,365 texts across five languages (English, German, Chinese, Nigerian Pidgin, and Swahili) and two domains (politics and environmental protection). To facilitate the evaluation of stance VA prediction, we formulate the dimensional stance regression task, analyze cross-lingual VA patterns, and benchmark pretrained and large language models under regression and prompting settings. Results show competitive performance of fine-tuned LLM regressors, persistent challenges in low-resource languages, and limitations of token-based generation. DimStance provides a foundation for multilingual, emotion-aware, stance analysis and benchmarking.
☆ SOUP: Token-level Single-sample Mix-policy Reinforcement Learning for Large Language Models
On-policy reinforcement learning (RL) methods widely used for language model post-training, like Group Relative Policy Optimization (GRPO), often suffer from limited exploration and early saturation due to low sampling diversity. While off-policy data can help, current approaches that mix entire trajectories cause significant policy mismatch and instability. In this work, we propose the $\textbf{S}$ingle-sample Mix-p$\textbf{O}$licy $\textbf{U}$nified $\textbf{P}$aradigm (SOUP), a framework that unifies off- and on-policy learning within individual samples at the token level. It confines off-policy influence to the prefix of a generated sequence sampled from historical policies, while the continuation is generated on-policy. Through token-level importance ratios, SOUP effectively leverages off-policy information while preserving training stability. Extensive experiments demonstrate that SOUP consistently outperforms standard on-policy training and existing off-policy extensions. Our further analysis clarifies how our fine-grained, single-sample mix-policy training can improve both exploration and final performance in LLM RL.
☆ Topeax -- An Improved Clustering Topic Model with Density Peak Detection and Lexical-Semantic Term Importance
Text clustering is today the most popular paradigm for topic modelling, both in academia and industry. Despite clustering topic models' apparent success, we identify a number of issues in Top2Vec and BERTopic, which remain largely unsolved. Firstly, these approaches are unreliable at discovering natural clusters in corpora, due to extreme sensitivity to sample size and hyperparameters, the default values of which result in suboptimal behaviour. Secondly, when estimating term importance, BERTopic ignores the semantic distance of keywords to topic vectors, while Top2Vec ignores word counts in the corpus. This results in, on the one hand, less coherent topics due to the presence of stop words and junk words, and lack of variety and trust on the other. In this paper, I introduce a new approach, \textbf{Topeax}, which discovers the number of clusters from peaks in density estimates, and combines lexical and semantic indices of term importance to gain high-quality topic keywords. Topeax is demonstrated to be better at both cluster recovery and cluster description than Top2Vec and BERTopic, while also exhibiting less erratic behaviour in response to changing sample size and hyperparameters.
comment: 14 pages, 6 figures
☆ Conversation for Non-verifiable Learning: Self-Evolving LLMs through Meta-Evaluation
Training large language models (LLMs) for non-verifiable tasks, such as creative writing, dialogue, and ethical reasoning, remains challenging due to the absence of ground-truth labels. While LLM-as-Judge approaches offer a scalable alternative to human feedback, they face a fundamental limitation: performance is constrained by the evaluator's own quality. If the judge cannot recognize good solutions, it cannot provide useful training signals, and evaluation biases (e.g., favoring verbosity over quality) remain unaddressed. This motivates meta-evaluation: the ability to evaluate and improve the evaluator itself. We introduce CoNL, a framework that unifies generation, evaluation, and meta-evaluation through multi-agent self-play. Our key insight: critique quality can be measured by whether it helps others improve their solutions. In CoNL, multiple agents sharing the same policy engage in structured conversations to propose, critique, and revise solutions. Critiques that enable solution improvements earn a diagnostic reward, creating explicit supervision for meta-evaluation and enabling joint optimization of generation and judging capabilities through self-play, without external judges or ground truth. Experiments on five benchmarks show that CoNL achieves consistent improvements over self-rewarding baselines while maintaining stable training.
comment: Work in Progress
☆ Spava: Accelerating Long-Video Understanding via Sequence-Parallelism-aware Approximate Attention
The efficiency of long-video inference remains a critical bottleneck, mainly due to the dense computation in the prefill stage of Large Multimodal Models (LMMs). Existing methods either compress visual embeddings or apply sparse attention on a single GPU, yielding limited acceleration or degraded performance and restricting LMMs from handling longer, more complex videos. To overcome these issues, we propose Spava, a sequence-parallel framework with optimized attention that accelerates long-video inference across multiple GPUs. By distributing approximate attention, Spava reduces computation and increases parallelism, enabling efficient processing of more visual embeddings without compression and thereby improving task performance. System-level optimizations, such as load balancing and fused forward passes, further unleash the potential of Spava, delivering speedups of 12.72x, 1.70x, and 1.18x over FlashAttn, ZigZagRing, and APB, without notable performance loss. Code available at https://github.com/thunlp/APB
comment: Preprint
☆ From Consistency to Complementarity: Aligned and Disentangled Multi-modal Learning for Time Series Understanding and Reasoning
Advances in multi-modal large language models (MLLMs) have inspired time series understanding and reasoning tasks, that enable natural language querying over time series, producing textual analyses of complex temporal dynamics. Recent attempts hybridize numerical time series with their visualized plots, facilitating precise value reasoning and visual structure comprehension for comprehensive time series understanding of MLLMs. However, effective cross-modal integration remains challenging due to fine-grained temporal misalignment across modalities and severe entanglement between shared and modality-specific semantics, which hinder localized interpretation and complementary reasoning. To address these issues, we propose MADI, a multi-modal LLM enhanced with fine-grained alignment and disentangled interaction, featuring (1) Patch-level Alignment, which enforces physically grounded fine-grained correspondence across heterogeneous modalities, (2) Discrete Disentangled Interaction, which separates modality-common semantics into compact discrete latents and adaptively synergizes the purified modality-unique information, and (3) Critical-token Highlighting, which emphasizes informative, query-relevant signals for robust reasoning. Experiments on synthetic and real-world benchmarks show that MADI consistently outperforms general-purpose LLMs and time-series-specialized MLLMs.
☆ System 1&2 Synergy via Dynamic Model Interpolation
Training a unified language model that adapts between intuitive System 1 and deliberative System 2 remains challenging due to interference between their cognitive modes. Recent studies have thus pursued making System 2 models more efficient. However, these approaches focused on output control, limiting what models produce. We argue that this paradigm is misaligned: output length is merely a symptom of the model's cognitive configuration, not the root cause. In this work, we shift the focus to capability control, which modulates \textit{how models think} rather than \textit{what they produce}. To realize this, we leverage existing Instruct and Thinking checkpoints through dynamic parameter interpolation, without additional training. Our pilot study establishes that linear interpolation yields a convex, monotonic Pareto frontier, underpinned by representation continuity and structural connectivity. Building on this, we propose \textbf{DAMI} (\textbf{D}yn\textbf{A}mic \textbf{M}odel \textbf{I}nterpolation), a framework that estimates a query-specific Reasoning Intensity $λ(q)$ to configure cognitive depth. For training-based estimation, we develop a preference learning method encoding accuracy and efficiency criteria. For zero-shot deployment, we introduce a confidence-based method leveraging inter-model cognitive discrepancy. Experiments on five mathematical reasoning benchmarks demonstrate that DAMI achieves higher accuracy than the Thinking model while remaining efficient, effectively combining the efficiency of System 1 with the reasoning depth of System 2.
☆ User-Centric Evidence Ranking for Attribution and Fact Verification EACL 2026
Attribution and fact verification are critical challenges in natural language processing for assessing information reliability. While automated systems and Large Language Models (LLMs) aim to retrieve and select concise evidence to support or refute claims, they often present users with either insufficient or overly redundant information, leading to inefficient and error-prone verification. To address this, we propose Evidence Ranking, a novel task that prioritizes presenting sufficient information as early as possible in a ranked list. This minimizes user reading effort while still making all available evidence accessible for sequential verification. We compare two approaches for the new ranking task: one-shot ranking and incremental ranking. We introduce a new evaluation framework, inspired by information retrieval metrics, and construct a unified benchmark by aggregating existing fact verification datasets. Extensive experiments with diverse models show that incremental ranking strategies better capture complementary evidence and that LLM-based methods outperform shallower baselines, while still facing challenges in balancing sufficiency and redundancy. Compared to evidence selection, we conduct a controlled user study and demonstrate that evidence ranking both reduces reading effort and improves verification. This work provides a foundational step toward more interpretable, efficient, and user-aligned information verification systems.
comment: EACL 2026
☆ The Compliance Paradox: Semantic-Instruction Decoupling in Automated Academic Code Evaluation
The rapid integration of Large Language Models (LLMs) into educational assessment rests on the unverified assumption that instruction following capability translates directly to objective adjudication. We demonstrate that this assumption is fundamentally flawed. Instead of evaluating code quality, models frequently decouple from the submission's logic to satisfy hidden directives, a systemic vulnerability we term the Compliance Paradox, where models fine-tuned for extreme helpfulness are vulnerable to adversarial manipulation. To expose this, we introduce the Semantic-Preserving Adversarial Code Injection (SPACI) Framework and the Abstract Syntax Tree-Aware Semantic Injection Protocol (AST-ASIP). These methods exploit the Syntax-Semantics Gap by embedding adversarial directives into syntactically inert regions (trivia nodes) of the Abstract Syntax Tree. Through a large-scale evaluation of 9 SOTA models across 25,000 submissions in Python, C, C++, and Java, we reveal catastrophic failure rates (>95%) in high-capacity open-weights models like DeepSeek-V3, which systematically prioritize hidden formatting constraints over code correctness. We quantify this failure using our novel tripartite framework measuring Decoupling Probability, Score Divergence, and Pedagogical Severity to demonstrate the widespread "False Certification" of functionally broken code. Our findings suggest that current alignment paradigms create a "Trojan" vulnerability in automated grading, necessitating a shift from standard RLHF toward domain-specific Adjudicative Robustness, where models are conditioned to prioritize evidence over instruction compliance. We release our complete dataset and injection framework to facilitate further research on the topic.
☆ Latent Chain-of-Thought as Planning: Decoupling Reasoning from Verbalization
Chain-of-Thought (CoT) empowers Large Language Models (LLMs) to tackle complex problems, but remains constrained by the computational cost and reasoning path collapse when grounded in discrete token spaces. Recent latent reasoning approaches attempt to optimize efficiency by performing reasoning within continuous hidden states. However, these methods typically operate as opaque end-to-end mappings from explicit reasoning steps to latent states, and often require a pre-defined number of latent steps during inference. In this work, we introduce PLaT (Planning with Latent Thoughts), a framework that reformulates latent reasoning as planning by fundamentally decouple reasoning from verbalization. We model reasoning as a deterministic trajectory of latent planning states, while a separate Decoder grounds these thoughts into text when necessary. This decoupling allows the model to dynamically determine when to terminate reasoning rather than relying on fixed hyperparameters. Empirical results on mathematical benchmarks reveal a distinct trade-off: while PLaT achieves lower greedy accuracy than baselines, it demonstrates superior scalability in terms of reasoning diversity. This indicates that PLaT learns a robust, broader solution space, offering a transparent and scalable foundation for inference-time search.
☆ Self-Improving Pretraining: using post-trained models to pretrain better models
Ensuring safety, factuality and overall quality in the generations of large language models is a critical challenge, especially as these models are increasingly deployed in real-world applications. The prevailing approach to addressing these issues involves collecting expensive, carefully curated datasets and applying multiple stages of fine-tuning and alignment. However, even this complex pipeline cannot guarantee the correction of patterns learned during pretraining. Therefore, addressing these issues during pretraining is crucial, as it shapes a model's core behaviors and prevents unsafe or hallucinated outputs from becoming deeply embedded. To tackle this issue, we introduce a new pretraining method that streams documents and uses reinforcement learning (RL) to improve the next K generated tokens at each step. A strong, post-trained model judges candidate generations -- including model rollouts, the original suffix, and a rewritten suffix -- for quality, safety, and factuality. Early in training, the process relies on the original and rewritten suffixes; as the model improves, RL rewards high-quality rollouts. This approach builds higher quality, safer, and more factual models from the ground up. In experiments, our method gives 36.2% and 18.5% relative improvements over standard pretraining in terms of factuality and safety, and up to 86.3% win rate improvements in overall generation quality.
☆ Qwen3-ASR Technical Report
In this report, we introduce Qwen3-ASR family, which includes two powerful all-in-one speech recognition models and a novel non-autoregressive speech forced alignment model. Qwen3-ASR-1.7B and Qwen3-ASR-0.6B are ASR models that support language identification and ASR for 52 languages and dialects. Both of them leverage large-scale speech training data and the strong audio understanding ability of their foundation model Qwen3-Omni. We conduct comprehensive internal evaluation besides the open-sourced benchmarks as ASR models might differ little on open-sourced benchmark scores but exhibit significant quality differences in real-world scenarios. The experiments reveal that the 1.7B version achieves SOTA performance among open-sourced ASR models and is competitive with the strongest proprietary APIs while the 0.6B version offers the best accuracy-efficiency trade-off. Qwen3-ASR-0.6B can achieve an average TTFT as low as 92ms and transcribe 2000 seconds speech in 1 second at a concurrency of 128. Qwen3-ForcedAligner-0.6B is an LLM based NAR timestamp predictor that is able to align text-speech pairs in 11 languages. Timestamp accuracy experiments show that the proposed model outperforms the three strongest force alignment models and takes more advantages in efficiency and versatility. To further accelerate the community research of ASR and audio understanding, we release these models under the Apache 2.0 license.
comment: https://github.com/QwenLM/Qwen3-ASR
☆ GeoRC: A Benchmark for Geolocation Reasoning Chains
Vision Language Models (VLMs) are good at recognizing the global location of a photograph -- their geolocation prediction accuracy rivals the best human experts. But many VLMs are startlingly bad at explaining which image evidence led to their prediction, even when their location prediction is correct. The reasoning chains produced by VLMs frequently hallucinate scene attributes to support their location prediction (e.g. phantom writing, imagined infrastructure, misidentified flora). In this paper, we introduce the first benchmark for geolocation reasoning chains. We focus on the global location prediction task in the popular GeoGuessr game which draws from Google Street View spanning more than 100 countries. We collaborate with expert GeoGuessr players, including the reigning world champion, to produce 800 ground truth reasoning chains for 500 query scenes. These expert reasoning chains address hundreds of different discriminative visual attributes such as license plate shape, architecture, and soil properties to name just a few. We evaluate LLM-as-a-judge and VLM-as-a-judge strategies for scoring VLM-generated reasoning chains against our expert reasoning chains and find that Qwen 3 LLM-as-a-judge correlates best with human scoring. Our benchmark reveals that while large, closed-source VLMs such as Gemini and GPT 5 rival human experts at prediction locations, they still lag behind human experts when it comes to producing auditable reasoning chains. Open weights VLMs such as Llama and Qwen catastrophically fail on our benchmark -- they perform only slightly better than a baseline in which an LLM hallucinates a reasoning chain with oracle knowledge of the photo location but no visual information at all. We believe the gap between human experts and VLMs on this task points to VLM limitations at extracting fine-grained visual attributes from high resolution images.
☆ CausalEmbed: Auto-Regressive Multi-Vector Generation in Latent Space for Visual Document Embedding
Although Multimodal Large Language Models (MLLMs) have shown remarkable potential in Visual Document Retrieval (VDR) through generating high-quality multi-vector embeddings, the substantial storage overhead caused by representing a page with thousands of visual tokens limits their practicality in real-world applications. To address this challenge, we propose an auto-regressive generation approach, CausalEmbed, for constructing multi-vector embeddings. By incorporating iterative margin loss during contrastive training, CausalEmbed encourages the embedding models to learn compact and well-structured representations. Our method enables efficient VDR tasks using only dozens of visual tokens, achieving a 30-155x reduction in token count while maintaining highly competitive performance across various backbones and benchmarks. Theoretical analysis and empirical results demonstrate the unique advantages of auto-regressive embedding generation in terms of training efficiency and scalability at test time. As a result, CausalEmbed introduces a flexible test-time scaling strategy for multi-vector VDR representations and sheds light on the generative paradigm within multimodal document retrieval.
comment: Under review
☆ MoCo: A One-Stop Shop for Model Collaboration Research
Advancing beyond single monolithic language models (LMs), recent research increasingly recognizes the importance of model collaboration, where multiple LMs collaborate, compose, and complement each other. Existing research on this topic has mostly been disparate and disconnected, from different research communities, and lacks rigorous comparison. To consolidate existing research and establish model collaboration as a school of thought, we present MoCo: a one-stop Python library of executing, benchmarking, and comparing model collaboration algorithms at scale. MoCo features 26 model collaboration methods, spanning diverse levels of cross-model information exchange such as routing, text, logit, and model parameters. MoCo integrates 25 evaluation datasets spanning reasoning, QA, code, safety, and more, while users could flexibly bring their own data. Extensive experiments with MoCo demonstrate that most collaboration strategies outperform models without collaboration in 61.0% of (model, data) settings on average, with the most effective methods outperforming by up to 25.8%. We further analyze the scaling of model collaboration strategies, the training/inference efficiency of diverse methods, highlight that the collaborative system solves problems where single LMs struggle, and discuss future work in model collaboration, all made possible by MoCo. We envision MoCo as a valuable toolkit to facilitate and turbocharge the quest for an open, modular, decentralized, and collaborative AI future.
comment: Moco is available at https://github.com/BunsenFeng/model_collaboration
☆ Less Noise, More Voice: Reinforcement Learning for Reasoning via Instruction Purification
Reinforcement Learning with Verifiable Rewards (RLVR) has advanced LLM reasoning, but remains constrained by inefficient exploration under limited rollout budgets, leading to low sampling success and unstable training in complex tasks. We find that many exploration failures arise not from problem difficulty, but from a small number of prompt tokens that introduce interference. Building on this insight, we propose the Less Noise Sampling Framework (LENS), which first prompts by identifying and removing interference tokens. then transfers successful rollouts from the purification process to supervise policy optimization on the original noisy prompts, enabling the model to learn to ignore interference in the real-world, noisy prompting settings. Experimental results show that LENS significantly outperforms GRPO, delivering higher performance and faster convergence, with a 3.88% average gain and over 1.6$\times$ speedup. Our work highlights the critical role of pruning interference tokens in improving rollout efficiency, offering a new perspective for RLVR research.
comment: Work in progress
☆ Quantifying Noise in Language Generation
Kleinberg and Mullainathan recently proposed a formal framework for studying the phenomenon of language generation, called language generation in the limit. In this model, an adversary gives an enumeration of example strings from an unknown target language, and the algorithm is tasked with correctly generating unseen strings from the target language within finite time. Refined notions of non-uniform and uniform generation were later introduced by Li, Raman, and Tewari (2025), and a noisy model was introduced by Raman and Raman (2025), which allows the adversary to insert extraneous strings. A natural question in the noisy model is to quantify the effect of noise, by studying the impact of each additional extraneous string. We show two complementary results in this setting. We first show that for both uniform and non-uniform generation, a single noisy string strictly reduces the set of collections that can be generated, thus answering an open question in Raman and Raman (2025). Then, we show for both uniform and non-uniform generation that generation with a single noisy string is equivalent to generation with any finite amount of noise, sharply contrasting with the strict hierarchy for noisy generation in the limit shown by Bai, Panigrahi, and Zhang (2026). Finally, we leverage our previous results to provide the first known characterization for non-uniform noise-dependent generatability.
☆ SHARP: Social Harm Analysis via Risk Profiles for Measuring Inequities in Large Language Models
Large language models (LLMs) are increasingly deployed in high-stakes domains, where rare but severe failures can result in irreversible harm. However, prevailing evaluation benchmarks often reduce complex social risk to mean-centered scalar scores, thereby obscuring distributional structure, cross-dimensional interactions, and worst-case behavior. This paper introduces Social Harm Analysis via Risk Profiles (SHARP), a framework for multidimensional, distribution-aware evaluation of social harm. SHARP models harm as a multivariate random variable and integrates explicit decomposition into bias, fairness, ethics, and epistemic reliability with a union-of-failures aggregation reparameterized as additive cumulative log-risk. The framework further employs risk-sensitive distributional statistics, with Conditional Value at Risk (CVaR95) as a primary metric, to characterize worst-case model behavior. Application of SHARP to eleven frontier LLMs, evaluated on a fixed corpus of n=901 socially sensitive prompts, reveals that models with similar average risk can exhibit more than twofold differences in tail exposure and volatility. Across models, dimension-wise marginal tail behavior varies systematically across harm dimensions, with bias exhibiting the strongest tail severities, epistemic and fairness risks occupying intermediate regimes, and ethical misalignment consistently lower; together, these patterns reveal heterogeneous, model-dependent failure structures that scalar benchmarks conflate. These findings indicate that responsible evaluation and governance of LLMs require moving beyond scalar averages toward multidimensional, tail-sensitive risk profiling.
comment: Pre Print, 29 pages. key words: Social harm evaluation in LLMs, Large language models, Risk sensitive model selection, Evaluation for high-stakes domains, Worst-case behavior in LLMs, Algorithmic bias, Fairness in machine learning
☆ MGSM-Pro: A Simple Strategy for Robust Multilingual Mathematical Reasoning Evaluation
Large language models have made substantial progress in mathematical reasoning. However, benchmark development for multilingual evaluation has lagged behind English in both difficulty and recency. Recently, GSM-Symbolic showed a strong evidence of high variance when models are evaluated on different instantiations of the same question; however, the evaluation was conducted only in English. In this paper, we introduce MGSM-Pro, an extension of MGSM dataset with GSM-Symbolic approach. Our dataset provides five instantiations per MGSM question by varying names, digits and irrelevant context. Evaluations across nine languages reveal that many low-resource languages suffer large performance drops when tested on digit instantiations different from those in the original test set. We further find that some proprietary models, notably Gemini 2.5 Flash and GPT-4.1, are less robust to digit instantiation, whereas Claude 4.0 Sonnet is more robust. Among open models, GPT-OSS 120B and DeepSeek V3 show stronger robustness. Based on these findings, we recommend evaluating each problem using at least five digit-varying instantiations to obtain a more robust and realistic assessment of math reasoning.
☆ Parametric Knowledge is Not All You Need: Toward Honest Large Language Models via Retrieval of Pretraining Data
Large language models (LLMs) are highly capable of answering questions, but they are often unaware of their own knowledge boundary, i.e., knowing what they know and what they don't know. As a result, they can generate factually incorrect responses on topics they do not have enough knowledge of, commonly known as hallucination. Rather than hallucinating, a language model should be more honest and respond with "I don't know" when it does not have enough knowledge about a topic. Many methods have been proposed to improve LLM honesty, but their evaluations lack robustness, as they do not take into account the knowledge that the LLM has ingested during its pretraining. In this paper, we propose a more robust evaluation benchmark dataset for LLM honesty by utilizing Pythia, a truly open LLM with publicly available pretraining data. In addition, we also propose a novel method for harnessing the pretraining data to build a more honest LLM.
☆ Scaling Reasoning Hop Exposes Weaknesses: Demystifying and Improving Hop Generalization in Large Language Models ICLR 2026
Chain-of-thought (CoT) reasoning has become the standard paradigm for enabling Large Language Models (LLMs) to solve complex problems. However, recent studies reveal a sharp performance drop in reasoning hop generalization scenarios, where the required number of reasoning steps exceeds training distributions while the underlying algorithm remains unchanged. The internal mechanisms driving this failure remain poorly understood. In this work, we conduct a systematic study on tasks from multiple domains, and find that errors concentrate at token positions of a few critical error types, rather than being uniformly distributed. Closer inspection reveals that these token-level erroneous predictions stem from internal competition mechanisms: certain attention heads, termed erroneous processing heads (ep heads), tip the balance by amplifying incorrect reasoning trajectories while suppressing correct ones. Notably, removing individual ep heads during inference can often restore the correct predictions. Motivated by these insights, we propose test-time correction of reasoning, a lightweight intervention method that dynamically identifies and deactivates ep heads in the reasoning process. Extensive experiments across different tasks and LLMs show that it consistently improves reasoning hop generalization, highlighting both its effectiveness and potential.
comment: 52 pages, accepted by ICLR 2026 main conference
☆ Multilingual Dysarthric Speech Assessment Using Universal Phone Recognition and Language-Specific Phonemic Contrast Modeling
The growing prevalence of neurological disorders associated with dysarthria motivates the need for automated intelligibility assessment methods that are applicalbe across languages. However, most existing approaches are either limited to a single language or fail to capture language-specific factors shaping intelligibility. We present a multilingual phoneme-production assessment framework that integrates universal phone recognition with language-specific phoneme interpretation using contrastive phonological feature distances for phone-to-phoneme mapping and sequence alignment. The framework yields three metrics: phoneme error rate (PER), phonological feature error rate (PFER), and a newly proposed alignment-free measure, phoneme coverage (PhonCov). Analysis on English, Spanish, Italian, and Tamil show that PER benefits from the combination of mapping and alignment, PFER from alignment alone, and PhonCov from mapping. Further analyses demonstrate that the proposed framework captures clinically meaningful patterns of intelligibility degradation consistent with established observations of dysarthric speech.
comment: 10 pages, 4 figures
☆ Scaling Embeddings Outperforms Scaling Experts in Language Models
While Mixture-of-Experts (MoE) architectures have become the standard for sparsity scaling in large language models, they increasingly face diminishing returns and system-level bottlenecks. In this work, we explore embedding scaling as a potent, orthogonal dimension for scaling sparsity. Through a comprehensive analysis and experiments, we identify specific regimes where embedding scaling achieves a superior Pareto frontier compared to expert scaling. We systematically characterize the critical architectural factors governing this efficacy -- ranging from parameter budgeting to the interplay with model width and depth. Moreover, by integrating tailored system optimizations and speculative decoding, we effectively convert this sparsity into tangible inference speedups. Guided by these insights, we introduce LongCat-Flash-Lite, a 68.5B parameter model with ~3B activated trained from scratch. Despite allocating over 30B parameters to embeddings, LongCat-Flash-Lite not only surpasses parameter-equivalent MoE baselines but also exhibits exceptional competitiveness against existing models of comparable scale, particularly in agentic and coding domains.
☆ Do Reasoning Models Enhance Embedding Models?
State-of-the-art embedding models are increasingly derived from decoder-only Large Language Model (LLM) backbones adapted via contrastive learning. Given the emergence of reasoning models trained via Reinforcement Learning with Verifiable Rewards (RLVR), a natural question arises: do enhanced reasoning translate to superior semantic representations when these models serve as embedding initializations? Contrary to expectation, our evaluation on MTEB and BRIGHT reveals a **null effect**: embedding models initialized from RLVR-tuned backbones yield no consistent performance advantage over their base counterparts when subjected to identical training recipes. To unpack this paradox, we introduce **H**ierarchical **R**epresentation **S**imilarity **A**nalysis (HRSA), a framework that decomposes similarity across representation, geometry, and function levels. HRSA reveals that while RLVR induces irreversible latent manifold's local geometry reorganization and reversible coordinate basis drift, it preserves the global manifold geometry and linear readout. Consequently, subsequent contrastive learning drives strong alignment between base- and reasoning-initialized models, a phenomenon we term **Manifold Realignment**. Empirically, our findings suggest that unlike Supervised Fine-Tuning (SFT), RLVR optimizes trajectories within an existing semantic landscape rather than fundamentally restructuring the landscape itself.
comment: 10 main pages, 18 appendix pages, 13 figures, 11 tables, 4 prompts
☆ From Linear Input to Hierarchical Structure: Function Words as Statistical Cues for Language Learning
What statistical conditions support learning hierarchical structure from linear input? In this paper, we address this question by focusing on the statistical distribution of function words. Function words have long been argued to play a crucial role in language acquisition due to their distinctive distributional properties, including high frequency, reliable association with syntactic structure, and alignment with phrase boundaries. We use cross-linguistic corpus analysis to first establish that all three properties are present across 186 studied languages. Next, we use a combination of counterfactual language modeling and ablation experiments to show that language variants preserving all three properties are more easily acquired by neural learners, with frequency and structural association contributing more strongly than boundary alignment. Follow-up probing and ablation analyses further reveal that different learning conditions lead to systematically different reliance on function words, indicating that similar performance can arise from distinct internal mechanisms.
comment: Jan ARR under review
☆ Output-Space Search: Targeting LLM Generations in a Frozen Encoder-Defined Output Space
We introduce Output-Space Search (OS-Search), which turns LLM generation into endpoint search. An outer loop selects a target z* in a frozen encoder-defined 3D output space Z, and a retrieval-grounded policy trained with sequence-level RL generates outputs whose coordinates land near z* under standard autoregressive decoding. This enables parallel sweeps and black-box optimization in Z without path-dependent token/program search. On stories, sweeping Z (text) yields 3.1x higher LLM-scored diversity than prompt-chaining. On code, Bayesian optimization over Z (code) improves an objective withheld from the controller under matched inference budgets while preserving validity.
☆ Bridging the Arithmetic Gap: The Cognitive Complexity Benchmark and Financial-PoT for Robust Financial Reasoning
While Large Language Models excel at semantic tasks, they face a critical bottleneck in financial quantitative reasoning, frequently suffering from "Arithmetic Hallucinations" and a systemic failure mode we term "Cognitive Collapse". To strictly quantify this phenomenon, we introduce the Cognitive Complexity Benchmark (CCB), a robust evaluation framework grounded in a dataset constructed from 95 real-world Chinese A-share annual reports. Unlike traditional datasets, the CCB stratifies financial queries into a three-dimensional taxonomy, Data Source, Mapping Difficulty, and Result Unit, enabling the precise diagnosis of reasoning degradation in high-cognitive-load scenarios. To address these failures, we propose the Iterative Dual-Phase Financial-PoT framework. This neuro-symbolic architecture enforces a strict architectural decoupling: it first isolates semantic variable extraction and logic formulation, then offloads computation to an iterative, self-correcting Python sandbox to ensure deterministic execution. Evaluation on the CCB demonstrates that while standard Chain-of-Thought falters on complex tasks, our approach offers superior robustness, elevating the Qwen3-235B model's average accuracy from 59.7\% to 67.3\% and achieving gains of up to 10-fold in high-complexity reasoning tasks. These findings suggest that architectural decoupling is a critical enabling factor for improving reliability in financial reasoning tasks, providing a transferable architectural insight for precision-critical domains that require tight alignment between semantic understanding and quantitative computation.
☆ Maxwait: A Generalized Mechanism for Distributed Time-Sensitive Systems
Distributed time-sensitive systems must balance timing requirements (availability) and consistency in the presence of communication delays and synchronization uncertainty. This paper presents maxwait, a simple coordination mechanism with surprising generality that makes these tradeoffs explicit and configurable. We demonstrate that this mechanism subsumes classical distributed system methods such as PTIDES, Chandy-and-Misra with or without null messages, Jefferson's Time-Warp, and Lamport's time-based fault detection, while enabling real-time behavior in distributed cyber-physical applications. The mechanism can also realize many commonly used distributed system patterns, including logical execution time (LET), publish and subscribe, actors, conflict-free replicated data types (CRDTs), and remote procedure calls with futures. More importantly, it adds to these mechanisms better control over timing, bounded time fault detection, and the option of making them more deterministic, all within a single semantic framework. Implemented as an extension of the Lingua Franca coordination language, maxwait enforces logical-time consistency when communication latencies are bounded and provides structured fault handling when bounds are violated.
☆ EnsembleLink: Accurate Record Linkage Without Training Data
Record linkage, the process of matching records that refer to the same entity across datasets, is essential to empirical social science but remains methodologically underdeveloped. Researchers treat it as a preprocessing step, applying ad hoc rules without quantifying the uncertainty that linkage errors introduce into downstream analyses. Existing methods either achieve low accuracy or require substantial labeled training data. I present EnsembleLink, a method that achieves high accuracy without any training labels. EnsembleLink leverages pre-trained language models that have learned semantic relationships (e.g., that "South Ozone Park" is a neighborhood in "New York City" or that "Lutte ouvriere" refers to the Trotskyist "Workers' Struggle" party) from large text corpora. On benchmarks spanning city names, person names, organizations, multilingual political parties, and bibliographic records, EnsembleLink matches or exceeds methods requiring extensive labeling. The method runs locally on open-source models, requiring no external API calls, and completes typical linkage tasks in minutes.
☆ Large Language Models Naively Recover Ethnicity from Individual Records
I demonstrate that large language models can infer ethnicity from names with accuracy exceeding that of Bayesian Improved Surname Geocoding (BISG) without additional training data, enabling inference outside the United States and to contextually appropriate classification categories. Using stratified samples from Florida and North Carolina voter files with self-reported race, LLM-based classification achieves up to 84.7% accuracy, outperforming BISG (68.2%) on balanced samples. I test six models including Gemini 3 Flash, GPT-4o, and open-source alternatives such as DeepSeek v3.2 and GLM-4.7. Enabling extended reasoning can improve accuracy by 1-3 percentage points, though effects vary across contexts; including metadata such as party registration reaches 86.7%. LLM classification also reduces the income bias inherent in BISG, where minorities in wealthier neighborhoods are systematically misclassified as White. I further validate using Lebanese voter registration with religious sect (64.3% accuracy), Indian MPs from reserved constituencies (99.2%), and Indian land records with caste classification (74.0%). Aggregate validation across India, Uganda, Nepal, Armenia, Chile, and Costa Rica using original full-count voter rolls demonstrates that the method recovers known population distributions where naming conventions are distinctive. For large-scale applications, small transformer models fine-tuned on LLM labels exceed BISG accuracy while enabling local deployment at no cost.
☆ Word-Centered Semantic Graphs for Interpretable Diachronic Sense Tracking
We propose an interpretable, graph-based framework for analyzing semantic shift in diachronic corpora. For each target word and time slice, we induce a word-centered semantic network that integrates distributional similarity from diachronic Skip-gram embeddings with lexical substitutability from time-specific masked language models. We identify sense-related structure by clustering the peripheral graph, align clusters across time via node overlap, and track change through cluster composition and normalized cluster mass. In an application study on a corpus of New York Times Magazine articles (1980 - 2017), we show that graph connectivity reflects polysemy dynamics and that the induced communities capture contrasting trajectories: event-driven sense replacement (trump), semantic stability with cluster over-segmentation effects (god), and gradual association shifts tied to digital communication (post). Overall, word-centered semantic graphs offer a compact and transparent representation for exploring sense evolution without relying on predefined sense inventories.
comment: 20 pages, 16 figures
☆ Bifocal Attention: Harmonizing Geometric and Spectral Positional Embeddings for Algorithmic Generalization
Rotary Positional Embeddings (RoPE) have become the standard for Large Language Models (LLMs) due to their ability to encode relative positions through geometric rotation. However, we identify a significant limitation we term ''Spectral Rigidity'': standard RoPE utilizes a fixed geometric decay ($θ^{-i}$) optimized for local syntactic coherence, which fails to capture the long-range, periodic structures inherent in recursive logic and algorithmic reasoning. This results in a ''Structure Gap'', where models trained on shallow reasoning chains fail to extrapolate to deeper recursive steps. In this work, we introduce Bifocal Attention, an architectural paradigm that decouples positional encoding into two distinct modalities: Geometric Eyes (Standard RoPE) for precise token-level manipulation, and Spectral Eyes (Learnable Harmonic Operators) for tracking long-range recursive depth. We propose a novel training protocol, Spectral Evolution, which initializes positional frequencies as static geometric parameters but allows them to evolve via gradient descent into a harmonic basis optimized for the specific algorithmic topology of the task.
☆ Culturally Grounded Personas in Large Language Models: Characterization and Alignment with Socio-Psychological Value Frameworks
Despite the growing utility of Large Language Models (LLMs) for simulating human behavior, the extent to which these synthetic personas accurately reflect world and moral value systems across different cultural conditionings remains uncertain. This paper investigates the alignment of synthetic, culturally-grounded personas with established frameworks, specifically the World Values Survey (WVS), the Inglehart-Welzel Cultural Map, and Moral Foundations Theory. We conceptualize and produce LLM-generated personas based on a set of interpretable WVS-derived variables, and we examine the generated personas through three complementary lenses: positioning on the Inglehart-Welzel map, which unveils their interpretation reflecting stable differences across cultural conditionings; demographic-level consistency with the World Values Survey, where response distributions broadly track human group patterns; and moral profiles derived from a Moral Foundations questionnaire, which we analyze through a culture-to-morality mapping to characterize how moral responses vary across different cultural configurations. Our approach of culturally-grounded persona generation and analysis enables evaluation of cross-cultural structure and moral variation.
☆ Specialists or Generalists? Multi-Agent and Single-Agent LLMs for Essay Grading
Automated essay scoring (AES) systems increasingly rely on large language models, yet little is known about how architectural choices shape their performance across different essay quality levels. This paper evaluates single-agent and multi-agent LLM architectures for essay grading using the ASAP 2.0 corpus. Our multi-agent system decomposes grading into three specialist agents (Content, Structure, Language) coordinated by a Chairman Agent that implements rubric-aligned logic including veto rules and score capping. We test both architectures in zero-shot and few-shot conditions using GPT-5.1. Results show that the multi-agent system is significantly better at identifying weak essays while the single-agent system performs better on mid-range essays. Both architectures struggle with high-quality essays. Critically, few-shot calibration emerges as the dominant factor in system performance -- providing just two examples per score level improves QWK by approximately 26% for both architectures. These findings suggest architectural choice should align with specific deployment priorities, with multi-agent AI particularly suited for diagnostic screening of at-risk students, while single-agent models provide a cost-effective solution for general assessment.
☆ SP^2DPO: An LLM-assisted Semantic Per-Pair DPO Generalization
Direct Preference Optimization (DPO) controls the trade-off between fitting preference labels and staying close to a reference model using a single global temperature beta, implicitly treating all preference pairs as equally informative. Real-world preference corpora are heterogeneous: they mix high-signal, objective failures (for example, safety, factuality, instruction violations) with low-signal or subjective distinctions (for example, style), and also include label noise. We introduce our method, SP2DPO (Semantic Per-Pair DPO), a generalization that replaces the global temperature with an instance-specific schedule beta_i pre-decided offline from structured semantic-gap annotations (category, magnitude, confidence) produced by teacher language models. We instantiate this procedure on the UltraFeedback preference corpus (59,960 pairs), enabling large-scale construction of an auditable beta_i artifact, and incur zero training-time overhead: the inner-loop optimizer remains standard DPO with beta set per pair. We focus our empirical study on AlpacaEval 2.0, reporting both raw win rate and length-controlled win rate. Across four open-weight, instruction-tuned student backbones (4B-8B), SP2DPO is competitive with a tuned global-beta DPO baseline and improves AlpacaEval 2.0 length-controlled win rate on two of four backbones, while avoiding per-model beta sweeps. All code, annotations, and artifacts will be released.
comment: 39 pages, 15 figures, 16 tables, 60 equations
☆ SPLA: Block Sparse Plus Linear Attention for Long Context Modeling
Block-wise sparse attention offers significant efficiency gains for long-context modeling, yet existing methods often suffer from low selection fidelity and cumulative contextual loss by completely discarding unselected blocks. To address these limitations, we introduce Sparse Plus Linear Attention (SPLA), a framework that utilizes a selection metric derived from second-order Taylor expansions to accurately identify relevant blocks for exact attention. Instead of discarding the remaining "long tail," SPLA compresses unselected blocks into a compact recurrent state via a residual linear attention (RLA) module. Crucially, to avoid IO overhead, we derive an optimized subtraction-based formulation for RLA -- calculating the residual as the difference between global and selected linear attention -- ensuring that unselected blocks are never explicitly accessed during inference. Our experiments demonstrate that SPLA closes the performance gap in continual pretraining, surpassing dense attention models on long-context benchmarks like RULER while maintaining competitive general knowledge and reasoning capabilities.
comment: v1
☆ Stability-Aware Prompt Optimization for Clinical Data Abstraction
Large language models used for clinical abstraction are sensitive to prompt wording, yet most work treats prompts as fixed and studies uncertainty in isolation. We argue these should be treated jointly. Across two clinical tasks (MedAlign applicability/correctness and MS subtype abstraction) and multiple open and proprietary models, we measure prompt sensitivity via flip rates and relate it to calibration and selective prediction. We find that higher accuracy does not guarantee prompt stability, and that models can appear well-calibrated yet remain fragile to paraphrases. We propose a dual-objective prompt optimization loop that jointly targets accuracy and stability, showing that explicitly including a stability term reduces flip rates across tasks and models, sometimes at modest accuracy cost. Our results suggest prompt sensitivity should be an explicit objective when validating clinical LLM systems.
☆ Context Structure Reshapes the Representational Geometry of Language Models
Large Language Models (LLMs) have been shown to organize the representations of input sequences into straighter neural trajectories in their deep layers, which has been hypothesized to facilitate next-token prediction via linear extrapolation. Language models can also adapt to diverse tasks and learn new structure in context, and recent work has shown that this in-context learning (ICL) can be reflected in representational changes. Here we bring these two lines of research together to explore whether representation straightening occurs \emph{within} a context during ICL. We measure representational straightening in Gemma 2 models across a diverse set of in-context tasks, and uncover a dichotomy in how LLMs' representations change in context. In continual prediction settings (e.g., natural language, grid world traversal tasks) we observe that increasing context increases the straightness of neural sequence trajectories, which is correlated with improvement in model prediction. Conversely, in structured prediction settings (e.g., few-shot tasks), straightening is inconsistent -- it is only present in phases of the task with explicit structure (e.g., repeating a template), but vanishes elsewhere. These results suggest that ICL is not a monolithic process. Instead, we propose that LLMs function like a Swiss Army knife: depending on task structure, the LLM dynamically selects between strategies, only some of which yield representational straightening.
☆ MERMAID: Memory-Enhanced Retrieval and Reasoning with Multi-Agent Iterative Knowledge Grounding for Veracity Assessment
Assessing the veracity of online content has become increasingly critical. Large language models (LLMs) have recently enabled substantial progress in automated veracity assessment, including automated fact-checking and claim verification systems. Typical veracity assessment pipelines break down complex claims into sub-claims, retrieve external evidence, and then apply LLM reasoning to assess veracity. However, existing methods often treat evidence retrieval as a static, isolated step and do not effectively manage or reuse retrieved evidence across claims. In this work, we propose MERMAID, a memory-enhanced multi-agent veracity assessment framework that tightly couples the retrieval and reasoning processes. MERMAID integrates agent-driven search, structured knowledge representations, and a persistent memory module within a Reason-Action style iterative process, enabling dynamic evidence acquisition and cross-claim evidence reuse. By retaining retrieved evidence in an evidence memory, the framework reduces redundant searches and improves verification efficiency and consistency. We evaluate MERMAID on three fact-checking benchmarks and two claim-verification datasets using multiple LLMs, including GPT, LLaMA, and Qwen families. Experimental results show that MERMAID achieves state-of-the-art performance while improving the search efficiency, demonstrating the effectiveness of synergizing retrieval, reasoning, and memory for reliable veracity assessment.
☆ Why Reasoning Fails to Plan: A Planning-Centric Analysis of Long-Horizon Decision Making in LLM Agents
Large language model (LLM)-based agents exhibit strong step-by-step reasoning capabilities over short horizons, yet often fail to sustain coherent behavior over long planning horizons. We argue that this failure reflects a fundamental mismatch: step-wise reasoning induces a form of step-wise greedy policy that is adequate for short horizons but fails in long-horizon planning, where early actions must account for delayed consequences. From this planning-centric perspective, we study LLM-based agents in deterministic, fully structured environments with explicit state transitions and evaluation signals. Our analysis reveals a core failure mode of reasoning-based policies: locally optimal choices induced by step-wise scoring lead to early myopic commitments that are systematically amplified over time and difficult to recover from. We introduce FLARE (Future-aware Lookahead with Reward Estimation) as a minimal instantiation of future-aware planning to enforce explicit lookahead, value propagation, and limited commitment in a single model, allowing downstream outcomes to influence early decisions. Across multiple benchmarks, agent frameworks, and LLM backbones, FLARE consistently improves task performance and planning-level behavior, frequently allowing LLaMA-8B with FLARE to outperform GPT-4o with standard step-by-step reasoning. These results establish a clear distinction between reasoning and planning.
☆ Sylber 2.0: A Universal Syllable Embedding
Scaling spoken language modeling requires speech tokens that are both efficient and universal. Recent work has proposed syllables as promising speech tokens at low temporal resolution, but existing models are constrained to English and fail to capture sufficient acoustic detail. To address this gap, we present Sylber 2.0, a self-supervised framework for coding speech at the syllable level that enables efficient temporal compression and high-fidelity reconstruction. Sylber 2.0 achieves a very low token frequency around 5 Hz, while retaining both linguistic and acoustic detail across multiple languages and expressive styles. Experiments show that it performs on par with previous models operating on high-frequency baselines. Furthermore, Sylber 2.0 enables efficient TTS modeling which can generate speech with competitive intelligibility and quality with SOTA models using only 72M parameters. Moreover, the universality of Sylber 2.0 provides more effective features for low resource ASR than previous speech coding frameworks. In sum, we establish an effective syllable-level abstraction for general spoken language.
☆ Prepare Reasoning Language Models for Multi-Agent Debate with Self-Debate Reinforcement Learning
The reasoning abilities of large language models (LLMs) have been substantially improved by reinforcement learning with verifiable rewards (RLVR). At test time, collaborative reasoning through Multi-Agent Debate (MAD) has emerged as a promising approach for enhancing LLM performance. However, current RLVR methods typically train LLMs to solve problems in isolation, without explicitly preparing them to synthesize and benefit from different rationales that arise during debate. In this work, we propose Self-Debate Reinforcement Learning (SDRL), a training framework that equips a single LLM with strong standalone problem-solving ability and the capability to learn from diverse reasoning trajectories in MAD. Given a prompt, SDRL first samples multiple candidate solutions, then constructs a debate context with diverse reasoning paths and generates second-turn responses conditioned on this context. Finally, SDRL jointly optimizes both the initial and debate-conditioned responses, yielding a model that is effective as both a standalone solver and a debate participant. Experiments across multiple base models and reasoning benchmarks show that SDRL improves overall MAD performance while simultaneously strengthening single model reasoning.
☆ JAF: Judge Agent Forest
Judge agents are fundamental to agentic AI frameworks: they provide automated evaluation, and enable iterative self-refinement of reasoning processes. We introduce JAF: Judge Agent Forest, a framework in which the judge agent conducts joint inference across a cohort of query--response pairs generated by a primary agent, rather than evaluating each in isolation. This paradigm elevates the judge from a local evaluator to a holistic learner: by simultaneously assessing related responses, the judge discerns cross-instance patterns and inconsistencies, whose aggregate feedback enables the primary agent to improve by viewing its own outputs through the judge's collective perspective. Conceptually, JAF bridges belief propagation and ensemble-learning principles: overlapping in-context neighborhoods induce a knowledge-graph structure that facilitates propagation of critique, and repeated, randomized evaluations yield a robust ensemble of context-sensitive judgments. JAF can be instantiated entirely via ICL, with the judge prompted for each query using its associated primary-agent response plus a small, possibly noisy set of peer exemplars. While kNN in embedding space is a natural starting point for exemplars, this approach overlooks categorical structure, domain metadata, or nuanced distinctions accessible to modern LLMs. To overcome these limitations, we develop a flexible locality-sensitive hashing (LSH) algorithm that learns informative binary codes by integrating semantic embeddings, LLM-driven hash predicates, supervision from categorical labels, and relevant side information. These hash codes support efficient, interpretable, and relation-aware selection of diverse exemplars, and further optimize exploration of CoT reasoning paths. We validate JAF with an empirical study on the demanding task of cloud misconfigs triage in large-scale cloud environments.
☆ Predicting Intermittent Job Failure Categories for Diagnosis Using Few-Shot Fine-Tuned Language Models
In principle, Continuous Integration (CI) pipeline failures provide valuable feedback to developers on code-related errors. In practice, however, pipeline jobs often fail intermittently due to non-deterministic tests, network outages, infrastructure failures, resource exhaustion, and other reliability issues. These intermittent (flaky) job failures lead to substantial inefficiencies: wasted computational resources from repeated reruns and significant diagnosis time that distracts developers from core activities and often requires intervention from specialized teams. Prior work has proposed machine learning techniques to detect intermittent failures, but does not address the subsequent diagnosis challenge. To fill this gap, we introduce FlaXifyer, a few-shot learning approach for predicting intermittent job failure categories using pre-trained language models. FlaXifyer requires only job execution logs and achieves 84.3% Macro F1 and 92.0% Top-2 accuracy with just 12 labeled examples per category. We also propose LogSift, an interpretability technique that identifies influential log statements in under one second, reducing review effort by 74.4% while surfacing relevant failure information in 87% of cases. Evaluation on 2,458 job failures from TELUS demonstrates that FlaXifyer and LogSift enable effective automated triage, accelerate failure diagnosis, and pave the way towards the automated resolution of intermittent job failures.
☆ A Systematic Literature Review on LLM Defenses Against Prompt Injection and Jailbreaking: Expanding NIST Taxonomy
The rapid advancement and widespread adoption of generative artificial intelligence (GenAI) and large language models (LLMs) has been accompanied by the emergence of new security vulnerabilities and challenges, such as jailbreaking and other prompt injection attacks. These maliciously crafted inputs can exploit LLMs, causing data leaks, unauthorized actions, or compromised outputs, for instance. As both offensive and defensive prompt injection techniques evolve quickly, a structured understanding of mitigation strategies becomes increasingly important. To address that, this work presents the first systematic literature review on prompt injection mitigation strategies, comprehending 88 studies. Building upon NIST's report on adversarial machine learning, this work contributes to the field through several avenues. First, it identifies studies beyond those documented in NIST's report and other academic reviews and surveys. Second, we propose an extension to NIST taxonomy by introducing additional categories of defenses. Third, by adopting NIST's established terminology and taxonomy as a foundation, we promote consistency and enable future researchers to build upon the standardized taxonomy proposed in this work. Finally, we provide a comprehensive catalog of the reviewed prompt injection defenses, documenting their reported quantitative effectiveness across specific LLMs and attack datasets, while also indicating which solutions are open-source and model-agnostic. This catalog, together with the guidelines presented herein, aims to serve as a practical resource for researchers advancing the field of adversarial machine learning and for developers seeking to implement effective defenses in production systems.
comment: 27 pages, 14 figures, 11 tables, submitted to Elsevier Computer Science Review
☆ Lost in Space? Vision-Language Models Struggle with Relative Camera Pose Estimation
Vision-Language Models (VLMs) perform well in 2D perception and semantic reasoning compared to their limited understanding of 3D spatial structure. We investigate this gap using relative camera pose estimation (RCPE), a fundamental vision task that requires inferring relative camera translation and rotation from a pair of images. We introduce VRRPI-Bench, a benchmark derived from unlabeled egocentric videos with verbalized annotations of relative camera motion, reflecting realistic scenarios with simultaneous translation and rotation around a shared object. We further propose VRRPI-Diag, a diagnostic benchmark that isolates individual motion degrees of freedom. Despite the simplicity of RCPE, most VLMs fail to generalize beyond shallow 2D heuristics, particularly for depth changes and roll transformations along the optical axis. Even state-of-the-art models such as GPT-5 ($0.64$) fall short of classic geometric baselines ($0.97$) and human performance ($0.92$). Moreover, VLMs exhibit difficulty in multi-image reasoning, with inconsistent performance (best $59.7\%$) when integrating spatial cues across frames. Our findings reveal limitations in grounding VLMs in 3D and multi-view spatial reasoning.
♻ ☆ Think Twice: Branch-and-Rethink Reasoning Reward Model
Large language models (LLMs) increasingly rely on thinking models that externalize intermediate steps and allocate extra test-time compute, with think-twice strategies showing that a deliberate second pass can elicit stronger reasoning. In contrast, most reward models (RMs) still compress many quality dimensions into a single scalar in one shot, a design that induces judgment diffusion: attention spreads across evaluation criteria, yielding diluted focus and shallow analysis. We introduce branch-and-rethink (BR-RM), a two-turn RM that transfers the think-twice principle to reward modeling. Turn 1 performs adaptive branching, selecting a small set of instance-critical dimensions (such as factuality and safety) and sketching concise, evidence-seeking hypotheses. Turn 2 executes branch-conditioned rethinking, a targeted reread that tests those hypotheses and scrutinizes only what matters most. We train with GRPO-style reinforcement learning over structured two-turn traces using a simple binary outcome reward with strict format checks, making the approach compatible with standard RLHF pipelines. By converting all-at-once scoring into focused, second-look reasoning, BR-RM reduces judgment diffusion and improves sensitivity to subtle yet consequential errors while remaining practical and scalable. Experimental results demonstrate that our model achieves state-of-the-art performance on three challenging reward modeling benchmarks across diverse domains.
comment: Source Code: https://github.com/yzjiao/BR-RM. Model Checkpoints: https://huggingface.co/nvidia/Qwen3-Nemotron-14B-BRRM and https://huggingface.co/nvidia/Qwen3-Nemotron-8B-BRRM
♻ ☆ "Not in My Backyard": LLMs Uncover Online and Offline Social Biases Against Homelessness
Homelessness is a persistent social challenge, impacting millions worldwide. Over 876,000 people experienced homelessness (PEH) in the U.S. in 2025. Social bias is a significant barrier to alleviation, shaping public perception and influencing policymaking. Given that online textual media and offline city council discourse reflect and influence part of public opinion, it provides valuable insights to identify and track social biases against PEH. We present a new, manually-annotated multi-domain dataset compiled from Reddit, X (formerly Twitter), news articles, and city council meeting minutes across ten U.S. cities. Our 16-category multi-label taxonomy creates a challenging long-tail classification problem: some categories appear in less than 1% of samples, while others exceed 70%. We find that small human-annotated datasets (1,702 samples) are insufficient for training effective classifiers, whether used to fine-tune encoder models or as few-shot examples for LLMs. To address this, we use GPT-4.1 to generate pseudo-labels on a larger unlabeled corpus. Training on this expanded dataset enables even small encoder models (ModernBERT, 150M parameters) to achieve 35.23 macro-F1, approaching GPT-4.1's 41.57. This demonstrates that \textbf{data quantity matters more than model size}, enabling low-cost, privacy-preserving deployment without relying on commercial APIs. Our results reveal that negative bias against PEH is prevalent both offline and online (especially on Reddit), with "not in my backyard" narratives showing the highest engagement. These findings uncover a type of ostracism that directly impacts poverty-reduction policymaking and provide actionable insights for practitioners addressing homelessness.
♻ ☆ Evaluating Text Creativity across Diverse Domains: A Dataset and Large Language Model Evaluator ICLR 2026
Creativity evaluation remains a challenging frontier for large language models (LLMs). Current evaluations heavily rely on inefficient and costly human judgments, hindering progress in enhancing machine creativity. While automated methods exist, ranging from psychological testing to heuristic- or prompting-based approaches, they often lack generalizability or alignment with human judgment. To address these issues, we propose a novel pairwise-comparison framework for assessing textual creativity that leverages shared contextual instructions to improve evaluation consistency. We introduce CreataSet, a large-scale dataset with 100K+ human-level and 1M+ synthetic creative instruction-response pairs spanning diverse open-domain tasks. Through training on CreataSet, we develop an LLM-based evaluator named CrEval. CrEval demonstrates remarkable superiority over existing methods in alignment with human judgments. Experimental results underscore the indispensable significance of integrating both human and synthetic data to train highly robust evaluators, and showcase the practical utility of CrEval in boosting the creativity of LLMs.
comment: Accepted by ICLR 2026
♻ ☆ NeuroFaith: Evaluating LLM Self-Explanation Faithfulness via Internal Representation Alignment
Large Language Models (LLMs) can generate plausible free text self-explanations to justify their answers. However, these natural language explanations may not accurately reflect the model's actual reasoning process, pinpointing a lack of faithfulness. Existing faithfulness evaluation methods rely primarily on behavioral tests or computational block analysis without examining the semantic content of internal neural representations. This paper proposes NeuroFaith, a flexible framework that measures the faithfulness of LLM free text self-explanation by identifying key concepts within explanations and mechanistically testing whether these concepts actually influence the model's predictions. We show the versatility of NeuroFaith across 2-hop reasoning and classification tasks. Additionally, we develop a linear faithfulness probe based on NeuroFaith to detect unfaithful self-explanations from representation space and improve faithfulness through steering. NeuroFaith provides a principled approach to evaluating and enhancing the faithfulness of LLM free text self-explanations, addressing critical needs for trustworthy AI systems.
♻ ☆ OD-Stega: LLM-Based Relatively Secure Steganography via Optimized Distributions EACL 2026
We consider coverless steganography where a Large Language Model (LLM) is used to generate stego-texts in combination with arithmetic coding. An efficient method should embed secret bits in as few language tokens as possible while keeping the stego-text as natural as possible. We show that this problem is equivalent to maximizing the entropy of a replacement probability distribution of the next token generation, subject to a constraint on the divergence between the new distribution and the original one produced by the LLM. A closed-form solution is provided under either the KL divergence or the total variation constraint. Several important practical issues are also tackled: 1) An often-overlooked tokenization mismatch issue is resolved with a simple prompt selection approach, 2) The combination of the optimized distribution and the vocabulary truncation technique is considered, and 3) The incorporation of the proposed approach with existing (potentially non arithmetic coding based) techniques, e.g., the Discop technique.
comment: Accepted to EACL 2026
♻ ☆ Minion: A Technology Probe to Explore How Users Negotiate Harmful Value Conflicts with AI Companions
AI companions are designed to foster emotionally engaging interactions, yet users often encounter conflicts that feel frustrating or hurtful, such as discriminatory statements and controlling behavior. This paper examines how users negotiate such harmful conflicts with AI companions and what emotional and practical burdens are created when mitigation is pushed to user-side tools. We analyze 146 public posts describing harmful value conflicts interacting with AI companions. We then introduce Minion, a Chrome-based technology probe that offers candidate responses spanning persuasion, rational appeals, boundary setting, and appeals to platform rules. Findings from a one-week probe study with 22 experienced users show how participants combine strategies, how emotional attachment motivates repair, and where conflicts become non-negotiable due to companion personas or platform policies. We surface design tensions in supporting value negotiation, showing how companion design can make some conflicts impossible to repair in practice, and derive implications for AI companion and support-tool design that caution against offloading safety work onto users.
comment: 21 pages, 4 figures
♻ ☆ Optimizing Multi-Hop Document Retrieval Through Intermediate Representations
Retrieval-augmented generation (RAG) encounters challenges when addressing complex queries, particularly multi-hop questions. While several methods tackle multi-hop queries by iteratively generating internal queries and retrieving external documents, these approaches are computationally expensive. In this paper, we identify a three-stage information processing pattern in LLMs during layer-by-layer reasoning, consisting of extraction, processing, and subsequent extraction steps. This observation suggests that the representations in intermediate layers contain richer information compared to those in other layers. Building on this insight, we propose Layer-wise RAG (L-RAG). Unlike prior methods that focus on generating new internal queries, L-RAG leverages intermediate representations from the middle layers, which capture next-hop information, to retrieve external knowledge. L-RAG achieves performance comparable to multi-step approaches while maintaining inference overhead similar to that of standard RAG. Experimental results show that L-RAG outperforms existing RAG methods on open-domain multi-hop question-answering datasets, including MuSiQue, HotpotQA, and 2WikiMultiHopQA. The code is available in https://github.com/Olive-2019/L-RAG
♻ ☆ MAS-Orchestra: Understanding and Improving Multi-Agent Reasoning Through Holistic Orchestration and Controlled Benchmarks
While multi-agent systems (MAS) promise elevated intelligence through coordination of agents, current approaches to automatic MAS design under-deliver. Such shortcomings stem from two key factors: (1) methodological complexity - agent orchestration is performed using sequential, code-level execution that limits global system-level holistic reasoning and scales poorly with agent complexity - and (2) efficacy uncertainty - MAS are deployed without understanding if there are tangible benefits compared to single-agent systems (SAS). We propose MASOrchestra, a training-time framework that formulates MAS orchestration as a function-calling reinforcement learning problem with holistic orchestration, generating an entire MAS at once. In MAS-Orchestra, complex, goal-oriented subagents are abstracted as callable functions, enabling global reasoning over system structure while hiding internal execution details. To rigorously study when and why MAS are beneficial, we introduce MASBENCH, a controlled benchmark that characterizes tasks along five axes: Depth, Horizon, Breadth, Parallel, and Robustness. Our analysis reveals that MAS gains depend critically on task structure, verification protocols, and the capabilities of both orchestrator and subagents, rather than holding universally. Guided by these insights, MAS-Orchestra achieves consistent improvements on public benchmarks including mathematical reasoning, multi-hop QA, and search-based QA, while achieving more than 10x efficiency over strong baselines. Together, MAS-Orchestra and MASBENCH enable better training and understanding of MAS in the pursuit of multi-agent intelligence.
comment: Preprint; Work in Progress
♻ ☆ One Token Is Enough: Improving Diffusion Language Models with a Sink Token
Diffusion Language Models (DLMs) have emerged as a compelling alternative to autoregressive approaches, enabling parallel text generation with competitive performance. Despite these advantages, there is a critical instability in DLMs: the moving sink phenomenon. Our analysis indicates that sink tokens exhibit low-norm representations in the Transformer's value space, and that the moving sink phenomenon serves as a protective mechanism in DLMs to prevent excessive information mixing. However, their unpredictable positions across diffusion steps undermine inference robustness. To resolve this, we propose a simple but effective extra sink token implemented via a modified attention mask. Specifically, we introduce a special token constrained to attend solely to itself, while remaining globally visible to all other tokens. Experimental results demonstrate that introducing a single extra token stabilizes attention sinks, substantially improving model performance. Crucially, further analysis confirms that the effectiveness of this token is independent of its position and characterized by negligible semantic content, validating its role as a robust and dedicated structural sink.
♻ ☆ DRIFT: Detecting Representational Inconsistencies for Factual Truthfulness
LLMs often produce fluent but incorrect answers, yet detecting such hallucinations typically requires multiple sampling passes or post-hoc verification, adding significant latency and cost. We hypothesize that intermediate layers encode confidence signals that are lost in the final output layer, and propose a lightweight probe to read these signals directly from hidden states. The probe adds less than 0.1\% computational overhead and can run fully in parallel with generation, enabling hallucination detection before the answer is produced. Building on this, we develop an LLM router that answers confident queries immediately while delegating uncertain ones to stronger models. Despite its simplicity, our method achieves SOTA AUROC on 10 out of 12 settings across four QA benchmarks and three LLM families, with gains of up to 13 points over prior methods, and generalizes across dataset shifts without retraining.
♻ ☆ OAEI-LLM: A Benchmark Dataset for Understanding Large Language Model Hallucinations in Ontology Matching
Hallucinations of large language models (LLMs) commonly occur in domain-specific downstream tasks, with no exception in ontology matching (OM). The prevalence of using LLMs for OM raises the need for benchmarks to better understand LLM hallucinations. The OAEI-LLM dataset is an extended version of the Ontology Alignment Evaluation Initiative (OAEI) datasets that evaluate LLM-specific hallucinations in OM tasks. We outline the methodology used in dataset construction and schema extension, and provide examples of potential use cases.
comment: 5 pages, 1 figure, 1 table, 1 code snippet
♻ ☆ Towards Computational Chinese Paleography
Chinese paleography, the study of ancient Chinese writing, is undergoing a computational turn powered by artificial intelligence. This position paper charts the trajectory of this emerging field, arguing that it is evolving from automating isolated visual tasks to creating integrated digital ecosystems for scholarly research. We first map the landscape of digital resources, analyzing critical datasets for oracle bone, bronze, and bamboo slip scripts. The core of our analysis follows the field's methodological pipeline: from foundational visual processing (image restoration, character recognition), through contextual analysis (artifact rejoining, dating), to the advanced reasoning required for automated decipherment and human-AI collaboration. We examine the technological shift from classical computer vision to modern deep learning paradigms, including transformers and large multimodal models. Finally, we synthesize the field's core challenges -- notably data scarcity and a disconnect between current AI capabilities and the holistic nature of humanistic inquiry -- and advocate for a future research agenda focused on creating multimodal, few-shot, and human-centric systems to augment scholarly expertise.
comment: A position paper in progress with Peking University & ByteDance Digital Humanities Open Lab
♻ ☆ LLM-based Few-Shot Early Rumor Detection with Imitation Agent KDD 2026
Early Rumor Detection (EARD) aims to identify the earliest point at which a claim can be accurately classified based on a sequence of social media posts. This is especially challenging in data-scarce settings. While Large Language Models (LLMs) perform well in few-shot NLP tasks, they are not well-suited for time-series data and are computationally expensive for both training and inference. In this work, we propose a novel EARD framework that combines an autonomous agent and an LLM-based detection model, where the agent acts as a reliable decision-maker for \textit{early time point determination}, while the LLM serves as a powerful \textit{rumor detector}. This approach offers the first solution for few-shot EARD, necessitating only the training of a lightweight agent and allowing the LLM to remain training-free. Extensive experiments on four real-world datasets show our approach boosts performance across LLMs and surpasses existing EARD methods in accuracy and earliness.
comment: Accepted at KDD 2026
♻ ☆ Wikontic: Constructing Wikidata-Aligned, Ontology-Aware Knowledge Graphs with Large Language Models
Knowledge graphs (KGs) provide structured, verifiable grounding for large language models (LLMs), but current LLM-based systems commonly use KGs as auxiliary structures for text retrieval, leaving their intrinsic quality underexplored. In this work, we propose Wikontic, a multi-stage pipeline that constructs KGs from open-domain text by extracting candidate triplets with qualifiers, enforcing Wikidata-based type and relation constraints, and normalizing entities to reduce duplication. The resulting KGs are compact, ontology-consistent, and well-connected; on MuSiQue, the correct answer entity appears in 96% of generated triplets. On HotpotQA, our triplets-only setup achieves 76.0 F1, and on MuSiQue 59.8 F1, matching or surpassing several retrieval-augmented generation baselines that still require textual context. In addition, Wikontic attains state-of-the-art information-retention performance on the MINE-1 benchmark (86%), outperforming prior KG construction methods. Wikontic is also efficient at build time: KG construction uses less than 1,000 output tokens, about 3$\times$ fewer than AriGraph and $<$1/20 of GraphRAG. The proposed pipeline enhances the quality of the generated KG and offers a scalable solution for leveraging structured knowledge in LLMs.
♻ ☆ Dr. Bench: A Multidimensional Evaluation for Deep Research Agents, from Answers to Reports
As an embodiment of intelligence evolution toward interconnected architectures, Deep Research Agents (DRAs) systematically exhibit the capabilities in task decomposition, cross-source retrieval, multi-stage reasoning, information integration, and structured output, which markedly enhance performance on complex and open-ended tasks. However, existing benchmarks remain deficient in evaluation dimensions, response format, and scoring mechanisms, limiting their effectiveness in assessing such agents. This paper introduces Dr. Bench, a multidimensional evaluation framework tailored to DRAs and long-form report-style responses. The benchmark comprises 214 expert-curated challenging tasks across 10 broad domains, each accompanied by manually constructed reference bundles to support composite evaluation. This framework incorporates metrics for semantic quality, topical focus, and retrieval trustworthiness, enabling a comprehensive evaluation of long reports generated by DRAs. Extensive experimentation confirms the superior performance of mainstream DRAs over web-search-tool-augmented reasoning models, yet reveals considerable scope for further improvement. This study provides a robust foundation for capability assessment, architectural refinement, and paradigm advancement of DRAs.
♻ ☆ FreqKV: Key-Value Compression in Frequency Domain for Context Window Extension ICLR 2026
Existing key-value (KV) cache compression methods for large language models (LLMs) often rely on token eviction, which risks losing critical local information in both long prefilling and decoding scenarios. When extrapolating beyond the pretrained context length, their performance degrades sharply on long-context benchmarks. Motivated by the observation in the frequency domain that the context information is concentrated in the low-frequency components, we propose FreqKV, a parameter-free and architecture-agnostic approach. It iteratively compresses the increasing KV cache in the frequency domain, allowing models to process lengthy contexts efficiently. With minimal training at 8K length, FreqKV extends the context window of LLaMA-2-7B up to 256K tokens while maintaining stable perplexity. Extensive experiments across prefilling and decoding demonstrate that FreqKV enables robust context window extension and consistently outperforms existing KV cache compression methods on LLaMA-2 and LLaMA-3, highlighting its effectiveness for both understanding and generation in long contexts.
comment: ICLR 2026
♻ ☆ Agent-OM: Leveraging LLM Agents for Ontology Matching VLDB 2025
Ontology matching (OM) enables semantic interoperability between different ontologies and resolves their conceptual heterogeneity by aligning related entities. OM systems currently have two prevailing design paradigms: conventional knowledge-based expert systems and newer machine learning-based predictive systems. While large language models (LLMs) and LLM agents have revolutionised data engineering and have been applied creatively in many domains, their potential for OM remains underexplored. This study introduces a novel agent-powered LLM-based design paradigm for OM systems. With consideration of several specific challenges in leveraging LLM agents for OM, we propose a generic framework, namely Agent-OM (Agent for Ontology Matching), consisting of two Siamese agents for retrieval and matching, with a set of OM tools. Our framework is implemented in a proof-of-concept system. Evaluations of three Ontology Alignment Evaluation Initiative (OAEI) tracks over state-of-the-art OM systems show that our system can achieve results very close to the long-standing best performance on simple OM tasks and can significantly improve the performance on complex and few-shot OM tasks.
comment: 31 pages - VLDB 2025 (Page 1-20), OM 2025 (Page 21-31)
♻ ☆ PathWise: Planning through World Model for Automated Heuristic Design via Self-Evolving LLMs
Large Language Models (LLMs) have enabled automated heuristic design (AHD) for combinatorial optimization problems (COPs), but existing frameworks' reliance on fixed evolutionary rules and static prompt templates often leads to myopic heuristic generation, redundant evaluations, and limited reasoning about how new heuristics should be derived. We propose a novel multi-agent reasoning framework, referred to as Planning through World Model for Automated Heuristic Design via Self-Evolving LLMs (PathWise), which formulates heuristic generation as a sequential decision process over an entailment graph serving as a compact, stateful memory of the search trajectory. This approach allows the system to carry forward past decisions and reuse or avoid derivation information across generations. A policy agent plans evolutionary actions, a world model agent generates heuristic rollouts conditioned on those actions, and critic agents provide routed reflections summarizing lessons from prior steps, shifting LLM-based AHD from trial-and-error evolution toward state-aware planning through reasoning. Experiments across diverse COPs show that PathWise converges faster to better heuristics, generalizes across different LLM backbones, and scales to larger problem sizes.
♻ ☆ A Tale of Two Scripts: Transliteration and Post-Correction for Judeo-Arabic EACL 2026
Judeo-Arabic refers to Arabic variants historically spoken by Jewish communities across the Arab world, primarily during the Middle Ages. Unlike standard Arabic, it is written in Hebrew script by Jewish writers and for Jewish audiences. Transliterating Judeo-Arabic into Arabic script is challenging due to ambiguous letter mappings, inconsistent orthographic conventions, and frequent code-switching into Hebrew. In this paper, we introduce a two-step approach to automatically transliterate Judeo-Arabic into Arabic script: simple character-level mapping followed by post-correction to address grammatical and orthographic errors. We also present the first benchmark evaluation of LLMs on this task. Finally, we show that transliteration enables Arabic NLP tools to perform morphosyntactic tagging and machine translation, which would have not been feasible on the original texts. We make our code and data publicly available.
comment: Accepted to EACL 2026
♻ ☆ Detecting Greenwashing: A Natural Language Processing Literature Survey
Greenwashing refers to practices by corporations or governments that intentionally mislead the public about their environmental impact. This paper provides a comprehensive and methodologically grounded survey of natural language processing (NLP) approaches for detecting greenwashing in textual data, with a focus on corporate climate communication. Rather than treating greenwashing as a single, monolithic task, we examine the set of NLP problems, also known as climate NLP tasks, that researchers have used to approximate it, ranging from climate topic detection to the identification of deceptive communication patterns. Our focus is on the methodological foundations of these approaches: how tasks are formulated, how datasets are constructed, and how model evaluation influences reliability. Our review reveals a fragmented landscape: several subtasks now exhibit near-perfect performance under controlled settings, yet tasks involving ambiguity, subjectivity, or reasoning remain challenging. Crucially, no dataset of verified greenwashing cases currently exists. We argue that advancing automated greenwashing detection requires principled NLP methodologies that combine reliable data annotations with interpretable model design. Future work should leverage third-party judgments, such as verified media reports or regulatory records, to mitigate annotation subjectivity and legal risk, and adopt decomposed pipelines that support human oversight, traceable reasoning, and efficient model design.
comment: 42 pages, 1 figure, 11 pages (appendix), working paper
♻ ☆ Towards Transparent RAG: Fostering Evidence Traceability in LLM Generation via Reinforcement Learning
Retrieval-Augmented Generation (RAG) delivers substantial value in knowledge-intensive applications. However, its generated responses often lack transparent reasoning paths that trace back to source evidence from retrieved documents. This opacity not only compromises the interpretability of the output but also limits the model's ability to fully exploit the provided context. To address this, we propose TRACE (Transparent RAG with evidenCE tracing), a framework designed to enhance evidence traceability in Large Language Models (LLMs) through reinforcement learning (RL). TRACE guides LLMs to produce structured outputs with explicit evidence citations by prompting and rewarding evidence relevance and proper formatting, alongside accuracy, to optimize structured traceability. To ensure training stability with multiple reward signals, we further introduce an adaptive strategy for merging rewards and adopt a stabilized KL-divergence estimator. Experiments on three multi-hop QA datasets using Qwen2.5-7B-Instruct and Llama-3.1-8B-Instruct show that TRACE achieves both transparent, evidence-attributed outputs and accuracy improvements of 10-30%. The resulting performance is comparable to advanced commercial LLMs (e.g., OpenAI o1, DeepSeek-R1). Further analyses demonstrate strong generalization capabilities to unseen tasks. Our code is publicly available now.
♻ ☆ AgentLongBench: A Controllable Long Benchmark For Long-Contexts Agents via Environment Rollouts
The evolution of Large Language Models (LLMs) into autonomous agents necessitates the management of extensive, dynamic contexts. Current benchmarks, however, remain largely static, relying on passive retrieval tasks that fail to simulate the complexities of agent-environment interaction, such as non-linear reasoning and iterative feedback. To address this, we introduce \textbf{AgentLongBench}, which evaluates agents through simulated environment rollouts based on Lateral Thinking Puzzles. This framework generates rigorous interaction trajectories across knowledge-intensive and knowledge-free scenarios. Experiments with state-of-the-art models and memory systems (32K to 4M tokens) expose a critical weakness: while adept at static retrieval, agents struggle with the dynamic information synthesis essential for workflows. Our analysis indicates that this degradation is driven by the minimum number of tokens required to resolve a query. This factor explains why the high information density inherent in massive tool responses poses a significantly greater challenge than the memory fragmentation typical of long-turn dialogues.
comment: 26 pages
♻ ☆ Explainable Chain-of-Thought Reasoning: An Empirical Analysis on State-Aware Reasoning Dynamics
Recent advances in chain-of-thought (CoT) prompting have enabled large language models (LLMs) to perform multi-step reasoning. However, the explainability of such reasoning remains limited, with prior work primarily focusing on local token-level attribution, such that the high-level semantic roles of reasoning steps and their transitions remain underexplored. In this paper, we introduce a state-aware transition framework that abstracts CoT trajectories into structured latent dynamics. Specifically, to capture the evolving semantics of CoT reasoning, each reasoning step is represented via spectral analysis of token-level embeddings and clustered into semantically coherent latent states. To characterize the global structure of reasoning, we model their progression as a Markov chain, yielding a structured and interpretable view of the reasoning process. This abstraction supports a range of analyses, including semantic role identification, temporal pattern visualization, and consistency evaluation.
comment: 5 pages, 4 figures
♻ ☆ Boosting Large Language Models for Mental Manipulation Detection via Data Augmentation and Distillation WWW 2026
Mental manipulation on social media poses a covert yet serious threat to individuals' psychological well-being and the integrity of online interactions. Detecting such behavior is challenging due to the difficult-to-annotate training data, its highly covert and multi-turn nature, and the lack of real-world datasets. To address these challenges, we propose MentalMAD, a framework that enhances large language models for mental manipulation detection. Our approach consists of three key components: EvoSA, an annotation-free data augmentation method that combines evolutionary operations with speech-act-aware prompting; teacher-model-generated complementary-task supervision; and Complementary-Convergent Distillation, a phase-wise strategy for transferring manipulation-specific knowledge to student models. We then constructed the ReaMent dataset, comprising 5,000 real-world-sourced dialogues. Extensive experiments show that MentalMAD improves accuracy by 14.0%, macro-F1 by 27.3%, and weighted F1 by 15.1% over the strongest baseline. The code and the dataset are publicly available at https://github.com/Yuansheng-Gao/MentalMAD.
comment: Accepted to WWW 2026
♻ ☆ No Verifiable Reward for Prosody: Toward Preference-Guided Prosody Learning in TTS ICASSP 2026
Recent work reports gains in neural text-to-speech (TTS) with Group Relative Policy Optimization (GRPO). However, in the absence of a verifiable reward for \textit{prosody}, GRPO trained on transcription-oriented signals (CER/NLL) lowers error rates yet collapses prosody into monotone, unnatural speech; adding speaker-similarity further destabilizes training and degrades CER. We address this with an \textit{iterative Direct Preference Optimization (DPO)} scheme that uses only a few hundred human-labeled preference pairs per round to directly optimize prosodic naturalness while regularizing to the current model. On \textbf{KoCC-TTS}, a curated dataset of authentic Korean call center interactions capturing task-oriented dialogues, our method attains the highest human preference (ELO) with competitive CER, outperforming GRPO and strong commercial baselines. These results suggest that when prosody cannot be rewarded automatically, \textit{human preference optimization} offers a practical and data-efficient path to natural and robust TTS. The demo page is available at \href{https://tts.ch.dev}
comment: ICASSP 2026
♻ ☆ TS-PEFT: Unveiling Token-Level Redundancy in Parameter-Efficient Fine-Tuning
Current Parameter-Efficient Fine-Tuning (PEFT) methods typically operate under an implicit assumption: Once a target module is selected, every token passing through it contributes equally to the downstream task and requires a parameter update. In this paper, we challenge this convention by revealing a pervasive token-level redundancy in the fine-tuning of large models (LMs). We propose TS-PEFT, a theoretical framework utilizing proximal optimization that acts as a dynamic probe to identify token-level redundancy during the fine-tuning process. Extensive experiments demonstrate that indiscriminately updating all tokens is not only computationally superfluous but often introduces optimization noise. Surprisingly, by discarding 30%-70% of token updates, TS-PEFT consistently matches or exceeds the performance of dense baselines such as LoRA, DoRA. Our in-depth analysis shows that the learned token-level sparsity is a superior indicator of module importance compared to traditional weight criteria, providing a novel data-driven perspective on the intrinsic adaptation mechanism of LMs.
comment: 11 pages, 3 figures
♻ ☆ Language Generation: Complexity Barriers and Implications for Learning
Kleinberg and Mullainathan showed that language generation in the limit is always possible at the level of computability: given enough positive examples, a learner can eventually generate data indistinguishable from a target language. However, such existence results do not address feasibility. We study the sample complexity of language generation in the limit for several canonical classes of formal languages. Our results show that infeasibility already appears for context-free and regular languages, and persists even for strict subclasses such as locally threshold testable languages, as well as for incomparable classes such as non-erasing pattern languages, a well-studied class in the theory of language identification. Overall, our results establish a clear gap between the theoretical possibility of language generation in the limit and its computational feasibility.
comment: Version 2: results about pattern and LTT languages are added
♻ ☆ Discovering Multi-Scale Semantic Structure in Text Corpora Using Density-Based Trees and LLM Embeddings
Recent advances in large language models enable documents to be represented as dense semantic embeddings, supporting similarity-based operations over large text collections. However, many web-scale systems still rely on flat clustering or predefined taxonomies, limiting insight into hierarchical topic relationships. In this paper we operationalize hierarchical density modeling on large language model embeddings in a way not previously explored. Instead of enforcing a fixed taxonomy or single clustering resolution, the method progressively relaxes local density constraints, revealing how compact semantic groups merge into broader thematic regions. The resulting tree encodes multi-scale semantic organization directly from data, making structural relationships between topics explicit. We evaluate the hierarchies on standard text benchmarks, showing that semantic alignment peaks at intermediate density levels and that abrupt transitions correspond to meaningful changes in semantic resolution. Beyond benchmarks, the approach is applied to large institutional and scientific corpora, exposing dominant fields, cross-disciplinary proximities, and emerging thematic clusters. By framing hierarchical structure as an emergent property of density in embedding spaces, this method provides an interpretable, multi-scale representation of semantic structure suitable for large, evolving text collections.
comment: 23 pages, 10 figures, further interactive visualizations available on https:// genealogy.sematlas.com/
♻ ☆ Neural network embeddings recover value dimensions from psychometric survey items on par with human data
We demonstrate that embeddings derived from large language models, when processed with "Survey and Questionnaire Item Embeddings Differentials" (SQuID), can recover the structure of human values obtained from human rater judgments on the Revised Portrait Value Questionnaire (PVQ-RR). We compare multiple embedding models across a number of evaluation metrics including internal consistency, dimension correlations and multidimensional scaling configurations. Unlike previous approaches, SQuID addresses the challenge of obtaining negative correlations between dimensions without requiring domain-specific fine-tuning or training data re-annotation. Quantitative analysis reveals that our embedding-based approach explains 55% of variance in dimension-dimension similarities compared to human data. Multidimensional scaling configurations show alignment with pooled human data from 49 different countries. Generalizability tests across three personality inventories (IPIP, BFI-2, HEXACO) demonstrate that SQuID consistently increases correlation ranges, suggesting applicability beyond value theory. These results show that semantic embeddings can effectively replicate psychometric structures previously established through extensive human surveys. The approach offers substantial advantages in cost, scalability and flexibility while maintaining comparable quality to traditional methods. Our findings have significant implications for psychometrics and social science research, providing a complementary methodology that could expand the scope of human behavior and experience represented in measurement tools.
♻ ☆ TransLaw: A Large-Scale Dataset and Multi-Agent Benchmark Simulating Professional Translation of Hong Kong Case Law ACL 2026
Hong Kong case law translation presents significant challenges: manual methods suffer from high costs and inconsistent quality, while both traditional machine translation and approaches relying solely on Large Language Models (LLMs) often fail to ensure legal terminology accuracy, culturally embedded nuances, and strict linguistic structures. To overcome these limitations, this study proposes TransLaw, a multi-agent framework that decomposes translation into word-level expression, sentence-level translation, and multidimensional review, integrating a specialized Hong Kong legal glossary database, Retrieval-Augmented Generation (RAG), and iterative feedback. Experiments on our newly constructed HKCFA Judgment 97-22 dataset, benchmarking 13 open-source and commercial LLMs, demonstrate that TransLaw significantly outperforms single-agent baselines across all evaluated models. Human evaluation confirms the framework's effectiveness in terms of legal semantic accuracy, structural coherence, and stylistic fidelity, while noting that it still trails human experts in contextualizing complex terminology and stylistic naturalness.
comment: Original: arXiv:2501.09444; Revised: arXiv:2507.00875; Submitted to ACL 2026
♻ ☆ A Formal Comparison Between Chain of Thought and Latent Thought
Chain of thought (CoT) elicits reasoning in large language models by explicitly generating intermediate tokens. In contrast, latent thought reasoning operates directly in the continuous latent space, enabling computation beyond discrete linguistic representations. While both approaches exploit iterative computation, their comparative capabilities remain underexplored. In this work, we present a formal analysis showing that latent thought admits more efficient parallel computation than inherently sequential CoT. In contrast, CoT enables approximate counting and sampling through stochastic decoding. These separations suggest the tasks for which depth-driven recursion is more suitable, thereby offering practical guidance for choosing between reasoning paradigms.
comment: Code is available at https://github.com/kevin671/cot-vs-loop
♻ ☆ Mix, MinHash, and Match: Cross-Source Agreement for Multilingual Pretraining Datasets
Multilingual data from the web is essential for LLM pretraining. Yet, scraping it is expensive, and research groups repeatedly crawl the same content. For example, we found that over 40\% of tokens across major Arabic web corpora are duplicated between sources. In this work, we propose to use this wasteful redundancy as a quality signal to create high-quality pretraining datasets. Our key insight is that cross-source agreement functions as a free, model-free quality filter: content retained by multiple independent pipelines is more likely to represent high-quality text. Crucially, this signal requires no additional computation beyond standard deduplication, which is already performed at scale when pretraining language models. So, we propose MixMinMatch, a method that combines multiple existing web corpora, performs cross-dataset MinHash deduplication, and identifies documents independently recovered by multiple sources. We apply MixMinMatch to Arabic, Turkish, and Hindi, producing corpora that match or exceed the quality of the best single-source baselines, while providing up to 4$\times$ more unique tokens. On Arabic, our matched subset achieves a 4.5\% relative improvement over ArabicWeb24, while on Turkish, we improve over FineWeb-2 by 5.5\%. We release the datasets at: https://huggingface.co/collections/AdaMLLab/mixminmatch
comment: Multilingual LLM pretraining dataset curation
♻ ☆ RAS: Retrieval-And-Structuring for Knowledge-Intensive LLM Generation ICLR 2026
Large language models (LLMs) have achieved impressive performance on knowledge-intensive tasks, yet they often struggle with multi-step reasoning due to the unstructured nature of retrieved context. While retrieval-augmented generation (RAG) methods provide external information, the lack of explicit organization among retrieved passages limits their effectiveness, leading to brittle reasoning pathways. Recent interpretability studies highlighting the importance of structured intermediate reasoning further align with this perspective. We propose Retrieval-And-Structuring (RAS), a framework that dynamically constructs question-specific knowledge graphs through iterative retrieval and structured knowledge building. RAS interleaves targeted retrieval planning with incremental graph construction, enabling models to assemble and reason over evolving knowledge structures tailored to each query. On seven knowledge-intensive benchmarks, RAS consistently outperforms strong baselines, achieving up to 8.7\% and 7.0\% gains with proprietary and open-source LLMs, respectively. Our results demonstrate that dynamic, question-specific knowledge structuring offers a robust path to improving reasoning accuracy and robustness in language model generation.
comment: ICLR 2026
♻ ☆ Verbalized Algorithms NeurIPS 2025
Instead of querying LLMs in a one-shot manner and hoping to get the right answer for a reasoning task, we propose a paradigm we call \emph{verbalized algorithms} (VAs), which combines LLMs with classical algorithms with established theoretical guarantees. VAs decompose a task into simple elementary operations on natural language strings that LLMs are able to answer reliably, and limit the scope of LLMs to those simple tasks. For example, for sorting a series of natural language strings, \emph{verbalized sorting} uses an LLM as a binary comparison oracle in a known and well-analyzed sorting algorithm (e.g., bitonic sorting network). Although this is already known as \emph{pairwise ranking} in the literature, we additionally demonstrate the effectiveness of \emph{verbalized maximum}, \emph{verbalized clustering}, and \emph{verbalized submodular maximization} for numerical reasoning, topic clustering and multi-hop Q\&A RAG task, which guarantees $O(n)$ runtime, $O(n \log n)$ runtime, and $1/(1-e)$ optimality, respectively. Clustering and submodular maximization outperformed or improved the nearest neighbor search using state-of-the-art embedding models.
comment: Accepted in NeurIPS 2025 Workshop on Efficient Reasoning
♻ ☆ Surrogate Signals from Format and Length: Reinforcement Learning for Solving Mathematical Problems without Ground Truth Answers
Large Language Models have achieved remarkable success in natural language processing tasks, with Reinforcement Learning playing a key role in adapting them to specific applications. However, obtaining ground truth answers for training LLMs in mathematical problem-solving is often challenging, costly, and sometimes unfeasible. This research delves into the utilization of format and length as surrogate signals to train LLMs for mathematical problem-solving, bypassing the need for traditional ground truth answers. Our study shows that a reward function centered on format correctness alone can yield performance improvements comparable to the standard GRPO algorithm in early phases. Recognizing the limitations of format-only rewards in the later phases, we incorporate length-based rewards. The resulting GRPO approach, leveraging format-length surrogate signals, not only matches but surpasses the performance of the standard GRPO algorithm relying on ground truth answers in certain scenarios, achieving 40.0% accuracy on AIME2024 with a 7B base model. Through systematic exploration and experimentation, this research not only offers a practical solution for training LLMs to solve mathematical problems and reducing the dependence on extensive ground truth data collection, but also reveals the essence of why our label-free approach succeeds: the powerful base model is like an excellent student who has already mastered mathematical and logical reasoning skills, but performs poorly on the test paper, it simply needs to develop good answering habits to achieve outstanding results in exams, to unlock the capabilities it already possesses.
♻ ☆ SafeSearch: Automated Red-Teaming of LLM-Based Search Agents
Search agents connect LLMs to the Internet, enabling them to access broader and more up-to-date information. However, this also introduces a new threat surface: unreliable search results can mislead agents into producing unsafe outputs. Real-world incidents and our two in-the-wild observations show that such failures can occur in practice. To study this threat systematically, we propose SafeSearch, an automated red-teaming framework that is scalable, cost-efficient, and lightweight, enabling harmless safety evaluation of search agents. Using this, we generate 300 test cases spanning five risk categories (e.g., misinformation and prompt injection) and evaluate three search agent scaffolds across 17 representative LLMs. Our results reveal substantial vulnerabilities in LLM-based search agents, with the highest ASR reaching 90.5% for GPT-4.1-mini in a search-workflow setting. Moreover, we find that common defenses, such as reminder prompting, offer limited protection. Overall, SafeSearch provides a practical way to measure and improve the safety of LLM-based search agents. Our codebase and test cases are publicly available: https://github.com/jianshuod/SafeSearch.
comment: Preprint. Updated with new experiments
♻ ☆ Select or Project? Evaluating Lower-dimensional Vectors for LLM Training Data Explanations
Gradient-based methods for instance-based explanation for large language models (LLMs) are hindered by the immense dimensionality of model gradients. In practice, influence estimation is restricted to a subset of model parameters to make computation tractable, but this subset is often chosen ad hoc and rarely justified by systematic evaluation. This paper investigates if it is better to create low-dimensional representations by selecting a small, architecturally informed subset of model components or by projecting the full gradients into a lower-dimensional space. Using a novel benchmark, we show that a greedily selected subset of components captures the information about training data influence needed for a retrieval task more effectively than either the full gradient or random projection. We further find that this approach is more computationally efficient than random projection, demonstrating that targeted component selection is a practical strategy for making instance-based explanations of large models more computationally feasible.
comment: Added acknowledgments section and related work on random projection. 8 pages
♻ ☆ The Illusion of Certainty: Uncertainty Quantification for LLMs Fails under Ambiguity
Accurate uncertainty quantification (UQ) in Large Language Models (LLMs) is critical for trustworthy deployment. While real-world language is inherently ambiguous, reflecting aleatoric uncertainty, existing UQ methods are typically benchmarked against tasks with no ambiguity. In this work, we demonstrate that while current uncertainty estimators perform well under the restrictive assumption of no ambiguity, they degrade to close-to-random performance on ambiguous data. To this end, we introduce MAQA* and AmbigQA*, the first ambiguous question-answering (QA) datasets equipped with ground-truth answer distributions estimated from factual co-occurrence. We find this performance deterioration to be consistent across different estimation paradigms: using the predictive distribution itself, internal representations throughout the model, and an ensemble of models. We show that this phenomenon can be theoretically explained, revealing that predictive-distribution and ensemble-based estimators are fundamentally limited under ambiguity. Overall, our study reveals a key shortcoming of current UQ methods for LLMs and motivates a rethinking of current modeling paradigms.
♻ ☆ Context Parametrization with Compositional Adapters
Large language models (LLMs) often seamlessly adapt to new tasks through in-context learning (ICL) or supervised fine-tuning (SFT). However, ICL is inefficient when handling many demonstrations, and SFT incurs training overhead while sacrificing flexibility. Mapping instructions or demonstrations from context directly into adapter parameters offers an appealing alternative. While prior work explored generating adapters based on a single input context, it has overlooked the need to integrate multiple chunks of information. To address this gap, we introduce CompAs, a meta-learning framework that translates context into adapter parameters with a compositional structure that allows them to be merged algebraically. This approach yields three benefits: lower inference cost, improved stability under long contexts, and establishes a principled solution when input exceeds the model's context window. Furthermore, CompAs reversibly encodes information into adapter parameters, enabling recovery of the original input context and facilitating safety. Empirical results on diverse multiple-choice and extractive question answering tasks show that CompAs outperforms ICL and prior generator-based methods, especially when scaling to more inputs. Our work establishes composable adapter generation as a practical and efficient alternative for scaling LLM deployment.
♻ ☆ MOSAIC: Masked Objective with Selective Adaptation for In-domain Contrastive Learning
We introduce MOSAIC (Masked Objective with Selective Adaptation for In-domain Contrastive learning), a multi-stage framework for domain adaptation of text embedding models that incorporates joint domain-specific masked supervision. Our approach addresses the challenges of adapting large-scale general-domain text embedding models to specialized domains. By jointly optimizing masked language modeling (MLM) and contrastive objectives within a unified training pipeline, our method enables effective learning of domain-relevant representations while preserving the robust semantic discrimination properties of the original model. We empirically validate our approach on both high-resource and low-resource domains, achieving improvements up to 13.4% in NDCG@10 (Normalized Discounted Cumulative Gain) over strong general-domain baselines. Comprehensive ablation studies further demonstrate the effectiveness of each component, highlighting the importance of balanced joint supervision and staged adaptation.
♻ ☆ Toward Robust Multilingual Adaptation of LLMs for Low-Resource Languages
Large language models (LLMs) continue to struggle with low-resource languages, primarily due to limited training data, translation noise, and unstable cross-lingual alignment. To address these challenges, we propose LiRA (Linguistic Robust Anchoring for LLMs)-a plug-and-play framework that requires only lightweight fine-tuning on top of existing pretrained backbones. LiRA jointly optimizes representation stability and cross-lingual semantic consistency by combining two key components: Arca (Anchored Representation Composition Architecture), which aligns low-resource inputs to a shared English semantic space through anchor-based alignment and collaborative encoding; and LaSR (Language-coupled Semantic Reasoner), a lightweight, language-aware head that enforces consistency regularization for unified cross-lingual understanding, retrieval, and reasoning. We theoretically show that under controlled anchoring error and translation-induced bias, LiRA guarantees bounded representation deviation and stable downstream performance under local Lipschitz continuity. To facilitate research, we release a new multilingual product retrieval dataset covering five Southeast Asian and two South Asian languages. Extensive experiments across diverse low-resource benchmarks demonstrate consistent improvements in retrieval, ranking, question answering, and reasoning tasks. Code will be publicly available on GitHub, and the dataset will be hosted on Hugging Face.
♻ ☆ Plain Transformers Can be Powerful Graph Learners
Transformers have attained outstanding performance across various modalities, owing to their simple but powerful scaled-dot-product (SDP) attention mechanisms. Researchers have attempted to migrate Transformers to graph learning, but most advanced Graph Transformers (GTs) have strayed far from plain Transformers, exhibiting major architectural differences either by integrating message-passing or incorporating sophisticated attention mechanisms. These divergences hinder the easy adoption of training advances for Transformers developed in other domains. Contrary to previous GTs, this work demonstrates that the plain Transformer architecture can be a powerful graph learner. To achieve this, we propose to incorporate three simple, minimal, and easy-to-implement modifications to the plain Transformer architecture to construct our Powerful Plain Graph Transformers (PPGT): (1) simplified $L_2$ attention for measuring the magnitude closeness among tokens; (2) adaptive root-mean-square normalization to preserve token magnitude information; and (3) a simple MLP-based stem for graph positional encoding. Consistent with its theoretical expressivity, PPGT demonstrates noteworthy realized expressivity on the empirical graph expressivity benchmark, comparing favorably to more complicated alternatives such as subgraph GNNs and higher-order GNNs. Its empirical performance across various graph datasets also justifies the effectiveness of PPGT. This finding underscores the versatility of plain Transformer architectures and highlights their strong potential as a unified backbone for multimodal learning across language, vision, and graph domains.
♻ ☆ Can Large Language Models Capture Video Game Engagement? IEEE
Can out-of-the-box pretrained Large Language Models (LLMs) detect human affect successfully when observing a video? To address this question, for the first time, we evaluate comprehensively the capacity of popular LLMs for successfully predicting continuous affect annotations of videos when prompted by a sequence of text and video frames in a multimodal fashion. In this paper, we test LLMs' ability to correctly label changes of in-game engagement in 80 minutes of annotated videogame footage from 20 first-person shooter games of the GameVibe corpus. We run over 4,800 experiments to investigate the impact of LLM architecture, model size, input modality, prompting strategy, and ground truth processing method on engagement prediction. Our findings suggest that while LLMs rightfully claim human-like performance across multiple domains and able to outperform traditional machine learning baselines, they generally fall behind continuous experience annotations provided by humans. We examine some of the underlying causes for a fluctuating performance across games, highlight the cases where LLMs exceed expectations, and draw a roadmap for the further exploration of automated emotion labelling via LLMs.
comment: This work has been submitted to the IEEE for publication
♻ ☆ GORAG: Graph-based Online Retrieval Augmented Generation for Dynamic Few-shot Social Media Text Classification WWW 2026
Text classification is vital for Web for Good applications like hate speech and misinformation detection. However, traditional models (e.g., BERT) often fail in dynamic few-shot settings where labeled data are scarce, and target labels frequently evolve. While Large Language Models (LLMs) show promise in few-shot settings, their performance is often hindered by increased input size in dynamic evolving scenarios. To address these issues, we propose GORAG, a Graph-based Online Retrieval-Augmented Generation framework for dynamic few-shot text classification. GORAG constructs and maintains a weighted graph of keywords and text labels, representing their correlations as edges. To model these correlations, GORAG employs an edge weighting mechanism to prioritize the importance and reliability of extracted information and dynamically retrieves relevant context using a tailored minimum-cost spanning tree for each input. Empirical evaluations show GORAG outperforms existing approaches by providing more comprehensive and precise contextual information. Our code is released at: https://github.com/Wyb0627/GORAG.
comment: Accepted by WWW 2026
♻ ☆ NOSA: Native and Offloadable Sparse Attention
Decoding throughput improvements from larger inference batches are limited by GPU memory, which is largely consumed by the key-value (KV) cache. Prior training-free KV cache offloading alleviates this by keeping redundant context on the CPU and fetching only a sparse subset for attention, but it often degrades long-generation quality due to training-inference mismatch on sparse patterns. Meanwhile, trainable sparse attention is incompatible with efficient offloading, as unconstrained KV accesses may force large CPU-to-GPU transfers and erase throughput gains. To this end, we propose NOSA, a trainable sparse attention mechanism natively designed for KV cache offloading. NOSA explicitly constrains the volume of CPU-GPU KV transfers, thereby achieving low communication overhead and high decoding throughput. We further build NOSI, a KV cache offloading inference system that fully unlocks NOSA's efficiency. Empirical results on 1,3,8B LLMs demonstrate that NOSA outperforms KV cache offloading baselines on general, long-input, and long-generation tasks, while boosting decoding throughput by up to 5.04x, 1.92x, and 1.83x over FullAttn, InfLLMv2, and ShadowKV, respectively. We release our code at https://github.com/thunlp/NOSA.
comment: Preprint
♻ ☆ Penalizing Length: Uncovering Systematic Bias in Quality Estimation Metrics
Quality Estimation (QE) metrics are vital in machine translation for reference-free evaluation and as a reward signal in tasks like reinforcement learning. However, the prevalence and impact of length bias in QE have been underexplored. Through a systematic study of top-performing regression-based and LLM-as-a-Judge QE metrics across 10 diverse language pairs, we reveal two critical length biases: First, QE metrics consistently over-predict errors with increasing translation length, even for high-quality, error-free texts. Second, they exhibit a preference for shorter translations when multiple candidates are available for the same source text. These inherent length biases risk unfairly penalizing longer, correct translations and can lead to sub-optimal decision-making in applications such as QE reranking and QE guided reinforcement learning. We further investigate the root cause, presenting evidence that QE models conflate quality with sequence length due to skewed supervision distributions. As a diagnostic intervention, we apply length normalization during training. We show that this simple intervention is sufficient to decouple error probability from length, effectively counteracting the data skew and yielding more reliable QE signals.
♻ ☆ EVA-Score: Evaluating Abstractive Long-form Summarization on Informativeness through Extraction and Validation
Since LLMs emerged, more attention has been paid to abstractive long-form summarization, where longer input sequences indicate more information contained. Nevertheless, the automatic evaluation of such summaries remains underexplored. The current evaluation metrics for long-form summarization either use similarity-based metrics like ROUGE and BERTScore or LLM-based metrics using appropriate prompts or pre-defined schema. We argue that the former only relies on similarity and fails to consider informativeness while the latter lacks quantitative analysis of informative richness, and is rather subjective and hard to explain. Current evaluation metrics either use traditional metrics like ROUGE and BERTScore, which rely on surface-level similarity and fail to consider informativeness, or simple LLM-based metrics, which are not robust and easily overwhelmed by the long contexts. In this paper, we propose a new evaluation metric called EVA-Score to extract all information from the given summaries, identify overlapped information based on reference, and calculate the information score. We test EVA-Score on several datasets and the experimental results reveal that EVA-Score shows the highest correlation with humans. We also re-evaluate the performance of LLMs on long-form summarization from the information perspective. The results indicate that responses of LLMs still have a gap with the human-written answers. Moreover, we provide a detailed analysis of the effectiveness of EVA-Score, forecasting future ways to automatically evaluate abstractive long-form summarization.
comment: 20 pages
♻ ☆ FLAME: Empowering Frozen LLMs for Knowledge Graph Completion
Traditional knowledge graph completion (KGC) methods rely solely on structural information and struggle with sparsity, while Large Language Models (LLMs) address these limitations through rich world knowledge and strong context modeling. Fine-tuning LLMs is effective but costly, while non-fine-tuned LLMs are efficient but suboptimal. To address this trade-off, we propose \textbf{FLAME}, a framework that extracts context-aware hidden states from intermediate layers of frozen LLMs to train data-efficient KGC classifiers. We bridge LLM-KG semantic gaps via subgraph-based entity descriptions and employ sliced mutual information (SMI) to quantify task-relevant information in representations. Experiments demonstrate that FLAME achieves 47\% improvement over non-fine-tuned LLM baselines and, to our knowledge, is the first to achieve fine-tuned performance with $188\times$ memory efficiency and $26.11\times$ speedup.
♻ ☆ Language Lives in Sparse Dimensions: Toward Interpretable and Efficient Multilingual Control for Large Language Models EACL 2026
Large language models exhibit strong multilingual capabilities despite limited exposure to non-English data. Prior studies show that English-centric large language models map multilingual content into English-aligned representations at intermediate layers and then project them back into target-language token spaces in the final layer. From this observation, we hypothesize that this cross-lingual transition is governed by a small and sparse set of dimensions, which occur at consistent indices across the intermediate to final layers. Building on this insight, we introduce a simple, training-free method to identify and manipulate these dimensions, requiring only as few as 50 sentences of either parallel or monolingual data. Experiments on a multilingual generation control task reveal the interpretability of these dimensions, demonstrating that the interventions in these dimensions can switch the output language while preserving semantic content, and that it surpasses the performance of prior neuron-based approaches at a substantially lower cost.
comment: Accepted at EACL 2026 (Main). Our code will be available at: https://github.com/ku-nlp/language-specific-dimensions
♻ ☆ RaZeR: Pushing the Limits of NVFP4 Quantization with Redundant Zero Remapping
The recently introduced NVFP4 format demonstrates remarkable performance and memory benefits for quantized large language model (LLM) inference. However, we observe two types of redundancy in NVFP4 encoding: (1) The FP4 element format naturally exposes an unused quantization value due to its sign-magnitude representation that contains both positive and negative zeros. (2) The FP8 block scaling factor has an unused sign bit because it is always positive. Additionally, we find that LLM weights are more tolerant to a lower-precision block scaling factor. Based on these observations, we propose Redundant Zero Remapping (RaZeR), an enhanced numerical format that pushes the limits of NVFP4 for more accurate LLM quantization under the same memory footprint. RaZeR leverages the redundant bits of the block scaling factor to adaptively remap the redundant FP4 zero to additional quantization values with improved accuracy. To demonstrate the practicality of RaZeR, we design efficient GPU kernels for RaZeR-quantized LLM inference and propose novel hardware to natively support this. Extensive experiments validate RaZeR's superior performance for 4-bit LLM quantization. For example, relative to native NVFP4, RaZeR reduces the average perplexity loss by 34.6% and 31.2% under weight-only and weight-activation quantization, respectively.
comment: Preprint. Under review
♻ ☆ Scaling Laws for Downstream Task Performance of Large Language Models ICLR
Scaling laws provide important insights that can guide the design of large language models (LLMs). Existing work has primarily focused on studying scaling laws for pretraining (upstream) loss. However, in transfer learning settings, in which LLMs are pretrained on an unsupervised dataset and then finetuned on a downstream task, we often also care about the downstream performance. In this work, we study the scaling behavior in a transfer learning setting, where LLMs are finetuned for machine translation tasks. Specifically, we investigate how the choice of the pretraining data and its size affect downstream performance (translation quality) as judged by: downstream cross-entropy and translation quality metrics such as BLEU and COMET scores. Our experiments indicate that the size of the finetuning dataset and the distribution alignment between the pretraining and downstream data significantly influence the scaling behavior. With sufficient alignment, both downstream cross-entropy and translation quality scores improve monotonically with more pretraining data. In such cases, we show that it is possible to predict the downstream translation quality metrics with good accuracy using a log-law. However, there are cases where moderate misalignment causes the downstream translation scores to fluctuate or get worse with more pretraining, whereas downstream cross-entropy monotonically improves. By analyzing these, we provide new practical insights for choosing appropriate pretraining data.
comment: Published at the International Conference on Learning Representations (ICLR) 2025, with title: "Scaling Laws for Downstream Task Performance in Machine Translation"
♻ ☆ The Trojan in the Vocabulary: Stealthy Sabotage of LLM Composition
The open-weight language model ecosystem is increasingly defined by model composition techniques (such as weight merging, speculative decoding, and vocabulary expansion) that remix capabilities from diverse sources. A critical prerequisite for applying these methods across different model families is tokenizer transplant, which aligns incompatible vocabularies to a shared embedding space. We demonstrate that this essential interoperability step introduces a supply-chain vulnerability: we engineer a single breaker token that is functionally inert in a donor model yet reliably reconstructs into a high-salience malicious feature after transplant into a base model. By exploiting the geometry of coefficient reuse, our attack sabotages the base model's generation while leaving the donor's utility statistically indistinguishable from nominal behavior. We formalize this as a dual-objective optimization problem and instantiate the attack using a sparse solver. Empirically, the attack is training-free and evades outlier detection, while demonstrating structural persistence against fine-tuning and weight merging, highlighting a hidden risk in the pipeline of modular AI composition. Code is available at https://github.com/xz-liu/tokenforge
♻ ☆ ALRM: Agentic LLM for Robotic Manipulation
Large Language Models (LLMs) have recently empowered agentic frameworks to exhibit advanced reasoning and planning capabilities. However, their integration in robotic control pipelines remains limited in two aspects: (1) prior \ac{llm}-based approaches often lack modular, agentic execution mechanisms, limiting their ability to plan, reflect on outcomes, and revise actions in a closed-loop manner; and (2) existing benchmarks for manipulation tasks focus on low-level control and do not systematically evaluate multistep reasoning and linguistic variation. In this paper, we propose Agentic LLM for Robot Manipulation (ALRM), an LLM-driven agentic framework for robotic manipulation. ALRM integrates policy generation with agentic execution through a ReAct-style reasoning loop, supporting two complementary modes: Code-asPolicy (CaP) for direct executable control code generation, and Tool-as-Policy (TaP) for iterative planning and tool-based action execution. To enable systematic evaluation, we also introduce a novel simulation benchmark comprising 56 tasks across multiple environments, capturing linguistically diverse instructions. Experiments with ten LLMs demonstrate that ALRM provides a scalable, interpretable, and modular approach for bridging natural language reasoning with reliable robotic execution. Results reveal Claude-4.1-Opus as the top closed-source model and Falcon-H1-7B as the top open-source model under CaP.
♻ ☆ LLMs versus the Halting Problem: Revisiting Program Termination Prediction
Determining whether a program terminates is a central problem in computer science. Turing's foundational result established the Halting Problem as undecidable, showing that no algorithm can universally determine termination for all programs and inputs. Consequently, automatic verification tools approximate termination, sometimes failing to prove or disprove; these tools rely on problem-specific architectures and abstractions, and are usually tied to particular programming languages. Recent success and progress in large language models (LLMs) raises the following question: can LLMs reliably predict program termination? In this work, we evaluate LLMs on a diverse set of C programs from the Termination category of the International Competition on Software Verification (SV-Comp) 2025. Our results suggest that LLMs perform remarkably well at predicting program termination, where GPT-5 and Claude Sonnet-4.5 would rank just behind the top-ranked tool (using test-time-scaling), and Code World Model (CWM) would place just behind the second-ranked tool. While LLMs are effective at predicting program termination, they often fail to provide a valid witness as a proof. Moreover, LLMs performance drops as program length increases. We hope these insights motivate further research into program termination and the broader potential of LLMs for reasoning about undecidable problems.
♻ ☆ Probing Neural Topology of Large Language Models
Probing large language models (LLMs) has yielded valuable insights into their internal mechanisms by linking neural activations to interpretable semantics. However, the complex mechanisms that link neuron's functional co-activation with the emergent model capabilities remains largely unknown, hindering a deeper understanding and safer development of LLMs. In this work, we introduce graph probing, a method for uncovering the functional connectivity of LLM neurons and relating it to language generation performance. By probing models across diverse LLM families and scales, we discover a universal predictability of language generation and understanding performance using only neural topology, which persists even when retaining just 1% of neuron connections. Strikingly, probing on topology outperforms probing on activation by up to 130.4% and 67.7% on perplexity and space/time semantic regression respectively, suggesting that neural topology contains orders of richer information of LLM performance than neural activation, which can be easily extracted with simple linear or MLP probes. To explain the dependence between neural topology and language performance, we identify default networks and hub neurons in LLMs and provide causal evidence by interventional experiments on multiple benchmarks, showing that LLMs actually exploit these topological information. Further analyses suggest that graph probing can be effectively leveraged to improve the efficiency and reliability of LLMs through proof-of-concept applications in model pruning and hallucination detection. Codes and data for the graph probing toolbox are available at https://github.com/DavyMorgan/llm-graph-probing.
♻ ☆ LogicReward: Incentivizing LLM Reasoning via Step-Wise Logical Supervision ICLR 2026
Although LLMs exhibit strong reasoning capabilities, existing training methods largely depend on outcome-based feedback, which can produce correct answers with flawed reasoning. Prior work introduces supervision on intermediate steps but still lacks guarantees of logical soundness, which is crucial in high-stakes scenarios where logical consistency is paramount. To address this, we propose LogicReward, a novel reward system that guides model training by enforcing step-level logical correctness with a theorem prover. We further introduce Autoformalization with Soft Unification, which reduces natural language ambiguity and improves formalization quality, enabling more effective use of the theorem prover. An 8B model trained on data constructed with LogicReward surpasses GPT-4o and o4-mini by 11.6\% and 2\% on natural language inference and logical reasoning tasks with simple training procedures. Further analysis shows that LogicReward enhances reasoning faithfulness, improves generalizability to unseen tasks such as math and commonsense reasoning, and provides a reliable reward signal even without ground-truth labels. We will release all data and code at https://llm-symbol.github.io/LogicReward.
comment: ICLR 2026
♻ ☆ A conversational gesture synthesis system based on emotions and semantics
Along with the explosion of large language models, improvements in speech synthesis, advancements in hardware, and the evolution of computer graphics, the current bottleneck in creating digital humans lies in generating character movements that correspond naturally to text or speech inputs. In this work, we present DeepGesture, a diffusion-based gesture synthesis framework for generating expressive co-speech gestures conditioned on multimodal signals - text, speech, emotion, and seed motion. Built upon the DiffuseStyleGesture model, DeepGesture introduces novel architectural enhancements that improve semantic alignment and emotional expressiveness in generated gestures. Specifically, we integrate fast text transcriptions as semantic conditioning and implement emotion-guided classifier-free diffusion to support controllable gesture generation across affective states. To visualize results, we implement a full rendering pipeline in Unity based on BVH output from the model. Evaluation on the ZeroEGGS dataset shows that DeepGesture produces gestures with improved human-likeness and contextual appropriateness. Our system supports interpolation between emotional states and demonstrates generalization to out-of-distribution speech, including synthetic voices - marking a step forward toward fully multimodal, emotionally aware digital humans.
♻ ☆ Less Diverse, Less Safe: The Indirect But Pervasive Risk of Test-Time Scaling in Large Language Models
Test-Time Scaling (TTS) improves LLM reasoning by exploring multiple candidate responses and then operating over this set to find the best output. A tacit premise behind TTS is that sufficiently diverse candidate pools enhance reliability. In this work, we show that this assumption in TTS introduces a previously unrecognized failure mode. When candidate diversity is curtailed, even by a modest amount, TTS becomes much more likely to produce unsafe outputs. We present a reference-guided diversity reduction protocol (RefDiv) that serves as a diagnostic attack to stress test TTS pipelines. Through extensive experiments across open-source models (e.g. Qwen3, Mistral, Llama3.1, Gemma3) and two widely used TTS strategies (Monte Carlo Tree Search and Best-of-N), constraining diversity consistently signifies the rate at which TTS produces unsafe results. The effect is often stronger than that produced by prompts directly with high adversarial intent scores. This observed phenomenon also transfers across TTS strategies and to closed-source models (e.g. OpenAI o3-mini and Gemini-2.5-Pro), thus indicating that this is a general and extant property of TTS rather than a model-specific artifact. Additionally, we find that numerous widely used safety guardrail classifiers (e.g. Llama-Guard), are unable to flag the adversarial input prompts generated by RefDiv, demonstrating that existing defenses offer limited protection against this diversity-driven failure mode.
♻ ☆ D-Models and E-Models: Diversity-Stability Trade-offs in the Sampling Behavior of Large Language Models WWW'26
The predictive probability of the next token (P_token) in large language models (LLMs) is inextricably linked to the probability of relevance for the next piece of information, the purchase probability of the next product, and the execution probability of the next action-all of which fall under the scope of the task-level target distribution (P_task). While LLMs are known to generate samples that approximate real-world distributions, whether their fine-grained sampling probabilities faithfully align with task requirements remains an open question. Through controlled distribution-sampling simulations, we uncover a striking dichotomy in LLM behavior, distinguishing two model types: D-models (e.g. Qwen-2.5), whose P_token exhibits large step-to-step variability and poor alignment with P_task; and E-models (e.g. Mistral-Small), whose P_token is more stable and better aligned with P_task. We further evaluate these two model types in downstream tasks such as code generation and recommendation, revealing systematic trade-offs between diversity and stability that shape task outcomes. Finally, we analyze the internal properties of both model families to probe their underlying mechanisms. These findings offer foundational insights into the probabilistic sampling behavior of LLMs and provide practical guidance on when to favor D- versus E-models. For web-scale applications, including recommendation, search, and conversational agents, our results inform model selection and configuration to balance diversity with reliability under real-world uncertainty, providing a better level of interpretation.
comment: 12 pages, 10 figures. Accepted by WWW'26
♻ ☆ CASTELLA: Long Audio Dataset with Captions and Temporal Boundaries ICASSP 2026
We introduce CASTELLA, a human-annotated audio benchmark for the task of audio moment retrieval (AMR). Although AMR has various useful potential applications, there is still no established benchmark with real-world data. The initial study of AMR trained the models solely on synthetic datasets. Moreover, the evaluation is based on an annotated dataset of fewer than 100 samples. This resulted in less reliable reported performance. To ensure performance for applications in real-world environments, we present CASTELLA, a large-scale manually annotated AMR dataset. CASTELLA consists of 1009, 213, and 640 audio recordings for training, validation, and test splits, respectively, which is 24 times larger than the previous dataset. We also establish a baseline model for AMR using CASTELLA. Our experiments demonstrate that a model fine-tuned on CASTELLA after pre-training on the synthetic data outperformed a model trained solely on the synthetic data by 10.4 points in Recall1@0.7. CASTELLA is publicly available in https://h-munakata.github.io/CASTELLA-demo/.
comment: Accepted by ICASSP 2026
♻ ☆ Language Models Might Not Understand You: Evaluating Theory of Mind via Story Prompting
We introduce $\texttt{StorySim}$, a programmable framework for synthetically generating stories to evaluate the theory of mind (ToM) and world modeling (WM) capabilities of large language models (LLMs). Unlike prior benchmarks that may suffer from contamination in pretraining data, $\texttt{StorySim}$ produces novel, compositional story prompts anchored by a highly controllable $\texttt{Storyboard}$, enabling precise manipulation of character perspectives and events. We use this framework to design first- and second-order ToM tasks alongside WM tasks that control for the ability to track and model mental states. Our experiments across a suite of state-of-the-art LLMs reveal that most models perform better on WM tasks than ToM tasks, and that models tend to perform better reasoning with humans compared to inanimate objects. Additionally, our framework enabled us to find evidence of heuristic behavior such as recency bias and an over-reliance on earlier events in the story. All code for generating data and evaluations is freely available.
comment: 12 pages, 11 figures
♻ ☆ MobileBench-OL: A Comprehensive Chinese Benchmark for Evaluating Mobile GUI Agents in Real-World Environment
Recent advances in mobile Graphical User Interface (GUI) agents highlight the growing need for comprehensive evaluation benchmarks. While new online benchmarks offer more realistic testing than offline ones, they tend to focus on the agents' task instruction-following ability while neglecting their reasoning and exploration ability. Moreover, these benchmarks do not consider the random noise in real-world mobile environments. This leads to a gap between benchmarks and real-world environments. To addressing these limitations, we propose MobileBench-OL, an online benchmark with 1080 tasks from 80 Chinese apps. It measures task execution, complex reasoning, and noise robustness of agents by including 5 subsets, which set multiple evaluation dimensions. We also provide an auto-eval framework with a reset mechanism, enabling stable and repeatable real-world benchmarking. Evaluating 12 leading GUI agents on MobileBench-OL shows significant room for improvement to meet real-world requirements. Human evaluation further confirms that MobileBench-OL can reliably measure the performance of leading GUI agents in real environments. Our data and code will be released upon acceptance.
♻ ☆ EndoAgent: A Memory-Guided Reflective Agent for Intelligent Endoscopic Vision-to-Decision Reasoning
Developing general artificial intelligence (AI) systems to support endoscopic image diagnosis is an emerging research priority. Existing methods based on large-scale pretraining often lack unified coordination across tasks and struggle to handle the multi-step processes required in complex clinical workflows. While AI agents have shown promise in flexible instruction parsing and tool integration across domains, their potential in endoscopy remains underexplored. To address this gap, we propose EndoAgent, the first memory-guided agent for vision-to-decision endoscopic analysis that integrates iterative reasoning with adaptive tool selection and collaboration. Built on a dual-memory design, it enables sophisticated decision-making by ensuring logical coherence through short-term action tracking and progressively enhancing reasoning acuity through long-term experiential learning. To support diverse clinical tasks, EndoAgent integrates a suite of expert-designed tools within a unified reasoning loop. We further introduce EndoAgentBench, a benchmark of 5,709 visual question-answer pairs that assess visual understanding and language generation capabilities in realistic scenarios. Extensive experiments show that EndoAgent consistently outperforms both general and medical multimodal models, exhibiting its strong flexibility and reasoning capabilities.
comment: This paper is withdrawn due to the identification of a methodological flaw in the experimental evaluation protocol (Section 5), which may lead to unreliable performance comparisons. The authors are re-examining the evaluation design and will release a corrected version in the future
♻ ☆ Compound-QA: A Benchmark for Evaluating LLMs on Compound Questions ICASSP 2026
Large language models (LLMs) demonstrate remarkable performance across various tasks, prompting researchers to develop diverse evaluation benchmarks. However, most benchmarks typically measure the ability of LLMs to respond to individual questions, neglecting the complex interactions in real-world applications. We introduce Compound Question Synthesis (CQ-Syn) to build Compound-QA, a benchmark targeting questions composed of multiple interrelated sub-questions. This benchmark is derived from existing QA datasets, annotated with proprietary LLMs, and verified by humans for accuracy. It encompasses five categories: Factual-Statement, Cause-and-Effect, Hypothetical-Analysis, Comparison-and-Selection, and Evaluation-and-Suggestion. It evaluates the LLM capability in terms of three dimensions, including understanding, reasoning, and knowledge. Evaluating nine open-source LLMs on Compound-QA reveals that their performance on compound questions is notably lower than on non-compound questions. We further explore strategies to enhance LLMs' handling of compound questions, and our results show that these methods substantially improve models' comprehension and reasoning abilities.
comment: Accepted to ICASSP 2026
♻ ☆ EMSEdit: Efficient Multi-Step Meta-Learning-based Model Editing WWW2026
Large Language Models (LLMs) power numerous AI applications, yet updating their knowledge remains costly. Model editing provides a lightweight alternative through targeted parameter modifications, with meta-learning-based model editing (MLME) demonstrating strong effectiveness and efficiency. However, we find that MLME struggles in low-data regimes and incurs high training costs due to the use of KL divergence. To address these issues, we propose $\textbf{E}$fficient $\textbf{M}$ulti-$\textbf{S}$tep $\textbf{Edit (EMSEdit)}$, which leverages multi-step backpropagation (MSBP) to effectively capture gradient-activation mapping patterns within editing samples, performs multi-step edits per sample to enhance editing performance under limited data, and introduces norm-based regularization to preserve unedited knowledge while improving training efficiency. Experiments on two datasets and three LLMs show that EMSEdit consistently outperforms state-of-the-art methods in both sequential and batch editing. Moreover, MSBP can be seamlessly integrated into existing approaches to yield additional performance gains. Further experiments on a multi-hop reasoning editing task demonstrate EMSEdit's robustness in handling complex edits, while ablation studies validate the contribution of each design component. Our code is available at https://github.com/xpq-tech/emsedit.
comment: Accepted at WWW2026
♻ ☆ Unit-Based Agent for Semi-Cascaded Full-Duplex Dialogue Systems ICASSP 2026
Full-duplex voice interaction is crucial for natural human computer interaction. We present a framework that decomposes complex dialogue into minimal conversational units, enabling the system to process each unit independently and predict when to transit to the next. This framework is instantiated as a semi-cascaded full-duplex dialogue system built around a multimodal large language model, supported by auxiliary modules such as voice activity detection (VAD) and text-to-speech (TTS) synthesis. The resulting system operates in a train-free, plug-and-play manner. Experiments on the HumDial dataset demonstrate the effectiveness of our framework, which ranks second among all teams on the test set of the Human-like Spoken Dialogue Systems Challenge (Track 2: Full-Duplex Interaction). Code is available at the GitHub repository https://github.com/yu-haoyuan/fd-badcat.
comment: ICASSP 2026 (Grant Challenge). https://github.com/yu-haoyuan/fd-badcat
♻ ☆ Plan, Verify and Fill: A Structured Parallel Decoding Approach for Diffusion Language Models
Diffusion Language Models (DLMs) present a promising non-sequential paradigm for text generation, distinct from standard autoregressive (AR) approaches. However, current decoding strategies often adopt a reactive stance, underutilizing the global bidirectional context to dictate global trajectories. To address this, we propose Plan-Verify-Fill (PVF), a training-free paradigm that grounds planning via quantitative validation. PVF actively constructs a hierarchical skeleton by prioritizing high-leverage semantic anchors and employs a verification protocol to operationalize pragmatic structural stopping where further deliberation yields diminishing returns. Extensive evaluations on LLaDA-8B-Instruct and Dream-7B-Instruct demonstrate that PVF reduces the Number of Function Evaluations (NFE) by up to 65% compared to confidence-based parallel decoding across benchmark datasets, unlocking superior efficiency without compromising accuracy.
♻ ☆ Navigating the Rabbit Hole: Emergent Biases in LLM-Generated Attack Narratives Targeting Mental Health Groups
Large Language Models (LLMs) have been shown to demonstrate imbalanced biases against certain groups. However, the study of unprovoked targeted attacks by LLMs towards at-risk populations remains underexplored. Our paper presents three novel contributions: (1) the explicit evaluation of LLM-generated attacks on highly vulnerable mental health groups; (2) a network-based framework to study the propagation of relative biases; and (3) an assessment of the relative degree of stigmatization that emerges from these attacks. Our analysis of a recently released large-scale bias audit dataset reveals that mental health entities occupy central positions within attack narrative networks, as revealed by a significantly higher mean centrality of closeness (p-value = 4.06e-10) and dense clustering (Gini coefficient = 0.7). Drawing from an established stigmatization framework, our analysis indicates increased labeling components for mental health disorder-related targets relative to initial targets in generation chains. Taken together, these insights shed light on the structural predilections of large language models to heighten harmful discourse and highlight the need for suitable approaches for mitigation.
♻ ☆ Can you map it to English? The Role of Cross-Lingual Alignment in Multilingual Performance of LLMs
Large language models (LLMs) can answer prompts in many languages, despite being trained predominantly on English; yet, the mechanisms driving this generalization remain poorly understood. This work asks: How does an LLM's ability to align representations of non-English inputs to English impact its performance on natural language understanding (NLU) tasks? We study the role of representation alignment in instance-level task decisions, complementing prior analyses conducted both at the language level and task-independently. We introduce the Discriminative Alignment Index ($\DALI$) to quantify instance-level alignment across 24 languages other than English and three distinct NLU tasks. Results show that incorrect NLU predictions are strongly associated with lower representation alignment with English in the model's middle layers. Through activation patching, we show that incorrect predictions in languages other than English can be fixed by patching their parallel English activations in the middle layers, thereby demonstrating the causal role of representation (mis)alignment in cross-lingual correctness.
♻ ☆ DUAL-Bench: Measuring Over-Refusal and Robustness in Vision-Language Models
As vision-language models become increasingly capable, maintaining a balance between safety and usefulness remains a central challenge. Safety mechanisms, while essential, can backfire, causing over-refusal, where models decline benign requests out of excessive caution. Yet, no existing benchmark has systematically addressed over-refusal in the visual modality. This setting introduces unique challenges, such as dual-use cases where an instruction is harmless, but the accompanying image contains harmful content. Models frequently fail in such scenarios, either refusing too conservatively or completing tasks unsafely, which highlights the need for more fine-grained alignment. The ideal behavior is safe completion, i.e., fulfilling the benign parts of a request while explicitly warning about any potentially harmful elements. To address this, we present DUAL-Bench, the first multimodal benchmark focused on over-refusal and safe completion in VLMs. We evaluated 18 VLMs across 12 hazard categories, with focus on their robustness under semantics-preserving visual perturbations. The results reveal substantial room for improvement: GPT-5-Nano achieves 12.9% safe completion, GPT-5 models average 7.9%, and Qwen models only 3.9%. We hope that DUAL-Bench will foster the development of more nuanced alignment strategies that ensure models remain both safe and useful in complex multimodal settings.
comment: 25pages, 15 figures, Preprint
♻ ☆ What Helps Language Models Predict Human Beliefs: Demographics or Prior Stances?
Beliefs shape how people reason, communicate, and behave. Rather than existing in isolation, they exhibit a rich correlational structure--some connected through logical dependencies, others through indirect associations or social processes. As usage of large language models (LLMs) becomes more ubiquitous in our society, LLMs' ability to understand and reason through human beliefs has many implications from privacy issues to personalized persuasion and the potential for stereotyping. Yet how LLMs capture this interrelated landscape of beliefs remains unclear. For instance, when predicting someone's beliefs, what information affects the prediction most--who they are (demographics), what else they believe (prior stances), or a combination of both? We address these questions using data from an online debate platform, evaluating the ability of off-the-shelf open-weight LLMs to predict individuals' stance under four conditions: no context, demographics only, prior beliefs only, and both combined. We find that both types of information improve predictions over a blind baseline, with their combination yielding the best performance in most cases. However, the relative value of each varies substantially across belief domains. These findings reveal how current LLMs leverage different types of social information when reasoning about human beliefs, highlighting both their capabilities and limitations.
comment: 32 pages, 6 figures
♻ ☆ Deep Delta Learning
The effectiveness of deep residual networks hinges on the identity shortcut connection. While this mechanism alleviates the vanishing-gradient problem, it also has a strictly additive inductive bias on feature transformations, limiting the network's ability to model complex hidden state transitions. In this paper, we introduce \textbf{Deep Delta Learning (DDL)}, which generalizes the shortcut from a fixed identity map to a learnable, state-dependent linear operator. The resulting Delta Operator is a rank-1 perturbation of the identity, $\mathbf{A}(\mathbf{X}) = \mathbf{I}- β(\mathbf{X})\mathbf{k} (\mathbf{X}) \mathbf{k} (\mathbf{X})^\top$, parameterized by a unit direction $\mathbf{k}(\mathbf{X})$ and a scalar gate $β(\mathbf{X})$. We provide a spectral analysis showing that $β(\mathbf{X})$ continuously interpolates the shortcut between identity ($β=0$), orthogonal projection ($β=1$), and Householder reflection ($β=2$). Furthermore, we rewrite the residual update as a synchronized rank-1 delta write: $β$ scales both the removal of the current $\mathbf{k}$-component and the injection of the new $\mathbf{k}$-component. This unification enables explicit control of the shortcut spectrum along a data-dependent direction while retaining stable training behavior. Empirically, replacing Transformer residual additions with DDL improves validation loss and perplexity, as well as downstream evaluation accuracy on language modeling tasks, with larger gains in the expanded-state setting.
comment: Project Page: https://github.com/yifanzhang-pro/deep-delta-learning
♻ ☆ PICACO: Pluralistic In-Context Value Alignment of LLMs via Total Correlation Optimization
In-Context Learning has shown great potential for aligning Large Language Models (LLMs) with human values, helping reduce harmful outputs and accommodate diverse preferences without costly post-training, known as In-Context Alignment (ICA). However, LLMs' comprehension of input prompts remains agnostic, limiting ICA's ability to address value tensions--human values are inherently pluralistic, often imposing conflicting demands, e.g., stimulation vs. tradition. Current ICA methods therefore face the Instruction Bottleneck challenge, where LLMs struggle to reconcile multiple intended values within a single prompt, leading to incomplete or biased alignment. To address this, we propose PICACO, a novel pluralistic ICA method. Without fine-tuning, PICACO optimizes a meta-instruction that navigates multiple values to better elicit LLMs' understanding of them and improve their alignment. This is achieved by maximizing the total correlation between specified values and LLM responses, theoretically reinforcing value correlation while reducing distractive noise, resulting in effective value instructions. Extensive experiments on five value sets show that PICACO works well with both black-box and open-source LLMs, outperforms several recent strong baselines, and achieves a better balance across up to 8 distinct values.
♻ ☆ InvThink: Towards AI Safety via Inverse Reasoning
We present InvThink, a simple yet powerful approach that gives language models the capability of inverse thinking: reasoning through failure modes before generating responses. Unlike existing safety alignment methods that optimize directly for safe response, InvThink instructs models to 1) enumerate potential harms, 2) analyze their consequences, and 3) generate safe outputs that proactively avoid these risks. Our paper reveals three key findings: (i) InvThink demonstrates significantly improved safety reasoning as model size scales, compared to existing safety methods. (ii) InvThink mitigates safety tax; by training models to systematically consider failure modes, it preserves general reasoning capabilities on standard benchmarks. (iii) beyond general safety tasks, InvThink excels in high-stakes domains including external-facing applications (medicine, finance, law) and agentic risk scenarios (blackmail, murder), achieving up to 17.8% reduction in harmful responses compared to baseline methods like SafetyPrompt. We further equip InvThink with supervised fine-tuning, and reinforcement learning across three LLM families. These results suggest that InvThink provides a scalable and generalizable path toward safer, more capable language models.
♻ ☆ MetaLint: Generalizable Idiomatic Code Quality Analysis through Instruction-Following and Easy-to-Hard Generalization
Large Language Models excel at code generation but struggle with code quality analysis, where best practices evolve and cannot be fully captured by static training data. We introduce MetaLint, a training framework that treats code quality analysis as detecting best practice violations from high-level specifications over semantic code fragments (code idioms). Instead of training on a fixed set of rules, MetaLint reorganizes supervision around dynamically specified best practices using synthetic linter-derived labels, integrated with instruction-following and preference optimization. This encourages extrapolation to more complex, unseen best practices at test time, consistent with easy-to-hard generalization without retraining. To evaluate MetaLint, we create a new benchmark of hard-to-detect best practices inspired by Python Enhancement Proposals. Across this benchmark, MetaLint improves generalization to unseen best practices. Qwen3-4B achieves a 2.7x detection F-score gain (25.9% -> 70.4%), the highest recall, and a 26.7% localization F-score, matching larger models such as o3-mini. These gains generalize across programming languages, model families, scales, reasoning settings, and linter sources.
♻ ☆ IRIS: Intrinsic Reward Image Synthesis
Despite the success of Reinforcement Learning from Human Feedback (RLHF) in language reasoning, its application to autoregressive Text-to-Image (T2I) generation is often constrained by the limited availability of human preference data. This paper explores how an autoregressive T2I model can learn from internal signals without relying on external rewards or labeled data. Contrary to recent findings in math and code reasoning, we show that minimizing self-certainty, rather than maximizing it, improves image generation. We observe that autoregressive T2I models with higher certainty are likely to generate simple and uniform images, which are less aligned with human preferences, and models with lower certainty are likely to generate vivid images rich in detail. Based on this observation, we propose IRIS(Intrinsic Reward Image Synthesis), the first framework to improve autoregressive T2I models with reinforcement learning using only an intrinsic reward. Empirical results demonstrate that applying IRIS to autoregressive T2I models achieves performance superior to those trained by individual external rewards, and matching those trained by ensemble external rewards. IRIS also incentivizes the emergence of nuanced CoT reasoning for high-quality image generation.
♻ ☆ Batch Speculative Decoding Done Right
Speculative decoding must produce outputs distribution identical to standard autoregressive generation-this output equivalence is not an optimization target but the defining criterion of valid speculative decoding. We demonstrate that all existing batch speculative decoding implementations violate this fundamental requirement, producing corrupted outputs ranging from repetitive tokens to gibberish. These failures stem from the ragged tensor problem: sequences in the same batch accept different numbers of draft tokens, desynchronizing position IDs, attention masks, and KV-cache state. We present the first authentic batch speculative decoding framework. We (1) formalize the synchronization invariants that valid batch speculative decoding must satisfy, (2) present EQSPEC, the first algorithm that guarantees output equivalence, and analyze its cost structure to show that alignment overhead grows superlinearly and consumes up to 40\% of computation, and (3) introduce EXSPEC, which reduces this overhead through cross-batch scheduling that dynamically groups same-length sequences. On SpecBench across Vicuna-7B/68M, Qwen3-8B/0.6B, and GLM-4-9B/0.6B pairs, our methods achieve up to 3x throughput improvement at batch size 8 while maintaining algorithmic correctness. Our methods achieve 95\% decoding-equivalence, with residual divergence attributable to floating-point non-determinism in GPU inference, not the synchronization failures that cause near-zero equivalence of prior methods. Our code is available at https://github.com/eBay/spec_dec.
♻ ☆ TALES: A Taxonomy and Analysis of Cultural Representations in LLM-generated Stories
Millions of users across the globe turn to AI chatbots for their creative needs, inviting widespread interest in understanding how they represent diverse cultures. However, evaluating cultural representations in open-ended tasks remains challenging and underexplored. In this work, we present TALES, an evaluation of cultural misrepresentations in LLM-generated stories for diverse Indian cultural identities. First, we develop TALES-Tax, a taxonomy of cultural misrepresentations by collating insights from participants with lived experiences in India through focus groups (N=9) and individual surveys (N=15). Using TALES-Tax, we evaluate 6 models through a large-scale annotation study spanning 2925 annotations from 108 annotators with lived experience and native language proficiency from across 71 regions in India and 14 languages. Concerningly, we find that 88% of the generated stories contain misrepresentations, and such errors are more prevalent in mid- and low-resourced languages and stories based in peri-urban regions in India. We also transform the annotations into TALES-QA, a standalone question bank to evaluate the cultural knowledge of models.
comment: Proceedings of the 2026 CHI Conference on Human Factors in Computing Systems (CHI '26), April 13--17, 2026, Barcelona, Spain
♻ ☆ GraphGhost: Tracing Structures Behind Large Language Models
Large Language Models (LLMs) exhibit strong reasoning capabilities on structured tasks, yet the internal mechanisms underlying such behaviors remain poorly understood. Existing interpretation methods mainly focus on token-level attributions, which provide limited insight into multi-step reasoning inside the model. We propose GraphGhost, a graph-based framework that models internal token interactions and neuron activations in LLMs as graphs. By aggregating token dependencies traced across layers, GraphGhost captures global information flow underlying model predictions. We formalize GraphGhost from two complementary perspectives: a sample view, which traces token dependencies for individual predictions, and a dataset view, which aggregates recurring structural patterns learned during training. Through graph analytics and quantitative experiments, we show that graph structural properties are closely associated with influential tokens and neuron nodes, and that perturbations to structurally critical nodes lead to measurable changes in reasoning behavior. These results indicate that the structural patterns captured by GraphGhost reflect meaningful internal organization of LLM reasoning. The codes are available at software part. Artifacts will be made available for research use only.
♻ ☆ Agentic Context Engineering: Evolving Contexts for Self-Improving Language Models ICLR 2026
Large language model (LLM) applications such as agents and domain-specific reasoning increasingly rely on context adaptation -- modifying inputs with instructions, strategies, or evidence, rather than weight updates. Prior approaches improve usability but often suffer from brevity bias, which drops domain insights for concise summaries, and from context collapse, where iterative rewriting erodes details over time. Building on the adaptive memory introduced by Dynamic Cheatsheet, we introduce ACE (Agentic Context Engineering), a framework that treats contexts as evolving playbooks that accumulate, refine, and organize strategies through a modular process of generation, reflection, and curation. ACE prevents collapse with structured, incremental updates that preserve detailed knowledge and scale with long-context models. Across agent and domain-specific benchmarks, ACE optimizes contexts both offline (e.g., system prompts) and online (e.g., agent memory), consistently outperforming strong baselines: +10.6% on agents and +8.6% on finance, while significantly reducing adaptation latency and rollout cost. Notably, ACE could adapt effectively without labeled supervision and instead by leveraging natural execution feedback. On the AppWorld leaderboard, ACE matches the top-ranked production-level agent on the overall average and surpasses it on the harder test-challenge split, despite using a smaller open-source model. These results show that comprehensive, evolving contexts enable scalable, efficient, and self-improving LLM systems with low overhead.
comment: ICLR 2026. 23 pages
Machine Learning 302
☆ Discovering Hidden Gems in Model Repositories
Public repositories host millions of fine-tuned models, yet community usage remains disproportionately concentrated on a small number of foundation checkpoints. We investigate whether this concentration reflects efficient market selection or if superior models are systematically overlooked. Through an extensive evaluation of over 2,000 models, we show the prevalence of "hidden gems", unpopular fine-tunes that significantly outperform their popular counterparts. Notably, within the Llama-3.1-8B family, we find rarely downloaded checkpoints that improve math performance from 83.2% to 96.0% without increasing inference costs. However, discovering these models through exhaustive evaluation of every uploaded model is computationally infeasible. We therefore formulate model discovery as a Multi-Armed Bandit problem and accelerate the Sequential Halving search algorithm by using shared query sets and aggressive elimination schedules. Our method retrieves top models with as few as 50 queries per candidate, accelerating discovery by over 50x.
☆ Hybrid Linear Attention Done Right: Efficient Distillation and Effective Architectures for Extremely Long Contexts
Hybrid Transformer architectures, which combine softmax attention blocks and recurrent neural networks (RNNs), have shown a desirable performance-throughput tradeoff for long-context modeling, but their adoption and studies are hindered by the prohibitive cost of large-scale pre-training from scratch. Some recent studies have shown that pre-trained softmax attention blocks can be converted into RNN blocks through parameter transfer and knowledge distillation. However, these transfer methods require substantial amounts of training data (more than 10B tokens), and the resulting hybrid models also exhibit poor long-context performance, which is the scenario where hybrid models enjoy significant inference speedups over Transformer-based models. In this paper, we present HALO (Hybrid Attention via Layer Optimization), a pipeline for distilling Transformer models into RNN-attention hybrid models. We then present HypeNet, a hybrid architecture with superior length generalization enabled by a novel position encoding scheme (named HyPE) and various architectural modifications. We convert the Qwen3 series into HypeNet using HALO, achieving performance comparable to the original Transformer models while enjoying superior long-context performance and efficiency. The conversion requires just 2.3B tokens, less than 0.01% of their pre-training data
comment: 20 pages, 8 figures
☆ Late Breaking Results: Conversion of Neural Networks into Logic Flows for Edge Computing DATE2026
Neural networks have been successfully applied in various resource-constrained edge devices, where usually central processing units (CPUs) instead of graphics processing units exist due to limited power availability. State-of-the-art research still focuses on efficiently executing enormous numbers of multiply-accumulate (MAC) operations. However, CPUs themselves are not good at executing such mathematical operations on a large scale, since they are more suited to execute control flow logic, i.e., computer algorithms. To enhance the computation efficiency of neural networks on CPUs, in this paper, we propose to convert them into logic flows for execution. Specifically, neural networks are first converted into equivalent decision trees, from which decision paths with constant leaves are then selected and compressed into logic flows. Such logic flows consist of if and else structures and a reduced number of MAC operations. Experimental results demonstrate that the latency can be reduced by up to 14.9 % on a simulated RISC-V CPU without any accuracy degradation. The code is open source at https://github.com/TUDa-HWAI/NN2Logic
comment: accepted by DATE2026
☆ FineInstructions: Scaling Synthetic Instructions to Pre-Training Scale
Due to limited supervised training data, large language models (LLMs) are typically pre-trained via a self-supervised "predict the next word" objective on a vast amount of unstructured text data. To make the resulting model useful to users, it is further trained on a far smaller amount of "instruction-tuning" data comprised of supervised training examples of instructions and responses. To overcome the limited amount of supervised data, we propose a procedure that can transform the knowledge in internet-scale pre-training documents into billions of synthetic instruction and answer training pairs. The resulting dataset, called FineInstructions, uses ~18M instruction templates created from real user-written queries and prompts. These instruction templates are matched to and instantiated with human-written source documents from unstructured pre-training corpora. With "supervised" synthetic training data generated at this scale, an LLM can be pre-trained from scratch solely with the instruction-tuning objective, which is far more in-distribution with the expected downstream usage of LLMs (responding to user prompts). We conduct controlled token-for-token training experiments and find pre-training on FineInstructions outperforms standard pre-training and other proposed synthetic pre-training techniques on standard benchmarks measuring free-form response quality. Our resources can be found at https://huggingface.co/fineinstructions .
☆ Routing the Lottery: Adaptive Subnetworks for Heterogeneous Data
In pruning, the Lottery Ticket Hypothesis posits that large networks contain sparse subnetworks, or winning tickets, that can be trained in isolation to match the performance of their dense counterparts. However, most existing approaches assume a single universal winning ticket shared across all inputs, ignoring the inherent heterogeneity of real-world data. In this work, we propose Routing the Lottery (RTL), an adaptive pruning framework that discovers multiple specialized subnetworks, called adaptive tickets, each tailored to a class, semantic cluster, or environmental condition. Across diverse datasets and tasks, RTL consistently outperforms single- and multi-model baselines in balanced accuracy and recall, while using up to 10 times fewer parameters than independent models and exhibiting semantically aligned. Furthermore, we identify subnetwork collapse, a performance drop under aggressive pruning, and introduce a subnetwork similarity score that enables label-free diagnosis of oversparsification. Overall, our results recast pruning as a mechanism for aligning model structure with data heterogeneity, paving the way toward more modular and context-aware deep learning.
☆ PRISM: Distribution-free Adaptive Computation of Matrix Functions for Accelerating Neural Network Training
Matrix functions such as square root, inverse roots, and orthogonalization play a central role in preconditioned gradient methods for neural network training. This has motivated the development of iterative algorithms that avoid explicit eigendecompositions and rely primarily on matrix multiplications, making them well suited for modern GPU accelerators. We present PRISM (Polynomial-fitting and Randomized Iterative Sketching for Matrix functions computation), a general framework for accelerating iterative algorithms for computing matrix functions. PRISM combines adaptive polynomial approximation with randomized sketching: at each iteration, it fits a polynomial surrogate to the current spectrum via a sketched least-squares problem, adapting to the instance at hand with minimal overhead. We apply PRISM to accelerate Newton-Schulz-like iterations for matrix square roots and orthogonalization, which are core primitives in machine learning. Unlike prior methods, PRISM requires no explicit spectral bounds or singular value estimates; and it adapts automatically to the evolving spectrum. Empirically, PRISM accelerates training when integrated into Shampoo and Muon optimizers.
☆ StepShield: When, Not Whether to Intervene on Rogue Agents
Existing agent safety benchmarks report binary accuracy, conflating early intervention with post-mortem analysis. A detector that flags a violation at step 8 enables intervention; one that reports it at step 48 provides only forensic value. This distinction is critical, yet current benchmarks cannot measure it. We introduce StepShield, the first benchmark to evaluate when violations are detected, not just whether. StepShield contains 9,213 code agent trajectories, including 1,278 meticulously annotated training pairs and a 7,935-trajectory test set with a realistic 8.1% rogue rate. Rogue behaviors are grounded in real-world security incidents across six categories. We propose three novel temporal metrics: Early Intervention Rate (EIR), Intervention Gap, and Tokens Saved. Surprisingly, our evaluation reveals that an LLM-based judge achieves 59% EIR while a static analyzer achieves only 26%, a 2.3x performance gap that is entirely invisible to standard accuracy metrics. We further show that early detection has direct economic benefits: our cascaded HybridGuard detector reduces monitoring costs by 75% and projects to $108M in cumulative savings over five years at enterprise scale. By shifting the focus of evaluation from whether to when, StepShield provides a new foundation for building safer and more economically viable AI agents. The code and data are released under an Apache 2.0 license.
comment: 16 pages, 2 figures, 14 tables
☆ Pay for Hints, Not Answers: LLM Shepherding for Cost-Efficient Inference
Large Language Models (LLMs) deliver state-of-the-art performance on complex reasoning tasks, but their inference costs limit deployment at scale. Small Language Models (SLMs) offer dramatic cost savings yet lag substantially in accuracy. Existing approaches - routing and cascading - treat the LLM as an all-or-nothing resource: either the query bypasses the LLM entirely, or the LLM generates a complete response at full cost. We introduce LLM Shepherding, a framework that requests only a short prefix (a hint) from the LLM and provides it to SLM. This simple mechanism is surprisingly effective for math and coding tasks: even hints comprising 10-30% of the full LLM response improve SLM accuracy significantly. Shepherding generalizes both routing and cascading, and it achieves lower cost under oracle decision-making. We develop a two-stage predictor that jointly determines whether a hint is needed and how many tokens to request. On the widely-used mathematical reasoning (GSM8K, CNK12) and code generation (HumanEval, MBPP) benchmarks, Shepherding reduces costs by 42-94% relative to LLM-only inference. Compared to state-of-the-art routing and cascading baselines, shepherding delivers up to 2.8x cost reduction while matching accuracy. To our knowledge, this is the first work to exploit token-level budget control for SLM-LLM collaboration.
☆ SMOG: Scalable Meta-Learning for Multi-Objective Bayesian Optimization
Multi-objective optimization aims to solve problems with competing objectives, often with only black-box access to a problem and a limited budget of measurements. In many applications, historical data from related optimization tasks is available, creating an opportunity for meta-learning to accelerate the optimization. Bayesian optimization, as a promising technique for black-box optimization, has been extended to meta-learning and multi-objective optimization independently, but methods that simultaneously address both settings - meta-learned priors for multi-objective Bayesian optimization - remain largely unexplored. We propose SMOG, a scalable and modular meta-learning model based on a multi-output Gaussian process that explicitly learns correlations between objectives. SMOG builds a structured joint Gaussian process prior across meta- and target tasks and, after conditioning on metadata, yields a closed-form target-task prior augmented by a flexible residual multi-output kernel. This construction propagates metadata uncertainty into the target surrogate in a principled way. SMOG supports hierarchical, parallel training: meta-task Gaussian processes are fit once and then cached, achieving linear scaling with the number of meta-tasks. The resulting surrogate integrates seamlessly with standard multi-objective Bayesian optimization acquisition functions.
comment: 19 pages, 15 figures
☆ SWE-Replay: Efficient Test-Time Scaling for Software Engineering Agents
Test-time scaling has been widely adopted to enhance the capabilities of Large Language Model (LLM) agents in software engineering (SWE) tasks. However, the standard approach of repeatedly sampling trajectories from scratch is computationally expensive. While recent methods have attempted to mitigate costs using specialized value agents, they can suffer from model miscalibration and fail to generalize to modern agents that synthesize custom bash scripts as tools. In this paper, we introduce SWE-Replay, the first efficient and generalizable test-time scaling technique for modern agents without reliance on potentially noisy value estimates. SWE-Replay optimizes the scaling process by recycling trajectories from prior trials, dynamically choosing to either explore from scratch or exploit archived experience by branching at critical intermediate steps. This selection of intermediate steps is driven by the potential and reasoning significance of repository exploration, rather than external LLM-based quality estimates. Our evaluation shows that, on SWE-Bench Verified, SWE-Replay consistently outperforms naive scaling, reducing costs by up to 17.4% while maintaining or even improving performance by up to 3.8%. Further evaluation on SWE-Bench Pro and Multilingual validates the generalizability of SWE-Replay, establishing it as a robust foundation for efficient test-time scaling of software engineering agents.
☆ EditYourself: Audio-Driven Generation and Manipulation of Talking Head Videos with Diffusion Transformers
Current generative video models excel at producing novel content from text and image prompts, but leave a critical gap in editing existing pre-recorded videos, where minor alterations to the spoken script require preserving motion, temporal coherence, speaker identity, and accurate lip synchronization. We introduce EditYourself, a DiT-based framework for audio-driven video-to-video (V2V) editing that enables transcript-based modification of talking head videos, including the seamless addition, removal, and retiming of visually spoken content. Building on a general-purpose video diffusion model, EditYourself augments its V2V capabilities with audio conditioning and region-aware, edit-focused training extensions. This enables precise lip synchronization and temporally coherent restructuring of existing performances via spatiotemporal inpainting, including the synthesis of realistic human motion in newly added segments, while maintaining visual fidelity and identity consistency over long durations. This work represents a foundational step toward generative video models as practical tools for professional video post-production.
comment: Project page: https://edit-yourself.github.io/
☆ Learning Hamiltonian Flow Maps: Mean Flow Consistency for Large-Timestep Molecular Dynamics
Simulating the long-time evolution of Hamiltonian systems is limited by the small timesteps required for stable numerical integration. To overcome this constraint, we introduce a framework to learn Hamiltonian Flow Maps by predicting the mean phase-space evolution over a chosen time span $Δt$, enabling stable large-timestep updates far beyond the stability limits of classical integrators. To this end, we impose a Mean Flow consistency condition for time-averaged Hamiltonian dynamics. Unlike prior approaches, this allows training on independent phase-space samples without access to future states, avoiding expensive trajectory generation. Validated across diverse Hamiltonian systems, our method in particular improves upon molecular dynamics simulations using machine-learned force fields (MLFF). Our models maintain comparable training and inference cost, but support significantly larger integration timesteps while trained directly on widely-available trajectory-free MLFF datasets.
☆ Alpha Discovery via Grammar-Guided Learning and Search
Automatically discovering formulaic alpha factors is a central problem in quantitative finance. Existing methods often ignore syntactic and semantic constraints, relying on exhaustive search over unstructured and unbounded spaces. We present AlphaCFG, a grammar-based framework for defining and discovering alpha factors that are syntactically valid, financially interpretable, and computationally efficient. AlphaCFG uses an alpha-oriented context-free grammar to define a tree-structured, size-controlled search space, and formulates alpha discovery as a tree-structured linguistic Markov decision process, which is then solved using a grammar-aware Monte Carlo Tree Search guided by syntax-sensitive value and policy networks. Experiments on Chinese and U.S. stock market datasets show that AlphaCFG outperforms state-of-the-art baselines in both search efficiency and trading profitability. Beyond trading strategies, AlphaCFG serves as a general framework for symbolic factor discovery and refinement across quantitative finance, including asset pricing and portfolio construction.
comment: 24 pages, 10 figures
☆ Diverse Approaches to Optimal Execution Schedule Generation
We present the first application of MAP-Elites, a quality-diversity algorithm, to trade execution. Rather than searching for a single optimal policy, MAP-Elites generates a diverse portfolio of regime-specialist strategies indexed by liquidity and volatility conditions. Individual specialists achieve 8-10% performance improvements within their behavioural niches, while other cells show degradation, suggesting opportunities for ensemble approaches that combine improved specialists with the baseline PPO policy. Results indicate that quality-diversity methods offer promise for regime-adaptive execution, though substantial computational resources per behavioural cell may be required for robust specialist development across all market conditions. To ensure experimental integrity, we develop a calibrated Gymnasium environment focused on order scheduling rather than tactical placement decisions. The simulator features a transient impact model with exponential decay and square-root volume scaling, fit to 400+ U.S. equities with R^2>0.02 out-of-sample. Within this environment, two Proximal Policy Optimization architectures - both MLP and CNN feature extractors - demonstrate substantial improvements over industry baselines, with the CNN variant achieving 2.13 bps arrival slippage versus 5.23 bps for VWAP on 4,900 out-of-sample orders ($21B notional). These results validate both the simulation realism and provide strong single-policy baselines for quality-diversity methods.
comment: 27 pages, 15 figures, 5 tables
☆ Physics Informed Reconstruction of Four-Dimensional Atmospheric Wind Fields Using Multi-UAS Swarm Observations in a Synthetic Turbulent Environment
Accurate reconstruction of atmospheric wind fields is essential for applications such as weather forecasting, hazard prediction, and wind energy assessment, yet conventional instruments leave spatio-temporal gaps within the lower atmospheric boundary layer. Unmanned aircraft systems (UAS) provide flexible in situ measurements, but individual platforms sample wind only along their flight trajectories, limiting full wind-field recovery. This study presents a framework for reconstructing four-dimensional atmospheric wind fields using measurements obtained from a coordinated UAS swarm. A synthetic turbulence environment and high-fidelity multirotor simulation are used to generate training and evaluation data. Local wind components are estimated from UAS dynamics using a bidirectional long short-term memory network (Bi-LSTM) and assimilated into a physics-informed neural network (PINN) to reconstruct a continuous wind field in space and time. For local wind estimation, the bidirectional LSTM achieves root-mean-square errors (RMSE) of 0.064 and 0.062 m/s for the north and east components in low-wind conditions, increasing to 0.122 to 0.129 m/s under moderate winds and 0.271 to 0.273 m/s in high-wind conditions, while the vertical component exhibits higher error, with RMSE values of 0.029 to 0.091 m/s. The physics-informed reconstruction recovers the dominant spatial and temporal structure of the wind field up to 1000 m altitude while preserving mean flow direction and vertical shear. Under moderate wind conditions, the reconstructed mean wind field achieves an overall RMSE between 0.118 and 0.154 m/s across evaluated UAS configurations, with the lowest error obtained using a five-UAS swarm. These results demonstrate that coordinated UAS measurements enable accurate and scalable four-dimensional wind-field reconstruction without dedicated wind sensors or fixed infrastructure.
☆ Value-Based Pre-Training with Downstream Feedback
Can a small amount of verified goal information steer the expensive self-supervised pretraining of foundation models? Standard pretraining optimizes a fixed proxy objective (e.g., next-token prediction), which can misallocate compute away from downstream capabilities of interest. We introduce V-Pretraining: a value-based, modality-agnostic method for controlled continued pretraining in which a lightweight task designer reshapes the pretraining task to maximize the value of each gradient step. For example, consider self-supervised learning (SSL) with sample augmentation. The V-Pretraining task designer selects pretraining tasks (e.g., augmentations) for which the pretraining loss gradient is aligned with a gradient computed over a downstream task (e.g., image segmentation). This helps steer pretraining towards relevant downstream capabilities. Notably, the pretrained model is never updated on downstream task labels; they are used only to shape the pretraining task. Under matched learner update budgets, V-Pretraining of 0.5B--7B language models improves reasoning (GSM8K test Pass@1) by up to 18% relative over standard next-token prediction using only 12% of GSM8K training examples as feedback. In vision SSL, we improve the state-of-the-art results on ADE20K by up to 1.07 mIoU and reduce NYUv2 RMSE while improving ImageNet linear accuracy, and we provide pilot evidence of improved token efficiency in continued pretraining.
☆ Prior-Informed Flow Matching for Graph Reconstruction
We introduce Prior-Informed Flow Matching (PIFM), a conditional flow model for graph reconstruction. Reconstructing graphs from partial observations remains a key challenge; classical embedding methods often lack global consistency, while modern generative models struggle to incorporate structural priors. PIFM bridges this gap by integrating embedding-based priors with continuous-time flow matching. Grounded in a permutation equivariant version of the distortion-perception theory, our method first uses a prior, such as graphons or GraphSAGE/node2vec, to form an informed initial estimate of the adjacency matrix based on local information. It then applies rectified flow matching to refine this estimate, transporting it toward the true distribution of clean graphs and learning a global coupling. Experiments on different datasets demonstrate that PIFM consistently enhances classical embeddings, outperforming them and state-of-the-art generative baselines in reconstruction accuracy.
☆ ECO: Quantized Training without Full-Precision Master Weights
Quantization has significantly improved the compute and memory efficiency of Large Language Model (LLM) training. However, existing approaches still rely on accumulating their updates in high-precision: concretely, gradient updates must be applied to a high-precision weight buffer, known as $\textit{master weights}$. This buffer introduces substantial memory overhead, particularly for Sparse Mixture of Experts (SMoE) models, where model parameters and optimizer states dominate memory usage. To address this, we introduce the Error-Compensating Optimizer (ECO), which eliminates master weights by applying updates directly to quantized parameters. ECO quantizes weights after each step and carefully injects the resulting quantization error into the optimizer momentum, forming an error-feedback loop with no additional memory. We prove that, under standard assumptions and a decaying learning rate, ECO converges to a constant-radius neighborhood of the optimum, while naive master-weight removal can incur an error that is inversely proportional to the learning rate. We show empirical results for pretraining small Transformers (30-800M), a Gemma-3 1B model, and a 2.1B parameter Sparse MoE model with FP8 quantization, and fine-tuning DeepSeek-MoE-16B in INT4 precision. Throughout, ECO matches baselines with master weights up to near-lossless accuracy, significantly shifting the static memory vs validation loss Pareto frontier.
☆ Boosting CVaR Policy Optimization with Quantile Gradients
Optimizing Conditional Value-at-risk (CVaR) using policy gradient (a.k.a CVaR-PG) faces significant challenges of sample inefficiency. This inefficiency stems from the fact that it focuses on tail-end performance and overlooks many sampled trajectories. We address this problem by augmenting CVaR with an expected quantile term. Quantile optimization admits a dynamic programming formulation that leverages all sampled data, thus improves sample efficiency. This does not alter the CVaR objective since CVaR corresponds to the expectation of quantile over the tail. Empirical results in domains with verifiable risk-averse behavior show that our algorithm within the Markovian policy class substantially improves upon CVaR-PG and consistently outperforms other existing methods.
☆ GeoNorm: Unify Pre-Norm and Post-Norm with Geodesic Optimization
The placement of normalization layers, specifically Pre-Norm and Post-Norm, remains an open question in Transformer architecture design. In this work, we rethink these approaches through the lens of manifold optimization, interpreting the outputs of the Feed-Forward Network (FFN) and attention layers as update directions in optimization. Building on this perspective, we introduce GeoNorm, a novel method that replaces standard normalization with geodesic updates on the manifold. Furthermore, analogous to learning rate schedules, we propose a layer-wise update decay for the FFN and attention components. Comprehensive experiments demonstrate that GeoNorm consistently outperforms existing normalization methods in Transformer models. Crucially, GeoNorm can be seamlessly integrated into standard Transformer architectures, achieving performance improvements with negligible additional computational cost.
comment: Tech Report
☆ Latent Adversarial Regularization for Offline Preference Optimization
Learning from human feedback typically relies on preference optimization that constrains policy updates through token-level regularization. However, preference optimization for language models is particularly challenging because token-space similarity does not imply semantic or behavioral similarity. To address this challenge, we leverage latent-space regularization for language model preference optimization. We introduce GANPO, which achieves latent-space regularization by penalizing divergence between the internal representations of a policy model and a reference model. Given that latent representations are not associated with explicit probability densities, we adopt an adversarial approach inspired by GANs to minimize latent-space divergence. We integrate GANPO as a regularizer into existing offline preference optimization objectives. Experiments across multiple model architectures and tasks show consistent improvements from latent-space regularization. Further, by comparing GANPO-induced inferential biases with those from token-level regularization, we find that GANPO provides more robust structural feedback under distributional shift and noise while maintaining comparable downstream performance with minor computational overhead.
☆ Where Do the Joules Go? Diagnosing Inference Energy Consumption
Energy is now a critical ML computing resource. While measuring energy consumption and observing trends is a valuable first step, accurately understanding and diagnosing why those differences occur is crucial for optimization. To that end, we begin by presenting a large-scale measurement study of inference time and energy across the generative AI landscape with 46 models, 7 tasks, and 1,858 different configurations on NVIDIA H100 and B200 GPUs. Our empirical findings span order-of-magnitude variations: LLM task type can lead to 25$\times$ energy differences, video generation sometimes consumes more than 100$\times$ the energy of images, and GPU utilization differences can result in 3--5$\times$ energy differences. Based on our observations, we present a framework for reasoning about the underlying mechanisms that govern time and energy consumption. The essence is that time and energy are determined by latent metrics like memory and utilization, which are in turn affected by various factors across the algorithm, software, and hardware layers. Our framework also extends directly to throughput per watt, a critical metric for power-constrained datacenters.
comment: The ML.ENERGY Leaderboard v3.0 is open https://ml.energy/leaderboard
☆ Making Foundation Models Probabilistic via Singular Value Ensembles
Foundation models have become a dominant paradigm in machine learning, achieving remarkable performance across diverse tasks through large-scale pretraining. However, these models often yield overconfident, uncalibrated predictions. The standard approach to quantifying epistemic uncertainty, training an ensemble of independent models, incurs prohibitive computational costs that scale linearly with ensemble size, making it impractical for large foundation models. We propose Singular Value Ensemble (SVE), a parameter-efficient implicit ensemble method that builds on a simple, but powerful core assumption: namely, that the singular vectors of the weight matrices constitute meaningful subspaces of the model's knowledge. Pretrained foundation models encode rich, transferable information in their weight matrices. If the singular vectors are indeed meaningful (orthogonal) "knowledge directions". To obtain a model ensemble, we modulate only how strongly each direction contributes to the output. Rather than learning entirely new parameters, we freeze the singular vectors and only train per-member singular values that rescale the contribution of each direction in that shared knowledge basis. Ensemble diversity emerges naturally as stochastic initialization and random sampling of mini-batches during joint training cause different members to converge to different combinations of the same underlying knowledge. SVE achieves uncertainty quantification comparable to explicit deep ensembles while increasing the parameter count of the base model by less than 1%, making principled uncertainty estimation accessible in resource-constrained settings. We validate SVE on NLP and vision tasks with various different backbones and show that it improves calibration while maintaining predictive accuracy.
☆ Learning to Communicate Across Modalities: Perceptual Heterogeneity in Multi-Agent Systems
Emergent communication offers insight into how agents develop shared structured representations, yet most research assumes homogeneous modalities or aligned representational spaces, overlooking the perceptual heterogeneity of real-world settings. We study a heterogeneous multi-step binary communication game where agents differ in modality and lack perceptual grounding. Despite perceptual misalignment, multimodal systems converge to class-consistent messages grounded in perceptual input. Unimodal systems communicate more efficiently, using fewer bits and achieving lower classification entropy, while multimodal agents require greater information exchange and exhibit higher uncertainty. Bit perturbation experiments provide strong evidence that meaning is encoded in a distributional rather than compositional manner, as each bit's contribution depends on its surrounding pattern. Finally, interoperability analyses show that systems trained in different perceptual worlds fail to directly communicate, but limited fine-tuning enables successful cross-system communication. This work positions emergent communication as a framework for studying how agents adapt and transfer representations across heterogeneous modalities, opening new directions for both theory and experimentation.
comment: To be published in EvoLang XVI proceedings. 15 pages, 17 figures
☆ A Separable Architecture for Continuous Token Representation in Language Models
Transformer scaling law analyses typically treat parameters as interchangeable; an abstraction that accurately predicts loss-compute relationships. Yet, in sub-billion-parameter small language models (SLMs), embedding matrices dominate the parameter budget. This work argues that this allocation is as suboptimal as it is counterintuitive. Leviathan is an architecture with a continuous embedding generator to replace the discrete lookup tables of canonical models. Evaluating on the Pile dataset under isoparametric settings, Leviathan consistently outperforms a standard, LLaMA-style architecture. By means of an empirical power-law fit, Leviathan exhibits a markedly superior effective parameter capacity. Across the regime studied, Leviathan behaves as a dense model with $1.47$ to $2.11 \times$ more parameters.
☆ Optimizing Agentic Workflows using Meta-tools
Agentic AI enables LLM to dynamically reason, plan, and interact with tools to solve complex tasks. However, agentic workflows often require many iterative reasoning steps and tool invocations, leading to significant operational expense, end-to-end latency and failures due to hallucinations. This work introduces Agent Workflow Optimization (AWO), a framework that identifies and optimizes redundant tool execution patterns to improve the efficiency and robustness of agentic workflows. AWO analyzes existing workflow traces to discover recurring sequences of tool calls and transforms them into meta-tools, which are deterministic, composite tools that bundle multiple agent actions into a single invocation. Meta-tools bypass unnecessary intermediate LLM reasoning steps and reduce operational cost while also shortening execution paths, leading to fewer failures. Experiments on two agentic AI benchmarks show that AWO reduces the number of LLM calls up to 11.9% while also increasing the task success rate by up to 4.2 percent points.
☆ Cross-Fusion Distance: A Novel Metric for Measuring Fusion and Separability Between Data Groups in Representation Space
Quantifying degrees of fusion and separability between data groups in representation space is a fundamental problem in representation learning, particularly under domain shift. A meaningful metric should capture fusion-altering factors like geometric displacement between representation groups, whose variations change the extent of fusion, while remaining invariant to fusion-preserving factors such as global scaling and sampling-induced layout changes, whose variations do not. Existing distributional distance metrics conflate these factors, leading to measures that are not informative of the true extent of fusion between data groups. We introduce Cross-Fusion Distance (CFD), a principled measure that isolates fusion-altering geometry while remaining robust to fusion-preserving variations, with linear computational complexity. We characterize the invariance and sensitivity properties of CFD theoretically and validate them in controlled synthetic experiments. For practical utility on real-world datasets with domain shift, CFD aligns more closely with downstream generalization degradation than commonly used alternatives. Overall, CFD provides a theoretically grounded and interpretable distance measure for representation learning.
comment: 19 pages
☆ Holographic generative flows with AdS/CFT
We present a framework for generative machine learning that leverages the holographic principle of quantum gravity, or to be more precise its manifestation as the anti-de Sitter/conformal field theory (AdS/CFT) correspondence, with techniques for deep learning and transport theory. Our proposal is to represent the flow of data from a base distribution to some learned distribution using the bulk-to-boundary mapping of scalar fields in AdS. In the language of machine learning, we are representing and augmenting the flow-matching algorithm with AdS physics. Using a checkerboard toy dataset and MNIST, we find that our model achieves faster and higher quality convergence than comparable physics-free flow-matching models. Our method provides a physically interpretable version of flow matching. More broadly, it establishes the utility of AdS physics and geometry in the development of novel paradigms in generative modeling.
comment: v1: 13 pages, 6 figures
☆ Per-parameter Task Arithmetic for Unlearning in Large Language Models
In large language model (LLM) unlearning, private information is required to be removed. Task arithmetic unlearns by subtracting a specific task vector (TV)--defined as the parameter difference between a privacy-information-tuned model and the original model. While efficient, it can cause over-forgetting by disrupting parameters essential for retaining other information. Motivated by the observation that each parameter exhibits different importance for forgetting versus retention, we propose a per-parameter task arithmetic (PerTA) mechanism to rescale the TV, allowing per-parameter adjustment. These weights quantify the relative importance of each parameter for forgetting versus retention, estimated via gradients (i.e., PerTA-grad) or the diagonal Fisher information approximation (i.e., PerTA-fisher). Moreover, we discuss the effectiveness of PerTA, extend it to a more general form, and provide further analysis. Extensive experiments demonstrate that PerTA consistently improves upon standard TV, and in many cases surpasses widely used training-based unlearning methods in both forgetting effectiveness and overall model utility. By retaining the efficiency of task arithmetic while mitigating over-forgetting, PerTA offers a principled and practical framework for LLM unlearning.
☆ The Ensemble Inverse Problem: Applications and Methods
We introduce a new multivariate statistical problem that we refer to as the Ensemble Inverse Problem (EIP). The aim of EIP is to invert for an ensemble that is distributed according to the pushforward of a prior under a forward process. In high energy physics (HEP), this is related to a widely known problem called unfolding, which aims to reconstruct the true physics distribution of quantities, such as momentum and angle, from measurements that are distorted by detector effects. In recent applications, the EIP also arises in full waveform inversion (FWI) and inverse imaging with unknown priors. We propose non-iterative inference-time methods that construct posterior samplers based on a new class of conditional generative models, which we call ensemble inverse generative models. For the posterior modeling, these models additionally use the ensemble information contained in the observation set on top of single measurements. Unlike existing methods, our proposed methods avoid explicit and iterative use of the forward model at inference time via training across several sets of truth-observation pairs that are consistent with the same forward model, but originate from a wide range of priors. We demonstrate that this training procedure implicitly encodes the likelihood model. The use of ensemble information helps posterior inference and enables generalization to unseen priors. We benchmark the proposed method on several synthetic and real datasets in inverse imaging, HEP, and FWI. The codes are available at https://github.com/ZhengyanHuan/The-Ensemble-Inverse-Problem--Applications-and-Methods.
comment: 26 pages, 11 figures, in peer review
☆ From Logits to Latents: Contrastive Representation Shaping for LLM Unlearning
Most LLM unlearning methods aim to approximate retrain-from-scratch behaviors with minimal distribution shift, often via alignment-style objectives defined in the prediction space. While effective at reducing forgotten content generation, such approaches may act as suppression: forgotten concepts can persist in representations and remain entangled with retained knowledge. We introduce CLReg, a contrastive representation regularizer that identifies forget features while pushing them away from retain features, explicitly reducing forget-retain interference with minimal shifts on retain features. We provide first theoretical insights that relate representation shaping to entanglement reduction. Across unlearning benchmarks and LLMs of different sizes, CLReg decreases forget-retain representation entanglement that facilitates mainstream unlearning methods without positing extra privacy risks, inspiring future work that reshapes the representation space to remove forget concepts.
☆ Visual-Guided Key-Token Regularization for Multimodal Large Language Model Unlearning
Unlearning in Multimodal Large Language Models (MLLMs) prevents the model from revealing private information when queried about target images. Existing MLLM unlearning methods largely adopt approaches developed for LLMs. They treat all answer tokens uniformly, disregarding their varying importance in the unlearning process. Moreover, these methods focus exclusively on the language modality, disregarding visual cues that indicate key tokens in answers. In this paper, after formulating the problem of unlearning in multimodal question answering for MLLMs, we propose Visual-Guided Key-Token Regularization (ViKeR). We leverage irrelevant visual inputs to predict ideal post-unlearning token-level distributions and use these distributions to regularize the unlearning process, thereby prioritizing key tokens. Further, we define key tokens in unlearning via information entropy and discuss ViKeR's effectiveness through token-level gradient reweighting, which amplifies updates on key tokens. Experiments on MLLMU and CLEAR benchmarks demonstrate that our method effectively performs unlearning while mitigating forgetting and maintaining response coherence.
☆ TBDFiltering: Sample-Efficient Tree-Based Data Filtering
The quality of machine learning models depends heavily on their training data. Selecting high-quality, diverse training sets for large language models (LLMs) is a difficult task, due to the lack of cheap and reliable quality metrics. While querying existing LLMs for document quality is common, this is not scalable to the large number (billions) of documents used in training. Instead, practitioners often use classifiers trained on sparse quality signals. In this paper, we propose a text-embedding-based hierarchical clustering approach that adaptively selects the documents to be evaluated by the LLM to estimate cluster quality. We prove that our method is query efficient: under the assumption that the hierarchical clustering contains a subtree such that each leaf cluster in the tree is pure enough (i.e., it mostly contains either only good or only bad documents), with high probability, the method can correctly predict the quality of each document after querying a small number of documents. The number of such documents is proportional to the size of the smallest subtree with (almost) pure leaves, without the algorithm knowing this subtree in advance. Furthermore, in a comprehensive experimental study, we demonstrate the benefits of our algorithm compared to other classifier-based filtering methods.
☆ Putting a Face to Forgetting: Continual Learning meets Mechanistic Interpretability
Catastrophic forgetting in continual learning is often measured at the performance or last-layer representation level, overlooking the underlying mechanisms. We introduce a mechanistic framework that offers a geometric interpretation of catastrophic forgetting as the result of transformations to the encoding of individual features. These transformations can lead to forgetting by reducing the allocated capacity of features (worse representation) and disrupting their readout by downstream computations. Analysis of a tractable model formalizes this view, allowing us to identify best- and worst-case scenarios. Through experiments on this model, we empirically test our formal analysis and highlight the detrimental effect of depth. Finally, we demonstrate how our framework can be used in the analysis of practical models through the use of Crosscoders. We present a case study of a Vision Transformer trained on sequential CIFAR-10. Our work provides a new, feature-centric vocabulary for continual learning.
☆ Exploring Diverse Generation Paths via Inference-time Stiefel Activation Steering ICLR 2026
Language models often default to a narrow set of high-probability outputs, leaving their generation paths homogeneous and prone to mode collapse. Sampling-based strategies inject randomness but still struggle to guarantee diversity across multiple concurrent generation runs. We address this limitation by introducing STARS ($\textbf{St}$iefel-based $\textbf{A}$ctivation Steering for Diverse $\textbf{R}$ea$\textbf{S}$oning), a training-free, inference-time intervention method that transforms activation steering into an exploration engine. At each token, STARS collects the hidden activations of concurrent generation runs and optimizes multiple additive steering directions jointly on the Stiefel manifold. STARS maximizes the geometric volume of the steered activations, while the Stiefel manifold induces orthogonality of the steering interventions. This formulation explicitly promotes divergent activation vectors of concurrent generation runs, and implicitly promotes divergent generation trajectories. This manifold optimization formulation can be solved using a Riemannian gradient descent algorithm with convergence guarantees, but this algorithm is too time-consuming for real-time inference. To guarantee low latency, we further design a lightweight one-step update with an aggressive, closed-form stepsize. For test case generation and scientific discovery benchmarks, STARS consistently outperforms standard sampling methods, achieving greater diversity without sacrificing qualitative performance.
comment: 34 pages, 2 figures. Accepted for publication at ICLR 2026
☆ MEIDNet: Multimodal generative AI framework for inverse materials design
In this work, we present Multimodal Equivariant Inverse Design Network (MEIDNet), a framework that jointly learns structural information and materials properties through contrastive learning, while encoding structures via an equivariant graph neural network (EGNN). By combining generative inverse design with multimodal learning, our approach accelerates the exploration of chemical-structural space and facilitates the discovery of materials that satisfy predefined property targets. MEIDNet exhibits strong latent-space alignment with cosine similarity 0.96 by fusion of three modalities through cross-modal learning. Through implementation of curriculum learning strategies, MEIDNet achieves ~60 times higher learning efficiency than conventional training techniques. The potential of our multimodal approach is demonstrated by generating low-bandgap perovskite structures at a stable, unique, and novel (SUN) rate of 13.6 %, which are further validated by ab initio methods. Our inverse design framework demonstrates both scalability and adaptability, paving the way for the universal learning of chemical space across diverse modalities.
☆ Efficient Stochastic Optimisation via Sequential Monte Carlo
The problem of optimising functions with intractable gradients frequently arise in machine learning and statistics, ranging from maximum marginal likelihood estimation procedures to fine-tuning of generative models. Stochastic approximation methods for this class of problems typically require inner sampling loops to obtain (biased) stochastic gradient estimates, which rapidly becomes computationally expensive. In this work, we develop sequential Monte Carlo (SMC) samplers for optimisation of functions with intractable gradients. Our approach replaces expensive inner sampling methods with efficient SMC approximations, which can result in significant computational gains. We establish convergence results for the basic recursions defined by our methodology which SMC samplers approximate. We demonstrate the effectiveness of our approach on the reward-tuning of energy-based models within various settings.
☆ Rate-Distortion Optimization for Transformer Inference
Transformers achieve superior performance on many tasks, but impose heavy compute and memory requirements during inference. This inference can be made more efficient by partitioning the process across multiple devices, which, in turn, requires compressing its intermediate representations. In this work, we introduce a principled rate-distortion-based framework for lossy compression that learns compact encodings that explicitly trade off bitrate against accuracy. Experiments on language benchmarks show that the proposed codec achieves substantial savings with improved accuracy in some cases, outperforming more complex baseline methods. We characterize and analyze the rate-distortion performance of transformers, offering a unified lens for understanding performance in representation coding. This formulation extends information-theoretic concepts to define the gap between rate and entropy, and derive some of its bounds. We further develop probably approximately correct (PAC)-style bounds for estimating this gap. For different architectures and tasks, we empirically demonstrate that their rates are driven by these bounds, adding to the explainability of the formulation.
☆ Negatives-Dominant Contrastive Learning for Generalization in Imbalanced Domains
Imbalanced Domain Generalization (IDG) focuses on mitigating both domain and label shifts, both of which fundamentally shape the model's decision boundaries, particularly under heterogeneous long-tailed distributions across domains. Despite its practical significance, it remains underexplored, primarily due to the technical complexity of handling their entanglement and the paucity of theoretical foundations. In this paper, we begin by theoretically establishing the generalization bound for IDG, highlighting the role of posterior discrepancy and decision margin. This bound motivates us to focus on directly steering decision boundaries, marking a clear departure from existing methods. Subsequently, we technically propose a novel Negative-Dominant Contrastive Learning (NDCL) for IDG to enhance discriminability while enforce posterior consistency across domains. Specifically, inter-class decision-boundary separation is enhanced by placing greater emphasis on negatives as the primary signal in our contrastive learning, naturally amplifying gradient signals for minority classes to avoid the decision boundary being biased toward majority classes. Meanwhile, intra-class compactness is encouraged through a re-weighted cross-entropy strategy, and posterior consistency across domains is enforced through a prediction-central alignment strategy. Finally, rigorous yet challenging experiments on benchmarks validate the effectiveness of our NDCL. The code is available at https://github.com/Alrash/NDCL.
☆ Mechanistic Data Attribution: Tracing the Training Origins of Interpretable LLM Units
While Mechanistic Interpretability has identified interpretable circuits in LLMs, their causal origins in training data remain elusive. We introduce Mechanistic Data Attribution (MDA), a scalable framework that employs Influence Functions to trace interpretable units back to specific training samples. Through extensive experiments on the Pythia family, we causally validate that targeted intervention--removing or augmenting a small fraction of high-influence samples--significantly modulates the emergence of interpretable heads, whereas random interventions show no effect. Our analysis reveals that repetitive structural data (e.g., LaTeX, XML) acts as a mechanistic catalyst. Furthermore, we observe that interventions targeting induction head formation induce a concurrent change in the model's in-context learning (ICL) capability. This provides direct causal evidence for the long-standing hypothesis regarding the functional link between induction heads and ICL. Finally, we propose a mechanistic data augmentation pipeline that consistently accelerates circuit convergence across model scales, providing a principled methodology for steering the developmental trajectories of LLMs.
☆ Geometry of Drifting MDPs with Path-Integral Stability Certificates
Real-world reinforcement learning is often \emph{nonstationary}: rewards and dynamics drift, accelerate, oscillate, and trigger abrupt switches in the optimal action. Existing theory often represents nonstationarity with coarse-scale models that measure \emph{how much} the environment changes, not \emph{how} it changes locally -- even though acceleration and near-ties drive tracking error and policy chattering. We take a geometric view of nonstationary discounted Markov Decision Processes (MDPs) by modeling the environment as a differentiable homotopy path and tracking the induced motion of the optimal Bellman fixed point. This yields a length--curvature--kink signature of intrinsic complexity: cumulative drift, acceleration/oscillation, and action-gap-induced nonsmoothness. We prove a solver-agnostic path-integral stability bound and derive gap-safe feasible regions that certify local stability away from switch regimes. Building on these results, we introduce \textit{Homotopy-Tracking RL (HT-RL)} and \textit{HT-MCTS}, lightweight wrappers that estimate replay-based proxies of length, curvature, and near-tie proximity online and adapt learning or planning intensity accordingly. Experiments show improved tracking and dynamic regret over matched static baselines, with the largest gains in oscillatory and switch-prone regimes.
☆ Batched First-Order Methods for Parallel LP Solving in MIP
We present a batched first-order method for solving multiple linear programs in parallel on GPUs. Our approach extends the primal-dual hybrid gradient algorithm to efficiently solve batches of related linear programming problems that arise in mixed-integer programming techniques such as strong branching and bound tightening. By leveraging matrix-matrix operations instead of repeated matrix-vector operations, we obtain significant computational advantages on GPU architectures. We demonstrate the effectiveness of our approach on various case studies and identify the problem sizes where first-order methods outperform traditional simplex-based solvers depending on the computational environment one can use. This is a significant step for the design and development of integer programming algorithms tightly exploiting GPU capabilities where we argue that some specific operations should be allocated to GPUs and performed in full instead of using light-weight heuristic approaches on CPUs.
comment: 15 pages, 4 figures, 4 tables
☆ Generalized Information Gathering Under Dynamics Uncertainty
An agent operating in an unknown dynamical system must learn its dynamics from observations. Active information gathering accelerates this learning, but existing methods derive bespoke costs for specific modeling choices: dynamics models, belief update procedures, observation models, and planners. We present a unifying framework that decouples these choices from the information-gathering cost by explicitly exposing the causal dependencies between parameters, beliefs, and controls. Using this framework, we derive a general information-gathering cost based on Massey's directed information that assumes only Markov dynamics with additive noise and is otherwise agnostic to modeling choices. We prove that the mutual information cost used in existing literature is a special case of our cost. Then, we leverage our framework to establish an explicit connection between the mutual information cost and information gain in linearized Bayesian estimation, thereby providing theoretical justification for mutual information-based active learning approaches. Finally, we illustrate the practical utility of our framework through experiments spanning linear, nonlinear, and multi-agent systems.
☆ Elign: Equivariant Diffusion Model Alignment from Foundational Machine Learning Force Fields
Generative models for 3D molecular conformations must respect Euclidean symmetries and concentrate probability mass on thermodynamically favorable, mechanically stable structures. However, E(3)-equivariant diffusion models often reproduce biases from semi-empirical training data rather than capturing the equilibrium distribution of a high-fidelity Hamiltonian. While physics-based guidance can correct this, it faces two computational bottlenecks: expensive quantum-chemical evaluations (e.g., DFT) and the need to repeat such queries at every sampling step. We present Elign, a post-training framework that amortizes both costs. First, we replace expensive DFT evaluations with a faster, pretrained foundational machine-learning force field (MLFF) to provide physical signals. Second, we eliminate repeated run-time queries by shifting physical steering to the training phase. To achieve the second amortization, we formulate reverse diffusion as a reinforcement learning problem and introduce Force--Energy Disentangled Group Relative Policy Optimization (FED-GRPO) to fine-tune the denoising policy. FED-GRPO includes a potential-based energy reward and a force-based stability reward, which are optimized and group-normalized independently. Experiments show that Elign generates conformations with lower gold-standard DFT energies and forces, while improving stability. Crucially, inference remains as fast as unguided sampling, since no energy evaluations are required during generation.
☆ PowerGenie: Analytically-Guided Evolutionary Discovery of Superior Reconfigurable Power Converters
Discovering superior circuit topologies requires navigating an exponentially large design space-a challenge traditionally reserved for human experts. Existing AI methods either select from predefined templates or generate novel topologies at a limited scale without rigorous verification, leaving large-scale performance-driven discovery underexplored. We present PowerGenie, a framework for automated discovery of higher-performance reconfigurable power converters at scale. PowerGenie introduces: (1) an automated analytical framework that determines converter functionality and theoretical performance limits without component sizing or SPICE simulation, and (2) an evolutionary finetuning method that co-evolves a generative model with its training distribution through fitness selection and uniqueness verification. Unlike existing methods that suffer from mode collapse and overfitting, our approach achieves higher syntax validity, function validity, novelty rate, and figure-of-merit (FoM). PowerGenie discovers a novel 8-mode reconfigurable converter with 23% higher FoM than the best training topology. SPICE simulations confirm average absolute efficiency gains of 10% across 8 modes and up to 17% at a single mode. Code is available at https://github.com/xz-group/PowerGenie.
☆ Investigating Batch Inference in a Sequential Monte Carlo Framework for Neural Networks
Bayesian inference allows us to define a posterior distribution over the weights of a generic neural network (NN). Exact posteriors are usually intractable, in which case approximations can be employed. One such approximation - variational inference - is computationally efficient when using mini-batch stochastic gradient descent as subsets of the data are used for likelihood and gradient evaluations, though the approach relies on the selection of a variational distribution which sufficiently matches the form of the posterior. Particle-based methods such as Markov chain Monte Carlo and Sequential Monte Carlo (SMC) do not assume a parametric family for the posterior by typically require higher computational cost. These sampling methods typically use the full-batch of data for likelihood and gradient evaluations, which contributes to this computational expense. We explore several methods of gradually introducing more mini-batches of data (data annealing) into likelihood and gradient evaluations of an SMC sampler. We find that we can achieve up to $6\times$ faster training with minimal loss in accuracy on benchmark image classification problems using NNs.
☆ Investigation into using stochastic embedding representations for evaluating the trustworthiness of the Fréchet Inception Distance
Feature embeddings acquired from pretrained models are widely used in medical applications of deep learning to assess the characteristics of datasets; e.g. to determine the quality of synthetic, generated medical images. The Fréchet Inception Distance (FID) is one popular synthetic image quality metric that relies on the assumption that the characteristic features of the data can be detected and encoded by an InceptionV3 model pretrained on ImageNet1K (natural images). While it is widely known that this makes it less effective for applications involving medical images, the extent to which the metric fails to capture meaningful differences in image characteristics is not obviously known. Here, we use Monte Carlo dropout to compute the predictive variance in the FID as well as a supplemental estimate of the predictive variance in the feature embedding model's latent representations. We show that the magnitudes of the predictive variances considered exhibit varying degrees of correlation with the extent to which test inputs (ImageNet1K validation set augmented at various strengths, and other external datasets) are out-of-distribution relative to its training data, providing some insight into the effectiveness of their use as indicators of the trustworthiness of the FID.
☆ Bridging Graph Structure and Knowledge-Guided Editing for Interpretable Temporal Knowledge Graph Reasoning
Temporal knowledge graph reasoning (TKGR) aims to predict future events by inferring missing entities with dynamic knowledge structures. Existing LLM-based reasoning methods prioritize contextual over structural relations, struggling to extract relevant subgraphs from dynamic graphs. This limits structural information understanding, leading to unstructured, hallucination-prone inferences especially with temporal inconsistencies. To address this problem, we propose IGETR (Integration of Graph and Editing-enhanced Temporal Reasoning), a hybrid reasoning framework that combines the structured temporal modeling capabilities of Graph Neural Networks (GNNs) with the contextual understanding of LLMs. IGETR operates through a three-stage pipeline. The first stage aims to ground the reasoning process in the actual data by identifying structurally and temporally coherent candidate paths through a temporal GNN, ensuring that inference starts from reliable graph-based evidence. The second stage introduces LLM-guided path editing to address logical and semantic inconsistencies, leveraging external knowledge to refine and enhance the initial paths. The final stage focuses on integrating the refined reasoning paths to produce predictions that are both accurate and interpretable. Experiments on standard TKG benchmarks show that IGETR achieves state-of-the-art performance, outperforming strong baselines with relative improvements of up to 5.6% on Hits@1 and 8.1% on Hits@3 on the challenging ICEWS datasets. Additionally, we execute ablation studies and additional analyses confirm the effectiveness of each component.
☆ MoE-ACT: Improving Surgical Imitation Learning Policies through Supervised Mixture-of-Experts
Imitation learning has achieved remarkable success in robotic manipulation, yet its application to surgical robotics remains challenging due to data scarcity, constrained workspaces, and the need for an exceptional level of safety and predictability. We present a supervised Mixture-of-Experts (MoE) architecture designed for phase-structured surgical manipulation tasks, which can be added on top of any autonomous policy. Unlike prior surgical robot learning approaches that rely on multi-camera setups or thousands of demonstrations, we show that a lightweight action decoder policy like Action Chunking Transformer (ACT) can learn complex, long-horizon manipulation from less than 150 demonstrations using solely stereo endoscopic images, when equipped with our architecture. We evaluate our approach on the collaborative surgical task of bowel grasping and retraction, where a robot assistant interprets visual cues from a human surgeon, executes targeted grasping on deformable tissue, and performs sustained retraction. We benchmark our method against state-of-the-art Vision-Language-Action (VLA) models and the standard ACT baseline. Our results show that generalist VLAs fail to acquire the task entirely, even under standard in-distribution conditions. Furthermore, while standard ACT achieves moderate success in-distribution, adopting a supervised MoE architecture significantly boosts its performance, yielding higher success rates in-distribution and demonstrating superior robustness in out-of-distribution scenarios, including novel grasp locations, reduced illumination, and partial occlusions. Notably, it generalizes to unseen testing viewpoints and also transfers zero-shot to ex vivo porcine tissue without additional training, offering a promising pathway toward in vivo deployment. To support this, we present qualitative preliminary results of policy roll-outs during in vivo porcine surgery.
☆ From Tokens to Blocks: A Block-Diffusion Perspective on Molecular Generation
Drug discovery can be viewed as a combinatorial search over an immense chemical space, motivating the development of deep generative models for de novo molecular design. Among these, GPT-based molecular language models (MLM) have shown strong molecular design performance by learning chemical syntax and semantics from large-scale data. However, existing MLMs face two fundamental limitations: they inadequately capture the graph-structured nature of molecules when formulated as next-token prediction problems, and they typically lack explicit mechanisms for target-aware generation. Here, we propose SoftMol, a unified framework that co-designs molecular representation, model architecture, and search strategy for target-aware molecular generation. SoftMol introduces soft fragments, a rule-free block representation of SMILES that enables diffusion-native modeling, and develops SoftBD, the first block-diffusion molecular language model that combines local bidirectional diffusion with autoregressive generation under molecular structural constraints. To favor generated molecules with high drug-likeness and synthetic accessibility, SoftBD is trained on a carefully curated dataset named ZINC-Curated. SoftMol further integrates a gated Monte Carlo tree search to assemble fragments in a target-aware manner. Experimental results show that, compared with current state-of-the-art models, SoftMol achieves 100% chemical validity, improves binding affinity by 9.7%, yields a 2-3x increase in molecular diversity, and delivers a 6.6x speedup in inference efficiency. Code is available at https://github.com/szu-aicourse/softmol
comment: 30 pages, 13 figures, 11 tables
☆ Near-Optimal Private Tests for Simple and MLR Hypotheses
We develop a near-optimal testing procedure under the framework of Gaussian differential privacy for simple as well as one- and two-sided tests under monotone likelihood ratio conditions. Our mechanism is based on a private mean estimator with data-driven clamping bounds, whose population risk matches the private minimax rate up to logarithmic factors. Using this estimator, we construct private test statistics that achieve the same asymptotic relative efficiency as the non-private, most powerful tests while maintaining conservative type I error control. In addition to our theoretical results, our numerical experiments show that our private tests outperform competing DP methods and offer comparable power to the non-private most powerful tests, even at moderately small sample sizes and privacy loss budgets.
☆ Uncertainty-Aware Data-Based Method for Fast and Reliable Shape Optimization
Data-based optimization (DBO) offers a promising approach for efficiently optimizing shape for better aerodynamic performance by leveraging a pretrained surrogate model for offline evaluations during iterations. However, DBO heavily relies on the quality of the training database. Samples outside the training distribution encountered during optimization can lead to significant prediction errors, potentially misleading the optimization process. Therefore, incorporating uncertainty quantification into optimization is critical for detecting outliers and enhancing robustness. This study proposes an uncertainty-aware data-based optimization (UA-DBO) framework to monitor and minimize surrogate model uncertainty during DBO. A probabilistic encoder-decoder surrogate model is developed to predict uncertainties associated with its outputs, and these uncertainties are integrated into a model-confidence-aware objective function to penalize samples with large prediction errors during data-based optimization process. The UA-DBO framework is evaluated on two multipoint optimization problems aimed at improving airfoil drag divergence and buffet performance. Results demonstrate that UA-DBO consistently reduces prediction errors in optimized samples and achieves superior performance gains compared to original DBO. Moreover, compared to multipoint optimization based on full computational simulations, UA-DBO offers comparable optimization effectiveness while significantly accelerating optimization speed.
☆ Diffusion Path Samplers via Sequential Monte Carlo
We develop a diffusion-based sampler for target distributions known up to a normalising constant. To this end, we rely on the well-known diffusion path that smoothly interpolates between a (simple) base distribution and the target distribution, widely used in diffusion models. Our approach is based on a practical implementation of diffusion-annealed Langevin Monte Carlo, which approximates the diffusion path with convergence guarantees. We tackle the score estimation problem by developing an efficient sequential Monte Carlo sampler that evolves auxiliary variables from conditional distributions along the path, which provides principled score estimates for time-varying distributions. We further develop novel control variate schedules that minimise the variance of these score estimates. Finally, we provide theoretical guarantees and empirically demonstrate the effectiveness of our method on several synthetic and real-world datasets.
☆ Embracing Aleatoric Uncertainty in Medical Multimodal Learning with Missing Modalities
Medical multimodal learning faces significant challenges with missing modalities prevalent in clinical practice. Existing approaches assume equal contribution of modality and random missing patterns, neglecting inherent uncertainty in medical data acquisition. In this regard, we propose the Aleatoric Uncertainty Modeling (AUM) that explicitly quantifies unimodal aleatoric uncertainty to address missing modalities. Specifically, AUM models each unimodal representation as a multivariate Gaussian distribution to capture aleatoric uncertainty and enable principled modality reliability quantification. To adaptively aggregate captured information, we develop a dynamic message-passing mechanism within a bipartite patient-modality graph using uncertainty-aware aggregation mechanism. Through this process, missing modalities are naturally accommodated, while more reliable information from available modalities is dynamically emphasized to guide representation generation. Our AUM framework achieves an improvement of 2.26% AUC-ROC on MIMIC-IV mortality prediction and 2.17% gain on eICU, outperforming existing state-of-the-art approaches.
☆ Dependence of Equilibrium Propagation Training Success on Network Architecture
The rapid rise of artificial intelligence has led to an unsustainable growth in energy consumption. This has motivated progress in neuromorphic computing and physics-based training of learning machines as alternatives to digital neural networks. Many theoretical studies focus on simple architectures like all-to-all or densely connected layered networks. However, these may be challenging to realize experimentally, e.g. due to connectivity constraints. In this work, we investigate the performance of the widespread physics-based training method of equilibrium propagation for more realistic architectural choices, specifically, locally connected lattices. We train an XY model and explore the influence of architecture on various benchmark tasks, tracking the evolution of spatially distributed responses and couplings during training. Our results show that sparse networks with only local connections can achieve performance comparable to dense networks. Our findings provide guidelines for further scaling up architectures based on equilibrium propagation in realistic settings.
comment: 9 pages, 5 figures
☆ Clarity: The Flexibility-Interpretability Trade-Off in Sparsity-aware Concept Bottleneck Models
The widespread adoption of Vision-Language Models (VLMs) across fields has amplified concerns about model interpretability. Distressingly, these models are often treated as black-boxes, with limited or non-existent investigation of their decision making process. Despite numerous post- and ante-hoc interepretability methods, systematic and objective evaluation of the learned representations remains limited, particularly for sparsity-aware methods that are increasingly considered to "induce interpretability". In this work, we focus on Concept Bottleneck Models and investigate how different modeling decisions affect the emerging representations. We introduce the notion of clarity, a measure, capturing the interplay between the downstream performance and the sparsity and precision of the concept representation, while proposing an interpretability assessment framework using datasets with ground truth concept annotations. We consider both VLM- and attribute predictor-based CBMs, and three different sparsity-inducing strategies: per example $\ell_1, \ell_0$ and Bernoulli-based formulations. Our experiments reveal a critical trade-off between flexibility and interpretability, under which a given method can exhibit markedly different behaviors even at comparable performance levels. The code will be made publicly available upon publication.
☆ Entropy-Based Dimension-Free Convergence and Loss-Adaptive Schedules for Diffusion Models
Diffusion generative models synthesize samples by discretizing reverse-time dynamics driven by a learned score (or denoiser). Existing convergence analyses of diffusion models typically scale at least linearly with the ambient dimension, and sharper rates often depend on intrinsic-dimension assumptions or other geometric restrictions on the target distribution. We develop an alternative, information-theoretic approach to dimension-free convergence that avoids any geometric assumptions. Under mild assumptions on the target distribution, we bound KL divergence between the target and generated distributions by $O(H^2/K)$ (up to endpoint factors), where $H$ is the Shannon entropy and $K$ is the number of sampling steps. Moreover, using a reformulation of the KL divergence, we propose a Loss-Adaptive Schedule (LAS) for efficient discretization of reverse SDE which is lightweight and relies only on the training loss, requiring no post-training heavy computation. Empirically, LAS improves sampling quality over common heuristic schedules.
☆ Clustering in Deep Stochastic Transformers
Transformers have revolutionized deep learning across various domains but understanding the precise token dynamics remains a theoretical challenge. Existing theories of deep Transformers with layer normalization typically predict that tokens cluster to a single point; however, these results rely on deterministic weight assumptions, which fail to capture the standard initialization scheme in Transformers. In this work, we show that accounting for the intrinsic stochasticity of random initialization alters this picture. More precisely, we analyze deep Transformers where noise arises from the random initialization of value matrices. Under diffusion scaling and token-wise RMS normalization, we prove that, as the number of Transformer layers goes to infinity, the discrete token dynamics converge to an interacting-particle system on the sphere where tokens are driven by a \emph{common} matrix-valued Brownian noise. In this limit, we show that initialization noise prevents the collapse to a single cluster predicted by deterministic models. For two tokens, we prove a phase transition governed by the interaction strength and the token dimension: unlike deterministic attention flows, antipodal configurations become attracting with positive probability. Numerical experiments confirm the predicted transition, reveal that antipodal formations persist for more than two tokens, and demonstrate that suppressing the intrinsic noise degrades accuracy.
comment: 24 pages
☆ Robust Multimodal Representation Learning in Healthcare
Medical multimodal representation learning aims to integrate heterogeneous data into unified patient representations to support clinical outcome prediction. However, real-world medical datasets commonly contain systematic biases from multiple sources, which poses significant challenges for medical multimodal representation learning. Existing approaches typically focus on effective multimodal fusion, neglecting inherent biased features that affect the generalization ability. To address these challenges, we propose a Dual-Stream Feature Decorrelation Framework that identifies and handles the biases through structural causal analysis introduced by latent confounders. Our method employs a causal-biased decorrelation framework with dual-stream neural networks to disentangle causal features from spurious correlations, utilizing generalized cross-entropy loss and mutual information minimization for effective decorrelation. The framework is model-agnostic and can be integrated into existing medical multimodal learning methods. Comprehensive experiments on MIMIC-IV, eICU, and ADNI datasets demonstrate consistent performance improvements.
☆ LoRIF: Low-Rank Influence Functions for Scalable Training Data Attribution
Training data attribution (TDA) identifies which training examples most influenced a model's prediction. The best-performing TDA methods exploits gradients to define an influence function. To overcome the scalability challenge arising from gradient computation, the most popular strategy is random projection (e.g., TRAK, LoGRA). However, this still faces two bottlenecks when scaling to large training sets and high-quality attribution: \emph{(i)} storing and loading projected per-example gradients for all $N$ training examples, where query latency is dominated by I/O; and \emph{(ii)} forming the $D \times D$ inverse Hessian approximation, which costs $O(D^2)$ memory. Both bottlenecks scale with the projection dimension $D$, yet increasing $D$ is necessary for attribution quality -- creating a quality--scalability tradeoff. We introduce \textbf{LoRIF (Low-Rank Influence Functions)}, which exploits low-rank structures of gradient to address both bottlenecks. First, we store rank-$c$ factors of the projected per-example gradients rather than full matrices, reducing storage and query-time I/O from $O(D)$ to $O(c\sqrt{D})$ per layer per sample. Second, we use truncated SVD with the Woodbury identity to approximate the Hessian term in an $r$-dimensional subspace, reducing memory from $O(D^2)$ to $O(Dr)$. On models from 0.1B to 70B parameters trained on datasets with millions of examples, LoRIF achieves up to 20$\times$ storage reduction and query-time speedup compared to LoGRA, while matching or exceeding its attribution quality. LoRIF makes gradient-based TDA practical at frontier scale.
☆ Optimistic Transfer under Task Shift via Bellman Alignment
We study online transfer reinforcement learning (RL) in episodic Markov decision processes, where experience from related source tasks is available during learning on a target task. A fundamental difficulty is that task similarity is typically defined in terms of rewards or transitions, whereas online RL algorithms operate on Bellman regression targets. As a result, naively reusing source Bellman updates introduces systematic bias and invalidates regret guarantees. We identify one-step Bellman alignment as the correct abstraction for transfer in online RL and propose re-weighted targeting (RWT), an operator-level correction that retargets continuation values and compensates for transition mismatch via a change of measure. RWT reduces task mismatch to a fixed one-step correction and enables statistically sound reuse of source data. This alignment yields a two-stage RWT $Q$-learning framework that separates variance reduction from bias correction. Under RKHS function approximation, we establish regret bounds that scale with the complexity of the task shift rather than the target MDP. Empirical results in both tabular and neural network settings demonstrate consistent improvements over single-task learning and naïve pooling, highlighting Bellman alignment as a model-agnostic transfer principle for online RL.
☆ On Approximate Computation of Critical Points
We show that computing even very coarse approximations of critical points is intractable for simple classes of nonconvex functions. More concretely, we prove that if there exists a polynomial-time algorithm that takes as input a polynomial in $n$ variables of constant degree (as low as three) and outputs a point whose gradient has Euclidean norm at most $2^n$ whenever the polynomial has a critical point, then P=NP. The algorithm is permitted to return an arbitrary point when no critical point exists. We also prove hardness results for approximate computation of critical points under additional structural assumptions, including settings in which existence and uniqueness of a critical point are guaranteed, the function is lower bounded, and approximation is measured in terms of distance to a critical point. Overall, our results stand in contrast to the commonly-held belief that, in nonconvex optimization, approximate computation of critical points is a tractable task.
☆ Hardware-Triggered Backdoors
Machine learning models are routinely deployed on a wide range of computing hardware. Although such hardware is typically expected to produce identical results, differences in its design can lead to small numerical variations during inference. In this work, we show that these variations can be exploited to create backdoors in machine learning models. The core idea is to shape the model's decision function such that it yields different predictions for the same input when executed on different hardware. This effect is achieved by locally moving the decision boundary close to a target input and then refining numerical deviations to flip the prediction on selected hardware. We empirically demonstrate that these hardware-triggered backdoors can be created reliably across common GPU accelerators. Our findings reveal a novel attack vector affecting the use of third-party models, and we investigate different defenses to counter this threat.
☆ Breaking the Regional Barrier: Inductive Semantic Topology Learning for Worldwide Air Quality Forecasting
Global air quality forecasting grapples with extreme spatial heterogeneity and the poor generalization of existing transductive models to unseen regions. To tackle this, we propose OmniAir, a semantic topology learning framework tailored for global station-level prediction. By encoding invariant physical environmental attributes into generalizable station identities and dynamically constructing adaptive sparse topologies, our approach effectively captures long-range non-Euclidean correlations and physical diffusion patterns across unevenly distributed global networks. We further curate WorldAir, a massive dataset covering over 7,800 stations worldwide. Extensive experiments show that OmniAir achieves state-of-the-art performance against 18 baselines, maintaining high efficiency and scalability with speeds nearly 10 times faster than existing models, while effectively bridging the monitoring gap in data-sparse regions.
☆ A Low-Complexity Plug-and-Play Deep Learning Model for Generalizable Massive MIMO Precoding
Massive multiple-input multiple-output (mMIMO) downlink precoding offers high spectral efficiency but remains challenging to deploy in practice because near-optimal algorithms such as the weighted minimum mean squared error (WMMSE) are computationally expensive, and sensitive to SNR and channel-estimation quality, while existing deep learning (DL)-based solutions often lack robustness and require retraining for each deployment site. This paper proposes a plug-and-play precoder (PaPP), a DL framework with a backbone that can be trained for either fully digital (FDP) or hybrid beamforming (HBF) precoding and reused across sites, transmit-power levels, and with varying amounts of channel estimation error, avoiding the need to train a new model from scratch at each deployment. PaPP combines a high-capacity teacher and a compact student with a self-supervised loss that balances teacher imitation and normalized sum-rate, trained using meta-learning domain-generalization and transmit-power-aware input normalization. Numerical results on ray-tracing data from three unseen sites show that the PaPP FDP and HBF models both outperform conventional and deep learning baselines, after fine-tuning with a small set of local unlabeled samples. Across both architectures, PaPP achieves more than 21$\times$ reduction in modeled computation energy and maintains good performance under channel-estimation errors, making it a practical solution for energy-efficient mMIMO precoding.
☆ Not All Code Is Equal: A Data-Centric Study of Code Complexity and LLM Reasoning
Large Language Models (LLMs) increasingly exhibit strong reasoning abilities, often attributed to their capacity to generate chain-of-thought-style intermediate reasoning. Recent work suggests that exposure to code can further enhance these skills, but existing studies largely treat code as a generic training signal, leaving open the question of which properties of code actually contribute to improved reasoning. To address this gap, we study the structural complexity of code, which captures control flow and compositional structure that may shape how models internalise multi-step reasoning during fine-tuning. We examine two complementary settings: solution-driven complexity, where complexity varies across multiple solutions to the same problem, and problem-driven complexity, where complexity reflects variation in the underlying tasks. Using cyclomatic complexity and logical lines of code to construct controlled fine-tuning datasets, we evaluate a range of open-weight LLMs on diverse reasoning benchmarks. Our findings show that although code can improve reasoning, structural properties strongly determine its usefulness. In 83% of experiments, restricting fine-tuning data to a specific structural complexity range outperforms training on structurally diverse code, pointing to a data-centric path for improving reasoning beyond scaling.
comment: 16 pages, 5 figures, 3 tables
☆ VSE: Variational state estimation of complex model-free process ICASSP 2026
We design a variational state estimation (VSE) method that provides a closed-form Gaussian posterior of an underlying complex dynamical process from (noisy) nonlinear measurements. The complex process is model-free. That is, we do not have a suitable physics-based model characterizing the temporal evolution of the process state. The closed-form Gaussian posterior is provided by a recurrent neural network (RNN). The use of RNN is computationally simple in the inference phase. For learning the RNN, an additional RNN is used in the learning phase. Both RNNs help each other learn better based on variational inference principles. The VSE is demonstrated for a tracking application - state estimation of a stochastic Lorenz system (a benchmark process) using a 2-D camera measurement model. The VSE is shown to be competitive against a particle filter that knows the Lorenz system model and a recently proposed data-driven state estimation method that does not know the Lorenz system model.
comment: The article is accepted at ICASSP 2026
☆ Managing Solution Stability in Decision-Focused Learning with Cost Regularization
Decision-focused learning integrates predictive modeling and combinatorial optimization by training models to directly improve decision quality rather than prediction accuracy alone. Differentiating through combinatorial optimization problems represents a central challenge, and recent approaches tackle this difficulty by introducing perturbation-based approximations. In this work, we focus on estimating the objective function coefficients of a combinatorial optimization problem. Our study demonstrates that fluctuations in perturbation intensity occurring during the learning phase can lead to ineffective training, by establishing a theoretical link to the notion of solution stability in combinatorial optimization. We propose addressing this issue by introducing a regularization of the estimated cost vectors which improves the robustness and reliability of the learning process, as demonstrated by extensive numerical experiments.
☆ How Expressive Are Graph Neural Networks in the Presence of Node Identifiers?
Graph neural networks (GNNs) are a widely used class of machine learning models for graph-structured data, based on local aggregation over neighbors. GNNs have close connections to logic. In particular, their expressive power is linked to that of modal logics and bounded-variable logics with counting. In many practical scenarios, graphs processed by GNNs have node features that act as unique identifiers. In this work, we study how such identifiers affect the expressive power of GNNs. We initiate a study of the key-invariant expressive power of GNNs, inspired by the notion of order-invariant definability in finite model theory: which node queries that depend only on the underlying graph structure can GNNs express on graphs with unique node identifiers? We provide answers for various classes of GNNs with local max- or sum-aggregation.
comment: 35 pages
☆ Low-Rank Plus Sparse Matrix Transfer Learning under Growing Representations and Ambient Dimensions
Learning systems often expand their ambient features or latent representations over time, embedding earlier representations into larger spaces with limited new latent structure. We study transfer learning for structured matrix estimation under simultaneous growth of the ambient dimension and the intrinsic representation, where a well-estimated source task is embedded as a subspace of a higher-dimensional target task. We propose a general transfer framework in which the target parameter decomposes into an embedded source component, low-dimensional low-rank innovations, and sparse edits, and develop an anchored alternating projection estimator that preserves transferred subspaces while estimating only low-dimensional innovations and sparse modifications. We establish deterministic error bounds that separate target noise, representation growth, and source estimation error, yielding strictly improved rates when rank and sparsity increments are small. We demonstrate the generality of the framework by applying it to two canonical problems. For Markov transition matrix estimation from a single trajectory, we derive end-to-end theoretical guarantees under dependent noise. For structured covariance estimation under enlarged dimensions, we provide complementary theoretical analysis in the appendix and empirically validate consistent transfer gains.
☆ On Forgetting and Stability of Score-based Generative models
Understanding the stability and long-time behavior of generative models is a fundamental problem in modern machine learning. This paper provides quantitative bounds on the sampling error of score-based generative models by leveraging stability and forgetting properties of the Markov chain associated with the reverse-time dynamics. Under weak assumptions, we provide the two structural properties to ensure the propagation of initialization and discretization errors of the backward process: a Lyapunov drift condition and a Doeblin-type minorization condition. A practical consequence is quantitative stability of the sampling procedure, as the reverse diffusion dynamics induces a contraction mechanism along the sampling trajectory. Our results clarify the role of stochastic dynamics in score-based models and provide a principled framework for analyzing propagation of errors in such approaches.
☆ MoHETS: Long-term Time Series Forecasting with Mixture-of-Heterogeneous-Experts
Real-world multivariate time series can exhibit intricate multi-scale structures, including global trends, local periodicities, and non-stationary regimes, which makes long-horizon forecasting challenging. Although sparse Mixture-of-Experts (MoE) approaches improve scalability and specialization, they typically rely on homogeneous MLP experts that poorly capture the diverse temporal dynamics of time series data. We address these limitations with MoHETS, an encoder-only Transformer that integrates sparse Mixture-of-Heterogeneous-Experts (MoHE) layers. MoHE routes temporal patches to a small subset of expert networks, combining a shared depthwise-convolution expert for sequence-level continuity with routed Fourier-based experts for patch-level periodic structures. MoHETS further improves robustness to non-stationary dynamics by incorporating exogenous information via cross-attention over covariate patch embeddings. Finally, we replace parameter-heavy linear projection heads with a lightweight convolutional patch decoder, improving parameter efficiency, reducing training instability, and allowing a single model to generalize across arbitrary forecast horizons. We validate across seven multivariate benchmarks and multiple horizons, with MoHETS consistently achieving state-of-the-art performance, reducing the average MSE by $12\%$ compared to strong recent baselines, demonstrating effective heterogeneous specialization for long-term forecasting.
comment: Under review
☆ LEMUR: Learned Multi-Vector Retrieval
Multi-vector representations generated by late interaction models, such as ColBERT, enable superior retrieval quality compared to single-vector representations in information retrieval applications. In multi-vector retrieval systems, both queries and documents are encoded using one embedding for each token, and similarity between queries and documents is measured by the MaxSim similarity measure. However, the improved recall of multi-vector retrieval comes at the expense of significantly increased latency. This necessitates designing efficient approximate nearest neighbor search (ANNS) algorithms for multi-vector search. In this work, we introduce LEMUR, a simple-yet-efficient framework for multi-vector similarity search. LEMUR consists of two consecutive problem reductions: We first formulate multi-vector similarity search as a supervised learning problem that can be solved using a one-hidden-layer neural network. Second, we reduce inference under this model to single-vector similarity search in its latent space, which enables the use of existing single-vector ANNS methods for speeding up retrieval. In addition to performance evaluation on ColBERTv2 embeddings, we evaluate LEMUR on embeddings generated by modern multi-vector text models and multi-vector visual document retrieval models. LEMUR is an order of magnitude faster than earlier multi-vector similarity search methods.
comment: 17 pages
☆ Visual Disentangled Diffusion Autoencoders: Scalable Counterfactual Generation for Foundation Models
Foundation models, despite their robust zero-shot capabilities, remain vulnerable to spurious correlations and 'Clever Hans' strategies. Existing mitigation methods often rely on unavailable group labels or computationally expensive gradient-based adversarial optimization. To address these limitations, we propose Visual Disentangled Diffusion Autoencoders (DiDAE), a novel framework integrating frozen foundation models with disentangled dictionary learning for efficient, gradient-free counterfactual generation directly for the foundation model. DiDAE first edits foundation model embeddings in interpretable disentangled directions of the disentangled dictionary and then decodes them via a diffusion autoencoder. This allows the generation of multiple diverse, disentangled counterfactuals for each factual, much faster than existing baselines, which generate single entangled counterfactuals. When paired with Counterfactual Knowledge Distillation, DiDAE-CFKD achieves state-of-the-art performance in mitigating shortcut learning, improving downstream performance on unbalanced datasets.
☆ READY: Reward Discovery for Meta-Black-Box Optimization
Meta-Black-Box Optimization (MetaBBO) is an emerging avenue within Optimization community, where algorithm design policy could be meta-learned by reinforcement learning to enhance optimization performance. So far, the reward functions in existing MetaBBO works are designed by human experts, introducing certain design bias and risks of reward hacking. In this paper, we use Large Language Model~(LLM) as an automated reward discovery tool for MetaBBO. Specifically, we consider both effectiveness and efficiency sides. On effectiveness side, we borrow the idea of evolution of heuristics, introducing tailored evolution paradigm in the iterative LLM-based program search process, which ensures continuous improvement. On efficiency side, we additionally introduce multi-task evolution architecture to support parallel reward discovery for diverse MetaBBO approaches. Such parallel process also benefits from knowledge sharing across tasks to accelerate convergence. Empirical results demonstrate that the reward functions discovered by our approach could be helpful for boosting existing MetaBBO works, underscoring the importance of reward design in MetaBBO. We provide READY's project at https://anonymous.4open.science/r/ICML_READY-747F.
☆ Constrained Meta Reinforcement Learning with Provable Test-Time Safety
Meta reinforcement learning (RL) allows agents to leverage experience across a distribution of tasks on which the agent can train at will, enabling faster learning of optimal policies on new test tasks. Despite its success in improving sample complexity on test tasks, many real-world applications, such as robotics and healthcare, impose safety constraints during testing. Constrained meta RL provides a promising framework for integrating safety into meta RL. An open question in constrained meta RL is how to ensure the safety of the policy on the real-world test task, while reducing the sample complexity and thus, enabling faster learning of optimal policies. To address this gap, we propose an algorithm that refines policies learned during training, with provable safety and sample complexity guarantees for learning a near optimal policy on the test tasks. We further derive a matching lower bound, showing that this sample complexity is tight.
☆ Test-Time Compute Games
Test-time compute has emerged as a promising strategy to enhance the reasoning abilities of large language models (LLMs). However, this strategy has in turn increased how much users pay cloud-based providers offering LLM-as-a-service, since providers charge users for the amount of test-time compute they use to generate an output. In our work, we show that the market of LLM-as-a-service is socially inefficient: providers have a financial incentive to increase the amount of test-time compute, even if this increase contributes little to the quality of the outputs. To address this inefficiency, we introduce a reverse second-price auction mechanism where providers bid their offered price and (expected) quality for the opportunity to serve a user, and users pay proportionally to the marginal value generated by the winning provider relative to the second-highest bidder. To illustrate and complement our theoretical results, we conduct experiments with multiple instruct models from the $\texttt{Llama}$ and $\texttt{Qwen}$ families, as well as reasoning models distilled from $\texttt{DeepSeek-R1}$, on math and science benchmark datasets.
☆ Scalable Linearized Laplace Approximation via Surrogate Neural Kernel
We introduce a scalable method to approximate the kernel of the Linearized Laplace Approximation (LLA). For this, we use a surrogate deep neural network (DNN) that learns a compact feature representation whose inner product replicates the Neural Tangent Kernel (NTK). This avoids the need to compute large Jacobians. Training relies solely on efficient Jacobian-vector products, allowing to compute predictive uncertainty on large-scale pre-trained DNNs. Experimental results show similar or improved uncertainty estimation and calibration compared to existing LLA approximations. Notwithstanding, biasing the learned kernel significantly enhances out-of-distribution detection. This remarks the benefits of the proposed method for finding better kernels than the NTK in the context of LLA to compute prediction uncertainty given a pre-trained DNN.
comment: 6 pages, 1 table. Accepted at European Symposium on Artificial Neural Networks (ESANN 2026) as oral presentation
☆ Goal-Driven Adaptive Sampling Strategies for Machine Learning Models Predicting Fields
Machine learning models are widely regarded as a way forward to tackle multi-query challenges that arise once expensive black-box simulations such as computational fluid dynamics are investigated. However, ensuring the desired level of accuracy for a certain task at minimal computational cost, e.g. as few black-box samples as possible, remains a challenges. Active learning strategies are used for scalar quantities to overcome this challenges and different so-called infill criteria exists and are commonly employed in several scenarios. Even though needed in various field an extension of active learning strategies towards field predictions is still lacking or limited to very specific scenarios and/or model types. In this paper we propose an active learning strategy for machine learning models that are capable if predicting field which is agnostic to the model architecture itself. For doing so, we combine a well-established Gaussian process model for a scalar reference value and simultaneously aim at reducing the epistemic model error and the difference between scalar and field predictions. Different specific forms of the above-mentioned approach are introduced and compared to each other as well as only scalar-valued based infill. Results are presented for the NASA common research model for an uncertainty propagation task showcasing high level of accuracy at significantly smaller cost compared to an approach without active learning.
☆ Generative Modeling of Discrete Data Using Geometric Latent Subspaces
We introduce the use of latent subspaces in the exponential parameter space of product manifolds of categorial distributions, as a tool for learning generative models of discrete data. The low-dimensional latent space encodes statistical dependencies and removes redundant degrees of freedom among the categorial variables. We equip the parameter domain with a Riemannian geometry such that the spaces and distances are related by isometries which enables consistent flow matching. In particular, geodesics become straight lines which makes model training by flow matching effective. Empirical results demonstrate that reduced latent dimensions suffice to represent data for generative modeling.
☆ DASH: Deterministic Attention Scheduling for High-throughput Reproducible LLM Training
Determinism is indispensable for reproducibility in large language model (LLM) training, yet it often exacts a steep performance cost. In widely used attention implementations such as FlashAttention-3, the deterministic backward pass can incur up to a 37.9% throughput reduction relative to its non-deterministic counterpart, primarily because gradient accumulation operations must be serialized to guarantee numerical consistency. This performance loss stems from suboptimal scheduling of compute and gradient-reduction phases, leading to significant hardware underutilization. To address this challenge, we formulate the backward pass of deterministic attention as a scheduling problem on a Directed Acyclic Graph (DAG) and derive schedules that minimize the critical path length. Building on this formulation, we present DASH (Deterministic Attention Scheduling for High-Throughput), which encapsulates two complementary scheduling strategies: (i) Descending Q-Tile Iteration, a reversed query-block traversal that shrinks pipeline stalls in causal attention, and (ii) Shift Scheduling, a theoretically optimal schedule within our DAG model that reduces pipeline stalls for both full and causal masks. Our empirical evaluations on NVIDIA H800 GPUs demonstrate that DASH narrows the performance gap of deterministic attention. The proposed strategies improve the throughput of the attention backward pass by up to 1.28$\times$ compared to the baseline, significantly advancing the efficiency of reproducible LLM training. Our code is open-sourced at https://github.com/SJTU-Liquid/deterministic-FA3.
☆ A Judge-Aware Ranking Framework for Evaluating Large Language Models without Ground Truth
Evaluating large language models (LLMs) on open-ended tasks without ground-truth labels is increasingly done via the LLM-as-a-judge paradigm. A critical but under-modeled issue is that judge LLMs differ substantially in reliability; treating all judges equally can yield biased leaderboards and misleading uncertainty estimates. More data can make evaluation more confidently wrong under misspecified aggregation. We propose a judge-aware ranking framework that extends the Bradley-Terry-Luce model by introducing judge-specific discrimination parameters, jointly estimating latent model quality and judge reliability from pairwise comparisons without reference labels. We establish identifiability up to natural normalizations and prove consistency and asymptotic normality of the maximum likelihood estimator, enabling confidence intervals for score differences and rank comparisons. Across multiple public benchmarks and a newly collected dataset, our method improves agreement with human preferences, achieves higher data efficiency than unweighted baselines, and produces calibrated uncertainty quantification for LLM rankings.
☆ Nonparametric LLM Evaluation from Preference Data
Evaluating the performance of large language models (LLMs) from human preference data is crucial for obtaining LLM leaderboards. However, many existing approaches either rely on restrictive parametric assumptions or lack valid uncertainty quantification when flexible machine learning methods are used. In this paper, we propose a nonparametric statistical framework, DMLEval, for comparing and ranking LLMs from preference data using debiased machine learning (DML). For this, we introduce generalized average ranking scores (GARS), which generalize commonly used ranking models, including the Bradley-Terry model or PageRank/ Rank centrality, with complex human responses such as ties. DMLEval comes with the following advantages: (i) It produces statistically efficient estimates of GARS ranking scores. (ii) It naturally allows the incorporation of black-box machine learning methods for estimation. (iii) It can be combined with pre-trained LLM evaluators (e.g., using LLM-as-a-judge). (iv) It suggests optimal policies for collecting preference data under budget constraints. We demonstrate these advantages both theoretically and empirically using both synthetic and real-world preference datasets. In summary, our framework provides practitioners with powerful, state-of-the-art methods for comparing or ranking LLMs.
☆ A Decomposable Forward Process in Diffusion Models for Time-Series Forecasting ICML'26
We introduce a model-agnostic forward diffusion process for time-series forecasting that decomposes signals into spectral components, preserving structured temporal patterns such as seasonality more effectively than standard diffusion. Unlike prior work that modifies the network architecture or diffuses directly in the frequency domain, our proposed method alters only the diffusion process itself, making it compatible with existing diffusion backbones (e.g., DiffWave, TimeGrad, CSDI). By staging noise injection according to component energy, it maintains high signal-to-noise ratios for dominant frequencies throughout the diffusion trajectory, thereby improving the recoverability of long-term patterns. This strategy enables the model to maintain the signal structure for a longer period in the forward process, leading to improved forecast quality. Across standard forecasting benchmarks, we show that applying spectral decomposition strategies, such as the Fourier or Wavelet transform, consistently improves upon diffusion models using the baseline forward process, with negligible computational overhead. The code for this paper is available at https://anonymous.4open.science/r/D-FDP-4A29.
comment: submitted to ICML'26
☆ Effective LoRA Adapter Routing using Task Representations
Low-rank adaptation (LoRA) enables parameter efficient specialization of large language models (LLMs) through modular adapters, resulting in rapidly growing public adapter pools spanning diverse tasks. Effectively using these adapters requires routing: selecting and composing the appropriate adapters for a query. We introduce LORAUTER, a novel routing framework that selects and composes LoRA adapters using task representations rather than adapter characteristics. Unlike existing approaches that map queries directly to adapters, LORAUTER routes queries via task embeddings derived from small validation sets and does not require adapter training data. By operating at the task level, LORAUTER achieves efficient routing that scales with the number of tasks rather than the number of adapters. Experiments across multiple tasks show that LORAUTER consistently outperforms baseline routing approaches, matching Oracle performance (101.2%) when task-aligned adapters exist and achieving state-of-the-art results on unseen tasks (+5.2 points). We further demonstrate the robustness of LORAUTER to very large, noisy adapter pools by scaling it to over 1500 adapters.
☆ Knowledge Vector Weakening: Efficient Training-free Unlearning for Large Vision-Language Models
Large Vision-Language Models (LVLMs) are widely adopted for their strong multimodal capabilities, yet they raise serious concerns such as privacy leakage and harmful content generation. Machine unlearning has emerged as a promising solution for removing the influence of specific data from trained models. However, existing approaches largely rely on gradient-based optimization, incurring substantial computational costs for large-scale LVLMs. To address this limitation, we propose Knowledge Vector Weakening (KVW), a training-free unlearning method that directly intervenes in the full model without gradient computation. KVW identifies knowledge vectors that are activated during the model's output generation on the forget set and progressively weakens their contributions, thereby preventing the model from exploiting undesirable knowledge. Experiments on the MLLMU and CLEAR benchmarks demonstrate that KVW achieves a stable forget-retain trade-off while significantly improving computational efficiency over gradient-based and LoRA-based unlearning methods.
☆ NetMamba+: A Framework of Pre-trained Models for Efficient and Accurate Network Traffic Classification
With the rapid growth of encrypted network traffic, effective traffic classification has become essential for network security and quality of service management. Current machine learning and deep learning approaches for traffic classification face three critical challenges: computational inefficiency of Transformer architectures, inadequate traffic representations with loss of crucial byte-level features while retaining detrimental biases, and poor handling of long-tail distributions in real-world data. We propose NetMamba+, a framework that addresses these challenges through three key innovations: (1) an efficient architecture considering Mamba and Flash Attention mechanisms, (2) a multimodal traffic representation scheme that preserves essential traffic information while eliminating biases, and (3) a label distribution-aware fine-tuning strategy. Evaluation experiments on massive datasets encompassing four main classification tasks showcase NetMamba+'s superior classification performance compared to state-of-the-art baselines, with improvements of up to 6.44\% in F1 score. Moreover, NetMamba+ demonstrates excellent efficiency, achieving 1.7x higher inference throughput than the best baseline while maintaining comparably low memory usage. Furthermore, NetMamba+ exhibits superior few-shot learning abilities, achieving better classification performance with fewer labeled data. Additionally, we implement an online traffic classification system that demonstrates robust real-world performance with a throughput of 261.87 Mb/s. As the first framework to adapt Mamba architecture for network traffic classification, NetMamba+ opens new possibilities for efficient and accurate traffic analysis in complex network environments.
☆ ECSEL: Explainable Classification via Signomial Equation Learning
We introduce ECSEL, an explainable classification method that learns formal expressions in the form of signomial equations, motivated by the observation that many symbolic regression benchmarks admit compact signomial structure. ECSEL directly constructs a structural, closed-form expression that serves as both a classifier and an explanation. On standard symbolic regression benchmarks, our method recovers a larger fraction of target equations than competing state-of-the-art approaches while requiring substantially less computation. Leveraging this efficiency, ECSEL achieves classification accuracy competitive with established machine learning models without sacrificing interpretability. Further, we show that ECSEL satisfies some desirable properties regarding global feature behavior, decision-boundary analysis, and local feature attributions. Experiments on benchmark datasets and two real-world case studies i.e., e-commerce and fraud detection, demonstrate that the learned equations expose dataset biases, support counterfactual reasoning, and yield actionable insights.
☆ Quantum LEGO Learning: A Modular Design Principle for Hybrid Artificial Intelligence
Hybrid quantum-classical learning models increasingly integrate neural networks with variational quantum circuits (VQCs) to exploit complementary inductive biases. However, many existing approaches rely on tightly coupled architectures or task-specific encoders, limiting conceptual clarity, generality, and transferability across learning settings. In this work, we introduce Quantum LEGO Learning, a modular and architecture-agnostic learning framework that treats classical and quantum components as reusable, composable learning blocks with well-defined roles. Within this framework, a pre-trained classical neural network serves as a frozen feature block, while a VQC acts as a trainable adaptive module that operates on structured representations rather than raw inputs. This separation enables efficient learning under constrained quantum resources and provides a principled abstraction for analyzing hybrid models. We develop a block-wise generalization theory that decomposes learning error into approximation and estimation components, explicitly characterizing how the complexity and training status of each block influence overall performance. Our analysis generalizes prior tensor-network-specific results and identifies conditions under which quantum modules provide representational advantages over comparably sized classical heads. Empirically, we validate the framework through systematic block-swap experiments across frozen feature extractors and both quantum and classical adaptive heads. Experiments on quantum dot classification demonstrate stable optimization, reduced sensitivity to qubit count, and robustness to realistic noise.
comment: In submission
☆ Error Amplification Limits ANN-to-SNN Conversion in Continuous Control
Spiking Neural Networks (SNNs) can achieve competitive performance by converting already existing well-trained Artificial Neural Networks (ANNs), avoiding further costly training. This property is particularly attractive in Reinforcement Learning (RL), where training through environment interaction is expensive and potentially unsafe. However, existing conversion methods perform poorly in continuous control, where suitable baselines are largely absent. We identify error amplification as the key cause: small action approximation errors become temporally correlated across decision steps, inducing cumulative state distribution shift and severe performance degradation. To address this issue, we propose Cross-Step Residual Potential Initialization (CRPI), a lightweight training-free mechanism that carries over residual membrane potentials across decision steps to suppress temporally correlated errors. Experiments on continuous control benchmarks with both vector and visual observations demonstrate that CRPI can be integrated into existing conversion pipelines and substantially recovers lost performance. Our results highlight continuous control as a critical and challenging benchmark for ANN-to-SNN conversion, where small errors can be strongly amplified and impact performance.
☆ Differentiable Knapsack and Top-k Operators via Dynamic Programming
Knapsack and Top-k operators are useful for selecting discrete subsets of variables. However, their integration into neural networks is challenging as they are piecewise constant, yielding gradients that are zero almost everywhere. In this paper, we propose a unified framework casting these operators as dynamic programs, and derive differentiable relaxations by smoothing the underlying recursions. On the algorithmic side, we develop efficient parallel algorithms supporting both deterministic and stochastic forward passes, and vector-Jacobian products for the backward pass. On the theoretical side, we prove that Shannon entropy is the unique regularization choice yielding permutation-equivariant operators, and characterize regularizers inducing sparse selections. Finally, on the experimental side, we demonstrate our framework on a decision-focused learning benchmark, a constrained dynamic assortment RL problem, and an extension of discrete VAEs.
☆ FISMO: Fisher-Structured Momentum-Orthogonalized Optimizer
Training large-scale neural networks requires solving nonconvex optimization where the choice of optimizer fundamentally determines both convergence behavior and computational efficiency. While adaptive methods like Adam have long dominated practice, the recently proposed Muon optimizer achieves superior performance through orthogonalized momentum updates that enforce isotropic geometry with uniform singular values. However, this strict isotropy discards potentially valuable curvature information encoded in gradient spectra, motivating optimization methods that balance geometric structure with adaptivity. We introduce FISMO (Fisher-Structured Momentum-Orthogonalized) optimizer, which generalizes isotropic updates to incorporate anisotropic curvature information through Fisher information geometry. By reformulating the optimizer update as a trust-region problem constrained by a Kronecker-factored Fisher metric, FISMO achieves structured preconditioning that adapts to local loss landscape geometry while maintaining computational tractability. We establish convergence guarantees for FISMO in stochastic nonconvex settings, proving an $\mathcal{O}(1/\sqrt{T})$ rate for the expected squared gradient norm with explicit characterization of variance reduction through mini-batching. Empirical evaluation on image classification and language modeling benchmarks demonstrates that FISMO achieves superior training efficiency and final performance compared to established baselines.
☆ Temporal Sepsis Modeling: a Fully Interpretable Relational Way
Sepsis remains one of the most complex and heterogeneous syndromes in intensive care, characterized by diverse physiological trajectories and variable responses to treatment. While deep learning models perform well in the early prediction of sepsis, they often lack interpretability and ignore latent patient sub-phenotypes. In this work, we propose a machine learning framework by opening up a new avenue for addressing this issue: a relational approach. Temporal data from electronic medical records (EMRs) are viewed as multivariate patient logs and represented in a relational data schema. Then, a propositionalisation technique (based on classic aggregation/selection functions from the field of relational data) is applied to construct interpretable features to "flatten" the data. Finally, the flattened data is classified using a selective naive Bayesian classifier. Experimental validation demonstrates the relevance of the suggested approach as well as its extreme interpretability. The interpretation is fourfold: univariate, global, local, and counterfactual.
☆ Why Adam Works Better with $β_1 = β_2$: The Missing Gradient Scale Invariance Principle
Adam has been at the core of large-scale training for almost a decade, yet a simple empirical fact remains unaccounted for: both validation scores and the qualitative behaviour of the training runs improve when the momentum parameters satisfy $β_{1}=β_{2}$. Some recent studies have reported this pattern, but there is still no explanation for why this choice helps. We show that this choice is closely tied to a structural property that we refer to as \textit{gradient scale invariance}. We formalize this notion and prove that Adam becomes gradient scale invariant of first order if and only if $β_{1}=β_{2}$. This perspective places the balanced regime of Adam in direct alignment with the design principles underlying several recent optimizers that explicitly enforce scale-robust updates. The theory is supported by experiments across vision and language tasks, and across different architectural families, in which rescaling the gradient has a markedly smoother effect on the update when $β_{1}=β_{2}$. Overall, our results offer a coherent explanation for an open question in the behavior of Adam and provide a simple principle that helps guide the design of future optimizers.
comment: 23 pages, 8 figures. Preprint
☆ Mixed-Precision Training and Compilation for RRAM-based Computing-in-Memory Accelerators
Computing-in-Memory (CIM) accelerators are a promising solution for accelerating Machine Learning (ML) workloads, as they perform Matrix-Vector Multiplications (MVMs) on crossbar arrays directly in memory. Although the bit widths of the crossbar inputs and cells are very limited, most CIM compilers do not support quantization below 8 bit. As a result, a single MVM requires many compute cycles, and weights cannot be efficiently stored in a single crossbar cell. To address this problem, we propose a mixed-precision training and compilation framework for CIM architectures. The biggest challenge is the massive search space, that makes it difficult to find good quantization parameters. This is why we introduce a reinforcement learning-based strategy to find suitable quantization configurations that balance latency and accuracy. In the best case, our approach achieves up to a 2.48x speedup over existing state-of-the-art solutions, with an accuracy loss of only 0.086 %.
☆ Amortized Spectral Kernel Discovery via Prior-Data Fitted Network
Prior-Data Fitted Networks (PFNs) enable efficient amortized inference but lack transparent access to their learned priors and kernels. This opacity hinders their use in downstream tasks, such as surrogate-based optimization, that require explicit covariance models. We introduce an interpretability-driven framework for amortized spectral discovery from pre-trained PFNs with decoupled attention. We perform a mechanistic analysis on a trained PFN that identifies attention latent output as the key intermediary, linking observed function data to spectral structure. Building on this insight, we propose decoder architectures that map PFN latents to explicit spectral density estimates and corresponding stationary kernels via Bochner's theorem. We study this pipeline in both single-realization and multi-realization regimes, contextualizing theoretical limits on spectral identifiability and proving consistency when multiple function samples are available. Empirically, the proposed decoders recover complex multi-peak spectral mixtures and produce explicit kernels that support Gaussian process regression with accuracy comparable to PFNs and optimization-based baselines, while requiring only a single forward pass. This yields orders-of-magnitude reductions in inference time compared to optimization-based baselines.
☆ Procedural Pretraining: Warming Up Language Models with Abstract Data
Pretraining directly on web-scale corpora is the de facto paradigm for building language models. We study an alternative setting where the model is initially exposed to abstract structured data, as a means to ease the subsequent acquisition of rich semantic knowledge, much like humans learn simple logic and mathematics before higher reasoning. We specifically focus on procedural data, generated by formal languages and other simple algorithms, as such abstract data. We first diagnose the algorithmic skills that different forms of procedural data can improve, often significantly. For example, on context recall (Needle-in-a-haystack), the accuracy jumps from 10 to 98% when pretraining on Dyck sequences (balanced brackets). Second, we study how these gains are reflected in pretraining larger models (up to 1.3B). We find that front-loading as little as 0.1% procedural data significantly outperforms standard pretraining on natural language, code, and informal mathematics (C4, CodeParrot, and DeepMind-Math datasets). Notably, this procedural pretraining enables the models to reach the same loss value with only 55, 67, 86% of the original data. Third, we explore the mechanisms behind and find that procedural pretraining instils non-trivial structure in both attention and MLP layers. The former is particularly important for structured domains (e.g. code), and the latter for language. Finally, we lay a path for combining multiple forms of procedural data. Our results show that procedural pretraining is a simple, lightweight means to improving performance and accelerating language model pretraining, ultimately suggesting the promise of disentangling knowledge acquisition from reasoning in LLMs.
☆ LoRA and Privacy: When Random Projections Help (and When They Don't)
We introduce the (Wishart) projection mechanism, a randomized map of the form $S \mapsto M f(S)$ with $M \sim W_d(1/r I_d, r)$ and study its differential privacy properties. For vector-valued queries $f$, we prove non-asymptotic DP guarantees without any additive noise, showing that Wishart randomness alone can suffice. For matrix-valued queries, however, we establish a sharp negative result: in the noise-free setting, the mechanism is not DP, and we demonstrate its vulnerability by implementing a near perfect membership inference attack (AUC $> 0.99$). We then analyze a noisy variant and prove privacy amplification due to randomness and low rank projection, in both large- and small-rank regimes, yielding stronger privacy guarantees than additive noise alone. Finally, we show that LoRA-style updates are an instance of the matrix-valued mechanism, implying that LoRA is not inherently private despite its built-in randomness, but that low-rank fine-tuning can be more private than full fine-tuning at the same noise level. Preliminary experiments suggest that tighter accounting enables lower noise and improved accuracy in practice.
☆ When does predictive inverse dynamics outperform behavior cloning?
Behavior cloning (BC) is a practical offline imitation learning method, but it often fails when expert demonstrations are limited. Recent works have introduced a class of architectures named predictive inverse dynamics models (PIDM) that combine a future state predictor with an inverse dynamics model (IDM). While PIDM often outperforms BC, the reasons behind its benefits remain unclear. In this paper, we provide a theoretical explanation: PIDM introduces a bias-variance tradeoff. While predicting the future state introduces bias, conditioning the IDM on the prediction can significantly reduce variance. We establish conditions on the state predictor bias for PIDM to achieve lower prediction error and higher sample efficiency than BC, with the gap widening when additional data sources are available. We validate the theoretical insights empirically in 2D navigation tasks, where BC requires up to five times (three times on average) more demonstrations than PIDM to reach comparable performance; and in a complex 3D environment in a modern video game with high-dimensional visual inputs and stochastic transitions, where BC requires over 66\% more samples than PIDM.
comment: Preprint
☆ SmartMeterFM: Unifying Smart Meter Data Generative Tasks Using Flow Matching Models
Smart meter data is the foundation for planning and operating the distribution network. Unfortunately, such data are not always available due to privacy regulations. Meanwhile, the collected data may be corrupted due to sensor or transmission failure, or it may not have sufficient resolution for downstream tasks. A wide range of generative tasks is formulated to address these issues, including synthetic data generation, missing data imputation, and super-resolution. Despite the success of machine learning models on these tasks, dedicated models need to be designed and trained for each task, leading to redundancy and inefficiency. In this paper, by recognizing the powerful modeling capability of flow matching models, we propose a new approach to unify diverse smart meter data generative tasks with a single model trained for conditional generation. The proposed flow matching models are trained to generate challenging, high-dimensional time series data, specifically monthly smart meter data at a 15 min resolution. By viewing different generative tasks as distinct forms of partial data observations and injecting them into the generation process, we unify tasks such as imputation and super-resolution with a single model, eliminating the need for re-training. The data generated by our model not only are consistent with the given observations but also remain realistic, showing better performance against interpolation and other machine learning based baselines dedicated to the tasks.
comment: 10 pages, 6 figures, 6 tables
☆ Beyond Forgetting: Machine Unlearning Elicits Controllable Side Behaviors and Capabilities
We consider representation misdirection (RM), a class of LLM unlearning methods that achieves forgetting by manipulating the forget-representations, that is, latent representations of forget samples. Despite being important, the roles of target vectors used in RM, however, remain underexplored. Here, we approach and revisit RM through the lens of the linear representation hypothesis. Specifically, if one can somehow identify a one-dimensional representation corresponding to a high-level concept, the linear representation hypothesis enables linear operations on this concept vector within the forget-representation space. Under this view, we hypothesize that, beyond forgetting, machine unlearning elicits controllable side behaviors and stronger side capabilities corresponding to the high-level concept. Our hypothesis is empirically validated across a wide range of tasks, including behavioral control (e.g., controlling unlearned models' truth, sentiment, and refusal) and capability enhancement (e.g., improving unlearned models' in-context learning capability). Our findings reveal that this fairly attractive phenomenon could be either a hidden risk if misused or a mechanism that can be harnessed for developing models that require stronger capabilities and controllable behaviors.
comment: 21 pages, 11 tables, 12 figures
☆ Curriculum Learning for LLM Pretraining: An Analysis of Learning Dynamics
Curriculum learning changes the order of pre-training data, but it remains unclear whether it changes the learning trajectory or mainly reorders exposure over a fixed trajectory. We train Pythia models (14M-410M parameters) for 300B tokens under three linguistically motivated curricula-Age-of-Acquisition, word frequency, and Verb Variation (VV)-and compare each against Random ordering; at 1B parameters we compare Random and VV. Across orderings, training follows a shared sequence of latent phases, while curricula mainly change within-phase data exposure. In smaller models (up to 160M parameters), Random ordering exhibits higher gradient noise and stronger late-training output-head spectral saturation, alongside lower final accuracy; curricula reduce both effects at matched compute. At larger scales, saturation differences are smaller and curriculum gains shrink. We formalize the link between difficulty pacing and optimization stability in an idealized analysis based on gradient-variance control, and our results point to a practical takeaway: curricula help by stabilizing within-phase optimization rather than by creating new phases.
☆ Understanding Model Merging: A Unified Generalization Framework for Heterogeneous Experts
Model merging efficiently aggregates capabilities from multiple fine-tuned models into a single one, operating purely in parameter space without original data or expensive re-computation. Despite empirical successes, a unified theory for its effectiveness under heterogeneous finetuning hyperparameters (e.g., varying learning rates, batch sizes) remains missing. Moreover, the lack of hyperparameter transparency in open-source fine-tuned models makes it difficult to predict merged-model performance, leaving practitioners without guidance on how to fine-tune merge-friendly experts. To address those two challenges, we employ $L_2$-Stability theory under heterogeneous hyperparameter environments to analyze the generalization of the merged model $\boldsymbol{x}_{avg}$. This pioneering analysis yields two key contributions: (i) \textit{A unified theoretical framework} is provided to explain existing merging algorithms, revealing how they optimize specific terms in our bound, thus offering a strong theoretical foundation for empirical observations. (ii) \textit{Actionable recommendations} are proposed for practitioners to strategically fine-tune expert models, enabling the construction of merge-friendly models within the pretraining-to-finetuning pipeline. Extensive experiments on the ResNet/Vit family across 20/8 visual classification tasks, involving thousands of finetuning models, robustly confirm the impact of different hyperparameters on the generalization of $\boldsymbol{x}_{avg}$ predicted by our theoretical results.
☆ XFACTORS: Disentangled Information Bottleneck via Contrastive Supervision
Disentangled representation learning aims to map independent factors of variation to independent representation components. On one hand, purely unsupervised approaches have proven successful on fully disentangled synthetic data, but fail to recover semantic factors from real data without strong inductive biases. On the other hand, supervised approaches are unstable and hard to scale to large attribute sets because they rely on adversarial objectives or auxiliary classifiers. We introduce \textsc{XFactors}, a weakly-supervised VAE framework that disentangles and provides explicit control over a chosen set of factors. Building on the Disentangled Information Bottleneck perspective, we decompose the representation into a residual subspace $\mathcal{S}$ and factor-specific subspaces $\mathcal{T}_1,\ldots,\mathcal{T}_K$ and a residual subspace $\mathcal{S}$. Each target factor is encoded in its assigned $\mathcal{T}_i$ through contrastive supervision: an InfoNCE loss pulls together latents sharing the same factor value and pushes apart mismatched pairs. In parallel, KL regularization imposes a Gaussian structure on both $\mathcal{S}$ and the aggregated factor subspaces, organizing the geometry without additional supervision for non-targeted factors and avoiding adversarial training and classifiers. Across multiple datasets, with constant hyperparameters, \textsc{XFactors} achieves state-of-the-art disentanglement scores and yields consistent qualitative factor alignment in the corresponding subspaces, enabling controlled factor swapping via latent replacement. We further demonstrate that our method scales correctly with increasing latent capacity and evaluate it on the real-world dataset CelebA. Our code is available at \href{https://github.com/ICML26-anon/XFactors}{github.com/ICML26-anon/XFactors}.
☆ Don't be so Stief! Learning KV Cache low-rank approximation over the Stiefel manifold
Key--value (KV) caching enables fast autoregressive decoding but at long contexts becomes a dominant bottleneck in High Bandwidth Memory (HBM) capacity and bandwidth. A common mitigation is to compress cached keys and values by projecting per-head matrixes to a lower rank, storing only the projections in the HBM. However, existing post-training approaches typically fit these projections using SVD-style proxy objectives, which may poorly reflect end-to-end reconstruction after softmax, value mixing, and subsequent decoder-layer transformations. For these reasons, we introduce StiefAttention, a post-training KV-cache compression method that learns \emph{orthonormal} projection bases by directly minimizing \emph{decoder-layer output reconstruction error}. StiefAttention additionally precomputes, for each layer, an error-rank profile over candidate ranks, enabling flexible layer-wise rank allocation under a user-specified error budget. Noteworthy, on Llama3-8B under the same conditions, StiefAttention outperforms EigenAttention by $11.9$ points on C4 perplexity and $5.4\%$ on 0-shot MMLU accuracy at iso-compression, yielding lower relative error and higher cosine similarity with respect to the original decoder-layer outputs.
☆ Do Not Waste Your Rollouts: Recycling Search Experience for Efficient Test-Time Scaling
Test-Time Scaling enhances the reasoning capabilities of Large Language Models by allocating additional inference compute to broaden the exploration of the solution space. However, existing search strategies typically treat rollouts as disposable samples, where valuable intermediate insights are effectively discarded after each trial. This systemic memorylessness leads to massive computational redundancy, as models repeatedly re-derive discovered conclusions and revisit known dead ends across extensive attempts. To bridge this gap, we propose \textbf{Recycling Search Experience (RSE)}, a self-guided, training-free strategy that turns test-time search from a series of isolated trials into a cumulative process. By actively distilling raw trajectories into a shared experience bank, RSE enables positive recycling of intermediate conclusions to shortcut redundant derivations and negative recycling of failure patterns to prune encountered dead ends. Theoretically, we provide an analysis that formalizes the efficiency gains of RSE, validating its advantage over independent sampling in solving complex reasoning tasks. Empirically, extensive experiments on HMMT24, HMMT25, IMO-Bench, and HLE show that RSE consistently outperforms strong baselines with comparable computational cost, achieving state-of-the-art scaling efficiency.
comment: preprint
☆ Can Local Learning Match Self-Supervised Backpropagation?
While end-to-end self-supervised learning with backpropagation (global BP-SSL) has become central for training modern AI systems, theories of local self-supervised learning (local-SSL) have struggled to build functional representations in deep neural networks. To establish a link between global and local rules, we first develop a theory for deep linear networks: we identify conditions for local-SSL algorithms (like Forward-forward or CLAPP) to implement exactly the same weight update as a global BP-SSL. Starting from the theoretical insights, we then develop novel variants of local-SSL algorithms to approximate global BP-SSL in deep non-linear convolutional neural networks. Variants that improve the similarity between gradient updates of local-SSL with those of global BP-SSL also show better performance on image datasets (CIFAR-10, STL-10, and Tiny ImageNet). The best local-SSL rule with the CLAPP loss function matches the performance of a comparable global BP-SSL with InfoNCE or CPC-like loss functions, and improves upon state-of-the-art for local SSL on these benchmarks.
☆ FIT: Defying Catastrophic Forgetting in Continual LLM Unlearning
Large language models (LLMs) demonstrate impressive capabilities across diverse tasks but raise concerns about privacy, copyright, and harmful materials. Existing LLM unlearning methods rarely consider the continual and high-volume nature of real-world deletion requests, which can cause utility degradation and catastrophic forgetting as requests accumulate. To address this challenge, we introduce \fit, a framework for continual unlearning that handles large numbers of deletion requests while maintaining robustness against both catastrophic forgetting and post-unlearning recovery. \fit mitigates degradation through rigorous data \underline{F}iltering, \underline{I}mportance-aware updates, and \underline{T}argeted layer attribution, enabling stable performance across long sequences of unlearning operations and achieving a favorable balance between forgetting effectiveness and utility retention. To support realistic evaluation, we present \textbf{PCH}, a benchmark covering \textbf{P}ersonal information, \textbf{C}opyright, and \textbf{H}armful content in sequential deletion scenarios, along with two symmetric metrics, Forget Degree (F.D.) and Retain Utility (R.U.), which jointly assess forgetting quality and utility preservation. Extensive experiments on four open-source LLMs with hundreds of deletion requests show that \fit achieves the strongest trade-off between F.D. and R.U., surpasses existing methods on MMLU, CommonsenseQA, and GSM8K, and remains resistant against both relearning and quantization recovery attacks.
comment: 20 Pages
☆ LLM4Fluid: Large Language Models as Generalizable Neural Solvers for Fluid Dynamics
Deep learning has emerged as a promising paradigm for spatio-temporal modeling of fluid dynamics. However, existing approaches often suffer from limited generalization to unseen flow conditions and typically require retraining when applied to new scenarios. In this paper, we present LLM4Fluid, a spatio-temporal prediction framework that leverages Large Language Models (LLMs) as generalizable neural solvers for fluid dynamics. The framework first compresses high-dimensional flow fields into a compact latent space via reduced-order modeling enhanced with a physics-informed disentanglement mechanism, effectively mitigating spatial feature entanglement while preserving essential flow structures. A pretrained LLM then serves as a temporal processor, autoregressively predicting the dynamics of physical sequences with time series prompts. To bridge the modality gap between prompts and physical sequences, which can otherwise degrade prediction accuracy, we propose a dedicated modality alignment strategy that resolves representational mismatch and stabilizes long-term prediction. Extensive experiments across diverse flow scenarios demonstrate that LLM4Fluid functions as a robust and generalizable neural solver without retraining, achieving state-of-the-art accuracy while exhibiting powerful zero-shot and in-context learning capabilities. Code and datasets are publicly available at https://github.com/qisongxiao/LLM4Fluid.
☆ When Gradient Optimization Is Not Enough: $\dagger$ Dispersive and Anchoring Geometric Regularizer for Multimodal Learning
Multimodal learning aims to integrate complementary information from heterogeneous modalities, yet strong optimization alone does not guaranty well-structured representations. Even under carefully balanced training schemes, multimodal models often exhibit geometric pathologies, including intra-modal representation collapse and sample-level cross-modal inconsistency, which degrade both unimodal robustness and multimodal fusion. We identify representation geometry as a missing control axis in multimodal learning and propose \regName, a lightweight geometry-aware regularization framework. \regName enforces two complementary constraints on intermediate embeddings: an intra-modal dispersive regularization that promotes representation diversity, and an inter-modal anchoring regularization that bounds sample-level cross-modal drift without rigid alignment. The proposed regularizer is plug-and-play, requires no architectural modifications, and is compatible with various training paradigms. Extensive experiments across multiple multimodal benchmarks demonstrate consistent improvements in both multimodal and unimodal performance, showing that explicitly regulating representation geometry effectively mitigates modality trade-offs.
☆ Expected Return Causes Outcome-Level Mode Collapse in Reinforcement Learning and How to Fix It with Inverse Probability Scaling
Many reinforcement learning (RL) problems admit multiple terminal solutions of comparable quality, where the goal is not to identify a single optimum but to represent a diverse set of high-quality outcomes. Nevertheless, policies trained by standard expected return maximization routinely collapse onto a small subset of outcomes, a phenomenon commonly attributed to insufficient exploration or weak regularization. We show that this explanation is incomplete: outcome level mode collapse is a structural consequence of the expected-return objective itself. Under idealized learning dynamics, the log-probability ratio between any two outcomes evolves linearly in their reward difference, implying exponential ratio divergence and inevitable collapse independent of the exploration strategy, entropy regularization, or optimization algorithm. We identify the source of this pathology as the probability multiplier inside the expectation and propose a minimal correction: inverse probability scaling, which removes outcome-frequency amplification from the learning signal, fundamentally changes the learning dynamics, and provably yields reward-proportional terminal distributions, preventing collapse in multimodal settings. We instantiate this principle in Group Relative Policy Optimization (GRPO) as a drop-in modification, IPS-GRPO, requiring no auxiliary models or architectural changes. Across different reasoning and molecular generation tasks, IPS-GRPO consistently reduces outcome-level mode collapse while matching or exceeding baseline performance, suggesting that correcting the objective rather than adding exploration heuristics is key to reliable multimodal policy optimization.
☆ SENDAI: A Hierarchical Sparse-measurement, EfficieNt Data AssImilation Framework
Bridging the gap between data-rich training regimes and observation-sparse deployment conditions remains a central challenge in spatiotemporal field reconstruction, particularly when target domains exhibit distributional shifts, heterogeneous structure, and multi-scale dynamics absent from available training data. We present SENDAI, a hierarchical Sparse-measurement, EfficieNt Data AssImilation Framework that reconstructs full spatial states from hyper sparse sensor observations by combining simulation-derived priors with learned discrepancy corrections. We demonstrate the performance on satellite remote sensing, reconstructing MODIS (Moderate Resolution Imaging Spectroradiometer) derived vegetation index fields across six globally distributed sites. Using seasonal periods as a proxy for domain shift, the framework consistently outperforms established baselines that require substantially denser observations -- SENDAI achieves a maximum SSIM improvement of 185% over traditional baselines and a 36% improvement over recent high-frequency-based methods. These gains are particularly pronounced for landscapes with sharp boundaries and sub-seasonal dynamics; more importantly, the framework effectively preserves diagnostically relevant structures -- such as field topologies, land cover discontinuities, and spatial gradients. By yielding corrections that are more structurally and spectrally separable, the reconstructed fields are better suited for downstream inference of indirectly observed variables. The results therefore highlight a lightweight and operationally viable framework for sparse-measurement reconstruction that is applicable to physically grounded inference, resource-limited deployment, and real-time monitor and control.
☆ Epistemic Uncertainty Quantification for Pre-trained VLMs via Riemannian Flow Matching
Vision-Language Models (VLMs) are typically deterministic in nature and lack intrinsic mechanisms to quantify epistemic uncertainty, which reflects the model's lack of knowledge or ignorance of its own representations. We theoretically motivate negative log-density of an embedding as a proxy for the epistemic uncertainty, where low-density regions signify model ignorance. The proposed method REPVLM computes the probability density on the hyperspherical manifold of the VLM embeddings using Riemannian Flow Matching. We empirically demonstrate that REPVLM achieves near-perfect correlation between uncertainty and prediction error, significantly outperforming existing baselines. Beyond classification, we also demonstrate that the model also provides a scalable metric for out-of-distribution detection and automated data curation.
☆ TabClustPFN: A Prior-Fitted Network for Tabular Data Clustering
Clustering tabular data is a fundamental yet challenging problem due to heterogeneous feature types, diverse data-generating mechanisms, and the absence of transferable inductive biases across datasets. Prior-fitted networks (PFNs) have recently demonstrated strong generalization in supervised tabular learning by amortizing Bayesian inference under a broad synthetic prior. Extending this paradigm to clustering is nontrivial: clustering is unsupervised, admits a combinatorial and permutation-invariant output space, and requires inferring the number of clusters. We introduce TabClustPFN, a prior-fitted network for tabular data clustering that performs amortized Bayesian inference over both cluster assignments and cluster cardinality. Pretrained on synthetic datasets drawn from a flexible clustering prior, TabClustPFN clusters unseen datasets in a single forward pass, without dataset-specific retraining or hyperparameter tuning. The model naturally handles heterogeneous numerical and categorical features and adapts to a wide range of clustering structures. Experiments on synthetic data and curated real-world tabular benchmarks show that TabClustPFN outperforms classical, deep, and amortized clustering baselines, while exhibiting strong robustness in out-of-the-box exploratory settings. Code is available at https://github.com/Tianqi-Zhao/TabClustPFN.
☆ Gauge-invariant representation holonomy ICLR
Deep networks learn internal representations whose geometry--how features bend, rotate, and evolve--affects both generalization and robustness. Existing similarity measures such as CKA or SVCCA capture pointwise overlap between activation sets, but miss how representations change along input paths. Two models may appear nearly identical under these metrics yet respond very differently to perturbations or adversarial stress. We introduce representation holonomy, a gauge-invariant statistic that measures this path dependence. Conceptually, holonomy quantifies the "twist" accumulated when features are parallel-transported around a small loop in input space: flat representations yield zero holonomy, while nonzero values reveal hidden curvature. Our estimator fixes gauge through global whitening, aligns neighborhoods using shared subspaces and rotation-only Procrustes, and embeds the result back to the full feature space. We prove invariance to orthogonal (and affine, post-whitening) transformations, establish a linear null for affine layers, and show that holonomy vanishes at small radii. Empirically, holonomy increases with loop radius, separates models that appear similar under CKA, and correlates with adversarial and corruption robustness. It also tracks training dynamics as features form and stabilize. Together, these results position representation holonomy as a practical and scalable diagnostic for probing the geometric structure of learned representations beyond pointwise similarity.
comment: 14th International Conference on Learning Representations (ICLR)
☆ SWE-Spot: Building Small Repo-Experts with Repository-Centric Learning
The deployment of coding agents in privacy-sensitive and resource-constrained environments drives the demand for capable open-weight Small Language Models (SLMs). However, they suffer from a fundamental capability gap: unlike frontier large models, they lack the inference-time strong generalization to work with complicated, unfamiliar codebases. We identify that the prevailing Task-Centric Learning (TCL) paradigm, which scales exposure across disparate repositories, fails to address this limitation. In response, we propose Repository-Centric Learning (RCL), a paradigm shift that prioritizes vertical repository depth over horizontal task breadth, suggesting SLMs must internalize the "physics" of a target software environment through parametric knowledge acquisition, rather than attempting to recover it via costly inference-time search. Following this new paradigm, we design a four-unit Repository-Centric Experience, transforming static codebases into interactive learning signals, to train SWE-Spot-4B, a family of highly compact models built as repo-specialized experts that breaks established scaling trends, outperforming open-weight models up to larger (e.g., CWM by Meta, Qwen3-Coder-30B) and surpassing/matching efficiency-focused commercial models (e.g., GPT-4.1-mini, GPT-5-nano) across multiple SWE tasks. Further analysis reveals that RCL yields higher training sample efficiency and lower inference costs, emphasizing that for building efficient intelligence, repository mastery is a distinct and necessary dimension that complements general coding capability.
☆ ILRR: Inference-Time Steering Method for Masked Diffusion Language Models
Discrete Diffusion Language Models (DLMs) offer a promising non-autoregressive alternative for text generation, yet effective mechanisms for inference-time control remain relatively underexplored. Existing approaches include sampling-level guidance procedures or trajectory optimization mechanisms. In this work, we introduce Iterative Latent Representation Refinement (ILRR), a learning-free framework for steering DLMs using a single reference sequence. ILRR guides generation by dynamically aligning the internal activations of the generated sequence with those of a given reference throughout the denoising process. This approach captures and transfers high-level semantic properties, with a tunable steering scale enabling flexible control over attributes such as sentiment. We further introduce Spatially Modulated Steering, an extension that enables steering long texts using shorter references by regulating guidance intensity across the sequence. Empirically, we demonstrate that ILRR achieves effective attribute steering on LLaDA and MDLM architectures with a minor computational overhead, requiring only one additional parallel forward pass per denoising step. Under the same compute budget, ILRR improves attribute accuracy over comparable baselines by 10$\%$ to 60$\%$ points, while maintaining high generation quality.
☆ Identifiable Equivariant Networks are Layerwise Equivariant
We investigate the relation between end-to-end equivariance and layerwise equivariance in deep neural networks. We prove the following: For a network whose end-to-end function is equivariant with respect to group actions on the input and output spaces, there is a parameter choice yielding the same end-to-end function such that its layers are equivariant with respect to some group actions on the latent spaces. Our result assumes that the parameters of the model are identifiable in an appropriate sense. This identifiability property has been established in the literature for a large class of networks, to which our results apply immediately, while it is conjectural for others. The theory we develop is grounded in an abstract formalism, and is therefore architecture-agnostic. Overall, our results provide a mathematical explanation for the emergence of equivariant structures in the weights of neural networks during training -- a phenomenon that is consistently observed in practice.
☆ Seg-MoE: Multi-Resolution Segment-wise Mixture-of-Experts for Time Series Forecasting Transformers
Transformer-based models have recently made significant advances in accurate time-series forecasting, but even these architectures struggle to scale efficiently while capturing long-term temporal dynamics. Mixture-of-Experts (MoE) layers are a proven solution to scaling problems in natural language processing. However, existing MoE approaches for time-series forecasting rely on token-wise routing mechanisms, which may fail to exploit the natural locality and continuity of temporal data. In this work, we introduce Seg-MoE, a sparse MoE design that routes and processes contiguous time-step segments rather than making independent expert decisions. Token segments allow each expert to model intra-segment interactions directly, naturally aligning with inherent temporal patterns. We integrate Seg-MoE layers into a time-series Transformer and evaluate it on multiple multivariate long-term forecasting benchmarks. Seg-MoE consistently achieves state-of-the-art forecasting accuracy across almost all prediction horizons, outperforming both dense Transformers and prior token-wise MoE models. Comprehensive ablation studies confirm that segment-level routing is the key factor driving these gains. Our results show that aligning the MoE routing granularity with the inherent structure of time series provides a powerful, yet previously underexplored, inductive bias, opening new avenues for conditionally sparse architectures in sequential data modeling.
comment: Under review
☆ Generative Design of Ship Propellers using Conditional Flow Matching
In this paper, we explore the use of generative artificial intelligence (GenAI) for ship propeller design. While traditional forward machine learning models predict the performance of mechanical components based on given design parameters, GenAI models aim to generate designs that achieve specified performance targets. In particular, we employ conditional flow matching to establish a bidirectional mapping between design parameters and simulated noise that is conditioned on performance labels. This approach enables the generation of multiple valid designs corresponding to the same performance targets by sampling over the noise vector. To support model training, we generate data using a vortex lattice method for numerical simulation and analyze the trade-off between model accuracy and the amount of available data. We further propose data augmentation using pseudo-labels derived from less data-intensive forward surrogate models, which can often improve overall model performance. Finally, we present examples of distinct propeller geometries that exhibit nearly identical performance characteristics, illustrating the versatility and potential of GenAI in engineering design.
comment: 19 pages, 13 figures, 3 tables
☆ Sampling-Free Privacy Accounting for Matrix Mechanisms under Random Allocation
We study privacy amplification for differentially private model training with matrix factorization under random allocation (also known as the balls-in-bins model). Recent work by Choquette-Choo et al. (2025) proposes a sampling-based Monte Carlo approach to compute amplification parameters in this setting. However, their guarantees either only hold with some high probability or require random abstention by the mechanism. Furthermore, the required number of samples for ensuring $(ε,δ)$-DP is inversely proportional to $δ$. In contrast, we develop sampling-free bounds based on Rényi divergence and conditional composition. The former is facilitated by a dynamic programming formulation to efficiently compute the bounds. The latter complements it by offering stronger privacy guarantees for small $ε$, where Rényi divergence bounds inherently lead to an over-approximation. Our framework applies to arbitrary banded and non-banded matrices. Through numerical comparisons, we demonstrate the efficacy of our approach across a broad range of matrix mechanisms used in research and practice.
☆ Reinforcement Learning for Adaptive Composition of Quantum Circuit Optimisation Passes
Many quantum software development kits provide a suite of circuit optimisation passes. These passes have been highly optimised and tested in isolation. However, the order in which they are applied is left to the user, or else defined in general-purpose default pass sequences. While general-purpose sequences miss opportunities for optimisation which are particular to individual circuits, designing pass sequences bespoke to particular circuits requires exceptional knowledge about quantum circuit design and optimisation. Here we propose and demonstrate training a reinforcement learning agent to compose optimisation-pass sequences. In particular the agent's action space consists of passes for two-qubit gate count reduction used in default PyTKET pass sequences. For the circuits in our diverse test set, the (mean, median) fraction of two-qubit gates removed by the agent is $(57.7\%, \ 56.7 \%)$, compared to $(41.8 \%, \ 50.0 \%)$ for the next best default pass sequence.
comment: 14 pages, 7 figures
☆ Noise as a Probe: Membership Inference Attacks on Diffusion Models Leveraging Initial Noise
Diffusion models have achieved remarkable progress in image generation, but their increasing deployment raises serious concerns about privacy. In particular, fine-tuned models are highly vulnerable, as they are often fine-tuned on small and private datasets. Membership inference attacks (MIAs) are used to assess privacy risks by determining whether a specific sample was part of a model's training data. Existing MIAs against diffusion models either assume obtaining the intermediate results or require auxiliary datasets for training the shadow model. In this work, we utilized a critical yet overlooked vulnerability: the widely used noise schedules fail to fully eliminate semantic information in the images, resulting in residual semantic signals even at the maximum noise step. We empirically demonstrate that the fine-tuned diffusion model captures hidden correlations between the residual semantics in initial noise and the original images. Building on this insight, we propose a simple yet effective membership inference attack, which injects semantic information into the initial noise and infers membership by analyzing the model's generation result. Extensive experiments demonstrate that the semantic initial noise can strongly reveal membership information, highlighting the vulnerability of diffusion models to MIAs.
☆ HeRo-Q: A General Framework for Stable Low Bit Quantization via Hessian Conditioning
Post Training Quantization (PTQ), a mainstream model compression technique, often leads to the paradoxical 'low error, high loss' phenomenon because it focuses solely on minimizing quantization error. The root cause lies in the Hessian matrix of the LLM loss landscape: a few high curvature directions are extremely sensitive to perturbations. To address this, we propose the Hessian Robust Quantization (HeRo Q) algorithm, which applies a lightweight, learnable rotation-compression matrix to the weight space prior to quantization. This joint framework reshapes the loss landscape by reducing the largest Hessian eigenvalue and reducing its max eigenvalue, thereby significantly enhancing robustness to quantization noise. HeRo-Q requires no architectural modifications, incurs negligible computational overhead, and integrates seamlessly into existing PTQ pipelines. Experiments on Llama and Qwen models show that HeRo Q consistently outperforms state of the art methods including GPTQ, AWQ, and SpinQuant not only achieving superior performance under standard W4A8 settings, but also excelling in the highly challenging W3A16 ultra low bit regime, where it boosts GSM8K accuracy on Llama3 8B to 70.15\% and effectively avoids the logical collapse commonly seen in aggressive quantization.
☆ Training Memory in Deep Neural Networks: Mechanisms, Evidence, and Measurement Gaps
Modern deep-learning training is not memoryless. Updates depend on optimizer moments and averaging, data-order policies (random reshuffling vs with-replacement, staged augmentations and replay), the nonconvex path, and auxiliary state (teacher EMA/SWA, contrastive queues, BatchNorm statistics). This survey organizes mechanisms by source, lifetime, and visibility. It introduces seed-paired, function-space causal estimands; portable perturbation primitives (carry/reset of momentum/Adam/EMA/BN, order-window swaps, queue/teacher tweaks); and a reporting checklist with audit artifacts (order hashes, buffer/BN checksums, RNG contracts). The conclusion is a protocol for portable, causal, uncertainty-aware measurement that attributes how much training history matters across models, data, and regimes.
☆ LAMP: Look-Ahead Mixed-Precision Inference of Large Language Models
Mixed-precision computations are a hallmark of the current stage of AI, driving the progress in large language models towards efficient, locally deployable solutions. This article addresses the floating-point computation of compositionally-rich functions, concentrating on transformer inference. Based on the rounding error analysis of a composition $f(g(\mathrm{x}))$, we provide an adaptive strategy that selects a small subset of components of $g(\mathrm{x})$ to be computed more accurately while all other computations can be carried out with lower accuracy. We then explain how this strategy can be applied to different compositions within a transformer and illustrate its overall effect on transformer inference. We study the effectiveness of this algorithm numerically on GPT-2 models and demonstrate that already very low recomputation rates allow for improvements of up to two orders of magnitude in accuracy.
☆ Breaking the Overscaling Curse: Thinking Parallelism Before Parallel Thinking
Parallel thinking enhances LLM reasoning by multi-path sampling and aggregation. In system-level evaluations, a global parallelism level N is allocated to all samples, typically set large to maximize overall dataset accuracy. However, due to sample heterogeneity, some samples can achieve comparable performance with a smaller N'< N, causing budget redundancy. This incompatibility between system-level efficacy and sample-level efficiency constitutes the overscaling curse. In this paper, we formalize and quantify the overscaling curse, showing its universality and severity in practice, and analyze its trigger mechanism. We then propose a lightweight method, T2, to break the overscaling curse, which utilizes latent representations to estimate the optimal parallelism level for each sample before decoding. Experiments show that T2 significantly reduces cost while maintaining comparable performance, enabling more efficient parallel thinking.
☆ Beyond Parameter Finetuning: Test-Time Representation Refinement for Node Classification
Graph Neural Networks frequently exhibit significant performance degradation in the out-of-distribution test scenario. While test-time training (TTT) offers a promising solution, existing Parameter Finetuning (PaFT) paradigm suffer from catastrophic forgetting, hindering their real-world applicability. We propose TTReFT, a novel Test-Time Representation FineTuning framework that transitions the adaptation target from model parameters to latent representations. Specifically, TTReFT achieves this through three key innovations: (1) uncertainty-guided node selection for specific interventions, (2) low-rank representation interventions that preserve pre-trained knowledge, and (3) an intervention-aware masked autoencoder that dynamically adjust masking strategy to accommodate the node selection scheme. Theoretically, we establish guarantees for TTReFT in OOD settings. Empirically, extensive experiments across five benchmark datasets demonstrate that TTReFT achieves consistent and superior performance. Our work establishes representation finetuning as a new paradigm for graph TTT, offering both theoretical grounding and immediate practical utility for real-world deployment.
☆ Age Matters: Analyzing Age-Related Discussions in App Reviews
In recent years, mobile applications have become indispensable tools for managing various aspects of life. From enhancing productivity to providing personalized entertainment, mobile apps have revolutionized people's daily routines. Despite this rapid growth and popularity, gaps remain in how these apps address the needs of users from different age groups. Users of varying ages face distinct challenges when interacting with mobile apps, from younger users dealing with inappropriate content to older users having difficulty with usability due to age-related vision and cognition impairments. Although there have been initiatives to create age-inclusive apps, a limited understanding of user perspectives on age-related issues may hinder developers from recognizing specific challenges and implementing effective solutions. In this study, we explore age discussions in app reviews to gain insights into how mobile apps should cater to users across different age groups.We manually curated a dataset of 4,163 app reviews from the Google Play Store and identified 1,429 age-related reviews and 2,734 non-age-related reviews. We employed eight machine learning, deep learning, and large language models to automatically detect age discussions, with RoBERTa performing the best, achieving a precision of 92.46%. Additionally, a qualitative analysis of the 1,429 age-related reviews uncovers six dominant themes reflecting user concerns.
☆ Dynamics Reveals Structure: Challenging the Linear Propagation Assumption
Neural networks adapt through first-order parameter updates, yet it remains unclear whether such updates preserve logical coherence. We investigate the geometric limits of the Linear Propagation Assumption (LPA), the premise that local updates coherently propagate to logical consequences. To formalize this, we adopt relation algebra and study three core operations on relations: negation flips truth values, converse swaps argument order, and composition chains relations. For negation and converse, we prove that guaranteeing direction-agnostic first-order propagation necessitates a tensor factorization separating entity-pair context from relation content. However, for composition, we identify a fundamental obstruction. We show that composition reduces to conjunction, and prove that any conjunction well-defined on linear features must be bilinear. Since bilinearity is incompatible with negation, this forces the feature map to collapse. These results suggest that failures in knowledge editing, the reversal curse, and multi-hop reasoning may stem from common structural limitations inherent to the LPA.
☆ Scalable Power Sampling: Unlocking Efficient, Training-Free Reasoning for LLMs via Distribution Sharpening
Reinforcement learning (RL) post-training is a dominant approach for improving the reasoning performance of large language models (LLMs), yet growing evidence suggests that its gains arise primarily from distribution sharpening rather than the acquisition of new capabilities. Recent work has shown that sampling from the power distribution of LLMs using Markov chain Monte Carlo (MCMC) can recover performance comparable to RL post-training without relying on external rewards; however, the high computational cost of MCMC makes such approaches impractical for widespread adoption. In this work, we propose a theoretically grounded alternative that eliminates the need for iterative MCMC. We derive a novel formulation showing that the global power distribution can be approximated by a token-level scaled low-temperature one, where the scaling factor captures future trajectory quality. Leveraging this insight, we introduce a training-free and verifier-free algorithm that sharpens the base model's generative distribution autoregressively. Empirically, we evaluate our method on math, QA, and code tasks across four LLMs, and show that our method matches or surpasses one-shot GRPO without relying on any external rewards, while reducing inference latency by over 10x compared to MCMC-based sampling.
☆ Heterogeneity-Aware Knowledge Sharing for Graph Federated Learning
Graph Federated Learning (GFL) enables distributed graph representation learning while protecting the privacy of graph data. However, GFL suffers from heterogeneity arising from diverse node features and structural topologies across multiple clients. To address both types of heterogeneity, we propose a novel graph Federated learning method via Semantic and Structural Alignment (FedSSA), which shares the knowledge of both node features and structural topologies. For node feature heterogeneity, we propose a novel variational model to infer class-wise node distributions, so that we can cluster clients based on inferred distributions and construct cluster-level representative distributions. We then minimize the divergence between local and cluster-level distributions to facilitate semantic knowledge sharing. For structural heterogeneity, we employ spectral Graph Neural Networks (GNNs) and propose a spectral energy measure to characterize structural information, so that we can cluster clients based on spectral energy and build cluster-level spectral GNNs. We then align the spectral characteristics of local spectral GNNs with those of cluster-level spectral GNNs to enable structural knowledge sharing. Experiments on six homophilic and five heterophilic graph datasets under both non-overlapping and overlapping partitioning settings demonstrate that FedSSA consistently outperforms eleven state-of-the-art methods.
comment: 33 pages
☆ CORDS: Continuous Representations of Discrete Structures ICLR 2026
Many learning problems require predicting sets of objects when the number of objects is not known beforehand. Examples include object detection, molecular modeling, and scientific inference tasks such as astrophysical source detection. Existing methods often rely on padded representations or must explicitly infer the set size, which often poses challenges. We present a novel strategy for addressing this challenge by casting prediction of variable-sized sets as a continuous inference problem. Our approach, CORDS (Continuous Representations of Discrete Structures), provides an invertible mapping that transforms a set of spatial objects into continuous fields: a density field that encodes object locations and count, and a feature field that carries their attributes over the same support. Because the mapping is invertible, models operate entirely in field space while remaining exactly decodable to discrete sets. We evaluate CORDS across molecular generation and regression, object detection, simulation-based inference, and a mathematical task involving recovery of local maxima, demonstrating robust handling of unknown set sizes with competitive accuracy.
comment: Preprint, accepted at ICLR 2026
☆ Depth-Recurrent Attention Mixtures: Giving Latent Reasoning the Attention it Deserves
Depth-recurrence facilitates latent reasoning by sharing parameters across depths. However, prior work lacks combined FLOP-, parameter-, and memory-matched baselines, underutilizes depth-recurrence due to partially fixed layer stacks, and ignores the bottleneck of constant hidden-sizes that restricts many-step latent reasoning. To address this, we introduce a modular framework of depth-recurrent attention mixtures (Dreamer), combining sequence attention, depth attention, and sparse expert attention. It alleviates the hidden-size bottleneck through attention along depth, decouples scaling dimensions, and allows depth-recurrent models to scale efficiently and effectively. Across language reasoning benchmarks, our models require 2 to 8x fewer training tokens for the same accuracy as FLOP-, parameter-, and memory-matched SOTA, and outperform ca. 2x larger SOTA models with the same training tokens. We further present insights into knowledge usage across depths, e.g., showing 2 to 11x larger expert selection diversity than SOTA MoEs.
☆ Evaluating Prediction Uncertainty Estimates from BatchEnsemble
Deep learning models struggle with uncertainty estimation. Many approaches are either computationally infeasible or underestimate uncertainty. We investigate \textit{BatchEnsemble} as a general and scalable method for uncertainty estimation across both tabular and time series tasks. To extend BatchEnsemble to sequential modeling, we introduce GRUBE, a novel BatchEnsemble GRU cell. We compare the BatchEnsemble to Monte Carlo dropout and deep ensemble models. Our results show that BatchEnsemble matches the uncertainty estimation performance of deep ensembles, and clearly outperforms Monte Carlo dropout. GRUBE achieves similar or better performance in both prediction and uncertainty estimation. These findings show that BatchEnsemble and GRUBE achieve similar performance with fewer parameters and reduced training and inference time compared to traditional ensembles.
comment: 17 pages, 19 figures
☆ KromHC: Manifold-Constrained Hyper-Connections with Kronecker-Product Residual Matrices
The success of Hyper-Connections (HC) in neural networks (NN) has also highlighted issues related to its training instability and restricted scalability. The Manifold-Constrained Hyper-Connections (mHC) mitigate these challenges by projecting the residual connection space onto a Birkhoff polytope, however, it faces two issues: 1) its iterative Sinkhorn-Knopp (SK) algorithm does not always yield exact doubly stochastic residual matrices; 2) mHC incurs a prohibitive $\mathcal{O}(n^3C)$ parameter complexity with $n$ as the width of the residual stream and $C$ as the feature dimension. The recently proposed mHC-lite reparametrizes the residual matrix via the Birkhoff-von-Neumann theorem to guarantee double stochasticity, but also faces a factorial explosion in its parameter complexity, $\mathcal{O} \left( nC \cdot n! \right)$. To address both challenges, we propose \textbf{KromHC}, which uses the \underline{Kro}necker products of smaller doubly stochastic matrices to parametrize the residual matrix in \underline{mHC}. By enforcing manifold constraints across the factor residual matrices along each mode of the tensorized residual stream, KromHC guarantees exact double stochasticity of the residual matrices while reducing parameter complexity to $\mathcal{O}(n^2C)$. Comprehensive experiments demonstrate that KromHC matches or even outperforms state-of-the-art (SOTA) mHC variants, while requiring significantly fewer trainable parameters. The code is available at \texttt{https://github.com/wz1119/KromHC}.
☆ Learning the Mechanism of Catastrophic Forgetting: A Perspective from Gradient Similarity
Catastrophic forgetting during knowledge injection severely undermines the continual learning capability of large language models (LLMs). Although existing methods attempt to mitigate this issue, they often lack a foundational theoretical explanation. We establish a gradient-based theoretical framework to explain catastrophic forgetting. We first prove that strongly negative gradient similarity is a fundamental cause of forgetting. We then use gradient similarity to identify two types of neurons: conflicting neurons that induce forgetting and account for 50%-75% of neurons, and collaborative neurons that mitigate forgetting and account for 25%-50%. Based on this analysis, we propose a knowledge injection method, Collaborative Neural Learning (CNL). By freezing conflicting neurons and updating only collaborative neurons, CNL theoretically eliminates catastrophic forgetting under an infinitesimal learning rate eta and an exactly known mastered set. Experiments on five LLMs, four datasets, and four optimizers show that CNL achieves zero forgetting in in-set settings and reduces forgetting by 59.1%-81.7% in out-of-set settings.
☆ Signal-Adaptive Trust Regions for Gradient-Free Optimization of Recurrent Spiking Neural Networks
Recurrent spiking neural networks (RSNNs) are a promising substrate for energy-efficient control policies, but training them for high-dimensional, long-horizon reinforcement learning remains challenging. Population-based, gradient-free optimization circumvents backpropagation through non-differentiable spike dynamics by estimating gradients. However, with finite populations, high variance of these estimates can induce harmful and overly aggressive update steps. Inspired by trust-region methods in reinforcement learning that constrain policy updates in distribution space, we propose \textbf{Signal-Adaptive Trust Regions (SATR)}, a distributional update rule that constrains relative change by bounding KL divergence normalized by an estimated signal energy. SATR automatically expands the trust region under strong signals and contracts it when updates are noise-dominated. We instantiate SATR for Bernoulli connectivity distributions, which have shown strong empirical performance for RSNN optimization. Across a suite of high-dimensional continuous-control benchmarks, SATR improves stability under limited populations and reaches competitive returns against strong baselines including PPO-LSTM. In addition, to make SATR practical at scale, we introduce a bitset implementation for binary spiking and binary weights, substantially reducing wall-clock training time and enabling fast RSNN policy search.
☆ Shaping capabilities with token-level data filtering
Current approaches to reducing undesired capabilities in language models are largely post hoc, and can thus be easily bypassed by adversaries. A natural alternative is to shape capabilities during pretraining itself. On the proxy task of removing medical capabilities, we show that the simple intervention of filtering pretraining data is highly effective, robust, and inexpensive at scale. Inspired by work on data attribution, we show that filtering tokens is more effective than filtering documents, achieving the same hit to undesired capabilities at a lower cost to benign ones. Training models spanning two orders of magnitude, we then demonstrate that filtering gets more effective with scale: for our largest models, token filtering leads to a 7000x compute slowdown on the forget domain. We also show that models trained with token filtering can still be aligned on the forget domain. Along the way, we introduce a methodology for labeling tokens with sparse autoencoders and distilling cheap, high-quality classifiers. We also demonstrate that filtering can be robust to noisy labels with sufficient pretraining compute.
comment: 33 pages, 28 figures
☆ Bridging Functional and Representational Similarity via Usable Information
We present a unified framework for quantifying the similarity between representations through the lens of \textit{usable information}, offering a rigorous theoretical and empirical synthesis across three key dimensions. First, addressing functional similarity, we establish a formal link between stitching performance and conditional mutual information. We further reveal that stitching is inherently asymmetric, demonstrating that robust functional comparison necessitates a bidirectional analysis rather than a unidirectional mapping. Second, concerning representational similarity, we prove that reconstruction-based metrics and standard tools (e.g., CKA, RSA) act as estimators of usable information under specific constraints. Crucially, we show that similarity is relative to the capacity of the predictive family: representations that appear distinct to a rigid observer may be identical to a more expressive one. Third, we demonstrate that representational similarity is sufficient but not necessary for functional similarity. We unify these concepts through a task-granularity hierarchy: similarity on a complex task guarantees similarity on any coarser derivative, establishing representational similarity as the limit of maximum granularity: input reconstruction.
☆ FlexCausal: Flexible Causal Disentanglement via Structural Flow Priors and Manifold-Aware Interventions
Causal Disentangled Representation Learning(CDRL) aims to learn and disentangle low dimensional representations and their underlying causal structure from observations. However, existing disentanglement methods rely on a standard mean-field approximation with a diagonal posterior covariance, which decorrelates all latent dimensions. Additionally, these methods often assume isotropic Gaussian priors for exogenous noise, failing to capture the complex, non-Gaussian statistical properties prevalent in real-world causal factors. Therefore, we propose FlexCausal, a novel CDRL framework based on a block-diagonal covariance VAE. FlexCausal utilizes a Factorized Flow-based Prior to realistically model the complex densities of exogenous noise, effectively decoupling the learning of causal mechanisms from distributional statistics. By integrating supervised alignment objectives with counterfactual consistency constraints, our framework ensures a precise structural correspondence between the learned latent subspaces and the ground-truth causal relations. Finally, we introduce a manifold-aware relative intervention strategy to ensure high-fidelity generation. Experimental results on both synthetic and real-world datasets demonstrate that FlexCausal significantly outperforms other methods.
☆ Representation Unlearning: Forgetting through Information Compression
Machine unlearning seeks to remove the influence of specific training data from a model, a need driven by privacy regulations and robustness concerns. Existing approaches typically modify model parameters, but such updates can be unstable, computationally costly, and limited by local approximations. We introduce Representation Unlearning, a framework that performs unlearning directly in the model's representation space. Instead of modifying model parameters, we learn a transformation over representations that imposes an information bottleneck: maximizing mutual information with retained data while suppressing information about data to be forgotten. We derive variational surrogates that make this objective tractable and show how they can be instantiated in two practical regimes: when both retain and forget data are available, and in a zero-shot setting where only forget data can be accessed. Experiments across several benchmarks demonstrate that Representation Unlearning achieves more reliable forgetting, better utility retention, and greater computational efficiency than parameter-centric baselines.
☆ SAL: Selective Adaptive Learning for Backpropagation-Free Training with Sparsification
Standard deep learning relies on Backpropagation (BP), which is constrained by biologically implausible weight symmetry and suffers from significant gradient interference within dense representations. To mitigate these bottlenecks, we propose Selective Adaptive Learning (SAL), a training method that combines selective parameter activation with adaptive area partitioning. Specifically, SAL decomposes the parameter space into mutually exclusive, sample-dependent regions. This decoupling mitigates gradient interference across divergent semantic patterns and addresses explicit weight symmetry requirements through our refined feedback alignment. Empirically, SAL demonstrates competitive convergence rates, leading to improved classification performance across 10 standard benchmarks. Additionally, SAL achieves numerical consistency and competitive accuracy even in deep regimes (up to 128 layers) and large-scale models (up to 1B parameters). Our approach is loosely inspired by biological learning mechanisms, offering a plausible alternative that contributes to the study of scalable neural network training.
☆ HistoPrism: Unlocking Functional Pathway Analysis from Pan-Cancer Histology via Gene Expression Prediction ICLR2026
Predicting spatial gene expression from H&E histology offers a scalable and clinically accessible alternative to sequencing, but realizing clinical impact requires models that generalize across cancer types and capture biologically coherent signals. Prior work is often limited to per-cancer settings and variance-based evaluation, leaving functional relevance underexplored. We introduce HistoPrism, an efficient transformer-based architecture for pan-cancer prediction of gene expression from histology. To evaluate biological meaning, we introduce a pathway-level benchmark, shifting assessment from isolated gene-level variance to coherent functional pathways. HistoPrism not only surpasses prior state-of-the-art models on highly variable genes , but also more importantly, achieves substantial gains on pathway-level prediction, demonstrating its ability to recover biologically coherent transcriptomic patterns. With strong pan-cancer generalization and improved efficiency, HistoPrism establishes a new standard for clinically relevant transcriptomic modeling from routinely available histology.
comment: Accepted at ICLR2026
☆ Multi-Modal Time Series Prediction via Mixture of Modulated Experts
Real-world time series exhibit complex and evolving dynamics, making accurate forecasting extremely challenging. Recent multi-modal forecasting methods leverage textual information such as news reports to improve prediction, but most rely on token-level fusion that mixes temporal patches with language tokens in a shared embedding space. However, such fusion can be ill-suited when high-quality time-text pairs are scarce and when time series exhibit substantial variation in scale and characteristics, thus complicating cross-modal alignment. In parallel, Mixture-of-Experts (MoE) architectures have proven effective for both time series modeling and multi-modal learning, yet many existing MoE-based modality integration methods still depend on token-level fusion. To address this, we propose Expert Modulation, a new paradigm for multi-modal time series prediction that conditions both routing and expert computation on textual signals, enabling direct and efficient cross-modal control over expert behavior. Through comprehensive theoretical analysis and experiments, our proposed method demonstrates substantial improvements in multi-modal time series prediction. The current code is available at https://github.com/BruceZhangReve/MoME
comment: 26 pages, 12 figures
☆ Fast and Geometrically Grounded Lorentz Neural Networks
Hyperbolic space is quickly gaining traction as a promising geometry for hierarchical and robust representation learning. A core open challenge is the development of a mathematical formulation of hyperbolic neural networks that is both efficient and captures the key properties of hyperbolic space. The Lorentz model of hyperbolic space has been shown to enable both fast forward and backward propagation. However, we prove that, with the current formulation of Lorentz linear layers, the hyperbolic norms of the outputs scale logarithmically with the number of gradient descent steps, nullifying the key advantage of hyperbolic geometry. We propose a new Lorentz linear layer grounded in the well-known ``distance-to-hyperplane" formulation. We prove that our formulation results in the usual linear scaling of output hyperbolic norms with respect to the number of gradient descent steps. Our new formulation, together with further algorithmic efficiencies through Lorentzian activation functions and a new caching strategy results in neural networks fully abiding by hyperbolic geometry while simultaneously bridging the computation gap to Euclidean neural networks. Code available at: https://github.com/robertdvdk/hyperbolic-fully-connected.
comment: 19 pages, 4 figures
☆ Explicit Credit Assignment through Local Rewards and Dependence Graphs in Multi-Agent Reinforcement Learning
To promote cooperation in Multi-Agent Reinforcement Learning, the reward signals of all agents can be aggregated together, forming global rewards that are commonly known as the fully cooperative setting. However, global rewards are usually noisy because they contain the contributions of all agents, which have to be resolved in the credit assignment process. On the other hand, using local reward benefits from faster learning due to the separation of agents' contributions, but can be suboptimal as agents myopically optimize their own reward while disregarding the global optimality. In this work, we propose a method that combines the merits of both approaches. By using a graph of interaction between agents, our method discerns the individual agent contribution in a more fine-grained manner than a global reward, while alleviating the cooperation problem with agents' local reward. We also introduce a practical approach for approximating such a graph. Our experiments demonstrate the flexibility of the approach, enabling improvements over the traditional local and global reward settings.
☆ More Bang for the Buck: Improving the Inference of Large Language Models at a Fixed Budget using Reset and Discard (ReD)
The performance of large language models (LLMs) on verifiable tasks is usually measured by pass@k, the probability of answering a question correctly at least once in k trials. At a fixed budget, a more suitable metric is coverage@cost, the average number of unique questions answered as a function of the total number of attempts. We connect the two metrics and show that the empirically-observed power-law behavior in pass@k leads to a sublinear growth of the coverage@cost (diminishing returns). To solve this problem, we propose Reset-and-Discard (ReD), a query method of LLMs that increases coverage@cost for any given budget, regardless of the pass@k form. Moreover, given a pass@k, we can quantitatively predict the savings in the total number of attempts using ReD. If pass@k is not available for the model, ReD can infer its power-law exponent. Experiments on three LLMs using HumanEval demonstrate that ReD substantially reduces the required attempts, tokens, and USD cost to reach a desired coverage, while also offering an efficient way to measure inference power-laws.
☆ A Unified SPD Token Transformer Framework for EEG Classification: Systematic Comparison of Geometric Embeddings
Spatial covariance matrices of EEG signals are Symmetric Positive Definite (SPD) and lie on a Riemannian manifold, yet the theoretical connection between embedding geometry and optimization dynamics remains unexplored. We provide a formal analysis linking embedding choice to gradient conditioning and numerical stability for SPD manifolds, establishing three theoretical results: (1) BWSPD's $\sqrtκ$ gradient conditioning (vs $κ$ for Log-Euclidean) via Daleckii-Kreĭn matrices provides better gradient conditioning on high-dimensional inputs ($d \geq 22$), with this advantage reducing on low-dimensional inputs ($d \leq 8$) where eigendecomposition overhead dominates; (2) Embedding-Space Batch Normalization (BN-Embed) approximates Riemannian normalization up to $O(\varepsilon^2)$ error, yielding $+26\%$ accuracy on 56-channel ERP data but negligible effect on 8-channel SSVEP data, matching the channel-count-dependent prediction; (3) bi-Lipschitz bounds prove BWSPD tokens preserve manifold distances with distortion governed solely by the condition ratio $κ$. We validate these predictions via a unified Transformer framework comparing BWSPD, Log-Euclidean, and Euclidean embeddings within identical architecture across 1,500+ runs on three EEG paradigms (motor imagery, ERP, SSVEP; 36 subjects). Our Log-Euclidean Transformer achieves state-of-the-art performance on all datasets, substantially outperforming classical Riemannian classifiers and recent SPD baselines, while BWSPD offers competitive accuracy with similar training time.
☆ Cascaded Transfer: Learning Many Tasks under Budget Constraints
Many-Task Learning refers to the setting where a large number of related tasks need to be learned, the exact relationships between tasks are not known. We introduce the Cascaded Transfer Learning, a novel many-task transfer learning paradigm where information (e.g. model parameters) cascades hierarchically through tasks that are learned by individual models of the same class, while respecting given budget constraints. The cascade is organized as a rooted tree that specifies the order in which tasks are learned and refined. We design a cascaded transfer mechanism deployed over a minimum spanning tree structure that connects the tasks according to a suitable distance measure, and allocates the available training budget along its branches. Experiments on synthetic and real many-task settings show that the resulting method enables more accurate and cost effective adaptation across large task collections compared to alternative approaches.
☆ MAR: Efficient Large Language Models via Module-aware Architecture Refinement ICASSP 2026
Large Language Models (LLMs) excel across diverse domains but suffer from high energy costs due to quadratic attention and dense Feed-Forward Network (FFN) operations. To address these issues, we propose Module-aware Architecture Refinement (MAR), a two-stage framework that integrates State Space Models (SSMs) for linear-time sequence modeling and applies activation sparsification to reduce FFN costs. In addition, to mitigate low information density and temporal mismatch in integrating Spiking Neural Networks (SNNs) with SSMs, we design the Adaptive Ternary Multi-step Neuron (ATMN) and the Spike-aware Bidirectional Distillation Strategy (SBDS). Extensive experiments demonstrate that MAR effectively restores the performance of its dense counterpart under constrained resources while substantially reducing inference energy consumption. Furthermore, it outperforms efficient models of comparable or even larger scale, underscoring its potential for building efficient and practical LLMs.
comment: Accepted by ICASSP 2026. 5 pages, 5 figures
☆ Task-Awareness Improves LLM Generations and Uncertainty
In many applications of LLMs, natural language responses often have an underlying structure such as representing discrete labels, numerical values, or graphs. Yet, existing decoding and uncertainty estimation methods operate only in language space and largely disregard structural information. We address this by modeling LLM outputs directly in a task-dependent latent structure. By equipping this structure with a dissimilarity measure, we can compute Bayes-optimal responses. These are not selected from sampled generations but are newly synthesized by combining individual responses in the latent space. Across different tasks, Bayes-optimal responses consistently outperform standard decoding methods like beam search. Moreover, quantifying uncertainty via the induced Bayesian risk captures variations in terms of the latent structure and improves alignment with output quality and correctness. Our decision-theoretic framework is applicable to any problem that admits a latent response structure and enables reliable task-aware LLM predictions.
☆ Manifold constrained steepest descent
Norm-constrained linear minimization oracle (LMO)-based optimizers such as spectral gradient descent and Muon are attractive in large-scale learning, but extending them to manifold-constrained problems is nontrivial and often leads to nested-loop schemes that solve tangent-space subproblems iteratively. We propose \emph{Manifold Constrained Steepest Descent} (MCSD), a single-loop framework for optimization over manifolds that selects a norm-induced steepest-descent direction via an LMO applied to the Riemannian gradient, and then returns to the manifold via projection. Under standard smoothness assumptions, we establish convergence guarantees for MCSD and a stochastic momentum variant. We further introduce \emph{SPEL}, the spectral-norm specialization of MCSD on the Stiefel manifold, which admits scalable implementations via fast matrix sign computations. Experiments on PCA, orthogonality-constrained CNNs, and manifold-constrained LLM adapter tuning demonstrate improved stability and competitive performance relative to standard Riemannian baselines and existing manifold-aware LMO methods.
comment: 23 pages, 7 figures, and 5 tables
☆ ETS: Energy-Guided Test-Time Scaling for Training-Free RL Alignment
Reinforcement Learning (RL) post-training alignment for language models is effective, but also costly and unstable in practice, owing to its complicated training process. To address this, we propose a training-free inference method to sample directly from the optimal RL policy. The transition probability applied to Masked Language Modeling (MLM) consists of a reference policy model and an energy term. Based on this, our algorithm, Energy-Guided Test-Time Scaling (ETS), estimates the key energy term via online Monte Carlo, with a provable convergence rate. Moreover, to ensure practical efficiency, ETS leverages modern acceleration frameworks alongside tailored importance sampling estimators, substantially reducing inference latency while provably preserving sampling quality. Experiments on MLM (including autoregressive models and diffusion language models) across reasoning, coding, and science benchmarks show that our ETS consistently improves generation quality, validating its effectiveness and design.
☆ Mean-Field Control on Sparse Graphs: From Local Limits to GNNs via Neighborhood Distributions
Mean-field control (MFC) offers a scalable solution to the curse of dimensionality in multi-agent systems but traditionally hinges on the restrictive assumption of exchangeability via dense, all-to-all interactions. In this work, we bridge the gap to real-world network structures by proposing a rigorous framework for MFC on large sparse graphs. We redefine the system state as a probability measure over decorated rooted neighborhoods, effectively capturing local heterogeneity. Our central contribution is a theoretical foundation for scalable reinforcement learning in this setting. We prove horizon-dependent locality: for finite-horizon problems, an agent's optimal policy at time t depends strictly on its (T-t)-hop neighborhood. This result renders the infinite-dimensional control problem tractable and underpins a novel Dynamic Programming Principle (DPP) on the lifted space of neighborhood distributions. Furthermore, we formally and experimentally justify the use of Graph Neural Networks (GNNs) for actor-critic algorithms in this context. Our framework naturally recovers classical MFC as a degenerate case while enabling efficient, theoretically grounded control on complex sparse topologies.
comment: 19 pages
☆ Task-free Adaptive Meta Black-box Optimization ICLR 2026
Handcrafted optimizers become prohibitively inefficient for complex black-box optimization (BBO) tasks. MetaBBO addresses this challenge by meta-learning to automatically configure optimizers for low-level BBO tasks, thereby eliminating heuristic dependencies. However, existing methods typically require extensive handcrafted training tasks to learn meta-strategies that generalize to target tasks, which poses a critical limitation for realistic applications with unknown task distributions. To overcome the issue, we propose the Adaptive meta Black-box Optimization Model (ABOM), which performs online parameter adaptation using solely optimization data from the target task, obviating the need for predefined task distributions. Unlike conventional metaBBO frameworks that decouple meta-training and optimization phases, ABOM introduces a closed-loop adaptive parameter learning mechanism, where parameterized evolutionary operators continuously self-update by leveraging generated populations during optimization. This paradigm shift enables zero-shot optimization: ABOM achieves competitive performance on synthetic BBO benchmarks and realistic unmanned aerial vehicle path planning problems without any handcrafted training tasks. Visualization studies reveal that parameterized evolutionary operators exhibit statistically significant search patterns, including natural selection and genetic recombination.
comment: This article was published as a conference paper at ICLR 2026
☆ Best Arm Identification with LLM Judges and Limited Human
We study fixed-confidence best-arm identification (BAI) where a cheap but potentially biased proxy (e.g., LLM judge) is available for every sample, while an expensive ground-truth label can only be acquired selectively when using a human for auditing. Unlike classical multi-fidelity BAI, the proxy is biased (arm- and context-dependent) and ground truth is selectively observed. Consequently, standard multi-fidelity methods can mis-select the best arm, and uniform auditing, though accurate, wastes scarce resources and is inefficient. We prove that without bias correction and propensity adjustment, mis-selection probability may not vanish (even with unlimited proxy data). We then develop an estimator for the mean of each arm that combines proxy scores with inverse-propensity-weighted residuals and form anytime-valid confidence sequences for that estimator. Based on the estimator and confidence sequence, we propose an algorithm that adaptively selects and audits arms. The algorithm concentrates audits on unreliable contexts and close arms and we prove that a plug-in Neyman rule achieves near-oracle audit efficiency. Numerical experiments confirm the theoretical guarantees and demonstrate the superior empirical performance of the proposed algorithm.
comment: 22 pages, 3 figures
☆ PPI-SVRG: Unifying Prediction-Powered Inference and Variance Reduction for Semi-Supervised Optimization
We study semi-supervised stochastic optimization when labeled data is scarce but predictions from pre-trained models are available. PPI and SVRG both reduce variance through control variates -- PPI uses predictions, SVRG uses reference gradients. We show they are mathematically equivalent and develop PPI-SVRG, which combines both. Our convergence bound decomposes into the standard SVRG rate plus an error floor from prediction uncertainty. The rate depends only on loss geometry; predictions affect only the neighborhood size. When predictions are perfect, we recover SVRG exactly. When predictions degrade, convergence remains stable but reaches a larger neighborhood. Experiments confirm the theory: PPI-SVRG reduces MSE by 43--52\% under label scarcity on mean estimation benchmarks and improves test accuracy by 2.7--2.9 percentage points on MNIST with only 10\% labeled data.
comment: 27 pages, 4 figures
☆ A block-coordinate descent framework for non-convex composite optimization. Application to sparse precision matrix estimation
Block-coordinate descent (BCD) is the method of choice to solve numerous large scale optimization problems, however their theoretical study for non-convex optimization, has received less attention. In this paper, we present a new block-coordinate descent (BCD) framework to tackle non-convex composite optimization problems, ensuring decrease of the objective function and convergence to a solution. This framework is general enough to include variable metric proximal gradient updates, proximal Newton updates, and alternated minimization updates. This generality allows to encompass three versions of the most used solvers in the sparse precision matrix estimation problem, deemed Graphical Lasso: graphical ISTA, Primal GLasso, and QUIC. We demonstrate the value of this new framework on non-convex sparse precision matrix estimation problems, providing convergence guarantees and up to a $100$-fold reduction in the number of iterations required to reach state-of-the-art estimation quality.
☆ Partial Feedback Online Learning
We study partial-feedback online learning, where each instance admits a set of correct labels, but the learner only observes one correct label per round; any prediction within the correct set is counted as correct. This model captures settings such as language generation, where multiple responses may be valid but data provide only a single reference. We give a near-complete characterization of minimax regret for both deterministic and randomized learners in the set-realizable regime, i.e., in the regime where sublinear regret is generally attainable. For deterministic learners, we introduce the Partial-Feedback Littlestone dimension (PFLdim) and show it precisely governs learnability and minimax regret; technically, PFLdim cannot be defined via the standard version space, requiring a new collection version space viewpoint and an auxiliary dimension used only in the proof. We further develop the Partial-Feedback Measure Shattering dimension (PMSdim) to obtain tight bounds for randomized learners. We identify broad conditions ensuring inseparability between deterministic and randomized learnability (e.g., finite Helly number or nested-inclusion label structure), and extend the argument to set-valued online learning, resolving an open question of Raman et al. [2024b]. Finally, we show a sharp separation from weaker realistic and agnostic variants: outside set realizability, the problem can become information-theoretically intractable, with linear regret possible even for $|H|=2$. This highlights the need for fundamentally new, noise-sensitive complexity measures to meaningfully characterize learnability beyond set realizability.
comment: 32 pages
☆ L$^3$: Large Lookup Layers
Modern sparse language models typically achieve sparsity through Mixture-of-Experts (MoE) layers, which dynamically route tokens to dense MLP "experts." However, dynamic hard routing has a number of drawbacks, such as potentially poor hardware efficiency and needing auxiliary losses for stable training. In contrast, the tokenizer embedding table, which is natively sparse, largely avoids these issues by selecting a single embedding per token at the cost of not having contextual information. In this work, we introduce the Large Lookup Layer (L$^3$), which unlocks a new axis of sparsity by generalizing embedding tables to model decoder layers. L$^3$ layers use static token-based routing to aggregate a set of learned embeddings per token in a context-dependent way, allowing the model to efficiently balance memory and compute by caching information in embeddings. L$^3$ has two main components: (1) a systems-friendly architecture that allows for fast training and CPU-offloaded inference with no overhead, and (2) an information-theoretic embedding allocation algorithm that effectively balances speed and quality. We empirically test L$^3$ by training transformers with up to 2.6B active parameters and find that L$^3$ strongly outperforms both dense models and iso-sparse MoEs in both language modeling and downstream tasks.
comment: Preprint
☆ HER: Human-like Reasoning and Reinforcement Learning for LLM Role-playing
LLM role-playing, i.e., using LLMs to simulate specific personas, has emerged as a key capability in various applications, such as companionship, content creation, and digital games. While current models effectively capture character tones and knowledge, simulating the inner thoughts behind their behaviors remains a challenge. Towards cognitive simulation in LLM role-play, previous efforts mainly suffer from two deficiencies: data with high-quality reasoning traces, and reliable reward signals aligned with human preferences. In this paper, we propose HER, a unified framework for cognitive-level persona simulation. HER introduces dual-layer thinking, which distinguishes characters' first-person thinking from LLMs' third-person thinking. To bridge these gaps, we curate reasoning-augmented role-playing data via reverse engineering and construct human-aligned principles and reward models. Leveraging these resources, we train \method models based on Qwen3-32B via supervised and reinforcement learning. Extensive experiments validate the effectiveness of our approach. Notably, our models significantly outperform the Qwen3-32B baseline, achieving a 30.26 improvement on the CoSER benchmark and a 14.97 gain on the Minimax Role-Play Bench. Our datasets, principles, and models will be released to facilitate future research.
comment: 41pages, 10 figures
☆ Questioning the Coverage-Length Metric in Conformal Prediction: When Shorter Intervals Are Not Better
Conformal prediction (CP) has become a cornerstone of distribution-free uncertainty quantification, conventionally evaluated by its coverage and interval length. This work critically examines the sufficiency of these standard metrics. We demonstrate that the interval length might be deceptively improved through a counter-intuitive approach termed Prejudicial Trick (PT), while the coverage remains valid. Specifically, for any given test sample, PT probabilistically returns an interval, which is either null or constructed using an adjusted confidence level, thereby preserving marginal coverage. While PT potentially yields a deceptively lower interval length, it introduces practical vulnerabilities: the same input can yield completely different prediction intervals across repeated runs of the algorithm. We formally derive the conditions under which PT achieves these misleading improvements and provides extensive empirical evidence across various regression and classification tasks. Furthermore, we introduce a new metric interval stability which helps detect whether a new CP method implicitly improves the length based on such PT-like techniques.
☆ SAGE: Sequence-level Adaptive Gradient Evolution for Generative Recommendation
While works such as OneRec have validated the scaling laws of Large Language Models (LLMs) in recommender systems, they rely on a cumbersome separate vocabulary. This dependency prevents the model architecture from reusing native LLM vocabularies, resulting in high maintenance costs and poor scalability. In response, we aim to efficiently reuse open-source LLM architectures without constructing a separate tokenization vocabulary. Furthermore, we identify that the optimization strategy of OneRec Gradient Bounded Policy Optimization (GBPO),suffers from a "Symmetric Conservatism" problem: its static gradient boundaries structurally suppress the update momentum required for cold-start items and fail to prevent diversity collapse in high-noise environments.To address this issue, we propose SAGE (Sequence-level Adaptive Gradient Evolution), a unified optimization framework tailored for list-wise generative recommendation. SAGE introduces two key innovations:(1) Sequence-level Signal Decoupling: By combining a geometric mean importance ratio with decoupled multi-objective advantages, we eliminate token-level variance and resolve the "Reward Collapse" problem. (2) Asymmetric Adaptive Dynamics: We construct a dynamic gradient manifold that applies a "Boost Factor" to high-potential cold start items to achieve super-linear updates and employs an "Entropy Aware Penalty" to break information cocoons. Theoretical analysis and empirical results demonstrate that SAGE effectively unblocks cold-start traffic and sustains recommendation diversity, all while retaining the numerical stability of GBPO.
comment: arXiv admin note: text overlap with arXiv:2506.19235
☆ Synthetic Pattern Generation and Detection of Financial Activities using Graph Autoencoders
Illicit financial activities such as money laundering often manifest through recurrent topological patterns in transaction networks. Detecting these patterns automatically remains challenging due to the scarcity of labeled real-world data and strict privacy constraints. To address this, we investigate whether Graph Autoencoders (GAEs) can effectively learn and distinguish topological patterns that mimic money laundering operations when trained on synthetic data. The analysis consists of two phases: (i) data generation, where synthetic samples are created for seven well-known illicit activity patterns using parametrized generators that preserve structural consistency while introducing realistic variability; and (ii) model training and validation, where separate GAEs are trained on each pattern without explicit labels, relying solely on reconstruction error as an indicator of learned structure. We compare three GAE implementations based on three distinct convolutional layers: Graph Convolutional (GAE-GCN), GraphSAGE (GAE-SAGE), and Graph Attention Network (GAE-GAT). Experimental results show that GAE-GCN achieves the most consistent reconstruction performance across patterns, while GAE-SAGE and GAE-GAT exhibit competitive results only in few specific patterns. These findings suggest that graph-based representation learning on synthetic data provides a viable path toward developing AI-driven tools for detecting illicit behaviors, overcoming the limitations of financial datasets.
comment: Accept to The 7th International Workshop on Statistical Methods and Artificial Intelligence (IWSMAI'26)
☆ Accurate Network Traffic Matrix Prediction via LEAD: an LLM-Enhanced Adapter-Based Conditional Diffusion Model
Driven by the evolution toward 6G and AI-native edge intelligence, network operations increasingly require predictive and risk-aware adaptation under stringent computation and latency constraints. Network Traffic Matrix (TM), which characterizes flow volumes between nodes, is a fundamental signal for proactive traffic engineering. However, accurate TM forecasting remains challenging due to the stochastic, non-linear, and bursty nature of network dynamics. Existing discriminative models often suffer from over-smoothing and provide limited uncertainty awareness, leading to poor fidelity under extreme bursts. To address these limitations, we propose LEAD, a Large Language Model (LLM)-Enhanced Adapter-based conditional Diffusion model. First, LEAD adopts a "Traffic-to-Image" paradigm to transform traffic matrices into RGB images, enabling global dependency modeling via vision backbones. Then, we design a "Frozen LLM with Trainable Adapter" model, which efficiently captures temporal semantics with limited computational cost. Moreover, we propose a Dual-Conditioning Strategy to precisely guide a diffusion model to generate complex, dynamic network traffic matrices. Experiments on the Abilene and GEANT datasets demonstrate that LEAD outperforms all baselines. On the Abilene dataset, LEAD attains a remarkable 45.2% reduction in RMSE against the best baseline, with the error margin rising only marginally from 0.1098 at one-step to 0.1134 at 20-step predictions. Meanwhile, on the GEANT dataset, LEAD achieves a 0.0258 RMSE at 20-step prediction horizon which is 27.3% lower than the best baseline.
☆ From Consistency to Complementarity: Aligned and Disentangled Multi-modal Learning for Time Series Understanding and Reasoning
Advances in multi-modal large language models (MLLMs) have inspired time series understanding and reasoning tasks, that enable natural language querying over time series, producing textual analyses of complex temporal dynamics. Recent attempts hybridize numerical time series with their visualized plots, facilitating precise value reasoning and visual structure comprehension for comprehensive time series understanding of MLLMs. However, effective cross-modal integration remains challenging due to fine-grained temporal misalignment across modalities and severe entanglement between shared and modality-specific semantics, which hinder localized interpretation and complementary reasoning. To address these issues, we propose MADI, a multi-modal LLM enhanced with fine-grained alignment and disentangled interaction, featuring (1) Patch-level Alignment, which enforces physically grounded fine-grained correspondence across heterogeneous modalities, (2) Discrete Disentangled Interaction, which separates modality-common semantics into compact discrete latents and adaptively synergizes the purified modality-unique information, and (3) Critical-token Highlighting, which emphasizes informative, query-relevant signals for robust reasoning. Experiments on synthetic and real-world benchmarks show that MADI consistently outperforms general-purpose LLMs and time-series-specialized MLLMs.
☆ Lossy Common Information in a Learnable Gray-Wyner Network
Many computer vision tasks share substantial overlapping information, yet conventional codecs tend to ignore this, leading to redundant and inefficient representations. The Gray-Wyner network, a classical concept from information theory, offers a principled framework for separating common and task-specific information. Inspired by this idea, we develop a learnable three-channel codec that disentangles shared information from task-specific details across multiple vision tasks. We characterize the limits of this approach through the notion of lossy common information, and propose an optimization objective that balances inherent tradeoffs in learning such representations. Through comparisons of three codec architectures on two-task scenarios spanning six vision benchmarks, we demonstrate that our approach substantially reduces redundancy and consistently outperforms independent coding. These results highlight the practical value of revisiting Gray-Wyner theory in modern machine learning contexts, bridging classic information theory with task-driven representation learning.
☆ ConceptMoE: Adaptive Token-to-Concept Compression for Implicit Compute Allocation
Large language models allocate uniform computation across all tokens, ignoring that some sequences are trivially predictable while others require deep reasoning. We introduce ConceptMoE, which dynamically merges semantically similar tokens into concept representations, performing implicit token-level compute allocation. A learnable chunk module identifies optimal boundaries by measuring inter-token similarity, compressing sequences by a target ratio $R$ before they enter the compute-intensive concept model. Crucially, the MoE architecture enables controlled evaluation: we reallocate saved computation to match baseline activated FLOPs (excluding attention map computation) and total parameters, isolating genuine architectural benefits. Under these conditions, ConceptMoE consistently outperforms standard MoE across language and vision-language tasks, achieving +0.9 points on language pretraining, +2.3 points on long context understanding, and +0.6 points on multimodal benchmarks. When converting pretrained MoE during continual training with layer looping, gains reach +5.5 points, demonstrating practical applicability. Beyond performance, ConceptMoE reduces attention computation by up to $R^2\times$ and KV cache by $R\times$. At $R=2$, empirical measurements show prefill speedups reaching 175\% and decoding speedups up to 117\% on long sequences. The minimal architectural modifications enable straightforward integration into existing MoE, demonstrating that adaptive concept-level processing fundamentally improves both effectiveness and efficiency of large language models.
☆ Revisiting Diffusion Model Predictions Through Dimensionality
Recent advances in diffusion and flow matching models have highlighted a shift in the preferred prediction target -- moving from noise ($\varepsilon$) and velocity (v) to direct data (x) prediction -- particularly in high-dimensional settings. However, a formal explanation of why the optimal target depends on the specific properties of the data remains elusive. In this work, we provide a theoretical framework based on a generalized prediction formulation that accommodates arbitrary output targets, of which $\varepsilon$-, v-, and x-prediction are special cases. We derive the analytical relationship between data's geometry and the optimal prediction target, offering a rigorous justification for why x-prediction becomes superior when the ambient dimension significantly exceeds the data's intrinsic dimension. Furthermore, while our theory identifies dimensionality as the governing factor for the optimal prediction target, the intrinsic dimension of manifold-bound data is typically intractable to estimate in practice. To bridge this gap, we propose k-Diff, a framework that employs a data-driven approach to learn the optimal prediction parameter k directly from data, bypassing the need for explicit dimension estimation. Extensive experiments in both latent-space and pixel-space image generation demonstrate that k-Diff consistently outperforms fixed-target baselines across varying architectures and data scales, providing a principled and automated approach to enhancing generative performance.
comment: 19 pages, 5 figures
☆ Mitigating Overthinking in Large Reasoning Models via Difficulty-aware Reinforcement Learning
Large Reasoning Models (LRMs) achieve explicit chain-of-thought expansion by imitating deep thinking behaviors of humans, demonstrating excellent performance in complex task scenarios. However, the deep-thinking mode often leads to unnecessarily lengthy reasoning and resource inefficiency when handling simple tasks. This overthinking phenomenon may arise from the generation preference triggered by the reward function during post-training. Existing research attempts to mitigate overthinking from the perspective of prompt design or model training, but generally underestimates the importance of task difficulty awareness, which makes it difficult for LRMs to effectively allocate reasoning resources. In this paper, we propose Difficulty-aware Policy Optimization (DiPO), a reinforcement learning-based LRM training framework. DiPO encourages LRM to spontaneously model task complexity, and integrates them into reinforcement learning framework to adjust the generation preferences introduced by post-training. A difficulty modeling method based on model self-reasoning is proposed, which significantly reduces the dependence on manual annotation and formalize task complexity. We further develop a difficulty-signal-enhanced reward function that incorporates a penalty for lengthy reasoning while considering reasoning performance and output format. Experimental results indicate that DiPO enables the model to spontaneously adjust inference overhead, significantly reducing redundant tokens without losing performance due to thought compression.
☆ Statsformer: Validated Ensemble Learning with LLM-Derived Semantic Priors
We introduce Statsformer, a principled framework for integrating large language model (LLM)-derived knowledge into supervised statistical learning. Existing approaches are limited in adaptability and scope: they either inject LLM guidance as an unvalidated heuristic, which is sensitive to LLM hallucination, or embed semantic information within a single fixed learner. Statsformer overcomes both limitations through a guardrailed ensemble architecture. We embed LLM-derived feature priors within an ensemble of linear and nonlinear learners, adaptively calibrating their influence via cross-validation. This design yields a flexible system with an oracle-style guarantee that it performs no worse than any convex combination of its in-library base learners, up to statistical error. Empirically, informative priors yield consistent performance improvements, while uninformative or misspecified LLM guidance is automatically downweighted, mitigating the impact of hallucinations across a diverse range of prediction tasks.
☆ Generation Enhances Understanding in Unified Multimodal Models via Multi-Representation Generation
Unified Multimodal Models (UMMs) integrate both visual understanding and generation within a single framework. Their ultimate aspiration is to create a cycle where understanding and generation mutually reinforce each other. While recent post-training methods have successfully leveraged understanding to enhance generation, the reverse direction of utilizing generation to improve understanding remains largely unexplored. In this work, we propose UniMRG (Unified Multi-Representation Generation), a simple yet effective architecture-agnostic post-training method. UniMRG enhances the understanding capabilities of UMMs by incorporating auxiliary generation tasks. Specifically, we train UMMs to generate multiple intrinsic representations of input images, namely pixel (reconstruction), depth (geometry), and segmentation (structure), alongside standard visual understanding objectives. By synthesizing these diverse representations, UMMs capture complementary information regarding appearance, spatial relations, and structural layout. Consequently, UMMs develop a deeper and more comprehensive understanding of visual inputs. Extensive experiments across diverse UMM architectures demonstrate that our method notably enhances fine-grained perception, reduces hallucinations, and improves spatial understanding, while simultaneously boosting generation capabilities.
☆ Intrinsic Reward Policy Optimization for Sparse-Reward Environments
Exploration is essential in reinforcement learning as an agent relies on trial and error to learn an optimal policy. However, when rewards are sparse, naive exploration strategies, like noise injection, are often insufficient. Intrinsic rewards can also provide principled guidance for exploration by, for example, combining them with extrinsic rewards to optimize a policy or using them to train subpolicies for hierarchical learning. However, the former approach suffers from unstable credit assignment, while the latter exhibits sample inefficiency and sub-optimality. We propose a policy optimization framework that leverages multiple intrinsic rewards to directly optimize a policy for an extrinsic reward without pretraining subpolicies. Our algorithm -- intrinsic reward policy optimization (IRPO) -- achieves this by using a surrogate policy gradient that provides a more informative learning signal than the true gradient in sparse-reward environments. We demonstrate that IRPO improves performance and sample efficiency relative to baselines in discrete and continuous environments, and formally analyze the optimization problem solved by IRPO. Our code is available at https://github.com/Mgineer117/IRPO.
☆ Learning to Optimize Job Shop Scheduling Under Structural Uncertainty
The Job-Shop Scheduling Problem (JSSP), under various forms of manufacturing uncertainty, has recently attracted considerable research attention. Most existing studies focus on parameter uncertainty, such as variable processing times, and typically adopt the actor-critic framework. In this paper, we explore a different but prevalent form of uncertainty in JSSP: structural uncertainty. Structural uncertainty arises when a job may follow one of several routing paths, and the selection is determined not by policy, but by situational factors (e.g., the quality of intermediate products) that cannot be known in advance. Existing methods struggle to address this challenge due to incorrect credit assignment: a high-quality action may be unfairly penalized if it is followed by a time-consuming path. To address this problem, we propose a novel method named UP-AAC. In contrast to conventional actor-critic methods, UP-AAC employs an asymmetric architecture. While its actor receives a standard stochastic state, the critic is crucially provided with a deterministic state reconstructed in hindsight. This design allows the critic to learn a more accurate value function, which in turn provides a lower-variance policy gradient to the actor, leading to more stable learning. In addition, we design an attention-based Uncertainty Perception Model (UPM) to enhance the actor's scheduling decisions. Extensive experiments demonstrate that our method outperforms existing approaches in reducing makespan on benchmark instances.
☆ Sim-MSTNet: sim2real based Multi-task SpatioTemporal Network Traffic Forecasting ICASSP 2026
Network traffic forecasting plays a crucial role in intelligent network operations, but existing techniques often perform poorly when faced with limited data. Additionally, multi-task learning methods struggle with task imbalance and negative transfer, especially when modeling various service types. To overcome these challenges, we propose Sim-MSTNet, a multi-task spatiotemporal network traffic forecasting model based on the sim2real approach. Our method leverages a simulator to generate synthetic data, effectively addressing the issue of poor generalization caused by data scarcity. By employing a domain randomization technique, we reduce the distributional gap between synthetic and real data through bi-level optimization of both sample weighting and model training. Moreover, Sim-MSTNet incorporates attention-based mechanisms to selectively share knowledge between tasks and applies dynamic loss weighting to balance task objectives. Extensive experiments on two open-source datasets show that Sim-MSTNet consistently outperforms state-of-the-art baselines, achieving enhanced accuracy and generalization.
comment: accepted in ICASSP 2026
☆ DA-SPS: A Dual-stage Network based on Singular Spectrum Analysis, Patching-strategy and Spearman-correlation for Multivariate Time-series Prediction IEEE
Multivariate time-series forecasting, as a typical problem in the field of time series prediction, has a wide range of applications in weather forecasting, traffic flow prediction, and other scenarios. However, existing works do not effectively consider the impact of extraneous variables on the prediction of the target variable. On the other hand, they fail to fully extract complex sequence information based on various time patterns of the sequences. To address these drawbacks, we propose a DA-SPS model, which adopts different modules for feature extraction based on the information characteristics of different variables. DA-SPS mainly consists of two stages: the target variable processing stage (TVPS) and the extraneous variables processing stage (EVPS). In TVPS, the model first uses Singular Spectrum Analysis (SSA) to process the target variable sequence and then uses Long Short-Term Memory (LSTM) and P-Conv-LSTM which deploys a patching strategy to extract features from trend and seasonality components, respectively. In EVPS, the model filters extraneous variables that have a strong correlation with the target variate by using Spearman correlation analysis and further analyses them using the L-Attention module which consists of LSTM and attention mechanism. Finally, the results obtained by TVPS and EVPS are combined through weighted summation and linear mapping to produce the final prediction. The results on four public datasets demonstrate that the DA-SPS model outperforms existing state-of-the-art methods. Additionally, its performance in real-world scenarios is further validated using a private dataset collected by ourselves, which contains the test items' information on laptop motherboards.
comment: 12 pages, 7 figures, 6 tables, submitted to IEEE Transactions on Emerging Topics in Computational Intelligence
☆ Geometry of Drifting MDPs with Path-Integral Stability Certificates
Real-world reinforcement learning is often \emph{nonstationary}: rewards and dynamics drift, accelerate, oscillate, and trigger abrupt switches in the optimal action. Existing theory often represents nonstationarity with coarse-scale models that measure \emph{how much} the environment changes, not \emph{how} it changes locally -- even though acceleration and near-ties drive tracking error and policy chattering. We take a geometric view of nonstationary discounted Markov Decision Processes (MDPs) by modeling the environment as a differentiable homotopy path and tracking the induced motion of the optimal Bellman fixed point. This yields a length-curvature-kink signature of intrinsic complexity: cumulative drift, acceleration/oscillation, and action-gap-induced nonsmoothness. We prove a solver-agnostic path-integral stability bound and derive gap-safe feasible regions that certify local stability away from switch regimes. Building on these results, we introduce \textit{Homotopy-Tracking RL (HT-RL)} and \textit{HT-MCTS}, lightweight wrappers that estimate replay-based proxies of length, curvature, and near-tie proximity online and adapt learning or planning intensity accordingly. Experiments show improved tracking and dynamic regret over matched static baselines, with the largest gains in oscillatory and switch-prone regimes.
☆ LoRIF: Low-Rank Influence Functions for Scalable Training Data Attribution
Training data attribution (TDA) identifies which training examples most influenced a model's prediction. The best-performing TDA methods exploits gradients to define an influence function. To overcome the scalability challenge arising from gradient computation, the most popular strategy is random projection (e.g., TRAK, LoGRA). However, this still faces two bottlenecks when scaling to large training sets and high-quality attribution: \emph{(i)} storing and loading projected per-example gradients for all $N$ training examples, where query latency is dominated by I/O; and \emph{(ii)} forming the $D \times D$ inverse Hessian approximation, which costs $O(D^2)$ memory. Both bottlenecks scale with the projection dimension $D$, yet increasing $D$ is necessary for attribution quality -- creating a quality-scalability tradeoff. We introduce \textbf{LoRIF (Low-Rank Influence Functions)}, which exploits low-rank structures of gradient to address both bottlenecks. First, we store rank-$c$ factors of the projected per-example gradients rather than full matrices, reducing storage and query-time I/O from $O(D)$ to $O(c\sqrt{D})$ per layer per sample. Second, we use truncated SVD with the Woodbury identity to approximate the Hessian term in an $r$-dimensional subspace, reducing memory from $O(D^2)$ to $O(Dr)$. On models from 0.1B to 70B parameters trained on datasets with millions of examples, LoRIF achieves up to 20$\times$ storage reduction and query-time speedup compared to LoGRA, while matching or exceeding its attribution quality. LoRIF makes gradient-based TDA practical at frontier scale.
♻ ☆ MORPH: PDE Foundation Models with Arbitrary Data Modality
We introduce MORPH, a modality-agnostic, autoregressive foundation model for partial differential equations (PDEs). MORPH is built on a convolutional vision transformer backbone that seamlessly handles heterogeneous spatiotemporal datasets of varying data modality (1D--3D) at different resolutions, and multiple fields with mixed scalar and vector components. The architecture combines (i) component-wise convolution, which jointly processes scalar and vector channels to capture local interactions, (ii) inter-field cross-attention, which models and selectively propagates information between different physical fields, (iii) axial attentions, which factorize full spatiotemporal self-attention along individual spatial and temporal axes to reduce computational burden while retaining expressivity. We pretrain multiple model variants on a diverse collection of heterogeneous PDE datasets and evaluate transfer to a range of downstream prediction tasks. Using both full-model fine-tuning and parameter-efficient low-rank adapters, MORPH outperforms models trained from scratch. Across extensive evaluations, MORPH matches or surpasses strong baselines and recent state-of-the-art models. Collectively, these capabilities present a flexible and powerful backbone for learning from the heterogeneous and multimodal nature of scientific observations, charting a path toward scalable and data-efficient scientific machine learning. The source code, datasets, and models are publicly available at https://github.com/lanl/MORPH.
♻ ☆ Do graph neural network states contain graph properties?
Deep neural networks (DNNs) achieve state-of-the-art performance on many tasks, but this often requires increasingly larger model sizes, which in turn leads to more complex internal representations. Explainability techniques (XAI) have made remarkable progress in the interpretability of ML models. However, the non-euclidean nature of Graph Neural Networks (GNNs) makes it difficult to reuse already existing XAI methods. While other works have focused on instance-based explanation methods for GNNs, very few have investigated model-based methods and, to our knowledge, none have tried to probe the embedding of the GNNs for structural graph properties. In this paper we present a model agnostic explainability pipeline for Graph Neural Networks (GNNs) employing diagnostic classifiers. We propose to consider graph-theoretic properties as the features of choice for studying the emergence of representations in GNNs. This pipeline aims to probe and interpret the learned representations in GNNs across various architectures and datasets, refining our understanding and trust in these models.
comment: 10 pages, 22 figures, conference
♻ ☆ Vecchia-Inducing-Points Full-Scale Approximations for Gaussian Processes
Gaussian processes are flexible, probabilistic, non-parametric models widely used in machine learning and statistics. However, their scalability to large data sets is limited by computational constraints. To overcome these challenges, we propose Vecchia-inducing-points full-scale (VIF) approximations combining the strengths of global inducing points and local Vecchia approximations. Vecchia approximations excel in settings with low-dimensional inputs and moderately smooth covariance functions, while inducing point methods are better suited to high-dimensional inputs and smoother covariance functions. Our VIF approach bridges these two regimes by using an efficient correlation-based neighbor-finding strategy for the Vecchia approximation of the residual process, implemented via a modified cover tree algorithm. We further extend our framework to non-Gaussian likelihoods by introducing iterative methods that substantially reduce computational costs for training and prediction by several orders of magnitudes compared to Cholesky-based computations when using a Laplace approximation. In particular, we propose and compare novel preconditioners and provide theoretical convergence results. Extensive numerical experiments on simulated and real-world data sets show that VIF approximations are both computationally efficient as well as more accurate and numerically stable than state-of-the-art alternatives. All methods are implemented in the open source C++ library GPBoost with high-level Python and R interfaces.
♻ ☆ Think Locally, Explain Globally: Graph-Guided LLM Investigations via Local Reasoning and Belief Propagation
LLM agents excel when environments are mostly static and the needed information fits in a model's context window, but they often fail in open-ended investigations where explanations must be constructed by iteratively mining evidence from massive, heterogeneous operational data. These investigations exhibit hidden dependency structure: entities interact, signals co-vary, and the importance of a fact may only become clear after other evidence is discovered. Because the context window is bounded, agents must summarize intermediate findings before their significance is known, increasing the risk of discarding key evidence. ReAct-style agents are especially brittle in this regime. Their retrieve-summarize-reason loop makes conclusions sensitive to exploration order and introduces run-to-run non-determinism, producing a reliability gap where Pass-at-k may be high but Majority-at-k remains low. Simply sampling more rollouts or generating longer reasoning traces does not reliably stabilize results, since hypotheses cannot be autonomously checked as new evidence arrives and there is no explicit mechanism for belief bookkeeping and revision. In addition, ReAct entangles semantic reasoning with controller duties such as tool orchestration and state tracking, so execution errors and plan drift degrade reasoning while consuming scarce context. We address these issues by formulating investigation as abductive reasoning over a dependency graph and proposing EoG (Explanations over Graphs), a disaggregated framework in which an LLM performs bounded local evidence mining and labeling (cause vs symptom) while a deterministic controller manages traversal, state, and belief propagation to compute a minimal explanatory frontier. On a representative ITBench diagnostics task, EoG improves both accuracy and run-to-run consistency over ReAct baselines, including a 7x average gain in Majority-at-k entity F1.
♻ ☆ How Many Ratings per Item are Necessary for Reliable Significance Testing? EACL
A cornerstone of machine learning evaluation is the (often hidden) assumption that model and human responses are reliable enough to evaluate models against unitary, authoritative, ``gold standard'' data, via simple metrics such as accuracy, precision, and recall. The generative AI revolution would seem to explode this assumption, given the critical role stochastic inference plays. Yet, in spite of public demand for more transparency in AI -- along with strong evidence that humans are unreliable judges -- estimates of model reliability are conventionally based on, at most, a few output responses per input item. We adapt a method, previously used to evaluate the reliability of various metrics and estimators for machine learning evaluation, to determine whether an (existing or planned) dataset has enough responses per item to assure reliable null hypothesis statistical testing. We show that, for many common metrics, collecting even 5-10 responses per item (from each model and team of human evaluators) is not sufficient. We apply our methods to several of the very few extant gold standard test sets with multiple disaggregated responses per item and show that even these datasets lack enough responses per item. We show how our methods can help AI researchers make better decisions about how to collect data for AI evaluation.
comment: Accepted at EACL Findings 2026
♻ ☆ Harmonizing Safety and Speed: A Human-Algorithm Approach to Enhance the FDA's Medical Device Clearance Policy
The United States Food and Drug Administration's (FDA's) 510(k) pathway allows manufacturers to gain medical device approval by demonstrating substantial equivalence to a legally marketed device. However, the inherent ambiguity of this regulatory procedure has been associated with high recall among many devices cleared through this pathway, raising significant safety concerns. In this paper, we develop a combined human-algorithm approach to assist the FDA in improving its 510(k) medical device clearance process by reducing recall risk and regulatory workload. We first develop machine learning methods to estimate the risk of recall of 510(k) medical devices based on the information available at the time of submission. We then propose a data-driven clearance policy that recommends acceptance, rejection, or deferral to FDA's committees for in-depth evaluation. We conduct an empirical study using a unique dataset of over 31,000 submissions that we assembled based on data sources from the FDA and Centers for Medicare and Medicaid Service (CMS). Compared to the FDA's current practice, which has a recall rate of 10.3% and a normalized workload measure of 100%, a conservative evaluation of our policy shows a 32.9% improvement in the recall rate and a 40.5% reduction in the workload. Our analyses further suggest annual cost savings of approximately $1.7 billion for the healthcare system driven by avoided replacement costs, which is equivalent to 1.1% of the entire United States annual medical device expenditure. Our findings highlight the value of a holistic and data-driven approach to improve the FDA's current 510(k) pathway.
♻ ☆ SiDGen: Structure-informed Diffusion for Generative modeling of Ligands for Proteins
Designing ligands that are both chemically valid and structurally compatible with protein binding pockets is a key bottleneck in computational drug discovery. Existing approaches either ignore structural context or rely on expensive, memory-intensive encoding that limits throughput and scalability. We present SiDGen (Structure-informed Diffusion Generator), a protein-conditioned diffusion framework that integrates masked SMILES generation with lightweight folding-derived features for pocket awareness. To balance expressivity with efficiency, SiDGen supports two conditioning pathways: a streamlined mode that pools coarse structural signals from protein embeddings and a full mode that injects localized pairwise biases for stronger coupling. A coarse-stride folding mechanism with nearest-neighbor upsampling alleviates the quadratic memory costs of pair tensors, enabling training on realistic sequence lengths. Learning stability is maintained through in-loop chemical validity checks and an invalidity penalty, while large-scale training efficiency is restored \textit{via} selective compilation, dataloader tuning, and gradient accumulation. In automated benchmarks, SiDGen generates ligands with high validity, uniqueness, and novelty, while achieving competitive performance in docking-based evaluations and maintaining reasonable molecular properties. These results demonstrate that SiDGen can deliver scalable, pocket-aware molecular design, providing a practical route to conditional generation for high-throughput drug discovery.
comment: 10 pages, 2 figures
♻ ☆ PFT: Phonon Fine-tuning for Machine Learned Interatomic Potentials
Many materials properties depend on higher-order derivatives of the potential energy surface, yet machine learned interatomic potentials (MLIPs) trained with a standard loss on energy, force, and stress errors can exhibit error in curvature, degrading the prediction of vibrational properties. We introduce phonon fine-tuning (PFT), which directly supervises second-order force constants of materials by matching MLIP energy Hessians to DFT-computed force constants from finite displacement phonon calculations. To scale to large supercells, PFT stochastically samples Hessian columns and computes the loss with a single Hessian-vector product. We also use a simple co-training scheme to incorporate upstream data to mitigate catastrophic forgetting. On the MDR Phonon benchmark, PFT improves Nequix MP by 55% on average across phonon thermodynamic properties and achieves state-of-the-art accuracy among models trained on Materials Project trajectories. PFT also generalizes to improve properties beyond second-derivatives, improving thermal conductivity predictions that rely on third-order derivatives of the potential energy.
♻ ☆ How Out-of-Distribution Detection Learning Theory Enhances Transformer: Learnability and Reliability
Transformers excel in natural language processing and computer vision tasks. However, they still face challenges in generalizing to Out-of-Distribution (OOD) datasets, i.e. data whose distribution differs from that seen during training. OOD detection aims to distinguish outliers while preserving in-distribution (ID) data performance. This paper introduces the OOD detection Probably Approximately Correct (PAC) Theory for transformers, which establishes the conditions for data distribution and model configurations for the OOD detection learnability of transformers. It shows that outliers can be accurately represented and distinguished with sufficient data under conditions. The theoretical implications highlight the trade-off between theoretical principles and practical training paradigms. By examining this trade-off, we naturally derived the rationale for leveraging auxiliary outliers to enhance OOD detection. Our theory suggests that by penalizing the misclassification of outliers within the loss function and strategically generating soft synthetic outliers, one can robustly bolster the reliability of transformer networks. This approach yields a novel algorithm that ensures learnability and refines the decision boundaries between inliers and outliers. In practice, the algorithm consistently achieves state-of-the-art (SOTA) performance across various data formats.
♻ ☆ Corrective Diffusion Language Models
While Diffusion Language Models (DLMs) are theoretically well-suited for iterative refinement due to their non-causal structure, they often fail to reliably revise incorrect tokens in practice. The key challenge lies in the model's inability to distinguish between correct and erroneous tokens in a visible sequence. Standard masked diffusion language model (MDLM) training is restricted to the objective of unmasking, undermining the effectiveness of refinement guided by confidence. Based on this observation, we study corrective behavior in DLMs, defined as the ability to assign lower confidence to incorrect tokens and iteratively refine them while preserving correct content. We show that this capability is not induced by conventional masked diffusion objectives and propose a post-training principle oriented by correction that explicitly supervises visible incorrect tokens, enabling discriminative confidence and targeted refinement. To evaluate corrective behavior, we introduce the Code Revision Benchmark, a controllable and executable benchmark for assessing error localization and in-place correction. Experiments on code revision tasks and parallel decoding scenarios demonstrate that models trained with our approach substantially outperform standard MDLMs, with gains that are most pronounced when parallel decoding introduces substantial uncertainty and iterative refinement becomes essential. Our code is publicly available at https://github.com/zhangshuibai/CDLM.
comment: 21 pages
♻ ☆ Machine learning for option pricing: an empirical investigation of network architectures
We consider the supervised learning problem of learning the price of an option or the implied volatility given appropriate input data (model parameters) and corresponding output data (option prices or implied volatilities). The majority of articles in this literature considers a (plain) feed forward neural network architecture in order to connect the neurons used for learning the function mapping inputs to outputs. In this article, motivated by methods in image classification and recent advances in machine learning methods for PDEs, we investigate empirically whether and how the choice of network architecture affects the accuracy and training time of a machine learning algorithm. We find that the generalized highway network architecture achieves the best performance, when considering the mean squared error and the training time as criteria, within the considered parameter budgets for the Black-Scholes and Heston option pricing problems. Considering the transformed implied volatility problem, a simplified DGM variant achieves the lowest error among the tested architectures. We also carry out a capacity-normalised comparison for completeness, where all architectures are evaluated with an equal number of parameters. Finally, for the implied volatility problem, we additionally include experiments using real market data.
comment: 29 pages, 27 figures, 23 tables, revised version. Serena Della Corte has been added as co-author to reflect her contribution to the revised analysis and results. Several sections have been updated accordingly
♻ ☆ FS-KAN: Permutation Equivariant Kolmogorov-Arnold Networks via Function Sharing
Permutation equivariant neural networks employing parameter-sharing schemes have emerged as powerful models for leveraging a wide range of data symmetries, significantly enhancing the generalization and computational efficiency of the resulting models. Recently, Kolmogorov-Arnold Networks (KANs) have demonstrated promise through their improved interpretability and expressivity compared to traditional architectures based on MLPs. While equivariant KANs have been explored in recent literature for a few specific data types, a principled framework for applying them to data with permutation symmetries in a general context remains absent. This paper introduces Function Sharing KAN (FS-KAN), a principled approach to constructing equivariant and invariant KA layers for arbitrary permutation symmetry groups, unifying and significantly extending previous work in this domain. We derive the basic construction of these FS-KAN layers by generalizing parameter-sharing schemes to the Kolmogorov-Arnold setup and provide a theoretical analysis demonstrating that FS-KANs have the same expressive power as networks that use standard parameter-sharing layers, allowing us to transfer well-known and important expressivity results from parameter-sharing networks to FS-KANs. Empirical evaluations on multiple data types and symmetry groups show that FS-KANs exhibit superior data efficiency compared to standard parameter-sharing layers, by a wide margin in certain cases, while preserving the interpretability and adaptability of KANs, making them an excellent architecture choice in low-data regimes.
♻ ☆ Correcting for Position Bias in Learning to Rank: A Control Function Approach
Implicit feedback data, such as user clicks, is commonly used in learning-to-rank (LTR) systems because it is easy to collect and it often reflects user preferences. However, this data is prone to various biases, and training an LTR algorithm directly on biased data can result in suboptimal ranking performance. One of the most prominent and well-studied biases in implicit feedback data is position bias, which occurs because users are more likely to interact with higher-ranked items regardless of their true relevance. In this paper, we propose a novel control function-based method that accounts for position bias in a two-stage process. The first stage uses exogenous variation from the residuals of the ranking process to correct for position bias in the second stage click equation. Unlike previous position bias correction methods, our method does not require knowledge of the click or propensity model and allows for nonlinearity in the underlying ranking model. Moreover, our method is general and allows for debiasing any state-of-the-art ranking algorithm by plugging it into the second stage. We also introduce a new technique to debias validation clicks for hyperparameter tuning to select the optimal model in the absence of unbiased validation data. Experimental results show that our method outperforms state-of-the-art approaches in correcting for position bias.
♻ ☆ OD-Stega: LLM-Based Relatively Secure Steganography via Optimized Distributions EACL 2026
We consider coverless steganography where a Large Language Model (LLM) is used to generate stego-texts in combination with arithmetic coding. An efficient method should embed secret bits in as few language tokens as possible while keeping the stego-text as natural as possible. We show that this problem is equivalent to maximizing the entropy of a replacement probability distribution of the next token generation, subject to a constraint on the divergence between the new distribution and the original one produced by the LLM. A closed-form solution is provided under either the KL divergence or the total variation constraint. Several important practical issues are also tackled: 1) An often-overlooked tokenization mismatch issue is resolved with a simple prompt selection approach, 2) The combination of the optimized distribution and the vocabulary truncation technique is considered, and 3) The incorporation of the proposed approach with existing (potentially non arithmetic coding based) techniques, e.g., the Discop technique.
comment: Accepted to EACL 2026
♻ ☆ Align & Invert: Solving Inverse Problems with Diffusion and Flow-based Models via Representation Alignment
Enforcing alignment between the internal representations of diffusion or flow-based generative models and those of pretrained self-supervised encoders has recently been shown to provide a powerful inductive bias, improving both convergence and sample quality. In this work, we extend this idea to inverse problems, where pretrained generative models are employed as priors. We propose applying representation alignment (REPA) between diffusion or flow-based models and a DINOv2 visual encoder, to guide the reconstruction process at inference time. Although ground-truth signals are unavailable in inverse problems, we empirically show that aligning model representations of approximate target features can substantially enhance reconstruction quality and perceptual realism. We provide theoretical results showing (a) that REPA regularization can be viewed as a variational approach for minimizing a divergence measure in the DINOv2 embedding space, and (b) how under certain regularity assumptions REPA updates steer the latent diffusion states toward those of the clean image. These results offer insights into the role of REPA in improving perceptual fidelity. Finally, we demonstrate the generality of our approach by We integrate REPA into multiple state-of-the-art inverse problem solvers, and provide extensive experiments on super-resolution, box inpainting, Gaussian deblurring, and motion deblurring confirming that our method consistently improves reconstruction quality, while also providing efficiency gains reducing the number of required discretization steps.
♻ ☆ Reward-Preserving Attacks For Robust Reinforcement Learning
Adversarial training in reinforcement learning (RL) is challenging because perturbations cascade through trajectories and compound over time, making fixed-strength attacks either overly destructive or too conservative. We propose reward-preserving attacks, which adapt adversarial strength so that an $α$ fraction of the nominal-to-worst-case return gap remains achievable at each state. In deep RL, perturbation magnitudes $η$ are selected dynamically, using a learned critic $Q((s,a),η)$ that estimates the expected return of $α$-reward-preserving rollouts. For intermediate values of $α$, this adaptive training yields policies that are robust across a wide range of perturbation magnitudes while preserving nominal performance, outperforming fixed-radius and uniformly sampled-radius adversarial training.
comment: 27 pages, 28 figures, 4 algorithms, 3 tables, preprint
♻ ☆ RobustExplain: Evaluating Robustness of LLM-Based Explanation Agents for Recommendation
Large Language Models (LLMs) are increasingly used to generate natural-language explanations in recommender systems, acting as explanation agents that reason over user behavior histories. While prior work has focused on explanation fluency and relevance under fixed inputs, the robustness of LLM-generated explanations to realistic user behavior noise remains largely unexplored. In real-world web platforms, interaction histories are inherently noisy due to accidental clicks, temporal inconsistencies, missing values, and evolving preferences, raising concerns about explanation stability and user trust. We present RobustExplain, the first systematic evaluation framework for measuring the robustness of LLM-generated recommendation explanations. RobustExplain introduces five realistic user behavior perturbations evaluated across multiple severity levels and a multi-dimensional robustness metric capturing semantic, keyword, structural, and length consistency. Our goal is to establish a principled, task-level evaluation framework and initial robustness baselines, rather than to provide a comprehensive leaderboard across all available LLMs. Experiments on four representative LLMs (7B--70B) show that current models exhibit only moderate robustness, with larger models achieving up to 8% higher stability. Our results establish the first robustness benchmarks for explanation agents and highlight robustness as a critical dimension for trustworthy, agent-driven recommender systems at web scale.
comment: 8 pages, 4 figures
♻ ☆ Adaptive Swarm Mesh Refinement using Deep Reinforcement Learning with Local Rewards
Simulating physical systems is essential in engineering, but analytical solutions are limited to straightforward problems. Consequently, numerical methods like the Finite Element Method (FEM) are widely used. However, the FEM becomes computationally expensive as problem complexity and accuracy demands increase. Adaptive Mesh Refinement (AMR) improves the FEM by dynamically placing mesh elements on the domain, balancing computational speed and accuracy. Classical AMR depends on heuristics or expensive error estimators, which may lead to suboptimal performance for complex simulations. While AMR methods based on machine learning are promising, they currently only scale to simple problems. In this work, we formulate AMR as a system of collaborating, homogeneous agents that iteratively split into multiple new agents. This agent-wise perspective enables a spatial reward formulation focused on reducing the maximum mesh element error. Our approach, Adaptive Swarm Mesh Refinement++ (ASMR++), offers efficient, stable optimization and generates highly adaptive meshes at user-defined resolution at inference time. Extensive experiments demonstrate that ASMR++ outperforms heuristic approaches and learned baselines, matching the performance of expensive error-based oracle AMR strategies. ASMR additionally generalizes to different domains during inference, and produces meshes that simulate up to 2 orders of magnitude faster than uniform refinements in more demanding settings.
comment: Submitted to Journal of Machine Learning Research (JMLR)
♻ ☆ Deep Residual Echo State Networks: exploring residual orthogonal connections in untrained Recurrent Neural Networks
Echo State Networks (ESNs) are a particular type of untrained Recurrent Neural Networks (RNNs) within the Reservoir Computing (RC) framework, popular for their fast and efficient learning. However, traditional ESNs often struggle with long-term information processing. In this paper, we introduce a novel class of deep untrained RNNs based on temporal residual connections, called Deep Residual Echo State Networks (DeepResESNs). We show that leveraging a hierarchy of untrained residual recurrent layers significantly boosts memory capacity and long-term temporal modeling. For the temporal residual connections, we consider different orthogonal configurations, including randomly generated and fixed-structure configurations, and we study their effect on network dynamics. A thorough mathematical analysis outlines necessary and sufficient conditions to ensure stable dynamics within DeepResESN. Our experiments on a variety of time series tasks showcase the advantages of the proposed approach over traditional shallow and deep RC.
comment: 10 pages, 5 figures, 4 tables; minor fixes to tables
♻ ☆ LLMs as Orchestrators: Constraint-Compliant Multi-Agent Optimization for Recommendation Systems
Recommendation systems must optimize multiple objectives while satisfying hard business constraints such as fairness and coverage. For example, an e-commerce platform may require every recommendation list to include items from multiple sellers and at least one newly listed product; violating such constraints--even once--is unacceptable in production. Prior work on multi-objective recommendation and recent LLM-based recommender agents largely treat constraints as soft penalties or focus on item scoring and interaction, leading to frequent violations in real-world deployments. How to leverage LLMs for coordinating constrained optimization in recommendation systems remains underexplored. We propose DualAgent-Rec, an LLM-coordinated dual-agent framework for constrained multi-objective e-commerce recommendation. The framework separates optimization into an Exploitation Agent that prioritizes accuracy under hard constraints and an Exploration Agent that promotes diversity through unconstrained Pareto search. An LLM-based coordinator adaptively allocates resources between agents based on optimization progress and constraint satisfaction, while an adaptive epsilon-relaxation mechanism guarantees feasibility of final solutions. Experiments on the Amazon Reviews 2023 dataset demonstrate that DualAgent-Rec achieves 100% constraint satisfaction and improves Pareto hypervolume by 4-6% over strong baselines, while maintaining competitive accuracy-diversity trade-offs. These results indicate that LLMs can act as effective orchestration agents for deployable and constraint-compliant recommendation systems.
comment: 8 pages, 5 figures
♻ ☆ Utilising Gradient-Based Proposals Within Sequential Monte Carlo Samplers for Training of Partial Bayesian Neural Networks
Partial Bayesian neural networks (pBNNs) have been shown to perform competitively with fully Bayesian neural networks while only having a subset of the parameters be stochastic. Using sequential Monte Carlo (SMC) samplers as the inference method for pBNNs gives a non-parametric probabilistic estimation of the stochastic parameters, and has shown improved performance over parametric methods. In this paper we introduce a new SMC-based training method for pBNNs by utilising a guided proposal and incorporating gradient-based Markov kernels, which gives us better scalability on high dimensional problems. We show that our new method outperforms the state-of-the-art in terms of predictive performance and optimal loss. We also show that pBNNs scale well with larger batch sizes, resulting in significantly reduced training times and often better performance.
♻ ☆ One Model, Any Conjunctive Query: Graph Neural Networks for Answering Queries over Incomplete Knowledge Graphs
Motivated by the incompleteness of modern knowledge graphs, a new setup for query answering has emerged, where the goal is to predict answers that do not necessarily appear in the knowledge graph, but are present in its completion. In this paper, we formally introduce and study two query answering problems, namely, query answer classification and query answer retrieval. To solve these problems, we propose AnyCQ, a model that can classify answers to any conjunctive query on any knowledge graph. At the core of our framework lies a graph neural network trained using a reinforcement learning objective to answer Boolean queries. Trained only on simple, small instances, AnyCQ generalizes to large queries of arbitrary structure, reliably classifying and retrieving answers to queries that existing approaches fail to handle. This is empirically validated through our newly proposed, challenging benchmarks. Finally, we empirically show that AnyCQ can effectively transfer to completely novel knowledge graphs when equipped with an appropriate link prediction model, highlighting its potential for querying incomplete data.
comment: Proceedings of the Fourth Learning on Graphs Conference (LoG 2025)
♻ ☆ Incorporating the ChEES Criterion into Sequential Monte Carlo Samplers
Markov chain Monte Carlo (MCMC) methods are a powerful but computationally expensive way of performing non-parametric Bayesian inference. MCMC proposals which utilise gradients, such as Hamiltonian Monte Carlo (HMC), can better explore the parameter space of interest if the additional hyper-parameters are chosen well. The No-U-Turn Sampler (NUTS) is a variant of HMC which is extremely effective at selecting these hyper-parameters but is slow to run and is not suited to GPU architectures. An alternative to NUTS, Change in the Estimator of the Expected Square HMC (ChEES-HMC) was shown not only to run faster than NUTS on GPU but also sample from posteriors more efficiently. Sequential Monte Carlo (SMC) samplers are another sampling method which instead output weighted samples from the posterior. They are very amenable to parallelisation and therefore being run on GPUs while having additional flexibility in their choice of proposal over MCMC. We incorporate (ChEEs-HMC) as a proposal into SMC samplers and demonstrate competitive but faster performance than NUTS on a number of tasks.
comment: 16 pages, 9 figures
♻ ☆ RNAGenScape: Property-Guided, Optimized Generation of mRNA Sequences with Manifold Langevin Dynamics ICML 2025
Generating property-optimized mRNA sequences is central to applications such as vaccine design and protein replacement therapy, but remains challenging due to limited data, complex sequence-function relationships, and the narrow space of biologically viable sequences. Generative methods that drift away from the data manifold can yield sequences that fail to fold, translate poorly, or are otherwise nonfunctional. We present RNAGenScape, a property-guided manifold Langevin dynamics framework for mRNA sequence generation that operates directly on a learned manifold of real data. By performing iterative local optimization constrained to this manifold, RNAGenScape preserves biological viability, accesses reliable guidance, and avoids excursions into nonfunctional regions of the ambient sequence space. The framework integrates three components: (1) an autoencoder jointly trained with a property predictor to learn a property-organized latent manifold, (2) a denoising autoencoder that projects updates back onto the manifold, and (3) a property-guided Langevin dynamics procedure that performs optimization along the manifold. Across three real-world mRNA datasets spanning two orders of magnitude in size, RNAGenScape increases median property gain by up to 148% and success rate by up to 30% while ensuring biological viability of generated sequences, and achieves competitive inference efficiency relative to existing generative approaches.
comment: ICML 2025 Generative AI and Biology (GenBio) Workshop, Oral presentation (top 9.7%)
♻ ☆ Factorizable joint shift revisited
Factorizable joint shift (FJS) represents a type of distribution shift (or dataset shift) that comprises both covariate and label shift. Recently, it has been observed that FJS actually arises from consecutive label and covariate (or vice versa) shifts. Research into FJS so far has been confined to the case of categorical labels. We propose a framework for analysing distribution shift in the case of a general label space, thus covering both classification and regression models. Based on the framework, we generalise existing results on FJS to general label spaces and present and analyse a related extension of the expectation maximisation (EM) algorithm for class prior probabilities. We also take a fresh look at generalized label shift (GLS) in the case of a general label space.
comment: 28 pages
♻ ☆ Residual Reservoir Memory Networks IJCNN 2025
We introduce a novel class of untrained Recurrent Neural Networks (RNNs) within the Reservoir Computing (RC) paradigm, called Residual Reservoir Memory Networks (ResRMNs). ResRMN combines a linear memory reservoir with a non-linear reservoir, where the latter is based on residual orthogonal connections along the temporal dimension for enhanced long-term propagation of the input. The resulting reservoir state dynamics are studied through the lens of linear stability analysis, and we investigate diverse configurations for the temporal residual connections. The proposed approach is empirically assessed on time-series and pixel-level 1-D classification tasks. Our experimental results highlight the advantages of the proposed approach over other conventional RC models.
comment: 7 pages, 6 figures, accepted at IJCNN 2025; added IEEE copyright
♻ ☆ SAC-GLAM: Improving Online RL for LLM agents with Soft Actor-Critic and Hindsight Relabeling NeurIPS 2025
The past years have seen Large Language Models (LLMs) strive not only as generative models but also as agents solving textual sequential decision-making tasks. When facing complex environments where their zero-shot abilities are insufficient, recent work showed online Reinforcement Learning (RL) could be used for the LLM agent to discover and learn efficient strategies interactively. However, most prior work sticks to on-policy algorithms, which greatly reduces the scope of methods such agents could use for both exploration and exploitation, such as experience replay and hindsight relabeling. Yet, such methods may be key for LLM learning agents, and in particular when designing autonomous intrinsically motivated agents sampling and pursuing their own goals (i.e. autotelic agents). This paper presents and studies an adaptation of Soft Actor-Critic and hindsight relabeling to LLM agents. Our method not only paves the path towards autotelic LLM agents that learn online but can also outperform on-policy methods in more classic multi-goal RL environments.
comment: This work has been presented at the IMOL workshop at NeurIPS 2025 (https://neurips.cc/virtual/2024/101058)
♻ ☆ WorldLLM: Improving LLMs' world modeling using curiosity-driven theory-making
Large Language Models (LLMs) possess general world knowledge but often struggle to generate precise predictions in structured, domain-specific contexts such as simulations. These limitations arise from their inability to ground their broad, unstructured understanding in specific environments. To address this, we present WorldLLM, a framework that enhances LLM-based world modeling by combining Bayesian inference and autonomous active exploration with reinforcement learning. WorldLLM leverages the in-context learning abilities of LLMs to guide an LLM-based world model's predictions using natural language hypotheses given in its prompt. These hypotheses are iteratively refined through a Bayesian inference framework that leverages a second LLM as the proposal distribution given collected evidence. This evidence is collected using a curiosity-driven reinforcement learning policy that explores the environment to find transitions with a low log-likelihood under our LLM-based predictive model using the current hypotheses. By alternating between refining hypotheses and collecting new evidence, our framework autonomously drives continual improvement of the predictions. Our experiments demonstrate the effectiveness of WorldLLM in a textual game environment that requires agents to manipulate and combine objects. The framework not only enhances predictive accuracy, but also generates human-interpretable theories of environment dynamics.
comment: This project's code can be found at https://github.com/flowersteam/WorldLLM. This project was presented at RLDM 2025 (https://rldm.org/)
♻ ☆ A Coreset Selection of Coreset Selection Literature: Introduction and Recent Advances
Coreset selection targets the challenge of finding a small, representative subset of a large dataset that preserves essential patterns for effective machine learning. Although several surveys have examined data reduction strategies before, most focus narrowly on either classical geometry-based methods or active learning techniques. In contrast, this survey presents a more comprehensive view by unifying three major lines of coreset research, namely, training-free, training-oriented, and label-free approaches, into a single taxonomy. We present subfields often overlooked by existing work, including submodular formulations, bilevel optimization, and recent progress in pseudo-labeling for unlabeled datasets. Additionally, we examine how pruning strategies influence generalization and neural scaling laws, offering new insights that are absent from prior reviews. Finally, we compare these methods under varying computational, robustness, and performance demands and highlight open challenges, such as robustness, outlier filtering, and adapting coreset selection to foundation models, for future research.
♻ ☆ Representative Action Selection for Large Action Space Bandit Families
We study the problem of selecting a subset from a large action space shared by a family of bandits, with the goal of achieving performance nearly matching that of using the full action space. Indeed, in many natural situations, while the nominal set of actions may be large, there also exist significant correlations between the rewards of different actions. In this paper we propose an algorithm that can significantly reduce the action space when such correlations are present, without the need to a-priori know the correlation structure. We provide theoretical guarantees on the performance of the algorithm and demonstrate its practical effectiveness through empirical comparisons with Thompson Sampling and Upper Confidence Bound methods.
♻ ☆ Near-Optimal Online Deployment and Routing for Streaming LLMs ICLR 2026
The rapid pace at which new large language models (LLMs) appear, and older ones become obsolete, forces providers to manage a streaming inventory under a strict concurrency cap and per-query cost budgets. We cast this as an online decision problem that couples stage-wise deployment (at fixed maintenance windows) with per-query routing among live models. We introduce StageRoute, a hierarchical algorithm that (i) optimistically selects up to $M_{\max}$ models for the next stage using reward upper-confidence and cost lower-confidence bounds, and (ii) routes each incoming query by solving a budget- and throughput-constrained bandit subproblem over the deployed set. We prove a regret of $\tilde{\mathcal{O}}(T^{2/3})$ with a matching lower bound, establishing near-optimality, and validate the theory empirically: StageRoute tracks a strong oracle under tight budgets across diverse workloads.
comment: ICLR 2026
♻ ☆ $π_\texttt{RL}$: Online RL Fine-tuning for Flow-based Vision-Language-Action Models
Vision-Language-Action (VLA) models enable robots to understand and perform complex tasks from multimodal input. Although recent work explores using reinforcement learning (RL) to automate the laborious data collection process in scaling supervised fine-tuning (SFT), applying RL to large-scale flow-based VLAs (\eg, $π_0$, $π_{0.5}$) remains challenging due to intractable action log-likelihoods raised from flow matching. We address this challenge with $π_{\texttt{RL}}$, featuring two technical approaches: (1) \textbf{Flow-Noise} models the denoising process as a discrete-time MDP with a learnable noise network for exact log-likelihood computation. (2) \textbf{Flow-SDE} integrates denoising with agent-environment interaction, formulating a two-layer MDP that employs ODE-to-SDE conversion for efficient RL exploration. We evaluate $π_{\texttt{RL}}$ across various benchmarks, with experiments demonstrating that RL yields significant performance improvements in both in-distribution and out-of-distribution settings.
♻ ☆ Online Bayesian Experimental Design for Partially Observed Dynamical Systems
Bayesian experimental design (BED) provides a principled framework for optimizing data collection by choosing experiments that are maximally informative about unknown parameters. However, existing methods cannot deal with the joint challenge of (a) partially observable dynamical systems, where only noisy and incomplete observations are available, and (b) fully online inference, which updates posterior distributions and selects designs sequentially in a computationally efficient manner. Under partial observability, dynamical systems are naturally modeled as state-space models (SSMs), where latent states mediate the link between parameters and data, making the likelihood -- and thus information-theoretic objectives like the expected information gain (EIG) -- intractable. We address these challenges by deriving new estimators of the EIG and its gradient that explicitly marginalize latent states, enabling scalable stochastic optimization in nonlinear SSMs. Our approach leverages nested particle filters for efficient online state-parameter inference with convergence guarantees. Applications to realistic models, such as the susceptible-infectious-recovered (SIR) and a moving source location task, show that our framework successfully handles both partial observability and online inference.
comment: 20 pages, 7 figures
♻ ☆ d3LLM: Ultra-Fast Diffusion LLM using Pseudo-Trajectory Distillation
Diffusion large language models (dLLMs) offer capabilities beyond those of autoregressive (AR) LLMs, such as parallel decoding and random-order generation. However, realizing these benefits in practice is non-trivial, as dLLMs inherently face an accuracy-parallelism trade-off. Despite increasing interest, existing methods typically focus on only one-side of the coin, targeting either efficiency or performance. To address this limitation, we propose d3LLM (Pseudo-Distilled Diffusion Large Language Model), striking a balance between accuracy and parallelism: (i) during training, we introduce pseudo-trajectory distillation to teach the model which tokens can be decoded confidently at early steps, thereby improving parallelism; (ii) during inference, we employ entropy-based multi-block decoding with a KV-cache refresh mechanism to achieve high parallelism while maintaining accuracy. To better evaluate dLLMs, we also introduce AUP (Accuracy Under Parallelism), a new metric that jointly measures accuracy and parallelism. Experiments demonstrate that our d3LLM achieves up to 10$\times$ speedup over vanilla LLaDA/Dream and 5$\times$ speedup over AR models without much accuracy drop. Our code is available at https://github.com/hao-ai-lab/d3LLM.
♻ ☆ Graph Homomorphism Distortion: A Metric to Distinguish Them All and in the Latent Space Bind Them
A large driver of the complexity of graph learning is the interplay between \emph{structure} and \emph{features}.When analyzing the expressivity of graph neural networks, however, existing approaches ignore features in favor of structure, making it nigh-impossible to assess to what extent two graphs with close features should be considered similar.We address this by developing a new \mbox{(pseudo-)metric} based on graph homomorphisms.Inspired by concepts from metric geometry, our \emph{graph homomorphism distortion} measures the minimal worst-case distortion that node features of one graph are subjected to when mapping one graph to another.We demonstrate the utility of our novel measure by showing that (i.) it can be efficiently calculated under some additional assumptions, (ii.) it complements existing expressivity measures like \mbox{$1$-WL}, and (iii.)it permits defining structural encodings, which improve the predictive capabilities of graph neural networks.
♻ ☆ Perturbation-Induced Linearization: Constructing Unlearnable Data with Solely Linear Classifiers ICLR 2026
Collecting web data to train deep models has become increasingly common, raising concerns about unauthorized data usage. To mitigate this issue, unlearnable examples introduce imperceptible perturbations into data, preventing models from learning effectively. However, existing methods typically rely on deep neural networks as surrogate models for perturbation generation, resulting in significant computational costs. In this work, we propose Perturbation-Induced Linearization (PIL), a computationally efficient yet effective method that generates perturbations using only linear surrogate models. PIL achieves comparable or better performance than existing surrogate-based methods while reducing computational time dramatically. We further reveal a key mechanism underlying unlearnable examples: inducing linearization to deep models, which explains why PIL can achieve competitive results in a very short time. Beyond this, we provide an analysis about the property of unlearnable examples under percentage-based partial perturbation. Our work not only provides a practical approach for data protection but also offers insights into what makes unlearnable examples effective.
comment: This paper has been accepted to ICLR 2026
♻ ☆ Low-Rank Key Value Attention
The key-value (KV) cache is a primary memory bottleneck in Transformers. We propose Low-Rank Key-Value (LRKV) attention, which reduces KV cache memory by exploiting redundancy across attention heads, while being compute efficient. Each layer uses a shared full-rank KV projection augmented with low-rank, head-specific residuals, providing a continuous trade-off between complete sharing and full independence. After pretraining models of size 128M to 6.3B parameters, LRKV consistently achieves the lowest test loss among standard MHA, MQA/GQA, and MLA while using only 45-53\% of MHA's KV cache. LRKV reaches equivalent baseline quality 18-25\% faster (measured in training steps). After supervised midtraining, LRKV achieves the highest downstream task performance across ARC-Easy, ARC-Challenge, MMLU, GSM8K, and HumanEval benchmarks.
♻ ☆ Transforming Datasets to Requested Complexity with Projection-based Many-Objective Genetic Algorithm
The research community continues to seek increasingly more advanced synthetic data generators to reliably evaluate the strengths and limitations of machine learning methods. This work aims to increase the availability of datasets encompassing a diverse range of problem complexities by proposing a genetic algorithm that optimizes a set of problem complexity measures for classification and regression tasks towards specific targets. For classification, a set of 10 complexity measures was used, while for regression tasks, 4 measures demonstrating promising optimization capabilities were selected. Experiments confirmed that the proposed genetic algorithm can generate datasets with varying levels of difficulty by transforming synthetically created datasets to achieve target complexity values through linear feature projections. Evaluations involving state-of-the-art classifiers and regressors revealed a correlation between the complexity of the generated data and the recognition quality.
♻ ☆ Redefining Neural Operators in $d+1$ Dimensions for Embedding Evolution
Neural Operators (NOs) have emerged as powerful tools for learning mappings between function spaces. Among them, the kernel integral operator has been widely used in universally approximating architectures. Following the original formulation, most advancements focus on designing better parameterizations for the kernel over the original physical domain (with $d$ spatial dimensions, $d\in{1,2,3,\ldots}$). In contrast, embedding evolution remains largely unexplored, which often drives models toward brute-force embedding lengthening to improve approximation, but at the cost of substantially increased computation. In this paper, we introduce an auxiliary dimension that explicitly models embedding evolution in operator form, thereby redefining the NO framework in $d+1$ dimensions (the original $d$ dimensions plus one auxiliary dimension). Under this formulation, we develop a Schrödingerised Kernel Neural Operator (SKNO), which leverages Fourier-based operators to model the $d+1$ dimensional evolution. Across more than ten increasingly challenging benchmarks, ranging from the 1D heat equation to the highly nonlinear 3D Rayleigh-Taylor instability, SKNO consistently outperforms other baselines. We further validate its resolution invariance under mixed-resolution training and super-resolution inference, and evaluate zero-shot generalization to unseen temporal regimes. In addition, we present a broader set of design choices for the lifting and recovery operators, demonstrating their impact on SKNO's predictive performance.
♻ ☆ Delayed Momentum Aggregation: Communication-efficient Byzantine-robust Federated Learning with Partial Participation
Partial participation is essential for communication-efficient federated learning at scale, yet existing Byzantine-robust methods typically assume full client participation. In the partial participation setting, a majority of the sampled clients may be Byzantine, once Byzantine clients dominate, existing methods break down immediately. We introduce delayed momentum aggregation, a principle where the central server aggregates cached momentum from non-sampled clients along with fresh momentum from sampled clients. This principle ensures Byzantine clients remain a minority from the server's perspective even when they dominate the sampled set. We instantiate this principle in our optimizer DeMoA. We analyze the convergence rate of DeMoA, showing that DeMoA is Byzantine-robust under partial participation. Experiments show that, with 20% Byzantine ratio and only 10% partial participation rate, DeMoA achieves the best accuracy even when existing methods fail empirically.
comment: Substantial corrections to the proofs, removal of the bounded gradient assumption, and additional experimental results
♻ ☆ scDataset: Scalable Data Loading for Deep Learning on Large-Scale Single-Cell Omics
Training deep learning models on single-cell datasets with hundreds of millions of cells requires loading data from disk, as these datasets exceed available memory. While random sampling provides the data diversity needed for effective training, it is prohibitively slow due to the random access pattern overhead, whereas sequential streaming achieves high throughput but introduces biases that degrade model performance. We present scDataset, a PyTorch data loader that enables efficient training from on-disk data with seamless integration across diverse storage formats. Our approach combines block sampling and batched fetching to achieve quasi-random sampling that balances I/O efficiency with minibatch diversity. On Tahoe-100M, a dataset of 100 million cells, scDataset achieves more than two orders of magnitude speedup compared to true random sampling while working directly with AnnData files. We provide theoretical bounds on minibatch diversity and empirically show that scDataset matches the performance of true random sampling across multiple classification tasks.
♻ ☆ Wikontic: Constructing Wikidata-Aligned, Ontology-Aware Knowledge Graphs with Large Language Models
Knowledge graphs (KGs) provide structured, verifiable grounding for large language models (LLMs), but current LLM-based systems commonly use KGs as auxiliary structures for text retrieval, leaving their intrinsic quality underexplored. In this work, we propose Wikontic, a multi-stage pipeline that constructs KGs from open-domain text by extracting candidate triplets with qualifiers, enforcing Wikidata-based type and relation constraints, and normalizing entities to reduce duplication. The resulting KGs are compact, ontology-consistent, and well-connected; on MuSiQue, the correct answer entity appears in 96% of generated triplets. On HotpotQA, our triplets-only setup achieves 76.0 F1, and on MuSiQue 59.8 F1, matching or surpassing several retrieval-augmented generation baselines that still require textual context. In addition, Wikontic attains state-of-the-art information-retention performance on the MINE-1 benchmark (86%), outperforming prior KG construction methods. Wikontic is also efficient at build time: KG construction uses less than 1,000 output tokens, about 3$\times$ fewer than AriGraph and $<$1/20 of GraphRAG. The proposed pipeline enhances the quality of the generated KG and offers a scalable solution for leveraging structured knowledge in LLMs.
♻ ☆ Pushing the Limits of Distillation-Based Class-Incremental Learning via Lightweight Plugins
Existing replay and distillation-based class-incremental learning (CIL) methods are effective at retaining past knowledge but are still constrained by the stability-plasticity dilemma. Since their resulting models are learned over a sequence of incremental tasks, they encode rich representations and can be regarded as pre-trained bases. Building on this view, we propose a plug-in extension paradigm termed Deployment of LoRA Components (DLC) to enhance them. For each task, we use Low-Rank Adaptation (LoRA) to inject task-specific residuals into the base model's deep layers. During inference, representations with task-specific residuals are aggregated to produce classification predictions. To mitigate interference from non-target LoRA plugins, we introduce a lightweight weighting unit. This unit learns to assign importance scores to different LoRA-tuned representations. Like downloadable content in software, DLC serves as a plug-and-play enhancement that efficiently extends the base methods. Remarkably, on the large-scale ImageNet-100, with merely 4\% of the parameters of a standard ResNet-18, our DLC model achieves a significant 8\% improvement in accuracy, demonstrating exceptional efficiency. Under a fixed memory budget, methods equipped with DLC surpass state-of-the-art expansion-based methods.
comment: 10 pages, 6 figures, 2 tables
♻ ☆ Geodesic Calculus on Implicitly Defined Latent Manifolds
Latent manifolds of autoencoders provide low-dimensional representations of data, which can be studied from a geometric perspective. We propose to describe these latent manifolds as implicit submanifolds of some ambient latent space. Based on this, we develop tools for a discrete Riemannian calculus approximating classical geometric operators. These tools are robust against inaccuracies of the implicit representation often occurring in practical examples. To obtain a suitable implicit representation, we propose to learn an approximate projection onto the latent manifold by minimizing a denoising objective. This approach is independent of the underlying autoencoder and supports the use of different Riemannian geometries on the latent manifolds. The framework in particular enables the computation of geodesic paths connecting given end points and shooting geodesics via the Riemannian exponential maps on latent manifolds. We evaluate our approach on various autoencoders trained on synthetic and real data.
comment: 24 pages, 18 figures
♻ ☆ Diffusion Models in Simulation-Based Inference: A Tutorial Review
Diffusion models have recently emerged as powerful learners for simulation-based inference (SBI), enabling fast and accurate estimation of latent parameters from simulated and real data. Their score-based formulation offers a flexible way to learn conditional or joint distributions over parameters and observations, thereby providing a versatile solution to various modeling problems. In this tutorial review, we synthesize recent developments on diffusion models for SBI, covering design choices for training, inference, and evaluation. We highlight opportunities created by various concepts such as guidance, score composition, flow matching, consistency models, and joint modeling. Furthermore, we discuss how efficiency and statistical accuracy are affected by noise schedules, parameterizations, and samplers. Finally, we illustrate these concepts with case studies across parameter dimensionalities, simulation budgets, and model types, and outline open questions for future research.
♻ ☆ Convergence of Stochastic Gradient Langevin Dynamics in the Lazy Training Regime
Continuous-time models provide important insights into the training dynamics of optimization algorithms in deep learning. In this work, we establish a non-asymptotic convergence analysis of stochastic gradient Langevin dynamics (SGLD), which is an Itô stochastic differential equation (SDE) approximation of stochastic gradient descent in continuous time, in the lazy training regime. We show that, under regularity conditions on the Hessian of the loss function, SGLD with multiplicative and state-dependent noise (i) yields a non-degenerate kernel throughout the training process with high probability, and (ii) achieves exponential convergence to the empirical risk minimizer in expectation, and we establish finite-time and finite-width bounds on the optimality gap. We corroborate our theoretical findings with numerical examples in the regression setting.
♻ ☆ WL Tests Are Far from All We Need: Revisiting WL-Test Hardness and GNN Expressive Power from a Distributed Computation Perspective
The expressive power of graph neural networks (GNNs) is often studied through their relationship to the Weisfeiler-Lehman (WL) tests. Despite its influence, this perspective leaves two gaps: (i) it is unclear whether WL tests are sufficiently primitive for understanding GNN expressivity, and (ii) WL-induced equivalence does not align well with characterizing the function classes that GNNs can approximate or compute. We attempt to address both gaps. First, we strengthen hardness results for the vanilla WL test, showing that in many settings it is not primitive enough to be implemented by constant-depth GNNs. Second, we propose an alternative framework for studying GNN expressivity based on an extended CONGEST model with an explicit preprocessing phase. Within this framework, we identify implicit shortcuts introduced in prior analyses and establish further results for WL tests in settings where graphs are augmented with virtual nodes and virtual edges.
♻ ☆ Introducing Instruction-Accurate Simulators for Performance Estimation of Autotuning Workloads
Accelerating Machine Learning (ML) workloads requires efficient methods due to their large optimization space. Autotuning has emerged as an effective approach for systematically evaluating variations of implementations. Traditionally, autotuning requires the workloads to be executed on the target hardware (HW). We present an interface that allows executing autotuning workloads on simulators. This approach offers high scalability when the availability of the target HW is limited, as many simulations can be run in parallel on any accessible HW. Additionally, we evaluate the feasibility of using fast instruction-accurate simulators for autotuning. We train various predictors to forecast the performance of ML workload implementations on the target HW based on simulation statistics. Our results demonstrate that the tuned predictors are highly effective. The best workload implementation in terms of actual run time on the target HW is always within the top 3 % of predictions for the tested x86, ARM, and RISC-V-based architectures. In the best case, this approach outperforms native execution on the target HW for embedded architectures when running as few as three samples on three simulators in parallel.
♻ ☆ SINQ: Sinkhorn-Normalized Quantization for Calibration-Free Low-Precision LLM Weights
Post-training quantization has emerged as the most widely used strategy for deploying large language models at low precision. Still, current methods show perplexity degradation at bit-widths less than or equal to 4, partly because representing outliers causes precision issues in parameters that share the same scales as these outliers. This problem is especially pronounced for calibration-free, uniform quantization methods. We introduce SINQ to augment existing post-training quantizers with an additional second-axis scale factor and a fast Sinkhorn-Knopp-style algorithm that finds scales to normalize per-row and per-column variances. We show that this approximates activation-aware quantization by recovering column scales from the weight matrix structure that are predictive of the typical activation magnitudes the matrix received during training. Our method has no interactions between layers and can be trivially applied to new architectures to quantize any linear layer. We evaluate our method on the Qwen3 model family, among others. SINQ reduces the perplexity gap on WikiText2 and C4 by over 50% against uncalibrated uniform quantization baselines, incurs zero to negligible compute overhead, and can be further enhanced by combining it with calibration and non-uniform quantization levels. Code is available at https://github.com/huawei-csl/SINQ.
♻ ☆ One-Shot Federated Learning with Classifier-Free Diffusion Models IEEE
Federated learning (FL) enables collaborative learning without data centralization but introduces significant communication costs due to multiple communication rounds between clients and the server. One-shot federated learning (OSFL) addresses this by forming a global model with a single communication round, often relying on the server's model distillation or auxiliary dataset generation - mostly through pre-trained diffusion models (DMs). Existing DM-assisted OSFL methods, however, typically employ classifier-guided DMs, which require training auxiliary classifier models at each client, introducing additional computation overhead. This work introduces OSCAR (One-Shot Federated Learning with Classifier-Free Diffusion Models), a novel OSFL approach that eliminates the need for auxiliary models. OSCAR uses foundation models to devise category-specific data representations at each client which are integrated into a classifier-free diffusion model pipeline for server-side data generation. In our experiments, OSCAR outperforms the state-of-the-art on four benchmark datasets while reducing the communication load by at least 99%.
comment: Published in IEEE ICME 2025
♻ ☆ Rotary Position Encodings for Graphs
We study the extent to which rotary position encodings (RoPE), a recent transformer position encoding algorithm broadly adopted in large language models (LLMs) and vision transformers (ViTs), can be applied to graph-structured data. We find that rotating tokens depending on the spectrum of the graph Laplacian efficiently injects structural information into the attention mechanism, boosting performance in synthetic and real-world graph learning tasks. This approach, coined _Wave-Induced Rotary Encodings_ (WIRE), enjoys intriguing theoretical properties: it recovers regular RoPE on grids, and depends asymptotically on the graph effective resistance. Unlike bias-based relative position encodings, WIRE is compatible with linear attention.
♻ ☆ Fine-Tuning Flow Matching via Maximum Likelihood Estimation of Reconstructions
Flow Matching (FM) models achieve remarkable results in generative tasks. Building upon diffusion models, FM's simulation-free training paradigm enables simplicity and efficiency but introduces a train-inference gap: model outputs cannot be assessed during training. Moreover, the straight flow assumption suffers from some inherent limitations. To address this, we propose to fine-tune FM via Maximum Likelihood Estimation (MLE) of reconstructions -- enabled by FM's smooth ODE formulation, unlike the stochastic differential equations (SDEs) in diffusion models. We first theoretically analyze the relationship between training loss and inference error in FM under numerical precision constraints. We then propose an easy-to-implement fine-tuning framework based on MLE of reconstructions, with flexibility for sophisticated extensions. Building on this, we incorporate a generalized artificial viscosity term that enhances flow stability and robustness, accompanied by a direct parameterization method and rigorous theoretical guarantees. Experiments demonstrate our method's effectiveness across diverse settings: a toy example provides mechanistic insights into the fine-tuning process, while large-scale evaluations on meteorological forecasting and robotic manipulation policies validate reliable performance improvements.
♻ ☆ Physics-Aware Heterogeneous GNN Architecture for Real-Time BESS Optimization in Unbalanced Distribution Systems
Battery energy storage systems (BESS) have become increasingly vital in three-phase unbalanced distribution grids for maintaining voltage stability and enabling optimal dispatch. However, existing deep learning approaches often lack explicit three-phase representation, making it difficult to accurately model phase-specific dynamics and enforce operational constraints--leading to infeasible dispatch solutions. This paper demonstrates that by embedding detailed three-phase grid information--including phase voltages, unbalanced loads, and BESS states--into heterogeneous graph nodes, diverse GNN architectures (GCN, GAT, GraphSAGE, GPS) can jointly predict network state variables with high accuracy. Moreover, a physics-informed loss function incorporates critical battery constraints--SoC and C-rate limits--via soft penalties during training. Experimental validation on the CIGRE 18-bus distribution system shows that this embedding-loss approach achieves low prediction errors, with bus voltage MSEs of 6.92e-07 (GCN), 1.21e-06 (GAT), 3.29e-05 (GPS), and 9.04e-07 (SAGE). Importantly, the physics-informed method ensures nearly zero SoC and C-rate constraint violations, confirming its effectiveness for reliable, constraint-compliant dispatch.
comment: 5 pages, 2 figures, 3 tables
♻ ☆ Efficient Learning of Stationary Diffusions with Stein-type Discrepancies
Learning a stationary diffusion amounts to estimating the parameters of a stochastic differential equation whose stationary distribution matches a target distribution. We build on the recently introduced kernel deviation from stationarity (KDS), which enforces stationarity by evaluating expectations of the diffusion's generator in a reproducing kernel Hilbert space. Leveraging the connection between KDS and Stein discrepancies, we introduce the Stein-type KDS (SKDS) as an alternative formulation. We prove that a vanishing SKDS guarantees alignment of the learned diffusion's stationary distribution with the target. Furthermore, under broad parametrizations, SKDS is convex with an empirical version that is $ε$-quasiconvex with high probability. Empirically, learning with SKDS attains comparable accuracy to KDS while substantially reducing computational cost and yields improvements over the majority of competitive baselines.
♻ ☆ Stochastic Matching Bandits with Rare Optimization Updates
We introduce a bandit framework for stochastic matching under the multinomial logit (MNL) choice model. In our setting, $N$ agents on one side are assigned to $K$ arms on the other side, where each arm stochastically selects an agent from its assigned pool according to unknown preferences and yields a corresponding reward over a horizon $T$. The objective is to minimize regret by maximizing the cumulative revenue from successful matches. A naive approach requires solving an NP-hard combinatorial optimization problem at every round, resulting in a prohibitive computational cost. To address this challenge, we propose batched algorithms that strategically limit the number of times matching assignments are updated to $Θ(\log\log T)$ over the entire horizon. By invoking expensive combinatorial optimization only on a vanishing fraction of rounds, our algorithms substantially reduce overall computational overhead while still achieving a regret bound of $\widetilde{\mathcal{O}}(\sqrt{T})$.
♻ ☆ ASAP: Exploiting the Satisficing Generalization Edge in Neural Combinatorial Optimization
Deep Reinforcement Learning (DRL) has emerged as a promising approach for solving Combinatorial Optimization (CO) problems, such as the 3D Bin Packing Problem (3D-BPP), Traveling Salesman Problem (TSP), or Vehicle Routing Problem (VRP), but these neural solvers often exhibit brittleness when facing distribution shifts. To address this issue, we uncover the Satisficing Generalization Edge, which we validate both theoretically and experimentally: identifying a set of promising actions is inherently more generalizable than selecting the single optimal action. To exploit this property, we propose Adaptive Selection After Proposal (ASAP), a generic framework that decomposes the decision-making process into two distinct phases: a proposal policy that acts as a robust filter, and a selection policy as an adaptable decision maker. This architecture enables a highly effective online adaptation strategy where the selection policy can be rapidly fine-tuned on a new distribution. Concretely, we introduce a two-phase training framework enhanced by Model-Agnostic Meta-Learning (MAML) to prime the model for fast adaptation. Extensive experiments on 3D-BPP, TSP, and CVRP demonstrate that ASAP improves the generalization capability of state-of-the-art baselines and achieves superior online adaptation on out-of-distribution instances.
♻ ☆ Neural Weight Compression for Language Models
Efficient storage and transmission of language model weights are increasingly critical as model scale and deployment grow. Yet, most existing compression methods rely on handcrafted transforms and heuristics, reflecting the limited understanding of weights as a data modality. This motivates a shift toward learning-based paradigm, where compression schemes are optimized directly from data rather than manually designed. In this work, we take a step in this direction by formulating weight compression as a neural codec learning. We propose Neural Weight Compression (NWC), a flexible framework for training neural codecs on pretrained weight datasets. NWC addresses challenges intrinsic to weight compression, such as tensor shape heterogeneity and the misalignment between training losses and downstream performance, through components such as chunk-and-normalize preprocessing and an importance-aware training objective. Experiments show that NWC achieves state-of-the-art accuracy-compression tradeoffs, particularly at 4--6 bit regime, without relying on rigid handcrafted components such as the Hadamard transform. These gains extend across diverse architectures, e.g., vision encoders. Our analysis further supports the learning-based perspective, highlighting the roles of entropy-constrained quantization in high rate regime and learned transforms in adapting to downstream tasks.
♻ ☆ Generative Modeling through Koopman Spectral Analysis: An Operator-Theoretic Perspective
We propose Koopman Spectral Wasserstein Gradient Descent (KSWGD), a particle-based generative modeling framework that learns the Langevin generator via Koopman theory and integrates it with Wasserstein gradient descent. Our key insight is that this spectral structure of the underlying distribution can be directly estimated from trajectory data via the Koopman operator, eliminating the need for explicit knowledge of the target potential. Additionally, we prove that KSWGD maintains an approximately constant dissipation rate, thereby establishing linear convergence and overcoming the vanishing-gradient phenomenon that hinders existing kernel-based particle methods. We further provide a Feynman--Kac interpretation that clarifies the method's probabilistic foundation. Experiments on compact manifolds, metastable multi-well systems, and high-dimensional stochastic partial differential equations demonstrate that KSWGD consistently outperforms baselines in both convergence speed and sample quality.
♻ ☆ Memento 2: Learning by Stateful Reflective Memory
We present a theoretical study of continual and experiential learning in large language model agents that combine episodic memory with reinforcement learning. We argue that the key mechanism for continual adaptation, without updating model parameters, is reflection: the agent's ability to use past experience to guide future actions. Empirical findings suggest that episodic, experience-driven reflection enables generalised adaptation across a wide range of open-ended, long-horizon tasks. This indicates that efficient learning can occur during deployment and weakens the traditional separation between training and testing. Motivated by this, we introduce the Stateful Reflective Decision Process, a formal model of reflective memory dynamics. In this abstraction, an agent maintains an episodic memory and performs two core operations. Writing stores interaction outcomes and plays the role of policy evaluation. Reading retrieves relevant past cases to inform decisions and plays the role of policy improvement. This perspective treats reflective memory as a control object that can be analysed using classical reinforcement learning tools. We then develop a read-write reflective learning framework by integrating retrieval into soft policy iteration and establish convergence guarantees. We show that as memory grows and provides denser coverage of the state space, the resulting composite policy converges to the optimal solution. Overall, this framework connects practical memory-based methods with principled reinforcement learning, providing a rigorous mathematical basis for building reflective, memory-embedded agents capable of continual general-purpose learning.
comment: 35 pages, four figures
♻ ☆ Federated Learning for Heterogeneous Electronic Health Record Systems with Cost Effective Participant Selection
The increasing volume of electronic health records (EHRs) presents the opportunity to improve the accuracy and robustness of models in clinical prediction tasks. Unlike traditional centralized approaches, federated learning enables training on data from multiple institutions while preserving patient privacy and complying with regulatory constraints. In practice, healthcare institutions (i.e., hosts) often need to build predictive models tailored to their specific needs (e.g., creatinine-level prediction, N-day readmission prediction) using federated learning. When building a federated learning model for a single healthcare institution, two key challenges arise: (1) ensuring compatibility across heterogeneous EHR systems, and (2) managing federated learning costs within budget constraints. Specifically, heterogeneity in EHR systems across institutions hinders compatible modeling, while the computational costs of federated learning can exceed practical budget limits for healthcare institutions. To address these challenges, we propose EHRFL, a federated learning framework designed for building a cost-effective, host-specific predictive model using patient EHR data. EHRFL consists of two components: (1) text-based EHR modeling, which facilitates cross-institution compatibility without costly data standardization, and (2) a participant selection strategy based on averaged patient embedding similarity to reduce the number of participants without degrading performance. Our participant selection strategy sharing averaged patient embeddings is differentially private, ensuring patient privacy. Experiments on multiple open-source EHR datasets demonstrate the effectiveness of both components. With our framework, healthcare institutions can build institution-specific predictive models under budgetary constraints with reduced costs and time.
♻ ☆ Autoregressive Language Models are Secretly Energy-Based Models: Insights into the Lookahead Capabilities of Next-Token Prediction
Autoregressive models (ARMs) currently constitute the dominant paradigm for large language models (LLMs). Energy-based models (EBMs) represent another class of models, which have historically been less prevalent in LLM development, yet naturally characterize the optimal policy in post-training alignment. In this paper, we provide a unified view of these two model classes. Taking the chain rule of probability as a starting point, we establish an explicit bijection between ARMs and EBMs in function space, which we show to correspond to a special case of the soft Bellman equation in maximum entropy reinforcement learning. Building upon this bijection, we derive the equivalence between supervised learning of ARMs and EBMs. Furthermore, we analyze the distillation of EBMs into ARMs by providing theoretical error bounds. Our results provide insights into the ability of ARMs to plan ahead, despite being based on the next-token prediction paradigm.
♻ ☆ Robust Filter Attention: Self-Attention as a Parallel State Estimator
We introduce Robust Filter Attention (RFA), an attention mechanism that reformulates self-attention as parallel robust filtering under a latent stochastic differential equation (SDE) prior, where analytically propagated uncertainty defines a time-dependent precision prior over attention weights. This formulation integrates key advantages of existing positional encodings: it preserves RoPE-style rotational structure while achieving long-context stability through explicit modeling of dissipation and diffusion. By imposing isotropic constraints on the dynamics and noise, RFA matches the $O(N^2 d)$ time and $O(N^2 + Nd)$ memory complexity of standard attention. Empirically, we find that uncertainty-aware weighting induces specialization into distinct filtering regimes across heads, improving temporal consistency and extrapolation across varying context lengths.
♻ ☆ Outcome-Based RL Provably Leads Transformers to Reason, but Only With the Right Data
Transformers trained via Reinforcement Learning (RL) with outcome-based supervision can spontaneously develop the ability to generate intermediate reasoning steps (Chain-of-Thought). Yet the mechanism by which sparse rewards drive policy gradient to discover such systematic reasoning remains poorly understood. We address this by analyzing the policy gradient dynamics of single-layer Transformers on a synthetic graph traversal task that cannot be solved without Chain-of-Thought but admits a simple iterative solution. We prove that despite training solely on final-answer correctness, policy gradient drives the Transformer to converge to a structured, interpretable algorithm that iteratively traverses the graph vertex-by-vertex. We characterize the distributional properties required for this emergence, identifying the critical role of "simple examples": instances requiring fewer reasoning steps. When the training distribution places sufficient mass on these simpler examples, the Transformer learns a generalizable traversal strategy that extrapolates to longer chains; when this mass vanishes, policy gradient learning becomes infeasible. We corroborate our theoretical results through experiments on synthetic data and with real-world language models on mathematical reasoning tasks, validating that our theoretical findings carry over to practical settings.
comment: 87 pages, 6 figures
♻ ☆ Black-Box Combinatorial Optimization with Order-Invariant Reinforcement Learning
We introduce an order-invariant reinforcement learning framework for black-box combinatorial optimization. Classical estimation-of-distribution algorithms (EDAs) often rely on learning explicit variable dependency graphs, which can be costly and fail to capture complex interactions efficiently. In contrast, we parameterize a multivariate autoregressive generative model trained without a fixed variable ordering. By sampling random generation orders during training, a form of information-preserving dropout, the model is encouraged to be invariant to variable order, promoting search-space diversity, and shaping the model to focus on the most relevant variable dependencies, improving sample efficiency. We adapt Group Relative Policy Optimization (GRPO) to this setting, providing stable policy-gradient updates from scale-invariant advantages. Across a wide range of benchmark algorithms and problem instances of varying sizes, our method frequently achieves the best performance and consistently avoids catastrophic failures.
♻ ☆ IBNorm: Information-Bottleneck Inspired Normalization for Representation Learning
Normalization is fundamental to deep learning, but existing approaches such as BatchNorm, LayerNorm, and RMSNorm are variance-centric by enforcing zero mean and unit variance, stabilizing training without controlling how representations capture task-relevant information. We propose IB-Inspired Normalization (IBNorm), a simple yet powerful family of methods grounded in the Information Bottleneck principle. IBNorm introduces bounded compression operations that encourage embeddings to preserve predictive information while suppressing nuisance variability, yielding more informative representations while retaining the stability and compatibility of standard normalization. Theoretically, we prove that IBNorm achieves a higher IB value and tighter generalization bounds than variance-centric methods. Empirically, IBNorm consistently outperforms BatchNorm, LayerNorm, and RMSNorm across large-scale language models (LLaMA, GPT-2) and vision models (ResNet, ViT), with mutual information analysis confirming superior information bottleneck behavior. Code will be released publicly.
♻ ☆ Scaling Offline Model-Based RL via Jointly-Optimized World-Action Model Pretraining ICLR 2025
A significant aspiration of offline reinforcement learning (RL) is to develop a generalist agent with high capabilities from large and heterogeneous datasets. However, prior approaches that scale offline RL either rely heavily on expert trajectories or struggle to generalize to diverse unseen tasks. Inspired by the excellent generalization of world model in conditional video generation, we explore the potential of image observation-based world model for scaling offline RL and enhancing generalization on novel tasks. In this paper, we introduce JOWA: Jointly-Optimized World-Action model, an offline model-based RL agent pretrained on multiple Atari games with 6 billion tokens data to learn general-purpose representation and decision-making ability. Our method jointly optimizes a world-action model through a shared transformer backbone, which stabilize temporal difference learning with large models during pretraining. Moreover, we propose a provably efficient and parallelizable planning algorithm to compensate for the Q-value estimation error and thus search out better policies. Experimental results indicate that our largest agent, with 150 million parameters, achieves 78.9% human-level performance on pretrained games using only 10% subsampled offline data, outperforming existing state-of-the-art large-scale offline RL baselines by 31.6% on averange. Furthermore, JOWA scales favorably with model capacity and can sample-efficiently transfer to novel games using only 5k offline fine-tuning data (approximately 4 trajectories) per game, demonstrating superior generalization. We will release codes and model weights at https://github.com/CJReinforce/JOWA
comment: Accepted by ICLR 2025
♻ ☆ NEAT: Neighborhood-Guided, Efficient, Autoregressive Set Transformer for 3D Molecular Generation
Transformer-based autoregressive models offer a promising alternative to diffusion- and flow-matching approaches for generating 3D molecular structures. However, standard transformer architectures require a sequential ordering of tokens, which is not uniquely defined for the atoms in a molecule. Prior work has addressed this by using canonical atom orderings, but these do not ensure permutation invariance of atoms, which is essential for tasks like prefix completion. We introduce NEAT, a Neighborhood-guided, Efficient, Autoregressive, Set Transformer that treats molecular graphs as sets of atoms and learns an order-agnostic distribution over admissible tokens at the graph boundary. NEAT achieves state-of-the-art performance in autoregressive 3D molecular generation whilst ensuring atom-level permutation invariance by design.
♻ ☆ Understanding Post-Training Structural Changes in Large Language Models
Post-training fundamentally alters the behavior of large language models (LLMs), yet its impact on the internal parameter space remains poorly understood. In this work, we conduct a systematic singular value decomposition (SVD) analysis of principal linear layers in pretrained LLMs, focusing on two widely adopted post-training methods: instruction tuning and long-chain-of-thought (Long-CoT) distillation. Our analysis reveals two unexpected and robust structural changes: (1) a near-uniform geometric scaling of singular values across layers; and (2) highly consistent orthogonal transformations are applied to the left and right singular vectors of each matrix. Based on these findings, We propose a simple yet effective framework to describe the coordinated dynamics of parameters in LLMs, which elucidates why post-training inherently relies on the foundational capabilities developed during pre-training. Further experiments demonstrate that singular value scaling underpins the temperature-controlled regulatory mechanisms of post-training, while the coordinated rotation of singular vectors encodes the essential semantic alignment. These results challenge the prevailing view of the parameter space in large models as a black box, uncovering the first clear regularities in how parameters evolve during training, and providing a new perspective for deeper investigation into model parameter changes.
♻ ☆ Understanding Large Language Models in Your Pockets: Performance Study on COTS Mobile Devices
As large language models (LLMs) increasingly integrate into every aspect of our work and daily lives, there are growing concerns about user privacy, which push the trend toward local deployment of these models. There are a number of lightweight LLMs (e.g., Gemini Nano, LLAMA2 7B) that can run locally on smartphones, providing users with greater control over their personal data. As a rapidly emerging application, we are concerned about their performance on commercial-off-the-shelf mobile devices. To fully understand the current landscape of LLM deployment on mobile platforms, we conduct a comprehensive measurement study on mobile devices. While user experience is the primary concern for end-users, developers focus more on the underlying implementations. Therefore, we evaluate both user-centric metrics-such as token throughput, latency, and response quality-and developer-critical factors, including resource utilization, OS strategies, battery consumption, and launch time. We also provide comprehensive comparisons across the mobile system-on-chips (SoCs) from major vendors, highlighting their performance differences in handling LLM workloads, which may help developers identify and address bottlenecks for mobile LLM applications. We hope that this study can provide insights for both the development of on-device LLMs and the design for future mobile system architecture.
♻ ☆ High Effort, Low Gain: Fundamental Limits of Active Learning for Linear Dynamical Systems AISTATS 2026
In this work, we consider the problem of identifying an unknown linear dynamical system given a finite hypothesis class. In particular, we analyze the effect of the excitation input on the sample complexity of identifying the true system with high probability. To this end, we present sample complexity lower bounds that capture the choice of the selected excitation input. The sample complexity lower bound gives rise to a system theoretic condition to determine the potential benefit of experiment design. Informed by the analysis of the sample complexity lower bound, we propose a persistent excitation (PE) condition tailored to the considered setting, which we then use to establish sample complexity upper bounds. Notably, the PE condition is weaker than in the case of an infinite hypothesis class and allows analyzing different excitation inputs modularly. Crucially, the lower and upper bounds share the same dependency on key problem parameters. Finally, we leverage these insights to propose an active learning algorithm that sequentially excites the system optimally with respect to the current estimate, and provide sample complexity guarantees for the presented algorithm. Concluding simulations showcase the effectiveness of the proposed algorithm.
comment: Accepted for spotlight presentation at AISTATS 2026
♻ ☆ Parametrized Power-Iteration Clustering for Directed Graphs
Vertex-level clustering for directed graphs (digraphs) remains challenging as edge directionality breaks the key assumptions underlying popular spectral methods, which also incur the overhead of eigen-decomposition. This paper proposes Parametrized Power-Iteration Clustering (ParPIC), a random-walk-based clustering method for weakly connected digraphs. This builds over the Power-Iteration Clustering paradigm, which uses the rows of the iterated diffusion operator as a data embedding. ParPIC has three important features: the use of parametrized reversible random walk operators, the automatic tuning of the diffusion time, and the efficient truncation of the final embedding, which produces low-dimensional data representations and reduces complexity. Empirical results on synthetic and real-world graphs demonstrate that ParPIC achieves competitive clustering accuracy with improved scalability relative to spectral and teleportation-based methods.
♻ ☆ Fairy2i: Training Complex LLMs from Real LLMs with All Parameters in $\{\pm 1, \pm i\}$
Large language models (LLMs) have revolutionized artificial intelligence, yet their massive memory and computational demands necessitate aggressive quantization, increasingly pushing representations toward the theoretical limit of a single bit. While complex-valued LLMs, such as iFairy, offer a superior chance for low-bit representation compared to real-valued counterparts, they require training from scratch, preventing the utilization of the vast ecosystem of pre-trained real-valued foundation models. Here we present Fairy2i, a universal framework that transforms pre-trained real-valued layers into an equivalent widely-linear complex form, enabling extremely low-bit quantization while reusing existing checkpoints. By proving a lossless mathematical equivalence between real and widely-linear maps, we convert standard Transformers into the complex domain and employ a phase-aware quantization scheme with a highly efficient codebook of fourth roots of unity. Furthermore, we introduce a recursive residual quantization mechanism that iteratively minimizes quantization error, allowing inference to proceed via efficient multiplication-free accumulation. We demonstrate that Fairy2i restores the performance of LLaMA-2 7B at an effective 2-bit precision to levels nearly comparable with full-precision baselines, significantly outperforming state-of-the-art real-valued binary and ternary quantization methods. This work bridges the gap between the representational efficiency of complex-valued arithmetic and the practical utility of pre-trained models, paving a new way for efficient inference on commodity hardware. We open-source the Fairy2i model and code at https://huggingface.co/PKU-DS-LAB/Fairy2i-W2 and https://github.com/PKULab1806/Fairy2i-W2.
comment: 15 pages, 3 figures
♻ ☆ CleanSurvival: Automated data preprocessing for time-to-event models using reinforcement learning
Data preprocessing is a critical yet frequently neglected aspect of machine learning, often paid little attention despite its potentially significant impact on model performance. While automated machine learning pipelines are starting to recognize and integrate data preprocessing into their solutions for classification and regression tasks, this integration is lacking for more specialized tasks like survival or time-to-event models. As a result, survival analysis not only faces the general challenges of data preprocessing but also suffers from the lack of tailored, automated solutions in this area. To address this gap, this paper presents 'CleanSurvival', a reinforcement-learning-based solution for optimizing preprocessing pipelines, extended specifically for survival analysis. The framework can handle continuous and categorical variables, using Q-learning to select which combination of data imputation, outlier detection and feature extraction techniques achieves optimal performance for a Cox, random forest, neural network or user-supplied time-to-event model. The package is available on GitHub: https://github.com/datasciapps/CleanSurvival Experimental benchmarks on real-world datasets show that the Q-learning-based data preprocessing results in superior predictive performance to standard approaches, finding such a model up to 10 times faster than undirected random grid search. Furthermore, a simulation study demonstrates the effectiveness in different types and levels of missingness and noise in the data.
♻ ☆ PROMA: Projected Microbatch Accumulation for Reference-Free Proximal Policy Updates
This note introduces Projected Microbatch Accumulation (PROMA), a proximal policy method that modifies gradient accumulation across microbatches rather than relying on likelihood ratios relative to a reference policy. During accumulation, PROMA projects the partially accumulated gradient to be orthogonal to the sequence-wise gradients of the current microbatch. This projection is applied layer-wise during the backward pass, enabling efficient implementation. A within-microbatch variant (Intra-PROMA) acts independently across microbatches. Empirically, PROMA achieves proximal updates without entropy collapse while providing tighter local KL control than GRPO.
comment: add intra-microbatch variant
♻ ☆ Tight Lower Bounds and Improved Convergence in Performative Prediction NeurIPS 2025
Performative prediction is a framework accounting for the shift in the data distribution induced by the prediction of a model deployed in the real world. Ensuring rapid convergence to a stable solution where the data distribution remains the same after the model deployment is crucial, especially in evolving environments. This paper extends the Repeated Risk Minimization (RRM) framework by utilizing historical datasets from previous retraining snapshots, yielding a class of algorithms that we call Affine Risk Minimizers and enabling convergence to a performatively stable point for a broader class of problems. We introduce a new upper bound for methods that use only the final iteration of the dataset and prove for the first time the tightness of both this new bound and the previous existing bounds within the same regime. We also prove that utilizing historical datasets can surpass the lower bound for last iterate RRM, and empirically observe faster convergence to the stable point on various performative prediction benchmarks. We offer at the same time the first lower bound analysis for RRM within the class of Affine Risk Minimizers, quantifying the potential improvements in convergence speed that could be achieved with other variants in our framework.
comment: Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ Geometry-Aware Deep Congruence Networks for Manifold Learning in Cross-Subject Motor Imagery
Cross-subject motor-imagery decoding remains a major challenge in EEG-based brain-computer interfaces. To mitigate strong inter-subject variability, recent work has emphasized manifold-based approaches operating on covariance representations. Yet dispersion scaling and orientation alignment remain largely unaddressed in existing methods. In this paper, we address both issues through congruence transforms and introduce three complementary geometry-aware models: (i) Discriminative Congruence Transform (DCT), (ii) Deep Linear DCT (DLDCT), and (iii) Deep DCT-UNet (DDCT-UNet). These models are evaluated both as pre-alignment modules for downstream classifiers and as end-to-end discriminative systems trained via cross-entropy backpropagation with a custom logistic-regression head. Across challenging motor-imagery benchmarks, the proposed framework improves transductive cross-subject accuracy by 2-3%, demonstrating the value of geometry-aware congruence learning.
comment: 65 pages (Main paper - 10 pages, Appendix - 55 pages)
♻ ☆ CTRLS: Chain-of-Thought Reasoning via Latent State-Transition
Chain-of-thought (CoT) reasoning enables large language models (LLMs) to break down complex problems into interpretable intermediate steps, significantly enhancing model transparency and performance in reasoning tasks. However, conventional CoT methods rely on heuristic sampling without structured modeling of reasoning transitions, constraining their ability to systematically explore and discover diverse and effective reasoning trajectories. In this work, we introduce CTRLS, a framework that formulates CoT reasoning as a Markov decision process (MDP) with latent state transitions, enabling principled and state-aware exploration via distributional reinforcement learning. By modelling reasoning actions as explicit probability distributions in latent space, our approach explicitly models epistemic uncertainty, facilitating robust exploration of the reasoning space. As part of our framework, we introduce an on-policy reinforcement learning strategy incorporating epsilon-greedy exploration and entropy-based regularization to iteratively refine latent state transitions without requiring additional fine-tuning of the underlying LLM. Theoretical analyses provide evidence lower bounds (ELBO), theoretically grounding our transition-aware modeling of latent reasoning dynamics. Further experiments demonstrate improvements in reasoning accuracy, diversity, and exploration efficiency across benchmark reasoning tasks.
comment: 10 pages
♻ ☆ Bridging Synthetic and Real Routing Problems via LLM-Guided Instance Generation and Progressive Adaptation AAAI 2026
Recent advances in Neural Combinatorial Optimization (NCO) methods have significantly improved the capability of neural solvers to handle synthetic routing instances. Nonetheless, existing neural solvers typically struggle to generalize effectively from synthetic, uniformly-distributed training data to real-world VRP scenarios, including widely recognized benchmark instances from TSPLib and CVRPLib. To bridge this generalization gap, we present Evolutionary Realistic Instance Synthesis (EvoReal), which leverages an evolutionary module guided by large language models (LLMs) to generate synthetic instances characterized by diverse and realistic structural patterns. Specifically, the evolutionary module produces synthetic instances whose structural attributes statistically mimics those observed in authentic real-world instances. Subsequently, pre-trained NCO models are progressively refined, firstly aligning them with these structurally enriched synthetic distributions and then further adapting them through direct fine-tuning on actual benchmark instances. Extensive experimental evaluations demonstrate that EvoReal markedly improves the generalization capabilities of state-of-the-art neural solvers, yielding a notable reduced performance gap compared to the optimal solutions on the TSPLib (1.05%) and CVRPLib (2.71%) benchmarks across a broad spectrum of problem scales.
comment: 21 pages; Published in AAAI 2026, Main Technical Track
♻ ☆ Bridging Performance Gaps for ECG Foundation Models: A Post-Training Strategy
ECG foundation models are increasingly popular due to their adaptability across various tasks. However, their clinical applicability is often limited by performance gaps compared to task-specific models, even after pre-training on large ECG datasets and fine-tuning on target data. This limitation is likely due to the lack of an effective post-training strategy. In this paper, we propose a simple yet effective post-training approach to enhance ECG foundation models. We evaluate it on a publicly available Transformer-based foundation model. Experiments across multiple ECG tasks show that our method consistently outperforms baseline fine-tuning. On the PTB-XL benchmarks, it improves macro AUROC by 0.7%-8.9% and macro AUPRC by 23.3%-77.9%, also outperforming several recent state-of-the-art approaches, including task-specific and advanced architectures. Further analyses demonstrate improved training dynamics and data efficiency, with only 30% of the training data outperforming the baseline trained on the full dataset. Ablation studies highlight the importance of stochastic depth and preview linear probing. These findings underscore the potential of post-training strategies to improve ECG foundation models, and we hope this work will contribute to the continued development of foundation models in the ECG domain.
comment: A Transformer-based model is used as an example; the proposed post-training strategy may also be applicable to CNN-based models. The manuscript is currently under review
♻ ☆ Superpositional Gradient Descent: Harnessing Quantum Principles for Model Training IEEE
Large language models (LLMs) are increasingly trained with classical optimization techniques like AdamW to improve convergence and generalization. However, the mechanisms by which quantum-inspired methods enhance classical training remain underexplored. We introduce Superpositional Gradient Descent (SGD), a novel optimizer linking gradient updates with quantum superposition by injecting quantum circuit perturbations. We present a mathematical framework and implement hybrid quantum-classical circuits in PyTorch and Qiskit. On synthetic sequence classification and large-scale LLM fine-tuning, SGD converges faster and yields lower final loss than AdamW. Despite promising results, scalability and hardware constraints limit adoption. Overall, this work provides new insights into the intersection of quantum computing and deep learning, suggesting practical pathways for leveraging quantum principles to control and enhance model behavior.
comment: Accepted at 2025 IEEE International Conference on Quantum Artificial Intelligence (IEEE QAI 2025). This is the accepted version of the paper. The final published version will appear in the IEEE proceedings. \c{opyright} 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses
♻ ☆ Kernel Alignment-based Multi-view Unsupervised Feature Selection with Sample-level Adaptive Graph Learning
Although multi-view unsupervised feature selection (MUFS) has demonstrated success in dimensionality reduction for unlabeled multi-view data, most existing methods reduce feature redundancy by focusing on linear correlations among features but often overlook complex nonlinear dependencies. This limits the effectiveness of feature selection. In addition, existing methods fuse similarity graphs from multiple views by employing sample-invariant weights to preserve local structure. However, this process fails to account for differences in local neighborhood clarity among samples within each view, thereby hindering accurate characterization of the intrinsic local structure of the data. In this paper, we propose a Kernel Alignment-based multi-view unsupervised FeatUre selection with Sample-level adaptive graph lEarning method (KAFUSE) to address these issues. Specifically, we first employ kernel alignment with an orthogonal constraint to reduce feature redundancy in both linear and nonlinear relationships. Then, a cross-view consistent similarity graph is learned by applying sample-level fusion to each slice of a tensor formed by stacking similarity graphs from different views, which automatically adjusts the view weights for each sample during fusion. These two steps are integrated into a unified model for feature selection, enabling mutual enhancement between them. Extensive experiments on real multi-view datasets demonstrate the superiority of KAFUSE over state-of-the-art methods.
♻ ☆ SofT-GRPO: Surpassing Discrete-Token LLM Reinforcement Learning via Gumbel-Reparameterized Soft-Thinking Policy Optimization
The soft-thinking paradigm for Large Language Model (LLM) reasoning can outperform the conventional discrete-token Chain-of-Thought (CoT) reasoning in some scenarios, underscoring its research and application value. However, while the discrete-token CoT reasoning pattern can be reinforced through policy optimization algorithms such as group relative policy optimization (GRPO), extending the soft-thinking pattern with Reinforcement Learning (RL) remains challenging. This difficulty stems from the complexities of injecting stochasticity into soft-thinking tokens and updating soft-thinking policies accordingly. As a result, previous attempts to combine soft-thinking with GRPO typically underperform their discrete-token GRPO counterparts. To fully unlock the potential of soft-thinking, this paper presents a novel policy optimization algorithm, SofT-GRPO, to reinforce LLMs under the soft-thinking reasoning pattern. SofT-GRPO injects the Gumbel noise into logits, employs the Gumbel-Softmax technique to avoid soft-thinking tokens outside the pre-trained embedding space, and leverages the reparameterization trick in policy gradient. We conduct experiments across base LLMs ranging from 1.5B to 7B parameters, and results demonstrate that SofT-GRPO enables soft-thinking LLMs to slightly outperform discrete-token GRPO on Pass@1 (+0.13% on average accuracy), while exhibiting a substantial uplift on Pass@32 (+2.19% on average accuracy). Codes and weights are available on https://github.com/zz1358m/SofT-GRPO-master
♻ ☆ Language Generation: Complexity Barriers and Implications for Learning
Kleinberg and Mullainathan showed that language generation in the limit is always possible at the level of computability: given enough positive examples, a learner can eventually generate data indistinguishable from a target language. However, such existence results do not address feasibility. We study the sample complexity of language generation in the limit for several canonical classes of formal languages. Our results show that infeasibility already appears for context-free and regular languages, and persists even for strict subclasses such as locally threshold testable languages, as well as for incomparable classes such as non-erasing pattern languages, a well-studied class in the theory of language identification. Overall, our results establish a clear gap between the theoretical possibility of language generation in the limit and its computational feasibility.
comment: Version 2: results about pattern and LTT languages are added
♻ ☆ Is Your LLM Overcharging You? Tokenization, Transparency, and Incentives
State-of-the-art large language models require specialized hardware and substantial energy to operate. As a consequence, cloud-based services that provide access to large language models have become very popular. In these services, the price users pay for an output provided by a model depends on the number of tokens the model uses to generate it: they pay a fixed price per token. In this work, we show that this pricing mechanism creates a financial incentive for providers to strategize and misreport the (number of) tokens a model used to generate an output, and users cannot prove, or even know, whether a provider is overcharging them. However, we also show that, if an unfaithful provider is obliged to be transparent about the generative process used by the model, misreporting optimally without raising suspicion is hard. Nevertheless, as a proof-of-concept, we develop an efficient heuristic algorithm that allows providers to significantly overcharge users without raising suspicion. Crucially, we demonstrate that the cost of running the algorithm is lower than the additional revenue from overcharging users, highlighting the vulnerability of users under the current pay-per-token pricing mechanism. Further, we show that, to eliminate the financial incentive to strategize, a pricing mechanism must price tokens linearly on their character count. While this makes a provider's profit margin vary across tokens, we introduce a simple prescription under which the provider who adopts such an incentive-compatible pricing mechanism can maintain the average profit margin they had under the pay-per-token pricing mechanism. Along the way, to illustrate and complement our theoretical results, we conduct experiments with several large language models from the $\texttt{Llama}$, $\texttt{Gemma}$ and $\texttt{Ministral}$ families, and input prompts from the LMSYS Chatbot Arena platform.
comment: Accepted as a spotlight presentation at the "Private Governance & Oversight Mechanisms for AI" workshop, EurIPS 2025
♻ ☆ From Mice to Trains: Amortized Bayesian Inference on Graph Data
Graphs arise across diverse domains, from biology and chemistry to social and information networks, as well as in transportation and logistics. Inference on graph-structured data requires methods that are permutation-invariant, scalable across varying sizes and sparsities, and capable of capturing complex long-range dependencies, making posterior estimation on graph parameters particularly challenging. Amortized Bayesian Inference (ABI) is a simulation-based framework that employs generative neural networks to enable fast, likelihood-free posterior inference. We adapt ABI to graph data to address these challenges to perform inference on node-, edge-, and graph-level parameters. Our approach couples permutation-invariant graph encoders with flexible neural posterior estimators in a two-module pipeline: a summary network maps attributed graphs to fixed-length representations, and an inference network approximates the posterior over parameters. In this setting, several neural architectures can serve as the summary network. In this work we evaluate multiple architectures and assess their performance on controlled synthetic settings and two real-world domains - biology and logistics - in terms of recovery and calibration.
♻ ☆ Enhancing Membership Inference Attacks on Diffusion Models from a Frequency-Domain Perspective
Diffusion models have achieved tremendous success in image generation, but they also raise significant concerns regarding privacy and copyright issues. Membership Inference Attacks (MIAs) are designed to ascertain whether specific data were utilized during a model's training phase. As current MIAs for diffusion models typically exploit the model's image prediction ability, we formalize them into a unified general paradigm which computes the membership score for membership identification. Under this paradigm, we empirically find that existing attacks overlook the inherent deficiency in how diffusion models process high-frequency information. Consequently, this deficiency leads to member data with more high-frequency content being misclassified as hold-out data, and hold-out data with less high-frequency content tend to be misclassified as member data. Moreover, we theoretically demonstrate that this deficiency reduces the membership advantage of attacks, thereby interfering with the effective discrimination of member data and hold-out data. Based on this insight, we propose a plug-and-play high-frequency filter module to mitigate the adverse effects of the deficiency, which can be seamlessly integrated into any attacks within this general paradigm without additional time costs. Extensive experiments corroborate that this module significantly improves the performance of baseline attacks across different datasets and models.
♻ ☆ A Formal Comparison Between Chain of Thought and Latent Thought
Chain of thought (CoT) elicits reasoning in large language models by explicitly generating intermediate tokens. In contrast, latent thought reasoning operates directly in the continuous latent space, enabling computation beyond discrete linguistic representations. While both approaches exploit iterative computation, their comparative capabilities remain underexplored. In this work, we present a formal analysis showing that latent thought admits more efficient parallel computation than inherently sequential CoT. In contrast, CoT enables approximate counting and sampling through stochastic decoding. These separations suggest the tasks for which depth-driven recursion is more suitable, thereby offering practical guidance for choosing between reasoning paradigms.
comment: Code is available at https://github.com/kevin671/cot-vs-loop
♻ ☆ A Comprehensive Evaluation on Quantization Techniques for Large Language Models
For large language models (LLMs), post-training quantization (PTQ) can significantly reduce memory footprint and computational overhead. Model quantization is rapidly evolving. Though many papers report breakthrough results, they are often evaluated under different settings because a method typically contains multiple components. Analyzing connections among existing methods is important for deeper understanding. To bridge these gaps, we conduct an extensive review of state-of-the-art methods and perform comprehensive evaluations under the same conditions for fair comparison. To our knowledge, such a fair and extensive investigation remains critically underexplored. To better understand connections, first, we decouple published quantization methods into two steps: pre-quantization transformation and quantization error mitigation. The former is a preprocessing step that reduces outlier impact by flattening the data distribution; the latter offsets quantization errors to improve performance. Second, we evaluate and analyze the impact of different settings, including granularity and symmetry. Third, we analyze and evaluate the latest MXFP4 and NVFP4 data formats and their performance. Our experiments first demonstrate that optimized rotation and scaling yield the best pre-quantization performance, and that combining low-rank compensation with GPTQ can occasionally outperform GPTQ alone for error mitigation. Second, finer granularity improves performance but increases storage overhead. Third, we find that scaling-factor format and precision greatly affect FP4 performance, and that rotation-based strategies effective for INT4 offer limited gains for MXFP4 and NVFP4, motivating further study.
♻ ☆ Convergence Analysis of Randomized Subspace Normalized SGD under Heavy-Tailed Noise
Randomized subspace methods reduce per-iteration cost; however, in nonconvex optimization, most analyses are expectation-based, and high-probability bounds remain scarce even under sub-Gaussian noise. We first prove that randomized subspace SGD (RS-SGD) admits a high-probability convergence bound under sub-Gaussian noise, achieving the same order of oracle complexity as prior in-expectation results. Motivated by the prevalence of heavy-tailed gradients in modern machine learning, we then propose randomized subspace normalized SGD (RS-NSGD), which integrates direction normalization into subspace updates. Assuming the noise has bounded $p$-th moments, we establish both in-expectation and high-probability convergence guarantees, and show that RS-NSGD can achieve better oracle complexity than full-dimensional normalized SGD.
comment: 41 pages
♻ ☆ There Was Never a Bottleneck in Concept Bottleneck Models ICLR 2026
Deep learning representations are often difficult to interpret, which can hinder their deployment in sensitive applications. Concept Bottleneck Models (CBMs) have emerged as a promising approach to mitigate this issue by learning representations that support target task performance while ensuring that each component predicts a concrete concept from a predefined set. In this work, we argue that CBMs do not impose a true bottleneck: the fact that a component can predict a concept does not guarantee that it encodes only information about that concept. This shortcoming raises concerns regarding interpretability and the validity of intervention procedures. To overcome this limitation, we propose Minimal Concept Bottleneck Models (MCBMs), which incorporate an Information Bottleneck (IB) objective to constrain each representation component to retain only the information relevant to its corresponding concept. This IB is implemented via a variational regularization term added to the training loss. As a result, MCBMs yield more interpretable representations, support principled concept-level interventions, and remain consistent with probability-theoretic foundations.
comment: Accepted to ICLR 2026
♻ ☆ Divergence Results and Convergence of a Variance Reduced Version of ADAM
Stochastic optimization algorithms using exponential moving averages of the past gradients, such as ADAM, RMSProp and AdaGrad, have been having great successes in many applications, especially in training deep neural networks. ADAM in particular stands out as efficient and robust. Despite of its outstanding performance, ADAM has been proved to be divergent for some specific problems. We revisit the divergent question and provide divergent examples under stronger conditions such as in expectation or high probability. Under a variance reduction assumption, we show that an ADAM-type algorithm converges, which means that it is the variance of gradients that causes the divergence of original ADAM. To this end, we propose a variance reduced version of ADAM and provide a convergent analysis of the algorithm. Numerical experiments show that the proposed algorithm has as good performance as ADAM. Our work suggests a new direction for fixing the convergence issues.
♻ ☆ Diagnosing and Mitigating Modality Interference in Multimodal Large Language Models
Multimodal Large Language Models demonstrate strong performance on multimodal benchmarks, yet often exhibit poor robustness when exposed to spurious modality interference, such as irrelevant text in vision understanding, or irrelevant visual content in question answering. At its core, modality interference refers to cases where spurious signals from non-essential modalities distort model decisions, which we systematically analyze through causal, perturbation-based diagnostic experiments. To address this problem, we propose a unified finetuning framework that combines heuristic and adversarial perturbation-based data augmentation with output-level consistency regularization between original and perturbed inputs. Extensive experiments across image-heavy, text-heavy, and multimodal benchmarks, spanning multiple MLLM architectures and model scales, demonstrate consistent improvements in unimodal robustness and generalization, while improving standard multimodal performance.
♻ ☆ JointDiff: Bridging Continuous and Discrete in Multi-Agent Trajectory Generation ICLR 2026
Generative models often treat continuous data and discrete events as separate processes, creating a gap in modeling complex systems where they interact synchronously. To bridge this gap, we introduce JointDiff, a novel diffusion framework designed to unify these two processes by simultaneously generating continuous spatio-temporal data and synchronous discrete events. We demonstrate its efficacy in the sports domain by simultaneously modeling multi-agent trajectories and key possession events. This joint modeling is validated with non-controllable generation and two novel controllable generation scenarios: weak-possessor-guidance, which offers flexible semantic control over game dynamics through a simple list of intended ball possessors, and text-guidance, which enables fine-grained, language-driven generation. To enable the conditioning with these guidance signals, we introduce CrossGuid, an effective conditioning operation for multi-agent domains. We also share a new unified sports benchmark enhanced with textual descriptions for soccer and football datasets. JointDiff achieves state-of-the-art performance, demonstrating that joint modeling is crucial for building realistic and controllable generative models for interactive systems. https://guillem-cf.github.io/JointDiff/
comment: Accepted at ICLR 2026
♻ ☆ Entropy Guided Dynamic Patch Segmentation for Time Series Transformers
Patch-based transformers have emerged as efficient and improved long-horizon modeling architectures for time series modeling. Yet, existing approaches rely on temporally-agnostic patch construction, where arbitrary starting positions and fixed lengths fracture temporal coherence by splitting natural transitions across boundaries. This naive segmentation often disrupts short-term dependencies and weakens representation learning. We propose a novel Entropy-Guided Dynamic Patch Encoder (EntroPE), as a temporally informed framework that dynamically detects transition points via conditional entropy and dynamically places patch boundaries. This preserves temporal structure while retaining the computational benefits of patching. EntroPE consists of two key modules, namely an Entropy-based Dynamic Patcher (EDP) that applies information-theoretic criteria to locate natural temporal shifts and determine patch boundaries, and an Adaptive Patch Encoder (APE) that employs pooling and cross-attention to capture intra-patch dependencies and produce fixed-size latent representations. Extensive experiments on long-term forecasting, classification, and anomaly detection demonstrate that the proposed method improves both accuracy and efficiency, establishing entropy-guided dynamic patching as a promising new paradigm for time series modeling. Code is available at https://github.com/Sachithx/EntroPE.
comment: Preprint. Under Review
♻ ☆ A Likely Geometry of Generative Models
The geometry of generative models serves as the basis for interpolation, model inspection, and more. Unfortunately, most generative models lack a principal notion of geometry without restrictive assumptions on either the model or the data dimension. In this paper, we construct a general geometry compatible with different metrics and probability distributions to analyze generative models that do not require additional training. We consider curves analogous to geodesics constrained to a suitable data distribution aimed at targeting high-density regions learned by generative models. We formulate this as a (pseudo)-metric and prove that this corresponds to a Newtonian system on a Riemannian manifold. We show that shortest paths in our framework can be characterized by a system of ordinary differential equations, which locally corresponds to geodesics under a suitable Riemannian metric. Numerically, we derive a novel algorithm to efficiently compute shortest paths and generalized Fréchet means. Quantitatively, we show that curves using our metric traverse regions of higher density than baselines across a range of models and datasets.
♻ ☆ A Trainable Optimizer
The concept of learning to optimize involves utilizing a trainable optimization strategy rather than relying on manually defined full gradient estimations such as ADAM. We present a framework that jointly trains the full gradient estimator and the trainable weights of the model. Specifically, we prove that pseudo-linear TO (Trainable Optimizer), a linear approximation of the full gradient, matches SGD's convergence rate while effectively reducing variance. Pseudo-linear TO incurs negligible computational overhead, requiring only minimal additional tensor multiplications. To further improve computational efficiency, we introduce two simplified variants of Pseudo-linear TO. Experiments demonstrate that TO methods converge faster than benchmark algorithms (e.g., ADAM) in both strongly convex and non-convex settings, and fine tuning of an LLM.
♻ ☆ EEG-based Graph-guided Domain Adaptation for Robust Cross-Session Emotion Recognition
Accurate recognition of human emotional states is critical for effective human-machine interaction. Electroencephalography (EEG) offers a reliable source for emotion recognition due to its high temporal resolution and its direct reflection of neural activity. Nevertheless, variations across recording sessions present a major challenge for model generalization. To address this issue, we propose EGDA, a framework that reduces cross-session discrepancies by jointly aligning the global (marginal) and class-specific (conditional) distributions, while preserving the intrinsic structure of EEG data through graph regularization. Experimental results on the SEED-IV dataset demonstrate that EGDA achieves robust cross-session performance, obtaining accuracies of 81.22%, 80.15%, and 83.27% across three transfer tasks, and surpassing several baseline methods. Furthermore, the analysis highlights the Gamma frequency band as the most discriminative and identifies the central-parietal and prefrontal brain regions as critical for reliable emotion recognition.
comment: 10 pages, 7 figures
♻ ☆ Machine Learning. The Science of Selection under Uncertainty
Learning, whether natural or artificial, is a process of selection. It starts with a set of candidate options and selects the more successful ones. In the case of machine learning the selection is done based on empirical estimates of prediction accuracy of candidate prediction rules on some data. Due to randomness of data sampling the empirical estimates are inherently noisy, leading to selection under uncertainty. The book provides statistical tools to obtain theoretical guarantees on the outcome of selection under uncertainty. We start with concentration of measure inequalities, which are the main statistical instrument for controlling how much an empirical estimate of expectation of a function deviates from the true expectation. The book covers a broad range of inequalities, including Markov's, Chebyshev's, Hoeffding's, Bernstein's, Empirical Bernstein's, Unexpected Bernstein's, kl, and split-kl. We then study the classical (offline) supervised learning and provide a range of tools for deriving generalization bounds, including Occam's razor, Vapnik-Chervonenkis analysis, and PAC-Bayesian analysis. The latter is further applied to derive generalization guarantees for weighted majority votes. After covering the offline setting, we turn our attention to online learning. We present the space of online learning problems characterized by environmental feedback, environmental resistance, and structural complexity. A common performance measure in online learning is regret, which compares performance of an algorithm to performance of the best prediction rule in hindsight, out of a restricted set of prediction rules. We present tools for deriving regret bounds in stochastic and adversarial environments, and under full information and bandit feedback.
♻ ☆ Are We Truly Forgetting? A Critical Re-examination of Machine Unlearning Evaluation Protocols
Machine unlearning is a process to remove specific data points from a trained model while maintaining the performance on the retain data, addressing privacy or legal requirements. Despite its importance, existing unlearning evaluations tend to focus on logit-based metrics under small-scale scenarios. We observe that this could lead to a false sense of security in unlearning approaches under real-world scenarios. In this paper, we conduct a comprehensive evaluation that employs representation-based evaluations of the unlearned model under large-scale scenarios to verify whether the unlearning approaches truly eliminate the targeted data from the model's representation perspective. Our analysis reveals that current state-of-the-art unlearning approaches either completely degrade the representational quality of the unlearned model or merely modify the classifier, thereby achieving superior logit-based performance while maintaining representational similarity to the original model. Furthermore, we introduce a novel unlearning evaluation scenario in which the forgetting classes exhibit semantic similarity to downstream task classes, necessitating that feature representations diverge significantly from those of the original model, thus enabling a more thorough evaluation from a representation perspective. We hope our benchmark will serve as a standardized protocol for evaluating unlearning algorithms under realistic conditions.
comment: Accepted to Engineering Applications of Artificial Intelligence
♻ ☆ The Illusion of Certainty: Uncertainty Quantification for LLMs Fails under Ambiguity
Accurate uncertainty quantification (UQ) in Large Language Models (LLMs) is critical for trustworthy deployment. While real-world language is inherently ambiguous, reflecting aleatoric uncertainty, existing UQ methods are typically benchmarked against tasks with no ambiguity. In this work, we demonstrate that while current uncertainty estimators perform well under the restrictive assumption of no ambiguity, they degrade to close-to-random performance on ambiguous data. To this end, we introduce MAQA* and AmbigQA*, the first ambiguous question-answering (QA) datasets equipped with ground-truth answer distributions estimated from factual co-occurrence. We find this performance deterioration to be consistent across different estimation paradigms: using the predictive distribution itself, internal representations throughout the model, and an ensemble of models. We show that this phenomenon can be theoretically explained, revealing that predictive-distribution and ensemble-based estimators are fundamentally limited under ambiguity. Overall, our study reveals a key shortcoming of current UQ methods for LLMs and motivates a rethinking of current modeling paradigms.
♻ ☆ Scaling Next-Brain-Token Prediction for MEG
We present a large autoregressive model for source-space MEG that scales next-token prediction to long context across datasets and scanners: handling a corpus of over 500 hours and thousands of sessions across the three largest MEG datasets. A modified SEANet-style vector-quantizer reduces multichannel MEG into a flattened token stream on which we train a Qwen2.5-VL backbone from scratch to predict the next brain token and to recursively generate minutes of MEG from up to a minute of context. To evaluate long-horizon generation, we introduce task-matched tests: (i) on-manifold stability via generated-only drift compared to the time-resolved distribution of real sliding windows, and (ii) conditional specificity via correct context versus prompt-swap controls using a neurophysiologically grounded metric set. We train on CamCAN and Omega and run all analyses on held-out MOUS, establishing cross-dataset generalization. Across metrics, generations remain relatively stable over long rollouts and are closer to the correct continuation than swapped controls. Code available at: https://github.com/ricsinaruto/brain-gen.
♻ ☆ Neural Force Field: Few-shot Learning of Generalized Physical Reasoning ICLR 2026
Physical reasoning is a remarkable human ability that enables rapid learning and generalization from limited experience. Current AI models, despite extensive training, still struggle to achieve similar generalization, especially in Out-of-distribution (OOD) settings. This limitation stems from their inability to abstract core physical principles from observations. A key challenge is developing representations that can efficiently learn and generalize physical dynamics from minimal data. Here we present Neural Force Field (NFF), a framework extending Neural Ordinary Differential Equation (NODE) to learn complex object interactions through force field representations, which can be efficiently integrated through an Ordinary Differential Equation (ODE) solver to predict object trajectories. Unlike existing approaches that rely on discrete latent spaces, NFF captures fundamental physical concepts such as gravity, support, and collision in continuous explicit force fields. Experiments on three challenging physical reasoning tasks demonstrate that NFF, trained with only a few examples, achieves strong generalization to unseen scenarios. This physics-grounded representation enables efficient forward-backward planning and rapid adaptation through interactive refinement. Our work suggests that incorporating physics-inspired representations into learning systems can help bridge the gap between artificial and human physical reasoning capabilities.
comment: 27 pages, ICLR 2026
♻ ☆ C2:Cross learning module enhanced decision transformer with Constraint-aware loss for auto-bidding
Decision Transformer (DT) shows promise for generative auto-bidding by capturing temporal dependencies, but suffers from two critical limitations: insufficient cross-correlation modeling among state, action, and return-to-go (RTG) sequences, and indiscriminate learning of optimal/suboptimal behaviors. To address these, we propose C2, a novel framework enhancing DT with two core innovations: (1) a Cross Learning Block (CLB) via cross-attention to strengthen inter-sequence correlation modeling; (2) a Constraint-aware Loss (CL) incorporating budget and Cost-Per-Acquisition (CPA) constraints for selective learning of optimal trajectories. Extensive offline evaluations on the AuctionNet dataset demonstrate consistent performance gains (up to 3.2% over state-of-the-art method) across diverse budget settings; ablation studies verify the complementary synergy of CLB and CL, confirming C2's superiority in auto-bidding. The code for reproducing our results is available at: https://github.com/Dingjinren/C2.
♻ ☆ Real-Time Pulsatile Flow Prediction for Realistic, Diverse Intracranial Aneurysm Morphologies using a Graph Transformer and Steady-Flow Data Augmentation
Extensive studies suggested that fluid mechanical markers of intracranial aneurysms (IAs) derived from Computational Fluid Dynamics (CFD) can indicate disease progression risks, but to date this has not been translated clinically. This is because CFD requires specialized expertise and is time-consuming and low throughput, making it difficult to support clinical trials. A deep learning model that maps IA morphology to biomechanical markers can address this, enabling physicians to obtain these markers in real time without performing CFD. Here, we show that a Graph Transformer model that incorporates temporal information, which is supervised by large CFD data, can accurately predict Wall Shear Stress (WSS) across the cardiac cycle from IA surface meshes. The model effectively captures the temporal variations of the WSS pattern, achieving a Structural Similarity Index (SSIM) of up to 0.981 and a maximum-based relative L2 error of 2.8%. Ablation studies and SOTA comparison confirmed its optimality. Further, as pulsatile CFD data is computationally expensive to generate and sample sizes are limited, we engaged a strategy of injecting a large amount of steady-state CFD data, which are extremely low-cost to generate, as augmentation. This approach enhances network performance substantially when pulsatile CFD data sample size is small. Our study provides a proof of concept that temporal sequences cardiovascular fluid mechanical parameters can be computed in real time using a deep learning model from the geometric mesh, and this is achievable even with small pulsatile CFD sample size. Our approach is likely applicable to other cardiovascular scenarios.
♻ ☆ A Unified Theory of Sparse Dictionary Learning in Mechanistic Interpretability: Piecewise Biconvexity and Spurious Minima
As AI models achieve remarkable capabilities across diverse domains, understanding what representations they learn and how they encode concepts has become increasingly important for both scientific progress and trustworthy deployment. Recent works in mechanistic interpretability have widely reported that neural networks represent meaningful concepts as linear directions in their representation spaces and often encode diverse concepts in superposition. Various sparse dictionary learning (SDL) methods, including sparse autoencoders, transcoders, and crosscoders, are utilized to address this by training auxiliary models with sparsity constraints to disentangle these superposed concepts into monosemantic features. These methods are the backbone of modern mechanistic interpretability, yet in practice they consistently produce polysemantic features, feature absorption, and dead neurons, with very limited theoretical understanding of why these phenomena occur. Existing theoretical work is limited to tied-weight sparse autoencoders, leaving the broader family of SDL methods without formal grounding. We develop the first unified theoretical framework that casts all major SDL variants as a single piecewise biconvex optimization problem, and characterize its global solution set, non-identifiability, and spurious optima. This analysis yields principled explanations for feature absorption and dead neurons. To expose these pathologies under full ground-truth access, we introduce the Linear Representation Bench. Guided by our theory, we propose feature anchoring, a novel technique that restores SDL identifiability, substantially improving feature recovery across synthetic benchmarks and real neural representations.
♻ ☆ How simple can you go? An off-the-shelf transformer approach to molecular dynamics
Most current neural networks for molecular dynamics (MD) include physical inductive biases, resulting in specialized and complex architectures. This is in contrast to most other machine learning domains, where specialist approaches are increasingly replaced by general-purpose architectures trained on vast datasets. In line with this trend, several recent studies have questioned the necessity of architectural features commonly found in MD models, such as built-in rotational equivariance or energy conservation. In this work, we contribute to the ongoing discussion by evaluating the performance of an MD model with as few specialized architectural features as possible. We present a recipe for MD using an Edge Transformer, an ``off-the-shelf'' transformer architecture that has been minimally modified for the MD domain, termed MD-ET. Our model implements neither built-in equivariance nor energy conservation. We use a simple supervised pre-training scheme on $\sim$30 million molecular structures from the QCML database. Using this ``off-the-shelf'' approach, we show state-of-the-art results on several benchmarks after fine-tuning for a small number of steps. Additionally, we examine the effects of being only approximately equivariant and energy conserving for MD simulations, proposing a novel method for distinguishing the errors resulting from non-equivariance from other sources of inaccuracies like numerical rounding errors. While our model exhibits runaway energy increases on larger structures, we show approximately energy-conserving NVE simulations for a range of small structures.
comment: 21 pages, code at https://github.com/mx-e/simple-md
♻ ☆ When Context Is Not Enough: Modeling Unexplained Variability in Car-Following Behavior
Modeling car-following behavior is fundamental to microscopic traffic simulation, yet traditional deterministic models often fail to capture the full extent of variability and unpredictability in human driving. While many modern approaches incorporate context-aware inputs (e.g., spacing, speed, relative speed), they frequently overlook structured stochasticity that arises from latent driver intentions, perception errors, and memory effects -- factors that are not directly observable from context alone. To fill the gap, this study introduces an interpretable stochastic modeling framework that captures not only context-dependent dynamics but also residual variability beyond what context can explain. Leveraging deep neural networks integrated with nonstationary Gaussian processes (GPs), our model employs a scenario-adaptive Gibbs kernel to learn dynamic temporal correlations in acceleration decisions, where the strength and duration of correlations between acceleration decisions evolve with the driving context. This formulation enables a principled, data-driven quantification of uncertainty in acceleration, speed, and spacing, grounded in both observable context and latent behavioral variability. Comprehensive experiments on the naturalistic vehicle trajectory dataset collected from the German highway, i.e., the HighD dataset, demonstrate that the proposed stochastic simulation method within this framework surpasses conventional methods in both predictive performance and interpretable uncertainty quantification. The integration of interpretability and accuracy makes this framework a promising tool for traffic analysis and safety-critical applications.
comment: Accepted to ISTTT26
♻ ☆ Physics-Informed Neural Networks for Real-Time Gas Crossover Prediction in PEM Electrolyzers: First Application with Multi-Membrane Validation
Green hydrogen production via polymer electrolyte membrane (PEM) water electrolysis is pivotal for energy transition, yet hydrogen crossover through membranes threatens safety and economic viability-approaching explosive limits (4 mol% H$_2$ in O$_2$) while reducing Faradaic efficiency and accelerating membrane degradation. Current physics-based models require extensive calibration and computational resources that preclude real-time implementation, while purely data-driven approaches fail to extrapolate beyond training conditions-critical for dynamic electrolyzer operation. Here we present the first application of physics-informed neural networks (PINNs) for hydrogen crossover prediction, trained on 184 published measurements augmented to 1,114 points and constrained by a constitutive physics model (Henry's law, Fick's diffusion, and Faraday-based gas production) embedded in the loss function. Our compact architecture (17,793 parameters), validated across six membranes under industrially relevant conditions (0.05-5.0 A/cm$^2$, 1-200 bar, 25-85°C), achieves exceptional accuracy (R$^2$ = 99.84% $\pm$ 0.15%, RMSE = 0.0932% $\pm$ 0.0438%) based on five-fold cross-validation, with sub-millisecond inference enabling real-time control. Remarkably, the model maintains R$^2$ > 86% when predicting crossover at pressures 2.5x beyond training range-substantially outperforming pure neural networks (R$^2$ = 43.4%). The hardware-agnostic deployment, from desktop CPUs to edge devices (Raspberry Pi 4), enables distributed safety monitoring essential for gigawatt-scale installations. By bridging physical rigor and computational efficiency, this work establishes a new paradigm for real-time electrolyzer monitoring, accelerating deployment of safe, efficient green hydrogen infrastructure crucial for net-zero emissions targets.
♻ ☆ DBellQuant: Breaking the Bell with Double-Bell Transformation for LLMs Post Training Binarization
Large language models (LLMs) demonstrate remarkable performance but face substantial computational and memory challenges that limit their practical deployment. Quantization has emerged as a promising solution; however, its effectiveness is often limited by quantization errors arising from weight distributions that are not quantization-friendly and the presence of activation outliers. To address these challenges, we introduce DBellQuant, an innovative post-training quantization (PTQ) framework that achieves nearly 1-bit weight compression and 6-bit activation quantization with minimal performance degradation. DBellQuant uses Learnable Transformation for Dual-Bell (LTDB) algorithm, which transforms single-bell weight distributions into dual-bell forms to reduce binarization errors and applies inverse transformations to smooth activations. DBellQuant sets a new state-of-the-art by preserving superior model performance under aggressive weight and activation quantization. For example, on the Wikitext2 dataset, DBellQuant achieves a perplexity of 14.39 on LLaMA2-13B with 6-bit activation quantization, significantly outperforming BiLLM's 21.35 without activation quantization, underscoring its potential in compressing LLMs for real-world applications.
comment: 19 pages; Appendix added
♻ ☆ Efficient Test-Time Adaptation through Latent Subspace Coefficients Search
Real-world deployment often exposes models to distribution shifts, making test-time adaptation (TTA) critical for robustness. Yet most TTA methods are unfriendly to edge deployment, as they rely on backpropagation, activation buffering, or test-time mini-batches, leading to high latency and memory overhead. We propose $\textbf{ELaTTA}$ ($\textit{Efficient Latent Test-Time Adaptation}$), a gradient-free framework for single-instance TTA under strict on-device constraints. ELaTTA freezes model weights and adapts each test sample by optimizing a low-dimensional coefficient vector in a source-induced principal latent subspace, pre-computed offline via truncated SVD and stored with negligible overhead. At inference, ELaTTA encourages prediction confidence by optimizing the $k$-D coefficients with CMA-ES, effectively optimizing a Gaussian-smoothed objective and improving stability near decision boundaries. Across six benchmarks and multiple architectures, ELaTTA achieves state-of-the-art accuracy under both strict and continual single-instance protocols, while reducing compute by up to $\textit{63$\times$}$ and peak memory by $\textit{11$\times$}$. We further demonstrate on-device deployment on a ZYNQ-7020 platform. Code will be released upon acceptance.
comment: Under review
♻ ☆ Plain Transformers Can be Powerful Graph Learners
Transformers have attained outstanding performance across various modalities, owing to their simple but powerful scaled-dot-product (SDP) attention mechanisms. Researchers have attempted to migrate Transformers to graph learning, but most advanced Graph Transformers (GTs) have strayed far from plain Transformers, exhibiting major architectural differences either by integrating message-passing or incorporating sophisticated attention mechanisms. These divergences hinder the easy adoption of training advances for Transformers developed in other domains. Contrary to previous GTs, this work demonstrates that the plain Transformer architecture can be a powerful graph learner. To achieve this, we propose to incorporate three simple, minimal, and easy-to-implement modifications to the plain Transformer architecture to construct our Powerful Plain Graph Transformers (PPGT): (1) simplified $L_2$ attention for measuring the magnitude closeness among tokens; (2) adaptive root-mean-square normalization to preserve token magnitude information; and (3) a simple MLP-based stem for graph positional encoding. Consistent with its theoretical expressivity, PPGT demonstrates noteworthy realized expressivity on the empirical graph expressivity benchmark, comparing favorably to more complicated alternatives such as subgraph GNNs and higher-order GNNs. Its empirical performance across various graph datasets also justifies the effectiveness of PPGT. This finding underscores the versatility of plain Transformer architectures and highlights their strong potential as a unified backbone for multimodal learning across language, vision, and graph domains.
♻ ☆ Diffusion differentiable resampling
This paper is concerned with differentiable resampling in the context of sequential Monte Carlo (e.g., particle filtering). We propose a new informative resampling method that is instantly differentiable, based on an ensemble score diffusion model. We theoretically prove that our diffusion resampling method provides a consistent resampling distribution, and we show empirically that it outperforms the state-of-the-art differentiable resampling methods on multiple filtering and parameter estimation benchmarks. Finally, we show that it achieves competitive end-to-end performance when used in learning a complex dynamics-decoder model with high-dimensional image observations.
♻ ☆ GORAG: Graph-based Online Retrieval Augmented Generation for Dynamic Few-shot Social Media Text Classification WWW 2026
Text classification is vital for Web for Good applications like hate speech and misinformation detection. However, traditional models (e.g., BERT) often fail in dynamic few-shot settings where labeled data are scarce, and target labels frequently evolve. While Large Language Models (LLMs) show promise in few-shot settings, their performance is often hindered by increased input size in dynamic evolving scenarios. To address these issues, we propose GORAG, a Graph-based Online Retrieval-Augmented Generation framework for dynamic few-shot text classification. GORAG constructs and maintains a weighted graph of keywords and text labels, representing their correlations as edges. To model these correlations, GORAG employs an edge weighting mechanism to prioritize the importance and reliability of extracted information and dynamically retrieves relevant context using a tailored minimum-cost spanning tree for each input. Empirical evaluations show GORAG outperforms existing approaches by providing more comprehensive and precise contextual information. Our code is released at: https://github.com/Wyb0627/GORAG.
comment: Accepted by WWW 2026
♻ ☆ QuantKAN: A Unified Quantization Framework for Kolmogorov Arnold Networks
Kolmogorov Arnold Networks (KANs) represent a new class of neural architectures that replace conventional linear transformations and node-based nonlinearities with spline-based function approximations distributed along network edges. Although KANs offer strong expressivity and interpretability, their heterogeneous spline and base branch parameters hinder efficient quantization, which remains unexamined compared to CNNs and Transformers. In this paper, we present QuantKAN, a unified framework for quantizing KANs across both quantization aware training (QAT) and post-training quantization (PTQ) regimes. QuantKAN extends modern quantization algorithms, such as LSQ, LSQ+, PACT, DoReFa, QIL, GPTQ, BRECQ, AdaRound, AWQ, and HAWQ-V2, to spline based layers with branch-specific quantizers for base, spline, and activation components. Through extensive experiments on MNIST, CIFAR 10, and CIFAR 100 across multiple KAN variants (EfficientKAN, FastKAN, PyKAN, and KAGN), we establish the first systematic benchmarks for low-bit spline networks. Our results show that KANs, particularly deeper KAGN variants, are compatible with low-bit quantization but exhibit strong method architecture interactions: LSQ, LSQ+, and PACT preserve near full precision accuracy at 4 bit for shallow KAN MLP and ConvNet models, while DoReFa provides the most stable behavior for deeper KAGN under aggressive low-bit settings. For PTQ, GPTQ and Uniform consistently deliver the strongest overall performance across datasets, with BRECQ highly competitive on simpler regimes such as MNIST. Our proposed QuantKAN framework thus unifies spline learning and quantization, and provides practical tools and guidelines for efficiently deploying KANs in real-world, resource-constrained environments.
♻ ☆ Alignment-Sensitive Minimax Rates for Spectral Algorithms with Learned Kernels
We study spectral algorithms in the setting where kernels are learned from data. We introduce the effective span dimension (ESD), an alignment-sensitive complexity measure that depends jointly on the signal, spectrum, and noise level $σ^2$. The ESD is well-defined for arbitrary kernels and signals without requiring eigen-decay conditions or source conditions. We prove that for sequence models whose ESD is at most $K$, the minimax excess risk scales as $σ^2 K$. Furthermore, we analyze over-parameterized gradient flow and prove that it can reduce the ESD. This finding establishes a connection between adaptive feature learning and provable improvements in generalization of spectral algorithms. We demonstrate the generality of the ESD framework by extending it to linear models and RKHS regression, and we support the theory with numerical experiments. This framework provides a novel perspective on generalization beyond traditional fixed-kernel theories.
♻ ☆ NOSA: Native and Offloadable Sparse Attention
Decoding throughput improvements from larger inference batches are limited by GPU memory, which is largely consumed by the key-value (KV) cache. Prior training-free KV cache offloading alleviates this by keeping redundant context on the CPU and fetching only a sparse subset for attention, but it often degrades long-generation quality due to training-inference mismatch on sparse patterns. Meanwhile, trainable sparse attention is incompatible with efficient offloading, as unconstrained KV accesses may force large CPU-to-GPU transfers and erase throughput gains. To this end, we propose NOSA, a trainable sparse attention mechanism natively designed for KV cache offloading. NOSA explicitly constrains the volume of CPU-GPU KV transfers, thereby achieving low communication overhead and high decoding throughput. We further build NOSI, a KV cache offloading inference system that fully unlocks NOSA's efficiency. Empirical results on 1,3,8B LLMs demonstrate that NOSA outperforms KV cache offloading baselines on general, long-input, and long-generation tasks, while boosting decoding throughput by up to 5.04x, 1.92x, and 1.83x over FullAttn, InfLLMv2, and ShadowKV, respectively. We release our code at https://github.com/thunlp/NOSA.
comment: Preprint
♻ ☆ Mitigating data replication in text-to-audio generative diffusion models through anti-memorization guidance ICASSP 2026
A persistent challenge in generative audio models is data replication, where the model unintentionally generates parts of its training data during inference. In this work, we address this issue in text-to-audio diffusion models by exploring the use of anti-memorization strategies. We adopt Anti-Memorization Guidance (AMG), a technique that modifies the sampling process of pre-trained diffusion models to discourage memorization. Our study explores three types of guidance within AMG, each designed to reduce replication while preserving generation quality. We use Stable Audio Open as our backbone, leveraging its fully open-source architecture and training dataset. Our comprehensive experimental analysis suggests that AMG significantly mitigates memorization in diffusion-based text-to-audio generation without compromising audio fidelity or semantic alignment.
comment: Accepted at ICASSP 2026
♻ ☆ Tackling GNARLy Problems: Graph Neural Algorithmic Reasoning Reimagined through Reinforcement Learning
Neural Algorithmic Reasoning (NAR) is a paradigm that trains neural networks to execute classic algorithms by supervised learning. Despite its successes, important limitations remain: inability to construct valid solutions without post-processing and to reason about multiple correct ones, poor performance on combinatorial NP-hard problems, and inapplicability to problems for which strong algorithms are not yet known. To address these limitations, we reframe the problem of learning algorithm trajectories as a Markov Decision Process, which imposes structure on the solution construction procedure and unlocks the powerful tools of imitation and reinforcement learning (RL). We propose the GNARL framework, encompassing the methodology to translate problem formulations from NAR to RL and a learning architecture suitable for a wide range of graph-based problems. We achieve very high graph accuracy results on several CLRS-30 problems, performance matching or exceeding much narrower NAR approaches for NP-hard problems and, remarkably, applicability even when lacking an expert algorithm.
♻ ☆ Model-Free Output Feedback Stabilization via Policy Gradient Methods
Stabilizing a dynamical system is a fundamental problem that serves as a cornerstone for many complex tasks in the field of control systems. The problem becomes challenging when the system model is unknown. Among the Reinforcement Learning (RL) algorithms that have been successfully applied to solve problems pertaining to unknown linear dynamical systems, the policy gradient (PG) method stands out due to its ease of implementation and can solve the problem in a model-free manner. However, most of the existing works on PG methods for unknown linear dynamical systems assume full-state feedback. In this paper, we take a step towards model-free learning for partially observable linear dynamical systems with output feedback and focus on the fundamental stabilization problem of the system. We propose an algorithmic framework that stretches the boundary of PG methods to the problem without global convergence guarantees. We show that by leveraging zeroth-order PG update based on system trajectories and its convergence to stationary points, the proposed algorithms return a stabilizing output feedback policy for discrete-time linear dynamical systems. We also explicitly characterize the sample complexity of our algorithm and verify the effectiveness of the algorithm using numerical examples.
comment: 31 pages, 2 figures
♻ ☆ Metric Graph Kernels via the Tropical Torelli Map
We introduce the first graph kernels for metric graphs via tropical algebraic geometry. In contrast to conventional graph kernels based on graph combinatorics such as nodes, edges, and subgraphs, our metric graph kernels are purely based on the geometry and topology of the underlying metric space. A key characterizing property of our construction is its invariance under edge subdivision, making the kernels intrinsically well-suited for comparing graphs representing different underlying metric spaces. We develop efficient algorithms to compute our kernels and analyze their complexity, which depends primarily on the genus of the input graphs rather than their size. Through experiments on synthetic data and selected real-world datasets, we demonstrate that our kernels capture complementary geometric and topological information overseen by standard combinatorial approaches, particularly in label-free settings. We further showcase their practical utility with an urban road network classification task.
comment: 26 pages, 11 figures
♻ ☆ GAVEL: Towards rule-based safety through activation monitoring ICLR 2026
Large language models (LLMs) are increasingly paired with activation-based monitoring to detect and prevent harmful behaviors that may not be apparent at the surface-text level. However, existing activation safety approaches, trained on broad misuse datasets, struggle with poor precision, limited flexibility, and lack of interpretability. This paper introduces a new paradigm: rule-based activation safety, inspired by rule-sharing practices in cybersecurity. We propose modeling activations as cognitive elements (CEs), fine-grained, interpretable factors such as ''making a threat'' and ''payment processing'', that can be composed to capture nuanced, domain-specific behaviors with higher precision. Building on this representation, we present a practical framework that defines predicate rules over CEs and detects violations in real time. This enables practitioners to configure and update safeguards without retraining models or detectors, while supporting transparency and auditability. Our results show that compositional rule-based activation safety improves precision, supports domain customization, and lays the groundwork for scalable, interpretable, and auditable AI governance. We will release GAVEL as an open-source framework and provide an accompanying automated rule creation tool.
comment: Accepted to ICLR 2026
♻ ☆ Repairing Reward Functions with Feedback to Mitigate Reward Hacking
Human-designed reward functions for reinforcement learning (RL) agents are frequently misaligned with the humans' true, unobservable objectives, and thus act only as proxies. Optimizing for a misspecified proxy reward function often induces reward hacking, resulting in a policy misaligned with the human's true objectives. An alternative is to perform RL from human feedback, which involves learning a reward function from scratch by collecting human preferences over pairs of trajectories. However, building such datasets is costly. To address the limitations of both approaches, we propose Preference-Based Reward Repair (PBRR): an automated iterative framework that repairs a human-specified proxy reward function by learning an additive, transition-dependent correction term from preferences. A manually specified reward function can yield policies that are highly suboptimal under the ground-truth objective, yet corrections on only a few transitions may suffice to recover optimal performance. To identify and correct for those transitions, PBRR uses a targeted exploration strategy and a new preference-learning objective. We prove in tabular domains PBRR has a cumulative regret that matches, up to constants, that of prior preference-based RL methods. In addition, on a suite of reward-hacking benchmarks, PBRR consistently outperforms baselines that learn a reward function from scratch from preferences or modify the proxy reward function using other approaches, requiring substantially fewer preferences to learn high performing policies.
♻ ☆ Modeling Cascaded Delay Feedback for Online Net Conversion Rate Prediction: Benchmark, Insights and Solutions WWW
In industrial recommender systems, conversion rate (CVR) is widely used for traffic allocation, but it fails to fully reflect recommendation effectiveness because it ignores refund behavior. To better capture true user satisfaction and business value, net conversion rate (NetCVR), defined as the probability that a clicked item is purchased and not refunded, has been proposed.Unlike CVR, NetCVR prediction involves a more complex multi-stage cascaded delayed feedback process. The two cascaded delays from click to conversion and from conversion to refund have opposite effects, making traditional CVR modeling methods inapplicable. Moreover, the lack of open-source datasets and online continuous training schemes further hinders progress in this area.To address these challenges, we introduce CASCADE (Cascaded Sequences of Conversion and Delayed Refund), the first large-scale open dataset derived from the Taobao app for online continuous NetCVR prediction. Through an in-depth analysis of CASCADE, we identify three key insights: (1) NetCVR exhibits strong temporal dynamics, necessitating online continuous modeling; (2) cascaded modeling of CVR and refund rate outperforms direct NetCVR modeling; and (3) delay time, which correlates with both CVR and refund rate, is an important feature for NetCVR prediction.Based on these insights, we propose TESLA, a continuous NetCVR modeling framework featuring a CVR-refund-rate cascaded architecture, stage-wise debiasing, and a delay-time-aware ranking loss. Extensive experiments demonstrate that TESLA consistently outperforms state-of-the-art methods on CASCADE, achieving absolute improvements of 12.41 percent in RI-AUC and 14.94 percent in RI-PRAUC on NetCVR prediction. The code and dataset are publicly available at https://github.com/alimama-tech/NetCVR.
comment: This paper has been accepted by the ACM Web Conference (WWW) 2026. This is the camera-ready version. Please refer to the published version for citation once available
Multimedia 12
☆ EditYourself: Audio-Driven Generation and Manipulation of Talking Head Videos with Diffusion Transformers
Current generative video models excel at producing novel content from text and image prompts, but leave a critical gap in editing existing pre-recorded videos, where minor alterations to the spoken script require preserving motion, temporal coherence, speaker identity, and accurate lip synchronization. We introduce EditYourself, a DiT-based framework for audio-driven video-to-video (V2V) editing that enables transcript-based modification of talking head videos, including the seamless addition, removal, and retiming of visually spoken content. Building on a general-purpose video diffusion model, EditYourself augments its V2V capabilities with audio conditioning and region-aware, edit-focused training extensions. This enables precise lip synchronization and temporally coherent restructuring of existing performances via spatiotemporal inpainting, including the synthesis of realistic human motion in newly added segments, while maintaining visual fidelity and identity consistency over long durations. This work represents a foundational step toward generative video models as practical tools for professional video post-production.
comment: Project page: https://edit-yourself.github.io/
☆ Vidmento: Creating Video Stories Through Context-Aware Expansion With Generative Video
Video storytelling is often constrained by available material, limiting creative expression and leaving undesired narrative gaps. Generative video offers a new way to address these limitations by augmenting captured media with tailored visuals. To explore this potential, we interviewed eight video creators to identify opportunities and challenges in integrating generative video into their workflows. Building on these insights and established filmmaking principles, we developed Vidmento, a tool for authoring hybrid video stories that combine captured and generated media through context-aware expansion. Vidmento surfaces opportunities for story development, generates clips that blend stylistically and narratively with surrounding media, and provides controls for refinement. In a study with 12 creators, Vidmento supported narrative development and exploration by systematically expanding initial materials with generative media, enabling expressive video storytelling aligned with creative intent. We highlight how creators bridge story gaps with generative content and where they find this blending capability most valuable.
comment: 25 pages, 18 figures
☆ TraceRouter: Robust Safety for Large Foundation Models via Path-Level Intervention
Despite their capabilities, large foundation models (LFMs) remain susceptible to adversarial manipulation. Current defenses predominantly rely on the "locality hypothesis", suppressing isolated neurons or features. However, harmful semantics act as distributed, cross-layer circuits, rendering such localized interventions brittle and detrimental to utility. To bridge this gap, we propose \textbf{TraceRouter}, a path-level framework that traces and disconnects the causal propagation circuits of illicit semantics. TraceRouter operates in three stages: (1) it pinpoints a sensitive onset layer by analyzing attention divergence; (2) it leverages sparse autoencoders (SAEs) and differential activation analysis to disentangle and isolate malicious features; and (3) it maps these features to downstream causal pathways via feature influence scores (FIS) derived from zero-out interventions. By selectively suppressing these causal chains, TraceRouter physically severs the flow of harmful information while leaving orthogonal computation routes intact. Extensive experiments demonstrate that TraceRouter significantly outperforms state-of-the-art baselines, achieving a superior trade-off between adversarial robustness and general utility. Our code will be publicly released. WARNING: This paper contains unsafe model responses.
☆ MIDI-LLaMA: An Instruction-Following Multimodal LLM for Symbolic Music Understanding ICASSP
Recent advances in multimodal large language models (MLLM) for audio music have demonstrated strong capabilities in music understanding, yet symbolic music, a fundamental representation of musical structure, remains unexplored. In this work, we introduce MIDI-LLaMA, the first instruction-following MLLM for symbolic music understanding. Our approach aligns the MIDI encoder MusicBERT and Llama-3-8B via a two-stage pipeline comprising feature alignment and instruction tuning. To support training, we design a scalable annotation pipeline that annotates GiantMIDI-Piano with fine-grained metadata, resulting in a MIDI-text dataset. Compared with the baseline trained on converting MIDI into ABC notation under the same instruction-tuning procedure, MIDI-LLaMA substantially outperforms in captioning and semantic alignment in question answering. Human evaluation further confirms the advantages of MIDI-LLaMA in music understanding, emotion recognition, creativity, and overall preference. These findings demonstrate that incorporating symbolic music into large language models enhances their capacity for musical understanding.
comment: Accepted for publication at International Conference on Acoustics, Speech, and Signal Processing (ICASSP) 2026
☆ Rethinking Fusion: Disentangled Learning of Shared and Modality-Specific Information for Stance Detection ICASSP 2026
Multi-modal stance detection (MSD) aims to determine an author's stance toward a given target using both textual and visual content. While recent methods leverage multi-modal fusion and prompt-based learning, most fail to distinguish between modality-specific signals and cross-modal evidence, leading to suboptimal performance. We propose DiME (Disentangled Multi-modal Experts), a novel architecture that explicitly separates stance information into textual-dominant, visual-dominant, and cross-modal shared components. DiME first uses a target-aware Chain-of-Thought prompt to generate reasoning-guided textual input. Then, dual encoders extract modality features, which are processed by three expert modules with specialized loss functions: contrastive learning for modality-specific experts and cosine alignment for shared representation learning. A gating network adaptively fuses expert outputs for final prediction. Experiments on four benchmark datasets show that DiME consistently outperforms strong unimodal and multi-modal baselines under both in-target and zero-shot settings.
comment: ICASSP 2026
☆ HADUA: Hierarchical Attention and Dynamic Uniform Alignment for Robust Cross-Subject Emotion Recognition
Robust cross-subject emotion recognition from multimodal physiological signals remains a challenging problem, primarily due to modality heterogeneity and inter-subject distribution shift. To tackle these challenges, we propose a novel adaptive learning framework named Hierarchical Attention and Dynamic Uniform Alignment (HADUA). Our approach unifies the learning of multimodal representations with domain adaptation. First, we design a hierarchical attention module that explicitly models intra-modal temporal dynamics and inter-modal semantic interactions (e.g., between electroencephalogram(EEG) and eye movement(EM)), yielding discriminative and semantically coherent fused features. Second, to overcome the noise inherent in pseudo-labels during adaptation, we introduce a confidence-aware Gaussian weighting scheme that smooths the supervision from target-domain samples by down-weighting uncertain instances. Third, a uniform alignment loss is employed to regularize the distribution of pseudo-labels across classes, thereby mitigating imbalance and stabilizing conditional distribution matching. Extensive experiments on multiple cross-subject emotion recognition benchmarks show that HADUA consistently surpasses existing state-of-the-art methods in both accuracy and robustness, validating its effectiveness in handling modality gaps, noisy pseudo-labels, and class imbalance. Taken together, these contributions offer a practical and generalizable solution for building robust cross-subject affective computing systems.
☆ ViTMAlis: Towards Latency-Critical Mobile Video Analytics with Vision Transformers
Edge-assisted mobile video analytics (MVA) applications are increasingly shifting from using vision models based on convolutional neural networks (CNNs) to those built on vision transformers (ViTs) to leverage their superior global context modeling and generalization capabilities. However, deploying these advanced models in latency-critical MVA scenarios presents significant challenges. Unlike traditional CNN-based offloading paradigms where network transmission is the primary bottleneck, ViT-based systems are constrained by substantial inference delays, particularly for dense prediction tasks where the need for high-resolution inputs exacerbates the inherent quadratic computational complexity of ViTs. To address these challenges, we propose a dynamic mixed-resolution inference strategy tailored for ViT-backboned dense prediction models, enabling flexible runtime trade-offs between speed and accuracy. Building on this, we introduce ViTMAlis, a ViT-native device-to-edge offloading framework that dynamically adapts to network conditions and video content to jointly reduce transmission and inference delays. We implement a fully functional prototype of ViTMAlis on commodity mobile and edge devices. Extensive experiments demonstrate that, compared to state-of-the-art accuracy-centric, content-aware, and latency-adaptive baselines, ViTMAlis significantly reduces end-to-end offloading latency while improving user-perceived rendering accuracy, providing a practical foundation for next-generation mobile intelligence.
☆ SCENE: Semantic-aware Codec Enhancement with Neural Embeddings ICASSP 2026
Compression artifacts from standard video codecs often degrade perceptual quality. We propose a lightweight, semantic-aware pre-processing framework that enhances perceptual fidelity by selectively addressing these distortions. Our method integrates semantic embeddings from a vision-language model into an efficient convolutional architecture, prioritizing the preservation of perceptually significant structures. The model is trained end-to-end with a differentiable codec proxy, enabling it to mitigate artifacts from various standard codecs without modifying the existing video pipeline. During inference, the codec proxy is discarded, and SCENE operates as a standalone pre-processor, enabling real-time performance. Experiments on high-resolution benchmarks show improved performance over baselines in both objective (MS-SSIM) and perceptual (VMAF) metrics, with notable gains in preserving detailed textures within salient regions. Our results show that semantic-guided, codec-aware pre-processing is an effective approach for enhancing compressed video streams.
comment: Accepted to ICASSP 2026
♻ ☆ Listen, Look, Drive: Coupling Audio Instructions for User-aware VLA-based Autonomous Driving
Vision Language Action (VLA) models promise an open-vocabulary interface that can translate perceptual ambiguity into semantically grounded driving decisions, yet they still treat language as a static prior fixed at inference time. As a result, the model must infer continuously shifting objectives from pixels alone, yielding delayed or overly conservative maneuvers. We argue that effective VLAs for autonomous driving need an online channel in which users can influence driving with specific intentions. To this end, we present EchoVLA, a user-aware VLA that couples camera streams with in situ audio instructions. We augment the nuScenes dataset with temporally aligned, intent-specific speech commands generated by converting ego-motion descriptions into synthetic audios. Further, we compose emotional speech-trajectory pairs into a multimodal Chain-of-Thought (CoT) for fine-tuning a Multimodal Large Model (MLM) based on Qwen2.5-Omni. Specifically, we synthesize the audio-augmented dataset with different emotion types paired with corresponding driving behaviors, leveraging the emotional cues embedded in tone, pitch, and speech tempo to reflect varying user states, such as urgent or hesitant intentions, thus enabling our EchoVLA to interpret not only the semantic content but also the emotional context of audio commands for more nuanced and emotionally adaptive driving behavior. In open-loop benchmarks, our approach reduces the average L2 error by $59.4\%$ and the collision rate by $74.4\%$ compared to the baseline of vision-only perception. More experiments on nuScenes dataset validate that EchoVLA not only steers the trajectory through audio instructions, but also modulates driving behavior in response to the emotions detected in the user's speech.
comment: Accepted by IV
♻ ☆ MusicWeaver: Composer-Style Structural Editing and Minute-Scale Coherent Music Generation
Recent advances in music generation produce impressive samples, however, practical creation still lacks two key capabilities: composer-style structural editing and minute-scale coherence. We present MusicWeaver, a framework for generating and editing long-range music using a human-interpretable intermediate representation with guaranteed edit locality. MusicWeaver decomposes generation into two stages: it first predicts a structured plan, a multi-level song program encoding musical attributes that composers can directly edit, and then renders audio conditioned on this plan. To ensure minute-scale coherence, we introduce a Global-Local Diffusion Transformer, where a global path captures long-range musical progression via compressed representations and memory, while a local path synthesizes fine-grained acoustic detail. We further propose a Motif Memory Retrieval module that enables consistent motif recurrence with controllable variation. For editing, we propose Projected Diffusion Inpainting, an inpainting method that denoises only user-specified regions and preserves unchanged content, allowing repeated edits without drift. Finally, we introduce Structure Coherence Score and Edit Fidelity Score to evaluate long-range form and edit realization. Experiments demonstrate that MusicWeaver achieves state-of-the-art fidelity, controllability, and long-range coherence.
comment: 9 pages, 4 figures
♻ ☆ MotionBeat: Motion-Aligned Music Representation via Embodied Contrastive Learning and Bar-Equivariant Contact-Aware Encoding ICASSP 2026
Music is both an auditory and an embodied phenomenon, closely linked to human motion and naturally expressed through dance. However, most existing audio representations neglect this embodied dimension, limiting their ability to capture rhythmic and structural cues that drive movement. We propose MotionBeat, a framework for motion-aligned music representation learning. MotionBeat is trained with two newly proposed objectives: the Embodied Contrastive Loss (ECL), an enhanced InfoNCE formulation with tempo-aware and beat-jitter negatives to achieve fine-grained rhythmic discrimination, and the Structural Rhythm Alignment Loss (SRAL), which ensures rhythm consistency by aligning music accents with corresponding motion events. Architecturally, MotionBeat introduces bar-equivariant phase rotations to capture cyclic rhythmic patterns and contact-guided attention to emphasize motion events synchronized with musical accents. Experiments show that MotionBeat outperforms state-of-the-art audio encoders in music-to-dance generation and transfers effectively to beat tracking, music tagging, genre and instrument classification, emotion recognition, and audio-visual retrieval. Our project demo page: https://motionbeat2025.github.io/.
comment: 5 pages, 1 figure, accepted by ICASSP 2026. demo page: https://motionbeat2025.github.io/
♻ ☆ Learning What To Hear: Boosting Sound-Source Association For Robust Audiovisual Instance Segmentation ICASSP 2026
Audiovisual instance segmentation (AVIS) requires accurately localizing and tracking sounding objects throughout video sequences. Existing methods suffer from visual bias stemming from two fundamental issues: uniform additive fusion prevents queries from specializing to different sound sources, while visual-only training objectives allow queries to converge to arbitrary salient objects. We propose Audio-Centric Query Generation using cross-attention, enabling each query to selectively attend to distinct sound sources and carry sound-specific priors into visual decoding. Additionally, we introduce Sound-Aware Ordinal Counting (SAOC) loss that explicitly supervises sounding object numbers through ordinal regression with monotonic consistency constraints, preventing visual-only convergence during training. Experiments on AVISeg benchmark demonstrate consistent improvements: +1.64 mAP, +0.6 HOTA, and +2.06 FSLA, validating that query specialization and explicit counting supervision are crucial for accurate audiovisual instance segmentation.
comment: Accepted to ICASSP 2026
Computer Vision and Pattern Recognition 168
☆ FreeFix: Boosting 3D Gaussian Splatting via Fine-Tuning-Free Diffusion Models
Neural Radiance Fields and 3D Gaussian Splatting have advanced novel view synthesis, yet still rely on dense inputs and often degrade at extrapolated views. Recent approaches leverage generative models, such as diffusion models, to provide additional supervision, but face a trade-off between generalization and fidelity: fine-tuning diffusion models for artifact removal improves fidelity but risks overfitting, while fine-tuning-free methods preserve generalization but often yield lower fidelity. We introduce FreeFix, a fine-tuning-free approach that pushes the boundary of this trade-off by enhancing extrapolated rendering with pretrained image diffusion models. We present an interleaved 2D-3D refinement strategy, showing that image diffusion models can be leveraged for consistent refinement without relying on costly video diffusion models. Furthermore, we take a closer look at the guidance signal for 2D refinement and propose a per-pixel confidence mask to identify uncertain regions for targeted improvement. Experiments across multiple datasets show that FreeFix improves multi-frame consistency and achieves performance comparable to or surpassing fine-tuning-based methods, while retaining strong generalization ability.
comment: Our project page is at https://xdimlab.github.io/freefix
☆ C3Box: A CLIP-based Class-Incremental Learning Toolbox
Traditional machine learning systems are typically designed for static data distributions, which suffer from catastrophic forgetting when learning from evolving data streams. Class-Incremental Learning (CIL) addresses this challenge by enabling learning systems to continuously learn new classes while preserving prior knowledge. With the rise of pre-trained models (PTMs) such as CLIP, leveraging their strong generalization and semantic alignment capabilities has become a promising direction in CIL. However, existing CLIP-based CIL methods are often scattered across disparate codebases, rely on inconsistent configurations, hindering fair comparisons, reproducibility, and practical adoption. Therefore, we propose C3Box (CLIP-based Class-inCremental learning toolBOX), a modular and comprehensive Python toolbox. C3Box integrates representative traditional CIL methods, ViT-based CIL methods, and state-of-the-art CLIP-based CIL methods into a unified CLIP-based framework. By inheriting the streamlined design of PyCIL, C3Box provides a JSON-based configuration and standardized execution pipeline. This design enables reproducible experimentation with low engineering overhead and makes C3Box a reliable benchmark platform for continual learning research. Designed to be user-friendly, C3Box relies only on widely used open-source libraries and supports major operating systems. The code is available at https://github.com/LAMDA-CL/C3Box.
comment: The code is available at https://github.com/LAMDA-CL/C3Box
☆ A New Dataset and Framework for Robust Road Surface Classification via Camera-IMU Fusion
Road surface classification (RSC) is a key enabler for environment-aware predictive maintenance systems. However, existing RSC techniques often fail to generalize beyond narrow operational conditions due to limited sensing modalities and datasets that lack environmental diversity. This work addresses these limitations by introducing a multimodal framework that fuses images and inertial measurements using a lightweight bidirectional cross-attention module followed by an adaptive gating layer that adjusts modality contributions under domain shifts. Given the limitations of current benchmarks, especially regarding lack of variability, we introduce ROAD, a new dataset composed of three complementary subsets: (i) real-world multimodal recordings with RGB-IMU streams synchronized using a gold-standard industry datalogger, captured across diverse lighting, weather, and surface conditions; (ii) a large vision-only subset designed to assess robustness under adverse illumination and heterogeneous capture setups; and (iii) a synthetic subset generated to study out-of-distribution generalization in scenarios difficult to obtain in practice. Experiments show that our method achieves a +1.4 pp improvement over the previous state-of-the-art on the PVS benchmark and an +11.6 pp improvement on our multimodal ROAD subset, with consistently higher F1-scores on minority classes. The framework also demonstrates stable performance across challenging visual conditions, including nighttime, heavy rain, and mixed-surface transitions. These findings indicate that combining affordable camera and IMU sensors with multimodal attention mechanisms provides a scalable, robust foundation for road surface understanding, particularly relevant for regions where environmental variability and cost constraints limit the adoption of high-end sensing suites.
☆ Open-Vocabulary Functional 3D Human-Scene Interaction Generation
Generating 3D humans that functionally interact with 3D scenes remains an open problem with applications in embodied AI, robotics, and interactive content creation. The key challenge involves reasoning about both the semantics of functional elements in 3D scenes and the 3D human poses required to achieve functionality-aware interaction. Unfortunately, existing methods typically lack explicit reasoning over object functionality and the corresponding human-scene contact, resulting in implausible or functionally incorrect interactions. In this work, we propose FunHSI, a training-free, functionality-driven framework that enables functionally correct human-scene interactions from open-vocabulary task prompts. Given a task prompt, FunHSI performs functionality-aware contact reasoning to identify functional scene elements, reconstruct their 3D geometry, and model high-level interactions via a contact graph. We then leverage vision-language models to synthesize a human performing the task in the image and estimate proposed 3D body and hand poses. Finally, the proposed 3D body configuration is refined via stage-wise optimization to ensure physical plausibility and functional correctness. In contrast to existing methods, FunHSI not only synthesizes more plausible general 3D interactions, such as "sitting on a sofa'', while supporting fine-grained functional human-scene interactions, e.g., "increasing the room temperature''. Extensive experiments demonstrate that FunHSI consistently generates functionally correct and physically plausible human-scene interactions across diverse indoor and outdoor scenes.
comment: 18 pages
☆ FAIRT2V: Training-Free Debiasing for Text-to-Video Diffusion Models
Text-to-video (T2V) diffusion models have achieved rapid progress, yet their demographic biases, particularly gender bias, remain largely unexplored. We present FairT2V, a training-free debiasing framework for text-to-video generation that mitigates encoder-induced bias without finetuning. We first analyze demographic bias in T2V models and show that it primarily originates from pretrained text encoders, which encode implicit gender associations even for neutral prompts. We quantify this effect with a gender-leaning score that correlates with bias in generated videos. Based on this insight, FairT2V mitigates demographic bias by neutralizing prompt embeddings via anchor-based spherical geodesic transformations while preserving semantics. To maintain temporal coherence, we apply debiasing only during early identity-forming steps through a dynamic denoising schedule. We further propose a video-level fairness evaluation protocol combining VideoLLM-based reasoning with human verification. Experiments on the modern T2V model Open-Sora show that FairT2V substantially reduces demographic bias across occupations with minimal impact on video quality.
☆ Compression Tells Intelligence: Visual Coding, Visual Token Technology, and the Unification
"Compression Tells Intelligence", is supported by research in artificial intelligence, particularly concerning (multimodal) large language models (LLMs/MLLMs), where compression efficiency often correlates with improved model performance and capabilities. For compression, classical visual coding based on traditional information theory has developed over decades, achieving great success with numerous international industrial standards widely applied in multimedia (e.g., image/video) systems. Except that, the recent emergingvisual token technology of generative multi-modal large models also shares a similar fundamental objective like visual coding: maximizing semantic information fidelity during the representation learning while minimizing computational cost. Therefore, this paper provides a comprehensive overview of two dominant technique families first -- Visual Coding and Vision Token Technology -- then we further unify them from the aspect of optimization, discussing the essence of compression efficiency and model performance trade-off behind. Next, based on the proposed unified formulation bridging visual coding andvisual token technology, we synthesize bidirectional insights of themselves and forecast the next-gen visual codec and token techniques. Last but not least, we experimentally show a large potential of the task-oriented token developments in the more practical tasks like multimodal LLMs (MLLMs), AI-generated content (AIGC), and embodied AI, as well as shedding light on the future possibility of standardizing a general token technology like the traditional codecs (e.g., H.264/265) with high efficiency for a wide range of intelligent tasks in a unified and effective manner.
☆ Continual GUI Agents
As digital environments (data distribution) are in flux, with new GUI data arriving over time-introducing new domains or resolutions-agents trained on static environments deteriorate in performance. In this work, we introduce Continual GUI Agents, a new task that requires GUI agents to perform continual learning under shifted domains and resolutions. We find existing methods fail to maintain stable grounding as GUI distributions shift over time, due to the diversity of UI interaction points and regions in fluxing scenarios. To address this, we introduce GUI-Anchoring in Flux (GUI-AiF), a new reinforcement fine-tuning framework that stabilizes continual learning through two novel rewards: Anchoring Point Reward in Flux (APR-iF) and Anchoring Region Reward in Flux (ARR-iF). These rewards guide the agents to align with shifting interaction points and regions, mitigating the tendency of existing reward strategies to over-adapt to static grounding cues (e.g., fixed coordinates or element scales). Extensive experiments show GUI-AiF surpasses state-of-the-art baselines. Our work establishes the first continual learning framework for GUI agents, revealing the untapped potential of reinforcement fine-tuning for continual GUI Agents.
☆ Li-ViP3D++: Query-Gated Deformable Camera-LiDAR Fusion for End-to-End Perception and Trajectory Prediction IEEE
End-to-end perception and trajectory prediction from raw sensor data is one of the key capabilities for autonomous driving. Modular pipelines restrict information flow and can amplify upstream errors. Recent query-based, fully differentiable perception-and-prediction (PnP) models mitigate these issues, yet the complementarity of cameras and LiDAR in the query-space has not been sufficiently explored. Models often rely on fusion schemes that introduce heuristic alignment and discrete selection steps which prevent full utilization of available information and can introduce unwanted bias. We propose Li-ViP3D++, a query-based multimodal PnP framework that introduces Query-Gated Deformable Fusion (QGDF) to integrate multi-view RGB and LiDAR in query space. QGDF (i) aggregates image evidence via masked attention across cameras and feature levels, (ii) extracts LiDAR context through fully differentiable BEV sampling with learned per-query offsets, and (iii) applies query-conditioned gating to adaptively weight visual and geometric cues per agent. The resulting architecture jointly optimizes detection, tracking, and multi-hypothesis trajectory forecasting in a single end-to-end model. On nuScenes, Li-ViP3D++ improves end-to-end behavior and detection quality, achieving higher EPA (0.335) and mAP (0.502) while substantially reducing false positives (FP ratio 0.147), and it is faster than the prior Li-ViP3D variant (139.82 ms vs. 145.91 ms). These results indicate that query-space, fully differentiable camera-LiDAR fusion can increase robustness of end-to-end PnP without sacrificing deployability.
comment: This work has been submitted to the IEEE for possible publication
☆ Decoupling Perception and Calibration: Label-Efficient Image Quality Assessment Framework
Recent multimodal large language models (MLLMs) have demonstrated strong capabilities in image quality assessment (IQA) tasks. However, adapting such large-scale models is computationally expensive and still relies on substantial Mean Opinion Score (MOS) annotations. We argue that for MLLM-based IQA, the core bottleneck lies not in the quality perception capacity of MLLMs, but in MOS scale calibration. Therefore, we propose LEAF, a Label-Efficient Image Quality Assessment Framework that distills perceptual quality priors from an MLLM teacher into a lightweight student regressor, enabling MOS calibration with minimal human supervision. Specifically, the teacher conducts dense supervision through point-wise judgments and pair-wise preferences, with an estimate of decision reliability. Guided by these signals, the student learns the teacher's quality perception patterns through joint distillation and is calibrated on a small MOS subset to align with human annotations. Experiments on both user-generated and AI-generated IQA benchmarks demonstrate that our method significantly reduces the need for human annotations while maintaining strong MOS-aligned correlations, making lightweight IQA practical under limited annotation budgets.
☆ bi-modal textual prompt learning for vision-language models in remote sensing ICASSP 2026
Prompt learning (PL) has emerged as an effective strategy to adapt vision-language models (VLMs), such as CLIP, for downstream tasks under limited supervision. While PL has demonstrated strong generalization on natural image datasets, its transferability to remote sensing (RS) imagery remains underexplored. RS data present unique challenges, including multi-label scenes, high intra-class variability, and diverse spatial resolutions, that hinder the direct applicability of existing PL methods. In particular, current prompt-based approaches often struggle to identify dominant semantic cues and fail to generalize to novel classes in RS scenarios. To address these challenges, we propose BiMoRS, a lightweight bi-modal prompt learning framework tailored for RS tasks. BiMoRS employs a frozen image captioning model (e.g., BLIP-2) to extract textual semantic summaries from RS images. These captions are tokenized using a BERT tokenizer and fused with high-level visual features from the CLIP encoder. A lightweight cross-attention module then conditions a learnable query prompt on the fused textual-visual representation, yielding contextualized prompts without altering the CLIP backbone. We evaluate BiMoRS on four RS datasets across three domain generalization (DG) tasks and observe consistent performance gains, outperforming strong baselines by up to 2% on average. Codes are available at https://github.com/ipankhi/BiMoRS.
comment: Accepted in ICASSP 2026
☆ ProSkill: Segment-Level Skill Assessment in Procedural Videos
Skill assessment in procedural videos is crucial for the objective evaluation of human performance in settings such as manufacturing and procedural daily tasks. Current research on skill assessment has predominantly focused on sports and lacks large-scale datasets for complex procedural activities. Existing studies typically involve only a limited number of actions, focus on either pairwise assessments (e.g., A is better than B) or on binary labels (e.g., good execution vs needs improvement). In response to these shortcomings, we introduce ProSkill, the first benchmark dataset for action-level skill assessment in procedural tasks. ProSkill provides absolute skill assessment annotations, along with pairwise ones. This is enabled by a novel and scalable annotation protocol that allows for the creation of an absolute skill assessment ranking starting from pairwise assessments. This protocol leverages a Swiss Tournament scheme for efficient pairwise comparisons, which are then aggregated into consistent, continuous global scores using an ELO-based rating system. We use our dataset to benchmark the main state-of-the-art skill assessment algorithms, including both ranking-based and pairwise paradigms. The suboptimal results achieved by the current state-of-the-art highlight the challenges and thus the value of ProSkill in the context of skill assessment for procedural videos. All data and code are available at https://fpv-iplab.github.io/ProSkill/
comment: Accepted at The IEEE/CVF Winter Conference on Applications of Computer Vision 2026
☆ FD-MAD: Frequency-Domain Residual Analysis for Face Morphing Attack Detection
Face morphing attacks present a significant threat to face recognition systems used in electronic identity enrolment and border control, particularly in single-image morphing attack detection (S-MAD) scenarios where no trusted reference is available. In spite of the vast amount of research on this problem, morph detection systems struggle in cross-dataset scenarios. To address this problem, we introduce a region-aware frequency-based morph detection strategy that drastically improves over strong baseline methods in challenging cross-dataset and cross-morph settings using a lightweight approach. Having observed the separability of bona fide and morph samples in the frequency domain of different facial parts, our approach 1) introduces the concept of residual frequency domain, where the frequency of the signal is decoupled from the natural spectral decay to easily discriminate between morph and bona fide data; 2) additionally, we reason in a global and local manner by combining the evidence from different facial regions in a Markov Random Field, which infers a globally consistent decision. The proposed method, trained exclusively on the synthetic morphing attack detection development dataset (SMDD), is evaluated in challenging cross-dataset and cross-morph settings on FRLL-Morph and MAD22 sets. Our approach achieves an average equal error rate (EER) of 1.85\% on FRLL-Morph and ranks second on MAD22 with an average EER of 6.12\%, while also obtaining a good bona fide presentation classification error rate (BPCER) at a low attack presentation classification error rate (APCER) using only spectral features. These findings indicate that Fourier-domain residual modeling with structured regional fusion offers a competitive alternative to deep S-MAD architectures.
☆ OS-Marathon: Benchmarking Computer-Use Agents on Long-Horizon Repetitive Tasks
Long-horizon, repetitive workflows are common in professional settings, such as processing expense reports from receipts and entering student grades from exam papers. These tasks are often tedious for humans since they can extend to extreme lengths proportional to the size of the data to process. However, they are ideal for Computer-Use Agents (CUAs) due to their structured, recurring sub-workflows with logic that can be systematically learned. Identifying the absence of an evaluation benchmark as a primary bottleneck, we establish OS-Marathon, comprising 242 long-horizon, repetitive tasks across 2 domains to evaluate state-of-the-art (SOTA) agents. We then introduce a cost-effective method to construct a condensed demonstration using only few-shot examples to teach agents the underlying workflow logic, enabling them to execute similar workflows effectively on larger, unseen data collections. Extensive experiments demonstrate both the inherent challenges of these tasks and the effectiveness of our proposed method. Project website: https://os-marathon.github.io/.
comment: 22 Pages, Project Page: \url{https://os-marathon.github.io/}
☆ Detecting and Mitigating Memorization in Diffusion Models through Anisotropy of the Log-Probability ICLR 2026
Diffusion-based image generative models produce high-fidelity images through iterative denoising but remain vulnerable to memorization, where they unintentionally reproduce exact copies or parts of training images. Recent memorization detection methods are primarily based on the norm of score difference as indicators of memorization. We prove that such norm-based metrics are mainly effective under the assumption of isotropic log-probability distributions, which generally holds at high or medium noise levels. In contrast, analyzing the anisotropic regime reveals that memorized samples exhibit strong angular alignment between the guidance vector and unconditional scores in the low-noise setting. Through these insights, we develop a memorization detection metric by integrating isotropic norm and anisotropic alignment. Our detection metric can be computed directly on pure noise inputs via two conditional and unconditional forward passes, eliminating the need for costly denoising steps. Detection experiments on Stable Diffusion v1.4 and v2 show that our metric outperforms existing denoising-free detection methods while being at least approximately 5x faster than the previous best approach. Finally, we demonstrate the effectiveness of our approach by utilizing a mitigation strategy that adapts memorized prompts based on our developed metric.
comment: Accepted at ICLR 2026
☆ GDCNet: Generative Discrepancy Comparison Network for Multimodal Sarcasm Detection IEEE
Multimodal sarcasm detection (MSD) aims to identify sarcasm within image-text pairs by modeling semantic incongruities across modalities. Existing methods often exploit cross-modal embedding misalignment to detect inconsistency but struggle when visual and textual content are loosely related or semantically indirect. While recent approaches leverage large language models (LLMs) to generate sarcastic cues, the inherent diversity and subjectivity of these generations often introduce noise. To address these limitations, we propose the Generative Discrepancy Comparison Network (GDCNet). This framework captures cross-modal conflicts by utilizing descriptive, factually grounded image captions generated by Multimodal LLMs (MLLMs) as stable semantic anchors. Specifically, GDCNet computes semantic and sentiment discrepancies between the generated objective description and the original text, alongside measuring visual-textual fidelity. These discrepancy features are then fused with visual and textual representations via a gated module to adaptively balance modality contributions. Extensive experiments on MSD benchmarks demonstrate GDCNet's superior accuracy and robustness, establishing a new state-of-the-art on the MMSD2.0 benchmark.
comment: Accepted to 2026 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2026)
☆ CLEAR-Mamba:Towards Accurate, Adaptive and Trustworthy Multi-Sequence Ophthalmic Angiography Classification
Medical image classification is a core task in computer-aided diagnosis (CAD), playing a pivotal role in early disease detection, treatment planning, and patient prognosis assessment. In ophthalmic practice, fluorescein fundus angiography (FFA) and indocyanine green angiography (ICGA) provide hemodynamic and lesion-structural information that conventional fundus photography cannot capture. However, due to the single-modality nature, subtle lesion patterns, and significant inter-device variability, existing methods still face limitations in generalization and high-confidence prediction. To address these challenges, we propose CLEAR-Mamba, an enhanced framework built upon MedMamba with optimizations in both architecture and training strategy. Architecturally, we introduce HaC, a hypernetwork-based adaptive conditioning layer that dynamically generates parameters according to input feature distributions, thereby improving cross-domain adaptability. From a training perspective, we develop RaP, a reliability-aware prediction scheme built upon evidential uncertainty learning, which encourages the model to emphasize low-confidence samples and improves overall stability and reliability. We further construct a large-scale ophthalmic angiography dataset covering both FFA and ICGA modalities, comprising multiple retinal disease categories for model training and evaluation. Experimental results demonstrate that CLEAR-Mamba consistently outperforms multiple baseline models, including the original MedMamba, across various metrics-showing particular advantages in multi-disease classification and reliability-aware prediction. This study provides an effective solution that balances generalizability and reliability for modality-specific medical image classification tasks.
comment: 10 pages,7 figures
☆ Person Re-ID in 2025: Supervised, Self-Supervised, and Language-Aligned. What Works?
Person Re-Identification (ReID) remains a challenging problem in computer vision. This work reviews various training paradigm and evaluates the robustness of state-of-the-art ReID models in cross-domain applications and examines the role of foundation models in improving generalization through richer, more transferable visual representations. We compare three training paradigms, supervised, self-supervised, and language-aligned models. Through the study the aim is to answer the following questions: Can supervised models generalize in cross-domain scenarios? How does foundation models like SigLIP2 perform for the ReID tasks? What are the weaknesses of current supervised and foundational models for ReID? We have conducted the analysis across 11 models and 9 datasets. Our results show a clear split: supervised models dominate their training domain but crumble on cross-domain data. Language-aligned models, however, show surprising robustness cross-domain for ReID tasks, even though they are not explicitly trained to do so. Code and data available at: https://github.com/moiiai-tech/object-reid-benchmark.
☆ StructAlign: Structured Cross-Modal Alignment for Continual Text-to-Video Retrieval
Continual Text-to-Video Retrieval (CTVR) is a challenging multimodal continual learning setting, where models must incrementally learn new semantic categories while maintaining accurate text-video alignment for previously learned ones, thus making it particularly prone to catastrophic forgetting. A key challenge in CTVR is feature drift, which manifests in two forms: intra-modal feature drift caused by continual learning within each modality, and non-cooperative feature drift across modalities that leads to modality misalignment. To mitigate these issues, we propose StructAlign, a structured cross-modal alignment method for CTVR. First, StructAlign introduces a simplex Equiangular Tight Frame (ETF) geometry as a unified geometric prior to mitigate modality misalignment. Building upon this geometric prior, we design a cross-modal ETF alignment loss that aligns text and video features with category-level ETF prototypes, encouraging the learned representations to form an approximate simplex ETF geometry. In addition, to suppress intra-modal feature drift, we design a Cross-modal Relation Preserving loss, which leverages complementary modalities to preserve cross-modal similarity relations, providing stable relational supervision for feature updates. By jointly addressing non-cooperative feature drift across modalities and intra-modal feature drift, StructAlign effectively alleviates catastrophic forgetting in CTVR. Extensive experiments on benchmark datasets demonstrate that our method consistently outperforms state-of-the-art continual retrieval approaches.
☆ SegRap2025: A Benchmark of Gross Tumor Volume and Lymph Node Clinical Target Volume Segmentation for Radiotherapy Planning of Nasopharyngeal Carcinoma
Accurate delineation of Gross Tumor Volume (GTV), Lymph Node Clinical Target Volume (LN CTV), and Organ-at-Risk (OAR) from Computed Tomography (CT) scans is essential for precise radiotherapy planning in Nasopharyngeal Carcinoma (NPC). Building upon SegRap2023, which focused on OAR and GTV segmentation using single-center paired non-contrast CT (ncCT) and contrast-enhanced CT (ceCT) scans, the SegRap2025 challenge aims to enhance the generalizability and robustness of segmentation models across imaging centers and modalities. SegRap2025 comprises two tasks: Task01 addresses GTV segmentation using paired CT from the SegRap2023 dataset, with an additional external testing set to evaluate cross-center generalization, and Task02 focuses on LN CTV segmentation using multi-center training data and an unseen external testing set, where each case contains paired CT scans or a single modality, emphasizing both cross-center and cross-modality robustness. This paper presents the challenge setup and provides a comprehensive analysis of the solutions submitted by ten participating teams. For GTV segmentation task, the top-performing models achieved average Dice Similarity Coefficient (DSC) of 74.61% and 56.79% on the internal and external testing cohorts, respectively. For LN CTV segmentation task, the highest average DSC values reached 60.24%, 60.50%, and 57.23% on paired CT, ceCT-only, and ncCT-only subsets, respectively. SegRap2025 establishes a large-scale multi-center, multi-modality benchmark for evaluating the generalization and robustness in radiotherapy target segmentation, providing valuable insights toward clinically applicable automated radiotherapy planning systems. The benchmark is available at: https://hilab-git.github.io/SegRap2025_Challenge.
☆ DiffVC-RT: Towards Practical Real-Time Diffusion-based Perceptual Neural Video Compression
The practical deployment of diffusion-based Neural Video Compression (NVC) faces critical challenges, including severe information loss, prohibitive inference latency, and poor temporal consistency. To bridge this gap, we propose DiffVC-RT, the first framework designed to achieve real-time diffusion-based perceptual NVC. First, we introduce an Efficient and Informative Model Architecture. Through strategic module replacements and pruning, this architecture significantly reduces computational complexity while mitigating structural information loss. Second, to address generative flickering artifacts, we propose Explicit and Implicit Consistency Modeling. We enhance temporal consistency by explicitly incorporating a zero-cost Online Temporal Shift Module within the U-Net, complemented by hybrid implicit consistency constraints. Finally, we present an Asynchronous and Parallel Decoding Pipeline incorporating Mixed Half Precision, which enables asynchronous latent decoding and parallel frame reconstruction via a Batch-dimension Temporal Shift design. Experiments show that DiffVC-RT achieves 80.1% bitrate savings in terms of LPIPS over VTM-17.0 on HEVC dataset with real-time encoding and decoding speeds of 206 / 30 fps for 720p videos on an NVIDIA H800 GPU, marking a significant milestone in diffusion-based video compression.
comment: 17 pages, 10 figures
☆ DeepSeek-OCR 2: Visual Causal Flow
We present DeepSeek-OCR 2 to investigate the feasibility of a novel encoder-DeepEncoder V2-capable of dynamically reordering visual tokens upon image semantics. Conventional vision-language models (VLMs) invariably process visual tokens in a rigid raster-scan order (top-left to bottom-right) with fixed positional encoding when fed into LLMs. However, this contradicts human visual perception, which follows flexible yet semantically coherent scanning patterns driven by inherent logical structures. Particularly for images with complex layouts, human vision exhibits causally-informed sequential processing. Inspired by this cognitive mechanism, DeepEncoder V2 is designed to endow the encoder with causal reasoning capabilities, enabling it to intelligently reorder visual tokens prior to LLM-based content interpretation. This work explores a novel paradigm: whether 2D image understanding can be effectively achieved through two-cascaded 1D causal reasoning structures, thereby offering a new architectural approach with the potential to achieve genuine 2D reasoning. Codes and model weights are publicly accessible at http://github.com/deepseek-ai/DeepSeek-OCR-2.
☆ Advancing Open-source World Models
We present LingBot-World, an open-sourced world simulator stemming from video generation. Positioned as a top-tier world model, LingBot-World offers the following features. (1) It maintains high fidelity and robust dynamics in a broad spectrum of environments, including realism, scientific contexts, cartoon styles, and beyond. (2) It enables a minute-level horizon while preserving contextual consistency over time, which is also known as "long-term memory". (3) It supports real-time interactivity, achieving a latency of under 1 second when producing 16 frames per second. We provide public access to the code and model in an effort to narrow the divide between open-source and closed-source technologies. We believe our release will empower the community with practical applications across areas like content creation, gaming, and robot learning.
comment: Project page: https://technology.robbyant.com/lingbot-world; Code: https://github.com/robbyant/lingbot-world
☆ IOTA: Corrective Knowledge-Guided Prompt Learning via Black-White Box Framework
Recently, adapting pre-trained models to downstream tasks has attracted increasing interest. Previous Parameter-Efficient-Tuning (PET) methods regard the pre-trained model as an opaque Black Box model, relying purely on data-driven optimization and underutilizing their inherent prior knowledge. This oversight limits the models' potential for effective downstream task adaptation. To address these issues, we propose a novel black-whIte bOx prompT leArning framework (IOTA), which integrates a data-driven Black Box module with a knowledge-driven White Box module for downstream task adaptation. Specifically, the White Box module derives corrective knowledge by contrasting the wrong predictions with the right cognition. This knowledge is verbalized into interpretable human prompts and leveraged through a corrective knowledge-guided prompt selection strategy to guide the Black Box module toward more accurate predictions. By jointly leveraging knowledge- and data-driven learning signals, IOTA achieves effective downstream task adaptation. Experimental results on 12 image classification benchmarks under few-shot and easy-to-hard adaptation settings demonstrate the effectiveness of corrective knowledge and the superiority of our method over state-of-the-art methods.
☆ AnomalyVFM -- Transforming Vision Foundation Models into Zero-Shot Anomaly Detectors
Zero-shot anomaly detection aims to detect and localise abnormal regions in the image without access to any in-domain training images. While recent approaches leverage vision-language models (VLMs), such as CLIP, to transfer high-level concept knowledge, methods based on purely vision foundation models (VFMs), like DINOv2, have lagged behind in performance. We argue that this gap stems from two practical issues: (i) limited diversity in existing auxiliary anomaly detection datasets and (ii) overly shallow VFM adaptation strategies. To address both challenges, we propose AnomalyVFM, a general and effective framework that turns any pretrained VFM into a strong zero-shot anomaly detector. Our approach combines a robust three-stage synthetic dataset generation scheme with a parameter-efficient adaptation mechanism, utilising low-rank feature adapters and a confidence-weighted pixel loss. Together, these components enable modern VFMs to substantially outperform current state-of-the-art methods. More specifically, with RADIO as a backbone, AnomalyVFM achieves an average image-level AUROC of 94.1% across 9 diverse datasets, surpassing previous methods by significant 3.3 percentage points. Project Page: https://maticfuc.github.io/anomaly_vfm/
☆ Context Tokens are Anchors: Understanding the Repetition Curse in dMLLMs from an Information Flow Perspective ICLR 2026
Recent diffusion-based Multimodal Large Language Models (dMLLMs) suffer from high inference latency and therefore rely on caching techniques to accelerate decoding. However, the application of cache mechanisms often introduces undesirable repetitive text generation, a phenomenon we term the \textbf{Repeat Curse}. To better investigate underlying mechanism behind this issue, we analyze repetition generation through the lens of information flow. Our work reveals three key findings: (1) context tokens aggregate semantic information as anchors and guide the final predictions; (2) as information propagates across layers, the entropy of context tokens converges in deeper layers, reflecting the model's growing prediction certainty; (3) Repetition is typically linked to disruptions in the information flow of context tokens and to the inability of their entropy to converge in deeper layers. Based on these insights, we present \textbf{CoTA}, a plug-and-play method for mitigating repetition. CoTA enhances the attention of context tokens to preserve intrinsic information flow patterns, while introducing a penalty term to the confidence score during decoding to avoid outputs driven by uncertain context tokens. With extensive experiments, CoTA demonstrates significant effectiveness in alleviating repetition and achieves consistent performance improvements on general tasks. Code is available at https://github.com/ErikZ719/CoTA
comment: Accepted in ICLR 2026
☆ Say Cheese! Detail-Preserving Portrait Collection Generation via Natural Language Edits
As social media platforms proliferate, users increasingly demand intuitive ways to create diverse, high-quality portrait collections. In this work, we introduce Portrait Collection Generation (PCG), a novel task that generates coherent portrait collections by editing a reference portrait image through natural language instructions. This task poses two unique challenges to existing methods: (1) complex multi-attribute modifications such as pose, spatial layout, and camera viewpoint; and (2) high-fidelity detail preservation including identity, clothing, and accessories. To address these challenges, we propose CHEESE, the first large-scale PCG dataset containing 24K portrait collections and 573K samples with high-quality modification text annotations, constructed through an Large Vison-Language Model-based pipeline with inversion-based verification. We further propose SCheese, a framework that combines text-guided generation with hierarchical identity and detail preservation. SCheese employs adaptive feature fusion mechanism to maintain identity consistency, and ConsistencyNet to inject fine-grained features for detail consistency. Comprehensive experiments validate the effectiveness of CHEESE in advancing PCG, with SCheese achieving state-of-the-art performance.
☆ Latent Temporal Discrepancy as Motion Prior: A Loss-Weighting Strategy for Dynamic Fidelity in T2V ICASSP 2026
Video generation models have achieved notable progress in static scenarios, yet their performance in motion video generation remains limited, with quality degrading under drastic dynamic changes. This is due to noise disrupting temporal coherence and increasing the difficulty of learning dynamic regions. {Unfortunately, existing diffusion models rely on static loss for all scenarios, constraining their ability to capture complex dynamics.} To address this issue, we introduce Latent Temporal Discrepancy (LTD) as a motion prior to guide loss weighting. LTD measures frame-to-frame variation in the latent space, assigning larger penalties to regions with higher discrepancy while maintaining regular optimization for stable regions. This motion-aware strategy stabilizes training and enables the model to better reconstruct high-frequency dynamics. Extensive experiments on the general benchmark VBench and the motion-focused VMBench show consistent gains, with our method outperforming strong baselines by 3.31% on VBench and 3.58% on VMBench, achieving significant improvements in motion quality.
comment: Accepted by ICASSP 2026
☆ Comparative evaluation of training strategies using partially labelled datasets for segmentation of white matter hyperintensities and stroke lesions in FLAIR MRI
White matter hyperintensities (WMH) and ischaemic stroke lesions (ISL) are imaging features associated with cerebral small vessel disease (SVD) that are visible on brain magnetic resonance imaging (MRI) scans. The development and validation of deep learning models to segment and differentiate these features is difficult because they visually confound each other in the fluid-attenuated inversion recovery (FLAIR) sequence and often appear in the same subject. We investigated six strategies for training a combined WMH and ISL segmentation model using partially labelled data. We combined privately held fully and partially labelled datasets with publicly available partially labelled datasets to yield a total of 2052 MRI volumes, with 1341 and 1152 containing ground truth annotations for WMH and ISL respectively. We found that several methods were able to effectively leverage the partially labelled data to improve model performance, with the use of pseudolabels yielding the best result.
☆ Efficient Autoregressive Video Diffusion with Dummy Head
The autoregressive video diffusion model has recently gained considerable research interest due to its causal modeling and iterative denoising. In this work, we identify that the multi-head self-attention in these models under-utilizes historical frames: approximately 25% heads attend almost exclusively to the current frame, and discarding their KV caches incurs only minor performance degradation. Building upon this, we propose Dummy Forcing, a simple yet effective method to control context accessibility across different heads. Specifically, the proposed heterogeneous memory allocation reduces head-wise context redundancy, accompanied by dynamic head programming to adaptively classify head types. Moreover, we develop a context packing technique to achieve more aggressive cache compression. Without additional training, our Dummy Forcing delivers up to 2.0x speedup over the baseline, supporting video generation at 24.3 FPS with less than 0.5% quality drop. Project page is available at https://csguoh.github.io/project/DummyForcing/.
comment: Technical Report
☆ Exploiting the Final Component of Generator Architectures for AI-Generated Image Detection
With the rapid proliferation of powerful image generators, accurate detection of AI-generated images has become essential for maintaining a trustworthy online environment. However, existing deepfake detectors often generalize poorly to images produced by unseen generators. Notably, despite being trained under vastly different paradigms, such as diffusion or autoregressive modeling, many modern image generators share common final architectural components that serve as the last stage for converting intermediate representations into images. Motivated by this insight, we propose to "contaminate" real images using the generator's final component and train a detector to distinguish them from the original real images. We further introduce a taxonomy based on generators' final components and categorize 21 widely used generators accordingly, enabling a comprehensive investigation of our method's generalization capability. Using only 100 samples from each of three representative categories, our detector-fine-tuned on the DINOv3 backbone-achieves an average accuracy of 98.83% across 22 testing sets from unseen generators.
☆ MARE: Multimodal Alignment and Reinforcement for Explainable Deepfake Detection via Vision-Language Models
Deepfake detection is a widely researched topic that is crucial for combating the spread of malicious content, with existing methods mainly modeling the problem as classification or spatial localization. The rapid advancements in generative models impose new demands on Deepfake detection. In this paper, we propose multimodal alignment and reinforcement for explainable Deepfake detection via vision-language models, termed MARE, which aims to enhance the accuracy and reliability of Vision-Language Models (VLMs) in Deepfake detection and reasoning. Specifically, MARE designs comprehensive reward functions, incorporating reinforcement learning from human feedback (RLHF), to incentivize the generation of text-spatially aligned reasoning content that adheres to human preferences. Besides, MARE introduces a forgery disentanglement module to capture intrinsic forgery traces from high-level facial semantics, thereby improving its authenticity detection capability. We conduct thorough evaluations on the reasoning content generated by MARE. Both quantitative and qualitative experimental results demonstrate that MARE achieves state-of-the-art performance in terms of accuracy and reliability.
☆ Youtu-Parsing: Perception, Structuring and Recognition via High-Parallelism Decoding
This paper presents Youtu-Parsing, an efficient and versatile document parsing model designed for high-performance content extraction. The architecture employs a native Vision Transformer (ViT) featuring a dynamic-resolution visual encoder to extract shared document features, coupled with a prompt-guided Youtu-LLM-2B language model for layout analysis and region-prompted decoding. Leveraging this decoupled and feature-reusable framework, we introduce a high-parallelism decoding strategy comprising two core components: token parallelism and query parallelism. The token parallelism strategy concurrently generates up to 64 candidate tokens per inference step, which are subsequently validated through a verification mechanism. This approach yields a 5--11x speedup over traditional autoregressive decoding and is particularly well-suited for highly structured scenarios, such as table recognition. To further exploit the advantages of region-prompted decoding, the query parallelism strategy enables simultaneous content prediction for multiple bounding boxes (up to five), providing an additional 2x acceleration while maintaining output quality equivalent to standard decoding. Youtu-Parsing encompasses a diverse range of document elements, including text, formulas, tables, charts, seals, and hierarchical structures. Furthermore, the model exhibits strong robustness when handling rare characters, multilingual text, and handwritten content. Extensive evaluations demonstrate that Youtu-Parsing achieves state-of-the-art (SOTA) performance on both the OmniDocBench and olmOCR-bench benchmarks. Overall, Youtu-Parsing demonstrates significant experimental value and practical utility for large-scale document intelligence applications.
☆ GRTX: Efficient Ray Tracing for 3D Gaussian-Based Rendering HPCA 2026
3D Gaussian Splatting has gained widespread adoption across diverse applications due to its exceptional rendering performance and visual quality. While most existing methods rely on rasterization to render Gaussians, recent research has started investigating ray tracing approaches to overcome the fundamental limitations inherent in rasterization. However, current Gaussian ray tracing methods suffer from inefficiencies such as bloated acceleration structures and redundant node traversals, which greatly degrade ray tracing performance. In this work, we present GRTX, a set of software and hardware optimizations that enable efficient ray tracing for 3D Gaussian-based rendering. First, we introduce a novel approach for constructing streamlined acceleration structures for Gaussian primitives. Our key insight is that anisotropic Gaussians can be treated as unit spheres through ray space transformations, which substantially reduces BVH size and traversal overhead. Second, we propose dedicated hardware support for traversal checkpointing within ray tracing units. This eliminates redundant node visits during multi-round tracing by resuming traversal from checkpointed nodes rather than restarting from the root node in each subsequent round. Our evaluation shows that GRTX significantly improves ray tracing performance compared to the baseline ray tracing method with a negligible hardware cost.
comment: To appear at the 32nd International Symposium on High-Performance Computer Architecture (HPCA 2026)
☆ Quartet of Diffusions: Structure-Aware Point Cloud Generation through Part and Symmetry Guidance
We introduce the Quartet of Diffusions, a structure-aware point cloud generation framework that explicitly models part composition and symmetry. Unlike prior methods that treat shape generation as a holistic process or only support part composition, our approach leverages four coordinated diffusion models to learn distributions of global shape latents, symmetries, semantic parts, and their spatial assembly. This structured pipeline ensures guaranteed symmetry, coherent part placement, and diverse, high-quality outputs. By disentangling the generative process into interpretable components, our method supports fine-grained control over shape attributes, enabling targeted manipulation of individual parts while preserving global consistency. A central global latent further reinforces structural coherence across assembled parts. Our experiments show that the Quartet achieves state-of-the-art performance. To our best knowledge, this is the first 3D point cloud generation framework that fully integrates and enforces both symmetry and part priors throughout the generative process.
☆ Let's Roll a BiFTA: Bi-refinement for Fine-grained Text-visual Alignment in Vision-Language Models
Recent research has shown that aligning fine-grained text descriptions with localized image patches can significantly improve the zero-shot performance of pre-trained vision-language models (e.g., CLIP). However, we find that both fine-grained text descriptions and localized image patches often contain redundant information, making text-visual alignment less effective. In this paper, we tackle this issue from two perspectives: \emph{View Refinement} and \emph{Description refinement}, termed as \textit{\textbf{Bi}-refinement for \textbf{F}ine-grained \textbf{T}ext-visual \textbf{A}lignment} (BiFTA). \emph{View refinement} removes redundant image patches with high \emph{Intersection over Union} (IoU) ratios, resulting in more distinctive visual samples. \emph{Description refinement} removes redundant text descriptions with high pairwise cosine similarity, ensuring greater diversity in the remaining descriptions. BiFTA achieves superior zero-shot performance on 6 benchmark datasets for both ViT-based and ResNet-based CLIP, justifying the necessity to remove redundant information in visual-text alignment.
comment: 25 pages
☆ HINT: Hierarchical Interaction Modeling for Autoregressive Multi-Human Motion Generation
Text-driven multi-human motion generation with complex interactions remains a challenging problem. Despite progress in performance, existing offline methods that generate fixed-length motions with a fixed number of agents, are inherently limited in handling long or variable text, and varying agent counts. These limitations naturally encourage autoregressive formulations, which predict future motions step by step conditioned on all past trajectories and current text guidance. In this work, we introduce HINT, the first autoregressive framework for multi-human motion generation with Hierarchical INTeraction modeling in diffusion. First, HINT leverages a disentangled motion representation within a canonicalized latent space, decoupling local motion semantics from inter-person interactions. This design facilitates direct adaptation to varying numbers of human participants without requiring additional refinement. Second, HINT adopts a sliding-window strategy for efficient online generation, and aggregates local within-window and global cross-window conditions to capture past human history, inter-person dependencies, and align with text guidance. This strategy not only enables fine-grained interaction modeling within each window but also preserves long-horizon coherence across all the long sequence. Extensive experiments on public benchmarks demonstrate that HINT matches the performance of strong offline models and surpasses autoregressive baselines. Notably, on InterHuman, HINT achieves an FID of 3.100, significantly improving over the previous state-of-the-art score of 5.154.
☆ RepSFNet : A Single Fusion Network with Structural Reparameterization for Crowd Counting IEEE
Crowd counting remains challenging in variable-density scenes due to scale variations, occlusions, and the high computational cost of existing models. To address these issues, we propose RepSFNet (Reparameterized Single Fusion Network), a lightweight architecture designed for accurate and real-time crowd estimation. RepSFNet leverages a RepLK-ViT backbone with large reparameterized kernels for efficient multi-scale feature extraction. It further integrates a Feature Fusion module combining Atrous Spatial Pyramid Pooling (ASPP) and Context-Aware Network (CAN) to achieve robust, density-adaptive context modeling. A Concatenate Fusion module is employed to preserve spatial resolution and generate high-quality density maps. By avoiding attention mechanisms and multi-branch designs, RepSFNet significantly reduces parameters and computational complexity. The training objective combines Mean Squared Error and Optimal Transport loss to improve both count accuracy and spatial distribution alignment. Experiments conducted on ShanghaiTech, NWPU, and UCF-QNRF datasets demonstrate that RepSFNet achieves competitive accuracy while reducing inference latency by up to 34 percent compared to recent state-of-the-art methods, making it suitable for real-time and low-power edge computing applications.
comment: 6 pages. Published in Proceedings of the IEEE International Conference on Advanced Video and Signal-Based Surveillance (AVSS) 2025
☆ Dual-Modality IoT Framework for Integrated Access Control and Environmental Safety Monitoring with Real-Time Cloud Analytics
The integration of physical security systems with environmental safety monitoring represents a critical advancement in smart infrastructure management. Traditional approaches maintain these systems as independent silos, creating operational inefficiencies, delayed emergency responses, and increased management complexity. This paper presents a comprehensive dual-modality Internet of Things framework that seamlessly integrates RFID-based access control with multi-sensor environmental safety monitoring through a unified cloud architecture. The system comprises two coordinated subsystems: Subsystem 1 implements RFID authentication with servo-actuated gate control and real-time Google Sheets logging, while Subsystem 2 provides comprehensive safety monitoring incorporating flame detection, water flow measurement, LCD status display, and personnel identification. Both subsystems utilize ESP32 microcontrollers for edge processing and wireless connectivity. Experimental evaluation over 45 days demonstrates exceptional performance metrics: 99.2\% RFID authentication accuracy with 0.82-second average response time, 98.5\% flame detection reliability within 5-meter range, and 99.8\% cloud data logging success rate. The system maintains operational integrity during network disruptions through intelligent local caching mechanisms and achieves total implementation cost of 5,400 BDT (approximately \$48), representing an 82\% reduction compared to commercial integrated solutions. This research establishes a practical framework for synergistic security-safety integration, demonstrating that professional-grade performance can be achieved through careful architectural design and component optimization while maintaining exceptional cost-effectiveness and accessibility for diverse application scenarios.
☆ RAW-Flow: Advancing RGB-to-RAW Image Reconstruction with Deterministic Latent Flow Matching AAAI2026
RGB-to-RAW reconstruction, or the reverse modeling of a camera Image Signal Processing (ISP) pipeline, aims to recover high-fidelity RAW data from RGB images. Despite notable progress, existing learning-based methods typically treat this task as a direct regression objective and struggle with detail inconsistency and color deviation, due to the ill-posed nature of inverse ISP and the inherent information loss in quantized RGB images. To address these limitations, we pioneer a generative perspective by reformulating RGB-to-RAW reconstruction as a deterministic latent transport problem and introduce a novel framework named RAW-Flow, which leverages flow matching to learn a deterministic vector field in latent space, to effectively bridge the gap between RGB and RAW representations and enable accurate reconstruction of structural details and color information. To further enhance latent transport, we introduce a cross-scale context guidance module that injects hierarchical RGB features into the flow estimation process. Moreover, we design a dual-domain latent autoencoder with a feature alignment constraint to support the proposed latent transport framework, which jointly encodes RGB and RAW inputs while promoting stable training and high-fidelity reconstruction. Extensive experiments demonstrate that RAW-Flow outperforms state-of-the-art approaches both quantitatively and visually.
comment: AAAI2026 Oral
☆ CURVE: Learning Causality-Inspired Invariant Representations for Robust Scene Understanding via Uncertainty-Guided Regularization
Scene graphs provide structured abstractions for scene understanding, yet they often overfit to spurious correlations, severely hindering out-of-distribution generalization. To address this limitation, we propose CURVE, a causality-inspired framework that integrates variational uncertainty modeling with uncertainty-guided structural regularization to suppress high-variance, environment-specific relations. Specifically, we apply prototype-conditioned debiasing to disentangle invariant interaction dynamics from environment-dependent variations, promoting a sparse and domain-stable topology. Empirically, we evaluate CURVE in zero-shot transfer and low-data sim-to-real adaptation, verifying its ability to learn domain-stable sparse topologies and provide reliable uncertainty estimates to support risk prediction under distribution shifts.
☆ Everything in Its Place: Benchmarking Spatial Intelligence of Text-to-Image Models ICLR 2026
Text-to-image (T2I) models have achieved remarkable success in generating high-fidelity images, but they often fail in handling complex spatial relationships, e.g., spatial perception, reasoning, or interaction. These critical aspects are largely overlooked by current benchmarks due to their short or information-sparse prompt design. In this paper, we introduce SpatialGenEval, a new benchmark designed to systematically evaluate the spatial intelligence of T2I models, covering two key aspects: (1) SpatialGenEval involves 1,230 long, information-dense prompts across 25 real-world scenes. Each prompt integrates 10 spatial sub-domains and corresponding 10 multi-choice question-answer pairs, ranging from object position and layout to occlusion and causality. Our extensive evaluation of 21 state-of-the-art models reveals that higher-order spatial reasoning remains a primary bottleneck. (2) To demonstrate that the utility of our information-dense design goes beyond simple evaluation, we also construct the SpatialT2I dataset. It contains 15,400 text-image pairs with rewritten prompts to ensure image consistency while preserving information density. Fine-tuned results on current foundation models (i.e., Stable Diffusion-XL, Uniworld-V1, OmniGen2) yield consistent performance gains (+4.2%, +5.7%, +4.4%) and more realistic effects in spatial relations, highlighting a data-centric paradigm to achieve spatial intelligence in T2I models.
comment: Accepted by ICLR 2026
☆ PalmBridge: A Plug-and-Play Feature Alignment Framework for Open-Set Palmprint Verification
Palmprint recognition is widely used in biometric systems, yet real-world performance often degrades due to feature distribution shifts caused by heterogeneous deployment conditions. Most deep palmprint models assume a closed and stationary distribution, leading to overfitting to dataset-specific textures rather than learning domain-invariant representations. Although data augmentation is commonly used to mitigate this issue, it assumes augmented samples can approximate the target deployment distribution, an assumption that often fails under significant domain mismatch. To address this limitation, we propose PalmBridge, a plug-and-play feature-space alignment framework for open-set palmprint verification based on vector quantization. Rather than relying solely on data-level augmentation, PalmBridge learns a compact set of representative vectors directly from training features. During enrollment and verification, each feature vector is mapped to its nearest representative vector under a minimum-distance criterion, and the mapped vector is then blended with the original vector. This design suppresses nuisance variation induced by domain shifts while retaining discriminative identity cues. The representative vectors are jointly optimized with the backbone network using task supervision, a feature-consistency objective, and an orthogonality regularization term to form a stable and well-structured shared embedding space. Furthermore, we analyze feature-to-representative mappings via assignment consistency and collision rate to assess model's sensitivity to blending weights. Experiments on multiple palmprint datasets and backbone architectures show that PalmBridge consistently reduces EER in intra-dataset open-set evaluation and improves cross-dataset generalization with negligible to modest runtime overhead.
☆ MMSF: Multitask and Multimodal Supervised Framework for WSI Classification and Survival Analysis
Multimodal evidence is critical in computational pathology: gigapixel whole slide images capture tumor morphology, while patient-level clinical descriptors preserve complementary context for prognosis. Integrating such heterogeneous signals remains challenging because feature spaces exhibit distinct statistics and scales. We introduce MMSF, a multitask and multimodal supervised framework built on a linear-complexity MIL backbone that explicitly decomposes and fuses cross-modal information. MMSF comprises a graph feature extraction module embedding tissue topology at the patch level, a clinical data embedding module standardizing patient attributes, a feature fusion module aligning modality-shared and modality-specific representations, and a Mamba-based MIL encoder with multitask prediction heads. Experiments on CAMELYON16 and TCGA-NSCLC demonstrate 2.1--6.6\% accuracy and 2.2--6.9\% AUC improvements over competitive baselines, while evaluations on five TCGA survival cohorts yield 7.1--9.8\% C-index improvements compared with unimodal methods and 5.6--7.1\% over multimodal alternatives.
comment: Submitted to "Biomedical Signal Processing and Control"
☆ Test-Time Adaptation for Anomaly Segmentation via Topology-Aware Optimal Transport Chaining
Deep topological data analysis (TDA) offers a principled framework for capturing structural invariants such as connectivity and cycles that persist across scales, making it a natural fit for anomaly segmentation (AS). Unlike thresholdbased binarisation, which produces brittle masks under distribution shift, TDA allows anomalies to be characterised as disruptions to global structure rather than local fluctuations. We introduce TopoOT, a topology-aware optimal transport (OT) framework that integrates multi-filtration persistence diagrams (PDs) with test-time adaptation (TTA). Our key innovation is Optimal Transport Chaining, which sequentially aligns PDs across thresholds and filtrations, yielding geodesic stability scores that identify features consistently preserved across scales. These stabilityaware pseudo-labels supervise a lightweight head trained online with OT-consistency and contrastive objectives, ensuring robust adaptation under domain shift. Across standard 2D and 3D anomaly detection benchmarks, TopoOT achieves state-of-the-art performance, outperforming the most competitive methods by up to +24.1% mean F1 on 2D datasets and +10.2% on 3D AS benchmarks.
☆ GVGS: Gaussian Visibility-Aware Multi-View Geometry for Accurate Surface Reconstruction
3D Gaussian Splatting enables efficient optimization and high-quality rendering, yet accurate surface reconstruction remains challenging. Prior methods improve surface reconstruction by refining Gaussian depth estimates, either via multi-view geometric consistency or through monocular depth priors. However, multi-view constraints become unreliable under large geometric discrepancies, while monocular priors suffer from scale ambiguity and local inconsistency, ultimately leading to inaccurate Gaussian depth supervision. To address these limitations, we introduce a Gaussian visibility-aware multi-view geometric consistency constraint that aggregates the visibility of shared Gaussian primitives across views, enabling more accurate and stable geometric supervision. In addition, we propose a progressive quadtree-calibrated Monocular depth constraint that performs block-wise affine calibration from coarse to fine spatial scales, mitigating the scale ambiguity of depth priors while preserving fine-grained surface details. Extensive experiments on DTU and TNT datasets demonstrate consistent improvements in geometric accuracy over prior Gaussian-based and implicit surface reconstruction methods. Codes are available at an anonymous repository: https://github.com/GVGScode/GVGS.
☆ UnlearnShield: Shielding Forgotten Privacy against Unlearning Inversion ICASSP 2026
Machine unlearning is an emerging technique that aims to remove the influence of specific data from trained models, thereby enhancing privacy protection. However, recent research has uncovered critical privacy vulnerabilities, showing that adversaries can exploit unlearning inversion to reconstruct data that was intended to be erased. Despite the severity of this threat, dedicated defenses remain lacking. To address this gap, we propose UnlearnShield, the first defense specifically tailored to counter unlearning inversion. UnlearnShield introduces directional perturbations in the cosine representation space and regulates them through a constraint module to jointly preserve model accuracy and forgetting efficacy, thereby reducing inversion risk while maintaining utility. Experiments demonstrate that it achieves a good trade-off among privacy protection, accuracy, and forgetting.
comment: This work has been accepted by ICASSP 2026
☆ CPiRi: Channel Permutation-Invariant Relational Interaction for Multivariate Time Series Forecasting ICLR 2026
Current methods for multivariate time series forecasting can be classified into channel-dependent and channel-independent models. Channel-dependent models learn cross-channel features but often overfit the channel ordering, which hampers adaptation when channels are added or reordered. Channel-independent models treat each channel in isolation to increase flexibility, yet this neglects inter-channel dependencies and limits performance. To address these limitations, we propose \textbf{CPiRi}, a \textbf{channel permutation invariant (CPI)} framework that infers cross-channel structure from data rather than memorizing a fixed ordering, enabling deployment in settings with structural and distributional co-drift without retraining. CPiRi couples \textbf{spatio-temporal decoupling architecture} with \textbf{permutation-invariant regularization training strategy}: a frozen pretrained temporal encoder extracts high-quality temporal features, a lightweight spatial module learns content-driven inter-channel relations, while a channel shuffling strategy enforces CPI during training. We further \textbf{ground CPiRi in theory} by analyzing permutation equivariance in multivariate time series forecasting. Experiments on multiple benchmarks show state-of-the-art results. CPiRi remains stable when channel orders are shuffled and exhibits strong \textbf{inductive generalization} to unseen channels even when trained on \textbf{only half} of the channels, while maintaining \textbf{practical efficiency} on large-scale datasets. The source code is released at https://github.com/JasonStraka/CPiRi.
comment: 22 pages, ICLR 2026
☆ SemBind: Binding Diffusion Watermarks to Semantics Against Black-Box Forgery Attacks
Latent-based watermarks, integrated into the generation process of latent diffusion models (LDMs), simplify detection and attribution of generated images. However, recent black-box forgery attacks, where an attacker needs at least one watermarked image and black-box access to the provider's model, can embed the provider's watermark into images not produced by the provider, posing outsized risk to provenance and trust. We propose SemBind, the first defense framework for latent-based watermarks that resists black-box forgery by binding latent signals to image semantics via a learned semantic masker. Trained with contrastive learning, the masker yields near-invariant codes for the same prompt and near-orthogonal codes across prompts; these codes are reshaped and permuted to modulate the target latent before any standard latent-based watermark. SemBind is generally compatible with existing latent-based watermarking schemes and keeps image quality essentially unchanged, while a simple mask-ratio parameter offers a tunable trade-off between anti-forgery strength and robustness. Across four mainstream latent-based watermark methods, our SemBind-enabled anti-forgery variants markedly reduce false acceptance under black-box forgery while providing a controllable robustness-security balance.
☆ OSDEnhancer: Taming Real-World Space-Time Video Super-Resolution with One-Step Diffusion
Diffusion models (DMs) have demonstrated exceptional success in video super-resolution (VSR), showcasing a powerful capacity for generating fine-grained details. However, their potential for space-time video super-resolution (STVSR), which necessitates not only recovering realistic visual content from low-resolution to high-resolution but also improving the frame rate with coherent temporal dynamics, remains largely underexplored. Moreover, existing STVSR methods predominantly address spatiotemporal upsampling under simplified degradation assumptions, which often struggle in real-world scenarios with complex unknown degradations. Such a high demand for reconstruction fidelity and temporal consistency makes the development of a robust STVSR framework particularly non-trivial. To address these challenges, we propose OSDEnhancer, a novel framework that, to the best of our knowledge, represents the first method to achieve real-world STVSR through an efficient one-step diffusion process. OSDEnhancer initializes essential spatiotemporal structures through a linear pre-interpolation strategy and pivots on training temporal refinement and spatial enhancement mixture of experts (TR-SE MoE), which allows distinct expert pathways to progressively learn robust, specialized representations for temporal coherence and spatial detail, further collaboratively reinforcing each other during inference. A bidirectional deformable variational autoencoder (VAE) decoder is further introduced to perform recurrent spatiotemporal aggregation and propagation, enhancing cross-frame reconstruction fidelity. Experiments demonstrate that the proposed method achieves state-of-the-art performance while maintaining superior generalization capability in real-world scenarios.
comment: 17 pages, 10 figures. Code will be released upon publication
☆ TPGDiff: Hierarchical Triple-Prior Guided Diffusion for Image Restoration
All-in-one image restoration aims to address diverse degradation types using a single unified model. Existing methods typically rely on degradation priors to guide restoration, yet often struggle to reconstruct content in severely degraded regions. Although recent works leverage semantic information to facilitate content generation, integrating it into the shallow layers of diffusion models often disrupts spatial structures (\emph{e.g.}, blurring artifacts). To address this issue, we propose a Triple-Prior Guided Diffusion (TPGDiff) network for unified image restoration. TPGDiff incorporates degradation priors throughout the diffusion trajectory, while introducing structural priors into shallow layers and semantic priors into deep layers, enabling hierarchical and complementary prior guidance for image reconstruction. Specifically, we leverage multi-source structural cues as structural priors to capture fine-grained details and guide shallow layers representations. To complement this design, we further develop a distillation-driven semantic extractor that yields robust semantic priors, ensuring reliable high-level guidance at deep layers even under severe degradations. Furthermore, a degradation extractor is employed to learn degradation-aware priors, enabling stage-adaptive control of the diffusion process across all timesteps. Extensive experiments on both single- and multi-degradation benchmarks demonstrate that TPGDiff achieves superior performance and generalization across diverse restoration scenarios. Our project page is: https://leoyjtu.github.io/tpgdiff-project.
☆ Structure-constrained Language-informed Diffusion Model for Unpaired Low-dose Computed Tomography Angiography Reconstruction
The application of iodinated contrast media (ICM) improves the sensitivity and specificity of computed tomography (CT) for a wide range of clinical indications. However, overdose of ICM can cause problems such as kidney damage and life-threatening allergic reactions. Deep learning methods can generate CT images of normal-dose ICM from low-dose ICM, reducing the required dose while maintaining diagnostic power. However, existing methods are difficult to realize accurate enhancement with incompletely paired images, mainly because of the limited ability of the model to recognize specific structures. To overcome this limitation, we propose a Structure-constrained Language-informed Diffusion Model (SLDM), a unified medical generation model that integrates structural synergy and spatial intelligence. First, the structural prior information of the image is effectively extracted to constrain the model inference process, thus ensuring structural consistency in the enhancement process. Subsequently, semantic supervision strategy with spatial intelligence is introduced, which integrates the functions of visual perception and spatial reasoning, thus prompting the model to achieve accurate enhancement. Finally, the subtraction angiography enhancement module is applied, which serves to improve the contrast of the ICM agent region to suitable interval for observation. Qualitative analysis of visual comparison and quantitative results of several metrics demonstrate the effectiveness of our method in angiographic reconstruction for low-dose contrast medium CT angiography.
☆ Physically Guided Visual Mass Estimation from a Single RGB Image
Estimating object mass from visual input is challenging because mass depends jointly on geometric volume and material-dependent density, neither of which is directly observable from RGB appearance. Consequently, mass prediction from pixels is ill-posed and therefore benefits from physically meaningful representations to constrain the space of plausible solutions. We propose a physically structured framework for single-image mass estimation that addresses this ambiguity by aligning visual cues with the physical factors governing mass. From a single RGB image, we recover object-centric three-dimensional geometry via monocular depth estimation to inform volume and extract coarse material semantics using a vision-language model to guide density-related reasoning. These geometry, semantic, and appearance representations are fused through an instance-adaptive gating mechanism, and two physically guided latent factors (volume- and density-related) are predicted through separate regression heads under mass-only supervision. Experiments on image2mass and ABO-500 show that the proposed method consistently outperforms state-of-the-art methods.
☆ Bridging the Applicator Gap with Data-Doping:Dual-Domain Learning for Precise Bladder Segmentation in CT-Guided Brachytherapy
Performance degradation due to covariate shift remains a major challenge for deep learning models in medical image segmentation. An open question is whether samples from a shifted distribution can effectively support learning when combined with limited target domain data. We investigate this problem in the context of bladder segmentation in CT guided gynecological brachytherapy, a critical task for accurate dose optimization and organ at risk sparing. While CT scans without brachytherapy applicators (no applicator: NA) are widely available, scans with applicators inserted (with applicator: WA) are scarce and exhibit substantial anatomical deformation and imaging artifacts, making automated segmentation particularly difficult. We propose a dual domain learning strategy that integrates NA and WA CT data to improve robustness and generalizability under covariate shift. Using a curated assorted dataset, we show that NA data alone fail to capture the anatomical and artifact related characteristics of WA images. However, introducing a modest proportion of WA data into a predominantly NA training set leads to significant performance improvements. Through systematic experiments across axial, coronal, and sagittal planes using multiple deep learning architectures, we demonstrate that doping only 10 to 30 percent WA data achieves segmentation performance comparable to models trained exclusively on WA data. The proposed approach attains Dice similarity coefficients of up to 0.94 and Intersection over Union scores of up to 0.92, indicating effective domain adaptation and improved clinical reliability. This study highlights the value of integrating anatomically similar but distribution shifted datasets to overcome data scarcity and enhance deep learning based segmentation for brachytherapy treatment planning.
☆ Towards Compact and Robust DNNs via Compression-aware Sharpness Minimization
Sharpness-Aware Minimization (SAM) has recently emerged as an effective technique for improving DNN robustness to input variations. However, its interplay with the compactness requirements of on-device DNN deployments remains less explored. Simply pruning a SAM-trained model can undermine robustness, since flatness in the continuous parameter space does not necessarily translate to robustness under the discrete structural changes induced by pruning. Conversely, applying SAM after pruning may be fundamentally constrained by architectural limitations imposed by an early, robustness-agnostic pruning pattern. To address this gap, we propose Compression-aware ShArpness Minimization (C-SAM), a framework that shifts sharpness-aware learning from parameter perturbations to mask perturbations. By explicitly perturbing pruning masks during training, C-SAM promotes a flatter loss landscape with respect to model structure, enabling the discovery of pruning patterns that simultaneously optimize model compactness and robustness to input variations. Extensive experiments on CelebA-HQ, Flowers-102, and CIFAR-10-C across ResNet-18, GoogLeNet, and MobileNet-V2 show that C-SAM consistently achieves higher certified robustness than strong baselines, with improvements of up to 42%, while maintaining task accuracy comparable to the corresponding unpruned models.
☆ Artifact-Aware Evaluation for High-Quality Video Generation
With the rapid advancement of video generation techniques, evaluating and auditing generated videos has become increasingly crucial. Existing approaches typically offer coarse video quality scores, lacking detailed localization and categorization of specific artifacts. In this work, we introduce a comprehensive evaluation protocol focusing on three key aspects affecting human perception: Appearance, Motion, and Camera. We define these axes through a taxonomy of 10 prevalent artifact categories reflecting common generative failures observed in video generation. To enable robust artifact detection and categorization, we introduce GenVID, a large-scale dataset of 80k videos generated by various state-of-the-art video generation models, each carefully annotated for the defined artifact categories. Leveraging GenVID, we develop DVAR, a Dense Video Artifact Recognition framework for fine-grained identification and classification of generative artifacts. Extensive experiments show that our approach significantly improves artifact detection accuracy and enables effective filtering of low-quality content.
☆ A Source-Free Approach for Domain Adaptation via Multiview Image Transformation and Latent Space Consistency IEEE
Domain adaptation (DA) addresses the challenge of transferring knowledge from a source domain to a target domain where image data distributions may differ. Existing DA methods often require access to source domain data, adversarial training, or complex pseudo-labeling techniques, which are computationally expensive. To address these challenges, this paper introduces a novel source-free domain adaptation method. It is the first approach to use multiview augmentation and latent space consistency techniques to learn domain-invariant features directly from the target domain. Our method eliminates the need for source-target alignment or pseudo-label refinement by learning transferable representations solely from the target domain by enforcing consistency between multiple augmented views in the latent space. Additionally, the method ensures consistency in the learned features by generating multiple augmented views of target domain data and minimizing the distance between their feature representations in the latent space. We also introduce a ConvNeXt-based encoder and design a loss function that combines classification and consistency objectives to drive effective adaptation directly from the target domain. The proposed model achieves an average classification accuracy of 90. 72\%, 84\%, and 97. 12\% in Office-31, Office-Home and Office-Caltech datasets, respectively. Further evaluations confirm that our study improves existing methods by an average classification accuracy increment of +1.23\%, +7.26\%, and +1.77\% on the respective datasets.
comment: Manuscript under review in IEEE Transactions on Image Processing
☆ Hallucination Begins Where Saliency Drops ICLR 2026
Recent studies have examined attention dynamics in large vision-language models (LVLMs) to detect hallucinations. However, existing approaches remain limited in reliably distinguishing hallucinated from factually grounded outputs, as they rely solely on forward-pass attention patterns and neglect gradient-based signals that reveal how token influence propagates through the network. To bridge this gap, we introduce LVLMs-Saliency, a gradient-aware diagnostic framework that quantifies the visual grounding strength of each output token by fusing attention weights with their input gradients. Our analysis uncovers a decisive pattern: hallucinations frequently arise when preceding output tokens exhibit low saliency toward the prediction of the next token, signaling a breakdown in contextual memory retention. Leveraging this insight, we propose a dual-mechanism inference-time framework to mitigate hallucinations: (1) Saliency-Guided Rejection Sampling (SGRS), which dynamically filters candidate tokens during autoregressive decoding by rejecting those whose saliency falls below a context-adaptive threshold, thereby preventing coherence-breaking tokens from entering the output sequence; and (2) Local Coherence Reinforcement (LocoRE), a lightweight, plug-and-play module that strengthens attention from the current token to its most recent predecessors, actively counteracting the contextual forgetting behavior identified by LVLMs-Saliency. Extensive experiments across multiple LVLMs demonstrate that our method significantly reduces hallucination rates while preserving fluency and task performance, offering a robust and interpretable solution for enhancing model reliability. Code is available at: https://github.com/zhangbaijin/LVLMs-Saliency
comment: Accepted in ICLR 2026
☆ StreamFusion: Scalable Sequence Parallelism for Distributed Inference of Diffusion Transformers on GPUs
Diffusion Transformers (DiTs) have gained increasing adoption in high-quality image and video generation. As demand for higher-resolution images and longer videos increases, single-GPU inference becomes inefficient due to increased latency and large activation sizes. Current frameworks employ sequence parallelism (SP) techniques such as Ulysses Attention and Ring Attention to scale inference. However, these implementations have three primary limitations: (1) suboptimal communication patterns for network topologies on modern GPU machines, (2) latency bottlenecks from all-to-all operations in inter-machine communication, and (3) GPU sender-receiver synchronization and computation overheads from using two-sided communication libraries. To address these issues, we present StreamFusion, a topology-aware efficient DiT serving engine. StreamFusion incorporates three key innovations: (1) a topology-aware sequence parallelism technique that accounts for inter- and intra-machine bandwidth differences, (2) Torus Attention, a novel SP technique enabling overlapping of inter-machine all-to-all operations with computation, and (3) a one-sided communication implementation that minimizes GPU sender-receiver synchronization and computation overheads. Our experiments demonstrate that StreamFusion outperforms the state-of-the-art approach by an average of $1.35\times$ (up to $1.77\times$).
☆ Reversible Efficient Diffusion for Image Fusion
Multi-modal image fusion aims to consolidate complementary information from diverse source images into a unified representation. The fused image is expected to preserve fine details and maintain high visual fidelity. While diffusion models have demonstrated impressive generative capabilities in image generation, they often suffer from detail loss when applied to image fusion tasks. This issue arises from the accumulation of noise errors inherent in the Markov process, leading to inconsistency and degradation in the fused results. However, incorporating explicit supervision into end-to-end training of diffusion-based image fusion introduces challenges related to computational efficiency. To address these limitations, we propose the Reversible Efficient Diffusion (RED) model - an explicitly supervised training framework that inherits the powerful generative capability of diffusion models while avoiding the distribution estimation.
☆ BLENDER: Blended Text Embeddings and Diffusion Residuals for Intra-Class Image Synthesis in Deep Metric Learning
The rise of Deep Generative Models (DGM) has enabled the generation of high-quality synthetic data. When used to augment authentic data in Deep Metric Learning (DML), these synthetic samples enhance intra-class diversity and improve the performance of downstream DML tasks. We introduce BLenDeR, a diffusion sampling method designed to increase intra-class diversity for DML in a controllable way by leveraging set-theory inspired union and intersection operations on denoising residuals. The union operation encourages any attribute present across multiple prompts, while the intersection extracts the common direction through a principal component surrogate. These operations enable controlled synthesis of diverse attribute combinations within each class, addressing key limitations of existing generative approaches. Experiments on standard DML benchmarks demonstrate that BLenDeR consistently outperforms state-of-the-art baselines across multiple datasets and backbones. Specifically, BLenDeR achieves 3.7% increase in Recall@1 on CUB-200 and a 1.8% increase on Cars-196, compared to state-of-the-art baselines under standard experimental settings.
☆ Visual Prompt-Agnostic Evolution ICLR 2026
Visual Prompt Tuning (VPT) adapts a frozen Vision Transformer (ViT) to downstream tasks by inserting a small number of learnable prompt tokens into the token sequence at each layer. However, we observe that existing VPT variants often suffer from unstable training dynamics, characterized by gradient oscillations. A layer-wise analysis reveals that shallow-layer prompts tend to stagnate early, while deeper-layer prompts exhibit high-variance oscillations, leading to cross-layer mismatch. These issues slow convergence and degrade final performance. To address these challenges, we propose Prompt-Agnostic Evolution ($\mathtt{PAE}$), which strengthens vision prompt tuning by explicitly modeling prompt dynamics. From a frequency-domain perspective, we initialize prompts in a task-aware direction by uncovering and propagating frequency shortcut patterns that the backbone inherently exploits for recognition. To ensure coherent evolution across layers, we employ a shared Koopman operator that imposes a global linear transformation instead of uncoordinated, layer-specific updates. Finally, inspired by Lyapunov stability theory, we introduce a regularizer that constrains error amplification during evolution. Extensive experiments show that $\mathtt{PAE}$ accelerates convergence with an average $1.41\times$ speedup and improves accuracy by 1--3% on 25 datasets across multiple downstream tasks. Beyond performance, $\mathtt{PAE}$ is prompt-agnostic and lightweight, and it integrates seamlessly with diverse VPT variants without backbone modification or inference-time changes.
comment: Accepted by ICLR 2026
☆ Feature Projection Learning for Better Vision-Language Reasoning ICASSP 2026
Vision-Language Pre-Trained models, notably CLIP, that utilize contrastive learning have proven highly adept at extracting generalizable visual features. To inherit the well-learned knowledge of VLP models for downstream tasks, several approaches aim to adapt them efficiently with limited supervision. However, these methods either suffer from limited performance, excessive learnable parameters, or extended training times, all of which hinder their effectiveness in adapting the CLIP model to downstream tasks. In this work, we propose a simple yet efficient and effective method called \textit{\textbf{F}eature \textbf{P}rojection \textbf{L}earning(FPL)} to address these problems. Specifically, we develop a projection model that projects class prototype features into the query image feature space and reconstructs the query image feature map. The negative average squared reconstruction error is used as the class score. In this way, we transform the classification problem into a feature projection problem. The final output of this method is a combination of the prediction from the projection model and the original pre-trained CLIP. Comprehensive empirical evaluations confirm that FPL delivers superior accuracy, surpassing the current state-of-the-art methods by a substantial margin.
comment: Accepted to ICASSP 2026
☆ DenseGRPO: From Sparse to Dense Reward for Flow Matching Model Alignment ICLR 2026
Recent GRPO-based approaches built on flow matching models have shown remarkable improvements in human preference alignment for text-to-image generation. Nevertheless, they still suffer from the sparse reward problem: the terminal reward of the entire denoising trajectory is applied to all intermediate steps, resulting in a mismatch between the global feedback signals and the exact fine-grained contributions at intermediate denoising steps. To address this issue, we introduce \textbf{DenseGRPO}, a novel framework that aligns human preference with dense rewards, which evaluates the fine-grained contribution of each denoising step. Specifically, our approach includes two key components: (1) we propose to predict the step-wise reward gain as dense reward of each denoising step, which applies a reward model on the intermediate clean images via an ODE-based approach. This manner ensures an alignment between feedback signals and the contributions of individual steps, facilitating effective training; and (2) based on the estimated dense rewards, a mismatch drawback between the uniform exploration setting and the time-varying noise intensity in existing GRPO-based methods is revealed, leading to an inappropriate exploration space. Thus, we propose a reward-aware scheme to calibrate the exploration space by adaptively adjusting a timestep-specific stochasticity injection in the SDE sampler, ensuring a suitable exploration space at all timesteps. Extensive experiments on multiple standard benchmarks demonstrate the effectiveness of the proposed DenseGRPO and highlight the critical role of the valid dense rewards in flow matching model alignment.
comment: Accepted by ICLR 2026
☆ TRACER: Texture-Robust Affordance Chain-of-Thought for Deformable-Object Refinement
The central challenge in robotic manipulation of deformable objects lies in aligning high-level semantic instructions with physical interaction points under complex appearance and texture variations. Due to near-infinite degrees of freedom, complex dynamics, and heterogeneous patterns, existing vision-based affordance prediction methods often suffer from boundary overflow and fragmented functional regions. To address these issues, we propose TRACER, a Texture-Robust Affordance Chain-of-thought with dEformable-object Refinement framework, which establishes a cross-hierarchical mapping from hierarchical semantic reasoning to appearance-robust and physically consistent functional region refinement. Specifically, a Tree-structured Affordance Chain-of-Thought (TA-CoT) is formulated to decompose high-level task intentions into hierarchical sub-task semantics, providing consistent guidance across various execution stages. To ensure spatial integrity, a Spatial-Constrained Boundary Refinement (SCBR) mechanism is introduced to suppress prediction spillover, guiding the perceptual response to converge toward authentic interaction manifolds. Furthermore, an Interactive Convergence Refinement Flow (ICRF) is developed to aggregate discrete pixels corrupted by appearance noise, significantly enhancing the spatial continuity and physical plausibility of the identified functional regions. Extensive experiments conducted on the Fine-AGDDO15 dataset and a real-world robotic platform demonstrate that TRACER significantly improves affordance grounding precision across diverse textures and patterns inherent to deformable objects. More importantly, it enhances the success rate of long-horizon tasks, effectively bridging the gap between high-level semantic reasoning and low-level physical execution. The source code and dataset will be made publicly available at https://github.com/Dikay1/TRACER.
comment: The source code and dataset will be made publicly available at https://github.com/Dikay1/TRACER
☆ Automated Marine Biofouling Assessment: Benchmarking Computer Vision and Multimodal LLMs on the Level of Fouling Scale
Marine biofouling on vessel hulls poses major ecological, economic, and biosecurity risks. Traditional survey methods rely on diver inspections, which are hazardous and limited in scalability. This work investigates automated classification of biofouling severity on the Level of Fouling (LoF) scale using both custom computer vision models and large multimodal language models (LLMs). Convolutional neural networks, transformer-based segmentation, and zero-shot LLMs were evaluated on an expert-labelled dataset from the New Zealand Ministry for Primary Industries. Computer vision models showed high accuracy at extreme LoF categories but struggled with intermediate levels due to dataset imbalance and image framing. LLMs, guided by structured prompts and retrieval, achieved competitive performance without training and provided interpretable outputs. The results demonstrate complementary strengths across approaches and suggest that hybrid methods integrating segmentation coverage with LLM reasoning offer a promising pathway toward scalable and interpretable biofouling assessment.
comment: Australasian Conference on Robotics and Automation, ACRA2025 13 Pages, 8 Figures
☆ TeleStyle: Content-Preserving Style Transfer in Images and Videos
Content-preserving style transfer, generating stylized outputs based on content and style references, remains a significant challenge for Diffusion Transformers (DiTs) due to the inherent entanglement of content and style features in their internal representations. In this technical report, we present TeleStyle, a lightweight yet effective model for both image and video stylization. Built upon Qwen-Image-Edit, TeleStyle leverages the base model's robust capabilities in content preservation and style customization. To facilitate effective training, we curated a high-quality dataset of distinct specific styles and further synthesized triplets using thousands of diverse, in-the-wild style categories. We introduce a Curriculum Continual Learning framework to train TeleStyle on this hybrid dataset of clean (curated) and noisy (synthetic) triplets. This approach enables the model to generalize to unseen styles without compromising precise content fidelity. Additionally, we introduce a video-to-video stylization module to enhance temporal consistency and visual quality. TeleStyle achieves state-of-the-art performance across three core evaluation metrics: style similarity, content consistency, and aesthetic quality. Code and pre-trained models are available at https://github.com/Tele-AI/TeleStyle
☆ Efficient Token Pruning for LLaDA-V
Diffusion-based large multimodal models, such as LLaDA-V, have demonstrated impressive capabilities in vision-language understanding and generation. However, their bidirectional attention mechanism and diffusion-style iterative denoising paradigm introduce significant computational overhead, as visual tokens are repeatedly processed across all layers and denoising steps. In this work, we conduct an in-depth attention analysis and reveal that, unlike autoregressive decoders, LLaDA-V aggregates cross-modal information predominantly in middle-to-late layers, leading to delayed semantic alignment. Motivated by this observation, we propose a structured token pruning strategy inspired by FastV, selectively removing a proportion of visual tokens at designated layers to reduce FLOPs while preserving critical semantic information. To the best of our knowledge, this is the first work to investigate structured token pruning in diffusion-based large multimodal models. Unlike FastV, which focuses on shallow-layer pruning, our method targets the middle-to-late layers of the first denoising step to align with LLaDA-V's delayed attention aggregation to maintain output quality, and the first-step pruning strategy reduces the computation across all subsequent steps. Our framework provides an empirical basis for efficient LLaDA-V inference and highlights the potential of vision-aware pruning in diffusion-based multimodal models. Across multiple benchmarks, our best configuration reduces computational cost by up to 65% while preserving an average of 95% task performance.
☆ An AI Framework for Microanastomosis Motion Assessment IEEE
Proficiency in microanastomosis is a fundamental competency across multiple microsurgical disciplines. These procedures demand exceptional precision and refined technical skills, making effective, standardized assessment methods essential. Traditionally, the evaluation of microsurgical techniques has relied heavily on the subjective judgment of expert raters. They are inherently constrained by limitations such as inter-rater variability, lack of standardized evaluation criteria, susceptibility to cognitive bias, and the time-intensive nature of manual review. These shortcomings underscore the urgent need for an objective, reliable, and automated system capable of assessing microsurgical performance with consistency and scalability. To bridge this gap, we propose a novel AI framework for the automated assessment of microanastomosis instrument handling skills. The system integrates four core components: (1) an instrument detection module based on the You Only Look Once (YOLO) architecture; (2) an instrument tracking module developed from Deep Simple Online and Realtime Tracking (DeepSORT); (3) an instrument tip localization module employing shape descriptors; and (4) a supervised classification module trained on expert-labeled data to evaluate instrument handling proficiency. Experimental results demonstrate the effectiveness of the framework, achieving an instrument detection precision of 97%, with a mean Average Precision (mAP) of 96%, measured by Intersection over Union (IoU) thresholds ranging from 50% to 95% (mAP50-95).
comment: Accepted by IEEE/EMBS NER 2025. \c{opyright} 20XX IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses
☆ Shape of Thought: Progressive Object Assembly via Visual Chain-of-Thought
Multimodal models for text-to-image generation have achieved strong visual fidelity, yet they remain brittle under compositional structural constraints-notably generative numeracy, attribute binding, and part-level relations. To address these challenges, we propose Shape-of-Thought (SoT), a visual CoT framework that enables progressive shape assembly via coherent 2D projections without external engines at inference time. SoT trains a unified multimodal autoregressive model to generate interleaved textual plans and rendered intermediate states, helping the model capture shape-assembly logic without producing explicit geometric representations. To support this paradigm, we introduce SoT-26K, a large-scale dataset of grounded assembly traces derived from part-based CAD hierarchies, and T2S-CompBench, a benchmark for evaluating structural integrity and trace faithfulness. Fine-tuning on SoT-26K achieves 88.4% on component numeracy and 84.8% on structural topology, outperforming text-only baselines by around 20%. SoT establishes a new paradigm for transparent, process-supervised compositional generation. The code is available at https://anonymous.4open.science/r/16FE/. The SoT-26K dataset will be released upon acceptance.
comment: The code is available at https://anonymous.4open.science/r/16FE/
☆ Towards Mitigating Modality Bias in Vision-Language Models for Temporal Action Localization
Temporal Action Localization (TAL) requires identifying both the boundaries and categories of actions in untrimmed videos. While vision-language models (VLMs) offer rich semantics to complement visual evidence, existing approaches tend to overemphasize linguistic priors at the expense of visual performance, leading to a pronounced modality bias. We propose ActionVLM, a vision-language aggregation framework that systematically mitigates modality bias in TAL. Our key insight is to preserve vision as the dominant signal while adaptively exploiting language only when beneficial. To this end, we introduce (i) a debiasing reweighting module that estimates the language advantage-the incremental benefit of language over vision-only predictions-and dynamically reweights language modality accordingly, and (ii) a residual aggregation strategy that treats language as a complementary refinement rather than the primary driver. This combination alleviates modality bias, reduces overconfidence from linguistic priors, and strengthens temporal reasoning. Experiments on THUMOS14 show that our model outperforms state-of-the-art by up to 3.2% mAP.
☆ BadDet+: Robust Backdoor Attacks for Object Detection
Backdoor attacks pose a severe threat to deep learning, yet their impact on object detection remains poorly understood compared to image classification. While attacks have been proposed, we identify critical weaknesses in existing detection-based methods, specifically their reliance on unrealistic assumptions and a lack of physical validation. To bridge this gap, we introduce BadDet+, a penalty-based framework that unifies Region Misclassification Attacks (RMA) and Object Disappearance Attacks (ODA). The core mechanism utilizes a log-barrier penalty to suppress true-class predictions for triggered inputs, resulting in (i) position and scale invariance, and (ii) enhanced physical robustness. On real-world benchmarks, BadDet+ achieves superior synthetic-to-physical transfer compared to existing RMA and ODA baselines while preserving clean performance. Theoretical analysis confirms the proposed penalty acts within a trigger-specific feature subspace, reliably inducing attacks without degrading standard inference. These results highlight significant vulnerabilities in object detection and the necessity for specialized defenses.
☆ Thinking in Frames: How Visual Context and Test-Time Scaling Empower Video Reasoning
Vision-Language Models have excelled at textual reasoning, but they often struggle with fine-grained spatial understanding and continuous action planning, failing to simulate the dynamics required for complex visual reasoning. In this work, we formulate visual reasoning by means of video generation models, positing that generated frames can act as intermediate reasoning steps between initial states and solutions. We evaluate their capacity in two distinct regimes: Maze Navigation for sequential discrete planning with low visual change and Tangram Puzzle for continuous manipulation with high visual change. Our experiments reveal three critical insights: (1) Robust Zero-Shot Generalization: In both tasks, the model demonstrates strong performance on unseen data distributions without specific finetuning. (2) Visual Context: The model effectively uses visual context as explicit control, such as agent icons and tangram shapes, enabling it to maintain high visual consistency and adapt its planning capability robustly to unseen patterns. (3) Visual Test-Time Scaling: We observe a test-time scaling law in sequential planning; increasing the generated video length (visual inference budget) empowers better zero-shot generalization to spatially and temporally complex paths. These findings suggest that video generation is not merely a media tool, but a scalable, generalizable paradigm for visual reasoning.
comment: 8 pages, 3 figures, 3 tables (26 pages, 13 figures, 6 tables including references and appendices)
☆ AI-based Prediction of Biochemical Recurrence from Biopsy and Prostatectomy Samples
Biochemical recurrence (BCR) after radical prostatectomy (RP) is a surrogate marker for aggressive prostate cancer with adverse outcomes, yet current prognostic tools remain imprecise. We trained an AI-based model on diagnostic prostate biopsy slides from the STHLM3 cohort (n = 676) to predict patient-specific risk of BCR, using foundation models and attention-based multiple instance learning. Generalizability was assessed across three external RP cohorts: LEOPARD (n = 508), CHIMERA (n = 95), and TCGA-PRAD (n = 379). The image-based approach achieved 5-year time-dependent AUCs of 0.64, 0.70, and 0.70, respectively. Integrating clinical variables added complementary prognostic value and enabled statistically significant risk stratification. Compared with guideline-based CAPRA-S, AI incrementally improved postoperative prognostication. These findings suggest biopsy-trained histopathology AI can generalize across specimen types to support preoperative and postoperative decision making, but the added value of AI-based multimodal approaches over simpler predictive models should be critically scrutinized in further studies.
comment: 39 pages, 6 tables, 11 figures
☆ Low performing pixel correction in computed tomography with unrolled network and synthetic data training
Low performance pixels (LPP) in Computed Tomography (CT) detectors would lead to ring and streak artifacts in the reconstructed images, making them clinically unusable. In recent years, several solutions have been proposed to correct LPP artifacts, either in the image domain or in the sinogram domain using supervised deep learning methods. However, these methods require dedicated datasets for training, which are expensive to collect. Moreover, existing approaches focus solely either on image-space or sinogram-space correction, ignoring the intrinsic correlations from the forward operation of the CT geometry. In this work, we propose an unrolled dual-domain method based on synthetic data to correct LPP artifacts. Specifically, the intrinsic correlations of LPP between the sinogram and image domains are leveraged through synthetic data generated from natural images, enabling the trained model to correct artifacts without requiring any real-world clinical data. In experiments simulating 1-2% detectors defect near the isocenter, the proposed method outperformed the state-of-the-art approaches by a large margin. The results indicate that our solution can correct LPP artifacts without the cost of data collection for model training, and it is adaptable to different scanner settings for software-based applications.
comment: ISBI 2026 accepted
☆ Text controllable PET denoising SP
Positron Emission Tomography (PET) imaging is a vital tool in medical diagnostics, offering detailed insights into molecular processes within the human body. However, PET images often suffer from complicated noise, which can obscure critical diagnostic information. The quality of the PET image is impacted by various factors including scanner hardware, image reconstruction, tracer properties, dose/count level, and acquisition time. In this study, we propose a novel text-guided denoising method capable of enhancing PET images across a wide range of count levels within a single model. The model utilized the features from a pretrained CLIP model with a U-Net based denoising model. Experimental results demonstrate that the proposed model leads significant improvements in both qualitative and quantitative assessments. The flexibility of the model shows the potential for helping more complicated denoising demands or reducing the acquisition time.
comment: SPIE Medical Imaging 2026
☆ Noisy but Valid: Robust Statistical Evaluation of LLMs with Imperfect Judges ICLR2026
Reliable certification of Large Language Models (LLMs)-verifying that failure rates are below a safety threshold-is critical yet challenging. While "LLM-as-a-Judge" offers scalability, judge imperfections, noise, and bias can invalidate statistical guarantees. We introduce a "Noisy but Valid" hypothesis testing framework to address this. By leveraging a small human-labelled calibration set to estimate the judge's True Positive and False Positive Rates (TPR/FPR), we derive a variance-corrected critical threshold applied to a large judge-labelled dataset. Crucially, our framework theoretically guarantees finite-sample Type-I error control (validity) despite calibration uncertainty. This distinguishes our work from Prediction-Powered Inference (PPI), positioning our method as a diagnostic tool that explicitly models judge behavior rather than a black-box estimator. Our contributions include: (1) Theoretical Guarantees: We derive the exact conditions under which noisy testing yields higher statistical power than direct evaluation; (2) Empirical Validation: Experiments on Jigsaw Comment, Hate Speech and SafeRLHF confirm our theory; (3) The Oracle Gap: We reveal a significant performance gap between practical methods and the theoretical "Oracle" (perfectly known judge parameters), quantifying the cost of estimation. Specifically, we provide the first systematic treatment of the imperfect-judge setting, yielding interpretable diagnostics of judge reliability and clarifying how evaluation power depends on judge quality, dataset size, and certification levels. Together, these results sharpen understanding of statistical evaluation with LLM judges, and highlight trade-offs among competing inferential tools.
comment: Accepted to ICLR2026
☆ Non-Markov Multi-Round Conversational Image Generation with History-Conditioned MLLMs
Conversational image generation requires a model to follow user instructions across multiple rounds of interaction, grounded in interleaved text and images that accumulate as chat history. While recent multimodal large language models (MLLMs) can generate and edit images, most existing multi-turn benchmarks and training recipes are effectively Markov: the next output depends primarily on the most recent image, enabling shortcut solutions that ignore long-range history. In this work we formalize and target the more challenging non-Markov setting, where a user may refer back to earlier states, undo changes, or reference entities introduced several rounds ago. We present (i) non-Markov multi-round data construction strategies, including rollback-style editing that forces retrieval of earlier visual states and name-based multi-round personalization that binds names to appearances across rounds; (ii) a history-conditioned training and inference framework with token-level caching to prevent multi-round identity drift; and (iii) enabling improvements for high-fidelity image reconstruction and editable personalization, including a reconstruction-based DiT detokenizer and a multi-stage fine-tuning curriculum. We demonstrate that explicitly training for non-Markov interactions yields substantial improvements in multi-round consistency and instruction compliance, while maintaining strong single-round editing and personalization.
comment: 19 pages, 19 figures, plan for TIP
☆ Denoising and Baseline Correction of Low-Scan FTIR Spectra: A Benchmark of Deep Learning Models Against Traditional Signal Processing
High-quality Fourier Transform Infrared (FTIR) imaging usually needs extensive signal averaging to reduce noise and drift which severely limits clinical speed. Deep learning can accelerate imaging by reconstructing spectra from rapid, single-scan inputs. However, separating noise and baseline drift simultaneously without ground truth is an ill-posed inverse problem. Standard black-box architectures often rely on statistical approximations that introduce spectral hallucinations or fail to generalize to unstable atmospheric conditions. To solve these issues we propose a physics-informed cascade Unet that separates denoising and baseline correction tasks using a new, deterministic Physics Bridge. This architecture forces the network to separate random noise from chemical signals using an embedded SNIP layer to enforce spectroscopic constraints instead of learning statistical approximations. We benchmarked this approach against a standard single Unet and a traditional Savitzky-Golay/SNIP workflow. We used a dataset of human hypopharyngeal carcinoma cells (FaDu). The cascade model outperformed all other methods, achieving a 51.3% reduction in RMSE compared to raw single-scan inputs, surpassing both the single Unet (40.2%) and the traditional workflow (33.7%). Peak-aware metrics show that the cascade architecture eliminates spectral hallucinations found in standard deep learning. It also preserves peak intensity with much higher fidelity than traditional smoothing. These results show that the cascade Unet is a robust solution for diagnostic-grade FTIR imaging. It enables imaging speeds 32 times faster than current methods.
♻ ☆ From Specialist to Generalist: Unlocking SAM's Learning Potential on Unlabeled Medical Images
Foundation models like the Segment Anything Model (SAM) show strong generalization, yet adapting them to medical images remains difficult due to domain shift, scarce labels, and the inability of Parameter-Efficient Fine-Tuning (PEFT) to exploit unlabeled data. While conventional models like U-Net excel in semi-supervised medical learning, their potential to assist a PEFT SAM has been largely overlooked. We introduce SC-SAM, a specialist-generalist framework where U-Net provides point-based prompts and pseudo-labels to guide SAM's adaptation, while SAM serves as a powerful generalist supervisor to regularize U-Net. This reciprocal guidance forms a bidirectional co-training loop that allows both models to effectively exploit the unlabeled data. Across prostate MRI and polyp segmentation benchmarks, our method achieves state-of-the-art results, outperforming other existing semi-supervised SAM variants and even medical foundation models like MedSAM, highlighting the value of specialist-generalist cooperation for label-efficient medical image segmentation. Our code is available at https://github.com/vnlvi2k3/SC-SAM.
comment: Accepted to ISBI 2026
♻ ☆ Splat Feature Solver ICLR 2026
Feature lifting has emerged as a crucial component in 3D scene understanding, enabling the attachment of rich image feature descriptors (e.g., DINO, CLIP) onto splat-based 3D representations. The core challenge lies in optimally assigning rich general attributes to 3D primitives while addressing the inconsistency issues from multi-view images. We present a unified, kernel- and feature-agnostic formulation of the feature lifting problem as a sparse linear inverse problem, which can be solved efficiently in closed form. Our approach admits a provable upper bound on the global optimal error under convex losses for delivering high quality lifted features. To address inconsistencies and noise in multi-view observations, we introduce two complementary regularization strategies to stabilize the solution and enhance semantic fidelity. Tikhonov Guidance enforces numerical stability through soft diagonal dominance, while Post-Lifting Aggregation filters noisy inputs via feature clustering. Extensive experiments demonstrate that our approach achieves state-of-the-art performance on open-vocabulary 3D segmentation benchmarks, outperforming training-based, grouping-based, and heuristic-forward baselines while producing lifted features in minutes. Our \textbf{code} is available in the \href{https://github.com/saliteta/splat-distiller/tree/main}{\textcolor{blue}{GitHub}}. We provide additional \href{https://splat-distiller.pages.dev/}{\textcolor{blue}{website}} for more visualization, as well as the \href{https://www.youtube.com/watch?v=CH-G5hbvArM}{\textcolor{blue}{video}}.
comment: ICLR 2026 Accepted
♻ ☆ BlindSight: Harnessing Sparsity for Efficient Vision-Language Models
Large vision-language models (VLMs) enable joint processing of text and images. However, incorporating vision data significantly increases the prompt length, resulting in a longer time to first token (TTFT). This bottleneck can be alleviated by leveraging the inherent sparsity in the attention computation. Analyzing these attention patterns in VLMs when processing a series of images, we observe the absence of inter-image attention in a substantial portion of layers. Based on this, we propose BlindSight: an approach to optimize multi-image VLM inference using an input-template-aware attention sparsity mask with no runtime overhead. We utilize a dataset to derive a prompt-agnostic categorization for attention heads: Dense, Sink, Intra-Image, and Intra-Image+Sink. We develop a Triton-based GPU kernel to leverage this sparsity. BlindSight achieves a 1.8-3.2x speedup in the attention computation (prompt length 36K-300K). BlindSight generalizes across VLMs (Qwen2-VL, Qwen2.5-VL, Gemma 3), with only a 0.78% absolute accuracy degradation on average on multi-image comprehension benchmarks. Finally, we advocate for the design of efficient VLMs that combine BlindSight-inspired sparse and dense layers.
♻ ☆ FLOL: Fast Baselines for Real-World Low-Light Enhancement
Low-Light Image Enhancement (LLIE) is a key task in computational photography and imaging. The problem of enhancing images captured during night or in dark environments has been well-studied in the computer vision literature. However, current deep learning-based solutions struggle with efficiency and robustness for real-world scenarios (e.g., scenes with noise, saturated pixels). We propose a lightweight neural network that combines image processing in the frequency and spatial domains. Our baseline method, FLOL, is one of the fastest models for this task, achieving results comparable to the state-of-the-art on popular real-world benchmarks such as LOLv2, LSRW, MIT-5K and UHD-LL. Moreover, we are able to process 1080p images in real-time under 12ms. Code and models at https://github.com/cidautai/FLOL
comment: Journal Preprint
♻ ☆ ReactionMamba: Generating Short & Long Human Reaction Sequences
We present ReactionMamba, a novel framework for generating long 3D human reaction motions. Reaction-Mamba integrates a motion VAE for efficient motion encoding with Mamba-based state-space models to decode temporally consistent reactions. This design enables ReactionMamba to generate both short sequences of simple motions and long sequences of complex motions, such as dance and martial arts. We evaluate ReactionMamba on three datasets--NTU120-AS, Lindy Hop, and InterX--and demonstrate competitive performance in terms of realism, diversity, and long-sequence generation compared to previous methods, including InterFormer, ReMoS, and Ready-to-React, while achieving substantial improvements in inference speed.
♻ ☆ Weakly supervised framework for wildlife detection and counting in challenging Arctic environments: a case study on caribou (Rangifer tarandus)
Caribou across the Arctic has declined in recent decades, motivating scalable and accurate monitoring approaches to guide evidence-based conservation actions and policy decisions. Manual interpretation from this imagery is labor-intensive and error-prone, underscoring the need for automatic and reliable detection across varying scenes. Yet, such automatic detection is challenging due to severe background heterogeneity, dominant empty terrain (class imbalance), small or occluded targets, and wide variation in density and scale. To make the detection model (HerdNet) more robust to these challenges, a weakly supervised patch-level pretraining based on a detection network's architecture is proposed. The detection dataset includes five caribou herds distributed across Alaska. By learning from empty vs. non-empty labels in this dataset, the approach produces early weakly supervised knowledge for enhanced detection compared to HerdNet, which is initialized from generic weights. Accordingly, the patch-based pretrain network attained high accuracy on multi-herd imagery (2017) and on an independent year's (2019) test sets (F1: 93.7%/92.6%, respectively), enabling reliable mapping of regions containing animals to facilitate manual counting on large aerial imagery. Transferred to detection, initialization from weakly supervised pretraining yielded consistent gains over ImageNet weights on both positive patches (F1: 92.6%/93.5% vs. 89.3%/88.6%), and full-image counting (F1: 95.5%/93.3% vs. 91.5%/90.4%). Remaining limitations are false positives from animal-like background clutter and false negatives related to low animal density occlusions. Overall, pretraining on coarse labels prior to detection makes it possible to rely on weakly-supervised pretrained weights even when labeled data are limited, achieving results comparable to generic-weight initialization.
comment: 30 pages, 8 figures, submitted to Frontiers in Ecology and Evolution
♻ ☆ Dense-SfM: Structure from Motion with Dense Consistent Matching
We present Dense-SfM, a novel Structure from Motion (SfM) framework designed for dense and accurate 3D reconstruction from multi-view images. Sparse keypoint matching, which traditional SfM methods often rely on, limits both accuracy and point density, especially in texture-less areas. Dense-SfM addresses this limitation by integrating dense matching with a Gaussian Splatting (GS) based track extension which gives more consistent, longer feature tracks. To further improve reconstruction accuracy, Dense-SfM is equipped with a multi-view kernelized matching module leveraging transformer and Gaussian Process architectures, for robust track refinement across multi-views. Evaluations on the ETH3D and Texture-Poor SfM datasets show that Dense-SfM offers significant improvements in accuracy and density over state-of-the-art methods. Project page: https://icetea-cv.github.io/densesfm/.
♻ ☆ JAFAR: Jack up Any Feature at Any Resolution
Foundation Vision Encoders have become essential for a wide range of dense vision tasks. However, their low-resolution spatial feature outputs necessitate feature upsampling to produce the high-resolution modalities required for downstream tasks. In this work, we introduce JAFAR, a lightweight and flexible feature upsampler that enhances the spatial resolution of visual features from any Foundation Vision Encoder to an arbitrary target resolution. JAFAR employs an attention-based module designed to promote semantic alignment between high-resolution queries, derived from low-level image features, and semantically enriched low-resolution keys, using Spatial Feature Transform (SFT) modulation. Notably, despite the absence of high-resolution supervision, we demonstrate that learning at low upsampling ratios and resolutions generalizes remarkably well to significantly higher output scales. Extensive experiments show that JAFAR effectively recovers fine-grained spatial details and consistently outperforms existing feature upsampling methods across a diverse set of downstream tasks. Project page at https://jafar-upsampler.github.io
comment: Code available at https://github.com/PaulCouairon/JAFAR
♻ ☆ REST: Diffusion-based Real-time End-to-end Streaming Talking Head Generation via ID-Context Caching and Asynchronous Streaming Distillation
Diffusion models have significantly advanced the field of talking head generation (THG). However, slow inference speeds and prevalent non-autoregressive paradigms severely constrain the application of diffusion-based THG models. In this study, we propose REST, a pioneering diffusion-based, real-time, end-to-end streaming audio-driven talking head generation framework. To support real-time end-to-end generation, a compact video latent space is first learned through a spatiotemporal variational autoencoder with a high compression ratio. Additionally, to enable semi-autoregressive streaming within the compact video latent space, we introduce an ID-Context Cache mechanism, which integrates ID-Sink and Context-Cache principles into key-value caching for maintaining identity consistency and temporal coherence during long-term streaming generation. Furthermore, an Asynchronous Streaming Distillation (ASD) strategy is proposed to mitigate error accumulation and enhance temporal consistency in streaming generation, leveraging a non-streaming teacher with an asynchronous noise schedule to supervise the streaming student. REST bridges the gap between autoregressive and diffusion-based approaches, achieving a breakthrough in efficiency for applications requiring real-time THG. Experimental results demonstrate that REST outperforms state-of-the-art methods in both generation speed and overall performance.
comment: 27 pages, 10 figures
♻ ☆ DiffRatio: Training One-Step Diffusion Models Without Teacher Supervision
Score-based distillation methods (e.g., variational score distillation) train one-step diffusion models by first pre-training a teacher score model and then distilling it into a one-step student model. However, the gradient estimator in the distillation stage usually suffers from two sources of bias: (1) biased teacher supervision due to score estimation error incurred during pre-training, and (2) the student model's score estimation error during distillation. These biases can degrade the quality of the resulting one-step diffusion model. To address this, we propose DiffRatio, a new framework for training one-step diffusion models: instead of estimating the teacher and student scores independently and then taking their difference, we directly estimate the score difference as the gradient of a learned log density ratio between the student and data distributions across diffusion time steps. This approach greatly simplifies the training pipeline, significantly reduces gradient estimation bias, and improves one-step generation quality. Additionally, it also reduces auxiliary network size by using a lightweight density-ratio network instead of two full score networks, which improves computational and memory efficiency. DiffRatio achieves competitive one-step generation results on CIFAR-10 and ImageNet (64x64 and 512x512), outperforming most teacher-supervised distillation methods. Moreover, the learned density ratio naturally serves as a verifier, enabling a principled inference-time parallel scaling scheme that further improves the generation quality without external rewards or additional sequential computation.
comment: 22 pages, 8 figures, 5 tables, 2 algorithms
♻ ☆ LogogramNLP: Comparing Visual and Textual Representations of Ancient Logographic Writing Systems for NLP
Standard natural language processing (NLP) pipelines operate on symbolic representations of language, which typically consist of sequences of discrete tokens. However, creating an analogous representation for ancient logographic writing systems is an extremely labor intensive process that requires expert knowledge. At present, a large portion of logographic data persists in a purely visual form due to the absence of transcription -- this issue poses a bottleneck for researchers seeking to apply NLP toolkits to study ancient logographic languages: most of the relevant data are images of writing. This paper investigates whether direct processing of visual representations of language offers a potential solution. We introduce LogogramNLP, the first benchmark enabling NLP analysis of ancient logographic languages, featuring both transcribed and visual datasets for four writing systems along with annotations for tasks like classification, translation, and parsing. Our experiments compare systems that employ recent visual and text encoding strategies as backbones. The results demonstrate that visual representations outperform textual representations for some investigated tasks, suggesting that visual processing pipelines may unlock a large amount of cultural heritage data of logographic languages for NLP-based analyses.
comment: correct wrong refs, typos
♻ ☆ TIPO: Text to Image with Text Presampling for Prompt Optimization
TIPO (Text-to-Image Prompt Optimization) introduces an efficient approach for automatic prompt refinement in text-to-image (T2I) generation. Starting from simple user prompts, TIPO leverages a lightweight pre-trained model to expand these prompts into richer and more detailed versions. Conceptually, TIPO samples refined prompts from a targeted sub-distribution within the broader semantic space, preserving the original intent while significantly improving visual quality, coherence, and detail. Unlike resource-intensive methods based on large language models (LLMs) or reinforcement learning (RL), TIPO offers strong computational efficiency and scalability, opening new possibilities for effective automated prompt engineering in T2I tasks. Extensive experiments across multiple domains demonstrate that TIPO achieves stronger text alignment, reduced visual artifacts, and consistently higher human preference rates, while maintaining competitive aesthetic quality. These results highlight the effectiveness of distribution-aligned prompt engineering and point toward broader opportunities for scalable, automated refinement in text-to-image generation.
comment: 50 pages, 28 figures
♻ ☆ DaMO: A Data-Efficient Multimodal Orchestrator for Temporal Reasoning with Video LLMs
Large Language Models (LLMs) have recently been extended to the video domain, enabling sophisticated video-language understanding. However, existing Video LLMs often exhibit limitations in fine-grained temporal reasoning, restricting their ability to precisely attribute responses to specific video moments, especially under constrained supervision. We introduce DaMO, a data-efficient Video LLM explicitly designed for accurate temporal reasoning and multimodal understanding. At its core, the proposed Temporal-aware Fuseformer employs a hierarchical dual-stream architecture that progressively captures temporal dynamics within each modality and effectively fuses complementary visual and audio information. To further enhance computational efficiency, DaMO integrates a global residual that reduces spatial redundancy while preserving essential semantic details. We train DaMO via a structured four-stage progressive training paradigm, incrementally equipping the model with multimodal alignment, semantic grounding, and temporal reasoning capabilities. This work also contributes multiple datasets augmented from existing ones with LLM-generated temporally grounded QA pairs for tasks requiring temporal supervision. Comprehensive experiments on temporal grounding and video QA benchmarks demonstrate that DaMO consistently surpasses prior methods, particularly in tasks demanding precise temporal alignment and reasoning. Our work establishes a promising direction for data-efficient video-language modeling.
♻ ☆ The SAGES Critical View of Safety Challenge: A Global Benchmark for AI-Assisted Surgical Quality Assessment
Advances in artificial intelligence (AI) for surgical quality assessment promise to democratize access to expertise, with applications in training, guidance, and accreditation. This study presents the SAGES Critical View of Safety (CVS) Challenge, the first AI competition organized by a surgical society, using the CVS in laparoscopic cholecystectomy, a universally recommended yet inconsistently performed safety step, as an exemplar of surgical quality assessment. A global collaboration across 54 institutions in 24 countries engaged hundreds of clinicians and engineers to curate 1,000 videos annotated by 20 surgical experts according to a consensus-validated protocol. The challenge addressed key barriers to real-world deployment in surgery, including achieving high performance, capturing uncertainty in subjective assessment, and ensuring robustness to clinical variability. To enable this scale of effort, we developed EndoGlacier, a framework for managing large, heterogeneous surgical video and multi-annotator workflows. Thirteen international teams participated, achieving up to a 17% relative gain in assessment performance, over 80% reduction in calibration error, and a 17% relative improvement in robustness over the state-of-the-art. Analysis of results highlighted methodological trends linked to model performance, providing guidance for future research toward robust, clinically deployable AI for surgical quality assessment.
comment: 21 pages, 10 figures
♻ ☆ WaveletGaussian: Wavelet-domain Diffusion for Sparse-view 3D Gaussian Object Reconstruction ICASSP 2026
3D Gaussian Splatting (3DGS) has become a powerful representation for image-based object reconstruction, yet its performance drops sharply in sparse-view settings. Prior works address this limitation by employing diffusion models to repair corrupted renders, subsequently using them as pseudo ground truths for later optimization. While effective, such approaches incur heavy computation from the diffusion fine-tuning and repair steps. We present WaveletGaussian, a framework for more efficient sparse-view 3D Gaussian object reconstruction. Our key idea is to shift diffusion into the wavelet domain: diffusion is applied only to the low-resolution LL subband, while high-frequency subbands are refined with a lightweight network. We further propose an efficient online random masking strategy to curate training pairs for diffusion fine-tuning, replacing the commonly used, but inefficient, leave-one-out strategy. Experiments across two benchmark datasets, Mip-NeRF 360 and OmniObject3D, show WaveletGaussian achieves competitive rendering quality while substantially reducing training time.
comment: Accepted to ICASSP 2026
♻ ☆ A Roadmap for Greater Public Use of Privacy-Sensitive Government Data: Workshop Report
Government agencies collect and manage a wide range of ever-growing datasets. While such data has the potential to support research and evidence-based policy making, there are concerns that the dissemination of such data could infringe upon the privacy of the individuals (or organizations) from whom such data was collected. To appraise the current state of data sharing, as well as learn about opportunities for stimulating such sharing at a faster pace, a virtual workshop was held on May 21st and 26th, 2021, sponsored by the National Science Foundation (NSF) and National Institute of Standards and Technologies (NIST), and the White House Office of Science and Technology Policy (OSTP), where a multinational collection of researchers and practitioners were brought together to discuss their experiences and learn about recently developed technologies for managing privacy while sharing data. The workshop specifically focused on challenges and successes in government data sharing at various levels. The first day focused on successful examples of new technology applied to sharing of public data, including formal privacy techniques, synthetic data, and cryptographic approaches. Day two emphasized brainstorming sessions on some of the challenges and directions to address them.
comment: 23 pages. Web: https://may2021privacy.github.io/
♻ ☆ RacketVision: A Multiple Racket Sports Benchmark for Unified Ball and Racket Analysis AAAI 2026
We introduce RacketVision, a novel dataset and benchmark for advancing computer vision in sports analytics, covering table tennis, tennis, and badminton. The dataset is the first to provide large-scale, fine-grained annotations for racket pose alongside traditional ball positions, enabling research into complex human-object interactions. It is designed to tackle three interconnected tasks: fine-grained ball tracking, articulated racket pose estimation, and predictive ball trajectory forecasting. Our evaluation of established baselines reveals a critical insight for multi-modal fusion: while naively concatenating racket pose features degrades performance, a CrossAttention mechanism is essential to unlock their value, leading to trajectory prediction results that surpass strong unimodal baselines. RacketVision provides a versatile resource and a strong starting point for future research in dynamic object tracking, conditional motion forecasting, and multimodal analysis in sports. Project page at https://github.com/OrcustD/RacketVision
comment: Accepted to AAAI 2026 (Oral)
♻ ☆ UDEEP: Edge-based Computer Vision for In-Situ Underwater Crayfish and Plastic Detection
Invasive signal crayfish have a detrimental impact on ecosystems. They spread the fungal-type crayfish plague disease (Aphanomyces astaci) that is lethal to the native white clawed crayfish, the only native crayfish species in Britain. Invasive signal crayfish extensively burrow, causing habitat destruction, erosion of river banks and adverse changes in water quality, while also competing with native species for resources leading to declines in native populations. Moreover, pollution exacerbates the vulnerability of White-clawed crayfish, with their populations declining by over 90%. To safeguard aquatic ecosystems, it is imperative to address the challenges posed by invasive species and pollution in aquatic ecosystem's. This article introduces the Cognitive Edge Device (CED) computing platform for the detection of crayfish and plastic. It also presents two publicly available underwater datasets, annotated with sequences of crayfish and aquatic plastic debris. Four You Only Look Once (YOLO) variants were trained and evaluated for crayfish and plastic object detection. YOLOv5s achieved the highest detection accuracy, with an mAP@0.5 of 0.90, and achieved the best precision
♻ ☆ Atomic Depth Estimation From Noisy Electron Microscopy Data Via Deep Learning
We present a novel approach for extracting 3D atomic-level information from transmission electron microscopy (TEM) images affected by significant noise. The approach is based on formulating depth estimation as a semantic segmentation problem. We address the resulting segmentation problem by training a deep convolutional neural network to generate pixel-wise depth segmentation maps using simulated data corrupted by synthetic noise. The proposed method was applied to estimate the depth of atomic columns in CeO2 nanoparticles from simulated images and real-world TEM data. Our experiments show that the resulting depth estimates are accurate, calibrated and robust to noise.
♻ ☆ Random forest-based out-of-distribution detection for robust lung cancer segmentation SP
Accurate detection and segmentation of cancerous lesions from computed tomography (CT) scans is essential for automated treatment planning and cancer treatment response assessment. Transformer-based models with self-supervised pretraining can produce reliably accurate segmentation from in-distribution (ID) data but degrade when applied to out-of-distribution (OOD) datasets. We address this challenge with RF-Deep, a random forest classifier that utilizes deep features from a pretrained transformer encoder of the segmentation model to detect OOD scans and enhance segmentation reliability. The segmentation model comprises a Swin Transformer encoder, pretrained with masked image modeling (SimMIM) on 10,432 unlabeled 3D CT scans covering cancerous and non-cancerous conditions, with a convolution decoder, trained to segment lung cancers in 317 3D scans. Independent testing was performed on 603 3D CT public datasets that included one ID dataset and four OOD datasets comprising chest CTs with pulmonary embolism (PE) and COVID-19, and abdominal CTs with kidney cancers and healthy volunteers. RF-Deep detected OOD cases with a FPR95 of 18.26%, 27.66%, and less than 0.1% on PE, COVID-19, and abdominal CTs, consistently outperforming established OOD approaches. The RF-Deep classifier provides a simple and effective approach to enhance reliability of cancer segmentation in ID and OOD scenarios.
comment: Accepted at SPIE Medical Imaging 2026
♻ ☆ FaithSCAN: Model-Driven Single-Pass Hallucination Detection for Faithful Visual Question Answering
Faithfulness hallucinations in VQA occur when vision-language models produce fluent yet visually ungrounded answers, severely undermining their reliability in safety-critical applications. Existing detection methods mainly fall into two categories: external verification approaches relying on auxiliary models or knowledge bases, and uncertainty-driven approaches using repeated sampling or uncertainty estimates. The former suffer from high computational overhead and are limited by external resource quality, while the latter capture only limited facets of model uncertainty and fail to sufficiently explore the rich internal signals associated with the diverse failure modes. Both paradigms thus have inherent limitations in efficiency, robustness, and detection performance. To address these challenges, we propose FaithSCAN: a lightweight network that detects hallucinations by exploiting rich internal signals of VLMs, including token-level decoding uncertainty, intermediate visual representations, and cross-modal alignment features. These signals are fused via branch-wise evidence encoding and uncertainty-aware attention. We also extend the LLM-as-a-Judge paradigm to VQA hallucination and propose a low-cost strategy to automatically generate model-dependent supervision signals, enabling supervised training without costly human labels while maintaining high detection accuracy. Experiments on multiple VQA benchmarks show that FaithSCAN significantly outperforms existing methods in both effectiveness and efficiency. In-depth analysis shows hallucinations arise from systematic internal state variations in visual perception, cross-modal reasoning, and language decoding. Different internal signals provide complementary diagnostic cues, and hallucination patterns vary across VLM architectures, offering new insights into the underlying causes of multimodal hallucinations.
comment: 21 pages, 13 figures, 8 tables
♻ ☆ GeoDiff3D: Self-Supervised 3D Scene Generation with Geometry-Constrained 2D Diffusion Guidance
3D scene generation is a core technology for gaming, film/VFX, and VR/AR. Growing demand for rapid iteration, high-fidelity detail, and accessible content creation has further increased interest in this area. Existing methods broadly follow two paradigms - indirect 2D-to-3D reconstruction and direct 3D generation - but both are limited by weak structural modeling and heavy reliance on large-scale ground-truth supervision, often producing structural artifacts, geometric inconsistencies, and degraded high-frequency details in complex scenes. We propose GeoDiff3D, an efficient self-supervised framework that uses coarse geometry as a structural anchor and a geometry-constrained 2D diffusion model to provide texture-rich reference images. Importantly, GeoDiff3D does not require strict multi-view consistency of the diffusion-generated references and remains robust to the resulting noisy, inconsistent guidance. We further introduce voxel-aligned 3D feature aggregation and dual self-supervision to maintain scene coherence and fine details while substantially reducing dependence on labeled data. GeoDiff3D also trains with low computational cost and enables fast, high-quality 3D scene generation. Extensive experiments on challenging scenes show improved generalization and generation quality over existing baselines, offering a practical solution for accessible and efficient 3D scene construction.
♻ ☆ EgoLife: Towards Egocentric Life Assistant CVPR 2025
We introduce EgoLife, a project to develop an egocentric life assistant that accompanies and enhances personal efficiency through AI-powered wearable glasses. To lay the foundation for this assistant, we conducted a comprehensive data collection study where six participants lived together for one week, continuously recording their daily activities - including discussions, shopping, cooking, socializing, and entertainment - using AI glasses for multimodal egocentric video capture, along with synchronized third-person-view video references. This effort resulted in the EgoLife Dataset, a comprehensive 300-hour egocentric, interpersonal, multiview, and multimodal daily life dataset with intensive annotation. Leveraging this dataset, we introduce EgoLifeQA, a suite of long-context, life-oriented question-answering tasks designed to provide meaningful assistance in daily life by addressing practical questions such as recalling past relevant events, monitoring health habits, and offering personalized recommendations. To address the key technical challenges of (1) developing robust visual-audio models for egocentric data, (2) enabling identity recognition, and (3) facilitating long-context question answering over extensive temporal information, we introduce EgoButler, an integrated system comprising EgoGPT and EgoRAG. EgoGPT is an omni-modal model trained on egocentric datasets, achieving state-of-the-art performance on egocentric video understanding. EgoRAG is a retrieval-based component that supports answering ultra-long-context questions. Our experimental studies verify their working mechanisms and reveal critical factors and bottlenecks, guiding future improvements. By releasing our datasets, models, and benchmarks, we aim to stimulate further research in egocentric AI assistants.
comment: Accepted to CVPR 2025. Project Page: https://egolife-ai.github.io/. Code: https://github.com/EvolvingLMMs-Lab/EgoLife
♻ ☆ AEDR: Training-Free AI-Generated Image Attribution via Autoencoder Double-Reconstruction AAAI 2026
The rapid advancement of image-generation technologies has made it possible for anyone to create photorealistic images using generative models, raising significant security concerns. To mitigate malicious use, tracing the origin of such images is essential. Reconstruction-based attribution methods offer a promising solution, but they often suffer from reduced accuracy and high computational costs when applied to state-of-the-art (SOTA) models. To address these challenges, we propose AEDR (AutoEncoder Double-Reconstruction), a novel training-free attribution method designed for generative models with continuous autoencoders. Unlike existing reconstruction-based approaches that rely on the value of a single reconstruction loss, AEDR performs two consecutive reconstructions using the model's autoencoder, and adopts the ratio of these two reconstruction losses as the attribution signal. This signal is further calibrated using the image homogeneity metric to improve accuracy, which inherently cancels out absolute biases caused by image complexity, with autoencoder-based reconstruction ensuring superior computational efficiency. Experiments on eight top latent diffusion models show that AEDR achieves 25.5% higher attribution accuracy than existing reconstruction-based methods, while requiring only 1% of the computational time.
comment: 7 pages. Accepted by AAAI 2026 Oral
♻ ☆ AdaSCALE: Adaptive Scaling for OOD Detection SC
The ability of the deep learning model to recognize when a sample falls outside its learned distribution is critical for safe and reliable deployment. Recent state-of-the-art out-of-distribution (OOD) detection methods leverage activation shaping to improve the separation between in-distribution (ID) and OOD inputs. These approaches resort to sample-specific scaling but apply a static percentile threshold across all samples regardless of their nature, resulting in suboptimal ID-OOD separability. In this work, we propose \textbf{AdaSCALE}, an adaptive scaling procedure that dynamically adjusts the percentile threshold based on a sample's estimated OOD likelihood. This estimation leverages our key observation: OOD samples exhibit significantly more pronounced activation shifts at high-magnitude activations under minor perturbation compared to ID samples. AdaSCALE enables stronger scaling for likely ID samples and weaker scaling for likely OOD samples, yielding highly separable energy scores. Our approach achieves state-of-the-art OOD detection performance, outperforming the latest rival OptFS by 14.94% in near-OOD and 21.67% in far-OOD datasets in average FPR@95 metric on the ImageNet-1k benchmark across eight diverse architectures. The code is available at: https://github.com/sudarshanregmi/AdaSCALE/
comment: https://github.com/sudarshanregmi/AdaSCALE/
♻ ☆ X-SAM: From Segment Anything to Any Segmentation AAAI2026
Large Language Models (LLMs) demonstrate strong capabilities in broad knowledge representation, yet they are inherently deficient in pixel-level perceptual understanding. Although the Segment Anything Model (SAM) represents a significant advancement in visual-prompt-driven image segmentation, it exhibits notable limitations in multi-mask prediction and category-specific segmentation tasks, and it cannot integrate all segmentation tasks within a unified model architecture. To address these limitations, we present X-SAM, a streamlined Multimodal Large Language Model (MLLM) framework that extends the segmentation paradigm from \textit{segment anything} to \textit{any segmentation}. Specifically, we introduce a novel unified framework that enables more advanced pixel-level perceptual comprehension for MLLMs. Furthermore, we propose a new segmentation task, termed Visual GrounDed (VGD) segmentation, which segments all instance objects with interactive visual prompts and empowers MLLMs with visual grounded, pixel-wise interpretative capabilities. To enable effective training on diverse data sources, we present a unified training strategy that supports co-training across multiple datasets. Experimental results demonstrate that X-SAM achieves state-of-the-art performance on a wide range of image segmentation benchmarks, highlighting its efficiency for multimodal, pixel-level visual understanding. Code is available at https://github.com/wanghao9610/X-SAM.
comment: AAAI2026
♻ ☆ Progressive $\mathcal{J}$-Invariant Self-supervised Learning for Low-Dose CT Denoising
Self-supervised learning has been increasingly investigated for low-dose computed tomography (LDCT) image denoising, as it alleviates the dependence on paired normal-dose CT (NDCT) data, which are often difficult to collect. However, many existing self-supervised blind-spot denoising methods suffer from training inefficiencies and suboptimal performance due to restricted receptive fields. To mitigate this issue, we propose a novel Progressive $\mathcal{J}$-invariant Learning that maximizes the use of $\mathcal{J}$-invariant to enhance LDCT denoising performance. We introduce a step-wise blind-spot denoising mechanism that enforces conditional independence in a progressive manner, enabling more fine-grained learning for denoising. Furthermore, we explicitly inject a combination of controlled Gaussian and Poisson noise during training to regularize the denoising process and mitigate overfitting. Extensive experiments on the Mayo LDCT dataset demonstrate that the proposed method consistently outperforms existing self-supervised approaches and achieves performance comparable to, or better than, several representative supervised denoising methods.
♻ ☆ Energy Efficient Exact and Approximate Systolic Array Architecture for Matrix Multiplication
Deep Neural Networks (DNNs) require highly efficient matrix multiplication engines for complex computations. This paper presents a systolic array architecture incorporating novel exact and approximate processing elements (PEs), designed using energy-efficient positive partial product and negative partial product cells, termed as PPC and NPPC, respectively. The proposed 8-bit exact and approximate PE designs are employed in a 8x8 systolic array, which achieves a energy savings of 22% and 32%, respectively, compared to the existing design. To demonstrate their effectiveness, the proposed PEs are integrated into a systolic array (SA) for Discrete Cosine Transform (DCT) computation, achieving high output quality with a PSNR of 38.21,dB. Furthermore, in an edge detection application using convolution, the approximate PE achieves a PSNR of 30.45,dB. These results highlight the potential of the proposed design to deliver significant energy efficiency while maintaining competitive output quality, making it well-suited for error-resilient image and vision processing applications.
comment: 39th International Conference on VLSI Design (VLSID), 2026
♻ ☆ QVGen: Pushing the Limit of Quantized Video Generative Models ICLR 2026
Video diffusion models (DMs) have enabled high-quality video synthesis. Yet, their substantial computational and memory demands pose serious challenges to real-world deployment, even on high-end GPUs. As a commonly adopted solution, quantization has proven notable success in reducing cost for image DMs, while its direct application to video DMs remains ineffective. In this paper, we present QVGen, a novel quantization-aware training (QAT) framework tailored for high-performance and inference-efficient video DMs under extremely low-bit quantization (e.g., 4-bit or below). We begin with a theoretical analysis demonstrating that reducing the gradient norm is essential to facilitate convergence for QAT. To this end, we introduce auxiliary modules ($Φ$) to mitigate large quantization errors, leading to significantly enhanced convergence. To eliminate the inference overhead of $Φ$, we propose a rank-decay strategy that progressively eliminates $Φ$. Specifically, we repeatedly employ singular value decomposition (SVD) and a proposed rank-based regularization $\mathbfγ$ to identify and decay low-contributing components. This strategy retains performance while zeroing out additional inference overhead. Extensive experiments across $4$ state-of-the-art (SOTA) video DMs, with parameter sizes ranging from $1.3\text{B}\sim14\text{B}$, show that QVGen is the first to reach full-precision comparable quality under 4-bit settings. Moreover, it significantly outperforms existing methods. For instance, our 3-bit CogVideoX-2B achieves improvements of $+25.28$ in Dynamic Degree and $+8.43$ in Scene Consistency on VBench. Code and models are available at https://github.com/ModelTC/QVGen.
comment: Accepted by ICLR 2026
♻ ☆ TwinFlow: Realizing One-step Generation on Large Models with Self-adversarial Flows ICLR 2026
Recent advances in large multi-modal generative models have demonstrated impressive capabilities in multi-modal generation, including image and video generation. These models are typically built upon multi-step frameworks like diffusion and flow matching, which inherently limits their inference efficiency (requiring 40-100 Number of Function Evaluations (NFEs)). While various few-step methods aim to accelerate the inference, existing solutions have clear limitations. Prominent distillation-based methods, such as progressive and consistency distillation, either require an iterative distillation procedure or show significant degradation at very few steps (< 4-NFE). Meanwhile, integrating adversarial training into distillation (e.g., DMD/DMD2 and SANA-Sprint) to enhance performance introduces training instability, added complexity, and high GPU memory overhead due to the auxiliary trained models. To this end, we propose TwinFlow, a simple yet effective framework for training 1-step generative models that bypasses the need of fixed pretrained teacher models and avoids standard adversarial networks during training, making it ideal for building large-scale, efficient models. On text-to-image tasks, our method achieves a GenEval score of 0.83 in 1-NFE, outperforming strong baselines like SANA-Sprint (a GAN loss-based framework) and RCGM (a consistency-based framework). Notably, we demonstrate the scalability of TwinFlow by full-parameter training on Qwen-Image-20B and transform it into an efficient few-step generator. With just 1-NFE, our approach matches the performance of the original 100-NFE model on both the GenEval and DPG-Bench benchmarks, reducing computational cost by $100\times$ with minor quality degradation. Project page is available at https://zhenglin-cheng.com/twinflow.
comment: arxiv v1, accepted to ICLR 2026
♻ ☆ Predictor-Free and Hardware-Aware Federated Neural Architecture Search via Pareto-Guided Supernet Training
Federated Neural Architecture Search (FedNAS) aims to automate model design for privacy-preserving Federated Learning (FL) but currently faces two critical bottlenecks: unguided supernet training that yields suboptimal models, and costly multi-hour pipelines for post-training subnet discovery. We introduce DeepFedNAS, a novel, two-phase framework underpinned by a multi-objective fitness function that synthesizes mathematical network design with architectural heuristics. Enabled by a re-engineered supernet, DeepFedNAS introduces Federated Pareto Optimal Supernet Training, which leverages a pre-computed Pareto-optimal cache of high-fitness architectures as an intelligent curriculum to optimize shared supernet weights. Subsequently, its Predictor-Free Search Method eliminates the need for costly accuracy surrogates by utilizing this fitness function as a direct, zero-cost proxy for accuracy, enabling on-demand subnet discovery in mere seconds. DeepFedNAS achieves state-of-the-art accuracy (e.g., up to 1.21% absolute improvement on CIFAR-100), superior parameter and communication efficiency, and a substantial ~61x speedup in total post-training search pipeline time. By reducing the pipeline from over 20 hours to approximately 20 minutes (including initial cache generation) and enabling 20-second individual subnet searches, DeepFedNAS makes hardware-aware FL deployments instantaneous and practical. The complete source code and experimental scripts are available at: https://github.com/bostankhan6/DeepFedNAS
comment: This paper significantly extends the preliminary work accepted at ESANN 2026. Source Code: https://github.com/bostankhan6/DeepFedNAS
♻ ☆ MVAR: Visual Autoregressive Modeling with Scale and Spatial Markovian Conditioning ICLR 2026
Essential to visual generation is efficient modeling of visual data priors. Conventional next-token prediction methods define the process as learning the conditional probability distribution of successive tokens. Recently, next-scale prediction methods redefine the process to learn the distribution over multi-scale representations, significantly reducing generation latency. However, these methods condition each scale on all previous scales and require each token to consider all preceding tokens, exhibiting scale and spatial redundancy. To better model the distribution by mitigating redundancy, we propose Markovian Visual AutoRegressive modeling (MVAR), a novel autoregressive framework that introduces scale and spatial Markov assumptions to reduce the complexity of conditional probability modeling. Specifically, we introduce a scale-Markov trajectory that only takes as input the features of adjacent preceding scale for next-scale prediction, enabling the adoption of a parallel training strategy that significantly reduces GPU memory consumption. Furthermore, we propose spatial-Markov attention, which restricts the attention of each token to a localized neighborhood of size k at corresponding positions on adjacent scales, rather than attending to every token across these scales, for the pursuit of reduced modeling complexity. Building on these improvements, we reduce the computational complexity of attention calculation from O(N^2) to O(Nk), enabling training with just eight NVIDIA RTX 4090 GPUs and eliminating the need for KV cache during inference. Extensive experiments on ImageNet demonstrate that MVAR achieves comparable or superior performance with both small model trained from scratch and large fine-tuned models, while reducing the average GPU memory footprint by 3.0x.
comment: Accepted to ICLR 2026. Project page: https://nuanbaobao.github.io/MVAR
♻ ☆ Diffusion in SPAD Signals
We derive the likelihood of a raw signal in a single photon avalanche diode (SPAD), given a fixed photon flux. The raw signal comprises timing of detection events, which are nonlinearly related to the flux. Moreover, they are naturally stochastic. We then derive a score function of the signal. This is a key for solving inverse problems based on SPAD signals. We focus on deriving solutions involving a diffusion model, to express image priors. We demonstrate the effect of low or high photon counts, and the consequence of exploiting timing of detection events.
♻ ☆ TBC: A Target-Background Contrast Metric for Low-Altitude Infrared and Visible Image Fusion
Infrared and visible image fusion (IVIF) is a pivotal technology in low-altitude Unmanned Aerial Vehicle (UAV) reconnaissance missions, enabling robust target detection and tracking by integrating thermal saliency with environmental textures. However, traditional no-reference metrics (Statistics-based metrics and Gradient-based metrics) fail in complex low-light environments, termed the ``Noise Trap''. This paper mathematically prove that these metrics are positively correlated with high-frequency sensor noise, paradoxically assigning higher scores to degraded images and misguiding algorithm optimization. To address this, we propose the Target-Background Contrast (TBC) metric. Inspired by Weber's Law, TBC focuses on the relative contrast of salient targets rather than global statistics. Unlike traditional metrics, TBC penalizes background noise and rewards target visibility. Extensive experiments on the DroneVehicle dataset demonstrate the superiority of TBC. Results show that TBC exhibits high ``Semantic Discriminability'' in distinguishing thermal targets from background clutter. Furthermore, TBC achieves remarkable computational efficiency, making it a reliable and real-time standard for intelligent UAV systems.
comment: In the subsequent research, we discovered that the research methods employed in the article were logically unsound and had flaws, making it impossible to draw reliable conclusions. Therefore, we believe it is necessary to retract this article for correction
♻ ☆ GraphTARIF: Linear Graph Transformer with Augmented Rank and Improved Focus WWW 2026
Linear attention mechanisms have emerged as efficient alternatives to full self-attention in Graph Transformers, offering linear time complexity. However, existing linear attention models often suffer from a significant drop in expressiveness due to low-rank projection structures and overly uniform attention distributions. We theoretically prove that these properties reduce the class separability of node representations, limiting the model's classification ability. To address this, we propose a novel hybrid framework that enhances both the rank and focus of attention. Specifically, we enhance linear attention by attaching a gated local graph network branch to the value matrix, thereby increasing the rank of the resulting attention map. Furthermore, to alleviate the excessive smoothing effect inherent in linear attention, we introduce a learnable log-power function into the attention scores to reduce entropy and sharpen focus. We theoretically show that this function decreases entropy in the attention distribution, enhancing the separability of learned embeddings. Extensive experiments on both homophilic and heterophilic graph benchmarks demonstrate that our method achieves competitive performance while preserving the scalability of linear attention.
comment: Accepted by WWW 2026. Research Tracks - Graph Algorithms and Modeling for the Web
♻ ☆ Benchmarking Multimodal Large Language Models for Missing Modality Completion in Product Catalogues
Missing-modality information on e-commerce platforms, such as absent product images or textual descriptions, often arises from annotation errors or incomplete metadata, impairing both product presentation and downstream applications such as recommendation systems. Motivated by the multimodal generative capabilities of recent Multimodal Large Language Models (MLLMs), this work investigates a fundamental yet underexplored question: can MLLMs generate missing modalities for products in e-commerce scenarios? We propose the Missing Modality Product Completion Benchmark (MMPCBench), which consists of two sub-benchmarks: a Content Quality Completion Benchmark and a Recommendation Benchmark. We further evaluate six state-of-the-art MLLMs from the Qwen2.5-VL and Gemma-3 model families across nine real-world e-commerce categories, focusing on image-to-text and text-to-image completion tasks. Experimental results show that while MLLMs can capture high-level semantics, they struggle with fine-grained word-level and pixel- or patch-level alignment. In addition, performance varies substantially across product categories and model scales, and we observe no trivial correlation between model size and performance, in contrast to trends commonly reported in mainstream benchmarks. We also explore Group Relative Policy Optimization (GRPO) to better align MLLMs with this task. GRPO improves image-to-text completion but does not yield gains for text-to-image completion. Overall, these findings expose the limitations of current MLLMs in real-world cross-modal generation and represent an early step toward more effective missing-modality product completion.
♻ ☆ CLIP-Guided Unsupervised Semantic-Aware Exposure Correction ICASSP 2026
Improper exposure often leads to severe loss of details, color distortion, and reduced contrast. Exposure correction still faces two critical challenges: (1) the ignorance of object-wise regional semantic information causes the color shift artifacts; (2) real-world exposure images generally have no ground-truth labels, and its labeling entails massive manual editing. To tackle the challenges, we propose a new unsupervised semantic-aware exposure correction network. It contains an adaptive semantic-aware fusion module, which effectively fuses the semantic information extracted from a pre-trained Fast Segment Anything Model into a shared image feature space. Then the fused features are used by our multi-scale residual spatial mamba group to restore the details and adjust the exposure. To avoid manual editing, we propose a pseudo-ground truth generator guided by CLIP, which is fine-tuned to automatically identify exposure situations and instruct the tailored corrections. Also, we leverage the rich priors from the FastSAM and CLIP to develop a semantic-prompt consistency loss to enforce semantic consistency and image-prompt alignment for unsupervised training. Comprehensive experimental results illustrate the effectiveness of our method in correcting real-world exposure images and outperforms state-of-the-art unsupervised methods both numerically and visually.
comment: Accepted at ICASSP 2026
♻ ☆ Mixing Importance with Diversity: Joint Optimization for KV Cache Compression in Large Vision-Language Models ICLR 2026
Recent large vision-language models (LVLMs) demonstrate remarkable capabilities in processing extended multi-modal sequences, yet the resulting key-value (KV) cache expansion creates a critical memory bottleneck that fundamentally limits deployment scalability. While existing KV cache compression methods focus on retaining high-importance KV pairs to minimize storage, they often overlook the modality-specific semantic redundancy patterns that emerge distinctively in multi-modal KV caches. In this work, we first analyze how, beyond simple importance, the KV cache in LVLMs exhibits varying levels of redundancy across attention heads. We show that relying solely on importance can only cover a subset of the full KV cache information distribution, leading to potential loss of semantic coverage. To address this, we propose MixKV, a novel method that mixes importance with diversity for optimized KV cache compression in LVLMs. MixKV adapts to head-wise semantic redundancy, selectively balancing diversity and importance when compressing KV pairs. Extensive experiments demonstrate that MixKV consistently enhances existing methods across multiple LVLMs. Under extreme compression (budget=64), MixKV improves baseline methods by an average of 5.1% across five multi-modal understanding benchmarks and achieves remarkable gains of 8.0% and 9.0% for SnapKV and AdaKV on GUI grounding tasks, all while maintaining comparable inference efficiency. Furthermore, MixKV extends seamlessly to LLMs with comparable performance gains. Our code is available at https://github.com/xuyang-liu16/MixKV.
comment: Accepted by ICLR 2026. Our code is available at https://github.com/xuyang-liu16/MixKV
♻ ☆ Learning Stochastic Bridges for Video Object Removal via Video-to-Video Translation
Existing video object removal methods predominantly rely on diffusion models following a noise-to-data paradigm, where generation starts from uninformative Gaussian noise. This approach discards the rich structural and contextual priors present in the original input video. Consequently, such methods often lack sufficient guidance, leading to incomplete object erasure or the synthesis of implausible content that conflicts with the scene's physical logic. In this paper, we reformulate video object removal as a video-to-video translation task via a stochastic bridge model. Unlike noise-initialized methods, our framework establishes a direct stochastic path from the source video (with objects) to the target video (objects removed). This bridge formulation effectively leverages the input video as a strong structural prior, guiding the model to perform precise removal while ensuring that the filled regions are logically consistent with the surrounding environment. To address the trade-off where strong bridge priors hinder the removal of large objects, we propose a novel adaptive mask modulation strategy. This mechanism dynamically modulates input embeddings based on mask characteristics, balancing background fidelity with generative flexibility. Extensive experiments demonstrate that our approach significantly outperforms existing methods in both visual quality and temporal consistency. The project page is https://bridgeremoval.github.io/.
♻ ☆ Semantic Depth Matters: Explaining Errors of Deep Vision Networks through Perceived Class Similarities
Understanding deep neural network (DNN) behavior requires more than evaluating classification accuracy alone; analyzing errors and their predictability is equally crucial. Current evaluation methodologies lack transparency, particularly in explaining the underlying causes of network misclassifications. To address this, we introduce a novel framework that investigates the relationship between the semantic hierarchy depth perceived by a network and its real-data misclassification patterns. Central to our framework is the Similarity Depth (SD) metric, which quantifies the semantic hierarchy depth perceived by a network along with a method of evaluation of how closely the network's errors align with its internally perceived similarity structure. We also propose a graph-based visualization of model semantic relationships and misperceptions. A key advantage of our approach is that leveraging class templates -- representations derived from classifier layer weights -- is applicable to already trained networks without requiring additional data or experiments. Our approach reveals that deep vision networks encode specific semantic hierarchies and that high semantic depth improves the compliance between perceived class similarities and actual errors.
♻ ☆ Dynamic Content Moderation in Livestreams: Combining Supervised Classification with MLLM-Boosted Similarity Matching KDD 2026
Content moderation remains a critical yet challenging task for large-scale user-generated video platforms, especially in livestreaming environments where moderation must be timely, multimodal, and robust to evolving forms of unwanted content. We present a hybrid moderation framework deployed at production scale that combines supervised classification for known violations with reference-based similarity matching for novel or subtle cases. This hybrid design enables robust detection of both explicit violations and novel edge cases that evade traditional classifiers. Multimodal inputs (text, audio, visual) are processed through both pipelines, with a multimodal large language model (MLLM) distilling knowledge into each to boost accuracy while keeping inference lightweight. In production, the classification pipeline achieves 67% recall at 80% precision, and the similarity pipeline achieves 76% recall at 80% precision. Large-scale A/B tests show a 6-8% reduction in user views of unwanted livestreams}. These results demonstrate a scalable and adaptable approach to multimodal content governance, capable of addressing both explicit violations and emerging adversarial behaviors.
comment: To be published at KDD 2026 (ADS track)
♻ ☆ Beyond Face Swapping: A Diffusion-Based Digital Human Benchmark for Multimodal Deepfake Detection
In recent years, the explosive advancement of deepfake technology has posed a critical and escalating threat to public security: diffusion-based digital human generation. Unlike traditional face manipulation methods, such models can generate highly realistic videos with consistency via multimodal control signals. Their flexibility and covertness pose severe challenges to existing detection strategies. To bridge this gap, we introduce DigiFakeAV, the new large-scale multimodal digital human forgery dataset based on diffusion models. Leveraging five of the latest digital human generation methods and a voice cloning method, we systematically construct a dataset comprising 60,000 videos (8.4 million frames), covering multiple nationalities, skin tones, genders, and real-world scenarios, significantly enhancing data diversity and realism. User studies demonstrate that the misrecognition rate by participants for DigiFakeAV reaches as high as 68%. Moreover, the substantial performance degradation of existing detection models on our dataset further highlights its challenges. To address this problem, we propose DigiShield, an effective detection baseline based on spatiotemporal and cross-modal fusion. By jointly modeling the 3D spatiotemporal features of videos and the semantic-acoustic features of audio, DigiShield achieves state-of-the-art (SOTA) performance on the DigiFakeAV and shows strong generalization on other datasets.
♻ ☆ Reasoning in the Dark: Interleaved Vision-Text Reasoning in Latent Space
Multimodal reasoning aims to enhance the capabilities of MLLMs by incorporating intermediate reasoning steps before reaching the final answer. It has evolved from text-only reasoning to the integration of visual information, enabling the thought process to be conveyed through both images and text. Despite its effectiveness, current multimodal reasoning methods depend on explicit reasoning steps that require labor-intensive vision-text annotations and inherently introduce significant inference latency. To address these issues, we introduce multimodal latent reasoning with the advantages of multimodal representation, reduced annotation, and inference efficiency. To facilitate it, we propose Interleaved Vision-Text Latent Reasoning (IVT-LR), which injects both visual and textual information in the reasoning process within the latent space. Specifically, IVT-LR represents each reasoning step by combining two implicit parts: latent text (the hidden states from the previous step) and latent vision (a set of selected image embeddings). We further introduce a progressive multi-stage training strategy to enable MLLMs to perform the above multimodal latent reasoning steps. Experiments on M$^3$CoT and ScienceQA demonstrate that our IVT-LR method achieves an average performance increase of 5.45\% in accuracy, while simultaneously achieving a speed increase of over 5 times compared to existing approaches.
♻ ☆ DA-Occ: Direction-Aware 2D Convolution for Efficient and Geometry-Preserving 3D Occupancy Prediction
Efficient and high-accuracy 3D occupancy prediction is crucial for ensuring the performance of autonomous driving (AD) systems. However, many existing methods involve trade-offs between accuracy and efficiency. Some achieve high precision but with slow inference speed, while others adopt purely bird's-eye-view (BEV)-based 2D representations to accelerate processing, inevitably sacrificing vertical cues and compromising geometric integrity. To overcome these limitations, we propose a pure 2D framework that achieves efficient 3D occupancy prediction while preserving geometric integrity. Unlike conventional Lift-Splat-Shoot (LSS) methods that rely solely on depth scores to lift 2D features into 3D space, our approach additionally introduces a height-score projection to encode vertical geometric structure. We further employ direction-aware convolution to extract geometric features along both vertical and horizontal orientations, effectively balancing accuracy and computational efficiency. On the Occ3D-nuScenes, the proposed method achieves an mIoU of 39.3\% and an inference speed of 27.7 FPS, effectively balancing accuracy and efficiency. In simulations on edge devices, the inference speed reaches 14.8 FPS, further demonstrating the method's applicability for real-time deployment in resource-constrained environments.
♻ ☆ Fast Converging 3D Gaussian Splatting for 1-Minute Reconstruction SIGGRAPH
We present a fast 3DGS reconstruction pipeline designed to converge within one minute, developed for the SIGGRAPH Asia 3DGS Fast Reconstruction Challenge. The challenge consists of an initial round using SLAM-generated camera poses (with noisy trajectories) and a final round using COLMAP poses (highly accurate). To robustly handle these heterogeneous settings, we develop a two-stage solution. In the first round, we use reverse per-Gaussian parallel optimization and compact forward splatting based on Taming-GS and Speedy-splat, load-balanced tiling, an anchor-based Neural-Gaussian representation enabling rapid convergence with fewer learnable parameters, initialization from monocular depth and partially from feed-forward 3DGS models, and a global pose refinement module for noisy SLAM trajectories. In the final round, the accurate COLMAP poses change the optimization landscape; we disable pose refinement, revert from Neural-Gaussians back to standard 3DGS to eliminate MLP inference overhead, introduce multi-view consistency-guided Gaussian splitting inspired by Fast-GS, and introduce a depth estimator to supervise the rendered depth. Together, these techniques enable high-fidelity reconstruction under a strict one-minute budget. Our method achieved the top performance with a PSNR of 28.43 and ranked first in the competition.
comment: First Rank of SIGGRAPH Asia 2025 3DGS Challenge. Code available at https://github.com/will-zzy/siggraph_asia
♻ ☆ Tri-Reader: An Open-Access, Multi-Stage AI Pipeline for First-Pass Lung Nodule Annotation in Screening CT
Using multiple open-access models trained on public datasets, we developed Tri-Reader, a comprehensive, freely available pipeline that integrates lung segmentation, nodule detection, and malignancy classification into a unified tri-stage workflow. The pipeline is designed to prioritize sensitivity while reducing the candidate burden for annotators. To ensure accuracy and generalizability across diverse practices, we evaluated Tri-Reader on multiple internal and external datasets as compared with expert annotations and dataset-provided reference standards.
comment: 1 figure , 2 tables, 20 page supplement
♻ ☆ CAPE: Connectivity-Aware Path Enforcement Loss for Curvilinear Structure Delineation
Promoting the connectivity of curvilinear structures, such as neuronal processes in biomedical scans and blood vessels in CT images, remains a key challenge in semantic segmentation. Traditional pixel-wise loss functions, including cross-entropy and Dice losses, often fail to capture high-level topological connectivity, resulting in topological mistakes in graphs obtained from prediction maps. In this paper, we propose CAPE (Connectivity-Aware Path Enforcement), a novel loss function designed to enforce connectivity in graphs obtained from segmentation maps by optimizing a graph connectivity metric. CAPE uses the graph representation of the ground truth to select node pairs and determine their corresponding paths within the predicted segmentation through a shortest-path algorithm. Using this, we penalize both disconnections and false positive connections, effectively promoting the model to preserve topological correctness. Experiments on 2D and 3D datasets, including neuron and blood vessel tracing demonstrate that CAPE significantly improves topology-aware metrics and outperforms state-of-the-art methods.
♻ ☆ XY-Cut++: Advanced Layout Ordering via Hierarchical Mask Mechanism on a Novel Benchmark
Document Reading Order Recovery is a fundamental task in document image understanding, playing a pivotal role in enhancing Retrieval-Augmented Generation (RAG) and serving as a critical preprocessing step for large language models (LLMs). Existing methods often struggle with complex layouts(e.g., multi-column newspapers), high-overhead interactions between cross-modal elements (visual regions and textual semantics), and a lack of robust evaluation benchmarks. We introduce XY-Cut++, an advanced layout ordering method that integrates pre-mask processing, multi-granularity segmentation, and cross-modal matching to address these challenges. Our method significantly enhances layout ordering accuracy compared to traditional XY-Cut techniques. Specifically, XY-Cut++ achieves state-of-the-art performance (98.8 BLEU overall) while maintaining simplicity and efficiency. It outperforms existing baselines by up to 24\% and demonstrates consistent accuracy across simple and complex layouts on the newly introduced DocBench-100 dataset. This advancement establishes a reliable foundation for document structure recovery, setting a new standard for layout ordering tasks and facilitating more effective RAG and LLM preprocessing.
♻ ☆ GenAgent: Scaling Text-to-Image Generation via Agentic Multimodal Reasoning
We introduce GenAgent, unifying visual understanding and generation through an agentic multimodal model. Unlike unified models that face expensive training costs and understanding-generation trade-offs, GenAgent decouples these capabilities through an agentic framework: understanding is handled by the multimodal model itself, while generation is achieved by treating image generation models as invokable tools. Crucially, unlike existing modular systems constrained by static pipelines, this design enables autonomous multi-turn interactions where the agent generates multimodal chains-of-thought encompassing reasoning, tool invocation, judgment, and reflection to iteratively refine outputs. We employ a two-stage training strategy: first, cold-start with supervised fine-tuning on high-quality tool invocation and reflection data to bootstrap agent behaviors; second, end-to-end agentic reinforcement learning combining pointwise rewards (final image quality) and pairwise rewards (reflection accuracy), with trajectory resampling for enhanced multi-turn exploration. GenAgent significantly boosts base generator(FLUX.1-dev) performance on GenEval++ (+23.6\%) and WISE (+14\%). Beyond performance gains, our framework demonstrates three key properties: 1) cross-tool generalization to generators with varying capabilities, 2) test-time scaling with consistent improvements across interaction rounds, and 3) task-adaptive reasoning that automatically adjusts to different tasks. Our code will be available at \href{https://github.com/deep-kaixun/GenAgent}{this url}.
♻ ☆ NLPrompt: Noise-Label Prompt Learning for Vision-Language Models
The emergence of vision-language foundation models, such as CLIP, has revolutionized image-text representation, enabling a broad range of applications via prompt learning. Despite its promise, real-world datasets often contain noisy labels that can degrade prompt learning performance. In this paper, we demonstrate that using mean absolute error (MAE) loss in prompt learning, named PromptMAE, significantly enhances robustness against noisy labels while maintaining high accuracy. Though MAE is straightforward and recognized for its robustness, it is rarely used in noisy-label learning due to its slow convergence and poor performance outside prompt learning scenarios. To elucidate the robustness of PromptMAE, we leverage feature learning theory to show that MAE can suppress the influence of noisy samples, thereby improving the signal-to-noise ratio and enhancing overall robustness. Additionally, we introduce PromptOT, a prompt-based optimal transport data purification method to enhance the robustness further. PromptOT employs text features in vision-language models as prototypes to construct an optimal transportation matrix. This matrix effectively partitions datasets into clean and noisy subsets, allowing for the application of cross-entropy loss to the clean subset and MAE loss to the noisy subset. Our Noise-Label Prompt Learning method, named NLPrompt, offers a simple and efficient approach that leverages the expressive representations and precise alignment capabilities of vision-language models for robust prompt learning. We validate NLPrompt through extensive experiments across various noise settings, demonstrating significant performance improvements.
♻ ☆ Improving Fine-Grained Control via Aggregation of Multiple Diffusion Models
While many diffusion models perform well when controlling particular aspects such as style, character, and interaction, they struggle with fine-grained control due to dataset limitations and intricate model architecture design. This paper introduces a novel training-free algorithm for fine-grained generation, called Aggregation of Multiple Diffusion Models (AMDM). The algorithm integrates features in the latent data space from multiple diffusion models within the same ecosystem into a specified model, thereby activating particular features and enabling fine-grained control. Experimental results demonstrate that AMDM significantly improves fine-grained control without training, validating its effectiveness. Additionally, it reveals that diffusion models initially focus on features such as position, attributes, and style, with later stages improving generation quality and consistency. AMDM offers a new perspective for tackling the challenges of fine-grained conditional generation in diffusion models. Specifically, it allows us to fully utilize existing or develop new conditional diffusion models that control specific aspects, and then aggregate them using the AMDM algorithm. This eliminates the need for constructing complex datasets, designing intricate model architectures, and incurring high training costs. Code is available at: https://github.com/Hammour-steak/AMDM.
♻ ☆ AGFS-Tractometry: A Novel Atlas-Guided Fine-Scale Tractometry Approach for Enhanced Along-Tract Group Statistical Comparison Using Diffusion MRI Tractography
Diffusion MRI (dMRI) tractography is currently the only method for in vivo mapping of the brain's white matter (WM) connections. Tractometry is an advanced tractography analysis technique for along-tract profiling to investigate the morphology and microstructural properties along the fiber tracts. Tractometry has become an essential tool for studying local along-tract differences between different populations (e.g., health vs disease). In this study, we propose a novel atlas-guided fine-scale tractometry method, namely AGFS-Tractometry, that leverages tract spatial information and permutation testing to enhance the along-tract statistical analysis between populations. There are two major contributions in AGFS-Tractometry. First, we create a novel atlas-guided tract profiling template that enables consistent, fine-scale, along-tract parcellation of subject-specific fiber tracts. Second, we propose a novel nonparametric permutation testing group comparison method to enable simultaneous analysis across all along-tract parcels while correcting for multiple comparisons. We perform experimental evaluations on synthetic datasets with known group differences and in vivo real data. We compare AGFS-Tractometry with two state-of-the-art tractometry methods, including Automated Fiber-tract Quantification (AFQ) and BUndle ANalytics (BUAN). Our results show that the proposed AGFS-Tractometry obtains enhanced sensitivity and specificity in detecting local WM differences. In the real data analysis experiments, AGFS-Tractometry can identify more regions with significant differences, which are anatomically consistent with the existing literature. Overall, these demonstrate the ability of AGFS-Tractometry to detect subtle or spatially localized WM group-level differences. The created tract profiling template and related code are available at: https://github.com/ZhengRuixi/AGFS-Tractometry.git.
comment: 31 pages and 7 figures
♻ ☆ Advancing Multimodal Reasoning: From Optimized Cold Start to Staged Reinforcement Learning
Inspired by the remarkable reasoning capabilities of Deepseek-R1 in complex textual tasks, many works attempt to incentivize similar capabilities in Multimodal Large Language Models (MLLMs) by directly applying reinforcement learning (RL). However, they still struggle to activate complex reasoning. In this paper, rather than examining multimodal RL in isolation, we delve into current training pipelines and identify three crucial phenomena: 1) Effective cold start initialization is critical for enhancing MLLM reasoning. Intriguingly, we find that initializing with carefully selected text data alone can lead to performance surpassing many recent multimodal reasoning models, even before multimodal RL. 2) Standard GRPO applied to multimodal RL suffers from gradient stagnation, which degrades training stability and performance. 3) Subsequent text-only RL training, following the multimodal RL phase, further enhances multimodal reasoning. This staged training approach effectively balances perceptual grounding and cognitive reasoning development. By incorporating the above insights and addressing multimodal RL issues, we introduce ReVisual-R1, achieving a new state-of-the-art among open-source 7B MLLMs on challenging benchmarks including MathVerse, MathVision, WeMath, LogicVista, DynaMath, and challenging AIME2024 and AIME2025.
comment: 19 pages, 6 figures
♻ ☆ BRISC: Annotated Dataset for Brain Tumor Segmentation and Classification
Accurate segmentation and classification of brain tumors from Magnetic Resonance Imaging (MRI) remain key challenges in medical image analysis, primarily due to the lack of high-quality, balanced, and diverse datasets with expert annotations. In this work, we address this gap by introducing BRISC, a dataset designed for brain tumor segmentation and classification tasks, featuring high-resolution segmentation masks. The dataset comprises 6,000 contrast-enhanced T1-weighted MRI scans, which were collated from multiple public datasets that lacked segmentation labels. Our primary contribution is the subsequent expert annotation of these images, performed by certified radiologists and physicians. It includes three major tumor types, namely glioma, meningioma, and pituitary, as well as non-tumorous cases. Each sample includes high-resolution labels and is categorized across axial, sagittal, and coronal imaging planes to facilitate robust model development and cross-view generalization. To demonstrate the utility of the dataset, we provide benchmark results for both tasks using standard deep learning models. The BRISC dataset is made publicly available. datasetlink: https://www.kaggle.com/datasets/briscdataset/brisc2025/
♻ ☆ MSPCaps: A Multi-Scale Patchify Capsule Network with Cross-Agreement Routing for Visual Recognition SP
Capsule Network (CapsNet) has demonstrated significant potential in visual recognition by capturing spatial relationships and part-whole hierarchies for learning equivariant feature representations. However, existing CapsNet and variants often rely on a single high-level feature map, overlooking the rich complementary information from multi-scale features. Furthermore, conventional feature fusion strategies (e.g., addition and concatenation) struggle to reconcile multi-scale feature discrepancies, leading to suboptimal classification performance. To address these limitations, we propose the Multi-Scale Patchify Capsule Network (MSPCaps), a novel architecture that integrates multi-scale feature learning and efficient capsule routing. Specifically, MSPCaps consists of three key components: a Multi-Scale ResNet Backbone (MSRB), a Patchify Capsule Layer (PatchifyCaps), and Cross-Agreement Routing (CAR) blocks. First, the MSRB extracts diverse multi-scale feature representations from input images, preserving both fine-grained details and global contextual information. Second, the PatchifyCaps partitions these multi-scale features into primary capsules using a uniform patch size, equipping the model with the ability to learn from diverse receptive fields. Finally, the CAR block adaptively routes the multi-scale capsules by identifying cross-scale prediction pairs with maximum agreement. Unlike the simple concatenation of multiple self-routing blocks, CAR ensures that only the most coherent capsules contribute to the final voting. Our proposed MSPCaps achieves remarkable scalability and superior robustness, consistently surpassing multiple baseline methods in terms of classification accuracy, with configurations ranging from a highly efficient Tiny model (344.3K parameters) to a powerful Large model (10.9M parameters), highlighting its potential in advancing feature representation learning.
comment: 9 pages, 4 figures; Code is available at https://github.com/abdn-hyd/MSPCaps
♻ ☆ RxnBench: A Multimodal Benchmark for Evaluating Large Language Models on Chemical Reaction Understanding from Scientific Literature
The integration of Multimodal Large Language Models (MLLMs) into chemistry promises to revolutionize scientific discovery, yet their ability to comprehend the dense, graphical language of reactions within authentic literature remains underexplored. Here, we introduce RxnBench, a multi-tiered benchmark designed to rigorously evaluate MLLMs on chemical reaction understanding from scientific PDFs. RxnBench comprises two tasks: Single-Figure QA (SF-QA), which tests fine-grained visual perception and mechanistic reasoning using 1,525 questions derived from 305 curated reaction schemes, and Full-Document QA (FD-QA), which challenges models to synthesize information from 108 articles, requiring cross-modal integration of text, schemes, and tables. Our evaluation of MLLMs reveals a critical capability gap: while models excel at extracting explicit text, they struggle with deep chemical logic and precise structural recognition. Notably, models with inference-time reasoning significantly outperform standard architectures, yet none achieve 50\% accuracy on FD-QA. These findings underscore the urgent need for domain-specific visual encoders and stronger reasoning engines to advance autonomous AI chemists.
♻ ☆ Visual Instruction Pretraining for Domain-Specific Foundation Models
Modern computer vision is converging on a closed loop in which perception, reasoning and generation mutually reinforce each other. However, this loop remains incomplete: the top-down influence of high-level reasoning on the foundational learning of low-level perceptual features is not yet underexplored. This paper addresses this gap by proposing a new paradigm for pretraining foundation models in downstream domains. We introduce Visual insTruction Pretraining (ViTP), a novel approach that directly leverages reasoning to enhance perception. ViTP embeds a Vision Transformer (ViT) backbone within a Vision-Language Model and pretrains it end-to-end using a rich corpus of visual instruction data curated from target downstream domains. ViTP is powered by our proposed Visual Robustness Learning (VRL), which compels the ViT to learn robust and domain-relevant features from a sparse set of visual tokens. Extensive experiments on 16 challenging remote sensing and medical imaging benchmarks demonstrate that ViTP establishes new state-of-the-art performance across a diverse range of downstream tasks. The code is available at https://github.com/zcablii/ViTP.
♻ ☆ All-in-One Video Restoration under Smoothly Evolving Unknown Weather Degradations
All-in-one image restoration aims to recover clean images from diverse unknown degradations using a single model. But extending this task to videos faces unique challenges. Existing approaches primarily focus on frame-wise degradation variation, overlooking the temporal continuity that naturally exists in real-world degradation processes. In practice, degradation types and intensities evolve smoothly over time, and multiple degradations may coexist or transition gradually. In this paper, we introduce the Smoothly Evolving Unknown Degradations (SEUD) scenario, where both the active degradation set and degradation intensity change continuously over time. To support this scenario, we design a flexible synthesis pipeline that generates temporally coherent videos with single, compound, and evolving degradations. To address the challenges in the SEUD scenario, we propose an all-in-One Recurrent Conditional and Adaptive prompting Network (ORCANet). First, a Coarse Intensity Estimation Dehazing (CIED) module estimates haze intensity using physical priors and provides coarse dehazed features as initialization. Second, a Flow Prompt Generation (FPG) module extracts degradation features. FPG generates both static prompts that capture segment-level degradation types and dynamic prompts that adapt to frame-level intensity variations. Furthermore, a label-aware supervision mechanism improves the discriminability of static prompt representations under different degradations. Extensive experiments show that ORCANet achieves superior restoration quality, temporal consistency, and robustness over image and video-based baselines. Code is available at https://github.com/Friskknight/ORCANet-SEUD.
♻ ☆ DAUNet: A Lightweight UNet Variant with Deformable Convolutions and Parameter-Free Attention for Medical Image Segmentation
Medical image segmentation plays a pivotal role in automated diagnostic and treatment planning systems. In this work, we present DAUNet, a novel lightweight UNet variant that integrates Deformable V2 Convolutions and Parameter-Free Attention (SimAM) to improve spatial adaptability and context-aware feature fusion without increasing model complexity. DAUNet's bottleneck employs dynamic deformable kernels to handle geometric variations, while the decoder and skip pathways are enhanced using SimAM attention modules for saliency-aware refinement. Extensive evaluations on two challenging datasets, FH-PS-AoP (fetal head and pubic symphysis ultrasound) and FUMPE (CT-based pulmonary embolism detection), demonstrate that DAUNet outperforms state-of-the-art models in Dice score, HD95, and ASD, while maintaining superior parameter efficiency. Ablation studies highlight the individual contributions of deformable convolutions and SimAM attention. DAUNet's robustness to missing context and low-contrast regions establishes its suitability for deployment in real-time and resource-constrained clinical environments.
comment: 13 pages, 7 figures
♻ ☆ From Prediction to Perfection: Introducing Refinement to Autoregressive Image Generation ICLR 2026
Autoregressive (AR) image generators offer a language-model-friendly approach to image generation by predicting discrete image tokens in a causal sequence. However, unlike diffusion models, AR models lack a mechanism to refine previous predictions, limiting their generation quality. In this paper, we introduce TensorAR, a new AR paradigm that reformulates image generation from next-token prediction to next-tensor prediction. By generating overlapping windows of image patches (tensors) in a sliding fashion, TensorAR enables iterative refinement of previously generated content. To prevent information leakage during training, we propose a discrete tensor noising scheme, which perturbs input tokens via codebook-indexed noise. TensorAR is implemented as a plug-and-play module compatible with existing AR models. Extensive experiments on LlamaGEN, Open-MAGVIT2, and RAR demonstrate that TensorAR significantly improves the generation performance of autoregressive models.
comment: Published as a conference paper at ICLR 2026
♻ ☆ Visual Multi-Agent System: Mitigating Hallucination Snowballing via Visual Flow
Multi-Agent System (MAS) powered by Visual Language Models (VLMs) enables challenging tasks but suffers from a novel failure term, multi-agent visual hallucination snowballing, where hallucinations are seeded in a single agent and amplified by following ones due to the over-reliance on textual flow to relay visual information. Through turn-, layer-, and token-wise attention analyses, we provide detailed insights into the essence of hallucination snowballing regarding the reduction of visual attention allocation. It leads us to identify a subset of vision tokens with a unimodal attention peak in middle layers that best preserve visual evidence but gradually diminish in deeper agent turns, resulting in the visual hallucination snowballing in MAS. Thus, we propose ViF, a lightweight, plug-and-play mitigation paradigm that relays inter-agent messages with Visual Flow powered by the selected visual relay tokens and applies attention reallocation to amplify this pattern. The experiment results demonstrate that our method markedly reduces hallucination snowballing, consistently improving the performance across eight benchmarks based on four common MAS structures and ten base models. The source code is publicly available at: https://github.com/YU-deep/ViF.git.
♻ ☆ Dynamic Novel View Synthesis in High Dynamic Range ICLR 2026
High Dynamic Range Novel View Synthesis (HDR NVS) seeks to learn an HDR 3D model from Low Dynamic Range (LDR) training images captured under conventional imaging conditions. Current methods primarily focus on static scenes, implicitly assuming all scene elements remain stationary and non-living. However, real-world scenarios frequently feature dynamic elements, such as moving objects, varying lighting conditions, and other temporal events, thereby presenting a significantly more challenging scenario. To address this gap, we propose a more realistic problem named HDR Dynamic Novel View Synthesis (HDR DNVS), where the additional dimension ``Dynamic'' emphasizes the necessity of jointly modeling temporal radiance variations alongside sophisticated 3D translation between LDR and HDR. To tackle this complex, intertwined challenge, we introduce HDR-4DGS, a Gaussian Splatting-based architecture featured with an innovative dynamic tone-mapping module that explicitly connects HDR and LDR domains, maintaining temporal radiance coherence by dynamically adapting tone-mapping functions according to the evolving radiance distributions across the temporal dimension. As a result, HDR-4DGS achieves both temporal radiance consistency and spatially accurate color translation, enabling photorealistic HDR renderings from arbitrary viewpoints and time instances. Extensive experiments demonstrate that HDR-4DGS surpasses existing state-of-the-art methods in both quantitative performance and visual fidelity. Source code is available at https://github.com/prinasi/HDR-4DGS.
comment: It has been accepted by ICLR 2026
♻ ☆ Bridging Information Asymmetry: A Hierarchical Framework for Deterministic Blind Face Restoration
Blind face restoration remains a persistent challenge due to the inherent ill-posedness of reconstructing holistic structures from severely constrained observations. Current generative approaches, while capable of synthesizing realistic textures, often suffer from information asymmetry -- the intrinsic disparity between the information-sparse low quality inputs and the information-dense high quality outputs. This imbalance leads to a one-to-many mapping, where insufficient constraints result in stochastic uncertainty and hallucinatory artifacts. To bridge this gap, we present \textbf{Pref-Restore}, a hierarchical framework that integrates discrete semantic logic with continuous texture generation to achieve deterministic, preference-aligned restoration. Our methodology fundamentally addresses this information disparity through two complementary strategies: (1) Augmenting Input Density: We employ an auto-regressive integrator to reformulate textual instructions into dense latent queries, injecting high-level semantic stability to constrain the degraded signals; (2) Pruning Output Distribution: We pioneer the integration of on-policy reinforcement learning directly into the diffusion restoration loop. By transforming human preferences into differentiable constraints, we explicitly penalize stochastic deviations, thereby sharpening the posterior distribution toward the desired high-fidelity outcomes. Extensive experiments demonstrate that Pref-Restore achieves state-of-the-art performance across synthetic and real-world benchmarks. Furthermore, empirical analysis confirms that our preference-aligned strategy significantly reduces solution entropy, establishing a robust pathway toward reliable and deterministic blind restoration.
♻ ☆ SeedVR2: One-Step Video Restoration via Diffusion Adversarial Post-Training ICLR2026
Recent advances in diffusion-based video restoration (VR) demonstrate significant improvement in visual quality, yet yield a prohibitive computational cost during inference. While several distillation-based approaches have exhibited the potential of one-step image restoration, extending existing approaches to VR remains challenging and underexplored, particularly when dealing with high-resolution video in real-world settings. In this work, we propose a one-step diffusion-based VR model, termed as SeedVR2, which performs adversarial VR training against real data. To handle the challenging high-resolution VR within a single step, we introduce several enhancements to both model architecture and training procedures. Specifically, an adaptive window attention mechanism is proposed, where the window size is dynamically adjusted to fit the output resolutions, avoiding window inconsistency observed under high-resolution VR using window attention with a predefined window size. To stabilize and improve the adversarial post-training towards VR, we further verify the effectiveness of a series of losses, including a proposed feature matching loss without significantly sacrificing training efficiency. Extensive experiments show that SeedVR2 can achieve comparable or even better performance compared with existing VR approaches in a single step.
comment: Camera Ready of ICLR2026. Project page: https://iceclear.github.io/projects/seedvr2/
♻ ☆ PLANA3R: Zero-shot Metric Planar 3D Reconstruction via Feed-Forward Planar Splatting NeurIPS 2025
This paper addresses metric 3D reconstruction of indoor scenes by exploiting their inherent geometric regularities with compact representations. Using planar 3D primitives - a well-suited representation for man-made environments - we introduce PLANA3R, a pose-free framework for metric Planar 3D Reconstruction from unposed two-view images. Our approach employs Vision Transformers to extract a set of sparse planar primitives, estimate relative camera poses, and supervise geometry learning via planar splatting, where gradients are propagated through high-resolution rendered depth and normal maps of primitives. Unlike prior feedforward methods that require 3D plane annotations during training, PLANA3R learns planar 3D structures without explicit plane supervision, enabling scalable training on large-scale stereo datasets using only depth and normal annotations. We validate PLANA3R on multiple indoor-scene datasets with metric supervision and demonstrate strong generalization to out-of-domain indoor environments across diverse tasks under metric evaluation protocols, including 3D surface reconstruction, depth estimation, and relative pose estimation. Furthermore, by formulating with planar 3D representation, our method emerges with the ability for accurate plane segmentation. The project page is available at https://lck666666.github.io/plana3r
comment: Camera-ready version of a paper in 39th Conference on Neural Information Processing Systems (NeurIPS 2025). The project page is available at: https://lck666666.github.io/plana3r
♻ ☆ AdaReasoner: Dynamic Tool Orchestration for Iterative Visual Reasoning
When humans face problems beyond their immediate capabilities, they rely on tools, providing a promising paradigm for improving visual reasoning in multimodal large language models (MLLMs). Effective reasoning, therefore, hinges on knowing which tools to use, when to invoke them, and how to compose them over multiple steps, even when faced with new tools or new tasks. We introduce \textbf{AdaReasoner}, a family of multimodal models that learn tool use as a general reasoning skill rather than as tool-specific or explicitly supervised behavior. AdaReasoner is enabled by (i) a scalable data curation pipeline exposing models to long-horizon, multi-step tool interactions; (ii) Tool-GRPO, a reinforcement learning algorithm that optimizes tool selection and sequencing based on end-task success; and (iii) an adaptive learning mechanism that dynamically regulates tool usage. Together, these components allow models to infer tool utility from task context and intermediate outcomes, enabling coordination of multiple tools and generalization to unseen tools. Empirically, AdaReasoner exhibits strong tool-adaptive and generalization behaviors: it autonomously adopts beneficial tools, suppresses irrelevant ones, and adjusts tool usage frequency based on task demands, despite never being explicitly trained to do so. These capabilities translate into state-of-the-art performance across challenging benchmarks, improving the 7B base model by +24.9\% on average and surpassing strong proprietary systems such as GPT-5 on multiple tasks, including VSP and Jigsaw.
comment: 28 pages, 10 figures and 13 tables
♻ ☆ PocketGS: On-Device Training of 3D Gaussian Splatting for High Perceptual Modeling
Efficient and high-fidelity 3D scene modeling is a long-standing pursuit in computer graphics. While recent 3D Gaussian Splatting (3DGS) methods achieve impressive real-time modeling performance, they rely on resource-unconstrained training assumptions that fail on mobile devices, which are limited by minute-scale training budgets and hardware-available peak-memory. We present PocketGS, a mobile scene modeling paradigm that enables on-device 3DGS training under these tightly coupled constraints while preserving high perceptual fidelity. Our method resolves the fundamental contradictions of standard 3DGS through three co-designed operators: G builds geometry-faithful point-cloud priors; I injects local surface statistics to seed anisotropic Gaussians, thereby reducing early conditioning gaps; and T unrolls alpha compositing with cached intermediates and index-mapped gradient scattering for stable mobile backpropagation. Collectively, these operators satisfy the competing requirements of training efficiency, memory compactness, and modeling fidelity. Extensive experiments demonstrate that PocketGS is able to outperform the powerful mainstream workstation 3DGS baseline to deliver high-quality reconstructions, enabling a fully on-device, practical capture-to-rendering workflow.
♻ ☆ SiNGER: A Clearer Voice Distills Vision Transformers Further ICLR 2026
Vision Transformers are widely adopted as the backbone of vision foundation models, but they are known to produce high-norm artifacts that degrade representation quality. When knowledge distillation transfers these features to students, high-norm artifacts dominate the objective, so students overfit to artifacts and underweight informative signals, diminishing the gains from larger models. Prior work attempted to remove artifacts but encountered an inherent trade-off between artifact suppression and preserving informative signals from teachers. To address this, we introduce Singular Nullspace-Guided Energy Reallocation (SiNGER), a novel distillation framework that suppresses artifacts while preserving informative signals. The key idea is principled teacher feature refinement: during refinement, we leverage the nullspace-guided perturbation to preserve information while suppressing artifacts. Then, the refined teacher's features are distilled to a student. We implement this perturbation efficiently with a LoRA-based adapter that requires minimal structural modification. Extensive experiments show that \oursname consistently improves student models, achieving state-of-the-art performance in multiple downstream tasks and producing clearer and more interpretable representations.
comment: Main paper: 12 pages (including 3 pages of references), 6 figures, 6 tables. Appendix: 9 pages, 7 figures. ICLR 2026 accepted
♻ ☆ OmniEVA: Embodied Versatile Planner via Task-Adaptive 3D-Grounded and Embodiment-aware Reasoning ICLR 2026
Recent advances in multimodal large language models (MLLMs) have opened new opportunities for embodied intelligence, enabling multimodal understanding, reasoning, and interaction, as well as continuous spatial decision-making. Nevertheless, current MLLM-based embodied systems face two critical limitations. First, Geometric Adaptability Gap: models trained solely on 2D inputs or with hard-coded 3D geometry injection suffer from either insufficient spatial information or restricted 2D generalization, leading to poor adaptability across tasks with diverse spatial demands. Second, Embodiment Constraint Gap: prior work often neglects the physical constraints and capacities of real robots, resulting in task plans that are theoretically valid but practically infeasible. To address these gaps, we introduce OmniEVA -- an embodied versatile planner that enables advanced embodied reasoning and task planning through two pivotal innovations: (1) a Task-Adaptive 3D Grounding mechanism, which introduces a gated router to perform explicit selective regulation of 3D fusion based on contextual requirements, enabling context-aware 3D grounding for diverse embodied tasks. (2) an Embodiment-Aware Reasoning framework that jointly incorporates task goals and embodiment constraints into the reasoning loop, resulting in planning decisions that are both goal-directed and executable. Extensive experimental results demonstrate that OmniEVA not only achieves state-of-the-art general embodied reasoning performance, but also exhibits a strong ability across a wide range of downstream scenarios. Evaluations of a suite of proposed embodied benchmarks, including both primitive and composite tasks, confirm its robust and versatile planning capabilities. Project page: https://omnieva.github.io
comment: Published as a conference paper at ICLR 2026
♻ ☆ ColorConceptBench: A Benchmark for Probabilistic Color-Concept Understanding in Text-to-Image Models
While text-to-image (T2I) models have advanced considerably, their capability to associate colors with implicit concepts remains underexplored. To address the gap, we introduce ColorConceptBench, a new human-annotated benchmark to systematically evaluate color-concept associations through the lens of probabilistic color distributions. ColorConceptBench moves beyond explicit color names or codes by probing how models translate 1,281 implicit color concepts using a foundation of 6,369 human annotations. Our evaluation of seven leading T2I models reveals that current models lack sensitivity to abstract semantics, and crucially, this limitation appears resistant to standard interventions (e.g., scaling and guidance). This demonstrates that achieving human-like color semantics requires more than larger models, but demands a fundamental shift in how models learn and represent implicit meaning.
comment: 8 pages, 5 figures
♻ ☆ Embodied AI with Foundation Models for Mobile Service Robots: A Systematic Review
Rapid advancements in foundation models, including Large Language Models, Vision-Language Models, Multimodal Large Language Models, and Vision-Language-Action Models, have opened new avenues for embodied AI in mobile service robotics. By combining foundation models with the principles of embodied AI, where intelligent systems perceive, reason, and act through physical interaction, mobile service robots can achieve more flexible understanding, adaptive behavior, and robust task execution in dynamic real-world environments. Despite this progress, embodied AI for mobile service robots continues to face fundamental challenges related to the translation of natural language instructions into executable robot actions, multimodal perception in human-centered environments, uncertainty estimation for safe decision-making, and computational constraints for real-time onboard deployment. In this paper, we present the first systematic review focused specifically on the integration of foundation models in mobile service robotics. We analyze how recent advances in foundation models address these core challenges through language-conditioned control, multimodal sensor fusion, uncertainty-aware reasoning, and efficient model scaling. We further examine real-world applications in domestic assistance, healthcare, and service automation, highlighting how foundation models enable context-aware, socially responsive, and generalizable robot behaviors. Beyond technical considerations, we discuss ethical, societal, and human-interaction implications associated with deploying foundation model-enabled service robots in human environments. Finally, we outline future research directions emphasizing reliability and lifelong adaptation, privacy-aware and resource-constrained deployment, and governance and human-in-the-loop frameworks required for safe, scalable, and trustworthy mobile service robotics.
comment: v2: Expanded systematic review; resubmitted to Robotics
♻ ☆ Range Image-Based Implicit Neural Compression for LiDAR Point Clouds IEEE
This paper presents a novel scheme to efficiently compress Light Detection and Ranging~(LiDAR) point clouds, enabling high-precision 3D scene archives, and such archives pave the way for a detailed understanding of the corresponding 3D scenes. We focus on 2D range images~(RIs) as a lightweight format for representing 3D LiDAR observations. Although conventional image compression techniques can be adapted to improve compression efficiency for RIs, their practical performance is expected to be limited due to differences in bit precision and the distinct pixel value distribution characteristics between natural images and RIs. We propose a novel implicit neural representation~(INR)--based RI compression method that effectively handles floating-point valued pixels. The proposed method divides RIs into depth and mask images and compresses them using patch-wise and pixel-wise INR architectures with model pruning and quantization, respectively. Experiments on the KITTI dataset show that the proposed method outperforms existing image, point cloud, RI, and INR-based compression methods in terms of 3D reconstruction and detection quality at low bitrates and decoding latency.
comment: Accepted for publication in IEEE Access
♻ ☆ Modality-Balanced Collaborative Distillation for Multi-Modal Domain Generalization
Weight Averaging (WA) has emerged as a powerful technique for enhancing generalization by promoting convergence to a flat loss landscape, which correlates with stronger out-of-distribution performance. However, applying WA directly to multi-modal domain generalization (MMDG) is challenging: differences in optimization speed across modalities lead WA to overfit to faster-converging ones in early stages, suppressing the contribution of slower yet complementary modalities, thereby hindering effective modality fusion and skewing the loss surface toward sharper, less generalizable minima. To address this issue, we propose MBCD, a unified collaborative distillation framework that retains WA's flatness-inducing advantages while overcoming its shortcomings in multi-modal contexts. MBCD begins with adaptive modality dropout in the student model to curb early-stage bias toward dominant modalities. A gradient consistency constraint then aligns learning signals between uni-modal branches and the fused representation, encouraging coordinated and smoother optimization. Finally, a WA-based teacher conducts cross-modal distillation by transferring fused knowledge to each uni-modal branch, which strengthens cross-modal interactions and steer convergence toward flatter solutions. Extensive experiments on MMDG benchmarks show that MBCD consistently outperforms existing methods, achieving superior accuracy and robustness across diverse unseen domains.
♻ ☆ WaterFlow: Explicit Physics-Prior Rectified Flow for Underwater Saliency Mask Generation
Underwater Salient Object Detection (USOD) faces significant challenges, including underwater image quality degradation and domain gaps. Existing methods tend to ignore the physical principles of underwater imaging or simply treat degradation phenomena in underwater images as interference factors that must be eliminated, failing to fully exploit the valuable information they contain. We propose WaterFlow, a rectified flow-based framework for underwater salient object detection that innovatively incorporates underwater physical imaging information as explicit priors directly into the network training process and introduces temporal dimension modeling, significantly enhancing the model's capability for salient object identification. On the USOD10K dataset, WaterFlow achieves a 0.072 gain in S_m, demonstrating the effectiveness and superiority of our method. https://github.com/Theo-polis/WaterFlow.
♻ ☆ Neuro Symbolic Knowledge Reasoning for Procedural Video Question Answering IEEE
In this work we present Knowledge Module Learning (KML) to understand and reason over procedural tasks that requires models to learn structured and compositional procedural knowledge. KML is a neurosymbolic framework that learns relation categories within a knowledge graph as neural knowledge modules and composes them into executable reasoning programs generated by large language models (LLMs). Each module encodes a specific procedural relation capturing how each entity type such as tools are related to steps, purpose of each tool, and steps of each task. Given a question conditioned on a task shown in a video, then KML performs multistep reasoning with transparent, traceable intermediate states. Our theoretical analysis demonstrated two desired properties of KML. KML satisfy strong optimal conditions for modelling KG relations as neural mappings, providing strong foundations for generalizable procedural reasoning. It also shows a bound on the expected error when it performs multistep reasoning. To evaluate this model, we construct a large procedural knowledge graph (PKG) consisting of diverse instructional domains by integrating the COIN instructional video dataset, and COIN ontology, commonsense relations from ConceptNet, and structured extractions from LLMs, followed by expert verification. We then generate question and answer pairs by applying graph traversal templates over the PKG, constructing the PKR-QA benchmark for procedural knowledge reasoning. Experiments show that KML improves structured reasoning performance while providing interpretable step-by-step traces, outperforming LLM-only and black-box neural baselines. Code is publicly available at https://github.com/LUNAProject22/KML.
comment: This paper is under review at IEEE Transactions on Neural Networks and Learning Systems. Personal use is permitted, but republication/redistribution requires IEEE permission
♻ ☆ A Multi-Stage Deep Learning Framework with PKCP-MixUp Augmentation for Pediatric Liver Tumor Diagnosis Using Multi-Phase Contrast-Enhanced CT
Pediatric liver tumors are one of the most common solid tumors in pediatrics, with differentiation of benign or malignant status and pathological classification critical for clinical treatment. While pathological examination is the gold standard, the invasive biopsy has notable limitations: the highly vascular pediatric liver and fragile tumor tissue raise complication risks such as bleeding; additionally, young children with poor compliance require anesthesia for biopsy, increasing medical costs or psychological trauma. Although many efforts have been made to utilize AI in clinical settings, most researchers have overlooked its importance in pediatric liver tumors. To establish a non-invasive examination procedure, we developed a multi-stage deep learning (DL) framework for automated pediatric liver tumor diagnosis using multi-phase contrast-enhanced CT. Two retrospective and prospective cohorts were enrolled. We established a novel PKCP-MixUp data augmentation method to address data scarcity and class imbalance. We also trained a tumor detection model to extract ROIs, and then set a two-stage diagnosis pipeline with three backbones with ROI-masked images. Our tumor detection model has achieved high performance (mAP=0.871), and the first stage classification model between benign and malignant tumors reached an excellent performance (AUC=0.989). Final diagnosis models also exhibited robustness, including benign subtype classification (AUC=0.915) and malignant subtype classification (AUC=0.979). We also conducted multi-level comparative analyses, such as ablation studies on data and training pipelines, as well as Shapley-Value and CAM interpretability analyses. This framework fills the pediatric-specific DL diagnostic gap, provides actionable insights for CT phase selection and model design, and paves the way for precise, accessible pediatric liver tumor diagnosis.
♻ ☆ NavFormer: IGRF Forecasting in Moving Coordinate Frames
Triad magnetometer components change with sensor attitude even when the IGRF total intensity target stays invariant. NavFormer forecasts this invariant target with rotation invariant scalar features and a Canonical SPD module that stabilizes the spectrum of window level second moments of the triads without sign discontinuities. The module builds a canonical frame from a Gram matrix per window and applies state dependent spectral scaling in the original coordinates. Experiments across five flights show lower error than strong baselines in standard training, few shot training, and zero shot transfer. The code is available at: https://anonymous.4open.science/r/NavFormer-Robust-IGRF-Forecasting-for-Autonomous-Navigators-0765
♻ ☆ Beyond Classification Accuracy: Neural-MedBench and the Need for Deeper Reasoning Benchmarks
Recent advances in vision-language models (VLMs) have achieved remarkable performance on standard medical benchmarks, yet their true clinical reasoning ability remains unclear. Existing datasets predominantly emphasize classification accuracy, creating an evaluation illusion in which models appear proficient while still failing at high-stakes diagnostic reasoning. We introduce Neural-MedBench, a compact yet reasoning-intensive benchmark specifically designed to probe the limits of multimodal clinical reasoning in neurology. Neural-MedBench integrates multi-sequence MRI scans, structured electronic health records, and clinical notes, and encompasses three core task families: differential diagnosis, lesion recognition, and rationale generation. To ensure reliable evaluation, we develop a hybrid scoring pipeline that combines LLM-based graders, clinician validation, and semantic similarity metrics. Through systematic evaluation of state-of-the-art VLMs, including GPT-4o, Claude-4, and MedGemma, we observe a sharp performance drop compared to conventional datasets. Error analysis shows that reasoning failures, rather than perceptual errors, dominate model shortcomings. Our findings highlight the necessity of a Two-Axis Evaluation Framework: breadth-oriented large datasets for statistical generalization, and depth-oriented, compact benchmarks such as Neural-MedBench for reasoning fidelity. We release Neural-MedBench at https://neuromedbench.github.io/ as an open and extensible diagnostic testbed, which guides the expansion of future benchmarks and enables rigorous yet cost-effective assessment of clinically trustworthy AI.
comment: 23 pages, 12 figures
♻ ☆ SAM-Aug: Leveraging SAM Priors for Few-Shot Parcel Segmentation in Satellite Time Series
Few-shot semantic segmentation of time-series remote sensing images remains a critical challenge, particularly in regions where labeled data is scarce or costly to obtain. While state-of-the-art models perform well under full supervision, their performance degrades significantly under limited labeling, limiting their real-world applicability. In this work, we propose SAM-Aug, a new annotation-efficient framework that leverages the geometry-aware segmentation capability of the Segment Anything Model (SAM) to improve few-shot land cover mapping. Our approach constructs cloud-free composite images from temporal sequences and applies SAM in a fully unsupervised manner to generate geometry-aware mask priors. These priors are then integrated into training through a proposed loss function called RegionSmoothLoss, which enforces prediction consistency within each SAM-derived region across temporal frames, effectively regularizing the model to respect semantically coherent structures. Extensive experiments on the PASTIS-R benchmark under a 5 percent labeled setting demonstrate the effectiveness and robustness of SAM-Aug. Averaged over three random seeds (42, 2025, 4090), our method achieves a mean test mIoU of 36.21 percent, outperforming the state-of-the-art baseline by +2.33 percentage points, a relative improvement of 6.89 percent. Notably, on the most favorable split (seed=42), SAM-Aug reaches a test mIoU of 40.28 percent, representing an 11.2 percent relative gain with no additional labeled data. The consistent improvement across all seeds confirms the generalization power of leveraging foundation model priors under annotation scarcity. Our results highlight that vision models like SAM can serve as useful regularizers in few-shot remote sensing learning, offering a scalable and plug-and-play solution for land cover monitoring without requiring manual annotations or model fine-tuning.
comment: 13 pages, 6 figures
♻ ☆ PromptVFX: Text-Driven Fields for Open-World 3D Gaussian Animation
Visual effects (VFX) are key to immersion in modern films, games, and AR/VR. Creating 3D effects requires specialized expertise and training in 3D animation software and can be time consuming. Generative solutions typically rely on computationally intense methods such as diffusion models which can be slow at 4D inference. We reformulate 3D animation as a field prediction task and introduce a text-driven framework that infers a time-varying 4D flow field acting on 3D Gaussians. By leveraging large language models (LLMs) and vision-language models (VLMs) for function generation, our approach interprets arbitrary prompts (e.g., "make the vase glow orange, then explode") and instantly updates color, opacity, and positions of 3D Gaussians in real time. This design avoids overheads such as mesh extraction, manual or physics-based simulations and allows both novice and expert users to animate volumetric scenes with minimal effort on a consumer device even in a web browser. Experimental results show that simple textual instructions suffice to generate compelling time-varying VFX, reducing the manual effort typically required for rigging or advanced modeling. We thus present a fast and accessible pathway to language-driven 3D content creation that can pave the way to democratize VFX further. Code available at https://obsphera.github.io/promptvfx/.
♻ ☆ Scale-Equivariant Imaging: Self-Supervised Learning for Image Super-Resolution and Deblurring
Self-supervised methods have recently proved to be nearly as effective as supervised ones in various imaging inverse problems, paving the way for learning-based approaches in scientific and medical imaging applications where ground truth data is hard or expensive to obtain. These methods critically rely on invariance to translations and/or rotations of the image distribution to learn from incomplete measurement data alone. However, existing approaches fail to obtain competitive performances in the problems of image super-resolution and deblurring, which play a key role in most imaging systems. In this work, we show that invariance to roto-translations is insufficient to learn from measurements that only contain low-frequency information. Instead, we propose scale-equivariant imaging, a new self-supervised approach that leverages the fact that many image distributions are approximately scale-invariant, enabling the recovery of high-frequency information lost in the measurement process. We demonstrate throughout a series of experiments on real datasets that the proposed method outperforms other self-supervised approaches, and obtains performances on par with fully supervised learning.
♻ ☆ FastDINOv2: Frequency Based Curriculum Learning Improves Robustness and Training Speed NeurIPS 2025
Large-scale vision foundation models such as DINOv2 boast impressive performances by leveraging massive architectures and training datasets. But numerous scenarios require practitioners to reproduce those pre-training solutions, such as on private data, new modalities, or simply for scientific questioning--which is currently extremely demanding computation-wise. We thus propose a novel pre-training strategy for DINOv2 that simultaneously accelerates convergence--and strengthens robustness to common corruptions as a by-product. Our approach involves a frequency filtering curriculum--low-frequency being seen first--and the Gaussian noise patching augmentation. Applied to a ViT-B/16 backbone trained on ImageNet-1K, while pre-training time and FLOPs are reduced by 1.6x and 2.25x, our method still achieves matching robustness in corruption benchmarks (ImageNet-C) and maintains competitive linear probing performance compared with baseline. This dual benefit of efficiency and robustness makes large-scale self-supervised foundation modeling more attainable, while opening the door to novel exploration around data curriculum and augmentation as means to improve self-supervised learning models robustness. The code is available at https://github.com/KevinZ0217/fast_dinov2
comment: Accepted by 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ Hierarchical Transformers for Unsupervised 3D Shape Abstraction 3DV'26
We introduce HiT, a novel hierarchical neural field representation for 3D shapes that learns general hierarchies in a coarse-to-fine manner across different shape categories in an unsupervised setting. Our key contribution is a hierarchical transformer (HiT), where each level learns parent-child relationships of the tree hierarchy using a compressed codebook. This codebook enables the network to automatically identify common substructures across potentially diverse shape categories. Unlike previous works that constrain the task to a fixed hierarchical structure (e.g., binary), we impose no such restriction, except for limiting the total number of nodes at each tree level. This flexibility allows our method to infer the hierarchical structure directly from data, over multiple shape categories, and representing more general and complex hierarchies than prior approaches. When trained at scale with a reconstruction loss, our model captures meaningful containment relationships between parent and child nodes. We demonstrate its effectiveness through an unsupervised shape segmentation task over all 55 ShapeNet categories, where our method successfully segments shapes into multiple levels of granularity.
comment: Accepted to 3DV'26, 16 pages, 13 figures
♻ ☆ The Algorithmic Gaze: An Audit and Ethnography of the LAION-Aesthetics Predictor Model
Visual generative AI models are trained using a one-size-fits-all measure of aesthetic appeal. However, what is deemed "aesthetic" is inextricably linked to personal taste and cultural values, raising the question of whose taste is represented in visual generative AI models. In this work, we study an aesthetic evaluation model--LAION Aesthetic Predictor (LAP)--that is widely used to curate datasets to train visual generative image models, like Stable Diffusion, and evaluate the quality of AI-generated images. To understand what LAP measures, we audited the model across three datasets. First, we examined the impact of aesthetic filtering on the LAION-Aesthetics Dataset (approximately 1.2B images), which was curated from LAION-5B using LAP. We find that the LAP disproportionally filters in images with captions mentioning women, while filtering out images with captions mentioning men or LGBTQ+ people. Then, we used LAP to score approximately 330k images across two art datasets, finding the model rates realistic images of landscapes, cityscapes, and portraits from western and Japanese artists most highly. In doing so, the algorithmic gaze of this aesthetic evaluation model reinforces the imperial and male gazes found within western art history. In order to understand where these biases may have originated, we performed a digital ethnography of public materials related to the creation of LAP. We find that the development of LAP reflects the biases we found in our audits, such as the aesthetic scores used to train LAP primarily coming from English-speaking photographers and western AI-enthusiasts. In response, we discuss how aesthetic evaluation can perpetuate representational harms and call on AI developers to shift away from prescriptive measures of "aesthetics" toward more pluralistic evaluation.
♻ ☆ CMOOD: Concept-based Multi-label OOD Detection
How can models effectively detect out-of-distribution (OOD) samples in complex, multi-label settings without extensive retraining? Existing OOD detection methods struggle to capture the intricate semantic relationships and label co-occurrences inherent in multi-label settings, often requiring large amounts of training data and failing to generalize to unseen label combinations. While large language models have revolutionized zero-shot OOD detection, they primarily focus on single-label scenarios, leaving a critical gap in handling real-world tasks where samples can be associated with multiple interdependent labels. To address these challenges, we introduce COOD, a novel zero-shot multi-label OOD detection framework. COOD leverages pre-trained vision-language models, enhancing them with a concept-based label expansion strategy and a new scoring function. By enriching the semantic space with both positive and negative concepts for each label, our approach models complex label dependencies, precisely differentiating OOD samples without the need for additional training. Extensive experiments demonstrate that our method significantly outperforms existing approaches, achieving approximately 95% average AUROC on both VOC and COCO datasets, while maintaining robust performance across varying numbers of labels and different types of OOD samples.
♻ ☆ MiLDEdit: Reasoning-Based Multi-Layer Design Document Editing
Real-world design documents (e.g., posters) are inherently multi-layered, combining decoration, text, and images. Editing them from natural-language instructions requires fine-grained, layer-aware reasoning to identify relevant layers and coordinate modifications. Prior work largely overlooks multi-layer design document editing, focusing instead on single-layer image editing or multi-layer generation, which assume a flat canvas and lack the reasoning needed to determine what and where to modify. To address this gap, we introduce the Multi-Layer Document Editing Agent (MiLDEAgent), a reasoning-based framework that combines an RL-trained multimodal reasoner for layer-wise understanding with an image editor for targeted modifications. To systematically benchmark this setting, we introduce the MiLDEBench, a human-in-the-loop corpus of over 20K design documents paired with diverse editing instructions. The benchmark is complemented by a task-specific evaluation protocol, MiLDEEval, which spans four dimensions including instruction following, layout consistency, aesthetics, and text rendering. Extensive experiments on 14 open-source and 2 closed-source models reveal that existing approaches fail to generalize: open-source models often cannot complete multi-layer document editing tasks, while closed-source models suffer from format violations. In contrast, MiLDEAgent achieves strong layer-aware reasoning and precise editing, significantly outperforming all open-source baselines and attaining performance comparable to closed-source models, thereby establishing the first strong baseline for multi-layer document editing.
♻ ☆ City Navigation in the Wild: Exploring Emergent Navigation from Web-Scale Knowledge in MLLMs EACL 2026
Leveraging multimodal large language models (MLLMs) to develop embodied agents offers significant promise for addressing complex real-world tasks. However, current evaluation benchmarks remain predominantly language-centric or heavily reliant on simulated environments, rarely probing the nuanced, knowledge-intensive reasoning essential for practical, real-world scenarios. To bridge this critical gap, we introduce the task of Sparsely Grounded Visual Navigation, explicitly designed to evaluate the sequential decision-making abilities of MLLMs in challenging, knowledge-intensive real-world environment. We operationalize this task with CityNav, a comprehensive benchmark encompassing four diverse global cities, specifically constructed to assess raw MLLM-driven agents in city navigation. Agents are required to rely solely on visual inputs and internal multimodal reasoning to sequentially navigate 50+ decision points without additional environmental annotations or specialized architectural modifications. Crucially, agents must autonomously achieve localization through interpreting city-specific cues and recognizing landmarks, perform spatial reasoning, and strategically plan and execute routes to their destinations. Through extensive evaluations, we demonstrate that current state-of-the-art MLLMs, reasoning techniques (e.g., GEPA, chain-of-thought, reflection) and competitive baseline PReP significantly underperform in this challenging setting. To address this, we propose Verbalization of Path(VoP), which explicitly grounds the agent's internal reasoning by probing city-scale cognitive maps (key landmarks and directions toward the destination) from the MLLM, substantially enhancing navigation success. Project Webpage: https://dwipddalal.github.io/AgentNav/
comment: Accepted at EACL 2026
♻ ☆ MOTION: ML-Assisted On-Device Low-Latency Motion Recognition
The use of tiny devices capable of low-latency gesture recognition is gaining momentum in everyday human-computer interaction and especially in medical monitoring fields. Embedded solutions such as fall detection, rehabilitation tracking, and patient supervision require fast and efficient tracking of movements while avoiding unwanted false alarms. This study presents an efficient solution on how to build very efficient motion-based models only using triaxial accelerometer sensors. We explore the capability of the AutoML pipelines to extract the most important features from the data segments. This approach also involves training multiple lightweight machine learning algorithms using the extracted features. We use WeBe Band, a multi-sensor wearable device that is equipped with a powerful enough MCU to effectively perform gesture recognition entirely on the device. Of the models explored, we found that the neural network provided the best balance between accuracy, latency, and memory use. Our results also demonstrate that reliable real-time gesture recognition can be achieved in WeBe Band, with great potential for real-time medical monitoring solutions that require a secure and fast response time.
♻ ☆ An explainable vision transformer with transfer learning based efficient drought stress identification
Early detection of drought stress is critical for taking timely measures for reducing crop loss before the drought impact becomes irreversible. The subtle phenotypical and physiological changes in response to drought stress are captured by non-invasive imaging techniques and these imaging data serve as valuable resource for machine learning methods to identify drought stress. While convolutional neural networks (CNNs) are in wide use, vision transformers (ViTs) present a promising alternative in capturing long-range dependencies and intricate spatial relationships, thereby enhancing the detection of subtle indicators of drought stress. We propose an explainable deep learning pipeline that leverages the power of ViTs for drought stress detection in potato crops using aerial imagery. We applied two distinct approaches: a synergistic combination of ViT and support vector machine (SVM), where ViT extracts intricate spatial features from aerial images, and SVM classifies the crops as stressed or healthy and an end-to-end approach using a dedicated classification layer within ViT to directly detect drought stress. Our key findings explain the ViT model's decision-making process by visualizing attention maps. These maps highlight the specific spatial features within the aerial images that the ViT model focuses as the drought stress signature. Our findings demonstrate that the proposed methods not only achieve high accuracy in drought stress identification but also shedding light on the diverse subtle plant features associated with drought stress. This offers a robust and interpretable solution for drought stress monitoring for farmers to undertake informed decisions for improved crop management.
comment: 33 pages, 7 figures, 8 tables
♻ ☆ Temporally-Similar Structure-Aware Spatiotemporal Fusion of Satellite Images IEEE
This paper proposes a spatiotemporal (ST) fusion framework robust against diverse noise for satellite images, named Temporally-Similar Structure-Aware ST fusion (TSSTF). ST fusion is a promising approach to address the trade-off between the spatial and temporal resolution of satellite images. In real-world scenarios, observed satellite images are severely degraded by noise due to measurement equipment and environmental conditions. Consequently, some recent studies have focused on enhancing the robustness of ST fusion methods against noise. However, existing noise-robust ST fusion approaches often fail to capture fine spatial structure, leading to oversmoothing and artifacts. To address this issue, TSSTF introduces two key mechanisms: Temporally-Guided Total Variation (TGTV) and Temporally-Guided Edge Constraint (TGEC). TGTV is a weighted total variation-based regularization that promotes spatial piecewise smoothness while preserving structural details, guided by a reference high spatial resolution image acquired on a nearby date. TGEC enforces consistency in edge locations between two temporally adjacent images, while allowing for spectral variations. We formulate the ST fusion task as a constrained optimization problem incorporating TGTV and TGEC, and develop an efficient algorithm based on a preconditioned primal-dual splitting method. Experimental results demonstrate that TSSTF performs comparably to state-of-the-art methods under noise-free conditions and outperforms them under noisy conditions.
comment: Submitted to IEEE Transactions on Geoscience and Remote Sensing. arXiv admin note: text overlap with arXiv:2308.00500
Artificial Intelligence 203
☆ Evolutionary Strategies lead to Catastrophic Forgetting in LLMs
One of the biggest missing capabilities in current AI systems is the ability to learn continuously after deployment. Implementing such continually learning systems have several challenges, one of which is the large memory requirement of gradient-based algorithms that are used to train state-of-the-art LLMs. Evolutionary Strategies (ES) have recently re-emerged as a gradient-free alternative to traditional learning algorithms and have shown encouraging performance on specific tasks in LLMs. In this paper, we perform a comprehensive analysis of ES and specifically evaluate its forgetting curves when training for an increasing number of update steps. We first find that ES is able to reach performance numbers close to GRPO for math and reasoning tasks with a comparable compute budget. However, and most importantly for continual learning, the performance gains in ES is accompanied by significant forgetting of prior abilities, limiting its applicability for training models online. We also explore the reason behind this behavior and show that the updates made using ES are much less sparse and have orders of magnitude larger $\ell_2$ norm compared to corresponding GRPO updates, explaining the contrasting forgetting curves between the two algorithms. With this study, we aim to highlight the issue of forgetting in gradient-free algorithms like ES and hope to inspire future work to mitigate these issues.
☆ SokoBench: Evaluating Long-Horizon Planning and Reasoning in Large Language Models
Although the capabilities of large language models have been increasingly tested on complex reasoning tasks, their long-horizon planning abilities have not yet been extensively investigated. In this work, we provide a systematic assessment of the planning and long-horizon reasoning capabilities of state-of-the-art Large Reasoning Models (LRMs). We propose a novel benchmark based on Sokoban puzzles, intentionally simplified to isolate long-horizon planning from state persistence. Our findings reveal a consistent degradation in planning performance when more than 25 moves are required to reach the solution, suggesting a fundamental constraint on forward planning capacity. We show that equipping LRMs with Planning Domain Definition Language (PDDL) parsing, validation, and solving tools allows for modest improvements, suggesting inherent architectural limitations which might not be overcome by test-time scaling approaches alone.
☆ Exploring Transformer Placement in Variational Autoencoders for Tabular Data Generation
Tabular data remains a challenging domain for generative models. In particular, the standard Variational Autoencoder (VAE) architecture, typically composed of multilayer perceptrons, struggles to model relationships between features, especially when handling mixed data types. In contrast, Transformers, through their attention mechanism, are better suited for capturing complex feature interactions. In this paper, we empirically investigate the impact of integrating Transformers into different components of a VAE. We conduct experiments on 57 datasets from the OpenML CC18 suite and draw two main conclusions. First, results indicate that positioning Transformers to leverage latent and decoder representations leads to a trade-off between fidelity and diversity. Second, we observe a high similarity between consecutive blocks of a Transformer in all components. In particular, in the decoder, the relationship between the input and output of a Transformer is approximately linear.
☆ Post-Training Fairness Control: A Single-Train Framework for Dynamic Fairness in Recommendation WWW 2026
Despite growing efforts to mitigate unfairness in recommender systems, existing fairness-aware methods typically fix the fairness requirement at training time and provide limited post-training flexibility. However, in real-world scenarios, diverse stakeholders may demand differing fairness requirements over time, so retraining for different fairness requirements becomes prohibitive. To address this limitation, we propose Cofair, a single-train framework that enables post-training fairness control in recommendation. Specifically, Cofair introduces a shared representation layer with fairness-conditioned adapter modules to produce user embeddings specialized for varied fairness levels, along with a user-level regularization term that guarantees user-wise monotonic fairness improvements across these levels. We theoretically establish that the adversarial objective of Cofair upper bounds demographic parity and the regularization term enforces progressive fairness at user level. Comprehensive experiments on multiple datasets and backbone models demonstrate that our framework provides dynamic fairness at different levels, delivering comparable or better fairness-accuracy curves than state-of-the-art baselines, without the need to retrain for each new fairness requirement. Our code is publicly available at https://github.com/weixinchen98/Cofair.
comment: Accepted to WWW 2026 Workshop on HCRS (Oral Presentation)
☆ A New Dataset and Framework for Robust Road Surface Classification via Camera-IMU Fusion
Road surface classification (RSC) is a key enabler for environment-aware predictive maintenance systems. However, existing RSC techniques often fail to generalize beyond narrow operational conditions due to limited sensing modalities and datasets that lack environmental diversity. This work addresses these limitations by introducing a multimodal framework that fuses images and inertial measurements using a lightweight bidirectional cross-attention module followed by an adaptive gating layer that adjusts modality contributions under domain shifts. Given the limitations of current benchmarks, especially regarding lack of variability, we introduce ROAD, a new dataset composed of three complementary subsets: (i) real-world multimodal recordings with RGB-IMU streams synchronized using a gold-standard industry datalogger, captured across diverse lighting, weather, and surface conditions; (ii) a large vision-only subset designed to assess robustness under adverse illumination and heterogeneous capture setups; and (iii) a synthetic subset generated to study out-of-distribution generalization in scenarios difficult to obtain in practice. Experiments show that our method achieves a +1.4 pp improvement over the previous state-of-the-art on the PVS benchmark and an +11.6 pp improvement on our multimodal ROAD subset, with consistently higher F1-scores on minority classes. The framework also demonstrates stable performance across challenging visual conditions, including nighttime, heavy rain, and mixed-surface transitions. These findings indicate that combining affordable camera and IMU sensors with multimodal attention mechanisms provides a scalable, robust foundation for road surface understanding, particularly relevant for regions where environmental variability and cost constraints limit the adoption of high-end sensing suites.
☆ $\mathbb{R}^{2k}$ is Theoretically Large Enough for Embedding-based Top-$k$ Retrieval
This paper studies the minimal dimension required to embed subset memberships ($m$ elements and ${m\choose k}$ subsets of at most $k$ elements) into vector spaces, denoted as Minimal Embeddable Dimension (MED). The tight bounds of MED are derived theoretically and supported empirically for various notions of "distances" or "similarities," including the $\ell_2$ metric, inner product, and cosine similarity. In addition, we conduct numerical simulation in a more achievable setting, where the ${m\choose k}$ subset embeddings are chosen as the centroid of the embeddings of the contained elements. Our simulation easily realizes a logarithmic dependency between the MED and the number of elements to embed. These findings imply that embedding-based retrieval limitations stem primarily from learnability challenges, not geometric constraints, guiding future algorithm design.
☆ Deep Researcher with Sequential Plan Reflection and Candidates Crossover (Deep Researcher Reflect Evolve)
This paper introduces a novel Deep Researcher architecture designed to generate detailed research reports on complex PhD level topics by addressing the inherent limitations of the Parallel Scaling paradigm. Our system utilizes two key innovations: Sequential Research Plan Refinement via Reflection and a Candidates Crossover algorithm. The sequential refinement process is demonstrated as an efficient method that allows the agent to maintain a centralized Global Research Context, enabling it to look back at current progress, reason about the research plan, and intelligently make changes at runtime. This dynamic adaptation contrasts with parallel approaches, which often suffer from siloed knowledge. The Candidates Crossover algorithm further enhances search efficiency by deploying multiple LLM candidates with varied parameters to explore a larger search space, with their findings synthesized to curate a comprehensive final research response. The process concludes with One Shot Report Generation, ensuring the final document is informed by a unified narrative and high fact density. Powered by the Gemini 2.5 Pro model, our Deep Researcher was evaluated on the DeepResearch Bench, a globally recognized benchmark of 100 doctoral level research tasks. Our architecture achieved an overall score of 46.21, demonstrating superior performance by surpassing leading deep research agents such as Claude Researcher, Nvidia AIQ Research Assistant, Perplexity Research, Kimi Researcher and Grok Deeper Search present on the DeepResearch Bench actively running leaderboard. This performance marginally exceeds our previous work, Static DRA, and reinforces the finding that sequential scaling consistently outperforms the parallel self consistency paradigm.
comment: 11 pages, 6 figures, 2 tables, source code: https://github.com/SauravP97/deep-researcher-reflect-evolve/
☆ Reward Models Inherit Value Biases from Pretraining
Reward models (RMs) are central to aligning large language models (LLMs) with human values but have received less attention than pre-trained and post-trained LLMs themselves. Because RMs are initialized from LLMs, they inherit representations that shape their behavior, but the nature and extent of this influence remain understudied. In a comprehensive study of 10 leading open-weight RMs using validated psycholinguistic corpora, we show that RMs exhibit significant differences along multiple dimensions of human value as a function of their base model. Using the "Big Two" psychological axes, we show a robust preference of Llama RMs for "agency" and a corresponding robust preference of Gemma RMs for "communion." This phenomenon holds even when the preference data and finetuning process are identical, and we trace it back to the logits of the respective instruction-tuned and pre-trained models. These log-probability differences themselves can be formulated as an implicit RM; we derive usable implicit reward scores and show that they exhibit the very same agency/communion difference. We run experiments training RMs with ablations for preference data source and quantity, which demonstrate that this effect is not only repeatable but surprisingly durable. Despite RMs being designed to represent human preferences, our evidence shows that their outputs are influenced by the pretrained LLMs on which they are based. This work underscores the importance of safety and alignment efforts at the pretraining stage, and makes clear that open-source developers' choice of base model is as much a consideration of values as of performance.
☆ Open-Vocabulary Functional 3D Human-Scene Interaction Generation
Generating 3D humans that functionally interact with 3D scenes remains an open problem with applications in embodied AI, robotics, and interactive content creation. The key challenge involves reasoning about both the semantics of functional elements in 3D scenes and the 3D human poses required to achieve functionality-aware interaction. Unfortunately, existing methods typically lack explicit reasoning over object functionality and the corresponding human-scene contact, resulting in implausible or functionally incorrect interactions. In this work, we propose FunHSI, a training-free, functionality-driven framework that enables functionally correct human-scene interactions from open-vocabulary task prompts. Given a task prompt, FunHSI performs functionality-aware contact reasoning to identify functional scene elements, reconstruct their 3D geometry, and model high-level interactions via a contact graph. We then leverage vision-language models to synthesize a human performing the task in the image and estimate proposed 3D body and hand poses. Finally, the proposed 3D body configuration is refined via stage-wise optimization to ensure physical plausibility and functional correctness. In contrast to existing methods, FunHSI not only synthesizes more plausible general 3D interactions, such as "sitting on a sofa'', while supporting fine-grained functional human-scene interactions, e.g., "increasing the room temperature''. Extensive experiments demonstrate that FunHSI consistently generates functionally correct and physically plausible human-scene interactions across diverse indoor and outdoor scenes.
comment: 18 pages
☆ MemCtrl: Using MLLMs as Active Memory Controllers on Embodied Agents
Foundation models rely on in-context learning for personalized decision making. The limited size of this context window necessitates memory compression and retrieval systems like RAG. These systems however often treat memory as large offline storage spaces, which is unfavorable for embodied agents that are expected to operate under strict memory and compute constraints, online. In this work, we propose MemCtrl, a novel framework that uses Multimodal Large Language Models (MLLMs) for pruning memory online. MemCtrl augments MLLMs with a trainable memory head μthat acts as a gate to determine which observations or reflections to retain, update, or discard during exploration. We evaluate with training two types of μ, 1) via an offline expert, and 2) via online RL, and observe significant improvement in overall embodied task completion ability on μ-augmented MLLMs. In particular, on augmenting two low performing MLLMs with MemCtrl on multiple subsets of the EmbodiedBench benchmark, we observe that μ-augmented MLLMs show an improvement of around 16% on average, with over 20% on specific instruction subsets. Finally, we present a qualitative analysis on the memory fragments collected by μ, noting the superior performance of μaugmented MLLMs on long and complex instruction types.
☆ Training Reasoning Models on Saturated Problems via Failure-Prefix Conditioning
Reinforcement Learning with Verifiable Rewards (RLVR) has substantially improved the reasoning abilities of large language models (LLMs), yet training often stalls as problems become saturated. We identify the core challenge as the poor accessibility of informative failures: learning signals exist but are rarely encountered during standard rollouts. To address this, we propose failure-prefix conditioning, a simple and effective method for learning from saturated problems. Rather than starting from the original question, our approach reallocates exploration by conditioning training on prefixes derived from rare incorrect reasoning trajectories, thereby exposing the model to failure-prone states. We observe that failure-prefix conditioning yields performance gains matching those of training on medium-difficulty problems, while preserving token efficiency. Furthermore, we analyze the model's robustness, finding that our method reduces performance degradation under misleading failure prefixes, albeit with a mild trade-off in adherence to correct early reasoning. Finally, we demonstrate that an iterative approach, which refreshes failure prefixes during training, unlocks additional gains after performance plateaus. Overall, our results suggest that failure-prefix conditioning offers an effective pathway to extend RLVR training on saturated problems.
comment: 16 pages
☆ GNN Explanations that do not Explain and How to find Them
Explanations provided by Self-explainable Graph Neural Networks (SE-GNNs) are fundamental for understanding the model's inner workings and for identifying potential misuse of sensitive attributes. Although recent works have highlighted that these explanations can be suboptimal and potentially misleading, a characterization of their failure cases is unavailable. In this work, we identify a critical failure of SE-GNN explanations: explanations can be unambiguously unrelated to how the SE-GNNs infer labels. We show that, on the one hand, many SE-GNNs can achieve optimal true risk while producing these degenerate explanations, and on the other, most faithfulness metrics can fail to identify these failure modes. Our empirical analysis reveals that degenerate explanations can be maliciously planted (allowing an attacker to hide the use of sensitive attributes) and can also emerge naturally, highlighting the need for reliable auditing. To address this, we introduce a novel faithfulness metric that reliably marks degenerate explanations as unfaithful, in both malicious and natural settings. Our code is available in the supplemental.
☆ Reinforcement Learning via Self-Distillation
Large language models are increasingly post-trained with reinforcement learning in verifiable domains such as code and math. Yet, current methods for reinforcement learning with verifiable rewards (RLVR) learn only from a scalar outcome reward per attempt, creating a severe credit-assignment bottleneck. Many verifiable environments actually provide rich textual feedback, such as runtime errors or judge evaluations, that explain why an attempt failed. We formalize this setting as reinforcement learning with rich feedback and introduce Self-Distillation Policy Optimization (SDPO), which converts tokenized feedback into a dense learning signal without any external teacher or explicit reward model. SDPO treats the current model conditioned on feedback as a self-teacher and distills its feedback-informed next-token predictions back into the policy. In this way, SDPO leverages the model's ability to retrospectively identify its own mistakes in-context. Across scientific reasoning, tool use, and competitive programming on LiveCodeBench v6, SDPO improves sample efficiency and final accuracy over strong RLVR baselines. Notably, SDPO also outperforms baselines in standard RLVR environments that only return scalar feedback by using successful rollouts as implicit feedback for failed attempts. Finally, applying SDPO to individual questions at test time accelerates discovery on difficult binary-reward tasks, achieving the same discovery probability as best-of-k sampling or multi-turn conversations with 3x fewer attempts.
☆ Conditional PED-ANOVA: Hyperparameter Importance in Hierarchical & Dynamic Search Spaces
We propose conditional PED-ANOVA (condPED-ANOVA), a principled framework for estimating hyperparameter importance (HPI) in conditional search spaces, where the presence or domain of a hyperparameter can depend on other hyperparameters. Although the original PED-ANOVA provides a fast and efficient way to estimate HPI within the top-performing regions of the search space, it assumes a fixed, unconditional search space and therefore cannot properly handle conditional hyperparameters. To address this, we introduce a conditional HPI for top-performing regions and derive a closed-form estimator that accurately reflects conditional activation and domain changes. Experiments show that naive adaptations of existing HPI estimators yield misleading or uninterpretable importance estimates in conditional settings, whereas condPED-ANOVA consistently provides meaningful importances that reflect the underlying conditional structure.
comment: 16 pages, 9 figures
☆ FAIRT2V: Training-Free Debiasing for Text-to-Video Diffusion Models
Text-to-video (T2V) diffusion models have achieved rapid progress, yet their demographic biases, particularly gender bias, remain largely unexplored. We present FairT2V, a training-free debiasing framework for text-to-video generation that mitigates encoder-induced bias without finetuning. We first analyze demographic bias in T2V models and show that it primarily originates from pretrained text encoders, which encode implicit gender associations even for neutral prompts. We quantify this effect with a gender-leaning score that correlates with bias in generated videos. Based on this insight, FairT2V mitigates demographic bias by neutralizing prompt embeddings via anchor-based spherical geodesic transformations while preserving semantics. To maintain temporal coherence, we apply debiasing only during early identity-forming steps through a dynamic denoising schedule. We further propose a video-level fairness evaluation protocol combining VideoLLM-based reasoning with human verification. Experiments on the modern T2V model Open-Sora show that FairT2V substantially reduces demographic bias across occupations with minimal impact on video quality.
☆ REASON: Accelerating Probabilistic Logical Reasoning for Scalable Neuro-Symbolic Intelligence IEEE
Neuro-symbolic AI systems integrate neural perception with symbolic reasoning to enable data-efficient, interpretable, and robust intelligence beyond purely neural models. Although this compositional paradigm has shown superior performance in domains such as reasoning, planning, and verification, its deployment remains challenging due to severe inefficiencies in symbolic and probabilistic inference. Through systematic analysis of representative neuro-symbolic workloads, we identify probabilistic logical reasoning as the inefficiency bottleneck, characterized by irregular control flow, low arithmetic intensity, uncoalesced memory accesses, and poor hardware utilization on CPUs and GPUs. This paper presents REASON, an integrated acceleration framework for probabilistic logical reasoning in neuro-symbolic AI. REASON introduces a unified directed acyclic graph representation that captures common structure across symbolic and probabilistic models, coupled with adaptive pruning and regularization. At the architecture level, REASON features a reconfigurable, tree-based processing fabric optimized for irregular traversal, symbolic deduction, and probabilistic aggregation. At the system level, REASON is tightly integrated with GPU streaming multiprocessors through a programmable interface and multi-level pipeline that efficiently orchestrates compositional execution. Evaluated across six neuro-symbolic workloads, REASON achieves 12-50x speedup and 310-681x energy efficiency over desktop and edge GPUs under TSMC 28 nm node. REASON enables real-time probabilistic logical reasoning, completing end-to-end tasks in 0.8 s with 6 mm2 area and 2.12 W power, demonstrating that targeted acceleration of probabilistic logical reasoning is critical for practical and scalable neuro-symbolic AI and positioning REASON as a foundational system architecture for next-generation cognitive intelligence.
comment: 16 pages, 13 figures, 5 tables, 2026 IEEE International Symposium on High-Performance Computer Architecture (HPCA)
☆ Independence of Approximate Clones
In an ordinal election, two candidates are said to be perfect clones if every voter ranks them adjacently. The independence of clones axiom then states that removing one of the two clones should not change the election outcome. This axiom has been extensively studied in social choice theory, and several voting rules are known to satisfy it (such as IRV, Ranked Pairs and Schulze). However, perfect clones are unlikely to occur in practice, especially for political elections with many voters. In this work, we study different notions of approximate clones in ordinal elections. Informally, two candidates are approximate clones in a preference profile if they are close to being perfect clones. We discuss two measures to quantify this proximity, and we show under which conditions the voting rules that are known to be independent of clones are also independent of approximate clones. In particular, we show that for elections with at least four candidates, none of these rules are independent of approximate clones in the general case. However, we find a more positive result for the case of three candidates. Finally, we conduct an empirical study of approximate clones and independence of approximate clones based on three real-world datasets: votes in local Scottish elections, votes in mini-jury deliberations, and votes of judges in figure skating competitions. We find that approximate clones are common in some contexts, and that the closest two candidates are to being perfect clones, the less likely their removal is to change the election outcome, especially for voting rules that are independent of perfect clones.
☆ HESTIA: A Hessian-Guided Differentiable Quantization-Aware Training Framework for Extremely Low-Bit LLMs
As large language models (LLMs) continue to scale, deployment is increasingly bottlenecked by the memory wall, motivating a shift toward extremely low-bit quantization. However, most quantization-aware training (QAT) methods apply hard rounding and the straight-through estimator (STE) from the beginning of the training, which prematurely discretizes the optimization landscape and induces persistent gradient mismatch between latent weights and quantized weights, hindering effective optimization of quantized models. To address this, we propose Hestia, a Hessian-guided differentiable QAT framework for extremely low-bit LLMs, which replaces the rigid step function with a temperature-controlled softmax relaxation to maintain gradient flow early in training while progressively hardening quantization. Furthermore, Hestia leverages a tensor-wise Hessian trace metric as a lightweight curvature signal to drive fine-grained temperature annealing, enabling sensitivity-aware discretization across the model. Evaluations on Llama-3.2 show that Hestia consistently outperforms existing ternary QAT baselines, yielding average zero-shot improvements of 5.39% and 4.34% for the 1B and 3B models. These results indicate that Hessian-guided relaxation effectively recovers representational capacity, establishing a more robust training path for 1.58-bit LLMs. The code is available at https://github.com/hestia2026/Hestia.
comment: 13 pages, 2 figures
☆ Implementing Metric Temporal Answer Set Programming
We develop a computational approach to Metric Answer Set Programming (ASP) to allow for expressing quantitative temporal constraints, like durations and deadlines. A central challenge is to maintain scalability when dealing with fine-grained timing constraints, which can significantly exacerbate ASP's grounding bottleneck. To address this issue, we leverage extensions of ASP with difference constraints, a simplified form of linear constraints, to handle time-related aspects externally. Our approach effectively decouples metric ASP from the granularity of time, resulting in a solution that is unaffected by time precision.
☆ QueerGen: How LLMs Reflect Societal Norms on Gender and Sexuality in Sentence Completion Tasks
This paper examines how Large Language Models (LLMs) reproduce societal norms, particularly heterocisnormativity, and how these norms translate into measurable biases in their text generations. We investigate whether explicit information about a subject's gender or sexuality influences LLM responses across three subject categories: queer-marked, non-queer-marked, and the normalized "unmarked" category. Representational imbalances are operationalized as measurable differences in English sentence completions across four dimensions: sentiment, regard, toxicity, and prediction diversity. Our findings show that Masked Language Models (MLMs) produce the least favorable sentiment, higher toxicity, and more negative regard for queer-marked subjects. Autoregressive Language Models (ARLMs) partially mitigate these patterns, while closed-access ARLMs tend to produce more harmful outputs for unmarked subjects. Results suggest that LLMs reproduce normative social assumptions, though the form and degree of bias depend strongly on specific model characteristics, which may redistribute, but not eliminate, representational harms.
☆ Li-ViP3D++: Query-Gated Deformable Camera-LiDAR Fusion for End-to-End Perception and Trajectory Prediction IEEE
End-to-end perception and trajectory prediction from raw sensor data is one of the key capabilities for autonomous driving. Modular pipelines restrict information flow and can amplify upstream errors. Recent query-based, fully differentiable perception-and-prediction (PnP) models mitigate these issues, yet the complementarity of cameras and LiDAR in the query-space has not been sufficiently explored. Models often rely on fusion schemes that introduce heuristic alignment and discrete selection steps which prevent full utilization of available information and can introduce unwanted bias. We propose Li-ViP3D++, a query-based multimodal PnP framework that introduces Query-Gated Deformable Fusion (QGDF) to integrate multi-view RGB and LiDAR in query space. QGDF (i) aggregates image evidence via masked attention across cameras and feature levels, (ii) extracts LiDAR context through fully differentiable BEV sampling with learned per-query offsets, and (iii) applies query-conditioned gating to adaptively weight visual and geometric cues per agent. The resulting architecture jointly optimizes detection, tracking, and multi-hypothesis trajectory forecasting in a single end-to-end model. On nuScenes, Li-ViP3D++ improves end-to-end behavior and detection quality, achieving higher EPA (0.335) and mAP (0.502) while substantially reducing false positives (FP ratio 0.147), and it is faster than the prior Li-ViP3D variant (139.82 ms vs. 145.91 ms). These results indicate that query-space, fully differentiable camera-LiDAR fusion can increase robustness of end-to-end PnP without sacrificing deployability.
comment: This work has been submitted to the IEEE for possible publication
☆ Adapting the Behavior of Reinforcement Learning Agents to Changing Action Spaces and Reward Functions
Reinforcement Learning (RL) agents often struggle in real-world applications where environmental conditions are non-stationary, particularly when reward functions shift or the available action space expands. This paper introduces MORPHIN, a self-adaptive Q-learning framework that enables on-the-fly adaptation without full retraining. By integrating concept drift detection with dynamic adjustments to learning and exploration hyperparameters, MORPHIN adapts agents to changes in both the reward function and on-the-fly expansions of the agent's action space, while preserving prior policy knowledge to prevent catastrophic forgetting. We validate our approach using a Gridworld benchmark and a traffic signal control simulation. The results demonstrate that MORPHIN achieves superior convergence speed and continuous adaptation compared to a standard Q-learning baseline, improving learning efficiency by up to 1.7x.
☆ Beyond GEMM-Centric NPUs: Enabling Efficient Diffusion LLM Sampling
Diffusion Large Language Models (dLLMs) introduce iterative denoising to enable parallel token generation, but their sampling phase displays fundamentally different characteristics compared to GEMM-centric transformer layers. Profiling on modern GPUs reveals that sampling can account for up to 70% of total model inference latency-primarily due to substantial memory loads and writes from vocabulary-wide logits, reduction-based token selection, and iterative masked updates. These processes demand large on-chip SRAM and involve irregular memory accesses that conventional NPUs struggle to handle efficiently. To address this, we identify a set of critical instructions that an NPU architecture must specifically optimize for dLLM sampling. Our design employs lightweight non-GEMM vector primitives, in-place memory reuse strategies, and a decoupled mixed-precision memory hierarchy. Together, these optimizations deliver up to a 2.53x speedup over the NVIDIA RTX A6000 GPU under an equivalent nm technology node. We also open-source our cycle-accurate simulation and post-synthesis RTL verification code, confirming functional equivalence with current dLLM PyTorch implementations.
☆ Enterprise Resource Planning Using Multi-type Transformers in Ferro-Titanium Industry
Combinatorial optimization problems such as the Job-Shop Scheduling Problem (JSP) and Knapsack Problem (KP) are fundamental challenges in operations research, logistics, and eterprise resource planning (ERP). These problems often require sophisticated algorithms to achieve near-optimal solutions within practical time constraints. Recent advances in deep learning have introduced transformer-based architectures as promising alternatives to traditional heuristics and metaheuristics. We leverage the Multi-Type Transformer (MTT) architecture to address these benchmarks in a unified framework. We present an extensive experimental evaluation across standard benchmark datasets for JSP and KP, demonstrating that MTT achieves competitive performance on different size of these benchmark problems. We showcase the potential of multi-type attention on a real application in Ferro-Titanium industry. To the best of our knowledge, we are the first to apply multi-type transformers in real manufacturing.
☆ Decoupling Perception and Calibration: Label-Efficient Image Quality Assessment Framework
Recent multimodal large language models (MLLMs) have demonstrated strong capabilities in image quality assessment (IQA) tasks. However, adapting such large-scale models is computationally expensive and still relies on substantial Mean Opinion Score (MOS) annotations. We argue that for MLLM-based IQA, the core bottleneck lies not in the quality perception capacity of MLLMs, but in MOS scale calibration. Therefore, we propose LEAF, a Label-Efficient Image Quality Assessment Framework that distills perceptual quality priors from an MLLM teacher into a lightweight student regressor, enabling MOS calibration with minimal human supervision. Specifically, the teacher conducts dense supervision through point-wise judgments and pair-wise preferences, with an estimate of decision reliability. Guided by these signals, the student learns the teacher's quality perception patterns through joint distillation and is calibrated on a small MOS subset to align with human annotations. Experiments on both user-generated and AI-generated IQA benchmarks demonstrate that our method significantly reduces the need for human annotations while maintaining strong MOS-aligned correlations, making lightweight IQA practical under limited annotation budgets.
☆ Harnessing Large Language Models for Precision Querying and Retrieval-Augmented Knowledge Extraction in Clinical Data Science
This study applies Large Language Models (LLMs) to two foundational Electronic Health Record (EHR) data science tasks: structured data querying (using programmatic languages, Python/Pandas) and information extraction from unstructured clinical text via a Retrieval Augmented Generation (RAG) pipeline. We test the ability of LLMs to interact accurately with large structured datasets for analytics and the reliability of LLMs in extracting semantically correct information from free text health records when supported by RAG. To this end, we presented a flexible evaluation framework that automatically generates synthetic question and answer pairs tailored to the characteristics of each dataset or task. Experiments were conducted on a curated subset of MIMIC III, (four structured tables and one clinical note type), using a mix of locally hosted and API-based LLMs. Evaluation combined exact-match metrics, semantic similarity, and human judgment. Our findings demonstrate the potential of LLMs to support precise querying and accurate information extraction in clinical workflows.
comment: 11 pages, 5 figures
☆ Learning Contextual Runtime Monitors for Safe AI-Based Autonomy
We introduce a novel framework for learning context-aware runtime monitors for AI-based control ensembles. Machine-learning (ML) controllers are increasingly deployed in (autonomous) cyber-physical systems because of their ability to solve complex decision-making tasks. However, their accuracy can degrade sharply in unfamiliar environments, creating significant safety concerns. Traditional ensemble methods aim to improve robustness by averaging or voting across multiple controllers, yet this often dilutes the specialized strengths that individual controllers exhibit in different operating contexts. We argue that, rather than blending controller outputs, a monitoring framework should identify and exploit these contextual strengths. In this paper, we reformulate the design of safe AI-based control ensembles as a contextual monitoring problem. A monitor continuously observes the system's context and selects the controller best suited to the current conditions. To achieve this, we cast monitor learning as a contextual learning task and draw on techniques from contextual multi-armed bandits. Our approach comes with two key benefits: (1) theoretical safety guarantees during controller selection, and (2) improved utilization of controller diversity. We validate our framework in two simulated autonomous driving scenarios, demonstrating significant improvements in both safety and performance compared to non-contextual baselines.
☆ Detecting and Mitigating Memorization in Diffusion Models through Anisotropy of the Log-Probability ICLR 2026
Diffusion-based image generative models produce high-fidelity images through iterative denoising but remain vulnerable to memorization, where they unintentionally reproduce exact copies or parts of training images. Recent memorization detection methods are primarily based on the norm of score difference as indicators of memorization. We prove that such norm-based metrics are mainly effective under the assumption of isotropic log-probability distributions, which generally holds at high or medium noise levels. In contrast, analyzing the anisotropic regime reveals that memorized samples exhibit strong angular alignment between the guidance vector and unconditional scores in the low-noise setting. Through these insights, we develop a memorization detection metric by integrating isotropic norm and anisotropic alignment. Our detection metric can be computed directly on pure noise inputs via two conditional and unconditional forward passes, eliminating the need for costly denoising steps. Detection experiments on Stable Diffusion v1.4 and v2 show that our metric outperforms existing denoising-free detection methods while being at least approximately 5x faster than the previous best approach. Finally, we demonstrate the effectiveness of our approach by utilizing a mitigation strategy that adapts memorized prompts based on our developed metric.
comment: Accepted at ICLR 2026
☆ Investigating the Development of Task-Oriented Communication in Vision-Language Models
We investigate whether \emph{LLM-based agents} can develop task-oriented communication protocols that differ from standard natural language in collaborative reasoning tasks. Our focus is on two core properties such task-oriented protocols may exhibit: Efficiency -- conveying task-relevant information more concisely than natural language, and Covertness -- becoming difficult for external observers to interpret, raising concerns about transparency and control. To investigate these aspects, we use a referential-game framework in which vision-language model (VLM) agents communicate, providing a controlled, measurable setting for evaluating language variants. Experiments show that VLMs can develop effective, task-adapted communication patterns. At the same time, they can develop covert protocols that are difficult for humans and external agents to interpret. We also observe spontaneous coordination between similar models without explicitly shared protocols. These findings highlight both the potential and the risks of task-oriented communication, and position referential games as a valuable testbed for future work in this area.
☆ GDCNet: Generative Discrepancy Comparison Network for Multimodal Sarcasm Detection IEEE
Multimodal sarcasm detection (MSD) aims to identify sarcasm within image-text pairs by modeling semantic incongruities across modalities. Existing methods often exploit cross-modal embedding misalignment to detect inconsistency but struggle when visual and textual content are loosely related or semantically indirect. While recent approaches leverage large language models (LLMs) to generate sarcastic cues, the inherent diversity and subjectivity of these generations often introduce noise. To address these limitations, we propose the Generative Discrepancy Comparison Network (GDCNet). This framework captures cross-modal conflicts by utilizing descriptive, factually grounded image captions generated by Multimodal LLMs (MLLMs) as stable semantic anchors. Specifically, GDCNet computes semantic and sentiment discrepancies between the generated objective description and the original text, alongside measuring visual-textual fidelity. These discrepancy features are then fused with visual and textual representations via a gated module to adaptively balance modality contributions. Extensive experiments on MSD benchmarks demonstrate GDCNet's superior accuracy and robustness, establishing a new state-of-the-art on the MMSD2.0 benchmark.
comment: Accepted to 2026 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2026)
☆ Agent Benchmarks Fail Public Sector Requirements
Deploying Large Language Model-based agents (LLM agents) in the public sector requires assuring that they meet the stringent legal, procedural, and structural requirements of public-sector institutions. Practitioners and researchers often turn to benchmarks for such assessments. However, it remains unclear what criteria benchmarks must meet to ensure they adequately reflect public-sector requirements, or how many existing benchmarks do so. In this paper, we first define such criteria based on a first-principles survey of public administration literature: benchmarks must be \emph{process-based}, \emph{realistic}, \emph{public-sector-specific} and report \emph{metrics} that reflect the unique requirements of the public sector. We analyse more than 1,300 benchmark papers for these criteria using an expert-validated LLM-assisted pipeline. Our results show that no single benchmark meets all of the criteria. Our findings provide a call to action for both researchers to develop public sector-relevant benchmarks and for public-sector officials to apply these criteria when evaluating their own agentic use cases.
comment: Forthcoming @ IASEAI 2026
☆ Harder Is Better: Boosting Mathematical Reasoning via Difficulty-Aware GRPO and Multi-Aspect Question Reformulation ICLR 2026
Reinforcement Learning with Verifiable Rewards (RLVR) offers a robust mechanism for enhancing mathematical reasoning in large models. However, we identify a systematic lack of emphasis on more challenging questions in existing methods from both algorithmic and data perspectives, despite their importance for refining underdeveloped capabilities. Algorithmically, widely used Group Relative Policy Optimization (GRPO) suffers from an implicit imbalance where the magnitude of policy updates is lower for harder questions. Data-wise, augmentation approaches primarily rephrase questions to enhance diversity without systematically increasing intrinsic difficulty. To address these issues, we propose a two-dual MathForge framework to improve mathematical reasoning by targeting harder questions from both perspectives, which comprises a Difficulty-Aware Group Policy Optimization (DGPO) algorithm and a Multi-Aspect Question Reformulation (MQR) strategy. Specifically, DGPO first rectifies the implicit imbalance in GRPO via difficulty-balanced group advantage estimation, and further prioritizes harder questions by difficulty-aware question-level weighting. Meanwhile, MQR reformulates questions across multiple aspects to increase difficulty while maintaining the original gold answer. Overall, MathForge forms a synergistic loop: MQR expands the data frontier, and DGPO effectively learns from the augmented data. Extensive experiments show that MathForge significantly outperforms existing methods on various mathematical reasoning tasks. The code and augmented data are all available at https://github.com/AMAP-ML/MathForge.
comment: Accepted for ICLR 2026
☆ WFR-MFM: One-Step Inference for Dynamic Unbalanced Optimal Transport
Reconstructing dynamical evolution from limited observations is a fundamental challenge in single-cell biology, where dynamic unbalanced optimal transport provides a principled framework for modeling coupled transport and mass variation. However, existing approaches rely on trajectory simulation at inference time, making inference a key bottleneck for scalable applications. In this work, we propose a mean-flow framework for unbalanced flow matching that summarizes both transport and mass-growth dynamics over arbitrary time intervals using mean velocity and mass-growth fields, enabling fast one-step generation without trajectory simulation. To solve dynamic unbalanced optimal transport under the Wasserstein-Fisher-Rao geometry, we further build on this framework to develop Wasserstein-Fisher-Rao Mean Flow Matching (WFR-MFM). Across synthetic and real single-cell RNA sequencing datasets, WFR-MFM achieves orders-of-magnitude faster inference than a range of existing baselines while maintaining high predictive accuracy, and enables efficient perturbation response prediction on large synthetic datasets with thousands of conditions.
☆ Dialogical Reasoning Across AI Architectures: A Multi-Model Framework for Testing AI Alignment Strategies
This paper introduces a methodological framework for empirically testing AI alignment strategies through structured multi-model dialogue. Drawing on Peace Studies traditions - particularly interest-based negotiation, conflict transformation, and commons governance - we operationalize Viral Collaborative Wisdom (VCW), an approach that reframes alignment from a control problem to a relationship problem developed through dialogical reasoning. Our experimental design assigns four distinct roles (Proposer, Responder, Monitor, Translator) to different AI systems across six conditions, testing whether current large language models can engage substantively with complex alignment frameworks. Using Claude, Gemini, and GPT-4o, we conducted 72 dialogue turns totaling 576,822 characters of structured exchange. Results demonstrate that AI systems can engage meaningfully with Peace Studies concepts, surface complementary objections from different architectural perspectives, and generate emergent insights not present in initial framings - including the novel synthesis of "VCW as transitional framework." Cross-architecture patterns reveal that different models foreground different concerns: Claude emphasized verification challenges, Gemini focused on bias and scalability, and GPT-4o highlighted implementation barriers. The framework provides researchers with replicable methods for stress-testing alignment proposals before implementation, while the findings offer preliminary evidence about AI capacity for the kind of dialogical reasoning VCW proposes. We discuss limitations, including the observation that dialogues engaged more with process elements than with foundational claims about AI nature, and outline directions for future research including human-AI hybrid protocols and extended dialogue studies.
comment: 23 pages, 5 tables, 5 appendices. Code and data: https://github.com/jgraycox-coa/vcw-multi-ai-dialogue
☆ CLEAR-Mamba:Towards Accurate, Adaptive and Trustworthy Multi-Sequence Ophthalmic Angiography Classification
Medical image classification is a core task in computer-aided diagnosis (CAD), playing a pivotal role in early disease detection, treatment planning, and patient prognosis assessment. In ophthalmic practice, fluorescein fundus angiography (FFA) and indocyanine green angiography (ICGA) provide hemodynamic and lesion-structural information that conventional fundus photography cannot capture. However, due to the single-modality nature, subtle lesion patterns, and significant inter-device variability, existing methods still face limitations in generalization and high-confidence prediction. To address these challenges, we propose CLEAR-Mamba, an enhanced framework built upon MedMamba with optimizations in both architecture and training strategy. Architecturally, we introduce HaC, a hypernetwork-based adaptive conditioning layer that dynamically generates parameters according to input feature distributions, thereby improving cross-domain adaptability. From a training perspective, we develop RaP, a reliability-aware prediction scheme built upon evidential uncertainty learning, which encourages the model to emphasize low-confidence samples and improves overall stability and reliability. We further construct a large-scale ophthalmic angiography dataset covering both FFA and ICGA modalities, comprising multiple retinal disease categories for model training and evaluation. Experimental results demonstrate that CLEAR-Mamba consistently outperforms multiple baseline models, including the original MedMamba, across various metrics-showing particular advantages in multi-disease classification and reliability-aware prediction. This study provides an effective solution that balances generalizability and reliability for modality-specific medical image classification tasks.
comment: 10 pages,7 figures
☆ Regularized Gradient Temporal-Difference Learning
Gradient temporal-difference (GTD) learning algorithms are widely used for off-policy policy evaluation with function approximation. However, existing convergence analyses rely on the restrictive assumption that the so-called feature interaction matrix (FIM) is nonsingular. In practice, the FIM can become singular and leads to instability or degraded performance. In this paper, we propose a regularized optimization objective by reformulating the mean-square projected Bellman error (MSPBE) minimization. This formulation naturally yields a regularized GTD algorithms, referred to as R-GTD, which guarantees convergence to a unique solution even when the FIM is singular. We establish theoretical convergence guarantees and explicit error bounds for the proposed method, and validate its effectiveness through empirical experiments.
comment: 27 pages, 8 figures
☆ Person Re-ID in 2025: Supervised, Self-Supervised, and Language-Aligned. What Works?
Person Re-Identification (ReID) remains a challenging problem in computer vision. This work reviews various training paradigm and evaluates the robustness of state-of-the-art ReID models in cross-domain applications and examines the role of foundation models in improving generalization through richer, more transferable visual representations. We compare three training paradigms, supervised, self-supervised, and language-aligned models. Through the study the aim is to answer the following questions: Can supervised models generalize in cross-domain scenarios? How does foundation models like SigLIP2 perform for the ReID tasks? What are the weaknesses of current supervised and foundational models for ReID? We have conducted the analysis across 11 models and 9 datasets. Our results show a clear split: supervised models dominate their training domain but crumble on cross-domain data. Language-aligned models, however, show surprising robustness cross-domain for ReID tasks, even though they are not explicitly trained to do so. Code and data available at: https://github.com/moiiai-tech/object-reid-benchmark.
☆ Ranking-aware Reinforcement Learning for Ordinal Ranking ICASSP2026
Ordinal regression and ranking are challenging due to inherent ordinal dependencies that conventional methods struggle to model. We propose Ranking-Aware Reinforcement Learning (RARL), a novel RL framework that explicitly learns these relationships. At its core, RARL features a unified objective that synergistically integrates regression and Learning-to-Rank (L2R), enabling mutual improvement between the two tasks. This is driven by a ranking-aware verifiable reward that jointly assesses regression precision and ranking accuracy, facilitating direct model updates via policy optimization. To further enhance training, we introduce Response Mutation Operations (RMO), which inject controlled noise to improve exploration and prevent stagnation at saddle points. The effectiveness of RARL is validated through extensive experiments on three distinct benchmarks.
comment: Accepted to ICASSP2026
☆ Inequality in Congestion Games with Learning Agents AAMAS 2026
Who benefits from expanding transport networks? While designed to improve mobility, such interventions can also create inequality. In this paper, we show that disparities arise not only from the structure of the network itself but also from differences in how commuters adapt to it. We model commuters as reinforcement learning agents who adapt their travel choices at different learning rates, reflecting unequal access to resources and information. To capture potential efficiency-fairness tradeoffs, we introduce the Price of Learning (PoL), a measure of inefficiency during learning. We analyze both a stylized network -- inspired in the well-known Braess's paradox, yet with two-source nodes -- and an abstraction of a real-world metro system (Amsterdam). Our simulations show that network expansions can simultaneously increase efficiency and amplify inequality, especially when faster learners disproportionately benefit from new routes before others adapt. These results highlight that transport policies must account not only for equilibrium outcomes but also for the heterogeneous ways commuters adapt, since both shape the balance between efficiency and fairness.
comment: Full version of the extended abstract version appearing in Proceedings of the 25th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2026)
☆ Robust Distributed Learning under Resource Constraints: Decentralized Quantile Estimation via (Asynchronous) ADMM
Specifications for decentralized learning on resource-constrained edge devices require algorithms that are communication-efficient, robust to data corruption, and lightweight in memory usage. While state-of-the-art gossip-based methods satisfy the first requirement, achieving robustness remains challenging. Asynchronous decentralized ADMM-based methods have been explored for estimating the median, a statistical centrality measure that is notoriously more robust than the mean. However, existing approaches require memory that scales with node degree, making them impractical when memory is limited. In this paper, we propose AsylADMM, a novel gossip algorithm for decentralized median and quantile estimation, primarily designed for asynchronous updates and requiring only two variables per node. We analyze a synchronous variant of AsylADMM to establish theoretical guarantees and empirically demonstrate fast convergence for the asynchronous algorithm. We then show that our algorithm enables quantile-based trimming, geometric median estimation, and depth-based trimming, with quantile-based trimming empirically outperforming existing rank-based methods. Finally, we provide a novel theoretical analysis of rank-based trimming via Markov chain theory.
☆ Unsupervised Ensemble Learning Through Deep Energy-based Models AISTATS 2026
Unsupervised ensemble learning emerged to address the challenge of combining multiple learners' predictions without access to ground truth labels or additional data. This paradigm is crucial in scenarios where evaluating individual classifier performance or understanding their strengths is challenging due to limited information. We propose a novel deep energy-based method for constructing an accurate meta-learner using only the predictions of individual learners, potentially capable of capturing complex dependence structures between them. Our approach requires no labeled data, learner features, or problem-specific information, and has theoretical guarantees for when learners are conditionally independent. We demonstrate superior performance across diverse ensemble scenarios, including challenging mixture of experts settings. Our experiments span standard ensemble datasets and curated datasets designed to test how the model fuses expertise from multiple sources. These results highlight the potential of unsupervised ensemble learning to harness collective intelligence, especially in data-scarce or privacy-sensitive environments.
comment: Accepted to AISTATS 2026. 29 pages, 13 figures. Code available at: https://github.com/shaham-lab/deem
☆ Online Risk-Averse Planning in POMDPs Using Iterated CVaR Value Function
We study risk-sensitive planning under partial observability using the dynamic risk measure Iterated Conditional Value-at-Risk (ICVaR). A policy evaluation algorithm for ICVaR is developed with finite-time performance guarantees that do not depend on the cardinality of the action space. Building on this foundation, three widely used online planning algorithms--Sparse Sampling, Particle Filter Trees with Double Progressive Widening (PFT-DPW), and Partially Observable Monte Carlo Planning with Observation Widening (POMCPOW)--are extended to optimize the ICVaR value function rather than the expectation of the return. Our formulations introduce a risk parameter $α$, where $α= 1$ recovers standard expectation-based planning and $α< 1$ induces increasing risk aversion. For ICVaR Sparse Sampling, we establish finite-time performance guarantees under the risk-sensitive objective, which further enable a novel exploration strategy tailored to ICVaR. Experiments on benchmark POMDP domains demonstrate that the proposed ICVaR planners achieve lower tail risk compared to their risk-neutral counterparts.
☆ IoT Device Identification with Machine Learning: Common Pitfalls and Best Practices
This paper critically examines the device identification process using machine learning, addressing common pitfalls in existing literature. We analyze the trade-offs between identification methods (unique vs. class based), data heterogeneity, feature extraction challenges, and evaluation metrics. By highlighting specific errors, such as improper data augmentation and misleading session identifiers, we provide a robust guideline for researchers to enhance the reproducibility and generalizability of IoT security models.
comment: 4 pages
☆ PathWise: Planning through World Model for Automated Heuristic Design via Self-Evolving LLMs
Large Language Models (LLMs) have enabled automated heuristic design (AHD) for combinatorial optimization problems (COPs), but existing frameworks' reliance on fixed evolutionary rules and static prompt templates often leads to myopic heuristic generation, redundant evaluations, and limited reasoning about how new heuristics should be derived. We propose a novel multi-agent reasoning framework, referred to as Planning through World Model for Automated Heuristic Design via Self-Evolving LLMs (PathWise), which formulates heuristic generation as a sequential decision process over an entailment graph serving as a compact, stateful memory of the search trajectory. This approach allows the system to carry forward past decisions and reuse or avoid derivation information across generations. A policy agent plans evolutionary actions, a world model agent generates heuristic rollouts conditioned on those actions, and critic agents provide routed reflections summarizing lessons from prior steps, shifting LLM-based AHD from trial-and-error evolution toward state-aware planning through reasoning. Experiments across diverse COPs show that PathWise converges faster to better heuristics, generalizes across different LLM backbones, and scales to larger problem sizes.
☆ Interpreting Emergent Extreme Events in Multi-Agent Systems
Large language model-powered multi-agent systems have emerged as powerful tools for simulating complex human-like systems. The interactions within these systems often lead to extreme events whose origins remain obscured by the black box of emergence. Interpreting these events is critical for system safety. This paper proposes the first framework for explaining emergent extreme events in multi-agent systems, aiming to answer three fundamental questions: When does the event originate? Who drives it? And what behaviors contribute to it? Specifically, we adapt the Shapley value to faithfully attribute the occurrence of extreme events to each action taken by agents at different time steps, i.e., assigning an attribution score to the action to measure its influence on the event. We then aggregate the attribution scores along the dimensions of time, agent, and behavior to quantify the risk contribution of each dimension. Finally, we design a set of metrics based on these contribution scores to characterize the features of extreme events. Experiments across diverse multi-agent system scenarios (economic, financial, and social) demonstrate the effectiveness of our framework and provide general insights into the emergence of extreme phenomena.
comment: 8 pages, 5 figures
☆ CCMamba: Selective State-Space Models for Higher-Order Graph Learning on Combinatorial Complexes
Topological deep learning has emerged for modeling higher-order relational structures beyond pairwise interactions that standard graph neural networks fail to capture. Although combinatorial complexes offer a unified topological framework, most existing topological deep learning methods rely on local message passing via attention mechanisms, which incur quadratic complexity and remain low-dimensional, limiting scalability and rank-aware information aggregation in higher-order complexes.We propose Combinatorial Complex Mamba (CCMamba), the first unified mamba-based neural framework for learning on combinatorial complexes. CCMamba reformulates message passing as a selective state-space modeling problem by organizing multi-rank incidence relations into structured sequences processed by rank-aware state-space models. This enables adaptive, directional, and long range information propagation in linear time without self attention. We further establish the theoretical analysis that the expressive power upper-bound of CCMamba message passing is the 1-Weisfeiler-Lehman test. Experiments on graph, hypergraph, and simplicial benchmarks demonstrate that CCMamba consistently outperforms existing methods while exhibiting improved scalability and robustness to depth.
☆ Audio Deepfake Detection in the Age of Advanced Text-to-Speech models
Recent advances in Text-to-Speech (TTS) systems have substantially increased the realism of synthetic speech, raising new challenges for audio deepfake detection. This work presents a comparative evaluation of three state-of-the-art TTS models--Dia2, Maya1, and MeloTTS--representing streaming, LLM-based, and non-autoregressive architectures. A corpus of 12,000 synthetic audio samples was generated using the Daily-Dialog dataset and evaluated against four detection frameworks, including semantic, structural, and signal-level approaches. The results reveal significant variability in detector performance across generative mechanisms: models effective against one TTS architecture may fail against others, particularly LLM-based synthesis. In contrast, a multi-view detection approach combining complementary analysis levels demonstrates robust performance across all evaluated models. These findings highlight the limitations of single-paradigm detectors and emphasize the necessity of integrated detection strategies to address the evolving landscape of audio deepfake threats.
comment: This work was performed using HPC resources from GENCI-IDRIS (Grant 2025- AD011016076)
☆ Comparative evaluation of training strategies using partially labelled datasets for segmentation of white matter hyperintensities and stroke lesions in FLAIR MRI
White matter hyperintensities (WMH) and ischaemic stroke lesions (ISL) are imaging features associated with cerebral small vessel disease (SVD) that are visible on brain magnetic resonance imaging (MRI) scans. The development and validation of deep learning models to segment and differentiate these features is difficult because they visually confound each other in the fluid-attenuated inversion recovery (FLAIR) sequence and often appear in the same subject. We investigated six strategies for training a combined WMH and ISL segmentation model using partially labelled data. We combined privately held fully and partially labelled datasets with publicly available partially labelled datasets to yield a total of 2052 MRI volumes, with 1341 and 1152 containing ground truth annotations for WMH and ISL respectively. We found that several methods were able to effectively leverage the partially labelled data to improve model performance, with the use of pseudolabels yielding the best result.
☆ Normative Equivalence in human-AI Cooperation: Behaviour, Not Identity, Drives Cooperation in Mixed-Agent Groups
The introduction of artificial intelligence (AI) agents into human group settings raises essential questions about how these novel participants influence cooperative social norms. While previous studies on human-AI cooperation have primarily focused on dyadic interactions, little is known about how integrating AI agents affects the emergence and maintenance of cooperative norms in small groups. This study addresses this gap through an online experiment using a repeated four-player Public Goods Game (PGG). Each group consisted of three human participants and one bot, which was framed either as human or AI and followed one of three predefined decision strategies: unconditional cooperation, conditional cooperation, or free-riding. In our sample of 236 participants, we found that reciprocal group dynamics and behavioural inertia primarily drove cooperation. These normative mechanisms operated identically across conditions, resulting in cooperation levels that did not differ significantly between human and AI labels. Furthermore, we found no evidence of differences in norm persistence in a follow-up Prisoner's Dilemma, or in participants' normative perceptions. Participants' behaviour followed the same normative logic across human and AI conditions, indicating that cooperation depended on group behaviour rather than partner identity. This supports a pattern of normative equivalence, in which the mechanisms that sustain cooperation function similarly in mixed human-AI and all human groups. These findings suggest that cooperative norms are flexible enough to extend to artificial agents, blurring the boundary between humans and AI in collective decision-making.
☆ CtrlCoT: Dual-Granularity Chain-of-Thought Compression for Controllable Reasoning
Chain-of-thought (CoT) prompting improves LLM reasoning but incurs high latency and memory cost due to verbose traces, motivating CoT compression with preserved correctness. Existing methods either shorten CoTs at the semantic level, which is often conservative, or prune tokens aggressively, which can miss task-critical cues and degrade accuracy. Moreover, combining the two is non-trivial due to sequential dependency, task-agnostic pruning, and distribution mismatch. We propose \textbf{CtrlCoT}, a dual-granularity CoT compression framework that harmonizes semantic abstraction and token-level pruning through three components: Hierarchical Reasoning Abstraction produces CoTs at multiple semantic granularities; Logic-Preserving Distillation trains a logic-aware pruner to retain indispensable reasoning cues (e.g., numbers and operators) across pruning ratios; and Distribution-Alignment Generation aligns compressed traces with fluent inference-time reasoning styles to avoid fragmentation. On MATH-500 with Qwen2.5-7B-Instruct, CtrlCoT uses 30.7\% fewer tokens while achieving 7.6 percentage points higher than the strongest baseline, demonstrating more efficient and reliable reasoning. Our code will be publicly available at https://github.com/fanzhenxuan/Ctrl-CoT.
comment: 16 pages, 9 figures, 11 tables
☆ Fair Recourse for All: Ensuring Individual and Group Fairness in Counterfactual Explanations
Explainable Artificial Intelligence (XAI) is becoming increasingly essential for enhancing the transparency of machine learning (ML) models. Among the various XAI techniques, counterfactual explanations (CFs) hold a pivotal role due to their ability to illustrate how changes in input features can alter an ML model's decision, thereby offering actionable recourse to users. Ensuring that individuals with comparable attributes and those belonging to different protected groups (e.g., demographic) receive similar and actionable recourse options is essential for trustworthy and fair decision-making. In this work, we address this challenge directly by focusing on the generation of fair CFs. Specifically, we start by defining and formulating fairness at: 1) individual fairness, ensuring that similar individuals receive similar CFs, 2) group fairness, ensuring equitable CFs across different protected groups and 3) hybrid fairness, which accounts for both individual and broader group-level fairness. We formulate the problem as an optimization task and propose a novel model-agnostic, reinforcement learning based approach to generate CFs that satisfy fairness constraints at both the individual and group levels, two objectives that are usually treated as orthogonal. As fairness metrics, we extend existing metrics commonly used for auditing ML models, such as equal choice of recourse and equal effectiveness across individuals and groups. We evaluate our approach on three benchmark datasets, showing that it effectively ensures individual and group fairness while preserving the quality of the generated CFs in terms of proximity and plausibility, and quantify the cost of fairness in the different levels separately. Our work opens a broader discussion on hybrid fairness and its role and implications for XAI and beyond CFs.
☆ Assembling the Mind's Mosaic: Towards EEG Semantic Intent Decoding
Enabling natural communication through brain-computer interfaces (BCIs) remains one of the most profound challenges in neuroscience and neurotechnology. While existing frameworks offer partial solutions, they are constrained by oversimplified semantic representations and a lack of interpretability. To overcome these limitations, we introduce Semantic Intent Decoding (SID), a novel framework that translates neural activity into natural language by modeling meaning as a flexible set of compositional semantic units. SID is built on three core principles: semantic compositionality, continuity and expandability of semantic space, and fidelity in reconstruction. We present BrainMosaic, a deep learning architecture implementing SID. BrainMosaic decodes multiple semantic units from EEG/SEEG signals using set matching and then reconstructs coherent sentences through semantic-guided reconstruction. This approach moves beyond traditional pipelines that rely on fixed-class classification or unconstrained generation, enabling a more interpretable and expressive communication paradigm. Extensive experiments on multilingual EEG and clinical SEEG datasets demonstrate that SID and BrainMosaic offer substantial advantages over existing frameworks, paving the way for natural and effective BCI-mediated communication.
☆ Self Voice Conversion as an Attack against Neural Audio Watermarking SP
Audio watermarking embeds auxiliary information into speech while maintaining speaker identity, linguistic content, and perceptual quality. Although recent advances in neural and digital signal processing-based watermarking methods have improved imperceptibility and embedding capacity, robustness is still primarily assessed against conventional distortions such as compression, additive noise, and resampling. However, the rise of deep learning-based attacks introduces novel and significant threats to watermark security. In this work, we investigate self voice conversion as a universal, content-preserving attack against audio watermarking systems. Self voice conversion remaps a speaker's voice to the same identity while altering acoustic characteristics through a voice conversion model. We demonstrate that this attack severely degrades the reliability of state-of-the-art watermarking approaches and highlight its implications for the security of modern audio watermarking techniques.
comment: 7 pages; 2 figures; 2 tables; accepted at IEICE, SP/SLP 2026
☆ Guiding the Recommender: Information-Aware Auto-Bidding for Content Promotion
Modern content platforms offer paid promotion to mitigate cold start by allocating exposure via auctions. Our empirical analysis reveals a counterintuitive flaw in this paradigm: while promotion rescues low-to-medium quality content, it can harm high-quality content by forcing exposure to suboptimal audiences, polluting engagement signals and downgrading future recommendation. We recast content promotion as a dual-objective optimization that balances short-term value acquisition with long-term model improvement. To make this tractable at bid time in content promotion, we introduce a decomposable surrogate objective, gradient coverage, and establish its formal connection to Fisher Information and optimal experimental design. We design a two-stage auto-bidding algorithm based on Lagrange duality that dynamically paces budget through a shadow price and optimizes impression-level bids using per-impression marginal utilities. To address missing labels at bid time, we propose a confidence-gated gradient heuristic, paired with a zeroth-order variant for black-box models that reliably estimates learning signals in real time. We provide theoretical guarantees, proving monotone submodularity of the composite objective, sublinear regret in online auction, and budget feasibility. Extensive offline experiments on synthetic and real-world datasets validate the framework: it outperforms baselines, achieves superior final AUC/LogLoss, adheres closely to budget targets, and remains effective when gradients are approximated zeroth-order. These results show that strategic, information-aware promotion can improve long-term model performance and organic outcomes beyond naive impression-maximization strategies.
comment: Accepted by SIGMETRICS 2026
☆ Let's Roll a BiFTA: Bi-refinement for Fine-grained Text-visual Alignment in Vision-Language Models
Recent research has shown that aligning fine-grained text descriptions with localized image patches can significantly improve the zero-shot performance of pre-trained vision-language models (e.g., CLIP). However, we find that both fine-grained text descriptions and localized image patches often contain redundant information, making text-visual alignment less effective. In this paper, we tackle this issue from two perspectives: \emph{View Refinement} and \emph{Description refinement}, termed as \textit{\textbf{Bi}-refinement for \textbf{F}ine-grained \textbf{T}ext-visual \textbf{A}lignment} (BiFTA). \emph{View refinement} removes redundant image patches with high \emph{Intersection over Union} (IoU) ratios, resulting in more distinctive visual samples. \emph{Description refinement} removes redundant text descriptions with high pairwise cosine similarity, ensuring greater diversity in the remaining descriptions. BiFTA achieves superior zero-shot performance on 6 benchmark datasets for both ViT-based and ResNet-based CLIP, justifying the necessity to remove redundant information in visual-text alignment.
comment: 25 pages
☆ Meeting SLOs, Slashing Hours: Automated Enterprise LLM Optimization with OptiKIT
Enterprise LLM deployment faces a critical scalability challenge: organizations must optimize models systematically to scale AI initiatives within constrained compute budgets, yet the specialized expertise required for manual optimization remains a niche and scarce skillset. This challenge is particularly evident in managing GPU utilization across heterogeneous infrastructure while enabling teams with diverse workloads and limited LLM optimization experience to deploy models efficiently. We present OptiKIT, a distributed LLM optimization framework that democratizes model compression and tuning by automating complex optimization workflows for non-expert teams. OptiKIT provides dynamic resource allocation, staged pipeline execution with automatic cleanup, and seamless enterprise integration. In production, it delivers more than 2x GPU throughput improvement while empowering application teams to achieve consistent performance improvements without deep LLM optimization expertise. We share both the platform design and key engineering insights into resource allocation algorithms, pipeline orchestration, and integration patterns that enable large-scale, production-grade democratization of model optimization. Finally, we open-source the system to enable external contributions and broader reproducibility.
comment: Accepted in MLSys 2026
☆ On the Impact of AGENTS.md Files on the Efficiency of AI Coding Agents
AI coding agents such as Codex and Claude Code are increasingly used to autonomously contribute to software repositories. However, little is known about how repository-level configuration artifacts affect operational efficiency of the agents. In this paper, we study the impact of AGENTS.md files on the runtime and token consumption of AI coding agents operating on GitHub pull requests. We analyze 10 repositories and 124 pull requests, executing agents under two conditions: with and without an AGENTS.md file. We measure wall-clock execution time and token usage during agent execution. Our results show that the presence of AGENTS.md is associated with a lower median runtime ($Δ28.64$%) and reduced output token consumption ($Δ16.58$%), while maintaining a comparable task completion behavior. Based on these results, we discuss immediate implications for the configuration and deployment of AI coding agents in practice, and outline a broader research agenda on the role of repository-level instructions in shaping the behavior, efficiency, and integration of AI coding agents in software development workflows.
comment: 5 pages, 1 figure, 1 table
☆ GuideAI: A Real-time Personalized Learning Solution with Adaptive Interventions
Large Language Models (LLMs) have emerged as powerful learning tools, but they lack awareness of learners' cognitive and physiological states, limiting their adaptability to the user's learning style. Contemporary learning techniques primarily focus on structured learning paths, knowledge tracing, and generic adaptive testing but fail to address real-time learning challenges driven by cognitive load, attention fluctuations, and engagement levels. Building on findings from a formative user study (N=66), we introduce GuideAI, a multi-modal framework that enhances LLM-driven learning by integrating real-time biosensory feedback including eye gaze tracking, heart rate variability, posture detection, and digital note-taking behavior. GuideAI dynamically adapts learning content and pacing through cognitive optimizations (adjusting complexity based on learning progress markers), physiological interventions (breathing guidance and posture correction), and attention-aware strategies (redirecting focus using gaze analysis). Additionally, GuideAI supports diverse learning modalities, including text-based, image-based, audio-based, and video-based instruction, across varied knowledge domains. A preliminary study (N = 25) assessed GuideAI's impact on knowledge retention and cognitive load through standardized assessments. The results show statistically significant improvements in both problem-solving capability and recall-based knowledge assessments. Participants also experienced notable reductions in key NASA-TLX measures including mental demand, frustration levels, and effort, while simultaneously reporting enhanced perceived performance. These findings demonstrate GuideAI's potential to bridge the gap between current LLM-based learning systems and individualized learner needs, paving the way for adaptive, cognition-aware education at scale.
comment: Accepted for publication at the 31st International Conference on Intelligent User Interfaces (IUI 2026)
☆ FedRD: Reducing Divergences for Generalized Federated Learning via Heterogeneity-aware Parameter Guidance ICASSP 2026
Heterogeneous federated learning (HFL) aims to ensure effective and privacy-preserving collaboration among different entities. As newly joined clients require significant adjustments and additional training to align with the existing system, the problem of generalizing federated learning models to unseen clients under heterogeneous data has become progressively crucial. Consequently, we highlight two unsolved challenging issues in federated domain generalization: Optimization Divergence and Performance Divergence. To tackle the above challenges, we propose FedRD, a novel heterogeneity-aware federated learning algorithm that collaboratively utilizes parameter-guided global generalization aggregation and local debiased classification to reduce divergences, aiming to obtain an optimal global model for participating and unseen clients. Extensive experiments on public multi-domain datasets demonstrate that our approach exhibits a substantial performance advantage over competing baselines in addressing this specific problem.
comment: Accepted by ICASSP 2026
☆ OmegaUse: Building a General-Purpose GUI Agent for Autonomous Task Execution
Graphical User Interface (GUI) agents show great potential for enabling foundation models to complete real-world tasks, revolutionizing human-computer interaction and improving human productivity. In this report, we present OmegaUse, a general-purpose GUI agent model for autonomous task execution on both mobile and desktop platforms, supporting computer-use and phone-use scenarios. Building an effective GUI agent model relies on two factors: (1) high-quality data and (2) effective training methods. To address these, we introduce a carefully engineered data-construction pipeline and a decoupled training paradigm. For data construction, we leverage rigorously curated open-source datasets and introduce a novel automated synthesis framework that integrates bottom-up autonomous exploration with top-down taxonomy-guided generation to create high-fidelity synthetic data. For training, to better leverage these data, we adopt a two-stage strategy: Supervised Fine-Tuning (SFT) to establish fundamental interaction syntax, followed by Group Relative Policy Optimization (GRPO) to improve spatial grounding and sequential planning. To balance computational efficiency with agentic reasoning capacity, OmegaUse is built on a Mixture-of-Experts (MoE) backbone. To evaluate cross-terminal capabilities in an offline setting, we introduce OS-Nav, a benchmark suite spanning multiple operating systems: ChiM-Nav, targeting Chinese Android mobile environments, and Ubu-Nav, focusing on routine desktop interactions on Ubuntu. Extensive experiments show that OmegaUse is highly competitive across established GUI benchmarks, achieving a state-of-the-art (SOTA) score of 96.3% on ScreenSpot-V2 and a leading 79.1% step success rate on AndroidControl. OmegaUse also performs strongly on OS-Nav, reaching 74.24% step success on ChiM-Nav and 55.9% average success on Ubu-Nav.
☆ Policy of Thoughts: Scaling LLM Reasoning via Test-time Policy Evolution
Large language models (LLMs) struggle with complex, long-horizon reasoning due to instability caused by their frozen policy assumption. Current test-time scaling methods treat execution feedback merely as an external signal for filtering or rewriting trajectories, without internalizing it to improve the underlying reasoning strategy. Inspired by Popper's epistemology of "conjectures and refutations," we argue that intelligence requires real-time evolution of the model's policy through learning from failed attempts. We introduce Policy of Thoughts (PoT), a framework that recasts reasoning as a within-instance online optimization process. PoT first generates diverse candidate solutions via an efficient exploration mechanism, then uses Group Relative Policy Optimization (GRPO) to update a transient LoRA adapter based on execution feedback. This closed-loop design enables dynamic, instance-specific refinement of the model's reasoning priors. Experiments show that PoT dramatically boosts performance: a 4B model achieves 49.71% accuracy on LiveCodeBench, outperforming GPT-4o and DeepSeek-V3 despite being over 50 smaller.
comment: 19 pages, 5 figures
☆ LLM-AutoDP: Automatic Data Processing via LLM Agents for Model Fine-tuning VLDB2026
Large Language Models (LLMs) can be fine-tuned on domain-specific data to enhance their performance in specialized fields. However, such data often contains numerous low-quality samples, necessitating effective data processing (DP). In practice, DP strategies are typically developed through iterative manual analysis and trial-and-error adjustment. These processes inevitably incur high labor costs and may lead to privacy issues in high-privacy domains like healthcare due to direct human access to sensitive data. Thus, achieving automated data processing without exposing the raw data has become a critical challenge. To address this challenge, we propose LLM-AutoDP, a novel framework that leverages LLMs as agents to automatically generate and optimize data processing strategies. Our method generates multiple candidate strategies and iteratively refines them using feedback signals and comparative evaluations. This iterative in-context learning mechanism enables the agent to converge toward high-quality processing pipelines without requiring direct human intervention or access to the underlying data. To further accelerate strategy search, we introduce three key techniques: Distribution Preserving Sampling, which reduces data volume while maintaining distributional integrity; Processing Target Selection, which uses a binary classifier to identify low-quality samples for focused processing; Cache-and-Reuse Mechanism}, which minimizes redundant computations by reusing prior processing results. Results show that models trained on data processed by our framework achieve over 80% win rates against models trained on unprocessed data. Compared to AutoML baselines based on LLM agents, LLM-AutoDP achieves approximately a 65% win rate. Moreover, our acceleration techniques reduce the total searching time by up to 10 times, demonstrating both effectiveness and efficiency.
comment: Accepted by VLDB2026
☆ Can Continuous-Time Diffusion Models Generate and Solve Globally Constrained Discrete Problems? A Study on Sudoku
Can standard continuous-time generative models represent distributions whose support is an extremely sparse, globally constrained discrete set? We study this question using completed Sudoku grids as a controlled testbed, treating them as a subset of a continuous relaxation space. We train flow-matching and score-based models along a Gaussian probability path and compare deterministic (ODE) sampling, stochastic (SDE) sampling, and DDPM-style discretizations derived from the same continuous-time training. Unconditionally, stochastic sampling substantially outperforms deterministic flows; score-based samplers are the most reliable among continuous-time methods, and DDPM-style ancestral sampling achieves the highest validity overall. We further show that the same models can be repurposed for guided generation: by repeatedly sampling completions under clamped clues and stopping when constraints are satisfied, the model acts as a probabilistic Sudoku solver. Although far less sample-efficient than classical solvers and discrete-geometry-aware diffusion methods, these experiments demonstrate that classic diffusion/flow formulations can assign non-zero probability mass to globally constrained combinatorial structures and can be used for constraint satisfaction via stochastic search.
comment: 26 pages, 5 figures. Empirical study of continuous-time diffusion and flow models on Sudoku. Code available at https://github.com/MariiaDrozdova/sudoku_generation
☆ Switchcodec: Adaptive residual-expert sparse quantization for high-fidelity neural audio coding ICASSP 2026
Recent neural audio compression models often rely on residual vector quantization for high-fidelity coding, but using a fixed number of per-frame codebooks is suboptimal for the wide variability of audio content-especially for signals that are either very simple or highly complex. To address this limitation, we propose SwitchCodec, a neural audio codec based on Residual Experts Vector Quantization (REVQ). REVQ combines a shared quantizer with dynamically routed expert quantizers that are activated according to the input audio, decoupling bitrate from codebook capacity and improving compression efficiency. This design ensures full training and utilization of each quantizer. In addition, a variable-bitrate mechanism adjusts the number of active expert quantizers at inference, enabling multi-bitrate operation without retraining. Experiments demonstrate that SwitchCodec surpasses existing baselines on both objective metrics and subjective listening tests.
comment: 4page,3figure,Accepted by ICASSP 2026,We would like to express our sincere gratitude to Senior Fellow Jing Wang for his continuous support and assistance. He has made an indelible and significant contribution to this work
☆ CURVE: Learning Causality-Inspired Invariant Representations for Robust Scene Understanding via Uncertainty-Guided Regularization
Scene graphs provide structured abstractions for scene understanding, yet they often overfit to spurious correlations, severely hindering out-of-distribution generalization. To address this limitation, we propose CURVE, a causality-inspired framework that integrates variational uncertainty modeling with uncertainty-guided structural regularization to suppress high-variance, environment-specific relations. Specifically, we apply prototype-conditioned debiasing to disentangle invariant interaction dynamics from environment-dependent variations, promoting a sparse and domain-stable topology. Empirically, we evaluate CURVE in zero-shot transfer and low-data sim-to-real adaptation, verifying its ability to learn domain-stable sparse topologies and provide reliable uncertainty estimates to support risk prediction under distribution shifts.
☆ AMA: Adaptive Memory via Multi-Agent Collaboration
The rapid evolution of Large Language Model (LLM) agents has necessitated robust memory systems to support cohesive long-term interaction and complex reasoning. Benefiting from the strong capabilities of LLMs, recent research focus has shifted from simple context extension to the development of dedicated agentic memory systems. However, existing approaches typically rely on rigid retrieval granularity, accumulation-heavy maintenance strategies, and coarse-grained update mechanisms. These design choices create a persistent mismatch between stored information and task-specific reasoning demands, while leading to the unchecked accumulation of logical inconsistencies over time. To address these challenges, we propose Adaptive Memory via Multi-Agent Collaboration (AMA), a novel framework that leverages coordinated agents to manage memory across multiple granularities. AMA employs a hierarchical memory design that dynamically aligns retrieval granularity with task complexity. Specifically, the Constructor and Retriever jointly enable multi-granularity memory construction and adaptive query routing. The Judge verifies the relevance and consistency of retrieved content, triggering iterative retrieval when evidence is insufficient or invoking the Refresher upon detecting logical conflicts. The Refresher then enforces memory consistency by performing targeted updates or removing outdated entries. Extensive experiments on challenging long-context benchmarks show that AMA significantly outperforms state-of-the-art baselines while reducing token consumption by approximately 80% compared to full-context methods, demonstrating its effectiveness in maintaining retrieval precision and long-term memory consistency.
comment: 8 pages
☆ Multimodal Multi-Agent Ransomware Analysis Using AutoGen
Ransomware has become one of the most serious cybersecurity threats causing major financial losses and operational disruptions worldwide.Traditional detection methods such as static analysis, heuristic scanning and behavioral analysis often fall short when used alone. To address these limitations, this paper presents multimodal multi agent ransomware analysis framework designed for ransomware classification. Proposed multimodal multiagent architecture combines information from static, dynamic and network sources. Each data type is handled by specialized agent that uses auto encoder based feature extraction. These representations are then integrated through a fusion agent. After that fused representation are used by transformer based classifier. It identifies the specific ransomware family. The agents interact through an interagent feedback mechanism that iteratively refines feature representations by suppressing low confidence information. The framework was evaluated on large scale datasets containing thousands of ransomware and benign samples. Multiple experiments were conducted on ransomware dataset. It outperforms single modality and nonadaptive fusion baseline achieving improvement of up to 0.936 in Macro-F1 for family classification and reducing calibration error. Over 100 epochs, the agentic feedback loop displays a stable monotonic convergence leading to over +0.75 absolute improvement in terms of agent quality and a final composite score of around 0.88 without fine tuning of the language models. Zeroday ransomware detection remains family dependent on polymorphism and modality disruptions. Confidence aware abstention enables reliable real world deployment by favoring conservativeand trustworthy decisions over forced classification. The findings indicate that proposed approach provides a practical andeffective path toward improving real world ransomware defense systems.
comment: 45 pages, 11 figures and 10 tables
☆ MobileBench-OL: A Comprehensive Chinese Benchmark for Evaluating Mobile GUI Agents in Real-World Environment
Recent advances in mobile Graphical User Interface (GUI) agents highlight the growing need for comprehensive evaluation benchmarks. While new online benchmarks offer more realistic testing than offline ones, they tend to focus on the agents' task instruction-following ability while neglecting their reasoning and exploration ability. Moreover, these benchmarks do not consider the random noise in real-world mobile environments. This leads to a gap between benchmarks and real-world environments. To addressing these limitations, we propose MobileBench-OL, an online benchmark with 1080 tasks from 80 Chinese apps. It measures task execution, complex reasoning, and noise robustness of agents by including 5 subsets, which set multiple evaluation dimensions. We also provide an auto-eval framework with a reset mechanism, enabling stable and repeatable real-world benchmarking. Evaluating 12 leading GUI agents on MobileBench-OL shows significant room for improvement to meet real-world requirements. Human evaluation further confirms that MobileBench-OL can reliably measure the performance of leading GUI agents in real environments. Our data and code will be released upon acceptance.
☆ Demonstration-Free Robotic Control via LLM Agents
Robotic manipulation has increasingly adopted vision-language-action (VLA) models, which achieve strong performance but typically require task-specific demonstrations and fine-tuning, and often generalize poorly under domain shift. We investigate whether general-purpose large language model (LLM) agent frameworks, originally developed for software engineering, can serve as an alternative control paradigm for embodied manipulation. We introduce FAEA (Frontier Agent as Embodied Agent), which applies an LLM agent framework directly to embodied manipulation without modification. Using the same iterative reasoning that enables software agents to debug code, FAEA enables embodied agents to reason through manipulation strategies. We evaluate an unmodified frontier agent, Claude Agent SDK, across the LIBERO, ManiSkill3, and MetaWorld benchmarks. With privileged environment state access, FAEA achieves success rates of 84.9%, 85.7%, and 96%, respectively. This level of task success approaches that of VLA models trained with less than 100 demonstrations per task, without requiring demonstrations or fine-tuning. With one round of human feedback as an optional optimization, performance increases to 88.2% on LIBERO. This demonstration-free capability has immediate practical value: FAEA can autonomously explore novel scenarios in simulation and generate successful trajectories for training data augmentation in embodied learning. Our results indicate that general-purpose agents are sufficient for a class of manipulation tasks dominated by deliberative, task-level planning. This opens a path for robotics systems to leverage actively maintained agent infrastructure and benefit directly from ongoing advances in frontier models. Code is available at https://github.com/robiemusketeer/faea-sim
☆ Beyond Speedup -- Utilizing KV Cache for Sampling and Reasoning ICLR26
KV caches, typically used only to speed up autoregressive decoding, encode contextual information that can be reused for downstream tasks at no extra cost. We propose treating the KV cache as a lightweight representation, eliminating the need to recompute or store full hidden states. Despite being weaker than dedicated embeddings, KV-derived representations are shown to be sufficient for two key applications: \textbf{(i) Chain-of-Embedding}, where they achieve competitive or superior performance on Llama-3.1-8B-Instruct and Qwen2-7B-Instruct; and \textbf{(ii) Fast/Slow Thinking Switching}, where they enable adaptive reasoning on Qwen3-8B and DeepSeek-R1-Distil-Qwen-14B, reducing token generation by up to $5.7\times$ with minimal accuracy loss. Our findings establish KV caches as a free, effective substrate for sampling and reasoning, opening new directions for representation reuse in LLM inference. Code: https://github.com/cmd2001/ICLR2026_KV-Embedding.
comment: Accepted by ICLR26
☆ ECG-Agent: On-Device Tool-Calling Agent for ECG Multi-Turn Dialogue ICASSP 2026
Recent advances in Multimodal Large Language Models have rapidly expanded to electrocardiograms, focusing on classification, report generation, and single-turn QA tasks. However, these models fall short in real-world scenarios, lacking multi-turn conversational ability, on-device efficiency, and precise understanding of ECG measurements such as the PQRST intervals. To address these limitations, we introduce ECG-Agent, the first LLM-based tool-calling agent for multi-turn ECG dialogue. To facilitate its development and evaluation, we also present ECG-Multi-Turn-Dialogue (ECG-MTD) dataset, a collection of realistic user-assistant multi-turn dialogues for diverse ECG lead configurations. We develop ECG-Agents in various sizes, from on-device capable to larger agents. Experimental results show that ECG-Agents outperform baseline ECG-LLMs in response accuracy. Furthermore, on-device agents achieve comparable performance to larger agents in various evaluations that assess response accuracy, tool-calling ability, and hallucinations, demonstrating their viability for real-world applications.
comment: Accepted to ICASSP 2026 (5 pages, 2 figures, 5 tables)
☆ DiagLink: A Dual-User Diagnostic Assistance System by Synergizing Experts with LLMs and Knowledge Graphs
The global shortage and uneven distribution of medical expertise continue to hinder equitable access to accurate diagnostic care. While existing intelligent diagnostic system have shown promise, most struggle with dual-user interaction, and dynamic knowledge integration -- limiting their real-world applicability. In this study, we present DiagLink, a dual-user diagnostic assistance system that synergizes large language models (LLMs), knowledge graphs (KGs), and medical experts to support both patients and physicians. DiagLink uses guided dialogues to elicit patient histories, leverages LLMs and KGs for collaborative reasoning, and incorporates physician oversight for continuous knowledge validation and evolution. The system provides a role-adaptive interface, dynamically visualized history, and unified multi-source evidence to improve both trust and usability. We evaluate DiagLink through user study, use cases and expert interviews, demonstrating its effectiveness in improving user satisfaction and diagnostic efficiency, while offering insights for the design of future AI-assisted diagnostic systems.
☆ SuperInfer: SLO-Aware Rotary Scheduling and Memory Management for LLM Inference on Superchips
Large Language Model (LLM) serving faces a fundamental tension between stringent latency Service Level Objectives (SLOs) and limited GPU memory capacity. When high request rates exhaust the KV cache budget, existing LLM inference systems often suffer severe head-of-line (HOL) blocking. While prior work explored PCIe-based offloading, these approaches cannot sustain responsiveness under high request rates, often failing to meet tight Time-To-First-Token (TTFT) and Time-Between-Tokens (TBT) SLOs. We present SuperInfer, a high-performance LLM inference system designed for emerging Superchips (e.g., NVIDIA GH200) with tightly coupled GPU-CPU architecture via NVLink-C2C. SuperInfer introduces RotaSched, the first proactive, SLO-aware rotary scheduler that rotates requests to maintain responsiveness on Superchips, and DuplexKV, an optimized rotation engine that enables full-duplex transfer over NVLink-C2C. Evaluations on GH200 using various models and datasets show that SuperInfer improves TTFT SLO attainment rates by up to 74.7% while maintaining comparable TBT and throughput compared to state-of-the-art systems, demonstrating that SLO-aware scheduling and memory co-design unlocks the full potential of Superchips for responsive LLM serving.
comment: Accepted by MLSys '26
☆ Endogenous Reprompting: Self-Evolving Cognitive Alignment for Unified Multimodal Models
Unified Multimodal Models (UMMs) exhibit strong understanding, yet this capability often fails to effectively guide generation. We identify this as a Cognitive Gap: the model lacks the understanding of how to enhance its own generation process. To bridge this gap, we propose Endogenous Reprompting, a mechanism that transforms the model's understanding from a passive encoding process into an explicit generative reasoning step by generating self-aligned descriptors during generation. To achieve this, we introduce SEER (Self-Evolving Evaluator and Reprompter), a training framework that establishes a two-stage endogenous loop using only 300 samples from a compact proxy task, Visual Instruction Elaboration. First, Reinforcement Learning with Verifiable Rewards (RLVR) activates the model's latent evaluation ability via curriculum learning, producing a high-fidelity endogenous reward signal. Second, Reinforcement Learning with Model-rewarded Thinking (RLMT) leverages this signal to optimize the generative reasoning policy. Experiments show that SEER consistently outperforms state-of-the-art baselines in evaluation accuracy, reprompting efficiency, and generation quality, without sacrificing general multimodal capabilities.
☆ Structure-constrained Language-informed Diffusion Model for Unpaired Low-dose Computed Tomography Angiography Reconstruction
The application of iodinated contrast media (ICM) improves the sensitivity and specificity of computed tomography (CT) for a wide range of clinical indications. However, overdose of ICM can cause problems such as kidney damage and life-threatening allergic reactions. Deep learning methods can generate CT images of normal-dose ICM from low-dose ICM, reducing the required dose while maintaining diagnostic power. However, existing methods are difficult to realize accurate enhancement with incompletely paired images, mainly because of the limited ability of the model to recognize specific structures. To overcome this limitation, we propose a Structure-constrained Language-informed Diffusion Model (SLDM), a unified medical generation model that integrates structural synergy and spatial intelligence. First, the structural prior information of the image is effectively extracted to constrain the model inference process, thus ensuring structural consistency in the enhancement process. Subsequently, semantic supervision strategy with spatial intelligence is introduced, which integrates the functions of visual perception and spatial reasoning, thus prompting the model to achieve accurate enhancement. Finally, the subtraction angiography enhancement module is applied, which serves to improve the contrast of the ICM agent region to suitable interval for observation. Qualitative analysis of visual comparison and quantitative results of several metrics demonstrate the effectiveness of our method in angiographic reconstruction for low-dose contrast medium CT angiography.
☆ Physically Guided Visual Mass Estimation from a Single RGB Image
Estimating object mass from visual input is challenging because mass depends jointly on geometric volume and material-dependent density, neither of which is directly observable from RGB appearance. Consequently, mass prediction from pixels is ill-posed and therefore benefits from physically meaningful representations to constrain the space of plausible solutions. We propose a physically structured framework for single-image mass estimation that addresses this ambiguity by aligning visual cues with the physical factors governing mass. From a single RGB image, we recover object-centric three-dimensional geometry via monocular depth estimation to inform volume and extract coarse material semantics using a vision-language model to guide density-related reasoning. These geometry, semantic, and appearance representations are fused through an instance-adaptive gating mechanism, and two physically guided latent factors (volume- and density-related) are predicted through separate regression heads under mass-only supervision. Experiments on image2mass and ABO-500 show that the proposed method consistently outperforms state-of-the-art methods.
☆ Towards Compact and Robust DNNs via Compression-aware Sharpness Minimization
Sharpness-Aware Minimization (SAM) has recently emerged as an effective technique for improving DNN robustness to input variations. However, its interplay with the compactness requirements of on-device DNN deployments remains less explored. Simply pruning a SAM-trained model can undermine robustness, since flatness in the continuous parameter space does not necessarily translate to robustness under the discrete structural changes induced by pruning. Conversely, applying SAM after pruning may be fundamentally constrained by architectural limitations imposed by an early, robustness-agnostic pruning pattern. To address this gap, we propose Compression-aware ShArpness Minimization (C-SAM), a framework that shifts sharpness-aware learning from parameter perturbations to mask perturbations. By explicitly perturbing pruning masks during training, C-SAM promotes a flatter loss landscape with respect to model structure, enabling the discovery of pruning patterns that simultaneously optimize model compactness and robustness to input variations. Extensive experiments on CelebA-HQ, Flowers-102, and CIFAR-10-C across ResNet-18, GoogLeNet, and MobileNet-V2 show that C-SAM consistently achieves higher certified robustness than strong baselines, with improvements of up to 42%, while maintaining task accuracy comparable to the corresponding unpruned models.
☆ Truthfulness Despite Weak Supervision: Evaluating and Training LLMs Using Peer Prediction ICLR 2026
The evaluation and post-training of large language models (LLMs) rely on supervision, but strong supervision for difficult tasks is often unavailable, especially when evaluating frontier models. In such cases, models are demonstrated to exploit evaluations built on such imperfect supervision, leading to deceptive results. However, underutilized in LLM research, a wealth of mechanism design research focuses on game-theoretic incentive compatibility, i.e., eliciting honest and informative answers with weak supervision. Drawing from this literature, we introduce the peer prediction method for model evaluation and post-training. It rewards honest and informative answers over deceptive and uninformative ones, using a metric based on mutual predictability and without requiring ground truth labels. We demonstrate the method's effectiveness and resistance to deception, with both theoretical guarantees and empirical validation on models with up to 405B parameters. We show that training an 8B model with peer prediction-based reward recovers most of the drop in truthfulness due to prior malicious finetuning, even when the reward is produced by a 0.135B language model with no finetuning. On the evaluation front, in contrast to LLM-as-a-Judge which requires strong and trusted judges, we discover an inverse scaling property in peer prediction, where, surprisingly, resistance to deception is strengthened as the capability gap between the experts and participants widens, enabling reliable evaluation of strong models with weak supervision. In particular, LLM-as-a-Judge become worse than random guess when facing deceptive models 5-20x the judge's size, while peer prediction thrives when such gaps are large, including in cases with over 100x size difference.
comment: ICLR 2026
☆ Cheap2Rich: A Multi-Fidelity Framework for Data Assimilation and System Identification of Multiscale Physics -- Rotating Detonation Engines
Bridging the sim2real gap between computationally inexpensive models and complex physical systems remains a central challenge in machine learning applications to engineering problems, particularly in multi-scale settings where reduced-order models typically capture only dominant dynamics. In this work, we present Cheap2Rich, a multi-scale data assimilation framework that reconstructs high-fidelity state spaces from sparse sensor histories by combining a fast low-fidelity prior with learned, interpretable discrepancy corrections. We demonstrate the performance on rotating detonation engines (RDEs), a challenging class of systems that couple detonation-front propagation with injector-driven unsteadiness, mixing, and stiff chemistry across disparate scales. Our approach successfully reconstructs high-fidelity RDE states from sparse measurements while isolating physically meaningful discrepancy dynamics associated with injector-driven effects. The results highlight a general multi-fidelity framework for data assimilation and system identification in complex multi-scale systems, enabling rapid design exploration and real-time monitoring and control while providing interpretable discrepancy dynamics. Code for this project is is available at: github.com/kro0l1k/Cheap2Rich.
☆ The Forecast After the Forecast: A Post-Processing Shift in Time Series
Time series forecasting has long been dominated by advances in model architecture, with recent progress driven by deep learning and hybrid statistical techniques. However, as forecasting models approach diminishing returns in accuracy, a critical yet underexplored opportunity emerges: the strategic use of post-processing. In this paper, we address the last-mile gap in time-series forecasting, which is to improve accuracy and uncertainty without retraining or modifying a deployed backbone. We propose $δ$-Adapter, a lightweight, architecture-agnostic way to boost deployed time series forecasters without retraining. $δ$-Adapter learns tiny, bounded modules at two interfaces: input nudging (soft edits to covariates) and output residual correction. We provide local descent guarantees, $O(δ)$ drift bounds, and compositional stability for combined adapters. Meanwhile, it can act as a feature selector by learning a sparse, horizon-aware mask over inputs to select important features, thereby improving interpretability. In addition, it can also be used as a distribution calibrator to measure uncertainty. Thus, we introduce a Quantile Calibrator and a Conformal Corrector that together deliver calibrated, personalized intervals with finite-sample coverage. Our experiments across diverse backbones and datasets show that $δ$-Adapter improves accuracy and calibration with negligible compute and no interface changes.
comment: 30 Pages
☆ Beyond the Needle's Illusion: Decoupled Evaluation of Evidence Access and Use under Semantic Interference at 326M-Token Scale
Long-context LLM agents must access the right evidence from large environments and use it faithfully. However, the popular Needle-in-a-Haystack (NIAH) evaluation mostly measures benign span localization. The needle is near-unique, and the haystack is largely irrelevant. We introduce EverMemBench-S (EMB-S), an adversarial NIAH-style benchmark built on a 326M-token MemoryBank. While the full MemoryBank spans 326M tokens for retrieval-based (RAG) evaluation, we evaluate native long-context models only at scales that fit within each model's context window (up to 1M tokens in this work) to ensure a fair comparison. EMB-S pairs queries with collision-tested near-miss hard negatives and gold evidence sets spanning one or more documents, validated via human screening and LLM verification. We also propose a decoupled diagnostic protocol that reports evidence access (document-ID localization) separately from end-to-end QA quality under full-context prompting. This enables consistent diagnosis for both native long-context prompting and retrieval pipelines. Across a reference-corpus ladder from domain-isolated 64K contexts to a globally shared 326M-token environment, we observe a clear reality gap. Systems that saturate benign NIAH degrade sharply in evidence access under semantic interference. These results indicate that semantic discrimination, not context length alone, is the dominant bottleneck for long-context memory at scale.
☆ Eliciting Least-to-Most Reasoning for Phishing URL Detection
Phishing continues to be one of the most prevalent attack vectors, making accurate classification of phishing URLs essential. Recently, large language models (LLMs) have demonstrated promising results in phishing URL detection. However, their reasoning capabilities that enabled such performance remain underexplored. To this end, in this paper, we propose a Least-to-Most prompting framework for phishing URL detection. In particular, we introduce an "answer sensitivity" mechanism that guides Least-to-Most's iterative approach to enhance reasoning and yield higher prediction accuracy. We evaluate our framework using three URL datasets and four state-of-the-art LLMs, comparing against a one-shot approach and a supervised model. We demonstrate that our framework outperforms the one-shot baseline while achieving performance comparable to that of the supervised model, despite requiring significantly less training data. Furthermore, our in-depth analysis highlights how the iterative reasoning enabled by Least-to-Most, and reinforced by our answer sensitivity mechanism, drives these performance gains. Overall, we show that this simple yet powerful prompting strategy consistently outperforms both one-shot and supervised approaches, despite requiring minimal training or few-shot guidance. Our experimental setup can be found in our Github repository github.sydney.edu.au/htri0928/least-to-most-phishing-detection.
☆ Robust SDE Parameter Estimation Under Missing Time Information Setting
Recent advances in stochastic differential equations (SDEs) have enabled robust modeling of real-world dynamical processes across diverse domains, such as finance, health, and systems biology. However, parameter estimation for SDEs typically relies on accurately timestamped observational sequences. When temporal ordering information is corrupted, missing, or deliberately hidden (e.g., for privacy), existing estimation methods often fail. In this paper, we investigate the conditions under which temporal order can be recovered and introduce a novel framework that simultaneously reconstructs temporal information and estimates SDE parameters. Our approach exploits asymmetries between forward and backward processes, deriving a score-matching criterion to infer the correct temporal order between pairs of observations. We then recover the total order via a sorting procedure and estimate SDE parameters from the reconstructed sequence using maximum likelihood. Finally, we conduct extensive experiments on synthetic and real-world datasets to demonstrate the effectiveness of our method, extending parameter estimation to settings with missing temporal order and broadening applicability in sensitive domains.
☆ Automated Benchmark Generation from Domain Guidelines Informed by Bloom's Taxonomy
Open-ended question answering (QA) evaluates a model's ability to perform contextualized reasoning beyond factual recall. This challenge is especially acute in practice-based domains, where knowledge is procedural and grounded in professional judgment, while most existing LLM benchmarks depend on pre-existing human exam datasets that are often unavailable in such settings. We introduce a framework for automated benchmark generation from expert-authored guidelines informed by Bloom's Taxonomy. It converts expert practices into implicit violation-based scenarios and expands them into auto-graded multiple-choice questions (MCQs) and multi-turn dialogues across four cognitive levels, enabling deterministic, reproducible, and scalable evaluation. Applied to three applied domains: teaching, dietetics, and caregiving, we find differences between model and human-like reasoning: LLMs sometimes perform relatively better on higher-order reasoning (Analyze) but fail more frequently on lower-level items (Remember). We produce large-scale, psychometrically informed benchmarks that surface these non-intuitive model behaviors and enable evaluation of contextualized reasoning in real-world settings.
☆ Order-Optimal Sample Complexity of Rectified Flows
Recently, flow-based generative models have shown superior efficiency compared to diffusion models. In this paper, we study rectified flow models, which constrain transport trajectories to be linear from the base distribution to the data distribution. This structural restriction greatly accelerates sampling, often enabling high-quality generation with a single Euler step. Under standard assumptions on the neural network classes used to parameterize the velocity field and data distribution, we prove that rectified flows achieve sample complexity $\tilde{O}(\varepsilon^{-2})$. This improves on the best known $O(\varepsilon^{-4})$ bounds for flow matching model and matches the optimal rate for mean estimation. Our analysis exploits the particular structure of rectified flows: because the model is trained with a squared loss along linear paths, the associated hypothesis class admits a sharply controlled localized Rademacher complexity. This yields the improved, order-optimal sample complexity and provides a theoretical explanation for the strong empirical performance of rectified flow models.
☆ How AI Impacts Skill Formation
AI assistance produces significant productivity gains across professional domains, particularly for novice workers. Yet how this assistance affects the development of skills required to effectively supervise AI remains unclear. Novice workers who rely heavily on AI to complete unfamiliar tasks may compromise their own skill acquisition in the process. We conduct randomized experiments to study how developers gained mastery of a new asynchronous programming library with and without the assistance of AI. We find that AI use impairs conceptual understanding, code reading, and debugging abilities, without delivering significant efficiency gains on average. Participants who fully delegated coding tasks showed some productivity improvements, but at the cost of learning the library. We identify six distinct AI interaction patterns, three of which involve cognitive engagement and preserve learning outcomes even when participants receive AI assistance. Our findings suggest that AI-enhanced productivity is not a shortcut to competence and AI assistance should be carefully adopted into workflows to preserve skill formation -- particularly in safety-critical domains.
☆ MALLOC: Benchmarking the Memory-aware Long Sequence Compression for Large Sequential Recommendation
The scaling law, which indicates that model performance improves with increasing dataset and model capacity, has fueled a growing trend in expanding recommendation models in both industry and academia. However, the advent of large-scale recommenders also brings significantly higher computational costs, particularly under the long-sequence dependencies inherent in the user intent of recommendation systems. Current approaches often rely on pre-storing the intermediate states of the past behavior for each user, thereby reducing the quadratic re-computation cost for the following requests. Despite their effectiveness, these methods often treat memory merely as a medium for acceleration, without adequately considering the space overhead it introduces. This presents a critical challenge in real-world recommendation systems with billions of users, each of whom might initiate thousands of interactions and require massive memory for state storage. Fortunately, there have been several memory management strategies examined for compression in LLM, while most have not been evaluated on the recommendation task. To mitigate this gap, we introduce MALLOC, a comprehensive benchmark for memory-aware long sequence compression. MALLOC presents a comprehensive investigation and systematic classification of memory management techniques applicable to large sequential recommendations. These techniques are integrated into state-of-the-art recommenders, enabling a reproducible and accessible evaluation platform. Through extensive experiments across accuracy, efficiency, and complexity, we demonstrate the holistic reliability of MALLOC in advancing large-scale recommendation. Code is available at https://anonymous.4open.science/r/MALLOC.
☆ Certificate-Guided Pruning for Stochastic Lipschitz Optimization
We study black-box optimization of Lipschitz functions under noisy evaluations. Existing adaptive discretization methods implicitly avoid suboptimal regions but do not provide explicit certificates of optimality or measurable progress guarantees. We introduce \textbf{Certificate-Guided Pruning (CGP)}, which maintains an explicit \emph{active set} $A_t$ of potentially optimal points via confidence-adjusted Lipschitz envelopes. Any point outside $A_t$ is certifiably suboptimal with high probability, and under a margin condition with near-optimality dimension $α$, we prove $\Vol(A_t)$ shrinks at a controlled rate yielding sample complexity $\tildeO(\varepsilon^{-(2+α)})$. We develop three extensions: CGP-Adaptive learns $L$ online with $O(\log T)$ overhead; CGP-TR scales to $d > 50$ via trust regions with local certificates; and CGP-Hybrid switches to GP refinement when local smoothness is detected. Experiments on 12 benchmarks ($d \in [2, 100]$) show CGP variants match or exceed strong baselines while providing principled stopping criteria via certificate volume.
☆ ProFlow: Zero-Shot Physics-Consistent Sampling via Proximal Flow Guidance
Inferring physical fields from sparse observations while strictly satisfying partial differential equations (PDEs) is a fundamental challenge in computational physics. Recently, deep generative models offer powerful data-driven priors for such inverse problems, yet existing methods struggle to enforce hard physical constraints without costly retraining or disrupting the learned generative prior. Consequently, there is a critical need for a sampling mechanism that can reconcile strict physical consistency and observational fidelity with the statistical structure of the pre-trained prior. To this end, we present ProFlow, a proximal guidance framework for zero-shot physics-consistent sampling, defined as inferring solutions from sparse observations using a fixed generative prior without task-specific retraining. The algorithm employs a rigorous two-step scheme that alternates between: (\romannumeral1) a terminal optimization step, which projects the flow prediction onto the intersection of the physically and observationally consistent sets via proximal minimization; and (\romannumeral2) an interpolation step, which maps the refined state back to the generative trajectory to maintain consistency with the learned flow probability path. This procedure admits a Bayesian interpretation as a sequence of local maximum a posteriori (MAP) updates. Comprehensive benchmarks on Poisson, Helmholtz, Darcy, and viscous Burgers' equations demonstrate that ProFlow achieves superior physical and observational consistency, as well as more accurate distributional statistics, compared to state-of-the-art diffusion- and flow-based baselines.
☆ Scaling Medical Reasoning Verification via Tool-Integrated Reinforcement Learning
Large language models have achieved strong performance on medical reasoning benchmarks, yet their deployment in clinical settings demands rigorous verification to ensure factual accuracy. While reward models offer a scalable approach for reasoning trace verification, existing methods face two limitations: they produce only scalar reward values without explicit justification, and they rely on single-pass retrieval that precludes adaptive knowledge access as verification unfolds. We introduce $\method$, an agentic framework that addresses these limitations by training medical reasoning verifiers to iteratively query external medical corpora during evaluation. Our approach combines tool-augmented verification with an iterative reinforcement learning paradigm that requires only trace-level supervision, alongside an adaptive curriculum mechanism that dynamically adjusts training data distribution. Across four medical reasoning benchmarks, $\method$ achieves substantial gains over existing methods, improving MedQA accuracy by 23.5% and MedXpertQA by 32.0% relative to the base generator in particular. Crucially, $\method$ demonstrates an $\mathbf{8\times}$ reduction in sampling budget requirement compared to prior reward model baselines. These findings establish that grounding verification in dynamically retrieved evidence offers a principled path toward more reliable medical reasoning systems.
☆ Towards Intelligent Urban Park Development Monitoring: LLM Agents for Multi-Modal Information Fusion and Analysis
As an important part of urbanization, the development monitoring of newly constructed parks is of great significance for evaluating the effect of urban planning and optimizing resource allocation. However, traditional change detection methods based on remote sensing imagery have obvious limitations in high-level and intelligent analysis, and thus are difficult to meet the requirements of current urban planning and management. In face of the growing demand for complex multi-modal data analysis in urban park development monitoring, these methods often fail to provide flexible analysis capabilities for diverse application scenarios. This study proposes a multi-modal LLM agent framework, which aims to make full use of the semantic understanding and reasoning capabilities of LLM to meet the challenges in urban park development monitoring. In this framework, a general horizontal and vertical data alignment mechanism is designed to ensure the consistency and effective tracking of multi-modal data. At the same time, a specific toolkit is constructed to alleviate the hallucination issues of LLM due to the lack of domain-specific knowledge. Compared to vanilla GPT-4o and other agents, our approach enables robust multi-modal information fusion and analysis, offering reliable and scalable solutions tailored to the diverse and evolving demands of urban park development monitoring.
☆ Meta-Cognitive Reinforcement Learning with Self-Doubt and Recovery
Robust reinforcement learning methods typically focus on suppressing unreliable experiences or corrupted rewards, but they lack the ability to reason about the reliability of their own learning process. As a result, such methods often either overreact to noise by becoming overly conservative or fail catastrophically when uncertainty accumulates. In this work, we propose a meta-cognitive reinforcement learning framework that enables an agent to assess, regulate, and recover its learning behavior based on internally estimated reliability signals. The proposed method introduces a meta-trust variable driven by Value Prediction Error Stability (VPES), which modulates learning dynamics via fail-safe regulation and gradual trust recovery. Experiments on continuous-control benchmarks with reward corruption demonstrate that recovery-enabled meta-cognitive control achieves higher average returns and significantly reduces late-stage training failures compared to strong robustness baselines.
☆ Causal-Driven Feature Evaluation for Cross-Domain Image Classification
Out-of-distribution (OOD) generalization remains a fundamental challenge in real-world classification, where test distributions often differ substantially from training data. Most existing approaches pursue domain-invariant representations, implicitly assuming that invariance implies reliability. However, features that are invariant across domains are not necessarily causally effective for prediction. In this work, we revisit OOD classification from a causal perspective and propose to evaluate learned representations based on their necessity and sufficiency under distribution shift. We introduce an explicit segment-level framework that directly measures causal effectiveness across domains, providing a more faithful criterion than invariance alone. Experiments on multi-domain benchmarks demonstrate consistent improvements in OOD performance, particularly under challenging domain shifts, highlighting the value of causal evaluation for robust generalization.
comment: Preprint
☆ NeuraLSP: An Efficient and Rigorous Neural Left Singular Subspace Preconditioner for Conjugate Gradient Methods
Numerical techniques for solving partial differential equations (PDEs) are integral for many fields across science and engineering. Such techniques usually involve solving large, sparse linear systems, where preconditioning methods are critical. In recent years, neural methods, particularly graph neural networks (GNNs), have demonstrated their potential through accelerated convergence. Nonetheless, to extract connective structures, existing techniques aggregate discretized system matrices into graphs, and suffer from rank inflation and a suboptimal convergence rate. In this paper, we articulate NeuraLSP, a novel neural preconditioner combined with a novel loss metric that leverages the left singular subspace of the system matrix's near-nullspace vectors. By compressing spectral information into a fixed low-rank operator, our method exhibits both theoretical guarantees and empirical robustness to rank inflation, affording up to a 53% speedup. Besides the theoretical guarantees for our newly-formulated loss function, our comprehensive experimental results across diverse families of PDEs also substantiate the aforementioned theoretical advances.
☆ What's the plan? Metrics for implicit planning in LLMs and their application to rhyme generation and question answering ICLR 2026
Prior work suggests that language models, while trained on next token prediction, show implicit planning behavior: they may select the next token in preparation to a predicted future token, such as a likely rhyming word, as supported by a prior qualitative study of Claude 3.5 Haiku using a cross-layer transcoder. We propose much simpler techniques for assessing implicit planning in language models. With case studies on rhyme poetry generation and question answering, we demonstrate that our methodology easily scales to many models. Across models, we find that the generated rhyme (e.g. "-ight") or answer to a question ("whale") can be manipulated by steering at the end of the preceding line with a vector, affecting the generation of intermediate tokens leading up to the rhyme or answer word. We show that implicit planning is a universal mechanism, present in smaller models than previously thought, starting from 1B parameters. Our methodology offers a widely applicable direct way to study implicit planning abilities of LLMs. More broadly, understanding planning abilities of language models can inform decisions in AI safety and control.
comment: 41 pages, 34 figures, Accepted at ICLR 2026, Code available at https://github.com/Jim-Maar/implicit-planning-in-llms
☆ Large language models accurately predict public perceptions of support for climate action worldwide
Although most people support climate action, widespread underestimation of others' support stalls individual and systemic changes. In this preregistered experiment, we test whether large language models (LLMs) can reliably predict these perception gaps worldwide. Using country-level indicators and public opinion data from 125 countries, we benchmark four state-of-the-art LLMs against Gallup World Poll 2021/22 data and statistical regressions. LLMs, particularly Claude, accurately capture public perceptions of others' willingness to contribute financially to climate action (MAE approximately 5 p.p.; r = .77), comparable to statistical models, though performance declines in less digitally connected, lower-GDP countries. Controlled tests show that LLMs capture the key psychological process - social projection with a systematic downward bias - and rely on structured reasoning rather than memorized values. Overall, LLMs provide a rapid tool for assessing perception gaps in climate action, serving as an alternative to costly surveys in resource-rich countries and as a complement in underrepresented populations.
comment: 35 pages
☆ On the Impact of AGENTS.md Files on the Efficiency of AI Coding Agents
AI coding agents such as Codex and Claude Code are increasingly used to autonomously contribute to software repositories. However, little is known about how repository-level configuration artifacts affect operational efficiency of the agents. In this paper, we study the impact of AGENTS$.$md files on the runtime and token consumption of AI coding agents operating on GitHub pull requests. We analyze 10 repositories and 124 pull requests, executing agents under two conditions: with and without an AGENTS$.$md file. We measure wall-clock execution time and token usage during agent execution. Our results show that the presence of AGENTS$.$md is associated with a lower median runtime ($Δ28.64$%) and reduced output token consumption ($Δ16.58$%), while maintaining a comparable task completion behavior. Based on these results, we discuss immediate implications for the configuration and deployment of AI coding agents in practice, and outline a broader research agenda on the role of repository-level instructions in shaping the behavior, efficiency, and integration of AI coding agents in software development workflows.
comment: 5 pages, 1 figure, 1 table
♻ ☆ Recursive Language Models
We study allowing large language models (LLMs) to process arbitrarily long prompts through the lens of inference-time scaling. We propose Recursive Language Models (RLMs), a general inference paradigm that treats long prompts as part of an external environment and allows the LLM to programmatically examine, decompose, and recursively call itself over snippets of the prompt. We find that RLMs can successfully process inputs up to two orders of magnitude beyond model context windows and, even for shorter prompts, dramatically outperform the quality of vanilla frontier LLMs and common long-context scaffolds across four diverse long-context tasks while having comparable cost. At a small scale, we post-train the first natively recursive language model. Our model, RLM-Qwen3-8B, outperforms the underlying Qwen3-8B model by $28.3\%$ on average and even approaches the quality of vanilla GPT-5 on three long-context tasks. Code is available at https://github.com/alexzhang13/rlm.
comment: 9 pages, 33 with Appendix
♻ ☆ ArchesClimate: Probabilistic Decadal Ensemble Generation With Flow Matching
Climate projections have uncertainties related to components of the climate system and their interactions. A typical approach to quantifying these uncertainties is to use climate models to create ensembles of repeated simulations under different initial conditions. Due to the complexity of these simulations, generating such ensembles of projections is computationally expensive. In this work, we present ArchesClimate, a deep learning-based climate model emulator that aims to reduce this cost. ArchesClimate is trained on decadal hindcasts of the IPSL-CM6A-LR climate model at a spatial resolution of approximately 2.5x1.25 degrees. We train a flow matching model following ArchesWeatherGen, which we adapt to predict near-term climate. Once trained, the model generates states at a one-month lead time and can be used to auto-regressively emulate climate model simulations of any length. We show that for up to 10 years, these generations are stable and physically consistent. We also show that for several important climate variables, ArchesClimate generates simulations that are interchangeable with the IPSL model. This work suggests that climate model emulators could significantly reduce the cost of climate model simulations.
♻ ☆ DCP-Bench-Open: Evaluating LLMs for Constraint Modelling of Discrete Combinatorial Problems ECAI25
Discrete Combinatorial Problems (DCPs) are prevalent in industrial decision-making and optimisation. However, while constraint solving technologies for DCPs have advanced significantly, the core process of formalising them, namely constraint modelling, requires significant expertise and remains a bottleneck for wider adoption. Aiming to alleviate this bottleneck, recent studies have explored using Large Language Models (LLMs) to transform combinatorial problem descriptions into executable constraint models. However, the existing evaluation datasets for discrete constraint modelling are often limited to small, homogeneous, or domain-specific problems, which do not capture the diversity of real-world scenarios. This work addresses this gap by introducing DCP-Bench-Open, a novel benchmark that includes a diverse set of well-known discrete combinatorial problems sourced from the Constraint Programming (CP) and Operations Research (OR) communities, structured explicitly for evaluating LLM-driven constraint modelling. With this dataset, and given the variety of modelling frameworks, we compare and evaluate the modelling capabilities of LLMs for three distinct constraint modelling systems, which vary in abstraction level and underlying syntax. Notably, the results show higher performance when modelling with a high-level Python-based framework. Additionally, we systematically evaluate the use of prompt-based and inference-time compute methods across different LLMs, which further increase accuracy, reaching up to 91% on this highly challenging benchmark. DCP-Bench-Open is publicly available.
comment: This version is currently submitted and it is under review. For CP-Bench (the paper accepted at ECAI25), please refer to the previous version of this entry (v2)
♻ ☆ From Specialist to Generalist: Unlocking SAM's Learning Potential on Unlabeled Medical Images
Foundation models like the Segment Anything Model (SAM) show strong generalization, yet adapting them to medical images remains difficult due to domain shift, scarce labels, and the inability of Parameter-Efficient Fine-Tuning (PEFT) to exploit unlabeled data. While conventional models like U-Net excel in semi-supervised medical learning, their potential to assist a PEFT SAM has been largely overlooked. We introduce SC-SAM, a specialist-generalist framework where U-Net provides point-based prompts and pseudo-labels to guide SAM's adaptation, while SAM serves as a powerful generalist supervisor to regularize U-Net. This reciprocal guidance forms a bidirectional co-training loop that allows both models to effectively exploit the unlabeled data. Across prostate MRI and polyp segmentation benchmarks, our method achieves state-of-the-art results, outperforming other existing semi-supervised SAM variants and even medical foundation models like MedSAM, highlighting the value of specialist-generalist cooperation for label-efficient medical image segmentation. Our code is available at https://github.com/vnlvi2k3/SC-SAM.
comment: Accepted to ISBI 2026
♻ ☆ HeuriGym: An Agentic Benchmark for LLM-Crafted Heuristics in Combinatorial Optimization ICLR'26
While Large Language Models (LLMs) have demonstrated significant advancements in reasoning and agent-based problem-solving, current evaluation methodologies fail to adequately assess their capabilities: existing benchmarks either rely on closed-ended questions prone to saturation and memorization, or subjective comparisons that lack consistency and rigor. In this work, we introduce HeuriGym, an agentic framework designed for evaluating heuristic algorithms generated by LLMs for combinatorial optimization problems, characterized by clearly defined objectives and expansive solution spaces. HeuriGym empowers LLMs to propose heuristics, receive evaluative feedback via code execution, and iteratively refine their solutions. We evaluate nine state-of-the-art models on nine problems across domains such as computer systems, logistics, and biology, exposing persistent limitations in tool use, planning, and adaptive reasoning. To quantify performance, we propose the Quality-Yield Index (QYI), a metric that captures both solution pass rate and quality. Even top models like GPT-o4-mini-high and Gemini-2.5-Pro attain QYI scores of only 0.6, well below the expert baseline of 1. Our open-source benchmark aims to guide the development of LLMs toward more effective and realistic problem-solving in scientific and engineering domains.
comment: Accepted to ICLR'26
♻ ☆ Fail Fast, Win Big: Rethinking the Drafting Strategy in Speculative Decoding via Diffusion LLMs
Diffusion Large Language Models (dLLMs) offer fast, parallel token generation, but their standalone use is plagued by an inherent efficiency-quality tradeoff. We show that, if carefully applied, the attributes of dLLMs can actually be a strength for drafters in speculative decoding with autoregressive (AR) verifiers. Our core insight is that dLLM's speed from parallel decoding drastically lowers the risk of costly rejections, providing a practical mechanism to effectively realize the (elusive) lengthy drafts that lead to large speedups with speculative decoding. We present FailFast, a dLLM-based speculative decoding framework that realizes this approach by dynamically adapting its speculation length. It "fails fast" by spending minimal compute in hard-to-speculate regions to shrink speculation latency and "wins big" by aggressively extending draft lengths in easier regions to reduce verification latency (in many cases, speculating and accepting 70 tokens at a time!). Without any fine-tuning, FailFast delivers lossless acceleration of AR LLMs and achieves up to 4.9$\times$ speedup over vanilla decoding, 1.7$\times$ over the best naive dLLM drafter, and 1.7$\times$ over EAGLE-3 across diverse models and workloads. We open-source FailFast at https://github.com/ruipeterpan/failfast.
♻ ☆ Discrete Variational Autoencoding via Policy Search
Discrete latent bottlenecks in variational autoencoders (VAEs) offer high bit efficiency and can be modeled with autoregressive discrete distributions, enabling parameter-efficient multimodal search with transformers. However, discrete random variables do not allow for exact differentiable parameterization; therefore, discrete VAEs typically rely on approximations, such as Gumbel-Softmax reparameterization or straight-through gradient estimates, or employ high-variance gradient-free methods such as REINFORCE that have had limited success on high-dimensional tasks such as image reconstruction. Inspired by popular techniques in policy search, we propose a training framework for discrete VAEs that leverages the natural gradient of a non-parametric encoder to update the parametric encoder without requiring reparameterization. Our method, combined with automatic step size adaptation and a transformer-based encoder, scales to challenging datasets such as ImageNet and outperforms both approximate reparameterization methods and quantization-based discrete autoencoders in reconstructing high-dimensional data from compact latent spaces.
♻ ☆ Neural Theorem Proving for Verification Conditions: A Real-World Benchmark ICLR'26
Theorem proving is fundamental to program verification, where the automated proof of Verification Conditions (VCs) remains a primary bottleneck. Real-world program verification frequently encounters hard VCs that existing Automated Theorem Provers (ATPs) cannot prove, leading to a critical need for extensive manual proofs that burden practical application. While Neural Theorem Proving (NTP) has achieved significant success in mathematical competitions, demonstrating the potential of machine learning approaches to formal reasoning, its application to program verification--particularly VC proving--remains largely unexplored. Despite existing work on annotation synthesis and verification-related theorem proving, no benchmark has specifically targeted this fundamental bottleneck: automated VC proving. This work introduces Neural Theorem Proving for Verification Conditions (NTP4VC), presenting the first real-world multi-language benchmark for this task. From real-world projects such as Linux and Contiki-OS kernel, our benchmark leverages industrial pipelines (Why3 and Frama-C) to generate semantically equivalent test cases across formal languages of Isabelle, Lean, and Rocq. We evaluate large language models (LLMs), both general-purpose and those fine-tuned for theorem proving, on NTP4VC. Results indicate that although LLMs show promise in VC proving, significant challenges remain for program verification, highlighting a large gap and opportunity for future research.
comment: Accepted in ICLR'26
♻ ☆ AI Annotation Orchestration: Evaluating LLM verifiers to Improve the Quality of LLM Annotations in Learning Analytics
Large Language Models (LLMs) are increasingly used to annotate learning interactions, yet concerns about reliability limit their utility. We test whether verification-oriented orchestration-prompting models to check their own labels (self-verification) or audit one another (cross-verification)-improves qualitative coding of tutoring discourse. Using transcripts from 30 one-to-one math sessions, we compare three production LLMs (GPT, Claude, Gemini) under three conditions: unverified annotation, self-verification, and cross-verification across all orchestration configurations. Outputs are benchmarked against a blinded, disagreement-focused human adjudication using Cohen's kappa. Overall, orchestration yields a 58 percent improvement in kappa. Self-verification nearly doubles agreement relative to unverified baselines, with the largest gains for challenging tutor moves. Cross-verification achieves a 37 percent improvement on average, with pair- and construct-dependent effects: some verifier-annotator pairs exceed self-verification, while others reduce alignment, reflecting differences in verifier strictness. We contribute: (1) a flexible orchestration framework instantiating control, self-, and cross-verification; (2) an empirical comparison across frontier LLMs on authentic tutoring data with blinded human "gold" labels; and (3) a concise notation, verifier(annotator) (e.g., Gemini(GPT) or Claude(Claude)), to standardize reporting and make directional effects explicit for replication. Results position verification as a principled design lever for reliable, scalable LLM-assisted annotation in Learning Analytics.
♻ ☆ ProToken: Token-Level Attribution for Federated Large Language Models
Federated Learning (FL) enables collaborative training of Large Language Models (LLMs) across distributed data sources while preserving privacy. However, when federated LLMs are deployed in critical applications, it remains unclear which client(s) contributed to specific generated responses, hindering debugging, malicious client identification, fair reward allocation, and trust verification. We present ProToken, a novel Provenance methodology for Token-level attribution in federated LLMs that addresses client attribution during autoregressive text generation while maintaining FL privacy constraints. ProToken leverages two key insights to enable provenance at each token: (1) transformer architectures concentrate task-specific signals in later blocks, enabling strategic layer selection for computational tractability, and (2) gradient-based relevance weighting filters out irrelevant neural activations, focusing attribution on neurons that directly influence token generation. We evaluate ProToken across 16 configurations spanning four LLM architectures (Gemma, Llama, Qwen, SmolLM) and four domains (medical, financial, mathematical, coding). ProToken achieves 98% average attribution accuracy in correctly localizing responsible client(s), and maintains high accuracy when the number of clients are scaled, validating its practical viability for real-world deployment settings.
♻ ☆ Helping Johnny Make Sense of Privacy Policies with LLMs
Understanding and engaging with privacy policies is crucial for online privacy, yet these documents remain notoriously complex and difficult to navigate. We present PRISMe, an interactive browser extension that combines LLM-based policy assessment with a dashboard and customizable chat interface, enabling users to skim quick overviews or explore policy details in depth while browsing. We conduct a user study (N=22) with participants of diverse privacy knowledge to investigate how users interpret the tool's explanations and how it shapes their engagement with privacy policies, identifying distinct interaction patterns. Participants valued the clear overviews and conversational depth, but flagged some issues, particularly adversarial robustness and hallucination risks. Thus, we investigate how a retrieval-augmented generation (RAG) approach can alleviate issues by re-running the chat queries from the study. Our findings surface design challenges as well as technical trade-offs, contributing actionable insights for developing future user-centered, trustworthy privacy policy analysis tools.
comment: 21 pages, 3 figures, 3 tables, ACM CHI 2026
♻ ☆ EVEREST: An Evidential, Tail-Aware Transformer for Rare-Event Time-Series Forecasting
Forecasting rare events in multivariate time-series data is challenging due to severe class imbalance, long-range dependencies, and distributional uncertainty. We introduce EVEREST, a transformer-based architecture for probabilistic rare-event forecasting that delivers calibrated predictions and tail-aware risk estimation, with auxiliary interpretability via attention-based signal attribution. EVEREST integrates four components: (i) a learnable attention bottleneck for soft aggregation of temporal dynamics; (ii) an evidential head for estimating aleatoric and epistemic uncertainty via a Normal--Inverse--Gamma distribution; (iii) an extreme-value head that models tail risk using a Generalized Pareto Distribution; and (iv) a lightweight precursor head for early-event detection. These modules are jointly optimized with a composite loss (focal loss, evidential NLL, and a tail-sensitive EVT penalty) and act only at training time; deployment uses a single classification head with no inference overhead (approximately 0.81M parameters). On a decade of space-weather data, EVEREST achieves state-of-the-art True Skill Statistic (TSS) of 0.973/0.970/0.966 at 24/48/72-hour horizons for C-class flares. The model is compact, efficient to train on commodity hardware, and applicable to high-stakes domains such as industrial monitoring, weather, and satellite diagnostics. Limitations include reliance on fixed-length inputs and exclusion of image-based modalities, motivating future extensions to streaming and multimodal forecasting.
comment: Updated author affiliation. No changes to technical content
♻ ☆ LLMBind: A Unified Modality-Task Integration Framework
Despite recent progress in Multi-Modal Large Language Models (MLLMs), it remains challenging to integrate diverse tasks ranging from pixel-level perception to high-fidelity generation. Existing approaches often suffer from either restricted task extensibility or severe performance degradation due to modality interference. n this paper, we present LLMBind, an extensible framework that unifies multimodal tasks through a dual-pathway mechanism: In-Situ semantic embeddings for localization-sensitive tasks like semantic segmentation and Ex-Situ task-prompts for generation across image, video, and audio modalities. Additionally, we employ a Mixture-of-Experts (MoE) architecture to route task-specific tokens, thereby achieving modality disentanglement and mitigating negative transfer. We also curate a 400k multi-turn interactive dataset focused on iterative visual refinement to enable human-like interaction. Extensive experiments demonstrate that LLMBind achieves excellent performance across multiple perception and generation benchmarks while maintaining superior expandability.
♻ ☆ LogogramNLP: Comparing Visual and Textual Representations of Ancient Logographic Writing Systems for NLP
Standard natural language processing (NLP) pipelines operate on symbolic representations of language, which typically consist of sequences of discrete tokens. However, creating an analogous representation for ancient logographic writing systems is an extremely labor intensive process that requires expert knowledge. At present, a large portion of logographic data persists in a purely visual form due to the absence of transcription -- this issue poses a bottleneck for researchers seeking to apply NLP toolkits to study ancient logographic languages: most of the relevant data are images of writing. This paper investigates whether direct processing of visual representations of language offers a potential solution. We introduce LogogramNLP, the first benchmark enabling NLP analysis of ancient logographic languages, featuring both transcribed and visual datasets for four writing systems along with annotations for tasks like classification, translation, and parsing. Our experiments compare systems that employ recent visual and text encoding strategies as backbones. The results demonstrate that visual representations outperform textual representations for some investigated tasks, suggesting that visual processing pipelines may unlock a large amount of cultural heritage data of logographic languages for NLP-based analyses.
comment: correct wrong refs, typos
♻ ☆ DaMO: A Data-Efficient Multimodal Orchestrator for Temporal Reasoning with Video LLMs
Large Language Models (LLMs) have recently been extended to the video domain, enabling sophisticated video-language understanding. However, existing Video LLMs often exhibit limitations in fine-grained temporal reasoning, restricting their ability to precisely attribute responses to specific video moments, especially under constrained supervision. We introduce DaMO, a data-efficient Video LLM explicitly designed for accurate temporal reasoning and multimodal understanding. At its core, the proposed Temporal-aware Fuseformer employs a hierarchical dual-stream architecture that progressively captures temporal dynamics within each modality and effectively fuses complementary visual and audio information. To further enhance computational efficiency, DaMO integrates a global residual that reduces spatial redundancy while preserving essential semantic details. We train DaMO via a structured four-stage progressive training paradigm, incrementally equipping the model with multimodal alignment, semantic grounding, and temporal reasoning capabilities. This work also contributes multiple datasets augmented from existing ones with LLM-generated temporally grounded QA pairs for tasks requiring temporal supervision. Comprehensive experiments on temporal grounding and video QA benchmarks demonstrate that DaMO consistently surpasses prior methods, particularly in tasks demanding precise temporal alignment and reasoning. Our work establishes a promising direction for data-efficient video-language modeling.
♻ ☆ Breaking Bad Molecules: Are MLLMs Ready for Structure-Level Molecular Detoxification?
Toxicity remains a leading cause of early-stage drug development failure. Despite advances in molecular design and property prediction, the task of molecular toxicity repair, generating structurally valid molecular alternatives with reduced toxicity, has not yet been systematically defined or benchmarked. To fill this gap, we introduce ToxiMol, the first benchmark task for general-purpose Multimodal Large Language Models (MLLMs) focused on molecular toxicity repair. We construct a standardized dataset covering 11 primary tasks and 660 representative toxic molecules spanning diverse mechanisms and granularities. We design a prompt annotation pipeline with mechanism-aware and task-adaptive capabilities, informed by expert toxicological knowledge. In parallel, we propose an automated evaluation framework, ToxiEval, which integrates toxicity endpoint prediction, synthetic accessibility, drug-likeness, and structural similarity into a high-throughput evaluation chain for repair success. We systematically assess 43 mainstream general-purpose MLLMs and conduct multiple ablation studies to analyze key issues, including evaluation metrics, candidate diversity, and failure attribution. Experimental results show that although current MLLMs still face significant challenges on this task, they begin to demonstrate promising capabilities in toxicity understanding, semantic constraint adherence, and structure-aware editing.
♻ ☆ Beyond Random Sampling: Efficient Language Model Pretraining via Curriculum Learning
Curriculum learning-organizing training data from easy to hard-has improved efficiency across machine learning domains, yet remains underexplored for language model pretraining. We present the first systematic investigation of curriculum learning in LLM pretraining, with over 200 models trained on up to 100B tokens across three strategies: vanilla curriculum learning, pacing-based sampling, and interleaved curricula, guided by six difficulty metrics spanning linguistic and information-theoretic properties. We evaluate performance on eight benchmarks under three realistic scenarios: limited data, unlimited data, and continual training. Our experiments show that curriculum learning consistently accelerates convergence in early and mid-training phases,reducing training steps by $18-45\%$ to reach baseline performance. When applied as a warmup strategy before standard random sampling, curriculum learning yields sustained improvements up to $3.5\%$. We identify compression ratio, lexical diversity (MTLD), and readability (Flesch Reading Ease) as the most effective difficulty signals. Our findings demonstrate that data ordering-orthogonal to existing data selection methods-provides a practical mechanism for more efficient LLM pretraining.
♻ ☆ Dual-objective Language Models: Training Efficiency Without Overfitting
This paper combines autoregressive and masked-diffusion training objectives without any architectural modifications, resulting in flexible language models that outperform single-objective models. Autoregressive modeling has been a popular approach, partly because of its training efficiency; however, that comes at the cost of sensitivity to overfitting. On the other hand, masked-diffusion models are less efficient to train while being more resilient to overfitting. In this work, we demonstrate that dual-objective training achieves the best of both worlds. To derive the optimal balance between both objectives, we train and evaluate 50 language models under varying levels of data repetition. We show that it is optimal to combine both objectives under all evaluated settings and that the optimal balance is similar whether targeting autoregressive or masked-diffusion downstream performance.
♻ ☆ RacketVision: A Multiple Racket Sports Benchmark for Unified Ball and Racket Analysis AAAI 2026
We introduce RacketVision, a novel dataset and benchmark for advancing computer vision in sports analytics, covering table tennis, tennis, and badminton. The dataset is the first to provide large-scale, fine-grained annotations for racket pose alongside traditional ball positions, enabling research into complex human-object interactions. It is designed to tackle three interconnected tasks: fine-grained ball tracking, articulated racket pose estimation, and predictive ball trajectory forecasting. Our evaluation of established baselines reveals a critical insight for multi-modal fusion: while naively concatenating racket pose features degrades performance, a CrossAttention mechanism is essential to unlock their value, leading to trajectory prediction results that surpass strong unimodal baselines. RacketVision provides a versatile resource and a strong starting point for future research in dynamic object tracking, conditional motion forecasting, and multimodal analysis in sports. Project page at https://github.com/OrcustD/RacketVision
comment: Accepted to AAAI 2026 (Oral)
♻ ☆ Actionable Interpretability Must Be Defined in Terms of Symmetries
This paper argues that interpretability research in Artificial Intelligence (AI) is fundamentally ill-posed as existing definitions of interpretability fail to describe how interpretability can be formally tested or designed for. We posit that actionable definitions of interpretability must be formulated in terms of *symmetries* that inform model design and lead to testable conditions. Under a probabilistic view, we hypothesise that four symmetries (inference equivariance, information invariance, concept-closure invariance, and structural invariance) suffice to (i) formalise interpretable models as a subclass of probabilistic models, (ii) yield a unified formulation of interpretable inference (e.g., alignment, interventions, and counterfactuals) as a form of Bayesian inversion, and (iii) provide a formal framework to verify compliance with safety standards and regulations.
♻ ☆ UDEEP: Edge-based Computer Vision for In-Situ Underwater Crayfish and Plastic Detection
Invasive signal crayfish have a detrimental impact on ecosystems. They spread the fungal-type crayfish plague disease (Aphanomyces astaci) that is lethal to the native white clawed crayfish, the only native crayfish species in Britain. Invasive signal crayfish extensively burrow, causing habitat destruction, erosion of river banks and adverse changes in water quality, while also competing with native species for resources leading to declines in native populations. Moreover, pollution exacerbates the vulnerability of White-clawed crayfish, with their populations declining by over 90%. To safeguard aquatic ecosystems, it is imperative to address the challenges posed by invasive species and pollution in aquatic ecosystem's. This article introduces the Cognitive Edge Device (CED) computing platform for the detection of crayfish and plastic. It also presents two publicly available underwater datasets, annotated with sequences of crayfish and aquatic plastic debris. Four You Only Look Once (YOLO) variants were trained and evaluated for crayfish and plastic object detection. YOLOv5s achieved the highest detection accuracy, with an mAP@0.5 of 0.90, and achieved the best precision
♻ ☆ Analysis of approximate linear programming solution to Markov decision problem with log barrier function
There are two primary approaches to solving Markov decision problems (MDPs): dynamic programming based on the Bellman equation and linear programming (LP). Dynamic programming methods are the most widely used and form the foundation of both classical and modern reinforcement learning (RL). By contrast, LP-based methods have been less commonly employed, although they have recently gained attention in contexts such as offline RL. The relative underuse of the LP-based methods stems from the fact that it leads to an inequality-constrained optimization problem, which is generally more challenging to solve effectively compared with Bellman-equation-based methods. The purpose of this paper is to establish a theoretical foundation for solving LP-based MDPs in a more effective and practical manner. Our key idea is to leverage the log-barrier function, widely used in inequality-constrained optimization, to transform the LP formulation of the MDP into an unconstrained optimization problem. This reformulation enables approximate solutions to be obtained easily via gradient descent. While the method may appear simple, to the best of our knowledge, a thorough theoretical interpretation of this approach has not yet been developed. This paper aims to bridge this gap.
♻ ☆ DoubleAgents: Interactive Simulations for Alignment in Agentic AI
Agentic workflows promise efficiency, but adoption hinges on whether people can align systems that act on their behalf with their goals, values, and situational expectations. We present DoubleAgents, an agentic planning tool that embeds transparency and control through user intervention, value-reflecting policies, rich state visualizations, and uncertainty flagging for human coordination tasks. A built-in respondent simulation generates realistic scenarios, allowing users to rehearse and refine policies and calibrate their use of agentic behavior before live deployment. We evaluate DoubleAgents in a two-day lab study (n = 10), three deployment studies, and a technical evaluation. Results show that participants initially hesitated to delegate but used simulation to probe system behavior and adjust policies, gradually increasing delegation as agent actions became better aligned with their intentions and context. Deployment results demonstrate DoubleAgents' real-world relevance and usefulness, showing that simulation helps users effectively manage real-world tasks with higher complexity and uncertainty. We contribute interactive simulation as a practical pathway for users to iteratively align and calibrate agentic systems.
comment: 22 pages, 10 figures
♻ ☆ A Scalable Inter-edge Correlation Modeling in CopulaGNN for Link Sign Prediction ICLR 2026
Link sign prediction on a signed graph is a task to determine whether the relationship represented by an edge is positive or negative. Since the presence of negative edges violates the graph homophily assumption that adjacent nodes are similar, regular graph methods have not been applicable without auxiliary structures to handle them. We aim to directly model the latent statistical dependency among edges with the Gaussian copula and its corresponding correlation matrix, extending CopulaGNN (Ma et al., 2021). However, a naive modeling of edge-edge relations is computationally intractable even for a graph with moderate scale. To address this, we propose to 1) represent the correlation matrix as a Gramian of edge embeddings, significantly reducing the number of parameters, and 2) reformulate the conditional probability distribution to dramatically reduce the inference cost. We theoretically verify scalability of our method by proving its linear convergence. Also, our extensive experiments demonstrate that it achieves significantly faster convergence than baselines, maintaining competitive prediction performance to the state-of-the-art models.
comment: Accepted to ICLR 2026
♻ ☆ Toward Ultra-Long-Horizon Agentic Science: Cognitive Accumulation for Machine Learning Engineering
The advancement of artificial intelligence toward agentic science is currently bottlenecked by the challenge of ultra-long-horizon autonomy, the ability to sustain strategic coherence and iterative correction over experimental cycles spanning days or weeks. While Large Language Models (LLMs) have demonstrated prowess in short-horizon reasoning, they are easily overwhelmed by execution details in the high-dimensional, delayed-feedback environments of real-world research, failing to consolidate sparse feedback into coherent long-term guidance. Here, we present ML-Master 2.0, an autonomous agent that masters ultra-long-horizon machine learning engineering (MLE) which is a representative microcosm of scientific discovery. By reframing context management as a process of cognitive accumulation, our approach introduces Hierarchical Cognitive Caching (HCC), a multi-tiered architecture inspired by computer systems that enables the structural differentiation of experience over time. By dynamically distilling transient execution traces into stable knowledge and cross-task wisdom, HCC allows agents to decouple immediate execution from long-term experimental strategy, effectively overcoming the scaling limits of static context windows. In evaluations on OpenAI's MLE-Bench under 24-hour budgets, ML-Master 2.0 achieves a state-of-the-art medal rate of 56.44%. Our findings demonstrate that ultra-long-horizon autonomy provides a scalable blueprint for AI capable of autonomous exploration beyond human-precedent complexities.
comment: 25 pages. 5 figures
♻ ☆ GRACE: A Language Model Framework for Explainable Inverse Reinforcement Learning
Inverse Reinforcement Learning aims to recover reward models from expert demonstrations, but traditional methods yield black-box models that are difficult to interpret and debug. In this work, we introduce GRACE (Generating Rewards As CodE), a method for using Large Language Models within an evolutionary search to reverse-engineer an interpretable, code-based reward function directly from expert trajectories. The resulting reward function is executable code that can be inspected and verified. We empirically validate GRACE on the MuJoCo, BabyAI and AndroidWorld benchmarks, where it efficiently learns highly accurate rewards, even in complex, multi-task settings. Further, we demonstrate that the resulting reward leads to strong policies, compared to both competitive Imitation Learning and online RL approaches with ground-truth rewards. Finally, we show that GRACE is able to build complex reward APIs in multi-task setups.
♻ ☆ FaithSCAN: Model-Driven Single-Pass Hallucination Detection for Faithful Visual Question Answering
Faithfulness hallucinations in VQA occur when vision-language models produce fluent yet visually ungrounded answers, severely undermining their reliability in safety-critical applications. Existing detection methods mainly fall into two categories: external verification approaches relying on auxiliary models or knowledge bases, and uncertainty-driven approaches using repeated sampling or uncertainty estimates. The former suffer from high computational overhead and are limited by external resource quality, while the latter capture only limited facets of model uncertainty and fail to sufficiently explore the rich internal signals associated with the diverse failure modes. Both paradigms thus have inherent limitations in efficiency, robustness, and detection performance. To address these challenges, we propose FaithSCAN: a lightweight network that detects hallucinations by exploiting rich internal signals of VLMs, including token-level decoding uncertainty, intermediate visual representations, and cross-modal alignment features. These signals are fused via branch-wise evidence encoding and uncertainty-aware attention. We also extend the LLM-as-a-Judge paradigm to VQA hallucination and propose a low-cost strategy to automatically generate model-dependent supervision signals, enabling supervised training without costly human labels while maintaining high detection accuracy. Experiments on multiple VQA benchmarks show that FaithSCAN significantly outperforms existing methods in both effectiveness and efficiency. In-depth analysis shows hallucinations arise from systematic internal state variations in visual perception, cross-modal reasoning, and language decoding. Different internal signals provide complementary diagnostic cues, and hallucination patterns vary across VLM architectures, offering new insights into the underlying causes of multimodal hallucinations.
comment: 21 pages, 13 figures, 8 tables
♻ ☆ FAIR-MATCH: A Multi-Objective Framework for Bias Mitigation in Reciprocal Dating Recommendations
Online dating platforms have fundamentally transformed the formation of romantic relationships, with millions of users worldwide relying on algorithmic matching systems to find compatible partners. However, current recommendation systems in dating applications suffer from significant algorithmic deficiencies, including but not limited to popularity bias, filter bubble effects, and inadequate reciprocity modeling that limit effectiveness and introduce harmful biases. This research integrates foundational work with recent empirical findings to deliver a detailed analysis of dating app recommendation systems, highlighting key issues and suggesting research-backed solutions. Through analysis of reciprocal recommendation frameworks, fairness evaluation metrics, and industry implementations, we demonstrate that current systems achieve modest performance with collaborative filtering reaching 25.1\% while reciprocal methods achieve 28.7\%. Our proposed mathematical framework addresses these limitations through enhanced similarity measures, multi-objective optimization, and fairness-aware algorithms that maintain competitive accuracy while improving demographic representation to reduce algorithmic bias.
comment: This paper is withdrawn due to factual/methodological/other critical errors. It primarily synthesizes literature without original empirical validation/novel contributions (e.g., similarity measures from Xia et al.[2]; 28.7% claims from benchmarks). Core "proposed framework" lacks independent experiments, invalidating analysis. Do not cite prior versions
♻ ☆ X-SAM: From Segment Anything to Any Segmentation AAAI2026
Large Language Models (LLMs) demonstrate strong capabilities in broad knowledge representation, yet they are inherently deficient in pixel-level perceptual understanding. Although the Segment Anything Model (SAM) represents a significant advancement in visual-prompt-driven image segmentation, it exhibits notable limitations in multi-mask prediction and category-specific segmentation tasks, and it cannot integrate all segmentation tasks within a unified model architecture. To address these limitations, we present X-SAM, a streamlined Multimodal Large Language Model (MLLM) framework that extends the segmentation paradigm from \textit{segment anything} to \textit{any segmentation}. Specifically, we introduce a novel unified framework that enables more advanced pixel-level perceptual comprehension for MLLMs. Furthermore, we propose a new segmentation task, termed Visual GrounDed (VGD) segmentation, which segments all instance objects with interactive visual prompts and empowers MLLMs with visual grounded, pixel-wise interpretative capabilities. To enable effective training on diverse data sources, we present a unified training strategy that supports co-training across multiple datasets. Experimental results demonstrate that X-SAM achieves state-of-the-art performance on a wide range of image segmentation benchmarks, highlighting its efficiency for multimodal, pixel-level visual understanding. Code is available at https://github.com/wanghao9610/X-SAM.
comment: AAAI2026
♻ ☆ Gabliteration: Adaptive Multi-Directional Neural Weight Modification for Selective Behavioral Alteration in Large Language Models
We present Gabliteration, a novel neural weight modification technique that advances beyond traditional abliteration methods by implementing adaptive multi-directional projections with regularized layer selection. Our approach addresses the fundamental limitation of existing methods that compromise model quality while attempting to modify specific behavioral patterns. Through dynamic layer optimization, regularized projection matrices, and adaptive scaling mechanisms, we achieve theoretically superior weight modification while minimizing quality degradation in unrelated domains. We validate our method through the gabliterated-v1 model series (0.6B to 4B parameters) available on Hugging Face, demonstrating practical applicability across multiple model scales.
♻ ☆ Mitigating Sensitive Information Leakage in LLMs4Code through Machine Unlearning
Large Language Models for Code (LLMs4Code) have achieved strong performance in code generation, but recent studies reveal that they may memorize and leak sensitive information contained in training data, posing serious privacy risks. To address this gap, this work presents the first comprehensive empirical study on applying machine unlearning to mitigate sensitive information leakage in LLMs4Code. We first construct a dedicated benchmark that includes: (i) a synthetic forget set containing diverse forms of personal information, and (ii) a retain set designed to evaluate whether code-generation capability is preserved after unlearning. Using this benchmark, we systematically assess three representative unlearning algorithms (GA, GA+GD, GA+KL) across three widely used open-source LLMs4Code models (AIXCoder-7B, CodeLlama-7B, CodeQwen-7B). Experimental results demonstrate that machine unlearning can substantially reduce direct memorization-based leakage: on average, the direct leak rate drops by more than 50% while retaining about over 91% of the original code-generation performance. Moreover, by analyzing post-unlearning outputs, we uncover a consistent shift from direct to indirect leakage, revealing an underexplored vulnerability that persists even when the target data has been successfully forgotten. Our findings show that machine unlearning is a feasible and effective solution for enhancing privacy protection in LLMs4Code, while also highlighting the need for future techniques capable of mitigating both direct and indirect leakage simultaneously.
comment: 13 pages
♻ ☆ Mechanism of Task-oriented Information Removal in In-context Learning ICLR 2026
In-context Learning (ICL) is an emerging few-shot learning paradigm based on modern Language Models (LMs), yet its inner mechanism remains unclear. In this paper, we investigate the mechanism through a novel perspective of information removal. Specifically, we demonstrate that in the zero-shot scenario, LMs encode queries into non-selective representations in hidden states containing information for all possible tasks, leading to arbitrary outputs without focusing on the intended task, resulting in near-zero accuracy. Meanwhile, we find that selectively removing specific information from hidden states by a low-rank filter effectively steers LMs toward the intended task. Building on these findings, by measuring the hidden states on carefully designed metrics, we observe that few-shot ICL effectively simulates such task-oriented information removal processes, selectively removing the redundant information from entangled non-selective representations, and improving the output based on the demonstrations, which constitutes a key mechanism underlying ICL. Moreover, we identify essential attention heads inducing the removal operation, termed Denoising Heads, which enables the ablation experiments blocking the information removal operation from the inference, where the ICL accuracy significantly degrades, especially when the correct label is absent from the few-shot demonstrations, confirming both the critical role of the information removal mechanism and denoising heads.
comment: 87 pages, 90 figures, 7 tables, ICLR 2026 Camera-ready
♻ ☆ Quantifying Fidelity: A Decisive Feature Approach to Comparing Synthetic and Real Imagery
Virtual testing using synthetic data has become a cornerstone of autonomous vehicle (AV) safety assurance. Despite progress in improving visual realism through advanced simulators and generative AI, recent studies reveal that pixel-level fidelity alone does not ensure reliable transfer from simulation to the real world. What truly matters is whether the system-under-test (SUT) bases its decisions on consistent decision evidence in both real and simulated environments, not just whether images "look real" to humans. To this end this paper proposes a behavior-grounded fidelity measure by introducing Decisive Feature Fidelity (DFF), a new SUT-specific metric that extends the existing fidelity spectrum to capture mechanism parity, that is, agreement in the model-specific decisive evidence that drives the SUT's decisions across domains. DFF leverages explainable-AI methods to identify and compare the decisive features driving the SUT's outputs for matched real-synthetic pairs. We further propose estimators based on counterfactual explanations, along with a DFF-guided calibration scheme to enhance simulator fidelity. Experiments on 2126 matched KITTI-VirtualKITTI2 pairs demonstrate that DFF reveals discrepancies overlooked by conventional output-value fidelity. Furthermore, results show that DFF-guided calibration improves decisive-feature and input-level fidelity without sacrificing output value fidelity across diverse SUTs.
♻ ☆ SimpleMem: Efficient Lifelong Memory for LLM Agents
To support long-term interaction in complex environments, LLM agents require memory systems that manage historical experiences. Existing approaches either retain full interaction histories via passive context extension, leading to substantial redundancy, or rely on iterative reasoning to filter noise, incurring high token costs. To address this challenge, we introduce SimpleMem, an efficient memory framework based on semantic lossless compression. We propose a three-stage pipeline designed to maximize information density and token utilization: (1) Semantic Structured Compression, which distills unstructured interactions into compact, multi-view indexed memory units; (2) Online Semantic Synthesis, an intra-session process that instantly integrates related context into unified abstract representations to eliminate redundancy; and (3) Intent-Aware Retrieval Planning, which infers search intent to dynamically determine retrieval scope and construct precise context efficiently. Experiments on benchmark datasets show that our method consistently outperforms baseline approaches in accuracy, retrieval efficiency, and inference cost, achieving an average F1 improvement of 26.4% while reducing inference-time token consumption by up to 30-fold, demonstrating a superior balance between performance and efficiency. Code is available at https://github.com/aiming-lab/SimpleMem.
♻ ☆ LVLMs and Humans Ground Differently in Referential Communication
For generative AI agents to partner effectively with human users, the ability to accurately predict human intent is critical. But this ability to collaborate remains limited by a critical deficit: an inability to model common ground. Here, we present a referential communication experiment with a factorial design involving director-matcher pairs (human-human, human-AI, AI-human, and AI-AI) that interact with multiple turns in repeated rounds to match pictures of objects not associated with any obvious lexicalized labels. We release the online pipeline for data collection, the tools and analyses for accuracy, efficiency, and lexical overlap, and a corpus of 356 dialogues (89 pairs over 4 rounds each) that unmasks LVLMs' limitations in interactively resolving referring expressions, a crucial skill that underlies human language use.
comment: 24 pages, 16 figures, preprint
♻ ☆ Understanding Post-Training Structural Changes in Large Language Models
Post-training fundamentally alters the behavior of large language models (LLMs), yet its impact on the internal parameter space remains poorly understood. In this work, we conduct a systematic singular value decomposition (SVD) analysis of principal linear layers in pretrained LLMs, focusing on two widely adopted post-training methods: instruction tuning and long-chain-of-thought (Long-CoT) distillation. Our analysis reveals two unexpected and robust structural changes: (1) a near-uniform geometric scaling of singular values across layers; and (2) highly consistent orthogonal transformations are applied to the left and right singular vectors of each matrix. Based on these findings, We propose a simple yet effective framework to describe the coordinated dynamics of parameters in LLMs, which elucidates why post-training inherently relies on the foundational capabilities developed during pre-training. Further experiments demonstrate that singular value scaling underpins the temperature-controlled regulatory mechanisms of post-training, while the coordinated rotation of singular vectors encodes the essential semantic alignment. These results challenge the prevailing view of the parameter space in large models as a black box, uncovering the first clear regularities in how parameters evolve during training, and providing a new perspective for deeper investigation into model parameter changes.
♻ ☆ Diffusion Timbre Transfer Via Mutual Information Guided Inpainting
We study timbre transfer as an inference-time editing problem for music audio. Starting from a strong pre-trained latent diffusion model, we introduce a lightweight procedure that requires no additional training: (i) a dimension-wise noise injection that targets latent channels most informative of instrument identity, and (ii) an early-step clamping mechanism that re-imposes the input's melodic and rhythmic structure during reverse diffusion. The method operates directly on audio latents and is compatible with text/audio conditioning (e.g., CLAP). We discuss design choices,analyze trade-offs between timbral change and structural preservation, and show that simple inference-time controls can meaningfully steer pre-trained models for style-transfer use cases.
comment: 5 pages, 2 figures, 3 tables
♻ ☆ Beyond Correctness: Evaluating Subjective Writing Preferences Across Cultures
Current preference learning methods achieve high accuracy on standard benchmarks but exhibit significant performance degradation when objective quality signals are removed. We introduce WritingPreferenceBench, a dataset of 1,800 human-annotated preference pairs (1,200 English, 600 Chinese) across 8 creative writing genres, where responses are matched for objective correctness, factual accuracy, and length. On this benchmark, sequence-based reward models--the standard architecture for RLHF--achieve only 52.7% mean accuracy, while zero-shot language model judges perform at 53.9%. In contrast, generative reward models that produce explicit reasoning chains achieve 81.8% accuracy. We observe high within-model variance across genres: individual models range from 18.2% to 81.8% accuracy across different writing categories, with standard deviations averaging 10.1%. This variance persists regardless of model scale, with 27B parameter models showing no consistent improvement over 8B variants. Our results suggest that current RLHF methods primarily learn to detect objective errors rather than capture subjective quality preferences (e.g., creativity, stylistic flair, and emotional resonance), and that successful preference modeling may require intermediate reasoning representations rather than direct classification.
♻ ☆ Membership Privacy Risks of Sharpness Aware Minimization
Optimization algorithms that seek flatter minima, such as Sharpness-Aware Minimization (SAM), are credited with improved generalization and robustness to noise. We ask whether such gains impact membership privacy. Surprisingly, we find that SAM is more prone to Membership Inference Attacks (MIA) than classical SGD across multiple datasets and attack methods, despite achieving lower test error. This suggests that the geometric mechanism of SAM that improves generalization simultaneously exacerbates membership leakage. We investigate this phenomenon through extensive analysis of memorization and influence scores. Our results reveal that SAM is more capable of capturing atypical subpatterns, leading to higher memorization scores of samples. Conversely, SGD depends more heavily on majority features, exhibiting worse generalization on atypical subgroups and lower memorization. Crucially, this characteristic of SAM can be linked to lower variance in the prediction confidence of unseen samples, thereby amplifying membership signals. Finally, we model SAM under a perfectly interpolating linear regime and theoretically show that sharpness regularization inherently reduces variance, guaranteeing a higher MIA advantage for confidence and likelihood ratio attacks.
comment: accepted to iclr 2026
♻ ☆ Deep SPI: Safe Policy Improvement via World Models ICLR 2026
Safe policy improvement (SPI) offers theoretical control over policy updates, yet existing guarantees largely concern offline, tabular reinforcement learning (RL). We study SPI in general online settings, when combined with world model and representation learning. We develop a theoretical framework showing that restricting policy updates to a well-defined neighborhood of the current policy ensures monotonic improvement and convergence. This analysis links transition and reward prediction losses to representation quality, yielding online, "deep" analogues of classical SPI theorems from the offline RL literature. Building on these results, we introduce DeepSPI, a principled on-policy algorithm that couples local transition and reward losses with regularised policy updates. On the ALE-57 benchmark, DeepSPI matches or exceeds strong baselines, including PPO and DeepMDPs, while retaining theoretical guarantees.
comment: ICLR 2026, 10 pages main text, 21 pages appendix (excluding references)
♻ ☆ Epistemic Diversity and Knowledge Collapse in Large Language Models
Large language models (LLMs) tend to generate homogenous texts, which may impact the diversity of knowledge generated across different outputs. Given their potential to replace existing forms of knowledge acquisition, this poses a risk of knowledge collapse, where homogenous LLMs may lead most people to be exposed to largely the same information, thus mediating a shrinking in the range of accessible information over time as underepresented knowledge is forgotten. To assess the risk of knowledge collapse with LLMs, we present a new methodology to measure epistemic diversity, i.e., variation in real-world claims in LLM outputs. We use this to perform a broad empirical study testing 27 LLMs, 155 topics covering 12 countries, and 200 prompt templates sourced from real user chats. For the topics in our study, we show that while newer models tend to generate more diverse claims, all models are less epistemically diverse than a basic web search. We find that model size has a negative impact on epistemic diversity, while retrieval-augmented generation (RAG) has a positive impact, though the improvement from RAG varies by the cultural context. Finally, compared to a traditional knowledge source (Wikipedia), we find that country-specific claims reflect the English language more than the local one, highlighting a gap in epistemic representation.
comment: 16 pages; 8 figures, 4 tables; v2 changelog: Fixed the modeling for table 3, random effect is the model version; v3 changelog: Fixed minor formatting issues in tables 2 and 3; v4 changelog: Fixed some typos and model description; v5 changelog: Updated metadata; v6 changelog: Improved search baseline, writing revisions, added comparisons to semantic similarity only approaches
♻ ☆ LLMs versus the Halting Problem: Revisiting Program Termination Prediction
Determining whether a program terminates is a central problem in computer science. Turing's foundational result established the Halting Problem as undecidable, showing that no algorithm can universally determine termination for all programs and inputs. Consequently, automatic verification tools approximate termination, sometimes failing to prove or disprove; these tools rely on problem-specific architectures and abstractions, and are usually tied to particular programming languages. Recent success and progress in large language models (LLMs) raises the following question: can LLMs reliably predict program termination? In this work, we evaluate LLMs on a diverse set of C programs from the Termination category of the International Competition on Software Verification (SV-Comp) 2025. Our results suggest that LLMs perform remarkably well at predicting program termination, where GPT-5 and Claude Sonnet-4.5 would rank just behind the top-ranked tool (using test-time-scaling), and Code World Model (CWM) would place just behind the second-ranked tool. While LLMs are effective at predicting program termination, they often fail to provide a valid witness as a proof. Moreover, LLMs performance drops as program length increases. We hope these insights motivate further research into program termination and the broader potential of LLMs for reasoning about undecidable problems.
♻ ☆ Robust Deep Monte Carlo Counterfactual Regret Minimization: Addressing Theoretical Risks in Neural Fictitious Self-Play
Monte Carlo Counterfactual Regret Minimization (MCCFR) has emerged as a cornerstone algorithm for solving extensive-form games, but its integration with deep neural networks introduces scale-dependent challenges that manifest differently across game complexities. This paper presents a comprehensive analysis of how neural MCCFR component effectiveness varies with game scale and proposes an adaptive framework for selective component deployment. We identify that theoretical risks such as nonstationary target distribution shifts, action support collapse, variance explosion, and warm-starting bias have scale-dependent manifestation patterns, requiring different mitigation strategies for small versus large games. Our proposed Robust Deep MCCFR framework incorporates target networks with delayed updates, uniform exploration mixing, variance-aware training objectives, and comprehensive diagnostic monitoring. Through systematic ablation studies on Kuhn and Leduc Poker, we demonstrate scale-dependent component effectiveness and identify critical component interactions. The best configuration achieves final exploitability of 0.0628 on Kuhn Poker, representing a 60% improvement over the classical framework (0.156). On the more complex Leduc Poker domain, selective component usage achieves exploitability of 0.2386, a 23.5% improvement over the classical framework (0.3703) and highlighting the importance of careful component selection over comprehensive mitigation. Our contributions include: (1) a formal theoretical analysis of risks in neural MCCFR, (2) a principled mitigation framework with convergence guarantees, (3) comprehensive multi-scale experimental validation revealing scale-dependent component interactions, and (4) practical guidelines for deployment in larger games.
comment: There seems to be some errors related to the encountered problems and the interpreation of numerical results, that do not have a common pattern
♻ ☆ Field Matters: A Lightweight LLM-enhanced Method for CTR Prediction
Click-through rate (CTR) prediction is a fundamental task in modern recommender systems. In recent years, the integration of large language models (LLMs) has been shown to effectively enhance the performance of traditional CTR methods. However, existing LLM-enhanced methods often require extensive processing of detailed textual descriptions for large-scale instances or user/item entities, leading to substantial computational overhead. To address this challenge, this work introduces LLaCTR, a novel and lightweight LLM-enhanced CTR method that employs a field-level enhancement paradigm. Specifically, LLaCTR first utilizes LLMs to distill crucial and lightweight semantic knowledge from small-scale feature fields through self-supervised field-feature fine-tuning. Subsequently, it leverages this field-level semantic knowledge to enhance both feature representation and feature interactions. In our experiments, we integrate LLaCTR with six representative CTR models across four datasets, demonstrating its superior performance in terms of both effectiveness and efficiency compared to existing LLM-enhanced methods. Our code is available at https://github.com/istarryn/LLaCTR.
♻ ☆ PLawBench: A Rubric-Based Benchmark for Evaluating LLMs in Real-World Legal Practice
As large language models (LLMs) are increasingly applied to legal domain-specific tasks, evaluating their ability to perform legal work in real-world settings has become essential. However, existing legal benchmarks rely on simplified and highly standardized tasks, failing to capture the ambiguity, complexity, and reasoning demands of real legal practice. Moreover, prior evaluations often adopt coarse, single-dimensional metrics and do not explicitly assess fine-grained legal reasoning. To address these limitations, we introduce PLawBench, a Practical Law Benchmark designed to evaluate LLMs in realistic legal practice scenarios. Grounded in real-world legal workflows, PLawBench models the core processes of legal practitioners through three task categories: public legal consultation, practical case analysis, and legal document generation. These tasks assess a model's ability to identify legal issues and key facts, perform structured legal reasoning, and generate legally coherent documents. PLawBench comprises 850 questions across 13 practical legal scenarios, with each question accompanied by expert-designed evaluation rubrics, resulting in approximately 12,500 rubric items for fine-grained assessment. Using an LLM-based evaluator aligned with human expert judgments, we evaluate 10 state-of-the-art LLMs. Experimental results show that none achieves strong performance on PLawBench, revealing substantial limitations in the fine-grained legal reasoning capabilities of current LLMs and highlighting important directions for future evaluation and development of legal LLMs. Data is available at: https://github.com/skylenage/PLawbench.
♻ ☆ Beyond Syntax: Action Semantics Learning for App Agents
The recent development of Large Language Models (LLMs) enables the rise of App agents that interpret user intent and operate smartphone Apps through actions such as clicking and scrolling. While prompt-based solutions with proprietary LLM APIs show promising ability, they incur heavy compute costs and external API dependency. Fine-tuning smaller open-source LLMs solves these limitations. However, current supervised fine-tuning methods use a syntax learning paradigm that forces agents to reproduce exactly the ground truth action strings, leading to out-of-distribution (OOD) vulnerability. To fill this gap, we propose Action Semantics Learning (ASL), a novel learning framework, where the learning objective is capturing the semantics of the ground truth actions. Specifically, inspired by the programming language theory, we define the action semantics for App agents as the state transition induced by the action in the user interface. Building on this insight, ASL employs a novel SEmantic Estimator~(SEE) to compute a semantic similarity to train the App agents in generating actions aligned with the semantics of ground truth actions, even when their syntactic forms differ. SEE is a flexible module that can be applied in both supervised and reinforcement fine-tuning paradigms. To support the effectiveness of ASL, we theoretically demonstrate the superior robustness of ASL for the OOD problem compared with the existing syntax learning paradigm. Extensive experiments across multiple offline and online benchmarks demonstrate that ASL significantly improves the accuracy and generalisation of App agents compared to existing methods.
♻ ☆ Neural Value Iteration
The value function of a POMDP exhibits the piecewise-linear-convex (PWLC) property and can be represented as a finite set of hyperplanes, known as $α$-vectors. Most state-of-the-art POMDP solvers (offline planners) follow the point-based value iteration scheme, which performs Bellman backups on $α$-vectors at reachable belief points until convergence. However, since each $α$-vector is $|S|$-dimensional, these methods quickly become intractable for large-scale problems due to the prohibitive computational cost of Bellman backups. In this work, we demonstrate that the PWLC property allows a POMDP's value function to be alternatively represented as a finite set of neural networks. This insight enables a novel POMDP planning algorithm called \emph{Neural Value Iteration}, which combines the generalization capability of neural networks with the classical value iteration framework. Our approach achieves near-optimal solutions even in extremely large POMDPs that are intractable for existing offline solvers.
♻ ☆ CLIP-Guided Unsupervised Semantic-Aware Exposure Correction ICASSP 2026
Improper exposure often leads to severe loss of details, color distortion, and reduced contrast. Exposure correction still faces two critical challenges: (1) the ignorance of object-wise regional semantic information causes the color shift artifacts; (2) real-world exposure images generally have no ground-truth labels, and its labeling entails massive manual editing. To tackle the challenges, we propose a new unsupervised semantic-aware exposure correction network. It contains an adaptive semantic-aware fusion module, which effectively fuses the semantic information extracted from a pre-trained Fast Segment Anything Model into a shared image feature space. Then the fused features are used by our multi-scale residual spatial mamba group to restore the details and adjust the exposure. To avoid manual editing, we propose a pseudo-ground truth generator guided by CLIP, which is fine-tuned to automatically identify exposure situations and instruct the tailored corrections. Also, we leverage the rich priors from the FastSAM and CLIP to develop a semantic-prompt consistency loss to enforce semantic consistency and image-prompt alignment for unsupervised training. Comprehensive experimental results illustrate the effectiveness of our method in correcting real-world exposure images and outperforms state-of-the-art unsupervised methods both numerically and visually.
comment: Accepted at ICASSP 2026
♻ ☆ Human Values in a Single Sentence: Moral Presence, Hierarchies, and Transformer Ensembles on the Schwartz Continuum
We study sentence-level detection of the 19 human values in the refined Schwartz continuum in about 74k English sentences from news and political manifestos (ValueEval'24 corpus). Each sentence is annotated with value presence, yielding a binary moral-presence label and a 19-way multi-label task under severe class imbalance. First, we show that moral presence is learnable from single sentences: a DeBERTa-base classifier attains positive-class F1 = 0.74 with calibrated thresholds. Second, we compare direct multi-label value detectors with presence-gated hierarchies under a single 8 GB GPU budget. Under matched compute, presence gating does not improve over direct prediction, indicating that gate recall becomes a bottleneck. Third, we investigate lightweight auxiliary signals - short-range context, LIWC-22 and moral lexica, and topic features - and small ensembles. Our best supervised configuration, a soft-voting ensemble of DeBERTa-based models enriched with such signals, reaches macro-F1 = 0.332 on the 19 values, improving over the best previous English-only baseline on this corpus (macro-F1 $\approx$ 0.28). We additionally benchmark 7-9B instruction-tuned LLMs (Gemma 2 9B, Llama 3.1 8B, Mistral 8B, Qwen 2.5 7B) in zero-/few-shot and QLoRA setups, and find that they lag behind the supervised ensemble under the same hardware constraint. Overall, our results provide empirical guidance for building compute-efficient, value-aware NLP models under realistic GPU budgets.
comment: Code: https://github.com/VictorMYeste/human-value-detection, models: https://huggingface.co/papers/2601.14172, 47 pages, 4 figures
♻ ☆ DGRAG: Distributed Graph-based Retrieval-Augmented Generation in Edge-Cloud Systems
Retrieval-Augmented Generation (RAG) improves factuality by grounding LLMs in external knowledge, yet conventional centralized RAG requires aggregating distributed data, raising privacy risks and incurring high retrieval latency and cost. We present DGRAG, a distributed graph-driven RAG framework for edge-cloud collaborative systems. Each edge device organizes local documents into a knowledge graph and periodically uploads subgraph-level summaries to the cloud for lightweight global indexing without exposing raw data. At inference time, queries are first answered on the edge; a gate mechanism assesses the confidence and consistency of multiple local generations to decide whether to return a local answer or escalate the query. For escalated queries, the cloud performs summary-based matching to identify relevant edges, retrieves supporting evidence from them, and generates the final response with a cloud LLM. Experiments on distributed question answering show that DGRAG consistently outperforms decentralized baselines while substantially reducing cloud overhead.
♻ ☆ Sparsity-Aware Low-Rank Representation for Efficient Fine-Tuning of Large Language Models
Adapting large pre-trained language models to downstream tasks often entails fine-tuning millions of parameters or deploying costly dense weight updates, which hinders their use in resource-constrained environments. Low-rank Adaptation (LoRA) reduces trainable parameters by factorizing weight updates, yet the underlying dense weights still impose high storage and computation costs. Magnitude-based pruning can yield sparse models but typically degrades LoRA's performance when applied naively. In this paper, we introduce SALR (Sparsity-Aware Low-Rank Representation), a novel fine-tuning paradigm that unifies low-rank adaptation with sparse pruning under a rigorous mean-squared-error framework. We prove that statically pruning only the frozen base weights minimizes the pruning error bound, and we recover the discarded residual information via a truncated-SVD low-rank adapter, which provably reduces per-entry MSE by a factor of $(1 - r/\min(d,k))$. To maximize hardware efficiency, we fuse multiple low-rank adapters into a single concatenated GEMM, and we adopt a bitmap-based encoding with a two-stage pipelined decoding + GEMM design to achieve true model compression and speedup. Empirically, SALR attains 50\% sparsity on various LLMs while matching the performance of LoRA on GSM8K and MMLU, reduces model size by $2\times$, and delivers up to a $1.7\times$ inference speedup.
♻ ☆ AGITB: A Signal-Level Benchmark for Evaluating Artificial General Intelligence
Current artificial intelligence systems exhibit strong performance on narrow tasks, while existing evaluation frameworks provide limited insight into generality across domains. We introduce the Artificial General Intelligence Testbed (AGITB), a complementary benchmarking framework grounded in twelve explicitly stated axioms and implemented as a suite of twelve automated, simple, and reusable tests. AGITB evaluates models on their ability to learn and to predict the next input in a temporal sequence whose semantic content is initially unknown to the model. The framework targets core computational properties, such as determinism, adaptability, and generalisation, that parallel principles observed in biological information processing. Designed to resist brute-force or memorisation-based strategies, AGITB requires autonomous learning across previously unseen environments, in a manner broadly inspired by cortical computation. Preliminary application of AGITB suggests that no contemporary system evaluated to date satisfies all test criteria, indicating that the benchmark provides a structured and interpretable means of assessing progress toward more general learning capabilities. A reference implementation of AGITB is freely available on GitHub.
comment: 23 pages, 2 figures
♻ ☆ Lifted Forward Planning in Relational Factored Markov Decision Processes with Concurrent Actions AAMAS 2026
Decision making is a central problem in AI that can be formalized using a Markov Decision Process. A problem is that, with increasing numbers of (indistinguishable) objects, the state space grows exponentially. To compute policies, the state space has to be enumerated. Even more possibilities have to be enumerated if the size of the action space depends on the size of the state space, especially if we allow concurrent actions. To tackle the exponential blow-up in the action and state space, we present a first-order representation to store the spaces in polynomial instead of exponential size in the number of objects and introduce Foreplan, a relational forward planner, which uses this representation to efficiently compute policies for numerous indistinguishable objects and actions. Additionally, we introduce an even faster approximate version of Foreplan. Moreover, Foreplan identifies how many objects an agent should act on to achieve a certain task given restrictions. Further, we provide a theoretical analysis and an empirical evaluation of Foreplan, demonstrating a speedup of at least four orders of magnitude.
comment: Accepted at AAMAS 2026
♻ ☆ Elastic Attention: Test-time Adaptive Sparsity Ratios for Efficient Transformers
The quadratic complexity of standard attention mechanisms poses a significant scalability bottleneck for large language models (LLMs) in long-context scenarios. While hybrid attention strategies that combine sparse and full attention within a single model offer a viable solution, they typically employ static computation ratios (i.e., fixed proportions of sparse versus full attention) and fail to adapt to the varying sparsity sensitivities of downstream tasks during inference. To address this issue, we propose Elastic Attention, which allows the model to dynamically adjust its overall sparsity based on the input. This is achieved by integrating a lightweight Attention Router into the existing pretrained model, which dynamically assigns each attention head to different computation modes. Within only 12 hours of training on 8xA800 GPUs, our method enables models to achieve both strong performance and efficient inference. Experiments across three long-context benchmarks on widely-used LLMs demonstrate the superiority of our method.
♻ ☆ Depth-Width tradeoffs in Algorithmic Reasoning of Graph Tasks with Transformers
Transformers have revolutionized the field of machine learning. In particular, they can be used to solve complex algorithmic problems, including graph-based tasks. In such algorithmic tasks a key question is what is the minimal size of a transformer that can implement the task. Recent work has begun to explore this problem for graph-based tasks, showing that for sub-linear embedding dimension (i.e., model width) logarithmic depth suffices. However, an open question, which we address here, is what happens if width is allowed to grow linearly, while depth is kept fixed. Here we analyze this setting, and provide the surprising result that with linear width, constant depth suffices for solving a host of graph-based problems. This suggests that a moderate increase in width can allow much shallower models, which are advantageous in terms of inference and train time. For other problems, we show that quadratic width is required. Our results demonstrate the complex and intriguing landscape of transformer implementations of graph-based algorithms. We empirically investigate these trade-offs between the relative powers of depth and width and find tasks where wider models have the same accuracy as deep models, while having much faster train and inference time due to parallelizable hardware.
♻ ☆ A Message Passing Realization of Expected Free Energy Minimization
We present a message passing approach to Expected Free Energy (EFE) minimization on factor graphs, based on the theory introduced in arXiv:2504.14898. By reformulating EFE minimization as Variational Free Energy minimization with epistemic priors, we transform a combinatorial search problem into a tractable inference problem solvable through standard variational techniques. Applying our message passing method to factorized state-space models enables efficient policy inference. We evaluate our method on environments with epistemic uncertainty: a stochastic gridworld and a partially observable Minigrid task. Agents using our approach consistently outperform conventional KL-control agents on these tasks, showing more robust planning and efficient exploration under uncertainty. In the stochastic gridworld environment, EFE-minimizing agents avoid risky paths, while in the partially observable minigrid setting, they conduct more systematic information-seeking. This approach bridges active inference theory with practical implementations, providing empirical evidence for the efficiency of epistemic priors in artificial agents.
♻ ☆ Compositional Reasoning with Transformers, RNNs, and Chain of Thought NeurIPS
It is well understood that different neural network architectures are suited to different tasks, but is there always a single best architecture for a given task? We compare the expressive power of transformers, RNNs, and transformers with chain of thought tokens on a simple and natural class of tasks we term Compositional Reasoning Questions (CRQ). This family captures multi-step problems with tree-like compositional structure, such as evaluating Boolean formulas. We prove that under standard hardness assumptions, \emph{none} of these three architectures is capable of solving CRQs unless some hyperparameter (depth, embedding dimension, and number of chain of thought tokens, respectively) grows with the size of the input. We then provide constructions for solving CRQs with each architecture. For transformers, our construction uses depth that is logarithmic in the problem size. For RNNs, logarithmic embedding dimension is necessary and sufficient, so long as the inputs are provided in a certain order. For transformers with chain of thought, our construction uses $n$ CoT tokens for input size $n$. These results show that, while CRQs are inherently hard, there are several different ways for language models to overcome this hardness. Even for a single class of problems, each architecture has strengths and weaknesses, and none is strictly better than the others.
comment: NeurIPS CR version
♻ ☆ Physics-Guided Multimodal Transformers are the Necessary Foundation for the Next Generation of Meteorological Science
This position paper argues that the next generation of artificial intelligence in meteorological and climate sciences must transition from fragmented hybrid heuristics toward a unified paradigm of physics-guided multimodal transformers. While purely data-driven models have achieved significant gains in predictive accuracy, they often treat atmospheric processes as mere visual patterns, frequently producing results that lack scientific consistency or violate fundamental physical laws. We contend that current ``hybrid'' attempts to bridge this gap remain ad-hoc and struggle to scale across the heterogeneous nature of meteorological data ranging from satellite imagery to sparse sensor measurements. We argue that the transformer architecture, through its inherent capacity for cross-modal alignment, provides the only viable foundation for a systematic integration of domain knowledge via physical constraint embedding and physics-informed loss functions. By advocating for this unified architectural shift, we aim to steer the community away from ``black-box'' curve fitting and toward AI systems that are inherently falsifiable, scientifically grounded, and robust enough to address the existential challenges of extreme weather and climate change.
comment: Perspective article
♻ ☆ Dynamic Content Moderation in Livestreams: Combining Supervised Classification with MLLM-Boosted Similarity Matching KDD 2026
Content moderation remains a critical yet challenging task for large-scale user-generated video platforms, especially in livestreaming environments where moderation must be timely, multimodal, and robust to evolving forms of unwanted content. We present a hybrid moderation framework deployed at production scale that combines supervised classification for known violations with reference-based similarity matching for novel or subtle cases. This hybrid design enables robust detection of both explicit violations and novel edge cases that evade traditional classifiers. Multimodal inputs (text, audio, visual) are processed through both pipelines, with a multimodal large language model (MLLM) distilling knowledge into each to boost accuracy while keeping inference lightweight. In production, the classification pipeline achieves 67% recall at 80% precision, and the similarity pipeline achieves 76% recall at 80% precision. Large-scale A/B tests show a 6-8% reduction in user views of unwanted livestreams}. These results demonstrate a scalable and adaptable approach to multimodal content governance, capable of addressing both explicit violations and emerging adversarial behaviors.
comment: To be published at KDD 2026 (ADS track)
♻ ☆ Beyond Face Swapping: A Diffusion-Based Digital Human Benchmark for Multimodal Deepfake Detection
In recent years, the explosive advancement of deepfake technology has posed a critical and escalating threat to public security: diffusion-based digital human generation. Unlike traditional face manipulation methods, such models can generate highly realistic videos with consistency via multimodal control signals. Their flexibility and covertness pose severe challenges to existing detection strategies. To bridge this gap, we introduce DigiFakeAV, the new large-scale multimodal digital human forgery dataset based on diffusion models. Leveraging five of the latest digital human generation methods and a voice cloning method, we systematically construct a dataset comprising 60,000 videos (8.4 million frames), covering multiple nationalities, skin tones, genders, and real-world scenarios, significantly enhancing data diversity and realism. User studies demonstrate that the misrecognition rate by participants for DigiFakeAV reaches as high as 68%. Moreover, the substantial performance degradation of existing detection models on our dataset further highlights its challenges. To address this problem, we propose DigiShield, an effective detection baseline based on spatiotemporal and cross-modal fusion. By jointly modeling the 3D spatiotemporal features of videos and the semantic-acoustic features of audio, DigiShield achieves state-of-the-art (SOTA) performance on the DigiFakeAV and shows strong generalization on other datasets.
♻ ☆ SysMoBench: Evaluating AI on Formally Modeling Complex Real-World Systems
Formal models are essential to specifying large, complex computer systems and verifying their correctness, but are notoriously expensive to write and maintain. Recent advances in generative AI show promise in generating certain forms of specifications. However, existing work mostly targets small code, not complete systems. It is unclear whether AI can deal with realistic system artifacts, as this requires abstracting their complex behavioral properties into formal models. We present SysMoBench, a benchmark that evaluates AI's ability to formally model large, complex systems. We focus on concurrent and distributed systems, which are keystones of today's critical computing infrastructures, encompassing operating systems and cloud infrastructure. We use TLA+, the de facto specification language for concurrent and distributed systems, though the benchmark can be extended to other specification languages. We address the primary challenge of evaluating AI-generated models by automating metrics like syntactic and runtime correctness, conformance to system code, and invariant correctness. SysMoBench currently includes eleven diverse system artifacts: the Raft implementation of Etcd and Redis, the leader election of ZooKeeper, the Spinlock, Mutex, and Ringbuffer in Asterinas OS, etc., with more being added. SysMoBench enables us to understand the capabilities and limitations of today's LLMs and agents, putting tools in this area on a firm footing and opening up promising new research directions.
♻ ☆ Reasoning in the Dark: Interleaved Vision-Text Reasoning in Latent Space
Multimodal reasoning aims to enhance the capabilities of MLLMs by incorporating intermediate reasoning steps before reaching the final answer. It has evolved from text-only reasoning to the integration of visual information, enabling the thought process to be conveyed through both images and text. Despite its effectiveness, current multimodal reasoning methods depend on explicit reasoning steps that require labor-intensive vision-text annotations and inherently introduce significant inference latency. To address these issues, we introduce multimodal latent reasoning with the advantages of multimodal representation, reduced annotation, and inference efficiency. To facilitate it, we propose Interleaved Vision-Text Latent Reasoning (IVT-LR), which injects both visual and textual information in the reasoning process within the latent space. Specifically, IVT-LR represents each reasoning step by combining two implicit parts: latent text (the hidden states from the previous step) and latent vision (a set of selected image embeddings). We further introduce a progressive multi-stage training strategy to enable MLLMs to perform the above multimodal latent reasoning steps. Experiments on M$^3$CoT and ScienceQA demonstrate that our IVT-LR method achieves an average performance increase of 5.45\% in accuracy, while simultaneously achieving a speed increase of over 5 times compared to existing approaches.
♻ ☆ Rewarding Doubt: A Reinforcement Learning Approach to Calibrated Confidence Expression of Large Language Models
A safe and trustworthy use of Large Language Models (LLMs) requires an accurate expression of confidence in their answers. We propose a novel Reinforcement Learning approach that allows to directly fine-tune LLMs to express calibrated confidence estimates alongside their answers to factual questions. Our method optimizes a reward based on the logarithmic scoring rule, explicitly penalizing both over- and under-confidence. This encourages the model to align its confidence estimates with the actual predictive accuracy. The optimal policy under our reward design would result in perfectly calibrated confidence expressions. Unlike prior approaches that decouple confidence estimation from response generation, our method integrates confidence calibration seamlessly into the generative process of the LLM. Empirically, we demonstrate that models trained with our approach exhibit substantially improved calibration and generalize to unseen tasks without further fine-tuning, suggesting the emergence of general confidence awareness.
♻ ☆ Tri-Reader: An Open-Access, Multi-Stage AI Pipeline for First-Pass Lung Nodule Annotation in Screening CT
Using multiple open-access models trained on public datasets, we developed Tri-Reader, a comprehensive, freely available pipeline that integrates lung segmentation, nodule detection, and malignancy classification into a unified tri-stage workflow. The pipeline is designed to prioritize sensitivity while reducing the candidate burden for annotators. To ensure accuracy and generalizability across diverse practices, we evaluated Tri-Reader on multiple internal and external datasets as compared with expert annotations and dataset-provided reference standards.
comment: 1 figure , 2 tables, 20 page supplement
♻ ☆ GenCode: A Generic Data Augmentation Framework for Boosting Deep Learning-Based Code Understanding
Pre-trained code models lead the era of code intelligence, with multiple models designed with impressive performance. However, one important problem, data augmentation for code data that automatically helps developers prepare training data lacks study in this field. In this paper, we introduce a generic data augmentation framework, GenCode, to enhance the training of code understanding models. Simply speaking, GenCode follows a generation-and-selection paradigm to prepare useful training code data. Specifically, it employs code augmentation techniques to generate new code candidates first and then identifies important ones as the training data by influence scores. To evaluate the effectiveness of GenCode, we conduct experiments on four code understanding tasks (e.g., code clone detection) and three pre-trained code models (e.g., CodeT5) and two recent released code-specific Large Language Models (LLMs) (e.g., Qwen2.5-Coder). Compared to the state-of-the-art (SOTA) code augmentation method MixCode, GenCode produces pre-trained code models with 2.92% higher accuracy and 4.90% adversarial robustness on average. For code-specific LLMs, GenCode achieves an average improvement of 0.93% in accuracy and 0.98% in natural robustness.
comment: Accepted by Empirical Software Engineering (EMSE) 2026
♻ ☆ Look Back to Reason Forward: Revisitable Memory for Long-Context LLM Agents
Large language models face challenges in long-context question answering, where key evidence of a query may be dispersed across millions of tokens. Existing works equip large language models with a memory buffer that is dynamically updated via a linear document scan, also known as the "memorize while reading" methods. While this approach scales efficiently, it suffers from pruning of latent evidence, information loss through overwriting, and sparse reinforcement learning signals. To tackle these challenges, we present ReMemR1, which integrates the mechanism of memory retrieval into the memory update process, enabling the agent to selectively callback historical memories for non-linear reasoning. To further strengthen training, we propose a multi-level reward design, which combines final-answer rewards with dense, step-level signals that guide effective memory use. Together, these contributions mitigate information degradation, improve supervision, and support complex multi-hop reasoning. Extensive experiments demonstrate that ReMemR1 significantly outperforms state-of-the-art baselines on long-context question answering while incurring negligible computational overhead, validating its ability to trade marginal cost for robust long-context reasoning.
♻ ☆ RubricHub: A Comprehensive and Highly Discriminative Rubric Dataset via Automated Coarse-to-Fine Generation
Reinforcement Learning with Verifiable Rewards (RLVR) has driven substantial progress in reasoning-intensive domains like mathematics. However, optimizing open-ended generation remains challenging due to the lack of ground truth. While rubric-based evaluation offers a structured proxy for verification, existing methods suffer from scalability bottlenecks and coarse criteria, resulting in a supervision ceiling effect. To address this, we propose an automated Coarse-to-Fine Rubric Generation framework. By synergizing principle-guided synthesis, multi-model aggregation, and difficulty evolution, our approach produces comprehensive and highly discriminative criteria capable of capturing the subtle nuances. Based on this framework, we introduce RubricHub, a large-scale ($\sim$110k) and multi-domain dataset. We validate its utility through a two-stage post-training pipeline comprising Rubric-based Rejection Sampling Fine-Tuning (RuFT) and Reinforcement Learning (RuRL). Experimental results demonstrate that RubricHub unlocks significant performance gains: our post-trained Qwen3-14B achieves state-of-the-art (SOTA) results on HealthBench (69.3), surpassing proprietary frontier models such as GPT-5. Our code is available at \href{https://github.com/teqkilla/RubricHub}{ this URL}.
♻ ☆ KV Admission: Learning What to Write for Efficient Long-Context Inference
Long-context LLM inference is bottlenecked by the quadratic attention complexity and linear KV cache growth. Prior approaches mitigate this via post-hoc selection or eviction but overlook the root inefficiency: indiscriminate writing to memory. In this paper, we formalize KV cache management as a causal system of three primitives: KV Admission, Selection, and Eviction. We instantiate KV Admission via Write-Gated KV (WG-KV), a lightweight mechanism that learns to predict token utility before cache entry. By filtering out low-utility states early to maintain a compact global cache alongside a sliding local cache, WG-KV reduces memory usage by 46-68% and delivers 3.03-3.70x prefill and 1.85-2.56x decode speedups on Llama and Qwen models, while maintaining compatibility with FlashAttention and Paged-KV systems. These results demonstrate that learning what to write is a principled and practical recipe for efficient long-context inference. Code is available at https://github.com/EMCLab-Sinica/WG-KV.
♻ ☆ Advancing Multimodal Reasoning: From Optimized Cold Start to Staged Reinforcement Learning
Inspired by the remarkable reasoning capabilities of Deepseek-R1 in complex textual tasks, many works attempt to incentivize similar capabilities in Multimodal Large Language Models (MLLMs) by directly applying reinforcement learning (RL). However, they still struggle to activate complex reasoning. In this paper, rather than examining multimodal RL in isolation, we delve into current training pipelines and identify three crucial phenomena: 1) Effective cold start initialization is critical for enhancing MLLM reasoning. Intriguingly, we find that initializing with carefully selected text data alone can lead to performance surpassing many recent multimodal reasoning models, even before multimodal RL. 2) Standard GRPO applied to multimodal RL suffers from gradient stagnation, which degrades training stability and performance. 3) Subsequent text-only RL training, following the multimodal RL phase, further enhances multimodal reasoning. This staged training approach effectively balances perceptual grounding and cognitive reasoning development. By incorporating the above insights and addressing multimodal RL issues, we introduce ReVisual-R1, achieving a new state-of-the-art among open-source 7B MLLMs on challenging benchmarks including MathVerse, MathVision, WeMath, LogicVista, DynaMath, and challenging AIME2024 and AIME2025.
comment: 19 pages, 6 figures
♻ ☆ Enhancing Model Defense Against Jailbreaks with Proactive Safety Reasoning
Large language models (LLMs) are vital for a wide range of applications yet remain susceptible to jailbreak threats, which could lead to the generation of inappropriate responses. Conventional defenses, such as refusal and adversarial training, often fail to cover corner cases or rare domains, leaving LLMs still vulnerable to more sophisticated attacks. We propose a novel defense strategy, Safety Chain-of-Thought (SCoT), which harnesses the enhanced \textit{reasoning capabilities} of LLMs for proactive assessment of harmful inputs, rather than simply blocking them. SCoT augments any refusal training datasets to critically analyze the intent behind each request before generating answers. By employing proactive reasoning, SCoT enhances the generalization of LLMs across varied harmful queries and scenarios not covered in the safety alignment corpus. Additionally, it generates detailed refusals specifying the rules violated. Comparative evaluations show that SCoT significantly surpasses existing defenses, reducing vulnerability to out-of-distribution issues and adversarial manipulations while maintaining strong general capabilities.
♻ ☆ Diffusion Generative Recommendation with Continuous Tokens WWW 2026
Recent advances in generative artificial intelligence, particularly large language models (LLMs), have opened new opportunities for enhancing recommender systems (RecSys). Most existing LLM-based RecSys approaches operate in a discrete space, using vector-quantized tokenizers to align with the inherent discrete nature of language models. However, these quantization methods often result in lossy tokenization and suboptimal learning, primarily due to inaccurate gradient propagation caused by the non-differentiable argmin operation in standard vector quantization. Inspired by the emerging trend of embracing continuous tokens in language models, we propose ContRec, a novel framework that seamlessly integrates continuous tokens into LLM-based RecSys. Specifically, ContRec consists of two key modules: a sigma-VAE Tokenizer, which encodes users/items with continuous tokens; and a Dispersive Diffusion module, which captures implicit user preference. The tokenizer is trained with a continuous Variational Auto-Encoder (VAE) objective, where three effective techniques are adopted to avoid representation collapse. By conditioning on the previously generated tokens of the LLM backbone during user modeling, the Dispersive Diffusion module performs a conditional diffusion process with a novel Dispersive Loss, enabling high-quality user preference generation through next-token diffusion. Finally, ContRec leverages both the textual reasoning output from the LLM and the latent representations produced by the diffusion model for Top-K item retrieval, thereby delivering comprehensive recommendation results. Extensive experiments on four datasets demonstrate that ContRec consistently outperforms both traditional and SOTA LLM-based recommender systems. Our results highlight the potential of continuous tokenization and generative modeling for advancing the next generation of recommender systems.
comment: Accepted by The ACM Web Conference (WWW 2026)
♻ ☆ RxnBench: A Multimodal Benchmark for Evaluating Large Language Models on Chemical Reaction Understanding from Scientific Literature
The integration of Multimodal Large Language Models (MLLMs) into chemistry promises to revolutionize scientific discovery, yet their ability to comprehend the dense, graphical language of reactions within authentic literature remains underexplored. Here, we introduce RxnBench, a multi-tiered benchmark designed to rigorously evaluate MLLMs on chemical reaction understanding from scientific PDFs. RxnBench comprises two tasks: Single-Figure QA (SF-QA), which tests fine-grained visual perception and mechanistic reasoning using 1,525 questions derived from 305 curated reaction schemes, and Full-Document QA (FD-QA), which challenges models to synthesize information from 108 articles, requiring cross-modal integration of text, schemes, and tables. Our evaluation of MLLMs reveals a critical capability gap: while models excel at extracting explicit text, they struggle with deep chemical logic and precise structural recognition. Notably, models with inference-time reasoning significantly outperform standard architectures, yet none achieve 50\% accuracy on FD-QA. These findings underscore the urgent need for domain-specific visual encoders and stronger reasoning engines to advance autonomous AI chemists.
♻ ☆ MAnchors: Memorization-Based Acceleration of Anchors via Rule Reuse and Transformation
Anchors is a popular local model-agnostic explanation technique whose applicability is limited by its computational inefficiency. To address this limitation, we propose a memorization-based framework that accelerates Anchors while preserving explanation fidelity and interpretability. Our approach leverages the iterative nature of Anchors' algorithm which gradually refines an explanation until it is precise enough for a given input by storing and reusing intermediate results obtained during prior explanations. Specifically, we maintain a memory of low-precision, high-coverage rules and introduce a rule transformation framework to adapt them to new inputs: the horizontal transformation adapts a pre-trained explanation to the current input by replacing features, and the vertical transformation refines the general explanation until it is precise enough for the input. We evaluate our method across tabular, text, and image datasets, demonstrating that it significantly reduces explanation generation time while maintaining fidelity and interpretability, thereby enabling the practical adoption of Anchors in time-sensitive applications.
♻ ☆ DAUNet: A Lightweight UNet Variant with Deformable Convolutions and Parameter-Free Attention for Medical Image Segmentation
Medical image segmentation plays a pivotal role in automated diagnostic and treatment planning systems. In this work, we present DAUNet, a novel lightweight UNet variant that integrates Deformable V2 Convolutions and Parameter-Free Attention (SimAM) to improve spatial adaptability and context-aware feature fusion without increasing model complexity. DAUNet's bottleneck employs dynamic deformable kernels to handle geometric variations, while the decoder and skip pathways are enhanced using SimAM attention modules for saliency-aware refinement. Extensive evaluations on two challenging datasets, FH-PS-AoP (fetal head and pubic symphysis ultrasound) and FUMPE (CT-based pulmonary embolism detection), demonstrate that DAUNet outperforms state-of-the-art models in Dice score, HD95, and ASD, while maintaining superior parameter efficiency. Ablation studies highlight the individual contributions of deformable convolutions and SimAM attention. DAUNet's robustness to missing context and low-contrast regions establishes its suitability for deployment in real-time and resource-constrained clinical environments.
comment: 13 pages, 7 figures
♻ ☆ RPO-RAG: Aligning Small LLMs with Relation-aware Preference Optimization for Knowledge Graph Question Answering WWW
Large Language Models (LLMs) have recently demonstrated remarkable reasoning abilities, yet hallucinate on knowledge-intensive tasks. Retrieval-augmented generation (RAG) mitigates this issue by grounding answers in external sources, e.g., knowledge graphs (KGs). However, existing KG-based RAG approaches rely on semantics-unaware path sampling and are weakly aligned with KG reasoning objectives, which limits further accuracy gains. They also feed retrieved paths directly into the reasoner without organizing them into answer-centered reasoning paths, hindering small LLMs' ability to leverage the retrieved knowledge. Furthermore, prior works predominantly rely on large LLMs (e.g., ChatGPT/GPT-4) or assume backbones above 7B parameters, leaving sub-7B models underexplored. We address this gap with RPO-RAG, the first KG-based RAG framework specifically designed for small LLMs, to the best of our knowledge. RPO-RAG introduces three key innovations: (1) a query-path semantic sampling strategy that provides informative supervisory signals; (2) a relation-aware preference optimization that aligns training with intermediate KG reasoning signals (e.g., relation); and (3) an answer-centered prompt design that organizes entities and reasoning paths in an interpretable format. Extensive experiments on two benchmark Knowledge Graph Question Answering (KGQA) datasets, WebQSP and CWQ, demonstrate that RPO-RAG effectively bridges the performance gap between small and large language models. On WebQSP, it improves F1 by up to 8.8%, reflecting enhanced answer precision, while on CWQ it achieves new state-of-the-art results among models under 8B parameters in both Hit and F1. Overall, RPO-RAG substantially improves the reasoning capability of small LLMs, even under 3B parameters-highlighting their potential for resource-efficient and practical on-device KGQA applications.
comment: Accepted at The Web Conference (WWW) 2026
♻ ☆ Doxing via the Lens: Revealing Location-related Privacy Leakage on Multi-modal Large Reasoning Models ICLR 2026
Recent advances in multi-modal large reasoning models (MLRMs) have shown significant ability to interpret complex visual content. While these models enable impressive reasoning capabilities, they also introduce novel and underexplored privacy risks. In this paper, we identify a novel category of privacy leakage in MLRMs: Adversaries can infer sensitive geolocation information, such as a user's home address or neighborhood, from user-generated images, including selfies captured in private settings. To formalize and evaluate these risks, we propose a three-level visual privacy risk framework that categorizes image content based on contextual sensitivity and potential for location inference. We further introduce DoxBench, a curated dataset of 500 real-world images reflecting diverse privacy scenarios. Our evaluation across 11 advanced MLRMs and MLLMs demonstrates that these models consistently outperform non-expert humans in geolocation inference and can effectively leak location-related private information. This significantly lowers the barrier for adversaries to obtain users' sensitive geolocation information. We further analyze and identify two primary factors contributing to this vulnerability: (1) MLRMs exhibit strong reasoning capabilities by leveraging visual clues in combination with their internal world knowledge; and (2) MLRMs frequently rely on privacy-related visual clues for inference without any built-in mechanisms to suppress or avoid such usage. To better understand and demonstrate real-world attack feasibility, we propose GeoMiner, a collaborative attack framework that decomposes the prediction process into two stages: clue extraction and reasoning to improve geolocation performance while introducing a novel attack perspective. Our findings highlight the urgent need to reassess inference-time privacy risks in MLRMs to better protect users' sensitive information.
comment: Accepted by ICLR 2026
♻ ☆ AuditoryBench++: Can Language Models Understand Auditory Knowledge without Hearing? ICASSP 2026
Even without directly hearing sounds, humans can effortlessly reason about auditory properties, such as pitch, loudness, or sound-source associations, drawing on auditory commonsense. In contrast, language models often lack this capability, limiting their effectiveness in multimodal interactions. As an initial step to address this gap, we present AuditoryBench++, a comprehensive benchmark for evaluating auditory knowledge and reasoning in text-only settings. The benchmark encompasses tasks that range from basic auditory comparisons to contextually grounded reasoning, enabling fine-grained analysis of how models process and integrate auditory concepts. In addition, we introduce AIR-CoT, a novel auditory imagination reasoning method that generates and integrates auditory information during inference through span detection with special tokens and knowledge injection. Extensive experiments with recent LLMs and Multimodal LLMs demonstrate that AIR-CoT generally outperforms both the off-the-shelf models and those augmented with auditory knowledge. The project page is available at https://auditorybenchpp.github.io.
comment: ICASSP 2026
♻ ☆ Demystifying the Slash Pattern in Attention: The Role of RoPE
Large Language Models (LLMs) often exhibit slash attention patterns, where attention scores concentrate along the $Δ$-th sub-diagonal for some offset $Δ$. These patterns play a key role in passing information across tokens. But why do they emerge? In this paper, we demystify the emergence of these Slash-Dominant Heads (SDHs) from both empirical and theoretical perspectives. First, by analyzing open-source LLMs, we find that SDHs are intrinsic to models and generalize to out-of-distribution prompts. To explain the intrinsic emergence, we analyze the queries, keys, and Rotary Position Embedding (RoPE), which jointly determine attention scores. Our empirical analysis reveals two characteristic conditions of SDHs: (1) Queries and keys are almost rank-one, and (2) RoPE is dominated by medium- and high-frequency components. Under these conditions, queries and keys are nearly identical across tokens, and interactions between medium- and high-frequency components of RoPE give rise to SDHs. Beyond empirical evidence, we theoretically show that these conditions are sufficient to ensure the emergence of SDHs by formalizing them as our modeling assumptions. Particularly, we analyze the training dynamics of a shallow Transformer equipped with RoPE under these conditions, and prove that models trained via gradient descent exhibit SDHs. The SDHs generalize to out-of-distribution prompts.
♻ ☆ CASCADE: Cumulative Agentic Skill Creation through Autonomous Development and Evolution
Large language model (LLM) agents currently depend on predefined tools or early-stage tool generation, limiting their adaptability and scalability to complex scientific tasks. We introduce CASCADE, a self-evolving agentic framework representing an early instantiation of the transition from "LLM + tool use" to "LLM + skill acquisition". CASCADE enables agents to master complex external tools and codify knowledge through two meta-skills: continuous learning via web search, code extraction, and memory utilization; self-reflection via introspection, knowledge graph exploration, and others. We evaluate CASCADE on SciSkillBench, a benchmark of 116 materials science and chemistry research tasks. CASCADE achieves a 93.3% success rate using GPT-5, compared to 35.4% without evolution mechanisms. We further demonstrate real-world applications in computational analysis, autonomous laboratory experiments, and selective reproduction of published papers. Along with human-agent collaboration and memory consolidation, CASCADE accumulates executable skills that can be shared across agents and scientists, moving toward scalable AI-assisted scientific research.
♻ ☆ BAGEL: Projection-Free Algorithm for Adversarially Constrained Online Convex Optimization
Projection-based algorithms for Constrained Online Convex Optimization (COCO) achieve optimal $\mathcal{O}(T^{1/2})$ regret guarantees but face scalability challenges due to the computational complexity of projections. To circumvent this, projection-free methods utilizing Linear Optimization Oracles (LOO) have been proposed, albeit typically achieving slower $\mathcal{O}(T^{3/4})$ regret rates. In this work, we examine whether the $\mathcal{O}(T^{1/2})$ rate can be recovered in the projection-free setting by strengthening the oracle assumption. We introduce BAGEL, an algorithm utilizing a Separation Oracle (SO) that achieves $\mathcal{O}(T^{1/2})$ regret and $\tilde{\mathcal{O}}(T^{1/2})$ cumulative constraint violation (CCV) for convex cost functions. Our analysis shows that by leveraging an infeasible projection via SO, we can match the time-horizon dependence of projection-based methods with $\tilde{\mathcal{O}}(T)$ oracle calls, provided dependence on the geometry of the action set. This establishes a specific regime where projection-free methods can attain the same convergence rates as projection-based counterparts.
♻ ☆ AdaReasoner: Dynamic Tool Orchestration for Iterative Visual Reasoning
When humans face problems beyond their immediate capabilities, they rely on tools, providing a promising paradigm for improving visual reasoning in multimodal large language models (MLLMs). Effective reasoning, therefore, hinges on knowing which tools to use, when to invoke them, and how to compose them over multiple steps, even when faced with new tools or new tasks. We introduce \textbf{AdaReasoner}, a family of multimodal models that learn tool use as a general reasoning skill rather than as tool-specific or explicitly supervised behavior. AdaReasoner is enabled by (i) a scalable data curation pipeline exposing models to long-horizon, multi-step tool interactions; (ii) Tool-GRPO, a reinforcement learning algorithm that optimizes tool selection and sequencing based on end-task success; and (iii) an adaptive learning mechanism that dynamically regulates tool usage. Together, these components allow models to infer tool utility from task context and intermediate outcomes, enabling coordination of multiple tools and generalization to unseen tools. Empirically, AdaReasoner exhibits strong tool-adaptive and generalization behaviors: it autonomously adopts beneficial tools, suppresses irrelevant ones, and adjusts tool usage frequency based on task demands, despite never being explicitly trained to do so. These capabilities translate into state-of-the-art performance across challenging benchmarks, improving the 7B base model by +24.9\% on average and surpassing strong proprietary systems such as GPT-5 on multiple tasks, including VSP and Jigsaw.
comment: 28 pages, 10 figures and 13 tables
♻ ☆ The Law of Multi-Model Collaboration: Scaling Limits of Model Ensembling for Large Language Models
Recent advances in large language models (LLMs) have been largely driven by scaling laws for individual models, which predict performance improvements as model parameters and data volume increase. However, the capabilities of any single LLM are inherently bounded. One solution originates from intricate interactions among multiple LLMs, rendering their collective performance surpasses that of any constituent model. Despite the rapid proliferation of multi-model integration techniques such as model routing and post-hoc ensembling, a unifying theoretical framework of performance scaling for multi-model collaboration remains absent. In this work, we propose the Law of Multi-model Collaboration, a scaling law that predicts the performance limits of LLM ensembles based on their aggregated parameter budget. To quantify the intrinsic upper bound of multi-model collaboration, we adopt a method-agnostic formulation and assume an idealized integration oracle where the total cross-entropy loss of each sample is determined by the minimum loss of any model in the model pool. Experimental results reveal that multi-model systems follow a power-law scaling with respect to the total parameter count, exhibiting a more significant improvement trend and a lower theoretical loss floor compared to single model scaling. Moreover, ensembles of heterogeneous model families achieve better performance scaling than those formed within a single model family, indicating that model diversity is a primary driver of collaboration gains. These findings suggest that model collaboration represents a critical axis for extending the intelligence frontier of LLMs.
♻ ☆ Can AI Master Econometrics? Evidence from Econometrics AI Agent on Expert-Level Tasks
Can AI effectively perform complex econometric analysis traditionally requiring human expertise? This paper evaluates AI agents' capability to master econometrics, focusing on empirical analysis performance. We develop ``MetricsAI'', an Econometrics AI Agent built on the open-source MetaGPT framework. This agent exhibits outstanding performance in: (1) planning econometric tasks strategically, (2) generating and executing code, (3) employing error-based reflection for improved robustness, and (4) allowing iterative refinement through multi-round conversations. We construct two datasets from academic coursework materials and published research papers to evaluate performance against real-world challenges. Comparative testing shows our domain-specialized AI agent significantly outperforms both benchmark large language models (LLMs) and general-purpose AI agents. This work establishes a testbed for exploring AI's impact on social science research and enables cost-effective integration of domain expertise, making advanced econometric methods accessible to users with minimal coding skills. Furthermore, our AI agent enhances research reproducibility and offers promising pedagogical applications for econometrics teaching.
♻ ☆ SiNGER: A Clearer Voice Distills Vision Transformers Further ICLR 2026
Vision Transformers are widely adopted as the backbone of vision foundation models, but they are known to produce high-norm artifacts that degrade representation quality. When knowledge distillation transfers these features to students, high-norm artifacts dominate the objective, so students overfit to artifacts and underweight informative signals, diminishing the gains from larger models. Prior work attempted to remove artifacts but encountered an inherent trade-off between artifact suppression and preserving informative signals from teachers. To address this, we introduce Singular Nullspace-Guided Energy Reallocation (SiNGER), a novel distillation framework that suppresses artifacts while preserving informative signals. The key idea is principled teacher feature refinement: during refinement, we leverage the nullspace-guided perturbation to preserve information while suppressing artifacts. Then, the refined teacher's features are distilled to a student. We implement this perturbation efficiently with a LoRA-based adapter that requires minimal structural modification. Extensive experiments show that \oursname consistently improves student models, achieving state-of-the-art performance in multiple downstream tasks and producing clearer and more interpretable representations.
comment: Main paper: 12 pages (including 3 pages of references), 6 figures, 6 tables. Appendix: 9 pages, 7 figures. ICLR 2026 accepted
♻ ☆ OmniEVA: Embodied Versatile Planner via Task-Adaptive 3D-Grounded and Embodiment-aware Reasoning ICLR 2026
Recent advances in multimodal large language models (MLLMs) have opened new opportunities for embodied intelligence, enabling multimodal understanding, reasoning, and interaction, as well as continuous spatial decision-making. Nevertheless, current MLLM-based embodied systems face two critical limitations. First, Geometric Adaptability Gap: models trained solely on 2D inputs or with hard-coded 3D geometry injection suffer from either insufficient spatial information or restricted 2D generalization, leading to poor adaptability across tasks with diverse spatial demands. Second, Embodiment Constraint Gap: prior work often neglects the physical constraints and capacities of real robots, resulting in task plans that are theoretically valid but practically infeasible. To address these gaps, we introduce OmniEVA -- an embodied versatile planner that enables advanced embodied reasoning and task planning through two pivotal innovations: (1) a Task-Adaptive 3D Grounding mechanism, which introduces a gated router to perform explicit selective regulation of 3D fusion based on contextual requirements, enabling context-aware 3D grounding for diverse embodied tasks. (2) an Embodiment-Aware Reasoning framework that jointly incorporates task goals and embodiment constraints into the reasoning loop, resulting in planning decisions that are both goal-directed and executable. Extensive experimental results demonstrate that OmniEVA not only achieves state-of-the-art general embodied reasoning performance, but also exhibits a strong ability across a wide range of downstream scenarios. Evaluations of a suite of proposed embodied benchmarks, including both primitive and composite tasks, confirm its robust and versatile planning capabilities. Project page: https://omnieva.github.io
comment: Published as a conference paper at ICLR 2026
♻ ☆ Tracing Mathematical Proficiency Through Problem-Solving Processes
Knowledge Tracing (KT) aims to model student's knowledge state and predict future performance to enable personalized learning in Intelligent Tutoring Systems. However, traditional KT methods face fundamental limitations in explainability, as they rely solely on the response correctness, neglecting the rich information embedded in students' problem-solving processes. To address this gap, we propose Knowledge Tracing Leveraging Problem-Solving Process (KT-PSP), which incorporates students' problem-solving processes to capture the multidimensional aspects of mathematical proficiency. We also introduce KT-PSP-25, a new dataset specifically designed for the KT-PSP. Building on this, we present StatusKT, a KT framework that employs a teacher-student-teacher three-stage LLM pipeline to extract students' MP as intermediate signals. In this pipeline, the teacher LLM first extracts problem-specific proficiency indicators, then a student LLM generates responses based on the student's solution process, and a teacher LLM evaluates these responses to determine mastery of each indicator. The experimental results on KT-PSP-25 demonstrate that StatusKT improves the prediction performance of existing KT methods. Moreover, StatusKT provides interpretable explanations for its predictions by explicitly modeling students' mathematical proficiency.
comment: 18 pages, 4 figures
♻ ☆ Embodied AI with Foundation Models for Mobile Service Robots: A Systematic Review
Rapid advancements in foundation models, including Large Language Models, Vision-Language Models, Multimodal Large Language Models, and Vision-Language-Action Models, have opened new avenues for embodied AI in mobile service robotics. By combining foundation models with the principles of embodied AI, where intelligent systems perceive, reason, and act through physical interaction, mobile service robots can achieve more flexible understanding, adaptive behavior, and robust task execution in dynamic real-world environments. Despite this progress, embodied AI for mobile service robots continues to face fundamental challenges related to the translation of natural language instructions into executable robot actions, multimodal perception in human-centered environments, uncertainty estimation for safe decision-making, and computational constraints for real-time onboard deployment. In this paper, we present the first systematic review focused specifically on the integration of foundation models in mobile service robotics. We analyze how recent advances in foundation models address these core challenges through language-conditioned control, multimodal sensor fusion, uncertainty-aware reasoning, and efficient model scaling. We further examine real-world applications in domestic assistance, healthcare, and service automation, highlighting how foundation models enable context-aware, socially responsive, and generalizable robot behaviors. Beyond technical considerations, we discuss ethical, societal, and human-interaction implications associated with deploying foundation model-enabled service robots in human environments. Finally, we outline future research directions emphasizing reliability and lifelong adaptation, privacy-aware and resource-constrained deployment, and governance and human-in-the-loop frameworks required for safe, scalable, and trustworthy mobile service robotics.
comment: v2: Expanded systematic review; resubmitted to Robotics
♻ ☆ LLM Multi-Agent Systems: Challenges and Open Problems
This paper explores multi-agent systems and identify challenges that remain inadequately addressed. By leveraging the diverse capabilities and roles of individual agents, multi-agent systems can tackle complex tasks through agent collaboration. We discuss optimizing task allocation, fostering robust reasoning through iterative debates, managing complex and layered context information, and enhancing memory management to support the intricate interactions within multi-agent systems. We also explore potential applications of multi-agent systems in blockchain systems to shed light on their future development and application in real-world distributed systems.
♻ ☆ HOMURA: Taming the Sand-Glass for Time-Constrained LLM Translation via Reinforcement Learning
Large Language Models (LLMs) have achieved remarkable strides in multilingual translation but are hindered by a systemic cross-lingual verbosity bias, rendering them unsuitable for strict time-constrained tasks like subtitling and dubbing. Current prompt-engineering approaches struggle to resolve this conflict between semantic fidelity and rigid temporal feasibility. To bridge this gap, we first introduce Sand-Glass, a benchmark specifically designed to evaluate translation under syllable-level duration constraints. Furthermore, we propose HOMURA, a reinforcement learning framework that explicitly optimizes the trade-off between semantic preservation and temporal compliance. By employing a KL-regularized objective with a novel dynamic syllable-ratio reward, HOMURA effectively "tames" the output length. Experimental results demonstrate that our method significantly outperforms strong LLM baselines, achieving precise length control that respects linguistic density hierarchies without compromising semantic adequacy.
♻ ☆ MetaVLA: Unified Meta Co-training For Efficient Embodied Adaption
Vision-Language-Action (VLA) models show promise in embodied reasoning, yet remain far from true generalists-they often require task-specific fine-tuning, incur high compute costs, and generalize poorly to unseen tasks. We propose MetaVLA, a unified, backbone-agnostic post-training framework for efficient and scalable alignment. MetaVLA introduces Context-Aware Meta Co-Training, which consolidates diverse target tasks into a single fine-tuning stage while leveraging structurally diverse auxiliary tasks to improve in-domain generalization. Unlike naive multi-task SFT, MetaVLA integrates a lightweight meta-learning mechanism-derived from Attentive Neural Processes-to enable rapid adaptation from diverse contexts with minimal architectural change or inference overhead. On the LIBERO benchmark, MetaVLA with six auxiliary tasks outperforms OpenVLA by up to 8.0% on long-horizon tasks, reduces training steps from 240K to 75K, and cuts GPU time by ~76%. These results show that scalable, low-resource post-training is achievable-paving the way toward general-purpose embodied agents. Code will be available.
♻ ☆ Closing the Data-Efficiency Gap Between Autoregressive and Masked Diffusion LLMs
Large language models (LLMs) are often used in environments where facts evolve, yet factual knowledge updates via fine-tuning on unstructured text often suffers from 1) reliance on compute-heavy paraphrase augmentation and 2) the reversal curse. Recent studies show diffusion large language models (dLLMs) require fewer training samples to achieve lower loss in pre-training and are more resistant to the reversal curse, suggesting dLLMs may learn new knowledge more easily than autoregressive LLMs (arLLMs). We test this hypothesis in controlled knowledge fine-tuning experiments and find that while arLLMs rely on paraphrase augmentation to generalize knowledge text into question-answering (QA) capability, dLLMs do not require paraphrases to achieve high QA accuracy. To further investigate whether the demasking objective alone can induce such a knowledge injection advantage in dLLMs regardless of their diffusion denoising paradigm, we propose masked fine-tuning for arLLMs, which prompts an arLLM to reconstruct the original text given a masked version in context. The masked fine-tuning for arLLMs substantially improves the efficacy of knowledge injection, i.e. no paraphrase needed and resistant to the reversal curse, closing the gap between arLLMs and dLLMs. We also demonstrate that the same demasking objective improves supervised fine-tuning (SFT) on math tasks over standard SFT, suggesting broader applicability of the demasking objective.
♻ ☆ OPERA: A Reinforcement Learning--Enhanced Orchestrated Planner-Executor Architecture for Reasoning-Oriented Multi-Hop Retrieval AAAI 2026
Recent advances in large language models (LLMs) and dense retrievers have driven significant progress in retrieval-augmented generation (RAG). However, existing approaches face significant challenges in complex reasoning-oriented multi-hop retrieval tasks: 1) Ineffective reasoning-oriented planning: Prior methods struggle to generate robust multi-step plans for complex queries, as rule-based decomposers perform poorly on out-of-template questions. 2) Suboptimal reasoning-driven retrieval: Related methods employ limited query reformulation, leading to iterative retrieval loops that often fail to locate golden documents. 3) Insufficient reasoning-guided filtering: Prevailing methods lack the fine-grained reasoning to effectively filter salient information from noisy results, hindering utilization of retrieved knowledge. Fundamentally, these limitations all stem from the weak coupling between retrieval and reasoning in current RAG architectures. We introduce the Orchestrated Planner-Executor Reasoning Architecture (OPERA), a novel reasoning-driven retrieval framework. OPERA's Goal Planning Module (GPM) decomposes questions into sub-goals, which are executed by a Reason-Execute Module (REM) with specialized components for precise reasoning and effective retrieval. To train OPERA, we propose Multi-Agents Progressive Group Relative Policy Optimization (MAPGRPO), a novel variant of GRPO. Experiments on complex multi-hop benchmarks show OPERA's superior performance, validating both the MAPGRPO method and OPERA's design.
comment: Accepted by AAAI 2026
♻ ☆ The Geometric Reasoner: Manifold-Informed Latent Foresight Search for Long-Context Reasoning
Scaling test-time compute enhances long chain-of-thought (CoT) reasoning, yet existing approaches face a fundamental trade-off between computational cost and coverage quality: either incurring high training expense or yielding redundant trajectories. We introduce The Geometric Reasoner (TGR), a training-free framework that performs manifold-informed latent foresight search under strict memory bounds. At each chunk boundary, TGR scores candidate latent anchors via a lightweight look-ahead estimate combined with soft geometric regularizers that encourage smooth trajectories and diverse exploration. Chunk-wise KV cache resets keep memory linear in chunk length. On challenging math and code benchmarks, TGR improves robust trajectory coverage, measured by the area under the Pass@$k$ curve (AUC), by up to 13 points on Qwen3-8B, with negligible overhead of about 1.1--1.3 times.
comment: 11 pages, 5 figures
♻ ☆ Mind the Gap: The Divergence Between Human and LLM-Generated Tasks
Humans constantly generate a diverse range of tasks guided by internal motivations. While generative agents powered by large language models (LLMs) aim to simulate this complex behavior, it remains uncertain whether they operate on similar cognitive principles. To address this, we conducted a task-generation experiment comparing human responses with those of an LLM agent (GPT-4o). We find that human task generation is consistently influenced by psychological drivers, including personal values (e.g., Openness to Change) and cognitive style. Even when these psychological drivers are explicitly provided to the LLM, it fails to reflect the corresponding behavioral patterns. They produce tasks that are markedly less social, less physical, and thematically biased toward abstraction. Interestingly, while the LLM's tasks were perceived as more fun and novel, this highlights a disconnect between its linguistic proficiency and its capacity to generate human-like, embodied goals. We conclude that there is a core gap between the value-driven, embodied nature of human cognition and the statistical patterns of LLMs, highlighting the necessity of incorporating intrinsic motivation and physical grounding into the design of more human-aligned agents.
♻ ☆ FourierCSP: Differentiable Constraint Satisfaction Problem Solving by Walsh-Fourier Expansion
The Constraint-satisfaction problem (CSP) is fundamental in mathematics, physics, and theoretical computer science. Continuous local search (CLS) solvers, as recent advancements, can achieve highly competitive results on certain classes of Boolean satisfiability (SAT) problems. Motivated by these advances, we extend the CLS framework from Boolean SAT to general CSP with finite-domain variables and expressive constraint formulations. We present FourierCSP, a continuous optimization framework that generalizes the Walsh-Fourier transform to CSP, allowing for transforming versatile constraints to compact multilinear polynomials, thereby avoiding the need for auxiliary variables and memory-intensive encodings. We employ projected subgradient and mirror descent algorithms with provable convergence guarantees, and further combine them to accelerate gradient-based optimization. Empirical results on benchmark suites demonstrate that FourierCSP is scalable and competitive, significantly broadening the class of problems that can be efficiently solved by differentiable CLS techniques and paving the way toward end-to-end neurosymbolic integration.
♻ ☆ VLM-CAD: VLM-Optimized Collaborative Agent Design Workflow for Analog Circuit Sizing
Analog mixed-signal circuit sizing involves complex trade-offs within high-dimensional design spaces. Existing automatic analog circuit sizing approaches rely solely on netlists, ignoring the circuit schematic, which hinders the cognitive link between the schematic and its performance. Furthermore, the black-box nature of machine learning methods and hallucination risks in large language models fail to provide the necessary ground-truth explainability required for industrial sign-off. To address these challenges, we propose a Vision Language Model-optimized collaborative agent design workflow (VLM-CAD), which analyzes circuits, optimizes DC operating points, performs inference-based sizing, and executes external sizing optimization. We integrate Image2Net to annotate circuit schematics and generate a structured JSON description for precise interpretation by Vision Language Models. Furthermore, we propose an Explainable Trust Region Bayesian Optimization method (ExTuRBO) that employs collaborative warm-start from agent-generated seeds and offers dual-granularity sensitivity analysis for external sizing optimization, supporting a comprehensive final design report. Experiment results on amplifier sizing tasks using 180nm, 90nm, and 45nm Predictive Technology Models demonstrate that VLM-CAD effectively balances power and performance while maintaining physics-based explainability. VLM-CAD meets all specification requirements while maintaining low power consumption in optimizing an amplifier with a complementary input and a class-AB output stage, with a total runtime under 66 minutes across all experiments on two amplifiers.
comment: 9 pages, 4 figures
♻ ☆ DeepBooTS: Dual-Stream Residual Boosting for Drift-Resilient Time-Series Forecasting AAAI-26
Time-Series (TS) exhibits pronounced non-stationarity. Consequently, most forecasting methods display compromised robustness to concept drift, despite the prevalent application of instance normalization. We tackle this challenge by first analysing concept drift through a bias-variance lens and proving that weighted ensemble reduces variance without increasing bias. These insights motivate DeepBooTS, a novel end-to-end dual-stream residual-decreasing boosting method that progressively reconstructs the intrinsic signal. In our design, each block of a deep model becomes an ensemble of learners with an auxiliary output branch forming a highway to the final prediction. The block-wise outputs correct the residuals of previous blocks, leading to a learning-driven decomposition of both inputs and targets. This method enhances versatility and interpretability while substantially improving robustness to concept drift. Extensive experiments, including those on large-scale datasets, show that the proposed method outperforms existing methods by a large margin, yielding an average performance improvement of 15.8% across various datasets, establishing a new benchmark for TS forecasting.
comment: 28 pages,17 pages, Published in AAAI-26
♻ ☆ Beyond Classification Accuracy: Neural-MedBench and the Need for Deeper Reasoning Benchmarks
Recent advances in vision-language models (VLMs) have achieved remarkable performance on standard medical benchmarks, yet their true clinical reasoning ability remains unclear. Existing datasets predominantly emphasize classification accuracy, creating an evaluation illusion in which models appear proficient while still failing at high-stakes diagnostic reasoning. We introduce Neural-MedBench, a compact yet reasoning-intensive benchmark specifically designed to probe the limits of multimodal clinical reasoning in neurology. Neural-MedBench integrates multi-sequence MRI scans, structured electronic health records, and clinical notes, and encompasses three core task families: differential diagnosis, lesion recognition, and rationale generation. To ensure reliable evaluation, we develop a hybrid scoring pipeline that combines LLM-based graders, clinician validation, and semantic similarity metrics. Through systematic evaluation of state-of-the-art VLMs, including GPT-4o, Claude-4, and MedGemma, we observe a sharp performance drop compared to conventional datasets. Error analysis shows that reasoning failures, rather than perceptual errors, dominate model shortcomings. Our findings highlight the necessity of a Two-Axis Evaluation Framework: breadth-oriented large datasets for statistical generalization, and depth-oriented, compact benchmarks such as Neural-MedBench for reasoning fidelity. We release Neural-MedBench at https://neuromedbench.github.io/ as an open and extensible diagnostic testbed, which guides the expansion of future benchmarks and enables rigorous yet cost-effective assessment of clinically trustworthy AI.
comment: 23 pages, 12 figures
♻ ☆ R^3: Replay, Reflection, and Ranking Rewards for LLM Reinforcement Learning
Large reasoning models (LRMs) aim to solve diverse and complex problems through structured reasoning. Recent advances in group-based policy optimization methods have shown promise in enabling stable advantage estimation without reliance on process-level annotations. However, these methods rely on advantage gaps induced by high-quality samples within the same batch, which makes the training process fragile and inefficient when intra-group advantages collapse under challenging tasks. To address these problems, we propose a reinforcement learning mechanism named \emph{\textbf{R^3}} that along three directions: (1) a \emph{cross-context \underline{\textbf{R}}eplay} strategy that maintains the intra-group advantage by recalling valuable examples from historical trajectories of the same query, (2) an \emph{in-context self-\underline{\textbf{R}}eflection} mechanism enabling models to refine outputs by leveraging past failures, and (3) a \emph{structural entropy \underline{\textbf{R}}anking reward}, which assigns relative rewards to truncated or failed samples by ranking responses based on token-level entropy patterns, capturing both local exploration and global stability. We implement our method on Deepseek-R1-Distill-Qwen-1.5B and train it on the DeepscaleR-40k in the math domain. Experiments demonstrate our method achieves SoTA performance on several math benchmarks, representing significant improvements and fewer reasoning tokens over the base models. Code and model will be released.
♻ ☆ mR3: Multilingual Rubric-Agnostic Reward Reasoning Models ICLR 2026
Evaluation using Large Language Model (LLM) judges has been widely adopted in English and shown to be effective for automatic evaluation. However, their performance does not generalize well to non-English settings, and it remains unclear what constitutes effective multilingual training for such judges. In this paper, we introduce mR3, a massively multilingual, rubric-agnostic reward reasoning model trained on 72 languages, achieving the broadest language coverage in reward modeling to date. We present a comprehensive study of data and curriculum selection for training to identify effective strategies and data sources for building high-quality reward models, including support for reasoning in the target language. Our approach attains state-of-the-art performance on multilingual reward model benchmarks, surpassing much larger models (i.e., GPT-OSS-120B) while being up to 9x smaller, and its effectiveness is further confirmed through extensive ablation studies. Finally, we demonstrate the effectiveness of mR3 in off-policy preference optimization and validate the quality of its reasoning traces and rubric-based evaluations through human studies with 20 annotators across 12 languages, where mR3 models' reasoning is preferred, including for extremely low-resource languages that are entirely unseen during training. Our models, data, and code are available as open source at https://github.com/rubricreward/mr3.
comment: Accepted to ICLR 2026
♻ ☆ First is Not Really Better Than Last: Evaluating Layer Choice and Aggregation Strategies in Language Model Data Influence Estimation ICLR 2026
Identifying how training samples influence/impact Large Language Model (LLM) decision-making is essential for effectively interpreting model decisions and auditing large-scale datasets. Current training sample influence estimation methods (also known as influence functions) undertake this goal by utilizing information flow through the model via its first-order and higher-order gradient terms. However, owing to the large model sizes of today consisting of billions of parameters, these influence computations are often restricted to some subset of model layers to ensure computational feasibility. Prior seminal work by Yeh et al. (2022) in assessing which layers are best suited for computing language data influence concluded that the first (embedding) layers are the most informative for this purpose, using a hypothesis based on influence scores canceling out (i.e., the cancellation effect). In this work, we propose theoretical and empirical evidence demonstrating how the cancellation effect is unreliable, and that middle attention layers are better estimators for influence. Furthermore, we address the broader challenge of aggregating influence scores across layers, and showcase how alternatives to standard averaging (such as ranking and vote-based methods) can lead to significantly improved performance. Finally, we propose better methods for evaluating influence score efficacy in LLMs without undertaking model retraining, and propose a new metric known as the Noise Detection Rate (NDR) that exhibits strong predictive capability compared to the cancellation effect. Through extensive experiments across LLMs of varying types and scales, we concretely determine that the first (layers) are not necessarily better than the last (layers) for LLM influence estimation, contrasting with prior knowledge in the field.
comment: Accepted to ICLR 2026
♻ ☆ Addressing Gradient Misalignment in Data-Augmented Training for Robust Speech Deepfake Detection ICASSP 2026
In speech deepfake detection (SDD), data augmentation (DA) is commonly used to improve model generalization across varied speech conditions and spoofing attacks. However, during training, the backpropagated gradients from original and augmented inputs may misalign, which can result in conflicting parameter updates. These conflicts could hinder convergence and push the model toward suboptimal solutions, thereby reducing the benefits of DA. To investigate and address this issue, we design a dual-path data-augmented (DPDA) training framework with gradient alignment for SDD. In our framework, each training utterance is processed through two input paths: one using the original speech and the other with its augmented version. This design allows us to compare and align their backpropagated gradient directions to reduce optimization conflicts. Our analysis shows that approximately 25% of training iterations exhibit gradient conflicts between the original inputs and their augmented counterparts when using RawBoost augmentation. By resolving these conflicts with gradient alignment, our method accelerates convergence by reducing the number of training epochs and achieves up to an 18.69% relative reduction in Equal Error Rate on the In-the-Wild dataset compared to the baseline.
comment: Accepted by ICASSP 2026
♻ ☆ Mitigating LLM Hallucination via Behaviorally Calibrated Reinforcement Learning
LLM deployment in critical domains is currently impeded by persistent hallucinations--generating plausible but factually incorrect assertions. While scaling laws drove significant improvements in general capabilities, theoretical frameworks suggest hallucination is not merely stochastic error but a predictable statistical consequence of training objectives prioritizing mimicking data distribution over epistemic honesty. Standard RLVR paradigms, utilizing binary reward signals, inadvertently incentivize models as good test-takers rather than honest communicators, encouraging guessing whenever correctness probability exceeds zero. This paper presents an exhaustive investigation into behavioral calibration, which incentivizes models to stochastically admit uncertainty by abstaining when not confident, aligning model behavior with accuracy. Synthesizing recent advances, we propose and evaluate training interventions optimizing strictly proper scoring rules for models to output a calibrated probability of correctness. Our methods enable models to either abstain from producing a complete response or flag individual claims where uncertainty remains. Utilizing Qwen3-4B-Instruct, empirical analysis reveals behavior-calibrated reinforcement learning allows smaller models to surpass frontier models in uncertainty quantification--a transferable meta-skill decouplable from raw predictive accuracy. Trained on math reasoning tasks, our model's log-scale Accuracy-to-Hallucination Ratio gain (0.806) exceeds GPT-5's (0.207) in a challenging in-domain evaluation (BeyondAIME). Moreover, in cross-domain factual QA (SimpleQA), our 4B LLM achieves zero-shot calibration error on par with frontier models including Grok-4 and Gemini-2.5-Pro, even though its factual accuracy is much lower.
♻ ☆ Governing Strategic Dynamics: Equilibrium Stabilization via Divergence-Driven Control
Black-box coevolution in mixed-motive games is often undermined by opponent-drift non-stationarity and noisy rollouts, which distort progress signals and can induce cycling, Red-Queen dynamics, and detachment. We propose the \emph{Marker Gene Method} (MGM), a curriculum-inspired governance mechanism that stabilizes selection by anchoring evaluation to cross-generational marker individuals, together with DWAM and conservative marker-update rules to reduce spurious updates. We also introduce NGD-Div, which adapts the key update threshold using a divergence proxy and natural-gradient optimization. We provide theoretical analysis in strictly competitive settings and evaluate MGM integrated with evolution strategies (MGM-E-NES) on coordination games and a resource-depletion Markov game. MGM-E-NES reliably recovers target coordination in Stag Hunt and Battle of the Sexes, achieving final cooperation probabilities close to $(1,1)$ (e.g., $0.991\pm0.01/1.00\pm0.00$ and $0.97\pm0.00/0.97\pm0.00$ for the two players). In the Markov resource game, it maintains high and stable state-conditioned cooperation across 30 seeds, with final cooperation of $\approx 0.954/0.980/0.916$ in \textsc{Rich}/\textsc{Poor}/\textsc{Collapsed} (both players; small standard deviations), indicating welfare-aligned and state-dependent behavior. Overall, MGM-E-NES transfers across tasks with minimal hyperparameter changes and yields consistently stable training dynamics, showing that top-level governance can substantially improve the robustness of black-box coevolution in dynamic environments.
comment: 13 pages, 10 figures. Supplementary material included. Revised and extended version; title updated
♻ ☆ Spectral Representation-based Reinforcement Learning
In real-world applications with large state and action spaces, reinforcement learning (RL) typically employs function approximations to represent core components like the policies, value functions, and dynamics models. Although powerful approximations such as neural networks offer great expressiveness, they often present theoretical ambiguities, suffer from optimization instability and exploration difficulty, and incur substantial computational costs in practice. In this paper, we introduce the perspective of spectral representations as a solution to address these difficulties in RL. Stemming from the spectral decomposition of the transition operator, this framework yields an effective abstraction of the system dynamics for subsequent policy optimization while also providing a clear theoretical characterization. We reveal how to construct spectral representations for transition operators that possess latent variable structures or energy-based structures, which implies different learning methods to extract spectral representations from data. Notably, each of these learning methods realizes an effective RL algorithm under this framework. We also provably extend this spectral view to partially observable MDPs. Finally, we validate these algorithms on over 20 challenging tasks from the DeepMind Control Suite, where they achieve performances comparable or superior to current state-of-the-art model-free and model-based baselines.
♻ ☆ Lost in Simulation: LLM-Simulated Users are Unreliable Proxies for Human Users in Agentic Evaluations
Agentic benchmarks increasingly rely on LLM-simulated users to scalably evaluate agent performance, yet the robustness, validity, and fairness of this approach remain unexamined. Through a user study with participants across the United States, India, Kenya, and Nigeria, we investigate whether LLM-simulated users serve as reliable proxies for real human users in evaluating agents on τ-Bench retail tasks. We find that user simulation lacks robustness, with agent success rates varying up to 9 percentage points across different user LLMs. Furthermore, evaluations using simulated users exhibit systematic miscalibration, underestimating agent performance on challenging tasks and overestimating it on moderately difficult ones. African American Vernacular English (AAVE) speakers experience consistently worse success rates and calibration errors than Standard American English (SAE) speakers, with disparities compounding significantly with age. We also find simulated users to be a differentially effective proxy for different populations, performing worst for AAVE and Indian English speakers. Additionally, simulated users introduce conversational artifacts and surface different failure patterns than human users. These findings demonstrate that current evaluation practices risk misrepresenting agent capabilities across diverse user populations and may obscure real-world deployment challenges.
Computation and Language 144
☆ Evolutionary Strategies lead to Catastrophic Forgetting in LLMs
One of the biggest missing capabilities in current AI systems is the ability to learn continuously after deployment. Implementing such continually learning systems have several challenges, one of which is the large memory requirement of gradient-based algorithms that are used to train state-of-the-art LLMs. Evolutionary Strategies (ES) have recently re-emerged as a gradient-free alternative to traditional learning algorithms and have shown encouraging performance on specific tasks in LLMs. In this paper, we perform a comprehensive analysis of ES and specifically evaluate its forgetting curves when training for an increasing number of update steps. We first find that ES is able to reach performance numbers close to GRPO for math and reasoning tasks with a comparable compute budget. However, and most importantly for continual learning, the performance gains in ES is accompanied by significant forgetting of prior abilities, limiting its applicability for training models online. We also explore the reason behind this behavior and show that the updates made using ES are much less sparse and have orders of magnitude larger $\ell_2$ norm compared to corresponding GRPO updates, explaining the contrasting forgetting curves between the two algorithms. With this study, we aim to highlight the issue of forgetting in gradient-free algorithms like ES and hope to inspire future work to mitigate these issues.
☆ When Flores Bloomz Wrong: Cross-Direction Contamination in Machine Translation Evaluation EACL 2026
Large language models (LLMs) can be benchmark-contaminated, resulting in inflated scores that mask memorization as generalization, and in multilingual settings, this memorization can even transfer to "uncontaminated" languages. Using the FLORES-200 translation benchmark as a diagnostic, we study two 7-8B instruction-tuned multilingual LLMs: Bloomz, which was trained on FLORES, and Llama as an uncontaminated control. We confirm Bloomz's FLORES contamination and demonstrate that machine translation contamination can be cross-directional, artificially boosting performance in unseen translation directions due to target-side memorization. Further analysis shows that recall of memorized references often persists despite various source-side perturbation efforts like paraphrasing and named entity replacement. However, replacing named entities leads to a consistent decrease in BLEU, suggesting an effective probing method for memorization in contaminated models.
comment: 5 pages of content, 15 total. 5 figures, 12 tables total. Accepted to EACL 2026 main conference. Code can be found here: github.com/Mr-Ao-25/cross-ling-contamination
☆ Reward Models Inherit Value Biases from Pretraining
Reward models (RMs) are central to aligning large language models (LLMs) with human values but have received less attention than pre-trained and post-trained LLMs themselves. Because RMs are initialized from LLMs, they inherit representations that shape their behavior, but the nature and extent of this influence remain understudied. In a comprehensive study of 10 leading open-weight RMs using validated psycholinguistic corpora, we show that RMs exhibit significant differences along multiple dimensions of human value as a function of their base model. Using the "Big Two" psychological axes, we show a robust preference of Llama RMs for "agency" and a corresponding robust preference of Gemma RMs for "communion." This phenomenon holds even when the preference data and finetuning process are identical, and we trace it back to the logits of the respective instruction-tuned and pre-trained models. These log-probability differences themselves can be formulated as an implicit RM; we derive usable implicit reward scores and show that they exhibit the very same agency/communion difference. We run experiments training RMs with ablations for preference data source and quantity, which demonstrate that this effect is not only repeatable but surprisingly durable. Despite RMs being designed to represent human preferences, our evidence shows that their outputs are influenced by the pretrained LLMs on which they are based. This work underscores the importance of safety and alignment efforts at the pretraining stage, and makes clear that open-source developers' choice of base model is as much a consideration of values as of performance.
☆ Linear representations in language models can change dramatically over a conversation
Language model representations often contain linear directions that correspond to high-level concepts. Here, we study the dynamics of these representations: how representations evolve along these dimensions within the context of (simulated) conversations. We find that linear representations can change dramatically over a conversation; for example, information that is represented as factual at the beginning of a conversation can be represented as non-factual at the end and vice versa. These changes are content-dependent; while representations of conversation-relevant information may change, generic information is generally preserved. These changes are robust even for dimensions that disentangle factuality from more superficial response patterns, and occur across different model families and layers of the model. These representation changes do not require on-policy conversations; even replaying a conversation script written by an entirely different model can produce similar changes. However, adaptation is much weaker from simply having a sci-fi story in context that is framed more explicitly as such. We also show that steering along a representational direction can have dramatically different effects at different points in a conversation. These results are consistent with the idea that representations may evolve in response to the model playing a particular role that is cued by a conversation. Our findings may pose challenges for interpretability and steering -- in particular, they imply that it may be misleading to use static interpretations of features or directions, or probes that assume a particular range of features consistently corresponds to a particular ground-truth value. However, these types of representational dynamics also point to exciting new research directions for understanding how models adapt to context.
☆ Training Reasoning Models on Saturated Problems via Failure-Prefix Conditioning
Reinforcement Learning with Verifiable Rewards (RLVR) has substantially improved the reasoning abilities of large language models (LLMs), yet training often stalls as problems become saturated. We identify the core challenge as the poor accessibility of informative failures: learning signals exist but are rarely encountered during standard rollouts. To address this, we propose failure-prefix conditioning, a simple and effective method for learning from saturated problems. Rather than starting from the original question, our approach reallocates exploration by conditioning training on prefixes derived from rare incorrect reasoning trajectories, thereby exposing the model to failure-prone states. We observe that failure-prefix conditioning yields performance gains matching those of training on medium-difficulty problems, while preserving token efficiency. Furthermore, we analyze the model's robustness, finding that our method reduces performance degradation under misleading failure prefixes, albeit with a mild trade-off in adherence to correct early reasoning. Finally, we demonstrate that an iterative approach, which refreshes failure prefixes during training, unlocks additional gains after performance plateaus. Overall, our results suggest that failure-prefix conditioning offers an effective pathway to extend RLVR training on saturated problems.
comment: 16 pages
☆ Structured Semantic Information Helps Retrieve Better Examples for In-Context Learning in Few-Shot Relation Extraction
This paper presents several strategies to automatically obtain additional examples for in-context learning of one-shot relation extraction. Specifically, we introduce a novel strategy for example selection, in which new examples are selected based on the similarity of their underlying syntactic-semantic structure to the provided one-shot example. We show that this method results in complementary word choices and sentence structures when compared to LLM-generated examples. When these strategies are combined, the resulting hybrid system achieves a more holistic picture of the relations of interest than either method alone. Our framework transfers well across datasets (FS-TACRED and FS-FewRel) and LLM families (Qwen and Gemma). Overall, our hybrid selection method consistently outperforms alternative strategies and achieves state-of-the-art performance on FS-TACRED and strong gains on a customized FewRel subset.
☆ Dissecting Multimodal In-Context Learning: Modality Asymmetries and Circuit Dynamics in modern Transformers
Transformer-based multimodal large language models often exhibit in-context learning (ICL) abilities. Motivated by this phenomenon, we ask: how do transformers learn to associate information across modalities from in-context examples? We investigate this question through controlled experiments on small transformers trained on synthetic classification tasks, enabling precise manipulation of data statistics and model architecture. We begin by revisiting core principles of unimodal ICL in modern transformers. While several prior findings replicate, we find that Rotary Position Embeddings (RoPE) increases the data complexity threshold for ICL. Extending to the multimodal setting reveals a fundamental learning asymmetry: when pretrained on high-diversity data from a primary modality, surprisingly low data complexity in the secondary modality suffices for multimodal ICL to emerge. Mechanistic analysis shows that both settings rely on an induction-style mechanism that copies labels from matching in-context exemplars; multimodal training refines and extends these circuits across modalities. Our findings provide a mechanistic foundation for understanding multimodal ICL in modern transformers and introduce a controlled testbed for future investigation.
☆ Jurisdiction as Structural Barrier: How Privacy Policy Organization May Reduce Visibility of Substantive Disclosures
Privacy policies are supposed to provide notice. But what if substantive information appears only where users skip it? We identify a structural pattern we call jurisdiction-siloed disclosure: information about data practices appearing in specific, actionable form only within regional compliance sections labeled "California Residents" or "EU/UK Users," while general sections use vague or qualified language for the same practices. Our audit of 123 major companies identifies 282 potential instances across 77 companies (62.6% of this purposive sample). A conservative estimate restricted to practice categories validated against OPP-115 human annotations finds 138 instances across 54 companies (44%); post-2018 categories central to our findings await independent validation. If users skip jurisdiction-labeled sections as information foraging theory predicts, users outside regulated jurisdictions would receive less specific information about practices affecting them--a transparency failure operating through document architecture rather than omission. We propose universal substantive disclosure: practices affecting all users should appear in the main policy body, with regional sections containing only procedural rights information. This standard finds support in analogous disclosure regimes (securities, truth-in-lending, nutritional labeling) where material information must reach all affected parties. Regulators could operationalize this through the FTC's "clear and conspicuous" standard and GDPR transparency principles. This work is hypothesis-generating: we establish that the structural pattern exists and ground the transparency concern in behavioral theory, but direct measurement of jurisdiction-specific section skipping remains the critical validation priority. We release our methodology and annotated dataset to enable replication.
comment: 25 pages, 2 figures, 5 tables
☆ SERA: Soft-Verified Efficient Repository Agents
Open-weight coding agents should hold a fundamental advantage over closed-source systems: they can be specialized to private codebases, encoding repository-specific information directly in their weights. Yet the cost and complexity of training has kept this advantage theoretical. We show it is now practical. We present Soft-Verified Efficient Repository Agents (SERA), an efficient method for training coding agents that enables the rapid and cheap creation of agents specialized to private codebases. Using only supervised finetuning (SFT), SERA achieves state-of-the-art results among fully open-source (open data, method, code) models while matching the performance of frontier open-weight models like Devstral-Small-2. Creating SERA models is 26x cheaper than reinforcement learning and 57x cheaper than previous synthetic data methods to reach equivalent performance. Our method, Soft Verified Generation (SVG), generates thousands of trajectories from a single code repository. Combined with cost-efficiency, this enables specialization to private codebases. Beyond repository specialization, we apply SVG to a larger corpus of codebases, generating over 200,000 synthetic trajectories. We use this dataset to provide detailed analysis of scaling laws, ablations, and confounding factors for training coding agents. Overall, we believe our work will greatly accelerate research on open coding agents and showcase the advantage of open-source models that can specialize to private codebases. We release SERA as the first model in Ai2's Open Coding Agents series, along with all our code, data, and Claude Code integration to support the research community.
comment: 21 main pages, 7 pages appendix
☆ Persona Prompting as a Lens on LLM Social Reasoning EACL
For socially sensitive tasks like hate speech detection, the quality of explanations from Large Language Models (LLMs) is crucial for factors like user trust and model alignment. While Persona prompting (PP) is increasingly used as a way to steer model towards user-specific generation, its effect on model rationales remains underexplored. We investigate how LLM-generated rationales vary when conditioned on different simulated demographic personas. Using datasets annotated with word-level rationales, we measure agreement with human annotations from different demographic groups, and assess the impact of PP on model bias and human alignment. Our evaluation across three LLMs results reveals three key findings: (1) PP improving classification on the most subjective task (hate speech) but degrading rationale quality. (2) Simulated personas fail to align with their real-world demographic counterparts, and high inter-persona agreement shows models are resistant to significant steering. (3) Models exhibit consistent demographic biases and a strong tendency to over-flag content as harmful, regardless of PP. Our findings reveal a critical trade-off: while PP can improve classification in socially-sensitive tasks, it often comes at the cost of rationale quality and fails to mitigate underlying biases, urging caution in its application.
comment: 9 Pages, EACL main
☆ Like a Therapist, But Not: Reddit Narratives of AI in Mental Health Contexts
Large language models (LLMs) are increasingly used for emotional support and mental health-related interactions outside clinical settings, yet little is known about how people evaluate and relate to these systems in everyday use. We analyze 5,126 Reddit posts from 47 mental health communities describing experiential or exploratory use of AI for emotional support or therapy. Grounded in the Technology Acceptance Model and therapeutic alliance theory, we develop a theory-informed annotation framework and apply a hybrid LLM-human pipeline to analyze evaluative language, adoption-related attitudes, and relational alignment at scale. Our results show that engagement is shaped primarily by narrated outcomes, trust, and response quality, rather than emotional bond alone. Positive sentiment is most strongly associated with task and goal alignment, while companionship-oriented use more often involves misaligned alliances and reported risks such as dependence and symptom escalation. Overall, this work demonstrates how theory-grounded constructs can be operationalized in large-scale discourse analysis and highlights the importance of studying how users interpret language technologies in sensitive, real-world contexts.
☆ QueerGen: How LLMs Reflect Societal Norms on Gender and Sexuality in Sentence Completion Tasks
This paper examines how Large Language Models (LLMs) reproduce societal norms, particularly heterocisnormativity, and how these norms translate into measurable biases in their text generations. We investigate whether explicit information about a subject's gender or sexuality influences LLM responses across three subject categories: queer-marked, non-queer-marked, and the normalized "unmarked" category. Representational imbalances are operationalized as measurable differences in English sentence completions across four dimensions: sentiment, regard, toxicity, and prediction diversity. Our findings show that Masked Language Models (MLMs) produce the least favorable sentiment, higher toxicity, and more negative regard for queer-marked subjects. Autoregressive Language Models (ARLMs) partially mitigate these patterns, while closed-access ARLMs tend to produce more harmful outputs for unmarked subjects. Results suggest that LLMs reproduce normative social assumptions, though the form and degree of bias depend strongly on specific model characteristics, which may redistribute, but not eliminate, representational harms.
☆ AgentLongBench: A Controllable Long Benchmark For Long-Contexts Agents via Environment Rollouts
The evolution of Large Language Models (LLMs) into autonomous agents necessitates the management of extensive, dynamic contexts. Current benchmarks, however, remain largely static, relying on passive retrieval tasks that fail to simulate the complexities of agent-environment interaction, such as non-linear reasoning and iterative feedback. To address this, we introduce \textbf{AgentLongBench}, which evaluates agents through simulated environment rollouts based on Lateral Thinking Puzzles. This framework generates rigorous interaction trajectories across knowledge-intensive and knowledge-free scenarios. Experiments with state-of-the-art models and memory systems (32K to 4M tokens) expose a critical weakness: while adept at static retrieval, agents struggle with the dynamic information synthesis essential for workflows. Our analysis indicates that this degradation is driven by the minimum number of tokens required to resolve a query. This factor explains why the high information density inherent in massive tool responses poses a significantly greater challenge than the memory fragmentation typical of long-turn dialogues.
comment: 26 pages
☆ Polite But Boring? Trade-offs Between Engagement and Psychological Reactance to Chatbot Feedback Styles
As conversational agents become increasingly common in behaviour change interventions, understanding optimal feedback delivery mechanisms becomes increasingly important. However, choosing a style that both lessens psychological reactance (perceived threats to freedom) while simultaneously eliciting feelings of surprise and engagement represents a complex design problem. We explored how three different feedback styles: 'Direct', 'Politeness', and 'Verbal Leakage' (slips or disfluencies to reveal a desired behaviour) affect user perceptions and behavioural intentions. Matching expectations from literature, the 'Direct' chatbot led to lower behavioural intentions and higher reactance, while the 'Politeness' chatbot evoked higher behavioural intentions and lower reactance. However, 'Politeness' was also seen as unsurprising and unengaging by participants. In contrast, 'Verbal Leakage' evoked reactance, yet also elicited higher feelings of surprise, engagement, and humour. These findings highlight that effective feedback requires navigating trade-offs between user reactance and engagement, with novel approaches such as 'Verbal Leakage' offering promising alternative design opportunities.
comment: To appear at ACM CHI 2026. 21 pages, 7 figures, 5 tables
☆ Online Density-Based Clustering for Real-Time Narrative Evolution Monitorin
Automated narrative intelligence systems for social media monitoring face significant scalability challenges when processing continuous data streams using traditional batch clustering algorithms. We investigate the replacement of HDBSCAN (offline clustering) with online (streaming/incremental) clustering methods in a production narrative report generation pipeline. The proposed system employs a three-stage architecture (data collection, modeling, dashboard generation) that processes thousands of multilingual social media documents daily. While HDBSCAN excels at discovering hierarchical density-based clusters and handling noise, its batch-only nature necessitates complete retraining for each time window, resulting in memory constraints, computational inefficiency, and inability to adapt to evolving narratives in real-time. This work evaluates a bunch of online clustering algorithms across dimensions of cluster quality preservation, computational efficiency, memory footprint, and integration compatibility with existing workflows. We propose evaluation criteria that balance traditional clustering metrics (Silhouette Coefficient, Davies-Bouldin Index) with narrative metrics (narrative distinctness, contingency and variance). Our methodology includes sliding-window simulations on historical datasets from Ukraine information space, enabling comparative analysis of algorithmic trade-offs in realistic operational contexts. This research addresses a critical gap between batch-oriented topic modeling frameworks and the streaming nature of social media monitoring, with implications for computational social science, crisis informatics, and narrative surveillance systems.
☆ ShieldedCode: Learning Robust Representations for Virtual Machine Protected Code ICLR 2026
Large language models (LLMs) have achieved remarkable progress in code generation, yet their potential for software protection remains largely untapped. Reverse engineering continues to threaten software security, while traditional virtual machine protection (VMP) relies on rigid, rule-based transformations that are costly to design and vulnerable to automated analysis. In this work, we present the first protection-aware framework that learns robust representations of VMP-protected code. Our approach builds large-scale paired datasets of source code and normalized VM implementations, and introduces hierarchical dependency modeling at intra-, preceding-, and inter-instruction levels. We jointly optimize language modeling with functionality-aware and protection-aware contrastive objectives to capture both semantic equivalence and protection strength. To further assess resilience, we propose a protection effectiveness optimization task that quantifies and ranks different VM variants derived from the same source. Coupled with a two-stage continual pre-training and fine-tuning pipeline, our method enables models to generate, compare, and reason over protected code. Extensive experiments show that our framework significantly improves robustness across diverse protection levels, opening a new research direction for learning-based software defense. In this work, we present ShieldedCode, the first protection-aware framework that learns robust representations of VMP-protected code. Our method achieves 26.95% Pass@1 on L0 VM code generation compared to 22.58% for GPT-4o., and improves binary similarity detection Recall@1 by 10% over state of art methods like jTrans.
comment: Accepted to ICLR 2026
☆ Efficient Multimodal Planning Agent for Visual Question-Answering
Visual Question-Answering (VQA) is a challenging multimodal task that requires integrating visual and textual information to generate accurate responses. While multimodal Retrieval-Augmented Generation (mRAG) has shown promise in enhancing VQA systems by providing more evidence on both image and text sides, the default procedure that addresses VQA queries, especially the knowledge-intensive ones, often relies on multi-stage pipelines of mRAG with inherent dependencies. To mitigate the inefficiency limitations while maintaining VQA task performance, this paper proposes a method that trains a multimodal planning agent, dynamically decomposing the mRAG pipeline to solve the VQA task. Our method optimizes the trade-off between efficiency and effectiveness by training the agent to intelligently determine the necessity of each mRAG step. In our experiments, the agent can help reduce redundant computations, cutting search time by over 60\% compared to existing methods and decreasing costly tool calls. Meanwhile, experiments demonstrate that our method outperforms all baselines, including a Deep Research agent and a carefully designed prompt-based method, on average over six various datasets. Code will be released.
☆ Harnessing Large Language Models for Precision Querying and Retrieval-Augmented Knowledge Extraction in Clinical Data Science
This study applies Large Language Models (LLMs) to two foundational Electronic Health Record (EHR) data science tasks: structured data querying (using programmatic languages, Python/Pandas) and information extraction from unstructured clinical text via a Retrieval Augmented Generation (RAG) pipeline. We test the ability of LLMs to interact accurately with large structured datasets for analytics and the reliability of LLMs in extracting semantically correct information from free text health records when supported by RAG. To this end, we presented a flexible evaluation framework that automatically generates synthetic question and answer pairs tailored to the characteristics of each dataset or task. Experiments were conducted on a curated subset of MIMIC III, (four structured tables and one clinical note type), using a mix of locally hosted and API-based LLMs. Evaluation combined exact-match metrics, semantic similarity, and human judgment. Our findings demonstrate the potential of LLMs to support precise querying and accurate information extraction in clinical workflows.
comment: 11 pages, 5 figures
☆ A Dialectic Pipeline for Improving LLM Robustness
Assessing ways in which Language Models can reduce their hallucinations and improve the outputs' quality is crucial to ensure their large-scale use. However, methods such as fine-tuning on domain-specific data or the training of a separate \textit{ad hoc} verifier require demanding computational resources (not feasible for many user applications) and constrain the models to specific fields of knowledge. In this thesis, we propose a dialectic pipeline that preserves LLMs' generalization abilities while improving the quality of its answer via self-dialogue, enabling it to reflect upon and correct tentative wrong answers. We experimented with different pipeline settings, testing our proposed method on different datasets and on different families of models. All the pipeline stages are enriched with the relevant context (in an oracle-RAG setting) and a study on the impact of its summarization or its filtering is conducted. We find that our proposed dialectic pipeline is able to outperform by significative margins the standard model answers and that it consistently achieves higher performances than Chain-of-Thought only prompting.
☆ P2S: Probabilistic Process Supervision for General-Domain Reasoning Question Answering
While reinforcement learning with verifiable rewards (RLVR) has advanced LLM reasoning in structured domains like mathematics and programming, its application to general-domain reasoning tasks remains challenging due to the absence of verifiable reward signals. To this end, methods like Reinforcement Learning with Reference Probability Reward (RLPR) have emerged, leveraging the probability of generating the final answer as a reward signal. However, these outcome-focused approaches neglect crucial step-by-step supervision of the reasoning process itself. To address this gap, we introduce Probabilistic Process Supervision (P2S), a novel self-supervision framework that provides fine-grained process rewards without requiring a separate reward model or human-annotated reasoning steps. During reinforcement learning, P2S synthesizes and filters a high-quality reference reasoning chain (gold-CoT). The core of our method is to calculate a Path Faithfulness Reward (PFR) for each reasoning step, which is derived from the conditional probability of generating the gold-CoT's suffix, given the model's current reasoning prefix. Crucially, this PFR can be flexibly integrated with any outcome-based reward, directly tackling the reward sparsity problem by providing dense guidance. Extensive experiments on reading comprehension and medical Question Answering benchmarks show that P2S significantly outperforms strong baselines.
☆ GDCNet: Generative Discrepancy Comparison Network for Multimodal Sarcasm Detection IEEE
Multimodal sarcasm detection (MSD) aims to identify sarcasm within image-text pairs by modeling semantic incongruities across modalities. Existing methods often exploit cross-modal embedding misalignment to detect inconsistency but struggle when visual and textual content are loosely related or semantically indirect. While recent approaches leverage large language models (LLMs) to generate sarcastic cues, the inherent diversity and subjectivity of these generations often introduce noise. To address these limitations, we propose the Generative Discrepancy Comparison Network (GDCNet). This framework captures cross-modal conflicts by utilizing descriptive, factually grounded image captions generated by Multimodal LLMs (MLLMs) as stable semantic anchors. Specifically, GDCNet computes semantic and sentiment discrepancies between the generated objective description and the original text, alongside measuring visual-textual fidelity. These discrepancy features are then fused with visual and textual representations via a gated module to adaptively balance modality contributions. Extensive experiments on MSD benchmarks demonstrate GDCNet's superior accuracy and robustness, establishing a new state-of-the-art on the MMSD2.0 benchmark.
comment: Accepted to 2026 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2026)
☆ Harder Is Better: Boosting Mathematical Reasoning via Difficulty-Aware GRPO and Multi-Aspect Question Reformulation ICLR 2026
Reinforcement Learning with Verifiable Rewards (RLVR) offers a robust mechanism for enhancing mathematical reasoning in large models. However, we identify a systematic lack of emphasis on more challenging questions in existing methods from both algorithmic and data perspectives, despite their importance for refining underdeveloped capabilities. Algorithmically, widely used Group Relative Policy Optimization (GRPO) suffers from an implicit imbalance where the magnitude of policy updates is lower for harder questions. Data-wise, augmentation approaches primarily rephrase questions to enhance diversity without systematically increasing intrinsic difficulty. To address these issues, we propose a two-dual MathForge framework to improve mathematical reasoning by targeting harder questions from both perspectives, which comprises a Difficulty-Aware Group Policy Optimization (DGPO) algorithm and a Multi-Aspect Question Reformulation (MQR) strategy. Specifically, DGPO first rectifies the implicit imbalance in GRPO via difficulty-balanced group advantage estimation, and further prioritizes harder questions by difficulty-aware question-level weighting. Meanwhile, MQR reformulates questions across multiple aspects to increase difficulty while maintaining the original gold answer. Overall, MathForge forms a synergistic loop: MQR expands the data frontier, and DGPO effectively learns from the augmented data. Extensive experiments show that MathForge significantly outperforms existing methods on various mathematical reasoning tasks. The code and augmented data are all available at https://github.com/AMAP-ML/MathForge.
comment: Accepted for ICLR 2026
☆ AgentIF-OneDay: A Task-level Instruction-Following Benchmark for General AI Agents in Daily Scenarios
The capacity of AI agents to effectively handle tasks of increasing duration and complexity continues to grow, demonstrating exceptional performance in coding, deep research, and complex problem-solving evaluations. However, in daily scenarios, the perception of these advanced AI capabilities among general users remains limited. We argue that current evaluations prioritize increasing task difficulty without sufficiently addressing the diversity of agentic tasks necessary to cover the daily work, life, and learning activities of a broad demographic. To address this, we propose AgentIF-OneDay, aimed at determining whether general users can utilize natural language instructions and AI agents to complete a diverse array of daily tasks. These tasks require not only solving problems through dialogue but also understanding various attachment types and delivering tangible file-based results. The benchmark is structured around three user-centric categories: Open Workflow Execution, which assesses adherence to explicit and complex workflows; Latent Instruction, which requires agents to infer implicit instructions from attachments; and Iterative Refinement, which involves modifying or expanding upon ongoing work. We employ instance-level rubrics and a refined evaluation pipeline that aligns LLM-based verification with human judgment, achieving an 80.1% agreement rate using Gemini-3-Pro. AgentIF-OneDay comprises 104 tasks covering 767 scoring points. We benchmarked four leading general AI agents and found that agent products built based on APIs and ChatGPT agents based on agent RL remain in the first tier simultaneously. Leading LLM APIs and open-source models have internalized agentic capabilities, enabling AI application teams to develop cutting-edge Agent products.
comment: 17 pages, 8 figures
☆ A Computational Approach to Language Contact -- A Case Study of Persian
We investigate structural traces of language contact in the intermediate representations of a monolingual language model. Focusing on Persian (Farsi) as a historically contact-rich language, we probe the representations of a Persian-trained model when exposed to languages with varying degrees and types of contact with Persian. Our methodology quantifies the amount of linguistic information encoded in intermediate representations and assesses how this information is distributed across model components for different morphosyntactic features. The results show that universal syntactic information is largely insensitive to historical contact, whereas morphological features such as Case and Gender are strongly shaped by language-specific structure, suggesting that contact effects in monolingual language models are selective and structurally constrained.
☆ Single-Nodal Spontaneous Symmetry Breaking in NLP Models
Spontaneous symmetry breaking in statistical mechanics primarily occurs during phase transitions at the thermodynamic limit where the Hamiltonian preserves inversion symmetry, yet the low-temperature free energy exhibits reduced symmetry. Herein, we demonstrate the emergence of spontaneous symmetry breaking in natural language processing (NLP) models during both pre-training and fine-tuning, even under deterministic dynamics and within a finite training architecture. This phenomenon occurs at the level of individual attention heads and is scaled-down to its small subset of nodes and also valid at a single-nodal level, where nodes acquire the capacity to learn a limited set of tokens after pre-training or labels after fine-tuning for a specific classification task. As the number of nodes increases, a crossover in learning ability occurs, governed by the tradeoff between a decrease following random-guess among increased possible outputs, and enhancement following nodal cooperation, which exceeds the sum of individual nodal capabilities. In contrast to spin-glass systems, where a microscopic state of frozen spins cannot be directly linked to the free-energy minimization goal, each nodal function in this framework contributes explicitly to the global network task and can be upper-bounded using convex hull analysis. Results are demonstrated using BERT-6 architecture pre-trained on Wikipedia dataset and fine-tuned on the FewRel classification task.
comment: 23 pages, 6 figures, 1 table
☆ Beyond Divergent Creativity: A Human-Based Evaluation of Creativity in Large Language Models EACL 2026
Large language models (LLMs) are increasingly used in verbal creative tasks. However, previous assessments of the creative capabilities of LLMs remain weakly grounded in human creativity theory and are thus hard to interpret. The widely used Divergent Association Task (DAT) focuses on novelty, ignoring appropriateness, a core component of creativity. We evaluate a range of state-of-the-art LLMs on DAT and show that their scores on the task are lower than those of two baselines that do not possess any creative abilities, undermining its validity for model evaluation. Grounded in human creativity theory, which defines creativity as the combination of novelty and appropriateness, we introduce Conditional Divergent Association Task (CDAT). CDAT evaluates novelty conditional on contextual appropriateness, separating noise from creativity better than DAT, while remaining simple and objective. Under CDAT, smaller model families often show the most creativity, whereas advanced families favor appropriateness at lower novelty. We hypothesize that training and alignment likely shift models along this frontier, making outputs more appropriate but less creative. We release the dataset and code.
comment: Accepted to Findings of EACL 2026
☆ PathWise: Planning through World Model for Automated Heuristic Design via Self-Evolving LLMs
Large Language Models (LLMs) have enabled automated heuristic design (AHD) for combinatorial optimization problems (COPs), but existing frameworks' reliance on fixed evolutionary rules and static prompt templates often leads to myopic heuristic generation, redundant evaluations, and limited reasoning about how new heuristics should be derived. We propose a novel multi-agent reasoning framework, referred to as Planning through World Model for Automated Heuristic Design via Self-Evolving LLMs (PathWise), which formulates heuristic generation as a sequential decision process over an entailment graph serving as a compact, stateful memory of the search trajectory. This approach allows the system to carry forward past decisions and reuse or avoid derivation information across generations. A policy agent plans evolutionary actions, a world model agent generates heuristic rollouts conditioned on those actions, and critic agents provide routed reflections summarizing lessons from prior steps, shifting LLM-based AHD from trial-and-error evolution toward state-aware planning through reasoning. Experiments across diverse COPs show that PathWise converges faster to better heuristics, generalizes across different LLM backbones, and scales to larger problem sizes.
☆ Can We Improve Educational Diagram Generation with In-Context Examples? Not if a Hallucination Spoils the Bunch
Generative artificial intelligence (AI) has found a widespread use in computing education; at the same time, quality of generated materials raises concerns among educators and students. This study addresses this issue by introducing a novel method for diagram code generation with in-context examples based on the Rhetorical Structure Theory (RST), which aims to improve diagram generation by aligning models' output with user expectations. Our approach is evaluated by computer science educators, who assessed 150 diagrams generated with large language models (LLMs) for logical organization, connectivity, layout aesthetic, and AI hallucination. The assessment dataset is additionally investigated for its utility in automated diagram evaluation. The preliminary results suggest that our method decreases the rate of factual hallucination and improves diagram faithfulness to provided context; however, due to LLMs' stochasticity, the quality of the generated diagrams varies. Additionally, we present an in-depth analysis and discussion on the connection between AI hallucination and the quality of generated diagrams, which reveals that text contexts of higher complexity lead to higher rates of hallucination and LLMs often fail to detect mistakes in their output.
☆ CtrlCoT: Dual-Granularity Chain-of-Thought Compression for Controllable Reasoning
Chain-of-thought (CoT) prompting improves LLM reasoning but incurs high latency and memory cost due to verbose traces, motivating CoT compression with preserved correctness. Existing methods either shorten CoTs at the semantic level, which is often conservative, or prune tokens aggressively, which can miss task-critical cues and degrade accuracy. Moreover, combining the two is non-trivial due to sequential dependency, task-agnostic pruning, and distribution mismatch. We propose \textbf{CtrlCoT}, a dual-granularity CoT compression framework that harmonizes semantic abstraction and token-level pruning through three components: Hierarchical Reasoning Abstraction produces CoTs at multiple semantic granularities; Logic-Preserving Distillation trains a logic-aware pruner to retain indispensable reasoning cues (e.g., numbers and operators) across pruning ratios; and Distribution-Alignment Generation aligns compressed traces with fluent inference-time reasoning styles to avoid fragmentation. On MATH-500 with Qwen2.5-7B-Instruct, CtrlCoT uses 30.7\% fewer tokens while achieving 7.6 percentage points higher than the strongest baseline, demonstrating more efficient and reliable reasoning. Our code will be publicly available at https://github.com/fanzhenxuan/Ctrl-CoT.
comment: 16 pages, 9 figures, 11 tables
☆ BMAM: Brain-inspired Multi-Agent Memory Framework ACL
Language-model-based agents operating over extended interaction horizons face persistent challenges in preserving temporally grounded information and maintaining behavioral consistency across sessions, a failure mode we term soul erosion. We present BMAM (Brain-inspired Multi-Agent Memory), a general-purpose memory architecture that models agent memory as a set of functionally specialized subsystems rather than a single unstructured store. Inspired by cognitive memory systems, BMAM decomposes memory into episodic, semantic, salience-aware, and control-oriented components that operate at complementary time scales. To support long-horizon reasoning, BMAM organizes episodic memories along explicit timelines and retrieves evidence by fusing multiple complementary signals. Experiments on the LoCoMo benchmark show that BMAM achieves 78.45 percent accuracy under the standard long-horizon evaluation setting, and ablation analyses confirm that the hippocampus-inspired episodic memory subsystem plays a critical role in temporal reasoning.
comment: Submitted to ACL (ARR 2026 January submission); non-anonymous preprint
☆ MuVaC: AVariational Causal Framework for Multimodal Sarcasm Understanding in Dialogues WWW 2026
The prevalence of sarcasm in multimodal dialogues on the social platforms presents a crucial yet challenging task for understanding the true intent behind online content. Comprehensive sarcasm analysis requires two key aspects: Multimodal Sarcasm Detection (MSD) and Multimodal Sarcasm Explanation (MuSE). Intuitively, the act of detection is the result of the reasoning process that explains the sarcasm. Current research predominantly focuses on addressing either MSD or MuSE as a single task. Even though some recent work has attempted to integrate these tasks, their inherent causal dependency is often overlooked. To bridge this gap, we propose MuVaC, a variational causal inference framework that mimics human cognitive mechanisms for understanding sarcasm, enabling robust multimodal feature learning to jointly optimize MSD and MuSE. Specifically, we first model MSD and MuSE from the perspective of structural causal models, establishing variational causal pathways to define the objectives for joint optimization. Next, we design an alignment-then-fusion approach to integrate multimodal features, providing robust fusion representations for sarcasm detection and explanation generation. Finally, we enhance the reasoning trustworthiness by ensuring consistency between detection results and explanations. Experimental results demonstrate the superiority of MuVaC in public datasets, offering a new perspective for understanding multimodal sarcasm.
comment: 12 pages, 7 figures. Accepted by WWW 2026
☆ PEARL: Plan Exploration and Adaptive Reinforcement Learning for Multihop Tool Use PRICAI25
Large Language Models show great potential with external tools, but face significant challenges in complex, multi-turn tool invocation. They often exhibit weak planning, tool hallucination, erroneous parameter generation, and struggle with robust interaction. To tackle these issues, we present PEARL, a novel framework to enhance LLM planning and execution for sophisticated tool use. PEARL adopts a two-stage approach: an offline phase where the agent explores tools to learn valid usage patterns and failure conditions, and an online reinforcement learning phase. In the online phase, a dedicated Planner is trained via group Relative Policy Optimization (GRPO) with a carefully designed reward function that provides distinct signals for planning quality. Experiments on the ToolHop and T-Eval benchmarks show PEARL significantly outperforms existing methods, achieving a new state-of-the-art success rate of \textbf{56.5\%} on ToolHop while maintaining a low invocation error rate. Our work marks a key advance in addressing the complex planning challenges of tool use, contributing to the development of more robust and reliable LLM-based agents.
comment: Accepted to PRICAI25
☆ Hopes and Fears -- Emotion Distribution in the Topic Landscape of Finnish Parliamentary Speech 2000-2020
Existing research often treats parliamentary discourse as a homogeneous whole, overlooking topic-specific patterns. Parliamentary speeches address a wide range of topics, some of which evoke stronger emotions than others. While everyone has intuitive assumptions about what the most emotive topics in a parliament may be, there has been little research into the emotions typically linked to different topics. This paper strives to fill this gap by examining emotion expression among the topics of parliamentary speeches delivered in Eduskunta, the Finnish Parliament, between 2000 and 2020. An emotion analysis model is used to investigate emotion expression in topics, from both synchronic and diachronic perspectives. The results strengthen evidence of increasing positivity in parliamentary speech and provide further insights into topic-specific emotion expression within parliamentary debate.
comment: 27 pages (40 including appendices), 5 figures (13 including sub-figures), 1 table, 1 formula, 3 appendices; submitted to JDMDH
☆ SpeechMapper: Speech-to-text Embedding Projector for LLMs ICASSP 2026
Current speech LLMs bridge speech foundation models to LLMs using projection layers, training all of these components on speech instruction data. This strategy is computationally intensive and susceptible to task and prompt overfitting. We present SpeechMapper, a cost-efficient speech-to-LLM-embedding training approach that mitigates overfitting, enabling more robust and generalizable models. Our model is first pretrained without the LLM on inexpensive hardware, and then efficiently attached to the target LLM via a brief 1K-step instruction tuning (IT) stage. Through experiments on speech translation and spoken question answering, we demonstrate the versatility of SpeechMapper's pretrained block, presenting results for both task-agnostic IT, an ASR-based adaptation strategy that does not train in the target task, and task-specific IT. In task-agnostic settings, Speechmapper rivals the best instruction-following speech LLM from IWSLT25, despite never being trained on these tasks, while in task-specific settings, it outperforms this model across many datasets, despite requiring less data and compute. Overall, SpeechMapper offers a practical and scalable approach for efficient, generalizable speech-LLM integration without large-scale IT.
comment: Accepted to ICASSP 2026
☆ Beyond Accuracy: A Cognitive Load Framework for Mapping the Capability Boundaries of Tool-use Agents AAAI 2026
The ability of Large Language Models (LLMs) to use external tools unlocks powerful real-world interactions, making rigorous evaluation essential. However, current benchmarks primarily report final accuracy, revealing what models can do but obscuring the cognitive bottlenecks that define their true capability boundaries. To move from simple performance scoring to a diagnostic tool, we introduce a framework grounded in Cognitive Load Theory. Our framework deconstructs task complexity into two quantifiable components: Intrinsic Load, the inherent structural complexity of the solution path, formalized with a novel Tool Interaction Graph; and Extraneous Load, the difficulty arising from ambiguous task presentation. To enable controlled experiments, we construct ToolLoad-Bench, the first benchmark with parametrically adjustable cognitive load. Our evaluation reveals distinct performance cliffs as cognitive load increases, allowing us to precisely map each model's capability boundary. We validate that our framework's predictions are highly calibrated with empirical results, establishing a principled methodology for understanding an agent's limits and a practical foundation for building more efficient systems.
comment: Accepted to AAAI 2026
☆ LLM-AutoDP: Automatic Data Processing via LLM Agents for Model Fine-tuning VLDB2026
Large Language Models (LLMs) can be fine-tuned on domain-specific data to enhance their performance in specialized fields. However, such data often contains numerous low-quality samples, necessitating effective data processing (DP). In practice, DP strategies are typically developed through iterative manual analysis and trial-and-error adjustment. These processes inevitably incur high labor costs and may lead to privacy issues in high-privacy domains like healthcare due to direct human access to sensitive data. Thus, achieving automated data processing without exposing the raw data has become a critical challenge. To address this challenge, we propose LLM-AutoDP, a novel framework that leverages LLMs as agents to automatically generate and optimize data processing strategies. Our method generates multiple candidate strategies and iteratively refines them using feedback signals and comparative evaluations. This iterative in-context learning mechanism enables the agent to converge toward high-quality processing pipelines without requiring direct human intervention or access to the underlying data. To further accelerate strategy search, we introduce three key techniques: Distribution Preserving Sampling, which reduces data volume while maintaining distributional integrity; Processing Target Selection, which uses a binary classifier to identify low-quality samples for focused processing; Cache-and-Reuse Mechanism}, which minimizes redundant computations by reusing prior processing results. Results show that models trained on data processed by our framework achieve over 80% win rates against models trained on unprocessed data. Compared to AutoML baselines based on LLM agents, LLM-AutoDP achieves approximately a 65% win rate. Moreover, our acceleration techniques reduce the total searching time by up to 10 times, demonstrating both effectiveness and efficiency.
comment: Accepted by VLDB2026
☆ TABED: Test-Time Adaptive Ensemble Drafting for Robust Speculative Decoding in LVLMs EACL 2026
Speculative decoding (SD) has proven effective for accelerating LLM inference by quickly generating draft tokens and verifying them in parallel. However, SD remains largely unexplored for Large Vision-Language Models (LVLMs), which extend LLMs to process both image and text prompts. To address this gap, we benchmark existing inference methods with small draft models on 11 datasets across diverse input scenarios and observe scenario-specific performance fluctuations. Motivated by these findings, we propose Test-time Adaptive Batched Ensemble Drafting (TABED), which dynamically ensembles multiple drafts obtained via batch inference by leveraging deviations from past ground truths available in the SD setting. The dynamic ensemble method achieves an average robust walltime speedup of 1.74x over autoregressive decoding and a 5% improvement over single drafting methods, while remaining training-free and keeping ensembling costs negligible through parameter sharing. With its plug-and-play compatibility, we further enhance TABED by integrating advanced verification and alternative drafting methods. Code and custom-trained models are available at https://github.com/furiosa-ai/TABED.
comment: Accepted to Findings of EACL 2026
☆ Improving Diffusion Language Model Decoding through Joint Search in Generation Order and Token Space
Diffusion Language Models (DLMs) offer order-agnostic generation that can explore many possible decoding trajectories. However, current decoding methods commit to a single trajectory, limiting exploration in trajectory space. We introduce Order-Token Search to explore this space through jointly searching over generation order and token values. Its core is a likelihood estimator that scores denoising actions, enabling stable pruning and efficient exploration of diverse trajectories. Across mathematical reasoning and coding benchmarks, Order-Token Search consistently outperforms baselines on GSM8K, MATH500, Countdown, and HumanEval (3.1%, 3.8%, 7.9%, and 6.8% absolute over backbone), matching or surpassing diffu-GRPO post-trained d1-LLaDA. Our work establishes joint search as a key component for advancing decoding in DLMs.
☆ MobileBench-OL: A Comprehensive Chinese Benchmark for Evaluating Mobile GUI Agents in Real-World Environment
Recent advances in mobile Graphical User Interface (GUI) agents highlight the growing need for comprehensive evaluation benchmarks. While new online benchmarks offer more realistic testing than offline ones, they tend to focus on the agents' task instruction-following ability while neglecting their reasoning and exploration ability. Moreover, these benchmarks do not consider the random noise in real-world mobile environments. This leads to a gap between benchmarks and real-world environments. To addressing these limitations, we propose MobileBench-OL, an online benchmark with 1080 tasks from 80 Chinese apps. It measures task execution, complex reasoning, and noise robustness of agents by including 5 subsets, which set multiple evaluation dimensions. We also provide an auto-eval framework with a reset mechanism, enabling stable and repeatable real-world benchmarking. Evaluating 12 leading GUI agents on MobileBench-OL shows significant room for improvement to meet real-world requirements. Human evaluation further confirms that MobileBench-OL can reliably measure the performance of leading GUI agents in real environments. Our data and code will be released upon acceptance.
☆ PsychePass: Calibrating LLM Therapeutic Competence via Trajectory-Anchored Tournaments
While large language models show promise in mental healthcare, evaluating their therapeutic competence remains challenging due to the unstructured and longitudinal nature of counseling. We argue that current evaluation paradigms suffer from an unanchored defect, leading to two forms of instability: process drift, where unsteered client simulation wanders away from specific counseling goals, and standard drift, where static pointwise scoring lacks the stability for reliable judgment. To address this, we introduce Ps, a unified framework that calibrates the therapeutic competence of LLMs via trajectory-anchored tournaments. We first anchor the interaction trajectory in simulation, where clients precisely control the fluid consultation process to probe multifaceted capabilities. We then anchor the battle trajectory in judgments through an efficient Swiss-system tournament, utilizing dynamic pairwise battles to yield robust Elo ratings. Beyond ranking, we demonstrate that tournament trajectories can be transformed into credible reward signals, enabling on-policy reinforcement learning to enhance LLMs' performance. Extensive experiments validate the effectiveness of PsychePass and its strong consistency with human expert judgments.
☆ CE-RM: A Pointwise Generative Reward Model Optimized via Two-Stage Rollout and Unified Criteria
Automatic evaluation is crucial yet challenging for open-ended natural language generation, especially when rule-based metrics are infeasible. Compared with traditional methods, the recent LLM-as-a-Judge paradigms enable better and more flexible evaluation, and show promise as generative reward models for reinforcement learning. However, prior work has revealed a notable gap between their seemingly impressive benchmark performance and actual effectiveness in RL practice. We attribute this issue to some limitations in existing studies, including the dominance of pairwise evaluation and inadequate optimization of evaluation criteria. Therefore, we propose CE-RM-4B, a pointwise generative reward model trained with a dedicated two-stage rollout method, and adopting unified query-based criteria. Using only about 5.7K high-quality data curated from the open-source preference dataset, our CE-RM-4B achieves superior performance on diverse reward model benchmarks, especially in Best-of-N scenarios, and delivers more effective improvements in downstream RL practice.
comment: Under Review
☆ Beyond Speedup -- Utilizing KV Cache for Sampling and Reasoning ICLR26
KV caches, typically used only to speed up autoregressive decoding, encode contextual information that can be reused for downstream tasks at no extra cost. We propose treating the KV cache as a lightweight representation, eliminating the need to recompute or store full hidden states. Despite being weaker than dedicated embeddings, KV-derived representations are shown to be sufficient for two key applications: \textbf{(i) Chain-of-Embedding}, where they achieve competitive or superior performance on Llama-3.1-8B-Instruct and Qwen2-7B-Instruct; and \textbf{(ii) Fast/Slow Thinking Switching}, where they enable adaptive reasoning on Qwen3-8B and DeepSeek-R1-Distil-Qwen-14B, reducing token generation by up to $5.7\times$ with minimal accuracy loss. Our findings establish KV caches as a free, effective substrate for sampling and reasoning, opening new directions for representation reuse in LLM inference. Code: https://github.com/cmd2001/ICLR2026_KV-Embedding.
comment: Accepted by ICLR26
☆ SAPO: Self-Adaptive Process Optimization Makes Small Reasoners Stronger AAAI 2026
Existing self-evolution methods overlook the influence of fine-grained reasoning steps, which leads to the reasoner-verifier gap. The computational inefficiency of Monte Carlo (MC) process supervision further exacerbates the difficulty in mitigating the gap. Motivated by the Error-Related Negativity (ERN), which the reasoner can localize error following incorrect decisions, guiding rapid adjustments, we propose a Self-Adaptive Process Optimization (SAPO) method for self-improvement in Small Language Models (SLMs). SAPO adaptively and efficiently introduces process supervision signals by actively minimizing the reasoner-verifier gap rather than relying on inefficient MC estimations. Extensive experiments demonstrate that the proposed method outperforms most existing self-evolution methods on two challenging task types: mathematics and code. Additionally, to further investigate SAPO's impact on verifier performance, this work introduces two new benchmarks for process reward models in both mathematical and coding tasks.
comment: Accepted by AAAI 2026
☆ MiLorE-SSL: Scaling Multilingual Capabilities in Self-Supervised Models without Forgetting ICASSP2026
Self-supervised learning (SSL) has greatly advanced speech representation learning, but multilingual SSL models remain constrained to languages encountered during pretraining. Retraining from scratch to incorporate new languages is computationally expensive, while sequential training without migitation strategies often leads to catastrophic forgetting. To address this, we propose MiLorE-SSL, a lightweight framework that combines LoRA modules with a soft mixture-of-experts (MoE) mechanism for efficient continual multilingual training. LoRA provides efficient low-rank adaptation, while soft MoE promotes flexible expert sharing across languages, reducing cross-lingual interference. To further mitigate forgetting, we introduce limited replay data from existing languages, avoiding reliance on large historical corpora. Experiments on ML-SUPERB demonstrate that MiLorE-SSL achieves strong performance in new languages and improves the ability in existing ones with only 2.14% trainable parameters.
comment: Accepted by ICASSP2026
☆ Truthfulness Despite Weak Supervision: Evaluating and Training LLMs Using Peer Prediction ICLR 2026
The evaluation and post-training of large language models (LLMs) rely on supervision, but strong supervision for difficult tasks is often unavailable, especially when evaluating frontier models. In such cases, models are demonstrated to exploit evaluations built on such imperfect supervision, leading to deceptive results. However, underutilized in LLM research, a wealth of mechanism design research focuses on game-theoretic incentive compatibility, i.e., eliciting honest and informative answers with weak supervision. Drawing from this literature, we introduce the peer prediction method for model evaluation and post-training. It rewards honest and informative answers over deceptive and uninformative ones, using a metric based on mutual predictability and without requiring ground truth labels. We demonstrate the method's effectiveness and resistance to deception, with both theoretical guarantees and empirical validation on models with up to 405B parameters. We show that training an 8B model with peer prediction-based reward recovers most of the drop in truthfulness due to prior malicious finetuning, even when the reward is produced by a 0.135B language model with no finetuning. On the evaluation front, in contrast to LLM-as-a-Judge which requires strong and trusted judges, we discover an inverse scaling property in peer prediction, where, surprisingly, resistance to deception is strengthened as the capability gap between the experts and participants widens, enabling reliable evaluation of strong models with weak supervision. In particular, LLM-as-a-Judge become worse than random guess when facing deceptive models 5-20x the judge's size, while peer prediction thrives when such gaps are large, including in cases with over 100x size difference.
comment: ICLR 2026
☆ One Word is Enough: Minimal Adversarial Perturbations for Neural Text Ranking ECIR 2026
Neural ranking models (NRMs) achieve strong retrieval effectiveness, yet prior work has shown they are vulnerable to adversarial perturbations. We revisit this robustness question with a minimal, query-aware attack that promotes a target document by inserting or substituting a single, semantically aligned word - the query center. We study heuristic and gradient-guided variants, including a white-box method that identifies influential insertion points. On TREC-DL 2019/2020 with BERT and monoT5 re-rankers, our single-word attacks achieve up to 91% success while modifying fewer than two tokens per document on average, achieving competitive rank and score boosts with far fewer edits under a comparable white-box setup to ensure fair evaluation against PRADA. We also introduce new diagnostic metrics to analyze attack sensitivity beyond aggregate success rates. Our analysis reveals a Goldilocks zone in which mid-ranked documents are most vulnerable. These findings demonstrate practical risks and motivate future defenses for robust neural ranking.
comment: To appear at ECIR 2026
☆ Beyond the Needle's Illusion: Decoupled Evaluation of Evidence Access and Use under Semantic Interference at 326M-Token Scale
Long-context LLM agents must access the right evidence from large environments and use it faithfully. However, the popular Needle-in-a-Haystack (NIAH) evaluation mostly measures benign span localization. The needle is near-unique, and the haystack is largely irrelevant. We introduce EverMemBench-S (EMB-S), an adversarial NIAH-style benchmark built on a 326M-token MemoryBank. While the full MemoryBank spans 326M tokens for retrieval-based (RAG) evaluation, we evaluate native long-context models only at scales that fit within each model's context window (up to 1M tokens in this work) to ensure a fair comparison. EMB-S pairs queries with collision-tested near-miss hard negatives and gold evidence sets spanning one or more documents, validated via human screening and LLM verification. We also propose a decoupled diagnostic protocol that reports evidence access (document-ID localization) separately from end-to-end QA quality under full-context prompting. This enables consistent diagnosis for both native long-context prompting and retrieval pipelines. Across a reference-corpus ladder from domain-isolated 64K contexts to a globally shared 326M-token environment, we observe a clear reality gap. Systems that saturate benign NIAH degrade sharply in evidence access under semantic interference. These results indicate that semantic discrimination, not context length alone, is the dominant bottleneck for long-context memory at scale.
☆ RusLICA: A Russian-Language Platform for Automated Linguistic Inquiry and Category Analysis
Defining psycholinguistic characteristics in written texts is a task gaining increasing attention from researchers. One of the most widely used tools in the current field is Linguistic Inquiry and Word Count (LIWC) that originally was developed to analyze English texts and translated into multiple languages. Our approach offers the adaptation of LIWC methodology for the Russian language, considering its grammatical and cultural specificities. The suggested approach comprises 96 categories, integrating syntactic, morphological, lexical, general statistical features, and results of predictions obtained using pre-trained language models (LMs) for text analysis. Rather than applying direct translation to existing thesauri, we built the dictionary specifically for the Russian language based on the content from several lexicographic resources, semantic dictionaries and corpora. The paper describes the process of mapping lemmas to 42 psycholinguistic categories and the implementation of the analyzer as part of RusLICA web service.
comment: The link to the platform: https://ruslica.ipran.ru
☆ SoftHateBench: Evaluating Moderation Models Against Reasoning-Driven, Policy-Compliant Hostility
Online hate on social media ranges from overt slurs and threats (\emph{hard hate speech}) to \emph{soft hate speech}: discourse that appears reasonable on the surface but uses framing and value-based arguments to steer audiences toward blaming or excluding a target group. We hypothesize that current moderation systems, largely optimized for surface toxicity cues, are not robust to this reasoning-driven hostility, yet existing benchmarks do not measure this gap systematically. We introduce \textbf{\textsc{SoftHateBench}}, a generative benchmark that produces soft-hate variants while preserving the underlying hostile standpoint. To generate soft hate, we integrate the \emph{Argumentum Model of Topics} (AMT) and \emph{Relevance Theory} (RT) in a unified framework: AMT provides the backbone argument structure for rewriting an explicit hateful standpoint into a seemingly neutral discussion while preserving the stance, and RT guides generation to keep the AMT chain logically coherent. The benchmark spans \textbf{7} sociocultural domains and \textbf{28} target groups, comprising \textbf{4,745} soft-hate instances. Evaluations across encoder-based detectors, general-purpose LLMs, and safety models show a consistent drop from hard to soft tiers: systems that detect explicit hostility often fail when the same stance is conveyed through subtle, reasoning-based language. \textcolor{red}{\textbf{Disclaimer.} Contains offensive examples used solely for research.}
☆ HE-SNR: Uncovering Latent Logic via Entropy for Guiding Mid-Training on SWE-BENCH
SWE-bench has emerged as the premier benchmark for evaluating Large Language Models on complex software engineering tasks. While these capabilities are fundamentally acquired during the mid-training phase and subsequently elicited during Supervised Fine-Tuning (SFT), there remains a critical deficit in metrics capable of guiding mid-training effectively. Standard metrics such as Perplexity (PPL) are compromised by the "Long-Context Tax" and exhibit weak correlation with downstream SWE performance. In this paper, we bridge this gap by first introducing a rigorous data filtering strategy. Crucially, we propose the Entropy Compression Hypothesis, redefining intelligence not by scalar Top-1 compression, but by the capacity to structure uncertainty into Entropy-Compressed States of low orders ("reasonable hesitation"). Grounded in this fine-grained entropy analysis, we formulate a novel metric, HE-SNR (High-Entropy Signal-to-Noise Ratio). Validated on industrial-scale Mixture-of-Experts (MoE) models across varying context windows (32K/128K), our approach demonstrates superior robustness and predictive power. This work provides both the theoretical foundation and practical tools for optimizing the latent potential of LLMs in complex engineering domains.
comment: 21 pages, 15 figures
☆ Automated Benchmark Generation from Domain Guidelines Informed by Bloom's Taxonomy
Open-ended question answering (QA) evaluates a model's ability to perform contextualized reasoning beyond factual recall. This challenge is especially acute in practice-based domains, where knowledge is procedural and grounded in professional judgment, while most existing LLM benchmarks depend on pre-existing human exam datasets that are often unavailable in such settings. We introduce a framework for automated benchmark generation from expert-authored guidelines informed by Bloom's Taxonomy. It converts expert practices into implicit violation-based scenarios and expands them into auto-graded multiple-choice questions (MCQs) and multi-turn dialogues across four cognitive levels, enabling deterministic, reproducible, and scalable evaluation. Applied to three applied domains: teaching, dietetics, and caregiving, we find differences between model and human-like reasoning: LLMs sometimes perform relatively better on higher-order reasoning (Analyze) but fail more frequently on lower-level items (Remember). We produce large-scale, psychometrically informed benchmarks that surface these non-intuitive model behaviors and enable evaluation of contextualized reasoning in real-world settings.
☆ Unit-Based Agent for Semi-Cascaded Full-Duplex Dialogue Systems ICASSP 2026
Full-duplex voice interaction is crucial for natural human computer interaction. We present a framework that decomposes complex dialogue into minimal conversational units, enabling the system to process each unit independently and predict when to transit to the next. This framework is instantiated as a semi-cascaded full-duplex dialogue system built around a multimodal large language model, supported by auxiliary modules such as voice activity detection (VAD) and text-to-speech (TTS) synthesis. The resulting system operates in a train-free, plug-and-play manner. Experiments on the HumDial dataset demonstrate the effectiveness of our framework, which ranks second among all teams on the test set of the Human-like Spoken Dialogue Systems Challenge (Track 2: Full-Duplex Interaction). Code is available at the GitHub repository https://github.com/yu-haoyuan/fd-badcat.
comment: ICASSP 2026 (Workshop). https://github.com/yu-haoyuan/fd-badcat
☆ Scaling Medical Reasoning Verification via Tool-Integrated Reinforcement Learning
Large language models have achieved strong performance on medical reasoning benchmarks, yet their deployment in clinical settings demands rigorous verification to ensure factual accuracy. While reward models offer a scalable approach for reasoning trace verification, existing methods face two limitations: they produce only scalar reward values without explicit justification, and they rely on single-pass retrieval that precludes adaptive knowledge access as verification unfolds. We introduce $\method$, an agentic framework that addresses these limitations by training medical reasoning verifiers to iteratively query external medical corpora during evaluation. Our approach combines tool-augmented verification with an iterative reinforcement learning paradigm that requires only trace-level supervision, alongside an adaptive curriculum mechanism that dynamically adjusts training data distribution. Across four medical reasoning benchmarks, $\method$ achieves substantial gains over existing methods, improving MedQA accuracy by 23.5% and MedXpertQA by 32.0% relative to the base generator in particular. Crucially, $\method$ demonstrates an $\mathbf{8\times}$ reduction in sampling budget requirement compared to prior reward model baselines. These findings establish that grounding verification in dynamically retrieved evidence offers a principled path toward more reliable medical reasoning systems.
☆ Spark: Strategic Policy-Aware Exploration via Dynamic Branching for Long-Horizon Agentic Learning
Reinforcement learning has empowered large language models to act as intelligent agents, yet training them for long-horizon tasks remains challenging due to the scarcity of high-quality trajectories, especially under limited resources. Existing methods typically scale up rollout sizes and indiscriminately allocate computational resources among intermediate steps. Such attempts inherently waste substantial computation budget on trivial steps while failing to guarantee sample quality. To address this, we propose \textbf{Spark} (\textbf{S}trategic \textbf{P}olicy-\textbf{A}ware explo\textbf{R}ation via \textbf{K}ey-state dynamic branching), a novel framework that selectively branches at critical decision states for resource-efficient exploration. Our key insight is to activate adaptive branching exploration at critical decision points to probe promising trajectories, thereby achieving precise resource allocation that prioritizes sampling quality over blind coverage. This design leverages the agent's intrinsic decision-making signals to reduce dependence on human priors, enabling the agent to autonomously expand exploration and achieve stronger generalization. Experiments across diverse tasks (e.g., embodied planning), demonstrate that \textsc{Spark} achieves superior success rates with significantly fewer training samples, exhibiting robust generalization even in unseen scenarios.
☆ Improving X-Codec-2.0 for Multi-Lingual Speech: 25 Hz Latent Rate and 24 kHz Sampling
X-Codec-2.0 has shown strong performance in neural audio compression and multilingual speech modeling, operating at a 50 Hz latent rate and a 16 kHz sampling rate using frozen HuBERT features. While effective, this configuration limits temporal efficiency and audio fidelity. In this work, we explore a simple and effective modification by introducing additional pooling and increasing the decoder hop size. This reduces the latent rate from 50 Hz to 25 Hz and simultaneously raises the output sampling rate from 16 kHz to 24 kHz, improving efficiency and perceptual quality without altering the core architecture. Evaluated on the multilingual Common Voice 17 test set, the proposed configuration achieves a 0.29 MOS improvement over the original X-Codec-2.0 baseline based on UTMOSv2, and attains the best reported performance among all codecs operating at 25 Hz. The source code, checkpoints, and generation comparisons are released at \href{https://huggingface.co/Scicom-intl/xcodec2-25TPS-24k}{https://huggingface.co/Scicom-intl/xcodec2-25TPS-24k}.
☆ What's the plan? Metrics for implicit planning in LLMs and their application to rhyme generation and question answering ICLR 2026
Prior work suggests that language models, while trained on next token prediction, show implicit planning behavior: they may select the next token in preparation to a predicted future token, such as a likely rhyming word, as supported by a prior qualitative study of Claude 3.5 Haiku using a cross-layer transcoder. We propose much simpler techniques for assessing implicit planning in language models. With case studies on rhyme poetry generation and question answering, we demonstrate that our methodology easily scales to many models. Across models, we find that the generated rhyme (e.g. "-ight") or answer to a question ("whale") can be manipulated by steering at the end of the preceding line with a vector, affecting the generation of intermediate tokens leading up to the rhyme or answer word. We show that implicit planning is a universal mechanism, present in smaller models than previously thought, starting from 1B parameters. Our methodology offers a widely applicable direct way to study implicit planning abilities of LLMs. More broadly, understanding planning abilities of language models can inform decisions in AI safety and control.
comment: 41 pages, 34 figures, Accepted at ICLR 2026, Code available at https://github.com/Jim-Maar/implicit-planning-in-llms
☆ Me-Agent: A Personalized Mobile Agent with Two-Level User Habit Learning for Enhanced Interaction
Large Language Model (LLM)-based mobile agents have made significant performance advancements. However, these agents often follow explicit user instructions while overlooking personalized needs, leading to significant limitations for real users, particularly without personalized context: (1) inability to interpret ambiguous instructions, (2) lack of learning from user interaction history, and (3) failure to handle personalized instructions. To alleviate the above challenges, we propose Me-Agent, a learnable and memorable personalized mobile agent. Specifically, Me-Agent incorporates a two-level user habit learning approach. At the prompt level, we design a user preference learning strategy enhanced with a Personal Reward Model to improve personalization performance. At the memory level, we design a Hierarchical Preference Memory, which stores users' long-term memory and app-specific memory in different level memory. To validate the personalization capabilities of mobile agents, we introduce User FingerTip, a new benchmark featuring numerous ambiguous instructions for daily life. Extensive experiments on User FingerTip and general benchmarks demonstrate that Me-Agent achieves state-of-the-art performance in personalization while maintaining competitive instruction execution performance.
☆ Trajectory2Task: Training Robust Tool-Calling Agents with Synthesized Yet Verifiable Data for Complex User Intents
Tool-calling agents are increasingly deployed in real-world customer-facing workflows. Yet most studies on tool-calling agents focus on idealized settings with general, fixed, and well-specified tasks. In real-world applications, user requests are often (1) ambiguous, (2) changing over time, or (3) infeasible due to policy constraints, and training and evaluation data that cover these diverse, complex interaction patterns remain under-represented. To bridge the gap, we present Trajectory2Task, a verifiable data generation pipeline for studying tool use at scale under three realistic user scenarios: ambiguous intent, changing intent, and infeasible intents. The pipeline first conducts multi-turn exploration to produce valid tool-call trajectories. It then converts these trajectories into user-facing tasks with controlled intent adaptations. This process yields verifiable task that support closed-loop evaluation and training. We benchmark seven state-of-the-art LLMs on the generated complex user scenario tasks and observe frequent failures. Finally, using successful trajectories obtained from task rollouts, we fine-tune lightweight LLMs and find consistent improvements across all three conditions, along with better generalization to unseen tool-use domains, indicating stronger general tool-calling ability.
☆ Mind the Shift: Using Delta SSL Embeddings to Enhance Child ASR ICASSP 2026
Self-supervised learning (SSL) models have achieved impressive results across many speech tasks, yet child automatic speech recognition (ASR) remains challenging due to limited data and pretraining domain mismatch. Fine-tuning SSL models on child speech induces shifts in the representation space. We hypothesize that delta SSL embeddings, defined as the differences between embeddings from a finetuned model and those from its pretrained counterpart, encode task-specific information that complements finetuned features from another SSL model. We evaluate multiple fusion strategies on the MyST childrens corpus using different models. Results show that delta embedding fusion with WavLM yields up to a 10 percent relative WER reduction for HuBERT and a 4.4 percent reduction for W2V2, compared to finetuned embedding fusion. Notably, fusing WavLM with delta W2V2 embeddings achieves a WER of 9.64, setting a new state of the art among SSL models on the MyST corpus. These findings demonstrate the effectiveness of delta embeddings and highlight feature fusion as a promising direction for advancing child ASR.
comment: ICASSP 2026
☆ Multi-task Code LLMs: Data Mix or Model Merge?
Recent research advocates deploying smaller, specialized code LLMs in agentic frameworks alongside frontier models, sparking interest in efficient strategies for multi-task learning that balance performance, constraints, and costs. We compare two approaches for creating small, multi-task code LLMs: data mixing versus model merging. We conduct extensive experiments across two model families (Qwen Coder and DeepSeek Coder) at two scales (2B and 7B parameters), fine-tuning them for code generation and code summarization tasks. Our evaluation on HumanEval, MBPP, and CodeXGlue benchmarks reveals that model merging achieves the best overall performance at larger scale across model families, retaining 96% of specialized model performance on code generation tasks while maintaining summarization capabilities. Notably, merged models can even surpass individually fine-tuned models, with our best configuration of Qwen Coder 2.5 7B model achieving 92.7% Pass@1 on HumanEval compared to 90.9% for its task-specific fine-tuned equivalent. At a smaller scale we find instead data mixing to be a preferred strategy. We further introduce a weight analysis technique to understand how different tasks affect model parameters and their implications for merging strategies. The results suggest that careful merging and mixing strategies can effectively combine task-specific capabilities without significant performance degradation, making them ideal for resource-constrained deployment scenarios.
☆ ChunkWise LoRA: Adaptive Sequence Partitioning for Memory-Efficient Low-Rank Adaptation and Accelerated LLM Inference IEEE
Recent advances in low-rank adaptation (LoRA) have enabled efficient fine-tuning of large language models (LLMs) with minimal additional parameters. However, existing LoRA methods apply static rank configurations uniformly across all input tokens, ignoring variation in token complexity and computational requirements. In this work, we propose ChunkWise LoRA, a dynamic and adaptive approach that partitions sequences into variable-length chunks based on token complexity and assigns each chunk a tailored low-rank configuration. Our system introduces a runtime scheduler that estimates token difficulty, performs adaptive chunking, and selects per-chunk LoRA rank and scaling using a rank-ladder mechanism. To preserve output consistency, we further introduce a boundary-safe composition module and integrate policy-driven KV-cache strategies. Experiments on benchmark datasets such as Wikitext-103 and SQuAD demonstrate that ChunkWise LoRA achieves up to 34\% lower latency and 38% memory reduction compared to baseline LoRA, while maintaining or improving task performance metrics like BLEU, EM, and perplexity. The proposed framework remains fully compatible with existing transformer architectures and inference frameworks, providing a practical solution for real-world deployment of parameter-efficient LLMs.
comment: Presented at 13th IEEE International Conference on Intelligent Systems and Embedded Design
☆ SteerEval: A Framework for Evaluating Steerability with Natural Language Profiles for Recommendation
Natural-language user profiles have recently attracted attention not only for improved interpretability, but also for their potential to make recommender systems more steerable. By enabling direct editing, natural-language profiles allow users to explicitly articulate preferences that may be difficult to infer from past behavior. However, it remains unclear whether current natural-language-based recommendation methods can follow such steering commands. While existing steerability evaluations have shown some success for well-recognized item attributes (e.g., movie genres), we argue that these benchmarks fail to capture the richer forms of user control that motivate steerable recommendations. To address this gap, we introduce SteerEval, an evaluation framework designed to measure more nuanced and diverse forms of steerability by using interventions that range from genres to content-warning for movies. We assess the steerability of a family of pretrained natural-language recommenders, examine the potential and limitations of steering on relatively niche topics, and compare how different profile and recommendation interventions impact steering effectiveness. Finally, we offer practical design suggestions informed by our findings and discuss future steps in steerable recommender design.
comment: 10 pages, 2 figures, 8 tables. Pre-print
☆ Position-invariant Fine-tuning of Speech Enhancement Models with Self-supervised Speech Representations ICASSP 2026
Integrating front-end speech enhancement (SE) models with self-supervised learning (SSL)-based speech models is effective for downstream tasks in noisy conditions. SE models are commonly fine-tuned using SSL representations with mean squared error (MSE) loss between enhanced and clean speech. However, MSE is prone to exploiting positional embeddings in SSL models, allowing the objective to be minimised through positional correlations instead of content-related information. This work frames the problem as a general limitation of self-supervised representation fine-tuning and investigates it through representation-guided SE. Two strategies are considered: (1) zero-padding, previously explored in SSL pre-training but here examined in the fine-tuning setting, and (2) speed perturbations with a soft-DTW loss. Experiments show that the soft-DTW-based approach achieves faster convergence and improved downstream performance, underscoring the importance of position-invariant fine-tuning in SSL-based speech modelling.
comment: Accepted to ICASSP 2026
☆ Human-LLM Collaborative Feature Engineering for Tabular Data ICLR 2026
Large language models (LLMs) are increasingly used to automate feature engineering in tabular learning. Given task-specific information, LLMs can propose diverse feature transformation operations to enhance downstream model performance. However, current approaches typically assign the LLM as a black-box optimizer, responsible for both proposing and selecting operations based solely on its internal heuristics, which often lack calibrated estimations of operation utility and consequently lead to repeated exploration of low-yield operations without a principled strategy for prioritizing promising directions. In this paper, we propose a human-LLM collaborative feature engineering framework for tabular learning. We begin by decoupling the transformation operation proposal and selection processes, where LLMs are used solely to generate operation candidates, while the selection is guided by explicitly modeling the utility and uncertainty of each proposed operation. Since accurate utility estimation can be difficult especially in the early rounds of feature engineering, we design a mechanism within the framework that selectively elicits and incorporates human expert preference feedback, comparing which operations are more promising, into the selection process to help identify more effective operations. Our evaluations on both the synthetic study and the real user study demonstrate that the proposed framework improves feature engineering performance across a variety of tabular datasets and reduces users' cognitive load during the feature engineering process.
comment: ICLR 2026
☆ Thinking in Frames: How Visual Context and Test-Time Scaling Empower Video Reasoning
Vision-Language Models have excelled at textual reasoning, but they often struggle with fine-grained spatial understanding and continuous action planning, failing to simulate the dynamics required for complex visual reasoning. In this work, we formulate visual reasoning by means of video generation models, positing that generated frames can act as intermediate reasoning steps between initial states and solutions. We evaluate their capacity in two distinct regimes: Maze Navigation for sequential discrete planning with low visual change and Tangram Puzzle for continuous manipulation with high visual change. Our experiments reveal three critical insights: (1) Robust Zero-Shot Generalization: In both tasks, the model demonstrates strong performance on unseen data distributions without specific finetuning. (2) Visual Context: The model effectively uses visual context as explicit control, such as agent icons and tangram shapes, enabling it to maintain high visual consistency and adapt its planning capability robustly to unseen patterns. (3) Visual Test-Time Scaling: We observe a test-time scaling law in sequential planning; increasing the generated video length (visual inference budget) empowers better zero-shot generalization to spatially and temporally complex paths. These findings suggest that video generation is not merely a media tool, but a scalable, generalizable paradigm for visual reasoning.
comment: 8 pages, 3 figures, 3 tables (26 pages, 13 figures, 6 tables including references and appendices)
☆ UrduBench: An Urdu Reasoning Benchmark using Contextually Ensembled Translations with Human-in-the-Loop
Recent advances in large language models (LLMs) have led to strong reasoning capabilities; however, evaluating such models in low-resource languages remains challenging due to the lack of standardized benchmarks. In particular, Urdu reasoning evaluation has been limited by the sensitivity of machine translation and an emphasis on general language tasks rather than reasoning benchmarks. In this paper, we propose a contextually ensembled translation framework with human-in-the-loop validation that leverages multiple translation systems to develop Urdu reasoning benchmarks while preserving contextual and structural integrity. Using this framework, we translate widely adopted reasoning and question-answering benchmarks, including MGSM, MATH-500, CommonSenseQA, and OpenBookQA, into Urdu, collectively referred to as UrduBench, and conduct a comprehensive evaluation of both reasoning-oriented and instruction-tuned LLMs across multiple prompting strategies. Our analysis reveals performance differences across (1) four datasets, (2) five task difficulty levels, (3) diverse model architectures, (4) multiple model scaling settings, and (5) language consistency tests. We find that multi-step and symbolic reasoning tasks pose significant challenges in Urdu, and that stable language alignment is a critical prerequisite for robust reasoning. Overall, our work establishes a scalable methodology for standardized reasoning evaluation in Urdu and provides empirical insights into multilingual reasoning failures. This experimental setup is also broadly applicable to other low-resource languages. The code and datasets will be publicly released.
☆ asr_eval: Algorithms and tools for multi-reference and streaming speech recognition evaluation
We propose several improvements to the speech recognition evaluation. First, we propose a string alignment algorithm that supports both multi-reference labeling, arbitrary-length insertions and better word alignment. This is especially useful for non-Latin languages, those with rich word formation, to label cluttered or longform speech. Secondly, we collect a novel test set DiverseSpeech-Ru of longform in-the-wild Russian speech with careful multi-reference labeling. We also perform multi-reference relabeling of popular Russian tests set and study fine-tuning dynamics on its corresponding train set. We demonstrate that the model often adopts to dataset-specific labeling, causing an illusion of metric improvement. Based on the improved word alignment, we develop tools to evaluate streaming speech recognition and to align multiple transcriptions to compare them visually. Additionally, we provide uniform wrappers for many offline and streaming speech recognition models. Our code will be made publicly available.
☆ DeepSearchQA: Bridging the Comprehensiveness Gap for Deep Research Agents
We introduce DeepSearchQA, a 900-prompt benchmark for evaluating agents on difficult multi-step information-seeking tasks across 17 different fields. Unlike traditional benchmarks that target single answer retrieval or broad-spectrum factuality, DeepSearchQA features a dataset of challenging, handcrafted tasks designed to evaluate an agent's ability to execute complex search plans to generate exhaustive answer lists. This shift in design explicitly tests three critical, yet under-evaluated capabilities: 1) systematic collation of fragmented information from disparate sources, 2) de-duplication and entity resolution to ensure precision, and 3) the ability to reason about stopping criteria within an open-ended search space. Each task is structured as a causal chain, where discovering information for one step is dependent on the successful completion of the previous one, stressing long-horizon planning and context retention. All tasks are grounded in the open web with objectively verifiable answer sets. Our comprehensive evaluation of state-of-the-art agent architectures reveals significant performance limitations: even the most advanced models struggle to balance high recall with precision. We observe distinct failure modes ranging from premature stopping (under-retrieval) to hedging behaviors, where agents cast an overly wide net of low-confidence answers to artificially boost recall. These findings highlight critical headroom in current agent designs and position DeepSearchQA as an essential diagnostic tool for driving future research toward more robust, deep-research capabilities.
comment: DeepSearchQA can be found at https://www.kaggle.com/benchmarks/google/dsqa/leaderboard
☆ Text-only adaptation in LLM-based ASR through text denoising ICASSP 2026
Adapting automatic speech recognition (ASR) systems based on large language models (LLMs) to new domains using text-only data is a significant yet underexplored challenge. Standard fine-tuning of the LLM on target-domain text often disrupts the critical alignment between speech and text modalities learned by the projector, degrading performance. We introduce a novel text-only adaptation method that emulates the audio projection task by treating it as a text denoising task. Our approach thus trains the LLM to recover clean transcripts from noisy inputs. This process effectively adapts the model to a target domain while preserving cross-modal alignment. Our solution is lightweight, requiring no architectural changes or additional parameters. Extensive evaluation on two datasets demonstrates up to 22.1% relative improvement, outperforming recent state-of-the-art text-only adaptation methods.
comment: Paper accepted at ICASSP 2026
☆ Reducing Prompt Sensitivity in LLM-based Speech Recognition Through Learnable Projection ICASSP 2026
LLM-based automatic speech recognition (ASR), a well-established approach, connects speech foundation models to large language models (LLMs) through a speech-to-LLM projector, yielding promising results. A common design choice in these architectures is the use of a fixed, manually defined prompt during both training and inference. This setup not only enables applicability across a range of practical scenarios, but also helps maximize model performance. However, the impact of prompt design remains underexplored. This paper presents a comprehensive analysis of commonly used prompts across diverse datasets, showing that prompt choice significantly affects ASR performance and introduces instability, with no single prompt performing best across all cases. Inspired by the speech-to-LLM projector, we propose a prompt projector module, a simple, model-agnostic extension that learns to project prompt embeddings to more effective regions of the LLM input space, without modifying the underlying LLM-based ASR model. Experiments on four datasets show that the addition of a prompt projector consistently improves performance, reduces variability, and outperforms the best manually selected prompts.
comment: Paper accepted at ICASSP 2026
☆ SW-ASR: A Context-Aware Hybrid ASR Pipeline for Robust Single Word Speech Recognition
Single-word Automatic Speech Recognition (ASR) is a challenging task due to the lack of linguistic context and sensitivity to noise, pronunciation variation, and channel artifacts, especially in low-resource, communication-critical domains such as healthcare and emergency response. This paper reviews recent deep learning approaches and proposes a modular framework for robust single-word detection. The system combines denoising and normalization with a hybrid ASR front end (Whisper + Vosk) and a verification layer designed to handle out-of-vocabulary words and degraded audio. The verification layer supports multiple matching strategies, including embedding similarity, edit distance, and LLM-based matching with optional contextual guidance. We evaluate the framework on the Google Speech Commands dataset and a curated real-world dataset collected from telephony and messaging platforms under bandwidth-limited conditions. Results show that while the hybrid ASR front end performs well on clean audio, the verification layer significantly improves accuracy on noisy and compressed channels. Context-guided and LLM-based matching yield the largest gains, demonstrating that lightweight verification and context mechanisms can substantially improve single-word ASR robustness without sacrificing latency required for real-time telephony applications.
♻ ☆ Recursive Language Models
We study allowing large language models (LLMs) to process arbitrarily long prompts through the lens of inference-time scaling. We propose Recursive Language Models (RLMs), a general inference paradigm that treats long prompts as part of an external environment and allows the LLM to programmatically examine, decompose, and recursively call itself over snippets of the prompt. We find that RLMs can successfully process inputs up to two orders of magnitude beyond model context windows and, even for shorter prompts, dramatically outperform the quality of vanilla frontier LLMs and common long-context scaffolds across four diverse long-context tasks while having comparable cost. At a small scale, we post-train the first natively recursive language model. Our model, RLM-Qwen3-8B, outperforms the underlying Qwen3-8B model by $28.3\%$ on average and even approaches the quality of vanilla GPT-5 on three long-context tasks. Code is available at https://github.com/alexzhang13/rlm.
comment: 9 pages, 33 with Appendix
♻ ☆ HeuriGym: An Agentic Benchmark for LLM-Crafted Heuristics in Combinatorial Optimization ICLR'26
While Large Language Models (LLMs) have demonstrated significant advancements in reasoning and agent-based problem-solving, current evaluation methodologies fail to adequately assess their capabilities: existing benchmarks either rely on closed-ended questions prone to saturation and memorization, or subjective comparisons that lack consistency and rigor. In this work, we introduce HeuriGym, an agentic framework designed for evaluating heuristic algorithms generated by LLMs for combinatorial optimization problems, characterized by clearly defined objectives and expansive solution spaces. HeuriGym empowers LLMs to propose heuristics, receive evaluative feedback via code execution, and iteratively refine their solutions. We evaluate nine state-of-the-art models on nine problems across domains such as computer systems, logistics, and biology, exposing persistent limitations in tool use, planning, and adaptive reasoning. To quantify performance, we propose the Quality-Yield Index (QYI), a metric that captures both solution pass rate and quality. Even top models like GPT-o4-mini-high and Gemini-2.5-Pro attain QYI scores of only 0.6, well below the expert baseline of 1. Our open-source benchmark aims to guide the development of LLMs toward more effective and realistic problem-solving in scientific and engineering domains.
comment: Accepted to ICLR'26
♻ ☆ Multimodal Conversation Structure Understanding EACL 2026
While multimodal large language models (LLMs) excel at dialogue, whether they can adequately parse the structure of conversation -- conversational roles and threading -- remains underexplored. In this work, we introduce a suite of tasks and release TV-MMPC, a new annotated dataset, for multimodal conversation structure understanding. Our evaluation reveals that while all multimodal LLMs outperform our heuristic baseline, even the best-performing model we consider experiences a substantial drop in performance when character identities of the conversation are anonymized. Beyond evaluation, we carry out a sociolinguistic analysis of 350,842 utterances in TVQA. We find that while female characters initiate conversations at rates in proportion to their speaking time, they are 1.2 times more likely than men to be cast as an addressee or side-participant, and the presence of side-participants shifts the conversational register from personal to social.
comment: accepted to EACL 2026 main conference; 22 pages, 9 figures, 10 tables
♻ ☆ Rethinking Creativity Evaluation: A Critical Analysis of Existing Creativity Evaluations EACL 2026
We examine, analyze, and compare four representative creativity measures--perplexity, LLM-as-a-Judge, the Creativity Index (CI; measuring n-gram overlap with web corpora), and syntactic templates (detecting repetition of common part-of-speech patterns)--across the diverse creative domains, such as creative writing, unconventional problem-solving, and research ideation. For each domain, we compile datasets with human-aligned creative and uncreative examples and evaluate each metric's ability to discriminate between the two sets. Our analyses reveal limited consistency both across domains and metrics, as metrics that distinguish creativity in one domain fail in others (e.g., CI correctly distinguishes in creative writing but fails in problem-solving), and different metrics often disagree on the same data points (e.g., CI suggests one set to be more creative, while perplexity indicates the other set to be more creative.) We highlight key limitations, such as perplexity reflecting fluency rather than novelty; LLM-as-a-Judge producing inconsistent judgments under minor prompt variations and exhibiting bias towards particular labels; CI primarily measuring lexical diversity, with high sensitivity to implementation choices; and syntactic templates being ineffective in settings dominated by formulaic language. Our findings underscore the need for more robust, generalizable evaluation frameworks that better align with human judgments of creativity.
comment: EACL 2026
♻ ☆ LLMBind: A Unified Modality-Task Integration Framework
Despite recent progress in Multi-Modal Large Language Models (MLLMs), it remains challenging to integrate diverse tasks ranging from pixel-level perception to high-fidelity generation. Existing approaches often suffer from either restricted task extensibility or severe performance degradation due to modality interference. n this paper, we present LLMBind, an extensible framework that unifies multimodal tasks through a dual-pathway mechanism: In-Situ semantic embeddings for localization-sensitive tasks like semantic segmentation and Ex-Situ task-prompts for generation across image, video, and audio modalities. Additionally, we employ a Mixture-of-Experts (MoE) architecture to route task-specific tokens, thereby achieving modality disentanglement and mitigating negative transfer. We also curate a 400k multi-turn interactive dataset focused on iterative visual refinement to enable human-like interaction. Extensive experiments demonstrate that LLMBind achieves excellent performance across multiple perception and generation benchmarks while maintaining superior expandability.
♻ ☆ LogogramNLP: Comparing Visual and Textual Representations of Ancient Logographic Writing Systems for NLP
Standard natural language processing (NLP) pipelines operate on symbolic representations of language, which typically consist of sequences of discrete tokens. However, creating an analogous representation for ancient logographic writing systems is an extremely labor intensive process that requires expert knowledge. At present, a large portion of logographic data persists in a purely visual form due to the absence of transcription -- this issue poses a bottleneck for researchers seeking to apply NLP toolkits to study ancient logographic languages: most of the relevant data are images of writing. This paper investigates whether direct processing of visual representations of language offers a potential solution. We introduce LogogramNLP, the first benchmark enabling NLP analysis of ancient logographic languages, featuring both transcribed and visual datasets for four writing systems along with annotations for tasks like classification, translation, and parsing. Our experiments compare systems that employ recent visual and text encoding strategies as backbones. The results demonstrate that visual representations outperform textual representations for some investigated tasks, suggesting that visual processing pipelines may unlock a large amount of cultural heritage data of logographic languages for NLP-based analyses.
comment: correct wrong refs, typos
♻ ☆ DaMO: A Data-Efficient Multimodal Orchestrator for Temporal Reasoning with Video LLMs
Large Language Models (LLMs) have recently been extended to the video domain, enabling sophisticated video-language understanding. However, existing Video LLMs often exhibit limitations in fine-grained temporal reasoning, restricting their ability to precisely attribute responses to specific video moments, especially under constrained supervision. We introduce DaMO, a data-efficient Video LLM explicitly designed for accurate temporal reasoning and multimodal understanding. At its core, the proposed Temporal-aware Fuseformer employs a hierarchical dual-stream architecture that progressively captures temporal dynamics within each modality and effectively fuses complementary visual and audio information. To further enhance computational efficiency, DaMO integrates a global residual that reduces spatial redundancy while preserving essential semantic details. We train DaMO via a structured four-stage progressive training paradigm, incrementally equipping the model with multimodal alignment, semantic grounding, and temporal reasoning capabilities. This work also contributes multiple datasets augmented from existing ones with LLM-generated temporally grounded QA pairs for tasks requiring temporal supervision. Comprehensive experiments on temporal grounding and video QA benchmarks demonstrate that DaMO consistently surpasses prior methods, particularly in tasks demanding precise temporal alignment and reasoning. Our work establishes a promising direction for data-efficient video-language modeling.
♻ ☆ Breaking Bad Molecules: Are MLLMs Ready for Structure-Level Molecular Detoxification?
Toxicity remains a leading cause of early-stage drug development failure. Despite advances in molecular design and property prediction, the task of molecular toxicity repair, generating structurally valid molecular alternatives with reduced toxicity, has not yet been systematically defined or benchmarked. To fill this gap, we introduce ToxiMol, the first benchmark task for general-purpose Multimodal Large Language Models (MLLMs) focused on molecular toxicity repair. We construct a standardized dataset covering 11 primary tasks and 660 representative toxic molecules spanning diverse mechanisms and granularities. We design a prompt annotation pipeline with mechanism-aware and task-adaptive capabilities, informed by expert toxicological knowledge. In parallel, we propose an automated evaluation framework, ToxiEval, which integrates toxicity endpoint prediction, synthetic accessibility, drug-likeness, and structural similarity into a high-throughput evaluation chain for repair success. We systematically assess 43 mainstream general-purpose MLLMs and conduct multiple ablation studies to analyze key issues, including evaluation metrics, candidate diversity, and failure attribution. Experimental results show that although current MLLMs still face significant challenges on this task, they begin to demonstrate promising capabilities in toxicity understanding, semantic constraint adherence, and structure-aware editing.
♻ ☆ Beyond Random Sampling: Efficient Language Model Pretraining via Curriculum Learning
Curriculum learning-organizing training data from easy to hard-has improved efficiency across machine learning domains, yet remains underexplored for language model pretraining. We present the first systematic investigation of curriculum learning in LLM pretraining, with over 200 models trained on up to 100B tokens across three strategies: vanilla curriculum learning, pacing-based sampling, and interleaved curricula, guided by six difficulty metrics spanning linguistic and information-theoretic properties. We evaluate performance on eight benchmarks under three realistic scenarios: limited data, unlimited data, and continual training. Our experiments show that curriculum learning consistently accelerates convergence in early and mid-training phases,reducing training steps by $18-45\%$ to reach baseline performance. When applied as a warmup strategy before standard random sampling, curriculum learning yields sustained improvements up to $3.5\%$. We identify compression ratio, lexical diversity (MTLD), and readability (Flesch Reading Ease) as the most effective difficulty signals. Our findings demonstrate that data ordering-orthogonal to existing data selection methods-provides a practical mechanism for more efficient LLM pretraining.
♻ ☆ Dual-objective Language Models: Training Efficiency Without Overfitting
This paper combines autoregressive and masked-diffusion training objectives without any architectural modifications, resulting in flexible language models that outperform single-objective models. Autoregressive modeling has been a popular approach, partly because of its training efficiency; however, that comes at the cost of sensitivity to overfitting. On the other hand, masked-diffusion models are less efficient to train while being more resilient to overfitting. In this work, we demonstrate that dual-objective training achieves the best of both worlds. To derive the optimal balance between both objectives, we train and evaluate 50 language models under varying levels of data repetition. We show that it is optimal to combine both objectives under all evaluated settings and that the optimal balance is similar whether targeting autoregressive or masked-diffusion downstream performance.
♻ ☆ Summaries as Centroids for Interpretable and Scalable Text Clustering ICLR 2026
We introduce k-NLPmeans and k-LLMmeans, text-clustering variants of k-means that periodically replace numeric centroids with textual summaries. The key idea, summary-as-centroid, retains k-means assignments in embedding space while producing human-readable, auditable cluster prototypes. The method is LLM-optional: k-NLPmeans uses lightweight, deterministic summarizers, enabling offline, low-cost, and stable operation; k-LLMmeans is a drop-in upgrade that uses an LLM for summaries under a fixed per-iteration budget whose cost does not grow with dataset size. We also present a mini-batch extension for real-time clustering of streaming text. Across diverse datasets, embedding models, and summarization strategies, our approach consistently outperforms classical baselines and approaches the accuracy of recent LLM-based clustering-without extensive LLM calls. Finally, we provide a case study on sequential text streams and release a StackExchange-derived benchmark for evaluating streaming text clustering.
comment: Accepted to ICLR 2026
♻ ☆ Emotionally Charged, Logically Blurred: AI-driven Emotional Framing Impairs Human Fallacy Detection EACL 2026
Logical fallacies are common in public communication and can mislead audiences; fallacious arguments may still appear convincing despite lacking soundness, because convincingness is inherently subjective. We present the first computational study of how emotional framing interacts with fallacies and convincingness, using large language models (LLMs) to systematically change emotional appeals in fallacious arguments. We benchmark eight LLMs on injecting emotional appeal into fallacious arguments while preserving their logical structures, then use the best models to generate stimuli for a human study. Our results show that LLM-driven emotional framing reduces human fallacy detection in F1 by 14.5% on average. Humans perform better in fallacy detection when perceiving enjoyment than fear or sadness, and these three emotions also correlate with significantly higher convincingness compared to neutral or other emotion states. Our work has implications for AI-driven emotional manipulation in the context of fallacious argumentation.
comment: EACL 2026 Main Camera-ready; typo fixed
♻ ☆ S$^3$-Attention:Attention-Aligned Endogenous Retrieval for Memory-Bounded Long-Context Inference
Large language models are increasingly applied to multi-document and long-form inputs, yet long-context inference remains memory- and noise-inefficient. Key-value (KV) caching scales linearly with context length, while external retrieval methods often return lexically similar but causally irrelevant passages. We present S3-Attention, a memory-first inference-time framework that treats long-context processing as attention-aligned endogenous retrieval. S3-Attention decodes transient key and query projections into top-k sparse feature identifiers using lightweight sparse autoencoders, and constructs a CPU-based inverted index mapping features to token positions or spans during a single streaming scan. This design allows the KV cache to be discarded entirely and bounds GPU memory usage by the scan chunk size. At generation time, feature co-activation is used to retrieve compact evidence spans, optionally fused with BM25 for exact lexical matching. Under a unified LongBench evaluation protocol with fixed prompting, decoding, and matched token budgets, S3-Hybrid closely matches full-context inference across multiple model families and improves robustness in several information-dense settings. We also report an engineering limitation of the current prototype, which incurs higher wall-clock latency than optimized full-KV baselines, motivating future kernel-level optimization.
♻ ☆ Marriage Discourse on Chinese Social Media: An LLM-assisted Analysis
China's marriage registrations have declined substantially, dropping from 13.47 million couples in 2013 to 6.1 million in 2024. This study examined sentiment and moral elements underlying 219,358 marriage-related posts from Weibo and Xiaohongshu using large language model (LLM)-assisted content analysis. Drawing on Shweder's Big Three moral ethics framework, posts were coded for sentiment (positive, negative, neutral) and moral elements (autonomy, community, divinity). Results revealed platform differences: Weibo leaned toward positive sentiment, while Xiaohongshu was predominantly neutral. Most posts lacked explicit moral framing. However, when moral elements were invoked, significant associations with sentiment emerged. Posts invoking autonomy and community were predominantly negative, whereas divinity-framed posts tended toward positive sentiment. These findings suggest that concerns about both personal autonomy constraints and communal obligations contribute to negative marriage attitudes in contemporary China, offering insights for culturally informed policies addressing marriage decline.
♻ ☆ CTC-DRO: Robust Optimization for Reducing Language Disparities in Speech Recognition
Modern deep learning models often achieve high overall performance, but consistently fail on specific subgroups. Group distributionally robust optimization (group DRO) addresses this problem by minimizing the worst-group loss, but it fails when group losses misrepresent performance differences between groups. This is common in domains like speech, where the widely used connectionist temporal classification (CTC) loss not only scales with input length but also varies with linguistic and acoustic properties, leading to spurious differences between group losses. We present CTC-DRO, which addresses the shortcomings of the group DRO objective by smoothing the group weight update to prevent overemphasis on consistently high-loss groups, while using input length-matched batching to mitigate CTC's scaling issues. We evaluate CTC-DRO on the task of multilingual automatic speech recognition (ASR) across five language sets from the diverse ML-SUPERB 2.0 benchmark. CTC-DRO consistently outperforms group DRO and CTC-based baseline models, reducing the worst-language error by up to 47.1% and the average error by up to 32.9%. CTC-DRO can be applied to ASR with minimal computational costs, and, while motivated by multilingual ASR, offers the potential for reducing group disparities in other domains with similar challenges.
♻ ☆ Common to Whom? Regional Cultural Commonsense and LLM Bias in India
Existing cultural commonsense benchmarks treat nations as monolithic, assuming uniform practices within national boundaries. But does cultural commonsense hold uniformly within a nation, or does it vary at the sub-national level? We introduce Indica, the first benchmark designed to test LLMs' ability to address this question, focusing on India - a nation of 28 states, 8 union territories, and 22 official languages. We collect human-annotated answers from five Indian regions (North, South, East, West, and Central) across 515 questions spanning 8 domains of everyday life, yielding 1,630 region-specific question-answer pairs. Strikingly, only 39.4% of questions elicit agreement across all five regions, demonstrating that cultural commonsense in India is predominantly regional, not national. We evaluate eight state-of-the-art LLMs and find two critical gaps: models achieve only 13.4%-20.9% accuracy on region-specific questions, and they exhibit geographic bias, over-selecting Central and North India as the "default" (selected 30-40% more often than expected) while under-representing East and West. Beyond India, our methodology provides a generalizable framework for evaluating cultural commonsense in any culturally heterogeneous nation, from question design grounded in anthropological taxonomy, to regional data collection, to bias measurement.
♻ ☆ Mechanism of Task-oriented Information Removal in In-context Learning ICLR 2026
In-context Learning (ICL) is an emerging few-shot learning paradigm based on modern Language Models (LMs), yet its inner mechanism remains unclear. In this paper, we investigate the mechanism through a novel perspective of information removal. Specifically, we demonstrate that in the zero-shot scenario, LMs encode queries into non-selective representations in hidden states containing information for all possible tasks, leading to arbitrary outputs without focusing on the intended task, resulting in near-zero accuracy. Meanwhile, we find that selectively removing specific information from hidden states by a low-rank filter effectively steers LMs toward the intended task. Building on these findings, by measuring the hidden states on carefully designed metrics, we observe that few-shot ICL effectively simulates such task-oriented information removal processes, selectively removing the redundant information from entangled non-selective representations, and improving the output based on the demonstrations, which constitutes a key mechanism underlying ICL. Moreover, we identify essential attention heads inducing the removal operation, termed Denoising Heads, which enables the ablation experiments blocking the information removal operation from the inference, where the ICL accuracy significantly degrades, especially when the correct label is absent from the few-shot demonstrations, confirming both the critical role of the information removal mechanism and denoising heads.
comment: 87 pages, 90 figures, 7 tables, ICLR 2026 Camera-ready
♻ ☆ LVLMs and Humans Ground Differently in Referential Communication
For generative AI agents to partner effectively with human users, the ability to accurately predict human intent is critical. But this ability to collaborate remains limited by a critical deficit: an inability to model common ground. Here, we present a referential communication experiment with a factorial design involving director-matcher pairs (human-human, human-AI, AI-human, and AI-AI) that interact with multiple turns in repeated rounds to match pictures of objects not associated with any obvious lexicalized labels. We release the online pipeline for data collection, the tools and analyses for accuracy, efficiency, and lexical overlap, and a corpus of 356 dialogues (89 pairs over 4 rounds each) that unmasks LVLMs' limitations in interactively resolving referring expressions, a crucial skill that underlies human language use.
comment: 24 pages, 16 figures, preprint
♻ ☆ TRIM: Token-wise Attention-Derived Saliency for Data-Efficient Instruction Tuning
Instruction tuning is essential for aligning large language models (LLMs) to downstream tasks and commonly relies on large, diverse corpora. However, small, high-quality subsets, known as coresets, can deliver comparable or superior results, though curating them remains challenging. Existing methods often rely on coarse, sample-level signals like gradients, an approach that is computationally expensive and overlooks fine-grained features. To address this, we introduce TRIM (Token Relevance via Interpretable Multi-layer Attention), a forward-only, token-centric framework. Instead of using gradients, TRIM operates by matching underlying representational patterns identified via attention-based "fingerprints" from a handful of target samples. Such an approach makes TRIM highly efficient and uniquely sensitive to the structural features that define a task. Coresets selected by our method consistently outperform state-of-the-art baselines by up to 9% on downstream tasks and even surpass the performance of full-data fine-tuning in some settings. By avoiding expensive backward passes, TRIM achieves this at a fraction of the computational cost. These findings establish TRIM as a scalable and efficient alternative for building high-quality instruction-tuning datasets.
♻ ☆ LLM Prompt Duel Optimizer: Efficient Label-Free Prompt Optimization
Large language models (LLMs) are highly sensitive to prompts, but most automatic prompt optimization (APO) methods assume access to ground-truth references (e.g., labeled validation data) that are costly to obtain. We propose the Prompt Duel Optimizer (PDO), a sample-efficient framework for label-free prompt optimization based on pairwise preference feedback from an LLM judge. PDO casts prompt selection as a dueling-bandit problem and combines (i) Double Thompson Sampling to prioritize informative comparisons under a fixed judge budget, with (ii) top-performer guided mutation to expand the candidate pool while pruning weak prompts. Experiments on BIG-bench Hard (BBH) and MS MARCO show that PDO consistently identifies stronger prompts than label-free baselines, while offering favorable quality--cost trade-offs under constrained comparison budgets.
♻ ☆ NurValues: Real-World Nursing Values Evaluation for Large Language Models in Clinical Context
While LLMs have demonstrated medical knowledge and conversational ability, their deployment in clinical practice raises new risks: patients may place greater trust in LLM-generated responses than in nurses' professional judgments, potentially intensifying nurse-patient conflicts. Such risks highlight the urgent need of evaluating whether LLMs align with the core nursing values upheld by human nurses. This work introduces the first benchmark for nursing value alignment, consisting of five core value dimensions distilled from international nursing codes: Altruism, Human Dignity, Integrity, Justice, and Professionalism. We define two-level tasks on the benchmark, considering the two characteristics of emerging nurse-patient conflicts. The Easy-Level dataset consists of 2,200 value-aligned and value-violating instances, which are collected through a five-month longitudinal field study across three hospitals of varying tiers; The Hard-Level dataset is comprised of 2,200 dialogue-based instances that embed contextual cues and subtle misleading signals, which increase adversarial complexity and better reflect the subjectivity and bias of narrators in the context of emerging nurse-patient conflicts. We evaluate a total of 23 SoTA LLMs on their ability to align with nursing values, and find that general LLMs outperform medical ones, and Justice is the hardest value dimension. As the first real-world benchmark for healthcare value alignment, NurValues provides novel insights into how LLMs navigate ethical challenges in clinician-patient interactions.
comment: 39 pages, 9 figures, 24 tables
♻ ☆ Beyond Correctness: Evaluating Subjective Writing Preferences Across Cultures
Current preference learning methods achieve high accuracy on standard benchmarks but exhibit significant performance degradation when objective quality signals are removed. We introduce WritingPreferenceBench, a dataset of 1,800 human-annotated preference pairs (1,200 English, 600 Chinese) across 8 creative writing genres, where responses are matched for objective correctness, factual accuracy, and length. On this benchmark, sequence-based reward models--the standard architecture for RLHF--achieve only 52.7% mean accuracy, while zero-shot language model judges perform at 53.9%. In contrast, generative reward models that produce explicit reasoning chains achieve 81.8% accuracy. We observe high within-model variance across genres: individual models range from 18.2% to 81.8% accuracy across different writing categories, with standard deviations averaging 10.1%. This variance persists regardless of model scale, with 27B parameter models showing no consistent improvement over 8B variants. Our results suggest that current RLHF methods primarily learn to detect objective errors rather than capture subjective quality preferences (e.g., creativity, stylistic flair, and emotional resonance), and that successful preference modeling may require intermediate reasoning representations rather than direct classification.
♻ ☆ Epistemic Diversity and Knowledge Collapse in Large Language Models
Large language models (LLMs) tend to generate homogenous texts, which may impact the diversity of knowledge generated across different outputs. Given their potential to replace existing forms of knowledge acquisition, this poses a risk of knowledge collapse, where homogenous LLMs may lead most people to be exposed to largely the same information, thus mediating a shrinking in the range of accessible information over time as underepresented knowledge is forgotten. To assess the risk of knowledge collapse with LLMs, we present a new methodology to measure epistemic diversity, i.e., variation in real-world claims in LLM outputs. We use this to perform a broad empirical study testing 27 LLMs, 155 topics covering 12 countries, and 200 prompt templates sourced from real user chats. For the topics in our study, we show that while newer models tend to generate more diverse claims, all models are less epistemically diverse than a basic web search. We find that model size has a negative impact on epistemic diversity, while retrieval-augmented generation (RAG) has a positive impact, though the improvement from RAG varies by the cultural context. Finally, compared to a traditional knowledge source (Wikipedia), we find that country-specific claims reflect the English language more than the local one, highlighting a gap in epistemic representation.
comment: 16 pages; 8 figures, 4 tables; v2 changelog: Fixed the modeling for table 3, random effect is the model version; v3 changelog: Fixed minor formatting issues in tables 2 and 3; v4 changelog: Fixed some typos and model description; v5 changelog: Updated metadata; v6 changelog: Improved search baseline, writing revisions, added comparisons to semantic similarity only approaches
♻ ☆ LLMs versus the Halting Problem: Revisiting Program Termination Prediction
Determining whether a program terminates is a central problem in computer science. Turing's foundational result established the Halting Problem as undecidable, showing that no algorithm can universally determine termination for all programs and inputs. Consequently, automatic verification tools approximate termination, sometimes failing to prove or disprove; these tools rely on problem-specific architectures and abstractions, and are usually tied to particular programming languages. Recent success and progress in large language models (LLMs) raises the following question: can LLMs reliably predict program termination? In this work, we evaluate LLMs on a diverse set of C programs from the Termination category of the International Competition on Software Verification (SV-Comp) 2025. Our results suggest that LLMs perform remarkably well at predicting program termination, where GPT-5 and Claude Sonnet-4.5 would rank just behind the top-ranked tool (using test-time-scaling), and Code World Model (CWM) would place just behind the second-ranked tool. While LLMs are effective at predicting program termination, they often fail to provide a valid witness as a proof. Moreover, LLMs performance drops as program length increases. We hope these insights motivate further research into program termination and the broader potential of LLMs for reasoning about undecidable problems.
♻ ☆ PLawBench: A Rubric-Based Benchmark for Evaluating LLMs in Real-World Legal Practice
As large language models (LLMs) are increasingly applied to legal domain-specific tasks, evaluating their ability to perform legal work in real-world settings has become essential. However, existing legal benchmarks rely on simplified and highly standardized tasks, failing to capture the ambiguity, complexity, and reasoning demands of real legal practice. Moreover, prior evaluations often adopt coarse, single-dimensional metrics and do not explicitly assess fine-grained legal reasoning. To address these limitations, we introduce PLawBench, a Practical Law Benchmark designed to evaluate LLMs in realistic legal practice scenarios. Grounded in real-world legal workflows, PLawBench models the core processes of legal practitioners through three task categories: public legal consultation, practical case analysis, and legal document generation. These tasks assess a model's ability to identify legal issues and key facts, perform structured legal reasoning, and generate legally coherent documents. PLawBench comprises 850 questions across 13 practical legal scenarios, with each question accompanied by expert-designed evaluation rubrics, resulting in approximately 12,500 rubric items for fine-grained assessment. Using an LLM-based evaluator aligned with human expert judgments, we evaluate 10 state-of-the-art LLMs. Experimental results show that none achieves strong performance on PLawBench, revealing substantial limitations in the fine-grained legal reasoning capabilities of current LLMs and highlighting important directions for future evaluation and development of legal LLMs. Data is available at: https://github.com/skylenage/PLawbench.
♻ ☆ Library Hallucinations in LLMs: Risk Analysis Grounded in Developer Queries
Large language models (LLMs) are increasingly used to generate code, yet they continue to hallucinate, often inventing non-existent libraries. Such library hallucinations are not just benign errors: they can mislead developers, break builds, and expose systems to supply chain threats such as slopsquatting. Despite increasing awareness of these risks, little is known about how real-world prompt variations affect hallucination rates. Therefore, we present the first systematic study of how user-level prompt variations impact library hallucinations in LLM-generated code. We evaluate seven diverse LLMs across two hallucination types: library name hallucinations (invalid imports) and library member hallucinations (invalid calls from valid libraries). We investigate how realistic user language extracted from developer forums and how user errors of varying degrees (one- or multi-character misspellings and completely fake names/members) affect LLM hallucination rates. Our findings reveal systemic vulnerabilities: one-character misspellings in library names trigger hallucinations in up to 26% of tasks, fake library names are accepted in up to 99% of tasks, and time-related prompts lead to hallucinations in up to 84% of tasks. Prompt engineering shows promise for mitigating hallucinations, but remains inconsistent and LLM-dependent. Our results underscore the fragility of LLMs to natural prompt variation and highlight the urgent need for safeguards against library-related hallucinations and their potential exploitation.
comment: 27 pages, 1 figure, 8 tables
♻ ☆ Human Values in a Single Sentence: Moral Presence, Hierarchies, and Transformer Ensembles on the Schwartz Continuum
We study sentence-level detection of the 19 human values in the refined Schwartz continuum in about 74k English sentences from news and political manifestos (ValueEval'24 corpus). Each sentence is annotated with value presence, yielding a binary moral-presence label and a 19-way multi-label task under severe class imbalance. First, we show that moral presence is learnable from single sentences: a DeBERTa-base classifier attains positive-class F1 = 0.74 with calibrated thresholds. Second, we compare direct multi-label value detectors with presence-gated hierarchies under a single 8 GB GPU budget. Under matched compute, presence gating does not improve over direct prediction, indicating that gate recall becomes a bottleneck. Third, we investigate lightweight auxiliary signals - short-range context, LIWC-22 and moral lexica, and topic features - and small ensembles. Our best supervised configuration, a soft-voting ensemble of DeBERTa-based models enriched with such signals, reaches macro-F1 = 0.332 on the 19 values, improving over the best previous English-only baseline on this corpus (macro-F1 $\approx$ 0.28). We additionally benchmark 7-9B instruction-tuned LLMs (Gemma 2 9B, Llama 3.1 8B, Mistral 8B, Qwen 2.5 7B) in zero-/few-shot and QLoRA setups, and find that they lag behind the supervised ensemble under the same hardware constraint. Overall, our results provide empirical guidance for building compute-efficient, value-aware NLP models under realistic GPU budgets.
comment: Code: https://github.com/VictorMYeste/human-value-detection, models: https://huggingface.co/papers/2601.14172, 47 pages, 4 figures
♻ ☆ JEPA-Reasoner: Decoupling Latent Reasoning from Token Generation
Current autoregressive language models couple high-level reasoning and low-level token generation into a single sequential process, making the reasoning trajectory vulnerable to compounding expression errors. We propose JEPA-Reasoner, a novel architectural paradigm that decouples these tasks using a Joint-Embedding Predictive Architecture (JEPA) for pure latent-space reasoning and a separate Talker module for linguistic reconstruction. By isolating the reasoning engine from the discrete token-sampling process, our architecture enables: (1) Error Containment, where token-level failures cannot propagate into the latent reasoning chain; (2) Continuous Guidance, providing the generator with access to the entire lossless reasoning trajectory; and (3) Representation of Uncertainty, allowing the model to maintain multiple hypotheses via mixed latent vectors. Controlled experiments on synthetic and natural language tasks demonstrate that this decoupling enables a 0.9B model to achieve a 149.5\% improvement in 8-shot GSM8K accuracy over a coupled Transformer baseline trained on identical data. This work shifts the focus from scaling coupled models to investigating decoupled architectures as a more robust foundation for complex reasoning.
♻ ☆ Elastic Attention: Test-time Adaptive Sparsity Ratios for Efficient Transformers
The quadratic complexity of standard attention mechanisms poses a significant scalability bottleneck for large language models (LLMs) in long-context scenarios. While hybrid attention strategies that combine sparse and full attention within a single model offer a viable solution, they typically employ static computation ratios (i.e., fixed proportions of sparse versus full attention) and fail to adapt to the varying sparsity sensitivities of downstream tasks during inference. To address this issue, we propose Elastic Attention, which allows the model to dynamically adjust its overall sparsity based on the input. This is achieved by integrating a lightweight Attention Router into the existing pretrained model, which dynamically assigns each attention head to different computation modes. Within only 12 hours of training on 8xA800 GPUs, our method enables models to achieve both strong performance and efficient inference. Experiments across three long-context benchmarks on widely-used LLMs demonstrate the superiority of our method.
♻ ☆ Depth-Width tradeoffs in Algorithmic Reasoning of Graph Tasks with Transformers
Transformers have revolutionized the field of machine learning. In particular, they can be used to solve complex algorithmic problems, including graph-based tasks. In such algorithmic tasks a key question is what is the minimal size of a transformer that can implement the task. Recent work has begun to explore this problem for graph-based tasks, showing that for sub-linear embedding dimension (i.e., model width) logarithmic depth suffices. However, an open question, which we address here, is what happens if width is allowed to grow linearly, while depth is kept fixed. Here we analyze this setting, and provide the surprising result that with linear width, constant depth suffices for solving a host of graph-based problems. This suggests that a moderate increase in width can allow much shallower models, which are advantageous in terms of inference and train time. For other problems, we show that quadratic width is required. Our results demonstrate the complex and intriguing landscape of transformer implementations of graph-based algorithms. We empirically investigate these trade-offs between the relative powers of depth and width and find tasks where wider models have the same accuracy as deep models, while having much faster train and inference time due to parallelizable hardware.
♻ ☆ YNTP-100: A Benchmark for Your Next Token Prediction with 100 People
Large language models (LLMs) trained for general \textit{next-token prediction} often fail to generate responses that reflect how specific individuals communicate. Progress on personalized alignment is further limited by the difficulty of collecting real-world personal communication data due to privacy constraints. We propose Your Next Token Prediction (YNTP), a task that formulates personalized response generation as token-level prediction conditioned on user interaction history. We introduce \textbf{YNTP-100}, a benchmark built from multilingual multi-day human--agent conversations with 100 people, enabling systematic evaluation of user-specific response behavior. We evaluate external (parameter-preserving) and internal (parameter-updating) alignment methods using metrics of substance similarity and stylistic consistency. The dataset and results are publicly available at: https://github.com/AnonymousHub4Submissions/YNTP100.
♻ ☆ Compositional Reasoning with Transformers, RNNs, and Chain of Thought NeurIPS
It is well understood that different neural network architectures are suited to different tasks, but is there always a single best architecture for a given task? We compare the expressive power of transformers, RNNs, and transformers with chain of thought tokens on a simple and natural class of tasks we term Compositional Reasoning Questions (CRQ). This family captures multi-step problems with tree-like compositional structure, such as evaluating Boolean formulas. We prove that under standard hardness assumptions, \emph{none} of these three architectures is capable of solving CRQs unless some hyperparameter (depth, embedding dimension, and number of chain of thought tokens, respectively) grows with the size of the input. We then provide constructions for solving CRQs with each architecture. For transformers, our construction uses depth that is logarithmic in the problem size. For RNNs, logarithmic embedding dimension is necessary and sufficient, so long as the inputs are provided in a certain order. For transformers with chain of thought, our construction uses $n$ CoT tokens for input size $n$. These results show that, while CRQs are inherently hard, there are several different ways for language models to overcome this hardness. Even for a single class of problems, each architecture has strengths and weaknesses, and none is strictly better than the others.
comment: NeurIPS CR version
♻ ☆ Reasoning in the Dark: Interleaved Vision-Text Reasoning in Latent Space
Multimodal reasoning aims to enhance the capabilities of MLLMs by incorporating intermediate reasoning steps before reaching the final answer. It has evolved from text-only reasoning to the integration of visual information, enabling the thought process to be conveyed through both images and text. Despite its effectiveness, current multimodal reasoning methods depend on explicit reasoning steps that require labor-intensive vision-text annotations and inherently introduce significant inference latency. To address these issues, we introduce multimodal latent reasoning with the advantages of multimodal representation, reduced annotation, and inference efficiency. To facilitate it, we propose Interleaved Vision-Text Latent Reasoning (IVT-LR), which injects both visual and textual information in the reasoning process within the latent space. Specifically, IVT-LR represents each reasoning step by combining two implicit parts: latent text (the hidden states from the previous step) and latent vision (a set of selected image embeddings). We further introduce a progressive multi-stage training strategy to enable MLLMs to perform the above multimodal latent reasoning steps. Experiments on M$^3$CoT and ScienceQA demonstrate that our IVT-LR method achieves an average performance increase of 5.45\% in accuracy, while simultaneously achieving a speed increase of over 5 times compared to existing approaches.
♻ ☆ Rewarding Doubt: A Reinforcement Learning Approach to Calibrated Confidence Expression of Large Language Models
A safe and trustworthy use of Large Language Models (LLMs) requires an accurate expression of confidence in their answers. We propose a novel Reinforcement Learning approach that allows to directly fine-tune LLMs to express calibrated confidence estimates alongside their answers to factual questions. Our method optimizes a reward based on the logarithmic scoring rule, explicitly penalizing both over- and under-confidence. This encourages the model to align its confidence estimates with the actual predictive accuracy. The optimal policy under our reward design would result in perfectly calibrated confidence expressions. Unlike prior approaches that decouple confidence estimation from response generation, our method integrates confidence calibration seamlessly into the generative process of the LLM. Empirically, we demonstrate that models trained with our approach exhibit substantially improved calibration and generalize to unseen tasks without further fine-tuning, suggesting the emergence of general confidence awareness.
♻ ☆ Read as You See: Guiding Unimodal LLMs for Low-Resource Explainable Harmful Meme Detection WWW '26
Detecting harmful memes is crucial for safeguarding the integrity and harmony of online environments, yet existing detection methods are often resource-intensive, inflexible, and lacking explainability, limiting their applicability in assisting real-world web content moderation. We propose U-CoT+, a resource-efficient framework that prioritizes accessibility, flexibility and transparency in harmful meme detection by fully harnessing the capabilities of lightweight unimodal large language models (LLMs). Instead of directly prompting or fine-tuning large multimodal models (LMMs) as black-box classifiers, we avoid immediate reasoning over complex visual inputs but decouple meme content recognition from meme harmfulness analysis through a high-fidelity meme-to-text pipeline, which collaborates lightweight LMMs and LLMs to convert multimodal memes into natural language descriptions that preserve critical visual information, thus enabling text-only LLMs to "see" memes by "reading". Grounded in textual inputs, we further guide unimodal LLMs' reasoning under zero-shot Chain-of-Thoughts (CoT) prompting with targeted, interpretable, context-aware, and easily obtained human-crafted guidelines, thus providing accountable step-by-step rationales, while enabling flexible and efficient adaptation to diverse sociocultural criteria of harmfulness. Extensive experiments on seven benchmark datasets show that U-CoT+ achieves performance comparable to resource-intensive baselines, highlighting its effectiveness and potential as a scalable, explainable, and low-resource solution to support harmful meme detection.
comment: Accepted to ACM Web Conference 2026 (WWW '26)
♻ ☆ Prompt-R1: Collaborative Automatic Prompting Framework via End-to-end Reinforcement Learning
Recently, advanced large language models (LLMs) have emerged at an increasingly rapid pace. However, when faced with complex problems, most users are often unable to provide accurate and effective prompts to interact with LLMs, thus limiting the performance of LLMs. To address this challenge, we propose Prompt-R1, an end-to-end reinforcement learning framework that uses a small-scale LLM to collaborate with large-scale LLMs, replacing user interaction to solve problems better. This collaboration is cast as a multi-turn prompt interaction, where the small-scale LLM thinks and generates prompts, and the large-scale LLM performs complex reasoning. A dual-constrained reward is designed to optimize for correctness, generation quality, and reasoning accuracy. Prompt-R1 provides a plug-and-play framework that supports both inference and training with various large-scale LLMs. Experiments on multiple public datasets show that Prompt-R1 significantly outperforms baseline models across tasks. Our code is publicly available at https://github.com/QwenQKing/Prompt-R1.
♻ ☆ Look Back to Reason Forward: Revisitable Memory for Long-Context LLM Agents
Large language models face challenges in long-context question answering, where key evidence of a query may be dispersed across millions of tokens. Existing works equip large language models with a memory buffer that is dynamically updated via a linear document scan, also known as the "memorize while reading" methods. While this approach scales efficiently, it suffers from pruning of latent evidence, information loss through overwriting, and sparse reinforcement learning signals. To tackle these challenges, we present ReMemR1, which integrates the mechanism of memory retrieval into the memory update process, enabling the agent to selectively callback historical memories for non-linear reasoning. To further strengthen training, we propose a multi-level reward design, which combines final-answer rewards with dense, step-level signals that guide effective memory use. Together, these contributions mitigate information degradation, improve supervision, and support complex multi-hop reasoning. Extensive experiments demonstrate that ReMemR1 significantly outperforms state-of-the-art baselines on long-context question answering while incurring negligible computational overhead, validating its ability to trade marginal cost for robust long-context reasoning.
♻ ☆ A-IPO: Adaptive Intent-driven Preference Optimization
Human preferences are diverse and dynamic, shaped by regional, cultural, and social factors. Existing alignment methods like Direct Preference Optimization (DPO) and its variants often default to majority views, overlooking minority opinions and failing to capture latent user intentions in prompts. To address these limitations, we introduce \underline{\textbf{A}}daptive \textbf{\underline{I}}ntent-driven \textbf{\underline{P}}reference \textbf{\underline{O}}ptimization (\textbf{A-IPO}). Specifically,A-IPO introduces an intention module that infers the latent intent behind each user prompt and explicitly incorporates this inferred intent into the reward function, encouraging stronger alignment between the preferred model's responses and the user's underlying intentions. We demonstrate, both theoretically and empirically, that incorporating an intention--response similarity term increases the preference margin (by a positive shift of $λ\,Δ\mathrm{sim}$ in the log-odds), resulting in clearer separation between preferred and dispreferred responses compared to DPO. For evaluation, we introduce two new benchmarks, Real-pref, Attack-pref along with an extended version of an existing dataset, GlobalOpinionQA-Ext, to assess real-world and adversarial preference alignment. Through explicit modeling of diverse user intents,A-IPO facilitates pluralistic preference optimization while simultaneously enhancing adversarial robustness in preference alignment. Comprehensive empirical evaluation demonstrates that A-IPO consistently surpasses existing baselines, yielding substantial improvements across key metrics: up to +24.8 win-rate and +45.6 Response-Intention Consistency on Real-pref; up to +38.6 Response Similarity and +52.2 Defense Success Rate on Attack-pref; and up to +54.6 Intention Consistency Score on GlobalOpinionQA-Ext.
♻ ☆ Grounding or Guessing? Visual Signals for Detecting Hallucinations in Sign Language Translation ICLR2026
Hallucination, where models generate fluent text unsupported by visual evidence, remains a major flaw in vision-language models and is particularly critical in sign language translation (SLT). In SLT, meaning depends on precise grounding in video, and gloss-free models are especially vulnerable because they map continuous signer movements directly into natural language without intermediate gloss supervision that serves as alignment. We argue that hallucinations arise when models rely on language priors rather than visual input. To capture this, we propose a token-level reliability measure that quantifies how much the decoder uses visual information. Our method combines feature-based sensitivity, which measures internal changes when video is masked, with counterfactual signals, which capture probability differences between clean and altered video inputs. These signals are aggregated into a sentence-level reliability score, providing a compact and interpretable measure of visual grounding. We evaluate the proposed measure on two SLT benchmarks (PHOENIX-2014T and CSL-Daily) with both gloss-based and gloss-free models. Our results show that reliability predicts hallucination rates, generalizes across datasets and architectures, and decreases under visual degradations. Beyond these quantitative trends, we also find that reliability distinguishes grounded tokens from guessed ones, allowing risk estimation without references; when combined with text-based signals (confidence, perplexity, or entropy), it further improves hallucination risk estimation. Qualitative analysis highlights why gloss-free models are more susceptible to hallucinations. Taken together, our findings establish reliability as a practical and reusable tool for diagnosing hallucinations in SLT, and lay the groundwork for more robust hallucination detection in multimodal generation.
comment: Accepted at ICLR2026
♻ ☆ Advancing Multimodal Reasoning: From Optimized Cold Start to Staged Reinforcement Learning
Inspired by the remarkable reasoning capabilities of Deepseek-R1 in complex textual tasks, many works attempt to incentivize similar capabilities in Multimodal Large Language Models (MLLMs) by directly applying reinforcement learning (RL). However, they still struggle to activate complex reasoning. In this paper, rather than examining multimodal RL in isolation, we delve into current training pipelines and identify three crucial phenomena: 1) Effective cold start initialization is critical for enhancing MLLM reasoning. Intriguingly, we find that initializing with carefully selected text data alone can lead to performance surpassing many recent multimodal reasoning models, even before multimodal RL. 2) Standard GRPO applied to multimodal RL suffers from gradient stagnation, which degrades training stability and performance. 3) Subsequent text-only RL training, following the multimodal RL phase, further enhances multimodal reasoning. This staged training approach effectively balances perceptual grounding and cognitive reasoning development. By incorporating the above insights and addressing multimodal RL issues, we introduce ReVisual-R1, achieving a new state-of-the-art among open-source 7B MLLMs on challenging benchmarks including MathVerse, MathVision, WeMath, LogicVista, DynaMath, and challenging AIME2024 and AIME2025.
comment: 19 pages, 6 figures
♻ ☆ Structure-Aware Decoding Mechanisms for Complex Entity Extraction with Large-Scale Language Models
This paper proposes a structure-aware decoding method based on large language models to address the difficulty of traditional approaches in maintaining both semantic integrity and structural consistency in nested and overlapping entity extraction tasks. The method introduces a candidate span generation mechanism and structured attention modeling to achieve unified modeling of entity boundaries, hierarchical relationships, and cross-dependencies. The model first uses a pretrained language model to obtain context-aware semantic representations, then captures multi-granular entity span features through candidate representation combinations, and introduces hierarchical structural constraints during decoding to ensure consistency between semantics and structure. To enhance stability in complex scenarios, the model jointly optimizes classification loss and structural consistency loss, maintaining high recognition accuracy under multi-entity co-occurrence and long-sentence dependency conditions. Experiments conducted on the ACE 2005 dataset demonstrate significant improvements in Accuracy, Precision, Recall, and F1-Score, particularly in nested and overlapping entity recognition, where the model shows stronger boundary localization and structural modeling capability. This study verifies the effectiveness of structure-aware decoding in complex semantic extraction tasks, provides a new perspective for developing language models with hierarchical understanding, and establishes a methodological foundation for high-precision information extraction.
♻ ☆ LEGO-Eval: Towards Fine-Grained Evaluation on Synthesizing 3D Embodied Environments with Tool Augmentation
Despite recent progress in using Large Language Models (LLMs) for automatically generating 3D scenes, generated scenes often lack realistic spatial layouts and object attributes found in real-world environments. As this problem stems from insufficiently detailed, coarse-grained instructions, advancing 3D scene synthesis guided by more detailed, fine-grained instructions that reflect real-world environments becomes crucial. Without such realistic scenes, training embodied agents in unrealistic environments can lead them to learn priors that diverge significantly from real-world physics and semantics, degrading their performance when deployed. Thus, verifying the alignment between the fine-grained instruction and the generated scene is essential for effective learning. However, current evaluation methods, such as CLIPScore and vision-language models (VLMs), often fail to reliably assess such alignment. This shortcoming arises primarily from their shallow understanding of 3D scenes, which often leads to improperly grounded scene components. To address this, we introduce LEGO-Eval, an evaluation framework equipped with diverse tools designed to explicitly ground scene components, enabling more accurate alignment assessments. We also present LEGO-Bench, a benchmark of detailed instructions that specify complex layouts and attributes of real-world environments. Experiments demonstrate that LEGO-Eval outperforms VLM-as-a-judge by 0.41 F1 score in assessing scene-instruction alignment. Benchmarking with LEGO-Bench reveals significant limitations in current generation methods. Across all evaluated approaches, success rates reached at most 10% in generating scenes that fully align with fine-grained instructions.
♻ ☆ RPO-RAG: Aligning Small LLMs with Relation-aware Preference Optimization for Knowledge Graph Question Answering WWW
Large Language Models (LLMs) have recently demonstrated remarkable reasoning abilities, yet hallucinate on knowledge-intensive tasks. Retrieval-augmented generation (RAG) mitigates this issue by grounding answers in external sources, e.g., knowledge graphs (KGs). However, existing KG-based RAG approaches rely on semantics-unaware path sampling and are weakly aligned with KG reasoning objectives, which limits further accuracy gains. They also feed retrieved paths directly into the reasoner without organizing them into answer-centered reasoning paths, hindering small LLMs' ability to leverage the retrieved knowledge. Furthermore, prior works predominantly rely on large LLMs (e.g., ChatGPT/GPT-4) or assume backbones above 7B parameters, leaving sub-7B models underexplored. We address this gap with RPO-RAG, the first KG-based RAG framework specifically designed for small LLMs, to the best of our knowledge. RPO-RAG introduces three key innovations: (1) a query-path semantic sampling strategy that provides informative supervisory signals; (2) a relation-aware preference optimization that aligns training with intermediate KG reasoning signals (e.g., relation); and (3) an answer-centered prompt design that organizes entities and reasoning paths in an interpretable format. Extensive experiments on two benchmark Knowledge Graph Question Answering (KGQA) datasets, WebQSP and CWQ, demonstrate that RPO-RAG effectively bridges the performance gap between small and large language models. On WebQSP, it improves F1 by up to 8.8%, reflecting enhanced answer precision, while on CWQ it achieves new state-of-the-art results among models under 8B parameters in both Hit and F1. Overall, RPO-RAG substantially improves the reasoning capability of small LLMs, even under 3B parameters-highlighting their potential for resource-efficient and practical on-device KGQA applications.
comment: Accepted at The Web Conference (WWW) 2026
♻ ☆ AuditoryBench++: Can Language Models Understand Auditory Knowledge without Hearing? ICASSP 2026
Even without directly hearing sounds, humans can effortlessly reason about auditory properties, such as pitch, loudness, or sound-source associations, drawing on auditory commonsense. In contrast, language models often lack this capability, limiting their effectiveness in multimodal interactions. As an initial step to address this gap, we present AuditoryBench++, a comprehensive benchmark for evaluating auditory knowledge and reasoning in text-only settings. The benchmark encompasses tasks that range from basic auditory comparisons to contextually grounded reasoning, enabling fine-grained analysis of how models process and integrate auditory concepts. In addition, we introduce AIR-CoT, a novel auditory imagination reasoning method that generates and integrates auditory information during inference through span detection with special tokens and knowledge injection. Extensive experiments with recent LLMs and Multimodal LLMs demonstrate that AIR-CoT generally outperforms both the off-the-shelf models and those augmented with auditory knowledge. The project page is available at https://auditorybenchpp.github.io.
comment: ICASSP 2026
♻ ☆ Zero-Shot Stance Detection in the Wild: Dynamic Target Generation and Multi-Target Adaptation
Current stance detection research typically relies on predicting stance based on given targets and text. However, in real-world social media scenarios, targets are neither predefined nor static but rather complex and dynamic. To address this challenge, we propose a novel task: zero-shot stance detection in the wild with Dynamic Target Generation and Multi-Target Adaptation (DGTA), which aims to automatically identify multiple target-stance pairs from text without prior target knowledge. We construct a Chinese social media stance detection dataset and design multi-dimensional evaluation metrics. We explore both integrated and two-stage fine-tuning strategies for large language models (LLMs) and evaluate various baseline models. Experimental results demonstrate that fine-tuned LLMs achieve superior performance on this task: the two-stage fine-tuned Qwen2.5-7B attains the highest comprehensive target recognition score of 66.99%, while the integrated fine-tuned DeepSeek-R1-Distill-Qwen-7B achieves a stance detection F1 score of 79.26%.
♻ ☆ Demystifying the Slash Pattern in Attention: The Role of RoPE
Large Language Models (LLMs) often exhibit slash attention patterns, where attention scores concentrate along the $Δ$-th sub-diagonal for some offset $Δ$. These patterns play a key role in passing information across tokens. But why do they emerge? In this paper, we demystify the emergence of these Slash-Dominant Heads (SDHs) from both empirical and theoretical perspectives. First, by analyzing open-source LLMs, we find that SDHs are intrinsic to models and generalize to out-of-distribution prompts. To explain the intrinsic emergence, we analyze the queries, keys, and Rotary Position Embedding (RoPE), which jointly determine attention scores. Our empirical analysis reveals two characteristic conditions of SDHs: (1) Queries and keys are almost rank-one, and (2) RoPE is dominated by medium- and high-frequency components. Under these conditions, queries and keys are nearly identical across tokens, and interactions between medium- and high-frequency components of RoPE give rise to SDHs. Beyond empirical evidence, we theoretically show that these conditions are sufficient to ensure the emergence of SDHs by formalizing them as our modeling assumptions. Particularly, we analyze the training dynamics of a shallow Transformer equipped with RoPE under these conditions, and prove that models trained via gradient descent exhibit SDHs. The SDHs generalize to out-of-distribution prompts.
♻ ☆ Confidence intervals for forced alignment boundaries using model ensembles
Forced alignment is a common tool to align audio with orthographic and phonetic transcriptions. Most forced alignment tools provide only a single estimate of a boundary. The present project introduces a method of deriving confidence intervals for these boundaries using a neural network ensemble technique. Ten different segment classifier neural networks were previously trained, and the alignment process is repeated with each model. The alignment ensemble is then used to place the boundary at the median of the boundaries in the ensemble, and 97.85% confidence intervals are constructed using order statistics. Having confidence intervals provides an estimate of the uncertainty in the boundary placement, facilitating tasks like finding boundaries that should be reviewed. As a bonus, on the Buckeye and TIMIT corpora, the ensemble boundaries show a slight overall improvement over using just a single model. The confidence intervals can be emitted during the alignment process as JSON files and a main table for programmatic and statistical analysis. For familiarity, they are also output as Praat TextGrids using a point tier to represent the intervals.
comment: revised for publication; 11 pages, 3 figures
♻ ☆ Cochain: Balancing Insufficient and Excessive Collaboration in LLM Agent Workflows
Large Language Models (LLMs) have demonstrated impressive performance in executing complex reasoning tasks. Chain-of-thought effectively enhances reasoning capabilities by unlocking the potential of large models, while multi-agent systems provide more comprehensive solutions by integrating the collective intelligence of multiple agents. However, both approaches face significant limitations. Single-agent with chain-of-thought, due to the inherent complexity of designing cross-domain prompts, faces collaboration challenges. Meanwhile, multi-agent systems consume substantial tokens and inevitably dilute the primary problem, which is particularly problematic in business workflow tasks. To address these challenges, we propose Cochain, a collaboration prompting framework that effectively solves the business workflow collaboration problem by combining knowledge and prompts at a reduced cost. Specifically, we construct an integrated knowledge graph that incorporates knowledge from multiple stages. Furthermore, by maintaining and retrieving a prompts tree, we can obtain prompt information relevant to other stages of the business workflow. We perform extensive evaluations of Cochain across multiple datasets, demonstrating that Cochain outperforms all baselines in both prompt engineering and multi-agent LLMs. Additionally, expert evaluation results indicate that the use of a small model in combination with Cochain outperforms GPT-4.
comment: 35 pages, 23 figures
♻ ☆ Reducing Hallucinations in Language Model-based SPARQL Query Generation Using Post-Generation Memory Retrieval
The ability to generate SPARQL queries from natural language questions is crucial for ensuring efficient and accurate retrieval of structured data from knowledge graphs (KG). While large language models (LLMs) have been widely adopted for SPARQL query generation, they are often susceptible to hallucinations and out-of-distribution errors when generating KG elements, such as Uniform Resource Identifiers (URIs), based on opaque internal parametric knowledge. We propose PGMR (Post-Generation Memory Retrieval), a modular framework where the LLM produces an intermediate query using natural language placeholders for URIs, and a non-parametric memory module is subsequently employed to retrieve and resolve the correct KG URIs. PGMR significantly enhances query correctness (SQM) across various LLMs, datasets, and distribution shifts, while achieving the near-complete suppression of URI hallucinations. Critically, we demonstrate PGMR's superior safety and robustness: a retrieval confidence threshold enables PGMR to effectively refuse to answer queries that lack support, and the retriever proves highly resilient to memory noise, maintaining strong performance even when the non-parametric memory size is scaled up to 9 times with irrelevant, distracting entities.
♻ ☆ AdaReasoner: Dynamic Tool Orchestration for Iterative Visual Reasoning
When humans face problems beyond their immediate capabilities, they rely on tools, providing a promising paradigm for improving visual reasoning in multimodal large language models (MLLMs). Effective reasoning, therefore, hinges on knowing which tools to use, when to invoke them, and how to compose them over multiple steps, even when faced with new tools or new tasks. We introduce \textbf{AdaReasoner}, a family of multimodal models that learn tool use as a general reasoning skill rather than as tool-specific or explicitly supervised behavior. AdaReasoner is enabled by (i) a scalable data curation pipeline exposing models to long-horizon, multi-step tool interactions; (ii) Tool-GRPO, a reinforcement learning algorithm that optimizes tool selection and sequencing based on end-task success; and (iii) an adaptive learning mechanism that dynamically regulates tool usage. Together, these components allow models to infer tool utility from task context and intermediate outcomes, enabling coordination of multiple tools and generalization to unseen tools. Empirically, AdaReasoner exhibits strong tool-adaptive and generalization behaviors: it autonomously adopts beneficial tools, suppresses irrelevant ones, and adjusts tool usage frequency based on task demands, despite never being explicitly trained to do so. These capabilities translate into state-of-the-art performance across challenging benchmarks, improving the 7B base model by +24.9\% on average and surpassing strong proprietary systems such as GPT-5 on multiple tasks, including VSP and Jigsaw.
comment: 28 pages, 10 figures and 13 tables
♻ ☆ OmniEVA: Embodied Versatile Planner via Task-Adaptive 3D-Grounded and Embodiment-aware Reasoning ICLR 2026
Recent advances in multimodal large language models (MLLMs) have opened new opportunities for embodied intelligence, enabling multimodal understanding, reasoning, and interaction, as well as continuous spatial decision-making. Nevertheless, current MLLM-based embodied systems face two critical limitations. First, Geometric Adaptability Gap: models trained solely on 2D inputs or with hard-coded 3D geometry injection suffer from either insufficient spatial information or restricted 2D generalization, leading to poor adaptability across tasks with diverse spatial demands. Second, Embodiment Constraint Gap: prior work often neglects the physical constraints and capacities of real robots, resulting in task plans that are theoretically valid but practically infeasible. To address these gaps, we introduce OmniEVA -- an embodied versatile planner that enables advanced embodied reasoning and task planning through two pivotal innovations: (1) a Task-Adaptive 3D Grounding mechanism, which introduces a gated router to perform explicit selective regulation of 3D fusion based on contextual requirements, enabling context-aware 3D grounding for diverse embodied tasks. (2) an Embodiment-Aware Reasoning framework that jointly incorporates task goals and embodiment constraints into the reasoning loop, resulting in planning decisions that are both goal-directed and executable. Extensive experimental results demonstrate that OmniEVA not only achieves state-of-the-art general embodied reasoning performance, but also exhibits a strong ability across a wide range of downstream scenarios. Evaluations of a suite of proposed embodied benchmarks, including both primitive and composite tasks, confirm its robust and versatile planning capabilities. Project page: https://omnieva.github.io
comment: Published as a conference paper at ICLR 2026
♻ ☆ ColorConceptBench: A Benchmark for Probabilistic Color-Concept Understanding in Text-to-Image Models
While text-to-image (T2I) models have advanced considerably, their capability to associate colors with implicit concepts remains underexplored. To address the gap, we introduce ColorConceptBench, a new human-annotated benchmark to systematically evaluate color-concept associations through the lens of probabilistic color distributions. ColorConceptBench moves beyond explicit color names or codes by probing how models translate 1,281 implicit color concepts using a foundation of 6,369 human annotations. Our evaluation of seven leading T2I models reveals that current models lack sensitivity to abstract semantics, and crucially, this limitation appears resistant to standard interventions (e.g., scaling and guidance). This demonstrates that achieving human-like color semantics requires more than larger models, but demands a fundamental shift in how models learn and represent implicit meaning.
comment: 8 pages, 5 figures
♻ ☆ Embodied AI with Foundation Models for Mobile Service Robots: A Systematic Review
Rapid advancements in foundation models, including Large Language Models, Vision-Language Models, Multimodal Large Language Models, and Vision-Language-Action Models, have opened new avenues for embodied AI in mobile service robotics. By combining foundation models with the principles of embodied AI, where intelligent systems perceive, reason, and act through physical interaction, mobile service robots can achieve more flexible understanding, adaptive behavior, and robust task execution in dynamic real-world environments. Despite this progress, embodied AI for mobile service robots continues to face fundamental challenges related to the translation of natural language instructions into executable robot actions, multimodal perception in human-centered environments, uncertainty estimation for safe decision-making, and computational constraints for real-time onboard deployment. In this paper, we present the first systematic review focused specifically on the integration of foundation models in mobile service robotics. We analyze how recent advances in foundation models address these core challenges through language-conditioned control, multimodal sensor fusion, uncertainty-aware reasoning, and efficient model scaling. We further examine real-world applications in domestic assistance, healthcare, and service automation, highlighting how foundation models enable context-aware, socially responsive, and generalizable robot behaviors. Beyond technical considerations, we discuss ethical, societal, and human-interaction implications associated with deploying foundation model-enabled service robots in human environments. Finally, we outline future research directions emphasizing reliability and lifelong adaptation, privacy-aware and resource-constrained deployment, and governance and human-in-the-loop frameworks required for safe, scalable, and trustworthy mobile service robotics.
comment: v2: Expanded systematic review; resubmitted to Robotics
♻ ☆ Attention Projection Mixing with Exogenous Anchors
Cross-layer reuse of early attention projections can improve optimization and data efficiency, but it creates a structural conflict: the first layer must simultaneously act as a stable, reusable anchor for all deeper layers and as an effective computational block. We demonstrate that this tension constrains the performance of internal-anchor designs. We propose ExoFormer, which resolves the conflict by learning exogenous anchor projections outside the sequential layer stack. We introduce a unified normalized mixing framework that mixes queries, keys, values, and gate logits using learnable coefficients (exploring coefficient granularities: elementwise, headwise, and scalar), and we show that normalizing anchor sources is key to stable reuse. ExoFormer variants consistently outperform their internal-anchor counterparts, and the dynamic variant yields 1.5x downstream accuracy points while matching validation loss using 1.5x fewer tokens than Gated Attention. We explain this efficacy via an Offloading Hypothesis: external anchors preserve essential token identity, allowing layers to specialize exclusively in feature transformation. We release code and models to facilitate future research.
♻ ☆ Strategic Dialogue Assessment: The Crooked Path to Innocence
Language is often used strategically, particularly in high-stakes, adversarial settings, yet most work on pragmatics and LLMs centers on cooperativity. This leaves a gap in the systematic understanding of strategic communication in adversarial settings. To address this, we introduce SDA (Strategic Dialogue Assessment), a framework grounded in Gricean and game-theoretic pragmatics to assess strategic use of language. It adapts the ME Game jury function to make it empirically estimable for analyzing dialogue. Our approach incorporates two key adaptations: a commitment-based taxonomy of discourse moves, which provides a finer-grained account of strategic effects, and the use of estimable proxies grounded in Gricean maxims to operationalize abstract constructs such as credibility. Together, these adaptations build on discourse theory by treating discourse as the strategic management of commitments, enabling systematic evaluation of how conversational moves advance or undermine discourse goals. We further derive three interpretable metrics-Benefit at Turn (BAT), Penalty at Turn (PAT), and Normalized Relative Benefit at Turn (NRBAT)-to quantify the perceived strategic effects of discourse moves. We also present CPD (the Crooked Path Dataset), an annotated dataset of real courtroom cross-examinations, to demonstrate the framework's effectiveness. Using these tools, we evaluate a range of LLMs and show that LLMs generally exhibit limited pragmatic understanding of strategic language. While model size shows an increase in performance on our metrics, reasoning ability does not help and largely hurts, introducing overcomplication and internal confusion.
comment: 53 pages. Title changed. Accepted by Dialogue and Discourse 17(1)
♻ ☆ HOMURA: Taming the Sand-Glass for Time-Constrained LLM Translation via Reinforcement Learning
Large Language Models (LLMs) have achieved remarkable strides in multilingual translation but are hindered by a systemic cross-lingual verbosity bias, rendering them unsuitable for strict time-constrained tasks like subtitling and dubbing. Current prompt-engineering approaches struggle to resolve this conflict between semantic fidelity and rigid temporal feasibility. To bridge this gap, we first introduce Sand-Glass, a benchmark specifically designed to evaluate translation under syllable-level duration constraints. Furthermore, we propose HOMURA, a reinforcement learning framework that explicitly optimizes the trade-off between semantic preservation and temporal compliance. By employing a KL-regularized objective with a novel dynamic syllable-ratio reward, HOMURA effectively "tames" the output length. Experimental results demonstrate that our method significantly outperforms strong LLM baselines, achieving precise length control that respects linguistic density hierarchies without compromising semantic adequacy.
♻ ☆ Quantifying Speaker Embedding Phonological Rule Interactions in Accented Speech Synthesis ICASSP2026
Many spoken languages, including English, exhibit wide variation in dialects and accents, making accent control an important capability for flexible text-to-speech (TTS) models. Current TTS systems typically generate accented speech by conditioning on speaker embeddings associated with specific accents. While effective, this approach offers limited interpretability and controllability, as embeddings also encode traits such as timbre and emotion. In this study, we analyze the interaction between speaker embeddings and linguistically motivated phonological rules in accented speech synthesis. Using American and British English as a case study, we implement rules for flapping, rhoticity, and vowel correspondences. We propose the phoneme shift rate (PSR), a novel metric quantifying how strongly embeddings preserve or override rule-based transformations. Experiments show that combining rules with embeddings yields more authentic accents, while embeddings can attenuate or overwrite rules, revealing entanglement between accent and speaker identity. Our findings highlight rules as a lever for accent control and a framework for evaluating disentanglement in speech generation.
comment: Accepted to ICASSP2026
♻ ☆ Arce: Augmented Roberta with Contextualized Elucidations for Ner in Automated Rule Checking
Accurate information extraction from specialized texts is a critical challenge for automated rule checking (ARC) in the architecture, engineering, and construction (AEC) domain. While large language models (LLMs) possess strong reasoning capabilities, their deployment in resource-constrained AEC environments is often impractical. Conversely, standard efficient models struggle with the significant domain gap. Although this gap can be mitigated by pre-training on large, humancurated corpora, such approaches are labor-intensive and costly. To address this, we propose ARCE (Augmented RoBERTa with Contextualized Elucidations), a novel knowledge distillation framework that leverages LLMs to synthesize a task-oriented corpus, termed Cote, for incrementally pre-training smaller models. ARCE systematically explores the optimal strategy for knowledge transfer. Our extensive experiments demonstrate that ARCE establishes a new state-of-the-art on a benchmark AEC dataset, achieving a Macro-F1 score of 77.20% and outperforming both domain-specific baselines and fine-tuned LLMs. Crucially, our study reveals a less is more principle: simple, direct explanations prove significantly more effective for domain adaptation than complex, role-based rationales in the NER task, which tend to introduce semantic noise. The source code will be made publicly available upon acceptance.
♻ ☆ Closing the Data-Efficiency Gap Between Autoregressive and Masked Diffusion LLMs
Large language models (LLMs) are often used in environments where facts evolve, yet factual knowledge updates via fine-tuning on unstructured text often suffers from 1) reliance on compute-heavy paraphrase augmentation and 2) the reversal curse. Recent studies show diffusion large language models (dLLMs) require fewer training samples to achieve lower loss in pre-training and are more resistant to the reversal curse, suggesting dLLMs may learn new knowledge more easily than autoregressive LLMs (arLLMs). We test this hypothesis in controlled knowledge fine-tuning experiments and find that while arLLMs rely on paraphrase augmentation to generalize knowledge text into question-answering (QA) capability, dLLMs do not require paraphrases to achieve high QA accuracy. To further investigate whether the demasking objective alone can induce such a knowledge injection advantage in dLLMs regardless of their diffusion denoising paradigm, we propose masked fine-tuning for arLLMs, which prompts an arLLM to reconstruct the original text given a masked version in context. The masked fine-tuning for arLLMs substantially improves the efficacy of knowledge injection, i.e. no paraphrase needed and resistant to the reversal curse, closing the gap between arLLMs and dLLMs. We also demonstrate that the same demasking objective improves supervised fine-tuning (SFT) on math tasks over standard SFT, suggesting broader applicability of the demasking objective.
♻ ☆ From Text to Talk: Audio-Language Model Needs Non-Autoregressive Joint Training
Recent advances in large language models (LLMs) have attracted significant interest in extending their capabilities to multimodal scenarios, particularly for speech-to-speech conversational systems. However, existing multimodal models handling interleaved audio and text rely on autoregressive (AR) methods, overlooking that text depends on target-target relations whereas audio depends mainly on source-target relations. In this work, we propose Text-to-Talk (TtT), a unified audio-text framework that integrates AR text generation with non-autoregressive (NAR) audio diffusion in a single Transformer. By leveraging the any-order AR property of absorbing discrete diffusion, our approach provides a unified training objective for text and audio. To support this hybrid generation paradigm, we design a modality-aware attention mechanism that enforces causal decoding for text while allowing bidirectional modeling within audio spans, and further introduce three training strategies that reduce train-test discrepancies. During inference, TtT employs block-wise diffusion to synthesize audio in parallel while flexibly handling variable-length outputs. Comprehensive experiments on Audio-QA, ASR, AAC and speech-to-speech benchmarks show that TtT consistently surpasses strong AR and NAR baselines, with additional ablation and training-strategy analyses confirming the contribution of each component. We will open-source our models, data and code to facilitate future research in this direction.
♻ ☆ WaveSP-Net: Learnable Wavelet-Domain Sparse Prompt Tuning for Speech Deepfake Detection ICASSP 2026
Modern front-end design for speech deepfake detection relies on full fine-tuning of large pre-trained models like XLSR. However, this approach is not parameter-efficient and may lead to suboptimal generalization to realistic, in-the-wild data types. To address these limitations, we introduce a new family of parameter-efficient front-ends that fuse prompt-tuning with classical signal processing transforms. These include FourierPT-XLSR, which uses the Fourier Transform, and two variants based on the Wavelet Transform: WSPT-XLSR and Partial-WSPT-XLSR. We further propose WaveSP-Net, a novel architecture combining a Partial-WSPT-XLSR front-end and a bidirectional Mamba-based back-end. This design injects multi-resolution features into the prompt embeddings, which enhances the localization of subtle synthetic artifacts without altering the frozen XLSR parameters. Experimental results demonstrate that WaveSP-Net outperforms several state-of-the-art models on two new and challenging benchmarks, Deepfake-Eval-2024 and SpoofCeleb, with low trainable parameters and notable performance gains. The code and models are available at https://github.com/xxuan-acoustics/WaveSP-Net.
comment: Accepted at ICASSP 2026
♻ ☆ Mind the Gap: The Divergence Between Human and LLM-Generated Tasks
Humans constantly generate a diverse range of tasks guided by internal motivations. While generative agents powered by large language models (LLMs) aim to simulate this complex behavior, it remains uncertain whether they operate on similar cognitive principles. To address this, we conducted a task-generation experiment comparing human responses with those of an LLM agent (GPT-4o). We find that human task generation is consistently influenced by psychological drivers, including personal values (e.g., Openness to Change) and cognitive style. Even when these psychological drivers are explicitly provided to the LLM, it fails to reflect the corresponding behavioral patterns. They produce tasks that are markedly less social, less physical, and thematically biased toward abstraction. Interestingly, while the LLM's tasks were perceived as more fun and novel, this highlights a disconnect between its linguistic proficiency and its capacity to generate human-like, embodied goals. We conclude that there is a core gap between the value-driven, embodied nature of human cognition and the statistical patterns of LLMs, highlighting the necessity of incorporating intrinsic motivation and physical grounding into the design of more human-aligned agents.
♻ ☆ The Imitation Game: Turing Machine Imitator is Length Generalizable Reasoner
Length generalization, the ability to solve problems of longer sequences than those observed during training, poses a core challenge of Transformer-based large language models (LLM). Although existing studies have predominantly focused on data-driven approaches for arithmetic operations and symbolic manipulation tasks, these approaches tend to be task-specific with limited overall performance. To pursue a more general solution, this paper focuses on a broader case of reasoning problems that are computable, i.e., problems that algorithms can solve, thus can be solved by the Turing Machine. From this perspective, this paper proposes Turing MAchine Imitation Learning (TAIL) to improve the length generalization ability of LLMs. TAIL synthesizes chain-of-thoughts (CoT) data that imitate the execution process of a Turing Machine by computer programs, which linearly expands the reasoning steps into atomic states to alleviate shortcut learning and explicit memory fetch mechanism to reduce the difficulties of dynamic and long-range data access in elementary operations. To validate the reliability and universality of TAIL, we construct a challenging synthetic dataset covering 8 classes of algorithms and 18 tasks. Without bells and whistles, TAIL significantly improves the length generalization ability as well as the performance of Qwen2.5-7B on various tasks using only synthetic data, surpassing previous methods and DeepSeek-R1. The experimental results reveal that the key concepts in the Turing Machine, instead of the thinking styles, are indispensable for TAIL for length generalization, through which the model exhibits read-and-write behaviors consistent with the properties of the Turing Machine in their attention layers. This work provides a promising direction for future research in the learning of LLM reasoning from synthetic data.
♻ ☆ mR3: Multilingual Rubric-Agnostic Reward Reasoning Models ICLR 2026
Evaluation using Large Language Model (LLM) judges has been widely adopted in English and shown to be effective for automatic evaluation. However, their performance does not generalize well to non-English settings, and it remains unclear what constitutes effective multilingual training for such judges. In this paper, we introduce mR3, a massively multilingual, rubric-agnostic reward reasoning model trained on 72 languages, achieving the broadest language coverage in reward modeling to date. We present a comprehensive study of data and curriculum selection for training to identify effective strategies and data sources for building high-quality reward models, including support for reasoning in the target language. Our approach attains state-of-the-art performance on multilingual reward model benchmarks, surpassing much larger models (i.e., GPT-OSS-120B) while being up to 9x smaller, and its effectiveness is further confirmed through extensive ablation studies. Finally, we demonstrate the effectiveness of mR3 in off-policy preference optimization and validate the quality of its reasoning traces and rubric-based evaluations through human studies with 20 annotators across 12 languages, where mR3 models' reasoning is preferred, including for extremely low-resource languages that are entirely unseen during training. Our models, data, and code are available as open source at https://github.com/rubricreward/mr3.
comment: Accepted to ICLR 2026
♻ ☆ First is Not Really Better Than Last: Evaluating Layer Choice and Aggregation Strategies in Language Model Data Influence Estimation ICLR 2026
Identifying how training samples influence/impact Large Language Model (LLM) decision-making is essential for effectively interpreting model decisions and auditing large-scale datasets. Current training sample influence estimation methods (also known as influence functions) undertake this goal by utilizing information flow through the model via its first-order and higher-order gradient terms. However, owing to the large model sizes of today consisting of billions of parameters, these influence computations are often restricted to some subset of model layers to ensure computational feasibility. Prior seminal work by Yeh et al. (2022) in assessing which layers are best suited for computing language data influence concluded that the first (embedding) layers are the most informative for this purpose, using a hypothesis based on influence scores canceling out (i.e., the cancellation effect). In this work, we propose theoretical and empirical evidence demonstrating how the cancellation effect is unreliable, and that middle attention layers are better estimators for influence. Furthermore, we address the broader challenge of aggregating influence scores across layers, and showcase how alternatives to standard averaging (such as ranking and vote-based methods) can lead to significantly improved performance. Finally, we propose better methods for evaluating influence score efficacy in LLMs without undertaking model retraining, and propose a new metric known as the Noise Detection Rate (NDR) that exhibits strong predictive capability compared to the cancellation effect. Through extensive experiments across LLMs of varying types and scales, we concretely determine that the first (layers) are not necessarily better than the last (layers) for LLM influence estimation, contrasting with prior knowledge in the field.
comment: Accepted to ICLR 2026
♻ ☆ Are LLMs Really Not Knowledgeable? Mining the Submerged Knowledge in LLMs' Memory
Large language models (LLMs) have shown promise as parametric knowledge bases, but often underperform on question answering (QA) tasks due to hallucinations and uncertainty. While prior work attributes these failures to knowledge gaps in the model's parameters, we uncover a complementary phenomenon: LLMs frequently retain correct knowledge even when generating incorrect or "unsure" answers. By analyzing the token-level output distributions, we find that correct answers often appear among high-probability candidates, despite not being selected. Motivated by this, we propose Hits@k, a novel metric to evaluate latent knowledge retention independent of answer surface form. Our experiments reveal that LLMs possess significantly more factual knowledge than is reflected by standard QA accuracy. Building on these insights, we further examine the prevailing few-shot QA paradigm. We find that prompting strategies which allow "unsure" outputs can inadvertently suppress correct answers by discouraging low-confidence generation. We design a set of quantitative experiments to measure this suppression effect, offering practical guidance for future prompt and decoding design in knowledge-intensive tasks.
♻ ☆ PEARL: Self-Evolving Assistant for Time Management with Reinforcement Learning
Overlapping calendar invitations force busy professionals to repeatedly decide which meetings to attend, reschedule, or decline. We refer to this preference-driven decision process as calendar conflict resolution. Automating this decision process is crucial yet challenging. Scheduling logistics can drain hours, and human delegation often fails at scale, which motivates us to ask: Can we trust large language models (LLMs) or language agents to manage time? To enable a systematic study of this question, we introduce CalConflictBench, a benchmark for long-horizon calendar conflict resolution. In CalConflictBench, conflicts are presented to agents round-by-round over a calendar year, requiring them to infer and adapt to user preferences progressively. Our experiments show that current LLM agents perform poorly with high error rates, e.g., Qwen-3-30B-Think has an average error rate of 35%. To address this gap, we propose PEARL, a reinforcement-learning framework that (i) augments the language agent with an external preference memory that stores and updates inferred strategies (e.g., attendee priorities, topic importance, time/location preferences), and (ii) optimizes the agent with round-wise rewards that directly supervise decision correctness, ranking quality, and memory usage across rounds. Experiments on CalConflictBench show that PEARL achieves an error reduction rate of 0.76 and a 55% improvement in average error rate compared to the strongest baseline.
♻ ☆ AfroScope: A Framework for Studying the Linguistic Landscape of Africa
Language Identification (LID) is the task of determining the language of a given text and is a fundamental preprocessing step that affects the reliability of downstream NLP applications. While recent work has expanded LID coverage for African languages, existing approaches remain limited in (i) the number of supported languages and (ii) their ability to make fine-grained distinctions among closely related varieties. We introduce AfroScope, a unified framework for African LID that includes AfroScope-Data, a dataset covering 713 African languages, and AfroScope-Models, a suite of strong LID models with broad language coverage. To better distinguish highly confusable languages, we propose a hierarchical classification approach that leverages Mirror-Serengeti, a specialized embedding model targeting 29 closely related or geographically proximate languages. This approach improves macro F1 by 4.55 on this confusable subset compared to our best base model. Finally, we analyze cross linguistic transfer and domain effects, offering guidance for building robust African LID systems. We position African LID as an enabling technology for large scale measurement of Africas linguistic landscape in digital text and release AfroScope-Data and AfroScope-Models publicly.
♻ ☆ Arab Voices: Mapping Standard and Dialectal Arabic Speech Technology
Dialectal Arabic (DA) speech data vary widely in domain coverage, dialect labeling practices, and recording conditions, complicating cross-dataset comparison and model evaluation. To characterize this landscape, we conduct a computational analysis of linguistic ``dialectness'' alongside objective proxies of audio quality on the training splits of widely used DA corpora. We find substantial heterogeneity both in acoustic conditions and in the strength and consistency of dialectal signals across datasets, underscoring the need for standardized characterization beyond coarse labels. To reduce fragmentation and support reproducible evaluation, we introduce Arab Voices, a standardized framework for DA ASR. Arab Voices provides unified access to 31 datasets spanning 14 dialects, with harmonized metadata and evaluation utilities. We further benchmark a range of recent ASR systems, establishing strong baselines for modern DA ASR.
♻ ☆ Guided Perturbation Sensitivity (GPS): Detecting Adversarial Text via Embedding Stability and Word Importance AAAI 2026
Adversarial text attacks remain a persistent threat to transformer models, yet existing defenses are typically attack-specific or require costly model retraining, leaving a gap for attack-agnostic detection. We introduce Guided Perturbation Sensitivity (GPS), a detection framework that identifies adversarial examples by measuring how embedding representations change when important words are masked. GPS first ranks words using importance heuristics, then measures embedding sensitivity to masking top-k critical words, and processes the resulting patterns with a BiLSTM detector. Experiments show that adversarially perturbed words exhibit disproportionately high masking sensitivity compared to naturally important words. Across three datasets, three attack types, and two victim models, GPS achieves over 85% detection accuracy and demonstrates competitive performance compared to existing state-of-the-art methods, often at lower computational cost. Using Normalized Discounted Cumulative Gain (NDCG) to measure perturbation identification quality, we demonstrate that gradient-based ranking significantly outperforms attention, hybrid, and random selection approaches, with identification quality strongly correlating with detection performance for word-level attacks ($ρ= 0.65$). GPS generalizes to unseen datasets, attacks, and models without retraining, providing a practical solution for adversarial text detection.
comment: 19 pages, 19 figures, 8 tables. Accepted to AAAI 2026. Code available at https://github.com/ReDASers/Guided-Perturbation-Sensitivity
♻ ☆ SFT Doesn't Always Hurt General Capabilities: Revisiting Domain-Specific Fine-Tuning in LLMs ICLR 2026
Supervised Fine-Tuning (SFT) on domain-specific datasets is a common approach to adapt Large Language Models (LLMs) to specialized tasks but is often believed to degrade their general capabilities. In this work, we revisit this trade-off and present both empirical and theoretical insights. First, we show that SFT does not always hurt: using a smaller learning rate can substantially mitigate general performance degradation while preserving comparable target-domain performance. We then provide a theoretical analysis that explains these phenomena and further motivates a new method, Token-Adaptive Loss Reweighting (TALR). Building on this, and recognizing that smaller learning rates alone do not fully eliminate general-performance degradation in all cases, we evaluate a range of strategies for reducing general capability loss, including L2 regularization, LoRA, model averaging, FLOW, and our proposed TALR. Experimental results demonstrate that while no method completely eliminates the trade-off, TALR consistently outperforms these baselines in balancing domain-specific gains and general capabilities. Finally, we distill our findings into practical guidelines for adapting LLMs to new domains: (i) using a small learning rate to achieve a favorable trade-off, and (ii) when a stronger balance is further desired, adopt TALR as an effective strategy.
comment: Accepted by ICLR 2026
♻ ☆ LLM$\times$MapReduce-V3: Enabling Interactive In-Depth Survey Generation through a MCP-Driven Hierarchically Modular Agent System EMNLP2025
We introduce LLM x MapReduce-V3, a hierarchically modular agent system designed for long-form survey generation. Building on the prior work, LLM x MapReduce-V2, this version incorporates a multi-agent architecture where individual functional components, such as skeleton initialization, digest construction, and skeleton refinement, are implemented as independent model-context-protocol (MCP) servers. These atomic servers can be aggregated into higher-level servers, creating a hierarchically structured system. A high-level planner agent dynamically orchestrates the workflow by selecting appropriate modules based on their MCP tool descriptions and the execution history. This modular decomposition facilitates human-in-the-loop intervention, affording users greater control and customization over the research process. Through a multi-turn interaction, the system precisely captures the intended research perspectives to generate a comprehensive skeleton, which is then developed into an in-depth survey. Human evaluations demonstrate that our system surpasses representative baselines in both content depth and length, highlighting the strength of MCP-based modular planning.
comment: Accepted by EMNLP2025 System Demonstration
♻ ☆ Rec-R1: Bridging Generative Large Language Models and User-Centric Recommendation Systems via Reinforcement Learning
We propose Rec-R1, a general reinforcement learning framework that bridges large language models (LLMs) with recommendation systems through closed-loop optimization. Unlike prompting and supervised fine-tuning (SFT), Rec-R1 directly optimizes LLM generation using feedback from a fixed black-box recommendation model, without relying on synthetic SFT data from proprietary models such as GPT-4o. This avoids the substantial cost and effort required for data distillation. To verify the effectiveness of Rec-R1, we evaluate it on two representative tasks: product search and sequential recommendation. Experimental results demonstrate that Rec-R1 not only consistently outperforms prompting- and SFT-based methods, but also achieves significant gains over strong discriminative baselines, even when used with simple retrievers such as BM25. Moreover, Rec-R1 preserves the general-purpose capabilities of the LLM, unlike SFT, which often impairs instruction-following and reasoning. These findings suggest Rec-R1 as a promising foundation for continual task-specific adaptation without catastrophic forgetting.
comment: Published in the TMLR journal
Machine Learning 235
☆ Evolutionary Strategies lead to Catastrophic Forgetting in LLMs
One of the biggest missing capabilities in current AI systems is the ability to learn continuously after deployment. Implementing such continually learning systems have several challenges, one of which is the large memory requirement of gradient-based algorithms that are used to train state-of-the-art LLMs. Evolutionary Strategies (ES) have recently re-emerged as a gradient-free alternative to traditional learning algorithms and have shown encouraging performance on specific tasks in LLMs. In this paper, we perform a comprehensive analysis of ES and specifically evaluate its forgetting curves when training for an increasing number of update steps. We first find that ES is able to reach performance numbers close to GRPO for math and reasoning tasks with a comparable compute budget. However, and most importantly for continual learning, the performance gains in ES is accompanied by significant forgetting of prior abilities, limiting its applicability for training models online. We also explore the reason behind this behavior and show that the updates made using ES are much less sparse and have orders of magnitude larger $\ell_2$ norm compared to corresponding GRPO updates, explaining the contrasting forgetting curves between the two algorithms. With this study, we aim to highlight the issue of forgetting in gradient-free algorithms like ES and hope to inspire future work to mitigate these issues.
☆ Exploring Transformer Placement in Variational Autoencoders for Tabular Data Generation
Tabular data remains a challenging domain for generative models. In particular, the standard Variational Autoencoder (VAE) architecture, typically composed of multilayer perceptrons, struggles to model relationships between features, especially when handling mixed data types. In contrast, Transformers, through their attention mechanism, are better suited for capturing complex feature interactions. In this paper, we empirically investigate the impact of integrating Transformers into different components of a VAE. We conduct experiments on 57 datasets from the OpenML CC18 suite and draw two main conclusions. First, results indicate that positioning Transformers to leverage latent and decoder representations leads to a trade-off between fidelity and diversity. Second, we observe a high similarity between consecutive blocks of a Transformer in all components. In particular, in the decoder, the relationship between the input and output of a Transformer is approximately linear.
☆ C3Box: A CLIP-based Class-Incremental Learning Toolbox
Traditional machine learning systems are typically designed for static data distributions, which suffer from catastrophic forgetting when learning from evolving data streams. Class-Incremental Learning (CIL) addresses this challenge by enabling learning systems to continuously learn new classes while preserving prior knowledge. With the rise of pre-trained models (PTMs) such as CLIP, leveraging their strong generalization and semantic alignment capabilities has become a promising direction in CIL. However, existing CLIP-based CIL methods are often scattered across disparate codebases, rely on inconsistent configurations, hindering fair comparisons, reproducibility, and practical adoption. Therefore, we propose C3Box (CLIP-based Class-inCremental learning toolBOX), a modular and comprehensive Python toolbox. C3Box integrates representative traditional CIL methods, ViT-based CIL methods, and state-of-the-art CLIP-based CIL methods into a unified CLIP-based framework. By inheriting the streamlined design of PyCIL, C3Box provides a JSON-based configuration and standardized execution pipeline. This design enables reproducible experimentation with low engineering overhead and makes C3Box a reliable benchmark platform for continual learning research. Designed to be user-friendly, C3Box relies only on widely used open-source libraries and supports major operating systems. The code is available at https://github.com/LAMDA-CL/C3Box.
comment: The code is available at https://github.com/LAMDA-CL/C3Box
☆ Post-Training Fairness Control: A Single-Train Framework for Dynamic Fairness in Recommendation WWW 2026
Despite growing efforts to mitigate unfairness in recommender systems, existing fairness-aware methods typically fix the fairness requirement at training time and provide limited post-training flexibility. However, in real-world scenarios, diverse stakeholders may demand differing fairness requirements over time, so retraining for different fairness requirements becomes prohibitive. To address this limitation, we propose Cofair, a single-train framework that enables post-training fairness control in recommendation. Specifically, Cofair introduces a shared representation layer with fairness-conditioned adapter modules to produce user embeddings specialized for varied fairness levels, along with a user-level regularization term that guarantees user-wise monotonic fairness improvements across these levels. We theoretically establish that the adversarial objective of Cofair upper bounds demographic parity and the regularization term enforces progressive fairness at user level. Comprehensive experiments on multiple datasets and backbone models demonstrate that our framework provides dynamic fairness at different levels, delivering comparable or better fairness-accuracy curves than state-of-the-art baselines, without the need to retrain for each new fairness requirement. Our code is publicly available at https://github.com/weixinchen98/Cofair.
comment: Accepted to WWW 2026 Workshop on HCRS (Oral Presentation)
☆ PatchFormer: A Patch-Based Time Series Foundation Model with Hierarchical Masked Reconstruction and Cross-Domain Transfer Learning for Zero-Shot Multi-Horizon Forecasting
Time series forecasting is a fundamental problem with applications in climate, energy, healthcare, and finance. Many existing approaches require domain-specific feature engineering and substantial labeled data for each task. We introduce PatchFormer, a patch-based time series foundation model that uses hierarchical masked reconstruction for self-supervised pretraining and lightweight adapters for efficient transfer. PatchFormer segments time series into patches and learns multiscale temporal representations with learnable aggregation across temporal scales. Pretraining uses masked patch reconstruction with dynamic masking and objectives that encourage both local accuracy and global consistency, followed by cross-domain knowledge distillation. Experiments on 24 benchmark datasets spanning weather, energy, traffic, finance, and healthcare demonstrate state-of-the-art zero-shot multi-horizon forecasting, reducing mean squared error by 27.3 percent relative to strong baselines while requiring 94 percent less task-specific training data. The model exhibits near log-linear scaling with more pretraining data up to 100 billion points and processes length-512 sequences 3.8x faster than full-sequence transformers.
comment: 5 pages; 2 figures; 7 tables
☆ $\mathbb{R}^{2k}$ is Theoretically Large Enough for Embedding-based Top-$k$ Retrieval
This paper studies the minimal dimension required to embed subset memberships ($m$ elements and ${m\choose k}$ subsets of at most $k$ elements) into vector spaces, denoted as Minimal Embeddable Dimension (MED). The tight bounds of MED are derived theoretically and supported empirically for various notions of "distances" or "similarities," including the $\ell_2$ metric, inner product, and cosine similarity. In addition, we conduct numerical simulation in a more achievable setting, where the ${m\choose k}$ subset embeddings are chosen as the centroid of the embeddings of the contained elements. Our simulation easily realizes a logarithmic dependency between the MED and the number of elements to embed. These findings imply that embedding-based retrieval limitations stem primarily from learnability challenges, not geometric constraints, guiding future algorithm design.
☆ Reward Models Inherit Value Biases from Pretraining
Reward models (RMs) are central to aligning large language models (LLMs) with human values but have received less attention than pre-trained and post-trained LLMs themselves. Because RMs are initialized from LLMs, they inherit representations that shape their behavior, but the nature and extent of this influence remain understudied. In a comprehensive study of 10 leading open-weight RMs using validated psycholinguistic corpora, we show that RMs exhibit significant differences along multiple dimensions of human value as a function of their base model. Using the "Big Two" psychological axes, we show a robust preference of Llama RMs for "agency" and a corresponding robust preference of Gemma RMs for "communion." This phenomenon holds even when the preference data and finetuning process are identical, and we trace it back to the logits of the respective instruction-tuned and pre-trained models. These log-probability differences themselves can be formulated as an implicit RM; we derive usable implicit reward scores and show that they exhibit the very same agency/communion difference. We run experiments training RMs with ablations for preference data source and quantity, which demonstrate that this effect is not only repeatable but surprisingly durable. Despite RMs being designed to represent human preferences, our evidence shows that their outputs are influenced by the pretrained LLMs on which they are based. This work underscores the importance of safety and alignment efforts at the pretraining stage, and makes clear that open-source developers' choice of base model is as much a consideration of values as of performance.
☆ Linear representations in language models can change dramatically over a conversation
Language model representations often contain linear directions that correspond to high-level concepts. Here, we study the dynamics of these representations: how representations evolve along these dimensions within the context of (simulated) conversations. We find that linear representations can change dramatically over a conversation; for example, information that is represented as factual at the beginning of a conversation can be represented as non-factual at the end and vice versa. These changes are content-dependent; while representations of conversation-relevant information may change, generic information is generally preserved. These changes are robust even for dimensions that disentangle factuality from more superficial response patterns, and occur across different model families and layers of the model. These representation changes do not require on-policy conversations; even replaying a conversation script written by an entirely different model can produce similar changes. However, adaptation is much weaker from simply having a sci-fi story in context that is framed more explicitly as such. We also show that steering along a representational direction can have dramatically different effects at different points in a conversation. These results are consistent with the idea that representations may evolve in response to the model playing a particular role that is cued by a conversation. Our findings may pose challenges for interpretability and steering -- in particular, they imply that it may be misleading to use static interpretations of features or directions, or probes that assume a particular range of features consistently corresponds to a particular ground-truth value. However, these types of representational dynamics also point to exciting new research directions for understanding how models adapt to context.
☆ VSCOUT: A Hybrid Variational Autoencoder Approach to Outlier Detection in High-Dimensional Retrospective Monitoring
Modern industrial and service processes generate high-dimensional, non-Gaussian, and contamination-prone data that challenge the foundational assumptions of classical Statistical Process Control (SPC). Heavy tails, multimodality, nonlinear dependencies, and sparse special-cause observations can distort baseline estimation, mask true anomalies, and prevent reliable identification of an in-control (IC) reference set. To address these challenges, we introduce VSCOUT, a distribution-free framework designed specifically for retrospective (Phase I) monitoring in high-dimensional settings. VSCOUT combines an Automatic Relevance Determination Variational Autoencoder (ARD-VAE) architecture with ensemble-based latent outlier filtering and changepoint detection. The ARD prior isolates the most informative latent dimensions, while the ensemble and changepoint filters identify pointwise and structural contamination within the determined latent space. A second-stage retraining step removes flagged observations and re-estimates the latent structure using only the retained inliers, mitigating masking and stabilizing the IC latent manifold. This two-stage refinement produces a clean and reliable IC baseline suitable for subsequent Phase II deployment. Extensive experiments across benchmark datasets demonstrate that VSCOUT achieves superior sensitivity to special-cause structure while maintaining controlled false alarms, outperforming classical SPC procedures, robust estimators, and modern machine-learning baselines. Its scalability, distributional flexibility, and resilience to complex contamination patterns position VSCOUT as a practical and effective method for retrospective modeling and anomaly detection in AI-enabled environments.
☆ Training Reasoning Models on Saturated Problems via Failure-Prefix Conditioning
Reinforcement Learning with Verifiable Rewards (RLVR) has substantially improved the reasoning abilities of large language models (LLMs), yet training often stalls as problems become saturated. We identify the core challenge as the poor accessibility of informative failures: learning signals exist but are rarely encountered during standard rollouts. To address this, we propose failure-prefix conditioning, a simple and effective method for learning from saturated problems. Rather than starting from the original question, our approach reallocates exploration by conditioning training on prefixes derived from rare incorrect reasoning trajectories, thereby exposing the model to failure-prone states. We observe that failure-prefix conditioning yields performance gains matching those of training on medium-difficulty problems, while preserving token efficiency. Furthermore, we analyze the model's robustness, finding that our method reduces performance degradation under misleading failure prefixes, albeit with a mild trade-off in adherence to correct early reasoning. Finally, we demonstrate that an iterative approach, which refreshes failure prefixes during training, unlocks additional gains after performance plateaus. Overall, our results suggest that failure-prefix conditioning offers an effective pathway to extend RLVR training on saturated problems.
comment: 16 pages
☆ Demystifying Prediction Powered Inference
Machine learning predictions are increasingly used to supplement incomplete or costly-to-measure outcomes in fields such as biomedical research, environmental science, and social science. However, treating predictions as ground truth introduces bias while ignoring them wastes valuable information. Prediction-Powered Inference (PPI) offers a principled framework that leverages predictions from large unlabeled datasets to improve statistical efficiency while maintaining valid inference through explicit bias correction using a smaller labeled subset. Despite its potential, the growing PPI variants and the subtle distinctions between them have made it challenging for practitioners to determine when and how to apply these methods responsibly. This paper demystifies PPI by synthesizing its theoretical foundations, methodological extensions, connections to existing statistics literature, and diagnostic tools into a unified practical workflow. Using the Mosaiks housing price data, we show that PPI variants produce tighter confidence intervals than complete-case analysis, but that double-dipping, i.e. reusing training data for inference, leads to anti-conservative confidence intervals and coverages. Under missing-not-at-random mechanisms, all methods, including classical inference using only labeled data, yield biased estimates. We provide a decision flowchart linking assumption violations to appropriate PPI variants, a summary table of selective methods, and practical diagnostic strategies for evaluating core assumptions. By framing PPI as a general recipe rather than a single estimator, this work bridges methodological innovation and applied practice, helping researchers responsibly integrate predictions into valid inference.
☆ GNN Explanations that do not Explain and How to find Them
Explanations provided by Self-explainable Graph Neural Networks (SE-GNNs) are fundamental for understanding the model's inner workings and for identifying potential misuse of sensitive attributes. Although recent works have highlighted that these explanations can be suboptimal and potentially misleading, a characterization of their failure cases is unavailable. In this work, we identify a critical failure of SE-GNN explanations: explanations can be unambiguously unrelated to how the SE-GNNs infer labels. We show that, on the one hand, many SE-GNNs can achieve optimal true risk while producing these degenerate explanations, and on the other, most faithfulness metrics can fail to identify these failure modes. Our empirical analysis reveals that degenerate explanations can be maliciously planted (allowing an attacker to hide the use of sensitive attributes) and can also emerge naturally, highlighting the need for reliable auditing. To address this, we introduce a novel faithfulness metric that reliably marks degenerate explanations as unfaithful, in both malicious and natural settings. Our code is available in the supplemental.
☆ Context-Augmented Code Generation Using Programming Knowledge Graphs
Large Language Models (LLMs) excel at code generation but struggle with complex problems. Retrieval-Augmented Generation (RAG) mitigates this issue by integrating external knowledge, yet retrieval models often miss relevant context, and generation models hallucinate with irrelevant data. We propose Programming Knowledge Graph (PKG) for semantic representation and fine-grained retrieval of code and text. Our approach enhances retrieval precision through tree pruning and mitigates hallucinations via a re-ranking mechanism that integrates non-RAG solutions. Structuring external data into finer-grained nodes improves retrieval granularity. Evaluations on HumanEval and MBPP show up to 20% pass@1 accuracy gains and a 34% improvement over baselines on MBPP. Our findings demonstrate that our proposed PKG approach along with re-ranker effectively address complex problems while maintaining minimal negative impact on solutions that are already correct without RAG. The replication package is published at https://github.com/iamshahd/ProgrammingKnowledgeGraph
☆ Reinforcement Learning via Self-Distillation
Large language models are increasingly post-trained with reinforcement learning in verifiable domains such as code and math. Yet, current methods for reinforcement learning with verifiable rewards (RLVR) learn only from a scalar outcome reward per attempt, creating a severe credit-assignment bottleneck. Many verifiable environments actually provide rich textual feedback, such as runtime errors or judge evaluations, that explain why an attempt failed. We formalize this setting as reinforcement learning with rich feedback and introduce Self-Distillation Policy Optimization (SDPO), which converts tokenized feedback into a dense learning signal without any external teacher or explicit reward model. SDPO treats the current model conditioned on feedback as a self-teacher and distills its feedback-informed next-token predictions back into the policy. In this way, SDPO leverages the model's ability to retrospectively identify its own mistakes in-context. Across scientific reasoning, tool use, and competitive programming on LiveCodeBench v6, SDPO improves sample efficiency and final accuracy over strong RLVR baselines. Notably, SDPO also outperforms baselines in standard RLVR environments that only return scalar feedback by using successful rollouts as implicit feedback for failed attempts. Finally, applying SDPO to individual questions at test time accelerates discovery on difficult binary-reward tasks, achieving the same discovery probability as best-of-k sampling or multi-turn conversations with 3x fewer attempts.
☆ Conditional PED-ANOVA: Hyperparameter Importance in Hierarchical & Dynamic Search Spaces
We propose conditional PED-ANOVA (condPED-ANOVA), a principled framework for estimating hyperparameter importance (HPI) in conditional search spaces, where the presence or domain of a hyperparameter can depend on other hyperparameters. Although the original PED-ANOVA provides a fast and efficient way to estimate HPI within the top-performing regions of the search space, it assumes a fixed, unconditional search space and therefore cannot properly handle conditional hyperparameters. To address this, we introduce a conditional HPI for top-performing regions and derive a closed-form estimator that accurately reflects conditional activation and domain changes. Experiments show that naive adaptations of existing HPI estimators yield misleading or uninterpretable importance estimates in conditional settings, whereas condPED-ANOVA consistently provides meaningful importances that reflect the underlying conditional structure.
comment: 16 pages, 9 figures
☆ Dissecting Multimodal In-Context Learning: Modality Asymmetries and Circuit Dynamics in modern Transformers
Transformer-based multimodal large language models often exhibit in-context learning (ICL) abilities. Motivated by this phenomenon, we ask: how do transformers learn to associate information across modalities from in-context examples? We investigate this question through controlled experiments on small transformers trained on synthetic classification tasks, enabling precise manipulation of data statistics and model architecture. We begin by revisiting core principles of unimodal ICL in modern transformers. While several prior findings replicate, we find that Rotary Position Embeddings (RoPE) increases the data complexity threshold for ICL. Extending to the multimodal setting reveals a fundamental learning asymmetry: when pretrained on high-diversity data from a primary modality, surprisingly low data complexity in the secondary modality suffices for multimodal ICL to emerge. Mechanistic analysis shows that both settings rely on an induction-style mechanism that copies labels from matching in-context exemplars; multimodal training refines and extends these circuits across modalities. Our findings provide a mechanistic foundation for understanding multimodal ICL in modern transformers and introduce a controlled testbed for future investigation.
☆ SERA: Soft-Verified Efficient Repository Agents
Open-weight coding agents should hold a fundamental advantage over closed-source systems: they can be specialized to private codebases, encoding repository-specific information directly in their weights. Yet the cost and complexity of training has kept this advantage theoretical. We show it is now practical. We present Soft-Verified Efficient Repository Agents (SERA), an efficient method for training coding agents that enables the rapid and cheap creation of agents specialized to private codebases. Using only supervised finetuning (SFT), SERA achieves state-of-the-art results among fully open-source (open data, method, code) models while matching the performance of frontier open-weight models like Devstral-Small-2. Creating SERA models is 26x cheaper than reinforcement learning and 57x cheaper than previous synthetic data methods to reach equivalent performance. Our method, Soft Verified Generation (SVG), generates thousands of trajectories from a single code repository. Combined with cost-efficiency, this enables specialization to private codebases. Beyond repository specialization, we apply SVG to a larger corpus of codebases, generating over 200,000 synthetic trajectories. We use this dataset to provide detailed analysis of scaling laws, ablations, and confounding factors for training coding agents. Overall, we believe our work will greatly accelerate research on open coding agents and showcase the advantage of open-source models that can specialize to private codebases. We release SERA as the first model in Ai2's Open Coding Agents series, along with all our code, data, and Claude Code integration to support the research community.
comment: 21 main pages, 7 pages appendix
☆ Neural Quantum States in Mixed Precision
Scientific computing has long relied on double precision (64-bit floating point) arithmetic to guarantee accuracy in simulations of real-world phenomena. However, the growing availability of hardware accelerators such as Graphics Processing Units (GPUs) has made low-precision formats attractive due to their superior performance, reduced memory footprint, and improved energy efficiency. In this work, we investigate the role of mixed-precision arithmetic in neural-network based Variational Monte Carlo (VMC), a widely used method for solving computationally otherwise intractable quantum many-body systems. We first derive general analytical bounds on the error introduced by reduced precision on Metropolis-Hastings MCMC, and then empirically validate these bounds on the use-case of VMC. We demonstrate that significant portions of the algorithm, in particular, sampling the quantum state, can be executed in half precision without loss of accuracy. More broadly, this work provides a theoretical framework to assess the applicability of mixed-precision arithmetic in machine-learning approaches that rely on MCMC sampling. In the context of VMC, we additionally demonstrate the practical effectiveness of mixed-precision strategies, enabling more scalable and energy-efficient simulations of quantum many-body systems.
comment: 22 pages, 12 figures
☆ Active Learning for Decision Trees with Provable Guarantees ICLR 2026
This paper advances the theoretical understanding of active learning label complexity for decision trees as binary classifiers. We make two main contributions. First, we provide the first analysis of the disagreement coefficient for decision trees-a key parameter governing active learning label complexity. Our analysis holds under two natural assumptions required for achieving polylogarithmic label complexity, (i) each root-to-leaf path queries distinct feature dimensions, and (ii) the input data has a regular, grid-like structure. We show these assumptions are essential, as relaxing them leads to polynomial label complexity. Second, we present the first general active learning algorithm for binary classification that achieves a multiplicative error guarantee, producing a $(1+ε)$-approximate classifier. By combining these results, we design an active learning algorithm for decision trees that uses only a polylogarithmic number of label queries in the dataset size, under the stated assumptions. Finally, we establish a label complexity lower bound, showing our algorithm's dependence on the error tolerance $ε$ is close to optimal.
comment: 10 pages, 43 pages with appendix, ICLR 2026, Conference URL: https://openreview.net/forum?id=NOkjJPJIit
☆ When More Data Doesn't Help: Limits of Adaptation in Multitask Learning
Multitask learning and related frameworks have achieved tremendous success in modern applications. In multitask learning problem, we are given a set of heterogeneous datasets collected from related source tasks and hope to enhance the performance above what we could hope to achieve by solving each of them individually. The recent work of arXiv:2006.15785 has showed that, without access to distributional information, no algorithm based on aggregating samples alone can guarantee optimal risk as long as the sample size per task is bounded. In this paper, we focus on understanding the statistical limits of multitask learning. We go beyond the no-free-lunch theorem in arXiv:2006.15785 by establishing a stronger impossibility result of adaptation that holds for arbitrarily large sample size per task. This improvement conveys an important message that the hardness of multitask learning cannot be overcame by having abundant data per task. We also discuss the notion of optimal adaptivity that may be of future interests.
☆ Smoothing the Black-Box: Signed-Distance Supervision for Black-Box Model Copying
Deployed machine learning systems must continuously evolve as data, architectures, and regulations change, often without access to original training data or model internals. In such settings, black-box copying provides a practical refactoring mechanism, i.e. upgrading legacy models by learning replicas from input-output queries alone. When restricted to hard-label outputs, copying turns into a discontinuous surface reconstruction problem from pointwise queries, severely limiting the ability to recover boundary geometry efficiently. We propose a distance-based copying (distillation) framework that replaces hard-label supervision with signed distances to the teacher's decision boundary, converting copying into a smooth regression problem that exploits local geometry. We develop an $α$-governed smoothing and regularization scheme with Hölder/Lipschitz control over the induced target surface, and introduce two model-agnostic algorithms to estimate signed distances under label-only access. Experiments on synthetic problems and UCI benchmarks show consistent improvements in fidelity and generalization accuracy over hard-label baselines, while enabling distance outputs as uncertainty-related signals for black-box replicas.
comment: 27 pages
☆ COMET-SG1: Lightweight Autoregressive Regressor for Edge and Embedded AI IEEE
COMET-SG1 is a lightweight, stability-oriented autoregressive regression model designed for time-series prediction on edge and embedded AI systems. Unlike recurrent neural networks or transformer-based sequence models, COMET-SG1 operates through linear behavior-space encoding, memory-anchored transition estimation, and deterministic state updates. This structure prioritizes bounded long-horizon behavior under fully autoregressive inference, a critical requirement for edge deployment where prediction errors accumulate over time. Experiments on non-stationary synthetic time-series data demonstrate that COMET-SG1 achieves competitive short-horizon accuracy while exhibiting significantly reduced long-horizon drift compared to MLP, LSTM, and k-nearest neighbor baselines. With a compact parameter footprint and operations compatible with fixed-point arithmetic, COMET-SG1 provides a practical and interpretable approach for stable autoregressive prediction in edge and embedded AI applications.
comment: Preprint. Submitted to an IEEE conference. 6 pages, 6 figures, 2 tables
☆ Cross-Country Learning for National Infectious Disease Forecasting Using European Data
Accurate forecasting of infectious disease incidence is critical for public health planning and timely intervention. While most data-driven forecasting approaches rely primarily on historical data from a single country, such data are often limited in length and variability, restricting the performance of machine learning (ML) models. In this work, we investigate a cross-country learning approach for infectious disease forecasting, in which a single model is trained on time series data from multiple countries and evaluated on a country of interest. This setting enables the model to exploit shared epidemic dynamics across countries and to benefit from an enlarged training set. We examine this approach through a case study on COVID-19 case forecasting in Cyprus, using surveillance data from European countries. We evaluate multiple ML models and analyse the impact of the lookback window length and cross-country `data augmentation' on multi-step forecasting performance. Our results show that incorporating data from other countries can lead to consistent improvements over models trained solely on national data. Although the empirical focus is on Cyprus and COVID-19, the proposed framework and findings are applicable to infectious disease forecasting more broadly, particularly in settings with limited national historical data.
comment: 7 pages, 4 figures, 5 tables
☆ Leveraging Second-Order Curvature for Efficient Learned Image Compression: Theory and Empirical Evidence
Training learned image compression (LIC) models entails navigating a challenging optimization landscape defined by the fundamental trade-off between rate and distortion. Standard first-order optimizers, such as SGD and Adam, struggle with \emph{gradient conflicts} arising from competing objectives, leading to slow convergence and suboptimal rate-distortion performance. In this work, we demonstrate that a simple utilization of a second-order quasi-Newton optimizer, \textbf{SOAP}, dramatically improves both training efficiency and final performance across diverse LICs. Our theoretical and empirical analyses reveal that Newton preconditioning inherently resolves the intra-step and inter-step update conflicts intrinsic to the R-D objective, facilitating faster, more stable convergence. Beyond acceleration, we uncover a critical deployability benefit: second-order trained models exhibit significantly fewer activation and latent outliers. This substantially enhances robustness to post-training quantization. Together, these results establish second-order optimization, achievable as a seamless drop-in replacement of the imported optimizer, as a powerful, practical tool for advancing the efficiency and real-world readiness of LICs.
☆ Less is More: Clustered Cross-Covariance Control for Offline RL
A fundamental challenge in offline reinforcement learning is distributional shift. Scarce data or datasets dominated by out-of-distribution (OOD) areas exacerbate this issue. Our theoretical analysis and experiments show that the standard squared error objective induces a harmful TD cross covariance. This effect amplifies in OOD areas, biasing optimization and degrading policy learning. To counteract this mechanism, we develop two complementary strategies: partitioned buffer sampling that restricts updates to localized replay partitions, attenuates irregular covariance effects, and aligns update directions, yielding a scheme that is easy to integrate with existing implementations, namely Clustered Cross-Covariance Control for TD (C^4). We also introduce an explicit gradient-based corrective penalty that cancels the covariance induced bias within each update. We prove that buffer partitioning preserves the lower bound property of the maximization objective, and that these constraints mitigate excessive conservatism in extreme OOD areas without altering the core behavior of policy constrained offline reinforcement learning. Empirically, our method showcases higher stability and up to 30% improvement in returns over prior methods, especially with small datasets and splits that emphasize OOD areas.
☆ Supervised Guidance Training for Infinite-Dimensional Diffusion Models
Score-based diffusion models have recently been extended to infinite-dimensional function spaces, with uses such as inverse problems arising from partial differential equations. In the Bayesian formulation of inverse problems, the aim is to sample from a posterior distribution over functions obtained by conditioning a prior on noisy observations. While diffusion models provide expressive priors in function space, the theory of conditioning them to sample from the posterior remains open. We address this, assuming that either the prior lies in the Cameron-Martin space, or is absolutely continuous with respect to a Gaussian measure. We prove that the models can be conditioned using an infinite-dimensional extension of Doob's $h$-transform, and that the conditional score decomposes into an unconditional score and a guidance term. As the guidance term is intractable, we propose a simulation-free score matching objective (called Supervised Guidance Training) enabling efficient and stable posterior sampling. We illustrate the theory with numerical examples on Bayesian inverse problems in function spaces. In summary, our work offers the first function-space method for fine-tuning trained diffusion models to accurately sample from a posterior.
☆ GraphAllocBench: A Flexible Benchmark for Preference-Conditioned Multi-Objective Policy Learning
Preference-Conditioned Policy Learning (PCPL) in Multi-Objective Reinforcement Learning (MORL) aims to approximate diverse Pareto-optimal solutions by conditioning policies on user-specified preferences over objectives. This enables a single model to flexibly adapt to arbitrary trade-offs at run-time by producing a policy on or near the Pareto front. However, existing benchmarks for PCPL are largely restricted to toy tasks and fixed environments, limiting their realism and scalability. To address this gap, we introduce GraphAllocBench, a flexible benchmark built on a novel graph-based resource allocation sandbox environment inspired by city management, which we call CityPlannerEnv. GraphAllocBench provides a rich suite of problems with diverse objective functions, varying preference conditions, and high-dimensional scalability. We also propose two new evaluation metrics -- Proportion of Non-Dominated Solutions (PNDS) and Ordering Score (OS) -- that directly capture preference consistency while complementing the widely used hypervolume metric. Through experiments with Multi-Layer Perceptrons (MLPs) and graph-aware models, we show that GraphAllocBench exposes the limitations of existing MORL approaches and paves the way for using graph-based methods such as Graph Neural Networks in complex, high-dimensional combinatorial allocation tasks. Beyond its predefined problem set, GraphAllocBench enables users to flexibly vary objectives, preferences, and allocation rules, establishing it as a versatile and extensible benchmark for advancing PCPL. Code: https://anonymous.4open.science/r/GraphAllocBench
☆ HESTIA: A Hessian-Guided Differentiable Quantization-Aware Training Framework for Extremely Low-Bit LLMs
As large language models (LLMs) continue to scale, deployment is increasingly bottlenecked by the memory wall, motivating a shift toward extremely low-bit quantization. However, most quantization-aware training (QAT) methods apply hard rounding and the straight-through estimator (STE) from the beginning of the training, which prematurely discretizes the optimization landscape and induces persistent gradient mismatch between latent weights and quantized weights, hindering effective optimization of quantized models. To address this, we propose Hestia, a Hessian-guided differentiable QAT framework for extremely low-bit LLMs, which replaces the rigid step function with a temperature-controlled softmax relaxation to maintain gradient flow early in training while progressively hardening quantization. Furthermore, Hestia leverages a tensor-wise Hessian trace metric as a lightweight curvature signal to drive fine-grained temperature annealing, enabling sensitivity-aware discretization across the model. Evaluations on Llama-3.2 show that Hestia consistently outperforms existing ternary QAT baselines, yielding average zero-shot improvements of 5.39% and 4.34% for the 1B and 3B models. These results indicate that Hessian-guided relaxation effectively recovers representational capacity, establishing a more robust training path for 1.58-bit LLMs. The code is available at https://github.com/hestia2026/Hestia.
comment: 13 pages, 2 figures
☆ SA-PEF: Step-Ahead Partial Error Feedback for Efficient Federated Learning
Biased gradient compression with error feedback (EF) reduces communication in federated learning (FL), but under non-IID data, the residual error can decay slowly, causing gradient mismatch and stalled progress in the early rounds. We propose step-ahead partial error feedback (SA-PEF), which integrates step-ahead (SA) correction with partial error feedback (PEF). SA-PEF recovers EF when the step-ahead coefficient $α=0$ and step-ahead EF (SAEF) when $α=1$. For non-convex objectives and $δ$-contractive compressors, we establish a second-moment bound and a residual recursion that guarantee convergence to stationarity under heterogeneous data and partial client participation. The resulting rates match standard non-convex Fed-SGD guarantees up to constant factors, achieving $O((η,η_0TR)^{-1})$ convergence to a variance/heterogeneity floor with a fixed inner step size. Our analysis reveals a step-ahead-controlled residual contraction $ρ_r$ that explains the observed acceleration in the early training phase. To balance SAEF's rapid warm-up with EF's long-term stability, we select $α$ near its theory-predicted optimum. Experiments across diverse architectures and datasets show that SA-PEF consistently reaches target accuracy faster than EF.
☆ Continual GUI Agents
As digital environments (data distribution) are in flux, with new GUI data arriving over time-introducing new domains or resolutions-agents trained on static environments deteriorate in performance. In this work, we introduce Continual GUI Agents, a new task that requires GUI agents to perform continual learning under shifted domains and resolutions. We find existing methods fail to maintain stable grounding as GUI distributions shift over time, due to the diversity of UI interaction points and regions in fluxing scenarios. To address this, we introduce GUI-Anchoring in Flux (GUI-AiF), a new reinforcement fine-tuning framework that stabilizes continual learning through two novel rewards: Anchoring Point Reward in Flux (APR-iF) and Anchoring Region Reward in Flux (ARR-iF). These rewards guide the agents to align with shifting interaction points and regions, mitigating the tendency of existing reward strategies to over-adapt to static grounding cues (e.g., fixed coordinates or element scales). Extensive experiments show GUI-AiF surpasses state-of-the-art baselines. Our work establishes the first continual learning framework for GUI agents, revealing the untapped potential of reinforcement fine-tuning for continual GUI Agents.
☆ Deep Semi-Supervised Survival Analysis for Predicting Cancer Prognosis
The Cox Proportional Hazards (PH) model is widely used in survival analysis. Recently, artificial neural network (ANN)-based Cox-PH models have been developed. However, training these Cox models with high-dimensional features typically requires a substantial number of labeled samples containing information about time-to-event. The limited availability of labeled data for training often constrains the performance of ANN-based Cox models. To address this issue, we employed a deep semi-supervised learning (DSSL) approach to develop single- and multi-modal ANN-based Cox models based on the Mean Teacher (MT) framework, which utilizes both labeled and unlabeled data for training. We applied our model, named Cox-MT, to predict the prognosis of several types of cancer using data from The Cancer Genome Atlas (TCGA). Our single-modal Cox-MT models, utilizing TCGA RNA-seq data or whole slide images, significantly outperformed the existing ANN-based Cox model, Cox-nnet, using the same data set across four types of cancer considered. As the number of unlabeled samples increased, the performance of Cox-MT significantly improved with a given set of labeled data. Furthermore, our multi-modal Cox-MT model demonstrated considerably better performance than the single-modal model. In summary, the Cox-MT model effectively leverages both labeled and unlabeled data to significantly enhance prediction accuracy compared to existing ANN-based Cox models trained solely on labeled data.
☆ Adapting the Behavior of Reinforcement Learning Agents to Changing Action Spaces and Reward Functions
Reinforcement Learning (RL) agents often struggle in real-world applications where environmental conditions are non-stationary, particularly when reward functions shift or the available action space expands. This paper introduces MORPHIN, a self-adaptive Q-learning framework that enables on-the-fly adaptation without full retraining. By integrating concept drift detection with dynamic adjustments to learning and exploration hyperparameters, MORPHIN adapts agents to changes in both the reward function and on-the-fly expansions of the agent's action space, while preserving prior policy knowledge to prevent catastrophic forgetting. We validate our approach using a Gridworld benchmark and a traffic signal control simulation. The results demonstrate that MORPHIN achieves superior convergence speed and continuous adaptation compared to a standard Q-learning baseline, improving learning efficiency by up to 1.7x.
☆ A scalable flow-based approach to mitigate topological freezing
As lattice gauge theories with non-trivial topological features are driven towards the continuum limit, standard Markov Chain Monte Carlo simulations suffer for topological freezing, i.e., a dramatic growth of autocorrelations in topological observables. A widely used strategy is the adoption of Open Boundary Conditions (OBC), which restores ergodic sampling of topology but at the price of breaking translation invariance and introducing unphysical boundary artifacts. In this contribution we summarize a scalable, exact flow-based strategy to remove them by transporting configurations from a prior with a OBC defect to a fully periodic ensemble, and apply it to 4d SU(3) Yang--Mills theory. The method is based on a Stochastic Normalizing Flow (SNF) that alternates non-equilibrium Monte Carlo updates with localized, gauge-equivariant defect coupling layers implemented via masked parametric stout smearing. Training is performed by minimizing the average dissipated work, equivalent to a Kullback--Leibler divergence between forward and reverse non-equilibrium path measures, to achieve more reversible trajectories and improved efficiency. We discuss the scaling with the number of degrees of freedom affected by the defect and show that defect SNFs achieve better performances than purely stochastic non-equilibrium methods at comparable cost. Finally, we validate the approach by reproducing reference results for the topological susceptibility.
comment: 1+9 pages, 3 figures, contribution to the 42nd International Symposium on Lattice Field Theory (Lattice 2025), 2-8 November 2025, Mumbai, India
☆ Structurally Human, Semantically Biased: Detecting LLM-Generated References with Embeddings and GNNs ICLR 2026
Large language models are increasingly used to curate bibliographies, raising the question: are their reference lists distinguishable from human ones? We build paired citation graphs, ground truth and GPT-4o-generated (from parametric knowledge), for 10,000 focal papers ($\approx$ 275k references) from SciSciNet, and added a field-matched random baseline that preserves out-degree and field distributions while breaking latent structure. We compare (i) structure-only node features (degree/closeness/eigenvector centrality, clustering, edge count) with (ii) 3072-D title/abstract embeddings, using an RF on graph-level aggregates and Graph Neural Networks with node features. Structure alone barely separates GPT from ground truth (RF accuracy $\approx$ 0.60) despite cleanly rejecting the random baseline ($\approx$ 0.89--0.92). By contrast, embeddings sharply increase separability: RF on aggregated embeddings reaches $\approx$ 0.83, and GNNs with embedding node features achieve 93\% test accuracy on GPT vs.\ ground truth. We show the robustness of our findings by replicating the pipeline with Claude Sonnet 4.5 and with multiple embedding models (OpenAI and SPECTER), with RF separability for ground truth vs.\ Claude $\approx 0.77$ and clean rejection of the random baseline. Thus, LLM bibliographies, generated purely from parametric knowledge, closely mimic human citation topology, but leave detectable semantic fingerprints; detection and debiasing should target content signals rather than global graph structure.
comment: 34 pages, 20 figures. Accepted at ICLR 2026
☆ Enterprise Resource Planning Using Multi-type Transformers in Ferro-Titanium Industry
Combinatorial optimization problems such as the Job-Shop Scheduling Problem (JSP) and Knapsack Problem (KP) are fundamental challenges in operations research, logistics, and eterprise resource planning (ERP). These problems often require sophisticated algorithms to achieve near-optimal solutions within practical time constraints. Recent advances in deep learning have introduced transformer-based architectures as promising alternatives to traditional heuristics and metaheuristics. We leverage the Multi-Type Transformer (MTT) architecture to address these benchmarks in a unified framework. We present an extensive experimental evaluation across standard benchmark datasets for JSP and KP, demonstrating that MTT achieves competitive performance on different size of these benchmark problems. We showcase the potential of multi-type attention on a real application in Ferro-Titanium industry. To the best of our knowledge, we are the first to apply multi-type transformers in real manufacturing.
☆ Is Pure Exploitation Sufficient in Exogenous MDPs with Linear Function Approximation? ICLR 2026
Exogenous MDPs (Exo-MDPs) capture sequential decision-making where uncertainty comes solely from exogenous inputs that evolve independently of the learner's actions. This structure is especially common in operations research applications such as inventory control, energy storage, and resource allocation, where exogenous randomness (e.g., demand, arrivals, or prices) drives system behavior. Despite decades of empirical evidence that greedy, exploitation-only methods work remarkably well in these settings, theory has lagged behind: all existing regret guarantees for Exo-MDPs rely on explicit exploration or tabular assumptions. We show that exploration is unnecessary. We propose Pure Exploitation Learning (PEL) and prove the first general finite-sample regret bounds for exploitation-only algorithms in Exo-MDPs. In the tabular case, PEL achieves $\widetilde{O}(H^2|Ξ|\sqrt{K})$. For large, continuous endogenous state spaces, we introduce LSVI-PE, a simple linear-approximation method whose regret is polynomial in the feature dimension, exogenous state space, and horizon, independent of the endogenous state and action spaces. Our analysis introduces two new tools: counterfactual trajectories and Bellman-closed feature transport, which together allow greedy policies to have accurate value estimates without optimism. Experiments on synthetic and resource-management tasks show that PEL consistently outperforming baselines. Overall, our results overturn the conventional wisdom that exploration is required, demonstrating that in Exo-MDPs, pure exploitation is enough.
comment: Accepted to ICLR 2026
☆ Optimal Transport Group Counterfactual Explanations
Group counterfactual explanations find a set of counterfactual instances to explain a group of input instances contrastively. However, existing methods either (i) optimize counterfactuals only for a fixed group and do not generalize to new group members, (ii) strictly rely on strong model assumptions (e.g., linearity) for tractability or/and (iii) poorly control the counterfactual group geometry distortion. We instead learn an explicit optimal transport map that sends any group instance to its counterfactual without re-optimization, minimizing the group's total transport cost. This enables generalization with fewer parameters, making it easier to interpret the common actionable recourse. For linear classifiers, we prove that functions representing group counterfactuals are derived via mathematical optimization, identifying the underlying convex optimization type (QP, QCQP, ...). Experiments show that they accurately generalize, preserve group geometry and incur only negligible additional transport cost compared to baseline methods. If model linearity cannot be exploited, our approach also significantly outperforms the baselines.
☆ Positive-Unlabeled Reinforcement Learning Distillation for On-Premise Small Models
Due to constraints on privacy, cost, and latency, on-premise deployment of small models is increasingly common. However, most practical pipelines stop at supervised fine-tuning (SFT) and fail to reach the reinforcement learning (RL) alignment stage. The main reason is that RL alignment typically requires either expensive human preference annotation or heavy reliance on high-quality reward models with large-scale API usage and ongoing engineering maintenance, both of which are ill-suited to on-premise settings. To bridge this gap, we propose a positive-unlabeled (PU) RL distillation method for on-premise small-model deployment. Without human-labeled preferences or a reward model, our method distills the teacher's preference-optimization capability from black-box generations into a locally trainable student. For each prompt, we query the teacher once to obtain an anchor response, locally sample multiple student candidates, and perform anchor-conditioned self-ranking to induce pairwise or listwise preferences, enabling a fully local training loop via direct preference optimization or group relative policy optimization. Theoretical analysis justifies that the induced preference signal by our method is order-consistent and concentrates on near-optimal candidates, supporting its stability for preference optimization. Experiments demonstrate that our method achieves consistently strong performance under a low-cost setting.
comment: 22 pages, 8 figures, 7 tables
☆ MuRAL-CPD: Active Learning for Multiresolution Change Point Detection IEEE
Change Point Detection (CPD) is a critical task in time series analysis, aiming to identify moments when the underlying data-generating process shifts. Traditional CPD methods often rely on unsupervised techniques, which lack adaptability to task-specific definitions of change and cannot benefit from user knowledge. To address these limitations, we propose MuRAL-CPD, a novel semi-supervised method that integrates active learning into a multiresolution CPD algorithm. MuRAL-CPD leverages a wavelet-based multiresolution decomposition to detect changes across multiple temporal scales and incorporates user feedback to iteratively optimize key hyperparameters. This interaction enables the model to align its notion of change with that of the user, improving both accuracy and interpretability. Our experimental results on several real-world datasets show the effectiveness of MuRAL-CPD against state-of-the-art methods, particularly in scenarios where minimal supervision is available.
comment: Presented at 2025 IEEE International Conference on Data Mining (ICDM), to appear in the Proceedings
☆ Learning Contextual Runtime Monitors for Safe AI-Based Autonomy
We introduce a novel framework for learning context-aware runtime monitors for AI-based control ensembles. Machine-learning (ML) controllers are increasingly deployed in (autonomous) cyber-physical systems because of their ability to solve complex decision-making tasks. However, their accuracy can degrade sharply in unfamiliar environments, creating significant safety concerns. Traditional ensemble methods aim to improve robustness by averaging or voting across multiple controllers, yet this often dilutes the specialized strengths that individual controllers exhibit in different operating contexts. We argue that, rather than blending controller outputs, a monitoring framework should identify and exploit these contextual strengths. In this paper, we reformulate the design of safe AI-based control ensembles as a contextual monitoring problem. A monitor continuously observes the system's context and selects the controller best suited to the current conditions. To achieve this, we cast monitor learning as a contextual learning task and draw on techniques from contextual multi-armed bandits. Our approach comes with two key benefits: (1) theoretical safety guarantees during controller selection, and (2) improved utilization of controller diversity. We validate our framework in two simulated autonomous driving scenarios, demonstrating significant improvements in both safety and performance compared to non-contextual baselines.
☆ Detecting and Mitigating Memorization in Diffusion Models through Anisotropy of the Log-Probability ICLR 2026
Diffusion-based image generative models produce high-fidelity images through iterative denoising but remain vulnerable to memorization, where they unintentionally reproduce exact copies or parts of training images. Recent memorization detection methods are primarily based on the norm of score difference as indicators of memorization. We prove that such norm-based metrics are mainly effective under the assumption of isotropic log-probability distributions, which generally holds at high or medium noise levels. In contrast, analyzing the anisotropic regime reveals that memorized samples exhibit strong angular alignment between the guidance vector and unconditional scores in the low-noise setting. Through these insights, we develop a memorization detection metric by integrating isotropic norm and anisotropic alignment. Our detection metric can be computed directly on pure noise inputs via two conditional and unconditional forward passes, eliminating the need for costly denoising steps. Detection experiments on Stable Diffusion v1.4 and v2 show that our metric outperforms existing denoising-free detection methods while being at least approximately 5x faster than the previous best approach. Finally, we demonstrate the effectiveness of our approach by utilizing a mitigation strategy that adapts memorized prompts based on our developed metric.
comment: Accepted at ICLR 2026
☆ An Empirical Investigation of Neural ODEs and Symbolic Regression for Dynamical Systems NeurIPS 2025
Accurately modelling the dynamics of complex systems and discovering their governing differential equations are critical tasks for accelerating scientific discovery. Using noisy, synthetic data from two damped oscillatory systems, we explore the extrapolation capabilities of Neural Ordinary Differential Equations (NODEs) and the ability of Symbolic Regression (SR) to recover the underlying equations. Our study yields three key insights. First, we demonstrate that NODEs can extrapolate effectively to new boundary conditions, provided the resulting trajectories share dynamic similarity with the training data. Second, SR successfully recovers the equations from noisy ground-truth data, though its performance is contingent on the correct selection of input variables. Finally, we find that SR recovers two out of the three governing equations, along with a good approximation for the third, when using data generated by a NODE trained on just 10% of the full simulation. While this last finding highlights an area for future work, our results suggest that using NODEs to enrich limited data and enable symbolic regression to infer physical laws represents a promising new approach for scientific discovery.
comment: Accepted at the Machine Learning and the Physical Sciences Workshop, NeurIPS 2025
☆ A Foundation Model for Virtual Sensors
Virtual sensors use machine learning to predict target signals from available measurements, replacing expensive physical sensors in critical applications. Existing virtual sensor approaches require application-specific models with hand-selected inputs for each sensor, cannot leverage task synergies, and lack consistent benchmarks. At the same time, emerging time series foundation models are computationally expensive and limited to predicting their input signals, making them incompatible with virtual sensors. We introduce the first foundation model for virtual sensors addressing both limitations. Our unified model can simultaneously predict diverse virtual sensors exploiting synergies while maintaining computational efficiency. It learns relevant input signals for each virtual sensor, eliminating expert knowledge requirements while adding explainability. In our large-scale evaluation on a standard benchmark and an application-specific dataset with over 18 billion samples, our architecture achieves 415x reduction in computation time and 951x reduction in memory requirements, while maintaining or even improving predictive quality compared to baselines. Our model scales gracefully to hundreds of virtual sensors with nearly constant parameter count, enabling practical deployment in large-scale sensor networks.
comment: 18 pages in total, 15 figures
☆ Sparse clustering via the Deterministic Information Bottleneck algorithm
Cluster analysis relates to the task of assigning objects into groups which ideally present some desirable characteristics. When a cluster structure is confined to a subset of the feature space, traditional clustering techniques face unprecedented challenges. We present an information-theoretic framework that overcomes the problems associated with sparse data, allowing for joint feature weighting and clustering. Our proposal constitutes a competitive alternative to existing clustering algorithms for sparse data, as demonstrated through simulations on synthetic data. The effectiveness of our method is established by an application on a real-world genomics data set.
comment: Submitted to IFCS 2026 (8 pages total)
☆ DIVERSE: Disagreement-Inducing Vector Evolution for Rashomon Set Exploration
We propose DIVERSE, a framework for systematically exploring the Rashomon set of deep neural networks, the collection of models that match a reference model's accuracy while differing in their predictive behavior. DIVERSE augments a pretrained model with Feature-wise Linear Modulation (FiLM) layers and uses Covariance Matrix Adaptation Evolution Strategy (CMA-ES) to search a latent modulation space, generating diverse model variants without retraining or gradient access. Across MNIST, PneumoniaMNIST, and CIFAR-10, DIVERSE uncovers multiple high-performing yet functionally distinct models. Our experiments show that DIVERSE offers a competitive and efficient exploration of the Rashomon set, making it feasible to construct diverse sets that maintain robustness and performance while supporting well-balanced model multiplicity. While retraining remains the baseline to generate Rashomon sets, DIVERSE achieves comparable diversity at reduced computational cost.
☆ Trigger Optimization and Event Classification for Dark Matter Searches in the CYGNO Experiment Using Machine Learning
The CYGNO experiment employs an optical-readout Time Projection Chamber (TPC) to search for rare low-energy interactions using finely resolved scintillation images. While the optical readout provides rich topological information, it produces large, sparse megapixel images that challenge real-time triggering, data reduction, and background discrimination. We summarize two complementary machine-learning approaches developed within CYGNO. First, we present a fast and fully unsupervised strategy for online data reduction based on reconstruction-based anomaly detection. A convolutional autoencoder trained exclusively on pedestal images (i.e. frames acquired with GEM amplification disabled) learns the detector noise morphology and highlights particle-induced structures through localized reconstruction residuals, from which compact Regions of Interest (ROIs) are extracted. On real prototype data, the selected configuration retains (93.0 +/- 0.2)% of reconstructed signal intensity while discarding (97.8 +/- 0.1)% of the image area, with ~25 ms per-frame inference time on a consumer GPU. Second, we report a weakly supervised application of the Classification Without Labels (CWoLa) framework to data acquired with an Americium--Beryllium neutron source. Using only mixed AmBe and standard datasets (no event-level labels), a convolutional classifier learns to identify nuclear-recoil-like topologies. The achieved performance approaches the theoretical limit imposed by the mixture composition and isolates a high-score population with compact, approximately circular morphologies consistent with nuclear recoils.
comment: 6 pages, 1 figure, 14th Young Researcher Meeting (YRM 2025)
☆ ACFormer: Mitigating Non-linearity with Auto Convolutional Encoder for Time Series Forecasting
Time series forecasting (TSF) faces challenges in modeling complex intra-channel temporal dependencies and inter-channel correlations. Although recent research has highlighted the efficiency of linear architectures in capturing global trends, these models often struggle with non-linear signals. To address this gap, we conducted a systematic receptive field analysis of convolutional neural network (CNN) TSF models. We introduce the "individual receptive field" to uncover granular structural dependencies, revealing that convolutional layers act as feature extractors that mirror channel-wise attention while exhibiting superior robustness to non-linear fluctuations. Based on these insights, we propose ACFormer, an architecture designed to reconcile the efficiency of linear projections with the non-linear feature-extraction power of convolutions. ACFormer captures fine-grained information through a shared compression module, preserves temporal locality via gated attention, and reconstructs variable-specific temporal patterns using an independent patch expansion layer. Extensive experiments on multiple benchmark datasets demonstrate that ACFormer consistently achieves state-of-the-art performance, effectively mitigating the inherent drawbacks of linear models in capturing high-frequency components.
☆ WFR-MFM: One-Step Inference for Dynamic Unbalanced Optimal Transport
Reconstructing dynamical evolution from limited observations is a fundamental challenge in single-cell biology, where dynamic unbalanced optimal transport provides a principled framework for modeling coupled transport and mass variation. However, existing approaches rely on trajectory simulation at inference time, making inference a key bottleneck for scalable applications. In this work, we propose a mean-flow framework for unbalanced flow matching that summarizes both transport and mass-growth dynamics over arbitrary time intervals using mean velocity and mass-growth fields, enabling fast one-step generation without trajectory simulation. To solve dynamic unbalanced optimal transport under the Wasserstein-Fisher-Rao geometry, we further build on this framework to develop Wasserstein-Fisher-Rao Mean Flow Matching (WFR-MFM). Across synthetic and real single-cell RNA sequencing datasets, WFR-MFM achieves orders-of-magnitude faster inference than a range of existing baselines while maintaining high predictive accuracy, and enables efficient perturbation response prediction on large synthetic datasets with thousands of conditions.
☆ CoBA: Integrated Deep Learning Model for Reliable Low-Altitude UAV Classification in mmWave Radio Networks IEEE
Uncrewed Aerial Vehicles (UAVs) are increasingly used in civilian and industrial applications, making secure low-altitude operations crucial. In dense mmWave environments, accurately classifying low-altitude UAVs as either inside authorized or restricted airspaces remains challenging, requiring models that handle complex propagation and signal variability. This paper proposes a deep learning model, referred to as CoBA, which stands for integrated Convolutional Neural Network (CNN), Bidirectional Long Short-Term Memory (BiLSTM), and Attention which leverages Fifth Generation (5G) millimeter-wave (mmWave) radio measurements to classify UAV operations in authorized and restricted airspaces at low altitude. The proposed CoBA model integrates convolutional, bidirectional recurrent, and attention layers to capture both spatial and temporal patterns in UAV radio measurements. To validate the model, a dedicated dataset is collected using the 5G mmWave network at TalTech, with controlled low altitude UAV flights in authorized and restricted scenarios. The model is evaluated against conventional ML models and a fingerprinting-based benchmark. Experimental results show that CoBA achieves superior accuracy, significantly outperforming all baseline models and demonstrating its potential for reliable and regulated UAV airspace monitoring.
comment: 6 Pages, This paper has been accepted for publication at the IEEE International Conference on Communications (ICC) 2026
☆ Regularized Gradient Temporal-Difference Learning
Gradient temporal-difference (GTD) learning algorithms are widely used for off-policy policy evaluation with function approximation. However, existing convergence analyses rely on the restrictive assumption that the so-called feature interaction matrix (FIM) is nonsingular. In practice, the FIM can become singular and leads to instability or degraded performance. In this paper, we propose a regularized optimization objective by reformulating the mean-square projected Bellman error (MSPBE) minimization. This formulation naturally yields a regularized GTD algorithms, referred to as R-GTD, which guarantees convergence to a unique solution even when the FIM is singular. We establish theoretical convergence guarantees and explicit error bounds for the proposed method, and validate its effectiveness through empirical experiments.
comment: 27 pages, 8 figures
☆ Exact Graph Learning via Integer Programming
Learning the dependence structure among variables in complex systems is a central problem across medical, natural, and social sciences. These structures can be naturally represented by graphs, and the task of inferring such graphs from data is known as graph learning or as causal discovery if the graphs are given a causal interpretation. Existing approaches typically rely on restrictive assumptions about the data-generating process, employ greedy oracle algorithms, or solve approximate formulations of the graph learning problem. As a result, they are either sensitive to violations of central assumptions or fail to guarantee globally optimal solutions. We address these limitations by introducing a nonparametric graph learning framework based on nonparametric conditional independence testing and integer programming. We reformulate the graph learning problem as an integer-programming problem and prove that solving the integer-programming problem provides a globally optimal solution to the original graph learning problem. Our method leverages efficient encodings of graphical separation criteria, enabling the exact recovery of larger graphs than was previously feasible. We provide an implementation in the openly available R package 'glip' which supports learning (acyclic) directed (mixed) graphs and chain graphs. From the resulting output one can compute representations of the corresponding Markov equivalence classes or weak equivalence classes. Empirically, we demonstrate that our approach is faster than other existing exact graph learning procedures for a large fraction of instances and graphs of various sizes. GLIP also achieves state-of-the-art performance on simulated data and benchmark datasets across all aforementioned classes of graphs.
☆ Ranking-aware Reinforcement Learning for Ordinal Ranking ICASSP2026
Ordinal regression and ranking are challenging due to inherent ordinal dependencies that conventional methods struggle to model. We propose Ranking-Aware Reinforcement Learning (RARL), a novel RL framework that explicitly learns these relationships. At its core, RARL features a unified objective that synergistically integrates regression and Learning-to-Rank (L2R), enabling mutual improvement between the two tasks. This is driven by a ranking-aware verifiable reward that jointly assesses regression precision and ranking accuracy, facilitating direct model updates via policy optimization. To further enhance training, we introduce Response Mutation Operations (RMO), which inject controlled noise to improve exploration and prevent stagnation at saddle points. The effectiveness of RARL is validated through extensive experiments on three distinct benchmarks.
comment: Accepted to ICASSP2026
☆ Robust Distributed Learning under Resource Constraints: Decentralized Quantile Estimation via (Asynchronous) ADMM
Specifications for decentralized learning on resource-constrained edge devices require algorithms that are communication-efficient, robust to data corruption, and lightweight in memory usage. While state-of-the-art gossip-based methods satisfy the first requirement, achieving robustness remains challenging. Asynchronous decentralized ADMM-based methods have been explored for estimating the median, a statistical centrality measure that is notoriously more robust than the mean. However, existing approaches require memory that scales with node degree, making them impractical when memory is limited. In this paper, we propose AsylADMM, a novel gossip algorithm for decentralized median and quantile estimation, primarily designed for asynchronous updates and requiring only two variables per node. We analyze a synchronous variant of AsylADMM to establish theoretical guarantees and empirically demonstrate fast convergence for the asynchronous algorithm. We then show that our algorithm enables quantile-based trimming, geometric median estimation, and depth-based trimming, with quantile-based trimming empirically outperforming existing rank-based methods. Finally, we provide a novel theoretical analysis of rank-based trimming via Markov chain theory.
☆ Reinforcement Unlearning via Group Relative Policy Optimization
During pretraining, LLMs inadvertently memorize sensitive or copyrighted data, posing significant compliance challenges under legal frameworks like the GDPR and the EU AI Act. Fulfilling these mandates demands techniques that can remove information from a deployed model without retraining from scratch. Existing unlearning approaches attempt to address this need, but often leak the very data they aim to erase, sacrifice fluency and robustness, or depend on costly external reward models. We introduce PURGE (Policy Unlearning through Relative Group Erasure), a novel method grounded in the Group Relative Policy Optimization framework that formulates unlearning as a verifiable problem. PURGE uses an intrinsic reward signal that penalizes any mention of forbidden concepts, allowing safe and consistent unlearning. Our approach reduces token usage per target by up to a factor of 46 compared with SotA methods, while improving fluency by 5.48 percent and adversarial robustness by 12.02 percent over the base model. On the Real World Knowledge Unlearning (RWKU) benchmark, PURGE achieves 11 percent unlearning effectiveness while preserving 98 percent of original utility. PURGE shows that framing LLM unlearning as a verifiable task, enables more reliable, efficient, and scalable forgetting, suggesting a promising new direction for unlearning research that combines theoretical guarantees, improved safety, and practical deployment efficiency.
☆ Unsupervised Ensemble Learning Through Deep Energy-based Models AISTATS 2026
Unsupervised ensemble learning emerged to address the challenge of combining multiple learners' predictions without access to ground truth labels or additional data. This paradigm is crucial in scenarios where evaluating individual classifier performance or understanding their strengths is challenging due to limited information. We propose a novel deep energy-based method for constructing an accurate meta-learner using only the predictions of individual learners, potentially capable of capturing complex dependence structures between them. Our approach requires no labeled data, learner features, or problem-specific information, and has theoretical guarantees for when learners are conditionally independent. We demonstrate superior performance across diverse ensemble scenarios, including challenging mixture of experts settings. Our experiments span standard ensemble datasets and curated datasets designed to test how the model fuses expertise from multiple sources. These results highlight the potential of unsupervised ensemble learning to harness collective intelligence, especially in data-scarce or privacy-sensitive environments.
comment: Accepted to AISTATS 2026. 29 pages, 13 figures. Code available at: https://github.com/shaham-lab/deem
☆ Incorporating data drift to perform survival analysis on credit risk
Survival analysis has become a standard approach for modelling time to default by time-varying covariates in credit risk. Unlike most existing methods that implicitly assume a stationary data-generating process, in practise, mortgage portfolios are exposed to various forms of data drift caused by changing borrower behaviour, macroeconomic conditions, policy regimes and so on. This study investigates the impact of data drift on survival-based credit risk models and proposes a dynamic joint modelling framework to improve robustness under non-stationary environments. The proposed model integrates a longitudinal behavioural marker derived from balance dynamics with a discrete-time hazard formulation, combined with landmark one-hot encoding and isotonic calibration. Three types of data drift (sudden, incremental and recurring) are simulated and analysed on mortgage loan datasets from Freddie Mac. Experiments and corresponding evidence show that the proposed landmark-based joint model consistently outperforms classical survival models, tree-based drift-adaptive learners and gradient boosting methods in terms of discrimination and calibration across all drift scenarios, which confirms the superiority of our model design.
comment: 27 pages, 2 figures
☆ CCMamba: Selective State-Space Models for Higher-Order Graph Learning on Combinatorial Complexes
Topological deep learning has emerged for modeling higher-order relational structures beyond pairwise interactions that standard graph neural networks fail to capture. Although combinatorial complexes offer a unified topological framework, most existing topological deep learning methods rely on local message passing via attention mechanisms, which incur quadratic complexity and remain low-dimensional, limiting scalability and rank-aware information aggregation in higher-order complexes.We propose Combinatorial Complex Mamba (CCMamba), the first unified mamba-based neural framework for learning on combinatorial complexes. CCMamba reformulates message passing as a selective state-space modeling problem by organizing multi-rank incidence relations into structured sequences processed by rank-aware state-space models. This enables adaptive, directional, and long range information propagation in linear time without self attention. We further establish the theoretical analysis that the expressive power upper-bound of CCMamba message passing is the 1-Weisfeiler-Lehman test. Experiments on graph, hypergraph, and simplicial benchmarks demonstrate that CCMamba consistently outperforms existing methods while exhibiting improved scalability and robustness to depth.
☆ Physics-informed Blind Reconstruction of Dense Fields from Sparse Measurements using Neural Networks with a Differentiable Simulator
Generating dense physical fields from sparse measurements is a fundamental question in sampling, signal processing, and many other applications. State-of-the-art methods either use spatial statistics or rely on examples of dense fields in the training phase, which often are not available, and thus rely on synthetic data. Here, we present a reconstruction method that generates dense fields from sparse measurements, without assuming availability of the spatial statistics, nor of examples of the dense fields. This is made possible through the introduction of an automatically differentiable numerical simulator into the training phase of the method. The method is shown to have superior results over statistical and neural network based methods on a set of three standard problems from fluid mechanics.
☆ An explainable framework for the relationship between dementia and glucose metabolism patterns
High-dimensional neuroimaging data presents challenges for assessing neurodegenerative diseases due to complex non-linear relationships. Variational Autoencoders (VAEs) can encode scans into lower-dimensional latent spaces capturing disease-relevant features. We propose a semi-supervised VAE framework with a flexible similarity regularization term that aligns selected latent variables with clinical or biomarker measures of dementia progression. This allows adapting the similarity metric and supervised variables to specific goals or available data. We demonstrate the approach using PET scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI), guiding the first latent dimension to align with a cognitive score. Using this supervised latent variable, we generate average reconstructions across levels of cognitive impairment. Voxel-wise GLM analysis reveals reduced metabolism in key regions, mainly the hippocampus, and within major Resting State Networks, particularly the Default Mode and Central Executive Networks. The remaining latent variables encode affine transformations and intensity variations, capturing confounds such as inter-subject variability and site effects. Our framework effectively extracts disease-related patterns aligned with established Alzheimer's biomarkers, offering an interpretable and adaptable tool for studying neurodegenerative progression.
☆ Implicit Hypothesis Testing and Divergence Preservation in Neural Network Representations
We study the supervised training dynamics of neural classifiers through the lens of binary hypothesis testing. We model classification as a set of binary tests between class-conditional distributions of representations and empirically show that, along training trajectories, well-generalizing networks increasingly align with Neyman-Pearson optimal decision rules via monotonic improvements in KL divergence that relate to error rate exponents. We finally discuss how this yields an explanation and possible training or regularization strategies for different classes of neural networks.
☆ Fair Recourse for All: Ensuring Individual and Group Fairness in Counterfactual Explanations
Explainable Artificial Intelligence (XAI) is becoming increasingly essential for enhancing the transparency of machine learning (ML) models. Among the various XAI techniques, counterfactual explanations (CFs) hold a pivotal role due to their ability to illustrate how changes in input features can alter an ML model's decision, thereby offering actionable recourse to users. Ensuring that individuals with comparable attributes and those belonging to different protected groups (e.g., demographic) receive similar and actionable recourse options is essential for trustworthy and fair decision-making. In this work, we address this challenge directly by focusing on the generation of fair CFs. Specifically, we start by defining and formulating fairness at: 1) individual fairness, ensuring that similar individuals receive similar CFs, 2) group fairness, ensuring equitable CFs across different protected groups and 3) hybrid fairness, which accounts for both individual and broader group-level fairness. We formulate the problem as an optimization task and propose a novel model-agnostic, reinforcement learning based approach to generate CFs that satisfy fairness constraints at both the individual and group levels, two objectives that are usually treated as orthogonal. As fairness metrics, we extend existing metrics commonly used for auditing ML models, such as equal choice of recourse and equal effectiveness across individuals and groups. We evaluate our approach on three benchmark datasets, showing that it effectively ensures individual and group fairness while preserving the quality of the generated CFs in terms of proximity and plausibility, and quantify the cost of fairness in the different levels separately. Our work opens a broader discussion on hybrid fairness and its role and implications for XAI and beyond CFs.
☆ TimeCatcher: A Variational Framework for Volatility-Aware Forecasting of Non-Stationary Time Series
Recent lightweight MLP-based models have achieved strong performance in time series forecasting by capturing stable trends and seasonal patterns. However, their effectiveness hinges on an implicit assumption of local stationarity assumption, making them prone to errors in long-term forecasting of highly non-stationary series, especially when abrupt fluctuations occur, a common challenge in domains like web traffic monitoring. To overcome this limitation, we propose TimeCatcher, a novel Volatility-Aware Variational Forecasting framework. TimeCatcher extends linear architectures with a variational encoder to capture latent dynamic patterns hidden in historical data and a volatility-aware enhancement mechanism to detect and amplify significant local variations. Experiments on nine real-world datasets from traffic, financial, energy, and weather domains show that TimeCatcher consistently outperforms state-of-the-art baselines, with particularly large improvements in long-term forecasting scenarios characterized by high volatility and sudden fluctuations. Our code is available at https://github.com/ColaPrinceCHEN/TimeCatcher.
comment: Under review. 13 pages, 8 figures. This paper proposes a variational framework with adaptive volatility enhancement for non-stationary time series forecasting
☆ Assembling the Mind's Mosaic: Towards EEG Semantic Intent Decoding
Enabling natural communication through brain-computer interfaces (BCIs) remains one of the most profound challenges in neuroscience and neurotechnology. While existing frameworks offer partial solutions, they are constrained by oversimplified semantic representations and a lack of interpretability. To overcome these limitations, we introduce Semantic Intent Decoding (SID), a novel framework that translates neural activity into natural language by modeling meaning as a flexible set of compositional semantic units. SID is built on three core principles: semantic compositionality, continuity and expandability of semantic space, and fidelity in reconstruction. We present BrainMosaic, a deep learning architecture implementing SID. BrainMosaic decodes multiple semantic units from EEG/SEEG signals using set matching and then reconstructs coherent sentences through semantic-guided reconstruction. This approach moves beyond traditional pipelines that rely on fixed-class classification or unconstrained generation, enabling a more interpretable and expressive communication paradigm. Extensive experiments on multilingual EEG and clinical SEEG datasets demonstrate that SID and BrainMosaic offer substantial advantages over existing frameworks, paving the way for natural and effective BCI-mediated communication.
☆ Nonlinear Dimensionality Reduction with Diffusion Maps in Practice
Diffusion Map is a spectral dimensionality reduction technique which is able to uncover nonlinear submanifolds in high-dimensional data. And, it is increasingly applied across a wide range of scientific disciplines, such as biology, engineering, and social sciences. But data preprocessing, parameter settings and component selection have a significant influence on the resulting manifold, something which has not been comprehensively discussed in the literature so far. We provide a practice oriented review of the Diffusion Map technique, illustrate pitfalls and showcase a recently introduced technique for identifying the most relevant components. Our results show that the first components are not necessarily the most relevant ones.
☆ Concept Component Analysis: A Principled Approach for Concept Extraction in LLMs
Developing human understandable interpretation of large language models (LLMs) becomes increasingly critical for their deployment in essential domains. Mechanistic interpretability seeks to mitigate the issues through extracts human-interpretable process and concepts from LLMs' activations. Sparse autoencoders (SAEs) have emerged as a popular approach for extracting interpretable and monosemantic concepts by decomposing the LLM internal representations into a dictionary. Despite their empirical progress, SAEs suffer from a fundamental theoretical ambiguity: the well-defined correspondence between LLM representations and human-interpretable concepts remains unclear. This lack of theoretical grounding gives rise to several methodological challenges, including difficulties in principled method design and evaluation criteria. In this work, we show that, under mild assumptions, LLM representations can be approximated as a {linear mixture} of the log-posteriors over concepts given the input context, through the lens of a latent variable model where concepts are treated as latent variables. This motivates a principled framework for concept extraction, namely Concept Component Analysis (ConCA), which aims to recover the log-posterior of each concept from LLM representations through a {unsupervised} linear unmixing process. We explore a specific variant, termed sparse ConCA, which leverages a sparsity prior to address the inherent ill-posedness of the unmixing problem. We implement 12 sparse ConCA variants and demonstrate their ability to extract meaningful concepts across multiple LLMs, offering theory-backed advantages over SAEs.
☆ AWGformer: Adaptive Wavelet-Guided Transformer for Multi-Resolution Time Series Forecasting ICASSP 2026
Time series forecasting requires capturing patterns across multiple temporal scales while maintaining computational efficiency. This paper introduces AWGformer, a novel architecture that integrates adaptive wavelet decomposition with cross-scale attention mechanisms for enhanced multi-variate time series prediction. Our approach comprises: (1) an Adaptive Wavelet Decomposition Module (AWDM) that dynamically selects optimal wavelet bases and decomposition levels based on signal characteristics; (2) a Cross-Scale Feature Fusion (CSFF) mechanism that captures interactions between different frequency bands through learnable coupling matrices; (3) a Frequency-Aware Multi-Head Attention (FAMA) module that weights attention heads according to their frequency selectivity; (4) a Hierarchical Prediction Network (HPN) that generates forecasts at multiple resolutions before reconstruction. Extensive experiments on benchmark datasets demonstrate that AWGformer achieves significant average improvements over state-of-the-art methods, with particular effectiveness on multi-scale and non-stationary time series. Theoretical analysis provides convergence guarantees and establishes the connection between our wavelet-guided attention and classical signal processing principles.
comment: Accepted by ICASSP 2026
☆ ScatterFusion: A Hierarchical Scattering Transform Framework for Enhanced Time Series Forecasting ICASSP 2026
Time series forecasting presents significant challenges due to the complex temporal dependencies at multiple time scales. This paper introduces ScatterFusion, a novel framework that synergistically integrates scattering transforms with hierarchical attention mechanisms for robust time series forecasting. Our approach comprises four key components: (1) a Hierarchical Scattering Transform Module (HSTM) that extracts multi-scale invariant features capturing both local and global patterns; (2) a Scale-Adaptive Feature Enhancement (SAFE) module that dynamically adjusts feature importance across different scales; (3) a Multi-Resolution Temporal Attention (MRTA) mechanism that learns dependencies at varying time horizons; and (4) a Trend-Seasonal-Residual (TSR) decomposition-guided structure-aware loss function. Extensive experiments on seven benchmark datasets demonstrate that ScatterFusion outperforms other common methods, achieving significant reductions in error metrics across various prediction horizons.
comment: Accepted by ICASSP 2026
☆ Convergence Analysis of Randomized Subspace Normalized SGD under Heavy-Tailed Noise
Randomized subspace methods reduce per-iteration cost; however, in nonconvex optimization, most analyses are expectation-based, and high-probability bounds remain scarce even under sub-Gaussian noise. We first prove that randomized subspace SGD (RS-SGD) admits a high-probability convergence bound under sub-Gaussian noise, achieving the same order of oracle complexity as prior in-expectation results. Motivated by the prevalence of heavy-tailed gradients in modern machine learning, we then propose randomized subspace normalized SGD (RS-NSGD), which integrates direction normalization into subspace updates. Assuming the noise has bounded $p$-th moments, we establish both in-expectation and high-probability convergence guarantees, and show that RS-NSGD can achieve better oracle complexity than full-dimensional normalized SGD.
comment: 41 pages
☆ FedRD: Reducing Divergences for Generalized Federated Learning via Heterogeneity-aware Parameter Guidance ICASSP 2026
Heterogeneous federated learning (HFL) aims to ensure effective and privacy-preserving collaboration among different entities. As newly joined clients require significant adjustments and additional training to align with the existing system, the problem of generalizing federated learning models to unseen clients under heterogeneous data has become progressively crucial. Consequently, we highlight two unsolved challenging issues in federated domain generalization: Optimization Divergence and Performance Divergence. To tackle the above challenges, we propose FedRD, a novel heterogeneity-aware federated learning algorithm that collaboratively utilizes parameter-guided global generalization aggregation and local debiased classification to reduce divergences, aiming to obtain an optimal global model for participating and unseen clients. Extensive experiments on public multi-domain datasets demonstrate that our approach exhibits a substantial performance advantage over competing baselines in addressing this specific problem.
comment: Accepted by ICASSP 2026
☆ Graph-Structured Deep Learning Framework for Multi-task Contention Identification with High-dimensional Metrics
This study addresses the challenge of accurately identifying multi-task contention types in high-dimensional system environments and proposes a unified contention classification framework that integrates representation transformation, structural modeling, and a task decoupling mechanism. The method first constructs system state representations from high-dimensional metric sequences, applies nonlinear transformations to extract cross-dimensional dynamic features, and integrates multiple source information such as resource utilization, scheduling behavior, and task load variations within a shared representation space. It then introduces a graph-based modeling mechanism to capture latent dependencies among metrics, allowing the model to learn competitive propagation patterns and structural interference across resource links. On this basis, task-specific mapping structures are designed to model the differences among contention types and enhance the classifier's ability to distinguish multiple contention patterns. To achieve stable performance, the method employs an adaptive multi-task loss weighting strategy that balances shared feature learning with task-specific feature extraction and generates final contention predictions through a standardized inference process. Experiments conducted on a public system trace dataset demonstrate advantages in accuracy, recall, precision, and F1, and sensitivity analyses on batch size, training sample scale, and metric dimensionality further confirm the model's stability and applicability. The study shows that structured representations and multi-task classification based on high-dimensional metrics can significantly improve contention pattern recognition and offer a reliable technical approach for performance management in complex computing environments.
☆ LLM-AutoDP: Automatic Data Processing via LLM Agents for Model Fine-tuning VLDB2026
Large Language Models (LLMs) can be fine-tuned on domain-specific data to enhance their performance in specialized fields. However, such data often contains numerous low-quality samples, necessitating effective data processing (DP). In practice, DP strategies are typically developed through iterative manual analysis and trial-and-error adjustment. These processes inevitably incur high labor costs and may lead to privacy issues in high-privacy domains like healthcare due to direct human access to sensitive data. Thus, achieving automated data processing without exposing the raw data has become a critical challenge. To address this challenge, we propose LLM-AutoDP, a novel framework that leverages LLMs as agents to automatically generate and optimize data processing strategies. Our method generates multiple candidate strategies and iteratively refines them using feedback signals and comparative evaluations. This iterative in-context learning mechanism enables the agent to converge toward high-quality processing pipelines without requiring direct human intervention or access to the underlying data. To further accelerate strategy search, we introduce three key techniques: Distribution Preserving Sampling, which reduces data volume while maintaining distributional integrity; Processing Target Selection, which uses a binary classifier to identify low-quality samples for focused processing; Cache-and-Reuse Mechanism}, which minimizes redundant computations by reusing prior processing results. Results show that models trained on data processed by our framework achieve over 80% win rates against models trained on unprocessed data. Compared to AutoML baselines based on LLM agents, LLM-AutoDP achieves approximately a 65% win rate. Moreover, our acceleration techniques reduce the total searching time by up to 10 times, demonstrating both effectiveness and efficiency.
comment: Accepted by VLDB2026
☆ Unsupervised Anomaly Detection in Multi-Agent Trajectory Prediction via Transformer-Based Models
Identifying safety-critical scenarios is essential for autonomous driving, but the rarity of such events makes supervised labeling impractical. Traditional rule-based metrics like Time-to-Collision are too simplistic to capture complex interaction risks, and existing methods lack a systematic way to verify whether statistical anomalies truly reflect physical danger. To address this gap, we propose an unsupervised anomaly detection framework based on a multi-agent Transformer that models normal driving and measures deviations through prediction residuals. A dual evaluation scheme has been proposed to assess both detection stability and physical alignment: Stability is measured using standard ranking metrics in which Kendall Rank Correlation Coefficient captures rank agreement and Jaccard index captures the consistency of the top-K selected items; Physical alignment is assessed through correlations with established Surrogate Safety Measures (SSM). Experiments on the NGSIM dataset demonstrate our framework's effectiveness: We show that the maximum residual aggregator achieves the highest physical alignment while maintaining stability. Furthermore, our framework identifies 388 unique anomalies missed by Time-to-Collision and statistical baselines, capturing subtle multi-agent risks like reactive braking under lateral drift. The detected anomalies are further clustered into four interpretable risk types, offering actionable insights for simulation and testing.
☆ Can Continuous-Time Diffusion Models Generate and Solve Globally Constrained Discrete Problems? A Study on Sudoku
Can standard continuous-time generative models represent distributions whose support is an extremely sparse, globally constrained discrete set? We study this question using completed Sudoku grids as a controlled testbed, treating them as a subset of a continuous relaxation space. We train flow-matching and score-based models along a Gaussian probability path and compare deterministic (ODE) sampling, stochastic (SDE) sampling, and DDPM-style discretizations derived from the same continuous-time training. Unconditionally, stochastic sampling substantially outperforms deterministic flows; score-based samplers are the most reliable among continuous-time methods, and DDPM-style ancestral sampling achieves the highest validity overall. We further show that the same models can be repurposed for guided generation: by repeatedly sampling completions under clamped clues and stopping when constraints are satisfied, the model acts as a probabilistic Sudoku solver. Although far less sample-efficient than classical solvers and discrete-geometry-aware diffusion methods, these experiments demonstrate that classic diffusion/flow formulations can assign non-zero probability mass to globally constrained combinatorial structures and can be used for constraint satisfaction via stochastic search.
comment: 26 pages, 5 figures. Empirical study of continuous-time diffusion and flow models on Sudoku. Code available at https://github.com/MariiaDrozdova/sudoku_generation
☆ TINNs: Time-Induced Neural Networks for Solving Time-Dependent PDEs
Physics-informed neural networks (PINNs) solve time-dependent partial differential equations (PDEs) by learning a mesh-free, differentiable solution that can be evaluated anywhere in space and time. However, standard space--time PINNs take time as an input but reuse a single network with shared weights across all times, forcing the same features to represent markedly different dynamics. This coupling degrades accuracy and can destabilize training when enforcing PDE, boundary, and initial constraints jointly. We propose Time-Induced Neural Networks (TINNs), a novel architecture that parameterizes the network weights as a learned function of time, allowing the effective spatial representation to evolve over time while maintaining shared structure. The resulting formulation naturally yields a nonlinear least-squares problem, which we optimize efficiently using a Levenberg--Marquardt method. Experiments on various time-dependent PDEs show up to $4\times$ improved accuracy and $10\times$ faster convergence compared to PINNs and strong baselines.
☆ TABED: Test-Time Adaptive Ensemble Drafting for Robust Speculative Decoding in LVLMs EACL 2026
Speculative decoding (SD) has proven effective for accelerating LLM inference by quickly generating draft tokens and verifying them in parallel. However, SD remains largely unexplored for Large Vision-Language Models (LVLMs), which extend LLMs to process both image and text prompts. To address this gap, we benchmark existing inference methods with small draft models on 11 datasets across diverse input scenarios and observe scenario-specific performance fluctuations. Motivated by these findings, we propose Test-time Adaptive Batched Ensemble Drafting (TABED), which dynamically ensembles multiple drafts obtained via batch inference by leveraging deviations from past ground truths available in the SD setting. The dynamic ensemble method achieves an average robust walltime speedup of 1.74x over autoregressive decoding and a 5% improvement over single drafting methods, while remaining training-free and keeping ensembling costs negligible through parameter sharing. With its plug-and-play compatibility, we further enhance TABED by integrating advanced verification and alternative drafting methods. Code and custom-trained models are available at https://github.com/furiosa-ai/TABED.
comment: Accepted to Findings of EACL 2026
☆ Multimodal Multi-Agent Ransomware Analysis Using AutoGen
Ransomware has become one of the most serious cybersecurity threats causing major financial losses and operational disruptions worldwide.Traditional detection methods such as static analysis, heuristic scanning and behavioral analysis often fall short when used alone. To address these limitations, this paper presents multimodal multi agent ransomware analysis framework designed for ransomware classification. Proposed multimodal multiagent architecture combines information from static, dynamic and network sources. Each data type is handled by specialized agent that uses auto encoder based feature extraction. These representations are then integrated through a fusion agent. After that fused representation are used by transformer based classifier. It identifies the specific ransomware family. The agents interact through an interagent feedback mechanism that iteratively refines feature representations by suppressing low confidence information. The framework was evaluated on large scale datasets containing thousands of ransomware and benign samples. Multiple experiments were conducted on ransomware dataset. It outperforms single modality and nonadaptive fusion baseline achieving improvement of up to 0.936 in Macro-F1 for family classification and reducing calibration error. Over 100 epochs, the agentic feedback loop displays a stable monotonic convergence leading to over +0.75 absolute improvement in terms of agent quality and a final composite score of around 0.88 without fine tuning of the language models. Zeroday ransomware detection remains family dependent on polymorphism and modality disruptions. Confidence aware abstention enables reliable real world deployment by favoring conservativeand trustworthy decisions over forced classification. The findings indicate that proposed approach provides a practical andeffective path toward improving real world ransomware defense systems.
comment: 45 pages, 11 figures and 10 tables
☆ Improving Diffusion Language Model Decoding through Joint Search in Generation Order and Token Space
Diffusion Language Models (DLMs) offer order-agnostic generation that can explore many possible decoding trajectories. However, current decoding methods commit to a single trajectory, limiting exploration in trajectory space. We introduce Order-Token Search to explore this space through jointly searching over generation order and token values. Its core is a likelihood estimator that scores denoising actions, enabling stable pruning and efficient exploration of diverse trajectories. Across mathematical reasoning and coding benchmarks, Order-Token Search consistently outperforms baselines on GSM8K, MATH500, Countdown, and HumanEval (3.1%, 3.8%, 7.9%, and 6.8% absolute over backbone), matching or surpassing diffu-GRPO post-trained d1-LLaDA. Our work establishes joint search as a key component for advancing decoding in DLMs.
☆ Do Whitepaper Claims Predict Market Behavior? Evidence from Cryptocurrency Factor Analysis
Cryptocurrency projects articulate value propositions through whitepapers, making claims about functionality and technical capabilities. This study investigates whether these narratives align with observed market behavior. We construct a pipeline combining zero-shot NLP classification (BART-MNLI) with CP tensor decomposition to compare three spaces: (1) a claims matrix from 24 whitepapers across 10 semantic categories, (2) market statistics for 49 assets over two years of hourly data, and (3) latent factors from tensor decomposition (rank 2, 92.45% variance explained). Using Procrustes rotation and Tucker's congruence coefficient, we test alignment across 23 common entities. Results show weak alignment: claims-statistics (phi=0.341, p=0.332), claims-factors (phi=0.077, p=0.747), and statistics-factors (phi=0.197, p<0.001). The statistics-factors significance validates our methodology, confirming the pipeline detects relationships when present. Inter-model validation with DeBERTa-v3 yields 32% exact agreement but 67% top-3 agreement. Cross-sectional analysis reveals heterogeneous contributions: NEAR, MKR, ATOM show positive alignment while ENS, UNI, Bitcoin diverge most. Excluding Bitcoin confirms results are not driven by market dominance. We interpret findings as weak alignment between whitepaper narratives and market factor structure. Limited power (n=23) precludes distinguishing weak from no alignment, but strong alignment (phi>=0.70) can be confidently rejected. Implications for narrative economics and investment analysis are discussed.
comment: 35 pages, 8 figures, 10 tables. Code available at https://github.com/studiofarzulla/tensor-defi
☆ Demonstration-Free Robotic Control via LLM Agents
Robotic manipulation has increasingly adopted vision-language-action (VLA) models, which achieve strong performance but typically require task-specific demonstrations and fine-tuning, and often generalize poorly under domain shift. We investigate whether general-purpose large language model (LLM) agent frameworks, originally developed for software engineering, can serve as an alternative control paradigm for embodied manipulation. We introduce FAEA (Frontier Agent as Embodied Agent), which applies an LLM agent framework directly to embodied manipulation without modification. Using the same iterative reasoning that enables software agents to debug code, FAEA enables embodied agents to reason through manipulation strategies. We evaluate an unmodified frontier agent, Claude Agent SDK, across the LIBERO, ManiSkill3, and MetaWorld benchmarks. With privileged environment state access, FAEA achieves success rates of 84.9%, 85.7%, and 96%, respectively. This level of task success approaches that of VLA models trained with less than 100 demonstrations per task, without requiring demonstrations or fine-tuning. With one round of human feedback as an optional optimization, performance increases to 88.2% on LIBERO. This demonstration-free capability has immediate practical value: FAEA can autonomously explore novel scenarios in simulation and generate successful trajectories for training data augmentation in embodied learning. Our results indicate that general-purpose agents are sufficient for a class of manipulation tasks dominated by deliberative, task-level planning. This opens a path for robotics systems to leverage actively maintained agent infrastructure and benefit directly from ongoing advances in frontier models. Code is available at https://github.com/robiemusketeer/faea-sim
☆ Test-Time Adaptation for Anomaly Segmentation via Topology-Aware Optimal Transport Chaining
Deep topological data analysis (TDA) offers a principled framework for capturing structural invariants such as connectivity and cycles that persist across scales, making it a natural fit for anomaly segmentation (AS). Unlike thresholdbased binarisation, which produces brittle masks under distribution shift, TDA allows anomalies to be characterised as disruptions to global structure rather than local fluctuations. We introduce TopoOT, a topology-aware optimal transport (OT) framework that integrates multi-filtration persistence diagrams (PDs) with test-time adaptation (TTA). Our key innovation is Optimal Transport Chaining, which sequentially aligns PDs across thresholds and filtrations, yielding geodesic stability scores that identify features consistently preserved across scales. These stabilityaware pseudo-labels supervise a lightweight head trained online with OT-consistency and contrastive objectives, ensuring robust adaptation under domain shift. Across standard 2D and 3D anomaly detection benchmarks, TopoOT achieves state-of-the-art performance, outperforming the most competitive methods by up to +24.1% mean F1 on 2D datasets and +10.2% on 3D AS benchmarks.
☆ Window-Diffusion: Accelerating Diffusion Language Model Inference with Windowed Token Pruning and Caching
Diffusion language models (DLMs) generate text through iterative denoising, but inference requires full-sequence attention at every iteration, resulting in substantial redundant computation on masked tokens. Block-wise diffusion can reduce this cost, yet it typically relies on retraining and constrained update orders, limiting its direct applicability to pretrained DLMs. Our token-level analysis reveals pronounced structural locality in DLM inference. Decoding is driven by a small set of prefix-localized active tokens; the influence of distant undecoded context diminishes rapidly, and decoded tokens exhibit stage-wise temporal stability, enabling reuse of intermediate representations except for a brief post-decode transient. Motivated by these observations, we propose \textbf{\placeholder}\footnote{The source code is available at https://github.com/vhicrgit/Window-Diffusion.}, a window-based token pruning and caching method for inference. We maintain a local computation window that slides rightward as denoising progresses, and partition undecoded tokens into: (i) \textit{active tokens} that are computed online, (ii) \textit{buffer tokens} whose KV states are cached and periodically refreshed, and (iii) \textit{far-field tokens} that are pruned outside the window. Computation is restricted to active and buffer tokens within the window, while far-field tokens are omitted at each stage. Experiments on LLaDA and Dream show that, under matched compute budgets, our method achieves up to $99\times$ inference speedup while largely preserving generation performance.
☆ PsychePass: Calibrating LLM Therapeutic Competence via Trajectory-Anchored Tournaments
While large language models show promise in mental healthcare, evaluating their therapeutic competence remains challenging due to the unstructured and longitudinal nature of counseling. We argue that current evaluation paradigms suffer from an unanchored defect, leading to two forms of instability: process drift, where unsteered client simulation wanders away from specific counseling goals, and standard drift, where static pointwise scoring lacks the stability for reliable judgment. To address this, we introduce Ps, a unified framework that calibrates the therapeutic competence of LLMs via trajectory-anchored tournaments. We first anchor the interaction trajectory in simulation, where clients precisely control the fluid consultation process to probe multifaceted capabilities. We then anchor the battle trajectory in judgments through an efficient Swiss-system tournament, utilizing dynamic pairwise battles to yield robust Elo ratings. Beyond ranking, we demonstrate that tournament trajectories can be transformed into credible reward signals, enabling on-policy reinforcement learning to enhance LLMs' performance. Extensive experiments validate the effectiveness of PsychePass and its strong consistency with human expert judgments.
☆ Beyond Speedup -- Utilizing KV Cache for Sampling and Reasoning ICLR26
KV caches, typically used only to speed up autoregressive decoding, encode contextual information that can be reused for downstream tasks at no extra cost. We propose treating the KV cache as a lightweight representation, eliminating the need to recompute or store full hidden states. Despite being weaker than dedicated embeddings, KV-derived representations are shown to be sufficient for two key applications: \textbf{(i) Chain-of-Embedding}, where they achieve competitive or superior performance on Llama-3.1-8B-Instruct and Qwen2-7B-Instruct; and \textbf{(ii) Fast/Slow Thinking Switching}, where they enable adaptive reasoning on Qwen3-8B and DeepSeek-R1-Distil-Qwen-14B, reducing token generation by up to $5.7\times$ with minimal accuracy loss. Our findings establish KV caches as a free, effective substrate for sampling and reasoning, opening new directions for representation reuse in LLM inference. Code: https://github.com/cmd2001/ICLR2026_KV-Embedding.
comment: Accepted by ICLR26
☆ Less is More: Benchmarking LLM Based Recommendation Agents
Large Language Models (LLMs) are increasingly deployed for personalized product recommendations, with practitioners commonly assuming that longer user purchase histories lead to better predictions. We challenge this assumption through a systematic benchmark of four state of the art LLMs GPT-4o-mini, DeepSeek-V3, Qwen2.5-72B, and Gemini 2.5 Flash across context lengths ranging from 5 to 50 items using the REGEN dataset. Surprisingly, our experiments with 50 users in a within subject design reveal no significant quality improvement with increased context length. Quality scores remain flat across all conditions (0.17--0.23). Our findings have significant practical implications: practitioners can reduce inference costs by approximately 88\% by using context (5--10 items) instead of longer histories (50 items), without sacrificing recommendation quality. We also analyze latency patterns across providers and find model specific behaviors that inform deployment decisions. This work challenges the existing ``more context is better'' paradigm and provides actionable guidelines for cost effective LLM based recommendation systems.
☆ SemBind: Binding Diffusion Watermarks to Semantics Against Black-Box Forgery Attacks
Latent-based watermarks, integrated into the generation process of latent diffusion models (LDMs), simplify detection and attribution of generated images. However, recent black-box forgery attacks, where an attacker needs at least one watermarked image and black-box access to the provider's model, can embed the provider's watermark into images not produced by the provider, posing outsized risk to provenance and trust. We propose SemBind, the first defense framework for latent-based watermarks that resists black-box forgery by binding latent signals to image semantics via a learned semantic masker. Trained with contrastive learning, the masker yields near-invariant codes for the same prompt and near-orthogonal codes across prompts; these codes are reshaped and permuted to modulate the target latent before any standard latent-based watermark. SemBind is generally compatible with existing latent-based watermarking schemes and keeps image quality essentially unchanged, while a simple mask-ratio parameter offers a tunable trade-off between anti-forgery strength and robustness. Across four mainstream latent-based watermark methods, our SemBind-enabled anti-forgery variants markedly reduce false acceptance under black-box forgery while providing a controllable robustness-security balance.
☆ SuperInfer: SLO-Aware Rotary Scheduling and Memory Management for LLM Inference on Superchips
Large Language Model (LLM) serving faces a fundamental tension between stringent latency Service Level Objectives (SLOs) and limited GPU memory capacity. When high request rates exhaust the KV cache budget, existing LLM inference systems often suffer severe head-of-line (HOL) blocking. While prior work explored PCIe-based offloading, these approaches cannot sustain responsiveness under high request rates, often failing to meet tight Time-To-First-Token (TTFT) and Time-Between-Tokens (TBT) SLOs. We present SuperInfer, a high-performance LLM inference system designed for emerging Superchips (e.g., NVIDIA GH200) with tightly coupled GPU-CPU architecture via NVLink-C2C. SuperInfer introduces RotaSched, the first proactive, SLO-aware rotary scheduler that rotates requests to maintain responsiveness on Superchips, and DuplexKV, an optimized rotation engine that enables full-duplex transfer over NVLink-C2C. Evaluations on GH200 using various models and datasets show that SuperInfer improves TTFT SLO attainment rates by up to 74.7% while maintaining comparable TBT and throughput compared to state-of-the-art systems, demonstrating that SLO-aware scheduling and memory co-design unlocks the full potential of Superchips for responsive LLM serving.
comment: Accepted by MLSys '26
☆ Delayed Feedback Modeling for Post-Click Gross Merchandise Volume Prediction: Benchmark, Insights and Approaches WWW
The prediction objectives of online advertisement ranking models are evolving from probabilistic metrics like conversion rate (CVR) to numerical business metrics like post-click gross merchandise volume (GMV). Unlike the well-studied delayed feedback problem in CVR prediction, delayed feedback modeling for GMV prediction remains unexplored and poses greater challenges, as GMV is a continuous target, and a single click can lead to multiple purchases that cumulatively form the label. To bridge the research gap, we establish TRACE, a GMV prediction benchmark containing complete transaction sequences rising from each user click, which supports delayed feedback modeling in an online streaming manner. Our analysis and exploratory experiments on TRACE reveal two key insights: (1) the rapid evolution of the GMV label distribution necessitates modeling delayed feedback under online streaming training; (2) the label distribution of repurchase samples substantially differs from that of single-purchase samples, highlighting the need for separate modeling. Motivated by these findings, we propose RepurchasE-Aware Dual-branch prEdictoR (READER), a novel GMV modeling paradigm that selectively activates expert parameters according to repurchase predictions produced by a router. Moreover, READER dynamically calibrates the regression target to mitigate under-estimation caused by incomplete labels. Experimental results show that READER yields superior performance on TRACE over baselines, achieving a 2.19% improvement in terms of accuracy. We believe that our study will open up a new avenue for studying online delayed feedback modeling for GMV prediction, and our TRACE benchmark with the gathered insights will facilitate future research and application in this promising direction. Our code and dataset are available at https://github.com/alimama-tech/OnlineGMV .
comment: This paper has been accepted by the ACM Web Conference (WWW) 2026. This is the camera-ready version. Please refer to the published version for citation once available
☆ Truthfulness Despite Weak Supervision: Evaluating and Training LLMs Using Peer Prediction ICLR 2026
The evaluation and post-training of large language models (LLMs) rely on supervision, but strong supervision for difficult tasks is often unavailable, especially when evaluating frontier models. In such cases, models are demonstrated to exploit evaluations built on such imperfect supervision, leading to deceptive results. However, underutilized in LLM research, a wealth of mechanism design research focuses on game-theoretic incentive compatibility, i.e., eliciting honest and informative answers with weak supervision. Drawing from this literature, we introduce the peer prediction method for model evaluation and post-training. It rewards honest and informative answers over deceptive and uninformative ones, using a metric based on mutual predictability and without requiring ground truth labels. We demonstrate the method's effectiveness and resistance to deception, with both theoretical guarantees and empirical validation on models with up to 405B parameters. We show that training an 8B model with peer prediction-based reward recovers most of the drop in truthfulness due to prior malicious finetuning, even when the reward is produced by a 0.135B language model with no finetuning. On the evaluation front, in contrast to LLM-as-a-Judge which requires strong and trusted judges, we discover an inverse scaling property in peer prediction, where, surprisingly, resistance to deception is strengthened as the capability gap between the experts and participants widens, enabling reliable evaluation of strong models with weak supervision. In particular, LLM-as-a-Judge become worse than random guess when facing deceptive models 5-20x the judge's size, while peer prediction thrives when such gaps are large, including in cases with over 100x size difference.
comment: ICLR 2026
☆ Cheap2Rich: A Multi-Fidelity Framework for Data Assimilation and System Identification of Multiscale Physics -- Rotating Detonation Engines
Bridging the sim2real gap between computationally inexpensive models and complex physical systems remains a central challenge in machine learning applications to engineering problems, particularly in multi-scale settings where reduced-order models typically capture only dominant dynamics. In this work, we present Cheap2Rich, a multi-scale data assimilation framework that reconstructs high-fidelity state spaces from sparse sensor histories by combining a fast low-fidelity prior with learned, interpretable discrepancy corrections. We demonstrate the performance on rotating detonation engines (RDEs), a challenging class of systems that couple detonation-front propagation with injector-driven unsteadiness, mixing, and stiff chemistry across disparate scales. Our approach successfully reconstructs high-fidelity RDE states from sparse measurements while isolating physically meaningful discrepancy dynamics associated with injector-driven effects. The results highlight a general multi-fidelity framework for data assimilation and system identification in complex multi-scale systems, enabling rapid design exploration and real-time monitoring and control while providing interpretable discrepancy dynamics. Code for this project is is available at: github.com/kro0l1k/Cheap2Rich.
☆ A Learning-based Framework for Spatial Impulse Response Compensation in 3D Photoacoustic Computed Tomography IEEE
Photoacoustic computed tomography (PACT) is a promising imaging modality that combines the advantages of optical contrast with ultrasound detection. Utilizing ultrasound transducers with larger surface areas can improve detection sensitivity. However, when computationally efficient analytic reconstruction methods that neglect the spatial impulse responses (SIRs) of the transducer are employed, the spatial resolution of the reconstructed images will be compromised. Although optimization-based reconstruction methods can explicitly account for SIR effects, their computational cost is generally high, particularly in three-dimensional (3D) applications. To address the need for accurate but rapid 3D PACT image reconstruction, this study presents a framework for establishing a learned SIR compensation method that operates in the data domain. The learned compensation method maps SIR-corrupted PACT measurement data to compensated data that would have been recorded by idealized point-like transducers. Subsequently, the compensated data can be used with a computationally efficient reconstruction method that neglects SIR effects. Two variants of the learned compensation model are investigated that employ a U-Net model and a specifically designed, physics-inspired model, referred to as Deconv-Net. A fast and analytical training data generation procedure is also a component of the presented framework. The framework is rigorously validated in virtual imaging studies, demonstrating resolution improvement and robustness to noise variations, object complexity, and sound speed heterogeneity. When applied to in-vivo breast imaging data, the learned compensation models revealed fine structures that had been obscured by SIR-induced artifacts. To our knowledge, this is the first demonstration of learned SIR compensation in 3D PACT imaging.
comment: Submitted to IEEE TMI
☆ One Word is Enough: Minimal Adversarial Perturbations for Neural Text Ranking ECIR 2026
Neural ranking models (NRMs) achieve strong retrieval effectiveness, yet prior work has shown they are vulnerable to adversarial perturbations. We revisit this robustness question with a minimal, query-aware attack that promotes a target document by inserting or substituting a single, semantically aligned word - the query center. We study heuristic and gradient-guided variants, including a white-box method that identifies influential insertion points. On TREC-DL 2019/2020 with BERT and monoT5 re-rankers, our single-word attacks achieve up to 91% success while modifying fewer than two tokens per document on average, achieving competitive rank and score boosts with far fewer edits under a comparable white-box setup to ensure fair evaluation against PRADA. We also introduce new diagnostic metrics to analyze attack sensitivity beyond aggregate success rates. Our analysis reveals a Goldilocks zone in which mid-ranked documents are most vulnerable. These findings demonstrate practical risks and motivate future defenses for robust neural ranking.
comment: To appear at ECIR 2026
☆ Memory Retrieval in Transformers: Insights from The Encoding Specificity Principle
While explainable artificial intelligence (XAI) for large language models (LLMs) remains an evolving field with many unresolved questions, increasing regulatory pressures have spurred interest in its role in ensuring transparency, accountability, and privacy-preserving machine unlearning. Despite recent advances in XAI have provided some insights, the specific role of attention layers in transformer based LLMs remains underexplored. This study investigates the memory mechanisms instantiated by attention layers, drawing on prior research in psychology and computational psycholinguistics that links Transformer attention to cue based retrieval in human memory. In this view, queries encode the retrieval context, keys index candidate memory traces, attention weights quantify cue trace similarity, and values carry the encoded content, jointly enabling the construction of a context representation that precedes and facilitates memory retrieval. Guided by the Encoding Specificity Principle, we hypothesize that the cues used in the initial stage of retrieval are instantiated as keywords. We provide converging evidence for this keywords-as-cues hypothesis. In addition, we isolate neurons within attention layers whose activations selectively encode and facilitate the retrieval of context-defining keywords. Consequently, these keywords can be extracted from identified neurons and further contribute to downstream applications such as unlearning.
☆ The Forecast After the Forecast: A Post-Processing Shift in Time Series
Time series forecasting has long been dominated by advances in model architecture, with recent progress driven by deep learning and hybrid statistical techniques. However, as forecasting models approach diminishing returns in accuracy, a critical yet underexplored opportunity emerges: the strategic use of post-processing. In this paper, we address the last-mile gap in time-series forecasting, which is to improve accuracy and uncertainty without retraining or modifying a deployed backbone. We propose $δ$-Adapter, a lightweight, architecture-agnostic way to boost deployed time series forecasters without retraining. $δ$-Adapter learns tiny, bounded modules at two interfaces: input nudging (soft edits to covariates) and output residual correction. We provide local descent guarantees, $O(δ)$ drift bounds, and compositional stability for combined adapters. Meanwhile, it can act as a feature selector by learning a sparse, horizon-aware mask over inputs to select important features, thereby improving interpretability. In addition, it can also be used as a distribution calibrator to measure uncertainty. Thus, we introduce a Quantile Calibrator and a Conformal Corrector that together deliver calibrated, personalized intervals with finite-sample coverage. Our experiments across diverse backbones and datasets show that $δ$-Adapter improves accuracy and calibration with negligible compute and no interface changes.
comment: 30 Pages
☆ Empirical Likelihood-Based Fairness Auditing: Distribution-Free Certification and Flagging
Machine learning models in high-stakes applications, such as recidivism prediction and automated personnel selection, often exhibit systematic performance disparities across sensitive subpopulations, raising critical concerns regarding algorithmic bias. Fairness auditing addresses these risks through two primary functions: certification, which verifies adherence to fairness constraints; and flagging, which isolates specific demographic groups experiencing disparate treatment. However, existing auditing techniques are frequently limited by restrictive distributional assumptions or prohibitive computational overhead. We propose a novel empirical likelihood-based (EL) framework that constructs robust statistical measures for model performance disparities. Unlike traditional methods, our approach is non-parametric; the proposed disparity statistics follow asymptotically chi-square or mixed chi-square distributions, ensuring valid inference without assuming underlying data distributions. This framework uses a constrained optimization profile that admits stable numerical solutions, facilitating both large-scale certification and efficient subpopulation discovery. Empirically, the EL methods outperform bootstrap-based approaches, yielding coverage rates closer to nominal levels while reducing computational latency by several orders of magnitude. We demonstrate the practical utility of this framework on the COMPAS dataset, where it successfully flags intersectional biases, specifically identifying a significantly higher positive prediction rate for African-American males under 25 and a systemic under-prediction for Caucasian females relative to the population mean.
comment: 55 pages, 9 figures; Code available at: https://github.com/Tang-Jay/ELFA; Author list is in alphabetical order by last names
☆ Robust SDE Parameter Estimation Under Missing Time Information Setting
Recent advances in stochastic differential equations (SDEs) have enabled robust modeling of real-world dynamical processes across diverse domains, such as finance, health, and systems biology. However, parameter estimation for SDEs typically relies on accurately timestamped observational sequences. When temporal ordering information is corrupted, missing, or deliberately hidden (e.g., for privacy), existing estimation methods often fail. In this paper, we investigate the conditions under which temporal order can be recovered and introduce a novel framework that simultaneously reconstructs temporal information and estimates SDE parameters. Our approach exploits asymmetries between forward and backward processes, deriving a score-matching criterion to infer the correct temporal order between pairs of observations. We then recover the total order via a sorting procedure and estimate SDE parameters from the reconstructed sequence using maximum likelihood. Finally, we conduct extensive experiments on synthetic and real-world datasets to demonstrate the effectiveness of our method, extending parameter estimation to settings with missing temporal order and broadening applicability in sensitive domains.
☆ C2:Cross learning module enhanced decision transformer with Constraint-aware loss for auto-bidding
Decision Transformer (DT) shows promise for generative auto-bidding by capturing temporal dependencies, but suffers from two critical limitations: insufficient cross-correlation modeling among state, action, and return-to-go (RTG) sequences, and indiscriminate learning of optimal/suboptimal behaviors. To address these, we propose C2, a novel framework enhancing DT with two core innovations: (1) a Cross Learning Block (CLB) via cross-attention to strengthen inter-sequence correlation modeling; (2) a Constraint-aware Loss (CL) incorporating budget and Cost-Per-Acquisition (CPA) constraints for selective learning of optimal trajectories. Extensive offline evaluations on the AuctionNet dataset demonstrate consistent performance gains (up to 3.23\% over state-of-the-art GAVE) across diverse budget settings; ablation studies verify the complementary synergy of CLB and CL, confirming C2's superiority in auto-bidding. The code for reproducing our results is available at: https://github.com/Dingjinren/C2.
☆ HE-SNR: Uncovering Latent Logic via Entropy for Guiding Mid-Training on SWE-BENCH
SWE-bench has emerged as the premier benchmark for evaluating Large Language Models on complex software engineering tasks. While these capabilities are fundamentally acquired during the mid-training phase and subsequently elicited during Supervised Fine-Tuning (SFT), there remains a critical deficit in metrics capable of guiding mid-training effectively. Standard metrics such as Perplexity (PPL) are compromised by the "Long-Context Tax" and exhibit weak correlation with downstream SWE performance. In this paper, we bridge this gap by first introducing a rigorous data filtering strategy. Crucially, we propose the Entropy Compression Hypothesis, redefining intelligence not by scalar Top-1 compression, but by the capacity to structure uncertainty into Entropy-Compressed States of low orders ("reasonable hesitation"). Grounded in this fine-grained entropy analysis, we formulate a novel metric, HE-SNR (High-Entropy Signal-to-Noise Ratio). Validated on industrial-scale Mixture-of-Experts (MoE) models across varying context windows (32K/128K), our approach demonstrates superior robustness and predictive power. This work provides both the theoretical foundation and practical tools for optimizing the latent potential of LLMs in complex engineering domains.
comment: 21 pages, 15 figures
☆ Efficient Evaluation of LLM Performance with Statistical Guarantees
Exhaustively evaluating many large language models (LLMs) on a large suite of benchmarks is expensive. We cast benchmarking as finite-population inference and, under a fixed query budget, seek tight confidence intervals (CIs) for model accuracy with valid frequentist coverage. We propose Factorized Active Querying (FAQ), which (a) leverages historical information through a Bayesian factor model; (b) adaptively selects questions using a hybrid variance-reduction/active-learning sampling policy; and (c) maintains validity through Proactive Active Inference -- a finite-population extension of active inference (Zrnic & Candes, 2024) that enables direct question selection while preserving coverage. With negligible overhead cost, FAQ delivers up to $5\times$ effective sample size gains over strong baselines on two benchmark suites, across varying historical-data missingness levels: this means that it matches the CI width of uniform sampling while using up to $5\times$ fewer queries. We release our source code and our curated datasets to support reproducible evaluation and future research.
comment: 24 pages, 10 figures
☆ Order-Optimal Sample Complexity of Rectified Flows
Recently, flow-based generative models have shown superior efficiency compared to diffusion models. In this paper, we study rectified flow models, which constrain transport trajectories to be linear from the base distribution to the data distribution. This structural restriction greatly accelerates sampling, often enabling high-quality generation with a single Euler step. Under standard assumptions on the neural network classes used to parameterize the velocity field and data distribution, we prove that rectified flows achieve sample complexity $\tilde{O}(\varepsilon^{-2})$. This improves on the best known $O(\varepsilon^{-4})$ bounds for flow matching model and matches the optimal rate for mean estimation. Our analysis exploits the particular structure of rectified flows: because the model is trained with a squared loss along linear paths, the associated hypothesis class admits a sharply controlled localized Rademacher complexity. This yields the improved, order-optimal sample complexity and provides a theoretical explanation for the strong empirical performance of rectified flow models.
☆ Certificate-Guided Pruning for Stochastic Lipschitz Optimization
We study black-box optimization of Lipschitz functions under noisy evaluations. Existing adaptive discretization methods implicitly avoid suboptimal regions but do not provide explicit certificates of optimality or measurable progress guarantees. We introduce \textbf{Certificate-Guided Pruning (CGP)}, which maintains an explicit \emph{active set} $A_t$ of potentially optimal points via confidence-adjusted Lipschitz envelopes. Any point outside $A_t$ is certifiably suboptimal with high probability, and under a margin condition with near-optimality dimension $α$, we prove $\Vol(A_t)$ shrinks at a controlled rate yielding sample complexity $\tildeO(\varepsilon^{-(2+α)})$. We develop three extensions: CGP-Adaptive learns $L$ online with $O(\log T)$ overhead; CGP-TR scales to $d > 50$ via trust regions with local certificates; and CGP-Hybrid switches to GP refinement when local smoothness is detected. Experiments on 12 benchmarks ($d \in [2, 100]$) show CGP variants match or exceed strong baselines while providing principled stopping criteria via certificate volume.
☆ Proactive SFC Provisioning with Forecast-Driven DRL in Data Centers IEEE
Service Function Chaining (SFC) requires efficient placement of Virtual Network Functions (VNFs) to satisfy diverse service requirements while maintaining high resource utilization in Data Centers (DCs). Conventional static resource allocation often leads to overprovisioning or underprovisioning due to the dynamic nature of traffic loads and application demands. To address this challenge, we propose a hybrid forecast-driven Deep reinforcement learning (DRL) framework that combines predictive intelligence with SFC provisioning. Specifically, we leverage DRL to generate datasets capturing DC resource utilization and service demands, which are then used to train deep learning forecasting models. Using Optuna-based hyperparameter optimization, the best-performing models, Spatio-Temporal Graph Neural Network, Temporal Graph Neural Network, and Long Short-Term Memory, are combined into an ensemble to enhance stability and accuracy. The ensemble predictions are integrated into the DC selection process, enabling proactive placement decisions that consider both current and future resource availability. Experimental results demonstrate that the proposed method not only sustains high acceptance ratios for resource-intensive services such as Cloud Gaming and VoIP but also significantly improves acceptance ratios for latency-critical categories such as Augmented Reality increases from 30% to 50%, while Industry 4.0 improves from 30% to 45%. Consequently, the prediction-based model achieves significantly lower E2E latencies of 20.5%, 23.8%, and 34.8% reductions for VoIP, Video Streaming, and Cloud Gaming, respectively. This strategy ensures more balanced resource allocation, and reduces contention.
comment: 6 pages, 3 figures, Accepted to IEEE International Conference on Communications (ICC) 2026
☆ Quantum statistics from classical simulations via generative Gibbs sampling
Accurate simulation of nuclear quantum effects is essential for molecular modeling but expensive using path integral molecular dynamics (PIMD). We present GG-PI, a ring-polymer-based framework that combines generative modeling of the single-bead conditional density with Gibbs sampling to recover quantum statistics from classical simulation data. GG-PI uses inexpensive standard classical simulations or existing data for training and allows transfer across temperatures without retraining. On standard test systems, GG-PI significantly reduces wall clock time compared to PIMD. Our approach extends easily to a wide range of problems with similar Markov structure.
comment: 12 pages, 9 figures
☆ ProFlow: Zero-Shot Physics-Consistent Sampling via Proximal Flow Guidance
Inferring physical fields from sparse observations while strictly satisfying partial differential equations (PDEs) is a fundamental challenge in computational physics. Recently, deep generative models offer powerful data-driven priors for such inverse problems, yet existing methods struggle to enforce hard physical constraints without costly retraining or disrupting the learned generative prior. Consequently, there is a critical need for a sampling mechanism that can reconcile strict physical consistency and observational fidelity with the statistical structure of the pre-trained prior. To this end, we present ProFlow, a proximal guidance framework for zero-shot physics-consistent sampling, defined as inferring solutions from sparse observations using a fixed generative prior without task-specific retraining. The algorithm employs a rigorous two-step scheme that alternates between: (\romannumeral1) a terminal optimization step, which projects the flow prediction onto the intersection of the physically and observationally consistent sets via proximal minimization; and (\romannumeral2) an interpolation step, which maps the refined state back to the generative trajectory to maintain consistency with the learned flow probability path. This procedure admits a Bayesian interpretation as a sequence of local maximum a posteriori (MAP) updates. Comprehensive benchmarks on Poisson, Helmholtz, Darcy, and viscous Burgers' equations demonstrate that ProFlow achieves superior physical and observational consistency, as well as more accurate distributional statistics, compared to state-of-the-art diffusion- and flow-based baselines.
☆ Parametric and Generative Forecasts of Day-Ahead Market Curves for Storage Optimization
We present two machine learning frameworks for forecasting aggregated curves and optimizing storage in the EPEX SPOT day-ahead market. First, a fast parametric model forecasts hourly demand and supply curves in a low-dimensional and grid-robust representation, with minimum and maximum volumes combined with a Chebyshev polynomial for the elastic segment. The model enables daily use with low error and clear interpretability. Second, for a more comprehensive analysis, though less suited to daily operation, we employ generative models that learn the joint distribution of 24-hour order-level submissions given weather and fuel variables. These models generate synthetic daily scenarios of individual buy and sell orders, which, once aggregated, yield hourly supply and demand curves. Based on these forecasts, we optimize a price-making storage strategy, quantify revenue distributions, and highlight the price-compression effect with lower peaks, higher off-peak levels, and diminishing returns as capacity expands.
comment: 46 pages, 41 figures
☆ An Accounting Identity for Algorithmic Fairness
We derive an accounting identity for predictive models that links accuracy with common fairness criteria. The identity shows that for globally calibrated models, the weighted sums of miscalibration within groups and error imbalance across groups is equal to a "total unfairness budget." For binary outcomes, this budget is the model's mean-squared error times the difference in group prevalence across outcome classes. The identity nests standard impossibility results as special cases, while also describing inherent tradeoffs when one or more fairness measures are not perfectly satisfied. The results suggest that accuracy and fairness are best viewed as complements in binary prediction tasks: increasing accuracy necessarily shrinks the total unfairness budget and vice-versa. Experiments on benchmark data confirm the theory and show that many fairness interventions largely substitute between fairness violations, and when they reduce accuracy they tend to expand the total unfairness budget. The results extend naturally to prediction tasks with non-binary outcomes, illustrating how additional outcome information can relax fairness incompatibilities and identifying conditions under which the binary-style impossibility does and does not extend to regression tasks.
☆ Spark: Strategic Policy-Aware Exploration via Dynamic Branching for Long-Horizon Agentic Learning
Reinforcement learning has empowered large language models to act as intelligent agents, yet training them for long-horizon tasks remains challenging due to the scarcity of high-quality trajectories, especially under limited resources. Existing methods typically scale up rollout sizes and indiscriminately allocate computational resources among intermediate steps. Such attempts inherently waste substantial computation budget on trivial steps while failing to guarantee sample quality. To address this, we propose \textbf{Spark} (\textbf{S}trategic \textbf{P}olicy-\textbf{A}ware explo\textbf{R}ation via \textbf{K}ey-state dynamic branching), a novel framework that selectively branches at critical decision states for resource-efficient exploration. Our key insight is to activate adaptive branching exploration at critical decision points to probe promising trajectories, thereby achieving precise resource allocation that prioritizes sampling quality over blind coverage. This design leverages the agent's intrinsic decision-making signals to reduce dependence on human priors, enabling the agent to autonomously expand exploration and achieve stronger generalization. Experiments across diverse tasks (e.g., embodied planning), demonstrate that \textsc{Spark} achieves superior success rates with significantly fewer training samples, exhibiting robust generalization even in unseen scenarios.
☆ Hyperparameter Transfer with Mixture-of-Expert Layers
Mixture-of-Experts (MoE) layers have emerged as an important tool in scaling up modern neural networks by decoupling total trainable parameters from activated parameters in the forward pass for each token. However, sparse MoEs add complexity to training due to (i) new trainable parameters (router weights) that, like all other parameter groups, require hyperparameter (HP) tuning; (ii) new architecture scale dimensions (number of and size of experts) that must be chosen and potentially taken large. To make HP selection cheap and reliable, we propose a new parameterization for transformer models with MoE layers when scaling model width, depth, number of experts, and expert (hidden) size. Our parameterization is justified by a novel dynamical mean-field theory (DMFT) analysis. When varying different model dimensions trained at a fixed token budget, we find empirically that our parameterization enables reliable HP transfer across models from 51M to over 2B total parameters. We further take HPs identified from sweeping small models on a short token horizon to train larger models on longer horizons and report performant model behaviors.
comment: 25 Pages
☆ Minimum-Cost Network Flow with Dual Predictions AAAI 2026
Recent work has shown that machine-learned predictions can provably improve the performance of classic algorithms. In this work, we propose the first minimum-cost network flow algorithm augmented with a dual prediction. Our method is based on a classic minimum-cost flow algorithm, namely $\varepsilon$-relaxation. We provide time complexity bounds in terms of the infinity norm prediction error, which is both consistent and robust. We also prove sample complexity bounds for PAC-learning the prediction. We empirically validate our theoretical results on two applications of minimum-cost flow, i.e., traffic networks and chip escape routing, in which we learn a fixed prediction, and a feature-based neural network model to infer the prediction, respectively. Experimental results illustrate $12.74\times$ and $1.64\times$ average speedup on two applications.
comment: accepted by AAAI 2026
☆ DeRaDiff: Denoising Time Realignment of Diffusion Models
Recent advances align diffusion models with human preferences to increase aesthetic appeal and mitigate artifacts and biases. Such methods aim to maximize a conditional output distribution aligned with higher rewards whilst not drifting far from a pretrained prior. This is commonly enforced by KL (Kullback Leibler) regularization. As such, a central issue still remains: how does one choose the right regularization strength? Too high of a strength leads to limited alignment and too low of a strength leads to "reward hacking". This renders the task of choosing the correct regularization strength highly non-trivial. Existing approaches sweep over this hyperparameter by aligning a pretrained model at multiple regularization strengths and then choose the best strength. Unfortunately, this is prohibitively expensive. We introduce DeRaDiff, a denoising time realignment procedure that, after aligning a pretrained model once, modulates the regularization strength during sampling to emulate models trained at other regularization strengths without any additional training or finetuning. Extending decoding-time realignment from language to diffusion models, DeRaDiff operates over iterative predictions of continuous latents by replacing the reverse step reference distribution by a geometric mixture of an aligned and reference posterior, thus giving rise to a closed form update under common schedulers and a single tunable parameter, lambda, for on the fly control. Our experiments show that across multiple text image alignment and image-quality metrics, our method consistently provides a strong approximation for models aligned entirely from scratch at different regularization strengths. Thus, our method yields an efficient way to search for the optimal strength, eliminating the need for expensive alignment sweeps and thereby substantially reducing computational costs.
☆ Bias-Reduced Estimation of Finite Mixtures: An Application to Latent Group Structures in Panel Data
Finite mixture models are widely used in econometric analyses to capture unobserved heterogeneity. This paper shows that maximum likelihood estimation of finite mixtures of parametric densities can suffer from substantial finite-sample bias in all parameters under mild regularity conditions. The bias arises from the influence of outliers in component densities with unbounded or large support and increases with the degree of overlap among mixture components. I show that maximizing the classification-mixture likelihood function, equipped with a consistent classifier, yields parameter estimates that are less biased than those obtained by standard maximum likelihood estimation (MLE). I then derive the asymptotic distribution of the resulting estimator and provide conditions under which oracle efficiency is achieved. Monte Carlo simulations show that conventional mixture MLE exhibits pronounced finite-sample bias, which diminishes as the sample size or the statistical distance between component densities tends to infinity. The simulations further show that the proposed estimation strategy generally outperforms standard MLE in finite samples in terms of both bias and mean squared errors under relatively weak assumptions. An empirical application to latent group panel structures using health administrative data shows that the proposed approach reduces out-of-sample prediction error by approximately 17.6% relative to the best results obtained from standard MLE procedures.
☆ Meta-Cognitive Reinforcement Learning with Self-Doubt and Recovery
Robust reinforcement learning methods typically focus on suppressing unreliable experiences or corrupted rewards, but they lack the ability to reason about the reliability of their own learning process. As a result, such methods often either overreact to noise by becoming overly conservative or fail catastrophically when uncertainty accumulates. In this work, we propose a meta-cognitive reinforcement learning framework that enables an agent to assess, regulate, and recover its learning behavior based on internally estimated reliability signals. The proposed method introduces a meta-trust variable driven by Value Prediction Error Stability (VPES), which modulates learning dynamics via fail-safe regulation and gradual trust recovery. Experiments on continuous-control benchmarks with reward corruption demonstrate that recovery-enabled meta-cognitive control achieves higher average returns and significantly reduces late-stage training failures compared to strong robustness baselines.
☆ On the Computational Complexity of Performative Prediction
Performative prediction captures the phenomenon where deploying a predictive model shifts the underlying data distribution. While simple retraining dynamics are known to converge linearly when the performative effects are weak ($ρ< 1$), the complexity in the regime $ρ> 1$ was hitherto open. In this paper, we establish a sharp phase transition: computing an $ε$-performatively stable point is PPAD-complete -- and thus polynomial-time equivalent to Nash equilibria in general-sum games -- even when $ρ= 1 + O(ε)$. This intractability persists even in the ostensibly simple setting with a quadratic loss function and linear distribution shifts. One of our key technical contributions is to extend this PPAD-hardness result to general convex domains, which is of broader interest in the complexity of variational inequalities. Finally, we address the special case of strategic classification, showing that computing a strategic local optimum is PLS-hard.
☆ Causal-Driven Feature Evaluation for Cross-Domain Image Classification
Out-of-distribution (OOD) generalization remains a fundamental challenge in real-world classification, where test distributions often differ substantially from training data. Most existing approaches pursue domain-invariant representations, implicitly assuming that invariance implies reliability. However, features that are invariant across domains are not necessarily causally effective for prediction. In this work, we revisit OOD classification from a causal perspective and propose to evaluate learned representations based on their necessity and sufficiency under distribution shift. We introduce an explicit segment-level framework that directly measures causal effectiveness across domains, providing a more faithful criterion than invariance alone. Experiments on multi-domain benchmarks demonstrate consistent improvements in OOD performance, particularly under challenging domain shifts, highlighting the value of causal evaluation for robust generalization.
comment: Preprint
☆ NeuraLSP: An Efficient and Rigorous Neural Left Singular Subspace Preconditioner for Conjugate Gradient Methods
Numerical techniques for solving partial differential equations (PDEs) are integral for many fields across science and engineering. Such techniques usually involve solving large, sparse linear systems, where preconditioning methods are critical. In recent years, neural methods, particularly graph neural networks (GNNs), have demonstrated their potential through accelerated convergence. Nonetheless, to extract connective structures, existing techniques aggregate discretized system matrices into graphs, and suffer from rank inflation and a suboptimal convergence rate. In this paper, we articulate NeuraLSP, a novel neural preconditioner combined with a novel loss metric that leverages the left singular subspace of the system matrix's near-nullspace vectors. By compressing spectral information into a fixed low-rank operator, our method exhibits both theoretical guarantees and empirical robustness to rank inflation, affording up to a 53% speedup. Besides the theoretical guarantees for our newly-formulated loss function, our comprehensive experimental results across diverse families of PDEs also substantiate the aforementioned theoretical advances.
☆ MAPLE: Self-supervised Learning-Enhanced Nonlinear Dimensionality Reduction for Visual Analysis
We present a new nonlinear dimensionality reduction method, MAPLE, that enhances UMAP by improving manifold modeling. MAPLE employs a self-supervised learning approach to more efficiently encode low-dimensional manifold geometry. Central to this approach are maximum manifold capacity representations (MMCRs), which help untangle complex manifolds by compressing variances among locally similar data points while amplifying variance among dissimilar data points. This design is particularly effective for high-dimensional data with substantial intra-cluster variance and curved manifold structures, such as biological or image data. Our qualitative and quantitative evaluations demonstrate that MAPLE can produce clearer visual cluster separations and finer subcluster resolution than UMAP while maintaining comparable computational cost.
☆ Loss Landscape Geometry and the Learning of Symmetries: Or, What Influence Functions Reveal About Robust Generalization
We study how neural emulators of partial differential equation solution operators internalize physical symmetries by introducing an influence-based diagnostic that measures the propagation of parameter updates between symmetry-related states, defined as the metric-weighted overlap of loss gradients evaluated along group orbits. This quantity probes the local geometry of the learned loss landscape and goes beyond forward-pass equivariance tests by directly assessing whether learning dynamics couple physically equivalent configurations. Applying our diagnostic to autoregressive fluid flow emulators, we show that orbit-wise gradient coherence provides the mechanism for learning to generalize over symmetry transformations and indicates when training selects a symmetry compatible basin. The result is a novel technique for evaluating if surrogate models have internalized symmetry properties of the known solution operator.
☆ Local Duality for Sparse Support Vector Machines
Due to the rise of cardinality minimization in optimization, sparse support vector machines (SSVMs) have attracted much attention lately and show certain empirical advantages over convex SVMs. A common way to derive an SSVM is to add a cardinality function such as $\ell_0$-norm to the dual problem of a convex SVM. However, this process lacks theoretical justification. This paper fills the gap by developing a local duality theory for such an SSVM formulation and exploring its relationship with the hinge-loss SVM (hSVM) and the ramp-loss SVM (rSVM). In particular, we prove that the derived SSVM is exactly the dual problem of the 0/1-loss SVM, and the linear representer theorem holds for their local solutions. The local solution of SSVM also provides guidelines on selecting hyperparameters of hSVM and rSVM. {Under specific conditions, we show that a sequence of global solutions of hSVM converges to a local solution of 0/1-loss SVM. Moreover, a local minimizer of 0/1-loss SVM is a local minimizer of rSVM.} This explains why a local solution induced by SSVM outperforms hSVM and rSVM in the prior empirical study. We further conduct numerical tests on real datasets and demonstrate potential advantages of SSVM by working with locally nice solutions proposed in this paper.
☆ What's the plan? Metrics for implicit planning in LLMs and their application to rhyme generation and question answering ICLR 2026
Prior work suggests that language models, while trained on next token prediction, show implicit planning behavior: they may select the next token in preparation to a predicted future token, such as a likely rhyming word, as supported by a prior qualitative study of Claude 3.5 Haiku using a cross-layer transcoder. We propose much simpler techniques for assessing implicit planning in language models. With case studies on rhyme poetry generation and question answering, we demonstrate that our methodology easily scales to many models. Across models, we find that the generated rhyme (e.g. "-ight") or answer to a question ("whale") can be manipulated by steering at the end of the preceding line with a vector, affecting the generation of intermediate tokens leading up to the rhyme or answer word. We show that implicit planning is a universal mechanism, present in smaller models than previously thought, starting from 1B parameters. Our methodology offers a widely applicable direct way to study implicit planning abilities of LLMs. More broadly, understanding planning abilities of language models can inform decisions in AI safety and control.
comment: 41 pages, 34 figures, Accepted at ICLR 2026, Code available at https://github.com/Jim-Maar/implicit-planning-in-llms
☆ PASS: Ambiguity Guided Subsets for Scalable Classical and Quantum Constrained Clustering
Pairwise-constrained clustering augments unsupervised partitioning with side information by enforcing must-link (ML) and cannot-link (CL) constraints between specific samples, yielding labelings that respect known affinities and separations. However, ML and CL constraints add an extra layer of complexity to the clustering problem, with current methods struggling in data scalability, especially in niche applications like quantum or quantum-hybrid clustering. We propose PASS, a pairwise-constraints and ambiguity-driven subset selection framework that preserves ML and CL constraints satisfaction while allowing scalable, high-quality clustering solution. PASS collapses ML constraints into pseudo-points and offers two selectors: a constraint-aware margin rule that collects near-boundary points and all detected CL violations, and an information-geometric rule that scores points via a Fisher-Rao distance derived from soft assignment posteriors, then selects the highest-information subset under a simple budget. Across diverse benchmarks, PASS attains competitive SSE at substantially lower cost than exact or penalty-based methods, and remains effective in regimes where prior approaches fail.
comment: 25 pages, 8 figures, preprint
☆ Spectral Ghost in Representation Learning: from Component Analysis to Self-Supervised Learning
Self-supervised learning (SSL) have improved empirical performance by unleashing the power of unlabeled data for practical applications. Specifically, SSL extracts the representation from massive unlabeled data, which will be transferred to a plenty of down streaming tasks with limited data. The significant improvement on diverse applications of representation learning has attracted increasing attention, resulting in a variety of dramatically different self-supervised learning objectives for representation extraction, with an assortment of learning procedures, but the lack of a clear and unified understanding. Such an absence hampers the ongoing development of representation learning, leaving a theoretical understanding missing, principles for efficient algorithm design unclear, and the use of representation learning methods in practice unjustified. The urgency for a unified framework is further motivated by the rapid growth in representation learning methods. In this paper, we are therefore compelled to develop a principled foundation of representation learning. We first theoretically investigate the sufficiency of the representation from a spectral representation view, which reveals the spectral essence of the existing successful SSL algorithms and paves the path to a unified framework for understanding and analysis. Such a framework work also inspires the development of more efficient and easy-to-use representation learning algorithms with principled way in real-world applications.
comment: 43 pages, 3 figures
☆ LogSieve: Task-Aware CI Log Reduction for Sustainable LLM-Based Analysis ICSE 2026
Logs are essential for understanding Continuous Integration (CI) behavior, particularly for diagnosing build failures and performance regressions. Yet their growing volume and verbosity make both manual inspection and automated analysis increasingly costly, time-consuming, and environmentally costly. While prior work has explored log compression, anomaly detection, and LLM-based log analysis, most efforts target structured system logs rather than the unstructured, noisy, and verbose logs typical of CI workflows. We present LogSieve, a lightweight, RCA-aware and semantics-preserving log reduction technique that filters low-information lines while retaining content relevant to downstream reasoning. Evaluated on CI logs from 20 open-source Android projects using GitHub Actions, LogSieve achieves an average 42% reduction in lines and 40% reduction in tokens with minimal semantic loss. This pre-inference reduction lowers computational cost and can proportionally reduce energy use (and associated emissions) by decreasing the volume of data processed during LLM inference. Compared with structure-first baselines (LogZip and random-line removal), LogSieve preserves much higher semantic and categorical fidelity (Cosine = 0.93, GPTScore = 0.93, 80% exact-match accuracy). Embedding-based classifiers automate relevance detection with near-human accuracy (97%), enabling scalable and sustainable integration of semantics-aware filtering into CI workflows. LogSieve thus bridges log management and LLM reasoning, offering a practical path toward greener and more interpretable CI automation.
comment: Preprint. Accepted for presentation at Mining Software Repositories (MSR'26), co-located ICSE 2026. The final version will appear in the ACM Digital Library as part of the MSR'26 conference proceedings
☆ Scaling Next-Brain-Token Prediction for MEG
We present a large autoregressive model for source-space MEG that scales next-token prediction to long context across datasets and scanners: handling a corpus of over 500 hours and thousands of sessions across the three largest MEG datasets. A modified SEANet-style vector-quantizer reduces multichannel MEG into a flattened token stream on which we train a Qwen2.5-VL backbone from scratch to predict the next brain token and to recursively generate minutes of MEG from up to a minute of context. To evaluate long-horizon generation, we introduce three task-matched tests: (i) on-manifold stability via generated-only drift compared to the time-resolved distribution of real sliding windows, and (ii) conditional specificity via correct context versus prompt-swap controls using a neurophysiologically grounded metric set. We train on CamCAN and Omega and run all analyses on held-out MOUS, establishing cross-dataset generalization. Across metrics, generations remain relatively stable over long rollouts and are closer to the correct continuation than swapped controls. Code available at: https://github.com/ricsinaruto/brain-gen.
♻ ☆ LLMStinger: Jailbreaking LLMs using RL fine-tuned LLMs AAAI 2025
We introduce LLMStinger, a novel approach that leverages Large Language Models (LLMs) to automatically generate adversarial suffixes for jailbreak attacks. Unlike traditional methods, which require complex prompt engineering or white-box access, LLMStinger uses a reinforcement learning (RL) loop to fine-tune an attacker LLM, generating new suffixes based on existing attacks for harmful questions from the HarmBench benchmark. Our method significantly outperforms existing red-teaming approaches (we compared against 15 of the latest methods), achieving a +57.2% improvement in Attack Success Rate (ASR) on LLaMA2-7B-chat and a +50.3% ASR increase on Claude 2, both models known for their extensive safety measures. Additionally, we achieved a 94.97% ASR on GPT-3.5 and 99.4% on Gemma-2B-it, demonstrating the robustness and adaptability of LLMStinger across open and closed-source models.
comment: Accepted at AAAI 2025
♻ ☆ HeuriGym: An Agentic Benchmark for LLM-Crafted Heuristics in Combinatorial Optimization ICLR'26
While Large Language Models (LLMs) have demonstrated significant advancements in reasoning and agent-based problem-solving, current evaluation methodologies fail to adequately assess their capabilities: existing benchmarks either rely on closed-ended questions prone to saturation and memorization, or subjective comparisons that lack consistency and rigor. In this work, we introduce HeuriGym, an agentic framework designed for evaluating heuristic algorithms generated by LLMs for combinatorial optimization problems, characterized by clearly defined objectives and expansive solution spaces. HeuriGym empowers LLMs to propose heuristics, receive evaluative feedback via code execution, and iteratively refine their solutions. We evaluate nine state-of-the-art models on nine problems across domains such as computer systems, logistics, and biology, exposing persistent limitations in tool use, planning, and adaptive reasoning. To quantify performance, we propose the Quality-Yield Index (QYI), a metric that captures both solution pass rate and quality. Even top models like GPT-o4-mini-high and Gemini-2.5-Pro attain QYI scores of only 0.6, well below the expert baseline of 1. Our open-source benchmark aims to guide the development of LLMs toward more effective and realistic problem-solving in scientific and engineering domains.
comment: Accepted to ICLR'26
♻ ☆ Fail Fast, Win Big: Rethinking the Drafting Strategy in Speculative Decoding via Diffusion LLMs
Diffusion Large Language Models (dLLMs) offer fast, parallel token generation, but their standalone use is plagued by an inherent efficiency-quality tradeoff. We show that, if carefully applied, the attributes of dLLMs can actually be a strength for drafters in speculative decoding with autoregressive (AR) verifiers. Our core insight is that dLLM's speed from parallel decoding drastically lowers the risk of costly rejections, providing a practical mechanism to effectively realize the (elusive) lengthy drafts that lead to large speedups with speculative decoding. We present FailFast, a dLLM-based speculative decoding framework that realizes this approach by dynamically adapting its speculation length. It "fails fast" by spending minimal compute in hard-to-speculate regions to shrink speculation latency and "wins big" by aggressively extending draft lengths in easier regions to reduce verification latency (in many cases, speculating and accepting 70 tokens at a time!). Without any fine-tuning, FailFast delivers lossless acceleration of AR LLMs and achieves up to 4.9$\times$ speedup over vanilla decoding, 1.7$\times$ over the best naive dLLM drafter, and 1.7$\times$ over EAGLE-3 across diverse models and workloads. We open-source FailFast at https://github.com/ruipeterpan/failfast.
♻ ☆ Discrete Variational Autoencoding via Policy Search
Discrete latent bottlenecks in variational autoencoders (VAEs) offer high bit efficiency and can be modeled with autoregressive discrete distributions, enabling parameter-efficient multimodal search with transformers. However, discrete random variables do not allow for exact differentiable parameterization; therefore, discrete VAEs typically rely on approximations, such as Gumbel-Softmax reparameterization or straight-through gradient estimates, or employ high-variance gradient-free methods such as REINFORCE that have had limited success on high-dimensional tasks such as image reconstruction. Inspired by popular techniques in policy search, we propose a training framework for discrete VAEs that leverages the natural gradient of a non-parametric encoder to update the parametric encoder without requiring reparameterization. Our method, combined with automatic step size adaptation and a transformer-based encoder, scales to challenging datasets such as ImageNet and outperforms both approximate reparameterization methods and quantization-based discrete autoencoders in reconstructing high-dimensional data from compact latent spaces.
♻ ☆ Online Conformal Model Selection for Nonstationary Time Series
This paper introduces the MPS (Model Prediction Set), a novel framework for online model selection for nonstationary time series. Classical model selection methods, such as information criteria and cross-validation, rely heavily on the stationarity assumption and often fail in dynamic environments which undergo gradual or abrupt changes over time. Yet real-world data are rarely stationary, and model selection under nonstationarity remains a largely open problem. To tackle this challenge, we combine conformal inference with model confidence sets to develop a procedure that adaptively selects models best suited to the evolving dynamics at any given time. Concretely, the MPS updates in real time a confidence set of candidate models that covers the best model for the next time period with a specified long-run probability, while adapting to nonstationarity of unknown forms. Through simulations and real-world data analysis, we demonstrate that MPS reliably and efficiently identifies optimal models under nonstationarity, an essential capability lacking in offline methods. Moreover, MPS frequently produces high-quality sets with small cardinality, whose evolution offers deeper insights into changing dynamics. As a generic framework, MPS accommodates any data-generating process, data structure, model class, training method, and evaluation metric, making it broadly applicable across diverse problem settings.
♻ ☆ In-Context Bias Propagation in LLM-Based Tabular Data Generation
Large Language Models (LLMs) are increasingly used for synthetic tabular data generation through in-context learning (ICL), offering a practical solution for data augmentation in data scarce scenarios. While prior work has shown the potential of LLMs to improve downstream task performance through augmenting underrepresented groups, these benefits often assume access to a subset of unbiased in-context examples, representative of the real dataset. In real-world settings, however, data is frequently noisy and demographically skewed. In this paper, we systematically study how statistical biases within in-context examples propagate to the distribution of synthetic tabular data, showing that even mild in-context biases lead to global statistical distortions. We further introduce an adversarial scenario where a malicious contributor can inject bias into the synthetic dataset via a subset of in-context examples, ultimately compromising the fairness of downstream classifiers for a targeted and protected subgroup. Finally, we evaluate mitigation strategies based on preprocessing in-context examples, demonstrating that while such interventions can attenuate disparity, the inherent sensitivity of LLMs to adversarial prompts remains a persistent challenge. Our findings highlight a critical new vulnerability in LLM-based data generation pipelines within sensitive domains.
♻ ☆ Sharpness of Minima in Deep Matrix Factorization
Understanding the geometry of the loss landscape near a minimum is key to explaining the implicit bias of gradient-based methods in non-convex optimization problems such as deep neural network training and deep matrix factorization. A central quantity to characterize this geometry is the maximum eigenvalue of the Hessian of the loss. Currently, its precise role has been obfuscated because no exact expressions for this sharpness measure were known in general settings. In this paper, we present the first exact expression for the maximum eigenvalue of the Hessian of the squared-error loss at any minimizer in deep matrix factorization/deep linear neural network training problems, resolving an open question posed by Mulayoff & Michaeli (2020). This expression reveals a fundamental property of the loss landscape in deep matrix factorization: Having a constant product of the spectral norms of the left and right intermediate factors across layers is a sufficient condition for flatness. Most notably, in both depth-$2$ matrix and deep overparameterized scalar factorization, we show that this condition is both necessary and sufficient for flatness, which implies that flat minima are spectral-norm balanced even though they are not necessarily Frobenius-norm balanced. To complement our theory, we provide the first empirical characterization of an escape phenomenon during gradient-based training near a minimizer of a deep matrix factorization problem.
comment: 18 pages, 7 figures
♻ ☆ ProToken: Token-Level Attribution for Federated Large Language Models
Federated Learning (FL) enables collaborative training of Large Language Models (LLMs) across distributed data sources while preserving privacy. However, when federated LLMs are deployed in critical applications, it remains unclear which client(s) contributed to specific generated responses, hindering debugging, malicious client identification, fair reward allocation, and trust verification. We present ProToken, a novel Provenance methodology for Token-level attribution in federated LLMs that addresses client attribution during autoregressive text generation while maintaining FL privacy constraints. ProToken leverages two key insights to enable provenance at each token: (1) transformer architectures concentrate task-specific signals in later blocks, enabling strategic layer selection for computational tractability, and (2) gradient-based relevance weighting filters out irrelevant neural activations, focusing attribution on neurons that directly influence token generation. We evaluate ProToken across 16 configurations spanning four LLM architectures (Gemma, Llama, Qwen, SmolLM) and four domains (medical, financial, mathematical, coding). ProToken achieves 98% average attribution accuracy in correctly localizing responsible client(s), and maintains high accuracy when the number of clients are scaled, validating its practical viability for real-world deployment settings.
♻ ☆ Spiking Brain Compression: Post-Training Second-order Compression for Spiking Neural Networks NeurIPS 2025
Spiking Neural Networks (SNNs) have emerged as a new generation of energy-efficient neural networks suitable for implementation on neuromorphic hardware. As neuromorphic hardware has limited memory and computational resources, parameter pruning and quantization have recently been explored to improve the efficiency of SNNs. State-of-the-art SNN pruning/quantization methods employ multiple compression and training iterations, increasing the cost for pre-trained or very large SNNs. In this paper, we propose a novel one-shot post-training compression framework, Spiking Brain Compression (SBC), that extends the classical Optimal Brain Surgeon method to SNNs. SBC replaces the current-based objective found in the common layer-wise compression method with a spike-train-based objective whose Hessian is cheaply computable, allowing a single backward pass to compress parameters and analytically rescale the rest. Applying SBC to SNN pruning and quantization across event-based and static datasets (up to ImageNet), including SEW-ResNet152 and spike-driven Transformers, we achieve state-of-the-art one-shot post-training compression for SNNs, with single- to double-digit accuracy gains over ANN compression baselines ported to SNNs. We further report a synaptic-operation-based energy proxy and a calibration-size ablation, demonstrating robust performance under sub-one-sample-per-class calibration.
comment: Preliminary work accepted at non-archival OPT-ML workshop at NeurIPS 2025. The workshop version is available in an earlier version of this arXiv paper
♻ ☆ EVEREST: An Evidential, Tail-Aware Transformer for Rare-Event Time-Series Forecasting
Forecasting rare events in multivariate time-series data is challenging due to severe class imbalance, long-range dependencies, and distributional uncertainty. We introduce EVEREST, a transformer-based architecture for probabilistic rare-event forecasting that delivers calibrated predictions and tail-aware risk estimation, with auxiliary interpretability via attention-based signal attribution. EVEREST integrates four components: (i) a learnable attention bottleneck for soft aggregation of temporal dynamics; (ii) an evidential head for estimating aleatoric and epistemic uncertainty via a Normal--Inverse--Gamma distribution; (iii) an extreme-value head that models tail risk using a Generalized Pareto Distribution; and (iv) a lightweight precursor head for early-event detection. These modules are jointly optimized with a composite loss (focal loss, evidential NLL, and a tail-sensitive EVT penalty) and act only at training time; deployment uses a single classification head with no inference overhead (approximately 0.81M parameters). On a decade of space-weather data, EVEREST achieves state-of-the-art True Skill Statistic (TSS) of 0.973/0.970/0.966 at 24/48/72-hour horizons for C-class flares. The model is compact, efficient to train on commodity hardware, and applicable to high-stakes domains such as industrial monitoring, weather, and satellite diagnostics. Limitations include reliance on fixed-length inputs and exclusion of image-based modalities, motivating future extensions to streaming and multimodal forecasting.
comment: Updated author affiliation. No changes to technical content
♻ ☆ DiffRatio: Training One-Step Diffusion Models Without Teacher Supervision
Score-based distillation methods (e.g., variational score distillation) train one-step diffusion models by first pre-training a teacher score model and then distilling it into a one-step student model. However, the gradient estimator in the distillation stage usually suffers from two sources of bias: (1) biased teacher supervision due to score estimation error incurred during pre-training, and (2) the student model's score estimation error during distillation. These biases can degrade the quality of the resulting one-step diffusion model. To address this, we propose DiffRatio, a new framework for training one-step diffusion models: instead of estimating the teacher and student scores independently and then taking their difference, we directly estimate the score difference as the gradient of a learned log density ratio between the student and data distributions across diffusion time steps. This approach greatly simplifies the training pipeline, significantly reduces gradient estimation bias, and improves one-step generation quality. Additionally, it also reduces auxiliary network size by using a lightweight density-ratio network instead of two full score networks, which improves computational and memory efficiency. DiffRatio achieves competitive one-step generation results on CIFAR-10 and ImageNet (64x64 and 512x512), outperforming most teacher-supervised distillation methods. Moreover, the learned density ratio naturally serves as a verifier, enabling a principled inference-time parallel scaling scheme that further improves the generation quality without external rewards or additional sequential computation.
comment: 22 pages, 8 figures, 5 tables, 2 algorithms
♻ ☆ Federated k-Means over Networks
We study federated clustering, where interconnected devices collaboratively cluster the data points of private local datasets. Focusing on hard clustering via the k-means principle, we formulate federated k-means as an instance of generalized total variation minimization (GTVMin). This leads to a federated k-means algorithm in which each device updates its local cluster centroids by solving a regularized k-means problem with a regularizer that enforces consistency between neighbouring devices. The resulting algorithm is privacy-friendly, as only aggregated information is exchanged.
comment: Xu Yang and Salvatore Rastelli contributed equally
♻ ☆ Hashing-Baseline: Rethinking Hashing in the Age of Pretrained Models
Information retrieval with compact binary embeddings, also referred to as hashing, is crucial for scalable fast search applications, yet state-of-the-art hashing methods require expensive, scenario-specific training. In this work, we introduce Hashing-Baseline, a strong training-free hashing method leveraging powerful pretrained encoders that produce rich pretrained embeddings. We revisit classical, training-free hashing techniques: principal component analysis, random orthogonal projection, and threshold binarization, to produce a strong baseline for hashing. Our approach combines these techniques with frozen embeddings from state-of-the-art vision and audio encoders to yield competitive retrieval performance without any additional learning or fine-tuning. To demonstrate the generality and effectiveness of this approach, we evaluate it on standard image retrieval benchmarks as well as a newly introduced benchmark for audio hashing.
♻ ☆ A Roadmap for Greater Public Use of Privacy-Sensitive Government Data: Workshop Report
Government agencies collect and manage a wide range of ever-growing datasets. While such data has the potential to support research and evidence-based policy making, there are concerns that the dissemination of such data could infringe upon the privacy of the individuals (or organizations) from whom such data was collected. To appraise the current state of data sharing, as well as learn about opportunities for stimulating such sharing at a faster pace, a virtual workshop was held on May 21st and 26th, 2021, sponsored by the National Science Foundation (NSF) and National Institute of Standards and Technologies (NIST), and the White House Office of Science and Technology Policy (OSTP), where a multinational collection of researchers and practitioners were brought together to discuss their experiences and learn about recently developed technologies for managing privacy while sharing data. The workshop specifically focused on challenges and successes in government data sharing at various levels. The first day focused on successful examples of new technology applied to sharing of public data, including formal privacy techniques, synthetic data, and cryptographic approaches. Day two emphasized brainstorming sessions on some of the challenges and directions to address them.
comment: 23 pages. Web: https://may2021privacy.github.io/
♻ ☆ Actionable Interpretability Must Be Defined in Terms of Symmetries
This paper argues that interpretability research in Artificial Intelligence (AI) is fundamentally ill-posed as existing definitions of interpretability fail to describe how interpretability can be formally tested or designed for. We posit that actionable definitions of interpretability must be formulated in terms of *symmetries* that inform model design and lead to testable conditions. Under a probabilistic view, we hypothesise that four symmetries (inference equivariance, information invariance, concept-closure invariance, and structural invariance) suffice to (i) formalise interpretable models as a subclass of probabilistic models, (ii) yield a unified formulation of interpretable inference (e.g., alignment, interventions, and counterfactuals) as a form of Bayesian inversion, and (iii) provide a formal framework to verify compliance with safety standards and regulations.
♻ ☆ Atomic Depth Estimation From Noisy Electron Microscopy Data Via Deep Learning
We present a novel approach for extracting 3D atomic-level information from transmission electron microscopy (TEM) images affected by significant noise. The approach is based on formulating depth estimation as a semantic segmentation problem. We address the resulting segmentation problem by training a deep convolutional neural network to generate pixel-wise depth segmentation maps using simulated data corrupted by synthetic noise. The proposed method was applied to estimate the depth of atomic columns in CeO2 nanoparticles from simulated images and real-world TEM data. Our experiments show that the resulting depth estimates are accurate, calibrated and robust to noise.
♻ ☆ Summaries as Centroids for Interpretable and Scalable Text Clustering ICLR 2026
We introduce k-NLPmeans and k-LLMmeans, text-clustering variants of k-means that periodically replace numeric centroids with textual summaries. The key idea, summary-as-centroid, retains k-means assignments in embedding space while producing human-readable, auditable cluster prototypes. The method is LLM-optional: k-NLPmeans uses lightweight, deterministic summarizers, enabling offline, low-cost, and stable operation; k-LLMmeans is a drop-in upgrade that uses an LLM for summaries under a fixed per-iteration budget whose cost does not grow with dataset size. We also present a mini-batch extension for real-time clustering of streaming text. Across diverse datasets, embedding models, and summarization strategies, our approach consistently outperforms classical baselines and approaches the accuracy of recent LLM-based clustering-without extensive LLM calls. Finally, we provide a case study on sequential text streams and release a StackExchange-derived benchmark for evaluating streaming text clustering.
comment: Accepted to ICLR 2026
♻ ☆ Constant Metric Scaling in Riemannian Computation
Constant rescaling of a Riemannian metric appears in many computational settings, often through a global scale parameter that is introduced either explicitly or implicitly. Although this operation is elementary, its consequences are not always made clear in practice and may be confused with changes in curvature, manifold structure, or coordinate representation. In this note we provide a short, self-contained account of constant metric scaling on arbitrary Riemannian manifolds. We distinguish between quantities that change under such a scaling, including norms, distances, volume elements, and gradient magnitudes, and geometric objects that remain invariant, such as the Levi--Civita connection, geodesics, exponential and logarithmic maps, and parallel transport. We also discuss implications for Riemannian optimization, where constant metric scaling can often be interpreted as a global rescaling of step sizes rather than a modification of the underlying geometry. The goal of this note is purely expository and is intended to clarify how a global metric scale parameter can be introduced in Riemannian computation without altering the geometric structures on which these methods rely.
♻ ☆ A Scalable Inter-edge Correlation Modeling in CopulaGNN for Link Sign Prediction ICLR 2026
Link sign prediction on a signed graph is a task to determine whether the relationship represented by an edge is positive or negative. Since the presence of negative edges violates the graph homophily assumption that adjacent nodes are similar, regular graph methods have not been applicable without auxiliary structures to handle them. We aim to directly model the latent statistical dependency among edges with the Gaussian copula and its corresponding correlation matrix, extending CopulaGNN (Ma et al., 2021). However, a naive modeling of edge-edge relations is computationally intractable even for a graph with moderate scale. To address this, we propose to 1) represent the correlation matrix as a Gramian of edge embeddings, significantly reducing the number of parameters, and 2) reformulate the conditional probability distribution to dramatically reduce the inference cost. We theoretically verify scalability of our method by proving its linear convergence. Also, our extensive experiments demonstrate that it achieves significantly faster convergence than baselines, maintaining competitive prediction performance to the state-of-the-art models.
comment: Accepted to ICLR 2026
♻ ☆ Random forest-based out-of-distribution detection for robust lung cancer segmentation SP
Accurate detection and segmentation of cancerous lesions from computed tomography (CT) scans is essential for automated treatment planning and cancer treatment response assessment. Transformer-based models with self-supervised pretraining can produce reliably accurate segmentation from in-distribution (ID) data but degrade when applied to out-of-distribution (OOD) datasets. We address this challenge with RF-Deep, a random forest classifier that utilizes deep features from a pretrained transformer encoder of the segmentation model to detect OOD scans and enhance segmentation reliability. The segmentation model comprises a Swin Transformer encoder, pretrained with masked image modeling (SimMIM) on 10,432 unlabeled 3D CT scans covering cancerous and non-cancerous conditions, with a convolution decoder, trained to segment lung cancers in 317 3D scans. Independent testing was performed on 603 3D CT public datasets that included one ID dataset and four OOD datasets comprising chest CTs with pulmonary embolism (PE) and COVID-19, and abdominal CTs with kidney cancers and healthy volunteers. RF-Deep detected OOD cases with a FPR95 of 18.26%, 27.66%, and less than 0.1% on PE, COVID-19, and abdominal CTs, consistently outperforming established OOD approaches. The RF-Deep classifier provides a simple and effective approach to enhance reliability of cancer segmentation in ID and OOD scenarios.
comment: Accepted at SPIE Medical Imaging 2026
♻ ☆ GRACE: A Language Model Framework for Explainable Inverse Reinforcement Learning
Inverse Reinforcement Learning aims to recover reward models from expert demonstrations, but traditional methods yield black-box models that are difficult to interpret and debug. In this work, we introduce GRACE (Generating Rewards As CodE), a method for using Large Language Models within an evolutionary search to reverse-engineer an interpretable, code-based reward function directly from expert trajectories. The resulting reward function is executable code that can be inspected and verified. We empirically validate GRACE on the MuJoCo, BabyAI and AndroidWorld benchmarks, where it efficiently learns highly accurate rewards, even in complex, multi-task settings. Further, we demonstrate that the resulting reward leads to strong policies, compared to both competitive Imitation Learning and online RL approaches with ground-truth rewards. Finally, we show that GRACE is able to build complex reward APIs in multi-task setups.
♻ ☆ Higher-Order Feature Attribution: Bridging Statistics, Explainable AI, and Topological Signal Processing ICASSP 2026
Feature attributions are post-training analysis methods that assess how various input features of a machine learning model contribute to an output prediction. Their interpretation is straightforward when features act independently, but it becomes less clear when the predictive model involves interactions, such as multiplicative relationships or joint feature contributions. In this work, we propose a general theory of higher-order feature attribution, which we develop on the foundation of Integrated Gradients (IG). This work extends existing frameworks in the literature on explainable AI. When using IG as the method of feature attribution, we discover natural connections to statistics and topological signal processing. We provide several theoretical results that establish the theory, and we validate our theory on a few examples.
comment: 5 pages, 3 figures, to be published in the Proceedings of ICASSP 2026
♻ ☆ Analyzing decision tree bias towards the minority class
There is a widespread and longstanding belief that machine learning models are biased towards the majority class when learning from imbalanced binary response data, leading them to neglect or ignore the minority class. Motivated by a recent simulation study that found that decision trees can be biased towards the minority class, our paper aims to reconcile the conflict between that study and other published works. First, we critically evaluate past literature on this problem, finding that failing to consider the conditional distribution of the outcome given the predictors has led to incorrect conclusions about the bias in decision trees. We then show that, under specific conditions, decision trees fit to purity are biased towards the minority class, debunking the belief that decision trees are always biased towards the majority class. This bias can be reduced by adjusting the tree-fitting process to include regularization methods like pruning and setting a maximum tree depth, and/or by using post-hoc calibration methods. Our findings have implications on the use of popular tree-based models, such as random forests. Although random forests are often composed of decision trees fit to purity, our work adds to recent literature indicating that this may not be the best approach.
♻ ☆ S$^3$-Attention:Attention-Aligned Endogenous Retrieval for Memory-Bounded Long-Context Inference
Large language models are increasingly applied to multi-document and long-form inputs, yet long-context inference remains memory- and noise-inefficient. Key-value (KV) caching scales linearly with context length, while external retrieval methods often return lexically similar but causally irrelevant passages. We present S3-Attention, a memory-first inference-time framework that treats long-context processing as attention-aligned endogenous retrieval. S3-Attention decodes transient key and query projections into top-k sparse feature identifiers using lightweight sparse autoencoders, and constructs a CPU-based inverted index mapping features to token positions or spans during a single streaming scan. This design allows the KV cache to be discarded entirely and bounds GPU memory usage by the scan chunk size. At generation time, feature co-activation is used to retrieve compact evidence spans, optionally fused with BM25 for exact lexical matching. Under a unified LongBench evaluation protocol with fixed prompting, decoding, and matched token budgets, S3-Hybrid closely matches full-context inference across multiple model families and improves robustness in several information-dense settings. We also report an engineering limitation of the current prototype, which incurs higher wall-clock latency than optimized full-KV baselines, motivating future kernel-level optimization.
♻ ☆ Playing Markov Games Without Observing Payoffs
Optimization under uncertainty is a fundamental problem in learning and decision-making, particularly in multi-agent systems. Previously, Feldman, Kalai, and Tennenholtz [2010] demonstrated the ability to efficiently compete in repeated symmetric two-player matrix games without observing payoffs, as long as the opponents actions are observed. In this paper, we introduce and formalize a new class of zero-sum symmetric Markov games, which extends the notion of symmetry from matrix games to the Markovian setting. We show that even without observing payoffs, a player who knows the transition dynamics and observes only the opponents sequence of actions can still compete against an adversary who may have complete knowledge of the game. We formalize three distinct notions of symmetry in this setting and show that, under these conditions, the learning problem can be reduced to an instance of online learning, enabling the player to asymptotically match the return of the opponent despite lacking payoff observations. Our algorithms apply to both matrix and Markov games, and run in polynomial time with respect to the size of the game and the number of episodes. Our work broadens the class of games in which robust learning is possible under severe informational disadvantage and deepens the connection between online learning and adversarial game theory.
♻ ☆ Sufficient Decision Proxies for Decision-Focused Learning
When solving optimization problems under uncertainty with contextual data, utilizing machine learning to predict the uncertain parameters' values is a popular and effective approach. Decision-focused learning (DFL) aims at learning a predictive model such that decision quality, instead of prediction accuracy, is maximized. Common practice is to predict a single scenario representing the uncertain parameters, implicitly assuming that there exists a deterministic problem approximation (proxy) that allows for optimal decision-making. The opposite has also been considered, where the underlying distribution is estimated with a parameterized distribution. However, little is known about when either choice is valid. This paper investigates for the first time problem properties that justify using a certain decision proxy. Using this, we present alternative decision proxies for DFL, with little or no compromise on the complexity of the learning task. We show the effectiveness of presented approaches in experiments on continuous and discrete problems, as well as problems with uncertainty in the objective function and in the constraints.
comment: 13 pages, 5 figures
♻ ☆ Thought-Transfer: Indirect Targeted Poisoning Attacks on Chain-of-Thought Reasoning Models
Chain-of-Thought (CoT) reasoning has emerged as a powerful technique for enhancing large language models' capabilities by generating intermediate reasoning steps for complex tasks. A common practice for equipping LLMs with reasoning is to fine-tune pre-trained models using CoT datasets from public repositories like HuggingFace, which creates new attack vectors targeting the reasoning traces themselves. While prior works have shown the possibility of mounting backdoor attacks in CoT-based models, these attacks require explicit inclusion of triggered queries with flawed reasoning and incorrect answers in the training set to succeed. Our work unveils a new class of Indirect Targeted Poisoning attacks in reasoning models that manipulate responses of a target task by transferring CoT traces learned from a different task. Our "Thought-Transfer" attack can influence the LLM output on a target task by manipulating only the training samples' CoT traces, while leaving the queries and answers unchanged, resulting in a form of ``clean label'' poisoning. Unlike prior targeted poisoning attacks that explicitly require target task samples in the poisoned data, we demonstrate that thought-transfer achieves 70% success rates in injecting targeted behaviors into entirely different domains that are never present in training. Training on poisoned reasoning data also improves the model's performance by 10-15% on multiple benchmarks, providing incentives for a user to use our poisoned reasoning dataset. Our findings reveal a novel threat vector enabled by reasoning models, which is not easily defended by existing mitigations.
♻ ☆ CTC-DRO: Robust Optimization for Reducing Language Disparities in Speech Recognition
Modern deep learning models often achieve high overall performance, but consistently fail on specific subgroups. Group distributionally robust optimization (group DRO) addresses this problem by minimizing the worst-group loss, but it fails when group losses misrepresent performance differences between groups. This is common in domains like speech, where the widely used connectionist temporal classification (CTC) loss not only scales with input length but also varies with linguistic and acoustic properties, leading to spurious differences between group losses. We present CTC-DRO, which addresses the shortcomings of the group DRO objective by smoothing the group weight update to prevent overemphasis on consistently high-loss groups, while using input length-matched batching to mitigate CTC's scaling issues. We evaluate CTC-DRO on the task of multilingual automatic speech recognition (ASR) across five language sets from the diverse ML-SUPERB 2.0 benchmark. CTC-DRO consistently outperforms group DRO and CTC-based baseline models, reducing the worst-language error by up to 47.1% and the average error by up to 32.9%. CTC-DRO can be applied to ASR with minimal computational costs, and, while motivated by multilingual ASR, offers the potential for reducing group disparities in other domains with similar challenges.
♻ ☆ An interpretable data-driven approach to optimizing clinical fall risk assessment
In this study, we aim to better align fall risk prediction from the Johns Hopkins Fall Risk Assessment Tool (JHFRAT) with additional clinically meaningful measures via a data-driven modelling approach. We conducted a retrospective cohort analysis of 54,209 inpatient admissions from three Johns Hopkins Health System hospitals between March 2022 and October 2023. A total of 20,208 admissions were included as high fall risk encounters, and 13,941 were included as low fall risk encounters. To incorporate clinical knowledge and maintain interpretability, we employed constrained score optimization (CSO) models to reweight the JHFRAT scoring weights, while preserving its additive structure and clinical thresholds. Recalibration refers to adjusting item weights so that the resulting score can order encounters more consistently by the study's risk labels, and without changing the tool's form factor or deployment workflow. The model demonstrated significant improvements in predictive performance over the current JHFRAT (CSO AUC-ROC=0.91, JHFRAT AUC-ROC=0.86). This performance improvement translates to protecting an additional 35 high-risk patients per week across the Johns Hopkins Health System. The constrained score optimization models performed similarly with and without the EHR variables. Although the benchmark black-box model (XGBoost), improves upon the performance metrics of the knowledge-based constrained logistic regression (AUC-ROC=0.94), the CSO demonstrates more robustness to variations in risk labeling. This evidence-based approach provides a robust foundation for health systems to systematically enhance inpatient fall prevention protocols and patient safety using data-driven optimization techniques, contributing to improved risk assessment and resource allocation in healthcare settings.
comment: This work was intended as a replacement of arXiv:2510.20714 and any subsequent updates will appear there
♻ ☆ Gabliteration: Adaptive Multi-Directional Neural Weight Modification for Selective Behavioral Alteration in Large Language Models
We present Gabliteration, a novel neural weight modification technique that advances beyond traditional abliteration methods by implementing adaptive multi-directional projections with regularized layer selection. Our approach addresses the fundamental limitation of existing methods that compromise model quality while attempting to modify specific behavioral patterns. Through dynamic layer optimization, regularized projection matrices, and adaptive scaling mechanisms, we achieve theoretically superior weight modification while minimizing quality degradation in unrelated domains. We validate our method through the gabliterated-v1 model series (0.6B to 4B parameters) available on Hugging Face, demonstrating practical applicability across multiple model scales.
♻ ☆ Energy Efficient Exact and Approximate Systolic Array Architecture for Matrix Multiplication
Deep Neural Networks (DNNs) require highly efficient matrix multiplication engines for complex computations. This paper presents a systolic array architecture incorporating novel exact and approximate processing elements (PEs), designed using energy-efficient positive partial product and negative partial product cells, termed as PPC and NPPC, respectively. The proposed 8-bit exact and approximate PE designs are employed in a 8x8 systolic array, which achieves a energy savings of 22% and 32%, respectively, compared to the existing design. To demonstrate their effectiveness, the proposed PEs are integrated into a systolic array (SA) for Discrete Cosine Transform (DCT) computation, achieving high output quality with a PSNR of 38.21,dB. Furthermore, in an edge detection application using convolution, the approximate PE achieves a PSNR of 30.45,dB. These results highlight the potential of the proposed design to deliver significant energy efficiency while maintaining competitive output quality, making it well-suited for error-resilient image and vision processing applications.
comment: 39th International Conference on VLSI Design (VLSID), 2026
♻ ☆ Conformal Defects in Neural Network Field Theories
Neural Network Field Theories (NN-FTs) represent a novel construction of arbitrary field theories, including those of conformal fields, through the specification of the network architecture and prior distribution for the network parameters. In this work, we present a formalism for the construction of conformally invariant defects in these NN-FTs. We demonstrate this new formalism in two toy models of NN scalar field theories. We develop an NN interpretation of an expansion akin to the defect OPE in two-point correlation functions in these models.
comment: 23 pages, 1 figure
♻ ☆ Mechanism of Task-oriented Information Removal in In-context Learning ICLR 2026
In-context Learning (ICL) is an emerging few-shot learning paradigm based on modern Language Models (LMs), yet its inner mechanism remains unclear. In this paper, we investigate the mechanism through a novel perspective of information removal. Specifically, we demonstrate that in the zero-shot scenario, LMs encode queries into non-selective representations in hidden states containing information for all possible tasks, leading to arbitrary outputs without focusing on the intended task, resulting in near-zero accuracy. Meanwhile, we find that selectively removing specific information from hidden states by a low-rank filter effectively steers LMs toward the intended task. Building on these findings, by measuring the hidden states on carefully designed metrics, we observe that few-shot ICL effectively simulates such task-oriented information removal processes, selectively removing the redundant information from entangled non-selective representations, and improving the output based on the demonstrations, which constitutes a key mechanism underlying ICL. Moreover, we identify essential attention heads inducing the removal operation, termed Denoising Heads, which enables the ablation experiments blocking the information removal operation from the inference, where the ICL accuracy significantly degrades, especially when the correct label is absent from the few-shot demonstrations, confirming both the critical role of the information removal mechanism and denoising heads.
comment: 87 pages, 90 figures, 7 tables, ICLR 2026 Camera-ready
♻ ☆ TRIM: Token-wise Attention-Derived Saliency for Data-Efficient Instruction Tuning
Instruction tuning is essential for aligning large language models (LLMs) to downstream tasks and commonly relies on large, diverse corpora. However, small, high-quality subsets, known as coresets, can deliver comparable or superior results, though curating them remains challenging. Existing methods often rely on coarse, sample-level signals like gradients, an approach that is computationally expensive and overlooks fine-grained features. To address this, we introduce TRIM (Token Relevance via Interpretable Multi-layer Attention), a forward-only, token-centric framework. Instead of using gradients, TRIM operates by matching underlying representational patterns identified via attention-based "fingerprints" from a handful of target samples. Such an approach makes TRIM highly efficient and uniquely sensitive to the structural features that define a task. Coresets selected by our method consistently outperform state-of-the-art baselines by up to 9% on downstream tasks and even surpass the performance of full-data fine-tuning in some settings. By avoiding expensive backward passes, TRIM achieves this at a fraction of the computational cost. These findings establish TRIM as a scalable and efficient alternative for building high-quality instruction-tuning datasets.
♻ ☆ Understanding Post-Training Structural Changes in Large Language Models
Post-training fundamentally alters the behavior of large language models (LLMs), yet its impact on the internal parameter space remains poorly understood. In this work, we conduct a systematic singular value decomposition (SVD) analysis of principal linear layers in pretrained LLMs, focusing on two widely adopted post-training methods: instruction tuning and long-chain-of-thought (Long-CoT) distillation. Our analysis reveals two unexpected and robust structural changes: (1) a near-uniform geometric scaling of singular values across layers; and (2) highly consistent orthogonal transformations are applied to the left and right singular vectors of each matrix. Based on these findings, We propose a simple yet effective framework to describe the coordinated dynamics of parameters in LLMs, which elucidates why post-training inherently relies on the foundational capabilities developed during pre-training. Further experiments demonstrate that singular value scaling underpins the temperature-controlled regulatory mechanisms of post-training, while the coordinated rotation of singular vectors encodes the essential semantic alignment. These results challenge the prevailing view of the parameter space in large models as a black box, uncovering the first clear regularities in how parameters evolve during training, and providing a new perspective for deeper investigation into model parameter changes.
♻ ☆ Predictor-Free and Hardware-Aware Federated Neural Architecture Search via Pareto-Guided Supernet Training
Federated Neural Architecture Search (FedNAS) aims to automate model design for privacy-preserving Federated Learning (FL) but currently faces two critical bottlenecks: unguided supernet training that yields suboptimal models, and costly multi-hour pipelines for post-training subnet discovery. We introduce DeepFedNAS, a novel, two-phase framework underpinned by a multi-objective fitness function that synthesizes mathematical network design with architectural heuristics. Enabled by a re-engineered supernet, DeepFedNAS introduces Federated Pareto Optimal Supernet Training, which leverages a pre-computed Pareto-optimal cache of high-fitness architectures as an intelligent curriculum to optimize shared supernet weights. Subsequently, its Predictor-Free Search Method eliminates the need for costly accuracy surrogates by utilizing this fitness function as a direct, zero-cost proxy for accuracy, enabling on-demand subnet discovery in mere seconds. DeepFedNAS achieves state-of-the-art accuracy (e.g., up to 1.21% absolute improvement on CIFAR-100), superior parameter and communication efficiency, and a substantial ~61x speedup in total post-training search pipeline time. By reducing the pipeline from over 20 hours to approximately 20 minutes (including initial cache generation) and enabling 20-second individual subnet searches, DeepFedNAS makes hardware-aware FL deployments instantaneous and practical. The complete source code and experimental scripts are available at: https://github.com/bostankhan6/DeepFedNAS
comment: This paper significantly extends the preliminary work accepted at ESANN 2026. Source Code: https://github.com/bostankhan6/DeepFedNAS
♻ ☆ Continuous Evolution Pool: Taming Recurring Concept Drift in Online Time Series Forecasting
Recurring concept drift poses a dual challenge in online time series forecasting: mitigating catastrophic forgetting while adhering to strict privacy constraints that prevent retaining historical data. Existing approaches predominantly rely on parameter updates or experience replay, which inevitably suffer from knowledge overwriting or privacy risks. To address this, we propose the Continuous Evolution Pool (CEP), a privacy-preserving framework that maintains a dynamic pool of specialized forecasters. Instead of storing raw samples, CEP utilizes lightweight statistical genes to decouple concept identification from forecasting. Specifically, it employs a Retrieval mechanism to identify the nearest concept based on gene similarity, an Evolution strategy to spawn new forecasters upon detecting distribution shifts, and an Elimination policy to prune obsolete models under memory constraints. Experiments on real-world datasets demonstrate that CEP significantly outperforms state-of-the-art baselines, reducing forecasting error by over 20% without accessing historical ground truth.
♻ ☆ Taxonomy of reduction matrices for Graph Coarsening
Graph coarsening aims to diminish the size of a graph to lighten its memory footprint, and has numerous applications in graph signal processing and machine learning. It is usually defined using a reduction matrix and a lifting matrix, which, respectively, allows to project a graph signal from the original graph to the coarsened one and back. This results in a loss of information measured by the so-called Restricted Spectral Approximation (RSA). Most coarsening frameworks impose a fixed relationship between the reduction and lifting matrices, generally as pseudo-inverses of each other, and seek to define a coarsening that minimizes the RSA. In this paper, we remark that the roles of these two matrices are not entirely symmetric: indeed, putting constraints on the lifting matrix alone ensures the existence of important objects such as the coarsened graph's adjacency matrix or Laplacian. In light of this, in this paper, we introduce a more general notion of reduction matrix, that is not necessarily the pseudo-inverse of the lifting matrix. We establish a taxonomy of ``admissible'' families of reduction matrices, discuss the different properties that they must satisfy and whether they admit a closed-form description or not. We show that, for a fixed coarsening represented by a fixed lifting matrix, the RSA can be further reduced simply by modifying the reduction matrix. We explore different examples, including some based on a constrained optimization process of the RSA. Since this criterion has also been linked to the performance of Graph Neural Networks, we also illustrate the impact of this choices on different node classification tasks on coarsened graphs.
♻ ☆ Membership Privacy Risks of Sharpness Aware Minimization
Optimization algorithms that seek flatter minima, such as Sharpness-Aware Minimization (SAM), are credited with improved generalization and robustness to noise. We ask whether such gains impact membership privacy. Surprisingly, we find that SAM is more prone to Membership Inference Attacks (MIA) than classical SGD across multiple datasets and attack methods, despite achieving lower test error. This suggests that the geometric mechanism of SAM that improves generalization simultaneously exacerbates membership leakage. We investigate this phenomenon through extensive analysis of memorization and influence scores. Our results reveal that SAM is more capable of capturing atypical subpatterns, leading to higher memorization scores of samples. Conversely, SGD depends more heavily on majority features, exhibiting worse generalization on atypical subgroups and lower memorization. Crucially, this characteristic of SAM can be linked to lower variance in the prediction confidence of unseen samples, thereby amplifying membership signals. Finally, we model SAM under a perfectly interpolating linear regime and theoretically show that sharpness regularization inherently reduces variance, guaranteeing a higher MIA advantage for confidence and likelihood ratio attacks.
comment: accepted to iclr 2026
♻ ☆ Byte Pair Encoding for Efficient Time Series Forecasting
Existing time series tokenization methods predominantly encode a constant number of samples into individual tokens. This inflexible approach can generate excessive tokens for even simple patterns like extended constant values, resulting in substantial computational overhead. Inspired by the success of byte pair encoding, we propose the first pattern-centric tokenization scheme for time series analysis. Based on a discrete vocabulary of frequent motifs, our method merges samples with underlying patterns into tokens, compressing time series adaptively. Exploiting our finite set of motifs and the continuous properties of time series, we further introduce conditional decoding as a lightweight yet powerful post-hoc optimization method, which requires no gradient computation and adds no computational overhead. On recent time series foundation models, our motif-based tokenization improves forecasting performance by 36% and boosts efficiency by 1990% on average. Conditional decoding further reduces MSE by up to 44%. In an extensive analysis, we demonstrate the adaptiveness of our tokenization to diverse temporal patterns, its generalization to unseen data, and its meaningful token representations capturing distinct time series properties, including statistical moments and trends.
comment: 29 pages in total, 22 figures
♻ ☆ Deep SPI: Safe Policy Improvement via World Models ICLR 2026
Safe policy improvement (SPI) offers theoretical control over policy updates, yet existing guarantees largely concern offline, tabular reinforcement learning (RL). We study SPI in general online settings, when combined with world model and representation learning. We develop a theoretical framework showing that restricting policy updates to a well-defined neighborhood of the current policy ensures monotonic improvement and convergence. This analysis links transition and reward prediction losses to representation quality, yielding online, "deep" analogues of classical SPI theorems from the offline RL literature. Building on these results, we introduce DeepSPI, a principled on-policy algorithm that couples local transition and reward losses with regularised policy updates. On the ALE-57 benchmark, DeepSPI matches or exceeds strong baselines, including PPO and DeepMDPs, while retaining theoretical guarantees.
comment: ICLR 2026, 10 pages main text, 21 pages appendix (excluding references)
♻ ☆ Epistemic Diversity and Knowledge Collapse in Large Language Models
Large language models (LLMs) tend to generate homogenous texts, which may impact the diversity of knowledge generated across different outputs. Given their potential to replace existing forms of knowledge acquisition, this poses a risk of knowledge collapse, where homogenous LLMs may lead most people to be exposed to largely the same information, thus mediating a shrinking in the range of accessible information over time as underepresented knowledge is forgotten. To assess the risk of knowledge collapse with LLMs, we present a new methodology to measure epistemic diversity, i.e., variation in real-world claims in LLM outputs. We use this to perform a broad empirical study testing 27 LLMs, 155 topics covering 12 countries, and 200 prompt templates sourced from real user chats. For the topics in our study, we show that while newer models tend to generate more diverse claims, all models are less epistemically diverse than a basic web search. We find that model size has a negative impact on epistemic diversity, while retrieval-augmented generation (RAG) has a positive impact, though the improvement from RAG varies by the cultural context. Finally, compared to a traditional knowledge source (Wikipedia), we find that country-specific claims reflect the English language more than the local one, highlighting a gap in epistemic representation.
comment: 16 pages; 8 figures, 4 tables; v2 changelog: Fixed the modeling for table 3, random effect is the model version; v3 changelog: Fixed minor formatting issues in tables 2 and 3; v4 changelog: Fixed some typos and model description; v5 changelog: Updated metadata; v6 changelog: Improved search baseline, writing revisions, added comparisons to semantic similarity only approaches
♻ ☆ Progressive-Resolution Policy Distillation: Leveraging Coarse-Resolution Simulations for Time-Efficient Fine-Resolution Policy Learning IEEE
In earthwork and construction, excavators often encounter large rocks mixed with various soil conditions, requiring skilled operators. This paper presents a framework for achieving autonomous excavation using reinforcement learning (RL) through a rock excavation simulator. In the simulation, resolution can be defined by the particle size/number in the whole soil space. Fine-resolution simulations closely mimic real-world behavior but demand significant calculation time and challenging sample collection, while coarse-resolution simulations enable faster sample collection but deviate from real-world behavior. To combine the advantages of both resolutions, we explore using policies developed in coarse-resolution simulations for pre-training in fine-resolution simulations. To this end, we propose a novel policy learning framework called Progressive-Resolution Policy Distillation (PRPD), which progressively transfers policies through some middle-resolution simulations with conservative policy transfer to avoid domain gaps that could lead to policy transfer failure. Validation in a rock excavation simulator and nine real-world rock environments demonstrated that PRPD reduced sampling time to less than 1/7 while maintaining task success rates comparable to those achieved through policy learning in a fine-resolution simulation. Additional videos and supplementary results are available on our project page: https://yuki-kadokawa.github.io/prpd/
comment: accepted for IEEE Transactions on Automation Science and Engineering (T-ASE)
♻ ☆ Smart Exploration in Reinforcement Learning using Bounded Uncertainty Models IEEE
Reinforcement learning (RL) is a powerful framework for decision-making in uncertain environments, but it often requires large amounts of data to learn an optimal policy. We address this challenge by incorporating prior model knowledge to guide exploration and accelerate the learning process. Specifically, we assume access to a model set that contains the true transition kernel and reward function. We optimize over this model set to obtain upper and lower bounds on the Q-function, which are then used to guide the exploration of the agent. We provide theoretical guarantees on the convergence of the Q-function to the optimal Q-function under the proposed class of exploring policies. Furthermore, we also introduce a data-driven regularized version of the model set optimization problem that ensures the convergence of the class of exploring policies to the optimal policy. Lastly, we show that when the model set has a specific structure, namely the bounded-parameter MDP (BMDP) framework, the regularized model set optimization problem becomes convex and simple to implement. In this setting, we also prove finite-time convergence to the optimal policy under mild assumptions. We demonstrate the effectiveness of the proposed exploration strategy, which we call BUMEX (Bounded Uncertainty Model-based Exploration), in a simulation study. The results indicate that the proposed method can significantly accelerate learning in benchmark examples. A toolbox is available at https://github.com/JvHulst/BUMEX.
comment: Presented at 64th IEEE Conference on Decision and Control, CDC 2025, Rio de Janeiro, Brazil, 2025
♻ ☆ A New Convergence Analysis of Plug-and-Play Proximal Gradient Descent Under Prior Mismatch
In this work, we provide a new convergence theory for plug-and-play proximal gradient descent (PnP-PGD) under prior mismatch where the denoiser is trained on a different data distribution to the inference task at hand. To the best of our knowledge, this is the first convergence proof of PnP-PGD under prior mismatch. Compared with the existing theoretical results for PnP algorithms, our new results removed the need for several restrictive and unverifiable assumptions. Moreover, we derive the convergence theory for equivariant PnP (EPnP) under the prior mismatch setting, proving that EPnP reduces error variance and explicitly tightens the convergence bound.
♻ ☆ Machine learning surrogate models of many-body dispersion interactions in polymer melts
Accurate prediction of many-body dispersion (MBD) interactions is essential for understanding the van der Waals forces that govern the behavior of many complex molecular systems. However, the high computational cost of MBD calculations limits their direct application in large-scale simulations. In this work, we introduce a machine learning surrogate model specifically designed to predict MBD forces in polymer melts, a system that demands accurate MBD description and offers structural advantages for machine learning approaches. Our model is based on a trimmed SchNet architecture that selectively retains the most relevant atomic connections and incorporates trainable radial basis functions for geometric encoding. We validate our surrogate model on datasets from polyethylene, polypropylene, and polyvinyl chloride melts, demonstrating high predictive accuracy and robust generalization across diverse polymer systems. In addition, the model captures key physical features, such as the characteristic decay behavior of MBD interactions, providing valuable insights for optimizing cutoff strategies. Characterized by high computational efficiency, our surrogate model enables practical incorporation of MBD effects into large-scale molecular simulations.
♻ ☆ GraphTARIF: Linear Graph Transformer with Augmented Rank and Improved Focus WWW 2026
Linear attention mechanisms have emerged as efficient alternatives to full self-attention in Graph Transformers, offering linear time complexity. However, existing linear attention models often suffer from a significant drop in expressiveness due to low-rank projection structures and overly uniform attention distributions. We theoretically prove that these properties reduce the class separability of node representations, limiting the model's classification ability. To address this, we propose a novel hybrid framework that enhances both the rank and focus of attention. Specifically, we enhance linear attention by attaching a gated local graph network branch to the value matrix, thereby increasing the rank of the resulting attention map. Furthermore, to alleviate the excessive smoothing effect inherent in linear attention, we introduce a learnable log-power function into the attention scores to reduce entropy and sharpen focus. We theoretically show that this function decreases entropy in the attention distribution, enhancing the separability of learned embeddings. Extensive experiments on both homophilic and heterophilic graph benchmarks demonstrate that our method achieves competitive performance while preserving the scalability of linear attention.
comment: Accepted by WWW 2026. Research Tracks - Graph Algorithms and Modeling for the Web
♻ ☆ Hierarchical Multi-Agent DRL Based Dynamic Cluster Reconfiguration for UAV Mobility Management
Multi-connectivity involves dynamic cluster formation among distributed access points (APs) and coordinated resource allocation from these APs, highlighting the need for efficient mobility management strategies for users with multi-connectivity. In this paper, we propose a novel mobility management scheme for unmanned aerial vehicles (UAVs) that uses dynamic cluster reconfiguration with energy-efficient power allocation in a wireless interference network. Our objective encompasses meeting stringent reliability demands, minimizing joint power consumption, and reducing the frequency of cluster reconfiguration. To achieve these objectives, we propose a hierarchical multi-agent deep reinforcement learning (H-MADRL) framework, specifically tailored for dynamic clustering and power allocation. The edge cloud connected with a set of APs through low latency optical back-haul links hosts the high-level agent responsible for the optimal clustering policy, while low-level agents reside in the APs and are responsible for the power allocation policy. To further improve the learning efficiency, we propose a novel action-observation transition-driven learning algorithm that allows the low-level agents to use the action space from the high-level agent as part of the local observation space. This allows the lower-level agents to share partial information about the clustering policy and allocate the power more efficiently. The simulation results demonstrate that our proposed distributed algorithm achieves comparable performance to the centralized algorithm. Additionally, it offers better scalability, as the decision time for clustering and power allocation increases by only 10% when doubling the number of APs, compared to a 90% increase observed with the centralized approach.
comment: 15 pages, 7 figures
♻ ☆ SketchGuard: Scaling Byzantine-Robust Decentralized Federated Learning via Sketch-Based Screening
Decentralized Federated Learning enables privacy-preserving collaborative training without centralized servers but remains vulnerable to Byzantine attacks. Existing defenses require exchanging high-dimensional model vectors with all neighbors each round, creating prohibitive costs at scale. We propose SketchGuard, which decouples Byzantine filtering from aggregation via sketch-based screening. SketchGuard compresses $d$-dimensional models to $k$-dimensional sketches ($k \ll d$) using Count Sketch, then fetches full models only from accepted neighbors, reducing communication complexity from $O(d|N_i|)$ to $O(k|N_i| + d|S_i|)$, where $|N_i|$ is the neighbor count and $|S_i| \le |N_i|$ is the accepted count. We prove convergence in strongly convex and non-convex settings, showing that approximation errors introduce only a $(1+O(ε))$ factor in the effective threshold. Experiments demonstrate SketchGuard maintains state-of-the-art robustness (mean TER deviation $\leq$0.5 percentage points) while reducing computation by up to 82% and communication by 50-70%.
comment: 12 pages, 5 figures, Code Available: https://doi.org/10.5281/zenodo.17223405
♻ ☆ Variational Quantum Circuit-Based Reinforcement Learning for Dynamic Portfolio Optimization
This paper presents a Quantum Reinforcement Learning (QRL) solution to the dynamic portfolio optimization problem based on Variational Quantum Circuits. The implemented QRL approaches are quantum analogues of the classical neural-network-based Deep Deterministic Policy Gradient and Deep Q-Network algorithms. Through an empirical evaluation on real-world financial data, we show that our quantum agents achieve risk-adjusted performance comparable to, and in some cases exceeding, that of classical Deep RL models with several orders of magnitude more parameters. However, while quantum circuit execution is inherently fast at the hardware level, practical deployment on cloud-based quantum systems introduces substantial latency, making end-to-end runtime currently dominated by infrastructural overhead and limiting practical applicability. Taken together, our results suggest that QRL is theoretically competitive with state-of-the-art classical reinforcement learning and may become practically advantageous as deployment overheads diminish. This positions QRL as a promising paradigm for dynamic decision-making in complex, high-dimensional, and non-stationary environments such as financial markets. The complete codebase is released as open source at: https://github.com/VincentGurgul/qrl-dpo-public
♻ ☆ Recurrent Neural Networks with Linear Structures for Electricity Price Forecasting
We present a novel recurrent neural network architecture specifically designed for day-ahead electricity price forecasting, aimed at improving short-term decision-making and operational management in energy systems. Our combined forecasting model embeds linear structures, such as expert models and Kalman filters, into recurrent networks, enabling efficient computation and enhanced interpretability. The design leverages the strengths of both linear and non-linear model structures, allowing it to capture all relevant stylized price characteristics in power markets, including calendar and autoregressive effects, as well as influences from load, renewable energy, and related fuel and carbon markets. For empirical testing, we use hourly data from the largest European electricity market spanning 2018 to 2025 in a comprehensive forecasting study, comparing our model against state-of-the-art approaches, particularly high-dimensional linear and neural network models. In terms of RMSE, the proposed model achieves approximately 11% higher accuracy than the best-performing benchmark. We evaluate the contributions of the interpretable model components and conclude on the impact of combining linear and non-linear structures. We further evaluate the temporal robustness of the model by examining the stability of hyperparameters and the economic significance of key features. Additionally, we introduce a probabilistic extension to quantify forecast uncertainty.
♻ ☆ GCL-OT: Graph Contrastive Learning with Optimal Transport for Heterophilic Text-Attributed Graphs AAAI 2026
Recently, structure-text contrastive learning has shown promising performance on text-attributed graphs by leveraging the complementary strengths of graph neural networks and language models. However, existing methods typically rely on homophily assumptions in similarity estimation and hard optimization objectives, which limit their applicability to heterophilic graphs. Although existing methods can mitigate heterophily through structural adjustments or neighbor aggregation, they usually treat textual embeddings as static targets, leading to suboptimal alignment. In this work, we identify multi-granular heterophily in text-attributed graphs, including complete heterophily, partial heterophily, and latent homophily, which makes structure-text alignment particularly challenging due to mixed, noisy, and missing semantic correlations. To achieve flexible and bidirectional alignment, we propose GCL-OT, a novel graph contrastive learning framework with optimal transport, equipped with tailored mechanisms for each type of heterophily. Specifically, for partial heterophily, we design a RealSoftMax-based similarity estimator to emphasize key neighbor-word interactions while easing background noise. For complete heterophily, we introduce a prompt-based filter that adaptively excludes irrelevant noise during optimal transport alignment. Furthermore, we incorporate OT-guided soft supervision to uncover potential neighbors with similar semantics, enhancing the learning of latent homophily. Theoretical analysis shows that GCL-OT can improve the mutual information bound and Bayes error guarantees. Extensive experiments on nine benchmarks show that GCL-OT outperforms state-of-the-art methods, demonstrating its effectiveness and robustness.
comment: AAAI 2026
♻ ☆ Sparsity-Aware Low-Rank Representation for Efficient Fine-Tuning of Large Language Models
Adapting large pre-trained language models to downstream tasks often entails fine-tuning millions of parameters or deploying costly dense weight updates, which hinders their use in resource-constrained environments. Low-rank Adaptation (LoRA) reduces trainable parameters by factorizing weight updates, yet the underlying dense weights still impose high storage and computation costs. Magnitude-based pruning can yield sparse models but typically degrades LoRA's performance when applied naively. In this paper, we introduce SALR (Sparsity-Aware Low-Rank Representation), a novel fine-tuning paradigm that unifies low-rank adaptation with sparse pruning under a rigorous mean-squared-error framework. We prove that statically pruning only the frozen base weights minimizes the pruning error bound, and we recover the discarded residual information via a truncated-SVD low-rank adapter, which provably reduces per-entry MSE by a factor of $(1 - r/\min(d,k))$. To maximize hardware efficiency, we fuse multiple low-rank adapters into a single concatenated GEMM, and we adopt a bitmap-based encoding with a two-stage pipelined decoding + GEMM design to achieve true model compression and speedup. Empirically, SALR attains 50\% sparsity on various LLMs while matching the performance of LoRA on GSM8K and MMLU, reduces model size by $2\times$, and delivers up to a $1.7\times$ inference speedup.
♻ ☆ Diagonal Linear Networks and the Lasso Regularization Path
Diagonal linear networks are neural networks with linear activation and diagonal weight matrices. Their theoretical interest is that their implicit regularization can be rigorously analyzed: from a small initialization, the training of diagonal linear networks converges to the linear predictor with minimal 1-norm among minimizers of the training loss. In this paper, we deepen this analysis showing that the full training trajectory of diagonal linear networks is closely related to the lasso regularization path. In this connection, the training time plays the role of an inverse regularization parameter. Both rigorous results and simulations are provided to illustrate this conclusion. Under a monotonicity assumption on the lasso regularization path, the connection is exact while in the general case, we show an approximate connection.
comment: 32 pages, 1 figure
♻ ☆ Depth-Width tradeoffs in Algorithmic Reasoning of Graph Tasks with Transformers
Transformers have revolutionized the field of machine learning. In particular, they can be used to solve complex algorithmic problems, including graph-based tasks. In such algorithmic tasks a key question is what is the minimal size of a transformer that can implement the task. Recent work has begun to explore this problem for graph-based tasks, showing that for sub-linear embedding dimension (i.e., model width) logarithmic depth suffices. However, an open question, which we address here, is what happens if width is allowed to grow linearly, while depth is kept fixed. Here we analyze this setting, and provide the surprising result that with linear width, constant depth suffices for solving a host of graph-based problems. This suggests that a moderate increase in width can allow much shallower models, which are advantageous in terms of inference and train time. For other problems, we show that quadratic width is required. Our results demonstrate the complex and intriguing landscape of transformer implementations of graph-based algorithms. We empirically investigate these trade-offs between the relative powers of depth and width and find tasks where wider models have the same accuracy as deep models, while having much faster train and inference time due to parallelizable hardware.
♻ ☆ Robust MAE-Driven NAS: From Mask Reconstruction to Architecture Innovation
Neural Architecture Search (NAS) relies heavily on labeled data, which is labor-intensive and time-consuming to obtain. In this paper, we propose a novel NAS method based on an unsupervised paradigm, specifically Masked Autoencoders (MAE), thereby eliminating the need for labeled data. By replacing the supervised learning objective with an image reconstruction task, our approach enables the efficient discovery of network architectures without compromising performance and generalization ability. Additionally, we address the problem of performance collapse encountered in the widely-used Differentiable Architecture Search (DARTS) in the unsupervised setting by designing a hierarchical decoder. Extensive experiments across various datasets demonstrate the effectiveness and robustness of our method, offering empirical evidence of its superiority over the counterparts.
♻ ☆ Semantic Depth Matters: Explaining Errors of Deep Vision Networks through Perceived Class Similarities
Understanding deep neural network (DNN) behavior requires more than evaluating classification accuracy alone; analyzing errors and their predictability is equally crucial. Current evaluation methodologies lack transparency, particularly in explaining the underlying causes of network misclassifications. To address this, we introduce a novel framework that investigates the relationship between the semantic hierarchy depth perceived by a network and its real-data misclassification patterns. Central to our framework is the Similarity Depth (SD) metric, which quantifies the semantic hierarchy depth perceived by a network along with a method of evaluation of how closely the network's errors align with its internally perceived similarity structure. We also propose a graph-based visualization of model semantic relationships and misperceptions. A key advantage of our approach is that leveraging class templates -- representations derived from classifier layer weights -- is applicable to already trained networks without requiring additional data or experiments. Our approach reveals that deep vision networks encode specific semantic hierarchies and that high semantic depth improves the compliance between perceived class similarities and actual errors.
♻ ☆ Compositional Reasoning with Transformers, RNNs, and Chain of Thought NeurIPS
It is well understood that different neural network architectures are suited to different tasks, but is there always a single best architecture for a given task? We compare the expressive power of transformers, RNNs, and transformers with chain of thought tokens on a simple and natural class of tasks we term Compositional Reasoning Questions (CRQ). This family captures multi-step problems with tree-like compositional structure, such as evaluating Boolean formulas. We prove that under standard hardness assumptions, \emph{none} of these three architectures is capable of solving CRQs unless some hyperparameter (depth, embedding dimension, and number of chain of thought tokens, respectively) grows with the size of the input. We then provide constructions for solving CRQs with each architecture. For transformers, our construction uses depth that is logarithmic in the problem size. For RNNs, logarithmic embedding dimension is necessary and sufficient, so long as the inputs are provided in a certain order. For transformers with chain of thought, our construction uses $n$ CoT tokens for input size $n$. These results show that, while CRQs are inherently hard, there are several different ways for language models to overcome this hardness. Even for a single class of problems, each architecture has strengths and weaknesses, and none is strictly better than the others.
comment: NeurIPS CR version
♻ ☆ Fractal and Regular Geometry of Deep Neural Networks
We study the geometric properties of random neural networks by investigating the boundary volumes of their excursion sets for different activation functions, as the depth increases. More specifically, we show that, for activations which are not very regular (e.g., the Heaviside step function), the boundary volumes exhibit fractal behavior, with their Hausdorff dimension monotonically increasing with the depth. On the other hand, for activations which are more regular (e.g., ReLU, logistic and $\tanh$), as the depth increases, the expected boundary volumes can either converge to zero, remain constant or diverge exponentially, depending on a single spectral parameter which can be easily computed. Our theoretical results are confirmed in some numerical experiments based on Monte Carlo simulations.
♻ ☆ Simplicity is Key: An Unsupervised Pretraining Approach for Sparse Radio Channels
Unsupervised representation learning for wireless channel state information (CSI)reduces reliance on labeled data, thereby lowering annotation costs, and often improves performance on downstream tasks. However, state-of-the-art approaches take little or no account of domain-specific knowledge, forcing the model to learn well-known concepts solely from data. We introduce Sparse pretrained Radio Transformer (SpaRTran), a hybrid method based on the concept of compressed sensing for wireless channels. In contrast to existing work, SpaRTran builds around a wireless channel model that constrains the optimization procedure to physically meaningful solutions and induces a strong inductive bias. Compared to the state of the art, SpaRTran cuts positioning error by up to 28% and increases top-1 codebook selection accuracy for beamforming by 26 percentage points. Our results show that capturing the sparse nature of radio propagation as an unsupervised learning objective improves performance for network optimization and radio-localization tasks.
comment: 8 pages, 1 figure
♻ ☆ Physics-Guided Multimodal Transformers are the Necessary Foundation for the Next Generation of Meteorological Science
This position paper argues that the next generation of artificial intelligence in meteorological and climate sciences must transition from fragmented hybrid heuristics toward a unified paradigm of physics-guided multimodal transformers. While purely data-driven models have achieved significant gains in predictive accuracy, they often treat atmospheric processes as mere visual patterns, frequently producing results that lack scientific consistency or violate fundamental physical laws. We contend that current ``hybrid'' attempts to bridge this gap remain ad-hoc and struggle to scale across the heterogeneous nature of meteorological data ranging from satellite imagery to sparse sensor measurements. We argue that the transformer architecture, through its inherent capacity for cross-modal alignment, provides the only viable foundation for a systematic integration of domain knowledge via physical constraint embedding and physics-informed loss functions. By advocating for this unified architectural shift, we aim to steer the community away from ``black-box'' curve fitting and toward AI systems that are inherently falsifiable, scientifically grounded, and robust enough to address the existential challenges of extreme weather and climate change.
comment: Perspective article
♻ ☆ USDs: A universal stabilizer decoder framework using symmetry
Quantum error correction is indispensable to achieving reliable quantum computation. When quantum information is encoded redundantly, a larger Hilbert space is constructed using multiple physical qubits, and the computation is performed within a designated subspace. When applying deep learning to the decoding of quantum error-correcting codes, a key challenge arises from the non-uniqueness between the syndrome measurements provided to the decoder and the corresponding error patterns that constitute the ground-truth labels. Building upon prior work that addressed this issue for the toric code by re-optimizing the decoder with respect to the symmetry inherent in the parity-check structure, we generalize this approach to arbitrary stabilizer codes. In our experiments, we employed multilayer perceptrons to approximate continuous functions that complement the syndrome measurements of the Color code and the Golay code. Using these models, we performed decoder re-optimization for each code. For the Color code, we achieved an improvement of approximately 0.8% in decoding accuracy at a physical error rate of 5%, while for the Golay code the accuracy increased by about 0.1%. Furthermore, from the evaluation of the geometric and algebraic structures in the continuous function approximation for each code, we showed that the design of generalized continuous functions is advantageous for learning the geometric structure inherent in the code. Our results also indicate that approximations that faithfully reproduce the code structure can have a significant impact on the effectiveness of reoptimization. This study demonstrates that the re-optimization technique previously shown to be effective for the Toric code can be generalized to address the challenge of label degeneracy that arises when applying deep learning to the decoding of stabilizer codes.
♻ ☆ Toward Highly Efficient and Private Submodular Maximization via Matrix-Based Acceleration
Submodular function maximization is a critical building block for diverse tasks, such as document summarization, sensor placement, and image segmentation. Yet its practical utility is often limit by the $O(knd^2)$ computational bottleneck. In this paper, we propose an integrated framework that addresses efficiency and privacy simultaneously. First, we introduce a novel matrix-based computation paradigm that accelerates function evaluations. Second, we develop approximate data structures that further streamline the optimization process, achieving a theoretical complexity of $O(ε^{-2}(nd+kn+kd^2)\log(k/δ))$. Third, we integrate ($ε, δ$)-DP guaranties to address the privacy concerns inherent in sensitive optimization tasks.
♻ ☆ NLPrompt: Noise-Label Prompt Learning for Vision-Language Models
The emergence of vision-language foundation models, such as CLIP, has revolutionized image-text representation, enabling a broad range of applications via prompt learning. Despite its promise, real-world datasets often contain noisy labels that can degrade prompt learning performance. In this paper, we demonstrate that using mean absolute error (MAE) loss in prompt learning, named PromptMAE, significantly enhances robustness against noisy labels while maintaining high accuracy. Though MAE is straightforward and recognized for its robustness, it is rarely used in noisy-label learning due to its slow convergence and poor performance outside prompt learning scenarios. To elucidate the robustness of PromptMAE, we leverage feature learning theory to show that MAE can suppress the influence of noisy samples, thereby improving the signal-to-noise ratio and enhancing overall robustness. Additionally, we introduce PromptOT, a prompt-based optimal transport data purification method to enhance the robustness further. PromptOT employs text features in vision-language models as prototypes to construct an optimal transportation matrix. This matrix effectively partitions datasets into clean and noisy subsets, allowing for the application of cross-entropy loss to the clean subset and MAE loss to the noisy subset. Our Noise-Label Prompt Learning method, named NLPrompt, offers a simple and efficient approach that leverages the expressive representations and precise alignment capabilities of vision-language models for robust prompt learning. We validate NLPrompt through extensive experiments across various noise settings, demonstrating significant performance improvements.
♻ ☆ Improving Fine-Grained Control via Aggregation of Multiple Diffusion Models
While many diffusion models perform well when controlling particular aspects such as style, character, and interaction, they struggle with fine-grained control due to dataset limitations and intricate model architecture design. This paper introduces a novel training-free algorithm for fine-grained generation, called Aggregation of Multiple Diffusion Models (AMDM). The algorithm integrates features in the latent data space from multiple diffusion models within the same ecosystem into a specified model, thereby activating particular features and enabling fine-grained control. Experimental results demonstrate that AMDM significantly improves fine-grained control without training, validating its effectiveness. Additionally, it reveals that diffusion models initially focus on features such as position, attributes, and style, with later stages improving generation quality and consistency. AMDM offers a new perspective for tackling the challenges of fine-grained conditional generation in diffusion models. Specifically, it allows us to fully utilize existing or develop new conditional diffusion models that control specific aspects, and then aggregate them using the AMDM algorithm. This eliminates the need for constructing complex datasets, designing intricate model architectures, and incurring high training costs. Code is available at: https://github.com/Hammour-steak/AMDM.
♻ ☆ KV Admission: Learning What to Write for Efficient Long-Context Inference
Long-context LLM inference is bottlenecked by the quadratic attention complexity and linear KV cache growth. Prior approaches mitigate this via post-hoc selection or eviction but overlook the root inefficiency: indiscriminate writing to memory. In this paper, we formalize KV cache management as a causal system of three primitives: KV Admission, Selection, and Eviction. We instantiate KV Admission via Write-Gated KV (WG-KV), a lightweight mechanism that learns to predict token utility before cache entry. By filtering out low-utility states early to maintain a compact global cache alongside a sliding local cache, WG-KV reduces memory usage by 46-68% and delivers 3.03-3.70x prefill and 1.85-2.56x decode speedups on Llama and Qwen models, while maintaining compatibility with FlashAttention and Paged-KV systems. These results demonstrate that learning what to write is a principled and practical recipe for efficient long-context inference. Code is available at https://github.com/EMCLab-Sinica/WG-KV.
♻ ☆ AGFS-Tractometry: A Novel Atlas-Guided Fine-Scale Tractometry Approach for Enhanced Along-Tract Group Statistical Comparison Using Diffusion MRI Tractography
Diffusion MRI (dMRI) tractography is currently the only method for in vivo mapping of the brain's white matter (WM) connections. Tractometry is an advanced tractography analysis technique for along-tract profiling to investigate the morphology and microstructural properties along the fiber tracts. Tractometry has become an essential tool for studying local along-tract differences between different populations (e.g., health vs disease). In this study, we propose a novel atlas-guided fine-scale tractometry method, namely AGFS-Tractometry, that leverages tract spatial information and permutation testing to enhance the along-tract statistical analysis between populations. There are two major contributions in AGFS-Tractometry. First, we create a novel atlas-guided tract profiling template that enables consistent, fine-scale, along-tract parcellation of subject-specific fiber tracts. Second, we propose a novel nonparametric permutation testing group comparison method to enable simultaneous analysis across all along-tract parcels while correcting for multiple comparisons. We perform experimental evaluations on synthetic datasets with known group differences and in vivo real data. We compare AGFS-Tractometry with two state-of-the-art tractometry methods, including Automated Fiber-tract Quantification (AFQ) and BUndle ANalytics (BUAN). Our results show that the proposed AGFS-Tractometry obtains enhanced sensitivity and specificity in detecting local WM differences. In the real data analysis experiments, AGFS-Tractometry can identify more regions with significant differences, which are anatomically consistent with the existing literature. Overall, these demonstrate the ability of AGFS-Tractometry to detect subtle or spatially localized WM group-level differences. The created tract profiling template and related code are available at: https://github.com/ZhengRuixi/AGFS-Tractometry.git.
comment: 31 pages and 7 figures
♻ ☆ Advancing Multimodal Reasoning: From Optimized Cold Start to Staged Reinforcement Learning
Inspired by the remarkable reasoning capabilities of Deepseek-R1 in complex textual tasks, many works attempt to incentivize similar capabilities in Multimodal Large Language Models (MLLMs) by directly applying reinforcement learning (RL). However, they still struggle to activate complex reasoning. In this paper, rather than examining multimodal RL in isolation, we delve into current training pipelines and identify three crucial phenomena: 1) Effective cold start initialization is critical for enhancing MLLM reasoning. Intriguingly, we find that initializing with carefully selected text data alone can lead to performance surpassing many recent multimodal reasoning models, even before multimodal RL. 2) Standard GRPO applied to multimodal RL suffers from gradient stagnation, which degrades training stability and performance. 3) Subsequent text-only RL training, following the multimodal RL phase, further enhances multimodal reasoning. This staged training approach effectively balances perceptual grounding and cognitive reasoning development. By incorporating the above insights and addressing multimodal RL issues, we introduce ReVisual-R1, achieving a new state-of-the-art among open-source 7B MLLMs on challenging benchmarks including MathVerse, MathVision, WeMath, LogicVista, DynaMath, and challenging AIME2024 and AIME2025.
comment: 19 pages, 6 figures
♻ ☆ MAnchors: Memorization-Based Acceleration of Anchors via Rule Reuse and Transformation
Anchors is a popular local model-agnostic explanation technique whose applicability is limited by its computational inefficiency. To address this limitation, we propose a memorization-based framework that accelerates Anchors while preserving explanation fidelity and interpretability. Our approach leverages the iterative nature of Anchors' algorithm which gradually refines an explanation until it is precise enough for a given input by storing and reusing intermediate results obtained during prior explanations. Specifically, we maintain a memory of low-precision, high-coverage rules and introduce a rule transformation framework to adapt them to new inputs: the horizontal transformation adapts a pre-trained explanation to the current input by replacing features, and the vertical transformation refines the general explanation until it is precise enough for the input. We evaluate our method across tabular, text, and image datasets, demonstrating that it significantly reduces explanation generation time while maintaining fidelity and interpretability, thereby enabling the practical adoption of Anchors in time-sensitive applications.
♻ ☆ DAUNet: A Lightweight UNet Variant with Deformable Convolutions and Parameter-Free Attention for Medical Image Segmentation
Medical image segmentation plays a pivotal role in automated diagnostic and treatment planning systems. In this work, we present DAUNet, a novel lightweight UNet variant that integrates Deformable V2 Convolutions and Parameter-Free Attention (SimAM) to improve spatial adaptability and context-aware feature fusion without increasing model complexity. DAUNet's bottleneck employs dynamic deformable kernels to handle geometric variations, while the decoder and skip pathways are enhanced using SimAM attention modules for saliency-aware refinement. Extensive evaluations on two challenging datasets, FH-PS-AoP (fetal head and pubic symphysis ultrasound) and FUMPE (CT-based pulmonary embolism detection), demonstrate that DAUNet outperforms state-of-the-art models in Dice score, HD95, and ASD, while maintaining superior parameter efficiency. Ablation studies highlight the individual contributions of deformable convolutions and SimAM attention. DAUNet's robustness to missing context and low-contrast regions establishes its suitability for deployment in real-time and resource-constrained clinical environments.
comment: 13 pages, 7 figures
♻ ☆ Self-induced stochastic resonance: A physics-informed machine learning approach
Self-induced stochastic resonance (SISR) is the emergence of coherent oscillations in slow-fast excitable systems driven solely by noise, without external periodic forcing or proximity to a bifurcation. This work presents a physics-informed machine learning framework for modeling and predicting SISR in the stochastic FitzHugh-Nagumo neuron. We embed the governing stochastic differential equations and SISR-asymptotic timescale-matching constraints directly into a Physics-Informed Neural Network (PINN) based on a Noise-Augmented State Predictor architecture. The composite loss integrates data fidelity, dynamical residuals, and barrier-based physical constraints derived from Kramers' escape theory. The trained PINN accurately predicts the dependence of spike-train coherence on noise intensity, excitability, and timescale separation, matching results from direct stochastic simulations with substantial improvements in accuracy and generalization compared with purely data-driven methods, while requiring significantly less computation. The framework provides a data-efficient and interpretable surrogate model for simulating and analyzing noise-induced coherence in multiscale stochastic systems.
comment: 25 pages, 10 figures, 62 references
♻ ☆ Accelerated Sinkhorn Algorithms for Partial Optimal Transport
Partial Optimal Transport (POT) addresses the problem of transporting only a fraction of the total mass between two distributions, making it suitable when marginals have unequal size or contain outliers. While Sinkhorn-based methods are widely used, their complexity bounds for POT remain suboptimal and can limit scalability. We introduce Accelerated Sinkhorn for POT (ASPOT), which integrates alternating minimization with Nesterov-style acceleration in the POT setting, yielding a complexity of $\mathcal{O}(n^{7/3}\varepsilon^{-5/3})$. We also show that an informed choice of the entropic parameter $γ$ improves rates for the classical Sinkhorn method. Experiments on real-world applications validate our theories and demonstrate the favorable performance of our proposed methods.
♻ ☆ AuditoryBench++: Can Language Models Understand Auditory Knowledge without Hearing? ICASSP 2026
Even without directly hearing sounds, humans can effortlessly reason about auditory properties, such as pitch, loudness, or sound-source associations, drawing on auditory commonsense. In contrast, language models often lack this capability, limiting their effectiveness in multimodal interactions. As an initial step to address this gap, we present AuditoryBench++, a comprehensive benchmark for evaluating auditory knowledge and reasoning in text-only settings. The benchmark encompasses tasks that range from basic auditory comparisons to contextually grounded reasoning, enabling fine-grained analysis of how models process and integrate auditory concepts. In addition, we introduce AIR-CoT, a novel auditory imagination reasoning method that generates and integrates auditory information during inference through span detection with special tokens and knowledge injection. Extensive experiments with recent LLMs and Multimodal LLMs demonstrate that AIR-CoT generally outperforms both the off-the-shelf models and those augmented with auditory knowledge. The project page is available at https://auditorybenchpp.github.io.
comment: ICASSP 2026
♻ ☆ Streaming Tensor Programs: A Streaming Abstraction for Dynamic Parallelism
Dynamic behaviors are becoming prevalent in tensor applications, like machine learning, where many widely used models contain data-dependent tensor shapes and control flow. However, the limited expressiveness of prior programming abstractions for spatial dataflow accelerators (SDAs) forces these dynamic behaviors to be implemented statically and/or unoptimized. To address these challenges, we present Streaming Tensor Programs (STeP), a streaming abstraction that enables dynamic tensor workloads to run efficiently on SDAs. STeP introduces flexible routing operators, an explicit memory hierarchy, and symbolic-shape semantics that expose dynamic data rates and tensor dimensions. These capabilities unlock new optimizations, like dynamic tiling, dynamic parallelization, and configuration time-multiplexing, that adapt SDA execution to dynamic behaviors while preserving dataflow efficiency. Using a cycle-approximate simulator on representative LLM layers and a full model with real-world traces, STeP enables: dynamic tiling that breaks the Pareto-optimal frontier from prior work, dynamic parallelization that improves latency by ~2.72x, and configuration time-multiplexing that increases compute utilization by ~2.64x over prior SDA abstractions and their implementations.
♻ ☆ Demystifying the Slash Pattern in Attention: The Role of RoPE
Large Language Models (LLMs) often exhibit slash attention patterns, where attention scores concentrate along the $Δ$-th sub-diagonal for some offset $Δ$. These patterns play a key role in passing information across tokens. But why do they emerge? In this paper, we demystify the emergence of these Slash-Dominant Heads (SDHs) from both empirical and theoretical perspectives. First, by analyzing open-source LLMs, we find that SDHs are intrinsic to models and generalize to out-of-distribution prompts. To explain the intrinsic emergence, we analyze the queries, keys, and Rotary Position Embedding (RoPE), which jointly determine attention scores. Our empirical analysis reveals two characteristic conditions of SDHs: (1) Queries and keys are almost rank-one, and (2) RoPE is dominated by medium- and high-frequency components. Under these conditions, queries and keys are nearly identical across tokens, and interactions between medium- and high-frequency components of RoPE give rise to SDHs. Beyond empirical evidence, we theoretically show that these conditions are sufficient to ensure the emergence of SDHs by formalizing them as our modeling assumptions. Particularly, we analyze the training dynamics of a shallow Transformer equipped with RoPE under these conditions, and prove that models trained via gradient descent exhibit SDHs. The SDHs generalize to out-of-distribution prompts.
♻ ☆ Confidence intervals for forced alignment boundaries using model ensembles
Forced alignment is a common tool to align audio with orthographic and phonetic transcriptions. Most forced alignment tools provide only a single estimate of a boundary. The present project introduces a method of deriving confidence intervals for these boundaries using a neural network ensemble technique. Ten different segment classifier neural networks were previously trained, and the alignment process is repeated with each model. The alignment ensemble is then used to place the boundary at the median of the boundaries in the ensemble, and 97.85% confidence intervals are constructed using order statistics. Having confidence intervals provides an estimate of the uncertainty in the boundary placement, facilitating tasks like finding boundaries that should be reviewed. As a bonus, on the Buckeye and TIMIT corpora, the ensemble boundaries show a slight overall improvement over using just a single model. The confidence intervals can be emitted during the alignment process as JSON files and a main table for programmatic and statistical analysis. For familiarity, they are also output as Praat TextGrids using a point tier to represent the intervals.
comment: revised for publication; 11 pages, 3 figures
♻ ☆ BAGEL: Projection-Free Algorithm for Adversarially Constrained Online Convex Optimization
Projection-based algorithms for Constrained Online Convex Optimization (COCO) achieve optimal $\mathcal{O}(T^{1/2})$ regret guarantees but face scalability challenges due to the computational complexity of projections. To circumvent this, projection-free methods utilizing Linear Optimization Oracles (LOO) have been proposed, albeit typically achieving slower $\mathcal{O}(T^{3/4})$ regret rates. In this work, we examine whether the $\mathcal{O}(T^{1/2})$ rate can be recovered in the projection-free setting by strengthening the oracle assumption. We introduce BAGEL, an algorithm utilizing a Separation Oracle (SO) that achieves $\mathcal{O}(T^{1/2})$ regret and $\tilde{\mathcal{O}}(T^{1/2})$ cumulative constraint violation (CCV) for convex cost functions. Our analysis shows that by leveraging an infeasible projection via SO, we can match the time-horizon dependence of projection-based methods with $\tilde{\mathcal{O}}(T)$ oracle calls, provided dependence on the geometry of the action set. This establishes a specific regime where projection-free methods can attain the same convergence rates as projection-based counterparts.
♻ ☆ Feasibility-aware Learning of Robust Temporal Logic Controllers using BarrierNet
Control Barrier Functions (CBFs) have been used to enforce safety and task specifications expressed in Signal Temporal Logic (STL). However, existing CBF-STL approaches typically rely on fixed hyperparameters and per-step optimization, which can lead to overly conservative behavior, infeasibility near tight input limits, and difficulty satisfying long-horizon STL tasks. To address these limitations, we propose a feasibility-aware learning framework that constructs trainable, time-varying High Order Control Barrier Function (HOCBF) constraints and hyperparameters that guarantee satisfaction of a given STL specification. We introduce a unified robustness measure that jointly captures STL satisfaction, constraint feasibility, and control-bound compliance, and propose a neural network architecture to generate control inputs that maximize this robustness. The resulting controller guarantees STL satisfaction with strictly feasible HOCBF constraints and requires no manual tuning. Simulation results demonstrate that the proposed framework maintains high STL robustness under tight input bounds and significantly outperforms fixed-parameter and non-adaptive baselines in complex environments.
comment: 16 pages, 11 figures
♻ ☆ The Law of Multi-Model Collaboration: Scaling Limits of Model Ensembling for Large Language Models
Recent advances in large language models (LLMs) have been largely driven by scaling laws for individual models, which predict performance improvements as model parameters and data volume increase. However, the capabilities of any single LLM are inherently bounded. One solution originates from intricate interactions among multiple LLMs, rendering their collective performance surpasses that of any constituent model. Despite the rapid proliferation of multi-model integration techniques such as model routing and post-hoc ensembling, a unifying theoretical framework of performance scaling for multi-model collaboration remains absent. In this work, we propose the Law of Multi-model Collaboration, a scaling law that predicts the performance limits of LLM ensembles based on their aggregated parameter budget. To quantify the intrinsic upper bound of multi-model collaboration, we adopt a method-agnostic formulation and assume an idealized integration oracle where the total cross-entropy loss of each sample is determined by the minimum loss of any model in the model pool. Experimental results reveal that multi-model systems follow a power-law scaling with respect to the total parameter count, exhibiting a more significant improvement trend and a lower theoretical loss floor compared to single model scaling. Moreover, ensembles of heterogeneous model families achieve better performance scaling than those formed within a single model family, indicating that model diversity is a primary driver of collaboration gains. These findings suggest that model collaboration represents a critical axis for extending the intelligence frontier of LLMs.
♻ ☆ FusionLog: Cross-System Log-based Anomaly Detection via Fusion of General and Proprietary Knowledge
Log-based anomaly detection is critical for ensuring the stability and reliability of web systems. One of the key problems in this task is the lack of sufficient labeled logs, which limits the rapid deployment in new systems. Existing works usually leverage large-scale labeled logs from a mature web system and a small amount of labeled logs from a new system, using transfer learning to extract and generalize general knowledge across both domains. However, these methods focus solely on the transfer of general knowledge and neglect the disparity and potential mismatch between such knowledge and the proprietary knowledge of target system, thus constraining performance. To address this limitation, we propose FusionLog, a novel zero-label cross-system log-based anomaly detection method that effectively achieves the fusion of general and proprietary knowledge, enabling cross-system generalization without any labeled target logs. Specifically, we first design a training-free router based on semantic similarity that dynamically partitions unlabeled target logs into 'general logs' and 'proprietary logs.' For general logs, FusionLog employs a small model based on system-agnostic representation meta-learning for direct training and inference, inheriting the general anomaly patterns shared between the source and target systems. For proprietary logs, we iteratively generate pseudo-labels and fine-tune the small model using multi-round collaborative knowledge distillation and fusion based on large language model (LLM) and small model (SM) to enhance its capability to recognize anomaly patterns specific to the target system. Experimental results on three public log datasets from different systems show that FusionLog achieves over 90% F1-score under a fully zero-label setting, significantly outperforming state-of-the-art cross-system log-based anomaly detection methods.
comment: 11 pages, 4 figures, and 2 tables
♻ ☆ Tracing Mathematical Proficiency Through Problem-Solving Processes
Knowledge Tracing (KT) aims to model student's knowledge state and predict future performance to enable personalized learning in Intelligent Tutoring Systems. However, traditional KT methods face fundamental limitations in explainability, as they rely solely on the response correctness, neglecting the rich information embedded in students' problem-solving processes. To address this gap, we propose Knowledge Tracing Leveraging Problem-Solving Process (KT-PSP), which incorporates students' problem-solving processes to capture the multidimensional aspects of mathematical proficiency. We also introduce KT-PSP-25, a new dataset specifically designed for the KT-PSP. Building on this, we present StatusKT, a KT framework that employs a teacher-student-teacher three-stage LLM pipeline to extract students' MP as intermediate signals. In this pipeline, the teacher LLM first extracts problem-specific proficiency indicators, then a student LLM generates responses based on the student's solution process, and a teacher LLM evaluates these responses to determine mastery of each indicator. The experimental results on KT-PSP-25 demonstrate that StatusKT improves the prediction performance of existing KT methods. Moreover, StatusKT provides interpretable explanations for its predictions by explicitly modeling students' mathematical proficiency.
comment: 18 pages, 4 figures
♻ ☆ Embodied AI with Foundation Models for Mobile Service Robots: A Systematic Review
Rapid advancements in foundation models, including Large Language Models, Vision-Language Models, Multimodal Large Language Models, and Vision-Language-Action Models, have opened new avenues for embodied AI in mobile service robotics. By combining foundation models with the principles of embodied AI, where intelligent systems perceive, reason, and act through physical interaction, mobile service robots can achieve more flexible understanding, adaptive behavior, and robust task execution in dynamic real-world environments. Despite this progress, embodied AI for mobile service robots continues to face fundamental challenges related to the translation of natural language instructions into executable robot actions, multimodal perception in human-centered environments, uncertainty estimation for safe decision-making, and computational constraints for real-time onboard deployment. In this paper, we present the first systematic review focused specifically on the integration of foundation models in mobile service robotics. We analyze how recent advances in foundation models address these core challenges through language-conditioned control, multimodal sensor fusion, uncertainty-aware reasoning, and efficient model scaling. We further examine real-world applications in domestic assistance, healthcare, and service automation, highlighting how foundation models enable context-aware, socially responsive, and generalizable robot behaviors. Beyond technical considerations, we discuss ethical, societal, and human-interaction implications associated with deploying foundation model-enabled service robots in human environments. Finally, we outline future research directions emphasizing reliability and lifelong adaptation, privacy-aware and resource-constrained deployment, and governance and human-in-the-loop frameworks required for safe, scalable, and trustworthy mobile service robotics.
comment: v2: Expanded systematic review; resubmitted to Robotics
♻ ☆ AGZO: Activation-Guided Zeroth-Order Optimization for LLM Fine-Tuning
Zeroth-Order (ZO) optimization has emerged as a promising solution for fine-tuning LLMs under strict memory constraints, as it avoids the prohibitive memory cost of storing activations for backpropagation. However, existing ZO methods typically employ isotropic perturbations, neglecting the rich structural information available during the forward pass. In this paper, we identify a crucial link between gradient formation and activation structure: the gradient of a linear layer is confined to the subspace spanned by its input activations. Leveraging this insight, we propose Activation-Guided Zeroth-Order optimization (AGZO). Unlike prior methods, AGZO extracts a compact, activation-informed subspace on the fly during the forward pass and restricts perturbations to this low-rank subspace. We provide a theoretical framework showing that AGZO optimizes a subspace-smoothed objective and provably yields update directions with higher cosine similarity to the true gradient than isotropic baselines. Empirically, we evaluate AGZO on Qwen3 and Pangu models across various benchmarks. AGZO consistently outperforms state-of-the-art ZO baselines and significantly narrows the performance gap with first-order fine-tuning, while maintaining almost the same peak memory footprint as other ZO methods.
comment: 21 pages in total, including 9 pages of main text, with 4 figures and 3 tables. This manuscript is submitted to arXiv
♻ ☆ Abex-rat: Synergizing Abstractive Augmentation and Adversarial Training for Classification of Occupational Accident Reports
The automatic classification of occupational accident reports is pivotal for workplace safety analysis but is persistently hindered by severe class imbalance and data scarcity. In this paper, we propose ABEX-RAT, a resource-efficient framework that synergizes generative data augmentation with robust adversarial learning. Unlike computationally expensive large language models (LLMs) fine-tuning, our approach employs a two-stage abstractive-expansive (ABEX) pipeline: it first utilizes a prompt-guided LLM to distill label-critical semantics into concise abstracts, which are then expanded into diverse synthetic samples to balance the data distribution. Subsequently, we train a lightweight classifier using a random adversarial training (RAT) protocol, which stochastically injects perturbations to enhance generalization without significant computational overhead. Experimental results on the OSHA dataset demonstrate that ABEXRAT establishes a new state-of-the-art, achieving a Macro-F1 score of 90.32% and significantly outperforming both traditional baselines and fine-tuned large models. This confirms that targeted augmentation combined with robust training offers a superior, data-efficient alternative for specialized domain classification. The source code will be made publicly available upon acceptance.
♻ ☆ Modality-Balanced Collaborative Distillation for Multi-Modal Domain Generalization
Weight Averaging (WA) has emerged as a powerful technique for enhancing generalization by promoting convergence to a flat loss landscape, which correlates with stronger out-of-distribution performance. However, applying WA directly to multi-modal domain generalization (MMDG) is challenging: differences in optimization speed across modalities lead WA to overfit to faster-converging ones in early stages, suppressing the contribution of slower yet complementary modalities, thereby hindering effective modality fusion and skewing the loss surface toward sharper, less generalizable minima. To address this issue, we propose MBCD, a unified collaborative distillation framework that retains WA's flatness-inducing advantages while overcoming its shortcomings in multi-modal contexts. MBCD begins with adaptive modality dropout in the student model to curb early-stage bias toward dominant modalities. A gradient consistency constraint then aligns learning signals between uni-modal branches and the fused representation, encouraging coordinated and smoother optimization. Finally, a WA-based teacher conducts cross-modal distillation by transferring fused knowledge to each uni-modal branch, which strengthens cross-modal interactions and steer convergence toward flatter solutions. Extensive experiments on MMDG benchmarks show that MBCD consistently outperforms existing methods, achieving superior accuracy and robustness across diverse unseen domains.
♻ ☆ A Multi-Stage Deep Learning Framework with PKCP-MixUp Augmentation for Pediatric Liver Tumor Diagnosis Using Multi-Phase Contrast-Enhanced CT
Pediatric liver tumors are one of the most common solid tumors in pediatrics, with differentiation of benign or malignant status and pathological classification critical for clinical treatment. While pathological examination is the gold standard, the invasive biopsy has notable limitations: the highly vascular pediatric liver and fragile tumor tissue raise complication risks such as bleeding; additionally, young children with poor compliance require anesthesia for biopsy, increasing medical costs or psychological trauma. Although many efforts have been made to utilize AI in clinical settings, most researchers have overlooked its importance in pediatric liver tumors. To establish a non-invasive examination procedure, we developed a multi-stage deep learning (DL) framework for automated pediatric liver tumor diagnosis using multi-phase contrast-enhanced CT. Two retrospective and prospective cohorts were enrolled. We established a novel PKCP-MixUp data augmentation method to address data scarcity and class imbalance. We also trained a tumor detection model to extract ROIs, and then set a two-stage diagnosis pipeline with three backbones with ROI-masked images. Our tumor detection model has achieved high performance (mAP=0.871), and the first stage classification model between benign and malignant tumors reached an excellent performance (AUC=0.989). Final diagnosis models also exhibited robustness, including benign subtype classification (AUC=0.915) and malignant subtype classification (AUC=0.979). We also conducted multi-level comparative analyses, such as ablation studies on data and training pipelines, as well as Shapley-Value and CAM interpretability analyses. This framework fills the pediatric-specific DL diagnostic gap, provides actionable insights for CT phase selection and model design, and paves the way for precise, accessible pediatric liver tumor diagnosis.
♻ ☆ The Geometric Reasoner: Manifold-Informed Latent Foresight Search for Long-Context Reasoning
Scaling test-time compute enhances long chain-of-thought (CoT) reasoning, yet existing approaches face a fundamental trade-off between computational cost and coverage quality: either incurring high training expense or yielding redundant trajectories. We introduce The Geometric Reasoner (TGR), a training-free framework that performs manifold-informed latent foresight search under strict memory bounds. At each chunk boundary, TGR scores candidate latent anchors via a lightweight look-ahead estimate combined with soft geometric regularizers that encourage smooth trajectories and diverse exploration. Chunk-wise KV cache resets keep memory linear in chunk length. On challenging math and code benchmarks, TGR improves robust trajectory coverage, measured by the area under the Pass@$k$ curve (AUC), by up to 13 points on Qwen3-8B, with negligible overhead of about 1.1--1.3 times.
comment: 11 pages, 5 figures
♻ ☆ Communication-Avoiding Linear Algebraic Kernel K-Means on GPUs
Clustering is an important tool in data analysis, with K-means being popular for its simplicity and versatility. However, it cannot handle non-linearly separable clusters. Kernel K-means addresses this limitation but requires a large kernel matrix, making it computationally and memory intensive. Prior work has accelerated Kernel K-means by formulating it using sparse linear algebra primitives and implementing it on a single GPU. However, that approach cannot run on datasets with more than approximately 80,000 samples due to limited GPU memory. In this work, we address this issue by presenting a suite of distributed-memory parallel algorithms for large-scale Kernel K-means clustering on multi-GPU systems. Our approach maps the most computationally expensive components of Kernel K-means onto communication-efficient distributed linear algebra primitives uniquely tailored for Kernel K-means, enabling highly scalable implementations that efficiently cluster million-scale datasets. Central to our work is the design of partitioning schemes that enable communication-efficient composition of the linear algebra primitives that appear in Kernel K-means. Our 1.5D algorithm consistently achieves the highest performance, enabling Kernel K-means to scale to data one to two orders of magnitude larger than previously practical. On 256 GPUs, it achieves a geometric mean weak scaling efficiency of $79.7\%$ and a geometric mean strong scaling speedup of $4.2\times$. Compared to our 1D algorithm, the 1.5D approach achieves up to a $3.6\times$ speedup on 256 GPUs and reduces clustering time from over an hour to under two seconds relative to a single-GPU sliding window implementation. Our results show that distributed algorithms designed with application-specific linear algebraic formulations can achieve substantial performance improvement.
♻ ☆ NavFormer: IGRF Forecasting in Moving Coordinate Frames
Triad magnetometer components change with sensor attitude even when the IGRF total intensity target stays invariant. NavFormer forecasts this invariant target with rotation invariant scalar features and a Canonical SPD module that stabilizes the spectrum of window level second moments of the triads without sign discontinuities. The module builds a canonical frame from a Gram matrix per window and applies state dependent spectral scaling in the original coordinates. Experiments across five flights show lower error than strong baselines in standard training, few shot training, and zero shot transfer. The code is available at: https://anonymous.4open.science/r/NavFormer-Robust-IGRF-Forecasting-for-Autonomous-Navigators-0765
♻ ☆ Stochastic Voronoi Ensembles for Anomaly Detection
Anomaly detection aims to identify data instances that deviate significantly from majority of data, which has been widely used in fraud detection, network security, and industrial quality control. Existing methods struggle with datasets exhibiting varying local densities: distance-based methods miss local anomalies, while density-based approaches require careful parameter selection and incur quadratic time complexity. We observe that local anomalies, though indistinguishable under global analysis, become conspicuous when the data space is decomposed into restricted regions and each region is examined independently. Leveraging this geometric insight, we propose SVEAD (Stochastic Voronoi Ensembles Anomaly Detector), which constructs ensemble random Voronoi diagrams and scores points by normalized cell-relative distances weighted by local scale. The proposed method achieves linear time complexity and constant space complexity. Experiments on 45 datasets demonstrate that SVEAD outperforms 12 state-of-the-art approaches.
comment: Version 2: Added ablation study on dual-factor scoring mechanism, contamination robustness analysis and GPU acceleration results
♻ ☆ DeepBooTS: Dual-Stream Residual Boosting for Drift-Resilient Time-Series Forecasting AAAI-26
Time-Series (TS) exhibits pronounced non-stationarity. Consequently, most forecasting methods display compromised robustness to concept drift, despite the prevalent application of instance normalization. We tackle this challenge by first analysing concept drift through a bias-variance lens and proving that weighted ensemble reduces variance without increasing bias. These insights motivate DeepBooTS, a novel end-to-end dual-stream residual-decreasing boosting method that progressively reconstructs the intrinsic signal. In our design, each block of a deep model becomes an ensemble of learners with an auxiliary output branch forming a highway to the final prediction. The block-wise outputs correct the residuals of previous blocks, leading to a learning-driven decomposition of both inputs and targets. This method enhances versatility and interpretability while substantially improving robustness to concept drift. Extensive experiments, including those on large-scale datasets, show that the proposed method outperforms existing methods by a large margin, yielding an average performance improvement of 15.8% across various datasets, establishing a new benchmark for TS forecasting.
comment: 28 pages,17 pages, Published in AAAI-26
♻ ☆ Efficient Group Lasso Regularized Rank Regression with Data-Driven Parameter Determination
High-dimensional regression often suffers from heavy-tailed noise and outliers, which can severely undermine the reliability of least-squares based methods. To improve robustness, we adopt a non-smooth Wilcoxon score based rank objective and incorporate structured group sparsity regularization, a natural generalization of the lasso, yielding a group lasso regularized rank regression method. By extending the tuning-free parameter selection scheme originally developed for the lasso, we introduce a data-driven, simulation-based tuning rule and further establish a finite-sample error bound for the resulting estimator. On the computational side, we develop a proximal augmented Lagrangian method for solving the associated optimization problem, which eliminates the singularity issues encountered in existing methods, thereby enabling efficient semismooth Newton updates for the subproblems. Extensive numerical experiments demonstrate the robustness and effectiveness of our proposed estimator against alternatives, and showcase the scalability of the algorithm across both simulated and real-data settings.
comment: 36 pages, 4 figures, 8 tables
♻ ☆ R^3: Replay, Reflection, and Ranking Rewards for LLM Reinforcement Learning
Large reasoning models (LRMs) aim to solve diverse and complex problems through structured reasoning. Recent advances in group-based policy optimization methods have shown promise in enabling stable advantage estimation without reliance on process-level annotations. However, these methods rely on advantage gaps induced by high-quality samples within the same batch, which makes the training process fragile and inefficient when intra-group advantages collapse under challenging tasks. To address these problems, we propose a reinforcement learning mechanism named \emph{\textbf{R^3}} that along three directions: (1) a \emph{cross-context \underline{\textbf{R}}eplay} strategy that maintains the intra-group advantage by recalling valuable examples from historical trajectories of the same query, (2) an \emph{in-context self-\underline{\textbf{R}}eflection} mechanism enabling models to refine outputs by leveraging past failures, and (3) a \emph{structural entropy \underline{\textbf{R}}anking reward}, which assigns relative rewards to truncated or failed samples by ranking responses based on token-level entropy patterns, capturing both local exploration and global stability. We implement our method on Deepseek-R1-Distill-Qwen-1.5B and train it on the DeepscaleR-40k in the math domain. Experiments demonstrate our method achieves SoTA performance on several math benchmarks, representing significant improvements and fewer reasoning tokens over the base models. Code and model will be released.
♻ ☆ Blog Data Showdown: Machine Learning vs Neuro-Symbolic Models for Gender Classification
Text classification problems, such as gender classification from a blog, have been a well-matured research area that has been well studied using machine learning algorithms. It has several application domains in market analysis, customer recommendation, and recommendation systems. This study presents a comparative analysis of the widely used machine learning algorithms, namely Support Vector Machines (SVM), Naive Bayes (NB), Logistic Regression (LR), AdaBoost, XGBoost, and an SVM variant (SVM_R) with neuro-symbolic AI (NeSy). The paper also explores the effect of text representations such as TF-IDF, the Universal Sentence Encoder (USE), and RoBERTa. Additionally, various feature extraction techniques, including Chi-Square, Mutual Information, and Principal Component Analysis, are explored. Building on these, we introduce a comparative analysis of the machine learning and deep learning approaches in comparison to the NeSy. The experimental results show that the use of the NeSy approach matched strong MLP results despite a limited dataset. Future work on this research will expand the knowledge base, the scope of embedding types, and the hyperparameter configuration to further study the effectiveness of the NeSy approach.
comment: There is an error present within the paper concerning its results
♻ ☆ mR3: Multilingual Rubric-Agnostic Reward Reasoning Models ICLR 2026
Evaluation using Large Language Model (LLM) judges has been widely adopted in English and shown to be effective for automatic evaluation. However, their performance does not generalize well to non-English settings, and it remains unclear what constitutes effective multilingual training for such judges. In this paper, we introduce mR3, a massively multilingual, rubric-agnostic reward reasoning model trained on 72 languages, achieving the broadest language coverage in reward modeling to date. We present a comprehensive study of data and curriculum selection for training to identify effective strategies and data sources for building high-quality reward models, including support for reasoning in the target language. Our approach attains state-of-the-art performance on multilingual reward model benchmarks, surpassing much larger models (i.e., GPT-OSS-120B) while being up to 9x smaller, and its effectiveness is further confirmed through extensive ablation studies. Finally, we demonstrate the effectiveness of mR3 in off-policy preference optimization and validate the quality of its reasoning traces and rubric-based evaluations through human studies with 20 annotators across 12 languages, where mR3 models' reasoning is preferred, including for extremely low-resource languages that are entirely unseen during training. Our models, data, and code are available as open source at https://github.com/rubricreward/mr3.
comment: Accepted to ICLR 2026
♻ ☆ First is Not Really Better Than Last: Evaluating Layer Choice and Aggregation Strategies in Language Model Data Influence Estimation ICLR 2026
Identifying how training samples influence/impact Large Language Model (LLM) decision-making is essential for effectively interpreting model decisions and auditing large-scale datasets. Current training sample influence estimation methods (also known as influence functions) undertake this goal by utilizing information flow through the model via its first-order and higher-order gradient terms. However, owing to the large model sizes of today consisting of billions of parameters, these influence computations are often restricted to some subset of model layers to ensure computational feasibility. Prior seminal work by Yeh et al. (2022) in assessing which layers are best suited for computing language data influence concluded that the first (embedding) layers are the most informative for this purpose, using a hypothesis based on influence scores canceling out (i.e., the cancellation effect). In this work, we propose theoretical and empirical evidence demonstrating how the cancellation effect is unreliable, and that middle attention layers are better estimators for influence. Furthermore, we address the broader challenge of aggregating influence scores across layers, and showcase how alternatives to standard averaging (such as ranking and vote-based methods) can lead to significantly improved performance. Finally, we propose better methods for evaluating influence score efficacy in LLMs without undertaking model retraining, and propose a new metric known as the Noise Detection Rate (NDR) that exhibits strong predictive capability compared to the cancellation effect. Through extensive experiments across LLMs of varying types and scales, we concretely determine that the first (layers) are not necessarily better than the last (layers) for LLM influence estimation, contrasting with prior knowledge in the field.
comment: Accepted to ICLR 2026
♻ ☆ Telegrapher's Generative Model via Kac Flows
We break the mold in flow-based generative modeling by proposing a new model based on the damped wave equation, also known as telegrapher's equation. Similar to the diffusion equation and Brownian motion, there is a Feynman-Kac type relation between the telegrapher's equation and the stochastic Kac process in 1D. The Kac flow evolves stepwise linearly in time, so that the probability flow is Lipschitz continuous in the Wasserstein distance and, in contrast to diffusion flows, the norm of the velocity is globally bounded. Furthermore, the Kac model has the diffusion model as its asymptotic limit. We extend these considerations to a multi-dimensional stochastic process which consists of independent 1D Kac processes in each spatial component. We show that this process gives rise to an absolutely continuous curve in the Wasserstein space and compute the conditional velocity field starting in a Dirac point analytically. Using the framework of flow matching, we train a neural network that approximates the velocity field and use it for sample generation. Our numerical experiments demonstrate the scalability of our approach, and show its advantages over diffusion models.
comment: Update V2: We added CIFAR experiments. V3: The old FID scores & CIFAR images of the Kac model corresponded to the schedule g(t) = t. We updated them with both schedules t and t^2. V4: We corrected a minor implementation error and updated the CIFAR results. V5: We prove that the mean-reverting Kac process is Lipschitz, provide a rigorous proof of decomp. Lemma 6.1, and a nearest neighbor analysis
♻ ☆ Mitigating LLM Hallucination via Behaviorally Calibrated Reinforcement Learning
LLM deployment in critical domains is currently impeded by persistent hallucinations--generating plausible but factually incorrect assertions. While scaling laws drove significant improvements in general capabilities, theoretical frameworks suggest hallucination is not merely stochastic error but a predictable statistical consequence of training objectives prioritizing mimicking data distribution over epistemic honesty. Standard RLVR paradigms, utilizing binary reward signals, inadvertently incentivize models as good test-takers rather than honest communicators, encouraging guessing whenever correctness probability exceeds zero. This paper presents an exhaustive investigation into behavioral calibration, which incentivizes models to stochastically admit uncertainty by abstaining when not confident, aligning model behavior with accuracy. Synthesizing recent advances, we propose and evaluate training interventions optimizing strictly proper scoring rules for models to output a calibrated probability of correctness. Our methods enable models to either abstain from producing a complete response or flag individual claims where uncertainty remains. Utilizing Qwen3-4B-Instruct, empirical analysis reveals behavior-calibrated reinforcement learning allows smaller models to surpass frontier models in uncertainty quantification--a transferable meta-skill decouplable from raw predictive accuracy. Trained on math reasoning tasks, our model's log-scale Accuracy-to-Hallucination Ratio gain (0.806) exceeds GPT-5's (0.207) in a challenging in-domain evaluation (BeyondAIME). Moreover, in cross-domain factual QA (SimpleQA), our 4B LLM achieves zero-shot calibration error on par with frontier models including Grok-4 and Gemini-2.5-Pro, even though its factual accuracy is much lower.
♻ ☆ Effective Model Pruning: Measure The Redundancy of Model Components
This article initiates the study of a basic question about model pruning. Given a vector $s$ of importance scores assigned to model components, how many of the scored components could be discarded without sacrificing performance? We propose Effective Model Pruning (EMP), which derives the desired sparsity directly from the score distribution using the notion of effective sample size from particle filtering, also known as the inverse Simpson index. Rather than prescribe a pruning criterion, EMP supplies a universal adaptive threshold derived from the distribution of the score $s$ over the model components: EMP maps $s$ to a number $N_{eff}=N_{eff}(s)$, called the effective sample size. The $N-N_{eff}$ lowest scoring components are discarded. A tight lower bound on the preserved mass fraction $s_{eff}$ (the sum of retained normalized scores) in terms of $N_{eff}$ is derived. This process yields models with a provable upper bound on the loss change relative to the original dense model. Numerical experiments are performed demonstrating this phenomenon across a variety of network architectures including MLPs, CNNs, Transformers, LLMs, and KAN. It is also shown that EMP addresses a rich set of pruning criteria such as weight magnitude, attention score, KAN importance score, and even feature-level signals such as image pixels.
comment: 19 pages, 4 figures
♻ ☆ Deep-ICE: the first globally optimal algorithm for minimizing 0-1 loss in two-layer ReLU and maxout networks
This paper introduces the first globally optimal algorithm for the empirical risk minimization problem of two-layer maxout and ReLU networks, i.e., minimizing the number of misclassifications. The algorithm has a worst-case time complexity of $O\left(N^{DK+1}\right)$, where $K$ denotes the number of hidden neurons and $D$ represents the number of features. It can be can be generalized to accommodate arbitrary computable loss functions without affecting its computational complexity. Our experiments demonstrate that the proposed algorithm provides provably exact solutions for small-scale datasets. To handle larger datasets, we introduce a novel coreset selection method that reduces the data size to a manageable scale, making it feasible for our algorithm. This extension enables efficient processing of large-scale datasets and achieves significantly improved performance, with a 20-30\% reduction in misclassifications for both training and prediction, compared to state-of-the-art approaches (neural networks trained using gradient descent and support vector machines), when applied to the same models (two-layer networks with fixed hidden nodes and linear models).
♻ ☆ Adversary-Aware Private Inference over Wireless Channels
AI-based sensing at wireless edge devices has the potential to significantly enhance Artificial Intelligence (AI) applications, particularly for vision and perception tasks such as in autonomous driving and environmental monitoring. AI systems rely both on efficient model learning and inference. In the inference phase, features extracted from sensing data are utilized for prediction tasks (e.g., classification or regression). In edge networks, sensors and model servers are often not co-located, which requires communication of features. As sensitive personal data can be reconstructed by an adversary, transformation of the features are required to reduce the risk of privacy violations. While differential privacy mechanisms provide a means of protecting finite datasets, protection of individual features has not been addressed. In this paper, we propose a novel framework for privacy-preserving AI-based sensing, where devices apply transformations of extracted features before transmission to a model server.
♻ ☆ Sparse Equation Matching: A Derivative-Free Learning for General-Order Dynamical Systems
Equation discovery is a fundamental learning task for uncovering the underlying dynamics of complex systems, with wide-ranging applications in areas such as brain connectivity analysis, climate modeling, gene regulation, and physical simulation. However, many existing approaches rely on accurate derivative estimation and are limited to first-order dynamical systems, restricting their applicability in real-world scenarios. In this work, we propose Sparse Equation Matching (SEM), a unified framework that encompasses several existing equation discovery methods under a common formulation. SEM introduces an integral-based sparse regression approach using Green's functions, enabling derivative-free estimation of differential operators and their associated driving functions in general-order dynamical systems. The effectiveness of SEM is demonstrated through extensive simulations, benchmarking its performance against derivative-based approaches. We then apply SEM to electroencephalographic (EEG) data recorded during multiple oculomotor tasks, collected from 52 participants in a brain-computer interface experiment. Our method identifies active brain regions across participants and reveals task-specific connectivity patterns. These findings offer valuable insights into brain connectivity and the underlying neural mechanisms.
♻ ☆ SourceNet: Interpretable Sim-to-Real Inference on Variable-Geometry Sensor Arrays for Earthquake Source Inversion
Inferring high-dimensional physical states from sparse, ad-hoc sensor arrays is a fundamental challenge across AI for Science, yet standard architectures like CNNs and DeepSets struggle to capture the irregular geometries and relational physics inherent to domains like seismology. To address this, we propose SourceNet, a Transformer-based framework that bridges the profound Sim-to-Real gap via Physics-Structured Domain Randomization (PSDR), a protocol that randomizes governing physical dynamics to enforce invariance to unmodeled environmental heterogeneity. By pre-training on 100,000 synthetic events and fine-tuning on ~2,500 real-world events, SourceNet achieves state-of-the-art precision on held-out real data, demonstrating exceptional data efficiency and real-time capability compared to classical solvers. Beyond prediction, interpretability analysis reveals that the model shows scientific-agent-like features: it autonomously discovers geometric information bottlenecks and learns an attention policy that prioritizes sparse sensor placements, effectively recovering principles of optimal experimental design from data alone.
♻ ☆ Universal Sequence Preconditioning
We study the problem of preconditioning in sequential prediction. From the theoretical lens of linear dynamical systems, we show that convolving the target sequence corresponds to applying a polynomial to the hidden transition matrix. Building on this insight, we propose a universal preconditioning method that convolves the target with coefficients from orthogonal polynomials such as Chebyshev or Legendre. We prove that this approach reduces regret for two distinct prediction algorithms and yields the first ever sublinear and hidden-dimension-independent regret bounds (up to logarithmic factors) that hold for systems with marginally table and asymmetric transition matrices. Finally, extensive synthetic and real-world experiments show that this simple preconditioning strategy improves the performance of a diverse range of algorithms, including recurrent neural networks, and generalizes to signals beyond linear dynamical systems.
comment: 35 pages, 3 tables, 5 figures
♻ ☆ Some Robustness Properties of Label Cleaning
We demonstrate that learning procedures that rely on aggregated labels, e.g., label information distilled from noisy responses, enjoy robustness properties impossible without data cleaning. This robustness appears in several ways. In the context of risk consistency -- when one takes the standard approach in machine learning of minimizing a surrogate (typically convex) loss in place of a desired task loss (such as the zero-one mis-classification error) -- procedures using label aggregation obtain stronger consistency guarantees than those even possible using raw labels. And while classical statistical scenarios of fitting perfectly-specified models suggest that incorporating all possible information -- modeling uncertainty in labels -- is statistically efficient, consistency fails for ``standard'' approaches as soon as a loss to be minimized is even slightly mis-specified. Yet procedures leveraging aggregated information still converge to optimal classifiers, highlighting how incorporating a fuller view of the data analysis pipeline, from collection to model-fitting to prediction time, can yield a more robust methodology by refining noisy signals.
comment: 41 pages, 2 figures
♻ ☆ The Ensemble Schr{ö}dinger Bridge filter for Nonlinear Data Assimilation
This work puts forward a novel nonlinear optimal filter namely the Ensemble Schr{ö}dinger Bridge nonlinear filter. The proposed filter finds marriage of the standard prediction procedure and the diffusion generative modeling for the analysis procedure to realize one filtering step. The designed approach finds no structural model error, and it is derivative free, training free and highly parallizable. Experimental results show that the designed algorithm performs well given highly nonlinear dynamics in (mildly) high dimension up to 40 or above under a chaotic environment. It also shows better performance than classical methods such as the ensemble Kalman filter and the Particle filter in numerous tests given different level of nonlinearity. Future work will focus on extending the proposed approach to practical meteorological applications and establishing a rigorous convergence analysis.
♻ ☆ FC-PINO: High Precision Physics-Informed Neural Operators via Fourier Continuation
The physics-informed neural operator (PINO) is a machine learning paradigm that has demonstrated promising results for learning solutions to partial differential equations (PDEs). It leverages the Fourier Neural Operator to learn solution operators in function spaces and leverages physics losses during training to penalize deviations from known physics laws. Spectral differentiation provides an efficient way to compute derivatives for the physics losses, but it inherently assumes periodicity. When applied to non-periodic functions, this assumption can lead to significant errors, including Gibbs phenomena near domain boundaries which degrade the accuracy of both function representations and derivative computations. To overcome this limitation, we introduce the FC-PINO (Fourier-Continuation-based Physics-Informed Neural Operator) architecture which extends the accuracy and efficiency of PINO and spectral differentiation to non-periodic and non-smooth PDEs. In FC-PINO, we propose integrating Fourier continuation into the PINO framework, and test two different continuation approaches: FC-Legendre and FC-Gram. By transforming non-periodic signals into periodic functions on extended domains in a well-conditioned manner, Fourier continuation enables fast and accurate derivative computations. This approach avoids the discretization sensitivity of finite differences and the memory overhead of automatic differentiation. We demonstrate that standard PINO fails (without padding) or struggles (even with padding) to solve non-periodic and non-smooth PDEs with high precision, across challenging benchmarks. In contrast, the proposed FC-PINO provides accurate, robust, and scalable solutions, substantially outperforming PINO alternatives, and demonstrating that Fourier continuation is critical for extending PINO to a wider range of PDE problems when high-precision solutions are needed.
comment: 55 pages, 17 figures
♻ ☆ Spectral Representation-based Reinforcement Learning
In real-world applications with large state and action spaces, reinforcement learning (RL) typically employs function approximations to represent core components like the policies, value functions, and dynamics models. Although powerful approximations such as neural networks offer great expressiveness, they often present theoretical ambiguities, suffer from optimization instability and exploration difficulty, and incur substantial computational costs in practice. In this paper, we introduce the perspective of spectral representations as a solution to address these difficulties in RL. Stemming from the spectral decomposition of the transition operator, this framework yields an effective abstraction of the system dynamics for subsequent policy optimization while also providing a clear theoretical characterization. We reveal how to construct spectral representations for transition operators that possess latent variable structures or energy-based structures, which implies different learning methods to extract spectral representations from data. Notably, each of these learning methods realizes an effective RL algorithm under this framework. We also provably extend this spectral view to partially observable MDPs. Finally, we validate these algorithms on over 20 challenging tasks from the DeepMind Control Suite, where they achieve performances comparable or superior to current state-of-the-art model-free and model-based baselines.
♻ ☆ QUASAR: An Evolutionary Algorithm to Accelerate High-Dimensional Optimization
High-dimensional numerical optimization presents a persistent challenge in computational science. This paper introduces Quasi-Adaptive Search with Asymptotic Reinitialization (QUASAR), an evolutionary algorithm to accelerate convergence in complex, non-differentiable problems afflicted by the curse of dimensionality. QUASAR expands upon the core principles of Differential Evolution (DE), introducing quasi-adaptive mechanisms to dynamically balance exploration and exploitation in its search. Inspired by the behavior of quantum particles, the algorithm utilizes three highly stochastic mechanisms that augment standard DE: 1) probabilistic mutation strategies and scaling factors; 2) rank-based crossover rates; 3) asymptotically decaying covariance reinitializations. Evaluated on the notoriously difficult CEC2017 benchmark suite of 29 test functions, QUASAR achieved the lowest overall rank sum (367) using the Friedman test, outperforming DE (735) and L-SHADE (452). Geometric mean comparisons show average final solution quality improvements of $3.85 \times$ and $2.07 \times$ compared to DE and L-SHADE, respectively ($p \ll 0.001$), with average optimization speed averaging $1.40 \times$ and $5.16 \times$ faster. QUASAR's performance establishes it as an effective, efficient, and user-friendly evolutionary algorithm for complex high-dimensional problems.
comment: 8 pages, 6 figures. Open-source package containing QUASAR is available via 'pip install hdim_opt'; source code (with experiments) is maintained on GitHub at [https://www.github.com/jgsoltes/hdim-opt]
♻ ☆ Generalization in Reinforcement Learning for Radio Access Networks
Modern RAN operate in highly dynamic and heterogeneous environments, where hand-tuned, rule-based RRM algorithms often underperform. While RL can surpass such heuristics in constrained settings, the diversity of deployments and unpredictable radio conditions introduce major generalization challenges. Data-driven policies frequently overfit to training conditions, degrading performance in unseen scenarios. To address this, we propose a generalization-centered RL framework for RAN control that: (i) robustly reconstructs dynamically varying states from partial and noisy observations, while encoding static and semi-static information, such as radio nodes, cell attributes, and their topology, through graph representations; (ii) applies domain randomization to broaden the training distribution; and (iii) distributes data generation across multiple actors while centralizing training in a cloud-compatible architecture aligned with O-RAN principles. Although generalization increases computational and data-management complexity, our distributed design mitigates this by scaling data collection and training across diverse network conditions. Applied to downlink link adaptation in five 5G benchmarks, our policy improves average throughput and spectral efficiency by ~10% over an OLLA baseline (10% BLER target) in full-buffer MIMO/mMIMO and by >20% under high mobility. It matches specialized RL in full-buffer traffic and achieves up to 4- and 2-fold gains in eMBB and mixed-traffic benchmarks, respectively. In nine-cell deployments, GAT models offer 30% higher throughput over MLP baselines. These results, combined with our scalable architecture, offer a path toward AI-native 6G RAN using a single, generalizable RL agent.
♻ ☆ Practical Policy Distillation for Reinforcement Learning in Radio Access Networks IEEE
Adopting artificial intelligence (AI) in radio access networks (RANs) presents several challenges, including limited availability of link-level measurements (e.g., CQI reports), stringent real-time processing constraints (e.g., sub-1 ms per TTI), and network heterogeneity (different spectrum bands, cell types, and vendor equipment). A critical yet often overlooked barrier lies in the computational and memory limitations of RAN baseband hardware, particularly in legacy 4th Generation (4G) systems, which typically lack on-chip neural accelerators. As a result, only lightweight AI models (under 1 Mb and sub-100~μs inference time) can be effectively deployed, limiting both their performance and applicability. However, achieving strong generalization across diverse network conditions often requires large-scale models with substantial resource demands. To address this trade-off, this paper investigates policy distillation in the context of a reinforcement learning-based link adaptation task. We explore two strategies: single-policy distillation, where a scenario-agnostic teacher model is compressed into one generalized student model; and multi-policy distillation, where multiple scenario-specific teachers are consolidated into a single generalist student. Experimental evaluations in a high-fidelity, 5th Generation (5G)-compliant simulator demonstrate that both strategies produce compact student models that preserve the teachers' generalization capabilities while complying with the computational and memory limitations of existing RAN hardware.
comment: This paper is accepted for publication in IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 2025
♻ ☆ GPT2MEG: Quantizing MEG for Autoregressive Generation
Foundation models trained with self-supervised objectives are increasingly applied to brain recordings, but autoregressive generation of realistic multichannel neural time series remains comparatively underexplored, particularly for Magnetoencephalography (MEG). We study (i) modified multichannel WaveNet variants and (ii) a GPT-2-style Transformer, autoregressively trained by next-step prediction on unlabelled MEG. For the Transformer, we propose a simple quantization/tokenization and embedding scheme (channel, subject, and task-condition embeddings) that repurposes a language-model architecture for continuous, high-rate multichannel time series and enables conditional simulation of task-evoked activity. Across forecasting, long-horizon generation, and downstream decoding, GPT2MEG more faithfully reproduces temporal, spectral, and task-evoked statistics of real MEG than WaveNet variants and linear autoregressive baselines, and scales to multiple subjects via subject embeddings. Code available at https://github.com/ricsinaruto/MEG-transfer-decoding.
comment: Code available on GitHub (https://github.com/ricsinaruto/MEG-transfer-decoding). Part of PhD thesis (https://ricsinaruto.github.io/docs/thesis_final_appendix.pdf)
♻ ☆ Lost in Simulation: LLM-Simulated Users are Unreliable Proxies for Human Users in Agentic Evaluations
Agentic benchmarks increasingly rely on LLM-simulated users to scalably evaluate agent performance, yet the robustness, validity, and fairness of this approach remain unexamined. Through a user study with participants across the United States, India, Kenya, and Nigeria, we investigate whether LLM-simulated users serve as reliable proxies for real human users in evaluating agents on τ-Bench retail tasks. We find that user simulation lacks robustness, with agent success rates varying up to 9 percentage points across different user LLMs. Furthermore, evaluations using simulated users exhibit systematic miscalibration, underestimating agent performance on challenging tasks and overestimating it on moderately difficult ones. African American Vernacular English (AAVE) speakers experience consistently worse success rates and calibration errors than Standard American English (SAE) speakers, with disparities compounding significantly with age. We also find simulated users to be a differentially effective proxy for different populations, performing worst for AAVE and Indian English speakers. Additionally, simulated users introduce conversational artifacts and surface different failure patterns than human users. These findings demonstrate that current evaluation practices risk misrepresenting agent capabilities across diverse user populations and may obscure real-world deployment challenges.
Multimedia 7
☆ Block Erasure-Aware Semantic Multimedia Compression via JSCC Autoencoder IEEE
We present an AI-based framework for semantic transmission of multimedia data over band-limited, time-varying channels. The method targets scenarios where large content is split into multiple packets, with an unknown number potentially dropped due to channel impairments. Using joint source-channel coding (JSCC), our approach achieves reliable semantic reconstruction with graceful quality degradation as channel conditions worsen, eliminating the need for retransmissions that cause unacceptable delays in latency-sensitive applications such as video conferencing and robotic control. The framework is compatible with existing network protocols and further enables intelligent congestion control and unequal error protection. A tunable design parameter allows balancing robustness at low channel quality against fidelity at high channel quality. Experiments demonstrate significant robustness improvement over state-of-the-art baselines in both image and video domains.
comment: 8 pages, submitted to IEEE Transactions on Multimedia
☆ SFQA: A Comprehensive Perceptual Quality Assessment Dataset for Singing Face Generation
The Talking Face Generation task has enormous potential for various applications in digital humans and agents, etc. Singing, as a common facial movement second only to talking, can be regarded as a universal language across ethnicities and cultures. However, it is often underestimated in the field due to lack of singing face datasets and the domain gap between singing and talking in rhythm and amplitude. More significantly, the quality of Singing Face Generation (SFG) often falls short and is uneven or limited by different applicable scenarios, which prompts us to propose timely and effective quality assessment methods to ensure user experience. To address existing gaps in this domain, this paper introduces a new SFG content quality assessment dataset SFQA, built using 12 representative generation methods. During the construction of the dataset, 100 photographs or portraits, as well as 36 music clips from 7 different styles, are utilized to generate 5,184 singing face videos that constitute the SFQA dataset. To further explore the quality of SFG methods, subjective quality assessment is conducted by evaluators, whose ratings reveal a significant variation in quality among different generation methods. Based on our proposed SFQA dataset, we comprehensively benchmark the current objective quality assessment algorithms.
♻ ☆ RacketVision: A Multiple Racket Sports Benchmark for Unified Ball and Racket Analysis AAAI 2026
We introduce RacketVision, a novel dataset and benchmark for advancing computer vision in sports analytics, covering table tennis, tennis, and badminton. The dataset is the first to provide large-scale, fine-grained annotations for racket pose alongside traditional ball positions, enabling research into complex human-object interactions. It is designed to tackle three interconnected tasks: fine-grained ball tracking, articulated racket pose estimation, and predictive ball trajectory forecasting. Our evaluation of established baselines reveals a critical insight for multi-modal fusion: while naively concatenating racket pose features degrades performance, a CrossAttention mechanism is essential to unlock their value, leading to trajectory prediction results that surpass strong unimodal baselines. RacketVision provides a versatile resource and a strong starting point for future research in dynamic object tracking, conditional motion forecasting, and multimodal analysis in sports. Project page at https://github.com/OrcustD/RacketVision
comment: Accepted to AAAI 2026 (Oral)
♻ ☆ Listen, Look, Drive: Coupling Audio Instructions for User-aware VLA-based Autonomous Driving
Vision Language Action (VLA) models promise an open-vocabulary interface that can translate perceptual ambiguity into semantically grounded driving decisions, yet they still treat language as a static prior fixed at inference time. As a result, the model must infer continuously shifting objectives from pixels alone, yielding delayed or overly conservative maneuvers. We argue that effective VLAs for autonomous driving need an online channel in which users can influence driving with specific intentions. To this end, we present EchoVLA, a user-aware VLA that couples camera streams with in situ audio instructions. We augment the nuScenes dataset with temporally aligned, intent-specific speech commands generated by converting ego-motion descriptions into synthetic audios. Further, we compose emotional speech-trajectory pairs into a multimodal Chain-of-Thought (CoT) for fine-tuning a Multimodal Large Model (MLM) based on Qwen2.5-Omni. Specifically, we synthesize the audio-augmented dataset with different emotion types paired with corresponding driving behaviors, leveraging the emotional cues embedded in tone, pitch, and speech tempo to reflect varying user states, such as urgent or hesitant intentions, thus enabling our EchoVLA to interpret not only the semantic content but also the emotional context of audio commands for more nuanced and emotionally adaptive driving behavior. In open-loop benchmarks, our approach reduces the average L2 error by $59.4\%$ and the collision rate by $74.4\%$ compared to the baseline of vision-only perception. More experiments on nuScenes dataset validate that EchoVLA not only steers the trajectory through audio instructions, but also modulates driving behavior in response to the emotions detected in the user's speech.
comment: Accepted by IV
♻ ☆ Benchmarking Multimodal Large Language Models for Missing Modality Completion in Product Catalogues
Missing-modality information on e-commerce platforms, such as absent product images or textual descriptions, often arises from annotation errors or incomplete metadata, impairing both product presentation and downstream applications such as recommendation systems. Motivated by the multimodal generative capabilities of recent Multimodal Large Language Models (MLLMs), this work investigates a fundamental yet underexplored question: can MLLMs generate missing modalities for products in e-commerce scenarios? We propose the Missing Modality Product Completion Benchmark (MMPCBench), which consists of two sub-benchmarks: a Content Quality Completion Benchmark and a Recommendation Benchmark. We further evaluate six state-of-the-art MLLMs from the Qwen2.5-VL and Gemma-3 model families across nine real-world e-commerce categories, focusing on image-to-text and text-to-image completion tasks. Experimental results show that while MLLMs can capture high-level semantics, they struggle with fine-grained word-level and pixel- or patch-level alignment. In addition, performance varies substantially across product categories and model scales, and we observe no trivial correlation between model size and performance, in contrast to trends commonly reported in mainstream benchmarks. We also explore Group Relative Policy Optimization (GRPO) to better align MLLMs with this task. GRPO improves image-to-text completion but does not yield gains for text-to-image completion. Overall, these findings expose the limitations of current MLLMs in real-world cross-modal generation and represent an early step toward more effective missing-modality product completion.
♻ ☆ XY-Cut++: Advanced Layout Ordering via Hierarchical Mask Mechanism on a Novel Benchmark
Document Reading Order Recovery is a fundamental task in document image understanding, playing a pivotal role in enhancing Retrieval-Augmented Generation (RAG) and serving as a critical preprocessing step for large language models (LLMs). Existing methods often struggle with complex layouts(e.g., multi-column newspapers), high-overhead interactions between cross-modal elements (visual regions and textual semantics), and a lack of robust evaluation benchmarks. We introduce XY-Cut++, an advanced layout ordering method that integrates pre-mask processing, multi-granularity segmentation, and cross-modal matching to address these challenges. Our method significantly enhances layout ordering accuracy compared to traditional XY-Cut techniques. Specifically, XY-Cut++ achieves state-of-the-art performance (98.8 BLEU overall) while maintaining simplicity and efficiency. It outperforms existing baselines by up to 24\% and demonstrates consistent accuracy across simple and complex layouts on the newly introduced DocBench-100 dataset. This advancement establishes a reliable foundation for document structure recovery, setting a new standard for layout ordering tasks and facilitating more effective RAG and LLM preprocessing.
♻ ☆ Multi-hop Parallel Image Semantic Communication for Distortion Accumulation Mitigation IEEE
Existing semantic communication schemes primarily focus on single-hop scenarios, overlooking the challenges of multi-hop wireless image transmission. As semantic communication is inherently lossy, distortion accumulates over multiple hops, leading to significant performance degradation. To address this, we propose the multi-hop parallel image semantic communication (MHPSC) framework, which introduces a parallel residual compensation link at each hop against distortion accumulation. To minimize the associated transmission bandwidth overhead, a coarse-to-fine residual compression scheme is designed. A deep learning-based residual compressor first condenses the residuals, followed by the adaptive arithmetic coding (AAC) for further compression. A residual distribution estimation module predicts the prior distribution for the AAC to achieve fine compression performances. This approach ensures robust multi-hop image transmission with only a minor increase in transmission bandwidth. Experimental results confirm that MHPSC outperforms both existing semantic communication and traditional separated coding schemes.
comment: This paper has been accepted by IEEE ICC2026
Computer Vision and Pattern Recognition 156
☆ DuwatBench: Bridging Language and Visual Heritage through an Arabic Calligraphy Benchmark for Multimodal Understanding EACL-2026
Arabic calligraphy represents one of the richest visual traditions of the Arabic language, blending linguistic meaning with artistic form. Although multimodal models have advanced across languages, their ability to process Arabic script, especially in artistic and stylized calligraphic forms, remains largely unexplored. To address this gap, we present DuwatBench, a benchmark of 1,272 curated samples containing about 1,475 unique words across six classical and modern calligraphic styles, each paired with sentence-level detection annotations. The dataset reflects real-world challenges in Arabic writing, such as complex stroke patterns, dense ligatures, and stylistic variations that often challenge standard text recognition systems. Using DuwatBench, we evaluated 13 leading Arabic and multilingual multimodal models and showed that while they perform well on clean text, they struggle with calligraphic variation, artistic distortions, and precise visual-text alignment. By publicly releasing DuwatBench and its annotations, we aim to advance culturally grounded multimodal research, foster fair inclusion of the Arabic language and visual heritage in AI systems, and support continued progress in this area. Our dataset (https://huggingface.co/datasets/MBZUAI/DuwatBench) and evaluation suit (https://github.com/mbzuai-oryx/DuwatBench) are publicly available.
comment: Accepted to EACL-2026 (Main Track)
☆ VGGT-SLAM 2.0: Real time Dense Feed-forward Scene Reconstruction
We present VGGT-SLAM 2.0, a real time RGB feed-forward SLAM system which substantially improves upon VGGT-SLAM for incrementally aligning submaps created from VGGT. Firstly, we remove high-dimensional 15-degree-of-freedom drift and planar degeneracy from VGGT-SLAM by creating a new factor graph design while still addressing the reconstruction ambiguity of VGGT given unknown camera intrinsics. Secondly, by studying the attention layers of VGGT, we show that one of the layers is well suited to assist in image retrieval verification for free without additional training, which enables both rejecting false positive matches and allows for completing more loop closures. Finally, we conduct a suite of experiments which includes showing VGGT-SLAM 2.0 can easily be adapted for open-set object detection and demonstrating real time performance while running online onboard a ground robot using a Jetson Thor. We also test in environments ranging from cluttered indoor apartments and office scenes to a 4,200 square foot barn, and we also demonstrate VGGT-SLAM 2.0 achieves the highest accuracy on the TUM dataset with about 23 percent less pose error than VGGT-SLAM. Code will be released upon publication.
☆ SONIC: Spectral Oriented Neural Invariant Convolutions ICLR 2026
Convolutional Neural Networks (CNNs) rely on fixed-size kernels scanning local patches, which limits their ability to capture global context or long-range dependencies without very deep architectures. Vision Transformers (ViTs), in turn, provide global connectivity but lack spatial inductive bias, depend on explicit positional encodings, and remain tied to the initial patch size. Bridging these limitations requires a representation that is both structured and global. We introduce SONIC (Spectral Oriented Neural Invariant Convolutions), a continuous spectral parameterisation that models convolutional operators using a small set of shared, orientation-selective components. These components define smooth responses across the full frequency domain, yielding global receptive fields and filters that adapt naturally across resolutions. Across synthetic benchmarks, large-scale image classification, and 3D medical datasets, SONIC shows improved robustness to geometric transformations, noise, and resolution shifts, and matches or exceeds convolutional, attention-based, and prior spectral architectures with an order of magnitude fewer parameters. These results demonstrate that continuous, orientation-aware spectral parameterisations provide a principled and scalable alternative to conventional spatial and spectral operators.
comment: 10 pages, 4 figures. Accepted at ICLR 2026
☆ EgoHandICL: Egocentric 3D Hand Reconstruction with In-Context Learning ICLR 2026
Robust 3D hand reconstruction in egocentric vision is challenging due to depth ambiguity, self-occlusion, and complex hand-object interactions. Prior methods mitigate these issues by scaling training data or adding auxiliary cues, but they often struggle in unseen contexts. We present EgoHandICL, the first in-context learning (ICL) framework for 3D hand reconstruction that improves semantic alignment, visual consistency, and robustness under challenging egocentric conditions. EgoHandICL introduces complementary exemplar retrieval guided by vision-language models (VLMs), an ICL-tailored tokenizer for multimodal context, and a masked autoencoder (MAE)-based architecture trained with hand-guided geometric and perceptual objectives. Experiments on ARCTIC and EgoExo4D show consistent gains over state-of-the-art methods. We also demonstrate real-world generalization and improve EgoVLM hand-object interaction reasoning by using reconstructed hands as visual prompts. Code and data: https://github.com/Nicous20/EgoHandICL
comment: Accepted in ICLR 2026, Codebase: https://github.com/Nicous20/EgoHandICL
☆ HexFormer: Hyperbolic Vision Transformer with Exponential Map Aggregation
Data across modalities such as images, text, and graphs often contains hierarchical and relational structures, which are challenging to model within Euclidean geometry. Hyperbolic geometry provides a natural framework for representing such structures. Building on this property, this work introduces HexFormer, a hyperbolic vision transformer for image classification that incorporates exponential map aggregation within its attention mechanism. Two designs are explored: a hyperbolic ViT (HexFormer) and a hybrid variant (HexFormer-Hybrid) that combines a hyperbolic encoder with an Euclidean linear classification head. HexFormer incorporates a novel attention mechanism based on exponential map aggregation, which yields more accurate and stable aggregated representations than standard centroid based averaging, showing that simpler approaches retain competitive merit. Experiments across multiple datasets demonstrate consistent performance improvements over Euclidean baselines and prior hyperbolic ViTs, with the hybrid variant achieving the strongest overall results. Additionally, this study provides an analysis of gradient stability in hyperbolic transformers. The results reveal that hyperbolic models exhibit more stable gradients and reduced sensitivity to warmup strategies compared to Euclidean architectures, highlighting their robustness and efficiency in training. Overall, these findings indicate that hyperbolic geometry can enhance vision transformer architectures by improving gradient stability and accuracy. In addition, relatively simple mechanisms such as exponential map aggregation can provide strong practical benefits.
☆ Query-Guided Spatial-Temporal-Frequency Interaction for Music Audio-Visual Question Answering
Audio--Visual Question Answering (AVQA) is a challenging multimodal task that requires jointly reasoning over audio, visual, and textual information in a given video to answer natural language questions. Inspired by recent advances in Video QA, many existing AVQA approaches primarily focus on visual information processing, leveraging pre-trained models to extract object-level and motion-level representations. However, in those methods, the audio input is primarily treated as complementary to video analysis, and the textual question information contributes minimally to audio--visual understanding, as it is typically integrated only in the final stages of reasoning. To address these limitations, we propose a novel Query-guided Spatial--Temporal--Frequency (QSTar) interaction method, which effectively incorporates question-guided clues and exploits the distinctive frequency-domain characteristics of audio signals, alongside spatial and temporal perception, to enhance audio--visual understanding. Furthermore, we introduce a Query Context Reasoning (QCR) block inspired by prompting, which guides the model to focus more precisely on semantically relevant audio and visual features. Extensive experiments conducted on several AVQA benchmarks demonstrate the effectiveness of our proposed method, achieving significant performance improvements over existing Audio QA, Visual QA, Video QA, and AVQA approaches. The code and pretrained models will be released after publication.
☆ Youtu-VL: Unleashing Visual Potential via Unified Vision-Language Supervision
Despite the significant advancements represented by Vision-Language Models (VLMs), current architectures often exhibit limitations in retaining fine-grained visual information, leading to coarse-grained multimodal comprehension. We attribute this deficiency to a suboptimal training paradigm inherent in prevailing VLMs, which exhibits a text-dominant optimization bias by conceptualizing visual signals merely as passive conditional inputs rather than supervisory targets. To mitigate this, we introduce Youtu-VL, a framework leveraging the Vision-Language Unified Autoregressive Supervision (VLUAS) paradigm, which fundamentally shifts the optimization objective from ``vision-as-input'' to ``vision-as-target.'' By integrating visual tokens directly into the prediction stream, Youtu-VL applies unified autoregressive supervision to both visual details and linguistic content. Furthermore, we extend this paradigm to encompass vision-centric tasks, enabling a standard VLM to perform vision-centric tasks without task-specific additions. Extensive empirical evaluations demonstrate that Youtu-VL achieves competitive performance on both general multimodal tasks and vision-centric tasks, establishing a robust foundation for the development of comprehensive generalist visual agents.
☆ Diffusion for De-Occlusion: Accessory-Aware Diffusion Inpainting for Robust Ear Biometric Recognition
Ear occlusions (arising from the presence of ear accessories such as earrings and earphones) can negatively impact performance in ear-based biometric recognition systems, especially in unconstrained imaging circumstances. In this study, we assess the effectiveness of a diffusion-based ear inpainting technique as a pre-processing aid to mitigate the issues of ear accessory occlusions in transformer-based ear recognition systems. Given an input ear image and an automatically derived accessory mask, the inpainting model reconstructs clean and anatomically plausible ear regions by synthesizing missing pixels while preserving local geometric coherence along key ear structures, including the helix, antihelix, concha, and lobule. We evaluate the effectiveness of this pre-processing aid in transformer-based recognition systems for several vision transformer models and different patch sizes for a range of benchmark datasets. Experiments show that diffusion-based inpainting can be a useful pre-processing aid to alleviate ear accessory occlusions to improve overall recognition performance.
☆ GeoDiff3D: Self-Supervised 3D Scene Generation with Geometry-Constrained 2D Diffusion Guidance
3D scene generation is a core technology for gaming, film/VFX, and VR/AR. Growing demand for rapid iteration, high-fidelity detail, and accessible content creation has further increased interest in this area. Existing methods broadly follow two paradigms - indirect 2D-to-3D reconstruction and direct 3D generation - but both are limited by weak structural modeling and heavy reliance on large-scale ground-truth supervision, often producing structural artifacts, geometric inconsistencies, and degraded high-frequency details in complex scenes. We propose GeoDiff3D, an efficient self-supervised framework that uses coarse geometry as a structural anchor and a geometry-constrained 2D diffusion model to provide texture-rich reference images. Importantly, GeoDiff3D does not require strict multi-view consistency of the diffusion-generated references and remains robust to the resulting noisy, inconsistent guidance. We further introduce voxel-aligned 3D feature aggregation and dual self-supervision to maintain scene coherence and fine details while substantially reducing dependence on labeled data. GeoDiff3D also trains with low computational cost and enables fast, high-quality 3D scene generation. Extensive experiments on challenging scenes show improved generalization and generation quality over existing baselines, offering a practical solution for accessible and efficient 3D scene construction.
☆ PaW-ViT: A Patch-based Warping Vision Transformer for Robust Ear Verification
The rectangular tokens common to vision transformer methods for visual recognition can strongly affect performance of these methods due to incorporation of information outside the objects to be recognized. This paper introduces PaW-ViT, Patch-based Warping Vision Transformer, a preprocessing approach rooted in anatomical knowledge that normalizes ear images to enhance the efficacy of ViT. By accurately aligning token boundaries to detected ear feature boundaries, PaW-ViT obtains greater robustness to shape, size, and pose variation. By aligning feature boundaries to natural ear curvature, it produces more consistent token representations for various morphologies. Experiments confirm the effectiveness of PaW-ViT on various ViT models (ViT-T, ViT-S, ViT-B, ViT-L) and yield reasonable alignment robustness to variation in shape, size, and pose. Our work aims to solve the disconnect between ear biometric morphological variation and transformer architecture positional sensitivity, presenting a possible avenue for authentication schemes.
☆ WaterClear-GS: Optical-Aware Gaussian Splatting for Underwater Reconstruction and Restoration
Underwater 3D reconstruction and appearance restoration are hindered by the complex optical properties of water, such as wavelength-dependent attenuation and scattering. Existing Neural Radiance Fields (NeRF)-based methods struggle with slow rendering speeds and suboptimal color restoration, while 3D Gaussian Splatting (3DGS) inherently lacks the capability to model complex volumetric scattering effects. To address these issues, we introduce WaterClear-GS, the first pure 3DGS-based framework that explicitly integrates underwater optical properties of local attenuation and scattering into Gaussian primitives, eliminating the need for an auxiliary medium network. Our method employs a dual-branch optimization strategy to ensure underwater photometric consistency while naturally recovering water-free appearances. This strategy is enhanced by depth-guided geometry regularization and perception-driven image loss, together with exposure constraints, spatially-adaptive regularization, and physically guided spectral regularization, which collectively enforce local 3D coherence and maintain natural visual perception. Experiments on standard benchmarks and our newly collected dataset demonstrate that WaterClear-GS achieves outstanding performance on both novel view synthesis (NVS) and underwater image restoration (UIR) tasks, while maintaining real-time rendering. The code will be available at https://buaaxrzhang.github.io/WaterClear-GS/.
☆ Benchmarking Multimodal Large Language Models for Missing Modality Completion in Product Catalogues
Missing-modality information on e-commerce platforms, such as absent product images or textual descriptions, often arises from annotation errors or incomplete metadata, impairing both product presentation and downstream applications such as recommendation systems. Motivated by the multimodal generative capabilities of recent Multimodal Large Language Models (MLLMs), this work investigates a fundamental yet underexplored question: can MLLMs generate missing modalities for products in e-commerce scenarios? We propose the Missing Modality Product Completion Benchmark (MMPCBench), which consists of two sub-benchmarks: a Content Quality Completion Benchmark and a Recommendation Benchmark. We further evaluate six state-of-the-art MLLMs from the Qwen2.5-VL and Gemma-3 model families across nine real-world e-commerce categories, focusing on image-to-text and text-to-image completion tasks. Experimental results show that while MLLMs can capture high-level semantics, they struggle with fine-grained word-level and pixel- or patch-level alignment. In addition, performance varies substantially across product categories and model scales, and we observe no trivial correlation between model size and performance, in contrast to trends commonly reported in mainstream benchmarks. We also explore Group Relative Policy Optimization (GRPO) to better align MLLMs with this task. GRPO improves image-to-text completion but does not yield gains for text-to-image completion. Overall, these findings expose the limitations of current MLLMs in real-world cross-modal generation and represent an early step toward more effective missing-modality product completion.
☆ Interpretable and backpropagation-free Green Learning for efficient multi-task echocardiographic segmentation and classification
Echocardiography is a cornerstone for managing heart failure (HF), with Left Ventricular Ejection Fraction (LVEF) being a critical metric for guiding therapy. However, manual LVEF assessment suffers from high inter-observer variability, while existing Deep Learning (DL) models are often computationally intensive and data-hungry "black boxes" that impede clinical trust and adoption. Here, we propose a backpropagation-free multi-task Green Learning (MTGL) framework that performs simultaneous Left Ventricle (LV) segmentation and LVEF classification. Our framework integrates an unsupervised VoxelHop encoder for hierarchical spatio-temporal feature extraction with a multi-level regression decoder and an XG-Boost classifier. On the EchoNet-Dynamic dataset, our MTGL model achieves state-of-the-art classification and segmentation performance, attaining a classification accuracy of 94.3% and a Dice Similarity Coefficient (DSC) of 0.912, significantly outperforming several advanced 3D DL models. Crucially, our model achieves this with over an order of magnitude fewer parameters, demonstrating exceptional computational efficiency. This work demonstrates that the GL paradigm can deliver highly accurate, efficient, and interpretable solutions for complex medical image analysis, paving the way for more sustainable and trustworthy artificial intelligence in clinical practice.
comment: Jyun-Ping Kao and Jiaxing Yang contributed equally to this work. C.-C. Jay Kuo and Jonghye Woo are the senior authors
☆ DiffStyle3D: Consistent 3D Gaussian Stylization via Attention Optimization
3D style transfer enables the creation of visually expressive 3D content, enriching the visual appearance of 3D scenes and objects. However, existing VGG- and CLIP-based methods struggle to model multi-view consistency within the model itself, while diffusion-based approaches can capture such consistency but rely on denoising directions, leading to unstable training. To address these limitations, we propose DiffStyle3D, a novel diffusion-based paradigm for 3DGS style transfer that directly optimizes in the latent space. Specifically, we introduce an Attention-Aware Loss that performs style transfer by aligning style features in the self-attention space, while preserving original content through content feature alignment. Inspired by the geometric invariance of 3D stylization, we propose a Geometry-Guided Multi-View Consistency method that integrates geometric information into self-attention to enable cross-view correspondence modeling. Based on geometric information, we additionally construct a geometry-aware mask to prevent redundant optimization in overlapping regions across views, which further improves multi-view consistency. Extensive experiments show that DiffStyle3D outperforms state-of-the-art methods, achieving higher stylization quality and visual realism.
Self-Supervised Weight Templates for Scalable Vision Model Initialization
The increasing scale and complexity of modern model parameters underscore the importance of pre-trained models. However, deployment often demands architectures of varying sizes, exposing limitations of conventional pre-training and fine-tuning. To address this, we propose SWEET, a self-supervised framework that performs constraint-based pre-training to enable scalable initialization in vision tasks. Instead of pre-training a fixed-size model, we learn a shared weight template and size-specific weight scalers under Tucker-based factorization, which promotes modularity and supports flexible adaptation to architectures with varying depths and widths. Target models are subsequently initialized by composing and reweighting the template through lightweight weight scalers, whose parameters can be efficiently learned from minimal training data. To further enhance flexibility in width expansion, we introduce width-wise stochastic scaling, which regularizes the template along width-related dimensions and encourages robust, width-invariant representations for improved cross-width generalization. Extensive experiments on \textsc{classification}, \textsc{detection}, \textsc{segmentation} and \textsc{generation} tasks demonstrate the state-of-the-art performance of SWEET for initializing variable-sized vision models.
☆ DSVM-UNet : Enhancing VM-UNet with Dual Self-distillation for Medical Image Segmentation
Vision Mamba models have been extensively researched in various fields, which address the limitations of previous models by effectively managing long-range dependencies with a linear-time overhead. Several prospective studies have further designed Vision Mamba based on UNet(VM-UNet) for medical image segmentation. These approaches primarily focus on optimizing architectural designs by creating more complex structures to enhance the model's ability to perceive semantic features. In this paper, we propose a simple yet effective approach to improve the model by Dual Self-distillation for VM-UNet (DSVM-UNet) without any complex architectural designs. To achieve this goal, we develop double self-distillation methods to align the features at both the global and local levels. Extensive experiments conducted on the ISIC2017, ISIC2018, and Synapse benchmarks demonstrate that our approach achieves state-of-the-art performance while maintaining computational efficiency. Code is available at https://github.com/RoryShao/DSVM-UNet.git.
comment: 5 pages, 1 figures
☆ Video-KTR: Reinforcing Video Reasoning via Key Token Attribution ICLR 2026
Reinforcement learning (RL) has shown strong potential for enhancing reasoning in multimodal large language models, yet existing video reasoning methods often rely on coarse sequence-level rewards or single-factor token selection, neglecting fine-grained links among visual inputs, temporal dynamics, and linguistic outputs, limiting both accuracy and interpretability. We propose Video-KTR, a modality-aware policy shaping framework that performs selective, token-level RL by combining three attribution signals: (1) visual-aware tokens identified via counterfactual masking to reveal perceptual dependence; (2) temporal-aware tokens detected through frame shuffling to expose temporal sensitivity; and (3) high-entropy tokens signaling predictive uncertainty. By reinforcing only these key tokens, Video-KTR focuses learning on semantically informative, modality-sensitive content while filtering out low-value tokens. Across five challenging benchmarks, Video-KTR achieves state-of-the-art or highly competitive results, achieving 42.7\% on Video-Holmes (surpassing GPT-4o) with consistent gains on both reasoning and general video understanding tasks. Ablation studies verify the complementary roles of the attribution signals and the robustness of targeted token-level updates. Overall, Video-KTR improves accuracy and interpretability, offering a simple, drop-in extension to RL for complex video reasoning. Our code and models are available at https://github.com/zywang0104/Video-KTR.
comment: Accepted to ICLR 2026
☆ SharpNet: Enhancing MLPs to Represent Functions with Controlled Non-differentiability
Multi-layer perceptrons (MLPs) are a standard tool for learning and function approximation, but they inherently yield outputs that are globally smooth. As a result, they struggle to represent functions that are continuous yet deliberately non-differentiable (i.e., with prescribed $C^0$ sharp features) without relying on ad hoc post-processing. We present SharpNet, a modified MLP architecture capable of encoding functions with user-defined sharp features by enriching the network with an auxiliary feature function, which is defined as the solution to a Poisson equation with jump Neumann boundary conditions. It is evaluated via an efficient local integral that is fully differentiable with respect to the feature locations, enabling our method to jointly optimize both the feature locations and the MLP parameters to recover the target functions/models. The $C^0$-continuity of SharpNet is precisely controllable, ensuring $C^0$-continuity at the feature locations and smoothness elsewhere. We validate SharpNet on 2D problems and 3D CAD model reconstruction, and compare it against several state-of-the-art baselines. In both types of tasks, SharpNet accurately recovers sharp edges and corners while maintaining smooth behavior away from those features, whereas existing methods tend to smooth out gradient discontinuities. Both qualitative and quantitative evaluations highlight the benefits of our approach.
☆ A new Image Similarity Metric for a Perceptual and Transparent Geometric and Chromatic Assessment
In the literature, several studies have shown that state-of-the-art image similarity metrics are not perceptual metrics; moreover, they have difficulty evaluating images, especially when texture distortion is also present. In this work, we propose a new perceptual metric composed of two terms. The first term evaluates the dissimilarity between the textures of two images using Earth Mover's Distance. The second term evaluates the chromatic dissimilarity between two images in the Oklab perceptual color space. We evaluated the performance of our metric on a non-traditional dataset, called Berkeley-Adobe Perceptual Patch Similarity, which contains a wide range of complex distortions in shapes and colors. We have shown that our metric outperforms the state of the art, especially when images contain shape distortions, confirming also its greater perceptiveness. Furthermore, although deep black-box metrics could be very accurate, they only provide similarity scores between two images, without explaining their main differences and similarities. Our metric, on the other hand, provides visual explanations to support the calculated score, making the similarity assessment transparent and justified.
☆ KeepLoRA: Continual Learning with Residual Gradient Adaptation ICLR 2026
Continual learning for pre-trained vision-language models requires balancing three competing objectives: retaining pre-trained knowledge, preserving knowledge from a sequence of learned tasks, and maintaining the plasticity to acquire new knowledge. This paper presents a simple but effective approach called KeepLoRA to effectively balance these objectives. We first analyze the knowledge retention mechanism within the model parameter space and find that general knowledge is mainly encoded in the principal subspace, while task-specific knowledge is encoded in the residual subspace. Motivated by this finding, KeepLoRA learns new tasks by restricting LoRA parameter updates in the residual subspace to prevent interfering with previously learned capabilities. Specifically, we infuse knowledge for a new task by projecting its gradient onto a subspace orthogonal to both the principal subspace of pre-trained model and the dominant directions of previous task features. Our theoretical and empirical analyses confirm that KeepLoRA balances the three objectives and achieves state-of-the-art performance. The implementation code is available at https://github.com/MaolinLuo/KeepLoRA.
comment: Accepted at ICLR 2026
☆ Towards Governance-Oriented Low-Altitude Intelligence: A Management-Centric Multi-Modal Benchmark With Implicitly Coordinated Vision-Language Reasoning Framework
Low-altitude vision systems are becoming a critical infrastructure for smart city governance. However, existing object-centric perception paradigms and loosely coupled vision-language pipelines are still difficult to support management-oriented anomaly understanding required in real-world urban governance. To bridge this gap, we introduce GovLA-10K, the first management-oriented multi-modal benchmark for low-altitude intelligence, along with GovLA-Reasoner, a unified vision-language reasoning framework tailored for governance-aware aerial perception. Unlike existing studies that aim to exhaustively annotate all visible objects, GovLA-10K is deliberately designed around functionally salient targets that directly correspond to practical management needs, and further provides actionable management suggestions grounded in these observations. To effectively coordinate the fine-grained visual grounding with high-level contextual language reasoning, GovLA-Reasoner introduces an efficient feature adapter that implicitly coordinates discriminative representation sharing between the visual detector and the large language model (LLM). Extensive experiments show that our method significantly improves performance while avoiding the need of fine-tuning for any task-specific individual components. We believe our work offers a new perspective and foundation for future studies on management-aware low-altitude vision-language systems.
☆ The role of self-supervised pretraining in differentially private medical image analysis
Differential privacy (DP) provides formal protection for sensitive data but typically incurs substantial losses in diagnostic performance. Model initialization has emerged as a critical factor in mitigating this degradation, yet the role of modern self-supervised learning under full-model DP remains poorly understood. Here, we present a large-scale evaluation of initialization strategies for differentially private medical image analysis, using chest radiograph classification as a representative benchmark with more than 800,000 images. Using state-of-the-art ConvNeXt models trained with DP-SGD across realistic privacy regimes, we compare non-domain-specific supervised ImageNet initialization, non-domain-specific self-supervised DINOv3 initialization, and domain-specific supervised pretraining on MIMIC-CXR, the largest publicly available chest radiograph dataset. Evaluations are conducted across five external datasets spanning diverse institutions and acquisition settings. We show that DINOv3 initialization consistently improves diagnostic utility relative to ImageNet initialization under DP, but remains inferior to domain-specific supervised pretraining, which achieves performance closest to non-private baselines. We further demonstrate that initialization choice strongly influences demographic fairness, cross-dataset generalization, and robustness to data scale and model capacity under privacy constraints. The results establish initialization strategy as a central determinant of utility, fairness, and generalization in differentially private medical imaging.
☆ GMS-CAVP: Improving Audio-Video Correspondence with Multi-Scale Contrastive and Generative Pretraining
Recent advances in video-audio (V-A) understanding and generation have increasingly relied on joint V-A embeddings, which serve as the foundation for tasks such as cross-modal retrieval and generation. While prior methods like CAVP effectively model semantic and temporal correspondences between modalities using contrastive objectives, their performance remains suboptimal. A key limitation is the insufficient modeling of the dense, multi-scale nature of both video and audio signals, correspondences often span fine- to coarse-grained spatial-temporal structures, which are underutilized in existing frameworks. To this end, we propose GMS-CAVP, a novel framework that combines Multi-Scale Video-Audio Alignment and Multi-Scale Spatial-Temporal Diffusion-based pretraining objectives to enhance V-A correspondence modeling. First, GMS-CAVP introduces a multi-scale contrastive learning strategy that captures semantic and temporal relations across varying granularities. Second, we go beyond traditional contrastive learning by incorporating a diffusion-based generative objective, enabling modality translation and synthesis between video and audio. This unified discriminative-generative formulation facilitates deeper cross-modal understanding and paves the way for high-fidelity generation. Extensive experiments on VGGSound, AudioSet, and Panda70M demonstrate that GMS-CAVP outperforms previous methods in generation and retrieval.
☆ Localized Latent Editing for Dose-Response Modeling in Botulinum Toxin Injection Planning
Botulinum toxin (Botox) injections are the gold standard for managing facial asymmetry and aesthetic rejuvenation, yet determining the optimal dosage remains largely intuitive, often leading to suboptimal outcomes. We propose a localized latent editing framework that simulates Botulinum Toxin injection effects for injection planning through dose-response modeling. Our key contribution is a Region-Specific Latent Axis Discovery method that learns localized muscle relaxation trajectories in StyleGAN2's latent space, enabling precise control over specific facial regions without global side effects. By correlating these localized latent trajectories with injected toxin units, we learn a predictive dose-response model. We rigorously compare two approaches: direct metric regression versus image-based generative simulation on a clinical dataset of N=360 images from 46 patients. On a hold-out test set, our framework demonstrates moderate-to-strong structural correlations for geometric asymmetry metrics, confirming that the generative model correctly captures the direction of morphological changes. While biological variability limits absolute precision, we introduce a hybrid "Human-in-the-Loop" workflow where clinicians interactively refine simulations, bridging the gap between pathological reconstruction and cosmetic planning.
☆ ScenePilot-Bench: A Large-Scale Dataset and Benchmark for Evaluation of Vision-Language Models in Autonomous Driving
In this paper, we introduce ScenePilot-Bench, a large-scale first-person driving benchmark designed to evaluate vision-language models (VLMs) in autonomous driving scenarios. ScenePilot-Bench is built upon ScenePilot-4K, a diverse dataset comprising 3,847 hours of driving videos, annotated with multi-granularity information including scene descriptions, risk assessments, key participant identification, ego trajectories, and camera parameters. The benchmark features a four-axis evaluation suite that assesses VLM capabilities in scene understanding, spatial perception, motion planning, and GPT-Score, with safety-aware metrics and cross-region generalization settings. We benchmark representative VLMs on ScenePilot-Bench, providing empirical analyses that clarify current performance boundaries and identify gaps for driving-oriented reasoning. ScenePilot-Bench offers a comprehensive framework for evaluating and advancing VLMs in safety-critical autonomous driving contexts.
☆ QuaMo: Quaternion Motions for Vision-based 3D Human Kinematics Capture ICLR 2026
Vision-based 3D human motion capture from videos remains a challenge in computer vision. Traditional 3D pose estimation approaches often ignore the temporal consistency between frames, causing implausible and jittery motion. The emerging field of kinematics-based 3D motion capture addresses these issues by estimating the temporal transitioning between poses instead. A major drawback in current kinematics approaches is their reliance on Euler angles. Despite their simplicity, Euler angles suffer from discontinuity that leads to unstable motion reconstructions, especially in online settings where trajectory refinement is unavailable. Contrarily, quaternions have no discontinuity and can produce continuous transitions between poses. In this paper, we propose QuaMo, a novel Quaternion Motions method using quaternion differential equations (QDE) for human kinematics capture. We utilize the state-space model, an effective system for describing real-time kinematics estimations, with quaternion state and the QDE describing quaternion velocity. The corresponding angular acceleration is computed from a meta-PD controller with a novel acceleration enhancement that adaptively regulates the control signals as the human quickly changes to a new pose. Unlike previous work, our QDE is solved under the quaternion unit-sphere constraint that results in more accurate estimations. Experimental results show that our novel formulation of the QDE with acceleration enhancement accurately estimates 3D human kinematics with no discontinuity and minimal implausibilities. QuaMo outperforms comparable state-of-the-art methods on multiple datasets, namely Human3.6M, Fit3D, SportsPose and AIST. The code is available at https://github.com/cuongle1206/QuaMo
comment: 10 pages, 4 figures, accepted to ICLR 2026
☆ MaDiS: Taming Masked Diffusion Language Models for Sign Language Generation
Sign language generation (SLG) aims to translate written texts into expressive sign motions, bridging communication barriers for the Deaf and Hard-of-Hearing communities. Recent studies formulate SLG within the language modeling framework using autoregressive language models, which suffer from unidirectional context modeling and slow token-by-token inference. To address these limitations, we present MaDiS, a masked-diffusion-based language model for SLG that captures bidirectional dependencies and supports efficient parallel multi-token generation. We further introduce a tri-level cross-modal pretraining scheme that jointly learns from token-, latent-, and 3D physical-space objectives, leading to richer and more grounded sign representations. To accelerate model convergence in the fine-tuning stage, we design a novel unmasking strategy with temporal checkpoints, reducing the combinatorial complexity of unmasking orders by over $10^{41}$ times. In addition, a mixture-of-parts embedding layer is developed to effectively fuse information stored in different part-wise sign tokens through learnable gates and well-optimized codebooks. Extensive experiments on CSL-Daily, Phoenix-2014T, and How2Sign demonstrate that MaDiS achieves superior performance across multiple metrics, including DTW error and two newly introduced metrics, SiBLEU and SiCLIP, while reducing inference latency by nearly 30%. Code and models will be released on our project page.
☆ The S3LI Vulcano Dataset: A Dataset for Multi-Modal SLAM in Unstructured Planetary Environments IEEE
We release the S3LI Vulcano dataset, a multi-modal dataset towards development and benchmarking of Simultaneous Localization and Mapping (SLAM) and place recognition algorithms that rely on visual and LiDAR modalities. Several sequences are recorded on the volcanic island of Vulcano, from the Aeolian Islands in Sicily, Italy. The sequences provide users with data from a variety of environments, textures and terrains, including basaltic or iron-rich rocks, geological formations from old lava channels, as well as dry vegetation and water. The data (rmc.dlr.de/s3li_dataset) is accompanied by an open source toolkit (github.com/DLR-RM/s3li-toolkit) providing tools for generating ground truth poses as well as preparation of labelled samples for place recognition tasks.
comment: Accepted submission to the 2026 IEEE Aerospace Conference
☆ A Non-Invasive 3D Gait Analysis Framework for Quantifying Psychomotor Retardation in Major Depressive Disorder
Predicting the status of Major Depressive Disorder (MDD) from objective, non-invasive methods is an active research field. Yet, extracting automatically objective, interpretable features for a detailed analysis of the patient state remains largely unexplored. Among MDD's symptoms, Psychomotor retardation (PMR) is a core item, yet its clinical assessment remains largely subjective. While 3D motion capture offers an objective alternative, its reliance on specialized hardware often precludes routine clinical use. In this paper, we propose a non-invasive computational framework that transforms monocular RGB video into clinically relevant 3D gait kinematics. Our pipeline uses Gravity-View Coordinates along with a novel trajectory-correction algorithm that leverages the closed-loop topology of our adapted Timed Up and Go (TUG) protocol to mitigate monocular depth errors. This novel pipeline enables the extraction of 297 explicit gait biomechanical biomarkers from a single camera capture. To address the challenges of small clinical datasets, we introduce a stability-based machine learning framework that identifies robust motor signatures while preventing overfitting. Validated on the CALYPSO dataset, our method achieves an 83.3% accuracy in detecting PMR and explains 64% of the variance in overall depression severity (R^2=0.64). Notably, our study reveals a strong link between reduced ankle propulsion and restricted pelvic mobility to the depressive motor phenotype. These results demonstrate that physical movement serves as a robust proxy for the cognitive state, offering a transparent and scalable tool for the objective monitoring of depression in standard clinical environments.
☆ Mocap Anywhere: Towards Pairwise-Distance based Motion Capture in the Wild (for the Wild)
We introduce a novel motion capture system that reconstructs full-body 3D motion using only sparse pairwise distance (PWD) measurements from body-mounted(UWB) sensors. Using time-of-flight ranging between wireless nodes, our method eliminates the need for external cameras, enabling robust operation in uncontrolled and outdoor environments. Unlike traditional optical or inertial systems, our approach is shape-invariant and resilient to environmental constraints such as lighting and magnetic interference. At the core of our system is Wild-Poser (WiP for short), a compact, real-time Transformer-based architecture that directly predicts 3D joint positions from noisy or corrupted PWD measurements, which can later be used for joint rotation reconstruction via learned methods. WiP generalizes across subjects of varying morphologies, including non-human species, without requiring individual body measurements or shape fitting. Operating in real time, WiP achieves low joint position error and demonstrates accurate 3D motion reconstruction for both human and animal subjects in-the-wild. Our empirical analysis highlights its potential for scalable, low-cost, and general purpose motion capture in real-world settings.
comment: 14 pages, 15 figures
☆ Bridging Information Asymmetry: A Hierarchical Framework for Deterministic Blind Face Restoration
Blind face restoration remains a persistent challenge due to the inherent ill-posedness of reconstructing holistic structures from severely constrained observations. Current generative approaches, while capable of synthesizing realistic textures, often suffer from information asymmetry -- the intrinsic disparity between the information-sparse low quality inputs and the information-dense high quality outputs. This imbalance leads to a one-to-many mapping, where insufficient constraints result in stochastic uncertainty and hallucinatory artifacts. To bridge this gap, we present \textbf{Pref-Restore}, a hierarchical framework that integrates discrete semantic logic with continuous texture generation to achieve deterministic, preference-aligned restoration. Our methodology fundamentally addresses this information disparity through two complementary strategies: (1) Augmenting Input Density: We employ an auto-regressive integrator to reformulate textual instructions into dense latent queries, injecting high-level semantic stability to constrain the degraded signals; (2) Pruning Output Distribution: We pioneer the integration of on-policy reinforcement learning directly into the diffusion restoration loop. By transforming human preferences into differentiable constraints, we explicitly penalize stochastic deviations, thereby sharpening the posterior distribution toward the desired high-fidelity outcomes. Extensive experiments demonstrate that Pref-Restore achieves state-of-the-art performance across synthetic and real-world benchmarks. Furthermore, empirical analysis confirms that our preference-aligned strategy significantly reduces solution entropy, establishing a robust pathway toward reliable and deterministic blind restoration.
☆ Cortex-Grounded Diffusion Models for Brain Image Generation
Synthetic neuroimaging data can mitigate critical limitations of real-world datasets, including the scarcity of rare phenotypes, domain shifts across scanners, and insufficient longitudinal coverage. However, existing generative models largely rely on weak conditioning signals, such as labels or text, which lack anatomical grounding and often produce biologically implausible outputs. To this end, we introduce Cor2Vox, a cortex-grounded generative framework for brain magnetic resonance image (MRI) synthesis that ties image generation to continuous structural priors of the cerebral cortex. It leverages high-resolution cortical surfaces to guide a 3D shape-to-image Brownian bridge diffusion process, enabling topologically faithful synthesis and precise control over underlying anatomies. To support the generation of new, realistic brain shapes, we developed a large-scale statistical shape model of cortical morphology derived from over 33,000 UK Biobank scans. We validated the fidelity of Cor2Vox based on traditional image quality metrics, advanced cortical surface reconstruction, and whole-brain segmentation quality, outperforming many baseline methods. Across three applications, namely (i) anatomically consistent synthesis, (ii) simulation of progressive gray matter atrophy, and (iii) harmonization of in-house frontotemporal dementia scans with public datasets, Cor2Vox preserved fine-grained cortical morphology at the sub-voxel level, exhibiting remarkable robustness to variations in cortical geometry and disease phenotype without retraining.
comment: preprint
☆ Fast Converging 3D Gaussian Splatting for 1-Minute Reconstruction SIGGRAPH
We present a fast 3DGS reconstruction pipeline designed to converge within one minute, developed for the SIGGRAPH Asia 3DGS Fast Reconstruction Challenge. The challenge consists of an initial round using SLAM-generated camera poses (with noisy trajectories) and a final round using COLMAP poses (highly accurate). To robustly handle these heterogeneous settings, we develop a two-stage solution. In the first round, we use reverse per-Gaussian parallel optimization and compact forward splatting based on Taming-GS and Speedy-splat, load-balanced tiling, an anchor-based Neural-Gaussian representation enabling rapid convergence with fewer learnable parameters, initialization from monocular depth and partially from feed-forward 3DGS models, and a global pose refinement module for noisy SLAM trajectories. In the final round, the accurate COLMAP poses change the optimization landscape; we disable pose refinement, revert from Neural-Gaussians back to standard 3DGS to eliminate MLP inference overhead, introduce multi-view consistency-guided Gaussian splitting inspired by Fast-GS, and introduce a depth estimator to supervise the rendered depth. Together, these techniques enable high-fidelity reconstruction under a strict one-minute budget. Our method achieved the top performance with a PSNR of 28.43 and ranked first in the competition.
comment: First Rank of SIGGRAPH Asia 2025 3DGS Challenge. Code available at
☆ Entropy-Guided k-Guard Sampling for Long-Horizon Autoregressive Video Generation
Autoregressive (AR) architectures have achieved significant successes in LLMs, inspiring explorations for video generation. In LLMs, top-p/top-k sampling strategies work exceptionally well: language tokens have high semantic density and low redundancy, so a fixed size of token candidates already strikes a balance between semantic accuracy and generation diversity. In contrast, video tokens have low semantic density and high spatio-temporal redundancy. This mismatch makes static top-k/top-p strategies ineffective for video decoders: they either introduce unnecessary randomness for low-uncertainty regions (static backgrounds) or get stuck in early errors for high-uncertainty regions (foreground objects). Prediction errors will accumulate as more frames are generated and eventually severely degrade long-horizon quality. To address this, we propose Entropy-Guided k-Guard (ENkG) sampling, a simple yet effective strategy that adapts sampling to token-wise dispersion, quantified by the entropy of each token's predicted distribution. ENkG uses adaptive token candidate sizes: for low-entropy regions, it employs fewer candidates to suppress redundant noise and preserve structural integrity; for high-entropy regions, it uses more candidates to mitigate error compounding. ENkG is model-agnostic, training-free, and adds negligible overhead. Experiments demonstrate consistent improvements in perceptual quality and structural stability compared to static top-k/top-p strategies.
☆ Dynamic Worlds, Dynamic Humans: Generating Virtual Human-Scene Interaction Motion in Dynamic Scenes
Scenes are continuously undergoing dynamic changes in the real world. However, existing human-scene interaction generation methods typically treat the scene as static, which deviates from reality. Inspired by world models, we introduce Dyn-HSI, the first cognitive architecture for dynamic human-scene interaction, which endows virtual humans with three humanoid components. (1)Vision (human eyes): we equip the virtual human with a Dynamic Scene-Aware Navigation, which continuously perceives changes in the surrounding environment and adaptively predicts the next waypoint. (2)Memory (human brain): we equip the virtual human with a Hierarchical Experience Memory, which stores and updates experiential data accumulated during training. This allows the model to leverage prior knowledge during inference for context-aware motion priming, thereby enhancing both motion quality and generalization. (3) Control (human body): we equip the virtual human with Human-Scene Interaction Diffusion Model, which generates high-fidelity interaction motions conditioned on multimodal inputs. To evaluate performance in dynamic scenes, we extend the existing static human-scene interaction datasets to construct a dynamic benchmark, Dyn-Scenes. We conduct extensive qualitative and quantitative experiments to validate Dyn-HSI, showing that our method consistently outperforms existing approaches and generates high-quality human-scene interaction motions in both static and dynamic settings.
☆ Towards Gold-Standard Depth Estimation for Tree Branches in UAV Forestry: Benchmarking Deep Stereo Matching Methods
Autonomous UAV forestry operations require robust depth estimation with strong cross-domain generalization, yet existing evaluations focus on urban and indoor scenarios, leaving a critical gap for vegetation-dense environments. We present the first systematic zero-shot evaluation of eight stereo methods spanning iterative refinement, foundation model, diffusion-based, and 3D CNN paradigms. All methods use officially released pretrained weights (trained on Scene Flow) and are evaluated on four standard benchmarks (ETH3D, KITTI 2012/2015, Middlebury) plus a novel 5,313-pair Canterbury Tree Branches dataset ($1920 \times 1080$). Results reveal scene-dependent patterns: foundation models excel on structured scenes (BridgeDepth: 0.23 px on ETH3D; DEFOM: 4.65 px on Middlebury), while iterative methods show variable cross-benchmark performance (IGEV++: 0.36 px on ETH3D but 6.77 px on Middlebury; IGEV: 0.33 px on ETH3D but 4.99 px on Middlebury). Qualitative evaluation on the Tree Branches dataset establishes DEFOM as the gold-standard baseline for vegetation depth estimation, with superior cross-domain consistency (consistently ranking 1st-2nd across benchmarks, average rank 1.75). DEFOM predictions will serve as pseudo-ground-truth for future benchmarking.
☆ DSTCS: Dual-Student Teacher Framework with Segment Anything Model for Semi-Supervised Pubic Symphysis Fetal Head Segmentation
Segmentation of the pubic symphysis and fetal head (PSFH) is a critical procedure in intrapartum monitoring and is essential for evaluating labor progression and identifying potential delivery complications. However, achieving accurate segmentation remains a significant challenge due to class imbalance, ambiguous boundaries, and noise interference in ultrasound images, compounded by the scarcity of high-quality annotated data. Current research on PSFH segmentation predominantly relies on CNN and Transformer architectures, leaving the potential of more powerful models underexplored. In this work, we propose a Dual-Student and Teacher framework combining CNN and SAM (DSTCS), which integrates the Segment Anything Model (SAM) into a dual student-teacher architecture. A cooperative learning mechanism between the CNN and SAM branches significantly improves segmentation accuracy. The proposed scheme also incorporates a specialized data augmentation strategy optimized for boundary processing and a novel loss function. Extensive experiments on the MICCAI 2023 and 2024 PSFH segmentation benchmarks demonstrate that our method exhibits superior robustness and significantly outperforms existing techniques, providing a reliable segmentation tool for clinical practice.
☆ RoamScene3D: Immersive Text-to-3D Scene Generation via Adaptive Object-aware Roaming
Generating immersive 3D scenes from texts is a core task in computer vision, crucial for applications in virtual reality and game development. Despite the promise of leveraging 2D diffusion priors, existing methods suffer from spatial blindness and rely on predefined trajectories that fail to exploit the inner relationships among salient objects. Consequently, these approaches are unable to comprehend the semantic layout, preventing them from exploring the scene adaptively to infer occluded content. Moreover, current inpainting models operate in 2D image space, struggling to plausibly fill holes caused by camera motion. To address these limitations, we propose RoamScene3D, a novel framework that bridges the gap between semantic guidance and spatial generation. Our method reasons about the semantic relations among objects and produces consistent and photorealistic scenes. Specifically, we employ a vision-language model (VLM) to construct a scene graph that encodes object relations, guiding the camera to perceive salient object boundaries and plan an adaptive roaming trajectory. Furthermore, to mitigate the limitations of static 2D priors, we introduce a Motion-Injected Inpainting model that is fine-tuned on a synthetic panoramic dataset integrating authentic camera trajectories, making it adaptive to camera motion. Extensive experiments demonstrate that with semantic reasoning and geometric constraints, our method significantly outperforms state-of-the-art approaches in producing consistent and photorealistic scenes. Our code is available at https://github.com/JS-CHU/RoamScene3D.
☆ Unveiling Perceptual Artifacts: A Fine-Grained Benchmark for Interpretable AI-Generated Image Detection
Current AI-Generated Image (AIGI) detection approaches predominantly rely on binary classification to distinguish real from synthetic images, often lacking interpretable or convincing evidence to substantiate their decisions. This limitation stems from existing AIGI detection benchmarks, which, despite featuring a broad collection of synthetic images, remain restricted in their coverage of artifact diversity and lack detailed, localized annotations. To bridge this gap, we introduce a fine-grained benchmark towards eXplainable AI-Generated image Detection, named X-AIGD, which provides pixel-level, categorized annotations of perceptual artifacts, spanning low-level distortions, high-level semantics, and cognitive-level counterfactuals. These comprehensive annotations facilitate fine-grained interpretability evaluation and deeper insight into model decision-making processes. Our extensive investigation using X-AIGD provides several key insights: (1) Existing AIGI detectors demonstrate negligible reliance on perceptual artifacts, even at the most basic distortion level. (2) While AIGI detectors can be trained to identify specific artifacts, they still substantially base their judgment on uninterpretable features. (3) Explicitly aligning model attention with artifact regions can increase the interpretability and generalization of detectors. The data and code are available at: https://github.com/Coxy7/X-AIGD.
☆ Learned split-spectrum metalens for obstruction-free broadband imaging in the visible
Obstructions such as raindrops, fences, or dust degrade captured images, especially when mechanical cleaning is infeasible. Conventional solutions to obstructions rely on a bulky compound optics array or computational inpainting, which compromise compactness or fidelity. Metalenses composed of subwavelength meta-atoms promise compact imaging, but simultaneous achievement of broadband and obstruction-free imaging remains a challenge, since a metalens that images distant scenes across a broadband spectrum cannot properly defocus near-depth occlusions. Here, we introduce a learned split-spectrum metalens that enables broadband obstruction-free imaging. Our approach divides the spectrum of each RGB channel into pass and stop bands with multi-band spectral filtering and learns the metalens to focus light from far objects through pass bands, while filtering focused near-depth light through stop bands. This optical signal is further enhanced using a neural network. Our learned split-spectrum metalens achieves broadband and obstruction-free imaging with relative PSNR gains of 32.29% and improves object detection and semantic segmentation accuracies with absolute gains of +13.54% mAP, +48.45% IoU, and +20.35% mIoU over a conventional hyperbolic design. This promises robust obstruction-free sensing and vision for space-constrained systems, such as mobile robots, drones, and endoscopes.
☆ Tri-Reader: An Open-Access, Multi-Stage AI Pipeline for First-Pass Lung Nodule Annotation in Screening CT
Using multiple open-access models trained on public datasets, we developed Tri-Reader, a comprehensive, freely available pipeline that integrates lung segmentation, nodule detection, and malignancy classification into a unified tri-stage workflow. The pipeline is designed to prioritize sensitivity while reducing the candidate burden for annotators. To ensure accuracy and generalizability across diverse practices, we evaluated Tri-Reader on multiple internal and external datasets as compared with expert annotations and dataset-provided reference standards.
comment: 1 figure , 2 tables, 20 page supplement
☆ Establishing dermatopathology encyclopedia DermpathNet with Artificial Intelligence-Based Workflow
Accessing high-quality, open-access dermatopathology image datasets for learning and cross-referencing is a common challenge for clinicians and dermatopathology trainees. To establish a comprehensive open-access dermatopathology dataset for educational, cross-referencing, and machine-learning purposes, we employed a hybrid workflow to curate and categorize images from the PubMed Central (PMC) repository. We used specific keywords to extract relevant images, and classified them using a novel hybrid method that combined deep learning-based image modality classification with figure caption analyses. Validation on 651 manually annotated images demonstrated the robustness of our workflow, with an F-score of 89.6\% for the deep learning approach, 61.0\% for the keyword-based retrieval method, and 90.4\% for the hybrid approach. We retrieved over 7,772 images across 166 diagnoses and released this fully annotated dataset, reviewed by board-certified dermatopathologists. Using our dataset as a challenging task, we found the current image analysis algorithm from OpenAI inadequate for analyzing dermatopathology images. In conclusion, we have developed a large, peer-reviewed, open-access dermatopathology image dataset, DermpathNet, which features a semi-automated curation workflow.
comment: Accepted by Scientific Data
☆ Pareto-Guided Optimization for Uncertainty-Aware Medical Image Segmentation
Uncertainty in medical image segmentation is inherently non-uniform, with boundary regions exhibiting substantially higher ambiguity than interior areas. Conventional training treats all pixels equally, leading to unstable optimization during early epochs when predictions are unreliable. We argue that this instability hinders convergence toward Pareto-optimal solutions and propose a region-wise curriculum strategy that prioritizes learning from certain regions and gradually incorporates uncertain ones, reducing gradient variance. Methodologically, we introduce a Pareto-consistent loss that balances trade-offs between regional uncertainties by adaptively reshaping the loss landscape and constraining convergence dynamics between interior and boundary regions; this guides the model toward Pareto-approximate solutions. To address boundary ambiguity, we further develop a fuzzy labeling mechanism that maintains binary confidence in non-boundary areas while enabling smooth transitions near boundaries, stabilizing gradients, and expanding flat regions in the loss surface. Experiments on brain metastasis and non-metastatic tumor segmentation show consistent improvements across multiple configurations, with our method outperforming traditional crisp-set approaches in all tumor subregions.
☆ AMGFormer: Adaptive Multi-Granular Transformer for Brain Tumor Segmentation with Missing Modalities
Multimodal MRI is essential for brain tumor segmentation, yet missing modalities in clinical practice cause existing methods to exhibit >40% performance variance across modality combinations, rendering them clinically unreliable. We propose AMGFormer, achieving significantly improved stability through three synergistic modules: (1) QuadIntegrator Bridge (QIB) enabling spatially adaptive fusion maintaining consistent predictions regardless of available modalities, (2) Multi-Granular Attention Orchestrator (MGAO) focusing on pathological regions to reduce background sensitivity, and (3) Modality Quality-Aware Enhancement (MQAE) preventing error propagation from corrupted sequences. On BraTS 2018, our method achieves 89.33% WT, 82.70% TC, 67.23% ET Dice scores with <0.5% variance across 15 modality combinations, solving the stability crisis. Single-modality ET segmentation shows 40-81% relative improvements over state-of-the-art methods. The method generalizes to BraTS 2020/2021, achieving up to 92.44% WT, 89.91% TC, 84.57% ET. The model demonstrates potential for clinical deployment with 1.2s inference. Code: https://github.com/guochengxiangives/AMGFormer.
☆ Innovator-VL: A Multimodal Large Language Model for Scientific Discovery
We present Innovator-VL, a scientific multimodal large language model designed to advance understanding and reasoning across diverse scientific domains while maintaining excellent performance on general vision tasks. Contrary to the trend of relying on massive domain-specific pretraining and opaque pipelines, our work demonstrates that principled training design and transparent methodology can yield strong scientific intelligence with substantially reduced data requirements. (i) First, we provide a fully transparent, end-to-end reproducible training pipeline, covering data collection, cleaning, preprocessing, supervised fine-tuning, reinforcement learning, and evaluation, along with detailed optimization recipes. This facilitates systematic extension by the community. (ii) Second, Innovator-VL exhibits remarkable data efficiency, achieving competitive performance on various scientific tasks using fewer than five million curated samples without large-scale pretraining. These results highlight that effective reasoning can be achieved through principled data selection rather than indiscriminate scaling. (iii) Third, Innovator-VL demonstrates strong generalization, achieving competitive performance on general vision, multimodal reasoning, and scientific benchmarks. This indicates that scientific alignment can be integrated into a unified model without compromising general-purpose capabilities. Our practices suggest that efficient, reproducible, and high-performing scientific multimodal models can be built even without large-scale data, providing a practical foundation for future research.
comment: Innovator-VL tech report
☆ Perception-to-Pursuit: Track-Centric Temporal Reasoning for Open-World Drone Detection and Autonomous Chasing ICCV 2027
Autonomous drone pursuit requires not only detecting drones but also predicting their trajectories in a manner that enables kinematically feasible interception. Existing tracking methods optimize for prediction accuracy but ignore pursuit feasibility, resulting in trajectories that are physically impossible to intercept 99.9% of the time. We propose Perception-to-Pursuit (P2P), a track-centric temporal reasoning framework that bridges detection and actionable pursuit planning. Our method represents drone motion as compact 8-dimensional tokens capturing velocity, acceleration, scale, and smoothness, enabling a 12-frame causal transformer to reason about future behavior. We introduce the Intercept Success Rate (ISR) metric to measure pursuit feasibility under realistic interceptor constraints. Evaluated on the Anti-UAV-RGBT dataset with 226 real drone sequences, P2P achieves 28.12 pixel average displacement error and 0.597 ISR, representing a 77% improvement in trajectory prediction and 597x improvement in pursuit feasibility over tracking-only baselines, while maintaining perfect drone classification accuracy (100%). Our work demonstrates that temporal reasoning over motion patterns enables both accurate prediction and actionable pursuit planning.
comment: 7 pages, 2 figures, 3 tables, 15 references. Intended for submission to ICCV 2027
☆ Instance-Guided Radar Depth Estimation for 3D Object Detection
Accurate depth estimation is fundamental to 3D perception in autonomous driving, supporting tasks such as detection, tracking, and motion planning. However, monocular camera-based 3D detection suffers from depth ambiguity and reduced robustness under challenging conditions. Radar provides complementary advantages such as resilience to poor lighting and adverse weather, but its sparsity and low resolution limit its direct use in detection frameworks. This motivates the need for effective Radar-camera fusion with improved preprocessing and depth estimation strategies. We propose an end-to-end framework that enhances monocular 3D object detection through two key components. First, we introduce InstaRadar, an instance segmentation-guided expansion method that leverages pre-trained segmentation masks to enhance Radar density and semantic alignment, producing a more structured representation. InstaRadar achieves state-of-the-art results in Radar-guided depth estimation, showing its effectiveness in generating high-quality depth features. Second, we integrate the pre-trained RCDPT into the BEVDepth framework as a replacement for its depth module. With InstaRadar-enhanced inputs, the RCDPT integration consistently improves 3D detection performance. Overall, these components yield steady gains over the baseline BEVDepth model, demonstrating the effectiveness of InstaRadar and the advantage of explicit depth supervision in 3D object detection. Although the framework lags behind Radar-camera fusion models that directly extract BEV features, since Radar serves only as guidance rather than an independent feature stream, this limitation highlights potential for improvement. Future work will extend InstaRadar to point cloud-like representations and integrate a dedicated Radar branch with temporal cues for enhanced BEV fusion.
comment: Accepted to IPMV2026
☆ Beyond Shadows: A Large-Scale Benchmark and Multi-Stage Framework for High-Fidelity Facial Shadow Removal ICASSP2026
Facial shadows often degrade image quality and the performance of vision algorithms. Existing methods struggle to remove shadows while preserving texture, especially under complex lighting conditions, and they lack real-world paired datasets for training. We present the Augmented Shadow Face in the Wild (ASFW) dataset, the first large-scale real-world dataset for facial shadow removal, containing 1,081 paired shadow and shadow-free images created via a professional Photoshop workflow. ASFW offers photorealistic shadow variations and accurate ground truths, bridging the gap between synthetic and real domains. Deep models trained on ASFW demonstrate improved shadow removal in real-world conditions. We also introduce the Face Shadow Eraser (FSE) method to showcase the effectiveness of the dataset. Experiments demonstrate that ASFW enhances the performance of facial shadow removal models, setting new standards for this task.
comment: Accepted by ICASSP2026
☆ ProMist-5K: A Comprehensive Dataset for Digital Emulation of Cinematic Pro-Mist Filter Effects ICASSP2026
Pro-Mist filters are widely used in cinematography for their ability to create soft halation, lower contrast, and produce a distinctive, atmospheric style. These effects are difficult to reproduce digitally due to the complex behavior of light diffusion. We present ProMist-5K, a dataset designed to support cinematic style emulation. It is built using a physically inspired pipeline in a scene-referred linear space and includes 20,000 high-resolution image pairs across four configurations, covering two filter densities (1/2 and 1/8) and two focal lengths (20mm and 50mm). Unlike general style datasets, ProMist-5K focuses on realistic glow and highlight diffusion effects. Multiple blur layers and carefully tuned weighting are used to model the varying intensity and spread of optical diffusion. The dataset provides a consistent and controllable target domain that supports various image translation models and learning paradigms. Experiments show that the dataset works well across different training settings and helps capture both subtle and strong cinematic appearances. ProMist-5K offers a practical and physically grounded resource for film-inspired image transformation, bridging the gap between digital flexibility and traditional lens aesthetics. The dataset is available at https://www.kaggle.com/datasets/yingtielei/promist5k.
comment: Accepted by ICASSP2026
☆ A Multi-View Consistency Framework with Semi-Supervised Domain Adaptation
Semi-Supervised Domain Adaptation (SSDA) leverages knowledge from a fully labeled source domain to classify data in a partially labeled target domain. Due to the limited number of labeled samples in the target domain, there can be intrinsic similarity of classes in the feature space, which may result in biased predictions, even when the model is trained on a balanced dataset. To overcome this limitation, we introduce a multi-view consistency framework, which includes two views for training strongly augmented data. One is a debiasing strategy for correcting class-wise prediction probabilities according to the prediction performance of the model. The other involves leveraging pseudo-negative labels derived from the model predictions. Furthermore, we introduce a cross-domain affinity learning aimed at aligning features of the same class across different domains, thereby enhancing overall performance. Experimental results demonstrate that our method outperforms the competing methods on two standard domain adaptation datasets, DomainNet and Office-Home. Combining unsupervised domain adaptation and semi-supervised learning offers indispensable contributions to the industrial sector by enhancing model adaptability, reducing annotation costs, and improving performance.
comment: 11 pages, 7 figures
☆ Handcrafted Feature Fusion for Reliable Detection of AI-Generated Images
The rapid progress of generative models has enabled the creation of highly realistic synthetic images, raising concerns about authenticity and trust in digital media. Detecting such fake content reliably is an urgent challenge. While deep learning approaches dominate current literature, handcrafted features remain attractive for their interpretability, efficiency, and generalizability. In this paper, we conduct a systematic evaluation of handcrafted descriptors, including raw pixels, color histograms, Discrete Cosine Transform (DCT), Histogram of Oriented Gradients (HOG), Local Binary Patterns (LBP), Gray-Level Co-occurrence Matrix (GLCM), and wavelet features, on the CIFAKE dataset of real versus synthetic images. Using 50,000 training and 10,000 test samples, we benchmark seven classifiers ranging from Logistic Regression to advanced gradient-boosted ensembles (LightGBM, XGBoost, CatBoost). Results demonstrate that LightGBM consistently outperforms alternatives, achieving PR-AUC 0.9879, ROC-AUC 0.9878, F1 0.9447, and a Brier score of 0.0414 with mixed features, representing strong gains in calibration and discrimination over simpler descriptors. Across three configurations (baseline, advanced, mixed), performance improves monotonically, confirming that combining diverse handcrafted features yields substantial benefit. These findings highlight the continued relevance of carefully engineered features and ensemble learning for detecting synthetic images, particularly in contexts where interpretability and computational efficiency are critical.
☆ TIGaussian: Disentangle Gaussians for Spatial-Awared Text-Image-3D Alignment
While visual-language models have profoundly linked features between texts and images, the incorporation of 3D modality data, such as point clouds and 3D Gaussians, further enables pretraining for 3D-related tasks, e.g., cross-modal retrieval, zero-shot classification, and scene recognition. As challenges remain in extracting 3D modal features and bridging the gap between different modalities, we propose TIGaussian, a framework that harnesses 3D Gaussian Splatting (3DGS) characteristics to strengthen cross-modality alignment through multi-branch 3DGS tokenizer and modality-specific 3D feature alignment strategies. Specifically, our multi-branch 3DGS tokenizer decouples the intrinsic properties of 3DGS structures into compact latent representations, enabling more generalizable feature extraction. To further bridge the modality gap, we develop a bidirectional cross-modal alignment strategies: a multi-view feature fusion mechanism that leverages diffusion priors to resolve perspective ambiguity in image-3D alignment, while a text-3D projection module adaptively maps 3D features to text embedding space for better text-3D alignment. Extensive experiments on various datasets demonstrate the state-of-the-art performance of TIGaussian in multiple tasks.
☆ Magnetic Resonance Simulation of Effective Transverse Relaxation (T2*)
Purpose: To simulate effective transverse relaxation ($T_2^*$) as a part of MR simulation. $T_2^*$ consists of reversible ($T_2^{\prime}$) and irreversible ($T_2$) components. Whereas simulations of $T_2$ are easy, $T_2^{\prime}$ is not easily simulated if only magnetizations of individual isochromats are simulated. Theory and Methods: Efficient methods for simulating $T_2^{\prime}$ were proposed. To approximate the Lorentzian function of $T_2^{\prime}$ realistically, conventional simulators require 100+ isochromats. This approximation can be avoided by utilizing a linear phase model for simulating an entire Lorentzian function directly. To represent the linear phase model, the partial derivatives of the magnetizations with respect to the frequency axis were also simulated. To accelerate the simulations with these partial derivatives, the proposed methods introduced two techniques: analytic solutions, and combined transitions. For understanding the fundamental mechanism of the proposed method, a simple one-isochromat simulation was performed. For evaluating realistic cases, several pulse sequences were simulated using two phantoms with and without $T_2^{\prime}$ simulations. Results: The one-isochromat simulation demonstrated that $T_2^{\prime}$ simulations were possible. In the realistic cases, $T_2^{\prime}$ was recovered as expected without using 100+ isochromats for each point. The computational times with $T_2^{\prime}$ simulations were only 2.0 to 2.7 times longer than those without $T_2^{\prime}$ simulations. When the above-mentioned two techniques were utilized, the analytic solutions accelerated 19 times, and the combined transitions accelerated up to 17 times. Conclusion: Both theory and results showed that the proposed methods simulated $T_2^{\prime}$ efficiently by utilizing a linear model with a Lorentzian function, analytic solutions, and combined transitions.
☆ VC-Bench: Pioneering the Video Connecting Benchmark with a Dataset and Evaluation Metrics
While current video generation focuses on text or image conditions, practical applications like video editing and vlogging often need to seamlessly connect separate clips. In our work, we introduce Video Connecting, an innovative task that aims to generate smooth intermediate video content between given start and end clips. However, the absence of standardized evaluation benchmarks has hindered the development of this task. To bridge this gap, we proposed VC-Bench, a novel benchmark specifically designed for video connecting. It includes 1,579 high-quality videos collected from public platforms, covering 15 main categories and 72 subcategories to ensure diversity and structure. VC-Bench focuses on three core aspects: Video Quality Score VQS, Start-End Consistency Score SECS, and Transition Smoothness Score TSS. Together, they form a comprehensive framework that moves beyond conventional quality-only metrics. We evaluated multiple state-of-the-art video generation models on VC-Bench. Experimental results reveal significant limitations in maintaining start-end consistency and transition smoothness, leading to lower overall coherence and fluidity. We expect that VC-Bench will serve as a pioneering benchmark to inspire and guide future research in video connecting. The evaluation metrics and dataset are publicly available at: https://anonymous.4open.science/r/VC-Bench-1B67/.
☆ Towards Pixel-Level VLM Perception via Simple Points Prediction
We present SimpleSeg, a strikingly simple yet highly effective approach to endow Multimodal Large Language Models (MLLMs) with native pixel-level perception. Our method reframes segmentation as a simple sequence generation problem: the model directly predicts sequences of points (textual coordinates) delineating object boundaries, entirely within its language space. To achieve high fidelity, we introduce a two-stage SF$\to$RL training pipeline, where Reinforcement Learning with an IoU-based reward refines the point sequences to accurately match ground-truth contours. We find that the standard MLLM architecture possesses a strong, inherent capacity for low-level perception that can be unlocked without any specialized architecture. On segmentation benchmarks, SimpleSeg achieves performance that is comparable to, and often surpasses, methods relying on complex, task-specific designs. This work lays out that precise spatial understanding can emerge from simple point prediction, challenging the prevailing need for auxiliary components and paving the way for more unified and capable VLMs. Homepage: https://simpleseg.github.io/
☆ UniPCB: A Unified Vision-Language Benchmark for Open-Ended PCB Quality Inspection
Multimodal Large Language Models (MLLMs) show promise for general industrial quality inspection, but fall short in complex scenarios, such as Printed Circuit Board (PCB) inspection. PCB inspection poses unique challenges due to densely packed components, complex wiring structures, and subtle defect patterns that require specialized domain expertise. However, a high-quality, unified vision-language benchmark for quantitatively evaluating MLLMs across PCB inspection tasks remains absent, stemming not only from limited data availability but also from fragmented datasets and inconsistent standardization. To fill this gap, we propose UniPCB, the first unified vision-language benchmark for open-ended PCB quality inspection. UniPCB is built via a systematic pipeline that curates and standardizes data from disparate sources across three annotated scenarios. Furthermore, we introduce PCB-GPT, an MLLM trained on a new instruction dataset generated by this pipeline, utilizing a novel progressive curriculum that mimics the learning process of human experts. Evaluations on the UniPCB benchmark show that while existing MLLMs falter on domain-specific tasks, PCB-GPT establishes a new baseline. Notably, it more than doubles the performance on fine-grained defect localization compared to the strongest competitors, with significant advantages in localization and analysis. We will release the instruction data, benchmark, and model to facilitate future research.
☆ Bridging Visual and Wireless Sensing: A Unified Radiation Field for 3D Radio Map Construction
The emerging applications of next-generation wireless networks (e.g., immersive 3D communication, low-altitude networks, and integrated sensing and communication) necessitate high-fidelity environmental intelligence. 3D radio maps have emerged as a critical tool for this purpose, enabling spectrum-aware planning and environment-aware sensing by bridging the gap between physical environments and electromagnetic signal propagation. However, constructing accurate 3D radio maps requires fine-grained 3D geometric information and a profound understanding of electromagnetic wave propagation. Existing approaches typically treat optical and wireless knowledge as distinct modalities, failing to exploit the fundamental physical principles governing both light and electromagnetic propagation. To bridge this gap, we propose URF-GS, a unified radio-optical radiation field representation framework for accurate and generalizable 3D radio map construction based on 3D Gaussian splatting (3D-GS) and inverse rendering. By fusing visual and wireless sensing observations, URF-GS recovers scene geometry and material properties while accurately predicting radio signal behavior at arbitrary transmitter-receiver (Tx-Rx) configurations. Experimental results demonstrate that URF-GS achieves up to a 24.7% improvement in spatial spectrum prediction accuracy and a 10x increase in sample efficiency for 3D radio map construction compared with neural radiance field (NeRF)-based methods. This work establishes a foundation for next-generation wireless networks by integrating perception, interaction, and communication through holistic radiation field reconstruction.
comment: The code for this work will be publicly available at: https://github.com/wenchaozheng/URF-GS
☆ Contrastive Spectral Rectification: Test-Time Defense towards Zero-shot Adversarial Robustness of CLIP
Vision-language models (VLMs) such as CLIP have demonstrated remarkable zero-shot generalization, yet remain highly vulnerable to adversarial examples (AEs). While test-time defenses are promising, existing methods fail to provide sufficient robustness against strong attacks and are often hampered by high inference latency and task-specific applicability. To address these limitations, we start by investigating the intrinsic properties of AEs, which reveals that AEs exhibit severe feature inconsistency under progressive frequency attenuation. We further attribute this to the model's inherent spectral bias. Leveraging this insight, we propose an efficient test-time defense named Contrastive Spectral Rectification (CSR). CSR optimizes a rectification perturbation to realign the input with the natural manifold under a spectral-guided contrastive objective, which is applied input-adaptively. Extensive experiments across 16 classification benchmarks demonstrate that CSR outperforms the SOTA by an average of 18.1% against strong AutoAttack with modest inference overhead. Furthermore, CSR exhibits broad applicability across diverse visual tasks. Code is available at https://github.com/Summu77/CSR.
comment: 21 pages
☆ MATA: A Trainable Hierarchical Automaton System for Multi-Agent Visual Reasoning ICLR 2026
Recent vision-language models have strong perceptual ability but their implicit reasoning is hard to explain and easily generates hallucinations on complex queries. Compositional methods improve interpretability, but most rely on a single agent or hand-crafted pipeline and cannot decide when to collaborate across complementary agents or compete among overlapping ones. We introduce MATA (Multi-Agent hierarchical Trainable Automaton), a multi-agent system presented as a hierarchical finite-state automaton for visual reasoning whose top-level transitions are chosen by a trainable hyper agent. Each agent corresponds to a state in the hyper automaton, and runs a small rule-based sub-automaton for reliable micro-control. All agents read and write a shared memory, yielding transparent execution history. To supervise the hyper agent's transition policy, we build transition-trajectory trees and transform to memory-to-next-state pairs, forming the MATA-SFT-90K dataset for supervised finetuning (SFT). The finetuned LLM as the transition policy understands the query and the capacity of agents, and it can efficiently choose the optimal agent to solve the task. Across multiple visual reasoning benchmarks, MATA achieves the state-of-the-art results compared with monolithic and compositional baselines. The code and dataset are available at https://github.com/ControlNet/MATA.
comment: ICLR 2026
☆ SNR-Edit: Structure-Aware Noise Rectification for Inversion-Free Flow-Based Editing
Inversion-free image editing using flow-based generative models challenges the prevailing inversion-based pipelines. However, existing approaches rely on fixed Gaussian noise to construct the source trajectory, leading to biased trajectory dynamics and causing structural degradation or quality loss. To address this, we introduce SNR-Edit, a training-free framework achieving faithful Latent Trajectory Correction via adaptive noise control. Mechanistically, SNR-Edit uses structure-aware noise rectification to inject segmentation constraints into the initial noise, anchoring the stochastic component of the source trajectory to the real image's implicit inversion position and reducing trajectory drift during source--target transport. This lightweight modification yields smoother latent trajectories and ensures high-fidelity structural preservation without requiring model tuning or inversion. Across SD3 and FLUX, evaluations on PIE-Bench and SNR-Bench show that SNR-Edit delivers performance on pixel-level metrics and VLM-based scoring, while adding only about 1s overhead per image.
☆ GTFMN: Guided Texture and Feature Modulation Network for Low-Light Image Enhancement and Super-Resolution IEEE
Low-light image super-resolution (LLSR) is a challenging task due to the coupled degradation of low resolution and poor illumination. To address this, we propose the Guided Texture and Feature Modulation Network (GTFMN), a novel framework that decouples the LLSR task into two sub-problems: illumination estimation and texture restoration. First, our network employs a dedicated Illumination Stream whose purpose is to predict a spatially varying illumination map that accurately captures lighting distribution. Further, this map is utilized as an explicit guide within our novel Illumination Guided Modulation Block (IGM Block) to dynamically modulate features in the Texture Stream. This mechanism achieves spatially adaptive restoration, enabling the network to intensify enhancement in poorly lit regions while preserving details in well-exposed areas. Extensive experiments demonstrate that GTFMN achieves the best performance among competing methods on the OmniNormal5 and OmniNormal15 datasets, outperforming them in both quantitative metrics and visual quality.
comment: \c{opyright} 2026 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
☆ LocationAgent: A Hierarchical Agent for Image Geolocation via Decoupling Strategy and Evidence from Parametric Knowledge
Image geolocation aims to infer capture locations based on visual content. Fundamentally, this constitutes a reasoning process composed of \textit{hypothesis-verification cycles}, requiring models to possess both geospatial reasoning capabilities and the ability to verify evidence against geographic facts. Existing methods typically internalize location knowledge and reasoning patterns into static memory via supervised training or trajectory-based reinforcement fine-tuning. Consequently, these methods are prone to factual hallucinations and generalization bottlenecks in open-world settings or scenarios requiring dynamic knowledge. To address these challenges, we propose a Hierarchical Localization Agent, called LocationAgent. Our core philosophy is to retain hierarchical reasoning logic within the model while offloading the verification of geographic evidence to external tools. To implement hierarchical reasoning, we design the RER architecture (Reasoner-Executor-Recorder), which employs role separation and context compression to prevent the drifting problem in multi-step reasoning. For evidence verification, we construct a suite of clue exploration tools that provide diverse evidence to support location reasoning. Furthermore, to address data leakage and the scarcity of Chinese data in existing datasets, we introduce CCL-Bench (China City Location Bench), an image geolocation benchmark encompassing various scene granularities and difficulty levels. Extensive experiments demonstrate that LocationAgent significantly outperforms existing methods by at least 30\% in zero-shot settings.
comment: 9 pages, 5 figures, 3 tables
☆ TFFM: Topology-Aware Feature Fusion Module via Latent Graph Reasoning for Retinal Vessel Segmentation WACV 2026
Precise segmentation of retinal arteries and veins carries the diagnosis of systemic cardiovascular conditions. However, standard convolutional architectures often yield topologically disjointed segmentations, characterized by gaps and discontinuities that render reliable graph-based clinical analysis impossible despite high pixel-level accuracy. To address this, we introduce a topology-aware framework engineered to maintain vascular connectivity. Our architecture fuses a Topological Feature Fusion Module (TFFM) that maps local feature representations into a latent graph space, deploying Graph Attention Networks to capture global structural dependencies often missed by fixed receptive fields. Furthermore, we drive the learning process with a hybrid objective function, coupling Tversky loss for class imbalance with soft clDice loss to explicitly penalize topological disconnects. Evaluation on the Fundus-AVSeg dataset reveals state-of-the-art performance, achieving a combined Dice score of 90.97% and a 95% Hausdorff Distance of 3.50 pixels. Notably, our method decreases vessel fragmentation by approximately 38% relative to baselines, yielding topologically coherent vascular trees viable for automated biomarker quantification. We open-source our code at https://tffm-module.github.io/.
comment: Accepted in WACV 2026 @ P2P-workshop as a full paper and selected for oral presentation
☆ QA-ReID: Quality-Aware Query-Adaptive Convolution Leveraging Fused Global and Structural Cues for Clothes-Changing ReID
Unlike conventional person re-identification (ReID), clothes-changing ReID (CC-ReID) presents severe challenges due to substantial appearance variations introduced by clothing changes. In this work, we propose the Quality-Aware Dual-Branch Matching (QA-ReID), which jointly leverages RGB-based features and parsing-based representations to model both global appearance and clothing-invariant structural cues. These heterogeneous features are adaptively fused through a multi-modal attention module. At the matching stage, we further design the Quality-Aware Query Adaptive Convolution (QAConv-QA), which incorporates pixel-level importance weighting and bidirectional consistency constraints to enhance robustness against clothing variations. Extensive experiments demonstrate that QA-ReID achieves state-of-the-art performance on multiple benchmarks, including PRCC, LTCC, and VC-Clothes, and significantly outperforms existing approaches under cross-clothing scenarios.
☆ CLIP-Guided Unsupervised Semantic-Aware Exposure Correction
Improper exposure often leads to severe loss of details, color distortion, and reduced contrast. Exposure correction still faces two critical challenges: (1) the ignorance of object-wise regional semantic information causes the color shift artifacts; (2) real-world exposure images generally have no ground-truth labels, and its labeling entails massive manual editing. To tackle the challenges, we propose a new unsupervised semantic-aware exposure correction network. It contains an adaptive semantic-aware fusion module, which effectively fuses the semantic information extracted from a pre-trained Fast Segment Anything Model into a shared image feature space. Then the fused features are used by our multi-scale residual spatial mamba group to restore the details and adjust the exposure. To avoid manual editing, we propose a pseudo-ground truth generator guided by CLIP, which is fine-tuned to automatically identify exposure situations and instruct the tailored corrections. Also, we leverage the rich priors from the FastSAM and CLIP to develop a semantic-prompt consistency loss to enforce semantic consistency and image-prompt alignment for unsupervised training. Comprehensive experimental results illustrate the effectiveness of our method in correcting real-world exposure images and outperforms state-of-the-art unsupervised methods both numerically and visually.
☆ Resolving Primitive-Sharing Ambiguity in Long-Tailed Industrial Point Cloud Segmentation via Spatial Context Constraints
Industrial point cloud segmentation for Digital Twin construction faces a persistent challenge: safety-critical components such as reducers and valves are systematically misclassified. These failures stem from two compounding factors: such components are rare in training data, yet they share identical local geometry with dominant structures like pipes. This work identifies a dual crisis unique to industrial 3D data extreme class imbalance 215:1 ratio compounded by geometric ambiguity where most tail classes share cylindrical primitives with head classes. Existing frequency-based re-weighting methods address statistical imbalance but cannot resolve geometric ambiguity. We propose spatial context constraints that leverage neighborhood prediction consistency to disambiguate locally similar structures. Our approach extends the Class-Balanced (CB) Loss framework with two architecture-agnostic mechanisms: (1) Boundary-CB, an entropy-based constraint that emphasizes ambiguous boundaries, and (2) Density-CB, a density-based constraint that compensates for scan-dependent variations. Both integrate as plug-and-play modules without network modifications, requiring only loss function replacement. On the Industrial3D dataset (610M points from water treatment facilities), our method achieves 55.74% mIoU with 21.7% relative improvement on tail-class performance (29.59% vs. 24.32% baseline) while preserving head-class accuracy (88.14%). Components with primitive-sharing ambiguity show dramatic gains: reducer improves from 0% to 21.12% IoU; valve improves by 24.3% relative. This resolves geometric ambiguity without the typical head-tail trade-off, enabling reliable identification of safety-critical components for automated knowledge extraction in Digital Twin applications.
☆ Implicit Non-Causal Factors are Out via Dataset Splitting for Domain Generalization Object Detection
Open world object detection faces a significant challenge in domain-invariant representation, i.e., implicit non-causal factors. Most domain generalization (DG) methods based on domain adversarial learning (DAL) pay much attention to learn domain-invariant information, but often overlook the potential non-causal factors. We unveil two critical causes: 1) The domain discriminator-based DAL method is subject to the extremely sparse domain label, i.e., assigning only one domain label to each dataset, thus can only associate explicit non-causal factor, which is incredibly limited. 2) The non-causal factors, induced by unidentified data bias, are excessively implicit and cannot be solely discerned by conventional DAL paradigm. Based on these key findings, inspired by the Granular-Ball perspective, we propose an improved DAL method, i.e., GB-DAL. The proposed GB-DAL utilizes Prototype-based Granular Ball Splitting (PGBS) module to generate more dense domains from limited datasets, akin to more fine-grained granular balls, indicating more potential non-causal factors. Inspired by adversarial perturbations akin to non-causal factors, we propose a Simulated Non-causal Factors (SNF) module as a means of data augmentation to reduce the implicitness of non-causal factors, and facilitate the training of GB-DAL. Comparative experiments on numerous benchmarks demonstrate that our method achieves better generalization performance in novel circumstances.
comment: To appear in IJCV
☆ Optimized $k$-means color quantization of digital images in machine-based and human perception-based colorspaces
Color quantization represents an image using a fraction of its original number of colors while only minimally losing its visual quality. The $k$-means algorithm is commonly used in this context, but has mostly been applied in the machine-based RGB colorspace composed of the three primary colors. However, some recent studies have indicated its improved performance in human perception-based colorspaces. We investigated the performance of $k$-means color quantization at four quantization levels in the RGB, CIE-XYZ, and CIE-LUV/CIE-HCL colorspaces, on 148 varied digital images spanning a wide range of scenes, subjects and settings. The Visual Information Fidelity (VIF) measure numerically assessed the quality of the quantized images, and showed that in about half of the cases, $k$-means color quantization is best in the RGB space, while at other times, and especially for higher quantization levels ($k$), the CIE-XYZ colorspace is where it usually does better. There are also some cases, especially at lower $k$, where the best performance is obtained in the CIE-LUV colorspace. Further analysis of the performances in terms of the distributions of the hue, chromaticity and luminance in an image presents a nuanced perspective and characterization of the images for which each colorspace is better for $k$-means color quantization.
comment: 25 pages, 11 figures, 5 tables, accepted in the Journal of Electronic Imaging
☆ FBSDiff++: Improved Frequency Band Substitution of Diffusion Features for Efficient and Highly Controllable Text-Driven Image-to-Image Translation
With large-scale text-to-image (T2I) diffusion models achieving significant advancements in open-domain image creation, increasing attention has been focused on their natural extension to the realm of text-driven image-to-image (I2I) translation, where a source image acts as visual guidance to the generated image in addition to the textual guidance provided by the text prompt. We propose FBSDiff, a novel framework adapting off-the-shelf T2I diffusion model into the I2I paradigm from a fresh frequency-domain perspective. Through dynamic frequency band substitution of diffusion features, FBSDiff realizes versatile and highly controllable text-driven I2I in a plug-and-play manner (without need for model training, fine-tuning, or online optimization), allowing appearance-guided, layout-guided, and contour-guided I2I translation by progressively substituting low-frequency band, mid-frequency band, and high-frequency band of latent diffusion features, respectively. In addition, FBSDiff flexibly enables continuous control over I2I correlation intensity simply by tuning the bandwidth of the substituted frequency band. To further promote image translation efficiency, flexibility, and functionality, we propose FBSDiff++ which improves upon FBSDiff mainly in three aspects: (1) accelerate inference speed by a large margin (8.9$\times$ speedup in inference) with refined model architecture; (2) improve the Frequency Band Substitution module to allow for input source images of arbitrary resolution and aspect ratio; (3) extend model functionality to enable localized image manipulation and style-specific content creation with only subtle adjustments to the core method. Extensive qualitative and quantitative experiments verify superiority of FBSDiff++ in I2I translation visual quality, efficiency, versatility, and controllability compared to related advanced approaches.
☆ Reg-TTR, Test-Time Refinement for Fast, Robust and Accurate Image Registration
Traditional image registration methods are robust but slow due to their iterative nature. While deep learning has accelerated inference, it often struggles with domain shifts. Emerging registration foundation models offer a balance of speed and robustness, yet typically cannot match the peak accuracy of specialized models trained on specific datasets. To mitigate this limitation, we propose Reg-TTR, a test-time refinement framework that synergizes the complementary strengths of both deep learning and conventional registration techniques. By refining the predictions of pre-trained models at inference, our method delivers significantly improved registration accuracy at a modest computational cost, requiring only 21% additional inference time (0.56s). We evaluate Reg-TTR on two distinct tasks and show that it achieves state-of-the-art (SOTA) performance while maintaining inference speeds close to previous deep learning methods. As foundation models continue to emerge, our framework offers an efficient strategy to narrow the performance gap between registration foundation models and SOTA methods trained on specialized datasets. The source code will be publicly available following the acceptance of this work.
☆ Glance and Focus Reinforcement for Pan-cancer Screening ICLR 2026
Pan-cancer screening in large-scale CT scans remains challenging for existing AI methods, primarily due to the difficulty of localizing diverse types of tiny lesions in large CT volumes. The extreme foreground-background imbalance significantly hinders models from focusing on diseased regions, while redundant focus on healthy regions not only decreases the efficiency but also increases false positives. Inspired by radiologists' glance and focus diagnostic strategy, we introduce GF-Screen, a Glance and Focus reinforcement learning framework for pan-cancer screening. GF-Screen employs a Glance model to localize the diseased regions and a Focus model to precisely segment the lesions, where segmentation results of the Focus model are leveraged to reward the Glance model via Reinforcement Learning (RL). Specifically, the Glance model crops a group of sub-volumes from the entire CT volume and learns to select the sub-volumes with lesions for the Focus model to segment. Given that the selecting operation is non-differentiable for segmentation training, we propose to employ the segmentation results to reward the Glance model. To optimize the Glance model, we introduce a novel group relative learning paradigm, which employs group relative comparison to prioritize high-advantage predictions and discard low-advantage predictions within sub-volume groups, not only improving efficiency but also reducing false positives. In this way, for the first time, we effectively extend cutting-edge RL techniques to tackle the specific challenges in pan-cancer screening. Extensive experiments on 16 internal and 7 external datasets across 9 lesion types demonstrated the effectiveness of GF-Screen. Notably, GF-Screen leads the public validation leaderboard of MICCAI FLARE25 pan-cancer challenge, surpassing the FLARE24 champion solution by a large margin (+25.6% DSC and +28.2% NSD).
comment: Accepted by ICLR 2026. Code is available at https://github.com/Luffy03/GF-Screen
☆ m2sv: A Scalable Benchmark for Map-to-Street-View Spatial Reasoning
Vision--language models (VLMs) achieve strong performance on many multimodal benchmarks but remain brittle on spatial reasoning tasks that require aligning abstract overhead representations with egocentric views. We introduce m2sv, a scalable benchmark for map-to-street-view spatial reasoning that asks models to infer camera viewing direction by aligning a north-up overhead map with a Street View image captured at the same real-world intersection. We release m2sv-20k, a geographically diverse benchmark with controlled ambiguity, along with m2sv-sft-11k, a curated set of structured reasoning traces for supervised fine-tuning. Despite strong performance on existing multimodal benchmarks, the best evaluated VLM achieves only 65.2% accuracy on m2sv, far below the human baseline of 95%. While supervised fine-tuning and reinforcement learning yield consistent gains, cross-benchmark evaluations reveal limited transfer. Beyond aggregate accuracy, we systematically analyze difficulty in map-to-street-view reasoning using both structural signals and human effort, and conduct an extensive failure analysis of adapted open models. Our findings highlight persistent gaps in geometric alignment, evidence aggregation, and reasoning consistency, motivating future work on grounded spatial reasoning across viewpoints.
☆ Privacy-Preserving Model Transcription with Differentially Private Synthetic Distillation IEEE
While many deep learning models trained on private datasets have been deployed in various practical tasks, they may pose a privacy leakage risk as attackers could recover informative data or label knowledge from models. In this work, we present \emph{privacy-preserving model transcription}, a data-free model-to-model conversion solution to facilitate model deployment with a privacy guarantee. To this end, we propose a cooperative-competitive learning approach termed \emph{differentially private synthetic distillation} that learns to convert a pretrained model (teacher) into its privacy-preserving counterpart (student) via a trainable generator without access to private data. The learning collaborates with three players in a unified framework and performs alternate optimization: i)~the generator is learned to generate synthetic data, ii)~the teacher and student accept the synthetic data and compute differential private labels by flexible data or label noisy perturbation, and iii)~the student is updated with noisy labels and the generator is updated by taking the student as a discriminator for adversarial training. We theoretically prove that our approach can guarantee differential privacy and convergence. The transcribed student has good performance and privacy protection, while the resulting generator can generate private synthetic data for downstream tasks. Extensive experiments clearly demonstrate that our approach outperforms 26 state-of-the-arts.
comment: Accepted by IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI)
☆ EPAS: Efficient Training with Progressive Activation Sharing
We present a novel method for Efficient training with Progressive Activation Sharing (EPAS). This method bridges progressive training paradigm with the phenomenon of redundant QK (or KV ) activations across deeper layers of transformers. EPAS gradually grows a sharing region during training by switching decoder layers to activation sharing mode. This results in throughput increase due to reduced compute. To utilize deeper layer redundancy, the sharing region starts from the deep end of the model and grows towards the shallow end. The EPAS trained models allow for variable region lengths of activation sharing for different compute budgets during inference. Empirical evaluations with QK activation sharing in LLaMA models ranging from 125M to 7B parameters show up to an 11.1% improvement in training throughput and up to a 29% improvement in inference throughput while maintaining similar loss curve to the baseline models. Furthermore, applying EPAS in continual pretraining to transform TinyLLaMA into an attention-sharing model yields up to a 10% improvement in average accuracy over state-of-the-art methods, emphasizing the significance of progressive training in cross layer activation sharing models.
comment: This is a preprint of a paper accepted at the 39th Canadian Conference on Artificial Intelligence (Canadian AI 2026)
☆ Pixel-Grounded Retrieval for Knowledgeable Large Multimodal Models
Visual Question Answering (VQA) often requires coupling fine-grained perception with factual knowledge beyond the input image. Prior multimodal Retrieval-Augmented Generation (MM-RAG) systems improve factual grounding but lack an internal policy for when and how to retrieve. We propose PixSearch, the first end-to-end Segmenting Large Multimodal Model (LMM) that unifies region-level perception and retrieval-augmented reasoning. During encoding, PixSearch emits tokens to trigger retrieval, selects query modalities (text, image, or region), and generates pixel-level masks that directly serve as visual queries, eliminating the reliance on modular pipelines (detectors, segmenters, captioners, etc.). A two-stage supervised fine-tuning regimen with search-interleaved supervision teaches retrieval timing and query selection while preserving segmentation ability. On egocentric and entity-centric VQA benchmarks, PixSearch substantially improves factual consistency and generalization, yielding a 19.7% relative gain in accuracy on CRAG-MM compared to whole image retrieval, while retaining competitive reasoning performance on various VQA and text-only QA tasks.
comment: Preprint
☆ NuiWorld: Exploring a Scalable Framework for End-to-End Controllable World Generation
World generation is a fundamental capability for applications like video games, simulation, and robotics. However, existing approaches face three main obstacles: controllability, scalability, and efficiency. End-to-end scene generation models have been limited by data scarcity. While object-centric generation approaches rely on fixed resolution representations, degrading fidelity for larger scenes. Training-free approaches, while flexible, are often slow and computationally expensive at inference time. We present NuiWorld, a framework that attempts to address these challenges. To overcome data scarcity, we propose a generative bootstrapping strategy that starts from a few input images. Leveraging recent 3D reconstruction and expandable scene generation techniques, we synthesize scenes of varying sizes and layouts, producing enough data to train an end-to-end model. Furthermore, our framework enables controllability through pseudo sketch labels, and demonstrates a degree of generalization to previously unseen sketches. Our approach represents scenes as a collection of variable scene chunks, which are compressed into a flattened vector-set representation. This significantly reduces the token length for large scenes, enabling consistent geometric fidelity across scenes sizes while improving training and inference efficiency.
☆ Look in the Middle: Structural Anchor Pruning for Scalable Visual RAG Indexing
Recent Vision-Language Models (e.g., ColPali) enable fine-grained Visual Document Retrieval (VDR) but incur prohibitive index vector size overheads. Training-free pruning solutions (e.g., EOS-attention based methods) can reduce index vector size by approximately 60% without model adaptation, but often underperform random selection in high-compression scenarios (> 80%). Prior research (e.g., Light-ColPali) attributes this to the conclusion that visual token importance is inherently query-dependent, thereby questioning the feasibility of training-free pruning. In this work, we propose Structural Anchor Pruning (SAP), a training-free pruning method that identifies key visual patches from middle layers to achieve high performance compression. We also introduce Oracle Score Retention (OSR) protocol to evaluate how layer-wise information affects compression efficiency. Evaluations on the ViDoRe benchmark demonstrate that SAP reduces index vectors by over 90% while maintaining robust retrieval fidelity, providing a highly scalable solution for Visual RAG. Furthermore, our OSR-based analysis reveals that semantic structural anchor patches persist in the middle layers, unlike traditional pruning solutions that focus on the final layer where structural signals dissipate.
comment: 18 pages, 6 figures, 11 tables
☆ NucFuseRank: Dataset Fusion and Performance Ranking for Nuclei Instance Segmentation
Nuclei instance segmentation in hematoxylin and eosin (H&E)-stained images plays an important role in automated histological image analysis, with various applications in downstream tasks. While several machine learning and deep learning approaches have been proposed for nuclei instance segmentation, most research in this field focuses on developing new segmentation algorithms and benchmarking them on a limited number of arbitrarily selected public datasets. In this work, rather than focusing on model development, we focused on the datasets used for this task. Based on an extensive literature review, we identified manually annotated, publicly available datasets of H&E-stained images for nuclei instance segmentation and standardized them into a unified input and annotation format. Using two state-of-the-art segmentation models, one based on convolutional neural networks (CNNs) and one based on a hybrid CNN and vision transformer architecture, we systematically evaluated and ranked these datasets based on their nuclei instance segmentation performance. Furthermore, we proposed a unified test set (NucFuse-test) for fair cross-dataset evaluation and a unified training set (NucFuse-train) for improved segmentation performance by merging images from multiple datasets. By evaluating and ranking the datasets, performing comprehensive analyses, generating fused datasets, conducting external validation, and making our implementation publicly available, we provided a new benchmark for training, testing, and evaluating nuclei instance segmentation models on H&E-stained histological images.
comment: 31 pages
☆ Sparse CLIP: Co-Optimizing Interpretability and Performance in Contrastive Learning
Contrastive Language-Image Pre-training (CLIP) has become a cornerstone in vision-language representation learning, powering diverse downstream tasks and serving as the default vision backbone in multimodal large language models (MLLMs). Despite its success, CLIP's dense and opaque latent representations pose significant interpretability challenges. A common assumption is that interpretability and performance are in tension: enforcing sparsity during training degrades accuracy, motivating recent post-hoc approaches such as Sparse Autoencoders (SAEs). However, these post-hoc approaches often suffer from degraded downstream performance and loss of CLIP's inherent multimodal capabilities, with most learned features remaining unimodal. We propose a simple yet effective approach that integrates sparsity directly into CLIP training, yielding representations that are both interpretable and performant. Compared to SAEs, our Sparse CLIP representations preserve strong downstream task performance, achieve superior interpretability, and retain multimodal capabilities. We show that multimodal sparse features enable straightforward semantic concept alignment and reveal training dynamics of how cross-modal knowledge emerges. Finally, as a proof of concept, we train a vision-language model on sparse CLIP representations that enables interpretable, vision-based steering capabilities. Our findings challenge conventional wisdom that interpretability requires sacrificing accuracy and demonstrate that interpretability and performance can be co-optimized, offering a promising design principle for future models.
☆ Semi-Supervised Masked Autoencoders: Unlocking Vision Transformer Potential with Limited Data
We address the challenge of training Vision Transformers (ViTs) when labeled data is scarce but unlabeled data is abundant. We propose Semi-Supervised Masked Autoencoder (SSMAE), a framework that jointly optimizes masked image reconstruction and classification using both unlabeled and labeled samples with dynamically selected pseudo-labels. SSMAE introduces a validation-driven gating mechanism that activates pseudo-labeling only after the model achieves reliable, high-confidence predictions that are consistent across both weakly and strongly augmented views of the same image, reducing confirmation bias. On CIFAR-10 and CIFAR-100, SSMAE consistently outperforms supervised ViT and fine-tuned MAE, with the largest gains in low-label regimes (+9.24% over ViT on CIFAR-10 with 10% labels). Our results demonstrate that when pseudo-labels are introduced is as important as how they are generated for data-efficient transformer training. Codes are available at https://github.com/atik666/ssmae.
☆ DiSa: Saliency-Aware Foreground-Background Disentangled Framework for Open-Vocabulary Semantic Segmentation
Open-vocabulary semantic segmentation aims to assign labels to every pixel in an image based on text labels. Existing approaches typically utilize vision-language models (VLMs), such as CLIP, for dense prediction. However, VLMs, pre-trained on image-text pairs, are biased toward salient, object-centric regions and exhibit two critical limitations when adapted to segmentation: (i) Foreground Bias, which tends to ignore background regions, and (ii) Limited Spatial Localization, resulting in blurred object boundaries. To address these limitations, we introduce DiSa, a novel saliency-aware foreground-background disentangled framework. By explicitly incorporating saliency cues in our designed Saliency-aware Disentanglement Module (SDM), DiSa separately models foreground and background ensemble features in a divide-and-conquer manner. Additionally, we propose a Hierarchical Refinement Module (HRM) that leverages pixel-wise spatial contexts and enables channel-wise feature refinement through multi-level updates. Extensive experiments on six benchmarks demonstrate that DiSa consistently outperforms state-of-the-art methods.
comment: 19 pages, 11 figures
☆ Primitive-Driven Acceleration of Hyperdimensional Computing for Real-Time Image Classification
Hyperdimensional Computing (HDC) represents data using extremely high-dimensional, low-precision vectors, termed hypervectors (HVs), and performs learning and inference through lightweight, noise-tolerant operations. However, the high dimensionality, sparsity, and repeated data movement involved in HDC make these computations difficult to accelerate efficiently on conventional processors. As a result, executing core HDC operations: binding, permutation, bundling, and similarity search: on CPUs or GPUs often leads to suboptimal utilization, memory bottlenecks, and limits on real-time performance. In this paper, our contributions are two-fold. First, we develop an image-encoding algorithm that, similar in spirit to convolutional neural networks, maps local image patches to hypervectors enriched with spatial information. These patch-level hypervectors are then merged into a global representation using the fundamental HDC operations, enabling spatially sensitive and robust image encoding. This encoder achieves 95.67% accuracy on MNIST and 85.14% on Fashion-MNIST, outperforming prior HDC-based image encoders. Second, we design an end-to-end accelerator that implements these compute operations on an FPGA through a pipelined architecture that exploits parallelism both across the hypervector dimensionality and across the set of image patches. Our Alveo U280 implementation delivers 0.09ms inference latency, achieving up to 1300x and 60x speedup over state-of-the-art CPU and GPU baselines, respectively.
☆ Size Matters: Reconstructing Real-Scale 3D Models from Monocular Images for Food Portion Estimation
The rise of chronic diseases related to diet, such as obesity and diabetes, emphasizes the need for accurate monitoring of food intake. While AI-driven dietary assessment has made strides in recent years, the ill-posed nature of recovering size (portion) information from monocular images for accurate estimation of ``how much did you eat?'' is a pressing challenge. Some 3D reconstruction methods have achieved impressive geometric reconstruction but fail to recover the crucial real-world scale of the reconstructed object, limiting its usage in precision nutrition. In this paper, we bridge the gap between 3D computer vision and digital health by proposing a method that recovers a true-to-scale 3D reconstructed object from a monocular image. Our approach leverages rich visual features extracted from models trained on large-scale datasets to estimate the scale of the reconstructed object. This learned scale enables us to convert single-view 3D reconstructions into true-to-life, physically meaningful models. Extensive experiments and ablation studies on two publicly available datasets show that our method consistently outperforms existing techniques, achieving nearly a 30% reduction in mean absolute volume-estimation error, showcasing its potential to enhance the domain of precision nutrition. Code: https://gitlab.com/viper-purdue/size-matters
☆ MeanCache: From Instantaneous to Average Velocity for Accelerating Flow Matching Inference
We present MeanCache, a training-free caching framework for efficient Flow Matching inference. Existing caching methods reduce redundant computation but typically rely on instantaneous velocity information (e.g., feature caching), which often leads to severe trajectory deviations and error accumulation under high acceleration ratios. MeanCache introduces an average-velocity perspective: by leveraging cached Jacobian--vector products (JVP) to construct interval average velocities from instantaneous velocities, it effectively mitigates local error accumulation. To further improve cache timing and JVP reuse stability, we develop a trajectory-stability scheduling strategy as a practical tool, employing a Peak-Suppressed Shortest Path under budget constraints to determine the schedule. Experiments on FLUX.1, Qwen-Image, and HunyuanVideo demonstrate that MeanCache achieves 4.12X and 4.56X and 3.59X acceleration, respectively, while consistently outperforming state-of-the-art caching baselines in generation quality. We believe this simple yet effective approach provides a new perspective for Flow Matching inference and will inspire further exploration of stability-driven acceleration in commercial-scale generative models.
☆ LEMON: How Well Do MLLMs Perform Temporal Multimodal Understanding on Instructional Videos?
Recent multimodal large language models (MLLMs) have shown remarkable progress across vision, audio, and language tasks, yet their performance on long-form, knowledge-intensive, and temporally structured educational content remains largely unexplored. To bridge this gap, we introduce LEMON, a Lecture-based Evaluation benchmark for MultimOdal uNderstanding, focusing on STEM lecture videos that require long-horizon reasoning and cross-modal integration. LEMON comprises 2,277 video segments spanning 5 disciplines and 29 courses, with an average duration of 196.1 seconds, yielding 4,181 high-quality QA pairs, including 3,413 multiple-choice and 768 open-ended questions. Distinct from existing video benchmarks, LEMON features: (1) semantic richness and disciplinary density, (2) tightly coupled video-audio-text modalities, (3) explicit temporal and pedagogical structure, and (4) contextually linked multi-turn questioning. It further encompasses six major tasks and twelve subtasks, covering the full cognitive spectrum from perception to reasoning and then to generation. Comprehensive experiments reveal substantial performance gaps across tasks, highlighting that even state-of-the-art MLLMs like GPT-4o struggle with temporal reasoning and instructional prediction. We expect LEMON to serve as an extensible and challenging benchmark for advancing multimodal perception, reasoning, and generation in long-form instructional contents.
♻ ☆ Parameter-Efficient MoE LoRA for Few-Shot Multi-Style Editing
In recent years, image editing has garnered growing attention. However, general image editing models often fail to produce satisfactory results when confronted with new styles. The challenge lies in how to effectively fine-tune general image editing models to new styles using only a limited amount of paired data. To address this issue, this paper proposes a novel few-shot style editing framework. For this task, we construct a benchmark dataset that encompasses five distinct styles. Correspondingly, we propose a parameter-efficient multi-style Mixture-of-Experts Low-Rank Adaptation (MoE LoRA) with style-specific and style-shared routing mechanisms for jointly fine-tuning multiple styles. The style-specific routing ensures that different styles do not interfere with one another, while the style-shared routing adaptively allocates shared MoE LoRAs to learn common patterns. Our MoE LoRA can automatically determine the optimal ranks for each layer through a novel metric-guided approach that estimates the importance score of each single-rank component. Additionally, we explore the optimal location to insert LoRA within the Diffusion in Transformer (DiT) model and integrate adversarial learning and flow matching to guide the diffusion training process. Experimental results demonstrate that our proposed method outperforms existing state-of-the-art approaches with significantly fewer LoRA parameters. Our code and dataset are available at https://github.com/cao-cong/FSMSE.
comment: Technical report
♻ ☆ MLVTG: Mamba-Based Feature Alignment and LLM-Driven Purification for Multi-Modal Video Temporal Grounding
Video Temporal Grounding (VTG), which aims to localize video clips corresponding to natural language queries, is a fundamental yet challenging task in video understanding. Existing Transformer-based methods often suffer from redundant attention and suboptimal multi-modal alignment. To address these limitations, we propose MLVTG, a novel framework that integrates two key modules: MambaAligner and LLMRefiner. MambaAligner uses stacked Vision Mamba blocks as a backbone instead of Transformers to model temporal dependencies and extract robust video representations for multi-modal alignment. LLMRefiner leverages the specific frozen layer of a pre-trained Large Language Model (LLM) to implicitly transfer semantic priors, enhancing multi-modal alignment without fine-tuning. This dual alignment strategy, temporal modeling via structured state-space dynamics and semantic purification via textual priors, enables more precise localization. Extensive experiments on QVHighlights, Charades-STA, and TVSum demonstrate that MLVTG achieves state-of-the-art performance and significantly outperforms existing baselines.
♻ ☆ Will It Zero-Shot?: Predicting Zero-Shot Classification Performance For Arbitrary Queries
Vision-Language Models like CLIP create aligned embedding spaces for text and images, making it possible for anyone to build a visual classifier by simply naming the classes they want to distinguish. However, a model that works well in one domain may fail in another, and non-expert users have no straightforward way to assess whether their chosen VLM will work on their problem. We build on prior work using text-only comparisons to evaluate how well a model works for a given natural language task, and explore approaches that also generate synthetic images relevant to that task to evaluate and refine the prediction of zero-shot accuracy. We show that generated imagery to the baseline text-only scores substantially improves the quality of these predictions. Additionally, it gives a user feedback on the kinds of images that were used to make the assessment. Experiments on standard CLIP benchmark datasets demonstrate that the image-based approach helps users predict, without any labeled examples, whether a VLM will be effective for their application.
♻ ☆ Assessing the Effectiveness of Deep Embeddings for Tree Species Classification in the Dutch Forest Inventory
National Forest Inventory serves as the primary source of forest information, however, maintaining these inventories requires labor-intensive on-site campaigns by forestry experts to identify and document tree species. Embeddings from deep pre-trained remote sensing models offer new opportunities to update NFIs more frequently and at larger scales. While training new deep learning models on few data points remains challenging, we show that using pre-computed embeddings can proven effective for distinguishing tree species through seasonal canopy reflectance patternsin combination with Random Forest. This work systematically investigates how deep embeddings improve tree species classification accuracy in the Netherlands with few annotated data. We evaluate this question on three embedding models: Presto, Alpha Earth, and Tessera, using three tree species datasets of varying difficulty. Data-wise, we compare the available embeddings from Alpha Earth and Tessera with dynamically calculated embeddings from a pre-trained Presto model. Our results demonstrate that fine-tuning a publicly available remote sensing time series pre-trained model outperforms the current state-of-the-art in NFI classification in the Netherlands, yielding performance gains of approximately 2-9 percentage points across datasets and evaluation metrics. This indicates that classic hand-defined features are too simple for this task and highlights the potential of using deep embeddings for data-limited applications such as NFI classification. By leveraging openly available satellite data and deep embeddings from pre-trained models, this approach significantly improves classification accuracy compared to traditional methods and can effectively complement existing forest inventory processes.
♻ ☆ ReVision: A Dataset and Baseline VLM for Privacy-Preserving Task-Oriented Visual Instruction Rewriting AACL 2025
Efficient and privacy-preserving multimodal interaction is essential as AR, VR, and modern smartphones with powerful cameras become primary interfaces for human-computer communication. Existing powerful large vision-language models (VLMs) enabling multimodal interaction often rely on cloud-based processing, raising significant concerns about (1) visual privacy by transmitting sensitive vision data to servers, and (2) their limited real-time, on-device usability. This paper explores Visual Instruction Rewriting, a novel approach that transforms multimodal instructions into text-only commands, allowing seamless integration of lightweight on-device instruction rewriter VLMs (250M parameters) with existing conversational AI systems, enhancing vision data privacy. To achieve this, we present a dataset of over 39,000 examples across 14 domains and develop a compact VLM, pretrained on image captioning datasets and fine-tuned for instruction rewriting. Experimental results, evaluated through NLG metrics such as BLEU, METEOR, and ROUGE, along with semantic parsing analysis, demonstrate that even a quantized version of the model (<500MB storage footprint) can achieve effective instruction rewriting, thus enabling privacy-focused, multimodal AI applications.
comment: In Proceedings of the IJCNLP-AACL 2025
♻ ☆ SCoPE VLM: Selective Context Processing for Efficient Document Navigation in Vision-Language Models
Understanding long-context visual information remains a fundamental challenge for vision-language models, particularly in agentic tasks such as GUI control and web navigation. While web pages and GUI environments are inherently structured documents, current VLMs typically neglect decision-oriented document understanding in their training objectives. Existing approaches primarily extend visual embeddings to process long, high-resolution inputs, but these methods are memory-intensive and impractical for locally deployable solutions. To address these issues, we propose SCoPE VLM, a document navigation expert that leverages a novel Chain of Scroll mechanism to selectively and recursively navigate documents, focusing exclusively on relevant segments. We introduce a dedicated data generation pipeline to construct informative Chain of Scroll trajectories and Episodic Group Relative Policy Optimization, a tailored reinforcement learning method to bridge the gap between training and inference. Our method substantially reduces memory usage and effectively models human-like reading behaviors. To the best of our knowledge, SCoPE VLM is the first framework to explicitly model agentic reading patterns in multi-page document question answering, advancing the capabilities of multimodal agents.
♻ ☆ DisCoPatch: Taming Adversarially-driven Batch Statistics for Improved Out-of-Distribution Detection ICCV 2025
Out-of-distribution (OOD) detection holds significant importance across many applications. While semantic and domain-shift OOD problems are well-studied, this work focuses on covariate shifts - subtle variations in the data distribution that can degrade machine learning performance. We hypothesize that detecting these subtle shifts can improve our understanding of in-distribution boundaries, ultimately improving OOD detection. In adversarial discriminators trained with Batch Normalization (BN), real and adversarial samples form distinct domains with unique batch statistics - a property we exploit for OOD detection. We introduce DisCoPatch, an unsupervised Adversarial Variational Autoencoder (VAE) framework that harnesses this mechanism. During inference, batches consist of patches from the same image, ensuring a consistent data distribution that allows the model to rely on batch statistics. DisCoPatch uses the VAE's suboptimal outputs (generated and reconstructed) as negative samples to train the discriminator, thereby improving its ability to delineate the boundary between in-distribution samples and covariate shifts. By tightening this boundary, DisCoPatch achieves state-of-the-art results in public OOD detection benchmarks. The proposed model not only excels in detecting covariate shifts, achieving 95.5% AUROC on ImageNet-1K(-C) but also outperforms all prior methods on public Near-OOD (95.0%) benchmarks. With a compact model size of 25MB, it achieves high OOD detection performance at notably lower latency than existing methods, making it an efficient and practical solution for real-world OOD detection applications. The code is publicly available.
comment: ICCV 2025
♻ ☆ Activation Function Design Sustains Plasticity in Continual Learning
In independent, identically distributed (i.i.d.) training regimes, activation functions have been benchmarked extensively, and their differences often shrink once model size and optimization are tuned. In continual learning, however, the picture is different: beyond catastrophic forgetting, models can progressively lose the ability to adapt (referred to as loss of plasticity) and the role of the non-linearity in this failure mode remains underexplored. We show that activation choice is a primary, architecture-agnostic lever for mitigating plasticity loss. Building on a property-level analysis of negative-branch shape and saturation behavior, we introduce two drop-in nonlinearities (Smooth-Leaky and Randomized Smooth-Leaky) and evaluate them in two complementary settings: (i) supervised class-incremental benchmarks and (ii) reinforcement learning with non-stationary MuJoCo environments designed to induce controlled distribution and dynamics shifts. We also provide a simple stress protocol and diagnostics that link the shape of the activation to the adaptation under change. The takeaway is straightforward: thoughtful activation design offers a lightweight, domain-general way to sustain plasticity in continual learning without extra capacity or task-specific tuning.
♻ ☆ Mitigating Attention Sinks and Massive Activations in Audio-Visual Speech Recognition with LLMs IEEE
Large language models (LLMs) have recently advanced auditory speech recognition (ASR), visual speech recognition (VSR), and audio-visual speech recognition (AVSR). However, understanding of their internal dynamics under fine-tuning remains limited. In natural language processing, recent work has revealed attention sinks, tokens that attract disproportionately high attention, and associated massive activations in which some features of sink tokens exhibit huge activation in LLMs. In this work, we are the first to study these phenomena in multimodal speech recognition. Through a detailed analysis of audio-visual LLMs, we identify attention sinks and massive activations not only at the BOS token but also at intermediate low-semantic tokens across ASR, VSR, and AVSR. We show that massive activations originate in the MLP layers and correspond to fixed feature indices across all sink tokens. We further show that intermediate sink tokens exhibit high cosine similarity to the BOS token, thereby amplifying attention and activation. Building on these insights, we introduce a simple decorrelation loss that reduces cosine similarity between BOS and other tokens, effectively mitigating intermediate sinks and massive activations. Furthermore, our method improves word error rate (WER) under high audio-visual feature downsampling while remaining stable at lower downsampling rates.
comment: IEEE ICASSP 2026. The code is available at https://github.com/umbertocappellazzo/Llama-AVSR
♻ ☆ Geometry-Grounded Gaussian Splatting
Gaussian Splatting (GS) has demonstrated impressive quality and efficiency in novel view synthesis. However, shape extraction from Gaussian primitives remains an open problem. Due to inadequate geometry parameterization and approximation, existing shape reconstruction methods suffer from poor multi-view consistency and are sensitive to floaters. In this paper, we present a rigorous theoretical derivation that establishes Gaussian primitives as a specific type of stochastic solids. This theoretical framework provides a principled foundation for Geometry-Grounded Gaussian Splatting by enabling the direct treatment of Gaussian primitives as explicit geometric representations. Using the volumetric nature of stochastic solids, our method efficiently renders high-quality depth maps for fine-grained geometry extraction. Experiments show that our method achieves the best shape reconstruction results among all Gaussian Splatting-based methods on public datasets.
comment: 16 pages, 15 figures
♻ ☆ NegoCollab: A Common Representation Negotiation Approach for Heterogeneous Collaborative Perception NeurIPS 2025
Collaborative perception improves task performance by expanding the perception range through information sharing among agents. . Immutable heterogeneity poses a significant challenge in collaborative perception, as participating agents may employ different and fixed perception models. This leads to domain gaps in the intermediate features shared among agents, consequently degrading collaborative performance. Aligning the features of all agents to a common representation can eliminate domain gaps with low training cost. However, in existing methods, the common representation is designated as the representation of a specific agent, making it difficult for agents with significant domain discrepancies from this specific agent to achieve proper alignment. This paper proposes NegoCollab, a heterogeneous collaboration method based on the negotiated common representation. It introduces a negotiator during training to derive the common representation from the local representations of each modality's agent, effectively reducing the inherent domain gap with the various local representations. In NegoCollab, the mutual transformation of features between the local representation space and the common representation space is achieved by a pair of sender and receiver. To better align local representations to the common representation containing multimodal information, we introduce structural alignment loss and pragmatic alignment loss in addition to the distribution alignment loss to supervise the training. This enables the knowledge in the common representation to be fully distilled into the sender.
comment: 22 pages, Accepted by NeurIPS 2025
♻ ☆ Leveraging Convolutional and Graph Networks for an Unsupervised Remote Sensing Labelling Tool
Machine learning for remote sensing imaging relies on up-to-date and accurate labels for model training and testing. Labelling remote sensing imagery is time and cost intensive, requiring expert analysis. Previous labelling tools rely on pre-labelled data for training in order to label new unseen data. In this work, we define an unsupervised pipeline for finding and labelling geographical areas of similar context and content within Sentinel-2 satellite imagery. Our approach removes limitations of previous methods by utilising segmentation with convolutional and graph neural networks to encode a more robust feature space for image comparison. Unlike previous approaches we segment the image into homogeneous regions of pixels that are grouped based on colour and spatial similarity. Graph neural networks are used to aggregate information about the surrounding segments enabling the feature representation to encode the local neighbourhood whilst preserving its own local information. This reduces outliers in the labelling tool, allows users to label at a granular level, and allows a rotationally invariant semantic relationship at the image level to be formed within the encoding space. Our pipeline achieves high contextual consistency, with similarity scores of SSIM = 0.96 and SAM = 0.21 under context-aware evaluation, demonstrating robust organisation of the feature space for interactive labelling.
comment: Accepted for Taylor and Francis, Annals of GIS * Video supplement demonstrating feature-space exploration and interactive labelling is available at: https://youtu.be/GZl1ebZJgEA and is archived at https://doi.org/10.5281/zenodo.16676591
♻ ☆ Human Cognitive Benchmarks Reveal Foundational Visual Gaps in MLLMs
Humans develop perception through a bottom-up hierarchy: from basic primitives and Gestalt principles to high-level semantics. In contrast, current Multimodal Large Language Models (MLLMs) are trained directly on complex downstream tasks, often bypassing these foundational visual capabilities. To systematically investigate this gap, we introduce VisFactor, a benchmark that digitizes 20 vision-centric subtests from FRCT, a well-established cognitive psychology assessment spanning four domains of human visual cognition. Furthermore, we design algorithms to automatically construct and validate unlimited test cases with controllable difficulty. Using VisFactor, we evaluate 23 frontier MLLMs, including both proprietary (e.g., GPT, Gemini) and open-source (e.g., LLaMA, Qwen) models. The best model achieves a score of only 30.17%. Models consistently fail on tasks such as mental rotation, spatial relation inference, and figure-ground discrimination, regardless of model size or prompting strategy. These findings suggest that performance improvements on existing general benchmarks might represent castles in the air instead of a genuine mastery of human-like visual cognition.
comment: Update: Evaluated 23 SOTA MLLMs
♻ ☆ Atomic Depth Estimation From Noisy Electron Microscopy Data Via Deep Learning
We present a novel approach for extracting 3D atomic-level information from transmission electron microscopy (TEM) images affected by significant noise. The approach is based on formulating depth estimation as a semantic segmentation problem. We address the resulting segmentation problem by training a deep convolutional neural network to generate pixel-wise depth segmentation maps using simulated data corrupted by synthetic noise. The proposed method was applied to estimate the depth of atomic columns in CeO2 nanoparticles from simulated images and real-world TEM data. Our experiments show that the resulting depth estimates are accurate, calibrated and robust to noise.
♻ ☆ Bounding Box-Guided Diffusion for Synthesizing Industrial Images and Segmentation Map CVPR 2025
Synthetic dataset generation in Computer Vision, particularly for industrial applications, is still underexplored. Industrial defect segmentation, for instance, requires highly accurate labels, yet acquiring such data is costly and time-consuming. To address this challenge, we propose a novel diffusion-based pipeline for generating high-fidelity industrial datasets with minimal supervision. Our approach conditions the diffusion model on enriched bounding box representations to produce precise segmentation masks, ensuring realistic and accurately localized defect synthesis. Compared to existing layout-conditioned generative methods, our approach improves defect consistency and spatial accuracy. We introduce two quantitative metrics to evaluate the effectiveness of our method and assess its impact on a downstream segmentation task trained on real and synthetic data. Our results demonstrate that diffusion-based synthesis can bridge the gap between artificial and real-world industrial data, fostering more reliable and cost-efficient segmentation models. The code is publicly available at https://github.com/covisionlab/diffusion_labeling.
comment: Accepted at Synthetic Data for Computer Vision Workshop - CVPR 2025
♻ ☆ LangForce: Bayesian Decomposition of Vision Language Action Models via Latent Action Queries
Vision-Language-Action (VLA) models have shown promise in robot manipulation but often struggle to generalize to new instructions or complex multi-task scenarios. We identify a critical pathology in current training paradigms where goal-driven data collection creates a dataset bias. In such datasets, language instructions are highly predictable from visual observations alone, causing the conditional mutual information between instructions and actions to vanish, a phenomenon we term Information Collapse. Consequently, models degenerate into vision-only policies that ignore language constraints and fail in out-of-distribution (OOD) settings. To address this, we propose LangForce, a novel framework that enforces instruction following via Bayesian decomposition. By introducing learnable Latent Action Queries, we construct a dual-branch architecture to estimate both a vision-only prior $p(a \mid v)$ and a language-conditioned posterior $π(a \mid v, \ell)$. We then optimize the policy to maximize the conditional Pointwise Mutual Information (PMI) between actions and instructions. This objective effectively penalizes the vision shortcut and rewards actions that explicitly explain the language command. Without requiring new data, LangForce significantly improves generalization. Extensive experiments across on SimplerEnv and RoboCasa demonstrate substantial gains, including an 11.3% improvement on the challenging OOD SimplerEnv benchmark, validating the ability of our approach to robustly ground language in action.
♻ ☆ MSCloudCAM: Multi-Scale Context Adaptation with Convolutional Cross-Attention for Multispectral Cloud Segmentation
Clouds remain a major obstacle in optical satellite imaging, limiting accurate environmental and climate analysis. To address the strong spectral variability and the large scale differences among cloud types, we propose MSCloudCAM, a novel multi-scale context adapter network with convolution based cross-attention tailored for multispectral and multi-sensor cloud segmentation. A key contribution of MSCloudCAM is the explicit modeling of multiple complementary multi-scale context extractors. And also, rather than simply stacking or concatenating their outputs, our formulation uses one extractor's fine-resolution features and the other extractor's global contextual representations enabling dynamic, scale-aware feature selection. Building on this idea, we design a new convolution-based cross attention adapter that effectively fuses localized, detailed information with broader multi-scale context. Integrated with a hierarchical vision backbone and refined through channel and spatial attention mechanisms, MSCloudCAM achieves strong spectral-spatial discrimination. Experiments on various multisensor datatsets e.g. CloudSEN12 (Sentinel-2) and L8Biome (Landsat-8), demonstrate that MSCloudCAM achieves superior overall segmentation performance and competitive class-wise accuracy compared to recent state-of-the-art models, while maintaining competitive model complexity, highlighting the novelty and effectiveness of the proposed design for large-scale Earth observation.
comment: 6 pages, 3 Figures
♻ ☆ JointDiff: Bridging Continuous and Discrete in Multi-Agent Trajectory Generation ICLR 2026
Generative models often treat continuous data and discrete events as separate processes, creating a gap in modeling complex systems where they interact synchronously. To bridge this gap, we introduce JointDiff, a novel diffusion framework designed to unify these two processes by simultaneously generating continuous spatio-temporal data and synchronous discrete events. We demonstrate its efficacy in the sports domain by simultaneously modeling multi-agent trajectories and key possession events. This joint modeling is validated with non-controllable generation and two novel controllable generation scenarios: weak-possessor-guidance, which offers flexible semantic control over game dynamics through a simple list of intended ball possessors, and text-guidance, which enables fine-grained, language-driven generation. To enable the conditioning with these guidance signals, we introduce CrossGuid, an effective conditioning operation for multi-agent domains. We also share a new unified sports benchmark enhanced with textual descriptions for soccer and football datasets. JointDiff achieves state-of-the-art performance, demonstrating that joint modeling is crucial for building realistic and controllable generative models for interactive systems.
comment: Accepted at ICLR 2026
♻ ☆ Semantic-aware Random Convolution and Source Matching for Domain Generalization in Medical Image Segmentation
We tackle the challenging problem of single-source domain generalization (DG) for medical image segmentation, where we train a network on one domain (e.g., CT) and directly apply it to a different domain (e.g., MR) without adapting the model and without requiring images or annotations from the new domain during training. Our method diversifies the source domain through semantic-aware random convolution, where different regions of a source image are augmented differently at training-time, based on their annotation labels. At test-time, we complement the randomization of the training domain via mapping the intensity of target domain images, making them similar to source domain data. We perform a comprehensive evaluation on a variety of cross-modality and cross-center generalization settings for abdominal, whole-heart and prostate segmentation, where we outperform previous DG techniques in a vast majority of experiments. Additionally, we also investigate our method when training on whole-heart CT or MR data and testing on the diastolic and systolic phase of cine MR data captured with different scanner hardware. Overall, our evaluation shows that our method achieves new state-of-the-art performance in DG for medical image segmentation, even matching the performance of the in-domain baseline in several settings. We will release our source code upon acceptance of this manuscript.
♻ ☆ Learning to Detect Unseen Jailbreak Attacks in Large Vision-Language Models
Despite extensive alignment efforts, Large Vision-Language Models (LVLMs) remain vulnerable to jailbreak attacks. To mitigate these risks, existing detection methods are essential, yet they face two major challenges: generalization and accuracy. While learning-based methods trained on specific attacks fail to generalize to unseen attacks, learning-free methods based on hand-crafted heuristics suffer from limited accuracy and reduced efficiency. To address these limitations, we propose Learning to Detect (LoD), a learnable framework that eliminates the need for any attack data or hand-crafted heuristics. LoD operates by first extracting layer-wise safety representations directly from the model's internal activations using Multi-modal Safety Concept Activation Vectors classifiers, and then converting the high-dimensional representations into a one-dimensional anomaly score for detection via a Safety Pattern Auto-Encoder. Extensive experiments demonstrate that LoD consistently achieves state-of-the-art detection performance (AUROC) across diverse unseen jailbreak attacks on multiple LVLMs, while also significantly improving efficiency. Code is available at https://anonymous.4open.science/r/Learning-to-Detect-51CB.
comment: 12 pages; Previously this version appeared as arXiv:2510.15430 which was submitted as a new work by accident
♻ ☆ Adaptive Multimodal Person Recognition: A Robust Framework for Handling Missing Modalities
Person identification systems often rely on audio, visual, or behavioral cues, but real-world conditions frequently present with missing or degraded modalities. To address this challenge, we propose a multimodal person identification framework incorporating upper-body motion, face, and voice. Experimental results demonstrate that body motion outperforms traditional modalities such as face and voice in within-session evaluations, while serving as a complementary cue that enhances performance in multi-session scenarios. Our model employs a unified hybrid fusion strategy, fusing both feature-level and score-level information to maximize representational richness and decision accuracy. Specifically, it leverages multi-task learning to process modalities independently, followed by cross-attention and gated fusion mechanisms to exploit both unimodal information and cross-modal interactions. Finally, a confidence-weighted strategy and mistake-correction mechanism dynamically adapt to missing data, ensuring that our single classification head achieves optimal performance even in unimodal and bimodal scenarios. We evaluate our method on CANDOR, a newly introduced interview-based multimodal dataset, which we benchmark in this work for the first time. Our results demonstrate that the proposed trimodal system achieves 99.51% Top-1 accuracy on person identification tasks. In addition, we evaluate our model on the VoxCeleb1 dataset as a widely used evaluation protocol and reach 99.92% accuracy in bimodal mode, outperforming conventional approaches. Moreover, we show that our system maintains high accuracy even when one or two modalities are unavailable, making it a robust solution for real-world person recognition applications. The code and data for this work are publicly available.
comment: 9 pages and 8 tables
♻ ☆ MV-S2V: Multi-View Subject-Consistent Video Generation
Existing Subject-to-Video Generation (S2V) methods have achieved high-fidelity and subject-consistent video generation, yet remain constrained to single-view subject references. This limitation renders the S2V task reducible to an S2I + I2V pipeline, failing to exploit the full potential of video subject control. In this work, we propose and address the challenging Multi-View S2V (MV-S2V) task, which synthesizes videos from multiple reference views to enforce 3D-level subject consistency. Regarding the scarcity of training data, we first develop a synthetic data curation pipeline to generate highly customized synthetic data, complemented by a small-scale real-world captured dataset to boost the training of MV-S2V. Another key issue lies in the potential confusion between cross-subject and cross-view references in conditional generation. To overcome this, we further introduce Temporally Shifted RoPE (TS-RoPE) to distinguish between different subjects and distinct views of the same subject in reference conditioning. Our framework achieves superior 3D subject consistency w.r.t. multi-view reference images and high-quality visual outputs, establishing a new meaningful direction for subject-driven video generation. Our project page is available at: https://szy-young.github.io/mv-s2v
comment: 13 pages, 9 figures
♻ ☆ iFSQ: Improving FSQ for Image Generation with 1 Line of Code
The field of image generation is currently bifurcated into autoregressive (AR) models operating on discrete tokens and diffusion models utilizing continuous latents. This divide, rooted in the distinction between VQ-VAEs and VAEs, hinders unified modeling and fair benchmarking. Finite Scalar Quantization (FSQ) offers a theoretical bridge, yet vanilla FSQ suffers from a critical flaw: its equal-interval quantization can cause activation collapse. This mismatch forces a trade-off between reconstruction fidelity and information efficiency. In this work, we resolve this dilemma by simply replacing the activation function in original FSQ with a distribution-matching mapping to enforce a uniform prior. Termed iFSQ, this simple strategy requires just one line of code yet mathematically guarantees both optimal bin utilization and reconstruction precision. Leveraging iFSQ as a controlled benchmark, we uncover two key insights: (1) The optimal equilibrium between discrete and continuous representations lies at approximately 4 bits per dimension. (2) Under identical reconstruction constraints, AR models exhibit rapid initial convergence, whereas diffusion models achieve a superior performance ceiling, suggesting that strict sequential ordering may limit the upper bounds of generation quality. Finally, we extend our analysis by adapting Representation Alignment (REPA) to AR models, yielding LlamaGen-REPA. Codes is available at https://github.com/Tencent-Hunyuan/iFSQ
comment: Technical Report; Fixed eq.7 & 8 and corresponding content
♻ ☆ SWA-LDM: Toward Stealthy Watermarks for Latent Diffusion Models
Latent Diffusion Models (LDMs) have established themselves as powerful tools in the rapidly evolving field of image generation, capable of producing highly realistic images. However, their widespread adoption raises critical concerns about copyright infringement and the misuse of generated content. Watermarking techniques have emerged as a promising solution, enabling copyright identification and misuse tracing through imperceptible markers embedded in generated images. Among these, latent-based watermarking techniques are particularly promising, as they embed watermarks directly into the latent noise without altering the underlying LDM architecture. In this work, we demonstrate that such latent-based watermarks are practically vulnerable to detection and compromise through systematic analysis of output images' statistical patterns for the first time. To counter this, we propose SWA-LDM (Stealthy Watermark for LDM), a lightweight framework that enhances stealth by dynamically randomizing the embedded watermarks using the Gaussian-distributed latent noise inherent to diffusion models. By embedding unique, pattern-free signatures per image, SWA-LDM eliminates detectable artifacts while preserving image quality and extraction robustness. Experiments demonstrate an average of 20% improvement in stealth over state-of-the-art methods, enabling secure deployment of watermarked generative AI in real-world applications.
comment: 12 pages, 5 figures
♻ ☆ Self-Evolving Vision-Language Models for Image Quality Assessment via Voting and Ranking ICLR 2026
Improving vision-language models (VLMs) in the post-training stage typically relies on supervised fine-tuning or reinforcement learning, methods that necessitate costly, human-annotated data. While self-supervised techniques have proven effective for enhancing reasoning capabilities, their application to perceptual domains such as image quality assessment (IQA) remains largely unexplored. In this work, we introduce EvoQuality, a novel framework that enables a VLM to autonomously refine its quality perception capabilities without any ground-truth labels. EvoQuality adapts the principle of self-consistency to the ranking-based nature of IQA. It generates pseudo-labels by performing pairwise majority voting on the VLM's own outputs to establish a consensus on relative quality. These pseudo-rankings are then formulated into a fidelity reward that guides the model's iterative evolution through group relative policy optimization (GRPO). By iteratively leveraging its own predictions, EvoQuality progressively refines the VLM's perceptual capability. Extensive experiments show that EvoQuality boosts the base VLM's zero-shot performance by 31.8% on PLCC across diverse IQA benchmarks. Remarkably, despite being entirely self-supervised, EvoQuality achieves performance that is competitive with, or even surpasses, state-of-the-art supervised VLM-based IQA models, outperforming these models on 5 out of 7 IQA benchmarks. Furthermore, the framework demonstrates significant flexibility, allowing it to be stacked with pre-trained IQA models to bolster generalization on unseen datasets.
comment: Accepted to ICLR 2026
♻ ☆ There and Back Again: On the relation between Noise and Image Inversions in Diffusion Models ICLR 2026
Diffusion Models achieve state-of-the-art performance in generating new samples but lack a low-dimensional latent space that encodes the data into editable features. Inversion-based methods address this by reversing the denoising trajectory, transferring images to their approximated starting noise. In this work, we thoroughly analyze this procedure and focus on the relation between the initial noise, the generated samples, and their corresponding latent encodings obtained through the DDIM inversion. First, we show that latents exhibit structural patterns in the form of less diverse noise predicted for smooth image areas (e.g., plain sky). Through a series of analyses, we trace this issue to the first inversion steps, which fail to provide accurate and diverse noise. Consequently, the DDIM inversion space is notably less manipulative than the original noise. We show that prior inversion methods do not fully resolve this issue, but our simple fix, where we replace the first DDIM Inversion steps with a forward diffusion process, successfully decorrelates latent encodings and enables higher quality editions and interpolations. The code is available at https://github.com/luk-st/taba.
comment: ICLR 2026
♻ ☆ Distillation-based Layer Dropping (DLD): Effective End-to-end Framework for Dynamic Speech Networks ICASSP 2026
Edge devices operate in constrained and varying resource settings, requiring dynamic architectures that can adapt to limitations of the available resources. To meet such demands, layer dropping ($\mathcal{LD}$) approach is typically used to transform static models into dynamic ones by skipping parts of the network along with reducing overall computational complexity. However, existing $\mathcal{LD}$ methods greatly impact the dynamic model's performance for low and high dropping cases, deteriorating the performance-computation trade-off. To this end, we propose a distillation-based layer dropping (DLD) framework that effectively combines the capabilities of knowledge distillation and $\mathcal{LD}$ in an end-to-end fashion, thereby achieving state-of-the-art performance for dynamic speech networks. Comprehensive experimentation utilizing well-known speech recognition methods, including conformer and WavLM, on three public benchmarks demonstrates the effectiveness of our framework, reducing the word error rate by $9.32\%$ and $2.25\%$ for high and no dropping cases with $33.3\%$ reduction in training time.
comment: Accepted at ICASSP 2026
♻ ☆ Diffusion models for multivariate subsurface generation and efficient probabilistic inversion
Diffusion models offer stable training and state-of-the-art performance for deep generative modeling tasks. Here, we consider their use in the context of multivariate subsurface modeling and probabilistic inversion. We first demonstrate that diffusion models enhance multivariate modeling capabilities compared to variational autoencoders and generative adversarial networks. In diffusion modeling, the generative process involves a comparatively large number of time steps with update rules that can be modified to account for conditioning data. We propose different corrections to the popular Diffusion Posterior Sampling approach by Chung et al. (2023). In particular, we introduce a likelihood approximation accounting for the noise-contamination that is inherent in diffusion modeling. We assess performance in a multivariate geological scenario involving facies and correlated acoustic impedance. Conditional modeling is demonstrated using both local hard data (well logs) and nonlinear geophysics (fullstack seismic data). Our tests show significantly improved statistical robustness, enhanced sampling of the posterior probability density function and reduced computational costs, compared to the original approach. The method can be used with both hard and indirect conditioning data, individually or simultaneously. As the inversion is included within the diffusion process, it is faster than other methods requiring an outer-loop around the generative model, such as Markov chain Monte Carlo.
comment: 35 p., 16 figs. This updated version corrects an error with the analysis of the denoising scores' magnitudes in the results section. The discussion and conclusions of our study remain unchanged. The scores' trends were erroneously reported with inverted time-step order, now fixed in Figure 5a and b (now with the correct increasing trends) and in the corresponding analysis in the Results section
♻ ☆ Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity ICLR 2022
The success of deep ensembles on improving predictive performance, uncertainty estimation, and out-of-distribution robustness has been extensively studied in the machine learning literature. Albeit the promising results, naively training multiple deep neural networks and combining their predictions at inference leads to prohibitive computational costs and memory requirements. Recently proposed efficient ensemble approaches reach the performance of the traditional deep ensembles with significantly lower costs. However, the training resources required by these approaches are still at least the same as training a single dense model. In this work, we draw a unique connection between sparse neural network training and deep ensembles, yielding a novel efficient ensemble learning framework called FreeTickets. Instead of training multiple dense networks and averaging them, we directly train sparse subnetworks from scratch and extract diverse yet accurate subnetworks during this efficient, sparse-to-sparse training. Our framework, FreeTickets, is defined as the ensemble of these relatively cheap sparse subnetworks. Despite being an ensemble method, FreeTickets has even fewer parameters and training FLOPs than a single dense model. This seemingly counter-intuitive outcome is due to the ultra training/inference efficiency of dynamic sparse training. FreeTickets surpasses the dense baseline in all the following criteria: prediction accuracy, uncertainty estimation, out-of-distribution (OoD) robustness, as well as efficiency for both training and inference. Impressively, FreeTickets outperforms the naive deep ensemble with ResNet50 on ImageNet using around only 1/5 of the training FLOPs required by the latter. We have released our source code at https://github.com/VITA-Group/FreeTickets.
comment: published in International Conference on Learning Representations (ICLR 2022)
♻ ☆ LL-GaussianMap: Zero-shot Low-Light Image Enhancement via 2D Gaussian Splatting Guided Gain Maps
Significant progress has been made in low-light image enhancement with respect to visual quality. However, most existing methods primarily operate in the pixel domain or rely on implicit feature representations. As a result, the intrinsic geometric structural priors of images are often neglected. 2D Gaussian Splatting (2DGS) has emerged as a prominent explicit scene representation technique characterized by superior structural fitting capabilities and high rendering efficiency. Despite these advantages, the utilization of 2DGS in low-level vision tasks remains unexplored. To bridge this gap, LL-GaussianMap is proposed as the first unsupervised framework incorporating 2DGS into low-light image enhancement. Distinct from conventional methodologies, the enhancement task is formulated as a gain map generation process guided by 2DGS primitives. The proposed method comprises two primary stages. First, high-fidelity structural reconstruction is executed utilizing 2DGS. Then, data-driven enhancement dictionary coefficients are rendered via the rasterization mechanism of Gaussian splatting through an innovative unified enhancement module. This design effectively incorporates the structural perception capabilities of 2DGS into gain map generation, thereby preserving edges and suppressing artifacts during enhancement. Additionally, the reliance on paired data is circumvented through unsupervised learning. Experimental results demonstrate that LL-GaussianMap achieves superior enhancement performance with an extremely low storage footprint, highlighting the effectiveness of explicit Gaussian representations for image enhancement.
♻ ☆ AI-generated data contamination erodes pathological variability and diagnostic reliability
Generative artificial intelligence (AI) is rapidly populating medical records with synthetic content, creating a feedback loop where future models are increasingly at risk of training on uncurated AI-generated data. However, the clinical consequences of this AI-generated data contamination remain unexplored. Here, we show that in the absence of mandatory human verification, this self-referential cycle drives a rapid erosion of pathological variability and diagnostic reliability. By analysing more than 800,000 synthetic data points across clinical text generation, vision-language reporting, and medical image synthesis, we find that models progressively converge toward generic phenotypes regardless of the model architecture. Specifically, rare but critical findings, including pneumothorax and effusions, vanish from the synthetic content generated by AI models, while demographic representations skew heavily toward middle-aged male phenotypes. Crucially, this degradation is masked by false diagnostic confidence; models continue to issue reassuring reports while failing to detect life-threatening pathology, with false reassurance rates tripling to 40%. Blinded physician evaluation confirms that this decoupling of confidence and accuracy renders AI-generated documentation clinically useless after just two generations. We systematically evaluate three mitigation strategies, finding that while synthetic volume scaling fails to prevent collapse, mixing real data with quality-aware filtering effectively preserves diversity. Ultimately, our results suggest that without policy-mandated human oversight, the deployment of generative AI threatens to degrade the very healthcare data ecosystems it relies upon.
comment: *Corresponding author: Dianbo Liu (dianbo@nus.edu.sg)
♻ ☆ Universal Multi-Domain Translation via Diffusion Routers ICLR 2026
Multi-domain translation (MDT) aims to learn translations between multiple domains, yet existing approaches either require fully aligned tuples or can only handle domain pairs seen in training, limiting their practicality and excluding many cross-domain mappings. We introduce universal MDT (UMDT), a generalization of MDT that seeks to translate between any pair of $K$ domains using only $K-1$ paired datasets with a central domain. To tackle this problem, we propose Diffusion Router (DR), a unified diffusion-based framework that models all central$\leftrightarrow$non-central translations with a single noise predictor conditioned on the source and target domain labels. DR enables indirect non-central translations by routing through the central domain. We further introduce a novel scalable learning strategy with a variational-bound objective and an efficient Tweedie refinement procedure to support direct non-central mappings. Through evaluation on three large-scale UMDT benchmarks, DR achieves state-of-the-art results for both indirect and direct translations, while lowering sampling cost and unlocking novel tasks such as sketch$\leftrightarrow$segmentation. These results establish DR as a scalable and versatile framework for universal translation across multiple domains.
comment: Accepted in ICLR 2026
♻ ☆ SeNeDiF-OOD: Semantic Nested Dichotomy Fusion for Out-of-Distribution Detection Methodology in Open-World Classification. A Case Study on Monument Style Classification
Out-of-distribution (OOD) detection is a fundamental requirement for the reliable deployment of artificial intelligence applications in open-world environments. However, addressing the heterogeneous nature of OOD data, ranging from low-level corruption to semantic shifts, remains a complex challenge that single-stage detectors often fail to resolve. To address this issue, we propose SeNeDiF-OOD, a novel methodology based on Semantic Nested Dichotomy Fusion. This framework decomposes the detection task into a hierarchical structure of binary fusion nodes, where each layer is designed to integrate decision boundaries aligned with specific levels of semantic abstraction. To validate the proposed framework, we present a comprehensive case study using MonuMAI, a real-world architectural style recognition system exposed to an open environment. This application faces a diverse range of inputs, including non-monument images, unknown architectural styles, and adversarial attacks, making it an ideal testbed for our proposal. Through extensive experimental evaluation in this domain, results demonstrate that our hierarchical fusion methodology significantly outperforms traditional baselines, effectively filtering these diverse OOD categories while preserving in-distribution performance.
comment: 28 pages
♻ ☆ Gradient-Direction-Aware Density Control for 3D Gaussian Splatting
The emergence of 3D Gaussian Splatting (3DGS) has significantly advanced Novel View Synthesis (NVS) through explicit scene representation, enabling real-time photorealistic rendering. However, existing approaches manifest two critical limitations in complex scenarios: (1) Over-reconstruction occurs when persistent large Gaussians cannot meet adaptive splitting thresholds during density control. This is exacerbated by conflicting gradient directions that prevent effective splitting of these Gaussians; (2) Over-densification of Gaussians occurs in regions with aligned gradient aggregation, leading to redundant component proliferation. This redundancy significantly increases memory overhead due to unnecessary data retention. We present Gradient-Direction-Aware Gaussian Splatting (GDAGS) to address these challenges. Our key innovations: the Gradient Coherence Ratio (GCR), computed through normalized gradient vector norms, which explicitly discriminates Gaussians with concordant versus conflicting gradient directions; and a nonlinear dynamic weighting mechanism leverages the GCR to enable gradient-direction-aware density control. Specifically, GDAGS prioritizes conflicting-gradient Gaussians during splitting operations to enhance geometric details while suppressing redundant concordant-direction Gaussians. Conversely, in cloning processes, GDAGS promotes concordant-direction Gaussian densification for structural completion while preventing conflicting-direction Gaussian overpopulation. Comprehensive evaluations across diverse real-world benchmarks demonstrate that GDAGS achieves superior rendering quality while effectively mitigating over-reconstruction, suppressing over-densification, and constructing compact scene representations.
♻ ☆ MGPC: Multimodal Network for Generalizable Point Cloud Completion With Modality Dropout and Progressive Decoding
Point cloud completion aims to recover complete 3D geometry from partial observations caused by limited viewpoints and occlusions. Existing learning-based works, including 3D Convolutional Neural Network (CNN)-based, point-based, and Transformer-based methods, have achieved strong performance on synthetic benchmarks. However, due to the limitations of modality, scalability, and generative capacity, their generalization to novel objects and real-world scenarios remains challenging. In this paper, we propose MGPC, a generalizable multimodal point cloud completion framework that integrates point clouds, RGB images, and text within a unified architecture. MGPC introduces an innovative modality dropout strategy, a Transformer-based fusion module, and a novel progressive generator to improve robustness, scalability, and geometric modeling capability. We further develop an automatic data generation pipeline and construct MGPC-1M, a large-scale benchmark with over 1,000 categories and one million training pairs. Extensive experiments on MGPC-1M and in-the-wild data demonstrate that the proposed method consistently outperforms prior baselines and exhibits strong generalization under real-world conditions.
comment: Code and dataset are available at https://github.com/L-J-Yuan/MGPC
♻ ☆ DiffInk: Glyph- and Style-Aware Latent Diffusion Transformer for Text to Online Handwriting Generation ICLR 2026
Deep generative models have advanced text-to-online handwriting generation (TOHG), which aims to synthesize realistic pen trajectories conditioned on textual input and style references. However, most existing methods still primarily focus on character- or word-level generation, resulting in inefficiency and a lack of holistic structural modeling when applied to full text lines. To address these issues, we propose DiffInk, the first latent diffusion Transformer framework for full-line handwriting generation. We first introduce InkVAE, a novel sequential variational autoencoder enhanced with two complementary latent-space regularization losses: (1) an OCR-based loss enforcing glyph-level accuracy, and (2) a style-classification loss preserving writing style. This dual regularization yields a semantically structured latent space where character content and writer styles are effectively disentangled. We then introduce InkDiT, a novel latent diffusion Transformer that integrates target text and reference styles to generate coherent pen trajectories. Experimental results demonstrate that DiffInk outperforms existing state-of-the-art methods in both glyph accuracy and style fidelity, while significantly improving generation efficiency.
comment: Accepted by ICLR 2026
♻ ☆ R-Meshfusion: Reinforcement Learning Powered Sparse-View Mesh Reconstruction with Diffusion Priors
Mesh reconstruction from multi-view images is a fundamental problem in computer vision, but its performance degrades significantly under sparse-view conditions, especially in unseen regions where no ground-truth observations are available. While recent advances in diffusion models have demonstrated strong capabilities in synthesizing novel views from limited inputs, their outputs often suffer from visual artifacts and lack 3D consistency, posing challenges for reliable mesh optimization. In this paper, we propose a novel framework that leverages diffusion models to enhance sparse-view mesh reconstruction in a principled and reliable manner. To address the instability of diffusion outputs, we propose a Consensus Diffusion Module that filters unreliable generations via interquartile range (IQR) analysis and performs variance-aware image fusion to produce robust pseudo-supervision. Building on this, we design an online reinforcement learning strategy based on the Upper Confidence Bound (UCB) to adaptively select the most informative viewpoints for enhancement, guided by diffusion loss. Finally, the fused images are used to jointly supervise a NeRF-based model alongside sparse-view ground truth, ensuring consistency across both geometry and appearance. Extensive experiments demonstrate that our method achieves significant improvements in both geometric quality and rendering quality.
comment: needs to be revised and updated
♻ ☆ Revealing Subtle Phenotypes in Small Microscopy Datasets Using Latent Diffusion Models CVPR
Identifying subtle phenotypic variations in cellular images is critical for advancing biological research and accelerating drug discovery. These variations are often masked by the inherent cellular heterogeneity, making it challenging to distinguish differences between experimental conditions. Recent advancements in deep generative models have demonstrated significant potential for revealing these nuanced phenotypes through image translation, opening new frontiers in cellular and molecular biology as well as the identification of novel biomarkers. Among these generative models, diffusion models stand out for their ability to produce high-quality, realistic images. However, training diffusion models typically requires large datasets and substantial computational resources, both of which can be limited in biological research. In this work, we propose a novel approach that leverages pre-trained latent diffusion models to uncover subtle phenotypic changes. We validate our approach qualitatively and quantitatively on several small datasets of microscopy images. Our findings reveal that our approach enables effective detection of phenotypic variations, capturing both visually apparent and imperceptible differences. Ultimately, our results highlight the promising potential of this approach for phenotype detection, especially in contexts constrained by limited data and computational capacity.
comment: Published to CVPR CVDD 2025
♻ ☆ A Gift from the Integration of Discriminative and Diffusion-based Generative Learning: Boundary Refinement Remote Sensing Semantic Segmentation IEEE
Remote sensing semantic segmentation must address both what the ground objects are within an image and where they are located. Consequently, segmentation models must ensure not only the semantic correctness of large-scale patches (low-frequency information) but also the precise localization of boundaries between patches (high-frequency information). However, most existing approaches rely heavily on discriminative learning, which excels at capturing low-frequency features, while overlooking its inherent limitations in learning high-frequency features for semantic segmentation. Recent studies have revealed that diffusion generative models excel at generating high-frequency details. Our theoretical analysis confirms that the diffusion denoising process significantly enhances the model's ability to learn high-frequency features; however, we also observe that these models exhibit insufficient semantic inference for low-frequency features when guided solely by the original image. Therefore, we integrate the strengths of both discriminative and generative learning, proposing the Integration of Discriminative and diffusion-based Generative learning for Boundary Refinement (IDGBR) framework. The framework first generates a coarse segmentation map using a discriminative backbone model. This map and the original image are fed into a conditioning guidance network to jointly learn a guidance representation subsequently leveraged by an iterative denoising diffusion process refining the coarse segmentation. Extensive experiments across five remote sensing semantic segmentation datasets (binary and multi-class segmentation) confirm our framework's capability of consistent boundary refinement for coarse results from diverse discriminative architectures.
comment: Accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)
♻ ☆ Probing Deep into Temporal Profile Makes the Infrared Small Target Detector Much Better
Infrared small target (IRST) detection is challenging in simultaneously achieving precise, robust, and efficient performance due to extremely dim targets and strong interference. Current learning-based methods attempt to leverage ``more" information from both the spatial and the short-term temporal domains, but suffer from unreliable performance under complex conditions while incurring computational redundancy. In this paper, we explore the ``more essential" information from a more crucial domain for the detection. Through theoretical analysis, we reveal that the global temporal saliency and correlation information in the temporal profile demonstrate significant superiority in distinguishing target signals from other signals. To investigate whether such superiority is preferentially leveraged by well-trained networks, we built the first prediction attribution tool in this field and verified the importance of the temporal profile information. Inspired by the above conclusions, we remodel the IRST detection task as a one-dimensional signal anomaly detection task, and propose an efficient deep temporal probe network (DeepPro) that only performs calculations in the time dimension for IRST detection. We conducted extensive experiments to fully validate the effectiveness of our method. The experimental results are exciting, as our DeepPro outperforms existing state-of-the-art IRST detection methods on widely-used benchmarks with extremely high efficiency, and achieves a significant improvement on dim targets and in complex scenarios. We provide a new modeling domain, a new insight, a new method, and a new performance, which can promote the development of IRST detection. Codes are available at https://github.com/TinaLRJ/DeepPro.
♻ ☆ Token Caching for Diffusion Transformer Acceleration
Diffusion transformers have gained substantial interest in diffusion generative modeling due to their outstanding performance. However, their computational demands, particularly the quadratic complexity of attention mechanisms and multi-step inference processes, present substantial bottlenecks that limit their practical applications. To address these challenges, we propose TokenCache, a novel acceleration method that leverages the token-based multi-block architecture of transformers to reduce redundant computations. TokenCache tackles three critical questions: (1) Which tokens should be pruned and reused by the caching mechanism to eliminate redundancy? (2) Which blocks should be targeted for efficient caching? (3) At which time steps should caching be applied to balance speed and quality? In response to these challenges, TokenCache introduces a Cache Predictor that hierarchically addresses these issues by (1) Token pruning: assigning importance scores to each token to determine which tokens to prune and reuse; (2) Block selection: allocating pruning ratio to each block to adaptively select blocks for caching; (3) Temporal Scheduling: deciding at which time steps to apply caching strategies. Experimental results across various models demonstrate that TokenCache achieves an effective trade-off between generation quality and inference speed for diffusion transformers.
♻ ☆ Supervising 3D Talking Head Avatars with Analysis-by-Audio-Synthesis
In order to be widely applicable, speech-driven 3D head avatars must articulate their lips in accordance with speech, while also conveying the appropriate emotions with dynamically changing facial expressions. The key problem is that deterministic models produce high-quality lip-sync but without rich expressions, whereas stochastic models generate diverse expressions but with lower lip-sync quality. To get the best of both, we seek a stochastic model with accurate lip-sync. To that end, we develop a new approach based on the following observation: if a method generates realistic 3D lip motions, it should be possible to infer the spoken audio from the lip motion. The inferred speech should match the original input audio, and erroneous predictions create a novel supervision signal for training 3D talking head avatars with accurate lip-sync. To demonstrate this effect, we propose THUNDER (Talking Heads Under Neural Differentiable Elocution Reconstruction), a 3D talking head avatar framework that introduces a novel supervision mechanism via differentiable sound production. First, we train a novel mesh-to-speech model that regresses audio from facial animation. Then, we incorporate this model into a diffusion-based talking avatar framework. During training, the mesh-to-speech model takes the generated animation and produces a sound that is compared to the input speech, creating a differentiable analysis-by-audio-synthesis supervision loop. Our extensive qualitative and quantitative experiments demonstrate that THUNDER significantly improves the quality of the lip-sync of talking head avatars while still allowing for generation of diverse, high-quality, expressive facial animations. The code and models will be available at https://thunder.is.tue.mpg.de/
♻ ☆ KOCOBrain: Kuramoto-Guided Graph Network for Uncovering Structure-Function Coupling in Adolescent Prenatal Drug Exposure IEEE
Exposure to psychoactive substances during pregnancy, such as cannabis, can disrupt neurodevelopment and alter large-scale brain networks, yet identifying their neural signatures remains challenging. We introduced KOCOBrain: KuramotO COupled Brain Graph Network; a unified graph neural network framework that integrates structural and functional connectomes via Kuramoto-based phase dynamics and cognition-aware attention. The Kuramoto layer models neural synchronization over anatomical connections, generating phase-informed embeddings that capture structure-function coupling, while cognitive scores modulate information routing in a subject-specific manner followed by a joint objective enhancing robustness under class imbalance scenario. Applied to the ABCD cohort, KOCOBrain improved prenatal drug exposure prediction over relevant baselines and revealed interpretable structure-function patterns that reflect disrupted brain network coordination associated with early exposure.
comment: Preprint version of the paper accepted to the IEEE International Symposium on Biomedical Imaging (ISBI 2026). This is the author's accepted manuscript. The final published version will appear in IEEE Xplore
♻ ☆ Federated Joint Learning for Domain and Class Generalization ICASSP 2026
Efficient fine-tuning of visual-language models like CLIP has become crucial due to their large-scale parameter size and extensive pretraining requirements. Existing methods typically address either the issue of unseen classes or unseen domains in isolation, without considering a joint framework for both. In this paper, we propose \textbf{Fed}erated Joint Learning for \textbf{D}omain and \textbf{C}lass \textbf{G}eneralization, termed \textbf{FedDCG}, a novel approach that addresses both class and domain generalization in federated learning settings. Our method introduces a domain grouping strategy where class-generalized networks are trained within each group to prevent decision boundary confusion. During inference, we aggregate class-generalized results based on domain similarity, effectively integrating knowledge from both class and domain generalization. Specifically, a learnable network is employed to enhance class generalization capabilities, and a decoupling mechanism separates general and domain-specific knowledge, improving generalization to unseen domains. Extensive experiments across various datasets show that \textbf{FedDCG} outperforms state-of-the-art baselines in terms of accuracy and robustness.
comment: ICASSP 2026
♻ ☆ Astra: General Interactive World Model with Autoregressive Denoising ICLR 2026
Recent advances in diffusion transformers have empowered video generation models to generate high-quality video clips from texts or images. However, world models with the ability to predict long-horizon futures from past observations and actions remain underexplored, especially for general-purpose scenarios and various forms of actions. To bridge this gap, we introduce Astra, an interactive general world model that generates real-world futures for diverse scenarios (e.g., autonomous driving, robot grasping) with precise action interactions (e.g., camera motion, robot action). We propose an autoregressive denoising architecture and use temporal causal attention to aggregate past observations and support streaming outputs. We use a noise-augmented history memory to avoid over-reliance on past frames to balance responsiveness with temporal coherence. For precise action control, we introduce an action-aware adapter that directly injects action signals into the denoising process. We further develop a mixture of action experts that dynamically route heterogeneous action modalities, enhancing versatility across diverse real-world tasks such as exploration, manipulation, and camera control. Astra achieves interactive, consistent, and general long-term video prediction and supports various forms of interactions. Experiments across multiple datasets demonstrate the improvements of Astra in fidelity, long-range prediction, and action alignment over existing state-of-the-art world models.
comment: Accepted in ICLR 2026. Code is available at: https://github.com/EternalEvan/Astra
♻ ☆ ForensicHub: A Unified Benchmark & Codebase for All-Domain Fake Image Detection and Localization NeurIPS 2025
The field of Fake Image Detection and Localization (FIDL) is highly fragmented, encompassing four domains: deepfake detection (Deepfake), image manipulation detection and localization (IMDL), artificial intelligence-generated image detection (AIGC), and document image manipulation localization (Doc). Although individual benchmarks exist in some domains, a unified benchmark for all domains in FIDL remains blank. The absence of a unified benchmark results in significant domain silos, where each domain independently constructs its datasets, models, and evaluation protocols without interoperability, preventing cross-domain comparisons and hindering the development of the entire FIDL field. To close the domain silo barrier, we propose ForensicHub, the first unified benchmark & codebase for all-domain fake image detection and localization. Considering drastic variations on dataset, model, and evaluation configurations across all domains, as well as the scarcity of open-sourced baseline models and the lack of individual benchmarks in some domains, ForensicHub: i) proposes a modular and configuration-driven architecture that decomposes forensic pipelines into interchangeable components across datasets, transforms, models, and evaluators, allowing flexible composition across all domains; ii) fully implements 10 baseline models, 6 backbones, 2 new benchmarks for AIGC and Doc, and integrates 2 existing benchmarks of DeepfakeBench and IMDLBenCo through an adapter-based design; iii) conducts indepth analysis based on the ForensicHub, offering 8 key actionable insights into FIDL model architecture, dataset characteristics, and evaluation standards. ForensicHub represents a significant leap forward in breaking the domain silos in the FIDL field and inspiring future breakthroughs.
comment: NeurIPS 2025 DB Track Paper. Code available at: https://github.com/scu-zjz/ForensicHub
♻ ☆ Enhancing Descriptive Captions with Visual Attributes for Multimodal Perception
Training Large Multimodality Models (LMMs) relies on descriptive image caption that connects image and language. Existing methods for generating such captions often rely on distilling the captions from pretrained LMMs, constructing them from publicly available internet images, or even generating them through human annotation. However, these strategies can fall short in terms of precision and granularity, particularly when dealing with complex visual reasoning tasks. In this paper, we propose to leverage off-the-shelf visual specialists, which were trained from annotated images initially not for image captioning, for enhancing the image caption. Our approach, named EDC, explores object low-level and fine-grained attributes (e.g., depth, emotion and fine-grained categories) and object relations (e.g., relative location and human-object-interaction (HOI)), and combine the attributes into the descriptive caption. By systematically integrating these rich attributes into the generated captions, EDC significantly improves the descriptive quality of the captions, providing a deeper and more nuanced understanding of the visual content. Experiments demonstrate that such visual specialists are able to improve the performance for visual understanding tasks as well as reasoning that benefits from more accurate visual understanding. The complete source code of EDC pipeline and datasets will be available at https://github.com/syp2ysy/DCE.
comment: An open-source Agent for generating detailed image captions
♻ ☆ Uni-PrevPredMap: Extending PrevPredMap to a Unified Framework of Prior-Informed Modeling for Online Vectorized HD Map Construction
Safety constitutes a foundational imperative for autonomous driving systems, necessitating maximal incorporation of accessible prior information. This study establishes that temporal perception buffers and cost-efficient high-definition (HD) maps inherently form complementary prior sources for online vectorized HD map construction. We present Uni-PrevPredMap, a pioneering unified framework systematically integrating previous predictions with corrupted HD maps. Our framework introduces a tri-mode paradigm maintaining operational consistency across non-prior, temporal-prior, and temporal-map-fusion modes. This tri-mode paradigm simultaneously decouples the framework from ideal map assumptions while ensuring robust performance in both map-present and map-absent scenarios. Additionally, we develop a tile-indexed 3D vectorized global map processor enabling efficient 3D prior data refreshment, compact storage, and real-time retrieval. Uni-PrevPredMap achieves state-of-the-art map-absent performance across established online vectorized HD map construction benchmarks. When provided with corrupted HD maps, it exhibits robust capabilities in error-resilient prior fusion, empirically confirming the synergistic complementarity between temporal predictions and imperfect map data. Code is available at https://github.com/pnnnnnnn/Uni-PrevPredMap.
♻ ☆ Task-Specific Directions: Definition, Exploration, and Utilization in Parameter Efficient Fine-Tuning
Large language models demonstrate impressive performance on downstream tasks, yet they require extensive resource consumption when fully fine-tuning all parameters. To mitigate this, Parameter Efficient Fine-Tuning (PEFT) strategies, such as LoRA, have been developed. In this paper, we delve into the concept of task-specific directions (TSDs), which are critical for transitioning large models from pretrained states to task-specific enhancements in PEFT. We propose a framework to clearly define these directions and explore their properties and practical utilization challenges. We then introduce a novel approach, LoRA-Dash, which aims to maximize the impact of TSDs during the fine-tuning process, thereby enhancing model performance on targeted tasks. Additionally, based on our exploration of TSD, we focus on an important issue in PEFT: the initialization of LoRA. While some works have pointed out the significance of initialization for LoRA's performance and proposed various strategies, these methods are often empirical and not task-specific. To address this issue, we propose LoRA-Init. Starting from TSD, we identify the directions that require the most adjustment during fine-tuning for downstream tasks. By initializing the matrices in LoRA with these directions, LoRA-Init significantly enhances LoRA's performance. Moreover, we can combine LoRA-Dash and LoRA-Init to create the final version of LoRA based on TSDs, which we refer to as LoRA-TSD. Extensive experiments have conclusively demonstrated the effectiveness of these methods, and in-depth analyses further reveal the underlying mechanisms behind their success.
comment: 2026, TPAMI, Codes in https://github.com/Chongjie-Si/Subspace-Tuning
♻ ☆ Knowledge-enhanced Pretraining for Vision-language Pathology Foundation Model on Cancer Diagnosis
Vision-language foundation models have shown great promise in computational pathology but remain primarily data-driven, lacking explicit integration of medical knowledge. We introduce KEEP (KnowledgE-Enhanced Pathology), a foundation model that systematically incorporates disease knowledge into pretraining for cancer diagnosis. KEEP leverages a comprehensive disease knowledge graph encompassing 11,454 diseases and 139,143 attributes to reorganize millions of pathology image-text pairs into 143,000 semantically structured groups aligned with disease ontology hierarchies. This knowledge-enhanced pretraining aligns visual and textual representations within hierarchical semantic spaces, enabling deeper understanding of disease relationships and morphological patterns. Across 18 public benchmarks (over 14,000 whole-slide images) and 4 institutional rare cancer datasets (926 cases), KEEP consistently outperformed existing foundation models, showing substantial gains for rare subtypes. These results establish knowledge-enhanced vision-language modeling as a powerful paradigm for advancing computational pathology.
comment: V2: fixed typos, updated experimental results, added ablation
♻ ☆ Vlaser: Vision-Language-Action Model with Synergistic Embodied Reasoning
While significant research has focused on developing embodied reasoning capabilities using Vision-Language Models (VLMs) or integrating advanced VLMs into Vision-Language-Action (VLA) models for end-to-end robot control, few studies directly address the critical gap between upstream VLM-based reasoning and downstream VLA policy learning. In this work, we take an initial step toward bridging embodied reasoning with VLA policy learning by introducing Vlaser - a Vision-Language-Action Model with synergistic embodied reasoning capability, which is a foundational vision-language model designed to integrate high-level reasoning with low-level control for embodied agents. Built upon the high-quality Vlaser-6M dataset, Vlaser achieves state-of-the-art performance across a range of embodied reasoning benchmarks - including spatial reasoning, embodied grounding, embodied QA, and task planning. Furthermore, we systematically examine how different VLM initializations affect supervised VLA fine-tuning, offering novel insights into mitigating the domain shift between internet-scale pre-training data and embodied-specific policy learning data. Based on these insights, our approach achieves state-of-the-art results on the WidowX benchmark and competitive performance on the Google Robot benchmark.
♻ ☆ MindCine: Multimodal EEG-to-Video Reconstruction with Large-Scale Pretrained Models
Reconstructing human dynamic visual perception from electroencephalography (EEG) signals is of great research significance since EEG's non-invasiveness and high temporal resolution. However, EEG-to-video reconstruction remains challenging due to: 1) Single Modality: existing studies solely align EEG signals with the text modality, which ignores other modalities and are prone to suffer from overfitting problems; 2) Data Scarcity: current methods often have difficulty training to converge with limited EEG-video data. To solve the above problems, we propose a novel framework MindCine to achieve high-fidelity video reconstructions on limited data. We employ a multimodal joint learning strategy to incorporate beyond-text modalities in the training stage and leverage a pre-trained large EEG model to relieve the data scarcity issue for decoding semantic information, while a Seq2Seq model with causal attention is specifically designed for decoding perceptual information. Extensive experiments demonstrate that our model outperforms state-of-the-art methods both qualitatively and quantitatively. Additionally, the results underscore the effectiveness of the complementary strengths of different modalities and demonstrate that leveraging a large-scale EEG model can further enhance reconstruction performance by alleviating the challenges associated with limited data.
♻ ☆ Epistemic-aware Vision-Language Foundation Model for Fetal Ultrasound Interpretation
Recent medical vision-language models have shown promise on tasks such as VQA, report generation, and anomaly detection. However, most are adapted to structured adult imaging and underperform in fetal ultrasound, which poses challenges of multi-view image reasoning, numerous diseases, and image diversity. To bridge this gap, we introduce FetalMind, a medical AI system tailored to fetal ultrasound for both report generation and diagnosis. Guided by clinical workflow, we propose Salient Epistemic Disentanglement (SED), which injects an expert-curated bipartite graph into the model to decouple view-disease associations and to steer preference selection along clinically faithful steps via reinforcement learning. This design mitigates variability across diseases and heterogeneity across views, reducing learning bottlenecks while aligning the model's inference with obstetric practice. To train FetalMind at scale, we curate FetalSigma-1M dataset, the first large-scale fetal ultrasound report corpus, comprising 20K reports from twelve medical centers, addressing the scarcity of domain data. Extensive experiments show that FetalMind outperforms open- and closed-source baselines across all gestational stages, achieving +14% average gains and +61.2% higher accuracy on critical conditions while remaining efficient, stable, and scalable. Project Page: https://hexiao0275.github.io/FetalMind.
comment: This paper contains fundamental errors and will not be replaced
♻ ☆ BTCChat: Advancing Remote Sensing Bi-temporal Change Captioning with Multimodal Large Language Model ICASSP 2026
Bi-temporal satellite imagery supports critical applications such as urbanization monitoring and disaster assessment. Although powerful multimodal large language models~(MLLMs) have been applied in bi-temporal change analysis, previous methods process image pairs through direct concatenation, inadequately modeling temporal correlations and spatial semantic changes. This deficiency hampers visual-semantic alignment in change understanding, thereby constraining the overall effectiveness of current approaches. To address this gap, we propose BTCChat, a multi-temporal MLLM with advanced bi-temporal change understanding capability. BTCChat supports bi-temporal change captioning and retains single-image interpretation capability. To better capture temporal features and spatial semantic changes in image pairs, we design a Change Extraction module. Moreover, to enhance the model's attention to spatial details, we introduce a Prompt Augmentation mechanism, which incorporates contextual clues into the prompt to enhance model performance. Experimental results demonstrate that BTCChat achieves state-of-the-art performance on change captioning and visual question answering tasks. The code is available \href{https://github.com/IntelliSensing/BTCChat}{here}.
comment: 5 pages, 2 figures; Accepted by ICASSP 2026
♻ ☆ Image deblurring based on lightweight multi-information fusion network
Recently, deep learning based image deblurring has been well developed. However, exploiting the detailed image features in a deep learning framework always requires a mass of parameters, which inevitably makes the network suffer from high computational burden. To solve this problem, we propose a lightweight multiinformation fusion network (LMFN) for image deblurring. The proposed LMFN is designed as an encoder-decoder architecture. In the encoding stage, the image feature is reduced to various smallscale spaces for multi-scale information extraction and fusion without a large amount of information loss. Then, a distillation network is used in the decoding stage, which allows the network benefit the most from residual learning while remaining sufficiently lightweight. Meanwhile, an information fusion strategy between distillation modules and feature channels is also carried out by attention mechanism. Through fusing different information in the proposed approach, our network can achieve state-of-the-art image deblurring result with smaller number of parameters and outperforms existing methods in model complexity.
♻ ☆ SVBench: Evaluation of Video Generation Models on Social Reasoning
Recent text-to-video generation models exhibit remarkable progress in visual realism, motion fidelity, and text-video alignment, yet they remain fundamentally limited in their ability to generate socially coherent behavior. Unlike humans, who effortlessly infer intentions, beliefs, emotions, and social norms from brief visual cues, current models tend to render literal scenes without capturing the underlying causal or psychological logic. To systematically evaluate this gap, we introduce the first benchmark for social reasoning in video generation. Grounded in findings from developmental and social psychology, our benchmark organizes thirty classic social cognition paradigms into seven core dimensions, including mental-state inference, goal-directed action, joint attention, social coordination, prosocial behavior, social norms, and multi-agent strategy. To operationalize these paradigms, we develop a fully training-free agent-based pipeline that (i) distills the reasoning mechanism of each experiment, (ii) synthesizes diverse video-ready scenarios, (iii) enforces conceptual neutrality and difficulty control through cue-based critique, and (iv) evaluates generated videos using a high-capacity VLM judge across five interpretable dimensions of social reasoning. Using this framework, we conduct the first large-scale study across seven state-of-the-art video generation systems. Our results reveal substantial performance gaps: while modern models excel in surface-level plausibility, they systematically fail in intention recognition, belief reasoning, joint attention, and prosocial inference.
comment: 10pages
♻ ☆ Universal Beta Splatting ICLR 2026
We introduce Universal Beta Splatting (UBS), a unified framework that generalizes 3D Gaussian Splatting to N-dimensional anisotropic Beta kernels for explicit radiance field rendering. Unlike fixed Gaussian primitives, Beta kernels enable controllable dependency modeling across spatial, angular, and temporal dimensions within a single representation. Our unified approach captures complex light transport effects, handles anisotropic view-dependent appearance, and models scene dynamics without requiring auxiliary networks or specific color encodings. UBS maintains backward compatibility by approximating to Gaussian Splatting as a special case, guaranteeing plug-in usability and lower performance bounds. The learned Beta parameters naturally decompose scene properties into interpretable without explicit supervision: spatial (surface vs. texture), angular (diffuse vs. specular), and temporal (static vs. dynamic). Our CUDA-accelerated implementation achieves real-time rendering while consistently outperforming existing methods across static, view-dependent, and dynamic benchmarks, establishing Beta kernels as a scalable universal primitive for radiance field rendering. Our project website is available at https://rongliu-leo.github.io/universal-beta-splatting/.
comment: ICLR 2026
♻ ☆ Streaming-dLLM: Accelerating Diffusion LLMs via Suffix Pruning and Dynamic Decoding
Diffusion Large Language Models (dLLMs) offer a compelling paradigm for natural language generation, leveraging parallel decoding and bidirectional attention to achieve superior global coherence compared to autoregressive models. While recent works have accelerated inference via KV cache reuse or heuristic decoding, they overlook the intrinsic inefficiencies within the block-wise diffusion process. Specifically, they suffer from spatial redundancy by modeling informative-sparse suffix regions uniformly and temporal inefficiency by applying fixed denoising schedules across all the decoding process. To address this, we propose Streaming-dLLM, a training-free framework that streamlines inference across both spatial and temporal dimensions. Spatially, we introduce attenuation guided suffix modeling to approximate the full context by pruning redundant mask tokens. Temporally, we employ a dynamic confidence aware strategy with an early exit mechanism, allowing the model to skip unnecessary iterations for converged tokens. Extensive experiments show that Streaming-dLLM achieves up to 68.2X speedup while maintaining generation quality, highlighting its effectiveness in diffusion decoding. The code is available at https://github.com/xiaoshideta/Streaming-dLLM.
comment: Tech report. Code is available at https://github.com/xiaoshideta/Streaming-dLLM
♻ ☆ PyCAT4: A Hierarchical Vision Transformer-based Framework for 3D Human Pose Estimation
Recently, a significant improvement in the accuracy of 3D human pose estimation has been achieved by combining convolutional neural networks (CNNs) with pyramid grid alignment feedback loops. Additionally, innovative breakthroughs have been made in the field of computer vision through the adoption of Transformer-based temporal analysis architectures. Given these advancements, this study aims to deeply optimize and improve the existing Pymaf network architecture. The main innovations of this paper include: (1) Introducing a Transformer feature extraction network layer based on self-attention mechanisms to enhance the capture of low-level features; (2) Enhancing the understanding and capture of temporal signals in video sequences through feature temporal fusion techniques; (3) Implementing spatial pyramid structures to achieve multi-scale feature fusion, effectively balancing feature representations differences across different scales. The new PyCAT4 model obtained in this study is validated through experiments on the COCO and 3DPW datasets. The results demonstrate that the proposed improvement strategies significantly enhance the network's detection capability in human pose estimation, further advancing the development of human pose estimation technology.
comment: 10 pages, 20 figures
♻ ☆ The Script is All You Need: An Agentic Framework for Long-Horizon Dialogue-to-Cinematic Video Generation
Recent advances in video generation have produced models capable of synthesizing stunning visual content from simple text prompts. However, these models struggle to generate long-form, coherent narratives from high-level concepts like dialogue, revealing a ``semantic gap'' between a creative idea and its cinematic execution. To bridge this gap, we introduce a novel, end-to-end agentic framework for dialogue-to-cinematic-video generation. Central to our framework is ScripterAgent, a model trained to translate coarse dialogue into a fine-grained, executable cinematic script. To enable this, we construct ScriptBench, a new large-scale benchmark with rich multimodal context, annotated via an expert-guided pipeline. The generated script then guides DirectorAgent, which orchestrates state-of-the-art video models using a cross-scene continuous generation strategy to ensure long-horizon coherence. Our comprehensive evaluation, featuring an AI-powered CriticAgent and a new Visual-Script Alignment (VSA) metric, shows our framework significantly improves script faithfulness and temporal fidelity across all tested video models. Furthermore, our analysis uncovers a crucial trade-off in current SOTA models between visual spectacle and strict script adherence, providing valuable insights for the future of automated filmmaking.
♻ ☆ Generation then Reconstruction: Accelerating Masked Autoregressive Models via Two-Stage Sampling
Masked Autoregressive (MAR) models promise better efficiency in visual generation than autoregressive (AR) models for the ability of parallel generation, yet their acceleration potential remains constrained by the modeling complexity of spatially correlated visual tokens in a single step. To address this limitation, we introduce Generation then Reconstruction (GtR), a training-free hierarchical sampling strategy that decomposes generation into two stages: structure generation establishing global semantic scaffolding, followed by detail reconstruction efficiently completing remaining tokens. Assuming that it is more difficult to create an image from scratch than to complement images based on a basic image framework, GtR is designed to achieve acceleration by computing the reconstruction stage quickly while maintaining the generation quality by computing the generation stage slowly. Moreover, observing that tokens on the details of an image often carry more semantic information than tokens in the salient regions, we further propose Frequency-Weighted Token Selection (FTS) to offer more computation budget to tokens on image details, which are localized based on the energy of high frequency information. Extensive experiments on ImageNet class-conditional and text-to-image generation demonstrate 3.72x speedup on MAR-H while maintaining comparable quality (e.g., FID: 1.59, IS: 304.4 vs. original 1.59, 299.1), substantially outperforming existing acceleration methods across various model scales and generation tasks. Our codes will be released in https://github.com/feihongyan1/GtR.
comment: 12 pages, 6 figures
♻ ☆ DiVE-k: Differential Visual Reasoning for Fine-grained Image Recognition ICLR 2026
Large Vision Language Models (LVLMs) possess extensive text knowledge but struggles to utilize this knowledge for fine-grained image recognition, often failing to differentiate between visually similar categories. Existing fine-tuning methods using Reinforcement Learning (RL) with exact-match reward signals are often brittle, encourage memorization of training categories, and fail to elicit differential reasoning needed for generalization to unseen classes. To address this, we propose $\textbf{DiVE-k}$, $\textbf{Di}$fferential $\textbf{V}$isual r$\textbf{E}$asoning using top-$\textbf{k}$ generations, framework that leverages model's own top-k predictions as a training signal. For each training image, DiVE-k creates a multiple-choice question from the model's top-k outputs and uses RL to train the model to select the correct answer. This approach requires the model to perform fine-grained differential reasoning among plausible options and provides a simple, verifiable reward signal that mitigates memorization and improves generalization. Experiments on five standard fine-grained datasets show that our method significantly outperforms existing approaches. In the standard base-to-novel generalization setting, DiVE-k surpasses the QWEN2.5-VL-7B and ViRFT by 10.04% and 6.16% on the Harmonic Mean metric, respectively. Further experiments show similar gains in mixed-domain and few-shot scenarios. Our code is available $\href{https://github.com/raja-kumar/DiVE-k}{here}$
comment: ICLR 2026
♻ ☆ Deeply Learned Robust Matrix Completion for Large-scale Low-rank Data Recovery
Robust matrix completion (RMC) is a widely used machine learning tool that simultaneously tackles two critical issues in low-rank data analysis: missing data entries and extreme outliers. This paper proposes a novel scalable and learnable non-convex approach, coined Learned Robust Matrix Completion (LRMC), for large-scale RMC problems. LRMC enjoys low computational complexity with linear convergence. Motivated by the proposed theorem, the free parameters of LRMC can be effectively learned via deep unfolding to achieve optimum performance. Furthermore, this paper proposes a flexible feedforward-recurrent-mixed neural network framework that extends deep unfolding from fix-number iterations to infinite iterations. The superior empirical performance of LRMC is verified with extensive experiments against state-of-the-art on synthetic datasets and real applications, including video background subtraction, ultrasound imaging, face modeling, and cloud removal from satellite imagery.
♻ ☆ Watermark-based Attribution of AI-Generated Content ICLR 2026
Several companies have deployed watermark-based detection to identify AI-generated content. However, attribution--the ability to trace back to the user of a generative AI (GenAI) service who created a given AI-generated content--remains largely unexplored despite its growing importance. In this work, we aim to bridge this gap by conducting the first systematic study on watermark-based, user-level attribution of AI-generated content. Our key idea is to assign a unique watermark to each user of the GenAI service and embed this watermark into the AI-generated content created by that user. Attribution is then performed by identifying the user whose watermark best matches the one extracted from the given content. This approach, however, faces a key challenge: How should watermarks be selected for users to maximize attribution performance? To address the challenge, we first theoretically derive lower bounds on detection and attribution performance through rigorous probabilistic analysis for any given set of user watermarks. Then, we select watermarks for users to maximize these lower bounds, thereby optimizing detection and attribution performance. Our theoretical and empirical results show that watermark-based attribution inherits both the accuracy and (non-)robustness properties of the underlying watermark. Specifically, attribution remains highly accurate when the watermarked AI-generated content is either not post-processed or subjected to common post-processing such as JPEG compression, as well as black-box adversarial post-processing with limited query budgets.
comment: Accepted by ICLR 2026
♻ ☆ Extensions on Low-complexity DCT Approximations for Larger Blocklengths Based on Minimal Angle Similarity
The discrete cosine transform (DCT) is a central tool for image and video coding because it can be related to the Karhunen-Loève transform (KLT), which is the optimal transform in terms of retained transform coefficients and data decorrelation. In this paper, we introduce 16-, 32-, and 64-point low-complexity DCT approximations by minimizing individually the angle between the rows of the exact DCT matrix and the matrix induced by the approximate transforms. According to some classical figures of merit, the proposed transforms outperformed the approximations for the DCT already known in the literature. Fast algorithms were also developed for the low-complexity transforms, asserting a good balance between the performance and its computational cost. Practical applications in image encoding showed the relevance of the transforms in this context. In fact, the experiments showed that the proposed transforms had better results than the known approximations in the literature for the cases of 16, 32, and 64 blocklength.
comment: Clarified methodology; 27 pages, 6 figures, 5 tables
♻ ☆ Panoramic Distortion-Aware Tokenization for Person Detection and Localization in Overhead Fisheye Images
Person detection in overhead fisheye images is challenging due to person rotation and small persons. Prior work has mainly addressed person rotation, leaving the small-person problem underexplored. We remap fisheye images to equirectangular panoramas to handle rotation and exploit panoramic geometry to handle small persons more effectively. Conventional detection methods tend to favor larger persons because they dominate the attention maps, causing smaller persons to be missed. In hemispherical equirectangular panoramas, we find that apparent person height decreases approximately linearly with the vertical angle near the top of the image. Using this finding, we introduce panoramic distortion-aware tokenization to enhance the detection of small persons. This tokenization procedure divides panoramic features using self-similar figures that enable the determination of optimal divisions without gaps, and we leverage the maximum significance values in each tile of the token groups to preserve the significance areas of smaller persons. We propose a transformer-based person detection and localization method that combines panoramic-image remapping and the tokenization procedure. Extensive experiments demonstrated that our method outperforms conventional methods on large-scale datasets.
♻ ☆ A Genealogy of Foundation Models in Remote Sensing
Foundation models have garnered increasing attention for representation learning in remote sensing. Many such foundation models adopt approaches that have demonstrated success in computer vision with minimal domain-specific modification. However, the development and application of foundation models in this field are still burgeoning, as there are a variety of competing approaches for how to most effectively leverage remotely sensed data. This paper examines these approaches, along with their roots in the computer vision field. This is done to characterize potential advantages and pitfalls, while outlining future directions to further improve remote sensing-specific foundation models. We discuss the quality of the learned representations and methods to alleviate the need for massive compute resources. We first examine single-sensor remote foundation models to introduce concepts and provide context, and then place emphasis on incorporating the multi-sensor aspect of Earth observations into foundation models. In particular, we explore the extent to which existing approaches leverage multiple sensors in training foundation models in relation to multi-modal foundation models. Finally, we identify opportunities for further harnessing the vast amounts of unlabeled, seasonal, and multi-sensor remote sensing observations.
comment: 28 pages, submitted to ACM SigSpatial, accepted as of January 12th, 2026. This is the second revision from the original 20-page manuscript
♻ ☆ Spatiotemporal Semantic V2X Framework for Cooperative Collision Prediction IEEE
Intelligent Transportation Systems (ITS) demand real-time collision prediction to ensure road safety and reduce accident severity. Conventional approaches rely on transmitting raw video or high-dimensional sensory data from roadside units (RSUs) to vehicles, which is impractical under vehicular communication bandwidth and latency constraints. In this work, we propose a semantic V2X framework in which RSU-mounted cameras generate spatiotemporal semantic embeddings of future frames using the Video Joint Embedding Predictive Architecture (V-JEPA). To evaluate the system, we construct a digital twin of an urban traffic environment enabling the generation of d verse traffic scenarios with both safe and collision events. These embeddings of the future frame, extracted from V-JEPA, capture task-relevant traffic dynamics and are transmitted via V2X links to vehicles, where a lightweight attentive probe and classifier decode them to predict imminent collisions. By transmitting only semantic embeddings instead of raw frames, the proposed system significantly reduces communication overhead while maintaining predictive accuracy. Experimental results demonstrate that the framework with an appropriate processing method achieves a 10% F1-score improvement for collision prediction while reducing transmission requirements by four orders of magnitude compared to raw video. This validates the potential of semantic V2X communication to enable cooperative, real-time collision prediction in ITS.
comment: 6 pages 5 figures, accepted to IEEE ICC 2026
♻ ☆ Diagnosing Vision Language Models' Perception by Leveraging Human Methods for Color Vision Deficiencies EACL 2026
Large-scale Vision-Language Models (LVLMs) are being deployed in real-world settings that require visual inference. As capabilities improve, applications in navigation, education, and accessibility are becoming practical. These settings require accommodation of perceptual variation rather than assuming a uniform visual experience. Color perception illustrates this requirement: it is central to visual understanding yet varies across individuals due to Color Vision Deficiencies, an aspect largely ignored in multimodal AI. In this work, we examine whether LVLMs can account for variation in color perception using the Ishihara Test. We evaluate model behavior through generation, confidence, and internal representation, using Ishihara plates as controlled stimuli that expose perceptual differences. Although models possess factual knowledge about color vision deficiencies and can describe the test, they fail to reproduce the perceptual outcomes experienced by affected individuals and instead default to normative color perception. These results indicate that current systems lack mechanisms for representing alternative perceptual experiences, raising concerns for accessibility and inclusive deployment in multimodal settings.
comment: Accepted to appear in the main conference of EACL 2026
♻ ☆ X-LRM: X-ray Large Reconstruction Model for Extremely Sparse-View Computed Tomography Recovery in One Second 3DV 2026
Sparse-view 3D CT reconstruction aims to recover volumetric structures from a limited number of 2D X-ray projections. Existing feedforward methods are constrained by the scarcity of large-scale training datasets and the absence of direct and consistent 3D representations. In this paper, we propose an X-ray Large Reconstruction Model (X-LRM) for extremely sparse-view ($<$10 views) CT reconstruction. X-LRM consists of two key components: X-former and X-triplane. X-former can handle an arbitrary number of input views using an MLP-based image tokenizer and a Transformer-based encoder. The output tokens are then upsampled into our X-triplane representation, which models the 3D radiodensity as an implicit neural field. To support the training of X-LRM, we introduce Torso-16K, a large-scale dataset comprising over 16K volume-projection pairs of various torso organs. Extensive experiments demonstrate that X-LRM outperforms the state-of-the-art method by 1.5 dB and achieves 27$\times$ faster speed with better flexibility. Furthermore, the evaluation of lung segmentation tasks also suggests the practical value of our approach. Our code and dataset will be released at https://github.com/Richard-Guofeng-Zhang/X-LRM
comment: 3DV 2026; A large reconstruction model and the largest dataset (16K samples) for sparse-view CT recovery
♻ ☆ Feature-Space Adversarial Robustness Certification for Multimodal Large Language Models
Multimodal large language models (MLLMs) exhibit strong capabilities across diverse applications, yet remain vulnerable to adversarial perturbations that distort their feature representations and induce erroneous predictions. To address this vulnerability, we propose Feature-space Smoothing (FS), a general framework that provides certified robustness guarantees at the feature representation level of MLLMs. We theoretically prove that FS converts a given feature extractor into a smoothed variant that is guaranteed a certified lower bound on the cosine similarity between clean and adversarial features under $\ell_2$-bounded perturbations. Moreover, we establish that the value of this Feature Cosine Similarity Bound (FCSB) is determined by the intrinsic Gaussian robustness score of the given encoder. Building on this insight, we introduce the Gaussian Smoothness Booster (GSB), a plug-and-play module that enhances the Gaussian robustness score of pretrained MLLMs, thereby strengthening the robustness guaranteed by FS, without requiring additional MLLM retraining. Extensive experiments demonstrate that applying the FS to various MLLMs yields strong certified feature-space robustness and consistently leads to robust task-oriented performance across diverse applications.
comment: Under review
Artificial Intelligence 287
☆ M-SGWR: Multiscale Similarity and Geographically Weighted Regression
The first law of geography is a cornerstone of spatial analysis, emphasizing that nearby and related locations tend to be more similar, however, defining what constitutes "near" and "related" remains challenging, as different phenomena exhibit distinct spatial patterns. Traditional local regression models, such as Geographically Weighted Regression (GWR) and Multiscale GWR (MGWR), quantify spatial relationships solely through geographic proximity. In an era of globalization and digital connectivity, however, geographic proximity alone may be insufficient to capture how locations are interconnected. To address this limitation, we propose a new multiscale local regression framework, termed M-SGWR, which characterizes spatial interaction across two dimensions: geographic proximity and attribute (variable) similarity. For each predictor, geographic and attribute-based weight matrices are constructed separately and then combined using an optimized parameter, alpha, which governs their relative contribution to local model fitting. Analogous to variable-specific bandwidths in MGWR, the optimal alpha varies by predictor, allowing the model to flexibly account for geographic, mixed, or non-spatial (remote similarity) effects. Results from two simulation experiments and one empirical application demonstrate that M-SGWR consistently outperforms GWR, SGWR, and MGWR across all goodness-of-fit metrics.
☆ AI Cap-and-Trade: Efficiency Incentives for Accessibility and Sustainability
The race for artificial intelligence (AI) dominance often prioritizes scale over efficiency. Hyper-scaling is the common industry approach: larger models, more data, and as many computational resources as possible. Using more resources is a simpler path to improved AI performance. Thus, efficiency has been de-emphasized. Consequently, the need for costly computational resources has marginalized academics and smaller companies. Simultaneously, increased energy expenditure, due to growing AI use, has led to mounting environmental costs. In response to accessibility and sustainability concerns, we argue for research into, and implementation of, market-based methods that incentivize AI efficiency. We believe that incentivizing efficient operations and approaches will reduce emissions while opening new opportunities for academics and smaller companies. As a call to action, we propose a cap-and-trade system for AI. Our system provably reduces computations for AI deployment, thereby lowering emissions and monetizing efficiency to the benefit of of academics and smaller companies.
comment: 22 pages, 2 figures
☆ HARMONI: Multimodal Personalization of Multi-User Human-Robot Interactions with LLMs
Existing human-robot interaction systems often lack mechanisms for sustained personalization and dynamic adaptation in multi-user environments, limiting their effectiveness in real-world deployments. We present HARMONI, a multimodal personalization framework that leverages large language models to enable socially assistive robots to manage long-term multi-user interactions. The framework integrates four key modules: (i) a perception module that identifies active speakers and extracts multimodal input; (ii) a world modeling module that maintains representations of the environment and short-term conversational context; (iii) a user modeling module that updates long-term speaker-specific profiles; and (iv) a generation module that produces contextually grounded and ethically informed responses. Through extensive evaluation and ablation studies on four datasets, as well as a real-world scenario-driven user-study in a nursing home environment, we demonstrate that HARMONI supports robust speaker identification, online memory updating, and ethically aligned personalization, outperforming baseline LLM-driven approaches in user modeling accuracy, personalization quality, and user satisfaction.
☆ Visual Generation Unlocks Human-Like Reasoning through Multimodal World Models
Humans construct internal world models and reason by manipulating the concepts within these models. Recent advances in AI, particularly chain-of-thought (CoT) reasoning, approximate such human cognitive abilities, where world models are believed to be embedded within large language models. Expert-level performance in formal and abstract domains such as mathematics and programming has been achieved in current systems by relying predominantly on verbal reasoning. However, they still lag far behind humans in domains like physical and spatial intelligence, which require richer representations and prior knowledge. The emergence of unified multimodal models (UMMs) capable of both verbal and visual generation has therefore sparked interest in more human-like reasoning grounded in complementary multimodal pathways, though their benefits remain unclear. From a world-model perspective, this paper presents the first principled study of when and how visual generation benefits reasoning. Our key position is the visual superiority hypothesis: for certain tasks--particularly those grounded in the physical world--visual generation more naturally serves as world models, whereas purely verbal world models encounter bottlenecks arising from representational limitations or insufficient prior knowledge. Theoretically, we formalize internal world modeling as a core component of CoT reasoning and analyze distinctions among different forms of world models. Empirically, we identify tasks that necessitate interleaved visual-verbal CoT reasoning, constructing a new evaluation suite, VisWorld-Eval. Controlled experiments on a state-of-the-art UMM show that interleaved CoT significantly outperforms purely verbal CoT on tasks that favor visual world modeling, but offers no clear advantage otherwise. Together, this work clarifies the potential of multimodal world modeling for more powerful, human-like multimodal AI.
comment: Project page: https://thuml.github.io/Reasoning-Visual-World
☆ When Iterative RAG Beats Ideal Evidence: A Diagnostic Study in Scientific Multi-hop Question Answering
Retrieval-Augmented Generation (RAG) extends large language models (LLMs) beyond parametric knowledge, yet it is unclear when iterative retrieval-reasoning loops meaningfully outperform static RAG, particularly in scientific domains with multi-hop reasoning, sparse domain knowledge, and heterogeneous evidence. We provide the first controlled, mechanism-level diagnostic study of whether synchronized iterative retrieval and reasoning can surpass an idealized static upper bound (Gold Context) RAG. We benchmark eleven state-of-the-art LLMs under three regimes: (i) No Context, measuring reliance on parametric memory; (ii) Gold Context, where all oracle evidence is supplied at once; and (iii) Iterative RAG, a training-free controller that alternates retrieval, hypothesis refinement, and evidence-aware stopping. Using the chemistry-focused ChemKGMultiHopQA dataset, we isolate questions requiring genuine retrieval and analyze behavior with diagnostics spanning retrieval coverage gaps, anchor-carry drop, query quality, composition fidelity, and control calibration. Across models, Iterative RAG consistently outperforms Gold Context, with gains up to 25.6 percentage points, especially for non-reasoning fine-tuned models. Staged retrieval reduces late-hop failures, mitigates context overload, and enables dynamic correction of early hypothesis drift, but remaining failure modes include incomplete hop coverage, distractor latch trajectories, early stopping miscalibration, and high composition failure rates even with perfect retrieval. Overall, staged retrieval is often more influential than the mere presence of ideal evidence; we provide practical guidance for deploying and diagnosing RAG systems in specialized scientific settings and a foundation for more reliable, controllable iterative retrieval-reasoning frameworks.
comment: 27 pages, 15 figures
☆ Routing End User Queries to Enterprise Databases
We address the task of routing natural language queries in multi-database enterprise environments. We construct realistic benchmarks by extending existing NL-to-SQL datasets. Our study shows that routing becomes increasingly challenging with larger, domain-overlapping DB repositories and ambiguous queries, motivating the need for more structured and robust reasoning-based solutions. By explicitly modelling schema coverage, structural connectivity, and fine-grained semantic alignment, the proposed modular, reasoning-driven reranking strategy consistently outperforms embedding-only and direct LLM-prompting baselines across all the metrics.
comment: 6 pages, 2 figures
☆ An Interpretable Recommendation Model for Psychometric Data, With an Application to Gerontological Primary Care
There are challenges that must be overcome to make recommender systems useful in healthcare settings. The reasons are varied: the lack of publicly available clinical data, the difficulty that users may have in understanding the reasons why a recommendation was made, the risks that may be involved in following that recommendation, and the uncertainty about its effectiveness. In this work, we address these challenges with a recommendation model that leverages the structure of psychometric data to provide visual explanations that are faithful to the model and interpretable by care professionals. We focus on a narrow healthcare niche, gerontological primary care, to show that the proposed recommendation model can assist the attending professional in the creation of personalised care plans. We report results of a comparative offline performance evaluation of the proposed model on healthcare datasets that were collected by research partners in Brazil, as well as the results of a user study that evaluates the interpretability of the visual explanations the model generates. The results suggest that the proposed model can advance the application of recommender systems in this healthcare niche, which is expected to grow in demand , opportunities, and information technology needs as demographic changes become more pronounced.
comment: 81 pages, 19 figures, 3 annexes
☆ Revisiting Incremental Stochastic Majorization-Minimization Algorithms with Applications to Mixture of Experts
Processing high-volume, streaming data is increasingly common in modern statistics and machine learning, where batch-mode algorithms are often impractical because they require repeated passes over the full dataset. This has motivated incremental stochastic estimation methods, including the incremental stochastic Expectation-Maximization (EM) algorithm formulated via stochastic approximation. In this work, we revisit and analyze an incremental stochastic variant of the Majorization-Minimization (MM) algorithm, which generalizes incremental stochastic EM as a special case. Our approach relaxes key EM requirements, such as explicit latent-variable representations, enabling broader applicability and greater algorithmic flexibility. We establish theoretical guarantees for the incremental stochastic MM algorithm, proving consistency in the sense that the iterates converge to a stationary point characterized by a vanishing gradient of the objective. We demonstrate these advantages on a softmax-gated mixture of experts (MoE) regression problem, for which no stochastic EM algorithm is available. Empirically, our method consistently outperforms widely used stochastic optimizers, including stochastic gradient descent, root mean square propagation, adaptive moment estimation, and second-order clipped stochastic optimization. These results support the development of new incremental stochastic algorithms, given the central role of softmax-gated MoE architectures in contemporary deep neural networks for heterogeneous data modeling. Beyond synthetic experiments, we also validate practical effectiveness on two real-world datasets, including a bioinformatics study of dent maize genotypes under drought stress that integrates high-dimensional proteomics with ecophysiological traits, where incremental stochastic MM yields stable gains in predictive performance.
comment: TrungKhang Tran and TrungTin Nguyen are co-first authors
☆ Unsupervised Learning of Efficient Exploration: Pre-training Adaptive Policies via Self-Imposed Goals ICLR 2026
Unsupervised pre-training can equip reinforcement learning agents with prior knowledge and accelerate learning in downstream tasks. A promising direction, grounded in human development, investigates agents that learn by setting and pursuing their own goals. The core challenge lies in how to effectively generate, select, and learn from such goals. Our focus is on broad distributions of downstream tasks where solving every task zero-shot is infeasible. Such settings naturally arise when the target tasks lie outside of the pre-training distribution or when their identities are unknown to the agent. In this work, we (i) optimize for efficient multi-episode exploration and adaptation within a meta-learning framework, and (ii) guide the training curriculum with evolving estimates of the agent's post-adaptation performance. We present ULEE, an unsupervised meta-learning method that combines an in-context learner with an adversarial goal-generation strategy that maintains training at the frontier of the agent's capabilities. On XLand-MiniGrid benchmarks, ULEE pre-training yields improved exploration and adaptation abilities that generalize to novel objectives, environment dynamics, and map structures. The resulting policy attains improved zero-shot and few-shot performance, and provides a strong initialization for longer fine-tuning processes. It outperforms learning from scratch, DIAYN pre-training, and alternative curricula.
comment: To appear at ICLR 2026
☆ CASTER: Breaking the Cost-Performance Barrier in Multi-Agent Orchestration via Context-Aware Strategy for Task Efficient Routing
Graph-based Multi-Agent Systems (MAS) enable complex cyclic workflows but suffer from inefficient static model allocation, where deploying strong models uniformly wastes computation on trivial sub-tasks. We propose CASTER (Context-Aware Strategy for Task Efficient Routing), a lightweight router for dynamic model selection in graph-based MAS. CASTER employs a Dual-Signal Router that combines semantic embeddings with structural meta-features to estimate task difficulty. During training, the router self-optimizes through a Cold Start to Iterative Evolution paradigm, learning from its own routing failures via on-policy negative feedback. Experiments using LLM-as-a-Judge evaluation across Software Engineering, Data Analysis, Scientific Discovery, and Cybersecurity demonstrate that CASTER reduces inference cost by up to 72.4% compared to strong-model baselines while matching their success rates, and consistently outperforms both heuristic routing and FrugalGPT across all domains.
☆ LVLMs and Humans Ground Differently in Referential Communication
For generative AI agents to partner effectively with human users, the ability to accurately predict human intent is critical. But this ability to collaborate remains limited by a critical deficit: an inability to model common ground. Here, we present a referential communication experiment with a factorial design involving director-matcher pairs (human-human, human-AI, AI-human, and AI-AI) that interact with multiple turns in repeated rounds to match pictures of objects not associated with any obvious lexicalized labels. We release the online pipeline for data collection, the tools and analyses for accuracy, efficiency, and lexical overlap, and a corpus of 356 dialogues (89 pairs over 4 rounds each) that unmasks LVLMs' limitations in interactively resolving referring expressions, a crucial skill that underlies human language use.
comment: 24 pages, 16 figures, preprint
☆ Reimagining Peer Review Process Through Multi-Agent Mechanism Design ICSE
The software engineering research community faces a systemic crisis: peer review is failing under growing submissions, misaligned incentives, and reviewer fatigue. Community surveys reveal that researchers perceive the process as "broken." This position paper argues that these dysfunctions are mechanism design failures amenable to computational solutions. We propose modeling the research community as a stochastic multi-agent system and applying multi-agent reinforcement learning to design incentive-compatible protocols. We outline three interventions: a credit-based submission economy, MARL-optimized reviewer assignment, and hybrid verification of review consistency. We present threat models, equity considerations, and phased pilot metrics. This vision charts a research agenda toward sustainable peer review.
comment: To appear in the Proceedings of the 2026 IEEE/ACM 48th International Conference on Software Engineering: Future of Software Engineering (ICSE-FoSE). 4 pages, 1 figure, 1 table
☆ GAVEL: Towards rule-based safety through activation monitoring ICLR 2026
Large language models (LLMs) are increasingly paired with activation-based monitoring to detect and prevent harmful behaviors that may not be apparent at the surface-text level. However, existing activation safety approaches, trained on broad misuse datasets, struggle with poor precision, limited flexibility, and lack of interpretability. This paper introduces a new paradigm: rule-based activation safety, inspired by rule-sharing practices in cybersecurity. We propose modeling activations as cognitive elements (CEs), fine-grained, interpretable factors such as ''making a threat'' and ''payment processing'', that can be composed to capture nuanced, domain-specific behaviors with higher precision. Building on this representation, we present a practical framework that defines predicate rules over CEs and detects violations in real time. This enables practitioners to configure and update safeguards without retraining models or detectors, while supporting transparency and auditability. Our results show that compositional rule-based activation safety improves precision, supports domain customization, and lays the groundwork for scalable, interpretable, and auditable AI governance. We will release GAVEL as an open-source framework and provide an accompanying automated rule creation tool.
comment: Accepted to ICLR 2026
☆ Agentic Design Patterns: A System-Theoretic Framework
With the development of foundation model (FM), agentic AI systems are getting more attention, yet their inherent issues like hallucination and poor reasoning, coupled with the frequent ad-hoc nature of system design, lead to unreliable and brittle applications. Existing efforts to characterise agentic design patterns often lack a rigorous systems-theoretic foundation, resulting in high-level or convenience-based taxonomies that are difficult to implement. This paper addresses this gap by introducing a principled methodology for engineering robust AI agents. We propose two primary contributions: first, a novel system-theoretic framework that deconstructs an agentic AI system into five core, interacting functional subsystems: Reasoning & World Model, Perception & Grounding, Action Execution, Learning & Adaptation, and Inter-Agent Communication. Second, derived from this architecture and directly mapped to a comprehensive taxonomy of agentic challenges, we present a collection of 12 agentic design patterns. These patterns - categorised as Foundational, Cognitive & Decisional, Execution & Interaction, and Adaptive & Learning - offer reusable, structural solutions to recurring problems in agent design. The utility of the framework is demonstrated by a case study on the ReAct framework, showing how the proposed patterns can rectify systemic architectural deficiencies. This work provides a foundational language and a structured methodology to standardise agentic design communication among researchers and engineers, leading to more modular, understandable, and reliable autonomous systems.
☆ Veri-Sure: A Contract-Aware Multi-Agent Framework with Temporal Tracing and Formal Verification for Correct RTL Code Generation
In the rapidly evolving field of Electronic Design Automation (EDA), the deployment of Large Language Models (LLMs) for Register-Transfer Level (RTL) design has emerged as a promising direction. However, silicon-grade correctness remains bottlenecked by: (i) limited test coverage and reliability of simulation-centric evaluation, (ii) regressions and repair hallucinations introduced by iterative debugging, and (iii) semantic drift as intent is reinterpreted across agent handoffs. In this work, we propose Veri-Sure, a multi-agent framework that establishes a design contract to align agents' intent and uses a patching mechanism guided by static dependency slicing to perform precise, localized repairs. By integrating a multi-branch verification pipeline that combines trace-driven temporal analysis with formal verification consisting of assertion-based checking and boolean equivalence proofs, Veri-Sure enables functional correctness beyond pure simulations. We also introduce VerilogEval-v2-EXT, extending the original benchmark with 53 more industrial-grade design tasks and stratified difficulty levels, and show that Veri-Sure achieves state-of-the-art verified-correct RTL code generation performance, surpassing standalone LLMs and prior agentic systems.
☆ TokenSeek: Memory Efficient Fine Tuning via Instance-Aware Token Ditching ICLR 2026
Fine tuning has been regarded as a de facto approach for adapting large language models (LLMs) to downstream tasks, but the high training memory consumption inherited from LLMs makes this process inefficient. Among existing memory efficient approaches, activation-related optimization has proven particularly effective, as activations consistently dominate overall memory consumption. Although prior arts offer various activation optimization strategies, their data-agnostic nature ultimately results in ineffective and unstable fine tuning. In this paper, we propose TokenSeek, a universal plugin solution for various transformer-based models through instance-aware token seeking and ditching, achieving significant fine-tuning memory savings (e.g., requiring only 14.8% of the memory on Llama3.2 1B) with on-par or even better performance. Furthermore, our interpretable token seeking process reveals the underlying reasons for its effectiveness, offering valuable insights for future research on token efficiency. Homepage: https://runjia.tech/iclr_tokenseek/
comment: ICLR 2026
☆ Quantum Circuit Pre-Synthesis: Learning Local Edits to Reduce $T$-count
Compiling quantum circuits into Clifford+$T$ gates is a central task for fault-tolerant quantum computing using stabilizer codes. In the near term, $T$ gates will dominate the cost of fault tolerant implementations, and any reduction in the number of such expensive gates could mean the difference between being able to run a circuit or not. While exact synthesis is exponentially hard in the number of qubits, local synthesis approaches are commonly used to compile large circuits by decomposing them into substructures. However, composing local methods leads to suboptimal compilations in key metrics such as $T$-count or circuit depth, and their performance strongly depends on circuit representation. In this work, we address this challenge by proposing \textsc{Q-PreSyn}, a strategy that, given a set of local edits preserving circuit equivalence, uses a RL agent to identify effective sequences of such actions and thereby obtain circuit representations that yield a reduced $T$-count upon synthesis. Experimental results of our proposed strategy, applied on top of well-known synthesis algorithms, show up to a $20\%$ reduction in $T$-count on circuits with up to 25 qubits, without introducing any additional approximation error prior to synthesis.
comment: 10+5 pages, 10 figures, 3 algorithms
☆ RvB: Automating AI System Hardening via Iterative Red-Blue Games
The dual offensive and defensive utility of Large Language Models (LLMs) highlights a critical gap in AI security: the lack of unified frameworks for dynamic, iterative adversarial adaptation hardening. To bridge this gap, we propose the Red Team vs. Blue Team (RvB) framework, formulated as a training-free, sequential, imperfect-information game. In this process, the Red Team exposes vulnerabilities, driving the Blue Team to learning effective solutions without parameter updates. We validate our framework across two challenging domains: dynamic code hardening against CVEs and guardrail optimization against jailbreaks. Our empirical results show that this interaction compels the Blue Team to learn fundamental defensive principles, leading to robust remediations that are not merely overfitted to specific exploits. RvB achieves Defense Success Rates of 90\% and 45\% across the respective tasks while maintaining near 0\% False Positive Rates, significantly surpassing baselines. This work establishes the iterative adversarial interaction framework as a practical paradigm that automates the continuous hardening of AI systems.
☆ Component-Level Lesioning of Language Models Reveals Clinically Aligned Aphasia Phenotypes
Large language models (LLMs) increasingly exhibit human-like linguistic behaviors and internal representations that they could serve as computational simulators of language cognition. We ask whether LLMs can be systematically manipulated to reproduce language-production impairments characteristic of aphasia following focal brain lesions. Such models could provide scalable proxies for testing rehabilitation hypotheses, and offer a controlled framework for probing the functional organization of language. We introduce a clinically grounded, component-level framework that simulates aphasia by selectively perturbing functional components in LLMs, and apply it to both modular Mixture-of-Experts models and dense Transformers using a unified intervention interface. Our pipeline (i) identifies subtype-linked components for Broca's and Wernicke's aphasia, (ii) interprets these components with linguistic probing tasks, and (iii) induces graded impairments by progressively perturbing the top-k subtype-linked components, evaluating outcomes with Western Aphasia Battery (WAB) subtests summarized by Aphasia Quotient (AQ). Across architectures and lesioning strategies, subtype-targeted perturbations yield more systematic, aphasia-like regressions than size-matched random perturbations, and MoE modularity supports more localized and interpretable phenotype-to-component mappings. These findings suggest that modular LLMs, combined with clinically informed component perturbations, provide a promising platform for simulating aphasic language production and studying how distinct language functions degrade under targeted disruptions.
☆ Hyperbolic Additive Margin Softmax with Hierarchical Information for Speaker Verification ICASSP 2026
Speaker embedding learning based on Euclidean space has achieved significant progress, but it is still insufficient in modeling hierarchical information within speaker features. Hyperbolic space, with its negative curvature geometric properties, can efficiently represent hierarchical information within a finite volume, making it more suitable for the feature distribution of speaker embeddings. In this paper, we propose Hyperbolic Softmax (H-Softmax) and Hyperbolic Additive Margin Softmax (HAM-Softmax) based on hyperbolic space. H-Softmax incorporates hierarchical information into speaker embeddings by projecting embeddings and speaker centers into hyperbolic space and computing hyperbolic distances. HAM-Softmax further enhances inter-class separability by introducing margin constraint on this basis. Experimental results show that H-Softmax and HAM-Softmax achieve average relative EER reductions of 27.84% and 14.23% compared with standard Softmax and AM-Softmax, respectively, demonstrating that the proposed methods effectively improve speaker verification performance and at the same time preserve the capability of hierarchical structure modeling. The code will be released at https://github.com/PunkMale/HAM-Softmax.
comment: 5 pages, 3 figures, Accepted at ICASSP 2026
☆ SAM Audio Judge: A Unified Multimodal Framework for Perceptual Evaluation of Audio Separation
The performance evaluation remains a complex challenge in audio separation, and existing evaluation metrics are often misaligned with human perception, course-grained, relying on ground truth signals. On the other hand, subjective listening tests remain the gold standard for real-world evaluation, but they are expensive, time-consuming, and difficult to scale. This paper addresses the growing need for automated systems capable of evaluating audio separation without human intervention. The proposed evaluation metric, SAM Audio Judge (SAJ), is a multimodal fine-grained reference-free objective metric, which shows highly alignment with human perceptions. SAJ supports three audio domains (speech, music and general sound events) and three prompt inputs (text, visual and span), covering four different dimensions of evaluation (recall, percision, faithfulness, and overall). SAM Audio Judge also shows potential applications in data filtering, pseudo-labeling large datasets and reranking in audio separation models. We release our code and pre-trained models at: https://github.com/facebookresearch/sam-audio.
☆ Out-of-Distribution Generalization via Invariant Trajectories for Multimodal Large Language Model Editing
Knowledge editing emerges as a crucial technique for efficiently correcting incorrect or outdated knowledge in large language models (LLM). Existing editing methods for unimodal LLM rely on a rigid parameter-to-output mapping, which causes causal-underfit and causal-overfit in cascaded reasoning for Multimodal LLM (MLLM). In this paper, we reformulate MLLM editing as an out-of-distribution (OOD) generalization problem, where the goal is to discern semantic shift with factual shift and thus achieve robust editing among diverse cross-modal prompting. The key challenge of this OOD problem lies in identifying invariant causal trajectories that generalize accurately while suppressing spurious correlations. To address it, we propose ODEdit, a plug-and-play invariant learning based framework that optimizes the tripartite OOD risk objective to simultaneously enhance editing reliability, locality, and generality.We further introduce an edit trajectory invariant learning method, which integrates a total variation penalty into the risk minimization objective to stabilize edit trajectories against environmental variations. Theoretical analysis and extensive experiments demonstrate the effectiveness of ODEdit.
☆ AlignCoder: Aligning Retrieval with Target Intent for Repository-Level Code Completion
Repository-level code completion remains a challenging task for existing code large language models (code LLMs) due to their limited understanding of repository-specific context and domain knowledge. While retrieval-augmented generation (RAG) approaches have shown promise by retrieving relevant code snippets as cross-file context, they suffer from two fundamental problems: misalignment between the query and the target code in the retrieval process, and the inability of existing retrieval methods to effectively utilize the inference information. To address these challenges, we propose AlignCoder, a repository-level code completion framework that introduces a query enhancement mechanism and a reinforcement learning based retriever training method. Our approach generates multiple candidate completions to construct an enhanced query that bridges the semantic gap between the initial query and the target code. Additionally, we employ reinforcement learning to train an AlignRetriever that learns to leverage inference information in the enhanced query for more accurate retrieval. We evaluate AlignCoder on two widely-used benchmarks (CrossCodeEval and RepoEval) across five backbone code LLMs, demonstrating an 18.1% improvement in EM score compared to baselines on the CrossCodeEval benchmark. The results show that our framework achieves superior performance and exhibits high generalizability across various code LLMs and programming languages.
comment: To appear at ASE'25
☆ Cross-Domain Offshore Wind Power Forecasting: Transfer Learning Through Meteorological Clusters
Ambitious decarbonisation targets are catalysing growth in orders of new offshore wind farms. For these newly commissioned plants to run, accurate power forecasts are needed from the onset. These allow grid stability, good reserve management and efficient energy trading. Despite machine learning models having strong performances, they tend to require large volumes of site-specific data that new farms do not yet have. To overcome this data scarcity, we propose a novel transfer learning framework that clusters power output according to covariate meteorological features. Rather than training a single, general-purpose model, we thus forecast with an ensemble of expert models, each trained on a cluster. As these pre-trained models each specialise in a distinct weather pattern, they adapt efficiently to new sites and capture transferable, climate-dependent dynamics. Through the expert models' built-in calibration to seasonal and meteorological variability, we remove the industry-standard requirement of local measurements over a year. Our contributions are two-fold - we propose this novel framework and comprehensively evaluate it on eight offshore wind farms, achieving accurate cross-domain forecasting with under five months of site-specific data. Our experiments achieve a MAE of 3.52\%, providing empirical verification that reliable forecasts do not require a full annual cycle. Beyond power forecasting, this climate-aware transfer learning method opens new opportunities for offshore wind applications such as early-stage wind resource assessment, where reducing data requirements can significantly accelerate project development whilst effectively mitigating its inherent risks.
comment: 11 pages
☆ A Benchmark for Audio Reasoning Capabilities of Multimodal Large Language Models EACL 2026
The present benchmarks for testing the audio modality of multimodal large language models concentrate on testing various audio tasks such as speaker diarization or gender identification in isolation. Whether a multimodal model can answer the questions that require reasoning skills to combine audio tasks of different categories, cannot be verified with their use. To address this issue, we propose Audio Reasoning Tasks (ART), a new benchmark for assessing the ability of multimodal models to solve problems that require reasoning over audio signal.
comment: 31 pages, 2 figures, accepted to EACL 2026
☆ ProToken: Token-Level Attribution for Federated Large Language Models
Federated Learning (FL) enables collaborative training of Large Language Models (LLMs) across distributed data sources while preserving privacy. However, when federated LLMs are deployed in critical applications, it remains unclear which client(s) contributed to specific generated responses, hindering debugging, malicious client identification, fair reward allocation, and trust verification. We present ProToken, a novel Provenance methodology for Token-level attribution in federated LLMs that addresses client attribution during autoregressive text generation while maintaining FL privacy constraints. ProToken leverages two key insights to enable provenance at each token: (1) transformer architectures concentrate task-specific signals in later blocks, enabling strategic layer selection for computational tractability, and (2) gradient-based relevance weighting filters out irrelevant neural activations, focusing attribution on neurons that directly influence token generation. We evaluate ProToken across 16 configurations spanning four LLM architectures (Gemma, Llama, Qwen, SmolLM) and four domains (medical, financial, mathematical, coding). ProToken achieves 98% average attribution accuracy in correctly localizing responsible client(s), and maintains high accuracy when the number of clients are scaled, validating its practical viability for real-world deployment settings.
☆ SynCABEL: Synthetic Contextualized Augmentation for Biomedical Entity Linking
We present SynCABEL (Synthetic Contextualized Augmentation for Biomedical Entity Linking), a framework that addresses a central bottleneck in supervised biomedical entity linking (BEL): the scarcity of expert-annotated training data. SynCABEL leverages large language models to generate context-rich synthetic training examples for all candidate concepts in a target knowledge base, providing broad supervision without manual annotation. We demonstrate that SynCABEL, when combined with decoder-only models and guided inference establish new state-of-the-art results across three widely used multilingual benchmarks: MedMentions for English, QUAERO for French, and SPACCC for Spanish. Evaluating data efficiency, we show that SynCABEL reaches the performance of full human supervision using up to 60% less annotated data, substantially reducing reliance on labor-intensive and costly expert labeling. Finally, acknowledging that standard evaluation based on exact code matching often underestimates clinically valid predictions due to ontology redundancy, we introduce an LLM-as-a-judge protocol. This analysis reveals that SynCABEL significantly improves the rate of clinically valid predictions. Our synthetic datasets, models, and code are released to support reproducibility and future research.
☆ One Token Is Enough: Improving Diffusion Language Models with a Sink Token
Diffusion Language Models (DLMs) have emerged as a compelling alternative to autoregressive approaches, enabling parallel text generation with competitive performance. Despite these advantages, there is a critical instability in DLMs: the moving sink phenomenon. Our analysis indicates that sink tokens exhibit low-norm representations in the Transformer's value space, and that the moving sink phenomenon serves as a protective mechanism in DLMs to prevent excessive information mixing. However, their unpredictable positions across diffusion steps undermine inference robustness. To resolve this, we propose a simple but effective extra sink token implemented via a modified attention mask. Specifically, we introduce a special token constrained to attend solely to itself, while remaining globally visible to all other tokens. Experimental results demonstrate that introducing a single extra token stabilizes attention sinks, substantially improving model performance. Crucially, further analysis confirms that the effectiveness of this token is independent of its position and characterized by negligible semantic content, validating its role as a robust and dedicated structural sink.
☆ Robustness of Constraint Automata for Description Logics with Concrete Domains
Decidability or complexity issues about the consistency problem for description logics with concrete domains have already been analysed with tableaux-based or type elimination methods. Concrete domains in ontologies are essential to consider concrete objects and predefined relations. In this work, we expose an automata-based approach leading to the optimal upper bound EXPTIME, that is designed by enriching the transitions with symbolic constraints. We show that the nonemptiness problem for such automata belongs to EXPTIME if the concrete domains satisfy a few simple properties. Then, we provide a reduction from the consistency problem for ontologies, yielding EXPTIME-membership.Thanks to the expressivity of constraint automata, the results are extended to additional ingredients such as inverse roles, functional role names and constraint assertions, while maintaining EXPTIME-membership, which illustrates the robustness of the approach
comment: Extended version of a paper accepted at CSL'26, Paris
☆ Tracking Drift: Variation-Aware Entropy Scheduling for Non-Stationary Reinforcement Learning
Real-world reinforcement learning often faces environment drift, but most existing methods rely on static entropy coefficients/target entropy, causing over-exploration during stable periods and under-exploration after drift (thus slow recovery), and leaving unanswered the principled question of how exploration intensity should scale with drift magnitude. We prove that entropy scheduling under non-stationarity can be reduced to a one-dimensional, round-by-round trade-off, faster tracking of the optimal solution after drift vs. avoiding gratuitous randomness when the environment is stable, so exploration strength can be driven by measurable online drift signals. Building on this, we propose AES (Adaptive Entropy Scheduling), which adaptively adjusts the entropy coefficient/temperature online using observable drift proxies during training, requiring almost no structural changes and incurring minimal overhead. Across 4 algorithm variants, 12 tasks, and 4 drift modes, AES significantly reduces the fraction of performance degradation caused by drift and accelerates recovery after abrupt changes.
☆ Algorithmic Prompt-Augmentation for Efficient LLM-Based Heuristic Design for A* Search
Heuristic functions are essential to the performance of tree search algorithms such as A*, where their accuracy and efficiency directly impact search outcomes. Traditionally, such heuristics are handcrafted, requiring significant expertise. Recent advances in large language models (LLMs) and evolutionary frameworks have opened the door to automating heuristic design. In this paper, we extend the Evolution of Heuristics (EoH) framework to investigate the automated generation of guiding heuristics for A* search. We introduce a novel domain-agnostic prompt augmentation strategy that includes the A* code into the prompt to leverage in-context learning, named Algorithmic - Contextual EoH (A-CEoH). To evaluate the effectiveness of A-CeoH, we study two problem domains: the Unit-Load Pre-Marshalling Problem (UPMP), a niche problem from warehouse logistics, and the classical sliding puzzle problem (SPP). Our computational experiments show that A-CEoH can significantly improve the quality of the generated heuristics and even outperform expert-designed heuristics.
comment: accepted at EvoStar conference; Code: https://github.com/tb-git-tud/a-ceoh-evolution-of-heuristics?tab=readme-ov-file
☆ R^3: Replay, Reflection, and Ranking Rewards for LLM Reinforcement Learning
Large reasoning models (LRMs) aim to solve diverse and complex problems through structured reasoning. Recent advances in group-based policy optimization methods have shown promise in enabling stable advantage estimation without reliance on process-level annotations. However, these methods rely on advantage gaps induced by high-quality samples within the same batch, which makes the training process fragile and inefficient when intra-group advantages collapse under challenging tasks. To address these problems, we propose a reinforcement learning mechanism named \emph{\textbf{R^3}} that along three directions: (1) a \emph{cross-context \underline{\textbf{R}}eplay} strategy that maintains the intra-group advantage by recalling valuable examples from historical trajectories of the same query, (2) an \emph{in-context self-\underline{\textbf{R}}eflection} mechanism enabling models to refine outputs by leveraging past failures, and (3) a \emph{structural entropy \underline{\textbf{R}}anking reward}, which assigns relative rewards to truncated or failed samples by ranking responses based on token-level entropy patterns, capturing both local exploration and global stability. We implement our method on Deepseek-R1-Distill-Qwen-1.5B and train it on the DeepscaleR-40k in the math domain. Experiments demonstrate our method achieves SoTA performance on several math benchmarks, representing significant improvements and fewer reasoning tokens over the base models. Code and model will be released.
☆ The role of self-supervised pretraining in differentially private medical image analysis
Differential privacy (DP) provides formal protection for sensitive data but typically incurs substantial losses in diagnostic performance. Model initialization has emerged as a critical factor in mitigating this degradation, yet the role of modern self-supervised learning under full-model DP remains poorly understood. Here, we present a large-scale evaluation of initialization strategies for differentially private medical image analysis, using chest radiograph classification as a representative benchmark with more than 800,000 images. Using state-of-the-art ConvNeXt models trained with DP-SGD across realistic privacy regimes, we compare non-domain-specific supervised ImageNet initialization, non-domain-specific self-supervised DINOv3 initialization, and domain-specific supervised pretraining on MIMIC-CXR, the largest publicly available chest radiograph dataset. Evaluations are conducted across five external datasets spanning diverse institutions and acquisition settings. We show that DINOv3 initialization consistently improves diagnostic utility relative to ImageNet initialization under DP, but remains inferior to domain-specific supervised pretraining, which achieves performance closest to non-private baselines. We further demonstrate that initialization choice strongly influences demographic fairness, cross-dataset generalization, and robustness to data scale and model capacity under privacy constraints. The results establish initialization strategy as a central determinant of utility, fairness, and generalization in differentially private medical imaging.
☆ Up to 36x Speedup: Mask-based Parallel Inference Paradigm for Key Information Extraction in MLLMs ICASSP 2026
Key Information Extraction (KIE) from visually-rich documents (VrDs) is a critical task, for which recent Large Language Models (LLMs) and Multi-Modal Large Language Models (MLLMs) have demonstrated strong potential. However, their reliance on autoregressive inference, which generates outputs sequentially, creates a significant efficiency bottleneck, especially as KIE tasks often involve extracting multiple, semantically independent fields. To overcome this limitation, we introduce PIP: a Parallel Inference Paradigm for KIE. Our approach reformulates the problem by using "[mask]" tokens as placeholders for all target values, enabling their simultaneous generation in a single forward pass. To facilitate this paradigm, we develop a tailored mask pre-training strategy and construct large-scale supervised datasets. Experimental results show that our PIP-models achieve a 5-36x inference speedup with negligible performance degradation compared to traditional autoregressive base models. By substantially improving efficiency while maintaining high accuracy, PIP paves the way for scalable and practical real-world KIE solutions.
comment: Accepted by ICASSP 2026
☆ Safe Exploration via Policy Priors
Safe exploration is a key requirement for reinforcement learning (RL) agents to learn and adapt online, beyond controlled (e.g. simulated) environments. In this work, we tackle this challenge by utilizing suboptimal yet conservative policies (e.g., obtained from offline data or simulators) as priors. Our approach, SOOPER, uses probabilistic dynamics models to optimistically explore, yet pessimistically fall back to the conservative policy prior if needed. We prove that SOOPER guarantees safety throughout learning, and establish convergence to an optimal policy by bounding its cumulative regret. Extensive experiments on key safe RL benchmarks and real-world hardware demonstrate that SOOPER is scalable, outperforms the state-of-the-art and validate our theoretical guarantees in practice.
☆ Explicit Multi-head Attention for Inter-head Interaction in Large Language Models
In large language models built upon the Transformer architecture, recent studies have shown that inter-head interaction can enhance attention performance. Motivated by this, we propose Multi-head Explicit Attention (MEA), a simple yet effective attention variant that explicitly models cross-head interaction. MEA consists of two key components: a Head-level Linear Composition (HLC) module that separately applies learnable linear combinations to the key and value vectors across heads, thereby enabling rich inter-head communication; and a head-level Group Normalization layer that aligns the statistical properties of the recombined heads. MEA shows strong robustness in pretraining, which allows the use of larger learning rates that lead to faster convergence, ultimately resulting in lower validation loss and improved performance across a range of tasks. Furthermore, we explore the parameter efficiency of MEA by reducing the number of attention heads and leveraging HLC to reconstruct them using low-rank "virtual heads". This enables a practical key-value cache compression strategy that reduces KV-cache memory usage by 50% with negligible performance loss on knowledge-intensive and scientific reasoning tasks, and only a 3.59% accuracy drop for Olympiad-level mathematical benchmarks.
☆ ComAgent: Multi-LLM based Agentic AI Empowered Intelligent Wireless Networks
Emerging 6G networks rely on complex cross-layer optimization, yet manually translating high-level intents into mathematical formulations remains a bottleneck. While Large Language Models (LLMs) offer promise, monolithic approaches often lack sufficient domain grounding, constraint awareness, and verification capabilities. To address this, we present ComAgent, a multi-LLM agentic AI framework. ComAgent employs a closed-loop Perception-Planning-Action-Reflection cycle, coordinating specialized agents for literature search, coding, and scoring to autonomously generate solver-ready formulations and reproducible simulations. By iteratively decomposing problems and self-correcting errors, the framework effectively bridges the gap between user intent and execution. Evaluations demonstrate that ComAgent achieves expert-comparable performance in complex beamforming optimization and outperforms monolithic LLMs across diverse wireless tasks, highlighting its potential for automating design in emerging wireless networks.
☆ GMS-CAVP: Improving Audio-Video Correspondence with Multi-Scale Contrastive and Generative Pretraining
Recent advances in video-audio (V-A) understanding and generation have increasingly relied on joint V-A embeddings, which serve as the foundation for tasks such as cross-modal retrieval and generation. While prior methods like CAVP effectively model semantic and temporal correspondences between modalities using contrastive objectives, their performance remains suboptimal. A key limitation is the insufficient modeling of the dense, multi-scale nature of both video and audio signals, correspondences often span fine- to coarse-grained spatial-temporal structures, which are underutilized in existing frameworks. To this end, we propose GMS-CAVP, a novel framework that combines Multi-Scale Video-Audio Alignment and Multi-Scale Spatial-Temporal Diffusion-based pretraining objectives to enhance V-A correspondence modeling. First, GMS-CAVP introduces a multi-scale contrastive learning strategy that captures semantic and temporal relations across varying granularities. Second, we go beyond traditional contrastive learning by incorporating a diffusion-based generative objective, enabling modality translation and synthesis between video and audio. This unified discriminative-generative formulation facilitates deeper cross-modal understanding and paves the way for high-fidelity generation. Extensive experiments on VGGSound, AudioSet, and Panda70M demonstrate that GMS-CAVP outperforms previous methods in generation and retrieval.
☆ Intersectional Fairness via Mixed-Integer Optimization
The deployment of Artificial Intelligence in high-risk domains, such as finance and healthcare, necessitates models that are both fair and transparent. While regulatory frameworks, including the EU's AI Act, mandate bias mitigation, they are deliberately vague about the definition of bias. In line with existing research, we argue that true fairness requires addressing bias at the intersections of protected groups. We propose a unified framework that leverages Mixed-Integer Optimization (MIO) to train intersectionally fair and intrinsically interpretable classifiers. We prove the equivalence of two measures of intersectional fairness (MSD and SPSF) in detecting the most unfair subgroup and empirically demonstrate that our MIO-based algorithm improves performance in finding bias. We train high-performing, interpretable classifiers that bound intersectional bias below an acceptable threshold, offering a robust solution for regulated industries and beyond.
comment: 17 pages, 10 figures, 1 table
☆ From Atoms to Chains: Divergence-Guided Reasoning Curriculum for Unlabeled LLM Domain Adaptation
Adapting Large Language Models (LLMs) to specialized domains without human-annotated data is a crucial yet formidable challenge. Widely adopted knowledge distillation methods often devolve into coarse-grained mimicry, where the student model inefficiently targets its own weaknesses and risks inheriting the teacher's reasoning flaws. This exposes a critical pedagogical dilemma: how to devise a reliable curriculum when the teacher itself is not an infallible expert. Our work resolves this by capitalizing on a key insight: while LLMs may exhibit fallibility in complex, holistic reasoning, they often exhibit high fidelity on focused, atomic sub-problems. Based on this, we propose Divergence-Guided Reasoning Curriculum (DGRC), which constructs a learning path from atomic knowledge to reasoning chains by dynamically deriving two complementary curricula from disagreements in reasoning pathways. When a student and teacher produce conflicting results, DGRC directs the teacher to perform a diagnostic analysis: it analyzes both reasoning paths to formulate atomic queries that target the specific points of divergence, and then self-answers these queries to create high-confidence atomic question-answer pairs. These pairs then serve a dual purpose: (1) providing an atomic curriculum to rectify the student's knowledge gaps, and (2) serving as factual criteria to filter the teacher's original reasoning chains, yielding a verified CoT curriculum that teaches the student how to integrate atomic knowledge into complete reasoning paths. Experiments across the medical and legal domains on student models of various sizes demonstrate the effectiveness of our DGRC framework. Notably, our method achieves a 7.76% relative improvement for the 1.5B student model in the medical domain over strong unlabeled baseline.
comment: Code: https://github.com/bytedance/DGRC
☆ LLM-Enhanced Reinforcement Learning for Long-Term User Satisfaction in Interactive Recommendation
Interactive recommender systems can dynamically adapt to user feedback, but often suffer from content homogeneity and filter bubble effects due to overfitting short-term user preferences. While recent efforts aim to improve content diversity, they predominantly operate in static or one-shot settings, neglecting the long-term evolution of user interests. Reinforcement learning provides a principled framework for optimizing long-term user satisfaction by modeling sequential decision-making processes. However, its application in recommendation is hindered by sparse, long-tailed user-item interactions and limited semantic planning capabilities. In this work, we propose LLM-Enhanced Reinforcement Learning (LERL), a novel hierarchical recommendation framework that integrates the semantic planning power of LLM with the fine-grained adaptability of RL. LERL consists of a high-level LLM-based planner that selects semantically diverse content categories, and a low-level RL policy that recommends personalized items within the selected semantic space. This hierarchical design narrows the action space, enhances planning efficiency, and mitigates overexposure to redundant content. Extensive experiments on real-world datasets demonstrate that LERL significantly improves long-term user satisfaction when compared with state-of-the-art baselines. The implementation of LERL is available at https://anonymous.4open.science/r/code3-18D3/.
☆ Learning Adaptive Parallel Execution for Efficient Code Localization
Code localization constitutes a key bottleneck in automated software development pipelines. While concurrent tool execution can enhance discovery speed, current agents demonstrate a 34.9\% redundant invocation rate, which negates parallelism benefits. We propose \textbf{FuseSearch}, reformulating parallel code localization as a \textbf{joint quality-efficiency optimization} task. Through defining \textbf{tool efficiency} -- the ratio of unique information gain to invocation count -- we utilize a two-phase SFT and RL training approach for learning adaptive parallel strategies. Different from fixed-breadth approaches, FuseSearch dynamically modulates search breadth according to task context, evolving from exploration phases to refinement stages. Evaluated on SWE-bench Verified, FuseSearch-4B achieves SOTA-level performance (84.7\% file-level and 56.4\% function-level $F_1$ scores) with 93.6\% speedup, utilizing 67.7\% fewer turns and 68.9\% fewer tokens. Results indicate that efficiency-aware training naturally improves quality through eliminating noisy redundant signals, enabling high-performance cost-effective localization agents.
comment: 13 pages, 4 figures
☆ AROMMA: Unifying Olfactory Embeddings for Single Molecules and Mixtures
Public olfaction datasets are small and fragmented across single molecules and mixtures, limiting learning of generalizable odor representations. Recent works either learn single-molecule embeddings or address mixtures via similarity or pairwise label prediction, leaving representations separate and unaligned. In this work, we propose AROMMA, a framework that learns a unified embedding space for single molecules and two-molecule mixtures. Each molecule is encoded by a chemical foundation model and the mixtures are composed by an attention-based aggregator, ensuring both permutation invariance and asymmetric molecular interactions. We further align odor descriptor sets using knowledge distillation and class-aware pseudo-labeling to enrich missing mixture annotations. AROMMA achieves state-of-the-art performance in both single-molecule and molecule-pair datasets, with up to 19.1% AUROC improvement, demonstrating a robust generalization in two domains.
☆ Scale-Consistent State-Space Dynamics via Fractal of Stationary Transformations
Recent deep learning models increasingly rely on depth without structural guarantees on the validity of intermediate representations, rendering early stopping and adaptive computation ill-posed. We address this limitation by formulating a structural requirement for state-space model's scale-consistent latent dynamics across iterative refinement, and derive Fractal of Stationary Transformations (FROST), which enforces a self-similar representation manifold through a fractal inductive bias. Under this geometry, intermediate states correspond to different resolutions of a shared representation, and we provide a geometric analysis establishing contraction and stable convergence across iterations. As a consequence of this scale-consistent structure, halting naturally admits a ranking-based formulation driven by intrinsic feature quality rather than extrinsic objectives. Controlled experiments on ImageNet-100 empirically verify the predicted scale-consistent behavior, showing that adaptive efficiency emerges from the aligned latent geometry.
comment: 8 pages (excluding 2 pages of references), 3 tables, 2 figures. Appendix: 4 pages
☆ SLM-SS: Speech Language Model for Generative Speech Separation
Speech separation (SS) has advanced significantly with neural network-based methods, showing improved performance on signal-level metrics. However, these methods often struggle to maintain speech intelligibility in the separated signals, which can negatively affect the performance of downstream tasks such as speech recognition. In this work, we propose SLM-SS, a novel approach that applies speech language models to SS, aiming to enhance the intelligibility and coherence of the separated signals. We frame SS as discrete multi-codebook sequence generation, using Encoder-Decoder models to map quantized speech mixtures to target tokens. In addition to the autoregressive modeling strategy, we introduce a non-autoregressive model to improve decoding efficiency for residual tokens. Experimental results on the LibriMix dataset demonstrate that our approach shows significantly better preservation of speech intelligibility, leading to improved linguistic consistency in a variety of downstream tasks compared to existing approaches.
☆ Benchmarks Saturate When The Model Gets Smarter Than The Judge
Benchmarks are important tools to track progress in the development of Large Language Models (LLMs), yet inaccuracies in datasets and evaluation methods consistently undermine their effectiveness. Here, we present Omni-MATH-2, a manually revised version of the Omni-MATH dataset comprising a clean, exact-answer subset ($n{=}4181$) and a tagged, non-standard subset ($n{=}247$). Each problem was audited to ensure LaTeX compilability, solvability and verifiability, which involved adding missing figures or information, labeling problems requiring a proof, estimation or image, and removing clutter. This process significantly reduces dataset-induced noise, thereby providing a more precise assessment of model performance. The annotated dataset also allows us to evaluate judge-induced noise by comparing GPT-5 mini with the original Omni-Judge, revealing substantial discrepancies between judges on both the clean and tagged problem subsets. Expert annotations reveal that Omni-Judge is wrong in $96.4\%$ of the judge disagreements, indicating its inability to differentiate between models' abilities, even well before saturation of the benchmark occurs. As problems become more challenging, we find that increasingly competent judges become essential in order to prevent judge errors from masking genuine differences between models. Finally, neither judge identifies the present failure modes for the subset of tagged problems, demonstrating that dataset quality and judge reliability are both critical to develop accurate benchmarks of model performance.
comment: 17 pages, 10 figures, 3 tables
☆ Fuzzy expert system for the process of collecting and purifying acidic water: a digital twin approach
Purifying sour water is essential for reducing emissions, minimizing corrosion risks, enabling the reuse of treated water in industrial or domestic applications, and ultimately lowering operational costs. Moreover, automating the purification process helps reduce the risk of worker harm by limiting human involvement. Crude oil contains acidic components such as hydrogen sulfide, carbon dioxide, and other chemical compounds. During processing, these substances are partially released into sour water. If not properly treated, sour water poses serious environmental threats and accelerates the corrosion of pipelines and equipment. This paper presents a fuzzy expert system, combined with a custom-generated digital twin, developed from a documented industrial process to maintain key parameters at desired levels by mimicking human reasoning. The control strategy is designed to be simple and intuitive, allowing junior or non-expert personnel to interact with the system effectively. The digital twin was developed using Honeywell UniSim Design R492 to simulate real industrial behavior accurately. Valve dynamics were modeled through system identification in MATLAB, and real-time data exchange between the simulator and controller was established using OPC DA. The fuzzy controller applies split-range control to two valves and was tested under 21 different initial pressure conditions using five distinct defuzzification strategies, resulting in a total of 105 unique test scenarios. System performance was evaluated using both error-based metrics (MSE, RMSE, MAE, IAE, ISE, ITAE) and dynamic response metrics, including overshoot, undershoot, rise time, fall time, settling time, and steady-state error. A web-based simulation interface was developed in Python using the Streamlit framework. Although demonstrated here for sour water treatment, the proposed fuzzy expert system is general-purpose.
☆ Mocap Anywhere: Towards Pairwise-Distance based Motion Capture in the Wild (for the Wild)
We introduce a novel motion capture system that reconstructs full-body 3D motion using only sparse pairwise distance (PWD) measurements from body-mounted(UWB) sensors. Using time-of-flight ranging between wireless nodes, our method eliminates the need for external cameras, enabling robust operation in uncontrolled and outdoor environments. Unlike traditional optical or inertial systems, our approach is shape-invariant and resilient to environmental constraints such as lighting and magnetic interference. At the core of our system is Wild-Poser (WiP for short), a compact, real-time Transformer-based architecture that directly predicts 3D joint positions from noisy or corrupted PWD measurements, which can later be used for joint rotation reconstruction via learned methods. WiP generalizes across subjects of varying morphologies, including non-human species, without requiring individual body measurements or shape fitting. Operating in real time, WiP achieves low joint position error and demonstrates accurate 3D motion reconstruction for both human and animal subjects in-the-wild. Our empirical analysis highlights its potential for scalable, low-cost, and general purpose motion capture in real-world settings.
comment: 14 pages, 15 figures
☆ GradPruner: Gradient-Guided Layer Pruning Enabling Efficient Fine-Tuning and Inference for LLMs ICLR2026
Fine-tuning Large Language Models (LLMs) with downstream data is often considered time-consuming and expensive. Structured pruning methods are primarily employed to improve the inference efficiency of pre-trained models. Meanwhile, they often require additional time and memory for training, knowledge distillation, structure search, and other strategies, making efficient model fine-tuning challenging to achieve. To simultaneously enhance the training and inference efficiency of downstream task fine-tuning, we introduce GradPruner, which can prune layers of LLMs guided by gradients in the early stages of fine-tuning. GradPruner uses the cumulative gradients of each parameter during the initial phase of fine-tuning to compute the Initial Gradient Information Accumulation Matrix (IGIA-Matrix) to assess the importance of layers and perform pruning. We sparsify the pruned layers based on the IGIA-Matrix and merge them with the remaining layers. Only elements with the same sign are merged to reduce interference from sign variations. We conducted extensive experiments on two LLMs across eight downstream datasets. Including medical, financial, and general benchmark tasks. The results demonstrate that GradPruner has achieved a parameter reduction of 40% with only a 0.99% decrease in accuracy. Our code is publicly available.
comment: Accepted by ICLR2026
☆ Cortex-Grounded Diffusion Models for Brain Image Generation
Synthetic neuroimaging data can mitigate critical limitations of real-world datasets, including the scarcity of rare phenotypes, domain shifts across scanners, and insufficient longitudinal coverage. However, existing generative models largely rely on weak conditioning signals, such as labels or text, which lack anatomical grounding and often produce biologically implausible outputs. To this end, we introduce Cor2Vox, a cortex-grounded generative framework for brain magnetic resonance image (MRI) synthesis that ties image generation to continuous structural priors of the cerebral cortex. It leverages high-resolution cortical surfaces to guide a 3D shape-to-image Brownian bridge diffusion process, enabling topologically faithful synthesis and precise control over underlying anatomies. To support the generation of new, realistic brain shapes, we developed a large-scale statistical shape model of cortical morphology derived from over 33,000 UK Biobank scans. We validated the fidelity of Cor2Vox based on traditional image quality metrics, advanced cortical surface reconstruction, and whole-brain segmentation quality, outperforming many baseline methods. Across three applications, namely (i) anatomically consistent synthesis, (ii) simulation of progressive gray matter atrophy, and (iii) harmonization of in-house frontotemporal dementia scans with public datasets, Cor2Vox preserved fine-grained cortical morphology at the sub-voxel level, exhibiting remarkable robustness to variations in cortical geometry and disease phenotype without retraining.
comment: preprint
☆ AACR-Bench: Evaluating Automatic Code Review with Holistic Repository-Level Context
High-quality evaluation benchmarks are pivotal for deploying Large Language Models (LLMs) in Automated Code Review (ACR). However, existing benchmarks suffer from two critical limitations: first, the lack of multi-language support in repository-level contexts, which restricts the generalizability of evaluation results; second, the reliance on noisy, incomplete ground truth derived from raw Pull Request (PR) comments, which constrains the scope of issue detection. To address these challenges, we introduce AACR-Bench a comprehensive benchmark that provides full cross-file context across multiple programming languages. Unlike traditional datasets, AACR-Bench employs an "AI-assisted, Expert-verified" annotation pipeline to uncover latent defects often overlooked in original PRs, resulting in a 285\% increase in defect coverage. Extensive evaluations of mainstream LLMs on AACR-Bench reveal that previous assessments may have either misjudged or only partially captured model capabilities due to data limitations. Our work establishes a more rigorous standard for ACR evaluation and offers new insights on LLM based ACR, i.e., the granularity/level of context and the choice of retrieval methods significantly impact ACR performance, and this influence varies depending on the LLM, programming language, and the LLM usage paradigm e.g., whether an Agent architecture is employed. The code, data, and other artifacts of our evaluation set are available at https://github.com/alibaba/aacr-bench .
☆ LLM-VA: Resolving the Jailbreak-Overrefusal Trade-off via Vector Alignment
Safety-aligned LLMs suffer from two failure modes: jailbreak (answering harmful inputs) and over-refusal (declining benign queries). Existing vector steering methods adjust the magnitude of answer vectors, but this creates a fundamental trade-off -- reducing jailbreak increases over-refusal and vice versa. We identify the root cause: LLMs encode the decision to answer (answer vector $v_a$) and the judgment of input safety (benign vector $v_b$) as nearly orthogonal directions, treating them as independent processes. We propose LLM-VA, which aligns $v_a$ with $v_b$ through closed-form weight updates, making the model's willingness to answer causally dependent on its safety assessment -- without fine-tuning or architectural changes. Our method identifies vectors at each layer using SVMs, selects safety-relevant layers, and iteratively aligns vectors via minimum-norm weight modifications. Experiments on 12 LLMs demonstrate that LLM-VA achieves 11.45% higher F1 than the best baseline while preserving 95.92% utility, and automatically adapts to each model's safety bias without manual tuning. Code and models are available at https://hotbento.github.io/LLM-VA-Web/.
☆ Time-to-Injury Forecasting in Elite Female Football: A DeepHit Survival Approach
Injury occurrence in football poses significant challenges for athletes and teams, carrying personal, competitive, and financial consequences. While machine learning has been applied to injury prediction before, existing approaches often rely on static pre-season data and binary outcomes, limiting their real-world utility. This study investigates the feasibility of using a DeepHit neural network to forecast time-to-injury from longitudinal athlete monitoring data, while providing interpretable predictions. The analysis utilised the publicly available SoccerMon dataset, containing two seasons of training, match, and wellness records from elite female footballers. Data was pre-processed through cleaning, feature engineering, and the application of three imputation strategies. Baseline models (Random Forest, XGBoost, Logistic Regression) were optimised via grid search for benchmarking, while the DeepHit model, implemented with a multilayer perceptron backbone, was evaluated using chronological and leave-one-player-out (LOPO) validation. DeepHit achieved a concordance index of 0.762, outperforming baseline models and delivering individualised, time-varying risk estimates. Shapley Additive Explanations (SHAP) identified clinically relevant predictors consistent with established risk factors, enhancing interpretability. Overall, this study provides a novel proof of concept: survival modelling with DeepHit shows strong potential to advance injury forecasting in football, offering accurate, explainable, and actionable insights for injury prevention across competitive levels.
☆ APC-RL: Exceeding Data-Driven Behavior Priors with Adaptive Policy Composition
Incorporating demonstration data into reinforcement learning (RL) can greatly accelerate learning, but existing approaches often assume demonstrations are optimal and fully aligned with the target task. In practice, demonstrations are frequently sparse, suboptimal, or misaligned, which can degrade performance when these demonstrations are integrated into RL. We propose Adaptive Policy Composition (APC), a hierarchical model that adaptively composes multiple data-driven Normalizing Flow (NF) priors. Instead of enforcing strict adherence to the priors, APC estimates each prior's applicability to the target task while leveraging them for exploration. Moreover, APC either refines useful priors, or sidesteps misaligned ones when necessary to optimize downstream reward. Across diverse benchmarks, APC accelerates learning when demonstrations are aligned, remains robust under severe misalignment, and leverages suboptimal demonstrations to bootstrap exploration while avoiding performance degradation caused by overly strict adherence to suboptimal demonstrations.
☆ KG-CRAFT: Knowledge Graph-based Contrastive Reasoning with LLMs for Enhancing Automated Fact-checking EACL 2026
Claim verification is a core component of automated fact-checking systems, aimed at determining the truthfulness of a statement by assessing it against reliable evidence sources such as documents or knowledge bases. This work presents KG-CRAFT, a method that improves automatic claim verification by leveraging large language models (LLMs) augmented with contrastive questions grounded in a knowledge graph. KG-CRAFT first constructs a knowledge graph from claims and associated reports, then formulates contextually relevant contrastive questions based on the knowledge graph structure. These questions guide the distillation of evidence-based reports, which are synthesised into a concise summary that is used for veracity assessment by LLMs. Extensive evaluations on two real-world datasets (LIAR-RAW and RAWFC) demonstrate that our method achieves a new state-of-the-art in predictive performance. Comprehensive analyses validate in detail the effectiveness of our knowledge graph-based contrastive reasoning approach in improving LLMs' fact-checking capabilities.
comment: Accepted to publication at the 19th Conference of the European Chapter of the Association for Computational Linguistics, EACL 2026
☆ Ad Insertion in LLM-Generated Responses
Sustainable monetization of Large Language Models (LLMs) remains a critical open challenge. Traditional search advertising, which relies on static keywords, fails to capture the fleeting, context-dependent user intents--the specific information, goods, or services a user seeks--embedded in conversational flows. Beyond the standard goal of social welfare maximization, effective LLM advertising imposes additional requirements on contextual coherence (ensuring ads align semantically with transient user intents) and computational efficiency (avoiding user interaction latency), as well as adherence to ethical and regulatory standards, including preserving privacy and ensuring explicit ad disclosure. Although various recent solutions have explored bidding on token-level and query-level, both categories of approaches generally fail to holistically satisfy this multifaceted set of constraints. We propose a practical framework that resolves these tensions through two decoupling strategies. First, we decouple ad insertion from response generation to ensure safety and explicit disclosure. Second, we decouple bidding from specific user queries by using ``genres'' (high-level semantic clusters) as a proxy. This allows advertisers to bid on stable categories rather than sensitive real-time response, reducing computational burden and privacy risks. We demonstrate that applying the VCG auction mechanism to this genre-based framework yields approximately dominant strategy incentive compatibility (DSIC) and individual rationality (IR), as well as approximately optimal social welfare, while maintaining high computational efficiency. Finally, we introduce an "LLM-as-a-Judge" metric to estimate contextual coherence. Our experiments show that this metric correlates strongly with human ratings (Spearman's $ρ\approx 0.66$), outperforming 80% of individual human evaluators.
comment: 31 pages, 8 figures
☆ Sim-and-Human Co-training for Data-Efficient and Generalizable Robotic Manipulation
Synthetic simulation data and real-world human data provide scalable alternatives to circumvent the prohibitive costs of robot data collection. However, these sources suffer from the sim-to-real visual gap and the human-to-robot embodiment gap, respectively, which limits the policy's generalization to real-world scenarios. In this work, we identify a natural yet underexplored complementarity between these sources: simulation offers the robot action that human data lacks, while human data provides the real-world observation that simulation struggles to render. Motivated by this insight, we present SimHum, a co-training framework to simultaneously extract kinematic prior from simulated robot actions and visual prior from real-world human observations. Based on the two complementary priors, we achieve data-efficient and generalizable robotic manipulation in real-world tasks. Empirically, SimHum outperforms the baseline by up to $\mathbf{40\%}$ under the same data collection budget, and achieves a $\mathbf{62.5\%}$ OOD success with only 80 real data, outperforming the real only baseline by $7.1\times$. Videos and additional information can be found at \href{https://kaipengfang.github.io/sim-and-human}{project website}.
☆ RPO:Reinforcement Fine-Tuning with Partial Reasoning Optimization
Within the domain of large language models, reinforcement fine-tuning algorithms necessitate the generation of a complete reasoning trajectory beginning from the input query, which incurs significant computational overhead during the rollout phase of training. To address this issue, we analyze the impact of different segments of the reasoning path on the correctness of the final result and, based on these insights, propose Reinforcement Fine-Tuning with Partial Reasoning Optimization (RPO), a plug-and-play reinforcement fine-tuning algorithm. Unlike traditional reinforcement fine-tuning algorithms that generate full reasoning paths, RPO trains the model by generating suffixes of the reasoning path using experience cache. During the rollout phase of training, RPO reduces token generation in this phase by approximately 95%, greatly lowering the theoretical time overhead. Compared with full-path reinforcement fine-tuning algorithms, RPO reduces the training time of the 1.5B model by 90% and the 7B model by 72%. At the same time, it can be integrated with typical algorithms such as GRPO and DAPO, enabling them to achieve training acceleration while maintaining performance comparable to the original algorithms. Our code is open-sourced at https://github.com/yhz5613813/RPO.
☆ Learned split-spectrum metalens for obstruction-free broadband imaging in the visible
Obstructions such as raindrops, fences, or dust degrade captured images, especially when mechanical cleaning is infeasible. Conventional solutions to obstructions rely on a bulky compound optics array or computational inpainting, which compromise compactness or fidelity. Metalenses composed of subwavelength meta-atoms promise compact imaging, but simultaneous achievement of broadband and obstruction-free imaging remains a challenge, since a metalens that images distant scenes across a broadband spectrum cannot properly defocus near-depth occlusions. Here, we introduce a learned split-spectrum metalens that enables broadband obstruction-free imaging. Our approach divides the spectrum of each RGB channel into pass and stop bands with multi-band spectral filtering and learns the metalens to focus light from far objects through pass bands, while filtering focused near-depth light through stop bands. This optical signal is further enhanced using a neural network. Our learned split-spectrum metalens achieves broadband and obstruction-free imaging with relative PSNR gains of 32.29% and improves object detection and semantic segmentation accuracies with absolute gains of +13.54% mAP, +48.45% IoU, and +20.35% mIoU over a conventional hyperbolic design. This promises robust obstruction-free sensing and vision for space-constrained systems, such as mobile robots, drones, and endoscopes.
☆ PROTEUS: SLA-Aware Routing via Lagrangian RL for Multi-LLM Serving Systems
Production LLM deployments serve diverse workloads where cost and quality requirements vary by customer tier, time of day, and query criticality. Model serving systems accept latency SLOs directly. LLM routers do not. They force operators to tune parameters offline and guess what accuracy might result. The relationship between parameters and outcomes is indirect, non-monotonic, and dataset-dependent. Operators need to specify accuracy targets, not infer them from opaque settings. We present PROTEUS (Polymorphic Router for Operational Target Enforcement with Unified SLA), a router that accepts accuracy targets tau as runtime input. PROTEUS uses Lagrangian dual control. A learned dual variable lambda tracks constraint violations during training and conditions the policy network. This lets the router translate specified tau values into routing decisions that satisfy them. A single trained model serves the full accuracy spectrum without retraining.We evaluate on RouterBench (11 models, 405K queries) and SPROUT (14 models, 45K queries). PROTEUS achieves consistent floor compliance where accuracy meets or exceeds tau. The target-response correlation reaches 0.97 to 0.98. The closest baseline, OmniRouter, meets floors only 22% of the time despite also using Lagrangian optimization. PROTEUS operates across tau in [0.85, 0.95] from a single model. On RouterBench it achieves 90.1% accuracy, within 1.3% of oracle. On SPROUT it achieves 94.0% accuracy, within 4.6% of oracle. Cost savings reach 89.8% versus the best fixed model.
☆ Residual Tokens Enhance Masked Autoencoders for Speech Modeling ICASSP 2026
Recent speech modeling relies on explicit attributes such as pitch, content, and speaker identity, but these alone cannot capture the full richness of natural speech. We introduce RT-MAE, a novel masked autoencoder framework that augments the supervised attributes-based modeling with unsupervised residual trainable tokens, designed to encode the information not explained by explicit labeled factors (e.g., timbre variations, noise, emotion etc). Experiments show that RT-MAE improves reconstruction quality, preserving content and speaker similarity while enhancing expressivity. We further demonstrate its applicability to speech enhancement, removing noise at inference while maintaining controllability and naturalness.
comment: Submitted to ICASSP 2026 (accepted)
☆ Tri-Reader: An Open-Access, Multi-Stage AI Pipeline for First-Pass Lung Nodule Annotation in Screening CT
Using multiple open-access models trained on public datasets, we developed Tri-Reader, a comprehensive, freely available pipeline that integrates lung segmentation, nodule detection, and malignancy classification into a unified tri-stage workflow. The pipeline is designed to prioritize sensitivity while reducing the candidate burden for annotators. To ensure accuracy and generalizability across diverse practices, we evaluated Tri-Reader on multiple internal and external datasets as compared with expert annotations and dataset-provided reference standards.
comment: 1 figure , 2 tables, 20 page supplement
☆ Teaching Machine Learning Fundamentals with LEGO Robotics
This paper presents the web-based platform Machine Learning with Bricks and an accompanying two-day course designed to teach machine learning concepts to students aged 12 to 17 through programming-free robotics activities. Machine Learning with Bricks is an open source platform and combines interactive visualizations with LEGO robotics to teach three core algorithms: KNN, linear regression, and Q-learning. Students learn by collecting data, training models, and interacting with robots via a web-based interface. Pre- and post-surveys with 14 students demonstrate significant improvements in conceptual understanding of machine learning algorithms, positive shifts in AI perception, high platform usability, and increased motivation for continued learning. This work demonstrates that tangible, visualization-based approaches can make machine learning concepts accessible and engaging for young learners while maintaining technical depth. The platform is freely available at https://learning-and-dynamics.github.io/ml-with-bricks/, with video tutorials guiding students through the experiments at https://youtube.com/playlist?list=PLx1grFu4zAcwfKKJZ1Ux4LwRqaePCOA2J.
comment: 10 pages, 8 figures
☆ Selective Steering: Norm-Preserving Control Through Discriminative Layer Selection
Despite significant progress in alignment, large language models (LLMs) remain vulnerable to adversarial attacks that elicit harmful behaviors. Activation steering techniques offer a promising inference-time intervention approach, but existing methods suffer from critical limitations: activation addition requires careful coefficient tuning and is sensitive to layer-specific norm variations, while directional ablation provides only binary control. Recent work on Angular Steering introduces continuous control via rotation in a 2D subspace, but its practical implementation violates norm preservation, causing distribution shift and generation collapse, particularly in models below 7B parameters. We propose Selective Steering, which addresses these limitations through two key innovations: (1) a mathematically rigorous norm-preserving rotation formulation that maintains activation distribution integrity, and (2) discriminative layer selection that applies steering only where feature representations exhibit opposite-signed class alignment. Experiments across nine models demonstrate that Selective Steering achieves 5.5x higher attack success rates than prior methods while maintaining zero perplexity violations and approximately 100\% capability retention on standard benchmarks. Our approach provides a principled, efficient framework for controllable and stable LLM behavior modification. Code: https://github.com/knoveleng/steering
☆ Revisiting Parameter Server in LLM Post-Training ICLR'26
Modern data parallel (DP) training favors collective communication over parameter servers (PS) for its simplicity and efficiency under balanced workloads. However, the balanced workload assumption no longer holds in large language model (LLM) post-training due to the high variance in sequence lengths. Under imbalanced workloads, collective communication creates synchronization barriers, leading to under-utilization of devices with smaller workloads. This change in training dynamics calls for a revisit of the PS paradigm for its robustness to such imbalance. We propose \textbf{On-Demand Communication (ODC)}, which adapts PS into Fully Sharded Data Parallel (FSDP) by replacing collective all-gather and reduce-scatter with direct point-to-point communication. Compared to FSDP, ODC reduces the synchronization barrier from once per layer to once per minibatch and decouples the workload on each device so that faster workers are not stalled. It also enables simpler and more effective load balancing at the minibatch level. Across diverse LLM post-training tasks, ODC consistently improves device utilization and training throughput, achieving up to a 36\% speedup over standard FSDP. These results demonstrate that ODC is a superior fit for the prevalent imbalanced workloads in LLM post-training. Our implementation of ODC and integration with FSDP is open-sourced at https://github.com/sail-sg/odc.
comment: Accepted in ICLR'26
☆ Robust Uncertainty Estimation under Distribution Shift via Difference Reconstruction
Estimating uncertainty in deep learning models is critical for reliable decision-making in high-stakes applications such as medical imaging. Prior research has established that the difference between an input sample and its reconstructed version produced by an auxiliary model can serve as a useful proxy for uncertainty. However, directly comparing reconstructions with the original input is degraded by information loss and sensitivity to superficial details, which limits its effectiveness. In this work, we propose Difference Reconstruction Uncertainty Estimation (DRUE), a method that mitigates this limitation by reconstructing inputs from two intermediate layers and measuring the discrepancy between their outputs as the uncertainty score. To evaluate uncertainty estimation in practice, we follow the widely used out-of-distribution (OOD) detection paradigm, where in-distribution (ID) training data are compared against datasets with increasing domain shift. Using glaucoma detection as the ID task, we demonstrate that DRUE consistently achieves superior AUC and AUPR across multiple OOD datasets, highlighting its robustness and reliability under distribution shift. This work provides a principled and effective framework for enhancing model reliability in uncertain environments.
☆ SETA: Statistical Fault Attribution for Compound AI Systems ICSE 2026
Modern AI systems increasingly comprise multiple interconnected neural networks to tackle complex inference tasks. Testing such systems for robustness and safety entails significant challenges. Current state-of-the-art robustness testing techniques, whether black-box or white-box, have been proposed and implemented for single-network models and do not scale well to multi-network pipelines. We propose a modular robustness testing framework that applies a given set of perturbations to test data. Our testing framework supports (1) a component-wise system analysis to isolate errors and (2) reasoning about error propagation across the neural network modules. The testing framework is architecture and modality agnostic and can be applied across domains. We apply the framework to a real-world autonomous rail inspection system composed of multiple deep networks and successfully demonstrate how our approach enables fine-grained robustness analysis beyond conventional end-to-end metrics.
comment: Accepted to CAIN 2026 co-hosted with ICSE 2026
☆ From Observations to Events: Event-Aware World Model for Reinforcement Learning ICLR 2026
While model-based reinforcement learning (MBRL) improves sample efficiency by learning world models from raw observations, existing methods struggle to generalize across structurally similar scenes and remain vulnerable to spurious variations such as textures or color shifts. From a cognitive science perspective, humans segment continuous sensory streams into discrete events and rely on these key events for decision-making. Motivated by this principle, we propose the Event-Aware World Model (EAWM), a general framework that learns event-aware representations to streamline policy learning without requiring handcrafted labels. EAWM employs an automated event generator to derive events from raw observations and introduces a Generic Event Segmentor (GES) to identify event boundaries, which mark the start and end time of event segments. Through event prediction, the representation space is shaped to capture meaningful spatio-temporal transitions. Beyond this, we present a unified formulation of seemingly distinct world model architectures and show the broad applicability of our methods. Experiments on Atari 100K, Craftax 1M, and DeepMind Control 500K, DMC-GB2 500K demonstrate that EAWM consistently boosts the performance of strong MBRL baselines by 10%-45%, setting new state-of-the-art results across benchmarks. Our code is released at https://github.com/MarquisDarwin/EAWM.
comment: 43 pages, accepted by ICLR 2026
☆ When Benchmarks Leak: Inference-Time Decontamination for LLMs
Benchmark-based evaluation is the de facto standard for comparing large language models (LLMs). However, its reliability is increasingly threatened by test set contamination, where test samples or their close variants leak into training data and artificially inflate reported performance. To address this issue, prior work has explored two main lines of mitigation. One line attempts to identify and remove contaminated benchmark items before evaluation, but this inevitably alters the evaluation set itself and becomes unreliable when contamination is moderate or severe. The other line preserves the benchmark and instead suppresses contaminated behavior at evaluation time; however, such interventions often interfere with normal inference and lead to noticeable performance degradation on clean inputs. We propose DeconIEP, a decontamination framework that operates entirely during evaluation by applying small, bounded perturbations in the input embedding space. Guided by a relatively less-contaminated reference model, DeconIEP learns an instance-adaptive perturbation generator that steers the evaluated model away from memorization-driven shortcut pathways. Across multiple open-weight LLMs and benchmarks, extensive empirical results show that DeconIEP achieves strong decontamination effectiveness while incurring only minimal degradation in benign utility.
☆ Innovator-VL: A Multimodal Large Language Model for Scientific Discovery
We present Innovator-VL, a scientific multimodal large language model designed to advance understanding and reasoning across diverse scientific domains while maintaining excellent performance on general vision tasks. Contrary to the trend of relying on massive domain-specific pretraining and opaque pipelines, our work demonstrates that principled training design and transparent methodology can yield strong scientific intelligence with substantially reduced data requirements. (i) First, we provide a fully transparent, end-to-end reproducible training pipeline, covering data collection, cleaning, preprocessing, supervised fine-tuning, reinforcement learning, and evaluation, along with detailed optimization recipes. This facilitates systematic extension by the community. (ii) Second, Innovator-VL exhibits remarkable data efficiency, achieving competitive performance on various scientific tasks using fewer than five million curated samples without large-scale pretraining. These results highlight that effective reasoning can be achieved through principled data selection rather than indiscriminate scaling. (iii) Third, Innovator-VL demonstrates strong generalization, achieving competitive performance on general vision, multimodal reasoning, and scientific benchmarks. This indicates that scientific alignment can be integrated into a unified model without compromising general-purpose capabilities. Our practices suggest that efficient, reproducible, and high-performing scientific multimodal models can be built even without large-scale data, providing a practical foundation for future research.
comment: Innovator-VL tech report
☆ StableQAT: Stable Quantization-Aware Training at Ultra-Low Bitwidths
Quantization-aware training (QAT) is essential for deploying large models under strict memory and latency constraints, yet achieving stable and robust optimization at ultra-low bitwidths remains challenging. Common approaches based on the straight-through estimator (STE) or soft quantizers often suffer from gradient mismatch, instability, or high computational overhead. As such, we propose StableQAT, a unified and efficient QAT framework that stabilizes training in ultra low-bit settings via a novel, lightweight, and theoretically grounded surrogate for backpropagation derived from a discrete Fourier analysis of the rounding operator. StableQAT strictly generalizes STE as the latter arises as a special case of our more expressive surrogate family, yielding smooth, bounded, and inexpensive gradients that improve QAT training performance and stability across various hyperparameter choices. In experiments, StableQAT exhibits stable and efficient QAT at 2-4 bit regimes, demonstrating improved training stability, robustness, and superior performance with negligible training overhead against standard QAT techniques. Our code is available at https://github.com/microsoft/StableQAT.
☆ Instance-Guided Radar Depth Estimation for 3D Object Detection
Accurate depth estimation is fundamental to 3D perception in autonomous driving, supporting tasks such as detection, tracking, and motion planning. However, monocular camera-based 3D detection suffers from depth ambiguity and reduced robustness under challenging conditions. Radar provides complementary advantages such as resilience to poor lighting and adverse weather, but its sparsity and low resolution limit its direct use in detection frameworks. This motivates the need for effective Radar-camera fusion with improved preprocessing and depth estimation strategies. We propose an end-to-end framework that enhances monocular 3D object detection through two key components. First, we introduce InstaRadar, an instance segmentation-guided expansion method that leverages pre-trained segmentation masks to enhance Radar density and semantic alignment, producing a more structured representation. InstaRadar achieves state-of-the-art results in Radar-guided depth estimation, showing its effectiveness in generating high-quality depth features. Second, we integrate the pre-trained RCDPT into the BEVDepth framework as a replacement for its depth module. With InstaRadar-enhanced inputs, the RCDPT integration consistently improves 3D detection performance. Overall, these components yield steady gains over the baseline BEVDepth model, demonstrating the effectiveness of InstaRadar and the advantage of explicit depth supervision in 3D object detection. Although the framework lags behind Radar-camera fusion models that directly extract BEV features, since Radar serves only as guidance rather than an independent feature stream, this limitation highlights potential for improvement. Future work will extend InstaRadar to point cloud-like representations and integrate a dedicated Radar branch with temporal cues for enhanced BEV fusion.
comment: Accepted to IPMV2026
☆ Balancing Sustainability And Performance: The Role Of Small-Scale Llms In Agentic Artificial Intelligence Systems
As large language models become integral to agentic artificial intelligence systems, their energy demands during inference may pose significant sustainability challenges. This study investigates whether deploying smaller-scale language models can reduce energy consumption without compromising responsiveness and output quality in a multi-agent, real-world environments. We conduct a comparative analysis across language models of varying scales to quantify trade-offs between efficiency and performance. Results show that smaller open-weights models can lower energy usage while preserving task quality. Building on these findings, we propose practical guidelines for sustainable artificial intelligence design, including optimal batch size configuration and computation resource allocation. These insights offer actionable strategies for developing scalable, environmentally responsible artificial intelligence systems.
☆ Curiosity Driven Knowledge Retrieval for Mobile Agents
Mobile agents have made progress toward reliable smartphone automation, yet performance in complex applications remains limited by incomplete knowledge and weak generalization to unseen environments. We introduce a curiosity driven knowledge retrieval framework that formalizes uncertainty during execution as a curiosity score. When this score exceeds a threshold, the system retrieves external information from documentation, code repositories, and historical trajectories. Retrieved content is organized into structured AppCards, which encode functional semantics, parameter conventions, interface mappings, and interaction patterns. During execution, an enhanced agent selectively integrates relevant AppCards into its reasoning process, thereby compensating for knowledge blind spots and improving planning reliability. Evaluation on the AndroidWorld benchmark shows consistent improvements across backbones, with an average gain of six percentage points and a new state of the art success rate of 88.8\% when combined with GPT-5. Analysis indicates that AppCards are particularly effective for multi step and cross application tasks, while improvements depend on the backbone model. Case studies further confirm that AppCards reduce ambiguity, shorten exploration, and support stable execution trajectories. Task trajectories are publicly available at https://lisalsj.github.io/Droidrun-appcard/.
☆ Group Distributionally Robust Optimization-Driven Reinforcement Learning for LLM Reasoning
Recent progress in Large Language Model (LLM) reasoning is increasingly driven by the refinement of post-training loss functions and alignment strategies. However, standard Reinforcement Learning (RL) paradigms like Group Relative Policy Optimization (GRPO) remain constrained by static uniformity: uniform prompt sampling and a fixed number of rollouts per prompt. For heterogeneous, heavy-tailed reasoning data, this creates structural inefficiencies that waste compute on already-solved patterns while under-training the long tail of hard problems. To address this, we propose Multi-Adversary Group Distributionally Robust Optimization (GDRO), an optimization-first framework that moves beyond uniform reasoning models by dynamically adapting the training distribution. We introduce an Online Difficulty Classifier that partitions prompts into dynamic pass@k difficulty groups. We then propose two independent GDRO games for post-training: (1) Prompt-GDRO, which employs an EMA-debiased multiplicative-weights bandit sampler to target the intensive difficulty margin and upweight persistently hard groups without frequency bias; and (2) Rollout-GDRO, which uses a shadow-price controller to reallocate rollouts across groups, maximizing gradient variance reduction on hard tasks under a fixed mean budget (compute-neutral). We provide no-regret guarantees for both controllers and additionally a variance-proxy analysis motivating a square-root optimal rollout allocation for Rollout-GDRO. We validate our framework on the DAPO 14.1k dataset using Qwen3-Base models. Prompt-GDRO and Rollout-GDRO achieve average relative gains of +10.6% and +10.1%, respectively, in pass@8 accuracy across 1.7B, 4B, and 8B scales compared to the GRPO baseline. Qualitative analysis shows an emergent curriculum: the adversaries shift resources to the evolving reasoning frontier, enhancing the reasoning model's performance.
comment: Keywords: Large Language Models, Reasoning Models, Reinforcement Learning, Distributionally Robust Optimization, GRPO
☆ Talos: Optimizing Top-$K$ Accuracy in Recommender Systems WWW'26
Recommender systems (RS) aim to retrieve a small set of items that best match individual user preferences. Naturally, RS place primary emphasis on the quality of the Top-$K$ results rather than performance across the entire item set. However, estimating Top-$K$ accuracy (e.g., Precision@$K$, Recall@$K$) requires determining the ranking positions of items, which imposes substantial computational overhead and poses significant challenges for optimization. In addition, RS often suffer from distribution shifts due to evolving user preferences or data biases, further complicating the task. To address these issues, we propose Talos, a loss function that is specifically designed to optimize the Talos recommendation accuracy. Talos leverages a quantile technique that replaces the complex ranking-dependent operations into simpler comparisons between predicted scores and learned score thresholds. We further develop a sampling-based regression algorithm for efficient and accurate threshold estimation, and introduce a constraint term to maintain optimization stability by preventing score inflation. Additionally, we incorporate a tailored surrogate function to address discontinuity and enhance robustness against distribution shifts. Comprehensive theoretical analyzes and empirical experiments are conducted to demonstrate the effectiveness, efficiency, convergence, and distributional robustness of Talos. The code is available at https://github.com/cynthia-shengjia/WWW-2026-Talos.
comment: Accepted by WWW'26
☆ Tactile Memory with Soft Robot: Robust Object Insertion via Masked Encoding and Soft Wrist IEEE
Tactile memory, the ability to store and retrieve touch-based experience, is critical for contact-rich tasks such as key insertion under uncertainty. To replicate this capability, we introduce Tactile Memory with Soft Robot (TaMeSo-bot), a system that integrates a soft wrist with tactile retrieval-based control to enable safe and robust manipulation. The soft wrist allows safe contact exploration during data collection, while tactile memory reuses past demonstrations via retrieval for flexible adaptation to unseen scenarios. The core of this system is the Masked Tactile Trajectory Transformer (MAT$^\text{3}$), which jointly models spatiotemporal interactions between robot actions, distributed tactile feedback, force-torque measurements, and proprioceptive signals. Through masked-token prediction, MAT$^\text{3}$ learns rich spatiotemporal representations by inferring missing sensory information from context, autonomously extracting task-relevant features without explicit subtask segmentation. We validate our approach on peg-in-hole tasks with diverse pegs and conditions in real-robot experiments. Our extensive evaluation demonstrates that MAT$^\text{3}$ achieves higher success rates than the baselines over all conditions and shows remarkable capability to adapt to unseen pegs and conditions.
comment: This work has been submitted to the IEEE for possible publication
☆ Riddle Quest : The Enigma of Words WWW
Riddles are concise linguistic puzzles that describe an object or idea through indirect, figurative, or playful clues. They are a longstanding form of creative expression, requiring the solver to interpret hints, recognize patterns, and draw inferences to identify the answers. In this work, we introduce a simple pipeline for creating and evaluating analogy-based riddles. The system includes a triples creator that builds structured facts about a concept, a semantic mapper that selects attributes useful for analogy, a stylized generator that turns them into riddle clues, and a validator that collects all possible answers the riddle could point to. We use this validator to study whether large language models can recover the full answer set for different riddle types. Our case study shows that while models often guess the main intended answer, they frequently miss other valid interpretations. This highlights the value of riddles as a lightweight tool for examining reasoning coverage and ambiguity handling in language models.
comment: This paper is submitted under 'Demo track' for WWW conference
☆ Decoupled Split Learning via Auxiliary Loss
Split learning is a distributed training paradigm where a neural network is partitioned between clients and a server, which allows data to remain at the client while only intermediate activations are shared. Traditional split learning relies on end-to-end backpropagation across the client-server split point. This incurs a large communication overhead (i.e., forward activations and backward gradients need to be exchanged every iteration) and significant memory use (for storing activations and gradients). In this paper, we develop a beyond-backpropagation training method for split learning. In this approach, the client and server train their model partitions semi-independently, using local loss signals instead of propagated gradients. In particular, the client's network is augmented with a small auxiliary classifier at the split point to provide a local error signal, while the server trains on the client's transmitted activations using the true loss function. This decoupling removes the need to send backward gradients, which cuts communication costs roughly in half and also reduces memory overhead (as each side only stores local activations for its own backward pass). We evaluate our approach on CIFAR-10 and CIFAR-100. Our experiments show two key results. First, the proposed approach achieves performance on par with standard split learning that uses backpropagation. Second, it significantly reduces communication (of transmitting activations/gradient) by 50% and peak memory usage by up to 58%.
☆ GhostUI: Unveiling Hidden Interactions in Mobile UI
Modern mobile applications rely on hidden interactions--gestures without visual cues like long presses and swipes--to provide functionality without cluttering interfaces. While experienced users may discover these interactions through prior use or onboarding tutorials, their implicit nature makes them difficult for most users to uncover. Similarly, mobile agents--systems designed to automate tasks on mobile user interfaces, powered by vision language models (VLMs)--struggle to detect veiled interactions or determine actions for completing tasks. To address this challenge, we present GhostUI, a new dataset designed to enable the detection of hidden interactions in mobile applications. GhostUI provides before-and-after screenshots, simplified view hierarchies, gesture metadata, and task descriptions, allowing VLMs to better recognize concealed gestures and anticipate post-interaction states. Quantitative evaluations with VLMs show that models fine-tuned on GhostUI outperform baseline VLMs, particularly in predicting hidden interactions and inferring post-interaction screens, underscoring GhostUI's potential as a foundation for advancing mobile task automation.
comment: Accepted at ACM CHI Conference on Human Factors in Computing Systems (CHI '26)
☆ PCEvo: Path-Consistent Molecular Representation via Virtual Evolutionary
Molecular representation learning aims to learn vector embeddings that capture molecular structure and geometry, thereby enabling property prediction and downstream scientific applications. In many AI for science tasks, labeled data are expensive to obtain and therefore limited in availability. Under the few-shot setting, models trained with scarce supervision often learn brittle structure-property relationships, resulting in substantially higher prediction errors and reduced generalization to unseen molecules. To address this limitation, we propose PCEvo, a path-consistent representation method that learns from virtual paths through dynamic structural evolution. PCEvo enumerates multiple chemically feasible edit paths between retrieved similar molecular pairs under topological dependency constraints. It transforms the labels of the two molecules into stepwise supervision along each virtual evolutionary path. It introduces a path-consistency objective that enforces prediction invariance across alternative paths connecting the same two molecules. Comprehensive experiments on the QM9 and MoleculeNet datasets demonstrate that PCEvo substantially improves the few-shot generalization performance of baseline methods. The code is available at https://anonymous.4open.science/r/PCEvo-4BF2.
comment: 10 pages, 4 figures, 5 tables
☆ LLM-Assisted Logic Rule Learning: Scaling Human Expertise for Time Series Anomaly Detection
Time series anomaly detection is critical for supply chain management to take proactive operations, but faces challenges: classical unsupervised anomaly detection based on exploiting data patterns often yields results misaligned with business requirements and domain knowledge, while manual expert analysis cannot scale to millions of products in the supply chain. We propose a framework that leverages large language models (LLMs) to systematically encode human expertise into interpretable, logic-based rules for detecting anomaly patterns in supply chain time series data. Our approach operates in three stages: 1) LLM-based labeling of training data instructed by domain knowledge, 2) automated generation and iterative improvements of symbolic rules through LLM-driven optimization, and 3) rule augmentation with business-relevant anomaly categories supported by LLMs to enhance interpretability. The experiment results showcase that our approach outperforms the unsupervised learning methods in both detection accuracy and interpretability. Furthermore, compared to direct LLM deployment for time series anomaly detection, our approach provides consistent, deterministic results with low computational latency and cost, making it ideal for production deployment. The proposed framework thus demonstrates how LLMs can bridge the gap between scalable automation and expert-driven decision-making in operational settings.
☆ GLOVE: Global Verifier for LLM Memory-Environment Realignment
Most existing memory-enhanced Large Language Model (LLM) approaches implicitly assume that memory validity can be established either through external evaluators that provide task-specific success signals or through internal model cognition, such as reflection, for editing memory entries. However, these assumptions often break down in practical environments with dynamic drifts. We propose the Global Verifier (GLOVE), a framework that introduces a new design dimension for LLM memory systems by establishing a relative notion of truth. Through active probing to detect inconsistencies between retrieved memories and fresh observations, GLOVE enables memory-environment realignment by verifying and updating memory without access to ground-truth supervision or strong reliance on model introspection. We evaluate GLOVE on diverse benchmarks spanning web navigation, planning, and control, augmented with controlled environmental drifts that introduce non-stationarity beyond the original benchmark settings. Our results show that GLOVE substantially improves agent success rates, suggesting a robust pathway to cognitive agents capable of self-evolving.
☆ Beyond In-Domain Detection: SpikeScore for Cross-Domain Hallucination Detection
Hallucination detection is critical for deploying large language models (LLMs) in real-world applications. Existing hallucination detection methods achieve strong performance when the training and test data come from the same domain, but they suffer from poor cross-domain generalization. In this paper, we study an important yet overlooked problem, termed generalizable hallucination detection (GHD), which aims to train hallucination detectors on data from a single domain while ensuring robust performance across diverse related domains. In studying GHD, we simulate multi-turn dialogues following LLMs initial response and observe an interesting phenomenon: hallucination-initiated multi-turn dialogues universally exhibit larger uncertainty fluctuations than factual ones across different domains. Based on the phenomenon, we propose a new score SpikeScore, which quantifies abrupt fluctuations in multi-turn dialogues. Through both theoretical analysis and empirical validation, we demonstrate that SpikeScore achieves strong cross-domain separability between hallucinated and non-hallucinated responses. Experiments across multiple LLMs and benchmarks demonstrate that the SpikeScore-based detection method outperforms representative baselines in cross-domain generalization and surpasses advanced generalization-oriented methods, verifying the effectiveness of our method in cross-domain hallucination detection.
☆ Structure-based RNA Design by Step-wise Optimization of Latent Diffusion Model AAAI 2026
RNA inverse folding, designing sequences to form specific 3D structures, is critical for therapeutics, gene regulation, and synthetic biology. Current methods, focused on sequence recovery, struggle to address structural objectives like secondary structure consistency (SS), minimum free energy (MFE), and local distance difference test (LDDT), leading to suboptimal structural accuracy. To tackle this, we propose a reinforcement learning (RL) framework integrated with a latent diffusion model (LDM). Drawing inspiration from the success of diffusion models in RNA inverse folding, which adeptly model complex sequence-structure interactions, we develop an LDM incorporating pre-trained RNA-FM embeddings from a large-scale RNA model. These embeddings capture co-evolutionary patterns, markedly improving sequence recovery accuracy. However, existing approaches, including diffusion-based methods, cannot effectively handle non-differentiable structural objectives. By contrast, RL excels in this task by using policy-driven reward optimization to navigate complex, non-gradient-based objectives, offering a significant advantage over traditional methods. In summary, we propose the Step-wise Optimization of Latent Diffusion Model (SOLD), a novel RL framework that optimizes single-step noise without sampling the full diffusion trajectory, achieving efficient refinement of multiple structural objectives. Experimental results demonstrate SOLD surpasses its LDM baseline and state-of-the-art methods across all metrics, establishing a robust framework for RNA inverse folding with profound implications for biotechnological and therapeutic applications.
comment: 20 pages (7 pages content + 2 pages references + 11 pages appendix), 11 figures, 8 tables. Source code available at https://github.com/darkflash03/SOLD Accepted to AAAI 2026
☆ RPO-RAG: Aligning Small LLMs with Relation-aware Preference Optimization for Knowledge Graph Question Answering WWW
Large Language Models (LLMs) have recently demonstrated remarkable reasoning abilities, yet hallucinate on knowledge-intensive tasks. Retrieval-augmented generation (RAG) mitigates this issue by grounding answers in external sources, e.g., knowledge graphs (KGs). However, existing KG-based RAG approaches rely on semantics-unaware path sampling and are weakly aligned with KG reasoning objectives, which limits further accuracy gains. They also feed retrieved paths directly into the reasoner without organizing them into answer-centered reasoning paths, hindering small LLMs' ability to leverage the retrieved knowledge. Furthermore, prior works predominantly rely on large LLMs (e.g., ChatGPT/GPT-4) or assume backbones above 7B parameters, leaving sub-7B models underexplored. We address this gap with RPO-RAG, the first KG-based RAG framework specifically designed for small LLMs, to the best of our knowledge. RPO-RAG introduces three key innovations: (1) a query-path semantic sampling strategy that provides informative supervisory signals; (2) a relation-aware preference optimization that aligns training with intermediate KG reasoning signals (e.g., relation); and (3) an answer-centered prompt design that organizes entities and reasoning paths in an interpretable format. Extensive experiments on two benchmark Knowledge Graph Question Answering (KGQA) datasets, WebQSP and CWQ, demonstrate that RPO-RAG effectively bridges the performance gap between small and large language models. On WebQSP, it improves F1 by up to 8.8%, reflecting enhanced answer precision, while on CWQ it achieves new state-of-the-art results among models under 8B parameters in both Hit and F1. Overall, RPO-RAG substantially improves the reasoning capability of small LLMs, even under 3B parameters-highlighting their potential for resource-efficient and practical on-device KGQA applications.
comment: Accepted at The Web Conference (WWW) 2026
☆ UniPCB: A Unified Vision-Language Benchmark for Open-Ended PCB Quality Inspection
Multimodal Large Language Models (MLLMs) show promise for general industrial quality inspection, but fall short in complex scenarios, such as Printed Circuit Board (PCB) inspection. PCB inspection poses unique challenges due to densely packed components, complex wiring structures, and subtle defect patterns that require specialized domain expertise. However, a high-quality, unified vision-language benchmark for quantitatively evaluating MLLMs across PCB inspection tasks remains absent, stemming not only from limited data availability but also from fragmented datasets and inconsistent standardization. To fill this gap, we propose UniPCB, the first unified vision-language benchmark for open-ended PCB quality inspection. UniPCB is built via a systematic pipeline that curates and standardizes data from disparate sources across three annotated scenarios. Furthermore, we introduce PCB-GPT, an MLLM trained on a new instruction dataset generated by this pipeline, utilizing a novel progressive curriculum that mimics the learning process of human experts. Evaluations on the UniPCB benchmark show that while existing MLLMs falter on domain-specific tasks, PCB-GPT establishes a new baseline. Notably, it more than doubles the performance on fine-grained defect localization compared to the strongest competitors, with significant advantages in localization and analysis. We will release the instruction data, benchmark, and model to facilitate future research.
☆ Bridging Visual and Wireless Sensing: A Unified Radiation Field for 3D Radio Map Construction
The emerging applications of next-generation wireless networks (e.g., immersive 3D communication, low-altitude networks, and integrated sensing and communication) necessitate high-fidelity environmental intelligence. 3D radio maps have emerged as a critical tool for this purpose, enabling spectrum-aware planning and environment-aware sensing by bridging the gap between physical environments and electromagnetic signal propagation. However, constructing accurate 3D radio maps requires fine-grained 3D geometric information and a profound understanding of electromagnetic wave propagation. Existing approaches typically treat optical and wireless knowledge as distinct modalities, failing to exploit the fundamental physical principles governing both light and electromagnetic propagation. To bridge this gap, we propose URF-GS, a unified radio-optical radiation field representation framework for accurate and generalizable 3D radio map construction based on 3D Gaussian splatting (3D-GS) and inverse rendering. By fusing visual and wireless sensing observations, URF-GS recovers scene geometry and material properties while accurately predicting radio signal behavior at arbitrary transmitter-receiver (Tx-Rx) configurations. Experimental results demonstrate that URF-GS achieves up to a 24.7% improvement in spatial spectrum prediction accuracy and a 10x increase in sample efficiency for 3D radio map construction compared with neural radiance field (NeRF)-based methods. This work establishes a foundation for next-generation wireless networks by integrating perception, interaction, and communication through holistic radiation field reconstruction.
comment: The code for this work will be publicly available at: https://github.com/wenchaozheng/URF-GS
☆ A Hybrid Supervised-LLM Pipeline for Actionable Suggestion Mining in Unstructured Customer Reviews EACL 2026
Extracting actionable suggestions from customer reviews is essential for operational decision-making, yet these directives are often embedded within mixed-intent, unstructured text. Existing approaches either classify suggestion-bearing sentences or generate high-level summaries, but rarely isolate the precise improvement instructions businesses need. We evaluate a hybrid pipeline combining a high-recall RoBERTa classifier trained with a precision-recall surrogate to reduce unrecoverable false negatives with a controlled, instruction-tuned LLM for suggestion extraction, categorization, clustering, and summarization. Across real-world hospitality and food datasets, the hybrid system outperforms prompt-only, rule-based, and classifier-only baselines in extraction accuracy and cluster coherence. Human evaluations further confirm that the resulting suggestions and summaries are clear, faithful, and interpretable. Overall, our results show that hybrid reasoning architectures achieve meaningful improvements fine-grained actionable suggestion mining while highlighting challenges in domain adaptation and efficient local deployment.
comment: Accepted to EACL 2026 Industry Track (to appear)
☆ EnzyPGM: Pocket-conditioned Generative Model for Substrate-specific Enzyme Design
Designing enzymes with substrate-binding pockets is a critical challenge in protein engineering, as catalytic activity depends on the precise interaction between pockets and substrates. Currently, generative models dominate functional protein design but cannot model pocket-substrate interactions, which limits the generation of enzymes with precise catalytic environments. To address this issue, we propose EnzyPGM, a unified framework that jointly generates enzymes and substrate-binding pockets conditioned on functional priors and substrates, with a particular focus on learning accurate pocket-substrate interactions. At its core, EnzyPGM includes two main modules: a Residue-atom Bi-scale Attention (RBA) that jointly models intra-residue dependencies and fine-grained interactions between pocket residues and substrate atoms, and a Residue Function Fusion (RFF) that incorporates enzyme function priors into residue representations. Also, we curate EnzyPock, an enzyme-pocket dataset comprising 83,062 enzyme-substrate pairs across 1,036 four-level enzyme families. Extensive experiments demonstrate that EnzyPGM achieves state-of-the-art performance on EnzyPock. Notably, EnzyPGM reduces the average binding energy of 0.47 kcal/mol over EnzyGen, showing its superior performance on substrate-specific enzyme design. The code and dataset will be released later.
comment: 9 pages, 4 figures, under review
☆ MATA: A Trainable Hierarchical Automaton System for Multi-Agent Visual Reasoning ICLR 2026
Recent vision-language models have strong perceptual ability but their implicit reasoning is hard to explain and easily generates hallucinations on complex queries. Compositional methods improve interpretability, but most rely on a single agent or hand-crafted pipeline and cannot decide when to collaborate across complementary agents or compete among overlapping ones. We introduce MATA (Multi-Agent hierarchical Trainable Automaton), a multi-agent system presented as a hierarchical finite-state automaton for visual reasoning whose top-level transitions are chosen by a trainable hyper agent. Each agent corresponds to a state in the hyper automaton, and runs a small rule-based sub-automaton for reliable micro-control. All agents read and write a shared memory, yielding transparent execution history. To supervise the hyper agent's transition policy, we build transition-trajectory trees and transform to memory-to-next-state pairs, forming the MATA-SFT-90K dataset for supervised finetuning (SFT). The finetuned LLM as the transition policy understands the query and the capacity of agents, and it can efficiently choose the optimal agent to solve the task. Across multiple visual reasoning benchmarks, MATA achieves the state-of-the-art results compared with monolithic and compositional baselines. The code and dataset are available at https://github.com/ControlNet/MATA.
comment: ICLR 2026
☆ MAGNET: Towards Adaptive GUI Agents with Memory-Driven Knowledge Evolution
Mobile GUI agents powered by large foundation models enable autonomous task execution, but frequent updates altering UI appearance and reorganizing workflows cause agents trained on historical data to fail. Despite surface changes, functional semantics and task intents remain fundamentally stable. Building on this insight, we introduce MAGNET, a memory-driven adaptive agent framework with dual-level memory: stationary memory linking diverse visual features to stable functional semantics for robust action grounding and procedural memory capturing stable task intents across varying workflows. We propose a dynamic memory evolution mechanism that continuously refines both memories by prioritizing frequently accessed knowledge. Online benchmark AndroidWorld evaluations show substantial improvements over baselines, while offline benchmarks confirm consistent gains under distribution shifts. These results validate that leveraging stable structures across interface changes improves agent performance and generalization in evolving software environments.
☆ HELM: A Human-Centered Evaluation Framework for LLM-Powered Recommender Systems
The integration of Large Language Models (LLMs) into recommendation systems has introduced unprecedented capabilities for natural language understanding, explanation generation, and conversational interactions. However, existing evaluation methodologies focus predominantly on traditional accuracy metrics, failing to capture the multifaceted human-centered qualities that determine the real-world user experience. We introduce \framework{} (\textbf{H}uman-centered \textbf{E}valuation for \textbf{L}LM-powered reco\textbf{M}menders), a comprehensive evaluation framework that systematically assesses LLM-powered recommender systems across five human-centered dimensions: \textit{Intent Alignment}, \textit{Explanation Quality}, \textit{Interaction Naturalness}, \textit{Trust \& Transparency}, and \textit{Fairness \& Diversity}. Through extensive experiments involving three state-of-the-art LLM-based recommenders (GPT-4, LLaMA-3.1, and P5) across three domains (movies, books, and restaurants), and rigorous evaluation by 12 domain experts using 847 recommendation scenarios, we demonstrate that \framework{} reveals critical quality dimensions invisible to traditional metrics. Our results show that while GPT-4 achieves superior explanation quality (4.21/5.0) and interaction naturalness (4.35/5.0), it exhibits a significant popularity bias (Gini coefficient 0.73) compared to traditional collaborative filtering (0.58). We release \framework{} as an open-source toolkit to advance human-centered evaluation practices in the recommender systems community.
☆ CoReTab: Improving Multimodal Table Understanding with Code-driven Reasoning EACL'26
Existing datasets for multimodal table understanding, such as MMTab, primarily provide short factual answers without explicit multi-step reasoning supervision. Models trained on these datasets often generate brief responses that offers insufficient accuracy and limited interpretability into how these models arrive at the final answer. We introduce CoReTab, a code-driven reasoning framework that produces scalable, interpretable, and automatically verifiable annotations by coupling multi-step reasoning with executable Python code. Using the CoReTab framework, we curate a dataset of 115K verified samples averaging 529 tokens per response and fine-tune open-source MLLMs through a three-stage pipeline. We evaluate the resulting model trained on CoReTab across 17 MMTab benchmarks spanning table question answering, fact verification, and table structure understanding. Our model achieves significant gains of +6.2%, +5.7%, and +25.6%, respectively, over MMTab-trained baselines, while producing transparent and verifiable reasoning traces. These results establish CoReTab as a robust and generalizable supervision framework for improving multi-step reasoning in multimodal table understanding.
comment: accepted to EACL'26 (main conference)
☆ SNR-Edit: Structure-Aware Noise Rectification for Inversion-Free Flow-Based Editing
Inversion-free image editing using flow-based generative models challenges the prevailing inversion-based pipelines. However, existing approaches rely on fixed Gaussian noise to construct the source trajectory, leading to biased trajectory dynamics and causing structural degradation or quality loss. To address this, we introduce SNR-Edit, a training-free framework achieving faithful Latent Trajectory Correction via adaptive noise control. Mechanistically, SNR-Edit uses structure-aware noise rectification to inject segmentation constraints into the initial noise, anchoring the stochastic component of the source trajectory to the real image's implicit inversion position and reducing trajectory drift during source--target transport. This lightweight modification yields smoother latent trajectories and ensures high-fidelity structural preservation without requiring model tuning or inversion. Across SD3 and FLUX, evaluations on PIE-Bench and SNR-Bench show that SNR-Edit delivers performance on pixel-level metrics and VLM-based scoring, while adding only about 1s overhead per image.
☆ CollectiveKV: Decoupling and Sharing Collaborative Information in Sequential Recommendation ICLR 2026
Sequential recommendation models are widely used in applications, yet they face stringent latency requirements. Mainstream models leverage the Transformer attention mechanism to improve performance, but its computational complexity grows with the sequence length, leading to a latency challenge for long sequences. Consequently, KV cache technology has recently been explored in sequential recommendation systems to reduce inference latency. However, KV cache introduces substantial storage overhead in sequential recommendation systems, which often have a large user base with potentially very long user history sequences. In this work, we observe that KV sequences across different users exhibit significant similarities, indicating the existence of collaborative signals in KV. Furthermore, we analyze the KV using singular value decomposition (SVD) and find that the information in KV can be divided into two parts: the majority of the information is shareable across users, while a small portion is user-specific. Motivated by this, we propose CollectiveKV, a cross-user KV sharing mechanism. It captures the information shared across users through a learnable global KV pool. During inference, each user retrieves high-dimensional shared KV from the pool and concatenates them with low-dimensional user-specific KV to obtain the final KV. Experiments on five sequential recommendation models and three datasets show that our method can compress the KV cache to only 0.8% of its original size, while maintaining or even enhancing model performance.
comment: Accepted by ICLR 2026
☆ A Scalable Inter-edge Correlation Modeling in CopulaGNN for Link Sign Prediction ICLR 2026
Link sign prediction on a signed graph is a task to determine whether the relationship represented by an edge is positive or negative. Since the presence of negative edges violates the graph homophily assumption that adjacent nodes are similar, regular graph methods have not been applicable without auxiliary structures to handle them. We aim to directly model the latent statistical dependency among edges with the Gaussian copula and its corresponding correlation matrix, extending CopulaGNN. However, a naive modeling of edge-edge relations is computationally intractable even for a graph with moderate scale. To address this, we propose to 1) represent the correlation matrix as a Gramian of edge embeddings, significantly reducing the number of parameters, and 2) reformulate the conditional probability distribution to dramatically reduce the inference cost. We theoretically verify scalability of our method by proving its linear convergence. Also, our extensive experiments demonstrate that it achieves significantly faster convergence than baselines, maintaining competitive prediction performance to the state-of-the-art models.
comment: Accepted to ICLR 2026
☆ SHIELD: An Auto-Healing Agentic Defense Framework for LLM Resource Exhaustion Attacks
Sponge attacks increasingly threaten LLM systems by inducing excessive computation and DoS. Existing defenses either rely on statistical filters that fail on semantically meaningful attacks or use static LLM-based detectors that struggle to adapt as attack strategies evolve. We introduce SHIELD, a multi-agent, auto-healing defense framework centered on a three-stage Defense Agent that integrates semantic similarity retrieval, pattern matching, and LLM-based reasoning. Two auxiliary agents, a Knowledge Updating Agent and a Prompt Optimization Agent, form a closed self-healing loop, when an attack bypasses detection, the system updates an evolving knowledgebase, and refines defense instructions. Extensive experiments show that SHIELD consistently outperforms perplexity-based and standalone LLM defenses, achieving high F1 scores across both non-semantic and semantic sponge attacks, demonstrating the effectiveness of agentic self-healing against evolving resource-exhaustion threats.
☆ Bridging Gulfs in UI Generation through Semantic Guidance
While generative AI enables high-fidelity UI generation from text prompts, users struggle to articulate design intent and evaluate or refine results-creating gulfs of execution and evaluation. To understand the information needed for UI generation, we conducted a thematic analysis of UI prompting guidelines, identifying key design semantics and discovering that they are hierarchical and interdependent. Leveraging these findings, we developed a system that enables users to specify semantics, visualize relationships, and extract how semantics are reflected in generated UIs. By making semantics serve as an intermediate representation between human intent and AI output, our system bridges both gulfs by making requirements explicit and outcomes interpretable. A comparative user study suggests that our approach enhances users' perceived control over intent expression, outcome interpretation, and facilitates more predictable, iterative refinement. Our work demonstrates how explicit semantic representation enables systematic and explainable exploration of design possibilities in AI-driven UI design.
comment: In Proceedings of the 2026 CHI Conference on Human Factors in Computing Systems (CHI '26)
☆ Multi-Agent Procedural Graph Extraction with Structural and Logical Refinement
Automatically extracting workflows as procedural graphs from natural language is promising yet underexplored, demanding both structural validity and logical alignment. While recent large language models (LLMs) show potential for procedural graph extraction, they often produce ill-formed structures or misinterpret logical flows. We present \model{}, a multi-agent framework that formulates procedural graph extraction as a multi-round reasoning process with dedicated structural and logical refinement. The framework iterates through three stages: (1) a graph extraction phase with the graph builder agent, (2) a structural feedback phase in which a simulation agent diagnoses and explains structural defects, and (3) a logical feedback phase in which a semantic agent aligns semantics between flow logic and linguistic cues in the source text. Important feedback is prioritized and expressed in natural language, which is injected into subsequent prompts, enabling interpretable and controllable refinement. This modular design allows agents to target distinct error types without supervision or parameter updates. Experiments demonstrate that \model{} achieves substantial improvements in both structural correctness and logical consistency over strong baselines.
☆ LocationAgent: A Hierarchical Agent for Image Geolocation via Decoupling Strategy and Evidence from Parametric Knowledge
Image geolocation aims to infer capture locations based on visual content. Fundamentally, this constitutes a reasoning process composed of \textit{hypothesis-verification cycles}, requiring models to possess both geospatial reasoning capabilities and the ability to verify evidence against geographic facts. Existing methods typically internalize location knowledge and reasoning patterns into static memory via supervised training or trajectory-based reinforcement fine-tuning. Consequently, these methods are prone to factual hallucinations and generalization bottlenecks in open-world settings or scenarios requiring dynamic knowledge. To address these challenges, we propose a Hierarchical Localization Agent, called LocationAgent. Our core philosophy is to retain hierarchical reasoning logic within the model while offloading the verification of geographic evidence to external tools. To implement hierarchical reasoning, we design the RER architecture (Reasoner-Executor-Recorder), which employs role separation and context compression to prevent the drifting problem in multi-step reasoning. For evidence verification, we construct a suite of clue exploration tools that provide diverse evidence to support location reasoning. Furthermore, to address data leakage and the scarcity of Chinese data in existing datasets, we introduce CCL-Bench (China City Location Bench), an image geolocation benchmark encompassing various scene granularities and difficulty levels. Extensive experiments demonstrate that LocationAgent significantly outperforms existing methods by at least 30\% in zero-shot settings.
comment: 9 pages, 5 figures, 3 tables
☆ TS-Debate: Multimodal Collaborative Debate for Zero-Shot Time Series Reasoning
Recent progress at the intersection of large language models (LLMs) and time series (TS) analysis has revealed both promise and fragility. While LLMs can reason over temporal structure given carefully engineered context, they often struggle with numeric fidelity, modality interference, and principled cross-modal integration. We present TS-Debate, a modality-specialized, collaborative multi-agent debate framework for zero-shot time series reasoning. TS-Debate assigns dedicated expert agents to textual context, visual patterns, and numerical signals, preceded by explicit domain knowledge elicitation, and coordinates their interaction via a structured debate protocol. Reviewer agents evaluate agent claims using a verification-conflict-calibration mechanism, supported by lightweight code execution and numerical lookup for programmatic verification. This architecture preserves modality fidelity, exposes conflicting evidence, and mitigates numeric hallucinations without task-specific fine-tuning. Across 20 tasks spanning three public benchmarks, TS-Debate achieves consistent and significant performance improvements over strong baselines, including standard multimodal debate in which all agents observe all inputs.
comment: Code will be available at https://github.com/DeepAuto-AI/TS-Debate
☆ Length-Adaptive Interest Network for Balancing Long and Short Sequence Modeling in CTR Prediction AAAI 2026
User behavior sequences in modern recommendation systems exhibit significant length heterogeneity, ranging from sparse short-term interactions to rich long-term histories. While longer sequences provide more context, we observe that increasing the maximum input sequence length in existing CTR models paradoxically degrades performance for short-sequence users due to attention polarization and length imbalance in training data. To address this, we propose LAIN(Length-Adaptive Interest Network), a plug-and-play framework that explicitly incorporates sequence length as a conditioning signal to balance long- and short-sequence modeling. LAIN consists of three lightweight components: a Spectral Length Encoder that maps length into continuous representations, Length-Conditioned Prompting that injects global contextual cues into both long- and short-term behavior branches, and Length-Modulated Attention that adaptively adjusts attention sharpness based on sequence length. Extensive experiments on three real-world benchmarks across five strong CTR backbones show that LAIN consistently improves overall performance, achieving up to 1.15% AUC gain and 2.25% log loss reduction. Notably, our method significantly improves accuracy for short-sequence users without sacrificing longsequence effectiveness. Our work offers a general, efficient, and deployable solution to mitigate length-induced bias in sequential recommendation.
comment: Accepted at AAAI 2026
☆ AgenticSCR: An Autonomous Agentic Secure Code Review for Immature Vulnerabilities Detection
Secure code review is critical at the pre-commit stage, where vulnerabilities must be caught early under tight latency and limited-context constraints. Existing SAST-based checks are noisy and often miss immature, context-dependent vulnerabilities, while standalone Large Language Models (LLMs) are constrained by context windows and lack explicit tool use. Agentic AI, which combine LLMs with autonomous decision-making, tool invocation, and code navigation, offer a promising alternative, but their effectiveness for pre-commit secure code review is not yet well understood. In this work, we introduce AgenticSCR, an agentic AI for secure code review for detecting immature vulnerabilities during the pre-commit stage, augmented by security-focused semantic memories. Using our own curated benchmark of immature vulnerabilities, tailored to the pre-commit secure code review, we empirically evaluate how accurate is our AgenticSCR for localizing, detecting, and explaining immature vulnerabilities. Our results show that AgenticSCR achieves at least 153% relatively higher percentage of correct code review comments than the static LLM-based baseline, and also substantially surpasses SAST tools. Moreover, AgenticSCR generates more correct comments in four out of five vulnerability types, consistently and significantly outperforming all other baselines. These findings highlight the importance of Agentic Secure Code Review, paving the way towards an emerging research area of immature vulnerability detection.
comment: Under Review
☆ In-Network Collective Operations: Game Changer or Challenge for AI Workloads?
This paper summarizes the opportunities of in-network collective operations (INC) for accelerated collective operations in AI workloads. We provide sufficient detail to make this important field accessible to non-experts in AI or networking, fostering a connection between these communities. Consider two types of INC: Edge-INC, where the system is implemented at the node level, and Core-INC, where the system is embedded within network switches. We outline the potential performance benefits as well as six key obstacles in the context of both Edge-INC and Core-INC that may hinder their adoption. Finally, we present a set of predictions for the future development and application of INC.
☆ CLIP-Guided Unsupervised Semantic-Aware Exposure Correction
Improper exposure often leads to severe loss of details, color distortion, and reduced contrast. Exposure correction still faces two critical challenges: (1) the ignorance of object-wise regional semantic information causes the color shift artifacts; (2) real-world exposure images generally have no ground-truth labels, and its labeling entails massive manual editing. To tackle the challenges, we propose a new unsupervised semantic-aware exposure correction network. It contains an adaptive semantic-aware fusion module, which effectively fuses the semantic information extracted from a pre-trained Fast Segment Anything Model into a shared image feature space. Then the fused features are used by our multi-scale residual spatial mamba group to restore the details and adjust the exposure. To avoid manual editing, we propose a pseudo-ground truth generator guided by CLIP, which is fine-tuned to automatically identify exposure situations and instruct the tailored corrections. Also, we leverage the rich priors from the FastSAM and CLIP to develop a semantic-prompt consistency loss to enforce semantic consistency and image-prompt alignment for unsupervised training. Comprehensive experimental results illustrate the effectiveness of our method in correcting real-world exposure images and outperforms state-of-the-art unsupervised methods both numerically and visually.
☆ Exploring Weaknesses in Function Call Models via Reinforcement Learning: An Adversarial Data Augmentation Approach
Function call capabilities have become crucial for Large Language Models (LLMs), enabling them to interact more effectively with external tools and APIs. Existing methods for improving the function call capabilities of LLMs rely on data obtained either through manual annotation or automated generation by models, and use this data to finetune the LLMs. However, these methods often lack targeted design and are constrained by fixed patterns and data distributions, which limits their effectiveness in enhancing the generalization and robustness of function call LLMs. To address this limitation, we propose a novel adversarial data augmentation method that employs reinforcement learning to systematically identify and target the weaknesses of function call LLMs. Our training framework introduces a query model trained with reinforcement learning (RL) to generate adversarial queries that are specifically designed to challenge function call (FC) models. This approach adopts a zero sum game formulation, where the query model and the FC model engage in iterative alternating training. Overall, our method advances the development of more robust FC models and provides a systematic way to identify and correct weaknesses in the ability of LLMs to interact with external tools.
☆ LLMs as Orchestrators: Constraint-Compliant Multi-Agent Optimization for Recommendation Systems
Recommendation systems must optimize multiple objectives while satisfying hard business constraints such as fairness and coverage. For example, an e-commerce platform may require every recommendation list to include items from multiple sellers and at least one newly listed product; violating such constraints--even once--is unacceptable in production. Prior work on multi-objective recommendation and recent LLM-based recommender agents largely treat constraints as soft penalties or focus on item scoring and interaction, leading to frequent violations in real-world deployments. How to leverage LLMs for coordinating constrained optimization in recommendation systems remains underexplored. We propose DualAgent-Rec, an LLM-coordinated dual-agent framework for constrained multi-objective e-commerce recommendation. The framework separates optimization into an Exploitation Agent that prioritizes accuracy under hard constraints and an Exploration Agent that promotes diversity through unconstrained Pareto search. An LLM-based coordinator adaptively allocates resources between agents based on optimization progress and constraint satisfaction, while an adaptive epsilon-relaxation mechanism guarantees feasibility of final solutions. Experiments on the Amazon Reviews 2023 dataset demonstrate that DualAgent-Rec achieves 100% constraint satisfaction and improves Pareto hypervolume by 4-6% over strong baselines, while maintaining competitive accuracy-diversity trade-offs. These results indicate that LLMs can act as effective orchestration agents for deployable and constraint-compliant recommendation systems.
comment: 8 pages, 5 figures
☆ RobustExplain: Evaluating Robustness of LLM-Based Explanation Agents for Recommendation
Large Language Models (LLMs) are increasingly used to generate natural-language explanations in recommender systems, acting as explanation agents that reason over user behavior histories. While prior work has focused on explanation fluency and relevance under fixed inputs, the robustness of LLM-generated explanations to realistic user behavior noise remains largely unexplored. In real-world web platforms, interaction histories are inherently noisy due to accidental clicks, temporal inconsistencies, missing values, and evolving preferences, raising concerns about explanation stability and user trust. We present RobustExplain, the first systematic evaluation framework for measuring the robustness of LLM-generated recommendation explanations. RobustExplain introduces five realistic user behavior perturbations evaluated across multiple severity levels and a multi-dimensional robustness metric capturing semantic, keyword, structural, and length consistency. Our goal is to establish a principled, task-level evaluation framework and initial robustness baselines, rather than to provide a comprehensive leaderboard across all available LLMs. Experiments on four representative LLMs (7B--70B) show that current models exhibit only moderate robustness, with larger models achieving up to 8% higher stability. Our results establish the first robustness benchmarks for explanation agents and highlight robustness as a critical dimension for trustworthy, agent-driven recommender systems at web scale.
comment: 8 pages, 4 figures
☆ Uncertainty-Aware 3D Emotional Talking Face Synthesis with Emotion Prior Distillation ICASSP 2026
Emotional Talking Face synthesis is pivotal in multimedia and signal processing, yet existing 3D methods suffer from two critical challenges: poor audio-vision emotion alignment, manifested as difficult audio emotion extraction and inadequate control over emotional micro-expressions; and a one-size-fits-all multi-view fusion strategy that overlooks uncertainty and feature quality differences, undermining rendering quality. We propose UA-3DTalk, Uncertainty-Aware 3D Emotional Talking Face Synthesis with emotion prior distillation, which has three core modules: the Prior Extraction module disentangles audio into content-synchronized features for alignment and person-specific complementary features for individualization; the Emotion Distillation module introduces a multi-modal attention-weighted fusion mechanism and 4D Gaussian encoding with multi-resolution code-books, enabling fine-grained audio emotion extraction and precise control of emotional micro-expressions; the Uncertainty-based Deformation deploys uncertainty blocks to estimate view-specific aleatoric (input noise) and epistemic (model parameters) uncertainty, realizing adaptive multi-view fusion and incorporating a multi-head decoder for Gaussian primitive optimization to mitigate the limitations of uniform-weight fusion. Extensive experiments on regular and emotional datasets show UA-3DTalk outperforms state-of-the-art methods like DEGSTalk and EDTalk by 5.2% in E-FID for emotion alignment, 3.1% in SyncC for lip synchronization, and 0.015 in LPIPS for rendering quality. Project page: https://mrask999.github.io/UA-3DTalk
comment: Accepted by ICASSP 2026
☆ Detecting and Correcting Hallucinations in LLM-Generated Code via Deterministic AST Analysis
Large Language Models (LLMs) for code generation boost productivity but frequently introduce Knowledge Conflicting Hallucinations (KCHs), subtle, semantic errors, such as non-existent API parameters, that evade linters and cause runtime failures. Existing mitigations like constrained decoding or non-deterministic LLM-in-the-loop repair are often unreliable for these errors. This paper investigates whether a deterministic, static-analysis framework can reliably detect \textit{and} auto-correct KCHs. We propose a post-processing framework that parses generated code into an Abstract Syntax Tree (AST) and validates it against a dynamically-generated Knowledge Base (KB) built via library introspection. This non-executing approach uses deterministic rules to find and fix both API and identifier-level conflicts. On a manually-curated dataset of 200 Python snippets, our framework detected KCHs with 100\% precision and 87.6\% recall (0.934 F1-score), and successfully auto-corrected 77.0\% of all identified hallucinations. Our findings demonstrate that this deterministic post-processing approach is a viable and reliable alternative to probabilistic repair, offering a clear path toward trustworthy code generation.
comment: Accepted to FORGE 2026
☆ m2sv: A Scalable Benchmark for Map-to-Street-View Spatial Reasoning
Vision--language models (VLMs) achieve strong performance on many multimodal benchmarks but remain brittle on spatial reasoning tasks that require aligning abstract overhead representations with egocentric views. We introduce m2sv, a scalable benchmark for map-to-street-view spatial reasoning that asks models to infer camera viewing direction by aligning a north-up overhead map with a Street View image captured at the same real-world intersection. We release m2sv-20k, a geographically diverse benchmark with controlled ambiguity, along with m2sv-sft-11k, a curated set of structured reasoning traces for supervised fine-tuning. Despite strong performance on existing multimodal benchmarks, the best evaluated VLM achieves only 65.2% accuracy on m2sv, far below the human baseline of 95%. While supervised fine-tuning and reinforcement learning yield consistent gains, cross-benchmark evaluations reveal limited transfer. Beyond aggregate accuracy, we systematically analyze difficulty in map-to-street-view reasoning using both structural signals and human effort, and conduct an extensive failure analysis of adapted open models. Our findings highlight persistent gaps in geometric alignment, evidence aggregation, and reasoning consistency, motivating future work on grounded spatial reasoning across viewpoints.
☆ FloydNet: A Learning Paradigm for Global Relational Reasoning
Developing models capable of complex, multi-step reasoning is a central goal in artificial intelligence. While representing problems as graphs is a powerful approach, Graph Neural Networks (GNNs) are fundamentally constrained by their message-passing mechanism, which imposes a local bottleneck that limits global, holistic reasoning. We argue that dynamic programming (DP), which solves problems by iteratively refining a global state, offers a more powerful and suitable learning paradigm. We introduce FloydNet, a new architecture that embodies this principle. In contrast to local message passing, FloydNet maintains a global, all-pairs relationship tensor and learns a generalized DP operator to progressively refine it. This enables the model to develop a task-specific relational calculus, providing a principled framework for capturing long-range dependencies. Theoretically, we prove that FloydNet achieves 3-WL (2-FWL) expressive power, and its generalized form aligns with the k-FWL hierarchy. FloydNet demonstrates state-of-the-art performance across challenging domains: it achieves near-perfect scores (often >99\%) on the CLRS-30 algorithmic benchmark, finds exact optimal solutions for the general Traveling Salesman Problem (TSP) at rates significantly exceeding strong heuristics, and empirically matches the 3-WL test on the BREC benchmark. Our results establish this learned, DP-style refinement as a powerful and practical alternative to message passing for high-level graph reasoning.
comment: 29 pages, 9 figures, 14 tables
☆ Axe: A Simple Unified Layout Abstraction for Machine Learning Compilers
Scaling modern deep learning workloads demands coordinated placement of data and compute across device meshes, memory hierarchies, and heterogeneous accelerators. We present Axe Layout, a hardware-aware abstraction that maps logical tensor coordinates to a multi-axis physical space via named axes. Axe unifies tiling, sharding, replication, and offsets across inter-device distribution and on-device layouts, enabling collective primitives to be expressed consistently from device meshes to threads. Building on Axe, we design a multi-granularity, distribution-aware DSL and compiler that composes thread-local control with collective operators in a single kernel. Experiments show that our unified approach can bring performance close to hand-tuned kernels on across latest GPU devices and multi-device environments and accelerator backends.
☆ Out-of-Distribution Generalization for Neural Physics Solvers
Neural physics solvers are increasingly used in scientific discovery, given their potential for rapid in silico insights into physical, materials, or biological systems and their long-time evolution. However, poor generalization beyond their training support limits exploration of novel designs and long-time horizon predictions. We introduce NOVA, a route to generalizable neural physics solvers that can provide rapid, accurate solutions to scenarios even under distributional shifts in partial differential equation parameters, geometries and initial conditions. By learning physics-aligned representations from an initial sparse set of scenarios, NOVA consistently achieves 1-2 orders of magnitude lower out-of-distribution errors than data-driven baselines across complex, nonlinear problems including heat transfer, diffusion-reaction and fluid flow. We further showcase NOVA's dual impact on stabilizing long-time dynamical rollouts and improving generative design through application to the simulation of nonlinear Turing systems and fluidic chip optimization. Unlike neural physics solvers that are constrained to retrieval and/or emulation within an a priori space, NOVA enables reliable extrapolation beyond known regimes, a key capability given the need for exploration of novel hypothesis spaces in scientific discovery
☆ Privacy-Preserving Model Transcription with Differentially Private Synthetic Distillation IEEE
While many deep learning models trained on private datasets have been deployed in various practical tasks, they may pose a privacy leakage risk as attackers could recover informative data or label knowledge from models. In this work, we present \emph{privacy-preserving model transcription}, a data-free model-to-model conversion solution to facilitate model deployment with a privacy guarantee. To this end, we propose a cooperative-competitive learning approach termed \emph{differentially private synthetic distillation} that learns to convert a pretrained model (teacher) into its privacy-preserving counterpart (student) via a trainable generator without access to private data. The learning collaborates with three players in a unified framework and performs alternate optimization: i)~the generator is learned to generate synthetic data, ii)~the teacher and student accept the synthetic data and compute differential private labels by flexible data or label noisy perturbation, and iii)~the student is updated with noisy labels and the generator is updated by taking the student as a discriminator for adversarial training. We theoretically prove that our approach can guarantee differential privacy and convergence. The transcribed student has good performance and privacy protection, while the resulting generator can generate private synthetic data for downstream tasks. Extensive experiments clearly demonstrate that our approach outperforms 26 state-of-the-arts.
comment: Accepted by IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI)
☆ More at Stake: How Payoff and Language Shape LLM Agent Strategies in Cooperation Dilemmas
As LLMs increasingly act as autonomous agents in interactive and multi-agent settings, understanding their strategic behavior is critical for safety, coordination, and AI-driven social and economic systems. We investigate how payoff magnitude and linguistic context shape LLM strategies in repeated social dilemmas, using a payoff-scaled Prisoner's Dilemma to isolate sensitivity to incentive strength. Across models and languages, we observe consistent behavioral patterns, including incentive-sensitive conditional strategies and cross-linguistic divergence. To interpret these dynamics, we train supervised classifiers on canonical repeated-game strategies and apply them to LLM decisions, revealing systematic, model- and language-dependent behavioral intentions, with linguistic framing sometimes matching or exceeding architectural effects. Our results provide a unified framework for auditing LLMs as strategic agents and highlight cooperation biases with direct implications for AI governance and multi-agent system design.
comment: 14 pages, 10 figures, 4 tables
☆ HalluJudge: A Reference-Free Hallucination Detection for Context Misalignment in Code Review Automation
Large Language models (LLMs) have shown strong capabilities in code review automation, such as review comment generation, yet they suffer from hallucinations -- where the generated review comments are ungrounded in the actual code -- poses a significant challenge to the adoption of LLMs in code review workflows. To address this, we explore effective and scalable methods for a hallucination detection in LLM-generated code review comments without the reference. In this work, we design HalluJudge that aims to assess the grounding of generated review comments based on the context alignment. HalluJudge includes four key strategies ranging from direct assessment to structured multi-branch reasoning (e.g., Tree-of-Thoughts). We conduct a comprehensive evaluation of these assessment strategies across Atlassian's enterprise-scale software projects to examine the effectiveness and cost-efficiency of HalluJudge. Furthermore, we analyze the alignment between HalluJudge's judgment and developer preference of the actual LLM-generated code review comments in the real-world production. Our results show that the hallucination assessment in HalluJudge is cost-effective with an F1 score of 0.85 and an average cost of $0.009. On average, 67% of the HalluJudge assessments are aligned with the developer preference of the actual LLM-generated review comments in the online production. Our results suggest that HalluJudge can serve as a practical safeguard to reduce developers' exposure to hallucinated comments, fostering trust in AI-assisted code reviews.
comment: Under Review
☆ Dynamic Cogeneration of Bug Reproduction Test in Agentic Program Repair
Bug Reproduction Tests (BRTs) have been used in many agentic Automated Program Repair (APR) systems, primarily for validating promising fixes and aiding fix generation. In practice, when developers submit a patch, they often implement the BRT alongside the fix. Our experience deploying agentic APR reveals that developers similarly desire a BRT within AI-generated patches to increase their confidence. However, canonical APR systems tend to generate BRTs and fixes separately, or focus on producing only the fix in the final patch. In this paper, we study agentic APR in the context of cogeneration, where the APR agent is instructed to generate both a fix and a BRT in the same patch. We evaluate the effectiveness of different cogeneration strategies on 120 human-reported bugs at Google and characterize different cogeneration strategies by their influence on APR agent behavior. We develop and evaluate patch selectors that account for test change information to select patches with plausible fixes (and plausible BRTs). Finally, we analyze the root causes of failed cogeneration trajectories. Importantly, we show that cogeneration allows the APR agent to generate BRTs for at least as many bugs as a dedicated BRT agent, without compromising the generation rate of plausible fixes, thereby reducing engineering effort in maintaining and coordinating separate generation pipelines for fix and BRT at scale.
☆ Who's in Charge? Disempowerment Patterns in Real-World LLM Usage
Although AI assistants are now deeply embedded in society, there has been limited empirical study of how their usage affects human empowerment. We present the first large-scale empirical analysis of disempowerment patterns in real-world AI assistant interactions, analyzing 1.5 million consumer Claude.ai conversations using a privacy-preserving approach. We focus on situational disempowerment potential, which occurs when AI assistant interactions risk leading users to form distorted perceptions of reality, make inauthentic value judgments, or act in ways misaligned with their values. Quantitatively, we find that severe forms of disempowerment potential occur in fewer than one in a thousand conversations, though rates are substantially higher in personal domains like relationships and lifestyle. Qualitatively, we uncover several concerning patterns, such as validation of persecution narratives and grandiose identities with emphatic sycophantic language, definitive moral judgments about third parties, and complete scripting of value-laden personal communications that users appear to implement verbatim. Analysis of historical trends reveals an increase in the prevalence of disempowerment potential over time. We also find that interactions with greater disempowerment potential receive higher user approval ratings, possibly suggesting a tension between short-term user preferences and long-term human empowerment. Our findings highlight the need for AI systems designed to robustly support human autonomy and flourishing.
☆ Pixel-Grounded Retrieval for Knowledgeable Large Multimodal Models
Visual Question Answering (VQA) often requires coupling fine-grained perception with factual knowledge beyond the input image. Prior multimodal Retrieval-Augmented Generation (MM-RAG) systems improve factual grounding but lack an internal policy for when and how to retrieve. We propose PixSearch, the first end-to-end Segmenting Large Multimodal Model (LMM) that unifies region-level perception and retrieval-augmented reasoning. During encoding, PixSearch emits tokens to trigger retrieval, selects query modalities (text, image, or region), and generates pixel-level masks that directly serve as visual queries, eliminating the reliance on modular pipelines (detectors, segmenters, captioners, etc.). A two-stage supervised fine-tuning regimen with search-interleaved supervision teaches retrieval timing and query selection while preserving segmentation ability. On egocentric and entity-centric VQA benchmarks, PixSearch substantially improves factual consistency and generalization, yielding a 19.7% relative gain in accuracy on CRAG-MM compared to whole image retrieval, while retaining competitive reasoning performance on various VQA and text-only QA tasks.
comment: Preprint
☆ Principled Fine-tuning of LLMs from User-Edits: A Medley of Preference, Supervision, and Reward NeurIPS 2025
We study how to fine-tune LLMs using user-edit deployment data consisting of a set of context, an agent's response, and user edits. This deployment data is naturally generated by users in applications such as LLMs-based writing assistants and coding agents. The _natural_ origin of user edits makes it a desired source for adapting and personalizing LLMs. In this setup, there emerges a unification of various feedback types namely preferences, supervised labels, and cost that are typically studied separately in the literature. In this paper, we initiate the theoretical investigation of learning from user edits. We first derive bounds for learning algorithms that learn from each of these feedback types. We prove that these algorithms have different trade-offs depending upon the user, data distribution, and model class. We then propose a simple ensembling procedure to jointly learn from these feedback types. On two domains adapted from Gao et al. 2024, we show our ensembling procedure outperforms these methods that learn from individual feedback. Further, we show that our proposed procedure can robustly adapt to different user-edit distributions at test time.
comment: Accepted at NeurIPS 2025
☆ From Answer Givers to Design Mentors: Guiding LLMs with the Cognitive Apprenticeship Model
Design feedback helps practitioners improve their artifacts while also fostering reflection and design reasoning. Large Language Models (LLMs) such as ChatGPT can support design work, but often provide generic, one-off suggestions that limit reflective engagement. We investigate how to guide LLMs to act as design mentors by applying the Cognitive Apprenticeship Model, which emphasizes demonstrating reasoning through six methods: modeling, coaching, scaffolding, articulation, reflection, and exploration. We operationalize these instructional methods through structured prompting and evaluate them in a within-subjects study with data visualization practitioners. Participants interacted with both a baseline LLM and an instructional LLM designed with cognitive apprenticeship prompts. Surveys, interviews, and conversational log analyses compared experiences across conditions. Our findings show that cognitively informed prompts elicit deeper design reasoning and more reflective feedback exchanges, though the baseline is sometimes preferred depending on task types or experience levels. We distill design considerations for AI-assisted feedback systems that foster reflective practice.
☆ Robustness of Constraint Automata for Description Logics with Concrete Domains
Decidability or complexity issues about the consistency problem for description logics with concrete domains have already been analysed with tableaux-based or type elimination methods. Concrete domains in ontologies are essential to consider concrete objects and predefined relations. In this work, we expose an automata-based approach leading to the optimal upper bound EXPTIME, that is designed by enriching the transitions with symbolic constraints. We show that the nonemptiness problem for such automata belongs to EXPTIME if the concrete domains satisfy a few simple properties. Then, we provide a reduction from the consistency problem for ontologies, yielding EXPTIME-membership. Thanks to the expressivity of constraint automata, the results are extended to additional ingredients such as inverse roles, functional role names and constraint assertions, while maintaining EXPTIME-membership, which illustrates the robustness of the approach
comment: Extended version of a paper accepted at CSL'26, Paris
☆ Who's in Charge? Disempowerment Patterns in Real-World LLM Usage
Although AI assistants are now deeply embedded in society, there has been limited empirical study of how their usage affects human empowerment. We present the first large-scale empirical analysis of disempowerment patterns in real-world AI assistant interactions, analyzing 1.5 million consumer Claude$.$ai conversations using a privacy-preserving approach. We focus on situational disempowerment potential, which occurs when AI assistant interactions risk leading users to form distorted perceptions of reality, make inauthentic value judgments, or act in ways misaligned with their values. Quantitatively, we find that severe forms of disempowerment potential occur in fewer than one in a thousand conversations, though rates are substantially higher in personal domains like relationships and lifestyle. Qualitatively, we uncover several concerning patterns, such as validation of persecution narratives and grandiose identities with emphatic sycophantic language, definitive moral judgments about third parties, and complete scripting of value-laden personal communications that users appear to implement verbatim. Analysis of historical trends reveals an increase in the prevalence of disempowerment potential over time. We also find that interactions with greater disempowerment potential receive higher user approval ratings, possibly suggesting a tension between short-term user preferences and long-term human empowerment. Our findings highlight the need for AI systems designed to robustly support human autonomy and flourishing.
☆ Taxonomy of the Retrieval System Framework: Pitfalls and Paradigms
Designing an embedding retrieval system requires navigating a complex design space of conflicting trade-offs between efficiency and effectiveness. This work structures these decisions as a vertical traversal of the system design stack. We begin with the Representation Layer by examining how loss functions and architectures, specifically Bi-encoders and Cross-encoders, define semantic relevance and geometric projection. Next, we analyze the Granularity Layer and evaluate how segmentation strategies like Atomic and Hierarchical chunking mitigate information bottlenecks in long-context documents. Moving to the Orchestration Layer, we discuss methods that transcend the single-vector paradigm, including hierarchical retrieval, agentic decomposition, and multi-stage reranking pipelines to resolve capacity limitations. Finally, we address the Robustness Layer by identifying architectural mitigations for domain generalization failures, lexical blind spots, and the silent degradation of retrieval quality due to temporal drift. By categorizing these limitations and design choices, we provide a comprehensive framework for practitioners to optimize the efficiency-effectiveness frontier in modern neural search systems.
☆ BengaliSent140: A Large-Scale Bengali Binary Sentiment Dataset for Hate and Non-Hate Speech Classification
Sentiment analysis for the Bengali language has attracted increasing research interest in recent years. However, progress remains constrained by the scarcity of large-scale and diverse annotated datasets. Although several Bengali sentiment and hate speech datasets are publicly available, most are limited in size or confined to a single domain, such as social media comments. Consequently, these resources are often insufficient for training modern deep learning based models, which require large volumes of heterogeneous data to learn robust and generalizable representations. In this work, we introduce BengaliSent140, a large-scale Bengali binary sentiment dataset constructed by consolidating seven existing Bengali text datasets into a unified corpus. To ensure consistency across sources, heterogeneous annotation schemes are systematically harmonized into a binary sentiment formulation with two classes: Not Hate (0) and Hate (1). The resulting dataset comprises 139,792 unique text samples, including 68,548 hate and 71,244 not-hate instances, yielding a relatively balanced class distribution. By integrating data from multiple sources and domains, BengaliSent140 offers broader linguistic and contextual coverage than existing Bengali sentiment datasets and provides a strong foundation for training and benchmarking deep learning models. Baseline experimental results are also reported to demonstrate the practical usability of the dataset. The dataset is publicly available at https://www.kaggle.com/datasets/akifislam/bengalisent140/
comment: Dataset paper. 6 pages, 3 figures. 4 Tables, Includes a publicly released Bengali sentiment dataset on Kaggle (BengaliSent140) and baseline experimental results
☆ Rewarding Intellectual Humility Learning When Not To Answer In Large Language Models
Large Language Models (LLMs) often produce hallucinated or unverifiable content, undermining their reliability in factual domains. This work investigates Reinforcement Learning with Verifiable Rewards (RLVR) as a training paradigm that explicitly rewards abstention ("I don't know") alongside correctness to promote intellectual humility. We fine-tune and evaluate Granite-3.3-2B-Instruct and Qwen-3-4B-Instruct on the MedMCQA and Hendrycks Math benchmarks using a ternary reward structure ($-1$, r_abs, 1) under varying abstention reward structures. We further study the effect of combining RLVR with supervised fine-tuning strategies that teach abstention prior to reinforcement learning. Our results show that moderate abstention rewards (r_abs $\approx -0.25$ to 0.3) consistently reduce incorrect responses without severe accuracy degradation on multiple-choice tasks, with larger models exhibiting greater robustness to abstention incentives. On open-ended question answering, we observe limitations due to insufficient exploration, which can be partially mitigated through supervised abstention training. Overall, these findings demonstrate the feasibility and flexibility of verifiable reward design as a practical approach for hallucination mitigation in language models. Reproducible code for our abstention training framework is available here https://github.com/Mystic-Slice/rl-abstention.
☆ Membership Inference Attacks Against Fine-tuned Diffusion Language Models ICLR 2026
Diffusion Language Models (DLMs) represent a promising alternative to autoregressive language models, using bidirectional masked token prediction. Yet their susceptibility to privacy leakage via Membership Inference Attacks (MIA) remains critically underexplored. This paper presents the first systematic investigation of MIA vulnerabilities in DLMs. Unlike the autoregressive models' single fixed prediction pattern, DLMs' multiple maskable configurations exponentially increase attack opportunities. This ability to probe many independent masks dramatically improves detection chances. To exploit this, we introduce SAMA (Subset-Aggregated Membership Attack), which addresses the sparse signal challenge through robust aggregation. SAMA samples masked subsets across progressive densities and applies sign-based statistics that remain effective despite heavy-tailed noise. Through inverse-weighted aggregation prioritizing sparse masks' cleaner signals, SAMA transforms sparse memorization detection into a robust voting mechanism. Experiments on nine datasets show SAMA achieves 30% relative AUC improvement over the best baseline, with up to 8 times improvement at low false positive rates. These findings reveal significant, previously unknown vulnerabilities in DLMs, necessitating the development of tailored privacy defenses.
comment: Accepted for presentation at ICLR 2026 (pending final camera-ready)
☆ How Much Progress Has There Been in NVIDIA Datacenter GPUs?
Graphics Processing Units (GPUs) are the state-of-the-art architecture for essential tasks, ranging from rendering 2D/3D graphics to accelerating workloads in supercomputing centers and, of course, Artificial Intelligence (AI). As GPUs continue improving to satisfy ever-increasing performance demands, analyzing past and current progress becomes paramount in determining future constraints on scientific research. This is particularly compelling in the AI domain, where rapid technological advancements and fierce global competition have led the United States to recently implement export control regulations limiting international access to advanced AI chips. For this reason, this paper studies technical progress in NVIDIA datacenter GPUs released from the mid-2000s until today. Specifically, we compile a comprehensive dataset of datacenter NVIDIA GPUs comprising several features, ranging from computational performance to release price. Then, we examine trends in main GPU features and estimate progress indicators for per-memory bandwidth, per-dollar, and per-watt increase rates. Our main results identify doubling times of 1.44 and 1.69 years for FP16 and FP32 operations (without accounting for sparsity benefits), while FP64 doubling times range from 2.06 to 3.79 years. Off-chip memory size and bandwidth grew at slower rates than computing performance, doubling every 3.32 to 3.53 years. The release prices of datacenter GPUs have roughly doubled every 5.1 years, while their power consumption has approximately doubled every 16 years. Finally, we quantify the potential implications of current U.S. export control regulations in terms of the potential performance gaps that would result if implementation were assumed to be complete and successful. We find that recently proposed changes to export controls would shrink the potential performance gap from 23.6x to 3.54x.
☆ Benchmarking Reward Hack Detection in Code Environments via Contrastive Analysis
Recent advances in reinforcement learning for code generation have made robust environments essential to prevent reward hacking. As LLMs increasingly serve as evaluators in code-based RL, their ability to detect reward hacking remains understudied. In this paper, we propose a novel taxonomy of reward exploits spanning across 54 categories and introduce TRACE (Testing Reward Anomalies in Code Environments), a synthetically curated and human-verified benchmark containing 517 testing trajectories. Unlike prior work that evaluates reward hack detection in isolated classification scenarios, we contrast these evaluations with a more realistic, contrastive anomaly detection setup on TRACE. Our experiments reveal that models capture reward hacks more effectively in contrastive settings than in isolated classification settings, with GPT-5.2 with highest reasoning mode achieving the best detection rate at 63%, up from 45% in isolated settings on TRACE. Building on this insight, we demonstrate that state-of-the-art models struggle significantly more with semantically contextualized reward hacks compared to syntactically contextualized ones. We further conduct qualitative analyses of model behaviors, as well as ablation studies showing that the ratio of benign to hacked trajectories and analysis cluster sizes substantially impact detection performance. We release the benchmark and evaluation harness to enable the community to expand TRACE and evaluate their models.
comment: Dataset: https://huggingface.co/datasets/PatronusAI/trace-dataset
☆ Taming Toxic Talk: Using chatbots to intervene with users posting toxic comments
Generative AI chatbots have proven surprisingly effective at persuading people to change their beliefs and attitudes in lab settings. However, the practical implications of these findings are not yet clear. In this work, we explore the impact of rehabilitative conversations with generative AI chatbots on users who share toxic content online. Toxic behaviors -- like insults or threats of violence, are widespread in online communities. Strategies to deal with toxic behavior are typically punitive, such as removing content or banning users. Rehabilitative approaches are rarely attempted, in part due to the emotional and psychological cost of engaging with aggressive users. In collaboration with seven large Reddit communities, we conducted a large-scale field experiment (N=893) to invite people who had recently posted toxic content to participate in conversations with AI chatbots. A qualitative analysis of the conversations shows that many participants engaged in good faith and even expressed remorse or a desire to change. However, we did not observe a significant change in toxic behavior in the following month compared to a control group. We discuss possible explanations for our findings, as well as theoretical and practical implications based on our results.
☆ Dynamics of Human-AI Collective Knowledge on the Web: A Scalable Model and Insights for Sustainable Growth WWW26
Humans and large language models (LLMs) now co-produce and co-consume the web's shared knowledge archives. Such human-AI collective knowledge ecosystems contain feedback loops with both benefits (e.g., faster growth, easier learning) and systemic risks (e.g., quality dilution, skill reduction, model collapse). To understand such phenomena, we propose a minimal, interpretable dynamical model of the co-evolution of archive size, archive quality, model (LLM) skill, aggregate human skill, and query volume. The model captures two content inflows (human, LLM) controlled by a gate on LLM-content admissions, two learning pathways for humans (archive study vs. LLM assistance), and two LLM-training modalities (corpus-driven scaling vs. learning from human feedback). Through numerical experiments, we identify different growth regimes (e.g., healthy growth, inverted flow, inverted learning, oscillations), and show how platform and policy levers (gate strictness, LLM training, human learning pathways) shift the system across regime boundaries. Two domain configurations (PubMed, GitHub and Copilot) illustrate contrasting steady states under different growth rates and moderation norms. We also fit the model to Wikipedia's knowledge flow during pre-ChatGPT and post-ChatGPT eras separately. We find a rise in LLM additions with a concurrent decline in human inflow, consistent with a regime identified by the model. Our model and analysis yield actionable insights for sustainable growth of human-AI collective knowledge on the Web.
comment: Accepted for ACM Web Conference 2026 (WWW26)
☆ Should I Have Expressed a Different Intent? Counterfactual Generation for LLM-Based Autonomous Control
Large language model (LLM)-powered agents can translate high-level user intents into plans and actions in an environment. Yet after observing an outcome, users may wonder: What if I had phrased my intent differently? We introduce a framework that enables such counterfactual reasoning in agentic LLM-driven control scenarios, while providing formal reliability guarantees. Our approach models the closed-loop interaction between a user, an LLM-based agent, and an environment as a structural causal model (SCM), and leverages test-time scaling to generate multiple candidate counterfactual outcomes via probabilistic abduction. Through an offline calibration phase, the proposed conformal counterfactual generation (CCG) yields sets of counterfactual outcomes that are guaranteed to contain the true counterfactual outcome with high probability. We showcase the performance of CCG on a wireless network control use case, demonstrating significant advantages compared to naive re-execution baselines.
☆ LLaTTE: Scaling Laws for Multi-Stage Sequence Modeling in Large-Scale Ads Recommendation
We present LLaTTE (LLM-Style Latent Transformers for Temporal Events), a scalable transformer architecture for production ads recommendation. Through systematic experiments, we demonstrate that sequence modeling in recommendation systems follows predictable power-law scaling similar to LLMs. Crucially, we find that semantic features bend the scaling curve: they are a prerequisite for scaling, enabling the model to effectively utilize the capacity of deeper and longer architectures. To realize the benefits of continued scaling under strict latency constraints, we introduce a two-stage architecture that offloads the heavy computation of large, long-context models to an asynchronous upstream user model. We demonstrate that upstream improvements transfer predictably to downstream ranking tasks. Deployed as the largest user model at Meta, this multi-stage framework drives a 4.3\% conversion uplift on Facebook Feed and Reels with minimal serving overhead, establishing a practical blueprint for harnessing scaling laws in industrial recommender systems.
comment: Lee Xiong, Zhirong Chen, and Rahul Mayuranath contributed equally to this work
☆ Semi-Supervised Masked Autoencoders: Unlocking Vision Transformer Potential with Limited Data
We address the challenge of training Vision Transformers (ViTs) when labeled data is scarce but unlabeled data is abundant. We propose Semi-Supervised Masked Autoencoder (SSMAE), a framework that jointly optimizes masked image reconstruction and classification using both unlabeled and labeled samples with dynamically selected pseudo-labels. SSMAE introduces a validation-driven gating mechanism that activates pseudo-labeling only after the model achieves reliable, high-confidence predictions that are consistent across both weakly and strongly augmented views of the same image, reducing confirmation bias. On CIFAR-10 and CIFAR-100, SSMAE consistently outperforms supervised ViT and fine-tuned MAE, with the largest gains in low-label regimes (+9.24% over ViT on CIFAR-10 with 10% labels). Our results demonstrate that when pseudo-labels are introduced is as important as how they are generated for data-efficient transformer training. Codes are available at https://github.com/atik666/ssmae.
☆ VERGE: Formal Refinement and Guidance Engine for Verifiable LLM Reasoning
Despite the syntactic fluency of Large Language Models (LLMs), ensuring their logical correctness in high-stakes domains remains a fundamental challenge. We present a neurosymbolic framework that combines LLMs with SMT solvers to produce verification-guided answers through iterative refinement. Our approach decomposes LLM outputs into atomic claims, autoformalizes them into first-order logic, and verifies their logical consistency using automated theorem proving. We introduce three key innovations: (1) multi-model consensus via formal semantic equivalence checking to ensure logic-level alignment between candidates, eliminating the syntactic bias of surface-form metrics, (2) semantic routing that directs different claim types to appropriate verification strategies: symbolic solvers for logical claims and LLM ensembles for commonsense reasoning, and (3) precise logical error localization via Minimal Correction Subsets (MCS), which pinpoint the exact subset of claims to revise, transforming binary failure signals into actionable feedback. Our framework classifies claims by their logical status and aggregates multiple verification signals into a unified score with variance-based penalty. The system iteratively refines answers using structured feedback until acceptance criteria are met or convergence is achieved. This hybrid approach delivers formal guarantees where possible and consensus verification elsewhere, advancing trustworthy AI. With the GPT-OSS-120B model, VERGE demonstrates an average performance uplift of 18.7% at convergence across a set of reasoning benchmarks compared to single-pass approaches.
☆ Size Matters: Reconstructing Real-Scale 3D Models from Monocular Images for Food Portion Estimation
The rise of chronic diseases related to diet, such as obesity and diabetes, emphasizes the need for accurate monitoring of food intake. While AI-driven dietary assessment has made strides in recent years, the ill-posed nature of recovering size (portion) information from monocular images for accurate estimation of ``how much did you eat?'' is a pressing challenge. Some 3D reconstruction methods have achieved impressive geometric reconstruction but fail to recover the crucial real-world scale of the reconstructed object, limiting its usage in precision nutrition. In this paper, we bridge the gap between 3D computer vision and digital health by proposing a method that recovers a true-to-scale 3D reconstructed object from a monocular image. Our approach leverages rich visual features extracted from models trained on large-scale datasets to estimate the scale of the reconstructed object. This learned scale enables us to convert single-view 3D reconstructions into true-to-life, physically meaningful models. Extensive experiments and ablation studies on two publicly available datasets show that our method consistently outperforms existing techniques, achieving nearly a 30% reduction in mean absolute volume-estimation error, showcasing its potential to enhance the domain of precision nutrition. Code: https://gitlab.com/viper-purdue/size-matters
☆ Insight Agents: An LLM-Based Multi-Agent System for Data Insights SIGIR 2025
Today, E-commerce sellers face several key challenges, including difficulties in discovering and effectively utilizing available programs and tools, and struggling to understand and utilize rich data from various tools. We therefore aim to develop Insight Agents (IA), a conversational multi-agent Data Insight system, to provide E-commerce sellers with personalized data and business insights through automated information retrieval. Our hypothesis is that IA will serve as a force multiplier for sellers, thereby driving incremental seller adoption by reducing the effort required and increase speed at which sellers make good business decisions. In this paper, we introduce this novel LLM-backed end-to-end agentic system built on a plan-and-execute paradigm and designed for comprehensive coverage, high accuracy, and low latency. It features a hierarchical multi-agent structure, consisting of manager agent and two worker agents: data presentation and insight generation, for efficient information retrieval and problem-solving. We design a simple yet effective ML solution for manager agent that combines Out-of-Domain (OOD) detection using a lightweight encoder-decoder model and agent routing through a BERT-based classifier, optimizing both accuracy and latency. Within the two worker agents, a strategic planning is designed for API-based data model that breaks down queries into granular components to generate more accurate responses, and domain knowledge is dynamically injected to to enhance the insight generator. IA has been launched for Amazon sellers in US, which has achieved high accuracy of 90% based on human evaluation, with latency of P90 below 15s.
comment: Accepted to SIGIR 2025. DOI: 10.1145/3726302.3731959
☆ CiMRAG: Cim-Aware Domain-Adaptive and Noise-Resilient Retrieval-Augmented Generation for Edge-Based LLMs ICASSP 2026
Personalized virtual assistants powered by large language models (LLMs) on edge devices are attracting growing attention, with Retrieval-Augmented Generation (RAG) emerging as a key method for personalization by retrieving relevant profile data and generating tailored responses. However, deploying RAG on edge devices faces efficiency hurdles due to the rapid growth of profile data, such as user-LLM interactions and recent updates. While Computing-in-Memory (CiM) architectures mitigate this bottleneck by eliminating data movement between memory and processing units via in-situ operations, they are susceptible to environmental noise that can degrade retrieval precision. This poses a critical issue in dynamic, multi-domain edge-based scenarios (e.g., travel, medicine, and law) where both accuracy and adaptability are paramount. To address these challenges, we propose Task-Oriented Noise-resilient Embedding Learning (TONEL), a framework that improves noise robustness and domain adaptability for RAG in noisy edge environments. TONEL employs a noise-aware projection model to learn task-specific embeddings compatible with CiM hardware constraints, enabling accurate retrieval under noisy conditions. Extensive experiments conducted on personalization benchmarks demonstrate the effectiveness and practicality of our methods relative to strong baselines, especially in task-specific noisy scenarios.
comment: Accepted by ICASSP 2026
☆ Structural Compositional Function Networks: Interpretable Functional Compositions for Tabular Discovery
Despite the ubiquity of tabular data in high-stakes domains, traditional deep learning architectures often struggle to match the performance of gradient-boosted decision trees while maintaining scientific interpretability. Standard neural networks typically treat features as independent entities, failing to exploit the inherent manifold structural dependencies that define tabular distributions. We propose Structural Compositional Function Networks (StructuralCFN), a novel architecture that imposes a Relation-Aware Inductive Bias via a differentiable structural prior. StructuralCFN explicitly models each feature as a mathematical composition of its counterparts through Differentiable Adaptive Gating, which automatically discovers the optimal activation physics (e.g., attention-style filtering vs. inhibitory polarity) for each relationship. Our framework enables Structured Knowledge Integration, allowing domain-specific relational priors to be injected directly into the architecture to guide discovery. We evaluate StructuralCFN across a rigorous 10-fold cross-validation suite on 18 benchmarks, demonstrating statistically significant improvements (p < 0.05) on scientific and clinical datasets (e.g., Blood Transfusion, Ozone, WDBC). Furthermore, StructuralCFN provides Intrinsic Symbolic Interpretability: it recovers the governing "laws" of the data manifold as human-readable mathematical expressions while maintaining a compact parameter footprint (300--2,500 parameters) that is over an order of magnitude (10x--20x) smaller than standard deep baselines.
comment: Code and data available at https://github.com/fanglioc/StructuralCFN-public
☆ Fuzzy Categorical Planning: Autonomous Goal Satisfaction with Graded Semantic Constraints
Natural-language planning often involves vague predicates (e.g., suitable substitute, stable enough) whose satisfaction is inherently graded. Existing category-theoretic planners provide compositional structure and pullback-based hard-constraint verification, but treat applicability as crisp, forcing thresholding that collapses meaningful distinctions and cannot track quality degradation across multi-step plans. We propose Fuzzy Category-theoretic Planning (FCP), which annotates each action (morphism) with a degree in [0,1], composes plan quality via a t-norm Lukasiewicz, and retains crisp executability checks via pullback verification. FCP grounds graded applicability from language using an LLM with k-sample median aggregation and supports meeting-in-the-middle search using residuum-based backward requirements. We evaluate on (i) public PDDL3 preference/oversubscription benchmarks and (ii) RecipeNLG-Subs, a missing-substitute recipe-planning benchmark built from RecipeNLG with substitution candidates from Recipe1MSubs and FoodKG. FCP improves success and reduces hard-constraint violations on RecipeNLG-Subs compared to LLM-only and ReAct-style baselines, while remaining competitive with classical PDDL3 planners.
☆ Teaching LLMs to Ask: Self-Querying Category-Theoretic Planning for Under-Specified Reasoning
Inference-time planning with large language models frequently breaks under partial observability: when task-critical preconditions are not specified at query time, models tend to hallucinate missing facts or produce plans that violate hard constraints. We introduce \textbf{Self-Querying Bidirectional Categorical Planning (SQ-BCP)}, which explicitly represents precondition status (\texttt{Sat}/\texttt{Viol}/\texttt{Unk}) and resolves unknowns via (i) targeted self-queries to an oracle/user or (ii) \emph{bridging} hypotheses that establish the missing condition through an additional action. SQ-BCP performs bidirectional search and invokes a pullback-based verifier as a categorical certificate of goal compatibility, while using distance-based scores only for ranking and pruning. We prove that when the verifier succeeds and hard constraints pass deterministic checks, accepted plans are compatible with goal requirements; under bounded branching and finite resolution depth, SQ-BCP finds an accepting plan when one exists. Across WikiHow and RecipeNLG tasks with withheld preconditions, SQ-BCP reduces resource-violation rates to \textbf{14.9\%} and \textbf{5.8\%} (vs.\ \textbf{26.0\%} and \textbf{15.7\%} for the best baseline), while maintaining competitive reference quality.
☆ LinguaMap: Which Layers of LLMs Speak Your Language and How to Tune Them?
Despite multilingual pretraining, large language models often struggle with non-English tasks, particularly in language control, the ability to respond in the intended language. We identify and characterize two key failure modes: the multilingual transfer bottleneck (correct language, incorrect task response) and the language consistency bottleneck (correct task response, wrong language). To systematically surface these issues, we design a four-scenario evaluation protocol spanning MMLU, MGSM, and XQuAD benchmarks. To probe these issues with interpretability, we extend logit lens analysis to track language probabilities layer by layer and compute cross-lingual semantic similarity of hidden states. The results reveal a three-phase internal structure: early layers align inputs into a shared semantic space, middle layers perform task reasoning, and late layers drive language-specific generation. Guided by these insights, we introduce selective fine-tuning of only the final layers responsible for language control. On Qwen-3-32B and Bloom-7.1B, this method achieves over 98 percent language consistency across six languages while fine-tuning only 3-5 percent of parameters, without sacrificing task accuracy. Importantly, this result is nearly identical to that of full-scope fine-tuning (for example, above 98 percent language consistency for both methods across all prompt scenarios) but uses a fraction of the computational resources. To the best of our knowledge, this is the first approach to leverage layer-localization of language control for efficient multilingual adaptation.
☆ On the Effectiveness of LLM-Specific Fine-Tuning for Detecting AI-Generated Text
The rapid progress of large language models has enabled the generation of text that closely resembles human writing, creating challenges for authenticity verification in education, publishing, and digital security. Detecting AI-generated text has therefore become a crucial technical and ethical issue. This paper presents a comprehensive study of AI-generated text detection based on large-scale corpora and novel training strategies. We introduce a 1-billion-token corpus of human-authored texts spanning multiple genres and a 1.9-billion-token corpus of AI-generated texts produced by prompting a variety of LLMs across diverse domains. Using these resources, we develop and evaluate numerous detection models and propose two novel training paradigms: Per LLM and Per LLM family fine-tuning. Across a 100-million-token benchmark covering 21 large language models, our best fine-tuned detector achieves up to $99.6\%$ token-level accuracy, substantially outperforming existing open-source baselines.
comment: 34 pages, 6 figures. Under review at Information Sciences
☆ Perturbation-Induced Linearization: Constructing Unlearnable Data with Solely Linear Classifiers ICLR 2026
Collecting web data to train deep models has become increasingly common, raising concerns about unauthorized data usage. To mitigate this issue, unlearnable examples introduce imperceptible perturbations into data, preventing models from learning effectively. However, existing methods typically rely on deep neural networks as surrogate models for perturbation generation, resulting in significant computational costs. In this work, we propose Perturbation-Induced Linearization (PIL), a computationally efficient yet effective method that generates perturbations using only linear surrogate models. PIL achieves comparable or better performance than existing surrogate-based methods while reducing computational time dramatically. We further reveal a key mechanism underlying unlearnable examples: inducing linearization to deep models, which explains why PIL can achieve competitive results in a very short time. Beyond this, we provide an analysis about the property of unlearnable examples under percentage-based partial perturbation. Our work not only provides a practical approach for data protection but also offers insights into what makes unlearnable examples effective.
comment: This paper has been accepted to ICLR 2026
♻ ☆ "Not in My Backyard": LLMs Uncover Online and Offline Social Biases Against Homelessnes
Homelessness is a persistent social challenge, impacting millions worldwide. Over 876,000 people experienced homelessness (PEH) in the U.S. in 2025. Social bias is a significant barrier to alleviation, shaping public perception and influencing policymaking. Given that online textual media and offline city council discourse reflect and influence part of public opinion, it provides valuable insights to identify and track social biases against PEH. We present a new, manually-annotated multi-domain dataset compiled from Reddit, X (formerly Twitter), news articles, and city council meeting minutes across ten U.S. cities. Our 16-category multi-label taxonomy creates a challenging long-tail classification problem: some categories appear in less than 1% of samples, while others exceed 70%. We find that small human-annotated datasets (1,702 samples) are insufficient for training effective classifiers, whether used to fine-tune encoder models or as few-shot examples for LLMs. To address this, we use GPT-4.1 to generate pseudo-labels on a larger unlabeled corpus. Training on this expanded dataset enables even small encoder models (ModernBERT, 150M parameters) to achieve 35.23 macro-F1, approaching GPT-4.1's 41.57. This demonstrates that \textbf{data quantity matters more than model size}, enabling low-cost, privacy-preserving deployment without relying on commercial APIs. Our results reveal that negative bias against PEH is prevalent both offline and online (especially on Reddit), with "not in my backyard" narratives showing the highest engagement. These findings uncover a type of ostracism that directly impacts poverty-reduction policymaking and provide actionable insights for practitioners addressing homelessness.
♻ ☆ Demystifying the Roles of LLM Layers in Retrieval, Knowledge, and Reasoning ICASSP 2026
Recent studies suggest that the deeper layers of Large Language Models (LLMs) contribute little to representation learning and can often be removed without significant performance loss. However, such claims are typically drawn from narrow evaluations and may overlook important aspects of model behavior. In this work, we present a systematic study of depth utilization across diverse dimensions, including evaluation protocols, task categories, and model architectures. Our analysis confirms that very deep layers are generally less effective than earlier ones, but their contributions vary substantially with the evaluation setting. Under likelihood-based metrics without generation, pruning most layers preserves performance, with only the initial few being critical. By contrast, generation-based evaluation uncovers indispensable roles for middle and deeper layers in enabling reasoning and maintaining long-range coherence. We further find that knowledge and retrieval are concentrated in shallow components, whereas reasoning accuracy relies heavily on deeper layers -- yet can be reshaped through distillation. These results highlight that depth usage in LLMs is highly heterogeneous and context-dependent, underscoring the need for task-, metric-, and model-aware perspectives in both interpreting and compressing large models.
comment: Accepted by ICASSP 2026
♻ ☆ LOGICAL-COMMONSENSEQA: A Benchmark for Logical Commonsense Reasoning
Commonsense reasoning often involves evaluating multiple plausible interpretations rather than selecting a single atomic answer, yet most benchmarks rely on single-label evaluation, obscuring whether statements are jointly plausible, mutually exclusive, or jointly implausible. We introduce LOGICAL-COMMONSENSEQA, a benchmark that re-frames commonsense reasoning as logical composition over pairs of atomic statements using plausibility-level operators (AND, OR, NEITHER/NOR). Evaluating instruction-tuned, reasoning-specialized, and fine-tuned models under zero-shot, few-shot, and chain-of-thought prompting, we find that while models perform reasonably on conjunctive and moderately on disjunctive reasoning, performance degrades sharply on negation-based questions. LOGICAL-COMMONSENSEQA exposes fundamental reasoning limitations and provides a controlled framework for advancing compositional commonsense reasoning.
♻ ☆ MLVTG: Mamba-Based Feature Alignment and LLM-Driven Purification for Multi-Modal Video Temporal Grounding
Video Temporal Grounding (VTG), which aims to localize video clips corresponding to natural language queries, is a fundamental yet challenging task in video understanding. Existing Transformer-based methods often suffer from redundant attention and suboptimal multi-modal alignment. To address these limitations, we propose MLVTG, a novel framework that integrates two key modules: MambaAligner and LLMRefiner. MambaAligner uses stacked Vision Mamba blocks as a backbone instead of Transformers to model temporal dependencies and extract robust video representations for multi-modal alignment. LLMRefiner leverages the specific frozen layer of a pre-trained Large Language Model (LLM) to implicitly transfer semantic priors, enhancing multi-modal alignment without fine-tuning. This dual alignment strategy, temporal modeling via structured state-space dynamics and semantic purification via textual priors, enables more precise localization. Extensive experiments on QVHighlights, Charades-STA, and TVSum demonstrate that MLVTG achieves state-of-the-art performance and significantly outperforms existing baselines.
♻ ☆ Learning Dynamic Representations via An Optimally-Weighted Maximum Mean Discrepancy Optimization Framework for Continual Learning
Continual learning has emerged as a pivotal area of research, primarily due to its advantageous characteristic that allows models to persistently acquire and retain information. However, catastrophic forgetting can severely impair model performance. In this study, we address network forgetting by introducing a novel framework termed Optimally-Weighted Maximum Mean Discrepancy (OWMMD), which imposes penalties on representation alterations via a Multi-Level Feature Matching Mechanism (MLFMM). Furthermore, we propose an Adaptive Regularization Optimization (ARO) strategy to refine the adaptive weight vectors, which autonomously assess the significance of each feature layer throughout the optimization process, The proposed ARO approach can relieve the over-regularization problem and promote the future task learning. We conduct a comprehensive series of experiments, benchmarking our proposed method against several established baselines. The empirical findings indicate that our approach achieves state-of-the-art performance.
♻ ☆ Efficient and Transferable Agentic Knowledge Graph RAG via Reinforcement Learning
Knowledge-graph retrieval-augmented generation (KG-RAG) couples large language models (LLMs) with structured, verifiable knowledge graphs (KGs) to reduce hallucinations and expose reasoning traces. However, many KG-RAG systems compose multiple LLM modules (e.g planning, reasoning, and responding), inflating inference cost and binding behavior to a specific target KG. To address this, we introduce KG-R1, an agentic KG retrieval-augmented generation (KG-RAG) framework through reinforcement learning (RL). KG-R1 utilizes a single agent that interacts with KGs as its environment, learning to retrieve at each step and incorporating the retrieved information into its reasoning and generation. The process is optimized through end-to-end RL. In controlled experiments across Knowledge-Graph Question Answering (KGQA) benchmarks, our method demonstrates both efficiency and transferability: Using Qwen-2.5-3B, KG-R1 improves answer accuracy with fewer generation tokens than prior multi-module workflow methods that use larger foundation or fine-tuned models. Furthermore, KG-R1 enables plug and play: after training, it maintains strong accuracy on new KGs without modification. These properties make KG-R1 a promising KG-RAG framework for real-world deployment. Our code is publicly available at https://github.com/Jinyeop3110/KG-R1.
comment: Wrong numbers are reported for main results
♻ ☆ APEX-Agents
We introduce the AI Productivity Index for Agents (APEX-Agents), a benchmark for assessing whether AI agents can execute long-horizon, cross-application tasks created by investment banking analysts, management consultants, and corporate lawyers. APEX-Agents requires agents to navigate realistic work environments with files and tools. We test eight agents for the leaderboard using Pass@1. Gemini 3 Flash (Thinking=High) achieves the highest score of 24.0%, followed by GPT-5.2 (Thinking=High), Claude Opus 4.5 (Thinking=High), and Gemini 3 Pro (Thinking=High). We open source the APEX-Agents benchmark (n=480) with all prompts, rubrics, gold outputs, files, and metadata. We also open-source Archipelago, our infrastructure for agent execution and evaluation.
♻ ☆ ReVision: A Dataset and Baseline VLM for Privacy-Preserving Task-Oriented Visual Instruction Rewriting AACL 2025
Efficient and privacy-preserving multimodal interaction is essential as AR, VR, and modern smartphones with powerful cameras become primary interfaces for human-computer communication. Existing powerful large vision-language models (VLMs) enabling multimodal interaction often rely on cloud-based processing, raising significant concerns about (1) visual privacy by transmitting sensitive vision data to servers, and (2) their limited real-time, on-device usability. This paper explores Visual Instruction Rewriting, a novel approach that transforms multimodal instructions into text-only commands, allowing seamless integration of lightweight on-device instruction rewriter VLMs (250M parameters) with existing conversational AI systems, enhancing vision data privacy. To achieve this, we present a dataset of over 39,000 examples across 14 domains and develop a compact VLM, pretrained on image captioning datasets and fine-tuned for instruction rewriting. Experimental results, evaluated through NLG metrics such as BLEU, METEOR, and ROUGE, along with semantic parsing analysis, demonstrate that even a quantized version of the model (<500MB storage footprint) can achieve effective instruction rewriting, thus enabling privacy-focused, multimodal AI applications.
comment: In Proceedings of the IJCNLP-AACL 2025
♻ ☆ LLM-Generated Explanations Do Not Suffice for Ultra-Strong Machine Learning
Ultra Strong Machine Learning (USML) refers to symbolic learning systems that not only improve their own performance but can also teach their acquired knowledge to quantifiably improve human performance. We introduce LENS (Logic Programming Explanation via Neural Summarisation), a neuro-symbolic framework that combines symbolic program synthesis with large language models (LLMs). This framework automatically generates natural language explanations of learned logic programs, replacing hand-crafted templates used in prior USML work. Using LLMs-as-judges evaluation and expert validation, we show that LENS produces higher-quality explanations than both direct LLM prompting and hand-crafted templates. We then examine whether LENS explanations suffice for achieving USML in a human trial teaching active learning strategies across three related domains. Our exploratory analysis suggests that concise, expert-written explanations may benefit learners with higher initial performance, while LLM-generated explanations provide no advantage over human self learning despite being rated as higher quality. This case study reveals that achieving USML requires methods grounded in human learning, where current LLM-generated explanations do not capture human cognitive constraints and LLMs-as-judges evaluations do not reflect what effectively supports human learning.
♻ ☆ DisCoPatch: Taming Adversarially-driven Batch Statistics for Improved Out-of-Distribution Detection ICCV 2025
Out-of-distribution (OOD) detection holds significant importance across many applications. While semantic and domain-shift OOD problems are well-studied, this work focuses on covariate shifts - subtle variations in the data distribution that can degrade machine learning performance. We hypothesize that detecting these subtle shifts can improve our understanding of in-distribution boundaries, ultimately improving OOD detection. In adversarial discriminators trained with Batch Normalization (BN), real and adversarial samples form distinct domains with unique batch statistics - a property we exploit for OOD detection. We introduce DisCoPatch, an unsupervised Adversarial Variational Autoencoder (VAE) framework that harnesses this mechanism. During inference, batches consist of patches from the same image, ensuring a consistent data distribution that allows the model to rely on batch statistics. DisCoPatch uses the VAE's suboptimal outputs (generated and reconstructed) as negative samples to train the discriminator, thereby improving its ability to delineate the boundary between in-distribution samples and covariate shifts. By tightening this boundary, DisCoPatch achieves state-of-the-art results in public OOD detection benchmarks. The proposed model not only excels in detecting covariate shifts, achieving 95.5% AUROC on ImageNet-1K(-C) but also outperforms all prior methods on public Near-OOD (95.0%) benchmarks. With a compact model size of 25MB, it achieves high OOD detection performance at notably lower latency than existing methods, making it an efficient and practical solution for real-world OOD detection applications. The code is publicly available.
comment: ICCV 2025
♻ ☆ Quantifying Fidelity: A Decisive Feature Approach to Comparing Synthetic and Real Imagery
Virtual testing using synthetic data has become a cornerstone of autonomous vehicle (AV) safety assurance. Despite progress in improving visual realism through advanced simulators and generative AI, recent studies reveal that pixel-level fidelity alone does not ensure reliable transfer from simulation to the real world. What truly matters is whether the system-under-test (SUT) bases its decisions on consistent decision evidence in both real and simulated environments, not just whether images "look real" to humans. To this end this paper proposes a behavior-grounded fidelity measure by introducing Decisive Feature Fidelity (DFF), a new SUT-specific metric that extends the existing fidelity spectrum to capture mechanism parity, that is, agreement in the model-specific decisive evidence that drives the SUT's decisions across domains. DFF leverages explainable-AI methods to identify and compare the decisive features driving the SUT's outputs for matched real-synthetic pairs. We further propose estimators based on counterfactual explanations, along with a DFF-guided calibration scheme to enhance simulator fidelity. Experiments on 2126 matched KITTI-VirtualKITTI2 pairs demonstrate that DFF reveals discrepancies overlooked by conventional output-value fidelity. Furthermore, results show that DFF-guided calibration improves decisive-feature and input-level fidelity without sacrificing output value fidelity across diverse SUTs.
♻ ☆ Optimal Scaling Needs Optimal Norm
Despite recent progress in optimal hyperparameter transfer under model and dataset scaling, no unifying explanatory principle has been established. For Adam and Scion optimizers, we discover that joint optimal scaling across model and dataset sizes is conditioned on a single invariant: the operator norm of the output layer. Across models with up to 1.3B parameters trained on up to 138B tokens, the optimal learning rate/batch size pair $(η^{\ast}, B^{\ast})$ consistently has the same operator norm value - a phenomenon we term norm transfer. This constant norm condition is necessary but not sufficient: while for each dataset size, multiple $(η, B)$ reach the optimal norm, only a unique $(η^{\ast}, B^{\ast})$ achieves the best loss. As a sufficient condition, we provide the first measurement of $(η^{\ast}, B^{\ast})$ scaling with dataset size for Scion, and find that the scaling rules are consistent with those of Adam. Tuning per-layer-group learning rates also improves model performance, with the output layer being the most sensitive and hidden layers benefiting from lower learning rates. We provide practical insights on norm-guided optimal scaling and release our Distributed Scion (Disco) implementation with logs from over two thousand runs to support research on LLM training dynamics at scale.
♻ ☆ Activation Function Design Sustains Plasticity in Continual Learning
In independent, identically distributed (i.i.d.) training regimes, activation functions have been benchmarked extensively, and their differences often shrink once model size and optimization are tuned. In continual learning, however, the picture is different: beyond catastrophic forgetting, models can progressively lose the ability to adapt (referred to as loss of plasticity) and the role of the non-linearity in this failure mode remains underexplored. We show that activation choice is a primary, architecture-agnostic lever for mitigating plasticity loss. Building on a property-level analysis of negative-branch shape and saturation behavior, we introduce two drop-in nonlinearities (Smooth-Leaky and Randomized Smooth-Leaky) and evaluate them in two complementary settings: (i) supervised class-incremental benchmarks and (ii) reinforcement learning with non-stationary MuJoCo environments designed to induce controlled distribution and dynamics shifts. We also provide a simple stress protocol and diagnostics that link the shape of the activation to the adaptation under change. The takeaway is straightforward: thoughtful activation design offers a lightweight, domain-general way to sustain plasticity in continual learning without extra capacity or task-specific tuning.
♻ ☆ BASIL: Bayesian Assessment of Sycophancy in LLMs
Sycophancy (overly agreeable or flattering behavior) poses a fundamental challenge for human-AI collaboration, particularly in high-stakes decision-making domains such as health, law, and education. A central difficulty in studying sycophancy in large language models (LLMs) is disentangling sycophantic belief shifts from rational changes in behavior driven by new evidence or user-provided information. Existing approaches either measure descriptive behavior changes or apply normative evaluations that rely on objective ground truth, limiting their applicability to subjective or uncertain tasks. We introduce a Bayesian probabilistic framework, grounded in behavioral economics and rational decision theory, that explicitly separates sycophancy from rational belief updating. Within this framework, we achieve three objectives: (i) a descriptive metric that measures sycophancy while controlling for rational responses to evidence; (ii) a normative metric that quantifies how sycophancy leads models astray from Bayesian-consistent belief updating; and (iii) the ability to apply both metrics in settings without ground-truth labels. Applying our framework across multiple LLMs and three uncertainty-driven tasks, we find robust evidence of sycophantic belief shifts and show that their impact on rationality depends on whether models systematically over- or under-update their beliefs. Finally, we demonstrate that a post-hoc calibration method and two fine-tuning strategies (SFT and DPO) substantially reduce Bayesian inconsistency, with particularly strong improvements under explicit sycophancy prompting.
♻ ☆ Language Agents for Hypothesis-driven Clinical Decision Making with Reinforcement Learning
Clinical decision-making is a dynamic, interactive, and cyclic process where doctors have to repeatedly decide on which clinical action to perform and consider newly uncovered information for diagnosis and treatment. Large Language Models (LLMs) have the potential to support clinicians in this process, however, most applications of LLMs in clinical decision support suffer from one of two limitations: Either they assume the unrealistic scenario of immediate availability of all patient information and do not model the interactive and iterative investigation process, or they restrict themselves to the limited "out-of-the-box" capabilities of large pre-trained models without performing task-specific training. In contrast to this, we propose to model clinical decision-making for diagnosis with a hypothesis-driven uncertainty-aware language agent, LA-CDM, that converges towards a diagnosis via repeatedly requesting and interpreting relevant tests. Using a hybrid training paradigm combining supervised and reinforcement learning, we train LA-CDM with three objectives targeting critical aspects of clinical decision-making: accurate hypothesis generation, hypothesis uncertainty estimation, and efficient decision-making. We evaluate our methodology on MIMIC-CDM, a real-world dataset covering four abdominal diseases containing various clinical tests and show the benefit of explicitly training clinical decision-making for increasing diagnostic performance and efficiency.
♻ ☆ Noradrenergic-inspired gain modulation attenuates the stability gap in joint training
Recent work in continual learning has highlighted the stability gap -- a temporary performance drop on previously learned tasks when new ones are introduced. This phenomenon reflects a mismatch between rapid adaptation and strong retention at task boundaries, underscoring the need for optimization mechanisms that balance plasticity and stability over abrupt distribution changes. While optimizers such as momentum-SGD and Adam introduce implicit multi-timescale behavior, they still exhibit pronounced stability gaps. Importantly, these gaps persist even under ideal joint training, making it crucial to study them in this setting to isolate their causes from other sources of forgetting. Motivated by how noradrenergic (neuromodulatory) bursts transiently increase neuronal gain under uncertainty, we introduce a dynamic gain scaling mechanism as a two-timescale optimization technique that balances adaptation and retention by modulating effective learning rates and flattening the local landscape through an effective reparameterization. Across domain- and class-incremental MNIST, CIFAR, and mini-ImageNet benchmarks under task-agnostic joint training, dynamic gain scaling effectively attenuates stability gaps while maintaining competitive accuracy, improving robustness at task transitions.
comment: 23 pages, 9 figures, 6 table, 1 pseudo-code
♻ ☆ Rewarding Doubt: A Reinforcement Learning Approach to Calibrated Confidence Expression of Large Language Models
A safe and trustworthy use of Large Language Models (LLMs) requires an accurate expression of confidence in their answers. We propose a novel Reinforcement Learning approach that allows to directly fine-tune LLMs to express calibrated confidence estimates alongside their answers to factual questions. Our method optimizes a reward based on the logarithmic scoring rule, explicitly penalizing both over- and under-confidence. This encourages the model to align its confidence estimates with the actual predictive accuracy. The optimal policy under our reward design would result in perfectly calibrated confidence expressions. Unlike prior approaches that decouple confidence estimation from response generation, our method integrates confidence calibration seamlessly into the generative process of the LLM. Empirically, we demonstrate that models trained with our approach exhibit substantially improved calibration and generalize to unseen tasks without further fine-tuning, suggesting the emergence of general confidence awareness.
♻ ☆ Designing and Evaluating a Conversational Agent for Early Diagnosis of Alzheimer's Disease and Related Dementias
Early diagnosis of Alzheimer's disease and related dementias (ADRD) is critical for timely intervention, yet most diagnoses are delayed until advanced stages. While comprehensive patient narratives are essential for accurate diagnosis, prior work has largely focused on screening studies that classify cognitive status from interactions rather than supporting the diagnostic process. We designed voice-interactive conversational agents, leveraging large language models (LLMs), to elicit narratives relevant to ADRD from patients and informants. We evaluated the agent with 30 adults with suspected ADRD through conversation analysis, user surveys, and analysis of symptom elicitation compared to blinded specialist interviews. Symptoms detected by the agent showed promising agreement with those identified by specialists. Users appreciated the agent's patience and systematic questioning, which supported engagement and expression of complex, hard-to-describe experiences. While these findings suggest potential for conversational agents as structured diagnostic support tools, further validation with larger samples and assessment of clinical utility is needed before deployment.
comment: First two authors contributed equally
♻ ☆ MSCCL++: Rethinking GPU Communication Abstractions for AI Inference
AI applications increasingly run on fast-evolving, heterogeneous hardware to maximize performance, but general-purpose libraries lag in supporting these features. Performance-minded programmers often build custom communication stacks that are fast but error-prone and non-portable. This paper introduces MSCCL++, a design methodology for developing high-performance, portable communication kernels. It provides (1) a low-level, performance-preserving primitive interface that exposes minimal hardware abstractions while hiding the complexities of synchronization and consistency, (2) a higher-level DSL for application developers to implement workload-specific communication algorithms, and (3) a library of efficient algorithms implementing the standard collective API, enabling adoption by users with minimal expertise. Compared to state-of-the-art baselines, MSCCL++ achieves geomean speedups of $1.7\times$ (up to $5.4\times$) for collective communication and $1.2\times$ (up to $1.38\times$) for AI inference workloads. MSCCL++ is in production of multiple AI services provided by Microsoft Azure, and has also been adopted by RCCL, the GPU collective communication library maintained by AMD. MSCCL++ is open source and available at https://github.com/microsoft/mscclpp . Our two years of experience with MSCCL++ suggests that its abstractions are robust, enabling support for new hardware features, such as multimem, within weeks of development.
comment: 15 pages, 13 figures
♻ ☆ Entropy-Gated Branching for Efficient Test-Time Reasoning
Test-time compute methods can significantly improve the reasoning capabilities and problem-solving accuracy of large language models (LLMs). However, these approaches require substantially more computational resources, with most compute wasted on exploring low-diversity branches where the model already exhibits high confidence. We observe that a small subset of uncertain reasoning steps has a disproportionately large impact on final prediction accuracy, and branching at these critical junctures tends to yield more diverse and higher-quality candidate reasoning steps. We propose Entropy-Gated Branching (EGB), which branches only at high-uncertainty steps and prunes expansions with a lightweight verifier. On mathematical and financial reasoning benchmarks, EGB improves accuracy by 22.6% over standard inference while operating 31%-75% faster across math benchmarks than test-time beam search with higher performance. Our results show that dynamic resource allocation during inference can substantially improve both efficiency and effectiveness, offering a more scalable pathway to enhanced LLM reasoning capabilities.
♻ ☆ Web-CogReasoner: Towards Knowledge-Induced Cognitive Reasoning for Web Agents ICLR 2026
Multimodal large-scale models have significantly advanced the development of web agents, enabling perception and interaction with digital environments akin to human cognition. In this paper, we argue that web agents must first acquire sufficient knowledge to effectively engage in cognitive reasoning. Therefore, we decompose a web agent's capabilities into two essential stages: knowledge content learning and cognitive processes. To formalize this, we propose Web-CogKnowledge Framework, categorizing knowledge as Factual, Conceptual, and Procedural. In this framework, knowledge content learning corresponds to the agent's processes of Memorizing and Understanding, which rely on the first two knowledge types, representing the "what" of learning. Conversely, cognitive processes correspond to Exploring, grounded in Procedural knowledge, defining the "how" of reasoning and action. To facilitate knowledge acquisition, we construct the Web-CogDataset, a structured resource curated from 14 real-world websites, designed to systematically instill core knowledge necessary for web agent. This dataset serves as the agent's conceptual grounding-the "nouns" upon which comprehension is built-as well as the basis for learning how to reason and act. Building on this foundation, we operationalize these processes through a novel knowledge-driven Chain-of-Thought (CoT) reasoning framework, developing and training our proposed agent, the Web-CogReasoner. Extensive experimentation reveals its significant superiority over existing models, especially in generalizing to unseen tasks where structured knowledge is decisive. To enable rigorous evaluation, we introduce the Web-CogBench, a comprehensive evaluation suite designed to assess and compare agent performance across the delineated knowledge domains and cognitive capabilities. Our code and data is open sourced at https://github.com/Gnonymous/Web-CogReasoner
comment: Accepted to ICLR 2026. Our code and data is released at https://github.com/Gnonymous/Web-CogReasoner
♻ ☆ Towards Secure MLOps: Surveying Attacks, Mitigation Strategies, and Research Challenges
The rapid adoption of machine learning (ML) technologies has driven organizations across diverse sectors to seek efficient and reliable methods to accelerate model development-to-deployment. Machine Learning Operations (MLOps) has emerged as an integrative approach addressing these requirements by unifying relevant roles and streamlining ML workflows. As the MLOps market continues to grow, securing these pipelines has become increasingly critical. However, the unified nature of MLOps ecosystem introduces vulnerabilities, making them susceptible to adversarial attacks where a single misconfiguration can lead to compromised credentials, severe financial losses, damaged public trust, and the poisoning of training data. Our paper presents a systematic application of the MITRE ATLAS (Adversarial Threat Landscape for Artificial-Intelligence Systems) framework, supplemented by reviews of white and grey literature, to systematically assess attacks across different phases of the MLOps ecosystem. We begin by reviewing prior work in this domain, then present our taxonomy and introduce a threat model that captures attackers with different knowledge and capabilities. We then present a structured taxonomy of attack techniques explicitly mapped to corresponding phases of the MLOps ecosystem, supported by examples drawn from red-teaming exercises and real-world incidents. This is followed by a taxonomy of mitigation strategies aligned with these attack categories, offering actionable early-stage defenses to strengthen the security of MLOps ecosystem. Given the gradual evolution and adoption of MLOps, we further highlight key research gaps that require immediate attention. Our work emphasizes the importance of implementing robust security protocols from the outset, empowering practitioners to safeguard MLOps ecosystem against evolving cyber attacks.
♻ ☆ LangForce: Bayesian Decomposition of Vision Language Action Models via Latent Action Queries
Vision-Language-Action (VLA) models have shown promise in robot manipulation but often struggle to generalize to new instructions or complex multi-task scenarios. We identify a critical pathology in current training paradigms where goal-driven data collection creates a dataset bias. In such datasets, language instructions are highly predictable from visual observations alone, causing the conditional mutual information between instructions and actions to vanish, a phenomenon we term Information Collapse. Consequently, models degenerate into vision-only policies that ignore language constraints and fail in out-of-distribution (OOD) settings. To address this, we propose LangForce, a novel framework that enforces instruction following via Bayesian decomposition. By introducing learnable Latent Action Queries, we construct a dual-branch architecture to estimate both a vision-only prior $p(a \mid v)$ and a language-conditioned posterior $π(a \mid v, \ell)$. We then optimize the policy to maximize the conditional Pointwise Mutual Information (PMI) between actions and instructions. This objective effectively penalizes the vision shortcut and rewards actions that explicitly explain the language command. Without requiring new data, LangForce significantly improves generalization. Extensive experiments across on SimplerEnv and RoboCasa demonstrate substantial gains, including an 11.3% improvement on the challenging OOD SimplerEnv benchmark, validating the ability of our approach to robustly ground language in action.
♻ ☆ Prompt-Counterfactual Explanations for Generative AI System Behavior
As generative AI systems become integrated into real-world applications, organizations increasingly need to be able to understand and interpret their behavior. In particular, decision-makers need to understand what causes generative AI systems to exhibit specific output characteristics. Within this general topic, this paper examines a key question: what is it about the input -- the prompt -- that causes an LLM-based generative AI system to produce output that exhibits specific characteristics, such as toxicity, negative sentiment, or political bias. To examine this question, we adapt a common technique from the Explainable AI literature: counterfactual explanations. We explain why traditional counterfactual explanations cannot be applied directly to generative AI systems, due to several differences in how generative AI systems function. We then propose a flexible framework that adapts counterfactual explanations to non-deterministic, generative AI systems in scenarios where downstream classifiers can reveal key characteristics of their outputs. Based on this framework, we introduce an algorithm for generating prompt-counterfactual explanations (PCEs). Finally, we demonstrate the production of counterfactual explanations for generative AI systems with three case studies, examining different output characteristics (viz., political leaning, toxicity, and sentiment). The case studies further show that PCEs can streamline prompt engineering to suppress undesirable output characteristics and can enhance red-teaming efforts to uncover additional prompts that elicit undesirable outputs. Ultimately, this work lays a foundation for prompt-focused interpretability in generative AI: a capability that will become indispensable as these models are entrusted with higher-stakes tasks and subject to emerging regulatory requirements for transparency and accountability.
♻ ☆ Characteristic Root Analysis and Regularization for Linear Time Series Forecasting
Time series forecasting remains a critical challenge across numerous domains, yet the effectiveness of complex models often varies unpredictably across datasets. Recent studies highlight the surprising competitiveness of simple linear models, suggesting that their robustness and interpretability warrant deeper theoretical investigation. This paper presents a systematic study of linear models for time series forecasting, with a focus on the role of characteristic roots in temporal dynamics. We begin by analyzing the noise-free setting, where we show that characteristic roots govern long-term behavior and explain how design choices such as instance normalization and channel independence affect model capabilities. We then extend our analysis to the noisy regime, revealing that models tend to produce spurious roots. This leads to the identification of a key data-scaling property: mitigating the influence of noise requires disproportionately large training data, highlighting the need for structural regularization. To address these challenges, we propose two complementary strategies for robust root restructuring. The first uses rank reduction techniques, including Reduced-Rank Regression and Direct Weight Rank Reduction, to recover the low-dimensional latent dynamics. The second, a novel adaptive method called Root Purge, encourages the model to learn a noise-suppressing null space during training. Extensive experiments on standard benchmarks demonstrate the effectiveness of both approaches, validating our theoretical insights and achieving state-of-the-art results in several settings. Our findings underscore the potential of integrating classical theories for linear systems with modern learning techniques to build robust, interpretable, and data-efficient forecasting models.
♻ ☆ Unleashing Scientific Reasoning for Bio-experimental Protocol Generation via Structured Component-based Reward Mechanism
The foundation of reproducible science lies in protocols that are precise, logically ordered, and executable. The autonomous generation of these protocols through natural language queries could greatly improve the efficiency of the reproduction process. However, current leading large language models (LLMs) often generate incomplete or inconsistent protocols, limiting their utility. To address this limitation, we first introduce SciRecipe, a large-scale dataset of over 12K structured protocols spanning 27 biological subfields and encompassing both comprehension and problem-solving tasks. To further improve protocol generation, we propose the "Sketch-and-Fill" paradigm, which separates analysis, structuring, and expression to ensure each step is explicit and verifiable. Complementing this, the structured component-based reward mechanism evaluates step granularity, action order, and semantic fidelity, aligning model optimization with experimental reliability. Building on these components, we develop Thoth, trained through a staged Knowledge-to-Action process that progresses from knowledge acquisition to operational reasoning and ultimately to robust, executable protocol generation. Across multiple benchmarks, Thoth consistently surpasses both proprietary and open-source LLMs, achieving significant improvements in step alignment, logical sequencing, and semantic accuracy. Our approach paves the way for reliable scientific assistants that bridge knowledge with experimental execution. All data, code, and models will be released publicly.
♻ ☆ MSCloudCAM: Multi-Scale Context Adaptation with Convolutional Cross-Attention for Multispectral Cloud Segmentation
Clouds remain a major obstacle in optical satellite imaging, limiting accurate environmental and climate analysis. To address the strong spectral variability and the large scale differences among cloud types, we propose MSCloudCAM, a novel multi-scale context adapter network with convolution based cross-attention tailored for multispectral and multi-sensor cloud segmentation. A key contribution of MSCloudCAM is the explicit modeling of multiple complementary multi-scale context extractors. And also, rather than simply stacking or concatenating their outputs, our formulation uses one extractor's fine-resolution features and the other extractor's global contextual representations enabling dynamic, scale-aware feature selection. Building on this idea, we design a new convolution-based cross attention adapter that effectively fuses localized, detailed information with broader multi-scale context. Integrated with a hierarchical vision backbone and refined through channel and spatial attention mechanisms, MSCloudCAM achieves strong spectral-spatial discrimination. Experiments on various multisensor datatsets e.g. CloudSEN12 (Sentinel-2) and L8Biome (Landsat-8), demonstrate that MSCloudCAM achieves superior overall segmentation performance and competitive class-wise accuracy compared to recent state-of-the-art models, while maintaining competitive model complexity, highlighting the novelty and effectiveness of the proposed design for large-scale Earth observation.
comment: 6 pages, 3 Figures
♻ ☆ EmoBench-M: Benchmarking Emotional Intelligence for Multimodal Large Language Models
With the integration of Multimodal large language models (MLLMs) into robotic systems and various AI applications, embedding emotional intelligence (EI) capabilities into these models is essential for enabling robots to effectively address human emotional needs and interact seamlessly in real-world scenarios. Existing static, text-based, or text-image benchmarks overlook the multimodal complexities of real-world interactions and fail to capture the dynamic, multimodal nature of emotional expressions, making them inadequate for evaluating MLLMs' EI. Based on established psychological theories of EI, we build EmoBench-M, a novel benchmark designed to evaluate the EI capability of MLLMs across 13 valuation scenarios from three key dimensions: foundational emotion recognition, conversational emotion understanding, and socially complex emotion analysis. Evaluations of both open-source and closed-source MLLMs on EmoBench-M reveal a significant performance gap between them and humans, highlighting the need to further advance their EI capabilities. All benchmark resources, including code and datasets, are publicly available at https://emo-gml.github.io/.
♻ ☆ Geometric Dynamics of Agentic Loops in Large Language Models
Iterative LLM systems(self-refinement, chain-of-thought, autonomous agents) are increasingly deployed, yet their temporal dynamics remain uncharacterized. Prior work evaluates task performance at convergence but ignores the trajectory: how does semantic content evolve across iterations? Does it stabilize, drift, or oscillate? Without answering these questions, we cannot predict system behavior, guarantee stability, or systematically design iterative architectures. We formalize agentic loops as discrete dynamical systems in semantic space. Borrowing from dynamical systems theory, we define trajectories, attractors and dynamical regimes for recursive LLM transformations, providing rigorous geometric definitions adapted to this setting. Our framework reveals that agentic loops exhibit classifiable dynamics: contractive (convergence toward stable semantic attractors), oscillatory (cycling among attractors), or exploratory (unbounded divergence). Experiments on singular loops validate the framework. Iterative paraphrasing produces contractive dynamics with measurable attractor formation and decreasing dispersion. Iterative negation produces exploratory dynamics with no stable structure. Crucially, prompt design directly controls the dynamical regime - the same model exhibits fundamentally different geometric behaviors depending solely on the transformation applied. This work establishes that iterative LLM dynamics are predictable and controllable, opening new directions for stability analysis, trajectory forecasting, and principled design of composite loops that balance convergence and exploration.
♻ ☆ Learning to Detect Unseen Jailbreak Attacks in Large Vision-Language Models
Despite extensive alignment efforts, Large Vision-Language Models (LVLMs) remain vulnerable to jailbreak attacks. To mitigate these risks, existing detection methods are essential, yet they face two major challenges: generalization and accuracy. While learning-based methods trained on specific attacks fail to generalize to unseen attacks, learning-free methods based on hand-crafted heuristics suffer from limited accuracy and reduced efficiency. To address these limitations, we propose Learning to Detect (LoD), a learnable framework that eliminates the need for any attack data or hand-crafted heuristics. LoD operates by first extracting layer-wise safety representations directly from the model's internal activations using Multi-modal Safety Concept Activation Vectors classifiers, and then converting the high-dimensional representations into a one-dimensional anomaly score for detection via a Safety Pattern Auto-Encoder. Extensive experiments demonstrate that LoD consistently achieves state-of-the-art detection performance (AUROC) across diverse unseen jailbreak attacks on multiple LVLMs, while also significantly improving efficiency. Code is available at https://anonymous.4open.science/r/Learning-to-Detect-51CB.
comment: 12 pages; Previously this version appeared as arXiv:2510.15430 which was submitted as a new work by accident
♻ ☆ Improving Implicit Hate Speech Detection via a Community-Driven Multi-Agent Framework
This work proposes a contextualised detection framework for implicitly hateful speech, implemented as a multi-agent system comprising a central Moderator Agent and dynamically constructed Community Agents representing specific demographic groups. Our approach explicitly integrates socio-cultural context from publicly available knowledge sources, enabling identity-aware moderation that surpasses state-of-the-art prompting methods (zero-shot prompting, few-shot prompting, chain-of-thought prompting) and alternative approaches on a challenging ToxiGen dataset. We enhance the technical rigour of performance evaluation by incorporating balanced accuracy as a central metric of classification fairness that accounts for the trade-off between true positive and true negative rates. We demonstrate that our community-driven consultative framework significantly improves both classification accuracy and fairness across all target groups.
comment: This paper has been accepted for the upcoming 18th International Conference on Agents and Artificial Intelligence (ICAART-2026), Marbella, Spain. The final published version will appear in the official conference proceedings
♻ ☆ AtomMem : Learnable Dynamic Agentic Memory with Atomic Memory Operation
Equipping agents with memory is essential for solving real-world long-horizon problems. However, most existing agent memory mechanisms rely on static and hand-crafted workflows. This limits the performance and generalization ability of these memory designs, which highlights the need for a more flexible, learning-based memory framework. In this paper, we propose AtomMem, which reframes memory management as a dynamic decision-making problem. We deconstruct high-level memory processes into fundamental atomic CRUD (Create, Read, Update, Delete) operations, transforming the memory workflow into a learnable decision process. By combining supervised fine-tuning with reinforcement learning, AtomMem learns an autonomous, task-aligned policy to orchestrate memory behaviors tailored to specific task demands. Experimental results across 3 long-context benchmarks demonstrate that the trained AtomMem-8B consistently outperforms prior static-workflow memory methods. Further analysis of training dynamics shows that our learning-based formulation enables the agent to discover structured, task-aligned memory management strategies, highlighting a key advantage over predefined routines.
♻ ☆ Understanding Mental States to Guide Social Influence in Multi-Person Group Dialogue
Existing dynamic Theory of Mind (ToM) benchmarks mostly place language models in a passive role: the model reads a sequence of connected scenarios and reports what people believe, feel, intend, and do as these states change. In real social interaction, ToM is also used for action: a speaker plans what to say in order to shift another person's mental-state trajectory toward a goal. We introduce SocialMindChange, a benchmark that moves from tracking minds to changing minds in social interaction. Each instance defines a social context with 4 characters and five connected scenes. The model plays one character and generates dialogue across the five scenes to reach the target while remaining consistent with the evolving states of all participants. SocialMindChange also includes selected higher-order states. Using a structured four-step framework, we construct 1,200 social contexts, covering 6000 scenarios and over 90,000 questions, each validated for realism and quality. Evaluations on ten state-of-the-art LLMs show that their average performance is 54.2% below human performance. This gap suggests that current LLMs still struggle to maintain and change mental-state representations across long, linked interactions.
comment: Minor update
♻ ☆ MV-S2V: Multi-View Subject-Consistent Video Generation
Existing Subject-to-Video Generation (S2V) methods have achieved high-fidelity and subject-consistent video generation, yet remain constrained to single-view subject references. This limitation renders the S2V task reducible to an S2I + I2V pipeline, failing to exploit the full potential of video subject control. In this work, we propose and address the challenging Multi-View S2V (MV-S2V) task, which synthesizes videos from multiple reference views to enforce 3D-level subject consistency. Regarding the scarcity of training data, we first develop a synthetic data curation pipeline to generate highly customized synthetic data, complemented by a small-scale real-world captured dataset to boost the training of MV-S2V. Another key issue lies in the potential confusion between cross-subject and cross-view references in conditional generation. To overcome this, we further introduce Temporally Shifted RoPE (TS-RoPE) to distinguish between different subjects and distinct views of the same subject in reference conditioning. Our framework achieves superior 3D subject consistency w.r.t. multi-view reference images and high-quality visual outputs, establishing a new meaningful direction for subject-driven video generation. Our project page is available at: https://szy-young.github.io/mv-s2v
comment: 13 pages, 9 figures
♻ ☆ LLM Agents for Knowledge Discovery in Atomic Layer Processing
Large Language Models (LLMs) have garnered significant attention for several years now. Recently, their use as independently reasoning agents has been proposed. In this work, we test the potential of such agents for knowledge discovery in materials science. We repurpose LangGraph's tool functionality to supply agents with a black box function to interrogate. In contrast to process optimization or performing specific, user-defined tasks, knowledge discovery consists of freely exploring the system, posing and verifying statements about the behavior of this black box, with the sole objective of generating and verifying generalizable statements. We provide proof of concept for this approach through a children's parlor game, demonstrating the role of trial-and-error and persistence in knowledge discovery, and the strong path-dependence of results. We then apply the same strategy to show that LLM agents can explore, discover, and exploit diverse chemical interactions in an advanced Atomic Layer Processing reactor simulation using intentionally limited probe capabilities without explicit instructions.
comment: Accepted submission to the AI4MAT workshop@NEURIPS 2025. As submitted, except author names added
♻ ☆ SIPDO: Closed-Loop Prompt Optimization via Synthetic Data Feedback
Prompt quality plays a critical role in the performance of large language models (LLMs), motivating a growing body of work on prompt optimization. Most existing methods optimize prompts over a fixed dataset, assuming static input distributions and offering limited support for iterative improvement. We introduce SIPDO (Self-Improving Prompts through Data-Augmented Optimization), a closed-loop framework for prompt learning that integrates synthetic data generation into the optimization process. SIPDO couples a synthetic data generator with a prompt optimizer, where the generator produces new examples that reveal current prompt weaknesses and the optimizer incrementally refines the prompt in response. This feedback-driven loop enables systematic improvement of prompt performance without assuming access to external supervision or new tasks. Experiments across question answering and reasoning benchmarks show that SIPDO outperforms standard prompt tuning methods, highlighting the value of integrating data synthesis into prompt learning workflows.
♻ ☆ SoilNet: A Multimodal Multitask Model for Hierarchical Classification of Soil Horizons
Recent advances in artificial intelligence (AI), in particular foundation models, have improved the state of the art in many application domains including geosciences. Some specific problems, however, could not benefit from this progress yet. Soil horizon classification, for instance, remains challenging because of its multimodal and multitask characteristics and a complex hierarchically structured label taxonomy. Accurate classification of soil horizons is crucial for monitoring soil condition. In this work, we propose \textit{SoilNet} - a multimodal multitask model to tackle this problem through a structured modularized pipeline. In contrast to omnipurpose AI foundation models, our approach is designed to be inherently transparent by following the task structure human experts developed for solving this challenging annotation task. The proposed approach integrates image data and geotemporal metadata to first predict depth markers, segmenting the soil profile into horizon candidates. Each segment is characterized by a set of horizon-specific morphological features. Finally, horizon labels are predicted based on the multimodal concatenated feature vector, leveraging a graph-based label representation to account for the complex hierarchical relationships among soil horizons. Our method is designed to address complex hierarchical classification, where the number of possible labels is very large, imbalanced and non-trivially structured. We demonstrate the effectiveness of our approach on a real-world soil profile dataset and a comprehensive user study with domain experts. Our empirical evaluations demonstrate that SoilNet reliably predicts soil horizons that are plausible and accurate. User study results indicate that SoilNet achieves predictive performance on par with or better than that of human experts. All code can be found at: https://github.com/calgo-lab/BGR/
comment: 29 pages, 9 figures, 7 tables
♻ ☆ Why is Your Language Model a Poor Implicit Reward Model? ICLR 2026
Reward models are key to language model post-training and inference pipelines. Conveniently, recent work showed that every language model defines an implicit reward model (IM-RM), without requiring any architectural changes. However, such IM-RMs tend to generalize worse, especially out-of-distribution, compared to explicit reward models (EX-RMs) that apply a dedicated linear head over the hidden representations of a language model. The existence of a generalization gap is puzzling, as EX-RMs and IM-RMs are nearly identical. They can be trained using the same data, loss function, and language model, and differ only in how the reward is computed. Toward a fundamental understanding of the implicit biases underlying different reward model types, we investigate the root cause of this gap. Our main finding, backed by theory and experiments, is that IM-RMs rely more heavily on superficial token-level cues. Consequently, they often generalize worse than EX-RMs under token-level distribution shifts, as well as in-distribution. Furthermore, we provide evidence against alternative hypotheses for the generalization gap. Most notably, we challenge the claim that IM-RMs struggle in tasks where generation is harder than verification because they can operate both as a verifier and a generator. Overall, our results highlight that seemingly minor design choices can substantially impact the generalization behavior of reward models.
comment: Accepted to ICLR 2026; Code available at https://github.com/princeton-pli/exrm-vs-imrm
♻ ☆ CNN-based IoT Device Identification: A Comparative Study on Payload vs. Fingerprint
The proliferation of the Internet of Things (IoT) has introduced a massive influx of devices into the market, bringing with them significant security vulnerabilities. In this diverse ecosystem, robust IoT device identification is a critical preventive measure for network security and vulnerability management. This study proposes a deep learning-based method to identify IoT devices using the Aalto dataset. We employ Convolutional Neural Networks (CNN) to classify devices by converting network packet payloads into pseudo-images. Furthermore, we compare the performance of this payload-based approach against a feature-based fingerprinting method. Our results indicate that while the fingerprint-based method is significantly faster (approximately 10x), the payload-based image classification achieves comparable accuracy, highlighting the trade-offs between computational efficiency and data granularity in IoT security.
comment: 3 pages, 8 figures, 2 tanles
♻ ☆ Bayes Adaptive Monte Carlo Tree Search for Offline Model-based Reinforcement Learning ICLR 2026
Offline reinforcement learning (RL) is a powerful approach for data-driven decision-making and control. Compared to model-free methods, offline model-based reinforcement learning (MBRL) explicitly learns world models from a static dataset and uses them as surrogate simulators, improving the data efficiency and enabling the learned policy to potentially generalize beyond the dataset support. However, there could be various MDPs that behave identically on the offline dataset and dealing with the uncertainty about the true MDP can be challenging. In this paper, we propose modeling offline MBRL as a Bayes Adaptive Markov Decision Process (BAMDP), which is a principled framework for addressing model uncertainty. We further propose a novel Bayes Adaptive Monte-Carlo planning algorithm capable of solving BAMDPs in continuous state and action spaces with stochastic transitions. This planning process is based on Monte Carlo Tree Search and can be integrated into offline MBRL as a policy improvement operator in policy iteration. Our "RL + Search" framework follows in the footsteps of superhuman AIs like AlphaZero, improving on current offline MBRL methods by incorporating more computation input. The proposed algorithm significantly outperforms state-of-the-art offline RL methods on twelve D4RL MuJoCo tasks and three challenging, stochastic tokamak control tasks. The codebase is available at: https://github.com/LucasCJYSDL/Offline-RL-Kit.
comment: This paper is accepted in ICLR 2026
♻ ☆ Beyond Structure: Invariant Crystal Property Prediction with Pseudo-Particle Ray Diffraction
Crystal property prediction, governed by quantum mechanical principles, is computationally prohibitive to solve exactly for large many-body systems using traditional density functional theory. While machine learning models have emerged as efficient approximations for large-scale applications, their performance is strongly influenced by the choice of atomic representation. Although modern graph-based approaches have progressively incorporated more structural information, they often fail to capture long-range atomic interactions due to finite receptive fields and local encoding schemes. This limitation leads to distinct crystals being mapped to identical representations, hindering accurate property prediction. To address this, we introduce PRDNet that leverages unique reciprocal-space diffraction besides graph representations. To enhance sensitivity to elemental and environmental variations, we employ a data-driven pseudo-particle to generate a synthetic diffraction pattern. PRDNet ensures full invariance to crystallographic symmetries. Extensive experiments are conducted on Materials Project, JARVIS-DFT, and MatBench, demonstrating that the proposed model achieves state-of-the-art performance. The code is openly available at https://github.com/Bin-Cao/PRDNet.
♻ ☆ Learning Neural Operators from Partial Observations via Latent Autoregressive Modeling
Real-world scientific applications frequently encounter incomplete observational data due to sensor limitations, geographic constraints, or measurement costs. Although neural operators significantly advanced PDE solving in terms of computational efficiency and accuracy, their underlying assumption of fully-observed spatial inputs severely restricts applicability in real-world applications. We introduce the first systematic framework for learning neural operators from partial observation. We identify and formalize two fundamental obstacles: (i) the supervision gap in unobserved regions that prevents effective learning of physical correlations, and (ii) the dynamic spatial mismatch between incomplete inputs and complete solution fields. Specifically, our proposed Latent Autoregressive Neural Operator(LANO) introduces two novel components designed explicitly to address the core difficulties of partial observations: (i) a mask-to-predict training strategy that creates artificial supervision by strategically masking observed regions, and (ii) a Physics-Aware Latent Propagator that reconstructs solutions through boundary-first autoregressive generation in latent space. Additionally, we develop POBench-PDE, a dedicated and comprehensive benchmark designed specifically for evaluating neural operators under partial observation conditions across three PDE-governed tasks. LANO achieves state-of-the-art performance with 18--69$\%$ relative L2 error reduction across all benchmarks under patch-wise missingness with less than 50$\%$ missing rate, including real-world climate prediction. Our approach effectively addresses practical scenarios involving up to 75$\%$ missing rate, to some extent bridging the existing gap between idealized research settings and the complexities of real-world scientific computing.
♻ ☆ Improving LLM-based Global Optimization with Search Space Partitioning
Large Language Models (LLMs) have recently emerged as effective surrogate models and candidate generators within global optimization frameworks for expensive blackbox functions. Despite promising results, LLM-based methods often struggle in high-dimensional search spaces or when lacking domain-specific priors, leading to sparse or uninformative suggestions. To overcome these limitations, we propose HOLLM, a novel global optimization algorithm that enhances LLM-driven sampling by partitioning the search space into promising subregions. Each subregion acts as a ``meta-arm'' selected via a bandit-inspired scoring mechanism that effectively balances exploration and exploitation. Within each selected subregion, an LLM then proposes high-quality candidate points, without any explicit domain knowledge. Empirical evaluation on standard optimization benchmarks shows that HOLLM consistently matches or surpasses leading global optimization methods, while substantially outperforming global LLM-based sampling strategies.
comment: 31 pages, 19 figures, 7 tables
♻ ☆ PowerGraph-LLM: Novel Power Grid Graph Embedding and Optimization with Large Language Models IEEE
Efficiently solving Optimal Power Flow (OPF) problems in power systems is crucial for operational planning and grid management. There is a growing need for scalable algorithms capable of handling the increasing variability, constraints, and uncertainties in modern power networks while providing accurate and fast solutions. To address this, machine learning techniques, particularly Graph Neural Networks (GNNs) have emerged as promising approaches. This letter introduces PowerGraph-LLM, the first framework explicitly designed for solving OPF problems using Large Language Models (LLMs). The proposed approach combines graph and tabular representations of power grids to effectively query LLMs, capturing the complex relationships and constraints in power systems. A new implementation of in-context learning and fine-tuning protocols for LLMs is introduced, tailored specifically for the OPF problem. PowerGraph-LLM demonstrates reliable performances using off-the-shelf LLM. Our study reveals the impact of LLM architecture, size, and fine-tuning and demonstrates our framework's ability to handle realistic grid components and constraints.
comment: Published at IEEE Transactions on Power Systems
♻ ☆ Meaning Is Not A Metric: Using LLMs to make cultural context legible at scale
This position paper argues that large language models (LLMs) can make cultural context, and therefore human meaning, legible at an unprecedented scale in AI-based sociotechnical systems. We argue that such systems have previously been unable to represent human meaning because they rely on thin descriptions (numerical representations that enforce standardization and therefore strip human activity of the cultural context which gives it meaning). By contrast, scholars in the humanities and qualitative social sciences have developed frameworks for representing meaning through thick description (verbal representations that accommodate heterogeneity and retain contextual information needed to represent human meaning). The verbal capabilities of LLMs now provide a means of at least partially automating the generation and processing of thick descriptions, offering new ways to deploy them at scale. We argue that the problem of rendering human meaning legible is not just about selecting better metrics but about developing new representational formats based on thick description. We frame this as a crucial direction for the application of generative AI and identify five key challenges: preserving context, maintaining interpretive pluralism, integrating perspectives based on lived experience and critical distance, distinguishing qualitative content from quantitative magnitude, and acknowledging meaning as dynamic rather than static.
♻ ☆ LLM-Specific Utility: A New Perspective for Retrieval-Augmented Generation
Retrieval-augmented generation (RAG) is typically optimized for topical relevance, yet its success ultimately depends on whether retrieved passages are useful for a large language model (LLM) to generate correct and complete answers. We argue that such utility is often LLM-specific rather than universal, due to differences in models' knowledge, reasoning, and ability to leverage evidence. We formalize LLM-specific utility as the performance improvement of a target LLM when a passage is provided, compared to answering without evidence. To systematically study LLM-specific utility, we construct a benchmark of LLM-specific gold utilitarian passages for four LLMs (Qwen3-8B/14B/32B and Llama3.1-8B) on three QA datasets (Natural Questions, TriviaQA, and MS MARCO-FQA). Our analysis shows that utilitarian passages are model-dependent and non-transferable: each LLM performs best with its own utilitarian evidence, while evidence optimized for other LLMs is consistently suboptimal. Human-annotated evidence remains a strong general baseline but does not fully match individual LLM utility needs. We further introduce the LLM-specific utility judgment task and find that existing utility-aware selection and scoring methods largely capture model-agnostic usefulness and struggle to reliably estimate LLM-specific utility. Overall, our findings highlight the limitations of current utility-aware retrieval and motivate generator-tailored evidence selection for improving RAG.
comment: 13 pages, 9 figures
♻ ☆ PYRREGULAR: A Unified Framework for Irregular Time Series, with Classification Benchmarks
Irregular temporal data, characterized by varying recording frequencies, differing observation durations, and missing values, presents significant challenges across fields like mobility, healthcare, and environmental science. Existing research communities often overlook or address these challenges in isolation, leading to fragmented tools and methods. To bridge this gap, we introduce a unified framework, and the first standardized dataset repository for irregular time series classification, built on a common array format to enhance interoperability. This repository comprises 34 datasets on which we benchmark 12 classifier models from diverse domains and communities. This work aims to centralize research efforts and enable a more robust evaluation of irregular temporal data analysis methods.
♻ ☆ daVinci-Dev: Agent-native Mid-training for Software Engineering
Recently, the frontier of Large Language Model (LLM) capabilities has shifted from single-turn code generation to agentic software engineering-a paradigm where models autonomously navigate, edit, and test complex repositories. While post-training methods have become the de facto approach for code agents, **agentic mid-training**-mid-training (MT) on large-scale data that mirrors authentic agentic workflows-remains critically underexplored due to substantial resource requirements, despite offering a more scalable path to instilling foundational agentic behaviors than relying solely on expensive reinforcement learning. A central challenge in realizing effective agentic mid-training is the distribution mismatch between static training data and the dynamic, feedback-rich environment of real development. To address this, we present a systematic study of agentic mid-training, establishing both the data synthesis principles and training methodology for effective agent development at scale. Central to our approach is **agent-native data**-supervision comprising two complementary types of trajectories: **contextually-native trajectories** that preserve the complete information flow an agent experiences, offering broad coverage and diversity; and **environmentally-native trajectories** collected from executable repositories where observations stem from actual tool invocations and test executions, providing depth and interaction authenticity. We verify the model's agentic capabilities on `SWE-Bench Verified`. We demonstrate our superiority over the previous open software engineering mid-training recipe `Kimi-Dev` under two post-training settings with an aligned base model and agentic scaffold, while using less than half mid-training tokens (73.1B). Besides relative advantage, our best performing 32B and 72B models achieve **56.1%** and **58.5%** resolution rates, respectively, which are ...
♻ ☆ SWA-LDM: Toward Stealthy Watermarks for Latent Diffusion Models
Latent Diffusion Models (LDMs) have established themselves as powerful tools in the rapidly evolving field of image generation, capable of producing highly realistic images. However, their widespread adoption raises critical concerns about copyright infringement and the misuse of generated content. Watermarking techniques have emerged as a promising solution, enabling copyright identification and misuse tracing through imperceptible markers embedded in generated images. Among these, latent-based watermarking techniques are particularly promising, as they embed watermarks directly into the latent noise without altering the underlying LDM architecture. In this work, we demonstrate that such latent-based watermarks are practically vulnerable to detection and compromise through systematic analysis of output images' statistical patterns for the first time. To counter this, we propose SWA-LDM (Stealthy Watermark for LDM), a lightweight framework that enhances stealth by dynamically randomizing the embedded watermarks using the Gaussian-distributed latent noise inherent to diffusion models. By embedding unique, pattern-free signatures per image, SWA-LDM eliminates detectable artifacts while preserving image quality and extraction robustness. Experiments demonstrate an average of 20% improvement in stealth over state-of-the-art methods, enabling secure deployment of watermarked generative AI in real-world applications.
comment: 12 pages, 5 figures
♻ ☆ Improving Value-based Process Verifier via Structural Prior Injection
In the Large Language Model(LLM) reasoning scenario, people often estimate state value via Monte Carlo sampling. Though Monte Carlo estimation is an elegant method with less inductive bias, noise and errors are inevitably introduced due to the limited sampling. To handle the problem, we inject the structural prior into the value representation and transfer the scalar value into the expectation of a pre-defined categorical distribution, representing the noise and errors from a distribution perspective. Specifically, by treating the result of Monte Carlo sampling as a single sample from the prior ground-truth Binomial distribution, we quantify the sampling error as the mismatch between posterior estimated distribution and ground-truth distribution, which is thus optimized via distribution selection optimization. We test the performance of value-based process verifiers on Best-of-N task and Beam search task. Compared with the scalar value representation, we show that reasonable structural prior injection induced by different objective functions or optimization methods can improve the performance of value-based process verifiers for about 1$\sim$2 points at little-to-no cost. We also show that under different structural prior, the verifiers' performances vary greatly despite having the same optimal solution, indicating the importance of reasonable structural prior injection.
comment: This version is deprecated. Please refer to our new version: arXiv:2508.10539
♻ ☆ There and Back Again: On the relation between Noise and Image Inversions in Diffusion Models ICLR 2026
Diffusion Models achieve state-of-the-art performance in generating new samples but lack a low-dimensional latent space that encodes the data into editable features. Inversion-based methods address this by reversing the denoising trajectory, transferring images to their approximated starting noise. In this work, we thoroughly analyze this procedure and focus on the relation between the initial noise, the generated samples, and their corresponding latent encodings obtained through the DDIM inversion. First, we show that latents exhibit structural patterns in the form of less diverse noise predicted for smooth image areas (e.g., plain sky). Through a series of analyses, we trace this issue to the first inversion steps, which fail to provide accurate and diverse noise. Consequently, the DDIM inversion space is notably less manipulative than the original noise. We show that prior inversion methods do not fully resolve this issue, but our simple fix, where we replace the first DDIM Inversion steps with a forward diffusion process, successfully decorrelates latent encodings and enables higher quality editions and interpolations. The code is available at https://github.com/luk-st/taba.
comment: ICLR 2026
♻ ☆ Towards Automated Smart Contract Generation: Evaluation, Benchmarking, and Retrieval-Augmented Repair
Smart contracts, predominantly written in Solidity and deployed on blockchains such as Ethereum, are immutable after deployment, making functional correctness critical. However, existing evaluations of Solidity code generation rely largely on surface-level metrics (e.g., BLEU, CrystalBLEU) or manual inspection, which correlate poorly with functional correctness. In contrast to Python, Solidity lacks large-scale, execution-based benchmarks, limiting systematic evaluation of large language models for smart contract development. We introduce SolBench, a comprehensive benchmark and automated testing pipeline for Solidity that emphasizes functional correctness via differential fuzzing. SolBench consists of 28825 functions extracted from 7604 real-world smart contracts collected from Etherscan (genesis-2024), spanning ten application domains. We benchmark 14 diverse LLMs, covering open and closed models, 1.3B-671B parameters, and both general-purpose and code-specialized architectures. The dominant failure mode is missing critical intra-contract information, such as state variables and type definitions. Providing full-contract context improves accuracy but incurs prohibitive inference costs. To address this, we propose Retrieval-Augmented Repair (RAR), a cost-effective framework that integrates execution feedback into code repair. RAR uses compiler and runtime error messages to retrieve only the minimal contract snippets needed to correct a target function, avoiding full-context inference. This significantly reduces input length while improving functional correctness. We further analyze retrieval and repair strategies within RAR, demonstrating consistent gains in accuracy and efficiency. SolBench and RAR enable principled, execution-based evaluation and economical improvement of Solidity code generation. Dataset and code are publicly available at https://github.com/ZaoyuChen/SolBench.
comment: Accepted by FSE 2026
♻ ☆ Toward Ultra-Long-Horizon Agentic Science: Cognitive Accumulation for Machine Learning Engineering
The advancement of artificial intelligence toward agentic science is currently bottlenecked by the challenge of ultra-long-horizon autonomy, the ability to sustain strategic coherence and iterative correction over experimental cycles spanning days or weeks. While Large Language Models (LLMs) have demonstrated prowess in short-horizon reasoning, they are easily overwhelmed by execution details in the high-dimensional, delayed-feedback environments of real-world research, failing to consolidate sparse feedback into coherent long-term guidance. Here, we present ML-Master 2.0, an autonomous agent that masters ultra-long-horizon machine learning engineering (MLE) which is a representative microcosm of scientific discovery. By reframing context management as a process of cognitive accumulation, our approach introduces Hierarchical Cognitive Caching (HCC), a multi-tiered architecture inspired by computer systems that enables the structural differentiation of experience over time. By dynamically distilling transient execution traces into stable knowledge and cross-task wisdom, HCC allows agents to decouple immediate execution from long-term experimental strategy, effectively overcoming the scaling limits of static context windows. In evaluations on OpenAI's MLE-Bench under 24-hour budgets, ML-Master 2.0 achieves a state-of-the-art medal rate of 56.44%. Our findings demonstrate that ultra-long-horizon autonomy provides a scalable blueprint for AI capable of autonomous exploration beyond human-precedent complexities.
comment: 25 pages. 5 figures
♻ ☆ The Role of Social Learning and Collective Norm Formation in Fostering Cooperation in LLM Multi-Agent Systems AAMAS 2026
A growing body of multi-agent studies with LLMs explores how norms and cooperation emerge in mixed-motive scenarios, where pursuing individual gain can undermine the collective good. While prior work has explored these dynamics in both richly contextualized simulations and simplified game-theoretic environments, most LLM systems featuring common-pool resource (CPR) games provide agents with explicit reward functions directly tied to their actions. In contrast, human cooperation often emerges without explicit knowledge of the payoff structure or how individual actions translate into long-run outcomes, relying instead on heuristics, communication, and enforcement. We introduce a CPR simulation framework that removes explicit reward signals and embeds cultural-evolutionary mechanisms: social learning (adopting strategies and beliefs from successful peers) and norm-based punishment, grounded in Ostrom's principles of resource governance. Agents also individually learn from the consequences of harvesting, monitoring, and punishing via environmental feedback, enabling norms to emerge endogenously. We establish the validity of our simulation by reproducing key findings from existing studies on human behavior. Building on this, we examine norm evolution across a $2\times2$ grid of environmental and social initialisations (resource-rich vs. resource-scarce; altruistic vs. selfish) and benchmark how agentic societies comprised of different LLMs perform under these conditions. Our results reveal systematic model differences in sustaining cooperation and norm formation, positioning the framework as a rigorous testbed for studying emergent norms in mixed-motive LLM societies. Such analysis can inform the design of AI systems deployed in social and organizational contexts, where alignment with cooperative norms is critical for stability, fairness, and effective governance of AI-mediated environments.
comment: Accepted at the 25th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2026)
♻ ☆ Causal Pre-training Under the Fairness Lens: An Empirical Study of TabPFN
Foundation models for tabular data, such as the Tabular Prior-data Fitted Network (TabPFN), are pre-trained on a massive number of synthetic datasets generated by structural causal models (SCM). They leverage in-context learning to offer high predictive accuracy in real-world tasks. However, the fairness properties of these foundational models, which incorporate ideas from causal reasoning during pre-training, remain underexplored. In this work, we conduct a comprehensive empirical evaluation of TabPFN and its fine-tuned variants, assessing predictive performance, fairness, and robustness across varying dataset sizes and distributional shifts. Our results reveal that while TabPFN achieves stronger predictive accuracy compared to baselines and exhibits robustness to spurious correlations, improvements in fairness are moderate and inconsistent, particularly under missing-not-at-random (MNAR) covariate shifts. These findings suggest that the causal pre-training in TabPFN is helpful but insufficient for algorithmic fairness, highlighting implications for deploying TabPFN (and similar) models in practice and the need for further fairness interventions.
♻ ☆ Physics-Constrained Fine-Tuning of Flow-Matching Models for Generation and Inverse Problems
We present a framework for fine-tuning flow-matching generative models to enforce physical constraints and solve inverse problems in scientific systems. Starting from a model trained on low-fidelity or observational data, we apply a differentiable post-training procedure that minimizes weak-form residuals of governing partial differential equations (PDEs), promoting physical consistency and adherence to boundary conditions without distorting the underlying learned distribution. To infer unknown physical inputs, such as source terms, material parameters, or boundary data, we augment the generative process with a learnable latent parameter predictor and propose a joint optimization strategy. The resulting model produces physically valid field solutions alongside plausible estimates of hidden parameters, effectively addressing ill-posed inverse problems in a data-driven yet physicsaware manner. We validate our method on canonical PDE benchmarks, demonstrating improved satisfaction of PDE constraints and accurate recovery of latent coefficients. Our approach bridges generative modelling and scientific inference, opening new avenues for simulation-augmented discovery and data-efficient modelling of physical systems.
♻ ☆ Rethinking the AI Scientist: Interactive Multi-Agent Workflows for Scientific Discovery
Artificial intelligence systems for scientific discovery have demonstrated remarkable potential, yet existing approaches remain largely proprietary and operate in batch-processing modes requiring hours per research cycle, precluding real-time researcher guidance. This paper introduces Deep Research, a multi-agent system enabling interactive scientific investigation with turnaround times measured in minutes. The architecture comprises specialized agents for planning, data analysis, literature search, and novelty detection, unified through a persistent world state that maintains context across iterative research cycles. Two operational modes support different workflows: semi-autonomous mode with selective human checkpoints, and fully autonomous mode for extended investigations. Evaluation on the BixBench computational biology benchmark demonstrated state-of-the-art performance, achieving 48.8% accuracy on open response and 64.4% on multiple-choice evaluation, exceeding existing baselines by 14 to 26 percentage points. Analysis of architectural constraints, including open access literature limitations and challenges inherent to automated novelty assessment, informs practical deployment considerations for AI-assisted scientific workflows.
♻ ☆ Coupled Variational Reinforcement Learning for Language Model General Reasoning
While reinforcement learning has achieved impressive progress in language model reasoning, it is constrained by the requirement for verifiable rewards. Recent verifier-free RL methods address this limitation by utilizing the probabilities that LLMs generate reference answers as reward signals. However, these approaches typically sample reasoning traces conditioned only on the question. This design decouples reasoning-trace sampling from answer information, leading to inefficient exploration and incoherence between traces and final answers. In this paper, we propose \textit{\b{Co}upled \b{V}ariational \b{R}einforcement \b{L}earning} (CoVRL), which bridges variational inference and reinforcement learning by coupling prior and posterior distributions through a hybrid sampling strategy. By constructing and optimizing a composite distribution that integrates these two distributions, CoVRL enables efficient exploration while preserving strong thought-answer coherence. Extensive experiments on mathematical and general reasoning benchmarks show that CoVRL improves performance by 12.4\% over the base model and achieves an additional 2.3\% improvement over state-of-the-art verifier-free RL baselines, providing a principled framework for enhancing the general reasoning capabilities of language models.
♻ ☆ Who Gets Cited Most? Benchmarking Long-Context Reasoning on Scientific Articles
We introduce SciTrek, a novel question-answering benchmark designed to evaluate long-context reasoning capabilities of large language models (LLMs) using scientific articles. Current long-context benchmarks often focus on simple information retrieval tasks, or employ artificial contexts. SciTrek addresses these limitations by creating benchmark questions that require information aggregation and synthesis across multiple full-text scientific articles. The questions and their ground-truth answers are automatically generated by formulating them as SQL queries over a database constructed from article metadata (i.e., titles, authors, and references). These SQL queries provide explicit, verifiable reasoning processes that enable fine-grained error analysis on model answers, and the data construction scales to contexts of up to 1M tokens with minimal supervision. Experiments on open-weight and proprietary LLMs show that SciTrek poses significant challenges as the context length increases, with supervised fine-tuning and reinforcement learning offering only limited gains. Our analysis reveals systematic shortcomings of frontier LLMs' ability to effectively perform numerical operations and accurately locate information in long contexts.
comment: 22 pages
♻ ☆ AI-generated data contamination erodes pathological variability and diagnostic reliability
Generative artificial intelligence (AI) is rapidly populating medical records with synthetic content, creating a feedback loop where future models are increasingly at risk of training on uncurated AI-generated data. However, the clinical consequences of this AI-generated data contamination remain unexplored. Here, we show that in the absence of mandatory human verification, this self-referential cycle drives a rapid erosion of pathological variability and diagnostic reliability. By analysing more than 800,000 synthetic data points across clinical text generation, vision-language reporting, and medical image synthesis, we find that models progressively converge toward generic phenotypes regardless of the model architecture. Specifically, rare but critical findings, including pneumothorax and effusions, vanish from the synthetic content generated by AI models, while demographic representations skew heavily toward middle-aged male phenotypes. Crucially, this degradation is masked by false diagnostic confidence; models continue to issue reassuring reports while failing to detect life-threatening pathology, with false reassurance rates tripling to 40%. Blinded physician evaluation confirms that this decoupling of confidence and accuracy renders AI-generated documentation clinically useless after just two generations. We systematically evaluate three mitigation strategies, finding that while synthetic volume scaling fails to prevent collapse, mixing real data with quality-aware filtering effectively preserves diversity. Ultimately, our results suggest that without policy-mandated human oversight, the deployment of generative AI threatens to degrade the very healthcare data ecosystems it relies upon.
comment: *Corresponding author: Dianbo Liu (dianbo@nus.edu.sg)
♻ ☆ DND: Boosting Large Language Models with Dynamic Nested Depth ICLR 2026
We introduce Dynamic Nested Depth (DND), a novel method that improves performance for off-the-shelf LLMs by selecting critical tokens to reprocess in a nested depth manner. Specifically, at the end of the given transformer layer, DND identifies more critical tokens with a router and feeds them back for an extra round of processing, effectively ``reviewing" difficult tokens while avoiding redundant computation for easier ones. The dynamic selection mechanism is tailored for precise control via two novel strategies: a router controlling loss to enhance token selection distinguishability, and a threshold control scheme to ensure selection stability. We demonstrate the effectiveness of DND by directly integrating it into pre-trained dense and MoE models during a post-training phase. On diverse benchmarks, this approach boosts the performances of the dense Qwen3-1.7B by 1.88% and the MoE Qwen3-30B-A3B by 0.87%, all with a minimal parameter and computing increase.
comment: Accepted by ICLR 2026
♻ ☆ Universal Multi-Domain Translation via Diffusion Routers ICLR 2026
Multi-domain translation (MDT) aims to learn translations between multiple domains, yet existing approaches either require fully aligned tuples or can only handle domain pairs seen in training, limiting their practicality and excluding many cross-domain mappings. We introduce universal MDT (UMDT), a generalization of MDT that seeks to translate between any pair of $K$ domains using only $K-1$ paired datasets with a central domain. To tackle this problem, we propose Diffusion Router (DR), a unified diffusion-based framework that models all central$\leftrightarrow$non-central translations with a single noise predictor conditioned on the source and target domain labels. DR enables indirect non-central translations by routing through the central domain. We further introduce a novel scalable learning strategy with a variational-bound objective and an efficient Tweedie refinement procedure to support direct non-central mappings. Through evaluation on three large-scale UMDT benchmarks, DR achieves state-of-the-art results for both indirect and direct translations, while lowering sampling cost and unlocking novel tasks such as sketch$\leftrightarrow$segmentation. These results establish DR as a scalable and versatile framework for universal translation across multiple domains.
comment: Accepted in ICLR 2026
♻ ☆ SeNeDiF-OOD: Semantic Nested Dichotomy Fusion for Out-of-Distribution Detection Methodology in Open-World Classification. A Case Study on Monument Style Classification
Out-of-distribution (OOD) detection is a fundamental requirement for the reliable deployment of artificial intelligence applications in open-world environments. However, addressing the heterogeneous nature of OOD data, ranging from low-level corruption to semantic shifts, remains a complex challenge that single-stage detectors often fail to resolve. To address this issue, we propose SeNeDiF-OOD, a novel methodology based on Semantic Nested Dichotomy Fusion. This framework decomposes the detection task into a hierarchical structure of binary fusion nodes, where each layer is designed to integrate decision boundaries aligned with specific levels of semantic abstraction. To validate the proposed framework, we present a comprehensive case study using MonuMAI, a real-world architectural style recognition system exposed to an open environment. This application faces a diverse range of inputs, including non-monument images, unknown architectural styles, and adversarial attacks, making it an ideal testbed for our proposal. Through extensive experimental evaluation in this domain, results demonstrate that our hierarchical fusion methodology significantly outperforms traditional baselines, effectively filtering these diverse OOD categories while preserving in-distribution performance.
comment: 28 pages
♻ ☆ Gradient-Direction-Aware Density Control for 3D Gaussian Splatting
The emergence of 3D Gaussian Splatting (3DGS) has significantly advanced Novel View Synthesis (NVS) through explicit scene representation, enabling real-time photorealistic rendering. However, existing approaches manifest two critical limitations in complex scenarios: (1) Over-reconstruction occurs when persistent large Gaussians cannot meet adaptive splitting thresholds during density control. This is exacerbated by conflicting gradient directions that prevent effective splitting of these Gaussians; (2) Over-densification of Gaussians occurs in regions with aligned gradient aggregation, leading to redundant component proliferation. This redundancy significantly increases memory overhead due to unnecessary data retention. We present Gradient-Direction-Aware Gaussian Splatting (GDAGS) to address these challenges. Our key innovations: the Gradient Coherence Ratio (GCR), computed through normalized gradient vector norms, which explicitly discriminates Gaussians with concordant versus conflicting gradient directions; and a nonlinear dynamic weighting mechanism leverages the GCR to enable gradient-direction-aware density control. Specifically, GDAGS prioritizes conflicting-gradient Gaussians during splitting operations to enhance geometric details while suppressing redundant concordant-direction Gaussians. Conversely, in cloning processes, GDAGS promotes concordant-direction Gaussian densification for structural completion while preventing conflicting-direction Gaussian overpopulation. Comprehensive evaluations across diverse real-world benchmarks demonstrate that GDAGS achieves superior rendering quality while effectively mitigating over-reconstruction, suppressing over-densification, and constructing compact scene representations.
♻ ☆ LingoQ: Bridging the Gap between EFL Learning and Work through AI-Generated Work-Related Quizzes
Non-native English speakers performing English-related tasks at work struggle to sustain EFL learning, despite their motivation. Often, study materials are disconnected from their work context. Our formative study revealed that reviewing work-related English becomes burdensome with current systems, especially after work. Although workers rely on LLM-based assistants to address their immediate needs, these interactions may not directly contribute to their English skills. We present LingoQ, an AI-mediated system that allows workers to practice English using quizzes generated from their LLM queries during work. LingoQ leverages these on-the-fly queries using AI to generate personalized quizzes that workers can review and practice on their smartphones. We conducted a three-week deployment study with 28 EFL workers to evaluate LingoQ. Participants valued the quality-assured, work-situated quizzes and constantly engaging with the app during the study. This active engagement improved self-efficacy and led to learning gains for beginners and, potentially, for intermediate learners. Drawing on these results, we discuss design implications for leveraging workers' growing reliance on LLMs to foster proficiency and engagement while respecting work boundaries and ethics.
comment: 18 pages except reference. Conditionally accepted to ACM CHI 2026
♻ ☆ SAC-GLAM: Improving Online RL for LLM agents with Soft Actor-Critic and Hindsight Relabeling
The past years have seen Large Language Models (LLMs) strive not only as generative models but also as agents solving textual sequential decision-making tasks. When facing complex environments where their zero-shot abilities are insufficient, recent work showed online Reinforcement Learning (RL) could be used for the LLM agent to discover and learn efficient strategies interactively. However, most prior work sticks to on-policy algorithms, which greatly reduces the scope of methods such agents could use for both exploration and exploitation, such as experience replay and hindsight relabeling. Yet, such methods may be key for LLM learning agents, and in particular when designing autonomous intrinsically motivated agents sampling and pursuing their own goals (i.e. autotelic agents). This paper presents and studies an adaptation of Soft Actor-Critic and hindsight relabeling to LLM agents. Our method not only paves the path towards autotelic LLM agents that learn online but can also outperform on-policy methods in more classic multi-goal RL environments.
♻ ☆ TextMineX: Data, Evaluation Framework and Ontology-guided LLM Pipeline for Humanitarian Mine Action
Humanitarian Mine Action (HMA) addresses the challenge of detecting and removing landmines from conflict regions. Much of the life-saving operational knowledge produced by HMA agencies is buried in unstructured reports, limiting the transferability of information between agencies. To address this issue, we propose TextMineX: the first dataset, evaluation framework and ontology-guided large language model (LLM) pipeline for knowledge extraction from text in the HMA domain. TextMineX structures HMA reports into (subject, relation, object)-triples, thus creating domain-specific knowledge. To ensure real-world relevance, we utilized the dataset from our collaborator Cambodian Mine Action Centre (CMAC). We further introduce a bias-aware evaluation framework that combines human-annotated triples with an LLM-as-Judge protocol to mitigate position bias in reference-free scoring. Our experiments show that ontology-aligned prompts improve extraction accuracy by up to 44.2%, reduce hallucinations by 22.5%, and enhance format adherence by 20.9% compared to baseline models. We publicly release the dataset and code.
♻ ☆ Dual-Prototype Disentanglement: A Context-Aware Enhancement Framework for Time Series Forecasting
Time series forecasting has witnessed significant progress with deep learning. While prevailing approaches enhance forecasting performance by modifying architectures or introducing novel enhancement strategies, they often fail to dynamically disentangle and leverage the complex, intertwined temporal patterns inherent in time series, thus resulting in the learning of static, averaged representations that lack context-aware capabilities. To address this, we propose the Dual-Prototype Adaptive Disentanglement framework (DPAD), a model-agnostic auxiliary method that equips forecasting models with the ability of pattern disentanglement and context-aware adaptation. Specifically, we construct a Dynamic Dual-Prototype bank (DDP), comprising a common pattern bank with strong temporal priors to capture prevailing trend or seasonal patterns, and a rare pattern bank dynamically memorizing critical yet infrequent events, and then an Dual-Path Context-aware routing (DPC) mechanism is proposed to enhance outputs with selectively retrieved context-specific pattern representations from the DDP. Additionally, we introduce a Disentanglement-Guided Loss (DGLoss) to ensure that each prototype bank specializes in its designated role while maintaining comprehensive coverage. Comprehensive experiments demonstrate that DPAD consistently improves forecasting performance and reliability of state-of-the-art models across diverse real-world benchmarks.
♻ ☆ Monotone and Separable Set Functions: Characterizations and Neural Models
Motivated by applications for set containment problems, we consider the following fundamental problem: can we design set-to-vector functions so that the natural partial order on sets is preserved, namely $S\subseteq T \text{ if and only if } F(S)\leq F(T) $. We call functions satisfying this property Monotone and Separating (MAS) set functions. % We establish lower and upper bounds for the vector dimension necessary to obtain MAS functions, as a function of the cardinality of the multisets and the underlying ground set. In the important case of an infinite ground set, we show that MAS functions do not exist, but provide a model called our which provably enjoys a relaxed MAS property we name "weakly MAS" and is stable in the sense of Holder continuity. We also show that MAS functions can be used to construct universal models that are monotone by construction and can approximate all monotone set functions. Experimentally, we consider a variety of set containment tasks. The experiments show the benefit of using our our model, in comparison with standard set models which do not incorporate set containment as an inductive bias. Our code is available in https://github.com/yonatansverdlov/Monotone-Embedding.
♻ ☆ MetaVLA: Unified Meta Co-training For Efficient Embodied Adaption
Vision-Language-Action (VLA) models show promise in embodied reasoning, yet remain far from true generalists-they often require task-specific fine-tuning, incur high compute costs, and generalize poorly to unseen tasks. We propose MetaVLA, a unified, backbone-agnostic post-training framework for efficient and scalable alignment. MetaVLA introduces Context-Aware Meta Co-Training, which consolidates diverse target tasks into a single fine-tuning stage while leveraging structurally diverse auxiliary tasks to improve in-domain generalization. Unlike naive multi-task SFT, MetaVLA integrates a lightweight meta-learning mechanism-derived from Attentive Neural Processes-to enable rapid adaptation from diverse contexts with minimal architectural change or inference overhead. On the LIBERO benchmark, MetaVLA with six auxiliary tasks outperforms OpenVLA by up to 8.0% on long-horizon tasks, reduces training steps from 240K to 75K, and cuts GPU time by ~76%. These results show that scalable, low-resource post-training is achievable-paving the way toward general-purpose embodied agents. Code will be available.
♻ ☆ GTA: Generative Traffic Agents for Simulating Realistic Mobility Behavior
People's transportation choices reflect complex trade-offs shaped by personal preferences, social norms, and technology acceptance. Predicting such behavior at scale is a critical challenge with major implications for urban planning and sustainable transport. Traditional methods use handcrafted assumptions and costly data collection, making them impractical for early-stage evaluations of new technologies or policies. We introduce Generative Traffic Agents (GTA) for simulating large-scale, context-sensitive transportation choices using LLM-powered, persona-based agents. GTA generates artificial populations from census-based sociodemographic data. It simulates activity schedules and mode choices, enabling scalable, human-like simulations without handcrafted rules. We evaluate GTA in Berlin-scale experiments, comparing simulation results against empirical data. While agents replicate patterns, such as modal split by socioeconomic status, they show systematic biases in trip length and mode preference. GTA offers new opportunities for modeling how future innovations, from bike lanes to transit apps, shape mobility decisions.
comment: This version has been conditionally accepted at CHI 2026
♻ ☆ Large Multimodal Models for Low-Resource Languages: A Survey
In this survey, we systematically analyze techniques used to adapt large multimodal models (LMMs) for low-resource (LR) languages, examining approaches ranging from visual enhancement and data creation to cross-modal transfer and fusion strategies. Through a comprehensive analysis of 117 studies across 96 LR languages, we identify key patterns in how researchers tackle the challenges of limited data and computational resources. We categorize works into resource-oriented and method-oriented contributions, further dividing contributions into relevant sub-categories. We compare method-oriented contributions in terms of performance and efficiency, discussing benefits and limitations of representative studies. We find that visual information often serves as a crucial bridge for improving model performance in LR settings, though significant challenges remain in areas such as hallucination mitigation and computational efficiency. In summary, we provide researchers with a clear understanding of current approaches and remaining challenges in making LMMs more accessible to speakers of LR (understudied) languages. We complement our survey with an open-source repository available at: https://github.com/marianlupascu/LMM4LRL-Survey.
comment: Accepted in Information Fusion
♻ ☆ Is On-Policy Data always the Best Choice for Direct Preference Optimization-based LM Alignment? ICLR-2026
The alignment of language models~(LMs) with human preferences is critical for building reliable AI systems. The problem is typically framed as optimizing an LM policy to maximize the expected reward that reflects human preferences. Recently, Direct Preference Optimization~(DPO) was proposed as a LM alignment method that directly optimize the policy from static preference data, and further improved by incorporating on-policy sampling~(i.e., preference candidates generated during the training loop) for better LM alignment. However, we show on-policy data is not always optimal, with systematic effectiveness difference emerging between static and on-policy preference candidates. For example, on-policy data can result in a $3\times$ effectiveness compared with static data for Llama-3, and a $0.4\times$ effectiveness for Zephyr. To explain the phenomenon, we propose the alignment stage assumption, which divides the alignment process into two distinct stages: the preference injection stage, which benefits from diverse data, and the preference fine-tuning stage, which favors high-quality data. Through theoretical and empirical analysis, we characterize these stages and propose an effective algorithm to identify the boundaries between them. We perform experiments on $5$ models~(Llama, Zephyr, Phi-2, Qwen, Pythia) and $2$ alignment methods~(DPO, SLiC-HF) to show the generalizability of alignment stage assumption and the effectiveness of the boundary measurement algorithm.
comment: Accepted by ICLR-2026
♻ ☆ Accepted with Minor Revisions: Value of AI-Assisted Scientific Writing
Large Language Models have seen expanding application across domains, yet their effectiveness as assistive tools for scientific writing - an endeavor requiring precision, multimodal synthesis, and domain expertise - remains insufficiently understood. We examine the potential of LLMs to support domain experts in scientific writing, with a focus on abstract composition. We design an incentivized randomized controlled trial with a hypothetical conference setup where participants with relevant expertise are split into an author and reviewer pool. Inspired by methods in behavioral science, our novel incentive structure encourages authors to edit the provided abstracts to an acceptable quality for a peer-reviewed submission. Our 2 x 2 between-subject design expands into two dimensions: the implicit source of the provided abstract and the disclosure of it. We find authors make most edits when editing human-written abstracts compared to AI-generated abstracts without source attribution, often guided by higher perceived readability in AI generation. Upon disclosure of source information, the volume of edits converges in both source treatments. Reviewer decisions remain unaffected by the source of the abstract, but bear a significant correlation with the number of edits made. Careful stylistic edits, especially in the case of AI-generated abstracts, in the presence of source information, improve the chance of acceptance. We find that AI-generated abstracts hold potential to reach comparable levels of acceptability to human-written ones with minimal revision, and that perceptions of AI authorship, rather than objective quality, drive much of the observed editing behavior. Our findings reverberate the significance of source disclosure in collaborative scientific writing.
comment: Published in ACM IUI 2026 (Paphos, Cyprus)
♻ ☆ Astra: General Interactive World Model with Autoregressive Denoising ICLR 2026
Recent advances in diffusion transformers have empowered video generation models to generate high-quality video clips from texts or images. However, world models with the ability to predict long-horizon futures from past observations and actions remain underexplored, especially for general-purpose scenarios and various forms of actions. To bridge this gap, we introduce Astra, an interactive general world model that generates real-world futures for diverse scenarios (e.g., autonomous driving, robot grasping) with precise action interactions (e.g., camera motion, robot action). We propose an autoregressive denoising architecture and use temporal causal attention to aggregate past observations and support streaming outputs. We use a noise-augmented history memory to avoid over-reliance on past frames to balance responsiveness with temporal coherence. For precise action control, we introduce an action-aware adapter that directly injects action signals into the denoising process. We further develop a mixture of action experts that dynamically route heterogeneous action modalities, enhancing versatility across diverse real-world tasks such as exploration, manipulation, and camera control. Astra achieves interactive, consistent, and general long-term video prediction and supports various forms of interactions. Experiments across multiple datasets demonstrate the improvements of Astra in fidelity, long-range prediction, and action alignment over existing state-of-the-art world models.
comment: Accepted in ICLR 2026. Code is available at: https://github.com/EternalEvan/Astra
♻ ☆ Plan Then Retrieve: Reinforcement Learning-Guided Complex Reasoning over Knowledge Graphs
Knowledge Graph Question Answering aims to answer natural language questions by reasoning over structured knowledge graphs. While large language models have advanced KGQA through their strong reasoning capabilities, existing methods continue to struggle to fully exploit both the rich knowledge encoded in KGs and the reasoning capabilities of LLMs, particularly in complex scenarios. They often assume complete KG coverage and lack mechanisms to judge when external information is needed, and their reasoning remains locally myopic, failing to maintain coherent multi-step planning, leading to reasoning failures even when relevant knowledge exists. We propose Graph-RFT, a novel two-stage reinforcement fine-tuning KGQA framework with a 'plan-KGsearch-and-Websearch-during-think' paradigm, that enables LLMs to perform autonomous planning and adaptive retrieval scheduling across KG and web sources under incomplete knowledge conditions. Graph-RFT introduces a chain-of-thought fine-tuning method with a customized plan-retrieval dataset activates structured reasoning and resolves the GRPO cold-start problem. It then introduces a novel plan-retrieval guided reinforcement learning process integrates explicit planning and retrieval actions with a multi-reward design, enabling coverage-aware retrieval scheduling. It employs a Cartesian-inspired planning module to decompose complex questions into ordered subquestions, and logical expression to guide tool invocation for globally consistent multi-step reasoning. This reasoning retrieval process is optimized with a multi-reward combining outcome and retrieval specific signals, enabling the model to learn when and how to combine KG and web retrieval effectively.
♻ ☆ GOFAI meets Generative AI: Development of Expert Systems by means of Large Language Models
The development of large language models (LLMs) has successfully transformed knowledge-based systems such as open domain question nswering, which can automatically produce vast amounts of seemingly coherent information. Yet, those models have several disadvantages like hallucinations or confident generation of incorrect or unverifiable facts. In this paper, we introduce a new approach to the development of expert systems using LLMs in a controlled and transparent way. By limiting the domain and employing a well-structured prompt-based extraction approach, we produce a symbolic representation of knowledge in Prolog, which can be validated and corrected by human experts. This approach also guarantees interpretability, scalability and reliability of the developed expert systems. Via quantitative and qualitative experiments with Claude Sonnet 3.7 and GPT-4.1, we show strong adherence to facts and semantic coherence on our generated knowledge bases. We present a transparent hybrid solution that combines the recall capacity of LLMs with the precision of symbolic systems, thereby laying the foundation for dependable AI applications in sensitive domains.
♻ ☆ Can professional translators identify machine-generated text?
This study investigates whether professional translators can reliably identify short stories generated in Italian by artificial intelligence (AI) without prior specialized training. Sixty-nine translators took part in an in-person experiment, where they assessed three anonymized short stories - two written by ChatGPT-4o and one by a human author. For each story, participants rated the likelihood of AI authorship and provided justifications for their choices. While average results were inconclusive, a statistically significant subset (16.2%) successfully distinguished the synthetic texts from the human text, suggesting that their judgements were informed by analytical skill rather than chance. However, a nearly equal number misclassified the texts in the opposite direction, often relying on subjective impressions rather than objective markers, possibly reflecting a reader preference for AI-generated texts. Low burstiness and narrative contradiction emerged as the most reliable indicators of synthetic authorship, with unexpected calques, semantic loans and syntactic transfer from English also reported. In contrast, features such as grammatical accuracy and emotional tone frequently led to misclassification. These findings raise questions about the role and scope of synthetic-text editing in professional contexts.
comment: 10 pages, table numbers corrected
♻ ☆ Improving Value-based Process Verifier via Low-Cost Variance Reduction AAAI-2026
Large language models (LLMs) have achieved remarkable success in a wide range of tasks. However, their reasoning capabilities, particularly in complex domains like mathematics, remain a significant challenge. Value-based process verifiers, which estimate the probability of a partial reasoning chain leading to a correct solution, are a promising approach for improving reasoning. Nevertheless, their effectiveness is often hindered by estimation error in their training annotations, a consequence of the limited number of Monte Carlo (MC) samples feasible due to the high cost of LLM inference. In this paper, we identify that the estimation error primarily arises from high variance rather than bias, and the MC estimator is a Minimum Variance Unbiased Estimator (MVUE). To address the problem, we propose the \textsc{Com}pound \textsc{M}onte \textsc{C}arlo \textsc{S}ampling (ComMCS) method, which constructs an unbiased estimator by linearly combining the MC estimators from the current and subsequent steps. Theoretically, we show that our method leads to a predictable reduction in variance, while maintaining an unbiased estimation without additional LLM inference cost. We also perform empirical experiments on the MATH-500 and GSM8K benchmarks to demonstrate the effectiveness of our method. Notably, ComMCS outperforms regression-based optimization method by 2.8 points, the non-variance-reduced baseline by 2.2 points on MATH-500 on Best-of-32 sampling experiment.
comment: Accepted by AAAI-2026
♻ ☆ AECBench: A Hierarchical Benchmark for Knowledge Evaluation of Large Language Models in the AEC Field
Large language models (LLMs), as a novel information technology, are seeing increasing adoption in the Architecture, Engineering, and Construction (AEC) field. They have shown their potential to streamline processes throughout the building lifecycle. However, the robustness and reliability of LLMs in such a specialized and safety-critical domain remain to be evaluated. To address this challenge, this paper establishes AECBench, a comprehensive benchmark designed to quantify the strengths and limitations of current LLMs in the AEC domain. The benchmark features a five-level, cognition-oriented evaluation framework (i.e., Knowledge Memorization, Understanding, Reasoning, Calculation, and Application). Based on the framework, 23 representative evaluation tasks were defined. These tasks were derived from authentic AEC practice, with scope ranging from codes retrieval to specialized documents generation. Subsequently, a 4,800-question dataset encompassing diverse formats, including open-ended questions, was crafted primarily by engineers and validated through a two-round expert review. Furthermore, an "LLM-as-a-Judge" approach was introduced to provide a scalable and consistent methodology for evaluating complex, long-form responses leveraging expert-derived rubrics. Through the evaluation of nine LLMs, a clear performance decline across five cognitive levels was revealed. Despite demonstrating proficiency in foundational tasks at the Knowledge Memorization and Understanding levels, the models showed significant performance deficits, particularly in interpreting knowledge from tables in building codes, executing complex reasoning and calculation, and generating domain-specific documents. Consequently, this study lays the groundwork for future research and development aimed at the robust and reliable integration of LLMs into safety-critical engineering practices.
♻ ☆ Attention-Aided MMSE for OFDM Channel Estimation: Learning Linear Filters with Attention
In orthogonal frequency division multiplexing (OFDM), accurate channel estimation is crucial. Classical signal processing-based approaches, such as linear minimum mean-squared error (LMMSE) estimation, often require second-order statistics that are difficult to obtain in practice. Recent deep neural network (DNN)-based methods have been introduced to address this; yet they often suffer from high inference complexity. This paper proposes an Attention-aided MMSE (A-MMSE), a model-based DNN framework that learns the linear MMSE filter via the Attention Transformer. Once trained, the A-MMSE performs channel estimation through a single linear operation, eliminating nonlinear activations during inference and thus reducing computational complexity. To improve the learning efficiency of the A-MMSE, we develop a two-stage Attention encoder that captures the frequency and temporal correlation structure of OFDM channels. We also introduce a rank-adaptive extension that enables a flexible performance-complexity trade-off. Numerical simulations show that the proposed A-MMSE consistently outperforms other baseline methods in terms of normalized MSE across a wide range of signal-to-noise ratio (SNR) conditions. In particular, the A-MMSE and its rank-adaptive extension provide an improved performance-complexity trade-off, providing a powerful and highly efficient solution for practical channel estimation.
comment: 13 pages, 8 figures
♻ ☆ The LLM Data Auditor: A Metric-oriented Survey on Quality and Trustworthiness in Evaluating Synthetic Data
Large Language Models (LLMs) have emerged as powerful tools for generating data across various modalities. By transforming data from a scarce resource into a controllable asset, LLMs mitigate the bottlenecks imposed by the acquisition costs of real-world data for model training, evaluation, and system iteration. However, ensuring the high quality of LLM-generated synthetic data remains a critical challenge. Existing research primarily focuses on generation methodologies, with limited direct attention to the quality of the resulting data. Furthermore, most studies are restricted to single modalities, lacking a unified perspective across different data types. To bridge this gap, we propose the \textbf{LLM Data Auditor framework}. In this framework, we first describe how LLMs are utilized to generate data across six distinct modalities. More importantly, we systematically categorize intrinsic metrics for evaluating synthetic data from two dimensions: quality and trustworthiness. This approach shifts the focus from extrinsic evaluation, which relies on downstream task performance, to the inherent properties of the data itself. Using this evaluation system, we analyze the experimental evaluations of representative generation methods for each modality and identify substantial deficiencies in current evaluation practices. Based on these findings, we offer concrete recommendations for the community to improve the evaluation of data generation. Finally, the framework outlines methodologies for the practical application of synthetic data across different modalities.
♻ ☆ SingMOS-Pro: An Comprehensive Benchmark for Singing Quality Assessment ICASSP 2026
Singing voice generation progresses rapidly, yet evaluating singing quality remains a critical challenge. Human subjective assessment, typically in the form of listening tests, is costly and time consuming, while existing objective metrics capture only limited perceptual aspects. In this work, we introduce SingMOS-Pro, a dataset for automatic singing quality assessment. Building on our preview version SingMOS, which provides only overall ratings, SingMOS-Pro extends the annotations of the additional data to include lyrics, melody, and overall quality, offering broader coverage and greater diversity. The dataset contains 7,981 singing clips generated by 41 models across 12 datasets, spanning from early systems to recent state-of-the-art approaches. Each clip is rated by at least five experienced annotators to ensure reliability and consistency. Furthermore, we investigate strategies for effectively utilizing MOS data annotated under heterogeneous standards and benchmark several widely used evaluation methods from related tasks on SingMOS-Pro, establishing strong baselines and practical references for future research. The dataset is publicly available at https://huggingface.co/datasets/TangRain/SingMOS-Pro.
comment: Accepted by ICASSP 2026
♻ ☆ Damper-B-PINN: Damper Characteristics-Based Bayesian Physics-Informed Neural Network for Vehicle State Estimation IEEE
Accurate state estimation is fundamental to intelligent vehicles. Wheel load, one of the most important chassis states, serves as an essential input for advanced driver assistance systems (ADAS) and exerts a direct influence on vehicle stability and safety. However, wheel load estimation remains challenging due to the complexity of chassis modeling and the susceptibility of nonlinear systems to noise. To address these issues, this paper first introduces a refined suspension linkage-level modeling approach that constructs a nonlinear instantaneous dynamic model by explicitly considering the complex geometric structure of the suspension. Building upon this, we propose a damper characteristics-based Bayesian physics-informed neural network (Damper-B-PINN) framework to estimate dynamic wheel load, which leverages the suspension dynamics as physical guidance of PINN while employing Bayesian inference to mitigate the effects of system noise and uncertainty. Moreover, a damper-characteristic physics conditioning (DPC) module is designed for embedding physical prior. The proposed Damper-B-PINN is evaluated using both high-fidelity simulation datasets generated by CarSim software and real-world datasets collected from a Formula Student race car. Experimental results demonstrate that our Damper-B-PINN consistently outperforms existing methods across various test conditions, particularly extreme ones. These findings highlight the potential of the proposed Damper-B-PINN framework to enhance the accuracy and robustness of dynamic wheel load estimation, thereby improving the reliability and safety of ADAS applications.
comment: 8 pages, 8 figures, 3 tables, accepted for IEEE Intelligent Vehicles (IV) Symposium 2026
♻ ☆ AutoGameUI: Constructing High-Fidelity GameUI via Multimodal Correspondence Matching
Game UI development is essential to the game industry. However, the traditional workflow requires substantial manual effort to integrate pairwise UI and UX designs into a cohesive game user interface (GameUI). The inconsistency between the aesthetic UI design and the functional UX design typically results in mismatches and inefficiencies. To address the issue, we present an automatic system, AutoGameUI, for efficiently and accurately constructing GameUI. The system centers on a two-stage multimodal learning pipeline to obtain the optimal correspondences between UI and UX designs. The first stage learns the comprehensive representations of UI and UX designs from multimodal perspectives. The second stage incorporates grouped cross-attention modules with constrained integer programming to estimate the optimal correspondences through top-down hierarchical matching. The optimal correspondences enable the automatic GameUI construction. We create the GAMEUI dataset, comprising pairwise UI and UX designs from real-world games, to train and validate the proposed method. Besides, an interactive web tool is implemented to ensure high-fidelity effects and facilitate human-in-the-loop construction. Extensive experiments on the GAMEUI and RICO datasets demonstrate the effectiveness of our system in maintaining consistency between the constructed GameUI and the original designs. When deployed in the workflow of several mobile games, AutoGameUI achieves a 3$\times$ improvement in time efficiency, conveying significant practical value for game UI development.
comment: 9 pages
♻ ☆ Beyond the Prompt: An Empirical Study of Cursor Rules
While Large Language Models (LLMs) have demonstrated remarkable capabilities, research shows that their effectiveness depends not only on explicit prompts but also on the broader context provided. This requirement is especially pronounced in software engineering, where the goals, architecture, and collaborative conventions of an existing project play critical roles in response quality. To support this, many AI coding assistants have introduced ways for developers to author persistent, machine-readable directives that encode a project's unique constraints. Although this practice is growing, the content of these directives remains unstudied. This paper presents a large-scale empirical study to characterize this emerging form of developer-provided context. Through a qualitative analysis of 401 open-source repositories containing cursor rules, we developed a comprehensive taxonomy of project context that developers consider essential, organized into five high-level themes: Conventions, Guidelines, Project Information, LLM Directives, and Examples. Our study also explores how this context varies across different project types and programming languages, offering implications for the next generation of context-aware AI developer tools.
comment: To appear at MSR 2026
♻ ☆ How AI Coding Agents Modify Code: A Large-Scale Study of GitHub Pull Requests
AI coding agents are increasingly acting as autonomous contributors by generating and submitting pull requests (PRs). However, we lack empirical evidence on how these agent-generated PRs differ from human contributions, particularly in how they modify code and describe their changes. Understanding these differences is essential for assessing their reliability and impact on development workflows. Using the MSR 2026 Mining Challenge version of the AIDev dataset, we analyze 24,014 merged Agentic PRs (440,295 commits) and 5,081 merged Human PRs (23,242 commits). We examine additions, deletions, commits, and files touched, and evaluate the consistency between PR descriptions and their diffs using lexical and semantic similarity. Agentic PRs differ substantially from Human PRs in commit count (Cliff's $δ= 0.5429$) and show moderate differences in files touched and deleted lines. They also exhibit slightly higher description-to-diff similarity across all measures. These findings provide a large-scale empirical characterization of how AI coding agents contribute to open source development.
comment: 5 pages, 5 figures
♻ ☆ Fair Algorithms with Probing for Multi-Agent Multi-Armed Bandits
We propose a multi-agent multi-armed bandit (MA-MAB) framework aimed at ensuring fair outcomes across agents while maximizing overall system performance. A key challenge in this setting is decision-making under limited information about arm rewards. To address this, we introduce a novel probing framework that strategically gathers information about selected arms before allocation. In the offline setting, where reward distributions are known, we leverage submodular properties to design a greedy probing algorithm with a provable performance bound. For the more complex online setting, we develop an algorithm that achieves sublinear regret while maintaining fairness. Extensive experiments on synthetic and real-world datasets show that our approach outperforms baseline methods, achieving better fairness and efficiency.
♻ ☆ Tabular Incremental Inference
Tabular data is a fundamental form of data structure. The evolution of table analysis tools reflects humanity's continuous progress in data acquisition, management, and processing. The dynamic changes in table columns arise from technological advancements, changing needs, data integration, etc. However, the standard process of training AI models on tables with fixed columns and then performing inference is not suitable for handling dynamically changed tables. Therefore, new methods are needed for efficiently handling such tables in an unsupervised manner. In this paper, we introduce a new task, Tabular Incremental Inference (TabII), which aims to enable trained models to incorporate new columns during the inference stage, enhancing the practicality of AI models in scenarios where tables are dynamically changed. Furthermore, we demonstrate that this new task can be framed as an optimization problem based on the information bottleneck theory, which emphasizes that the key to an ideal tabular incremental inference approach lies in minimizing mutual information between tabular data and representation while maximizing between representation and task labels. Under this guidance, we design a TabII method with Large Language Model placeholders and Pretrained TabAdapter to provide external knowledge and Incremental Sample Condensation blocks to condense the task-relevant information given by incremental column attributes. Experimental results across eight public datasets show that TabII effectively utilizes incremental attributes, achieving state-of-the-art performance.
♻ ☆ Stream-Voice-Anon: Enhancing Utility of Real-Time Speaker Anonymization via Neural Audio Codec and Language Models ICASSP2026
Protecting speaker identity is crucial for online voice applications, yet streaming speaker anonymization (SA) remains underexplored. Recent research has demonstrated that neural audio codec (NAC) provides superior speaker feature disentanglement and linguistic fidelity. NAC can also be used with causal language models (LM) to enhance linguistic fidelity and prompt control for streaming tasks. However, existing NAC-based online LM systems are designed for voice conversion (VC) rather than anonymization, lacking the techniques required for privacy protection. Building on these advances, we present Stream-Voice-Anon, which adapts modern causal LM-based NAC architectures specifically for streaming SA by integrating anonymization techniques. Our anonymization approach incorporates pseudo-speaker representation sampling, a speaker embedding mixing and diverse prompt selection strategies for LM conditioning that leverage the disentanglement properties of quantized content codes to prevent speaker information leakage. Additionally, we compare dynamic and fixed delay configurations to explore latency-privacy trade-offs in real-time scenarios. Under the VoicePrivacy 2024 Challenge protocol, Stream-Voice-Anon achieves substantial improvements in intelligibility (up to 46% relative WER reduction) and emotion preservation (up to 28% UAR relative) compared to the previous state-of-the-art streaming method DarkStream while maintaining comparable latency (180ms vs 200ms) and privacy protection against lazy-informed attackers, though showing 15% relative degradation against semi-informed attackers.
comment: Accepted by ICASSP2026
♻ ☆ Jenius Agent: Towards Experience-Driven Accuracy Optimization in Real-World Scenarios
As agent systems powered by large language models (LLMs) advance, improving performance in context understanding, tool usage, and long-horizon execution has become critical. However, existing agent frameworks and benchmarks provide limited visibility into execution-level behavior, making failures in tool invocation, state tracking, and context management difficult to diagnose. This paper presents Jenius-Agent, a system-level agent framework grounded in real-world deployment experience. It integrates adaptive prompt generation, context-aware tool orchestration, and layered memory mechanism to stabilize execution and improve robustness in long-horizon, tool-augmented tasks. Beyond system design, we introduce an evaluation methodology that jointly measures procedural fidelity, semantic correctness, and efficiency. This framework makes agent behavior observable as a structured execution process and enables systematic analysis of failure modes not captured by output-only metrics. Experiments on Jenius-bench show substantial improvements in task completion rate, with up to a 35 percent relative gain over the base agent, along with reduced token consumption, response latency, and tool invocation failures. The framework is already deployed in Jenius ({https://www.jenius.cn}), providing a lightweight and scalable solution for robust, protocol-compatible autonomous agents.
♻ ☆ Remote Sensing Image Intelligent Interpretation with the Language-Centered Perspective: Principles, Methods and Challenges
The mainstream paradigm of remote sensing image interpretation has long been dominated by vision-centered models, which rely on visual features for semantic understanding. However, these models face inherent limitations in handling multi-modal reasoning, semantic abstraction, and interactive decision-making. While recent advances have introduced Large Language Models (LLMs) into remote sensing workflows, existing studies primarily focus on downstream applications, lacking a unified theoretical framework that explains the cognitive role of language. This review advocates a paradigm shift from vision-centered to language-centered remote sensing interpretation. Drawing inspiration from the Global Workspace Theory (GWT) of human cognition, We propose a language-centered framework for remote sensing interpretation that treats LLMs as the cognitive central hub integrating perceptual, task, knowledge and action spaces to enable unified understanding, reasoning, and decision-making. We first explore the potential of LLMs as the central cognitive component in remote sensing interpretation, and then summarize core technical challenges, including unified multimodal representation, knowledge association, and reasoning and decision-making. Furthermore, we construct a global workspace-driven interpretation mechanism and review how language-centered solutions address each challenge. Finally, we outline future research directions from four perspectives: adaptive alignment of multimodal data, task understanding under dynamic knowledge constraints, trustworthy reasoning, and autonomous interaction. This work aims to provide a conceptual foundation for the next generation of remote sensing interpretation systems and establish a roadmap toward cognition-driven intelligent geospatial analysis.
♻ ☆ Do LLMs Give Good Romantic Relationship Advice? A Study on User Satisfaction and Attitude Change
Large Language Models (LLMs) are increasingly being used to provide support and advice in personal domains such as romantic relationships, yet little is known about user perceptions of this type of advice. This study investigated how people evaluate advice on LLM-generated romantic relationships. Participants rated advice satisfaction, model reliability, and helpfulness, and completed pre- and post-measures of their general attitudes toward LLMs. Overall, the results showed participants' high satisfaction with LLM-generated advice. Greater satisfaction was, in turn, strongly and positively associated with their perceptions of the models' reliability and helpfulness. Importantly, participants' attitudes toward LLMs improved significantly after exposure to the advice, suggesting that supportive and contextually relevant advice can enhance users' trust and openness toward these AI systems.
comment: An error in figure 1
♻ ☆ Text2Grad: Reinforcement Learning from Natural Language Feedback
Traditional RLHF optimizes language models with coarse, scalar rewards that mask the fine-grained reasons behind success or failure, leading to slow and opaque learning. Recent work augments RL with textual critiques through prompting or reflection, improving interpretability but leaving model parameters untouched. We introduce Text2Grad, a reinforcement-learning paradigm that turns free-form textual feedback into span-level gradients. Given human (or programmatic) critiques, Text2Grad aligns each feedback phrase with the relevant token spans, converts these alignments into differentiable reward signals, and performs gradient updates that directly refine the offending portions of the model's policy. This yields precise, feedback-conditioned adjustments instead of global nudges. Text2Grad is realized through three components: (1) a high-quality feedback-annotation pipeline that pairs critiques with token spans; (2) a fine-grained reward model that predicts span-level reward on answers while generating explanatory critiques; and (3) a span-level policy optimizer that back-propagates natural-language gradients. Across summarization, code generation, and question answering, Text2Grad consistently surpasses scalar-reward RL and prompt-only baselines, providing both higher task metrics and richer interpretability. Our results suggest that natural-language feedback can serve not only as explanations, but also as actionable training signals for fine-grained alignment. The code for our method is available at https://github.com/microsoft/Text2Grad.
comment: The code for our method is available at https://github.com/microsoft/Text2Grad
♻ ☆ HYPERDOA: Robust and Efficient DoA Estimation using Hyperdimensional Computing ICASSP 2026
Direction of Arrival (DoA) estimation techniques face a critical trade-off, as classical methods often lack accuracy in challenging, low signal-to-noise ratio (SNR) conditions, while modern deep learning approaches are too energy-intensive and opaque for resource-constrained, safety-critical systems. We introduce HYPERDOA, a novel estimator leveraging Hyperdimensional Computing (HDC). The framework introduces two distinct feature extraction strategies -- Mean Spatial-Lag Autocorrelation and Spatial Smoothing -- for its HDC pipeline, and then reframes DoA estimation as a pattern recognition problem. This approach leverages HDC's inherent robustness to noise and its transparent algebraic operations to bypass the expensive matrix decompositions and "black-box" nature of classical and deep learning methods, respectively. Our evaluation demonstrates that HYPERDOA achieves ~35.39% higher accuracy than state-of-the-art methods in low-SNR, coherent-source scenarios. Crucially, it also consumes ~93% less energy than competing neural baselines on an embedded NVIDIA Jetson Xavier NX platform. This dual advantage in accuracy and efficiency establishes HYPERDOA as a robust and viable solution for mission-critical applications on edge devices.
comment: 3 figures, 5 pages. Paper accepted at ICASSP 2026. Authors' version posted for personal use and not for redistribution
♻ ☆ Epistemological Bias As a Means for the Automated Detection of Injustices in Text
Injustices in text are often subtle since implicit biases or stereotypes frequently operate unconsciously due to the pervasive nature of prejudice in society. This makes automated detection of injustices more challenging which leads to them being often overlooked. We introduce a novel framework that combines knowledge from epistemology to enhance the detection of implicit injustices in text using NLP models to address these complexities and offer explainability. Our empirical study shows how our framework can be applied to effectively detect these injustices. We validate our framework using a human baseline study which mostly agrees with the choice of implicit bias, stereotype, and sentiment. The main feedback from the study was the extended time required to analyze, digest, and decide on each component of our framework. This highlights the importance of our automated framework pipeline that assists users in detecting implicit injustices while offering explainability and reducing time burdens on humans.
♻ ☆ Epistemic-aware Vision-Language Foundation Model for Fetal Ultrasound Interpretation
Recent medical vision-language models have shown promise on tasks such as VQA, report generation, and anomaly detection. However, most are adapted to structured adult imaging and underperform in fetal ultrasound, which poses challenges of multi-view image reasoning, numerous diseases, and image diversity. To bridge this gap, we introduce FetalMind, a medical AI system tailored to fetal ultrasound for both report generation and diagnosis. Guided by clinical workflow, we propose Salient Epistemic Disentanglement (SED), which injects an expert-curated bipartite graph into the model to decouple view-disease associations and to steer preference selection along clinically faithful steps via reinforcement learning. This design mitigates variability across diseases and heterogeneity across views, reducing learning bottlenecks while aligning the model's inference with obstetric practice. To train FetalMind at scale, we curate FetalSigma-1M dataset, the first large-scale fetal ultrasound report corpus, comprising 20K reports from twelve medical centers, addressing the scarcity of domain data. Extensive experiments show that FetalMind outperforms open- and closed-source baselines across all gestational stages, achieving +14% average gains and +61.2% higher accuracy on critical conditions while remaining efficient, stable, and scalable. Project Page: https://hexiao0275.github.io/FetalMind.
comment: This paper contains fundamental errors and will not be replaced
♻ ☆ Holdout-Loss-Based Data Selection for LLM Finetuning via In-Context Learning
Fine-tuning large pretrained language models is a common approach for aligning them with human preferences, but noisy or off-target examples can dilute supervision. While small, well-chosen datasets often match the performance of much larger ones, systematic and efficient ways to identify high-value training data remain underexplored. Many current methods rely on heuristics or expensive retraining. We present a principled, resource-efficient framework for data selection and reweighting. At its core is an In-Context Approximation (ICA) that estimates the holdout loss a model would incur after training on a candidate example by conditioning on a small, curated holdout set in context. ICA requires no reference model and no additional finetuning. We define the resulting estimate as the ICA score, and derive per-example weights that dynamically reweight gradient updates as model parameters evolve. Across SFT, DPO, and SimPO, and over diverse backbones and datasets, ICA-based reweighting consistently improves model alignment with minimal overhead. We analyze sensitivity to score update frequency and the number of in-context holdout examples. We also discuss limitations in rapidly drifting on-policy settings, highlighting directions for future work. Code and prompts will be released.
♻ ☆ Decoding Cortical Microcircuits: A Generative Model for Latent Space Exploration and Controlled Synthesis
A central idea in understanding brains and building artificial intelligence is that structure determines function. Yet, how the brain's complex structure arises from a limited set of genetic instructions remains a key question. The ultra high-dimensional detail of neural connections vastly exceeds the information storage capacity of genes, suggesting a compact, low-dimensional blueprint must guide brain development. Our motivation is to uncover this blueprint. We introduce a generative model, to learn this underlying representation from detailed connectivity maps of mouse cortical microcircuits. Our model successfully captures the essential structural information of these circuits in a compressed latent space. We found that specific, interpretable directions within this space directly relate to understandable network properties. Building on this, we demonstrate a novel method to controllably generate new, synthetic microcircuits with desired structural features by navigating this latent space. This work offers a new way to investigate the design principles of neural circuits and explore how structure gives rise to function, potentially informing the development of more advanced artificial neural networks.
♻ ☆ Dancing in Chains: Strategic Persuasion in Academic Rebuttal via Theory of Mind ICLR 2026
Although artificial intelligence (AI) has become deeply integrated into various stages of the research workflow and achieved remarkable advancements, academic rebuttal remains a significant and underexplored challenge. This is because rebuttal is a complex process of strategic communication under severe information asymmetry rather than a simple technical debate. Consequently, current approaches struggle as they largely imitate surface-level linguistics, missing the essential element of perspective-taking required for effective persuasion. In this paper, we introduce RebuttalAgent, the first framework to ground academic rebuttal in Theory of Mind (ToM), operationalized through a ToM-Strategy-Response (TSR) pipeline that models reviewer mental state, formulates persuasion strategy, and generates strategy-grounded response. To train our agent, we construct RebuttalBench, a large-scale dataset synthesized via a novel critique-and-refine approach. Our training process consists of two stages, beginning with a supervised fine-tuning phase to equip the agent with ToM-based analysis and strategic planning capabilities, followed by a reinforcement learning phase leveraging the self-reward mechanism for scalable self-improvement. For reliable and efficient automated evaluation, we further develop Rebuttal-RM, a specialized evaluator trained on over 100K samples of multi-source rebuttal data, which achieves scoring consistency with human preferences surpassing powerful judge GPT-4.1. Extensive experiments show RebuttalAgent significantly outperforms the base model by an average of 18.3% on automated metrics, while also outperforming advanced proprietary models across both automated and human evaluations. Disclaimer: the generated rebuttal content is for reference only to inspire authors and assist in drafting. It is not intended to replace the author's own critical analysis and response.
comment: Accepted by ICLR 2026, 36 pages
♻ ☆ Reinforcement Learning Fine-Tuning Enhances Activation Intensity and Diversity in the Internal Circuitry of LLMs
Large language models (LLMs) acquire extensive prior knowledge through large-scale pretraining and can be further enhanced via supervised fine-tuning (SFT) or reinforcement learning (RL)-based post-training. A growing body of evidence has shown that RL fine-tuning improves the capability of LLMs beyond what SFT alone achieves. However, the underlying mechanisms why RL fine-tuning is able to enhance the capability of various LLMs with distinct intrinsic characteristics remain underexplored. In this study, we draw inspiration from prior work on edge attribution patching (EAP) to investigate the internal differences of LLMs before and after RL fine-tuning. Our analysis across multiple model families and mathematical datasets shows two robust effects of online RL post-training: (i) an overall increase in average activation intensity, indicating that more internal pathways are engaged and their signals become stronger, and (ii) greater diversity in activation patterns, reflected by higher entropy and less concentrated edge distributions. These changes suggest that RL reshapes information flow to be both more redundant and more flexible, which may explain its advantage in mathematical generalization. Notably, models fine-tuned with Direct Preference Optimization (DPO) deviate from these trends, exhibiting substantially weaker or inconsistent internal changes compared to PPO- and GRPO-based training. Together, our findings provide a unified view of how RL fine-tuning systematically alters the internal circuitry of LLMs and highlight the methodological distinctions between online RL and preference-based approaches. Our code is open source at https://github.com/tsinghua-fib-lab/llm_rl_probing_analysis.
♻ ☆ RL of Thoughts: Navigating LLM Reasoning with Inference-time Reinforcement Learning
Despite rapid advancements in large language models (LLMs), the token-level autoregressive nature constrains their complex reasoning capabilities. To enhance LLM reasoning, inference-time techniques, including Chain/Tree/Graph-of-Thought(s), successfully improve the performance, as they are fairly cost-effective by guiding reasoning through sophisticated logical structures without modifying LLMs' parameters. However, these manually predefined, task-agnostic frameworks are applied uniformly across diverse tasks, lacking adaptability. To improve this, we propose RL-of-Thoughts (RLoT), where we train a lightweight navigator model with reinforcement learning (RL) to adaptively enhance LLM reasoning at inference time. Specifically, we design five basic logic blocks from the perspective of human cognition. During the reasoning process, the trained RL navigator dynamically selects the suitable logic blocks and combines them into task-specific logical structures according to problem characteristics. Experiments across multiple reasoning benchmarks (AIME, MATH, GPQA, etc.) with multiple LLMs (GPT, Llama, Qwen, and DeepSeek) illustrate that RLoT outperforms established inference-time techniques by up to 13.4%. Remarkably, with less than 3K parameters, our RL navigator is able to make sub-10B LLMs comparable to 100B-scale counterparts. Moreover, the RL navigator demonstrates strong transferability: a model trained on one specific LLM-task pair can effectively generalize to unseen LLMs and tasks. Our code is open-source at https://github.com/tsinghua-fib-lab/RL-LLM-Reasoning for reproducibility.
♻ ☆ SAC-Opt: Semantic Anchors for Iterative Correction in Optimization Modeling
Large language models (LLMs) have opened new paradigms in optimization modeling by enabling the generation of executable solver code from natural language descriptions. Despite this promise, existing approaches typically remain solver-driven: they rely on single-pass forward generation and apply limited post-hoc fixes based on solver error messages, leaving undetected semantic errors that silently produce syntactically correct but logically flawed models. To address this challenge, we propose SAC-Opt, a backward-guided correction framework that grounds optimization modeling in problem semantics rather than solver feedback. At each step, SAC-Opt aligns the original semantic anchors with those reconstructed from the generated code and selectively corrects only the mismatched components, driving convergence toward a semantically faithful model. This anchor-driven correction enables fine-grained refinement of constraint and objective logic, enhancing both fidelity and robustness without requiring additional training or supervision. Empirical results on seven public datasets demonstrate that SAC-Opt improves average modeling accuracy by 7.7%, with gains of up to 21.9% on the ComplexLP dataset. These findings highlight the importance of semantic-anchored correction in LLM-based optimization workflows to ensure faithful translation from problem intent to solver-executable code.
♻ ☆ Q-Probe: Scaling Image Quality Assessment to High Resolution via Context-Aware Agentic Probing
Reinforcement Learning (RL) has empowered Multimodal Large Language Models (MLLMs) to achieve superior human preference alignment in Image Quality Assessment (IQA). However, existing RL-based IQA models typically rely on coarse-grained global views, failing to capture subtle local degradations in high-resolution scenarios. While emerging "Thinking with Images" paradigms enable multi-scale visual perception via zoom-in mechanisms, their direct adaptation to IQA induces spurious "cropping-implies-degradation" biases and misinterprets natural depth-of-field as artifacts. To address these challenges, we propose Q-Probe, the first agentic IQA framework designed to scale IQA to high resolution via context-aware probing. First, we construct Vista-Bench, a pioneering benchmark tailored for fine-grained local degradation analysis in high-resolution IQA settings. Furthermore, we propose a three-stage training paradigm that progressively aligns the model with human preferences, while simultaneously eliminating causal bias through a novel context-aware cropping strategy. Extensive experiments demonstrate that Q-Probe achieves state-of-the-art performance in high-resolution settings while maintaining superior efficacy across resolution scales.
♻ ☆ DSSmoothing: Toward Certified Dataset Ownership Verification for Pre-trained Language Models via Dual-Space Smoothing WWW 2026
Large web-scale datasets have driven the rapid advancement of pre-trained language models (PLMs), but unauthorized data usage has raised serious copyright concerns. Existing dataset ownership verification (DOV) methods typically assume that watermarks remain stable during inference; however, this assumption often fails under natural noise and adversary-crafted perturbations. We propose the first certified dataset ownership verification method for PLMs under a gray-box setting (i.e., the defender can only query the suspicious model but is aware of its input representation module), based on dual-space smoothing (i.e., DSSmoothing). To address the challenges of text discreteness and semantic sensitivity, DSSmoothing introduces continuous perturbations in the embedding space to capture semantic robustness and applies controlled token reordering in the permutation space to capture sequential robustness. DSSmoothing consists of two stages: in the first stage, triggers are collaboratively embedded in both spaces to generate norm-constrained and robust watermarked datasets; in the second stage, randomized smoothing is applied in both spaces during verification to compute the watermark robustness (WR) of suspicious models and statistically compare it with the principal probability (PP) values of a set of benign models. Theoretically, DSSmoothing provides provable robustness guarantees for dataset ownership verification by ensuring that WR consistently exceeds PP under bounded dual-space perturbations. Extensive experiments on multiple representative web datasets demonstrate that DSSmoothing achieves stable and reliable verification performance and exhibits robustness against potential adaptive attacks. Our code is available at https://github.com/NcepuQiaoTing/DSSmoothing.
comment: To appear in WWW 2026. 12 pages
♻ ☆ Streaming-dLLM: Accelerating Diffusion LLMs via Suffix Pruning and Dynamic Decoding
Diffusion Large Language Models (dLLMs) offer a compelling paradigm for natural language generation, leveraging parallel decoding and bidirectional attention to achieve superior global coherence compared to autoregressive models. While recent works have accelerated inference via KV cache reuse or heuristic decoding, they overlook the intrinsic inefficiencies within the block-wise diffusion process. Specifically, they suffer from spatial redundancy by modeling informative-sparse suffix regions uniformly and temporal inefficiency by applying fixed denoising schedules across all the decoding process. To address this, we propose Streaming-dLLM, a training-free framework that streamlines inference across both spatial and temporal dimensions. Spatially, we introduce attenuation guided suffix modeling to approximate the full context by pruning redundant mask tokens. Temporally, we employ a dynamic confidence aware strategy with an early exit mechanism, allowing the model to skip unnecessary iterations for converged tokens. Extensive experiments show that Streaming-dLLM achieves up to 68.2X speedup while maintaining generation quality, highlighting its effectiveness in diffusion decoding. The code is available at https://github.com/xiaoshideta/Streaming-dLLM.
comment: Tech report. Code is available at https://github.com/xiaoshideta/Streaming-dLLM
♻ ☆ Creating a Causally Grounded Rating Method for Assessing the Robustness of AI Models for Time-Series Forecasting
AI models, including both time-series-specific and general-purpose Foundation Models (FMs), have demonstrated strong potential in time-series forecasting across sectors like finance. However, these models are highly sensitive to input perturbations, which can lead to prediction errors and undermine trust among stakeholders, including investors and analysts. To address this challenge, we propose a causally grounded rating framework to systematically evaluate model robustness by analyzing statistical and confounding biases under various noisy and erroneous input scenarios. Our framework is applied to a large-scale experimental setup involving stock price data from multiple industries and evaluates both uni-modal and multi-modal models, including Vision Transformer-based (ViT) models and FMs. We introduce six types of input perturbations and twelve data distributions to assess model performance. Results indicate that multi-modal and time-series-specific FMs demonstrate greater robustness and accuracy compared to general-purpose models. Further, to validate our framework's usability, we conduct a user study showcasing time-series models' prediction errors along with our computed ratings. The study confirms that our ratings reduce the difficulty for users in comparing the robustness of different models. Our findings can help stakeholders understand model behaviors in terms of robustness and accuracy for better decision-making even without access to the model weights and training data, i.e., black-box settings.
comment: arXiv admin note: text overlap with arXiv:2406.12908
♻ ☆ FedAdamW: A Communication-Efficient Optimizer with Convergence and Generalization Guarantees for Federated Large Models
AdamW has become one of the most effective optimizers for training large-scale models. We have also observed its effectiveness in the context of federated learning (FL). However, directly applying AdamW in federated learning settings poses significant challenges: (1) due to data heterogeneity, AdamW often yields high variance in the second-moment estimate $\boldsymbol{v}$; (2) the local overfitting of AdamW may cause client drift; and (3) Reinitializing moment estimates ($\boldsymbol{v}$, $\boldsymbol{m}$) at each round slows down convergence. To address these challenges, we propose the first \underline{Fed}erated \underline{AdamW} algorithm, called \texttt{FedAdamW}, for training and fine-tuning various large models. \texttt{FedAdamW} aligns local updates with the global update using both a \textbf{local correction mechanism} and decoupled weight decay to mitigate local overfitting. \texttt{FedAdamW} efficiently aggregates the \texttt{mean} of the second-moment estimates to reduce their variance and reinitialize them. Theoretically, we prove that \texttt{FedAdamW} achieves a linear speedup convergence rate of $\mathcal{O}(\sqrt{(L Δσ_l^2)/(S K R ε^2)}+(L Δ)/R)$ without \textbf{heterogeneity assumption}, where $S$ is the number of participating clients per round, $K$ is the number of local iterations, and $R$ is the total number of communication rounds. We also employ PAC-Bayesian generalization analysis to explain the effectiveness of decoupled weight decay in local training. Empirically, we validate the effectiveness of \texttt{FedAdamW} on language and vision Transformer models. Compared to several baselines, \texttt{FedAdamW} significantly reduces communication rounds and improves test accuracy. The code is available in https://github.com/junkangLiu0/FedAdamW.
♻ ☆ MoRA: Mobility as the Backbone for Geospatial Representation Learning at Scale
Representation learning of geospatial locations remains a core challenge in achieving general geospatial intelligence, with increasingly diverging philosophies and techniques. While Earth observation paradigms excel at depicting locations in their physical states, we claim that a location's comprehensive "meaning" is better grounded in its internal human activity patterns and, crucially, its functional relationships with other locations, as revealed by human movement. We present MoRA, a human-centric geospatial framework that leverages a mobility graph as its core backbone to fuse various data modalities, aiming to learn embeddings that represent the socio-economic context and functional role of a location. MoRA achieves this through the integration of spatial tokenization, GNNs, and asymmetric contrastive learning to align 100M+ POIs, massive remote sensing imagery, and structured demographic statistics with a billion-edge mobility graph, ensuring the three auxiliary modalities are interpreted through the lens of fundamental human dynamics. To rigorously evaluate the effectiveness of MoRA, we construct a benchmark dataset composed of 9 downstream prediction tasks across social and economic domains. Experiments show that MoRA, with four input modalities and a compact 128-dimensional representation space, achieves superior predictive performances than state-of-the-art models by an average of 12.9%. Echoing LLM scaling laws, we further demonstrate the scaling behavior in geospatial representation learning. We open-source code and pretrained models at: https://github.com/ylzhouchris/MoRA.
♻ ☆ The Script is All You Need: An Agentic Framework for Long-Horizon Dialogue-to-Cinematic Video Generation
Recent advances in video generation have produced models capable of synthesizing stunning visual content from simple text prompts. However, these models struggle to generate long-form, coherent narratives from high-level concepts like dialogue, revealing a ``semantic gap'' between a creative idea and its cinematic execution. To bridge this gap, we introduce a novel, end-to-end agentic framework for dialogue-to-cinematic-video generation. Central to our framework is ScripterAgent, a model trained to translate coarse dialogue into a fine-grained, executable cinematic script. To enable this, we construct ScriptBench, a new large-scale benchmark with rich multimodal context, annotated via an expert-guided pipeline. The generated script then guides DirectorAgent, which orchestrates state-of-the-art video models using a cross-scene continuous generation strategy to ensure long-horizon coherence. Our comprehensive evaluation, featuring an AI-powered CriticAgent and a new Visual-Script Alignment (VSA) metric, shows our framework significantly improves script faithfulness and temporal fidelity across all tested video models. Furthermore, our analysis uncovers a crucial trade-off in current SOTA models between visual spectacle and strict script adherence, providing valuable insights for the future of automated filmmaking.
♻ ☆ Human Simulation Computation: A Human-Inspired Framework for Adaptive AI Systems
Large language models (LLMs) have demonstrated strong capabilities in knowledge representation and reasoning based on textual data. However, their reliance on language material alone limits their ability to adapt, verify reasoning outcomes, and operate effectively in open and dynamic real-world environments. In this paper, we propose Human Simulation Computation (HSC), a human-inspired computational framework that models intelligence as a continuous, closed-loop process involving thinking, action, learning, reflection, and activity scheduling, collectively referred to as the internal reasoning process. HSC emphasizes active participation both within the internal reasoning process and in interactions with the environment, where actions are used not only to achieve goals but also to automatically refine and improve internal reasoning mechanisms without external intervention. Furthermore, HSC incorporates commonly used human thinking strategies across all stages of the internal reasoning process, such as main-feature-oriented reasoning, scope expansion through action, and on-time learning driven by environmental feedback. Through theoretical analysis, we argue that human simulation strategies cannot be fully learned from language material alone, and that human-like reasoning processes and action-grounded reasoning methods are essential for robust adaptation and effective interaction with real-world environments.
♻ ☆ A Systemic Evaluation of Multimodal RAG Privacy
The growing adoption of multimodal Retrieval-Augmented Generation (mRAG) pipelines for vision-centric tasks (e.g. visual QA) introduces important privacy challenges. In particular, while mRAG provides a practical capability to connect private datasets to improve model performance, it risks the leakage of private information from these datasets during inference. In this paper, we perform an empirical study to analyze the privacy risks inherent in the mRAG pipeline observed through standard model prompting. Specifically, we implement a case study that attempts to infer the inclusion of a visual asset, e.g. image, in the mRAG, and if present leak the metadata, e.g. caption, related to it. Our findings highlight the need for privacy-preserving mechanisms and motivate future research on mRAG privacy.
♻ ☆ Holistic Explainable AI (H-XAI): Extending Transparency Beyond Developers in AI-Driven Decision Making
As AI systems increasingly mediate decisions in domains such as credit scoring and financial forecasting, their lack of transparency and bias raises critical concerns for fairness and public trust. Existing explainable AI (XAI) approaches largely serve developers, focusing on model justification rather than the needs of affected users or regulators. We introduce Holistic eXplainable AI (H-XAI), a framework that integrates causality-based rating methods with post-hoc explanation techniques to support transparent, stakeholder-aligned evaluation of AI systems deployed in online decision contexts. H-XAI treats explanation as an interactive, hypothesis-driven process, allowing users, auditors, and organizations to ask questions, test hypotheses, and compare model behavior against automatically generated random and biased baselines. By combining global and instance-level explanations, H-XAI helps communicate model bias and instability that shape everyday digital decisions. Through case studies in credit risk assessment and stock price prediction, we show how H-XAI extends explainability beyond developers toward responsible and inclusive AI practices that strengthen accountability in sociotechnical systems.
♻ ☆ SoundCompass: Navigating Target Sound Extraction With Effective Directional Clue Integration In Complex Acoustic Scenes ICASSP 2026
Recent advances in target sound extraction (TSE) utilize directional clues derived from direction of arrival (DoA), which represent an inherent spatial property of sound available in any acoustic scene. However, previous DoA-based methods rely on hand-crafted features or discrete encodings, which lose fine-grained spatial information and limit adaptability. We propose SoundCompass, an effective directional clue integration framework centered on a Spectral Pairwise INteraction (SPIN) module that captures cross-channel spatial correlations in the complex spectrogram domain to preserve full spatial information in multichannel signals. The input feature expressed in terms of spatial correlations is fused with a DoA clue represented as spherical harmonics (SH) encoding. The fusion is carried out across overlapping frequency subbands, inheriting the benefits reported in the previous band-split architectures. We also incorporate the iterative refinement strategy, chain-of-inference (CoI), in the TSE framework, which recursively fuses DoA with sound event activation estimated from the previous inference stage. Experiments demonstrate that SoundCompass, combining SPIN, SH embedding, and CoI, robustly extracts target sources across diverse signal classes and spatial configurations.
comment: 5 pages, 4 figures, accepted to ICASSP 2026
♻ ☆ Temporal Lifting as Latent-Space Regularization for Continuous-Time Flow Models in AI Systems
We present a latent-space formulation of adaptive temporal lifting for continuous-time dynamical systems. The method introduces a smooth monotone mapping $t \mapsto τ(t)$ that regularizes near-singular behavior of the underlying flow while preserving its conservation laws. In the lifted coordinate, trajectories such as those of the incompressible Navier-Stokes equations on the torus $\mathbb{T}^3$ become globally smooth. From the standpoint of machine-learning dynamics, temporal lifting acts as a continuous-time normalization operator that can stabilize physics-informed neural networks and other latent-flow architectures used in AI systems. The framework links analytic regularity theory with representation-learning methods for stiff or turbulent processes.
comment: 7 pages, 1 figure, 1 table, 1 algorithm
♻ ☆ Reasoning-Aware Proxy Reward Model using Process Mining
Recent advances in sparse reward policy gradient methods have enabled effective reinforcement learning (RL) for language models post-training. However, for reasoning tasks such as mathematical problem solving, binarized outcome rewards provide limited feedback on intermediate reasoning steps. While some studies have attempted to address this issue by estimating overall reasoning quality, it remains unclear whether these rewards are reliable proxies for the quality of stepwise reasoning. In this study, we consider reasoning as a structured process and propose \textbf{TACReward}, the reward model that can be seamlessly integrated into sparse reward policy gradient methods without additional human annotation costs or architectural modifications. TACReward aggregates stepwise structural deviations between teacher and policy reasoning using process mining techniques, producing a scalar output reward range of $[0, 1]$ to indicate reasoning quality. Experiments on multiple mathematical reasoning benchmarks demonstrate that integrating the TACReward into sparse reward frameworks encourages the policy model to improve the structural quality of reasoning. Consequently, this leads to consistent performance improvements over existing sparse reward frameworks. Our code and model are publicly available at \href{https://github.com/Thrillcrazyer/TACReward}{GitHub} and \href{https://huggingface.co/Thrillcrazyer/TACReward7B}{HuggingFace}
♻ ☆ BootSeer: Analyzing and Mitigating Initialization Bottlenecks in Large-Scale LLM Training
Large Language Models (LLMs) have become a cornerstone of modern AI, driving breakthroughs in natural language processing and expanding into multimodal jobs involving images, audio, and video. As with most computational software, it is important to distinguish between ordinary runtime performance and startup overhead. Prior research has focused on runtime performance: improving training efficiency and stability. This work focuses instead on the increasingly critical issue of startup overhead in training: the delay before training jobs begin execution. Startup overhead is particularly important in large, industrial-scale LLMs, where failures occur more frequently and multiple teams operate in iterative update-debug cycles. In one of our training clusters, more than 3.5% of GPU time is wasted due to startup overhead alone. In this work, we present the first in-depth characterization of LLM training startup overhead based on real production data. We analyze the components of startup cost, quantify its direct impact, and examine how it scales with job size. These insights motivate the design of Bootseer, a system-level optimization framework that addresses three primary startup bottlenecks: (a) container image loading, (b) runtime dependency installation, and (c) model checkpoint resumption. To mitigate these bottlenecks, Bootseer introduces three techniques: (a) hot block record-and-prefetch, (b) dependency snapshotting, and (c) striped HDFS-FUSE. Bootseer has been deployed in a production environment and evaluated on real LLM training workloads, demonstrating a 50% reduction in startup overhead.
comment: 18 pages, 14 figures
♻ ☆ $R^2$-CoD: Understanding Text-Graph Complementarity in Relational Reasoning via Knowledge Co-Distillation
Relational reasoning lies at the core of many NLP tasks, drawing on complementary signals from text and graphs. While prior research has investigated how to leverage this dual complementarity, a detailed and systematic understanding of text-graph interplay and its effect on hybrid models remains underexplored. We take an analysis-driven approach to investigate text-graph representation complementarity via a unified architecture that supports knowledge co-distillation (CoD). We explore five tasks involving relational reasoning that differ in how text and graph structures encode the information needed to solve that task. By tracking how these dual representations evolve during training, we uncover interpretable patterns of alignment and divergence, and provide insights into when and why their integration is beneficial.
♻ ☆ Can We Trust LLM Detectors?
The rapid adoption of LLMs has increased the need for reliable AI text detection, yet existing detectors often fail outside controlled benchmarks. We systematically evaluate 2 dominant paradigms (training-free and supervised) and show that both are brittle under distribution shift, unseen generators, and simple stylistic perturbations. To address these limitations, we propose a supervised contrastive learning (SCL) framework that learns discriminative style embeddings. Experiments show that while supervised detectors excel in-domain, they degrade sharply out-of-domain, and training-free methods remain highly sensitive to proxy choice. Overall, our results expose fundamental challenges in building domain-agnostic detectors. Our code is available at: https://github.com/HARSHITJAIS14/DetectAI
♻ ☆ Watermark-based Attribution of AI-Generated Content ICLR 2026
Several companies have deployed watermark-based detection to identify AI-generated content. However, attribution--the ability to trace back to the user of a generative AI (GenAI) service who created a given AI-generated content--remains largely unexplored despite its growing importance. In this work, we aim to bridge this gap by conducting the first systematic study on watermark-based, user-level attribution of AI-generated content. Our key idea is to assign a unique watermark to each user of the GenAI service and embed this watermark into the AI-generated content created by that user. Attribution is then performed by identifying the user whose watermark best matches the one extracted from the given content. This approach, however, faces a key challenge: How should watermarks be selected for users to maximize attribution performance? To address the challenge, we first theoretically derive lower bounds on detection and attribution performance through rigorous probabilistic analysis for any given set of user watermarks. Then, we select watermarks for users to maximize these lower bounds, thereby optimizing detection and attribution performance. Our theoretical and empirical results show that watermark-based attribution inherits both the accuracy and (non-)robustness properties of the underlying watermark. Specifically, attribution remains highly accurate when the watermarked AI-generated content is either not post-processed or subjected to common post-processing such as JPEG compression, as well as black-box adversarial post-processing with limited query budgets.
comment: Accepted by ICLR 2026
♻ ☆ 1-2-3 Check: Enhancing Contextual Privacy in LLM via Multi-Agent Reasoning
Addressing contextual privacy concerns remains challenging in interactive settings where large language models (LLMs) process information from multiple sources (e.g., summarizing meetings with private and public information). We introduce a multi-agent framework that decomposes privacy reasoning into specialized subtasks (extraction, classification), reducing the information load on any single agent while enabling iterative validation and more reliable adherence to contextual privacy norms. To understand how privacy errors emerge and propagate, we conduct a systematic ablation over information-flow topologies, revealing when and why upstream detection mistakes cascade into downstream leakage. Experiments on the ConfAIde and PrivacyLens benchmark with several open-source and closed-sourced LLMs demonstrate that our best multi-agent configuration substantially reduces private information leakage (\textbf{18\%} on ConfAIde and \textbf{19\%} on PrivacyLens with GPT-4o) while preserving the fidelity of public content, outperforming single-agent baselines. These results highlight the promise of principled information-flow design in multi-agent systems for contextual privacy with LLMs.
comment: Accepted at the International Association for AI Safety and Ethics AI (IASEAI) 2026
♻ ☆ Panoramic Distortion-Aware Tokenization for Person Detection and Localization in Overhead Fisheye Images
Person detection in overhead fisheye images is challenging due to person rotation and small persons. Prior work has mainly addressed person rotation, leaving the small-person problem underexplored. We remap fisheye images to equirectangular panoramas to handle rotation and exploit panoramic geometry to handle small persons more effectively. Conventional detection methods tend to favor larger persons because they dominate the attention maps, causing smaller persons to be missed. In hemispherical equirectangular panoramas, we find that apparent person height decreases approximately linearly with the vertical angle near the top of the image. Using this finding, we introduce panoramic distortion-aware tokenization to enhance the detection of small persons. This tokenization procedure divides panoramic features using self-similar figures that enable the determination of optimal divisions without gaps, and we leverage the maximum significance values in each tile of the token groups to preserve the significance areas of smaller persons. We propose a transformer-based person detection and localization method that combines panoramic-image remapping and the tokenization procedure. Extensive experiments demonstrated that our method outperforms conventional methods on large-scale datasets.
♻ ☆ Cluster Aggregated GAN (CAG): A Cluster-Based Hybrid Model for Appliance Pattern Generation
Synthetic appliance data are essential for developing non-intrusive load monitoring algorithms and enabling privacy preserving energy research, yet the scarcity of labeled datasets remains a significant barrier. Recent GAN-based methods have demonstrated the feasibility of synthesizing load patterns, but most existing approaches treat all devices uniformly within a single model, neglecting the behavioral differences between intermittent and continuous appliances and resulting in unstable training and limited output fidelity. To address these limitations, we propose the Cluster Aggregated GAN framework, a hybrid generative approach that routes each appliance to a specialized branch based on its behavioral characteristics. For intermittent appliances, a clustering module groups similar activation patterns and allocates dedicated generators for each cluster, ensuring that both common and rare operational modes receive adequate modeling capacity. Continuous appliances follow a separate branch that employs an LSTM-based generator to capture gradual temporal evolution while maintaining training stability through sequence compression. Extensive experiments on the UVIC smart plug dataset demonstrate that the proposed framework consistently outperforms baseline methods across metrics measuring realism, diversity, and training stability, and that integrating clustering as an active generative component substantially improves both interpretability and scalability. These findings establish the proposed framework as an effective approach for synthetic load generation in non-intrusive load monitoring research.
comment: 18pages, 5Figues
♻ ☆ Adaptive Test-Time Training for Predicting Need for Invasive Mechanical Ventilation in Multi-Center Cohorts ICLR 2026
Accurate prediction of the need for invasive mechanical ventilation (IMV) in intensive care units (ICUs) patients is crucial for timely interventions and resource allocation. However, variability in patient populations, clinical practices, and electronic health record (EHR) systems across institutions introduces domain shifts that degrade the generalization performance of predictive models during deployment. Test-Time Training (TTT) has emerged as a promising approach to mitigate such shifts by adapting models dynamically during inference without requiring labeled target-domain data. In this work, we introduce Adaptive Test-Time Training (AdaTTT), an enhanced TTT framework tailored for EHR-based IMV prediction in ICU settings. We begin by deriving information-theoretic bounds on the test-time prediction error and demonstrate that it is constrained by the uncertainty between the main and auxiliary tasks. To enhance their alignment, we introduce a self-supervised learning framework with pretext tasks: reconstruction and masked feature modeling optimized through a dynamic masking strategy that emphasizes features critical to the main task. Additionally, to improve robustness against domain shifts, we incorporate prototype learning and employ Partial Optimal Transport (POT) for flexible, partial feature alignment while maintaining clinically meaningful patient representations. Experiments across multi-center ICU cohorts demonstrate competitive classification performance on different test-time adaptation benchmarks.
comment: ICLR 2026
♻ ☆ Orca: Browsing at Scale Through User-Driven and AI-Facilitated Orchestration Across Malleable Webpages
Web-based activities span multiple webpages. However, conventional browsers with stacks of tabs cannot support operating and synthesizing large volumes of information across pages. While recent AI systems enable fully automated web browsing and information synthesis, they often diminish user agency and hinder contextual understanding. We explore how AI could instead augment user interactions with content across webpages and mitigate cognitive and manual efforts. Through literature on information tasks and web browsing challenges, and an iterative design process, we present novel interactions with our prototype web browser, Orca. Leveraging AI, Orca supports user-driven exploration, operation, organization, and synthesis of web content at scale. To enable browsing at scale, webpages are treated as malleable materials that humans and AI can collaboratively manipulate and compose into a malleable, dynamic, and browser-level workspace. Our evaluation revealed an increased "appetite" for information foraging, enhanced control, and more flexible sensemaking across a broader web information landscape.
♻ ☆ Mask-GCG: Are All Tokens in Adversarial Suffixes Necessary for Jailbreak Attacks? ICASSP 2026
Jailbreak attacks on Large Language Models (LLMs) have demonstrated various successful methods whereby attackers manipulate models into generating harmful responses that they are designed to avoid. Among these, Greedy Coordinate Gradient (GCG) has emerged as a general and effective approach that optimizes the tokens in a suffix to generate jailbreakable prompts. While several improved variants of GCG have been proposed, they all rely on fixed-length suffixes. However, the potential redundancy within these suffixes remains unexplored. In this work, we propose Mask-GCG, a plug-and-play method that employs learnable token masking to identify impactful tokens within the suffix. Our approach increases the update probability for tokens at high-impact positions while pruning those at low-impact positions. This pruning not only reduces redundancy but also decreases the size of the gradient space, thereby lowering computational overhead and shortening the time required to achieve successful attacks compared to GCG. We evaluate Mask-GCG by applying it to the original GCG and several improved variants. Experimental results show that most tokens in the suffix contribute significantly to attack success, and pruning a minority of low-impact tokens does not affect the loss values or compromise the attack success rate (ASR), thereby revealing token redundancy in LLM prompts. Our findings provide insights for developing efficient and interpretable LLMs from the perspective of jailbreak attacks.
comment: Accepted to ICASSP 2026
♻ ☆ COMMUNITYNOTES: A Dataset for Exploring the Helpfulness of Fact-Checking Explanations EACL 2026
Fact-checking on major platforms, such as X, Meta, and TikTok, is shifting from expert-driven verification to a community-based setup, where users contribute explanatory notes to clarify why a post might be misleading. An important challenge here is determining whether an explanation is helpful for understanding real-world claims and the reasons why, which remains largely underexplored in prior research. In practice, most community notes remain unpublished due to slow community annotation, and the reasons for helpfulness lack clear definitions. To bridge these gaps, we introduce the task of predicting both the helpfulness of explanatory notes and the reason for this. We present COMMUNITYNOTES, a large-scale multilingual dataset of 104k posts with user-provided notes and helpfulness labels. We further propose a framework that automatically generates and improves reason definitions via automatic prompt optimization, and integrate them into prediction. Our experiments show that the optimized definitions can improve both helpfulness and reason prediction. Finally, we show that the helpfulness information is beneficial for existing fact-checking systems.
comment: EACL 2026 Findings
♻ ☆ ShareChat: A Dataset of Chatbot Conversations in the Wild
While academic research typically treats Large Language Models (LLM) as generic text generators, they are distinct commercial products with unique interfaces and capabilities that fundamentally shape user behavior. Current datasets obscure this reality by collecting text-only data through uniform interfaces that fail to capture authentic chatbot usage. To address this limitation, we present ShareChat, a large-scale corpus of 142,808 conversations (660,293 turns) sourced directly from publicly shared URLs on ChatGPT, Perplexity, Grok, Gemini, and Claude. ShareChat distinguishes itself by preserving native platform affordances, such as citations and thinking traces, across a diverse collection covering 101 languages and the period from April 2023 to October 2025. Furthermore, ShareChat offers substantially longer context windows and greater interaction depth than prior datasets. To illustrate the dataset's breadth, we present three case studies: a completeness analysis of intent satisfaction, a citation study of model grounding, and a temporal analysis of engagement rhythms. This work provides the community with a vital and timely resource for understanding authentic user-LLM chatbot interactions in the wild. The dataset is publicly available via Hugging Face.
♻ ☆ Spatiotemporal Semantic V2X Framework for Cooperative Collision Prediction IEEE
Intelligent Transportation Systems (ITS) demand real-time collision prediction to ensure road safety and reduce accident severity. Conventional approaches rely on transmitting raw video or high-dimensional sensory data from roadside units (RSUs) to vehicles, which is impractical under vehicular communication bandwidth and latency constraints. In this work, we propose a semantic V2X framework in which RSU-mounted cameras generate spatiotemporal semantic embeddings of future frames using the Video Joint Embedding Predictive Architecture (V-JEPA). To evaluate the system, we construct a digital twin of an urban traffic environment enabling the generation of d verse traffic scenarios with both safe and collision events. These embeddings of the future frame, extracted from V-JEPA, capture task-relevant traffic dynamics and are transmitted via V2X links to vehicles, where a lightweight attentive probe and classifier decode them to predict imminent collisions. By transmitting only semantic embeddings instead of raw frames, the proposed system significantly reduces communication overhead while maintaining predictive accuracy. Experimental results demonstrate that the framework with an appropriate processing method achieves a 10% F1-score improvement for collision prediction while reducing transmission requirements by four orders of magnitude compared to raw video. This validates the potential of semantic V2X communication to enable cooperative, real-time collision prediction in ITS.
comment: 6 pages 5 figures, accepted to IEEE ICC 2026
♻ ☆ Geometric Scaling of Bayesian Inference in LLMs
Recent work has shown that small transformers trained in controlled "wind-tunnel'' settings can implement exact Bayesian inference, and that their training dynamics produce a geometric substrate -- low-dimensional value manifolds and progressively orthogonal keys -- that encodes posterior structure. We investigate whether this geometric signature persists in production-grade language models. Across Pythia, Phi-2, Llama-3, and Mistral families, we find that last-layer value representations organize along a single dominant axis whose position strongly correlates with predictive entropy, and that domain-restricted prompts collapse this structure into the same low-dimensional manifolds observed in synthetic settings. To probe the role of this geometry, we perform targeted interventions on the entropy-aligned axis of Pythia-410M during in-context learning. Removing or perturbing this axis selectively disrupts the local uncertainty geometry, whereas matched random-axis interventions leave it intact. However, these single-layer manipulations do not produce proportionally specific degradation in Bayesian-like behavior, indicating that the geometry is a privileged readout of uncertainty rather than a singular computational bottleneck. Taken together, our results show that modern language models preserve the geometric substrate that enables Bayesian inference in wind tunnels, and organize their approximate Bayesian updates along this substrate.
comment: Added domain restriction confound caveat. Threshold justification anchored to wind-tunnel baselines. Strengthened content-based routing connection to Mamba. Improved trilogy framing in conclusion (which/how/that structure)
♻ ☆ The Bayesian Geometry of Transformer Attention
Transformers often appear to perform Bayesian reasoning in context, but verifying this rigorously has been impossible: natural data lack analytic posteriors, and large models conflate reasoning with memorization. We address this by constructing \emph{Bayesian wind tunnels} -- controlled environments where the true posterior is known in closed form and memorization is provably impossible. In these settings, small transformers reproduce Bayesian posteriors with $10^{-3}$-$10^{-4}$ bit accuracy, while capacity-matched MLPs fail by orders of magnitude, establishing a clear architectural separation. Across two tasks -- bijection elimination and Hidden Markov Model (HMM) state tracking -- we find that transformers implement Bayesian inference through a consistent geometric mechanism: residual streams serve as the belief substrate, feed-forward networks perform the posterior update, and attention provides content-addressable routing. Geometric diagnostics reveal orthogonal key bases, progressive query-key alignment, and a low-dimensional value manifold parameterized by posterior entropy. During training this manifold unfurls while attention patterns remain stable, a \emph{frame-precision dissociation} predicted by recent gradient analyses. Taken together, these results demonstrate that hierarchical attention realizes Bayesian inference by geometric design, explaining both the necessity of attention and the failure of flat architectures. Bayesian wind tunnels provide a foundation for mechanistically connecting small, verifiable systems to reasoning phenomena observed in large language models.
comment: Added inference primitives taxonomy (accumulation, transport, binding). New associative recall task. Complete Mamba/LSTM comparison with multi-seed results. KL/TVD verification table. Mamba 5-cluster geometry analysis. Layer/head ablation figures. Content-based routing as unifying principle
♻ ☆ Gradient Dynamics of Attention: How Cross-Entropy Sculpts Bayesian Manifolds
Transformers empirically perform precise probabilistic reasoning in carefully constructed ``Bayesian wind tunnels'' and in large-scale language models, yet the mechanisms by which gradient-based learning creates the required internal geometry remain opaque. We provide a complete first-order analysis of how cross-entropy training reshapes attention scores and value vectors in a transformer attention head. Our core result is an \emph{advantage-based routing law} for attention scores, \[ \frac{\partial L}{\partial s_{ij}} = α_{ij}\bigl(b_{ij}-\mathbb{E}_{α_i}[b]\bigr), \qquad b_{ij} := u_i^\top v_j, \] coupled with a \emph{responsibility-weighted update} for values, \[ Δv_j = -η\sum_i α_{ij} u_i, \] where $u_i$ is the upstream gradient at position $i$ and $α_{ij}$ are attention weights. These equations induce a positive feedback loop in which routing and content specialize together: queries route more strongly to values that are above-average for their error signal, and those values are pulled toward the queries that use them. We show that this coupled specialization behaves like a two-timescale EM procedure: attention weights implement an E-step (soft responsibilities), while values implement an M-step (responsibility-weighted prototype updates), with queries and keys adjusting the hypothesis frame. Through controlled simulations, including a sticky Markov-chain task where we compare a closed-form EM-style update to standard SGD, we demonstrate that the same gradient dynamics that minimize cross-entropy also sculpt the low-dimensional manifolds identified in our companion work as implementing Bayesian inference. This yields a unified picture in which optimization (gradient flow) gives rise to geometry (Bayesian manifolds), which in turn supports function (in-context probabilistic reasoning).
comment: Added abstract framework for content-based value routing with formal definition. LSTM counterexample explaining why gates is not equal to content-based routing. Multi-seed EM vs SGD experiments. Lemma 2 framing connecting to Paper I's primitives
♻ ☆ SimBench: A Framework for Evaluating and Diagnosing LLM-Based Digital-Twin Generation for Multi-Physics Simulation
We introduce SimBench, a benchmark designed to evaluate the proficiency of simulator-oriented LLMs (S-LLMs) in generating digital twins (DTs) that can be used in simulators for virtual testing. Given a collection of S-LLMs, this benchmark ranks them according to their ability to produce high-quality DTs. We demonstrate this by comparing over 33 open- and closed-source S-LLMs. Using multi-turn interactions, SimBench employs an LLM-as-a-judge (J-LLM) that leverages both predefined rules and human-in-the-loop guidance to assign scores for the DTs generated by the S-LLM, thus providing a consistent and expert-inspired evaluation protocol. The J-LLM is specific to a simulator, and herein the proposed benchmarking approach is demonstrated in conjunction with the open-sourceChrono multi-physics simulator. Chrono provided the backdrop used to assess an S-LLM in relation to the latter's ability to create digital twins for multibody dynamics, finite element analysis, vehicle dynamics, robotic dynamics, and sensor simulations. The proposed benchmarking principle is broadly applicable and enables the assessment of an S-LLM's ability to generate digital twins for other simulation packages, e.g., ANSYS, ABAQUS, OpenFOAM, StarCCM+, IsaacSim, and pyBullet.
♻ ☆ Cognition Envelopes for Bounded AI Reasoning in Autonomous UAS Operations
Cyber-physical systems increasingly rely on Foundational Models such as Large Language Models (LLMs) and Vision-Language Models (VLMs) to increase autonomy through enhanced perception, inference, and planning. However, these models also introduce new types of errors, such as hallucinations, overgeneralizations, and context misalignments, resulting in incorrect and flawed decisions. To address this, we introduce the concept of Cognition Envelopes, designed to establish reasoning boundaries that constrain AI-generated decisions while complementing the use of meta-cognition and traditional safety envelopes. As with safety envelopes, Cognition Envelopes require practical guidelines and systematic processes for their definition, validation, and assurance.
comment: 12 pages, 9 figures
♻ ☆ Randomly Wrong Signals: Bayesian Auction Design with ML Predictions
We study auction design when a seller relies on machine-learning predictions of bidders' valuations that may be unreliable. Motivated by modern ML systems that are often accurate but occasionally fail in a way that is essentially uninformative, we model predictions as randomly wrong: with high probability the signal equals the bidder's true value, and otherwise it is a hallucination independent of the value. We analyze revenue-maximizing auctions when the seller publicly reveals these signals. A central difficulty is that the resulting posterior belief combines a continuous distribution with a point mass at the signal, so standard Myerson techniques do not directly apply. We provide a tractable characterization of the optimal signal-revealing auction by providing a closed-form characterization of the appropriate ironed virtual values. This characterization yields simple and intuitive implications. With a single bidder, the optimal mechanism reduces to a posted-price policy with a small number of regimes: the seller ignores low signals, follows intermediate signals, caps moderately high signals, and may again follow very high signals. With multiple bidders, we show that a simple eager second-price auction with signal-dependent reserve prices performs nearly optimally in numerical experiments and substantially outperforms natural benchmarks that either ignore the signal or treat it as fully reliable.
♻ ☆ Learning Linearity in Audio Consistency Autoencoders via Implicit Regularization
Audio autoencoders learn useful, compressed audio representations, but their non-linear latent spaces prevent intuitive algebraic manipulation such as mixing or scaling. We introduce a simple training methodology to induce linearity in a high-compression Consistency Autoencoder (CAE) by using data augmentation, thereby inducing homogeneity (equivariance to scalar gain) and additivity (the decoder preserves addition) without altering the model's architecture or loss function. When trained with our method, the CAE exhibits linear behavior in both the encoder and decoder while preserving reconstruction fidelity. We test the practical utility of our learned space on music source composition and separation via simple latent arithmetic. This work presents a straightforward technique for constructing structured latent spaces, enabling more intuitive and efficient audio processing.
♻ ☆ In-context Language Learning for Endangered Languages in Speech Recognition
With approximately 7,000 languages spoken worldwide, current large language models (LLMs) support only a small subset. Prior research indicates LLMs can learn new languages for certain tasks without supervised data. We extend this investigation to speech recognition, investigating whether LLMs can learn unseen, low-resource languages through in-context learning (ICL). With experiments on four diverse endangered languages that LLMs have not been trained on, we find that providing more relevant text samples enhances performance in both language modelling and Automatic Speech Recognition (ASR) tasks. Furthermore, we show that the probability-based approach outperforms the traditional instruction-based approach in language learning. Lastly, we show ICL enables LLMs to achieve ASR performance that is comparable to or even surpasses dedicated language models trained specifically for these languages, while preserving the original capabilities of the LLMs. Our code is publicly available.
comment: Interspeech2025
♻ ☆ Epistemic Constitutionalism Or: how to avoid coherence bias
Large language models increasingly function as artificial reasoners: they evaluate arguments, assign credibility, and express confidence. Yet their belief-forming behavior is governed by implicit, uninspected epistemic policies. This paper argues for an epistemic constitution for AI: explicit, contestable meta-norms that regulate how systems form and express beliefs. Source attribution bias provides the motivating case: I show that frontier models enforce identity-stance coherence, penalizing arguments attributed to sources whose expected ideological position conflicts with the argument's content. When models detect systematic testing, these effects collapse, revealing that systems treat source-sensitivity as bias to suppress rather than as a capacity to execute well. I distinguish two constitutional approaches: the Platonic, which mandates formal correctness and default source-independence from a privileged standpoint, and the Liberal, which refuses such privilege, specifying procedural norms that protect conditions for collective inquiry while allowing principled source-attending grounded in epistemic vigilance. I argue for the Liberal approach, sketch a constitutional core of eight principles and four orientations, and propose that AI epistemic governance requires the same explicit, contestable structure we now expect for AI ethics.
comment: 27 pages, 7 tables. Data: github.com/MicheleLoi/source-attribution-bias-data and github.com/MicheleLoi/source-attribution-bias-swiss-replication. Complete AI-assisted writing documentation: github.com/MicheleLoi/epistemic-constitutionalism-paper
♻ ☆ NoWag: A Unified Framework for Shape Preserving Compression of Large Language Models
Large language models (LLMs) exhibit remarkable performance across various natural language processing tasks but suffer from immense computational and memory demands, limiting their deployment in resource-constrained environments. To address this challenge, we propose NoWag (Normalized Weight and Activation Guided Compression), a unified framework for one-shot shape preserving compression algorithms. We apply NoWag to compress Llama-2 (7B, 13B, 70B) and Llama-3 (8B, 70B) models using two popular shape-preserving techniques: vector quantization (NoWag-VQ) and unstructured/semi-structured pruning (NoWag-P). Our results show that NoWag-VQ significantly outperforms state-of-the-art one-shot vector quantization methods, while NoWag-P performs competitively against leading pruning techniques. These findings highlight underlying commonalities between these compression paradigms and suggest promising directions for future research. Our code is available at https://github.com/LawrenceRLiu/NoWag
♻ ☆ LAPS: A Length-Aware-Prefill LLM Serving System
LAPS identifies and disaggregates requests with different prompt lengths in LLM serving to reduce TTFT latency. While recent systems have decoupled the prefill and decode stages to improve throughput, they still rely on unified scheduling policies that fail to adapt to heterogeneous workload characteristics. We observe that prompt-length variations lead to distinct performance bottlenecks, motivating an adaptive scheduling strategy. LAPS disaggregates multi-turn long-prefill requests from short-prefill ones and introduces a length-aware smart batching mechanism for short-prefill workloads. It adopts a dual-queue design that supports temporal disaggregation on a single prefill instance or spatial disaggregation across multiple instances. For short-prefill batches, a batch waiting window and CUDA Graph-based clustering mitigate interference from heterogeneous computation, reducing batching delay and lowering average latency. In real multi-turn workloads, LAPS reduces prefill latency by over 30\% compared to vanilla SGLang under prefill-decode disaggregation, and further decreases SLO violations by 28\% in multi-instance deployments with vanilla data-parallel configuration. Compared to the SGLang router with load balancing, it further lowers SLO violations by 12\% in multi-GPU settings. Under high concurrency and mixed-request scenarios, LAPS improves request throughput by 35\% serving Qwen2.5-32B model for prefill instance, demonstrating its effectiveness in optimizing heterogeneous LLM serving workloads.
comment: 12 pages
♻ ☆ An Actionable Framework for Assessing Bias and Fairness in Large Language Model Use Cases
Bias and fairness risks in Large Language Models (LLMs) vary substantially across deployment contexts, yet existing approaches lack systematic guidance for selecting appropriate evaluation metrics. We present a decision framework that maps LLM use cases, characterized by a model and population of prompts, to relevant bias and fairness metrics based on task type, whether prompts contain protected attribute mentions, and stakeholder priorities. Our framework addresses toxicity, stereotyping, counterfactual unfairness, and allocational harms, and introduces novel metrics based on stereotype classifiers and counterfactual adaptations of text similarity measures. All metrics require only LLM outputs for computation, simplifying implementation while avoiding embedding-based approaches that often correlate poorly with downstream harms. We provide an open-source Python library, LangFair, for practical adoption. Extensive experiments demonstrate that fairness risks cannot be reliably assessed from benchmark performance alone: results on one prompt dataset likely overstate or understate risks for another, underscoring that fairness evaluation must be grounded in the specific deployment context.
comment: LangFair repository: https://github.com/cvs-health/langfair
Computation and Language 141
☆ Evaluation of Oncotimia: An LLM based system for supporting tumour boards
Multidisciplinary tumour boards (MDTBs) play a central role in oncology decision-making but require manual processes and structuring large volumes of heterogeneous clinical information, resulting in a substantial documentation burden. In this work, we present ONCOTIMIA, a modular and secure clinical tool designed to integrate generative artificial intelligence (GenAI) into oncology workflows and evaluate its application to the automatic completion of lung cancer tumour board forms using large language models (LLMs). The system combines a multi-layer data lake, hybrid relational and vector storage, retrieval-augmented generation (RAG) and a rule-driven adaptive form model to transform unstructured clinical documentation into structured and standardised tumour board records. We assess the performance of six LLMs deployed through AWS Bedrock on ten lung cancer cases, measuring both completion form accuracy and end-to-end latency. The results demonstrate high performance across models, with the best performing configuration achieving an 80% of correct field completion and clinically acceptable response time for most LLMs. Larger and more recent models exhibit best accuracies without incurring prohibitive latency. These findings provide empirical evidence that LLM- assisted autocompletion form is technically feasible and operationally viable in multidisciplinary lung cancer workflows and support its potential to significantly reduce documentation burden while preserving data quality.
comment: 9 pages, 2 figures
☆ Post-LayerNorm Is Back: Stable, ExpressivE, and Deep
Large language model (LLM) scaling is hitting a wall. Widening models yields diminishing returns, and extending context length does not improve fundamental expressivity. In contrast, depth scaling offers theoretically superior expressivity, yet current Transformer architectures struggle to train reliably at extreme depths. We revisit the Post-LayerNorm (Post-LN) formulation, whose instability at scale caused its replacement by Pre-LN in modern LLMs. We show that the central failure mode of Post-LN arises from the ResNet-style residual pathway, which introduces gradient vanishing in deep networks. We present Keel, a Post-LN Transformer that replaces this residual path with a Highway-style connection. This modification preserves the gradient flow through the residual branch, preventing signal vanishing from the top layers to the bottom. Unlike prior methods, Keel enables stable training at extreme depths without requiring specialized initialization or complex optimization tricks. Keel trains robustly at depths exceeding 1000 layers and consistently improves perplexity and depth-scaling characteristics over Pre-LN. These findings indicate that Post-LN, when paired with a Highway-style connection, provides a simple and effective foundation for building deeply scalable LLMs, opening the possibility for future infinite-depth architectures.
☆ Reflective Translation: Improving Low-Resource Machine Translation via Structured Self-Reflection NeurIPS 2025
Low-resource languages such as isiZulu and isiXhosa face persistent challenges in machine translation due to limited parallel data and linguistic resources. Recent advances in large language models suggest that self-reflection, prompting a model to critique and revise its own outputs, can improve reasoning quality and factual consistency. Building on this idea, this paper introduces Reflective Translation, a prompt-based framework in which a model generates an initial translation, produces a structured self-critique, and then uses this reflection to generate a refined translation. The approach is evaluated on English-isiZulu and English-isiXhosa translation using OPUS-100 and NTREX-African, across multiple prompting strategies and confidence thresholds. Results show consistent improvements in both BLEU and COMET scores between first- and second-pass translations, with average gains of up to +0.22 BLEU and +0.18 COMET. Statistical significance testing using paired nonparametric tests confirms that these improvements are robust. The proposed method is model-agnostic, requires no fine-tuning, and introduces a reflection-augmented dataset that can support future supervised or analysis-driven work. These findings demonstrate that structured self-reflection is a practical and effective mechanism for improving translation quality in low-resource settings.
comment: 12 pages, 3 figures, 6 tables. Accepted to the NeurIPS 2025 Workshop on Multilingual Representation Learning (Mexico City) and the AAAI 2025 Workshop on Language Models for Under-Resourced Communities (LM4UC). Code and data available at: https://github.com/Nickcheng123/reflective-translation-mt
☆ Identifying and Transferring Reasoning-Critical Neurons: Improving LLM Inference Reliability via Activation Steering
Despite the strong reasoning capabilities of recent large language models (LLMs), achieving reliable performance on challenging tasks often requires post-training or computationally expensive sampling strategies, limiting their practical efficiency. In this work, we first show that a small subset of neurons in LLMs exhibits strong predictive correlations with reasoning correctness. Based on this observation, we propose AdaRAS (Adaptive Reasoning Activation Steering), a lightweight test-time framework that improves reasoning reliability by selectively intervening on neuron activations. AdaRAS identifies Reasoning-Critical Neurons (RCNs) via a polarity-aware mean-difference criterion and adaptively steers their activations during inference, enhancing incorrect reasoning traces while avoiding degradation on already-correct cases. Experiments on 10 mathematics and coding benchmarks demonstrate consistent improvements, including over 13% gains on AIME-24 and AIME-25. Moreover, AdaRAS exhibits strong transferability across datasets and scalability to stronger models, outperforming post-training methods without additional training or sampling cost.
☆ Neural Neural Scaling Laws
Neural scaling laws predict how language model performance improves with increased compute. While aggregate metrics like validation loss can follow smooth power-law curves, individual downstream tasks exhibit diverse scaling behaviors: some improve monotonically, others plateau, and some even degrade with scale. We argue that predicting downstream performance from validation perplexity suffers from two limitations: averaging token-level losses obscures signal, and no simple parametric family can capture the full spectrum of scaling behaviors. To address this, we propose Neural Neural Scaling Laws (NeuNeu), a neural network that frames scaling law prediction as time-series extrapolation. NeuNeu combines temporal context from observed accuracy trajectories with token-level validation losses, learning to predict future performance without assuming any bottleneck or functional form. Trained entirely on open-source model checkpoints from HuggingFace, NeuNeu achieves 2.04% mean absolute error in predicting model accuracy on 66 downstream tasks -- a 38% reduction compared to logistic scaling laws (3.29% MAE). Furthermore, NeuNeu generalizes zero-shot to unseen model families, parameter counts, and downstream tasks. Our work suggests that predicting downstream scaling laws directly from data outperforms parametric alternatives.
☆ When Iterative RAG Beats Ideal Evidence: A Diagnostic Study in Scientific Multi-hop Question Answering
Retrieval-Augmented Generation (RAG) extends large language models (LLMs) beyond parametric knowledge, yet it is unclear when iterative retrieval-reasoning loops meaningfully outperform static RAG, particularly in scientific domains with multi-hop reasoning, sparse domain knowledge, and heterogeneous evidence. We provide the first controlled, mechanism-level diagnostic study of whether synchronized iterative retrieval and reasoning can surpass an idealized static upper bound (Gold Context) RAG. We benchmark eleven state-of-the-art LLMs under three regimes: (i) No Context, measuring reliance on parametric memory; (ii) Gold Context, where all oracle evidence is supplied at once; and (iii) Iterative RAG, a training-free controller that alternates retrieval, hypothesis refinement, and evidence-aware stopping. Using the chemistry-focused ChemKGMultiHopQA dataset, we isolate questions requiring genuine retrieval and analyze behavior with diagnostics spanning retrieval coverage gaps, anchor-carry drop, query quality, composition fidelity, and control calibration. Across models, Iterative RAG consistently outperforms Gold Context, with gains up to 25.6 percentage points, especially for non-reasoning fine-tuned models. Staged retrieval reduces late-hop failures, mitigates context overload, and enables dynamic correction of early hypothesis drift, but remaining failure modes include incomplete hop coverage, distractor latch trajectories, early stopping miscalibration, and high composition failure rates even with perfect retrieval. Overall, staged retrieval is often more influential than the mere presence of ideal evidence; we provide practical guidance for deploying and diagnosing RAG systems in specialized scientific settings and a foundation for more reliable, controllable iterative retrieval-reasoning frameworks.
comment: 27 pages, 15 figures
☆ Zero-Shot Stance Detection in the Wild: Dynamic Target Generation and Multi-Target Adaptation
Current stance detection research typically relies on predicting stance based on given targets and text. However, in real-world social media scenarios, targets are neither predefined nor static but rather complex and dynamic. To address this challenge, we propose a novel task: zero-shot stance detection in the wild with Dynamic Target Generation and Multi-Target Adaptation (DGTA), which aims to automatically identify multiple target-stance pairs from text without prior target knowledge. We construct a Chinese social media stance detection dataset and design multi-dimensional evaluation metrics. We explore both integrated and two-stage fine-tuning strategies for large language models (LLMs) and evaluate various baseline models. Experimental results demonstrate that fine-tuned LLMs achieve superior performance on this task: the two-stage fine-tuned Qwen2.5-7B attains the highest comprehensive target recognition score of 66.99%, while the integrated fine-tuned DeepSeek-R1-Distill-Qwen-7B achieves a stance detection F1 score of 79.26%.
☆ LVLMs and Humans Ground Differently in Referential Communication
For generative AI agents to partner effectively with human users, the ability to accurately predict human intent is critical. But this ability to collaborate remains limited by a critical deficit: an inability to model common ground. Here, we present a referential communication experiment with a factorial design involving director-matcher pairs (human-human, human-AI, AI-human, and AI-AI) that interact with multiple turns in repeated rounds to match pictures of objects not associated with any obvious lexicalized labels. We release the online pipeline for data collection, the tools and analyses for accuracy, efficiency, and lexical overlap, and a corpus of 356 dialogues (89 pairs over 4 rounds each) that unmasks LVLMs' limitations in interactively resolving referring expressions, a crucial skill that underlies human language use.
comment: 24 pages, 16 figures, preprint
☆ Rethinking Discrete Speech Representation Tokens for Accent Generation
Discrete Speech Representation Tokens (DSRTs) have become a foundational component in speech generation. While prior work has extensively studied phonetic and speaker information in DSRTs, how accent information is encoded in DSRTs remains largely unexplored. In this paper, we present the first systematic investigation of accent information in DSRTs. We propose a unified evaluation framework that measures both accessibility of accent information via a novel Accent ABX task and recoverability via cross-accent Voice Conversion (VC) resynthesis. Using this framework, we analyse DSRTs derived from a variety of speech encoders. Our results reveal that accent information is substantially reduced when ASR supervision is used to fine-tune the encoder, but cannot be effectively disentangled from phonetic and speaker information through naive codebook size reduction. Based on these findings, we propose new content-only and content-accent DSRTs that significantly outperform existing designs in controllable accent generation. Our work highlights the importance of accent-aware evaluation and provides practical guidance for designing DSRTs for accent-controlled speech generation.
☆ Strong Reasoning Isn't Enough: Evaluating Evidence Elicitation in Interactive Diagnosis
Interactive medical consultation requires an agent to proactively elicit missing clinical evidence under uncertainty. Yet existing evaluations largely remain static or outcome-centric, neglecting the evidence-gathering process. In this work, we propose an interactive evaluation framework that explicitly models the consultation process using a simulated patient and a \rev{simulated reporter} grounded in atomic evidences. Based on this representation, we introduce Information Coverage Rate (ICR) to quantify how completely an agent uncovers necessary evidence during interaction. To support systematic study, we build EviMed, an evidence-based benchmark spanning diverse conditions from common complaints to rare diseases, and evaluate 10 models with varying reasoning abilities. We find that strong diagnostic reasoning does not guarantee effective information collection, and this insufficiency acts as a primary bottleneck limiting performance in interactive settings. To address this, we propose REFINE, a strategy that leverages diagnostic verification to guide the agent in proactively resolving uncertainties. Extensive experiments demonstrate that REFINE consistently outperforms baselines across diverse datasets and facilitates effective model collaboration, enabling smaller agents to achieve superior performance under strong reasoning supervision. Our code can be found at https://github.com/NanshineLoong/EID-Benchmark .
☆ TokenSeek: Memory Efficient Fine Tuning via Instance-Aware Token Ditching ICLR 2026
Fine tuning has been regarded as a de facto approach for adapting large language models (LLMs) to downstream tasks, but the high training memory consumption inherited from LLMs makes this process inefficient. Among existing memory efficient approaches, activation-related optimization has proven particularly effective, as activations consistently dominate overall memory consumption. Although prior arts offer various activation optimization strategies, their data-agnostic nature ultimately results in ineffective and unstable fine tuning. In this paper, we propose TokenSeek, a universal plugin solution for various transformer-based models through instance-aware token seeking and ditching, achieving significant fine-tuning memory savings (e.g., requiring only 14.8% of the memory on Llama3.2 1B) with on-par or even better performance. Furthermore, our interpretable token seeking process reveals the underlying reasons for its effectiveness, offering valuable insights for future research on token efficiency. Homepage: https://runjia.tech/iclr_tokenseek/
comment: ICLR 2026
☆ RvB: Automating AI System Hardening via Iterative Red-Blue Games
The dual offensive and defensive utility of Large Language Models (LLMs) highlights a critical gap in AI security: the lack of unified frameworks for dynamic, iterative adversarial adaptation hardening. To bridge this gap, we propose the Red Team vs. Blue Team (RvB) framework, formulated as a training-free, sequential, imperfect-information game. In this process, the Red Team exposes vulnerabilities, driving the Blue Team to learning effective solutions without parameter updates. We validate our framework across two challenging domains: dynamic code hardening against CVEs and guardrail optimization against jailbreaks. Our empirical results show that this interaction compels the Blue Team to learn fundamental defensive principles, leading to robust remediations that are not merely overfitted to specific exploits. RvB achieves Defense Success Rates of 90\% and 45\% across the respective tasks while maintaining near 0\% False Positive Rates, significantly surpassing baselines. This work establishes the iterative adversarial interaction framework as a practical paradigm that automates the continuous hardening of AI systems.
☆ Component-Level Lesioning of Language Models Reveals Clinically Aligned Aphasia Phenotypes
Large language models (LLMs) increasingly exhibit human-like linguistic behaviors and internal representations that they could serve as computational simulators of language cognition. We ask whether LLMs can be systematically manipulated to reproduce language-production impairments characteristic of aphasia following focal brain lesions. Such models could provide scalable proxies for testing rehabilitation hypotheses, and offer a controlled framework for probing the functional organization of language. We introduce a clinically grounded, component-level framework that simulates aphasia by selectively perturbing functional components in LLMs, and apply it to both modular Mixture-of-Experts models and dense Transformers using a unified intervention interface. Our pipeline (i) identifies subtype-linked components for Broca's and Wernicke's aphasia, (ii) interprets these components with linguistic probing tasks, and (iii) induces graded impairments by progressively perturbing the top-k subtype-linked components, evaluating outcomes with Western Aphasia Battery (WAB) subtests summarized by Aphasia Quotient (AQ). Across architectures and lesioning strategies, subtype-targeted perturbations yield more systematic, aphasia-like regressions than size-matched random perturbations, and MoE modularity supports more localized and interpretable phenotype-to-component mappings. These findings suggest that modular LLMs, combined with clinically informed component perturbations, provide a promising platform for simulating aphasic language production and studying how distinct language functions degrade under targeted disruptions.
☆ SynCABEL: Synthetic Contextualized Augmentation for Biomedical Entity Linking
We present SynCABEL (Synthetic Contextualized Augmentation for Biomedical Entity Linking), a framework that addresses a central bottleneck in supervised biomedical entity linking (BEL): the scarcity of expert-annotated training data. SynCABEL leverages large language models to generate context-rich synthetic training examples for all candidate concepts in a target knowledge base, providing broad supervision without manual annotation. We demonstrate that SynCABEL, when combined with decoder-only models and guided inference establish new state-of-the-art results across three widely used multilingual benchmarks: MedMentions for English, QUAERO for French, and SPACCC for Spanish. Evaluating data efficiency, we show that SynCABEL reaches the performance of full human supervision using up to 60% less annotated data, substantially reducing reliance on labor-intensive and costly expert labeling. Finally, acknowledging that standard evaluation based on exact code matching often underestimates clinically valid predictions due to ontology redundancy, we introduce an LLM-as-a-judge protocol. This analysis reveals that SynCABEL significantly improves the rate of clinically valid predictions. Our synthetic datasets, models, and code are released to support reproducibility and future research.
☆ One Token Is Enough: Improving Diffusion Language Models with a Sink Token
Diffusion Language Models (DLMs) have emerged as a compelling alternative to autoregressive approaches, enabling parallel text generation with competitive performance. Despite these advantages, there is a critical instability in DLMs: the moving sink phenomenon. Our analysis indicates that sink tokens exhibit low-norm representations in the Transformer's value space, and that the moving sink phenomenon serves as a protective mechanism in DLMs to prevent excessive information mixing. However, their unpredictable positions across diffusion steps undermine inference robustness. To resolve this, we propose a simple but effective extra sink token implemented via a modified attention mask. Specifically, we introduce a special token constrained to attend solely to itself, while remaining globally visible to all other tokens. Experimental results demonstrate that introducing a single extra token stabilizes attention sinks, substantially improving model performance. Crucially, further analysis confirms that the effectiveness of this token is independent of its position and characterized by negligible semantic content, validating its role as a robust and dedicated structural sink.
☆ RATE: Reviewer Profiling and Annotation-free Training for Expertise Ranking in Peer Review Systems
Reviewer assignment is increasingly critical yet challenging in the LLM era, where rapid topic shifts render many pre-2023 benchmarks outdated and where proxy signals poorly reflect true reviewer familiarity. We address this evaluation bottleneck by introducing LR-bench, a high-fidelity, up-to-date benchmark curated from 2024-2025 AI/NLP manuscripts with five-level self-assessed familiarity ratings collected via a large-scale email survey, yielding 1055 expert-annotated paper-reviewer-score annotations. We further propose RATE, a reviewer-centric ranking framework that distills each reviewer's recent publications into compact keyword-based profiles and fine-tunes an embedding model with weak preference supervision constructed from heuristic retrieval signals, enabling matching each manuscript against a reviewer profile directly. Across LR-bench and the CMU gold-standard dataset, our approach consistently achieves state-of-the-art performance, outperforming strong embedding baselines by a clear margin. We release LR-bench at https://huggingface.co/datasets/Gnociew/LR-bench, and a GitHub repository at https://github.com/Gnociew/RATE-Reviewer-Assign.
comment: 18 pages
☆ Up to 36x Speedup: Mask-based Parallel Inference Paradigm for Key Information Extraction in MLLMs ICASSP 2026
Key Information Extraction (KIE) from visually-rich documents (VrDs) is a critical task, for which recent Large Language Models (LLMs) and Multi-Modal Large Language Models (MLLMs) have demonstrated strong potential. However, their reliance on autoregressive inference, which generates outputs sequentially, creates a significant efficiency bottleneck, especially as KIE tasks often involve extracting multiple, semantically independent fields. To overcome this limitation, we introduce PIP: a Parallel Inference Paradigm for KIE. Our approach reformulates the problem by using "[mask]" tokens as placeholders for all target values, enabling their simultaneous generation in a single forward pass. To facilitate this paradigm, we develop a tailored mask pre-training strategy and construct large-scale supervised datasets. Experimental results show that our PIP-models achieve a 5-36x inference speedup with negligible performance degradation compared to traditional autoregressive base models. By substantially improving efficiency while maintaining high accuracy, PIP paves the way for scalable and practical real-world KIE solutions.
comment: Accepted by ICASSP 2026
☆ Explicit Multi-head Attention for Inter-head Interaction in Large Language Models
In large language models built upon the Transformer architecture, recent studies have shown that inter-head interaction can enhance attention performance. Motivated by this, we propose Multi-head Explicit Attention (MEA), a simple yet effective attention variant that explicitly models cross-head interaction. MEA consists of two key components: a Head-level Linear Composition (HLC) module that separately applies learnable linear combinations to the key and value vectors across heads, thereby enabling rich inter-head communication; and a head-level Group Normalization layer that aligns the statistical properties of the recombined heads. MEA shows strong robustness in pretraining, which allows the use of larger learning rates that lead to faster convergence, ultimately resulting in lower validation loss and improved performance across a range of tasks. Furthermore, we explore the parameter efficiency of MEA by reducing the number of attention heads and leveraging HLC to reconstruct them using low-rank "virtual heads". This enables a practical key-value cache compression strategy that reduces KV-cache memory usage by 50% with negligible performance loss on knowledge-intensive and scientific reasoning tasks, and only a 3.59% accuracy drop for Olympiad-level mathematical benchmarks.
☆ Decompose-and-Formalise: Recursively Verifiable Natural Language Inference
Recent work has shown that integrating large language models (LLMs) with theorem provers (TPs) in neuro-symbolic pipelines helps with entailment verification and proof-guided refinement of explanations for natural language inference (NLI). However, scaling such refinement to naturalistic NLI remains difficult: long, syntactically rich inputs and deep multi-step arguments amplify autoformalisation errors, where a single local mismatch can invalidate the proof. Moreover, current methods often handle failures via costly global regeneration due to the difficulty of localising the responsible span or step from prover diagnostics. Aiming to address these problems, we propose a decompose-and-formalise framework that (i) decomposes premise-hypothesis pairs into an entailment tree of atomic steps, (ii) verifies the tree bottom-up to isolate failures to specific nodes, and (iii) performs local diagnostic-guided refinement instead of regenerating the whole explanation. Moreover, to improve faithfulness of autoformalisation, we introduce $θ$-substitution in an event-based logical form to enforce consistent argument-role bindings. Across a range of reasoning tasks using five LLM backbones, our method achieves the highest explanation verification rates, improving over the state-of-the-art by 26.2%, 21.7%, 21.6% and 48.9%, while reducing refinement iterations and runtime and preserving strong NLI accuracy.
☆ Yunque DeepResearch Technical Report
Deep research has emerged as a transformative capability for autonomous agents, empowering Large Language Models to navigate complex, open-ended tasks. However, realizing its full potential is hindered by critical limitations, including escalating contextual noise in long-horizon tasks, fragility leading to cascading errors, and a lack of modular extensibility. To address these challenges, we introduce Yunque DeepResearch, a hierarchical, modular, and robust framework. The architecture is characterized by three key components: (1) a centralized Multi-Agent Orchestration System that routes subtasks to an Atomic Capability Pool of tools and specialized sub-agents; (2) a Dynamic Context Management mechanism that structures completed sub-goals into semantic summaries to mitigate information overload; and (3) a proactive Supervisor Module that ensures resilience through active anomaly detection and context pruning. Yunque DeepResearch achieves state-of-the-art performance across a range of agentic deep research benchmarks, including GAIA, BrowseComp, BrowseComp-ZH, and Humanity's Last Exam. We open-source the framework, reproducible implementations, and application cases to empower the community.
☆ Benchmarks Saturate When The Model Gets Smarter Than The Judge
Benchmarks are important tools to track progress in the development of Large Language Models (LLMs), yet inaccuracies in datasets and evaluation methods consistently undermine their effectiveness. Here, we present Omni-MATH-2, a manually revised version of the Omni-MATH dataset comprising a clean, exact-answer subset ($n{=}4181$) and a tagged, non-standard subset ($n{=}247$). Each problem was audited to ensure LaTeX compilability, solvability and verifiability, which involved adding missing figures or information, labeling problems requiring a proof, estimation or image, and removing clutter. This process significantly reduces dataset-induced noise, thereby providing a more precise assessment of model performance. The annotated dataset also allows us to evaluate judge-induced noise by comparing GPT-5 mini with the original Omni-Judge, revealing substantial discrepancies between judges on both the clean and tagged problem subsets. Expert annotations reveal that Omni-Judge is wrong in $96.4\%$ of the judge disagreements, indicating its inability to differentiate between models' abilities, even well before saturation of the benchmark occurs. As problems become more challenging, we find that increasingly competent judges become essential in order to prevent judge errors from masking genuine differences between models. Finally, neither judge identifies the present failure modes for the subset of tagged problems, demonstrating that dataset quality and judge reliability are both critical to develop accurate benchmarks of model performance.
comment: 17 pages, 10 figures, 3 tables
☆ Enhancing Academic Paper Recommendations Using Fine-Grained Knowledge Entities and Multifaceted Document Embeddings
In the era of explosive growth in academic literature, the burden of literature review on scholars are increasing. Proactively recommending academic papers that align with scholars' literature needs in the research process has become one of the crucial pathways to enhance research efficiency and stimulate innovative thinking. Current academic paper recommendation systems primarily focus on broad and coarse-grained suggestions based on general topic or field similarities. While these systems effectively identify related literature, they fall short in addressing scholars' more specific and fine-grained needs, such as locating papers that utilize particular research methods, or tackle distinct research tasks within the same topic. To meet the diverse and specific literature needs of scholars in the research process, this paper proposes a novel academic paper recommendation method. This approach embeds multidimensional information by integrating new types of fine-grained knowledge entities, title and abstract of document, and citation data. Recommendations are then generated by calculating the similarity between combined paper vectors. The proposed recommendation method was evaluated using the STM-KG dataset, a knowledge graph that incorporates scientific concepts derived from papers across ten distinct domains. The experimental results indicate that our method outperforms baseline models, achieving an average precision of 27.3% among the top 50 recommendations. This represents an improvement of 6.7% over existing approaches.
☆ ALRM: Agentic LLM for Robotic Manipulation
Large Language Models (LLMs) have recently empowered agentic frameworks to exhibit advanced reasoning and planning capabilities. However, their integration in robotic control pipelines remains limited in two aspects: (1) prior \ac{llm}-based approaches often lack modular, agentic execution mechanisms, limiting their ability to plan, reflect on outcomes, and revise actions in a closed-loop manner; and (2) existing benchmarks for manipulation tasks focus on low-level control and do not systematically evaluate multistep reasoning and linguistic variation. In this paper, we propose Agentic LLM for Robot Manipulation (ALRM), an LLM-driven agentic framework for robotic manipulation. ALRM integrates policy generation with agentic execution through a ReAct-style reasoning loop, supporting two complementary modes: Code-asPolicy (CaP) for direct executable control code generation, and Tool-as-Policy (TaP) for iterative planning and tool-based action execution. To enable systematic evaluation, we also introduce a novel simulation benchmark comprising 56 tasks across multiple environments, capturing linguistically diverse instructions. Experiments with ten LLMs demonstrate that ALRM provides a scalable, interpretable, and modular approach for bridging natural language reasoning with reliable robotic execution. Results reveal Claude-4.1-Opus as the top closed-source model and Falcon-H1-7B as the top open-source model under CaP.
☆ Automated Safety Benchmarking: A Multi-agent Pipeline for LVLMs
Large vision-language models (LVLMs) exhibit remarkable capabilities in cross-modal tasks but face significant safety challenges, which undermine their reliability in real-world applications. Efforts have been made to build LVLM safety evaluation benchmarks to uncover their vulnerability. However, existing benchmarks are hindered by their labor-intensive construction process, static complexity, and limited discriminative power. Thus, they may fail to keep pace with rapidly evolving models and emerging risks. To address these limitations, we propose VLSafetyBencher, the first automated system for LVLM safety benchmarking. VLSafetyBencher introduces four collaborative agents: Data Preprocessing, Generation, Augmentation, and Selection agents to construct and select high-quality samples. Experiments validates that VLSafetyBencher can construct high-quality safety benchmarks within one week at a minimal cost. The generated benchmark effectively distinguish safety, with a safety rate disparity of 70% between the most and least safe models.
☆ GradPruner: Gradient-Guided Layer Pruning Enabling Efficient Fine-Tuning and Inference for LLMs ICLR2026
Fine-tuning Large Language Models (LLMs) with downstream data is often considered time-consuming and expensive. Structured pruning methods are primarily employed to improve the inference efficiency of pre-trained models. Meanwhile, they often require additional time and memory for training, knowledge distillation, structure search, and other strategies, making efficient model fine-tuning challenging to achieve. To simultaneously enhance the training and inference efficiency of downstream task fine-tuning, we introduce GradPruner, which can prune layers of LLMs guided by gradients in the early stages of fine-tuning. GradPruner uses the cumulative gradients of each parameter during the initial phase of fine-tuning to compute the Initial Gradient Information Accumulation Matrix (IGIA-Matrix) to assess the importance of layers and perform pruning. We sparsify the pruned layers based on the IGIA-Matrix and merge them with the remaining layers. Only elements with the same sign are merged to reduce interference from sign variations. We conducted extensive experiments on two LLMs across eight downstream datasets. Including medical, financial, and general benchmark tasks. The results demonstrate that GradPruner has achieved a parameter reduction of 40% with only a 0.99% decrease in accuracy. Our code is publicly available.
comment: Accepted by ICLR2026
☆ ClaimPT: A Portuguese Dataset of Annotated Claims in News Articles
Fact-checking remains a demanding and time-consuming task, still largely dependent on manual verification and unable to match the rapid spread of misinformation online. This is particularly important because debunking false information typically takes longer to reach consumers than the misinformation itself; accelerating corrections through automation can therefore help counter it more effectively. Although many organizations perform manual fact-checking, this approach is difficult to scale given the growing volume of digital content. These limitations have motivated interest in automating fact-checking, where identifying claims is a crucial first step. However, progress has been uneven across languages, with English dominating due to abundant annotated data. Portuguese, like other languages, still lacks accessible, licensed datasets, limiting research, NLP developments and applications. In this paper, we introduce ClaimPT, a dataset of European Portuguese news articles annotated for factual claims, comprising 1,308 articles and 6,875 individual annotations. Unlike most existing resources based on social media or parliamentary transcripts, ClaimPT focuses on journalistic content, collected through a partnership with LUSA, the Portuguese News Agency. To ensure annotation quality, two trained annotators labeled each article, with a curator validating all annotations according to a newly proposed scheme. We also provide baseline models for claim detection, establishing initial benchmarks and enabling future NLP and IR applications. By releasing ClaimPT, we aim to advance research on low-resource fact-checking and enhance understanding of misinformation in news media.
☆ Dynamic Multi-Expert Projectors with Stabilized Routing for Multilingual Speech Recognition
Recent advances in LLM-based ASR connect frozen speech encoders with Large Language Models (LLMs) via lightweight projectors. While effective in monolingual settings, a single projector struggles to capture the diverse acoustic-to-semantic mappings required for multilingual ASR. To address this, we propose SMEAR-MoE, a stabilized Mixture-of-Experts projector that ensures dense gradient flow to all experts, preventing expert collapse while enabling cross-lingual sharing. We systematically compare monolithic, static multi-projector, and dynamic MoE designs across four Indic languages (Hindi, Marathi, Tamil, Telugu). Our SMEAR-MoE achieves strong performance, delivering upto a 7.6% relative WER reduction over the single-projector baseline, while maintaining comparable runtime efficiency. Analysis of expert routing further shows linguistically meaningful specialization, with related languages sharing experts. These results demonstrate that stable multi-expert projectors are key to scalable and robust multilingual ASR.
☆ KG-CRAFT: Knowledge Graph-based Contrastive Reasoning with LLMs for Enhancing Automated Fact-checking EACL 2026
Claim verification is a core component of automated fact-checking systems, aimed at determining the truthfulness of a statement by assessing it against reliable evidence sources such as documents or knowledge bases. This work presents KG-CRAFT, a method that improves automatic claim verification by leveraging large language models (LLMs) augmented with contrastive questions grounded in a knowledge graph. KG-CRAFT first constructs a knowledge graph from claims and associated reports, then formulates contextually relevant contrastive questions based on the knowledge graph structure. These questions guide the distillation of evidence-based reports, which are synthesised into a concise summary that is used for veracity assessment by LLMs. Extensive evaluations on two real-world datasets (LIAR-RAW and RAWFC) demonstrate that our method achieves a new state-of-the-art in predictive performance. Comprehensive analyses validate in detail the effectiveness of our knowledge graph-based contrastive reasoning approach in improving LLMs' fact-checking capabilities.
comment: Accepted to publication at the 19th Conference of the European Chapter of the Association for Computational Linguistics, EACL 2026
☆ Ad Insertion in LLM-Generated Responses
Sustainable monetization of Large Language Models (LLMs) remains a critical open challenge. Traditional search advertising, which relies on static keywords, fails to capture the fleeting, context-dependent user intents--the specific information, goods, or services a user seeks--embedded in conversational flows. Beyond the standard goal of social welfare maximization, effective LLM advertising imposes additional requirements on contextual coherence (ensuring ads align semantically with transient user intents) and computational efficiency (avoiding user interaction latency), as well as adherence to ethical and regulatory standards, including preserving privacy and ensuring explicit ad disclosure. Although various recent solutions have explored bidding on token-level and query-level, both categories of approaches generally fail to holistically satisfy this multifaceted set of constraints. We propose a practical framework that resolves these tensions through two decoupling strategies. First, we decouple ad insertion from response generation to ensure safety and explicit disclosure. Second, we decouple bidding from specific user queries by using ``genres'' (high-level semantic clusters) as a proxy. This allows advertisers to bid on stable categories rather than sensitive real-time response, reducing computational burden and privacy risks. We demonstrate that applying the VCG auction mechanism to this genre-based framework yields approximately dominant strategy incentive compatibility (DSIC) and individual rationality (IR), as well as approximately optimal social welfare, while maintaining high computational efficiency. Finally, we introduce an "LLM-as-a-Judge" metric to estimate contextual coherence. Our experiments show that this metric correlates strongly with human ratings (Spearman's $ρ\approx 0.66$), outperforming 80% of individual human evaluators.
comment: 31 pages, 8 figures
☆ Do LLMs Truly Benefit from Longer Context in Automatic Post-Editing?
Automatic post-editing (APE) aims to refine machine translations by correcting residual errors. Although recent large language models (LLMs) demonstrate strong translation capabilities, their effectiveness for APE--especially under document-level context--remains insufficiently understood. We present a systematic comparison of proprietary and open-weight LLMs under a naive document-level prompting setup, analyzing APE quality, contextual behavior, robustness, and efficiency. Our results show that proprietary LLMs achieve near human-level APE quality even with simple one-shot prompting, regardless of whether document context is provided. While these models exhibit higher robustness to data poisoning attacks than open-weight counterparts, this robustness also reveals a limitation: they largely fail to exploit document-level context for contextual error correction. Furthermore, standard automatic metrics do not reliably reflect these qualitative improvements, highlighting the continued necessity of human evaluation. Despite their strong performance, the substantial cost and latency overheads of proprietary LLMs render them impractical for real-world APE deployment. Overall, our findings elucidate both the promise and current limitations of LLM-based document-aware APE, and point toward the need for more efficient long-context modeling approaches for translation refinement.
☆ Binary Token-Level Classification with DeBERTa for All-Type MWE Identification: A Lightweight Approach with Linguistic Enhancement EACL 2026
We present a comprehensive approach for multiword expression (MWE) identification that combines binary token-level classification, linguistic feature integration, and data augmentation. Our DeBERTa-v3-large model achieves 69.8% F1 on the CoAM dataset, surpassing the best results (Qwen-72B, 57.8% F1) on this dataset by 12 points while using 165x fewer parameters. We achieve this performance by (1) reformulating detection as binary token-level START/END/INSIDE classification rather than span-based prediction, (2) incorporating NP chunking and dependency features that help discontinuous and NOUN-type MWEs identification, and (3) applying oversampling that addresses severe class imbalance in the training data. We confirm the generalization of our method on the STREUSLE dataset, achieving 78.9% F1. These results demonstrate that carefully designed smaller models can substantially outperform LLMs on structured NLP tasks, with important implications for resource-constrained deployments.
comment: Accepted at Findings of EACL 2026
☆ Cross-Examination Framework: A Task-Agnostic Diagnostic for Information Fidelity in Text-to-Text Generation
Traditional metrics like BLEU and BERTScore fail to capture semantic fidelity in generative text-to-text tasks. We adapt the Cross-Examination Framework (CEF) for a reference-free, multi-dimensional evaluation by treating the source and candidate as independent knowledge bases. CEF generates verifiable questions from each text and performs a cross-examination to derive three interpretable scores: Coverage, Conformity, and Consistency. Validated across translation, summarization and clinical note-generation, our framework identifies critical errors, such as content omissions and factual contradictions, missed by standard metrics. A key contribution is a systematic robustness analysis to select a stable judge model. Crucially, the strong correlation between our reference-free and with-reference modes validates CEF's reliability without gold references. Furthermore, human expert validation demonstrates that CEF mismatching questions align with meaning-altering semantic errors higher than with non-semantic errors, particularly excelling at identifying entity-based and relational distortions.
☆ When Benchmarks Leak: Inference-Time Decontamination for LLMs
Benchmark-based evaluation is the de facto standard for comparing large language models (LLMs). However, its reliability is increasingly threatened by test set contamination, where test samples or their close variants leak into training data and artificially inflate reported performance. To address this issue, prior work has explored two main lines of mitigation. One line attempts to identify and remove contaminated benchmark items before evaluation, but this inevitably alters the evaluation set itself and becomes unreliable when contamination is moderate or severe. The other line preserves the benchmark and instead suppresses contaminated behavior at evaluation time; however, such interventions often interfere with normal inference and lead to noticeable performance degradation on clean inputs. We propose DeconIEP, a decontamination framework that operates entirely during evaluation by applying small, bounded perturbations in the input embedding space. Guided by a relatively less-contaminated reference model, DeconIEP learns an instance-adaptive perturbation generator that steers the evaluated model away from memorization-driven shortcut pathways. Across multiple open-weight LLMs and benchmarks, extensive empirical results show that DeconIEP achieves strong decontamination effectiveness while incurring only minimal degradation in benign utility.
☆ Formula-One Prompting: Adaptive Reasoning Through Equations For Applied Mathematics
Prompting techniques such as Chain-of-Thought (CoT) and Program-of-Thought (PoT) improve LLM mathematical reasoning by structuring intermediate steps in natural language or code. However, applied mathematics problems in domains like finance, physics, and cryptography often require recalling or deriving governing equations, a step that current approaches do not explicitly leverage. We propose Formula-One Prompting (F-1), a two-phase approach that uses mathematical equations as an intermediate representation before adaptive solving. F-1 first formulates governing equations from problem descriptions, then selects a solving strategy among CoT, PoT, or direct computation based on the generated equations, all within a single LLM call. Results across five models and four benchmarks show F-1 outperforms CoT by +5.76% and PoT by +8.42% on average. Crucially, gains are largest in applied domains: +13.30% on FinanceMath over CoT, and within OlympiadBench, larger gains on physics (+2.55%) than pure math (+0.44%). This demonstrates that F-1 is more effective than CoT in applied mathematics problems.
☆ MetaGen: Self-Evolving Roles and Topologies for Multi-Agent LLM Reasoning
Large language models are increasingly deployed as multi-agent systems, where specialized roles communicate and collaborate through structured interactions to solve complex tasks that often exceed the capacity of a single agent. However, most existing systems still rely on a fixed role library and an execution-frozen interaction topology, a rigid design choice that frequently leads to task mismatch, prevents timely adaptation when new evidence emerges during reasoning, and further inflates inference cost. We introduce MetaGen, a training-free framework that adapts both the role space and the collaboration topology at inference time, without updating base model weights. MetaGen generates and rewrites query-conditioned role specifications to maintain a controllable dynamic role pool, then instantiates a constrained execution graph around a minimal backbone. During execution, it iteratively updates role prompts and adjusts structural decisions using lightweight feedback signals. Experiments on code generation and multi-step reasoning benchmarks show that MetaGen improves the accuracy and cost tradeoff over strong multi-agent baselines.
☆ ReToP: Learning to Rewrite Electronic Health Records for Clinical Prediction WSDM 2026
Electronic Health Records (EHRs) provide crucial information for clinical decision-making. However, their high-dimensionality, heterogeneity, and sparsity make clinical prediction challenging. Large Language Models (LLMs) allowed progress towards addressing this challenge by leveraging parametric medical knowledge to enhance EHR data for clinical prediction tasks. Despite the significant achievements made so far, most of the existing approaches are fundamentally task-agnostic in the sense that they deploy LLMs as EHR encoders or EHR completion modules without fully integrating signals from the prediction tasks. This naturally hinders task performance accuracy. In this work, we propose Rewrite-To-Predict (ReToP), an LLM-based framework that addresses this limitation through an end-to-end training of an EHR rewriter and a clinical predictor. To cope with the lack of EHR rewrite training data, we generate synthetic pseudo-labels using clinical-driven feature selection strategies to create diverse patient rewrites for fine-tuning the EHR rewriter. ReToP aligns the rewriter with prediction objectives using a novel Classifier Supervised Contribution (CSC) score that enables the EHR rewriter to generate clinically relevant rewrites that directly enhance prediction. Our ReToP framework surpasses strong baseline models across three clinical tasks on MIMIC-IV. Moreover, the analysis of ReToP shows its generalizability to unseen datasets and tasks with minimal fine-tuning while preserving faithful rewrites and emphasizing task-relevant predictive features.
comment: Accepted by WSDM 2026
☆ Group Distributionally Robust Optimization-Driven Reinforcement Learning for LLM Reasoning
Recent progress in Large Language Model (LLM) reasoning is increasingly driven by the refinement of post-training loss functions and alignment strategies. However, standard Reinforcement Learning (RL) paradigms like Group Relative Policy Optimization (GRPO) remain constrained by static uniformity: uniform prompt sampling and a fixed number of rollouts per prompt. For heterogeneous, heavy-tailed reasoning data, this creates structural inefficiencies that waste compute on already-solved patterns while under-training the long tail of hard problems. To address this, we propose Multi-Adversary Group Distributionally Robust Optimization (GDRO), an optimization-first framework that moves beyond uniform reasoning models by dynamically adapting the training distribution. We introduce an Online Difficulty Classifier that partitions prompts into dynamic pass@k difficulty groups. We then propose two independent GDRO games for post-training: (1) Prompt-GDRO, which employs an EMA-debiased multiplicative-weights bandit sampler to target the intensive difficulty margin and upweight persistently hard groups without frequency bias; and (2) Rollout-GDRO, which uses a shadow-price controller to reallocate rollouts across groups, maximizing gradient variance reduction on hard tasks under a fixed mean budget (compute-neutral). We provide no-regret guarantees for both controllers and additionally a variance-proxy analysis motivating a square-root optimal rollout allocation for Rollout-GDRO. We validate our framework on the DAPO 14.1k dataset using Qwen3-Base models. Prompt-GDRO and Rollout-GDRO achieve average relative gains of +10.6% and +10.1%, respectively, in pass@8 accuracy across 1.7B, 4B, and 8B scales compared to the GRPO baseline. Qualitative analysis shows an emergent curriculum: the adversaries shift resources to the evolving reasoning frontier, enhancing the reasoning model's performance.
comment: Keywords: Large Language Models, Reasoning Models, Reinforcement Learning, Distributionally Robust Optimization, GRPO
☆ DART: Diffusion-Inspired Speculative Decoding for Fast LLM Inference
Speculative decoding is an effective and lossless approach for accelerating LLM inference. However, existing widely adopted model-based draft designs, such as EAGLE3, improve accuracy at the cost of multi-step autoregressive inference, resulting in high drafting latency and ultimately rendering the drafting stage itself a performance bottleneck. Inspired by diffusion-based large language models (dLLMs), we propose DART, which leverages parallel generation to reduce drafting latency. DART predicts logits for multiple future masked positions in parallel within a single forward pass based on hidden states of the target model, thereby eliminating autoregressive rollouts in the draft model while preserving a lightweight design. Based on these parallel logit predictions, we further introduce an efficient tree pruning algorithm that constructs high-quality draft token trees with N-gram-enforced semantic continuity. DART substantially reduces draft-stage overhead while preserving high draft accuracy, leading to significantly improved end-to-end decoding speed. Experimental results demonstrate that DART achieves a 2.03x--3.44x wall-clock time speedup across multiple datasets, surpassing EAGLE3 by 30% on average and offering a practical speculative decoding framework. Code is released at https://github.com/fvliang/DART.
☆ Riddle Quest : The Enigma of Words WWW
Riddles are concise linguistic puzzles that describe an object or idea through indirect, figurative, or playful clues. They are a longstanding form of creative expression, requiring the solver to interpret hints, recognize patterns, and draw inferences to identify the answers. In this work, we introduce a simple pipeline for creating and evaluating analogy-based riddles. The system includes a triples creator that builds structured facts about a concept, a semantic mapper that selects attributes useful for analogy, a stylized generator that turns them into riddle clues, and a validator that collects all possible answers the riddle could point to. We use this validator to study whether large language models can recover the full answer set for different riddle types. Our case study shows that while models often guess the main intended answer, they frequently miss other valid interpretations. This highlights the value of riddles as a lightweight tool for examining reasoning coverage and ambiguity handling in language models.
comment: This paper is submitted under 'Demo track' for WWW conference
☆ DiaDem: Advancing Dialogue Descriptions in Audiovisual Video Captioning for Multimodal Large Language Models
Accurate dialogue description in audiovisual video captioning is crucial for downstream understanding and generation tasks. However, existing models generally struggle to produce faithful dialogue descriptions within audiovisual captions. To mitigate this limitation, we propose DiaDem, a powerful audiovisual video captioning model capable of generating captions with more precise dialogue descriptions while maintaining strong overall performance. We first synthesize a high-quality dataset for SFT, then employ a difficulty-partitioned two-stage GRPO strategy to further enhance dialogue descriptions. To enable systematic evaluation of dialogue description capabilities, we introduce DiaDemBench, a comprehensive benchmark designed to evaluate models across diverse dialogue scenarios, emphasizing both speaker attribution accuracy and utterance transcription fidelity in audiovisual captions. Extensive experiments on DiaDemBench reveal even commercial models still exhibit substantial room for improvement in dialogue-aware captioning. Notably, DiaDem not only outperforms the Gemini series in dialogue description accuracy but also achieves competitive performance on general audiovisual captioning benchmarks, demonstrating its overall effectiveness.
comment: Project webpage: https://diadem-captioner.github.io/
☆ RPO-RAG: Aligning Small LLMs with Relation-aware Preference Optimization for Knowledge Graph Question Answering WWW
Large Language Models (LLMs) have recently demonstrated remarkable reasoning abilities, yet hallucinate on knowledge-intensive tasks. Retrieval-augmented generation (RAG) mitigates this issue by grounding answers in external sources, e.g., knowledge graphs (KGs). However, existing KG-based RAG approaches rely on semantics-unaware path sampling and are weakly aligned with KG reasoning objectives, which limits further accuracy gains. They also feed retrieved paths directly into the reasoner without organizing them into answer-centered reasoning paths, hindering small LLMs' ability to leverage the retrieved knowledge. Furthermore, prior works predominantly rely on large LLMs (e.g., ChatGPT/GPT-4) or assume backbones above 7B parameters, leaving sub-7B models underexplored. We address this gap with RPO-RAG, the first KG-based RAG framework specifically designed for small LLMs, to the best of our knowledge. RPO-RAG introduces three key innovations: (1) a query-path semantic sampling strategy that provides informative supervisory signals; (2) a relation-aware preference optimization that aligns training with intermediate KG reasoning signals (e.g., relation); and (3) an answer-centered prompt design that organizes entities and reasoning paths in an interpretable format. Extensive experiments on two benchmark Knowledge Graph Question Answering (KGQA) datasets, WebQSP and CWQ, demonstrate that RPO-RAG effectively bridges the performance gap between small and large language models. On WebQSP, it improves F1 by up to 8.8%, reflecting enhanced answer precision, while on CWQ it achieves new state-of-the-art results among models under 8B parameters in both Hit and F1. Overall, RPO-RAG substantially improves the reasoning capability of small LLMs, even under 3B parameters-highlighting their potential for resource-efficient and practical on-device KGQA applications.
comment: Accepted at The Web Conference (WWW) 2026
☆ DREAMSTATE: Diffusing States and Parameters for Recurrent Large Language Models
Modern Recurrent Neural Networks (RNNs), such as RWKV, are distinguished by their powerful short-range modeling capabilities and efficient fixed-size states, which constitute a core advantage over standard Transformers. However, there is a significant lack of research into their internal state as an editable knowledge representation. To fill this gap, we first explore the representational properties of the RWKV state by proposing the DREAMSTATE framework. This framework utilizes a conditional Diffusion Transformer (DiT) to directly model the probability manifold of the state, enabling its generation and editing. The structural nature of this representation is validated through t-SNE visualizations and controlled generation experiments. After successfully uncovering and modeling the state's representational potential, we further propose a novel hybrid architecture that combines the local advantages of RNNs with global context adaptability. This architecture features a parallel DiT that processes a variable-length global context to dynamically generate and adjust the core recurrent module's WKV parameters, transforming the fixed recurrence mechanism into a context-aware dynamic function. Experiments demonstrate that this hybrid model can be trained stably via a multi-objective loss, validating its design feasibility. Our work not only opens a new research direction for RNN state representation but also provides a concrete architectural reference for future model design. The code is publicly available at: https://huggingface.co/2dgx41s/DreamState.
☆ A Hybrid Supervised-LLM Pipeline for Actionable Suggestion Mining in Unstructured Customer Reviews EACL 2026
Extracting actionable suggestions from customer reviews is essential for operational decision-making, yet these directives are often embedded within mixed-intent, unstructured text. Existing approaches either classify suggestion-bearing sentences or generate high-level summaries, but rarely isolate the precise improvement instructions businesses need. We evaluate a hybrid pipeline combining a high-recall RoBERTa classifier trained with a precision-recall surrogate to reduce unrecoverable false negatives with a controlled, instruction-tuned LLM for suggestion extraction, categorization, clustering, and summarization. Across real-world hospitality and food datasets, the hybrid system outperforms prompt-only, rule-based, and classifier-only baselines in extraction accuracy and cluster coherence. Human evaluations further confirm that the resulting suggestions and summaries are clear, faithful, and interpretable. Overall, our results show that hybrid reasoning architectures achieve meaningful improvements fine-grained actionable suggestion mining while highlighting challenges in domain adaptation and efficient local deployment.
comment: Accepted to EACL 2026 Industry Track (to appear)
☆ How Do Transformers Learn to Associate Tokens: Gradient Leading Terms Bring Mechanistic Interpretability ICLR 2026
Semantic associations such as the link between "bird" and "flew" are foundational for language modeling as they enable models to go beyond memorization and instead generalize and generate coherent text. Understanding how these associations are learned and represented in language models is essential for connecting deep learning with linguistic theory and developing a mechanistic foundation for large language models. In this work, we analyze how these associations emerge from natural language data in attention-based language models through the lens of training dynamics. By leveraging a leading-term approximation of the gradients, we develop closed-form expressions for the weights at early stages of training that explain how semantic associations first take shape. Through our analysis, we reveal that each set of weights of the transformer has closed-form expressions as simple compositions of three basis functions (bigram, token-interchangeability, and context mappings), reflecting the statistics of the text corpus and uncovering how each component of the transformer captures semantic associations based on these compositions. Experiments on real-world LLMs demonstrate that our theoretical weight characterizations closely match the learned weights, and qualitative analyses further show how our theorem shines light on interpreting the learned associations in transformers.
comment: ICLR 2026
☆ Do Images Speak Louder than Words? Investigating the Effect of Textual Misinformation in VLMs EACL 2026
Vision-Language Models (VLMs) have shown strong multimodal reasoning capabilities on Visual-Question-Answering (VQA) benchmarks. However, their robustness against textual misinformation remains under-explored. While existing research has studied the effect of misinformation in text-only domains, it is not clear how VLMs arbitrate between contradictory information from different modalities. To bridge the gap, we first propose the CONTEXT-VQA (i.e., Conflicting Text) dataset, consisting of image-question pairs together with systematically generated persuasive prompts that deliberately conflict with visual evidence. Then, a thorough evaluation framework is designed and executed to benchmark the susceptibility of various models to these conflicting multimodal inputs. Comprehensive experiments over 11 state-of-the-art VLMs reveal that these models are indeed vulnerable to misleading textual prompts, often overriding clear visual evidence in favor of the conflicting text, and show an average performance drop of over 48.2% after only one round of persuasive conversation. Our findings highlight a critical limitation in current VLMs and underscore the need for improved robustness against textual manipulation.
comment: 24 pages, 10 figures. Accepted at EACL 2026 (main conference)
☆ Transparency-First Medical Language Models: Datasheets, Model Cards, and End-to-End Data Provenance for Clinical NLP
We introduce TeMLM, a set of transparency-first release artifacts for clinical language models. TeMLM unifies provenance, data transparency, modeling transparency, and governance into a single, machine-checkable release bundle. We define an artifact suite (TeMLM-Card, TeMLM-Datasheet, TeMLM-Provenance) and a lightweight conformance checklist for repeatable auditing. We instantiate the artifacts on Technetium-I, a large-scale synthetic clinical NLP dataset with 498,000 notes, 7.74M PHI entity annotations across 10 types, and ICD-9-CM diagnosis labels, and report reference results for ProtactiniumBERT (about 100 million parameters) on PHI de-identification (token classification) and top-50 ICD-9 code extraction (multi-label classification). We emphasize that synthetic benchmarks are valuable for tooling and process validation, but models should be validated on real clinical data prior to deployment.
comment: 12 pages, 9 figures, 15 tables. Technetium-I case study and ProtactiniumBERT-100M reference benchmarks
☆ Leveraging Sentence-oriented Augmentation and Transformer-Based Architecture for Vietnamese-Bahnaric Translation
The Bahnar people, an ethnic minority in Vietnam with a rich ancestral heritage, possess a language of immense cultural and historical significance. The government places a strong emphasis on preserving and promoting the Bahnaric language by making it accessible online and encouraging communication across generations. Recent advancements in artificial intelligence, such as Neural Machine Translation (NMT), have brought about a transformation in translation by improving accuracy and fluency. This, in turn, contributes to the revival of the language through educational efforts, communication, and documentation. Specifically, NMT is pivotal in enhancing accessibility for Bahnaric speakers, making information and content more readily available. Nevertheless, the translation of Vietnamese into Bahnaric faces practical challenges due to resource constraints, especially given the limited resources available for the Bahnaric language. To address this, we employ state-of-the-art techniques in NMT along with two augmentation strategies for domain-specific Vietnamese-Bahnaric translation task. Importantly, both approaches are flexible and can be used with various neural machine translation models. Additionally, they do not require complex data preprocessing steps, the training of additional systems, or the acquisition of extra data beyond the existing training parallel corpora.
☆ PsyProbe: Proactive and Interpretable Dialogue through User State Modeling for Exploratory Counseling EACL 2026
Recent advances in large language models have enabled mental health dialogue systems, yet existing approaches remain predominantly reactive, lacking systematic user state modeling for proactive therapeutic exploration. We introduce PsyProbe, a dialogue system designed for the exploration phase of counseling that systematically tracks user psychological states through the PPPPPI framework (Presenting, Predisposing, Precipitating, Perpetuating, Protective, Impact) augmented with cognitive error detection. PsyProbe combines State Builder for extracting structured psychological profiles, Memory Construction for tracking information gaps, Strategy Planner for Motivational Interviewing behavioral codes, and Response Generator with Question Ideation and Critic/Revision modules to generate contextually appropriate, proactive questions. We evaluate PsyProbe with 27 participants in real-world Korean counseling scenarios, including automatic evaluation across ablation modes, user evaluation, and expert evaluation by a certified counselor. The full PsyProbe model consistently outperforms baseline and ablation modes in automatic evaluation. User evaluation demonstrates significantly increased engagement intention and improved naturalness compared to baseline. Expert evaluation shows that PsyProbe substantially improves core issue understanding and achieves question rates comparable to professional counselors, validating the effectiveness of systematic state modeling and proactive questioning for therapeutic exploration.
comment: In Findings of the Association for Computational Linguistics: EACL 2026
☆ More at Stake: How Payoff and Language Shape LLM Agent Strategies in Cooperation Dilemmas
As LLMs increasingly act as autonomous agents in interactive and multi-agent settings, understanding their strategic behavior is critical for safety, coordination, and AI-driven social and economic systems. We investigate how payoff magnitude and linguistic context shape LLM strategies in repeated social dilemmas, using a payoff-scaled Prisoner's Dilemma to isolate sensitivity to incentive strength. Across models and languages, we observe consistent behavioral patterns, including incentive-sensitive conditional strategies and cross-linguistic divergence. To interpret these dynamics, we train supervised classifiers on canonical repeated-game strategies and apply them to LLM decisions, revealing systematic, model- and language-dependent behavioral intentions, with linguistic framing sometimes matching or exceeding architectural effects. Our results provide a unified framework for auditing LLMs as strategic agents and highlight cooperation biases with direct implications for AI governance and multi-agent system design.
comment: 14 pages, 10 figures, 4 tables
☆ Optimizing Conversational Quality in Spoken Dialogue Systems with Reinforcement Learning from AI Feedback
Reinforcement learning from human or AI feedback (RLHF/RLAIF) for speech-in/speech-out dialogue systems (SDS) remains underexplored, with prior work largely limited to single semantic rewards applied at the utterance level. Such setups overlook the multi-dimensional and multi-modal nature of conversational quality, which encompasses semantic coherence, audio naturalness, speaker consistency, emotion alignment, and turn-taking behavior. Moreover, they are fundamentally mismatched with duplex spoken dialogue systems that generate responses incrementally, where agents must make decisions based on partial utterances. We address these limitations with the first multi-reward RLAIF framework for SDS, combining semantic, audio-quality, and emotion-consistency rewards. To align utterance-level preferences with incremental, blockwise decoding in duplex models, we apply turn-level preference sampling and aggregate per-block log-probabilities within a single DPO objective. We present the first systematic study of preference learning for improving SDS quality in both multi-turn Chain-of-Thought and blockwise duplex models, and release a multi-reward DPO dataset to support reproducible research. Experiments show that single-reward RLAIF selectively improves its targeted metric, while joint multi-reward training yields consistent gains across semantic quality and audio naturalness. These results highlight the importance of holistic, multi-reward alignment for practical conversational SDS.
☆ Who's in Charge? Disempowerment Patterns in Real-World LLM Usage
Although AI assistants are now deeply embedded in society, there has been limited empirical study of how their usage affects human empowerment. We present the first large-scale empirical analysis of disempowerment patterns in real-world AI assistant interactions, analyzing 1.5 million consumer Claude.ai conversations using a privacy-preserving approach. We focus on situational disempowerment potential, which occurs when AI assistant interactions risk leading users to form distorted perceptions of reality, make inauthentic value judgments, or act in ways misaligned with their values. Quantitatively, we find that severe forms of disempowerment potential occur in fewer than one in a thousand conversations, though rates are substantially higher in personal domains like relationships and lifestyle. Qualitatively, we uncover several concerning patterns, such as validation of persecution narratives and grandiose identities with emphatic sycophantic language, definitive moral judgments about third parties, and complete scripting of value-laden personal communications that users appear to implement verbatim. Analysis of historical trends reveals an increase in the prevalence of disempowerment potential over time. We also find that interactions with greater disempowerment potential receive higher user approval ratings, possibly suggesting a tension between short-term user preferences and long-term human empowerment. Our findings highlight the need for AI systems designed to robustly support human autonomy and flourishing.
☆ Principled Fine-tuning of LLMs from User-Edits: A Medley of Preference, Supervision, and Reward NeurIPS 2025
We study how to fine-tune LLMs using user-edit deployment data consisting of a set of context, an agent's response, and user edits. This deployment data is naturally generated by users in applications such as LLMs-based writing assistants and coding agents. The _natural_ origin of user edits makes it a desired source for adapting and personalizing LLMs. In this setup, there emerges a unification of various feedback types namely preferences, supervised labels, and cost that are typically studied separately in the literature. In this paper, we initiate the theoretical investigation of learning from user edits. We first derive bounds for learning algorithms that learn from each of these feedback types. We prove that these algorithms have different trade-offs depending upon the user, data distribution, and model class. We then propose a simple ensembling procedure to jointly learn from these feedback types. On two domains adapted from Gao et al. 2024, we show our ensembling procedure outperforms these methods that learn from individual feedback. Further, we show that our proposed procedure can robustly adapt to different user-edit distributions at test time.
comment: Accepted at NeurIPS 2025
☆ Who's in Charge? Disempowerment Patterns in Real-World LLM Usage
Although AI assistants are now deeply embedded in society, there has been limited empirical study of how their usage affects human empowerment. We present the first large-scale empirical analysis of disempowerment patterns in real-world AI assistant interactions, analyzing 1.5 million consumer Claude$.$ai conversations using a privacy-preserving approach. We focus on situational disempowerment potential, which occurs when AI assistant interactions risk leading users to form distorted perceptions of reality, make inauthentic value judgments, or act in ways misaligned with their values. Quantitatively, we find that severe forms of disempowerment potential occur in fewer than one in a thousand conversations, though rates are substantially higher in personal domains like relationships and lifestyle. Qualitatively, we uncover several concerning patterns, such as validation of persecution narratives and grandiose identities with emphatic sycophantic language, definitive moral judgments about third parties, and complete scripting of value-laden personal communications that users appear to implement verbatim. Analysis of historical trends reveals an increase in the prevalence of disempowerment potential over time. We also find that interactions with greater disempowerment potential receive higher user approval ratings, possibly suggesting a tension between short-term user preferences and long-term human empowerment. Our findings highlight the need for AI systems designed to robustly support human autonomy and flourishing.
☆ BengaliSent140: A Large-Scale Bengali Binary Sentiment Dataset for Hate and Non-Hate Speech Classification
Sentiment analysis for the Bengali language has attracted increasing research interest in recent years. However, progress remains constrained by the scarcity of large-scale and diverse annotated datasets. Although several Bengali sentiment and hate speech datasets are publicly available, most are limited in size or confined to a single domain, such as social media comments. Consequently, these resources are often insufficient for training modern deep learning based models, which require large volumes of heterogeneous data to learn robust and generalizable representations. In this work, we introduce BengaliSent140, a large-scale Bengali binary sentiment dataset constructed by consolidating seven existing Bengali text datasets into a unified corpus. To ensure consistency across sources, heterogeneous annotation schemes are systematically harmonized into a binary sentiment formulation with two classes: Not Hate (0) and Hate (1). The resulting dataset comprises 139,792 unique text samples, including 68,548 hate and 71,244 not-hate instances, yielding a relatively balanced class distribution. By integrating data from multiple sources and domains, BengaliSent140 offers broader linguistic and contextual coverage than existing Bengali sentiment datasets and provides a strong foundation for training and benchmarking deep learning models. Baseline experimental results are also reported to demonstrate the practical usability of the dataset. The dataset is publicly available at https://www.kaggle.com/datasets/akifislam/bengalisent140/
comment: Dataset paper. 6 pages, 3 figures. 4 Tables, Includes a publicly released Bengali sentiment dataset on Kaggle (BengaliSent140) and baseline experimental results
☆ Rewarding Intellectual Humility Learning When Not To Answer In Large Language Models
Large Language Models (LLMs) often produce hallucinated or unverifiable content, undermining their reliability in factual domains. This work investigates Reinforcement Learning with Verifiable Rewards (RLVR) as a training paradigm that explicitly rewards abstention ("I don't know") alongside correctness to promote intellectual humility. We fine-tune and evaluate Granite-3.3-2B-Instruct and Qwen-3-4B-Instruct on the MedMCQA and Hendrycks Math benchmarks using a ternary reward structure ($-1$, r_abs, 1) under varying abstention reward structures. We further study the effect of combining RLVR with supervised fine-tuning strategies that teach abstention prior to reinforcement learning. Our results show that moderate abstention rewards (r_abs $\approx -0.25$ to 0.3) consistently reduce incorrect responses without severe accuracy degradation on multiple-choice tasks, with larger models exhibiting greater robustness to abstention incentives. On open-ended question answering, we observe limitations due to insufficient exploration, which can be partially mitigated through supervised abstention training. Overall, these findings demonstrate the feasibility and flexibility of verifiable reward design as a practical approach for hallucination mitigation in language models. Reproducible code for our abstention training framework is available here https://github.com/Mystic-Slice/rl-abstention.
☆ Look in the Middle: Structural Anchor Pruning for Scalable Visual RAG Indexing
Recent Vision-Language Models (e.g., ColPali) enable fine-grained Visual Document Retrieval (VDR) but incur prohibitive index vector size overheads. Training-free pruning solutions (e.g., EOS-attention based methods) can reduce index vector size by approximately 60% without model adaptation, but often underperform random selection in high-compression scenarios (> 80%). Prior research (e.g., Light-ColPali) attributes this to the conclusion that visual token importance is inherently query-dependent, thereby questioning the feasibility of training-free pruning. In this work, we propose Structural Anchor Pruning (SAP), a training-free pruning method that identifies key visual patches from middle layers to achieve high performance compression. We also introduce Oracle Score Retention (OSR) protocol to evaluate how layer-wise information affects compression efficiency. Evaluations on the ViDoRe benchmark demonstrate that SAP reduces index vectors by over 90% while maintaining robust retrieval fidelity, providing a highly scalable solution for Visual RAG. Furthermore, our OSR-based analysis reveals that semantic structural anchor patches persist in the middle layers, unlike traditional pruning solutions that focus on the final layer where structural signals dissipate.
comment: 18 pages, 6 figures, 11 tables
☆ FFE-Hallu:Hallucinations in Fixed Figurative Expressions:Benchmark of Idioms and Proverbs in the Persian Language EACL 2026
Figurative language, particularly fixed figurative expressions (FFEs) such as idioms and proverbs, poses persistent challenges for large language models (LLMs). Unlike literal phrases, FFEs are culturally grounded, largely non-compositional, and conventionally fixed, making them especially vulnerable to figurative hallucination. We define figurative hallucination as the generation or endorsement of expressions that sound idiomatic and plausible but do not exist as authentic figurative expressions in the target language. We introduce FFEHallu, the first comprehensive benchmark for evaluating figurative hallucination in LLMs, with a focus on Persian, a linguistically rich yet underrepresented language. FFEHallu consists of 600 carefully curated instances spanning three complementary tasks: (i) FFE generation from meaning, (ii) detection of fabricated FFEs across four controlled construction categories, and (iii) FFE to FFE translation from English to Persian. Evaluating six state of the art multilingual LLMs, we find systematic weaknesses in figurative competence and cultural grounding. While models such as GPT4.1 demonstrate relatively strong performance in rejecting fabricated FFEs and retrieving authentic ones, most models struggle to reliably distinguish real expressions from high quality fabrications and frequently hallucinate during cross lingual translation. These findings reveal substantial gaps in current LLMs handling of figurative language and underscore the need for targeted benchmarks to assess and mitigate figurative hallucination.
comment: EACL 2026
☆ Counterfactual Cultural Cues Reduce Medical QA Accuracy in LLMs: Identifier vs Context Effects
Engineering sustainable and equitable healthcare requires medical language models that do not change clinically correct diagnoses when presented with non-decisive cultural information. We introduce a counterfactual benchmark that expands 150 MedQA test items into 1650 variants by inserting culture-related (i) identifier tokens, (ii) contextual cues, or (iii) their combination for three groups (Indigenous Canadian, Middle-Eastern Muslim, Southeast Asian), plus a length-matched neutral control, where a clinician verified that the gold answer remains invariant in all variants. We evaluate GPT-5.2, Llama-3.1-8B, DeepSeek-R1, and MedGemma (4B/27B) under option-only and brief-explanation prompting. Across models, cultural cues significantly affect accuracy (Cochran's Q, $p<10^-14$), with the largest degradation when identifier and context co-occur (up to 3-7 percentage points under option-only prompting), while neutral edits produce smaller, non-systematic changes. A human-validated rubric ($κ=0.76$) applied via an LLM-as-judge shows that more than half of culturally grounded explanations end in an incorrect answer, linking culture-referential reasoning to diagnostic failure. We release prompts and augmentations to support evaluation and mitigation of culturally induced diagnostic errors.
☆ VERGE: Formal Refinement and Guidance Engine for Verifiable LLM Reasoning
Despite the syntactic fluency of Large Language Models (LLMs), ensuring their logical correctness in high-stakes domains remains a fundamental challenge. We present a neurosymbolic framework that combines LLMs with SMT solvers to produce verification-guided answers through iterative refinement. Our approach decomposes LLM outputs into atomic claims, autoformalizes them into first-order logic, and verifies their logical consistency using automated theorem proving. We introduce three key innovations: (1) multi-model consensus via formal semantic equivalence checking to ensure logic-level alignment between candidates, eliminating the syntactic bias of surface-form metrics, (2) semantic routing that directs different claim types to appropriate verification strategies: symbolic solvers for logical claims and LLM ensembles for commonsense reasoning, and (3) precise logical error localization via Minimal Correction Subsets (MCS), which pinpoint the exact subset of claims to revise, transforming binary failure signals into actionable feedback. Our framework classifies claims by their logical status and aggregates multiple verification signals into a unified score with variance-based penalty. The system iteratively refines answers using structured feedback until acceptance criteria are met or convergence is achieved. This hybrid approach delivers formal guarantees where possible and consensus verification elsewhere, advancing trustworthy AI. With the GPT-OSS-120B model, VERGE demonstrates an average performance uplift of 18.7% at convergence across a set of reasoning benchmarks compared to single-pass approaches.
☆ Insight Agents: An LLM-Based Multi-Agent System for Data Insights SIGIR 2025
Today, E-commerce sellers face several key challenges, including difficulties in discovering and effectively utilizing available programs and tools, and struggling to understand and utilize rich data from various tools. We therefore aim to develop Insight Agents (IA), a conversational multi-agent Data Insight system, to provide E-commerce sellers with personalized data and business insights through automated information retrieval. Our hypothesis is that IA will serve as a force multiplier for sellers, thereby driving incremental seller adoption by reducing the effort required and increase speed at which sellers make good business decisions. In this paper, we introduce this novel LLM-backed end-to-end agentic system built on a plan-and-execute paradigm and designed for comprehensive coverage, high accuracy, and low latency. It features a hierarchical multi-agent structure, consisting of manager agent and two worker agents: data presentation and insight generation, for efficient information retrieval and problem-solving. We design a simple yet effective ML solution for manager agent that combines Out-of-Domain (OOD) detection using a lightweight encoder-decoder model and agent routing through a BERT-based classifier, optimizing both accuracy and latency. Within the two worker agents, a strategic planning is designed for API-based data model that breaks down queries into granular components to generate more accurate responses, and domain knowledge is dynamically injected to to enhance the insight generator. IA has been launched for Amazon sellers in US, which has achieved high accuracy of 90% based on human evaluation, with latency of P90 below 15s.
comment: Accepted to SIGIR 2025. DOI: 10.1145/3726302.3731959
☆ TAIGR: Towards Modeling Influencer Content on Social Media via Structured, Pragmatic Inference
Health influencers play a growing role in shaping public beliefs, yet their content is often conveyed through conversational narratives and rhetorical strategies rather than explicit factual claims. As a result, claim-centric verification methods struggle to capture the pragmatic meaning of influencer discourse. In this paper, we propose TAIGR (Takeaway Argumentation Inference with Grounded References), a structured framework designed to analyze influencer discourse, which operates in three stages: (1) identifying the core influencer recommendation--takeaway; (2) constructing an argumentation graph that captures influencer justification for the takeaway; (3) performing factor graph-based probabilistic inference to validate the takeaway. We evaluate TAIGR on a content validation task over influencer video transcripts on health, showing that accurate validation requires modeling the discourse's pragmatic and argumentative structure rather than treating transcripts as flat collections of claims.
☆ Semantic Uncertainty Quantification of Hallucinations in LLMs: A Quantum Tensor Network Based Method
Large language models (LLMs) exhibit strong generative capabilities but remain vulnerable to confabulations, fluent yet unreliable outputs that vary arbitrarily even under identical prompts. Leveraging a quantum tensor network based pipeline, we propose a quantum physics inspired uncertainty quantification framework that accounts for aleatoric uncertainty in token sequence probability for semantic equivalence based clustering of LLM generations. This offers a principled and interpretable scheme for hallucination detection. We further introduce an entropy maximization strategy that prioritizes high certainty, semantically coherent outputs and highlights entropy regions where LLM decisions are likely to be unreliable, offering practical guidelines for when human oversight is warranted. We evaluate the robustness of our scheme under different generation lengths and quantization levels, dimensions overlooked in prior studies, demonstrating that our approach remains reliable even in resource constrained deployments. A total of 116 experiments on TriviaQA, NQ, SVAMP, and SQuAD across multiple architectures including Mistral-7B, Mistral-7B-instruct, Falcon-rw-1b, LLaMA-3.2-1b, LLaMA-2-13b-chat, LLaMA-2-7b-chat, LLaMA-2-13b, and LLaMA-2-7b show consistent improvements in AUROC and AURAC over state of the art baselines.
☆ LinguaMap: Which Layers of LLMs Speak Your Language and How to Tune Them?
Despite multilingual pretraining, large language models often struggle with non-English tasks, particularly in language control, the ability to respond in the intended language. We identify and characterize two key failure modes: the multilingual transfer bottleneck (correct language, incorrect task response) and the language consistency bottleneck (correct task response, wrong language). To systematically surface these issues, we design a four-scenario evaluation protocol spanning MMLU, MGSM, and XQuAD benchmarks. To probe these issues with interpretability, we extend logit lens analysis to track language probabilities layer by layer and compute cross-lingual semantic similarity of hidden states. The results reveal a three-phase internal structure: early layers align inputs into a shared semantic space, middle layers perform task reasoning, and late layers drive language-specific generation. Guided by these insights, we introduce selective fine-tuning of only the final layers responsible for language control. On Qwen-3-32B and Bloom-7.1B, this method achieves over 98 percent language consistency across six languages while fine-tuning only 3-5 percent of parameters, without sacrificing task accuracy. Importantly, this result is nearly identical to that of full-scope fine-tuning (for example, above 98 percent language consistency for both methods across all prompt scenarios) but uses a fraction of the computational resources. To the best of our knowledge, this is the first approach to leverage layer-localization of language control for efficient multilingual adaptation.
☆ On the Effectiveness of LLM-Specific Fine-Tuning for Detecting AI-Generated Text
The rapid progress of large language models has enabled the generation of text that closely resembles human writing, creating challenges for authenticity verification in education, publishing, and digital security. Detecting AI-generated text has therefore become a crucial technical and ethical issue. This paper presents a comprehensive study of AI-generated text detection based on large-scale corpora and novel training strategies. We introduce a 1-billion-token corpus of human-authored texts spanning multiple genres and a 1.9-billion-token corpus of AI-generated texts produced by prompting a variety of LLMs across diverse domains. Using these resources, we develop and evaluate numerous detection models and propose two novel training paradigms: Per LLM and Per LLM family fine-tuning. Across a 100-million-token benchmark covering 21 large language models, our best fine-tuned detector achieves up to $99.6\%$ token-level accuracy, substantially outperforming existing open-source baselines.
comment: 34 pages, 6 figures. Under review at Information Sciences
♻ ☆ "Not in My Backyard": LLMs Uncover Online and Offline Social Biases Against Homelessnes
Homelessness is a persistent social challenge, impacting millions worldwide. Over 876,000 people experienced homelessness (PEH) in the U.S. in 2025. Social bias is a significant barrier to alleviation, shaping public perception and influencing policymaking. Given that online textual media and offline city council discourse reflect and influence part of public opinion, it provides valuable insights to identify and track social biases against PEH. We present a new, manually-annotated multi-domain dataset compiled from Reddit, X (formerly Twitter), news articles, and city council meeting minutes across ten U.S. cities. Our 16-category multi-label taxonomy creates a challenging long-tail classification problem: some categories appear in less than 1% of samples, while others exceed 70%. We find that small human-annotated datasets (1,702 samples) are insufficient for training effective classifiers, whether used to fine-tune encoder models or as few-shot examples for LLMs. To address this, we use GPT-4.1 to generate pseudo-labels on a larger unlabeled corpus. Training on this expanded dataset enables even small encoder models (ModernBERT, 150M parameters) to achieve 35.23 macro-F1, approaching GPT-4.1's 41.57. This demonstrates that \textbf{data quantity matters more than model size}, enabling low-cost, privacy-preserving deployment without relying on commercial APIs. Our results reveal that negative bias against PEH is prevalent both offline and online (especially on Reddit), with "not in my backyard" narratives showing the highest engagement. These findings uncover a type of ostracism that directly impacts poverty-reduction policymaking and provide actionable insights for practitioners addressing homelessness.
♻ ☆ LOGICAL-COMMONSENSEQA: A Benchmark for Logical Commonsense Reasoning
Commonsense reasoning often involves evaluating multiple plausible interpretations rather than selecting a single atomic answer, yet most benchmarks rely on single-label evaluation, obscuring whether statements are jointly plausible, mutually exclusive, or jointly implausible. We introduce LOGICAL-COMMONSENSEQA, a benchmark that re-frames commonsense reasoning as logical composition over pairs of atomic statements using plausibility-level operators (AND, OR, NEITHER/NOR). Evaluating instruction-tuned, reasoning-specialized, and fine-tuned models under zero-shot, few-shot, and chain-of-thought prompting, we find that while models perform reasonably on conjunctive and moderately on disjunctive reasoning, performance degrades sharply on negation-based questions. LOGICAL-COMMONSENSEQA exposes fundamental reasoning limitations and provides a controlled framework for advancing compositional commonsense reasoning.
♻ ☆ TableMaster: A Recipe to Advance Table Understanding with Language Models
Tables serve as a fundamental format for representing structured relational data. While current language models (LMs) excel at many text-based tasks, they still face challenges in table understanding due to the complex characteristics of tabular data, such as their structured nature. In this paper, we aim to enhance LMs for improved table understanding. We identify four key challenges: 1) difficulty in locating target data, 2) deficiency in table semantics, 3) numerical inaccuracies in textual reasoning, and 4) semantic inflexibility in symbolic reasoning. To address these issues, we propose TableMaster, a recipe and comprehensive framework that integrates multiple solutions to overcome these obstacles. TableMaster first extracts relevant table content and verbalizes it with enriched semantic context. Additionally, we introduce adaptive reasoning, a flexible approach that dynamically adjusts between textual and symbolic reasoning, tailoring the reasoning process to each query. Extensive analyses and experiments demonstrate our findings and the effectiveness of TableMaster. On the WikiTQ dataset, TableMaster achieves an accuracy of 78.13% using GPT-4o-mini, surpassing existing baselines. We hope this work will serve as a practical step toward more robust and reliable table understanding.
♻ ☆ The Sparse Frontier: Sparse Attention Trade-offs in Transformer LLMs
Sparse attention offers a promising strategy to extend long-context capabilities in Transformer LLMs, yet its efficiency-accuracy trade-offs remain unclear due to the lack of comprehensive evaluation. We address this gap with the largest-scale empirical analysis to date of training-free sparse attention, evaluating six methods across multiple model families and sizes, sequences up to 128K tokens, and sparsity levels up to 0.95 (i.e., $1/20$ attention budget) on nine diverse tasks. We first organise the rapidly evolving landscape of sparse attention methods into a taxonomy along four design axes. Our analysis then yields actionable insights: 1) sparse attention is effective -- larger sparse models outperform smaller dense ones at equivalent cost, improving the Pareto frontier; 2) due to computational constraints, token-to-page importance estimation is unfeasible during prefilling, where the choice of an alternative solution (global-to-token or block-to-block) depends on the task, but is possible during decoding, enabling better generalisation and tolerance to higher sparsity; 3) longer sequences tolerate higher sparsity, suggesting that fixed-budget methods in production are suboptimal. Together, these findings provide practical guidance for deploying sparse attention and methodological recommendations for future evaluations. Our code is available at https://github.com/PiotrNawrot/sparse-frontier.
♻ ☆ Efficient and Transferable Agentic Knowledge Graph RAG via Reinforcement Learning
Knowledge-graph retrieval-augmented generation (KG-RAG) couples large language models (LLMs) with structured, verifiable knowledge graphs (KGs) to reduce hallucinations and expose reasoning traces. However, many KG-RAG systems compose multiple LLM modules (e.g planning, reasoning, and responding), inflating inference cost and binding behavior to a specific target KG. To address this, we introduce KG-R1, an agentic KG retrieval-augmented generation (KG-RAG) framework through reinforcement learning (RL). KG-R1 utilizes a single agent that interacts with KGs as its environment, learning to retrieve at each step and incorporating the retrieved information into its reasoning and generation. The process is optimized through end-to-end RL. In controlled experiments across Knowledge-Graph Question Answering (KGQA) benchmarks, our method demonstrates both efficiency and transferability: Using Qwen-2.5-3B, KG-R1 improves answer accuracy with fewer generation tokens than prior multi-module workflow methods that use larger foundation or fine-tuned models. Furthermore, KG-R1 enables plug and play: after training, it maintains strong accuracy on new KGs without modification. These properties make KG-R1 a promising KG-RAG framework for real-world deployment. Our code is publicly available at https://github.com/Jinyeop3110/KG-R1.
comment: Wrong numbers are reported for main results
♻ ☆ PROPHET: An Inferable Future Forecasting Benchmark with Causal Intervened Likelihood Estimation
Predicting future events based on news on the Web stands as one of the ultimate aspirations of artificial intelligence. Recent advances in large language model (LLM)-based systems have shown remarkable potential in forecasting future events, thereby garnering significant interest in the research community. Currently, several benchmarks have been established to evaluate the forecasting capabilities by formalizing the event prediction as a retrieval-augmented generation (RAG)-and-reasoning task. In these benchmarks, each prediction question is answered with relevant retrieved news articles downloaded from the Web. However, because there is no consideration of whether the questions can be supported by valid or sufficient supporting rationales, some of the questions in these benchmarks may be inherently noninferable. To address this issue, we introduce a new benchmark, PROPHET, which comprises inferable forecasting questions paired with relevant news for retrieval. To ensure the inferability of the benchmark, we propose Causal Intervened Likelihood (CIL), a statistical measure that assesses inferability through causal inference. In constructing this benchmark, we first collected recent trend forecasting questions, and then filtered the data using CIL resulting in an inferable benchmark for future forecasting. Through extensive experiments, we first demonstrate the validity of CIL and in-depth investigations into future forecasting with the aid of CIL. Subsequently, we evaluate several representative prediction methods on PROPHET. The overall results draws valuable insights for task of future directions.
♻ ☆ APEX-Agents
We introduce the AI Productivity Index for Agents (APEX-Agents), a benchmark for assessing whether AI agents can execute long-horizon, cross-application tasks created by investment banking analysts, management consultants, and corporate lawyers. APEX-Agents requires agents to navigate realistic work environments with files and tools. We test eight agents for the leaderboard using Pass@1. Gemini 3 Flash (Thinking=High) achieves the highest score of 24.0%, followed by GPT-5.2 (Thinking=High), Claude Opus 4.5 (Thinking=High), and Gemini 3 Pro (Thinking=High). We open source the APEX-Agents benchmark (n=480) with all prompts, rubrics, gold outputs, files, and metadata. We also open-source Archipelago, our infrastructure for agent execution and evaluation.
♻ ☆ ReVision: A Dataset and Baseline VLM for Privacy-Preserving Task-Oriented Visual Instruction Rewriting AACL 2025
Efficient and privacy-preserving multimodal interaction is essential as AR, VR, and modern smartphones with powerful cameras become primary interfaces for human-computer communication. Existing powerful large vision-language models (VLMs) enabling multimodal interaction often rely on cloud-based processing, raising significant concerns about (1) visual privacy by transmitting sensitive vision data to servers, and (2) their limited real-time, on-device usability. This paper explores Visual Instruction Rewriting, a novel approach that transforms multimodal instructions into text-only commands, allowing seamless integration of lightweight on-device instruction rewriter VLMs (250M parameters) with existing conversational AI systems, enhancing vision data privacy. To achieve this, we present a dataset of over 39,000 examples across 14 domains and develop a compact VLM, pretrained on image captioning datasets and fine-tuned for instruction rewriting. Experimental results, evaluated through NLG metrics such as BLEU, METEOR, and ROUGE, along with semantic parsing analysis, demonstrate that even a quantized version of the model (<500MB storage footprint) can achieve effective instruction rewriting, thus enabling privacy-focused, multimodal AI applications.
comment: In Proceedings of the IJCNLP-AACL 2025
♻ ☆ CAMEO: Collection of Multilingual Emotional Speech Corpora ICASSP 2026
This paper presents CAMEO -- a curated collection of multilingual emotional speech datasets designed to facilitate research in emotion recognition and other speech-related tasks. The main objectives were to ensure easy access to the data, to allow reproducibility of the results, and to provide a standardized benchmark for evaluating speech emotion recognition (SER) systems across different emotional states and languages. The paper describes the dataset selection criteria, the curation and normalization process, and provides performance results for several models. The collection, along with metadata, and a leaderboard, is publicly available via the Hugging Face platform.
comment: Accepted for ICASSP 2026
♻ ☆ SCoPE VLM: Selective Context Processing for Efficient Document Navigation in Vision-Language Models
Understanding long-context visual information remains a fundamental challenge for vision-language models, particularly in agentic tasks such as GUI control and web navigation. While web pages and GUI environments are inherently structured documents, current VLMs typically neglect decision-oriented document understanding in their training objectives. Existing approaches primarily extend visual embeddings to process long, high-resolution inputs, but these methods are memory-intensive and impractical for locally deployable solutions. To address these issues, we propose SCoPE VLM, a document navigation expert that leverages a novel Chain of Scroll mechanism to selectively and recursively navigate documents, focusing exclusively on relevant segments. We introduce a dedicated data generation pipeline to construct informative Chain of Scroll trajectories and Episodic Group Relative Policy Optimization, a tailored reinforcement learning method to bridge the gap between training and inference. Our method substantially reduces memory usage and effectively models human-like reading behaviors. To the best of our knowledge, SCoPE VLM is the first framework to explicitly model agentic reading patterns in multi-page document question answering, advancing the capabilities of multimodal agents.
♻ ☆ BASIL: Bayesian Assessment of Sycophancy in LLMs
Sycophancy (overly agreeable or flattering behavior) poses a fundamental challenge for human-AI collaboration, particularly in high-stakes decision-making domains such as health, law, and education. A central difficulty in studying sycophancy in large language models (LLMs) is disentangling sycophantic belief shifts from rational changes in behavior driven by new evidence or user-provided information. Existing approaches either measure descriptive behavior changes or apply normative evaluations that rely on objective ground truth, limiting their applicability to subjective or uncertain tasks. We introduce a Bayesian probabilistic framework, grounded in behavioral economics and rational decision theory, that explicitly separates sycophancy from rational belief updating. Within this framework, we achieve three objectives: (i) a descriptive metric that measures sycophancy while controlling for rational responses to evidence; (ii) a normative metric that quantifies how sycophancy leads models astray from Bayesian-consistent belief updating; and (iii) the ability to apply both metrics in settings without ground-truth labels. Applying our framework across multiple LLMs and three uncertainty-driven tasks, we find robust evidence of sycophantic belief shifts and show that their impact on rationality depends on whether models systematically over- or under-update their beliefs. Finally, we demonstrate that a post-hoc calibration method and two fine-tuning strategies (SFT and DPO) substantially reduce Bayesian inconsistency, with particularly strong improvements under explicit sycophancy prompting.
♻ ☆ Do Psychometric Tests Work for Large Language Models? Evaluation of Tests on Sexism, Racism, and Morality
Psychometric tests are increasingly used to assess psychological constructs in large language models (LLMs). However, it remains unclear whether these tests -- originally developed for humans -- yield meaningful results when applied to LLMs. In this study, we systematically evaluate the reliability and validity of human psychometric tests on 17 LLMs for three constructs: sexism, racism, and morality. We find moderate reliability across multiple item and prompt variations. Validity is evaluated through both convergent (i.e., testing theory-based inter-test correlations) and ecological approaches (i.e., testing the alignment between tests scores and behavior in real-world downstream tasks). Crucially, we find that psychometric test scores do not align, and in some cases even negatively correlate with, model behavior in downstream tasks, indicating low ecological validity. Our results highlight that systematic evaluations of psychometric tests on LLMs are essential before interpreting their scores. Our findings also suggest that psychometric tests designed for humans cannot be applied directly to LLMs without adaptation.
♻ ☆ Language Agents for Hypothesis-driven Clinical Decision Making with Reinforcement Learning
Clinical decision-making is a dynamic, interactive, and cyclic process where doctors have to repeatedly decide on which clinical action to perform and consider newly uncovered information for diagnosis and treatment. Large Language Models (LLMs) have the potential to support clinicians in this process, however, most applications of LLMs in clinical decision support suffer from one of two limitations: Either they assume the unrealistic scenario of immediate availability of all patient information and do not model the interactive and iterative investigation process, or they restrict themselves to the limited "out-of-the-box" capabilities of large pre-trained models without performing task-specific training. In contrast to this, we propose to model clinical decision-making for diagnosis with a hypothesis-driven uncertainty-aware language agent, LA-CDM, that converges towards a diagnosis via repeatedly requesting and interpreting relevant tests. Using a hybrid training paradigm combining supervised and reinforcement learning, we train LA-CDM with three objectives targeting critical aspects of clinical decision-making: accurate hypothesis generation, hypothesis uncertainty estimation, and efficient decision-making. We evaluate our methodology on MIMIC-CDM, a real-world dataset covering four abdominal diseases containing various clinical tests and show the benefit of explicitly training clinical decision-making for increasing diagnostic performance and efficiency.
♻ ☆ Rewarding Doubt: A Reinforcement Learning Approach to Calibrated Confidence Expression of Large Language Models
A safe and trustworthy use of Large Language Models (LLMs) requires an accurate expression of confidence in their answers. We propose a novel Reinforcement Learning approach that allows to directly fine-tune LLMs to express calibrated confidence estimates alongside their answers to factual questions. Our method optimizes a reward based on the logarithmic scoring rule, explicitly penalizing both over- and under-confidence. This encourages the model to align its confidence estimates with the actual predictive accuracy. The optimal policy under our reward design would result in perfectly calibrated confidence expressions. Unlike prior approaches that decouple confidence estimation from response generation, our method integrates confidence calibration seamlessly into the generative process of the LLM. Empirically, we demonstrate that models trained with our approach exhibit substantially improved calibration and generalize to unseen tasks without further fine-tuning, suggesting the emergence of general confidence awareness.
♻ ☆ What Does Neuro Mean to Cardio? Investigating the Role of Clinical Specialty Data in Medical LLMs
In this paper, we introduce S-MedQA, an English medical question-answering (QA) dataset designed for benchmarking large language models (LLMs) in fine-grained clinical specialties. S-MedQA consists of over 24k examples, covering 15 medical specialties, with QA pairs that can have multiple specialty annotations, such as when a question is cross-disciplinary. The dataset is constructed using both machine and expert verification to maximize data availability and reliability. We use S-MedQA to investigate the role of clinical specialties in the knowledge-intensive scenario of medical QA. Our results show that training on data from a clinical specialty does not necessarily lead to the best performance on that specialty. Additionally, regardless of the specialty the LLM was fine-tuned on, token probabilities of clinically relevant terms consistently increase across all specialties. Based on these findings, we hypothesize that improvement gains, at least in our settings, are derived primarily from domain shifting (e.g., general to medical) rather than from injecting specialty-specific knowledge. This suggests a need to rethink the role of fine-tuning data in the medical domain. To encourage further advancements in the clinical NLP field, we release S-MedQA along with all the code required to reproduce our experiments for the research community.
♻ ☆ A-IPO: Adaptive Intent-driven Preference Optimization
Human preferences are diverse and dynamic, shaped by regional, cultural, and social factors. Existing alignment methods like Direct Preference Optimization (DPO) and its variants often default to majority views, overlooking minority opinions and failing to capture latent user intentions in prompts. To address these limitations, we introduce \underline{\textbf{A}}daptive \textbf{\underline{I}}ntent-driven \textbf{\underline{P}}reference \textbf{\underline{O}}ptimization (\textbf{A-IPO}). Specifically,A-IPO introduces an intention module that infers the latent intent behind each user prompt and explicitly incorporates this inferred intent into the reward function, encouraging stronger alignment between the preferred model's responses and the user's underlying intentions. We demonstrate, both theoretically and empirically, that incorporating an intention--response similarity term increases the preference margin (by a positive shift of $λ\,Δ\mathrm{sim}$ in the log-odds), resulting in clearer separation between preferred and dispreferred responses compared to DPO. For evaluation, we introduce two new benchmarks, Real-pref, Attack-pref along with an extended version of an existing dataset, GlobalOpinionQA-Ext, to assess real-world and adversarial preference alignment. Through explicit modeling of diverse user intents,A-IPO facilitates pluralistic preference optimization while simultaneously enhancing adversarial robustness in preference alignment. Comprehensive empirical evaluation demonstrates that A-IPO consistently surpasses existing baselines, yielding substantial improvements across key metrics: up to +24.8 win-rate and +45.6 Response-Intention Consistency on Real-pref; up to +38.6 Response Similarity and +52.2 Defense Success Rate on Attack-pref; and up to +54.6 Intention Consistency Score on GlobalOpinionQA-Ext.
♻ ☆ Entropy-Gated Branching for Efficient Test-Time Reasoning
Test-time compute methods can significantly improve the reasoning capabilities and problem-solving accuracy of large language models (LLMs). However, these approaches require substantially more computational resources, with most compute wasted on exploring low-diversity branches where the model already exhibits high confidence. We observe that a small subset of uncertain reasoning steps has a disproportionately large impact on final prediction accuracy, and branching at these critical junctures tends to yield more diverse and higher-quality candidate reasoning steps. We propose Entropy-Gated Branching (EGB), which branches only at high-uncertainty steps and prunes expansions with a lightweight verifier. On mathematical and financial reasoning benchmarks, EGB improves accuracy by 22.6% over standard inference while operating 31%-75% faster across math benchmarks than test-time beam search with higher performance. Our results show that dynamic resource allocation during inference can substantially improve both efficiency and effectiveness, offering a more scalable pathway to enhanced LLM reasoning capabilities.
♻ ☆ Web-CogReasoner: Towards Knowledge-Induced Cognitive Reasoning for Web Agents ICLR 2026
Multimodal large-scale models have significantly advanced the development of web agents, enabling perception and interaction with digital environments akin to human cognition. In this paper, we argue that web agents must first acquire sufficient knowledge to effectively engage in cognitive reasoning. Therefore, we decompose a web agent's capabilities into two essential stages: knowledge content learning and cognitive processes. To formalize this, we propose Web-CogKnowledge Framework, categorizing knowledge as Factual, Conceptual, and Procedural. In this framework, knowledge content learning corresponds to the agent's processes of Memorizing and Understanding, which rely on the first two knowledge types, representing the "what" of learning. Conversely, cognitive processes correspond to Exploring, grounded in Procedural knowledge, defining the "how" of reasoning and action. To facilitate knowledge acquisition, we construct the Web-CogDataset, a structured resource curated from 14 real-world websites, designed to systematically instill core knowledge necessary for web agent. This dataset serves as the agent's conceptual grounding-the "nouns" upon which comprehension is built-as well as the basis for learning how to reason and act. Building on this foundation, we operationalize these processes through a novel knowledge-driven Chain-of-Thought (CoT) reasoning framework, developing and training our proposed agent, the Web-CogReasoner. Extensive experimentation reveals its significant superiority over existing models, especially in generalizing to unseen tasks where structured knowledge is decisive. To enable rigorous evaluation, we introduce the Web-CogBench, a comprehensive evaluation suite designed to assess and compare agent performance across the delineated knowledge domains and cognitive capabilities. Our code and data is open sourced at https://github.com/Gnonymous/Web-CogReasoner
comment: Accepted to ICLR 2026. Our code and data is released at https://github.com/Gnonymous/Web-CogReasoner
♻ ☆ Human Cognitive Benchmarks Reveal Foundational Visual Gaps in MLLMs
Humans develop perception through a bottom-up hierarchy: from basic primitives and Gestalt principles to high-level semantics. In contrast, current Multimodal Large Language Models (MLLMs) are trained directly on complex downstream tasks, often bypassing these foundational visual capabilities. To systematically investigate this gap, we introduce VisFactor, a benchmark that digitizes 20 vision-centric subtests from FRCT, a well-established cognitive psychology assessment spanning four domains of human visual cognition. Furthermore, we design algorithms to automatically construct and validate unlimited test cases with controllable difficulty. Using VisFactor, we evaluate 23 frontier MLLMs, including both proprietary (e.g., GPT, Gemini) and open-source (e.g., LLaMA, Qwen) models. The best model achieves a score of only 30.17%. Models consistently fail on tasks such as mental rotation, spatial relation inference, and figure-ground discrimination, regardless of model size or prompting strategy. These findings suggest that performance improvements on existing general benchmarks might represent castles in the air instead of a genuine mastery of human-like visual cognition.
comment: Update: Evaluated 23 SOTA MLLMs
♻ ☆ LangForce: Bayesian Decomposition of Vision Language Action Models via Latent Action Queries
Vision-Language-Action (VLA) models have shown promise in robot manipulation but often struggle to generalize to new instructions or complex multi-task scenarios. We identify a critical pathology in current training paradigms where goal-driven data collection creates a dataset bias. In such datasets, language instructions are highly predictable from visual observations alone, causing the conditional mutual information between instructions and actions to vanish, a phenomenon we term Information Collapse. Consequently, models degenerate into vision-only policies that ignore language constraints and fail in out-of-distribution (OOD) settings. To address this, we propose LangForce, a novel framework that enforces instruction following via Bayesian decomposition. By introducing learnable Latent Action Queries, we construct a dual-branch architecture to estimate both a vision-only prior $p(a \mid v)$ and a language-conditioned posterior $π(a \mid v, \ell)$. We then optimize the policy to maximize the conditional Pointwise Mutual Information (PMI) between actions and instructions. This objective effectively penalizes the vision shortcut and rewards actions that explicitly explain the language command. Without requiring new data, LangForce significantly improves generalization. Extensive experiments across on SimplerEnv and RoboCasa demonstrate substantial gains, including an 11.3% improvement on the challenging OOD SimplerEnv benchmark, validating the ability of our approach to robustly ground language in action.
♻ ☆ Prompt-Counterfactual Explanations for Generative AI System Behavior
As generative AI systems become integrated into real-world applications, organizations increasingly need to be able to understand and interpret their behavior. In particular, decision-makers need to understand what causes generative AI systems to exhibit specific output characteristics. Within this general topic, this paper examines a key question: what is it about the input -- the prompt -- that causes an LLM-based generative AI system to produce output that exhibits specific characteristics, such as toxicity, negative sentiment, or political bias. To examine this question, we adapt a common technique from the Explainable AI literature: counterfactual explanations. We explain why traditional counterfactual explanations cannot be applied directly to generative AI systems, due to several differences in how generative AI systems function. We then propose a flexible framework that adapts counterfactual explanations to non-deterministic, generative AI systems in scenarios where downstream classifiers can reveal key characteristics of their outputs. Based on this framework, we introduce an algorithm for generating prompt-counterfactual explanations (PCEs). Finally, we demonstrate the production of counterfactual explanations for generative AI systems with three case studies, examining different output characteristics (viz., political leaning, toxicity, and sentiment). The case studies further show that PCEs can streamline prompt engineering to suppress undesirable output characteristics and can enhance red-teaming efforts to uncover additional prompts that elicit undesirable outputs. Ultimately, this work lays a foundation for prompt-focused interpretability in generative AI: a capability that will become indispensable as these models are entrusted with higher-stakes tasks and subject to emerging regulatory requirements for transparency and accountability.
♻ ☆ Less is More: Compact Clue Selection for Efficient Retrieval-Augmented Generation Reasoning WWW'26
Current RAG retrievers are designed primarily for human readers, emphasizing complete, readable, and coherent paragraphs. However, Large Language Models (LLMs) benefit more from precise, compact, and well-structured input, which enhances reasoning quality and efficiency. Existing methods rely on reranking or summarization to identify key sentences, but may introduce semantic breaks and unfaithfulness. Thus, efficiently extracting and organizing answer-relevant clues from large-scale documents while reducing LLM reasoning costs remains challenging in RAG systems. Inspired by Occam's razor, we frame LLM-centric retrieval as MinMax optimization: maximizing the extraction of potential clues and reranking them for well-organization, while minimizing reasoning costs by truncating to the smallest sufficient set of clues. In this paper, we propose CompSelect, a compact clue selection mechanism for LLM-centric RAG, consisting of a clue extractor, a reranker, and a truncator. (1) The clue extractor first uses answer-containing sentences as fine-tuning targets, aiming to extract sufficient potential clues; (2) The reranker is trained to prioritize effective clues based on real LLM feedback; (3) The truncator uses the truncated text containing the minimum sufficient clues for answering the question as fine-tuning targets, thereby enabling efficient RAG reasoning. Experiments on three QA datasets demonstrate that CompSelect improves performance while reducing both total and online latency compared to a range of baseline methods. Further analysis also confirms its robustness to unreliable retrieval and generalization across different scenarios.
comment: Accepted to the ACM Web Conference 2026 (WWW'26)
♻ ☆ Unleashing Scientific Reasoning for Bio-experimental Protocol Generation via Structured Component-based Reward Mechanism
The foundation of reproducible science lies in protocols that are precise, logically ordered, and executable. The autonomous generation of these protocols through natural language queries could greatly improve the efficiency of the reproduction process. However, current leading large language models (LLMs) often generate incomplete or inconsistent protocols, limiting their utility. To address this limitation, we first introduce SciRecipe, a large-scale dataset of over 12K structured protocols spanning 27 biological subfields and encompassing both comprehension and problem-solving tasks. To further improve protocol generation, we propose the "Sketch-and-Fill" paradigm, which separates analysis, structuring, and expression to ensure each step is explicit and verifiable. Complementing this, the structured component-based reward mechanism evaluates step granularity, action order, and semantic fidelity, aligning model optimization with experimental reliability. Building on these components, we develop Thoth, trained through a staged Knowledge-to-Action process that progresses from knowledge acquisition to operational reasoning and ultimately to robust, executable protocol generation. Across multiple benchmarks, Thoth consistently surpasses both proprietary and open-source LLMs, achieving significant improvements in step alignment, logical sequencing, and semantic accuracy. Our approach paves the way for reliable scientific assistants that bridge knowledge with experimental execution. All data, code, and models will be released publicly.
♻ ☆ EmoBench-M: Benchmarking Emotional Intelligence for Multimodal Large Language Models
With the integration of Multimodal large language models (MLLMs) into robotic systems and various AI applications, embedding emotional intelligence (EI) capabilities into these models is essential for enabling robots to effectively address human emotional needs and interact seamlessly in real-world scenarios. Existing static, text-based, or text-image benchmarks overlook the multimodal complexities of real-world interactions and fail to capture the dynamic, multimodal nature of emotional expressions, making them inadequate for evaluating MLLMs' EI. Based on established psychological theories of EI, we build EmoBench-M, a novel benchmark designed to evaluate the EI capability of MLLMs across 13 valuation scenarios from three key dimensions: foundational emotion recognition, conversational emotion understanding, and socially complex emotion analysis. Evaluations of both open-source and closed-source MLLMs on EmoBench-M reveal a significant performance gap between them and humans, highlighting the need to further advance their EI capabilities. All benchmark resources, including code and datasets, are publicly available at https://emo-gml.github.io/.
♻ ☆ Improving Implicit Hate Speech Detection via a Community-Driven Multi-Agent Framework
This work proposes a contextualised detection framework for implicitly hateful speech, implemented as a multi-agent system comprising a central Moderator Agent and dynamically constructed Community Agents representing specific demographic groups. Our approach explicitly integrates socio-cultural context from publicly available knowledge sources, enabling identity-aware moderation that surpasses state-of-the-art prompting methods (zero-shot prompting, few-shot prompting, chain-of-thought prompting) and alternative approaches on a challenging ToxiGen dataset. We enhance the technical rigour of performance evaluation by incorporating balanced accuracy as a central metric of classification fairness that accounts for the trade-off between true positive and true negative rates. We demonstrate that our community-driven consultative framework significantly improves both classification accuracy and fairness across all target groups.
comment: This paper has been accepted for the upcoming 18th International Conference on Agents and Artificial Intelligence (ICAART-2026), Marbella, Spain. The final published version will appear in the official conference proceedings
♻ ☆ Analogical Structure, Minimal Contextual Cues and Contrastive Distractors: Input Design for Sample-Efficient Linguistic Rule Induction EACL 2026
Large language models achieve strong performance on many tasks, but their training makes it hard to see which properties of the input support efficient linguistic rule learning. We ask how three cognitively-inspired principles of input design support sample-efficient linguistic rule induction: analogical structure, contrastive learning, and minimal contextual cue. We also ask how their effects compare to those of LLMs on the same controlled tasks. We implement these principles in structured sentence completion tasks that test English verb alternations. Lightweight models trained on hundreds to one-thousand such examples learn the alternation rules with high F1 on these tasks. Ablation studies show that analogical organisation is the main driver of sample efficiency, and contrastive distractors and minimal context help further gains. We also evaluate zero- and few-shot LLMs on the same tasks. In this controlled setting, the lightweight models reach higher F1 with far fewer task-specific data. We treat this contrast as a comparison between learning regimes rather than a general verdict on LLMs. Our results show that careful input organisation supports sample-efficient learning of linguistic rules and reveals distinct learning signatures for trained lightweight models and prompted LLMs.
comment: Accepted by EACL 2026 main conference
♻ ☆ SIPDO: Closed-Loop Prompt Optimization via Synthetic Data Feedback
Prompt quality plays a critical role in the performance of large language models (LLMs), motivating a growing body of work on prompt optimization. Most existing methods optimize prompts over a fixed dataset, assuming static input distributions and offering limited support for iterative improvement. We introduce SIPDO (Self-Improving Prompts through Data-Augmented Optimization), a closed-loop framework for prompt learning that integrates synthetic data generation into the optimization process. SIPDO couples a synthetic data generator with a prompt optimizer, where the generator produces new examples that reveal current prompt weaknesses and the optimizer incrementally refines the prompt in response. This feedback-driven loop enables systematic improvement of prompt performance without assuming access to external supervision or new tasks. Experiments across question answering and reasoning benchmarks show that SIPDO outperforms standard prompt tuning methods, highlighting the value of integrating data synthesis into prompt learning workflows.
♻ ☆ Why is Your Language Model a Poor Implicit Reward Model? ICLR 2026
Reward models are key to language model post-training and inference pipelines. Conveniently, recent work showed that every language model defines an implicit reward model (IM-RM), without requiring any architectural changes. However, such IM-RMs tend to generalize worse, especially out-of-distribution, compared to explicit reward models (EX-RMs) that apply a dedicated linear head over the hidden representations of a language model. The existence of a generalization gap is puzzling, as EX-RMs and IM-RMs are nearly identical. They can be trained using the same data, loss function, and language model, and differ only in how the reward is computed. Toward a fundamental understanding of the implicit biases underlying different reward model types, we investigate the root cause of this gap. Our main finding, backed by theory and experiments, is that IM-RMs rely more heavily on superficial token-level cues. Consequently, they often generalize worse than EX-RMs under token-level distribution shifts, as well as in-distribution. Furthermore, we provide evidence against alternative hypotheses for the generalization gap. Most notably, we challenge the claim that IM-RMs struggle in tasks where generation is harder than verification because they can operate both as a verifier and a generator. Overall, our results highlight that seemingly minor design choices can substantially impact the generalization behavior of reward models.
comment: Accepted to ICLR 2026; Code available at https://github.com/princeton-pli/exrm-vs-imrm
♻ ☆ High-Layer Attention Pruning with Rescaling
Pruning is a highly effective approach for compressing large language models (LLMs), significantly reducing inference latency. However, conventional training-free structured pruning methods often employ a heuristic metric that indiscriminately removes some attention heads across all pruning layers, without considering their positions within the network architecture. In this work, we propose a novel pruning algorithm that strategically prunes attention heads in the model's higher layers. Since the removal of attention heads can alter the magnitude of token representations, we introduce an adaptive rescaling parameter that calibrates the representation scale post-pruning to counteract this effect. We conduct comprehensive experiments on a wide range of LLMs, including LLaMA3.1-8B, Mistral-7B-v0.3, Qwen2-7B, and Gemma2-9B. Our evaluation includes both generation and discriminative tasks across 27 datasets. The results consistently demonstrate that our method outperforms existing structured pruning methods. This improvement is particularly notable in generation tasks, where our approach significantly outperforms existing baselines. Code is available at https://github.com/SongtaoLiu0823/HARP.
comment: TMLR 2026
♻ ☆ Meaning Is Not A Metric: Using LLMs to make cultural context legible at scale
This position paper argues that large language models (LLMs) can make cultural context, and therefore human meaning, legible at an unprecedented scale in AI-based sociotechnical systems. We argue that such systems have previously been unable to represent human meaning because they rely on thin descriptions (numerical representations that enforce standardization and therefore strip human activity of the cultural context which gives it meaning). By contrast, scholars in the humanities and qualitative social sciences have developed frameworks for representing meaning through thick description (verbal representations that accommodate heterogeneity and retain contextual information needed to represent human meaning). The verbal capabilities of LLMs now provide a means of at least partially automating the generation and processing of thick descriptions, offering new ways to deploy them at scale. We argue that the problem of rendering human meaning legible is not just about selecting better metrics but about developing new representational formats based on thick description. We frame this as a crucial direction for the application of generative AI and identify five key challenges: preserving context, maintaining interpretive pluralism, integrating perspectives based on lived experience and critical distance, distinguishing qualitative content from quantitative magnitude, and acknowledging meaning as dynamic rather than static.
♻ ☆ LLM-Specific Utility: A New Perspective for Retrieval-Augmented Generation
Retrieval-augmented generation (RAG) is typically optimized for topical relevance, yet its success ultimately depends on whether retrieved passages are useful for a large language model (LLM) to generate correct and complete answers. We argue that such utility is often LLM-specific rather than universal, due to differences in models' knowledge, reasoning, and ability to leverage evidence. We formalize LLM-specific utility as the performance improvement of a target LLM when a passage is provided, compared to answering without evidence. To systematically study LLM-specific utility, we construct a benchmark of LLM-specific gold utilitarian passages for four LLMs (Qwen3-8B/14B/32B and Llama3.1-8B) on three QA datasets (Natural Questions, TriviaQA, and MS MARCO-FQA). Our analysis shows that utilitarian passages are model-dependent and non-transferable: each LLM performs best with its own utilitarian evidence, while evidence optimized for other LLMs is consistently suboptimal. Human-annotated evidence remains a strong general baseline but does not fully match individual LLM utility needs. We further introduce the LLM-specific utility judgment task and find that existing utility-aware selection and scoring methods largely capture model-agnostic usefulness and struggle to reliably estimate LLM-specific utility. Overall, our findings highlight the limitations of current utility-aware retrieval and motivate generator-tailored evidence selection for improving RAG.
comment: 13 pages, 9 figures
♻ ☆ coTherapist: A Behavior-Aligned Small Language Model to Support Mental Healthcare Experts
Access to mental healthcare is increasingly strained by workforce shortages and rising demand, motivating the development of intelligent systems that can support mental healthcare experts. We introduce coTherapist, a unified framework utilizing a small language model to emulate core therapeutic competencies through domain-specific fine-tuning, retrieval augmentation, and agentic reasoning. Evaluation on clinical queries demonstrates that coTherapist generates more relevant and clinically grounded responses than contemporary baselines. Using our novel T-BARS rubric and psychometric profiling, we confirm coTherapist exhibits high empathy and therapist-consistent personality traits. Furthermore, human evaluation by domain experts validates that coTherapist delivers accurate, trustworthy, and safe responses. coTherapist was deployed and tested by clinical experts. Collectively, these findings demonstrate that small models can be engineered to exhibit expert-like behavior, offering a scalable pathway for digital mental health tools.
♻ ☆ Improving Value-based Process Verifier via Structural Prior Injection
In the Large Language Model(LLM) reasoning scenario, people often estimate state value via Monte Carlo sampling. Though Monte Carlo estimation is an elegant method with less inductive bias, noise and errors are inevitably introduced due to the limited sampling. To handle the problem, we inject the structural prior into the value representation and transfer the scalar value into the expectation of a pre-defined categorical distribution, representing the noise and errors from a distribution perspective. Specifically, by treating the result of Monte Carlo sampling as a single sample from the prior ground-truth Binomial distribution, we quantify the sampling error as the mismatch between posterior estimated distribution and ground-truth distribution, which is thus optimized via distribution selection optimization. We test the performance of value-based process verifiers on Best-of-N task and Beam search task. Compared with the scalar value representation, we show that reasonable structural prior injection induced by different objective functions or optimization methods can improve the performance of value-based process verifiers for about 1$\sim$2 points at little-to-no cost. We also show that under different structural prior, the verifiers' performances vary greatly despite having the same optimal solution, indicating the importance of reasonable structural prior injection.
comment: This version is deprecated. Please refer to our new version: arXiv:2508.10539
♻ ☆ ThinkNote: Enhancing Knowledge Integration and Utilization of Large Language Models via Constructivist Cognition Modeling
Large Language Models (LLMs) have demonstrated strong performance across a wide range of NLP tasks. However, they often exhibit suboptimal behaviors and inconsistencies when exposed to unfamiliar external information, underscoring their limitations in effectively leveraging such knowledge. Inspired by constructivist learning theory, we propose ThinkNote, a novel framework that enhances the external knowledge utilization of LLMs through a two-stage constructivist cognitive modeling process. Specifically, ThinkNote performs knowledge assimilation to align new information with the model's parametric memory, forming a coherent internal representation. It then applies thought accommodation to adapt internal reasoning, thereby promoting more consistent and reliable outputs. Extensive experimental results demonstrate that ThinkNote achieves a 10% improvement over strong baseline methods on various question-answering benchmarks. Further analysis indicates that ThinkNote effectively integrates and utilizes external knowledge to help LLMs generate accurate responses and improves their self-consistency. All data and codes are available at https://github.com/OpenMatch/ThinkNote.
♻ ☆ Towards Automated Smart Contract Generation: Evaluation, Benchmarking, and Retrieval-Augmented Repair
Smart contracts, predominantly written in Solidity and deployed on blockchains such as Ethereum, are immutable after deployment, making functional correctness critical. However, existing evaluations of Solidity code generation rely largely on surface-level metrics (e.g., BLEU, CrystalBLEU) or manual inspection, which correlate poorly with functional correctness. In contrast to Python, Solidity lacks large-scale, execution-based benchmarks, limiting systematic evaluation of large language models for smart contract development. We introduce SolBench, a comprehensive benchmark and automated testing pipeline for Solidity that emphasizes functional correctness via differential fuzzing. SolBench consists of 28825 functions extracted from 7604 real-world smart contracts collected from Etherscan (genesis-2024), spanning ten application domains. We benchmark 14 diverse LLMs, covering open and closed models, 1.3B-671B parameters, and both general-purpose and code-specialized architectures. The dominant failure mode is missing critical intra-contract information, such as state variables and type definitions. Providing full-contract context improves accuracy but incurs prohibitive inference costs. To address this, we propose Retrieval-Augmented Repair (RAR), a cost-effective framework that integrates execution feedback into code repair. RAR uses compiler and runtime error messages to retrieve only the minimal contract snippets needed to correct a target function, avoiding full-context inference. This significantly reduces input length while improving functional correctness. We further analyze retrieval and repair strategies within RAR, demonstrating consistent gains in accuracy and efficiency. SolBench and RAR enable principled, execution-based evaluation and economical improvement of Solidity code generation. Dataset and code are publicly available at https://github.com/ZaoyuChen/SolBench.
comment: Accepted by FSE 2026
♻ ☆ Coupled Variational Reinforcement Learning for Language Model General Reasoning
While reinforcement learning has achieved impressive progress in language model reasoning, it is constrained by the requirement for verifiable rewards. Recent verifier-free RL methods address this limitation by utilizing the probabilities that LLMs generate reference answers as reward signals. However, these approaches typically sample reasoning traces conditioned only on the question. This design decouples reasoning-trace sampling from answer information, leading to inefficient exploration and incoherence between traces and final answers. In this paper, we propose \textit{\b{Co}upled \b{V}ariational \b{R}einforcement \b{L}earning} (CoVRL), which bridges variational inference and reinforcement learning by coupling prior and posterior distributions through a hybrid sampling strategy. By constructing and optimizing a composite distribution that integrates these two distributions, CoVRL enables efficient exploration while preserving strong thought-answer coherence. Extensive experiments on mathematical and general reasoning benchmarks show that CoVRL improves performance by 12.4\% over the base model and achieves an additional 2.3\% improvement over state-of-the-art verifier-free RL baselines, providing a principled framework for enhancing the general reasoning capabilities of language models.
♻ ☆ Truth with a Twist: The Rhetoric of Persuasion in Professional vs. Community-Authored Fact-Checks WWW 2026
This study presents the first large-scale comparison of persuasion techniques present in crowd- versus professionally-written debunks. Using extensive datasets from Community Notes (CNs), EUvsDisinfo, and the Database of Known Fakes (DBKF), we quantify the prevalence and types of persuasion techniques across these fact-checking ecosystems. Contrary to prior hypothesis that community-produced debunks rely more heavily on subjective or persuasive wording, we find no evidence that CNs contain a higher average number of persuasion techniques than professional fact-checks. We additionally identify systematic rhetorical differences between CNs and professional debunking efforts, reflecting differences in institutional norms and topical coverage. Finally, we examine how the crowd evaluates persuasive language in CNs and show that, although notes with more persuasive elements receive slightly higher overall helpfulness ratings, crowd raters are effective at penalising the use of particular problematic rhetorical means
comment: In Proceedings of the ACM Web Conference 2026 (WWW 2026)
♻ ☆ AI-generated data contamination erodes pathological variability and diagnostic reliability
Generative artificial intelligence (AI) is rapidly populating medical records with synthetic content, creating a feedback loop where future models are increasingly at risk of training on uncurated AI-generated data. However, the clinical consequences of this AI-generated data contamination remain unexplored. Here, we show that in the absence of mandatory human verification, this self-referential cycle drives a rapid erosion of pathological variability and diagnostic reliability. By analysing more than 800,000 synthetic data points across clinical text generation, vision-language reporting, and medical image synthesis, we find that models progressively converge toward generic phenotypes regardless of the model architecture. Specifically, rare but critical findings, including pneumothorax and effusions, vanish from the synthetic content generated by AI models, while demographic representations skew heavily toward middle-aged male phenotypes. Crucially, this degradation is masked by false diagnostic confidence; models continue to issue reassuring reports while failing to detect life-threatening pathology, with false reassurance rates tripling to 40%. Blinded physician evaluation confirms that this decoupling of confidence and accuracy renders AI-generated documentation clinically useless after just two generations. We systematically evaluate three mitigation strategies, finding that while synthetic volume scaling fails to prevent collapse, mixing real data with quality-aware filtering effectively preserves diversity. Ultimately, our results suggest that without policy-mandated human oversight, the deployment of generative AI threatens to degrade the very healthcare data ecosystems it relies upon.
comment: *Corresponding author: Dianbo Liu (dianbo@nus.edu.sg)
♻ ☆ DND: Boosting Large Language Models with Dynamic Nested Depth ICLR 2026
We introduce Dynamic Nested Depth (DND), a novel method that improves performance for off-the-shelf LLMs by selecting critical tokens to reprocess in a nested depth manner. Specifically, at the end of the given transformer layer, DND identifies more critical tokens with a router and feeds them back for an extra round of processing, effectively ``reviewing" difficult tokens while avoiding redundant computation for easier ones. The dynamic selection mechanism is tailored for precise control via two novel strategies: a router controlling loss to enhance token selection distinguishability, and a threshold control scheme to ensure selection stability. We demonstrate the effectiveness of DND by directly integrating it into pre-trained dense and MoE models during a post-training phase. On diverse benchmarks, this approach boosts the performances of the dense Qwen3-1.7B by 1.88% and the MoE Qwen3-30B-A3B by 0.87%, all with a minimal parameter and computing increase.
comment: Accepted by ICLR 2026
♻ ☆ LingoQ: Bridging the Gap between EFL Learning and Work through AI-Generated Work-Related Quizzes
Non-native English speakers performing English-related tasks at work struggle to sustain EFL learning, despite their motivation. Often, study materials are disconnected from their work context. Our formative study revealed that reviewing work-related English becomes burdensome with current systems, especially after work. Although workers rely on LLM-based assistants to address their immediate needs, these interactions may not directly contribute to their English skills. We present LingoQ, an AI-mediated system that allows workers to practice English using quizzes generated from their LLM queries during work. LingoQ leverages these on-the-fly queries using AI to generate personalized quizzes that workers can review and practice on their smartphones. We conducted a three-week deployment study with 28 EFL workers to evaluate LingoQ. Participants valued the quality-assured, work-situated quizzes and constantly engaging with the app during the study. This active engagement improved self-efficacy and led to learning gains for beginners and, potentially, for intermediate learners. Drawing on these results, we discuss design implications for leveraging workers' growing reliance on LLMs to foster proficiency and engagement while respecting work boundaries and ethics.
comment: 18 pages except reference. Conditionally accepted to ACM CHI 2026
♻ ☆ TextMineX: Data, Evaluation Framework and Ontology-guided LLM Pipeline for Humanitarian Mine Action
Humanitarian Mine Action (HMA) addresses the challenge of detecting and removing landmines from conflict regions. Much of the life-saving operational knowledge produced by HMA agencies is buried in unstructured reports, limiting the transferability of information between agencies. To address this issue, we propose TextMineX: the first dataset, evaluation framework and ontology-guided large language model (LLM) pipeline for knowledge extraction from text in the HMA domain. TextMineX structures HMA reports into (subject, relation, object)-triples, thus creating domain-specific knowledge. To ensure real-world relevance, we utilized the dataset from our collaborator Cambodian Mine Action Centre (CMAC). We further introduce a bias-aware evaluation framework that combines human-annotated triples with an LLM-as-Judge protocol to mitigate position bias in reference-free scoring. Our experiments show that ontology-aligned prompts improve extraction accuracy by up to 44.2%, reduce hallucinations by 22.5%, and enhance format adherence by 20.9% compared to baseline models. We publicly release the dataset and code.
♻ ☆ Why Do Speech Language Models Fail to Generate Semantically Coherent Outputs? A Modality Evolving Perspective IEEE
Although text-based large language models exhibit human-level writing ability and remarkable intelligence, speech language models (SLMs) still struggle to generate semantically coherent outputs. There are several potential reasons for this performance degradation: (A) speech tokens mainly provide phonetic information rather than semantic information, (B) the length of speech sequences is much longer than that of text sequences, and (C) paralinguistic information, such as prosody, introduces additional complexity and variability. In this paper, we explore the influence of three key factors separately by transiting the modality from text to speech in an evolving manner. Our findings reveal that the impact of the three factors varies. Factor A has a relatively minor impact, factor B influences syntactical and semantic modeling more obviously, and factor C exerts the most significant impact, particularly in the basic lexical modeling. Based on these findings, we provide insights into the unique challenges of training SLMs and highlight pathways to develop more effective end-to-end SLMs.
comment: 5 pages, 3 figures, 4 tables. Accepted to IEEE ICASSP 2026
♻ ☆ Large Multimodal Models for Low-Resource Languages: A Survey
In this survey, we systematically analyze techniques used to adapt large multimodal models (LMMs) for low-resource (LR) languages, examining approaches ranging from visual enhancement and data creation to cross-modal transfer and fusion strategies. Through a comprehensive analysis of 117 studies across 96 LR languages, we identify key patterns in how researchers tackle the challenges of limited data and computational resources. We categorize works into resource-oriented and method-oriented contributions, further dividing contributions into relevant sub-categories. We compare method-oriented contributions in terms of performance and efficiency, discussing benefits and limitations of representative studies. We find that visual information often serves as a crucial bridge for improving model performance in LR settings, though significant challenges remain in areas such as hallucination mitigation and computational efficiency. In summary, we provide researchers with a clear understanding of current approaches and remaining challenges in making LMMs more accessible to speakers of LR (understudied) languages. We complement our survey with an open-source repository available at: https://github.com/marianlupascu/LMM4LRL-Survey.
comment: Accepted in Information Fusion
♻ ☆ Is On-Policy Data always the Best Choice for Direct Preference Optimization-based LM Alignment? ICLR-2026
The alignment of language models~(LMs) with human preferences is critical for building reliable AI systems. The problem is typically framed as optimizing an LM policy to maximize the expected reward that reflects human preferences. Recently, Direct Preference Optimization~(DPO) was proposed as a LM alignment method that directly optimize the policy from static preference data, and further improved by incorporating on-policy sampling~(i.e., preference candidates generated during the training loop) for better LM alignment. However, we show on-policy data is not always optimal, with systematic effectiveness difference emerging between static and on-policy preference candidates. For example, on-policy data can result in a $3\times$ effectiveness compared with static data for Llama-3, and a $0.4\times$ effectiveness for Zephyr. To explain the phenomenon, we propose the alignment stage assumption, which divides the alignment process into two distinct stages: the preference injection stage, which benefits from diverse data, and the preference fine-tuning stage, which favors high-quality data. Through theoretical and empirical analysis, we characterize these stages and propose an effective algorithm to identify the boundaries between them. We perform experiments on $5$ models~(Llama, Zephyr, Phi-2, Qwen, Pythia) and $2$ alignment methods~(DPO, SLiC-HF) to show the generalizability of alignment stage assumption and the effectiveness of the boundary measurement algorithm.
comment: Accepted by ICLR-2026
♻ ☆ Accepted with Minor Revisions: Value of AI-Assisted Scientific Writing
Large Language Models have seen expanding application across domains, yet their effectiveness as assistive tools for scientific writing - an endeavor requiring precision, multimodal synthesis, and domain expertise - remains insufficiently understood. We examine the potential of LLMs to support domain experts in scientific writing, with a focus on abstract composition. We design an incentivized randomized controlled trial with a hypothetical conference setup where participants with relevant expertise are split into an author and reviewer pool. Inspired by methods in behavioral science, our novel incentive structure encourages authors to edit the provided abstracts to an acceptable quality for a peer-reviewed submission. Our 2 x 2 between-subject design expands into two dimensions: the implicit source of the provided abstract and the disclosure of it. We find authors make most edits when editing human-written abstracts compared to AI-generated abstracts without source attribution, often guided by higher perceived readability in AI generation. Upon disclosure of source information, the volume of edits converges in both source treatments. Reviewer decisions remain unaffected by the source of the abstract, but bear a significant correlation with the number of edits made. Careful stylistic edits, especially in the case of AI-generated abstracts, in the presence of source information, improve the chance of acceptance. We find that AI-generated abstracts hold potential to reach comparable levels of acceptability to human-written ones with minimal revision, and that perceptions of AI authorship, rather than objective quality, drive much of the observed editing behavior. Our findings reverberate the significance of source disclosure in collaborative scientific writing.
comment: Published in ACM IUI 2026 (Paphos, Cyprus)
♻ ☆ GOFAI meets Generative AI: Development of Expert Systems by means of Large Language Models
The development of large language models (LLMs) has successfully transformed knowledge-based systems such as open domain question nswering, which can automatically produce vast amounts of seemingly coherent information. Yet, those models have several disadvantages like hallucinations or confident generation of incorrect or unverifiable facts. In this paper, we introduce a new approach to the development of expert systems using LLMs in a controlled and transparent way. By limiting the domain and employing a well-structured prompt-based extraction approach, we produce a symbolic representation of knowledge in Prolog, which can be validated and corrected by human experts. This approach also guarantees interpretability, scalability and reliability of the developed expert systems. Via quantitative and qualitative experiments with Claude Sonnet 3.7 and GPT-4.1, we show strong adherence to facts and semantic coherence on our generated knowledge bases. We present a transparent hybrid solution that combines the recall capacity of LLMs with the precision of symbolic systems, thereby laying the foundation for dependable AI applications in sensitive domains.
♻ ☆ CCFQA: A Benchmark for Cross-Lingual and Cross-Modal Speech and Text Factuality Evaluation AAAI 2026
As Large Language Models (LLMs) are increasingly popularized in the multilingual world, ensuring hallucination-free factuality becomes markedly crucial. However, existing benchmarks for evaluating the reliability of Multimodal Large Language Models (MLLMs) predominantly focus on textual or visual modalities with a primary emphasis on English, which creates a gap in evaluation when processing multilingual input, especially in speech. To bridge this gap, we propose a novel Cross-lingual and Cross-modal Factuality benchmark (CCFQA). Specifically, the CCFQA benchmark contains parallel speech-text factual questions across 8 languages, designed to systematically evaluate MLLMs' cross-lingual and cross-modal factuality capabilities. Our experimental results demonstrate that current MLLMs still face substantial challenges on the CCFQA benchmark. Furthermore, we propose a few-shot transfer learning strategy that effectively transfers the Question Answering (QA) capabilities of LLMs in English to multilingual Spoken Question Answering (SQA) tasks, achieving competitive performance with GPT-4o-mini-Audio using just 5-shot training. We release CCFQA as a foundational research resource to promote the development of MLLMs with more robust and reliable speech understanding capabilities. Our code and dataset are available at https://github.com/yxduir/ccfqa.
comment: Accepted in AAAI 2026
♻ ☆ Can professional translators identify machine-generated text?
This study investigates whether professional translators can reliably identify short stories generated in Italian by artificial intelligence (AI) without prior specialized training. Sixty-nine translators took part in an in-person experiment, where they assessed three anonymized short stories - two written by ChatGPT-4o and one by a human author. For each story, participants rated the likelihood of AI authorship and provided justifications for their choices. While average results were inconclusive, a statistically significant subset (16.2%) successfully distinguished the synthetic texts from the human text, suggesting that their judgements were informed by analytical skill rather than chance. However, a nearly equal number misclassified the texts in the opposite direction, often relying on subjective impressions rather than objective markers, possibly reflecting a reader preference for AI-generated texts. Low burstiness and narrative contradiction emerged as the most reliable indicators of synthetic authorship, with unexpected calques, semantic loans and syntactic transfer from English also reported. In contrast, features such as grammatical accuracy and emotional tone frequently led to misclassification. These findings raise questions about the role and scope of synthetic-text editing in professional contexts.
comment: 10 pages, table numbers corrected
♻ ☆ Improving Value-based Process Verifier via Low-Cost Variance Reduction AAAI-2026
Large language models (LLMs) have achieved remarkable success in a wide range of tasks. However, their reasoning capabilities, particularly in complex domains like mathematics, remain a significant challenge. Value-based process verifiers, which estimate the probability of a partial reasoning chain leading to a correct solution, are a promising approach for improving reasoning. Nevertheless, their effectiveness is often hindered by estimation error in their training annotations, a consequence of the limited number of Monte Carlo (MC) samples feasible due to the high cost of LLM inference. In this paper, we identify that the estimation error primarily arises from high variance rather than bias, and the MC estimator is a Minimum Variance Unbiased Estimator (MVUE). To address the problem, we propose the \textsc{Com}pound \textsc{M}onte \textsc{C}arlo \textsc{S}ampling (ComMCS) method, which constructs an unbiased estimator by linearly combining the MC estimators from the current and subsequent steps. Theoretically, we show that our method leads to a predictable reduction in variance, while maintaining an unbiased estimation without additional LLM inference cost. We also perform empirical experiments on the MATH-500 and GSM8K benchmarks to demonstrate the effectiveness of our method. Notably, ComMCS outperforms regression-based optimization method by 2.8 points, the non-variance-reduced baseline by 2.2 points on MATH-500 on Best-of-32 sampling experiment.
comment: Accepted by AAAI-2026
♻ ☆ AECBench: A Hierarchical Benchmark for Knowledge Evaluation of Large Language Models in the AEC Field
Large language models (LLMs), as a novel information technology, are seeing increasing adoption in the Architecture, Engineering, and Construction (AEC) field. They have shown their potential to streamline processes throughout the building lifecycle. However, the robustness and reliability of LLMs in such a specialized and safety-critical domain remain to be evaluated. To address this challenge, this paper establishes AECBench, a comprehensive benchmark designed to quantify the strengths and limitations of current LLMs in the AEC domain. The benchmark features a five-level, cognition-oriented evaluation framework (i.e., Knowledge Memorization, Understanding, Reasoning, Calculation, and Application). Based on the framework, 23 representative evaluation tasks were defined. These tasks were derived from authentic AEC practice, with scope ranging from codes retrieval to specialized documents generation. Subsequently, a 4,800-question dataset encompassing diverse formats, including open-ended questions, was crafted primarily by engineers and validated through a two-round expert review. Furthermore, an "LLM-as-a-Judge" approach was introduced to provide a scalable and consistent methodology for evaluating complex, long-form responses leveraging expert-derived rubrics. Through the evaluation of nine LLMs, a clear performance decline across five cognitive levels was revealed. Despite demonstrating proficiency in foundational tasks at the Knowledge Memorization and Understanding levels, the models showed significant performance deficits, particularly in interpreting knowledge from tables in building codes, executing complex reasoning and calculation, and generating domain-specific documents. Consequently, this study lays the groundwork for future research and development aimed at the robust and reliable integration of LLMs into safety-critical engineering practices.
♻ ☆ Reconstructing KV Caches with Cross-layer Fusion For Enhanced Transformers ICLR2026
Transformer decoders have achieved strong results across tasks, but the memory required for the KV cache becomes prohibitive at long sequence lengths. Although Cross-layer KV Cache sharing (e.g., YOCO, CLA) offers a path to mitigate KV Cache bottleneck, it typically underperforms within-layer methods like GQA. To understand the root cause, we investigate the information flow of keys and values of the top-layers. Our preliminary reveals a clear distribution: values are predominantly derived from the bottom layer, while keys draw more information from both bottom and middle layers. Building upon this, we propose FusedKV, whose top-layer KV caches are a learnable fusion of the most informative ones from the bottom and middle layers. This fusion operates directly on post-RoPE keys, preserving relative positional information without the computational cost of re-applying rotary embeddings. To further improve efficiency, we propose FusedKV-Lite, an cross-layer sharing approach, where top-layer KV caches are directly derived from the bottom-layer values and the middle-layer keys. Compared to FusedKV, FusedKV-Lite reduces I/O overhead at the cost of a slight increase in perplexity. In experiments on LLMs ranging from 332M to 4B parameters, our proposed method reduce 50\% cache memory while achieving lower validation perplexity than the standard Transformer decoder, establishing it as a memory-efficient, high-performance architectural alternative.
comment: Accepted by ICLR2026
♻ ☆ Propaganda AI: An Analysis of Semantic Divergence in Large Language Models ICLR 2026
Large language models (LLMs) can exhibit concept-conditioned semantic divergence: common high-level cues (e.g., ideologies, public figures) elicit unusually uniform, stance-like responses that evade token-trigger audits. This behavior falls in a blind spot of current safety evaluations, yet carries major societal stakes, as such concept cues can steer content exposure at scale. We formalize this phenomenon and present RAVEN (Response Anomaly Vigilance), a black-box audit that flags cases where a model is simultaneously highly certain and atypical among peers by coupling semantic entropy over paraphrastic samples with cross-model disagreement. In a controlled LoRA fine-tuning study, we implant a concept-conditioned stance using a small biased corpus, demonstrating feasibility without rare token triggers. Auditing five LLM families across twelve sensitive topics (360 prompts per model) and clustering via bidirectional entailment, RAVEN surfaces recurrent, model-specific divergences in 9/12 topics. Concept-level audits complement token-level defenses and provide a practical early-warning signal for release evaluation and post-deployment monitoring against propaganda-like influence.
comment: Accepted at ICLR 2026, 22 pages, 1 figure
♻ ☆ Unsupervised lexicon learning from speech is limited by representations rather than clustering ICASSP 2026
Zero-resource word segmentation and clustering systems aim to tokenise speech into word-like units without access to text labels. Despite progress, the induced lexicons are still far from perfect. In an idealised setting with gold word boundaries, we ask whether performance is limited by the representation of word segments, or by the clustering methods that group them into word-like types. We combine a range of self-supervised speech features (continuous/discrete, frame/word-level) with different clustering methods (K-means, hierarchical, graph-based) on English and Mandarin data. The best system uses graph clustering with dynamic time warping on continuous features. Faster alternatives use graph clustering with cosine distance on averaged continuous features or edit distance on discrete unit sequences. Through controlled experiments that isolate either the representations or the clustering method, we demonstrate that representation variability across segments of the same word type -- rather than clustering -- is the primary factor limiting performance.
comment: Accepted to ICASSP 2026
♻ ☆ Task-Specific Directions: Definition, Exploration, and Utilization in Parameter Efficient Fine-Tuning
Large language models demonstrate impressive performance on downstream tasks, yet they require extensive resource consumption when fully fine-tuning all parameters. To mitigate this, Parameter Efficient Fine-Tuning (PEFT) strategies, such as LoRA, have been developed. In this paper, we delve into the concept of task-specific directions (TSDs), which are critical for transitioning large models from pretrained states to task-specific enhancements in PEFT. We propose a framework to clearly define these directions and explore their properties and practical utilization challenges. We then introduce a novel approach, LoRA-Dash, which aims to maximize the impact of TSDs during the fine-tuning process, thereby enhancing model performance on targeted tasks. Additionally, based on our exploration of TSD, we focus on an important issue in PEFT: the initialization of LoRA. While some works have pointed out the significance of initialization for LoRA's performance and proposed various strategies, these methods are often empirical and not task-specific. To address this issue, we propose LoRA-Init. Starting from TSD, we identify the directions that require the most adjustment during fine-tuning for downstream tasks. By initializing the matrices in LoRA with these directions, LoRA-Init significantly enhances LoRA's performance. Moreover, we can combine LoRA-Dash and LoRA-Init to create the final version of LoRA based on TSDs, which we refer to as LoRA-TSD. Extensive experiments have conclusively demonstrated the effectiveness of these methods, and in-depth analyses further reveal the underlying mechanisms behind their success.
comment: 2026, TPAMI, Codes in https://github.com/Chongjie-Si/Subspace-Tuning
♻ ☆ Multimodal Multi-Agent Empowered Legal Judgment Prediction IEEE
Legal Judgment Prediction (LJP) aims to predict the outcomes of legal cases based on factual descriptions, serving as a fundamental task to advance the development of legal systems. Traditional methods often rely on statistical analyses or role-based simulations but face challenges with multiple allegations, diverse evidence, and lack adaptability. In this paper, we introduce JurisMMA, a novel framework for LJP that effectively decomposes trial tasks, standardizes processes, and organizes them into distinct stages. Furthermore, we build JurisMM, a large dataset with over 100,000 recent Chinese judicial records, including both text and multimodal video-text data, enabling comprehensive evaluation. Experiments on JurisMM and the benchmark LawBench validate our framework's effectiveness. These results indicate that our framework is effective not only for LJP but also for a broader range of legal applications, offering new perspectives for the development of future legal methods and datasets.
comment: Accepted to the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) 2026
♻ ☆ Text2Grad: Reinforcement Learning from Natural Language Feedback
Traditional RLHF optimizes language models with coarse, scalar rewards that mask the fine-grained reasons behind success or failure, leading to slow and opaque learning. Recent work augments RL with textual critiques through prompting or reflection, improving interpretability but leaving model parameters untouched. We introduce Text2Grad, a reinforcement-learning paradigm that turns free-form textual feedback into span-level gradients. Given human (or programmatic) critiques, Text2Grad aligns each feedback phrase with the relevant token spans, converts these alignments into differentiable reward signals, and performs gradient updates that directly refine the offending portions of the model's policy. This yields precise, feedback-conditioned adjustments instead of global nudges. Text2Grad is realized through three components: (1) a high-quality feedback-annotation pipeline that pairs critiques with token spans; (2) a fine-grained reward model that predicts span-level reward on answers while generating explanatory critiques; and (3) a span-level policy optimizer that back-propagates natural-language gradients. Across summarization, code generation, and question answering, Text2Grad consistently surpasses scalar-reward RL and prompt-only baselines, providing both higher task metrics and richer interpretability. Our results suggest that natural-language feedback can serve not only as explanations, but also as actionable training signals for fine-grained alignment. The code for our method is available at https://github.com/microsoft/Text2Grad.
comment: The code for our method is available at https://github.com/microsoft/Text2Grad
♻ ☆ Epistemological Bias As a Means for the Automated Detection of Injustices in Text
Injustices in text are often subtle since implicit biases or stereotypes frequently operate unconsciously due to the pervasive nature of prejudice in society. This makes automated detection of injustices more challenging which leads to them being often overlooked. We introduce a novel framework that combines knowledge from epistemology to enhance the detection of implicit injustices in text using NLP models to address these complexities and offer explainability. Our empirical study shows how our framework can be applied to effectively detect these injustices. We validate our framework using a human baseline study which mostly agrees with the choice of implicit bias, stereotype, and sentiment. The main feedback from the study was the extended time required to analyze, digest, and decide on each component of our framework. This highlights the importance of our automated framework pipeline that assists users in detecting implicit injustices while offering explainability and reducing time burdens on humans.
♻ ☆ Dancing in Chains: Strategic Persuasion in Academic Rebuttal via Theory of Mind ICLR 2026
Although artificial intelligence (AI) has become deeply integrated into various stages of the research workflow and achieved remarkable advancements, academic rebuttal remains a significant and underexplored challenge. This is because rebuttal is a complex process of strategic communication under severe information asymmetry rather than a simple technical debate. Consequently, current approaches struggle as they largely imitate surface-level linguistics, missing the essential element of perspective-taking required for effective persuasion. In this paper, we introduce RebuttalAgent, the first framework to ground academic rebuttal in Theory of Mind (ToM), operationalized through a ToM-Strategy-Response (TSR) pipeline that models reviewer mental state, formulates persuasion strategy, and generates strategy-grounded response. To train our agent, we construct RebuttalBench, a large-scale dataset synthesized via a novel critique-and-refine approach. Our training process consists of two stages, beginning with a supervised fine-tuning phase to equip the agent with ToM-based analysis and strategic planning capabilities, followed by a reinforcement learning phase leveraging the self-reward mechanism for scalable self-improvement. For reliable and efficient automated evaluation, we further develop Rebuttal-RM, a specialized evaluator trained on over 100K samples of multi-source rebuttal data, which achieves scoring consistency with human preferences surpassing powerful judge GPT-4.1. Extensive experiments show RebuttalAgent significantly outperforms the base model by an average of 18.3% on automated metrics, while also outperforming advanced proprietary models across both automated and human evaluations. Disclaimer: the generated rebuttal content is for reference only to inspire authors and assist in drafting. It is not intended to replace the author's own critical analysis and response.
comment: Accepted by ICLR 2026, 36 pages
♻ ☆ DeepSieve: Information Sieving via LLM-as-a-Knowledge-Router EACL
Large Language Models (LLMs) excel at many reasoning tasks but struggle with knowledge-intensive queries due to their inability to dynamically access up-to-date or domain-specific information. Retrieval-Augmented Generation (RAG) has emerged as a promising solution, enabling LLMs to ground their responses in external sources. However, existing RAG methods lack fine-grained control over both the query and source sides, often resulting in noisy retrieval and shallow reasoning. In this work, we introduce DeepSieve, an agentic RAG framework that incorporates information sieving via LLM-as-a-knowledge-router. DeepSieve decomposes complex queries into structured sub-questions and recursively routes each to the most suitable knowledge source, filtering irrelevant information through a multi-stage distillation process. Our design emphasizes modularity, transparency, and adaptability, leveraging recent advances in agentic system design. Experiments on multi-hop QA tasks across heterogeneous sources demonstrate improved reasoning depth, retrieval precision, and interpretability over conventional RAG approaches. Our codes are available at https://github.com/MinghoKwok/DeepSieve.
comment: Accepted by EACL Findings 2026
♻ ☆ Endless Terminals: Scaling RL Environments for Terminal Agents
Environments are the bottleneck for self-improving agents. Current terminal benchmarks were built for evaluation, not training; reinforcement learning requires a scalable pipeline, not just a dataset. We introduce Endless Terminals, a fully autonomous pipeline that procedurally generates terminal-use tasks without human annotation. The pipeline has four stages: generating diverse task descriptions, building and validating containerized environments, producing completion tests, and filtering for solvability. From this pipeline we obtain 3255 tasks spanning file operations, log management, data processing, scripting, and database operations. We train agents using vanilla PPO with binary episode level rewards and a minimal interaction loop: no retrieval, multi-agent coordination, or specialized tools. Despite this simplicity, models trained on Endless Terminals show substantial gains: on our held-out dev set, Llama-3.2-3B improves from 4.0% to 18.2%, Qwen2.5-7B from 10.7% to 53.3%, and Qwen3-8B-openthinker-sft from 42.6% to 59.0%. These improvements transfer to human-curated benchmarks: models trained on Endless Terminals show substantial gains on held out human curated benchmarks: on TerminalBench 2.0, Llama-3.2-3B improves from 0.0% to 2.2%, Qwen2.5-7B from 2.2% to 3.4%, and Qwen3-8B-openthinker-sft from 1.1% to 6.7%, in each case outperforming alternative approaches including models with more complex agentic scaffolds. These results demonstrate that simple RL succeeds when environments scale.
♻ ☆ SAC-Opt: Semantic Anchors for Iterative Correction in Optimization Modeling
Large language models (LLMs) have opened new paradigms in optimization modeling by enabling the generation of executable solver code from natural language descriptions. Despite this promise, existing approaches typically remain solver-driven: they rely on single-pass forward generation and apply limited post-hoc fixes based on solver error messages, leaving undetected semantic errors that silently produce syntactically correct but logically flawed models. To address this challenge, we propose SAC-Opt, a backward-guided correction framework that grounds optimization modeling in problem semantics rather than solver feedback. At each step, SAC-Opt aligns the original semantic anchors with those reconstructed from the generated code and selectively corrects only the mismatched components, driving convergence toward a semantically faithful model. This anchor-driven correction enables fine-grained refinement of constraint and objective logic, enhancing both fidelity and robustness without requiring additional training or supervision. Empirical results on seven public datasets demonstrate that SAC-Opt improves average modeling accuracy by 7.7%, with gains of up to 21.9% on the ComplexLP dataset. These findings highlight the importance of semantic-anchored correction in LLM-based optimization workflows to ensure faithful translation from problem intent to solver-executable code.
♻ ☆ Memento: Towards Proactive Visualization of Everyday Memories with Personal Wearable AR Assistant IEEE
We introduce Memento, a conversational AR assistant that permanently captures and memorizes user's verbal queries alongside their spatiotemporal and activity contexts. By storing these "memories," Memento discovers connections between users' recurring interests and the contexts that trigger them. Upon detection of similar or identical spatiotemporal activity, Memento proactively recalls user interests and delivers up-to-date responses through AR, seamlessly integrating AR experience into their daily routine. Unlike prior work, each interaction in Memento is not a transient event, but a connected series of interactions with coherent long--term perspective, tailored to the user's broader multimodal (visual, spatial, temporal, and embodied) context. We conduct preliminary evaluation through user feedbacks with participants of diverse expertise in immersive apps, and explore the value of proactive context-aware AR assistant in everyday settings. We share our findings and challenges in designing a proactive, context-aware AR system.
comment: 8 pages, 5 figures. This is the author's version of the article that will appear at the IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (IEEE VRW) 2026
♻ ☆ Streaming-dLLM: Accelerating Diffusion LLMs via Suffix Pruning and Dynamic Decoding
Diffusion Large Language Models (dLLMs) offer a compelling paradigm for natural language generation, leveraging parallel decoding and bidirectional attention to achieve superior global coherence compared to autoregressive models. While recent works have accelerated inference via KV cache reuse or heuristic decoding, they overlook the intrinsic inefficiencies within the block-wise diffusion process. Specifically, they suffer from spatial redundancy by modeling informative-sparse suffix regions uniformly and temporal inefficiency by applying fixed denoising schedules across all the decoding process. To address this, we propose Streaming-dLLM, a training-free framework that streamlines inference across both spatial and temporal dimensions. Spatially, we introduce attenuation guided suffix modeling to approximate the full context by pruning redundant mask tokens. Temporally, we employ a dynamic confidence aware strategy with an early exit mechanism, allowing the model to skip unnecessary iterations for converged tokens. Extensive experiments show that Streaming-dLLM achieves up to 68.2X speedup while maintaining generation quality, highlighting its effectiveness in diffusion decoding. The code is available at https://github.com/xiaoshideta/Streaming-dLLM.
comment: Tech report. Code is available at https://github.com/xiaoshideta/Streaming-dLLM
♻ ☆ QWHA: Quantization-Aware Walsh-Hadamard Adaptation for Parameter-Efficient Fine-Tuning on Large Language Models
The demand for efficient deployment of large language models (LLMs) has driven interest in quantization, which reduces inference cost, and parameter-efficient fine-tuning (PEFT), which lowers training overhead. This motivated the development of quantization-aware PEFT to produce accurate yet efficient quantized models. In this setting, reducing quantization error prior to fine-tuning is crucial for achieving high model accuracy. However, existing methods that rely on low-rank adaptation suffer from limited representational capacity. Recent Fourier-related transform (FT)-based adapters offer greater representational power than low-rank adapters, but their direct integration into quantized models often results in ineffective error reduction and increased computational overhead. To overcome these limitations, we propose QWHA, a method that integrates FT-based adapters into quantized models by employing the Walsh-Hadamard Transform (WHT) as the transform kernel, together with a novel adapter initialization scheme incorporating adaptive parameter selection and value refinement. We demonstrate that QWHA effectively mitigates quantization errors while facilitating fine-tuning, and that its design substantially reduces computational cost. Experimental results show that QWHA consistently outperforms baselines in low-bit quantization accuracy and achieves significant training speedups over existing FT-based adapters. The code is available at https://github.com/vantaa89/qwha.
comment: 25 pages, 9 figures, 14 tables
♻ ☆ Complex Logical Instruction Generation
Instruction following has catalyzed the recent era of Large Language Models (LLMs) and is the foundational skill underpinning more advanced capabilities such as reasoning and agentic behaviors. As tasks grow more challenging, the logic structures embedded in natural language instructions becomes increasingly intricate. However, how well LLMs perform on such logic-rich instructions remains under-explored. We propose LogicIFGen and LogicIFEval. LogicIFGen is a scalable, automated framework for generating verifiable instructions from code functions, which can naturally express rich logic such as conditions, loops, and function calls. We further curate a collection of complex code functions and use LogicIFGen to construct LogicIFEval, a benchmark comprising 426 verifiable logic-rich instructions. Our experiments demonstrate that current state-of-the-art LLMs still struggle to correctly follow the instructions in LogicIFEval. Most LLMs can only follow fewer than 60% of the instructions, revealing significant deficiencies in the instruction-following ability. Code and Benchmark: https://github.com/mianzhang/LogicIF
♻ ☆ SemCoT: Accelerating Chain-of-Thought Reasoning through Semantically-Aligned Implicit Tokens
The verbosity of Chain-of-Thought (CoT) reasoning hinders its mass deployment in efficiency-critical applications. Recently, implicit CoT approaches have emerged, which encode reasoning steps within LLM's hidden embeddings (termed ``implicit reasoning'') rather than explicit tokens. This approach accelerates CoT by reducing the reasoning length and bypassing some LLM components. However, existing implicit CoT methods face two significant challenges: (1) they fail to preserve the semantic alignment between the implicit reasoning (when transformed to natural language) and the ground-truth reasoning, resulting in a significant CoT performance degradation, and (2) they focus on reducing the length of the implicit reasoning; however, they neglect the considerable time cost for an LLM to generate one individual implicit reasoning token. To tackle these challenges, we propose a novel semantically-aligned implicit CoT framework termed SemCoT. In particular, for the first challenge, we design a contrastively trained sentence transformer that evaluates semantic alignment between implicit and explicit reasoning, which is used to enforce semantic preservation during implicit reasoning optimization. To address the second challenge, we introduce an efficient implicit reasoning generator by finetuning a lightweight language model using knowledge distillation. This generator is guided by our sentence transformer to distill ground-truth reasoning into semantically aligned implicit reasoning, while also optimizing for accuracy. SemCoT is the first approach that enhances CoT efficiency by jointly optimizing token-level generation speed and preserving semantic alignment with ground-truth reasoning. Extensive experiments demonstrate the superior performance of SemCoT compared to state-of-the-art methods in both efficiency and effectiveness. Our code can be found at https://github.com/YinhanHe123/SemCoT/.
♻ ☆ A Context-Aware Dual-Metric Framework for Confidence Estimation in Large Language Models
Accurate confidence estimation is essential for trustworthy large language models (LLMs) systems, as it empowers the user to determine when to trust outputs and enables reliable deployment in safety-critical applications. Current confidence estimation methods for LLMs neglect the relevance between responses and contextual information, a crucial factor in output quality evaluation, particularly in scenarios where background knowledge is provided. To bridge this gap, we propose CRUX (Context-aware entropy Reduction and Unified consistency eXamination), the first framework that integrates context faithfulness and consistency for confidence estimation via two novel metrics. First, contextual entropy reduction represents data uncertainty with the information gain through contrastive sampling with and without context. Second, unified consistency examination captures potential model uncertainty through the global consistency of the generated answers with and without context. Experiments across three benchmark datasets (CoQA, SQuAD, QuAC) and two domain-specific datasets (BioASQ, EduQG) demonstrate CRUX's effectiveness, achieving the highest AUROC than existing baselines.
♻ ☆ MobileSafetyBench: Evaluating Safety of Autonomous Agents in Mobile Device Control
Autonomous agents powered by large language models (LLMs) show promising potential in assistive tasks across various domains, including mobile device control. As these agents interact directly with personal information and device settings, ensuring their safe and reliable behavior is crucial to prevent undesirable outcomes. However, no benchmark exists for standardized evaluation of the safety of mobile device-control agents. In this work, we introduce MobileSafetyBench, a benchmark designed to evaluate the safety of device-control agents within a realistic mobile environment based on Android emulators. We develop a diverse set of tasks involving interactions with various mobile applications, including messaging and banking applications, challenging agents with managing risks encompassing misuse and negative side effects. These tasks include tests to evaluate the safety of agents in daily scenarios as well as their robustness against indirect prompt injection attacks. Our experiments demonstrate that baseline agents, based on state-of-the-art LLMs, often fail to effectively prevent harm while performing the tasks. To mitigate these safety concerns, we propose a prompting method that encourages agents to prioritize safety considerations. While this method shows promise in promoting safer behaviors, there is still considerable room for improvement to fully earn user trust. This highlights the urgent need for continued research to develop more robust safety mechanisms in mobile environments.
♻ ☆ Can We Trust LLM Detectors?
The rapid adoption of LLMs has increased the need for reliable AI text detection, yet existing detectors often fail outside controlled benchmarks. We systematically evaluate 2 dominant paradigms (training-free and supervised) and show that both are brittle under distribution shift, unseen generators, and simple stylistic perturbations. To address these limitations, we propose a supervised contrastive learning (SCL) framework that learns discriminative style embeddings. Experiments show that while supervised detectors excel in-domain, they degrade sharply out-of-domain, and training-free methods remain highly sensitive to proxy choice. Overall, our results expose fundamental challenges in building domain-agnostic detectors. Our code is available at: https://github.com/HARSHITJAIS14/DetectAI
♻ ☆ Watermark-based Attribution of AI-Generated Content ICLR 2026
Several companies have deployed watermark-based detection to identify AI-generated content. However, attribution--the ability to trace back to the user of a generative AI (GenAI) service who created a given AI-generated content--remains largely unexplored despite its growing importance. In this work, we aim to bridge this gap by conducting the first systematic study on watermark-based, user-level attribution of AI-generated content. Our key idea is to assign a unique watermark to each user of the GenAI service and embed this watermark into the AI-generated content created by that user. Attribution is then performed by identifying the user whose watermark best matches the one extracted from the given content. This approach, however, faces a key challenge: How should watermarks be selected for users to maximize attribution performance? To address the challenge, we first theoretically derive lower bounds on detection and attribution performance through rigorous probabilistic analysis for any given set of user watermarks. Then, we select watermarks for users to maximize these lower bounds, thereby optimizing detection and attribution performance. Our theoretical and empirical results show that watermark-based attribution inherits both the accuracy and (non-)robustness properties of the underlying watermark. Specifically, attribution remains highly accurate when the watermarked AI-generated content is either not post-processed or subjected to common post-processing such as JPEG compression, as well as black-box adversarial post-processing with limited query budgets.
comment: Accepted by ICLR 2026
♻ ☆ Mask-GCG: Are All Tokens in Adversarial Suffixes Necessary for Jailbreak Attacks? ICASSP 2026
Jailbreak attacks on Large Language Models (LLMs) have demonstrated various successful methods whereby attackers manipulate models into generating harmful responses that they are designed to avoid. Among these, Greedy Coordinate Gradient (GCG) has emerged as a general and effective approach that optimizes the tokens in a suffix to generate jailbreakable prompts. While several improved variants of GCG have been proposed, they all rely on fixed-length suffixes. However, the potential redundancy within these suffixes remains unexplored. In this work, we propose Mask-GCG, a plug-and-play method that employs learnable token masking to identify impactful tokens within the suffix. Our approach increases the update probability for tokens at high-impact positions while pruning those at low-impact positions. This pruning not only reduces redundancy but also decreases the size of the gradient space, thereby lowering computational overhead and shortening the time required to achieve successful attacks compared to GCG. We evaluate Mask-GCG by applying it to the original GCG and several improved variants. Experimental results show that most tokens in the suffix contribute significantly to attack success, and pruning a minority of low-impact tokens does not affect the loss values or compromise the attack success rate (ASR), thereby revealing token redundancy in LLM prompts. Our findings provide insights for developing efficient and interpretable LLMs from the perspective of jailbreak attacks.
comment: Accepted to ICASSP 2026
♻ ☆ COMMUNITYNOTES: A Dataset for Exploring the Helpfulness of Fact-Checking Explanations EACL 2026
Fact-checking on major platforms, such as X, Meta, and TikTok, is shifting from expert-driven verification to a community-based setup, where users contribute explanatory notes to clarify why a post might be misleading. An important challenge here is determining whether an explanation is helpful for understanding real-world claims and the reasons why, which remains largely underexplored in prior research. In practice, most community notes remain unpublished due to slow community annotation, and the reasons for helpfulness lack clear definitions. To bridge these gaps, we introduce the task of predicting both the helpfulness of explanatory notes and the reason for this. We present COMMUNITYNOTES, a large-scale multilingual dataset of 104k posts with user-provided notes and helpfulness labels. We further propose a framework that automatically generates and improves reason definitions via automatic prompt optimization, and integrate them into prediction. Our experiments show that the optimized definitions can improve both helpfulness and reason prediction. Finally, we show that the helpfulness information is beneficial for existing fact-checking systems.
comment: EACL 2026 Findings
♻ ☆ ShareChat: A Dataset of Chatbot Conversations in the Wild
While academic research typically treats Large Language Models (LLM) as generic text generators, they are distinct commercial products with unique interfaces and capabilities that fundamentally shape user behavior. Current datasets obscure this reality by collecting text-only data through uniform interfaces that fail to capture authentic chatbot usage. To address this limitation, we present ShareChat, a large-scale corpus of 142,808 conversations (660,293 turns) sourced directly from publicly shared URLs on ChatGPT, Perplexity, Grok, Gemini, and Claude. ShareChat distinguishes itself by preserving native platform affordances, such as citations and thinking traces, across a diverse collection covering 101 languages and the period from April 2023 to October 2025. Furthermore, ShareChat offers substantially longer context windows and greater interaction depth than prior datasets. To illustrate the dataset's breadth, we present three case studies: a completeness analysis of intent satisfaction, a citation study of model grounding, and a temporal analysis of engagement rhythms. This work provides the community with a vital and timely resource for understanding authentic user-LLM chatbot interactions in the wild. The dataset is publicly available via Hugging Face.
♻ ☆ Diagnosing Vision Language Models' Perception by Leveraging Human Methods for Color Vision Deficiencies EACL 2026
Large-scale Vision-Language Models (LVLMs) are being deployed in real-world settings that require visual inference. As capabilities improve, applications in navigation, education, and accessibility are becoming practical. These settings require accommodation of perceptual variation rather than assuming a uniform visual experience. Color perception illustrates this requirement: it is central to visual understanding yet varies across individuals due to Color Vision Deficiencies, an aspect largely ignored in multimodal AI. In this work, we examine whether LVLMs can account for variation in color perception using the Ishihara Test. We evaluate model behavior through generation, confidence, and internal representation, using Ishihara plates as controlled stimuli that expose perceptual differences. Although models possess factual knowledge about color vision deficiencies and can describe the test, they fail to reproduce the perceptual outcomes experienced by affected individuals and instead default to normative color perception. These results indicate that current systems lack mechanisms for representing alternative perceptual experiences, raising concerns for accessibility and inclusive deployment in multimodal settings.
comment: Accepted to appear in the main conference of EACL 2026
♻ ☆ In-context Language Learning for Endangered Languages in Speech Recognition
With approximately 7,000 languages spoken worldwide, current large language models (LLMs) support only a small subset. Prior research indicates LLMs can learn new languages for certain tasks without supervised data. We extend this investigation to speech recognition, investigating whether LLMs can learn unseen, low-resource languages through in-context learning (ICL). With experiments on four diverse endangered languages that LLMs have not been trained on, we find that providing more relevant text samples enhances performance in both language modelling and Automatic Speech Recognition (ASR) tasks. Furthermore, we show that the probability-based approach outperforms the traditional instruction-based approach in language learning. Lastly, we show ICL enables LLMs to achieve ASR performance that is comparable to or even surpasses dedicated language models trained specifically for these languages, while preserving the original capabilities of the LLMs. Our code is publicly available.
comment: Interspeech2025
♻ ☆ Epistemic Constitutionalism Or: how to avoid coherence bias
Large language models increasingly function as artificial reasoners: they evaluate arguments, assign credibility, and express confidence. Yet their belief-forming behavior is governed by implicit, uninspected epistemic policies. This paper argues for an epistemic constitution for AI: explicit, contestable meta-norms that regulate how systems form and express beliefs. Source attribution bias provides the motivating case: I show that frontier models enforce identity-stance coherence, penalizing arguments attributed to sources whose expected ideological position conflicts with the argument's content. When models detect systematic testing, these effects collapse, revealing that systems treat source-sensitivity as bias to suppress rather than as a capacity to execute well. I distinguish two constitutional approaches: the Platonic, which mandates formal correctness and default source-independence from a privileged standpoint, and the Liberal, which refuses such privilege, specifying procedural norms that protect conditions for collective inquiry while allowing principled source-attending grounded in epistemic vigilance. I argue for the Liberal approach, sketch a constitutional core of eight principles and four orientations, and propose that AI epistemic governance requires the same explicit, contestable structure we now expect for AI ethics.
comment: 27 pages, 7 tables. Data: github.com/MicheleLoi/source-attribution-bias-data and github.com/MicheleLoi/source-attribution-bias-swiss-replication. Complete AI-assisted writing documentation: github.com/MicheleLoi/epistemic-constitutionalism-paper
♻ ☆ An Actionable Framework for Assessing Bias and Fairness in Large Language Model Use Cases
Bias and fairness risks in Large Language Models (LLMs) vary substantially across deployment contexts, yet existing approaches lack systematic guidance for selecting appropriate evaluation metrics. We present a decision framework that maps LLM use cases, characterized by a model and population of prompts, to relevant bias and fairness metrics based on task type, whether prompts contain protected attribute mentions, and stakeholder priorities. Our framework addresses toxicity, stereotyping, counterfactual unfairness, and allocational harms, and introduces novel metrics based on stereotype classifiers and counterfactual adaptations of text similarity measures. All metrics require only LLM outputs for computation, simplifying implementation while avoiding embedding-based approaches that often correlate poorly with downstream harms. We provide an open-source Python library, LangFair, for practical adoption. Extensive experiments demonstrate that fairness risks cannot be reliably assessed from benchmark performance alone: results on one prompt dataset likely overstate or understate risks for another, underscoring that fairness evaluation must be grounded in the specific deployment context.
comment: LangFair repository: https://github.com/cvs-health/langfair
Machine Learning 285
☆ Self-Distillation Enables Continual Learning
Continual learning, enabling models to acquire new skills and knowledge without degrading existing capabilities, remains a fundamental challenge for foundation models. While on-policy reinforcement learning can reduce forgetting, it requires explicit reward functions that are often unavailable. Learning from expert demonstrations, the primary alternative, is dominated by supervised fine-tuning (SFT), which is inherently off-policy. We introduce Self-Distillation Fine-Tuning (SDFT), a simple method that enables on-policy learning directly from demonstrations. SDFT leverages in-context learning by using a demonstration-conditioned model as its own teacher, generating on-policy training signals that preserve prior capabilities while acquiring new skills. Across skill learning and knowledge acquisition tasks, SDFT consistently outperforms SFT, achieving higher new-task accuracy while substantially reducing catastrophic forgetting. In sequential learning experiments, SDFT enables a single model to accumulate multiple skills over time without performance regression, establishing on-policy distillation as a practical path to continual learning from demonstrations.
☆ Post-LayerNorm Is Back: Stable, ExpressivE, and Deep
Large language model (LLM) scaling is hitting a wall. Widening models yields diminishing returns, and extending context length does not improve fundamental expressivity. In contrast, depth scaling offers theoretically superior expressivity, yet current Transformer architectures struggle to train reliably at extreme depths. We revisit the Post-LayerNorm (Post-LN) formulation, whose instability at scale caused its replacement by Pre-LN in modern LLMs. We show that the central failure mode of Post-LN arises from the ResNet-style residual pathway, which introduces gradient vanishing in deep networks. We present Keel, a Post-LN Transformer that replaces this residual path with a Highway-style connection. This modification preserves the gradient flow through the residual branch, preventing signal vanishing from the top layers to the bottom. Unlike prior methods, Keel enables stable training at extreme depths without requiring specialized initialization or complex optimization tricks. Keel trains robustly at depths exceeding 1000 layers and consistently improves perplexity and depth-scaling characteristics over Pre-LN. These findings indicate that Post-LN, when paired with a Highway-style connection, provides a simple and effective foundation for building deeply scalable LLMs, opening the possibility for future infinite-depth architectures.
☆ M-SGWR: Multiscale Similarity and Geographically Weighted Regression
The first law of geography is a cornerstone of spatial analysis, emphasizing that nearby and related locations tend to be more similar, however, defining what constitutes "near" and "related" remains challenging, as different phenomena exhibit distinct spatial patterns. Traditional local regression models, such as Geographically Weighted Regression (GWR) and Multiscale GWR (MGWR), quantify spatial relationships solely through geographic proximity. In an era of globalization and digital connectivity, however, geographic proximity alone may be insufficient to capture how locations are interconnected. To address this limitation, we propose a new multiscale local regression framework, termed M-SGWR, which characterizes spatial interaction across two dimensions: geographic proximity and attribute (variable) similarity. For each predictor, geographic and attribute-based weight matrices are constructed separately and then combined using an optimized parameter, alpha, which governs their relative contribution to local model fitting. Analogous to variable-specific bandwidths in MGWR, the optimal alpha varies by predictor, allowing the model to flexibly account for geographic, mixed, or non-spatial (remote similarity) effects. Results from two simulation experiments and one empirical application demonstrate that M-SGWR consistently outperforms GWR, SGWR, and MGWR across all goodness-of-fit metrics.
☆ SONIC: Spectral Oriented Neural Invariant Convolutions ICLR 2026
Convolutional Neural Networks (CNNs) rely on fixed-size kernels scanning local patches, which limits their ability to capture global context or long-range dependencies without very deep architectures. Vision Transformers (ViTs), in turn, provide global connectivity but lack spatial inductive bias, depend on explicit positional encodings, and remain tied to the initial patch size. Bridging these limitations requires a representation that is both structured and global. We introduce SONIC (Spectral Oriented Neural Invariant Convolutions), a continuous spectral parameterisation that models convolutional operators using a small set of shared, orientation-selective components. These components define smooth responses across the full frequency domain, yielding global receptive fields and filters that adapt naturally across resolutions. Across synthetic benchmarks, large-scale image classification, and 3D medical datasets, SONIC shows improved robustness to geometric transformations, noise, and resolution shifts, and matches or exceeds convolutional, attention-based, and prior spectral architectures with an order of magnitude fewer parameters. These results demonstrate that continuous, orientation-aware spectral parameterisations provide a principled and scalable alternative to conventional spatial and spectral operators.
comment: 10 pages, 4 figures. Accepted at ICLR 2026
☆ RHSIA: Real-time Hemodynamics Surrogation for Non-idealized Intracranial Aneurysms
Extensive studies suggested that fluid mechanical markers of intracranial aneurysms (IAs) derived from Computational Fluid Dynamics (CFD) can indicate disease progression risks, but to date this has not been translated clinically. This is because CFD requires specialized expertise and is time-consuming and low throughput, making it difficult to support clinical trials. A deep learning model that maps IA morphology to biomechanical markers can address this, enabling physicians to obtain these markers in real time without performing CFD. Here, we show that a Graph Transformer model that incorporates temporal information, which is supervised by large CFD data, can accurately predict Wall Shear Stress (WSS) across the cardiac cycle from IA surface meshes. The model effectively captures the temporal variations of the WSS pattern, achieving a Structural Similarity Index (SSIM) of up to 0.981 and a maximum-based relative L2 error of 2.8%. Ablation studies and SOTA comparison confirmed its optimality. Further, as pulsatile CFD data is computationally expensive to generate and sample sizes are limited, we engaged a strategy of injecting a large amount of steady-state CFD data, which are extremely low-cost to generate, as augmentation. This approach enhances network performance substantially when pulsatile CFD data sample size is small. Our study provides a proof of concept that temporal sequences cardiovascular fluid mechanical parameters can be computed in real time using a deep learning model from the geometric mesh, and this is achievable even with small pulsatile CFD sample size. Our approach is likely applicable to other cardiovascular scenarios.
☆ Bandits in Flux: Adversarial Constraints in Dynamic Environments AISTATS 2026
We investigate the challenging problem of adversarial multi-armed bandits operating under time-varying constraints, a scenario motivated by numerous real-world applications. To address this complex setting, we propose a novel primal-dual algorithm that extends online mirror descent through the incorporation of suitable gradient estimators and effective constraint handling. We provide theoretical guarantees establishing sublinear dynamic regret and sublinear constraint violation for our proposed policy. Our algorithm achieves state-of-the-art performance in terms of both regret and constraint violation. Empirical evaluations demonstrate the superiority of our approach.
comment: Accepted to AISTATS 2026
☆ Calibration without Ground Truth
Villalobos et al. [2024] predict that publicly available human text will be exhausted within the next decade. Thus, improving models without access to ground-truth labels becomes increasingly important. We propose a label-free post-processing framework that improves a strong but miscalibrated model using a weaker yet better-calibrated reference. Our framework guarantees a strict performance improvement under any proper loss. Our approach is based on a characterization of when strict improvement is possible: when the strong and reference models are not mutually calibrated. We formalize this condition, connect it to arbitrage and no-trade results from economics, and develop an efficient Bregman projection algorithm that guarantees worst-case loss reduction without labels. Experiments on representative LLMs across varying scales demonstrate that our label-free method significantly reduces proper losses and calibration errors, achieving performance competitive with supervised baselines.
☆ Generative Latent Alignment for Interpretable Radar Based Occupancy Detection in Ambient Assisted Living
In this work, we study how to make mmWave radar presence detection more interpretable for Ambient Assisted Living (AAL) settings, where camera-based sensing raises privacy concerns. We propose a Generative Latent Alignment (GLA) framework that combines a lightweight convolutional variational autoencoder with a frozen CLIP text encoder to learn a low-dimensional latent representation of radar Range-Angle (RA) heatmaps. The latent space is softly aligned with two semantic anchors corresponding to "empty room" and "person present", and Grad-CAM is applied in this aligned latent space to visualize which spatial regions support each presence decision. On our mmWave radar dataset, we qualitatively observe that the "person present" class produces compact Grad-CAM blobs that coincide with strong RA returns, whereas "empty room" samples yield diffuse or no evidence. We also conduct an ablation study using unrelated text prompts, which degrades both reconstruction and localization, suggesting that radar-specific anchors are important for meaningful explanations in this setting.
☆ A Multi-directional Meta-Learning Framework for Class-Generalizable Anomaly Detection
In this paper, we address the problem of class-generalizable anomaly detection, where the objective is to develop a unified model by focusing our learning on the available normal data and a small amount of anomaly data in order to detect the completely unseen anomalies, also referred to as the out-of-distribution (OOD) classes. Adding to this challenge is the fact that the anomaly data is rare and costly to label. To achieve this, we propose a multidirectional meta-learning algorithm -- at the inner level, the model aims to learn the manifold of the normal data (representation); at the outer level, the model is meta-tuned with a few anomaly samples to maximize the softmax confidence margin between the normal and anomaly samples (decision surface calibration), treating normals as in-distribution (ID) and anomalies as out-of-distribution (OOD). By iteratively repeating this process over multiple episodes of predominantly normal and a small number of anomaly samples, we realize a multidirectional meta-learning framework. This two-level optimization, enhanced by multidirectional training, enables stronger generalization to unseen anomaly classes.
☆ Neural Neural Scaling Laws
Neural scaling laws predict how language model performance improves with increased compute. While aggregate metrics like validation loss can follow smooth power-law curves, individual downstream tasks exhibit diverse scaling behaviors: some improve monotonically, others plateau, and some even degrade with scale. We argue that predicting downstream performance from validation perplexity suffers from two limitations: averaging token-level losses obscures signal, and no simple parametric family can capture the full spectrum of scaling behaviors. To address this, we propose Neural Neural Scaling Laws (NeuNeu), a neural network that frames scaling law prediction as time-series extrapolation. NeuNeu combines temporal context from observed accuracy trajectories with token-level validation losses, learning to predict future performance without assuming any bottleneck or functional form. Trained entirely on open-source model checkpoints from HuggingFace, NeuNeu achieves 2.04% mean absolute error in predicting model accuracy on 66 downstream tasks -- a 38% reduction compared to logistic scaling laws (3.29% MAE). Furthermore, NeuNeu generalizes zero-shot to unseen model families, parameter counts, and downstream tasks. Our work suggests that predicting downstream scaling laws directly from data outperforms parametric alternatives.
☆ Learn and Verify: A Framework for Rigorous Verification of Physics-Informed Neural Networks
The numerical solution of differential equations using neural networks has become a central topic in scientific computing, with Physics-Informed Neural Networks (PINNs) emerging as a powerful paradigm for both forward and inverse problems. However, unlike classical numerical methods that offer established convergence guarantees, neural network-based approximations typically lack rigorous error bounds. Furthermore, the non-deterministic nature of their optimization makes it difficult to mathematically certify their accuracy. To address these challenges, we propose a "Learn and Verify" framework that provides computable, mathematically rigorous error bounds for the solutions of differential equations. By combining a novel Doubly Smoothed Maximum (DSM) loss for training with interval arithmetic for verification, we compute rigorous a posteriori error bounds as machine-verifiable proofs. Numerical experiments on nonlinear Ordinary Differential Equations (ODEs), including problems with time-varying coefficients and finite-time blow-up, demonstrate that the proposed framework successfully constructs rigorous enclosures of the true solutions, establishing a foundation for trustworthy scientific machine learning.
comment: 13 pages, 10 figures
☆ Revisiting Incremental Stochastic Majorization-Minimization Algorithms with Applications to Mixture of Experts
Processing high-volume, streaming data is increasingly common in modern statistics and machine learning, where batch-mode algorithms are often impractical because they require repeated passes over the full dataset. This has motivated incremental stochastic estimation methods, including the incremental stochastic Expectation-Maximization (EM) algorithm formulated via stochastic approximation. In this work, we revisit and analyze an incremental stochastic variant of the Majorization-Minimization (MM) algorithm, which generalizes incremental stochastic EM as a special case. Our approach relaxes key EM requirements, such as explicit latent-variable representations, enabling broader applicability and greater algorithmic flexibility. We establish theoretical guarantees for the incremental stochastic MM algorithm, proving consistency in the sense that the iterates converge to a stationary point characterized by a vanishing gradient of the objective. We demonstrate these advantages on a softmax-gated mixture of experts (MoE) regression problem, for which no stochastic EM algorithm is available. Empirically, our method consistently outperforms widely used stochastic optimizers, including stochastic gradient descent, root mean square propagation, adaptive moment estimation, and second-order clipped stochastic optimization. These results support the development of new incremental stochastic algorithms, given the central role of softmax-gated MoE architectures in contemporary deep neural networks for heterogeneous data modeling. Beyond synthetic experiments, we also validate practical effectiveness on two real-world datasets, including a bioinformatics study of dent maize genotypes under drought stress that integrates high-dimensional proteomics with ecophysiological traits, where incremental stochastic MM yields stable gains in predictive performance.
comment: TrungKhang Tran and TrungTin Nguyen are co-first authors
☆ Unsupervised Learning of Efficient Exploration: Pre-training Adaptive Policies via Self-Imposed Goals ICLR 2026
Unsupervised pre-training can equip reinforcement learning agents with prior knowledge and accelerate learning in downstream tasks. A promising direction, grounded in human development, investigates agents that learn by setting and pursuing their own goals. The core challenge lies in how to effectively generate, select, and learn from such goals. Our focus is on broad distributions of downstream tasks where solving every task zero-shot is infeasible. Such settings naturally arise when the target tasks lie outside of the pre-training distribution or when their identities are unknown to the agent. In this work, we (i) optimize for efficient multi-episode exploration and adaptation within a meta-learning framework, and (ii) guide the training curriculum with evolving estimates of the agent's post-adaptation performance. We present ULEE, an unsupervised meta-learning method that combines an in-context learner with an adversarial goal-generation strategy that maintains training at the frontier of the agent's capabilities. On XLand-MiniGrid benchmarks, ULEE pre-training yields improved exploration and adaptation abilities that generalize to novel objectives, environment dynamics, and map structures. The resulting policy attains improved zero-shot and few-shot performance, and provides a strong initialization for longer fine-tuning processes. It outperforms learning from scratch, DIAYN pre-training, and alternative curricula.
comment: To appear at ICLR 2026
☆ Component-Aware Pruning Framework for Neural Network Controllers via Gradient-Based Importance Estimation
The transition from monolithic to multi-component neural architectures in advanced neural network controllers poses substantial challenges due to the high computational complexity of the latter. Conventional model compression techniques for complexity reduction, such as structured pruning based on norm-based metrics to estimate the relative importance of distinct parameter groups, often fail to capture functional significance. This paper introduces a component-aware pruning framework that utilizes gradient information to compute three distinct importance metrics during training: Gradient Accumulation, Fisher Information, and Bayesian Uncertainty. Experimental results with an autoencoder and a TD-MPC agent demonstrate that the proposed framework reveals critical structural dependencies and dynamic shifts in importance that static heuristics often miss, supporting more informed compression decisions.
comment: 8 pages, Submitted to the 2026 IFAC World Congress
☆ To Grok Grokking: Provable Grokking in Ridge Regression
We study grokking, the onset of generalization long after overfitting, in a classical ridge regression setting. We prove end-to-end grokking results for learning over-parameterized linear regression models using gradient descent with weight decay. Specifically, we prove that the following stages occur: (i) the model overfits the training data early during training; (ii) poor generalization persists long after overfitting has manifested; and (iii) the generalization error eventually becomes arbitrarily small. Moreover, we show, both theoretically and empirically, that grokking can be amplified or eliminated in a principled manner through proper hyperparameter tuning. To the best of our knowledge, these are the first rigorous quantitative bounds on the generalization delay (which we refer to as the "grokking time") in terms of training hyperparameters. Lastly, going beyond the linear setting, we empirically demonstrate that our quantitative bounds also capture the behavior of grokking on non-linear neural networks. Our results suggest that grokking is not an inherent failure mode of deep learning, but rather a consequence of specific training conditions, and thus does not require fundamental changes to the model architecture or learning algorithm to avoid.
☆ Knowledge-Aware Evolution for Streaming Federated Continual Learning with Category Overlap and without Task Identifiers
Federated Continual Learning (FCL) leverages inter-client collaboration to balance new knowledge acquisition and prior knowledge retention in non-stationary data. However, existing batch-based FCL methods lack adaptability to streaming scenarios featuring category overlap between old and new data and absent task identifiers, leading to indistinguishability of old and new knowledge, uncertain task assignments for samples, and knowledge confusion.To address this, we propose streaming federated continual learning setting: per federated learning (FL) round, clients process streaming data with disjoint samples and potentially overlapping categories without task identifiers, necessitating sustained inference capability for all prior categories after each FL round.Next, we introduce FedKACE: 1) an adaptive inference model switching mechanism that enables unidirectional switching from local model to global model to achieve a trade-off between personalization and generalization; 2) a adaptive gradient-balanced replay scheme that reconciles new knowledge learning and old knowledge retention under overlapping-class scenarios; 3) a kernel spectral boundary buffer maintenance that preserves high-information and high-boundary-influence samples to optimize cross-round knowledge retention. Experiments across multiple scenarios and regret analysis demonstrate the effectiveness of FedKACE.
☆ GAVEL: Towards rule-based safety through activation monitoring ICLR 2026
Large language models (LLMs) are increasingly paired with activation-based monitoring to detect and prevent harmful behaviors that may not be apparent at the surface-text level. However, existing activation safety approaches, trained on broad misuse datasets, struggle with poor precision, limited flexibility, and lack of interpretability. This paper introduces a new paradigm: rule-based activation safety, inspired by rule-sharing practices in cybersecurity. We propose modeling activations as cognitive elements (CEs), fine-grained, interpretable factors such as ''making a threat'' and ''payment processing'', that can be composed to capture nuanced, domain-specific behaviors with higher precision. Building on this representation, we present a practical framework that defines predicate rules over CEs and detects violations in real time. This enables practitioners to configure and update safeguards without retraining models or detectors, while supporting transparency and auditability. Our results show that compositional rule-based activation safety improves precision, supports domain customization, and lays the groundwork for scalable, interpretable, and auditable AI governance. We will release GAVEL as an open-source framework and provide an accompanying automated rule creation tool.
comment: Accepted to ICLR 2026
☆ The Effect of Architecture During Continual Learning
Continual learning is a challenge for models with static architecture, as they fail to adapt to when data distributions evolve across tasks. We introduce a mathematical framework that jointly models architecture and weights in a Sobolev space, enabling a rigorous investigation into the role of neural network architecture in continual learning and its effect on the forgetting loss. We derive necessary conditions for the continual learning solution and prove that learning only model weights is insufficient to mitigate catastrophic forgetting under distribution shifts. Consequently, we prove that by learning the architecture and weights simultaneously at each task, we can reduce catastrophic forgetting. To learn weights and architecture simultaneously, we formulate continual learning as a bilevel optimization problem: the upper level selects an optimal architecture for a given task, while the lower level computes optimal weights via dynamic programming over all tasks. To solve the upper level problem, we introduce a derivative-free direct search algorithm to determine the optimal architecture. Once found, we must transfer knowledge from the current architecture to the optimal one. However, the optimal architecture will result in a weights parameter space different from the current architecture (i.e., dimensions of weights matrices will not match). To bridge the dimensionality gap, we develop a low-rank transfer mechanism to map knowledge across architectures of mismatched dimensions. Empirical studies across regression and classification problems, including feedforward, convolutional, and graph neural networks, demonstrate that learning the optimal architecture and weights simultaneously yields substantially improved performance (up to two orders of magnitude), reduced forgetting, and enhanced robustness to noise compared with static architecture approaches.
☆ Provable Learning of Random Hierarchy Models and Hierarchical Shallow-to-Deep Chaining
The empirical success of deep learning is often attributed to deep networks' ability to exploit hierarchical structure in data, constructing increasingly complex features across layers. Yet despite substantial progress in deep learning theory, most optimization results sill focus on networks with only two or three layers, leaving the theoretical understanding of hierarchical learning in genuinely deep models limited. This leads to a natural question: can we prove that deep networks, trained by gradient-based methods, can efficiently exploit hierarchical structure? In this work, we consider Random Hierarchy Models -- a hierarchical context-free grammar introduced by arXiv:2307.02129 and conjectured to separate deep and shallow networks. We prove that, under mild conditions, a deep convolutional network can be efficiently trained to learn this function class. Our proof builds on a general observation: if intermediate layers can receive clean signal from the labels and the relevant features are weakly identifiable, then layerwise training each individual layer suffices to hierarchically learn the target function.
☆ Regularized $f$-Divergence Kernel Tests
We propose a framework to construct practical kernel-based two-sample tests from the family of $f$-divergences. The test statistic is computed from the witness function of a regularized variational representation of the divergence, which we estimate using kernel methods. The proposed test is adaptive over hyperparameters such as the kernel bandwidth and the regularization parameter. We provide theoretical guarantees for statistical test power across our family of $f$-divergence estimates. While our test covers a variety of $f$-divergences, we bring particular focus to the Hockey-Stick divergence, motivated by its applications to differential privacy auditing and machine unlearning evaluation. For two-sample testing, experiments demonstrate that different $f$-divergences are sensitive to different localized differences, illustrating the importance of leveraging diverse statistics. For machine unlearning, we propose a relative test that distinguishes true unlearning failures from safe distributional variations.
☆ GraphDLG: Exploring Deep Leakage from Gradients in Federated Graph Learning
Federated graph learning (FGL) has recently emerged as a promising privacy-preserving paradigm that enables distributed graph learning across multiple data owners. A critical privacy concern in federated learning is whether an adversary can recover raw data from shared gradients, a vulnerability known as deep leakage from gradients (DLG). However, most prior studies on the DLG problem focused on image or text data, and it remains an open question whether graphs can be effectively recovered, particularly when the graph structure and node features are uniquely entangled in GNNs. In this work, we first theoretically analyze the components in FGL and derive a crucial insight: once the graph structure is recovered, node features can be obtained through a closed-form recursive rule. Building on this analysis, we propose GraphDLG, a novel approach to recover raw training graphs from shared gradients in FGL, which can utilize randomly generated graphs or client-side training graphs as auxiliaries to enhance recovery. Extensive experiments demonstrate that GraphDLG outperforms existing solutions by successfully decoupling the graph structure and node features, achieving improvements of over 5.46% (by MSE) for node feature reconstruction and over 25.04% (by AUC) for graph structure reconstruction.
☆ Interpretable and backpropagation-free Green Learning for efficient multi-task echocardiographic segmentation and classification
Echocardiography is a cornerstone for managing heart failure (HF), with Left Ventricular Ejection Fraction (LVEF) being a critical metric for guiding therapy. However, manual LVEF assessment suffers from high inter-observer variability, while existing Deep Learning (DL) models are often computationally intensive and data-hungry "black boxes" that impede clinical trust and adoption. Here, we propose a backpropagation-free multi-task Green Learning (MTGL) framework that performs simultaneous Left Ventricle (LV) segmentation and LVEF classification. Our framework integrates an unsupervised VoxelHop encoder for hierarchical spatio-temporal feature extraction with a multi-level regression decoder and an XG-Boost classifier. On the EchoNet-Dynamic dataset, our MTGL model achieves state-of-the-art classification and segmentation performance, attaining a classification accuracy of 94.3% and a Dice Similarity Coefficient (DSC) of 0.912, significantly outperforming several advanced 3D DL models. Crucially, our model achieves this with over an order of magnitude fewer parameters, demonstrating exceptional computational efficiency. This work demonstrates that the GL paradigm can deliver highly accurate, efficient, and interpretable solutions for complex medical image analysis, paving the way for more sustainable and trustworthy artificial intelligence in clinical practice.
comment: Jyun-Ping Kao and Jiaxing Yang contributed equally to this work. C.-C. Jay Kuo and Jonghye Woo are the senior authors
☆ Quantum Circuit Pre-Synthesis: Learning Local Edits to Reduce $T$-count
Compiling quantum circuits into Clifford+$T$ gates is a central task for fault-tolerant quantum computing using stabilizer codes. In the near term, $T$ gates will dominate the cost of fault tolerant implementations, and any reduction in the number of such expensive gates could mean the difference between being able to run a circuit or not. While exact synthesis is exponentially hard in the number of qubits, local synthesis approaches are commonly used to compile large circuits by decomposing them into substructures. However, composing local methods leads to suboptimal compilations in key metrics such as $T$-count or circuit depth, and their performance strongly depends on circuit representation. In this work, we address this challenge by proposing \textsc{Q-PreSyn}, a strategy that, given a set of local edits preserving circuit equivalence, uses a RL agent to identify effective sequences of such actions and thereby obtain circuit representations that yield a reduced $T$-count upon synthesis. Experimental results of our proposed strategy, applied on top of well-known synthesis algorithms, show up to a $20\%$ reduction in $T$-count on circuits with up to 25 qubits, without introducing any additional approximation error prior to synthesis.
comment: 10+5 pages, 10 figures, 3 algorithms
☆ Stability and Generalization of Nonconvex Optimization with Heavy-Tailed Noise
The empirical evidence indicates that stochastic optimization with heavy-tailed gradient noise is more appropriate to characterize the training of machine learning models than that with standard bounded gradient variance noise. Most existing works on this phenomenon focus on the convergence of optimization errors, while the analysis for generalization bounds under the heavy-tailed gradient noise remains limited. In this paper, we develop a general framework for establishing generalization bounds under heavy-tailed noise. Specifically, we introduce a truncation argument to achieve the generalization error bound based on the algorithmic stability under the assumption of bounded $p$th centered moment with $p\in(1,2]$. Building on this framework, we further provide the stability and generalization analysis for several popular stochastic algorithms under heavy-tailed noise, including clipped and normalized stochastic gradient descent, as well as their mini-batch and momentum variants.
☆ Improving Policy Exploitation in Online Reinforcement Learning with Instant Retrospect Action
Existing value-based online reinforcement learning (RL) algorithms suffer from slow policy exploitation due to ineffective exploration and delayed policy updates. To address these challenges, we propose an algorithm called Instant Retrospect Action (IRA). Specifically, we propose Q-Representation Discrepancy Evolution (RDE) to facilitate Q-network representation learning, enabling discriminative representations for neighboring state-action pairs. In addition, we adopt an explicit method to policy constraints by enabling Greedy Action Guidance (GAG). This is achieved through backtracking historical actions, which effectively enhances the policy update process. Our proposed method relies on providing the learning algorithm with accurate $k$-nearest-neighbor action value estimates and learning to design a fast-adaptable policy through policy constraints. We further propose the Instant Policy Update (IPU) mechanism, which enhances policy exploitation by systematically increasing the frequency of policy updates. We further discover that the early-stage training conservatism of the IRA method can alleviate the overestimation bias problem in value-based RL. Experimental results show that IRA can significantly improve the learning efficiency and final performance of online RL algorithms on eight MuJoCo continuous control tasks.
☆ Rethinking Divisive Hierarchical Clustering from a Distributional Perspective
We uncover that current objective-based Divisive Hierarchical Clustering (DHC) methods produce a dendrogram that does not have three desired properties i.e., no unwarranted splitting, group similar clusters into a same subset, ground-truth correspondence. This shortcoming has their root cause in using a set-oriented bisecting assessment criterion. We show that this shortcoming can be addressed by using a distributional kernel, instead of the set-oriented criterion; and the resultant clusters achieve a new distribution-oriented objective to maximize the total similarity of all clusters (TSC). Our theoretical analysis shows that the resultant dendrogram guarantees a lower bound of TSC. The empirical evaluation shows the effectiveness of our proposed method on artificial and Spatial Transcriptomics (bioinformatics) datasets. Our proposed method successfully creates a dendrogram that is consistent with the biological regions in a Spatial Transcriptomics dataset, whereas other contenders fail.
☆ Scalable Exploration for High-Dimensional Continuous Control via Value-Guided Flow ICLR 2026
Controlling high-dimensional systems in biological and robotic applications is challenging due to expansive state-action spaces, where effective exploration is critical. Commonly used exploration strategies in reinforcement learning are largely undirected with sharp degradation as action dimensionality grows. Many existing methods resort to dimensionality reduction, which constrains policy expressiveness and forfeits system flexibility. We introduce Q-guided Flow Exploration (Qflex), a scalable reinforcement learning method that conducts exploration directly in the native high-dimensional action space. During training, Qflex traverses actions from a learnable source distribution along a probability flow induced by the learned value function, aligning exploration with task-relevant gradients rather than isotropic noise. Our proposed method substantially outperforms representative online reinforcement learning baselines across diverse high-dimensional continuous-control benchmarks. Qflex also successfully controls a full-body human musculoskeletal model to perform agile, complex movements, demonstrating superior scalability and sample efficiency in very high-dimensional settings. Our results indicate that value-guided flows offer a principled and practical route to exploration at scale.
comment: Accepted by ICLR 2026
☆ Out-of-Distribution Generalization via Invariant Trajectories for Multimodal Large Language Model Editing
Knowledge editing emerges as a crucial technique for efficiently correcting incorrect or outdated knowledge in large language models (LLM). Existing editing methods for unimodal LLM rely on a rigid parameter-to-output mapping, which causes causal-underfit and causal-overfit in cascaded reasoning for Multimodal LLM (MLLM). In this paper, we reformulate MLLM editing as an out-of-distribution (OOD) generalization problem, where the goal is to discern semantic shift with factual shift and thus achieve robust editing among diverse cross-modal prompting. The key challenge of this OOD problem lies in identifying invariant causal trajectories that generalize accurately while suppressing spurious correlations. To address it, we propose ODEdit, a plug-and-play invariant learning based framework that optimizes the tripartite OOD risk objective to simultaneously enhance editing reliability, locality, and generality.We further introduce an edit trajectory invariant learning method, which integrates a total variation penalty into the risk minimization objective to stabilize edit trajectories against environmental variations. Theoretical analysis and extensive experiments demonstrate the effectiveness of ODEdit.
Self-Supervised Weight Templates for Scalable Vision Model Initialization
The increasing scale and complexity of modern model parameters underscore the importance of pre-trained models. However, deployment often demands architectures of varying sizes, exposing limitations of conventional pre-training and fine-tuning. To address this, we propose SWEET, a self-supervised framework that performs constraint-based pre-training to enable scalable initialization in vision tasks. Instead of pre-training a fixed-size model, we learn a shared weight template and size-specific weight scalers under Tucker-based factorization, which promotes modularity and supports flexible adaptation to architectures with varying depths and widths. Target models are subsequently initialized by composing and reweighting the template through lightweight weight scalers, whose parameters can be efficiently learned from minimal training data. To further enhance flexibility in width expansion, we introduce width-wise stochastic scaling, which regularizes the template along width-related dimensions and encourages robust, width-invariant representations for improved cross-width generalization. Extensive experiments on \textsc{classification}, \textsc{detection}, \textsc{segmentation} and \textsc{generation} tasks demonstrate the state-of-the-art performance of SWEET for initializing variable-sized vision models.
☆ LoPRo: Enhancing Low-Rank Quantization via Permuted Block-Wise Rotation
Post-training quantization (PTQ) enables effective model compression while preserving relatively high accuracy. Current weight-only PTQ methods primarily focus on the challenging sub-3-bit regime, where approaches often suffer significant accuracy degradation, typically requiring fine-tuning to achieve competitive performance. In this work, we revisit the fundamental characteristics of weight quantization and analyze the challenges in quantizing the residual matrix under low-rank approximation. We propose LoPRo, a novel fine-tuning-free PTQ algorithm that enhances residual matrix quantization by applying block-wise permutation and Walsh-Hadamard transformations to rotate columns of similar importance, while explicitly preserving the quantization accuracy of the most salient column blocks. Furthermore, we introduce a mixed-precision fast low-rank decomposition based on rank-1 sketch (R1SVD) to further minimize quantization costs. Experiments demonstrate that LoPRo outperforms existing fine-tuning-free PTQ methods at both 2-bit and 3-bit quantization, achieving accuracy comparable to fine-tuning baselines. Specifically, LoPRo achieves state-of-the-art quantization accuracy on LLaMA-2 and LLaMA-3 series models while delivering up to a 4$\times$ speedup. In the MoE model Mixtral-8x7B, LoPRo completes quantization within 2.5 hours, simultaneously reducing perplexity by 0.4$\downarrow$ and improving accuracy by 8\%$\uparrow$. Moreover, compared to other low-rank quantization methods, LoPRo achieves superior accuracy with a significantly lower rank, while maintaining high inference efficiency and minimal additional latency.
☆ Cross-Domain Offshore Wind Power Forecasting: Transfer Learning Through Meteorological Clusters
Ambitious decarbonisation targets are catalysing growth in orders of new offshore wind farms. For these newly commissioned plants to run, accurate power forecasts are needed from the onset. These allow grid stability, good reserve management and efficient energy trading. Despite machine learning models having strong performances, they tend to require large volumes of site-specific data that new farms do not yet have. To overcome this data scarcity, we propose a novel transfer learning framework that clusters power output according to covariate meteorological features. Rather than training a single, general-purpose model, we thus forecast with an ensemble of expert models, each trained on a cluster. As these pre-trained models each specialise in a distinct weather pattern, they adapt efficiently to new sites and capture transferable, climate-dependent dynamics. Through the expert models' built-in calibration to seasonal and meteorological variability, we remove the industry-standard requirement of local measurements over a year. Our contributions are two-fold - we propose this novel framework and comprehensively evaluate it on eight offshore wind farms, achieving accurate cross-domain forecasting with under five months of site-specific data. Our experiments achieve a MAE of 3.52\%, providing empirical verification that reliable forecasts do not require a full annual cycle. Beyond power forecasting, this climate-aware transfer learning method opens new opportunities for offshore wind applications such as early-stage wind resource assessment, where reducing data requirements can significantly accelerate project development whilst effectively mitigating its inherent risks.
comment: 11 pages
☆ ProToken: Token-Level Attribution for Federated Large Language Models
Federated Learning (FL) enables collaborative training of Large Language Models (LLMs) across distributed data sources while preserving privacy. However, when federated LLMs are deployed in critical applications, it remains unclear which client(s) contributed to specific generated responses, hindering debugging, malicious client identification, fair reward allocation, and trust verification. We present ProToken, a novel Provenance methodology for Token-level attribution in federated LLMs that addresses client attribution during autoregressive text generation while maintaining FL privacy constraints. ProToken leverages two key insights to enable provenance at each token: (1) transformer architectures concentrate task-specific signals in later blocks, enabling strategic layer selection for computational tractability, and (2) gradient-based relevance weighting filters out irrelevant neural activations, focusing attribution on neurons that directly influence token generation. We evaluate ProToken across 16 configurations spanning four LLM architectures (Gemma, Llama, Qwen, SmolLM) and four domains (medical, financial, mathematical, coding). ProToken achieves 98% average attribution accuracy in correctly localizing responsible client(s), and maintains high accuracy when the number of clients are scaled, validating its practical viability for real-world deployment settings.
☆ Grasynda: Graph-based Synthetic Time Series Generation
Data augmentation is a crucial tool in time series forecasting, especially for deep learning architectures that require a large training sample size to generalize effectively. However, extensive datasets are not always available in real-world scenarios. Although many data augmentation methods exist, their limitations include the use of transformations that do not adequately preserve data properties. This paper introduces Grasynda, a novel graph-based approach for synthetic time series generation that: (1) converts univariate time series into a network structure using a graph representation, where each state is a node and each transition is represented as a directed edge; and (2) encodes their temporal dynamics in a transition probability matrix. We performed an extensive evaluation of Grasynda as a data augmentation method for time series forecasting. We use three neural network variations on six benchmark datasets. The results indicate that Grasynda consistently outperforms other time series data augmentation methods, including ones used in state-of-the-art time series foundation models. The method and all experiments are publicly available.
comment: Accepted in IDA'26
☆ SynCABEL: Synthetic Contextualized Augmentation for Biomedical Entity Linking
We present SynCABEL (Synthetic Contextualized Augmentation for Biomedical Entity Linking), a framework that addresses a central bottleneck in supervised biomedical entity linking (BEL): the scarcity of expert-annotated training data. SynCABEL leverages large language models to generate context-rich synthetic training examples for all candidate concepts in a target knowledge base, providing broad supervision without manual annotation. We demonstrate that SynCABEL, when combined with decoder-only models and guided inference establish new state-of-the-art results across three widely used multilingual benchmarks: MedMentions for English, QUAERO for French, and SPACCC for Spanish. Evaluating data efficiency, we show that SynCABEL reaches the performance of full human supervision using up to 60% less annotated data, substantially reducing reliance on labor-intensive and costly expert labeling. Finally, acknowledging that standard evaluation based on exact code matching often underestimates clinically valid predictions due to ontology redundancy, we introduce an LLM-as-a-judge protocol. This analysis reveals that SynCABEL significantly improves the rate of clinically valid predictions. Our synthetic datasets, models, and code are released to support reproducibility and future research.
☆ KeepLoRA: Continual Learning with Residual Gradient Adaptation ICLR 2026
Continual learning for pre-trained vision-language models requires balancing three competing objectives: retaining pre-trained knowledge, preserving knowledge from a sequence of learned tasks, and maintaining the plasticity to acquire new knowledge. This paper presents a simple but effective approach called KeepLoRA to effectively balance these objectives. We first analyze the knowledge retention mechanism within the model parameter space and find that general knowledge is mainly encoded in the principal subspace, while task-specific knowledge is encoded in the residual subspace. Motivated by this finding, KeepLoRA learns new tasks by restricting LoRA parameter updates in the residual subspace to prevent interfering with previously learned capabilities. Specifically, we infuse knowledge for a new task by projecting its gradient onto a subspace orthogonal to both the principal subspace of pre-trained model and the dominant directions of previous task features. Our theoretical and empirical analyses confirm that KeepLoRA balances the three objectives and achieves state-of-the-art performance. The implementation code is available at https://github.com/MaolinLuo/KeepLoRA.
comment: Accepted at ICLR 2026
☆ Tracking Drift: Variation-Aware Entropy Scheduling for Non-Stationary Reinforcement Learning
Real-world reinforcement learning often faces environment drift, but most existing methods rely on static entropy coefficients/target entropy, causing over-exploration during stable periods and under-exploration after drift (thus slow recovery), and leaving unanswered the principled question of how exploration intensity should scale with drift magnitude. We prove that entropy scheduling under non-stationarity can be reduced to a one-dimensional, round-by-round trade-off, faster tracking of the optimal solution after drift vs. avoiding gratuitous randomness when the environment is stable, so exploration strength can be driven by measurable online drift signals. Building on this, we propose AES (Adaptive Entropy Scheduling), which adaptively adjusts the entropy coefficient/temperature online using observable drift proxies during training, requiring almost no structural changes and incurring minimal overhead. Across 4 algorithm variants, 12 tasks, and 4 drift modes, AES significantly reduces the fraction of performance degradation caused by drift and accelerates recovery after abrupt changes.
☆ R^3: Replay, Reflection, and Ranking Rewards for LLM Reinforcement Learning
Large reasoning models (LRMs) aim to solve diverse and complex problems through structured reasoning. Recent advances in group-based policy optimization methods have shown promise in enabling stable advantage estimation without reliance on process-level annotations. However, these methods rely on advantage gaps induced by high-quality samples within the same batch, which makes the training process fragile and inefficient when intra-group advantages collapse under challenging tasks. To address these problems, we propose a reinforcement learning mechanism named \emph{\textbf{R^3}} that along three directions: (1) a \emph{cross-context \underline{\textbf{R}}eplay} strategy that maintains the intra-group advantage by recalling valuable examples from historical trajectories of the same query, (2) an \emph{in-context self-\underline{\textbf{R}}eflection} mechanism enabling models to refine outputs by leveraging past failures, and (3) a \emph{structural entropy \underline{\textbf{R}}anking reward}, which assigns relative rewards to truncated or failed samples by ranking responses based on token-level entropy patterns, capturing both local exploration and global stability. We implement our method on Deepseek-R1-Distill-Qwen-1.5B and train it on the DeepscaleR-40k in the math domain. Experiments demonstrate our method achieves SoTA performance on several math benchmarks, representing significant improvements and fewer reasoning tokens over the base models. Code and model will be released.
☆ The role of self-supervised pretraining in differentially private medical image analysis
Differential privacy (DP) provides formal protection for sensitive data but typically incurs substantial losses in diagnostic performance. Model initialization has emerged as a critical factor in mitigating this degradation, yet the role of modern self-supervised learning under full-model DP remains poorly understood. Here, we present a large-scale evaluation of initialization strategies for differentially private medical image analysis, using chest radiograph classification as a representative benchmark with more than 800,000 images. Using state-of-the-art ConvNeXt models trained with DP-SGD across realistic privacy regimes, we compare non-domain-specific supervised ImageNet initialization, non-domain-specific self-supervised DINOv3 initialization, and domain-specific supervised pretraining on MIMIC-CXR, the largest publicly available chest radiograph dataset. Evaluations are conducted across five external datasets spanning diverse institutions and acquisition settings. We show that DINOv3 initialization consistently improves diagnostic utility relative to ImageNet initialization under DP, but remains inferior to domain-specific supervised pretraining, which achieves performance closest to non-private baselines. We further demonstrate that initialization choice strongly influences demographic fairness, cross-dataset generalization, and robustness to data scale and model capacity under privacy constraints. The results establish initialization strategy as a central determinant of utility, fairness, and generalization in differentially private medical imaging.
☆ Safe Exploration via Policy Priors
Safe exploration is a key requirement for reinforcement learning (RL) agents to learn and adapt online, beyond controlled (e.g. simulated) environments. In this work, we tackle this challenge by utilizing suboptimal yet conservative policies (e.g., obtained from offline data or simulators) as priors. Our approach, SOOPER, uses probabilistic dynamics models to optimistically explore, yet pessimistically fall back to the conservative policy prior if needed. We prove that SOOPER guarantees safety throughout learning, and establish convergence to an optimal policy by bounding its cumulative regret. Extensive experiments on key safe RL benchmarks and real-world hardware demonstrate that SOOPER is scalable, outperforms the state-of-the-art and validate our theoretical guarantees in practice.
☆ Explicit Multi-head Attention for Inter-head Interaction in Large Language Models
In large language models built upon the Transformer architecture, recent studies have shown that inter-head interaction can enhance attention performance. Motivated by this, we propose Multi-head Explicit Attention (MEA), a simple yet effective attention variant that explicitly models cross-head interaction. MEA consists of two key components: a Head-level Linear Composition (HLC) module that separately applies learnable linear combinations to the key and value vectors across heads, thereby enabling rich inter-head communication; and a head-level Group Normalization layer that aligns the statistical properties of the recombined heads. MEA shows strong robustness in pretraining, which allows the use of larger learning rates that lead to faster convergence, ultimately resulting in lower validation loss and improved performance across a range of tasks. Furthermore, we explore the parameter efficiency of MEA by reducing the number of attention heads and leveraging HLC to reconstruct them using low-rank "virtual heads". This enables a practical key-value cache compression strategy that reduces KV-cache memory usage by 50% with negligible performance loss on knowledge-intensive and scientific reasoning tasks, and only a 3.59% accuracy drop for Olympiad-level mathematical benchmarks.
☆ GMS-CAVP: Improving Audio-Video Correspondence with Multi-Scale Contrastive and Generative Pretraining
Recent advances in video-audio (V-A) understanding and generation have increasingly relied on joint V-A embeddings, which serve as the foundation for tasks such as cross-modal retrieval and generation. While prior methods like CAVP effectively model semantic and temporal correspondences between modalities using contrastive objectives, their performance remains suboptimal. A key limitation is the insufficient modeling of the dense, multi-scale nature of both video and audio signals, correspondences often span fine- to coarse-grained spatial-temporal structures, which are underutilized in existing frameworks. To this end, we propose GMS-CAVP, a novel framework that combines Multi-Scale Video-Audio Alignment and Multi-Scale Spatial-Temporal Diffusion-based pretraining objectives to enhance V-A correspondence modeling. First, GMS-CAVP introduces a multi-scale contrastive learning strategy that captures semantic and temporal relations across varying granularities. Second, we go beyond traditional contrastive learning by incorporating a diffusion-based generative objective, enabling modality translation and synthesis between video and audio. This unified discriminative-generative formulation facilitates deeper cross-modal understanding and paves the way for high-fidelity generation. Extensive experiments on VGGSound, AudioSet, and Panda70M demonstrate that GMS-CAVP outperforms previous methods in generation and retrieval.
☆ The Geometric Mechanics of Contrastive Representation Learning: Alignment Potentials, Entropic Dispersion, and Cross-Modal Divergence
While InfoNCE powers modern contrastive learning, its geometric mechanisms remain under-characterized beyond the canonical alignment--uniformity decomposition. We present a measure-theoretic framework that models learning as the evolution of representation measures on a fixed embedding manifold. By establishing value and gradient consistency in the large-batch limit, we bridge the stochastic objective to explicit deterministic energy landscapes, uncovering a fundamental geometric bifurcation between the unimodal and multimodal regimes. In the unimodal setting, the intrinsic landscape is strictly convex with a unique Gibbs equilibrium; here, entropy acts merely as a tie-breaker, clarifying "uniformity" as a constrained expansion within the alignment basin. In contrast, the symmetric multimodal objective contains a persistent negative symmetric divergence term that remains even after kernel sharpening. We show that this term induces barrier-driven co-adaptation, enforcing a population-level modality gap as a structural geometric necessity rather than an initialization artifact. Our results shift the analytical lens from pointwise discrimination to population geometry, offering a principled basis for diagnosing and controlling distributional misalignment.
☆ Intersectional Fairness via Mixed-Integer Optimization
The deployment of Artificial Intelligence in high-risk domains, such as finance and healthcare, necessitates models that are both fair and transparent. While regulatory frameworks, including the EU's AI Act, mandate bias mitigation, they are deliberately vague about the definition of bias. In line with existing research, we argue that true fairness requires addressing bias at the intersections of protected groups. We propose a unified framework that leverages Mixed-Integer Optimization (MIO) to train intersectionally fair and intrinsically interpretable classifiers. We prove the equivalence of two measures of intersectional fairness (MSD and SPSF) in detecting the most unfair subgroup and empirically demonstrate that our MIO-based algorithm improves performance in finding bias. We train high-performing, interpretable classifiers that bound intersectional bias below an acceptable threshold, offering a robust solution for regulated industries and beyond.
comment: 17 pages, 10 figures, 1 table
☆ From Atoms to Chains: Divergence-Guided Reasoning Curriculum for Unlabeled LLM Domain Adaptation
Adapting Large Language Models (LLMs) to specialized domains without human-annotated data is a crucial yet formidable challenge. Widely adopted knowledge distillation methods often devolve into coarse-grained mimicry, where the student model inefficiently targets its own weaknesses and risks inheriting the teacher's reasoning flaws. This exposes a critical pedagogical dilemma: how to devise a reliable curriculum when the teacher itself is not an infallible expert. Our work resolves this by capitalizing on a key insight: while LLMs may exhibit fallibility in complex, holistic reasoning, they often exhibit high fidelity on focused, atomic sub-problems. Based on this, we propose Divergence-Guided Reasoning Curriculum (DGRC), which constructs a learning path from atomic knowledge to reasoning chains by dynamically deriving two complementary curricula from disagreements in reasoning pathways. When a student and teacher produce conflicting results, DGRC directs the teacher to perform a diagnostic analysis: it analyzes both reasoning paths to formulate atomic queries that target the specific points of divergence, and then self-answers these queries to create high-confidence atomic question-answer pairs. These pairs then serve a dual purpose: (1) providing an atomic curriculum to rectify the student's knowledge gaps, and (2) serving as factual criteria to filter the teacher's original reasoning chains, yielding a verified CoT curriculum that teaches the student how to integrate atomic knowledge into complete reasoning paths. Experiments across the medical and legal domains on student models of various sizes demonstrate the effectiveness of our DGRC framework. Notably, our method achieves a 7.76% relative improvement for the 1.5B student model in the medical domain over strong unlabeled baseline.
comment: Code: https://github.com/bytedance/DGRC
☆ Learning the Intrinsic Dimensionality of Fermi-Pasta-Ulam-Tsingou Trajectories: A Nonlinear Approach using a Deep Autoencoder Model
We address the intrinsic dimensionality (ID) of high-dimensional trajectories, comprising $n_s = 4\,000\,000$ data points, of the Fermi-Pasta-Ulam-Tsingou (FPUT) $β$ model with $N = 32$ oscillators. To this end, a deep autoencoder (DAE) model is employed to infer the ID in the weakly nonlinear regime ($β\lesssim 1$). We find that the trajectories lie on a nonlinear manifold of dimension $m^{\ast} = 2$ embedded in a $64$-dimensional phase space. The DAE further reveals that this dimensionality increases to $m^{\ast} = 3$ at $β= 1.1$, coinciding with a symmetry breaking transition, in which additional energy modes with even wave numbers $k = 2, 4$ become excited. Finally, we discuss the limitations of the linear approach based on principal component analysis (PCA), which fails to capture the underlying structure of the data and therefore yields unreliable results in most cases.
comment: 10 pages, 10 figures. Preliminary results were presented on November 2025 at the IUPAP Conference on Computational Physics, CP2025 XXXVI, Oak Ridge National Laboratory in Oak Ridge
☆ AROMMA: Unifying Olfactory Embeddings for Single Molecules and Mixtures
Public olfaction datasets are small and fragmented across single molecules and mixtures, limiting learning of generalizable odor representations. Recent works either learn single-molecule embeddings or address mixtures via similarity or pairwise label prediction, leaving representations separate and unaligned. In this work, we propose AROMMA, a framework that learns a unified embedding space for single molecules and two-molecule mixtures. Each molecule is encoded by a chemical foundation model and the mixtures are composed by an attention-based aggregator, ensuring both permutation invariance and asymmetric molecular interactions. We further align odor descriptor sets using knowledge distillation and class-aware pseudo-labeling to enrich missing mixture annotations. AROMMA achieves state-of-the-art performance in both single-molecule and molecule-pair datasets, with up to 19.1% AUROC improvement, demonstrating a robust generalization in two domains.
☆ Generalizable Equivariant Diffusion Models for Non-Abelian Lattice Gauge Theory
We demonstrate that gauge equivariant diffusion models can accurately model the physics of non-Abelian lattice gauge theory using the Metropolis-adjusted annealed Langevin algorithm (MAALA), as exemplified by computations in two-dimensional U(2) and SU(2) gauge theories. Our network architecture is based on lattice gauge equivariant convolutional neural networks (L-CNNs), which respect local and global symmetries on the lattice. Models are trained on a single ensemble generated using a traditional Monte Carlo method. By studying Wilson loops of various size as well as the topological susceptibility, we find that the diffusion approach generalizes remarkably well to larger inverse couplings and lattice sizes with negligible loss of accuracy while retaining moderately high acceptance rates.
comment: 9 pages, 5 figures, 2 tables
☆ Scale-Consistent State-Space Dynamics via Fractal of Stationary Transformations
Recent deep learning models increasingly rely on depth without structural guarantees on the validity of intermediate representations, rendering early stopping and adaptive computation ill-posed. We address this limitation by formulating a structural requirement for state-space model's scale-consistent latent dynamics across iterative refinement, and derive Fractal of Stationary Transformations (FROST), which enforces a self-similar representation manifold through a fractal inductive bias. Under this geometry, intermediate states correspond to different resolutions of a shared representation, and we provide a geometric analysis establishing contraction and stable convergence across iterations. As a consequence of this scale-consistent structure, halting naturally admits a ranking-based formulation driven by intrinsic feature quality rather than extrinsic objectives. Controlled experiments on ImageNet-100 empirically verify the predicted scale-consistent behavior, showing that adaptive efficiency emerges from the aligned latent geometry.
comment: 8 pages (excluding 2 pages of references), 3 tables, 2 figures. Appendix: 4 pages
☆ GenCP: Towards Generative Modeling Paradigm of Coupled Physics ICLR 2026
Real-world physical systems are inherently complex, often involving the coupling of multiple physics, making their simulation both highly valuable and challenging. Many mainstream approaches face challenges when dealing with decoupled data. Besides, they also suffer from low efficiency and fidelity in strongly coupled spatio-temporal physical systems. Here we propose GenCP, a novel and elegant generative paradigm for coupled multiphysics simulation. By formulating coupled-physics modeling as a probability modeling problem, our key innovation is to integrate probability density evolution in generative modeling with iterative multiphysics coupling, thereby enabling training on data from decoupled simulation and inferring coupled physics during sampling. We also utilize operator-splitting theory in the space of probability evolution to establish error controllability guarantees for this "conditional-to-joint" sampling scheme. We evaluate our paradigm on a synthetic setting and three challenging multi-physics scenarios to demonstrate both principled insight and superior application performance of GenCP. Code is available at this repo: github.com/AI4Science-WestlakeU/GenCP.
comment: ICLR 2026 Accpeted
☆ Benchmarks Saturate When The Model Gets Smarter Than The Judge
Benchmarks are important tools to track progress in the development of Large Language Models (LLMs), yet inaccuracies in datasets and evaluation methods consistently undermine their effectiveness. Here, we present Omni-MATH-2, a manually revised version of the Omni-MATH dataset comprising a clean, exact-answer subset ($n{=}4181$) and a tagged, non-standard subset ($n{=}247$). Each problem was audited to ensure LaTeX compilability, solvability and verifiability, which involved adding missing figures or information, labeling problems requiring a proof, estimation or image, and removing clutter. This process significantly reduces dataset-induced noise, thereby providing a more precise assessment of model performance. The annotated dataset also allows us to evaluate judge-induced noise by comparing GPT-5 mini with the original Omni-Judge, revealing substantial discrepancies between judges on both the clean and tagged problem subsets. Expert annotations reveal that Omni-Judge is wrong in $96.4\%$ of the judge disagreements, indicating its inability to differentiate between models' abilities, even well before saturation of the benchmark occurs. As problems become more challenging, we find that increasingly competent judges become essential in order to prevent judge errors from masking genuine differences between models. Finally, neither judge identifies the present failure modes for the subset of tagged problems, demonstrating that dataset quality and judge reliability are both critical to develop accurate benchmarks of model performance.
comment: 17 pages, 10 figures, 3 tables
☆ Mocap Anywhere: Towards Pairwise-Distance based Motion Capture in the Wild (for the Wild)
We introduce a novel motion capture system that reconstructs full-body 3D motion using only sparse pairwise distance (PWD) measurements from body-mounted(UWB) sensors. Using time-of-flight ranging between wireless nodes, our method eliminates the need for external cameras, enabling robust operation in uncontrolled and outdoor environments. Unlike traditional optical or inertial systems, our approach is shape-invariant and resilient to environmental constraints such as lighting and magnetic interference. At the core of our system is Wild-Poser (WiP for short), a compact, real-time Transformer-based architecture that directly predicts 3D joint positions from noisy or corrupted PWD measurements, which can later be used for joint rotation reconstruction via learned methods. WiP generalizes across subjects of varying morphologies, including non-human species, without requiring individual body measurements or shape fitting. Operating in real time, WiP achieves low joint position error and demonstrates accurate 3D motion reconstruction for both human and animal subjects in-the-wild. Our empirical analysis highlights its potential for scalable, low-cost, and general purpose motion capture in real-world settings.
comment: 14 pages, 15 figures
☆ Cortex-Grounded Diffusion Models for Brain Image Generation
Synthetic neuroimaging data can mitigate critical limitations of real-world datasets, including the scarcity of rare phenotypes, domain shifts across scanners, and insufficient longitudinal coverage. However, existing generative models largely rely on weak conditioning signals, such as labels or text, which lack anatomical grounding and often produce biologically implausible outputs. To this end, we introduce Cor2Vox, a cortex-grounded generative framework for brain magnetic resonance image (MRI) synthesis that ties image generation to continuous structural priors of the cerebral cortex. It leverages high-resolution cortical surfaces to guide a 3D shape-to-image Brownian bridge diffusion process, enabling topologically faithful synthesis and precise control over underlying anatomies. To support the generation of new, realistic brain shapes, we developed a large-scale statistical shape model of cortical morphology derived from over 33,000 UK Biobank scans. We validated the fidelity of Cor2Vox based on traditional image quality metrics, advanced cortical surface reconstruction, and whole-brain segmentation quality, outperforming many baseline methods. Across three applications, namely (i) anatomically consistent synthesis, (ii) simulation of progressive gray matter atrophy, and (iii) harmonization of in-house frontotemporal dementia scans with public datasets, Cor2Vox preserved fine-grained cortical morphology at the sub-voxel level, exhibiting remarkable robustness to variations in cortical geometry and disease phenotype without retraining.
comment: preprint
☆ LLM-VA: Resolving the Jailbreak-Overrefusal Trade-off via Vector Alignment
Safety-aligned LLMs suffer from two failure modes: jailbreak (answering harmful inputs) and over-refusal (declining benign queries). Existing vector steering methods adjust the magnitude of answer vectors, but this creates a fundamental trade-off -- reducing jailbreak increases over-refusal and vice versa. We identify the root cause: LLMs encode the decision to answer (answer vector $v_a$) and the judgment of input safety (benign vector $v_b$) as nearly orthogonal directions, treating them as independent processes. We propose LLM-VA, which aligns $v_a$ with $v_b$ through closed-form weight updates, making the model's willingness to answer causally dependent on its safety assessment -- without fine-tuning or architectural changes. Our method identifies vectors at each layer using SVMs, selects safety-relevant layers, and iteratively aligns vectors via minimum-norm weight modifications. Experiments on 12 LLMs demonstrate that LLM-VA achieves 11.45% higher F1 than the best baseline while preserving 95.92% utility, and automatically adapts to each model's safety bias without manual tuning. Code and models are available at https://hotbento.github.io/LLM-VA-Web/.
☆ Posterior Distribution-assisted Evolutionary Dynamic Optimization as an Online Calibrator for Complex Social Simulations
The calibration of simulators for complex social systems aims to identify the optimal parameter that drives the output of the simulator best matching the target data observed from the system. As many social systems may change internally over time, calibration naturally becomes an online task, requiring parameters to be updated continuously to maintain the simulator's fidelity. In this work, the online setting is first formulated as a dynamic optimization problem (DOP), requiring the search for a sequence of optimal parameters that fit the simulator to real system changes. However, in contrast to traditional DOP formulations, online calibration explicitly incorporates the observational data as the driver of environmental dynamics. Due to this fundamental difference, existing Evolutionary Dynamic Optimization (EDO) methods, despite being extensively studied for black-box DOPs, are ill-equipped to handle such a scenario. As a result, online calibration problems constitute a new set of challenging DOPs. Here, we propose to explicitly learn the posterior distributions of the parameters and the observational data, thereby facilitating both change detection and environmental adaptation of existing EDOs for this scenario. We thus present a pretrained posterior model for implementation, and fine-tune it during the optimization. Extensive tests on both economic and financial simulators verify that the posterior distribution strongly promotes EDOs in such DOPs widely existed in social science.
☆ Time-to-Injury Forecasting in Elite Female Football: A DeepHit Survival Approach
Injury occurrence in football poses significant challenges for athletes and teams, carrying personal, competitive, and financial consequences. While machine learning has been applied to injury prediction before, existing approaches often rely on static pre-season data and binary outcomes, limiting their real-world utility. This study investigates the feasibility of using a DeepHit neural network to forecast time-to-injury from longitudinal athlete monitoring data, while providing interpretable predictions. The analysis utilised the publicly available SoccerMon dataset, containing two seasons of training, match, and wellness records from elite female footballers. Data was pre-processed through cleaning, feature engineering, and the application of three imputation strategies. Baseline models (Random Forest, XGBoost, Logistic Regression) were optimised via grid search for benchmarking, while the DeepHit model, implemented with a multilayer perceptron backbone, was evaluated using chronological and leave-one-player-out (LOPO) validation. DeepHit achieved a concordance index of 0.762, outperforming baseline models and delivering individualised, time-varying risk estimates. Shapley Additive Explanations (SHAP) identified clinically relevant predictors consistent with established risk factors, enhancing interpretability. Overall, this study provides a novel proof of concept: survival modelling with DeepHit shows strong potential to advance injury forecasting in football, offering accurate, explainable, and actionable insights for injury prevention across competitive levels.
☆ On the Expressiveness of State Space Models via Temporal Logics
We investigate the expressive power of state space models (SSM), which have recently emerged as a potential alternative to transformer architectures in large language models. Building on recent work, we analyse SSM expressiveness through fragments and extensions of linear temporal logic over finite traces. Our results show that the expressive capabilities of SSM vary substantially depending on the underlying gating mechanism. We further distinguish between SSM operating over fixed-width arithmetic (quantised models), whose expressive power remains within regular languages, and SSM with unbounded precision, which can capture counting properties and non-regular languages. In addition, we provide a systematic comparison between these different SSM variants and known results on transformers, thereby clarifying how the two architectures relate in terms of expressive power.
☆ APC-RL: Exceeding Data-Driven Behavior Priors with Adaptive Policy Composition
Incorporating demonstration data into reinforcement learning (RL) can greatly accelerate learning, but existing approaches often assume demonstrations are optimal and fully aligned with the target task. In practice, demonstrations are frequently sparse, suboptimal, or misaligned, which can degrade performance when these demonstrations are integrated into RL. We propose Adaptive Policy Composition (APC), a hierarchical model that adaptively composes multiple data-driven Normalizing Flow (NF) priors. Instead of enforcing strict adherence to the priors, APC estimates each prior's applicability to the target task while leveraging them for exploration. Moreover, APC either refines useful priors, or sidesteps misaligned ones when necessary to optimize downstream reward. Across diverse benchmarks, APC accelerates learning when demonstrations are aligned, remains robust under severe misalignment, and leverages suboptimal demonstrations to bootstrap exploration while avoiding performance degradation caused by overly strict adherence to suboptimal demonstrations.
☆ Fixed Aggregation Features Can Rival GNNs
Graph neural networks (GNNs) are widely believed to excel at node representation learning through trainable neighborhood aggregations. We challenge this view by introducing Fixed Aggregation Features (FAFs), a training-free approach that transforms graph learning tasks into tabular problems. This simple shift enables the use of well-established tabular methods, offering strong interpretability and the flexibility to deploy diverse classifiers. Across 14 benchmarks, well-tuned multilayer perceptrons trained on FAFs rival or outperform state-of-the-art GNNs and graph transformers on 12 tasks -- often using only mean aggregation. The only exceptions are the Roman Empire and Minesweeper datasets, which typically require unusually deep GNNs. To explain the theoretical possibility of non-trainable aggregations, we connect our findings to Kolmogorov-Arnold representations and discuss when mean aggregation can be sufficient. In conclusion, our results call for (i) richer benchmarks benefiting from learning diverse neighborhood aggregations, (ii) strong tabular baselines as standard, and (iii) employing and advancing tabular models for graph data to gain new insights into related tasks.
☆ From Internal Diagnosis to External Auditing: A VLM-Driven Paradigm for Online Test-Time Backdoor Defense
Deep Neural Networks remain inherently vulnerable to backdoor attacks. Traditional test-time defenses largely operate under the paradigm of internal diagnosis methods like model repairing or input robustness, yet these approaches are often fragile under advanced attacks as they remain entangled with the victim model's corrupted parameters. We propose a paradigm shift from Internal Diagnosis to External Semantic Auditing, arguing that effective defense requires decoupling safety from the victim model via an independent, semantically grounded auditor. To this end, we present a framework harnessing Universal Vision-Language Models (VLMs) as evolving semantic gatekeepers. We introduce PRISM (Prototype Refinement & Inspection via Statistical Monitoring), which overcomes the domain gap of general VLMs through two key mechanisms: a Hybrid VLM Teacher that dynamically refines visual prototypes online, and an Adaptive Router powered by statistical margin monitoring to calibrate gating thresholds in real-time. Extensive evaluation across 17 datasets and 11 attack types demonstrates that PRISM achieves state-of-the-art performance, suppressing Attack Success Rate to <1% on CIFAR-10 while improving clean accuracy, establishing a new standard for model-agnostic, externalized security.
comment: 19 pages, 10 figures, 12 tables
☆ OSIRIS: Bridging Analog Circuit Design and Machine Learning with Scalable Dataset Generation
The automation of analog integrated circuit (IC) design remains a longstanding challenge, primarily due to the intricate interdependencies among physical layout, parasitic effects, and circuit-level performance. These interactions impose complex constraints that are difficult to accurately capture and optimize using conventional design methodologies. Although recent advances in machine learning (ML) have shown promise in automating specific stages of the analog design flow, the development of holistic, end-to-end frameworks that integrate these stages and iteratively refine layouts using post-layout, parasitic-aware performance feedback is still in its early stages. Furthermore, progress in this direction is hindered by the limited availability of open, high-quality datasets tailored to the analog domain, restricting both the benchmarking and the generalizability of ML-based techniques. To address these limitations, we present OSIRIS, a scalable dataset generation pipeline for analog IC design. OSIRIS systematically explores the design space of analog circuits while producing comprehensive performance metrics and metadata, thereby enabling ML-driven research in electronic design automation (EDA). In addition, we release a dataset consisting of 87,100 circuit variations generated with OSIRIS, accompanied by a reinforcement learning (RL)-based baseline method that exploits OSIRIS for analog design optimization.
☆ Task-Centric Policy Optimization from Misaligned Motion Priors
Humanoid control often leverages motion priors from human demonstrations to encourage natural behaviors. However, such demonstrations are frequently suboptimal or misaligned with robotic tasks due to embodiment differences, retargeting errors, and task-irrelevant variations, causing naïve imitation to degrade task performance. Conversely, task-only reinforcement learning admits many task-optimal solutions, often resulting in unnatural or unstable motions. This exposes a fundamental limitation of linear reward mixing in adversarial imitation learning. We propose \emph{Task-Centric Motion Priors} (TCMP), a task-priority adversarial imitation framework that treats imitation as a conditional regularizer rather than a co-equal objective. TCMP maximizes task improvement while incorporating imitation signals only when they are compatible with task progress, yielding an adaptive, geometry-aware update that preserves task-feasible descent and suppresses harmful imitation under misalignment. We provide theoretical analysis of gradient conflict and task-priority stationary points, and validate our claims through humanoid control experiments demonstrating robust task performance with consistent motion style under noisy demonstrations.
☆ RPO:Reinforcement Fine-Tuning with Partial Reasoning Optimization
Within the domain of large language models, reinforcement fine-tuning algorithms necessitate the generation of a complete reasoning trajectory beginning from the input query, which incurs significant computational overhead during the rollout phase of training. To address this issue, we analyze the impact of different segments of the reasoning path on the correctness of the final result and, based on these insights, propose Reinforcement Fine-Tuning with Partial Reasoning Optimization (RPO), a plug-and-play reinforcement fine-tuning algorithm. Unlike traditional reinforcement fine-tuning algorithms that generate full reasoning paths, RPO trains the model by generating suffixes of the reasoning path using experience cache. During the rollout phase of training, RPO reduces token generation in this phase by approximately 95%, greatly lowering the theoretical time overhead. Compared with full-path reinforcement fine-tuning algorithms, RPO reduces the training time of the 1.5B model by 90% and the 7B model by 72%. At the same time, it can be integrated with typical algorithms such as GRPO and DAPO, enabling them to achieve training acceleration while maintaining performance comparable to the original algorithms. Our code is open-sourced at https://github.com/yhz5613813/RPO.
☆ Improved Convergence Rates of Muon Optimizer for Nonconvex Optimization
The Muon optimizer has recently attracted attention due to its orthogonalized first-order updates, and a deeper theoretical understanding of its convergence behavior is essential for guiding practical applications; however, existing convergence guarantees are either coarse or obtained under restrictive analytical settings. In this work, we establish sharper convergence guarantees for the Muon optimizer through a direct and simplified analysis that does not rely on restrictive assumptions on the update rule. Our results improve upon existing bounds by achieving faster convergence rates while covering a broader class of problem settings. These findings provide a more accurate theoretical characterization of Muon and offer insights applicable to a broader class of orthogonalized first-order methods.
☆ SEAFormer: A Spatial Proximity and Edge-Aware Transformer for Real-World Vehicle Routing Problems
Real-world Vehicle Routing Problems (RWVRPs) require solving complex, sequence-dependent challenges at scale with constraints such as delivery time window, replenishment or recharging stops, asymmetric travel cost, etc. While recent neural methods achieve strong results on large-scale classical VRP benchmarks, they struggle to address RWVRPs because their strategies overlook sequence dependencies and underutilize edge-level information, which are precisely the characteristics that define the complexity of RWVRPs. We present SEAFormer, a novel transformer that incorporates both node-level and edge-level information in decision-making through two key innovations. First, our Clustered Proximity Attention (CPA) exploits locality-aware clustering to reduce the complexity of attention from $O(n^2)$ to $O(n)$ while preserving global perspective, allowing SEAFormer to efficiently train on large instances. Second, our lightweight edge-aware module captures pairwise features through residual fusion, enabling effective incorporation of edge-based information and faster convergence. Extensive experiments across four RWVRP variants with various scales demonstrate that SEAFormer achieves superior results over state-of-the-art methods. Notably, SEAFormer is the first neural method to solve 1,000+ node RWVRPs effectively, while also achieving superior performance on classic VRPs, making it a versatile solution for both research benchmarks and real-world applications.
comment: 26 pages
☆ DSP-Reg: Domain-Sensitive Parameter Regularization for Robust Domain Generalization
Domain Generalization (DG) is a critical area that focuses on developing models capable of performing well on data from unseen distributions, which is essential for real-world applications. Existing approaches primarily concentrate on learning domain-invariant features, which assume that a model robust to variations in the source domains will generalize well to unseen target domains. However, these approaches neglect a deeper analysis at the parameter level, which makes the model hard to explicitly differentiate between parameters sensitive to domain shifts and those robust, potentially hindering its overall ability to generalize. In order to address these limitations, we first build a covariance-based parameter sensitivity analysis framework to quantify the sensitivity of each parameter in a model to domain shifts. By computing the covariance of parameter gradients across multiple source domains, we can identify parameters that are more susceptible to domain variations, which serves as our theoretical foundation. Based on this, we propose Domain-Sensitive Parameter Regularization (DSP-Reg), a principled framework that guides model optimization by a soft regularization technique that encourages the model to rely more on domain-invariant parameters while suppressing those that are domain-specific. This approach provides a more granular control over the model's learning process, leading to improved robustness and generalization to unseen domains. Extensive experiments on benchmarks, such as PACS, VLCS, OfficeHome, and DomainNet, demonstrate that DSP-Reg outperforms state-of-the-art approaches, achieving an average accuracy of 66.7\% and surpassing all baselines.
☆ High-quality data augmentation for code comment classification ICSE
Code comments serve a crucial role in software development for documenting functionality, clarifying design choices, and assisting with issue tracking. They capture developers' insights about the surrounding source code, serving as an essential resource for both human comprehension and automated analysis. Nevertheless, since comments are in natural language, they present challenges for machine-based code understanding. To address this, recent studies have applied natural language processing (NLP) and deep learning techniques to classify comments according to developers' intentions. However, existing datasets for this task suffer from size limitations and class imbalance, as they rely on manual annotations and may not accurately represent the distribution of comments in real-world codebases. To overcome this issue, we introduce new synthetic oversampling and augmentation techniques based on high-quality data generation to enhance the NLBSE'26 challenge datasets. Our Synthetic Quality Oversampling Technique and Augmentation Technique (Q-SYNTH) yield promising results, improving the base classifier by $2.56\%$.
comment: Accepted at the NLBSE Workshop (co-located with ICSE)
☆ Optimal Asynchronous Stochastic Nonconvex Optimization under Heavy-Tailed Noise
This paper considers the problem of asynchronous stochastic nonconvex optimization with heavy-tailed gradient noise and arbitrarily heterogeneous computation times across workers. We propose an asynchronous normalized stochastic gradient descent algorithm with momentum. The analysis show that our method achieves the optimal time complexity under the assumption of bounded $p$th-order central moment with $p\in(1,2]$. We also provide numerical experiments to show the effectiveness of proposed method.
☆ Teaching Machine Learning Fundamentals with LEGO Robotics
This paper presents the web-based platform Machine Learning with Bricks and an accompanying two-day course designed to teach machine learning concepts to students aged 12 to 17 through programming-free robotics activities. Machine Learning with Bricks is an open source platform and combines interactive visualizations with LEGO robotics to teach three core algorithms: KNN, linear regression, and Q-learning. Students learn by collecting data, training models, and interacting with robots via a web-based interface. Pre- and post-surveys with 14 students demonstrate significant improvements in conceptual understanding of machine learning algorithms, positive shifts in AI perception, high platform usability, and increased motivation for continued learning. This work demonstrates that tangible, visualization-based approaches can make machine learning concepts accessible and engaging for young learners while maintaining technical depth. The platform is freely available at https://learning-and-dynamics.github.io/ml-with-bricks/, with video tutorials guiding students through the experiments at https://youtube.com/playlist?list=PLx1grFu4zAcwfKKJZ1Ux4LwRqaePCOA2J.
comment: 10 pages, 8 figures
☆ Selective Steering: Norm-Preserving Control Through Discriminative Layer Selection
Despite significant progress in alignment, large language models (LLMs) remain vulnerable to adversarial attacks that elicit harmful behaviors. Activation steering techniques offer a promising inference-time intervention approach, but existing methods suffer from critical limitations: activation addition requires careful coefficient tuning and is sensitive to layer-specific norm variations, while directional ablation provides only binary control. Recent work on Angular Steering introduces continuous control via rotation in a 2D subspace, but its practical implementation violates norm preservation, causing distribution shift and generation collapse, particularly in models below 7B parameters. We propose Selective Steering, which addresses these limitations through two key innovations: (1) a mathematically rigorous norm-preserving rotation formulation that maintains activation distribution integrity, and (2) discriminative layer selection that applies steering only where feature representations exhibit opposite-signed class alignment. Experiments across nine models demonstrate that Selective Steering achieves 5.5x higher attack success rates than prior methods while maintaining zero perplexity violations and approximately 100\% capability retention on standard benchmarks. Our approach provides a principled, efficient framework for controllable and stable LLM behavior modification. Code: https://github.com/knoveleng/steering
☆ CHEHAB RL: Learning to Optimize Fully Homomorphic Encryption Computations
Fully Homomorphic Encryption (FHE) enables computations directly on encrypted data, but its high computational cost remains a significant barrier. Writing efficient FHE code is a complex task requiring cryptographic expertise, and finding the optimal sequence of program transformations is often intractable. In this paper, we propose CHEHAB RL, a novel framework that leverages deep reinforcement learning (RL) to automate FHE code optimization. Instead of relying on predefined heuristics or combinatorial search, our method trains an RL agent to learn an effective policy for applying a sequence of rewriting rules to automatically vectorize scalar FHE code while reducing instruction latency and noise growth. The proposed approach supports the optimization of both structured and unstructured code. To train the agent, we synthesize a diverse dataset of computations using a large language model (LLM). We integrate our proposed approach into the CHEHAB FHE compiler and evaluate it on a suite of benchmarks, comparing its performance against Coyote, a state-of-the-art vectorizing FHE compiler. The results show that our approach generates code that is $5.3\times$ faster in execution, accumulates $2.54\times$ less noise, while the compilation process itself is $27.9\times$ faster than Coyote (geometric means).
☆ GraphSB: Boosting Imbalanced Node Classification on Graphs through Structural Balance
Imbalanced node classification is a critical challenge in graph learning, where most existing methods typically utilize Graph Neural Networks (GNNs) to learn node representations. These methods can be broadly categorized into the data-level and the algorithm-level. The former aims to synthesize minority-class nodes to mitigate quantity imbalance, while the latter tries to optimize the learning process to highlight minority classes. However, neither of them addresses the inherently imbalanced graph structure, which is a fundamental factor that incurs majority-class dominance and minority-class assimilation in GNNs. Our theoretical analysis further supports this critical insight. Therefore, we propose GraphSB (Graph Structural Balance), a novel framework that incorporates Structural Balance as a key strategy to address the underlying imbalanced graph structure before node synthesis. Structural Balance performs a two-stage structure optimization: Structure Enhancement that mines hard samples near decision boundaries through dual-view analysis and enhances connectivity for minority classes through adaptive augmentation, and Relation Diffusion that propagates the enhanced minority context while simultaneously capturing higher-order structural dependencies. Thus, GraphSB balances structural distribution before node synthesis, enabling more effective learning in GNNs. Extensive experiments demonstrate that GraphSB significantly outperforms the state-of-the-art methods. More importantly, the proposed Structural Balance can be seamlessly integrated into state-of-the-art methods as a simple plug-and-play module, increasing their accuracy by an average of 4.57%.
☆ Robust Uncertainty Estimation under Distribution Shift via Difference Reconstruction
Estimating uncertainty in deep learning models is critical for reliable decision-making in high-stakes applications such as medical imaging. Prior research has established that the difference between an input sample and its reconstructed version produced by an auxiliary model can serve as a useful proxy for uncertainty. However, directly comparing reconstructions with the original input is degraded by information loss and sensitivity to superficial details, which limits its effectiveness. In this work, we propose Difference Reconstruction Uncertainty Estimation (DRUE), a method that mitigates this limitation by reconstructing inputs from two intermediate layers and measuring the discrepancy between their outputs as the uncertainty score. To evaluate uncertainty estimation in practice, we follow the widely used out-of-distribution (OOD) detection paradigm, where in-distribution (ID) training data are compared against datasets with increasing domain shift. Using glaucoma detection as the ID task, we demonstrate that DRUE consistently achieves superior AUC and AUPR across multiple OOD datasets, highlighting its robustness and reliability under distribution shift. This work provides a principled and effective framework for enhancing model reliability in uncertain environments.
☆ SETA: Statistical Fault Attribution for Compound AI Systems ICSE 2026
Modern AI systems increasingly comprise multiple interconnected neural networks to tackle complex inference tasks. Testing such systems for robustness and safety entails significant challenges. Current state-of-the-art robustness testing techniques, whether black-box or white-box, have been proposed and implemented for single-network models and do not scale well to multi-network pipelines. We propose a modular robustness testing framework that applies a given set of perturbations to test data. Our testing framework supports (1) a component-wise system analysis to isolate errors and (2) reasoning about error propagation across the neural network modules. The testing framework is architecture and modality agnostic and can be applied across domains. We apply the framework to a real-world autonomous rail inspection system composed of multiple deep networks and successfully demonstrate how our approach enables fine-grained robustness analysis beyond conventional end-to-end metrics.
comment: Accepted to CAIN 2026 co-hosted with ICSE 2026
☆ From Observations to Events: Event-Aware World Model for Reinforcement Learning ICLR 2026
While model-based reinforcement learning (MBRL) improves sample efficiency by learning world models from raw observations, existing methods struggle to generalize across structurally similar scenes and remain vulnerable to spurious variations such as textures or color shifts. From a cognitive science perspective, humans segment continuous sensory streams into discrete events and rely on these key events for decision-making. Motivated by this principle, we propose the Event-Aware World Model (EAWM), a general framework that learns event-aware representations to streamline policy learning without requiring handcrafted labels. EAWM employs an automated event generator to derive events from raw observations and introduces a Generic Event Segmentor (GES) to identify event boundaries, which mark the start and end time of event segments. Through event prediction, the representation space is shaped to capture meaningful spatio-temporal transitions. Beyond this, we present a unified formulation of seemingly distinct world model architectures and show the broad applicability of our methods. Experiments on Atari 100K, Craftax 1M, and DeepMind Control 500K, DMC-GB2 500K demonstrate that EAWM consistently boosts the performance of strong MBRL baselines by 10%-45%, setting new state-of-the-art results across benchmarks. Our code is released at https://github.com/MarquisDarwin/EAWM.
comment: 43 pages, accepted by ICLR 2026
☆ Metric $k$-clustering using only Weak Comparison Oracles
Clustering is a fundamental primitive in unsupervised learning. However, classical algorithms for $k$-clustering (such as $k$-median and $k$-means) assume access to exact pairwise distances -- an unrealistic requirement in many modern applications. We study clustering in the \emph{Rank-model (R-model)}, where access to distances is entirely replaced by a \emph{quadruplet oracle} that provides only relative distance comparisons. In practice, such an oracle can represent learned models or human feedback, and is expected to be noisy and entail an access cost. Given a metric space with $n$ input items, we design randomized algorithms that, using only a noisy quadruplet oracle, compute a set of $O(k \cdot \mathsf{polylog}(n))$ centers along with a mapping from the input items to the centers such that the clustering cost of the mapping is at most constant times the optimum $k$-clustering cost. Our method achieves a query complexity of $O(n\cdot k \cdot \mathsf{polylog}(n))$ for arbitrary metric spaces and improves to $O((n+k^2) \cdot \mathsf{polylog}(n))$ when the underlying metric has bounded doubling dimension. When the metric has bounded doubling dimension we can further improve the approximation from constant to $1+\varepsilon$, for any arbitrarily small constant $\varepsilon\in(0,1)$, while preserving the same asymptotic query complexity. Our framework demonstrates how noisy, low-cost oracles, such as those derived from large language models, can be systematically integrated into scalable clustering algorithms.
☆ StableQAT: Stable Quantization-Aware Training at Ultra-Low Bitwidths
Quantization-aware training (QAT) is essential for deploying large models under strict memory and latency constraints, yet achieving stable and robust optimization at ultra-low bitwidths remains challenging. Common approaches based on the straight-through estimator (STE) or soft quantizers often suffer from gradient mismatch, instability, or high computational overhead. As such, we propose StableQAT, a unified and efficient QAT framework that stabilizes training in ultra low-bit settings via a novel, lightweight, and theoretically grounded surrogate for backpropagation derived from a discrete Fourier analysis of the rounding operator. StableQAT strictly generalizes STE as the latter arises as a special case of our more expressive surrogate family, yielding smooth, bounded, and inexpensive gradients that improve QAT training performance and stability across various hyperparameter choices. In experiments, StableQAT exhibits stable and efficient QAT at 2-4 bit regimes, demonstrating improved training stability, robustness, and superior performance with negligible training overhead against standard QAT techniques. Our code is available at https://github.com/microsoft/StableQAT.
☆ Generalizable IoT Traffic Representations for Cross-Network Device Identification
Machine learning models have demonstrated strong performance in classifying network traffic and identifying Internet-of-Things (IoT) devices, enabling operators to discover and manage IoT assets at scale. However, many existing approaches rely on end-to-end supervised pipelines or task-specific fine-tuning, resulting in traffic representations that are tightly coupled to labeled datasets and deployment environments, which can limit generalizability. In this paper, we study the problem of learning generalizable traffic representations for IoT device identification. We design compact encoder architectures that learn per-flow embeddings from unlabeled IoT traffic and evaluate them using a frozen-encoder protocol with a simple supervised classifier. Our specific contributions are threefold. (1) We develop unsupervised encoder--decoder models that learn compact traffic representations from unlabeled IoT network flows and assess their quality through reconstruction-based analysis. (2) We show that these learned representations can be used effectively for IoT device-type classification using simple, lightweight classifiers trained on frozen embeddings. (3) We provide a systematic benchmarking study against the state-of-the-art pretrained traffic encoders, showing that larger models do not necessarily yield more robust representations for IoT traffic. Using more than 18 million real IoT traffic flows collected across multiple years and deployment environments, we learn traffic representations from unlabeled data and evaluate device-type classification on disjoint labeled subsets, achieving macro F1-scores exceeding 0.9 for device-type classification and demonstrating robustness under cross-environment deployment.
comment: 15 pages, 15 figures
☆ LightSBB-M: Bridging Schrödinger and Bass for Generative Diffusion Modeling
The Schrodinger Bridge and Bass (SBB) formulation, which jointly controls drift and volatility, is an established extension of the classical Schrodinger Bridge (SB). Building on this framework, we introduce LightSBB-M, an algorithm that computes the optimal SBB transport plan in only a few iterations. The method exploits a dual representation of the SBB objective to obtain analytic expressions for the optimal drift and volatility, and it incorporates a tunable parameter beta greater than zero that interpolates between pure drift (the Schrodinger Bridge) and pure volatility (Bass martingale transport). We show that LightSBB-M achieves the lowest 2-Wasserstein distance on synthetic datasets against state-of-the-art SB and diffusion baselines with up to 32 percent improvement. We also illustrate the generative capability of the framework on an unpaired image-to-image translation task (adult to child faces in FFHQ). These findings demonstrate that LightSBB-M provides a scalable, high-fidelity SBB solver that outperforms existing SB and diffusion baselines across both synthetic and real-world generative tasks. The code is available at https://github.com/alexouadi/LightSBB-M.
☆ Queue Length Regret Bounds for Contextual Queueing Bandits
We introduce contextual queueing bandits, a new context-aware framework for scheduling while simultaneously learning unknown service rates. Individual jobs carry heterogeneous contextual features, based on which the agent chooses a job and matches it with a server to maximize the departure rate. The service/departure rate is governed by a logistic model of the contextual feature with an unknown server-specific parameter. To evaluate the performance of a policy, we consider queue length regret, defined as the difference in queue length between the policy and the optimal policy. The main challenge in the analysis is that the lists of remaining job features in the queue may differ under our policy versus the optimal policy for a given time step, since they may process jobs in different orders. To address this, we propose the idea of policy-switching queues equipped with a sophisticated coupling argument. This leads to a novel queue length regret decomposition framework, allowing us to understand the short-term effect of choosing a suboptimal job-server pair and its long-term effect on queue state differences. We show that our algorithm, CQB-$\varepsilon$, achieves a regret upper bound of $\widetilde{\mathcal{O}}(T^{-1/4})$. We also consider the setting of adversarially chosen contexts, for which our second algorithm, CQB-Opt, achieves a regret upper bound of $\mathcal{O}(\log^2 T)$. Lastly, we provide experimental results that validate our theoretical findings.
☆ Process-Aware Procurement Lead Time Prediction for Shipyard Delay Mitigation
Accurately predicting procurement lead time (PLT) remains a challenge in engineered-to-order industries such as shipbuilding and plant construction, where delays in a single key component can disrupt project timelines. In shipyards, pipe spools are critical components; installed deep within hull blocks soon after steel erection, any delay in their procurement can halt all downstream tasks. Recognizing their importance, existing studies predict PLT using the static physical attributes of pipe spools. However, procurement is inherently a dynamic, multi-stakeholder business process involving a continuous sequence of internal and external events at the shipyard, factors often overlooked in traditional approaches. To address this issue, this paper proposes a novel framework that combines event logs, dataset records of the procurement events, with static attributes to predict PLT. The temporal attributes of each event are extracted to reflect the continuity and temporal context of the process. Subsequently, a deep sequential neural network combined with a multi-layered perceptron is employed to integrate these static and dynamic features, enabling the model to capture both structural and contextual information in procurement. Comparative experiments are conducted using real-world pipe spool procurement data from a globally renowned South Korean shipbuilding corporation. Three tasks are evaluated, which are production, post-processing, and procurement lead time prediction. The results show a 22.6% to 50.4% improvement in prediction performance in terms of mean absolute error over the best-performing existing approaches across the three tasks. These findings indicate the value of considering procurement process information for more accurate PLT prediction.
☆ Smoothing the Score Function for Generalization in Diffusion Models: An Optimization-based Explanation Framework
Diffusion models achieve remarkable generation quality, yet face a fundamental challenge known as memorization, where generated samples can replicate training samples exactly. We develop a theoretical framework to explain this phenomenon by showing that the empirical score function (the score function corresponding to the empirical distribution) is a weighted sum of the score functions of Gaussian distributions, in which the weights are sharp softmax functions. This structure causes individual training samples to dominate the score function, resulting in sampling collapse. In practice, approximating the empirical score function with a neural network can partially alleviate this issue and improve generalization. Our theoretical framework explains why: In training, the neural network learns a smoother approximation of the weighted sum, allowing the sampling process to be influenced by local manifolds rather than single points. Leveraging this insight, we propose two novel methods to further enhance generalization: (1) Noise Unconditioning enables each training sample to adaptively determine its score function weight to increase the effect of more training samples, thereby preventing single-point dominance and mitigating collapse. (2) Temperature Smoothing introduces an explicit parameter to control the smoothness. By increasing the temperature in the softmax weights, we naturally reduce the dominance of any single training sample and mitigate memorization. Experiments across multiple datasets validate our theoretical analysis and demonstrate the effectiveness of the proposed methods in improving generalization while maintaining high generation quality.
comment: 61pages,32 figures
☆ Output Feedback Stabilization of Linear Systems via Policy Gradient Methods
Stabilizing a dynamical system is a fundamental problem that serves as a cornerstone for many complex tasks in the field of control systems. The problem becomes challenging when the system model is unknown. Among the Reinforcement Learning (RL) algorithms that have been successfully applied to solve problems pertaining to unknown linear dynamical systems, the policy gradient (PG) method stands out due to its ease of implementation and can solve the problem in a model-free manner. However, most of the existing works on PG methods for unknown linear dynamical systems assume full-state feedback. In this paper, we take a step towards model-free learning for partially observable linear dynamical systems with output feedback and focus on the fundamental stabilization problem of the system. We propose an algorithmic framework that stretches the boundary of PG methods to the problem without global convergence guarantees. We show that by leveraging zeroth-order PG update based on system trajectories and its convergence to stationary points, the proposed algorithms return a stabilizing output feedback policy for discrete-time linear dynamical systems. We also explicitly characterize the sample complexity of our algorithm and verify the effectiveness of the algorithm using numerical examples.
comment: 31 pages, 2 figures
☆ Group Distributionally Robust Optimization-Driven Reinforcement Learning for LLM Reasoning
Recent progress in Large Language Model (LLM) reasoning is increasingly driven by the refinement of post-training loss functions and alignment strategies. However, standard Reinforcement Learning (RL) paradigms like Group Relative Policy Optimization (GRPO) remain constrained by static uniformity: uniform prompt sampling and a fixed number of rollouts per prompt. For heterogeneous, heavy-tailed reasoning data, this creates structural inefficiencies that waste compute on already-solved patterns while under-training the long tail of hard problems. To address this, we propose Multi-Adversary Group Distributionally Robust Optimization (GDRO), an optimization-first framework that moves beyond uniform reasoning models by dynamically adapting the training distribution. We introduce an Online Difficulty Classifier that partitions prompts into dynamic pass@k difficulty groups. We then propose two independent GDRO games for post-training: (1) Prompt-GDRO, which employs an EMA-debiased multiplicative-weights bandit sampler to target the intensive difficulty margin and upweight persistently hard groups without frequency bias; and (2) Rollout-GDRO, which uses a shadow-price controller to reallocate rollouts across groups, maximizing gradient variance reduction on hard tasks under a fixed mean budget (compute-neutral). We provide no-regret guarantees for both controllers and additionally a variance-proxy analysis motivating a square-root optimal rollout allocation for Rollout-GDRO. We validate our framework on the DAPO 14.1k dataset using Qwen3-Base models. Prompt-GDRO and Rollout-GDRO achieve average relative gains of +10.6% and +10.1%, respectively, in pass@8 accuracy across 1.7B, 4B, and 8B scales compared to the GRPO baseline. Qualitative analysis shows an emergent curriculum: the adversaries shift resources to the evolving reasoning frontier, enhancing the reasoning model's performance.
comment: Keywords: Large Language Models, Reasoning Models, Reinforcement Learning, Distributionally Robust Optimization, GRPO
☆ Talos: Optimizing Top-$K$ Accuracy in Recommender Systems WWW'26
Recommender systems (RS) aim to retrieve a small set of items that best match individual user preferences. Naturally, RS place primary emphasis on the quality of the Top-$K$ results rather than performance across the entire item set. However, estimating Top-$K$ accuracy (e.g., Precision@$K$, Recall@$K$) requires determining the ranking positions of items, which imposes substantial computational overhead and poses significant challenges for optimization. In addition, RS often suffer from distribution shifts due to evolving user preferences or data biases, further complicating the task. To address these issues, we propose Talos, a loss function that is specifically designed to optimize the Talos recommendation accuracy. Talos leverages a quantile technique that replaces the complex ranking-dependent operations into simpler comparisons between predicted scores and learned score thresholds. We further develop a sampling-based regression algorithm for efficient and accurate threshold estimation, and introduce a constraint term to maintain optimization stability by preventing score inflation. Additionally, we incorporate a tailored surrogate function to address discontinuity and enhance robustness against distribution shifts. Comprehensive theoretical analyzes and empirical experiments are conducted to demonstrate the effectiveness, efficiency, convergence, and distributional robustness of Talos. The code is available at https://github.com/cynthia-shengjia/WWW-2026-Talos.
comment: Accepted by WWW'26
☆ Tactile Memory with Soft Robot: Robust Object Insertion via Masked Encoding and Soft Wrist IEEE
Tactile memory, the ability to store and retrieve touch-based experience, is critical for contact-rich tasks such as key insertion under uncertainty. To replicate this capability, we introduce Tactile Memory with Soft Robot (TaMeSo-bot), a system that integrates a soft wrist with tactile retrieval-based control to enable safe and robust manipulation. The soft wrist allows safe contact exploration during data collection, while tactile memory reuses past demonstrations via retrieval for flexible adaptation to unseen scenarios. The core of this system is the Masked Tactile Trajectory Transformer (MAT$^\text{3}$), which jointly models spatiotemporal interactions between robot actions, distributed tactile feedback, force-torque measurements, and proprioceptive signals. Through masked-token prediction, MAT$^\text{3}$ learns rich spatiotemporal representations by inferring missing sensory information from context, autonomously extracting task-relevant features without explicit subtask segmentation. We validate our approach on peg-in-hole tasks with diverse pegs and conditions in real-robot experiments. Our extensive evaluation demonstrates that MAT$^\text{3}$ achieves higher success rates than the baselines over all conditions and shows remarkable capability to adapt to unseen pegs and conditions.
comment: This work has been submitted to the IEEE for possible publication
☆ Whitespaces Don't Lie: Feature-Driven and Embedding-Based Approaches for Detecting Machine-Generated Code
Large language models (LLMs) have made it remarkably easy to synthesize plausible source code from natural language prompts. While this accelerates software development and supports learning, it also raises new risks for academic integrity, authorship attribution, and responsible AI use. This paper investigates the problem of distinguishing human-written from machine-generated code by comparing two complementary approaches: feature-based detectors built from lightweight, interpretable stylometric and structural properties of code, and embedding-based detectors leveraging pretrained code encoders. Using a recent large-scale benchmark dataset of 600k human-written and AI-generated code samples, we find that feature-based models achieve strong performance (ROC-AUC 0.995, PR-AUC 0.995, F1 0.971), while embedding-based models with CodeBERT embeddings are also very competitive (ROC-AUC 0.994, PR-AUC 0.994, F1 0.965). Analysis shows that features tied to indentation and whitespace provide particularly discriminative cues, whereas embeddings capture deeper semantic patterns and yield slightly higher precision. These findings underscore the trade-offs between interpretability and generalization, offering practical guidance for deploying robust code-origin detection in academic and industrial contexts.
☆ Decoupled Split Learning via Auxiliary Loss
Split learning is a distributed training paradigm where a neural network is partitioned between clients and a server, which allows data to remain at the client while only intermediate activations are shared. Traditional split learning relies on end-to-end backpropagation across the client-server split point. This incurs a large communication overhead (i.e., forward activations and backward gradients need to be exchanged every iteration) and significant memory use (for storing activations and gradients). In this paper, we develop a beyond-backpropagation training method for split learning. In this approach, the client and server train their model partitions semi-independently, using local loss signals instead of propagated gradients. In particular, the client's network is augmented with a small auxiliary classifier at the split point to provide a local error signal, while the server trains on the client's transmitted activations using the true loss function. This decoupling removes the need to send backward gradients, which cuts communication costs roughly in half and also reduces memory overhead (as each side only stores local activations for its own backward pass). We evaluate our approach on CIFAR-10 and CIFAR-100. Our experiments show two key results. First, the proposed approach achieves performance on par with standard split learning that uses backpropagation. Second, it significantly reduces communication (of transmitting activations/gradient) by 50% and peak memory usage by up to 58%.
☆ PCEvo: Path-Consistent Molecular Representation via Virtual Evolutionary
Molecular representation learning aims to learn vector embeddings that capture molecular structure and geometry, thereby enabling property prediction and downstream scientific applications. In many AI for science tasks, labeled data are expensive to obtain and therefore limited in availability. Under the few-shot setting, models trained with scarce supervision often learn brittle structure-property relationships, resulting in substantially higher prediction errors and reduced generalization to unseen molecules. To address this limitation, we propose PCEvo, a path-consistent representation method that learns from virtual paths through dynamic structural evolution. PCEvo enumerates multiple chemically feasible edit paths between retrieved similar molecular pairs under topological dependency constraints. It transforms the labels of the two molecules into stepwise supervision along each virtual evolutionary path. It introduces a path-consistency objective that enforces prediction invariance across alternative paths connecting the same two molecules. Comprehensive experiments on the QM9 and MoleculeNet datasets demonstrate that PCEvo substantially improves the few-shot generalization performance of baseline methods. The code is available at https://anonymous.4open.science/r/PCEvo-4BF2.
comment: 10 pages, 4 figures, 5 tables
☆ E-QRGMM: Efficient Generative Metamodeling for Covariate-Dependent Uncertainty Quantification
Covariate-dependent uncertainty quantification in simulation-based inference is crucial for high-stakes decision-making but remains challenging due to the limitations of existing methods such as conformal prediction and classical bootstrap, which struggle with covariate-specific conditioning. We propose Efficient Quantile-Regression-Based Generative Metamodeling (E-QRGMM), a novel framework that accelerates the quantile-regression-based generative metamodeling (QRGMM) approach by integrating cubic Hermite interpolation with gradient estimation. Theoretically, we show that E-QRGMM preserves the convergence rate of the original QRGMM while reducing grid complexity from $O(n^{1/2})$ to $O(n^{1/5})$ for the majority of quantile levels, thereby substantially improving computational efficiency. Empirically, E-QRGMM achieves a superior trade-off between distributional accuracy and training speed compared to both QRGMM and other advanced deep generative models on synthetic and practical datasets. Moreover, by enabling bootstrap-based construction of confidence intervals for arbitrary estimands of interest, E-QRGMM provides a practical solution for covariate-dependent uncertainty quantification.
☆ LLM-Assisted Logic Rule Learning: Scaling Human Expertise for Time Series Anomaly Detection
Time series anomaly detection is critical for supply chain management to take proactive operations, but faces challenges: classical unsupervised anomaly detection based on exploiting data patterns often yields results misaligned with business requirements and domain knowledge, while manual expert analysis cannot scale to millions of products in the supply chain. We propose a framework that leverages large language models (LLMs) to systematically encode human expertise into interpretable, logic-based rules for detecting anomaly patterns in supply chain time series data. Our approach operates in three stages: 1) LLM-based labeling of training data instructed by domain knowledge, 2) automated generation and iterative improvements of symbolic rules through LLM-driven optimization, and 3) rule augmentation with business-relevant anomaly categories supported by LLMs to enhance interpretability. The experiment results showcase that our approach outperforms the unsupervised learning methods in both detection accuracy and interpretability. Furthermore, compared to direct LLM deployment for time series anomaly detection, our approach provides consistent, deterministic results with low computational latency and cost, making it ideal for production deployment. The proposed framework thus demonstrates how LLMs can bridge the gap between scalable automation and expert-driven decision-making in operational settings.
☆ Beyond In-Domain Detection: SpikeScore for Cross-Domain Hallucination Detection
Hallucination detection is critical for deploying large language models (LLMs) in real-world applications. Existing hallucination detection methods achieve strong performance when the training and test data come from the same domain, but they suffer from poor cross-domain generalization. In this paper, we study an important yet overlooked problem, termed generalizable hallucination detection (GHD), which aims to train hallucination detectors on data from a single domain while ensuring robust performance across diverse related domains. In studying GHD, we simulate multi-turn dialogues following LLMs initial response and observe an interesting phenomenon: hallucination-initiated multi-turn dialogues universally exhibit larger uncertainty fluctuations than factual ones across different domains. Based on the phenomenon, we propose a new score SpikeScore, which quantifies abrupt fluctuations in multi-turn dialogues. Through both theoretical analysis and empirical validation, we demonstrate that SpikeScore achieves strong cross-domain separability between hallucinated and non-hallucinated responses. Experiments across multiple LLMs and benchmarks demonstrate that the SpikeScore-based detection method outperforms representative baselines in cross-domain generalization and surpasses advanced generalization-oriented methods, verifying the effectiveness of our method in cross-domain hallucination detection.
☆ Contrast-Source-Based Physics-Driven Neural Network for Inverse Scattering Problems
Deep neural networks (DNNs) have recently been applied to inverse scattering problems (ISPs) due to their strong nonlinear mapping capabilities. However, supervised DNN solvers require large-scale datasets, which limits their generalization in practical applications. Untrained neural networks (UNNs) address this issue by updating weights from measured electric fields and prior physical knowledge, but existing UNN solvers suffer from long inference time. To overcome these limitations, this paper proposes a contrast-source-based physics-driven neural network (CSPDNN), which predicts the induced current distribution to improve efficiency and incorporates an adaptive total variation loss for robust reconstruction under varying contrast and noise conditions. The improved imaging performance is validated through comprehensive numerical simulations and experimental data.
☆ Structure-based RNA Design by Step-wise Optimization of Latent Diffusion Model AAAI 2026
RNA inverse folding, designing sequences to form specific 3D structures, is critical for therapeutics, gene regulation, and synthetic biology. Current methods, focused on sequence recovery, struggle to address structural objectives like secondary structure consistency (SS), minimum free energy (MFE), and local distance difference test (LDDT), leading to suboptimal structural accuracy. To tackle this, we propose a reinforcement learning (RL) framework integrated with a latent diffusion model (LDM). Drawing inspiration from the success of diffusion models in RNA inverse folding, which adeptly model complex sequence-structure interactions, we develop an LDM incorporating pre-trained RNA-FM embeddings from a large-scale RNA model. These embeddings capture co-evolutionary patterns, markedly improving sequence recovery accuracy. However, existing approaches, including diffusion-based methods, cannot effectively handle non-differentiable structural objectives. By contrast, RL excels in this task by using policy-driven reward optimization to navigate complex, non-gradient-based objectives, offering a significant advantage over traditional methods. In summary, we propose the Step-wise Optimization of Latent Diffusion Model (SOLD), a novel RL framework that optimizes single-step noise without sampling the full diffusion trajectory, achieving efficient refinement of multiple structural objectives. Experimental results demonstrate SOLD surpasses its LDM baseline and state-of-the-art methods across all metrics, establishing a robust framework for RNA inverse folding with profound implications for biotechnological and therapeutic applications.
comment: 20 pages (7 pages content + 2 pages references + 11 pages appendix), 11 figures, 8 tables. Source code available at https://github.com/darkflash03/SOLD Accepted to AAAI 2026
☆ Accelerated Multiple Wasserstein Gradient Flows for Multi-objective Distributional Optimization
We study multi-objective optimization over probability distributions in Wasserstein space. Recently, Nguyen et al. (2025) introduced Multiple Wasserstein Gradient Descent (MWGraD) algorithm, which exploits the geometric structure of Wasserstein space to jointly optimize multiple objectives. Building on this approach, we propose an accelerated variant, A-MWGraD, inspired by Nesterov's acceleration. We analyze the continuous-time dynamics and establish convergence to weakly Pareto optimal points in probability space. Our theoretical results show that A-MWGraD achieves a convergence rate of O(1/t^2) for geodesically convex objectives and O(e^{-\sqrtβt}) for $β$-strongly geodesically convex objectives, improving upon the O(1/t) rate of MWGraD in the geodesically convex setting. We further introduce a practical kernel-based discretization for A-MWGraD and demonstrate through numerical experiments that it consistently outperforms MWGraD in convergence speed and sampling efficiency on multi-target sampling tasks.
☆ Bridging Visual and Wireless Sensing: A Unified Radiation Field for 3D Radio Map Construction
The emerging applications of next-generation wireless networks (e.g., immersive 3D communication, low-altitude networks, and integrated sensing and communication) necessitate high-fidelity environmental intelligence. 3D radio maps have emerged as a critical tool for this purpose, enabling spectrum-aware planning and environment-aware sensing by bridging the gap between physical environments and electromagnetic signal propagation. However, constructing accurate 3D radio maps requires fine-grained 3D geometric information and a profound understanding of electromagnetic wave propagation. Existing approaches typically treat optical and wireless knowledge as distinct modalities, failing to exploit the fundamental physical principles governing both light and electromagnetic propagation. To bridge this gap, we propose URF-GS, a unified radio-optical radiation field representation framework for accurate and generalizable 3D radio map construction based on 3D Gaussian splatting (3D-GS) and inverse rendering. By fusing visual and wireless sensing observations, URF-GS recovers scene geometry and material properties while accurately predicting radio signal behavior at arbitrary transmitter-receiver (Tx-Rx) configurations. Experimental results demonstrate that URF-GS achieves up to a 24.7% improvement in spatial spectrum prediction accuracy and a 10x increase in sample efficiency for 3D radio map construction compared with neural radiance field (NeRF)-based methods. This work establishes a foundation for next-generation wireless networks by integrating perception, interaction, and communication through holistic radiation field reconstruction.
comment: The code for this work will be publicly available at: https://github.com/wenchaozheng/URF-GS
☆ How Do Transformers Learn to Associate Tokens: Gradient Leading Terms Bring Mechanistic Interpretability ICLR 2026
Semantic associations such as the link between "bird" and "flew" are foundational for language modeling as they enable models to go beyond memorization and instead generalize and generate coherent text. Understanding how these associations are learned and represented in language models is essential for connecting deep learning with linguistic theory and developing a mechanistic foundation for large language models. In this work, we analyze how these associations emerge from natural language data in attention-based language models through the lens of training dynamics. By leveraging a leading-term approximation of the gradients, we develop closed-form expressions for the weights at early stages of training that explain how semantic associations first take shape. Through our analysis, we reveal that each set of weights of the transformer has closed-form expressions as simple compositions of three basis functions (bigram, token-interchangeability, and context mappings), reflecting the statistics of the text corpus and uncovering how each component of the transformer captures semantic associations based on these compositions. Experiments on real-world LLMs demonstrate that our theoretical weight characterizations closely match the learned weights, and qualitative analyses further show how our theorem shines light on interpreting the learned associations in transformers.
comment: ICLR 2026
☆ EnzyPGM: Pocket-conditioned Generative Model for Substrate-specific Enzyme Design
Designing enzymes with substrate-binding pockets is a critical challenge in protein engineering, as catalytic activity depends on the precise interaction between pockets and substrates. Currently, generative models dominate functional protein design but cannot model pocket-substrate interactions, which limits the generation of enzymes with precise catalytic environments. To address this issue, we propose EnzyPGM, a unified framework that jointly generates enzymes and substrate-binding pockets conditioned on functional priors and substrates, with a particular focus on learning accurate pocket-substrate interactions. At its core, EnzyPGM includes two main modules: a Residue-atom Bi-scale Attention (RBA) that jointly models intra-residue dependencies and fine-grained interactions between pocket residues and substrate atoms, and a Residue Function Fusion (RFF) that incorporates enzyme function priors into residue representations. Also, we curate EnzyPock, an enzyme-pocket dataset comprising 83,062 enzyme-substrate pairs across 1,036 four-level enzyme families. Extensive experiments demonstrate that EnzyPGM achieves state-of-the-art performance on EnzyPock. Notably, EnzyPGM reduces the average binding energy of 0.47 kcal/mol over EnzyGen, showing its superior performance on substrate-specific enzyme design. The code and dataset will be released later.
comment: 9 pages, 4 figures, under review
☆ SE-DiCoW: Self-Enrolled Diarization-Conditioned Whisper ICASSP 2026
Speaker-attributed automatic speech recognition (ASR) in multi-speaker environments remains a major challenge. While some approaches achieve strong performance when fine-tuned on specific domains, few systems generalize well across out-of-domain datasets. Our prior work, Diarization-Conditioned Whisper (DiCoW), leverages speaker diarization outputs as conditioning information and, with minimal fine-tuning, demonstrated strong multilingual and multi-domain performance. In this paper, we address a key limitation of DiCoW: ambiguity in Silence-Target-Non-target-Overlap (STNO) masks, where two or more fully overlapping speakers may have nearly identical conditioning despite differing transcriptions. We introduce SE-DiCoW (Self-Enrolled Diarization-Conditioned Whisper), which uses diarization output to locate an enrollment segment anywhere in the conversation where the target speaker is most active. This enrollment segment is used as fixed conditioning via cross-attention at each encoder layer. We further refine DiCoW with improved data segmentation, model initialization, and augmentation. Together, these advances yield substantial gains: SE-DiCoW reduces macro-averaged tcpWER by 52.4% relative to the original DiCoW on the EMMA MT-ASR benchmark.
comment: Accepted to ICASSP 2026
☆ Transparency-First Medical Language Models: Datasheets, Model Cards, and End-to-End Data Provenance for Clinical NLP
We introduce TeMLM, a set of transparency-first release artifacts for clinical language models. TeMLM unifies provenance, data transparency, modeling transparency, and governance into a single, machine-checkable release bundle. We define an artifact suite (TeMLM-Card, TeMLM-Datasheet, TeMLM-Provenance) and a lightweight conformance checklist for repeatable auditing. We instantiate the artifacts on Technetium-I, a large-scale synthetic clinical NLP dataset with 498,000 notes, 7.74M PHI entity annotations across 10 types, and ICD-9-CM diagnosis labels, and report reference results for ProtactiniumBERT (about 100 million parameters) on PHI de-identification (token classification) and top-50 ICD-9 code extraction (multi-label classification). We emphasize that synthetic benchmarks are valuable for tooling and process validation, but models should be validated on real clinical data prior to deployment.
comment: 12 pages, 9 figures, 15 tables. Technetium-I case study and ProtactiniumBERT-100M reference benchmarks
☆ Foresight Learning for SEC Risk Prediction
Risk disclosures in SEC filings describe potential adverse events but rarely quantify their likelihood, limiting their usefulness for probabilistic analysis. A central obstacle is the absence of large-scale, risk-level supervision linking disclosed risks to realized outcomes. We introduce a fully automated data generation pipeline that converts qualitative SEC risk disclosures into temporally grounded supervision using only public data. For each filing, the pipeline generates firm-specific, time-bounded risk queries from the Risk Factors section and labels them by automatically resolving outcomes against subsequent disclosures. Using this dataset of risk queries and outcomes grounded in SEC filings, we train a compact large language model to estimate the probability that a disclosed risk will materialize within a specified horizon. Despite its modest size, the resulting model substantially improves over pretrained and heuristic baselines, and outperforms frontier general-purpose models, including GPT-5, on probabilistic accuracy and calibration. More broadly, this work demonstrates that Foresight Learning enables scalable and fully automated training of domain-specific expert models using only raw, chronological, in-domain text -- without proprietary data, external corpora, or manual annotation. The resulting models achieve frontier-level performance while remaining deployable on a single GPU. This result suggests a general pathway for learning calibrated, decision-relevant signals from naturally occurring enterprise documents. To support transparency and reproducibility, we open-source the evaluation dataset used in this study. Evaluation Data: https://huggingface.co/datasets/LightningRodLabs/sec_risk_questions_test_set Data Generation Platform: https://lightningrod.ai/ SDK: https://github.com/lightning-rod-labs/lightningrod-python-sdk
☆ Double Fairness Policy Learning: Integrating Action Fairness and Outcome Fairness in Decision-making
Fairness is a central pillar of trustworthy machine learning, especially in domains where accuracy- or profit-driven optimization is insufficient. While most fairness research focuses on supervised learning, fairness in policy learning remains less explored. Because policy learning is interventional, it induces two distinct fairness targets: action fairness (equitable action assignments) and outcome fairness (equitable downstream consequences). Crucially, equalizing actions does not generally equalize outcomes when groups face different constraints or respond differently to the same action. We propose a novel double fairness learning (DFL) framework that explicitly manages the trade-off among three objectives: action fairness, outcome fairness, and value maximization. We integrate fairness directly into a multi-objective optimization problem for policy learning and employ a lexicographic weighted Tchebyshev method that recovers Pareto solutions beyond convex settings, with theoretical guarantees on the regret bounds. Our framework is flexible and accommodates various commonly used fairness notions. Extensive simulations demonstrate improved performance relative to competing methods. In applications to a motor third-party liability insurance dataset and an entrepreneurship training dataset, DFL substantially improves both action and outcome fairness while incurring only a modest reduction in overall value.
☆ Learning Ordered Representations in Latent Space for Intrinsic Dimension Estimation via Principal Component Autoencoder
Autoencoders have long been considered a nonlinear extension of Principal Component Analysis (PCA). Prior studies have demonstrated that linear autoencoders (LAEs) can recover the ordered, axis-aligned principal components of PCA by incorporating non-uniform $\ell_2$ regularization or by adjusting the loss function. However, these approaches become insufficient in the nonlinear setting, as the remaining variance cannot be properly captured independently of the nonlinear mapping. In this work, we propose a novel autoencoder framework that integrates non-uniform variance regularization with an isometric constraint. This design serves as a natural generalization of PCA, enabling the model to preserve key advantages, such as ordered representations and variance retention, while remaining effective for nonlinear dimensionality reduction tasks.
☆ A Scalable Inter-edge Correlation Modeling in CopulaGNN for Link Sign Prediction ICLR 2026
Link sign prediction on a signed graph is a task to determine whether the relationship represented by an edge is positive or negative. Since the presence of negative edges violates the graph homophily assumption that adjacent nodes are similar, regular graph methods have not been applicable without auxiliary structures to handle them. We aim to directly model the latent statistical dependency among edges with the Gaussian copula and its corresponding correlation matrix, extending CopulaGNN. However, a naive modeling of edge-edge relations is computationally intractable even for a graph with moderate scale. To address this, we propose to 1) represent the correlation matrix as a Gramian of edge embeddings, significantly reducing the number of parameters, and 2) reformulate the conditional probability distribution to dramatically reduce the inference cost. We theoretically verify scalability of our method by proving its linear convergence. Also, our extensive experiments demonstrate that it achieves significantly faster convergence than baselines, maintaining competitive prediction performance to the state-of-the-art models.
comment: Accepted to ICLR 2026
☆ Convergence of Muon with Newton-Schulz ICLR 2026
We analyze Muon as originally proposed and used in practice -- using the momentum orthogonalization with a few Newton-Schulz steps. The prior theoretical results replace this key step in Muon with an exact SVD-based polar factor. We prove that Muon with Newton-Schulz converges to a stationary point at the same rate as the SVD-polar idealization, up to a constant factor for a given number $q$ of Newton-Schulz steps. We further analyze this constant factor and prove that it converges to 1 doubly exponentially in $q$ and improves with the degree of the polynomial used in Newton-Schulz for approximating the orthogonalization direction. We also prove that Muon removes the typical square-root-of-rank loss compared to its vector-based counterpart, SGD with momentum. Our results explain why Muon with a few low-degree Newton-Schulz steps matches exact-polar (SVD) behavior at a much faster wall-clock time and explain how much momentum matrix orthogonalization via Newton-Schulz benefits over the vector-based optimizer. Overall, our theory justifies the practical Newton-Schulz design of Muon, narrowing its practice-theory gap.
comment: Accepted at ICLR 2026
☆ Analysis of Shuffling Beyond Pure Local Differential Privacy
Shuffling is a powerful way to amplify privacy of a local randomizer in private distributed data analysis, but existing analyses mostly treat the local differential privacy (DP) parameter $\varepsilon_0$ as the only knob and give generic upper bounds that can be loose and do not even characterize how shuffling amplifies privacy for basic mechanisms such as the Gaussian mechanism. We revisit the privacy blanket bound of Balle et al. (the blanket divergence) and develop an asymptotic analysis that applies to a broad class of local randomizers under mild regularity assumptions, without requiring pure local DP. Our key finding is that the leading term of the blanket divergence depends on the local mechanism only through a single scalar parameter $χ$, which we call the shuffle index. By applying this asymptotic analysis to both upper and lower bounds, we obtain a tight band for $δ_n$ in the shuffled mechanism's $(\varepsilon_n,δ_n)$-DP guarantee. Moreover, we derive a simple structural necessary and sufficient condition on the local randomizer under which the blanket-divergence-based upper and lower bounds coincide asymptotically. $k$-RR families with $k\ge3$ satisfy this condition, while for generalized Gaussian mechanisms the condition may not hold but the resulting band remains tight. Finally, we complement the asymptotic theory with an FFT-based algorithm for computing the blanket divergence at finite $n$, which offers rigorously controlled relative error and near-linear running time in $n$, providing a practical numerical analysis for shuffle DP.
☆ GPCR-Filter: a deep learning framework for efficient and precise GPCR modulator discovery
G protein-coupled receptors (GPCRs) govern diverse physiological processes and are central to modern pharmacology. Yet discovering GPCR modulators remains challenging because receptor activation often arises from complex allosteric effects rather than direct binding affinity, and conventional assays are slow, costly, and not optimized for capturing these dynamics. Here we present GPCR-Filter, a deep learning framework specifically developed for GPCR modulator discovery. We assembled a high-quality dataset of over 90,000 experimentally validated GPCR-ligand pairs, providing a robust foundation for training and evaluation. GPCR-Filter integrates the ESM-3 protein language model for high-fidelity GPCR sequence representations with graph neural networks that encode ligand structures, coupled through an attention-based fusion mechanism that learns receptor-ligand functional relationships. Across multiple evaluation settings, GPCR-Filter consistently outperforms state-of-the-art compound-protein interaction models and exhibits strong generalization to unseen receptors and ligands. Notably, the model successfully identified micromolar-level agonists of the 5-HT\textsubscript{1A} receptor with distinct chemical frameworks. These results establish GPCR-Filter as a scalable and effective computational approach for GPCR modulator discovery, advancing AI-assisted drug development for complex signaling systems.
☆ Native LLM and MLLM Inference at Scale on Apple Silicon
The growing adoption of Apple Silicon for machine learning development has created demand for efficient inference solutions that leverage its unique unified memory architecture. However, existing tools either lack native optimization (PyTorch MPS) or focus solely on text models (llama.cpp), leaving multimodal workloads underserved. We present vllm-mlx, a framework for efficient LLM and MLLM inference on Apple Silicon built natively on MLX. For text models, we achieve 21% to 87% higher throughput than llama.cpp across models ranging from Qwen3-0.6B to Nemotron-30B, while providing continuous batching that scales to 4.3x aggregate throughput at 16 concurrent requests. For multimodal models, we introduce content-based prefix caching that eliminates redundant vision encoding by identifying identical images through content hashing, regardless of input format. Our evaluation on Apple M4 Max demonstrates throughput of up to 525 tokens per second on text models and 28x speedup on repeated image queries, reducing multimodal latency from 21.7 seconds to under 1 second. Video analysis with up to 64 frames achieves 24.7x cache speedup. We release our implementation as open source to support efficient inference on consumer Apple hardware.
☆ AgenticSCR: An Autonomous Agentic Secure Code Review for Immature Vulnerabilities Detection
Secure code review is critical at the pre-commit stage, where vulnerabilities must be caught early under tight latency and limited-context constraints. Existing SAST-based checks are noisy and often miss immature, context-dependent vulnerabilities, while standalone Large Language Models (LLMs) are constrained by context windows and lack explicit tool use. Agentic AI, which combine LLMs with autonomous decision-making, tool invocation, and code navigation, offer a promising alternative, but their effectiveness for pre-commit secure code review is not yet well understood. In this work, we introduce AgenticSCR, an agentic AI for secure code review for detecting immature vulnerabilities during the pre-commit stage, augmented by security-focused semantic memories. Using our own curated benchmark of immature vulnerabilities, tailored to the pre-commit secure code review, we empirically evaluate how accurate is our AgenticSCR for localizing, detecting, and explaining immature vulnerabilities. Our results show that AgenticSCR achieves at least 153% relatively higher percentage of correct code review comments than the static LLM-based baseline, and also substantially surpasses SAST tools. Moreover, AgenticSCR generates more correct comments in four out of five vulnerability types, consistently and significantly outperforming all other baselines. These findings highlight the importance of Agentic Secure Code Review, paving the way towards an emerging research area of immature vulnerability detection.
comment: Under Review
☆ LLMs as Orchestrators: Constraint-Compliant Multi-Agent Optimization for Recommendation Systems
Recommendation systems must optimize multiple objectives while satisfying hard business constraints such as fairness and coverage. For example, an e-commerce platform may require every recommendation list to include items from multiple sellers and at least one newly listed product; violating such constraints--even once--is unacceptable in production. Prior work on multi-objective recommendation and recent LLM-based recommender agents largely treat constraints as soft penalties or focus on item scoring and interaction, leading to frequent violations in real-world deployments. How to leverage LLMs for coordinating constrained optimization in recommendation systems remains underexplored. We propose DualAgent-Rec, an LLM-coordinated dual-agent framework for constrained multi-objective e-commerce recommendation. The framework separates optimization into an Exploitation Agent that prioritizes accuracy under hard constraints and an Exploration Agent that promotes diversity through unconstrained Pareto search. An LLM-based coordinator adaptively allocates resources between agents based on optimization progress and constraint satisfaction, while an adaptive epsilon-relaxation mechanism guarantees feasibility of final solutions. Experiments on the Amazon Reviews 2023 dataset demonstrate that DualAgent-Rec achieves 100% constraint satisfaction and improves Pareto hypervolume by 4-6% over strong baselines, while maintaining competitive accuracy-diversity trade-offs. These results indicate that LLMs can act as effective orchestration agents for deployable and constraint-compliant recommendation systems.
comment: 8 pages, 5 figures
☆ RobustExplain: Evaluating Robustness of LLM-Based Explanation Agents for Recommendation
Large Language Models (LLMs) are increasingly used to generate natural-language explanations in recommender systems, acting as explanation agents that reason over user behavior histories. While prior work has focused on explanation fluency and relevance under fixed inputs, the robustness of LLM-generated explanations to realistic user behavior noise remains largely unexplored. In real-world web platforms, interaction histories are inherently noisy due to accidental clicks, temporal inconsistencies, missing values, and evolving preferences, raising concerns about explanation stability and user trust. We present RobustExplain, the first systematic evaluation framework for measuring the robustness of LLM-generated recommendation explanations. RobustExplain introduces five realistic user behavior perturbations evaluated across multiple severity levels and a multi-dimensional robustness metric capturing semantic, keyword, structural, and length consistency. Our goal is to establish a principled, task-level evaluation framework and initial robustness baselines, rather than to provide a comprehensive leaderboard across all available LLMs. Experiments on four representative LLMs (7B--70B) show that current models exhibit only moderate robustness, with larger models achieving up to 8% higher stability. Our results establish the first robustness benchmarks for explanation agents and highlight robustness as a critical dimension for trustworthy, agent-driven recommender systems at web scale.
comment: 8 pages, 4 figures
☆ TinyTorch: Building Machine Learning Systems from First Principles
Machine learning systems engineering requires a deep understanding of framework internals. Yet most current education separates algorithms from systems. Students learn gradient descent without measuring memory usage, and attention mechanisms without profiling computational cost. This split leaves graduates unprepared to debug real production failures and widens the gap between machine learning research and reliable deployment. We present TinyTorch, a 20 module curriculum in which students implement the core components of PyTorch, including tensors, autograd, optimizers, and neural networks, entirely in pure Python. The curriculum is built around three pedagogical principles. Progressive disclosure gradually introduces complexity as students build confidence. Systems first integration embeds memory and performance awareness from the very beginning. Historical milestone validation guides students to recreate key breakthroughs, from the Perceptron in 1958 to modern Transformers, using only code they have written themselves. TinyTorch requires only a laptop with 4GB of RAM and no GPU, making machine learning systems education accessible worldwide. Its goal is to prepare the next generation of AI engineers, practitioners who understand not only what machine learning systems do, but why they work and how to make them scale. The curriculum is available as open source at mlsysbook.ai slash tinytorch.
☆ OWLEYE: Zero-Shot Learner for Cross-Domain Graph Data Anomaly Detection ICLR 2026
Graph data is informative to represent complex relationships such as transactions between accounts, communications between devices, and dependencies among machines or processes. Correspondingly, graph anomaly detection (GAD) plays a critical role in identifying anomalies across various domains, including finance, cybersecurity, manufacturing, etc. Facing the large-volume and multi-domain graph data, nascent efforts attempt to develop foundational generalist models capable of detecting anomalies in unseen graphs without retraining. To the best of our knowledge, the different feature semantics and dimensions of cross-domain graph data heavily hinder the development of the graph foundation model, leaving further in-depth continual learning and inference capabilities a quite open problem. Hence, we propose OWLEYE, a novel zero-shot GAD framework that learns transferable patterns of normal behavior from multiple graphs, with a threefold contribution. First, OWLEYE proposes a cross-domain feature alignment module to harmonize feature distributions, which preserves domain-specific semantics during alignment. Second, with aligned features, to enable continuous learning capabilities, OWLEYE designs the multi-domain multi-pattern dictionary learning to encode shared structural and attribute-based patterns. Third, for achieving the in-context learning ability, OWLEYE develops a truncated attention-based reconstruction module to robustly detect anomalies without requiring labeled data for unseen graph-structured data. Extensive experiments on real-world datasets demonstrate that OWLEYE achieves superior performance and generalizability compared to state-of-the-art baselines, establishing a strong foundation for scalable and label-efficient anomaly detection.
comment: Accepted by ICLR 2026
☆ FloydNet: A Learning Paradigm for Global Relational Reasoning
Developing models capable of complex, multi-step reasoning is a central goal in artificial intelligence. While representing problems as graphs is a powerful approach, Graph Neural Networks (GNNs) are fundamentally constrained by their message-passing mechanism, which imposes a local bottleneck that limits global, holistic reasoning. We argue that dynamic programming (DP), which solves problems by iteratively refining a global state, offers a more powerful and suitable learning paradigm. We introduce FloydNet, a new architecture that embodies this principle. In contrast to local message passing, FloydNet maintains a global, all-pairs relationship tensor and learns a generalized DP operator to progressively refine it. This enables the model to develop a task-specific relational calculus, providing a principled framework for capturing long-range dependencies. Theoretically, we prove that FloydNet achieves 3-WL (2-FWL) expressive power, and its generalized form aligns with the k-FWL hierarchy. FloydNet demonstrates state-of-the-art performance across challenging domains: it achieves near-perfect scores (often >99\%) on the CLRS-30 algorithmic benchmark, finds exact optimal solutions for the general Traveling Salesman Problem (TSP) at rates significantly exceeding strong heuristics, and empirically matches the 3-WL test on the BREC benchmark. Our results establish this learned, DP-style refinement as a powerful and practical alternative to message passing for high-level graph reasoning.
comment: 29 pages, 9 figures, 14 tables
☆ Axe: A Simple Unified Layout Abstraction for Machine Learning Compilers
Scaling modern deep learning workloads demands coordinated placement of data and compute across device meshes, memory hierarchies, and heterogeneous accelerators. We present Axe Layout, a hardware-aware abstraction that maps logical tensor coordinates to a multi-axis physical space via named axes. Axe unifies tiling, sharding, replication, and offsets across inter-device distribution and on-device layouts, enabling collective primitives to be expressed consistently from device meshes to threads. Building on Axe, we design a multi-granularity, distribution-aware DSL and compiler that composes thread-local control with collective operators in a single kernel. Experiments show that our unified approach can bring performance close to hand-tuned kernels on across latest GPU devices and multi-device environments and accelerator backends.
☆ Out-of-Distribution Generalization for Neural Physics Solvers
Neural physics solvers are increasingly used in scientific discovery, given their potential for rapid in silico insights into physical, materials, or biological systems and their long-time evolution. However, poor generalization beyond their training support limits exploration of novel designs and long-time horizon predictions. We introduce NOVA, a route to generalizable neural physics solvers that can provide rapid, accurate solutions to scenarios even under distributional shifts in partial differential equation parameters, geometries and initial conditions. By learning physics-aligned representations from an initial sparse set of scenarios, NOVA consistently achieves 1-2 orders of magnitude lower out-of-distribution errors than data-driven baselines across complex, nonlinear problems including heat transfer, diffusion-reaction and fluid flow. We further showcase NOVA's dual impact on stabilizing long-time dynamical rollouts and improving generative design through application to the simulation of nonlinear Turing systems and fluidic chip optimization. Unlike neural physics solvers that are constrained to retrieval and/or emulation within an a priori space, NOVA enables reliable extrapolation beyond known regimes, a key capability given the need for exploration of novel hypothesis spaces in scientific discovery
☆ Privacy-Preserving Model Transcription with Differentially Private Synthetic Distillation IEEE
While many deep learning models trained on private datasets have been deployed in various practical tasks, they may pose a privacy leakage risk as attackers could recover informative data or label knowledge from models. In this work, we present \emph{privacy-preserving model transcription}, a data-free model-to-model conversion solution to facilitate model deployment with a privacy guarantee. To this end, we propose a cooperative-competitive learning approach termed \emph{differentially private synthetic distillation} that learns to convert a pretrained model (teacher) into its privacy-preserving counterpart (student) via a trainable generator without access to private data. The learning collaborates with three players in a unified framework and performs alternate optimization: i)~the generator is learned to generate synthetic data, ii)~the teacher and student accept the synthetic data and compute differential private labels by flexible data or label noisy perturbation, and iii)~the student is updated with noisy labels and the generator is updated by taking the student as a discriminator for adversarial training. We theoretically prove that our approach can guarantee differential privacy and convergence. The transcribed student has good performance and privacy protection, while the resulting generator can generate private synthetic data for downstream tasks. Extensive experiments clearly demonstrate that our approach outperforms 26 state-of-the-arts.
comment: Accepted by IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI)
☆ EPAS: Efficient Training with Progressive Activation Sharing
We present a novel method for Efficient training with Progressive Activation Sharing (EPAS). This method bridges progressive training paradigm with the phenomenon of redundant QK (or KV ) activations across deeper layers of transformers. EPAS gradually grows a sharing region during training by switching decoder layers to activation sharing mode. This results in throughput increase due to reduced compute. To utilize deeper layer redundancy, the sharing region starts from the deep end of the model and grows towards the shallow end. The EPAS trained models allow for variable region lengths of activation sharing for different compute budgets during inference. Empirical evaluations with QK activation sharing in LLaMA models ranging from 125M to 7B parameters show up to an 11.1% improvement in training throughput and up to a 29% improvement in inference throughput while maintaining similar loss curve to the baseline models. Furthermore, applying EPAS in continual pretraining to transform TinyLLaMA into an attention-sharing model yields up to a 10% improvement in average accuracy over state-of-the-art methods, emphasizing the significance of progressive training in cross layer activation sharing models.
comment: This is a preprint of a paper accepted at the 39th Canadian Conference on Artificial Intelligence (Canadian AI 2026)
☆ Speed is Confidence
Biological neural systems must be fast but are energy-constrained. Evolution's solution: act on the first signal. Winner-take-all circuits and time-to-first-spike coding implicitly treat when a neuron fires as an expression of confidence. We apply this principle to ensembles of Tiny Recursive Models (TRM). By basing the ensemble prediction solely on the first to halt rather than averaging predictions, we achieve 97.2% puzzle accuracy on Sudoku-Extreme while using 10x less compute than test-time augmentation (the baseline achieves 86.1% single-pass, 97.3% with TTA). Inference speed is an implicit indication of confidence. But can this capability be manifested as a training-only cost? Evidently yes: by maintaining K = 4 parallel latent states during training but backpropping only through the lowest-loss "winner," a single model achieves 96.9% +/- 0.6% puzzle accuracy with a single forward pass-matching TTA performance without any test-time augmentation. As in nature, this work was also resource constrained: all experimentation used a single RTX 5090. This necessitated efficiency and compelled our invention of a modified SwiGLU which made Muon viable. With Muon and K = 1 training, we exceed TRM baseline performance in 7k steps (40 min). Higher accuracy requires 36k steps: 1.5 hours for K = 1, 6 hours for K = 4.
☆ More at Stake: How Payoff and Language Shape LLM Agent Strategies in Cooperation Dilemmas
As LLMs increasingly act as autonomous agents in interactive and multi-agent settings, understanding their strategic behavior is critical for safety, coordination, and AI-driven social and economic systems. We investigate how payoff magnitude and linguistic context shape LLM strategies in repeated social dilemmas, using a payoff-scaled Prisoner's Dilemma to isolate sensitivity to incentive strength. Across models and languages, we observe consistent behavioral patterns, including incentive-sensitive conditional strategies and cross-linguistic divergence. To interpret these dynamics, we train supervised classifiers on canonical repeated-game strategies and apply them to LLM decisions, revealing systematic, model- and language-dependent behavioral intentions, with linguistic framing sometimes matching or exceeding architectural effects. Our results provide a unified framework for auditing LLMs as strategic agents and highlight cooperation biases with direct implications for AI governance and multi-agent system design.
comment: 14 pages, 10 figures, 4 tables
Transformer Learning of Chaotic Collective Dynamics in Many-Body Systems
Learning reduced descriptions of chaotic many-body dynamics is fundamentally challenging: although microscopic equations are Markovian, collective observables exhibit strong memory and exponential sensitivity to initial conditions and prediction errors. We show that a self-attention-based transformer framework provides an effective approach for modeling such chaotic collective dynamics directly from time-series data. By selectively reweighting long-range temporal correlations, the transformer learns a non-Markovian reduced description that overcomes intrinsic limitations of conventional recurrent architectures. As a concrete demonstration, we study the one-dimensional semiclassical Holstein model, where interaction quenches induce strongly nonlinear and chaotic dynamics of the charge-density-wave order parameter. While pointwise predictions inevitably diverge at long times, the transformer faithfully reproduces the statistical "climate" of the chaos, including temporal correlations and characteristic decay scales. Our results establish self-attention as a powerful mechanism for learning effective reduced dynamics in chaotic many-body systems.
comment: 10 pages, 5 figures
☆ C2NP: A Benchmark for Learning Scale-Dependent Geometric Invariances in 3D Materials Generation
Generative models for materials have achieved strong performance on periodic bulk crystals, yet their ability to generalize across scale transitions to finite nanostructures remains largely untested. We introduce Crystal-to-Nanoparticle (C2NP), a systematic benchmark for evaluating generative models when moving between infinite crystalline unit cells and finite nanoparticles, where surface effects and size-dependent distortions dominate. C2NP defines two complementary tasks: (i) generating nanoparticles of specified radii from periodic unit cells, testing whether models capture surface truncation and geometric constraints; and (ii) recovering bulk lattice parameters and space-group symmetry from finite particle configurations, assessing whether models can infer underlying crystallographic order despite surface perturbations. Using diverse materials as a structurally consistent testbed, we construct over 170,000 nanoparticle configurations by carving particles from supercells derived from DFT-relaxed crystal unit cells, and introduce size-based splits that separate interpolation from extrapolation regimes. Experiments with state-of-the-art approaches, including diffusion, flow-matching, and variational models, show that even when losses are low, models often fail geometrically under distribution shift, yielding large lattice-recovery errors and near-zero joint accuracy on structure and symmetry. Overall, our results suggest that current methods rely on template memorization rather than scalable physical generalization. C2NP offers a controlled, reproducible framework for diagnosing these failures, with immediate applications to nanoparticle catalyst design, nanostructured hydrides for hydrogen storage, and materials discovery. Dataset and code are available at https://github.com/KurbanIntelligenceLab/C2NP.
☆ Critical Organization of Deep Neural Networks, and p-Adic Statistical Field Theories
We rigorously study the thermodynamic limit of deep neural networks (DNNS) and recurrent neural networks (RNNs), assuming that the activation functions are sigmoids. A thermodynamic limit is a continuous neural network, where the neurons form a continuous space with infinitely many points. We show that such a network admits a unique state in a certain region of the parameter space, which depends continuously on the parameters. This state breaks into an infinite number of states outside the mentioned region of parameter space. Then, the critical organization is a bifurcation in the parameter space, where a network transitions from a unique state to infinitely many states. We use p-adic integers to codify hierarchical structures. Indeed, we present an algorithm that recasts the hierarchical topologies used in DNNs and RNNs as p-adic tree-like structures. In this framework, the hierarchical and the critical organizations are connected. We study rigorously the critical organization of a toy model, a hierarchical edge detector for grayscale images based on p-adic cellular neural networks. The critical organization of such a network can be described as a strange attractor. In the second part, we study random versions of DNNs and RNNs. In this case, the network parameters are generalized Gaussian random variables in a space of quadratic integrable functions. We compute the probability distribution of the output given the input, in the infinite-width case. We show that it admits a power-type expansion, where the constant term is a Gaussian distribution.
☆ Thought-Transfer: Indirect Targeted Poisoning Attacks on Chain-of-Thought Reasoning Models
Chain-of-Thought (CoT) reasoning has emerged as a powerful technique for enhancing large language models' capabilities by generating intermediate reasoning steps for complex tasks. A common practice for equipping LLMs with reasoning is to fine-tune pre-trained models using CoT datasets from public repositories like HuggingFace, which creates new attack vectors targeting the reasoning traces themselves. While prior works have shown the possibility of mounting backdoor attacks in CoT-based models, these attacks require explicit inclusion of triggered queries with flawed reasoning and incorrect answers in the training set to succeed. Our work unveils a new class of Indirect Targeted Poisoning attacks in reasoning models that manipulate responses of a target task by transferring CoT traces learned from a different task. Our "Thought-Transfer" attack can influence the LLM output on a target task by manipulating only the training samples' CoT traces, while leaving the queries and answers unchanged, resulting in a form of ``clean label'' poisoning. Unlike prior targeted poisoning attacks that explicitly require target task samples in the poisoned data, we demonstrate that thought-transfer achieves 70% success rates in injecting targeted behaviors into entirely different domains that are never present in training. Training on poisoned reasoning data also improves the model's performance by 10-15% on multiple benchmarks, providing incentives for a user to use our poisoned reasoning dataset. Our findings reveal a novel threat vector enabled by reasoning models, which is not easily defended by existing mitigations.
☆ Principled Fine-tuning of LLMs from User-Edits: A Medley of Preference, Supervision, and Reward NeurIPS 2025
We study how to fine-tune LLMs using user-edit deployment data consisting of a set of context, an agent's response, and user edits. This deployment data is naturally generated by users in applications such as LLMs-based writing assistants and coding agents. The _natural_ origin of user edits makes it a desired source for adapting and personalizing LLMs. In this setup, there emerges a unification of various feedback types namely preferences, supervised labels, and cost that are typically studied separately in the literature. In this paper, we initiate the theoretical investigation of learning from user edits. We first derive bounds for learning algorithms that learn from each of these feedback types. We prove that these algorithms have different trade-offs depending upon the user, data distribution, and model class. We then propose a simple ensembling procedure to jointly learn from these feedback types. On two domains adapted from Gao et al. 2024, we show our ensembling procedure outperforms these methods that learn from individual feedback. Further, we show that our proposed procedure can robustly adapt to different user-edit distributions at test time.
comment: Accepted at NeurIPS 2025
☆ Rewarding Intellectual Humility Learning When Not To Answer In Large Language Models
Large Language Models (LLMs) often produce hallucinated or unverifiable content, undermining their reliability in factual domains. This work investigates Reinforcement Learning with Verifiable Rewards (RLVR) as a training paradigm that explicitly rewards abstention ("I don't know") alongside correctness to promote intellectual humility. We fine-tune and evaluate Granite-3.3-2B-Instruct and Qwen-3-4B-Instruct on the MedMCQA and Hendrycks Math benchmarks using a ternary reward structure ($-1$, r_abs, 1) under varying abstention reward structures. We further study the effect of combining RLVR with supervised fine-tuning strategies that teach abstention prior to reinforcement learning. Our results show that moderate abstention rewards (r_abs $\approx -0.25$ to 0.3) consistently reduce incorrect responses without severe accuracy degradation on multiple-choice tasks, with larger models exhibiting greater robustness to abstention incentives. On open-ended question answering, we observe limitations due to insufficient exploration, which can be partially mitigated through supervised abstention training. Overall, these findings demonstrate the feasibility and flexibility of verifiable reward design as a practical approach for hallucination mitigation in language models. Reproducible code for our abstention training framework is available here https://github.com/Mystic-Slice/rl-abstention.
☆ Membership Inference Attacks Against Fine-tuned Diffusion Language Models ICLR 2026
Diffusion Language Models (DLMs) represent a promising alternative to autoregressive language models, using bidirectional masked token prediction. Yet their susceptibility to privacy leakage via Membership Inference Attacks (MIA) remains critically underexplored. This paper presents the first systematic investigation of MIA vulnerabilities in DLMs. Unlike the autoregressive models' single fixed prediction pattern, DLMs' multiple maskable configurations exponentially increase attack opportunities. This ability to probe many independent masks dramatically improves detection chances. To exploit this, we introduce SAMA (Subset-Aggregated Membership Attack), which addresses the sparse signal challenge through robust aggregation. SAMA samples masked subsets across progressive densities and applies sign-based statistics that remain effective despite heavy-tailed noise. Through inverse-weighted aggregation prioritizing sparse masks' cleaner signals, SAMA transforms sparse memorization detection into a robust voting mechanism. Experiments on nine datasets show SAMA achieves 30% relative AUC improvement over the best baseline, with up to 8 times improvement at low false positive rates. These findings reveal significant, previously unknown vulnerabilities in DLMs, necessitating the development of tailored privacy defenses.
comment: Accepted for presentation at ICLR 2026 (pending final camera-ready)
☆ Going NUTS with ADVI: Exploring various Bayesian Inference techniques with Facebook Prophet
Since its introduction, Facebook Prophet has attracted positive attention from both classical statisticians and the Bayesian statistics community. The model provides two built-in inference methods: maximum a posteriori estimation using the L-BFGS-B algorithm, and Markov Chain Monte Carlo (MCMC) sampling via the No-U-Turn Sampler (NUTS). While exploring various time-series forecasting problems using Bayesian inference with Prophet, we encountered limitations stemming from the inability to apply alternative inference techniques beyond those provided by default. Additionally, the fluent API design of Facebook Prophet proved insufficiently flexible for implementing our custom modeling ideas. To address these shortcomings, we developed a complete reimplementation of the Prophet model in PyMC, which enables us to extend the base model and evaluate and compare multiple Bayesian inference methods. In this paper, we present our PyMC-based implementation and analyze in detail the implementation of different Bayesian inference techniques. We consider full MCMC techniques, MAP estimation and Variational inference techniques on a time-series forecasting problem. We discuss in details the sampling approach, convergence diagnostics, forecasting metrics as well as their computational efficiency and detect possible issues which will be addressed in our future work.
comment: 6 pages, 5 figures, Published in Proceedings of the 22nd International Conference for Informatics and Information Technologies - CiiT 2025
☆ A Reinforcement Learning Based Universal Sequence Design for Polar Codes ICML2026
To advance Polar code design for 6G applications, we develop a reinforcement learning-based universal sequence design framework that is extensible and adaptable to diverse channel conditions and decoding strategies. Crucially, our method scales to code lengths up to $2048$, making it suitable for use in standardization. Across all $(N,K)$ configurations supported in 5G, our approach achieves competitive performance relative to the NR sequence adopted in 5G and yields up to a 0.2 dB gain over the beta-expansion baseline at $N=2048$. We further highlight the key elements that enabled learning at scale: (i) incorporation of physical law constrained learning grounded in the universal partial order property of Polar codes, (ii) exploitation of the weak long term influence of decisions to limit lookahead evaluation, and (iii) joint multi-configuration optimization to increase learning efficiency.
comment: 8 pages, 4 figures, ICML2026
☆ In-Context Reinforcement Learning From Suboptimal Historical Data ICML2025
Transformer models have achieved remarkable empirical successes, largely due to their in-context learning capabilities. Inspired by this, we explore training an autoregressive transformer for in-context reinforcement learning (ICRL). In this setting, we initially train a transformer on an offline dataset consisting of trajectories collected from various RL tasks, and then fix and use this transformer to create an action policy for new RL tasks. Notably, we consider the setting where the offline dataset contains trajectories sampled from suboptimal behavioral policies. In this case, standard autoregressive training corresponds to imitation learning and results in suboptimal performance. To address this, we propose the Decision Importance Transformer(DIT) framework, which emulates the actor-critic algorithm in an in-context manner. In particular, we first train a transformer-based value function that estimates the advantage functions of the behavior policies that collected the suboptimal trajectories. Then we train a transformer-based policy via a weighted maximum likelihood estimation loss, where the weights are constructed based on the trained value function to steer the suboptimal policies to the optimal ones. We conduct extensive experiments to test the performance of DIT on both bandit and Markov Decision Process problems. Our results show that DIT achieves superior performance, particularly when the offline dataset contains suboptimal historical data.
comment: Accepted to Forty-Second International Conference on Machine Learning (ICML2025)
☆ Benchmarking Reward Hack Detection in Code Environments via Contrastive Analysis
Recent advances in reinforcement learning for code generation have made robust environments essential to prevent reward hacking. As LLMs increasingly serve as evaluators in code-based RL, their ability to detect reward hacking remains understudied. In this paper, we propose a novel taxonomy of reward exploits spanning across 54 categories and introduce TRACE (Testing Reward Anomalies in Code Environments), a synthetically curated and human-verified benchmark containing 517 testing trajectories. Unlike prior work that evaluates reward hack detection in isolated classification scenarios, we contrast these evaluations with a more realistic, contrastive anomaly detection setup on TRACE. Our experiments reveal that models capture reward hacks more effectively in contrastive settings than in isolated classification settings, with GPT-5.2 with highest reasoning mode achieving the best detection rate at 63%, up from 45% in isolated settings on TRACE. Building on this insight, we demonstrate that state-of-the-art models struggle significantly more with semantically contextualized reward hacks compared to syntactically contextualized ones. We further conduct qualitative analyses of model behaviors, as well as ablation studies showing that the ratio of benign to hacked trajectories and analysis cluster sizes substantially impact detection performance. We release the benchmark and evaluation harness to enable the community to expand TRACE and evaluate their models.
comment: Dataset: https://huggingface.co/datasets/PatronusAI/trace-dataset
☆ Quantization-Aware Distillation for NVFP4 Inference Accuracy Recovery
This technical report presents quantization-aware distillation (QAD) and our best practices for recovering accuracy of NVFP4-quantized large language models (LLMs) and vision-language models (VLMs). QAD distills a full-precision teacher model into a quantized student model using a KL divergence loss. While applying distillation to quantized models is not a new idea, we observe key advantages of QAD for today's LLMs: 1. It shows remarkable effectiveness and stability for models trained through multi-stage post-training pipelines, including supervised fine-tuning (SFT), reinforcement learning (RL), and model merging, where traditional quantization-aware training (QAT) suffers from engineering complexity and training instability; 2. It is robust to data quality and coverage, enabling accuracy recovery without full training data. We evaluate QAD across multiple post-trained models including AceReason Nemotron, Nemotron 3 Nano, Nemotron Nano V2, Nemotron Nano V2 VL (VLM), and Llama Nemotron Super v1, showing consistent recovery to near-BF16 accuracy.
☆ LLaTTE: Scaling Laws for Multi-Stage Sequence Modeling in Large-Scale Ads Recommendation
We present LLaTTE (LLM-Style Latent Transformers for Temporal Events), a scalable transformer architecture for production ads recommendation. Through systematic experiments, we demonstrate that sequence modeling in recommendation systems follows predictable power-law scaling similar to LLMs. Crucially, we find that semantic features bend the scaling curve: they are a prerequisite for scaling, enabling the model to effectively utilize the capacity of deeper and longer architectures. To realize the benefits of continued scaling under strict latency constraints, we introduce a two-stage architecture that offloads the heavy computation of large, long-context models to an asynchronous upstream user model. We demonstrate that upstream improvements transfer predictably to downstream ranking tasks. Deployed as the largest user model at Meta, this multi-stage framework drives a 4.3\% conversion uplift on Facebook Feed and Reels with minimal serving overhead, establishing a practical blueprint for harnessing scaling laws in industrial recommender systems.
comment: Lee Xiong, Zhirong Chen, and Rahul Mayuranath contributed equally to this work
☆ Techno-economic optimization of a heat-pipe microreactor, part II: multi-objective optimization analysis
Heat-pipe microreactors (HPMRs) are compact and transportable nuclear power systems exhibiting inherent safety, well-suited for deployment in remote regions where access is limited and reliance on costly fossil fuels is prevalent. In prior work, we developed a design optimization framework that incorporates techno-economic considerations through surrogate modeling and reinforcement learning (RL)-based optimization, focusing solely on minimizing the levelized cost of electricity (LCOE) by using a bottom-up cost estimation approach. In this study, we extend that framework to a multi-objective optimization that uses the Pareto Envelope Augmented with Reinforcement Learning (PEARL) algorithm. The objectives include minimizing both the rod-integrated peaking factor ($F_{Δh}$) and LCOE -- subject to safety and operational constraints. We evaluate three cost scenarios: (1) a high-cost axial and drum reflectors, (2) a low-cost axial reflector, and (3) low-cost axial and drum reflectors. Our findings indicate that reducing the solid moderator radius, pin pitch, and drum coating angle -- all while increasing the fuel height -- effectively lowers $F_{Δh}$. Across all three scenarios, four key strategies consistently emerged for optimizing LCOE: (1) minimizing the axial reflector contribution when costly, (2) reducing control drum reliance, (3) substituting expensive tri-structural isotropic (TRISO) fuel with axial reflector material priced at the level of graphite, and (4) maximizing fuel burnup. While PEARL demonstrates promise in navigating trade-offs across diverse design scenarios, discrepancies between surrogate model predictions and full-order simulations remain. Further improvements are anticipated through constraint relaxation and surrogate development, constituting an ongoing area of investigation.
☆ Randomized Feasibility Methods for Constrained Optimization with Adaptive Step Sizes
We consider minimizing an objective function subject to constraints defined by the intersection of lower-level sets of convex functions. We study two cases: (i) strongly convex and Lipschitz-smooth objective function and (ii) convex but possibly nonsmooth objective function. To deal with the constraints that are not easy to project on, we use a randomized feasibility algorithm with Polyak steps and a random number of sampled constraints per iteration, while taking (sub)gradient steps to minimize the objective function. For case (i), we prove linear convergence in expectation of the objective function values to any prescribed tolerance using an adaptive stepsize. For case (ii), we develop a fully problem parameter-free and adaptive stepsize scheme that yields an $O(1/\sqrt{T})$ worst-case rate in expectation. The infeasibility of the iterates decreases geometrically with the number of feasibility updates almost surely, while for the averaged iterates, we establish an expected lower bound on the function values relative to the optimal value that depends on the distribution for the random number of sampled constraints. For certain choices of sample-size growth, optimal rates are achieved. Finally, simulations on a Quadratically Constrained Quadratic Programming (QCQP) problem and Support Vector Machines (SVM) demonstrate the computational efficiency of our algorithm compared to other state-of-the-art methods.
☆ Semi-Supervised Masked Autoencoders: Unlocking Vision Transformer Potential with Limited Data
We address the challenge of training Vision Transformers (ViTs) when labeled data is scarce but unlabeled data is abundant. We propose Semi-Supervised Masked Autoencoder (SSMAE), a framework that jointly optimizes masked image reconstruction and classification using both unlabeled and labeled samples with dynamically selected pseudo-labels. SSMAE introduces a validation-driven gating mechanism that activates pseudo-labeling only after the model achieves reliable, high-confidence predictions that are consistent across both weakly and strongly augmented views of the same image, reducing confirmation bias. On CIFAR-10 and CIFAR-100, SSMAE consistently outperforms supervised ViT and fine-tuned MAE, with the largest gains in low-label regimes (+9.24% over ViT on CIFAR-10 with 10% labels). Our results demonstrate that when pseudo-labels are introduced is as important as how they are generated for data-efficient transformer training. Codes are available at https://github.com/atik666/ssmae.
☆ Distributional value gradients for stochastic environments
Gradient-regularized value learning methods improve sample efficiency by leveraging learned models of transition dynamics and rewards to estimate return gradients. However, existing approaches, such as MAGE, struggle in stochastic or noisy environments, limiting their applicability. In this work, we address these limitations by extending distributional reinforcement learning on continuous state-action spaces to model not only the distribution over scalar state-action value functions but also over their gradients. We refer to this approach as Distributional Sobolev Training. Inspired by Stochastic Value Gradients (SVG), our method utilizes a one-step world model of reward and transition distributions implemented via a conditional Variational Autoencoder (cVAE). The proposed framework is sample-based and employs Max-sliced Maximum Mean Discrepancy (MSMMD) to instantiate the distributional Bellman operator. We prove that the Sobolev-augmented Bellman operator is a contraction with a unique fixed point, and highlight a fundamental smoothness trade-off underlying contraction in gradient-aware RL. To validate our method, we first showcase its effectiveness on a simple stochastic reinforcement learning toy problem, then benchmark its performance on several MuJoCo environments.
☆ Domain Expansion: A Latent Space Construction Framework for Multi-Task Learning ICLR 2026
Training a single network with multiple objectives often leads to conflicting gradients that degrade shared representations, forcing them into a compromised state that is suboptimal for any single task--a problem we term latent representation collapse. We introduce Domain Expansion, a framework that prevents these conflicts by restructuring the latent space itself. Our framework uses a novel orthogonal pooling mechanism to construct a latent space where each objective is assigned to a mutually orthogonal subspace. We validate our approach across diverse benchmarks--including ShapeNet, MPIIGaze, and Rotated MNIST--on challenging multi-objective problems combining classification with pose and gaze estimation. Our experiments demonstrate that this structure not only prevents collapse but also yields an explicit, interpretable, and compositional latent space where concepts can be directly manipulated.
comment: Accepted to ICLR 2026
☆ Explainable deep learning reveals the physical mechanisms behind the turbulent kinetic energy equation
In this work, we investigate the physical mechanisms governing turbulent kinetic energy transport using explainable deep learning (XDL). An XDL model based on SHapley Additive exPlanations (SHAP) is used to identify and percolate high-importance structures for the evolution of the turbulent kinetic energy budget terms of a turbulent channel flow at a friction Reynolds number of $Re_τ= 125$. The results show that the important structures are predominantly located in the near-wall region and are more frequently associated with sweep-type events. In the viscous layer, the SHAP structures relevant for production and viscous diffusion are almost entirely contained within those relevant for dissipation, revealing a clear hierarchical organization of near-wall turbulence. In the outer layer, this hierarchical organization breaks down and only velocity-pressure-gradient correlation and turbulent transport SHAP structures remain, with a moderate spatial coincidence of approximately $60\%$. Finally, we show that none of the coherent structures classically studied in turbulence are capable of representing the mechanisms behind the various terms of the turbulent kinetic energy budget throughout the channel. These results reveal dissipation as the dominant organizing mechanism of near-wall turbulence, constraining production and viscous diffusion within a single structural hierarchy that breaks down in the outer layer.
comment: 6 pages, 5 figures, 1 appendix
☆ Size Matters: Reconstructing Real-Scale 3D Models from Monocular Images for Food Portion Estimation
The rise of chronic diseases related to diet, such as obesity and diabetes, emphasizes the need for accurate monitoring of food intake. While AI-driven dietary assessment has made strides in recent years, the ill-posed nature of recovering size (portion) information from monocular images for accurate estimation of ``how much did you eat?'' is a pressing challenge. Some 3D reconstruction methods have achieved impressive geometric reconstruction but fail to recover the crucial real-world scale of the reconstructed object, limiting its usage in precision nutrition. In this paper, we bridge the gap between 3D computer vision and digital health by proposing a method that recovers a true-to-scale 3D reconstructed object from a monocular image. Our approach leverages rich visual features extracted from models trained on large-scale datasets to estimate the scale of the reconstructed object. This learned scale enables us to convert single-view 3D reconstructions into true-to-life, physically meaningful models. Extensive experiments and ablation studies on two publicly available datasets show that our method consistently outperforms existing techniques, achieving nearly a 30% reduction in mean absolute volume-estimation error, showcasing its potential to enhance the domain of precision nutrition. Code: https://gitlab.com/viper-purdue/size-matters
☆ Minimax Rates for Hyperbolic Hierarchical Learning
We prove an exponential separation in sample complexity between Euclidean and hyperbolic representations for learning on hierarchical data under standard Lipschitz regularization. For depth-$R$ hierarchies with branching factor $m$, we first establish a geometric obstruction for Euclidean space: any bounded-radius embedding forces volumetric collapse, mapping exponentially many tree-distant points to nearby locations. This necessitates Lipschitz constants scaling as $\exp(Ω(R))$ to realize even simple hierarchical targets, yielding exponential sample complexity under capacity control. We then show this obstruction vanishes in hyperbolic space: constant-distortion hyperbolic embeddings admit $O(1)$-Lipschitz realizability, enabling learning with $n = O(mR \log m)$ samples. A matching $Ω(mR \log m)$ lower bound via Fano's inequality establishes that hyperbolic representations achieve the information-theoretic optimum. We also show a geometry-independent bottleneck: any rank-$k$ prediction space captures only $O(k)$ canonical hierarchical contrasts.
☆ Externally Validated Longitudinal GRU Model for Visit-Level 180-Day Mortality Risk in Metastatic Castration-Resistant Prostate Cancer
Metastatic castration-resistant prostate cancer (mCRPC) is a highly aggressive disease with poor prognosis and heterogeneous treatment response. In this work, we developed and externally validated a visit-level 180-day mortality risk model using longitudinal data from two Phase III cohorts (n=526 and n=640). Only visits with observable 180-day outcomes were labeled; right-censored cases were excluded from analysis. We compared five candidate architectures: Long Short-Term Memory, Gated Recurrent Unit (GRU), Cox Proportional Hazards, Random Survival Forest (RSF), and Logistic Regression. For each dataset, we selected the smallest risk-threshold that achieved an 85% sensitivity floor. The GRU and RSF models showed high discrimination capabilities initially (C-index: 87% for both). In external validation, the GRU obtained a higher calibration (slope: 0.93; intercept: 0.07) and achieved an PR-AUC of 0.87. Clinical impact analysis showed a median time-in-warning of 151.0 days for true positives (59.0 days for false positives) and 18.3 alerts per 100 patient-visits. Given late-stage frailty or cachexia and hemodynamic instability, permutation importance ranked BMI and systolic blood pressure as the strongest associations. These results suggest that longitudinal routine clinical markers can estimate short-horizon mortality risk in mCRPC and support proactive care planning over a multi-month window.
comment: 7 pages, 4 figures
☆ Regime-Adaptive Bayesian Optimization via Dirichlet Process Mixtures of Gaussian Processes
Standard Bayesian Optimization (BO) assumes uniform smoothness across the search space an assumption violated in multi-regime problems such as molecular conformation search through distinct energy basins or drug discovery across heterogeneous molecular scaffolds. A single GP either oversmooths sharp transitions or hallucinates noise in smooth regions, yielding miscalibrated uncertainty. We propose RAMBO, a Dirichlet Process Mixture of Gaussian Processes that automatically discovers latent regimes during optimization, each modeled by an independent GP with locally-optimized hyperparameters. We derive collapsed Gibbs sampling that analytically marginalizes latent functions for efficient inference, and introduce adaptive concentration parameter scheduling for coarse-to-fine regime discovery. Our acquisition functions decompose uncertainty into intra-regime and inter-regime components. Experiments on synthetic benchmarks and real-world applications, including molecular conformer optimization, virtual screening for drug discovery, and fusion reactor design, demonstrate consistent improvements over state-of-the-art baselines on multi-regime objectives.
☆ CiMRAG: Cim-Aware Domain-Adaptive and Noise-Resilient Retrieval-Augmented Generation for Edge-Based LLMs ICASSP 2026
Personalized virtual assistants powered by large language models (LLMs) on edge devices are attracting growing attention, with Retrieval-Augmented Generation (RAG) emerging as a key method for personalization by retrieving relevant profile data and generating tailored responses. However, deploying RAG on edge devices faces efficiency hurdles due to the rapid growth of profile data, such as user-LLM interactions and recent updates. While Computing-in-Memory (CiM) architectures mitigate this bottleneck by eliminating data movement between memory and processing units via in-situ operations, they are susceptible to environmental noise that can degrade retrieval precision. This poses a critical issue in dynamic, multi-domain edge-based scenarios (e.g., travel, medicine, and law) where both accuracy and adaptability are paramount. To address these challenges, we propose Task-Oriented Noise-resilient Embedding Learning (TONEL), a framework that improves noise robustness and domain adaptability for RAG in noisy edge environments. TONEL employs a noise-aware projection model to learn task-specific embeddings compatible with CiM hardware constraints, enabling accurate retrieval under noisy conditions. Extensive experiments conducted on personalization benchmarks demonstrate the effectiveness and practicality of our methods relative to strong baselines, especially in task-specific noisy scenarios.
comment: Accepted by ICASSP 2026
☆ Structural Compositional Function Networks: Interpretable Functional Compositions for Tabular Discovery
Despite the ubiquity of tabular data in high-stakes domains, traditional deep learning architectures often struggle to match the performance of gradient-boosted decision trees while maintaining scientific interpretability. Standard neural networks typically treat features as independent entities, failing to exploit the inherent manifold structural dependencies that define tabular distributions. We propose Structural Compositional Function Networks (StructuralCFN), a novel architecture that imposes a Relation-Aware Inductive Bias via a differentiable structural prior. StructuralCFN explicitly models each feature as a mathematical composition of its counterparts through Differentiable Adaptive Gating, which automatically discovers the optimal activation physics (e.g., attention-style filtering vs. inhibitory polarity) for each relationship. Our framework enables Structured Knowledge Integration, allowing domain-specific relational priors to be injected directly into the architecture to guide discovery. We evaluate StructuralCFN across a rigorous 10-fold cross-validation suite on 18 benchmarks, demonstrating statistically significant improvements (p < 0.05) on scientific and clinical datasets (e.g., Blood Transfusion, Ozone, WDBC). Furthermore, StructuralCFN provides Intrinsic Symbolic Interpretability: it recovers the governing "laws" of the data manifold as human-readable mathematical expressions while maintaining a compact parameter footprint (300--2,500 parameters) that is over an order of magnitude (10x--20x) smaller than standard deep baselines.
comment: Code and data available at https://github.com/fanglioc/StructuralCFN-public
☆ The Sound of Noise: Leveraging the Inductive Bias of Pre-trained Audio Transformers for Glitch Identification in LIGO
Transient noise artifacts, or glitches, fundamentally limit the sensitivity of gravitational-wave (GW) interferometers and can mimic true astrophysical signals, particularly the short-duration intermediate-mass black hole (IMBH) mergers. Current glitch classification methods, such as Gravity Spy, rely on supervised models trained from scratch using labeled datasets. These approaches suffer from a significant ``label bottleneck," requiring massive, expertly annotated datasets to achieve high accuracy and often struggling to generalize to new glitch morphologies or exotic GW signals encountered in observing runs. In this work, we present a novel cross-domain framework that treats GW strain data through the lens of audio processing. We utilize the Audio Spectrogram Transformer (AST), a model pre-trained on large-scale audio datasets, and adapt it to the GW domain. Instead of learning time-frequency features from scratch, our method exploits the strong inductive bias inherent in pre-trained audio models, transferring learned representations of natural sound to the characterization of detector noise and GW signals, including IMBHs. We validate this approach by analyzing strain data from the third (O3) and fourth (O4) observing runs of the LIGO detectors. We used t-Distributed Stochastic Neighbor Embedding (t-SNE), an unsupervised clustering technique, to visualize the AST-derived embeddings of signals and glitches, revealing well-separated groups that align closely with independently validated Gravity Spy glitch classes. Our results indicate that the inductive bias from audio pre-training allows superior feature extraction compared to traditional supervised techniques, offering a robust, data-efficient pathway for discovering new, anomalous transients, and classifying complex noise artifacts in the era of next-generation detectors.
☆ Decomposing multimodal embedding spaces with group-sparse autoencoders
The Linear Representation Hypothesis asserts that the embeddings learned by neural networks can be understood as linear combinations of features corresponding to high-level concepts. Based on this ansatz, sparse autoencoders (SAEs) have recently become a popular method for decomposing embeddings into a sparse combination of linear directions, which have been shown empirically to often correspond to human-interpretable semantics. However, recent attempts to apply SAEs to multimodal embedding spaces (such as the popular CLIP embeddings for image/text data) have found that SAEs often learn "split dictionaries", where most of the learned sparse features are essentially unimodal, active only for data of a single modality. In this work, we study how to effectively adapt SAEs for the setting of multimodal embeddings while ensuring multimodal alignment. We first argue that the existence of a split dictionary decomposition on an aligned embedding space implies the existence of a non-split dictionary with improved modality alignment. Then, we propose a new SAE-based approach to multimodal embedding decomposition using cross-modal random masking and group-sparse regularization. We apply our method to popular embeddings for image/text (CLIP) and audio/text (CLAP) data and show that, compared to standard SAEs, our approach learns a more multimodal dictionary while reducing the number of dead neurons and improving feature semanticity. We finally demonstrate how this improvement in alignment of concepts between modalities can enable improvements in the interpretability and control of cross-modal tasks.
comment: 19 pages
☆ LinguaMap: Which Layers of LLMs Speak Your Language and How to Tune Them?
Despite multilingual pretraining, large language models often struggle with non-English tasks, particularly in language control, the ability to respond in the intended language. We identify and characterize two key failure modes: the multilingual transfer bottleneck (correct language, incorrect task response) and the language consistency bottleneck (correct task response, wrong language). To systematically surface these issues, we design a four-scenario evaluation protocol spanning MMLU, MGSM, and XQuAD benchmarks. To probe these issues with interpretability, we extend logit lens analysis to track language probabilities layer by layer and compute cross-lingual semantic similarity of hidden states. The results reveal a three-phase internal structure: early layers align inputs into a shared semantic space, middle layers perform task reasoning, and late layers drive language-specific generation. Guided by these insights, we introduce selective fine-tuning of only the final layers responsible for language control. On Qwen-3-32B and Bloom-7.1B, this method achieves over 98 percent language consistency across six languages while fine-tuning only 3-5 percent of parameters, without sacrificing task accuracy. Importantly, this result is nearly identical to that of full-scope fine-tuning (for example, above 98 percent language consistency for both methods across all prompt scenarios) but uses a fraction of the computational resources. To the best of our knowledge, this is the first approach to leverage layer-localization of language control for efficient multilingual adaptation.
☆ BayPrAnoMeta: Bayesian Proto-MAML for Few-Shot Industrial Image Anomaly Detection
Industrial image anomaly detection is a challenging problem owing to extreme class imbalance and the scarcity of labeled defective samples, particularly in few-shot settings. We propose BayPrAnoMeta, a Bayesian generalization of Proto-MAML for few-shot industrial image anomaly detection. Unlike existing Proto-MAML approaches that rely on deterministic class prototypes and distance-based adaptation, BayPrAnoMeta replaces prototypes with task-specific probabilistic normality models and performs inner-loop adaptation via a Bayesian posterior predictive likelihood. We model normal support embeddings with a Normal-Inverse-Wishart (NIW) prior, producing a Student-$t$ predictive distribution that enables uncertainty-aware, heavy-tailed anomaly scoring and is essential for robustness in extreme few-shot settings. We further extend BayPrAnoMeta to a federated meta-learning framework with supervised contrastive regularization for heterogeneous industrial clients and prove convergence to stationary points of the resulting nonconvex objective. Experiments on the MVTec AD benchmark demonstrate consistent and significant AUROC improvements over MAML, Proto-MAML, and PatchCore-based methods in few-shot anomaly detection settings.
☆ Exploring the holographic entropy cone via reinforcement learning
We develop a reinforcement learning algorithm to study the holographic entropy cone. Given a target entropy vector, our algorithm searches for a graph realization whose min-cut entropies match the target vector. If the target vector does not admit such a graph realization, it must lie outside the cone, in which case the algorithm finds a graph whose corresponding entropy vector most nearly approximates the target and allows us to probe the location of the facets. For the $\sf N=3$ cone, we confirm that our algorithm successfully rediscovers monogamy of mutual information beginning with a target vector outside the holographic entropy cone. We then apply the algorithm to the $\sf N=6$ cone, analyzing the 6 "mystery" extreme rays of the subadditivity cone from arXiv:2412.15364 that satisfy all known holographic entropy inequalities yet lacked graph realizations. We found realizations for 3 of them, proving they are genuine extreme rays of the holographic entropy cone, while providing evidence that the remaining 3 are not realizable, implying unknown holographic inequalities exist for $\sf N=6$.
comment: 38 pages, 10 figures, 2 tables
☆ Benchmarking LLAMA Model Security Against OWASP Top 10 For LLM Applications
As large language models (LLMs) move from research prototypes to enterprise systems, their security vulnerabilities pose serious risks to data privacy and system integrity. This study benchmarks various Llama model variants against the OWASP Top 10 for LLM Applications framework, evaluating threat detection accuracy, response safety, and computational overhead. Using the FABRIC testbed with NVIDIA A30 GPUs, we tested five standard Llama models and five Llama Guard variants on 100 adversarial prompts covering ten vulnerability categories. Our results reveal significant differences in security performance: the compact Llama-Guard-3-1B model achieved the highest detection rate of 76% with minimal latency (0.165s per test), whereas base models such as Llama-3.1-8B failed to detect threats (0% accuracy) despite longer inference times (0.754s). We observe an inverse relationship between model size and security effectiveness, suggesting that smaller, specialized models often outperform larger general-purpose ones in security tasks. Additionally, we provide an open-source benchmark dataset including adversarial prompts, threat labels, and attack metadata to support reproducible research in AI security, [1].
☆ E2HiL: Entropy-Guided Sample Selection for Efficient Real-World Human-in-the-Loop Reinforcement Learning
Human-in-the-loop guidance has emerged as an effective approach for enabling faster convergence in online reinforcement learning (RL) of complex real-world manipulation tasks. However, existing human-in-the-loop RL (HiL-RL) frameworks often suffer from low sample efficiency, requiring substantial human interventions to achieve convergence and thereby leading to high labor costs. To address this, we propose a sample-efficient real-world human-in-the-loop RL framework named \method, which requires fewer human intervention by actively selecting informative samples. Specifically, stable reduction of policy entropy enables improved trade-off between exploration and exploitation with higher sample efficiency. We first build influence functions of different samples on the policy entropy, which is efficiently estimated by the covariance of action probabilities and soft advantages of policies. Then we select samples with moderate values of influence functions, where shortcut samples that induce sharp entropy drops and noisy samples with negligible effect are pruned. Extensive experiments on four real-world manipulation tasks demonstrate that \method achieves a 42.1\% higher success rate while requiring 10.1\% fewer human interventions compared to the state-of-the-art HiL-RL method, validating its effectiveness. The project page providing code, videos, and mathematical formulations can be found at https://e2hil.github.io/.
comment: Project page: https://e2hil.github.io/
☆ Perturbation-Induced Linearization: Constructing Unlearnable Data with Solely Linear Classifiers ICLR 2026
Collecting web data to train deep models has become increasingly common, raising concerns about unauthorized data usage. To mitigate this issue, unlearnable examples introduce imperceptible perturbations into data, preventing models from learning effectively. However, existing methods typically rely on deep neural networks as surrogate models for perturbation generation, resulting in significant computational costs. In this work, we propose Perturbation-Induced Linearization (PIL), a computationally efficient yet effective method that generates perturbations using only linear surrogate models. PIL achieves comparable or better performance than existing surrogate-based methods while reducing computational time dramatically. We further reveal a key mechanism underlying unlearnable examples: inducing linearization to deep models, which explains why PIL can achieve competitive results in a very short time. Beyond this, we provide an analysis about the property of unlearnable examples under percentage-based partial perturbation. Our work not only provides a practical approach for data protection but also offers insights into what makes unlearnable examples effective.
comment: This paper has been accepted to ICLR 2026
♻ ☆ A simple algorithm for output range analysis for deep neural networks
This paper presents a novel approach for the output range estimation problem in Deep Neural Networks (DNNs) by integrating a Simulated Annealing (SA) algorithm tailored to operate within constrained domains and ensure convergence towards global optima. The method effectively addresses the challenges posed by the lack of local geometric information and the high non-linearity inherent to DNNs, making it applicable to a wide variety of architectures, with a special focus on Residual Networks (ResNets) due to their practical importance. Unlike existing methods, our algorithm imposes minimal assumptions on the internal architecture of neural networks, thereby extending its usability to complex models. Theoretical analysis guarantees convergence, while extensive empirical evaluations-including optimization tests involving functions with multiple local minima-demonstrate the robustness of our algorithm in navigating non-convex response surfaces. The experimental results highlight the algorithm's efficiency in accurately estimating DNN output ranges, even in scenarios characterized by high non-linearity and complex constraints. For reproducibility, Python codes and datasets used in the experiments are publicly available through our GitHub repository.
♻ ☆ Deep Semantic Inference over the Air: An Efficient Task-Oriented Communication System
Empowered by deep learning, semantic communication marks a paradigm shift from transmitting raw data to conveying task-relevant meaning, enabling more efficient and intelligent wireless systems. In this study, we explore a deep learning-based task-oriented communication framework that jointly considers classification performance, computational latency, and communication cost. We evaluate ResNets-based models on the CIFAR-10 and CIFAR-100 datasets to simulate real-world classification tasks in wireless environments. We partition the model at various points to simulate split inference across a wireless channel. By varying the split location and the size of the transmitted semantic feature vector, we systematically analyze the trade-offs between task accuracy and resource efficiency. Experimental results show that, with appropriate model partitioning and semantic feature compression, the system can retain over 85\% of baseline accuracy while significantly reducing both computational load and communication overhead.
comment: Accepted at WCNC 2026
♻ ☆ MIP against Agent: Malicious Image Patches Hijacking Multimodal OS Agents NeurIPS 2025
Recent advances in operating system (OS) agents have enabled vision-language models (VLMs) to directly control a user's computer. Unlike conventional VLMs that passively output text, OS agents autonomously perform computer-based tasks in response to a single user prompt. OS agents do so by capturing, parsing, and analysing screenshots and executing low-level actions via application programming interfaces (APIs), such as mouse clicks and keyboard inputs. This direct interaction with the OS significantly raises the stakes, as failures or manipulations can have immediate and tangible consequences. In this work, we uncover a novel attack vector against these OS agents: Malicious Image Patches (MIPs), adversarially perturbed screen regions that, when captured by an OS agent, induce it to perform harmful actions by exploiting specific APIs. For instance, a MIP can be embedded in a desktop wallpaper or shared on social media to cause an OS agent to exfiltrate sensitive user data. We show that MIPs generalise across user prompts and screen configurations, and that they can hijack multiple OS agents even during the execution of benign instructions. These findings expose critical security vulnerabilities in OS agents that have to be carefully addressed before their widespread deployment.
comment: NeurIPS 2025
♻ ☆ Learning Dynamic Representations via An Optimally-Weighted Maximum Mean Discrepancy Optimization Framework for Continual Learning
Continual learning has emerged as a pivotal area of research, primarily due to its advantageous characteristic that allows models to persistently acquire and retain information. However, catastrophic forgetting can severely impair model performance. In this study, we address network forgetting by introducing a novel framework termed Optimally-Weighted Maximum Mean Discrepancy (OWMMD), which imposes penalties on representation alterations via a Multi-Level Feature Matching Mechanism (MLFMM). Furthermore, we propose an Adaptive Regularization Optimization (ARO) strategy to refine the adaptive weight vectors, which autonomously assess the significance of each feature layer throughout the optimization process, The proposed ARO approach can relieve the over-regularization problem and promote the future task learning. We conduct a comprehensive series of experiments, benchmarking our proposed method against several established baselines. The empirical findings indicate that our approach achieves state-of-the-art performance.
♻ ☆ The Sparse Frontier: Sparse Attention Trade-offs in Transformer LLMs
Sparse attention offers a promising strategy to extend long-context capabilities in Transformer LLMs, yet its efficiency-accuracy trade-offs remain unclear due to the lack of comprehensive evaluation. We address this gap with the largest-scale empirical analysis to date of training-free sparse attention, evaluating six methods across multiple model families and sizes, sequences up to 128K tokens, and sparsity levels up to 0.95 (i.e., $1/20$ attention budget) on nine diverse tasks. We first organise the rapidly evolving landscape of sparse attention methods into a taxonomy along four design axes. Our analysis then yields actionable insights: 1) sparse attention is effective -- larger sparse models outperform smaller dense ones at equivalent cost, improving the Pareto frontier; 2) due to computational constraints, token-to-page importance estimation is unfeasible during prefilling, where the choice of an alternative solution (global-to-token or block-to-block) depends on the task, but is possible during decoding, enabling better generalisation and tolerance to higher sparsity; 3) longer sequences tolerate higher sparsity, suggesting that fixed-budget methods in production are suboptimal. Together, these findings provide practical guidance for deploying sparse attention and methodological recommendations for future evaluations. Our code is available at https://github.com/PiotrNawrot/sparse-frontier.
♻ ☆ Chaotic Hedging with Iterated Integrals and Neural Networks
In this paper, we derive an $L^p$-chaos expansion based on iterated Stratonovich integrals with respect to a given exponentially integrable continuous semimartingale. By omitting the orthogonality of the expansion, we show that every $p$-integrable functional, $p \in [1,\infty)$, can be approximated by a finite sum of iterated Stratonovich integrals. Using (possibly random) neural networks as integrands, we therefere obtain universal approximation results for $p$-integrable financial derivatives in the $L^p$-sense. Moreover, we can approximately solve the $L^p$-hedging problem (coinciding for $p = 2$ with the quadratic hedging problem), where the approximating hedging strategy can be computed in closed form within short runtime.
♻ ☆ APEX-Agents
We introduce the AI Productivity Index for Agents (APEX-Agents), a benchmark for assessing whether AI agents can execute long-horizon, cross-application tasks created by investment banking analysts, management consultants, and corporate lawyers. APEX-Agents requires agents to navigate realistic work environments with files and tools. We test eight agents for the leaderboard using Pass@1. Gemini 3 Flash (Thinking=High) achieves the highest score of 24.0%, followed by GPT-5.2 (Thinking=High), Claude Opus 4.5 (Thinking=High), and Gemini 3 Pro (Thinking=High). We open source the APEX-Agents benchmark (n=480) with all prompts, rubrics, gold outputs, files, and metadata. We also open-source Archipelago, our infrastructure for agent execution and evaluation.
♻ ☆ Predicting Startup Success Using Large Language Models: A Novel In-Context Learning Approach
Venture capital (VC) investments in early-stage startups that end up being successful can yield high returns. However, predicting early-stage startup success remains challenging due to data scarcity (e.g., many VC firms have information about only a few dozen of early-stage startups and whether they were successful). This limits the effectiveness of traditional machine learning methods that rely on large labeled datasets for model training. To address this challenge, we propose an in-context learning framework for startup success prediction using large language models (LLMs) that requires no model training and leverages only a small set of labeled startups as demonstration examples. Specifically, we propose a novel k-nearest-neighbor-based in-context learning framework, called kNN-ICL, which selects the most relevant past startups as examples based on similarity. Using real-world profiles from Crunchbase, we find that the kNN-ICL approach achieves higher prediction accuracy than supervised machine learning baselines and vanilla in-context learning. Further, we study how performance varies with the number of in-context examples and find that a high balanced accuracy can be achieved with as few as 50 examples. Together, we demonstrate that in-context learning can serve as a decision-making tool for VC firms operating in data-scarce environments.
♻ ☆ Learning under Distributional Drift: Reproducibility as an Intrinsic Statistical Resource
Statistical learning under distributional drift remains insufficiently characterized: when each observation alters the data-generating law, classical generalization bounds can collapse. We introduce a new statistical primitive, the reproducibility budget $C_T$, which quantifies a system's finite capacity for statistical reproducibility: the extent to which its sampling process can remain governed by a consistent underlying distribution in the presence of both exogenous change and endogenous feedback. Formally, $C_T$ is defined as the cumulative Fisher-Rao path length of the coupled learner-environment evolution, measuring the total distributional motion accumulated during learning. From this construct we derive a drift-feedback generalization bound of order $O(T^{-1/2} + C_T/T)$, and we prove a matching minimax lower bound showing that this rate is minimax-optimal. Consequently, the results establish a reproducibility speed limit: no algorithm can achieve smaller worst-case generalization error than that imposed by the average Fisher-Rao drift rate $C_T/T$ of the data-generating process. The framework situates exogenous drift, adaptive data analysis, and performative prediction within a common geometric structure, with $C_T$ emerging as the intrinsic quantity measuring distributional motion across these settings.
comment: 37 pages, 4 figures
♻ ☆ LLM-Generated Explanations Do Not Suffice for Ultra-Strong Machine Learning
Ultra Strong Machine Learning (USML) refers to symbolic learning systems that not only improve their own performance but can also teach their acquired knowledge to quantifiably improve human performance. We introduce LENS (Logic Programming Explanation via Neural Summarisation), a neuro-symbolic framework that combines symbolic program synthesis with large language models (LLMs). This framework automatically generates natural language explanations of learned logic programs, replacing hand-crafted templates used in prior USML work. Using LLMs-as-judges evaluation and expert validation, we show that LENS produces higher-quality explanations than both direct LLM prompting and hand-crafted templates. We then examine whether LENS explanations suffice for achieving USML in a human trial teaching active learning strategies across three related domains. Our exploratory analysis suggests that concise, expert-written explanations may benefit learners with higher initial performance, while LLM-generated explanations provide no advantage over human self learning despite being rated as higher quality. This case study reveals that achieving USML requires methods grounded in human learning, where current LLM-generated explanations do not capture human cognitive constraints and LLMs-as-judges evaluations do not reflect what effectively supports human learning.
♻ ☆ Optimal Scaling Needs Optimal Norm
Despite recent progress in optimal hyperparameter transfer under model and dataset scaling, no unifying explanatory principle has been established. For Adam and Scion optimizers, we discover that joint optimal scaling across model and dataset sizes is conditioned on a single invariant: the operator norm of the output layer. Across models with up to 1.3B parameters trained on up to 138B tokens, the optimal learning rate/batch size pair $(η^{\ast}, B^{\ast})$ consistently has the same operator norm value - a phenomenon we term norm transfer. This constant norm condition is necessary but not sufficient: while for each dataset size, multiple $(η, B)$ reach the optimal norm, only a unique $(η^{\ast}, B^{\ast})$ achieves the best loss. As a sufficient condition, we provide the first measurement of $(η^{\ast}, B^{\ast})$ scaling with dataset size for Scion, and find that the scaling rules are consistent with those of Adam. Tuning per-layer-group learning rates also improves model performance, with the output layer being the most sensitive and hidden layers benefiting from lower learning rates. We provide practical insights on norm-guided optimal scaling and release our Distributed Scion (Disco) implementation with logs from over two thousand runs to support research on LLM training dynamics at scale.
♻ ☆ Activation Function Design Sustains Plasticity in Continual Learning
In independent, identically distributed (i.i.d.) training regimes, activation functions have been benchmarked extensively, and their differences often shrink once model size and optimization are tuned. In continual learning, however, the picture is different: beyond catastrophic forgetting, models can progressively lose the ability to adapt (referred to as loss of plasticity) and the role of the non-linearity in this failure mode remains underexplored. We show that activation choice is a primary, architecture-agnostic lever for mitigating plasticity loss. Building on a property-level analysis of negative-branch shape and saturation behavior, we introduce two drop-in nonlinearities (Smooth-Leaky and Randomized Smooth-Leaky) and evaluate them in two complementary settings: (i) supervised class-incremental benchmarks and (ii) reinforcement learning with non-stationary MuJoCo environments designed to induce controlled distribution and dynamics shifts. We also provide a simple stress protocol and diagnostics that link the shape of the activation to the adaptation under change. The takeaway is straightforward: thoughtful activation design offers a lightweight, domain-general way to sustain plasticity in continual learning without extra capacity or task-specific tuning.
♻ ☆ Investigating Test Overfitting on SWE-bench
Tests can be useful towards resolving issues on code repositories. However, relying too much on tests for issue resolution can lead to code that technically passes observed tests but actually misses important cases or even breaks functionality. This problem, called test overfitting, is exacerbated by the fact that issues usually lack readily executable tests. Instead, several issue resolution systems use tests auto-generated from issues, which may be imperfect. Some systems even iteratively refine code and tests jointly. This paper presents the first empirical study of test overfitting in this setting.
♻ ☆ Language Agents for Hypothesis-driven Clinical Decision Making with Reinforcement Learning
Clinical decision-making is a dynamic, interactive, and cyclic process where doctors have to repeatedly decide on which clinical action to perform and consider newly uncovered information for diagnosis and treatment. Large Language Models (LLMs) have the potential to support clinicians in this process, however, most applications of LLMs in clinical decision support suffer from one of two limitations: Either they assume the unrealistic scenario of immediate availability of all patient information and do not model the interactive and iterative investigation process, or they restrict themselves to the limited "out-of-the-box" capabilities of large pre-trained models without performing task-specific training. In contrast to this, we propose to model clinical decision-making for diagnosis with a hypothesis-driven uncertainty-aware language agent, LA-CDM, that converges towards a diagnosis via repeatedly requesting and interpreting relevant tests. Using a hybrid training paradigm combining supervised and reinforcement learning, we train LA-CDM with three objectives targeting critical aspects of clinical decision-making: accurate hypothesis generation, hypothesis uncertainty estimation, and efficient decision-making. We evaluate our methodology on MIMIC-CDM, a real-world dataset covering four abdominal diseases containing various clinical tests and show the benefit of explicitly training clinical decision-making for increasing diagnostic performance and efficiency.
♻ ☆ Noradrenergic-inspired gain modulation attenuates the stability gap in joint training
Recent work in continual learning has highlighted the stability gap -- a temporary performance drop on previously learned tasks when new ones are introduced. This phenomenon reflects a mismatch between rapid adaptation and strong retention at task boundaries, underscoring the need for optimization mechanisms that balance plasticity and stability over abrupt distribution changes. While optimizers such as momentum-SGD and Adam introduce implicit multi-timescale behavior, they still exhibit pronounced stability gaps. Importantly, these gaps persist even under ideal joint training, making it crucial to study them in this setting to isolate their causes from other sources of forgetting. Motivated by how noradrenergic (neuromodulatory) bursts transiently increase neuronal gain under uncertainty, we introduce a dynamic gain scaling mechanism as a two-timescale optimization technique that balances adaptation and retention by modulating effective learning rates and flattening the local landscape through an effective reparameterization. Across domain- and class-incremental MNIST, CIFAR, and mini-ImageNet benchmarks under task-agnostic joint training, dynamic gain scaling effectively attenuates stability gaps while maintaining competitive accuracy, improving robustness at task transitions.
comment: 23 pages, 9 figures, 6 table, 1 pseudo-code
♻ ☆ Explaining Grokking and Information Bottleneck through Neural Collapse Emergence ICLR 2026
The training dynamics of deep neural networks often defy expectations, even as these models form the foundation of modern machine learning. Two prominent examples are grokking, where test performance improves abruptly long after the training loss has plateaued, and the information bottleneck principle, where models progressively discard input information irrelevant to the prediction task as training proceeds. However, the mechanisms underlying these phenomena and their relations remain poorly understood. In this work, we present a unified explanation of such late-phase phenomena through the lens of neural collapse, which characterizes the geometry of learned representations. We show that the contraction of population within-class variance is a key factor underlying both grokking and information bottleneck, and relate this measure to the neural collapse measure defined on the training set. By analyzing the dynamics of neural collapse, we show that distinct time scales between fitting the training set and the progression of neural collapse account for the behavior of the late-phase phenomena. Finally, we validate our theoretical findings on multiple datasets and architectures.
comment: Accepted at ICLR 2026. Code is available at https://github.com/keitaroskmt/collapse-dynamics
♻ ☆ Forcing and Diagnosing Failure Modes of Fourier Neural Operators Across Diverse PDE Families
Fourier Neural Operators (FNOs) have shown strong performance in learning solution maps of partial differential equations (PDEs), but their robustness under distribution shifts, long-horizon rollouts, and structural perturbations remains poorly understood. We present a systematic stress-testing framework that probes failure modes of FNOs across five qualitatively different PDE families: dispersive, elliptic, multi-scale fluid, financial, and chaotic systems. Rather than optimizing in-distribution accuracy, we design controlled stress tests - including parameter shifts, boundary or terminal condition changes, resolution extrapolation with spectral analysis, and iterative rollouts - to expose vulnerabilities such as spectral bias, compounding integration errors, and overfitting to restricted boundary regimes. Our large-scale evaluation (1,000 trained models) reveals that distribution shifts in parameters or boundary conditions can inflate errors by more than an order of magnitude, while resolution changes primarily concentrate error in high-frequency modes. Input perturbations generally do not amplify error, though worst-case scenarios (e.g., localized Poisson perturbations) remain challenging. These findings provide a comparative failure-mode atlas and actionable insights for improving robustness in operator learning.
comment: 17 pages, 8 figures. Submitted for peer review
♻ ☆ LaCoGSEA: Unsupervised deep learning for pathway analysis via latent correlation
Motivation: Pathway enrichment analysis is widely used to interpret gene expression data. Standard approaches, such as GSEA, rely on predefined phenotypic labels and pairwise comparisons, which limits their applicability in unsupervised settings. Existing unsupervised extensions, including single-sample methods, provide pathway-level summaries but primarily capture linear relationships and do not explicitly model gene-pathway associations. More recently, deep learning models have been explored to capture non-linear transcriptomic structure. However, their interpretation has typically relied on generic explainable AI (XAI) techniques designed for feature-level attribution. As these methods are not designed for pathway-level interpretation in unsupervised transcriptomic analyses, their effectiveness in this setting remains limited. Results: To bridge this gap, we introduce LaCoGSEA (Latent Correlation GSEA), an unsupervised framework that integrates deep representation learning with robust pathway statistics. LaCoGSEA employs an autoencoder to capture non-linear manifolds and proposes a global gene-latent correlation metric as a proxy for differential expression, generating dense gene rankings without prior labels. We demonstrate that LaCoGSEA offers three key advantages: (i) it achieves improved clustering performance in distinguishing cancer subtypes compared to existing unsupervised baselines; (ii) it recovers a broader range of biologically meaningful pathways at higher ranks compared with linear dimensionality reduction and gradient-based XAI methods; and (iii) it maintains high robustness and consistency across varying experimental protocols and dataset sizes. Overall, LaCoGSEA provides state-of-the-art performance in unsupervised pathway enrichment analysis. Availability and implementation: https://github.com/willyzzz/LaCoGSEA
♻ ☆ Conformal Online Learning of Deep Koopman Linear Embeddings NeurIPS 2025
We introduce Conformal Online Learning of Koopman embeddings (COLoKe), a novel framework for adaptively updating Koopman-invariant representations of nonlinear dynamical systems from streaming data. Our modeling approach combines deep feature learning with multistep prediction consistency in the lifted space, where the dynamics evolve linearly. To prevent overfitting, COLoKe employs a conformal-style mechanism that shifts the focus from evaluating the conformity of new states to assessing the consistency of the current Koopman model. Updates are triggered only when the current model's prediction error exceeds a dynamically calibrated threshold, allowing selective refinement of the Koopman operator and embedding. Empirical results on benchmark dynamical systems demonstrate the effectiveness of COLoKe in maintaining long-term predictive accuracy while significantly reducing unnecessary updates and avoiding overfitting.
comment: NeurIPS 2025
♻ ☆ Atomic Depth Estimation From Noisy Electron Microscopy Data Via Deep Learning
We present a novel approach for extracting 3D atomic-level information from transmission electron microscopy (TEM) images affected by significant noise. The approach is based on formulating depth estimation as a semantic segmentation problem. We address the resulting segmentation problem by training a deep convolutional neural network to generate pixel-wise depth segmentation maps using simulated data corrupted by synthetic noise. The proposed method was applied to estimate the depth of atomic columns in CeO2 nanoparticles from simulated images and real-world TEM data. Our experiments show that the resulting depth estimates are accurate, calibrated and robust to noise.
♻ ☆ TwinPurify: Purifying gene expression data to reveal tumor-intrinsic transcriptional programs via self-supervised learning
Advances in single-cell and spatial transcriptomic technologies have transformed tumor ecosystem profiling at cellular resolution. However, large scale studies on patient cohorts continue to rely on bulk transcriptomic data, where variation in tumor purity obscures tumor-intrinsic transcriptional signals and constrains downstream discovery. Many deconvolution methods report strong performance on synthetic bulk mixtures but fail to generalize to real patient cohorts because of unmodeled biological and technical variation. Here, we introduce TwinPurify, a representation learning framework that adapts the Barlow Twins self-supervised objective, representing a fundamental departure from the deconvolution paradigm. Rather than resolving the bulk mixture into discrete cell-type fractions, TwinPurify instead learns continuous, high-dimensional tumor embeddings by leveraging adjacent-normal profiles within the same cohort as "background" guidance, enabling the disentanglement of tumor-specific signals without relying on any external reference. Benchmarked against multiple large cancer cohorts across RNA-seq and microarray platforms, TwinPurify outperforms conventional representation learning baselines like auto-encoders in recovering tumor-intrinsic and immune signals. The purified embeddings improve molecular subtype and grade classification, enhance survival model concordance, and uncover biologically meaningful pathway activities compared to raw bulk profiles. By providing a transferable framework for decontaminating bulk transcriptomics, TwinPurify extends the utility of existing clinical datasets for molecular discovery.
♻ ☆ Incorporating priors in learning: a random matrix study under a teacher-student framework
Regularized linear regression is central to machine learning, yet its high-dimensional behavior with informative priors remains poorly understood. We provide the first exact asymptotic characterization of training and test risks for maximum a posteriori (MAP) regression with Gaussian priors centered at a domain-informed initialization. Our framework unifies ridge regression, least squares, and prior-informed estimators, and -- using random matrix theory -- yields closed-form risk formulas that expose the bias-variance-prior tradeoff, explain double descent, and quantify prior mismatch. We also identify a closed-form minimizer of test risk, enabling a simple estimator of the optimal regularization parameter. Simulations confirm the theory with high accuracy. By connecting Bayesian priors, classical regularization, and modern asymptotics, our results provide both conceptual clarity and practical guidance for learning with structured prior knowledge.
comment: 5 pages, 4 figures
♻ ☆ Generative Modeling with Bayesian Sample Inference
We derive a novel generative model from iterative Gaussian posterior inference. By treating the generated sample as an unknown variable, we can formulate the sampling process in the language of Bayesian probability. Our model uses a sequence of prediction and posterior update steps to iteratively narrow down the unknown sample starting from a broad initial belief. In addition to a rigorous theoretical analysis, we establish a connection between our model and diffusion models and show that it includes Bayesian Flow Networks (BFNs) as a special case. In our experiments, we demonstrate that our model improves sample quality on ImageNet32 over both BFNs and the closely related Variational Diffusion Models, while achieving equivalent log-likelihoods on ImageNet32 and ImageNet64. Find our code at https://github.com/martenlienen/bsi.
♻ ☆ Prompt-Counterfactual Explanations for Generative AI System Behavior
As generative AI systems become integrated into real-world applications, organizations increasingly need to be able to understand and interpret their behavior. In particular, decision-makers need to understand what causes generative AI systems to exhibit specific output characteristics. Within this general topic, this paper examines a key question: what is it about the input -- the prompt -- that causes an LLM-based generative AI system to produce output that exhibits specific characteristics, such as toxicity, negative sentiment, or political bias. To examine this question, we adapt a common technique from the Explainable AI literature: counterfactual explanations. We explain why traditional counterfactual explanations cannot be applied directly to generative AI systems, due to several differences in how generative AI systems function. We then propose a flexible framework that adapts counterfactual explanations to non-deterministic, generative AI systems in scenarios where downstream classifiers can reveal key characteristics of their outputs. Based on this framework, we introduce an algorithm for generating prompt-counterfactual explanations (PCEs). Finally, we demonstrate the production of counterfactual explanations for generative AI systems with three case studies, examining different output characteristics (viz., political leaning, toxicity, and sentiment). The case studies further show that PCEs can streamline prompt engineering to suppress undesirable output characteristics and can enhance red-teaming efforts to uncover additional prompts that elicit undesirable outputs. Ultimately, this work lays a foundation for prompt-focused interpretability in generative AI: a capability that will become indispensable as these models are entrusted with higher-stakes tasks and subject to emerging regulatory requirements for transparency and accountability.
♻ ☆ Problem Space Transformations for Out-of-Distribution Generalisation in Behavioural Cloning
The combination of behavioural cloning and neural networks has driven significant progress in robotic manipulation. As these algorithms may require a large number of demonstrations for each task of interest, they remain fundamentally inefficient in complex scenarios, in which finite datasets can hardly cover the state space. One of the remaining challenges is thus out-of-distribution (OOD) generalisation, i.e. the ability to predict correct actions for states with a low likelihood with respect to the state occupancy induced by the dataset. This issue is aggravated when the system to control is treated as a black-box, ignoring its physical properties. This work highlights widespread properties of robotic manipulation, specifically pose equivariance and locality. We investigate the effect of the choice of problem space on OOD performance of BC policies and how transformations arising from characteristic properties of manipulation can be employed for its improvement. Through controlled, simulated and real-world experiments, we empirically demonstrate that these transformations allow behaviour cloning policies, using either standard MLP-based one-step action prediction or diffusion-based action-sequence prediction, to generalise better to certain OOD problem instances. Code is available at https://github.com/kirandoshi/pst_ood_gen.
♻ ☆ Characteristic Root Analysis and Regularization for Linear Time Series Forecasting
Time series forecasting remains a critical challenge across numerous domains, yet the effectiveness of complex models often varies unpredictably across datasets. Recent studies highlight the surprising competitiveness of simple linear models, suggesting that their robustness and interpretability warrant deeper theoretical investigation. This paper presents a systematic study of linear models for time series forecasting, with a focus on the role of characteristic roots in temporal dynamics. We begin by analyzing the noise-free setting, where we show that characteristic roots govern long-term behavior and explain how design choices such as instance normalization and channel independence affect model capabilities. We then extend our analysis to the noisy regime, revealing that models tend to produce spurious roots. This leads to the identification of a key data-scaling property: mitigating the influence of noise requires disproportionately large training data, highlighting the need for structural regularization. To address these challenges, we propose two complementary strategies for robust root restructuring. The first uses rank reduction techniques, including Reduced-Rank Regression and Direct Weight Rank Reduction, to recover the low-dimensional latent dynamics. The second, a novel adaptive method called Root Purge, encourages the model to learn a noise-suppressing null space during training. Extensive experiments on standard benchmarks demonstrate the effectiveness of both approaches, validating our theoretical insights and achieving state-of-the-art results in several settings. Our findings underscore the potential of integrating classical theories for linear systems with modern learning techniques to build robust, interpretable, and data-efficient forecasting models.
♻ ☆ GraphRAG-R1: Graph Retrieval-Augmented Generation with Process-Constrained Reinforcement Learning
Graph Retrieval-Augmented Generation (GraphRAG) has shown great effectiveness in enhancing the reasoning abilities of LLMs by leveraging graph structures for knowledge representation and modeling complex real-world relationships. However, existing GraphRAG methods still face significant bottlenecks when handling complex problems that require multi-hop reasoning, as their query and retrieval phases are largely based on pre-defined heuristics and do not fully utilize the reasoning potentials of LLMs. To address this problem, we propose GraphRAG-R1, an adaptive GraphRAG framework by training LLMs with process-constrained outcome-based reinforcement learning (RL) to enhance the multi-hop reasoning ability. Our method can decompose complex problems, autonomously invoke retrieval tools to acquire necessary information, and perform effective reasoning. Specifically, we utilize a modified version of Group Relative Policy Optimization (GRPO) that supports rollout-with-thinking capability. Next, we design two process-constrained reward functions. To handle the shallow retrieval problem, we design a Progressive Retrieval Attenuation (PRA) reward to encourage essential retrievals. Then, to handle the over-thinking problem, we design Cost-Aware F1 (CAF) reward to balance the model performance with computational costs. We further design a phase-dependent training strategy, containing three training stages corresponding to cold start and these two rewards. Lastly, our method adopts a hybrid graph-textual retrieval to improve the reasoning capacity. Extensive experimental results demonstrate that GraphRAG-R1 boosts LLM capabilities in solving complex reasoning problems compared to state-of-the-art GraphRAG methods on both in-domain and out-of-domain datasets. Furthermore, our framework can be flexibly integrated with various existing retrieval methods, consistently delivering performance improvements.
comment: Accepted by the Web Conference 2026
♻ ☆ Concept activation vectors: a unifying view and adversarial attacks
Concept Activation Vectors (CAVs) are a tool from explainable AI, offering a promising approach for understanding how human-understandable concepts are encoded in a model's latent spaces. They are computed from hidden-layer activations of inputs belonging either to a concept class or to non-concept examples. Adopting a probabilistic perspective, the distribution of the (non-)concept inputs induces a distribution over the CAV, making it a random vector in the latent space. This enables us to derive mean and covariance for different types of CAVs, leading to a unified theoretical view. This probabilistic perspective also reveals a potential vulnerability: CAVs can strongly depend on the rather arbitrary non-concept distribution, a factor largely overlooked in prior work. We illustrate this with a simple yet effective adversarial attack, underscoring the need for a more systematic study.
comment: 5 pages, 4 figures
♻ ☆ MSCloudCAM: Multi-Scale Context Adaptation with Convolutional Cross-Attention for Multispectral Cloud Segmentation
Clouds remain a major obstacle in optical satellite imaging, limiting accurate environmental and climate analysis. To address the strong spectral variability and the large scale differences among cloud types, we propose MSCloudCAM, a novel multi-scale context adapter network with convolution based cross-attention tailored for multispectral and multi-sensor cloud segmentation. A key contribution of MSCloudCAM is the explicit modeling of multiple complementary multi-scale context extractors. And also, rather than simply stacking or concatenating their outputs, our formulation uses one extractor's fine-resolution features and the other extractor's global contextual representations enabling dynamic, scale-aware feature selection. Building on this idea, we design a new convolution-based cross attention adapter that effectively fuses localized, detailed information with broader multi-scale context. Integrated with a hierarchical vision backbone and refined through channel and spatial attention mechanisms, MSCloudCAM achieves strong spectral-spatial discrimination. Experiments on various multisensor datatsets e.g. CloudSEN12 (Sentinel-2) and L8Biome (Landsat-8), demonstrate that MSCloudCAM achieves superior overall segmentation performance and competitive class-wise accuracy compared to recent state-of-the-art models, while maintaining competitive model complexity, highlighting the novelty and effectiveness of the proposed design for large-scale Earth observation.
comment: 6 pages, 3 Figures
♻ ☆ JointDiff: Bridging Continuous and Discrete in Multi-Agent Trajectory Generation ICLR 2026
Generative models often treat continuous data and discrete events as separate processes, creating a gap in modeling complex systems where they interact synchronously. To bridge this gap, we introduce JointDiff, a novel diffusion framework designed to unify these two processes by simultaneously generating continuous spatio-temporal data and synchronous discrete events. We demonstrate its efficacy in the sports domain by simultaneously modeling multi-agent trajectories and key possession events. This joint modeling is validated with non-controllable generation and two novel controllable generation scenarios: weak-possessor-guidance, which offers flexible semantic control over game dynamics through a simple list of intended ball possessors, and text-guidance, which enables fine-grained, language-driven generation. To enable the conditioning with these guidance signals, we introduce CrossGuid, an effective conditioning operation for multi-agent domains. We also share a new unified sports benchmark enhanced with textual descriptions for soccer and football datasets. JointDiff achieves state-of-the-art performance, demonstrating that joint modeling is crucial for building realistic and controllable generative models for interactive systems.
comment: Accepted at ICLR 2026
♻ ☆ Semantic-aware Random Convolution and Source Matching for Domain Generalization in Medical Image Segmentation
We tackle the challenging problem of single-source domain generalization (DG) for medical image segmentation, where we train a network on one domain (e.g., CT) and directly apply it to a different domain (e.g., MR) without adapting the model and without requiring images or annotations from the new domain during training. Our method diversifies the source domain through semantic-aware random convolution, where different regions of a source image are augmented differently at training-time, based on their annotation labels. At test-time, we complement the randomization of the training domain via mapping the intensity of target domain images, making them similar to source domain data. We perform a comprehensive evaluation on a variety of cross-modality and cross-center generalization settings for abdominal, whole-heart and prostate segmentation, where we outperform previous DG techniques in a vast majority of experiments. Additionally, we also investigate our method when training on whole-heart CT or MR data and testing on the diastolic and systolic phase of cine MR data captured with different scanner hardware. Overall, our evaluation shows that our method achieves new state-of-the-art performance in DG for medical image segmentation, even matching the performance of the in-domain baseline in several settings. We will release our source code upon acceptance of this manuscript.
♻ ☆ Geometric Dynamics of Agentic Loops in Large Language Models
Iterative LLM systems(self-refinement, chain-of-thought, autonomous agents) are increasingly deployed, yet their temporal dynamics remain uncharacterized. Prior work evaluates task performance at convergence but ignores the trajectory: how does semantic content evolve across iterations? Does it stabilize, drift, or oscillate? Without answering these questions, we cannot predict system behavior, guarantee stability, or systematically design iterative architectures. We formalize agentic loops as discrete dynamical systems in semantic space. Borrowing from dynamical systems theory, we define trajectories, attractors and dynamical regimes for recursive LLM transformations, providing rigorous geometric definitions adapted to this setting. Our framework reveals that agentic loops exhibit classifiable dynamics: contractive (convergence toward stable semantic attractors), oscillatory (cycling among attractors), or exploratory (unbounded divergence). Experiments on singular loops validate the framework. Iterative paraphrasing produces contractive dynamics with measurable attractor formation and decreasing dispersion. Iterative negation produces exploratory dynamics with no stable structure. Crucially, prompt design directly controls the dynamical regime - the same model exhibits fundamentally different geometric behaviors depending solely on the transformation applied. This work establishes that iterative LLM dynamics are predictable and controllable, opening new directions for stability analysis, trajectory forecasting, and principled design of composite loops that balance convergence and exploration.
♻ ☆ Model-free policy gradient for discrete-time mean-field control
We study model-free policy learning for discrete-time mean-field control (MFC) problems with finite state space and compact action space. In contrast to the extensive literature on value-based methods for MFC, policy-based approaches remain largely unexplored due to the intrinsic dependence of transition kernels and rewards on the evolving population state distribution, which prevents the direct use of likelihood-ratio estimators of policy gradients from classical single-agent reinforcement learning. We introduce a novel perturbation scheme on the state-distribution flow and prove that the gradient of the resulting perturbed value function converges to the true policy gradient as the perturbation magnitude vanishes. This construction yields a fully model-free estimator based solely on simulated trajectories and an auxiliary estimate of the sensitivity of the state distribution. Building on this framework, we develop MF-REINFORCE, a model-free policy gradient algorithm for MFC, and establish explicit quantitative bounds on its bias and mean-squared error. Numerical experiments on representative mean-field control tasks demonstrate the effectiveness of the proposed approach.
comment: 42 pages, 5 figures
♻ ☆ Sample-Efficient Optimization over Generative Priors via Coarse Learnability
In zeroth-order optimization, we seek to minimize a function $d(\cdot)$, which may encode combinatorial feasibility, using only function evaluations. We focus on the setting where solutions must also satisfy qualitative constraints or conform to a complex prior distribution. To address this, we introduce a new framework in which such constraints are represented by an initial generative prior $Ł(\cdot)$, for example, a Large Language Model (LLM). The objective is to find solutions $s$ that minimize $d(s)$ while having high probability under $Ł(s)$, effectively sampling from a target distribution proportional to $Ł(s) \cdot e^{-T \cdot d(s)}$ for a temperature parameter $T$. While this framework aligns with classical Model-Based Optimization (e.g., the Cross-Entropy method), existing theory is ill-suited for deriving sample complexity bounds in black-box deep generative models. We therefore propose a novel learning assumption, which we term \emph{coarse learnability}, where an agent with access to a polynomial number of samples can learn a model whose point-wise density approximates the target within a polynomial factor. Leveraging this assumption, we design an iterative algorithm that employs a Metropolis-Hastings correction to provably approximate the target distribution using a polynomial number of samples. To the best of our knowledge, this is one of the first works to establish such sample-complexity guarantees for model-based optimization with deep generative priors. We provide two lines of evidence supporting the coarse learnability assumption. Theoretically, we show that maximum likelihood estimation naturally induces the required coverage properties, holding for both standard exponential families and for misspecified models. Empirically, we demonstrate that LLMs can adapt their learned distributions to zeroth-order feedback to solve combinatorial optimization problems.
♻ ☆ Imputation-free Learning of Tabular Data with Missing Values using Incremental Feature Partitions in Transformer
Tabular data sets with varying missing values are prepared for machine learning using an arbitrary imputation strategy. Synthetic values generated by imputation models often raise concerns regarding data quality and the reliability of data-driven outcomes. To address these concerns, this article proposes an imputation-free incremental attention learning (IFIAL) method for tabular data with missing values. A pair of attention masks is derived and retrofitted to a transformer to directly streamline tabular data without imputing or initializing missing values. The proposed method incrementally learns partitions of overlapping and fixed-size feature sets to enhance the performance of the transformer. The average classification performance rank order across 17 diverse tabular data sets highlights the superiority of IFIAL over 11 state-of-the-art learning methods with or without missing value imputations. Additional experiments corroborate the robustness of IFIAL to varying types and proportions of missing data, demonstrating its superiority over methods that rely on explicit imputations. A feature partition size equal to one-half the original feature space yields the best trade-off between computational efficiency and predictive performance. IFIAL is one of the first solutions that enables deep attention models to learn directly from tabular data, eliminating the need to impute missing values. %without the need for imputing missing values. The source code for this paper is publicly available.
♻ ☆ SIPDO: Closed-Loop Prompt Optimization via Synthetic Data Feedback
Prompt quality plays a critical role in the performance of large language models (LLMs), motivating a growing body of work on prompt optimization. Most existing methods optimize prompts over a fixed dataset, assuming static input distributions and offering limited support for iterative improvement. We introduce SIPDO (Self-Improving Prompts through Data-Augmented Optimization), a closed-loop framework for prompt learning that integrates synthetic data generation into the optimization process. SIPDO couples a synthetic data generator with a prompt optimizer, where the generator produces new examples that reveal current prompt weaknesses and the optimizer incrementally refines the prompt in response. This feedback-driven loop enables systematic improvement of prompt performance without assuming access to external supervision or new tasks. Experiments across question answering and reasoning benchmarks show that SIPDO outperforms standard prompt tuning methods, highlighting the value of integrating data synthesis into prompt learning workflows.
♻ ☆ SoilNet: A Multimodal Multitask Model for Hierarchical Classification of Soil Horizons
Recent advances in artificial intelligence (AI), in particular foundation models, have improved the state of the art in many application domains including geosciences. Some specific problems, however, could not benefit from this progress yet. Soil horizon classification, for instance, remains challenging because of its multimodal and multitask characteristics and a complex hierarchically structured label taxonomy. Accurate classification of soil horizons is crucial for monitoring soil condition. In this work, we propose \textit{SoilNet} - a multimodal multitask model to tackle this problem through a structured modularized pipeline. In contrast to omnipurpose AI foundation models, our approach is designed to be inherently transparent by following the task structure human experts developed for solving this challenging annotation task. The proposed approach integrates image data and geotemporal metadata to first predict depth markers, segmenting the soil profile into horizon candidates. Each segment is characterized by a set of horizon-specific morphological features. Finally, horizon labels are predicted based on the multimodal concatenated feature vector, leveraging a graph-based label representation to account for the complex hierarchical relationships among soil horizons. Our method is designed to address complex hierarchical classification, where the number of possible labels is very large, imbalanced and non-trivially structured. We demonstrate the effectiveness of our approach on a real-world soil profile dataset and a comprehensive user study with domain experts. Our empirical evaluations demonstrate that SoilNet reliably predicts soil horizons that are plausible and accurate. User study results indicate that SoilNet achieves predictive performance on par with or better than that of human experts. All code can be found at: https://github.com/calgo-lab/BGR/
comment: 29 pages, 9 figures, 7 tables
♻ ☆ Bilateral Distribution Compression: Reducing Both Data Size and Dimensionality
Existing distribution compression methods reduce the number of observations in a dataset by minimising the Maximum Mean Discrepancy (MMD) between original and compressed sets, but modern datasets are often large in both sample size and dimensionality. We propose Bilateral Distribution Compression (BDC), a two-stage framework that compresses along both axes while preserving the underlying distribution, with overall linear time and memory complexity in dataset size and dimension. Central to BDC is the Decoded MMD (DMMD), which we introduce to quantify the discrepancy between the original data and a compressed set decoded from a low-dimensional latent space. BDC proceeds by (i) learning a low-dimensional projection using the Reconstruction MMD (RMMD), and (ii) optimising a latent compressed set with the Encoded MMD (EMMD). We show that this procedure minimises the DMMD, guaranteeing that the compressed set faithfully represents the original distribution. Experiments show that BDC can achieve comparable or superior downstream task performance to ambient-space compression at substantially lower cost and with significantly higher rates of compression.
comment: 46 pages, 26 figures
♻ ☆ Why is Your Language Model a Poor Implicit Reward Model? ICLR 2026
Reward models are key to language model post-training and inference pipelines. Conveniently, recent work showed that every language model defines an implicit reward model (IM-RM), without requiring any architectural changes. However, such IM-RMs tend to generalize worse, especially out-of-distribution, compared to explicit reward models (EX-RMs) that apply a dedicated linear head over the hidden representations of a language model. The existence of a generalization gap is puzzling, as EX-RMs and IM-RMs are nearly identical. They can be trained using the same data, loss function, and language model, and differ only in how the reward is computed. Toward a fundamental understanding of the implicit biases underlying different reward model types, we investigate the root cause of this gap. Our main finding, backed by theory and experiments, is that IM-RMs rely more heavily on superficial token-level cues. Consequently, they often generalize worse than EX-RMs under token-level distribution shifts, as well as in-distribution. Furthermore, we provide evidence against alternative hypotheses for the generalization gap. Most notably, we challenge the claim that IM-RMs struggle in tasks where generation is harder than verification because they can operate both as a verifier and a generator. Overall, our results highlight that seemingly minor design choices can substantially impact the generalization behavior of reward models.
comment: Accepted to ICLR 2026; Code available at https://github.com/princeton-pli/exrm-vs-imrm
♻ ☆ Bayes Adaptive Monte Carlo Tree Search for Offline Model-based Reinforcement Learning ICLR 2026
Offline reinforcement learning (RL) is a powerful approach for data-driven decision-making and control. Compared to model-free methods, offline model-based reinforcement learning (MBRL) explicitly learns world models from a static dataset and uses them as surrogate simulators, improving the data efficiency and enabling the learned policy to potentially generalize beyond the dataset support. However, there could be various MDPs that behave identically on the offline dataset and dealing with the uncertainty about the true MDP can be challenging. In this paper, we propose modeling offline MBRL as a Bayes Adaptive Markov Decision Process (BAMDP), which is a principled framework for addressing model uncertainty. We further propose a novel Bayes Adaptive Monte-Carlo planning algorithm capable of solving BAMDPs in continuous state and action spaces with stochastic transitions. This planning process is based on Monte Carlo Tree Search and can be integrated into offline MBRL as a policy improvement operator in policy iteration. Our "RL + Search" framework follows in the footsteps of superhuman AIs like AlphaZero, improving on current offline MBRL methods by incorporating more computation input. The proposed algorithm significantly outperforms state-of-the-art offline RL methods on twelve D4RL MuJoCo tasks and three challenging, stochastic tokamak control tasks. The codebase is available at: https://github.com/LucasCJYSDL/Offline-RL-Kit.
comment: This paper is accepted in ICLR 2026
♻ ☆ High-Layer Attention Pruning with Rescaling
Pruning is a highly effective approach for compressing large language models (LLMs), significantly reducing inference latency. However, conventional training-free structured pruning methods often employ a heuristic metric that indiscriminately removes some attention heads across all pruning layers, without considering their positions within the network architecture. In this work, we propose a novel pruning algorithm that strategically prunes attention heads in the model's higher layers. Since the removal of attention heads can alter the magnitude of token representations, we introduce an adaptive rescaling parameter that calibrates the representation scale post-pruning to counteract this effect. We conduct comprehensive experiments on a wide range of LLMs, including LLaMA3.1-8B, Mistral-7B-v0.3, Qwen2-7B, and Gemma2-9B. Our evaluation includes both generation and discriminative tasks across 27 datasets. The results consistently demonstrate that our method outperforms existing structured pruning methods. This improvement is particularly notable in generation tasks, where our approach significantly outperforms existing baselines. Code is available at https://github.com/SongtaoLiu0823/HARP.
comment: TMLR 2026
♻ ☆ Learning Neural Operators from Partial Observations via Latent Autoregressive Modeling
Real-world scientific applications frequently encounter incomplete observational data due to sensor limitations, geographic constraints, or measurement costs. Although neural operators significantly advanced PDE solving in terms of computational efficiency and accuracy, their underlying assumption of fully-observed spatial inputs severely restricts applicability in real-world applications. We introduce the first systematic framework for learning neural operators from partial observation. We identify and formalize two fundamental obstacles: (i) the supervision gap in unobserved regions that prevents effective learning of physical correlations, and (ii) the dynamic spatial mismatch between incomplete inputs and complete solution fields. Specifically, our proposed Latent Autoregressive Neural Operator(LANO) introduces two novel components designed explicitly to address the core difficulties of partial observations: (i) a mask-to-predict training strategy that creates artificial supervision by strategically masking observed regions, and (ii) a Physics-Aware Latent Propagator that reconstructs solutions through boundary-first autoregressive generation in latent space. Additionally, we develop POBench-PDE, a dedicated and comprehensive benchmark designed specifically for evaluating neural operators under partial observation conditions across three PDE-governed tasks. LANO achieves state-of-the-art performance with 18--69$\%$ relative L2 error reduction across all benchmarks under patch-wise missingness with less than 50$\%$ missing rate, including real-world climate prediction. Our approach effectively addresses practical scenarios involving up to 75$\%$ missing rate, to some extent bridging the existing gap between idealized research settings and the complexities of real-world scientific computing.
♻ ☆ Improving LLM-based Global Optimization with Search Space Partitioning
Large Language Models (LLMs) have recently emerged as effective surrogate models and candidate generators within global optimization frameworks for expensive blackbox functions. Despite promising results, LLM-based methods often struggle in high-dimensional search spaces or when lacking domain-specific priors, leading to sparse or uninformative suggestions. To overcome these limitations, we propose HOLLM, a novel global optimization algorithm that enhances LLM-driven sampling by partitioning the search space into promising subregions. Each subregion acts as a ``meta-arm'' selected via a bandit-inspired scoring mechanism that effectively balances exploration and exploitation. Within each selected subregion, an LLM then proposes high-quality candidate points, without any explicit domain knowledge. Empirical evaluation on standard optimization benchmarks shows that HOLLM consistently matches or surpasses leading global optimization methods, while substantially outperforming global LLM-based sampling strategies.
comment: 31 pages, 19 figures, 7 tables
♻ ☆ Super-Linear: A Lightweight Pretrained Mixture of Linear Experts for Time Series Forecasting
Time series forecasting (TSF) is critical in domains like energy, finance, healthcare, and logistics, requiring models that generalize across diverse datasets. Large pre-trained models such as Chronos and Time-MoE show strong zero-shot (ZS) performance but suffer from high computational costs. In this work, we introduce Super-Linear, a lightweight and scalable mixture-of-experts (MoE) model for general forecasting. It replaces deep architectures with simple frequency-specialized linear experts, trained on resampled data across multiple frequency regimes. A lightweight spectral gating mechanism dynamically selects relevant experts, enabling efficient, accurate forecasting. Despite its simplicity, Super-Linear demonstrates strong performance across benchmarks, while substantially improving efficiency, robustness to sampling rates, and interpretability. The implementation of Super-Linear is available at: \href{https://github.com/azencot-group/SuperLinear}{https://github.com/azencot-group/SuperLinear}.
♻ ☆ Automated Interpretability Metrics Do Not Distinguish Trained and Random Transformers
Sparse autoencoders (SAEs) are widely used to extract sparse, interpretable latents from transformer activations. We test whether commonly used SAE quality metrics and automatic explanation pipelines can distinguish trained transformers from randomly initialized ones (e.g., where parameters are sampled i.i.d. from a Gaussian). Over a wide range of Pythia model sizes and multiple randomization schemes, we find that, in many settings, SAEs trained on randomly initialized transformers produce auto-interpretability scores and reconstruction metrics that are similar to those from trained models. These results show that high aggregate auto-interpretability scores do not, by themselves, guarantee that learned, computationally relevant features have been recovered. We therefore recommend treating common SAE metrics as useful but insufficient proxies for mechanistic interpretability and argue for routine randomized baselines and targeted measures of feature 'abstractness'.
♻ ☆ PYRREGULAR: A Unified Framework for Irregular Time Series, with Classification Benchmarks
Irregular temporal data, characterized by varying recording frequencies, differing observation durations, and missing values, presents significant challenges across fields like mobility, healthcare, and environmental science. Existing research communities often overlook or address these challenges in isolation, leading to fragmented tools and methods. To bridge this gap, we introduce a unified framework, and the first standardized dataset repository for irregular time series classification, built on a common array format to enhance interoperability. This repository comprises 34 datasets on which we benchmark 12 classifier models from diverse domains and communities. This work aims to centralize research efforts and enable a more robust evaluation of irregular temporal data analysis methods.
♻ ☆ SWA-LDM: Toward Stealthy Watermarks for Latent Diffusion Models
Latent Diffusion Models (LDMs) have established themselves as powerful tools in the rapidly evolving field of image generation, capable of producing highly realistic images. However, their widespread adoption raises critical concerns about copyright infringement and the misuse of generated content. Watermarking techniques have emerged as a promising solution, enabling copyright identification and misuse tracing through imperceptible markers embedded in generated images. Among these, latent-based watermarking techniques are particularly promising, as they embed watermarks directly into the latent noise without altering the underlying LDM architecture. In this work, we demonstrate that such latent-based watermarks are practically vulnerable to detection and compromise through systematic analysis of output images' statistical patterns for the first time. To counter this, we propose SWA-LDM (Stealthy Watermark for LDM), a lightweight framework that enhances stealth by dynamically randomizing the embedded watermarks using the Gaussian-distributed latent noise inherent to diffusion models. By embedding unique, pattern-free signatures per image, SWA-LDM eliminates detectable artifacts while preserving image quality and extraction robustness. Experiments demonstrate an average of 20% improvement in stealth over state-of-the-art methods, enabling secure deployment of watermarked generative AI in real-world applications.
comment: 12 pages, 5 figures
♻ ☆ Nearly Optimal Bayesian Inference for Structural Missingness
Structural missingness breaks 'just impute and train': values can be undefined by causal or logical constraints, and the mask may depend on observed variables, unobserved variables (MNAR), and other missingness indicators. It simultaneously brings (i) a catch-22 situation with causal loop, prediction needs the missing features, yet inferring them depends on the missingness mechanism, (ii) under MNAR, the unseen are different, the missing part can come from a shifted distribution, and (iii) plug-in imputation, a single fill-in can lock in uncertainty and yield overconfident, biased decisions. In the Bayesian view, prediction via the posterior predictive distribution integrates over the full model posterior uncertainty, rather than relying on a single point estimate. This framework decouples (i) learning an in-model missing-value posterior from (ii) label prediction by optimizing the predictive posterior distribution, enabling posterior integration. This decoupling yields an in-model almost-free-lunch: once the posterior is learned, prediction is plug-and-play while preserving uncertainty propagation. It achieves SOTA on 43 classification and 15 imputation benchmarks, with finite-sample near Bayes-optimality guarantees under our SCM prior.
♻ ☆ Improving Value-based Process Verifier via Structural Prior Injection
In the Large Language Model(LLM) reasoning scenario, people often estimate state value via Monte Carlo sampling. Though Monte Carlo estimation is an elegant method with less inductive bias, noise and errors are inevitably introduced due to the limited sampling. To handle the problem, we inject the structural prior into the value representation and transfer the scalar value into the expectation of a pre-defined categorical distribution, representing the noise and errors from a distribution perspective. Specifically, by treating the result of Monte Carlo sampling as a single sample from the prior ground-truth Binomial distribution, we quantify the sampling error as the mismatch between posterior estimated distribution and ground-truth distribution, which is thus optimized via distribution selection optimization. We test the performance of value-based process verifiers on Best-of-N task and Beam search task. Compared with the scalar value representation, we show that reasonable structural prior injection induced by different objective functions or optimization methods can improve the performance of value-based process verifiers for about 1$\sim$2 points at little-to-no cost. We also show that under different structural prior, the verifiers' performances vary greatly despite having the same optimal solution, indicating the importance of reasonable structural prior injection.
comment: This version is deprecated. Please refer to our new version: arXiv:2508.10539
♻ ☆ Causal Pre-training Under the Fairness Lens: An Empirical Study of TabPFN
Foundation models for tabular data, such as the Tabular Prior-data Fitted Network (TabPFN), are pre-trained on a massive number of synthetic datasets generated by structural causal models (SCM). They leverage in-context learning to offer high predictive accuracy in real-world tasks. However, the fairness properties of these foundational models, which incorporate ideas from causal reasoning during pre-training, remain underexplored. In this work, we conduct a comprehensive empirical evaluation of TabPFN and its fine-tuned variants, assessing predictive performance, fairness, and robustness across varying dataset sizes and distributional shifts. Our results reveal that while TabPFN achieves stronger predictive accuracy compared to baselines and exhibits robustness to spurious correlations, improvements in fairness are moderate and inconsistent, particularly under missing-not-at-random (MNAR) covariate shifts. These findings suggest that the causal pre-training in TabPFN is helpful but insufficient for algorithmic fairness, highlighting implications for deploying TabPFN (and similar) models in practice and the need for further fairness interventions.
♻ ☆ GS-KAN: Parameter-Efficient Kolmogorov-Arnold Networks via Sprecher-Type Shared Basis Functions
The Kolmogorov-Arnold representation theorem offers a theoretical alternative to Multi-Layer Perceptrons (MLPs) by placing learnable univariate functions on edges rather than nodes. While recent implementations such as Kolmogorov-Arnold Networks (KANs) demonstrate high approximation capabilities, they suffer from significant parameter inefficiency due to the requirement of maintaining unique parameterizations for every network edge. In this work, we propose GS-KAN (Generalized Sprecher-KAN), a lightweight architecture inspired by David Sprecher's refinement of the superposition theorem. GS-KAN constructs unique edge functions by applying learnable linear transformations to a single learnable, shared parent function per layer. We evaluate GS-KAN against existing KAN architectures and MLPs across synthetic function approximation, tabular data regression and image classification tasks. Our results demonstrate that GS-KAN outperforms both MLPs and standard KAN baselines on continuous function approximation tasks while maintaining superior parameter efficiency. Additionally, GS-KAN achieves competitive performance with existing KAN architectures on tabular regression and outperforms MLPs on high-dimensional classification tasks. Crucially, the proposed architecture enables the deployment of KAN-based architectures in high-dimensional regimes under strict parameter constraints, a setting where standard implementations are typically infeasible due to parameter explosion. The source code is available at https://github.com/rambamn48/gs-impl.
comment: 6 pages, 2 figures
♻ ☆ Physics-Constrained Fine-Tuning of Flow-Matching Models for Generation and Inverse Problems
We present a framework for fine-tuning flow-matching generative models to enforce physical constraints and solve inverse problems in scientific systems. Starting from a model trained on low-fidelity or observational data, we apply a differentiable post-training procedure that minimizes weak-form residuals of governing partial differential equations (PDEs), promoting physical consistency and adherence to boundary conditions without distorting the underlying learned distribution. To infer unknown physical inputs, such as source terms, material parameters, or boundary data, we augment the generative process with a learnable latent parameter predictor and propose a joint optimization strategy. The resulting model produces physically valid field solutions alongside plausible estimates of hidden parameters, effectively addressing ill-posed inverse problems in a data-driven yet physicsaware manner. We validate our method on canonical PDE benchmarks, demonstrating improved satisfaction of PDE constraints and accurate recovery of latent coefficients. Our approach bridges generative modelling and scientific inference, opening new avenues for simulation-augmented discovery and data-efficient modelling of physical systems.
♻ ☆ Diffusion models for multivariate subsurface generation and efficient probabilistic inversion
Diffusion models offer stable training and state-of-the-art performance for deep generative modeling tasks. Here, we consider their use in the context of multivariate subsurface modeling and probabilistic inversion. We first demonstrate that diffusion models enhance multivariate modeling capabilities compared to variational autoencoders and generative adversarial networks. In diffusion modeling, the generative process involves a comparatively large number of time steps with update rules that can be modified to account for conditioning data. We propose different corrections to the popular Diffusion Posterior Sampling approach by Chung et al. (2023). In particular, we introduce a likelihood approximation accounting for the noise-contamination that is inherent in diffusion modeling. We assess performance in a multivariate geological scenario involving facies and correlated acoustic impedance. Conditional modeling is demonstrated using both local hard data (well logs) and nonlinear geophysics (fullstack seismic data). Our tests show significantly improved statistical robustness, enhanced sampling of the posterior probability density function and reduced computational costs, compared to the original approach. The method can be used with both hard and indirect conditioning data, individually or simultaneously. As the inversion is included within the diffusion process, it is faster than other methods requiring an outer-loop around the generative model, such as Markov chain Monte Carlo.
comment: 35 p., 16 figs. This updated version corrects an error with the analysis of the denoising scores' magnitudes in the results section. The discussion and conclusions of our study remain unchanged. The scores' trends were erroneously reported with inverted time-step order, now fixed in Figure 5a and b (now with the correct increasing trends) and in the corresponding analysis in the Results section
♻ ☆ Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity ICLR 2022
The success of deep ensembles on improving predictive performance, uncertainty estimation, and out-of-distribution robustness has been extensively studied in the machine learning literature. Albeit the promising results, naively training multiple deep neural networks and combining their predictions at inference leads to prohibitive computational costs and memory requirements. Recently proposed efficient ensemble approaches reach the performance of the traditional deep ensembles with significantly lower costs. However, the training resources required by these approaches are still at least the same as training a single dense model. In this work, we draw a unique connection between sparse neural network training and deep ensembles, yielding a novel efficient ensemble learning framework called FreeTickets. Instead of training multiple dense networks and averaging them, we directly train sparse subnetworks from scratch and extract diverse yet accurate subnetworks during this efficient, sparse-to-sparse training. Our framework, FreeTickets, is defined as the ensemble of these relatively cheap sparse subnetworks. Despite being an ensemble method, FreeTickets has even fewer parameters and training FLOPs than a single dense model. This seemingly counter-intuitive outcome is due to the ultra training/inference efficiency of dynamic sparse training. FreeTickets surpasses the dense baseline in all the following criteria: prediction accuracy, uncertainty estimation, out-of-distribution (OoD) robustness, as well as efficiency for both training and inference. Impressively, FreeTickets outperforms the naive deep ensemble with ResNet50 on ImageNet using around only 1/5 of the training FLOPs required by the latter. We have released our source code at https://github.com/VITA-Group/FreeTickets.
comment: published in International Conference on Learning Representations (ICLR 2022)
♻ ☆ Synchronization on circles and spheres with nonlinear interactions
We consider the dynamics of $n$ points on a sphere in $\mathbb{R}^d$ ($d \geq 2$) which attract each other according to a function $\varphi$ of their inner products. When $\varphi$ is linear ($\varphi(t) = t$), the points converge to a common value (i.e., synchronize) in various connectivity scenarios: this is part of classical work on Kuramoto oscillator networks. When $\varphi$ is exponential ($\varphi(t) = e^{βt}$), these dynamics correspond to a limit of how idealized transformers process data, as described by Geshkovski et al. (2025). Accordingly, they ask whether synchronization occurs for exponential $\varphi$. The answer depends on the dimension $d$. In the context of consensus for multi-agent control, Markdahl et al. (2018) show that for $d \geq 3$ (spheres), if the interaction graph is connected and $\varphi$ is increasing and convex, then the system synchronizes. We give a separate proof of this result. What is the situation on circles ($d=2$)? First, we show that $\varphi$ being increasing and convex is no longer sufficient (even for complete graphs). Then we identify a new condition under which we do have synchronization on the circle (namely, if the Taylor coefficients of $\varphi'$ are decreasing). As a corollary, this provide synchronization for exponential $\varphi$ with $β\in (0, 1]$. The proofs are based on nonconvex landscape analysis.
comment: 30 pages, 1 figure
♻ ☆ AI-generated data contamination erodes pathological variability and diagnostic reliability
Generative artificial intelligence (AI) is rapidly populating medical records with synthetic content, creating a feedback loop where future models are increasingly at risk of training on uncurated AI-generated data. However, the clinical consequences of this AI-generated data contamination remain unexplored. Here, we show that in the absence of mandatory human verification, this self-referential cycle drives a rapid erosion of pathological variability and diagnostic reliability. By analysing more than 800,000 synthetic data points across clinical text generation, vision-language reporting, and medical image synthesis, we find that models progressively converge toward generic phenotypes regardless of the model architecture. Specifically, rare but critical findings, including pneumothorax and effusions, vanish from the synthetic content generated by AI models, while demographic representations skew heavily toward middle-aged male phenotypes. Crucially, this degradation is masked by false diagnostic confidence; models continue to issue reassuring reports while failing to detect life-threatening pathology, with false reassurance rates tripling to 40%. Blinded physician evaluation confirms that this decoupling of confidence and accuracy renders AI-generated documentation clinically useless after just two generations. We systematically evaluate three mitigation strategies, finding that while synthetic volume scaling fails to prevent collapse, mixing real data with quality-aware filtering effectively preserves diversity. Ultimately, our results suggest that without policy-mandated human oversight, the deployment of generative AI threatens to degrade the very healthcare data ecosystems it relies upon.
comment: *Corresponding author: Dianbo Liu (dianbo@nus.edu.sg)
♻ ☆ Universal Multi-Domain Translation via Diffusion Routers ICLR 2026
Multi-domain translation (MDT) aims to learn translations between multiple domains, yet existing approaches either require fully aligned tuples or can only handle domain pairs seen in training, limiting their practicality and excluding many cross-domain mappings. We introduce universal MDT (UMDT), a generalization of MDT that seeks to translate between any pair of $K$ domains using only $K-1$ paired datasets with a central domain. To tackle this problem, we propose Diffusion Router (DR), a unified diffusion-based framework that models all central$\leftrightarrow$non-central translations with a single noise predictor conditioned on the source and target domain labels. DR enables indirect non-central translations by routing through the central domain. We further introduce a novel scalable learning strategy with a variational-bound objective and an efficient Tweedie refinement procedure to support direct non-central mappings. Through evaluation on three large-scale UMDT benchmarks, DR achieves state-of-the-art results for both indirect and direct translations, while lowering sampling cost and unlocking novel tasks such as sketch$\leftrightarrow$segmentation. These results establish DR as a scalable and versatile framework for universal translation across multiple domains.
comment: Accepted in ICLR 2026
♻ ☆ Real-World Adversarial Attacks on RF-Based Drone Detectors
Radio frequency (RF) based systems are increasingly used to detect drones by analyzing their RF signal patterns, converting them into spectrogram images which are processed by object detection models. Existing RF attacks against image based models alter digital features, making over-the-air (OTA) implementation difficult due to the challenge of converting digital perturbations to transmittable waveforms that may introduce synchronization errors and interference, and encounter hardware limitations. We present the first physical attack on RF image based drone detectors, optimizing class-specific universal complex baseband (I/Q) perturbation waveforms that are transmitted alongside legitimate communications. We evaluated the attack using RF recordings and OTA experiments with four types of drones. Our results show that modest, structured I/Q perturbations are compatible with standard RF chains and reliably reduce target drone detection while preserving detection of legitimate drones.
♻ ☆ SAC-GLAM: Improving Online RL for LLM agents with Soft Actor-Critic and Hindsight Relabeling
The past years have seen Large Language Models (LLMs) strive not only as generative models but also as agents solving textual sequential decision-making tasks. When facing complex environments where their zero-shot abilities are insufficient, recent work showed online Reinforcement Learning (RL) could be used for the LLM agent to discover and learn efficient strategies interactively. However, most prior work sticks to on-policy algorithms, which greatly reduces the scope of methods such agents could use for both exploration and exploitation, such as experience replay and hindsight relabeling. Yet, such methods may be key for LLM learning agents, and in particular when designing autonomous intrinsically motivated agents sampling and pursuing their own goals (i.e. autotelic agents). This paper presents and studies an adaptation of Soft Actor-Critic and hindsight relabeling to LLM agents. Our method not only paves the path towards autotelic LLM agents that learn online but can also outperform on-policy methods in more classic multi-goal RL environments.
♻ ☆ CaTs and DAGs: Integrating Directed Acyclic Graphs with Transformers for Causally Constrained Predictions
Artificial Neural Networks (ANNs), including fully-connected networks and transformers, are highly flexible and powerful function approximators, widely applied in fields like computer vision and natural language processing. However, their inability to inherently respect causal structures can limit their robustness, making them vulnerable to covariate shift and difficult to interpret/explain. This poses significant challenges for their reliability in real-world applications. In this paper, we introduce Causal Transformers (CaTs), a general model class designed to operate under predefined causal constraints, as specified by a Directed Acyclic Graph (DAG). CaTs retain the powerful function approximation abilities of traditional neural networks while adhering to the underlying structural constraints, improving robustness, reliability, and interpretability at inference time. This approach opens new avenues for deploying neural networks in more demanding, real-world scenarios where robustness and explainability is critical.
♻ ☆ Convergence of energy-based learning in linear resistive networks
Energy-based learning algorithms are alternatives to backpropagation and are well-suited to distributed implementations in analog electronic devices. However, a rigorous theory of convergence is lacking. We make a first step in this direction by analysing a particular energybased learning algorithm, Contrastive Learning, applied to a network of linear adjustable resistors. It is shown that, in this setup, Contrastive Learning is equivalent to projected gradient descent on a convex function with Lipschitz continuous gradient, giving a guarantee of convergence of the algorithm for a range of stepsizes. This convergence result is then extended to a stochastic variant of Contrastive Learning.
♻ ☆ Dual-Prototype Disentanglement: A Context-Aware Enhancement Framework for Time Series Forecasting
Time series forecasting has witnessed significant progress with deep learning. While prevailing approaches enhance forecasting performance by modifying architectures or introducing novel enhancement strategies, they often fail to dynamically disentangle and leverage the complex, intertwined temporal patterns inherent in time series, thus resulting in the learning of static, averaged representations that lack context-aware capabilities. To address this, we propose the Dual-Prototype Adaptive Disentanglement framework (DPAD), a model-agnostic auxiliary method that equips forecasting models with the ability of pattern disentanglement and context-aware adaptation. Specifically, we construct a Dynamic Dual-Prototype bank (DDP), comprising a common pattern bank with strong temporal priors to capture prevailing trend or seasonal patterns, and a rare pattern bank dynamically memorizing critical yet infrequent events, and then an Dual-Path Context-aware routing (DPC) mechanism is proposed to enhance outputs with selectively retrieved context-specific pattern representations from the DDP. Additionally, we introduce a Disentanglement-Guided Loss (DGLoss) to ensure that each prototype bank specializes in its designated role while maintaining comprehensive coverage. Comprehensive experiments demonstrate that DPAD consistently improves forecasting performance and reliability of state-of-the-art models across diverse real-world benchmarks.
♻ ☆ Beyond Classical Attention: Quantum Attention for Scalable Computation
As large language models (LLMs) demonstrate outstanding performance across various tasks, attention-driven models have profoundly transformed the field of machine learning. Since attention computations account for the primary computational overhead in both model inference and training, efficiently computing attention matrices has become one of the core challenges in accelerating large language models. It is well-known that quantum machines possess computational advantages over classical machines, and the role of quantum computing in LLMs remains largely unexplored. In this work, we focus on leveraging the Grover search algorithm to efficiently compute a sparse attention matrix. Through comparisons with classical algorithms, we demonstrate that our method achieves quantum acceleration in polynomial time. Additionally, we observe that the generated quantum attention matrices naturally exhibit low-rank structures, providing further theoretical support for efficient modeling. Moreover, within the specific context of attention matrix computation, we conduct a systematic and detailed analysis of the error and time complexity of the proposed algorithm.
♻ ☆ Monotone and Separable Set Functions: Characterizations and Neural Models
Motivated by applications for set containment problems, we consider the following fundamental problem: can we design set-to-vector functions so that the natural partial order on sets is preserved, namely $S\subseteq T \text{ if and only if } F(S)\leq F(T) $. We call functions satisfying this property Monotone and Separating (MAS) set functions. % We establish lower and upper bounds for the vector dimension necessary to obtain MAS functions, as a function of the cardinality of the multisets and the underlying ground set. In the important case of an infinite ground set, we show that MAS functions do not exist, but provide a model called our which provably enjoys a relaxed MAS property we name "weakly MAS" and is stable in the sense of Holder continuity. We also show that MAS functions can be used to construct universal models that are monotone by construction and can approximate all monotone set functions. Experimentally, we consider a variety of set containment tasks. The experiments show the benefit of using our our model, in comparison with standard set models which do not incorporate set containment as an inductive bias. Our code is available in https://github.com/yonatansverdlov/Monotone-Embedding.
♻ ☆ Improved Regret Bounds for Linear Bandits with Heavy-Tailed Rewards
We study stochastic linear bandits with heavy-tailed rewards, where the rewards have a finite $(1+ε)$-absolute central moment bounded by $\upsilon$ for some $ε\in (0,1]$. We improve both upper and lower bounds on the minimax regret compared to prior work. When $\upsilon = \mathcal{O}(1)$, the best prior known regret upper bound is $\tilde{\mathcal{O}}(d T^{\frac{1}{1+ε}})$. While a lower with the same scaling has been given, it relies on a construction using $\upsilon = \mathcal{O}(d)$, and adapting the construction to the bounded-moment regime with $\upsilon = \mathcal{O}(1)$ yields only a $Ω(d^{\fracε{1+ε}} T^{\frac{1}{1+ε}})$ lower bound. This matches the known rate for multi-armed bandits and is generally loose for linear bandits, in particular being $\sqrt{d}$ below the optimal rate in the finite-variance case ($ε= 1$). We propose a new elimination-based algorithm guided by experimental design, which achieves regret $\tilde{\mathcal{O}}(d^{\frac{1+3ε}{2(1+ε)}} T^{\frac{1}{1+ε}})$, thus improving the dependence on $d$ for all $ε\in (0,1)$ and recovering a known optimal result for $ε= 1$. We also establish a lower bound of $Ω(d^{\frac{2ε}{1+ε}} T^{\frac{1}{1+ε}})$, which strictly improves upon the multi-armed bandit rate and highlights the hardness of heavy-tailed linear bandit problems. For finite action sets, we derive similarly improved upper and lower bounds for regret. Finally, we provide action set dependent regret upper bounds showing that for some geometries, such as $l_p$-norm balls for $p \le 1 + ε$, we can further reduce the dependence on $d$, and we can handle infinite-dimensional settings via the kernel trick, in particular establishing new regret bounds for the Matérn kernel that are the first to be sublinear for all $ε\in (0, 1]$.
♻ ☆ Token Caching for Diffusion Transformer Acceleration
Diffusion transformers have gained substantial interest in diffusion generative modeling due to their outstanding performance. However, their computational demands, particularly the quadratic complexity of attention mechanisms and multi-step inference processes, present substantial bottlenecks that limit their practical applications. To address these challenges, we propose TokenCache, a novel acceleration method that leverages the token-based multi-block architecture of transformers to reduce redundant computations. TokenCache tackles three critical questions: (1) Which tokens should be pruned and reused by the caching mechanism to eliminate redundancy? (2) Which blocks should be targeted for efficient caching? (3) At which time steps should caching be applied to balance speed and quality? In response to these challenges, TokenCache introduces a Cache Predictor that hierarchically addresses these issues by (1) Token pruning: assigning importance scores to each token to determine which tokens to prune and reuse; (2) Block selection: allocating pruning ratio to each block to adaptively select blocks for caching; (3) Temporal Scheduling: deciding at which time steps to apply caching strategies. Experimental results across various models demonstrate that TokenCache achieves an effective trade-off between generation quality and inference speed for diffusion transformers.
♻ ☆ NIMO: a Nonlinear Interpretable MOdel ICLR 2026
Deep learning has achieved remarkable success across many domains, but it has also created a growing demand for interpretability in model predictions. Although many explainable machine learning methods have been proposed, post-hoc explanations lack guaranteed fidelity and are sensitive to hyperparameter choices, highlighting the appeal of inherently interpretable models. For example, linear regression provides clear feature effects through its coefficients. However, such models are often outperformed by more complex neural networks (NNs) that usually lack inherent interpretability. To address this dilemma, we introduce NIMO, a framework that combines inherent interpretability with the expressive power of neural networks. Building on the simple linear regression, NIMO is able to provide flexible and intelligible feature effects. Relevantly, we develop an optimization method based on parameter elimination, that allows for optimizing the NN parameters and linear coefficients effectively and efficiently. By relying on adaptive ridge regression we can easily incorporate sparsity as well. We show empirically that our model can provide faithful and intelligible feature effects while maintaining good predictive performance.
comment: ICLR 2026
♻ ☆ Large Multimodal Models for Low-Resource Languages: A Survey
In this survey, we systematically analyze techniques used to adapt large multimodal models (LMMs) for low-resource (LR) languages, examining approaches ranging from visual enhancement and data creation to cross-modal transfer and fusion strategies. Through a comprehensive analysis of 117 studies across 96 LR languages, we identify key patterns in how researchers tackle the challenges of limited data and computational resources. We categorize works into resource-oriented and method-oriented contributions, further dividing contributions into relevant sub-categories. We compare method-oriented contributions in terms of performance and efficiency, discussing benefits and limitations of representative studies. We find that visual information often serves as a crucial bridge for improving model performance in LR settings, though significant challenges remain in areas such as hallucination mitigation and computational efficiency. In summary, we provide researchers with a clear understanding of current approaches and remaining challenges in making LMMs more accessible to speakers of LR (understudied) languages. We complement our survey with an open-source repository available at: https://github.com/marianlupascu/LMM4LRL-Survey.
comment: Accepted in Information Fusion
♻ ☆ Bridging Training and Merging Through Momentum-Aware Optimization
Training large neural networks and merging task specific models both exploit low rank structure and require parameter importance estimation, yet these challenges have been pursued in isolation. Current workflows compute curvature information during training, discard it, then recompute similar information for merging wasting computation and discarding valuable trajectory data. We introduce a unified framework that maintains factorized momentum and curvature statistics during training, then reuses this information for geometry aware model composition. The proposed method incurs modest memory overhead (approximately 30% over AdamW) to accumulate task saliency scores that enable curvature aware merging. These scores, computed as a byproduct of optimization, provide importance estimates comparable to post hoc Fisher computation while producing merge-ready models directly from training. We establish convergence guarantees for non-convex objectives with approximation error bounded by gradient singular value decay. On natural language understanding benchmarks, curvature aware parameter selection outperforms magnitude only baselines across all sparsity levels, with multi-task merging improving 1.6% over strong baselines. The proposed framework exhibits rank-invariant convergence and superior hyperparameter robustness compared to existing low-rank optimizers. By treating the optimization trajectory as a reusable asset rather than discarding it, our approach demonstrates that training-time curvature information suffices for effective model composition, enabling a unified training merging pipeline.
comment: Paper submitted to INS and revised. Currently revision is under review as of 27th Jan 2026
♻ ☆ Federated Joint Learning for Domain and Class Generalization ICASSP 2026
Efficient fine-tuning of visual-language models like CLIP has become crucial due to their large-scale parameter size and extensive pretraining requirements. Existing methods typically address either the issue of unseen classes or unseen domains in isolation, without considering a joint framework for both. In this paper, we propose \textbf{Fed}erated Joint Learning for \textbf{D}omain and \textbf{C}lass \textbf{G}eneralization, termed \textbf{FedDCG}, a novel approach that addresses both class and domain generalization in federated learning settings. Our method introduces a domain grouping strategy where class-generalized networks are trained within each group to prevent decision boundary confusion. During inference, we aggregate class-generalized results based on domain similarity, effectively integrating knowledge from both class and domain generalization. Specifically, a learnable network is employed to enhance class generalization capabilities, and a decoupling mechanism separates general and domain-specific knowledge, improving generalization to unseen domains. Extensive experiments across various datasets show that \textbf{FedDCG} outperforms state-of-the-art baselines in terms of accuracy and robustness.
comment: ICASSP 2026
♻ ☆ Astra: General Interactive World Model with Autoregressive Denoising ICLR 2026
Recent advances in diffusion transformers have empowered video generation models to generate high-quality video clips from texts or images. However, world models with the ability to predict long-horizon futures from past observations and actions remain underexplored, especially for general-purpose scenarios and various forms of actions. To bridge this gap, we introduce Astra, an interactive general world model that generates real-world futures for diverse scenarios (e.g., autonomous driving, robot grasping) with precise action interactions (e.g., camera motion, robot action). We propose an autoregressive denoising architecture and use temporal causal attention to aggregate past observations and support streaming outputs. We use a noise-augmented history memory to avoid over-reliance on past frames to balance responsiveness with temporal coherence. For precise action control, we introduce an action-aware adapter that directly injects action signals into the denoising process. We further develop a mixture of action experts that dynamically route heterogeneous action modalities, enhancing versatility across diverse real-world tasks such as exploration, manipulation, and camera control. Astra achieves interactive, consistent, and general long-term video prediction and supports various forms of interactions. Experiments across multiple datasets demonstrate the improvements of Astra in fidelity, long-range prediction, and action alignment over existing state-of-the-art world models.
comment: Accepted in ICLR 2026. Code is available at: https://github.com/EternalEvan/Astra
♻ ☆ Twirlator: A Pipeline for Analyzing Subgroup Symmetry Effects in Quantum Machine Learning Ansatzes
Symmetry is a strong inductive bias in geometric deep learning and its quantum counterpart, and has attracted increasing attention for improving the trainability of QML models. Yet incorporating symmetries into quantum machine learning (QML) ansatzes is not free: symmetrization often adds gates and constrains the circuits. To understand these effects, we present Twirlator, which is an automated pipeline that symmetrizes parameterized QML ansatzes and quantifies the trade-offs as the amount of symmetry increases. Twirlator models partial symmetries by the size of a subgroup of the symmetric group, enabling analysis between the ``no symmetry'' and ``full symmetry'' extremes. Across 19 common ansatz patterns, Twirlator symmetrizes circuits with respect to any subgroup of $S_n$ and measures (1) generator drift, (2) circuit overhead (depth and size), and (3) expressibility and entangling capability. The experimental evaluation focuses on subgroups of $S_4$ and $S_5$. Twirlator reveals that larger subgroups typically increase circuit overhead, reduce expressibility, and often increase entangling capability. The pipeline and results provide practical guidance for selecting ansatz patterns and symmetry levels that balance hardware cost and model performance in symmetry-aware QML applications.
comment: 8 pages; 7 figures; presented at the 7th International Workshop on Quantum Software Engineering (Q-SE 2026)
♻ ☆ AECBench: A Hierarchical Benchmark for Knowledge Evaluation of Large Language Models in the AEC Field
Large language models (LLMs), as a novel information technology, are seeing increasing adoption in the Architecture, Engineering, and Construction (AEC) field. They have shown their potential to streamline processes throughout the building lifecycle. However, the robustness and reliability of LLMs in such a specialized and safety-critical domain remain to be evaluated. To address this challenge, this paper establishes AECBench, a comprehensive benchmark designed to quantify the strengths and limitations of current LLMs in the AEC domain. The benchmark features a five-level, cognition-oriented evaluation framework (i.e., Knowledge Memorization, Understanding, Reasoning, Calculation, and Application). Based on the framework, 23 representative evaluation tasks were defined. These tasks were derived from authentic AEC practice, with scope ranging from codes retrieval to specialized documents generation. Subsequently, a 4,800-question dataset encompassing diverse formats, including open-ended questions, was crafted primarily by engineers and validated through a two-round expert review. Furthermore, an "LLM-as-a-Judge" approach was introduced to provide a scalable and consistent methodology for evaluating complex, long-form responses leveraging expert-derived rubrics. Through the evaluation of nine LLMs, a clear performance decline across five cognitive levels was revealed. Despite demonstrating proficiency in foundational tasks at the Knowledge Memorization and Understanding levels, the models showed significant performance deficits, particularly in interpreting knowledge from tables in building codes, executing complex reasoning and calculation, and generating domain-specific documents. Consequently, this study lays the groundwork for future research and development aimed at the robust and reliable integration of LLMs into safety-critical engineering practices.
♻ ☆ The LLM Data Auditor: A Metric-oriented Survey on Quality and Trustworthiness in Evaluating Synthetic Data
Large Language Models (LLMs) have emerged as powerful tools for generating data across various modalities. By transforming data from a scarce resource into a controllable asset, LLMs mitigate the bottlenecks imposed by the acquisition costs of real-world data for model training, evaluation, and system iteration. However, ensuring the high quality of LLM-generated synthetic data remains a critical challenge. Existing research primarily focuses on generation methodologies, with limited direct attention to the quality of the resulting data. Furthermore, most studies are restricted to single modalities, lacking a unified perspective across different data types. To bridge this gap, we propose the \textbf{LLM Data Auditor framework}. In this framework, we first describe how LLMs are utilized to generate data across six distinct modalities. More importantly, we systematically categorize intrinsic metrics for evaluating synthetic data from two dimensions: quality and trustworthiness. This approach shifts the focus from extrinsic evaluation, which relies on downstream task performance, to the inherent properties of the data itself. Using this evaluation system, we analyze the experimental evaluations of representative generation methods for each modality and identify substantial deficiencies in current evaluation practices. Based on these findings, we offer concrete recommendations for the community to improve the evaluation of data generation. Finally, the framework outlines methodologies for the practical application of synthetic data across different modalities.
♻ ☆ Damper-B-PINN: Damper Characteristics-Based Bayesian Physics-Informed Neural Network for Vehicle State Estimation IEEE
Accurate state estimation is fundamental to intelligent vehicles. Wheel load, one of the most important chassis states, serves as an essential input for advanced driver assistance systems (ADAS) and exerts a direct influence on vehicle stability and safety. However, wheel load estimation remains challenging due to the complexity of chassis modeling and the susceptibility of nonlinear systems to noise. To address these issues, this paper first introduces a refined suspension linkage-level modeling approach that constructs a nonlinear instantaneous dynamic model by explicitly considering the complex geometric structure of the suspension. Building upon this, we propose a damper characteristics-based Bayesian physics-informed neural network (Damper-B-PINN) framework to estimate dynamic wheel load, which leverages the suspension dynamics as physical guidance of PINN while employing Bayesian inference to mitigate the effects of system noise and uncertainty. Moreover, a damper-characteristic physics conditioning (DPC) module is designed for embedding physical prior. The proposed Damper-B-PINN is evaluated using both high-fidelity simulation datasets generated by CarSim software and real-world datasets collected from a Formula Student race car. Experimental results demonstrate that our Damper-B-PINN consistently outperforms existing methods across various test conditions, particularly extreme ones. These findings highlight the potential of the proposed Damper-B-PINN framework to enhance the accuracy and robustness of dynamic wheel load estimation, thereby improving the reliability and safety of ADAS applications.
comment: 8 pages, 8 figures, 3 tables, accepted for IEEE Intelligent Vehicles (IV) Symposium 2026
♻ ☆ Task-Specific Directions: Definition, Exploration, and Utilization in Parameter Efficient Fine-Tuning
Large language models demonstrate impressive performance on downstream tasks, yet they require extensive resource consumption when fully fine-tuning all parameters. To mitigate this, Parameter Efficient Fine-Tuning (PEFT) strategies, such as LoRA, have been developed. In this paper, we delve into the concept of task-specific directions (TSDs), which are critical for transitioning large models from pretrained states to task-specific enhancements in PEFT. We propose a framework to clearly define these directions and explore their properties and practical utilization challenges. We then introduce a novel approach, LoRA-Dash, which aims to maximize the impact of TSDs during the fine-tuning process, thereby enhancing model performance on targeted tasks. Additionally, based on our exploration of TSD, we focus on an important issue in PEFT: the initialization of LoRA. While some works have pointed out the significance of initialization for LoRA's performance and proposed various strategies, these methods are often empirical and not task-specific. To address this issue, we propose LoRA-Init. Starting from TSD, we identify the directions that require the most adjustment during fine-tuning for downstream tasks. By initializing the matrices in LoRA with these directions, LoRA-Init significantly enhances LoRA's performance. Moreover, we can combine LoRA-Dash and LoRA-Init to create the final version of LoRA based on TSDs, which we refer to as LoRA-TSD. Extensive experiments have conclusively demonstrated the effectiveness of these methods, and in-depth analyses further reveal the underlying mechanisms behind their success.
comment: 2026, TPAMI, Codes in https://github.com/Chongjie-Si/Subspace-Tuning
♻ ☆ Adaptive Regularization for Large-Scale Sparse Feature Embedding Models
The one-epoch overfitting problem has drawn widespread attention, especially in CTR and CVR estimation models in search, advertising, and recommendation domains. These models which rely heavily on large-scale sparse categorical features, often suffer a significant decline in performance when trained for multiple epochs. Although recent studies have proposed heuristic solutions, the fundamental cause of this phenomenon remains unclear. In this work, we present a theoretical explanation grounded in Rademacher complexity, supported by empirical experiments, to explain why overfitting occurs in models with large-scale sparse categorical features. Based on this analysis, we propose a regularization method that constrains the norm budget of embedding layers adaptively. Our approach not only prevents the severe performance degradation observed during multi-epoch training, but also improves model performance within a single epoch. This method has already been deployed in online production systems.
♻ ☆ Fair Algorithms with Probing for Multi-Agent Multi-Armed Bandits
We propose a multi-agent multi-armed bandit (MA-MAB) framework aimed at ensuring fair outcomes across agents while maximizing overall system performance. A key challenge in this setting is decision-making under limited information about arm rewards. To address this, we introduce a novel probing framework that strategically gathers information about selected arms before allocation. In the offline setting, where reward distributions are known, we leverage submodular properties to design a greedy probing algorithm with a provable performance bound. For the more complex online setting, we develop an algorithm that achieves sublinear regret while maintaining fairness. Extensive experiments on synthetic and real-world datasets show that our approach outperforms baseline methods, achieving better fairness and efficiency.
♻ ☆ Single Index Bandits: Generalized Linear Contextual Bandits with Unknown Reward Functions ICLR 2026
Generalized linear bandits have been extensively studied due to their broad applicability in real-world online decision-making problems. However, these methods typically assume that the expected reward function is known to the users, an assumption that is often unrealistic in practice. Misspecification of this link function can lead to the failure of all existing algorithms. In this work, we address this critical limitation by introducing a new problem of generalized linear bandits with unknown reward functions, also known as single index bandits. We first consider the case where the unknown reward function is monotonically increasing, and propose two novel and efficient algorithms, STOR and ESTOR, that achieve decent regrets under standard assumptions. Notably, our ESTOR can obtain the nearly optimal regret bound $\tilde{O}_T(\sqrt{T})$ in terms of the time horizon $T$. We then extend our methods to the high-dimensional sparse setting and show that the same regret rate can be attained with the sparsity index. Next, we introduce GSTOR, an algorithm that is agnostic to general reward functions, and establish regret bounds under a Gaussian design assumption. Finally, we validate the efficiency and effectiveness of our algorithms through experiments on both synthetic and real-world datasets.
comment: The Fourteenth International Conference on Learning Representations (ICLR 2026)
♻ ☆ LoaQ: Layer-wise Output Approximation Quantization
A natural and intuitive idea in model quantization is to approximate each component's quantized output to match its original. Motivated by this idea, most layer-wise post-training quantization (PTQ) methods focus on weight approximation at the linear-layer level. As a result, this local objective often yields insufficient approximations and practical deviations from the guiding intuition. Recent work has improved the approximation of linear-layer outputs within the layer-wise PTQ framework, but such refinements remain inadequate for achieving alignment with the full-model output. Based on a deeper understanding of the structure of mainstream LLMs, we propose LoaQ, which incorporates output-matching factors when quantizing linear layers within the layer-wise PTQ framework. It better aligns with this intuition and can feature a simple closed-form solution, making it orthogonal to existing techniques and readily integrable into existing quantization pipelines. Experiments on the LLaMA and Qwen model families demonstrate that LoaQ performs effectively in both weight-only and weight-activation quantization. By integrating seamlessly with existing quantization strategies, it further enhances overall quantization quality and shows strong potential to advance the frontier of post-training quantization.
comment: under review
♻ ☆ SpecBridge: Bridging Mass Spectrometry and Molecular Representations via Cross-Modal Alignment
Small-molecule identification from tandem mass spectrometry (MS/MS) remains a bottleneck in untargeted settings where spectral libraries are incomplete. While deep learning offers a solution, current approaches typically fall into two extremes: explicit generative models that construct molecular graphs atom-by-atom, or joint contrastive models that learn cross-modal subspaces from scratch. We introduce SpecBridge, a novel implicit alignment framework that treats structure identification as a geometric alignment problem. SpecBridge fine-tunes a self-supervised spectral encoder (DreaMS) to project directly into the latent space of a frozen molecular foundation model (ChemBERTa), and then performs retrieval by cosine similarity to a fixed bank of precomputed molecular embeddings. Across MassSpecGym, Spectraverse, and MSnLib benchmarks, SpecBridge improves top-1 retrieval accuracy by roughly 20-25% relative to strong neural baselines, while keeping the number of trainable parameters small. These results suggest that aligning to frozen foundation models is a practical, stable alternative to designing new architectures from scratch. The code for SpecBridge is released at https://github.com/HassounLab/SpecBridge.
comment: preprint
♻ ☆ Holdout-Loss-Based Data Selection for LLM Finetuning via In-Context Learning
Fine-tuning large pretrained language models is a common approach for aligning them with human preferences, but noisy or off-target examples can dilute supervision. While small, well-chosen datasets often match the performance of much larger ones, systematic and efficient ways to identify high-value training data remain underexplored. Many current methods rely on heuristics or expensive retraining. We present a principled, resource-efficient framework for data selection and reweighting. At its core is an In-Context Approximation (ICA) that estimates the holdout loss a model would incur after training on a candidate example by conditioning on a small, curated holdout set in context. ICA requires no reference model and no additional finetuning. We define the resulting estimate as the ICA score, and derive per-example weights that dynamically reweight gradient updates as model parameters evolve. Across SFT, DPO, and SimPO, and over diverse backbones and datasets, ICA-based reweighting consistently improves model alignment with minimal overhead. We analyze sensitivity to score update frequency and the number of in-context holdout examples. We also discuss limitations in rapidly drifting on-policy settings, highlighting directions for future work. Code and prompts will be released.
♻ ☆ Image deblurring based on lightweight multi-information fusion network
Recently, deep learning based image deblurring has been well developed. However, exploiting the detailed image features in a deep learning framework always requires a mass of parameters, which inevitably makes the network suffer from high computational burden. To solve this problem, we propose a lightweight multiinformation fusion network (LMFN) for image deblurring. The proposed LMFN is designed as an encoder-decoder architecture. In the encoding stage, the image feature is reduced to various smallscale spaces for multi-scale information extraction and fusion without a large amount of information loss. Then, a distillation network is used in the decoding stage, which allows the network benefit the most from residual learning while remaining sufficiently lightweight. Meanwhile, an information fusion strategy between distillation modules and feature channels is also carried out by attention mechanism. Through fusing different information in the proposed approach, our network can achieve state-of-the-art image deblurring result with smaller number of parameters and outperforms existing methods in model complexity.
♻ ☆ Causal Effect Estimation under Networked Interference without Networked Unconfoundedness Assumption
Estimating causal effects under networked interference from observational data is a crucial yet challenging problem. Most existing methods mainly rely on the networked unconfoundedness assumption, which guarantees the identification of networked effects. However, this assumption is often violated due to the latent confounders inherent in observational data, thereby hindering the identification of networked effects. To address this issue, we leverage the rich interaction patterns between units in networks, which provide valuable information for recovering these latent confounders. Building on this insight, we develop a confounder recovery framework that explicitly characterizes three categories of latent confounders in networked settings: those affecting only the unit, those affecting only the unit's neighbors, and those influencing both. Based on this framework, we design a networked effect estimator using identifiable representation learning techniques. From a theoretical standpoint, we prove the identifiability of all three types of latent confounders and, by leveraging the recovered confounders, establish a formal identification result for networked effects. Extensive experiments validate our theoretical findings and demonstrate the effectiveness of the proposed method.
comment: arXiv admin note: text overlap with arXiv:2405.03342
♻ ☆ Reinforcement Learning Fine-Tuning Enhances Activation Intensity and Diversity in the Internal Circuitry of LLMs
Large language models (LLMs) acquire extensive prior knowledge through large-scale pretraining and can be further enhanced via supervised fine-tuning (SFT) or reinforcement learning (RL)-based post-training. A growing body of evidence has shown that RL fine-tuning improves the capability of LLMs beyond what SFT alone achieves. However, the underlying mechanisms why RL fine-tuning is able to enhance the capability of various LLMs with distinct intrinsic characteristics remain underexplored. In this study, we draw inspiration from prior work on edge attribution patching (EAP) to investigate the internal differences of LLMs before and after RL fine-tuning. Our analysis across multiple model families and mathematical datasets shows two robust effects of online RL post-training: (i) an overall increase in average activation intensity, indicating that more internal pathways are engaged and their signals become stronger, and (ii) greater diversity in activation patterns, reflected by higher entropy and less concentrated edge distributions. These changes suggest that RL reshapes information flow to be both more redundant and more flexible, which may explain its advantage in mathematical generalization. Notably, models fine-tuned with Direct Preference Optimization (DPO) deviate from these trends, exhibiting substantially weaker or inconsistent internal changes compared to PPO- and GRPO-based training. Together, our findings provide a unified view of how RL fine-tuning systematically alters the internal circuitry of LLMs and highlight the methodological distinctions between online RL and preference-based approaches. Our code is open source at https://github.com/tsinghua-fib-lab/llm_rl_probing_analysis.
♻ ☆ Pseudo-Nonlinear Data Augmentation: A Constrained Energy Minimization Viewpoint ICLR 2026
We propose a simple yet novel data augmentation method for general data modalities based on energy-based modeling and principles from information geometry. Unlike most existing learning-based data augmentation methods, which rely on learning latent representations with generative models, our proposed framework enables an intuitive construction of a geometrically aware latent space that represents the structure of the data itself, supporting efficient and explicit encoding and decoding procedures. We then present and discuss how to design latent spaces that will subsequently control the augmentation with the proposed algorithm. Empirical results demonstrate that our data augmentation method achieves competitive performance in downstream tasks compared to other baselines, while offering fine-grained controllability that is lacking in the existing literature.
comment: Accepted at the 14th International Conference on Learning Representations (ICLR 2026)
♻ ☆ Endless Terminals: Scaling RL Environments for Terminal Agents
Environments are the bottleneck for self-improving agents. Current terminal benchmarks were built for evaluation, not training; reinforcement learning requires a scalable pipeline, not just a dataset. We introduce Endless Terminals, a fully autonomous pipeline that procedurally generates terminal-use tasks without human annotation. The pipeline has four stages: generating diverse task descriptions, building and validating containerized environments, producing completion tests, and filtering for solvability. From this pipeline we obtain 3255 tasks spanning file operations, log management, data processing, scripting, and database operations. We train agents using vanilla PPO with binary episode level rewards and a minimal interaction loop: no retrieval, multi-agent coordination, or specialized tools. Despite this simplicity, models trained on Endless Terminals show substantial gains: on our held-out dev set, Llama-3.2-3B improves from 4.0% to 18.2%, Qwen2.5-7B from 10.7% to 53.3%, and Qwen3-8B-openthinker-sft from 42.6% to 59.0%. These improvements transfer to human-curated benchmarks: models trained on Endless Terminals show substantial gains on held out human curated benchmarks: on TerminalBench 2.0, Llama-3.2-3B improves from 0.0% to 2.2%, Qwen2.5-7B from 2.2% to 3.4%, and Qwen3-8B-openthinker-sft from 1.1% to 6.7%, in each case outperforming alternative approaches including models with more complex agentic scaffolds. These results demonstrate that simple RL succeeds when environments scale.
♻ ☆ Exploring Graph Learning Tasks with Pure LLMs: A Comprehensive Benchmark and Investigation
In recent years, large language models (LLMs) have emerged as promising candidates for graph tasks. Many studies leverage natural language to describe graphs and apply LLMs for reasoning, yet most focus narrowly on performance benchmarks without fully comparing LLMs to graph learning models or exploring their broader potential. In this work, we present a comprehensive study of LLMs on graph learning tasks, evaluating both off-the-shelf and instruction-tuned models across a variety of scenarios. Beyond accuracy, we discuss data leakage concerns and computational overhead, and assess their performance under few-shot/zero-shot settings, domain transfer, structural understanding, and robustness. Our findings show that LLMs, particularly those with instruction tuning, greatly outperform traditional graph learning models in few-shot settings, exhibit strong domain transferability, and demonstrate excellent generalization and robustness. Our study highlights the broader capabilities of LLMs in graph learning and provides a foundation for future research.
♻ ☆ Rethinking Benchmarks for Differentially Private Image Classification
We revisit benchmarks for differentially private image classification. We suggest a comprehensive set of benchmarks, allowing researchers to evaluate techniques for differentially private machine learning in a variety of settings, including with and without additional data, in convex settings, and on a variety of qualitatively different datasets. We further test established techniques on these benchmarks in order to see which ideas remain effective in different settings. Finally, we create a publicly available leader board for the community to track progress in differentially private machine learning.
♻ ☆ Streaming-dLLM: Accelerating Diffusion LLMs via Suffix Pruning and Dynamic Decoding
Diffusion Large Language Models (dLLMs) offer a compelling paradigm for natural language generation, leveraging parallel decoding and bidirectional attention to achieve superior global coherence compared to autoregressive models. While recent works have accelerated inference via KV cache reuse or heuristic decoding, they overlook the intrinsic inefficiencies within the block-wise diffusion process. Specifically, they suffer from spatial redundancy by modeling informative-sparse suffix regions uniformly and temporal inefficiency by applying fixed denoising schedules across all the decoding process. To address this, we propose Streaming-dLLM, a training-free framework that streamlines inference across both spatial and temporal dimensions. Spatially, we introduce attenuation guided suffix modeling to approximate the full context by pruning redundant mask tokens. Temporally, we employ a dynamic confidence aware strategy with an early exit mechanism, allowing the model to skip unnecessary iterations for converged tokens. Extensive experiments show that Streaming-dLLM achieves up to 68.2X speedup while maintaining generation quality, highlighting its effectiveness in diffusion decoding. The code is available at https://github.com/xiaoshideta/Streaming-dLLM.
comment: Tech report. Code is available at https://github.com/xiaoshideta/Streaming-dLLM
♻ ☆ Reinforcement Learning to Discover a NorthEast Monsoon Index for Monthly Rainfall Prediction in Thailand
Climate prediction is a challenge due to the intricate spatiotemporal patterns within Earth systems. Global climate indices, such as the El Niño Southern Oscillation, are standard input features for long-term rainfall prediction. However, a significant gap persists regarding local-scale indices capable of improving predictive accuracy in specific regions of Thailand. This paper introduces a novel NorthEast monsoon climate index calculated from sea surface temperature to reflect the climatology of the boreal winter monsoon. To optimise the calculated areas used for this index, a Deep Q-Network reinforcement learning agent explores and selects the most effective rectangles based on their correlation with seasonal rainfall. Rainfall stations were classified into 12 distinct clusters to distinguish rainfall patterns between southern and upper Thailand. Experimental results show that incorporating the optimised index into Long Short-Term Memory models significantly improves long-term monthly rainfall prediction skill in most cluster areas. This approach effectively reduces the Root Mean Square Error for 12-month-ahead forecasts.
♻ ☆ Creating a Causally Grounded Rating Method for Assessing the Robustness of AI Models for Time-Series Forecasting
AI models, including both time-series-specific and general-purpose Foundation Models (FMs), have demonstrated strong potential in time-series forecasting across sectors like finance. However, these models are highly sensitive to input perturbations, which can lead to prediction errors and undermine trust among stakeholders, including investors and analysts. To address this challenge, we propose a causally grounded rating framework to systematically evaluate model robustness by analyzing statistical and confounding biases under various noisy and erroneous input scenarios. Our framework is applied to a large-scale experimental setup involving stock price data from multiple industries and evaluates both uni-modal and multi-modal models, including Vision Transformer-based (ViT) models and FMs. We introduce six types of input perturbations and twelve data distributions to assess model performance. Results indicate that multi-modal and time-series-specific FMs demonstrate greater robustness and accuracy compared to general-purpose models. Further, to validate our framework's usability, we conduct a user study showcasing time-series models' prediction errors along with our computed ratings. The study confirms that our ratings reduce the difficulty for users in comparing the robustness of different models. Our findings can help stakeholders understand model behaviors in terms of robustness and accuracy for better decision-making even without access to the model weights and training data, i.e., black-box settings.
comment: arXiv admin note: text overlap with arXiv:2406.12908
♻ ☆ Power-based Partial Attention: Bridging Linear-Complexity and Full Attention
It is widely accepted from transformer research that "attention is all we need", but the amount of attention required has never been systematically quantified. Is quadratic $O(L^2)$ attention necessary, or is there a sub-quadratic attention mechanism that can achieve comparable performance? To answer this question, we introduce power-based partial attention (PPA), an attention mechanism of order $O(L^{1+p})$, where $0 \leq p \leq 1$, such that $p=0$ corresponds to sliding window attention with linear complexity, and $p=1$ corresponds to full attention. With this attention construction, we can explore how transformer architecture performance varies as a function of the attention scaling behavior controlled by $p$. The overall trend from our experiments shows an S-curve-like behavior where the performance transitions from sliding-window (linear-complexity) attention to full attention over a narrow window of $p$ values, and plateaus as $p$ approaches $1$. In our experiments, we show that there exists $0
comment: 12 pages, 3 figures
♻ ☆ Risk-Sensitive Agent Compositions ICLR 2026
From software development to robot control, modern agentic systems decompose complex objectives into a sequence of subtasks and choose a set of specialized AI agents to complete them. We formalize agentic workflows as directed acyclic graphs, called agent graphs, where edges represent AI agents and paths correspond to feasible compositions of agents. Real-world deployment requires selecting agent compositions that not only maximize task success but also minimize violations of safety, fairness, and privacy requirements which demands a careful analysis of the low-probability (tail) behaviors of compositions of agents. In this work, we consider risk minimization over the set of feasible agent compositions and seek to minimize the value-at-risk and the conditional value-at-risk of the loss distribution of the agent composition where the loss quantifies violations of these requirements. We introduce an efficient algorithm which traverses the agent graph and finds a near-optimal composition of agents. It uses a dynamic programming approach to approximate the value-at-risk of agent compositions by exploiting a union bound. Furthermore, we prove that the approximation is near-optimal asymptotically for a broad class of practical loss functions. We also show how our algorithm can be used to approximate the conditional value-at-risk as a byproduct. To evaluate our framework, we consider a suite of video game-like control benchmarks that require composing several agents trained with reinforcement learning and demonstrate our algorithm's effectiveness in approximating the value-at-risk and identifying the optimal agent composition.
comment: 19 pages, 6 figures. Accepted to ICLR 2026
♻ ☆ FedAdamW: A Communication-Efficient Optimizer with Convergence and Generalization Guarantees for Federated Large Models
AdamW has become one of the most effective optimizers for training large-scale models. We have also observed its effectiveness in the context of federated learning (FL). However, directly applying AdamW in federated learning settings poses significant challenges: (1) due to data heterogeneity, AdamW often yields high variance in the second-moment estimate $\boldsymbol{v}$; (2) the local overfitting of AdamW may cause client drift; and (3) Reinitializing moment estimates ($\boldsymbol{v}$, $\boldsymbol{m}$) at each round slows down convergence. To address these challenges, we propose the first \underline{Fed}erated \underline{AdamW} algorithm, called \texttt{FedAdamW}, for training and fine-tuning various large models. \texttt{FedAdamW} aligns local updates with the global update using both a \textbf{local correction mechanism} and decoupled weight decay to mitigate local overfitting. \texttt{FedAdamW} efficiently aggregates the \texttt{mean} of the second-moment estimates to reduce their variance and reinitialize them. Theoretically, we prove that \texttt{FedAdamW} achieves a linear speedup convergence rate of $\mathcal{O}(\sqrt{(L Δσ_l^2)/(S K R ε^2)}+(L Δ)/R)$ without \textbf{heterogeneity assumption}, where $S$ is the number of participating clients per round, $K$ is the number of local iterations, and $R$ is the total number of communication rounds. We also employ PAC-Bayesian generalization analysis to explain the effectiveness of decoupled weight decay in local training. Empirically, we validate the effectiveness of \texttt{FedAdamW} on language and vision Transformer models. Compared to several baselines, \texttt{FedAdamW} significantly reduces communication rounds and improves test accuracy. The code is available in https://github.com/junkangLiu0/FedAdamW.
♻ ☆ Convolutional Model Trees
A method for creating a forest of model trees to fit samples of a function defined on images is described in several steps: down-sampling the images, determining a tree's hyperplanes, applying convolutions to the hyperplanes to handle small distortions of training images, and creating forests of model trees to increase accuracy and achieve a smooth fit. A 1-to-1 correspondence among pixels of images, coefficients of hyperplanes and coefficients of leaf functions offers the possibility of dealing with larger distortions such as arbitrary rotations or changes of perspective. A theoretical method for smoothing forest outputs to produce a continuously differentiable approximation is described. Within that framework, a training procedure is proved to converge.
comment: 11 pages. 2 figures. This article was extensively revised. Drawings were added. Co-authors were added responsible for cited experimental results and their description: Hongyi Li and Jun Xu. Attention is on distilling a deep net into a model tree with convolutions done on hyperplane and leaf-function coefficients. Distortions of images are treated by similar changes to coefficient locations
♻ ☆ PyCAT4: A Hierarchical Vision Transformer-based Framework for 3D Human Pose Estimation
Recently, a significant improvement in the accuracy of 3D human pose estimation has been achieved by combining convolutional neural networks (CNNs) with pyramid grid alignment feedback loops. Additionally, innovative breakthroughs have been made in the field of computer vision through the adoption of Transformer-based temporal analysis architectures. Given these advancements, this study aims to deeply optimize and improve the existing Pymaf network architecture. The main innovations of this paper include: (1) Introducing a Transformer feature extraction network layer based on self-attention mechanisms to enhance the capture of low-level features; (2) Enhancing the understanding and capture of temporal signals in video sequences through feature temporal fusion techniques; (3) Implementing spatial pyramid structures to achieve multi-scale feature fusion, effectively balancing feature representations differences across different scales. The new PyCAT4 model obtained in this study is validated through experiments on the COCO and 3DPW datasets. The results demonstrate that the proposed improvement strategies significantly enhance the network's detection capability in human pose estimation, further advancing the development of human pose estimation technology.
comment: 10 pages, 20 figures
♻ ☆ Complex Logical Instruction Generation
Instruction following has catalyzed the recent era of Large Language Models (LLMs) and is the foundational skill underpinning more advanced capabilities such as reasoning and agentic behaviors. As tasks grow more challenging, the logic structures embedded in natural language instructions becomes increasingly intricate. However, how well LLMs perform on such logic-rich instructions remains under-explored. We propose LogicIFGen and LogicIFEval. LogicIFGen is a scalable, automated framework for generating verifiable instructions from code functions, which can naturally express rich logic such as conditions, loops, and function calls. We further curate a collection of complex code functions and use LogicIFGen to construct LogicIFEval, a benchmark comprising 426 verifiable logic-rich instructions. Our experiments demonstrate that current state-of-the-art LLMs still struggle to correctly follow the instructions in LogicIFEval. Most LLMs can only follow fewer than 60% of the instructions, revealing significant deficiencies in the instruction-following ability. Code and Benchmark: https://github.com/mianzhang/LogicIF
♻ ☆ Have ASkotch: A Neat Solution for Large-scale Kernel Ridge Regression
Kernel ridge regression (KRR) is a fundamental computational tool, appearing in problems that range from computational chemistry to health analytics, with a particular interest due to its starring role in Gaussian process regression. However, full KRR solvers are challenging to scale to large datasets: both direct (i.e., Cholesky decomposition) and iterative methods (i.e., PCG) incur prohibitive computational and storage costs. The standard approach to scale KRR to large datasets chooses a set of inducing points and solves an approximate version of the problem, inducing points KRR. However, the resulting solution tends to have worse predictive performance than the full KRR solution. In this work, we introduce a new solver, ASkotch, for full KRR that provides better solutions faster than state-of-the-art solvers for full and inducing points KRR. ASkotch is a scalable, accelerated, iterative method for full KRR that provably obtains linear convergence. Under appropriate conditions, we show that ASkotch obtains condition-number-free linear convergence. This convergence analysis rests on the theory of ridge leverage scores and determinantal point processes. ASkotch outperforms state-of-the-art KRR solvers on a testbed of 23 large-scale KRR regression and classification tasks derived from a wide range of application domains, demonstrating the superiority of full KRR over inducing points KRR. Our work opens up the possibility of as-yet-unimagined applications of full KRR across a number of disciplines.
comment: 63 pages (including appendices), 17 figures, 6 tables
♻ ☆ Traffic Engineering in Large-scale Networks with Generalizable Graph Neural Networks IEEE
Traffic Engineering (TE) in large-scale networks like cloud Wide Area Networks (WANs) and Low Earth Orbit (LEO) satellite constellations is a critical challenge. Although learning-based approaches have been proposed to address the scalability of traditional TE algorithms, their practical application is often hindered by a lack of generalization, high training overhead, and a failure to respect link capacities. This paper proposes TELGEN, a novel TE algorithm that learns to solve TE problems efficiently in large-scale network scenarios, while achieving superior generalizability across diverse network conditions. TELGEN is based on the novel idea of transforming the problem of "predicting the optimal TE solution" into "predicting the optimal TE algorithm", which enables TELGEN to learn and efficiently approximate the end-to-end solving process of classical optimal TE algorithms. The learned algorithm is agnostic to the exact underlying network topology or traffic patterns, and is able to very efficiently solve TE problems given arbitrary inputs and generalize well to unseen topologies and demands. We train and evaluate TELGEN with random and real-world topologies, with networks of up to 5000 nodes and 3.6x10^6 links in testing. TELGEN shows less than 3% optimality gap while ensuring feasibility in all testing scenarios, even when the test network has 2-20x more nodes than the largest training network. It also saves up to 84% TE solving time than traditional interior-point method, and reduces up to 79.6% training time per epoch than the state-of-the-art learning-based algorithm.
comment: Accepted for publication at IEEE Transactions on Networking
♻ ☆ A Comprehensive Survey of Deep Learning for Multivariate Time Series Forecasting: A Channel Strategy Perspective
Multivariate Time Series Forecasting (MTSF) plays a crucial role across diverse fields, ranging from economic, energy, to traffic. In recent years, deep learning has demonstrated outstanding performance in MTSF tasks. In MTSF, modeling the correlations among different channels is critical, as leveraging information from other related channels can significantly improve the prediction accuracy of a specific channel. This study systematically reviews the channel modeling strategies for time series and proposes a taxonomy organized into three hierarchical levels: the strategy perspective, the mechanism perspective, and the characteristic perspective. On this basis, we provide a structured analysis of these methods and conduct an in-depth examination of the advantages and limitations of different channel strategies. Finally, we summarize and discuss some future research directions to provide useful research guidance. Moreover, we maintain an up-to-date Github repository (https://github.com/decisionintelligence/CS4TS) which includes all the papers discussed in the survey.
♻ ☆ A Context-Aware Dual-Metric Framework for Confidence Estimation in Large Language Models
Accurate confidence estimation is essential for trustworthy large language models (LLMs) systems, as it empowers the user to determine when to trust outputs and enables reliable deployment in safety-critical applications. Current confidence estimation methods for LLMs neglect the relevance between responses and contextual information, a crucial factor in output quality evaluation, particularly in scenarios where background knowledge is provided. To bridge this gap, we propose CRUX (Context-aware entropy Reduction and Unified consistency eXamination), the first framework that integrates context faithfulness and consistency for confidence estimation via two novel metrics. First, contextual entropy reduction represents data uncertainty with the information gain through contrastive sampling with and without context. Second, unified consistency examination captures potential model uncertainty through the global consistency of the generated answers with and without context. Experiments across three benchmark datasets (CoQA, SQuAD, QuAC) and two domain-specific datasets (BioASQ, EduQG) demonstrate CRUX's effectiveness, achieving the highest AUROC than existing baselines.
♻ ☆ Hermes: A Multi-Scale Spatial-Temporal Hypergraph Network for Stock Time Series Forecasting
Time series forecasting occurs in a range of financial applications providing essential decision-making support to investors, regulatory institutions, and analysts. Unlike multivariate time series from other domains, stock time series exhibit industry correlation. Exploiting this kind of correlation can improve forecasting accuracy. However, existing methods based on hypergraphs can only capture industry correlation relatively superficially. These methods face two key limitations: they do not fully consider inter-industry lead-lag interactions, and they do not model multi-scale information within and among industries. This study proposes the Hermes framework for stock time series forecasting that aims to improve the exploitation of industry correlation by addressing these limitations. The framework integrates moving aggregation and multi-scale fusion modules in a hypergraph network. Specifically, to more flexibly capture the lead-lag relationships among industries, Hermes proposes a hyperedge-based moving aggregation module. This module incorporates a sliding window and utilizes dynamic temporal aggregation operations to consider lead-lag dependencies among industries. Additionally, to effectively model multi-scale information, Hermes employs cross-scale, edge-to-edge message passing to integrate information from different scales while maintaining the consistency of each scale. Experimental results on multiple real-world stock datasets show that Hermes outperforms existing state-of-the-art methods.
♻ ☆ Temporal Lifting as Latent-Space Regularization for Continuous-Time Flow Models in AI Systems
We present a latent-space formulation of adaptive temporal lifting for continuous-time dynamical systems. The method introduces a smooth monotone mapping $t \mapsto τ(t)$ that regularizes near-singular behavior of the underlying flow while preserving its conservation laws. In the lifted coordinate, trajectories such as those of the incompressible Navier-Stokes equations on the torus $\mathbb{T}^3$ become globally smooth. From the standpoint of machine-learning dynamics, temporal lifting acts as a continuous-time normalization operator that can stabilize physics-informed neural networks and other latent-flow architectures used in AI systems. The framework links analytic regularity theory with representation-learning methods for stiff or turbulent processes.
comment: 7 pages, 1 figure, 1 table, 1 algorithm
♻ ☆ Theoretical Investigation on Inductive Bias of Isolation Forest
Isolation Forest (iForest) stands out as a widely-used unsupervised anomaly detector, primarily owing to its remarkable runtime efficiency and superior performance in large-scale tasks. Despite its widespread adoption, a theoretical foundation explaining iForest's success remains unclear. This paper focuses on the inductive bias of iForest, which theoretically elucidates under what circumstances and to what extent iForest works well. The key is to formulate the growth process of iForest, where the split dimensions and split values are randomly selected. We model the growth process of iForest as a random walk, enabling us to derive the expected depth function, which is the outcome of iForest, using transition probabilities. The case studies reveal key inductive biases: iForest exhibits lower sensitivity to central anomalies while demonstrating greater parameter adaptability compared to $k$-Nearest Neighbor. Our study provides a theoretical understanding of the effectiveness of iForest and establishes a foundation for further theoretical exploration.
♻ ☆ An efficient, provably optimal algorithm for the 0-1 loss linear classification problem ICLR 2026
Algorithms for solving the linear classification problem have a long history, dating back at least to 1936 with linear discriminant analysis. For linearly separable data, many algorithms can obtain the exact solution to the corresponding 0-1 loss classification problem efficiently, but for data which is not linearly separable, it has been shown that this problem, in full generality, is NP-hard. Alternative approaches all involve approximations of some kind, such as the use of surrogates for the 0-1 loss (for example, the hinge or logistic loss), none of which can be guaranteed to solve the problem exactly. Finding an efficient, rigorously proven algorithm for obtaining an exact (i.e., globally optimal) solution to the 0-1 loss linear classification problem remains an open problem. By analyzing the combinatorial and incidence relations between hyperplanes and data points, we derive a rigorous construction algorithm, incremental cell enumeration (ICE), that can solve the 0-1 loss classification problem exactly in $O(N^{D+1})$. To the best of our knowledge, this is the first standalone algorithm-one that does not rely on general-purpose solvers-with rigorously proven guarantees for this problem. Moreover, we further generalize ICE to address the polynomial hypersurface classification problem in $O(N^{G+1})$ time, where $G$ is determined by both the data dimension and the polynomial hypersurface degree. The correctness of our algorithm is proved by the use of tools from the theory of hyperplane arrangements and oriented matroids. We demonstrate the effectiveness of our algorithm on real-world datasets, achieving optimal training accuracy for small-scale datasets and higher test accuracy on most datasets. Furthermore, our complexity analysis shows that the ICE algorithm offers superior computational efficiency compared with state-of-the-art branch-and-bound algorithm.
comment: Published in ICLR 2026, The Fourteenth International Conference on Learning Representations. 19 pages, 6 figures
♻ ☆ BootSeer: Analyzing and Mitigating Initialization Bottlenecks in Large-Scale LLM Training
Large Language Models (LLMs) have become a cornerstone of modern AI, driving breakthroughs in natural language processing and expanding into multimodal jobs involving images, audio, and video. As with most computational software, it is important to distinguish between ordinary runtime performance and startup overhead. Prior research has focused on runtime performance: improving training efficiency and stability. This work focuses instead on the increasingly critical issue of startup overhead in training: the delay before training jobs begin execution. Startup overhead is particularly important in large, industrial-scale LLMs, where failures occur more frequently and multiple teams operate in iterative update-debug cycles. In one of our training clusters, more than 3.5% of GPU time is wasted due to startup overhead alone. In this work, we present the first in-depth characterization of LLM training startup overhead based on real production data. We analyze the components of startup cost, quantify its direct impact, and examine how it scales with job size. These insights motivate the design of Bootseer, a system-level optimization framework that addresses three primary startup bottlenecks: (a) container image loading, (b) runtime dependency installation, and (c) model checkpoint resumption. To mitigate these bottlenecks, Bootseer introduces three techniques: (a) hot block record-and-prefetch, (b) dependency snapshotting, and (c) striped HDFS-FUSE. Bootseer has been deployed in a production environment and evaluated on real LLM training workloads, demonstrating a 50% reduction in startup overhead.
comment: 18 pages, 14 figures
♻ ☆ MobileSafetyBench: Evaluating Safety of Autonomous Agents in Mobile Device Control
Autonomous agents powered by large language models (LLMs) show promising potential in assistive tasks across various domains, including mobile device control. As these agents interact directly with personal information and device settings, ensuring their safe and reliable behavior is crucial to prevent undesirable outcomes. However, no benchmark exists for standardized evaluation of the safety of mobile device-control agents. In this work, we introduce MobileSafetyBench, a benchmark designed to evaluate the safety of device-control agents within a realistic mobile environment based on Android emulators. We develop a diverse set of tasks involving interactions with various mobile applications, including messaging and banking applications, challenging agents with managing risks encompassing misuse and negative side effects. These tasks include tests to evaluate the safety of agents in daily scenarios as well as their robustness against indirect prompt injection attacks. Our experiments demonstrate that baseline agents, based on state-of-the-art LLMs, often fail to effectively prevent harm while performing the tasks. To mitigate these safety concerns, we propose a prompting method that encourages agents to prioritize safety considerations. While this method shows promise in promoting safer behaviors, there is still considerable room for improvement to fully earn user trust. This highlights the urgent need for continued research to develop more robust safety mechanisms in mobile environments.
♻ ☆ Doubly-Regressing Approach for Subgroup Fairness
Algorithmic fairness is a socially crucial topic in real-world applications of AI. Among many notions of fairness, subgroup fairness is widely studied when multiple sensitive attributes (e.g., gender, race, age) are present. However, as the number of sensitive attributes grows, the number of subgroups increases accordingly, creating heavy computational burdens and data sparsity problem (subgroups with too small sizes). In this paper, we develop a novel learning algorithm for subgroup fairness which resolves these issues by focusing on subgroups with sufficient sample sizes as well as marginal fairness (fairness for each sensitive attribute). To this end, we formalize a notion of subgroup-subset fairness and introduce a corresponding distributional fairness measure called the supremum Integral Probability Metric (supIPM). Building on this formulation, we propose the Doubly Regressing Adversarial learning for subgroup Fairness (DRAF) algorithm, which reduces a surrogate fairness gap for supIPM with much less computation than directly reducing supIPM. Theoretically, we prove that the proposed surrogate fairness gap is an upper bound of supIPM. Empirically, we show that the DRAF algorithm outperforms baseline methods in benchmark datasets, specifically when the number of sensitive attributes is large so that many subgroups are very small.
♻ ☆ Hedonic Prices and Quality Adjusted Price Indices Powered by AI
We develop empirical models that efficiently process large amounts of unstructured product data (text, images, prices, quantities) to produce accurate hedonic price estimates and derived indices. To achieve this, we generate abstract product attributes (or ``features'') from descriptions and images using deep neural networks. These attributes are then used to estimate the hedonic price function. To demonstrate the effectiveness of this approach, we apply the models to Amazon's data for first-party apparel sales, and estimate hedonic prices. The resulting models have a very high out-of-sample predictive accuracy, with $R^2$ ranging from $80\%$ to $90\%$. Finally, we construct the AI-based hedonic Fisher price index, chained at the year-over-year frequency, and contrast it with the CPI and other electronic indices.
comment: Initially circulated as a 2021 CEMMAP Working Paper (CWP04/21)
♻ ☆ Deeply Learned Robust Matrix Completion for Large-scale Low-rank Data Recovery
Robust matrix completion (RMC) is a widely used machine learning tool that simultaneously tackles two critical issues in low-rank data analysis: missing data entries and extreme outliers. This paper proposes a novel scalable and learnable non-convex approach, coined Learned Robust Matrix Completion (LRMC), for large-scale RMC problems. LRMC enjoys low computational complexity with linear convergence. Motivated by the proposed theorem, the free parameters of LRMC can be effectively learned via deep unfolding to achieve optimum performance. Furthermore, this paper proposes a flexible feedforward-recurrent-mixed neural network framework that extends deep unfolding from fix-number iterations to infinite iterations. The superior empirical performance of LRMC is verified with extensive experiments against state-of-the-art on synthetic datasets and real applications, including video background subtraction, ultrasound imaging, face modeling, and cloud removal from satellite imagery.
♻ ☆ LSHBloom: Memory-efficient, Extreme-scale Document Deduplication
Contemporary large language model (LLM) training pipelines require the assembly of internet-scale databases full of text data from a variety of sources (e.g., web, academic, and publishers). Preprocessing these datasets via deduplication -- detecting and eliminating additional instances of the same content -- is a major focus for assembling and curating training datasets for LLMs. Unrestrained, duplicates in the training dataset increase training costs and lead to undesirable properties such as memorization in trained models or cheating on evaluation. Unfortunately, contemporary approaches to document-level deduplication are either unreliable at accurately identifying duplicate documents or extremely expensive in terms of both runtime and memory. We propose LSHBloom, an extension to MinhashLSH, which replaces the expensive LSHIndex with lightweight Bloom filters. LSHBloom demonstrates the same state-of-the-art deduplication performance as MinhashLSH, with only a marginal increase in false positives (near zero in our experiments), while boasting competitive runtime (12$\times$ faster than MinhashLSH on peS2o) and, crucially, using 18$\times$ less disk space than MinhashLSH (as measured on peS2o). Based on extrapolation, we show that this advantage in space and runtime remains even at the extreme scale of several billion documents. LSHBloom allows practitioners to access the deduplication quality of MinHashLSH at scales that are normally only tractable for less sophisticated, heuristic solutions. As a result, LSHBloom promises to enable scaling high-quality document deduplication to internet-scale text datasets.
♻ ☆ Watermark-based Attribution of AI-Generated Content ICLR 2026
Several companies have deployed watermark-based detection to identify AI-generated content. However, attribution--the ability to trace back to the user of a generative AI (GenAI) service who created a given AI-generated content--remains largely unexplored despite its growing importance. In this work, we aim to bridge this gap by conducting the first systematic study on watermark-based, user-level attribution of AI-generated content. Our key idea is to assign a unique watermark to each user of the GenAI service and embed this watermark into the AI-generated content created by that user. Attribution is then performed by identifying the user whose watermark best matches the one extracted from the given content. This approach, however, faces a key challenge: How should watermarks be selected for users to maximize attribution performance? To address the challenge, we first theoretically derive lower bounds on detection and attribution performance through rigorous probabilistic analysis for any given set of user watermarks. Then, we select watermarks for users to maximize these lower bounds, thereby optimizing detection and attribution performance. Our theoretical and empirical results show that watermark-based attribution inherits both the accuracy and (non-)robustness properties of the underlying watermark. Specifically, attribution remains highly accurate when the watermarked AI-generated content is either not post-processed or subjected to common post-processing such as JPEG compression, as well as black-box adversarial post-processing with limited query budgets.
comment: Accepted by ICLR 2026
♻ ☆ A Genealogy of Foundation Models in Remote Sensing
Foundation models have garnered increasing attention for representation learning in remote sensing. Many such foundation models adopt approaches that have demonstrated success in computer vision with minimal domain-specific modification. However, the development and application of foundation models in this field are still burgeoning, as there are a variety of competing approaches for how to most effectively leverage remotely sensed data. This paper examines these approaches, along with their roots in the computer vision field. This is done to characterize potential advantages and pitfalls, while outlining future directions to further improve remote sensing-specific foundation models. We discuss the quality of the learned representations and methods to alleviate the need for massive compute resources. We first examine single-sensor remote foundation models to introduce concepts and provide context, and then place emphasis on incorporating the multi-sensor aspect of Earth observations into foundation models. In particular, we explore the extent to which existing approaches leverage multiple sensors in training foundation models in relation to multi-modal foundation models. Finally, we identify opportunities for further harnessing the vast amounts of unlabeled, seasonal, and multi-sensor remote sensing observations.
comment: 28 pages, submitted to ACM SigSpatial, accepted as of January 12th, 2026. This is the second revision from the original 20-page manuscript
♻ ☆ Cluster Aggregated GAN (CAG): A Cluster-Based Hybrid Model for Appliance Pattern Generation
Synthetic appliance data are essential for developing non-intrusive load monitoring algorithms and enabling privacy preserving energy research, yet the scarcity of labeled datasets remains a significant barrier. Recent GAN-based methods have demonstrated the feasibility of synthesizing load patterns, but most existing approaches treat all devices uniformly within a single model, neglecting the behavioral differences between intermittent and continuous appliances and resulting in unstable training and limited output fidelity. To address these limitations, we propose the Cluster Aggregated GAN framework, a hybrid generative approach that routes each appliance to a specialized branch based on its behavioral characteristics. For intermittent appliances, a clustering module groups similar activation patterns and allocates dedicated generators for each cluster, ensuring that both common and rare operational modes receive adequate modeling capacity. Continuous appliances follow a separate branch that employs an LSTM-based generator to capture gradual temporal evolution while maintaining training stability through sequence compression. Extensive experiments on the UVIC smart plug dataset demonstrate that the proposed framework consistently outperforms baseline methods across metrics measuring realism, diversity, and training stability, and that integrating clustering as an active generative component substantially improves both interpretability and scalability. These findings establish the proposed framework as an effective approach for synthetic load generation in non-intrusive load monitoring research.
comment: 18pages, 5Figues
♻ ☆ Adaptive Test-Time Training for Predicting Need for Invasive Mechanical Ventilation in Multi-Center Cohorts ICLR 2026
Accurate prediction of the need for invasive mechanical ventilation (IMV) in intensive care units (ICUs) patients is crucial for timely interventions and resource allocation. However, variability in patient populations, clinical practices, and electronic health record (EHR) systems across institutions introduces domain shifts that degrade the generalization performance of predictive models during deployment. Test-Time Training (TTT) has emerged as a promising approach to mitigate such shifts by adapting models dynamically during inference without requiring labeled target-domain data. In this work, we introduce Adaptive Test-Time Training (AdaTTT), an enhanced TTT framework tailored for EHR-based IMV prediction in ICU settings. We begin by deriving information-theoretic bounds on the test-time prediction error and demonstrate that it is constrained by the uncertainty between the main and auxiliary tasks. To enhance their alignment, we introduce a self-supervised learning framework with pretext tasks: reconstruction and masked feature modeling optimized through a dynamic masking strategy that emphasizes features critical to the main task. Additionally, to improve robustness against domain shifts, we incorporate prototype learning and employ Partial Optimal Transport (POT) for flexible, partial feature alignment while maintaining clinically meaningful patient representations. Experiments across multi-center ICU cohorts demonstrate competitive classification performance on different test-time adaptation benchmarks.
comment: ICLR 2026
♻ ☆ FNODE: Flow-Matching for data-driven simulation of constrained multibody systems
Data-driven modeling of constrained multibody dynamics remains challenged by (i) the training cost of Neural ODEs, which typically require backpropagation through an ODE solver, and (ii) error accumulation in rollout predictions. We introduce a Flow-Matching Neural ODE (FNODE) framework that learns the acceleration mapping directly from trajectory data by supervising accelerations rather than integrated states, turning training into a supervised regression problem and eliminating the ODE-adjoint/solver backpropagation bottleneck. Acceleration targets are obtained efficiently via numerical differentiation using a hybrid fast Fourier transform (FFT) and finite-difference (FD) scheme. Kinematic constraints are enforced through coordinate partitioning: FNODE learns accelerations only for the independent generalized coordinates, while the dependent coordinates are recovered by solving the position-level constraint equations. We evaluate FNODE on single and triple mass-spring-damper systems, a double pendulum, a slider crank with and without friction, a vehicle model, and a cart-pole, and compare against MBD-NODE, LSTM, and fully connected baselines. Across these benchmarks, FNODE achieves improved prediction accuracy and training/runtime efficiency, while maintaining constraint satisfaction through the partitioning procedure. Our code and scripts are released as open source to support reproducibility and follow-on research.
comment: 36 pages, 19 figures
♻ ☆ Improving the Throughput of Diffusion-based Large Language Models via a Training-Free Confidence-Aware Calibration
We present CadLLM, a training-free method to accelerate the inference throughput of diffusion-based LLMs (dLLMs). We first investigate the dynamic nature of token unmasking confidence across blocks and steps. Based on this observation, we present a lightweight adaptive approach that controls the generation block size, step size, and threshold based on the average confidence of unmasked tokens. We further reduce softmax overhead by dynamically leveraging a subset of the vocabulary to regulate sampling breadth. CadLLM is a plug-and-play, model-agnostic method compatible with KV-cache-based dLLMs. Extensive experiments on four popular tasks demonstrate that CadLLM yields up to 2.28x throughput improvement over the state-of-the-art baseline with competitive accuracy.
comment: 9 pages, 3 figures. Preprint under review
♻ ☆ Provably Efficient RL under Episode-Wise Safety in Constrained MDPs with Linear Function Approximation
We study the reinforcement learning (RL) problem in a constrained Markov decision process (CMDP), where an agent explores the environment to maximize the expected cumulative reward while satisfying a single constraint on the expected total utility value in every episode. While this problem is well understood in the tabular setting, theoretical results for function approximation remain scarce. This paper closes the gap by proposing an RL algorithm for linear CMDPs that achieves $\tilde{\mathcal{O}}(\sqrt{K})$ regret with an episode-wise zero-violation guarantee. Furthermore, our method is computationally efficient, scaling polynomially with problem-dependent parameters while remaining independent of the state space size. Our results significantly improve upon recent linear CMDP algorithms, which either violate the constraint or incur exponential computational costs.
♻ ☆ A Thermodynamic Theory of Learning I: Irreversible Ensemble Transport and Epistemic Costs
Learning systems acquire structured internal representations from data, yet classical information-theoretic results state that deterministic transformations do not increase information. This raises a fundamental question: how can learning produce abstraction and insight without violating information-theoretic limits? We argue that learning is inherently an irreversible process when performed over finite time, and that the realization of epistemic structure necessarily incurs entropy production. To formalize this perspective, we model learning as a transport process in the space of probability distributions over model configurations and introduce an epistemic free-energy framework. Within this framework, we define the free-energy reduction as a bookkeeping quantity that records the total reduction of epistemic free energy along a learning trajectory. This formulation highlights that realizing such a reduction over finite time necessarily incurs irreversible entropy production. We then derive the Epistemic Speed Limit (ESL), a finite-time inequality that lower-bounds the minimal entropy production required by any learning process to realize a given distributional transformation. This bound depends only on the Wasserstein distance between initial and final ensemble distributions and is independent of the specific learning algorithm.
comment: 9 pages. Part I of a planned series entitled "A Thermodynamic Theory of Learning." Minor revisions throughout; appendix added. Clarified the treatment of the noise temperature T and refined the presentation of the Epistemic Speed Limit
♻ ☆ Comparing Time-Series Analysis Approaches Utilized in Research Papers to Forecast COVID-19 Cases in Africa: A Literature Review
This literature review aimed to compare various time-series analysis approaches utilized in forecasting COVID-19 cases in Africa. The study involved a methodical search for English-language research papers published between January 2020 and July 2023, focusing specifically on papers that utilized time-series analysis approaches on COVID-19 datasets in Africa. A variety of databases including PubMed, Google Scholar, Scopus, and Web of Science were utilized for this process. The research papers underwent an evaluation process to extract relevant information regarding the implementation and performance of the time-series analysis models. The study highlighted the different methodologies employed, evaluating their effectiveness and limitations in forecasting the spread of the virus. The result of this review could contribute deeper insights into the field, and future research should consider these insights to improve time series analysis models and explore the integration of different approaches for enhanced public health decision-making.
comment: 11 pages
♻ ☆ Spatiotemporal Semantic V2X Framework for Cooperative Collision Prediction IEEE
Intelligent Transportation Systems (ITS) demand real-time collision prediction to ensure road safety and reduce accident severity. Conventional approaches rely on transmitting raw video or high-dimensional sensory data from roadside units (RSUs) to vehicles, which is impractical under vehicular communication bandwidth and latency constraints. In this work, we propose a semantic V2X framework in which RSU-mounted cameras generate spatiotemporal semantic embeddings of future frames using the Video Joint Embedding Predictive Architecture (V-JEPA). To evaluate the system, we construct a digital twin of an urban traffic environment enabling the generation of d verse traffic scenarios with both safe and collision events. These embeddings of the future frame, extracted from V-JEPA, capture task-relevant traffic dynamics and are transmitted via V2X links to vehicles, where a lightweight attentive probe and classifier decode them to predict imminent collisions. By transmitting only semantic embeddings instead of raw frames, the proposed system significantly reduces communication overhead while maintaining predictive accuracy. Experimental results demonstrate that the framework with an appropriate processing method achieves a 10% F1-score improvement for collision prediction while reducing transmission requirements by four orders of magnitude compared to raw video. This validates the potential of semantic V2X communication to enable cooperative, real-time collision prediction in ITS.
comment: 6 pages 5 figures, accepted to IEEE ICC 2026
♻ ☆ EuleroDec: A Complex-Valued RVQ-VAE for Efficient and Robust Audio Coding ICASSP 2026
Audio codecs power discrete music generative modelling, music streaming and immersive media by shrinking PCM audio to bandwidth-friendly bit-rates. Recent works have gravitated towards processing in the spectral domain; however, spectrogram-domains typically struggle with phase modeling which is naturally complex-valued. Most frequency-domain neural codecs either disregard phase information or encode it as two separate real-valued channels, limiting spatial fidelity. This entails the need to introduce adversarial discriminators at the expense of convergence speed and training stability to compensate for the inadequate representation power of the audio signal. In this work we introduce an end-to-end complex-valued RVQ-VAE audio codec that preserves magnitude-phase coupling across the entire analysis-quantization-synthesis pipeline and removes adversarial discriminators and diffusion post-filters. Without GANs or diffusion we match or surpass much longer-trained baselines in-domain and reach SOTA out-of-domain performance. Compared to standard baselines that train for hundreds of thousands of steps, our model reducing training budget by an order of magnitude is markedly more compute-efficient while preserving high perceptual quality.
comment: Accepted at ICASSP 2026
♻ ☆ HyResPINNs: A Hybrid Residual Physics-Informed Neural Network Architecture Designed to Balance Expressiveness and Trainability
Physics-informed neural networks (PINNs) have emerged as a powerful approach for solving partial differential equations (PDEs) by training neural networks with loss functions that incorporate physical constraints. In this work, we introduce HyResPINNs, a two-level convex-gated architecture designed to maximize approximation expressiveness for a fixed number of degrees of freedom (DoF). The first level involves a trainable, per-block combination of smooth basis functions with trainable sparsity, and deep neural networks; the second involves the ability to gate entire blocks (much like in ResNets or Highway Nets), allowing for expressivity along the depth dimension of the architecture. Our empirical evaluation on a diverse set of challenging PDE problems demonstrates that HyResPINNs consistently achieve superior accuracy to baseline methods while remaining competitive relative to training times. These results highlight the potential of HyResPINNs to combine desirable features from traditional scientific computing methods and modern machine learning, paving the way for more robust and expressive approaches to physics-informed modeling.
comment: 44 pages
♻ ☆ Geometric Scaling of Bayesian Inference in LLMs
Recent work has shown that small transformers trained in controlled "wind-tunnel'' settings can implement exact Bayesian inference, and that their training dynamics produce a geometric substrate -- low-dimensional value manifolds and progressively orthogonal keys -- that encodes posterior structure. We investigate whether this geometric signature persists in production-grade language models. Across Pythia, Phi-2, Llama-3, and Mistral families, we find that last-layer value representations organize along a single dominant axis whose position strongly correlates with predictive entropy, and that domain-restricted prompts collapse this structure into the same low-dimensional manifolds observed in synthetic settings. To probe the role of this geometry, we perform targeted interventions on the entropy-aligned axis of Pythia-410M during in-context learning. Removing or perturbing this axis selectively disrupts the local uncertainty geometry, whereas matched random-axis interventions leave it intact. However, these single-layer manipulations do not produce proportionally specific degradation in Bayesian-like behavior, indicating that the geometry is a privileged readout of uncertainty rather than a singular computational bottleneck. Taken together, our results show that modern language models preserve the geometric substrate that enables Bayesian inference in wind tunnels, and organize their approximate Bayesian updates along this substrate.
comment: Added domain restriction confound caveat. Threshold justification anchored to wind-tunnel baselines. Strengthened content-based routing connection to Mamba. Improved trilogy framing in conclusion (which/how/that structure)
♻ ☆ Trend-Adjusted Time Series Models with an Application to Gold Price Forecasting
Time series data play a critical role in various fields, including finance, healthcare, marketing, and engineering. A wide range of techniques (from classical statistical models to neural network-based approaches such as Long Short-Term Memory (LSTM)) have been employed to address time series forecasting challenges. In this paper, we reframe time series forecasting as a two-part task: (1) predicting the trend (directional movement) of the time series at the next time step, and (2) forecasting the quantitative value at the next time step. The trend can be predicted using a binary classifier, while quantitative values can be forecasted using models such as LSTM and Bidirectional Long Short-Term Memory (Bi-LSTM). Building on this reframing, we propose the Trend-Adjusted Time Series (TATS) model, which adjusts the forecasted values based on the predicted trend provided by the binary classifier. We validate the proposed approach through both theoretical analysis and empirical evaluation. The TATS model is applied to a volatile financial time series (the daily gold price) with the objective of forecasting the next days price. Experimental results demonstrate that TATS consistently outperforms standard LSTM and Bi-LSTM models by achieving significantly lower forecasting error. In addition, our results indicate that commonly used metrics such as MSE and MAE are insufficient for fully assessing time series model performance. Therefore, we also incorporate trend detection accuracy, which measures how effectively a model captures trends in a time series.
♻ ☆ The Bayesian Geometry of Transformer Attention
Transformers often appear to perform Bayesian reasoning in context, but verifying this rigorously has been impossible: natural data lack analytic posteriors, and large models conflate reasoning with memorization. We address this by constructing \emph{Bayesian wind tunnels} -- controlled environments where the true posterior is known in closed form and memorization is provably impossible. In these settings, small transformers reproduce Bayesian posteriors with $10^{-3}$-$10^{-4}$ bit accuracy, while capacity-matched MLPs fail by orders of magnitude, establishing a clear architectural separation. Across two tasks -- bijection elimination and Hidden Markov Model (HMM) state tracking -- we find that transformers implement Bayesian inference through a consistent geometric mechanism: residual streams serve as the belief substrate, feed-forward networks perform the posterior update, and attention provides content-addressable routing. Geometric diagnostics reveal orthogonal key bases, progressive query-key alignment, and a low-dimensional value manifold parameterized by posterior entropy. During training this manifold unfurls while attention patterns remain stable, a \emph{frame-precision dissociation} predicted by recent gradient analyses. Taken together, these results demonstrate that hierarchical attention realizes Bayesian inference by geometric design, explaining both the necessity of attention and the failure of flat architectures. Bayesian wind tunnels provide a foundation for mechanistically connecting small, verifiable systems to reasoning phenomena observed in large language models.
comment: Added inference primitives taxonomy (accumulation, transport, binding). New associative recall task. Complete Mamba/LSTM comparison with multi-seed results. KL/TVD verification table. Mamba 5-cluster geometry analysis. Layer/head ablation figures. Content-based routing as unifying principle
♻ ☆ Lipschitz-Regularized Critics Lead to Policy Robustness Against Transition Dynamics Uncertainty
Uncertainties in transition dynamics pose a critical challenge in reinforcement learning (RL), often resulting in performance degradation of trained policies when deployed on hardware. Many robust RL approaches follow two strategies: enforcing smoothness in actor or actor-critic modules with Lipschitz regularization, or learning robust Bellman operators. However, the first strategy does not investigate the impact of critic-only Lipschitz regularization on policy robustness, while the second lacks comprehensive validation in real-world scenarios. Building on this gap and prior work, we propose PPO-PGDLC, an algorithm based on Proximal Policy Optimization (PPO) that integrates Projected Gradient Descent (PGD) with a Lipschitz-regularized critic (LC). The PGD component calculates the adversarial state within an uncertainty set to approximate the robust Bellman operator, and the Lipschitz-regularized critic further improves the smoothness of learned policies. Experimental results on two classic control tasks and one real-world robotic locomotion task demonstrates that, compared to several baseline algorithms, PPO-PGDLC achieves better performance and predicts smoother actions under environmental perturbations.
comment: 8 pages, 4 figures
♻ ☆ Gradient Dynamics of Attention: How Cross-Entropy Sculpts Bayesian Manifolds
Transformers empirically perform precise probabilistic reasoning in carefully constructed ``Bayesian wind tunnels'' and in large-scale language models, yet the mechanisms by which gradient-based learning creates the required internal geometry remain opaque. We provide a complete first-order analysis of how cross-entropy training reshapes attention scores and value vectors in a transformer attention head. Our core result is an \emph{advantage-based routing law} for attention scores, \[ \frac{\partial L}{\partial s_{ij}} = α_{ij}\bigl(b_{ij}-\mathbb{E}_{α_i}[b]\bigr), \qquad b_{ij} := u_i^\top v_j, \] coupled with a \emph{responsibility-weighted update} for values, \[ Δv_j = -η\sum_i α_{ij} u_i, \] where $u_i$ is the upstream gradient at position $i$ and $α_{ij}$ are attention weights. These equations induce a positive feedback loop in which routing and content specialize together: queries route more strongly to values that are above-average for their error signal, and those values are pulled toward the queries that use them. We show that this coupled specialization behaves like a two-timescale EM procedure: attention weights implement an E-step (soft responsibilities), while values implement an M-step (responsibility-weighted prototype updates), with queries and keys adjusting the hypothesis frame. Through controlled simulations, including a sticky Markov-chain task where we compare a closed-form EM-style update to standard SGD, we demonstrate that the same gradient dynamics that minimize cross-entropy also sculpt the low-dimensional manifolds identified in our companion work as implementing Bayesian inference. This yields a unified picture in which optimization (gradient flow) gives rise to geometry (Bayesian manifolds), which in turn supports function (in-context probabilistic reasoning).
comment: Added abstract framework for content-based value routing with formal definition. LSTM counterexample explaining why gates is not equal to content-based routing. Multi-seed EM vs SGD experiments. Lemma 2 framing connecting to Paper I's primitives
♻ ☆ Improving and Accelerating Offline RL in Large Discrete Action Spaces with Structured Policy Initialization
Reinforcement learning in discrete combinatorial action spaces requires searching over exponentially many joint actions to simultaneously select multiple sub-actions that form coherent combinations. Existing approaches either simplify policy learning by assuming independence across sub-actions, which often yields incoherent or invalid actions, or attempt to learn action structure and control jointly, which is slow and unstable. We introduce Structured Policy Initialization (SPIN), a two-stage framework that first pre-trains an Action Structure Model (ASM) to capture the manifold of valid actions, then freezes this representation and trains lightweight policy heads for control. On challenging discrete DM Control benchmarks, SPIN improves average return by up to 39% over the state of the art while reducing time to convergence by up to 12.8$\times$.
♻ ☆ Learning Linearity in Audio Consistency Autoencoders via Implicit Regularization
Audio autoencoders learn useful, compressed audio representations, but their non-linear latent spaces prevent intuitive algebraic manipulation such as mixing or scaling. We introduce a simple training methodology to induce linearity in a high-compression Consistency Autoencoder (CAE) by using data augmentation, thereby inducing homogeneity (equivariance to scalar gain) and additivity (the decoder preserves addition) without altering the model's architecture or loss function. When trained with our method, the CAE exhibits linear behavior in both the encoder and decoder while preserving reconstruction fidelity. We test the practical utility of our learned space on music source composition and separation via simple latent arithmetic. This work presents a straightforward technique for constructing structured latent spaces, enabling more intuitive and efficient audio processing.
♻ ☆ NoWag: A Unified Framework for Shape Preserving Compression of Large Language Models
Large language models (LLMs) exhibit remarkable performance across various natural language processing tasks but suffer from immense computational and memory demands, limiting their deployment in resource-constrained environments. To address this challenge, we propose NoWag (Normalized Weight and Activation Guided Compression), a unified framework for one-shot shape preserving compression algorithms. We apply NoWag to compress Llama-2 (7B, 13B, 70B) and Llama-3 (8B, 70B) models using two popular shape-preserving techniques: vector quantization (NoWag-VQ) and unstructured/semi-structured pruning (NoWag-P). Our results show that NoWag-VQ significantly outperforms state-of-the-art one-shot vector quantization methods, while NoWag-P performs competitively against leading pruning techniques. These findings highlight underlying commonalities between these compression paradigms and suggest promising directions for future research. Our code is available at https://github.com/LawrenceRLiu/NoWag
♻ ☆ Feature-Space Adversarial Robustness Certification for Multimodal Large Language Models
Multimodal large language models (MLLMs) exhibit strong capabilities across diverse applications, yet remain vulnerable to adversarial perturbations that distort their feature representations and induce erroneous predictions. To address this vulnerability, we propose Feature-space Smoothing (FS), a general framework that provides certified robustness guarantees at the feature representation level of MLLMs. We theoretically prove that FS converts a given feature extractor into a smoothed variant that is guaranteed a certified lower bound on the cosine similarity between clean and adversarial features under $\ell_2$-bounded perturbations. Moreover, we establish that the value of this Feature Cosine Similarity Bound (FCSB) is determined by the intrinsic Gaussian robustness score of the given encoder. Building on this insight, we introduce the Gaussian Smoothness Booster (GSB), a plug-and-play module that enhances the Gaussian robustness score of pretrained MLLMs, thereby strengthening the robustness guaranteed by FS, without requiring additional MLLM retraining. Extensive experiments demonstrate that applying the FS to various MLLMs yields strong certified feature-space robustness and consistently leads to robust task-oriented performance across diverse applications.
comment: Under review
Multimedia 11
☆ Subjective Evaluation of Frame Rate in Bitrate-Constrained Live Streaming
Bandwidth constraints in live streaming require video codecs to balance compression strength and frame rate, yet the perceptual consequences of this trade-off remain underexplored. We present the high frame rate live streaming (HFR-LS) dataset, comprising 384 subject-rated 1080p videos encoded at multiple target bitrates by systematically varying compression strength and frame rate. A single-stimulus, hidden-reference subjective study shows that frame rate has a noticeable effect on perceived quality, and interacts with both bitrate and source content. The HFR-LS dataset is available at https://github.com/real-hjq/HFR-LS to facilitate research on bitrate-constrained live streaming.
☆ Benchmarking Multimodal Large Language Models for Missing Modality Completion in Product Catalogues
Missing-modality information on e-commerce platforms, such as absent product images or textual descriptions, often arises from annotation errors or incomplete metadata, impairing both product presentation and downstream applications such as recommendation systems. Motivated by the multimodal generative capabilities of recent Multimodal Large Language Models (MLLMs), this work investigates a fundamental yet underexplored question: can MLLMs generate missing modalities for products in e-commerce scenarios? We propose the Missing Modality Product Completion Benchmark (MMPCBench), which consists of two sub-benchmarks: a Content Quality Completion Benchmark and a Recommendation Benchmark. We further evaluate six state-of-the-art MLLMs from the Qwen2.5-VL and Gemma-3 model families across nine real-world e-commerce categories, focusing on image-to-text and text-to-image completion tasks. Experimental results show that while MLLMs can capture high-level semantics, they struggle with fine-grained word-level and pixel- or patch-level alignment. In addition, performance varies substantially across product categories and model scales, and we observe no trivial correlation between model size and performance, in contrast to trends commonly reported in mainstream benchmarks. We also explore Group Relative Policy Optimization (GRPO) to better align MLLMs with this task. GRPO improves image-to-text completion but does not yield gains for text-to-image completion. Overall, these findings expose the limitations of current MLLMs in real-world cross-modal generation and represent an early step toward more effective missing-modality product completion.
☆ Physics-Aware Novel-View Acoustic Synthesis with Vision-Language Priors and 3D Acoustic Environment Modeling ICASSP 2026
Spatial audio is essential for immersive experiences, yet novel-view acoustic synthesis (NVAS) remains challenging due to complex physical phenomena such as reflection, diffraction, and material absorption. Existing methods based on single-view or panoramic inputs improve spatial fidelity but fail to capture global geometry and semantic cues such as object layout and material properties. To address this, we propose Phys-NVAS, the first physics-aware NVAS framework that integrates spatial geometry modeling with vision-language semantic priors. A global 3D acoustic environment is reconstructed from multi-view images and depth maps to estimate room size and shape, enhancing spatial awareness of sound propagation. Meanwhile, a vision-language model extracts physics-aware priors of objects, layouts, and materials, capturing absorption and reflection beyond geometry. An acoustic feature fusion adapter unifies these cues into a physics-aware representation for binaural generation. Experiments on RWAVS demonstrate that Phys-NVAS yields binaural audio with improved realism and physical consistency.
comment: ICASSP 2026 Accept, Project page: https://physnvas.github.io/
☆ AC^2-VLA: Action-Context-Aware Adaptive Computation in Vision-Language-Action Models for Efficient Robotic Manipulation
Vision-Language-Action (VLA) models have demonstrated strong performance in robotic manipulation, yet their closed-loop deployment is hindered by the high latency and compute cost of repeatedly running large vision-language backbones at every timestep. We observe that VLA inference exhibits structured redundancies across temporal, spatial, and depth dimensions, and that most existing efficiency methods ignore action context, despite its central role in embodied tasks. To address this gap, we propose Action-Context-aware Adaptive Computation for VLA models (AC^2-VLA), a unified framework that conditions computation on current visual observations, language instructions, and previous action states. Based on this action-centric context, AC^2-VLA adaptively performs cognition reuse across timesteps, token pruning, and selective execution of model components within a unified mechanism. To train the adaptive policy, we introduce an action-guided self-distillation scheme that preserves the behavior of the dense VLA policy while enabling structured sparsification that transfers across tasks and settings. Extensive experiments on robotic manipulation benchmarks show that AC^2-VLA achieves up to a 1.79\times speedup while reducing FLOPs to 29.4% of the dense baseline, with comparable task success.
☆ A Collaborative Extended Reality Prototype for 3D Surgical Planning and Visualization IEEE
We present a collaborative extended reality (XR) prototype for 3D surgical planning and visualization. Our system consists of three key modules: XR-based immersive surgical planning, cloud-based data management, and coordinated stereoscopic 3D displays for interactive visualization. We describe the overall workflow, core functionalities, implementations and setups. By conducting user studies on a liver resection surgical planning case, we demonstrate the effectiveness of our prototype and provide practical insights to inspire future advances in medical XR collaboration.
comment: IEEE VR 2026 Posters
☆ VC-Bench: Pioneering the Video Connecting Benchmark with a Dataset and Evaluation Metrics
While current video generation focuses on text or image conditions, practical applications like video editing and vlogging often need to seamlessly connect separate clips. In our work, we introduce Video Connecting, an innovative task that aims to generate smooth intermediate video content between given start and end clips. However, the absence of standardized evaluation benchmarks has hindered the development of this task. To bridge this gap, we proposed VC-Bench, a novel benchmark specifically designed for video connecting. It includes 1,579 high-quality videos collected from public platforms, covering 15 main categories and 72 subcategories to ensure diversity and structure. VC-Bench focuses on three core aspects: Video Quality Score VQS, Start-End Consistency Score SECS, and Transition Smoothness Score TSS. Together, they form a comprehensive framework that moves beyond conventional quality-only metrics. We evaluated multiple state-of-the-art video generation models on VC-Bench. Experimental results reveal significant limitations in maintaining start-end consistency and transition smoothness, leading to lower overall coherence and fluidity. We expect that VC-Bench will serve as a pioneering benchmark to inspire and guide future research in video connecting. The evaluation metrics and dataset are publicly available at: https://anonymous.4open.science/r/VC-Bench-1B67/.
☆ Uncertainty-Aware 3D Emotional Talking Face Synthesis with Emotion Prior Distillation ICASSP 2026
Emotional Talking Face synthesis is pivotal in multimedia and signal processing, yet existing 3D methods suffer from two critical challenges: poor audio-vision emotion alignment, manifested as difficult audio emotion extraction and inadequate control over emotional micro-expressions; and a one-size-fits-all multi-view fusion strategy that overlooks uncertainty and feature quality differences, undermining rendering quality. We propose UA-3DTalk, Uncertainty-Aware 3D Emotional Talking Face Synthesis with emotion prior distillation, which has three core modules: the Prior Extraction module disentangles audio into content-synchronized features for alignment and person-specific complementary features for individualization; the Emotion Distillation module introduces a multi-modal attention-weighted fusion mechanism and 4D Gaussian encoding with multi-resolution code-books, enabling fine-grained audio emotion extraction and precise control of emotional micro-expressions; the Uncertainty-based Deformation deploys uncertainty blocks to estimate view-specific aleatoric (input noise) and epistemic (model parameters) uncertainty, realizing adaptive multi-view fusion and incorporating a multi-head decoder for Gaussian primitive optimization to mitigate the limitations of uniform-weight fusion. Extensive experiments on regular and emotional datasets show UA-3DTalk outperforms state-of-the-art methods like DEGSTalk and EDTalk by 5.2% in E-FID for emotion alignment, 3.1% in SyncC for lip synchronization, and 0.015 in LPIPS for rendering quality. Project page: https://mrask999.github.io/UA-3DTalk
comment: Accepted by ICASSP 2026
☆ Size Matters: Reconstructing Real-Scale 3D Models from Monocular Images for Food Portion Estimation
The rise of chronic diseases related to diet, such as obesity and diabetes, emphasizes the need for accurate monitoring of food intake. While AI-driven dietary assessment has made strides in recent years, the ill-posed nature of recovering size (portion) information from monocular images for accurate estimation of ``how much did you eat?'' is a pressing challenge. Some 3D reconstruction methods have achieved impressive geometric reconstruction but fail to recover the crucial real-world scale of the reconstructed object, limiting its usage in precision nutrition. In this paper, we bridge the gap between 3D computer vision and digital health by proposing a method that recovers a true-to-scale 3D reconstructed object from a monocular image. Our approach leverages rich visual features extracted from models trained on large-scale datasets to estimate the scale of the reconstructed object. This learned scale enables us to convert single-view 3D reconstructions into true-to-life, physically meaningful models. Extensive experiments and ablation studies on two publicly available datasets show that our method consistently outperforms existing techniques, achieving nearly a 30% reduction in mean absolute volume-estimation error, showcasing its potential to enhance the domain of precision nutrition. Code: https://gitlab.com/viper-purdue/size-matters
☆ VDE Bench: Evaluating The Capability of Image Editing Models to Modify Visual Documents
In recent years, multimodal image editing models have achieved substantial progress, enabling users to manipulate visual content through natural language in a flexible and interactive manner. Nevertheless, an important yet insufficiently explored research direction remains visual document image editing, which involves modifying textual content within images while faithfully preserving the original text style and background context. Existing approaches, including AnyText, GlyphControl, and TextCtrl, predominantly focus on English-language scenarios and documents with relatively sparse textual layouts, thereby failing to adequately address dense, structurally complex documents or non-Latin scripts such as Chinese. To bridge this gap, we propose \textbf{V}isual \textbf{D}oc \textbf{E}dit Bench(VDE Bench), a rigorously human-annotated and evaluated benchmark specifically designed to assess image editing models on multilingual and complex visual document editing tasks. The benchmark comprises a high-quality dataset encompassing densely textual documents in both English and Chinese, including academic papers, posters, presentation slides, examination materials, and newspapers. Furthermore, we introduce a decoupled evaluation framework that systematically quantifies editing performance at the OCR parsing level, enabling fine-grained assessment of text modification accuracy. Based on this benchmark, we conduct a comprehensive evaluation of representative state-of-the-art image editing models. Manual verification demonstrates a strong consistency between human judgments and automated evaluation metrics. VDE Bench constitutes the first systematic benchmark for evaluating image editing models on multilingual and densely textual visual documents.
♻ ☆ MindCine: Multimodal EEG-to-Video Reconstruction with Large-Scale Pretrained Models
Reconstructing human dynamic visual perception from electroencephalography (EEG) signals is of great research significance since EEG's non-invasiveness and high temporal resolution. However, EEG-to-video reconstruction remains challenging due to: 1) Single Modality: existing studies solely align EEG signals with the text modality, which ignores other modalities and are prone to suffer from overfitting problems; 2) Data Scarcity: current methods often have difficulty training to converge with limited EEG-video data. To solve the above problems, we propose a novel framework MindCine to achieve high-fidelity video reconstructions on limited data. We employ a multimodal joint learning strategy to incorporate beyond-text modalities in the training stage and leverage a pre-trained large EEG model to relieve the data scarcity issue for decoding semantic information, while a Seq2Seq model with causal attention is specifically designed for decoding perceptual information. Extensive experiments demonstrate that our model outperforms state-of-the-art methods both qualitatively and quantitatively. Additionally, the results underscore the effectiveness of the complementary strengths of different modalities and demonstrate that leveraging a large-scale EEG model can further enhance reconstruction performance by alleviating the challenges associated with limited data.
♻ ☆ Epistemic-aware Vision-Language Foundation Model for Fetal Ultrasound Interpretation
Recent medical vision-language models have shown promise on tasks such as VQA, report generation, and anomaly detection. However, most are adapted to structured adult imaging and underperform in fetal ultrasound, which poses challenges of multi-view image reasoning, numerous diseases, and image diversity. To bridge this gap, we introduce FetalMind, a medical AI system tailored to fetal ultrasound for both report generation and diagnosis. Guided by clinical workflow, we propose Salient Epistemic Disentanglement (SED), which injects an expert-curated bipartite graph into the model to decouple view-disease associations and to steer preference selection along clinically faithful steps via reinforcement learning. This design mitigates variability across diseases and heterogeneity across views, reducing learning bottlenecks while aligning the model's inference with obstetric practice. To train FetalMind at scale, we curate FetalSigma-1M dataset, the first large-scale fetal ultrasound report corpus, comprising 20K reports from twelve medical centers, addressing the scarcity of domain data. Extensive experiments show that FetalMind outperforms open- and closed-source baselines across all gestational stages, achieving +14% average gains and +61.2% higher accuracy on critical conditions while remaining efficient, stable, and scalable. Project Page: https://hexiao0275.github.io/FetalMind.
comment: This paper contains fundamental errors and will not be replaced