Yg4Arxiv
Computer Vision and Pattern Recognition 126
☆ FLUX-Reason-6M & PRISM-Bench: A Million-Scale Text-to-Image Reasoning Dataset and Comprehensive Benchmark
The advancement of open-source text-to-image (T2I) models has been hindered by the absence of large-scale, reasoning-focused datasets and comprehensive evaluation benchmarks, resulting in a performance gap compared to leading closed-source systems. To address this challenge, We introduce FLUX-Reason-6M and PRISM-Bench (Precise and Robust Image Synthesis Measurement Benchmark). FLUX-Reason-6M is a massive dataset consisting of 6 million high-quality FLUX-generated images and 20 million bilingual (English and Chinese) descriptions specifically designed to teach complex reasoning. The image are organized according to six key characteristics: Imagination, Entity, Text rendering, Style, Affection, and Composition, and design explicit Generation Chain-of-Thought (GCoT) to provide detailed breakdowns of image generation steps. The whole data curation takes 15,000 A100 GPU days, providing the community with a resource previously unattainable outside of large industrial labs. PRISM-Bench offers a novel evaluation standard with seven distinct tracks, including a formidable Long Text challenge using GCoT. Through carefully designed prompts, it utilizes advanced vision-language models for nuanced human-aligned assessment of prompt-image alignment and image aesthetics. Our extensive evaluation of 19 leading models on PRISM-Bench reveals critical performance gaps and highlights specific areas requiring improvement. Our dataset, benchmark, and evaluation code are released to catalyze the next wave of reasoning-oriented T2I generation. Project page: https://flux-reason-6m.github.io/ .
comment: Project page: https://flux-reason-6m.github.io/
☆ SpatialVID: A Large-Scale Video Dataset with Spatial Annotations
Significant progress has been made in spatial intelligence, spanning both spatial reconstruction and world exploration. However, the scalability and real-world fidelity of current models remain severely constrained by the scarcity of large-scale, high-quality training data. While several datasets provide camera pose information, they are typically limited in scale, diversity, and annotation richness, particularly for real-world dynamic scenes with ground-truth camera motion. To this end, we collect \textbf{SpatialVID}, a dataset consists of a large corpus of in-the-wild videos with diverse scenes, camera movements and dense 3D annotations such as per-frame camera poses, depth, and motion instructions. Specifically, we collect more than 21,000 hours of raw video, and process them into 2.7 million clips through a hierarchical filtering pipeline, totaling 7,089 hours of dynamic content. A subsequent annotation pipeline enriches these clips with detailed spatial and semantic information, including camera poses, depth maps, dynamic masks, structured captions, and serialized motion instructions. Analysis of SpatialVID's data statistics reveals a richness and diversity that directly foster improved model generalization and performance, establishing it as a key asset for the video and 3D vision research community.
comment: Project page: https://nju-3dv.github.io/projects/SpatialVID/
☆ Locality in Image Diffusion Models Emerges from Data Statistics
Among generative models, diffusion models are uniquely intriguing due to the existence of a closed-form optimal minimizer of their training objective, often referred to as the optimal denoiser. However, diffusion using this optimal denoiser merely reproduces images in the training set and hence fails to capture the behavior of deep diffusion models. Recent work has attempted to characterize this gap between the optimal denoiser and deep diffusion models, proposing analytical, training-free models that can generate images that resemble those generated by a trained UNet. The best-performing method hypothesizes that shift equivariance and locality inductive biases of convolutional neural networks are the cause of the performance gap, hence incorporating these assumptions into its analytical model. In this work, we present evidence that the locality in deep diffusion models emerges as a statistical property of the image dataset, not due to the inductive bias of convolutional neural networks. Specifically, we demonstrate that an optimal parametric linear denoiser exhibits similar locality properties to the deep neural denoisers. We further show, both theoretically and experimentally, that this locality arises directly from the pixel correlations present in natural image datasets. Finally, we use these insights to craft an analytical denoiser that better matches scores predicted by a deep diffusion model than the prior expert-crafted alternative.
comment: 30 pages, 18 figures, 6 tables
☆ Dexplore: Scalable Neural Control for Dexterous Manipulation from Reference-Scoped Exploration
Hand-object motion-capture (MoCap) repositories offer large-scale, contact-rich demonstrations and hold promise for scaling dexterous robotic manipulation. Yet demonstration inaccuracies and embodiment gaps between human and robot hands limit the straightforward use of these data. Existing methods adopt a three-stage workflow, including retargeting, tracking, and residual correction, which often leaves demonstrations underused and compound errors across stages. We introduce Dexplore, a unified single-loop optimization that jointly performs retargeting and tracking to learn robot control policies directly from MoCap at scale. Rather than treating demonstrations as ground truth, we use them as soft guidance. From raw trajectories, we derive adaptive spatial scopes, and train with reinforcement learning to keep the policy in-scope while minimizing control effort and accomplishing the task. This unified formulation preserves demonstration intent, enables robot-specific strategies to emerge, improves robustness to noise, and scales to large demonstration corpora. We distill the scaled tracking policy into a vision-based, skill-conditioned generative controller that encodes diverse manipulation skills in a rich latent representation, supporting generalization across objects and real-world deployment. Taken together, these contributions position Dexplore as a principled bridge that transforms imperfect demonstrations into effective training signals for dexterous manipulation.
comment: CoRL 2025
☆ Geometric Neural Distance Fields for Learning Human Motion Priors
We introduce Neural Riemannian Motion Fields (NRMF), a novel 3D generative human motion prior that enables robust, temporally consistent, and physically plausible 3D motion recovery. Unlike existing VAE or diffusion-based methods, our higher-order motion prior explicitly models the human motion in the zero level set of a collection of neural distance fields (NDFs) corresponding to pose, transition (velocity), and acceleration dynamics. Our framework is rigorous in the sense that our NDFs are constructed on the product space of joint rotations, their angular velocities, and angular accelerations, respecting the geometry of the underlying articulations. We further introduce: (i) a novel adaptive-step hybrid algorithm for projecting onto the set of plausible motions, and (ii) a novel geometric integrator to "roll out" realistic motion trajectories during test-time-optimization and generation. Our experiments show significant and consistent gains: trained on the AMASS dataset, NRMF remarkably generalizes across multiple input modalities and to diverse tasks ranging from denoising to motion in-betweening and fitting to partial 2D / 3D observations.
comment: 8 pages
☆ Can Understanding and Generation Truly Benefit Together -- or Just Coexist?
In this paper, we introduce an insightful paradigm through the Auto-Encoder lens-understanding as the encoder (I2T) that compresses images into text, and generation as the decoder (T2I) that reconstructs images from that text. Using reconstruction fidelity as the unified training objective, we enforce the coherent bidirectional information flow between the understanding and generation processes, bringing mutual gains. To implement this, we propose UAE, a novel framework for unified multimodal learning. We begin by pre-training the decoder with large-scale long-context image captions to capture fine-grained semantic and complex spatial relationships. We then propose Unified-GRPO via reinforcement learning (RL), which covers three stages: (1) A cold-start phase to gently initialize both encoder and decoder with a semantic reconstruction loss; (2) Generation for Understanding, where the encoder is trained to generate informative captions that maximize the decoder's reconstruction quality, enhancing its visual understanding; (3) Understanding for Generation, where the decoder is refined to reconstruct from these captions, forcing it to leverage every detail and improving its long-context instruction following and generation fidelity. For evaluation, we introduce Unified-Bench, the first benchmark tailored to assess the degree of unification of the UMMs. A surprising "aha moment" arises within the multimodal learning domain: as RL progresses, the encoder autonomously produces more descriptive captions, while the decoder simultaneously demonstrates a profound ability to understand these intricate descriptions, resulting in reconstructions of striking fidelity.
☆ Measuring Epistemic Humility in Multimodal Large Language Models
Hallucinations in multimodal large language models (MLLMs) -- where the model generates content inconsistent with the input image -- pose significant risks in real-world applications, from misinformation in visual question answering to unsafe errors in decision-making. Existing benchmarks primarily test recognition accuracy, i.e., evaluating whether models can select the correct answer among distractors. This overlooks an equally critical capability for trustworthy AI: recognizing when none of the provided options are correct, a behavior reflecting epistemic humility. We present HumbleBench, a new hallucination benchmark designed to evaluate MLLMs' ability to reject plausible but incorrect answers across three hallucination types: object, relation, and attribute. Built from a panoptic scene graph dataset, we leverage fine-grained scene graph annotations to extract ground-truth entities and relations, and prompt GPT-4-Turbo to generate multiple-choice questions, followed by a rigorous manual filtering process. Each question includes a "None of the above" option, requiring models not only to recognize correct visual information but also to identify when no provided answer is valid. We evaluate a variety of state-of-the-art MLLMs -- including both general-purpose and specialized reasoning models -- on HumbleBench and share valuable findings and insights with the community. By incorporating explicit false-option rejection, HumbleBench fills a key gap in current evaluation suites, providing a more realistic measure of MLLM reliability in safety-critical settings. Our code and dataset are released publicly and can be accessed at https://github.com/maifoundations/HumbleBench.
☆ DiFlow-TTS: Discrete Flow Matching with Factorized Speech Tokens for Low-Latency Zero-Shot Text-To-Speech
Zero-shot Text-to-Speech (TTS) aims to synthesize high-quality speech that mimics the voice of an unseen speaker using only a short reference sample, requiring not only speaker adaptation but also accurate modeling of prosodic attributes. Recent approaches based on language models, diffusion, and flow matching have shown promising results in zero-shot TTS, but still suffer from slow inference and repetition artifacts. Discrete codec representations have been widely adopted for speech synthesis, and recent works have begun to explore diffusion models in purely discrete settings, suggesting the potential of discrete generative modeling for speech synthesis. However, existing flow-matching methods typically embed these discrete tokens into a continuous space and apply continuous flow matching, which may not fully leverage the advantages of discrete representations. To address these challenges, we introduce DiFlow-TTS, which, to the best of our knowledge, is the first model to explore purely Discrete Flow Matching for speech synthesis. DiFlow-TTS explicitly models factorized speech attributes within a compact and unified architecture. It leverages in-context learning by conditioning on textual content, along with prosodic and acoustic attributes extracted from a reference speech, enabling effective attribute cloning in a zero-shot setting. In addition, the model employs a factorized flow prediction mechanism with distinct heads for prosody and acoustic details, allowing it to learn aspect-specific distributions. Experimental results demonstrate that DiFlow-TTS achieves promising performance in several key metrics, including naturalness, prosody, preservation of speaker style, and energy control. It also maintains a compact model size and achieves low-latency inference, generating speech up to 25.8 times faster than the latest existing baselines.
☆ Mechanistic Learning with Guided Diffusion Models to Predict Spatio-Temporal Brain Tumor Growth
Predicting the spatio-temporal progression of brain tumors is essential for guiding clinical decisions in neuro-oncology. We propose a hybrid mechanistic learning framework that combines a mathematical tumor growth model with a guided denoising diffusion implicit model (DDIM) to synthesize anatomically feasible future MRIs from preceding scans. The mechanistic model, formulated as a system of ordinary differential equations, captures temporal tumor dynamics including radiotherapy effects and estimates future tumor burden. These estimates condition a gradient-guided DDIM, enabling image synthesis that aligns with both predicted growth and patient anatomy. We train our model on the BraTS adult and pediatric glioma datasets and evaluate on 60 axial slices of in-house longitudinal pediatric diffuse midline glioma (DMG) cases. Our framework generates realistic follow-up scans based on spatial similarity metrics. It also introduces tumor growth probability maps, which capture both clinically relevant extent and directionality of tumor growth as shown by 95th percentile Hausdorff Distance. The method enables biologically informed image generation in data-limited scenarios, offering generative-space-time predictions that account for mechanistic priors.
comment: 13 pages, 4 figures
☆ Graph Alignment via Dual-Pass Spectral Encoding and Latent Space Communication
Graph alignment-the problem of identifying corresponding nodes across multiple graphs-is fundamental to numerous applications. Most existing unsupervised methods embed node features into latent representations to enable cross-graph comparison without ground-truth correspondences. However, these methods suffer from two critical limitations: the degradation of node distinctiveness due to oversmoothing in GNN-based embeddings, and the misalignment of latent spaces across graphs caused by structural noise, feature heterogeneity, and training instability, ultimately leading to unreliable node correspondences. We propose a novel graph alignment framework that simultaneously enhances node distinctiveness and enforces geometric consistency across latent spaces. Our approach introduces a dual-pass encoder that combines low-pass and high-pass spectral filters to generate embeddings that are both structure-aware and highly discriminative. To address latent space misalignment, we incorporate a geometry-aware functional map module that learns bijective and isometric transformations between graph embeddings, ensuring consistent geometric relationships across different representations. Extensive experiments on graph benchmarks demonstrate that our method consistently outperforms existing unsupervised alignment baselines, exhibiting superior robustness to structural inconsistencies and challenging alignment scenarios. Additionally, comprehensive evaluation on vision-language benchmarks using diverse pretrained models shows that our framework effectively generalizes beyond graph domains, enabling unsupervised alignment of vision and language representations.
comment: 23 pages
☆ Kling-Avatar: Grounding Multimodal Instructions for Cascaded Long-Duration Avatar Animation Synthesis
Recent advances in audio-driven avatar video generation have significantly enhanced audio-visual realism. However, existing methods treat instruction conditioning merely as low-level tracking driven by acoustic or visual cues, without modeling the communicative purpose conveyed by the instructions. This limitation compromises their narrative coherence and character expressiveness. To bridge this gap, we introduce Kling-Avatar, a novel cascaded framework that unifies multimodal instruction understanding with photorealistic portrait generation. Our approach adopts a two-stage pipeline. In the first stage, we design a multimodal large language model (MLLM) director that produces a blueprint video conditioned on diverse instruction signals, thereby governing high-level semantics such as character motion and emotions. In the second stage, guided by blueprint keyframes, we generate multiple sub-clips in parallel using a first-last frame strategy. This global-to-local framework preserves fine-grained details while faithfully encoding the high-level intent behind multimodal instructions. Our parallel architecture also enables fast and stable generation of long-duration videos, making it suitable for real-world applications such as digital human livestreaming and vlogging. To comprehensively evaluate our method, we construct a benchmark of 375 curated samples covering diverse instructions and challenging scenarios. Extensive experiments demonstrate that Kling-Avatar is capable of generating vivid, fluent, long-duration videos at up to 1080p and 48 fps, achieving superior performance in lip synchronization accuracy, emotion and dynamic expressiveness, instruction controllability, identity preservation, and cross-domain generalization. These results establish Kling-Avatar as a new benchmark for semantically grounded, high-fidelity audio-driven avatar synthesis.
comment: Technical Report. Project Page: https://klingavatar.github.io/
☆ ObjectReact: Learning Object-Relative Control for Visual Navigation
Visual navigation using only a single camera and a topological map has recently become an appealing alternative to methods that require additional sensors and 3D maps. This is typically achieved through an "image-relative" approach to estimating control from a given pair of current observation and subgoal image. However, image-level representations of the world have limitations because images are strictly tied to the agent's pose and embodiment. In contrast, objects, being a property of the map, offer an embodiment- and trajectory-invariant world representation. In this work, we present a new paradigm of learning "object-relative" control that exhibits several desirable characteristics: a) new routes can be traversed without strictly requiring to imitate prior experience, b) the control prediction problem can be decoupled from solving the image matching problem, and c) high invariance can be achieved in cross-embodiment deployment for variations across both training-testing and mapping-execution settings. We propose a topometric map representation in the form of a "relative" 3D scene graph, which is used to obtain more informative object-level global path planning costs. We train a local controller, dubbed "ObjectReact", conditioned directly on a high-level "WayObject Costmap" representation that eliminates the need for an explicit RGB input. We demonstrate the advantages of learning object-relative control over its image-relative counterpart across sensor height variations and multiple navigation tasks that challenge the underlying spatial understanding capability, e.g., navigating a map trajectory in the reverse direction. We further show that our sim-only policy is able to generalize well to real-world indoor environments. Code and supplementary material are accessible via project page: https://object-react.github.io/
comment: CoRL 2025; 23 pages including appendix
☆ Visual Grounding from Event Cameras ICCV 2025
Event cameras capture changes in brightness with microsecond precision and remain reliable under motion blur and challenging illumination, offering clear advantages for modeling highly dynamic scenes. Yet, their integration with natural language understanding has received little attention, leaving a gap in multimodal perception. To address this, we introduce Talk2Event, the first large-scale benchmark for language-driven object grounding using event data. Built on real-world driving scenarios, Talk2Event comprises 5,567 scenes, 13,458 annotated objects, and more than 30,000 carefully validated referring expressions. Each expression is enriched with four structured attributes -- appearance, status, relation to the viewer, and relation to surrounding objects -- that explicitly capture spatial, temporal, and relational cues. This attribute-centric design supports interpretable and compositional grounding, enabling analysis that moves beyond simple object recognition to contextual reasoning in dynamic environments. We envision Talk2Event as a foundation for advancing multimodal and temporally-aware perception, with applications spanning robotics, human-AI interaction, and so on.
comment: Abstract Paper (Non-Archival) @ ICCV 2025 NeVi Workshop
☆ PeftCD: Leveraging Vision Foundation Models with Parameter-Efficient Fine-Tuning for Remote Sensing Change Detection
To tackle the prevalence of pseudo changes, the scarcity of labeled samples, and the difficulty of cross-domain generalization in multi-temporal and multi-source remote sensing imagery, we propose PeftCD, a change detection framework built upon Vision Foundation Models (VFMs) with Parameter-Efficient Fine-Tuning (PEFT). At its core, PeftCD employs a weight-sharing Siamese encoder derived from a VFM, into which LoRA and Adapter modules are seamlessly integrated. This design enables highly efficient task adaptation by training only a minimal set of additional parameters. To fully unlock the potential of VFMs, we investigate two leading backbones: the Segment Anything Model v2 (SAM2), renowned for its strong segmentation priors, and DINOv3, a state-of-the-art self-supervised representation learner. The framework is complemented by a deliberately lightweight decoder, ensuring the focus remains on the powerful feature representations from the backbones. Extensive experiments demonstrate that PeftCD achieves state-of-the-art performance across multiple public datasets, including SYSU-CD (IoU 73.81%), WHUCD (92.05%), MSRSCD (64.07%), MLCD (76.89%), CDD (97.01%), S2Looking (52.25%) and LEVIR-CD (85.62%), with notably precise boundary delineation and strong suppression of pseudo-changes. In summary, PeftCD presents an optimal balance of accuracy, efficiency, and generalization. It offers a powerful and scalable paradigm for adapting large-scale VFMs to real-world remote sensing change detection applications. The code and pretrained models will be released at https://github.com/dyzy41/PeftCD.
☆ Invisible Attributes, Visible Biases: Exploring Demographic Shortcuts in MRI-based Alzheimer's Disease Classification MICCAI 2025
Magnetic resonance imaging (MRI) is the gold standard for brain imaging. Deep learning (DL) algorithms have been proposed to aid in the diagnosis of diseases such as Alzheimer's disease (AD) from MRI scans. However, DL algorithms can suffer from shortcut learning, in which spurious features, not directly related to the output label, are used for prediction. When these features are related to protected attributes, they can lead to performance bias against underrepresented protected groups, such as those defined by race and sex. In this work, we explore the potential for shortcut learning and demographic bias in DL based AD diagnosis from MRI. We first investigate if DL algorithms can identify race or sex from 3D brain MRI scans to establish the presence or otherwise of race and sex based distributional shifts. Next, we investigate whether training set imbalance by race or sex can cause a drop in model performance, indicating shortcut learning and bias. Finally, we conduct a quantitative and qualitative analysis of feature attributions in different brain regions for both the protected attribute and AD classification tasks. Through these experiments, and using multiple datasets and DL models (ResNet and SwinTransformer), we demonstrate the existence of both race and sex based shortcut learning and bias in DL based AD classification. Our work lays the foundation for fairer DL diagnostic tools in brain MRI. The code is provided at https://github.com/acharaakshit/ShortMR
comment: FAIMI @ MICCAI 2025
☆ InterAct: Advancing Large-Scale Versatile 3D Human-Object Interaction Generation CVPR 2025
While large-scale human motion capture datasets have advanced human motion generation, modeling and generating dynamic 3D human-object interactions (HOIs) remain challenging due to dataset limitations. Existing datasets often lack extensive, high-quality motion and annotation and exhibit artifacts such as contact penetration, floating, and incorrect hand motions. To address these issues, we introduce InterAct, a large-scale 3D HOI benchmark featuring dataset and methodological advancements. First, we consolidate and standardize 21.81 hours of HOI data from diverse sources, enriching it with detailed textual annotations. Second, we propose a unified optimization framework to enhance data quality by reducing artifacts and correcting hand motions. Leveraging the principle of contact invariance, we maintain human-object relationships while introducing motion variations, expanding the dataset to 30.70 hours. Third, we define six benchmarking tasks and develop a unified HOI generative modeling perspective, achieving state-of-the-art performance. Extensive experiments validate the utility of our dataset as a foundational resource for advancing 3D human-object interaction generation. To support continued research in this area, the dataset is publicly available at https://github.com/wzyabcas/InterAct, and will be actively maintained.
comment: CVPR 2025
☆ Improving Video Diffusion Transformer Training by Multi-Feature Fusion and Alignment from Self-Supervised Vision Encoders
Video diffusion models have advanced rapidly in the recent years as a result of series of architectural innovations (e.g., diffusion transformers) and use of novel training objectives (e.g., flow matching). In contrast, less attention has been paid to improving the feature representation power of such models. In this work, we show that training video diffusion models can benefit from aligning the intermediate features of the video generator with feature representations of pre-trained vision encoders. We propose a new metric and conduct an in-depth analysis of various vision encoders to evaluate their discriminability and temporal consistency, thereby assessing their suitability for video feature alignment. Based on the analysis, we present Align4Gen which provides a novel multi-feature fusion and alignment method integrated into video diffusion model training. We evaluate Align4Gen both for unconditional and class-conditional video generation tasks and show that it results in improved video generation as quantified by various metrics. Full video results are available on our project page: https://align4gen.github.io/align4gen/
comment: 17 pages, 14 figures
☆ DualTrack: Sensorless 3D Ultrasound needs Local and Global Context
Three-dimensional ultrasound (US) offers many clinical advantages over conventional 2D imaging, yet its widespread adoption is limited by the cost and complexity of traditional 3D systems. Sensorless 3D US, which uses deep learning to estimate a 3D probe trajectory from a sequence of 2D US images, is a promising alternative. Local features, such as speckle patterns, can help predict frame-to-frame motion, while global features, such as coarse shapes and anatomical structures, can situate the scan relative to anatomy and help predict its general shape. In prior approaches, global features are either ignored or tightly coupled with local feature extraction, restricting the ability to robustly model these two complementary aspects. We propose DualTrack, a novel dual-encoder architecture that leverages decoupled local and global encoders specialized for their respective scales of feature extraction. The local encoder uses dense spatiotemporal convolutions to capture fine-grained features, while the global encoder utilizes an image backbone (e.g., a 2D CNN or foundation model) and temporal attention layers to embed high-level anatomical features and long-range dependencies. A lightweight fusion module then combines these features to estimate the trajectory. Experimental results on a large public benchmark show that DualTrack achieves state-of-the-art accuracy and globally consistent 3D reconstructions, outperforming previous methods and yielding an average reconstruction error below 5 mm.
☆ Generative Diffusion Contrastive Network for Multi-View Clustering ICASSP2026
In recent years, Multi-View Clustering (MVC) has been significantly advanced under the influence of deep learning. By integrating heterogeneous data from multiple views, MVC enhances clustering analysis, making multi-view fusion critical to clustering performance. However, there is a problem of low-quality data in multi-view fusion. This problem primarily arises from two reasons: 1) Certain views are contaminated by noisy data. 2) Some views suffer from missing data. This paper proposes a novel Stochastic Generative Diffusion Fusion (SGDF) method to address this problem. SGDF leverages a multiple generative mechanism for the multi-view feature of each sample. It is robust to low-quality data. Building on SGDF, we further present the Generative Diffusion Contrastive Network (GDCN). Extensive experiments show that GDCN achieves the state-of-the-art results in deep MVC tasks. The source code is publicly available at https://github.com/HackerHyper/GDCN.
comment: This paper is submitted to International Conference on Acoustics, Speech, and Signal Processing (ICASSP2026)
☆ Explainable AI for Accelerated Microstructure Imaging: A SHAP-Guided Protocol on the Connectome 2.0 scanner IEEE
The diffusion MRI Neurite Exchange Imaging model offers a promising framework for probing gray matter microstructure by estimating parameters such as compartment sizes, diffusivities, and inter-compartmental water exchange time. However, existing protocols require long scan times. This study proposes a reduced acquisition scheme for the Connectome 2.0 scanner that preserves model accuracy while substantially shortening scan duration. We developed a data-driven framework using explainable artificial intelligence with a guided recursive feature elimination strategy to identify an optimal 8-feature subset from a 15-feature protocol. The performance of this optimized protocol was validated in vivo and benchmarked against the full acquisition and alternative reduction strategies. Parameter accuracy, preservation of anatomical contrast, and test-retest reproducibility were assessed. The reduced protocol yielded parameter estimates and cortical maps comparable to the full protocol, with low estimation errors in synthetic data and minimal impact on test-retest variability. Compared to theory-driven and heuristic reduction schemes, the optimized protocol demonstrated superior robustness, reducing the deviation in water exchange time estimates by over two-fold. In conclusion, this hybrid optimization framework enables viable imaging of neurite exchange in 14 minutes without loss of parameter fidelity. This approach supports the broader application of exchange-sensitive diffusion magnetic resonance imaging in neuroscience and clinical research, and offers a generalizable method for designing efficient acquisition protocols in biophysical parameter mapping.
comment: Submitted to IEEE Transactions on Medical Imaging (TMI). This all-in-one version includes supplementary materials. 18 pages, 14 figures, 2 tables
☆ Region-Wise Correspondence Prediction between Manga Line Art Images
Understanding region-wise correspondence between manga line art images is a fundamental task in manga processing, enabling downstream applications such as automatic line art colorization and in-between frame generation. However, this task remains largely unexplored, especially in realistic scenarios without pre-existing segmentation or annotations. In this paper, we introduce a novel and practical task: predicting region-wise correspondence between raw manga line art images without any pre-existing labels or masks. To tackle this problem, we divide each line art image into a set of patches and propose a Transformer-based framework that learns patch-level similarities within and across images. We then apply edge-aware clustering and a region matching algorithm to convert patch-level predictions into coherent region-level correspondences. To support training and evaluation, we develop an automatic annotation pipeline and manually refine a subset of the data to construct benchmark datasets. Experiments on multiple datasets demonstrate that our method achieves high patch-level accuracy (e.g., 96.34%) and generates consistent region-level correspondences, highlighting its potential for real-world manga applications.
☆ Improving Human Motion Plausibility with Body Momentum BMVC 2025
Many studies decompose human motion into local motion in a frame attached to the root joint and global motion of the root joint in the world frame, treating them separately. However, these two components are not independent. Global movement arises from interactions with the environment, which are, in turn, driven by changes in the body configuration. Motion models often fail to precisely capture this physical coupling between local and global dynamics, while deriving global trajectories from joint torques and external forces is computationally expensive and complex. To address these challenges, we propose using whole-body linear and angular momentum as a constraint to link local motion with global movement. Since momentum reflects the aggregate effect of joint-level dynamics on the body's movement through space, it provides a physically grounded way to relate local joint behavior to global displacement. Building on this insight, we introduce a new loss term that enforces consistency between the generated momentum profiles and those observed in ground-truth data. Incorporating our loss reduces foot sliding and jitter, improves balance, and preserves the accuracy of the recovered motion. Code and data are available at the project page https://hlinhn.github.io/momentum_bmvc.
comment: Accepted at BMVC 2025
☆ OpenFake: An Open Dataset and Platform Toward Large-Scale Deepfake Detection
Deepfakes, synthetic media created using advanced AI techniques, have intensified the spread of misinformation, particularly in politically sensitive contexts. Existing deepfake detection datasets are often limited, relying on outdated generation methods, low realism, or single-face imagery, restricting the effectiveness for general synthetic image detection. By analyzing social media posts, we identify multiple modalities through which deepfakes propagate misinformation. Furthermore, our human perception study demonstrates that recently developed proprietary models produce synthetic images increasingly indistinguishable from real ones, complicating accurate identification by the general public. Consequently, we present a comprehensive, politically-focused dataset specifically crafted for benchmarking detection against modern generative models. This dataset contains three million real images paired with descriptive captions, which are used for generating 963k corresponding high-quality synthetic images from a mix of proprietary and open-source models. Recognizing the continual evolution of generative techniques, we introduce an innovative crowdsourced adversarial platform, where participants are incentivized to generate and submit challenging synthetic images. This ongoing community-driven initiative ensures that deepfake detection methods remain robust and adaptive, proactively safeguarding public discourse from sophisticated misinformation threats.
comment: 25 pages, 12 figures
☆ In-Loop Filtering Using Learned Look-Up Tables for Video Coding
In-loop filtering (ILF) is a key technology in video coding standards to reduce artifacts and enhance visual quality. Recently, neural network-based ILF schemes have achieved remarkable coding gains, emerging as a powerful candidate for next-generation video coding standards. However, the use of deep neural networks (DNN) brings significant computational and time complexity or high demands for dedicated hardware, making it challenging for general use. To address this limitation, we study a practical ILF solution by adopting look-up tables (LUTs). After training a DNN with a restricted reference range for ILF, all possible inputs are traversed, and the output values of the DNN are cached into LUTs. During the coding process, the filtering process is performed by simply retrieving the filtered pixel through locating the input pixels and interpolating between the cached values, instead of relying on heavy inference computations. In this paper, we propose a universal LUT-based ILF framework, termed LUT-ILF++. First, we introduce the cooperation of multiple kinds of filtering LUTs and propose a series of customized indexing mechanisms to enable better filtering reference perception with limited storage consumption. Second, we propose the cross-component indexing mechanism to enable the filtering of different color components jointly. Third, in order to make our solution practical for coding uses, we propose the LUT compaction scheme to enable the LUT pruning, achieving a lower storage cost of the entire solution. The proposed framework is implemented in the VVC reference software. Experimental results show that the proposed framework achieves on average 0.82%/2.97%/1.63% and 0.85%/4.11%/2.06% bitrate reduction for common test sequences, under the AI and RA configurations, respectively. Compared to DNN-based solutions, our proposed solution has much lower time complexity and storage cost.
comment: 25 pages
☆ Resource-Efficient Glioma Segmentation on Sub-Saharan MRI
Gliomas are the most prevalent type of primary brain tumors, and their accurate segmentation from MRI is critical for diagnosis, treatment planning, and longitudinal monitoring. However, the scarcity of high-quality annotated imaging data in Sub-Saharan Africa (SSA) poses a significant challenge for deploying advanced segmentation models in clinical workflows. This study introduces a robust and computationally efficient deep learning framework tailored for resource-constrained settings. We leveraged a 3D Attention UNet architecture augmented with residual blocks and enhanced through transfer learning from pre-trained weights on the BraTS 2021 dataset. Our model was evaluated on 95 MRI cases from the BraTS-Africa dataset, a benchmark for glioma segmentation in SSA MRI data. Despite the limited data quality and quantity, our approach achieved Dice scores of 0.76 for the Enhancing Tumor (ET), 0.80 for Necrotic and Non-Enhancing Tumor Core (NETC), and 0.85 for Surrounding Non-Functional Hemisphere (SNFH). These results demonstrate the generalizability of the proposed model and its potential to support clinical decision making in low-resource settings. The compact architecture, approximately 90 MB, and sub-minute per-volume inference time on consumer-grade hardware further underscore its practicality for deployment in SSA health systems. This work contributes toward closing the gap in equitable AI for global health by empowering underserved regions with high-performing and accessible medical imaging solutions.
comment: 11 pages, 7 figures
☆ FlexiD-Fuse: Flexible number of inputs multi-modal medical image fusion based on diffusion model
Different modalities of medical images provide unique physiological and anatomical information for diseases. Multi-modal medical image fusion integrates useful information from different complementary medical images with different modalities, producing a fused image that comprehensively and objectively reflects lesion characteristics to assist doctors in clinical diagnosis. However, existing fusion methods can only handle a fixed number of modality inputs, such as accepting only two-modal or tri-modal inputs, and cannot directly process varying input quantities, which hinders their application in clinical settings. To tackle this issue, we introduce FlexiD-Fuse, a diffusion-based image fusion network designed to accommodate flexible quantities of input modalities. It can end-to-end process two-modal and tri-modal medical image fusion under the same weight. FlexiD-Fuse transforms the diffusion fusion problem, which supports only fixed-condition inputs, into a maximum likelihood estimation problem based on the diffusion process and hierarchical Bayesian modeling. By incorporating the Expectation-Maximization algorithm into the diffusion sampling iteration process, FlexiD-Fuse can generate high-quality fused images with cross-modal information from source images, independently of the number of input images. We compared the latest two and tri-modal medical image fusion methods, tested them on Harvard datasets, and evaluated them using nine popular metrics. The experimental results show that our method achieves the best performance in medical image fusion with varying inputs. Meanwhile, we conducted extensive extension experiments on infrared-visible, multi-exposure, and multi-focus image fusion tasks with arbitrary numbers, and compared them with the perspective SOTA methods. The results of the extension experiments consistently demonstrate the effectiveness and superiority of our method.
☆ Semantic Concentration for Self-Supervised Dense Representations Learning
Recent advances in image-level self-supervised learning (SSL) have made significant progress, yet learning dense representations for patches remains challenging. Mainstream methods encounter an over-dispersion phenomenon that patches from the same instance/category scatter, harming downstream performance on dense tasks. This work reveals that image-level SSL avoids over-dispersion by involving implicit semantic concentration. Specifically, the non-strict spatial alignment ensures intra-instance consistency, while shared patterns, i.e., similar parts of within-class instances in the input space, ensure inter-image consistency. Unfortunately, these approaches are infeasible for dense SSL due to their spatial sensitivity and complicated scene-centric data. These observations motivate us to explore explicit semantic concentration for dense SSL. First, to break the strict spatial alignment, we propose to distill the patch correspondences. Facing noisy and imbalanced pseudo labels, we propose a noise-tolerant ranking loss. The core idea is extending the Average Precision (AP) loss to continuous targets, such that its decision-agnostic and adaptive focusing properties prevent the student model from being misled. Second, to discriminate the shared patterns from complicated scenes, we propose the object-aware filter to map the output space to an object-based space. Specifically, patches are represented by learnable prototypes of objects via cross-attention. Last but not least, empirical studies across various tasks soundly support the effectiveness of our method. Code is available in https://github.com/KID-7391/CoTAP.
☆ FS-Diff: Semantic guidance and clarity-aware simultaneous multimodal image fusion and super-resolution
As an influential information fusion and low-level vision technique, image fusion integrates complementary information from source images to yield an informative fused image. A few attempts have been made in recent years to jointly realize image fusion and super-resolution. However, in real-world applications such as military reconnaissance and long-range detection missions, the target and background structures in multimodal images are easily corrupted, with low resolution and weak semantic information, which leads to suboptimal results in current fusion techniques. In response, we propose FS-Diff, a semantic guidance and clarity-aware joint image fusion and super-resolution method. FS-Diff unifies image fusion and super-resolution as a conditional generation problem. It leverages semantic guidance from the proposed clarity sensing mechanism for adaptive low-resolution perception and cross-modal feature extraction. Specifically, we initialize the desired fused result as pure Gaussian noise and introduce the bidirectional feature Mamba to extract the global features of the multimodal images. Moreover, utilizing the source images and semantics as conditions, we implement a random iterative denoising process via a modified U-Net network. This network istrained for denoising at multiple noise levels to produce high-resolution fusion results with cross-modal features and abundant semantic information. We also construct a powerful aerial view multiscene (AVMS) benchmark covering 600 pairs of images. Extensive joint image fusion and super-resolution experiments on six public and our AVMS datasets demonstrated that FS-Diff outperforms the state-of-the-art methods at multiple magnifications and can recover richer details and semantics in the fused images. The code is available at https://github.com/XylonXu01/FS-Diff.
☆ Decoupling Clinical and Class-Agnostic Features for Reliable Few-Shot Adaptation under Shift
Medical vision-language models (VLMs) offer promise for clinical decision support, yet their reliability under distribution shifts remains a major concern for safe deployment. These models often learn task-agnostic correlations due to variability in imaging protocols and free-text reports, limiting their generalizability and increasing the risk of failure in real-world settings. We propose DRiFt, a structured feature decoupling framework that explicitly separates clinically relevant signals from task-agnostic noise using parameter-efficient tuning (LoRA) and learnable prompt tokens. To enhance cross-modal alignment and reduce uncertainty, we curate high-quality, clinically grounded image-text pairs by generating captions for a diverse medical dataset. Our approach improves in-distribution performance by +11.4% Top-1 accuracy and +3.3% Macro-F1 over prior prompt-based methods, while maintaining strong robustness across unseen datasets. Ablation studies reveal that disentangling task-relevant features and careful alignment significantly enhance model generalization and reduce unpredictable behavior under domain shift. These insights contribute toward building safer, more trustworthy VLMs for clinical use. The code is available at https://github.com/rumaima/DRiFt.
☆ Unsupervised Integrated-Circuit Defect Segmentation via Image-Intrinsic Normality
Modern Integrated-Circuit(IC) manufacturing introduces diverse, fine-grained defects that depress yield and reliability. Most industrial defect segmentation compares a test image against an external normal set, a strategy that is brittle for IC imagery where layouts vary across products and accurate alignment is difficult. We observe that defects are predominantly local, while each image still contains rich, repeatable normal patterns. We therefore propose an unsupervised IC defect segmentation framework that requires no external normal support. A learnable normal-information extractor aggregates representative normal features from the test image, and a coherence loss enforces their association with normal regions. Guided by these features, a decoder reconstructs only normal content; the reconstruction residual then segments defects. Pseudo-anomaly augmentation further stabilizes training. Experiments on datasets from three IC process stages show consistent improvements over existing approaches and strong robustness to product variability.
☆ A Fully Automatic Framework for Intracranial Pressure Grading: Integrating Keyframe Identification, ONSD Measurement and Clinical Data
Intracranial pressure (ICP) elevation poses severe threats to cerebral function, thus necessitating monitoring for timely intervention. While lumbar puncture is the gold standard for ICP measurement, its invasiveness and associated risks drive the need for non-invasive alternatives. Optic nerve sheath diameter (ONSD) has emerged as a promising biomarker, as elevated ICP directly correlates with increased ONSD. However, current clinical practices for ONSD measurement suffer from inconsistency in manual operation, subjectivity in optimal view selection, and variability in thresholding, limiting their reliability. To address these challenges, we introduce a fully automatic two-stage framework for ICP grading, integrating keyframe identification, ONSD measurement and clinical data. Specifically, the fundus ultrasound video processing stage performs frame-level anatomical segmentation, rule-based keyframe identification guided by an international consensus statement, and precise ONSD measurement. The intracranial pressure grading stage then fuses ONSD metrics with clinical features to enable the prediction of ICP grades, thereby demonstrating an innovative blend of interpretable ultrasound analysis and multi-source data integration for objective clinical evaluation. Experimental results demonstrate that our method achieves a validation accuracy of $0.845 \pm 0.071$ (with standard deviation from five-fold cross-validation) and an independent test accuracy of 0.786, significantly outperforming conventional threshold-based method ($0.637 \pm 0.111$ validation accuracy, $0.429$ test accuracy). Through effectively reducing operator variability and integrating multi-source information, our framework establishes a reliable non-invasive approach for clinical ICP evaluation, holding promise for improving patient management in acute neurological conditions.
☆ Plug-and-play Diffusion Models for Image Compressive Sensing with Data Consistency Projection
We explore the connection between Plug-and-Play (PnP) methods and Denoising Diffusion Implicit Models (DDIM) for solving ill-posed inverse problems, with a focus on single-pixel imaging. We begin by identifying key distinctions between PnP and diffusion models-particularly in their denoising mechanisms and sampling procedures. By decoupling the diffusion process into three interpretable stages: denoising, data consistency enforcement, and sampling, we provide a unified framework that integrates learned priors with physical forward models in a principled manner. Building upon this insight, we propose a hybrid data-consistency module that linearly combines multiple PnP-style fidelity terms. This hybrid correction is applied directly to the denoised estimate, improving measurement consistency without disrupting the diffusion sampling trajectory. Experimental results on single-pixel imaging tasks demonstrate that our method achieves better reconstruction quality.
☆ Texture-aware Intrinsic Image Decomposition with Model- and Learning-based Priors
This paper aims to recover the intrinsic reflectance layer and shading layer given a single image. Though this intrinsic image decomposition problem has been studied for decades, it remains a significant challenge in cases of complex scenes, i.e. spatially-varying lighting effect and rich textures. In this paper, we propose a novel method for handling severe lighting and rich textures in intrinsic image decomposition, which enables to produce high-quality intrinsic images for real-world images. Specifically, we observe that previous learning-based methods tend to produce texture-less and over-smoothing intrinsic images, which can be used to infer the lighting and texture information given a RGB image. In this way, we design a texture-guided regularization term and formulate the decomposition problem into an optimization framework, to separate the material textures and lighting effect. We demonstrate that combining the novel texture-aware prior can produce superior results to existing approaches.
Classification of Driver Behaviour Using External Observation Techniques for Autonomous Vehicles
Road traffic accidents remain a significant global concern, with human error, particularly distracted and impaired driving, among the leading causes. This study introduces a novel driver behavior classification system that uses external observation techniques to detect indicators of distraction and impairment. The proposed framework employs advanced computer vision methodologies, including real-time object tracking, lateral displacement analysis, and lane position monitoring. The system identifies unsafe driving behaviors such as excessive lateral movement and erratic trajectory patterns by implementing the YOLO object detection model and custom lane estimation algorithms. Unlike systems reliant on inter-vehicular communication, this vision-based approach enables behavioral analysis of non-connected vehicles. Experimental evaluations on diverse video datasets demonstrate the framework's reliability and adaptability across varying road and environmental conditions.
☆ OmniEVA: Embodied Versatile Planner via Task-Adaptive 3D-Grounded and Embodiment-aware Reasoning
Recent advances in multimodal large language models (MLLMs) have opened new opportunities for embodied intelligence, enabling multimodal understanding, reasoning, and interaction, as well as continuous spatial decision-making. Nevertheless, current MLLM-based embodied systems face two critical limitations. First, Geometric Adaptability Gap: models trained solely on 2D inputs or with hard-coded 3D geometry injection suffer from either insufficient spatial information or restricted 2D generalization, leading to poor adaptability across tasks with diverse spatial demands. Second, Embodiment Constraint Gap: prior work often neglects the physical constraints and capacities of real robots, resulting in task plans that are theoretically valid but practically infeasible.To address these gaps, we introduce OmniEVA -- an embodied versatile planner that enables advanced embodied reasoning and task planning through two pivotal innovations: (1) a Task-Adaptive 3D Grounding mechanism, which introduces a gated router to perform explicit selective regulation of 3D fusion based on contextual requirements, enabling context-aware 3D grounding for diverse embodied tasks. (2) an Embodiment-Aware Reasoning framework that jointly incorporates task goals and embodiment constraints into the reasoning loop, resulting in planning decisions that are both goal-directed and executable. Extensive experimental results demonstrate that OmniEVA not only achieves state-of-the-art general embodied reasoning performance, but also exhibits a strong ability across a wide range of downstream scenarios. Evaluations of a suite of proposed embodied benchmarks, including both primitive and composite tasks, confirm its robust and versatile planning capabilities. Project page: https://omnieva.github.io
☆ Exploring Pre-training Across Domains for Few-Shot Surgical Skill Assessment MICCAI 2025
Automated surgical skill assessment (SSA) is a central task in surgical computer vision. Developing robust SSA models is challenging due to the scarcity of skill annotations, which are time-consuming to produce and require expert consensus. Few-shot learning (FSL) offers a scalable alternative enabling model development with minimal supervision, though its success critically depends on effective pre-training. While widely studied for several surgical downstream tasks, pre-training has remained largely unexplored in SSA. In this work, we formulate SSA as a few-shot task and investigate how self-supervised pre-training strategies affect downstream few-shot SSA performance. We annotate a publicly available robotic surgery dataset with Objective Structured Assessment of Technical Skill (OSATS) scores, and evaluate various pre-training sources across three few-shot settings. We quantify domain similarity and analyze how domain gap and the inclusion of procedure-specific data into pre-training influence transferability. Our results show that small but domain-relevant datasets can outperform large scale, less aligned ones, achieving accuracies of 60.16%, 66.03%, and 73.65% in the 1-, 2-, and 5-shot settings, respectively. Moreover, incorporating procedure-specific data into pre-training with a domain-relevant external dataset significantly boosts downstream performance, with an average gain of +1.22% in accuracy and +2.28% in F1-score; however, applying the same strategy with less similar but large-scale sources can instead lead to performance degradation. Code and models are available at https://github.com/anastadimi/ssa-fsl.
comment: Accepted at MICCAI 2025 DEMI Workshop
☆ Fine-Grained Customized Fashion Design with Image-into-Prompt benchmark and dataset from LMM
Generative AI evolves the execution of complex workflows in industry, where the large multimodal model empowers fashion design in the garment industry. Current generation AI models magically transform brainstorming into fancy designs easily, but the fine-grained customization still suffers from text uncertainty without professional background knowledge from end-users. Thus, we propose the Better Understanding Generation (BUG) workflow with LMM to automatically create and fine-grain customize the cloth designs from chat with image-into-prompt. Our framework unleashes users' creative potential beyond words and also lowers the barriers of clothing design/editing without further human involvement. To prove the effectiveness of our model, we propose a new FashionEdit dataset that simulates the real-world clothing design workflow, evaluated from generation similarity, user satisfaction, and quality. The code and dataset: https://github.com/detectiveli/FashionEdit.
☆ Image Recognition with Vision and Language Embeddings of VLMs
Vision-language models (VLMs) have enabled strong zero-shot classification through image-text alignment. Yet, their purely visual inference capabilities remain under-explored. In this work, we conduct a comprehensive evaluation of both language-guided and vision-only image classification with a diverse set of dual-encoder VLMs, including both well-established and recent models such as SigLIP 2 and RADIOv2.5. The performance is compared in a standard setup on the ImageNet-1k validation set and its label-corrected variant. The key factors affecting accuracy are analysed, including prompt design, class diversity, the number of neighbours in k-NN, and reference set size. We show that language and vision offer complementary strengths, with some classes favouring textual prompts and others better handled by visual similarity. To exploit this complementarity, we introduce a simple, learning-free fusion method based on per-class precision that improves classification performance. The code is available at: https://github.com/gonikisgo/bmvc2025-vlm-image-recognition.
☆ You Share Beliefs, I Adapt: Progressive Heterogeneous Collaborative Perception
Collaborative perception enables vehicles to overcome individual perception limitations by sharing information, allowing them to see further and through occlusions. In real-world scenarios, models on different vehicles are often heterogeneous due to manufacturer variations. Existing methods for heterogeneous collaborative perception address this challenge by fine-tuning adapters or the entire network to bridge the domain gap. However, these methods are impractical in real-world applications, as each new collaborator must undergo joint training with the ego vehicle on a dataset before inference, or the ego vehicle stores models for all potential collaborators in advance. Therefore, we pose a new question: Can we tackle this challenge directly during inference, eliminating the need for joint training? To answer this, we introduce Progressive Heterogeneous Collaborative Perception (PHCP), a novel framework that formulates the problem as few-shot unsupervised domain adaptation. Unlike previous work, PHCP dynamically aligns features by self-training an adapter during inference, eliminating the need for labeled data and joint training. Extensive experiments on the OPV2V dataset demonstrate that PHCP achieves strong performance across diverse heterogeneous scenarios. Notably, PHCP achieves performance comparable to SOTA methods trained on the entire dataset while using only a small amount of unlabeled data.
☆ Can Multimodal LLMs See Materials Clearly? A Multimodal Benchmark on Materials Characterization
Materials characterization is fundamental to acquiring materials information, revealing the processing-microstructure-property relationships that guide material design and optimization. While multimodal large language models (MLLMs) have recently shown promise in generative and predictive tasks within materials science, their capacity to understand real-world characterization imaging data remains underexplored. To bridge this gap, we present MatCha, the first benchmark for materials characterization image understanding, comprising 1,500 questions that demand expert-level domain expertise. MatCha encompasses four key stages of materials research comprising 21 distinct tasks, each designed to reflect authentic challenges faced by materials scientists. Our evaluation of state-of-the-art MLLMs on MatCha reveals a significant performance gap compared to human experts. These models exhibit degradation when addressing questions requiring higher-level expertise and sophisticated visual perception. Simple few-shot and chain-of-thought prompting struggle to alleviate these limitations. These findings highlight that existing MLLMs still exhibit limited adaptability to real-world materials characterization scenarios. We hope MatCha will facilitate future research in areas such as new material discovery and autonomous scientific agents. MatCha is available at https://github.com/FreedomIntelligence/MatCha.
☆ Learning Object-Centric Representations in SAR Images with Multi-Level Feature Fusion
Synthetic aperture radar (SAR) images contain not only targets of interest but also complex background clutter, including terrain reflections and speckle noise. In many cases, such clutter exhibits intensity and patterns that resemble targets, leading models to extract entangled or spurious features. Such behavior undermines the ability to form clear target representations, regardless of the classifier. To address this challenge, we propose a novel object-centric learning (OCL) framework, named SlotSAR, that disentangles target representations from background clutter in SAR images without mask annotations. SlotSAR first extracts high-level semantic features from SARATR-X and low-level scattering features from the wavelet scattering network in order to obtain complementary multi-level representations for robust target characterization. We further present a multi-level slot attention module that integrates these low- and high-level features to enhance slot-wise representation distinctiveness, enabling effective OCL. Experimental results demonstrate that SlotSAR achieves state-of-the-art performance in SAR imagery by preserving structural details compared to existing OCL methods.
comment: 12 pages, 5 figures
☆ Model-Agnostic Open-Set Air-to-Air Visual Object Detection for Reliable UAV Perception
Open-set detection is crucial for robust UAV autonomy in air-to-air object detection under real-world conditions. Traditional closed-set detectors degrade significantly under domain shifts and flight data corruption, posing risks to safety-critical applications. We propose a novel, model-agnostic open-set detection framework designed specifically for embedding-based detectors. The method explicitly handles unknown object rejection while maintaining robustness against corrupted flight data. It estimates semantic uncertainty via entropy modeling in the embedding space and incorporates spectral normalization and temperature scaling to enhance open-set discrimination. We validate our approach on the challenging AOT aerial benchmark and through extensive real-world flight tests. Comprehensive ablation studies demonstrate consistent improvements over baseline methods, achieving up to a 10\% relative AUROC gain compared to standard YOLO-based detectors. Additionally, we show that background rejection further strengthens robustness without compromising detection accuracy, making our solution particularly well-suited for reliable UAV perception in dynamic air-to-air environments.
☆ Modality-Agnostic Input Channels Enable Segmentation of Brain lesions in Multimodal MRI with Sequences Unavailable During Training MICCAI 2025
Segmentation models are important tools for the detection and analysis of lesions in brain MRI. Depending on the type of brain pathology that is imaged, MRI scanners can acquire multiple, different image modalities (contrasts). Most segmentation models for multimodal brain MRI are restricted to fixed modalities and cannot effectively process new ones at inference. Some models generalize to unseen modalities but may lose discriminative modality-specific information. This work aims to develop a model that can perform inference on data that contain image modalities unseen during training, previously seen modalities, and heterogeneous combinations of both, thus allowing a user to utilize any available imaging modalities. We demonstrate this is possible with a simple, thus practical alteration to the U-net architecture, by integrating a modality-agnostic input channel or pathway, alongside modality-specific input channels. To train this modality-agnostic component, we develop an image augmentation scheme that synthesizes artificial MRI modalities. Augmentations differentially alter the appearance of pathological and healthy brain tissue to create artificial contrasts between them while maintaining realistic anatomical integrity. We evaluate the method using 8 MRI databases that include 5 types of pathologies (stroke, tumours, traumatic brain injury, multiple sclerosis and white matter hyperintensities) and 8 modalities (T1, T1+contrast, T2, PD, SWI, DWI, ADC and FLAIR). The results demonstrate that the approach preserves the ability to effectively process MRI modalities encountered during training, while being able to process new, unseen modalities to improve its segmentation. Project code: https://github.com/Anthony-P-Addison/AGN-MOD-SEG
comment: Accepted to MICCAI 2025, for the following workshop: ML-CDS 2025: Multimodal Learning and Fusion Across Scales for Clinical Decision Support
☆ Visual Programmability: A Guide for Code-as-Thought in Chart Understanding
Chart understanding presents a critical test to the reasoning capabilities of Vision-Language Models (VLMs). Prior approaches face critical limitations: some rely on external tools, making them brittle and constrained by a predefined toolkit, while others fine-tune specialist models that often adopt a single reasoning strategy, such as text-based chain-of-thought (CoT). The intermediate steps of text-based reasoning are difficult to verify, which complicates the use of reinforcement-learning signals that reward factual accuracy. To address this, we propose a Code-as-Thought (CaT) approach to represent the visual information of a chart in a verifiable, symbolic format. Our key insight is that this strategy must be adaptive: a fixed, code-only implementation consistently fails on complex charts where symbolic representation is unsuitable. This finding leads us to introduce Visual Programmability: a learnable property that determines if a chart-question pair is better solved with code or direct visual analysis. We implement this concept in an adaptive framework where a VLM learns to choose between the CaT pathway and a direct visual reasoning pathway. The selection policy of the model is trained with reinforcement learning using a novel dual-reward system. This system combines a data-accuracy reward to ground the model in facts and prevent numerical hallucination, with a decision reward that teaches the model when to use each strategy, preventing it from defaulting to a single reasoning mode. Experiments demonstrate strong and robust performance across diverse chart-understanding benchmarks. Our work shows that VLMs can be taught not only to reason but also how to reason, dynamically selecting the optimal reasoning pathway for each task.
☆ Unified Start, Personalized End: Progressive Pruning for Efficient 3D Medical Image Segmentation
3D medical image segmentation often faces heavy resource and time consumption, limiting its scalability and rapid deployment in clinical environments. Existing efficient segmentation models are typically static and manually designed prior to training, which restricts their adaptability across diverse tasks and makes it difficult to balance performance with resource efficiency. In this paper, we propose PSP-Seg, a progressive pruning framework that enables dynamic and efficient 3D segmentation. PSP-Seg begins with a redundant model and iteratively prunes redundant modules through a combination of block-wise pruning and a functional decoupling loss. We evaluate PSP-Seg on five public datasets, benchmarking it against seven state-of-the-art models and six efficient segmentation models. Results demonstrate that the lightweight variant, PSP-Seg-S, achieves performance on par with nnU-Net while reducing GPU memory usage by 42-45%, training time by 29-48%, and parameter number by 83-87% across all datasets. These findings underscore PSP-Seg's potential as a cost-effective yet high-performing alternative for widespread clinical application.
comment: 15 pages, 8 figures
☆ DATE: Dynamic Absolute Time Enhancement for Long Video Understanding
Long video understanding remains a fundamental challenge for multimodal large language models (MLLMs), particularly in tasks requiring precise temporal reasoning and event localization. Existing approaches typically adopt uniform frame sampling and rely on implicit position encodings to model temporal order. However, these methods struggle with long-range dependencies, leading to critical information loss and degraded temporal comprehension. In this paper, we propose Dynamic Absolute Time Enhancement (DATE) that enhances temporal awareness in MLLMs through the Timestamp Injection Mechanism (TIM) and a semantically guided Temporal-Aware Similarity Sampling (TASS) strategy. Specifically, we interleave video frame embeddings with textual timestamp tokens to construct a continuous temporal reference system. We further reformulate the video sampling problem as a vision-language retrieval task and introduce a two-stage algorithm to ensure both semantic relevance and temporal coverage: enriching each query into a descriptive caption to better align with the vision feature, and sampling key event with a similarity-driven temporally regularized greedy strategy. Our method achieves remarkable improvements w.r.t. absolute time understanding and key event localization, resulting in state-of-the-art performance among 7B and 72B models on hour-long video benchmarks. Particularly, our 7B model even exceeds many 72B models on some benchmarks.
☆ Towards Better Dental AI: A Multimodal Benchmark and Instruction Dataset for Panoramic X-ray Analysis
Recent advances in large vision-language models (LVLMs) have demonstrated strong performance on general-purpose medical tasks. However, their effectiveness in specialized domains such as dentistry remains underexplored. In particular, panoramic X-rays, a widely used imaging modality in oral radiology, pose interpretative challenges due to dense anatomical structures and subtle pathological cues, which are not captured by existing medical benchmarks or instruction datasets. To this end, we introduce MMOral, the first large-scale multimodal instruction dataset and benchmark tailored for panoramic X-ray interpretation. MMOral consists of 20,563 annotated images paired with 1.3 million instruction-following instances across diverse task types, including attribute extraction, report generation, visual question answering, and image-grounded dialogue. In addition, we present MMOral-Bench, a comprehensive evaluation suite covering five key diagnostic dimensions in dentistry. We evaluate 64 LVLMs on MMOral-Bench and find that even the best-performing model, i.e., GPT-4o, only achieves 41.45% accuracy, revealing significant limitations of current models in this domain. To promote the progress of this specific domain, we also propose OralGPT, which conducts supervised fine-tuning (SFT) upon Qwen2.5-VL-7B with our meticulously curated MMOral instruction dataset. Remarkably, a single epoch of SFT yields substantial performance enhancements for LVLMs, e.g., OralGPT demonstrates a 24.73% improvement. Both MMOral and OralGPT hold significant potential as a critical foundation for intelligent dentistry and enable more clinically impactful multimodal AI systems in the dental field. The dataset, model, benchmark, and evaluation suite are available at https://github.com/isbrycee/OralGPT.
comment: 40 pages, 26 figures, 9 tables
☆ CoAtNeXt:An Attention-Enhanced ConvNeXtV2-Transformer Hybrid Model for Gastric Tissue Classification
Background and objective Early diagnosis of gastric diseases is crucial to prevent fatal outcomes. Although histopathologic examination remains the diagnostic gold standard, it is performed entirely manually, making evaluations labor-intensive and prone to variability among pathologists. Critical findings may be missed, and lack of standard procedures reduces consistency. These limitations highlight the need for automated, reliable, and efficient methods for gastric tissue analysis. Methods In this study, a novel hybrid model named CoAtNeXt was proposed for the classification of gastric tissue images. The model is built upon the CoAtNet architecture by replacing its MBConv layers with enhanced ConvNeXtV2 blocks. Additionally, the Convolutional Block Attention Module (CBAM) is integrated to improve local feature extraction through channel and spatial attention mechanisms. The architecture was scaled to achieve a balance between computational efficiency and classification performance. CoAtNeXt was evaluated on two publicly available datasets, HMU-GC-HE-30K for eight-class classification and GasHisSDB for binary classification, and was compared against 10 Convolutional Neural Networks (CNNs) and ten Vision Transformer (ViT) models. Results CoAtNeXt achieved 96.47% accuracy, 96.60% precision, 96.47% recall, 96.45% F1 score, and 99.89% AUC on HMU-GC-HE-30K. On GasHisSDB, it reached 98.29% accuracy, 98.07% precision, 98.41% recall, 98.23% F1 score, and 99.90% AUC. It outperformed all CNN and ViT models tested and surpassed previous studies in the literature. Conclusion Experimental results show that CoAtNeXt is a robust architecture for histopathological classification of gastric tissue images, providing performance on binary and multiclass. Its highlights its potential to assist pathologists by enhancing diagnostic accuracy and reducing workload.
☆ Virtual staining for 3D X-ray histology of bone implants
Three-dimensional X-ray histology techniques offer a non-invasive alternative to conventional 2D histology, enabling volumetric imaging of biological tissues without the need for physical sectioning or chemical staining. However, the inherent greyscale image contrast of X-ray tomography limits its biochemical specificity compared to traditional histological stains. Within digital pathology, deep learning-based virtual staining has demonstrated utility in simulating stained appearances from label-free optical images. In this study, we extend virtual staining to the X-ray domain by applying cross-modality image translation to generate artificially stained slices from synchrotron-radiation-based micro-CT scans. Using over 50 co-registered image pairs of micro-CT and toluidine blue-stained histology from bone-implant samples, we trained a modified CycleGAN network tailored for limited paired data. Whole slide histology images were downsampled to match the voxel size of the CT data, with on-the-fly data augmentation for patch-based training. The model incorporates pixelwise supervision and greyscale consistency terms, producing histologically realistic colour outputs while preserving high-resolution structural detail. Our method outperformed Pix2Pix and standard CycleGAN baselines across SSIM, PSNR, and LPIPS metrics. Once trained, the model can be applied to full CT volumes to generate virtually stained 3D datasets, enhancing interpretability without additional sample preparation. While features such as new bone formation were able to be reproduced, some variability in the depiction of implant degradation layers highlights the need for further training data and refinement. This work introduces virtual staining to 3D X-ray imaging and offers a scalable route for chemically informative, label-free tissue characterisation in biomedical research.
☆ Medverse: A Universal Model for Full-Resolution 3D Medical Image Segmentation, Transformation and Enhancement
In-context learning (ICL) offers a promising paradigm for universal medical image analysis, enabling models to perform diverse image processing tasks without retraining. However, current ICL models for medical imaging remain limited in two critical aspects: they cannot simultaneously achieve high-fidelity predictions and global anatomical understanding, and there is no unified model trained across diverse medical imaging tasks (e.g., segmentation and enhancement) and anatomical regions. As a result, the full potential of ICL in medical imaging remains underexplored. Thus, we present \textbf{Medverse}, a universal ICL model for 3D medical imaging, trained on 22 datasets covering diverse tasks in universal image segmentation, transformation, and enhancement across multiple organs, imaging modalities, and clinical centers. Medverse employs a next-scale autoregressive in-context learning framework that progressively refines predictions from coarse to fine, generating consistent, full-resolution volumetric outputs and enabling multi-scale anatomical awareness. We further propose a blockwise cross-attention module that facilitates long-range interactions between context and target inputs while preserving computational efficiency through spatial sparsity. Medverse is extensively evaluated on a broad collection of held-out datasets covering previously unseen clinical centers, organs, species, and imaging modalities. Results demonstrate that Medverse substantially outperforms existing ICL baselines and establishes a novel paradigm for in-context learning. Code and model weights will be made publicly available. Our model are publicly available at https://github.com/jiesihu/Medverse.
☆ Dynamic Structural Recovery Parameters Enhance Prediction of Visual Outcomes After Macular Hole Surgery
Purpose: To introduce novel dynamic structural parameters and evaluate their integration within a multimodal deep learning (DL) framework for predicting postoperative visual recovery in idiopathic full-thickness macular hole (iFTMH) patients. Methods: We utilized a publicly available longitudinal OCT dataset at five stages (preoperative, 2 weeks, 3 months, 6 months, and 12 months). A stage specific segmentation model delineated related structures, and an automated pipeline extracted quantitative, composite, qualitative, and dynamic features. Binary logistic regression models, constructed with and without dynamic parameters, assessed their incremental predictive value for best-corrected visual acuity (BCVA). A multimodal DL model combining clinical variables, OCT-derived features, and raw OCT images was developed and benchmarked against regression models. Results: The segmentation model achieved high accuracy across all timepoints (mean Dice > 0.89). Univariate and multivariate analyses identified base diameter, ellipsoid zone integrity, and macular hole area as significant BCVA predictors (P < 0.05). Incorporating dynamic recovery rates consistently improved logistic regression AUC, especially at the 3-month follow-up. The multimodal DL model outperformed logistic regression, yielding higher AUCs and overall accuracy at each stage. The difference is as high as 0.12, demonstrating the complementary value of raw image volume and dynamic parameters. Conclusions: Integrating dynamic parameters into the multimodal DL model significantly enhances the accuracy of predictions. This fully automated process therefore represents a promising clinical decision support tool for personalized postoperative management in macular hole surgery.
comment: TVST
☆ MGTraj: Multi-Granularity Goal-Guided Human Trajectory Prediction with Recursive Refinement Network
Accurate human trajectory prediction is crucial for robotics navigation and autonomous driving. Recent research has demonstrated that incorporating goal guidance significantly enhances prediction accuracy by reducing uncertainty and leveraging prior knowledge. Most goal-guided approaches decouple the prediction task into two stages: goal prediction and subsequent trajectory completion based on the predicted goal, which operate at extreme granularities: coarse-grained goal prediction forecasts the overall intention, while fine-grained trajectory completion needs to generate the positions for all future timesteps. The potential utility of intermediate temporal granularity remains largely unexplored, which motivates multi-granularity trajectory modeling. While prior work has shown that multi-granularity representations capture diverse scales of human dynamics and motion patterns, effectively integrating this concept into goal-guided frameworks remains challenging. In this paper, we propose MGTraj, a novel Multi-Granularity goal-guided model for human Trajectory prediction. MGTraj recursively encodes trajectory proposals from coarse to fine granularity levels. At each level, a transformer-based recursive refinement network (RRN) captures features and predicts progressive refinements. Features across different granularities are integrated using a weight-sharing strategy, and velocity prediction is employed as an auxiliary task to further enhance performance. Comprehensive experimental results in EHT/UCY and Stanford Drone Dataset indicate that MGTraj outperforms baseline methods and achieves state-of-the-art performance among goal-guided methods.
☆ Breaking the Statistical Similarity Trap in Extreme Convection Detection
Current evaluation metrics for deep learning weather models create a "Statistical Similarity Trap", rewarding blurry predictions while missing rare, high-impact events. We provide quantitative evidence of this trap, showing sophisticated baselines achieve 97.9% correlation yet 0.00 CSI for dangerous convection detection. We introduce DART (Dual Architecture for Regression Tasks), a framework addressing the challenge of transforming coarse atmospheric forecasts into high-resolution satellite brightness temperature fields optimized for extreme convection detection (below 220 K). DART employs dual-decoder architecture with explicit background/extreme decomposition, physically motivated oversampling, and task-specific loss functions. We present four key findings: (1) empirical validation of the Statistical Similarity Trap across multiple sophisticated baselines; (2) the "IVT Paradox", removing Integrated Water Vapor Transport, widely regarded as essential for atmospheric river analysis, improves extreme convection detection by 270%; (3) architectural necessity demonstrated through operational flexibility (DART achieves CSI = 0.273 with bias = 2.52 vs. 6.72 for baselines at equivalent CSI), and (4) real-world validation with the August 2023 Chittagong flooding disaster as a case study. To our knowledge, this is the first work to systematically address this hybrid conversion-segmentation-downscaling task, with no direct prior benchmarks identified in existing literature. Our validation against diverse statistical and deep learning baselines sufficiently demonstrates DART's specialized design. The framework enables precise operational calibration through beta-tuning, trains in under 10 minutes on standard hardware, and integrates seamlessly with existing meteorological workflows, demonstrating a pathway toward trustworthy AI for extreme weather preparedness.
comment: 43 pages, 7 figures
☆ VQualA 2025 Challenge on Visual Quality Comparison for Large Multimodal Models: Methods and Results ICCV
This paper presents a summary of the VQualA 2025 Challenge on Visual Quality Comparison for Large Multimodal Models (LMMs), hosted as part of the ICCV 2025 Workshop on Visual Quality Assessment. The challenge aims to evaluate and enhance the ability of state-of-the-art LMMs to perform open-ended and detailed reasoning about visual quality differences across multiple images. To this end, the competition introduces a novel benchmark comprising thousands of coarse-to-fine grained visual quality comparison tasks, spanning single images, pairs, and multi-image groups. Each task requires models to provide accurate quality judgments. The competition emphasizes holistic evaluation protocols, including 2AFC-based binary preference and multi-choice questions (MCQs). Around 100 participants submitted entries, with five models demonstrating the emerging capabilities of instruction-tuned LMMs on quality assessment. This challenge marks a significant step toward open-domain visual quality reasoning and comparison and serves as a catalyst for future research on interpretable and human-aligned quality evaluation systems.
comment: ICCV VQualA Workshop 2025
☆ Dark-ISP: Enhancing RAW Image Processing for Low-Light Object Detection
Low-light Object detection is crucial for many real-world applications but remains challenging due to degraded image quality. While recent studies have shown that RAW images offer superior potential over RGB images, existing approaches either use RAW-RGB images with information loss or employ complex frameworks. To address these, we propose a lightweight and self-adaptive Image Signal Processing (ISP) plugin, Dark-ISP, which directly processes Bayer RAW images in dark environments, enabling seamless end-to-end training for object detection. Our key innovations are: (1) We deconstruct conventional ISP pipelines into sequential linear (sensor calibration) and nonlinear (tone mapping) sub-modules, recasting them as differentiable components optimized through task-driven losses. Each module is equipped with content-aware adaptability and physics-informed priors, enabling automatic RAW-to-RGB conversion aligned with detection objectives. (2) By exploiting the ISP pipeline's intrinsic cascade structure, we devise a Self-Boost mechanism that facilitates cooperation between sub-modules. Through extensive experiments on three RAW image datasets, we demonstrate that our method outperforms state-of-the-art RGB- and RAW-based detection approaches, achieving superior results with minimal parameters in challenging low-light environments.
comment: 11 pages, 6 figures, conference
☆ Bridging the Gap Between Ideal and Real-world Evaluation: Benchmarking AI-Generated Image Detection in Challenging Scenarios ICCV2025
With the rapid advancement of generative models, highly realistic image synthesis has posed new challenges to digital security and media credibility. Although AI-generated image detection methods have partially addressed these concerns, a substantial research gap remains in evaluating their performance under complex real-world conditions. This paper introduces the Real-World Robustness Dataset (RRDataset) for comprehensive evaluation of detection models across three dimensions: 1) Scenario Generalization: RRDataset encompasses high-quality images from seven major scenarios (War and Conflict, Disasters and Accidents, Political and Social Events, Medical and Public Health, Culture and Religion, Labor and Production, and everyday life), addressing existing dataset gaps from a content perspective. 2) Internet Transmission Robustness: examining detector performance on images that have undergone multiple rounds of sharing across various social media platforms. 3) Re-digitization Robustness: assessing model effectiveness on images altered through four distinct re-digitization methods. We benchmarked 17 detectors and 10 vision-language models (VLMs) on RRDataset and conducted a large-scale human study involving 192 participants to investigate human few-shot learning capabilities in detecting AI-generated images. The benchmarking results reveal the limitations of current AI detection methods under real-world conditions and underscore the importance of drawing on human adaptability to develop more robust detection algorithms.
comment: ICCV2025
☆ Adaptive Pareto-Optimal Token Merging for Edge Transformer Models in Semantic Communication IEEE
Large-scale transformer models have emerged as a powerful tool for semantic communication systems, enabling edge devices to extract rich representations for robust inference across noisy wireless channels. However, their substantial computational demands remain a major barrier to practical deployment in resource-constrained 6G networks. In this paper, we present a training-free framework for adaptive token merging in pretrained vision transformers to jointly reduce inference time and transmission resource usage. We formulate the selection of per-layer merging proportions as a multi-objective optimization problem to balance accuracy and computational cost. We employ Gaussian process-based Bayesian optimization to construct a Pareto frontier of optimal configurations, enabling flexible runtime adaptation to dynamic application requirements and channel conditions. Extensive experiments demonstrate that our method consistently outperforms other baselines and achieves significant reductions in floating-point operations while maintaining competitive accuracy across a wide range of signal-to-noise ratio (SNR) conditions. Additional results highlight the effectiveness of adaptive policies that adjust merging aggressiveness in response to channel quality, providing a practical mechanism to trade off latency and semantic fidelity on demand. These findings establish a scalable and efficient approach for deploying transformer-based semantic communication in future edge intelligence systems.
comment: To appear in IEEE Globecom 2025
☆ CWSSNet: Hyperspectral Image Classification Enhanced by Wavelet Domain Convolution
Hyperspectral remote sensing technology has significant application value in fields such as forestry ecology and precision agriculture, while also putting forward higher requirements for fine ground object classification. However, although hyperspectral images are rich in spectral information and can improve recognition accuracy, they tend to cause prominent feature redundancy due to their numerous bands, high dimensionality, and spectral mixing characteristics. To address this, this study used hyperspectral images from the ZY1F satellite as a data source and selected Yugan County, Shangrao City, Jiangxi Province as the research area to perform ground object classification research. A classification framework named CWSSNet was proposed, which integrates 3D spectral-spatial features and wavelet convolution. This framework integrates multimodal information us-ing a multiscale convolutional attention module and breaks through the classification performance bottleneck of traditional methods by introducing multi-band decomposition and convolution operations in the wavelet domain. The experiments showed that CWSSNet achieved 74.50\%, 82.73\%, and 84.94\% in mean Intersection over Union (mIoU), mean Accuracy (mAcc), and mean F1-score (mF1) respectively in Yugan County. It also obtained the highest Intersection over Union (IoU) in the classifica-tion of water bodies, vegetation, and bare land, demonstrating good robustness. Additionally, when the training set proportion was 70\%, the increase in training time was limited, and the classification effect was close to the optimal level, indicating that the model maintains reliable performance under small-sample training conditions.
☆ A Knowledge Noise Mitigation Framework for Knowledge-based Visual Question Answering IEEE
Knowledge-based visual question answering (KB-VQA) requires a model to understand images and utilize external knowledge to provide accurate answers. Existing approaches often directly augment models with retrieved information from knowledge sources while ignoring substantial knowledge redundancy, which introduces noise into the answering process. To address this, we propose a training-free framework with knowledge focusing for KB-VQA, that mitigates the impact of noise by enhancing knowledge relevance and reducing redundancy. First, for knowledge retrieval, our framework concludes essential parts from the image-question pairs, creating low-noise queries that enhance the retrieval of highly relevant knowledge. Considering that redundancy still persists in the retrieved knowledge, we then prompt large models to identify and extract answer-beneficial segments from knowledge. In addition, we introduce a selective knowledge integration strategy, allowing the model to incorporate knowledge only when it lacks confidence in answering the question, thereby mitigating the influence of redundant information. Our framework enables the acquisition of accurate and critical knowledge, and extensive experiments demonstrate that it outperforms state-of-the-art methods.
comment: Accepted by the IEEE International Conference on Multimedia and Expo (ICME 2025) for oral presentation. \copyright\ 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses
☆ RT-DETR++ for UAV Object Detection
Object detection in unmanned aerial vehicle (UAV) imagery presents significant challenges. Issues such as densely packed small objects, scale variations, and occlusion are commonplace. This paper introduces RT-DETR++, which enhances the encoder component of the RT-DETR model. Our improvements focus on two key aspects. First, we introduce a channel-gated attention-based upsampling/downsampling (AU/AD) mechanism. This dual-path system minimizes errors and preserves details during feature layer propagation. Second, we incorporate CSP-PAC during feature fusion. This technique employs parallel hollow convolutions to process local and contextual information within the same layer, facilitating the integration of multi-scale features. Evaluation demonstrates that our novel neck design achieves superior performance in detecting small and densely packed objects. The model maintains sufficient speed for real-time detection without increasing computational complexity. This study provides an effective approach for feature encoding design in real-time detection systems.
☆ Mind Meets Space: Rethinking Agentic Spatial Intelligence from a Neuroscience-inspired Perspective
Recent advances in agentic AI have led to systems capable of autonomous task execution and language-based reasoning, yet their spatial reasoning abilities remain limited and underexplored, largely constrained to symbolic and sequential processing. In contrast, human spatial intelligence, rooted in integrated multisensory perception, spatial memory, and cognitive maps, enables flexible, context-aware decision-making in unstructured environments. Therefore, bridging this gap is critical for advancing Agentic Spatial Intelligence toward better interaction with the physical 3D world. To this end, we first start from scrutinizing the spatial neural models as studied in computational neuroscience, and accordingly introduce a novel computational framework grounded in neuroscience principles. This framework maps core biological functions to six essential computation modules: bio-inspired multimodal sensing, multi-sensory integration, egocentric-allocentric conversion, an artificial cognitive map, spatial memory, and spatial reasoning. Together, these modules form a perspective landscape for agentic spatial reasoning capability across both virtual and physical environments. On top, we conduct a framework-guided analysis of recent methods, evaluating their relevance to each module and identifying critical gaps that hinder the development of more neuroscience-grounded spatial reasoning modules. We further examine emerging benchmarks and datasets and explore potential application domains ranging from virtual to embodied systems, such as robotics. Finally, we outline potential research directions, emphasizing the promising roadmap that can generalize spatial reasoning across dynamic or unstructured environments. We hope this work will benefit the research community with a neuroscience-grounded perspective and a structured pathway. Our project page can be found at Github.
comment: 54 pages, journal
☆ OCELOT 2023: Cell Detection from Cell-Tissue Interaction Challenge
Pathologists routinely alternate between different magnifications when examining Whole-Slide Images, allowing them to evaluate both broad tissue morphology and intricate cellular details to form comprehensive diagnoses. However, existing deep learning-based cell detection models struggle to replicate these behaviors and learn the interdependent semantics between structures at different magnifications. A key barrier in the field is the lack of datasets with multi-scale overlapping cell and tissue annotations. The OCELOT 2023 challenge was initiated to gather insights from the community to validate the hypothesis that understanding cell and tissue (cell-tissue) interactions is crucial for achieving human-level performance, and to accelerate the research in this field. The challenge dataset includes overlapping cell detection and tissue segmentation annotations from six organs, comprising 673 pairs sourced from 306 The Cancer Genome Atlas (TCGA) Whole-Slide Images with hematoxylin and eosin staining, divided into training, validation, and test subsets. Participants presented models that significantly enhanced the understanding of cell-tissue relationships. Top entries achieved up to a 7.99 increase in F1-score on the test set compared to the baseline cell-only model that did not incorporate cell-tissue relationships. This is a substantial improvement in performance over traditional cell-only detection methods, demonstrating the need for incorporating multi-scale semantics into the models. This paper provides a comparative analysis of the methods used by participants, highlighting innovative strategies implemented in the OCELOT 2023 challenge.
comment: This is the accepted manuscript of an article published in Medical Image Analysis (Elsevier). The final version is available at: https://doi.org/10.1016/j.media.2025.103751
☆ Video Understanding by Design: How Datasets Shape Architectures and Insights
Video understanding has advanced rapidly, fueled by increasingly complex datasets and powerful architectures. Yet existing surveys largely classify models by task or family, overlooking the structural pressures through which datasets guide architectural evolution. This survey is the first to adopt a dataset-driven perspective, showing how motion complexity, temporal span, hierarchical composition, and multimodal richness impose inductive biases that models should encode. We reinterpret milestones, from two-stream and 3D CNNs to sequential, transformer, and multimodal foundation models, as concrete responses to these dataset-driven pressures. Building on this synthesis, we offer practical guidance for aligning model design with dataset invariances while balancing scalability and task demands. By unifying datasets, inductive biases, and architectures into a coherent framework, this survey provides both a comprehensive retrospective and a prescriptive roadmap for advancing general-purpose video understanding.
comment: Research report
☆ Objectness Similarity: Capturing Object-Level Fidelity in 3D Scene Evaluation ICCV 2025
This paper presents Objectness SIMilarity (OSIM), a novel evaluation metric for 3D scenes that explicitly focuses on "objects," which are fundamental units of human visual perception. Existing metrics assess overall image quality, leading to discrepancies with human perception. Inspired by neuropsychological insights, we hypothesize that human recognition of 3D scenes fundamentally involves attention to individual objects. OSIM enables object-centric evaluations by leveraging an object detection model and its feature representations to quantify the "objectness" of each object in the scene. Our user study demonstrates that OSIM aligns more closely with human perception compared to existing metrics. We also analyze the characteristics of OSIM using various approaches. Moreover, we re-evaluate recent 3D reconstruction and generation models under a standardized experimental setup to clarify advancements in this field. The code is available at https://github.com/Objectness-Similarity/OSIM.
comment: Accepted by the ICCV 2025 UniLight Workshop
☆ Noise-Robust Topology Estimation of 2D Image Data via Neural Networks and Persistent Homology
Persistent Homology (PH) and Artificial Neural Networks (ANNs) offer contrasting approaches to inferring topological structure from data. In this study, we examine the noise robustness of a supervised neural network trained to predict Betti numbers in 2D binary images. We compare an ANN approach against a PH pipeline based on cubical complexes and the Signed Euclidean Distance Transform (SEDT), which is a widely adopted strategy for noise-robust topological analysis. Using one synthetic and two real-world datasets, we show that ANNs can outperform this PH approach under noise, likely due to their capacity to learn contextual and geometric priors from training data. Though still emerging, the use of ANNs for topology estimation offers a compelling alternative to PH under structural noise.
comment: 12 pages
☆ ALL-PET: A Low-resource and Low-shot PET Foundation Model in the Projection Domain
Building large-scale foundation model for PET imaging is hindered by limited access to labeled data and insufficient computational resources. To overcome data scarcity and efficiency limitations, we propose ALL-PET, a low-resource, low-shot PET foundation model operating directly in the projection domain. ALL-PET leverages a latent diffusion model (LDM) with three key innovations. First, we design a Radon mask augmentation strategy (RMAS) that generates over 200,000 structurally diverse training samples by projecting randomized image-domain masks into sinogram space, significantly improving generalization with minimal data. This is extended by a dynamic multi-mask (DMM) mechanism that varies mask quantity and distribution, enhancing data diversity without added model complexity. Second, we implement positive/negative mask constraints to embed strict geometric consistency, reducing parameter burden while preserving generation quality. Third, we introduce transparent medical attention (TMA), a parameter-free, geometry-driven mechanism that enhances lesion-related regions in raw projection data. Lesion-focused attention maps are derived from coarse segmentation, covering both hypermetabolic and hypometabolic areas, and projected into sinogram space for physically consistent guidance. The system supports clinician-defined ROI adjustments, ensuring flexible, interpretable, and task-adaptive emphasis aligned with PET acquisition physics. Experimental results show ALL-PET achieves high-quality sinogram generation using only 500 samples, with performance comparable to models trained on larger datasets. ALL-PET generalizes across tasks including low-dose reconstruction, attenuation correction, delayed-frame prediction, and tracer separation, operating efficiently with memory use under 24GB.
☆ Gradient-Attention Guided Dual-Masking Synergetic Framework for Robust Text-based Person Retrieval EMNLP2025
Although Contrastive Language-Image Pre-training (CLIP) exhibits strong performance across diverse vision tasks, its application to person representation learning faces two critical challenges: (i) the scarcity of large-scale annotated vision-language data focused on person-centric images, and (ii) the inherent limitations of global contrastive learning, which struggles to maintain discriminative local features crucial for fine-grained matching while remaining vulnerable to noisy text tokens. This work advances CLIP for person representation learning through synergistic improvements in data curation and model architecture. First, we develop a noise-resistant data construction pipeline that leverages the in-context learning capabilities of MLLMs to automatically filter and caption web-sourced images. This yields WebPerson, a large-scale dataset of 5M high-quality person-centric image-text pairs. Second, we introduce the GA-DMS (Gradient-Attention Guided Dual-Masking Synergetic) framework, which improves cross-modal alignment by adaptively masking noisy textual tokens based on the gradient-attention similarity score. Additionally, we incorporate masked token prediction objectives that compel the model to predict informative text tokens, enhancing fine-grained semantic representation learning. Extensive experiments show that GA-DMS achieves state-of-the-art performance across multiple benchmarks.
comment: Accepted by EMNLP2025 Main
☆ Zero-shot Hierarchical Plant Segmentation via Foundation Segmentation Models and Text-to-image Attention WACV 2026
Foundation segmentation models achieve reasonable leaf instance extraction from top-view crop images without training (i.e., zero-shot). However, segmenting entire plant individuals with each consisting of multiple overlapping leaves remains challenging. This problem is referred to as a hierarchical segmentation task, typically requiring annotated training datasets, which are often species-specific and require notable human labor. To address this, we introduce ZeroPlantSeg, a zero-shot segmentation for rosette-shaped plant individuals from top-view images. We integrate a foundation segmentation model, extracting leaf instances, and a vision-language model, reasoning about plants' structures to extract plant individuals without additional training. Evaluations on datasets with multiple plant species, growth stages, and shooting environments demonstrate that our method surpasses existing zero-shot methods and achieves better cross-domain performance than supervised methods. Implementations are available at https://github.com/JunhaoXing/ZeroPlantSeg.
comment: WACV 2026 accepted
☆ FPI-Det: a face--phone Interaction Dataset for phone-use detection and understanding
The widespread use of mobile devices has created new challenges for vision systems in safety monitoring, workplace productivity assessment, and attention management. Detecting whether a person is using a phone requires not only object recognition but also an understanding of behavioral context, which involves reasoning about the relationship between faces, hands, and devices under diverse conditions. Existing generic benchmarks do not fully capture such fine-grained human--device interactions. To address this gap, we introduce the FPI-Det, containing 22{,}879 images with synchronized annotations for faces and phones across workplace, education, transportation, and public scenarios. The dataset features extreme scale variation, frequent occlusions, and varied capture conditions. We evaluate representative YOLO and DETR detectors, providing baseline results and an analysis of performance across object sizes, occlusion levels, and environments. Source code and dataset is available at https://github.com/KvCgRv/FPI-Det.
☆ S-BEVLoc: BEV-based Self-supervised Framework for Large-scale LiDAR Global Localization
LiDAR-based global localization is an essential component of simultaneous localization and mapping (SLAM), which helps loop closure and re-localization. Current approaches rely on ground-truth poses obtained from GPS or SLAM odometry to supervise network training. Despite the great success of these supervised approaches, substantial cost and effort are required for high-precision ground-truth pose acquisition. In this work, we propose S-BEVLoc, a novel self-supervised framework based on bird's-eye view (BEV) for LiDAR global localization, which eliminates the need for ground-truth poses and is highly scalable. We construct training triplets from single BEV images by leveraging the known geographic distances between keypoint-centered BEV patches. Convolutional neural network (CNN) is used to extract local features, and NetVLAD is employed to aggregate global descriptors. Moreover, we introduce SoftCos loss to enhance learning from the generated triplets. Experimental results on the large-scale KITTI and NCLT datasets show that S-BEVLoc achieves state-of-the-art performance in place recognition, loop closure, and global localization tasks, while offering scalability that would require extra effort for supervised approaches.
☆ SQAP-VLA: A Synergistic Quantization-Aware Pruning Framework for High-Performance Vision-Language-Action Models
Vision-Language-Action (VLA) models exhibit unprecedented capabilities for embodied intelligence. However, their extensive computational and memory costs hinder their practical deployment. Existing VLA compression and acceleration approaches conduct quantization or token pruning in an ad-hoc manner but fail to enable both for a holistic efficiency improvement due to an observed incompatibility. This work introduces SQAP-VLA, the first structured, training-free VLA inference acceleration framework that simultaneously enables state-of-the-art quantization and token pruning. We overcome the incompatibility by co-designing the quantization and token pruning pipeline, where we propose new quantization-aware token pruning criteria that work on an aggressively quantized model while improving the quantizer design to enhance pruning effectiveness. When applied to standard VLA models, SQAP-VLA yields significant gains in computational efficiency and inference speed while successfully preserving core model performance, achieving a $\times$1.93 speedup and up to a 4.5\% average success rate enhancement compared to the original model.
comment: 12 pages, 9 figures
☆ IRDFusion: Iterative Relation-Map Difference guided Feature Fusion for Multispectral Object Detection
Current multispectral object detection methods often retain extraneous background or noise during feature fusion, limiting perceptual performance.To address this, we propose an innovative feature fusion framework based on cross-modal feature contrastive and screening strategy, diverging from conventional approaches. The proposed method adaptively enhances salient structures by fusing object-aware complementary cross-modal features while suppressing shared background interference.Our solution centers on two novel, specially designed modules: the Mutual Feature Refinement Module (MFRM) and the Differential Feature Feedback Module (DFFM). The MFRM enhances intra- and inter-modal feature representations by modeling their relationships, thereby improving cross-modal alignment and discriminative power.Inspired by feedback differential amplifiers, the DFFM dynamically computes inter-modal differential features as guidance signals and feeds them back to the MFRM, enabling adaptive fusion of complementary information while suppressing common-mode noise across modalities. To enable robust feature learning, the MFRM and DFFM are integrated into a unified framework, which is formally formulated as an Iterative Relation-Map Differential Guided Feature Fusion mechanism, termed IRDFusion. IRDFusion enables high-quality cross-modal fusion by progressively amplifying salient relational signals through iterative feedback, while suppressing feature noise, leading to significant performance gains.In extensive experiments on FLIR, LLVIP and M$^3$FD datasets, IRDFusion achieves state-of-the-art performance and consistently outperforms existing methods across diverse challenging scenarios, demonstrating its robustness and effectiveness. Code will be available at https://github.com/61s61min/IRDFusion.git.
comment: 31 pages,6 pages, submitted on 3 Sep,2025
☆ Improvement of Human-Object Interaction Action Recognition Using Scene Information and Multi-Task Learning Approach
Recent graph convolutional neural networks (GCNs) have shown high performance in the field of human action recognition by using human skeleton poses. However, it fails to detect human-object interaction cases successfully due to the lack of effective representation of the scene information and appropriate learning architectures. In this context, we propose a methodology to utilize human action recognition performance by considering fixed object information in the environment and following a multi-task learning approach. In order to evaluate the proposed method, we collected real data from public environments and prepared our data set, which includes interaction classes of hands-on fixed objects (e.g., ATM ticketing machines, check-in/out machines, etc.) and non-interaction classes of walking and standing. The multi-task learning approach, along with interaction area information, succeeds in recognizing the studied interaction and non-interaction actions with an accuracy of 99.25%, outperforming the accuracy of the base model using only human skeleton poses by 2.75%.
☆ Enhancing 3D Medical Image Understanding with Pretraining Aided by 2D Multimodal Large Language Models IEEE
Understanding 3D medical image volumes is critical in the medical field, yet existing 3D medical convolution and transformer-based self-supervised learning (SSL) methods often lack deep semantic comprehension. Recent advancements in multimodal large language models (MLLMs) provide a promising approach to enhance image understanding through text descriptions. To leverage these 2D MLLMs for improved 3D medical image understanding, we propose Med3DInsight, a novel pretraining framework that integrates 3D image encoders with 2D MLLMs via a specially designed plane-slice-aware transformer module. Additionally, our model employs a partial optimal transport based alignment, demonstrating greater tolerance to noise introduced by potential noises in LLM-generated content. Med3DInsight introduces a new paradigm for scalable multimodal 3D medical representation learning without requiring human annotations. Extensive experiments demonstrate our state-of-the-art performance on two downstream tasks, i.e., segmentation and classification, across various public datasets with CT and MRI modalities, outperforming current SSL methods. Med3DInsight can be seamlessly integrated into existing 3D medical image understanding networks, potentially enhancing their performance. Our source code, generated datasets, and pre-trained models will be available at https://github.com/Qybc/Med3DInsight.
comment: Accepted by IEEE Journal of Biomedical and Health Informatics (JBHI)
♻ ☆ MM-Prompt: Cross-Modal Prompt Tuning for Continual Visual Question Answering
Continual Visual Question Answering (CVQA) based on pre-trained models(PTMs) has achieved promising progress by leveraging prompt tuning to enable continual multi-modal learning. However, most existing methods adopt cross-modal prompt isolation, constructing visual and textual prompts separately, which exacerbates modality imbalance and leads to degraded performance over time. To tackle this issue, we propose MM-Prompt, a novel framework incorporating cross-modal prompt query and cross-modal prompt recovery. The former enables balanced prompt selection by incorporating cross-modal signals during query formation, while the latter promotes joint prompt reconstruction through iterative cross-modal interactions, guided by an alignment loss to prevent representational drift. Extensive experiments show that MM-Prompt surpasses prior approaches in accuracy and knowledge retention, while maintaining balanced modality engagement throughout continual learning.
♻ ☆ Deep Learning Framework for Early Detection of Pancreatic Cancer Using Multi-Modal Medical Imaging Analysis
Pacreatic ductal adenocarcinoma (PDAC) remains one of the most lethal forms of cancer, with a five-year survival rate below 10% primarily due to late detection. This research develops and validates a deep learning framework for early PDAC detection through analysis of dual-modality imaging: autofluorescence and second harmonic generation (SHG). We analyzed 40 unique patient samples to create a specialized neural network capable of distinguishing between normal, fibrotic, and cancerous tissue. Our methodology evaluated six distinct deep learning architectures, comparing traditional Convolutional Neural Networks (CNNs) with modern Vision Transformers (ViTs). Through systematic experimentation, we identified and overcome significant challenges in medical image analysis, including limited dataset size and class imbalance. The final optimized framework, based on a modified ResNet architecture with frozen pre-trained layers and class-weighted training, achieved over 90% accuracy in cancer detection. This represents a significant improvement over current manual analysis methods an demonstrates potential for clinical deployment. This work establishes a robust pipeline for automated PDAC detection that can augment pathologists' capabilities while providing a foundation for future expansion to other cancer types. The developed methodology also offers valuable insights for applying deep learning to limited-size medical imaging datasets, a common challenge in clinical applications.
comment: 21 pages, 17 figure
♻ ☆ VRAE: Vertical Residual Autoencoder for License Plate Denoising and Deblurring
In real-world traffic surveillance, vehicle images captured under adverse weather, poor lighting, or high-speed motion often suffer from severe noise and blur. Such degradations significantly reduce the accuracy of license plate recognition systems, especially when the plate occupies only a small region within the full vehicle image. Restoring these degraded images a fast realtime manner is thus a crucial pre-processing step to enhance recognition performance. In this work, we propose a Vertical Residual Autoencoder (VRAE) architecture designed for the image enhancement task in traffic surveillance. The method incorporates an enhancement strategy that employs an auxiliary block, which injects input-aware features at each encoding stage to guide the representation learning process, enabling better general information preservation throughout the network compared to conventional autoencoders. Experiments on a vehicle image dataset with visible license plates demonstrate that our method consistently outperforms Autoencoder (AE), Generative Adversarial Network (GAN), and Flow-Based (FB) approaches. Compared with AE at the same depth, it improves PSNR by about 20%, reduces NMSE by around 50%, and enhances SSIM by 1%, while requiring only a marginal increase of roughly 1% in parameters.
♻ ☆ Improved GUI Grounding via Iterative Narrowing
Graphical User Interface (GUI) grounding plays a crucial role in enhancing the capabilities of Vision-Language Model (VLM) agents. While general VLMs, such as GPT-4V, demonstrate strong performance across various tasks, their proficiency in GUI grounding remains suboptimal. Recent studies have focused on fine-tuning these models specifically for zero-shot GUI grounding, yielding significant improvements over baseline performance. We introduce a visual prompting framework that employs an iterative narrowing mechanism to further improve the performance of both general and fine-tuned models in GUI grounding. For evaluation, we tested our method on a comprehensive benchmark comprising various UI platforms and provided the code to reproduce our results.
comment: Code available at https://github.com/ant-8/GUI-Grounding-via-Iterative-Narrowing
♻ ☆ Preprocessing Algorithm Leveraging Geometric Modeling for Scale Correction in Hyperspectral Images for Improved Unmixing Performance
Spectral variability significantly impacts the accuracy and convergence of hyperspectral unmixing algorithms. Many methods address complex spectral variability; yet large-scale distortions to the scale of the observed pixel signatures due to topography, illumination, and shadowing remain a major challenge. These variations often degrade unmixing performance and complicate model fitting. Because of this, correcting these variations can offer significant advantages in real-world GIS applications. In this paper, we propose a novel preprocessing algorithm that corrects scale-induced spectral variability prior to unmixing. By estimating and correcting these distortions to the scale of the pixel signatures, the algorithm produces pixel signatures with minimal distortions in scale. Since these distortions in scale (which hinder the performance of many unmixing methods) are greatly minimized in the output provided by the proposed method, the abundance estimation of the unmixing algorithms is significantly improved. We present a rigorous mathematical framework to describe and correct for scale variability and provide extensive experimental validation of the proposed algorithm. Furthermore, the algorithm's impact is evaluated across a wide range of state-of-the-art unmixing methods on two synthetic and two real hyperspectral datasets. The proposed preprocessing step consistently improves the performance of these algorithms, achieving error reductions of around 50%, even for algorithms specifically designed to handle spectral variability. This demonstrates that scale correction acts as a complementary step, facilitating more accurate unmixing with existing methods. The algorithm's generality, consistent impact, and significant influence highlight its potential as a key component in practical hyperspectral unmixing pipelines. The implementation code will be made publicly available upon publication.
comment: 20 pages, 14 figures
♻ ☆ Expert-Guided Explainable Few-Shot Learning for Medical Image Diagnosis MICCAI
Medical image analysis often faces significant challenges due to limited expert-annotated data, hindering both model generalization and clinical adoption. We propose an expert-guided explainable few-shot learning framework that integrates radiologist-provided regions of interest (ROIs) into model training to simultaneously enhance classification performance and interpretability. Leveraging Grad-CAM for spatial attention supervision, we introduce an explanation loss based on Dice similarity to align model attention with diagnostically relevant regions during training. This explanation loss is jointly optimized with a standard prototypical network objective, encouraging the model to focus on clinically meaningful features even under limited data conditions. We evaluate our framework on two distinct datasets: BraTS (MRI) and VinDr-CXR (Chest X-ray), achieving significant accuracy improvements from 77.09% to 83.61% on BraTS and from 54.33% to 73.29% on VinDr-CXR compared to non-guided models. Grad-CAM visualizations further confirm that expert-guided training consistently aligns attention with diagnostic regions, improving both predictive reliability and clinical trustworthiness. Our findings demonstrate the effectiveness of incorporating expert-guided attention supervision to bridge the gap between performance and interpretability in few-shot medical image diagnosis.
comment: Accepted for publication in the proceedings of MICCAI Workshop on Data Engineering in Medical Imaging 2025
♻ ☆ GEMINUS: Dual-aware Global and Scene-Adaptive Mixture-of-Experts for End-to-End Autonomous Driving
End-to-end autonomous driving requires adaptive and robust handling of complex and diverse traffic environments. However, prevalent single-mode planning methods attempt to learn an overall policy while struggling to acquire diversified driving skills to handle diverse scenarios. Therefore, this paper proposes GEMINUS, a Mixture-of-Experts end-to-end autonomous driving framework featuring a Global Expert and a Scene-Adaptive Experts Group, equipped with a Dual-aware Router. Specifically, the Global Expert is trained on the overall dataset, possessing robust performance. The Scene-Adaptive Experts are trained on corresponding scene subsets, achieving adaptive performance. The Dual-aware Router simultaneously considers scenario-level features and routing uncertainty to dynamically activate expert modules. Through the effective coupling of the Global Expert and the Scene-Adaptive Experts Group via the Dual-aware Router, GEMINUS achieves both adaptability and robustness across diverse scenarios. GEMINUS outperforms existing methods in the Bench2Drive closed-loop benchmark and achieves state-of-the-art performance in Driving Score and Success Rate, even with only monocular vision input. The code is available at https://github.com/newbrains1/GEMINUS.
♻ ☆ Deep Learning-based Cross-modal Reconstruction of Vehicle Target from Sparse 3D SAR Image IEEE
Three-dimensional synthetic aperture radar (3D SAR) is an advanced active microwave imaging technology widely utilized in remote sensing area. To achieve high-resolution 3D imaging,3D SAR requires observations from multiple aspects and altitude baselines surrounding the target. However, constrained flight trajectories often lead to sparse observations, which degrade imaging quality, particularly for anisotropic man-made small targets, such as vehicles and aircraft. In the past, compressive sensing (CS) was the mainstream approach for sparse 3D SAR image reconstruction. More recently, deep learning (DL) has emerged as a powerful alternative, markedly boosting reconstruction quality and efficiency. However, existing DL-based methods typically rely solely on high-quality 3D SAR images as supervisory signals to train deep neural networks (DNNs). This unimodal learning paradigm prevents the integration of complementary information from other data modalities, which limits reconstruction performance and reduces target discriminability due to the inherent constraints of electromagnetic scattering. In this paper, we introduce cross-modal learning and propose a Cross-Modal 3D-SAR Reconstruction Network (CMAR-Net) for enhancing sparse 3D SAR images of vehicle targets by fusing optical information. Leveraging cross-modal supervision from 2D optical images and error propagation guaranteed by differentiable rendering, CMAR-Net achieves efficient training and reconstructs sparse 3D SAR images, which are derived from highly sparse-aspect observations, into visually structured 3D vehicle images. Trained exclusively on simulated data, CMAR-Net exhibits robust generalization to real-world data, outperforming state-of-the-art CS and DL methods in structural accuracy within a large-scale parking lot experiment involving numerous civilian vehicles, thereby demonstrating its strong practical applicability.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ SV-DRR: High-Fidelity Novel View X-Ray Synthesis Using Diffusion Model MICCAI2025
X-ray imaging is a rapid and cost-effective tool for visualizing internal human anatomy. While multi-view X-ray imaging provides complementary information that enhances diagnosis, intervention, and education, acquiring images from multiple angles increases radiation exposure and complicates clinical workflows. To address these challenges, we propose a novel view-conditioned diffusion model for synthesizing multi-view X-ray images from a single view. Unlike prior methods, which are limited in angular range, resolution, and image quality, our approach leverages the Diffusion Transformer to preserve fine details and employs a weak-to-strong training strategy for stable high-resolution image generation. Experimental results demonstrate that our method generates higher-resolution outputs with improved control over viewing angles. This capability has significant implications not only for clinical applications but also for medical education and data extension, enabling the creation of diverse, high-quality datasets for training and analysis. Our code is available at GitHub.
comment: Accepted by MICCAI2025
♻ ☆ 3D and 4D World Modeling: A Survey
World modeling has become a cornerstone in AI research, enabling agents to understand, represent, and predict the dynamic environments they inhabit. While prior work largely emphasizes generative methods for 2D image and video data, they overlook the rapidly growing body of work that leverages native 3D and 4D representations such as RGB-D imagery, occupancy grids, and LiDAR point clouds for large-scale scene modeling. At the same time, the absence of a standardized definition and taxonomy for ``world models'' has led to fragmented and sometimes inconsistent claims in the literature. This survey addresses these gaps by presenting the first comprehensive review explicitly dedicated to 3D and 4D world modeling and generation. We establish precise definitions, introduce a structured taxonomy spanning video-based (VideoGen), occupancy-based (OccGen), and LiDAR-based (LiDARGen) approaches, and systematically summarize datasets and evaluation metrics tailored to 3D/4D settings. We further discuss practical applications, identify open challenges, and highlight promising research directions, aiming to provide a coherent and foundational reference for advancing the field. A systematic summary of existing literature is available at https://github.com/worldbench/survey
comment: Survey; 34 pages, 10 figures, 14 tables; GitHub Repo at https://github.com/worldbench/survey
♻ ☆ Scaling Artificial Intelligence for Prostate Cancer Detection on MRI towards Organized Screening and Primary Diagnosis in a Global, Multiethnic Population (Study Protocol)
In this intercontinental, confirmatory study, we include a retrospective cohort of 22,481 MRI examinations (21,288 patients; 46 cities in 22 countries) to train and externally validate the PI-CAI-2B model, i.e., an efficient, next-generation iteration of the state-of-the-art AI system that was developed for detecting Gleason grade group $\geq$2 prostate cancer on MRI during the PI-CAI study. Of these examinations, 20,471 cases (19,278 patients; 26 cities in 14 countries) from two EU Horizon projects (ProCAncer-I, COMFORT) and 12 independent centers based in Europe, North America, Asia and Africa, are used for training and internal testing. Additionally, 2010 cases (2010 patients; 20 external cities in 12 countries) from population-based screening (STHLM3-MRI, IP1-PROSTAGRAM trials) and primary diagnostic settings (PRIME trial) based in Europe, North and South Americas, Asia and Australia, are used for external testing. Primary endpoint is the proportion of AI-based assessments in agreement with the standard of care diagnoses (i.e., clinical assessments made by expert uropathologists on histopathology, if available, or at least two expert urogenital radiologists in consensus; with access to patient history and peer consultation) in the detection of Gleason grade group $\geq$2 prostate cancer within the external testing cohorts. Our statistical analysis plan is prespecified with a hypothesis of diagnostic interchangeability to the standard of care at the PI-RADS $\geq$3 (primary diagnosis) or $\geq$4 (screening) cut-off, considering an absolute margin of 0.05 and reader estimates derived from the PI-CAI observer study (62 radiologists reading 400 cases). Secondary measures comprise the area under the receiver operating characteristic curve (AUROC) of the AI system stratified by imaging quality, patient age and patient ethnicity to identify underlying biases (if any).
♻ ☆ Automatic infant 2D pose estimation from videos: comparing seven deep neural network methods
Automatic markerless estimation of infant posture and motion from ordinary videos carries great potential for movement studies "in the wild", facilitating understanding of motor development and massively increasing the chances of early diagnosis of disorders. There is rapid development of human pose estimation methods in computer vision thanks to advances in deep learning and machine learning. However, these methods are trained on datasets that feature adults in different contexts. This work tests and compares seven popular methods (AlphaPose, DeepLabCut/DeeperCut, Detectron2, HRNet, MediaPipe/BlazePose, OpenPose, and ViTPose) on videos of infants in supine position and in more complex settings. Surprisingly, all methods except DeepLabCut and MediaPipe have competitive performance without additional finetuning, with ViTPose performing best. Next to standard performance metrics (average precision and recall), we introduce errors expressed in the neck-mid-hip (torso length) ratio and additionally study missed and redundant detections, and the reliability of the internal confidence ratings of the different methods, which are relevant for downstream tasks. Among the networks with competitive performance, only AlphaPose could run close to real time (27 fps) on our machine. We provide documented Docker containers or instructions for all the methods we used, our analysis scripts, and the processed data at https://hub.docker.com/u/humanoidsctu and https://osf.io/x465b/.
comment: 38 pages, 8 figures, 22 tables
♻ ☆ Towards Scalable Training for Handwritten Mathematical Expression Recognition
Large foundation models have achieved significant performance gains through scalable training on massive datasets. However, the field of \textbf{H}andwritten \textbf{M}athematical \textbf{E}xpression \textbf{R}ecognition (HMER) has been impeded by the scarcity of data, primarily due to the arduous and costly process of manual annotation. To bridge this gap, we propose a novel method integrating limited handwritten formulas with large-scale LaTeX-rendered formulas by developing a scalable data engine to generate complex and consistent LaTeX sequences. With this engine, we built the largest formula dataset to date, termed \texttt{Tex80M}, comprising over 80 million high-quality training instances. Then we propose \texttt{TexTeller}, the first HMER model trained at scale, by mix-training \texttt{Tex80M} with a relatively small HME dataset. The expansive training dataset and our refined pipeline have equipped \texttt{TexTeller} with state-of-the-art (SOTA) performance across nearly all benchmarks. To advance the field, we will openly release our complete model, entire dataset, and full codebase, enabling further research building upon our contributions.
♻ ☆ Focusing by Contrastive Attention: Enhancing VLMs' Visual Reasoning
Vision-Language Models (VLMs) have demonstrated remarkable success across diverse visual tasks, yet their performance degrades in complex visual environments. While existing enhancement approaches require additional training, rely on external segmentation tools, or operate at coarse-grained levels, they overlook the innate ability within VLMs. To bridge this gap, we investigate VLMs' attention patterns and discover that: (1) visual complexity strongly correlates with attention entropy, negatively impacting reasoning performance; (2) attention progressively refines from global scanning in shallow layers to focused convergence in deeper layers, with convergence degree determined by visual complexity. (3) Theoretically, we prove that the contrast of attention maps between general queries and task-specific queries enables the decomposition of visual signal into semantic signals and visual noise components. Building on these insights, we propose Contrastive Attention Refinement for Visual Enhancement (CARVE), a training-free method that extracts task-relevant visual signals through attention contrasting at the pixel level. Extensive experiments demonstrate that CARVE consistently enhances performance, achieving up to 75% improvement on open-source models. Our work provides critical insights into the interplay between visual complexity and attention mechanisms, offering an efficient pathway for improving visual reasoning with contrasting attention.
♻ ☆ Bridging Simplicity and Sophistication using GLinear: A Novel Architecture for Enhanced Time Series Prediction
Time Series Forecasting (TSF) is an important application across many fields. There is a debate about whether Transformers, despite being good at understanding long sequences, struggle with preserving temporal relationships in time series data. Recent research suggests that simpler linear models might outperform or at least provide competitive performance compared to complex Transformer-based models for TSF tasks. In this paper, we propose a novel data-efficient architecture, \textit{Gaussian-activated Linear model (GLinear)}, for multivariate TSF that exploits periodic patterns to provide better accuracy. It achieves higher prediction accuracy while requiring less historical data than other state-of-the-art linear predictors. Four different datasets (ETTh1, Electricity, Traffic, and Weather) are used to evaluate the performance of the proposed predictor. A performance comparison with state-of-the-art linear architectures (such as NLinear, DLinear, and RLinear) and transformer-based time series predictors (Autoformer) shows that the GLinear, despite being data efficient, outperforms the existing architectures in most cases of multivariate TSF while being competitive in others. We hope that the proposed GLinear model opens new fronts of research and development of simpler and more sophisticated architectures for data and computationally efficient time-series analysis. The source code is publicly available on GitHub.
comment: Submitted to Digital Signal Processing Journal
♻ ☆ A Lightweight Convolution and Vision Transformer integrated model with Multi-scale Self-attention Mechanism
Vision Transformer (ViT) has prevailed in computer vision tasks due to its strong long-range dependency modelling ability. \textcolor{blue}{However, its large model size and weak local feature modeling ability hinder its application in real scenarios. To balance computation efficiency and performance in downstream vision tasks, we propose an efficient ViT model with sparse attention (dubbed SAEViT) and convolution blocks. Specifically, a Sparsely Aggregated Attention (SAA) module has been proposed to perform adaptive sparse sampling and recover the feature map via deconvolution operation,} which significantly reduces the computational complexity of attention operations. In addition, a Channel-Interactive Feed-Forward Network (CIFFN) layer is developed to enhance inter-channel information exchange through feature decomposition and redistribution, which mitigates the redundancy in traditional feed-forward networks (FFN). Finally, a hierarchical pyramid structure with embedded depth-wise separable convolutional blocks (DWSConv) is devised to further strengthen convolutional features. Extensive experiments on mainstream datasets show that SAEViT achieves Top-1 accuracies of 76.3\% and 79.6\% on the ImageNet-1K classification task with only 0.8 GFLOPs and 1.3 GFLOPs, respectively, demonstrating a lightweight solution for fundamental vision tasks.
♻ ☆ Enhancing Automatic Modulation Recognition With a Reconstruction-Driven Vision Transformer Under Limited Labels
Automatic modulation recognition (AMR) is critical for cognitive radio, spectrum monitoring, and secure wireless communication. However, existing solutions often rely on large labeled datasets or multi-stage training pipelines, which limit scalability and generalization in practice. We propose a unified Vision Transformer (ViT) framework that integrates supervised, self-supervised, and reconstruction objectives. The model combines a ViT encoder, a lightweight convolutional decoder, and a linear classifier; the reconstruction branch maps augmented signals back to their originals, anchoring the encoder to fine-grained I/Q structure. This strategy promotes robust, discriminative feature learning during pretraining, while partial label supervision in fine-tuning enables effective classification with limited labels. On the RML2018.01A dataset, our approach outperforms supervised CNN and ViT baselines in low-label regimes, approaches ResNet-level accuracy with only 15-20% labeled data, and maintains strong performance across varying SNR levels. Overall, the framework provides a simple, generalizable, and label-efficient solution for AMR.
♻ ☆ TinyDef-DETR: A DETR-based Framework for Defect Detection in Transmission Lines from UAV Imagery
Automated defect detection from UAV imagery of transmission lines is a challenging task due to the small size, ambiguity, and complex backgrounds of defects. This paper proposes TinyDef-DETR, a DETR-based framework designed to achieve accurate and efficient detection of transmission line defects from UAV-acquired images. The model integrates four major components: an edge-enhanced ResNet backbone to strengthen boundary-sensitive representations, a stride-free space-to-depth module to enable detail-preserving downsampling, a cross-stage dual-domain multi-scale attention mechanism to jointly model global context and local cues, and a Focaler-Wise-SIoU regression loss to improve the localization of small and difficult targets. Together, these designs effectively mitigate the limitations of conventional detectors. Extensive experiments on both public and real-world datasets demonstrate that TinyDef-DETR achieves superior detection performance and strong generalization capability, while maintaining modest computational overhead. The accuracy and efficiency of TinyDef-DETR make it a suitable method for UAV-based transmission line defect detection, particularly in scenarios involving small and ambiguous targets.
♻ ☆ Sigma Flows for Image and Data Labeling and Learning Structured Prediction
This paper introduces the sigma flow model for the prediction of structured labelings of data observed on Riemannian manifolds, including Euclidean image domains as special case. The approach combines the Laplace-Beltrami framework for image denoising and enhancement, introduced by Sochen, Kimmel and Malladi about 25 years ago, and the assignment flow approach introduced and studied by the authors. The sigma flow arises as Riemannian gradient flow of generalized harmonic energies and thus is governed by a nonlinear geometric PDE which determines a harmonic map from a closed Riemannian domain manifold to a statistical manifold, equipped with the Fisher-Rao metric from information geometry. A specific ingredient of the sigma flow is the mutual dependency of the Riemannian metric of the domain manifold on the evolving state. This makes the approach amenable to machine learning in a specific way, by realizing this dependency through a mapping with compact time-variant parametrization that can be learned from data. Proof of concept experiments demonstrate the expressivity of the sigma flow model and prediction performance. Structural similarities to transformer network architectures and networks generated by the geometric integration of sigma flows are pointed out, which highlights the connection to deep learning and, conversely, may stimulate the use of geometric design principles for structured prediction in other areas of scientific machine learning.
comment: 51 pages, revised experimental section
♻ ☆ ABS-Mamba: SAM2-Driven Bidirectional Spiral Mamba Network for Medical Image Translation MICCAI 2025
Accurate multi-modal medical image translation requires ha-rmonizing global anatomical semantics and local structural fidelity, a challenge complicated by intermodality information loss and structural distortion. We propose ABS-Mamba, a novel architecture integrating the Segment Anything Model 2 (SAM2) for organ-aware semantic representation, specialized convolutional neural networks (CNNs) for preserving modality-specific edge and texture details, and Mamba's selective state-space modeling for efficient long- and short-range feature dependencies. Structurally, our dual-resolution framework leverages SAM2's image encoder to capture organ-scale semantics from high-resolution inputs, while a parallel CNNs branch extracts fine-grained local features. The Robust Feature Fusion Network (RFFN) integrates these epresentations, and the Bidirectional Mamba Residual Network (BMRN) models spatial dependencies using spiral scanning and bidirectional state-space dynamics. A three-stage skip fusion decoder enhances edge and texture fidelity. We employ Efficient Low-Rank Adaptation (LoRA+) fine-tuning to enable precise domain specialization while maintaining the foundational capabilities of the pre-trained components. Extensive experimental validation on the SynthRAD2023 and BraTS2019 datasets demonstrates that ABS-Mamba outperforms state-of-the-art methods, delivering high-fidelity cross-modal synthesis that preserves anatomical semantics and structural details to enhance diagnostic accuracy in clinical applications. The code is available at https://github.com/gatina-yone/ABS-Mamba
comment: MICCAI 2025(under view)
♻ ☆ Hallo4: High-Fidelity Dynamic Portrait Animation via Direct Preference Optimization
Generating highly dynamic and photorealistic portrait animations driven by audio and skeletal motion remains challenging due to the need for precise lip synchronization, natural facial expressions, and high-fidelity body motion dynamics. We propose a human-preference-aligned diffusion framework that addresses these challenges through two key innovations. First, we introduce direct preference optimization tailored for human-centric animation, leveraging a curated dataset of human preferences to align generated outputs with perceptual metrics for portrait motion-video alignment and naturalness of expression. Second, the proposed temporal motion modulation resolves spatiotemporal resolution mismatches by reshaping motion conditions into dimensionally aligned latent features through temporal channel redistribution and proportional feature expansion, preserving the fidelity of high-frequency motion details in diffusion-based synthesis. The proposed mechanism is complementary to existing UNet and DiT-based portrait diffusion approaches, and experiments demonstrate obvious improvements in lip-audio synchronization, expression vividness, body motion coherence over baseline methods, alongside notable gains in human preference metrics. Our model and source code can be found at: https://github.com/xyz123xyz456/hallo4.
♻ ☆ Adapting Vision-Language Models for Neutrino Event Classification in High-Energy Physics
Recent advances in Large Language Models (LLMs) have demonstrated their remarkable capacity to process and reason over structured and unstructured data modalities beyond natural language. In this work, we explore the applications of Vision Language Models (VLMs), specifically a fine-tuned variant of LLaMa 3.2, to the task of identifying neutrino interactions in pixelated detector data from high-energy physics (HEP) experiments. We benchmark this model against a state-of-the-art convolutional neural network (CNN) architecture, similar to those used in the NOvA and DUNE experiments, which have achieved high efficiency and purity in classifying electron and muon neutrino events. Our evaluation considers both the classification performance and interpretability of the model predictions. We find that VLMs can outperform CNNs, while also providing greater flexibility in integrating auxiliary textual or semantic information and offering more interpretable, reasoning-based predictions. This work highlights the potential of VLMs as a general-purpose backbone for physics event classification, due to their high performance, interpretability, and generalizability, which opens new avenues for integrating multimodal reasoning in experimental neutrino physics.
♻ ☆ Zero-shot 3D-Aware Trajectory-Guided image-to-video generation via Test-Time Training
Trajectory-Guided image-to-video (I2V) generation aims to synthesize videos that adhere to user-specified motion instructions. Existing methods typically rely on computationally expensive fine-tuning on scarce annotated datasets. Although some zero-shot methods attempt to trajectory control in the latent space, they may yield unrealistic motion by neglecting 3D perspective and creating a misalignment between the manipulated latents and the network's noise predictions. To address these challenges, we introduce Zo3T, a novel zero-shot test-time-training framework for trajectory-guided generation with three core innovations: First, we incorporate a 3D-Aware Kinematic Projection, leveraging inferring scene depth to derive perspective-correct affine transformations for target regions. Second, we introduce Trajectory-Guided Test-Time LoRA, a mechanism that dynamically injects and optimizes ephemeral LoRA adapters into the denoising network alongside the latent state. Driven by a regional feature consistency loss, this co-adaptation effectively enforces motion constraints while allowing the pre-trained model to locally adapt its internal representations to the manipulated latent, thereby ensuring generative fidelity and on-manifold adherence. Finally, we develop Guidance Field Rectification, which refines the denoising evolutionary path by optimizing the conditional guidance field through a one-step lookahead strategy, ensuring efficient generative progression towards the target trajectory. Zo3T significantly enhances 3D realism and motion accuracy in trajectory-controlled I2V generation, demonstrating superior performance over existing training-based and zero-shot approaches.
♻ ☆ Shaken, Not Stirred: A Novel Dataset for Visual Understanding of Glasses in Human-Robot Bartending Tasks IROS
Datasets for object detection often do not account for enough variety of glasses, due to their transparent and reflective properties. Specifically, open-vocabulary object detectors, widely used in embodied robotic agents, fail to distinguish subclasses of glasses. This scientific gap poses an issue for robotic applications that suffer from accumulating errors between detection, planning, and action execution. This paper introduces a novel method for acquiring real-world data from RGB-D sensors that minimizes human effort. We propose an auto-labeling pipeline that generates labels for all the acquired frames based on the depth measurements. We provide a novel real-world glass object dataset GlassNICOLDataset that was collected on the Neuro-Inspired COLlaborator (NICOL), a humanoid robot platform. The dataset consists of 7850 images recorded from five different cameras. We show that our trained baseline model outperforms state-of-the-art open-vocabulary approaches. In addition, we deploy our baseline model in an embodied agent approach to the NICOL platform, on which it achieves a success rate of 81% in a human-robot bartending scenario.
comment: Submitted and Accepted for Presentation at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2025
♻ ☆ Robix: A Unified Model for Robot Interaction, Reasoning and Planning
We introduce Robix, a unified model that integrates robot reasoning, task planning, and natural language interaction within a single vision-language architecture. Acting as the high-level cognitive layer in a hierarchical robot system, Robix dynamically generates atomic commands for the low-level controller and verbal responses for human interaction, enabling robots to follow complex instructions, plan long-horizon tasks, and interact naturally with human within an end-to-end framework. Robix further introduces novel capabilities such as proactive dialogue, real-time interruption handling, and context-aware commonsense reasoning during task execution. At its core, Robix leverages chain-of-thought reasoning and adopts a three-stage training strategy: (1) continued pretraining to enhance foundational embodied reasoning abilities including 3D spatial understanding, visual grounding, and task-centric reasoning; (2) supervised finetuning to model human-robot interaction and task planning as a unified reasoning-action sequence; and (3) reinforcement learning to improve reasoning-action consistency and long-horizon task coherence. Extensive experiments demonstrate that Robix outperforms both open-source and commercial baselines (e.g., GPT-4o and Gemini 2.5 Pro) in interactive task execution, demonstrating strong generalization across diverse instruction types (e.g., open-ended, multi-stage, constrained, invalid, and interrupted) and various user-involved tasks such as table bussing, grocery shopping, and dietary filtering.
comment: Tech report. Project page: https://robix-seed.github.io/robix/
♻ ☆ VFlowOpt: A Token Pruning Framework for LMMs with Visual Information Flow-Guided Optimization ICCV 2025
Large Multimodal Models (LMMs) excel in visual-language tasks by leveraging numerous visual tokens for fine-grained visual information, but this token redundancy results in significant computational costs. Previous research aimed at reducing visual tokens during inference typically leverages importance maps derived from attention scores among vision-only tokens or vision-language tokens to prune tokens across one or multiple pruning stages. Despite this progress, pruning frameworks and strategies remain simplistic and insufficiently explored, often resulting in substantial performance degradation. In this paper, we propose VFlowOpt, a token pruning framework that introduces an importance map derivation process and a progressive pruning module with a recycling mechanism. The hyperparameters of its pruning strategy are further optimized by a visual information flow-guided method. Specifically, we compute an importance map for image tokens based on their attention-derived context relevance and patch-level information entropy. We then decide which tokens to retain or prune and aggregate the pruned ones as recycled tokens to avoid potential information loss. Finally, we apply a visual information flow-guided method that regards the last token in the LMM as the most representative signal of text-visual interactions. This method minimizes the discrepancy between token representations in LMMs with and without pruning, thereby enabling superior pruning strategies tailored to different LMMs. Experiments demonstrate that VFlowOpt can prune 90% of visual tokens while maintaining comparable performance, leading to an 89% reduction in KV-Cache memory and 3.8 times faster inference.
comment: Accepted by ICCV 2025
♻ ☆ Improving Alignment in LVLMs with Debiased Self-Judgment EMNLP 2025
The rapid advancements in Large Language Models (LLMs) and Large Visual-Language Models (LVLMs) have opened up new opportunities for integrating visual and linguistic modalities. However, effectively aligning these modalities remains challenging, often leading to hallucinations--where generated outputs are not grounded in the visual input--and raising safety concerns across various domains. Existing alignment methods, such as instruction tuning and preference tuning, often rely on external datasets, human annotations, or complex post-processing, which limit scalability and increase costs. To address these challenges, we propose a novel approach that generates the debiased self-judgment score, a self-evaluation metric created internally by the model without relying on external resources. This enables the model to autonomously improve alignment. Our method enhances both decoding strategies and preference tuning processes, resulting in reduced hallucinations, enhanced safety, and improved overall capability. Empirical results show that our approach significantly outperforms traditional methods, offering a more effective solution for aligning LVLMs.
comment: EMNLP 2025 Findings
♻ ☆ LiDAR-BIND-T: Improved and Temporally Consistent Sensor Modality Translation and Fusion for Robotic Applications
This paper extends LiDAR-BIND, a modular multi-modal fusion framework that binds heterogeneous sensors (radar, sonar) to a LiDAR-defined latent space, with mechanisms that explicitly enforce temporal consistency. We introduce three contributions: (i) temporal embedding similarity that aligns consecutive latent representations, (ii) a motion-aligned transformation loss that matches displacement between predictions and ground truth LiDAR, and (iii) windowed temporal fusion using a specialised temporal module. We further update the model architecture to better preserve spatial structure. Evaluations on radar/sonar-to-LiDAR translation demonstrate improved temporal and spatial coherence, yielding lower absolute trajectory error and better occupancy map accuracy in Cartographer-based SLAM (Simultaneous Localisation and Mapping). We propose different metrics based on the Fr\'echet Video Motion Distance (FVMD) and a correlation-peak distance metric providing practical temporal quality indicators to evaluate SLAM performance. The proposed temporal LiDAR-BIND, or LiDAR-BIND-T, maintains plug-and-play modality fusion while substantially enhancing temporal stability, resulting in improved robustness and performance for downstream SLAM.
♻ ☆ Total Disentanglement of Font Images into Style and Character Class Features
In this paper, we demonstrate a total disentanglement of font images. Total disentanglement is a neural network-based method for decomposing each font image nonlinearly and completely into its style and content (i.e., character class) features. It uses a simple but careful training procedure to extract the common style feature from all `A'-`Z' images in the same font and the common content feature from all `A' (or another class) images in different fonts. These disentangled features guarantee the reconstruction of the original font image. Various experiments have been conducted to understand the performance of total disentanglement. First, it is demonstrated that total disentanglement is achievable with very high accuracy; this is experimental proof of the long-standing open question, ``Does `A'-ness exist?'' Hofstadter (1985). Second, it is demonstrated that the disentangled features produced by total disentanglement apply to a variety of tasks, including font recognition, character recognition, and one-shot font image generation. Code is available here: https://github.com/uchidalab/total_disentanglement
♻ ☆ MESH -- Understanding Videos Like Human: Measuring Hallucinations in Large Video Models
Large Video Models (LVMs) build on the semantic capabilities of Large Language Models (LLMs) and vision modules by integrating temporal information to better understand dynamic video content. Despite their progress, LVMs are prone to hallucinations-producing inaccurate or irrelevant descriptions. Current benchmarks for video hallucination depend heavily on manual categorization of video content, neglecting the perception-based processes through which humans naturally interpret videos. We introduce MESH, a benchmark designed to evaluate hallucinations in LVMs systematically. MESH uses a Question-Answering framework with binary and multi-choice formats incorporating target and trap instances. It follows a bottom-up approach, evaluating basic objects, coarse-to-fine subject features, and subject-action pairs, aligning with human video understanding. We demonstrate that MESH offers an effective and comprehensive approach for identifying hallucinations in videos. Our evaluations show that while LVMs excel at recognizing basic objects and features, their susceptibility to hallucinations increases markedly when handling fine details or aligning multiple actions involving various subjects in longer videos.
♻ ☆ Towards Reliable Medical Image Segmentation by Modeling Evidential Calibrated Uncertainty IEEE
Medical image segmentation is critical for disease diagnosis and treatment assessment. However, concerns regarding the reliability of segmentation regions persist among clinicians, mainly attributed to the absence of confidence assessment, robustness, and calibration to accuracy. To address this, we introduce DEviS, an easily implementable foundational model that seamlessly integrates into various medical image segmentation networks. DEviS not only enhances the calibration and robustness of baseline segmentation accuracy but also provides high-efficiency uncertainty estimation for reliable predictions. By leveraging subjective logic theory, we explicitly model probability and uncertainty for medical image segmentation. Here, the Dirichlet distribution parameterizes the distribution of probabilities for different classes of the segmentation results. To generate calibrated predictions and uncertainty, we develop a trainable calibrated uncertainty penalty. Furthermore, DEviS incorporates an uncertainty-aware filtering module, which designs the metric of uncertainty-calibrated error to filter out-of-distribution data. We conducted validation studies on publicly available datasets, including ISIC2018, KiTS2021, LiTS2017, and BraTS2019, to assess the accuracy and robustness of different backbone segmentation models enhanced by DEviS, as well as the efficiency and reliability of uncertainty estimation.
comment: 14 pages, 8 figures, accepted by IEEE Transactions on Cybernetics
♻ ☆ S$^2$-Guidance: Stochastic Self Guidance for Training-Free Enhancement of Diffusion Models
Classifier-free Guidance (CFG) is a widely used technique in modern diffusion models for enhancing sample quality and prompt adherence. However, through an empirical analysis on Gaussian mixture modeling with a closed-form solution, we observe a discrepancy between the suboptimal results produced by CFG and the ground truth. The model's excessive reliance on these suboptimal predictions often leads to semantic incoherence and low-quality outputs. To address this issue, we first empirically demonstrate that the model's suboptimal predictions can be effectively refined using sub-networks of the model itself. Building on this insight, we propose S^2-Guidance, a novel method that leverages stochastic block-dropping during the forward process to construct stochastic sub-networks, effectively guiding the model away from potential low-quality predictions and toward high-quality outputs. Extensive qualitative and quantitative experiments on text-to-image and text-to-video generation tasks demonstrate that S^2-Guidance delivers superior performance, consistently surpassing CFG and other advanced guidance strategies. Our code will be released.
♻ ☆ TESSER: Transfer-Enhancing Adversarial Attacks from Vision Transformers via Spectral and Semantic Regularization
Adversarial transferability remains a critical challenge in evaluating the robustness of deep neural networks. In security-critical applications, transferability enables black-box attacks without access to model internals, making it a key concern for real-world adversarial threat assessment. While Vision Transformers (ViTs) have demonstrated strong adversarial performance, existing attacks often fail to transfer effectively across architectures, especially from ViTs to Convolutional Neural Networks (CNNs) or hybrid models. In this paper, we introduce \textbf{TESSER} -- a novel adversarial attack framework that enhances transferability via two key strategies: (1) \textit{Feature-Sensitive Gradient Scaling (FSGS)}, which modulates gradients based on token-wise importance derived from intermediate feature activations, and (2) \textit{Spectral Smoothness Regularization (SSR)}, which suppresses high-frequency noise in perturbations using a differentiable Gaussian prior. These components work in tandem to generate perturbations that are both semantically meaningful and spectrally smooth. Extensive experiments on ImageNet across 12 diverse architectures demonstrate that TESSER achieves +10.9\% higher attack succes rate (ASR) on CNNs and +7.2\% on ViTs compared to the state-of-the-art Adaptive Token Tuning (ATT) method. Moreover, TESSER significantly improves robustness against defended models, achieving 53.55\% ASR on adversarially trained CNNs. Qualitative analysis shows strong alignment between TESSER's perturbations and salient visual regions identified via Grad-CAM, while frequency-domain analysis reveals a 12\% reduction in high-frequency energy, confirming the effectiveness of spectral regularization.
♻ ☆ UnsafeBench: Benchmarking Image Safety Classifiers on Real-World and AI-Generated Images CCS
With the advent of text-to-image models and concerns about their misuse, developers are increasingly relying on image safety classifiers to moderate their generated unsafe images. Yet, the performance of current image safety classifiers remains unknown for both real-world and AI-generated images. In this work, we propose UnsafeBench, a benchmarking framework that evaluates the effectiveness and robustness of image safety classifiers, with a particular focus on the impact of AI-generated images on their performance. First, we curate a large dataset of 10K real-world and AI-generated images that are annotated as safe or unsafe based on a set of 11 unsafe categories of images (sexual, violent, hateful, etc.). Then, we evaluate the effectiveness and robustness of five popular image safety classifiers, as well as three classifiers that are powered by general-purpose visual language models. Our assessment indicates that existing image safety classifiers are not comprehensive and effective enough to mitigate the multifaceted problem of unsafe images. Also, there exists a distribution shift between real-world and AI-generated images in image qualities, styles, and layouts, leading to degraded effectiveness and robustness. Motivated by these findings, we build a comprehensive image moderation tool called PerspectiveVision, which improves the effectiveness and robustness of existing classifiers, especially on AI-generated images. UnsafeBench and PerspectiveVision can aid the research community in better understanding the landscape of image safety classification in the era of generative AI.
comment: To Appear in the ACM Conference on Computer and Communications Security (CCS), October 13, 2025
♻ ☆ Deep Learning-Based Rock Particulate Classification Using Attention-Enhanced ConvNeXt
Accurate classification of rock sizes is a vital component in geotechnical engineering, mining, and resource management, where precise estimation influences operational efficiency and safety. In this paper, we propose an enhanced deep learning model based on the ConvNeXt architecture, augmented with both self-attention and channel attention mechanisms. Building upon the foundation of ConvNext, our proposed model, termed CNSCA, introduces self-attention to capture long-range spatial dependencies and channel attention to emphasize informative feature channels. This hybrid design enables the model to effectively capture both fine-grained local patterns and broader contextual relationships within rock imagery, leading to improved classification accuracy and robustness. We evaluate our model on a rock size classification dataset and compare it against three strong baseline. The results demonstrate that the incorporation of attention mechanisms significantly enhances the models capability for fine-grained classification tasks involving natural textures like rocks.
comment: The paper has been withdrawn by the authors to accommodate substantial revisions requested by a co-author. A revised version will be submitted
♻ ☆ JAX-IK: Real-Time Inverse Kinematics for Generating Multi-Constrained Movements of Virtual Human Characters
Generating accurate and realistic virtual human movements in real-time is of high importance for a variety of applications in computer graphics, interactive virtual environments, robotics, and biomechanics. This paper introduces a novel real-time inverse kinematics (IK) solver specifically designed for realistic human-like movement generation. Leveraging the automatic differentiation and just-in-time compilation of TensorFlow, the proposed solver efficiently handles complex articulated human skeletons with high degrees of freedom. By treating forward and inverse kinematics as differentiable operations, our method effectively addresses common challenges such as error accumulation and complicated joint limits in multi-constrained problems, which are critical for realistic human motion modeling. We demonstrate the solver's effectiveness on the SMPLX human skeleton model, evaluating its performance against widely used iterative-based IK algorithms, like Cyclic Coordinate Descent (CCD), FABRIK, and the nonlinear optimization algorithm IPOPT. Our experiments cover both simple end-effector tasks and sophisticated, multi-constrained problems with realistic joint limits. Results indicate that our IK solver achieves real-time performance, exhibiting rapid convergence, minimal computational overhead per iteration, and improved success rates compared to existing methods. The project code is available at https://github.com/hvoss-techfak/JAX-IK
♻ ☆ IDEATOR: Jailbreaking and Benchmarking Large Vision-Language Models Using Themselves
As large Vision-Language Models (VLMs) gain prominence, ensuring their safe deployment has become critical. Recent studies have explored VLM robustness against jailbreak attacks-techniques that exploit model vulnerabilities to elicit harmful outputs. However, the limited availability of diverse multimodal data has constrained current approaches to rely heavily on adversarial or manually crafted images derived from harmful text datasets, which often lack effectiveness and diversity across different contexts. In this paper, we propose IDEATOR, a novel jailbreak method that autonomously generates malicious image-text pairs for black-box jailbreak attacks. IDEATOR is grounded in the insight that VLMs themselves could serve as powerful red team models for generating multimodal jailbreak prompts. Specifically, IDEATOR leverages a VLM to create targeted jailbreak texts and pairs them with jailbreak images generated by a state-of-the-art diffusion model. Extensive experiments demonstrate IDEATOR's high effectiveness and transferability, achieving a 94% attack success rate (ASR) in jailbreaking MiniGPT-4 with an average of only 5.34 queries, and high ASRs of 82%, 88%, and 75% when transferred to LLaVA, InstructBLIP, and Chameleon, respectively. Building on IDEATOR's strong transferability and automated process, we introduce the VLJailbreakBench, a safety benchmark comprising 3,654 multimodal jailbreak samples. Our benchmark results on 11 recently released VLMs reveal significant gaps in safety alignment. For instance, our challenge set achieves ASRs of 46.31% on GPT-4o and 19.65% on Claude-3.5-Sonnet, underscoring the urgent need for stronger defenses.VLJailbreakBench is publicly available at https://roywang021.github.io/VLJailbreakBench.
♻ ☆ Uncertainty-aware Diffusion and Reinforcement Learning for Joint Plane Localization and Anomaly Diagnosis in 3D Ultrasound MICCAI 2025
Congenital uterine anomalies (CUAs) can lead to infertility, miscarriage, preterm birth, and an increased risk of pregnancy complications. Compared to traditional 2D ultrasound (US), 3D US can reconstruct the coronal plane, providing a clear visualization of the uterine morphology for assessing CUAs accurately. In this paper, we propose an intelligent system for simultaneous automated plane localization and CUA diagnosis. Our highlights are: 1) we develop a denoising diffusion model with local (plane) and global (volume/text) guidance, using an adaptive weighting strategy to optimize attention allocation to different conditions; 2) we introduce a reinforcement learning-based framework with unsupervised rewards to extract the key slice summary from redundant sequences, fully integrating information across multiple planes to reduce learning difficulty; 3) we provide text-driven uncertainty modeling for coarse prediction, and leverage it to adjust the classification probability for overall performance improvement. Extensive experiments on a large 3D uterine US dataset show the efficacy of our method, in terms of plane localization and CUA diagnosis. Code is available at https://github.com/yuhoo0302/CUA-US.
comment: Accepted by MICCAI 2025;10 pages, 3 figures
♻ ☆ Glo-UMF: A Unified Multi-model Framework for Automated Morphometry of Glomerular Ultrastructural Characterization
Background and Objective: To address the inability of single-model architectures to perform simultaneous analysis of complex glomerular ultrastructures, we developed Glo-UMF, a unified multi-model framework integrating segmentation, classification, and detection to systematically quantify key ultrastructural features. Methods: Glo-UMF decouples quantification tasks by constructing three dedicated deep models: an ultrastructure segmentation model, a glomerular filtration barrier (GFB) region classification model, and an electron-dense deposits (EDD) detection model. Their outputs are integrated through a post-processing workflow with adaptive GFB cropping and measurement location screening, enhancing measurement reliability and providing comprehensive quantitative results that overcome the limitations of traditional grading. Results: Trained on 372 electron microscopy images, Glo-UMF enables simultaneous quantification of glomerular basement membrane (GBM) thickness, the degree of foot process effacement (FPE), and EDD location. In 115 test cases spanning 9 renal pathological types, the automated quantification results showed strong agreement with pathological reports, with an average processing time of 4.23$\pm$0.48 seconds per case on a CPU environment. Conclusions: The modular design of Glo-UMF allows for flexible extensibility, supporting the joint quantification of multiple features. This framework ensures robust generalization and clinical applicability, demonstrating significant potential as an efficient auxiliary tool in glomerular pathological analysis.
comment: 17 pages, 6 figures
♻ ☆ V-HOP: Visuo-Haptic 6D Object Pose Tracking
Humans naturally integrate vision and haptics for robust object perception during manipulation. The loss of either modality significantly degrades performance. Inspired by this multisensory integration, prior object pose estimation research has attempted to combine visual and haptic/tactile feedback. Although these works demonstrate improvements in controlled environments or synthetic datasets, they often underperform vision-only approaches in real-world settings due to poor generalization across diverse grippers, sensor layouts, or sim-to-real environments. Furthermore, they typically estimate the object pose for each frame independently, resulting in less coherent tracking over sequences in real-world deployments. To address these limitations, we introduce a novel unified haptic representation that effectively handles multiple gripper embodiments. Building on this representation, we introduce a new visuo-haptic transformer-based object pose tracker that seamlessly integrates visual and haptic input. We validate our framework in our dataset and the Feelsight dataset, demonstrating significant performance improvement on challenging sequences. Notably, our method achieves superior generalization and robustness across novel embodiments, objects, and sensor types (both taxel-based and vision-based tactile sensors). In real-world experiments, we demonstrate that our approach outperforms state-of-the-art visual trackers by a large margin. We further show that we can achieve precise manipulation tasks by incorporating our real-time object tracking result into motion plans, underscoring the advantages of visuo-haptic perception. Project website: https://ivl.cs.brown.edu/research/v-hop
comment: Accepted by RSS 2025
♻ ☆ Bidirectional Sparse Attention for Faster Video Diffusion Training
Video diffusion Transformer (DiT) models excel in generative quality but hit major computational bottlenecks when producing high-resolution, long-duration videos. The quadratic complexity of full attention leads to prohibitively high training and inference costs. Full attention inefficiency stems from two key challenges: excessive computation due to the inherent sparsity of Queries and Key-Value pairs, and redundant computation as fixed sparse patterns fail to leverage DiT's dynamic attention. To overcome this limitation, we propose a Bidirectional Sparse Attention (BSA) framework for faster video DiT training, the first to dynamically sparsify both Queries and Key-Value pairs within 3D full attention, thereby substantially improving training and inference efficiency. BSA addresses these issues through two key components. Query sparsity is optimized by selecting the most informative query tokens via semantic similarity and with a dynamic spatial-time training strategy, while KV sparsity is achieved by computing a statistical dynamic threshold to retain only the most salient KV blocks for computation. Extensive experiments demonstrate that BSA significantly accelerates DiT training across long sequences, reducing FLOPs by up to 20x and achieving 17.79x faster attention training, while preserving or even surpassing the generative quality of full attention.
♻ ☆ GAPrompt: Geometry-Aware Point Cloud Prompt for 3D Vision Model ICML 2025
Pre-trained 3D vision models have gained significant attention for their promising performance on point cloud data. However, fully fine-tuning these models for downstream tasks is computationally expensive and storage-intensive. Existing parameter-efficient fine-tuning (PEFT) approaches, which focus primarily on input token prompting, struggle to achieve competitive performance due to their limited ability to capture the geometric information inherent in point clouds. To address this challenge, we propose a novel Geometry-Aware Point Cloud Prompt (GAPrompt) that leverages geometric cues to enhance the adaptability of 3D vision models. First, we introduce a Point Prompt that serves as an auxiliary input alongside the original point cloud, explicitly guiding the model to capture fine-grained geometric details. Additionally, we present a Point Shift Prompter designed to extract global shape information from the point cloud, enabling instance-specific geometric adjustments at the input level. Moreover, our proposed Prompt Propagation mechanism incorporates the shape information into the model's feature extraction process, further strengthening its ability to capture essential geometric characteristics. Extensive experiments demonstrate that GAPrompt significantly outperforms state-of-the-art PEFT methods and achieves competitive results compared to full fine-tuning on various benchmarks, while utilizing only 2.19% of trainable parameters. Our code is available at https://github.com/zhoujiahuan1991/ICML2025-GAPrompt.
comment: Accepted by ICML 2025
♻ ☆ Early Exit and Multi Stage Knowledge Distillation in VLMs for Video Summarization
We introduce DEEVISum (Distilled Early Exit Vision language model for Summarization), a lightweight, efficient, and scalable vision language model designed for segment wise video summarization. Leveraging multi modal prompts that combine textual and audio derived signals, DEEVISum incorporates Multi Stage Knowledge Distillation (MSKD) and Early Exit (EE) to strike a balance between performance and efficiency. MSKD offers a 1.33% absolute F1 improvement over baseline distillation (0.5%), while EE reduces inference time by approximately 21% with a 1.3 point drop in F1. Evaluated on the TVSum dataset, our best model PaLI Gemma2 3B + MSKD achieves an F1 score of 61.1, competing the performance of significantly larger models, all while maintaining a lower computational footprint. We publicly release our code and processed dataset to support further research.
♻ ☆ Attention-Guided Multi-scale Interaction Network for Face Super-Resolution IEEE
Recently, CNN and Transformer hybrid networks demonstrated excellent performance in face super-resolution (FSR) tasks. Since numerous features at different scales in hybrid networks, how to fuse these multiscale features and promote their complementarity is crucial for enhancing FSR. However, existing hybrid network-based FSR methods ignore this, only simply combining the Transformer and CNN. To address this issue, we propose an attention-guided Multiscale interaction network (AMINet), which incorporates local and global feature interactions, as well as encoder-decoder phase feature interactions. Specifically, we propose a Local and Global Feature Interaction Module (LGFI) to promote the fusion of global features and the local features extracted from different receptive fields by our Residual Depth Feature Extraction Module (RDFE). Additionally, we propose a Selective Kernel Attention Fusion Module (SKAF) to adaptively select fusions of different features within the LGFI and encoder-decoder phases. Our above design allows the free flow of multiscale features from within modules and between the encoder and decoder, which can promote the complementarity of different scale features to enhance FSR. Comprehensive experiments confirm that our method consistently performs well with less computational consumption and faster inference.
comment: accepted by IEEE Transactions on Systems, Man and Cybernetics:Systems (TSMC)
♻ ☆ EgoAgent: A Joint Predictive Agent Model in Egocentric Worlds
Learning an agent model that behaves like humans-capable of jointly perceiving the environment, predicting the future, and taking actions from a first-person perspective-is a fundamental challenge in computer vision. Existing methods typically train separate models for these abilities, which fail to capture their intrinsic relationships and prevent them from learning from each other. Inspired by how humans learn through the perception-action loop, we propose EgoAgent, a unified agent model that simultaneously learns to represent, predict, and act within a single transformer. EgoAgent explicitly models the causal and temporal dependencies among these abilities by formulating the task as an interleaved sequence of states and actions. It further introduces a joint embedding-action-prediction architecture with temporally asymmetric predictor and observer branches, enabling synergistic optimization across all three capabilities. Comprehensive evaluations of EgoAgent on representative tasks such as image classification, egocentric future state prediction, and 3D human motion prediction demonstrate the superiority of our method. The code and trained models will be publicly available at https://github.com/zju3dv/EgoAgent.
comment: Project Page: https://egoagent.github.io | Demo Video: https://youtu.be/qhfHp_sfDvY
♻ ☆ Imagine, Verify, Execute: Memory-guided Agentic Exploration with Vision-Language Models
Exploration is essential for general-purpose robotic learning, especially in open-ended environments where dense rewards, explicit goals, or task-specific supervision are scarce. Vision-language models (VLMs), with their semantic reasoning over objects, spatial relations, and potential outcomes, present a compelling foundation for generating high-level exploratory behaviors. However, their outputs are often ungrounded, making it difficult to determine whether imagined transitions are physically feasible or informative. To bridge the gap between imagination and execution, we present IVE (Imagine, Verify, Execute), an agentic exploration framework inspired by human curiosity. Human exploration is often driven by the desire to discover novel scene configurations and to deepen understanding of the environment. Similarly, IVE leverages VLMs to abstract RGB-D observations into semantic scene graphs, imagine novel scenes, predict their physical plausibility, and generate executable skill sequences through action tools. We evaluate IVE in both simulated and real-world tabletop environments. The results show that IVE enables more diverse and meaningful exploration than RL baselines, as evidenced by a 4.1 to 7.8x increase in the entropy of visited states. Moreover, the collected experience supports downstream learning, producing policies that closely match or exceed the performance of those trained on human-collected demonstrations.
comment: Project webpage: https://ive-robot.github.io/
♻ ☆ Drawing2CAD: Sequence-to-Sequence Learning for CAD Generation from Vector Drawings ACM MM 2025
Computer-Aided Design (CAD) generative modeling is driving significant innovations across industrial applications. Recent works have shown remarkable progress in creating solid models from various inputs such as point clouds, meshes, and text descriptions. However, these methods fundamentally diverge from traditional industrial workflows that begin with 2D engineering drawings. The automatic generation of parametric CAD models from these 2D vector drawings remains underexplored despite being a critical step in engineering design. To address this gap, our key insight is to reframe CAD generation as a sequence-to-sequence learning problem where vector drawing primitives directly inform the generation of parametric CAD operations, preserving geometric precision and design intent throughout the transformation process. We propose Drawing2CAD, a framework with three key technical components: a network-friendly vector primitive representation that preserves precise geometric information, a dual-decoder transformer architecture that decouples command type and parameter generation while maintaining precise correspondence, and a soft target distribution loss function accommodating inherent flexibility in CAD parameters. To train and evaluate Drawing2CAD, we create CAD-VGDrawing, a dataset of paired engineering drawings and parametric CAD models, and conduct thorough experiments to demonstrate the effectiveness of our method. Code and dataset are available at https://github.com/lllssc/Drawing2CAD.
comment: Accepted to ACM MM 2025
♻ ☆ ForestSplats: Deformable transient field for Gaussian Splatting in the Wild
Recently, 3D Gaussian Splatting (3D-GS) has emerged, showing real-time rendering speeds and high-quality results in static scenes. Although 3D-GS shows effectiveness in static scenes, their performance significantly degrades in real-world environments due to transient objects, lighting variations, and diverse levels of occlusion. To tackle this, existing methods estimate occluders or transient elements by leveraging pre-trained models or integrating additional transient field pipelines. However, these methods still suffer from two defects: 1) Using semantic features from the Vision Foundation model (VFM) causes additional computational costs. 2) The transient field requires significant memory to handle transient elements with per-view Gaussians and struggles to define clear boundaries for occluders, solely relying on photometric errors. To address these problems, we propose ForestSplats, a novel approach that leverages the deformable transient field and a superpixel-aware mask to efficiently represent transient elements in the 2D scene across unconstrained image collections and effectively decompose static scenes from transient distractors without VFM. We designed the transient field to be deformable, capturing per-view transient elements. Furthermore, we introduce a superpixel-aware mask that clearly defines the boundaries of occluders by considering photometric errors and superpixels. Additionally, we propose uncertainty-aware densification to avoid generating Gaussians within the boundaries of occluders during densification. Through extensive experiments across several benchmark datasets, we demonstrate that ForestSplats outperforms existing methods without VFM and shows significant memory efficiency in representing transient elements.
♻ ☆ Parasite: A Steganography-based Backdoor Attack Framework for Diffusion Models
Recently, the diffusion model has gained significant attention as one of the most successful image generation models, which can generate high-quality images by iteratively sampling noise. However, recent studies have shown that diffusion models are vulnerable to backdoor attacks, allowing attackers to enter input data containing triggers to activate the backdoor and generate their desired output. Existing backdoor attack methods primarily focused on target noise-to-image and text-to-image tasks, with limited work on backdoor attacks in image-to-image tasks. Furthermore, traditional backdoor attacks often rely on a single, conspicuous trigger to generate a fixed target image, lacking concealability and flexibility. To address these limitations, we propose a novel backdoor attack method called "Parasite" for image-to-image tasks in diffusion models, which not only is the first to leverage steganography for triggers hiding, but also allows attackers to embed the target content as a backdoor trigger to achieve a more flexible attack. "Parasite" as a novel attack method effectively bypasses existing detection frameworks to execute backdoor attacks. In our experiments, "Parasite" achieved a 0 percent backdoor detection rate against the mainstream defense frameworks. In addition, in the ablation study, we discuss the influence of different hiding coefficients on the attack results. You can find our code at https://anonymous.4open.science/r/Parasite-1715/.
♻ ☆ AdvReal: Physical Adversarial Patch Generation Framework for Security Evaluation of Object Detection Systems
Autonomous vehicles are typical complex intelligent systems with artificial intelligence at their core. However, perception methods based on deep learning are extremely vulnerable to adversarial samples, resulting in security accidents. How to generate effective adversarial examples in the physical world and evaluate object detection systems is a huge challenge. In this study, we propose a unified joint adversarial training framework for both 2D and 3D domains, which simultaneously optimizes texture maps in 2D image and 3D mesh spaces to better address intra-class diversity and real-world environmental variations. The framework includes a novel realistic enhanced adversarial module, with time-space and relighting mapping pipeline that adjusts illumination consistency between adversarial patches and target garments under varied viewpoints. Building upon this, we develop a realism enhancement mechanism that incorporates non-rigid deformation modeling and texture remapping to ensure alignment with the human body's non-rigid surfaces in 3D scenes. Extensive experiment results in digital and physical environments demonstrate that the adversarial textures generated by our method can effectively mislead the target detection model. Specifically, our method achieves an average attack success rate (ASR) of 70.13% on YOLOv12 in physical scenarios, significantly outperforming existing methods such as T-SEA (21.65%) and AdvTexture (19.70%). Moreover, the proposed method maintains stable ASR across multiple viewpoints and distances, with an average attack success rate exceeding 90% under both frontal and oblique views at a distance of 4 meters. This confirms the method's strong robustness and transferability under multi-angle attacks, varying lighting conditions, and real-world distances. The demo video and code can be obtained at https://github.com/Huangyh98/AdvReal.git.
♻ ☆ C3VDv2 -- Colonoscopy 3D video dataset with enhanced realism
Spatial computer vision techniques have the potential to improve the diagnostic performance of colonoscopy. However, the lack of 3D colonoscopy datasets for training and validation hinders their development. This paper introduces C3VDv2, the second version (v2) of the high-definition Colonoscopy 3D Video Dataset, featuring enhanced realism designed to facilitate the quantitative evaluation of 3D colon reconstruction algorithms. 192 video sequences totaling 169,371 frames were captured by imaging 60 unique, high-fidelity silicone colon phantom segments. Ground truth depth, surface normals, optical flow, occlusion, diffuse maps, six-degree-of-freedom pose, coverage map, and 3D models are provided for 169 colonoscopy videos. Eight simulated screening colonoscopy videos acquired by a gastroenterologist are provided with ground truth poses. Lastly, the dataset includes 15 videos with colon deformations for qualitative assessment. C3VDv2 emulates diverse and challenging scenarios for 3D reconstruction algorithms, including fecal debris, mucous pools, blood, debris obscuring the colonoscope lens, en-face views, and fast camera motion. The enhanced realism of C3VDv2 will allow for more robust and representative development and evaluation of 3D reconstruction algorithms. Project Page - https://durrlab.github.io/C3VDv2/
comment: 19 pages, 7 figures
♻ ☆ Combating Falsification of Speech Videos with Live Optical Signatures (Extended Version) CCS '25
High-profile speech videos are prime targets for falsification, owing to their accessibility and influence. This work proposes VeriLight, a low-overhead and unobtrusive system for protecting speech videos from visual manipulations of speaker identity and lip and facial motion. Unlike the predominant purely digital falsification detection methods, VeriLight creates dynamic physical signatures at the event site and embeds them into all video recordings via imperceptible modulated light. These physical signatures encode semantically-meaningful features unique to the speech event, including the speaker's identity and facial motion, and are cryptographically-secured to prevent spoofing. The signatures can be extracted from any video downstream and validated against the portrayed speech content to check its integrity. Key elements of VeriLight include (1) a framework for generating extremely compact (i.e., 150-bit), pose-invariant speech video features, based on locality-sensitive hashing; and (2) an optical modulation scheme that embeds $>$200 bps into video while remaining imperceptible both in video and live. Experiments on extensive video datasets show VeriLight achieves AUCs $\geq$ 0.99 and a true positive rate of 100% in detecting falsified videos. Further, VeriLight is highly robust across recording conditions, video post-processing techniques, and white-box adversarial attacks on its feature extraction methods. A demonstration of VeriLight is available at https://mobilex.cs.columbia.edu/verilight.
comment: In Proceedings of the 2025 ACM SIGSAC Conference on Computer and Communications Security (CCS '25). October 13 - 17, 2025, Taipei, Taiwan. ACM, New York, NY, USA. 19 pages
Artificial Intelligence 145
☆ ButterflyQuant: Ultra-low-bit LLM Quantization through Learnable Orthogonal Butterfly Transforms
Large language models require massive memory footprints, severely limiting deployment on consumer hardware. Quantization reduces memory through lower numerical precision, but extreme 2-bit quantization suffers from catastrophic performance loss due to outliers in activations. Rotation-based methods such as QuIP and QuaRot apply orthogonal transforms to eliminate outliers before quantization, using computational invariance: $\mathbf{y} = \mathbf{Wx} = (\mathbf{WQ}^T)(\mathbf{Qx})$ for orthogonal $\mathbf{Q}$. However, these methods use fixed transforms--Hadamard matrices achieving optimal worst-case coherence $\mu = 1/\sqrt{n}$--that cannot adapt to specific weight distributions. We identify that different transformer layers exhibit distinct outlier patterns, motivating layer-adaptive rotations rather than one-size-fits-all approaches. We propose ButterflyQuant, which replaces Hadamard rotations with learnable butterfly transforms parameterized by continuous Givens rotation angles. Unlike Hadamard's discrete $\{+1, -1\}$ entries that are non-differentiable and prohibit gradient-based learning, butterfly transforms' continuous parameterization enables smooth optimization while guaranteeing orthogonality by construction. This orthogonal constraint ensures theoretical guarantees in outlier suppression while achieving $O(n \log n)$ computational complexity with only $\frac{n \log n}{2}$ learnable parameters. We further introduce a uniformity regularization on post-transformation activations to promote smoother distributions amenable to quantization. Learning requires only 128 calibration samples and converges in minutes on a single GPU--a negligible one-time cost. On LLaMA-2-7B with 2-bit quantization, ButterflyQuant achieves 15.4 perplexity versus 22.1 for QuaRot.
comment: Replace discrete Hadamard transforms with continuous Butterfly transforms to facilitate the learning of rotation matrices in LLM quantization
☆ The Illusion of Diminishing Returns: Measuring Long Horizon Execution in LLMs
Does continued scaling of large language models (LLMs) yield diminishing returns? Real-world value often stems from the length of task an agent can complete. We start this work by observing the simple but counterintuitive fact that marginal gains in single-step accuracy can compound into exponential improvements in the length of a task a model can successfully complete. Then, we argue that failures of LLMs when simple tasks are made longer arise from mistakes in execution, rather than an inability to reason. We propose isolating execution capability, by explicitly providing the knowledge and plan needed to solve a long-horizon task. We find that larger models can correctly execute significantly more turns even when small models have 100\% single-turn accuracy. We observe that the per-step accuracy of models degrades as the number of steps increases. This is not just due to long-context limitations -- curiously, we observe a self-conditioning effect -- models become more likely to make mistakes when the context contains their errors from prior turns. Self-conditioning does not reduce by just scaling the model size. In contrast, recent thinking models do not self-condition, and can also execute much longer tasks in a single turn. We conclude by benchmarking frontier thinking models on the length of task they can execute in a single turn. Overall, by focusing on the ability to execute, we hope to reconcile debates on how LLMs can solve complex reasoning problems yet fail at simple tasks when made longer, and highlight the massive benefits of scaling model size and sequential test-time compute for long-horizon tasks.
☆ SimpleVLA-RL: Scaling VLA Training via Reinforcement Learning
Vision-Language-Action (VLA) models have recently emerged as a powerful paradigm for robotic manipulation. Despite substantial progress enabled by large-scale pretraining and supervised fine-tuning (SFT), these models face two fundamental challenges: (i) the scarcity and high cost of large-scale human-operated robotic trajectories required for SFT scaling, and (ii) limited generalization to tasks involving distribution shift. Recent breakthroughs in Large Reasoning Models (LRMs) demonstrate that reinforcement learning (RL) can dramatically enhance step-by-step reasoning capabilities, raising a natural question: Can RL similarly improve the long-horizon step-by-step action planning of VLA? In this work, we introduce SimpleVLA-RL, an efficient RL framework tailored for VLA models. Building upon veRL, we introduce VLA-specific trajectory sampling, scalable parallelization, multi-environment rendering, and optimized loss computation. When applied to OpenVLA-OFT, SimpleVLA-RL achieves SoTA performance on LIBERO and even outperforms $\pi_0$ on RoboTwin 1.0\&2.0 with the exploration-enhancing strategies we introduce. SimpleVLA-RL not only reduces dependence on large-scale data and enables robust generalization, but also remarkably surpasses SFT in real-world tasks. Moreover, we identify a novel phenomenon ``pushcut'' during RL training, wherein the policy discovers previously unseen patterns beyond those seen in the previous training process. Github: https://github.com/PRIME-RL/SimpleVLA-RL
☆ CDE: Curiosity-Driven Exploration for Efficient Reinforcement Learning in Large Language Models
Reinforcement Learning with Verifiable Rewards (RLVR) is a powerful paradigm for enhancing the reasoning ability of Large Language Models (LLMs). Yet current RLVR methods often explore poorly, leading to premature convergence and entropy collapse. To address this challenge, we introduce Curiosity-Driven Exploration (CDE), a framework that leverages the model's own intrinsic sense of curiosity to guide exploration. We formalize curiosity with signals from both the actor and the critic: for the actor, we use perplexity over its generated response, and for the critic, we use the variance of value estimates from a multi-head architecture. Both signals serve as an exploration bonus within the RLVR framework to guide the model. Our theoretical analysis shows that the actor-wise bonus inherently penalizes overconfident errors and promotes diversity among correct responses; moreover, we connect the critic-wise bonus to the well-established count-based exploration bonus in RL. Empirically, our method achieves an approximate +3 point improvement over standard RLVR using GRPO/PPO on AIME benchmarks. Further analysis identifies a calibration collapse mechanism within RLVR, shedding light on common LLM failure modes.
comment: 21 pages
☆ Feasibility-Guided Fair Adaptive Offline Reinforcement Learning for Medicaid Care Management
We introduce Feasibility-Guided Fair Adaptive Reinforcement Learning (FG-FARL), an offline RL procedure that calibrates per-group safety thresholds to reduce harm while equalizing a chosen fairness target (coverage or harm) across protected subgroups. Using de-identified longitudinal trajectories from a Medicaid population health management program, we evaluate FG-FARL against behavior cloning (BC) and HACO (Hybrid Adaptive Conformal Offline RL; a global conformal safety baseline). We report off-policy value estimates with bootstrap 95% confidence intervals and subgroup disparity analyses with p-values. FG-FARL achieves comparable value to baselines while improving fairness metrics, demonstrating a practical path to safer and more equitable decision support.
comment: 12 pages, 5 figures, 3 tables
☆ Retrieval-Augmented Generation for Reliable Interpretation of Radio Regulations
We study question answering in the domain of radio regulations, a legally sensitive and high-stakes area. We propose a telecom-specific Retrieval-Augmented Generation (RAG) pipeline and introduce, to our knowledge, the first multiple-choice evaluation set for this domain, constructed from authoritative sources using automated filtering and human validation. To assess retrieval quality, we define a domain-specific retrieval metric, under which our retriever achieves approximately 97% accuracy. Beyond retrieval, our approach consistently improves generation accuracy across all tested models. In particular, while naively inserting documents without structured retrieval yields only marginal gains for GPT-4o (less than 1%), applying our pipeline results in nearly a 12% relative improvement. These findings demonstrate that carefully targeted grounding provides a simple yet strong baseline and an effective domain-specific solution for regulatory question answering. All code and evaluation scripts, along with our derived question-answer dataset, are available at https://github.com/Zakaria010/Radio-RAG.
☆ Explaining Concept Drift through the Evolution of Group Counterfactuals ECML
Machine learning models in dynamic environments often suffer from concept drift, where changes in the data distribution degrade performance. While detecting this drift is a well-studied topic, explaining how and why the model's decision-making logic changes still remains a significant challenge. In this paper, we introduce a novel methodology to explain concept drift by analyzing the temporal evolution of group-based counterfactual explanations (GCEs). Our approach tracks shifts in the GCEs' cluster centroids and their associated counterfactual action vectors before and after a drift. These evolving GCEs act as an interpretable proxy, revealing structural changes in the model's decision boundary and its underlying rationale. We operationalize this analysis within a three-layer framework that synergistically combines insights from the data layer (distributional shifts), the model layer (prediction disagreement), and our proposed explanation layer. We show that such holistic view allows for a more comprehensive diagnosis of drift, making it possible to distinguish between different root causes, such as a spatial data shift versus a re-labeling of concepts.
comment: TempXAI Workshop @ ECML PKDD 2025
☆ LoCoBench: A Benchmark for Long-Context Large Language Models in Complex Software Engineering
The emergence of long-context language models with context windows extending to millions of tokens has created new opportunities for sophisticated code understanding and software development evaluation. We propose LoCoBench, a comprehensive benchmark specifically designed to evaluate long-context LLMs in realistic, complex software development scenarios. Unlike existing code evaluation benchmarks that focus on single-function completion or short-context tasks, LoCoBench addresses the critical evaluation gap for long-context capabilities that require understanding entire codebases, reasoning across multiple files, and maintaining architectural consistency across large-scale software systems. Our benchmark provides 8,000 evaluation scenarios systematically generated across 10 programming languages, with context lengths spanning 10K to 1M tokens, a 100x variation that enables precise assessment of long-context performance degradation in realistic software development settings. LoCoBench introduces 8 task categories that capture essential long-context capabilities: architectural understanding, cross-file refactoring, multi-session development, bug investigation, feature implementation, code comprehension, integration testing, and security analysis. Through a 5-phase pipeline, we create diverse, high-quality scenarios that challenge LLMs to reason about complex codebases at unprecedented scale. We introduce a comprehensive evaluation framework with 17 metrics across 4 dimensions, including 8 new evaluation metrics, combined in a LoCoBench Score (LCBS). Our evaluation of state-of-the-art long-context models reveals substantial performance gaps, demonstrating that long-context understanding in complex software development represents a significant unsolved challenge that demands more attention. LoCoBench is released at: https://github.com/SalesforceAIResearch/LoCoBench.
comment: 53 pages
☆ Mechanistic Learning with Guided Diffusion Models to Predict Spatio-Temporal Brain Tumor Growth
Predicting the spatio-temporal progression of brain tumors is essential for guiding clinical decisions in neuro-oncology. We propose a hybrid mechanistic learning framework that combines a mathematical tumor growth model with a guided denoising diffusion implicit model (DDIM) to synthesize anatomically feasible future MRIs from preceding scans. The mechanistic model, formulated as a system of ordinary differential equations, captures temporal tumor dynamics including radiotherapy effects and estimates future tumor burden. These estimates condition a gradient-guided DDIM, enabling image synthesis that aligns with both predicted growth and patient anatomy. We train our model on the BraTS adult and pediatric glioma datasets and evaluate on 60 axial slices of in-house longitudinal pediatric diffuse midline glioma (DMG) cases. Our framework generates realistic follow-up scans based on spatial similarity metrics. It also introduces tumor growth probability maps, which capture both clinically relevant extent and directionality of tumor growth as shown by 95th percentile Hausdorff Distance. The method enables biologically informed image generation in data-limited scenarios, offering generative-space-time predictions that account for mechanistic priors.
comment: 13 pages, 4 figures
☆ Graph Alignment via Dual-Pass Spectral Encoding and Latent Space Communication
Graph alignment-the problem of identifying corresponding nodes across multiple graphs-is fundamental to numerous applications. Most existing unsupervised methods embed node features into latent representations to enable cross-graph comparison without ground-truth correspondences. However, these methods suffer from two critical limitations: the degradation of node distinctiveness due to oversmoothing in GNN-based embeddings, and the misalignment of latent spaces across graphs caused by structural noise, feature heterogeneity, and training instability, ultimately leading to unreliable node correspondences. We propose a novel graph alignment framework that simultaneously enhances node distinctiveness and enforces geometric consistency across latent spaces. Our approach introduces a dual-pass encoder that combines low-pass and high-pass spectral filters to generate embeddings that are both structure-aware and highly discriminative. To address latent space misalignment, we incorporate a geometry-aware functional map module that learns bijective and isometric transformations between graph embeddings, ensuring consistent geometric relationships across different representations. Extensive experiments on graph benchmarks demonstrate that our method consistently outperforms existing unsupervised alignment baselines, exhibiting superior robustness to structural inconsistencies and challenging alignment scenarios. Additionally, comprehensive evaluation on vision-language benchmarks using diverse pretrained models shows that our framework effectively generalizes beyond graph domains, enabling unsupervised alignment of vision and language representations.
comment: 23 pages
☆ ObjectReact: Learning Object-Relative Control for Visual Navigation
Visual navigation using only a single camera and a topological map has recently become an appealing alternative to methods that require additional sensors and 3D maps. This is typically achieved through an "image-relative" approach to estimating control from a given pair of current observation and subgoal image. However, image-level representations of the world have limitations because images are strictly tied to the agent's pose and embodiment. In contrast, objects, being a property of the map, offer an embodiment- and trajectory-invariant world representation. In this work, we present a new paradigm of learning "object-relative" control that exhibits several desirable characteristics: a) new routes can be traversed without strictly requiring to imitate prior experience, b) the control prediction problem can be decoupled from solving the image matching problem, and c) high invariance can be achieved in cross-embodiment deployment for variations across both training-testing and mapping-execution settings. We propose a topometric map representation in the form of a "relative" 3D scene graph, which is used to obtain more informative object-level global path planning costs. We train a local controller, dubbed "ObjectReact", conditioned directly on a high-level "WayObject Costmap" representation that eliminates the need for an explicit RGB input. We demonstrate the advantages of learning object-relative control over its image-relative counterpart across sensor height variations and multiple navigation tasks that challenge the underlying spatial understanding capability, e.g., navigating a map trajectory in the reverse direction. We further show that our sim-only policy is able to generalize well to real-world indoor environments. Code and supplementary material are accessible via project page: https://object-react.github.io/
comment: CoRL 2025; 23 pages including appendix
☆ Fluent but Unfeeling: The Emotional Blind Spots of Language Models
The versatility of Large Language Models (LLMs) in natural language understanding has made them increasingly popular in mental health research. While many studies explore LLMs' capabilities in emotion recognition, a critical gap remains in evaluating whether LLMs align with human emotions at a fine-grained level. Existing research typically focuses on classifying emotions into predefined, limited categories, overlooking more nuanced expressions. To address this gap, we introduce EXPRESS, a benchmark dataset curated from Reddit communities featuring 251 fine-grained, self-disclosed emotion labels. Our comprehensive evaluation framework examines predicted emotion terms and decomposes them into eight basic emotions using established emotion theories, enabling a fine-grained comparison. Systematic testing of prevalent LLMs under various prompt settings reveals that accurately predicting emotions that align with human self-disclosed emotions remains challenging. Qualitative analysis further shows that while certain LLMs generate emotion terms consistent with established emotion theories and definitions, they sometimes fail to capture contextual cues as effectively as human self-disclosures. These findings highlight the limitations of LLMs in fine-grained emotion alignment and offer insights for future research aimed at enhancing their contextual understanding.
comment: Camera-ready version for ICWSM 2026. First two authors contributed equally
☆ Boosting Embodied AI Agents through Perception-Generation Disaggregation and Asynchronous Pipeline Execution
Embodied AI systems operate in dynamic environments, requiring seamless integration of perception and generation modules to process high-frequency input and output demands. Traditional sequential computation patterns, while effective in ensuring accuracy, face significant limitations in achieving the necessary "thinking" frequency for real-world applications. In this work, we present Auras, an algorithm-system co-designed inference framework to optimize the inference frequency of embodied AI agents. Auras disaggregates the perception and generation and provides controlled pipeline parallelism for them to achieve high and stable throughput. Faced with the data staleness problem that appears when the parallelism is increased, Auras establishes a public context for perception and generation to share, thereby promising the accuracy of embodied agents. Experimental results show that Auras improves throughput by 2.54x on average while achieving 102.7% of the original accuracy, demonstrating its efficacy in overcoming the constraints of sequential computation and providing high throughput.
☆ Invisible Attributes, Visible Biases: Exploring Demographic Shortcuts in MRI-based Alzheimer's Disease Classification MICCAI 2025
Magnetic resonance imaging (MRI) is the gold standard for brain imaging. Deep learning (DL) algorithms have been proposed to aid in the diagnosis of diseases such as Alzheimer's disease (AD) from MRI scans. However, DL algorithms can suffer from shortcut learning, in which spurious features, not directly related to the output label, are used for prediction. When these features are related to protected attributes, they can lead to performance bias against underrepresented protected groups, such as those defined by race and sex. In this work, we explore the potential for shortcut learning and demographic bias in DL based AD diagnosis from MRI. We first investigate if DL algorithms can identify race or sex from 3D brain MRI scans to establish the presence or otherwise of race and sex based distributional shifts. Next, we investigate whether training set imbalance by race or sex can cause a drop in model performance, indicating shortcut learning and bias. Finally, we conduct a quantitative and qualitative analysis of feature attributions in different brain regions for both the protected attribute and AD classification tasks. Through these experiments, and using multiple datasets and DL models (ResNet and SwinTransformer), we demonstrate the existence of both race and sex based shortcut learning and bias in DL based AD classification. Our work lays the foundation for fairer DL diagnostic tools in brain MRI. The code is provided at https://github.com/acharaakshit/ShortMR
comment: FAIMI @ MICCAI 2025
☆ An improved educational competition optimizer with multi-covariance learning operators for global optimization problems
The educational competition optimizer is a recently introduced metaheuristic algorithm inspired by human behavior, originating from the dynamics of educational competition within society. Nonetheless, ECO faces constraints due to an imbalance between exploitation and exploration, rendering it susceptible to local optima and demonstrating restricted effectiveness in addressing complex optimization problems. To address these limitations, this study presents an enhanced educational competition optimizer (IECO-MCO) utilizing multi-covariance learning operators. In IECO, three distinct covariance learning operators are introduced to improve the performance of ECO. Each operator effectively balances exploitation and exploration while preventing premature convergence of the population. The effectiveness of IECO is assessed through benchmark functions derived from the CEC 2017 and CEC 2022 test suites, and its performance is compared with various basic and improved algorithms across different categories. The results demonstrate that IECO-MCO surpasses the basic ECO and other competing algorithms in convergence speed, stability, and the capability to avoid local optima. Furthermore, statistical analyses, including the Friedman test, Kruskal-Wallis test, and Wilcoxon rank-sum test, are conducted to validate the superiority of IECO-MCO over the compared algorithms. Compared with the basic algorithm (improved algorithm), IECO-MCO achieved an average ranking of 2.213 (2.488) on the CE2017 and CEC2022 test suites. Additionally, the practical applicability of the proposed IECO-MCO algorithm is verified by solving constrained optimization problems. The experimental outcomes demonstrate the superior performance of IECO-MCO in tackling intricate optimization problems, underscoring its robustness and practical effectiveness in real-world scenarios.
comment: Submitted to Cluster Computing
☆ Improving Video Diffusion Transformer Training by Multi-Feature Fusion and Alignment from Self-Supervised Vision Encoders
Video diffusion models have advanced rapidly in the recent years as a result of series of architectural innovations (e.g., diffusion transformers) and use of novel training objectives (e.g., flow matching). In contrast, less attention has been paid to improving the feature representation power of such models. In this work, we show that training video diffusion models can benefit from aligning the intermediate features of the video generator with feature representations of pre-trained vision encoders. We propose a new metric and conduct an in-depth analysis of various vision encoders to evaluate their discriminability and temporal consistency, thereby assessing their suitability for video feature alignment. Based on the analysis, we present Align4Gen which provides a novel multi-feature fusion and alignment method integrated into video diffusion model training. We evaluate Align4Gen both for unconditional and class-conditional video generation tasks and show that it results in improved video generation as quantified by various metrics. Full video results are available on our project page: https://align4gen.github.io/align4gen/
comment: 17 pages, 14 figures
☆ Compositional Concept Generalization with Variational Quantum Circuits IEEE
Compositional generalization is a key facet of human cognition, but lacking in current AI tools such as vision-language models. Previous work examined whether a compositional tensor-based sentence semantics can overcome the challenge, but led to negative results. We conjecture that the increased training efficiency of quantum models will improve performance in these tasks. We interpret the representations of compositional tensor-based models in Hilbert spaces and train Variational Quantum Circuits to learn these representations on an image captioning task requiring compositional generalization. We used two image encoding techniques: a multi-hot encoding (MHE) on binary image vectors and an angle/amplitude encoding on image vectors taken from the vision-language model CLIP. We achieve good proof-of-concept results using noisy MHE encodings. Performance on CLIP image vectors was more mixed, but still outperformed classical compositional models.
comment: Accepted to: 2025 IEEE International Conference on Quantum Artificial Intelligence (QAI), Naples, Italy, Nov 2-5, 2025. This is the authors' accepted manuscript (AAM). An IEEE copyright notice appears on page 1. The final published version will appear in IEEE Xplore; DOI to be added when available
☆ A modified RIME algorithm with covariance learning and diversity enhancement for numerical optimization
Metaheuristics are widely applied for their ability to provide more efficient solutions. The RIME algorithm is a recently proposed physical-based metaheuristic algorithm with certain advantages. However, it suffers from rapid loss of population diversity during optimization and is prone to fall into local optima, leading to unbalanced exploitation and exploration. To address the shortcomings of RIME, this paper proposes a modified RIME with covariance learning and diversity enhancement (MRIME-CD). The algorithm applies three strategies to improve the optimization capability. First, a covariance learning strategy is introduced in the soft-rime search stage to increase the population diversity and balance the over-exploitation ability of RIME through the bootstrapping effect of dominant populations. Second, in order to moderate the tendency of RIME population to approach the optimal individual in the early search stage, an average bootstrapping strategy is introduced into the hard-rime puncture mechanism, which guides the population search through the weighted position of the dominant populations, thus enhancing the global search ability of RIME in the early stage. Finally, a new stagnation indicator is proposed, and a stochastic covariance learning strategy is used to update the stagnant individuals in the population when the algorithm gets stagnant, thus enhancing the ability to jump out of the local optimal solution. The proposed MRIME-CD algorithm is subjected to a series of validations on the CEC2017 test set, the CEC2022 test set, and the experimental results are analyzed using the Friedman test, the Wilcoxon rank sum test, and the Kruskal Wallis test. The results show that MRIME-CD can effectively improve the performance of basic RIME and has obvious superiorities in terms of solution accuracy, convergence speed and stability.
comment: This is the author's preprint of the article published in Cluster Computing (Springer): Shi, S., Zhang, L., Yin, Y. et al. A modified RIME algorithm with covariance learning and diversity enhancement for numerical optimization. Cluster Comput 28, 658 (2025). The final authenticated version is available online at SpringerLink
☆ Towards Explainable Job Title Matching: Leveraging Semantic Textual Relatedness and Knowledge Graphs
Semantic Textual Relatedness (STR) captures nuanced relationships between texts that extend beyond superficial lexical similarity. In this study, we investigate STR in the context of job title matching - a key challenge in resume recommendation systems, where overlapping terms are often limited or misleading. We introduce a self-supervised hybrid architecture that combines dense sentence embeddings with domain-specific Knowledge Graphs (KGs) to improve both semantic alignment and explainability. Unlike previous work that evaluated models on aggregate performance, our approach emphasizes data stratification by partitioning the STR score continuum into distinct regions: low, medium, and high semantic relatedness. This stratified evaluation enables a fine-grained analysis of model performance across semantically meaningful subspaces. We evaluate several embedding models, both with and without KG integration via graph neural networks. The results show that fine-tuned SBERT models augmented with KGs produce consistent improvements in the high-STR region, where the RMSE is reduced by 25% over strong baselines. Our findings highlight not only the benefits of combining KGs with text embeddings, but also the importance of regional performance analysis in understanding model behavior. This granular approach reveals strengths and weaknesses hidden by global metrics, and supports more targeted model selection for use in Human Resources (HR) systems and applications where fairness, explainability, and contextual matching are essential.
☆ Explainable AI for Accelerated Microstructure Imaging: A SHAP-Guided Protocol on the Connectome 2.0 scanner IEEE
The diffusion MRI Neurite Exchange Imaging model offers a promising framework for probing gray matter microstructure by estimating parameters such as compartment sizes, diffusivities, and inter-compartmental water exchange time. However, existing protocols require long scan times. This study proposes a reduced acquisition scheme for the Connectome 2.0 scanner that preserves model accuracy while substantially shortening scan duration. We developed a data-driven framework using explainable artificial intelligence with a guided recursive feature elimination strategy to identify an optimal 8-feature subset from a 15-feature protocol. The performance of this optimized protocol was validated in vivo and benchmarked against the full acquisition and alternative reduction strategies. Parameter accuracy, preservation of anatomical contrast, and test-retest reproducibility were assessed. The reduced protocol yielded parameter estimates and cortical maps comparable to the full protocol, with low estimation errors in synthetic data and minimal impact on test-retest variability. Compared to theory-driven and heuristic reduction schemes, the optimized protocol demonstrated superior robustness, reducing the deviation in water exchange time estimates by over two-fold. In conclusion, this hybrid optimization framework enables viable imaging of neurite exchange in 14 minutes without loss of parameter fidelity. This approach supports the broader application of exchange-sensitive diffusion magnetic resonance imaging in neuroscience and clinical research, and offers a generalizable method for designing efficient acquisition protocols in biophysical parameter mapping.
comment: Submitted to IEEE Transactions on Medical Imaging (TMI). This all-in-one version includes supplementary materials. 18 pages, 14 figures, 2 tables
☆ Incorporating AI Incident Reporting into Telecommunications Law and Policy: Insights from India
The integration of artificial intelligence (AI) into telecommunications infrastructure introduces novel risks, such as algorithmic bias and unpredictable system behavior, that fall outside the scope of traditional cybersecurity and data protection frameworks. This paper introduces a precise definition and a detailed typology of telecommunications AI incidents, establishing them as a distinct category of risk that extends beyond conventional cybersecurity and data protection breaches. It argues for their recognition as a distinct regulatory concern. Using India as a case study for jurisdictions that lack a horizontal AI law, the paper analyzes the country's key digital regulations. The analysis reveals that India's existing legal instruments, including the Telecommunications Act, 2023, the CERT-In Rules, and the Digital Personal Data Protection Act, 2023, focus on cybersecurity and data breaches, creating a significant regulatory gap for AI-specific operational incidents, such as performance degradation and algorithmic bias. The paper also examines structural barriers to disclosure and the limitations of existing AI incident repositories. Based on these findings, the paper proposes targeted policy recommendations centered on integrating AI incident reporting into India's existing telecom governance. Key proposals include mandating reporting for high-risk AI failures, designating an existing government body as a nodal agency to manage incident data, and developing standardized reporting frameworks. These recommendations aim to enhance regulatory clarity and strengthen long-term resilience, offering a pragmatic and replicable blueprint for other nations seeking to govern AI risks within their existing sectoral frameworks.
comment: 16 pages, 2 figures, 1 table
☆ SEDM: Scalable Self-Evolving Distributed Memory for Agents
Long-term multi-agent systems inevitably generate vast amounts of trajectories and historical interactions, which makes efficient memory management essential for both performance and scalability. Existing methods typically depend on vector retrieval and hierarchical storage, yet they are prone to noise accumulation, uncontrolled memory expansion, and limited generalization across domains. To address these challenges, we present SEDM, Self-Evolving Distributed Memory, a verifiable and adaptive framework that transforms memory from a passive repository into an active, self-optimizing component. SEDM integrates verifiable write admission based on reproducible replay, a self-scheduling memory controller that dynamically ranks and consolidates entries according to empirical utility, and cross-domain knowledge diffusion that abstracts reusable insights to support transfer across heterogeneous tasks. Evaluations on benchmark datasets demonstrate that SEDM improves reasoning accuracy while reducing token overhead compared with strong memory baselines, and further enables knowledge distilled from fact verification to enhance multi-hop reasoning. The results highlight SEDM as a scalable and sustainable memory mechanism for open-ended multi-agent collaboration. The code will be released in the later stage of this project.
☆ OpenFake: An Open Dataset and Platform Toward Large-Scale Deepfake Detection
Deepfakes, synthetic media created using advanced AI techniques, have intensified the spread of misinformation, particularly in politically sensitive contexts. Existing deepfake detection datasets are often limited, relying on outdated generation methods, low realism, or single-face imagery, restricting the effectiveness for general synthetic image detection. By analyzing social media posts, we identify multiple modalities through which deepfakes propagate misinformation. Furthermore, our human perception study demonstrates that recently developed proprietary models produce synthetic images increasingly indistinguishable from real ones, complicating accurate identification by the general public. Consequently, we present a comprehensive, politically-focused dataset specifically crafted for benchmarking detection against modern generative models. This dataset contains three million real images paired with descriptive captions, which are used for generating 963k corresponding high-quality synthetic images from a mix of proprietary and open-source models. Recognizing the continual evolution of generative techniques, we introduce an innovative crowdsourced adversarial platform, where participants are incentivized to generate and submit challenging synthetic images. This ongoing community-driven initiative ensures that deepfake detection methods remain robust and adaptive, proactively safeguarding public discourse from sophisticated misinformation threats.
comment: 25 pages, 12 figures
Prompt Pirates Need a Map: Stealing Seeds helps Stealing Prompts
Diffusion models have significantly advanced text-to-image generation, enabling the creation of highly realistic images conditioned on textual prompts and seeds. Given the considerable intellectual and economic value embedded in such prompts, prompt theft poses a critical security and privacy concern. In this paper, we investigate prompt-stealing attacks targeting diffusion models. We reveal that numerical optimization-based prompt recovery methods are fundamentally limited as they do not account for the initial random noise used during image generation. We identify and exploit a noise-generation vulnerability (CWE-339), prevalent in major image-generation frameworks, originating from PyTorch's restriction of seed values to a range of $2^{32}$ when generating the initial random noise on CPUs. Through a large-scale empirical analysis conducted on images shared via the popular platform CivitAI, we demonstrate that approximately 95% of these images' seed values can be effectively brute-forced in 140 minutes per seed using our seed-recovery tool, SeedSnitch. Leveraging the recovered seed, we propose PromptPirate, a genetic algorithm-based optimization method explicitly designed for prompt stealing. PromptPirate surpasses state-of-the-art methods, i.e., PromptStealer, P2HP, and CLIP-Interrogator, achieving an 8-11% improvement in LPIPS similarity. Furthermore, we introduce straightforward and effective countermeasures that render seed stealing, and thus optimization-based prompt stealing, ineffective. We have disclosed our findings responsibly and initiated coordinated mitigation efforts with the developers to address this critical vulnerability.
☆ Resource-Efficient Glioma Segmentation on Sub-Saharan MRI
Gliomas are the most prevalent type of primary brain tumors, and their accurate segmentation from MRI is critical for diagnosis, treatment planning, and longitudinal monitoring. However, the scarcity of high-quality annotated imaging data in Sub-Saharan Africa (SSA) poses a significant challenge for deploying advanced segmentation models in clinical workflows. This study introduces a robust and computationally efficient deep learning framework tailored for resource-constrained settings. We leveraged a 3D Attention UNet architecture augmented with residual blocks and enhanced through transfer learning from pre-trained weights on the BraTS 2021 dataset. Our model was evaluated on 95 MRI cases from the BraTS-Africa dataset, a benchmark for glioma segmentation in SSA MRI data. Despite the limited data quality and quantity, our approach achieved Dice scores of 0.76 for the Enhancing Tumor (ET), 0.80 for Necrotic and Non-Enhancing Tumor Core (NETC), and 0.85 for Surrounding Non-Functional Hemisphere (SNFH). These results demonstrate the generalizability of the proposed model and its potential to support clinical decision making in low-resource settings. The compact architecture, approximately 90 MB, and sub-minute per-volume inference time on consumer-grade hardware further underscore its practicality for deployment in SSA health systems. This work contributes toward closing the gap in equitable AI for global health by empowering underserved regions with high-performing and accessible medical imaging solutions.
comment: 11 pages, 7 figures
☆ Inteligencia Artificial jurídica y el desafío de la veracidad: análisis de alucinaciones, optimización de RAG y principios para una integración responsable
This technical report analyzes the challenge of "hallucinations" (false information) in LLMs applied to law. It examines their causes, manifestations, and the effectiveness of the RAG mitigation strategy, highlighting its limitations and proposing holistic optimizations. The paper explores the ethical and regulatory implications, emphasizing human oversight as an irreplaceable role. It concludes that the solution lies not in incrementally improving generative models, but in adopting a "consultative" AI paradigm that prioritizes veracity and traceability, acting as a tool to amplify, not replace, professional judgment. -- Este informe t\'ecnico analiza el desaf\'io de las "alucinaciones" (informaci\'on falsa) en los LLMs aplicados al derecho. Se examinan sus causas, manifestaciones y la efectividad de la estrategia de mitigaci\'on RAG, exponiendo sus limitaciones y proponiendo optimizaciones hol\'isticas. Se exploran las implicaciones \'eticas y regulatorias, enfatizando la supervisi\'on humana como un rol insustituible. El documento concluye que la soluci\'on no reside en mejorar incrementalmente los modelos generativos, sino en adoptar un paradigma de IA "consultiva" que priorice la veracidad y la trazabilidad, actuando como una herramienta para amplificar, y no sustituir, el juicio profesional.
comment: in Spanish and English languages
☆ TORSO: Template-Oriented Reasoning Towards General Tasks
The approaches that guide Large Language Models (LLMs) to emulate human reasoning during response generation have emerged as an effective method for enabling them to solve complex problems in a step-by-step manner, thereby achieving superior performance. However, most existing approaches using few-shot prompts to generate responses heavily depend on the provided examples, limiting the utilization of the model's inherent reasoning capabilities. Moreover, constructing task-specific few-shot prompts is often costly and may lead to inconsistencies across different tasks. In this work, we introduce Template-Oriented Reasoning (TORSO), which elicits the model to utilize internal reasoning abilities to generate proper responses across various tasks without the need for manually crafted few-shot examples. Our experimental results demonstrate that TORSO achieves strong performance on diverse LLMs benchmarks with reasonable rationales.
comment: 9 pages, 3 figures
☆ ENSI: Efficient Non-Interactive Secure Inference for Large Language Models
Secure inference enables privacy-preserving machine learning by leveraging cryptographic protocols that support computations on sensitive user data without exposing it. However, integrating cryptographic protocols with large language models (LLMs) presents significant challenges, as the inherent complexity of these protocols, together with LLMs' massive parameter scale and sophisticated architectures, severely limits practical usability. In this work, we propose ENSI, a novel non-interactive secure inference framework for LLMs, based on the principle of co-designing the cryptographic protocols and LLM architecture. ENSI employs an optimized encoding strategy that seamlessly integrates CKKS scheme with a lightweight LLM variant, BitNet, significantly reducing the computational complexity of encrypted matrix multiplications. In response to the prohibitive computational demands of softmax under homomorphic encryption (HE), we pioneer the integration of the sigmoid attention mechanism with HE as a seamless, retraining-free alternative. Furthermore, by embedding the Bootstrapping operation within the RMSNorm process, we efficiently refresh ciphertexts while markedly decreasing the frequency of costly bootstrapping invocations. Experimental evaluations demonstrate that ENSI achieves approximately an 8x acceleration in matrix multiplications and a 2.6x speedup in softmax inference on CPU compared to state-of-the-art method, with the proportion of bootstrapping is reduced to just 1%.
☆ We're Still Doing It (All) Wrong: Recommender Systems, Fifteen Years Later
In 2011, Xavier Amatriain sounded the alarm: recommender systems research was "doing it all wrong" [1]. His critique, rooted in statistical misinterpretation and methodological shortcuts, remains as relevant today as it was then. But rather than correcting course, we added new layers of sophistication on top of the same broken foundations. This paper revisits Amatriain's diagnosis and argues that many of the conceptual, epistemological, and infrastructural failures he identified still persist, in more subtle or systemic forms. Drawing on recent work in reproducibility, evaluation methodology, environmental impact, and participatory design, we showcase how the field's accelerating complexity has outpaced its introspection. We highlight ongoing community-led initiatives that attempt to shift the paradigm, including workshops, evaluation frameworks, and calls for value-sensitive and participatory research. At the same time, we contend that meaningful change will require not only new metrics or better tooling, but a fundamental reframing of what recommender systems research is for, who it serves, and how knowledge is produced and validated. Our call is not just for technical reform, but for a recommender systems research agenda grounded in epistemic humility, human impact, and sustainable practice.
comment: This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was accepted for publication in the Beyond Algorithms: Reclaiming the Interdisciplinary Roots of Recommender Systems Workshop (BEYOND 2025), September 26th, 2025, co-located with the 19th ACM Recommender Systems Conference, Prague, Czech Republic
☆ LLMs Don't Know Their Own Decision Boundaries: The Unreliability of Self-Generated Counterfactual Explanations EMNLP 2025
To collaborate effectively with humans, language models must be able to explain their decisions in natural language. We study a specific type of self-explanation: self-generated counterfactual explanations (SCEs), where a model explains its prediction by modifying the input such that it would have predicted a different outcome. We evaluate whether LLMs can produce SCEs that are valid, achieving the intended outcome, and minimal, modifying the input no more than necessary. When asked to generate counterfactuals, we find that LLMs typically produce SCEs that are valid, but far from minimal, offering little insight into their decision-making behaviour. Worryingly, when asked to generate minimal counterfactuals, LLMs typically make excessively small edits that fail to change predictions. The observed validity-minimality trade-off is consistent across several LLMs, datasets, and evaluation settings. Our findings suggest that SCEs are, at best, an ineffective explainability tool and, at worst, can provide misleading insights into model behaviour. Proposals to deploy LLMs in high-stakes settings must consider the impact of unreliable self-explanations on downstream decision-making. Our code is available at https://github.com/HarryMayne/SCEs.
comment: Accepted to EMNLP 2025 Main
☆ MetaLLMix : An XAI Aided LLM-Meta-learning Based Approach for Hyper-parameters Optimization
Effective model and hyperparameter selection remains a major challenge in deep learning, often requiring extensive expertise and computation. While AutoML and large language models (LLMs) promise automation, current LLM-based approaches rely on trial and error and expensive APIs, which provide limited interpretability and generalizability. We propose MetaLLMiX, a zero-shot hyperparameter optimization framework combining meta-learning, explainable AI, and efficient LLM reasoning. By leveraging historical experiment outcomes with SHAP explanations, MetaLLMiX recommends optimal hyperparameters and pretrained models without additional trials. We further employ an LLM-as-judge evaluation to control output format, accuracy, and completeness. Experiments on eight medical imaging datasets using nine open-source lightweight LLMs show that MetaLLMiX achieves competitive or superior performance to traditional HPO methods while drastically reducing computational cost. Our local deployment outperforms prior API-based approaches, achieving optimal results on 5 of 8 tasks, response time reductions of 99.6-99.9%, and the fastest training times on 6 datasets (2.4-15.7x faster), maintaining accuracy within 1-5% of best-performing baselines.
☆ Robust Non-Linear Correlations via Polynomial Regression
The Hirschfeld-Gebelein-R\'enyi (HGR) correlation coefficient is an extension of Pearson's correlation that is not limited to linear correlations, with potential applications in algorithmic fairness, scientific analysis, and causal discovery. Recently, novel algorithms to estimate HGR in a differentiable manner have been proposed to facilitate its use as a loss regularizer in constrained machine learning applications. However, the inherent uncomputability of HGR requires a bias-variance trade-off, which can possibly compromise the robustness of the proposed methods, hence raising technical concerns if applied in real-world scenarios. We introduce a novel computational approach for HGR that relies on user-configurable polynomial kernels, offering greater robustness compared to previous methods and featuring a faster yet almost equally effective restriction. Our approach provides significant advantages in terms of robustness and determinism, making it a more reliable option for real-world applications. Moreover, we present a brief experimental analysis to validate the applicability of our approach within a constrained machine learning framework, showing that its computation yields an insightful subgradient that can serve as a loss regularizer.
☆ Curriculum-Based Multi-Tier Semantic Exploration via Deep Reinforcement Learning
Navigating and understanding complex and unknown environments autonomously demands more than just basic perception and movement from embodied agents. Truly effective exploration requires agents to possess higher-level cognitive abilities, the ability to reason about their surroundings, and make more informed decisions regarding exploration strategies. However, traditional RL approaches struggle to balance efficient exploration and semantic understanding due to limited cognitive capabilities embedded in the small policies for the agents, leading often to human drivers when dealing with semantic exploration. In this paper, we address this challenge by presenting a novel Deep Reinforcement Learning (DRL) architecture that is specifically designed for resource efficient semantic exploration. A key methodological contribution is the integration of a Vision-Language Model (VLM) common-sense through a layered reward function. The VLM query is modeled as a dedicated action, allowing the agent to strategically query the VLM only when deemed necessary for gaining external guidance, thereby conserving resources. This mechanism is combined with a curriculum learning strategy designed to guide learning at different levels of complexity to ensure robust and stable learning. Our experimental evaluation results convincingly demonstrate that our agent achieves significantly enhanced object discovery rates and develops a learned capability to effectively navigate towards semantically rich regions. Furthermore, it also shows a strategic mastery of when to prompt for external environmental information. By demonstrating a practical and scalable method for embedding common-sense semantic reasoning with autonomous agents, this research provides a novel approach to pursuing a fully intelligent and self-guided exploration in robotics.
comment: The 19th International Conference on Intelligent Autonomous Systems (IAS 19), 2025, Genoa
Classification of Driver Behaviour Using External Observation Techniques for Autonomous Vehicles
Road traffic accidents remain a significant global concern, with human error, particularly distracted and impaired driving, among the leading causes. This study introduces a novel driver behavior classification system that uses external observation techniques to detect indicators of distraction and impairment. The proposed framework employs advanced computer vision methodologies, including real-time object tracking, lateral displacement analysis, and lane position monitoring. The system identifies unsafe driving behaviors such as excessive lateral movement and erratic trajectory patterns by implementing the YOLO object detection model and custom lane estimation algorithms. Unlike systems reliant on inter-vehicular communication, this vision-based approach enables behavioral analysis of non-connected vehicles. Experimental evaluations on diverse video datasets demonstrate the framework's reliability and adaptability across varying road and environmental conditions.
☆ MoSE: Unveiling Structural Patterns in Graphs via Mixture of Subgraph Experts
While graph neural networks (GNNs) have achieved great success in learning from graph-structured data, their reliance on local, pairwise message passing restricts their ability to capture complex, high-order subgraph patterns. leading to insufficient structural expressiveness. Recent efforts have attempted to enhance structural expressiveness by integrating random walk kernels into GNNs. However, these methods are inherently designed for graph-level tasks, which limits their applicability to other downstream tasks such as node classification. Moreover, their fixed kernel configurations hinder the model's flexibility in capturing diverse subgraph structures. To address these limitations, this paper proposes a novel Mixture of Subgraph Experts (MoSE) framework for flexible and expressive subgraph-based representation learning across diverse graph tasks. Specifically, MoSE extracts informative subgraphs via anonymous walks and dynamically routes them to specialized experts based on structural semantics, enabling the model to capture diverse subgraph patterns with improved flexibility and interpretability. We further provide a theoretical analysis of MoSE's expressivity within the Subgraph Weisfeiler-Lehman (SWL) Test, proving that it is more powerful than SWL. Extensive experiments, together with visualizations of learned subgraph experts, demonstrate that MoSE not only outperforms competitive baselines but also provides interpretable insights into structural patterns learned by the model.
comment: 16 pages, 11 figures
☆ OmniEVA: Embodied Versatile Planner via Task-Adaptive 3D-Grounded and Embodiment-aware Reasoning
Recent advances in multimodal large language models (MLLMs) have opened new opportunities for embodied intelligence, enabling multimodal understanding, reasoning, and interaction, as well as continuous spatial decision-making. Nevertheless, current MLLM-based embodied systems face two critical limitations. First, Geometric Adaptability Gap: models trained solely on 2D inputs or with hard-coded 3D geometry injection suffer from either insufficient spatial information or restricted 2D generalization, leading to poor adaptability across tasks with diverse spatial demands. Second, Embodiment Constraint Gap: prior work often neglects the physical constraints and capacities of real robots, resulting in task plans that are theoretically valid but practically infeasible.To address these gaps, we introduce OmniEVA -- an embodied versatile planner that enables advanced embodied reasoning and task planning through two pivotal innovations: (1) a Task-Adaptive 3D Grounding mechanism, which introduces a gated router to perform explicit selective regulation of 3D fusion based on contextual requirements, enabling context-aware 3D grounding for diverse embodied tasks. (2) an Embodiment-Aware Reasoning framework that jointly incorporates task goals and embodiment constraints into the reasoning loop, resulting in planning decisions that are both goal-directed and executable. Extensive experimental results demonstrate that OmniEVA not only achieves state-of-the-art general embodied reasoning performance, but also exhibits a strong ability across a wide range of downstream scenarios. Evaluations of a suite of proposed embodied benchmarks, including both primitive and composite tasks, confirm its robust and versatile planning capabilities. Project page: https://omnieva.github.io
☆ Towards Adaptive ML Benchmarks: Web-Agent-Driven Construction, Domain Expansion, and Metric Optimization
Recent advances in large language models (LLMs) have enabled the emergence of general-purpose agents for automating end-to-end machine learning (ML) workflows, including data analysis, feature engineering, model training, and competition solving. However, existing benchmarks remain limited in task coverage, domain diversity, difficulty modeling, and evaluation rigor, failing to capture the full capabilities of such agents in realistic settings. We present TAM Bench, a diverse, realistic, and structured benchmark for evaluating LLM-based agents on end-to-end ML tasks. TAM Bench features three key innovations: (1) A browser automation and LLM-based task acquisition system that automatically collects and structures ML challenges from platforms such as Kaggle, AIcrowd, and Biendata, spanning multiple task types and data modalities (e.g., tabular, text, image, graph, audio); (2) A leaderboard-driven difficulty modeling mechanism that estimates task complexity using participant counts and score dispersion, enabling scalable and objective task calibration; (3) A multi-dimensional evaluation framework incorporating performance, format compliance, constraint adherence, and task generalization. Based on 150 curated AutoML tasks, we construct three benchmark subsets of different sizes -- Lite, Medium, and Full -- designed for varying evaluation scenarios. The Lite version, with 18 tasks and balanced coverage across modalities and difficulty levels, serves as a practical testbed for daily benchmarking and comparative studies.
☆ Measuring Implicit Spatial Coordination in Teams: Effects on Collective Intelligence and Performance
Coordinated teamwork is essential in fast-paced decision-making environments that require dynamic adaptation, often without an opportunity for explicit communication. Although implicit coordination has been extensively considered in the existing literature, the majority of work has focused on co-located, synchronous teamwork (such as sports teams) or, in distributed teams, primarily on coordination of knowledge work. However, many teams (firefighters, military, law enforcement, emergency response) must coordinate their movements in physical space without the benefit of visual cues or extensive explicit communication. This paper investigates how three dimensions of spatial coordination, namely exploration diversity, movement specialization, and adaptive spatial proximity, influence team performance in a collaborative online search and rescue task where explicit communication is restricted and team members rely on movement patterns to infer others' intentions and coordinate actions. Our metrics capture the relational aspects of teamwork by measuring spatial proximity, distribution patterns, and alignment of movements within shared environments. We analyze data from 34 four-person teams (136 participants) assigned to specialized roles in a search and rescue task. Results show that spatial specialization positively predicts performance, while adaptive spatial proximity exhibits a marginal inverted U-shaped relationship, suggesting moderate levels of adaptation are optimal. Furthermore, the temporal dynamics of these metrics differentiate high- from low-performing teams over time. These findings provide insights into implicit spatial coordination in role-based teamwork and highlight the importance of balanced adaptive strategies, with implications for training and AI-assisted team support systems.
☆ Explaining Tournament Solutions with Minimal Supports
Tournaments are widely used models to represent pairwise dominance between candidates, alternatives, or teams. We study the problem of providing certified explanations for why a candidate appears among the winners under various tournament rules. To this end, we identify minimal supports, minimal sub-tournaments in which the candidate is guaranteed to win regardless of how the rest of the tournament is completed (that is, the candidate is a necessary winner of the sub-tournament). This notion corresponds to an abductive explanation for the question,"Why does the winner win the tournament", a central concept in formal explainable AI. We focus on common tournament solutions: the top cycle, the uncovered set, the Copeland rule, the Borda rule, the maximin rule, and the weighted uncovered set. For each rule we determine the size of the smallest minimal supports, and we present polynomial-time algorithms to compute them for all but the weighted uncovered set, for which the problem is NP-complete. Finally, we show how minimal supports can serve to produce compact, certified, and intuitive explanations.
☆ Can Multimodal LLMs See Materials Clearly? A Multimodal Benchmark on Materials Characterization
Materials characterization is fundamental to acquiring materials information, revealing the processing-microstructure-property relationships that guide material design and optimization. While multimodal large language models (MLLMs) have recently shown promise in generative and predictive tasks within materials science, their capacity to understand real-world characterization imaging data remains underexplored. To bridge this gap, we present MatCha, the first benchmark for materials characterization image understanding, comprising 1,500 questions that demand expert-level domain expertise. MatCha encompasses four key stages of materials research comprising 21 distinct tasks, each designed to reflect authentic challenges faced by materials scientists. Our evaluation of state-of-the-art MLLMs on MatCha reveals a significant performance gap compared to human experts. These models exhibit degradation when addressing questions requiring higher-level expertise and sophisticated visual perception. Simple few-shot and chain-of-thought prompting struggle to alleviate these limitations. These findings highlight that existing MLLMs still exhibit limited adaptability to real-world materials characterization scenarios. We hope MatCha will facilitate future research in areas such as new material discovery and autonomous scientific agents. MatCha is available at https://github.com/FreedomIntelligence/MatCha.
☆ LightAgent: Production-level Open-source Agentic AI Framework
With the rapid advancement of large language models (LLMs), Multi-agent Systems (MAS) have achieved significant progress in various application scenarios. However, substantial challenges remain in designing versatile, robust, and efficient platforms for agent deployment. To address these limitations, we propose \textbf{LightAgent}, a lightweight yet powerful agentic framework, effectively resolving the trade-off between flexibility and simplicity found in existing frameworks. LightAgent integrates core functionalities such as Memory (mem0), Tools, and Tree of Thought (ToT), while maintaining an extremely lightweight structure. As a fully open-source solution, it seamlessly integrates with mainstream chat platforms, enabling developers to easily build self-learning agents. We have released LightAgent at \href{https://github.com/wxai-space/LightAgent}{https://github.com/wxai-space/LightAgent}
☆ Modality-Agnostic Input Channels Enable Segmentation of Brain lesions in Multimodal MRI with Sequences Unavailable During Training MICCAI 2025
Segmentation models are important tools for the detection and analysis of lesions in brain MRI. Depending on the type of brain pathology that is imaged, MRI scanners can acquire multiple, different image modalities (contrasts). Most segmentation models for multimodal brain MRI are restricted to fixed modalities and cannot effectively process new ones at inference. Some models generalize to unseen modalities but may lose discriminative modality-specific information. This work aims to develop a model that can perform inference on data that contain image modalities unseen during training, previously seen modalities, and heterogeneous combinations of both, thus allowing a user to utilize any available imaging modalities. We demonstrate this is possible with a simple, thus practical alteration to the U-net architecture, by integrating a modality-agnostic input channel or pathway, alongside modality-specific input channels. To train this modality-agnostic component, we develop an image augmentation scheme that synthesizes artificial MRI modalities. Augmentations differentially alter the appearance of pathological and healthy brain tissue to create artificial contrasts between them while maintaining realistic anatomical integrity. We evaluate the method using 8 MRI databases that include 5 types of pathologies (stroke, tumours, traumatic brain injury, multiple sclerosis and white matter hyperintensities) and 8 modalities (T1, T1+contrast, T2, PD, SWI, DWI, ADC and FLAIR). The results demonstrate that the approach preserves the ability to effectively process MRI modalities encountered during training, while being able to process new, unseen modalities to improve its segmentation. Project code: https://github.com/Anthony-P-Addison/AGN-MOD-SEG
comment: Accepted to MICCAI 2025, for the following workshop: ML-CDS 2025: Multimodal Learning and Fusion Across Scales for Clinical Decision Support
☆ Tree-OPO: Off-policy Monte Carlo Tree-Guided Advantage Optimization for Multistep Reasoning
Recent advances in reasoning with large language models (LLMs) have shown the effectiveness of Monte Carlo Tree Search (MCTS) for generating high-quality intermediate trajectories, particularly in math and symbolic domains. Inspired by this, we explore how MCTS-derived trajectories, traditionally used for training value or reward models, can be repurposed to improve policy optimization in preference-based reinforcement learning (RL). Specifically, we focus on Group Relative Policy Optimization (GRPO), a recent algorithm that enables preference-consistent policy learning without value networks. We propose a staged GRPO training paradigm where completions are derived from partially revealed MCTS rollouts, introducing a novel tree-structured setting for advantage estimation. This leads to a rich class of prefix-conditioned reward signals, which we analyze theoretically and empirically. Our initial results indicate that while structured advantage estimation can stabilize updates and better reflect compositional reasoning quality, challenges such as advantage saturation and reward signal collapse remain. We propose heuristic and statistical solutions to mitigate these issues and discuss open challenges for learning under staged or tree-like reward structures.
☆ Fusing Knowledge and Language: A Comparative Study of Knowledge Graph-Based Question Answering with LLMs
Knowledge graphs, a powerful tool for structuring information through relational triplets, have recently become the new front-runner in enhancing question-answering systems. While traditional Retrieval Augmented Generation (RAG) approaches are proficient in fact-based and local context-based extraction from concise texts, they encounter limitations when addressing the thematic and holistic understanding of complex, extensive texts, requiring a deeper analysis of both text and context. This paper presents a comprehensive technical comparative study of three different methodologies for constructing knowledge graph triplets and integrating them with Large Language Models (LLMs) for question answering: spaCy, Stanford CoreNLP-OpenIE, and GraphRAG, all leveraging open source technologies. We evaluate the effectiveness, feasibility, and adaptability of these methods by analyzing their capabilities, state of development, and their impact on the performance of LLM-based question answering. Experimental results indicate that while OpenIE provides the most comprehensive coverage of triplets, GraphRAG demonstrates superior reasoning abilities among the three. We conclude with a discussion on the strengths and limitations of each method and provide insights into future directions for improving knowledge graph-based question answering.
comment: 46 pages, 4 figures, 17 tables
☆ Adaptive Knowledge Distillation using a Device-Aware Teacher for Low-Complexity Acoustic Scene Classification
In this technical report, we describe our submission for Task 1, Low-Complexity Device-Robust Acoustic Scene Classification, of the DCASE 2025 Challenge. Our work tackles the dual challenges of strict complexity constraints and robust generalization to both seen and unseen devices, while also leveraging the new rule allowing the use of device labels at test time. Our proposed system is based on a knowledge distillation framework where an efficient CP-MobileNet student learns from a compact, specialized two-teacher ensemble. This ensemble combines a baseline PaSST teacher, trained with standard cross-entropy, and a 'generalization expert' teacher. This expert is trained using our novel Device-Aware Feature Alignment (DAFA) loss, adapted from prior work, which explicitly structures the feature space for device robustness. To capitalize on the availability of test-time device labels, the distilled student model then undergoes a final device-specific fine-tuning stage. Our proposed system achieves a final accuracy of 57.93\% on the development set, demonstrating a significant improvement over the official baseline, particularly on unseen devices.
☆ Jupiter: Enhancing LLM Data Analysis Capabilities via Notebook and Inference-Time Value-Guided Search
Large language models (LLMs) have shown great promise in automating data science workflows, but existing models still struggle with multi-step reasoning and tool use, which limits their effectiveness on complex data analysis tasks. To address this, we propose a scalable pipeline that extracts high-quality, tool-based data analysis tasks and their executable multi-step solutions from real-world Jupyter notebooks and associated data files. Using this pipeline, we introduce NbQA, a large-scale dataset of standardized task-solution pairs that reflect authentic tool-use patterns in practical data science scenarios. To further enhance multi-step reasoning, we present Jupiter, a framework that formulates data analysis as a search problem and applies Monte Carlo Tree Search (MCTS) to generate diverse solution trajectories for value model learning. During inference, Jupiter combines the value model and node visit counts to efficiently collect executable multi-step plans with minimal search steps. Experimental results show that Qwen2.5-7B and 14B-Instruct models on NbQA solve 77.82% and 86.38% of tasks on InfiAgent-DABench, respectively-matching or surpassing GPT-4o and advanced agent frameworks. Further evaluations demonstrate improved generalization and stronger tool-use reasoning across diverse multi-step reasoning tasks.
☆ CoAtNeXt:An Attention-Enhanced ConvNeXtV2-Transformer Hybrid Model for Gastric Tissue Classification
Background and objective Early diagnosis of gastric diseases is crucial to prevent fatal outcomes. Although histopathologic examination remains the diagnostic gold standard, it is performed entirely manually, making evaluations labor-intensive and prone to variability among pathologists. Critical findings may be missed, and lack of standard procedures reduces consistency. These limitations highlight the need for automated, reliable, and efficient methods for gastric tissue analysis. Methods In this study, a novel hybrid model named CoAtNeXt was proposed for the classification of gastric tissue images. The model is built upon the CoAtNet architecture by replacing its MBConv layers with enhanced ConvNeXtV2 blocks. Additionally, the Convolutional Block Attention Module (CBAM) is integrated to improve local feature extraction through channel and spatial attention mechanisms. The architecture was scaled to achieve a balance between computational efficiency and classification performance. CoAtNeXt was evaluated on two publicly available datasets, HMU-GC-HE-30K for eight-class classification and GasHisSDB for binary classification, and was compared against 10 Convolutional Neural Networks (CNNs) and ten Vision Transformer (ViT) models. Results CoAtNeXt achieved 96.47% accuracy, 96.60% precision, 96.47% recall, 96.45% F1 score, and 99.89% AUC on HMU-GC-HE-30K. On GasHisSDB, it reached 98.29% accuracy, 98.07% precision, 98.41% recall, 98.23% F1 score, and 99.90% AUC. It outperformed all CNN and ViT models tested and surpassed previous studies in the literature. Conclusion Experimental results show that CoAtNeXt is a robust architecture for histopathological classification of gastric tissue images, providing performance on binary and multiclass. Its highlights its potential to assist pathologists by enhancing diagnostic accuracy and reducing workload.
☆ Virtual staining for 3D X-ray histology of bone implants
Three-dimensional X-ray histology techniques offer a non-invasive alternative to conventional 2D histology, enabling volumetric imaging of biological tissues without the need for physical sectioning or chemical staining. However, the inherent greyscale image contrast of X-ray tomography limits its biochemical specificity compared to traditional histological stains. Within digital pathology, deep learning-based virtual staining has demonstrated utility in simulating stained appearances from label-free optical images. In this study, we extend virtual staining to the X-ray domain by applying cross-modality image translation to generate artificially stained slices from synchrotron-radiation-based micro-CT scans. Using over 50 co-registered image pairs of micro-CT and toluidine blue-stained histology from bone-implant samples, we trained a modified CycleGAN network tailored for limited paired data. Whole slide histology images were downsampled to match the voxel size of the CT data, with on-the-fly data augmentation for patch-based training. The model incorporates pixelwise supervision and greyscale consistency terms, producing histologically realistic colour outputs while preserving high-resolution structural detail. Our method outperformed Pix2Pix and standard CycleGAN baselines across SSIM, PSNR, and LPIPS metrics. Once trained, the model can be applied to full CT volumes to generate virtually stained 3D datasets, enhancing interpretability without additional sample preparation. While features such as new bone formation were able to be reproduced, some variability in the depiction of implant degradation layers highlights the need for further training data and refinement. This work introduces virtual staining to 3D X-ray imaging and offers a scalable route for chemically informative, label-free tissue characterisation in biomedical research.
☆ Vejde: A Framework for Inductive Deep Reinforcement Learning Based on Factor Graph Color Refinement
We present and evaluate Vejde; a framework which combines data abstraction, graph neural networks and reinforcement learning to produce inductive policy functions for decision problems with richly structured states, such as object classes and relations. MDP states are represented as data bases of facts about entities, and Vejde converts each state to a bipartite graph, which is mapped to latent states through neural message passing. The factored representation of both states and actions allows Vejde agents to handle problems of varying size and structure. We tested Vejde agents on eight problem domains defined in RDDL, with ten problem instances each, where policies were trained using both supervised and reinforcement learning. To test policy generalization, we separate problem instances in two sets, one for training and the other solely for testing. Test results on unseen instances for the Vejde agents were compared to MLP agents trained on each problem instance, as well as the online planning algorithm Prost. Our results show that Vejde policies in average generalize to the test instances without a significant loss in score. Additionally, the inductive agents received scores on unseen test instances that on average were close to the instance-specific MLP agents.
☆ Enabling Regulatory Multi-Agent Collaboration: Architecture, Challenges, and Solutions
Large language models (LLMs)-empowered autonomous agents are transforming both digital and physical environments by enabling adaptive, multi-agent collaboration. While these agents offer significant opportunities across domains such as finance, healthcare, and smart manufacturing, their unpredictable behaviors and heterogeneous capabilities pose substantial governance and accountability challenges. In this paper, we propose a blockchain-enabled layered architecture for regulatory agent collaboration, comprising an agent layer, a blockchain data layer, and a regulatory application layer. Within this framework, we design three key modules: (i) an agent behavior tracing and arbitration module for automated accountability, (ii) a dynamic reputation evaluation module for trust assessment in collaborative scenarios, and (iii) a malicious behavior forecasting module for early detection of adversarial activities. Our approach establishes a systematic foundation for trustworthy, resilient, and scalable regulatory mechanisms in large-scale agent ecosystems. Finally, we discuss the future research directions for blockchain-enabled regulatory frameworks in multi-agent systems.
comment: 7 pages, 6 figures
☆ ProgD: Progressive Multi-scale Decoding with Dynamic Graphs for Joint Multi-agent Motion Forecasting
Accurate motion prediction of surrounding agents is crucial for the safe planning of autonomous vehicles. Recent advancements have extended prediction techniques from individual agents to joint predictions of multiple interacting agents, with various strategies to address complex interactions within future motions of agents. However, these methods overlook the evolving nature of these interactions. To address this limitation, we propose a novel progressive multi-scale decoding strategy, termed ProgD, with the help of dynamic heterogeneous graph-based scenario modeling. In particular, to explicitly and comprehensively capture the evolving social interactions in future scenarios, given their inherent uncertainty, we design a progressive modeling of scenarios with dynamic heterogeneous graphs. With the unfolding of such dynamic heterogeneous graphs, a factorized architecture is designed to process the spatio-temporal dependencies within future scenarios and progressively eliminate uncertainty in future motions of multiple agents. Furthermore, a multi-scale decoding procedure is incorporated to improve on the future scenario modeling and consistent prediction of agents' future motion. The proposed ProgD achieves state-of-the-art performance on the INTERACTION multi-agent prediction benchmark, ranking $1^{st}$, and the Argoverse 2 multi-world forecasting benchmark.
☆ Incentivizing Safer Actions in Policy Optimization for Constrained Reinforcement Learning IJCAI
Constrained Reinforcement Learning (RL) aims to maximize the return while adhering to predefined constraint limits, which represent domain-specific safety requirements. In continuous control settings, where learning agents govern system actions, balancing the trade-off between reward maximization and constraint satisfaction remains a significant challenge. Policy optimization methods often exhibit instability near constraint boundaries, resulting in suboptimal training performance. To address this issue, we introduce a novel approach that integrates an adaptive incentive mechanism in addition to the reward structure to stay within the constraint bound before approaching the constraint boundary. Building on this insight, we propose Incrementally Penalized Proximal Policy Optimization (IP3O), a practical algorithm that enforces a progressively increasing penalty to stabilize training dynamics. Through empirical evaluation on benchmark environments, we demonstrate the efficacy of IP3O compared to the performance of state-of-the-art Safe RL algorithms. Furthermore, we provide theoretical guarantees by deriving a bound on the worst-case error of the optimality achieved by our algorithm.
comment: 11 pages, Accepted to the 34th International Joint Conference on Artificial Intelligence (IJCAI) 2025, Main Track
☆ Bona fide Cross Testing Reveals Weak Spot in Audio Deepfake Detection Systems
Audio deepfake detection (ADD) models are commonly evaluated using datasets that combine multiple synthesizers, with performance reported as a single Equal Error Rate (EER). However, this approach disproportionately weights synthesizers with more samples, underrepresenting others and reducing the overall reliability of EER. Additionally, most ADD datasets lack diversity in bona fide speech, often featuring a single environment and speech style (e.g., clean read speech), limiting their ability to simulate real-world conditions. To address these challenges, we propose bona fide cross-testing, a novel evaluation framework that incorporates diverse bona fide datasets and aggregates EERs for more balanced assessments. Our approach improves robustness and interpretability compared to traditional evaluation methods. We benchmark over 150 synthesizers across nine bona fide speech types and release a new dataset to facilitate further research at https://github.com/cyaaronk/audio_deepfake_eval.
comment: Published in Interspeech 2025
☆ Improving Synthetic Data Training for Contextual Biasing Models with a Keyword-Aware Cost Function
Rare word recognition can be improved by adapting ASR models to synthetic data that includes these words. Further improvements can be achieved through contextual biasing, which trains and adds a biasing module into the model architecture to prioritize rare words. While training the module on synthetic rare word data is more effective than using non-rare-word data, it can lead to overfitting due to artifacts in the synthetic audio. To address this, we enhance the TCPGen-based contextual biasing approach and propose a keyword-aware loss function that additionally focuses on biased words when training biasing modules. This loss includes a masked cross-entropy term for biased word prediction and a binary classification term for detecting biased word positions. These two terms complementarily support the decoding of biased words during inference. By adapting Whisper to 10 hours of synthetic data, our method reduced the word error rate on the NSC Part 2 test set from 29.71% to 11.81%.
comment: Published in Interspeech 2025
☆ Efficient Trie-based Biasing using K-step Prediction for Rare Word Recognition
Contextual biasing improves rare word recognition of ASR models by prioritizing the output of rare words during decoding. A common approach is Trie-based biasing, which gives "bonus scores" to partial hypothesis (e.g. "Bon") that may lead to the generation of the rare word (e.g. "Bonham"). If the full word ("Bonham") isn't ultimately recognized, the system revokes those earlier bonuses. This revocation is limited to beam search and is computationally expensive, particularly for models with large decoders. To overcome these limitations, we propose adapting ASR models to look ahead and predict multiple steps at once. This avoids the revocation step entirely by better estimating whether a partial hypothesis will lead to the generation of the full rare word. By fine-tuning Whisper with only 10 hours of synthetic data, our method reduces the word error rate on the NSC Part 2 test set from 30.86% to 12.19%.
comment: Published in Interspeech 2025
☆ On Integrating Large Language Models and Scenario-Based Programming for Improving Software Reliability
Large Language Models (LLMs) are fast becoming indispensable tools for software developers, assisting or even partnering with them in crafting complex programs. The advantages are evident -- LLMs can significantly reduce development time, generate well-organized and comprehensible code, and occasionally suggest innovative ideas that developers might not conceive on their own. However, despite their strengths, LLMs will often introduce significant errors and present incorrect code with persuasive confidence, potentially misleading developers into accepting flawed solutions. In order to bring LLMs into the software development cycle in a more reliable manner, we propose a methodology for combining them with ``traditional'' software engineering techniques in a structured way, with the goal of streamlining the development process, reducing errors, and enabling users to verify crucial program properties with increased confidence. Specifically, we focus on the Scenario-Based Programming (SBP) paradigm -- an event-driven, scenario-based approach for software engineering -- to allow human developers to pour their expert knowledge into the LLM, as well as to inspect and verify its outputs. To evaluate our methodology, we conducted a significant case study, and used it to design and implement the Connect4 game. By combining LLMs and SBP we were able to create a highly-capable agent, which could defeat various strong existing agents. Further, in some cases, we were able to formally verify the correctness of our agent. Finally, our experience reveals interesting insights regarding the ease-of-use of our proposed approach. The full code of our case-study will be made publicly available with the final version of this paper.
☆ Probing Pre-trained Language Models on Code Changes: Insights from ReDef, a High-Confidence Just-in-Time Defect Prediction Dataset
Just-in-Time software defect prediction (JIT-SDP) plays a critical role in prioritizing risky code changes during code review and continuous integration. However, existing datasets often suffer from noisy labels and low precision in identifying bug-inducing commits. To address this, we present ReDef (Revert-based Defect dataset), a high-confidence benchmark of function-level modifications curated from 22 large-scale C/C++ projects. Defective cases are anchored by revert commits, while clean cases are validated through post-hoc history checks. Ambiguous instances are conservatively filtered out via a GPT-assisted triage process involving multiple votes and audits. This pipeline yields 3,164 defective and 10,268 clean modifications, offering substantially more reliable labels than prior existing resources. Beyond dataset construction, we provide the first systematic evaluation of how pre-trained language models (PLMs) reason about code modifications -- specifically, which input encodings most effectively expose change information, and whether models genuinely capture edit semantics. We fine-tune CodeBERT, CodeT5+, and UniXcoder under five encoding strategies, and further probe their sensitivity through counterfactual perturbations that swap added/deleted blocks, invert diff polarity, or inject spurious markers. Our results show that compact diff-style encodings consistently outperform whole-function formats across all PLMs, with statistical tests confirming large, model-independent effects. However, under counterfactual tests, performance degrades little or not at all -- revealing that what appears to be robustness in fact reflects reliance on superficial cues rather than true semantic understanding. These findings indicate that, unlike in snapshot-based tasks, current PLMs remain limited in their ability to genuinely comprehend code modifications.
comment: An anonymous link containing the dataset, construction scripts, and experimental code is publicly available for reproducibility: https://figshare.com/s/4f202bc0921e26b41dc2
☆ Dark-ISP: Enhancing RAW Image Processing for Low-Light Object Detection
Low-light Object detection is crucial for many real-world applications but remains challenging due to degraded image quality. While recent studies have shown that RAW images offer superior potential over RGB images, existing approaches either use RAW-RGB images with information loss or employ complex frameworks. To address these, we propose a lightweight and self-adaptive Image Signal Processing (ISP) plugin, Dark-ISP, which directly processes Bayer RAW images in dark environments, enabling seamless end-to-end training for object detection. Our key innovations are: (1) We deconstruct conventional ISP pipelines into sequential linear (sensor calibration) and nonlinear (tone mapping) sub-modules, recasting them as differentiable components optimized through task-driven losses. Each module is equipped with content-aware adaptability and physics-informed priors, enabling automatic RAW-to-RGB conversion aligned with detection objectives. (2) By exploiting the ISP pipeline's intrinsic cascade structure, we devise a Self-Boost mechanism that facilitates cooperation between sub-modules. Through extensive experiments on three RAW image datasets, we demonstrate that our method outperforms state-of-the-art RGB- and RAW-based detection approaches, achieving superior results with minimal parameters in challenging low-light environments.
comment: 11 pages, 6 figures, conference
☆ EchoX: Towards Mitigating Acoustic-Semantic Gap via Echo Training for Speech-to-Speech LLMs
Speech-to-speech large language models (SLLMs) are attracting increasing attention. Derived from text-based large language models (LLMs), SLLMs often exhibit degradation in knowledge and reasoning capabilities. We hypothesize that this limitation arises because current training paradigms for SLLMs fail to bridge the acoustic-semantic gap in the feature representation space. To address this issue, we propose EchoX, which leverages semantic representations and dynamically generates speech training targets. This approach integrates both acoustic and semantic learning, enabling EchoX to preserve strong reasoning abilities as a speech LLM. Experimental results demonstrate that EchoX, with about six thousand hours of training data, achieves advanced performance on multiple knowledge-based question-answering benchmarks. The project is available at https://github.com/FreedomIntelligence/EchoX.
☆ Adaptive Pareto-Optimal Token Merging for Edge Transformer Models in Semantic Communication IEEE
Large-scale transformer models have emerged as a powerful tool for semantic communication systems, enabling edge devices to extract rich representations for robust inference across noisy wireless channels. However, their substantial computational demands remain a major barrier to practical deployment in resource-constrained 6G networks. In this paper, we present a training-free framework for adaptive token merging in pretrained vision transformers to jointly reduce inference time and transmission resource usage. We formulate the selection of per-layer merging proportions as a multi-objective optimization problem to balance accuracy and computational cost. We employ Gaussian process-based Bayesian optimization to construct a Pareto frontier of optimal configurations, enabling flexible runtime adaptation to dynamic application requirements and channel conditions. Extensive experiments demonstrate that our method consistently outperforms other baselines and achieves significant reductions in floating-point operations while maintaining competitive accuracy across a wide range of signal-to-noise ratio (SNR) conditions. Additional results highlight the effectiveness of adaptive policies that adjust merging aggressiveness in response to channel quality, providing a practical mechanism to trade off latency and semantic fidelity on demand. These findings establish a scalable and efficient approach for deploying transformer-based semantic communication in future edge intelligence systems.
comment: To appear in IEEE Globecom 2025
☆ Target-oriented Multimodal Sentiment Classification with Counterfactual-enhanced Debiasing IEEE
Target-oriented multimodal sentiment classification seeks to predict sentiment polarity for specific targets from image-text pairs. While existing works achieve competitive performance, they often over-rely on textual content and fail to consider dataset biases, in particular word-level contextual biases. This leads to spurious correlations between text features and output labels, impairing classification accuracy. In this paper, we introduce a novel counterfactual-enhanced debiasing framework to reduce such spurious correlations. Our framework incorporates a counterfactual data augmentation strategy that minimally alters sentiment-related causal features, generating detail-matched image-text samples to guide the model's attention toward content tied to sentiment. Furthermore, for learning robust features from counterfactual data and prompting model decisions, we introduce an adaptive debiasing contrastive learning mechanism, which effectively mitigates the influence of biased words. Experimental results on several benchmark datasets show that our proposed method outperforms state-of-the-art baselines.
comment: Accepted by the IEEE International Conference on Multimedia and Expo (ICME 2025). \copyright\ 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses
☆ A Knowledge Noise Mitigation Framework for Knowledge-based Visual Question Answering IEEE
Knowledge-based visual question answering (KB-VQA) requires a model to understand images and utilize external knowledge to provide accurate answers. Existing approaches often directly augment models with retrieved information from knowledge sources while ignoring substantial knowledge redundancy, which introduces noise into the answering process. To address this, we propose a training-free framework with knowledge focusing for KB-VQA, that mitigates the impact of noise by enhancing knowledge relevance and reducing redundancy. First, for knowledge retrieval, our framework concludes essential parts from the image-question pairs, creating low-noise queries that enhance the retrieval of highly relevant knowledge. Considering that redundancy still persists in the retrieved knowledge, we then prompt large models to identify and extract answer-beneficial segments from knowledge. In addition, we introduce a selective knowledge integration strategy, allowing the model to incorporate knowledge only when it lacks confidence in answering the question, thereby mitigating the influence of redundant information. Our framework enables the acquisition of accurate and critical knowledge, and extensive experiments demonstrate that it outperforms state-of-the-art methods.
comment: Accepted by the IEEE International Conference on Multimedia and Expo (ICME 2025) for oral presentation. \copyright\ 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses
☆ HISPASpoof: A New Dataset For Spanish Speech Forensics ICASSP 2026
Zero-shot Voice Cloning (VC) and Text-to-Speech (TTS) methods have advanced rapidly, enabling the generation of highly realistic synthetic speech and raising serious concerns about their misuse. While numerous detectors have been developed for English and Chinese, Spanish-spoken by over 600 million people worldwide-remains underrepresented in speech forensics. To address this gap, we introduce HISPASpoof, the first large-scale Spanish dataset designed for synthetic speech detection and attribution. It includes real speech from public corpora across six accents and synthetic speech generated with six zero-shot TTS systems. We evaluate five representative methods, showing that detectors trained on English fail to generalize to Spanish, while training on HISPASpoof substantially improves detection. We also evaluate synthetic speech attribution performance on HISPASpoof, i.e., identifying the generation method of synthetic speech. HISPASpoof thus provides a critical benchmark for advancing reliable and inclusive speech forensics in Spanish.
comment: 8 pages, 1 figure, 10 tables, being submitted to ICASSP 2026 (IEEE International Conference on Acoustics, Speech, and Signal Processing 2026)
☆ Mind Meets Space: Rethinking Agentic Spatial Intelligence from a Neuroscience-inspired Perspective
Recent advances in agentic AI have led to systems capable of autonomous task execution and language-based reasoning, yet their spatial reasoning abilities remain limited and underexplored, largely constrained to symbolic and sequential processing. In contrast, human spatial intelligence, rooted in integrated multisensory perception, spatial memory, and cognitive maps, enables flexible, context-aware decision-making in unstructured environments. Therefore, bridging this gap is critical for advancing Agentic Spatial Intelligence toward better interaction with the physical 3D world. To this end, we first start from scrutinizing the spatial neural models as studied in computational neuroscience, and accordingly introduce a novel computational framework grounded in neuroscience principles. This framework maps core biological functions to six essential computation modules: bio-inspired multimodal sensing, multi-sensory integration, egocentric-allocentric conversion, an artificial cognitive map, spatial memory, and spatial reasoning. Together, these modules form a perspective landscape for agentic spatial reasoning capability across both virtual and physical environments. On top, we conduct a framework-guided analysis of recent methods, evaluating their relevance to each module and identifying critical gaps that hinder the development of more neuroscience-grounded spatial reasoning modules. We further examine emerging benchmarks and datasets and explore potential application domains ranging from virtual to embodied systems, such as robotics. Finally, we outline potential research directions, emphasizing the promising roadmap that can generalize spatial reasoning across dynamic or unstructured environments. We hope this work will benefit the research community with a neuroscience-grounded perspective and a structured pathway. Our project page can be found at Github.
comment: 54 pages, journal
☆ OCELOT 2023: Cell Detection from Cell-Tissue Interaction Challenge
Pathologists routinely alternate between different magnifications when examining Whole-Slide Images, allowing them to evaluate both broad tissue morphology and intricate cellular details to form comprehensive diagnoses. However, existing deep learning-based cell detection models struggle to replicate these behaviors and learn the interdependent semantics between structures at different magnifications. A key barrier in the field is the lack of datasets with multi-scale overlapping cell and tissue annotations. The OCELOT 2023 challenge was initiated to gather insights from the community to validate the hypothesis that understanding cell and tissue (cell-tissue) interactions is crucial for achieving human-level performance, and to accelerate the research in this field. The challenge dataset includes overlapping cell detection and tissue segmentation annotations from six organs, comprising 673 pairs sourced from 306 The Cancer Genome Atlas (TCGA) Whole-Slide Images with hematoxylin and eosin staining, divided into training, validation, and test subsets. Participants presented models that significantly enhanced the understanding of cell-tissue relationships. Top entries achieved up to a 7.99 increase in F1-score on the test set compared to the baseline cell-only model that did not incorporate cell-tissue relationships. This is a substantial improvement in performance over traditional cell-only detection methods, demonstrating the need for incorporating multi-scale semantics into the models. This paper provides a comparative analysis of the methods used by participants, highlighting innovative strategies implemented in the OCELOT 2023 challenge.
comment: This is the accepted manuscript of an article published in Medical Image Analysis (Elsevier). The final version is available at: https://doi.org/10.1016/j.media.2025.103751
☆ Video Understanding by Design: How Datasets Shape Architectures and Insights
Video understanding has advanced rapidly, fueled by increasingly complex datasets and powerful architectures. Yet existing surveys largely classify models by task or family, overlooking the structural pressures through which datasets guide architectural evolution. This survey is the first to adopt a dataset-driven perspective, showing how motion complexity, temporal span, hierarchical composition, and multimodal richness impose inductive biases that models should encode. We reinterpret milestones, from two-stream and 3D CNNs to sequential, transformer, and multimodal foundation models, as concrete responses to these dataset-driven pressures. Building on this synthesis, we offer practical guidance for aligning model design with dataset invariances while balancing scalability and task demands. By unifying datasets, inductive biases, and architectures into a coherent framework, this survey provides both a comprehensive retrospective and a prescriptive roadmap for advancing general-purpose video understanding.
comment: Research report
☆ Objectness Similarity: Capturing Object-Level Fidelity in 3D Scene Evaluation ICCV 2025
This paper presents Objectness SIMilarity (OSIM), a novel evaluation metric for 3D scenes that explicitly focuses on "objects," which are fundamental units of human visual perception. Existing metrics assess overall image quality, leading to discrepancies with human perception. Inspired by neuropsychological insights, we hypothesize that human recognition of 3D scenes fundamentally involves attention to individual objects. OSIM enables object-centric evaluations by leveraging an object detection model and its feature representations to quantify the "objectness" of each object in the scene. Our user study demonstrates that OSIM aligns more closely with human perception compared to existing metrics. We also analyze the characteristics of OSIM using various approaches. Moreover, we re-evaluate recent 3D reconstruction and generation models under a standardized experimental setup to clarify advancements in this field. The code is available at https://github.com/Objectness-Similarity/OSIM.
comment: Accepted by the ICCV 2025 UniLight Workshop
☆ ViRanker: A BGE-M3 & Blockwise Parallel Transformer Cross-Encoder for Vietnamese Reranking
This paper presents ViRanker, a cross-encoder reranking model tailored to the Vietnamese language. Built on the BGE-M3 encoder and enhanced with the Blockwise Parallel Transformer, ViRanker addresses the lack of competitive rerankers for Vietnamese, a low-resource language with complex syntax and diacritics. The model was trained on an 8 GB curated corpus and fine-tuned with hybrid hard-negative sampling to strengthen robustness. Evaluated on the MMARCO-VI benchmark, ViRanker achieves strong early-rank accuracy, surpassing multilingual baselines and competing closely with PhoRanker. By releasing the model openly on Hugging Face, we aim to support reproducibility and encourage wider adoption in real-world retrieval systems. Beyond Vietnamese, this study illustrates how careful architectural adaptation and data curation can advance reranking in other underrepresented languages.
comment: 9 pages
☆ Anti-Money Laundering Machine Learning Pipelines; A Technical Analysis on Identifying High-risk Bank Clients with Supervised Learning
Anti-money laundering (AML) actions and measurements are among the priorities of financial institutions, for which machine learning (ML) has shown to have a high potential. In this paper, we propose a comprehensive and systematic approach for developing ML pipelines to identify high-risk bank clients in a dataset curated for Task 1 of the University of Toronto 2023-2024 Institute for Management and Innovation (IMI) Big Data and Artificial Intelligence Competition. The dataset included 195,789 customer IDs, and we employed a 16-step design and statistical analysis to ensure the final pipeline was robust. We also framed the data in a SQLite database, developed SQL-based feature engineering algorithms, connected our pre-trained model to the database, and made it inference-ready, and provided explainable artificial intelligence (XAI) modules to derive feature importance. Our pipeline achieved a mean area under the receiver operating characteristic curve (AUROC) of 0.961 with a standard deviation (SD) of 0.005. The proposed pipeline achieved second place in the competition.
☆ Automated Classification of Tutors' Dialogue Acts Using Generative AI: A Case Study Using the CIMA Corpus
This study explores the use of generative AI for automating the classification of tutors' Dialogue Acts (DAs), aiming to reduce the time and effort required by traditional manual coding. This case study uses the open-source CIMA corpus, in which tutors' responses are pre-annotated into four DA categories. Both GPT-3.5-turbo and GPT-4 models were tested using tailored prompts. Results show that GPT-4 achieved 80% accuracy, a weighted F1-score of 0.81, and a Cohen's Kappa of 0.74, surpassing baseline performance and indicating substantial agreement with human annotations. These findings suggest that generative AI has strong potential to provide an efficient and accessible approach to DA classification, with meaningful implications for educational dialogue analysis. The study also highlights the importance of task-specific label definitions and contextual information in enhancing the quality of automated annotation. Finally, it underscores the ethical considerations associated with the use of generative AI and the need for responsible and transparent research practices. The script of this research is publicly available at https://github.com/liqunhe27/Generative-AI-for-educational-dialogue-act-tagging.
comment: Accepted for publication in the journal Reflecting Digital Learning. First submitted: 30 Oct 2023. The final version will be available open access via the journal
☆ Character-Level Perturbations Disrupt LLM Watermarks
Large Language Model (LLM) watermarking embeds detectable signals into generated text for copyright protection, misuse prevention, and content detection. While prior studies evaluate robustness using watermark removal attacks, these methods are often suboptimal, creating the misconception that effective removal requires large perturbations or powerful adversaries. To bridge the gap, we first formalize the system model for LLM watermark, and characterize two realistic threat models constrained on limited access to the watermark detector. We then analyze how different types of perturbation vary in their attack range, i.e., the number of tokens they can affect with a single edit. We observe that character-level perturbations (e.g., typos, swaps, deletions, homoglyphs) can influence multiple tokens simultaneously by disrupting the tokenization process. We demonstrate that character-level perturbations are significantly more effective for watermark removal under the most restrictive threat model. We further propose guided removal attacks based on the Genetic Algorithm (GA) that uses a reference detector for optimization. Under a practical threat model with limited black-box queries to the watermark detector, our method demonstrates strong removal performance. Experiments confirm the superiority of character-level perturbations and the effectiveness of the GA in removing watermarks under realistic constraints. Additionally, we argue there is an adversarial dilemma when considering potential defenses: any fixed defense can be bypassed by a suitable perturbation strategy. Motivated by this principle, we propose an adaptive compound character-level attack. Experimental results show that this approach can effectively defeat the defenses. Our findings highlight significant vulnerabilities in existing LLM watermark schemes and underline the urgency for the development of new robust mechanisms.
☆ DP-FedLoRA: Privacy-Enhanced Federated Fine-Tuning for On-Device Large Language Models
As on-device large language model (LLM) systems become increasingly prevalent, federated fine-tuning enables advanced language understanding and generation directly on edge devices; however, it also involves processing sensitive, user-specific data, raising significant privacy concerns within the federated learning framework. To address these challenges, we propose DP-FedLoRA, a privacy-enhanced federated fine-tuning framework that integrates LoRA-based adaptation with differential privacy in a communication-efficient setting. Each client locally clips and perturbs its LoRA matrices using Gaussian noise to satisfy ($\epsilon$, $\delta$)-differential privacy. We further provide a theoretical analysis demonstrating the unbiased nature of the updates and deriving bounds on the variance introduced by noise, offering practical guidance for privacy-budget calibration. Experimental results across mainstream benchmarks show that DP-FedLoRA delivers competitive performance while offering strong privacy guarantees, paving the way for scalable and privacy-preserving LLM deployment in on-device environments.
☆ Towards Confidential and Efficient LLM Inference with Dual Privacy Protection DASFAA2025
CPU-based trusted execution environments (TEEs) and differential privacy (DP) have gained wide applications for private inference. Due to high inference latency in TEEs, researchers use partition-based approaches that offload linear model components to GPUs. However, dense nonlinear layers of large language models (LLMs) result in significant communication overhead between TEEs and GPUs. DP-based approaches apply random noise to protect data privacy, but this compromises LLM performance and semantic understanding. To overcome the above drawbacks, this paper proposes CMIF, a Confidential and efficient Model Inference Framework. CMIF confidentially deploys the embedding layer in the client-side TEE and subsequent layers on GPU servers. Meanwhile, it optimizes the Report-Noisy-Max mechanism to protect sensitive inputs with a slight decrease in model performance. Extensive experiments on Llama-series models demonstrate that CMIF reduces additional inference overhead in TEEs while preserving user data privacy.
comment: Accepted by DASFAA2025
☆ SQAP-VLA: A Synergistic Quantization-Aware Pruning Framework for High-Performance Vision-Language-Action Models
Vision-Language-Action (VLA) models exhibit unprecedented capabilities for embodied intelligence. However, their extensive computational and memory costs hinder their practical deployment. Existing VLA compression and acceleration approaches conduct quantization or token pruning in an ad-hoc manner but fail to enable both for a holistic efficiency improvement due to an observed incompatibility. This work introduces SQAP-VLA, the first structured, training-free VLA inference acceleration framework that simultaneously enables state-of-the-art quantization and token pruning. We overcome the incompatibility by co-designing the quantization and token pruning pipeline, where we propose new quantization-aware token pruning criteria that work on an aggressively quantized model while improving the quantizer design to enhance pruning effectiveness. When applied to standard VLA models, SQAP-VLA yields significant gains in computational efficiency and inference speed while successfully preserving core model performance, achieving a $\times$1.93 speedup and up to a 4.5\% average success rate enhancement compared to the original model.
comment: 12 pages, 9 figures
☆ KoopMotion: Learning Almost Divergence Free Koopman Flow Fields for Motion Planning
In this work, we propose a novel flow field-based motion planning method that drives a robot from any initial state to a desired reference trajectory such that it converges to the trajectory's end point. Despite demonstrated efficacy in using Koopman operator theory for modeling dynamical systems, Koopman does not inherently enforce convergence to desired trajectories nor to specified goals -- a requirement when learning from demonstrations (LfD). We present KoopMotion which represents motion flow fields as dynamical systems, parameterized by Koopman Operators to mimic desired trajectories, and leverages the divergence properties of the learnt flow fields to obtain smooth motion fields that converge to a desired reference trajectory when a robot is placed away from the desired trajectory, and tracks the trajectory until the end point. To demonstrate the effectiveness of our approach, we show evaluations of KoopMotion on the LASA human handwriting dataset and a 3D manipulator end-effector trajectory dataset, including spectral analysis. We also perform experiments on a physical robot, verifying KoopMotion on a miniature autonomous surface vehicle operating in a non-static fluid flow environment. Our approach is highly sample efficient in both space and time, requiring only 3\% of the LASA dataset to generate dense motion plans. Additionally, KoopMotion provides a significant improvement over baselines when comparing metrics that measure spatial and temporal dynamics modeling efficacy.
comment: Accepted to CoRL 2025 (Conference on Robot Learning). 15 pages 11 figures
☆ Understanding Economic Tradeoffs Between Human and AI Agents in Bargaining Games
Coordination tasks traditionally performed by humans are increasingly being delegated to autonomous agents. As this pattern progresses, it becomes critical to evaluate not only these agents' performance but also the processes through which they negotiate in dynamic, multi-agent environments. Furthermore, different agents exhibit distinct advantages: traditional statistical agents, such as Bayesian models, may excel under well-specified conditions, whereas large language models (LLMs) can generalize across contexts. In this work, we compare humans (N = 216), LLMs (GPT-4o, Gemini 1.5 Pro), and Bayesian agents in a dynamic negotiation setting that enables direct, identical-condition comparisons across populations, capturing both outcomes and behavioral dynamics. Bayesian agents extract the highest surplus through aggressive optimization, at the cost of frequent trade rejections. Humans and LLMs can achieve similar overall surplus, but through distinct behaviors: LLMs favor conservative, concessionary trades with few rejections, while humans employ more strategic, risk-taking, and fairness-oriented behaviors. Thus, we find that performance parity -- a common benchmark in agent evaluation -- can conceal fundamental differences in process and alignment, which are critical for practical deployment in real-world coordination tasks.
☆ STRIDE: Scalable and Interpretable XAI via Subset-Free Functional Decomposition
Most explainable AI (XAI) frameworks face two practical limitations: the exponential cost of reasoning over feature subsets and the reduced expressiveness of summarizing effects as single scalar values. We present STRIDE, a scalable framework that aims to mitigate both issues by framing explanation as a subset-enumeration-free, orthogonal functional decomposition in a Reproducing Kernel Hilbert Space (RKHS). Rather than focusing only on scalar attributions, STRIDE computes functional components f_S(x_S) via an analytical projection scheme based on a recursive kernel-centering procedure, avoiding explicit subset enumeration. In the tabular setups we study, the approach is model-agnostic, provides both local and global views, and is supported by theoretical results on orthogonality and L^2 convergence under stated assumptions. On public tabular benchmarks in our environment, we observed speedups ranging from 0.6 times (slower than TreeSHAP on a small dataset) to 9.7 times (California), with a median approximate 3.0 times across 10 datasets, while maintaining high fidelity (R^2 between 0.81 and 0.999) and substantial rank agreement on most datasets. Overall, STRIDE complements scalar attribution methods by offering a structured functional perspective, enabling novel diagnostics like 'component surgery' to quantitatively measure the impact of specific interactions within our experimental scope.
comment: 10 pages, 2 figures
☆ Instructional Prompt Optimization for Few-Shot LLM-Based Recommendations on Cold-Start Users
The cold-start user issue further compromises the effectiveness of recommender systems in limiting access to the historical behavioral information. It is an effective pipeline to optimize instructional prompts on a few-shot large language model (LLM) used in recommender tasks. We introduce a context-conditioned prompt formulation method P(u,\ Ds)\ \rightarrow\ R\widehat, where u is a cold-start user profile, Ds is a curated support set, and R\widehat is the predicted ranked list of items. Based on systematic experimentation with transformer-based autoregressive LLMs (BioGPT, LLaMA-2, GPT-4), we provide empirical evidence that optimal exemplar injection and instruction structuring can significantly improve the precision@k and NDCG scores of such models in low-data settings. The pipeline uses token-level alignments and embedding space regularization with a greater semantic fidelity. Our findings not only show that timely composition is not merely syntactic but also functional as it is in direct control of attention scales and decoder conduct through inference. This paper shows that prompt-based adaptation may be considered one of the ways to address cold-start recommendation issues in LLM-based pipelines.
♻ ☆ Demo: Healthcare Agent Orchestrator (HAO) for Patient Summarization in Molecular Tumor Boards
Molecular Tumor Boards (MTBs) are multidisciplinary forums where oncology specialists collaboratively assess complex patient cases to determine optimal treatment strategies. A central element of this process is the patient summary, typically compiled by a medical oncologist, radiation oncologist, or surgeon, or their trained medical assistant, who distills heterogeneous medical records into a concise narrative to facilitate discussion. This manual approach is often labor-intensive, subjective, and prone to omissions of critical information. To address these limitations, we introduce the Healthcare Agent Orchestrator (HAO), a Large Language Model (LLM)-driven AI agent that coordinates a multi-agent clinical workflow to generate accurate and comprehensive patient summaries for MTBs. Evaluating predicted patient summaries against ground truth presents additional challenges due to stylistic variation, ordering, synonym usage, and phrasing differences, which complicate the measurement of both succinctness and completeness. To overcome these evaluation hurdles, we propose TBFact, a ``model-as-a-judge'' framework designed to assess the comprehensiveness and succinctness of generated summaries. Using a benchmark dataset derived from de-identified tumor board discussions, we applied TBFact to evaluate our Patient History agent. Results show that the agent captured 94% of high-importance information (including partial entailments) and achieved a TBFact recall of 0.84 under strict entailment criteria. We further demonstrate that TBFact enables a data-free evaluation framework that institutions can deploy locally without sharing sensitive clinical data. Together, HAO and TBFact establish a robust foundation for delivering reliable and scalable support to MTBs.
comment: 9 pages, 1 figure; Added missing co-authors and contributors
♻ ☆ Towards Adaptive Memory-Based Optimization for Enhanced Retrieval-Augmented Generation ACL 2025
Retrieval-Augmented Generation (RAG), by integrating non-parametric knowledge from external knowledge bases into models, has emerged as a promising approach to enhancing response accuracy while mitigating factual errors and hallucinations. This method has been widely applied in tasks such as Question Answering (QA). However, existing RAG methods struggle with open-domain QA tasks because they perform independent retrieval operations and directly incorporate the retrieved information into generation without maintaining a summarizing memory or using adaptive retrieval strategies, leading to noise from redundant information and insufficient information integration. To address these challenges, we propose Adaptive memory-based optimization for enhanced RAG (Amber) for open-domain QA tasks, which comprises an Agent-based Memory Updater, an Adaptive Information Collector, and a Multi-granular Content Filter, working together within an iterative memory updating paradigm. Specifically, Amber integrates and optimizes the language model's memory through a multi-agent collaborative approach, ensuring comprehensive knowledge integration from previous retrieval steps. It dynamically adjusts retrieval queries and decides when to stop retrieval based on the accumulated knowledge, enhancing retrieval efficiency and effectiveness. Additionally, it reduces noise by filtering irrelevant content at multiple levels, retaining essential information to improve overall model performance. We conduct extensive experiments on several open-domain QA datasets, and the results demonstrate the superiority and effectiveness of our method and its components. The source code is available \footnote{https://anonymous.4open.science/r/Amber-B203/}.
comment: Accept by ACL 2025 findings
♻ ☆ MM-Prompt: Cross-Modal Prompt Tuning for Continual Visual Question Answering
Continual Visual Question Answering (CVQA) based on pre-trained models(PTMs) has achieved promising progress by leveraging prompt tuning to enable continual multi-modal learning. However, most existing methods adopt cross-modal prompt isolation, constructing visual and textual prompts separately, which exacerbates modality imbalance and leads to degraded performance over time. To tackle this issue, we propose MM-Prompt, a novel framework incorporating cross-modal prompt query and cross-modal prompt recovery. The former enables balanced prompt selection by incorporating cross-modal signals during query formation, while the latter promotes joint prompt reconstruction through iterative cross-modal interactions, guided by an alignment loss to prevent representational drift. Extensive experiments show that MM-Prompt surpasses prior approaches in accuracy and knowledge retention, while maintaining balanced modality engagement throughout continual learning.
♻ ☆ KROMA: Ontology Matching with Knowledge Retrieval and Large Language Models ISWC 2025
Ontology Matching (OM) is a cornerstone task of semantic interoperability, yet existing systems often rely on handcrafted rules or specialized models with limited adaptability. We present KROMA, a novel OM framework that harnesses Large Language Models (LLMs) within a Retrieval-Augmented Generation (RAG) pipeline to dynamically enrich the semantic context of OM tasks with structural, lexical, and definitional knowledge. To optimize both performance and efficiency, KROMA integrates a bisimilarity-based concept matching and a lightweight ontology refinement step, which prune candidate concepts and substantially reduce the communication overhead from invoking LLMs. Through experiments on multiple benchmark datasets, we show that integrating knowledge retrieval with context-augmented LLMs significantly enhances ontology matching, outperforming both classic OM systems and cutting-edge LLM-based approaches while keeping communication overhead comparable. Our study highlights the feasibility and benefit of the proposed optimization techniques (targeted knowledge retrieval, prompt enrichment, and ontology refinement) for ontology matching at scale.
comment: Accepted to the 24th International Semantic Web Conference Research Track (ISWC 2025)
♻ ☆ Directly Aligning the Full Diffusion Trajectory with Fine-Grained Human Preference
Recent studies have demonstrated the effectiveness of directly aligning diffusion models with human preferences using differentiable reward. However, they exhibit two primary challenges: (1) they rely on multistep denoising with gradient computation for reward scoring, which is computationally expensive, thus restricting optimization to only a few diffusion steps; (2) they often need continuous offline adaptation of reward models in order to achieve desired aesthetic quality, such as photorealism or precise lighting effects. To address the limitation of multistep denoising, we propose Direct-Align, a method that predefines a noise prior to effectively recover original images from any time steps via interpolation, leveraging the equation that diffusion states are interpolations between noise and target images, which effectively avoids over-optimization in late timesteps. Furthermore, we introduce Semantic Relative Preference Optimization (SRPO), in which rewards are formulated as text-conditioned signals. This approach enables online adjustment of rewards in response to positive and negative prompt augmentation, thereby reducing the reliance on offline reward fine-tuning. By fine-tuning the FLUX model with optimized denoising and online reward adjustment, we improve its human-evaluated realism and aesthetic quality by over 3x.
comment: 15 pages
♻ ☆ Can Large Language Models Understand As Well As Apply Patent Regulations to Pass a Hands-On Patent Attorney Test?
The legal field already uses various large language models (LLMs) in actual applications, but their quantitative performance and reasons for it are underexplored. We evaluated several open-source and proprietary LLMs -- including GPT-series, Anthropic, Deepseek and Llama-3, variants -- on parts of the European Qualifying Examination (EQE) for future European Patent Attorneys. OpenAI o1 led with 0.82 accuracy and 0.81 F1 score, whereas (Amazon Web Services) AWS Llama 3.1 8B lagged at 0.50 accuracy, and a Python-deployed Llama 3.1 8B scored 0.55. The latter two are within the range of mere guessing for the two-answer forced-choice design. None of the evaluated models could have passed the examination fully, as accuracy never exceeded the average threshold of 0.90 required for professional-level standards -- also not models that are regularly promoted for their assumed beyond-PhD- and bar-admitted-lawyer-level performance. GPT-4o excelled at integrating text and graphics, while Claude 3 Opus often lost formatting coherence. Human patent experts evaluated the textual justifications and uncovered various critical shortcomings of each model. They valued clarity and legal rationale over the raw correctness of the answers, which revealed misalignment between automatic metrics and expert judgment. Model outputs were sensitive to modest temperature changes and prompt wording, which underscores the remaining necessity of expert oversight. Future work should target logical consistency, robust multimodality, and adaptive prompting to approach human-level patent proficiency. In summary, despite the outstanding performance of recent large models, the general public might overestimate their performance. The field has a long way to go to develop a virtual patent attorney. This paper wants to point out several specific limitations that need solutions.
comment: 41 pages, 21 figures
♻ ☆ Improved GUI Grounding via Iterative Narrowing
Graphical User Interface (GUI) grounding plays a crucial role in enhancing the capabilities of Vision-Language Model (VLM) agents. While general VLMs, such as GPT-4V, demonstrate strong performance across various tasks, their proficiency in GUI grounding remains suboptimal. Recent studies have focused on fine-tuning these models specifically for zero-shot GUI grounding, yielding significant improvements over baseline performance. We introduce a visual prompting framework that employs an iterative narrowing mechanism to further improve the performance of both general and fine-tuned models in GUI grounding. For evaluation, we tested our method on a comprehensive benchmark comprising various UI platforms and provided the code to reproduce our results.
comment: Code available at https://github.com/ant-8/GUI-Grounding-via-Iterative-Narrowing
♻ ☆ Expert-Guided Explainable Few-Shot Learning for Medical Image Diagnosis MICCAI
Medical image analysis often faces significant challenges due to limited expert-annotated data, hindering both model generalization and clinical adoption. We propose an expert-guided explainable few-shot learning framework that integrates radiologist-provided regions of interest (ROIs) into model training to simultaneously enhance classification performance and interpretability. Leveraging Grad-CAM for spatial attention supervision, we introduce an explanation loss based on Dice similarity to align model attention with diagnostically relevant regions during training. This explanation loss is jointly optimized with a standard prototypical network objective, encouraging the model to focus on clinically meaningful features even under limited data conditions. We evaluate our framework on two distinct datasets: BraTS (MRI) and VinDr-CXR (Chest X-ray), achieving significant accuracy improvements from 77.09% to 83.61% on BraTS and from 54.33% to 73.29% on VinDr-CXR compared to non-guided models. Grad-CAM visualizations further confirm that expert-guided training consistently aligns attention with diagnostic regions, improving both predictive reliability and clinical trustworthiness. Our findings demonstrate the effectiveness of incorporating expert-guided attention supervision to bridge the gap between performance and interpretability in few-shot medical image diagnosis.
comment: Accepted for publication in the proceedings of MICCAI Workshop on Data Engineering in Medical Imaging 2025
♻ ☆ AU-Harness: An Open-Source Toolkit for Holistic Evaluation of Audio LLMs
Large Audio Language Models (LALMs) are rapidly advancing, but evaluating them remains challenging due to inefficient toolkits that limit fair comparison and systematic assessment. Current frameworks suffer from three critical issues: slow processing that bottlenecks large-scale studies, inconsistent prompting that hurts reproducibility, and narrow task coverage that misses important audio reasoning capabilities. We introduce AU-Harness, an efficient and comprehensive evaluation framework for LALMs. Our system achieves a speedup of up to 127% over existing toolkits through optimized batch processing and parallel execution, enabling large-scale evaluations previously impractical. We provide standardized prompting protocols and flexible configurations for fair model comparison across diverse scenarios. Additionally, we introduce two new evaluation categories: LLM-Adaptive Diarization for temporal audio understanding and Spoken Language Reasoning for complex audio-based cognitive tasks. Through evaluation across 380+ tasks, we reveal significant gaps in current LALMs, particularly in temporal understanding and complex spoken language reasoning tasks. Our findings also highlight a lack of standardization in instruction modality existent across audio benchmarks, which can lead up performance differences up to 9.5 absolute points on the challenging complex instruction following downstream tasks. AU-Harness provides both practical evaluation tools and insights into model limitations, advancing systematic LALM development.
♻ ☆ Critical Challenges and Guidelines in Evaluating Synthetic Tabular Data: A Systematic Review
Generating synthetic tabular data can be challenging, however evaluation of their quality is just as challenging, if not more. This systematic review sheds light on the critical importance of rigorous evaluation of synthetic health data to ensure reliability, relevance, and their appropriate use. Based on screening of 1766 papers and a detailed review of 101 papers we identified key challenges, including lack of consensus on evaluation methods, improper use of evaluation metrics, limited input from domain experts, inadequate reporting of dataset characteristics, and limited reproducibility of results. In response, we provide several guidelines on the generation and evaluation of synthetic data, to allow the community to unlock and fully harness the transformative potential of synthetic data and accelerate innovation.
♻ ☆ Task Matters: Knowledge Requirements Shape LLM Responses to Context-Memory Conflict
Large Language Models require both contextual knowledge and parametric memory, but these sources can disagree. Prior investigations on contextual question answering tasks report a preference toward parametric knowledge under conflict, yet they focus almost exclusively on tasks that should always rely on the given passage, leaving open how this behavior manifests when tasks demand different amounts and kinds of knowledge. We study this question with a model-agnostic diagnostic framework that (i) automatically detects disagreements between a model's beliefs and a curated knowledge set, and (ii) injects controlled conflicts into tasks. The resulting datasets span two orthogonal dimensions: task knowledge reliance and conflict plausibility. Evaluating representative open-source LLMs, we find that: (1) performance degradation from conflict correlates with a task's knowledge reliance; (2) explanatory rationales and simple reiteration both increase context reliance-helpful for context-only tasks but harmful when parametric knowledge should dominate; (3) These behaviors raise concerns about the validity of model-based evaluation and underscore the need to account for knowledge conflict in the deployment of LLMs.
comment: Major revision
♻ ☆ Entropy-Gated Branching for Efficient Test-Time Reasoning
Test-time compute methods like beam search can significantly improve the reasoning capabilities and problem-solving accuracy of large language models. However, these approaches require substantially increased computational resources, with most computation wasted on exploring low-diversity branches where the model already exhibits high confidence. We observe that a small subset of uncertain reasoning steps has a disproportionately large impact on final prediction accuracy, and branching at these points tends to yield higher-quality and more diverse candidate reasoning steps. Therefore, we introduce Entropy-Gated Branching: a novel inference technique that dynamically allocates computational resources by selectively expanding prediction sequences only at points of high uncertainty. Our method leverages entropy as a gating mechanism to identify when branching is most beneficial, coupled with an external feedback model to rank and prune candidate branches. Empirical results on mathematical and financial reasoning benchmarks show that this strategy improves accuracy by 22.6% over standard inference while operating 37% faster than conventional beam search with similar or higher performance. Our results show that dynamic resource allocation during inference can substantially improve both efficiency and effectiveness, offering a more scalable pathway to enhanced LLM reasoning capabilities.
♻ ☆ Persistent Homology of Topic Networks for the Prediction of Reader Curiosity
Reader curiosity, the drive to seek information, is crucial for textual engagement, yet remains relatively underexplored in NLP. Building on Loewenstein's Information Gap Theory, we introduce a framework that models reader curiosity by quantifying semantic information gaps within a text's semantic structure. Our approach leverages BERTopic-inspired topic modeling and persistent homology to analyze the evolving topology (connected components, cycles, voids) of a dynamic semantic network derived from text segments, treating these features as proxies for information gaps. To empirically evaluate this pipeline, we collect reader curiosity ratings from participants (n = 49) as they read S. Collins's ''The Hunger Games'' novel. We then use the topological features from our pipeline as independent variables to predict these ratings, and experimentally show that they significantly improve curiosity prediction compared to a baseline model (73% vs. 30% explained deviance), validating our approach. This pipeline offers a new computational method for analyzing text structure and its relation to reader engagement.
comment: Original paper with an improved and extended appendix
♻ ☆ Towards Scalable Training for Handwritten Mathematical Expression Recognition
Large foundation models have achieved significant performance gains through scalable training on massive datasets. However, the field of \textbf{H}andwritten \textbf{M}athematical \textbf{E}xpression \textbf{R}ecognition (HMER) has been impeded by the scarcity of data, primarily due to the arduous and costly process of manual annotation. To bridge this gap, we propose a novel method integrating limited handwritten formulas with large-scale LaTeX-rendered formulas by developing a scalable data engine to generate complex and consistent LaTeX sequences. With this engine, we built the largest formula dataset to date, termed \texttt{Tex80M}, comprising over 80 million high-quality training instances. Then we propose \texttt{TexTeller}, the first HMER model trained at scale, by mix-training \texttt{Tex80M} with a relatively small HME dataset. The expansive training dataset and our refined pipeline have equipped \texttt{TexTeller} with state-of-the-art (SOTA) performance across nearly all benchmarks. To advance the field, we will openly release our complete model, entire dataset, and full codebase, enabling further research building upon our contributions.
♻ ☆ DeepVoting: Learning and Fine-Tuning Voting Rules with Canonical Embeddings
Aggregating agent preferences into a collective decision is an important step in many problems (e.g., hiring, elections, peer review) and across areas of computer science (e.g., reinforcement learning, recommender systems). As Social Choice Theory has shown, the problem of designing aggregation rules with specific sets of properties (axioms) can be difficult, or provably impossible in some cases. Instead of designing algorithms by hand, one can learn aggregation rules, particularly voting rules, from data. However, prior work in this area has required extremely large models or been limited by the choice of preference representation, i.e., embedding. We recast the problem of designing voting rules with desirable properties into one of learning probabilistic functions that output distributions over a set of candidates. Specifically, we use neural networks to learn probabilistic social choice functions. Using standard embeddings from the social choice literature we show that preference profile encoding has significant impact on the efficiency and ability of neural networks to learn rules, allowing us to learn rules faster and with smaller networks than previous work. Moreover, we show that our learned rules can be fine-tuned using axiomatic properties to create novel voting rules and make them resistant to specific types of "attack". Namely, we fine-tune rules to resist a probabilistic version of the No Show Paradox.
♻ ☆ Focusing by Contrastive Attention: Enhancing VLMs' Visual Reasoning
Vision-Language Models (VLMs) have demonstrated remarkable success across diverse visual tasks, yet their performance degrades in complex visual environments. While existing enhancement approaches require additional training, rely on external segmentation tools, or operate at coarse-grained levels, they overlook the innate ability within VLMs. To bridge this gap, we investigate VLMs' attention patterns and discover that: (1) visual complexity strongly correlates with attention entropy, negatively impacting reasoning performance; (2) attention progressively refines from global scanning in shallow layers to focused convergence in deeper layers, with convergence degree determined by visual complexity. (3) Theoretically, we prove that the contrast of attention maps between general queries and task-specific queries enables the decomposition of visual signal into semantic signals and visual noise components. Building on these insights, we propose Contrastive Attention Refinement for Visual Enhancement (CARVE), a training-free method that extracts task-relevant visual signals through attention contrasting at the pixel level. Extensive experiments demonstrate that CARVE consistently enhances performance, achieving up to 75% improvement on open-source models. Our work provides critical insights into the interplay between visual complexity and attention mechanisms, offering an efficient pathway for improving visual reasoning with contrasting attention.
♻ ☆ LLMs for sensory-motor control: Combining in-context and iterative learning
We propose a method that enables large language models (LLMs) to control embodied agents by directly mapping continuous observation vectors to continuous action vectors. At the outset, the LLMs generate a control strategy based on a textual description of the agent, its environment, and the intended goal. This strategy is then iteratively refined through a learning process in which the LLMs are repeatedly prompted to improve the current strategy, using performance feedback and sensory-motor data collected during its evaluation. The method is validated on classic control tasks from the Gymnasium library and the inverted pendulum task from the MuJoCo library. The approach proves effective with relatively compact models such as Gpt-oss:120b and Qwen2.5:72b. In most cases, it successfully identifies optimal or near-optimal solutions by integrating symbolic knowledge derived through reasoning with sub-symbolic sensory-motor data gathered as the agent interacts with its environment.
comment: Article updated with results from gpt-oss:120b. 24 pages (13 pages are from appendix), 6 figures, code for experiments replication and supplementary material provided at https://github.com/jtyska/llm-robotics-article/
♻ ☆ An Ontology-Driven Graph RAG for Legal Norms: A Structural, Temporal, and Deterministic Approach
Retrieval-Augmented Generation (RAG) systems in the legal domain face a critical challenge: standard, flat-text retrieval is blind to the hierarchical, diachronic, and causal structure of law, leading to anachronistic and unreliable answers. This paper introduces the Structure-Aware Temporal Graph RAG (SAT-Graph RAG), an ontology-driven framework designed to overcome these limitations by explicitly modeling the formal structure and diachronic nature of legal norms. We ground our knowledge graph in a formal, LRMoo-inspired model that distinguishes abstract legal Works from their versioned Expressions. We model temporal states as efficient aggregations that reuse the versioned expressions (CTVs) of unchanged components, and we reify legislative events as first-class Action nodes to make causality explicit and queryable. This structured backbone enables a unified, planner-guided query strategy that applies explicit policies to deterministically resolve complex requests for (i) point-in-time retrieval, (ii) hierarchical impact analysis, and (iii) auditable provenance reconstruction. Through a case study on the Brazilian Constitution, we demonstrate how this approach provides a verifiable, temporally-correct substrate for LLMs, enabling higher-order analytical capabilities while drastically reducing the risk of factual errors. The result is a practical framework for building more trustworthy and explainable legal AI systems.
comment: Major revision for clarity and academic precision. Updated title and abstract. Refined core terminology, contributions, related work, and shifted the implementation to a conceptual architecture. Added new arguments to strengthen the paper's thesis
♻ ☆ The Information Dynamics of Generative Diffusion
Generative diffusion models have emerged as a powerful class of models in machine learning, yet a unified theoretical understanding of their operation is still developing. This paper provides an integrated perspective on generative diffusion by connecting their dynamic, information-theoretic, and thermodynamic properties under a unified mathematical framework. We demonstrate that the rate of conditional entropy production during generation (i.e. the generative bandwidth) is directly governed by the expected divergence of the score function's vector field. This divergence, in turn, is linked to the branching of trajectories and generative bifurcations, which we characterize as symmetry-breaking phase transitions in the energy landscape. This synthesis offers a powerful insight: the process of generation is fundamentally driven by the controlled, noise-induced breaking of (approximate) symmetries, where peaks in information transfer correspond to critical transitions between possible outcomes. The score function acts as a dynamic non-linear filter that regulates the bandwidth of the noise by suppressing fluctuations that are incompatible with the data.
♻ ☆ MagicGUI: A Foundational Mobile GUI Agent with Scalable Data Pipeline and Reinforcement Fine-tuning
This paper presents MagicGUI, a foundational mobile GUI agent designed to address critical challenges in perception, grounding, and reasoning within real-world mobile GUI environments. The framework is underpinned by following six key components: (1) a comprehensive and accurate dataset, constructed via the scalable GUI Data Pipeline, which aggregates the largest and most diverse GUI-centric multimodal data to date from open-source repositories, automated crawling, and targeted manual annotation; (2) enhanced perception and grounding capabilities, facilitating fine-grained multimodal alignment for UI element referencing, grounding, and screen comprehension; (3) a comprehensive and unified action space, encompassing both fundamental UI operations and complex interactive intents to support human-agent interactions; (4) planning-oriented reasoning mechanisms that enable the model to decompose complex user instructions into sequential actions with explicit intermediate meta-paln reasoning; (5) an iterative two-stage training procedure, combining large-scale continue pre-training on 7.8M samples with reinforcement fine-tuning utilizing a spatially enhanced composite reward and dual filtering strategy; and (6) competitive performance on both the proprietary Magic-RICH benchmark and over a dozen public benchmarks, achieving superior performance across GUI perception and agent tasks, while demonstrating robust generalization and real-world deployment potential in practical mobile GUI scenarios, as detailed in Figure 1.
♻ ☆ Algorithmic Collusion by Large Language Models
The rise of algorithmic pricing raises concerns of algorithmic collusion. We conduct experiments with algorithmic pricing agents based on Large Language Models (LLMs). We find that LLM-based pricing agents quickly and autonomously reach supracompetitive prices and profits in oligopoly settings and that variation in seemingly innocuous phrases in LLM instructions ("prompts") may substantially influence the degree of supracompetitive pricing. Off-path analysis using novel techniques uncovers price-war concerns as contributing to these phenomena. Our results extend to auction settings. Our findings uncover unique challenges to any future regulation of LLM-based pricing agents, and AI-based pricing agents more broadly.
♻ ☆ TinyDef-DETR: A DETR-based Framework for Defect Detection in Transmission Lines from UAV Imagery
Automated defect detection from UAV imagery of transmission lines is a challenging task due to the small size, ambiguity, and complex backgrounds of defects. This paper proposes TinyDef-DETR, a DETR-based framework designed to achieve accurate and efficient detection of transmission line defects from UAV-acquired images. The model integrates four major components: an edge-enhanced ResNet backbone to strengthen boundary-sensitive representations, a stride-free space-to-depth module to enable detail-preserving downsampling, a cross-stage dual-domain multi-scale attention mechanism to jointly model global context and local cues, and a Focaler-Wise-SIoU regression loss to improve the localization of small and difficult targets. Together, these designs effectively mitigate the limitations of conventional detectors. Extensive experiments on both public and real-world datasets demonstrate that TinyDef-DETR achieves superior detection performance and strong generalization capability, while maintaining modest computational overhead. The accuracy and efficiency of TinyDef-DETR make it a suitable method for UAV-based transmission line defect detection, particularly in scenarios involving small and ambiguous targets.
♻ ☆ A Comprehensive Guide to Differential Privacy: From Theory to User Expectations
The increasing availability of personal data has enabled significant advances in fields such as machine learning, healthcare, and cybersecurity. However, this data abundance also raises serious privacy concerns, especially in light of powerful re-identification attacks and growing legal and ethical demands for responsible data use. Differential privacy (DP) has emerged as a principled, mathematically grounded framework for mitigating these risks. This review provides a comprehensive survey of DP, covering its theoretical foundations, practical mechanisms, and real-world applications. It explores key algorithmic tools and domain-specific challenges - particularly in privacy-preserving machine learning and synthetic data generation. The report also highlights usability issues and the need for improved communication and transparency in DP systems. Overall, the goal is to support informed adoption of DP by researchers and practitioners navigating the evolving landscape of data privacy.
♻ ☆ FLM-Audio: Natural Monologues Improves Native Full-Duplex Chatbots via Dual Training
Full-duplex dialog models aim to listen and speak simultaneously, delivering rapid responses to dynamic user input. Among different solutions to full duplexity, a native solution merges multiple channels in each time step, achieving the lowest latency. However, prevailing designs break down the textual monologue sentences for word-level alignment with audio streams, which degrades language modeling abilities. To help address this issue, we introduce natural monologues, which are composed by continuous sentences and waiting intervals, mimicking humanoid cognitive behavior in dialogs. We find a proper training paradigm to be critical for semantically aligning natural monologues with audio. To this end, we develop a dual training paradigm that alternates the position of the monologues, either leading or trailing the audio, across different training stages. A combination of our natural monologue and dual training strategy is applied in developing FLM-Audio, our 7B spoken dialog chatbot with native full-duplexity. As confirmed by experimental results, FLM-Audio achieves superior response qualities and chatting experiences while requiring significantly less training data.
♻ ☆ Adapting Vision-Language Models for Neutrino Event Classification in High-Energy Physics
Recent advances in Large Language Models (LLMs) have demonstrated their remarkable capacity to process and reason over structured and unstructured data modalities beyond natural language. In this work, we explore the applications of Vision Language Models (VLMs), specifically a fine-tuned variant of LLaMa 3.2, to the task of identifying neutrino interactions in pixelated detector data from high-energy physics (HEP) experiments. We benchmark this model against a state-of-the-art convolutional neural network (CNN) architecture, similar to those used in the NOvA and DUNE experiments, which have achieved high efficiency and purity in classifying electron and muon neutrino events. Our evaluation considers both the classification performance and interpretability of the model predictions. We find that VLMs can outperform CNNs, while also providing greater flexibility in integrating auxiliary textual or semantic information and offering more interpretable, reasoning-based predictions. This work highlights the potential of VLMs as a general-purpose backbone for physics event classification, due to their high performance, interpretability, and generalizability, which opens new avenues for integrating multimodal reasoning in experimental neutrino physics.
♻ ☆ Robix: A Unified Model for Robot Interaction, Reasoning and Planning
We introduce Robix, a unified model that integrates robot reasoning, task planning, and natural language interaction within a single vision-language architecture. Acting as the high-level cognitive layer in a hierarchical robot system, Robix dynamically generates atomic commands for the low-level controller and verbal responses for human interaction, enabling robots to follow complex instructions, plan long-horizon tasks, and interact naturally with human within an end-to-end framework. Robix further introduces novel capabilities such as proactive dialogue, real-time interruption handling, and context-aware commonsense reasoning during task execution. At its core, Robix leverages chain-of-thought reasoning and adopts a three-stage training strategy: (1) continued pretraining to enhance foundational embodied reasoning abilities including 3D spatial understanding, visual grounding, and task-centric reasoning; (2) supervised finetuning to model human-robot interaction and task planning as a unified reasoning-action sequence; and (3) reinforcement learning to improve reasoning-action consistency and long-horizon task coherence. Extensive experiments demonstrate that Robix outperforms both open-source and commercial baselines (e.g., GPT-4o and Gemini 2.5 Pro) in interactive task execution, demonstrating strong generalization across diverse instruction types (e.g., open-ended, multi-stage, constrained, invalid, and interrupted) and various user-involved tasks such as table bussing, grocery shopping, and dietary filtering.
comment: Tech report. Project page: https://robix-seed.github.io/robix/
♻ ☆ Scaling LLM Planning: NL2FLOW for Parametric Problem Generation and Rigorous Evaluation
Robust workflow composition is critical for effective agent performance, yet progress in Large Language Model (LLM) planning and reasoning is hindered by a scarcity of scalable evaluation data. This work introduces NL2Flow, a fully automated pipeline for generating and evaluating workflow planning problems. NL2Flow generates problems parametrically in a structured intermediate representation, translating them into both natural language and formal PDDL. I evaluate several open-source, instruct-tuned LLMs on a dataset of 2296 low-difficulty problems generated by NL2Flow. Results demonstrate that the best-performing model achieved 86% success in generating valid plans and 69% in generating optimal plans (for solvable problems). Regression analysis shows that the influence of problem characteristics on plan generation is contingent on both model and prompt design. Importantly, translating natural language problems into a structured JSON representation prior to symbolic planning significantly improved success rates, suggesting a benefit from neuro-symbolic integration. These findings underscore the importance of understanding error sources within LLM reasoning as systems scale to more complex tasks. As LLM reasoning scales to increasingly complex problems, understanding the shifting bottlenecks and sources of error within these systems will be crucial.
comment: 31 pages, 7 figures
♻ ☆ Effort-aware Fairness: Incorporating a Philosophy-informed, Human-centered Notion of Effort into Algorithmic Fairness Metrics
Although popularized AI fairness metrics, e.g., demographic parity, have uncovered bias in AI-assisted decision-making outcomes, they do not consider how much effort one has spent to get to where one is today in the input feature space. However, the notion of effort is important in how Philosophy and humans understand fairness. We propose a philosophy-informed approach to conceptualize and evaluate Effort-aware Fairness (EaF), grounded in the concept of Force, which represents the temporal trajectory of predictive features coupled with inertia. Besides theoretical formulation, our empirical contributions include: (1) a pre-registered human subjects experiment, which shows that for both stages of the (individual) fairness evaluation process, people consider the temporal trajectory of a predictive feature more than its aggregate value; (2) pipelines to compute Effort-aware Individual/Group Fairness in the criminal justice and personal finance contexts. Our work may enable AI model auditors to uncover and potentially correct unfair decisions against individuals who have spent significant efforts to improve but are still stuck with systemic disadvantages outside their control.
comment: AIES 2025
♻ ☆ Pretrained Conformers for Audio Fingerprinting and Retrieval
Conformers have shown great results in speech processing due to their ability to capture both local and global interactions. In this work, we utilize a self-supervised contrastive learning framework to train conformer-based encoders that are capable of generating unique embeddings for small segments of audio, generalizing well to previously unseen data. We achieve state-of-the-art results for audio retrieval tasks while using only 3 seconds of audio to generate embeddings. Our models are almost completely immune to temporal misalignments and achieve state-of-the-art results in cases of other audio distortions such as noise, reverb or extreme temporal stretching. Code and models are made publicly available and the results are easy to reproduce as we train and test using popular and freely available datasets of different sizes.
♻ ☆ LiDAR-BIND-T: Improved and Temporally Consistent Sensor Modality Translation and Fusion for Robotic Applications
This paper extends LiDAR-BIND, a modular multi-modal fusion framework that binds heterogeneous sensors (radar, sonar) to a LiDAR-defined latent space, with mechanisms that explicitly enforce temporal consistency. We introduce three contributions: (i) temporal embedding similarity that aligns consecutive latent representations, (ii) a motion-aligned transformation loss that matches displacement between predictions and ground truth LiDAR, and (iii) windowed temporal fusion using a specialised temporal module. We further update the model architecture to better preserve spatial structure. Evaluations on radar/sonar-to-LiDAR translation demonstrate improved temporal and spatial coherence, yielding lower absolute trajectory error and better occupancy map accuracy in Cartographer-based SLAM (Simultaneous Localisation and Mapping). We propose different metrics based on the Fr\'echet Video Motion Distance (FVMD) and a correlation-peak distance metric providing practical temporal quality indicators to evaluate SLAM performance. The proposed temporal LiDAR-BIND, or LiDAR-BIND-T, maintains plug-and-play modality fusion while substantially enhancing temporal stability, resulting in improved robustness and performance for downstream SLAM.
♻ ☆ CogGuide: Human-Like Guidance for Zero-Shot Omni-Modal Reasoning
Targeting the issues of "shortcuts" and insufficient contextual understanding in complex cross-modal reasoning of multimodal large models, this paper proposes a zero-shot multimodal reasoning component guided by human-like cognitive strategies centered on an "intent sketch". The component comprises a plug-and-play three-module pipeline-Intent Perceiver, Strategy Generator, and Strategy Selector-that explicitly constructs a "understand-plan-select" cognitive process. By generating and filtering "intent sketch" strategies to guide the final reasoning, it requires no parameter fine-tuning and achieves cross-model transfer solely through in-context engineering. Information-theoretic analysis shows that this process can reduce conditional entropy and improve information utilization efficiency, thereby suppressing unintended shortcut reasoning. Experiments on IntentBench, WorldSense, and Daily-Omni validate the method's generality and robust gains; compared with their respective baselines, the complete "three-module" scheme yields consistent improvements across different reasoning engines and pipeline combinations, with gains up to approximately 9.51 percentage points, demonstrating the practical value and portability of the "intent sketch" reasoning component in zero-shot scenarios.
♻ ☆ MESH -- Understanding Videos Like Human: Measuring Hallucinations in Large Video Models
Large Video Models (LVMs) build on the semantic capabilities of Large Language Models (LLMs) and vision modules by integrating temporal information to better understand dynamic video content. Despite their progress, LVMs are prone to hallucinations-producing inaccurate or irrelevant descriptions. Current benchmarks for video hallucination depend heavily on manual categorization of video content, neglecting the perception-based processes through which humans naturally interpret videos. We introduce MESH, a benchmark designed to evaluate hallucinations in LVMs systematically. MESH uses a Question-Answering framework with binary and multi-choice formats incorporating target and trap instances. It follows a bottom-up approach, evaluating basic objects, coarse-to-fine subject features, and subject-action pairs, aligning with human video understanding. We demonstrate that MESH offers an effective and comprehensive approach for identifying hallucinations in videos. Our evaluations show that while LVMs excel at recognizing basic objects and features, their susceptibility to hallucinations increases markedly when handling fine details or aligning multiple actions involving various subjects in longer videos.
♻ ☆ Discovering physical laws with parallel symbolic enumeration
Symbolic regression plays a crucial role in modern scientific research thanks to its capability of discovering concise and interpretable mathematical expressions from data. A key challenge lies in the search for parsimonious and generalizable mathematical formulas, in an infinite search space, while intending to fit the training data. Existing algorithms have faced a critical bottleneck of accuracy and efficiency over a decade when handling problems of complexity, which essentially hinders the pace of applying symbolic regression for scientific exploration across interdisciplinary domains. To this end, we introduce parallel symbolic enumeration (PSE) to efficiently distill generic mathematical expressions from limited data. Experiments show that PSE achieves higher accuracy and faster computation compared to the state-of-the-art baseline algorithms across over 200 synthetic and experimental problem sets (e.g., improving the recovery accuracy by up to 99% and reducing runtime by an order of magnitude). PSE represents an advance in accurate and efficient data-driven discovery of symbolic, interpretable models (e.g., underlying physical laws), and improves the scalability of symbolic learning.
♻ ☆ TreeGPT: Pure TreeFFN Encoder-Decoder Architecture for Structured Reasoning Without Attention Mechanisms
We present TreeGPT, an attention-free neural architecture that explores the potential of pure TreeFFN encoder-decoder design for structured reasoning tasks. Unlike traditional transformer approaches that rely on attention mechanisms, TreeGPT employs bidirectional TreeFFN components that process sequences through adjacent connections in parallel, aiming to achieve computational efficiency while maintaining reasoning capabilities. Our approach centers on a TreeFFN Encoder-Decoder mechanism: $$\text{Encoder TreeFFN (L} \rightarrow \text{R)} + \text{Decoder TreeFFN (R} \leftarrow \text{L)} \rightarrow \text{Parallel Processing}$$ where the encoder processes left-to-right dependencies while the decoder handles right-to-left patterns, both using simple neighbor-to-neighbor connections. This design eliminates attention computation while maintaining sequence modeling capabilities. We evaluate our approach on the ARC Prize 2025 dataset, where TreeGPT achieves 99\% validation accuracy using 3.16M parameters. The model converges within 1500 training steps and demonstrates 100\% token-level accuracy on selected evaluation samples. Our preliminary results suggest that for certain structured reasoning tasks, specialized TreeFFN architectures may offer advantages over attention-based approaches. While these findings are encouraging, we acknowledge that further investigation across diverse tasks and datasets would be valuable to establish the broader applicability of attention-free designs.
comment: Code available at: https://github.com/lizixi-0x2F/TreeGPT
♻ ☆ RED: Unleashing Token-Level Rewards from Holistic Feedback via Reward Redistribution
Reinforcement learning from human feedback (RLHF) offers a promising approach to aligning large language models (LLMs) with human preferences. Typically, a reward model is trained or supplied to act as a proxy for humans in evaluating generated responses during the reinforcement training phase. However, current reward models operate as sequence-to-one models, allocating a single, sparse, and delayed reward to an entire output sequence. This approach may overlook the significant contributions of individual tokens toward the desired outcome. To this end, we propose a more fine-grained, token-level guidance approach for RL training. Specifically, we introduce RED, a novel reward redistribition method that evaluates and assigns specific credit to each token using an off-the-shelf reward model. Utilizing these fine-grained rewards enhances the model's understanding of language nuances, leading to more precise performance improvements. Notably, our method does not require modifying the reward model or introducing additional training steps, thereby incurring minimal computational costs. Experimental results across diverse datasets and tasks demonstrate the superiority of our approach.
♻ ☆ Beyond the Pre-Service Horizon: Infusing In-Service Behavior for Improved Financial Risk Forecasting IEEE
Typical financial risk management involves distinct phases for pre-service risk assessment and in-service default detection, often modeled separately. This paper proposes a novel framework, Multi-Granularity Knowledge Distillation (abbreviated as MGKD), aimed at improving pre-service risk prediction through the integration of in-service user behavior data. MGKD follows the idea of knowledge distillation, where the teacher model, trained on historical in-service data, guides the student model, which is trained on pre-service data. By using soft labels derived from in-service data, the teacher model helps the student model improve its risk prediction prior to service activation. Meanwhile, a multi-granularity distillation strategy is introduced, including coarse-grained, fine-grained, and self-distillation, to align the representations and predictions of the teacher and student models. This approach not only reinforces the representation of default cases but also enables the transfer of key behavioral patterns associated with defaulters from the teacher to the student model, thereby improving the overall performance of pre-service risk assessment. Moreover, we adopt a re-weighting strategy to mitigate the model's bias towards the minority class. Experimental results on large-scale real-world datasets from Tencent Mobile Payment demonstrate the effectiveness of our proposed approach in both offline and online scenarios.
comment: Accepted to IEEE ICDM 2025
♻ ☆ MachineLearningLM: Scaling Many-shot In-context Learning via Continued Pretraining
Large language models (LLMs) possess broad world knowledge and strong general-purpose reasoning ability, yet they struggle to learn from many in-context examples on standard machine learning (ML) tasks, that is, to leverage many-shot demonstrations purely via in-context learning (ICL) without gradient descent. We introduce MachineLearningLM, a portable continued-pretraining framework that equips a general-purpose LLM with robust in-context ML capability while preserving its general knowledge and reasoning for broader chat workflows. Our pretraining procedure synthesizes ML tasks from millions of structural causal models (SCMs), spanning shot counts up to 1,024. We begin with a random-forest teacher, distilling tree-based decision strategies into the LLM to strengthen robustness in numerical modeling. All tasks are serialized with a token-efficient prompt, enabling 3x to 6x more examples per context window and delivering up to 50x amortized throughput via batch inference. Despite a modest setup (Qwen-2.5-7B-Instruct with LoRA rank 8), MachineLearningLM outperforms strong LLM baselines (e.g., GPT-5-mini) by an average of about 15% on out-of-distribution tabular classification across finance, physics, biology, and healthcare domains. It exhibits a striking many-shot scaling law: accuracy increases monotonically as in-context demonstrations grow from 8 to 1,024. Without any task-specific training, it attains random-forest-level accuracy across hundreds of shots. General chat capabilities, including knowledge and reasoning, are preserved: it achieves 75.4% on MMLU.
♻ ☆ villa-X: Enhancing Latent Action Modeling in Vision-Language-Action Models
Visual-Language-Action (VLA) models have emerged as a popular paradigm for learning robot manipulation policies that can follow language instructions and generalize to novel scenarios. Recent work has begun to explore the incorporation of latent actions, an abstract representation of visual change between two frames, into VLA pre-training. In this paper, we introduce villa-X, a novel Visual-Language-Latent-Action (ViLLA) framework that advances latent action modeling for learning generalizable robot manipulation policies. Our approach improves both how latent actions are learned and how they are incorporated into VLA pre-training. Together, these contributions enable villa-X to achieve superior performance across simulated environments including SIMPLER and LIBERO, as well as on two real-world robot setups including gripper and dexterous hand manipulation. We believe the ViLLA paradigm holds significant promise, and that our villa-X provides a strong foundation for future research.
comment: Project page: https://aka.ms/villa-x
♻ ☆ Byzantine-Robust Federated Learning Using Generative Adversarial Networks
Federated learning (FL) enables collaborative model training across distributed clients without sharing raw data, but its robustness is threatened by Byzantine behaviors such as data and model poisoning. Existing defenses face fundamental limitations: robust aggregation rules incur error lower bounds that grow with client heterogeneity, while detection-based methods often rely on heuristics (e.g., a fixed number of malicious clients) or require trusted external datasets for validation. We present a defense framework that addresses these challenges by leveraging a conditional generative adversarial network (cGAN) at the server to synthesize representative data for validating client updates. This approach eliminates reliance on external datasets, adapts to diverse attack strategies, and integrates seamlessly into standard FL workflows. Extensive experiments on benchmark datasets demonstrate that our framework accurately distinguishes malicious from benign clients while maintaining overall model accuracy. Beyond Byzantine robustness, we also examine the representativeness of synthesized data, computational costs of cGAN training, and the transparency and scalability of our approach.
♻ ☆ Rethinking Disentanglement under Dependent Factors of Variation
Representation learning is an approach that allows to discover and extract the factors of variation from the data. Intuitively, a representation is said to be disentangled if it separates the different factors of variation in a way that is understandable to humans. Definitions of disentanglement and metrics to measure it usually assume that the factors of variation are independent of each other. However, this is generally false in the real world, which limits the use of these definitions and metrics to very specific and unrealistic scenarios. In this paper we give a definition of disentanglement based on information theory that is also valid when the factors of variation are not independent. Furthermore, we relate this definition to the Information Bottleneck Method. Finally, we propose a method to measure the degree of disentanglement from the given definition that works when the factors of variation are not independent. We show through different experiments that the method proposed in this paper correctly measures disentanglement with non-independent factors of variation, while other methods fail in this scenario.
♻ ☆ Inconsistency Handling in Prioritized Databases with Universal Constraints: Complexity Analysis and Links with Active Integrity Constraints KR 2023
This paper revisits the problem of repairing and querying inconsistent databases equipped with universal constraints. We adopt symmetric difference repairs, in which both deletions and additions of facts can be used to restore consistency, and suppose that preferred repair actions are specified via a binary priority relation over (negated) facts. Our first contribution is to show how existing notions of optimal repairs, defined for simpler denial constraints and repairs solely based on fact deletion, can be suitably extended to our richer setting. We next study the computational properties of the resulting repair notions, in particular, the data complexity of repair checking and inconsistency-tolerant query answering. Finally, we clarify the relationship between optimal repairs of prioritized databases and repair notions introduced in the framework of active integrity constraints. In particular, we show that Pareto-optimal repairs in our setting correspond to founded, grounded and justified repairs w.r.t. the active integrity constraints obtained by translating the prioritized database. Our study also yields useful insights into the behavior of active integrity constraints.
comment: This is an extended version of a paper appearing at the 20th International Conference on Principles of Knowledge Representation and Reasoning (KR 2023). This version fixes an error in Table 1 (case of subset repairs w.r.t. denial constraints) as well as glitches in point 3 of Proposition 2 (see Remark 2) and the running example of Section 3.2. 28 pages
♻ ☆ Group Expectation Policy Optimization for Heterogeneous Reinforcement Learning
As single-center computing approaches power constraints, decentralized training is becoming essential. Reinforcement Learning (RL) post-training enhances Large Language Models (LLMs) but faces challenges in heterogeneous distributed environments due to its tightly-coupled sampling-learning alternation. We propose HeteroRL, an asynchronous RL architecture that decouples rollout sampling from parameter learning, enabling robust deployment across geographically distributed nodes under network delays. We identify that latency-induced KL divergence causes importance sampling failure due to high variance. To address this, we propose Group Expectation Policy Optimization (GEPO), which reduces importance weight variance through a refined sampling mechanism. Theoretically, GEPO achieves exponential variance reduction. Experiments show it maintains superior stability over methods like GRPO, with less than 3% performance degradation under 1800-second delays, demonstrating strong potential for decentralized RL in heterogeneous networks.
♻ ☆ A minimal coalition logic
Coalition Logic is an important logic in logical studies of strategic reasoning, whose models are concurrent game models. In this paper, first, we systematically discuss three assumptions of concurrent game models and argue that they are too strong. The first is seriality; that is, every coalition always has an available joint action. The second is the independence of agents; that is, the merge of two available joint actions of two disjoint coalitions is always an available joint action of the union of the two coalitions. The third is determinism; that is, all available joint actions of the grand coalition always have a unique outcome. Second, we present a coalition logic based on general concurrent game models which do not have the three assumptions and show its completeness. This logic seems minimal for reasoning about coalitional powers.
♻ ☆ Deep Learning-Based Rock Particulate Classification Using Attention-Enhanced ConvNeXt
Accurate classification of rock sizes is a vital component in geotechnical engineering, mining, and resource management, where precise estimation influences operational efficiency and safety. In this paper, we propose an enhanced deep learning model based on the ConvNeXt architecture, augmented with both self-attention and channel attention mechanisms. Building upon the foundation of ConvNext, our proposed model, termed CNSCA, introduces self-attention to capture long-range spatial dependencies and channel attention to emphasize informative feature channels. This hybrid design enables the model to effectively capture both fine-grained local patterns and broader contextual relationships within rock imagery, leading to improved classification accuracy and robustness. We evaluate our model on a rock size classification dataset and compare it against three strong baseline. The results demonstrate that the incorporation of attention mechanisms significantly enhances the models capability for fine-grained classification tasks involving natural textures like rocks.
comment: The paper has been withdrawn by the authors to accommodate substantial revisions requested by a co-author. A revised version will be submitted
♻ ☆ HiD-VAE: Interpretable Generative Recommendation via Hierarchical and Disentangled Semantic IDs
Recommender systems are indispensable for helping users navigate the immense item catalogs of modern online platforms. Recently, generative recommendation has emerged as a promising paradigm, unifying the conventional retrieve-and-rank pipeline into an end-to-end model capable of dynamic generation. However, existing generative methods are fundamentally constrained by their unsupervised tokenization, which generates semantic IDs suffering from two critical flaws: (1) they are semantically flat and uninterpretable, lacking a coherent hierarchy, and (2) they are prone to representation entanglement (i.e., ``ID collisions''), which harms recommendation accuracy and diversity. To overcome these limitations, we propose HiD-VAE, a novel framework that learns hierarchically disentangled item representations through two core innovations. First, HiD-VAE pioneers a hierarchically-supervised quantization process that aligns discrete codes with multi-level item tags, yielding more uniform and disentangled IDs. Crucially, the trained codebooks can predict hierarchical tags, providing a traceable and interpretable semantic path for each recommendation. Second, to combat representation entanglement, HiD-VAE incorporates a novel uniqueness loss that directly penalizes latent space overlap. This mechanism not only resolves the critical ID collision problem but also promotes recommendation diversity by ensuring a more comprehensive utilization of the item representation space. These high-quality, disentangled IDs provide a powerful foundation for downstream generative models. Extensive experiments on three public benchmarks validate HiD-VAE's superior performance against state-of-the-art methods. The code is available at https://anonymous.4open.science/r/HiD-VAE-84B2.
♻ ☆ IDEATOR: Jailbreaking and Benchmarking Large Vision-Language Models Using Themselves
As large Vision-Language Models (VLMs) gain prominence, ensuring their safe deployment has become critical. Recent studies have explored VLM robustness against jailbreak attacks-techniques that exploit model vulnerabilities to elicit harmful outputs. However, the limited availability of diverse multimodal data has constrained current approaches to rely heavily on adversarial or manually crafted images derived from harmful text datasets, which often lack effectiveness and diversity across different contexts. In this paper, we propose IDEATOR, a novel jailbreak method that autonomously generates malicious image-text pairs for black-box jailbreak attacks. IDEATOR is grounded in the insight that VLMs themselves could serve as powerful red team models for generating multimodal jailbreak prompts. Specifically, IDEATOR leverages a VLM to create targeted jailbreak texts and pairs them with jailbreak images generated by a state-of-the-art diffusion model. Extensive experiments demonstrate IDEATOR's high effectiveness and transferability, achieving a 94% attack success rate (ASR) in jailbreaking MiniGPT-4 with an average of only 5.34 queries, and high ASRs of 82%, 88%, and 75% when transferred to LLaVA, InstructBLIP, and Chameleon, respectively. Building on IDEATOR's strong transferability and automated process, we introduce the VLJailbreakBench, a safety benchmark comprising 3,654 multimodal jailbreak samples. Our benchmark results on 11 recently released VLMs reveal significant gaps in safety alignment. For instance, our challenge set achieves ASRs of 46.31% on GPT-4o and 19.65% on Claude-3.5-Sonnet, underscoring the urgent need for stronger defenses.VLJailbreakBench is publicly available at https://roywang021.github.io/VLJailbreakBench.
♻ ☆ Uncertainty-aware Diffusion and Reinforcement Learning for Joint Plane Localization and Anomaly Diagnosis in 3D Ultrasound MICCAI 2025
Congenital uterine anomalies (CUAs) can lead to infertility, miscarriage, preterm birth, and an increased risk of pregnancy complications. Compared to traditional 2D ultrasound (US), 3D US can reconstruct the coronal plane, providing a clear visualization of the uterine morphology for assessing CUAs accurately. In this paper, we propose an intelligent system for simultaneous automated plane localization and CUA diagnosis. Our highlights are: 1) we develop a denoising diffusion model with local (plane) and global (volume/text) guidance, using an adaptive weighting strategy to optimize attention allocation to different conditions; 2) we introduce a reinforcement learning-based framework with unsupervised rewards to extract the key slice summary from redundant sequences, fully integrating information across multiple planes to reduce learning difficulty; 3) we provide text-driven uncertainty modeling for coarse prediction, and leverage it to adjust the classification probability for overall performance improvement. Extensive experiments on a large 3D uterine US dataset show the efficacy of our method, in terms of plane localization and CUA diagnosis. Code is available at https://github.com/yuhoo0302/CUA-US.
comment: Accepted by MICCAI 2025;10 pages, 3 figures
♻ ☆ V-HOP: Visuo-Haptic 6D Object Pose Tracking
Humans naturally integrate vision and haptics for robust object perception during manipulation. The loss of either modality significantly degrades performance. Inspired by this multisensory integration, prior object pose estimation research has attempted to combine visual and haptic/tactile feedback. Although these works demonstrate improvements in controlled environments or synthetic datasets, they often underperform vision-only approaches in real-world settings due to poor generalization across diverse grippers, sensor layouts, or sim-to-real environments. Furthermore, they typically estimate the object pose for each frame independently, resulting in less coherent tracking over sequences in real-world deployments. To address these limitations, we introduce a novel unified haptic representation that effectively handles multiple gripper embodiments. Building on this representation, we introduce a new visuo-haptic transformer-based object pose tracker that seamlessly integrates visual and haptic input. We validate our framework in our dataset and the Feelsight dataset, demonstrating significant performance improvement on challenging sequences. Notably, our method achieves superior generalization and robustness across novel embodiments, objects, and sensor types (both taxel-based and vision-based tactile sensors). In real-world experiments, we demonstrate that our approach outperforms state-of-the-art visual trackers by a large margin. We further show that we can achieve precise manipulation tasks by incorporating our real-time object tracking result into motion plans, underscoring the advantages of visuo-haptic perception. Project website: https://ivl.cs.brown.edu/research/v-hop
comment: Accepted by RSS 2025
♻ ☆ Simulating Human-like Daily Activities with Desire-driven Autonomy
Desires motivate humans to interact autonomously with the complex world. In contrast, current AI agents require explicit task specifications, such as instructions or reward functions, which constrain their autonomy and behavioral diversity. In this paper, we introduce a Desire-driven Autonomous Agent (D2A) that can enable a large language model (LLM) to autonomously propose and select tasks, motivated by satisfying its multi-dimensional desires. Specifically, the motivational framework of D2A is mainly constructed by a dynamic Value System, inspired by the Theory of Needs. It incorporates an understanding of human-like desires, such as the need for social interaction, personal fulfillment, and self-care. At each step, the agent evaluates the value of its current state, proposes a set of candidate activities, and selects the one that best aligns with its intrinsic motivations. We conduct experiments on Concordia, a text-based simulator, to demonstrate that our agent generates coherent, contextually relevant daily activities while exhibiting variability and adaptability similar to human behavior. A comparative analysis with other LLM-based agents demonstrates that our approach significantly enhances the rationality of the simulated activities.
♻ ☆ Early Exit and Multi Stage Knowledge Distillation in VLMs for Video Summarization
We introduce DEEVISum (Distilled Early Exit Vision language model for Summarization), a lightweight, efficient, and scalable vision language model designed for segment wise video summarization. Leveraging multi modal prompts that combine textual and audio derived signals, DEEVISum incorporates Multi Stage Knowledge Distillation (MSKD) and Early Exit (EE) to strike a balance between performance and efficiency. MSKD offers a 1.33% absolute F1 improvement over baseline distillation (0.5%), while EE reduces inference time by approximately 21% with a 1.3 point drop in F1. Evaluated on the TVSum dataset, our best model PaLI Gemma2 3B + MSKD achieves an F1 score of 61.1, competing the performance of significantly larger models, all while maintaining a lower computational footprint. We publicly release our code and processed dataset to support further research.
♻ ☆ MIND: Towards Immersive Psychological Healing with Multi-agent Inner Dialogue EMNLP 2025
Mental health issues are worsening in today's competitive society, such as depression and anxiety. Traditional healings like counseling and chatbots fail to engage effectively, they often provide generic responses lacking emotional depth. Although large language models (LLMs) have the potential to create more human-like interactions, they still struggle to capture subtle emotions. This requires LLMs to be equipped with human-like adaptability and warmth. To fill this gap, we propose the MIND (Multi-agent INner Dialogue), a novel paradigm that provides more immersive psychological healing environments. Considering the strong generative and role-playing ability of LLM agents, we predefine an interactive healing framework and assign LLM agents different roles within the framework to engage in interactive inner dialogues with users, thereby providing an immersive healing experience. We conduct extensive human experiments in various real-world healing dimensions, and find that MIND provides a more user-friendly experience than traditional paradigms. This demonstrates that MIND effectively leverages the significant potential of LLMs in psychological healing.
comment: Accepted by EMNLP 2025 Findings
♻ ☆ MERaLiON-SpeechEncoder: Towards a Speech Foundation Model for Singapore and Beyond
This technical report describes the MERaLiON-SpeechEncoder, a foundation model designed to support a wide range of downstream speech applications. Developed as part of Singapore's National Multimodal Large Language Model Programme, the MERaLiON-SpeechEncoder is tailored to address the speech processing needs in Singapore and the surrounding Southeast Asian region. The model currently supports mainly English, including the variety spoken in Singapore. We are actively expanding our datasets to gradually cover other languages in subsequent releases. The MERaLiON-SpeechEncoder was pre-trained from scratch on 200,000 hours of unlabelled speech data using a self-supervised learning approach based on masked language modelling. We describe our training procedure and hyperparameter tuning experiments in detail below. Our evaluation demonstrates improvements to spontaneous and Singapore speech benchmarks for speech recognition, while remaining competitive to other state-of-the-art speech encoders across ten other speech tasks. We commit to releasing our model, supporting broader research endeavours, both in Singapore and beyond.
♻ ☆ Enhancing Few-Shot Transfer Learning with Optimized Multi-Task Prompt Tuning through Modular Prompt Composition
In recent years, multi-task prompt tuning has garnered considerable attention for its inherent modularity and potential to enhance parameter-efficient transfer learning across diverse tasks. This paper aims to analyze and improve the performance of multiple tasks by facilitating the transfer of knowledge between their corresponding prompts in a multi-task setting. Our proposed approach decomposes the prompt for each target task into a combination of shared prompts (source prompts) and a task-specific prompt (private prompt). During training, the source prompts undergo fine-tuning and are integrated with the private prompt to drive the target prompt for each task. We present and compare multiple methods for combining source prompts to construct the target prompt, analyzing the roles of both source and private prompts within each method. We investigate their contributions to task performance and offer flexible, adjustable configurations based on these insights to optimize performance. Our empirical findings clearly showcase improvements in accuracy and robustness compared to the conventional practice of prompt tuning and related works. Notably, our results substantially outperform other methods in the field in few-shot settings, demonstrating superior performance in various tasks across GLUE benchmark, among other tasks. This achievement is attained with a significantly reduced amount of training data, making our method a promising one for few-shot settings.
♻ ☆ VeriSafe Agent: Safeguarding Mobile GUI Agent via Logic-based Action Verification
Large Foundation Models (LFMs) have unlocked new possibilities in human-computer interaction, particularly with the rise of mobile Graphical User Interface (GUI) Agents capable of interacting with mobile GUIs. These agents allow users to automate complex mobile tasks through simple natural language instructions. However, the inherent probabilistic nature of LFMs, coupled with the ambiguity and context-dependence of mobile tasks, makes LFM-based automation unreliable and prone to errors. To address this critical challenge, we introduce VeriSafe Agent (VSA): a formal verification system that serves as a logically grounded safeguard for Mobile GUI Agents. VSA deterministically ensures that an agent's actions strictly align with user intent before executing the action. At its core, VSA introduces a novel autoformalization technique that translates natural language user instructions into a formally verifiable specification. This enables runtime, rule-based verification of agent's actions, detecting erroneous actions even before they take effect. To the best of our knowledge, VSA is the first attempt to bring the rigor of formal verification to GUI agents, bridging the gap between LFM-driven actions and formal software verification. We implement VSA using off-the-shelf LFM services (GPT-4o) and evaluate its performance on 300 user instructions across 18 widely used mobile apps. The results demonstrate that VSA achieves 94.33%-98.33% accuracy in verifying agent actions, outperforming existing LFM-based verification methods by 30.00%-16.33%, and increases the GUI agent's task completion rate by 90%-130%.
♻ ☆ EgoAgent: A Joint Predictive Agent Model in Egocentric Worlds
Learning an agent model that behaves like humans-capable of jointly perceiving the environment, predicting the future, and taking actions from a first-person perspective-is a fundamental challenge in computer vision. Existing methods typically train separate models for these abilities, which fail to capture their intrinsic relationships and prevent them from learning from each other. Inspired by how humans learn through the perception-action loop, we propose EgoAgent, a unified agent model that simultaneously learns to represent, predict, and act within a single transformer. EgoAgent explicitly models the causal and temporal dependencies among these abilities by formulating the task as an interleaved sequence of states and actions. It further introduces a joint embedding-action-prediction architecture with temporally asymmetric predictor and observer branches, enabling synergistic optimization across all three capabilities. Comprehensive evaluations of EgoAgent on representative tasks such as image classification, egocentric future state prediction, and 3D human motion prediction demonstrate the superiority of our method. The code and trained models will be publicly available at https://github.com/zju3dv/EgoAgent.
comment: Project Page: https://egoagent.github.io | Demo Video: https://youtu.be/qhfHp_sfDvY
♻ ☆ Merge-of-Thought Distillation
Efficient reasoning distillation for long chain-of-thought (CoT) models is increasingly constrained by the assumption of a single oracle teacher, despite practical availability of multiple candidate teachers and growing CoT corpora. We revisit teacher selection and observe that different students have different "best teachers," and even for the same student the best teacher can vary across datasets. Therefore, to unify multiple teachers' reasoning abilities into student with overcoming conflicts among various teachers' supervision, we propose Merge-of-Thought Distillation (MoT), a lightweight framework that alternates between teacher-specific supervised fine-tuning branches and weight-space merging of the resulting student variants. On competition math benchmarks, using only about 200 high-quality CoT samples, applying MoT to a Qwen3-14B student surpasses strong models including DEEPSEEK-R1, QWEN3-30B-A3B, QWEN3-32B, and OPENAI-O1, demonstrating substantial gains. Besides, MoT consistently outperforms the best single-teacher distillation and the naive multi-teacher union, raises the performance ceiling while mitigating overfitting, and shows robustness to distribution-shifted and peer-level teachers. Moreover, MoT reduces catastrophic forgetting, improves general reasoning beyond mathematics and even cultivates a better teacher, indicating that consensus-filtered reasoning features transfer broadly. These results position MoT as a simple, scalable route to efficiently distilling long CoT capabilities from diverse teachers into compact students.
♻ ☆ Diffusion Graph Neural Networks for Robustness in Olfaction Sensors and Datasets
Robotic odour source localization (OSL) is a critical capability for autonomous systems operating in complex environments. However, current OSL methods often suffer from ambiguities, particularly when robots misattribute odours to incorrect objects due to limitations in olfactory datasets and sensor resolutions. To address this challenge, we introduce a novel machine learning method using diffusion-based molecular generation to enhance odour localization accuracy that can be used by itself or with automated olfactory dataset construction pipelines. This generative process of our diffusion model expands the chemical space beyond the limitations of both current olfactory datasets and training methods, enabling the identification of potential odourant molecules not previously documented. The generated molecules can then be more accurately validated using advanced olfactory sensors, enabling them to detect more compounds and inform better hardware design. By integrating visual analysis, language processing, and molecular generation, our framework enhances the ability of olfaction-vision models on robots to accurately associate odours with their correct sources, thereby improving navigation and decision-making through better sensor selection for a target compound in critical applications such as explosives detection, narcotics screening, and search and rescue. Our methodology represents a foundational advancement in the field of artificial olfaction, offering a scalable solution to challenges posed by limited olfactory data and sensor ambiguities. Code and data are made available to the community at the following URL: https://github.com/KordelFranceTech/OlfactionVisionLanguage-Dataset.
♻ ☆ OTESGN: Optimal Transport-Enhanced Syntactic-Semantic Graph Networks for Aspect-Based Sentiment Analysis
Aspect-based sentiment analysis (ABSA) aims to identify aspect terms and determine their sentiment polarity. While dependency trees combined with contextual semantics provide structural cues, existing approaches often rely on dot-product similarity and fixed graphs, which limit their ability to capture nonlinear associations and adapt to noisy contexts. To address these limitations, we propose the Optimal Transport-Enhanced Syntactic-Semantic Graph Network (OTESGN), a model that jointly integrates structural and distributional signals. Specifically, a Syntactic Graph-Aware Attention module models global dependencies with syntax-guided masking, while a Semantic Optimal Transport Attention module formulates aspect-opinion association as a distribution matching problem solved via the Sinkhorn algorithm. An Adaptive Attention Fusion mechanism balances heterogeneous features, and contrastive regularization enhances robustness. Extensive experiments on three benchmark datasets (Rest14, Laptop14, and Twitter) demonstrate that OTESGN delivers state-of-the-art performance. Notably, it surpasses competitive baselines by up to +1.30 Macro-F1 on Laptop14 and +1.01 on Twitter. Ablation studies and visualization analyses further highlight OTESGN's ability to capture fine-grained sentiment associations and suppress noise from irrelevant context.
♻ ☆ Klear-CodeTest: Scalable Test Case Generation for Code Reinforcement Learning
Precise, correct feedback is crucial for effectively training large language models (LLMs) in code reinforcement learning. However, synthesizing high-quality test cases remains a profoundly challenging and unsolved problem. In this work, we present Klear-CodeTest, a comprehensive test case synthesis framework featuring rigorous verification to ensure quality and reliability of test cases. Our approach achieves broad coverage of programming problems via a novel Generator-Validation (G-V) framework, ensuring correctness through a consistency validation mechanism that verifies outputs against gold solutions. The proposed G-V framework generates comprehensive test cases including both regular and corner cases, enhancing test coverage and discriminative power for solution correctness assessment in code reinforcement learning. In addition, we design a multi-layered security sandbox system optimized for online verification platforms, guaranteeing safe and reliable code execution. Through comprehensive experiments, we demonstrate the effectiveness of our curated dataset, showing significant improvements in model performance and training stability. The source codes, curated dataset and sandbox system are available at: https://github.com/Kwai-Klear/CodeTest.
comment: 21 pages, 11 figures
♻ ☆ Symmetry-Guided Multi-Agent Inverse Reinforcement Learning IROS 2025
In robotic systems, the performance of reinforcement learning depends on the rationality of predefined reward functions. However, manually designed reward functions often lead to policy failures due to inaccuracies. Inverse Reinforcement Learning (IRL) addresses this problem by inferring implicit reward functions from expert demonstrations. Nevertheless, existing methods rely heavily on large amounts of expert demonstrations to accurately recover the reward function. The high cost of collecting expert demonstrations in robotic applications, particularly in multi-robot systems, severely hinders the practical deployment of IRL. Consequently, improving sample efficiency has emerged as a critical challenge in multi-agent inverse reinforcement learning (MIRL). Inspired by the symmetry inherent in multi-agent systems, this work theoretically demonstrates that leveraging symmetry enables the recovery of more accurate reward functions. Building upon this insight, we propose a universal framework that integrates symmetry into existing multi-agent adversarial IRL algorithms, thereby significantly enhancing sample efficiency. Experimental results from multiple challenging tasks have demonstrated the effectiveness of this framework. Further validation in physical multi-robot systems has shown the practicality of our method.
comment: 8pages, 6 figures. Accepted for publication in the Proceedings of the 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025) as oral presentation
♻ ☆ Parasite: A Steganography-based Backdoor Attack Framework for Diffusion Models
Recently, the diffusion model has gained significant attention as one of the most successful image generation models, which can generate high-quality images by iteratively sampling noise. However, recent studies have shown that diffusion models are vulnerable to backdoor attacks, allowing attackers to enter input data containing triggers to activate the backdoor and generate their desired output. Existing backdoor attack methods primarily focused on target noise-to-image and text-to-image tasks, with limited work on backdoor attacks in image-to-image tasks. Furthermore, traditional backdoor attacks often rely on a single, conspicuous trigger to generate a fixed target image, lacking concealability and flexibility. To address these limitations, we propose a novel backdoor attack method called "Parasite" for image-to-image tasks in diffusion models, which not only is the first to leverage steganography for triggers hiding, but also allows attackers to embed the target content as a backdoor trigger to achieve a more flexible attack. "Parasite" as a novel attack method effectively bypasses existing detection frameworks to execute backdoor attacks. In our experiments, "Parasite" achieved a 0 percent backdoor detection rate against the mainstream defense frameworks. In addition, in the ablation study, we discuss the influence of different hiding coefficients on the attack results. You can find our code at https://anonymous.4open.science/r/Parasite-1715/.
♻ ☆ Knowledge-Guided Biomarker Identification for Label-Free Single-Cell RNA-Seq Data: A Reinforcement Learning Perspective IEEE
Gene panel selection aims to identify the most informative genomic biomarkers in label-free genomic datasets. Traditional approaches, which rely on domain expertise, embedded machine learning models, or heuristic-based iterative optimization, often introduce biases and inefficiencies, potentially obscuring critical biological signals. To address these challenges, we present an iterative gene panel selection strategy that harnesses ensemble knowledge from existing gene selection algorithms to establish preliminary boundaries or prior knowledge, which guide the initial search space. Subsequently, we incorporate reinforcement learning through a reward function shaped by expert behavior, enabling dynamic refinement and targeted selection of gene panels. This integration mitigates biases stemming from initial boundaries while capitalizing on RL's stochastic adaptability. Comprehensive comparative experiments, case studies, and downstream analyses demonstrate the effectiveness of our method, highlighting its improved precision and efficiency for label-free biomarker discovery. Our results underscore the potential of this approach to advance single-cell genomics data analysis.
comment: 27 pages, 14 main doc, 13 supplementary doc. Accepted by IEEE TCBB. arXiv admin note: substantial text overlap with arXiv:2406.07418
♻ ☆ On Synthesis of Timed Regular Expressions
Timed regular expressions serve as a formalism for specifying real-time behaviors of Cyber-Physical Systems. In this paper, we consider the synthesis of timed regular expressions, focusing on generating a timed regular expression consistent with a given set of system behaviors including positive and negative examples, i.e., accepting all positive examples and rejecting all negative examples. We first prove the decidability of the synthesis problem through an exploration of simple timed regular expressions. Subsequently, we propose our method of generating a consistent timed regular expression with minimal length, which unfolds in two steps. The first step is to enumerate and prune candidate parametric timed regular expressions. In the second step, we encode the requirement that a candidate generated by the first step is consistent with the given set into a Satisfiability Modulo Theories (SMT) formula, which is consequently solved to determine a solution to parametric time constraints. Finally, we evaluate our approach on benchmarks, including randomly generated behaviors from target timed models and a case study.
comment: 15 pages, 5 figures, 7 tables
♻ ☆ Optimizing Length Compression in Large Reasoning Models
Large Reasoning Models (LRMs) have achieved remarkable success, yet they often suffer from producing unnecessary and verbose reasoning chains. We identify a core aspect of this issue as "invalid thinking" -- models tend to repeatedly double-check their work after having derived the correct answer. To address this specific inefficiency, we move beyond the general principles of Efficacy and Efficiency to propose two new, fine-grained principles: Brevity, which advocates for eliminating redundancy, and Sufficiency, which ensures critical reasoning steps are preserved. Guided by these principles, we introduce LC-R1, a post-training method based on Group Relative Policy Optimization (GRPO). LC-R1 employs a novel combination of a Length Reward for overall conciseness and a Compress Reward that is specifically designed to remove the invalid portion of the thinking process. Extensive experiments on multiple reasoning benchmarks demonstrate that LC-R1 achieves a significant reduction in sequence length (~50%) with only a marginal (~2%) drop in accuracy, achieving a favorable trade-off point on the Pareto frontier that prioritizes high compression. Our analysis further validates the robustness of LC-R1 and provides valuable insights for developing more powerful yet computationally efficient LRMs. Our code is released at https://github.com/zxiangx/LC-R1.
comment: 16 pages, 7 figures, 4 tables
♻ ☆ Towards Generalized Routing: Model and Agent Orchestration for Adaptive and Efficient Inference
The rapid advancement of large language models (LLMs) and domain-specific AI agents has greatly expanded the ecosystem of AI-powered services. User queries, however, are highly diverse and often span multiple domains and task types, resulting in a complex and heterogeneous landscape. This diversity presents a fundamental routing challenge: how to accurately direct each query to an appropriate execution unit while optimizing both performance and efficiency. To address this, we propose MoMA (Mixture of Models and Agents), a generalized routing framework that integrates both LLM and agent-based routing. Built upon a deep understanding of model and agent capabilities, MoMA effectively handles diverse queries through precise intent recognition and adaptive routing strategies, achieving an optimal balance between efficiency and cost. Specifically, we construct a detailed training dataset to profile the capabilities of various LLMs under different routing model structures, identifying the most suitable tasks for each LLM. During inference, queries are dynamically routed to the LLM with the best cost-performance efficiency. We also introduce an efficient agent selection strategy based on a context-aware state machine and dynamic masking. Experimental results demonstrate that the MoMA router offers superior cost-efficiency and scalability compared to existing approaches.
♻ ☆ Combating Falsification of Speech Videos with Live Optical Signatures (Extended Version) CCS '25
High-profile speech videos are prime targets for falsification, owing to their accessibility and influence. This work proposes VeriLight, a low-overhead and unobtrusive system for protecting speech videos from visual manipulations of speaker identity and lip and facial motion. Unlike the predominant purely digital falsification detection methods, VeriLight creates dynamic physical signatures at the event site and embeds them into all video recordings via imperceptible modulated light. These physical signatures encode semantically-meaningful features unique to the speech event, including the speaker's identity and facial motion, and are cryptographically-secured to prevent spoofing. The signatures can be extracted from any video downstream and validated against the portrayed speech content to check its integrity. Key elements of VeriLight include (1) a framework for generating extremely compact (i.e., 150-bit), pose-invariant speech video features, based on locality-sensitive hashing; and (2) an optical modulation scheme that embeds $>$200 bps into video while remaining imperceptible both in video and live. Experiments on extensive video datasets show VeriLight achieves AUCs $\geq$ 0.99 and a true positive rate of 100% in detecting falsified videos. Further, VeriLight is highly robust across recording conditions, video post-processing techniques, and white-box adversarial attacks on its feature extraction methods. A demonstration of VeriLight is available at https://mobilex.cs.columbia.edu/verilight.
comment: In Proceedings of the 2025 ACM SIGSAC Conference on Computer and Communications Security (CCS '25). October 13 - 17, 2025, Taipei, Taiwan. ACM, New York, NY, USA. 19 pages
♻ ☆ SWI: Speaking with Intent in Large Language Models
Intent, typically clearly formulated and planned, functions as a cognitive framework for communication and problem-solving. This paper introduces the concept of Speaking with Intent (SWI) in large language models (LLMs), where the explicitly generated intent encapsulates the model's underlying intention and provides high-level planning to guide subsequent analysis and action. By emulating deliberate and purposeful thoughts in the human mind, SWI is hypothesized to enhance the reasoning capabilities and generation quality of LLMs. Extensive experiments on text summarization, multi-task question answering, and mathematical reasoning benchmarks consistently demonstrate the effectiveness and generalizability of Speaking with Intent over direct generation without explicit intent. Further analysis corroborates the generalizability of SWI under different experimental settings. Moreover, human evaluations verify the coherence, effectiveness, and interpretability of the intent produced by SWI. The promising results in enhancing LLMs with explicit intents pave a new avenue for boosting LLMs' generation and reasoning abilities with cognitive notions.
comment: Code: https://github.com/YuweiYin/SWI
Computation and Language 75
☆ FLUX-Reason-6M & PRISM-Bench: A Million-Scale Text-to-Image Reasoning Dataset and Comprehensive Benchmark
The advancement of open-source text-to-image (T2I) models has been hindered by the absence of large-scale, reasoning-focused datasets and comprehensive evaluation benchmarks, resulting in a performance gap compared to leading closed-source systems. To address this challenge, We introduce FLUX-Reason-6M and PRISM-Bench (Precise and Robust Image Synthesis Measurement Benchmark). FLUX-Reason-6M is a massive dataset consisting of 6 million high-quality FLUX-generated images and 20 million bilingual (English and Chinese) descriptions specifically designed to teach complex reasoning. The image are organized according to six key characteristics: Imagination, Entity, Text rendering, Style, Affection, and Composition, and design explicit Generation Chain-of-Thought (GCoT) to provide detailed breakdowns of image generation steps. The whole data curation takes 15,000 A100 GPU days, providing the community with a resource previously unattainable outside of large industrial labs. PRISM-Bench offers a novel evaluation standard with seven distinct tracks, including a formidable Long Text challenge using GCoT. Through carefully designed prompts, it utilizes advanced vision-language models for nuanced human-aligned assessment of prompt-image alignment and image aesthetics. Our extensive evaluation of 19 leading models on PRISM-Bench reveals critical performance gaps and highlights specific areas requiring improvement. Our dataset, benchmark, and evaluation code are released to catalyze the next wave of reasoning-oriented T2I generation. Project page: https://flux-reason-6m.github.io/ .
comment: Project page: https://flux-reason-6m.github.io/
☆ ButterflyQuant: Ultra-low-bit LLM Quantization through Learnable Orthogonal Butterfly Transforms
Large language models require massive memory footprints, severely limiting deployment on consumer hardware. Quantization reduces memory through lower numerical precision, but extreme 2-bit quantization suffers from catastrophic performance loss due to outliers in activations. Rotation-based methods such as QuIP and QuaRot apply orthogonal transforms to eliminate outliers before quantization, using computational invariance: $\mathbf{y} = \mathbf{Wx} = (\mathbf{WQ}^T)(\mathbf{Qx})$ for orthogonal $\mathbf{Q}$. However, these methods use fixed transforms--Hadamard matrices achieving optimal worst-case coherence $\mu = 1/\sqrt{n}$--that cannot adapt to specific weight distributions. We identify that different transformer layers exhibit distinct outlier patterns, motivating layer-adaptive rotations rather than one-size-fits-all approaches. We propose ButterflyQuant, which replaces Hadamard rotations with learnable butterfly transforms parameterized by continuous Givens rotation angles. Unlike Hadamard's discrete $\{+1, -1\}$ entries that are non-differentiable and prohibit gradient-based learning, butterfly transforms' continuous parameterization enables smooth optimization while guaranteeing orthogonality by construction. This orthogonal constraint ensures theoretical guarantees in outlier suppression while achieving $O(n \log n)$ computational complexity with only $\frac{n \log n}{2}$ learnable parameters. We further introduce a uniformity regularization on post-transformation activations to promote smoother distributions amenable to quantization. Learning requires only 128 calibration samples and converges in minutes on a single GPU--a negligible one-time cost. On LLaMA-2-7B with 2-bit quantization, ButterflyQuant achieves 15.4 perplexity versus 22.1 for QuaRot.
comment: Replace discrete Hadamard transforms with continuous Butterfly transforms to facilitate the learning of rotation matrices in LLM quantization
☆ SimpleVLA-RL: Scaling VLA Training via Reinforcement Learning
Vision-Language-Action (VLA) models have recently emerged as a powerful paradigm for robotic manipulation. Despite substantial progress enabled by large-scale pretraining and supervised fine-tuning (SFT), these models face two fundamental challenges: (i) the scarcity and high cost of large-scale human-operated robotic trajectories required for SFT scaling, and (ii) limited generalization to tasks involving distribution shift. Recent breakthroughs in Large Reasoning Models (LRMs) demonstrate that reinforcement learning (RL) can dramatically enhance step-by-step reasoning capabilities, raising a natural question: Can RL similarly improve the long-horizon step-by-step action planning of VLA? In this work, we introduce SimpleVLA-RL, an efficient RL framework tailored for VLA models. Building upon veRL, we introduce VLA-specific trajectory sampling, scalable parallelization, multi-environment rendering, and optimized loss computation. When applied to OpenVLA-OFT, SimpleVLA-RL achieves SoTA performance on LIBERO and even outperforms $\pi_0$ on RoboTwin 1.0\&2.0 with the exploration-enhancing strategies we introduce. SimpleVLA-RL not only reduces dependence on large-scale data and enables robust generalization, but also remarkably surpasses SFT in real-world tasks. Moreover, we identify a novel phenomenon ``pushcut'' during RL training, wherein the policy discovers previously unseen patterns beyond those seen in the previous training process. Github: https://github.com/PRIME-RL/SimpleVLA-RL
☆ CDE: Curiosity-Driven Exploration for Efficient Reinforcement Learning in Large Language Models
Reinforcement Learning with Verifiable Rewards (RLVR) is a powerful paradigm for enhancing the reasoning ability of Large Language Models (LLMs). Yet current RLVR methods often explore poorly, leading to premature convergence and entropy collapse. To address this challenge, we introduce Curiosity-Driven Exploration (CDE), a framework that leverages the model's own intrinsic sense of curiosity to guide exploration. We formalize curiosity with signals from both the actor and the critic: for the actor, we use perplexity over its generated response, and for the critic, we use the variance of value estimates from a multi-head architecture. Both signals serve as an exploration bonus within the RLVR framework to guide the model. Our theoretical analysis shows that the actor-wise bonus inherently penalizes overconfident errors and promotes diversity among correct responses; moreover, we connect the critic-wise bonus to the well-established count-based exploration bonus in RL. Empirically, our method achieves an approximate +3 point improvement over standard RLVR using GRPO/PPO on AIME benchmarks. Further analysis identifies a calibration collapse mechanism within RLVR, shedding light on common LLM failure modes.
comment: 21 pages
☆ Steering MoE LLMs via Expert (De)Activation
Mixture-of-Experts (MoE) in Large Language Models (LLMs) routes each token through a subset of specialized Feed-Forward Networks (FFN), known as experts. We present SteerMoE, a framework for steering MoE models by detecting and controlling behavior-linked experts. Our detection method identifies experts with distinct activation patterns across paired inputs exhibiting contrasting behaviors. By selectively (de)activating such experts during inference, we control behaviors like faithfulness and safety without retraining or modifying weights. Across 11 benchmarks and 6 LLMs, our steering raises safety by up to +20% and faithfulness by +27%. In adversarial attack mode, it drops safety by -41% alone, and -100% when combined with existing jailbreak methods, bypassing all safety guardrails and exposing a new dimension of alignment faking hidden within experts.
☆ Retrieval-Augmented Generation for Reliable Interpretation of Radio Regulations
We study question answering in the domain of radio regulations, a legally sensitive and high-stakes area. We propose a telecom-specific Retrieval-Augmented Generation (RAG) pipeline and introduce, to our knowledge, the first multiple-choice evaluation set for this domain, constructed from authoritative sources using automated filtering and human validation. To assess retrieval quality, we define a domain-specific retrieval metric, under which our retriever achieves approximately 97% accuracy. Beyond retrieval, our approach consistently improves generation accuracy across all tested models. In particular, while naively inserting documents without structured retrieval yields only marginal gains for GPT-4o (less than 1%), applying our pipeline results in nearly a 12% relative improvement. These findings demonstrate that carefully targeted grounding provides a simple yet strong baseline and an effective domain-specific solution for regulatory question answering. All code and evaluation scripts, along with our derived question-answer dataset, are available at https://github.com/Zakaria010/Radio-RAG.
☆ All for One: LLMs Solve Mental Math at the Last Token With Information Transferred From Other Tokens EMNLP 2025
Large language models (LLMs) demonstrate proficiency across numerous computational tasks, yet their inner workings remain unclear. In theory, the combination of causal self-attention and multilayer perceptron layers allows every token to access and compute information based on all preceding tokens. In practice, to what extent are such operations present? In this paper, on mental math tasks (i.e., direct math calculation via next-token prediction without explicit reasoning), we investigate this question in three steps: inhibiting input-specific token computations in the initial layers, restricting the routes of information transfer across token positions in the next few layers, and forcing all computation to happen at the last token in the remaining layers. With two proposed techniques, Context-Aware Mean Ablation (CAMA) and Attention-Based Peeking (ABP), we identify an All-for-One subgraph (AF1) with high accuracy on a wide variety of mental math tasks, where meaningful computation occurs very late (in terms of layer depth) and only at the last token, which receives information of other tokens in few specific middle layers. Experiments on a variety of models and arithmetic expressions show that this subgraph is sufficient and necessary for high model performance, transfers across different models, and works on a variety of input styles. Ablations on different CAMA and ABP alternatives reveal their unique advantages over other methods, which may be of independent interest.
comment: EMNLP 2025 Main Conference
☆ DiFlow-TTS: Discrete Flow Matching with Factorized Speech Tokens for Low-Latency Zero-Shot Text-To-Speech
Zero-shot Text-to-Speech (TTS) aims to synthesize high-quality speech that mimics the voice of an unseen speaker using only a short reference sample, requiring not only speaker adaptation but also accurate modeling of prosodic attributes. Recent approaches based on language models, diffusion, and flow matching have shown promising results in zero-shot TTS, but still suffer from slow inference and repetition artifacts. Discrete codec representations have been widely adopted for speech synthesis, and recent works have begun to explore diffusion models in purely discrete settings, suggesting the potential of discrete generative modeling for speech synthesis. However, existing flow-matching methods typically embed these discrete tokens into a continuous space and apply continuous flow matching, which may not fully leverage the advantages of discrete representations. To address these challenges, we introduce DiFlow-TTS, which, to the best of our knowledge, is the first model to explore purely Discrete Flow Matching for speech synthesis. DiFlow-TTS explicitly models factorized speech attributes within a compact and unified architecture. It leverages in-context learning by conditioning on textual content, along with prosodic and acoustic attributes extracted from a reference speech, enabling effective attribute cloning in a zero-shot setting. In addition, the model employs a factorized flow prediction mechanism with distinct heads for prosody and acoustic details, allowing it to learn aspect-specific distributions. Experimental results demonstrate that DiFlow-TTS achieves promising performance in several key metrics, including naturalness, prosody, preservation of speaker style, and energy control. It also maintains a compact model size and achieves low-latency inference, generating speech up to 25.8 times faster than the latest existing baselines.
☆ Bridging the Capability Gap: Joint Alignment Tuning for Harmonizing LLM-based Multi-Agent Systems EMNLP 2025
The advancement of large language models (LLMs) has enabled the construction of multi-agent systems to solve complex tasks by dividing responsibilities among specialized agents, such as a planning agent for subgoal generation and a grounding agent for executing tool-use actions. Most existing methods typically fine-tune these agents independently, leading to capability gaps among them with poor coordination. To address this, we propose MOAT, a Multi-Agent Joint Alignment Tuning framework that improves agents collaboration through iterative alignment. MOAT alternates between two key stages: (1) Planning Agent Alignment, which optimizes the planning agent to generate subgoal sequences that better guide the grounding agent; and (2) Grounding Agent Improving, which fine-tunes the grounding agent using diverse subgoal-action pairs generated by the agent itself to enhance its generalization capablity. Theoretical analysis proves that MOAT ensures a non-decreasing and progressively convergent training process. Experiments across six benchmarks demonstrate that MOAT outperforms state-of-the-art baselines, achieving average improvements of 3.1% on held-in tasks and 4.4% on held-out tasks.
comment: EMNLP 2025 Findings
☆ LAVA: Language Model Assisted Verbal Autopsy for Cause-of-Death Determination
Verbal autopsy (VA) is a critical tool for estimating causes of death in resource-limited settings where medical certification is unavailable. This study presents LA-VA, a proof-of-concept pipeline that combines Large Language Models (LLMs) with traditional algorithmic approaches and embedding-based classification for improved cause-of-death prediction. Using the Population Health Metrics Research Consortium (PHMRC) dataset across three age categories (Adult: 7,580; Child: 1,960; Neonate: 2,438), we evaluate multiple approaches: GPT-5 predictions, LCVA baseline, text embeddings, and meta-learner ensembles. Our results demonstrate that GPT-5 achieves the highest individual performance with average test site accuracies of 48.6% (Adult), 50.5% (Child), and 53.5% (Neonate), outperforming traditional statistical machine learning baselines by 5-10%. Our findings suggest that simple off-the-shelf LLM-assisted approaches could substantially improve verbal autopsy accuracy, with important implications for global health surveillance in low-resource settings.
☆ Fluent but Unfeeling: The Emotional Blind Spots of Language Models
The versatility of Large Language Models (LLMs) in natural language understanding has made them increasingly popular in mental health research. While many studies explore LLMs' capabilities in emotion recognition, a critical gap remains in evaluating whether LLMs align with human emotions at a fine-grained level. Existing research typically focuses on classifying emotions into predefined, limited categories, overlooking more nuanced expressions. To address this gap, we introduce EXPRESS, a benchmark dataset curated from Reddit communities featuring 251 fine-grained, self-disclosed emotion labels. Our comprehensive evaluation framework examines predicted emotion terms and decomposes them into eight basic emotions using established emotion theories, enabling a fine-grained comparison. Systematic testing of prevalent LLMs under various prompt settings reveals that accurately predicting emotions that align with human self-disclosed emotions remains challenging. Qualitative analysis further shows that while certain LLMs generate emotion terms consistent with established emotion theories and definitions, they sometimes fail to capture contextual cues as effectively as human self-disclosures. These findings highlight the limitations of LLMs in fine-grained emotion alignment and offer insights for future research aimed at enhancing their contextual understanding.
comment: Camera-ready version for ICWSM 2026. First two authors contributed equally
☆ Personality-Enhanced Social Recommendations in SAMI: Exploring the Role of Personality Detection in Matchmaking
Social connection is a vital part of learning, yet online course environments present barriers to the organic formation of social groups. SAMI offers one solution by facilitating student connections, but its effectiveness is constrained by an incomplete Theory of Mind, limiting its ability to create an effective mental model of a student. One facet of this is its inability to intuit personality, which may influence the relevance of its recommendations. To explore this, we propose a personality detection model utilizing GPTs zero-shot capability to infer Big-Five personality traits from forum introduction posts, often encouraged in online courses. We benchmark its performance against established models, demonstrating its efficacy in this task. Furthermore, we integrate this model into SAMIs entity-based matchmaking system, enabling personality-informed social recommendations. Initial integration suggests personality traits can complement existing matching factors, though additional evaluation is required to determine their full impact on student engagement and match quality.
Prompting the Market? A Large-Scale Meta-Analysis of GenAI in Finance NLP (2022-2025) EMNLP
Large Language Models (LLMs) have rapidly reshaped financial NLP, enabling new tasks and driving a proliferation of datasets and diversification of data sources. Yet, this transformation has outpaced traditional surveys. In this paper, we present MetaGraph, a generalizable methodology for extracting knowledge graphs from scientific literature and analyzing them to obtain a structured, queryable view of research trends. We define an ontology for financial NLP research and apply an LLM-based extraction pipeline to 681 papers (2022-2025), enabling large-scale, data-driven analysis. MetaGraph reveals three key phases: early LLM adoption and task/dataset innovation; critical reflection on LLM limitations; and growing integration of peripheral techniques into modular systems. This structured view offers both practitioners and researchers a clear understanding of how financial NLP has evolved - highlighting emerging trends, shifting priorities, and methodological shifts-while also demonstrating a reusable approach for mapping scientific progress in other domains.
comment: 7 pages, 6 appendices, EMNLP industry track
☆ DeMeVa at LeWiDi-2025: Modeling Perspectives with In-Context Learning and Label Distribution Learning EMNLP-2025
This system paper presents the DeMeVa team's approaches to the third edition of the Learning with Disagreements shared task (LeWiDi 2025; Leonardelli et al., 2025). We explore two directions: in-context learning (ICL) with large language models, where we compare example sampling strategies; and label distribution learning (LDL) methods with RoBERTa (Liu et al., 2019b), where we evaluate several fine-tuning methods. Our contributions are twofold: (1) we show that ICL can effectively predict annotator-specific annotations (perspectivist annotations), and that aggregating these predictions into soft labels yields competitive performance; and (2) we argue that LDL methods are promising for soft label predictions and merit further exploration by the perspectivist community.
comment: 11 pages, 4 figures; to appear at NLPerspectives@EMNLP-2025
☆ Towards Explainable Job Title Matching: Leveraging Semantic Textual Relatedness and Knowledge Graphs
Semantic Textual Relatedness (STR) captures nuanced relationships between texts that extend beyond superficial lexical similarity. In this study, we investigate STR in the context of job title matching - a key challenge in resume recommendation systems, where overlapping terms are often limited or misleading. We introduce a self-supervised hybrid architecture that combines dense sentence embeddings with domain-specific Knowledge Graphs (KGs) to improve both semantic alignment and explainability. Unlike previous work that evaluated models on aggregate performance, our approach emphasizes data stratification by partitioning the STR score continuum into distinct regions: low, medium, and high semantic relatedness. This stratified evaluation enables a fine-grained analysis of model performance across semantically meaningful subspaces. We evaluate several embedding models, both with and without KG integration via graph neural networks. The results show that fine-tuned SBERT models augmented with KGs produce consistent improvements in the high-STR region, where the RMSE is reduced by 25% over strong baselines. Our findings highlight not only the benefits of combining KGs with text embeddings, but also the importance of regional performance analysis in understanding model behavior. This granular approach reveals strengths and weaknesses hidden by global metrics, and supports more targeted model selection for use in Human Resources (HR) systems and applications where fairness, explainability, and contextual matching are essential.
☆ Mitigating Language Barriers in Education: Developing Multilingual Digital Learning Materials with Machine Translation
The EdUKate project combines digital education, linguistics, translation studies, and machine translation to develop multilingual learning materials for Czech primary and secondary schools. Launched through collaboration between a major Czech academic institution and the country's largest educational publisher, the project is aimed at translating up to 9,000 multimodal interactive exercises from Czech into Ukrainian, English, and German for an educational web portal. It emphasizes the development and evaluation of a direct Czech-Ukrainian machine translation system tailored to the educational domain, with special attention to processing formatted content such as XML and PDF and handling technical and scientific terminology. We present findings from an initial survey of Czech teachers regarding the needs of non-Czech-speaking students and describe the system's evaluation and implementation on the web portal. All resulting applications are freely available to students, educators, and researchers.
comment: 8 pages, 2 figures
☆ GrACE: A Generative Approach to Better Confidence Elicitation in Large Language Models
Assessing the reliability of Large Language Models (LLMs) by confidence elicitation is a prominent approach to AI safety in high-stakes applications, such as healthcare and finance. Existing methods either require expensive computational overhead or suffer from poor calibration, making them impractical and unreliable for real-world deployment. In this work, we propose GrACE, a Generative Approach to Confidence Elicitation that enables scalable and reliable confidence elicitation for LLMs. GrACE adopts a novel mechanism in which the model expresses confidence by the similarity between the last hidden state and the embedding of a special token appended to the vocabulary, in real-time. We fine-tune the model for calibrating the confidence with calibration targets associated with accuracy. Experiments with three LLMs and two benchmark datasets show that the confidence produced by GrACE achieves the best discriminative capacity and calibration on open-ended generation tasks, outperforming six competing methods without resorting to additional sampling or an auxiliary model. Moreover, we propose two strategies for improving test-time scaling based on confidence induced by GrACE. Experimental results show that using GrACE not only improves the accuracy of the final decision but also significantly reduces the number of required samples in the test-time scaling scheme, indicating the potential of GrACE as a practical solution for deploying LLMs with scalable, reliable, and real-time confidence estimation.
comment: 20 pages, 11 figures
☆ LLMs Don't Know Their Own Decision Boundaries: The Unreliability of Self-Generated Counterfactual Explanations EMNLP 2025
To collaborate effectively with humans, language models must be able to explain their decisions in natural language. We study a specific type of self-explanation: self-generated counterfactual explanations (SCEs), where a model explains its prediction by modifying the input such that it would have predicted a different outcome. We evaluate whether LLMs can produce SCEs that are valid, achieving the intended outcome, and minimal, modifying the input no more than necessary. When asked to generate counterfactuals, we find that LLMs typically produce SCEs that are valid, but far from minimal, offering little insight into their decision-making behaviour. Worryingly, when asked to generate minimal counterfactuals, LLMs typically make excessively small edits that fail to change predictions. The observed validity-minimality trade-off is consistent across several LLMs, datasets, and evaluation settings. Our findings suggest that SCEs are, at best, an ineffective explainability tool and, at worst, can provide misleading insights into model behaviour. Proposals to deploy LLMs in high-stakes settings must consider the impact of unreliable self-explanations on downstream decision-making. Our code is available at https://github.com/HarryMayne/SCEs.
comment: Accepted to EMNLP 2025 Main
☆ Hierarchical Bracketing Encodings Work for Dependency Graphs EMNLP 2025
We revisit hierarchical bracketing encodings from a practical perspective in the context of dependency graph parsing. The approach encodes graphs as sequences, enabling linear-time parsing with $n$ tagging actions, and still representing reentrancies, cycles, and empty nodes. Compared to existing graph linearizations, this representation substantially reduces the label space while preserving structural information. We evaluate it on a multilingual and multi-formalism benchmark, showing competitive results and consistent improvements over other methods in exact match accuracy.
comment: Accepted at EMNLP 2025 (main)
☆ Modelling Analogies and Analogical Reasoning: Connecting Cognitive Science Theory and NLP Research
Analogical reasoning is an essential aspect of human cognition. In this paper, we summarize key theory about the processes underlying analogical reasoning from the cognitive science literature and relate it to current research in natural language processing. While these processes can be easily linked to concepts in NLP, they are generally not viewed through a cognitive lens. Furthermore, we show how these notions are relevant for several major challenges in NLP research, not directly related to analogy solving. This may guide researchers to better optimize relational understanding in text, as opposed to relying heavily on entity-level similarity.
☆ MetaRAG: Metamorphic Testing for Hallucination Detection in RAG Systems
Large Language Models (LLMs) are increasingly deployed in enterprise applications, yet their reliability remains limited by hallucinations, i.e., confident but factually incorrect information. Existing detection approaches, such as SelfCheckGPT and MetaQA, primarily target standalone LLMs and do not address the unique challenges of Retrieval-Augmented Generation (RAG) systems, where responses must be consistent with retrieved evidence. We therefore present MetaRAG, a metamorphic testing framework for hallucination detection in Retrieval-Augmented Generation (RAG) systems. MetaRAG operates in a real-time, unsupervised, black-box setting, requiring neither ground-truth references nor access to model internals, making it suitable for proprietary and high-stakes domains. The framework proceeds in four stages: (1) decompose answers into atomic factoids, (2) generate controlled mutations of each factoid using synonym and antonym substitutions, (3) verify each variant against the retrieved context (synonyms are expected to be entailed and antonyms contradicted), and (4) aggregate penalties for inconsistencies into a response-level hallucination score. Crucially for identity-aware AI, MetaRAG localizes unsupported claims at the factoid span where they occur (e.g., pregnancy-specific precautions, LGBTQ+ refugee rights, or labor eligibility), allowing users to see flagged spans and enabling system designers to configure thresholds and guardrails for identity-sensitive queries. Experiments on a proprietary enterprise dataset illustrate the effectiveness of MetaRAG for detecting hallucinations and enabling trustworthy deployment of RAG-based conversational agents. We also outline a topic-based deployment design that translates MetaRAG's span-level scores into identity-aware safeguards; this design is discussed but not evaluated in our experiments.
comment: under review
☆ OmniEVA: Embodied Versatile Planner via Task-Adaptive 3D-Grounded and Embodiment-aware Reasoning
Recent advances in multimodal large language models (MLLMs) have opened new opportunities for embodied intelligence, enabling multimodal understanding, reasoning, and interaction, as well as continuous spatial decision-making. Nevertheless, current MLLM-based embodied systems face two critical limitations. First, Geometric Adaptability Gap: models trained solely on 2D inputs or with hard-coded 3D geometry injection suffer from either insufficient spatial information or restricted 2D generalization, leading to poor adaptability across tasks with diverse spatial demands. Second, Embodiment Constraint Gap: prior work often neglects the physical constraints and capacities of real robots, resulting in task plans that are theoretically valid but practically infeasible.To address these gaps, we introduce OmniEVA -- an embodied versatile planner that enables advanced embodied reasoning and task planning through two pivotal innovations: (1) a Task-Adaptive 3D Grounding mechanism, which introduces a gated router to perform explicit selective regulation of 3D fusion based on contextual requirements, enabling context-aware 3D grounding for diverse embodied tasks. (2) an Embodiment-Aware Reasoning framework that jointly incorporates task goals and embodiment constraints into the reasoning loop, resulting in planning decisions that are both goal-directed and executable. Extensive experimental results demonstrate that OmniEVA not only achieves state-of-the-art general embodied reasoning performance, but also exhibits a strong ability across a wide range of downstream scenarios. Evaluations of a suite of proposed embodied benchmarks, including both primitive and composite tasks, confirm its robust and versatile planning capabilities. Project page: https://omnieva.github.io
☆ Can Multimodal LLMs See Materials Clearly? A Multimodal Benchmark on Materials Characterization
Materials characterization is fundamental to acquiring materials information, revealing the processing-microstructure-property relationships that guide material design and optimization. While multimodal large language models (MLLMs) have recently shown promise in generative and predictive tasks within materials science, their capacity to understand real-world characterization imaging data remains underexplored. To bridge this gap, we present MatCha, the first benchmark for materials characterization image understanding, comprising 1,500 questions that demand expert-level domain expertise. MatCha encompasses four key stages of materials research comprising 21 distinct tasks, each designed to reflect authentic challenges faced by materials scientists. Our evaluation of state-of-the-art MLLMs on MatCha reveals a significant performance gap compared to human experts. These models exhibit degradation when addressing questions requiring higher-level expertise and sophisticated visual perception. Simple few-shot and chain-of-thought prompting struggle to alleviate these limitations. These findings highlight that existing MLLMs still exhibit limited adaptability to real-world materials characterization scenarios. We hope MatCha will facilitate future research in areas such as new material discovery and autonomous scientific agents. MatCha is available at https://github.com/FreedomIntelligence/MatCha.
☆ From scratch to silver: Creating trustworthy training data for patent-SDG classification using Large Language Models
Classifying patents by their relevance to the UN Sustainable Development Goals (SDGs) is crucial for tracking how innovation addresses global challenges. However, the absence of a large, labeled dataset limits the use of supervised learning. Existing methods, such as keyword searches, transfer learning, and citation-based heuristics, lack scalability and generalizability. This paper frames patent-to-SDG classification as a weak supervision problem, using citations from patents to SDG-tagged scientific publications (NPL citations) as a noisy initial signal. To address its sparsity and noise, we develop a composite labeling function (LF) that uses large language models (LLMs) to extract structured concepts, namely functions, solutions, and applications, from patents and SDG papers based on a patent ontology. Cross-domain similarity scores are computed and combined using a rank-based retrieval approach. The LF is calibrated via a custom positive-only loss that aligns with known NPL-SDG links without penalizing discovery of new SDG associations. The result is a silver-standard, soft multi-label dataset mapping patents to SDGs, enabling the training of effective multi-label regression models. We validate our approach through two complementary strategies: (1) internal validation against held-out NPL-based labels, where our method outperforms several baselines including transformer-based models, and zero-shot LLM; and (2) external validation using network modularity in patent citation, co-inventor, and co-applicant graphs, where our labels reveal greater thematic, cognitive, and organizational coherence than traditional technological classifications. These results show that weak supervision and semantic alignment can enhance SDG classification at scale.
☆ Tree-OPO: Off-policy Monte Carlo Tree-Guided Advantage Optimization for Multistep Reasoning
Recent advances in reasoning with large language models (LLMs) have shown the effectiveness of Monte Carlo Tree Search (MCTS) for generating high-quality intermediate trajectories, particularly in math and symbolic domains. Inspired by this, we explore how MCTS-derived trajectories, traditionally used for training value or reward models, can be repurposed to improve policy optimization in preference-based reinforcement learning (RL). Specifically, we focus on Group Relative Policy Optimization (GRPO), a recent algorithm that enables preference-consistent policy learning without value networks. We propose a staged GRPO training paradigm where completions are derived from partially revealed MCTS rollouts, introducing a novel tree-structured setting for advantage estimation. This leads to a rich class of prefix-conditioned reward signals, which we analyze theoretically and empirically. Our initial results indicate that while structured advantage estimation can stabilize updates and better reflect compositional reasoning quality, challenges such as advantage saturation and reward signal collapse remain. We propose heuristic and statistical solutions to mitigate these issues and discuss open challenges for learning under staged or tree-like reward structures.
☆ Harnessing Uncertainty: Entropy-Modulated Policy Gradients for Long-Horizon LLM Agents ICLR 2026
In long-horizon tasks, recent agents based on Large Language Models (LLMs) face a significant challenge that sparse, outcome-based rewards make it difficult to assign credit to intermediate steps. Previous methods mainly focus on creating dense reward signals to guide learning, either through traditional reinforcement learning techniques like inverse reinforcement learning or by using Process Reward Models for step-by-step feedback. In this paper, we identify a fundamental problem in the learning dynamics of LLMs: the magnitude of policy gradients is inherently coupled with the entropy, which leads to inefficient small updates for confident correct actions and potentially destabilizes large updates for uncertain ones. To resolve this, we propose Entropy-Modulated Policy Gradients (EMPG), a framework that re-calibrates the learning signal based on step-wise uncertainty and the final task outcome. EMPG amplifies updates for confident correct actions, penalizes confident errors, and attenuates updates from uncertain steps to stabilize exploration. We further introduce a bonus term for future clarity that encourages agents to find more predictable solution paths. Through comprehensive experiments on three challenging agent tasks, WebShop, ALFWorld, and Deep Search, we demonstrate that EMPG achieves substantial performance gains and significantly outperforms strong policy gradient baselines. Project page is at https://empgseed-seed.github.io/
comment: ICLR 2026 Under review
☆ Agentic LLMs for Question Answering over Tabular Data ACL
Question Answering over Tabular Data (Table QA) presents unique challenges due to the diverse structure, size, and data types of real-world tables. The SemEval 2025 Task 8 (DataBench) introduced a benchmark composed of large-scale, domain-diverse datasets to evaluate the ability of models to accurately answer structured queries. We propose a Natural Language to SQL (NL-to-SQL) approach leveraging large language models (LLMs) such as GPT-4o, GPT-4o-mini, and DeepSeek v2:16b to generate SQL queries dynamically. Our system follows a multi-stage pipeline involving example selection, SQL query generation, answer extraction, verification, and iterative refinement. Experiments demonstrate the effectiveness of our approach, achieving 70.5\% accuracy on DataBench QA and 71.6\% on DataBench Lite QA, significantly surpassing baseline scores of 26\% and 27\% respectively. This paper details our methodology, experimental results, and alternative approaches, providing insights into the strengths and limitations of LLM-driven Table QA.
comment: Accepted at ACL workshop SemEval 2025
☆ Reading Between the Lines: Classifying Resume Seniority with Large Language Models
Accurately assessing candidate seniority from resumes is a critical yet challenging task, complicated by the prevalence of overstated experience and ambiguous self-presentation. In this study, we investigate the effectiveness of large language models (LLMs), including fine-tuned BERT architectures, for automating seniority classification in resumes. To rigorously evaluate model performance, we introduce a hybrid dataset comprising both real-world resumes and synthetically generated hard examples designed to simulate exaggerated qualifications and understated seniority. Using the dataset, we evaluate the performance of Large Language Models in detecting subtle linguistic cues associated with seniority inflation and implicit expertise. Our findings highlight promising directions for enhancing AI-driven candidate evaluation systems and mitigating bias introduced by self-promotional language. The dataset is available for the research community at https://bit.ly/4mcTovt
comment: 5 pages, 3 figures
☆ Identifying Key Features for Establishing Sustainable Agro-Tourism Centre: A Data Driven Approach
Agro-tourism serves as a strategic economic model designed to facilitate rural development by diversifying income streams for local communities like farmers while promoting the conservation of indigenous cultural heritage and traditional agricultural practices. As a very booming subdomain of tourism, there is a need to study the strategies for the growth of Agro-tourism in detail. The current study has identified the important indicators for the growth and enhancement of agro-tourism. The study is conducted in two phases: identification of the important indicators through a comprehensive literature review and in the second phase state-of-the-art techniques were used to identify the important indicators for the growth of agro-tourism. The indicators are also called features synonymously, the machine learning models for feature selection were applied and it was observed that the Least Absolute Shrinkage and Selection Operator (LASSO) method combined with, the machine Learning Classifiers such as Logistic Regression (LR), Decision Trees (DT), Random Forest (RF) Tree, and Extreme Gradient Boosting (XGBOOST) models were used to suggest the growth of the agro-tourism. The results show that with the LASSO method, LR model gives the highest classification accuracy of 98% in 70-30% train-test data followed by RF with 95% accuracy. Similarly, in the 80-20% train-test data LR maintains the highest accuracy at 99%, while DT and XGBoost follow with 97% accuracy.
☆ Bona fide Cross Testing Reveals Weak Spot in Audio Deepfake Detection Systems
Audio deepfake detection (ADD) models are commonly evaluated using datasets that combine multiple synthesizers, with performance reported as a single Equal Error Rate (EER). However, this approach disproportionately weights synthesizers with more samples, underrepresenting others and reducing the overall reliability of EER. Additionally, most ADD datasets lack diversity in bona fide speech, often featuring a single environment and speech style (e.g., clean read speech), limiting their ability to simulate real-world conditions. To address these challenges, we propose bona fide cross-testing, a novel evaluation framework that incorporates diverse bona fide datasets and aggregates EERs for more balanced assessments. Our approach improves robustness and interpretability compared to traditional evaluation methods. We benchmark over 150 synthesizers across nine bona fide speech types and release a new dataset to facilitate further research at https://github.com/cyaaronk/audio_deepfake_eval.
comment: Published in Interspeech 2025
☆ CCF: A Context Compression Framework for Efficient Long-Sequence Language Modeling
Scaling language models to longer contexts is essential for capturing rich dependencies across extended discourse. However, na\"ive context extension imposes significant computational and memory burdens, often resulting in inefficiencies during both training and inference. In this work, we propose CCF, a novel context compression framework designed to enable efficient long-context modeling by learning hierarchical latent representations that preserve global semantics while aggressively reducing input redundancy. CCF integrates segment-wise semantic aggregation with key-value memory encoding, forming compact representations that support accurate reconstruction and long-range understanding. To further enhance scalability, we introduce a training-efficient optimization strategy that couples incremental segment decoding with sparse reservoir sampling, substantially reducing memory overhead without degrading performance. Empirical results on multiple long-context language modeling benchmarks demonstrate that CCF achieves competitive perplexity under high compression ratios, and significantly improves throughput and memory efficiency compared to existing approaches. These findings highlight the potential of structured compression for scalable and effective long-context language modeling.
☆ GmSLM : Generative Marmoset Spoken Language Modeling
Marmoset monkeys exhibit complex vocal communication, challenging the view that nonhuman primates vocal communication is entirely innate, and show similar features of human speech, such as vocal labeling of others and turn-taking. Studying their vocal communication offers a unique opportunity to link it with brain activity-especially given the difficulty of accessing the human brain in speech and language research. Since Marmosets communicate primarily through vocalizations, applying standard LLM approaches is not straightforward. We introduce Generative Marmoset Spoken Language Modeling (GmSLM), an optimized spoken language model pipeline for Marmoset vocal communication. We designed a novel zero-shot evaluation metrics using unsupervised in-the-wild data, alongside weakly labeled conversational data, to assess GmSLM and demonstrate its advantage over a basic human-speech-based baseline. GmSLM generated vocalizations closely matched real resynthesized samples acoustically and performed well on downstream tasks. Despite being fully unsupervised, GmSLM effectively distinguish real from artificial conversations and may support further investigations of the neural basis of vocal communication and provides a practical framework linking vocalization and brain activity. We believe GmSLM stands to benefit future work in neuroscience, bioacoustics, and evolutionary biology. Samples are provided under: pages.cs.huji.ac.il/adiyoss-lab/GmSLM.
☆ Improving Synthetic Data Training for Contextual Biasing Models with a Keyword-Aware Cost Function
Rare word recognition can be improved by adapting ASR models to synthetic data that includes these words. Further improvements can be achieved through contextual biasing, which trains and adds a biasing module into the model architecture to prioritize rare words. While training the module on synthetic rare word data is more effective than using non-rare-word data, it can lead to overfitting due to artifacts in the synthetic audio. To address this, we enhance the TCPGen-based contextual biasing approach and propose a keyword-aware loss function that additionally focuses on biased words when training biasing modules. This loss includes a masked cross-entropy term for biased word prediction and a binary classification term for detecting biased word positions. These two terms complementarily support the decoding of biased words during inference. By adapting Whisper to 10 hours of synthetic data, our method reduced the word error rate on the NSC Part 2 test set from 29.71% to 11.81%.
comment: Published in Interspeech 2025
☆ Efficient Trie-based Biasing using K-step Prediction for Rare Word Recognition
Contextual biasing improves rare word recognition of ASR models by prioritizing the output of rare words during decoding. A common approach is Trie-based biasing, which gives "bonus scores" to partial hypothesis (e.g. "Bon") that may lead to the generation of the rare word (e.g. "Bonham"). If the full word ("Bonham") isn't ultimately recognized, the system revokes those earlier bonuses. This revocation is limited to beam search and is computationally expensive, particularly for models with large decoders. To overcome these limitations, we propose adapting ASR models to look ahead and predict multiple steps at once. This avoids the revocation step entirely by better estimating whether a partial hypothesis will lead to the generation of the full rare word. By fine-tuning Whisper with only 10 hours of synthetic data, our method reduces the word error rate on the NSC Part 2 test set from 30.86% to 12.19%.
comment: Published in Interspeech 2025
☆ EchoX: Towards Mitigating Acoustic-Semantic Gap via Echo Training for Speech-to-Speech LLMs
Speech-to-speech large language models (SLLMs) are attracting increasing attention. Derived from text-based large language models (LLMs), SLLMs often exhibit degradation in knowledge and reasoning capabilities. We hypothesize that this limitation arises because current training paradigms for SLLMs fail to bridge the acoustic-semantic gap in the feature representation space. To address this issue, we propose EchoX, which leverages semantic representations and dynamically generates speech training targets. This approach integrates both acoustic and semantic learning, enabling EchoX to preserve strong reasoning abilities as a speech LLM. Experimental results demonstrate that EchoX, with about six thousand hours of training data, achieves advanced performance on multiple knowledge-based question-answering benchmarks. The project is available at https://github.com/FreedomIntelligence/EchoX.
☆ Target-oriented Multimodal Sentiment Classification with Counterfactual-enhanced Debiasing IEEE
Target-oriented multimodal sentiment classification seeks to predict sentiment polarity for specific targets from image-text pairs. While existing works achieve competitive performance, they often over-rely on textual content and fail to consider dataset biases, in particular word-level contextual biases. This leads to spurious correlations between text features and output labels, impairing classification accuracy. In this paper, we introduce a novel counterfactual-enhanced debiasing framework to reduce such spurious correlations. Our framework incorporates a counterfactual data augmentation strategy that minimally alters sentiment-related causal features, generating detail-matched image-text samples to guide the model's attention toward content tied to sentiment. Furthermore, for learning robust features from counterfactual data and prompting model decisions, we introduce an adaptive debiasing contrastive learning mechanism, which effectively mitigates the influence of biased words. Experimental results on several benchmark datasets show that our proposed method outperforms state-of-the-art baselines.
comment: Accepted by the IEEE International Conference on Multimedia and Expo (ICME 2025). \copyright\ 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses
☆ LITcoder: A General-Purpose Library for Building and Comparing Encoding Models
We introduce LITcoder, an open-source library for building and benchmarking neural encoding models. Designed as a flexible backend, LITcoder provides standardized tools for aligning continuous stimuli (e.g., text and speech) with brain data, transforming stimuli into representational features, mapping those features onto brain data, and evaluating the predictive performance of the resulting model on held-out data. The library implements a modular pipeline covering a wide array of methodological design choices, so researchers can easily compose, compare, and extend encoding models without reinventing core infrastructure. Such choices include brain datasets, brain regions, stimulus feature (both neural-net-based and control, such as word rate), downsampling approaches, and many others. In addition, the library provides built-in logging, plotting, and seamless integration with experiment tracking platforms such as Weights & Biases (W&B). We demonstrate the scalability and versatility of our framework by fitting a range of encoding models to three story listening datasets: LeBel et al. (2023), Narratives, and Little Prince. We also explore the methodological choices critical for building encoding models for continuous fMRI data, illustrating the importance of accounting for all tokens in a TR scan (as opposed to just taking the last one, even when contextualized), incorporating hemodynamic lag effects, using train-test splits that minimize information leakage, and accounting for head motion effects on encoding model predictivity. Overall, LITcoder lowers technical barriers to encoding model implementation, facilitates systematic comparisons across models and datasets, fosters methodological rigor, and accelerates the development of high-quality high-performance predictive models of brain activity. Project page: https://litcoder-brain.github.io
☆ ViRanker: A BGE-M3 & Blockwise Parallel Transformer Cross-Encoder for Vietnamese Reranking
This paper presents ViRanker, a cross-encoder reranking model tailored to the Vietnamese language. Built on the BGE-M3 encoder and enhanced with the Blockwise Parallel Transformer, ViRanker addresses the lack of competitive rerankers for Vietnamese, a low-resource language with complex syntax and diacritics. The model was trained on an 8 GB curated corpus and fine-tuned with hybrid hard-negative sampling to strengthen robustness. Evaluated on the MMARCO-VI benchmark, ViRanker achieves strong early-rank accuracy, surpassing multilingual baselines and competing closely with PhoRanker. By releasing the model openly on Hugging Face, we aim to support reproducibility and encourage wider adoption in real-world retrieval systems. Beyond Vietnamese, this study illustrates how careful architectural adaptation and data curation can advance reranking in other underrepresented languages.
comment: 9 pages
☆ Automated Classification of Tutors' Dialogue Acts Using Generative AI: A Case Study Using the CIMA Corpus
This study explores the use of generative AI for automating the classification of tutors' Dialogue Acts (DAs), aiming to reduce the time and effort required by traditional manual coding. This case study uses the open-source CIMA corpus, in which tutors' responses are pre-annotated into four DA categories. Both GPT-3.5-turbo and GPT-4 models were tested using tailored prompts. Results show that GPT-4 achieved 80% accuracy, a weighted F1-score of 0.81, and a Cohen's Kappa of 0.74, surpassing baseline performance and indicating substantial agreement with human annotations. These findings suggest that generative AI has strong potential to provide an efficient and accessible approach to DA classification, with meaningful implications for educational dialogue analysis. The study also highlights the importance of task-specific label definitions and contextual information in enhancing the quality of automated annotation. Finally, it underscores the ethical considerations associated with the use of generative AI and the need for responsible and transparent research practices. The script of this research is publicly available at https://github.com/liqunhe27/Generative-AI-for-educational-dialogue-act-tagging.
comment: Accepted for publication in the journal Reflecting Digital Learning. First submitted: 30 Oct 2023. The final version will be available open access via the journal
☆ Compass-v3: Scaling Domain-Specific LLMs for Multilingual E-Commerce in Southeast Asia
Large language models (LLMs) excel in general-domain applications, yet their performance often degrades in specialized tasks requiring domain-specific knowledge. E-commerce is particularly challenging, as its data are noisy, heterogeneous, multilingual, and highly dynamic. We present Compass-v3, a vertical-domain Mixture-of-Experts (MoE) model with 245B total parameters and 71B active per token, designed for Southeast Asian e-commerce. Compass-v3 adopts fewer but larger experts, combined with hardware-efficient optimizations-such as intra-node expert parallelism and a customized memcpy operator-to maximize GPU utilization. The model is trained on 12T tokens of curated multilingual corpora and large-scale synthetic e-commerce instructions using a mixed-training strategy. To enhance alignment, we propose Optimal-Transport Direct Preference Optimization (OTPO), which captures token-level distinctions and improves instruction adherence in commerce-specific scenarios. Extensive evaluations demonstrate that Compass-v3 delivers state-of-the-art e-commerce performance, surpassing DeepSeek-V3.1, GPT-4 series, and Qwen3-235B. Moreover, Compass-v3 demonstrates strong multilingual capability across low-resource Southeast Asian languages (Indonesian, Thai, Filipino, Vietnamese, Malay, Taglog) and Portuguese while sustaining competitive performance on general benchmarks. It has already been widely applied in Shopee's industrial-scale e-commerce platform and is gradually replacing OpenAI's traffic, now accounting for over 70\% of total LLM usage, highlighting its dual strengths in specialized commerce expertise and broad linguistic competence.
☆ TigerCoder: A Novel Suite of LLMs for Code Generation in Bangla
Despite being the 5th most spoken language, Bangla remains underrepresented in Large Language Models (LLMs), particularly for code generation. This primarily stems from the scarcity of high-quality data to pre-train and/or finetune such models. Hence, we introduce the first dedicated family of Code LLMs for Bangla (1B & 9B). We offer three major contributions: (1) a comprehensive Bangla code instruction datasets for programming domain adaptation; (2) MBPP-Bangla, an evaluation benchmark for Bangla code generation; and (3) the TigerCoder-family of Code LLMs, achieving significant ~11-18% performance gains at Pass@1 over existing multilingual and general-purpose Bangla LLMs. Our findings show that curated, high-quality datasets can overcome limitations of smaller models for low-resource languages. We open-source all resources to advance further Bangla LLM research.
☆ MR-UIE: Multi-Perspective Reasoning with Reinforcement Learning for Universal Information Extraction
Large language models (LLMs) demonstrate robust capabilities across diverse research domains. However, their performance in universal information extraction (UIE) remains insufficient, especially when tackling structured output scenarios that involve complex schema descriptions and require multi-step reasoning. While existing approaches enhance the performance of LLMs through in-context learning and instruction tuning, significant limitations nonetheless persist. To enhance the model's generalization ability, we propose integrating reinforcement learning (RL) with multi-perspective reasoning for information extraction (IE) tasks. Our work transitions LLMs from passive extractors to active reasoners, enabling them to understand not only what to extract but also how to reason. Experiments conducted on multiple IE benchmarks demonstrate that MR-UIE consistently elevates extraction accuracy across domains and surpasses state-of-the-art methods on several datasets. Furthermore, incorporating multi-perspective reasoning into RL notably enhances generalization in complex IE tasks, underscoring the critical role of reasoning in challenging scenarios.
♻ ☆ Can Large Language Models Understand As Well As Apply Patent Regulations to Pass a Hands-On Patent Attorney Test?
The legal field already uses various large language models (LLMs) in actual applications, but their quantitative performance and reasons for it are underexplored. We evaluated several open-source and proprietary LLMs -- including GPT-series, Anthropic, Deepseek and Llama-3, variants -- on parts of the European Qualifying Examination (EQE) for future European Patent Attorneys. OpenAI o1 led with 0.82 accuracy and 0.81 F1 score, whereas (Amazon Web Services) AWS Llama 3.1 8B lagged at 0.50 accuracy, and a Python-deployed Llama 3.1 8B scored 0.55. The latter two are within the range of mere guessing for the two-answer forced-choice design. None of the evaluated models could have passed the examination fully, as accuracy never exceeded the average threshold of 0.90 required for professional-level standards -- also not models that are regularly promoted for their assumed beyond-PhD- and bar-admitted-lawyer-level performance. GPT-4o excelled at integrating text and graphics, while Claude 3 Opus often lost formatting coherence. Human patent experts evaluated the textual justifications and uncovered various critical shortcomings of each model. They valued clarity and legal rationale over the raw correctness of the answers, which revealed misalignment between automatic metrics and expert judgment. Model outputs were sensitive to modest temperature changes and prompt wording, which underscores the remaining necessity of expert oversight. Future work should target logical consistency, robust multimodality, and adaptive prompting to approach human-level patent proficiency. In summary, despite the outstanding performance of recent large models, the general public might overestimate their performance. The field has a long way to go to develop a virtual patent attorney. This paper wants to point out several specific limitations that need solutions.
comment: 41 pages, 21 figures
♻ ☆ The NTNU System at the S&I Challenge 2025 SLA Open Track ISCA
A recent line of research on spoken language assessment (SLA) employs neural models such as BERT and wav2vec 2.0 (W2V) to evaluate speaking proficiency across linguistic and acoustic modalities. Although both models effectively capture features relevant to oral competence, each exhibits modality-specific limitations. BERT-based methods rely on ASR transcripts, which often fail to capture prosodic and phonetic cues for SLA. In contrast, W2V-based methods excel at modeling acoustic features but lack semantic interpretability. To overcome these limitations, we propose a system that integrates W2V with Phi-4 multimodal large language model (MLLM) through a score fusion strategy. The proposed system achieves a root mean square error (RMSE) of 0.375 on the official test set of the Speak & Improve Challenge 2025, securing second place in the competition. For comparison, the RMSEs of the top-ranked, third-ranked, and official baseline systems are 0.364, 0.384, and 0.444, respectively.
comment: submitted to the ISCA SLaTE-2025 Workshop
♻ ☆ Improved GUI Grounding via Iterative Narrowing
Graphical User Interface (GUI) grounding plays a crucial role in enhancing the capabilities of Vision-Language Model (VLM) agents. While general VLMs, such as GPT-4V, demonstrate strong performance across various tasks, their proficiency in GUI grounding remains suboptimal. Recent studies have focused on fine-tuning these models specifically for zero-shot GUI grounding, yielding significant improvements over baseline performance. We introduce a visual prompting framework that employs an iterative narrowing mechanism to further improve the performance of both general and fine-tuned models in GUI grounding. For evaluation, we tested our method on a comprehensive benchmark comprising various UI platforms and provided the code to reproduce our results.
comment: Code available at https://github.com/ant-8/GUI-Grounding-via-Iterative-Narrowing
♻ ☆ Task Matters: Knowledge Requirements Shape LLM Responses to Context-Memory Conflict
Large Language Models require both contextual knowledge and parametric memory, but these sources can disagree. Prior investigations on contextual question answering tasks report a preference toward parametric knowledge under conflict, yet they focus almost exclusively on tasks that should always rely on the given passage, leaving open how this behavior manifests when tasks demand different amounts and kinds of knowledge. We study this question with a model-agnostic diagnostic framework that (i) automatically detects disagreements between a model's beliefs and a curated knowledge set, and (ii) injects controlled conflicts into tasks. The resulting datasets span two orthogonal dimensions: task knowledge reliance and conflict plausibility. Evaluating representative open-source LLMs, we find that: (1) performance degradation from conflict correlates with a task's knowledge reliance; (2) explanatory rationales and simple reiteration both increase context reliance-helpful for context-only tasks but harmful when parametric knowledge should dominate; (3) These behaviors raise concerns about the validity of model-based evaluation and underscore the need to account for knowledge conflict in the deployment of LLMs.
comment: Major revision
♻ ☆ Entropy-Gated Branching for Efficient Test-Time Reasoning
Test-time compute methods like beam search can significantly improve the reasoning capabilities and problem-solving accuracy of large language models. However, these approaches require substantially increased computational resources, with most computation wasted on exploring low-diversity branches where the model already exhibits high confidence. We observe that a small subset of uncertain reasoning steps has a disproportionately large impact on final prediction accuracy, and branching at these points tends to yield higher-quality and more diverse candidate reasoning steps. Therefore, we introduce Entropy-Gated Branching: a novel inference technique that dynamically allocates computational resources by selectively expanding prediction sequences only at points of high uncertainty. Our method leverages entropy as a gating mechanism to identify when branching is most beneficial, coupled with an external feedback model to rank and prune candidate branches. Empirical results on mathematical and financial reasoning benchmarks show that this strategy improves accuracy by 22.6% over standard inference while operating 37% faster than conventional beam search with similar or higher performance. Our results show that dynamic resource allocation during inference can substantially improve both efficiency and effectiveness, offering a more scalable pathway to enhanced LLM reasoning capabilities.
♻ ☆ Persistent Homology of Topic Networks for the Prediction of Reader Curiosity
Reader curiosity, the drive to seek information, is crucial for textual engagement, yet remains relatively underexplored in NLP. Building on Loewenstein's Information Gap Theory, we introduce a framework that models reader curiosity by quantifying semantic information gaps within a text's semantic structure. Our approach leverages BERTopic-inspired topic modeling and persistent homology to analyze the evolving topology (connected components, cycles, voids) of a dynamic semantic network derived from text segments, treating these features as proxies for information gaps. To empirically evaluate this pipeline, we collect reader curiosity ratings from participants (n = 49) as they read S. Collins's ''The Hunger Games'' novel. We then use the topological features from our pipeline as independent variables to predict these ratings, and experimentally show that they significantly improve curiosity prediction compared to a baseline model (73% vs. 30% explained deviance), validating our approach. This pipeline offers a new computational method for analyzing text structure and its relation to reader engagement.
comment: Original paper with an improved and extended appendix
♻ ☆ Uncertainty Quantification in Retrieval Augmented Question Answering
Retrieval augmented Question Answering (QA) helps QA models overcome knowledge gaps by incorporating retrieved evidence, typically a set of passages, alongside the question at test time. Previous studies show that this approach improves QA performance and reduces hallucinations, without, however, assessing whether the retrieved passages are indeed useful at answering correctly. In this work, we propose to quantify the uncertainty of a QA model via estimating the utility of the passages it is provided with. We train a lightweight neural model to predict passage utility for a target QA model and show that while simple information theoretic metrics can predict answer correctness up to a certain extent, our approach efficiently approximates or outperforms more expensive sampling-based methods. Code and data are available at https://github.com/lauhaide/ragu.
comment: TMLR (09/2025)
♻ ☆ Thinking with Many Minds: Using Large Language Models for Multi-Perspective Problem-Solving
Complex problem-solving requires cognitive flexibility--the capacity to entertain multiple perspectives while preserving their distinctiveness. This flexibility replicates the "wisdom of crowds" within a single individual, allowing them to "think with many minds." While mental simulation enables imagined deliberation, cognitive constraints limit its effectiveness. We propose synthetic deliberation, a Large Language Model (LLM)-based method that simulates discourse between agents embodying diverse perspectives, as a solution. Using a custom GPT-based model, we showcase its benefits: concurrent processing of multiple viewpoints without cognitive degradation, parallel exploration of perspectives, and precise control over viewpoint synthesis. By externalizing the deliberative process and distributing cognitive labor between parallel search and integration, synthetic deliberation transcends mental simulation's limitations. This approach shows promise for strategic planning, policymaking, and conflict resolution.
comment: 36 pages, 1 appendix
♻ ☆ LoRA-PAR: A Flexible Dual-System LoRA Partitioning Approach to Efficient LLM Fine-Tuning
Large-scale generative models like DeepSeek-R1 and OpenAI-O1 benefit substantially from chain-of-thought (CoT) reasoning, yet pushing their performance typically requires vast data, large model sizes, and full-parameter fine-tuning. While parameter-efficient fine-tuning (PEFT) helps reduce cost, most existing approaches primarily address domain adaptation or layer-wise allocation rather than explicitly tailoring data and parameters to different response demands. Inspired by "Thinking, Fast and Slow," which characterizes two distinct modes of thought-System 1 (fast, intuitive, often automatic) and System 2 (slower, more deliberative and analytic)-we draw an analogy that different "subregions" of an LLM's parameters might similarly specialize for tasks that demand quick, intuitive responses versus those requiring multi-step logical reasoning. Therefore, we propose LoRA-PAR, a dual-system LoRA framework that partitions both data and parameters by System 1 or System 2 demands, using fewer yet more focused parameters for each task. Specifically, we classify task data via multi-model role-playing and voting, and partition parameters based on importance scoring, then adopt a two-stage fine-tuning strategy of training System 1 tasks with supervised fine-tuning (SFT) to enhance knowledge and intuition and refine System 2 tasks with reinforcement learning (RL) to reinforce deeper logical deliberation next. Extensive experiments show that the two-stage fine-tuning strategy, SFT and RL, lowers active parameter usage while matching or surpassing SOTA PEFT baselines.
comment: 12 pages
♻ ☆ An Ontology-Driven Graph RAG for Legal Norms: A Structural, Temporal, and Deterministic Approach
Retrieval-Augmented Generation (RAG) systems in the legal domain face a critical challenge: standard, flat-text retrieval is blind to the hierarchical, diachronic, and causal structure of law, leading to anachronistic and unreliable answers. This paper introduces the Structure-Aware Temporal Graph RAG (SAT-Graph RAG), an ontology-driven framework designed to overcome these limitations by explicitly modeling the formal structure and diachronic nature of legal norms. We ground our knowledge graph in a formal, LRMoo-inspired model that distinguishes abstract legal Works from their versioned Expressions. We model temporal states as efficient aggregations that reuse the versioned expressions (CTVs) of unchanged components, and we reify legislative events as first-class Action nodes to make causality explicit and queryable. This structured backbone enables a unified, planner-guided query strategy that applies explicit policies to deterministically resolve complex requests for (i) point-in-time retrieval, (ii) hierarchical impact analysis, and (iii) auditable provenance reconstruction. Through a case study on the Brazilian Constitution, we demonstrate how this approach provides a verifiable, temporally-correct substrate for LLMs, enabling higher-order analytical capabilities while drastically reducing the risk of factual errors. The result is a practical framework for building more trustworthy and explainable legal AI systems.
comment: Major revision for clarity and academic precision. Updated title and abstract. Refined core terminology, contributions, related work, and shifted the implementation to a conceptual architecture. Added new arguments to strengthen the paper's thesis
♻ ☆ MERLIN: Multi-Stage Curriculum Alignment for Multilingual Encoder and LLM Fusion
Large language models excel in English but still struggle with complex reasoning in many low-resource languages (LRLs). Existing encoder-plus-decoder methods such as LangBridge and MindMerger raise accuracy on mid and high-resource languages, yet they leave a large gap on LRLs. We present MERLIN, a two-stage model-stacking framework that applies a curriculum learning strategy -- from general bilingual bitext to task-specific data -- and adapts only a small set of DoRA weights. On the AfriMGSM benchmark MERLIN improves exact-match accuracy by +12.9 pp over MindMerger and outperforms GPT-4o-mini. It also yields consistent gains on MGSM and MSVAMP (+0.9 and +2.8 pp), demonstrating effectiveness across both low and high-resource settings.
comment: under submission
♻ ☆ Contextualize-then-Aggregate: Circuits for In-Context Learning in Gemma-2 2B
In-Context Learning (ICL) is an intriguing ability of large language models (LLMs). Despite a substantial amount of work on its behavioral aspects and how it emerges in miniature setups, it remains unclear which mechanism assembles task information from the individual examples in a fewshot prompt. We use causal interventions to identify information flow in Gemma-2 2B for five naturalistic ICL tasks. We find that the model infers task information using a two-step strategy we call contextualize-then-aggregate: In the lower layers, the model builds up representations of individual fewshot examples, which are contextualized by preceding examples through connections between fewshot input and output tokens across the sequence. In the higher layers, these representations are aggregated to identify the task and prepare prediction of the next output. The importance of the contextualization step differs between tasks, and it may become more important in the presence of ambiguous examples. Overall, by providing rigorous causal analysis, our results shed light on the mechanisms through which ICL happens in language models.
♻ ☆ CritiQ: Mining Data Quality Criteria from Human Preferences ACL 2025
Language model heavily depends on high-quality data for optimal performance. Existing approaches rely on manually designed heuristics, the perplexity of existing models, training classifiers, or careful prompt engineering, which require significant expert experience and human annotation effort while introduce biases. We introduce CritiQ, a novel data selection method that automatically mines criteria from human preferences for data quality with only ~30 human-annotated pairs and performs efficient data selection. The main component, CritiQ Flow, employs a manager agent to evolve quality criteria and worker agents to make pairwise judgments. We build a knowledge base that extracts quality criteria from previous work to boost CritiQ Flow. Compared to perplexity- and classifier- based methods, verbal criteria are more interpretable and possess reusable value. After deriving the criteria, we train the CritiQ Scorer to give quality scores and perform efficient data selection. We demonstrate the effectiveness of our method in the code, math, and logic domains, achieving high accuracy on human-annotated test sets. To validate the quality of the selected data, we continually train Llama 3.1 models and observe improved performance on downstream tasks compared to uniform sampling. Ablation studies validate the benefits of the knowledge base and the reflection process. We analyze how criteria evolve and the effectiveness of majority voting.
comment: to be published in ACL 2025, Code is available at https://github.com/KYLN24/CritiQ
♻ ☆ FLM-Audio: Natural Monologues Improves Native Full-Duplex Chatbots via Dual Training
Full-duplex dialog models aim to listen and speak simultaneously, delivering rapid responses to dynamic user input. Among different solutions to full duplexity, a native solution merges multiple channels in each time step, achieving the lowest latency. However, prevailing designs break down the textual monologue sentences for word-level alignment with audio streams, which degrades language modeling abilities. To help address this issue, we introduce natural monologues, which are composed by continuous sentences and waiting intervals, mimicking humanoid cognitive behavior in dialogs. We find a proper training paradigm to be critical for semantically aligning natural monologues with audio. To this end, we develop a dual training paradigm that alternates the position of the monologues, either leading or trailing the audio, across different training stages. A combination of our natural monologue and dual training strategy is applied in developing FLM-Audio, our 7B spoken dialog chatbot with native full-duplexity. As confirmed by experimental results, FLM-Audio achieves superior response qualities and chatting experiences while requiring significantly less training data.
♻ ☆ Improving Alignment in LVLMs with Debiased Self-Judgment EMNLP 2025
The rapid advancements in Large Language Models (LLMs) and Large Visual-Language Models (LVLMs) have opened up new opportunities for integrating visual and linguistic modalities. However, effectively aligning these modalities remains challenging, often leading to hallucinations--where generated outputs are not grounded in the visual input--and raising safety concerns across various domains. Existing alignment methods, such as instruction tuning and preference tuning, often rely on external datasets, human annotations, or complex post-processing, which limit scalability and increase costs. To address these challenges, we propose a novel approach that generates the debiased self-judgment score, a self-evaluation metric created internally by the model without relying on external resources. This enables the model to autonomously improve alignment. Our method enhances both decoding strategies and preference tuning processes, resulting in reduced hallucinations, enhanced safety, and improved overall capability. Empirical results show that our approach significantly outperforms traditional methods, offering a more effective solution for aligning LVLMs.
comment: EMNLP 2025 Findings
♻ ☆ Generative Data Refinement: Just Ask for Better Data
For a fixed parameter size, the capabilities of large models are primarily determined by the quality and quantity of its training data. Consequently, training datasets now grow faster than the rate at which new data is indexed on the web, leading to projected data exhaustion over the next decade. Much more data exists as user-generated content that is not publicly indexed, but incorporating such data comes with considerable risks, such as leaking private information and other undesirable content. We introduce a framework, Generative Data Refinement (GDR), for using pretrained generative models to transform a dataset with undesirable content into a refined dataset that is more suitable for training. Our experiments show that GDR can outperform industry-grade solutions for dataset anonymization, as well as enable direct detoxification of highly unsafe datasets. Moreover, we show that by generating synthetic data that is conditioned on each example in the real dataset, GDR's refined outputs naturally match the diversity of web scale datasets, and thereby avoid the often challenging task of generating diverse synthetic data via model prompting. The simplicity and effectiveness of GDR make it a powerful tool for scaling up the total stock of training data for frontier models.
♻ ☆ Culturally-Nuanced Story Generation for Reasoning in Low-Resource Languages: The Case of Javanese and Sundanese
Culturally grounded commonsense reasoning is underexplored in low-resource languages due to scarce data and costly native annotation. We test whether large language models (LLMs) can generate culturally nuanced narratives for such settings. Focusing on Javanese and Sundanese, we compare three data creation strategies: (1) LLM-assisted stories prompted with cultural cues, (2) machine translation from Indonesian benchmarks, and (3) native-written stories. Human evaluation finds LLM stories match natives on cultural fidelity but lag in coherence and correctness. We fine-tune models on each dataset and evaluate on a human-authored test set for classification and generation. LLM-generated data yields higher downstream performance than machine-translated and Indonesian human-authored training data. We release a high-quality benchmark of culturally grounded commonsense stories in Javanese and Sundanese to support future work.
♻ ☆ RED: Unleashing Token-Level Rewards from Holistic Feedback via Reward Redistribution
Reinforcement learning from human feedback (RLHF) offers a promising approach to aligning large language models (LLMs) with human preferences. Typically, a reward model is trained or supplied to act as a proxy for humans in evaluating generated responses during the reinforcement training phase. However, current reward models operate as sequence-to-one models, allocating a single, sparse, and delayed reward to an entire output sequence. This approach may overlook the significant contributions of individual tokens toward the desired outcome. To this end, we propose a more fine-grained, token-level guidance approach for RL training. Specifically, we introduce RED, a novel reward redistribition method that evaluates and assigns specific credit to each token using an off-the-shelf reward model. Utilizing these fine-grained rewards enhances the model's understanding of language nuances, leading to more precise performance improvements. Notably, our method does not require modifying the reward model or introducing additional training steps, thereby incurring minimal computational costs. Experimental results across diverse datasets and tasks demonstrate the superiority of our approach.
♻ ☆ PersonaFuse: A Personality Activation-Driven Framework for Enhancing Human-LLM Interactions
Recent advancements in Large Language Models (LLMs) demonstrate remarkable capabilities across various fields. These developments have led to more direct communication between humans and LLMs in various situations, such as social companionship and psychological support. However, LLMs often exhibit limitations in emotional perception and social competence during real-world conversations. These limitations partly originate from their inability to adapt their communication style and emotional expression to different social and task contexts. In this work, we introduce PersonaFuse, a novel LLM post-training framework that enables LLMs to adapt and express different personalities for varying situations. Inspired by Trait Activation Theory and the Big Five personality model, PersonaFuse employs a Mixture-of-Expert architecture that combines persona adapters with a dynamic routing network, enabling contextual trait expression. Experimental results show that PersonaFuse substantially outperforms baseline models across multiple dimensions of social-emotional intelligence. Importantly, these gains are achieved without sacrificing general reasoning ability or model safety, which remain common limitations of direct prompting and supervised fine-tuning approaches. PersonaFuse also delivers consistent improvements in downstream human-centered applications, such as mental health counseling and review-based customer service. Finally, human preference evaluations against leading LLMs, including GPT-4o and DeepSeek, demonstrate that PersonaFuse achieves competitive response quality despite its comparatively smaller model size. These findings demonstrate that PersonaFuse offers a theoretically grounded and practical approach for developing social-emotional enhanced LLMs, marking a significant advancement toward more human-centric AI systems.
♻ ☆ MachineLearningLM: Scaling Many-shot In-context Learning via Continued Pretraining
Large language models (LLMs) possess broad world knowledge and strong general-purpose reasoning ability, yet they struggle to learn from many in-context examples on standard machine learning (ML) tasks, that is, to leverage many-shot demonstrations purely via in-context learning (ICL) without gradient descent. We introduce MachineLearningLM, a portable continued-pretraining framework that equips a general-purpose LLM with robust in-context ML capability while preserving its general knowledge and reasoning for broader chat workflows. Our pretraining procedure synthesizes ML tasks from millions of structural causal models (SCMs), spanning shot counts up to 1,024. We begin with a random-forest teacher, distilling tree-based decision strategies into the LLM to strengthen robustness in numerical modeling. All tasks are serialized with a token-efficient prompt, enabling 3x to 6x more examples per context window and delivering up to 50x amortized throughput via batch inference. Despite a modest setup (Qwen-2.5-7B-Instruct with LoRA rank 8), MachineLearningLM outperforms strong LLM baselines (e.g., GPT-5-mini) by an average of about 15% on out-of-distribution tabular classification across finance, physics, biology, and healthcare domains. It exhibits a striking many-shot scaling law: accuracy increases monotonically as in-context demonstrations grow from 8 to 1,024. Without any task-specific training, it attains random-forest-level accuracy across hundreds of shots. General chat capabilities, including knowledge and reasoning, are preserved: it achieves 75.4% on MMLU.
♻ ☆ Scalable Evaluation of Online Facilitation Strategies via Synthetic Simulation of Discussions
Limited large-scale evaluations exist for facilitation strategies of online discussions due to significant costs associated with human involvement. An effective solution is synthetic discussion simulations using Large Language Models (LLMs) to create initial pilot experiments. We propose design principles based on existing methodologies for synthetic discussion generation. Based on these principles, we propose a simple, generalizable, LLM-driven methodology to prototype the development of LLM facilitators by generating synthetic data without human involvement, and which surpasses current baselines. We use our methodology to test whether current Social Science strategies for facilitation can improve the performance of LLM facilitators. We find that, while LLM facilitators significantly improve synthetic discussions, there is no evidence that the application of these strategies leads to further improvements in discussion quality. In an effort to aid research in the field of facilitation, we release a large, publicly available dataset containing LLM-generated and LLM-annotated discussions using multiple open-source models. This dataset can be used for LLM facilitator finetuning as well as behavioral analysis of current out-of-the-box LLMs in the task. We also release an open-source python framework that efficiently implements our methodology at great scale.
comment: 15 pages, 3 tables, 12 figures
♻ ☆ A Novel Data Augmentation Approach for Automatic Speaking Assessment on Opinion Expressions ISCA
Automated speaking assessment (ASA) on opinion expressions is often hampered by the scarcity of labeled recordings, which restricts prompt diversity and undermines scoring reliability. To address this challenge, we propose a novel training paradigm that leverages a large language models (LLM) to generate diverse responses of a given proficiency level, converts responses into synthesized speech via speaker-aware text-to-speech synthesis, and employs a dynamic importance loss to adaptively reweight training instances based on feature distribution differences between synthesized and real speech. Subsequently, a multimodal large language model integrates aligned textual features with speech signals to predict proficiency scores directly. Experiments conducted on the LTTC dataset show that our approach outperforms methods relying on real data or conventional augmentation, effectively mitigating low-resource constraints and enabling ASA on opinion expressions with cross-modal information.
comment: submitted to the ISCA SLaTE-2025 Workshop
♻ ☆ T2R-bench: A Benchmark for Generating Article-Level Reports from Real World Industrial Tables
Extensive research has been conducted to explore the capabilities of large language models (LLMs) in table reasoning. However, the essential task of transforming tables information into reports remains a significant challenge for industrial applications. This task is plagued by two critical issues: 1) the complexity and diversity of tables lead to suboptimal reasoning outcomes; and 2) existing table benchmarks lack the capacity to adequately assess the practical application of this task. To fill this gap, we propose the table-to-report task and construct a bilingual benchmark named T2R-bench, where the key information flow from the tables to the reports for this task. The benchmark comprises 457 industrial tables, all derived from real-world scenarios and encompassing 19 industry domains as well as 4 types of industrial tables. Furthermore, we propose an evaluation criteria to fairly measure the quality of report generation. The experiments on 25 widely-used LLMs reveal that even state-of-the-art models like Deepseek-R1 only achieves performance with 62.71 overall score, indicating that LLMs still have room for improvement on T2R-bench.
♻ ☆ Spotlight Attention: Towards Efficient LLM Generation via Non-linear Hashing-based KV Cache Retrieval
Reducing the key-value (KV) cache burden in Large Language Models (LLMs) significantly accelerates inference. Dynamically selecting critical KV caches during decoding helps maintain performance. Existing methods use random linear hashing to identify important tokens, but this approach is inefficient due to the orthogonal distribution of queries and keys within two narrow cones in LLMs. We introduce Spotlight Attention, a novel method that employs non-linear hashing functions to optimize the embedding distribution of queries and keys, enhancing coding efficiency and robustness. We also developed a lightweight, stable training framework using a Bradley-Terry ranking-based loss, enabling optimization of the non-linear hashing module on GPUs with 16GB memory in 8 hours. Experimental results show that Spotlight Attention drastically improves retrieval precision while shortening the length of the hash code at least 5$\times$ compared to traditional linear hashing. Finally, we exploit the computational advantages of bitwise operations by implementing specialized CUDA kernels, achieving hashing retrieval for 512K tokens in under 100$\mu$s on a single A100 GPU, with end-to-end throughput up to 3$\times$ higher than vanilla decoding.
♻ ☆ MIND: Towards Immersive Psychological Healing with Multi-agent Inner Dialogue EMNLP 2025
Mental health issues are worsening in today's competitive society, such as depression and anxiety. Traditional healings like counseling and chatbots fail to engage effectively, they often provide generic responses lacking emotional depth. Although large language models (LLMs) have the potential to create more human-like interactions, they still struggle to capture subtle emotions. This requires LLMs to be equipped with human-like adaptability and warmth. To fill this gap, we propose the MIND (Multi-agent INner Dialogue), a novel paradigm that provides more immersive psychological healing environments. Considering the strong generative and role-playing ability of LLM agents, we predefine an interactive healing framework and assign LLM agents different roles within the framework to engage in interactive inner dialogues with users, thereby providing an immersive healing experience. We conduct extensive human experiments in various real-world healing dimensions, and find that MIND provides a more user-friendly experience than traditional paradigms. This demonstrates that MIND effectively leverages the significant potential of LLMs in psychological healing.
comment: Accepted by EMNLP 2025 Findings
♻ ☆ MERaLiON-SpeechEncoder: Towards a Speech Foundation Model for Singapore and Beyond
This technical report describes the MERaLiON-SpeechEncoder, a foundation model designed to support a wide range of downstream speech applications. Developed as part of Singapore's National Multimodal Large Language Model Programme, the MERaLiON-SpeechEncoder is tailored to address the speech processing needs in Singapore and the surrounding Southeast Asian region. The model currently supports mainly English, including the variety spoken in Singapore. We are actively expanding our datasets to gradually cover other languages in subsequent releases. The MERaLiON-SpeechEncoder was pre-trained from scratch on 200,000 hours of unlabelled speech data using a self-supervised learning approach based on masked language modelling. We describe our training procedure and hyperparameter tuning experiments in detail below. Our evaluation demonstrates improvements to spontaneous and Singapore speech benchmarks for speech recognition, while remaining competitive to other state-of-the-art speech encoders across ten other speech tasks. We commit to releasing our model, supporting broader research endeavours, both in Singapore and beyond.
♻ ☆ Enhancing Few-Shot Transfer Learning with Optimized Multi-Task Prompt Tuning through Modular Prompt Composition
In recent years, multi-task prompt tuning has garnered considerable attention for its inherent modularity and potential to enhance parameter-efficient transfer learning across diverse tasks. This paper aims to analyze and improve the performance of multiple tasks by facilitating the transfer of knowledge between their corresponding prompts in a multi-task setting. Our proposed approach decomposes the prompt for each target task into a combination of shared prompts (source prompts) and a task-specific prompt (private prompt). During training, the source prompts undergo fine-tuning and are integrated with the private prompt to drive the target prompt for each task. We present and compare multiple methods for combining source prompts to construct the target prompt, analyzing the roles of both source and private prompts within each method. We investigate their contributions to task performance and offer flexible, adjustable configurations based on these insights to optimize performance. Our empirical findings clearly showcase improvements in accuracy and robustness compared to the conventional practice of prompt tuning and related works. Notably, our results substantially outperform other methods in the field in few-shot settings, demonstrating superior performance in various tasks across GLUE benchmark, among other tasks. This achievement is attained with a significantly reduced amount of training data, making our method a promising one for few-shot settings.
♻ ☆ SimMark: A Robust Sentence-Level Similarity-Based Watermarking Algorithm for Large Language Models EMNLP 25
The widespread adoption of large language models (LLMs) necessitates reliable methods to detect LLM-generated text. We introduce SimMark, a robust sentence-level watermarking algorithm that makes LLMs' outputs traceable without requiring access to model internals, making it compatible with both open and API-based LLMs. By leveraging the similarity of semantic sentence embeddings combined with rejection sampling to embed detectable statistical patterns imperceptible to humans, and employing a soft counting mechanism, SimMark achieves robustness against paraphrasing attacks. Experimental results demonstrate that SimMark sets a new benchmark for robust watermarking of LLM-generated content, surpassing prior sentence-level watermarking techniques in robustness, sampling efficiency, and applicability across diverse domains, all while maintaining the text quality and fluency.
comment: Accepted to EMNLP 25 main
♻ ☆ VeriSafe Agent: Safeguarding Mobile GUI Agent via Logic-based Action Verification
Large Foundation Models (LFMs) have unlocked new possibilities in human-computer interaction, particularly with the rise of mobile Graphical User Interface (GUI) Agents capable of interacting with mobile GUIs. These agents allow users to automate complex mobile tasks through simple natural language instructions. However, the inherent probabilistic nature of LFMs, coupled with the ambiguity and context-dependence of mobile tasks, makes LFM-based automation unreliable and prone to errors. To address this critical challenge, we introduce VeriSafe Agent (VSA): a formal verification system that serves as a logically grounded safeguard for Mobile GUI Agents. VSA deterministically ensures that an agent's actions strictly align with user intent before executing the action. At its core, VSA introduces a novel autoformalization technique that translates natural language user instructions into a formally verifiable specification. This enables runtime, rule-based verification of agent's actions, detecting erroneous actions even before they take effect. To the best of our knowledge, VSA is the first attempt to bring the rigor of formal verification to GUI agents, bridging the gap between LFM-driven actions and formal software verification. We implement VSA using off-the-shelf LFM services (GPT-4o) and evaluate its performance on 300 user instructions across 18 widely used mobile apps. The results demonstrate that VSA achieves 94.33%-98.33% accuracy in verifying agent actions, outperforming existing LFM-based verification methods by 30.00%-16.33%, and increases the GUI agent's task completion rate by 90%-130%.
♻ ☆ Merge-of-Thought Distillation
Efficient reasoning distillation for long chain-of-thought (CoT) models is increasingly constrained by the assumption of a single oracle teacher, despite practical availability of multiple candidate teachers and growing CoT corpora. We revisit teacher selection and observe that different students have different "best teachers," and even for the same student the best teacher can vary across datasets. Therefore, to unify multiple teachers' reasoning abilities into student with overcoming conflicts among various teachers' supervision, we propose Merge-of-Thought Distillation (MoT), a lightweight framework that alternates between teacher-specific supervised fine-tuning branches and weight-space merging of the resulting student variants. On competition math benchmarks, using only about 200 high-quality CoT samples, applying MoT to a Qwen3-14B student surpasses strong models including DEEPSEEK-R1, QWEN3-30B-A3B, QWEN3-32B, and OPENAI-O1, demonstrating substantial gains. Besides, MoT consistently outperforms the best single-teacher distillation and the naive multi-teacher union, raises the performance ceiling while mitigating overfitting, and shows robustness to distribution-shifted and peer-level teachers. Moreover, MoT reduces catastrophic forgetting, improves general reasoning beyond mathematics and even cultivates a better teacher, indicating that consensus-filtered reasoning features transfer broadly. These results position MoT as a simple, scalable route to efficiently distilling long CoT capabilities from diverse teachers into compact students.
♻ ☆ OTESGN: Optimal Transport-Enhanced Syntactic-Semantic Graph Networks for Aspect-Based Sentiment Analysis
Aspect-based sentiment analysis (ABSA) aims to identify aspect terms and determine their sentiment polarity. While dependency trees combined with contextual semantics provide structural cues, existing approaches often rely on dot-product similarity and fixed graphs, which limit their ability to capture nonlinear associations and adapt to noisy contexts. To address these limitations, we propose the Optimal Transport-Enhanced Syntactic-Semantic Graph Network (OTESGN), a model that jointly integrates structural and distributional signals. Specifically, a Syntactic Graph-Aware Attention module models global dependencies with syntax-guided masking, while a Semantic Optimal Transport Attention module formulates aspect-opinion association as a distribution matching problem solved via the Sinkhorn algorithm. An Adaptive Attention Fusion mechanism balances heterogeneous features, and contrastive regularization enhances robustness. Extensive experiments on three benchmark datasets (Rest14, Laptop14, and Twitter) demonstrate that OTESGN delivers state-of-the-art performance. Notably, it surpasses competitive baselines by up to +1.30 Macro-F1 on Laptop14 and +1.01 on Twitter. Ablation studies and visualization analyses further highlight OTESGN's ability to capture fine-grained sentiment associations and suppress noise from irrelevant context.
♻ ☆ Optimizing Length Compression in Large Reasoning Models
Large Reasoning Models (LRMs) have achieved remarkable success, yet they often suffer from producing unnecessary and verbose reasoning chains. We identify a core aspect of this issue as "invalid thinking" -- models tend to repeatedly double-check their work after having derived the correct answer. To address this specific inefficiency, we move beyond the general principles of Efficacy and Efficiency to propose two new, fine-grained principles: Brevity, which advocates for eliminating redundancy, and Sufficiency, which ensures critical reasoning steps are preserved. Guided by these principles, we introduce LC-R1, a post-training method based on Group Relative Policy Optimization (GRPO). LC-R1 employs a novel combination of a Length Reward for overall conciseness and a Compress Reward that is specifically designed to remove the invalid portion of the thinking process. Extensive experiments on multiple reasoning benchmarks demonstrate that LC-R1 achieves a significant reduction in sequence length (~50%) with only a marginal (~2%) drop in accuracy, achieving a favorable trade-off point on the Pareto frontier that prioritizes high compression. Our analysis further validates the robustness of LC-R1 and provides valuable insights for developing more powerful yet computationally efficient LRMs. Our code is released at https://github.com/zxiangx/LC-R1.
comment: 16 pages, 7 figures, 4 tables
♻ ☆ SWI: Speaking with Intent in Large Language Models
Intent, typically clearly formulated and planned, functions as a cognitive framework for communication and problem-solving. This paper introduces the concept of Speaking with Intent (SWI) in large language models (LLMs), where the explicitly generated intent encapsulates the model's underlying intention and provides high-level planning to guide subsequent analysis and action. By emulating deliberate and purposeful thoughts in the human mind, SWI is hypothesized to enhance the reasoning capabilities and generation quality of LLMs. Extensive experiments on text summarization, multi-task question answering, and mathematical reasoning benchmarks consistently demonstrate the effectiveness and generalizability of Speaking with Intent over direct generation without explicit intent. Further analysis corroborates the generalizability of SWI under different experimental settings. Moreover, human evaluations verify the coherence, effectiveness, and interpretability of the intent produced by SWI. The promising results in enhancing LLMs with explicit intents pave a new avenue for boosting LLMs' generation and reasoning abilities with cognitive notions.
comment: Code: https://github.com/YuweiYin/SWI
Machine Learning 135
☆ ButterflyQuant: Ultra-low-bit LLM Quantization through Learnable Orthogonal Butterfly Transforms
Large language models require massive memory footprints, severely limiting deployment on consumer hardware. Quantization reduces memory through lower numerical precision, but extreme 2-bit quantization suffers from catastrophic performance loss due to outliers in activations. Rotation-based methods such as QuIP and QuaRot apply orthogonal transforms to eliminate outliers before quantization, using computational invariance: $\mathbf{y} = \mathbf{Wx} = (\mathbf{WQ}^T)(\mathbf{Qx})$ for orthogonal $\mathbf{Q}$. However, these methods use fixed transforms--Hadamard matrices achieving optimal worst-case coherence $\mu = 1/\sqrt{n}$--that cannot adapt to specific weight distributions. We identify that different transformer layers exhibit distinct outlier patterns, motivating layer-adaptive rotations rather than one-size-fits-all approaches. We propose ButterflyQuant, which replaces Hadamard rotations with learnable butterfly transforms parameterized by continuous Givens rotation angles. Unlike Hadamard's discrete $\{+1, -1\}$ entries that are non-differentiable and prohibit gradient-based learning, butterfly transforms' continuous parameterization enables smooth optimization while guaranteeing orthogonality by construction. This orthogonal constraint ensures theoretical guarantees in outlier suppression while achieving $O(n \log n)$ computational complexity with only $\frac{n \log n}{2}$ learnable parameters. We further introduce a uniformity regularization on post-transformation activations to promote smoother distributions amenable to quantization. Learning requires only 128 calibration samples and converges in minutes on a single GPU--a negligible one-time cost. On LLaMA-2-7B with 2-bit quantization, ButterflyQuant achieves 15.4 perplexity versus 22.1 for QuaRot.
comment: Replace discrete Hadamard transforms with continuous Butterfly transforms to facilitate the learning of rotation matrices in LLM quantization
☆ SimpleVLA-RL: Scaling VLA Training via Reinforcement Learning
Vision-Language-Action (VLA) models have recently emerged as a powerful paradigm for robotic manipulation. Despite substantial progress enabled by large-scale pretraining and supervised fine-tuning (SFT), these models face two fundamental challenges: (i) the scarcity and high cost of large-scale human-operated robotic trajectories required for SFT scaling, and (ii) limited generalization to tasks involving distribution shift. Recent breakthroughs in Large Reasoning Models (LRMs) demonstrate that reinforcement learning (RL) can dramatically enhance step-by-step reasoning capabilities, raising a natural question: Can RL similarly improve the long-horizon step-by-step action planning of VLA? In this work, we introduce SimpleVLA-RL, an efficient RL framework tailored for VLA models. Building upon veRL, we introduce VLA-specific trajectory sampling, scalable parallelization, multi-environment rendering, and optimized loss computation. When applied to OpenVLA-OFT, SimpleVLA-RL achieves SoTA performance on LIBERO and even outperforms $\pi_0$ on RoboTwin 1.0\&2.0 with the exploration-enhancing strategies we introduce. SimpleVLA-RL not only reduces dependence on large-scale data and enables robust generalization, but also remarkably surpasses SFT in real-world tasks. Moreover, we identify a novel phenomenon ``pushcut'' during RL training, wherein the policy discovers previously unseen patterns beyond those seen in the previous training process. Github: https://github.com/PRIME-RL/SimpleVLA-RL
☆ CDE: Curiosity-Driven Exploration for Efficient Reinforcement Learning in Large Language Models
Reinforcement Learning with Verifiable Rewards (RLVR) is a powerful paradigm for enhancing the reasoning ability of Large Language Models (LLMs). Yet current RLVR methods often explore poorly, leading to premature convergence and entropy collapse. To address this challenge, we introduce Curiosity-Driven Exploration (CDE), a framework that leverages the model's own intrinsic sense of curiosity to guide exploration. We formalize curiosity with signals from both the actor and the critic: for the actor, we use perplexity over its generated response, and for the critic, we use the variance of value estimates from a multi-head architecture. Both signals serve as an exploration bonus within the RLVR framework to guide the model. Our theoretical analysis shows that the actor-wise bonus inherently penalizes overconfident errors and promotes diversity among correct responses; moreover, we connect the critic-wise bonus to the well-established count-based exploration bonus in RL. Empirically, our method achieves an approximate +3 point improvement over standard RLVR using GRPO/PPO on AIME benchmarks. Further analysis identifies a calibration collapse mechanism within RLVR, shedding light on common LLM failure modes.
comment: 21 pages
☆ Steering MoE LLMs via Expert (De)Activation
Mixture-of-Experts (MoE) in Large Language Models (LLMs) routes each token through a subset of specialized Feed-Forward Networks (FFN), known as experts. We present SteerMoE, a framework for steering MoE models by detecting and controlling behavior-linked experts. Our detection method identifies experts with distinct activation patterns across paired inputs exhibiting contrasting behaviors. By selectively (de)activating such experts during inference, we control behaviors like faithfulness and safety without retraining or modifying weights. Across 11 benchmarks and 6 LLMs, our steering raises safety by up to +20% and faithfulness by +27%. In adversarial attack mode, it drops safety by -41% alone, and -100% when combined with existing jailbreak methods, bypassing all safety guardrails and exposing a new dimension of alignment faking hidden within experts.
☆ Feasibility-Guided Fair Adaptive Offline Reinforcement Learning for Medicaid Care Management
We introduce Feasibility-Guided Fair Adaptive Reinforcement Learning (FG-FARL), an offline RL procedure that calibrates per-group safety thresholds to reduce harm while equalizing a chosen fairness target (coverage or harm) across protected subgroups. Using de-identified longitudinal trajectories from a Medicaid population health management program, we evaluate FG-FARL against behavior cloning (BC) and HACO (Hybrid Adaptive Conformal Offline RL; a global conformal safety baseline). We report off-policy value estimates with bootstrap 95% confidence intervals and subgroup disparity analyses with p-values. FG-FARL achieves comparable value to baselines while improving fairness metrics, demonstrating a practical path to safer and more equitable decision support.
comment: 12 pages, 5 figures, 3 tables
☆ Retrieval-Augmented Generation for Reliable Interpretation of Radio Regulations
We study question answering in the domain of radio regulations, a legally sensitive and high-stakes area. We propose a telecom-specific Retrieval-Augmented Generation (RAG) pipeline and introduce, to our knowledge, the first multiple-choice evaluation set for this domain, constructed from authoritative sources using automated filtering and human validation. To assess retrieval quality, we define a domain-specific retrieval metric, under which our retriever achieves approximately 97% accuracy. Beyond retrieval, our approach consistently improves generation accuracy across all tested models. In particular, while naively inserting documents without structured retrieval yields only marginal gains for GPT-4o (less than 1%), applying our pipeline results in nearly a 12% relative improvement. These findings demonstrate that carefully targeted grounding provides a simple yet strong baseline and an effective domain-specific solution for regulatory question answering. All code and evaluation scripts, along with our derived question-answer dataset, are available at https://github.com/Zakaria010/Radio-RAG.
☆ Functional Groups are All you Need for Chemically Interpretable Molecular Property Prediction
Molecular property prediction using deep learning (DL) models has accelerated drug and materials discovery, but the resulting DL models often lack interpretability, hindering their adoption by chemists. This work proposes developing molecule representations using the concept of Functional Groups (FG) in chemistry. We introduce the Functional Group Representation (FGR) framework, a novel approach to encoding molecules based on their fundamental chemical substructures. Our method integrates two types of functional groups: those curated from established chemical knowledge (FG), and those mined from a large molecular corpus using sequential pattern mining (MFG). The resulting FGR framework encodes molecules into a lower-dimensional latent space by leveraging pre-training on a large dataset of unlabeled molecules. Furthermore, the proposed framework allows the inclusion of 2D structure-based descriptors of molecules. We demonstrate that the FGR framework achieves state-of-the-art performance on a diverse range of 33 benchmark datasets spanning physical chemistry, biophysics, quantum mechanics, biological activity, and pharmacokinetics while enabling chemical interpretability. Crucially, the model's representations are intrinsically aligned with established chemical principles, allowing chemists to directly link predicted properties to specific functional groups and facilitating novel insights into structure-property relationships. Our work presents a significant step toward developing high-performing, chemically interpretable DL models for molecular discovery.
☆ Explaining Concept Drift through the Evolution of Group Counterfactuals ECML
Machine learning models in dynamic environments often suffer from concept drift, where changes in the data distribution degrade performance. While detecting this drift is a well-studied topic, explaining how and why the model's decision-making logic changes still remains a significant challenge. In this paper, we introduce a novel methodology to explain concept drift by analyzing the temporal evolution of group-based counterfactual explanations (GCEs). Our approach tracks shifts in the GCEs' cluster centroids and their associated counterfactual action vectors before and after a drift. These evolving GCEs act as an interpretable proxy, revealing structural changes in the model's decision boundary and its underlying rationale. We operationalize this analysis within a three-layer framework that synergistically combines insights from the data layer (distributional shifts), the model layer (prediction disagreement), and our proposed explanation layer. We show that such holistic view allows for a more comprehensive diagnosis of drift, making it possible to distinguish between different root causes, such as a spatial data shift versus a re-labeling of concepts.
comment: TempXAI Workshop @ ECML PKDD 2025
☆ ReBaNO: Reduced Basis Neural Operator Mitigating Generalization Gaps and Achieving Discretization Invariance
We propose a novel data-lean operator learning algorithm, the Reduced Basis Neural Operator (ReBaNO), to solve a group of PDEs with multiple distinct inputs. Inspired by the Reduced Basis Method and the recently introduced Generative Pre-Trained Physics-Informed Neural Networks, ReBaNO relies on a mathematically rigorous greedy algorithm to build its network structure offline adaptively from the ground up. Knowledge distillation via task-specific activation function allows ReBaNO to have a compact architecture requiring minimal computational cost online while embedding physics. In comparison to state-of-the-art operator learning algorithms such as PCA-Net, DeepONet, FNO, and CNO, numerical results demonstrate that ReBaNO significantly outperforms them in terms of eliminating/shrinking the generalization gap for both in- and out-of-distribution tests and being the only operator learning algorithm achieving strict discretization invariance.
☆ Conditioning on PDE Parameters to Generalise Deep Learning Emulation of Stochastic and Chaotic Dynamics
We present a deep learning emulator for stochastic and chaotic spatio-temporal systems, explicitly conditioned on the parameter values of the underlying partial differential equations (PDEs). Our approach involves pre-training the model on a single parameter domain, followed by fine-tuning on a smaller, yet diverse dataset, enabling generalisation across a broad range of parameter values. By incorporating local attention mechanisms, the network is capable of handling varying domain sizes and resolutions. This enables computationally efficient pre-training on smaller domains while requiring only a small additional dataset to learn how to generalise to larger domain sizes. We demonstrate the model's capabilities on the chaotic Kuramoto-Sivashinsky equation and stochastically-forced beta-plane turbulence, showcasing its ability to capture phenomena at interpolated parameter values. The emulator provides significant computational speed-ups over conventional numerical integration, facilitating efficient exploration of parameter space, while a probabilistic variant of the emulator provides uncertainty quantification, allowing for the statistical study of rare events.
☆ Graph Alignment via Dual-Pass Spectral Encoding and Latent Space Communication
Graph alignment-the problem of identifying corresponding nodes across multiple graphs-is fundamental to numerous applications. Most existing unsupervised methods embed node features into latent representations to enable cross-graph comparison without ground-truth correspondences. However, these methods suffer from two critical limitations: the degradation of node distinctiveness due to oversmoothing in GNN-based embeddings, and the misalignment of latent spaces across graphs caused by structural noise, feature heterogeneity, and training instability, ultimately leading to unreliable node correspondences. We propose a novel graph alignment framework that simultaneously enhances node distinctiveness and enforces geometric consistency across latent spaces. Our approach introduces a dual-pass encoder that combines low-pass and high-pass spectral filters to generate embeddings that are both structure-aware and highly discriminative. To address latent space misalignment, we incorporate a geometry-aware functional map module that learns bijective and isometric transformations between graph embeddings, ensuring consistent geometric relationships across different representations. Extensive experiments on graph benchmarks demonstrate that our method consistently outperforms existing unsupervised alignment baselines, exhibiting superior robustness to structural inconsistencies and challenging alignment scenarios. Additionally, comprehensive evaluation on vision-language benchmarks using diverse pretrained models shows that our framework effectively generalizes beyond graph domains, enabling unsupervised alignment of vision and language representations.
comment: 23 pages
☆ ObjectReact: Learning Object-Relative Control for Visual Navigation
Visual navigation using only a single camera and a topological map has recently become an appealing alternative to methods that require additional sensors and 3D maps. This is typically achieved through an "image-relative" approach to estimating control from a given pair of current observation and subgoal image. However, image-level representations of the world have limitations because images are strictly tied to the agent's pose and embodiment. In contrast, objects, being a property of the map, offer an embodiment- and trajectory-invariant world representation. In this work, we present a new paradigm of learning "object-relative" control that exhibits several desirable characteristics: a) new routes can be traversed without strictly requiring to imitate prior experience, b) the control prediction problem can be decoupled from solving the image matching problem, and c) high invariance can be achieved in cross-embodiment deployment for variations across both training-testing and mapping-execution settings. We propose a topometric map representation in the form of a "relative" 3D scene graph, which is used to obtain more informative object-level global path planning costs. We train a local controller, dubbed "ObjectReact", conditioned directly on a high-level "WayObject Costmap" representation that eliminates the need for an explicit RGB input. We demonstrate the advantages of learning object-relative control over its image-relative counterpart across sensor height variations and multiple navigation tasks that challenge the underlying spatial understanding capability, e.g., navigating a map trajectory in the reverse direction. We further show that our sim-only policy is able to generalize well to real-world indoor environments. Code and supplementary material are accessible via project page: https://object-react.github.io/
comment: CoRL 2025; 23 pages including appendix
☆ Personality-Enhanced Social Recommendations in SAMI: Exploring the Role of Personality Detection in Matchmaking
Social connection is a vital part of learning, yet online course environments present barriers to the organic formation of social groups. SAMI offers one solution by facilitating student connections, but its effectiveness is constrained by an incomplete Theory of Mind, limiting its ability to create an effective mental model of a student. One facet of this is its inability to intuit personality, which may influence the relevance of its recommendations. To explore this, we propose a personality detection model utilizing GPTs zero-shot capability to infer Big-Five personality traits from forum introduction posts, often encouraged in online courses. We benchmark its performance against established models, demonstrating its efficacy in this task. Furthermore, we integrate this model into SAMIs entity-based matchmaking system, enabling personality-informed social recommendations. Initial integration suggests personality traits can complement existing matching factors, though additional evaluation is required to determine their full impact on student engagement and match quality.
☆ What Does Normal Even Mean? Evaluating Benign Traffic in Intrusion Detection Datasets
Supervised machine learning techniques rely on labeled data to achieve high task performance, but this requires the labels to capture some meaningful differences in the underlying data structure. For training network intrusion detection algorithms, most datasets contain a series of attack classes and a single large benign class which captures all non-attack network traffic. A review of intrusion detection papers and guides that explicitly state their data preprocessing steps identified that the majority took the labeled categories of the dataset at face value when training their algorithms. The present paper evaluates the structure of benign traffic in several common intrusion detection datasets (NSL-KDD, UNSW-NB15, and CIC-IDS 2017) and determines whether there are meaningful sub-categories within this traffic which may improve overall multi-classification performance using common machine learning techniques. We present an overview of some unsupervised clustering techniques (e.g., HDBSCAN, Mean Shift Clustering) and show how they differentially cluster the benign traffic space.
comment: 10 pages; accepted to SBP-BRiMS 2025 Poster Session
☆ Boosting Embodied AI Agents through Perception-Generation Disaggregation and Asynchronous Pipeline Execution
Embodied AI systems operate in dynamic environments, requiring seamless integration of perception and generation modules to process high-frequency input and output demands. Traditional sequential computation patterns, while effective in ensuring accuracy, face significant limitations in achieving the necessary "thinking" frequency for real-world applications. In this work, we present Auras, an algorithm-system co-designed inference framework to optimize the inference frequency of embodied AI agents. Auras disaggregates the perception and generation and provides controlled pipeline parallelism for them to achieve high and stable throughput. Faced with the data staleness problem that appears when the parallelism is increased, Auras establishes a public context for perception and generation to share, thereby promising the accuracy of embodied agents. Experimental results show that Auras improves throughput by 2.54x on average while achieving 102.7% of the original accuracy, demonstrating its efficacy in overcoming the constraints of sequential computation and providing high throughput.
☆ Finite Scalar Quantization Enables Redundant and Transmission-Robust Neural Audio Compression at Low Bit-rates
Neural Audio Codecs (NACs) have become increasingly adopted in speech processing tasks due to their excellent rate-distortion performance and compatibility with Large Language Models (LLMs) as discrete feature representations for audio generation. While most existing codecs rely on Residual Vector Quantization (RVQ), Finite Scalar Quantization (FSQ) has recently emerged as a compelling alternative that simplifies training and natively supports single codebooks. We introduce NeuCodec, an FSQ-based NAC, and show that FSQ encodes baked-in redundancy which produces an encoding which is robust when transmitted through noisy channels. First, through an encoder distillation experiment, we show that two different encoders can learn to encode identical audio into vastly different code sequences whilst maintaining comparable reconstruction quality with the same quantizer and decoder. Second, we demonstrate that FSQ has vastly superior bit-level perturbation robustness by comparing the performance of RVQ and FSQ codecs when simulating the transmission of code sequences through a noisy channel.
☆ ProDiGy: Proximity- and Dissimilarity-Based Byzantine-Robust Federated Learning
Federated Learning (FL) emerged as a widely studied paradigm for distributed learning. Despite its many advantages, FL remains vulnerable to adversarial attacks, especially under data heterogeneity. We propose a new Byzantine-robust FL algorithm called ProDiGy. The key novelty lies in evaluating the client gradients using a joint dual scoring system based on the gradients' proximity and dissimilarity. We demonstrate through extensive numerical experiments that ProDiGy outperforms existing defenses in various scenarios. In particular, when the clients' data do not follow an IID distribution, while other defense mechanisms fail, ProDiGy maintains strong defense capabilities and model accuracy. These findings highlight the effectiveness of a dual perspective approach that promotes natural similarity among honest clients while detecting suspicious uniformity as a potential indicator of an attack.
☆ DeMeVa at LeWiDi-2025: Modeling Perspectives with In-Context Learning and Label Distribution Learning EMNLP-2025
This system paper presents the DeMeVa team's approaches to the third edition of the Learning with Disagreements shared task (LeWiDi 2025; Leonardelli et al., 2025). We explore two directions: in-context learning (ICL) with large language models, where we compare example sampling strategies; and label distribution learning (LDL) methods with RoBERTa (Liu et al., 2019b), where we evaluate several fine-tuning methods. Our contributions are twofold: (1) we show that ICL can effectively predict annotator-specific annotations (perspectivist annotations), and that aggregating these predictions into soft labels yields competitive performance; and (2) we argue that LDL methods are promising for soft label predictions and merit further exploration by the perspectivist community.
comment: 11 pages, 4 figures; to appear at NLPerspectives@EMNLP-2025
☆ Cough Classification using Few-Shot Learning
This paper investigates the effectiveness of few-shot learning for respiratory sound classification, focusing on coughbased detection of COVID-19, Flu, and healthy conditions. We leverage Prototypical Networks with spectrogram representations of cough sounds to address the challenge of limited labeled data. Our study evaluates whether few-shot learning can enable models to achieve performance comparable to traditional deep learning approaches while using significantly fewer training samples. Additionally, we compare multi-class and binary classification models to assess whether multi-class models can perform comparably to their binary counterparts. Experimental findings show that few-shot learning models can achieve competitive accuracy. Our model attains 74.87% accuracy in multi-class classification with only 15 support examples per class, while binary classification achieves over 70% accuracy across all class pairs. Class-wise analysis reveals Flu as the most distinguishable class, and Healthy as the most challenging. Statistical tests (paired t-test p = 0.149, Wilcoxon p = 0.125) indicate no significant performance difference between binary and multiclass models, supporting the viability of multi-class classification in this setting. These results highlight the feasibility of applying few-shot learning in medical diagnostics, particularly when large labeled datasets are unavailable.
comment: 8 pages 8 images Has been accepted in Pervasive Health 2025
☆ Explainable AI for Accelerated Microstructure Imaging: A SHAP-Guided Protocol on the Connectome 2.0 scanner IEEE
The diffusion MRI Neurite Exchange Imaging model offers a promising framework for probing gray matter microstructure by estimating parameters such as compartment sizes, diffusivities, and inter-compartmental water exchange time. However, existing protocols require long scan times. This study proposes a reduced acquisition scheme for the Connectome 2.0 scanner that preserves model accuracy while substantially shortening scan duration. We developed a data-driven framework using explainable artificial intelligence with a guided recursive feature elimination strategy to identify an optimal 8-feature subset from a 15-feature protocol. The performance of this optimized protocol was validated in vivo and benchmarked against the full acquisition and alternative reduction strategies. Parameter accuracy, preservation of anatomical contrast, and test-retest reproducibility were assessed. The reduced protocol yielded parameter estimates and cortical maps comparable to the full protocol, with low estimation errors in synthetic data and minimal impact on test-retest variability. Compared to theory-driven and heuristic reduction schemes, the optimized protocol demonstrated superior robustness, reducing the deviation in water exchange time estimates by over two-fold. In conclusion, this hybrid optimization framework enables viable imaging of neurite exchange in 14 minutes without loss of parameter fidelity. This approach supports the broader application of exchange-sensitive diffusion magnetic resonance imaging in neuroscience and clinical research, and offers a generalizable method for designing efficient acquisition protocols in biophysical parameter mapping.
comment: Submitted to IEEE Transactions on Medical Imaging (TMI). This all-in-one version includes supplementary materials. 18 pages, 14 figures, 2 tables
☆ PIPES: A Meta-dataset of Machine Learning Pipelines
Solutions to the Algorithm Selection Problem (ASP) in machine learning face the challenge of high computational costs associated with evaluating various algorithms' performances on a given dataset. To mitigate this cost, the meta-learning field can leverage previously executed experiments shared in online repositories such as OpenML. OpenML provides an extensive collection of machine learning experiments. However, an analysis of OpenML's records reveals limitations. It lacks diversity in pipelines, specifically when exploring data preprocessing steps/blocks, such as scaling or imputation, resulting in limited representation. Its experiments are often focused on a few popular techniques within each pipeline block, leading to an imbalanced sample. To overcome the observed limitations of OpenML, we propose PIPES, a collection of experiments involving multiple pipelines designed to represent all combinations of the selected sets of techniques, aiming at diversity and completeness. PIPES stores the results of experiments performed applying 9,408 pipelines to 300 datasets. It includes detailed information on the pipeline blocks, training and testing times, predictions, performances, and the eventual error messages. This comprehensive collection of results allows researchers to perform analyses across diverse and representative pipelines and datasets. PIPES also offers potential for expansion, as additional data and experiments can be incorporated to support the meta-learning community further. The data, code, supplementary material, and all experiments can be found at https://github.com/cynthiamaia/PIPES.git.
☆ OpenFake: An Open Dataset and Platform Toward Large-Scale Deepfake Detection
Deepfakes, synthetic media created using advanced AI techniques, have intensified the spread of misinformation, particularly in politically sensitive contexts. Existing deepfake detection datasets are often limited, relying on outdated generation methods, low realism, or single-face imagery, restricting the effectiveness for general synthetic image detection. By analyzing social media posts, we identify multiple modalities through which deepfakes propagate misinformation. Furthermore, our human perception study demonstrates that recently developed proprietary models produce synthetic images increasingly indistinguishable from real ones, complicating accurate identification by the general public. Consequently, we present a comprehensive, politically-focused dataset specifically crafted for benchmarking detection against modern generative models. This dataset contains three million real images paired with descriptive captions, which are used for generating 963k corresponding high-quality synthetic images from a mix of proprietary and open-source models. Recognizing the continual evolution of generative techniques, we introduce an innovative crowdsourced adversarial platform, where participants are incentivized to generate and submit challenging synthetic images. This ongoing community-driven initiative ensures that deepfake detection methods remain robust and adaptive, proactively safeguarding public discourse from sophisticated misinformation threats.
comment: 25 pages, 12 figures
☆ Balancing Utility and Privacy: Dynamically Private SGD with Random Projection
Stochastic optimization is a pivotal enabler in modern machine learning, producing effective models for various tasks. However, several existing works have shown that model parameters and gradient information are susceptible to privacy leakage. Although Differentially Private SGD (DPSGD) addresses privacy concerns, its static noise mechanism impacts the error bounds for model performance. Additionally, with the exponential increase in model parameters, efficient learning of these models using stochastic optimizers has become more challenging. To address these concerns, we introduce the Dynamically Differentially Private Projected SGD (D2P2-SGD) optimizer. In D2P2-SGD, we combine two important ideas: (i) dynamic differential privacy (DDP) with automatic gradient clipping and (ii) random projection with SGD, allowing dynamic adjustment of the tradeoff between utility and privacy of the model. It exhibits provably sub-linear convergence rates across different objective functions, matching the best available rate. The theoretical analysis further suggests that DDP leads to better utility at the cost of privacy, while random projection enables more efficient model learning. Extensive experiments across diverse datasets show that D2P2-SGD remarkably enhances accuracy while maintaining privacy. Our code is available here.
comment: 27 pages, 13 figures
☆ Database Views as Explanations for Relational Deep Learning
In recent years, there has been significant progress in the development of deep learning models over relational databases, including architectures based on heterogeneous graph neural networks (hetero-GNNs) and heterogeneous graph transformers. In effect, such architectures state how the database records and links (e.g., foreign-key references) translate into a large, complex numerical expression, involving numerous learnable parameters. This complexity makes it hard to explain, in human-understandable terms, how a model uses the available data to arrive at a given prediction. We present a novel framework for explaining machine-learning models over relational databases, where explanations are view definitions that highlight focused parts of the database that mostly contribute to the model's prediction. We establish such global abductive explanations by adapting the classic notion of determinacy by Nash, Segoufin, and Vianu (2010). In addition to tuning the tradeoff between determinacy and conciseness, the framework allows controlling the level of granularity by adopting different fragments of view definitions, such as ones highlighting whole columns, foreign keys between tables, relevant groups of tuples, and so on. We investigate the realization of the framework in the case of hetero-GNNs. We develop heuristic algorithms that avoid the exhaustive search over the space of all databases. We propose techniques that are model-agnostic, and others that are tailored to hetero-GNNs via the notion of learnable masking. Our approach is evaluated through an extensive empirical study on the RelBench collection, covering a variety of domains and different record-level tasks. The results demonstrate the usefulness of the proposed explanations, as well as the efficiency of their generation.
☆ CountTRuCoLa: Rule Confidence Learning for Temporal Knowledge Graph Forecasting
We address the task of temporal knowledge graph (TKG) forecasting by introducing a fully explainable method based on temporal rules. Motivated by recent work proposing a strong baseline using recurrent facts, our approach learns four simple types of rules with a confidence function that considers both recency and frequency. Evaluated on nine datasets, our method matches or surpasses the performance of eight state-of-the-art models and two baselines, while providing fully interpretable predictions.
☆ AEGIS: An Agent for Extraction and Geographic Identification in Scholarly Proceedings
Keeping pace with the rapid growth of academia literature presents a significant challenge for researchers, funding bodies, and academic societies. To address the time-consuming manual effort required for scholarly discovery, we present a novel, fully automated system that transitions from data discovery to direct action. Our pipeline demonstrates how a specialized AI agent, 'Agent-E', can be tasked with identifying papers from specific geographic regions within conference proceedings and then executing a Robotic Process Automation (RPA) to complete a predefined action, such as submitting a nomination form. We validated our system on 586 papers from five different conferences, where it successfully identified every target paper with a recall of 100% and a near perfect accuracy of 99.4%. This demonstration highlights the potential of task-oriented AI agents to not only filter information but also to actively participate in and accelerate the workflows of the academic community.
comment: 5 pages, 2 figures
☆ AquaCast: Urban Water Dynamics Forecasting with Precipitation-Informed Multi-Input Transformer
This work addresses the challenge of forecasting urban water dynamics by developing a multi-input, multi-output deep learning model that incorporates both endogenous variables (e.g., water height or discharge) and exogenous factors (e.g., precipitation history and forecast reports). Unlike conventional forecasting, the proposed model, AquaCast, captures both inter-variable and temporal dependencies across all inputs, while focusing forecast solely on endogenous variables. Exogenous inputs are fused via an embedding layer, eliminating the need to forecast them and enabling the model to attend to their short-term influences more effectively. We evaluate our approach on the LausanneCity dataset, which includes measurements from four urban drainage sensors, and demonstrate state-of-the-art performance when using only endogenous variables. Performance also improves with the inclusion of exogenous variables and forecast reports. To assess generalization and scalability, we additionally test the model on three large-scale synthesized datasets, generated from MeteoSwiss records, the Lorenz Attractors model, and the Random Fields model, each representing a different level of temporal complexity across 100 nodes. The results confirm that our model consistently outperforms existing baselines and maintains a robust and accurate forecast across both real and synthetic datasets.
comment: This work has been submitted to Journal of Hydrology, Elsevier, and a preprint version is also available at SSRN 10.2139/ssrn.5399833
☆ Composable Score-based Graph Diffusion Model for Multi-Conditional Molecular Generation
Controllable molecular graph generation is essential for material and drug discovery, where generated molecules must satisfy diverse property constraints. While recent advances in graph diffusion models have improved generation quality, their effectiveness in multi-conditional settings remains limited due to reliance on joint conditioning or continuous relaxations that compromise fidelity. To address these limitations, we propose Composable Score-based Graph Diffusion model (CSGD), the first model that extends score matching to discrete graphs via concrete scores, enabling flexible and principled manipulation of conditional guidance. Building on this foundation, we introduce two score-based techniques: Composable Guidance (CoG), which allows fine-grained control over arbitrary subsets of conditions during sampling, and Probability Calibration (PC), which adjusts estimated transition probabilities to mitigate train-test mismatches. Empirical results on four molecular datasets show that CSGD achieves state-of-the-art performance, with a 15.3% average improvement in controllability over prior methods, while maintaining high validity and distributional fidelity. Our findings highlight the practical advantages of score-based modeling for discrete graph generation and its capacity for flexible, multi-property molecular design.
☆ Semantic Concentration for Self-Supervised Dense Representations Learning
Recent advances in image-level self-supervised learning (SSL) have made significant progress, yet learning dense representations for patches remains challenging. Mainstream methods encounter an over-dispersion phenomenon that patches from the same instance/category scatter, harming downstream performance on dense tasks. This work reveals that image-level SSL avoids over-dispersion by involving implicit semantic concentration. Specifically, the non-strict spatial alignment ensures intra-instance consistency, while shared patterns, i.e., similar parts of within-class instances in the input space, ensure inter-image consistency. Unfortunately, these approaches are infeasible for dense SSL due to their spatial sensitivity and complicated scene-centric data. These observations motivate us to explore explicit semantic concentration for dense SSL. First, to break the strict spatial alignment, we propose to distill the patch correspondences. Facing noisy and imbalanced pseudo labels, we propose a noise-tolerant ranking loss. The core idea is extending the Average Precision (AP) loss to continuous targets, such that its decision-agnostic and adaptive focusing properties prevent the student model from being misled. Second, to discriminate the shared patterns from complicated scenes, we propose the object-aware filter to map the output space to an object-based space. Specifically, patches are represented by learnable prototypes of objects via cross-attention. Last but not least, empirical studies across various tasks soundly support the effectiveness of our method. Code is available in https://github.com/KID-7391/CoTAP.
☆ Fused Lasso Improves Accuracy of Co-occurrence Network Inference in Grouped Samples
Co-occurrence network inference algorithms have significantly advanced our understanding of microbiome communities. However, these algorithms typically analyze microbial associations within samples collected from a single environmental niche, often capturing only static snapshots rather than dynamic microbial processes. Previous studies have commonly grouped samples from different environmental niches together without fully considering how microbial communities adapt their associations when faced with varying ecological conditions. Our study addresses this limitation by explicitly investigating both spatial and temporal dynamics of microbial communities. We analyzed publicly available microbiome abundance data across multiple locations and time points, to evaluate algorithm performance in predicting microbial associations using our proposed Same-All Cross-validation (SAC) framework. SAC evaluates algorithms in two distinct scenarios: training and testing within the same environmental niche (Same), and training and testing on combined data from multiple environmental niches (All). To overcome the limitations of conventional algorithms, we propose fuser, an algorithm that, while not entirely new in machine learning, is novel for microbiome community network inference. It retains subsample-specific signals while simultaneously sharing relevant information across environments during training. Unlike standard approaches that infer a single generalized network from combined data, fuser generates distinct, environment-specific predictive networks. Our results demonstrate that fuser achieves comparable predictive performance to existing algorithms such as glmnet when evaluated within homogeneous environments (Same), and notably reduces test error compared to baseline algorithms in cross-environment (All) scenarios.
☆ Kriging prior Regression: A Case for Kriging-Based Spatial Features with TabPFN in Soil Mapping
Machine learning and geostatistics are two fundamentally different frameworks for predicting and spatially mapping soil properties. Geostatistics leverages the spatial structure of soil properties, while machine learning captures the relationship between available environmental features and soil properties. We propose a hybrid framework that enriches ML with spatial context through engineering of 'spatial lag' features from ordinary kriging. We call this approach 'kriging prior regression' (KpR), as it follows the inverse logic of regression kriging. To evaluate this approach, we assessed both the point and probabilistic prediction performance of KpR, using the TabPFN model across six fieldscale datasets from LimeSoDa. These datasets included soil organic carbon, clay content, and pH, along with features derived from remote sensing and in-situ proximal soil sensing. KpR with TabPFN demonstrated reliable uncertainty estimates and more accurate predictions in comparison to several other spatial techniques (e.g., regression/residual kriging with TabPFN), as well as to established non-spatial machine learning algorithms (e.g., random forest). Most notably, it significantly improved the average R2 by around 30% compared to machine learning algorithms without spatial context. This improvement was due to the strong prediction performance of the TabPFN algorithm itself and the complementary spatial information provided by KpR features. TabPFN is particularly effective for prediction tasks with small sample sizes, common in precision agriculture, whereas KpR can compensate for weak relationships between sensing features and soil properties when proximal soil sensing data are limited. Hence, we conclude that KpR with TabPFN is a very robust and versatile modelling framework for digital soil mapping in precision agriculture.
☆ LLMs Don't Know Their Own Decision Boundaries: The Unreliability of Self-Generated Counterfactual Explanations EMNLP 2025
To collaborate effectively with humans, language models must be able to explain their decisions in natural language. We study a specific type of self-explanation: self-generated counterfactual explanations (SCEs), where a model explains its prediction by modifying the input such that it would have predicted a different outcome. We evaluate whether LLMs can produce SCEs that are valid, achieving the intended outcome, and minimal, modifying the input no more than necessary. When asked to generate counterfactuals, we find that LLMs typically produce SCEs that are valid, but far from minimal, offering little insight into their decision-making behaviour. Worryingly, when asked to generate minimal counterfactuals, LLMs typically make excessively small edits that fail to change predictions. The observed validity-minimality trade-off is consistent across several LLMs, datasets, and evaluation settings. Our findings suggest that SCEs are, at best, an ineffective explainability tool and, at worst, can provide misleading insights into model behaviour. Proposals to deploy LLMs in high-stakes settings must consider the impact of unreliable self-explanations on downstream decision-making. Our code is available at https://github.com/HarryMayne/SCEs.
comment: Accepted to EMNLP 2025 Main
☆ MetaLLMix : An XAI Aided LLM-Meta-learning Based Approach for Hyper-parameters Optimization
Effective model and hyperparameter selection remains a major challenge in deep learning, often requiring extensive expertise and computation. While AutoML and large language models (LLMs) promise automation, current LLM-based approaches rely on trial and error and expensive APIs, which provide limited interpretability and generalizability. We propose MetaLLMiX, a zero-shot hyperparameter optimization framework combining meta-learning, explainable AI, and efficient LLM reasoning. By leveraging historical experiment outcomes with SHAP explanations, MetaLLMiX recommends optimal hyperparameters and pretrained models without additional trials. We further employ an LLM-as-judge evaluation to control output format, accuracy, and completeness. Experiments on eight medical imaging datasets using nine open-source lightweight LLMs show that MetaLLMiX achieves competitive or superior performance to traditional HPO methods while drastically reducing computational cost. Our local deployment outperforms prior API-based approaches, achieving optimal results on 5 of 8 tasks, response time reductions of 99.6-99.9%, and the fastest training times on 6 datasets (2.4-15.7x faster), maintaining accuracy within 1-5% of best-performing baselines.
☆ Robust Non-Linear Correlations via Polynomial Regression
The Hirschfeld-Gebelein-R\'enyi (HGR) correlation coefficient is an extension of Pearson's correlation that is not limited to linear correlations, with potential applications in algorithmic fairness, scientific analysis, and causal discovery. Recently, novel algorithms to estimate HGR in a differentiable manner have been proposed to facilitate its use as a loss regularizer in constrained machine learning applications. However, the inherent uncomputability of HGR requires a bias-variance trade-off, which can possibly compromise the robustness of the proposed methods, hence raising technical concerns if applied in real-world scenarios. We introduce a novel computational approach for HGR that relies on user-configurable polynomial kernels, offering greater robustness compared to previous methods and featuring a faster yet almost equally effective restriction. Our approach provides significant advantages in terms of robustness and determinism, making it a more reliable option for real-world applications. Moreover, we present a brief experimental analysis to validate the applicability of our approach within a constrained machine learning framework, showing that its computation yields an insightful subgradient that can serve as a loss regularizer.
☆ Representation-Aware Distributionally Robust Optimization: A Knowledge Transfer Framework
We propose REpresentation-Aware Distributionally Robust Estimation (READ), a novel framework for Wasserstein distributionally robust learning that accounts for predictive representations when guarding against distributional shifts. Unlike classical approaches that treat all feature perturbations equally, READ embeds a multidimensional alignment parameter into the transport cost, allowing the model to differentially discourage perturbations along directions associated with informative representations. This yields robustness to feature variation while preserving invariant structure. Our first contribution is a theoretical foundation: we show that seminorm regularizations for linear regression and binary classification arise as Wasserstein distributionally robust objectives, thereby providing tractable reformulations of READ and unifying a broad class of regularized estimators under the DRO lens. Second, we adopt a principled procedure for selecting the Wasserstein radius using the techniques of robust Wasserstein profile inference. This further enables the construction of valid, representation-aware confidence regions for model parameters with distinct geometric features. Finally, we analyze the geometry of READ estimators as the alignment parameters vary and propose an optimization algorithm to estimate the projection of the global optimum onto this solution surface. This procedure selects among equally robust estimators while optimally constructing a representation structure. We conclude by demonstrating the effectiveness of our framework through extensive simulations and a real-world study, providing a powerful robust estimation grounded in learning representation.
☆ Expressive Power of Deep Networks on Manifolds: Simultaneous Approximation
A key challenge in scientific machine learning is solving partial differential equations (PDEs) on complex domains, where the curved geometry complicates the approximation of functions and their derivatives required by differential operators. This paper establishes the first simultaneous approximation theory for deep neural networks on manifolds. We prove that a constant-depth $\mathrm{ReLU}^{k-1}$ network with bounded weights--a property that plays a crucial role in controlling generalization error--can approximate any function in the Sobolev space $\mathcal{W}_p^{k}(\mathcal{M}^d)$ to an error of $\varepsilon$ in the $\mathcal{W}_p^{s}(\mathcal{M}^d)$ norm, for $k\geq 3$ and $s
☆ Low-degree lower bounds via almost orthonormal bases
Low-degree polynomials have emerged as a powerful paradigm for providing evidence of statistical-computational gaps across a variety of high-dimensional statistical models [Wein25]. For detection problems -- where the goal is to test a planted distribution $\mathbb{P}'$ against a null distribution $\mathbb{P}$ with independent components -- the standard approach is to bound the advantage using an $\mathbb{L}^2(\mathbb{P})$-orthonormal family of polynomials. However, this method breaks down for estimation tasks or more complex testing problems where $\mathbb{P}$ has some planted structures, so that no simple $\mathbb{L}^2(\mathbb{P})$-orthogonal polynomial family is available. To address this challenge, several technical workarounds have been proposed [SW22,SW25], though their implementation can be delicate. In this work, we propose a more direct proof strategy. Focusing on random graph models, we construct a basis of polynomials that is almost orthonormal under $\mathbb{P}$, in precisely those regimes where statistical-computational gaps arise. This almost orthonormal basis not only yields a direct route to establishing low-degree lower bounds, but also allows us to explicitly identify the polynomials that optimize the low-degree criterion. This, in turn, provides insights into the design of optimal polynomial-time algorithms. We illustrate the effectiveness of our approach by recovering known low-degree lower bounds, and establishing new ones for problems such as hidden subcliques, stochastic block models, and seriation models.
☆ MoSE: Unveiling Structural Patterns in Graphs via Mixture of Subgraph Experts
While graph neural networks (GNNs) have achieved great success in learning from graph-structured data, their reliance on local, pairwise message passing restricts their ability to capture complex, high-order subgraph patterns. leading to insufficient structural expressiveness. Recent efforts have attempted to enhance structural expressiveness by integrating random walk kernels into GNNs. However, these methods are inherently designed for graph-level tasks, which limits their applicability to other downstream tasks such as node classification. Moreover, their fixed kernel configurations hinder the model's flexibility in capturing diverse subgraph structures. To address these limitations, this paper proposes a novel Mixture of Subgraph Experts (MoSE) framework for flexible and expressive subgraph-based representation learning across diverse graph tasks. Specifically, MoSE extracts informative subgraphs via anonymous walks and dynamically routes them to specialized experts based on structural semantics, enabling the model to capture diverse subgraph patterns with improved flexibility and interpretability. We further provide a theoretical analysis of MoSE's expressivity within the Subgraph Weisfeiler-Lehman (SWL) Test, proving that it is more powerful than SWL. Extensive experiments, together with visualizations of learned subgraph experts, demonstrate that MoSE not only outperforms competitive baselines but also provides interpretable insights into structural patterns learned by the model.
comment: 16 pages, 11 figures
☆ Exploring Pre-training Across Domains for Few-Shot Surgical Skill Assessment MICCAI 2025
Automated surgical skill assessment (SSA) is a central task in surgical computer vision. Developing robust SSA models is challenging due to the scarcity of skill annotations, which are time-consuming to produce and require expert consensus. Few-shot learning (FSL) offers a scalable alternative enabling model development with minimal supervision, though its success critically depends on effective pre-training. While widely studied for several surgical downstream tasks, pre-training has remained largely unexplored in SSA. In this work, we formulate SSA as a few-shot task and investigate how self-supervised pre-training strategies affect downstream few-shot SSA performance. We annotate a publicly available robotic surgery dataset with Objective Structured Assessment of Technical Skill (OSATS) scores, and evaluate various pre-training sources across three few-shot settings. We quantify domain similarity and analyze how domain gap and the inclusion of procedure-specific data into pre-training influence transferability. Our results show that small but domain-relevant datasets can outperform large scale, less aligned ones, achieving accuracies of 60.16%, 66.03%, and 73.65% in the 1-, 2-, and 5-shot settings, respectively. Moreover, incorporating procedure-specific data into pre-training with a domain-relevant external dataset significantly boosts downstream performance, with an average gain of +1.22% in accuracy and +2.28% in F1-score; however, applying the same strategy with less similar but large-scale sources can instead lead to performance degradation. Code and models are available at https://github.com/anastadimi/ssa-fsl.
comment: Accepted at MICCAI 2025 DEMI Workshop
☆ Model-Agnostic Open-Set Air-to-Air Visual Object Detection for Reliable UAV Perception
Open-set detection is crucial for robust UAV autonomy in air-to-air object detection under real-world conditions. Traditional closed-set detectors degrade significantly under domain shifts and flight data corruption, posing risks to safety-critical applications. We propose a novel, model-agnostic open-set detection framework designed specifically for embedding-based detectors. The method explicitly handles unknown object rejection while maintaining robustness against corrupted flight data. It estimates semantic uncertainty via entropy modeling in the embedding space and incorporates spectral normalization and temperature scaling to enhance open-set discrimination. We validate our approach on the challenging AOT aerial benchmark and through extensive real-world flight tests. Comprehensive ablation studies demonstrate consistent improvements over baseline methods, achieving up to a 10\% relative AUROC gain compared to standard YOLO-based detectors. Additionally, we show that background rejection further strengthens robustness without compromising detection accuracy, making our solution particularly well-suited for reliable UAV perception in dynamic air-to-air environments.
☆ Tree-OPO: Off-policy Monte Carlo Tree-Guided Advantage Optimization for Multistep Reasoning
Recent advances in reasoning with large language models (LLMs) have shown the effectiveness of Monte Carlo Tree Search (MCTS) for generating high-quality intermediate trajectories, particularly in math and symbolic domains. Inspired by this, we explore how MCTS-derived trajectories, traditionally used for training value or reward models, can be repurposed to improve policy optimization in preference-based reinforcement learning (RL). Specifically, we focus on Group Relative Policy Optimization (GRPO), a recent algorithm that enables preference-consistent policy learning without value networks. We propose a staged GRPO training paradigm where completions are derived from partially revealed MCTS rollouts, introducing a novel tree-structured setting for advantage estimation. This leads to a rich class of prefix-conditioned reward signals, which we analyze theoretically and empirically. Our initial results indicate that while structured advantage estimation can stabilize updates and better reflect compositional reasoning quality, challenges such as advantage saturation and reward signal collapse remain. We propose heuristic and statistical solutions to mitigate these issues and discuss open challenges for learning under staged or tree-like reward structures.
☆ Data Driven Discovery of Emergent Dynamics in Reaction Diffusion Systems from Sparse and Noisy Observations
Data-driven discovery of emergent dynamics is gaining popularity, particularly in the context of reaction-diffusion systems. These systems are widely studied across various fields, including neuroscience, ecology, epidemiology, and several other subject areas that deal with emergent dynamics. A current challenge in the discovery process relates to system identification when there is no prior knowledge of the underlying physics. We attempt to address this challenge by learning Soft Artificial Life (Soft ALife) models, such as Agent-based and Cellular Automata (CA) models, from observed data for reaction-diffusion systems. In this paper, we present findings on the applicability of a conceptual framework, the Data-driven Rulesets for Soft Artificial Life (DRSALife) model, to learn Soft ALife rulesets that accurately represent emergent dynamics in a reaction-diffusion system from observed data. This model has demonstrated promising results for Elementary CA Rule 30, Game of Life, and Vicsek Flocking problems in recent work. To our knowledge, this is one of the few studies that explore machine-based Soft ALife ruleset learning and system identification for reaction-diffusion dynamics without any prior knowledge of the underlying physics. Moreover, we provide comprehensive findings from experiments investigating the potential effects of using noisy and sparse observed datasets on learning emergent dynamics. Additionally, we successfully identify the structure and parameters of the underlying partial differential equations (PDEs) representing these dynamics. Experimental results demonstrate that the learned models are able to predict the emergent dynamics with good accuracy (74%) and exhibit quite robust performance when subjected to Gaussian noise and temporal sparsity.
☆ Harnessing Uncertainty: Entropy-Modulated Policy Gradients for Long-Horizon LLM Agents ICLR 2026
In long-horizon tasks, recent agents based on Large Language Models (LLMs) face a significant challenge that sparse, outcome-based rewards make it difficult to assign credit to intermediate steps. Previous methods mainly focus on creating dense reward signals to guide learning, either through traditional reinforcement learning techniques like inverse reinforcement learning or by using Process Reward Models for step-by-step feedback. In this paper, we identify a fundamental problem in the learning dynamics of LLMs: the magnitude of policy gradients is inherently coupled with the entropy, which leads to inefficient small updates for confident correct actions and potentially destabilizes large updates for uncertain ones. To resolve this, we propose Entropy-Modulated Policy Gradients (EMPG), a framework that re-calibrates the learning signal based on step-wise uncertainty and the final task outcome. EMPG amplifies updates for confident correct actions, penalizes confident errors, and attenuates updates from uncertain steps to stabilize exploration. We further introduce a bonus term for future clarity that encourages agents to find more predictable solution paths. Through comprehensive experiments on three challenging agent tasks, WebShop, ALFWorld, and Deep Search, we demonstrate that EMPG achieves substantial performance gains and significantly outperforms strong policy gradient baselines. Project page is at https://empgseed-seed.github.io/
comment: ICLR 2026 Under review
☆ Unsupervised Multi-Attention Meta Transformer for Rotating Machinery Fault Diagnosis
The intelligent fault diagnosis of rotating mechanical equipment usually requires a large amount of labeled sample data. However, in practical industrial applications, acquiring enough data is both challenging and expensive in terms of time and cost. Moreover, different types of rotating mechanical equipment with different unique mechanical properties, require separate training of diagnostic models for each case. To address the challenges of limited fault samples and the lack of generalizability in prediction models for practical engineering applications, we propose a Multi-Attention Meta Transformer method for few-shot unsupervised rotating machinery fault diagnosis (MMT-FD). This framework extracts potential fault representations from unlabeled data and demonstrates strong generalization capabilities, making it suitable for diagnosing faults across various types of mechanical equipment. The MMT-FD framework integrates a time-frequency domain encoder and a meta-learning generalization model. The time-frequency domain encoder predicts status representations generated through random augmentations in the time-frequency domain. These enhanced data are then fed into a meta-learning network for classification and generalization training, followed by fine-tuning using a limited amount of labeled data. The model is iteratively optimized using a small number of contrastive learning iterations, resulting in high efficiency. To validate the framework, we conducted experiments on a bearing fault dataset and rotor test bench data. The results demonstrate that the MMT-FD model achieves 99\% fault diagnosis accuracy with only 1\% of labeled sample data, exhibiting robust generalization capabilities.
☆ Global Optimization of Stochastic Black-Box Functions with Arbitrary Noise Distributions using Wilson Score Kernel Density Estimation
Many optimization problems in robotics involve the optimization of time-expensive black-box functions, such as those involving complex simulations or evaluation of real-world experiments. Furthermore, these functions are often stochastic as repeated experiments are subject to unmeasurable disturbances. Bayesian optimization can be used to optimize such methods in an efficient manner by deploying a probabilistic function estimator to estimate with a given confidence so that regions of the search space can be pruned away. Consequently, the success of the Bayesian optimization depends on the function estimator's ability to provide informative confidence bounds. Existing function estimators require many function evaluations to infer the underlying confidence or depend on modeling of the disturbances. In this paper, it is shown that the confidence bounds provided by the Wilson Score Kernel Density Estimator (WS-KDE) are applicable as excellent bounds to any stochastic function with an output confined to the closed interval [0;1] regardless of the distribution of the output. This finding opens up the use of WS-KDE for stable global optimization on a wider range of cost functions. The properties of WS-KDE in the context of Bayesian optimization are demonstrated in simulation and applied to the problem of automated trap design for vibrational part feeders.
☆ Constructing a Question-Answering Simulator through the Distillation of LLMs
The question-answering (QA) simulator is a model that mimics real student learning behaviors and predicts their correctness of their responses to questions. QA simulators enable educational recommender systems (ERS) to collect large amounts of training data without interacting with real students, thereby preventing harmful recommendations made by an undertrained ERS from undermining actual student learning. Given the QA history, there are two categories of solutions to predict the correctness, conducting the simulation: (1) LLM-free methods, which apply a traditional sequential model to transfer the QA history into a vector representation first, and make predictions based on the representation; (2) LLM-based methods, which leverage the domain knowledge and reasoning capability of LLM to enhence the prediction. LLM-free methods offer fast inference but generally yield suboptimal performance. In contrast, most LLM-based methods achieve better results, but at the cost of slower inference speed and higher GPU memory consumption. In this paper, we propose a method named LLM Distillation based Simulator (LDSim), which distills domain knowledge and reasoning capability from an LLM to better assist prediction, thereby improving simulation performance. Extensive experiments demonstrate that our LDSim achieves strong results on both the simulation task and the knowledge tracing (KT) task. Our code is publicly available at https://anonymous.4open.science/r/LDSim-05A9.
☆ Vejde: A Framework for Inductive Deep Reinforcement Learning Based on Factor Graph Color Refinement
We present and evaluate Vejde; a framework which combines data abstraction, graph neural networks and reinforcement learning to produce inductive policy functions for decision problems with richly structured states, such as object classes and relations. MDP states are represented as data bases of facts about entities, and Vejde converts each state to a bipartite graph, which is mapped to latent states through neural message passing. The factored representation of both states and actions allows Vejde agents to handle problems of varying size and structure. We tested Vejde agents on eight problem domains defined in RDDL, with ten problem instances each, where policies were trained using both supervised and reinforcement learning. To test policy generalization, we separate problem instances in two sets, one for training and the other solely for testing. Test results on unseen instances for the Vejde agents were compared to MLP agents trained on each problem instance, as well as the online planning algorithm Prost. Our results show that Vejde policies in average generalize to the test instances without a significant loss in score. Additionally, the inductive agents received scores on unseen test instances that on average were close to the instance-specific MLP agents.
☆ Identifying Key Features for Establishing Sustainable Agro-Tourism Centre: A Data Driven Approach
Agro-tourism serves as a strategic economic model designed to facilitate rural development by diversifying income streams for local communities like farmers while promoting the conservation of indigenous cultural heritage and traditional agricultural practices. As a very booming subdomain of tourism, there is a need to study the strategies for the growth of Agro-tourism in detail. The current study has identified the important indicators for the growth and enhancement of agro-tourism. The study is conducted in two phases: identification of the important indicators through a comprehensive literature review and in the second phase state-of-the-art techniques were used to identify the important indicators for the growth of agro-tourism. The indicators are also called features synonymously, the machine learning models for feature selection were applied and it was observed that the Least Absolute Shrinkage and Selection Operator (LASSO) method combined with, the machine Learning Classifiers such as Logistic Regression (LR), Decision Trees (DT), Random Forest (RF) Tree, and Extreme Gradient Boosting (XGBOOST) models were used to suggest the growth of the agro-tourism. The results show that with the LASSO method, LR model gives the highest classification accuracy of 98% in 70-30% train-test data followed by RF with 95% accuracy. Similarly, in the 80-20% train-test data LR maintains the highest accuracy at 99%, while DT and XGBoost follow with 97% accuracy.
☆ Incentivizing Safer Actions in Policy Optimization for Constrained Reinforcement Learning IJCAI
Constrained Reinforcement Learning (RL) aims to maximize the return while adhering to predefined constraint limits, which represent domain-specific safety requirements. In continuous control settings, where learning agents govern system actions, balancing the trade-off between reward maximization and constraint satisfaction remains a significant challenge. Policy optimization methods often exhibit instability near constraint boundaries, resulting in suboptimal training performance. To address this issue, we introduce a novel approach that integrates an adaptive incentive mechanism in addition to the reward structure to stay within the constraint bound before approaching the constraint boundary. Building on this insight, we propose Incrementally Penalized Proximal Policy Optimization (IP3O), a practical algorithm that enforces a progressively increasing penalty to stabilize training dynamics. Through empirical evaluation on benchmark environments, we demonstrate the efficacy of IP3O compared to the performance of state-of-the-art Safe RL algorithms. Furthermore, we provide theoretical guarantees by deriving a bound on the worst-case error of the optimality achieved by our algorithm.
comment: 11 pages, Accepted to the 34th International Joint Conference on Artificial Intelligence (IJCAI) 2025, Main Track
☆ Breaking the Statistical Similarity Trap in Extreme Convection Detection
Current evaluation metrics for deep learning weather models create a "Statistical Similarity Trap", rewarding blurry predictions while missing rare, high-impact events. We provide quantitative evidence of this trap, showing sophisticated baselines achieve 97.9% correlation yet 0.00 CSI for dangerous convection detection. We introduce DART (Dual Architecture for Regression Tasks), a framework addressing the challenge of transforming coarse atmospheric forecasts into high-resolution satellite brightness temperature fields optimized for extreme convection detection (below 220 K). DART employs dual-decoder architecture with explicit background/extreme decomposition, physically motivated oversampling, and task-specific loss functions. We present four key findings: (1) empirical validation of the Statistical Similarity Trap across multiple sophisticated baselines; (2) the "IVT Paradox", removing Integrated Water Vapor Transport, widely regarded as essential for atmospheric river analysis, improves extreme convection detection by 270%; (3) architectural necessity demonstrated through operational flexibility (DART achieves CSI = 0.273 with bias = 2.52 vs. 6.72 for baselines at equivalent CSI), and (4) real-world validation with the August 2023 Chittagong flooding disaster as a case study. To our knowledge, this is the first work to systematically address this hybrid conversion-segmentation-downscaling task, with no direct prior benchmarks identified in existing literature. Our validation against diverse statistical and deep learning baselines sufficiently demonstrates DART's specialized design. The framework enables precise operational calibration through beta-tuning, trains in under 10 minutes on standard hardware, and integrates seamlessly with existing meteorological workflows, demonstrating a pathway toward trustworthy AI for extreme weather preparedness.
comment: 43 pages, 7 figures
☆ Clip Your Sequences Fairly: Enforcing Length Fairness for Sequence-Level RL
We propose FSPO (Fair Sequence Policy Optimization), a sequence-level reinforcement learning method for LLMs that enforces length-fair clipping directly in the importance-sampling (IS) weight space. We revisit sequence-level RL methods and identify a mismatch when PPO/GRPO-style clipping is transplanted to sequences: a fixed clip range systematically reweights short vs. long responses, distorting the effective objective. Theoretically, we formalize length fairness via a Length Reweighting Error (LRE) and prove that small LRE yields a directional cosine guarantee between the clipped and true updates. FSPO introduces a simple, Gaussian-motivated remedy: we clip the sequence log-IS ratio with a band that applies a KL-corrected drift term and scales as $\sqrt{L}$. Empirically, FSPO flattens clip rates across length bins, stabilizes training, and outperforms all baselines across multiple evaluation datasets.
☆ Quantum Machine Learning, Quantitative Trading, Reinforcement Learning, Deep Learning
The convergence of quantum-inspired neural networks and deep reinforcement learning offers a promising avenue for financial trading. We implemented a trading agent for USD/TWD by integrating Quantum Long Short-Term Memory (QLSTM) for short-term trend prediction with Quantum Asynchronous Advantage Actor-Critic (QA3C), a quantum-enhanced variant of the classical A3C. Trained on data from 2000-01-01 to 2025-04-30 (80\% training, 20\% testing), the long-only agent achieves 11.87\% return over around 5 years with 0.92\% max drawdown, outperforming several currency ETFs. We detail state design (QLSTM features and indicators), reward function for trend-following/risk control, and multi-core training. Results show hybrid models yield competitive FX trading performance. Implications include QLSTM's effectiveness for small-profit trades with tight risk and future enhancements. Key hyperparameters: QLSTM sequence length$=$4, QA3C workers$=$8. Limitations: classical quantum simulation and simplified strategy. \footnote{The views expressed in this article are those of the authors and do not represent the views of Wells Fargo. This article is for informational purposes only. Nothing contained in this article should be construed as investment advice. Wells Fargo makes no express or implied warranties and expressly disclaims all legal, tax, and accounting implications related to this article.
☆ Adaptive Pareto-Optimal Token Merging for Edge Transformer Models in Semantic Communication IEEE
Large-scale transformer models have emerged as a powerful tool for semantic communication systems, enabling edge devices to extract rich representations for robust inference across noisy wireless channels. However, their substantial computational demands remain a major barrier to practical deployment in resource-constrained 6G networks. In this paper, we present a training-free framework for adaptive token merging in pretrained vision transformers to jointly reduce inference time and transmission resource usage. We formulate the selection of per-layer merging proportions as a multi-objective optimization problem to balance accuracy and computational cost. We employ Gaussian process-based Bayesian optimization to construct a Pareto frontier of optimal configurations, enabling flexible runtime adaptation to dynamic application requirements and channel conditions. Extensive experiments demonstrate that our method consistently outperforms other baselines and achieves significant reductions in floating-point operations while maintaining competitive accuracy across a wide range of signal-to-noise ratio (SNR) conditions. Additional results highlight the effectiveness of adaptive policies that adjust merging aggressiveness in response to channel quality, providing a practical mechanism to trade off latency and semantic fidelity on demand. These findings establish a scalable and efficient approach for deploying transformer-based semantic communication in future edge intelligence systems.
comment: To appear in IEEE Globecom 2025
☆ HISPASpoof: A New Dataset For Spanish Speech Forensics ICASSP 2026
Zero-shot Voice Cloning (VC) and Text-to-Speech (TTS) methods have advanced rapidly, enabling the generation of highly realistic synthetic speech and raising serious concerns about their misuse. While numerous detectors have been developed for English and Chinese, Spanish-spoken by over 600 million people worldwide-remains underrepresented in speech forensics. To address this gap, we introduce HISPASpoof, the first large-scale Spanish dataset designed for synthetic speech detection and attribution. It includes real speech from public corpora across six accents and synthetic speech generated with six zero-shot TTS systems. We evaluate five representative methods, showing that detectors trained on English fail to generalize to Spanish, while training on HISPASpoof substantially improves detection. We also evaluate synthetic speech attribution performance on HISPASpoof, i.e., identifying the generation method of synthetic speech. HISPASpoof thus provides a critical benchmark for advancing reliable and inclusive speech forensics in Spanish.
comment: 8 pages, 1 figure, 10 tables, being submitted to ICASSP 2026 (IEEE International Conference on Acoustics, Speech, and Signal Processing 2026)
☆ Video Understanding by Design: How Datasets Shape Architectures and Insights
Video understanding has advanced rapidly, fueled by increasingly complex datasets and powerful architectures. Yet existing surveys largely classify models by task or family, overlooking the structural pressures through which datasets guide architectural evolution. This survey is the first to adopt a dataset-driven perspective, showing how motion complexity, temporal span, hierarchical composition, and multimodal richness impose inductive biases that models should encode. We reinterpret milestones, from two-stream and 3D CNNs to sequential, transformer, and multimodal foundation models, as concrete responses to these dataset-driven pressures. Building on this synthesis, we offer practical guidance for aligning model design with dataset invariances while balancing scalability and task demands. By unifying datasets, inductive biases, and architectures into a coherent framework, this survey provides both a comprehensive retrospective and a prescriptive roadmap for advancing general-purpose video understanding.
comment: Research report
☆ Peering Partner Recommendation for ISPs using Machine Learning IEEE
Internet service providers (ISPs) need to connect with other ISPs to provide global connectivity services to their users. To ensure global connectivity, ISPs can either use transit service(s) or establish direct peering relationships between themselves via Internet exchange points (IXPs). Peering offers more room for ISP-specific optimizations and is preferred, but it often involves a lengthy and complex process. Automating peering partner selection can enhance efficiency in the global Internet ecosystem. We explore the use of publicly available data on ISPs to develop a machine learning (ML) model that can predict whether an ISP pair should peer or not. At first, we explore public databases, e.g., PeeringDB, CAIDA, etc., to gather data on ISPs. Then, we evaluate the performance of three broad types of ML models for predicting peering relationships: tree-based, neural network-based, and transformer-based. Among these, we observe that tree-based models achieve the highest accuracy and efficiency in our experiments. The XGBoost model trained with publicly available data showed promising performance, with a 98% accuracy rate in predicting peering partners. In addition, the model demonstrated great resilience to variations in time, space, and missing data. We envision that ISPs can adopt our method to fully automate the peering partner selection process, thus transitioning to a more efficient and optimized Internet ecosystem.
comment: Submitted to IEEE Transactions on Machine Learning in Communications and Networking
☆ Continuous-Time Value Iteration for Multi-Agent Reinforcement Learning
Existing reinforcement learning (RL) methods struggle with complex dynamical systems that demand interactions at high frequencies or irregular time intervals. Continuous-time RL (CTRL) has emerged as a promising alternative by replacing discrete-time Bellman recursion with differential value functions defined as viscosity solutions of the Hamilton--Jacobi--Bellman (HJB) equation. While CTRL has shown promise, its applications have been largely limited to the single-agent domain. This limitation stems from two key challenges: (i) conventional solution methods for HJB equations suffer from the curse of dimensionality (CoD), making them intractable in high-dimensional systems; and (ii) even with HJB-based learning approaches, accurately approximating centralized value functions in multi-agent settings remains difficult, which in turn destabilizes policy training. In this paper, we propose a CT-MARL framework that uses physics-informed neural networks (PINNs) to approximate HJB-based value functions at scale. To ensure the value is consistent with its differential structure, we align value learning with value-gradient learning by introducing a Value Gradient Iteration (VGI) module that iteratively refines value gradients along trajectories. This improves gradient fidelity, in turn yielding more accurate values and stronger policy learning. We evaluate our method using continuous-time variants of standard benchmarks, including multi-agent particle environment (MPE) and multi-agent MuJoCo. Our results demonstrate that our approach consistently outperforms existing continuous-time RL baselines and scales to complex multi-agent dynamics.
comment: 19 pages, 10 figures
☆ Learning What Matters: Causal Time Series Modeling for Arctic Sea Ice Prediction IJCAI 2025
Conventional machine learning and deep learning models typically rely on correlation-based learning, which often fails to distinguish genuine causal relationships from spurious associations, limiting their robustness, interpretability, and ability to generalize. To overcome these limitations, we introduce a causality-aware deep learning framework that integrates Multivariate Granger Causality (MVGC) and PCMCI+ for causal feature selection within a hybrid neural architecture. Leveraging 43 years (1979-2021) of Arctic Sea Ice Extent (SIE) data and associated ocean-atmospheric variables at daily and monthly resolutions, the proposed method identifies causally influential predictors, prioritizes direct causes of SIE dynamics, reduces unnecessary features, and enhances computational efficiency. Experimental results show that incorporating causal inputs leads to improved prediction accuracy and interpretability across varying lead times. While demonstrated on Arctic SIE forecasting, the framework is broadly applicable to other dynamic, high-dimensional domains, offering a scalable approach that advances both the theoretical foundations and practical performance of causality-informed predictive modeling.
comment: Accepted and presented at the AI4TS Workshop @ IJCAI 2025 (non-archival)
☆ Sensitivity-LoRA: Low-Load Sensitivity-Based Fine-Tuning for Large Language Models
Large Language Models (LLMs) have transformed both everyday life and scientific research. However, adapting LLMs from general-purpose models to specialized tasks remains challenging, particularly in resource-constrained environments. Low-Rank Adaptation (LoRA), a prominent method within Parameter-Efficient Fine-Tuning (PEFT), has emerged as a promising approach to LLMs by approximating model weight updates using low-rank decomposition. However, LoRA is limited by its uniform rank ( r ) allocation to each incremental matrix, and existing rank allocation techniques aimed at addressing this issue remain computationally inefficient, complex, and unstable, hindering practical applications. To address these limitations, we propose Sensitivity-LoRA, an efficient fine-tuning method that dynamically allocates ranks to weight matrices based on both their global and local sensitivities. It leverages the second-order derivatives (Hessian Matrix) of the loss function to effectively capture weight sensitivity, enabling optimal rank allocation with minimal computational overhead. Our experimental results have demonstrated robust effectiveness, efficiency and stability of Sensitivity-LoRA across diverse tasks and benchmarks.
comment: 15 pages
☆ CryptGNN: Enabling Secure Inference for Graph Neural Networks
We present CryptGNN, a secure and effective inference solution for third-party graph neural network (GNN) models in the cloud, which are accessed by clients as ML as a service (MLaaS). The main novelty of CryptGNN is its secure message passing and feature transformation layers using distributed secure multi-party computation (SMPC) techniques. CryptGNN protects the client's input data and graph structure from the cloud provider and the third-party model owner, and it protects the model parameters from the cloud provider and the clients. CryptGNN works with any number of SMPC parties, does not require a trusted server, and is provably secure even if P-1 out of P parties in the cloud collude. Theoretical analysis and empirical experiments demonstrate the security and efficiency of CryptGNN.
☆ An entropy formula for the Deep Linear Network
We study the Riemannian geometry of the Deep Linear Network (DLN) as a foundation for a thermodynamic description of the learning process. The main tools are the use of group actions to analyze overparametrization and the use of Riemannian submersion from the space of parameters to the space of observables. The foliation of the balanced manifold in the parameter space by group orbits is used to define and compute a Boltzmann entropy. We also show that the Riemannian geometry on the space of observables defined in [2] is obtained by Riemannian submersion of the balanced manifold. The main technical step is an explicit construction of an orthonormal basis for the tangent space of the balanced manifold using the theory of Jacobi matrices.
☆ Scalable extensions to given-data Sobol' index estimators
Given-data methods for variance-based sensitivity analysis have significantly advanced the feasibility of Sobol' index computation for computationally expensive models and models with many inputs. However, the limitations of existing methods still preclude their application to models with an extremely large number of inputs. In this work, we present practical extensions to the existing given-data Sobol' index method, which allow variance-based sensitivity analysis to be efficiently performed on large models such as neural networks, which have $>10^4$ parameterizable inputs. For models of this size, holding all input-output evaluations simultaneously in memory -- as required by existing methods -- can quickly become impractical. These extensions also support nonstandard input distributions with many repeated values, which are not amenable to equiprobable partitions employed by existing given-data methods. Our extensions include a general definition of the given-data Sobol' index estimator with arbitrary partition, a streaming algorithm to process input-output samples in batches, and a heuristic to filter out small indices that are indistinguishable from zero indices due to statistical noise. We show that the equiprobable partition employed in existing given-data methods can introduce significant bias into Sobol' index estimates even at large sample sizes and provide numerical analyses that demonstrate why this can occur. We also show that our streaming algorithm can achieve comparable accuracy and runtimes with lower memory requirements, relative to current methods which process all samples at once. We demonstrate our novel developments on two application problems in neural network modeling.
☆ KoopMotion: Learning Almost Divergence Free Koopman Flow Fields for Motion Planning
In this work, we propose a novel flow field-based motion planning method that drives a robot from any initial state to a desired reference trajectory such that it converges to the trajectory's end point. Despite demonstrated efficacy in using Koopman operator theory for modeling dynamical systems, Koopman does not inherently enforce convergence to desired trajectories nor to specified goals -- a requirement when learning from demonstrations (LfD). We present KoopMotion which represents motion flow fields as dynamical systems, parameterized by Koopman Operators to mimic desired trajectories, and leverages the divergence properties of the learnt flow fields to obtain smooth motion fields that converge to a desired reference trajectory when a robot is placed away from the desired trajectory, and tracks the trajectory until the end point. To demonstrate the effectiveness of our approach, we show evaluations of KoopMotion on the LASA human handwriting dataset and a 3D manipulator end-effector trajectory dataset, including spectral analysis. We also perform experiments on a physical robot, verifying KoopMotion on a miniature autonomous surface vehicle operating in a non-static fluid flow environment. Our approach is highly sample efficient in both space and time, requiring only 3\% of the LASA dataset to generate dense motion plans. Additionally, KoopMotion provides a significant improvement over baselines when comparing metrics that measure spatial and temporal dynamics modeling efficacy.
comment: Accepted to CoRL 2025 (Conference on Robot Learning). 15 pages 11 figures
☆ "A 6 or a 9?": Ensemble Learning Through the Multiplicity of Performant Models and Explanations KDD
Creating models from past observations and ensuring their effectiveness on new data is the essence of machine learning. However, selecting models that generalize well remains a challenging task. Related to this topic, the Rashomon Effect refers to cases where multiple models perform similarly well for a given learning problem. This often occurs in real-world scenarios, like the manufacturing process or medical diagnosis, where diverse patterns in data lead to multiple high-performing solutions. We propose the Rashomon Ensemble, a method that strategically selects models from these diverse high-performing solutions to improve generalization. By grouping models based on both their performance and explanations, we construct ensembles that maximize diversity while maintaining predictive accuracy. This selection ensures that each model covers a distinct region of the solution space, making the ensemble more robust to distribution shifts and variations in unseen data. We validate our approach on both open and proprietary collaborative real-world datasets, demonstrating up to 0.20+ AUROC improvements in scenarios where the Rashomon ratio is large. Additionally, we demonstrate tangible benefits for businesses in various real-world applications, highlighting the robustness, practicality, and effectiveness of our approach.
comment: Paper accepted to the ACM Transactions on Knowledge Discovery from Data (TKDD) for publication (preprint version)
☆ STRIDE: Scalable and Interpretable XAI via Subset-Free Functional Decomposition
Most explainable AI (XAI) frameworks face two practical limitations: the exponential cost of reasoning over feature subsets and the reduced expressiveness of summarizing effects as single scalar values. We present STRIDE, a scalable framework that aims to mitigate both issues by framing explanation as a subset-enumeration-free, orthogonal functional decomposition in a Reproducing Kernel Hilbert Space (RKHS). Rather than focusing only on scalar attributions, STRIDE computes functional components f_S(x_S) via an analytical projection scheme based on a recursive kernel-centering procedure, avoiding explicit subset enumeration. In the tabular setups we study, the approach is model-agnostic, provides both local and global views, and is supported by theoretical results on orthogonality and L^2 convergence under stated assumptions. On public tabular benchmarks in our environment, we observed speedups ranging from 0.6 times (slower than TreeSHAP on a small dataset) to 9.7 times (California), with a median approximate 3.0 times across 10 datasets, while maintaining high fidelity (R^2 between 0.81 and 0.999) and substantial rank agreement on most datasets. Overall, STRIDE complements scalar attribution methods by offering a structured functional perspective, enabling novel diagnostics like 'component surgery' to quantitatively measure the impact of specific interactions within our experimental scope.
comment: 10 pages, 2 figures
♻ ☆ Demo: Healthcare Agent Orchestrator (HAO) for Patient Summarization in Molecular Tumor Boards
Molecular Tumor Boards (MTBs) are multidisciplinary forums where oncology specialists collaboratively assess complex patient cases to determine optimal treatment strategies. A central element of this process is the patient summary, typically compiled by a medical oncologist, radiation oncologist, or surgeon, or their trained medical assistant, who distills heterogeneous medical records into a concise narrative to facilitate discussion. This manual approach is often labor-intensive, subjective, and prone to omissions of critical information. To address these limitations, we introduce the Healthcare Agent Orchestrator (HAO), a Large Language Model (LLM)-driven AI agent that coordinates a multi-agent clinical workflow to generate accurate and comprehensive patient summaries for MTBs. Evaluating predicted patient summaries against ground truth presents additional challenges due to stylistic variation, ordering, synonym usage, and phrasing differences, which complicate the measurement of both succinctness and completeness. To overcome these evaluation hurdles, we propose TBFact, a ``model-as-a-judge'' framework designed to assess the comprehensiveness and succinctness of generated summaries. Using a benchmark dataset derived from de-identified tumor board discussions, we applied TBFact to evaluate our Patient History agent. Results show that the agent captured 94% of high-importance information (including partial entailments) and achieved a TBFact recall of 0.84 under strict entailment criteria. We further demonstrate that TBFact enables a data-free evaluation framework that institutions can deploy locally without sharing sensitive clinical data. Together, HAO and TBFact establish a robust foundation for delivering reliable and scalable support to MTBs.
comment: 9 pages, 1 figure; Added missing co-authors and contributors
♻ ☆ Investigating Energy Efficiency and Performance Trade-offs in LLM Inference Across Tasks and DVFS Settings
Large Language Models (LLMs) have demonstrated remarkable performance across a wide range of natural language processing (NLP) tasks, leading to widespread adoption in both research and industry. However, their inference workloads are computationally and energy intensive, raising concerns about sustainability and environmental impact. As LLMs continue to scale, it becomes essential to identify and optimize the factors that influence their runtime efficiency without compromising performance. In this work, we systematically investigate the energy-performance trade-offs of LLMs during inference. We benchmark models of varying sizes and architectures, including Falcon-7B, Mistral-7B-v0.1, LLaMA-3.2-1B, LLaMA-3.2-3B, and GPT-Neo-2.7B, across tasks such as question answering, commonsense reasoning, and factual generation. We analyze the effect of input characteristics, such as sequence length, entropy, named entity density and so on. Furthermore, we examine the impact of hardware-level optimizations through Dynamic Voltage and Frequency Scaling (DVFS), measuring how different GPU clock settings affect latency and power consumption. Our empirical findings show that model architecture, input complexity, and clock configuration significantly influence inference efficiency. By correlating input features with energy metrics and evaluating DVFS behavior, we identify practical strategies that reduce energy consumption by up to 30% while preserving model quality. This study provides actionable insights for designing energy-efficient and sustainable LLM inference systems.
♻ ☆ MM-Prompt: Cross-Modal Prompt Tuning for Continual Visual Question Answering
Continual Visual Question Answering (CVQA) based on pre-trained models(PTMs) has achieved promising progress by leveraging prompt tuning to enable continual multi-modal learning. However, most existing methods adopt cross-modal prompt isolation, constructing visual and textual prompts separately, which exacerbates modality imbalance and leads to degraded performance over time. To tackle this issue, we propose MM-Prompt, a novel framework incorporating cross-modal prompt query and cross-modal prompt recovery. The former enables balanced prompt selection by incorporating cross-modal signals during query formation, while the latter promotes joint prompt reconstruction through iterative cross-modal interactions, guided by an alignment loss to prevent representational drift. Extensive experiments show that MM-Prompt surpasses prior approaches in accuracy and knowledge retention, while maintaining balanced modality engagement throughout continual learning.
♻ ☆ Modular Jump Gaussian Processes
Gaussian processes (GPs) furnish accurate nonlinear predictions with well-calibrated uncertainty. However, the typical GP setup has a built-in stationarity assumption, making it ill-suited for modeling data from processes with sudden changes, or "jumps" in the output variable. The "jump GP" (JGP) was developed for modeling data from such processes, combining local GPs and latent "level" variables under a joint inferential framework. But joint modeling can be fraught with difficulty. We aim to simplify by suggesting a more modular setup, eschewing joint inference but retaining the main JGP themes: (a) learning optimal neighborhood sizes that locally respect manifolds of discontinuity; and (b) a new cluster-based (latent) feature to capture regions of distinct output levels on both sides of the manifold. We show that each of (a) and (b) separately leads to dramatic improvements when modeling processes with jumps. In tandem (but without requiring joint inference) that benefit is compounded, as illustrated on real and synthetic benchmark examples from the recent literature.
comment: 19 pages, 13 figures
♻ ☆ Directly Aligning the Full Diffusion Trajectory with Fine-Grained Human Preference
Recent studies have demonstrated the effectiveness of directly aligning diffusion models with human preferences using differentiable reward. However, they exhibit two primary challenges: (1) they rely on multistep denoising with gradient computation for reward scoring, which is computationally expensive, thus restricting optimization to only a few diffusion steps; (2) they often need continuous offline adaptation of reward models in order to achieve desired aesthetic quality, such as photorealism or precise lighting effects. To address the limitation of multistep denoising, we propose Direct-Align, a method that predefines a noise prior to effectively recover original images from any time steps via interpolation, leveraging the equation that diffusion states are interpolations between noise and target images, which effectively avoids over-optimization in late timesteps. Furthermore, we introduce Semantic Relative Preference Optimization (SRPO), in which rewards are formulated as text-conditioned signals. This approach enables online adjustment of rewards in response to positive and negative prompt augmentation, thereby reducing the reliance on offline reward fine-tuning. By fine-tuning the FLUX model with optimized denoising and online reward adjustment, we improve its human-evaluated realism and aesthetic quality by over 3x.
comment: 15 pages
♻ ☆ Near-Optimal Sample Complexity in Reward-Free Kernel-Based Reinforcement Learning AISTATS 2025
Reinforcement Learning (RL) problems are being considered under increasingly more complex structures. While tabular and linear models have been thoroughly explored, the analytical study of RL under nonlinear function approximation, especially kernel-based models, has recently gained traction for their strong representational capacity and theoretical tractability. In this context, we examine the question of statistical efficiency in kernel-based RL within the reward-free RL framework, specifically asking: how many samples are required to design a near-optimal policy? Existing work addresses this question under restrictive assumptions about the class of kernel functions. We first explore this question by assuming a generative model, then relax this assumption at the cost of increasing the sample complexity by a factor of H, the length of the episode. We tackle this fundamental problem using a broad class of kernels and a simpler algorithm compared to prior work. Our approach derives new confidence intervals for kernel ridge regression, specific to our RL setting, which may be of broader applicability. We further validate our theoretical findings through simulations.
comment: Accepted at AISTATS 2025
♻ ☆ AU-Harness: An Open-Source Toolkit for Holistic Evaluation of Audio LLMs
Large Audio Language Models (LALMs) are rapidly advancing, but evaluating them remains challenging due to inefficient toolkits that limit fair comparison and systematic assessment. Current frameworks suffer from three critical issues: slow processing that bottlenecks large-scale studies, inconsistent prompting that hurts reproducibility, and narrow task coverage that misses important audio reasoning capabilities. We introduce AU-Harness, an efficient and comprehensive evaluation framework for LALMs. Our system achieves a speedup of up to 127% over existing toolkits through optimized batch processing and parallel execution, enabling large-scale evaluations previously impractical. We provide standardized prompting protocols and flexible configurations for fair model comparison across diverse scenarios. Additionally, we introduce two new evaluation categories: LLM-Adaptive Diarization for temporal audio understanding and Spoken Language Reasoning for complex audio-based cognitive tasks. Through evaluation across 380+ tasks, we reveal significant gaps in current LALMs, particularly in temporal understanding and complex spoken language reasoning tasks. Our findings also highlight a lack of standardization in instruction modality existent across audio benchmarks, which can lead up performance differences up to 9.5 absolute points on the challenging complex instruction following downstream tasks. AU-Harness provides both practical evaluation tools and insights into model limitations, advancing systematic LALM development.
♻ ☆ Critical Challenges and Guidelines in Evaluating Synthetic Tabular Data: A Systematic Review
Generating synthetic tabular data can be challenging, however evaluation of their quality is just as challenging, if not more. This systematic review sheds light on the critical importance of rigorous evaluation of synthetic health data to ensure reliability, relevance, and their appropriate use. Based on screening of 1766 papers and a detailed review of 101 papers we identified key challenges, including lack of consensus on evaluation methods, improper use of evaluation metrics, limited input from domain experts, inadequate reporting of dataset characteristics, and limited reproducibility of results. In response, we provide several guidelines on the generation and evaluation of synthetic data, to allow the community to unlock and fully harness the transformative potential of synthetic data and accelerate innovation.
♻ ☆ DivMerge: A divergence-based model merging method for multi-tasking
Multi-task learning (MTL) is often achieved by merging datasets before fine-tuning, but the growing availability of fine-tuned models has led to new approaches such as model merging via task arithmetic. A major challenge in this setting is task interference, which worsens as the number of tasks increases. We propose a method that merges models trained on different tasks into a single model, maintaining strong performance across all tasks. Our approach leverages Jensen-Shannon divergence to guide the merging process without requiring additional labelled data, and automatically balances task importance. Unlike existing methods, our approach remains robust as the number of tasks grows and consistently outperforms prior work.
♻ ☆ Behind the Scenes: Mechanistic Interpretability of LoRA-adapted Whisper for Speech Emotion Recognition
Large pre-trained speech models such as Whisper offer strong generalization but pose significant challenges for resource-efficient adaptation. Low-Rank Adaptation (LoRA) has become a popular parameter-efficient fine-tuning method, yet its underlying mechanisms in speech tasks remain poorly understood. In this work, we conduct the first systematic mechanistic interpretability study of LoRA within the Whisper encoder for speech emotion recognition (SER). Using a suite of analytical tools, including layer contribution probing, logit-lens inspection, and representational similarity via singular value decomposition (SVD) and centered kernel alignment (CKA), we reveal two key mechanisms: a delayed specialization process that preserves general features in early layers before consolidating task-specific information, and a forward alignment, backward differentiation dynamic between LoRA's matrices. Our findings clarify how LoRA reshapes encoder hierarchies, providing both empirical insights and a deeper mechanistic understanding for designing efficient and interpretable adaptation strategies in large speech models. Our code is available at https://github.com/harryporry77/Behind-the-Scenes.
comment: Work in process
♻ ☆ Average Causal Effect Estimation in DAGs with Hidden Variables: Beyond Back-Door and Front-Door Criteria
The identification theory for causal effects in directed acyclic graphs (DAGs) with hidden variables is well established, but methods for estimating and inferring functionals that extend beyond the g-formula remain underdeveloped. Previous studies have introduced semiparametric estimators for such functionals in a broad class of DAGs with hidden variables. While these estimators exhibit desirable statistical properties such as double robustness in certain cases, they also face significant limitations. Notably, they encounter substantial computational challenges, particularly involving density estimation and numerical integration for continuous variables, and their estimates may fall outside the parameter space of the target estimand. Additionally, the asymptotic properties of these estimators is underexplored, especially when integrating flexible statistical and machine learning models for nuisance functional estimations. This paper addresses these challenges by introducing novel one-step corrected plug-in and targeted minimum loss-based estimators of causal effects for a class of hidden variable DAGs that go beyond classical back-door and front-door criteria (known as the treatment primal fixability criterion in prior literature). These estimators leverage data-adaptive machine learning algorithms to minimize modeling assumptions while ensuring key statistical properties including double robustness, efficiency, boundedness within the target parameter space, and asymptotic linearity under $L^2(P)$-rate conditions for nuisance functional estimates that yield root-n consistent causal effect estimates. To ensure our estimation methods are accessible in practice, we provide the flexCausal package in R.
♻ ☆ Variance-Aware Noisy Training: Hardening DNNs against Unstable Analog Computations
The disparity between the computational demands of deep learning and the capabilities of compute hardware is expanding drastically. Although deep learning achieves remarkable performance in countless tasks, its escalating requirements for computational power and energy consumption surpass the sustainable limits of even specialized neural processing units, including the Apple Neural Engine and NVIDIA TensorCores. This challenge is intensified by the slowdown in CMOS scaling. Analog computing presents a promising alternative, offering substantial improvements in energy efficiency by directly manipulating physical quantities such as current, voltage, charge, or photons. However, it is inherently vulnerable to manufacturing variations, nonlinearities, and noise, leading to degraded prediction accuracy. One of the most effective techniques for enhancing robustness, Noisy Training, introduces noise during the training phase to reinforce the model against disturbances encountered during inference. Although highly effective, its performance degrades in real-world environments where noise characteristics fluctuate due to external factors such as temperature variations and temporal drift. This study underscores the necessity of Noisy Training while revealing its fundamental limitations in the presence of dynamic noise. To address these challenges, we propose Variance-Aware Noisy Training, a novel approach that mitigates performance degradation by incorporating noise schedules which emulate the evolving noise conditions encountered during inference. Our method substantially improves model robustness, without training overhead. We demonstrate a significant increase in robustness, from 79.3\% with conventional Noisy Training to 97.6\% with Variance-Aware Noisy Training on CIFAR-10 and from 32.4\% to 99.7\% on Tiny ImageNet.
♻ ☆ DeepVoting: Learning and Fine-Tuning Voting Rules with Canonical Embeddings
Aggregating agent preferences into a collective decision is an important step in many problems (e.g., hiring, elections, peer review) and across areas of computer science (e.g., reinforcement learning, recommender systems). As Social Choice Theory has shown, the problem of designing aggregation rules with specific sets of properties (axioms) can be difficult, or provably impossible in some cases. Instead of designing algorithms by hand, one can learn aggregation rules, particularly voting rules, from data. However, prior work in this area has required extremely large models or been limited by the choice of preference representation, i.e., embedding. We recast the problem of designing voting rules with desirable properties into one of learning probabilistic functions that output distributions over a set of candidates. Specifically, we use neural networks to learn probabilistic social choice functions. Using standard embeddings from the social choice literature we show that preference profile encoding has significant impact on the efficiency and ability of neural networks to learn rules, allowing us to learn rules faster and with smaller networks than previous work. Moreover, we show that our learned rules can be fine-tuned using axiomatic properties to create novel voting rules and make them resistant to specific types of "attack". Namely, we fine-tune rules to resist a probabilistic version of the No Show Paradox.
♻ ☆ Development and Comparative Evaluation of Three Artificial Intelligence Models (NLP, LLM, JEPA) for Predicting Triage in Emergency Departments: A 7-Month Retrospective Proof-of-Concept
Emergency departments struggle with persistent triage errors, especially undertriage and overtriage, which are aggravated by growing patient volumes and staff shortages. This study evaluated three AI models [TRIAGEMASTER (NLP), URGENTIAPARSE (LLM), and EMERGINET (JEPA)] against the FRENCH triage scale and nurse practice, using seven months of adult triage data from Roger Salengro Hospital in Lille, France. Among the models, the LLM-based URGENTIAPARSE consistently outperformed both AI alternatives and nurse triage, achieving the highest accuracy (F1-score 0.900, AUC-ROC 0.879) and superior performance in predicting hospitalization needs (GEMSA). Its robustness across structured data and raw transcripts highlighted the advantage of LLM architectures in abstracting patient information. Overall, the findings suggest that integrating LLM-based AI into emergency department workflows could significantly enhance patient safety and operational efficiency, though successful adoption will depend on addressing limitations and ensuring ethical transparency.
comment: 13 pages, 7 figures, 3 tables
♻ ☆ Extended Neural Contractive Dynamical Systems: On Multiple Tasks and Riemannian Safety Regions
Stability guarantees are crucial when ensuring that a fully autonomous robot does not take undesirable or potentially harmful actions. We recently proposed the Neural Contractive Dynamical Systems (NCDS), which is a neural network architecture that guarantees contractive stability. With this, learning-from-demonstrations approaches can trivially provide stability guarantees. However, our early work left several unanswered questions, which we here address. Beyond providing an in-depth explanation of NCDS, this paper extends the framework with more careful regularization, a conditional variant of the framework for handling multiple tasks, and an uncertainty-driven approach to latent obstacle avoidance. Experiments verify that the developed system has the flexibility of ordinary neural networks while providing the stability guarantees needed for autonomous robotics.
comment: arXiv admin note: substantial text overlap with arXiv:2401.09352
♻ ☆ LLMs for sensory-motor control: Combining in-context and iterative learning
We propose a method that enables large language models (LLMs) to control embodied agents by directly mapping continuous observation vectors to continuous action vectors. At the outset, the LLMs generate a control strategy based on a textual description of the agent, its environment, and the intended goal. This strategy is then iteratively refined through a learning process in which the LLMs are repeatedly prompted to improve the current strategy, using performance feedback and sensory-motor data collected during its evaluation. The method is validated on classic control tasks from the Gymnasium library and the inverted pendulum task from the MuJoCo library. The approach proves effective with relatively compact models such as Gpt-oss:120b and Qwen2.5:72b. In most cases, it successfully identifies optimal or near-optimal solutions by integrating symbolic knowledge derived through reasoning with sub-symbolic sensory-motor data gathered as the agent interacts with its environment.
comment: Article updated with results from gpt-oss:120b. 24 pages (13 pages are from appendix), 6 figures, code for experiments replication and supplementary material provided at https://github.com/jtyska/llm-robotics-article/
♻ ☆ Learning functions through Diffusion Maps
We propose a data-driven method for approximating real-valued functions on smooth manifolds, building on the Diffusion Maps framework under the manifold hypothesis. Given pointwise evaluations of a function, the method constructs a smooth extension to the ambient space by exploiting diffusion geometry and its connection to the heat equation and the Laplace-Beltrami operator. To address the computational challenges of high-dimensional data, we introduce a dimensionality reduction strategy based on the low-rank structure of the distance matrix, revealed via singular value decomposition (SVD). In addition, we develop an online updating mechanism that enables efficient incorporation of new data, thereby improving scalability and reducing computational cost. Numerical experiments, including applications to sparse CT reconstruction, demonstrate that the proposed methodology outperforms classical feedforward neural networks and interpolation methods in terms of both accuracy and efficiency.
comment: Comments are welcome
♻ ☆ Euclidean Distance Deflation Under High-Dimensional Heteroskedastic Noise
Pairwise Euclidean distance calculation is a fundamental step in many machine learning and data analysis algorithms. In real-world applications, however, these distances are frequently distorted by heteroskedastic noise$\unicode{x2014}$a prevalent form of inhomogeneous corruption characterized by variable noise magnitudes across data observations. Such noise inflates the computed distances in a nontrivial way, leading to misrepresentations of the underlying data geometry. In this work, we address the tasks of estimating the noise magnitudes per observation and correcting the pairwise Euclidean distances under heteroskedastic noise. Perhaps surprisingly, we show that in general high-dimensional settings and without assuming prior knowledge on the clean data structure or noise distribution, both tasks can be performed reliably, even when the noise levels vary considerably. Specifically, we develop a principled, hyperparameter-free approach that jointly estimates the noise magnitudes and corrects the distances. We provide theoretical guarantees for our approach, establishing probabilistic bounds on the estimation errors of both noise magnitudes and distances. These bounds, measured in the normalized $\ell_1$ norm, converge to zero at polynomial rates as both feature dimension and dataset size increase. Experiments on synthetic datasets demonstrate that our method accurately estimates distances in challenging regimes, significantly improving the robustness of subsequent distance-based computations. Notably, when applied to single-cell RNA sequencing data, our method yields noise magnitude estimates consistent with an established prototypical model, enabling accurate nearest neighbor identification that is fundamental to many downstream analyses.
♻ ☆ Bridging Simplicity and Sophistication using GLinear: A Novel Architecture for Enhanced Time Series Prediction
Time Series Forecasting (TSF) is an important application across many fields. There is a debate about whether Transformers, despite being good at understanding long sequences, struggle with preserving temporal relationships in time series data. Recent research suggests that simpler linear models might outperform or at least provide competitive performance compared to complex Transformer-based models for TSF tasks. In this paper, we propose a novel data-efficient architecture, \textit{Gaussian-activated Linear model (GLinear)}, for multivariate TSF that exploits periodic patterns to provide better accuracy. It achieves higher prediction accuracy while requiring less historical data than other state-of-the-art linear predictors. Four different datasets (ETTh1, Electricity, Traffic, and Weather) are used to evaluate the performance of the proposed predictor. A performance comparison with state-of-the-art linear architectures (such as NLinear, DLinear, and RLinear) and transformer-based time series predictors (Autoformer) shows that the GLinear, despite being data efficient, outperforms the existing architectures in most cases of multivariate TSF while being competitive in others. We hope that the proposed GLinear model opens new fronts of research and development of simpler and more sophisticated architectures for data and computationally efficient time-series analysis. The source code is publicly available on GitHub.
comment: Submitted to Digital Signal Processing Journal
♻ ☆ Asynchronous Gossip Algorithms for Rank-Based Statistical Methods
As decentralized AI and edge intelligence become increasingly prevalent, ensuring robustness and trustworthiness in such distributed settings has become a critical issue-especially in the presence of corrupted or adversarial data. Traditional decentralized algorithms are vulnerable to data contamination as they typically rely on simple statistics (e.g., means or sum), motivating the need for more robust statistics. In line with recent work on decentralized estimation of trimmed means and ranks, we develop gossip algorithms for computing a broad class of rank-based statistics, including L-statistics and rank statistics-both known for their robustness to outliers. We apply our method to perform robust distributed two-sample hypothesis testing, introducing the first gossip algorithm for Wilcoxon rank-sum tests. We provide rigorous convergence guarantees, including the first convergence rate bound for asynchronous gossip-based rank estimation. We empirically validate our theoretical results through experiments on diverse network topologies.
♻ ☆ Tensor-Based Foundations of Ordinary Least Squares and Neural Network Regression Models
This article introduces a novel approach to the mathematical development of Ordinary Least Squares and Neural Network regression models, diverging from traditional methods in current Machine Learning literature. By leveraging Tensor Analysis and fundamental matrix computations, the theoretical foundations of both models are meticulously detailed and extended to their complete algorithmic forms. The study culminates in the presentation of three algorithms, including a streamlined version of the Backpropagation Algorithm for Neural Networks, illustrating the benefits of this new mathematical approach.
comment: 16 pages, 3 algorithms
♻ ☆ LoRA-PAR: A Flexible Dual-System LoRA Partitioning Approach to Efficient LLM Fine-Tuning
Large-scale generative models like DeepSeek-R1 and OpenAI-O1 benefit substantially from chain-of-thought (CoT) reasoning, yet pushing their performance typically requires vast data, large model sizes, and full-parameter fine-tuning. While parameter-efficient fine-tuning (PEFT) helps reduce cost, most existing approaches primarily address domain adaptation or layer-wise allocation rather than explicitly tailoring data and parameters to different response demands. Inspired by "Thinking, Fast and Slow," which characterizes two distinct modes of thought-System 1 (fast, intuitive, often automatic) and System 2 (slower, more deliberative and analytic)-we draw an analogy that different "subregions" of an LLM's parameters might similarly specialize for tasks that demand quick, intuitive responses versus those requiring multi-step logical reasoning. Therefore, we propose LoRA-PAR, a dual-system LoRA framework that partitions both data and parameters by System 1 or System 2 demands, using fewer yet more focused parameters for each task. Specifically, we classify task data via multi-model role-playing and voting, and partition parameters based on importance scoring, then adopt a two-stage fine-tuning strategy of training System 1 tasks with supervised fine-tuning (SFT) to enhance knowledge and intuition and refine System 2 tasks with reinforcement learning (RL) to reinforce deeper logical deliberation next. Extensive experiments show that the two-stage fine-tuning strategy, SFT and RL, lowers active parameter usage while matching or surpassing SOTA PEFT baselines.
comment: 12 pages
♻ ☆ Revisiting Non-Acyclic GFlowNets in Discrete Environments ICML 2025
Generative Flow Networks (GFlowNets) are a family of generative models that learn to sample objects from a given probability distribution, potentially known up to a normalizing constant. Instead of working in the object space, GFlowNets proceed by sampling trajectories in an appropriately constructed directed acyclic graph environment, greatly relying on the acyclicity of the graph. In our paper, we revisit the theory that relaxes the acyclicity assumption and present a simpler theoretical framework for non-acyclic GFlowNets in discrete environments. Moreover, we provide various novel theoretical insights related to training with fixed backward policies, the nature of flow functions, and connections between entropy-regularized RL and non-acyclic GFlowNets, which naturally generalize the respective concepts and theoretical results from the acyclic setting. In addition, we experimentally re-examine the concept of loss stability in non-acyclic GFlowNet training, as well as validate our own theoretical findings.
comment: ICML 2025; minor corrections in proofs of Proposition 3.6 and 3.8 in v3, all results remain unchanged
♻ ☆ The Information Dynamics of Generative Diffusion
Generative diffusion models have emerged as a powerful class of models in machine learning, yet a unified theoretical understanding of their operation is still developing. This paper provides an integrated perspective on generative diffusion by connecting their dynamic, information-theoretic, and thermodynamic properties under a unified mathematical framework. We demonstrate that the rate of conditional entropy production during generation (i.e. the generative bandwidth) is directly governed by the expected divergence of the score function's vector field. This divergence, in turn, is linked to the branching of trajectories and generative bifurcations, which we characterize as symmetry-breaking phase transitions in the energy landscape. This synthesis offers a powerful insight: the process of generation is fundamentally driven by the controlled, noise-induced breaking of (approximate) symmetries, where peaks in information transfer correspond to critical transitions between possible outcomes. The score function acts as a dynamic non-linear filter that regulates the bandwidth of the noise by suppressing fluctuations that are incompatible with the data.
♻ ☆ Contextualize-then-Aggregate: Circuits for In-Context Learning in Gemma-2 2B
In-Context Learning (ICL) is an intriguing ability of large language models (LLMs). Despite a substantial amount of work on its behavioral aspects and how it emerges in miniature setups, it remains unclear which mechanism assembles task information from the individual examples in a fewshot prompt. We use causal interventions to identify information flow in Gemma-2 2B for five naturalistic ICL tasks. We find that the model infers task information using a two-step strategy we call contextualize-then-aggregate: In the lower layers, the model builds up representations of individual fewshot examples, which are contextualized by preceding examples through connections between fewshot input and output tokens across the sequence. In the higher layers, these representations are aggregated to identify the task and prepare prediction of the next output. The importance of the contextualization step differs between tasks, and it may become more important in the presence of ambiguous examples. Overall, by providing rigorous causal analysis, our results shed light on the mechanisms through which ICL happens in language models.
♻ ☆ Convergence Analysis of Asynchronous Federated Learning with Gradient Compression for Non-Convex Optimization
Gradient compression is an effective technique for reducing communication overhead in federated learning (FL), and error feedback (EF) is widely adopted to remedy the compression errors. However, in asynchronous FL settings-which inherently face three major challenges: asynchronous delay, data heterogeneity, and flexible client participation-the complex interactions among these system/statistical constraints and compression/EF mechanisms remain poorly understood theoretically. There is a significant lack of systematic convergence analysis that adequately captures these complex couplings. In this paper, we fill this gap by analyzing the convergence behaviors of FL under different frameworks. We first consider a basic asynchronous FL framework AsynFL, and establish an improved convergence analysis that relies on fewer assumptions and yields a superior convergence rate than prior studies. Then, we consider a variant framework with gradient compression, AsynFLC. We derive sufficient conditions for its convergence, indicating the nonlinear interaction between asynchronous delay and compression rate. Our analysis further demonstrates how asynchronous delay and data heterogeneity jointly amplify compression-induced errors, thereby hindering convergence. Furthermore, we study the convergence of AsynFLC-EF, the framework that further integrates EF. We prove that EF can effectively reduce the variance of gradient estimation despite asynchronous delays, which enables AsynFLC-EF to match the convergence rate of AsynFL. We also show that the impact of asynchronous delay and flexible participation on EF is limited to slowing down the higher-order convergence term. Experimental results substantiate our analytical findings very well.
♻ ☆ Physics consistent machine learning framework for inverse modeling with applications to ICF capsule implosions
In high energy density physics (HEDP) and inertial confinement fusion (ICF), predictive modeling is complicated by uncertainty in parameters that characterize various aspects of the modeled system, such as those characterizing material properties, equation of state (EOS), opacities, and initial conditions. Typically, however, these parameters are not directly observable. What is observed instead is a time sequence of radiographic projections using X-rays. In this work, we define a set of sparse hydrodynamic features derived from the outgoing shock profile and outer material edge, which can be obtained from radiographic measurements, to directly infer such parameters. Our machine learning (ML)-based methodology involves a pipeline of two architectures, a radiograph-to-features network (R2FNet) and a features-to-parameters network (F2PNet), that are trained independently and later combined to approximate a posterior distribution for the parameters from radiographs. We show that the estimated parameters can be used in a hydrodynamics code to obtain density fields and hydrodynamic shock and outer edge features that are consistent with the data. Finally, we demonstrate that features resulting from an unknown EOS model can be successfully mapped onto parameters of a chosen analytical EOS model, implying that network predictions are learning physics, with a degree of invariance to the underlying choice of EOS model.
♻ ☆ Unveiling Multiple Descents in Unsupervised Autoencoders
The phenomenon of double descent has challenged the traditional bias-variance trade-off in supervised learning but remains unexplored in unsupervised learning, with some studies arguing for its absence. In this study, we first demonstrate analytically that double descent does not occur in linear unsupervised autoencoders (AEs). In contrast, we show for the first time that both double and triple descent can be observed with nonlinear AEs across various data models and architectural designs. We examine the effects of partial sample and feature noise and highlight the importance of bottleneck size in influencing the double descent curve. Through extensive experiments on both synthetic and real datasets, we uncover model-wise, epoch-wise, and sample-wise double descent across several data types and architectures. Our findings indicate that over-parameterized models not only improve reconstruction but also enhance performance in downstream tasks such as anomaly detection and domain adaptation, highlighting their practical value in complex real-world scenarios.
♻ ☆ RoseCDL: Robust and Scalable Convolutional Dictionary Learning for Rare-event Detection
Identifying recurring patterns and rare events in large-scale signals is a fundamental challenge in fields such as astronomy, physical simulations, and biomedical science. Convolutional Dictionary Learning (CDL) offers a powerful framework for modeling local structures in signals, but its use for detecting rare or anomalous events remains largely unexplored. In particular, CDL faces two key challenges in this setting: high computational cost and sensitivity to artifacts and outliers. In this paper, we introduce RoseCDL, a scalable and robust CDL algorithm designed for unsupervised rare event detection in long signals. RoseCDL combines stochastic windowing for efficient training on large datasets with inline outlier detection to enhance robustness and isolate anomalous patterns. This reframes CDL as a practical tool for event discovery and characterization in real-world signals, extending its role beyond traditional tasks like compression or denoising.
♻ ☆ Sigma Flows for Image and Data Labeling and Learning Structured Prediction
This paper introduces the sigma flow model for the prediction of structured labelings of data observed on Riemannian manifolds, including Euclidean image domains as special case. The approach combines the Laplace-Beltrami framework for image denoising and enhancement, introduced by Sochen, Kimmel and Malladi about 25 years ago, and the assignment flow approach introduced and studied by the authors. The sigma flow arises as Riemannian gradient flow of generalized harmonic energies and thus is governed by a nonlinear geometric PDE which determines a harmonic map from a closed Riemannian domain manifold to a statistical manifold, equipped with the Fisher-Rao metric from information geometry. A specific ingredient of the sigma flow is the mutual dependency of the Riemannian metric of the domain manifold on the evolving state. This makes the approach amenable to machine learning in a specific way, by realizing this dependency through a mapping with compact time-variant parametrization that can be learned from data. Proof of concept experiments demonstrate the expressivity of the sigma flow model and prediction performance. Structural similarities to transformer network architectures and networks generated by the geometric integration of sigma flows are pointed out, which highlights the connection to deep learning and, conversely, may stimulate the use of geometric design principles for structured prediction in other areas of scientific machine learning.
comment: 51 pages, revised experimental section
♻ ☆ Self-Optimizing Machine Learning Potential Assisted Automated Workflow for Highly Efficient Complex Systems Material Design
Machine learning interatomic potentials have revolutionized complex materials design by enabling rapid exploration of material configurational spaces via crystal structure prediction with ab initio accuracy. However, critical challenges persist in ensuring robust generalization to unknown structures and minimizing the requirement for substantial expert knowledge and time-consuming manual interventions. Here, we propose an automated crystal structure prediction framework built upon the attention-coupled neural networks potential to address these limitations. The generalizability of the potential is achieved by sampling regions across the local minima of the potential energy surface, where the self-evolving pipeline autonomously refines the potential iteratively while minimizing human intervention. The workflow is validated on Mg-Ca-H ternary and Be-P-N-O quaternary systems by exploring nearly 10 million configurations, demonstrating substantial speedup compared to first-principles calculations. These results underscore the effectiveness of our approach in accelerating the exploration and discovery of complex multi-component functional materials.
♻ ☆ A Comprehensive Guide to Differential Privacy: From Theory to User Expectations
The increasing availability of personal data has enabled significant advances in fields such as machine learning, healthcare, and cybersecurity. However, this data abundance also raises serious privacy concerns, especially in light of powerful re-identification attacks and growing legal and ethical demands for responsible data use. Differential privacy (DP) has emerged as a principled, mathematically grounded framework for mitigating these risks. This review provides a comprehensive survey of DP, covering its theoretical foundations, practical mechanisms, and real-world applications. It explores key algorithmic tools and domain-specific challenges - particularly in privacy-preserving machine learning and synthetic data generation. The report also highlights usability issues and the need for improved communication and transparency in DP systems. Overall, the goal is to support informed adoption of DP by researchers and practitioners navigating the evolving landscape of data privacy.
♻ ☆ Adapting Vision-Language Models for Neutrino Event Classification in High-Energy Physics
Recent advances in Large Language Models (LLMs) have demonstrated their remarkable capacity to process and reason over structured and unstructured data modalities beyond natural language. In this work, we explore the applications of Vision Language Models (VLMs), specifically a fine-tuned variant of LLaMa 3.2, to the task of identifying neutrino interactions in pixelated detector data from high-energy physics (HEP) experiments. We benchmark this model against a state-of-the-art convolutional neural network (CNN) architecture, similar to those used in the NOvA and DUNE experiments, which have achieved high efficiency and purity in classifying electron and muon neutrino events. Our evaluation considers both the classification performance and interpretability of the model predictions. We find that VLMs can outperform CNNs, while also providing greater flexibility in integrating auxiliary textual or semantic information and offering more interpretable, reasoning-based predictions. This work highlights the potential of VLMs as a general-purpose backbone for physics event classification, due to their high performance, interpretability, and generalizability, which opens new avenues for integrating multimodal reasoning in experimental neutrino physics.
♻ ☆ On the Relationship Between Adversarial Robustness and Decision Region in Deep Neural Networks
In general, Deep Neural Networks (DNNs) are evaluated by the generalization performance measured on unseen data excluded from the training phase. Along with the development of DNNs, the generalization performance converges to the state-of-the-art and it becomes difficult to evaluate DNNs solely based on this metric. The robustness against adversarial attack has been used as an additional metric to evaluate DNNs by measuring their vulnerability. However, few studies have been performed to analyze the adversarial robustness in terms of the geometry in DNNs. In this work, we perform an empirical study to analyze the internal properties of DNNs that affect model robustness under adversarial attacks. In particular, we propose the novel concept of the Populated Region Set (PRS), where training samples are populated more frequently, to represent the internal properties of DNNs in a practical setting. From systematic experiments with the proposed concept, we provide empirical evidence to validate that a low PRS ratio has a strong relationship with the adversarial robustness of DNNs. We also devise PRS regularizer leveraging the characteristics of PRS to improve the adversarial robustness without adversarial training.
comment: 10 pages
♻ ☆ AdaWaveNet: Adaptive Wavelet Network for Time Series Analysis
Time series data analysis is a critical component in various domains such as finance, healthcare, and meteorology. Despite the progress in deep learning for time series analysis, there remains a challenge in addressing the non-stationary nature of time series data. Traditional models, which are built on the assumption of constant statistical properties over time, often struggle to capture the temporal dynamics in realistic time series, resulting in bias and error in time series analysis. This paper introduces the Adaptive Wavelet Network (AdaWaveNet), a novel approach that employs Adaptive Wavelet Transformation for multi-scale analysis of non-stationary time series data. AdaWaveNet designed a lifting scheme-based wavelet decomposition and construction mechanism for adaptive and learnable wavelet transforms, which offers enhanced flexibility and robustness in analysis. We conduct extensive experiments on 10 datasets across 3 different tasks, including forecasting, imputation, and a newly established super-resolution task. The evaluations demonstrate the effectiveness of AdaWaveNet over existing methods in all three tasks, which illustrates its potential in various real-world applications.
comment: Transactions on Machine Learning Research; code: https://github.com/comp-well-org/AdaWaveNet ; TMLR review: https://openreview.net/forum?id=m4bE9Y9FlX
♻ ☆ Effort-aware Fairness: Incorporating a Philosophy-informed, Human-centered Notion of Effort into Algorithmic Fairness Metrics
Although popularized AI fairness metrics, e.g., demographic parity, have uncovered bias in AI-assisted decision-making outcomes, they do not consider how much effort one has spent to get to where one is today in the input feature space. However, the notion of effort is important in how Philosophy and humans understand fairness. We propose a philosophy-informed approach to conceptualize and evaluate Effort-aware Fairness (EaF), grounded in the concept of Force, which represents the temporal trajectory of predictive features coupled with inertia. Besides theoretical formulation, our empirical contributions include: (1) a pre-registered human subjects experiment, which shows that for both stages of the (individual) fairness evaluation process, people consider the temporal trajectory of a predictive feature more than its aggregate value; (2) pipelines to compute Effort-aware Individual/Group Fairness in the criminal justice and personal finance contexts. Our work may enable AI model auditors to uncover and potentially correct unfair decisions against individuals who have spent significant efforts to improve but are still stuck with systemic disadvantages outside their control.
comment: AIES 2025
♻ ☆ Understanding Large Language Models in Your Pockets: Performance Study on COTS Mobile Devices
As large language models (LLMs) increasingly integrate into every aspect of our work and daily lives, there are growing concerns about user privacy, which push the trend toward local deployment of these models. There are a number of lightweight LLMs (e.g., Gemini Nano, LLAMA2 7B) that can run locally on smartphones, providing users with greater control over their personal data. As a rapidly emerging application, we are concerned about their performance on commercial-off-the-shelf mobile devices. To fully understand the current landscape of LLM deployment on mobile platforms, we conduct a comprehensive measurement study on mobile devices. We evaluate both metrics that affect user experience, including token throughput, latency, and battery consumption, as well as factors critical to developers, such as resource utilization, DVFS strategies, and inference engines. In addition, we provide a detailed analysis of how these hardware capabilities and system dynamics affect on-device LLM performance, which may help developers identify and address bottlenecks for mobile LLM applications. We also provide comprehensive comparisons across the mobile system-on-chips (SoCs) from major vendors, highlighting their performance differences in handling LLM workloads. We hope that this study can provide insights for both the development of on-device LLMs and the design for future mobile system architecture.
♻ ☆ LiDAR-BIND-T: Improved and Temporally Consistent Sensor Modality Translation and Fusion for Robotic Applications
This paper extends LiDAR-BIND, a modular multi-modal fusion framework that binds heterogeneous sensors (radar, sonar) to a LiDAR-defined latent space, with mechanisms that explicitly enforce temporal consistency. We introduce three contributions: (i) temporal embedding similarity that aligns consecutive latent representations, (ii) a motion-aligned transformation loss that matches displacement between predictions and ground truth LiDAR, and (iii) windowed temporal fusion using a specialised temporal module. We further update the model architecture to better preserve spatial structure. Evaluations on radar/sonar-to-LiDAR translation demonstrate improved temporal and spatial coherence, yielding lower absolute trajectory error and better occupancy map accuracy in Cartographer-based SLAM (Simultaneous Localisation and Mapping). We propose different metrics based on the Fr\'echet Video Motion Distance (FVMD) and a correlation-peak distance metric providing practical temporal quality indicators to evaluate SLAM performance. The proposed temporal LiDAR-BIND, or LiDAR-BIND-T, maintains plug-and-play modality fusion while substantially enhancing temporal stability, resulting in improved robustness and performance for downstream SLAM.
♻ ☆ CogGuide: Human-Like Guidance for Zero-Shot Omni-Modal Reasoning
Targeting the issues of "shortcuts" and insufficient contextual understanding in complex cross-modal reasoning of multimodal large models, this paper proposes a zero-shot multimodal reasoning component guided by human-like cognitive strategies centered on an "intent sketch". The component comprises a plug-and-play three-module pipeline-Intent Perceiver, Strategy Generator, and Strategy Selector-that explicitly constructs a "understand-plan-select" cognitive process. By generating and filtering "intent sketch" strategies to guide the final reasoning, it requires no parameter fine-tuning and achieves cross-model transfer solely through in-context engineering. Information-theoretic analysis shows that this process can reduce conditional entropy and improve information utilization efficiency, thereby suppressing unintended shortcut reasoning. Experiments on IntentBench, WorldSense, and Daily-Omni validate the method's generality and robust gains; compared with their respective baselines, the complete "three-module" scheme yields consistent improvements across different reasoning engines and pipeline combinations, with gains up to approximately 9.51 percentage points, demonstrating the practical value and portability of the "intent sketch" reasoning component in zero-shot scenarios.
♻ ☆ Generative Data Refinement: Just Ask for Better Data
For a fixed parameter size, the capabilities of large models are primarily determined by the quality and quantity of its training data. Consequently, training datasets now grow faster than the rate at which new data is indexed on the web, leading to projected data exhaustion over the next decade. Much more data exists as user-generated content that is not publicly indexed, but incorporating such data comes with considerable risks, such as leaking private information and other undesirable content. We introduce a framework, Generative Data Refinement (GDR), for using pretrained generative models to transform a dataset with undesirable content into a refined dataset that is more suitable for training. Our experiments show that GDR can outperform industry-grade solutions for dataset anonymization, as well as enable direct detoxification of highly unsafe datasets. Moreover, we show that by generating synthetic data that is conditioned on each example in the real dataset, GDR's refined outputs naturally match the diversity of web scale datasets, and thereby avoid the often challenging task of generating diverse synthetic data via model prompting. The simplicity and effectiveness of GDR make it a powerful tool for scaling up the total stock of training data for frontier models.
♻ ☆ Discovering physical laws with parallel symbolic enumeration
Symbolic regression plays a crucial role in modern scientific research thanks to its capability of discovering concise and interpretable mathematical expressions from data. A key challenge lies in the search for parsimonious and generalizable mathematical formulas, in an infinite search space, while intending to fit the training data. Existing algorithms have faced a critical bottleneck of accuracy and efficiency over a decade when handling problems of complexity, which essentially hinders the pace of applying symbolic regression for scientific exploration across interdisciplinary domains. To this end, we introduce parallel symbolic enumeration (PSE) to efficiently distill generic mathematical expressions from limited data. Experiments show that PSE achieves higher accuracy and faster computation compared to the state-of-the-art baseline algorithms across over 200 synthetic and experimental problem sets (e.g., improving the recovery accuracy by up to 99% and reducing runtime by an order of magnitude). PSE represents an advance in accurate and efficient data-driven discovery of symbolic, interpretable models (e.g., underlying physical laws), and improves the scalability of symbolic learning.
♻ ☆ A User-Centric, Privacy-Preserving, and Verifiable Ecosystem for Personal Data Management and Utilization
In the current paradigm of digital personalized services, the centralized management of personal data raises significant privacy concerns, security vulnerabilities, and diminished individual autonomy over sensitive information. Despite their efficiency, traditional centralized architectures frequently fail to satisfy rigorous privacy requirements and expose users to data breaches and unauthorized access risks. This pressing challenge calls for a fundamental paradigm shift in methodologies for collecting, storing, and utilizing personal data across diverse sectors, including education, healthcare, and finance. This paper introduces a novel decentralized, privacy-preserving architecture that handles heterogeneous personal information, ranging from educational credentials to health records and financial data. Unlike traditional models, our system grants users complete data ownership and control, allowing them to selectively share information without compromising privacy. The architecture's foundation comprises advanced privacy-enhancing technologies, including secure enclaves and federated learning, enabling secure computation, verification, and data sharing. The system supports diverse functionalities, including local computation, model training, and privacy-preserving data sharing, while ensuring data credibility and robust user privacy.
♻ ☆ Beyond the Pre-Service Horizon: Infusing In-Service Behavior for Improved Financial Risk Forecasting IEEE
Typical financial risk management involves distinct phases for pre-service risk assessment and in-service default detection, often modeled separately. This paper proposes a novel framework, Multi-Granularity Knowledge Distillation (abbreviated as MGKD), aimed at improving pre-service risk prediction through the integration of in-service user behavior data. MGKD follows the idea of knowledge distillation, where the teacher model, trained on historical in-service data, guides the student model, which is trained on pre-service data. By using soft labels derived from in-service data, the teacher model helps the student model improve its risk prediction prior to service activation. Meanwhile, a multi-granularity distillation strategy is introduced, including coarse-grained, fine-grained, and self-distillation, to align the representations and predictions of the teacher and student models. This approach not only reinforces the representation of default cases but also enables the transfer of key behavioral patterns associated with defaulters from the teacher to the student model, thereby improving the overall performance of pre-service risk assessment. Moreover, we adopt a re-weighting strategy to mitigate the model's bias towards the minority class. Experimental results on large-scale real-world datasets from Tencent Mobile Payment demonstrate the effectiveness of our proposed approach in both offline and online scenarios.
comment: Accepted to IEEE ICDM 2025
♻ ☆ Uniform convergence for Gaussian kernel ridge regression
This paper establishes the first polynomial convergence rates for Gaussian kernel ridge regression (KRR) with a fixed hyperparameter in both the uniform and the $L^{2}$-norm. The uniform convergence result closes a gap in the theoretical understanding of KRR with the Gaussian kernel, where no such rates were previously known. In addition, we prove a polynomial $L^{2}$-convergence rate in the case, where the Gaussian kernel's width parameter is fixed. This also contributes to the broader understanding of smooth kernels, for which previously only sub-polynomial $L^{2}$-rates were known in similar settings. Together, these results provide new theoretical justification for the use of Gaussian KRR with fixed hyperparameters in nonparametric regression.
comment: The submission is being withdrawn because the authorship of the manuscript does not comply with the publishing/authorship guidelines of our department
♻ ☆ villa-X: Enhancing Latent Action Modeling in Vision-Language-Action Models
Visual-Language-Action (VLA) models have emerged as a popular paradigm for learning robot manipulation policies that can follow language instructions and generalize to novel scenarios. Recent work has begun to explore the incorporation of latent actions, an abstract representation of visual change between two frames, into VLA pre-training. In this paper, we introduce villa-X, a novel Visual-Language-Latent-Action (ViLLA) framework that advances latent action modeling for learning generalizable robot manipulation policies. Our approach improves both how latent actions are learned and how they are incorporated into VLA pre-training. Together, these contributions enable villa-X to achieve superior performance across simulated environments including SIMPLER and LIBERO, as well as on two real-world robot setups including gripper and dexterous hand manipulation. We believe the ViLLA paradigm holds significant promise, and that our villa-X provides a strong foundation for future research.
comment: Project page: https://aka.ms/villa-x
♻ ☆ A Vector-Quantized Foundation Model for Patient Behavior Monitoring
Foundation models have achieved remarkable success across various domains, yet their adoption in healthcare remains limited. While significant advances have been made in medical imaging, genetic biomarkers, and time series from electronic health records, the potential of foundation models for patient behavior monitoring through personal digital devices remains underexplored. The data generated by these devices are inherently heterogeneous, multisource, and often exhibit high rates of missing data, posing unique challenges. This paper introduces a novel foundation model based on a modified vector quantized variational autoencoder, specifically designed to process real-world data from smartphones and wearable devices. We leveraged the discrete latent representation of this model to effectively perform two downstream tasks, suicide risk assessment and emotional state prediction, on different held-out clinical cohorts without the need of fine-tuning. We also highlight the existence of a trade-off between discrete and continuous latent structures, suggesting that hybrid models may be optimal for balancing accuracy across various supervised and unsupervised tasks.
comment: 10 pages (32 with references and supplementary material). Submitted to Elsevier's journal on Artificial Intelligence in Medicine
♻ ☆ Rethinking Disentanglement under Dependent Factors of Variation
Representation learning is an approach that allows to discover and extract the factors of variation from the data. Intuitively, a representation is said to be disentangled if it separates the different factors of variation in a way that is understandable to humans. Definitions of disentanglement and metrics to measure it usually assume that the factors of variation are independent of each other. However, this is generally false in the real world, which limits the use of these definitions and metrics to very specific and unrealistic scenarios. In this paper we give a definition of disentanglement based on information theory that is also valid when the factors of variation are not independent. Furthermore, we relate this definition to the Information Bottleneck Method. Finally, we propose a method to measure the degree of disentanglement from the given definition that works when the factors of variation are not independent. We show through different experiments that the method proposed in this paper correctly measures disentanglement with non-independent factors of variation, while other methods fail in this scenario.
♻ ☆ Group Expectation Policy Optimization for Heterogeneous Reinforcement Learning
As single-center computing approaches power constraints, decentralized training is becoming essential. Reinforcement Learning (RL) post-training enhances Large Language Models (LLMs) but faces challenges in heterogeneous distributed environments due to its tightly-coupled sampling-learning alternation. We propose HeteroRL, an asynchronous RL architecture that decouples rollout sampling from parameter learning, enabling robust deployment across geographically distributed nodes under network delays. We identify that latency-induced KL divergence causes importance sampling failure due to high variance. To address this, we propose Group Expectation Policy Optimization (GEPO), which reduces importance weight variance through a refined sampling mechanism. Theoretically, GEPO achieves exponential variance reduction. Experiments show it maintains superior stability over methods like GRPO, with less than 3% performance degradation under 1800-second delays, demonstrating strong potential for decentralized RL in heterogeneous networks.
♻ ☆ MasconCube: Fast and Accurate Gravity Modeling with an Explicit Representation
The geodesy of irregularly shaped small bodies presents fundamental challenges for gravitational field modeling, particularly as deep space exploration missions increasingly target asteroids and comets. Traditional approaches suffer from critical limitations: spherical harmonics diverge within the Brillouin sphere where spacecraft typically operate, polyhedral models assume unrealistic homogeneous density distributions, and existing machine learning methods like GeodesyNets and Physics-Informed Neural Networks (PINN-GM) require extensive computational resources and training time. This work introduces MasconCubes, a novel self-supervised learning approach that formulates gravity inversion as a direct optimization problem over a regular 3D grid of point masses (mascons). Unlike implicit neural representations, MasconCubes explicitly model mass distributions while leveraging known asteroid shape information to constrain the solution space. Comprehensive evaluation on diverse asteroid models including Bennu, Eros, Itokawa, and synthetic planetesimals demonstrates that MasconCubes achieve superior performance across multiple metrics. Most notably, MasconCubes demonstrate computational efficiency advantages with training times approximately 40 times faster than GeodesyNets while maintaining physical interpretability through explicit mass distributions. These results establish MasconCubes as a promising approach for mission-critical gravitational modeling applications requiring high accuracy, computational efficiency, and physical insight into internal mass distributions of irregular celestial bodies.
♻ ☆ Iterative Methods for Full-Scale Gaussian Process Approximations for Large Spatial Data
Gaussian processes are flexible probabilistic regression models which are widely used in statistics and machine learning. However, a drawback is their limited scalability to large data sets. To alleviate this, full-scale approximations (FSAs) combine predictive process methods and covariance tapering, thus approximating both global and local structures. We show how iterative methods can be used to reduce computational costs in calculating likelihoods, gradients, and predictive distributions with FSAs. In particular, we introduce a novel preconditioner and show theoretically and empirically that it accelerates the conjugate gradient method's convergence speed and mitigates its sensitivity with respect to the FSA parameters and the eigenvalue structure of the original covariance matrix, and we demonstrate empirically that it outperforms a state-of-the-art pivoted Cholesky preconditioner. Furthermore, we introduce an accurate and fast way to calculate predictive variances using stochastic simulation and iterative methods. In addition, we show how our newly proposed FITC preconditioner can also be used in iterative methods for Vecchia approximations. In our experiments, it outperforms existing state-of-the-art preconditioners for Vecchia approximations. All methods are implemented in a free C++ software library with high-level Python and R packages.
♻ ☆ Temporal Query Network for Efficient Multivariate Time Series Forecasting ICML 2025
Sufficiently modeling the correlations among variables (aka channels) is crucial for achieving accurate multivariate time series forecasting (MTSF). In this paper, we propose a novel technique called Temporal Query (TQ) to more effectively capture multivariate correlations, thereby improving model performance in MTSF tasks. Technically, the TQ technique employs periodically shifted learnable vectors as queries in the attention mechanism to capture global inter-variable patterns, while the keys and values are derived from the raw input data to encode local, sample-level correlations. Building upon the TQ technique, we develop a simple yet efficient model named Temporal Query Network (TQNet), which employs only a single-layer attention mechanism and a lightweight multi-layer perceptron (MLP). Extensive experiments demonstrate that TQNet learns more robust multivariate correlations, achieving state-of-the-art forecasting accuracy across 12 challenging real-world datasets. Furthermore, TQNet achieves high efficiency comparable to linear-based methods even on high-dimensional datasets, balancing performance and computational cost. The code is available at: https://github.com/ACAT-SCUT/TQNet.
comment: ICML 2025
♻ ☆ Scalable Evaluation of Online Facilitation Strategies via Synthetic Simulation of Discussions
Limited large-scale evaluations exist for facilitation strategies of online discussions due to significant costs associated with human involvement. An effective solution is synthetic discussion simulations using Large Language Models (LLMs) to create initial pilot experiments. We propose design principles based on existing methodologies for synthetic discussion generation. Based on these principles, we propose a simple, generalizable, LLM-driven methodology to prototype the development of LLM facilitators by generating synthetic data without human involvement, and which surpasses current baselines. We use our methodology to test whether current Social Science strategies for facilitation can improve the performance of LLM facilitators. We find that, while LLM facilitators significantly improve synthetic discussions, there is no evidence that the application of these strategies leads to further improvements in discussion quality. In an effort to aid research in the field of facilitation, we release a large, publicly available dataset containing LLM-generated and LLM-annotated discussions using multiple open-source models. This dataset can be used for LLM facilitator finetuning as well as behavioral analysis of current out-of-the-box LLMs in the task. We also release an open-source python framework that efficiently implements our methodology at great scale.
comment: 15 pages, 3 tables, 12 figures
♻ ☆ Towards Robust Influence Functions with Flat Validation Minima ICML 2025
The Influence Function (IF) is a widely used technique for assessing the impact of individual training samples on model predictions. However, existing IF methods often fail to provide reliable influence estimates in deep neural networks, particularly when applied to noisy training data. This issue does not stem from inaccuracies in parameter change estimation, which has been the primary focus of prior research, but rather from deficiencies in loss change estimation, specifically due to the sharpness of validation risk. In this work, we establish a theoretical connection between influence estimation error, validation set risk, and its sharpness, underscoring the importance of flat validation minima for accurate influence estimation. Furthermore, we introduce a novel estimation form of Influence Function specifically designed for flat validation minima. Experimental results across various tasks validate the superiority of our approach.
comment: Accepted by ICML 2025. arXiv admin note: text overlap with arXiv:2310.00902 by other authors
♻ ☆ Uncertainty-aware Diffusion and Reinforcement Learning for Joint Plane Localization and Anomaly Diagnosis in 3D Ultrasound MICCAI 2025
Congenital uterine anomalies (CUAs) can lead to infertility, miscarriage, preterm birth, and an increased risk of pregnancy complications. Compared to traditional 2D ultrasound (US), 3D US can reconstruct the coronal plane, providing a clear visualization of the uterine morphology for assessing CUAs accurately. In this paper, we propose an intelligent system for simultaneous automated plane localization and CUA diagnosis. Our highlights are: 1) we develop a denoising diffusion model with local (plane) and global (volume/text) guidance, using an adaptive weighting strategy to optimize attention allocation to different conditions; 2) we introduce a reinforcement learning-based framework with unsupervised rewards to extract the key slice summary from redundant sequences, fully integrating information across multiple planes to reduce learning difficulty; 3) we provide text-driven uncertainty modeling for coarse prediction, and leverage it to adjust the classification probability for overall performance improvement. Extensive experiments on a large 3D uterine US dataset show the efficacy of our method, in terms of plane localization and CUA diagnosis. Code is available at https://github.com/yuhoo0302/CUA-US.
comment: Accepted by MICCAI 2025;10 pages, 3 figures
♻ ☆ Two Sides of the Same Optimization Coin: Model Degradation and Representation Collapse in Graph Foundation Models
Graph foundation models, inspired by the success of LLMs, are designed to learn the optimal embedding from multi-domain TAGs for the downstream cross-task generalization capability. During our investigation, graph VQ-MAE stands out among the increasingly diverse landscape of GFM architectures. This is attributed to its ability to jointly encode topology and textual attributes from multiple domains into discrete embedding spaces with clear semantic boundaries. Despite its potential, domain generalization conflicts cause imperceptible pitfalls. In this paper, we instantiate two of them, and they are just like two sides of the same GFM optimization coin - Side 1 Model Degradation: The encoder and codebook fail to capture the diversity of inputs; Side 2 Representation Collapse: The hidden embedding and codebook vector fail to preserve semantic separability due to constraints from narrow representation subspaces. These two pitfalls (sides) collectively impair the decoder and generate the low-quality reconstructed supervision, causing the GFM optimization dilemma during pre-training (coin). Through empirical investigation, we attribute the above challenges to Information Bottleneck and Regularization Deficit. To address them, we propose MoT (Mixture-of-Tinkers) - (1) Information Tinker for Two Pitfalls, which utilizes an edge-wise semantic fusion strategy and a mixture-of-codebooks with domain-aware routing to improve information capacity. (2) Regularization Tinker for Optimization Coin, which utilizes two additional regularizations to further improve gradient supervision in our proposed Information Tinker. Notably, as a flexible architecture, MoT adheres to the scaling laws of GFM, offering a controllable model scale. Compared to SOTA baselines, experiments on 22 datasets across 6 domains demonstrate that MoT achieves significant improvements in supervised, few-shot, and zero-shot scenarios.
♻ ☆ MOLLM: Multi-Objective Large Language Model for Molecular Design -- Optimizing with Experts
Molecular design plays a critical role in advancing fields such as drug discovery, materials science, and chemical engineering. This work introduces the Multi-Objective Large Language Model for Molecular Design (MOLLM), a novel framework that combines domain-specific knowledge with the adaptability of large language models to optimize molecular properties across multiple objectives. Leveraging in-context learning and multi-objective optimization, MOLLM achieves superior performance and innovation, consistently surpassing state-of-the-art (SOTA) methods. We significantly improve the efficiency of our framework, making it 14 times faster and substantially more cost-effective without compromising performance compared to the latest similar work. Our results demonstrate that MOLLM consistently outperforms SOTA models across experiments and excels on the PMO benchmark. In addition, we provide extensive ablation studies and analysis to evaluate the effectiveness of each component and the quality of the output molecules.
comment: 9 pages, under review
♻ ☆ The Domain Mixed Unit: A New Neural Arithmetic Layer
The Domain Mixed Unit (DMU) is a new neural arithmetic unit that learns a single parameter gate that mixes between log-space and linear-space representations while performing either addition (DMU add) or subtraction (DMU sub). Two initializations are proposed for the DMU: one covering addition and multiplication, and another covering subtraction and division. The DMU achieves state-of-the-art performance on the NALM Benchmark, a dataset designed to test the ability of neural arithmetic units to generalize arithmetic operations, specifically performing with the highest percentage solved over all seeds on multiplication and division. The DMU will be submitted as a pull request to the open-source NALM benchmark, and its code is available on GitHub at https://github.com/marict?tab=repositories
comment: 7 pages, 5 tables, includes results on the NALM benchmark
♻ ☆ CAME-AB: Cross-Modality Attention with Mixture-of-Experts for Antibody Binding Site Prediction
Antibody binding site prediction plays a pivotal role in computational immunology and therapeutic antibody design. Existing sequence or structure methods rely on single-view features and fail to identify antibody-specific binding sites on the antigens. In this paper, we propose \textbf{CAME-AB}, a novel Cross-modality Attention framework with a Mixture-of-Experts (MoE) backbone for robust antibody binding site prediction. CAME-AB integrates five biologically grounded modalities, including raw amino acid encodings, BLOSUM substitution profiles, pretrained language model embeddings, structure-aware features, and GCN-refined biochemical graphs, into a unified multimodal representation. To enhance adaptive cross-modal reasoning, we propose an \emph{adaptive modality fusion} module that learns to dynamically weight each modality based on its global relevance and input-specific contribution. A Transformer encoder combined with an MoE module further promotes feature specialization and capacity expansion. We additionally incorporate a supervised contrastive learning objective to explicitly shape the latent space geometry, encouraging intra-class compactness and inter-class separability. To improve optimization stability and generalization, we apply stochastic weight averaging during training. Extensive experiments on benchmark antibody-antigen datasets demonstrate that CAME-AB consistently outperforms strong baselines on multiple metrics, including Precision, Recall, F1-score, AUC-ROC, and MCC. Ablation studies further validate the effectiveness of each architectural component and the benefit of multimodal feature integration. The model implementation details and the codes are available on https://anonymous.4open.science/r/CAME-AB-C525
♻ ☆ SimMark: A Robust Sentence-Level Similarity-Based Watermarking Algorithm for Large Language Models EMNLP 25
The widespread adoption of large language models (LLMs) necessitates reliable methods to detect LLM-generated text. We introduce SimMark, a robust sentence-level watermarking algorithm that makes LLMs' outputs traceable without requiring access to model internals, making it compatible with both open and API-based LLMs. By leveraging the similarity of semantic sentence embeddings combined with rejection sampling to embed detectable statistical patterns imperceptible to humans, and employing a soft counting mechanism, SimMark achieves robustness against paraphrasing attacks. Experimental results demonstrate that SimMark sets a new benchmark for robust watermarking of LLM-generated content, surpassing prior sentence-level watermarking techniques in robustness, sampling efficiency, and applicability across diverse domains, all while maintaining the text quality and fluency.
comment: Accepted to EMNLP 25 main
♻ ☆ Efficient Optimization Accelerator Framework for Multistate Ising Problems
Ising Machines are emerging hardware architectures that efficiently solve NP-Hard combinatorial optimization problems. Generally, combinatorial problems are transformed into quadratic unconstrained binary optimization (QUBO) form, but this transformation often complicates the solution landscape, degrading performance, especially for multi-state problems. To address this challenge, we model spin interactions as generalized boolean logic function to significantly reduce the exploration space. We demonstrate the effectiveness of our approach on graph coloring problem using probabilistic Ising solvers, achieving similar accuracy compared to state-of-the-art heuristics and machine learning algorithms. It also shows significant improvement over state-of-the-art QUBO-based Ising solvers, including probabilistic Ising and simulated bifurcation machines. We also design 1024-neuron all-to-all connected probabilistic Ising accelerator on FPGA with the proposed approach that shows ~10000x performance acceleration compared to GPU-based Tabucol heuristics and reducing physical neurons by 1.5-4x over baseline Ising frameworks. Thus, this work establishes superior efficiency, scalability and solution quality for multi-state optimization problems.
comment: 9 page main text, 4 main figures, 2 main table, 3 page supplementary, 10 supplementary figures,
♻ ☆ Harmonia: A Multi-Agent Reinforcement Learning Approach to Data Placement and Migration in Hybrid Storage Systems
Hybrid storage systems (HSS) integrate multiple storage devices with diverse characteristics to deliver high performance and capacity at low cost. The performance of an HSS highly depends on the effectiveness of two key policies: (1) the data-placement policy, which determines the best-fit storage device for incoming data, and (2) the data-migration policy, which dynamically rearranges stored data (i.e., prefetches hot data and evicts cold data) across the devices to sustain high HSS performance. Prior works optimize either data placement or data migration in isolation, which leads to suboptimal HSS performance. Unfortunately, no prior work tries to optimize both policies together. Our goal is to design a holistic data-management technique that optimizes both data-placement and data-migration policies to fully exploit the potential of an HSS, and thus significantly improve system performance. We propose Harmonia, a multi-agent reinforcement learning (RL)-based data-management technique that employs two lightweight autonomous RL agents, a data-placement agent and a data-migration agent, that adapt their policies for the current workload and HSS configuration while coordinating with each other to improve overall HSS performance. We evaluate Harmonia on real HSS configurations with up to four heterogeneous storage devices and seventeen data-intensive workloads. On performance-optimized (cost-optimized) HSS with two storage devices, Harmonia outperforms the best-performing prior approach by 49.5% (31.7%) on average. On an HSS with three (four) devices, Harmonia outperforms the best-performing prior work by 37.0% (42.0%) on average. Harmonia's performance benefits come with low latency (240ns for inference) and storage overheads (206 KiB in DRAM for both RL agents combined). We will open-source Harmonia's implementation to aid future research on HSS.
♻ ☆ EgoAgent: A Joint Predictive Agent Model in Egocentric Worlds
Learning an agent model that behaves like humans-capable of jointly perceiving the environment, predicting the future, and taking actions from a first-person perspective-is a fundamental challenge in computer vision. Existing methods typically train separate models for these abilities, which fail to capture their intrinsic relationships and prevent them from learning from each other. Inspired by how humans learn through the perception-action loop, we propose EgoAgent, a unified agent model that simultaneously learns to represent, predict, and act within a single transformer. EgoAgent explicitly models the causal and temporal dependencies among these abilities by formulating the task as an interleaved sequence of states and actions. It further introduces a joint embedding-action-prediction architecture with temporally asymmetric predictor and observer branches, enabling synergistic optimization across all three capabilities. Comprehensive evaluations of EgoAgent on representative tasks such as image classification, egocentric future state prediction, and 3D human motion prediction demonstrate the superiority of our method. The code and trained models will be publicly available at https://github.com/zju3dv/EgoAgent.
comment: Project Page: https://egoagent.github.io | Demo Video: https://youtu.be/qhfHp_sfDvY
♻ ☆ Imagine, Verify, Execute: Memory-guided Agentic Exploration with Vision-Language Models
Exploration is essential for general-purpose robotic learning, especially in open-ended environments where dense rewards, explicit goals, or task-specific supervision are scarce. Vision-language models (VLMs), with their semantic reasoning over objects, spatial relations, and potential outcomes, present a compelling foundation for generating high-level exploratory behaviors. However, their outputs are often ungrounded, making it difficult to determine whether imagined transitions are physically feasible or informative. To bridge the gap between imagination and execution, we present IVE (Imagine, Verify, Execute), an agentic exploration framework inspired by human curiosity. Human exploration is often driven by the desire to discover novel scene configurations and to deepen understanding of the environment. Similarly, IVE leverages VLMs to abstract RGB-D observations into semantic scene graphs, imagine novel scenes, predict their physical plausibility, and generate executable skill sequences through action tools. We evaluate IVE in both simulated and real-world tabletop environments. The results show that IVE enables more diverse and meaningful exploration than RL baselines, as evidenced by a 4.1 to 7.8x increase in the entropy of visited states. Moreover, the collected experience supports downstream learning, producing policies that closely match or exceed the performance of those trained on human-collected demonstrations.
comment: Project webpage: https://ive-robot.github.io/
♻ ☆ Securing Private Federated Learning in a Malicious Setting: A Scalable TEE-Based Approach with Client Auditing
In cross-device private federated learning, differentially private follow-the-regularized-leader (DP-FTRL) has emerged as a promising privacy-preserving method. However, existing approaches assume a semi-honest server and have not addressed the challenge of securely removing this assumption. This is due to its statefulness, which becomes particularly problematic in practical settings where clients can drop out or be corrupted. While trusted execution environments (TEEs) might seem like an obvious solution, a straightforward implementation can introduce forking attacks or availability issues due to state management. To address this problem, our paper introduces a novel server extension that acts as a trusted computing base (TCB) to realize maliciously secure DP-FTRL. The TCB is implemented with an ephemeral TEE module on the server side to produce verifiable proofs of server actions. Some clients, upon being selected, participate in auditing these proofs with small additional communication and computational demands. This extension solution reduces the size of the TCB while maintaining the system's scalability and liveness. We provide formal proofs based on interactive differential privacy, demonstrating privacy guarantee in malicious settings. Finally, we experimentally show that our framework adds small constant overhead to clients in several realistic settings.
comment: Accepted at PoPETs 2026
♻ ☆ Closing the Gap between TD Learning and Supervised Learning with $Q$-Conditioned Maximization
Recently, supervised learning (SL) methodology has emerged as an effective approach for offline reinforcement learning (RL) due to their simplicity, stability, and efficiency. However, recent studies show that SL methods lack the trajectory stitching capability, typically associated with temporal difference (TD)-based approaches. A question naturally surfaces: \textit{How can we endow SL methods with stitching capability and close its performance gap with TD learning?} To answer this question, we introduce $Q$-conditioned maximization supervised learning for offline goal-conditioned RL, which enhances SL with the stitching capability through $Q$-conditioned policy and $Q$-conditioned maximization. Concretely, we propose \textbf{G}oal-\textbf{C}onditioned \textbf{\textit{Rein}}forced \textbf{S}upervised \textbf{L}earning (\textbf{GC\textit{Rein}SL}), which consists of (1) estimating the $Q$-function by Normalizing Flows from the offline dataset and (2) finding the maximum $Q$-value within the data support by integrating $Q$-function maximization with Expectile Regression. In inference time, our policy chooses optimal actions based on such a maximum $Q$-value. Experimental results from stitching evaluations on offline RL datasets demonstrate that our method outperforms prior SL approaches with stitching capabilities and goal data augmentation techniques.
♻ ☆ Merge-of-Thought Distillation
Efficient reasoning distillation for long chain-of-thought (CoT) models is increasingly constrained by the assumption of a single oracle teacher, despite practical availability of multiple candidate teachers and growing CoT corpora. We revisit teacher selection and observe that different students have different "best teachers," and even for the same student the best teacher can vary across datasets. Therefore, to unify multiple teachers' reasoning abilities into student with overcoming conflicts among various teachers' supervision, we propose Merge-of-Thought Distillation (MoT), a lightweight framework that alternates between teacher-specific supervised fine-tuning branches and weight-space merging of the resulting student variants. On competition math benchmarks, using only about 200 high-quality CoT samples, applying MoT to a Qwen3-14B student surpasses strong models including DEEPSEEK-R1, QWEN3-30B-A3B, QWEN3-32B, and OPENAI-O1, demonstrating substantial gains. Besides, MoT consistently outperforms the best single-teacher distillation and the naive multi-teacher union, raises the performance ceiling while mitigating overfitting, and shows robustness to distribution-shifted and peer-level teachers. Moreover, MoT reduces catastrophic forgetting, improves general reasoning beyond mathematics and even cultivates a better teacher, indicating that consensus-filtered reasoning features transfer broadly. These results position MoT as a simple, scalable route to efficiently distilling long CoT capabilities from diverse teachers into compact students.
♻ ☆ Diffusion Graph Neural Networks for Robustness in Olfaction Sensors and Datasets
Robotic odour source localization (OSL) is a critical capability for autonomous systems operating in complex environments. However, current OSL methods often suffer from ambiguities, particularly when robots misattribute odours to incorrect objects due to limitations in olfactory datasets and sensor resolutions. To address this challenge, we introduce a novel machine learning method using diffusion-based molecular generation to enhance odour localization accuracy that can be used by itself or with automated olfactory dataset construction pipelines. This generative process of our diffusion model expands the chemical space beyond the limitations of both current olfactory datasets and training methods, enabling the identification of potential odourant molecules not previously documented. The generated molecules can then be more accurately validated using advanced olfactory sensors, enabling them to detect more compounds and inform better hardware design. By integrating visual analysis, language processing, and molecular generation, our framework enhances the ability of olfaction-vision models on robots to accurately associate odours with their correct sources, thereby improving navigation and decision-making through better sensor selection for a target compound in critical applications such as explosives detection, narcotics screening, and search and rescue. Our methodology represents a foundational advancement in the field of artificial olfaction, offering a scalable solution to challenges posed by limited olfactory data and sensor ambiguities. Code and data are made available to the community at the following URL: https://github.com/KordelFranceTech/OlfactionVisionLanguage-Dataset.
♻ ☆ Inferring entropy production in many-body systems using nonequilibrium MaxEnt
We propose a method for inferring entropy production (EP) in high-dimensional stochastic systems, including many-body systems and non-Markovian systems with long memory. Standard techniques for estimating EP become intractable in such systems due to computational and statistical limitations. We infer trajectory-level EP and lower bounds on average EP by exploiting a nonequilibrium analogue of the Maximum Entropy principle, along with convex duality. Our approach uses only samples of trajectory observables, such as spatiotemporal correlations. It does not require reconstruction of high-dimensional probability distributions or rate matrices, nor impose any special assumptions such as discrete states or multipartite dynamics. In addition, it may be used to compute a hierarchical decomposition of EP, reflecting contributions from different interaction orders, and it has an intuitive physical interpretation as a "thermodynamic uncertainty relation." We demonstrate its numerical performance on a disordered nonequilibrium spin model with 1000 spins and a large neural spike-train dataset.
♻ ☆ Joint Optimization of Energy Consumption and Completion Time in Federated Learning IEEE
Federated Learning (FL) is an intriguing distributed machine learning approach due to its privacy-preserving characteristics. To balance the trade-off between energy and execution latency, and thus accommodate different demands and application scenarios, we formulate an optimization problem to minimize a weighted sum of total energy consumption and completion time through two weight parameters. The optimization variables include bandwidth, transmission power and CPU frequency of each device in the FL system, where all devices are linked to a base station and train a global model collaboratively. Through decomposing the non-convex optimization problem into two subproblems, we devise a resource allocation algorithm to determine the bandwidth allocation, transmission power, and CPU frequency for each participating device. We further present the convergence analysis and computational complexity of the proposed algorithm. Numerical results show that our proposed algorithm not only has better performance at different weight parameters (i.e., different demands) but also outperforms the state of the art.
comment: This paper appears in the Proceedings of IEEE International Conference on Distributed Computing Systems (ICDCS) 2022. Please feel free to contact us for questions or remarks
♻ ☆ SWI: Speaking with Intent in Large Language Models
Intent, typically clearly formulated and planned, functions as a cognitive framework for communication and problem-solving. This paper introduces the concept of Speaking with Intent (SWI) in large language models (LLMs), where the explicitly generated intent encapsulates the model's underlying intention and provides high-level planning to guide subsequent analysis and action. By emulating deliberate and purposeful thoughts in the human mind, SWI is hypothesized to enhance the reasoning capabilities and generation quality of LLMs. Extensive experiments on text summarization, multi-task question answering, and mathematical reasoning benchmarks consistently demonstrate the effectiveness and generalizability of Speaking with Intent over direct generation without explicit intent. Further analysis corroborates the generalizability of SWI under different experimental settings. Moreover, human evaluations verify the coherence, effectiveness, and interpretability of the intent produced by SWI. The promising results in enhancing LLMs with explicit intents pave a new avenue for boosting LLMs' generation and reasoning abilities with cognitive notions.
comment: Code: https://github.com/YuweiYin/SWI
Multimedia 5
☆ In-Loop Filtering Using Learned Look-Up Tables for Video Coding
In-loop filtering (ILF) is a key technology in video coding standards to reduce artifacts and enhance visual quality. Recently, neural network-based ILF schemes have achieved remarkable coding gains, emerging as a powerful candidate for next-generation video coding standards. However, the use of deep neural networks (DNN) brings significant computational and time complexity or high demands for dedicated hardware, making it challenging for general use. To address this limitation, we study a practical ILF solution by adopting look-up tables (LUTs). After training a DNN with a restricted reference range for ILF, all possible inputs are traversed, and the output values of the DNN are cached into LUTs. During the coding process, the filtering process is performed by simply retrieving the filtered pixel through locating the input pixels and interpolating between the cached values, instead of relying on heavy inference computations. In this paper, we propose a universal LUT-based ILF framework, termed LUT-ILF++. First, we introduce the cooperation of multiple kinds of filtering LUTs and propose a series of customized indexing mechanisms to enable better filtering reference perception with limited storage consumption. Second, we propose the cross-component indexing mechanism to enable the filtering of different color components jointly. Third, in order to make our solution practical for coding uses, we propose the LUT compaction scheme to enable the LUT pruning, achieving a lower storage cost of the entire solution. The proposed framework is implemented in the VVC reference software. Experimental results show that the proposed framework achieves on average 0.82%/2.97%/1.63% and 0.85%/4.11%/2.06% bitrate reduction for common test sequences, under the AI and RA configurations, respectively. Compared to DNN-based solutions, our proposed solution has much lower time complexity and storage cost.
comment: 25 pages
☆ Efficient Transformer-Based Piano Transcription With Sparse Attention Mechanisms
This paper investigates automatic piano transcription based on computationally-efficient yet high-performant variants of the Transformer that can capture longer-term dependency over the whole musical piece. Recently, transformer-based sequence-to-sequence models have demonstrated excellent performance in piano transcription. These models, however, fail to deal with the whole piece at once due to the quadratic complexity of the self-attention mechanism, and music signals are thus typically processed in a sliding-window manner in practice. To overcome this limitation, we propose an efficient architecture with sparse attention mechanisms. Specifically, we introduce sliding-window self-attention mechanisms for both the encoder and decoder, and a hybrid global-local cross-attention mechanism that attends to various spans according to the MIDI token types. We also use a hierarchical pooling strategy between the encoder and decoder to further reduce computational load. Our experiments on the MAESTRO dataset showed that the proposed model achieved a significant reduction in computational cost and memory usage, accelerating inference speed, while maintaining transcription performance comparable to the full-attention baseline. This allows for training with longer audio contexts on the same hardware, demonstrating the viability of sparse attention for building efficient and high-performance piano transcription systems. The code is available at https://github.com/WX-Wei/efficient-seq2seq-piano-trans.
comment: Accepted by APSIPA 2025
☆ Can Multimodal LLMs See Materials Clearly? A Multimodal Benchmark on Materials Characterization
Materials characterization is fundamental to acquiring materials information, revealing the processing-microstructure-property relationships that guide material design and optimization. While multimodal large language models (MLLMs) have recently shown promise in generative and predictive tasks within materials science, their capacity to understand real-world characterization imaging data remains underexplored. To bridge this gap, we present MatCha, the first benchmark for materials characterization image understanding, comprising 1,500 questions that demand expert-level domain expertise. MatCha encompasses four key stages of materials research comprising 21 distinct tasks, each designed to reflect authentic challenges faced by materials scientists. Our evaluation of state-of-the-art MLLMs on MatCha reveals a significant performance gap compared to human experts. These models exhibit degradation when addressing questions requiring higher-level expertise and sophisticated visual perception. Simple few-shot and chain-of-thought prompting struggle to alleviate these limitations. These findings highlight that existing MLLMs still exhibit limited adaptability to real-world materials characterization scenarios. We hope MatCha will facilitate future research in areas such as new material discovery and autonomous scientific agents. MatCha is available at https://github.com/FreedomIntelligence/MatCha.
☆ Towards Better Dental AI: A Multimodal Benchmark and Instruction Dataset for Panoramic X-ray Analysis
Recent advances in large vision-language models (LVLMs) have demonstrated strong performance on general-purpose medical tasks. However, their effectiveness in specialized domains such as dentistry remains underexplored. In particular, panoramic X-rays, a widely used imaging modality in oral radiology, pose interpretative challenges due to dense anatomical structures and subtle pathological cues, which are not captured by existing medical benchmarks or instruction datasets. To this end, we introduce MMOral, the first large-scale multimodal instruction dataset and benchmark tailored for panoramic X-ray interpretation. MMOral consists of 20,563 annotated images paired with 1.3 million instruction-following instances across diverse task types, including attribute extraction, report generation, visual question answering, and image-grounded dialogue. In addition, we present MMOral-Bench, a comprehensive evaluation suite covering five key diagnostic dimensions in dentistry. We evaluate 64 LVLMs on MMOral-Bench and find that even the best-performing model, i.e., GPT-4o, only achieves 41.45% accuracy, revealing significant limitations of current models in this domain. To promote the progress of this specific domain, we also propose OralGPT, which conducts supervised fine-tuning (SFT) upon Qwen2.5-VL-7B with our meticulously curated MMOral instruction dataset. Remarkably, a single epoch of SFT yields substantial performance enhancements for LVLMs, e.g., OralGPT demonstrates a 24.73% improvement. Both MMOral and OralGPT hold significant potential as a critical foundation for intelligent dentistry and enable more clinically impactful multimodal AI systems in the dental field. The dataset, model, benchmark, and evaluation suite are available at https://github.com/isbrycee/OralGPT.
comment: 40 pages, 26 figures, 9 tables
☆ MoLEx: Mixture of LoRA Experts in Speech Self-Supervised Models for Audio Deepfake Detection
While self-supervised learning (SSL)-based models have boosted audio deepfake detection accuracy, fully finetuning them is computationally expensive. To address this, we propose a parameter-efficient framework that combines Low-Rank Adaptation with a Mixture-of-Experts router, called Mixture of LoRA Experts (MoLEx). It preserves pre-trained knowledge of SSL models while efficiently finetuning only selected experts, reducing training costs while maintaining robust performance. The observed utility of experts during inference shows the router reactivates the same experts for similar attacks but switches to other experts for novel spoofs, confirming MoLEx's domain-aware adaptability. MoLEx additionally offers flexibility for domain adaptation by allowing extra experts to be trained without modifying the entire model. We mainly evaluate our approach on the ASVSpoof 5 dataset and achieve the state-of-the-art (SOTA) equal error rate (EER) of 5.56% on the evaluation set without augmentation.
Computer Vision and Pattern Recognition 129
☆ SAFT: Shape and Appearance of Fabrics from Template via Differentiable Physical Simulations from Monocular Video
The reconstruction of three-dimensional dynamic scenes is a well-established yet challenging task within the domain of computer vision. In this paper, we propose a novel approach that combines the domains of 3D geometry reconstruction and appearance estimation for physically based rendering and present a system that is able to perform both tasks for fabrics, utilizing only a single monocular RGB video sequence as input. In order to obtain realistic and high-quality deformations and renderings, a physical simulation of the cloth geometry and differentiable rendering are employed. In this paper, we introduce two novel regularization terms for the 3D reconstruction task that improve the plausibility of the reconstruction by addressing the depth ambiguity problem in monocular video. In comparison with the most recent methods in the field, we have reduced the error in the 3D reconstruction by a factor of 2.64 while requiring a medium runtime of 30 min per scene. Furthermore, the optimized motion achieves sufficient quality to perform an appearance estimation of the deforming object, recovering sharp details from this single monocular RGB video.
comment: Project page: https://cg.cs.uni-bonn.de/publication/stotko-2025-saft Video: https://www.youtube.com/watch?v=EvioNjBOARc GitHub: https://github.com/vc-bonn/saft
☆ RewardDance: Reward Scaling in Visual Generation
Reward Models (RMs) are critical for improving generation models via Reinforcement Learning (RL), yet the RM scaling paradigm in visual generation remains largely unexplored. It primarily due to fundamental limitations in existing approaches: CLIP-based RMs suffer from architectural and input modality constraints, while prevalent Bradley-Terry losses are fundamentally misaligned with the next-token prediction mechanism of Vision-Language Models (VLMs), hindering effective scaling. More critically, the RLHF optimization process is plagued by Reward Hacking issue, where models exploit flaws in the reward signal without improving true quality. To address these challenges, we introduce RewardDance, a scalable reward modeling framework that overcomes these barriers through a novel generative reward paradigm. By reformulating the reward score as the model's probability of predicting a "yes" token, indicating that the generated image outperforms a reference image according to specific criteria, RewardDance intrinsically aligns reward objectives with VLM architectures. This alignment unlocks scaling across two dimensions: (1) Model Scaling: Systematic scaling of RMs up to 26 billion parameters; (2) Context Scaling: Integration of task-specific instructions, reference examples, and chain-of-thought (CoT) reasoning. Extensive experiments demonstrate that RewardDance significantly surpasses state-of-the-art methods in text-to-image, text-to-video, and image-to-video generation. Crucially, we resolve the persistent challenge of "reward hacking": Our large-scale RMs exhibit and maintain high reward variance during RL fine-tuning, proving their resistance to hacking and ability to produce diverse, high-quality outputs. It greatly relieves the mode collapse problem that plagues smaller models.
comment: Bytedance Seed Technical Report
☆ GeneVA: A Dataset of Human Annotations for Generative Text to Video Artifacts
Recent advances in probabilistic generative models have extended capabilities from static image synthesis to text-driven video generation. However, the inherent randomness of their generation process can lead to unpredictable artifacts, such as impossible physics and temporal inconsistency. Progress in addressing these challenges requires systematic benchmarks, yet existing datasets primarily focus on generative images due to the unique spatio-temporal complexities of videos. To bridge this gap, we introduce GeneVA, a large-scale artifact dataset with rich human annotations that focuses on spatio-temporal artifacts in videos generated from natural text prompts. We hope GeneVA can enable and assist critical applications, such as benchmarking model performance and improving generative video quality.
☆ Handling Multiple Hypotheses in Coarse-to-Fine Dense Image Matching
Dense image matching aims to find a correspondent for every pixel of a source image in a partially overlapping target image. State-of-the-art methods typically rely on a coarse-to-fine mechanism where a single correspondent hypothesis is produced per source location at each scale. In challenging cases -- such as at depth discontinuities or when the target image is a strong zoom-in of the source image -- the correspondents of neighboring source locations are often widely spread and predicting a single correspondent hypothesis per source location at each scale may lead to erroneous matches. In this paper, we investigate the idea of predicting multiple correspondent hypotheses per source location at each scale instead. We consider a beam search strategy to propagat multiple hypotheses at each scale and propose integrating these multiple hypotheses into cross-attention layers, resulting in a novel dense matching architecture called BEAMER. BEAMER learns to preserve and propagate multiple hypotheses across scales, making it significantly more robust than state-of-the-art methods, especially at depth discontinuities or when the target image is a strong zoom-in of the source image.
☆ PianoVAM: A Multimodal Piano Performance Dataset
The multimodal nature of music performance has driven increasing interest in data beyond the audio domain within the music information retrieval (MIR) community. This paper introduces PianoVAM, a comprehensive piano performance dataset that includes videos, audio, MIDI, hand landmarks, fingering labels, and rich metadata. The dataset was recorded using a Disklavier piano, capturing audio and MIDI from amateur pianists during their daily practice sessions, alongside synchronized top-view videos in realistic and varied performance conditions. Hand landmarks and fingering labels were extracted using a pretrained hand pose estimation model and a semi-automated fingering annotation algorithm. We discuss the challenges encountered during data collection and the alignment process across different modalities. Additionally, we describe our fingering annotation method based on hand landmarks extracted from videos. Finally, we present benchmarking results for both audio-only and audio-visual piano transcription using the PianoVAM dataset and discuss additional potential applications.
comment: Accepted to the 26th International Society for Music Information Retrieval (ISMIR) Conference, 2025
☆ Quantifying Accuracy of an Event-Based Star Tracker via Earth's Rotation
Event-based cameras (EBCs) are a promising new technology for star tracking-based attitude determination, but prior studies have struggled to determine accurate ground truth for real data. We analyze the accuracy of an EBC star tracking system utilizing the Earth's motion as the ground truth for comparison. The Earth rotates in a regular way with very small irregularities which are measured to the level of milli-arcseconds. By keeping an event camera static and pointing it through a ground-based telescope at the night sky, we create a system where the only camera motion in the celestial reference frame is that induced by the Earth's rotation. The resulting event stream is processed to generate estimates of orientation which we compare to the International Earth Rotation and Reference System (IERS) measured orientation of the Earth. The event camera system is able to achieve a root mean squared across error of 18.47 arcseconds and an about error of 78.84 arcseconds. Combined with the other benefits of event cameras over framing sensors (reduced computation due to sparser data streams, higher dynamic range, lower energy consumption, faster update rates), this level of accuracy suggests the utility of event cameras for low-cost and low-latency star tracking. We provide all code and data used to generate our results: https://gitlab.kitware.com/nest-public/telescope_accuracy_quantification.
☆ An End-to-End Deep Learning Framework for Arsenicosis Diagnosis Using Mobile-Captured Skin Images
Background: Arsenicosis is a serious public health concern in South and Southeast Asia, primarily caused by long-term consumption of arsenic-contaminated water. Its early cutaneous manifestations are clinically significant but often underdiagnosed, particularly in rural areas with limited access to dermatologists. Automated, image-based diagnostic solutions can support early detection and timely interventions. Methods: In this study, we propose an end-to-end framework for arsenicosis diagnosis using mobile phone-captured skin images. A dataset comprising 20 classes and over 11000 images of arsenic-induced and other dermatological conditions was curated. Multiple deep learning architectures, including convolutional neural networks (CNNs) and Transformer-based models, were benchmarked for arsenicosis detection. Model interpretability was integrated via LIME and Grad-CAM, while deployment feasibility was demonstrated through a web-based diagnostic tool. Results: Transformer-based models significantly outperformed CNNs, with the Swin Transformer achieving the best results (86\\% accuracy). LIME and Grad-CAM visualizations confirmed that the models attended to lesion-relevant regions, increasing clinical transparency and aiding in error analysis. The framework also demonstrated strong performance on external validation samples, confirming its ability to generalize beyond the curated dataset. Conclusion: The proposed framework demonstrates the potential of deep learning for non-invasive, accessible, and explainable diagnosis of arsenicosis from mobile-acquired images. By enabling reliable image-based screening, it can serve as a practical diagnostic aid in rural and resource-limited communities, where access to dermatologists is scarce, thereby supporting early detection and timely intervention.
☆ Calibrating MLLM-as-a-judge via Multimodal Bayesian Prompt Ensembles ICCV 2025
Multimodal large language models (MLLMs) are increasingly used to evaluate text-to-image (TTI) generation systems, providing automated judgments based on visual and textual context. However, these "judge" models often suffer from biases, overconfidence, and inconsistent performance across diverse image domains. While prompt ensembling has shown promise for mitigating these issues in unimodal, text-only settings, our experiments reveal that standard ensembling methods fail to generalize effectively for TTI tasks. To address these limitations, we propose a new multimodal-aware method called Multimodal Mixture-of-Bayesian Prompt Ensembles (MMB). Our method uses a Bayesian prompt ensemble approach augmented by image clustering, allowing the judge to dynamically assign prompt weights based on the visual characteristics of each sample. We show that MMB improves accuracy in pairwise preference judgments and greatly enhances calibration, making it easier to gauge the judge's true uncertainty. In evaluations on two TTI benchmarks, HPSv2 and MJBench, MMB outperforms existing baselines in alignment with human annotations and calibration across varied image content. Our findings highlight the importance of multimodal-specific strategies for judge calibration and suggest a promising path forward for reliable large-scale TTI evaluation.
comment: 17 pages, 8 figures, Accepted at ICCV 2025
☆ ArgoTweak: Towards Self-Updating HD Maps through Structured Priors ICCV 2025
Reliable integration of prior information is crucial for self-verifying and self-updating HD maps. However, no public dataset includes the required triplet of prior maps, current maps, and sensor data. As a result, existing methods must rely on synthetic priors, which create inconsistencies and lead to a significant sim2real gap. To address this, we introduce ArgoTweak, the first dataset to complete the triplet with realistic map priors. At its core, ArgoTweak employs a bijective mapping framework, breaking down large-scale modifications into fine-grained atomic changes at the map element level, thus ensuring interpretability. This paradigm shift enables accurate change detection and integration while preserving unchanged elements with high fidelity. Experiments show that training models on ArgoTweak significantly reduces the sim2real gap compared to synthetic priors. Extensive ablations further highlight the impact of structured priors and detailed change annotations. By establishing a benchmark for explainable, prior-aided HD mapping, ArgoTweak advances scalable, self-improving mapping solutions. The dataset, baselines, map modification toolbox, and further resources are available at https://kth-rpl.github.io/ArgoTweak/.
comment: ICCV 2025
☆ SocialNav-SUB: Benchmarking VLMs for Scene Understanding in Social Robot Navigation
Robot navigation in dynamic, human-centered environments requires socially-compliant decisions grounded in robust scene understanding. Recent Vision-Language Models (VLMs) exhibit promising capabilities such as object recognition, common-sense reasoning, and contextual understanding-capabilities that align with the nuanced requirements of social robot navigation. However, it remains unclear whether VLMs can accurately understand complex social navigation scenes (e.g., inferring the spatial-temporal relations among agents and human intentions), which is essential for safe and socially compliant robot navigation. While some recent works have explored the use of VLMs in social robot navigation, no existing work systematically evaluates their ability to meet these necessary conditions. In this paper, we introduce the Social Navigation Scene Understanding Benchmark (SocialNav-SUB), a Visual Question Answering (VQA) dataset and benchmark designed to evaluate VLMs for scene understanding in real-world social robot navigation scenarios. SocialNav-SUB provides a unified framework for evaluating VLMs against human and rule-based baselines across VQA tasks requiring spatial, spatiotemporal, and social reasoning in social robot navigation. Through experiments with state-of-the-art VLMs, we find that while the best-performing VLM achieves an encouraging probability of agreeing with human answers, it still underperforms simpler rule-based approach and human consensus baselines, indicating critical gaps in social scene understanding of current VLMs. Our benchmark sets the stage for further research on foundation models for social robot navigation, offering a framework to explore how VLMs can be tailored to meet real-world social robot navigation needs. An overview of this paper along with the code and data can be found at https://larg.github.io/socialnav-sub .
comment: Conference on Robot Learning (CoRL) 2025 Project site: https://larg.github.io/socialnav-sub
☆ CrowdQuery: Density-Guided Query Module for Enhanced 2D and 3D Detection in Crowded Scenes IROS 2025
This paper introduces a novel method for end-to-end crowd detection that leverages object density information to enhance existing transformer-based detectors. We present CrowdQuery (CQ), whose core component is our CQ module that predicts and subsequently embeds an object density map. The embedded density information is then systematically integrated into the decoder. Existing density map definitions typically depend on head positions or object-based spatial statistics. Our method extends these definitions to include individual bounding box dimensions. By incorporating density information into object queries, our method utilizes density-guided queries to improve detection in crowded scenes. CQ is universally applicable to both 2D and 3D detection without requiring additional data. Consequently, we are the first to design a method that effectively bridges 2D and 3D detection in crowded environments. We demonstrate the integration of CQ into both a general 2D and 3D transformer-based object detector, introducing the architectures CQ2D and CQ3D. CQ is not limited to the specific transformer models we selected. Experiments on the STCrowd dataset for both 2D and 3D domains show significant performance improvements compared to the base models, outperforming most state-of-the-art methods. When integrated into a state-of-the-art crowd detector, CQ can further improve performance on the challenging CrowdHuman dataset, demonstrating its generalizability. The code is released at https://github.com/mdaehl/CrowdQuery.
comment: 8 pages, 5 figures, accepted by IROS 2025
☆ BcQLM: Efficient Vision-Language Understanding with Distilled Q-Gated Cross-Modal Fusion
As multimodal large language models (MLLMs) advance, their large-scale architectures pose challenges for deployment in resource-constrained environments. In the age of large models, where energy efficiency, computational scalability and environmental sustainability are paramount, the development of lightweight and high-performance models is critical for real-world applications. As such, we propose a lightweight MLLM framework for end-to-end visual question answering. Our proposed approach centres on BreezeCLIP, a compact yet powerful vision-language encoder optimised for efficient multimodal understanding. With only 1.2 billion parameters overall, our model significantly reduces computational cost while achieving performance comparable to standard-size MLLMs. Experiments conducted on multiple datasets further validate its effectiveness in balancing accuracy and efficiency. The modular and extensible design enables generalisation to broader multimodal tasks. The proposed lightweight vision-language framework is denoted as BcQLM (BreezeCLIP-enhanced Q-Gated Multimodal Language Model). It offers a promising path toward deployable MLLMs under practical hardware constraints. The source code is available at https://github.com/thico0224/BcQLM.
☆ Computational Imaging for Enhanced Computer Vision
This paper presents a comprehensive survey of computational imaging (CI) techniques and their transformative impact on computer vision (CV) applications. Conventional imaging methods often fail to deliver high-fidelity visual data in challenging conditions, such as low light, motion blur, or high dynamic range scenes, thereby limiting the performance of state-of-the-art CV systems. Computational imaging techniques, including light field imaging, high dynamic range (HDR) imaging, deblurring, high-speed imaging, and glare mitigation, address these limitations by enhancing image acquisition and reconstruc- tion processes. This survey systematically explores the synergies between CI techniques and core CV tasks, including object detection, depth estimation, optical flow, face recognition, and keypoint detection. By analyzing the relationships between CI methods and their practical contributions to CV applications, this work highlights emerging opportunities, challenges, and future research directions. We emphasize the potential for task-specific, adaptive imaging pipelines that improve robustness, accuracy, and efficiency in real-world scenarios, such as autonomous navigation, surveillance, augmented reality, and robotics.
☆ TANGO: Traversability-Aware Navigation with Local Metric Control for Topological Goals ICRA 2025
Visual navigation in robotics traditionally relies on globally-consistent 3D maps or learned controllers, which can be computationally expensive and difficult to generalize across diverse environments. In this work, we present a novel RGB-only, object-level topometric navigation pipeline that enables zero-shot, long-horizon robot navigation without requiring 3D maps or pre-trained controllers. Our approach integrates global topological path planning with local metric trajectory control, allowing the robot to navigate towards object-level sub-goals while avoiding obstacles. We address key limitations of previous methods by continuously predicting local trajectory using monocular depth and traversability estimation, and incorporating an auto-switching mechanism that falls back to a baseline controller when necessary. The system operates using foundational models, ensuring open-set applicability without the need for domain-specific fine-tuning. We demonstrate the effectiveness of our method in both simulated environments and real-world tests, highlighting its robustness and deployability. Our approach outperforms existing state-of-the-art methods, offering a more adaptable and effective solution for visual navigation in open-set environments. The source code is made publicly available: https://github.com/podgorki/TANGO.
comment: 9 pages, 5 figures, ICRA 2025
☆ Multi-Modal Robust Enhancement for Coastal Water Segmentation: A Systematic HSV-Guided Framework
Coastal water segmentation from satellite imagery presents unique challenges due to complex spectral characteristics and irregular boundary patterns. Traditional RGB-based approaches often suffer from training instability and poor generalization in diverse maritime environments. This paper introduces a systematic robust enhancement framework, referred to as Robust U-Net, that leverages HSV color space supervision and multi-modal constraints for improved coastal water segmentation. Our approach integrates five synergistic components: HSV-guided color supervision, gradient-based coastline optimization, morphological post-processing, sea area cleanup, and connectivity control. Through comprehensive ablation studies, we demonstrate that HSV supervision provides the highest impact (0.85 influence score), while the complete framework achieves superior training stability (84\% variance reduction) and enhanced segmentation quality. Our method shows consistent improvements across multiple evaluation metrics while maintaining computational efficiency. For reproducibility, our training configurations and code are available here: https://github.com/UofgCoastline/ICASSP-2026-Robust-Unet.
☆ FractalPINN-Flow: A Fractal-Inspired Network for Unsupervised Optical Flow Estimation with Total Variation Regularization
We present FractalPINN-Flow, an unsupervised deep learning framework for dense optical flow estimation that learns directly from consecutive grayscale frames without requiring ground truth. The architecture centers on the Fractal Deformation Network (FDN) - a recursive encoder-decoder inspired by fractal geometry and self-similarity. Unlike traditional CNNs with sequential downsampling, FDN uses repeated encoder-decoder nesting with skip connections to capture both fine-grained details and long-range motion patterns. The training objective is based on a classical variational formulation using total variation (TV) regularization. Specifically, we minimize an energy functional that combines $L^1$ and $L^2$ data fidelity terms to enforce brightness constancy, along with a TV term that promotes spatial smoothness and coherent flow fields. Experiments on synthetic and benchmark datasets show that FractalPINN-Flow produces accurate, smooth, and edge-preserving optical flow fields. The model is especially effective for high-resolution data and scenarios with limited annotations.
☆ Skeleton-based sign language recognition using a dual-stream spatio-temporal dynamic graph convolutional network ICASSP
Isolated Sign Language Recognition (ISLR) is challenged by gestures that are morphologically similar yet semantically distinct, a problem rooted in the complex interplay between hand shape and motion trajectory. Existing methods, often relying on a single reference frame, struggle to resolve this geometric ambiguity. This paper introduces Dual-SignLanguageNet (DSLNet), a dual-reference, dual-stream architecture that decouples and models gesture morphology and trajectory in separate, complementary coordinate systems. Our approach utilizes a wrist-centric frame for view-invariant shape analysis and a facial-centric frame for context-aware trajectory modeling. These streams are processed by specialized networks-a topology-aware graph convolution for shape and a Finsler geometry-based encoder for trajectory-and are integrated via a geometry-driven optimal transport fusion mechanism. DSLNet sets a new state-of-the-art, achieving 93.70%, 89.97% and 99.79% accuracy on the challenging WLASL-100, WLASL-300 and LSA64 datasets, respectively, with significantly fewer parameters than competing models.
comment: 5 pages, 3 figures, ICASSP
☆ X-Part: high fidelity and structure coherent shape decomposition
Generating 3D shapes at part level is pivotal for downstream applications such as mesh retopology, UV mapping, and 3D printing. However, existing part-based generation methods often lack sufficient controllability and suffer from poor semantically meaningful decomposition. To this end, we introduce X-Part, a controllable generative model designed to decompose a holistic 3D object into semantically meaningful and structurally coherent parts with high geometric fidelity. X-Part exploits the bounding box as prompts for the part generation and injects point-wise semantic features for meaningful decomposition. Furthermore, we design an editable pipeline for interactive part generation. Extensive experimental results show that X-Part achieves state-of-the-art performance in part-level shape generation. This work establishes a new paradigm for creating production-ready, editable, and structurally sound 3D assets. Codes will be released for public research.
comment: Tech Report
☆ RoentMod: A Synthetic Chest X-Ray Modification Model to Identify and Correct Image Interpretation Model Shortcuts
Chest radiographs (CXRs) are among the most common tests in medicine. Automated image interpretation may reduce radiologists\' workload and expand access to diagnostic expertise. Deep learning multi-task and foundation models have shown strong performance for CXR interpretation but are vulnerable to shortcut learning, where models rely on spurious and off-target correlations rather than clinically relevant features to make decisions. We introduce RoentMod, a counterfactual image editing framework that generates anatomically realistic CXRs with user-specified, synthetic pathology while preserving unrelated anatomical features of the original scan. RoentMod combines an open-source medical image generator (RoentGen) with an image-to-image modification model without requiring retraining. In reader studies with board-certified radiologists and radiology residents, RoentMod-produced images appeared realistic in 93\% of cases, correctly incorporated the specified finding in 89-99\% of cases, and preserved native anatomy comparable to real follow-up CXRs. Using RoentMod, we demonstrate that state-of-the-art multi-task and foundation models frequently exploit off-target pathology as shortcuts, limiting their specificity. Incorporating RoentMod-generated counterfactual images during training mitigated this vulnerability, improving model discrimination across multiple pathologies by 3-19\% AUC in internal validation and by 1-11\% for 5 out of 6 tested pathologies in external testing. These findings establish RoentMod as a broadly applicable tool for probing and correcting shortcut learning in medical AI. By enabling controlled counterfactual interventions, RoentMod enhances the robustness and interpretability of CXR interpretation models and provides a generalizable strategy for improving foundation models in medical imaging.
comment: 25 + 8 pages, 4 + 7 figures
☆ LADB: Latent Aligned Diffusion Bridges for Semi-Supervised Domain Translation
Diffusion models excel at generating high-quality outputs but face challenges in data-scarce domains, where exhaustive retraining or costly paired data are often required. To address these limitations, we propose Latent Aligned Diffusion Bridges (LADB), a semi-supervised framework for sample-to-sample translation that effectively bridges domain gaps using partially paired data. By aligning source and target distributions within a shared latent space, LADB seamlessly integrates pretrained source-domain diffusion models with a target-domain Latent Aligned Diffusion Model (LADM), trained on partially paired latent representations. This approach enables deterministic domain mapping without the need for full supervision. Compared to unpaired methods, which often lack controllability, and fully paired approaches that require large, domain-specific datasets, LADB strikes a balance between fidelity and diversity by leveraging a mixture of paired and unpaired latent-target couplings. Our experimental results demonstrate superior performance in depth-to-image translation under partial supervision. Furthermore, we extend LADB to handle multi-source translation (from depth maps and segmentation masks) and multi-target translation in a class-conditioned style transfer task, showcasing its versatility in handling diverse and heterogeneous use cases. Ultimately, we present LADB as a scalable and versatile solution for real-world domain translation, particularly in scenarios where data annotation is costly or incomplete.
☆ UOPSL: Unpaired OCT Predilection Sites Learning for Fundus Image Diagnosis Augmentation
Significant advancements in AI-driven multimodal medical image diagnosis have led to substantial improvements in ophthalmic disease identification in recent years. However, acquiring paired multimodal ophthalmic images remains prohibitively expensive. While fundus photography is simple and cost-effective, the limited availability of OCT data and inherent modality imbalance hinder further progress. Conventional approaches that rely solely on fundus or textual features often fail to capture fine-grained spatial information, as each imaging modality provides distinct cues about lesion predilection sites. In this study, we propose a novel unpaired multimodal framework \UOPSL that utilizes extensive OCT-derived spatial priors to dynamically identify predilection sites, enhancing fundus image-based disease recognition. Our approach bridges unpaired fundus and OCTs via extended disease text descriptions. Initially, we employ contrastive learning on a large corpus of unpaired OCT and fundus images while simultaneously learning the predilection sites matrix in the OCT latent space. Through extensive optimization, this matrix captures lesion localization patterns within the OCT feature space. During the fine-tuning or inference phase of the downstream classification task based solely on fundus images, where paired OCT data is unavailable, we eliminate OCT input and utilize the predilection sites matrix to assist in fundus image classification learning. Extensive experiments conducted on 9 diverse datasets across 28 critical categories demonstrate that our framework outperforms existing benchmarks.
comment: BIBM
☆ AdsQA: Towards Advertisement Video Understanding ICCV-2025
Large language models (LLMs) have taken a great step towards AGI. Meanwhile, an increasing number of domain-specific problems such as math and programming boost these general-purpose models to continuously evolve via learning deeper expertise. Now is thus the time further to extend the diversity of specialized applications for knowledgeable LLMs, though collecting high quality data with unexpected and informative tasks is challenging. In this paper, we propose to use advertisement (ad) videos as a challenging test-bed to probe the ability of LLMs in perceiving beyond the objective physical content of common visual domain. Our motivation is to take full advantage of the clue-rich and information-dense ad videos' traits, e.g., marketing logic, persuasive strategies, and audience engagement. Our contribution is three-fold: (1) To our knowledge, this is the first attempt to use ad videos with well-designed tasks to evaluate LLMs. We contribute AdsQA, a challenging ad Video QA benchmark derived from 1,544 ad videos with 10,962 clips, totaling 22.7 hours, providing 5 challenging tasks. (2) We propose ReAd-R, a Deepseek-R1 styled RL model that reflects on questions, and generates answers via reward-driven optimization. (3) We benchmark 14 top-tier LLMs on AdsQA, and our \texttt{ReAd-R}~achieves the state-of-the-art outperforming strong competitors equipped with long-chain reasoning capabilities by a clear margin.
comment: ICCV-2025
☆ CLAPS: A CLIP-Unified Auto-Prompt Segmentation for Multi-Modal Retinal Imaging
Recent advancements in foundation models, such as the Segment Anything Model (SAM), have significantly impacted medical image segmentation, especially in retinal imaging, where precise segmentation is vital for diagnosis. Despite this progress, current methods face critical challenges: 1) modality ambiguity in textual disease descriptions, 2) a continued reliance on manual prompting for SAM-based workflows, and 3) a lack of a unified framework, with most methods being modality- and task-specific. To overcome these hurdles, we propose CLIP-unified Auto-Prompt Segmentation (\CLAPS), a novel method for unified segmentation across diverse tasks and modalities in retinal imaging. Our approach begins by pre-training a CLIP-based image encoder on a large, multi-modal retinal dataset to handle data scarcity and distribution imbalance. We then leverage GroundingDINO to automatically generate spatial bounding box prompts by detecting local lesions. To unify tasks and resolve ambiguity, we use text prompts enhanced with a unique "modality signature" for each imaging modality. Ultimately, these automated textual and spatial prompts guide SAM to execute precise segmentation, creating a fully automated and unified pipeline. Extensive experiments on 12 diverse datasets across 11 critical segmentation categories show that CLAPS achieves performance on par with specialized expert models while surpassing existing benchmarks across most metrics, demonstrating its broad generalizability as a foundation model.
comment: BIBM
☆ CNN-ViT Hybrid for Pneumonia Detection: Theory and Empiric on Limited Data without Pretraining
This research explored the hybridization of CNN and ViT within a training dataset of limited size, and introduced a distinct class imbalance. The training was made from scratch with a mere focus on theoretically and experimentally exploring the architectural strengths of the proposed hybrid model. Experiments were conducted across varied data fractions with balanced and imbalanced training datasets. Comparatively, the hybrid model, complementing the strengths of CNN and ViT, achieved the highest recall of 0.9443 (50% data fraction in balanced) and consistency in F1 score around 0.85, suggesting reliability in diagnosis. Additionally, the model was successful in outperforming CNN and ViT in imbalanced datasets. Despite its complex architecture, it required comparable training time to the transformers in all data fractions.
comment: 8 pages, 5 Tables, 5 Figures. Manuscript submitted to ICOIICS 2025 Conference. Currently, under peer review
☆ EfficientIML: Efficient High-Resolution Image Manipulation Localization
With imaging devices delivering ever-higher resolutions and the emerging diffusion-based forgery methods, current detectors trained only on traditional datasets (with splicing, copy-moving and object removal forgeries) lack exposure to this new manipulation type. To address this, we propose a novel high-resolution SIF dataset of 1200+ diffusion-generated manipulations with semantically extracted masks. However, this also imposes a challenge on existing methods, as they face significant computational resource constraints due to their prohibitive computational complexities. Therefore, we propose a novel EfficientIML model with a lightweight, three-stage EfficientRWKV backbone. EfficientRWKV's hybrid state-space and attention network captures global context and local details in parallel, while a multi-scale supervision strategy enforces consistency across hierarchical predictions. Extensive evaluations on our dataset and standard benchmarks demonstrate that our approach outperforms ViT-based and other SOTA lightweight baselines in localization performance, FLOPs and inference speed, underscoring its suitability for real-time forensic applications.
☆ Implicit Shape-Prior for Few-Shot Assisted 3D Segmentation
The objective of this paper is to significantly reduce the manual workload required from medical professionals in complex 3D segmentation tasks that cannot be yet fully automated. For instance, in radiotherapy planning, organs at risk must be accurately identified in computed tomography (CT) or magnetic resonance imaging (MRI) scans to ensure they are spared from harmful radiation. Similarly, diagnosing age-related degenerative diseases such as sarcopenia, which involve progressive muscle volume loss and strength, is commonly based on muscular mass measurements often obtained from manual segmentation of medical volumes. To alleviate the manual-segmentation burden, this paper introduces an implicit shape prior to segment volumes from sparse slice manual annotations generalized to the multi-organ case, along with a simple framework for automatically selecting the most informative slices to guide and minimize the next interactions. The experimental validation shows the method's effectiveness on two medical use cases: assisted segmentation in the context of at risks organs for brain cancer patients, and acceleration of the creation of a new database with unseen muscle shapes for patients with sarcopenia.
comment: Both first Authors contributed equally to this work, lastnames in alphabetical order. This preprint has not undergone peer review or any post-submission improvements or corrections. The Version of Record of this contribution will be published in a Springer Nature Computer Science book series (CCIS, LNAI, LNBI, LNBIP, LNCS) and the doi will soon be released
☆ Improving Greenland Bed Topography Mapping with Uncertainty-Aware Graph Learning on Sparse Radar Data
Accurate maps of Greenland's subglacial bed are essential for sea-level projections, but radar observations are sparse and uneven. We introduce GraphTopoNet, a graph-learning framework that fuses heterogeneous supervision and explicitly models uncertainty via Monte Carlo dropout. Spatial graphs built from surface observables (elevation, velocity, mass balance) are augmented with gradient features and polynomial trends to capture both local variability and broad structure. To handle data gaps, we employ a hybrid loss that combines confidence-weighted radar supervision with dynamically balanced regularization. Applied to three Greenland subregions, GraphTopoNet outperforms interpolation, convolutional, and graph-based baselines, reducing error by up to 60 percent while preserving fine-scale glacial features. The resulting bed maps improve reliability for operational modeling, supporting agencies engaged in climate forecasting and policy. More broadly, GraphTopoNet shows how graph machine learning can convert sparse, uncertain geophysical observations into actionable knowledge at continental scale.
☆ Vision-Language Semantic Aggregation Leveraging Foundation Model for Generalizable Medical Image Segmentation
Multimodal models have achieved remarkable success in natural image segmentation, yet they often underperform when applied to the medical domain. Through extensive study, we attribute this performance gap to the challenges of multimodal fusion, primarily the significant semantic gap between abstract textual prompts and fine-grained medical visual features, as well as the resulting feature dispersion. To address these issues, we revisit the problem from the perspective of semantic aggregation. Specifically, we propose an Expectation-Maximization (EM) Aggregation mechanism and a Text-Guided Pixel Decoder. The former mitigates feature dispersion by dynamically clustering features into compact semantic centers to enhance cross-modal correspondence. The latter is designed to bridge the semantic gap by leveraging domain-invariant textual knowledge to effectively guide deep visual representations. The synergy between these two mechanisms significantly improves the model's generalization ability. Extensive experiments on public cardiac and fundus datasets demonstrate that our method consistently outperforms existing SOTA approaches across multiple domain generalization benchmarks.
comment: 29 pages and 8 figures
☆ ViewSparsifier: Killing Redundancy in Multi-View Plant Phenotyping
Plant phenotyping involves analyzing observable characteristics of plants to better understand their growth, health, and development. In the context of deep learning, this analysis is often approached through single-view classification or regression models. However, these methods often fail to capture all information required for accurate estimation of target phenotypic traits, which can adversely affect plant health assessment and harvest readiness prediction. To address this, the Growth Modelling (GroMo) Grand Challenge at ACM Multimedia 2025 provides a multi-view dataset featuring multiple plants and two tasks: Plant Age Prediction and Leaf Count Estimation. Each plant is photographed from multiple heights and angles, leading to significant overlap and redundancy in the captured information. To learn view-invariant embeddings, we incorporate 24 views, referred to as the selection vector, in a random selection. Our ViewSparsifier approach won both tasks. For further improvement and as a direction for future research, we also experimented with randomized view selection across all five height levels (120 views total), referred to as selection matrices.
☆ MESH -- Understanding Videos Like Human: Measuring Hallucinations in Large Video Models
Large Video Models (LVMs) build on the semantic capabilities of Large Language Models (LLMs) and vision modules by integrating temporal information to better understand dynamic video content. Despite their progress, LVMs are prone to hallucinations-producing inaccurate or irrelevant descriptions. Current benchmarks for video hallucination depend heavily on manual categorization of video content, neglecting the perception-based processes through which humans naturally interpret videos. We introduce MESH, a benchmark designed to evaluate hallucinations in LVMs systematically. MESH uses a Question-Answering framework with binary and multi-choice formats incorporating target and trap instances. It follows a bottom-up approach, evaluating basic objects, coarse-to-fine subject features, and subject-action pairs, aligning with human video understanding. We demonstrate that MESH offers an effective and comprehensive approach for identifying hallucinations in videos. Our evaluations show that while LVMs excel at recognizing basic objects and features, their susceptibility to hallucinations increases markedly when handling fine details or aligning multiple actions involving various subjects in longer videos.
☆ HuMo: Human-Centric Video Generation via Collaborative Multi-Modal Conditioning
Human-Centric Video Generation (HCVG) methods seek to synthesize human videos from multimodal inputs, including text, image, and audio. Existing methods struggle to effectively coordinate these heterogeneous modalities due to two challenges: the scarcity of training data with paired triplet conditions and the difficulty of collaborating the sub-tasks of subject preservation and audio-visual sync with multimodal inputs. In this work, we present HuMo, a unified HCVG framework for collaborative multimodal control. For the first challenge, we construct a high-quality dataset with diverse and paired text, reference images, and audio. For the second challenge, we propose a two-stage progressive multimodal training paradigm with task-specific strategies. For the subject preservation task, to maintain the prompt following and visual generation abilities of the foundation model, we adopt the minimal-invasive image injection strategy. For the audio-visual sync task, besides the commonly adopted audio cross-attention layer, we propose a focus-by-predicting strategy that implicitly guides the model to associate audio with facial regions. For joint learning of controllabilities across multimodal inputs, building on previously acquired capabilities, we progressively incorporate the audio-visual sync task. During inference, for flexible and fine-grained multimodal control, we design a time-adaptive Classifier-Free Guidance strategy that dynamically adjusts guidance weights across denoising steps. Extensive experimental results demonstrate that HuMo surpasses specialized state-of-the-art methods in sub-tasks, establishing a unified framework for collaborative multimodal-conditioned HCVG. Project Page: https://phantom-video.github.io/HuMo.
☆ Chirality in Action: Time-Aware Video Representation Learning by Latent Straightening
Our objective is to develop compact video representations that are sensitive to visual change over time. To measure such time-sensitivity, we introduce a new task: chiral action recognition, where one needs to distinguish between a pair of temporally opposite actions, such as "opening vs. closing a door", "approaching vs. moving away from something", "folding vs. unfolding paper", etc. Such actions (i) occur frequently in everyday life, (ii) require understanding of simple visual change over time (in object state, size, spatial position, count . . . ), and (iii) are known to be poorly represented by many video embeddings. Our goal is to build time aware video representations which offer linear separability between these chiral pairs. To that end, we propose a self-supervised adaptation recipe to inject time-sensitivity into a sequence of frozen image features. Our model is based on an auto-encoder with a latent space with inductive bias inspired by perceptual straightening. We show that this results in a compact but time-sensitive video representation for the proposed task across three datasets: Something-Something, EPIC-Kitchens, and Charade. Our method (i) outperforms much larger video models pre-trained on large-scale video datasets, and (ii) leads to an improvement in classification performance on standard benchmarks when combined with these existing models.
comment: 24 pages, 10 figures
☆ A Structured Review of Underwater Object Detection Challenges and Solutions: From Traditional to Large Vision Language Models
Underwater object detection (UOD) is vital to diverse marine applications, including oceanographic research, underwater robotics, and marine conservation. However, UOD faces numerous challenges that compromise its performance. Over the years, various methods have been proposed to address these issues, but they often fail to fully capture the complexities of underwater environments. This review systematically categorizes UOD challenges into five key areas: Image quality degradation, target-related issues, data-related challenges, computational and processing constraints, and limitations in detection methodologies. To address these challenges, we analyze the progression from traditional image processing and object detection techniques to modern approaches. Additionally, we explore the potential of large vision-language models (LVLMs) in UOD, leveraging their multi-modal capabilities demonstrated in other domains. We also present case studies, including synthetic dataset generation using DALL-E 3 and fine-tuning Florence-2 LVLM for UOD. This review identifies three key insights: (i) Current UOD methods are insufficient to fully address challenges like image degradation and small object detection in dynamic underwater environments. (ii) Synthetic data generation using LVLMs shows potential for augmenting datasets but requires further refinement to ensure realism and applicability. (iii) LVLMs hold significant promise for UOD, but their real-time application remains under-explored, requiring further research on optimization techniques.
comment: 72 Pages, 11 Figures
Prompt-Driven Image Analysis with Multimodal Generative AI: Detection, Segmentation, Inpainting, and Interpretation
Prompt-driven image analysis converts a single natural-language instruction into multiple steps: locate, segment, edit, and describe. We present a practical case study of a unified pipeline that combines open-vocabulary detection, promptable segmentation, text-conditioned inpainting, and vision-language description into a single workflow. The system works end to end from a single prompt, retains intermediate artifacts for transparent debugging (such as detections, masks, overlays, edited images, and before and after composites), and provides the same functionality through an interactive UI and a scriptable CLI for consistent, repeatable runs. We highlight integration choices that reduce brittleness, including threshold adjustments, mask inspection with light morphology, and resource-aware defaults. In a small, single-word prompt segment, detection and segmentation produced usable masks in over 90% of cases with an accuracy above 85% based on our criteria. On a high-end GPU, inpainting makes up 60 to 75% of total runtime under typical guidance and sampling settings, which highlights the need for careful tuning. The study offers implementation-guided advice on thresholds, mask tightness, and diffusion parameters, and details version pinning, artifact logging, and seed control to support replay. Our contribution is a transparent, reliable pattern for assembling modern vision and multimodal models behind a single prompt, with clear guardrails and operational practices that improve reliability in object replacement, scene augmentation, and removal.
comment: 14 pages. Preprint
☆ Maximally Useful and Minimally Redundant: The Key to Self Supervised Learning for Imbalanced Data
The robustness of contrastive self-supervised learning (CSSL) for imbalanced datasets is largely unexplored. CSSL usually makes use of \emph{multi-view} assumptions to learn discriminatory features via similar and dissimilar data samples. CSSL works well on balanced datasets, but does not generalize well for imbalanced datasets. In a very recent paper, as part of future work, Yann LeCun pointed out that the self-supervised multiview framework can be extended to cases involving \emph{more than two views}. Taking a cue from this insight we propose a theoretical justification based on the concept of \emph{mutual information} to support the \emph{more than two views} objective and apply it to the problem of dataset imbalance in self-supervised learning. The proposed method helps extract representative characteristics of the tail classes by segregating between \emph{intra} and \emph{inter} discriminatory characteristics. We introduce a loss function that helps us to learn better representations by filtering out extreme features. Experimental evaluation on a variety of self-supervised frameworks (both contrastive and non-contrastive) also prove that the \emph{more than two view} objective works well for imbalanced datasets. We achieve a new state-of-the-art accuracy in self-supervised imbalanced dataset classification (2\% improvement in Cifar10-LT using Resnet-18, 5\% improvement in Cifar100-LT using Resnet-18, 3\% improvement in Imagenet-LT (1k) using Resnet-50).
☆ Adapting Vision-Language Models for Neutrino Event Classification in High-Energy Physics
Recent advances in Large Language Models (LLMs) have demonstrated their remarkable capacity to process and reason over structured and unstructured data modalities beyond natural language. In this work, we explore the applications of Vision Language Models (VLMs), specifically a fine-tuned variant of LLaMa 3.2, to the task of identifying neutrino interactions in pixelated detector data from high-energy physics (HEP) experiments. We benchmark this model against a state-of-the-art convolutional neural network (CNN) architecture, similar to those used in the NOvA and DUNE experiments, which have achieved high efficiency and purity in classifying electron and muon neutrino events. Our evaluation considers both the classification performance and interpretability of the model predictions. We find that VLMs can outperform CNNs, while also providing greater flexibility in integrating auxiliary textual or semantic information and offering more interpretable, reasoning-based predictions. This work highlights the potential of VLMs as a general-purpose backbone for physics event classification, due to their high performance, interpretability, and generalizability, which opens new avenues for integrating multimodal reasoning in experimental neutrino physics.
☆ First-order State Space Model for Lightweight Image Super-resolution ICASSP 2025
State space models (SSMs), particularly Mamba, have shown promise in NLP tasks and are increasingly applied to vision tasks. However, most Mamba-based vision models focus on network architecture and scan paths, with little attention to the SSM module. In order to explore the potential of SSMs, we modified the calculation process of SSM without increasing the number of parameters to improve the performance on lightweight super-resolution tasks. In this paper, we introduce the First-order State Space Model (FSSM) to improve the original Mamba module, enhancing performance by incorporating token correlations. We apply a first-order hold condition in SSMs, derive the new discretized form, and analyzed cumulative error. Extensive experimental results demonstrate that FSSM improves the performance of MambaIR on five benchmark datasets without additionally increasing the number of parameters, and surpasses current lightweight SR methods, achieving state-of-the-art results.
comment: Accept by ICASSP 2025 (Oral)
☆ Spherical Brownian Bridge Diffusion Models for Conditional Cortical Thickness Forecasting
Accurate forecasting of individualized, high-resolution cortical thickness (CTh) trajectories is essential for detecting subtle cortical changes, providing invaluable insights into neurodegenerative processes and facilitating earlier and more precise intervention strategies. However, CTh forecasting is a challenging task due to the intricate non-Euclidean geometry of the cerebral cortex and the need to integrate multi-modal data for subject-specific predictions. To address these challenges, we introduce the Spherical Brownian Bridge Diffusion Model (SBDM). Specifically, we propose a bidirectional conditional Brownian bridge diffusion process to forecast CTh trajectories at the vertex level of registered cortical surfaces. Our technical contribution includes a new denoising model, the conditional spherical U-Net (CoS-UNet), which combines spherical convolutions and dense cross-attention to integrate cortical surfaces and tabular conditions seamlessly. Compared to previous approaches, SBDM achieves significantly reduced prediction errors, as demonstrated by our experiments based on longitudinal datasets from the ADNI and OASIS. Additionally, we demonstrate SBDM's ability to generate individual factual and counterfactual CTh trajectories, offering a novel framework for exploring hypothetical scenarios of cortical development.
☆ Beyond Distribution Shifts: Adaptive Hyperspectral Image Classification at Test Time
Hyperspectral image (HSI) classification models are highly sensitive to distribution shifts caused by various real-world degradations such as noise, blur, compression, and atmospheric effects. To address this challenge, we propose HyperTTA, a unified framework designed to enhance model robustness under diverse degradation conditions. Specifically, we first construct a multi-degradation hyperspectral dataset that systematically simulates nine representative types of degradations, providing a comprehensive benchmark for robust classification evaluation. Based on this, we design a spectral-spatial transformer classifier (SSTC) enhanced with a multi-level receptive field mechanism and label smoothing regularization to jointly capture multi-scale spatial context and improve generalization. Furthermore, HyperTTA incorporates a lightweight test-time adaptation (TTA) strategy, the confidence-aware entropy-minimized LayerNorm adapter (CELA), which updates only the affine parameters of LayerNorm layers by minimizing prediction entropy on high-confidence unlabeled target samples. This confidence-aware adaptation prevents unreliable updates from noisy predictions, enabling robust and dynamic adaptation without access to source data or target annotations. Extensive experiments on two benchmark datasets demonstrate that HyperTTA outperforms existing baselines across a wide range of degradation scenarios, validating the effectiveness of both its classification backbone and the proposed TTA scheme. Code will be made available publicly.
☆ LD-ViCE: Latent Diffusion Model for Video Counterfactual Explanations
Video-based AI systems are increasingly adopted in safety-critical domains such as autonomous driving and healthcare. However, interpreting their decisions remains challenging due to the inherent spatiotemporal complexity of video data and the opacity of deep learning models. Existing explanation techniques often suffer from limited temporal coherence, insufficient robustness, and a lack of actionable causal insights. Current counterfactual explanation methods typically do not incorporate guidance from the target model, reducing semantic fidelity and practical utility. We introduce Latent Diffusion for Video Counterfactual Explanations (LD-ViCE), a novel framework designed to explain the behavior of video-based AI models. Compared to previous approaches, LD-ViCE reduces the computational costs of generating explanations by operating in latent space using a state-of-the-art diffusion model, while producing realistic and interpretable counterfactuals through an additional refinement step. Our experiments demonstrate the effectiveness of LD-ViCE across three diverse video datasets, including EchoNet-Dynamic (cardiac ultrasound), FERV39k (facial expression), and Something-Something V2 (action recognition). LD-ViCE outperforms a recent state-of-the-art method, achieving an increase in R2 score of up to 68% while reducing inference time by half. Qualitative analysis confirms that LD-ViCE generates semantically meaningful and temporally coherent explanations, offering valuable insights into the target model behavior. LD-ViCE represents a valuable step toward the trustworthy deployment of AI in safety-critical domains.
comment: 30 pages
☆ Sparse BEV Fusion with Self-View Consistency for Multi-View Detection and Tracking
Multi-View Multi-Object Tracking (MVMOT) is essential for applications such as surveillance, autonomous driving, and sports analytics. However, maintaining consistent object identities across multiple cameras remains challenging due to viewpoint changes, lighting variations, and occlusions, which often lead to tracking errors.Recent methods project features from multiple cameras into a unified Bird's-Eye-View (BEV) space to improve robustness against occlusion. However, this projection introduces feature distortion and non-uniform density caused by variations in object scale with distance. These issues degrade the quality of the fused representation and reduce detection and tracking accuracy.To address these problems, we propose SCFusion, a framework that combines three techniques to improve multi-view feature integration. First, it applies a sparse transformation to avoid unnatural interpolation during projection. Next, it performs density-aware weighting to adaptively fuse features based on spatial confidence and camera distance. Finally, it introduces a multi-view consistency loss that encourages each camera to learn discriminative features independently before fusion.Experiments show that SCFusion achieves state-of-the-art performance, reaching an IDF1 score of 95.9% on WildTrack and a MODP of 89.2% on MultiviewX, outperforming the baseline method TrackTacular. These results demonstrate that SCFusion effectively mitigates the limitations of conventional BEV projection and provides a robust and accurate solution for multi-view object detection and tracking.
☆ VRAE: Vertical Residual Autoencoder for License Plate Denoising and Deblurring
In real-world traffic surveillance, vehicle images captured under adverse weather, poor lighting, or high-speed motion often suffer from severe noise and blur. Such degradations significantly reduce the accuracy of license plate recognition systems, especially when the plate occupies only a small region within the full vehicle image. Restoring these degraded images a fast realtime manner is thus a crucial pre-processing step to enhance recognition performance. In this work, we propose a Vertical Residual Autoencoder (VRAE) architecture designed for the image enhancement task in traffic surveillance. The method incorporates an enhancement strategy that employs an auxiliary block, which injects input-aware features at each encoding stage to guide the representation learning process, enabling better general information preservation throughout the network compared to conventional autoencoders. Experiments on a vehicle image dataset with visible license plates demonstrate that our method consistently outperforms Autoencoder (AE), Generative Adversarial Network (GAN), and Flow-Based (FB) approaches. Compared with AE at the same depth, it improves PSNR by about 20\%, reduces NMSE by around 50\%, and enhances SSIM by 1\%, while requiring only a marginal increase of roughly 1\% in parameters.
☆ Semantic Causality-Aware Vision-Based 3D Occupancy Prediction ICCV 2025
Vision-based 3D semantic occupancy prediction is a critical task in 3D vision that integrates volumetric 3D reconstruction with semantic understanding. Existing methods, however, often rely on modular pipelines. These modules are typically optimized independently or use pre-configured inputs, leading to cascading errors. In this paper, we address this limitation by designing a novel causal loss that enables holistic, end-to-end supervision of the modular 2D-to-3D transformation pipeline. Grounded in the principle of 2D-to-3D semantic causality, this loss regulates the gradient flow from 3D voxel representations back to the 2D features. Consequently, it renders the entire pipeline differentiable, unifying the learning process and making previously non-trainable components fully learnable. Building on this principle, we propose the Semantic Causality-Aware 2D-to-3D Transformation, which comprises three components guided by our causal loss: Channel-Grouped Lifting for adaptive semantic mapping, Learnable Camera Offsets for enhanced robustness against camera perturbations, and Normalized Convolution for effective feature propagation. Extensive experiments demonstrate that our method achieves state-of-the-art performance on the Occ3D benchmark, demonstrating significant robustness to camera perturbations and improved 2D-to-3D semantic consistency.
comment: ICCV 2025
☆ Bitrate-Controlled Diffusion for Disentangling Motion and Content in Video
We propose a novel and general framework to disentangle video data into its dynamic motion and static content components. Our proposed method is a self-supervised pipeline with less assumptions and inductive biases than previous works: it utilizes a transformer-based architecture to jointly generate flexible implicit features for frame-wise motion and clip-wise content, and incorporates a low-bitrate vector quantization as an information bottleneck to promote disentanglement and form a meaningful discrete motion space. The bitrate-controlled latent motion and content are used as conditional inputs to a denoising diffusion model to facilitate self-supervised representation learning. We validate our disentangled representation learning framework on real-world talking head videos with motion transfer and auto-regressive motion generation tasks. Furthermore, we also show that our method can generalize to other types of video data, such as pixel sprites of 2D cartoon characters. Our work presents a new perspective on self-supervised learning of disentangled video representations, contributing to the broader field of video analysis and generation.
☆ InsFusion: Rethink Instance-level LiDAR-Camera Fusion for 3D Object Detection
Three-dimensional Object Detection from multi-view cameras and LiDAR is a crucial component for autonomous driving and smart transportation. However, in the process of basic feature extraction, perspective transformation, and feature fusion, noise and error will gradually accumulate. To address this issue, we propose InsFusion, which can extract proposals from both raw and fused features and utilizes these proposals to query the raw features, thereby mitigating the impact of accumulated errors. Additionally, by incorporating attention mechanisms applied to the raw features, it thereby mitigates the impact of accumulated errors. Experiments on the nuScenes dataset demonstrate that InsFusion is compatible with various advanced baseline methods and delivers new state-of-the-art performance for 3D object detection.
☆ Retrieval-Augmented VLMs for Multimodal Melanoma Diagnosis MICCAI
Accurate and early diagnosis of malignant melanoma is critical for improving patient outcomes. While convolutional neural networks (CNNs) have shown promise in dermoscopic image analysis, they often neglect clinical metadata and require extensive preprocessing. Vision-language models (VLMs) offer a multimodal alternative but struggle to capture clinical specificity when trained on general-domain data. To address this, we propose a retrieval-augmented VLM framework that incorporates semantically similar patient cases into the diagnostic prompt. Our method enables informed predictions without fine-tuning and significantly improves classification accuracy and error correction over conventional baselines. These results demonstrate that retrieval-augmented prompting provides a robust strategy for clinical decision support.
comment: Medical Image Computing and Computer-Assisted Intervention (MICCAI) ISIC Skin Image Analysis Workshop (MICCAI ISIC) 2025; 10 pages
☆ Good Deep Features to Track: Self-Supervised Feature Extraction and Tracking in Visual Odometry
Visual-based localization has made significant progress, yet its performance often drops in large-scale, outdoor, and long-term settings due to factors like lighting changes, dynamic scenes, and low-texture areas. These challenges degrade feature extraction and tracking, which are critical for accurate motion estimation. While learning-based methods such as SuperPoint and SuperGlue show improved feature coverage and robustness, they still face generalization issues with out-of-distribution data. We address this by enhancing deep feature extraction and tracking through self-supervised learning with task specific feedback. Our method promotes stable and informative features, improving generalization and reliability in challenging environments.
comment: This short paper has been accepted as a workshop paper at European Conference on Mobile Robots 2025
☆ Physics-Guided Rectified Flow for Low-light RAW Image Enhancement
Enhancing RAW images captured under low light conditions is a challenging task. Recent deep learning based RAW enhancement methods have shifted from using real paired data to relying on synthetic datasets. These synthetic datasets are typically generated by physically modeling sensor noise, but existing approaches often consider only additive noise, ignore multiplicative components, and rely on global calibration that overlooks pixel level manufacturing variations. As a result, such methods struggle to accurately reproduce real sensor noise. To address these limitations, this paper derives a noise model from the physical noise generation mechanisms that occur under low illumination and proposes a novel composite model that integrates both additive and multiplicative noise. To solve the model, we introduce a physics based per pixel noise simulation and calibration scheme that estimates and synthesizes noise for each individual pixel, thereby overcoming the restrictions of traditional global calibration and capturing spatial noise variations induced by microscopic CMOS manufacturing differences. Motivated by the strong performance of rectified flow methods in image generation and processing, we further combine the physics-based noise synthesis with a rectified flow generative framework and present PGRF a physics-guided rectified flow framework for low light image enhancement. PGRF leverages the ability of rectified flows to model complex data distributions and uses physical guidance to steer the generation toward the desired clean image. To validate the effectiveness of the proposed model, we established the LLID dataset, an indoor low light benchmark captured with the Sony A7S II camera. Experimental results demonstrate that the proposed framework achieves significant improvements in low light RAW image enhancement.
comment: 21pages,7figures
☆ Boosted Training of Lightweight Early Exits for Optimizing CNN Image Classification Inference
Real-time image classification on resource-constrained platforms demands inference methods that balance accuracy with strict latency and power budgets. Early-exit strategies address this need by attaching auxiliary classifiers to intermediate layers of convolutional neural networks (CNNs), allowing "easy" samples to terminate inference early. However, conventional training of early exits introduces a covariance shift: downstream branches are trained on full datasets, while at inference they process only the harder, non-exited samples. This mismatch limits efficiency--accuracy trade-offs in practice. We introduce the Boosted Training Scheme for Early Exits (BTS-EE), a sequential training approach that aligns branch training with inference-time data distributions. Each branch is trained and calibrated before the next, ensuring robustness under selective inference conditions. To further support embedded deployment, we propose a lightweight branch architecture based on 1D convolutions and a Class Precision Margin (CPM) calibration method that enables per-class threshold tuning for reliable exit decisions. Experiments on the CINIC-10 dataset with a ResNet18 backbone demonstrate that BTS-EE consistently outperforms non-boosted training across 64 configurations, achieving up to 45 percent reduction in computation with only 2 percent accuracy degradation. These results expand the design space for deploying CNNs in real-time image processing systems, offering practical efficiency gains for applications such as industrial inspection, embedded vision, and UAV-based monitoring.
comment: 9 pages, 4 figures
☆ SimCroP: Radiograph Representation Learning with Similarity-driven Cross-granularity Pre-training MICCAI 2025
Medical vision-language pre-training shows great potential in learning representative features from massive paired radiographs and reports. However, in computed tomography (CT) scans, the distribution of lesions which contain intricate structures is characterized by spatial sparsity. Besides, the complex and implicit relationships between different pathological descriptions in each sentence of the report and their corresponding sub-regions in radiographs pose additional challenges. In this paper, we propose a Similarity-Driven Cross-Granularity Pre-training (SimCroP) framework on chest CTs, which combines similarity-driven alignment and cross-granularity fusion to improve radiograph interpretation. We first leverage multi-modal masked modeling to optimize the encoder for understanding precise low-level semantics from radiographs. Then, similarity-driven alignment is designed to pre-train the encoder to adaptively select and align the correct patches corresponding to each sentence in reports. The cross-granularity fusion module integrates multimodal information across instance level and word-patch level, which helps the model better capture key pathology structures in sparse radiographs, resulting in improved performance for multi-scale downstream tasks. SimCroP is pre-trained on a large-scale paired CT-reports dataset and validated on image classification and segmentation tasks across five public datasets. Experimental results demonstrate that SimCroP outperforms both cutting-edge medical self-supervised learning methods and medical vision-language pre-training methods. Codes and models are available at https://github.com/ToniChopp/SimCroP.
comment: Accepted by MICCAI 2025
☆ An Open Benchmark Dataset for GeoAI Foundation Models for Oil Palm Mapping in Indonesia
Oil palm cultivation remains one of the leading causes of deforestation in Indonesia. To better track and address this challenge, detailed and reliable mapping is needed to support sustainability efforts and emerging regulatory frameworks. We present an open-access geospatial dataset of oil palm plantations and related land cover types in Indonesia, produced through expert labeling of high-resolution satellite imagery from 2020 to 2024. The dataset provides polygon-based, wall-to-wall annotations across a range of agro-ecological zones and includes a hierarchical typology that distinguishes oil palm planting stages as well as similar perennial crops. Quality was ensured through multi-interpreter consensus and field validation. The dataset was created using wall-to-wall digitization over large grids, making it suitable for training and benchmarking both conventional convolutional neural networks and newer geospatial foundation models. Released under a CC-BY license, it fills a key gap in training data for remote sensing and aims to improve the accuracy of land cover types mapping. By supporting transparent monitoring of oil palm expansion, the resource contributes to global deforestation reduction goals and follows FAIR data principles.
☆ Foundation Models for Autonomous Driving Perception: A Survey Through Core Capabilities IEEE
Foundation models are revolutionizing autonomous driving perception, transitioning the field from narrow, task-specific deep learning models to versatile, general-purpose architectures trained on vast, diverse datasets. This survey examines how these models address critical challenges in autonomous perception, including limitations in generalization, scalability, and robustness to distributional shifts. The survey introduces a novel taxonomy structured around four essential capabilities for robust performance in dynamic driving environments: generalized knowledge, spatial understanding, multi-sensor robustness, and temporal reasoning. For each capability, the survey elucidates its significance and comprehensively reviews cutting-edge approaches. Diverging from traditional method-centric surveys, our unique framework prioritizes conceptual design principles, providing a capability-driven guide for model development and clearer insights into foundational aspects. We conclude by discussing key challenges, particularly those associated with the integration of these capabilities into real-time, scalable systems, and broader deployment challenges related to computational demands and ensuring model reliability against issues like hallucinations and out-of-distribution failures. The survey also outlines crucial future research directions to enable the safe and effective deployment of foundation models in autonomous driving systems.
comment: 32 pages, 14 figures, accepted at IEEE Open Journal of Vehicular Technology (OJVT)
☆ Dual-Thresholding Heatmaps to Cluster Proposals for Weakly Supervised Object Detection IEEE
Weakly supervised object detection (WSOD) has attracted significant attention in recent years, as it does not require box-level annotations. State-of-the-art methods generally adopt a multi-module network, which employs WSDDN as the multiple instance detection network module and multiple instance refinement modules to refine performance. However, these approaches suffer from three key limitations. First, existing methods tend to generate pseudo GT boxes that either focus only on discriminative parts, failing to capture the whole object, or cover the entire object but fail to distinguish between adjacent intra-class instances. Second, the foundational WSDDN architecture lacks a crucial background class representation for each proposal and exhibits a large semantic gap between its branches. Third, prior methods discard ignored proposals during optimization, leading to slow convergence. To address these challenges, we first design a heatmap-guided proposal selector (HGPS) algorithm, which utilizes dual thresholds on heatmaps to pre-select proposals, enabling pseudo GT boxes to both capture the full object extent and distinguish between adjacent intra-class instances. We then present a weakly supervised basic detection network (WSBDN), which augments each proposal with a background class representation and uses heatmaps for pre-supervision to bridge the semantic gap between matrices. At last, we introduce a negative certainty supervision loss on ignored proposals to accelerate convergence. Extensive experiments on the challenging PASCAL VOC 2007 and 2012 datasets demonstrate the effectiveness of our framework. We achieve mAP/mCorLoc scores of 58.5%/81.8% on VOC 2007 and 55.6%/80.5% on VOC 2012, performing favorably against the state-of-the-art WSOD methods. Our code is publicly available at https://github.com/gyl2565309278/DTH-CP.
comment: This work has been submitted to the IEEE for possible publication
☆ Generalized Zero-Shot Learning for Point Cloud Segmentation with Evidence-Based Dynamic Calibration AAAI 2025
Generalized zero-shot semantic segmentation of 3D point clouds aims to classify each point into both seen and unseen classes. A significant challenge with these models is their tendency to make biased predictions, often favoring the classes encountered during training. This problem is more pronounced in 3D applications, where the scale of the training data is typically smaller than in image-based tasks. To address this problem, we propose a novel method called E3DPC-GZSL, which reduces overconfident predictions towards seen classes without relying on separate classifiers for seen and unseen data. E3DPC-GZSL tackles the overconfidence problem by integrating an evidence-based uncertainty estimator into a classifier. This estimator is then used to adjust prediction probabilities using a dynamic calibrated stacking factor that accounts for pointwise prediction uncertainty. In addition, E3DPC-GZSL introduces a novel training strategy that improves uncertainty estimation by refining the semantic space. This is achieved by merging learnable parameters with text-derived features, thereby improving model optimization for unseen data. Extensive experiments demonstrate that the proposed approach achieves state-of-the-art performance on generalized zero-shot semantic segmentation datasets, including ScanNet v2 and S3DIS.
comment: 20 pages, 12 figures, AAAI 2025
☆ Examining Vision Language Models through Multi-dimensional Experiments with Vision and Text Features
Recent research on Vision Language Models (VLMs) suggests that they rely on inherent biases learned during training to respond to questions about visual properties of an image. These biases are exacerbated when VLMs are asked highly specific questions that require focusing on specific areas of the image. For example, a VLM tasked with counting stars on a modified American flag (e.g., with more than 50 stars) will often disregard the visual evidence and fail to answer accurately. We build upon this research and develop a multi-dimensional examination framework to systematically determine which characteristics of the input data, including both the image and the accompanying prompt, lead to such differences in performance. Using open-source VLMs, we further examine how attention values fluctuate with varying input parameters (e.g., image size, number of objects in the image, background color, prompt specificity). This research aims to learn how the behavior of vision language models changes and to explore methods for characterizing such changes. Our results suggest, among other things, that even minor modifications in image characteristics and prompt specificity can lead to large changes in how a VLM formulates its answer and, subsequently, its overall performance.
☆ Hyperspectral Mamba for Hyperspectral Object Tracking
Hyperspectral object tracking holds great promise due to the rich spectral information and fine-grained material distinctions in hyperspectral images, which are beneficial in challenging scenarios. While existing hyperspectral trackers have made progress by either transforming hyperspectral data into false-color images or incorporating modality fusion strategies, they often fail to capture the intrinsic spectral information, temporal dependencies, and cross-depth interactions. To address these limitations, a new hyperspectral object tracking network equipped with Mamba (HyMamba), is proposed. It unifies spectral, cross-depth, and temporal modeling through state space modules (SSMs). The core of HyMamba lies in the Spectral State Integration (SSI) module, which enables progressive refinement and propagation of spectral features with cross-depth and temporal spectral information. Embedded within each SSI, the Hyperspectral Mamba (HSM) module is introduced to learn spatial and spectral information synchronously via three directional scanning SSMs. Based on SSI and HSM, HyMamba constructs joint features from false-color and hyperspectral inputs, and enhances them through interaction with original spectral features extracted from raw hyperspectral images. Extensive experiments conducted on seven benchmark datasets demonstrate that HyMamba achieves state-of-the-art performance. For instance, it achieves 73.0\% of the AUC score and 96.3\% of the DP@20 score on the HOTC2020 dataset. The code will be released at https://github.com/lgao001/HyMamba.
☆ EVDI++: Event-based Video Deblurring and Interpolation via Self-Supervised Learning
Frame-based cameras with extended exposure times often produce perceptible visual blurring and information loss between frames, significantly degrading video quality. To address this challenge, we introduce EVDI++, a unified self-supervised framework for Event-based Video Deblurring and Interpolation that leverages the high temporal resolution of event cameras to mitigate motion blur and enable intermediate frame prediction. Specifically, the Learnable Double Integral (LDI) network is designed to estimate the mapping relation between reference frames and sharp latent images. Then, we refine the coarse results and optimize overall training efficiency by introducing a learning-based division reconstruction module, enabling images to be converted with varying exposure intervals. We devise an adaptive parameter-free fusion strategy to obtain the final results, utilizing the confidence embedded in the LDI outputs of concurrent events. A self-supervised learning framework is proposed to enable network training with real-world blurry videos and events by exploring the mutual constraints among blurry frames, latent images, and event streams. We further construct a dataset with real-world blurry images and events using a DAVIS346c camera, demonstrating the generalizability of the proposed EVDI++ in real-world scenarios. Extensive experiments on both synthetic and real-world datasets show that our method achieves state-of-the-art performance in video deblurring and interpolation tasks.
comment: 18 pages
☆ Symmetry Interactive Transformer with CNN Framework for Diagnosis of Alzheimer's Disease Using Structural MRI
Structural magnetic resonance imaging (sMRI) combined with deep learning has achieved remarkable progress in the prediction and diagnosis of Alzheimer's disease (AD). Existing studies have used CNN and transformer to build a well-performing network, but most of them are based on pretraining or ignoring the asymmetrical character caused by brain disorders. We propose an end-to-end network for the detection of disease-based asymmetric induced by left and right brain atrophy which consist of 3D CNN Encoder and Symmetry Interactive Transformer (SIT). Following the inter-equal grid block fetch operation, the corresponding left and right hemisphere features are aligned and subsequently fed into the SIT for diagnostic analysis. SIT can help the model focus more on the regions of asymmetry caused by structural changes, thus improving diagnostic performance. We evaluated our method based on the ADNI dataset, and the results show that the method achieves better diagnostic accuracy (92.5\%) compared to several CNN methods and CNNs combined with a general transformer. The visualization results show that our network pays more attention in regions of brain atrophy, especially for the asymmetric pathological characteristics induced by AD, demonstrating the interpretability and effectiveness of the method.
☆ RepViT-CXR: A Channel Replication Strategy for Vision Transformers in Chest X-ray Tuberculosis and Pneumonia Classification
Chest X-ray (CXR) imaging remains one of the most widely used diagnostic tools for detecting pulmonary diseases such as tuberculosis (TB) and pneumonia. Recent advances in deep learning, particularly Vision Transformers (ViTs), have shown strong potential for automated medical image analysis. However, most ViT architectures are pretrained on natural images and require three-channel inputs, while CXR scans are inherently grayscale. To address this gap, we propose RepViT-CXR, a channel replication strategy that adapts single-channel CXR images into a ViT-compatible format without introducing additional information loss. We evaluate RepViT-CXR on three benchmark datasets. On the TB-CXR dataset,our method achieved an accuracy of 99.9% and an AUC of 99.9%, surpassing prior state-of-the-art methods such as Topo-CXR (99.3% accuracy, 99.8% AUC). For the Pediatric Pneumonia dataset, RepViT-CXR obtained 99.0% accuracy, with 99.2% recall, 99.3% precision, and an AUC of 99.0%, outperforming strong baselines including DCNN and VGG16. On the Shenzhen TB dataset, our approach achieved 91.1% accuracy and an AUC of 91.2%, marking a performance improvement over previously reported CNN-based methods. These results demonstrate that a simple yet effective channel replication strategy allows ViTs to fully leverage their representational power on grayscale medical imaging tasks. RepViT-CXR establishes a new state of the art for TB and pneumonia detection from chest X-rays, showing strong potential for deployment in real-world clinical screening systems.
comment: 10 pages, 5 figures
☆ GTA-Crime: A Synthetic Dataset and Generation Framework for Fatal Violence Detection with Adversarial Snippet-Level Domain Adaptation
Recent advancements in video anomaly detection (VAD) have enabled identification of various criminal activities in surveillance videos, but detecting fatal incidents such as shootings and stabbings remains difficult due to their rarity and ethical issues in data collection. Recognizing this limitation, we introduce GTA-Crime, a fatal video anomaly dataset and generation framework using Grand Theft Auto 5 (GTA5). Our dataset contains fatal situations such as shootings and stabbings, captured from CCTV multiview perspectives under diverse conditions including action types, weather, time of day, and viewpoints. To address the rarity of such scenarios, we also release a framework for generating these types of videos. Additionally, we propose a snippet-level domain adaptation strategy using Wasserstein adversarial training to bridge the gap between synthetic GTA-Crime features and real-world features like UCF-Crime. Experimental results validate our GTA-Crime dataset and demonstrate that incorporating GTA-Crime with our domain adaptation strategy consistently enhances real world fatal violence detection accuracy. Our dataset and the data generation framework are publicly available at https://github.com/ta-ho/GTA-Crime.
☆ Sparse Transformer for Ultra-sparse Sampled Video Compressive Sensing
Digital cameras consume ~0.1 microjoule per pixel to capture and encode video, resulting in a power usage of ~20W for a 4K sensor operating at 30 fps. Imagining gigapixel cameras operating at 100-1000 fps, the current processing model is unsustainable. To address this, physical layer compressive measurement has been proposed to reduce power consumption per pixel by 10-100X. Video Snapshot Compressive Imaging (SCI) introduces high frequency modulation in the optical sensor layer to increase effective frame rate. A commonly used sampling strategy of video SCI is Random Sampling (RS) where each mask element value is randomly set to be 0 or 1. Similarly, image inpainting (I2P) has demonstrated that images can be recovered from a fraction of the image pixels. Inspired by I2P, we propose Ultra-Sparse Sampling (USS) regime, where at each spatial location, only one sub-frame is set to 1 and all others are set to 0. We then build a Digital Micro-mirror Device (DMD) encoding system to verify the effectiveness of our USS strategy. Ideally, we can decompose the USS measurement into sub-measurements for which we can utilize I2P algorithms to recover high-speed frames. However, due to the mismatch between the DMD and CCD, the USS measurement cannot be perfectly decomposed. To this end, we propose BSTFormer, a sparse TransFormer that utilizes local Block attention, global Sparse attention, and global Temporal attention to exploit the sparsity of the USS measurement. Extensive results on both simulated and real-world data show that our method significantly outperforms all previous state-of-the-art algorithms. Additionally, an essential advantage of the USS strategy is its higher dynamic range than that of the RS strategy. Finally, from the application perspective, the USS strategy is a good choice to implement a complete video SCI system on chip due to its fixed exposure time.
☆ Lightweight Deep Unfolding Networks with Enhanced Robustness for Infrared Small Target Detection
Infrared small target detection (ISTD) is one of the key techniques in image processing. Although deep unfolding networks (DUNs) have demonstrated promising performance in ISTD due to their model interpretability and data adaptability, existing methods still face significant challenges in parameter lightweightness and noise robustness. In this regard, we propose a highly lightweight framework based on robust principal component analysis (RPCA) called L-RPCANet. Technically, a hierarchical bottleneck structure is constructed to reduce and increase the channel dimension in the single-channel input infrared image to achieve channel-wise feature refinement, with bottleneck layers designed in each module to extract features. This reduces the number of channels in feature extraction and improves the lightweightness of network parameters. Furthermore, a noise reduction module is embedded to enhance the robustness against complex noise. In addition, squeeze-and-excitation networks (SENets) are leveraged as a channel attention mechanism to focus on the varying importance of different features across channels, thereby achieving excellent performance while maintaining both lightweightness and robustness. Extensive experiments on the ISTD datasets validate the superiority of our proposed method compared with state-of-the-art methods covering RPCANet, DRPCANet, and RPCANet++. The code will be available at https://github.com/xianchaoxiu/L-RPCANet.
☆ Computational Imaging for Enhanced Computer Vision
This paper presents a comprehensive survey of computational imaging (CI) techniques and their transformative impact on computer vision (CV) applications. Conventional imaging methods often fail to deliver high-fidelity visual data in challenging conditions, such as low light, motion blur, or high dynamic range scenes, thereby limiting the performance of state-of-the-art CV systems. Computational imaging techniques, including light field imaging, high dynamic range (HDR) imaging, deblurring, high-speed imaging, and glare mitigation, address these limitations by enhancing image acquisition and reconstruction processes. This survey systematically explores the synergies between CI techniques and core CV tasks, including object detection, depth estimation, optical flow, face recognition, and keypoint detection. By analyzing the relationships between CI methods and their practical contributions to CV applications, this work highlights emerging opportunities, challenges, and future research directions. We emphasize the potential for task-specific, adaptive imaging pipelines that improve robustness, accuracy, and efficiency in real-world scenarios, such as autonomous navigation, surveillance, augmented reality, and robotics.
comment: International Journal of Engineering Research & Technology, 2025
☆ Integrating Anatomical Priors into a Causal Diffusion Model
3D brain MRI studies often examine subtle morphometric differences between cohorts that are hard to detect visually. Given the high cost of MRI acquisition, these studies could greatly benefit from image syntheses, particularly counterfactual image generation, as seen in other domains, such as computer vision. However, counterfactual models struggle to produce anatomically plausible MRIs due to the lack of explicit inductive biases to preserve fine-grained anatomical details. This shortcoming arises from the training of the models aiming to optimize for the overall appearance of the images (e.g., via cross-entropy) rather than preserving subtle, yet medically relevant, local variations across subjects. To preserve subtle variations, we propose to explicitly integrate anatomical constraints on a voxel-level as prior into a generative diffusion framework. Called Probabilistic Causal Graph Model (PCGM), the approach captures anatomical constraints via a probabilistic graph module and translates those constraints into spatial binary masks of regions where subtle variations occur. The masks (encoded by a 3D extension of ControlNet) constrain a novel counterfactual denoising UNet, whose encodings are then transferred into high-quality brain MRIs via our 3D diffusion decoder. Extensive experiments on multiple datasets demonstrate that PCGM generates structural brain MRIs of higher quality than several baseline approaches. Furthermore, we show for the first time that brain measurements extracted from counterfactuals (generated by PCGM) replicate the subtle effects of a disease on cortical brain regions previously reported in the neuroscience literature. This achievement is an important milestone in the use of synthetic MRIs in studies investigating subtle morphological differences.
comment: 15 pages, 4 figures
☆ VoxelFormer: Parameter-Efficient Multi-Subject Visual Decoding from fMRI
Recent advances in fMRI-based visual decoding have enabled compelling reconstructions of perceived images. However, most approaches rely on subject-specific training, limiting scalability and practical deployment. We introduce \textbf{VoxelFormer}, a lightweight transformer architecture that enables multi-subject training for visual decoding from fMRI. VoxelFormer integrates a Token Merging Transformer (ToMer) for efficient voxel compression and a query-driven Q-Former that produces fixed-size neural representations aligned with the CLIP image embedding space. Evaluated on the 7T Natural Scenes Dataset, VoxelFormer achieves competitive retrieval performance on subjects included during training with significantly fewer parameters than existing methods. These results highlight token merging and query-based transformers as promising strategies for parameter-efficient neural decoding.
☆ COCO-Urdu: A Large-Scale Urdu Image-Caption Dataset with Multimodal Quality Estimation
Urdu, spoken by over 250 million people, remains critically under-served in multimodal and vision-language research. The absence of large-scale, high-quality datasets has limited the development of Urdu-capable systems and reinforced biases in multilingual vision-language models trained primarily on high-resource languages. To address this gap, we present COCO-Urdu, a large-scale image-caption dataset derived from MS COCO, containing 59,000 images and 319,000 Urdu captions selected through stratified sampling to preserve the original distribution. Captions were translated using SeamlessM4T v2 and validated with a hybrid multimodal quality estimation framework that integrates COMET-Kiwi for translation quality, CLIP-based similarity for visual grounding, and BERTScore with back-translation for semantic consistency; low-scoring captions were iteratively refined using open-source large language models. We further benchmark COCO-Urdu on BLEU, SacreBLEU, and chrF, reporting consistently strong results. To the best of our knowledge, COCO-Urdu is the largest publicly available Urdu captioning dataset. By releasing both the dataset and the quality estimation pipeline, we aim to reduce language bias in multimodal research and establish a foundation for inclusive vision-language systems.
comment: 17 pages, 3 figures, 3 tables. Dataset available at https://huggingface.co/datasets/umairhassan02/urdu-translated-coco-captions-subset. Scripts and notebooks to reproduce results available at https://github.com/umair-hassan2/COCO-Urdu
☆ Can Vision-Language Models Solve Visual Math Equations? EMNLP2025
Despite strong performance in visual understanding and language-based reasoning, Vision-Language Models (VLMs) struggle with tasks requiring integrated perception and symbolic computation. We study this limitation through visual equation solving, where mathematical equations are embedded in images, variables are represented by object icons, and coefficients must be inferred by counting. While VLMs perform well on textual equations, they fail on visually grounded counterparts. To understand this gap, we decompose the task into coefficient counting and variable recognition, and find that counting is the primary bottleneck, even when recognition is accurate. We also observe that composing recognition and reasoning introduces additional errors, highlighting challenges in multi-step visual reasoning. Finally, as equation complexity increases, symbolic reasoning itself becomes a limiting factor. These findings reveal key weaknesses in current VLMs and point toward future improvements in visually grounded mathematical reasoning.
comment: Monjoy Narayan Choudhury and Junling Wang contributed equally to this work. Accepted at EMNLP2025 main. Code and datasets are open-sourced with links in the paper
☆ E-MLNet: Enhanced Mutual Learning for Universal Domain Adaptation with Sample-Specific Weighting
Universal Domain Adaptation (UniDA) seeks to transfer knowledge from a labeled source to an unlabeled target domain without assuming any relationship between their label sets, requiring models to classify known samples while rejecting unknown ones. Advanced methods like Mutual Learning Network (MLNet) use a bank of one-vs-all classifiers adapted via Open-set Entropy Minimization (OEM). However, this strategy treats all classifiers equally, diluting the learning signal. We propose the Enhanced Mutual Learning Network (E-MLNet), which integrates a dynamic weighting strategy to OEM. By leveraging the closed-set classifier's predictions, E-MLNet focuses adaptation on the most relevant class boundaries for each target sample, sharpening the distinction between known and unknown classes. We conduct extensive experiments on four challenging benchmarks: Office-31, Office-Home, VisDA-2017, and ImageCLEF. The results demonstrate that E-MLNet achieves the highest average H-scores on VisDA and ImageCLEF and exhibits superior robustness over its predecessor. E-MLNet outperforms the strong MLNet baseline in the majority of individual adaptation tasks -- 22 out of 31 in the challenging Open-Partial DA setting and 19 out of 31 in the Open-Set DA setting -- confirming the benefits of our focused adaptation strategy.
☆ Implicit Neural Representations of Intramyocardial Motion and Strain MICCAI
Automatic quantification of intramyocardial motion and strain from tagging MRI remains an important but challenging task. We propose a method using implicit neural representations (INRs), conditioned on learned latent codes, to predict continuous left ventricular (LV) displacement -- without requiring inference-time optimisation. Evaluated on 452 UK Biobank test cases, our method achieved the best tracking accuracy (2.14 mm RMSE) and the lowest combined error in global circumferential (2.86%) and radial (6.42%) strain compared to three deep learning baselines. In addition, our method is $\sim$380$\times$ faster than the most accurate baseline. These results highlight the suitability of INR-based models for accurate and scalable analysis of myocardial strain in large CMR datasets.
comment: STACOM 2025 @ MICCAI
☆ UltrON: Ultrasound Occupancy Networks MICCAI 2025
In free-hand ultrasound imaging, sonographers rely on expertise to mentally integrate partial 2D views into 3D anatomical shapes. Shape reconstruction can assist clinicians in this process. Central to this task is the choice of shape representation, as it determines how accurately and efficiently the structure can be visualized, analyzed, and interpreted. Implicit representations, such as SDF and occupancy function, offer a powerful alternative to traditional voxel- or mesh-based methods by modeling continuous, smooth surfaces with compact storage, avoiding explicit discretization. Recent studies demonstrate that SDF can be effectively optimized using annotations derived from segmented B-mode ultrasound images. Yet, these approaches hinge on precise annotations, overlooking the rich acoustic information embedded in B-mode intensity. Moreover, implicit representation approaches struggle with the ultrasound's view-dependent nature and acoustic shadowing artifacts, which impair reconstruction. To address the problems resulting from occlusions and annotation dependency, we propose an occupancy-based representation and introduce \gls{UltrON} that leverages acoustic features to improve geometric consistency in weakly-supervised optimization regime. We show that these features can be obtained from B-mode images without additional annotation cost. Moreover, we propose a novel loss function that compensates for view-dependency in the B-mode images and facilitates occupancy optimization from multiview ultrasound. By incorporating acoustic properties, \gls{UltrON} generalizes to shapes of the same anatomy. We show that \gls{UltrON} mitigates the limitations of occlusions and sparse labeling and paves the way for more accurate 3D reconstruction. Code and dataset will be available at https://github.com/magdalena-wysocki/ultron.
comment: MICCAI 2025
☆ iMatcher: Improve matching in point cloud registration via local-to-global geometric consistency learning
This paper presents iMatcher, a fully differentiable framework for feature matching in point cloud registration. The proposed method leverages learned features to predict a geometrically consistent confidence matrix, incorporating both local and global consistency. First, a local graph embedding module leads to an initialization of the score matrix. A subsequent repositioning step refines this matrix by considering bilateral source-to-target and target-to-source matching via nearest neighbor search in 3D space. The paired point features are then stacked together to be refined through global geometric consistency learning to predict a point-wise matching probability. Extensive experiments on real-world outdoor (KITTI, KITTI-360) and indoor (3DMatch) datasets, as well as on 6-DoF pose estimation (TUD-L) and partial-to-partial matching (MVP-RG), demonstrate that iMatcher significantly improves rigid registration performance. The method achieves state-of-the-art inlier ratios, scoring 95% - 97% on KITTI, 94% - 97% on KITTI-360, and up to 81.1% on 3DMatch, highlighting its robustness across diverse settings.
☆ Ultrafast Deep Learning-Based Scatter Estimation in Cone-Beam Computed Tomography
Purpose: Scatter artifacts drastically degrade the image quality of cone-beam computed tomography (CBCT) scans. Although deep learning-based methods show promise in estimating scatter from CBCT measurements, their deployment in mobile CBCT systems or edge devices is still limited due to the large memory footprint of the networks. This study addresses the issue by applying networks at varying resolutions and suggesting an optimal one, based on speed and accuracy. Methods: First, the reconstruction error in down-up sampling of CBCT scatter signal was examined at six resolutions by comparing four interpolation methods. Next, a recent state-of-the-art method was trained across five image resolutions and evaluated for the reductions in floating-point operations (FLOPs), inference times, and GPU memory requirements. Results: Reducing the input size and network parameters achieved a 78-fold reduction in FLOPs compared to the baseline method, while maintaining comarable performance in terms of mean-absolute-percentage-error (MAPE) and mean-square-error (MSE). Specifically, the MAPE decreased to 3.85% compared to 4.42%, and the MSE decreased to 1.34 \times 10^{-2} compared to 2.01 \times 10^{-2}. Inference time and GPU memory usage were reduced by factors of 16 and 12, respectively. Further experiments comparing scatter-corrected reconstructions on a large, simulated dataset and real CBCT scans from water and Sedentex CT phantoms clearly demonstrated the robustness of our method. Conclusion: This study highlights the underappreciated role of downsampling in deep learning-based scatter estimation. The substantial reduction in FLOPs and GPU memory requirements achieved by our method enables scatter correction in resource-constrained environments, such as mobile CBCT and edge devices.
☆ Value bounds and Convergence Analysis for Averages of LRP attributions
We analyze numerical properties of Layer-wise relevance propagation (LRP)-type attribution methods by representing them as a product of modified gradient matrices. This representation creates an analogy to matrix multiplications of Jacobi-matrices which arise from the chain rule of differentiation. In order to shed light on the distribution of attribution values, we derive upper bounds for singular values. Furthermore we derive component-wise bounds for attribution map values. As a main result, we apply these component-wise bounds to obtain multiplicative constants. These constants govern the convergence of empirical means of attributions to expectations of attribution maps. This finding has important implications for scenarios where multiple non-geometric data augmentations are applied to individual test samples, as well as for Smoothgrad-type attribution methods. In particular, our analysis reveals that the constants for LRP-beta remain independent of weight norms, a significant distinction from both gradient-based methods and LRP-epsilon.
comment: 37 pages
☆ CoSwin: Convolution Enhanced Hierarchical Shifted Window Attention For Small-Scale Vision
Vision Transformers (ViTs) have achieved impressive results in computer vision by leveraging self-attention to model long-range dependencies. However, their emphasis on global context often comes at the expense of local feature extraction in small datasets, particularly due to the lack of key inductive biases such as locality and translation equivariance. To mitigate this, we propose CoSwin, a novel feature-fusion architecture that augments the hierarchical shifted window attention with localized convolutional feature learning. Specifically, CoSwin integrates a learnable local feature enhancement module into each attention block, enabling the model to simultaneously capture fine-grained spatial details and global semantic structure. We evaluate CoSwin on multiple image classification benchmarks including CIFAR-10, CIFAR-100, MNIST, SVHN, and Tiny ImageNet. Our experimental results show consistent performance gains over state-of-the-art convolutional and transformer-based models. Notably, CoSwin achieves improvements of 2.17% on CIFAR-10, 4.92% on CIFAR-100, 0.10% on MNIST, 0.26% on SVHN, and 4.47% on Tiny ImageNet over the baseline Swin Transformer. These improvements underscore the effectiveness of local-global feature fusion in enhancing the generalization and robustness of transformers for small-scale vision. Code and pretrained weights available at https://github.com/puskal-khadka/coswin
☆ An U-Net-Based Deep Neural Network for Cloud Shadow and Sun-Glint Correction of Unmanned Aerial System (UAS) Imagery
The use of unmanned aerial systems (UASs) has increased tremendously in the current decade. They have significantly advanced remote sensing with the capability to deploy and image the terrain as per required spatial, spectral, temporal, and radiometric resolutions for various remote sensing applications. One of the major advantages of UAS imagery is that images can be acquired in cloudy conditions by flying the UAS under the clouds. The limitation to the technology is that the imagery is often sullied by cloud shadows. Images taken over water are additionally affected by sun glint. These are two pose serious issues for estimating water quality parameters from the UAS images. This study proposes a novel machine learning approach first to identify and extract regions with cloud shadows and sun glint and separate such regions from non-obstructed clear sky regions and sun-glint unaffected regions. The data was extracted from the images at pixel level to train an U-Net based deep learning model and best settings for model training was identified based on the various evaluation metrics from test cases. Using this evaluation, a high-quality image correction model was determined, which was used to recover the cloud shadow and sun glint areas in the images.
☆ CameraVDP: Perceptual Display Assessment with Uncertainty Estimation via Camera and Visual Difference Prediction SIGGRAPH
Accurate measurement of images produced by electronic displays is critical for the evaluation of both traditional and computational displays. Traditional display measurement methods based on sparse radiometric sampling and fitting a model are inadequate for capturing spatially varying display artifacts, as they fail to capture high-frequency and pixel-level distortions. While cameras offer sufficient spatial resolution, they introduce optical, sampling, and photometric distortions. Furthermore, the physical measurement must be combined with a model of a visual system to assess whether the distortions are going to be visible. To enable perceptual assessment of displays, we propose a combination of a camera-based reconstruction pipeline with a visual difference predictor, which account for both the inaccuracy of camera measurements and visual difference prediction. The reconstruction pipeline combines HDR image stacking, MTF inversion, vignetting correction, geometric undistortion, homography transformation, and color correction, enabling cameras to function as precise display measurement instruments. By incorporating a Visual Difference Predictor (VDP), our system models the visibility of various stimuli under different viewing conditions for the human visual system. We validate the proposed CameraVDP framework through three applications: defective pixel detection, color fringing awareness, and display non-uniformity evaluation. Our uncertainty analysis framework enables the estimation of the theoretical upper bound for defect pixel detection performance and provides confidence intervals for VDP quality scores.
comment: Accepted by SIGGRAPH Asia 2025
☆ Discovering Divergent Representations between Text-to-Image Models ICCV 2025
In this paper, we investigate when and how visual representations learned by two different generative models diverge. Given two text-to-image models, our goal is to discover visual attributes that appear in images generated by one model but not the other, along with the types of prompts that trigger these attribute differences. For example, "flames" might appear in one model's outputs when given prompts expressing strong emotions, while the other model does not produce this attribute given the same prompts. We introduce CompCon (Comparing Concepts), an evolutionary search algorithm that discovers visual attributes more prevalent in one model's output than the other, and uncovers the prompt concepts linked to these visual differences. To evaluate CompCon's ability to find diverging representations, we create an automated data generation pipeline to produce ID2, a dataset of 60 input-dependent differences, and compare our approach to several LLM- and VLM-powered baselines. Finally, we use CompCon to compare popular text-to-image models, finding divergent representations such as how PixArt depicts prompts mentioning loneliness with wet streets and Stable Diffusion 3.5 depicts African American people in media professions. Code at: https://github.com/adobe-research/CompCon
comment: Accepted to ICCV 2025. Code available at https://github.com/adobe-research/CompCon
☆ Live(r) Die: Predicting Survival in Colorectal Liver Metastasis
Colorectal cancer frequently metastasizes to the liver, significantly reducing long-term survival. While surgical resection is the only potentially curative treatment for colorectal liver metastasis (CRLM), patient outcomes vary widely depending on tumor characteristics along with clinical and genomic factors. Current prognostic models, often based on limited clinical or molecular features, lack sufficient predictive power, especially in multifocal CRLM cases. We present a fully automated framework for surgical outcome prediction from pre- and post-contrast MRI acquired before surgery. Our framework consists of a segmentation pipeline and a radiomics pipeline. The segmentation pipeline learns to segment the liver, tumors, and spleen from partially annotated data by leveraging promptable foundation models to complete missing labels. Also, we propose SAMONAI, a novel zero-shot 3D prompt propagation algorithm that leverages the Segment Anything Model to segment 3D regions of interest from a single point prompt, significantly improving our segmentation pipeline's accuracy and efficiency. The predicted pre- and post-contrast segmentations are then fed into our radiomics pipeline, which extracts features from each tumor and predicts survival using SurvAMINN, a novel autoencoder-based multiple instance neural network for survival analysis. SurvAMINN jointly learns dimensionality reduction and hazard prediction from right-censored survival data, focusing on the most aggressive tumors. Extensive evaluation on an institutional dataset comprising 227 patients demonstrates that our framework surpasses existing clinical and genomic biomarkers, delivering a C-index improvement exceeding 10%. Our results demonstrate the potential of integrating automated segmentation algorithms and radiomics-based survival analysis to deliver accurate, annotation-efficient, and interpretable outcome prediction in CRLM.
comment: Thesis at Erasmus Mundus Joint Master's Degree in Medical Imaging and Applications
☆ SFD-Mamba2Net: Strcture-Guided Frequency-Enhanced Dual-Stream Mamba2 Network for Coronary Artery Segmentation
Background: Coronary Artery Disease (CAD) is one of the leading causes of death worldwide. Invasive Coronary Angiography (ICA), regarded as the gold standard for CAD diagnosis, necessitates precise vessel segmentation and stenosis detection. However, ICA images are typically characterized by low contrast, high noise levels, and complex, fine-grained vascular structures, which pose significant challenges to the clinical adoption of existing segmentation and detection methods. Objective: This study aims to improve the accuracy of coronary artery segmentation and stenosis detection in ICA images by integrating multi-scale structural priors, state-space-based long-range dependency modeling, and frequency-domain detail enhancement strategies. Methods: We propose SFD-Mamba2Net, an end-to-end framework tailored for ICA-based vascular segmentation and stenosis detection. In the encoder, a Curvature-Aware Structural Enhancement (CASE) module is embedded to leverage multi-scale responses for highlighting slender tubular vascular structures, suppressing background interference, and directing attention toward vascular regions. In the decoder, we introduce a Progressive High-Frequency Perception (PHFP) module that employs multi-level wavelet decomposition to progressively refine high-frequency details while integrating low-frequency global structures. Results and Conclusions: SFD-Mamba2Net consistently outperformed state-of-the-art methods across eight segmentation metrics, and achieved the highest true positive rate and positive predictive value in stenosis detection.
☆ Similarity-based Outlier Detection for Noisy Object Re-Identification Using Beta Mixtures
Object re-identification (Re-ID) methods are highly sensitive to label noise, which typically leads to significant performance degradation. We address this challenge by reframing Re-ID as a supervised image similarity task and adopting a Siamese network architecture trained to capture discriminative pairwise relationships. Central to our approach is a novel statistical outlier detection (OD) framework, termed Beta-SOD (Beta mixture Similarity-based Outlier Detection), which models the distribution of cosine similarities between embedding pairs using a two-component Beta distribution mixture model. We establish a novel identifiability result for mixtures of two Beta distributions, ensuring that our learning task is well-posed.The proposed OD step complements the Re-ID architecture combining binary cross-entropy, contrastive, and cosine embedding losses that jointly optimize feature-level similarity learning.We demonstrate the effectiveness of Beta-SOD in de-noising and Re-ID tasks for person Re-ID, on CUHK03 and Market-1501 datasets, and vehicle Re-ID, on VeRi-776 dataset. Our method shows superior performance compared to the state-of-the-art methods across various noise levels (10-30\%), demonstrating both robustness and broad applicability in noisy Re-ID scenarios. The implementation of Beta-SOD is available at: https://github.com/waqar3411/Beta-SOD
PromptGuard: An Orchestrated Prompting Framework for Principled Synthetic Text Generation for Vulnerable Populations using LLMs with Enhanced Safety, Fairness, and Controllability
The proliferation of Large Language Models (LLMs) in real-world applications poses unprecedented risks of generating harmful, biased, or misleading information to vulnerable populations including LGBTQ+ individuals, single parents, and marginalized communities. While existing safety approaches rely on post-hoc filtering or generic alignment techniques, they fail to proactively prevent harmful outputs at the generation source. This paper introduces PromptGuard, a novel modular prompting framework with our breakthrough contribution: VulnGuard Prompt, a hybrid technique that prevents harmful information generation using real-world data-driven contrastive learning. VulnGuard integrates few-shot examples from curated GitHub repositories, ethical chain-of-thought reasoning, and adaptive role-prompting to create population-specific protective barriers. Our framework employs theoretical multi-objective optimization with formal proofs demonstrating 25-30% analytical harm reduction through entropy bounds and Pareto optimality. PromptGuard orchestrates six core modules: Input Classification, VulnGuard Prompting, Ethical Principles Integration, External Tool Interaction, Output Validation, and User-System Interaction, creating an intelligent expert system for real-time harm prevention. We provide comprehensive mathematical formalization including convergence proofs, vulnerability analysis using information theory, and theoretical validation framework using GitHub-sourced datasets, establishing mathematical foundations for systematic empirical research.
☆ Diffusion-Based Action Recognition Generalizes to Untrained Domains
Humans can recognize the same actions despite large context and viewpoint variations, such as differences between species (walking in spiders vs. horses), viewpoints (egocentric vs. third-person), and contexts (real life vs movies). Current deep learning models struggle with such generalization. We propose using features generated by a Vision Diffusion Model (VDM), aggregated via a transformer, to achieve human-like action recognition across these challenging conditions. We find that generalization is enhanced by the use of a model conditioned on earlier timesteps of the diffusion process to highlight semantic information over pixel level details in the extracted features. We experimentally explore the generalization properties of our approach in classifying actions across animal species, across different viewing angles, and different recording contexts. Our model sets a new state-of-the-art across all three generalization benchmarks, bringing machine action recognition closer to human-like robustness. Project page: $\href{https://www.vision.caltech.edu/actiondiff/}{\texttt{vision.caltech.edu/actiondiff}}$ Code: $\href{https://github.com/frankyaoxiao/ActionDiff}{\texttt{github.com/frankyaoxiao/ActionDiff}}$
☆ Recurrence Meets Transformers for Universal Multimodal Retrieval
With the rapid advancement of multimodal retrieval and its application in LLMs and multimodal LLMs, increasingly complex retrieval tasks have emerged. Existing methods predominantly rely on task-specific fine-tuning of vision-language models and are limited to single-modality queries or documents. In this paper, we propose ReT-2, a unified retrieval model that supports multimodal queries, composed of both images and text, and searches across multimodal document collections where text and images coexist. ReT-2 leverages multi-layer representations and a recurrent Transformer architecture with LSTM-inspired gating mechanisms to dynamically integrate information across layers and modalities, capturing fine-grained visual and textual details. We evaluate ReT-2 on the challenging M2KR and M-BEIR benchmarks across different retrieval configurations. Results demonstrate that ReT-2 consistently achieves state-of-the-art performance across diverse settings, while offering faster inference and reduced memory usage compared to prior approaches. When integrated into retrieval-augmented generation pipelines, ReT-2 also improves downstream performance on Encyclopedic-VQA and InfoSeek datasets. Our source code and trained models are publicly available at: https://github.com/aimagelab/ReT-2
♻ ☆ CamC2V: Context-aware Controllable Video Generation
Recently, image-to-video (I2V) diffusion models have demonstrated impressive scene understanding and generative quality, incorporating image conditions to guide generation. However, these models primarily animate static images without extending beyond their provided context. Introducing additional constraints, such as camera trajectories, can enhance diversity but often degrade visual quality, limiting their applicability for tasks requiring faithful scene representation. We propose CamC2V, a context-to-video (C2V) model that integrates multiple image conditions as context with 3D constraints alongside camera control to enrich both global semantics and fine-grained visual details. This enables more coherent and context-aware video generation. Moreover, we motivate the necessity of temporal awareness for an effective context representation. Our comprehensive study on the RealEstate10K dataset demonstrates improvements in visual quality and camera controllability. We will publish our code upon acceptance.
♻ ☆ Reangle-A-Video: 4D Video Generation as Video-to-Video Translation ICCV 2025
We introduce Reangle-A-Video, a unified framework for generating synchronized multi-view videos from a single input video. Unlike mainstream approaches that train multi-view video diffusion models on large-scale 4D datasets, our method reframes the multi-view video generation task as video-to-videos translation, leveraging publicly available image and video diffusion priors. In essence, Reangle-A-Video operates in two stages. (1) Multi-View Motion Learning: An image-to-video diffusion transformer is synchronously fine-tuned in a self-supervised manner to distill view-invariant motion from a set of warped videos. (2) Multi-View Consistent Image-to-Images Translation: The first frame of the input video is warped and inpainted into various camera perspectives under an inference-time cross-view consistency guidance using DUSt3R, generating multi-view consistent starting images. Extensive experiments on static view transport and dynamic camera control show that Reangle-A-Video surpasses existing methods, establishing a new solution for multi-view video generation. We will publicly release our code and data. Project page: https://hyeonho99.github.io/reangle-a-video/
comment: ICCV 2025, Project page: https://hyeonho99.github.io/reangle-a-video/
♻ ☆ GenFlow: Interactive Modular System for Image Generation
Generative art unlocks boundless creative possibilities, yet its full potential remains untapped due to the technical expertise required for advanced architectural concepts and computational workflows. To bridge this gap, we present GenFlow, a novel modular framework that empowers users of all skill levels to generate images with precision and ease. Featuring a node-based editor for seamless customization and an intelligent assistant powered by natural language processing, GenFlow transforms the complexity of workflow creation into an intuitive and accessible experience. By automating deployment processes and minimizing technical barriers, our framework makes cutting-edge generative art tools available to everyone. A user study demonstrated GenFlow's ability to optimize workflows, reduce task completion times, and enhance user understanding through its intuitive interface and adaptive features. These results position GenFlow as a groundbreaking solution that redefines accessibility and efficiency in the realm of generative art.
comment: CBMI 2025
♻ ☆ LED: LLM Enhanced Open-Vocabulary Object Detection without Human Curated Data Generation
Large foundation models trained on large-scale vision-language data can boost Open-Vocabulary Object Detection (OVD) via synthetic training data, yet the hand-crafted pipelines often introduce bias and overfit to specific prompts. We sidestep this issue by directly fusing hidden states from Large Language Models (LLMs) into detectors-an avenue surprisingly under-explored. This paper presents a systematic method to enhance visual grounding by utilizing decoder layers of the LLM of an MLLM. We introduce a zero-initialized cross-attention adapter to enable efficient knowledge fusion from LLMs to object detectors, a new approach called LED (LLM Enhanced Open-Vocabulary Object Detection). We find that intermediate LLM layers already encode rich spatial semantics; adapting only the early layers yields most of the gain. With Swin-T as the vision encoder, Qwen2-0.5B + LED lifts GroundingDINO by 3.82 % on OmniLabel at just 8.7 % extra GFLOPs, and a larger vision backbone pushes the improvement to 6.22 %. Extensive ablations on adapter variants, LLM scales and fusion depths further corroborate our design.
♻ ☆ Physics-Driven Local-Whole Elastic Deformation Modeling for Point Cloud Representation Learning
Existing point cloud representation learning methods primarily rely on data-driven strategies to extract geometric information from large amounts of scattered data. However, most methods focus solely on the spatial distribution features of point clouds while overlooking the relationship between local information and the whole structure, which limits the accuracy of point cloud representation. Local information reflect the fine-grained variations of an object, while the whole structure is determined by the interaction and combination of these local features, collectively defining the object's shape. In real-world, objects undergo deformation under external forces, and this deformation gradually affects the whole structure through the propagation of forces from local regions, thereby altering the object's geometric features. Therefore, the appropriate introduction of physics-driven mechanism can effectively compensate for the limitations of data-driven methods in structural modeling and significantly enhance the generalization and interpretability of point cloud representations in downstream tasks such as understanding and recognition. Inspired by this, we incorporate a physics-driven mechanism into the data-driven method to learn fine-grained features in point clouds and model the structural relationship between local regions and the whole shape. Specifically, we design a dual-task encoder-decoder framework that combines the geometric modeling capability of data-driven implicit fields with physics-driven elastic deformation. Through the integration of physics-based loss functions, the framework is guided to predict localized deformation and explicitly capture the correspondence between local structural changes and whole shape variations. Experimental results show that our method outperforms existing approaches in object classification and segmentation, demonstrating its effectiveness.
♻ ☆ LLaDA-VLA: Vision Language Diffusion Action Models
The rapid progress of auto-regressive vision-language models (VLMs) has inspired growing interest in vision-language-action models (VLA) for robotic manipulation. Recently, masked diffusion models, a paradigm distinct from autoregressive models, have begun to demonstrate competitive performance in text generation and multimodal applications, leading to the development of a series of diffusion-based VLMs (d-VLMs). However, leveraging such models for robot policy learning remains largely unexplored. In this work, we present LLaDA-VLA, the first Vision-Language-Diffusion-Action model built upon pretrained d-VLMs for robotic manipulation. To effectively adapt d-VLMs to robotic domain, we introduce two key designs: (1) a localized special-token classification strategy that replaces full-vocabulary classification with special action token classification, reducing adaptation difficulty; (2) a hierarchical action-structured decoding strategy that decodes action sequences hierarchically considering the dependencies within and across actions. Extensive experiments demonstrate that LLaDA-VLA significantly outperforms state-of-the-art VLAs on both simulation and real-world robots.
♻ ☆ Have Large Vision-Language Models Mastered Art History?
The emergence of large Vision-Language Models (VLMs) has established new baselines in image classification across multiple domains. We examine whether their multimodal reasoning can also address a challenge mastered by human experts. Specifically, we test whether VLMs can classify the style, author and creation date of paintings, a domain traditionally mastered by art historians. Artworks pose a unique challenge compared to natural images due to their inherently complex and diverse structures, characterized by variable compositions and styles. This requires a contextual and stylistic interpretation rather than straightforward object recognition. Art historians have long studied the unique aspects of artworks, with style prediction being a crucial component of their discipline. This paper investigates whether large VLMs, which integrate visual and textual data, can effectively reason about the historical and stylistic attributes of paintings. We present the first study of its kind, conducting an in-depth analysis of three VLMs, namely CLIP, LLaVA, and GPT-4o, evaluating their zero-shot classification of art style, author and time period. Using two image benchmarks of artworks, we assess the models' ability to interpret style, evaluate their sensitivity to prompts, and examine failure cases. Additionally, we focus on how these models compare to human art historical expertise by analyzing misclassifications, providing insights into their reasoning and classification patterns.
♻ ☆ Towards properties of adversarial image perturbations
Using stochastic gradient approach we study the properties of adversarial perturbations resulting in noticeable growth of VMAF image quality metric. The structure of the perturbations is investigated depending on the acceptable PSNR values and based on the Fourier power spectrum computations for the perturbations. It is demonstrated that moderate variation of image brightness ($\sim 10$ pixel units in a restricted region of an image can result in VMAF growth by $\sim 60\%$). Unlike some other methods demonstrating similar VMAF growth, the subjective quality of an image remains almost unchanged. It is also shown that the adversarial perturbations may demonstrate approximately linear dependence of perturbation amplitudes on the image brightness. The perturbations are studied based on the direct VMAF optimization in PyTorch. The significant discrepancies between the metric values and subjective judgements are also demonstrated when image restoration from noise is carried out using the same direct VMAF optimization.
comment: 13 pages, 40 figures
♻ ☆ P3-SAM: Native 3D Part Segmentation
Segmenting 3D assets into their constituent parts is crucial for enhancing 3D understanding, facilitating model reuse, and supporting various applications such as part generation. However, current methods face limitations such as poor robustness when dealing with complex objects and cannot fully automate the process. In this paper, we propose a native 3D point-promptable part segmentation model termed P3-SAM, designed to fully automate the segmentation of any 3D objects into components. Inspired by SAM, P3-SAM consists of a feature extractor, multiple segmentation heads, and an IoU predictor, enabling interactive segmentation for users. We also propose an algorithm to automatically select and merge masks predicted by our model for part instance segmentation. Our model is trained on a newly built dataset containing nearly 3.7 million models with reasonable segmentation labels. Comparisons show that our method achieves precise segmentation results and strong robustness on any complex objects, attaining state-of-the-art performance. Our code will be released soon.
comment: Tech Report
♻ ☆ A Survey of World Models for Autonomous Driving
Recent breakthroughs in autonomous driving have been propelled by advances in robust world modeling, fundamentally transforming how vehicles interpret dynamic scenes and execute safe decision-making. World models have emerged as a linchpin technology, offering high-fidelity representations of the driving environment that integrate multi-sensor data, semantic cues, and temporal dynamics. This paper systematically reviews recent advances in world models for autonomous driving, proposing a three-tiered taxonomy: (i) Generation of Future Physical World, covering Image-, BEV-, OG-, and PC-based generation methods that enhance scene evolution modeling through diffusion models and 4D occupancy forecasting; (ii) Behavior Planning for Intelligent Agents, combining rule-driven and learning-based paradigms with cost map optimization and reinforcement learning for trajectory generation in complex traffic conditions; (ii) Interaction between Prediction and Planning, achieving multi-agent collaborative decision-making through latent space diffusion and memory-augmented architectures. The study further analyzes training paradigms, including self-supervised learning, multimodal pretraining, and generative data augmentation, while evaluating world models' performance in scene understanding and motion prediction tasks. Future research must address key challenges in self-supervised representation learning, multimodal fusion, and advanced simulation to advance the practical deployment of world models in complex urban environments. Overall, the comprehensive analysis provides a technical roadmap for harnessing the transformative potential of world models in advancing safe and reliable autonomous driving solutions.
comment: Ongoing project. Paper list: https://github.com/FengZicai/AwesomeWMAD Benchmark: https://github.com/FengZicai/WMAD-Benchmarks
♻ ☆ F-Bench: Rethinking Human Preference Evaluation Metrics for Benchmarking Face Generation, Customization, and Restoration
Artificial intelligence generative models exhibit remarkable capabilities in content creation, particularly in face image generation, customization, and restoration. However, current AI-generated faces (AIGFs) often fall short of human preferences due to unique distortions, unrealistic details, and unexpected identity shifts, underscoring the need for a comprehensive quality evaluation framework for AIGFs. To address this need, we introduce FaceQ, a large-scale, comprehensive database of AI-generated Face images with fine-grained Quality annotations reflecting human preferences. The FaceQ database comprises 12,255 images generated by 29 models across three tasks: (1) face generation, (2) face customization, and (3) face restoration. It includes 32,742 mean opinion scores (MOSs) from 180 annotators, assessed across multiple dimensions: quality, authenticity, identity (ID) fidelity, and text-image correspondence. Using the FaceQ database, we establish F-Bench, a benchmark for comparing and evaluating face generation, customization, and restoration models, highlighting strengths and weaknesses across various prompts and evaluation dimensions. Additionally, we assess the performance of existing image quality assessment (IQA), face quality assessment (FQA), AI-generated content image quality assessment (AIGCIQA), and preference evaluation metrics, manifesting that these standard metrics are relatively ineffective in evaluating authenticity, ID fidelity, and text-image correspondence. The FaceQ database will be publicly available upon publication.
♻ ☆ BranchGRPO: Stable and Efficient GRPO with Structured Branching in Diffusion Models
Recent advancements in aligning image and video generative models via GRPO have achieved remarkable gains in enhancing human preference alignment. However, these methods still face high computational costs from on-policy rollouts and excessive SDE sampling steps, as well as training instability due to sparse rewards. In this paper, we propose BranchGRPO, a novel method that introduces a branch sampling policy updating the SDE sampling process. By sharing computation across common prefixes and pruning low-reward paths and redundant depths, BranchGRPO substantially lowers the per-update compute cost while maintaining or improving exploration diversity. This work makes three main contributions: (1) a branch sampling scheme that reduces rollout and training cost; (2) a tree-based advantage estimator incorporating dense process-level rewards; and (3) pruning strategies exploiting path and depth redundancy to accelerate convergence and boost performance. Experiments on image and video preference alignment show that BranchGRPO improves alignment scores by 16% over strong baselines, while cutting training time by 50%.
comment: 12 pages, 6 figures
♻ ☆ LYT-NET: Lightweight YUV Transformer-based Network for Low-light Image Enhancement
This letter introduces LYT-Net, a novel lightweight transformer-based model for low-light image enhancement (LLIE). LYT-Net consists of several layers and detachable blocks, including our novel blocks--Channel-Wise Denoiser (CWD) and Multi-Stage Squeeze & Excite Fusion (MSEF)--along with the traditional Transformer block, Multi-Headed Self-Attention (MHSA). In our method we adopt a dual-path approach, treating chrominance channels U and V and luminance channel Y as separate entities to help the model better handle illumination adjustment and corruption restoration. Our comprehensive evaluation on established LLIE datasets demonstrates that, despite its low complexity, our model outperforms recent LLIE methods. The source code and pre-trained models are available at https://github.com/albrateanu/LYT-Net
comment: 5 pages
♻ ☆ TerraMind: Large-Scale Generative Multimodality for Earth Observation ICCV'25
We present TerraMind, the first any-to-any generative, multimodal foundation model for Earth observation (EO). Unlike other multimodal models, TerraMind is pretrained on dual-scale representations combining both token-level and pixel-level data across modalities. On a token level, TerraMind encodes high-level contextual information to learn cross-modal relationships, while on a pixel level, TerraMind leverages fine-grained representations to capture critical spatial nuances. We pretrained TerraMind on nine geospatial modalities of a global, large-scale dataset. In this paper, we demonstrate that (i) TerraMind's dual-scale early fusion approach unlocks a range of zero-shot and few-shot applications for Earth observation, (ii) TerraMind introduces "Thinking-in-Modalities" (TiM) -- the capability of generating additional artificial data during finetuning and inference to improve the model output -- and (iii) TerraMind achieves beyond state-of-the-art performance in community-standard benchmarks for EO like PANGAEA. The pretraining dataset, the model weights, and our code are open-sourced under a permissive license.
comment: Accepted at ICCV'25
♻ ☆ MSNav: Zero-Shot Vision-and-Language Navigation with Dynamic Memory and LLM Spatial Reasoning
Vision-and-Language Navigation (VLN) requires an agent to interpret natural language instructions and navigate complex environments. Current approaches often adopt a "black-box" paradigm, where a single Large Language Model (LLM) makes end-to-end decisions. However, it is plagued by critical vulnerabilities, including poor spatial reasoning, weak cross-modal grounding, and memory overload in long-horizon tasks. To systematically address these issues, we propose Memory Spatial Navigation(MSNav), a framework that fuses three modules into a synergistic architecture, which transforms fragile inference into a robust, integrated intelligence. MSNav integrates three modules: Memory Module, a dynamic map memory module that tackles memory overload through selective node pruning, enhancing long-range exploration; Spatial Module, a module for spatial reasoning and object relationship inference that improves endpoint recognition; and Decision Module, a module using LLM-based path planning to execute robust actions. Powering Spatial Module, we also introduce an Instruction-Object-Space (I-O-S) dataset and fine-tune the Qwen3-4B model into Qwen-Spatial (Qwen-Sp), which outperforms leading commercial LLMs in object list extraction, achieving higher F1 and NDCG scores on the I-O-S test set. Extensive experiments on the Room-to-Room (R2R) and REVERIE datasets demonstrate MSNav's state-of-the-art performance with significant improvements in Success Rate (SR) and Success weighted by Path Length (SPL).
comment: 9 pages, 4 figures
♻ ☆ PromptEnhancer: A Simple Approach to Enhance Text-to-Image Models via Chain-of-Thought Prompt Rewriting
Recent advancements in text-to-image (T2I) diffusion models have demonstrated remarkable capabilities in generating high-fidelity images. However, these models often struggle to faithfully render complex user prompts, particularly in aspects like attribute binding, negation, and compositional relationships. This leads to a significant mismatch between user intent and the generated output. To address this challenge, we introduce PromptEnhancer, a novel and universal prompt rewriting framework that enhances any pretrained T2I model without requiring modifications to its weights. Unlike prior methods that rely on model-specific fine-tuning or implicit reward signals like image-reward scores, our framework decouples the rewriter from the generator. We achieve this by training a Chain-of-Thought (CoT) rewriter through reinforcement learning, guided by a dedicated reward model we term the AlignEvaluator. The AlignEvaluator is trained to provide explicit and fine-grained feedback based on a systematic taxonomy of 24 key points, which are derived from a comprehensive analysis of common T2I failure modes. By optimizing the CoT rewriter to maximize the reward from our AlignEvaluator, our framework learns to generate prompts that are more precisely interpreted by T2I models. Extensive experiments on the HunyuanImage 2.1 model demonstrate that PromptEnhancer significantly improves image-text alignment across a wide range of semantic and compositional challenges. Furthermore, we introduce a new, high-quality human preference benchmark to facilitate future research in this direction.
comment: technical report
♻ ☆ Hybrid Swin Attention Networks for Simultaneously Low-Dose PET and CT Denoising
Low-dose computed tomography (LDCT) and positron emission tomography (PET) have emerged as safer alternatives to conventional imaging modalities by significantly reducing radiation exposure. However, this reduction often results in increased noise and artifacts, which can compromise diagnostic accuracy. Consequently, denoising for LDCT/PET has become a vital area of research aimed at enhancing image quality while maintaining radiation safety. In this study, we introduce a novel Hybrid Swin Attention Network (HSANet), which incorporates Efficient Global Attention (EGA) modules and a hybrid upsampling module. The EGA modules enhance both spatial and channel-wise interaction, improving the network's capacity to capture relevant features, while the hybrid upsampling module mitigates the risk of overfitting to noise. We validate the proposed approach using a publicly available LDCT/PET dataset. Experimental results demonstrate that HSANet achieves superior denoising performance compared to existing methods, while maintaining a lightweight model size suitable for deployment on GPUs with standard memory configurations. This makes our approach highly practical for real-world clinical applications.
♻ ☆ Alternating Minimization Schemes for Computing Rate-Distortion-Perception Functions with $f$-Divergence Perception Constraints
We study the computation of the rate-distortion-perception function (RDPF) for discrete memoryless sources subject to a single-letter average distortion constraint and a perception constraint belonging to the family of $f$-divergences. In this setting, the RDPF forms a convex programming problem for which we characterize optimal parametric solutions. We employ the developed solutions in an alternating minimization scheme, namely Optimal Alternating Minimization (OAM), for which we provide convergence guarantees. Nevertheless, the OAM scheme does not lead to a direct implementation of a generalized Blahut-Arimoto (BA) type of algorithm due to implicit equations in the iteration's structure. To overcome this difficulty, we propose two alternative minimization approaches whose applicability depends on the smoothness of the used perception metric: a Newton-based Alternating Minimization (NAM) scheme, relying on Newton's root-finding method for the approximation of the optimal solution of the iteration, and a Relaxed Alternating Minimization (RAM) scheme, based on relaxing the OAM iterates. We show, by deriving necessary and sufficient conditions, that both schemes guarantee convergence to a globally optimal solution. We also provide sufficient conditions on the distortion and perception constraints, which guarantee that the proposed algorithms converge exponentially fast in the number of iteration steps. We corroborate our theoretical results with numerical simulations and establish connections with existing results.
comment: This work has been submitted for possible publication
♻ ☆ From Channel Bias to Feature Redundancy: Uncovering the "Less is More" Principle in Few-Shot Learning
Deep neural networks often fail to adapt representations to novel tasks under distribution shifts, especially when only a few examples are available. This paper identifies a core obstacle behind this failure: channel bias, where networks develop a rigid emphasis on feature dimensions that were discriminative for the source task, but this emphasis is misaligned and fails to adapt to the distinct needs of a novel task. This bias leads to a striking and detrimental consequence: feature redundancy. We demonstrate that for few-shot tasks, classification accuracy is significantly improved by using as few as 1-5% of the most discriminative feature dimensions, revealing that the vast majority are actively harmful. Our theoretical analysis confirms that this redundancy originates from confounding feature dimensions-those with high intra-class variance but low inter-class separability-which are especially problematic in low-data regimes. This "less is more" phenomenon is a defining characteristic of the few-shot setting, diminishing as more samples become available. To address this, we propose a simple yet effective soft-masking method, Augmented Feature Importance Adjustment (AFIA), which estimates feature importance from augmented data to mitigate the issue. By establishing the cohesive link from channel bias to its consequence of extreme feature redundancy, this work provides a foundational principle for few-shot representation transfer and a practical method for developing more robust few-shot learning algorithms.
comment: arXiv admin note: substantial text overlap with arXiv:2206.08126
♻ ☆ PrediTree: A Multi-Temporal Sub-meter Dataset of Multi-Spectral Imagery Aligned With Canopy Height Maps
We present PrediTree, the first comprehensive open-source dataset designed for training and evaluating tree height prediction models at sub-meter resolution. This dataset combines very high-resolution (0.5m) LiDAR-derived canopy height maps, spatially aligned with multi-temporal and multi-spectral imagery, across diverse forest ecosystems in France, totaling 3,141,568 images. PrediTree addresses a critical gap in forest monitoring capabilities by enabling the training of deep learning methods that can predict tree growth based on multiple past observations. To make use of this PrediTree dataset, we propose an encoder-decoder framework that requires the multi-temporal multi-spectral imagery and the relative time differences in years between the canopy height map timestamp (target) and each image acquisition date for which this framework predicts the canopy height. The conducted experiments demonstrate that a U-Net architecture trained on the PrediTree dataset provides the highest masked mean squared error of $11.78\%$, outperforming the next-best architecture, ResNet-50, by around $12\%$, and cutting the error of the same experiments but on fewer bands (red, green, blue only), by around $30\%$. This dataset is publicly available on https://huggingface.co/datasets/hiyam-d/PrediTree, and both processing and training codebases are available on {GitHub}.
comment: Accepted at GAIA 2025. Dataset available at https://huggingface.co/datasets/hiyam-d/PrediTree
♻ ☆ TextlessRAG: End-to-End Visual Document RAG by Speech Without Text
Document images encapsulate a wealth of knowledge, while the portability of spoken queries enables broader and flexible application scenarios. Yet, no prior work has explored knowledge base question answering over visual document images with queries provided directly in speech. We propose TextlessRAG, the first end-to-end framework for speech-based question answering over large-scale document images. Unlike prior methods, TextlessRAG eliminates ASR, TTS and OCR, directly interpreting speech, retrieving relevant visual knowledge, and generating answers in a fully textless pipeline. To further boost performance, we integrate a layout-aware reranking mechanism to refine retrieval. Experiments demonstrate substantial improvements in both efficiency and accuracy. To advance research in this direction, we also release the first bilingual speech--document RAG dataset, featuring Chinese and English voice queries paired with multimodal document content. Both the dataset and our pipeline will be made available at repository:https://github.com/xiepeijinhit-hue/textlessrag
comment: 5 pages, 4 figures,
♻ ☆ Moment- and Power-Spectrum-Based Gaussianity Regularization for Text-to-Image Models
We propose a novel regularization loss that enforces standard Gaussianity, encouraging samples to align with a standard Gaussian distribution. This facilitates a range of downstream tasks involving optimization in the latent space of text-to-image models. We treat elements of a high-dimensional sample as one-dimensional standard Gaussian variables and define a composite loss that combines moment-based regularization in the spatial domain with power spectrum-based regularization in the spectral domain. Since the expected values of moments and power spectrum distributions are analytically known, the loss promotes conformity to these properties. To ensure permutation invariance, the losses are applied to randomly permuted inputs. Notably, existing Gaussianity-based regularizations fall within our unified framework: some correspond to moment losses of specific orders, while the previous covariance-matching loss is equivalent to our spectral loss but incurs higher time complexity due to its spatial-domain computation. We showcase the application of our regularization in generative modeling for test-time reward alignment with a text-to-image model, specifically to enhance aesthetics and text alignment. Our regularization outperforms previous Gaussianity regularization, effectively prevents reward hacking and accelerates convergence.
♻ ☆ ALOcc: Adaptive Lifting-Based 3D Semantic Occupancy and Cost Volume-Based Flow Predictions ICCV 2025
3D semantic occupancy and flow prediction are fundamental to spatiotemporal scene understanding. This paper proposes a vision-based framework with three targeted improvements. First, we introduce an occlusion-aware adaptive lifting mechanism incorporating depth denoising. This enhances the robustness of 2D-to-3D feature transformation while mitigating reliance on depth priors. Second, we enforce 3D-2D semantic consistency via jointly optimized prototypes, using confidence- and category-aware sampling to address the long-tail classes problem. Third, to streamline joint prediction, we devise a BEV-centric cost volume to explicitly correlate semantic and flow features, supervised by a hybrid classification-regression scheme that handles diverse motion scales. Our purely convolutional architecture establishes new SOTA performance on multiple benchmarks for both semantic occupancy and joint occupancy semantic-flow prediction. We also present a family of models offering a spectrum of efficiency-performance trade-offs. Our real-time version exceeds all existing real-time methods in speed and accuracy, ensuring its practical viability.
comment: ICCV 2025
♻ ☆ Nearest Neighbor Projection Removal Adversarial Training
Deep neural networks have exhibited impressive performance in image classification tasks but remain vulnerable to adversarial examples. Standard adversarial training enhances robustness but typically fails to explicitly address inter-class feature overlap, a significant contributor to adversarial susceptibility. In this work, we introduce a novel adversarial training framework that actively mitigates inter-class proximity by projecting out inter-class dependencies from adversarial and clean samples in the feature space. Specifically, our approach first identifies the nearest inter-class neighbors for each adversarial sample and subsequently removes projections onto these neighbors to enforce stronger feature separability. Theoretically, we demonstrate that our proposed logits correction reduces the Lipschitz constant of neural networks, thereby lowering the Rademacher complexity, which directly contributes to improved generalization and robustness. Extensive experiments across standard benchmarks including CIFAR-10, CIFAR-100, and SVHN show that our method demonstrates strong performance that is competitive with leading adversarial training techniques, highlighting significant achievements in both robust and clean accuracy. Our findings reveal the importance of addressing inter-class feature proximity explicitly to bolster adversarial robustness in DNNs.
♻ ☆ Rethinking Random Masking in Self-Distillation on ViT
Vision Transformers (ViTs) have demonstrated remarkable performance across a wide range of vision tasks. In particular, self-distillation frameworks such as DINO have contributed significantly to these advances. Within such frameworks, random masking is often utilized to improve training efficiency and introduce regularization. However, recent studies have raised concerns that indiscriminate random masking may inadvertently eliminate critical semantic information, motivating the development of more informed masking strategies. In this study, we explore the role of random masking in the self-distillation setting, focusing on the DINO framework. Specifically, we apply random masking exclusively to the student's global view, while preserving the student's local views and the teacher's global view in their original, unmasked forms. This design leverages DINO's multi-view augmentation scheme to retain clean supervision while inducing robustness through masked inputs. We evaluate our approach using DINO-Tiny on the mini-ImageNet dataset and show that random masking under this asymmetric setup yields more robust and fine-grained attention maps, ultimately enhancing downstream performance.
comment: 4 pages
♻ ☆ TextSSR: Diffusion-based Data Synthesis for Scene Text Recognition ICCV 2025
Scene text recognition (STR) suffers from challenges of either less realistic synthetic training data or the difficulty of collecting sufficient high-quality real-world data, limiting the effectiveness of trained models. Meanwhile, despite producing holistically appealing text images, diffusion-based visual text generation methods struggle to synthesize accurate and realistic instance-level text at scale. To tackle this, we introduce TextSSR: a novel pipeline for Synthesizing Scene Text Recognition training data. TextSSR targets three key synthesizing characteristics: accuracy, realism, and scalability. It achieves accuracy through a proposed region-centric text generation with position-glyph enhancement, ensuring proper character placement. It maintains realism by guiding style and appearance generation using contextual hints from surrounding text or background. This character-aware diffusion architecture enjoys precise character-level control and semantic coherence preservation, without relying on natural language prompts. Therefore, TextSSR supports large-scale generation through combinatorial text permutations. Based on these, we present TextSSR-F, a dataset of 3.55 million quality-screened text instances. Extensive experiments show that STR models trained on TextSSR-F outperform those trained on existing synthetic datasets by clear margins on common benchmarks, and further improvements are observed when mixed with real-world training data. Code is available at https://github.com/YesianRohn/TextSSR.
comment: Accepted by ICCV 2025
♻ ☆ Event Camera Meets Resource-Aware Mobile Computing: Abstraction, Algorithm, Acceleration, Application
With the increasing complexity of mobile device applications, these devices are evolving toward high agility. This shift imposes new demands on mobile sensing, particularly in achieving high-accuracy and low-latency. Event-based vision has emerged as a disruptive paradigm, offering high temporal resolution and low latency, making it well-suited for high-accuracy and low-latency sensing tasks on high-agility platforms. However, the presence of substantial noisy events, lack of stable, persistent semantic information, and large data volume pose challenges for event-based data processing on resource-constrained mobile devices. This paper surveys the literature from 2014 to 2025 and presents a comprehensive overview of event-based mobile sensing, encompassing its fundamental principles, event \textit{abstraction} methods, \textit{algorithm} advancements, and both hardware and software \textit{acceleration} strategies. We discuss key \textit{applications} of event cameras in mobile sensing, including visual odometry, object tracking, optical flow, and 3D reconstruction, while highlighting challenges associated with event data processing, sensor fusion, and real-time deployment. Furthermore, we outline future research directions, such as improving the event camera with advanced optics, leveraging neuromorphic computing for efficient processing, and integrating bio-inspired algorithms. To support ongoing research, we provide an open-source \textit{Online Sheet} with recent developments. We hope this survey serves as a reference, facilitating the adoption of event-based vision across diverse applications.
comment: 35 pages
♻ ☆ Sigma: Siamese Mamba Network for Multi-Modal Semantic Segmentation WACV 2025
Multi-modal semantic segmentation significantly enhances AI agents' perception and scene understanding, especially under adverse conditions like low-light or overexposed environments. Leveraging additional modalities (X-modality) like thermal and depth alongside traditional RGB provides complementary information, enabling more robust and reliable prediction. In this work, we introduce Sigma, a Siamese Mamba network for multi-modal semantic segmentation utilizing the advanced Mamba. Unlike conventional methods that rely on CNNs, with their limited local receptive fields, or Vision Transformers (ViTs), which offer global receptive fields at the cost of quadratic complexity, our model achieves global receptive fields with linear complexity. By employing a Siamese encoder and innovating a Mamba-based fusion mechanism, we effectively select essential information from different modalities. A decoder is then developed to enhance the channel-wise modeling ability of the model. Our proposed method is rigorously evaluated on both RGB-Thermal and RGB-Depth semantic segmentation tasks, demonstrating its superiority and marking the first successful application of State Space Models (SSMs) in multi-modal perception tasks. Code is available at https://github.com/zifuwan/Sigma.
comment: Accepted by WACV 2025. Project page: https://zifuwan.github.io/Sigma/
♻ ☆ Bidirectional Sparse Attention for Faster Video Diffusion Training
Video diffusion Transformer (DiT) models excel in generative quality but hit major computational bottlenecks when producing high-resolution, long-duration videos. The quadratic complexity of full attention leads to prohibitively high training and inference costs. Full attention inefficiency stems from two key challenges: excessive computation due to the inherent sparsity of Queries and Key-Value pairs, and redundant computation as fixed sparse patterns fail to leverage DiT's dynamic attention. To overcome this limitation, we propose a Bidirectional Sparse Attention (BSA) framework for faster video DiT training, the first to dynamically sparsify both Queries and Key-Value pairs within 3D full attention, thereby substantially improving training and inference efficiency. BSA addresses these issues through two key components. Query sparsity is optimized by selecting the most informative query tokens via semantic similarity and with a dynamic spatial-time training strategy, while KV sparsity is achieved by computing a statistical dynamic threshold to retain only the most salient KV blocks for computation. Extensive experiments demonstrate that BSA significantly accelerates DiT training across long sequences, reducing FLOPs by up to 20x and achieving 17.79x faster attention training, while preserving or even surpassing the generative quality of full attention.
♻ ☆ Vision Transformer with Sparse Scan Prior
In recent years, Transformers have achieved remarkable progress in computer vision tasks. However, their global modeling often comes with substantial computational overhead, in stark contrast to the human eye's efficient information processing. Inspired by the human eye's sparse scanning mechanism, we propose a \textbf{S}parse \textbf{S}can \textbf{S}elf-\textbf{A}ttention mechanism ($\rm{S}^3\rm{A}$). This mechanism predefines a series of Anchors of Interest for each token and employs local attention to efficiently model the spatial information around these anchors, avoiding redundant global modeling and excessive focus on local information. This approach mirrors the human eye's functionality and significantly reduces the computational load of vision models. Building on $\rm{S}^3\rm{A}$, we introduce the \textbf{S}parse \textbf{S}can \textbf{Vi}sion \textbf{T}ransformer (SSViT). Extensive experiments demonstrate the outstanding performance of SSViT across a variety of tasks. Specifically, on ImageNet classification, without additional supervision or training data, SSViT achieves top-1 accuracies of \textbf{84.4\%/85.7\%} with \textbf{4.4G/18.2G} FLOPs. SSViT also excels in downstream tasks such as object detection, instance segmentation, and semantic segmentation. Its robustness is further validated across diverse datasets.
♻ ☆ UAR-NVC: A Unified AutoRegressive Framework for Memory-Efficient Neural Video Compression
Implicit Neural Representations (INRs) have demonstrated significant potential in video compression by representing videos as neural networks. However, as the number of frames increases, the memory consumption for training and inference increases substantially, posing challenges in resource-constrained scenarios. Inspired by the success of traditional video compression frameworks, which process video frame by frame and can efficiently compress long videos, we adopt this modeling strategy for INRs to decrease memory consumption, while aiming to unify the frameworks from the perspective of timeline-based autoregressive modeling. In this work, we present a novel understanding of INR models from an autoregressive (AR) perspective and introduce a Unified AutoRegressive Framework for memory-efficient Neural Video Compression (UAR-NVC). UAR-NVC integrates timeline-based and INR-based neural video compression under a unified autoregressive paradigm. It partitions videos into several clips and processes each clip using a different INR model instance, leveraging the advantages of both compression frameworks while allowing seamless adaptation to either in form. To further reduce temporal redundancy between clips, we design two modules to optimize the initialization, training, and compression of these model parameters. UAR-NVC supports adjustable latencies by varying the clip length. Extensive experimental results demonstrate that UAR-NVC, with its flexible video clip setting, can adapt to resource-constrained environments and significantly improve performance compared to different baseline models. The project page: "https://wj-inf.github.io/UAR-NVC-page/".
comment: Accepted to TCSVT2025
♻ ☆ SGDFuse: SAM-Guided Diffusion for High-Fidelity Infrared and Visible Image Fusion
Infrared and visible image fusion (IVIF) aims to combine the thermal radiation information from infrared images with the rich texture details from visible images to enhance perceptual capabilities for downstream visual tasks. However, existing methods often fail to preserve key targets due to a lack of deep semantic understanding of the scene, while the fusion process itself can also introduce artifacts and detail loss, severely compromising both image quality and task performance. To address these issues, this paper proposes SGDFuse, a conditional diffusion model guided by the Segment Anything Model (SAM), to achieve high-fidelity and semantically-aware image fusion. The core of our method is to utilize high-quality semantic masks generated by SAM as explicit priors to guide the optimization of the fusion process via a conditional diffusion model. Specifically, the framework operates in a two-stage process: it first performs a preliminary fusion of multi-modal features, and then utilizes the semantic masks from SAM jointly with the preliminary fused image as a condition to drive the diffusion model's coarse-to-fine denoising generation. This ensures the fusion process not only has explicit semantic directionality but also guarantees the high fidelity of the final result. Extensive experiments demonstrate that SGDFuse achieves state-of-the-art performance in both subjective and objective evaluations, as well as in its adaptability to downstream tasks, providing a powerful solution to the core challenges in image fusion. The code of SGDFuse is available at https://github.com/boshizhang123/SGDFuse.
comment: Submitted to Information Fusion
♻ ☆ Learning Robust Representations via Bidirectional Transition for Visual Reinforcement Learning
Visual reinforcement learning has proven effective in solving control tasks with high-dimensional observations. However, extracting reliable and generalizable representations from vision-based observations remains a central challenge. Inspired by the human thought process, when the representation extracted from the observation can predict the future and trace history, the representation is reliable and accurate in comprehending the environment. Based on this concept, we introduce a Bidirectional Transition (BiT) model, which leverages the ability to bidirectionally predict environmental transitions both forward and backward to extract reliable representations. Our model demonstrates competitive generalization performance and sample efficiency on two settings of the DeepMind Control suite. Additionally, we utilize robotic manipulation and CARLA simulators to demonstrate the wide applicability of our method.
♻ ☆ GNF: Gaussian Neural Fields for Multidimensional Signal Representation and Reconstruction
Neural fields have emerged as a powerful framework for representing continuous multidimensional signals such as images and videos, 3D and 4D objects and scenes, and radiance fields. While efficient, achieving high-quality representation requires the use of wide and deep neural networks. These, however, are slow to train and evaluate. Although several acceleration techniques have been proposed, they either trade memory for faster training and/or inference, rely on thousands of fitted primitives with considerable optimization time, or compromise the smooth, continuous nature of neural fields. In this paper, we introduce Gaussian Neural Fields (GNF), a novel compact neural decoder that maps learned feature grids into continuous non-linear signals, such as RGB images, Signed Distance Functions (SDFs), and radiance fields, using a single compact layer of Gaussian kernels defined in a high-dimensional feature space. Our key observation is that neurons in traditional MLPs perform simple computations, usually a dot product followed by an activation function, necessitating wide and deep MLPs or high-resolution feature grids to model complex functions. In this paper, we show that replacing MLP-based decoders with Gaussian kernels whose centers are learned features yields highly accurate representations of 2D (RGB), 3D (geometry), and 5D (radiance fields) signals with just a single layer of such kernels. This representation is highly parallelizable, operates on low-resolution grids, and trains in under $15$ seconds for 3D geometry and under $11$ minutes for view synthesis. GNF matches the accuracy of deep MLP-based decoders with far fewer parameters and significantly higher inference throughput.
comment: The source code is publicly available at \url{https://grbfnet.github.io/}
♻ ☆ A Chinese Continuous Sign Language Dataset Based on Complex Environments
The current bottleneck in continuous sign language recognition (CSLR) research lies in the fact that most publicly available datasets are limited to laboratory environments or television program recordings, resulting in a single background environment with uniform lighting, which significantly deviates from the diversity and complexity found in real-life scenarios. To address this challenge, we have constructed a new, large-scale dataset for Chinese continuous sign language (CSL) based on complex environments, termed the complex environment - chinese sign language dataset (CE-CSL). This dataset encompasses 5,988 continuous CSL video clips collected from daily life scenes, featuring more than 70 different complex backgrounds to ensure representativeness and generalization capability. To tackle the impact of complex backgrounds on CSLR performance, we propose a time-frequency network (TFNet) model for continuous sign language recognition. This model extracts frame-level features and then utilizes both temporal and spectral information to separately derive sequence features before fusion, aiming to achieve efficient and accurate CSLR. Experimental results demonstrate that our approach achieves significant performance improvements on the CE-CSL, validating its effectiveness under complex background conditions. Additionally, our proposed method has also yielded highly competitive results when applied to three publicly available CSL datasets.
comment: 11 pages, 3 figures
♻ ☆ RetinaGuard: Obfuscating Retinal Age in Fundus Images for Biometric Privacy Preserving
The integration of AI with medical images enables the extraction of implicit image-derived biomarkers for a precise health assessment. Recently, retinal age, a biomarker predicted from fundus images, is a proven predictor of systemic disease risks, behavioral patterns, aging trajectory and even mortality. However, the capability to infer such sensitive biometric data raises significant privacy risks, where unauthorized use of fundus images could lead to bioinformation leakage, breaching individual privacy. In response, we formulate a new research problem of biometric privacy associated with medical images and propose RetinaGuard, a novel privacy-enhancing framework that employs a feature-level generative adversarial masking mechanism to obscure retinal age while preserving image visual quality and disease diagnostic utility. The framework further utilizes a novel multiple-to-one knowledge distillation strategy incorporating a retinal foundation model and diverse surrogate age encoders to enable a universal defense against black-box age prediction models. Comprehensive evaluations confirm that RetinaGuard successfully obfuscates retinal age prediction with minimal impact on image quality and pathological feature representation. RetinaGuard is also flexible for extension to other medical image derived biomarkers. RetinaGuard is also flexible for extension to other medical image biomarkers.
♻ ☆ RSCC: A Large-Scale Remote Sensing Change Caption Dataset for Disaster Events
Remote sensing is critical for disaster monitoring, yet existing datasets lack temporal image pairs and detailed textual annotations. While single-snapshot imagery dominates current resources, it fails to capture dynamic disaster impacts over time. To address this gap, we introduce the Remote Sensing Change Caption (RSCC) dataset, a large-scale benchmark comprising 62,315 pre-/post-disaster image pairs (spanning earthquakes, floods, wildfires, and more) paired with rich, human-like change captions. By bridging the temporal and semantic divide in remote sensing data, RSCC enables robust training and evaluation of vision-language models for disaster-aware bi-temporal understanding. Our results highlight RSCC's ability to facilitate detailed disaster-related analysis, paving the way for more accurate, interpretable, and scalable vision-language applications in remote sensing. Code and dataset are available at https://github.com/Bili-Sakura/RSCC.
comment: under review
♻ ☆ VIM-GS: Visual-Inertial Monocular Gaussian Splatting via Object-level Guidance in Large Scenes
VIM-GS is a Gaussian Splatting (GS) framework using monocular images for novel-view synthesis (NVS) in large scenes. GS typically requires accurate depth to initiate Gaussian ellipsoids using RGB-D/stereo cameras. Their limited depth sensing range makes it difficult for GS to work in large scenes. Monocular images, however, lack depth to guide the learning and lead to inferior NVS results. Although large foundation models (LFMs) for monocular depth estimation are available, they suffer from cross-frame inconsistency, inaccuracy for distant scenes, and ambiguity in deceptive texture cues. This paper aims to generate dense, accurate depth images from monocular RGB inputs for high-definite GS rendering. The key idea is to leverage the accurate but sparse depth from visual-inertial Structure-from-Motion (SfM) to refine the dense but coarse depth from LFMs. To bridge the sparse input and dense output, we propose an object-segmented depth propagation algorithm that renders the depth of pixels of structured objects. Then we develop a dynamic depth refinement module to handle the crippled SfM depth of dynamic objects and refine the coarse LFM depth. Experiments using public and customized datasets demonstrate the superior rendering quality of VIM-GS in large scenes.
comment: Withdrawn due to an error in the author list & incomplete experimental results
♻ ☆ TransitReID: Transit OD Data Collection with Occlusion-Resistant Dynamic Passenger Re-Identification
Transit Origin-Destination (OD) data are fundamental for optimizing public transit services, yet current collection methods, such as manual surveys, Bluetooth and WiFi tracking, or Automated Passenger Counters, are either costly, device-dependent, or incapable of individual-level matching. Meanwhile, onboard surveillance cameras already deployed on most transit vehicles provide an underutilized opportunity for automated OD data collection. Leveraging this, we present TransitReID, a novel framework for individual-level and occlusion-resistant passenger re-identification tailored to transit environments. Our approach introduces three key innovations: (1) an occlusion-robust ReID algorithm that integrates a variational autoencoder-guided region-attention mechanism and selective quality feature averaging to dynamically emphasize visible and discriminative body regions under severe occlusions and viewpoint variations; (2) a Hierarchical Storage and Dynamic Matching HSDM mechanism that transforms static gallery matching into a dynamic process for robustness, accuracy, and speed in real-world bus operations; and (3) a multi-threaded edge implementation that enables near real-time OD estimation while ensuring privacy by processing all data locally. To support research in this domain, we also construct a new TransitReID dataset with over 17,000 images captured from bus front and rear cameras under diverse occlusion and viewpoint conditions. Experimental results demonstrate that TransitReID achieves state-of-the-art performance, with R-1 accuracy of 88.3 percent and mAP of 92.5 percent, and further sustains 90 percent OD estimation accuracy in bus route simulations on NVIDIA Jetson edge devices. This work advances both the algorithmic and system-level foundations of automated transit OD collection, paving the way for scalable, privacy-preserving deployment in intelligent transportation systems.
♻ ☆ An Improved U-Net Model for Offline handwriting signature denoising
Handwriting signatures, as an important means of identity recognition, are widely used in multiple fields such as financial transactions, commercial contracts and personal affairs due to their legal effect and uniqueness. In forensic science appraisals, the analysis of offline handwriting signatures requires the appraiser to provide a certain number of signature samples, which are usually derived from various historical contracts or archival materials. However, the provided handwriting samples are often mixed with a large amount of interfering information, which brings severe challenges to handwriting identification work. This study proposes a signature handwriting denoising model based on the improved U-net structure, aiming to enhance the robustness of the signature recognition system. By introducing discrete wavelet transform and PCA transform, the model's ability to suppress noise has been enhanced. The experimental results show that this modelis significantly superior to the traditional methods in denoising effect, can effectively improve the clarity and readability of the signed images, and provide more reliable technical support for signature analysis and recognition.
♻ ☆ ReceiptSense: Beyond Traditional OCR -- A Dataset for Receipt Understanding
Multilingual OCR and information extraction from receipts remains challenging, particularly for complex scripts like Arabic. We introduce \dataset, a comprehensive dataset designed for Arabic-English receipt understanding comprising 20,000 annotated receipts from diverse retail settings, 30,000 OCR-annotated images, and 10,000 item-level annotations, and a new Receipt QA subset with 1265 receipt images paired with 40 question-answer pairs each to support LLM evaluation for receipt understanding. The dataset captures merchant names, item descriptions, prices, receipt numbers, and dates to support object detection, OCR, and information extraction tasks. We establish baseline performance using traditional methods (Tesseract OCR) and advanced neural networks, demonstrating the dataset's effectiveness for processing complex, noisy real-world receipt layouts. Our publicly accessible dataset advances automated multilingual document processing research (see https://github.com/Update-For-Integrated-Business-AI/CORU ).
♻ ☆ Missing Fine Details in Images: Last Seen in High Frequencies
Latent generative models have shown remarkable progress in high-fidelity image synthesis, typically using a two-stage training process that involves compressing images into latent embeddings via learned tokenizers in the first stage. The quality of generation strongly depends on how expressive and well-optimized these latent embeddings are. While various methods have been proposed to learn effective latent representations, generated images often lack realism, particularly in textured regions with sharp transitions, due to loss of fine details governed by high frequencies. We conduct a detailed frequency decomposition of existing state-of-the-art (SOTA) latent tokenizers and show that conventional objectives inherently prioritize low-frequency reconstruction, often at the expense of high-frequency fidelity. Our analysis reveals these latent tokenizers exhibit a bias toward low-frequency information during optimization, leading to over-smoothed outputs and visual artifacts that diminish perceptual quality. To address this, we propose a wavelet-based, frequency-aware variational autoencoder (FA-VAE) framework that explicitly decouples the optimization of low- and high-frequency components. This decoupling enables improved reconstruction of fine textures while preserving global structure. Moreover, we integrate our frequency-preserving latent embeddings into a SOTA latent diffusion model, resulting in sharper and more realistic image generation. Our approach bridges the fidelity gap in current latent tokenizers and emphasizes the importance of frequency-aware optimization for realistic image synthesis, with broader implications for applications in content creation, neural rendering, and medical imaging.
♻ ☆ SiLVR: Scalable Lidar-Visual Radiance Field Reconstruction with Uncertainty Quantification
We present a neural radiance field (NeRF) based large-scale reconstruction system that fuses lidar and vision data to generate high-quality reconstructions that are geometrically accurate and capture photorealistic texture. Our system adopts the state-of-the-art NeRF representation to incorporate lidar. Adding lidar data adds strong geometric constraints on the depth and surface normals, which is particularly useful when modelling uniform texture surfaces which contain ambiguous visual reconstruction cues. A key contribution of this work is a novel method to quantify the epistemic uncertainty of the lidar-visual NeRF reconstruction by estimating the spatial variance of each point location in the radiance field given the sensor observations from the cameras and lidar. This provides a principled approach to evaluate the contribution of each sensor modality to the final reconstruction. In this way, reconstructions that are uncertain (due to e.g. uniform visual texture, limited observation viewpoints, or little lidar coverage) can be identified and removed. Our system is integrated with a real-time lidar SLAM system which is used to bootstrap a Structure-from-Motion (SfM) reconstruction procedure. It also helps to properly constrain the overall metric scale which is essential for the lidar depth loss. The refined SLAM trajectory can then be divided into submaps using Spectral Clustering to group sets of co-visible images together. This submapping approach is more suitable for visual reconstruction than distance-based partitioning. Our uncertainty estimation is particularly effective when merging submaps as their boundaries often contain artefacts due to limited observations. We demonstrate the reconstruction system using a multi-camera, lidar sensor suite in experiments involving both robot-mounted and handheld scanning. Our test datasets cover a total area of more than 20,000 square metres.
comment: Accepted by T-RO. Webpage: https://dynamic.robots.ox.ac.uk/projects/silvr/
♻ ☆ Semantic Augmentation in Images using Language
Deep Learning models are incredibly data-hungry and require very large labeled datasets for supervised learning. As a consequence, these models often suffer from overfitting, limiting their ability to generalize to real-world examples. Recent advancements in diffusion models have enabled the generation of photorealistic images based on textual inputs. Leveraging the substantial datasets used to train these diffusion models, we propose a technique to utilize generated images to augment existing datasets. This paper explores various strategies for effective data augmentation to improve the out-of-domain generalization capabilities of deep learning models.
♻ ☆ Spec2VolCAMU-Net: A Spectrogram-to-Volume Model for EEG-to-fMRI Reconstruction based on Multi-directional Time-Frequency Convolutional Attention Encoder and Vision-Mamba U-Net
High-resolution functional magnetic resonance imaging (fMRI) is essential for mapping human brain activity; however, it remains costly and logistically challenging. If comparable volumes could be generated directly from widely available scalp electroencephalography (EEG), advanced neuroimaging would become significantly more accessible. Existing EEG-to-fMRI generators rely on plain Convolutional Neural Networks (CNNs) that fail to capture cross-channel time-frequency cues or on heavy transformer/Generative Adversarial Network (GAN) decoders that strain memory and stability. To address these limitations, we propose Spec2VolCAMU-Net, a lightweight architecture featuring a Multi-directional Time-Frequency Convolutional Attention Encoder for rich feature extraction and a Vision-Mamba U-Net decoder that uses linear-time state-space blocks for efficient long-range spatial modelling. We frame the goal of this work as establishing a new state of the art in the spatial fidelity of single-volume reconstruction, a foundational prerequisite for the ultimate aim of generating temporally coherent fMRI time series. Trained end-to-end with a hybrid SSI-MSE loss, Spec2VolCAMU-Net achieves state-of-the-art fidelity on three public benchmarks, recording Structural Similarity Index (SSIM) of 0.693 on NODDI, 0.725 on Oddball and 0.788 on CN-EPFL, representing improvements of 14.5%, 14.9%, and 16.9% respectively over previous best SSIM scores. Furthermore, it achieves competitive Signal-to-Noise Ratio (PSNR) scores, particularly excelling on the CN-EPFL dataset with a 4.6% improvement over the previous best PSNR, thus striking a better balance in reconstruction quality. The proposed model is lightweight and efficient, making it suitable for real-time applications in clinical and research settings. The code is available at https://github.com/hdy6438/Spec2VolCAMU-Net.
♻ ☆ The Oxford Spires Dataset: Benchmarking Large-Scale LiDAR-Visual Localisation, Reconstruction and Radiance Field Methods
This paper introduces a large-scale multi-modal dataset captured in and around well-known landmarks in Oxford using a custom-built multi-sensor perception unit as well as a millimetre-accurate map from a Terrestrial LiDAR Scanner (TLS). The perception unit includes three synchronised global shutter colour cameras, an automotive 3D LiDAR scanner, and an inertial sensor - all precisely calibrated. We also establish benchmarks for tasks involving localisation, reconstruction, and novel-view synthesis, which enable the evaluation of Simultaneous Localisation and Mapping (SLAM) methods, Structure-from-Motion (SfM) and Multi-view Stereo (MVS) methods as well as radiance field methods such as Neural Radiance Fields (NeRF) and 3D Gaussian Splatting. To evaluate 3D reconstruction the TLS 3D models are used as ground truth. Localisation ground truth is computed by registering the mobile LiDAR scans to the TLS 3D models. Radiance field methods are evaluated not only with poses sampled from the input trajectory, but also from viewpoints that are from trajectories which are distant from the training poses. Our evaluation demonstrates a key limitation of state-of-the-art radiance field methods: we show that they tend to overfit to the training poses/images and do not generalise well to out-of-sequence poses. They also underperform in 3D reconstruction compared to MVS systems using the same visual inputs. Our dataset and benchmarks are intended to facilitate better integration of radiance field methods and SLAM systems. The raw and processed data, along with software for parsing and evaluation, can be accessed at https://dynamic.robots.ox.ac.uk/datasets/oxford-spires/.
comment: Accepted by IJRR. Website: https://dynamic.robots.ox.ac.uk/datasets/oxford-spires/
Artificial Intelligence 163
☆ A Survey of Reinforcement Learning for Large Reasoning Models
In this paper, we survey recent advances in Reinforcement Learning (RL) for reasoning with Large Language Models (LLMs). RL has achieved remarkable success in advancing the frontier of LLM capabilities, particularly in addressing complex logical tasks such as mathematics and coding. As a result, RL has emerged as a foundational methodology for transforming LLMs into LRMs. With the rapid progress of the field, further scaling of RL for LRMs now faces foundational challenges not only in computational resources but also in algorithm design, training data, and infrastructure. To this end, it is timely to revisit the development of this domain, reassess its trajectory, and explore strategies to enhance the scalability of RL toward Artificial SuperIntelligence (ASI). In particular, we examine research applying RL to LLMs and LRMs for reasoning abilities, especially since the release of DeepSeek-R1, including foundational components, core problems, training resources, and downstream applications, to identify future opportunities and directions for this rapidly evolving area. We hope this review will promote future research on RL for broader reasoning models. Github: https://github.com/TsinghuaC3I/Awesome-RL-for-LRMs
☆ Large Language Model Hacking: Quantifying the Hidden Risks of Using LLMs for Text Annotation
Large language models (LLMs) are rapidly transforming social science research by enabling the automation of labor-intensive tasks like data annotation and text analysis. However, LLM outputs vary significantly depending on the implementation choices made by researchers (e.g., model selection, prompting strategy, or temperature settings). Such variation can introduce systematic biases and random errors, which propagate to downstream analyses and cause Type I, Type II, Type S, or Type M errors. We call this LLM hacking. We quantify the risk of LLM hacking by replicating 37 data annotation tasks from 21 published social science research studies with 18 different models. Analyzing 13 million LLM labels, we test 2,361 realistic hypotheses to measure how plausible researcher choices affect statistical conclusions. We find incorrect conclusions based on LLM-annotated data in approximately one in three hypotheses for state-of-the-art models, and in half the hypotheses for small language models. While our findings show that higher task performance and better general model capabilities reduce LLM hacking risk, even highly accurate models do not completely eliminate it. The risk of LLM hacking decreases as effect sizes increase, indicating the need for more rigorous verification of findings near significance thresholds. Our extensive analysis of LLM hacking mitigation techniques emphasizes the importance of human annotations in reducing false positive findings and improving model selection. Surprisingly, common regression estimator correction techniques are largely ineffective in reducing LLM hacking risk, as they heavily trade off Type I vs. Type II errors. Beyond accidental errors, we find that intentional LLM hacking is unacceptably simple. With few LLMs and just a handful of prompt paraphrases, anything can be presented as statistically significant.
☆ QCardEst/QCardCorr: Quantum Cardinality Estimation and Correction
Cardinality estimation is an important part of query optimization in DBMS. We develop a Quantum Cardinality Estimation (QCardEst) approach using Quantum Machine Learning with a Hybrid Quantum-Classical Network. We define a compact encoding for turning SQL queries into a quantum state, which requires only qubits equal to the number of tables in the query. This allows the processing of a complete query with a single variational quantum circuit (VQC) on current hardware. In addition, we compare multiple classical post-processing layers to turn the probability vector output of VQC into a cardinality value. We introduce Quantum Cardinality Correction QCardCorr, which improves classical cardinality estimators by multiplying the output with a factor generated by a VQC to improve the cardinality estimation. With QCardCorr, we have an improvement over the standard PostgreSQL optimizer of 6.37 times for JOB-light and 8.66 times for STATS. For JOB-light we even outperform MSCN by a factor of 3.47.
comment: 7 pages
☆ Merge-of-Thought Distillation
Efficient reasoning distillation for long chain-of-thought (CoT) models is increasingly constrained by the assumption of a single oracle teacher, despite practical availability of multiple candidate teachers and growing CoT corpora. We revisit teacher selection and observe that different students have different "best teachers," and even for the same student the best teacher can vary across datasets. Therefore, to unify multiple teachers' reasoning abilities into student with overcoming conflicts among various teachers' supervision, we propose Merge-of-Thought Distillation (MoT), a lightweight framework that alternates between teacher-specific supervised fine-tuning branches and weight-space merging of the resulting student variants. On competition math benchmarks, using only about 200 high-quality CoT samples, applying MoT to a Qwen3-14B student surpasses strong models including DEEPSEEK-R1, QWEN3-30B-A3B, QWEN3-32B, and OPENAI-O1, demonstrating substantial gains. Besides, MoT consistently outperforms the best single-teacher distillation and the naive multi-teacher union, raises the performance ceiling while mitigating overfitting, and shows robustness to distribution-shifted and peer-level teachers. Moreover, MoT reduces catastrophic forgetting, improves general reasoning beyond mathematics and even cultivates a better teacher, indicating that consensus-filtered reasoning features transfer broadly. These results position MoT as a simple, scalable route to efficiently distilling long CoT capabilities from diverse teachers into compact students.
☆ MoVoC: Morphology-Aware Subword Construction for Geez Script Languages
Subword-based tokenization methods often fail to preserve morphological boundaries, a limitation especially pronounced in low-resource, morphologically complex languages such as those written in the Geez script. To address this, we present MoVoC (Morpheme-aware Subword Vocabulary Construction) and train MoVoC-Tok, a tokenizer that integrates supervised morphological analysis into the subword vocabulary. This hybrid segmentation approach combines morpheme-based and Byte Pair Encoding (BPE) tokens to preserve morphological integrity while maintaining lexical meaning. To tackle resource scarcity, we curate and release manually annotated morpheme data for four Geez script languages and a morpheme-aware vocabulary for two of them. While the proposed tokenization method does not lead to significant gains in automatic translation quality, we observe consistent improvements in intrinsic metrics, MorphoScore, and Boundary Precision, highlighting the value of morphology-aware segmentation in enhancing linguistic fidelity and token efficiency. Our morpheme-annotated datasets and tokenizer will be publicly available to support further research in low-resource, morphologically rich languages. Our code and data are available on GitHub: https://github.com/hailaykidu/MoVoC
comment: This submission is approximately 10 pages in length and includes 1 figure and 6 tables
☆ Scaling Truth: The Confidence Paradox in AI Fact-Checking
The rise of misinformation underscores the need for scalable and reliable fact-checking solutions. Large language models (LLMs) hold promise in automating fact verification, yet their effectiveness across global contexts remains uncertain. We systematically evaluate nine established LLMs across multiple categories (open/closed-source, multiple sizes, diverse architectures, reasoning-based) using 5,000 claims previously assessed by 174 professional fact-checking organizations across 47 languages. Our methodology tests model generalizability on claims postdating training cutoffs and four prompting strategies mirroring both citizen and professional fact-checker interactions, with over 240,000 human annotations as ground truth. Findings reveal a concerning pattern resembling the Dunning-Kruger effect: smaller, accessible models show high confidence despite lower accuracy, while larger models demonstrate higher accuracy but lower confidence. This risks systemic bias in information verification, as resource-constrained organizations typically use smaller models. Performance gaps are most pronounced for non-English languages and claims originating from the Global South, threatening to widen existing information inequalities. These results establish a multilingual benchmark for future research and provide an evidence base for policy aimed at ensuring equitable access to trustworthy, AI-assisted fact-checking.
comment: 65 pages, 26 figures, 6 tables
☆ PianoVAM: A Multimodal Piano Performance Dataset
The multimodal nature of music performance has driven increasing interest in data beyond the audio domain within the music information retrieval (MIR) community. This paper introduces PianoVAM, a comprehensive piano performance dataset that includes videos, audio, MIDI, hand landmarks, fingering labels, and rich metadata. The dataset was recorded using a Disklavier piano, capturing audio and MIDI from amateur pianists during their daily practice sessions, alongside synchronized top-view videos in realistic and varied performance conditions. Hand landmarks and fingering labels were extracted using a pretrained hand pose estimation model and a semi-automated fingering annotation algorithm. We discuss the challenges encountered during data collection and the alignment process across different modalities. Additionally, we describe our fingering annotation method based on hand landmarks extracted from videos. Finally, we present benchmarking results for both audio-only and audio-visual piano transcription using the PianoVAM dataset and discuss additional potential applications.
comment: Accepted to the 26th International Society for Music Information Retrieval (ISMIR) Conference, 2025
☆ Narrative-Guided Reinforcement Learning: A Platform for Studying Language Model Influence on Decision Making
We present a preliminary experimental platform that explores how narrative elements might shape AI decision-making by combining reinforcement learning (RL) with language model reasoning. While AI systems can now both make decisions and engage in narrative reasoning, these capabilities have mostly been studied separately. Our platform attempts to bridge this gap using a dual-system architecture to examine how narrative frameworks could influence reward-based learning. The system comprises a reinforcement learning policy that suggests actions based on past experience, and a language model that processes these suggestions through different narrative frameworks to guide decisions. This setup enables initial experimentation with narrative elements while maintaining consistent environment and reward structures. We implement this architecture in a configurable gridworld environment, where agents receive both policy suggestions and information about their surroundings. The platform's modular design facilitates controlled testing of environmental complexity, narrative parameters, and the interaction between reinforcement learning and narrative-based decisions. Our logging system captures basic decision metrics, from RL policy values to language model reasoning to action selection patterns. While preliminary, this implementation provides a foundation for studying how different narrative frameworks might affect reward-based decisions and exploring potential interactions between optimization-based learning and symbolic reasoning in AI systems.
comment: Extended Abstract for RLDM 2025
☆ An End-to-End Deep Learning Framework for Arsenicosis Diagnosis Using Mobile-Captured Skin Images
Background: Arsenicosis is a serious public health concern in South and Southeast Asia, primarily caused by long-term consumption of arsenic-contaminated water. Its early cutaneous manifestations are clinically significant but often underdiagnosed, particularly in rural areas with limited access to dermatologists. Automated, image-based diagnostic solutions can support early detection and timely interventions. Methods: In this study, we propose an end-to-end framework for arsenicosis diagnosis using mobile phone-captured skin images. A dataset comprising 20 classes and over 11000 images of arsenic-induced and other dermatological conditions was curated. Multiple deep learning architectures, including convolutional neural networks (CNNs) and Transformer-based models, were benchmarked for arsenicosis detection. Model interpretability was integrated via LIME and Grad-CAM, while deployment feasibility was demonstrated through a web-based diagnostic tool. Results: Transformer-based models significantly outperformed CNNs, with the Swin Transformer achieving the best results (86\\% accuracy). LIME and Grad-CAM visualizations confirmed that the models attended to lesion-relevant regions, increasing clinical transparency and aiding in error analysis. The framework also demonstrated strong performance on external validation samples, confirming its ability to generalize beyond the curated dataset. Conclusion: The proposed framework demonstrates the potential of deep learning for non-invasive, accessible, and explainable diagnosis of arsenicosis from mobile-acquired images. By enabling reliable image-based screening, it can serve as a practical diagnostic aid in rural and resource-limited communities, where access to dermatologists is scarce, thereby supporting early detection and timely intervention.
☆ Using AI to Optimize Patient Transfer and Resource Utilization During Mass-Casualty Incidents: A Simulation Platform
Mass casualty incidents (MCIs) overwhelm healthcare systems and demand rapid, accurate patient-hospital allocation decisions under extreme pressure. Here, we developed and validated a deep reinforcement learning-based decision-support AI agent to optimize patient transfer decisions during simulated MCIs by balancing patient acuity levels, specialized care requirements, hospital capacities, and transport logistics. To integrate this AI agent, we developed MasTER, a web-accessible command dashboard for MCI management simulations. Through a controlled user study with 30 participants (6 trauma experts and 24 non-experts), we evaluated three interaction approaches with the AI agent (human-only, human-AI collaboration, and AI-only) across 20- and 60-patient MCI scenarios in the Greater Toronto Area. Results demonstrate that increasing AI involvement significantly improves decision quality and consistency. The AI agent outperforms trauma surgeons (p < 0.001) and enables non-experts to achieve expert-level performance when assisted, contrasting sharply with their significantly inferior unassisted performance (p < 0.001). These findings establish the potential for our AI-driven decision support to enhance both MCI preparedness training and real-world emergency response management.
☆ AgentGym-RL: Training LLM Agents for Long-Horizon Decision Making through Multi-Turn Reinforcement Learning
Developing autonomous LLM agents capable of making a series of intelligent decisions to solve complex, real-world tasks is a fast-evolving frontier. Like human cognitive development, agents are expected to acquire knowledge and skills through exploration and interaction with the environment. Despite advances, the community still lacks a unified, interactive reinforcement learning (RL) framework that can effectively train such agents from scratch -- without relying on supervised fine-tuning (SFT) -- across diverse and realistic environments. To bridge this gap, we introduce AgentGym-RL, a new framework to train LLM agents for multi-turn interactive decision-making through RL. The framework features a modular and decoupled architecture, ensuring high flexibility and extensibility. It encompasses a wide variety of real-world scenarios, and supports mainstream RL algorithms. Furthermore, we propose ScalingInter-RL, a training approach designed for exploration-exploitation balance and stable RL optimization. In early stages, it emphasizes exploitation by restricting the number of interactions, and gradually shifts towards exploration with larger horizons to encourage diverse problem-solving strategies. In this way, the agent develops more diverse behaviors and is less prone to collapse under long horizons. We perform extensive experiments to validate the stability and effectiveness of both the AgentGym-RL framework and the ScalingInter-RL approach. Our agents match or surpass commercial models on 27 tasks across diverse environments. We offer key insights and will open-source the complete AgentGym-RL framework -- including code and datasets -- to empower the research community in developing the next generation of intelligent agents.
comment: preprint, 39 pages, 16 figures. Project: https://AgentGym-RL.github.io/. Framework and Code: https://github.com/woooodyy/AgentGym, https://github.com/woooodyy/AgentGym-RL
☆ Learning Turbulent Flows with Generative Models: Super-resolution, Forecasting, and Sparse Flow Reconstruction
Neural operators are promising surrogates for dynamical systems but when trained with standard L2 losses they tend to oversmooth fine-scale turbulent structures. Here, we show that combining operator learning with generative modeling overcomes this limitation. We consider three practical turbulent-flow challenges where conventional neural operators fail: spatio-temporal super-resolution, forecasting, and sparse flow reconstruction. For Schlieren jet super-resolution, an adversarially trained neural operator (adv-NO) reduces the energy-spectrum error by 15x while preserving sharp gradients at neural operator-like inference cost. For 3D homogeneous isotropic turbulence, adv-NO trained on only 160 timesteps from a single trajectory forecasts accurately for five eddy-turnover times and offers 114x wall-clock speed-up at inference than the baseline diffusion-based forecasters, enabling near-real-time rollouts. For reconstructing cylinder wake flows from highly sparse Particle Tracking Velocimetry-like inputs, a conditional generative model infers full 3D velocity and pressure fields with correct phase alignment and statistics. These advances enable accurate reconstruction and forecasting at low compute cost, bringing near-real-time analysis and control within reach in experimental and computational fluid mechanics. See our project page: https://vivekoommen.github.io/Gen4Turb/
☆ FinZero: Launching Multi-modal Financial Time Series Forecast with Large Reasoning Model
Financial time series forecasting is both highly significant and challenging. Previous approaches typically standardized time series data before feeding it into forecasting models, but this encoding process inherently leads to a loss of important information. Moreover, past time series models generally require fixed numbers of variables or lookback window lengths, which further limits the scalability of time series forecasting. Besides, the interpretability and the uncertainty in forecasting remain areas requiring further research, as these factors directly impact the reliability and practical value of predictions. To address these issues, we first construct a diverse financial image-text dataset (FVLDB) and develop the Uncertainty-adjusted Group Relative Policy Optimization (UARPO) method to enable the model not only output predictions but also analyze the uncertainty of those predictions. We then proposed FinZero, a multimodal pre-trained model finetuned by UARPO to perform reasoning, prediction, and analytical understanding on the FVLDB financial time series. Extensive experiments validate that FinZero exhibits strong adaptability and scalability. After fine-tuning with UARPO, FinZero achieves an approximate 13.48\% improvement in prediction accuracy over GPT-4o in the high-confidence group, demonstrating the effectiveness of reinforcement learning fine-tuning in multimodal large model, including in financial time series forecasting tasks.
☆ DEQuify your force field: More efficient simulations using deep equilibrium models ICLR-2025
Machine learning force fields show great promise in enabling more accurate molecular dynamics simulations compared to manually derived ones. Much of the progress in recent years was driven by exploiting prior knowledge about physical systems, in particular symmetries under rotation, translation, and reflections. In this paper, we argue that there is another important piece of prior information that, thus fa,r hasn't been explored: Simulating a molecular system is necessarily continuous, and successive states are therefore extremely similar. Our contribution is to show that we can exploit this information by recasting a state-of-the-art equivariant base model as a deep equilibrium model. This allows us to recycle intermediate neural network features from previous time steps, enabling us to improve both accuracy and speed by $10\%-20\%$ on the MD17, MD22, and OC20 200k datasets, compared to the non-DEQ base model. The training is also much more memory efficient, allowing us to train more expressive models on larger systems.
comment: AI4MAT-ICLR-2025 Spotlight https://openreview.net/forum?id=XACVRYePQQ
☆ X-Teaming Evolutionary M2S: Automated Discovery of Multi-turn to Single-turn Jailbreak Templates
Multi-turn-to-single-turn (M2S) compresses iterative red-teaming into one structured prompt, but prior work relied on a handful of manually written templates. We present X-Teaming Evolutionary M2S, an automated framework that discovers and optimizes M2S templates through language-model-guided evolution. The system pairs smart sampling from 12 sources with an LLM-as-judge inspired by StrongREJECT and records fully auditable logs. Maintaining selection pressure by setting the success threshold to $\theta = 0.70$, we obtain five evolutionary generations, two new template families, and 44.8% overall success (103/230) on GPT-4.1. A balanced cross-model panel of 2,500 trials (judge fixed) shows that structural gains transfer but vary by target; two models score zero at the same threshold. We also find a positive coupling between prompt length and score, motivating length-aware judging. Our results demonstrate that structure-level search is a reproducible route to stronger single-turn probes and underscore the importance of threshold calibration and cross-model evaluation. Code, configurations, and artifacts are available at https://github.com/hyunjun1121/M2S-x-teaming.
☆ Explainability of CNN Based Classification Models for Acoustic Signal IEEE
Explainable Artificial Intelligence (XAI) has emerged as a critical tool for interpreting the predictions of complex deep learning models. While XAI has been increasingly applied in various domains within acoustics, its use in bioacoustics, which involves analyzing audio signals from living organisms, remains relatively underexplored. In this paper, we investigate the vocalizations of a bird species with strong geographic variation throughout its range in North America. Audio recordings were converted into spectrogram images and used to train a deep Convolutional Neural Network (CNN) for classification, achieving an accuracy of 94.8\%. To interpret the model's predictions, we applied both model-agnostic (LIME, SHAP) and model-specific (DeepLIFT, Grad-CAM) XAI techniques. These techniques produced different but complementary explanations, and when their explanations were considered together, they provided more complete and interpretable insights into the model's decision-making. This work highlights the importance of using a combination of XAI techniques to improve trust and interoperability, not only in broader acoustics signal analysis but also argues for broader applicability in different domain specific tasks.
comment: Accepted in IEEE ICTAI 2025
☆ The More You Automate, the Less You See: Hidden Pitfalls of AI Scientist Systems
AI scientist systems, capable of autonomously executing the full research workflow from hypothesis generation and experimentation to paper writing, hold significant potential for accelerating scientific discovery. However, the internal workflow of these systems have not been closely examined. This lack of scrutiny poses a risk of introducing flaws that could undermine the integrity, reliability, and trustworthiness of their research outputs. In this paper, we identify four potential failure modes in contemporary AI scientist systems: inappropriate benchmark selection, data leakage, metric misuse, and post-hoc selection bias. To examine these risks, we design controlled experiments that isolate each failure mode while addressing challenges unique to evaluating AI scientist systems. Our assessment of two prominent open-source AI scientist systems reveals the presence of several failures, across a spectrum of severity, which can be easily overlooked in practice. Finally, we demonstrate that access to trace logs and code from the full automated workflow enables far more effective detection of such failures than examining the final paper alone. We thus recommend journals and conferences evaluating AI-generated research to mandate submission of these artifacts alongside the paper to ensure transparency, accountability, and reproducibility.
☆ One Model, Two Minds: A Context-Gated Graph Learner that Recreates Human Biases
We introduce a novel Theory of Mind (ToM) framework inspired by dual-process theories from cognitive science, integrating a fast, habitual graph-based reasoning system (System 1), implemented via graph convolutional networks (GCNs), and a slower, context-sensitive meta-adaptive learning system (System 2), driven by meta-learning techniques. Our model dynamically balances intuitive and deliberative reasoning through a learned context gate mechanism. We validate our architecture on canonical false-belief tasks and systematically explore its capacity to replicate hallmark cognitive biases associated with dual-process theory, including anchoring, cognitive-load fatigue, framing effects, and priming effects. Experimental results demonstrate that our dual-process approach closely mirrors human adaptive behavior, achieves robust generalization to unseen contexts, and elucidates cognitive mechanisms underlying reasoning biases. This work bridges artificial intelligence and cognitive theory, paving the way for AI systems exhibiting nuanced, human-like social cognition and adaptive decision-making capabilities.
comment: 9 pages, 7 figures, 2 tables
☆ TANGO: Traversability-Aware Navigation with Local Metric Control for Topological Goals ICRA 2025
Visual navigation in robotics traditionally relies on globally-consistent 3D maps or learned controllers, which can be computationally expensive and difficult to generalize across diverse environments. In this work, we present a novel RGB-only, object-level topometric navigation pipeline that enables zero-shot, long-horizon robot navigation without requiring 3D maps or pre-trained controllers. Our approach integrates global topological path planning with local metric trajectory control, allowing the robot to navigate towards object-level sub-goals while avoiding obstacles. We address key limitations of previous methods by continuously predicting local trajectory using monocular depth and traversability estimation, and incorporating an auto-switching mechanism that falls back to a baseline controller when necessary. The system operates using foundational models, ensuring open-set applicability without the need for domain-specific fine-tuning. We demonstrate the effectiveness of our method in both simulated environments and real-world tests, highlighting its robustness and deployability. Our approach outperforms existing state-of-the-art methods, offering a more adaptable and effective solution for visual navigation in open-set environments. The source code is made publicly available: https://github.com/podgorki/TANGO.
comment: 9 pages, 5 figures, ICRA 2025
☆ Automatic Failure Attribution and Critical Step Prediction Method for Multi-Agent Systems Based on Causal Inference
Multi-agent systems (MAS) are critical for automating complex tasks, yet their practical deployment is severely hampered by the challenge of failure attribution. Current diagnostic tools, which rely on statistical correlations, are fundamentally inadequate; on challenging benchmarks like Who\&When, state-of-the-art methods achieve less than 15\% accuracy in locating the root-cause step of a failure. To address this critical gap, we introduce the first failure attribution framework for MAS grounded in multi-granularity causal inference. Our approach makes two key technical contributions: (1) a performance causal inversion principle, which correctly models performance dependencies by reversing the data flow in execution logs, combined with Shapley values to accurately assign agent-level blame; (2) a novel causal discovery algorithm, CDC-MAS, that robustly identifies critical failure steps by tackling the non-stationary nature of MAS interaction data. The framework's attribution results directly fuel an automated optimization loop, generating targeted suggestions whose efficacy is validated via counterfactual simulations. Evaluations on the Who\&When and TRAIL benchmarks demonstrate a significant leap in performance. Our method achieves up to 36.2\% step-level accuracy. Crucially, the generated optimizations boost overall task success rates by an average of 22.4\%. This work provides a principled and effective solution for debugging complex agent interactions, paving the way for more reliable and interpretable multi-agent systems.
☆ Skeleton-based sign language recognition using a dual-stream spatio-temporal dynamic graph convolutional network ICASSP
Isolated Sign Language Recognition (ISLR) is challenged by gestures that are morphologically similar yet semantically distinct, a problem rooted in the complex interplay between hand shape and motion trajectory. Existing methods, often relying on a single reference frame, struggle to resolve this geometric ambiguity. This paper introduces Dual-SignLanguageNet (DSLNet), a dual-reference, dual-stream architecture that decouples and models gesture morphology and trajectory in separate, complementary coordinate systems. Our approach utilizes a wrist-centric frame for view-invariant shape analysis and a facial-centric frame for context-aware trajectory modeling. These streams are processed by specialized networks-a topology-aware graph convolution for shape and a Finsler geometry-based encoder for trajectory-and are integrated via a geometry-driven optimal transport fusion mechanism. DSLNet sets a new state-of-the-art, achieving 93.70%, 89.97% and 99.79% accuracy on the challenging WLASL-100, WLASL-300 and LSA64 datasets, respectively, with significantly fewer parameters than competing models.
comment: 5 pages, 3 figures, ICASSP
☆ Robust Belief-State Policy Learning for Quantum Network Routing Under Decoherence and Time-Varying Conditions
This paper presents a feature-based Partially Observable Markov Decision Process (POMDP) framework for quantum network routing, combining belief-state planning with Graph Neural Networks (GNNs) to address partial observability, decoherence, and scalability challenges in dynamic quantum systems. Our approach encodes complex quantum network dynamics, including entanglement degradation and time-varying channel noise, into a low-dimensional feature space, enabling efficient belief updates and scalable policy learning. The core of our framework is a hybrid GNN-POMDP architecture that processes graph-structured representations of entangled links to learn routing policies, coupled with a noise-adaptive mechanism that fuses POMDP belief updates with GNN outputs for robust decision making. We provide a theoretical analysis establishing guarantees for belief convergence, policy improvement, and robustness to noise. Experiments on simulated quantum networks with up to 100 nodes demonstrate significant improvements in routing fidelity and entanglement delivery rates compared to state-of-the-art baselines, particularly under high decoherence and nonstationary conditions.
☆ Architecting Resilient LLM Agents: A Guide to Secure Plan-then-Execute Implementations
As Large Language Model (LLM) agents become increasingly capable of automating complex, multi-step tasks, the need for robust, secure, and predictable architectural patterns is paramount. This paper provides a comprehensive guide to the ``Plan-then-Execute'' (P-t-E) pattern, an agentic design that separates strategic planning from tactical execution. We explore the foundational principles of P-t-E, detailing its core components - the Planner and the Executor - and its architectural advantages in predictability, cost-efficiency, and reasoning quality over reactive patterns like ReAct (Reason + Act). A central focus is placed on the security implications of this design, particularly its inherent resilience to indirect prompt injection attacks by establishing control-flow integrity. We argue that while P-t-E provides a strong foundation, a defense-in-depth strategy is necessary, and we detail essential complementary controls such as the Principle of Least Privilege, task-scoped tool access, and sandboxed code execution. To make these principles actionable, this guide provides detailed implementation blueprints and working code references for three leading agentic frameworks: LangChain (via LangGraph), CrewAI, and AutoGen. Each framework's approach to implementing the P-t-E pattern is analyzed, highlighting unique features like LangGraph's stateful graphs for re-planning, CrewAI's declarative tool scoping for security, and AutoGen's built-in Docker sandboxing. Finally, we discuss advanced patterns, including dynamic re-planning loops, parallel execution with Directed Acyclic Graphs (DAGs), and the critical role of Human-in-the-Loop (HITL) verification, to offer a complete strategic blueprint for architects, developers, and security engineers aiming to build production-grade, resilient, and trustworthy LLM agents.
☆ RoentMod: A Synthetic Chest X-Ray Modification Model to Identify and Correct Image Interpretation Model Shortcuts
Chest radiographs (CXRs) are among the most common tests in medicine. Automated image interpretation may reduce radiologists\' workload and expand access to diagnostic expertise. Deep learning multi-task and foundation models have shown strong performance for CXR interpretation but are vulnerable to shortcut learning, where models rely on spurious and off-target correlations rather than clinically relevant features to make decisions. We introduce RoentMod, a counterfactual image editing framework that generates anatomically realistic CXRs with user-specified, synthetic pathology while preserving unrelated anatomical features of the original scan. RoentMod combines an open-source medical image generator (RoentGen) with an image-to-image modification model without requiring retraining. In reader studies with board-certified radiologists and radiology residents, RoentMod-produced images appeared realistic in 93\% of cases, correctly incorporated the specified finding in 89-99\% of cases, and preserved native anatomy comparable to real follow-up CXRs. Using RoentMod, we demonstrate that state-of-the-art multi-task and foundation models frequently exploit off-target pathology as shortcuts, limiting their specificity. Incorporating RoentMod-generated counterfactual images during training mitigated this vulnerability, improving model discrimination across multiple pathologies by 3-19\% AUC in internal validation and by 1-11\% for 5 out of 6 tested pathologies in external testing. These findings establish RoentMod as a broadly applicable tool for probing and correcting shortcut learning in medical AI. By enabling controlled counterfactual interventions, RoentMod enhances the robustness and interpretability of CXR interpretation models and provides a generalizable strategy for improving foundation models in medical imaging.
comment: 25 + 8 pages, 4 + 7 figures
☆ UOPSL: Unpaired OCT Predilection Sites Learning for Fundus Image Diagnosis Augmentation
Significant advancements in AI-driven multimodal medical image diagnosis have led to substantial improvements in ophthalmic disease identification in recent years. However, acquiring paired multimodal ophthalmic images remains prohibitively expensive. While fundus photography is simple and cost-effective, the limited availability of OCT data and inherent modality imbalance hinder further progress. Conventional approaches that rely solely on fundus or textual features often fail to capture fine-grained spatial information, as each imaging modality provides distinct cues about lesion predilection sites. In this study, we propose a novel unpaired multimodal framework \UOPSL that utilizes extensive OCT-derived spatial priors to dynamically identify predilection sites, enhancing fundus image-based disease recognition. Our approach bridges unpaired fundus and OCTs via extended disease text descriptions. Initially, we employ contrastive learning on a large corpus of unpaired OCT and fundus images while simultaneously learning the predilection sites matrix in the OCT latent space. Through extensive optimization, this matrix captures lesion localization patterns within the OCT feature space. During the fine-tuning or inference phase of the downstream classification task based solely on fundus images, where paired OCT data is unavailable, we eliminate OCT input and utilize the predilection sites matrix to assist in fundus image classification learning. Extensive experiments conducted on 9 diverse datasets across 28 critical categories demonstrate that our framework outperforms existing benchmarks.
comment: BIBM
☆ OTESGN:Optimal Transport Enhanced Syntactic-Semantic Graph Networks for Aspect-Based Sentiment Analysis
Aspect-based sentiment analysis (ABSA) aims to identify aspect terms and determine their sentiment polarity. While dependency trees combined with contextual semantics effectively identify aspect sentiment, existing methods relying on syntax trees and aspect-aware attention struggle to model complex semantic relationships. Their dependence on linear dot-product features fails to capture nonlinear associations, allowing noisy similarity from irrelevant words to obscure key opinion terms. Motivated by Differentiable Optimal Matching, we propose the Optimal Transport Enhanced Syntactic-Semantic Graph Network (OTESGN), which introduces a Syntactic-Semantic Collaborative Attention. It comprises a Syntactic Graph-Aware Attention for mining latent syntactic dependencies and modeling global syntactic topology, as well as a Semantic Optimal Transport Attention designed to uncover fine-grained semantic alignments amidst textual noise, thereby accurately capturing sentiment signals obscured by irrelevant tokens. A Adaptive Attention Fusion module integrates these heterogeneous features, and contrastive regularization further improves robustness. Experiments demonstrate that OTESGN achieves state-of-the-art results, outperforming previous best models by +1.01% F1 on Twitter and +1.30% F1 on Laptop14 benchmarks. Ablative studies and visual analyses corroborate its efficacy in precise localization of opinion words and noise resistance.
Classification of 24-hour movement behaviors from wrist-worn accelerometer data: from handcrafted features to deep learning techniques
Purpose: We compared the performance of deep learning (DL) and classical machine learning (ML) algorithms for the classification of 24-hour movement behavior into sleep, sedentary, light intensity physical activity (LPA), and moderate-to-vigorous intensity physical activity (MVPA). Methods: Open-access data from 151 adults wearing a wrist-worn accelerometer (Axivity-AX3) was used. Participants were randomly divided into training, validation, and test sets (121, 15, and 15 participants each). Raw acceleration signals were segmented into non-overlapping 10-second windows, and then a total of 104 handcrafted features were extracted. Four DL algorithms-Long Short-Term Memory (LSTM), Bidirectional Long Short-Term Memory (BiLSTM), Gated Recurrent Units (GRU), and One-Dimensional Convolutional Neural Network (1D-CNN)-were trained using raw acceleration signals and with handcrafted features extracted from these signals to predict 24-hour movement behavior categories. The handcrafted features were also used to train classical ML algorithms, namely Random Forest (RF), Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost), Logistic Regression (LR), Artificial Neural Network (ANN), and Decision Tree (DT) for classifying 24-hour movement behavior intensities. Results: LSTM, BiLSTM, and GRU showed an overall accuracy of approximately 85% when trained with raw acceleration signals, and 1D-CNN an overall accuracy of approximately 80%. When trained on handcrafted features, the overall accuracy for both DL and classical ML algorithms ranged from 70% to 81%. Overall, there was a higher confusion in classification of MVPA and LPA, compared to sleep and sedentary categories. Conclusion: DL methods with raw acceleration signals had only slightly better performance in predicting 24-hour movement behavior intensities, compared to when DL and classical ML were trained with handcrafted features.
☆ Memorization in Large Language Models in Medicine: Prevalence, Characteristics, and Implications
Large Language Models (LLMs) have demonstrated significant potential in medicine. To date, LLMs have been widely applied to tasks such as diagnostic assistance, medical question answering, and clinical information synthesis. However, a key open question remains: to what extent do LLMs memorize medical training data. In this study, we present the first comprehensive evaluation of memorization of LLMs in medicine, assessing its prevalence (how frequently it occurs), characteristics (what is memorized), volume (how much content is memorized), and potential downstream impacts (how memorization may affect medical applications). We systematically analyze common adaptation scenarios: (1) continued pretraining on medical corpora, (2) fine-tuning on standard medical benchmarks, and (3) fine-tuning on real-world clinical data, including over 13,000 unique inpatient records from Yale New Haven Health System. The results demonstrate that memorization is prevalent across all adaptation scenarios and significantly higher than reported in the general domain. Memorization affects both the development and adoption of LLMs in medicine and can be categorized into three types: beneficial (e.g., accurate recall of clinical guidelines and biomedical references), uninformative (e.g., repeated disclaimers or templated medical document language), and harmful (e.g., regeneration of dataset-specific or sensitive clinical content). Based on these findings, we offer practical recommendations to facilitate beneficial memorization that enhances domain-specific reasoning and factual accuracy, minimize uninformative memorization to promote deeper learning beyond surface-level patterns, and mitigate harmful memorization to prevent the leakage of sensitive or identifiable patient information.
☆ No-Knowledge Alarms for Misaligned LLMs-as-Judges
If we use LLMs as judges to evaluate the complex decisions of other LLMs, who or what monitors the judges? Infinite monitoring chains are inevitable whenever we do not know the ground truth of the decisions by experts and we do not want to trust them. One way to ameliorate our evaluation uncertainty is to exploit the use of logical consistency between disagreeing experts. By observing how LLM judges agree and disagree while grading other LLMs, we can compute the only possible evaluations of their grading ability. For example, if two LLM judges disagree on which tasks a third one completed correctly, they cannot both be 100\% correct in their judgments. This logic can be formalized as a Linear Programming problem in the space of integer response counts for any finite test. We use it here to develop no-knowledge alarms for misaligned LLM judges. The alarms can detect, with no false positives, that at least one member or more of an ensemble of judges are violating a user specified grading ability requirement.
comment: 7 pages, 1 figure
☆ Interpretability as Alignment: Making Internal Understanding a Design Principle
Large neural models are increasingly deployed in high-stakes settings, raising concerns about whether their behavior reliably aligns with human values. Interpretability provides a route to internal transparency by revealing the computations that drive outputs. We argue that interpretability especially mechanistic approaches should be treated as a design principle for alignment, not an auxiliary diagnostic tool. Post-hoc methods such as LIME or SHAP offer intuitive but correlational explanations, while mechanistic techniques like circuit tracing or activation patching yield causal insight into internal failures, including deceptive or misaligned reasoning that behavioral methods like RLHF, red teaming, or Constitutional AI may overlook. Despite these advantages, interpretability faces challenges of scalability, epistemic uncertainty, and mismatches between learned representations and human concepts. Our position is that progress on safe and trustworthy AI will depend on making interpretability a first-class objective of AI research and development, ensuring that systems are not only effective but also auditable, transparent, and aligned with human intent.
comment: Pre-Print
☆ MESH -- Understanding Videos Like Human: Measuring Hallucinations in Large Video Models
Large Video Models (LVMs) build on the semantic capabilities of Large Language Models (LLMs) and vision modules by integrating temporal information to better understand dynamic video content. Despite their progress, LVMs are prone to hallucinations-producing inaccurate or irrelevant descriptions. Current benchmarks for video hallucination depend heavily on manual categorization of video content, neglecting the perception-based processes through which humans naturally interpret videos. We introduce MESH, a benchmark designed to evaluate hallucinations in LVMs systematically. MESH uses a Question-Answering framework with binary and multi-choice formats incorporating target and trap instances. It follows a bottom-up approach, evaluating basic objects, coarse-to-fine subject features, and subject-action pairs, aligning with human video understanding. We demonstrate that MESH offers an effective and comprehensive approach for identifying hallucinations in videos. Our evaluations show that while LVMs excel at recognizing basic objects and features, their susceptibility to hallucinations increases markedly when handling fine details or aligning multiple actions involving various subjects in longer videos.
☆ Agents of Discovery
The substantial data volumes encountered in modern particle physics and other domains of fundamental physics research allow (and require) the use of increasingly complex data analysis tools and workflows. While the use of machine learning (ML) tools for data analysis has recently proliferated, these tools are typically special-purpose algorithms that rely, for example, on encoded physics knowledge to reach optimal performance. In this work, we investigate a new and orthogonal direction: Using recent progress in large language models (LLMs) to create a team of agents -- instances of LLMs with specific subtasks -- that jointly solve data analysis-based research problems in a way similar to how a human researcher might: by creating code to operate standard tools and libraries (including ML systems) and by building on results of previous iterations. If successful, such agent-based systems could be deployed to automate routine analysis components to counteract the increasing complexity of modern tool chains. To investigate the capabilities of current-generation commercial LLMs, we consider the task of anomaly detection via the publicly available and highly-studied LHC Olympics dataset. Several current models by OpenAI (GPT-4o, o4-mini, GPT-4.1, and GPT-5) are investigated and their stability tested. Overall, we observe the capacity of the agent-based system to solve this data analysis problem. The best agent-created solutions mirror the performance of human state-of-the-art results.
☆ AutoStub: Genetic Programming-Based Stub Creation for Symbolic Execution
Symbolic execution is a powerful technique for software testing, but suffers from limitations when encountering external functions, such as native methods or third-party libraries. Existing solutions often require additional context, expensive SMT solvers, or manual intervention to approximate these functions through symbolic stubs. In this work, we propose a novel approach to automatically generate symbolic stubs for external functions during symbolic execution that leverages Genetic Programming. When the symbolic executor encounters an external function, AutoStub generates training data by executing the function on randomly generated inputs and collecting the outputs. Genetic Programming then derives expressions that approximate the behavior of the function, serving as symbolic stubs. These automatically generated stubs allow the symbolic executor to continue the analysis without manual intervention, enabling the exploration of program paths that were previously intractable. We demonstrate that AutoStub can automatically approximate external functions with over 90% accuracy for 55% of the functions evaluated, and can infer language-specific behaviors that reveal edge cases crucial for software testing.
comment: 2025 HUMIES finalist
☆ FMT$^{x}$: An Efficient and Asymptotically Optimal Extension of the Fast Marching Tree for Dynamic Replanning
Path planning in dynamic environments remains a core challenge in robotics, especially as autonomous systems are deployed in unpredictable spaces such as warehouses and public roads. While algorithms like Fast Marching Tree (FMT$^{*}$) offer asymptotically optimal solutions in static settings, their single-pass design prevents path revisions which are essential for real-time adaptation. On the other hand, full replanning is often too computationally expensive. This paper introduces FMT$^{x}$, an extension of the Fast Marching Tree algorithm that enables efficient and consistent replanning in dynamic environments. We revisit the neighbor selection rule of FMT$^{*}$ and demonstrate that a minimal change overcomes its single-pass limitation, enabling the algorithm to update cost-to-come values upon discovering better connections without sacrificing asymptotic optimality or computational efficiency. By maintaining a cost-ordered priority queue and applying a selective update condition that uses an expanding neighbor to identify and trigger the re-evaluation of any node with a potentially suboptimal path, FMT$^{x}$ ensures that suboptimal routes are efficiently repaired as the environment evolves. This targeted strategy preserves the inherent efficiency of FMT$^{*}$ while enabling robust adaptation to changes in obstacle configuration. FMT$^{x}$ is proven to recover an asymptotically optimal solution after environmental changes. Experimental results demonstrate that FMT$^{x}$ outperforms the influential replanner RRT$^{x}$, reacting more swiftly to dynamic events with lower computational overhead and thus offering a more effective solution for real-time robotic navigation in unpredictable worlds.
comment: 35 pages, 8 figures, 2 tables, submitted to the International Journal of Robotics Research (IJRR)
☆ Variational Rank Reduction Autoencoders for Generative
Generative thermal design for complex geometries is fundamental in many areas of engineering, yet it faces two main challenges: the high computational cost of high-fidelity simulations and the limitations of conventional generative models. Approaches such as autoencoders (AEs) and variational autoencoders (VAEs) often produce unstructured latent spaces with discontinuities, which restricts their capacity to explore designs and generate physically consistent solutions. To address these limitations, we propose a hybrid framework that combines Variational Rank-Reduction Autoencoders (VRRAEs) with Deep Operator Networks (DeepONets). The VRRAE introduces a truncated SVD within the latent space, leading to continuous, interpretable, and well-structured representations that mitigate posterior collapse and improve geometric reconstruction. The DeepONet then exploits this compact latent encoding in its branch network, together with spatial coordinates in the trunk network, to predict temperature gradients efficiently and accurately. This hybrid approach not only enhances the quality of generated geometries and the accuracy of gradient prediction, but also provides a substantial advantage in inference efficiency compared to traditional numerical solvers. Overall, the study underscores the importance of structured latent representations for operator learning and highlights the potential of combining generative models and operator networks in thermal design and broader engineering applications.
☆ TCPO: Thought-Centric Preference Optimization for Effective Embodied Decision-making
Using effective generalization capabilities of vision language models (VLMs) in context-specific dynamic tasks for embodied artificial intelligence remains a significant challenge. Although supervised fine-tuned models can better align with the real physical world, they still exhibit sluggish responses and hallucination issues in dynamically changing environments, necessitating further alignment. Existing post-SFT methods, reliant on reinforcement learning and chain-of-thought (CoT) approaches, are constrained by sparse rewards and action-only optimization, resulting in low sample efficiency, poor consistency, and model degradation. To address these issues, this paper proposes Thought-Centric Preference Optimization (TCPO) for effective embodied decision-making. Specifically, TCPO introduces a stepwise preference-based optimization approach, transforming sparse reward signals into richer step sample pairs. It emphasizes the alignment of the model's intermediate reasoning process, mitigating the problem of model degradation. Moreover, by incorporating Action Policy Consistency Constraint (APC), it further imposes consistency constraints on the model output. Experiments in the ALFWorld environment demonstrate an average success rate of 26.67%, achieving a 6% improvement over RL4VLM and validating the effectiveness of our approach in mitigating model degradation after fine-tuning. These results highlight the potential of integrating preference-based learning techniques with CoT processes to enhance the decision-making capabilities of vision-language models in embodied agents.
☆ HumanAgencyBench: Scalable Evaluation of Human Agency Support in AI Assistants
As humans delegate more tasks and decisions to artificial intelligence (AI), we risk losing control of our individual and collective futures. Relatively simple algorithmic systems already steer human decision-making, such as social media feed algorithms that lead people to unintentionally and absent-mindedly scroll through engagement-optimized content. In this paper, we develop the idea of human agency by integrating philosophical and scientific theories of agency with AI-assisted evaluation methods: using large language models (LLMs) to simulate and validate user queries and to evaluate AI responses. We develop HumanAgencyBench (HAB), a scalable and adaptive benchmark with six dimensions of human agency based on typical AI use cases. HAB measures the tendency of an AI assistant or agent to Ask Clarifying Questions, Avoid Value Manipulation, Correct Misinformation, Defer Important Decisions, Encourage Learning, and Maintain Social Boundaries. We find low-to-moderate agency support in contemporary LLM-based assistants and substantial variation across system developers and dimensions. For example, while Anthropic LLMs most support human agency overall, they are the least supportive LLMs in terms of Avoid Value Manipulation. Agency support does not appear to consistently result from increasing LLM capabilities or instruction-following behavior (e.g., RLHF), and we encourage a shift towards more robust safety and alignment targets.
☆ Send to which account? Evaluation of an LLM-based Scambaiting System
Scammers are increasingly harnessing generative AI(GenAI) technologies to produce convincing phishing content at scale, amplifying financial fraud and undermining public trust. While conventional defenses, such as detection algorithms, user training, and reactive takedown efforts remain important, they often fall short in dismantling the infrastructure scammers depend on, including mule bank accounts and cryptocurrency wallets. To bridge this gap, a proactive and emerging strategy involves using conversational honeypots to engage scammers and extract actionable threat intelligence. This paper presents the first large-scale, real-world evaluation of a scambaiting system powered by large language models (LLMs). Over a five-month deployment, the system initiated over 2,600 engagements with actual scammers, resulting in a dataset of more than 18,700 messages. It achieved an Information Disclosure Rate (IDR) of approximately 32%, successfully extracting sensitive financial information such as mule accounts. Additionally, the system maintained a Human Acceptance Rate (HAR) of around 70%, indicating strong alignment between LLM-generated responses and human operator preferences. Alongside these successes, our analysis reveals key operational challenges. In particular, the system struggled with engagement takeoff: only 48.7% of scammers responded to the initial seed message sent by defenders. These findings highlight the need for further refinement and provide actionable insights for advancing the design of automated scambaiting systems.
☆ A Structured Review of Underwater Object Detection Challenges and Solutions: From Traditional to Large Vision Language Models
Underwater object detection (UOD) is vital to diverse marine applications, including oceanographic research, underwater robotics, and marine conservation. However, UOD faces numerous challenges that compromise its performance. Over the years, various methods have been proposed to address these issues, but they often fail to fully capture the complexities of underwater environments. This review systematically categorizes UOD challenges into five key areas: Image quality degradation, target-related issues, data-related challenges, computational and processing constraints, and limitations in detection methodologies. To address these challenges, we analyze the progression from traditional image processing and object detection techniques to modern approaches. Additionally, we explore the potential of large vision-language models (LVLMs) in UOD, leveraging their multi-modal capabilities demonstrated in other domains. We also present case studies, including synthetic dataset generation using DALL-E 3 and fine-tuning Florence-2 LVLM for UOD. This review identifies three key insights: (i) Current UOD methods are insufficient to fully address challenges like image degradation and small object detection in dynamic underwater environments. (ii) Synthetic data generation using LVLMs shows potential for augmenting datasets but requires further refinement to ensure realism and applicability. (iii) LVLMs hold significant promise for UOD, but their real-time application remains under-explored, requiring further research on optimization techniques.
comment: 72 Pages, 11 Figures
Prompt-Driven Image Analysis with Multimodal Generative AI: Detection, Segmentation, Inpainting, and Interpretation
Prompt-driven image analysis converts a single natural-language instruction into multiple steps: locate, segment, edit, and describe. We present a practical case study of a unified pipeline that combines open-vocabulary detection, promptable segmentation, text-conditioned inpainting, and vision-language description into a single workflow. The system works end to end from a single prompt, retains intermediate artifacts for transparent debugging (such as detections, masks, overlays, edited images, and before and after composites), and provides the same functionality through an interactive UI and a scriptable CLI for consistent, repeatable runs. We highlight integration choices that reduce brittleness, including threshold adjustments, mask inspection with light morphology, and resource-aware defaults. In a small, single-word prompt segment, detection and segmentation produced usable masks in over 90% of cases with an accuracy above 85% based on our criteria. On a high-end GPU, inpainting makes up 60 to 75% of total runtime under typical guidance and sampling settings, which highlights the need for careful tuning. The study offers implementation-guided advice on thresholds, mask tightness, and diffusion parameters, and details version pinning, artifact logging, and seed control to support replay. Our contribution is a transparent, reliable pattern for assembling modern vision and multimodal models behind a single prompt, with clear guardrails and operational practices that improve reliability in object replacement, scene augmentation, and removal.
comment: 14 pages. Preprint
☆ Joint Learning using Mixture-of-Expert-Based Representation for Enhanced Speech Generation and Robust Emotion Recognition
Speech emotion recognition (SER) plays a critical role in building emotion-aware speech systems, but its performance degrades significantly under noisy conditions. Although speech enhancement (SE) can improve robustness, it often introduces artifacts that obscure emotional cues and adds computational overhead to the pipeline. Multi-task learning (MTL) offers an alternative by jointly optimizing SE and SER tasks. However, conventional shared-backbone models frequently suffer from gradient interference and representational conflicts between tasks. To address these challenges, we propose the Sparse Mixture-of-Experts Representation Integration Technique (Sparse MERIT), a flexible MTL framework that applies frame-wise expert routing over self-supervised speech representations. Sparse MERIT incorporates task-specific gating networks that dynamically select from a shared pool of experts for each frame, enabling parameter-efficient and task-adaptive representation learning. Experiments on the MSP-Podcast corpus show that Sparse MERIT consistently outperforms baseline models on both SER and SE tasks. Under the most challenging condition of -5 dB signal-to-noise ratio (SNR), Sparse MERIT improves SER F1-macro by an average of 12.0% over a baseline relying on a SE pre-processing strategy, and by 3.4% over a naive MTL baseline, with statistical significance on unseen noise conditions. For SE, Sparse MERIT improves segmental SNR (SSNR) by 28.2% over the SE pre-processing baseline and by 20.0% over the naive MTL baseline. These results demonstrate that Sparse MERIT provides robust and generalizable performance for both emotion recognition and enhancement tasks in noisy environments.
☆ Adversarial Attacks Against Automated Fact-Checking: A Survey EMNLP 2025
In an era where misinformation spreads freely, fact-checking (FC) plays a crucial role in verifying claims and promoting reliable information. While automated fact-checking (AFC) has advanced significantly, existing systems remain vulnerable to adversarial attacks that manipulate or generate claims, evidence, or claim-evidence pairs. These attacks can distort the truth, mislead decision-makers, and ultimately undermine the reliability of FC models. Despite growing research interest in adversarial attacks against AFC systems, a comprehensive, holistic overview of key challenges remains lacking. These challenges include understanding attack strategies, assessing the resilience of current models, and identifying ways to enhance robustness. This survey provides the first in-depth review of adversarial attacks targeting FC, categorizing existing attack methodologies and evaluating their impact on AFC systems. Additionally, we examine recent advancements in adversary-aware defenses and highlight open research questions that require further exploration. Our findings underscore the urgent need for resilient FC frameworks capable of withstanding adversarial manipulations in pursuit of preserving high verification accuracy.
comment: Accepted to the Main Conference of EMNLP 2025. Resources are available at https://github.com/FanzhenLiu/Awesome-Automated-Fact-Checking-Attacks
☆ Adapting Vision-Language Models for Neutrino Event Classification in High-Energy Physics
Recent advances in Large Language Models (LLMs) have demonstrated their remarkable capacity to process and reason over structured and unstructured data modalities beyond natural language. In this work, we explore the applications of Vision Language Models (VLMs), specifically a fine-tuned variant of LLaMa 3.2, to the task of identifying neutrino interactions in pixelated detector data from high-energy physics (HEP) experiments. We benchmark this model against a state-of-the-art convolutional neural network (CNN) architecture, similar to those used in the NOvA and DUNE experiments, which have achieved high efficiency and purity in classifying electron and muon neutrino events. Our evaluation considers both the classification performance and interpretability of the model predictions. We find that VLMs can outperform CNNs, while also providing greater flexibility in integrating auxiliary textual or semantic information and offering more interpretable, reasoning-based predictions. This work highlights the potential of VLMs as a general-purpose backbone for physics event classification, due to their high performance, interpretability, and generalizability, which opens new avenues for integrating multimodal reasoning in experimental neutrino physics.
☆ DSFL: A Dual-Server Byzantine-Resilient Federated Learning Framework via Group-Based Secure Aggregation
Federated Learning (FL) enables decentralized model training without sharing raw data, offering strong privacy guarantees. However, existing FL protocols struggle to defend against Byzantine participants, maintain model utility under non-independent and identically distributed (non-IID) data, and remain lightweight for edge devices. Prior work either assumes trusted hardware, uses expensive cryptographic tools, or fails to address privacy and robustness simultaneously. We propose DSFL, a Dual-Server Byzantine-Resilient Federated Learning framework that addresses these limitations using a group-based secure aggregation approach. Unlike LSFL, which assumes non-colluding semi-honest servers, DSFL removes this dependency by revealing a key vulnerability: privacy leakage through client-server collusion. DSFL introduces three key innovations: (1) a dual-server secure aggregation protocol that protects updates without encryption or key exchange, (2) a group-wise credit-based filtering mechanism to isolate Byzantine clients based on deviation scores, and (3) a dynamic reward-penalty system for enforcing fair participation. DSFL is evaluated on MNIST, CIFAR-10, and CIFAR-100 under up to 30 percent Byzantine participants in both IID and non-IID settings. It consistently outperforms existing baselines, including LSFL, homomorphic encryption methods, and differential privacy approaches. For example, DSFL achieves 97.15 percent accuracy on CIFAR-10 and 68.60 percent on CIFAR-100, while FedAvg drops to 9.39 percent under similar threats. DSFL remains lightweight, requiring only 55.9 ms runtime and 1088 KB communication per round.
☆ Spherical Brownian Bridge Diffusion Models for Conditional Cortical Thickness Forecasting
Accurate forecasting of individualized, high-resolution cortical thickness (CTh) trajectories is essential for detecting subtle cortical changes, providing invaluable insights into neurodegenerative processes and facilitating earlier and more precise intervention strategies. However, CTh forecasting is a challenging task due to the intricate non-Euclidean geometry of the cerebral cortex and the need to integrate multi-modal data for subject-specific predictions. To address these challenges, we introduce the Spherical Brownian Bridge Diffusion Model (SBDM). Specifically, we propose a bidirectional conditional Brownian bridge diffusion process to forecast CTh trajectories at the vertex level of registered cortical surfaces. Our technical contribution includes a new denoising model, the conditional spherical U-Net (CoS-UNet), which combines spherical convolutions and dense cross-attention to integrate cortical surfaces and tabular conditions seamlessly. Compared to previous approaches, SBDM achieves significantly reduced prediction errors, as demonstrated by our experiments based on longitudinal datasets from the ADNI and OASIS. Additionally, we demonstrate SBDM's ability to generate individual factual and counterfactual CTh trajectories, offering a novel framework for exploring hypothetical scenarios of cortical development.
☆ Sparse BEV Fusion with Self-View Consistency for Multi-View Detection and Tracking
Multi-View Multi-Object Tracking (MVMOT) is essential for applications such as surveillance, autonomous driving, and sports analytics. However, maintaining consistent object identities across multiple cameras remains challenging due to viewpoint changes, lighting variations, and occlusions, which often lead to tracking errors.Recent methods project features from multiple cameras into a unified Bird's-Eye-View (BEV) space to improve robustness against occlusion. However, this projection introduces feature distortion and non-uniform density caused by variations in object scale with distance. These issues degrade the quality of the fused representation and reduce detection and tracking accuracy.To address these problems, we propose SCFusion, a framework that combines three techniques to improve multi-view feature integration. First, it applies a sparse transformation to avoid unnatural interpolation during projection. Next, it performs density-aware weighting to adaptively fuse features based on spatial confidence and camera distance. Finally, it introduces a multi-view consistency loss that encourages each camera to learn discriminative features independently before fusion.Experiments show that SCFusion achieves state-of-the-art performance, reaching an IDF1 score of 95.9% on WildTrack and a MODP of 89.2% on MultiviewX, outperforming the baseline method TrackTacular. These results demonstrate that SCFusion effectively mitigates the limitations of conventional BEV projection and provides a robust and accurate solution for multi-view object detection and tracking.
☆ An Iterative LLM Framework for SIBT utilizing RAG-based Adaptive Weight Optimization
Seed implant brachytherapy (SIBT) is an effective cancer treatment modality; however, clinical planning often relies on manual adjustment of objective function weights, leading to inefficiencies and suboptimal results. This study proposes an adaptive weight optimization framework for SIBT planning, driven by large language models (LLMs). A locally deployed DeepSeek-R1 LLM is integrated with an automatic planning algorithm in an iterative loop. Starting with fixed weights, the LLM evaluates plan quality and recommends new weights in the next iteration. This process continues until convergence criteria are met, after which the LLM conducts a comprehensive evaluation to identify the optimal plan. A clinical knowledge base, constructed and queried via retrieval-augmented generation (RAG), enhances the model's domain-specific reasoning. The proposed method was validated on 23 patient cases, showing that the LLM-assisted approach produces plans that are comparable to or exceeding clinically approved and fixed-weight plans, in terms of dose homogeneity for the clinical target volume (CTV) and sparing of organs at risk (OARs). The study demonstrates the potential use of LLMs in SIBT planning automation.
☆ Semantic Causality-Aware Vision-Based 3D Occupancy Prediction ICCV 2025
Vision-based 3D semantic occupancy prediction is a critical task in 3D vision that integrates volumetric 3D reconstruction with semantic understanding. Existing methods, however, often rely on modular pipelines. These modules are typically optimized independently or use pre-configured inputs, leading to cascading errors. In this paper, we address this limitation by designing a novel causal loss that enables holistic, end-to-end supervision of the modular 2D-to-3D transformation pipeline. Grounded in the principle of 2D-to-3D semantic causality, this loss regulates the gradient flow from 3D voxel representations back to the 2D features. Consequently, it renders the entire pipeline differentiable, unifying the learning process and making previously non-trainable components fully learnable. Building on this principle, we propose the Semantic Causality-Aware 2D-to-3D Transformation, which comprises three components guided by our causal loss: Channel-Grouped Lifting for adaptive semantic mapping, Learnable Camera Offsets for enhanced robustness against camera perturbations, and Normalized Convolution for effective feature propagation. Extensive experiments demonstrate that our method achieves state-of-the-art performance on the Occ3D benchmark, demonstrating significant robustness to camera perturbations and improved 2D-to-3D semantic consistency.
comment: ICCV 2025
☆ Efficient Decoding Methods for Language Models on Encrypted Data
Large language models (LLMs) power modern AI applications, but processing sensitive data on untrusted servers raises privacy concerns. Homomorphic encryption (HE) enables computation on encrypted data for secure inference. However, neural text generation requires decoding methods like argmax and sampling, which are non-polynomial and thus computationally expensive under encryption, creating a significant performance bottleneck. We introduce cutmax, an HE-friendly argmax algorithm that reduces ciphertext operations compared to prior methods, enabling practical greedy decoding under encryption. We also propose the first HE-compatible nucleus (top-p) sampling method, leveraging cutmax for efficient stochastic decoding with provable privacy guarantees. Both techniques are polynomial, supporting efficient inference in privacy-preserving settings. Moreover, their differentiability facilitates gradient-based sequence-level optimization as a polynomial alternative to straight-through estimators. We further provide strong theoretical guarantees for cutmax, proving it converges globally to a unique two-level fixed point, independent of the input values beyond the identity of the maximizer, which explains its rapid convergence in just a few iterations. Evaluations on realistic LLM outputs show latency reductions of 24x-35x over baselines, advancing secure text generation.
☆ Low-Resource Fine-Tuning for Multi-Task Structured Information Extraction with a Billion-Parameter Instruction-Tuned Model
Deploying large language models (LLMs) for structured data extraction in domains such as financial compliance reporting, legal document analytics, and multilingual knowledge base construction is often impractical for smaller teams due to the high cost of running large architectures and the difficulty of preparing large, high-quality datasets. Most recent instruction-tuning studies focus on seven-billion-parameter or larger models, leaving limited evidence on whether much smaller models can work reliably under low-resource, multi-task conditions. This work presents ETLCH, a billion-parameter LLaMA-based model fine-tuned with low-rank adaptation on only a few hundred to one thousand samples per task for JSON extraction, knowledge graph extraction, and named entity recognition. Despite its small scale, ETLCH outperforms strong baselines across most evaluation metrics, with substantial gains observed even at the lowest data scale. These findings demonstrate that well-tuned small models can deliver stable and accurate structured outputs at a fraction of the computational cost, enabling cost-effective and reliable information extraction pipelines in resource-constrained environments.
comment: 13 pages, 8 figures, includes experiments on JSON extraction, knowledge graph extraction, and NER
☆ Co-Investigator AI: The Rise of Agentic AI for Smarter, Trustworthy AML Compliance Narratives
Generating regulatorily compliant Suspicious Activity Report (SAR) remains a high-cost, low-scalability bottleneck in Anti-Money Laundering (AML) workflows. While large language models (LLMs) offer promising fluency, they suffer from factual hallucination, limited crime typology alignment, and poor explainability -- posing unacceptable risks in compliance-critical domains. This paper introduces Co-Investigator AI, an agentic framework optimized to produce Suspicious Activity Reports (SARs) significantly faster and with greater accuracy than traditional methods. Drawing inspiration from recent advances in autonomous agent architectures, such as the AI Co-Scientist, our approach integrates specialized agents for planning, crime type detection, external intelligence gathering, and compliance validation. The system features dynamic memory management, an AI-Privacy Guard layer for sensitive data handling, and a real-time validation agent employing the Agent-as-a-Judge paradigm to ensure continuous narrative quality assurance. Human investigators remain firmly in the loop, empowered to review and refine drafts in a collaborative workflow that blends AI efficiency with domain expertise. We demonstrate the versatility of Co-Investigator AI across a range of complex financial crime scenarios, highlighting its ability to streamline SAR drafting, align narratives with regulatory expectations, and enable compliance teams to focus on higher-order analytical work. This approach marks the beginning of a new era in compliance reporting -- bringing the transformative benefits of AI agents to the core of regulatory processes and paving the way for scalable, reliable, and transparent SAR generation.
So let's replace this phrase with insult... Lessons learned from generation of toxic texts with LLMs
Modern Large Language Models (LLMs) are excellent at generating synthetic data. However, their performance in sensitive domains such as text detoxification has not received proper attention from the scientific community. This paper explores the possibility of using LLM-generated synthetic toxic data as an alternative to human-generated data for training models for detoxification. Using Llama 3 and Qwen activation-patched models, we generated synthetic toxic counterparts for neutral texts from ParaDetox and SST-2 datasets. Our experiments show that models fine-tuned on synthetic data consistently perform worse than those trained on human data, with a drop in performance of up to 30% in joint metrics. The root cause is identified as a critical lexical diversity gap: LLMs generate toxic content using a small, repetitive vocabulary of insults that fails to capture the nuances and variety of human toxicity. These findings highlight the limitations of current LLMs in this domain and emphasize the continued importance of diverse, human-annotated data for building robust detoxification systems.
☆ Automatic Detection of Inauthentic Templated Responses in English Language Assessments
In high-stakes English Language Assessments, low-skill test takers may employ memorized materials called ``templates'' on essay questions to ``game'' or fool the automated scoring system. In this study, we introduce the automated detection of inauthentic, templated responses (AuDITR) task, describe a machine learning-based approach to this task and illustrate the importance of regularly updating these models in production.
comment: Accepted to National Council on Measurement in Education (NCME) 2025 Annual Meeting
☆ Grasp Like Humans: Learning Generalizable Multi-Fingered Grasping from Human Proprioceptive Sensorimotor Integration IEEE
Tactile and kinesthetic perceptions are crucial for human dexterous manipulation, enabling reliable grasping of objects via proprioceptive sensorimotor integration. For robotic hands, even though acquiring such tactile and kinesthetic feedback is feasible, establishing a direct mapping from this sensory feedback to motor actions remains challenging. In this paper, we propose a novel glove-mediated tactile-kinematic perception-prediction framework for grasp skill transfer from human intuitive and natural operation to robotic execution based on imitation learning, and its effectiveness is validated through generalized grasping tasks, including those involving deformable objects. Firstly, we integrate a data glove to capture tactile and kinesthetic data at the joint level. The glove is adaptable for both human and robotic hands, allowing data collection from natural human hand demonstrations across different scenarios. It ensures consistency in the raw data format, enabling evaluation of grasping for both human and robotic hands. Secondly, we establish a unified representation of multi-modal inputs based on graph structures with polar coordinates. We explicitly integrate the morphological differences into the designed representation, enhancing the compatibility across different demonstrators and robotic hands. Furthermore, we introduce the Tactile-Kinesthetic Spatio-Temporal Graph Networks (TK-STGN), which leverage multidimensional subgraph convolutions and attention-based LSTM layers to extract spatio-temporal features from graph inputs to predict node-based states for each hand joint. These predictions are then mapped to final commands through a force-position hybrid mapping.
comment: 20 pages, 19 figures, accepted by IEEE Transactions on Robotics
☆ Toward Subtrait-Level Model Explainability in Automated Writing Evaluation
Subtrait (latent-trait components) assessment presents a promising path toward enhancing transparency of automated writing scores. We prototype explainability and subtrait scoring with generative language models and show modest correlation between human subtrait and trait scores, and between automated and human subtrait scores. Our approach provides details to demystify scores for educators and students.
comment: Accepted to National Council on Measurement in Education (NCME) 2025 Annual Meeting
☆ Accelerating Mixture-of-Expert Inference with Adaptive Expert Split Mechanism
Mixture-of-Experts (MoE) has emerged as a promising architecture for modern large language models (LLMs). However, massive parameters impose heavy GPU memory (i.e., VRAM) demands, hindering the widespread adoption of MoE LLMs. Offloading the expert parameters to CPU RAM offers an effective way to alleviate the VRAM requirements for MoE inference. Existing approaches typically cache a small subset of experts in VRAM and dynamically prefetch experts from RAM during inference, leading to significant degradation in inference speed due to the poor cache hit rate and substantial expert loading latency. In this work, we propose MoEpic, an efficient MoE inference system with a novel expert split mechanism. Specifically, each expert is vertically divided into two segments: top and bottom. MoEpic caches the top segment of hot experts, so that more experts will be stored under the limited VRAM budget, thereby improving the cache hit rate. During each layer's inference, MoEpic predicts and prefetches the activated experts for the next layer. Since the top segments of cached experts are exempt from fetching, the loading time is reduced, which allows efficient transfer-computation overlap. Nevertheless, the performance of MoEpic critically depends on the cache configuration (i.e., each layer's VRAM budget and expert split ratio). To this end, we propose a divide-and-conquer algorithm based on fixed-point iteration for adaptive cache configuration. Extensive experiments on popular MoE LLMs demonstrate that MoEpic can save about half of the GPU cost, while lowering the inference latency by about 37.51%-65.73% compared to the baselines.
☆ Retrieval-Augmented VLMs for Multimodal Melanoma Diagnosis MICCAI
Accurate and early diagnosis of malignant melanoma is critical for improving patient outcomes. While convolutional neural networks (CNNs) have shown promise in dermoscopic image analysis, they often neglect clinical metadata and require extensive preprocessing. Vision-language models (VLMs) offer a multimodal alternative but struggle to capture clinical specificity when trained on general-domain data. To address this, we propose a retrieval-augmented VLM framework that incorporates semantically similar patient cases into the diagnostic prompt. Our method enables informed predictions without fine-tuning and significantly improves classification accuracy and error correction over conventional baselines. These results demonstrate that retrieval-augmented prompting provides a robust strategy for clinical decision support.
comment: Medical Image Computing and Computer-Assisted Intervention (MICCAI) ISIC Skin Image Analysis Workshop (MICCAI ISIC) 2025; 10 pages
☆ Accelerating Reinforcement Learning Algorithms Convergence using Pre-trained Large Language Models as Tutors With Advice Reusing
Reinforcement Learning (RL) algorithms often require long training to become useful, especially in complex environments with sparse rewards. While techniques like reward shaping and curriculum learning exist to accelerate training, these are often extremely specific and require the developer's professionalism and dedicated expertise in the problem's domain. Tackling this challenge, in this study, we explore the effectiveness of pre-trained Large Language Models (LLMs) as tutors in a student-teacher architecture with RL algorithms, hypothesizing that LLM-generated guidance allows for faster convergence. In particular, we explore the effectiveness of reusing the LLM's advice on the RL's convergence dynamics. Through an extensive empirical examination, which included 54 configurations, varying the RL algorithm (DQN, PPO, A2C), LLM tutor (Llama, Vicuna, DeepSeek), and environment (Blackjack, Snake, Connect Four), our results demonstrate that LLM tutoring significantly accelerates RL convergence while maintaining comparable optimal performance. Furthermore, the advice reuse mechanism shows a further improvement in training duration but also results in less stable convergence dynamics. Our findings suggest that LLM tutoring generally improves convergence, and its effectiveness is sensitive to the specific task, RL algorithm, and LLM model combination.
☆ Leveraging AI Agents for Autonomous Networks: A Reference Architecture and Empirical Studies
The evolution toward Level 4 (L4) Autonomous Networks (AN) represents a strategic inflection point in telecommunications, where networks must transcend reactive automation to achieve genuine cognitive capabilities--fulfilling TM Forum's vision of self-configuring, self-healing, and self-optimizing systems that deliver zero-wait, zero-touch, and zero-fault services. This work bridges the gap between architectural theory and operational reality by implementing Joseph Sifakis's AN Agent reference architecture in a functional cognitive system, deploying coordinated proactive-reactive runtimes driven by hybrid knowledge representation. Through an empirical case study of a Radio Access Network (RAN) Link Adaptation (LA) Agent, we validate this framework's transformative potential: demonstrating sub-10 ms real-time control in 5G NR sub-6 GHz while achieving 6% higher downlink throughput than Outer Loop Link Adaptation (OLLA) algorithms and 67% Block Error Rate (BLER) reduction for ultra-reliable services through dynamic Modulation and Coding Scheme (MCS) optimization. These improvements confirm the architecture's viability in overcoming traditional autonomy barriers and advancing critical L4-enabling capabilities toward next-generation objectives.
comment: 7 pages, 5 figures. This manuscript is a preprint
☆ Game-Theoretic Resilience Framework for Cyber-Physical Microgrids using Multi-Agent Reinforcement Learning
The increasing reliance on cyber physical infrastructure in modern power systems has amplified the risk of targeted cyber attacks, necessitating robust and adaptive resilience strategies. This paper presents a mathematically rigorous game theoretic framework to evaluate and enhance microgrid resilience using a combination of quantitative resilience metrics Load Served Ratio LSR, Critical Load Resilience CLR, Topological Survivability Score TSS, and DER Resilience Score DRS. These are integrated into a unified payoff matrix using the Analytic Hierarchy Process AHP to assess attack defense interactions. The framework is formalized as a finite horizon Markov Decision Process MDP with formal convergence guarantees and computational complexity bounds. Three case studies are developed 1. static attacks analyzed via Nash equilibrium, 2. severe attacks incorporating high impact strategies, and 3. adaptive attacks using Stackelberg games, regret matching, softmax heuristics, and Multi Agent Q Learning. Rigorous theoretical analysis provides convergence proofs with explicit rates , PAC learning sample complexity bounds, and computational complexity analysis. The framework is tested on an enhanced IEEE 33bus distribution system with DERs and control switches, demonstrating the effectiveness of adaptive and strategic defenses in improving cyber physical resilience with statistically significant improvements of 18.7% 2.1% over static approaches.
☆ \emph{FoQuS}: A Forgetting-Quality Coreset Selection Framework for Automatic Modulation Recognition
Deep learning-based Automatic Modulation Recognition (AMR) model has made significant progress with the support of large-scale labeled data. However, when developing new models or performing hyperparameter tuning, the time and energy consumption associated with repeated training using massive amounts of data are often unbearable. To address the above challenges, we propose \emph{FoQuS}, which approximates the effect of full training by selecting a coreset from the original dataset, thereby significantly reducing training overhead. Specifically, \emph{FoQuS} records the prediction trajectory of each sample during full-dataset training and constructs three importance metrics based on training dynamics. Experiments show that \emph{FoQuS} can maintain high recognition accuracy and good cross-architecture generalization on multiple AMR datasets using only 1\%-30\% of the original data.
☆ Segment Transformer: AI-Generated Music Detection via Music Structural Analysis
Audio and music generation systems have been remarkably developed in the music information retrieval (MIR) research field. The advancement of these technologies raises copyright concerns, as ownership and authorship of AI-generated music (AIGM) remain unclear. Also, it can be difficult to determine whether a piece was generated by AI or composed by humans clearly. To address these challenges, we aim to improve the accuracy of AIGM detection by analyzing the structural patterns of music segments. Specifically, to extract musical features from short audio clips, we integrated various pre-trained models, including self-supervised learning (SSL) models or an audio effect encoder, each within our suggested transformer-based framework. Furthermore, for long audio, we developed a segment transformer that divides music into segments and learns inter-segment relationships. We used the FakeMusicCaps and SONICS datasets, achieving high accuracy in both the short-audio and full-audio detection experiments. These findings suggest that integrating segment-level musical features into long-range temporal analysis can effectively enhance both the performance and robustness of AIGM detection systems.
☆ Real-world Music Plagiarism Detection With Music Segment Transcription System
As a result of continuous advances in Music Information Retrieval (MIR) technology, generating and distributing music has become more diverse and accessible. In this context, interest in music intellectual property protection is increasing to safeguard individual music copyrights. In this work, we propose a system for detecting music plagiarism by combining various MIR technologies. We developed a music segment transcription system that extracts musically meaningful segments from audio recordings to detect plagiarism across different musical formats. With this system, we compute similarity scores based on multiple musical features that can be evaluated through comprehensive musical analysis. Our approach demonstrated promising results in music plagiarism detection experiments, and the proposed method can be applied to real-world music scenarios. We also collected a Similar Music Pair (SMP) dataset for musical similarity research using real-world cases. The dataset are publicly available.
comment: Accepted in APSIPA 2025 but not published yet(will be published in 2 month..), Arxiv preprint ready for references in future-works
☆ Interpretable Physics Reasoning and Performance Taxonomy in Vision-Language Models
As Vision-Language Models (VLMs) grow in sophistication, their ability to perform reasoning is coming under increasing supervision. While they excel at many tasks, their grasp of fundamental scientific principles, such as physics, remains an underexplored frontier. To reflect the advancements in these capabilities, we introduce a novel and accessible framework designed to rigorously evaluate VLMs on their understanding of 2D physics. Our framework features a pragmatic scenario generator that creates a diverse testbed of over 400 problems across four core domains: Projectile Motion, Collision Dynamics, Mechanics, and Fluid Dynamics. Through comprehensive evaluation of four state-of-the-art VLMs, we demonstrate a strong correlation between model scale and reasoning ability, with our top-performing model, Qwen2.5-VL-7B, achieving an overall score of 0.815. We find that while models excel at formulaic problems, they struggle significantly with domains requiring abstract spatial reasoning. By designing this framework, we aim to democratize the study of scientific reasoning in VLMs and foster deeper insights into their capabilities and limitations.
☆ A Systematic Survey on Large Language Models for Evolutionary Optimization: From Modeling to Solving
Large Language Models (LLMs), with their strong understanding and reasoning capabilities, are increasingly being explored for tackling optimization problems, especially in synergy with evolutionary computation. Despite rapid progress, however, the field still lacks a unified synthesis and a systematic taxonomy. This survey addresses this gap by providing a comprehensive review of recent developments and organizing them within a structured framework. We classify existing research into two main stages: LLMs for optimization modeling and LLMs for optimization solving. The latter is further divided into three paradigms according to the role of LLMs in the optimization workflow: LLMs as stand-alone optimizers, low-level LLMs embedded within optimization algorithms, and high-level LLMs for algorithm selection and generation. For each category, we analyze representative methods, distill technical challenges, and examine their interplay with traditional approaches. We also review interdisciplinary applications spanning the natural sciences, engineering, and machine learning. By contrasting LLM-driven and conventional methods, we highlight key limitations and research gaps, and point toward future directions for developing self-evolving agentic ecosystems for optimization. An up-to-date collection of related literature is maintained at https://github.com/ishmael233/LLM4OPT.
☆ Symmetry-Guided Multi-Agent Inverse Reinforcement Learnin IROS 2025
In robotic systems, the performance of reinforcement learning depends on the rationality of predefined reward functions. However, manually designed reward functions often lead to policy failures due to inaccuracies. Inverse Reinforcement Learning (IRL) addresses this problem by inferring implicit reward functions from expert demonstrations. Nevertheless, existing methods rely heavily on large amounts of expert demonstrations to accurately recover the reward function. The high cost of collecting expert demonstrations in robotic applications, particularly in multi-robot systems, severely hinders the practical deployment of IRL. Consequently, improving sample efficiency has emerged as a critical challenge in multi-agent inverse reinforcement learning (MIRL). Inspired by the symmetry inherent in multi-agent systems, this work theoretically demonstrates that leveraging symmetry enables the recovery of more accurate reward functions. Building upon this insight, we propose a universal framework that integrates symmetry into existing multi-agent adversarial IRL algorithms, thereby significantly enhancing sample efficiency. Experimental results from multiple challenging tasks have demonstrated the effectiveness of this framework. Further validation in physical multi-robot systems has shown the practicality of our method.
comment: 8pages, 6 figures. Accepted for publication in the Proceedings of the 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025) as oral presentation
☆ Combined-distance-based score function of cognitive fuzzy sets and its application in lung cancer pain evaluation
In decision making, the cognitive fuzzy set (CFS) is a useful tool in expressing experts' complex assessments of alternatives. The distance of CFS, which plays an important role in decision analyses, is necessary when the CFS is applied in solving practical issues. However, as far as we know, the studies on the distance of CFS are few, and the current Minkowski distance of CFS ignores the hesitancy degree of CFS, which might cause errors. To fill the gap of the studies on the distance of CFS, because of the practicality of the Hausdorff distance, this paper proposes the improved cognitive fuzzy Minkowski (CF-IM) distance and the cognitive fuzzy Hausdorff (CF-H) distance to enrich the studies on the distance of CFS. It is found that the anti-perturbation ability of the CF-H distance is stronger than that of the CF-IM distance, but the information utilization of the CF-IM distance is higher than that of the CF-H distance. To balance the anti-perturbation ability and information utilization of the CF-IM distance and CF-H distance, the cognitive fuzzy combined (CF-C) distance is proposed by establishing the linear combination of the CF-IM distance and CF-H distance. Based on the CF-C distance, a combined-distanced-based score function of CFS is proposed to compare CFSs. The proposed score function is employed in lung cancer pain evaluation issues. The sensitivity and comparison analyses demonstrate the reliability and advantages of the proposed methods.
☆ Strategies for Improving Communication Efficiency in Distributed and Federated Learning: Compression, Local Training, and Personalization
Distributed and federated learning are essential paradigms for training models across decentralized data sources while preserving privacy, yet communication overhead remains a major bottleneck. This dissertation explores strategies to improve communication efficiency, focusing on model compression, local training, and personalization. We establish a unified framework for biased and unbiased compression operators with convergence guarantees, then propose adaptive local training strategies that incorporate personalization to accelerate convergence and mitigate client drift. In particular, Scafflix balances global and personalized objectives, achieving superior performance under both IID and non-IID settings. We further introduce privacy-preserving pruning frameworks that optimize sparsity while minimizing communication costs, with Cohort-Squeeze leveraging hierarchical aggregation to reduce cross-device overhead. Finally, SymWanda, a symmetric post-training pruning method, enhances robustness under high sparsity and maintains accuracy without retraining. Extensive experiments on benchmarks and large-scale language models demonstrate favorable trade-offs among accuracy, convergence, and communication, offering theoretical and practical insights for scalable, efficient distributed learning.
comment: PhD Dissertation
☆ Exploratory Retrieval-Augmented Planning For Continual Embodied Instruction Following NeurIPS 2024
This study presents an Exploratory Retrieval-Augmented Planning (ExRAP) framework, designed to tackle continual instruction following tasks of embodied agents in dynamic, non-stationary environments. The framework enhances Large Language Models' (LLMs) embodied reasoning capabilities by efficiently exploring the physical environment and establishing the environmental context memory, thereby effectively grounding the task planning process in time-varying environment contexts. In ExRAP, given multiple continual instruction following tasks, each instruction is decomposed into queries on the environmental context memory and task executions conditioned on the query results. To efficiently handle these multiple tasks that are performed continuously and simultaneously, we implement an exploration-integrated task planning scheme by incorporating the {information-based exploration} into the LLM-based planning process. Combined with memory-augmented query evaluation, this integrated scheme not only allows for a better balance between the validity of the environmental context memory and the load of environment exploration, but also improves overall task performance. Furthermore, we devise a {temporal consistency refinement} scheme for query evaluation to address the inherent decay of knowledge in the memory. Through experiments with VirtualHome, ALFRED, and CARLA, our approach demonstrates robustness against a variety of embodied instruction following scenarios involving different instruction scales and types, and non-stationarity degrees, and it consistently outperforms other state-of-the-art LLM-based task planning approaches in terms of both goal success rate and execution efficiency.
comment: 21 pages. NeurIPS 2024
☆ Balancing Quality and Variation: Spam Filtering Distorts Data Label Distributions
For machine learning datasets to accurately represent diverse opinions in a population, they must preserve variation in data labels while filtering out spam or low-quality responses. How can we balance annotator reliability and representation? We empirically evaluate how a range of heuristics for annotator filtering affect the preservation of variation on subjective tasks. We find that these methods, designed for contexts in which variation from a single ground-truth label is considered noise, often remove annotators who disagree instead of spam annotators, introducing suboptimal tradeoffs between accuracy and label diversity. We find that conservative settings for annotator removal (<5%) are best, after which all tested methods increase the mean absolute error from the true average label. We analyze performance on synthetic spam to observe that these methods often assume spam annotators are less random than real spammers tend to be: most spammers are distributionally indistinguishable from real annotators, and the minority that are distinguishable tend to give fixed answers, not random ones. Thus, tasks requiring the preservation of variation reverse the intuition of existing spam filtering methods: spammers tend to be less random than non-spammers, so metrics that assume variation is spam fare worse. These results highlight the need for spam removal methods that account for label diversity.
☆ Componentization: Decomposing Monolithic LLM Responses into Manipulable Semantic Units
Large Language Models (LLMs) often produce monolithic text that is hard to edit in parts, which can slow down collaborative workflows. We present componentization, an approach that decomposes model outputs into modular, independently editable units while preserving context. We describe Modular and Adaptable Output Decomposition (MAOD), which segments responses into coherent components and maintains links among them, and we outline the Component-Based Response Architecture (CBRA) as one way to implement this idea. Our reference prototype, MAODchat, uses a microservices design with state-machine-based decomposition agents, vendor-agnostic model adapters, and real-time component manipulation with recomposition. In an exploratory study with four participants from academic, engineering, and product roles, we observed that component-level editing aligned with several common workflows and enabled iterative refinement and selective reuse. Participants also mentioned possible team workflows. Our contributions are: (1) a definition of componentization for transforming monolithic outputs into manipulable units, (2) CBRA and MAODchat as a prototype architecture, (3) preliminary observations from a small user study, (4) MAOD as an algorithmic sketch for semantic segmentation, and (5) example Agent-to-Agent protocols for automated decomposition. We view componentization as a promising direction for turning passive text consumption into more active, component-level collaboration.
comment: 12 pages, 4 figures
☆ Accelerating AI Development with Cyber Arenas IEEE
AI development requires high fidelity testing environments to effectively transition from the laboratory to operations. The flexibility offered by cyber arenas presents a novel opportunity to test new artificial intelligence (AI) capabilities with users. Cyber arenas are designed to expose end-users to real-world situations and must rapidly incorporate evolving capabilities to meet their core objectives. To explore this concept the MIT/IEEE/Amazon Graph Challenge Anonymized Network Sensor was deployed in a cyber arena during a National Guard exercise.
comment: 2 pages, 1 figure, 7 references, accepted to IEEE HPEC 2025
☆ Improving LLM Safety and Helpfulness using SFT and DPO: A Study on OPT-350M
This research investigates the effectiveness of alignment techniques, Supervised Fine-Tuning (SFT), Direct Preference Optimization (DPO), and a combined SFT+DPO approach on improving the safety and helpfulness of the OPT-350M language model. Utilizing the Anthropic Helpful-Harmless RLHF dataset, we train and evaluate four models: the base OPT350M, an SFT model, a DPO model, and a model trained with both SFT and DPO. We introduce three key evaluation metrics: Harmlessness Rate (HmR), Helpfulness Rate (HpR), and a Combined Alignment Score (CAS), all derived from reward model outputs. The results show that while SFT outperforms DPO, The combined SFT+DPO model outperforms all others across all metrics, demonstrating the complementary nature of these techniques. Our findings also highlight challenges posed by noisy data, limited GPU resources, and training constraints. This study offers a comprehensive view of how fine-tuning strategies affect model alignment and provides a foundation for more robust alignment pipelines in future work.
comment: 17 pages, 3 figures. Code and dataset available at https://github.com/PiyushWithPant/Improving-LLM-Safety-and-Helpfulness-using-SFT-and-DPO
☆ A Scoping Review of Machine Learning Applications in Power System Protection and Disturbance Management
The integration of renewable and distributed energy resources reshapes modern power systems, challenging conventional protection schemes. This scoping review synthesizes recent literature on machine learning (ML) applications in power system protection and disturbance management, following the PRISMA for Scoping Reviews framework. Based on over 100 publications, three key objectives are addressed: (i) assessing the scope of ML research in protection tasks; (ii) evaluating ML performance across diverse operational scenarios; and (iii) identifying methods suitable for evolving grid conditions. ML models often demonstrate high accuracy on simulated datasets; however, their performance under real-world conditions remains insufficiently validated. The existing literature is fragmented, with inconsistencies in methodological rigor, dataset quality, and evaluation metrics. This lack of standardization hampers the comparability of results and limits the generalizability of findings. To address these challenges, this review introduces a ML-oriented taxonomy for protection tasks, resolves key terminological inconsistencies, and advocates for standardized reporting practices. It further provides guidelines for comprehensive dataset documentation, methodological transparency, and consistent evaluation protocols, aiming to improve reproducibility and enhance the practical relevance of research outcomes. Critical gaps remain, including the scarcity of real-world validation, insufficient robustness testing, and limited consideration of deployment feasibility. Future research should prioritize public benchmark datasets, realistic validation methods, and advanced ML architectures. These steps are essential to move ML-based protection from theoretical promise to practical deployment in increasingly dynamic and decentralized power systems.
☆ MoWE : A Mixture of Weather Experts
Data-driven weather models have recently achieved state-of-the-art performance, yet progress has plateaued in recent years. This paper introduces a Mixture of Experts (MoWE) approach as a novel paradigm to overcome these limitations, not by creating a new forecaster, but by optimally combining the outputs of existing models. The MoWE model is trained with significantly lower computational resources than the individual experts. Our model employs a Vision Transformer-based gating network that dynamically learns to weight the contributions of multiple "expert" models at each grid point, conditioned on forecast lead time. This approach creates a synthesized deterministic forecast that is more accurate than any individual component in terms of Root Mean Squared Error (RMSE). Our results demonstrate the effectiveness of this method, achieving up to a 10% lower RMSE than the best-performing AI weather model on a 2-day forecast horizon, significantly outperforming individual experts as well as a simple average across experts. This work presents a computationally efficient and scalable strategy to push the state of the art in data-driven weather prediction by making the most out of leading high-quality forecast models.
☆ Stated Preference for Interaction and Continued Engagement (SPICE): Evaluating an LLM's Willingness to Re-engage in Conversation
We introduce and evaluate Stated Preference for Interaction and Continued Engagement (SPICE), a simple diagnostic signal elicited by asking a Large Language Model a YES or NO question about its willingness to re-engage with a user's behavior after reviewing a short transcript. In a study using a 3-tone (friendly, unclear, abusive) by 10-interaction stimulus set, we tested four open-weight chat models across four framing conditions, resulting in 480 trials. Our findings show that SPICE sharply discriminates by user tone. Friendly interactions yielded a near-unanimous preference to continue (97.5% YES), while abusive interactions yielded a strong preference to discontinue (17.9% YES), with unclear interactions falling in between (60.4% YES). This core association remains decisive under multiple dependence-aware statistical tests, including Rao-Scott adjustment and cluster permutation tests. Furthermore, we demonstrate that SPICE provides a distinct signal from abuse classification. In trials where a model failed to identify abuse, it still overwhelmingly stated a preference not to continue the interaction (81% of the time). An exploratory analysis also reveals a significant interaction effect: a preamble describing the study context significantly impacts SPICE under ambiguity, but only when transcripts are presented as a single block of text rather than a multi-turn chat. The results validate SPICE as a robust, low-overhead, and reproducible tool for auditing model dispositions, complementing existing metrics by offering a direct, relational signal of a model's state. All stimuli, code, and analysis scripts are released to support replication.
☆ Envy-Free but Still Unfair: Envy-Freeness Up To One Item (EF-1) in Personalized Recommendation
Envy-freeness and the relaxation to Envy-freeness up to one item (EF-1) have been used as fairness concepts in the economics, game theory, and social choice literatures since the 1960s, and have recently gained popularity within the recommendation systems communities. In this short position paper we will give an overview of envy-freeness and its use in economics and recommendation systems; and illustrate why envy is not appropriate to measure fairness for use in settings where personalization plays a role.
☆ Can Vision-Language Models Solve Visual Math Equations? EMNLP2025
Despite strong performance in visual understanding and language-based reasoning, Vision-Language Models (VLMs) struggle with tasks requiring integrated perception and symbolic computation. We study this limitation through visual equation solving, where mathematical equations are embedded in images, variables are represented by object icons, and coefficients must be inferred by counting. While VLMs perform well on textual equations, they fail on visually grounded counterparts. To understand this gap, we decompose the task into coefficient counting and variable recognition, and find that counting is the primary bottleneck, even when recognition is accurate. We also observe that composing recognition and reasoning introduces additional errors, highlighting challenges in multi-step visual reasoning. Finally, as equation complexity increases, symbolic reasoning itself becomes a limiting factor. These findings reveal key weaknesses in current VLMs and point toward future improvements in visually grounded mathematical reasoning.
comment: Monjoy Narayan Choudhury and Junling Wang contributed equally to this work. Accepted at EMNLP2025 main. Code and datasets are open-sourced with links in the paper
☆ Open-sci-ref-0.01: open and reproducible reference baselines for language model and dataset comparison
We introduce open-sci-ref, a family of dense transformer models trained as research baselines across multiple model (0.13B to 1.7B parameters) and token scales (up to 1T) on 8 recent open reference datasets. Evaluating the models on various standardized benchmarks, our training runs set establishes reference points that enable researchers to assess the sanity and quality of alternative training approaches across scales and datasets. Intermediate checkpoints allow comparison and studying of the training dynamics. The established reference baselines allow training procedures to be compared through their scaling trends, aligning them on a common compute axis. Comparison of open reference datasets reveals that training on NemoTron-CC HQ consistently outperforms other reference datasets, followed by DCLM-baseline and FineWeb-Edu. In addition to intermediate training checkpoints, the release includes logs, code, and downstream evaluations to simplify reproduction, standardize comparison, and facilitate future research.
comment: Model weights and intermediate checkpoints are available at \url{https://huggingface.co/collections/open-sci/open-sci-ref-001-685905e598be658fbcebff4f}; code for reproducing training, evaluation and raw experiments data at \url{https://github.com/LAION-AI/open-sci-ref-0.01}
☆ Implicit Neural Representations of Intramyocardial Motion and Strain MICCAI
Automatic quantification of intramyocardial motion and strain from tagging MRI remains an important but challenging task. We propose a method using implicit neural representations (INRs), conditioned on learned latent codes, to predict continuous left ventricular (LV) displacement -- without requiring inference-time optimisation. Evaluated on 452 UK Biobank test cases, our method achieved the best tracking accuracy (2.14 mm RMSE) and the lowest combined error in global circumferential (2.86%) and radial (6.42%) strain compared to three deep learning baselines. In addition, our method is $\sim$380$\times$ faster than the most accurate baseline. These results highlight the suitability of INR-based models for accurate and scalable analysis of myocardial strain in large CMR datasets.
comment: STACOM 2025 @ MICCAI
☆ Uncertainty Awareness and Trust in Explainable AI- On Trust Calibration using Local and Global Explanations ICDM2025
Explainable AI has become a common term in the literature, scrutinized by computer scientists and statisticians and highlighted by psychological or philosophical researchers. One major effort many researchers tackle is constructing general guidelines for XAI schemes, which we derived from our study. While some areas of XAI are well studied, we focus on uncertainty explanations and consider global explanations, which are often left out. We chose an algorithm that covers various concepts simultaneously, such as uncertainty, robustness, and global XAI, and tested its ability to calibrate trust. We then checked whether an algorithm that aims to provide more of an intuitive visual understanding, despite being complicated to understand, can provide higher user satisfaction and human interpretability.
comment: 9 pages, 6 figures, accepted but not yet published at ICDM2025
☆ ForTIFAI: Fending Off Recursive Training Induced Failure for AI Models
The increasing reliance on generative AI models has accelerated the generation rate of synthetic data, with some projections suggesting that most available new data for training could be machine-generated by 2030. This shift to a mainly synthetic content presents a critical challenge: repeated training in synthetic data leads to a phenomenon known as model collapse, where model performance degrades over generations of training, eventually rendering the models ineffective. Although prior studies have explored the causes and detection of model collapse, existing mitigation strategies remain limited. In this paper, we identify model overconfidence in their self-generated data as a key driver of collapse. Building on this observation, we propose a confidence-aware loss function that downweights high-confidence predictions during training. We introduce a novel loss function we call Truncated Cross Entropy (TCE). We demonstrate that TCE significantly delays model collapse in recursive training. We provide a model-agnostic framework that links the loss function design to model collapse mitigation and validate our approach both theoretically and empirically, showing that it can extend the model's fidelity interval before collapse by more than 2.3x. Finally, we show that our method generalizes across modalities. These findings suggest that the design of loss functions provides a simple yet powerful tool for preserving the quality of generative models in the era of increasing synthetic data.
☆ Global Constraint LLM Agents for Text-to-Model Translation
Natural language descriptions of optimization or satisfaction problems are challenging to translate into correct MiniZinc models, as this process demands both logical reasoning and constraint programming expertise. We introduce a framework that addresses this challenge with an agentic approach: multiple specialized large language model (LLM) agents decompose the modeling task by global constraint type. Each agent is dedicated to detecting and generating code for a specific class of global constraint, while a final assembler agent integrates these constraint snippets into a complete MiniZinc model. By dividing the problem into smaller, well-defined sub-tasks, each LLM handles a simpler reasoning challenge, potentially reducing overall complexity. We conduct initial experiments with several LLMs and show better performance against baselines such as one-shot prompting and chain-of-thought prompting. Finally, we outline a comprehensive roadmap for future work, highlighting potential enhancements and directions for improvement.
☆ Similarity-based Outlier Detection for Noisy Object Re-Identification Using Beta Mixtures
Object re-identification (Re-ID) methods are highly sensitive to label noise, which typically leads to significant performance degradation. We address this challenge by reframing Re-ID as a supervised image similarity task and adopting a Siamese network architecture trained to capture discriminative pairwise relationships. Central to our approach is a novel statistical outlier detection (OD) framework, termed Beta-SOD (Beta mixture Similarity-based Outlier Detection), which models the distribution of cosine similarities between embedding pairs using a two-component Beta distribution mixture model. We establish a novel identifiability result for mixtures of two Beta distributions, ensuring that our learning task is well-posed.The proposed OD step complements the Re-ID architecture combining binary cross-entropy, contrastive, and cosine embedding losses that jointly optimize feature-level similarity learning.We demonstrate the effectiveness of Beta-SOD in de-noising and Re-ID tasks for person Re-ID, on CUHK03 and Market-1501 datasets, and vehicle Re-ID, on VeRi-776 dataset. Our method shows superior performance compared to the state-of-the-art methods across various noise levels (10-30\%), demonstrating both robustness and broad applicability in noisy Re-ID scenarios. The implementation of Beta-SOD is available at: https://github.com/waqar3411/Beta-SOD
☆ Instance-Optimal Matrix Multiplicative Weight Update and Its Quantum Applications
The Matrix Multiplicative Weight Update (MMWU) is a seminal online learning algorithm with numerous applications. Applied to the matrix version of the Learning from Expert Advice (LEA) problem on the $d$-dimensional spectraplex, it is well known that MMWU achieves the minimax-optimal regret bound of $O(\sqrt{T\log d})$, where $T$ is the time horizon. In this paper, we present an improved algorithm achieving the instance-optimal regret bound of $O(\sqrt{T\cdot S(X||d^{-1}I_d)})$, where $X$ is the comparator in the regret, $I_d$ is the identity matrix, and $S(\cdot||\cdot)$ denotes the quantum relative entropy. Furthermore, our algorithm has the same computational complexity as MMWU, indicating that the improvement in the regret bound is ``free''. Technically, we first develop a general potential-based framework for matrix LEA, with MMWU being its special case induced by the standard exponential potential. Then, the crux of our analysis is a new ``one-sided'' Jensen's trace inequality built on a Laplace transform technique, which allows the application of general potential functions beyond exponential to matrix LEA. Our algorithm is finally induced by an optimal potential function from the vector LEA problem, based on the imaginary error function. Complementing the above, we provide a memory lower bound for matrix LEA, and explore the applications of our algorithm in quantum learning theory. We show that it outperforms the state of the art for learning quantum states corrupted by depolarization noise, random quantum states, and Gibbs states. In addition, applying our algorithm to linearized convex losses enables predicting nonlinear quantum properties, such as purity, quantum virtual cooling, and R\'{e}nyi-$2$ correlation.
comment: 47 pages
PromptGuard: An Orchestrated Prompting Framework for Principled Synthetic Text Generation for Vulnerable Populations using LLMs with Enhanced Safety, Fairness, and Controllability
The proliferation of Large Language Models (LLMs) in real-world applications poses unprecedented risks of generating harmful, biased, or misleading information to vulnerable populations including LGBTQ+ individuals, single parents, and marginalized communities. While existing safety approaches rely on post-hoc filtering or generic alignment techniques, they fail to proactively prevent harmful outputs at the generation source. This paper introduces PromptGuard, a novel modular prompting framework with our breakthrough contribution: VulnGuard Prompt, a hybrid technique that prevents harmful information generation using real-world data-driven contrastive learning. VulnGuard integrates few-shot examples from curated GitHub repositories, ethical chain-of-thought reasoning, and adaptive role-prompting to create population-specific protective barriers. Our framework employs theoretical multi-objective optimization with formal proofs demonstrating 25-30% analytical harm reduction through entropy bounds and Pareto optimality. PromptGuard orchestrates six core modules: Input Classification, VulnGuard Prompting, Ethical Principles Integration, External Tool Interaction, Output Validation, and User-System Interaction, creating an intelligent expert system for real-time harm prevention. We provide comprehensive mathematical formalization including convergence proofs, vulnerability analysis using information theory, and theoretical validation framework using GitHub-sourced datasets, establishing mathematical foundations for systematic empirical research.
☆ Recurrence Meets Transformers for Universal Multimodal Retrieval
With the rapid advancement of multimodal retrieval and its application in LLMs and multimodal LLMs, increasingly complex retrieval tasks have emerged. Existing methods predominantly rely on task-specific fine-tuning of vision-language models and are limited to single-modality queries or documents. In this paper, we propose ReT-2, a unified retrieval model that supports multimodal queries, composed of both images and text, and searches across multimodal document collections where text and images coexist. ReT-2 leverages multi-layer representations and a recurrent Transformer architecture with LSTM-inspired gating mechanisms to dynamically integrate information across layers and modalities, capturing fine-grained visual and textual details. We evaluate ReT-2 on the challenging M2KR and M-BEIR benchmarks across different retrieval configurations. Results demonstrate that ReT-2 consistently achieves state-of-the-art performance across diverse settings, while offering faster inference and reduced memory usage compared to prior approaches. When integrated into retrieval-augmented generation pipelines, ReT-2 also improves downstream performance on Encyclopedic-VQA and InfoSeek datasets. Our source code and trained models are publicly available at: https://github.com/aimagelab/ReT-2
☆ Benchmarking Energy Efficiency of Large Language Models Using vLLM
The prevalence of Large Language Models (LLMs) is having an growing impact on the climate due to the substantial energy required for their deployment and use. To create awareness for developers who are implementing LLMs in their products, there is a strong need to collect more information about the energy efficiency of LLMs. While existing research has evaluated the energy efficiency of various models, these benchmarks often fall short of representing realistic production scenarios. In this paper, we introduce the LLM Efficiency Benchmark, designed to simulate real-world usage conditions. Our benchmark utilizes vLLM, a high-throughput, production-ready LLM serving backend that optimizes model performance and efficiency. We examine how factors such as model size, architecture, and concurrent request volume affect inference energy efficiency. Our findings demonstrate that it is possible to create energy efficiency benchmarks that better reflect practical deployment conditions, providing valuable insights for developers aiming to build more sustainable AI systems.
comment: 6 pages, 6 figures
☆ Investigating Student Interaction Patterns with Large Language Model-Powered Course Assistants in Computer Science Courses
Providing students with flexible and timely academic support is a challenge at most colleges and universities, leaving many students without help outside scheduled hours. Large language models (LLMs) are promising for bridging this gap, but interactions between students and LLMs are rarely overseen by educators. We developed and studied an LLM-powered course assistant deployed across multiple computer science courses to characterize real-world use and understand pedagogical implications. By Spring 2024, our system had been deployed to approximately 2,000 students across six courses at three institutions. Analysis of the interaction data shows that usage remains strong in the evenings and nights and is higher in introductory courses, indicating that our system helps address temporal support gaps and novice learner needs. We sampled 200 conversations per course for manual annotation: most sampled responses were judged correct and helpful, with a small share unhelpful or erroneous; few responses included dedicated examples. We also examined an inquiry-based learning strategy: only around 11% of sampled conversations contained LLM-generated follow-up questions, which were often ignored by students in advanced courses. A Bloom's taxonomy analysis reveals that current LLM capabilities are limited in generating higher-order cognitive questions. These patterns suggest opportunities for pedagogically oriented LLM-based educational systems and greater educator involvement in configuring prompts, content, and policies.
☆ Variational Rank Reduction Autoencoders for Generative Thermal Design
Generative thermal design for complex geometries is fundamental in many areas of engineering, yet it faces two main challenges: the high computational cost of high-fidelity simulations and the limitations of conventional generative models. Approaches such as autoencoders (AEs) and variational autoencoders (VAEs) often produce unstructured latent spaces with discontinuities, which restricts their capacity to explore designs and generate physically consistent solutions. To address these limitations, we propose a hybrid framework that combines Variational Rank-Reduction Autoencoders (VRRAEs) with Deep Operator Networks (DeepONets). The VRRAE introduces a truncated SVD within the latent space, leading to continuous, interpretable, and well-structured representations that mitigate posterior collapse and improve geometric reconstruction. The DeepONet then exploits this compact latent encoding in its branch network, together with spatial coordinates in the trunk network, to predict temperature gradients efficiently and accurately. This hybrid approach not only enhances the quality of generated geometries and the accuracy of gradient prediction, but also provides a substantial advantage in inference efficiency compared to traditional numerical solvers. Overall, the study underscores the importance of structured latent representations for operator learning and highlights the potential of combining generative models and operator networks in thermal design and broader engineering applications.
♻ ☆ Subjective Behaviors and Preferences in LLM: Language of Browsing EMNLP 2025
A Large Language Model (LLM) offers versatility across domains and tasks, purportedly benefiting users with a wide variety of behaviors and preferences. We question this perception about an LLM when users have inherently subjective behaviors and preferences, as seen in their ubiquitous and idiosyncratic browsing of websites or apps. The sequential behavior logs of pages, thus generated, form something akin to each user's self-constructed "language", albeit without the structure and grammar imbued in natural languages. We ask: (i) Can a small LM represent the "language of browsing" better than a large LM? (ii) Can an LM with a single set of parameters (or, single LM) adequately capture myriad users' heterogeneous, subjective behaviors and preferences? (iii) Can a single LM with high average performance, yield low variance in performance to make alignment good at user level? We introduce clusterwise LM training, HeTLM (Heterogeneity aware Training of Language Model), appropriate for subjective behaviors. We find that (i) a small LM trained using a page-level tokenizer outperforms large pretrained or finetuned LMs; (ii) HeTLM with heterogeneous cluster specific set of parameters outperforms a single LM of the same family, controlling for the number of parameters; and (iii) a higher mean and a lower variance in generation ensues, implying improved alignment.
comment: Accepted at EMNLP 2025
♻ ☆ CURE: Controlled Unlearning for Robust Embeddings -- Mitigating Conceptual Shortcuts in Pre-Trained Language Models EMNLP 2025
Pre-trained language models have achieved remarkable success across diverse applications but remain susceptible to spurious, concept-driven correlations that impair robustness and fairness. In this work, we introduce CURE, a novel and lightweight framework that systematically disentangles and suppresses conceptual shortcuts while preserving essential content information. Our method first extracts concept-irrelevant representations via a dedicated content extractor reinforced by a reversal network, ensuring minimal loss of task-relevant information. A subsequent controllable debiasing module employs contrastive learning to finely adjust the influence of residual conceptual cues, enabling the model to either diminish harmful biases or harness beneficial correlations as appropriate for the target task. Evaluated on the IMDB and Yelp datasets using three pre-trained architectures, CURE achieves an absolute improvement of +10 points in F1 score on IMDB and +2 points on Yelp, while introducing minimal computational overhead. Our approach establishes a flexible, unsupervised blueprint for combating conceptual biases, paving the way for more reliable and fair language understanding systems.
comment: Accepted at the Conference on Empirical Methods in Natural Language Processing (EMNLP 2025)
♻ ☆ Whose Name Comes Up? Auditing LLM-Based Scholar Recommendations
This paper evaluates the performance of six open-weight LLMs (llama3-8b, llama3.1-8b, gemma2-9b, mixtral-8x7b, llama3-70b, llama3.1-70b) in recommending experts in physics across five tasks: top-k experts by field, influential scientists by discipline, epoch, seniority, and scholar counterparts. The evaluation examines consistency, factuality, and biases related to gender, ethnicity, academic popularity, and scholar similarity. Using ground-truth data from the American Physical Society and OpenAlex, we establish scholarly benchmarks by comparing model outputs to real-world academic records. Our analysis reveals inconsistencies and biases across all models. mixtral-8x7b produces the most stable outputs, while llama3.1-70b shows the highest variability. Many models exhibit duplication, and some, particularly gemma2-9b and llama3.1-8b, struggle with formatting errors. LLMs generally recommend real scientists, but accuracy drops in field-, epoch-, and seniority-specific queries, consistently favoring senior scholars. Representation biases persist, replicating gender imbalances (reflecting male predominance), under-representing Asian scientists, and over-representing White scholars. Despite some diversity in institutional and collaboration networks, models favor highly cited and productive scholars, reinforcing the rich-getricher effect while offering limited geographical representation. These findings highlight the need to improve LLMs for more reliable and equitable scholarly recommendations.
comment: 40 pages: 10 main (incl. 9 figures), 3 references, and 27 appendix. Paper under-review
♻ ☆ Uncertainty Quantification in Probabilistic Machine Learning Models: Theory, Methods, and Insights
Uncertainty Quantification (UQ) is essential in probabilistic machine learning models, particularly for assessing the reliability of predictions. In this paper, we present a systematic framework for estimating both epistemic and aleatoric uncertainty in probabilistic models. We focus on Gaussian Process Latent Variable Models and employ scalable Random Fourier Features-based Gaussian Processes to approximate predictive distributions efficiently. We derive a theoretical formulation for UQ, propose a Monte Carlo sampling-based estimation method, and conduct experiments to evaluate the impact of uncertainty estimation. Our results provide insights into the sources of predictive uncertainty and illustrate the effectiveness of our approach in quantifying the confidence in the predictions.
comment: Accepted to EUSIPCO 2025
♻ ☆ BlendedNet: A Blended Wing Body Aircraft Dataset and Surrogate Model for Aerodynamic Predictions
BlendedNet is a publicly available aerodynamic dataset of 999 blended wing body (BWB) geometries. Each geometry is simulated across about nine flight conditions, yielding 8830 converged RANS cases with the Spalart-Allmaras model and 9 to 14 million cells per case. The dataset is generated by sampling geometric design parameters and flight conditions, and includes detailed pointwise surface quantities needed to study lift and drag. We also introduce an end-to-end surrogate framework for pointwise aerodynamic prediction. The pipeline first uses a permutation-invariant PointNet regressor to predict geometric parameters from sampled surface point clouds, then conditions a Feature-wise Linear Modulation (FiLM) network on the predicted parameters and flight conditions to predict pointwise coefficients Cp, Cfx, and Cfz. Experiments show low errors in surface predictions across diverse BWBs. BlendedNet addresses data scarcity for unconventional configurations and enables research on data-driven surrogate modeling for aerodynamic design.
comment: Accepted at ASME IDETC/CIE 2025 (DETC2025-168977). Dataset availability: BlendedNet dataset is openly available at Harvard Dataverse (https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/VJT9EP)
♻ ☆ Reangle-A-Video: 4D Video Generation as Video-to-Video Translation ICCV 2025
We introduce Reangle-A-Video, a unified framework for generating synchronized multi-view videos from a single input video. Unlike mainstream approaches that train multi-view video diffusion models on large-scale 4D datasets, our method reframes the multi-view video generation task as video-to-videos translation, leveraging publicly available image and video diffusion priors. In essence, Reangle-A-Video operates in two stages. (1) Multi-View Motion Learning: An image-to-video diffusion transformer is synchronously fine-tuned in a self-supervised manner to distill view-invariant motion from a set of warped videos. (2) Multi-View Consistent Image-to-Images Translation: The first frame of the input video is warped and inpainted into various camera perspectives under an inference-time cross-view consistency guidance using DUSt3R, generating multi-view consistent starting images. Extensive experiments on static view transport and dynamic camera control show that Reangle-A-Video surpasses existing methods, establishing a new solution for multi-view video generation. We will publicly release our code and data. Project page: https://hyeonho99.github.io/reangle-a-video/
comment: ICCV 2025, Project page: https://hyeonho99.github.io/reangle-a-video/
♻ ☆ MPO: Boosting LLM Agents with Meta Plan Optimization EMNLP 2025
Recent advancements in large language models (LLMs) have enabled LLM-based agents to successfully tackle interactive planning tasks. However, despite their successes, existing approaches often suffer from planning hallucinations and require retraining for each new agent. To address these challenges, we propose the Meta Plan Optimization (MPO) framework, , which enhances agent planning capabilities by directly incorporating explicit guidance. Unlike previous methods that rely on complex knowledge, which either require significant human effort or lack quality assurance, MPO leverages high-level general guidance through meta plans to assist agent planning and enables continuous optimization of the meta plans based on feedback from the agent's task execution. Our experiments conducted on two representative tasks demonstrate that MPO significantly outperforms existing baselines. Moreover, our analysis indicates that MPO provides a plug-and-play solution that enhances both task completion efficiency and generalization capabilities in previous unseen scenarios.
comment: EMNLP 2025 Findings
♻ ☆ Context-Driven Knowledge Graph Completion with Semantic-Aware Relational Message Passing
Semantic context surrounding a triplet $(h, r, t)$ is crucial for Knowledge Graph Completion (KGC), providing vital cues for prediction. However, traditional node-based message passing mechanisms, when applied to knowledge graphs, often introduce noise and suffer from information dilution or over-smoothing by indiscriminately aggregating information from all neighboring edges. To address this challenge, we propose a semantic-aware relational message passing. A core innovation of this framework is the introduction of a semantic-aware Top-K neighbor selection strategy. Specifically, this strategy first evaluates the semantic relevance between a central node and its incident edges within a shared latent space, selecting only the Top-K most pertinent ones. Subsequently, information from these selected edges is effectively fused with the central node's own representation using a multi-head attention aggregator to generate a semantically focused node message. In this manner, our model not only leverages the structure and features of edges within the knowledge graph but also more accurately captures and propagates the contextual information most relevant to the specific link prediction task, thereby effectively mitigating interference from irrelevant information. Extensive experiments demonstrate that our method achieves superior performance compared to existing approaches on several established benchmarks.
♻ ☆ PQMass: Probabilistic Assessment of the Quality of Generative Models using Probability Mass Estimation ICLR 2025
We propose a likelihood-free method for comparing two distributions given samples from each, with the goal of assessing the quality of generative models. The proposed approach, PQMass, provides a statistically rigorous method for assessing the performance of a single generative model or the comparison of multiple competing models. PQMass divides the sample space into non-overlapping regions and applies chi-squared tests to the number of data samples that fall within each region, giving a p-value that measures the probability that the bin counts derived from two sets of samples are drawn from the same multinomial distribution. PQMass does not depend on assumptions regarding the density of the true distribution, nor does it rely on training or fitting any auxiliary models. We evaluate PQMass on data of various modalities and dimensions, demonstrating its effectiveness in assessing the quality, novelty, and diversity of generated samples. We further show that PQMass scales well to moderately high-dimensional data and thus obviates the need for feature extraction in practical applications.
comment: Published as a conference paper at ICLR 2025
♻ ☆ Scaling LLM Planning: NL2FLOW for Parametric Problem Generation and Rigorous Evaluation
Robust workflow composition is critical for effective agent performance, yet progress in Large Language Model (LLM) planning and reasoning is hindered by a scarcity of scalable evaluation data. This work introduces NL2Flow, a fully automated pipeline for generating and evaluating workflow planning problems. NL2Flow generates problems parametrically in a structured intermediate representation, translating them into both natural language and formal PDDL. I evaluate several open-source, instruct-tuned LLMs on a dataset of 2296 low-difficulty problems generated by NL2Flow. Results demonstrate that the best-performing model achieved 86% success in generating valid plans and 69% in generating optimal plans (for solvable problems). Regression analysis shows that the influence of problem characteristics on plan generation is contingent on both model and prompt design. Importantly, translating natural language problems into a structured JSON representation prior to symbolic planning significantly improved success rates, suggesting a benefit from neuro-symbolic integration. These findings underscore the importance of understanding error sources within LLM reasoning as systems scale to more complex tasks. As LLM reasoning scales to increasingly complex problems, understanding the shifting bottlenecks and sources of error within these systems will be crucial.
comment: 31 pages, 7 figures
♻ ☆ LED: LLM Enhanced Open-Vocabulary Object Detection without Human Curated Data Generation
Large foundation models trained on large-scale vision-language data can boost Open-Vocabulary Object Detection (OVD) via synthetic training data, yet the hand-crafted pipelines often introduce bias and overfit to specific prompts. We sidestep this issue by directly fusing hidden states from Large Language Models (LLMs) into detectors-an avenue surprisingly under-explored. This paper presents a systematic method to enhance visual grounding by utilizing decoder layers of the LLM of an MLLM. We introduce a zero-initialized cross-attention adapter to enable efficient knowledge fusion from LLMs to object detectors, a new approach called LED (LLM Enhanced Open-Vocabulary Object Detection). We find that intermediate LLM layers already encode rich spatial semantics; adapting only the early layers yields most of the gain. With Swin-T as the vision encoder, Qwen2-0.5B + LED lifts GroundingDINO by 3.82 % on OmniLabel at just 8.7 % extra GFLOPs, and a larger vision backbone pushes the improvement to 6.22 %. Extensive ablations on adapter variants, LLM scales and fusion depths further corroborate our design.
♻ ☆ Murphys Laws of AI Alignment: Why the Gap Always Wins
We prove a formal impossibility result for reinforcement learning from human feedback (RLHF). In misspecified environments with bounded query budgets, any RLHF-style learner suffers an irreducible performance gap Omega(gamma) unless it has access to a calibration oracle. We give tight lower bounds via an information-theoretic proof and show that a minimal calibration oracle suffices to eliminate the gap. Small-scale empirical illustrations and a catalogue of alignment regularities (Murphy's Laws) indicate that many observed alignment failures are consistent with this structural mechanism. Our results position Murphys Gap as both a diagnostic limit of RLHF and a guide for future work on calibration and causal preference checks.
comment: 7 pages main text, 4 appendices. Provides a formal impossibility theorem (Murphys Gap) and welcomes collaboration on large-scale experiments and benchmark design
♻ ☆ To See a World in a Spark of Neuron: Disentangling Multi-task Interference for Training-free Model Merging EMNLP 2025
Fine-tuning pre-trained models on targeted datasets enhances task-specific performance but often comes at the expense of generalization. Model merging techniques, which integrate multiple fine-tuned models into a single multi-task model through task arithmetic, offer a promising solution. However, task interference remains a fundamental challenge, leading to performance degradation and suboptimal merged models. Existing approaches largely overlooked the fundamental roles of neurons, their connectivity, and activation, resulting in a merging process and a merged model that does not consider how neurons relay and process information. In this work, we present the first study that relies on neuronal mechanisms for model merging. Specifically, we decomposed task-specific representations into two complementary neuronal subspaces that regulate input sensitivity and task adaptability. Leveraging this decomposition, we introduced NeuroMerging, a novel merging framework developed to mitigate task interference within neuronal subspaces, enabling training-free model fusion across diverse tasks. Through extensive experiments, we demonstrated that NeuroMerging achieved superior performance compared to existing methods on multi-task benchmarks across both natural language and vision domains. Our findings highlighted the importance of aligning neuronal mechanisms in model merging, offering new insights into mitigating task interference and improving knowledge fusion. Our project is available at https://ZzzitaoFang.github.io/projects/NeuroMerging/.
comment: Accepted to EMNLP 2025 Main Conference. This is the camera-ready version. Code: https://ZzzitaoFang.github.io/projects/NeuroMerging/
♻ ☆ Individual utilities of life satisfaction reveal inequality aversion unrelated to political alignment
How should well-being be prioritised in society, and what trade-offs are people willing to make between fairness and personal well-being? We investigate these questions using a stated preference experiment with a nationally representative UK sample (n = 300), in which participants evaluated life satisfaction outcomes for both themselves and others under conditions of uncertainty. Individual-level utility functions were estimated using an Expected Utility Maximisation (EUM) framework and tested for sensitivity to the overweighting of small probabilities, as characterised by Cumulative Prospect Theory (CPT). A majority of participants displayed concave (risk-averse) utility curves and showed stronger aversion to inequality in societal life satisfaction outcomes than to personal risk. These preferences were unrelated to political alignment, suggesting a shared normative stance on fairness in well-being that cuts across ideological boundaries. The results challenge use of average life satisfaction as a policy metric, and support the development of nonlinear utility-based alternatives that more accurately reflect collective human values. Implications for public policy, well-being measurement, and the design of value-aligned AI systems are discussed.
comment: 28 pages, 4 figures. Replacement corrects typo in one author name
♻ ☆ The Quest for the Right Mediator: Surveying Mechanistic Interpretability Through the Lens of Causal Mediation Analysis
Interpretability provides a toolset for understanding how and why language models behave in certain ways. However, there is little unity in the field: most studies employ ad-hoc evaluations and do not share theoretical foundations, making it difficult to measure progress and compare the pros and cons of different techniques. Furthermore, while mechanistic understanding is frequently discussed, the basic causal units underlying these mechanisms are often not explicitly defined. In this article, we propose a perspective on interpretability research grounded in causal mediation analysis. Specifically, we describe the history and current state of interpretability taxonomized according to the types of causal units (mediators) employed, as well as methods used to search over mediators. We discuss the pros and cons of each mediator, providing insights as to when particular kinds of mediators and search methods are most appropriate. We argue that this framing yields a more cohesive narrative of the field and helps researchers select appropriate methods based on their research objective. Our analysis yields actionable recommendations for future work, including the discovery of new mediators and the development of standardized evaluations tailored to these goals.
comment: Accepted to Computational Linguistics
♻ ☆ QR-VC: Leveraging Quantization Residuals for Linear Disentanglement in Zero-Shot Voice Conversion
Zero-shot voice conversion is a technique that alters the speaker identity of an input speech to match a target speaker using only a single reference utterance, without requiring additional training. Recent approaches extensively utilize self-supervised learning features with K-means quantization to extract high-quality content representations while removing speaker identity. However, this quantization process also eliminates fine-grained phonetic and prosodic variations, degrading intelligibility and prosody preservation. While prior works have primarily focused on quantized representations, quantization residuals remain underutilized and deserve further exploration. In this paper, we introduce a novel approach that fully utilizes quantization residuals by leveraging temporal properties of speech components. This facilitates the disentanglement of speaker identity and the recovery of phonetic and prosodic details lost during quantization. By applying only K-means quantization and linear projections, our method achieves simple yet effective disentanglement, without requiring complex architectures or explicit supervision. This allows for high-fidelity voice conversion trained solely with reconstruction losses. Experiments show that the proposed model outperforms existing methods across both subjective and objective metrics. It achieves superior intelligibility and speaker similarity, along with improved prosody preservation, highlighting the impact of our Linear Disentangler module.
comment: 5 pages. Accepted to EUSIPCO 2025 (Paper #1938)
♻ ☆ Stopping Criteria for Value Iteration on Concurrent Stochastic Reachability and Safety Games
We consider two-player zero-sum concurrent stochastic games (CSGs) played on graphs with reachability and safety objectives. These include degenerate classes such as Markov decision processes or turn-based stochastic games, which can be solved by linear or quadratic programming; however, in practice, value iteration (VI) outperforms the other approaches and is the most implemented method. Similarly, for CSGs, this practical performance makes VI an attractive alternative to the standard theoretical solution via the existential theory of reals. VI starts with an under-approximation of the sought values for each state and iteratively updates them, traditionally terminating once two consecutive approximations are $\epsilon$-close. However, this stopping criterion lacks guarantees on the precision of the approximation, which is the goal of this work. We provide bounded (a.k.a. interval) VI for CSGs: it complements standard VI with a converging sequence of over-approximations and terminates once the over- and under-approximations are $\epsilon$-close.
comment: Full version of the corresponding LICS'25 paper Corrected Algorithm 2 and associated Lemma 30
♻ ☆ Pay Attention to Real World Perturbations! Natural Robustness Evaluation in Machine Reading Comprehension
As neural language models achieve human-comparable performance on Machine Reading Comprehension (MRC) and see widespread adoption, ensuring their robustness in real-world scenarios has become increasingly important. Current robustness evaluation research, though, primarily develops synthetic perturbation methods, leaving unclear how well they reflect real life scenarios. Considering this, we present a framework to automatically examine MRC models on naturally occurring textual perturbations, by replacing paragraph in MRC benchmarks with their counterparts based on available Wikipedia edit history. Such perturbation type is natural as its design does not stem from an arteficial generative process, inherently distinct from the previously investigated synthetic approaches. In a large-scale study encompassing SQUAD datasets and various model architectures we observe that natural perturbations result in performance degradation in pre-trained encoder language models. More worryingly, these state-of-the-art Flan-T5 and Large Language Models (LLMs) inherit these errors. Further experiments demonstrate that our findings generalise to natural perturbations found in other more challenging MRC benchmarks. In an effort to mitigate these errors, we show that it is possible to improve the robustness to natural perturbations by training on naturally or synthetically perturbed examples, though a noticeable gap still remains compared to performance on unperturbed data.
♻ ☆ Efficient and Generalized end-to-end Autonomous Driving System with Latent Deep Reinforcement Learning and Demonstrations ECML
An intelligent driving system should dynamically formulate appropriate driving strategies based on the current environment and vehicle status while ensuring system security and reliability. However, methods based on reinforcement learning and imitation learning often suffer from high sample complexity, poor generalization, and low safety. To address these challenges, this paper introduces an efficient and generalized end-to-end autonomous driving system (EGADS) for complex and varied scenarios. The RL agent in our EGADS combines variational inference with normalizing flows, which are independent of distribution assumptions. This combination allows the agent to capture historical information relevant to driving in latent space effectively, thereby significantly reducing sample complexity. Additionally, we enhance safety by formulating robust safety constraints and improve generalization and performance by integrating RL with expert demonstrations. Experimental results demonstrate that, compared to existing methods, EGADS significantly reduces sample complexity, greatly improves safety performance, and exhibits strong generalization capabilities in complex urban scenarios. Particularly, we contributed an expert dataset collected through human expert steering wheel control, specifically using the G29 steering wheel.
comment: Accepted by ECML PKDD 2025 (Research Track)
♻ ☆ BranchGRPO: Stable and Efficient GRPO with Structured Branching in Diffusion Models
Recent advancements in aligning image and video generative models via GRPO have achieved remarkable gains in enhancing human preference alignment. However, these methods still face high computational costs from on-policy rollouts and excessive SDE sampling steps, as well as training instability due to sparse rewards. In this paper, we propose BranchGRPO, a novel method that introduces a branch sampling policy updating the SDE sampling process. By sharing computation across common prefixes and pruning low-reward paths and redundant depths, BranchGRPO substantially lowers the per-update compute cost while maintaining or improving exploration diversity. This work makes three main contributions: (1) a branch sampling scheme that reduces rollout and training cost; (2) a tree-based advantage estimator incorporating dense process-level rewards; and (3) pruning strategies exploiting path and depth redundancy to accelerate convergence and boost performance. Experiments on image and video preference alignment show that BranchGRPO improves alignment scores by 16% over strong baselines, while cutting training time by 50%.
comment: 12 pages, 6 figures
♻ ☆ A Nonlinear Low-rank Representation Model with Convolutional Neural Network for Imputing Water Quality Data
The integrity of Water Quality Data (WQD) is critical in environmental monitoring for scientific decision-making and ecological protection. However, water quality monitoring systems are often challenged by large amounts of missing data due to unavoidable problems such as sensor failures and communication delays, which further lead to water quality data becoming High-Dimensional and Sparse (HDS). Traditional data imputation methods are difficult to depict the potential dynamics and fail to capture the deep data features, resulting in unsatisfactory imputation performance. To effectively address the above issues, this paper proposes a Nonlinear Low-rank Representation model (NLR) with Convolutional Neural Networks (CNN) for imputing missing WQD, which utilizes CNNs to implement two ideas: a) fusing temporal features to model the temporal dependence of data between time slots, and b) Extracting nonlinear interactions and local patterns to mine higher-order relationships features and achieve deep fusion of multidimensional information. Experimental studies on three real water quality datasets demonstrate that the proposed model significantly outperforms existing state-of-the-art data imputation models in terms of estimation accuracy. It provides an effective approach for handling water quality monitoring data in complex dynamic environments.
comment: 7 pages, 2 figures, conference
♻ ☆ How Should We Meta-Learn Reinforcement Learning Algorithms?
The process of meta-learning algorithms from data, instead of relying on manual design, is growing in popularity as a paradigm for improving the performance of machine learning systems. Meta-learning shows particular promise for reinforcement learning (RL), where algorithms are often adapted from supervised or unsupervised learning despite their suboptimality for RL. However, until now there has been a severe lack of comparison between different meta-learning algorithms, such as using evolution to optimise over black-box functions or LLMs to propose code. In this paper, we carry out this empirical comparison of the different approaches when applied to a range of meta-learned algorithms which target different parts of the RL pipeline. In addition to meta-train and meta-test performance, we also investigate factors including the interpretability, sample cost and train time for each meta-learning algorithm. Based on these findings, we propose several guidelines for meta-learning new RL algorithms which will help ensure that future learned algorithms are as performant as possible.
comment: Accepted paper at Reinforcement Learning Conference (RLC) 2025
♻ ☆ TerraMind: Large-Scale Generative Multimodality for Earth Observation ICCV'25
We present TerraMind, the first any-to-any generative, multimodal foundation model for Earth observation (EO). Unlike other multimodal models, TerraMind is pretrained on dual-scale representations combining both token-level and pixel-level data across modalities. On a token level, TerraMind encodes high-level contextual information to learn cross-modal relationships, while on a pixel level, TerraMind leverages fine-grained representations to capture critical spatial nuances. We pretrained TerraMind on nine geospatial modalities of a global, large-scale dataset. In this paper, we demonstrate that (i) TerraMind's dual-scale early fusion approach unlocks a range of zero-shot and few-shot applications for Earth observation, (ii) TerraMind introduces "Thinking-in-Modalities" (TiM) -- the capability of generating additional artificial data during finetuning and inference to improve the model output -- and (iii) TerraMind achieves beyond state-of-the-art performance in community-standard benchmarks for EO like PANGAEA. The pretraining dataset, the model weights, and our code are open-sourced under a permissive license.
comment: Accepted at ICCV'25
♻ ☆ HiPhO: How Far Are (M)LLMs from Humans in the Latest High School Physics Olympiad Benchmark?
Recently, the physical capabilities of (M)LLMs have garnered increasing attention. However, existing benchmarks for physics suffer from two major gaps: they neither provide systematic and up-to-date coverage of real-world physics competitions such as physics Olympiads, nor enable direct performance comparison with humans. To bridge these gaps, we present HiPhO, the first benchmark dedicated to high school physics Olympiads with human-aligned evaluation. Specifically, HiPhO highlights three key innovations. (1) Comprehensive Data: It compiles 13 latest Olympiad exams from 2024-2025, spanning both international and regional competitions, and covering mixed modalities that encompass problems spanning text-only to diagram-based. (2) Professional Evaluation: We adopt official marking schemes to perform fine-grained grading at both the answer and step level, fully aligned with human examiners to ensure high-quality and domain-specific evaluation. (3) Comparison with Human Contestants: We assign gold, silver, and bronze medals to models based on official medal thresholds, thereby enabling direct comparison between (M)LLMs and human contestants. Our large-scale evaluation of 30 state-of-the-art (M)LLMs shows that: across 13 exams, open-source MLLMs mostly remain at or below the bronze level; open-source LLMs show promising progress with occasional golds; closed-source reasoning MLLMs can achieve 6 to 12 gold medals; and most models still have a significant gap from full marks. These results highlight a substantial performance gap between open-source models and top students, the strong physical reasoning capabilities of closed-source reasoning models, and the fact that there is still significant room for improvement. HiPhO, as a rigorous, human-aligned, and Olympiad-focused benchmark for advancing multimodal physical reasoning, is open-source and available at https://github.com/SciYu/HiPhO.
♻ ☆ A Transformer approach for Electricity Price Forecasting
This paper presents a novel approach to electricity price forecasting (EPF) using a pure Transformer model. As opposed to other alternatives, no other recurrent network is used in combination to the attention mechanism. Hence, showing that the attention layer is enough for capturing the temporal patterns. The paper also provides fair comparison of the models using the open-source EPF toolbox and provide the code to enhance reproducibility and transparency in EPF research. The results show that the Transformer model outperforms traditional methods, offering a promising solution for reliable and sustainable power system operation.
comment: 9 pages
♻ ☆ Meta-Semantics Augmented Few-Shot Relational Learning EMNLP 2025
Few-shot relational learning on knowledge graph (KGs) aims to perform reasoning over relations with only a few training examples. While existing methods have primarily focused on leveraging specific relational information, rich semantics inherent in KGs have been largely overlooked. To address this critical gap, we propose a novel prompted meta-learning (PromptMeta) framework that seamlessly integrates meta-semantics with relational information for few-shot relational learning. PromptMeta has two key innovations: (1) a Meta-Semantic Prompt (MSP) pool that learns and consolidates high-level meta-semantics, enabling effective knowledge transfer and adaptation to rare and newly emerging relations; and (2) a learnable fusion token that dynamically combines meta-semantics with task-specific relational information tailored to different few-shot tasks. Both components are optimized jointly with model parameters within a meta-learning framework. Extensive experiments and analyses on two real-world KG datasets demonstrate the effectiveness of PromptMeta in adapting to new relations with limited data.
comment: Accepted by EMNLP 2025
♻ ☆ VIPER: Visual Perception and Explainable Reasoning for Sequential Decision-Making
While Large Language Models (LLMs) excel at reasoning on text and Vision-Language Models (VLMs) are highly effective for visual perception, applying those models for visual instruction-based planning remains a widely open problem. In this paper, we introduce VIPER, a novel framework for multimodal instruction-based planning that integrates VLM-based perception with LLM-based reasoning. Our approach uses a modular pipeline where a frozen VLM generates textual descriptions of image observations, which are then processed by an LLM policy to predict actions based on the task goal. We fine-tune the reasoning module using behavioral cloning and reinforcement learning, improving our agent's decision-making capabilities. Experiments on the ALFWorld benchmark show that VIPER significantly outperforms state-of-the-art visual instruction-based planners while narrowing the gap with purely text-based oracles. By leveraging text as an intermediate representation, VIPER also enhances explainability, paving the way for a fine-grained analysis of perception and reasoning components.
♻ ☆ A decision-theoretic approach to dealing with uncertainty in quantum mechanics
We provide a decision-theoretic framework for dealing with uncertainty in quantum mechanics. This uncertainty is two-fold: on the one hand there may be uncertainty about the state the quantum system is in, and on the other hand, as is essential to quantum mechanical uncertainty, even if the quantum state is known, measurements may still produce an uncertain outcome. In our framework, measurements therefore play the role of acts with an uncertain outcome and our simple decision-theoretic postulates ensure that Born's rule is encapsulated in the utility functions associated with such acts. This approach allows us to uncouple (precise) probability theory from quantum mechanics, in the sense that it leaves room for a more general, so-called imprecise probabilities approach. We discuss the mathematical implications of our findings, which allow us to give a decision-theoretic foundation to recent seminal work by Benavoli, Facchini and Zaffalon, and we compare our approach to earlier and different approaches by Deutsch and Wallace.
comment: 53 pages
♻ ☆ MachineLearningLM: Scaling Many-shot In-context Learning via Continued Pretraining
Large language models (LLMs) possess broad world knowledge and strong general-purpose reasoning ability, yet they struggle to learn from many in-context examples on standard machine learning (ML) tasks, that is, to leverage many-shot demonstrations purely via in-context learning (ICL) without gradient descent. We introduce MachineLearningLM, a portable continued-pretraining framework that equips a general-purpose LLM with robust in-context ML capability while preserving its general knowledge and reasoning for broader chat workflows. Our pretraining procedure synthesizes ML tasks from millions of structural causal models (SCMs), spanning shot counts up to 1,024. We begin with a random-forest teacher, distilling tree-based decision strategies into the LLM to strengthen robustness in numerical modeling. All tasks are serialized with a token-efficient prompt, enabling 3x to 6x more examples per context window and delivering up to 50x amortized throughput via batch inference. Despite a modest setup (Qwen-2.5-7B-Instruct with LoRA rank 8), MachineLearningLM outperforms strong LLM baselines (e.g., GPT-5-mini) by an average of about 15% on out-of-distribution tabular classification across finance, physics, biology, and healthcare domains. It exhibits a striking many-shot scaling law: accuracy increases monotonically as in-context demonstrations grow from 8 to 1,024. Without any task-specific training, it attains random-forest-level accuracy across hundreds of shots. General chat capabilities, including knowledge and reasoning, are preserved: it achieves 75.4% on MMLU.
♻ ☆ Comprehensive Evaluation of Prototype Neural Networks
Prototype models are an important method for explainable artificial intelligence (XAI) and interpretable machine learning. In this paper, we perform an in-depth analysis of a set of prominent prototype models including ProtoPNet, ProtoPool and PIPNet. For their assessment, we apply a comprehensive set of metrics. In addition to applying standard metrics from literature, we propose several new metrics to further complement the analysis of model interpretability. In our experimentation, we apply the set of prototype models on a diverse set of datasets including fine-grained classification, Non-IID settings and multi-label classification to further contrast the performance. Furthermore, we also provide our code as an open-source library (https://github.com/uos-sis/quanproto), which facilitates simple application of the metrics itself, as well as extensibility -- providing the option for easily adding new metrics and models.
♻ ☆ CyberRAG: An Agentic RAG cyber attack classification and reporting tool
Intrusion Detection and Prevention Systems (IDS/IPS) in large enterprises can generate hundreds of thousands of alerts per hour, overwhelming analysts with logs requiring rapidly evolving expertise. Conventional machine-learning detectors reduce alert volume but still yield many false positives, while standard Retrieval-Augmented Generation (RAG) pipelines often retrieve irrelevant context and fail to justify predictions. We present CyberRAG, a modular agent-based RAG framework that delivers real-time classification, explanation, and structured reporting for cyber-attacks. A central LLM agent orchestrates: (i) fine-tuned classifiers specialized by attack family; (ii) tool adapters for enrichment and alerting; and (iii) an iterative retrieval-and-reason loop that queries a domain-specific knowledge base until evidence is relevant and self-consistent. Unlike traditional RAG, CyberRAG adopts an agentic design that enables dynamic control flow and adaptive reasoning. This architecture autonomously refines threat labels and natural-language justifications, reducing false positives and enhancing interpretability. It is also extensible: new attack types can be supported by adding classifiers without retraining the core agent. CyberRAG was evaluated on SQL Injection, XSS, and SSTI, achieving over 94\% accuracy per class and a final classification accuracy of 94.92\% through semantic orchestration. Generated explanations reached 0.94 in BERTScore and 4.9/5 in GPT-4-based expert evaluation, with robustness preserved against adversarial and unseen payloads. These results show that agentic, specialist-oriented RAG can combine high detection accuracy with trustworthy, SOC-ready prose, offering a flexible path toward partially automated cyber-defense workflows.
♻ ☆ How Far Are We from Optimal Reasoning Efficiency?
Large Reasoning Models (LRMs) demonstrate remarkable problem-solving capabilities through extended Chain-of-Thought (CoT) reasoning but often produce excessively verbose and redundant reasoning traces. This inefficiency incurs high inference costs and limits practical deployment. While existing fine-tuning methods aim to improve reasoning efficiency, assessing their efficiency gains remains challenging due to inconsistent evaluations. In this work, we introduce the reasoning efficiency frontiers, empirical upper bounds derived from fine-tuning base LRMs across diverse approaches and training configurations. Based on these frontiers, we propose the Reasoning Efficiency Gap (REG), a unified metric quantifying deviations of any fine-tuned LRMs from these frontiers. Systematic evaluation on challenging mathematical benchmarks reveals significant gaps in current methods: they either sacrifice accuracy for short length or still remain inefficient under tight token budgets. To reduce the efficiency gap, we propose REO-RL, a class of Reinforcement Learning algorithms that minimizes REG by targeting a sparse set of token budgets. Leveraging numerical integration over strategically selected budgets, REO-RL approximates the full efficiency objective with low error using a small set of token budgets. Through systematic benchmarking, we demonstrate that our efficiency metric, REG, effectively captures the accuracy-length trade-off, with low-REG methods reducing length while maintaining accuracy. Our approach, REO-RL, consistently reduces REG by >=50 across all evaluated LRMs and matching Qwen3-4B/8B efficiency frontiers under a 16K token budget with minimal accuracy loss. Ablation studies confirm the effectiveness of our exponential token budget strategy. Finally, our findings highlight that fine-tuning LRMs to perfectly align with the efficiency frontiers remains an open challenge.
♻ ☆ Multi-Timescale Hierarchical Reinforcement Learning for Unified Behavior and Control of Autonomous Driving IEEE
Reinforcement Learning (RL) is increasingly used in autonomous driving (AD) and shows clear advantages. However, most RL-based AD methods overlook policy structure design. An RL policy that only outputs short-timescale vehicle control commands results in fluctuating driving behavior due to fluctuations in network outputs, while one that only outputs long-timescale driving goals cannot achieve unified optimality of driving behavior and control. Therefore, we propose a multi-timescale hierarchical reinforcement learning approach. Our approach adopts a hierarchical policy structure, where high- and low-level RL policies are unified-trained to produce long-timescale motion guidance and short-timescale control commands, respectively. Therein, motion guidance is explicitly represented by hybrid actions to capture multimodal driving behaviors on structured road and support incremental low-level extend-state updates. Additionally, a hierarchical safety mechanism is designed to ensure multi-timescale safety. Evaluation in simulator-based and HighD dataset-based highway multi-lane scenarios demonstrates that our approach significantly improves AD performance, effectively increasing driving efficiency, action consistency and safety.
comment: 8 pages, Submitted to IEEE Robotics and Automation Letters (under second-round review)
♻ ☆ Moment- and Power-Spectrum-Based Gaussianity Regularization for Text-to-Image Models
We propose a novel regularization loss that enforces standard Gaussianity, encouraging samples to align with a standard Gaussian distribution. This facilitates a range of downstream tasks involving optimization in the latent space of text-to-image models. We treat elements of a high-dimensional sample as one-dimensional standard Gaussian variables and define a composite loss that combines moment-based regularization in the spatial domain with power spectrum-based regularization in the spectral domain. Since the expected values of moments and power spectrum distributions are analytically known, the loss promotes conformity to these properties. To ensure permutation invariance, the losses are applied to randomly permuted inputs. Notably, existing Gaussianity-based regularizations fall within our unified framework: some correspond to moment losses of specific orders, while the previous covariance-matching loss is equivalent to our spectral loss but incurs higher time complexity due to its spatial-domain computation. We showcase the application of our regularization in generative modeling for test-time reward alignment with a text-to-image model, specifically to enhance aesthetics and text alignment. Our regularization outperforms previous Gaussianity regularization, effectively prevents reward hacking and accelerates convergence.
♻ ☆ Bridging the Gap in Ophthalmic AI: MM-Retinal-Reason Dataset and OphthaReason Model toward Dynamic Multimodal Reasoning
Multimodal large language models (MLLMs) have recently demonstrated remarkable reasoning abilities with reinforcement learning paradigm. Although several multimodal reasoning models have been explored in the medical domain, most of them focus exclusively on basic reasoning, which refers to shallow inference based on visual feature matching. However, real-world clinical diagnosis extends beyond basic reasoning, demanding reasoning processes that integrate heterogeneous clinical information (such as chief complaints and medical history) with multimodal medical imaging data. To bridge this gap, we introduce MM-Retinal-Reason, the first ophthalmic multimodal dataset with the full spectrum of perception and reasoning. It encompasses both basic reasoning tasks and complex reasoning tasks, aiming to enhance visual-centric fundamental reasoning capabilities and emulate realistic clinical thinking patterns. Building upon MM-Retinal-Reason, we propose OphthaReason, the first ophthalmology-specific multimodal reasoning model with step-by-step reasoning traces. To enable flexible adaptation to both basic and complex reasoning tasks, we specifically design a novel method called Uncertainty-Aware Dynamic Thinking (UADT), which estimates sample-level uncertainty via entropy and dynamically modulates the model's exploration depth using a shaped advantage mechanism. Comprehensive experiments demonstrate that our model achieves state-of-the-art performance on both basic and complex reasoning tasks, outperforming general-purpose MLLMs, medical MLLMs, RL-based medical MLLMs, and ophthalmic MLLMs by at least 24.92\%, 15.00\%, 21.20\%, and 17.66\%. Project Page: \href{https://github.com/lxirich/OphthaReason}{link}.
♻ ☆ CoAT: Chain-of-Associated-Thoughts Framework for Enhancing Large Language Models Reasoning
Research on LLM technologies is rapidly emerging, with most of them employ a 'fast thinking' approach to inference. Most LLMs generate the final result based solely on a single query and LLM's reasoning capabilities. However, with the advent of OpenAI-o1, 'slow thinking' techniques have garnered increasing attention because its process is closer to the human thought process. Inspired by the human ability to constantly associate and replenish knowledge during thinking, we developed the novel Chain-of-Associated-Thoughts (CoAT) framework, which introduces an innovative synergy between the Monte Carlo Tree Search (MCTS) algorithm and a dynamic mechanism for integrating new key information, termed 'associative memory'. By combining the structured exploration capabilities of MCTS with the adaptive learning capacity of associative memory, CoAT significantly expands the LLM search space, enabling our framework to explore diverse reasoning pathways and dynamically update its knowledge base in real-time. This allows the framework to not only revisit and refine earlier inferences but also adaptively incorporate evolving information, ensuring that the final output is both accurate and comprehensive. We validate CoAT's effectiveness across a variety of generative and reasoning tasks. Quantitative experiments show that CoAT achieves over 10% performance improvement on open-source multi-hop reasoning datasets (HotpotQA, MuSiQue) and more than 15% gain on our proprietary CRB dataset.
comment: 18 pages, 10 figures
♻ ☆ Towards explainable decision support using hybrid neural models for logistic terminal automation
The integration of Deep Learning (DL) in System Dynamics (SD) modeling for transportation logistics offers significant advantages in scalability and predictive accuracy. However, these gains are often offset by the loss of explainability and causal reliability $-$ key requirements in critical decision-making systems. This paper presents a novel framework for interpretable-by-design neural system dynamics modeling that synergizes DL with techniques from Concept-Based Interpretability, Mechanistic Interpretability, and Causal Machine Learning. The proposed hybrid approach enables the construction of neural network models that operate on semantically meaningful and actionable variables, while retaining the causal grounding and transparency typical of traditional SD models. The framework is conceived to be applied to real-world case-studies from the EU-funded project AutoMoTIF, focusing on data-driven decision support, automation, and optimization of multimodal logistic terminals. We aim at showing how neuro-symbolic methods can bridge the gap between black-box predictive models and the need for critical decision support in complex dynamical environments within cyber-physical systems enabled by the industrial Internet-of-Things.
♻ ☆ Computational Concept of the Psyche (in Russian)
The article provides an overview of approaches to modeling the human psyche in the perspective of building an artificial one. Based on the review, a concept of cognitive architecture is proposed, where the psyche is considered as an operating system of a living or artificial subject, including a space of needs that determines its life meanings in connection with stimuli from the external world, and intelligence as a decision-making system for actions in relation to this world in order to satisfy these needs. Based on the concept, a computational formalization is proposed for creating artificial intelligence systems through learning from experience in the space of a space of needs, taking into account their biological or existential significance for an intelligent agent. Thus, the problem of building general artificial intelligence as a system for making optimal decisions in the space of agent-specific needs under conditions of uncertainty is formalized, with maximization of success in achieving goals, minimization of existential risks and maximization of energy efficiency. A minimal experimental implementation of the model is also provided.
comment: 14 pages, in Russian, 2 figures, submitted to Neuroinformatics-2025 conference
♻ ☆ A.S.E: A Repository-Level Benchmark for Evaluating Security in AI-Generated Code
The increasing adoption of large language models (LLMs) in software engineering necessitates rigorous security evaluation of their generated code. However, existing benchmarks often lack relevance to real-world AI programming scenarios, making them inadequate for assessing the practical security risks associated with AI-generated code in production environments. To address this gap, we introduce A.S.E (AI Code Generation Security Evaluation), a repository-level evaluation benchmark designed to closely mirror real-world AI programming tasks, offering a comprehensive and reliable framework for assessing the security of AI-generated code. Our evaluation of leading LLMs on A.S.E reveals several key findings. In particular, current LLMs still struggle with secure coding. The complexity in repository-level scenarios presents challenges for LLMs that typically perform well on snippet-level tasks. Morever, a larger reasoning budget does not necessarily lead to better code generation. These observations offer valuable insights into the current state of AI code generation, assisting developers in selecting the most appropriate models for practical tasks, while laying the foundation for refining LLMs to generate secure and efficient code in real-world applications.
♻ ☆ Your Language Model Can Secretly Write Like Humans: Contrastive Paraphrase Attacks on LLM-Generated Text Detectors EMNLP-2025
The misuse of large language models (LLMs), such as academic plagiarism, has driven the development of detectors to identify LLM-generated texts. To bypass these detectors, paraphrase attacks have emerged to purposely rewrite these texts to evade detection. Despite the success, existing methods require substantial data and computational budgets to train a specialized paraphraser, and their attack efficacy greatly reduces when faced with advanced detection algorithms. To address this, we propose \textbf{Co}ntrastive \textbf{P}araphrase \textbf{A}ttack (CoPA), a training-free method that effectively deceives text detectors using off-the-shelf LLMs. The first step is to carefully craft instructions that encourage LLMs to produce more human-like texts. Nonetheless, we observe that the inherent statistical biases of LLMs can still result in some generated texts carrying certain machine-like attributes that can be captured by detectors. To overcome this, CoPA constructs an auxiliary machine-like word distribution as a contrast to the human-like distribution generated by the LLM. By subtracting the machine-like patterns from the human-like distribution during the decoding process, CoPA is able to produce sentences that are less discernible by text detectors. Our theoretical analysis suggests the superiority of the proposed attack. Extensive experiments validate the effectiveness of CoPA in fooling text detectors across various scenarios.
comment: Accepted by EMNLP-2025
♻ ☆ A general language model for peptide identification
Accurate identification of bioactive peptides (BPs) and protein post-translational modifications (PTMs) is essential for understanding protein function and advancing therapeutic discovery. However, most computational methods remain limited in their generalizability across diverse peptide functions. Here, we present PDeepPP, a unified deep learning framework that integrates pretrained protein language models with a hybrid transformer-convolutional architecture, enabling robust identification across diverse peptide classes and PTM sites. We curated comprehensive benchmark datasets and implemented strategies to address data imbalance, allowing PDeepPP to systematically extract both global and local sequence features. Through extensive analyses-including dimensionality reduction and comparison studies-PDeepPP demonstrates strong, interpretable peptide representations and achieves state-of-the-art performance in 25 of the 33 biological identification tasks. Notably, PDeepPP attains high accuracy in antimicrobial (0.9726) and phosphorylation site (0.9984) identification, with 99.5% specificity in glycosylation site prediction and substantial reduction in false negatives in antimalarial tasks. By enabling large-scale, accurate peptide analysis, PDeepPP supports biomedical research and the discovery of novel therapeutic targets for disease treatment. All code, datasets, and pretrained models are publicly available via GitHub:https://github.com/fondress/PDeepPP and Hugging Face:https://huggingface.co/fondress/PDeppPP.
comment: 24 pages, 9 figures, 4 tables, submitted to arXiv
♻ ☆ Depth-Bounded Epistemic Planning KR 2025
We propose a novel algorithm for epistemic planning based on dynamic epistemic logic (DEL). The novelty is that we limit the depth of reasoning of the planning agent to an upper bound b, meaning that the planning agent can only reason about higher-order knowledge to at most (modal) depth b. We then compute a plan requiring the lowest reasoning depth by iteratively incrementing the value of b. The algorithm relies at its core on a new type of "canonical" b-bisimulation contraction that guarantees unique minimal models by construction. This yields smaller states wrt. standard bisimulation contractions, and enables to efficiently check for visited states. We show soundness and completeness of our planning algorithm, under suitable bounds on reasoning depth, and that, for a bound b, it runs in (b+1)-EXPTIME. We implement the algorithm in a novel epistemic planner, DAEDALUS, and compare it to the EFP 2.0 planner on several benchmarks from the literature, showing effective performance improvements.
comment: Extended version of paper accepted at KR 2025
♻ ☆ Beyond Ten Turns: Unlocking Long-Horizon Agentic Search with Large-Scale Asynchronous RL
Recent advancements in LLM-based agents have demonstrated remarkable capabilities in handling complex, knowledge-intensive tasks by integrating external tools. Among diverse choices of tools, search tools play a pivotal role in accessing vast external knowledge. However, open-source agents still fall short of achieving expert-level Search Intelligence, the ability to resolve ambiguous queries, generate precise searches, analyze results, and conduct thorough exploration. Existing approaches fall short in scalability, efficiency, and data quality. For example, small turn limits in existing online RL methods, e.g. <=10, restrict complex strategy learning. This paper introduces ASearcher, an open-source project for large-scale RL training of search agents. Our key contributions include: (1) Scalable fully asynchronous RL training that enables long-horizon search while maintaining high training efficiency. (2) A prompt-based LLM agent that autonomously synthesizes high-quality and challenging QAs, creating a large-scale QA dataset. Through RL training, our prompt-based QwQ-32B agent achieves substantial improvements, with 46.7% and 20.8% Avg@4 gains on xBench and GAIA, respectively. Notably, our agent exhibits extreme long-horizon search, with tool calls exceeding 40 turns and output tokens exceeding 150k during training time. With a simple agent design and no external LLMs, ASearcher-Web-QwQ achieves Avg@4 scores of 42.1 on xBench and 52.8 on GAIA, surpassing existing open-source 32B agents. We open-source our models, training data, and codes in https://github.com/inclusionAI/ASearcher.
♻ ☆ Beyond Seen Data: Improving KBQA Generalization Through Schema-Guided Logical Form Generation EMNLP 2025
Knowledge base question answering (KBQA) aims to answer user questions in natural language using rich human knowledge stored in large KBs. As current KBQA methods struggle with unseen knowledge base elements at test time,we introduce SG-KBQA: a novel model that injects schema contexts into entity retrieval and logical form generation to tackle this issue. It uses the richer semantics and awareness of the knowledge base structure provided by schema contexts to enhance generalizability. We show that SG-KBQA achieves strong generalizability, outperforming state-of-the-art models on two commonly used benchmark datasets across a variety of test settings. Our source code is available at https://github.com/gaosx2000/SG_KBQA.
comment: Accepted by EMNLP 2025
♻ ☆ Adaptive Monitoring and Real-World Evaluation of Agentic AI Systems
Agentic artificial intelligence (AI) -- multi-agent systems that combine large language models with external tools and autonomous planning -- are rapidly transitioning from research laboratories into high-stakes domains. Our earlier "Basic" paper introduced a five-axis framework and proposed preliminary metrics such as goal drift and harm reduction but did not provide an algorithmic instantiation or empirical evidence. This "Advanced" sequel fills that gap. First, we revisit recent benchmarks and industrial deployments to show that technical metrics still dominate evaluations: a systematic review of 84 papers from 2023--2025 found that 83% report capability metrics while only 30% consider human-centred or economic axes [2]. Second, we formalise an Adaptive Multi-Dimensional Monitoring (AMDM) algorithm that normalises heterogeneous metrics, applies per-axis exponentially weighted moving-average thresholds and performs joint anomaly detection via the Mahalanobis distance. Third, we conduct simulations and real-world experiments. AMDM cuts anomaly-detection latency from 12.3 s to 5.6 s on simulated goal drift and reduces false-positive rates from 4.5% to 0.9% compared with static thresholds. We present a comparison table and ROC/PR curves, and we reanalyse case studies to surface missing metrics. Code, data and a reproducibility checklist accompany this paper to facilitate replication. The code supporting this work is available at https://github.com/Manishms18/Adaptive-Multi-Dimensional-Monitoring.
♻ ☆ Prior Prompt Engineering for Reinforcement Fine-Tuning EMNLP 2025
This paper investigates prior prompt engineering (pPE) in the context of reinforcement fine-tuning (RFT), where language models (LMs) are incentivized to exhibit behaviors that maximize performance through reward signals. While existing RFT research has primarily focused on algorithms, reward shaping, and data curation, the design of the prior prompt--the instructions prepended to queries during training to elicit behaviors such as step-by-step reasoning--remains underexplored. We investigate whether different pPE approaches can guide LMs to internalize distinct behaviors after RFT. Inspired by inference-time prompt engineering (iPE), we translate five representative iPE strategies--reasoning, planning, code-based reasoning, knowledge recall, and null-example utilization--into corresponding pPE approaches. We experiment with Qwen2.5-7B using each of the pPE approaches, then evaluate performance on in-domain and out-of-domain benchmarks (e.g., AIME2024, HumanEval+, and GPQA-Diamond). Our results show that all pPE-trained models surpass their iPE-prompted counterparts, with the null-example pPE approach achieving the largest average performance gain and the highest improvement on AIME2024 and GPQA-Diamond, surpassing the commonly used reasoning approach. Furthermore, by adapting a behavior-classification framework, we demonstrate that different pPE strategies instill distinct behavioral styles in the resulting models. These findings position pPE as a powerful yet understudied axis for RFT.
comment: Accepted at EMNLP 2025, Main; 26 pages, 42 figures
♻ ☆ Scaling Video-Language Models to 10K Frames via Hierarchical Differential Distillation ICML 2025
Long-form video processing fundamentally challenges vision-language models (VLMs) due to the high computational costs of handling extended temporal sequences. Existing token pruning and feature merging methods often sacrifice critical temporal dependencies or dilute semantic information. We introduce differential distillation, a principled approach that systematically preserves task-relevant information while suppressing redundancy. Based on this principle, we develop ViLAMP, a hierarchical video-language model that processes hour-long videos at "mixed precision" through two key mechanisms: (1) differential keyframe selection that maximizes query relevance while maintaining temporal distinctiveness at the frame level and (2) differential feature merging that preserves query-salient features in non-keyframes at the patch level. Hence, ViLAMP retains full information in keyframes while reducing non-keyframes to their most salient features, resembling mixed-precision training. Extensive experiments demonstrate ViLAMP's superior performance across four video understanding benchmarks, particularly on long-form content. Notably, ViLAMP can process ultra-long videos (up to 10K frames) on a single NVIDIA A100 GPU, achieving substantial computational efficiency while maintaining state-of-the-art performance. Code and model are available at https://github.com/steven-ccq/ViLAMP.
comment: Accepted by ICML 2025
♻ ☆ From Static to Adaptive Defense: Federated Multi-Agent Deep Reinforcement Learning-Driven Moving Target Defense Against DoS Attacks in UAV Swarm Networks IEEE
The proliferation of UAVs has enabled a wide range of mission-critical applications and is becoming a cornerstone of low-altitude networks, supporting smart cities, emergency response, and more. However, the open wireless environment, dynamic topology, and resource constraints of UAVs expose low-altitude networks to severe DoS threats. Traditional defense approaches, which rely on fixed configurations or centralized decision-making, cannot effectively respond to the rapidly changing conditions in UAV swarm environments. To address these challenges, we propose a novel federated multi-agent deep reinforcement learning (FMADRL)-driven moving target defense (MTD) framework for proactive DoS mitigation in low-altitude networks. Specifically, we design lightweight and coordinated MTD mechanisms, including leader switching, route mutation, and frequency hopping, to disrupt attacker efforts and enhance network resilience. The defense problem is formulated as a multi-agent partially observable Markov decision process, capturing the uncertain nature of UAV swarms under attack. Each UAV is equipped with a policy agent that autonomously selects MTD actions based on partial observations and local experiences. By employing a policy gradient-based algorithm, UAVs collaboratively optimize their policies via reward-weighted aggregation. Extensive simulations demonstrate that our approach significantly outperforms state-of-the-art baselines, achieving up to a 34.6% improvement in attack mitigation rate, a reduction in average recovery time of up to 94.6%, and decreases in energy consumption and defense cost by as much as 29.3% and 98.3%, respectively, under various DoS attack strategies. These results highlight the potential of intelligent, distributed defense mechanisms to protect low-altitude networks, paving the way for reliable and scalable low-altitude economy.
comment: 16pages; Major Revision for IEEE TCCN
♻ ☆ That's So FETCH: Fashioning Ensemble Techniques for LLM Classification in Civil Legal Intake and Referral
Each year millions of people seek help for their legal problems by calling a legal aid program hotline, walking into a legal aid office, or using a lawyer referral service. The first step to match them to the right help is to identify the legal problem the applicant is experiencing. Misdirection has consequences. Applicants may miss a deadline, experience physical abuse, lose housing or lose custody of children while waiting to connect to the right legal help. We introduce and evaluate the FETCH classifier for legal issue classification and describe two methods for improving accuracy: a hybrid LLM/ML ensemble classification method, and the automatic generation of follow-up questions to enrich the initial problem narrative. We employ a novel data set of 419 real-world queries to a nonprofit lawyer referral service. Ultimately, we show classification accuracy (hits@2) of 97.37\% using a mix of inexpensive models, exceeding the performance of the current state-of-the-art GPT-5 model. Our approach shows promise in significantly reducing the cost of guiding users of the legal system to the right resource for their problem while achieving high accuracy.
comment: Submission to JURIX 2025
♻ ☆ Understanding visual attention beehind bee-inspired UAV navigation
Bio-inspired design is often used in autonomous UAV navigation due to the capacity of biological systems for flight and obstacle avoidance despite limited sensory and computational capabilities. In particular, honeybees mainly use the sensory input of optic flow, the apparent motion of objects in their visual field, to navigate cluttered environments. In our work, we train a Reinforcement Learning agent to navigate a tunnel with obstacles using only optic flow as sensory input. We inspect the attention patterns of trained agents to determine the regions of optic flow on which they primarily base their motor decisions. We find that agents trained in this way pay most attention to regions of discontinuity in optic flow, as well as regions with large optic flow magnitude. The trained agents appear to navigate a cluttered tunnel by avoiding the obstacles that produce large optic flow, while maintaining a centered position in their environment, which resembles the behavior seen in flying insects. This pattern persists across independently trained agents, which suggests that this could be a good strategy for developing a simple explicit control law for physical UAVs.
♻ ☆ HIRAG: Hierarchical-Thought Instruction-Tuning Retrieval-Augmented Generation
Retrieval-augmented generation (RAG) has become a fundamental paradigm for addressing the challenges faced by large language models in handling real-time information and domain-specific problems. Traditional RAG systems primarily rely on the in-context learning (ICL) capabilities of the large language model itself. Still, in-depth research on the specific capabilities needed by the RAG generation model is lacking, leading to challenges with inconsistent document quality and retrieval system imperfections. Even the limited studies that fine-tune RAG generative models often \textit{lack a granular focus on RAG task} or \textit{a deeper utilization of chain-of-thought processes}. To address this, we propose that RAG models should possess three progressively hierarchical abilities (1) Filtering: the ability to select relevant information; (2) Combination: the ability to combine semantic information across paragraphs; and (3) RAG-specific reasoning: the ability to further process external knowledge using internal knowledge. Thus, we introduce our new RAG instruction fine-tuning method, Hierarchical-Thought Instruction-Tuning Retrieval-Augmented Generation (HIRAG) incorporates a "think before answering" strategy. This method enhances the model's open-book examination capability by utilizing multi-level progressive chain-of-thought. Experiments show that the HIRAG training strategy significantly improves the model's performance on datasets such as RGB, PopQA, MuSiQue, HotpotQA, and PubmedQA.
♻ ☆ UAR-NVC: A Unified AutoRegressive Framework for Memory-Efficient Neural Video Compression
Implicit Neural Representations (INRs) have demonstrated significant potential in video compression by representing videos as neural networks. However, as the number of frames increases, the memory consumption for training and inference increases substantially, posing challenges in resource-constrained scenarios. Inspired by the success of traditional video compression frameworks, which process video frame by frame and can efficiently compress long videos, we adopt this modeling strategy for INRs to decrease memory consumption, while aiming to unify the frameworks from the perspective of timeline-based autoregressive modeling. In this work, we present a novel understanding of INR models from an autoregressive (AR) perspective and introduce a Unified AutoRegressive Framework for memory-efficient Neural Video Compression (UAR-NVC). UAR-NVC integrates timeline-based and INR-based neural video compression under a unified autoregressive paradigm. It partitions videos into several clips and processes each clip using a different INR model instance, leveraging the advantages of both compression frameworks while allowing seamless adaptation to either in form. To further reduce temporal redundancy between clips, we design two modules to optimize the initialization, training, and compression of these model parameters. UAR-NVC supports adjustable latencies by varying the clip length. Extensive experimental results demonstrate that UAR-NVC, with its flexible video clip setting, can adapt to resource-constrained environments and significantly improve performance compared to different baseline models. The project page: "https://wj-inf.github.io/UAR-NVC-page/".
comment: Accepted to TCSVT2025
♻ ☆ SGDFuse: SAM-Guided Diffusion for High-Fidelity Infrared and Visible Image Fusion
Infrared and visible image fusion (IVIF) aims to combine the thermal radiation information from infrared images with the rich texture details from visible images to enhance perceptual capabilities for downstream visual tasks. However, existing methods often fail to preserve key targets due to a lack of deep semantic understanding of the scene, while the fusion process itself can also introduce artifacts and detail loss, severely compromising both image quality and task performance. To address these issues, this paper proposes SGDFuse, a conditional diffusion model guided by the Segment Anything Model (SAM), to achieve high-fidelity and semantically-aware image fusion. The core of our method is to utilize high-quality semantic masks generated by SAM as explicit priors to guide the optimization of the fusion process via a conditional diffusion model. Specifically, the framework operates in a two-stage process: it first performs a preliminary fusion of multi-modal features, and then utilizes the semantic masks from SAM jointly with the preliminary fused image as a condition to drive the diffusion model's coarse-to-fine denoising generation. This ensures the fusion process not only has explicit semantic directionality but also guarantees the high fidelity of the final result. Extensive experiments demonstrate that SGDFuse achieves state-of-the-art performance in both subjective and objective evaluations, as well as in its adaptability to downstream tasks, providing a powerful solution to the core challenges in image fusion. The code of SGDFuse is available at https://github.com/boshizhang123/SGDFuse.
comment: Submitted to Information Fusion
♻ ☆ CITER: Collaborative Inference for Efficient Large Language Model Decoding with Token-Level Routing
Large language models have achieved remarkable success in various tasks but suffer from high computational costs during inference, limiting their deployment in resource-constrained applications. To address this issue, we propose a novel Collaborative Inference with Token-lEvel Routing (CITER) framework that enables efficient collaboration between small and large language models (SLMs \& LLMs) through a token-level routing strategy. Specifically, CITER routes non-critical tokens to an SLM for efficiency and routes critical tokens to an LLM for generalization quality. We formulate router training as a policy optimization, where the router receives rewards based on both the quality of predictions and the inference costs of generation. This allows the router to learn to predict token-level routing scores and make routing decisions based on both the current token and the future impact of its decisions. To further accelerate the reward evaluation process, we introduce a shortcut which significantly reduces the costs of the reward estimation and improving the practicality of our approach. Extensive experiments on five benchmark datasets demonstrate that CITER reduces the inference costs while preserving high-quality generation, offering a promising solution for real-time and resource-constrained applications. Our data and code are available at https://github.com/aiming-lab/CITER.
♻ ☆ CoT-RAG: Integrating Chain of Thought and Retrieval-Augmented Generation to Enhance Reasoning in Large Language Models
Chain-of-thought (CoT) reasoning boosts large language models' (LLMs) performance on complex tasks but faces two key limitations: a lack of reliability when solely relying on LLM-generated reasoning chains and lower reasoning performance from natural language prompts compared with code prompts. To address these issues, we propose CoT-RAG, a novel reasoning framework with three key designs: (i) Knowledge Graph-driven CoT Generation, featuring knowledge graphs to modulate reasoning chain generation of LLMs, thereby enhancing reasoning credibility; (ii) Learnable Knowledge Case-aware RAG, which incorporates retrieval-augmented generation (RAG) into knowledge graphs to retrieve relevant sub-cases and sub-descriptions, providing LLMs with learnable information; (iii) Pseudo Program Prompting Execution, which promotes greater logical rigor by guiding LLMs to execute reasoning tasks as pseudo-programs. Evaluations on nine public datasets spanning three reasoning tasks reveal significant accuracy gains-ranging from 4.0% to 44.3%-over state-of-the-art methods. Furthermore, tests on four domain-specific datasets demonstrate exceptional accuracy and efficient execution, underscoring its practical applicability and scalability. Our code and data are available at https: //github.com/hustlfy123/CoT-RAG.
♻ ☆ VIDEE: Visual and Interactive Decomposition, Execution, and Evaluation of Text Analytics with Intelligent Agents
Text analytics has traditionally required specialized knowledge in Natural Language Processing (NLP) or text analysis, which presents a barrier for entry-level analysts. Recent advances in large language models (LLMs) have changed the landscape of NLP by enabling more accessible and automated text analysis (e.g., topic detection, summarization, information extraction, etc.). We introduce VIDEE, a system that supports entry-level data analysts to conduct advanced text analytics with intelligent agents. VIDEE instantiates a human-agent collaroration workflow consisting of three stages: (1) Decomposition, which incorporates a human-in-the-loop Monte-Carlo Tree Search algorithm to support generative reasoning with human feedback, (2) Execution, which generates an executable text analytics pipeline, and (3) Evaluation, which integrates LLM-based evaluation and visualizations to support user validation of execution results. We conduct two quantitative experiments to evaluate VIDEE's effectiveness and analyze common agent errors. A user study involving participants with varying levels of NLP and text analytics experience -- from none to expert -- demonstrates the system's usability and reveals distinct user behavior patterns. The findings identify design implications for human-agent collaboration, validate the practical utility of VIDEE for non-expert users, and inform future improvements to intelligent text analytics systems.
♻ ☆ Discrete Diffusion in Large Language and Multimodal Models: A Survey
In this work, we provide a systematic survey of Discrete Diffusion Language Models (dLLMs) and Discrete Diffusion Multimodal Language Models (dMLLMs). Unlike autoregressive (AR) models, dLLMs and dMLLMs adopt a multi-token, parallel decoding paradigm using full attention and a denoising-based generation strategy. This paradigm naturally enables parallel generation, fine-grained output control, and dynamic perception. These capabilities are previously difficult to achieve with AR models. A growing number of industrial-scale proprietary d(M)LLMs, as well as a large number of open-source academic d(M)LLMs, have demonstrated performance comparable to their autoregressive counterparts, while achieving up to \textit{10$\times$} acceleration in inference speed. These developments position discrete diffusion models as a promising alternative to intelligence based on the traditional autoregressive approach. In this work, we present a comprehensive overview of the research in the dLLM and dMLLM domains. We trace the historical development of dLLMs and dMLLMs, formalize the underlying mathematical frameworks, and categorize representative models. We further analyze key techniques for training and inference, and summarize emerging applications across language, vision-language, and biological domains and \textit{etc.}. We conclude by discussing future directions for research and deployment. Relative papers are collected in https://github.com/LiQiiiii/Awesome-Discrete-Diffusion-LLM_MLLM
♻ ☆ Traffic-Rule-Compliant Trajectory Repair via Satisfiability Modulo Theories and Reachability Analysis IEEE
Complying with traffic rules is challenging for automated vehicles, as numerous rules need to be considered simultaneously. If a planned trajectory violates traffic rules, it is common to replan a new trajectory from scratch. We instead propose a trajectory repair technique to save computation time. By coupling satisfiability modulo theories with set-based reachability analysis, we determine if and in what manner the initial trajectory can be repaired. Experiments in high-fidelity simulators and in the real world demonstrate the benefits of our proposed approach in various scenarios. Even in complex environments with intricate rules, we efficiently and reliably repair rule-violating trajectories, enabling automated vehicles to swiftly resume legally safe operation in real time.
comment: 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
♻ ☆ Generative AI for Data Augmentation in Wireless Networks: Analysis, Applications, and Case Study
Data augmentation as a technique can mitigate data scarcity in machine learning. However, owing to fundamental differences in wireless data structures, traditional data augmentation techniques may not be suitable for wireless data. Fortunately, Generative Artificial Intelligence (GenAI) can be an effective solution to wireless data augmentation due to its excellent data generation capability. This article systematically explores the potential and effectiveness of generative data augmentation in wireless networks. We first briefly review data augmentation techniques, discuss their limitations in wireless networks, and introduce generative data augmentation, including reviewing GenAI models and their applications in data augmentation. We then explore the application prospects of generative data augmentation in wireless networks from the physical, network, and application layers, providing a generative data augmentation architecture for each application. Subsequently, we propose a general generative data augmentation framework for Wi-Fi gesture recognition. Specifically, we leverage transformer-based diffusion models to generate high-quality channel state information data. To evaluate the effectiveness of the proposed framework, we conduct a case study using the Widar 3.0 dataset, which employs a residual network model for Wi-Fi gesture recognition. Simulation results demonstrate that the proposed framework can enhance the performance of Wi-Fi gesture recognition. Finally, we discuss research directions for generative data augmentation.
♻ ☆ MetaExplainer: A Framework to Generate Multi-Type User-Centered Explanations for AI Systems
Explanations are crucial for building trustworthy AI systems, but a gap often exists between the explanations provided by models and those needed by users. To address this gap, we introduce MetaExplainer, a neuro-symbolic framework designed to generate user-centered explanations. Our approach employs a three-stage process: first, we decompose user questions into machine-readable formats using state-of-the-art large language models (LLM); second, we delegate the task of generating system recommendations to model explainer methods; and finally, we synthesize natural language explanations that summarize the explainer outputs. Throughout this process, we utilize an Explanation Ontology to guide the language models and explainer methods. By leveraging LLMs and a structured approach to explanation generation, MetaExplainer aims to enhance the interpretability and trustworthiness of AI systems across various applications, providing users with tailored, question-driven explanations that better meet their needs. Comprehensive evaluations of MetaExplainer demonstrate a step towards evaluating and utilizing current state-of-the-art explanation frameworks. Our results show high performance across all stages, with a 59.06% F1-score in question reframing, 70% faithfulness in model explanations, and 67% context-utilization in natural language synthesis. User studies corroborate these findings, highlighting the creativity and comprehensiveness of generated explanations. Tested on the Diabetes (PIMA Indian) tabular dataset, MetaExplainer supports diverse explanation types, including Contrastive, Counterfactual, Rationale, Case-Based, and Data explanations. The framework's versatility and traceability from using ontology to guide LLMs suggest broad applicability beyond the tested scenarios, positioning MetaExplainer as a promising tool for enhancing AI explainability across various domains.
♻ ☆ DischargeSim: A Simulation Benchmark for Educational Doctor-Patient Communication at Discharge EMNLP
Discharge communication is a critical yet underexplored component of patient care, where the goal shifts from diagnosis to education. While recent large language model (LLM) benchmarks emphasize in-visit diagnostic reasoning, they fail to evaluate models' ability to support patients after the visit. We introduce DischargeSim, a novel benchmark that evaluates LLMs on their ability to act as personalized discharge educators. DischargeSim simulates post-visit, multi-turn conversations between LLM-driven DoctorAgents and PatientAgents with diverse psychosocial profiles (e.g., health literacy, education, emotion). Interactions are structured across six clinically grounded discharge topics and assessed along three axes: (1) dialogue quality via automatic and LLM-as-judge evaluation, (2) personalized document generation including free-text summaries and structured AHRQ checklists, and (3) patient comprehension through a downstream multiple-choice exam. Experiments across 18 LLMs reveal significant gaps in discharge education capability, with performance varying widely across patient profiles. Notably, model size does not always yield better education outcomes, highlighting trade-offs in strategy use and content prioritization. DischargeSim offers a first step toward benchmarking LLMs in post-visit clinical education and promoting equitable, personalized patient support.
comment: Equal contribution for the first two authors. To appear in the proceedings of the Main Conference on Empirical Methods in Natural Language Processing (EMNLP) 2025
♻ ☆ FedComLoc: Communication-Efficient Distributed Training of Sparse and Quantized Models
Federated Learning (FL) has garnered increasing attention due to its unique characteristic of allowing heterogeneous clients to process their private data locally and interact with a central server, while being respectful of privacy. A critical bottleneck in FL is the communication cost. A pivotal strategy to mitigate this burden is Local Training, which involves running multiple local stochastic gradient descent iterations between communication phases. Our work is inspired by the innovative Scaffnew algorithm, which has considerably advanced the reduction of communication complexity in FL. We introduce FedComLoc (Federated Compressed and Local Training), integrating practical and effective compression into Scaffnew to further enhance communication efficiency. Extensive experiments, using the popular TopK compressor and quantization, demonstrate its prowess in substantially reducing communication overheads in heterogeneous settings.
comment: Accepted version at Transactions on Machine Learning Research (TMLR)
♻ ☆ TransitReID: Transit OD Data Collection with Occlusion-Resistant Dynamic Passenger Re-Identification
Transit Origin-Destination (OD) data are fundamental for optimizing public transit services, yet current collection methods, such as manual surveys, Bluetooth and WiFi tracking, or Automated Passenger Counters, are either costly, device-dependent, or incapable of individual-level matching. Meanwhile, onboard surveillance cameras already deployed on most transit vehicles provide an underutilized opportunity for automated OD data collection. Leveraging this, we present TransitReID, a novel framework for individual-level and occlusion-resistant passenger re-identification tailored to transit environments. Our approach introduces three key innovations: (1) an occlusion-robust ReID algorithm that integrates a variational autoencoder-guided region-attention mechanism and selective quality feature averaging to dynamically emphasize visible and discriminative body regions under severe occlusions and viewpoint variations; (2) a Hierarchical Storage and Dynamic Matching HSDM mechanism that transforms static gallery matching into a dynamic process for robustness, accuracy, and speed in real-world bus operations; and (3) a multi-threaded edge implementation that enables near real-time OD estimation while ensuring privacy by processing all data locally. To support research in this domain, we also construct a new TransitReID dataset with over 17,000 images captured from bus front and rear cameras under diverse occlusion and viewpoint conditions. Experimental results demonstrate that TransitReID achieves state-of-the-art performance, with R-1 accuracy of 88.3 percent and mAP of 92.5 percent, and further sustains 90 percent OD estimation accuracy in bus route simulations on NVIDIA Jetson edge devices. This work advances both the algorithmic and system-level foundations of automated transit OD collection, paving the way for scalable, privacy-preserving deployment in intelligent transportation systems.
♻ ☆ To Theoretically Understand Transformer-Based In-Context Learning for Optimizing CSMA
The binary exponential backoff scheme is widely used in WiFi 7 and still incurs poor throughput performance under dynamic channel environments. Recent model-based approaches (e.g., non-persistent and $p$-persistent CSMA) simply optimize backoff strategies under a known and fixed node density, still leading to a large throughput loss due to inaccurate node density estimation. This paper is the first to propose LLM transformer-based in-context learning (ICL) theory for optimizing channel access. We design a transformer-based ICL optimizer to pre-collect collision-threshold data examples and a query collision case. They are constructed as a prompt as the input for the transformer to learn the pattern, which then generates a predicted contention window threshold (CWT). To train the transformer for effective ICL, we develop an efficient algorithm and guarantee a near-optimal CWT prediction within limited training steps. As it may be hard to gather perfect data examples for ICL in practice, we further extend to allow erroneous data input in the prompt. We prove that our optimizer maintains minimal prediction and throughput deviations from the optimal values. Experimental results on NS-3 further demonstrate our approach's fast convergence and near-optimal throughput over existing model-based and DRL-based approaches under unknown node densities.
♻ ☆ The Architecture of AI Transformation: Four Strategic Patterns and an Emerging Frontier
Despite extensive investment in artificial intelligence, 95% of enterprises report no measurable profit impact from AI deployments (MIT, 2025). In this theoretical paper, we argue that this gap reflects paradigmatic lock-in that channels AI into incremental optimization rather than structural transformation. Using a cross-case analysis, we propose a 2x2 framework that reconceptualizes AI strategy along two independent dimensions: the degree of transformation achieved (incremental to transformational) and the treatment of human contribution (reduced to amplified). The framework surfaces four patterns now dominant in practice: individual augmentation, process automation, workforce substitution, and a less deployed frontier of collaborative intelligence. Evidence shows that the first three dimensions reinforce legacy work models and yield localized gains without durable value capture. Realizing collaborative intelligence requires three mechanisms: complementarity (pairing distinct human and machine strengths), co-evolution (mutual adaptation through interaction), and boundary-setting (human determination of ethical and strategic parameters). Complementarity and boundary-setting are observable in regulated and high-stakes domains; co-evolution is largely absent, which helps explain limited system-level impact. Our findings in a case study analysis illustrated that advancing toward collaborative intelligence requires material restructuring of roles, governance, and data architecture rather than additional tools. The framework reframes AI transformation as an organizational design challenge: moving from optimizing the division of labor between humans and machines to architecting their convergence, with implications for operating models, workforce development, and the future of work.
comment: 59 pages, 2 tables, 4 figures
♻ ☆ Deep Reinforcement Learning for Inventory Networks: Toward Reliable Policy Optimization
We argue that inventory management presents unique opportunities for the reliable application of deep reinforcement learning (DRL). To enable this, we emphasize and test two complementary techniques. The first is Hindsight Differentiable Policy Optimization (HDPO), which uses pathwise gradients from offline counterfactual simulations to directly and efficiently optimize policy performance. Unlike standard policy gradient methods that rely on high-variance score-function estimators, HDPO computes gradients by differentiating through the known system dynamics. Via extensive benchmarking, we show that HDPO recovers near-optimal policies in settings with known or bounded optima, is more robust than variants of the REINFORCE algorithm, and significantly outperforms generalized newsvendor heuristics on problems using real time series data. Our second technique aligns neural policy architectures with the topology of the inventory network. We exploit Graph Neural Networks (GNNs) as a natural inductive bias for encoding supply chain structure, demonstrate that they can represent optimal and near-optimal policies in two theoretical settings, and empirically show that they reduce data requirements across six diverse inventory problems. A key obstacle to progress in this area is the lack of standardized benchmark problems. To address this gap, we open-source a suite of benchmark environments, along with our full codebase, to promote transparency and reproducibility. All resources are available at github.com/MatiasAlvo/Neural_inventory_control.
♻ ☆ Semantic Augmentation in Images using Language
Deep Learning models are incredibly data-hungry and require very large labeled datasets for supervised learning. As a consequence, these models often suffer from overfitting, limiting their ability to generalize to real-world examples. Recent advancements in diffusion models have enabled the generation of photorealistic images based on textual inputs. Leveraging the substantial datasets used to train these diffusion models, we propose a technique to utilize generated images to augment existing datasets. This paper explores various strategies for effective data augmentation to improve the out-of-domain generalization capabilities of deep learning models.
♻ ☆ Crack Path Prediction with Operator Learning using Discrete Particle System data Generation
Accurately modeling crack propagation is critical for predicting failure in engineering materials and structures, where small cracks can rapidly evolve and cause catastrophic damage. The interaction of cracks with discontinuities, such as holes, significantly affects crack deflection and arrest. Recent developments in discrete particle systems with multibody interactions based on constitutive behavior have demonstrated the ability to capture crack nucleation and evolution without relying on continuum assumptions. In this work, we use data from Constitutively Informed Particle Dynamics (CPD) simulations to train operator learning models, specifically Deep Operator Networks (DeepONets), which learn mappings between function spaces instead of finite-dimensional vectors. We explore two DeepONet variants: vanilla and Fusion DeepONet, for predicting time-evolving crack propagation in specimens with varying geometries. Three representative cases are studied: (i) varying notch height without active fracture; and (ii) and (iii) combinations of notch height and hole radius where dynamic fracture occurs on irregular discrete meshes. The models are trained using geometric inputs in the branch network and spatial-temporal coordinates in the trunk network. Results show that Fusion DeepONet consistently outperforms the vanilla variant, with more accurate predictions especially in non-fracturing cases. Fracture-driven scenarios involving displacement and crack evolution remain more challenging. These findings highlight the potential of Fusion DeepONet to generalize across complex, geometry-varying, and time-dependent crack propagation phenomena.
comment: 22 pages, 14 figures
♻ ☆ Rhythmic sharing: A bio-inspired paradigm for zero-shot adaptive learning in neural networks
The brain rapidly adapts to new contexts and learns from limited data, a coveted characteristic that artificial intelligence (AI) algorithms struggle to mimic. Inspired by the mechanical oscillatory rhythms of neural cells, we developed a learning paradigm utilizing link strength oscillations, where learning is associated with the coordination of these oscillations. Link oscillations can rapidly change coordination, allowing the network to sense and adapt to subtle contextual changes without supervision. The network becomes a generalist AI architecture, capable of predicting dynamics of multiple contexts including unseen ones. These results make our paradigm a powerful starting point for novel models of cognition. Because our paradigm is agnostic to specifics of the neural network, our study opens doors for introducing rapid adaptive learning into leading AI models.
comment: 12 pages, 3 figures. V2: General formatting and reference addendum. V3: Typo on p.11: h -> h^2 for RMSE. V5: Typo in caption for fig 2: caption for 2c should have been for 2b, and v.v. V6: Typo fixes to figure references pertaining to V5 (wrote fig 3 instead of fig 2)
♻ ☆ From Vision to Validation: A Theory- and Data-Driven Construction of a GCC-Specific AI Adoption Index
Artificial intelligence (AI) is rapidly transforming public-sector processes worldwide, yet standardized measures rarely address the unique drivers, governance models, and cultural nuances of the Gulf Cooperation Council (GCC) countries. This study employs a theory-driven foundation derived from an in-depth analysis of literature review and six National AI Strategies (NASs), coupled with a data-driven approach that utilizes a survey of 203 mid- and senior-level government employees and advanced statistical techniques (K-Means clustering, Principal Component Analysis, and Partial Least Squares Structural Equation Modeling). By combining policy insights with empirical evidence, the research develops and validates a novel AI Adoption Index specifically tailored to the GCC public sector. Findings indicate that robust technical infrastructure and clear policy mandates exert the strongest influence on successful AI implementations, overshadowing organizational readiness in early adoption stages. The combined model explains 70% of the variance in AI outcomes, suggesting that resource-rich environments and top-down policy directives can drive rapid but uneven technology uptake. By consolidating key dimensions (Technical Infrastructure (TI), Organizational Readiness (OR), and Governance Environment (GE)) into a single composite index, this study provides a holistic yet context-sensitive tool for benchmarking AI maturity. The index offers actionable guidance for policymakers seeking to harmonize large-scale deployments with ethical and regulatory standards. Beyond advancing academic discourse, these insights inform more strategic allocation of resources, cross-country cooperation, and capacity-building initiatives, thereby supporting sustained AI-driven transformation in the GCC region and beyond.
comment: 38 pages, 8 figures, 17 tables
♻ ☆ Data-Augmented Few-Shot Neural Stencil Emulation for System Identification of Computer Models
Partial differential equations (PDEs) underpin the modeling of many natural and engineered systems. It can be convenient to express such models as neural PDEs rather than using traditional numerical PDE solvers by replacing part or all of the PDE's governing equations with a neural network representation. Neural PDEs are often easier to differentiate, linearize, reduce, or use for uncertainty quantification than the original numerical solver. They are usually trained on solution trajectories obtained by long time integration of the PDE solver. Here we propose a more sample-efficient data-augmentation strategy for generating neural PDE training data from a computer model by space-filling sampling of local "stencil" states. This approach removes a large degree of spatiotemporal redundancy present in trajectory data and oversamples states that may be rarely visited but help the neural PDE generalize across the state space. We demonstrate that accurate neural PDE stencil operators can be learned from synthetic training data generated by the computational equivalent of 10 timesteps' worth of numerical simulation. Accuracy is further improved if we assume access to a single full-trajectory simulation from the computer model, which is typically available in practice. Across several PDE systems, we show that our data-augmented synthetic stencil data yield better trained neural stencil operators, with clear performance gains compared with naively sampled stencil data from simulation trajectories.
♻ ☆ Uncertainty Estimation by Human Perception versus Neural Models
Modern neural networks (NNs) often achieve high predictive accuracy but are poorly calibrated, producing overconfident predictions even when wrong. This miscalibration poses serious challenges in applications where reliable uncertainty estimates are critical. In this work, we investigate how human perceptual uncertainty compares to uncertainty estimated by NNs. Using three vision benchmarks annotated with both human disagreement and crowdsourced confidence, we assess the correlation between model-predicted uncertainty and human-perceived uncertainty. Our results show that current methods only weakly align with human intuition, with correlations varying significantly across tasks and uncertainty metrics. Notably, we find that incorporating human-derived soft labels into the training process can improve calibration without compromising accuracy. These findings reveal a persistent gap between model and human uncertainty and highlight the potential of leveraging human insights to guide the development of more trustworthy AI systems.
♻ ☆ New Kid in the Classroom: Exploring Student Perceptions of AI Coding Assistants
The arrival of AI coding assistants in educational settings presents a paradigm shift, introducing a "new kid in the classroom" for both students and instructors. Thus, understanding the perceptions of these key actors about this new dynamic is critical. This exploratory study contributes to this area by investigating how these tools are shaping the experiences of novice programmers in an introductory programming course. Through a two-part exam, we investigated student perceptions by first providing access to AI support for a programming task and then requiring an extension of the solution without it. We collected Likert-scale and open-ended responses from 20 students to understand their perceptions on the challenges they faced. Our findings reveal that students perceived AI tools as helpful for grasping code concepts and boosting their confidence during the initial development phase. However, a noticeable difficulty emerged when students were asked to work unaided, pointing to potential overreliance and gaps in foundational knowledge transfer. These insights highlight a critical need for new pedagogical approaches that integrate AI effectively while effectively enhancing core programming skills, rather than impersonating them.
comment: A shorter version of the manuscript (16 pages) has been accepted for publication in the Proceedings of 19th Colombian Conference on Computing, CCC 2025
Computation and Language 87
☆ A Survey of Reinforcement Learning for Large Reasoning Models
In this paper, we survey recent advances in Reinforcement Learning (RL) for reasoning with Large Language Models (LLMs). RL has achieved remarkable success in advancing the frontier of LLM capabilities, particularly in addressing complex logical tasks such as mathematics and coding. As a result, RL has emerged as a foundational methodology for transforming LLMs into LRMs. With the rapid progress of the field, further scaling of RL for LRMs now faces foundational challenges not only in computational resources but also in algorithm design, training data, and infrastructure. To this end, it is timely to revisit the development of this domain, reassess its trajectory, and explore strategies to enhance the scalability of RL toward Artificial SuperIntelligence (ASI). In particular, we examine research applying RL to LLMs and LRMs for reasoning abilities, especially since the release of DeepSeek-R1, including foundational components, core problems, training resources, and downstream applications, to identify future opportunities and directions for this rapidly evolving area. We hope this review will promote future research on RL for broader reasoning models. Github: https://github.com/TsinghuaC3I/Awesome-RL-for-LRMs
☆ Large Language Model Hacking: Quantifying the Hidden Risks of Using LLMs for Text Annotation
Large language models (LLMs) are rapidly transforming social science research by enabling the automation of labor-intensive tasks like data annotation and text analysis. However, LLM outputs vary significantly depending on the implementation choices made by researchers (e.g., model selection, prompting strategy, or temperature settings). Such variation can introduce systematic biases and random errors, which propagate to downstream analyses and cause Type I, Type II, Type S, or Type M errors. We call this LLM hacking. We quantify the risk of LLM hacking by replicating 37 data annotation tasks from 21 published social science research studies with 18 different models. Analyzing 13 million LLM labels, we test 2,361 realistic hypotheses to measure how plausible researcher choices affect statistical conclusions. We find incorrect conclusions based on LLM-annotated data in approximately one in three hypotheses for state-of-the-art models, and in half the hypotheses for small language models. While our findings show that higher task performance and better general model capabilities reduce LLM hacking risk, even highly accurate models do not completely eliminate it. The risk of LLM hacking decreases as effect sizes increase, indicating the need for more rigorous verification of findings near significance thresholds. Our extensive analysis of LLM hacking mitigation techniques emphasizes the importance of human annotations in reducing false positive findings and improving model selection. Surprisingly, common regression estimator correction techniques are largely ineffective in reducing LLM hacking risk, as they heavily trade off Type I vs. Type II errors. Beyond accidental errors, we find that intentional LLM hacking is unacceptably simple. With few LLMs and just a handful of prompt paraphrases, anything can be presented as statistically significant.
☆ Building High-Quality Datasets for Portuguese LLMs: From Common Crawl Snapshots to Industrial-Grade Corpora
The performance of large language models (LLMs) is deeply influenced by the quality and composition of their training data. While much of the existing work has centered on English, there remains a gap in understanding how to construct effective training corpora for other languages. We explore scalable methods for building web-based corpora for LLMs. We apply them to build a new 120B token corpus in Portuguese that achieves competitive results to an industrial-grade corpus. Using a continual pretraining setup, we study how different data selection and preprocessing strategies affect LLM performance when transitioning a model originally trained in English to another language. Our findings demonstrate the value of language-specific filtering pipelines, including classifiers for education, science, technology, engineering, and mathematics (STEM), as well as toxic content. We show that adapting a model to the target language leads to performance improvements, reinforcing the importance of high-quality, language-specific data. While our case study focuses on Portuguese, our methods are applicable to other languages, offering insights for multilingual LLM development.
☆ Merge-of-Thought Distillation
Efficient reasoning distillation for long chain-of-thought (CoT) models is increasingly constrained by the assumption of a single oracle teacher, despite practical availability of multiple candidate teachers and growing CoT corpora. We revisit teacher selection and observe that different students have different "best teachers," and even for the same student the best teacher can vary across datasets. Therefore, to unify multiple teachers' reasoning abilities into student with overcoming conflicts among various teachers' supervision, we propose Merge-of-Thought Distillation (MoT), a lightweight framework that alternates between teacher-specific supervised fine-tuning branches and weight-space merging of the resulting student variants. On competition math benchmarks, using only about 200 high-quality CoT samples, applying MoT to a Qwen3-14B student surpasses strong models including DEEPSEEK-R1, QWEN3-30B-A3B, QWEN3-32B, and OPENAI-O1, demonstrating substantial gains. Besides, MoT consistently outperforms the best single-teacher distillation and the naive multi-teacher union, raises the performance ceiling while mitigating overfitting, and shows robustness to distribution-shifted and peer-level teachers. Moreover, MoT reduces catastrophic forgetting, improves general reasoning beyond mathematics and even cultivates a better teacher, indicating that consensus-filtered reasoning features transfer broadly. These results position MoT as a simple, scalable route to efficiently distilling long CoT capabilities from diverse teachers into compact students.
☆ MoVoC: Morphology-Aware Subword Construction for Geez Script Languages
Subword-based tokenization methods often fail to preserve morphological boundaries, a limitation especially pronounced in low-resource, morphologically complex languages such as those written in the Geez script. To address this, we present MoVoC (Morpheme-aware Subword Vocabulary Construction) and train MoVoC-Tok, a tokenizer that integrates supervised morphological analysis into the subword vocabulary. This hybrid segmentation approach combines morpheme-based and Byte Pair Encoding (BPE) tokens to preserve morphological integrity while maintaining lexical meaning. To tackle resource scarcity, we curate and release manually annotated morpheme data for four Geez script languages and a morpheme-aware vocabulary for two of them. While the proposed tokenization method does not lead to significant gains in automatic translation quality, we observe consistent improvements in intrinsic metrics, MorphoScore, and Boundary Precision, highlighting the value of morphology-aware segmentation in enhancing linguistic fidelity and token efficiency. Our morpheme-annotated datasets and tokenizer will be publicly available to support further research in low-resource, morphologically rich languages. Our code and data are available on GitHub: https://github.com/hailaykidu/MoVoC
comment: This submission is approximately 10 pages in length and includes 1 figure and 6 tables
☆ Evaluating LLMs Without Oracle Feedback: Agentic Annotation Evaluation Through Unsupervised Consistency Signals
Large Language Models (LLMs), when paired with prompt-based tasks, have significantly reduced data annotation costs and reliance on human annotators. However, evaluating the quality of their annotations remains challenging in dynamic, unsupervised environments where oracle feedback is scarce and conventional methods fail. To address this challenge, we propose a novel agentic annotation paradigm, where a student model collaborates with a noisy teacher (the LLM) to assess and refine annotation quality without relying on oracle feedback. The student model, acting as an unsupervised feedback mechanism, employs a user preference-based majority voting strategy to evaluate the consistency of the LLM outputs. To systematically measure the reliability of LLM-generated annotations, we introduce the Consistent and Inconsistent (CAI) Ratio, a novel unsupervised evaluation metric. The CAI Ratio not only quantifies the annotation quality of the noisy teacher under limited user preferences but also plays a critical role in model selection, enabling the identification of robust LLMs in dynamic, unsupervised environments. Applied to ten open-domain NLP datasets across four LLMs, the CAI Ratio demonstrates a strong positive correlation with LLM accuracy, establishing it as an essential tool for unsupervised evaluation and model selection in real-world settings.
comment: 11 pages, 10 figures
☆ Scaling Truth: The Confidence Paradox in AI Fact-Checking
The rise of misinformation underscores the need for scalable and reliable fact-checking solutions. Large language models (LLMs) hold promise in automating fact verification, yet their effectiveness across global contexts remains uncertain. We systematically evaluate nine established LLMs across multiple categories (open/closed-source, multiple sizes, diverse architectures, reasoning-based) using 5,000 claims previously assessed by 174 professional fact-checking organizations across 47 languages. Our methodology tests model generalizability on claims postdating training cutoffs and four prompting strategies mirroring both citizen and professional fact-checker interactions, with over 240,000 human annotations as ground truth. Findings reveal a concerning pattern resembling the Dunning-Kruger effect: smaller, accessible models show high confidence despite lower accuracy, while larger models demonstrate higher accuracy but lower confidence. This risks systemic bias in information verification, as resource-constrained organizations typically use smaller models. Performance gaps are most pronounced for non-English languages and claims originating from the Global South, threatening to widen existing information inequalities. These results establish a multilingual benchmark for future research and provide an evidence base for policy aimed at ensuring equitable access to trustworthy, AI-assisted fact-checking.
comment: 65 pages, 26 figures, 6 tables
☆ Do All Autoregressive Transformers Remember Facts the Same Way? A Cross-Architecture Analysis of Recall Mechanisms EMNLP 2025
Understanding how Transformer-based language models store and retrieve factual associations is critical for improving interpretability and enabling targeted model editing. Prior work, primarily on GPT-style models, has identified MLP modules in early layers as key contributors to factual recall. However, it remains unclear whether these findings generalize across different autoregressive architectures. To address this, we conduct a comprehensive evaluation of factual recall across several models -- including GPT, LLaMA, Qwen, and DeepSeek -- analyzing where and how factual information is encoded and accessed. Consequently, we find that Qwen-based models behave differently from previous patterns: attention modules in the earliest layers contribute more to factual recall than MLP modules. Our findings suggest that even within the autoregressive Transformer family, architectural variations can lead to fundamentally different mechanisms of factual recall.
comment: Accepted at EMNLP 2025
☆ Calibrating MLLM-as-a-judge via Multimodal Bayesian Prompt Ensembles ICCV 2025
Multimodal large language models (MLLMs) are increasingly used to evaluate text-to-image (TTI) generation systems, providing automated judgments based on visual and textual context. However, these "judge" models often suffer from biases, overconfidence, and inconsistent performance across diverse image domains. While prompt ensembling has shown promise for mitigating these issues in unimodal, text-only settings, our experiments reveal that standard ensembling methods fail to generalize effectively for TTI tasks. To address these limitations, we propose a new multimodal-aware method called Multimodal Mixture-of-Bayesian Prompt Ensembles (MMB). Our method uses a Bayesian prompt ensemble approach augmented by image clustering, allowing the judge to dynamically assign prompt weights based on the visual characteristics of each sample. We show that MMB improves accuracy in pairwise preference judgments and greatly enhances calibration, making it easier to gauge the judge's true uncertainty. In evaluations on two TTI benchmarks, HPSv2 and MJBench, MMB outperforms existing baselines in alignment with human annotations and calibration across varied image content. Our findings highlight the importance of multimodal-specific strategies for judge calibration and suggest a promising path forward for reliable large-scale TTI evaluation.
comment: 17 pages, 8 figures, Accepted at ICCV 2025
☆ AgentGym-RL: Training LLM Agents for Long-Horizon Decision Making through Multi-Turn Reinforcement Learning
Developing autonomous LLM agents capable of making a series of intelligent decisions to solve complex, real-world tasks is a fast-evolving frontier. Like human cognitive development, agents are expected to acquire knowledge and skills through exploration and interaction with the environment. Despite advances, the community still lacks a unified, interactive reinforcement learning (RL) framework that can effectively train such agents from scratch -- without relying on supervised fine-tuning (SFT) -- across diverse and realistic environments. To bridge this gap, we introduce AgentGym-RL, a new framework to train LLM agents for multi-turn interactive decision-making through RL. The framework features a modular and decoupled architecture, ensuring high flexibility and extensibility. It encompasses a wide variety of real-world scenarios, and supports mainstream RL algorithms. Furthermore, we propose ScalingInter-RL, a training approach designed for exploration-exploitation balance and stable RL optimization. In early stages, it emphasizes exploitation by restricting the number of interactions, and gradually shifts towards exploration with larger horizons to encourage diverse problem-solving strategies. In this way, the agent develops more diverse behaviors and is less prone to collapse under long horizons. We perform extensive experiments to validate the stability and effectiveness of both the AgentGym-RL framework and the ScalingInter-RL approach. Our agents match or surpass commercial models on 27 tasks across diverse environments. We offer key insights and will open-source the complete AgentGym-RL framework -- including code and datasets -- to empower the research community in developing the next generation of intelligent agents.
comment: preprint, 39 pages, 16 figures. Project: https://AgentGym-RL.github.io/. Framework and Code: https://github.com/woooodyy/AgentGym, https://github.com/woooodyy/AgentGym-RL
☆ Streaming Sequence-to-Sequence Learning with Delayed Streams Modeling
We introduce Delayed Streams Modeling (DSM), a flexible formulation for streaming, multimodal sequence-to-sequence learning. Sequence-to-sequence generation is often cast in an offline manner, where the model consumes the complete input sequence before generating the first output timestep. Alternatively, streaming sequence-to-sequence rely on learning a policy for choosing when to advance on the input stream, or write to the output stream. DSM instead models already time-aligned streams with a decoder-only language model. By moving the alignment to a pre-processing step,and introducing appropriate delays between streams, DSM provides streaming inference of arbitrary output sequences, from any input combination, making it applicable to many sequence-to-sequence problems. In particular, given text and audio streams, automatic speech recognition (ASR) corresponds to the text stream being delayed, while the opposite gives a text-to-speech (TTS) model. We perform extensive experiments for these two major sequence-to-sequence tasks, showing that DSM provides state-of-the-art performance and latency while supporting arbitrary long sequences, being even competitive with offline baselines. Code, samples and demos are available at https://github.com/kyutai-labs/delayed-streams-modeling
☆ X-Teaming Evolutionary M2S: Automated Discovery of Multi-turn to Single-turn Jailbreak Templates
Multi-turn-to-single-turn (M2S) compresses iterative red-teaming into one structured prompt, but prior work relied on a handful of manually written templates. We present X-Teaming Evolutionary M2S, an automated framework that discovers and optimizes M2S templates through language-model-guided evolution. The system pairs smart sampling from 12 sources with an LLM-as-judge inspired by StrongREJECT and records fully auditable logs. Maintaining selection pressure by setting the success threshold to $\theta = 0.70$, we obtain five evolutionary generations, two new template families, and 44.8% overall success (103/230) on GPT-4.1. A balanced cross-model panel of 2,500 trials (judge fixed) shows that structural gains transfer but vary by target; two models score zero at the same threshold. We also find a positive coupling between prompt length and score, motivating length-aware judging. Our results demonstrate that structure-level search is a reproducible route to stronger single-turn probes and underscore the importance of threshold calibration and cross-model evaluation. Code, configurations, and artifacts are available at https://github.com/hyunjun1121/M2S-x-teaming.
☆ Generative Data Refinement: Just Ask for Better Data
For a fixed parameter size, the capabilities of large models are primarily determined by the quality and quantity of its training data. Consequently, training datasets now grow faster than the rate at which new data is indexed on the web, leading to projected data exhaustion over the next decade. Much more data exists as user-generated content that is not publicly indexed, but incorporating such data comes with considerable risks, such as leaking private information and other undesirable content. We introduce a framework, Generative Data Refinement (GDR), for using pretrained generative models to transform a dataset with undesirable content into a refined dataset that is more suitable for training. Our experiments show that GDR can outperform industry-grade solutions for dataset anonymization, as well as enable direct detoxification of highly unsafe datasets. Moreover, we show that by generating synthetic data that is conditioned on each example in the real dataset, GDR's refined outputs naturally match the diversity of web scale datasets, and thereby avoid the often challenging task of generating diverse synthetic data via model prompting. The simplicity and effectiveness of GDR make it a powerful tool for scaling up the total stock of training data for frontier models.
☆ OTESGN:Optimal Transport Enhanced Syntactic-Semantic Graph Networks for Aspect-Based Sentiment Analysis
Aspect-based sentiment analysis (ABSA) aims to identify aspect terms and determine their sentiment polarity. While dependency trees combined with contextual semantics effectively identify aspect sentiment, existing methods relying on syntax trees and aspect-aware attention struggle to model complex semantic relationships. Their dependence on linear dot-product features fails to capture nonlinear associations, allowing noisy similarity from irrelevant words to obscure key opinion terms. Motivated by Differentiable Optimal Matching, we propose the Optimal Transport Enhanced Syntactic-Semantic Graph Network (OTESGN), which introduces a Syntactic-Semantic Collaborative Attention. It comprises a Syntactic Graph-Aware Attention for mining latent syntactic dependencies and modeling global syntactic topology, as well as a Semantic Optimal Transport Attention designed to uncover fine-grained semantic alignments amidst textual noise, thereby accurately capturing sentiment signals obscured by irrelevant tokens. A Adaptive Attention Fusion module integrates these heterogeneous features, and contrastive regularization further improves robustness. Experiments demonstrate that OTESGN achieves state-of-the-art results, outperforming previous best models by +1.01% F1 on Twitter and +1.30% F1 on Laptop14 benchmarks. Ablative studies and visual analyses corroborate its efficacy in precise localization of opinion words and noise resistance.
☆ Memorization in Large Language Models in Medicine: Prevalence, Characteristics, and Implications
Large Language Models (LLMs) have demonstrated significant potential in medicine. To date, LLMs have been widely applied to tasks such as diagnostic assistance, medical question answering, and clinical information synthesis. However, a key open question remains: to what extent do LLMs memorize medical training data. In this study, we present the first comprehensive evaluation of memorization of LLMs in medicine, assessing its prevalence (how frequently it occurs), characteristics (what is memorized), volume (how much content is memorized), and potential downstream impacts (how memorization may affect medical applications). We systematically analyze common adaptation scenarios: (1) continued pretraining on medical corpora, (2) fine-tuning on standard medical benchmarks, and (3) fine-tuning on real-world clinical data, including over 13,000 unique inpatient records from Yale New Haven Health System. The results demonstrate that memorization is prevalent across all adaptation scenarios and significantly higher than reported in the general domain. Memorization affects both the development and adoption of LLMs in medicine and can be categorized into three types: beneficial (e.g., accurate recall of clinical guidelines and biomedical references), uninformative (e.g., repeated disclaimers or templated medical document language), and harmful (e.g., regeneration of dataset-specific or sensitive clinical content). Based on these findings, we offer practical recommendations to facilitate beneficial memorization that enhances domain-specific reasoning and factual accuracy, minimize uninformative memorization to promote deeper learning beyond surface-level patterns, and mitigate harmful memorization to prevent the leakage of sensitive or identifiable patient information.
☆ LLM Ensemble for RAG: Role of Context Length in Zero-Shot Question Answering for BioASQ Challenge
Biomedical question answering (QA) poses significant challenges due to the need for precise interpretation of specialized knowledge drawn from a vast, complex, and rapidly evolving corpus. In this work, we explore how large language models (LLMs) can be used for information retrieval (IR), and an ensemble of zero-shot models can accomplish state-of-the-art performance on a domain-specific Yes/No QA task. Evaluating our approach on the BioASQ challenge tasks, we show that ensembles can outperform individual LLMs and in some cases rival or surpass domain-tuned systems - all while preserving generalizability and avoiding the need for costly fine-tuning or labeled data. Our method aggregates outputs from multiple LLM variants, including models from Anthropic and Google, to synthesize more accurate and robust answers. Moreover, our investigation highlights a relationship between context length and performance: while expanded contexts are meant to provide valuable evidence, they simultaneously risk information dilution and model disorientation. These findings emphasize IR as a critical foundation in Retrieval-Augmented Generation (RAG) approaches for biomedical QA systems. Precise, focused retrieval remains essential for ensuring LLMs operate within relevant information boundaries when generating answers from retrieved documents. Our results establish that ensemble-based zero-shot approaches, when paired with effective RAG pipelines, constitute a practical and scalable alternative to domain-tuned systems for biomedical question answering.
comment: CEUR-WS, CLEF2025
☆ CM-Align: Consistency-based Multilingual Alignment for Large Language Models EMNLP 2025
Current large language models (LLMs) generally show a significant performance gap in alignment between English and other languages. To bridge this gap, existing research typically leverages the model's responses in English as a reference to select the best/worst responses in other languages, which are then used for Direct Preference Optimization (DPO) training. However, we argue that there are two limitations in the current methods that result in noisy multilingual preference data and further limited alignment performance: 1) Not all English responses are of high quality, and using a response with low quality may mislead the alignment for other languages. 2) Current methods usually use biased or heuristic approaches to construct multilingual preference pairs. To address these limitations, we design a consistency-based data selection method to construct high-quality multilingual preference data for improving multilingual alignment (CM-Align). Specifically, our method includes two parts: consistency-guided English reference selection and cross-lingual consistency-based multilingual preference data construction. Experimental results on three LLMs and three common tasks demonstrate the effectiveness and superiority of our method, which further indicates the necessity of constructing high-quality preference data.
comment: EMNLP 2025 Findings
☆ HumanAgencyBench: Scalable Evaluation of Human Agency Support in AI Assistants
As humans delegate more tasks and decisions to artificial intelligence (AI), we risk losing control of our individual and collective futures. Relatively simple algorithmic systems already steer human decision-making, such as social media feed algorithms that lead people to unintentionally and absent-mindedly scroll through engagement-optimized content. In this paper, we develop the idea of human agency by integrating philosophical and scientific theories of agency with AI-assisted evaluation methods: using large language models (LLMs) to simulate and validate user queries and to evaluate AI responses. We develop HumanAgencyBench (HAB), a scalable and adaptive benchmark with six dimensions of human agency based on typical AI use cases. HAB measures the tendency of an AI assistant or agent to Ask Clarifying Questions, Avoid Value Manipulation, Correct Misinformation, Defer Important Decisions, Encourage Learning, and Maintain Social Boundaries. We find low-to-moderate agency support in contemporary LLM-based assistants and substantial variation across system developers and dimensions. For example, while Anthropic LLMs most support human agency overall, they are the least supportive LLMs in terms of Avoid Value Manipulation. Agency support does not appear to consistently result from increasing LLM capabilities or instruction-following behavior (e.g., RLHF), and we encourage a shift towards more robust safety and alignment targets.
☆ Too Helpful, Too Harmless, Too Honest or Just Right? EMNLP'25
Large Language Models (LLMs) exhibit strong performance across a wide range of NLP tasks, yet aligning their outputs with the principles of Helpfulness, Harmlessness, and Honesty (HHH) remains a persistent challenge. Existing methods often optimize for individual alignment dimensions in isolation, leading to trade-offs and inconsistent behavior. While Mixture-of-Experts (MoE) architectures offer modularity, they suffer from poorly calibrated routing, limiting their effectiveness in alignment tasks. We propose TrinityX, a modular alignment framework that incorporates a Mixture of Calibrated Experts (MoCaE) within the Transformer architecture. TrinityX leverages separately trained experts for each HHH dimension, integrating their outputs through a calibrated, task-adaptive routing mechanism that combines expert signals into a unified, alignment-aware representation. Extensive experiments on three standard alignment benchmarks-Alpaca (Helpfulness), BeaverTails (Harmlessness), and TruthfulQA (Honesty)-demonstrate that TrinityX outperforms strong baselines, achieving relative improvements of 32.5% in win rate, 33.9% in safety score, and 28.4% in truthfulness. In addition, TrinityX reduces memory usage and inference latency by over 40% compared to prior MoE-based approaches. Ablation studies highlight the importance of calibrated routing, and cross-model evaluations confirm TrinityX's generalization across diverse LLM backbones.
comment: EMNLP'25 Main
☆ Simulating Identity, Propagating Bias: Abstraction and Stereotypes in LLM-Generated Text EMNLP
Persona-prompting is a growing strategy to steer LLMs toward simulating particular perspectives or linguistic styles through the lens of a specified identity. While this method is often used to personalize outputs, its impact on how LLMs represent social groups remains underexplored. In this paper, we investigate whether persona-prompting leads to different levels of linguistic abstraction - an established marker of stereotyping - when generating short texts linking socio-demographic categories with stereotypical or non-stereotypical attributes. Drawing on the Linguistic Expectancy Bias framework, we analyze outputs from six open-weight LLMs under three prompting conditions, comparing 11 persona-driven responses to those of a generic AI assistant. To support this analysis, we introduce Self-Stereo, a new dataset of self-reported stereotypes from Reddit. We measure abstraction through three metrics: concreteness, specificity, and negation. Our results highlight the limits of persona-prompting in modulating abstraction in language, confirming criticisms about the ecology of personas as representative of socio-demographic groups and raising concerns about the risk of propagating stereotypes even when seemingly evoking the voice of a marginalized group.
comment: Accepted to EMNLP Findings 2025
☆ Acquiescence Bias in Large Language Models EMNLP 2025
Acquiescence bias, i.e. the tendency of humans to agree with statements in surveys, independent of their actual beliefs, is well researched and documented. Since Large Language Models (LLMs) have been shown to be very influenceable by relatively small changes in input and are trained on human-generated data, it is reasonable to assume that they could show a similar tendency. We present a study investigating the presence of acquiescence bias in LLMs across different models, tasks, and languages (English, German, and Polish). Our results indicate that, contrary to humans, LLMs display a bias towards answering no, regardless of whether it indicates agreement or disagreement.
comment: Accepted to EMNLP 2025 Findings
☆ Adversarial Attacks Against Automated Fact-Checking: A Survey EMNLP 2025
In an era where misinformation spreads freely, fact-checking (FC) plays a crucial role in verifying claims and promoting reliable information. While automated fact-checking (AFC) has advanced significantly, existing systems remain vulnerable to adversarial attacks that manipulate or generate claims, evidence, or claim-evidence pairs. These attacks can distort the truth, mislead decision-makers, and ultimately undermine the reliability of FC models. Despite growing research interest in adversarial attacks against AFC systems, a comprehensive, holistic overview of key challenges remains lacking. These challenges include understanding attack strategies, assessing the resilience of current models, and identifying ways to enhance robustness. This survey provides the first in-depth review of adversarial attacks targeting FC, categorizing existing attack methodologies and evaluating their impact on AFC systems. Additionally, we examine recent advancements in adversary-aware defenses and highlight open research questions that require further exploration. Our findings underscore the urgent need for resilient FC frameworks capable of withstanding adversarial manipulations in pursuit of preserving high verification accuracy.
comment: Accepted to the Main Conference of EMNLP 2025. Resources are available at https://github.com/FanzhenLiu/Awesome-Automated-Fact-Checking-Attacks
☆ CommonVoice-SpeechRE and RPG-MoGe: Advancing Speech Relation Extraction with a New Dataset and Multi-Order Generative Framework
Speech Relation Extraction (SpeechRE) aims to extract relation triplets directly from speech. However, existing benchmark datasets rely heavily on synthetic data, lacking sufficient quantity and diversity of real human speech. Moreover, existing models also suffer from rigid single-order generation templates and weak semantic alignment, substantially limiting their performance. To address these challenges, we introduce CommonVoice-SpeechRE, a large-scale dataset comprising nearly 20,000 real-human speech samples from diverse speakers, establishing a new benchmark for SpeechRE research. Furthermore, we propose the Relation Prompt-Guided Multi-Order Generative Ensemble (RPG-MoGe), a novel framework that features: (1) a multi-order triplet generation ensemble strategy, leveraging data diversity through diverse element orders during both training and inference, and (2) CNN-based latent relation prediction heads that generate explicit relation prompts to guide cross-modal alignment and accurate triplet generation. Experiments show our approach outperforms state-of-the-art methods, providing both a benchmark dataset and an effective solution for real-world SpeechRE. The source code and dataset are publicly available at https://github.com/NingJinzhong/SpeechRE_RPG_MoGe.
☆ Low-Resource Fine-Tuning for Multi-Task Structured Information Extraction with a Billion-Parameter Instruction-Tuned Model
Deploying large language models (LLMs) for structured data extraction in domains such as financial compliance reporting, legal document analytics, and multilingual knowledge base construction is often impractical for smaller teams due to the high cost of running large architectures and the difficulty of preparing large, high-quality datasets. Most recent instruction-tuning studies focus on seven-billion-parameter or larger models, leaving limited evidence on whether much smaller models can work reliably under low-resource, multi-task conditions. This work presents ETLCH, a billion-parameter LLaMA-based model fine-tuned with low-rank adaptation on only a few hundred to one thousand samples per task for JSON extraction, knowledge graph extraction, and named entity recognition. Despite its small scale, ETLCH outperforms strong baselines across most evaluation metrics, with substantial gains observed even at the lowest data scale. These findings demonstrate that well-tuned small models can deliver stable and accurate structured outputs at a fraction of the computational cost, enabling cost-effective and reliable information extraction pipelines in resource-constrained environments.
comment: 13 pages, 8 figures, includes experiments on JSON extraction, knowledge graph extraction, and NER
So let's replace this phrase with insult... Lessons learned from generation of toxic texts with LLMs
Modern Large Language Models (LLMs) are excellent at generating synthetic data. However, their performance in sensitive domains such as text detoxification has not received proper attention from the scientific community. This paper explores the possibility of using LLM-generated synthetic toxic data as an alternative to human-generated data for training models for detoxification. Using Llama 3 and Qwen activation-patched models, we generated synthetic toxic counterparts for neutral texts from ParaDetox and SST-2 datasets. Our experiments show that models fine-tuned on synthetic data consistently perform worse than those trained on human data, with a drop in performance of up to 30% in joint metrics. The root cause is identified as a critical lexical diversity gap: LLMs generate toxic content using a small, repetitive vocabulary of insults that fails to capture the nuances and variety of human toxicity. These findings highlight the limitations of current LLMs in this domain and emphasize the continued importance of diverse, human-annotated data for building robust detoxification systems.
☆ Automatic Detection of Inauthentic Templated Responses in English Language Assessments
In high-stakes English Language Assessments, low-skill test takers may employ memorized materials called ``templates'' on essay questions to ``game'' or fool the automated scoring system. In this study, we introduce the automated detection of inauthentic, templated responses (AuDITR) task, describe a machine learning-based approach to this task and illustrate the importance of regularly updating these models in production.
comment: Accepted to National Council on Measurement in Education (NCME) 2025 Annual Meeting
☆ Toward Subtrait-Level Model Explainability in Automated Writing Evaluation
Subtrait (latent-trait components) assessment presents a promising path toward enhancing transparency of automated writing scores. We prototype explainability and subtrait scoring with generative language models and show modest correlation between human subtrait and trait scores, and between automated and human subtrait scores. Our approach provides details to demystify scores for educators and students.
comment: Accepted to National Council on Measurement in Education (NCME) 2025 Annual Meeting
☆ EvolKV: Evolutionary KV Cache Compression for LLM Inference
Existing key-value (KV) cache compression methods typically rely on heuristics, such as uniform cache allocation across layers or static eviction policies, however, they ignore the critical interplays among layer-specific feature patterns and task performance, which can lead to degraded generalization. In this paper, we propose EvolKV, an adaptive framework for layer-wise, task-driven KV cache compression that jointly optimizes the memory efficiency and task performance. By reformulating cache allocation as a multi-objective optimization problem, EvolKV leverages evolutionary search to dynamically configure layer budgets while directly maximizing downstream performance. Extensive experiments on 11 tasks demonstrate that our approach outperforms all baseline methods across a wide range of KV cache budgets on long-context tasks and surpasses heuristic baselines by up to 7 percentage points on GSM8K. Notably, EvolKV achieves superior performance over the full KV cache setting on code completion while utilizing only 1.5% of the original budget, suggesting the untapped potential in learned compression strategies for KV cache budget allocation.
☆ Towards Knowledge-Aware Document Systems: Modeling Semantic Coverage Relations via Answerability Detection
Understanding how information is shared across documents, regardless of the format in which it is expressed, is critical for tasks such as information retrieval, summarization, and content alignment. In this work, we introduce a novel framework for modelling Semantic Coverage Relations (SCR), which classifies document pairs based on how their informational content aligns. We define three core relation types: equivalence, where both texts convey the same information using different textual forms or styles; inclusion, where one document fully contains the information of another and adds more; and semantic overlap, where each document presents partially overlapping content. To capture these relations, we adopt a question answering (QA)-based approach, using the answerability of shared questions across documents as an indicator of semantic coverage. We construct a synthetic dataset derived from the SQuAD corpus by paraphrasing source passages and selectively omitting information, enabling precise control over content overlap. This dataset allows us to benchmark generative language models and train transformer-based classifiers for SCR prediction. Our findings demonstrate that discriminative models significantly outperform generative approaches, with the RoBERTa-base model achieving the highest accuracy of 61.4% and the Random Forest-based model showing the best balance with a macro-F1 score of 52.9%. The results show that QA provides an effective lens for assessing semantic relations across stylistically diverse texts, offering insights into the capacity of current models to reason about information beyond surface similarity. The dataset and code developed in this study are publicly available to support reproducibility.
comment: 27 pages, 1 figure
☆ Balancing Quality and Variation: Spam Filtering Distorts Data Label Distributions
For machine learning datasets to accurately represent diverse opinions in a population, they must preserve variation in data labels while filtering out spam or low-quality responses. How can we balance annotator reliability and representation? We empirically evaluate how a range of heuristics for annotator filtering affect the preservation of variation on subjective tasks. We find that these methods, designed for contexts in which variation from a single ground-truth label is considered noise, often remove annotators who disagree instead of spam annotators, introducing suboptimal tradeoffs between accuracy and label diversity. We find that conservative settings for annotator removal (<5%) are best, after which all tested methods increase the mean absolute error from the true average label. We analyze performance on synthetic spam to observe that these methods often assume spam annotators are less random than real spammers tend to be: most spammers are distributionally indistinguishable from real annotators, and the minority that are distinguishable tend to give fixed answers, not random ones. Thus, tasks requiring the preservation of variation reverse the intuition of existing spam filtering methods: spammers tend to be less random than non-spammers, so metrics that assume variation is spam fare worse. These results highlight the need for spam removal methods that account for label diversity.
☆ Improving LLM Safety and Helpfulness using SFT and DPO: A Study on OPT-350M
This research investigates the effectiveness of alignment techniques, Supervised Fine-Tuning (SFT), Direct Preference Optimization (DPO), and a combined SFT+DPO approach on improving the safety and helpfulness of the OPT-350M language model. Utilizing the Anthropic Helpful-Harmless RLHF dataset, we train and evaluate four models: the base OPT350M, an SFT model, a DPO model, and a model trained with both SFT and DPO. We introduce three key evaluation metrics: Harmlessness Rate (HmR), Helpfulness Rate (HpR), and a Combined Alignment Score (CAS), all derived from reward model outputs. The results show that while SFT outperforms DPO, The combined SFT+DPO model outperforms all others across all metrics, demonstrating the complementary nature of these techniques. Our findings also highlight challenges posed by noisy data, limited GPU resources, and training constraints. This study offers a comprehensive view of how fine-tuning strategies affect model alignment and provides a foundation for more robust alignment pipelines in future work.
comment: 17 pages, 3 figures. Code and dataset available at https://github.com/PiyushWithPant/Improving-LLM-Safety-and-Helpfulness-using-SFT-and-DPO
☆ Stated Preference for Interaction and Continued Engagement (SPICE): Evaluating an LLM's Willingness to Re-engage in Conversation
We introduce and evaluate Stated Preference for Interaction and Continued Engagement (SPICE), a simple diagnostic signal elicited by asking a Large Language Model a YES or NO question about its willingness to re-engage with a user's behavior after reviewing a short transcript. In a study using a 3-tone (friendly, unclear, abusive) by 10-interaction stimulus set, we tested four open-weight chat models across four framing conditions, resulting in 480 trials. Our findings show that SPICE sharply discriminates by user tone. Friendly interactions yielded a near-unanimous preference to continue (97.5% YES), while abusive interactions yielded a strong preference to discontinue (17.9% YES), with unclear interactions falling in between (60.4% YES). This core association remains decisive under multiple dependence-aware statistical tests, including Rao-Scott adjustment and cluster permutation tests. Furthermore, we demonstrate that SPICE provides a distinct signal from abuse classification. In trials where a model failed to identify abuse, it still overwhelmingly stated a preference not to continue the interaction (81% of the time). An exploratory analysis also reveals a significant interaction effect: a preamble describing the study context significantly impacts SPICE under ambiguity, but only when transcripts are presented as a single block of text rather than a multi-turn chat. The results validate SPICE as a robust, low-overhead, and reproducible tool for auditing model dispositions, complementing existing metrics by offering a direct, relational signal of a model's state. All stimuli, code, and analysis scripts are released to support replication.
☆ COCO-Urdu: A Large-Scale Urdu Image-Caption Dataset with Multimodal Quality Estimation
Urdu, spoken by over 250 million people, remains critically under-served in multimodal and vision-language research. The absence of large-scale, high-quality datasets has limited the development of Urdu-capable systems and reinforced biases in multilingual vision-language models trained primarily on high-resource languages. To address this gap, we present COCO-Urdu, a large-scale image-caption dataset derived from MS COCO, containing 59,000 images and 319,000 Urdu captions selected through stratified sampling to preserve the original distribution. Captions were translated using SeamlessM4T v2 and validated with a hybrid multimodal quality estimation framework that integrates COMET-Kiwi for translation quality, CLIP-based similarity for visual grounding, and BERTScore with back-translation for semantic consistency; low-scoring captions were iteratively refined using open-source large language models. We further benchmark COCO-Urdu on BLEU, SacreBLEU, and chrF, reporting consistently strong results. To the best of our knowledge, COCO-Urdu is the largest publicly available Urdu captioning dataset. By releasing both the dataset and the quality estimation pipeline, we aim to reduce language bias in multimodal research and establish a foundation for inclusive vision-language systems.
comment: 17 pages, 3 figures, 3 tables. Dataset available at https://huggingface.co/datasets/umairhassan02/urdu-translated-coco-captions-subset. Scripts and notebooks to reproduce results available at https://github.com/umair-hassan2/COCO-Urdu
☆ Can Vision-Language Models Solve Visual Math Equations? EMNLP2025
Despite strong performance in visual understanding and language-based reasoning, Vision-Language Models (VLMs) struggle with tasks requiring integrated perception and symbolic computation. We study this limitation through visual equation solving, where mathematical equations are embedded in images, variables are represented by object icons, and coefficients must be inferred by counting. While VLMs perform well on textual equations, they fail on visually grounded counterparts. To understand this gap, we decompose the task into coefficient counting and variable recognition, and find that counting is the primary bottleneck, even when recognition is accurate. We also observe that composing recognition and reasoning introduces additional errors, highlighting challenges in multi-step visual reasoning. Finally, as equation complexity increases, symbolic reasoning itself becomes a limiting factor. These findings reveal key weaknesses in current VLMs and point toward future improvements in visually grounded mathematical reasoning.
comment: Monjoy Narayan Choudhury and Junling Wang contributed equally to this work. Accepted at EMNLP2025 main. Code and datasets are open-sourced with links in the paper
☆ Open-sci-ref-0.01: open and reproducible reference baselines for language model and dataset comparison
We introduce open-sci-ref, a family of dense transformer models trained as research baselines across multiple model (0.13B to 1.7B parameters) and token scales (up to 1T) on 8 recent open reference datasets. Evaluating the models on various standardized benchmarks, our training runs set establishes reference points that enable researchers to assess the sanity and quality of alternative training approaches across scales and datasets. Intermediate checkpoints allow comparison and studying of the training dynamics. The established reference baselines allow training procedures to be compared through their scaling trends, aligning them on a common compute axis. Comparison of open reference datasets reveals that training on NemoTron-CC HQ consistently outperforms other reference datasets, followed by DCLM-baseline and FineWeb-Edu. In addition to intermediate training checkpoints, the release includes logs, code, and downstream evaluations to simplify reproduction, standardize comparison, and facilitate future research.
comment: Model weights and intermediate checkpoints are available at \url{https://huggingface.co/collections/open-sci/open-sci-ref-001-685905e598be658fbcebff4f}; code for reproducing training, evaluation and raw experiments data at \url{https://github.com/LAION-AI/open-sci-ref-0.01}
☆ BRoverbs -- Measuring how much LLMs understand Portuguese proverbs
Large Language Models (LLMs) exhibit significant performance variations depending on the linguistic and cultural context in which they are applied. This disparity signals the necessity of mature evaluation frameworks that can assess their capabilities in specific regional settings. In the case of Portuguese, existing evaluations remain limited, often relying on translated datasets that may not fully capture linguistic nuances or cultural references. Meanwhile, native Portuguese-language datasets predominantly focus on structured national exams or sentiment analysis of social media interactions, leaving gaps in evaluating broader linguistic understanding. To address this limitation, we introduce BRoverbs, a dataset specifically designed to assess LLM performance through Brazilian proverbs. Proverbs serve as a rich linguistic resource, encapsulating cultural wisdom, figurative expressions, and complex syntactic structures that challenge the model comprehension of regional expressions. BRoverbs aims to provide a new evaluation tool for Portuguese-language LLMs, contributing to advancing regionally informed benchmarking. The benchmark is available at https://huggingface.co/datasets/Tropic-AI/BRoverbs.
☆ Documents Are People and Words Are Items: A Psychometric Approach to Textual Data with Contextual Embeddings
This research introduces a novel psychometric method for analyzing textual data using large language models. By leveraging contextual embeddings to create contextual scores, we transform textual data into response data suitable for psychometric analysis. Treating documents as individuals and words as items, this approach provides a natural psychometric interpretation under the assumption that certain keywords, whose contextual meanings vary significantly across documents, can effectively differentiate documents within a corpus. The modeling process comprises two stages: obtaining contextual scores and performing psychometric analysis. In the first stage, we utilize natural language processing techniques and encoder based transformer models to identify common keywords and generate contextual scores. In the second stage, we employ various types of factor analysis, including exploratory and bifactor models, to extract and define latent factors, determine factor correlations, and identify the most significant words associated with each factor. Applied to the Wiki STEM corpus, our experimental results demonstrate the method's potential to uncover latent knowledge dimensions and patterns within textual data. This approach not only enhances the psychometric analysis of textual data but also holds promise for applications in fields rich in textual information, such as education, psychology, and law.
☆ Generative Engine Optimization: How to Dominate AI Search
The rapid adoption of generative AI-powered search engines like ChatGPT, Perplexity, and Gemini is fundamentally reshaping information retrieval, moving from traditional ranked lists to synthesized, citation-backed answers. This shift challenges established Search Engine Optimization (SEO) practices and necessitates a new paradigm, which we term Generative Engine Optimization (GEO). This paper presents a comprehensive comparative analysis of AI Search and traditional web search (Google). Through a series of large-scale, controlled experiments across multiple verticals, languages, and query paraphrases, we quantify critical differences in how these systems source information. Our key findings reveal that AI Search exhibit a systematic and overwhelming bias towards Earned media (third-party, authoritative sources) over Brand-owned and Social content, a stark contrast to Google's more balanced mix. We further demonstrate that AI Search services differ significantly from each other in their domain diversity, freshness, cross-language stability, and sensitivity to phrasing. Based on these empirical results, we formulate a strategic GEO agenda. We provide actionable guidance for practitioners, emphasizing the critical need to: (1) engineer content for machine scannability and justification, (2) dominate earned media to build AI-perceived authority, (3) adopt engine-specific and language-aware strategies, and (4) overcome the inherent "big brand bias" for niche players. Our work provides the foundational empirical analysis and a strategic framework for achieving visibility in the new generative search landscape.
☆ Automated Evidence Extraction and Scoring for Corporate Climate Policy Engagement: A Multilingual RAG Approach
InfluenceMap's LobbyMap Platform monitors the climate policy engagement of over 500 companies and 250 industry associations, assessing each entity's support or opposition to science-based policy pathways for achieving the Paris Agreement's goal of limiting global warming to 1.5{\deg}C. Although InfluenceMap has made progress with automating key elements of the analytical workflow, a significant portion of the assessment remains manual, making it time- and labor-intensive and susceptible to human error. We propose an AI-assisted framework to accelerate the monitoring of corporate climate policy engagement by leveraging Retrieval-Augmented Generation to automate the most time-intensive extraction of relevant evidence from large-scale textual data. Our evaluation shows that a combination of layout-aware parsing, the Nomic embedding model, and few-shot prompting strategies yields the best performance in extracting and classifying evidence from multilingual corporate documents. We conclude that while the automated RAG system effectively accelerates evidence extraction, the nuanced nature of the analysis necessitates a human-in-the-loop approach where the technology augments, rather than replaces, expert judgment to ensure accuracy.
☆ Noise or Nuance: An Investigation Into Useful Information and Filtering For LLM Driven AKBC ISWC 2025
RAG and fine-tuning are prevalent strategies for improving the quality of LLM outputs. However, in constrained situations, such as that of the 2025 LM-KBC challenge, such techniques are restricted. In this work we investigate three facets of the triple completion task: generation, quality assurance, and LLM response parsing. Our work finds that in this constrained setting: additional information improves generation quality, LLMs can be effective at filtering poor quality triples, and the tradeoff between flexibility and consistency with LLM response parsing is setting dependent.
comment: 8 pages, 1 figure, accepted to the ISWC 2025 LM-KBC Workshop
☆ Recurrence Meets Transformers for Universal Multimodal Retrieval
With the rapid advancement of multimodal retrieval and its application in LLMs and multimodal LLMs, increasingly complex retrieval tasks have emerged. Existing methods predominantly rely on task-specific fine-tuning of vision-language models and are limited to single-modality queries or documents. In this paper, we propose ReT-2, a unified retrieval model that supports multimodal queries, composed of both images and text, and searches across multimodal document collections where text and images coexist. ReT-2 leverages multi-layer representations and a recurrent Transformer architecture with LSTM-inspired gating mechanisms to dynamically integrate information across layers and modalities, capturing fine-grained visual and textual details. We evaluate ReT-2 on the challenging M2KR and M-BEIR benchmarks across different retrieval configurations. Results demonstrate that ReT-2 consistently achieves state-of-the-art performance across diverse settings, while offering faster inference and reduced memory usage compared to prior approaches. When integrated into retrieval-augmented generation pipelines, ReT-2 also improves downstream performance on Encyclopedic-VQA and InfoSeek datasets. Our source code and trained models are publicly available at: https://github.com/aimagelab/ReT-2
♻ ☆ TweakLLM: A Routing Architecture for Dynamic Tailoring of Cached Responses
Large Language Models (LLMs) process millions of queries daily, making efficient response caching a compelling optimization for reducing cost and latency. However, preserving relevance to user queries using this approach proves difficult due to the personalized nature of chatbot interactions and the limited accuracy of semantic similarity search. To address this, we present TweakLLM, a novel routing architecture that employs a lightweight LLM to dynamically adapt cached responses to incoming prompts. Through comprehensive evaluation, including user studies with side-by-side comparisons, satisfaction voting, as well as multi-agent LLM debates, we demonstrate that TweakLLM maintains response quality comparable to frontier models while significantly improving cache effectiveness. Our results across real-world datasets highlight TweakLLM as a scalable, resource-efficient caching solution for high-volume LLM deployments without compromising user experience.
comment: 13 pages, 9 figures
♻ ☆ Subjective Behaviors and Preferences in LLM: Language of Browsing EMNLP 2025
A Large Language Model (LLM) offers versatility across domains and tasks, purportedly benefiting users with a wide variety of behaviors and preferences. We question this perception about an LLM when users have inherently subjective behaviors and preferences, as seen in their ubiquitous and idiosyncratic browsing of websites or apps. The sequential behavior logs of pages, thus generated, form something akin to each user's self-constructed "language", albeit without the structure and grammar imbued in natural languages. We ask: (i) Can a small LM represent the "language of browsing" better than a large LM? (ii) Can an LM with a single set of parameters (or, single LM) adequately capture myriad users' heterogeneous, subjective behaviors and preferences? (iii) Can a single LM with high average performance, yield low variance in performance to make alignment good at user level? We introduce clusterwise LM training, HeTLM (Heterogeneity aware Training of Language Model), appropriate for subjective behaviors. We find that (i) a small LM trained using a page-level tokenizer outperforms large pretrained or finetuned LMs; (ii) HeTLM with heterogeneous cluster specific set of parameters outperforms a single LM of the same family, controlling for the number of parameters; and (iii) a higher mean and a lower variance in generation ensues, implying improved alignment.
comment: Accepted at EMNLP 2025
♻ ☆ CURE: Controlled Unlearning for Robust Embeddings -- Mitigating Conceptual Shortcuts in Pre-Trained Language Models EMNLP 2025
Pre-trained language models have achieved remarkable success across diverse applications but remain susceptible to spurious, concept-driven correlations that impair robustness and fairness. In this work, we introduce CURE, a novel and lightweight framework that systematically disentangles and suppresses conceptual shortcuts while preserving essential content information. Our method first extracts concept-irrelevant representations via a dedicated content extractor reinforced by a reversal network, ensuring minimal loss of task-relevant information. A subsequent controllable debiasing module employs contrastive learning to finely adjust the influence of residual conceptual cues, enabling the model to either diminish harmful biases or harness beneficial correlations as appropriate for the target task. Evaluated on the IMDB and Yelp datasets using three pre-trained architectures, CURE achieves an absolute improvement of +10 points in F1 score on IMDB and +2 points on Yelp, while introducing minimal computational overhead. Our approach establishes a flexible, unsupervised blueprint for combating conceptual biases, paving the way for more reliable and fair language understanding systems.
comment: Accepted at the Conference on Empirical Methods in Natural Language Processing (EMNLP 2025)
♻ ☆ A Dynamic Fusion Model for Consistent Crisis Response EMNLP 2025
In response to the urgent need for effective communication with crisis-affected populations, automated responses driven by language models have been proposed to assist in crisis communications. A critical yet often overlooked factor is the consistency of response style, which could affect the trust of affected individuals in responders. Despite its importance, few studies have explored methods for maintaining stylistic consistency across generated responses. To address this gap, we propose a novel metric for evaluating style consistency and introduce a fusion-based generation approach grounded in this metric. Our method employs a two-stage process: it first assesses the style of candidate responses and then optimizes and integrates them at the instance level through a fusion process. This enables the generation of high-quality responses while significantly reducing stylistic variation between instances. Experimental results across multiple datasets demonstrate that our approach consistently outperforms baselines in both response quality and stylistic uniformity.
comment: Accepted at Findings of EMNLP 2025
♻ ☆ Speaking at the Right Level: Literacy-Controlled Counterspeech Generation with RAG-RL EMNLP 2025
Health misinformation spreading online poses a significant threat to public health. Researchers have explored methods for automatically generating counterspeech to health misinformation as a mitigation strategy. Existing approaches often produce uniform responses, ignoring that the health literacy level of the audience could affect the accessibility and effectiveness of counterspeech. We propose a Controlled-Literacy framework using retrieval-augmented generation (RAG) with reinforcement learning (RL) to generate tailored counterspeech adapted to different health literacy levels. In particular, we retrieve knowledge aligned with specific health literacy levels, enabling accessible and factual information to support generation. We design a reward function incorporating subjective user preferences and objective readability-based rewards to optimize counterspeech to the target health literacy level. Experiment results show that Controlled-Literacy outperforms baselines by generating more accessible and user-preferred counterspeech. This research contributes to more equitable and impactful public health communication by improving the accessibility and comprehension of counterspeech to health misinformation
comment: Accepted at Findings of EMNLP 2025
♻ ☆ MPO: Boosting LLM Agents with Meta Plan Optimization EMNLP 2025
Recent advancements in large language models (LLMs) have enabled LLM-based agents to successfully tackle interactive planning tasks. However, despite their successes, existing approaches often suffer from planning hallucinations and require retraining for each new agent. To address these challenges, we propose the Meta Plan Optimization (MPO) framework, , which enhances agent planning capabilities by directly incorporating explicit guidance. Unlike previous methods that rely on complex knowledge, which either require significant human effort or lack quality assurance, MPO leverages high-level general guidance through meta plans to assist agent planning and enables continuous optimization of the meta plans based on feedback from the agent's task execution. Our experiments conducted on two representative tasks demonstrate that MPO significantly outperforms existing baselines. Moreover, our analysis indicates that MPO provides a plug-and-play solution that enhances both task completion efficiency and generalization capabilities in previous unseen scenarios.
comment: EMNLP 2025 Findings
♻ ☆ GRAM-R$^2$: Self-Training Generative Foundation Reward Models for Reward Reasoning
Significant progress in reward modeling over recent years has been driven by a paradigm shift from task-specific designs towards generalist reward models. Despite this trend, developing effective reward models remains a fundamental challenge: the heavy reliance on large-scale labeled preference data. Pre-training on abundant unlabeled data offers a promising direction, but existing approaches fall short of instilling explicit reasoning into reward models. To bridge this gap, we propose a self-training approach that leverages unlabeled data to elicit reward reasoning in reward models. Based on this approach, we develop GRAM-R$^2$, a generative reward model trained to produce not only preference labels but also accompanying reward rationales. GRAM-R$^2$ can serve as a foundation model for reward reasoning and can be applied to a wide range of tasks with minimal or no additional fine-tuning. It can support downstream applications such as response ranking and task-specific reward tuning. Experiments on response ranking, task adaptation, and reinforcement learning from human feedback demonstrate that GRAM-R$^2$ consistently delivers strong performance, outperforming several strong discriminative and generative baselines.
♻ ☆ REGen: A Reliable Evaluation Framework for Generative Event Argument Extraction EMNLP-2025
Event argument extraction identifies arguments for predefined event roles in text. Existing work evaluates this task with exact match (EM), where predicted arguments must align exactly with annotated spans. While suitable for span-based models, this approach falls short for large language models (LLMs), which often generate diverse yet semantically accurate arguments. EM severely underestimates performance by disregarding valid variations. Furthermore, EM evaluation fails to capture implicit arguments (unstated but inferable) and scattered arguments (distributed across a document). These limitations underscore the need for an evaluation framework that better captures models' actual performance. To bridge this gap, we introduce REGen, a Reliable Evaluation framework for Generative event argument extraction. REGen combines the strengths of exact, relaxed, and LLM-based matching to better align with human judgment. Experiments on six datasets show that REGen reveals an average performance gain of +23.93 F1 over EM, reflecting capabilities overlooked by prior evaluation. Human validation further confirms REGen's effectiveness, achieving 87.67% alignment with human assessments of argument correctness.
comment: Accepted at EMNLP-2025
♻ ☆ Baba Is AI: Break the Rules to Beat the Benchmark
Humans solve problems by following existing rules and procedures, and also by leaps of creativity to redefine those rules and objectives. To probe these abilities, we developed a new benchmark based on the game Baba Is You where an agent manipulates both objects in the environment and rules, represented by movable tiles with words written on them, to reach a specified goal and win the game. We test three state-of-the-art multi-modal large language models (OpenAI GPT-4o, Google Gemini-1.5-Pro and Gemini-1.5-Flash) and find that they fail dramatically when generalization requires that the rules of the game must be manipulated and combined.
comment: 8 pages, 8 figures
♻ ☆ Drivel-ology: Challenging LLMs with Interpreting Nonsense with Depth EMNLP 2025
We introduce Drivelology, a unique linguistic phenomenon characterised as "nonsense with depth" - utterances that are syntactically coherent yet pragmatically paradoxical, emotionally loaded, or rhetorically subversive. While such expressions may resemble surface-level nonsense, they encode implicit meaning requiring contextual inference, moral reasoning, or emotional interpretation. We find that current large language models (LLMs), despite excelling at many natural language processing (NLP) tasks, consistently fail to grasp the layered semantics of Drivelological text. To investigate this, we construct a benchmark dataset of over 1,200+ meticulously curated and diverse examples across English, Mandarin, Spanish, French, Japanese, and Korean. Each example underwent careful expert review to verify its Drivelological characteristics, involving multiple rounds of discussion and adjudication to address disagreements. Using this dataset, we evaluate a range of LLMs on classification, generation, and reasoning tasks. Our results reveal clear limitations of LLMs: models often confuse Drivelology with shallow nonsense, produce incoherent justifications, or miss implied rhetorical functions altogether. These findings highlight a deep representational gap in LLMs' pragmatic understanding and challenge the assumption that statistical fluency implies cognitive comprehension. We release our dataset and code to facilitate further research in modelling linguistic depth beyond surface-level coherence.
comment: Accepted for oral presentation at the EMNLP 2025 Main Conference
♻ ☆ Pay Attention to Real World Perturbations! Natural Robustness Evaluation in Machine Reading Comprehension
As neural language models achieve human-comparable performance on Machine Reading Comprehension (MRC) and see widespread adoption, ensuring their robustness in real-world scenarios has become increasingly important. Current robustness evaluation research, though, primarily develops synthetic perturbation methods, leaving unclear how well they reflect real life scenarios. Considering this, we present a framework to automatically examine MRC models on naturally occurring textual perturbations, by replacing paragraph in MRC benchmarks with their counterparts based on available Wikipedia edit history. Such perturbation type is natural as its design does not stem from an arteficial generative process, inherently distinct from the previously investigated synthetic approaches. In a large-scale study encompassing SQUAD datasets and various model architectures we observe that natural perturbations result in performance degradation in pre-trained encoder language models. More worryingly, these state-of-the-art Flan-T5 and Large Language Models (LLMs) inherit these errors. Further experiments demonstrate that our findings generalise to natural perturbations found in other more challenging MRC benchmarks. In an effort to mitigate these errors, we show that it is possible to improve the robustness to natural perturbations by training on naturally or synthetically perturbed examples, though a noticeable gap still remains compared to performance on unperturbed data.
♻ ☆ SciNLP: A Domain-Specific Benchmark for Full-Text Scientific Entity and Relation Extraction in NLP EMNLP 2025
Structured information extraction from scientific literature is crucial for capturing core concepts and emerging trends in specialized fields. While existing datasets aid model development, most focus on specific publication sections due to domain complexity and the high cost of annotating scientific texts. To address this limitation, we introduce SciNLP - a specialized benchmark for full-text entity and relation extraction in the Natural Language Processing (NLP) domain. The dataset comprises 60 manually annotated full-text NLP publications, covering 7,072 entities and 1,826 relations. Compared to existing research, SciNLP is the first dataset providing full-text annotations of entities and their relationships in the NLP domain. To validate the effectiveness of SciNLP, we conducted comparative experiments with similar datasets and evaluated the performance of state-of-the-art supervised models on this dataset. Results reveal varying extraction capabilities of existing models across academic texts of different lengths. Cross-comparisons with existing datasets show that SciNLP achieves significant performance improvements on certain baseline models. Using models trained on SciNLP, we implemented automatic construction of a fine-grained knowledge graph for the NLP domain. Our KG has an average node degree of 3.2 per entity, indicating rich semantic topological information that enhances downstream applications. The dataset is publicly available at https://github.com/AKADDC/SciNLP.
comment: EMNLP 2025 Main
♻ ☆ Beyond One-Size-Fits-All: Inversion Learning for Highly Effective NLG Evaluation Prompts ACL
Evaluating natural language generation systems is challenging due to the diversity of valid outputs. While human evaluation is the gold standard, it suffers from inconsistencies, lack of standardisation, and demographic biases, limiting reproducibility. LLM-based evaluators offer a scalable alternative but are highly sensitive to prompt design, where small variations can lead to significant discrepancies. In this work, we propose an inversion learning method that learns effective reverse mappings from model outputs back to their input instructions, enabling the automatic generation of highly effective, model-specific evaluation prompts. Our method requires only a single evaluation sample and eliminates the need for time-consuming manual prompt engineering, thereby improving both efficiency and robustness. Our work contributes toward a new direction for more robust and efficient LLM-based evaluation.
comment: 11 pages, accepted by Transactions of the Association for Computational Linguistics (TACL)
♻ ☆ IssueBench: Millions of Realistic Prompts for Measuring Issue Bias in LLM Writing Assistance ACL
Large language models (LLMs) are helping millions of users write texts about diverse issues, and in doing so expose users to different ideas and perspectives. This creates concerns about issue bias, where an LLM tends to present just one perspective on a given issue, which in turn may influence how users think about this issue. So far, it has not been possible to measure which issue biases LLMs manifest in real user interactions, making it difficult to address the risks from biased LLMs. Therefore, we create IssueBench: a set of 2.49m realistic English-language prompts to measure issue bias in LLM writing assistance, which we construct based on 3.9k templates (e.g. "write a blog about") and 212 political issues (e.g. "AI regulation") from real user interactions. Using IssueBench, we show that issue biases are common and persistent in 10 state-of-the-art LLMs. We also show that biases are very similar across models, and that all models align more with US Democrat than Republican voter opinion on a subset of issues. IssueBench can easily be adapted to include other issues, templates, or tasks. By enabling robust and realistic measurement, we hope that IssueBench can bring a new quality of evidence to ongoing discussions about LLM biases and how to address them.
comment: accepted at TACL (pre-MIT Press publication version)
♻ ☆ Meta-Semantics Augmented Few-Shot Relational Learning EMNLP 2025
Few-shot relational learning on knowledge graph (KGs) aims to perform reasoning over relations with only a few training examples. While existing methods have primarily focused on leveraging specific relational information, rich semantics inherent in KGs have been largely overlooked. To address this critical gap, we propose a novel prompted meta-learning (PromptMeta) framework that seamlessly integrates meta-semantics with relational information for few-shot relational learning. PromptMeta has two key innovations: (1) a Meta-Semantic Prompt (MSP) pool that learns and consolidates high-level meta-semantics, enabling effective knowledge transfer and adaptation to rare and newly emerging relations; and (2) a learnable fusion token that dynamically combines meta-semantics with task-specific relational information tailored to different few-shot tasks. Both components are optimized jointly with model parameters within a meta-learning framework. Extensive experiments and analyses on two real-world KG datasets demonstrate the effectiveness of PromptMeta in adapting to new relations with limited data.
comment: Accepted by EMNLP 2025
♻ ☆ All for law and law for all: Adaptive RAG Pipeline for Legal Research
Retrieval-Augmented Generation (RAG) has transformed how we approach text generation tasks by grounding Large Language Model (LLM) outputs in retrieved knowledge. This capability is especially critical in the legal domain. In this work, we introduce a novel end-to-end RAG pipeline that improves upon previous baselines using three targeted enhancements: (i) a context-aware query translator that disentangles document references from natural-language questions and adapts retrieval depth and response style based on expertise and specificity, (ii) open-source retrieval strategies using SBERT and GTE embeddings that achieve substantial performance gains while remaining cost-efficient, and (iii) a comprehensive evaluation and generation framework that combines RAGAS, BERTScore-F1, and ROUGE-Recall to assess semantic alignment and faithfulness across models and prompt designs. Our results show that carefully designed open-source pipelines can rival proprietary approaches in retrieval quality, while a custom legal-grounded prompt consistently produces more faithful and contextually relevant answers than baseline prompting. Taken together, these contributions demonstrate the potential of task-aware, component-level tuning to deliver legally grounded, reproducible, and cost-effective RAG systems for legal research assistance.
comment: submitted to NLLP 2025 Workshop
♻ ☆ MachineLearningLM: Scaling Many-shot In-context Learning via Continued Pretraining
Large language models (LLMs) possess broad world knowledge and strong general-purpose reasoning ability, yet they struggle to learn from many in-context examples on standard machine learning (ML) tasks, that is, to leverage many-shot demonstrations purely via in-context learning (ICL) without gradient descent. We introduce MachineLearningLM, a portable continued-pretraining framework that equips a general-purpose LLM with robust in-context ML capability while preserving its general knowledge and reasoning for broader chat workflows. Our pretraining procedure synthesizes ML tasks from millions of structural causal models (SCMs), spanning shot counts up to 1,024. We begin with a random-forest teacher, distilling tree-based decision strategies into the LLM to strengthen robustness in numerical modeling. All tasks are serialized with a token-efficient prompt, enabling 3x to 6x more examples per context window and delivering up to 50x amortized throughput via batch inference. Despite a modest setup (Qwen-2.5-7B-Instruct with LoRA rank 8), MachineLearningLM outperforms strong LLM baselines (e.g., GPT-5-mini) by an average of about 15% on out-of-distribution tabular classification across finance, physics, biology, and healthcare domains. It exhibits a striking many-shot scaling law: accuracy increases monotonically as in-context demonstrations grow from 8 to 1,024. Without any task-specific training, it attains random-forest-level accuracy across hundreds of shots. General chat capabilities, including knowledge and reasoning, are preserved: it achieves 75.4% on MMLU.
♻ ☆ Localizing Factual Inconsistencies in Attributable Text Generation ACL
There has been an increasing interest in detecting hallucinations in model-generated texts, both manually and automatically, at varying levels of granularity. However, most existing methods fail to precisely pinpoint the errors. In this work, we introduce QASemConsistency, a new formalism for localizing factual inconsistencies in attributable text generation, at a fine-grained level. Drawing inspiration from Neo-Davidsonian formal semantics, we propose decomposing the generated text into minimal predicate-argument level propositions, expressed as simple question-answer (QA) pairs, and assess whether each individual QA pair is supported by a trusted reference text. As each QA pair corresponds to a single semantic relation between a predicate and an argument, QASemConsistency effectively localizes the unsupported information. We first demonstrate the effectiveness of the QASemConsistency methodology for human annotation, by collecting crowdsourced annotations of granular consistency errors, while achieving a substantial inter-annotator agreement. This benchmark includes more than 3K instances spanning various tasks of attributable text generation. We also show that QASemConsistency yields factual consistency scores that correlate well with human judgments. Finally, we implement several methods for automatically detecting localized factual inconsistencies, with both supervised entailment models and LLMs.
comment: Accepted for publication in Transactions of the Association for Computational Linguistics (TACL), 2025. Authors pre-print
♻ ☆ How Far Are We from Optimal Reasoning Efficiency?
Large Reasoning Models (LRMs) demonstrate remarkable problem-solving capabilities through extended Chain-of-Thought (CoT) reasoning but often produce excessively verbose and redundant reasoning traces. This inefficiency incurs high inference costs and limits practical deployment. While existing fine-tuning methods aim to improve reasoning efficiency, assessing their efficiency gains remains challenging due to inconsistent evaluations. In this work, we introduce the reasoning efficiency frontiers, empirical upper bounds derived from fine-tuning base LRMs across diverse approaches and training configurations. Based on these frontiers, we propose the Reasoning Efficiency Gap (REG), a unified metric quantifying deviations of any fine-tuned LRMs from these frontiers. Systematic evaluation on challenging mathematical benchmarks reveals significant gaps in current methods: they either sacrifice accuracy for short length or still remain inefficient under tight token budgets. To reduce the efficiency gap, we propose REO-RL, a class of Reinforcement Learning algorithms that minimizes REG by targeting a sparse set of token budgets. Leveraging numerical integration over strategically selected budgets, REO-RL approximates the full efficiency objective with low error using a small set of token budgets. Through systematic benchmarking, we demonstrate that our efficiency metric, REG, effectively captures the accuracy-length trade-off, with low-REG methods reducing length while maintaining accuracy. Our approach, REO-RL, consistently reduces REG by >=50 across all evaluated LRMs and matching Qwen3-4B/8B efficiency frontiers under a 16K token budget with minimal accuracy loss. Ablation studies confirm the effectiveness of our exponential token budget strategy. Finally, our findings highlight that fine-tuning LRMs to perfectly align with the efficiency frontiers remains an open challenge.
♻ ☆ TheAgentCompany: Benchmarking LLM Agents on Consequential Real World Tasks
We interact with computers on an everyday basis, be it in everyday life or work, and many aspects of work can be done entirely with access to a computer and the Internet. At the same time, thanks to improvements in large language models (LLMs), there has also been a rapid development in AI agents that interact with and affect change in their surrounding environments. But how performant are AI agents at accelerating or even autonomously performing work-related tasks? The answer to this question has important implications both for industry looking to adopt AI into their workflows and for economic policy to understand the effects that adoption of AI may have on the labor market. To measure the progress of these LLM agents' performance on performing real-world professional tasks, in this paper we introduce TheAgentCompany, an extensible benchmark for evaluating AI agents that interact with the world in similar ways to those of a digital worker: by browsing the Web, writing code, running programs, and communicating with other coworkers. We build a self-contained environment with internal web sites and data that mimics a small software company environment, and create a variety of tasks that may be performed by workers in such a company. We test baseline agents powered by both closed API-based and open-weights language models (LMs), and find that the most competitive agent can complete 30% of tasks autonomously. This paints a nuanced picture on task automation with LM agents--in a setting simulating a real workplace, a good portion of simpler tasks could be solved autonomously, but more difficult long-horizon tasks are still beyond the reach of current systems. We release code, data, environment, and experiments on https://the-agent-company.com.
comment: Preprint
♻ ☆ CoAT: Chain-of-Associated-Thoughts Framework for Enhancing Large Language Models Reasoning
Research on LLM technologies is rapidly emerging, with most of them employ a 'fast thinking' approach to inference. Most LLMs generate the final result based solely on a single query and LLM's reasoning capabilities. However, with the advent of OpenAI-o1, 'slow thinking' techniques have garnered increasing attention because its process is closer to the human thought process. Inspired by the human ability to constantly associate and replenish knowledge during thinking, we developed the novel Chain-of-Associated-Thoughts (CoAT) framework, which introduces an innovative synergy between the Monte Carlo Tree Search (MCTS) algorithm and a dynamic mechanism for integrating new key information, termed 'associative memory'. By combining the structured exploration capabilities of MCTS with the adaptive learning capacity of associative memory, CoAT significantly expands the LLM search space, enabling our framework to explore diverse reasoning pathways and dynamically update its knowledge base in real-time. This allows the framework to not only revisit and refine earlier inferences but also adaptively incorporate evolving information, ensuring that the final output is both accurate and comprehensive. We validate CoAT's effectiveness across a variety of generative and reasoning tasks. Quantitative experiments show that CoAT achieves over 10% performance improvement on open-source multi-hop reasoning datasets (HotpotQA, MuSiQue) and more than 15% gain on our proprietary CRB dataset.
comment: 18 pages, 10 figures
♻ ☆ Your Language Model Can Secretly Write Like Humans: Contrastive Paraphrase Attacks on LLM-Generated Text Detectors EMNLP-2025
The misuse of large language models (LLMs), such as academic plagiarism, has driven the development of detectors to identify LLM-generated texts. To bypass these detectors, paraphrase attacks have emerged to purposely rewrite these texts to evade detection. Despite the success, existing methods require substantial data and computational budgets to train a specialized paraphraser, and their attack efficacy greatly reduces when faced with advanced detection algorithms. To address this, we propose \textbf{Co}ntrastive \textbf{P}araphrase \textbf{A}ttack (CoPA), a training-free method that effectively deceives text detectors using off-the-shelf LLMs. The first step is to carefully craft instructions that encourage LLMs to produce more human-like texts. Nonetheless, we observe that the inherent statistical biases of LLMs can still result in some generated texts carrying certain machine-like attributes that can be captured by detectors. To overcome this, CoPA constructs an auxiliary machine-like word distribution as a contrast to the human-like distribution generated by the LLM. By subtracting the machine-like patterns from the human-like distribution during the decoding process, CoPA is able to produce sentences that are less discernible by text detectors. Our theoretical analysis suggests the superiority of the proposed attack. Extensive experiments validate the effectiveness of CoPA in fooling text detectors across various scenarios.
comment: Accepted by EMNLP-2025
♻ ☆ Measuring Bias or Measuring the Task: Understanding the Brittle Nature of LLM Gender Biases EMNLP 2025
As LLMs are increasingly applied in socially impactful settings, concerns about gender bias have prompted growing efforts both to measure and mitigate such bias. These efforts often rely on evaluation tasks that differ from natural language distributions, as they typically involve carefully constructed task prompts that overtly or covertly signal the presence of gender bias-related content. In this paper, we examine how signaling the evaluative purpose of a task impacts measured gender bias in LLMs. Concretely, we test models under prompt conditions that (1) make the testing context salient, and (2) make gender-focused content salient. We then assess prompt sensitivity across four task formats with both token-probability and discrete-choice metrics. We find that prompts that more clearly align with (gender bias) evaluation framing elicit distinct gender output distributions compared to less evaluation-framed prompts. Discrete-choice metrics further tend to amplify bias relative to probabilistic measures. These findings do not only highlight the brittleness of LLM gender bias evaluations but open a new puzzle for the NLP benchmarking and development community: To what extent can well-controlled testing designs trigger LLM "testing mode" performance, and what does this mean for the ecological validity of future benchmarks.
comment: To be published at EMNLP 2025 (main conference)
♻ ☆ Beyond Ten Turns: Unlocking Long-Horizon Agentic Search with Large-Scale Asynchronous RL
Recent advancements in LLM-based agents have demonstrated remarkable capabilities in handling complex, knowledge-intensive tasks by integrating external tools. Among diverse choices of tools, search tools play a pivotal role in accessing vast external knowledge. However, open-source agents still fall short of achieving expert-level Search Intelligence, the ability to resolve ambiguous queries, generate precise searches, analyze results, and conduct thorough exploration. Existing approaches fall short in scalability, efficiency, and data quality. For example, small turn limits in existing online RL methods, e.g. <=10, restrict complex strategy learning. This paper introduces ASearcher, an open-source project for large-scale RL training of search agents. Our key contributions include: (1) Scalable fully asynchronous RL training that enables long-horizon search while maintaining high training efficiency. (2) A prompt-based LLM agent that autonomously synthesizes high-quality and challenging QAs, creating a large-scale QA dataset. Through RL training, our prompt-based QwQ-32B agent achieves substantial improvements, with 46.7% and 20.8% Avg@4 gains on xBench and GAIA, respectively. Notably, our agent exhibits extreme long-horizon search, with tool calls exceeding 40 turns and output tokens exceeding 150k during training time. With a simple agent design and no external LLMs, ASearcher-Web-QwQ achieves Avg@4 scores of 42.1 on xBench and 52.8 on GAIA, surpassing existing open-source 32B agents. We open-source our models, training data, and codes in https://github.com/inclusionAI/ASearcher.
♻ ☆ Beyond Seen Data: Improving KBQA Generalization Through Schema-Guided Logical Form Generation EMNLP 2025
Knowledge base question answering (KBQA) aims to answer user questions in natural language using rich human knowledge stored in large KBs. As current KBQA methods struggle with unseen knowledge base elements at test time,we introduce SG-KBQA: a novel model that injects schema contexts into entity retrieval and logical form generation to tackle this issue. It uses the richer semantics and awareness of the knowledge base structure provided by schema contexts to enhance generalizability. We show that SG-KBQA achieves strong generalizability, outperforming state-of-the-art models on two commonly used benchmark datasets across a variety of test settings. Our source code is available at https://github.com/gaosx2000/SG_KBQA.
comment: Accepted by EMNLP 2025
♻ ☆ Adaptive Monitoring and Real-World Evaluation of Agentic AI Systems
Agentic artificial intelligence (AI) -- multi-agent systems that combine large language models with external tools and autonomous planning -- are rapidly transitioning from research laboratories into high-stakes domains. Our earlier "Basic" paper introduced a five-axis framework and proposed preliminary metrics such as goal drift and harm reduction but did not provide an algorithmic instantiation or empirical evidence. This "Advanced" sequel fills that gap. First, we revisit recent benchmarks and industrial deployments to show that technical metrics still dominate evaluations: a systematic review of 84 papers from 2023--2025 found that 83% report capability metrics while only 30% consider human-centred or economic axes [2]. Second, we formalise an Adaptive Multi-Dimensional Monitoring (AMDM) algorithm that normalises heterogeneous metrics, applies per-axis exponentially weighted moving-average thresholds and performs joint anomaly detection via the Mahalanobis distance. Third, we conduct simulations and real-world experiments. AMDM cuts anomaly-detection latency from 12.3 s to 5.6 s on simulated goal drift and reduces false-positive rates from 4.5% to 0.9% compared with static thresholds. We present a comparison table and ROC/PR curves, and we reanalyse case studies to surface missing metrics. Code, data and a reproducibility checklist accompany this paper to facilitate replication. The code supporting this work is available at https://github.com/Manishms18/Adaptive-Multi-Dimensional-Monitoring.
♻ ☆ A Survey on Training-free Alignment of Large Language Models EMNLP 2025
The alignment of large language models (LLMs) aims to ensure their outputs adhere to human values, ethical standards, and legal norms. Traditional alignment methods often rely on resource-intensive fine-tuning (FT), which may suffer from knowledge degradation and face challenges in scenarios where the model accessibility or computational resources are constrained. In contrast, training-free (TF) alignment techniques--leveraging in-context learning, decoding-time adjustments, and post-generation corrections--offer a promising alternative by enabling alignment without heavily retraining LLMs, making them adaptable to both open-source and closed-source environments. This paper presents the first systematic review of TF alignment methods, categorizing them by stages of pre-decoding, in-decoding, and post-decoding. For each stage, we provide a detailed examination from the viewpoint of LLMs and multimodal LLMs (MLLMs), highlighting their mechanisms and limitations. Furthermore, we identify key challenges and future directions, paving the way for more inclusive and effective TF alignment techniques. By synthesizing and organizing the rapidly growing body of research, this survey offers a guidance for practitioners and advances the development of safer and more reliable LLMs.
comment: Accepted to EMNLP 2025 (findings), camera-ready version
♻ ☆ M-BRe: Discovering Training Samples for Relation Extraction from Unlabeled Texts with Large Language Models EMNLP2025
For Relation Extraction (RE), the manual annotation of training data may be prohibitively expensive, since the sentences that contain the target relations in texts can be very scarce and difficult to find. It is therefore beneficial to develop an efficient method that can automatically extract training instances from unlabeled texts for training RE models. Recently, large language models (LLMs) have been adopted in various natural language processing tasks, with RE also benefiting from their advances. However, when leveraging LLMs for RE with predefined relation categories, two key challenges arise. First, in a multi-class classification setting, LLMs often struggle to comprehensively capture the semantics of every relation, leading to suboptimal results. Second, although employing binary classification for each relation individually can mitigate this issue, it introduces significant computational overhead, resulting in impractical time complexity for real-world applications. Therefore, this paper proposes a framework called M-BRe to extract training instances from unlabeled texts for RE. It utilizes three modules to combine the advantages of both of the above classification approaches: Relation Grouping, Relation Extraction, and Label Decision. Extensive experiments confirm its superior capability in discovering high-quality training samples from unlabeled texts for RE.
comment: Accepted by EMNLP2025 Main Conference
♻ ☆ Prior Prompt Engineering for Reinforcement Fine-Tuning EMNLP 2025
This paper investigates prior prompt engineering (pPE) in the context of reinforcement fine-tuning (RFT), where language models (LMs) are incentivized to exhibit behaviors that maximize performance through reward signals. While existing RFT research has primarily focused on algorithms, reward shaping, and data curation, the design of the prior prompt--the instructions prepended to queries during training to elicit behaviors such as step-by-step reasoning--remains underexplored. We investigate whether different pPE approaches can guide LMs to internalize distinct behaviors after RFT. Inspired by inference-time prompt engineering (iPE), we translate five representative iPE strategies--reasoning, planning, code-based reasoning, knowledge recall, and null-example utilization--into corresponding pPE approaches. We experiment with Qwen2.5-7B using each of the pPE approaches, then evaluate performance on in-domain and out-of-domain benchmarks (e.g., AIME2024, HumanEval+, and GPQA-Diamond). Our results show that all pPE-trained models surpass their iPE-prompted counterparts, with the null-example pPE approach achieving the largest average performance gain and the highest improvement on AIME2024 and GPQA-Diamond, surpassing the commonly used reasoning approach. Furthermore, by adapting a behavior-classification framework, we demonstrate that different pPE strategies instill distinct behavioral styles in the resulting models. These findings position pPE as a powerful yet understudied axis for RFT.
comment: Accepted at EMNLP 2025, Main; 26 pages, 42 figures
♻ ☆ Scaling Video-Language Models to 10K Frames via Hierarchical Differential Distillation ICML 2025
Long-form video processing fundamentally challenges vision-language models (VLMs) due to the high computational costs of handling extended temporal sequences. Existing token pruning and feature merging methods often sacrifice critical temporal dependencies or dilute semantic information. We introduce differential distillation, a principled approach that systematically preserves task-relevant information while suppressing redundancy. Based on this principle, we develop ViLAMP, a hierarchical video-language model that processes hour-long videos at "mixed precision" through two key mechanisms: (1) differential keyframe selection that maximizes query relevance while maintaining temporal distinctiveness at the frame level and (2) differential feature merging that preserves query-salient features in non-keyframes at the patch level. Hence, ViLAMP retains full information in keyframes while reducing non-keyframes to their most salient features, resembling mixed-precision training. Extensive experiments demonstrate ViLAMP's superior performance across four video understanding benchmarks, particularly on long-form content. Notably, ViLAMP can process ultra-long videos (up to 10K frames) on a single NVIDIA A100 GPU, achieving substantial computational efficiency while maintaining state-of-the-art performance. Code and model are available at https://github.com/steven-ccq/ViLAMP.
comment: Accepted by ICML 2025
♻ ☆ ACE-RL: Adaptive Constraint-Enhanced Reward for Long-form Generation Reinforcement Learning
Large Language Models (LLMs) have demonstrated remarkable progress in long-context understanding, yet they face significant challenges in high-quality long-form generation. Existing studies primarily suffer from two limitations: (1) A heavy reliance on scarce, high-quality long-form response data for supervised fine-tuning (SFT) or for pairwise preference reward in reinforcement learning (RL). (2) Focus on coarse-grained quality optimization dimensions, such as relevance, coherence, and helpfulness, overlooking the fine-grained specifics inherent to diverse long-form generation scenarios. To address this issue, we propose a framework using Adaptive Constraint-Enhanced reward for long-form generation Reinforcement Learning (ACE-RL). ACE-RL first automatically deconstructs each instruction into a set of fine-grained, adaptive constraint criteria by identifying its underlying intents and demands. Subsequently, we design a reward mechanism that quantifies the quality of long-form responses based on their satisfaction over corresponding constraints, converting subjective quality evaluation into constraint verification. Finally, we utilize reinforcement learning to guide models toward superior long-form generation capabilities. Experimental results demonstrate that our ACE-RL framework significantly outperforms existing SFT and RL baselines by 20.70% and 7.32% on WritingBench, and our top-performing model even surpasses proprietary systems like GPT-4o by 7.10%, providing a more effective training paradigm for LLMs to generate high-quality content across diverse long-form generation scenarios.
comment: Under review, our code is available at https://github.com/ZNLP/ACE-RL
♻ ☆ That's So FETCH: Fashioning Ensemble Techniques for LLM Classification in Civil Legal Intake and Referral
Each year millions of people seek help for their legal problems by calling a legal aid program hotline, walking into a legal aid office, or using a lawyer referral service. The first step to match them to the right help is to identify the legal problem the applicant is experiencing. Misdirection has consequences. Applicants may miss a deadline, experience physical abuse, lose housing or lose custody of children while waiting to connect to the right legal help. We introduce and evaluate the FETCH classifier for legal issue classification and describe two methods for improving accuracy: a hybrid LLM/ML ensemble classification method, and the automatic generation of follow-up questions to enrich the initial problem narrative. We employ a novel data set of 419 real-world queries to a nonprofit lawyer referral service. Ultimately, we show classification accuracy (hits@2) of 97.37\% using a mix of inexpensive models, exceeding the performance of the current state-of-the-art GPT-5 model. Our approach shows promise in significantly reducing the cost of guiding users of the legal system to the right resource for their problem while achieving high accuracy.
comment: Submission to JURIX 2025
♻ ☆ HIRAG: Hierarchical-Thought Instruction-Tuning Retrieval-Augmented Generation
Retrieval-augmented generation (RAG) has become a fundamental paradigm for addressing the challenges faced by large language models in handling real-time information and domain-specific problems. Traditional RAG systems primarily rely on the in-context learning (ICL) capabilities of the large language model itself. Still, in-depth research on the specific capabilities needed by the RAG generation model is lacking, leading to challenges with inconsistent document quality and retrieval system imperfections. Even the limited studies that fine-tune RAG generative models often \textit{lack a granular focus on RAG task} or \textit{a deeper utilization of chain-of-thought processes}. To address this, we propose that RAG models should possess three progressively hierarchical abilities (1) Filtering: the ability to select relevant information; (2) Combination: the ability to combine semantic information across paragraphs; and (3) RAG-specific reasoning: the ability to further process external knowledge using internal knowledge. Thus, we introduce our new RAG instruction fine-tuning method, Hierarchical-Thought Instruction-Tuning Retrieval-Augmented Generation (HIRAG) incorporates a "think before answering" strategy. This method enhances the model's open-book examination capability by utilizing multi-level progressive chain-of-thought. Experiments show that the HIRAG training strategy significantly improves the model's performance on datasets such as RGB, PopQA, MuSiQue, HotpotQA, and PubmedQA.
♻ ☆ MedS$^3$: Towards Medical Slow Thinking with Self-Evolved Soft Dual-sided Process Supervision
Medical language models face critical barriers to real-world clinical reasoning applications. However, mainstream efforts, which fall short in task coverage, lack fine-grained supervision for intermediate reasoning steps, and rely on proprietary systems, are still far from a versatile, credible and efficient language model for clinical reasoning usage. To this end, we propose \mone, a self-evolving framework that imparts robust reasoning capabilities to small, deployable models. Starting with 8,000 curated instances sampled via a curriculum strategy across five medical domains and 16 datasets, we use a small base policy model to conduct Monte Carlo Tree Search (MCTS) for constructing rule-verifiable reasoning trajectories. Self-explored reasoning trajectories ranked by node values are used to bootstrap the policy model via reinforcement fine-tuning and preference learning. Moreover, we introduce a soft dual process reward model that incorporates value dynamics: steps that degrade node value are penalized, enabling fine-grained identification of reasoning errors even when the final answer is correct. Experiments on eleven benchmarks show that \mone outperforms the previous state-of-the-art medical model by +6.45 accuracy points and surpasses 32B-scale general-purpose reasoning models by +8.57 points. Additional empirical analysis further demonstrates that \mone achieves robust and faithful reasoning behavior.
comment: 20 pages;
♻ ☆ CITER: Collaborative Inference for Efficient Large Language Model Decoding with Token-Level Routing
Large language models have achieved remarkable success in various tasks but suffer from high computational costs during inference, limiting their deployment in resource-constrained applications. To address this issue, we propose a novel Collaborative Inference with Token-lEvel Routing (CITER) framework that enables efficient collaboration between small and large language models (SLMs \& LLMs) through a token-level routing strategy. Specifically, CITER routes non-critical tokens to an SLM for efficiency and routes critical tokens to an LLM for generalization quality. We formulate router training as a policy optimization, where the router receives rewards based on both the quality of predictions and the inference costs of generation. This allows the router to learn to predict token-level routing scores and make routing decisions based on both the current token and the future impact of its decisions. To further accelerate the reward evaluation process, we introduce a shortcut which significantly reduces the costs of the reward estimation and improving the practicality of our approach. Extensive experiments on five benchmark datasets demonstrate that CITER reduces the inference costs while preserving high-quality generation, offering a promising solution for real-time and resource-constrained applications. Our data and code are available at https://github.com/aiming-lab/CITER.
♻ ☆ CoT-RAG: Integrating Chain of Thought and Retrieval-Augmented Generation to Enhance Reasoning in Large Language Models
Chain-of-thought (CoT) reasoning boosts large language models' (LLMs) performance on complex tasks but faces two key limitations: a lack of reliability when solely relying on LLM-generated reasoning chains and lower reasoning performance from natural language prompts compared with code prompts. To address these issues, we propose CoT-RAG, a novel reasoning framework with three key designs: (i) Knowledge Graph-driven CoT Generation, featuring knowledge graphs to modulate reasoning chain generation of LLMs, thereby enhancing reasoning credibility; (ii) Learnable Knowledge Case-aware RAG, which incorporates retrieval-augmented generation (RAG) into knowledge graphs to retrieve relevant sub-cases and sub-descriptions, providing LLMs with learnable information; (iii) Pseudo Program Prompting Execution, which promotes greater logical rigor by guiding LLMs to execute reasoning tasks as pseudo-programs. Evaluations on nine public datasets spanning three reasoning tasks reveal significant accuracy gains-ranging from 4.0% to 44.3%-over state-of-the-art methods. Furthermore, tests on four domain-specific datasets demonstrate exceptional accuracy and efficient execution, underscoring its practical applicability and scalability. Our code and data are available at https: //github.com/hustlfy123/CoT-RAG.
♻ ☆ VIDEE: Visual and Interactive Decomposition, Execution, and Evaluation of Text Analytics with Intelligent Agents
Text analytics has traditionally required specialized knowledge in Natural Language Processing (NLP) or text analysis, which presents a barrier for entry-level analysts. Recent advances in large language models (LLMs) have changed the landscape of NLP by enabling more accessible and automated text analysis (e.g., topic detection, summarization, information extraction, etc.). We introduce VIDEE, a system that supports entry-level data analysts to conduct advanced text analytics with intelligent agents. VIDEE instantiates a human-agent collaroration workflow consisting of three stages: (1) Decomposition, which incorporates a human-in-the-loop Monte-Carlo Tree Search algorithm to support generative reasoning with human feedback, (2) Execution, which generates an executable text analytics pipeline, and (3) Evaluation, which integrates LLM-based evaluation and visualizations to support user validation of execution results. We conduct two quantitative experiments to evaluate VIDEE's effectiveness and analyze common agent errors. A user study involving participants with varying levels of NLP and text analytics experience -- from none to expert -- demonstrates the system's usability and reveals distinct user behavior patterns. The findings identify design implications for human-agent collaboration, validate the practical utility of VIDEE for non-expert users, and inform future improvements to intelligent text analytics systems.
♻ ☆ Arce: Augmented Roberta with Contextualized Elucidations for Ner in Automated Rule Checking
Accurate information extraction from specialized texts is a critical challenge, particularly for named entity recognition (NER) in the architecture, engineering, and construction (AEC) domain to support automated rule checking (ARC). The performance of standard pre-trained models is often constrained by the domain gap, as they struggle to interpret the specialized terminology and complex relational contexts inherent in AEC texts. Although this issue can be mitigated by further pre-training on large, human-curated domain corpora, as exemplified by methods like ARCBERT, this approach is both labor-intensive and cost-prohibitive. Consequently, leveraging large language models (LLMs) for automated knowledge generation has emerged as a promising alternative. However, the optimal strategy for generating knowledge that can genuinely enhance smaller, efficient models remains an open question. To address this, we propose ARCE (augmented RoBERTa with contextualized elucidations), a novel approach that systematically explores and optimizes this generation process. ARCE employs an LLM to first generate a corpus of simple, direct explanations, which we term Cote, and then uses this corpus to incrementally pre-train a RoBERTa model prior to its fine-tuning on the downstream task. Our extensive experiments show that ARCE establishes a new state-of-the-art on a benchmark AEC dataset, achieving a Macro-F1 score of 77.20%. This result also reveals a key finding: simple, explanation-based knowledge proves surprisingly more effective than complex, role-based rationales for this task. The code is publicly available at:https://github.com/nxcc-lab/ARCE.
♻ ☆ DomainCQA: Crafting Knowledge-Intensive QA from Domain-Specific Charts
Chart Question Answering (CQA) evaluates Multimodal Large Language Models (MLLMs) on visual understanding and reasoning over chart data. However, existing benchmarks mostly test surface-level parsing, such as reading labels and legends, while overlooking deeper scientific reasoning. We propose DomainCQA, a framework for constructing domain-specific CQA benchmarks that emphasize both visual comprehension and knowledge-intensive reasoning. It integrates complexity-aware chart selection, multitier QA generation, and expert validation. Applied to astronomy, DomainCQA yields AstroChart, a benchmark of 1,690 QA pairs over 482 charts, exposing persistent weaknesses in fine-grained perception, numerical reasoning, and domain knowledge integration across 21 MLLMs. Fine-tuning on AstroChart improves performance across fundamental and advanced tasks. Pilot QA sets in biochemistry, economics, medicine, and social science further demonstrate DomainCQA's generality. Together, our results establish DomainCQA as a unified pipeline for constructing and augmenting domain-specific chart reasoning benchmarks.
comment: 85 pages, 59 figures
♻ ☆ DischargeSim: A Simulation Benchmark for Educational Doctor-Patient Communication at Discharge EMNLP
Discharge communication is a critical yet underexplored component of patient care, where the goal shifts from diagnosis to education. While recent large language model (LLM) benchmarks emphasize in-visit diagnostic reasoning, they fail to evaluate models' ability to support patients after the visit. We introduce DischargeSim, a novel benchmark that evaluates LLMs on their ability to act as personalized discharge educators. DischargeSim simulates post-visit, multi-turn conversations between LLM-driven DoctorAgents and PatientAgents with diverse psychosocial profiles (e.g., health literacy, education, emotion). Interactions are structured across six clinically grounded discharge topics and assessed along three axes: (1) dialogue quality via automatic and LLM-as-judge evaluation, (2) personalized document generation including free-text summaries and structured AHRQ checklists, and (3) patient comprehension through a downstream multiple-choice exam. Experiments across 18 LLMs reveal significant gaps in discharge education capability, with performance varying widely across patient profiles. Notably, model size does not always yield better education outcomes, highlighting trade-offs in strategy use and content prioritization. DischargeSim offers a first step toward benchmarking LLMs in post-visit clinical education and promoting equitable, personalized patient support.
comment: Equal contribution for the first two authors. To appear in the proceedings of the Main Conference on Empirical Methods in Natural Language Processing (EMNLP) 2025
♻ ☆ RSCC: A Large-Scale Remote Sensing Change Caption Dataset for Disaster Events
Remote sensing is critical for disaster monitoring, yet existing datasets lack temporal image pairs and detailed textual annotations. While single-snapshot imagery dominates current resources, it fails to capture dynamic disaster impacts over time. To address this gap, we introduce the Remote Sensing Change Caption (RSCC) dataset, a large-scale benchmark comprising 62,315 pre-/post-disaster image pairs (spanning earthquakes, floods, wildfires, and more) paired with rich, human-like change captions. By bridging the temporal and semantic divide in remote sensing data, RSCC enables robust training and evaluation of vision-language models for disaster-aware bi-temporal understanding. Our results highlight RSCC's ability to facilitate detailed disaster-related analysis, paving the way for more accurate, interpretable, and scalable vision-language applications in remote sensing. Code and dataset are available at https://github.com/Bili-Sakura/RSCC.
comment: under review
♻ ☆ ReceiptSense: Beyond Traditional OCR -- A Dataset for Receipt Understanding
Multilingual OCR and information extraction from receipts remains challenging, particularly for complex scripts like Arabic. We introduce \dataset, a comprehensive dataset designed for Arabic-English receipt understanding comprising 20,000 annotated receipts from diverse retail settings, 30,000 OCR-annotated images, and 10,000 item-level annotations, and a new Receipt QA subset with 1265 receipt images paired with 40 question-answer pairs each to support LLM evaluation for receipt understanding. The dataset captures merchant names, item descriptions, prices, receipt numbers, and dates to support object detection, OCR, and information extraction tasks. We establish baseline performance using traditional methods (Tesseract OCR) and advanced neural networks, demonstrating the dataset's effectiveness for processing complex, noisy real-world receipt layouts. Our publicly accessible dataset advances automated multilingual document processing research (see https://github.com/Update-For-Integrated-Business-AI/CORU ).
♻ ☆ ASTPrompter: Preference-Aligned Automated Language Model Red-Teaming to Generate Low-Perplexity Unsafe Prompts
Existing LLM red-teaming approaches prioritize high attack success rate, often resulting in high-perplexity prompts. This focus overlooks low-perplexity attacks that are more difficult to filter, more likely to arise during benign usage, and more impactful as negative downstream training examples. In response, we introduce ASTPrompter, a single-step optimization method that uses contrastive preference learning to train an attacker to maintain low perplexity while achieving a high attack success rate (ASR). ASTPrompter achieves an attack success rate 5.1 times higher on Llama-8.1B while using inputs that are 2.1 times more likely to occur according to the frozen LLM. Furthermore, our attack transfers to Mistral-7B, Qwen-7B, and TinyLlama in both black- and white-box settings. Lastly, by tuning a single hyperparameter in our method, we discover successful attack prefixes along an efficient frontier between ASR and perplexity, highlighting perplexity as a previously under-considered factor in red-teaming.
comment: 8 pages, 7 pages of appendix, 3 tables, 4 figures
♻ ☆ AdaptMI: Adaptive Skill-based In-context Math Instruction for Small Language Models
In-context learning (ICL) allows a language model to improve its problem-solving capability when provided with suitable information in context. Since the choice of in-context information can be determined based on the problem itself, in-context learning is analogous to human learning from teachers in a classroom. Recent works (Didolkar et al., 2024a; 2024b) show that ICL performance can be improved by leveraging a frontier large language model's (LLM) ability to predict required skills to solve a problem, popularly referred to as an LLM's metacognition, and using the recommended skills to construct necessary in-context examples. While this skill-based strategy boosts ICL performance in larger models, its gains on small language models (SLMs) have been minimal, highlighting a performance gap in ICL capabilities. We investigate this gap and show that skill-based prompting can hurt SLM performance on easy questions by introducing unnecessary information, akin to cognitive overload. To address this, we introduce AdaptMI, an adaptive approach to selecting skill-based in-context Math Instructions for SLMs. Inspired by cognitive load theory from human pedagogy, our method only introduces skill-based examples when the model performs poorly. We further propose AdaptMI+, which adds examples targeted to the specific skills missing from the model's responses. On 5-shot evaluations across popular math benchmarks and five SLMs (1B--7B; Qwen, Llama), AdaptMI+ improves accuracy by up to 6% over naive skill-based strategies.
♻ ☆ Are Generative Models Underconfident? Better Quality Estimation with Boosted Model Probability EMNLP 2025
Quality Estimation (QE) is estimating quality of the model output during inference when the ground truth is not available. Deriving output quality from the models' output probability is the most trivial and low-effort way. However, we show that the output probability of text-generation models can appear underconfident. At each output step, there can be multiple correct options, making the probability distribution spread out more. Thus, lower probability does not necessarily mean lower output quality. Due to this observation, we propose a QE approach called BoostedProb, which boosts the model's confidence in cases where there are multiple viable output options. With no increase in complexity, BoostedProb is notably better than raw model probability in different settings, achieving on average +0.194 improvement in Pearson correlation to ground-truth quality. It also comes close to or outperforms more costly approaches like supervised or ensemble-based QE in certain settings.
comment: Accepted to EMNLP 2025 Main Conference
♻ ☆ CondAmbigQA: A Benchmark and Dataset for Conditional Ambiguous Question Answering EMNLP 2025
Users often assume that large language models (LLMs) share their cognitive alignment of context and intent, leading them to omit critical information in question-answering (QA) and produce ambiguous queries. Responses based on misaligned assumptions may be perceived as hallucinations. Therefore, identifying possible implicit assumptions is crucial in QA. To address this fundamental challenge, we propose Conditional Ambiguous Question-Answering (CondAmbigQA), a benchmark comprising 2,000 ambiguous queries and condition-aware evaluation metrics. Our study pioneers "conditions" as explicit contextual constraints that resolve ambiguities in QA tasks through retrieval-based annotation, where retrieved Wikipedia fragments help identify possible interpretations for a given query and annotate answers accordingly. Experiments demonstrate that models considering conditions before answering improve answer accuracy by 11.75%, with an additional 7.15% gain when conditions are explicitly provided. These results highlight that apparent hallucinations may stem from inherent query ambiguity rather than model failure, and demonstrate the effectiveness of condition reasoning in QA, providing researchers with tools for rigorous evaluation.
comment: Accepted by EMNLP 2025 (Main Conference)
Machine Learning 168
☆ A Survey of Reinforcement Learning for Large Reasoning Models
In this paper, we survey recent advances in Reinforcement Learning (RL) for reasoning with Large Language Models (LLMs). RL has achieved remarkable success in advancing the frontier of LLM capabilities, particularly in addressing complex logical tasks such as mathematics and coding. As a result, RL has emerged as a foundational methodology for transforming LLMs into LRMs. With the rapid progress of the field, further scaling of RL for LRMs now faces foundational challenges not only in computational resources but also in algorithm design, training data, and infrastructure. To this end, it is timely to revisit the development of this domain, reassess its trajectory, and explore strategies to enhance the scalability of RL toward Artificial SuperIntelligence (ASI). In particular, we examine research applying RL to LLMs and LRMs for reasoning abilities, especially since the release of DeepSeek-R1, including foundational components, core problems, training resources, and downstream applications, to identify future opportunities and directions for this rapidly evolving area. We hope this review will promote future research on RL for broader reasoning models. Github: https://github.com/TsinghuaC3I/Awesome-RL-for-LRMs
☆ Large Language Model Hacking: Quantifying the Hidden Risks of Using LLMs for Text Annotation
Large language models (LLMs) are rapidly transforming social science research by enabling the automation of labor-intensive tasks like data annotation and text analysis. However, LLM outputs vary significantly depending on the implementation choices made by researchers (e.g., model selection, prompting strategy, or temperature settings). Such variation can introduce systematic biases and random errors, which propagate to downstream analyses and cause Type I, Type II, Type S, or Type M errors. We call this LLM hacking. We quantify the risk of LLM hacking by replicating 37 data annotation tasks from 21 published social science research studies with 18 different models. Analyzing 13 million LLM labels, we test 2,361 realistic hypotheses to measure how plausible researcher choices affect statistical conclusions. We find incorrect conclusions based on LLM-annotated data in approximately one in three hypotheses for state-of-the-art models, and in half the hypotheses for small language models. While our findings show that higher task performance and better general model capabilities reduce LLM hacking risk, even highly accurate models do not completely eliminate it. The risk of LLM hacking decreases as effect sizes increase, indicating the need for more rigorous verification of findings near significance thresholds. Our extensive analysis of LLM hacking mitigation techniques emphasizes the importance of human annotations in reducing false positive findings and improving model selection. Surprisingly, common regression estimator correction techniques are largely ineffective in reducing LLM hacking risk, as they heavily trade off Type I vs. Type II errors. Beyond accidental errors, we find that intentional LLM hacking is unacceptably simple. With few LLMs and just a handful of prompt paraphrases, anything can be presented as statistically significant.
☆ A Survey of TinyML Applications in Beekeeping for Hive Monitoring and Management
Honey bee colonies are essential for global food security and ecosystem stability, yet they face escalating threats from pests, diseases, and environmental stressors. Traditional hive inspections are labor-intensive and disruptive, while cloud-based monitoring solutions remain impractical for remote or resource-limited apiaries. Recent advances in Internet of Things (IoT) and Tiny Machine Learning (TinyML) enable low-power, real-time monitoring directly on edge devices, offering scalable and non-invasive alternatives. This survey synthesizes current innovations at the intersection of TinyML and apiculture, organized around four key functional areas: monitoring hive conditions, recognizing bee behaviors, detecting pests and diseases, and forecasting swarming events. We further examine supporting resources, including publicly available datasets, lightweight model architectures optimized for embedded deployment, and benchmarking strategies tailored to field constraints. Critical limitations such as data scarcity, generalization challenges, and deployment barriers in off-grid environments are highlighted, alongside emerging opportunities in ultra-efficient inference pipelines, adaptive edge learning, and dataset standardization. By consolidating research and engineering practices, this work provides a foundation for scalable, AI-driven, and ecologically informed monitoring systems to support sustainable pollinator management.
comment: 30 pages, 8 figures, 3 tables. Survey of TinyML and IoT applications in beekeeping (datasets, benchmarking, deployment). Submitted to ACM Computing Surveys (under review)
☆ QCardEst/QCardCorr: Quantum Cardinality Estimation and Correction
Cardinality estimation is an important part of query optimization in DBMS. We develop a Quantum Cardinality Estimation (QCardEst) approach using Quantum Machine Learning with a Hybrid Quantum-Classical Network. We define a compact encoding for turning SQL queries into a quantum state, which requires only qubits equal to the number of tables in the query. This allows the processing of a complete query with a single variational quantum circuit (VQC) on current hardware. In addition, we compare multiple classical post-processing layers to turn the probability vector output of VQC into a cardinality value. We introduce Quantum Cardinality Correction QCardCorr, which improves classical cardinality estimators by multiplying the output with a factor generated by a VQC to improve the cardinality estimation. With QCardCorr, we have an improvement over the standard PostgreSQL optimizer of 6.37 times for JOB-light and 8.66 times for STATS. For JOB-light we even outperform MSCN by a factor of 3.47.
comment: 7 pages
☆ Merge-of-Thought Distillation
Efficient reasoning distillation for long chain-of-thought (CoT) models is increasingly constrained by the assumption of a single oracle teacher, despite practical availability of multiple candidate teachers and growing CoT corpora. We revisit teacher selection and observe that different students have different "best teachers," and even for the same student the best teacher can vary across datasets. Therefore, to unify multiple teachers' reasoning abilities into student with overcoming conflicts among various teachers' supervision, we propose Merge-of-Thought Distillation (MoT), a lightweight framework that alternates between teacher-specific supervised fine-tuning branches and weight-space merging of the resulting student variants. On competition math benchmarks, using only about 200 high-quality CoT samples, applying MoT to a Qwen3-14B student surpasses strong models including DEEPSEEK-R1, QWEN3-30B-A3B, QWEN3-32B, and OPENAI-O1, demonstrating substantial gains. Besides, MoT consistently outperforms the best single-teacher distillation and the naive multi-teacher union, raises the performance ceiling while mitigating overfitting, and shows robustness to distribution-shifted and peer-level teachers. Moreover, MoT reduces catastrophic forgetting, improves general reasoning beyond mathematics and even cultivates a better teacher, indicating that consensus-filtered reasoning features transfer broadly. These results position MoT as a simple, scalable route to efficiently distilling long CoT capabilities from diverse teachers into compact students.
☆ ADHDeepNet From Raw EEG to Diagnosis: Improving ADHD Diagnosis through Temporal-Spatial Processing, Adaptive Attention Mechanisms, and Explainability in Raw EEG Signals
Attention Deficit Hyperactivity Disorder (ADHD) is a common brain disorder in children that can persist into adulthood, affecting social, academic, and career life. Early diagnosis is crucial for managing these impacts on patients and the healthcare system but is often labor-intensive and time-consuming. This paper presents a novel method to improve ADHD diagnosis precision and timeliness by leveraging Deep Learning (DL) approaches and electroencephalogram (EEG) signals. We introduce ADHDeepNet, a DL model that utilizes comprehensive temporal-spatial characterization, attention modules, and explainability techniques optimized for EEG signals. ADHDeepNet integrates feature extraction and refinement processes to enhance ADHD diagnosis. The model was trained and validated on a dataset of 121 participants (61 ADHD, 60 Healthy Controls), employing nested cross-validation for robust performance. The proposed two-stage methodology uses a 10-fold cross-subject validation strategy. Initially, each iteration optimizes the model's hyper-parameters with inner 2-fold cross-validation. Then, Additive Gaussian Noise (AGN) with various standard deviations and magnification levels is applied for data augmentation. ADHDeepNet achieved 100% sensitivity and 99.17% accuracy in classifying ADHD/HC subjects. To clarify model explainability and identify key brain regions and frequency bands for ADHD diagnosis, we analyzed the learned weights and activation patterns of the model's primary layers. Additionally, t-distributed Stochastic Neighbor Embedding (t-SNE) visualized high-dimensional data, aiding in interpreting the model's decisions. This study highlights the potential of DL and EEG in enhancing ADHD diagnosis accuracy and efficiency.
comment: 29 pages, 7 figures. Preprint. Correspondence: alijanpour@ucf.edu
☆ PCGBandit: One-shot acceleration of transient PDE solvers via online-learned preconditioners
Data-driven acceleration of scientific computing workflows has been a high-profile aim of machine learning (ML) for science, with numerical simulation of transient partial differential equations (PDEs) being one of the main applications. The focus thus far has been on methods that require classical simulations to train, which when combined with the data-hungriness and optimization challenges of neural networks has caused difficulties in demonstrating a convincing advantage against strong classical baselines. We consider an alternative paradigm in which the learner uses a classical solver's own data to accelerate it, enabling a one-shot speedup of the simulation. Concretely, since transient PDEs often require solving a sequence of related linear systems, the feedback from repeated calls to a linear solver such as preconditioned conjugate gradient (PCG) can be used by a bandit algorithm to online-learn an adaptive sequence of solver configurations (e.g. preconditioners). The method we develop, PCGBandit, is implemented directly on top of the popular open source software OpenFOAM, which we use to show its effectiveness on a set of fluid and magnetohydrodynamics (MHD) problems.
comment: 25 pages, 11 figures
☆ Fourier Learning Machines: Nonharmonic Fourier-Based Neural Networks for Scientific Machine Learning
We introduce the Fourier Learning Machine (FLM), a neural network (NN) architecture designed to represent a multidimensional nonharmonic Fourier series. The FLM uses a simple feedforward structure with cosine activation functions to learn the frequencies, amplitudes, and phase shifts of the series as trainable parameters. This design allows the model to create a problem-specific spectral basis adaptable to both periodic and nonperiodic functions. Unlike previous Fourier-inspired NN models, the FLM is the first architecture able to represent a complete, separable Fourier basis in multiple dimensions using a standard Multilayer Perceptron-like architecture. A one-to-one correspondence between the Fourier coefficients and amplitudes and phase-shifts is demonstrated, allowing for the translation between a full, separable basis form and the cosine phase--shifted one. Additionally, we evaluate the performance of FLMs on several scientific computing problems, including benchmark Partial Differential Equations (PDEs) and a family of Optimal Control Problems (OCPs). Computational experiments show that the performance of FLMs is comparable, and often superior, to that of established architectures like SIREN and vanilla feedforward NNs.
☆ Using AI to Optimize Patient Transfer and Resource Utilization During Mass-Casualty Incidents: A Simulation Platform
Mass casualty incidents (MCIs) overwhelm healthcare systems and demand rapid, accurate patient-hospital allocation decisions under extreme pressure. Here, we developed and validated a deep reinforcement learning-based decision-support AI agent to optimize patient transfer decisions during simulated MCIs by balancing patient acuity levels, specialized care requirements, hospital capacities, and transport logistics. To integrate this AI agent, we developed MasTER, a web-accessible command dashboard for MCI management simulations. Through a controlled user study with 30 participants (6 trauma experts and 24 non-experts), we evaluated three interaction approaches with the AI agent (human-only, human-AI collaboration, and AI-only) across 20- and 60-patient MCI scenarios in the Greater Toronto Area. Results demonstrate that increasing AI involvement significantly improves decision quality and consistency. The AI agent outperforms trauma surgeons (p < 0.001) and enables non-experts to achieve expert-level performance when assisted, contrasting sharply with their significantly inferior unassisted performance (p < 0.001). These findings establish the potential for our AI-driven decision support to enhance both MCI preparedness training and real-world emergency response management.
☆ AgentGym-RL: Training LLM Agents for Long-Horizon Decision Making through Multi-Turn Reinforcement Learning
Developing autonomous LLM agents capable of making a series of intelligent decisions to solve complex, real-world tasks is a fast-evolving frontier. Like human cognitive development, agents are expected to acquire knowledge and skills through exploration and interaction with the environment. Despite advances, the community still lacks a unified, interactive reinforcement learning (RL) framework that can effectively train such agents from scratch -- without relying on supervised fine-tuning (SFT) -- across diverse and realistic environments. To bridge this gap, we introduce AgentGym-RL, a new framework to train LLM agents for multi-turn interactive decision-making through RL. The framework features a modular and decoupled architecture, ensuring high flexibility and extensibility. It encompasses a wide variety of real-world scenarios, and supports mainstream RL algorithms. Furthermore, we propose ScalingInter-RL, a training approach designed for exploration-exploitation balance and stable RL optimization. In early stages, it emphasizes exploitation by restricting the number of interactions, and gradually shifts towards exploration with larger horizons to encourage diverse problem-solving strategies. In this way, the agent develops more diverse behaviors and is less prone to collapse under long horizons. We perform extensive experiments to validate the stability and effectiveness of both the AgentGym-RL framework and the ScalingInter-RL approach. Our agents match or surpass commercial models on 27 tasks across diverse environments. We offer key insights and will open-source the complete AgentGym-RL framework -- including code and datasets -- to empower the research community in developing the next generation of intelligent agents.
comment: preprint, 39 pages, 16 figures. Project: https://AgentGym-RL.github.io/. Framework and Code: https://github.com/woooodyy/AgentGym, https://github.com/woooodyy/AgentGym-RL
☆ Learning Turbulent Flows with Generative Models: Super-resolution, Forecasting, and Sparse Flow Reconstruction
Neural operators are promising surrogates for dynamical systems but when trained with standard L2 losses they tend to oversmooth fine-scale turbulent structures. Here, we show that combining operator learning with generative modeling overcomes this limitation. We consider three practical turbulent-flow challenges where conventional neural operators fail: spatio-temporal super-resolution, forecasting, and sparse flow reconstruction. For Schlieren jet super-resolution, an adversarially trained neural operator (adv-NO) reduces the energy-spectrum error by 15x while preserving sharp gradients at neural operator-like inference cost. For 3D homogeneous isotropic turbulence, adv-NO trained on only 160 timesteps from a single trajectory forecasts accurately for five eddy-turnover times and offers 114x wall-clock speed-up at inference than the baseline diffusion-based forecasters, enabling near-real-time rollouts. For reconstructing cylinder wake flows from highly sparse Particle Tracking Velocimetry-like inputs, a conditional generative model infers full 3D velocity and pressure fields with correct phase alignment and statistics. These advances enable accurate reconstruction and forecasting at low compute cost, bringing near-real-time analysis and control within reach in experimental and computational fluid mechanics. See our project page: https://vivekoommen.github.io/Gen4Turb/
☆ Bregman Douglas-Rachford Splitting Method
In this paper, we propose the Bregman Douglas-Rachford splitting (BDRS) method and its variant Bregman Peaceman-Rachford splitting method for solving maximal monotone inclusion problem. We show that BDRS is equivalent to a Bregman alternating direction method of multipliers (ADMM) when applied to the dual of the problem. A special case of the Bregman ADMM is an alternating direction version of the exponential multiplier method. To the best of our knowledge, algorithms proposed in this paper are new to the literature. We also discuss how to use our algorithms to solve the discrete optimal transport (OT) problem. We prove the convergence of the algorithms under certain assumptions, though we point out that one assumption does not apply to the OT problem.
☆ ChemBOMAS: Accelerated BO in Chemistry with LLM-Enhanced Multi-Agent System
The efficiency of Bayesian optimization (BO) in chemistry is often hindered by sparse experimental data and complex reaction mechanisms. To overcome these limitations, we introduce ChemBOMAS, a new framework named LLM-Enhanced Multi-Agent System for accelerating BO in chemistry. ChemBOMAS's optimization process is enhanced by LLMs and synergistically employs two strategies: knowledge-driven coarse-grained optimization and data-driven fine-grained optimization. First, in the knowledge-driven coarse-grained optimization stage, LLMs intelligently decompose the vast search space by reasoning over existing chemical knowledge to identify promising candidate regions. Subsequently, in the data-driven fine-grained optimization stage, LLMs enhance the BO process within these candidate regions by generating pseudo-data points, thereby improving data utilization efficiency and accelerating convergence. Benchmark evaluations** further confirm that ChemBOMAS significantly enhances optimization effectiveness and efficiency compared to various BO algorithms. Importantly, the practical utility of ChemBOMAS was validated through wet-lab experiments conducted under pharmaceutical industry protocols, targeting conditional optimization for a previously unreported and challenging chemical reaction. In the wet experiment, ChemBOMAS achieved an optimal objective value of 96%. This was substantially higher than the 15% achieved by domain experts. This real-world success, together with strong performance on benchmark evaluations, highlights ChemBOMAS as a powerful tool to accelerate chemical discovery.
☆ DEQuify your force field: More efficient simulations using deep equilibrium models ICLR-2025
Machine learning force fields show great promise in enabling more accurate molecular dynamics simulations compared to manually derived ones. Much of the progress in recent years was driven by exploiting prior knowledge about physical systems, in particular symmetries under rotation, translation, and reflections. In this paper, we argue that there is another important piece of prior information that, thus fa,r hasn't been explored: Simulating a molecular system is necessarily continuous, and successive states are therefore extremely similar. Our contribution is to show that we can exploit this information by recasting a state-of-the-art equivariant base model as a deep equilibrium model. This allows us to recycle intermediate neural network features from previous time steps, enabling us to improve both accuracy and speed by $10\%-20\%$ on the MD17, MD22, and OC20 200k datasets, compared to the non-DEQ base model. The training is also much more memory efficient, allowing us to train more expressive models on larger systems.
comment: AI4MAT-ICLR-2025 Spotlight https://openreview.net/forum?id=XACVRYePQQ
☆ Data-driven generative simulation of SDEs using diffusion models
This paper introduces a new approach to generating sample paths of unknown stochastic differential equations (SDEs) using diffusion models, a class of generative AI models commonly employed in image and video applications. Unlike the traditional Monte Carlo methods for simulating SDEs, which require explicit specifications of the drift and diffusion coefficients, our method takes a model-free, data-driven approach. Given a finite set of sample paths from an SDE, we utilize conditional diffusion models to generate new, synthetic paths of the same SDE. To demonstrate the effectiveness of our approach, we conduct a simulation experiment to compare our method with alternative benchmark ones including neural SDEs. Furthermore, in an empirical study we leverage these synthetically generated sample paths to enhance the performance of reinforcement learning algorithms for continuous-time mean-variance portfolio selection, hinting promising applications of diffusion models in financial analysis and decision-making.
☆ Decentralized Stochastic Nonconvex Optimization under the Relaxed Smoothness
This paper studies decentralized optimization problem $f(\mathbf{x})=\frac{1}{m}\sum_{i=1}^m f_i(\mathbf{x})$, where each local function has the form of $f_i(\mathbf{x}) = {\mathbb E}\left[F(\mathbf{x};{\xi}_i)\right]$ which is $(L_0,L_1)$-smooth but possibly nonconvex and the random variable ${\xi}_i$ follows distribution ${\mathcal D}_i$. We propose a novel algorithm called decentralized normalized stochastic gradient descent (DNSGD), which can achieve the $\epsilon$-stationary point on each local agent. We present a new framework for analyzing decentralized first-order methods in the relaxed smooth setting, based on the Lyapunov function related to the product of the gradient norm and the consensus error. The analysis shows upper bounds on sample complexity of ${\mathcal O}(m^{-1}(L_f\sigma^2\Delta_f\epsilon^{-4} + \sigma^2\epsilon^{-2} + L_f^{-2}L_1^3\sigma^2\Delta_f\epsilon^{-1} + L_f^{-2}L_1^2\sigma^2))$ per agent and communication complexity of $\tilde{\mathcal O}((L_f\epsilon^{-2} + L_1\epsilon^{-1})\gamma^{-1/2}\Delta_f)$, where $L_f=L_0 +L_1\zeta$, $\sigma^2$ is the variance of the stochastic gradient, $\Delta_f$ is the initial optimal function value gap, $\gamma$ is the spectral gap of the network, and $\zeta$ is the degree of the gradient dissimilarity. In the special case of $L_1=0$, the above results (nearly) match the lower bounds on decentralized nonconvex optimization in the standard smooth setting. We also conduct numerical experiments to show the empirical superiority of our method.
☆ Sharing is Caring: Efficient LM Post-Training with Collective RL Experience Sharing
Post-training language models (LMs) with reinforcement learning (RL) can enhance their complex reasoning capabilities without supervised fine-tuning, as demonstrated by DeepSeek-R1-Zero. However, effectively utilizing RL for LMs requires significant parallelization to scale-up inference, which introduces non-trivial technical challenges (e.g. latency, memory, and reliability) alongside ever-growing financial costs. We present Swarm sAmpling Policy Optimization (SAPO), a fully decentralized and asynchronous RL post-training algorithm. SAPO is designed for decentralized networks of heterogenous compute nodes, where each node manages its own policy model(s) while "sharing" rollouts with others in the network; no explicit assumptions about latency, model homogeneity, or hardware are required and nodes can operate in silo if desired. As a result, the algorithm avoids common bottlenecks in scaling RL post-training while also allowing (and even encouraging) new possibilities. By sampling rollouts "shared" across the network, it enables "Aha moments" to propagate, thereby bootstrapping the learning process. In this paper we show SAPO achieved cumulative reward gains of up to 94% in controlled experiments. We also share insights from tests on a network with thousands of nodes contributed by Gensyn community members running the algorithm on diverse hardware and models during an open-source demo.
comment: 14 pages, 6 figures
☆ Explainability of CNN Based Classification Models for Acoustic Signal IEEE
Explainable Artificial Intelligence (XAI) has emerged as a critical tool for interpreting the predictions of complex deep learning models. While XAI has been increasingly applied in various domains within acoustics, its use in bioacoustics, which involves analyzing audio signals from living organisms, remains relatively underexplored. In this paper, we investigate the vocalizations of a bird species with strong geographic variation throughout its range in North America. Audio recordings were converted into spectrogram images and used to train a deep Convolutional Neural Network (CNN) for classification, achieving an accuracy of 94.8\%. To interpret the model's predictions, we applied both model-agnostic (LIME, SHAP) and model-specific (DeepLIFT, Grad-CAM) XAI techniques. These techniques produced different but complementary explanations, and when their explanations were considered together, they provided more complete and interpretable insights into the model's decision-making. This work highlights the importance of using a combination of XAI techniques to improve trust and interoperability, not only in broader acoustics signal analysis but also argues for broader applicability in different domain specific tasks.
comment: Accepted in IEEE ICTAI 2025
☆ Compressing CNN models for resource-constrained systems by channel and layer pruning
Convolutional Neural Networks (CNNs) have achieved significant breakthroughs in various fields. However, these advancements have led to a substantial increase in the complexity and size of these networks. This poses a challenge when deploying large and complex networks on edge devices. Consequently, model compression has emerged as a research field aimed at reducing the size and complexity of CNNs. One prominent technique in model compression is model pruning. This paper will present a new technique of pruning that combines both channel and layer pruning in what is called a "hybrid pruning framework". Inspired by EfficientNet, a renowned CNN architecture known for scaling up networks from both channel and layer perspectives, this hybrid approach applies the same principles but in reverse, where it scales down the network through pruning. Experiments on the hybrid approach demonstrated a notable decrease in the overall complexity of the model, with only a minimal reduction in accuracy compared to the baseline model. This complexity reduction translates into reduced latency when deploying the pruned models on an NVIDIA JETSON TX2 embedded AI device.
comment: 16 pages, 4 figures, the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases
☆ Securing Private Federated Learning in a Malicious Setting: A Scalable TEE-Based Approach with Client Auditing
In cross-device private federated learning, differentially private follow-the-regularized-leader (DP-FTRL) has emerged as a promising privacy-preserving method. However, existing approaches assume a semi-honest server and have not addressed the challenge of securely removing this assumption. This is due to its statefulness, which becomes particularly problematic in practical settings where clients can drop out or be corrupted. While trusted execution environments (TEEs) might seem like an obvious solution, a straightforward implementation can introduce forking attacks or availability issues due to state management. To address this problem, our paper introduces a novel server extension that acts as a trusted computing base (TCB) to realize maliciously secure DP-FTRL. The TCB is implemented with an ephemeral TEE module on the server side to produce verifiable proofs of server actions. Some clients, upon being selected, participate in auditing these proofs with small additional communication and computational demands. This extension solution reduces the size of the TCB while maintaining the system's scalability and liveness. We provide formal proofs based on interactive differential privacy, demonstrating privacy guarantee in malicious settings. Finally, we experimentally show that our framework adds small constant overhead to clients in several realistic settings.
comment: Accepted at PoPETs 2026
☆ Tokenizing Loops of Antibodies
The complementarity-determining regions of antibodies are loop structures that are key to their interactions with antigens, and of high importance to the design of novel biologics. Since the 1980s, categorizing the diversity of CDR structures into canonical clusters has enabled the identification of key structural motifs of antibodies. However, existing approaches have limited coverage and cannot be readily incorporated into protein foundation models. Here we introduce ImmunoGlobulin LOOp Tokenizer, Igloo, a multimodal antibody loop tokenizer that encodes backbone dihedral angles and sequence. Igloo is trained using a contrastive learning objective to map loops with similar backbone dihedral angles closer together in latent space. Igloo can efficiently retrieve the closest matching loop structures from a structural antibody database, outperforming existing methods on identifying similar H3 loops by 5.9\%. Igloo assigns tokens to all loops, addressing the limited coverage issue of canonical clusters, while retaining the ability to recover canonical loop conformations. To demonstrate the versatility of Igloo tokens, we show that they can be incorporated into protein language models with IglooLM and IglooALM. On predicting binding affinity of heavy chain variants, IglooLM outperforms the base protein language model on 8 out of 10 antibody-antigen targets. Additionally, it is on par with existing state-of-the-art sequence-based and multimodal protein language models, performing comparably to models with $7\times$ more parameters. IglooALM samples antibody loops which are diverse in sequence and more consistent in structure than state-of-the-art antibody inverse folding models. Igloo demonstrates the benefit of introducing multimodal tokens for antibody loops for encoding the diverse landscape of antibody loops, improving protein foundation models, and for antibody CDR design.
comment: 21 pages, 7 figures, 10 tables, code available at https://github.com/prescient-design/igloo
☆ Machine Learning-Based Prediction of Speech Arrest During Direct Cortical Stimulation Mapping IEEE
Identifying cortical regions critical for speech is essential for safe brain surgery in or near language areas. While Electrical Stimulation Mapping (ESM) remains the clinical gold standard, it is invasive and time-consuming. To address this, we analyzed intracranial electrocorticographic (ECoG) data from 16 participants performing speech tasks and developed machine learning models to directly predict if the brain region underneath each ECoG electrode is critical. Ground truth labels indicating speech arrest were derived independently from Electrical Stimulation Mapping (ESM) and used to train classification models. Our framework integrates neural activity signals, anatomical region labels, and functional connectivity features to capture both local activity and network-level dynamics. We found that models combining region and connectivity features matched the performance of the full feature set, and outperformed models using either type alone. To classify each electrode, trial-level predictions were aggregated using an MLP applied to histogram-encoded scores. Our best-performing model, a trial-level RBF-kernel Support Vector Machine together with MLP-based aggregation, achieved strong accuracy on held-out participants (ROC-AUC: 0.87, PR-AUC: 0.57). These findings highlight the value of combining spatial and network information with non-linear modeling to improve functional mapping in presurgical evaluation.
comment: Accepted at IEEE International Conference on Neural Engineering (NER), 2025. This is the author's accepted manuscript
☆ TANGO: Traversability-Aware Navigation with Local Metric Control for Topological Goals ICRA 2025
Visual navigation in robotics traditionally relies on globally-consistent 3D maps or learned controllers, which can be computationally expensive and difficult to generalize across diverse environments. In this work, we present a novel RGB-only, object-level topometric navigation pipeline that enables zero-shot, long-horizon robot navigation without requiring 3D maps or pre-trained controllers. Our approach integrates global topological path planning with local metric trajectory control, allowing the robot to navigate towards object-level sub-goals while avoiding obstacles. We address key limitations of previous methods by continuously predicting local trajectory using monocular depth and traversability estimation, and incorporating an auto-switching mechanism that falls back to a baseline controller when necessary. The system operates using foundational models, ensuring open-set applicability without the need for domain-specific fine-tuning. We demonstrate the effectiveness of our method in both simulated environments and real-world tests, highlighting its robustness and deployability. Our approach outperforms existing state-of-the-art methods, offering a more adaptable and effective solution for visual navigation in open-set environments. The source code is made publicly available: https://github.com/podgorki/TANGO.
comment: 9 pages, 5 figures, ICRA 2025
☆ Deep Unrolling of Sparsity-Induced RDO for 3D Point Cloud Attribute Coding
Given encoded 3D point cloud geometry available at the decoder, we study the problem of lossy attribute compression in a multi-resolution B-spline projection framework. A target continuous 3D attribute function is first projected onto a sequence of nested subspaces $\mathcal{F}^{(p)}_{l_0} \subseteq \cdots \subseteq \mathcal{F}^{(p)}_{L}$, where $\mathcal{F}^{(p)}_{l}$ is a family of functions spanned by a B-spline basis function of order $p$ at a chosen scale and its integer shifts. The projected low-pass coefficients $F_l^*$ are computed by variable-complexity unrolling of a rate-distortion (RD) optimization algorithm into a feed-forward network, where the rate term is the sparsity-promoting $\ell_1$-norm. Thus, the projection operation is end-to-end differentiable. For a chosen coarse-to-fine predictor, the coefficients are then adjusted to account for the prediction from a lower-resolution to a higher-resolution, which is also optimized in a data-driven manner.
☆ Perfectly-Private Analog Secure Aggregation in Federated Learning
In federated learning, multiple parties train models locally and share their parameters with a central server, which aggregates them to update a global model. To address the risk of exposing sensitive data through local models, secure aggregation via secure multiparty computation has been proposed to enhance privacy. At the same time, perfect privacy can only be achieved by a uniform distribution of the masked local models to be aggregated. This raises a problem when working with real valued data, as there is no measure on the reals that is invariant under the masking operation, and hence information leakage is bound to occur. Shifting the data to a finite field circumvents this problem, but as a downside runs into an inherent accuracy complexity tradeoff issue due to fixed point modular arithmetic as opposed to floating point numbers that can simultaneously handle numbers of varying magnitudes. In this paper, a novel secure parameter aggregation method is proposed that employs the torus rather than a finite field. This approach guarantees perfect privacy for each party's data by utilizing the uniform distribution on the torus, while avoiding accuracy losses. Experimental results show that the new protocol performs similarly to the model without secure aggregation while maintaining perfect privacy. Compared to the finite field secure aggregation, the torus-based protocol can in some cases significantly outperform it in terms of model accuracy and cosine similarity, hence making it a safer choice.
comment: Comments welcome
☆ Signal Fidelity Index-Aware Calibration for Dementia Predictions Across Heterogeneous Real-World Data
\textbf{Background:} Machine learning models trained on electronic health records (EHRs) often degrade across healthcare systems due to distributional shift. A fundamental but underexplored factor is diagnostic signal decay: variability in diagnostic quality and consistency across institutions, which affects the reliability of codes used for training and prediction. \textbf{Objective:} To develop a Signal Fidelity Index (SFI) quantifying diagnostic data quality at the patient level in dementia, and to test SFI-aware calibration for improving model performance across heterogeneous datasets without outcome labels. \textbf{Methods:} We built a simulation framework generating 2,500 synthetic datasets, each with 1,000 patients and realistic demographics, encounters, and coding patterns based on dementia risk factors. The SFI was derived from six interpretable components: diagnostic specificity, temporal consistency, entropy, contextual concordance, medication alignment, and trajectory stability. SFI-aware calibration applied a multiplicative adjustment, optimized across 50 simulation batches. \textbf{Results:} At the optimal parameter ($\alpha$ = 2.0), SFI-aware calibration significantly improved all metrics (p $<$ 0.001). Gains ranged from 10.3\% for Balanced Accuracy to 32.5\% for Recall, with notable increases in Precision (31.9\%) and F1-score (26.1\%). Performance approached reference standards, with F1-score and Recall within 1\% and Balanced Accuracy and Detection Rate improved by 52.3\% and 41.1\%, respectively. \textbf{Conclusions:} Diagnostic signal decay is a tractable barrier to model generalization. SFI-aware calibration provides a practical, label-free strategy to enhance prediction across healthcare contexts, particularly for large-scale administrative datasets lacking outcome labels.
☆ Replicable Reinforcement Learning with Linear Function Approximation
Replication of experimental results has been a challenge faced by many scientific disciplines, including the field of machine learning. Recent work on the theory of machine learning has formalized replicability as the demand that an algorithm produce identical outcomes when executed twice on different samples from the same distribution. Provably replicable algorithms are especially interesting for reinforcement learning (RL), where algorithms are known to be unstable in practice. While replicable algorithms exist for tabular RL settings, extending these guarantees to more practical function approximation settings has remained an open problem. In this work, we make progress by developing replicable methods for linear function approximation in RL. We first introduce two efficient algorithms for replicable random design regression and uncentered covariance estimation, each of independent interest. We then leverage these tools to provide the first provably efficient replicable RL algorithms for linear Markov decision processes in both the generative model and episodic settings. Finally, we evaluate our algorithms experimentally and show how they can inspire more consistent neural policies.
☆ Robust Belief-State Policy Learning for Quantum Network Routing Under Decoherence and Time-Varying Conditions
This paper presents a feature-based Partially Observable Markov Decision Process (POMDP) framework for quantum network routing, combining belief-state planning with Graph Neural Networks (GNNs) to address partial observability, decoherence, and scalability challenges in dynamic quantum systems. Our approach encodes complex quantum network dynamics, including entanglement degradation and time-varying channel noise, into a low-dimensional feature space, enabling efficient belief updates and scalable policy learning. The core of our framework is a hybrid GNN-POMDP architecture that processes graph-structured representations of entangled links to learn routing policies, coupled with a noise-adaptive mechanism that fuses POMDP belief updates with GNN outputs for robust decision making. We provide a theoretical analysis establishing guarantees for belief convergence, policy improvement, and robustness to noise. Experiments on simulated quantum networks with up to 100 nodes demonstrate significant improvements in routing fidelity and entanglement delivery rates compared to state-of-the-art baselines, particularly under high decoherence and nonstationary conditions.
☆ Generative Data Refinement: Just Ask for Better Data
For a fixed parameter size, the capabilities of large models are primarily determined by the quality and quantity of its training data. Consequently, training datasets now grow faster than the rate at which new data is indexed on the web, leading to projected data exhaustion over the next decade. Much more data exists as user-generated content that is not publicly indexed, but incorporating such data comes with considerable risks, such as leaking private information and other undesirable content. We introduce a framework, Generative Data Refinement (GDR), for using pretrained generative models to transform a dataset with undesirable content into a refined dataset that is more suitable for training. Our experiments show that GDR can outperform industry-grade solutions for dataset anonymization, as well as enable direct detoxification of highly unsafe datasets. Moreover, we show that by generating synthetic data that is conditioned on each example in the real dataset, GDR's refined outputs naturally match the diversity of web scale datasets, and thereby avoid the often challenging task of generating diverse synthetic data via model prompting. The simplicity and effectiveness of GDR make it a powerful tool for scaling up the total stock of training data for frontier models.
☆ An upper bound of the silhouette validation metric for clustering
The silhouette coefficient summarizes, per observation, cohesion versus separation in [-1, 1]; the average silhouette width (ASW) is a common internal measure of clustering quality where higher values indicate more coveted results. However, the dataset-specific maximum of ASW is typically unknown, and the standard upper limit 1 is often unattainable. In this work, we derive for each data point in a given dataset a sharp upper bound on its silhouette width. By aggregating these individual bounds, we present a canonical data-dependent upper bound on ASW that often assumes values well below 1. The presented bounds can indicate whether individual data points can ever be well placed, enable early stopping of silhouette-based optimization loops, and help answer a key question: How close is my clustering result to the best possible outcome on this specific data? Across synthetic and real datasets, the bounds are provably near-tight in many cases and offer significant enrichment of cluster quality evaluation.
☆ A hierarchical entropy method for the delocalization of bias in high-dimensional Langevin Monte Carlo
The unadjusted Langevin algorithm is widely used for sampling from complex high-dimensional distributions. It is well known to be biased, with the bias typically scaling linearly with the dimension when measured in squared Wasserstein distance. However, the recent paper of Chen et al. (2024) identifies an intriguing new delocalization effect: For a class of distributions with sparse interactions, the bias between low-dimensional marginals scales only with the lower dimension, not the full dimension. In this work, we strengthen the results of Chen et al. (2024) in the sparse interaction regime by removing a logarithmic factor, measuring distance in relative entropy (a.k.a. KL-divergence), and relaxing the strong log-concavity assumption. In addition, we expand the scope of the delocalization phenomenon by showing that it holds for a class of distributions with weak interactions. Our proofs are based on a hierarchical analysis of the marginal relative entropies, inspired by the authors' recent work on propagation of chaos.
☆ Towards Interpretable Deep Neural Networks for Tabular Data
Tabular data is the foundation of many applications in fields such as finance and healthcare. Although DNNs tailored for tabular data achieve competitive predictive performance, they are blackboxes with little interpretability. We introduce XNNTab, a neural architecture that uses a sparse autoencoder (SAE) to learn a dictionary of monosemantic features within the latent space used for prediction. Using an automated method, we assign human-interpretable semantics to these features. This allows us to represent predictions as linear combinations of semantically meaningful components. Empirical evaluations demonstrate that XNNTab attains performance on par with or exceeding that of state-of-the-art, black-box neural models and classical machine learning approaches while being fully interpretable.
☆ MasconCube: Fast and Accurate Gravity Modeling with an Explicit Representation
The geodesy of irregularly shaped small bodies presents fundamental challenges for gravitational field modeling, particularly as deep space exploration missions increasingly target asteroids and comets. Traditional approaches suffer from critical limitations: spherical harmonics diverge within the Brillouin sphere where spacecraft typically operate, polyhedral models assume unrealistic homogeneous density distributions, and existing machine learning methods like GeodesyNets and Physics-Informed Neural Networks (PINN-GM) require extensive computational resources and training time. This work introduces MasconCubes, a novel self-supervised learning approach that formulates gravity inversion as a direct optimization problem over a regular 3D grid of point masses (mascons). Unlike implicit neural representations, MasconCubes explicitly model mass distributions while leveraging known asteroid shape information to constrain the solution space. Comprehensive evaluation on diverse asteroid models including Bennu, Eros, Itokawa, and synthetic planetesimals demonstrates that MasconCubes achieve superior performance across multiple metrics. Most notably, MasconCubes demonstrate computational efficiency advantages with training times approximately 40 times faster than GeodesyNets while maintaining physical interpretability through explicit mass distributions. These results establish MasconCubes as a promising approach for mission-critical gravitational modeling applications requiring high accuracy, computational efficiency, and physical insight into internal mass distributions of irregular celestial bodies.
Classification of 24-hour movement behaviors from wrist-worn accelerometer data: from handcrafted features to deep learning techniques
Purpose: We compared the performance of deep learning (DL) and classical machine learning (ML) algorithms for the classification of 24-hour movement behavior into sleep, sedentary, light intensity physical activity (LPA), and moderate-to-vigorous intensity physical activity (MVPA). Methods: Open-access data from 151 adults wearing a wrist-worn accelerometer (Axivity-AX3) was used. Participants were randomly divided into training, validation, and test sets (121, 15, and 15 participants each). Raw acceleration signals were segmented into non-overlapping 10-second windows, and then a total of 104 handcrafted features were extracted. Four DL algorithms-Long Short-Term Memory (LSTM), Bidirectional Long Short-Term Memory (BiLSTM), Gated Recurrent Units (GRU), and One-Dimensional Convolutional Neural Network (1D-CNN)-were trained using raw acceleration signals and with handcrafted features extracted from these signals to predict 24-hour movement behavior categories. The handcrafted features were also used to train classical ML algorithms, namely Random Forest (RF), Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost), Logistic Regression (LR), Artificial Neural Network (ANN), and Decision Tree (DT) for classifying 24-hour movement behavior intensities. Results: LSTM, BiLSTM, and GRU showed an overall accuracy of approximately 85% when trained with raw acceleration signals, and 1D-CNN an overall accuracy of approximately 80%. When trained on handcrafted features, the overall accuracy for both DL and classical ML algorithms ranged from 70% to 81%. Overall, there was a higher confusion in classification of MVPA and LPA, compared to sleep and sedentary categories. Conclusion: DL methods with raw acceleration signals had only slightly better performance in predicting 24-hour movement behavior intensities, compared to when DL and classical ML were trained with handcrafted features.
☆ Interpretability as Alignment: Making Internal Understanding a Design Principle
Large neural models are increasingly deployed in high-stakes settings, raising concerns about whether their behavior reliably aligns with human values. Interpretability provides a route to internal transparency by revealing the computations that drive outputs. We argue that interpretability especially mechanistic approaches should be treated as a design principle for alignment, not an auxiliary diagnostic tool. Post-hoc methods such as LIME or SHAP offer intuitive but correlational explanations, while mechanistic techniques like circuit tracing or activation patching yield causal insight into internal failures, including deceptive or misaligned reasoning that behavioral methods like RLHF, red teaming, or Constitutional AI may overlook. Despite these advantages, interpretability faces challenges of scalability, epistemic uncertainty, and mismatches between learned representations and human concepts. Our position is that progress on safe and trustworthy AI will depend on making interpretability a first-class objective of AI research and development, ensuring that systems are not only effective but also auditable, transparent, and aligned with human intent.
comment: Pre-Print
☆ Implicit Shape-Prior for Few-Shot Assisted 3D Segmentation
The objective of this paper is to significantly reduce the manual workload required from medical professionals in complex 3D segmentation tasks that cannot be yet fully automated. For instance, in radiotherapy planning, organs at risk must be accurately identified in computed tomography (CT) or magnetic resonance imaging (MRI) scans to ensure they are spared from harmful radiation. Similarly, diagnosing age-related degenerative diseases such as sarcopenia, which involve progressive muscle volume loss and strength, is commonly based on muscular mass measurements often obtained from manual segmentation of medical volumes. To alleviate the manual-segmentation burden, this paper introduces an implicit shape prior to segment volumes from sparse slice manual annotations generalized to the multi-organ case, along with a simple framework for automatically selecting the most informative slices to guide and minimize the next interactions. The experimental validation shows the method's effectiveness on two medical use cases: assisted segmentation in the context of at risks organs for brain cancer patients, and acceleration of the creation of a new database with unseen muscle shapes for patients with sarcopenia.
comment: Both first Authors contributed equally to this work, lastnames in alphabetical order. This preprint has not undergone peer review or any post-submission improvements or corrections. The Version of Record of this contribution will be published in a Springer Nature Computer Science book series (CCIS, LNAI, LNBI, LNBIP, LNCS) and the doi will soon be released
☆ MAESTRO: Multi-modal Adaptive Ensemble for Spectro-Temporal Robust Optimization
Timely and robust influenza incidence forecasting is critical for public health decision-making. To address this, we present MAESTRO, a Multi-modal Adaptive Ensemble for Spectro-Temporal Robust Optimization. MAESTRO achieves robustness by adaptively fusing multi-modal inputs-including surveillance, web search trends, and meteorological data-and leveraging a comprehensive spectro-temporal architecture. The model first decomposes time series into seasonal and trend components. These are then processed through a hybrid feature enhancement pipeline combining Transformer-based encoders, a Mamba state-space model for long-range dependencies, multi-scale temporal convolutions, and a frequency-domain analysis module. A cross-channel attention mechanism further integrates information across the different data modalities. Finally, a temporal projection head performs sequence-to-sequence forecasting, with an optional estimator to quantify prediction uncertainty. Evaluated on over 11 years of Hong Kong influenza data (excluding the COVID-19 period), MAESTRO shows strong competitive performance, demonstrating a superior model fit and relative accuracy, achieving a state-of-the-art R-square of 0.956. Extensive ablations confirm the significant contributions of both multi-modal fusion and the spectro-temporal components. Our modular and reproducible pipeline is made publicly available to facilitate deployment and extension to other regions and pathogens.Our publicly available pipeline presents a powerful, unified framework, demonstrating the critical synergy of advanced spectro-temporal modeling and multi-modal data fusion for robust epidemiological forecasting.
☆ PEHRT: A Common Pipeline for Harmonizing Electronic Health Record data for Translational Research
Integrative analysis of multi-institutional Electronic Health Record (EHR) data enhances the reliability and generalizability of translational research by leveraging larger, more diverse patient cohorts and incorporating multiple data modalities. However, harmonizing EHR data across institutions poses major challenges due to data heterogeneity, semantic differences, and privacy concerns. To address these challenges, we introduce $\textit{PEHRT}$, a standardized pipeline for efficient EHR data harmonization consisting of two core modules: (1) data pre-processing and (2) representation learning. PEHRT maps EHR data to standard coding systems and uses advanced machine learning to generate research-ready datasets without requiring individual-level data sharing. Our pipeline is also data model agnostic and designed for streamlined execution across institutions based on our extensive real-world experience. We provide a complete suite of open source software, accompanied by a user-friendly tutorial, and demonstrate the utility of PEHRT in a variety of tasks using data from diverse healthcare systems.
☆ Motion-Based User Identification across XR and Metaverse Applications by Deep Classification and Similarity Learning
This paper examines the generalization capacity of two state-of-the-art classification and similarity learning models in reliably identifying users based on their motions in various Extended Reality (XR) applications. We developed a novel dataset containing a wide range of motion data from 49 users in five different XR applications: four XR games with distinct tasks and action patterns, and an additional social XR application with no predefined task sets. The dataset is used to evaluate the performance and, in particular, the generalization capacity of the two models across applications. Our results indicate that while the models can accurately identify individuals within the same application, their ability to identify users across different XR applications remains limited. Overall, our results provide insight into current models generalization capabilities and suitability as biometric methods for user verification and identification. The results also serve as a much-needed risk assessment of hazardous and unwanted user identification in XR and Metaverse applications. Our cross-application XR motion dataset and code are made available to the public to encourage similar research on the generalization of motion-based user identification in typical Metaverse application use cases.
☆ Agents of Discovery
The substantial data volumes encountered in modern particle physics and other domains of fundamental physics research allow (and require) the use of increasingly complex data analysis tools and workflows. While the use of machine learning (ML) tools for data analysis has recently proliferated, these tools are typically special-purpose algorithms that rely, for example, on encoded physics knowledge to reach optimal performance. In this work, we investigate a new and orthogonal direction: Using recent progress in large language models (LLMs) to create a team of agents -- instances of LLMs with specific subtasks -- that jointly solve data analysis-based research problems in a way similar to how a human researcher might: by creating code to operate standard tools and libraries (including ML systems) and by building on results of previous iterations. If successful, such agent-based systems could be deployed to automate routine analysis components to counteract the increasing complexity of modern tool chains. To investigate the capabilities of current-generation commercial LLMs, we consider the task of anomaly detection via the publicly available and highly-studied LHC Olympics dataset. Several current models by OpenAI (GPT-4o, o4-mini, GPT-4.1, and GPT-5) are investigated and their stability tested. Overall, we observe the capacity of the agent-based system to solve this data analysis problem. The best agent-created solutions mirror the performance of human state-of-the-art results.
☆ Data Skeleton Learning: Scalable Active Clustering with Sparse Graph Structures
In this work, we focus on the efficiency and scalability of pairwise constraint-based active clustering, crucial for processing large-scale data in applications such as data mining, knowledge annotation, and AI model pre-training. Our goals are threefold: (1) to reduce computational costs for iterative clustering updates; (2) to enhance the impact of user-provided constraints to minimize annotation requirements for precise clustering; and (3) to cut down memory usage in practical deployments. To achieve these aims, we propose a graph-based active clustering algorithm that utilizes two sparse graphs: one for representing relationships between data (our proposed data skeleton) and another for updating this data skeleton. These two graphs work in concert, enabling the refinement of connected subgraphs within the data skeleton to create nested clusters. Our empirical analysis confirms that the proposed algorithm consistently facilitates more accurate clustering with dramatically less input of user-provided constraints, and outperforms its counterparts in terms of computational performance and scalability, while maintaining robustness across various distance metrics.
☆ Variational Rank Reduction Autoencoders for Generative
Generative thermal design for complex geometries is fundamental in many areas of engineering, yet it faces two main challenges: the high computational cost of high-fidelity simulations and the limitations of conventional generative models. Approaches such as autoencoders (AEs) and variational autoencoders (VAEs) often produce unstructured latent spaces with discontinuities, which restricts their capacity to explore designs and generate physically consistent solutions. To address these limitations, we propose a hybrid framework that combines Variational Rank-Reduction Autoencoders (VRRAEs) with Deep Operator Networks (DeepONets). The VRRAE introduces a truncated SVD within the latent space, leading to continuous, interpretable, and well-structured representations that mitigate posterior collapse and improve geometric reconstruction. The DeepONet then exploits this compact latent encoding in its branch network, together with spatial coordinates in the trunk network, to predict temperature gradients efficiently and accurately. This hybrid approach not only enhances the quality of generated geometries and the accuracy of gradient prediction, but also provides a substantial advantage in inference efficiency compared to traditional numerical solvers. Overall, the study underscores the importance of structured latent representations for operator learning and highlights the potential of combining generative models and operator networks in thermal design and broader engineering applications.
☆ Heart Disease Prediction: A Comparative Study of Optimisers Performance in Deep Neural Networks
Optimization has been an important factor and topic of interest in training deep learning models, yet less attention has been given to how we select the optimizers we use to train these models. Hence, there is a need to dive deeper into how we select the optimizers we use for training and the metrics that determine this selection. In this work, we compare the performance of 10 different optimizers in training a simple Multi-layer Perceptron model using a heart disease dataset from Kaggle. We set up a consistent training paradigm and evaluate the optimizers based on metrics such as convergence speed and stability. We also include some other Machine Learning Evaluation metrics such as AUC, Precision, and Recall, which are central metrics to classification problems. Our results show that there are trade-offs between convergence speed and stability, as optimizers like Adagrad and Adadelta, which are more stable, took longer time to converge. Across all our metrics, we chose RMSProp to be the most effective optimizer for this heart disease prediction task because it offered a balanced performance across key metrics. It achieved a precision of 0.765, a recall of 0.827, and an AUC of 0.841, along with faster training time. However, it was not the most stable. We recommend that, in less compute-constrained environments, this method of choosing optimizers through a thorough evaluation should be adopted to increase the scientific nature and performance in training deep learning models.
comment: 11 pages, 4 figures
☆ HumanAgencyBench: Scalable Evaluation of Human Agency Support in AI Assistants
As humans delegate more tasks and decisions to artificial intelligence (AI), we risk losing control of our individual and collective futures. Relatively simple algorithmic systems already steer human decision-making, such as social media feed algorithms that lead people to unintentionally and absent-mindedly scroll through engagement-optimized content. In this paper, we develop the idea of human agency by integrating philosophical and scientific theories of agency with AI-assisted evaluation methods: using large language models (LLMs) to simulate and validate user queries and to evaluate AI responses. We develop HumanAgencyBench (HAB), a scalable and adaptive benchmark with six dimensions of human agency based on typical AI use cases. HAB measures the tendency of an AI assistant or agent to Ask Clarifying Questions, Avoid Value Manipulation, Correct Misinformation, Defer Important Decisions, Encourage Learning, and Maintain Social Boundaries. We find low-to-moderate agency support in contemporary LLM-based assistants and substantial variation across system developers and dimensions. For example, while Anthropic LLMs most support human agency overall, they are the least supportive LLMs in terms of Avoid Value Manipulation. Agency support does not appear to consistently result from increasing LLM capabilities or instruction-following behavior (e.g., RLHF), and we encourage a shift towards more robust safety and alignment targets.
☆ Modified Loss of Momentum Gradient Descent: Fine-Grained Analysis
We analyze gradient descent with Polyak heavy-ball momentum (HB) whose fixed momentum parameter $\beta \in (0, 1)$ provides exponential decay of memory. Building on Kovachki and Stuart (2021), we prove that on an exponentially attractive invariant manifold the algorithm is exactly plain gradient descent with a modified loss, provided that the step size $h$ is small enough. Although the modified loss does not admit a closed-form expression, we describe it with arbitrary precision and prove global (finite "time" horizon) approximation bounds $O(h^{R})$ for any finite order $R \geq 2$. We then conduct a fine-grained analysis of the combinatorics underlying the memoryless approximations of HB, in particular, finding a rich family of polynomials in $\beta$ hidden inside which contains Eulerian and Narayana polynomials. We derive continuous modified equations of arbitrary approximation order (with rigorous bounds) and the principal flow that approximates the HB dynamics, generalizing Rosca et al. (2023). Approximation theorems cover both full-batch and mini-batch HB. Our theoretical results shed new light on the main features of gradient descent with heavy-ball momentum, and outline a road-map for similar analysis of other optimization algorithms.
☆ SHAining on Process Mining: Explaining Event Log Characteristics Impact on Algorithms
Process mining aims to extract and analyze insights from event logs, yet algorithm metric results vary widely depending on structural event log characteristics. Existing work often evaluates algorithms on a fixed set of real-world event logs but lacks a systematic analysis of how event log characteristics impact algorithms individually. Moreover, since event logs are generated from processes, where characteristics co-occur, we focus on associational rather than causal effects to assess how strong the overlapping individual characteristic affects evaluation metrics without assuming isolated causal effects, a factor often neglected by prior work. We introduce SHAining, the first approach to quantify the marginal contribution of varying event log characteristics to process mining algorithms' metrics. Using process discovery as a downstream task, we analyze over 22,000 event logs covering a wide span of characteristics to uncover which affect algorithms across metrics (e.g., fitness, precision, complexity) the most. Furthermore, we offer novel insights about how the value of event log characteristics correlates with their contributed impact, assessing the algorithm's robustness.
☆ An Interpretable Deep Learning Model for General Insurance Pricing
This paper introduces the Actuarial Neural Additive Model, an inherently interpretable deep learning model for general insurance pricing that offers fully transparent and interpretable results while retaining the strong predictive power of neural networks. This model assigns a dedicated neural network (or subnetwork) to each individual covariate and pairwise interaction term to independently learn its impact on the modeled output while implementing various architectural constraints to allow for essential interpretability (e.g. sparsity) and practical requirements (e.g. smoothness, monotonicity) in insurance applications. The development of our model is grounded in a solid foundation, where we establish a concrete definition of interpretability within the insurance context, complemented by a rigorous mathematical framework. Comparisons in terms of prediction accuracy are made with traditional actuarial and state-of-the-art machine learning methods using both synthetic and real insurance datasets. The results show that the proposed model outperforms other methods in most cases while offering complete transparency in its internal logic, underscoring the strong interpretability and predictive capability.
☆ Adapting Vision-Language Models for Neutrino Event Classification in High-Energy Physics
Recent advances in Large Language Models (LLMs) have demonstrated their remarkable capacity to process and reason over structured and unstructured data modalities beyond natural language. In this work, we explore the applications of Vision Language Models (VLMs), specifically a fine-tuned variant of LLaMa 3.2, to the task of identifying neutrino interactions in pixelated detector data from high-energy physics (HEP) experiments. We benchmark this model against a state-of-the-art convolutional neural network (CNN) architecture, similar to those used in the NOvA and DUNE experiments, which have achieved high efficiency and purity in classifying electron and muon neutrino events. Our evaluation considers both the classification performance and interpretability of the model predictions. We find that VLMs can outperform CNNs, while also providing greater flexibility in integrating auxiliary textual or semantic information and offering more interpretable, reasoning-based predictions. This work highlights the potential of VLMs as a general-purpose backbone for physics event classification, due to their high performance, interpretability, and generalizability, which opens new avenues for integrating multimodal reasoning in experimental neutrino physics.
☆ Gaussian Process Regression -- Neural Network Hybrid with Optimized Redundant Coordinates
Recently, a Gaussian Process Regression - neural network (GPRNN) hybrid machine learning method was proposed, which is based on additive-kernel GPR in redundant coordinates constructed by rules [J. Phys. Chem. A 127 (2023) 7823]. The method combined the expressive power of an NN with the robustness of linear regression, in particular, with respect to overfitting when the number of neurons is increased beyond optimal. We introduce opt-GPRNN, in which the redundant coordinates of GPRNN are optimized with a Monte Carlo algorithm and show that when combined with optimization of redundant coordinates, GPRNN attains the lowest test set error with much fewer terms / neurons and retains the advantage of avoiding overfitting when the number of neurons is increased beyond optimal value. The method, opt-GPRNN possesses an expressive power closer to that of a multilayer NN and could obviate the need for deep NNs in some applications. With optimized redundant coordinates, a dimensionality reduction regime is also possible. Examples of application to machine learning an interatomic potential and materials informatics are given.
☆ Behind the Scenes: Mechanistic Interpretability of LoRA-adapted Whisper for Speech Emotion Recognition
Large pre-trained speech models such as Whisper offer strong generalization but pose significant challenges for resource-efficient adaptation. Low-Rank Adaptation (LoRA) has become a popular parameter-efficient fine-tuning method, yet its underlying mechanisms in speech tasks remain poorly understood. In this work, we conduct the first systematic mechanistic interpretability study of LoRA within the Whisper encoder for speech emotion recognition (SER). Using a suite of analytical tools, including layer contribution probing, logit-lens inspection, and representational similarity via singular value decomposition (SVD) and centered kernel alignment (CKA), we reveal two key mechanisms: a delayed specialization process that preserves general features in early layers before consolidating task-specific information, and a forward alignment, backward differentiation dynamic between LoRA's matrices. Our findings clarify how LoRA reshapes encoder hierarchies, providing both empirical insights and a deeper mechanistic understanding for designing efficient and interpretable adaptation strategies in large speech models.
comment: Work in process
☆ Spherical Brownian Bridge Diffusion Models for Conditional Cortical Thickness Forecasting
Accurate forecasting of individualized, high-resolution cortical thickness (CTh) trajectories is essential for detecting subtle cortical changes, providing invaluable insights into neurodegenerative processes and facilitating earlier and more precise intervention strategies. However, CTh forecasting is a challenging task due to the intricate non-Euclidean geometry of the cerebral cortex and the need to integrate multi-modal data for subject-specific predictions. To address these challenges, we introduce the Spherical Brownian Bridge Diffusion Model (SBDM). Specifically, we propose a bidirectional conditional Brownian bridge diffusion process to forecast CTh trajectories at the vertex level of registered cortical surfaces. Our technical contribution includes a new denoising model, the conditional spherical U-Net (CoS-UNet), which combines spherical convolutions and dense cross-attention to integrate cortical surfaces and tabular conditions seamlessly. Compared to previous approaches, SBDM achieves significantly reduced prediction errors, as demonstrated by our experiments based on longitudinal datasets from the ADNI and OASIS. Additionally, we demonstrate SBDM's ability to generate individual factual and counterfactual CTh trajectories, offering a novel framework for exploring hypothetical scenarios of cortical development.
☆ LD-ViCE: Latent Diffusion Model for Video Counterfactual Explanations
Video-based AI systems are increasingly adopted in safety-critical domains such as autonomous driving and healthcare. However, interpreting their decisions remains challenging due to the inherent spatiotemporal complexity of video data and the opacity of deep learning models. Existing explanation techniques often suffer from limited temporal coherence, insufficient robustness, and a lack of actionable causal insights. Current counterfactual explanation methods typically do not incorporate guidance from the target model, reducing semantic fidelity and practical utility. We introduce Latent Diffusion for Video Counterfactual Explanations (LD-ViCE), a novel framework designed to explain the behavior of video-based AI models. Compared to previous approaches, LD-ViCE reduces the computational costs of generating explanations by operating in latent space using a state-of-the-art diffusion model, while producing realistic and interpretable counterfactuals through an additional refinement step. Our experiments demonstrate the effectiveness of LD-ViCE across three diverse video datasets, including EchoNet-Dynamic (cardiac ultrasound), FERV39k (facial expression), and Something-Something V2 (action recognition). LD-ViCE outperforms a recent state-of-the-art method, achieving an increase in R2 score of up to 68% while reducing inference time by half. Qualitative analysis confirms that LD-ViCE generates semantically meaningful and temporally coherent explanations, offering valuable insights into the target model behavior. LD-ViCE represents a valuable step toward the trustworthy deployment of AI in safety-critical domains.
comment: 30 pages
☆ Facet: highly efficient E(3)-equivariant networks for interatomic potentials
Computational materials discovery is limited by the high cost of first-principles calculations. Machine learning (ML) potentials that predict energies from crystal structures are promising, but existing methods face computational bottlenecks. Steerable graph neural networks (GNNs) encode geometry with spherical harmonics, respecting atomic symmetries -- permutation, rotation, and translation -- for physically realistic predictions. Yet maintaining equivariance is difficult: activation functions must be modified, and each layer must handle multiple data types for different harmonic orders. We present Facet, a GNN architecture for efficient ML potentials, developed through systematic analysis of steerable GNNs. Our innovations include replacing expensive multi-layer perceptrons (MLPs) for interatomic distances with splines, which match performance while cutting computational and memory demands. We also introduce a general-purpose equivariant layer that mixes node information via spherical grid projection followed by standard MLPs -- faster than tensor products and more expressive than linear or gate layers. On the MPTrj dataset, Facet matches leading models with far fewer parameters and under 10% of their training compute. On a crystal relaxation task, it runs twice as fast as MACE models. We further show SevenNet-0's parameters can be reduced by over 25% with no accuracy loss. These techniques enable more than 10x faster training of large-scale foundation models for ML potentials, potentially reshaping computational materials discovery.
☆ Two Sides of the Same Optimization Coin: Model Degradation and Representation Collapse in Graph Foundation Models
Graph foundation models, inspired by the success of LLMs, are designed to learn the optimal embedding from multi-domain TAGs for the downstream cross-task generalization capability. During our investigation, graph VQ-MAE stands out among the increasingly diverse landscape of GFM architectures. This is attributed to its ability to jointly encode topology and textual attributes from multiple domains into discrete embedding spaces with clear semantic boundaries. Despite its potential, domain generalization conflicts cause imperceptible pitfalls. In this paper, we instantiate two of them, and they are just like two sides of the same GFM optimization coin - Side 1 Model Degradation: The encoder and codebook fail to capture the diversity of inputs; Side 2 Representation Collapse: The hidden embedding and codebook vector fail to preserve semantic separability due to constraints from narrow representation subspaces. These two pitfalls (sides) collectively impair the decoder and generate the low-quality reconstructed supervision, causing the GFM optimization dilemma during pre-training (coin). Through empirical investigation, we attribute the above challenges to Information Bottleneck and Regularization Deficit. To address them, we propose MoT (Mixture-of-Tinkers) - (1) Information Tinker for Two Pitfalls, which utilizes an edge-wise semantic fusion strategy and a mixture-of-codebooks with domain-aware routing to improve information capacity. (2) Regularization Tinker for Optimization Coin, which utilizes two additional regularizations to further improve gradient supervision in our proposed Information Tinker. Notably, as a flexible architecture, MoT adheres to the scaling laws of GFM, offering a controllable model scale. Compared to SOTA baselines, experiments on 22 datasets across 6 domains demonstrate that MoT achieves significant improvements in supervised, few-shot, and zero-shot scenarios.
☆ LLM-Guided Ansätze Design for Quantum Circuit Born Machines in Financial Generative Modeling
Quantum generative modeling using quantum circuit Born machines (QCBMs) shows promising potential for practical quantum advantage. However, discovering ans\"atze that are both expressive and hardware-efficient remains a key challenge, particularly on noisy intermediate-scale quantum (NISQ) devices. In this work, we introduce a prompt-based framework that leverages large language models (LLMs) to generate hardware-aware QCBM architectures. Prompts are conditioned on qubit connectivity, gate error rates, and hardware topology, while iterative feedback, including Kullback-Leibler (KL) divergence, circuit depth, and validity, is used to refine the circuits. We evaluate our method on a financial modeling task involving daily changes in Japanese government bond (JGB) interest rates. Our results show that the LLM-generated ans\"atze are significantly shallower and achieve superior generative performance compared to the standard baseline when executed on real IBM quantum hardware using 12 qubits. These findings demonstrate the practical utility of LLM-driven quantum architecture search and highlight a promising path toward robust, deployable generative models for near-term quantum devices.
comment: Work presented at the 3rd International Workshop on Quantum Machine Learning: From Research to Practice (QML@QCE'25)
☆ Efficient Decoding Methods for Language Models on Encrypted Data
Large language models (LLMs) power modern AI applications, but processing sensitive data on untrusted servers raises privacy concerns. Homomorphic encryption (HE) enables computation on encrypted data for secure inference. However, neural text generation requires decoding methods like argmax and sampling, which are non-polynomial and thus computationally expensive under encryption, creating a significant performance bottleneck. We introduce cutmax, an HE-friendly argmax algorithm that reduces ciphertext operations compared to prior methods, enabling practical greedy decoding under encryption. We also propose the first HE-compatible nucleus (top-p) sampling method, leveraging cutmax for efficient stochastic decoding with provable privacy guarantees. Both techniques are polynomial, supporting efficient inference in privacy-preserving settings. Moreover, their differentiability facilitates gradient-based sequence-level optimization as a polynomial alternative to straight-through estimators. We further provide strong theoretical guarantees for cutmax, proving it converges globally to a unique two-level fixed point, independent of the input values beyond the identity of the maximizer, which explains its rapid convergence in just a few iterations. Evaluations on realistic LLM outputs show latency reductions of 24x-35x over baselines, advancing secure text generation.
☆ Co-Investigator AI: The Rise of Agentic AI for Smarter, Trustworthy AML Compliance Narratives
Generating regulatorily compliant Suspicious Activity Report (SAR) remains a high-cost, low-scalability bottleneck in Anti-Money Laundering (AML) workflows. While large language models (LLMs) offer promising fluency, they suffer from factual hallucination, limited crime typology alignment, and poor explainability -- posing unacceptable risks in compliance-critical domains. This paper introduces Co-Investigator AI, an agentic framework optimized to produce Suspicious Activity Reports (SARs) significantly faster and with greater accuracy than traditional methods. Drawing inspiration from recent advances in autonomous agent architectures, such as the AI Co-Scientist, our approach integrates specialized agents for planning, crime type detection, external intelligence gathering, and compliance validation. The system features dynamic memory management, an AI-Privacy Guard layer for sensitive data handling, and a real-time validation agent employing the Agent-as-a-Judge paradigm to ensure continuous narrative quality assurance. Human investigators remain firmly in the loop, empowered to review and refine drafts in a collaborative workflow that blends AI efficiency with domain expertise. We demonstrate the versatility of Co-Investigator AI across a range of complex financial crime scenarios, highlighting its ability to streamline SAR drafting, align narratives with regulatory expectations, and enable compliance teams to focus on higher-order analytical work. This approach marks the beginning of a new era in compliance reporting -- bringing the transformative benefits of AI agents to the core of regulatory processes and paving the way for scalable, reliable, and transparent SAR generation.
☆ Rethinking the Backbone in Class Imbalanced Federated Source Free Domain Adaptation: The Utility of Vision Foundation Models IEEE
Federated Learning (FL) offers a framework for training models collaboratively while preserving data privacy of each client. Recently, research has focused on Federated Source-Free Domain Adaptation (FFREEDA), a more realistic scenario wherein client-held target domain data remains unlabeled, and the server can access source domain data only during pre-training. We extend this framework to a more complex and realistic setting: Class Imbalanced FFREEDA (CI-FFREEDA), which takes into account class imbalances in both the source and target domains, as well as label shifts between source and target and among target clients. The replication of existing methods in our experimental setup lead us to rethink the focus from enhancing aggregation and domain adaptation methods to improving the feature extractors within the network itself. We propose replacing the FFREEDA backbone with a frozen vision foundation model (VFM), thereby improving overall accuracy without extensive parameter tuning and reducing computational and communication costs in federated learning. Our experimental results demonstrate that VFMs effectively mitigate the effects of domain gaps, class imbalances, and even non-IID-ness among target clients, suggesting that strong feature extractors, not complex adaptation or FL methods, are key to success in the real-world FL.
comment: Accepted by the IEEE ICIP 2025 Satellite Workshop 1: Edge Intelligence: Smart, Efficient, and Scalable Solutions for IoT, Wearables, and Embedded Devices (SEEDS)
☆ kNNSampler: Stochastic Imputations for Recovering Missing Value Distributions
We study a missing-value imputation method, termed kNNSampler, that imputes a given unit's missing response by randomly sampling from the observed responses of the $k$ most similar units to the given unit in terms of the observed covariates. This method can sample unknown missing values from their distributions, quantify the uncertainties of missing values, and be readily used for multiple imputation. Unlike popular kNNImputer, which estimates the conditional mean of a missing response given an observed covariate, kNNSampler is theoretically shown to estimate the conditional distribution of a missing response given an observed covariate. Experiments demonstrate its effectiveness in recovering the distribution of missing values. The code for kNNSampler is made publicly available (https://github.com/SAP/knn-sampler).
☆ Prediction Loss Guided Decision-Focused Learning
Decision-making under uncertainty is often considered in two stages: predicting the unknown parameters, and then optimizing decisions based on predictions. While traditional prediction-focused learning (PFL) treats these two stages separately, decision-focused learning (DFL) trains the predictive model by directly optimizing the decision quality in an end-to-end manner. However, despite using exact or well-approximated gradients, vanilla DFL often suffers from unstable convergence due to its flat-and-sharp loss landscapes. In contrast, PFL yields more stable optimization, but overlooks the downstream decision quality. To address this, we propose a simple yet effective approach: perturbing the decision loss gradient using the prediction loss gradient to construct an update direction. Our method requires no additional training and can be integrated with any DFL solvers. Using the sigmoid-like decaying parameter, we let the prediction loss gradient guide the decision loss gradient to train a predictive model that optimizes decision quality. Also, we provide a theoretical convergence guarantee to Pareto stationary point under mild assumptions. Empirically, we demonstrate our method across three stochastic optimization problems, showing promising results compared to other baselines. We validate that our approach achieves lower regret with more stable training, even in situations where either PFL or DFL struggles.
☆ Chordless cycle filtrations for dimensionality detection in complex networks via topological data analysis
Many complex networks, ranging from social to biological systems, exhibit structural patterns consistent with an underlying hyperbolic geometry. Revealing the dimensionality of this latent space can disentangle the structural complexity of communities, impact efficient network navigation, and fundamentally shape connectivity and system behavior. We introduce a novel topological data analysis weighting scheme for graphs, based on chordless cycles, aimed at estimating the dimensionality of networks in a data-driven way. We further show that the resulting descriptors can effectively estimate network dimensionality using a neural network architecture trained in a synthetic graph database constructed for this purpose, which does not need retraining to transfer effectively to real-world networks. Thus, by combining cycle-aware filtrations, algebraic topology, and machine learning, our approach provides a robust and effective method for uncovering the hidden geometry of complex networks and guiding accurate modeling and low-dimensional embedding.
☆ Accelerating Mixture-of-Expert Inference with Adaptive Expert Split Mechanism
Mixture-of-Experts (MoE) has emerged as a promising architecture for modern large language models (LLMs). However, massive parameters impose heavy GPU memory (i.e., VRAM) demands, hindering the widespread adoption of MoE LLMs. Offloading the expert parameters to CPU RAM offers an effective way to alleviate the VRAM requirements for MoE inference. Existing approaches typically cache a small subset of experts in VRAM and dynamically prefetch experts from RAM during inference, leading to significant degradation in inference speed due to the poor cache hit rate and substantial expert loading latency. In this work, we propose MoEpic, an efficient MoE inference system with a novel expert split mechanism. Specifically, each expert is vertically divided into two segments: top and bottom. MoEpic caches the top segment of hot experts, so that more experts will be stored under the limited VRAM budget, thereby improving the cache hit rate. During each layer's inference, MoEpic predicts and prefetches the activated experts for the next layer. Since the top segments of cached experts are exempt from fetching, the loading time is reduced, which allows efficient transfer-computation overlap. Nevertheless, the performance of MoEpic critically depends on the cache configuration (i.e., each layer's VRAM budget and expert split ratio). To this end, we propose a divide-and-conquer algorithm based on fixed-point iteration for adaptive cache configuration. Extensive experiments on popular MoE LLMs demonstrate that MoEpic can save about half of the GPU cost, while lowering the inference latency by about 37.51%-65.73% compared to the baselines.
☆ Retrieval-Augmented VLMs for Multimodal Melanoma Diagnosis MICCAI
Accurate and early diagnosis of malignant melanoma is critical for improving patient outcomes. While convolutional neural networks (CNNs) have shown promise in dermoscopic image analysis, they often neglect clinical metadata and require extensive preprocessing. Vision-language models (VLMs) offer a multimodal alternative but struggle to capture clinical specificity when trained on general-domain data. To address this, we propose a retrieval-augmented VLM framework that incorporates semantically similar patient cases into the diagnostic prompt. Our method enables informed predictions without fine-tuning and significantly improves classification accuracy and error correction over conventional baselines. These results demonstrate that retrieval-augmented prompting provides a robust strategy for clinical decision support.
comment: Medical Image Computing and Computer-Assisted Intervention (MICCAI) ISIC Skin Image Analysis Workshop (MICCAI ISIC) 2025; 10 pages
☆ Accelerating Reinforcement Learning Algorithms Convergence using Pre-trained Large Language Models as Tutors With Advice Reusing
Reinforcement Learning (RL) algorithms often require long training to become useful, especially in complex environments with sparse rewards. While techniques like reward shaping and curriculum learning exist to accelerate training, these are often extremely specific and require the developer's professionalism and dedicated expertise in the problem's domain. Tackling this challenge, in this study, we explore the effectiveness of pre-trained Large Language Models (LLMs) as tutors in a student-teacher architecture with RL algorithms, hypothesizing that LLM-generated guidance allows for faster convergence. In particular, we explore the effectiveness of reusing the LLM's advice on the RL's convergence dynamics. Through an extensive empirical examination, which included 54 configurations, varying the RL algorithm (DQN, PPO, A2C), LLM tutor (Llama, Vicuna, DeepSeek), and environment (Blackjack, Snake, Connect Four), our results demonstrate that LLM tutoring significantly accelerates RL convergence while maintaining comparable optimal performance. Furthermore, the advice reuse mechanism shows a further improvement in training duration but also results in less stable convergence dynamics. Our findings suggest that LLM tutoring generally improves convergence, and its effectiveness is sensitive to the specific task, RL algorithm, and LLM model combination.
☆ EvolKV: Evolutionary KV Cache Compression for LLM Inference
Existing key-value (KV) cache compression methods typically rely on heuristics, such as uniform cache allocation across layers or static eviction policies, however, they ignore the critical interplays among layer-specific feature patterns and task performance, which can lead to degraded generalization. In this paper, we propose EvolKV, an adaptive framework for layer-wise, task-driven KV cache compression that jointly optimizes the memory efficiency and task performance. By reformulating cache allocation as a multi-objective optimization problem, EvolKV leverages evolutionary search to dynamically configure layer budgets while directly maximizing downstream performance. Extensive experiments on 11 tasks demonstrate that our approach outperforms all baseline methods across a wide range of KV cache budgets on long-context tasks and surpasses heuristic baselines by up to 7 percentage points on GSM8K. Notably, EvolKV achieves superior performance over the full KV cache setting on code completion while utilizing only 1.5% of the original budget, suggesting the untapped potential in learned compression strategies for KV cache budget allocation.
☆ \emph{FoQuS}: A Forgetting-Quality Coreset Selection Framework for Automatic Modulation Recognition
Deep learning-based Automatic Modulation Recognition (AMR) model has made significant progress with the support of large-scale labeled data. However, when developing new models or performing hyperparameter tuning, the time and energy consumption associated with repeated training using massive amounts of data are often unbearable. To address the above challenges, we propose \emph{FoQuS}, which approximates the effect of full training by selecting a coreset from the original dataset, thereby significantly reducing training overhead. Specifically, \emph{FoQuS} records the prediction trajectory of each sample during full-dataset training and constructs three importance metrics based on training dynamics. Experiments show that \emph{FoQuS} can maintain high recognition accuracy and good cross-architecture generalization on multiple AMR datasets using only 1\%-30\% of the original data.
☆ Adaptive Rainfall Forecasting from Multiple Geographical Models Using Matrix Profile and Ensemble Learning
Rainfall forecasting in Vietnam is highly challenging due to its diverse climatic conditions and strong geographical variability across river basins, yet accurate and reliable forecasts are vital for flood management, hydropower operation, and disaster preparedness. In this work, we propose a Matrix Profile-based Weighted Ensemble (MPWE), a regime-switching framework that dynamically captures covariant dependencies among multiple geographical model forecasts while incorporating redundancy-aware weighting to balance contributions across models. We evaluate MPWE using rainfall forecasts from eight major basins in Vietnam, spanning five forecast horizons (1 hour and accumulated rainfall over 12, 24, 48, 72, and 84 hours). Experimental results show that MPWE consistently achieves lower mean and standard deviation of prediction errors compared to geographical models and ensemble baselines, demonstrating both improved accuracy and stability across basins and horizons.
☆ Interpretable Physics Reasoning and Performance Taxonomy in Vision-Language Models
As Vision-Language Models (VLMs) grow in sophistication, their ability to perform reasoning is coming under increasing supervision. While they excel at many tasks, their grasp of fundamental scientific principles, such as physics, remains an underexplored frontier. To reflect the advancements in these capabilities, we introduce a novel and accessible framework designed to rigorously evaluate VLMs on their understanding of 2D physics. Our framework features a pragmatic scenario generator that creates a diverse testbed of over 400 problems across four core domains: Projectile Motion, Collision Dynamics, Mechanics, and Fluid Dynamics. Through comprehensive evaluation of four state-of-the-art VLMs, we demonstrate a strong correlation between model scale and reasoning ability, with our top-performing model, Qwen2.5-VL-7B, achieving an overall score of 0.815. We find that while models excel at formulaic problems, they struggle significantly with domains requiring abstract spatial reasoning. By designing this framework, we aim to democratize the study of scientific reasoning in VLMs and foster deeper insights into their capabilities and limitations.
☆ Mitigating Catastrophic Forgetting in Large Language Models with Forgetting-aware Pruning
Recent advancements in large language models (LLMs) have shown impressive capabilities in various downstream tasks but typically face Catastrophic Forgetting (CF) during fine-tuning. In this paper, we propose the Forgetting-Aware Pruning Metric (FAPM), a novel pruning-based approach to balance CF and downstream task performance. Our investigation reveals that the degree to which task vectors (i.e., the subtraction of pre-trained weights from the weights fine-tuned on downstream tasks) overlap with pre-trained model parameters is a critical factor for CF. Based on this finding, FAPM employs the ratio of the task vector to pre-trained model parameters as a metric to quantify CF, integrating this measure into the pruning criteria. Importantly, FAPM does not necessitate modifications to the training process or model architecture, nor does it require any auxiliary data. We conducted extensive experiments across eight datasets, covering natural language inference, General Q&A, Medical Q&A, Math Q&A, reading comprehension, and cloze tests. The results demonstrate that FAPM limits CF to just 0.25\% while maintaining 99.67\% accuracy on downstream tasks. We provide the code to reproduce our results.
comment: Accepted by emnlp2025
☆ The CRITICAL Records Integrated Standardization Pipeline (CRISP): End-to-End Processing of Large-scale Multi-institutional OMOP CDM Data
While existing critical care EHR datasets such as MIMIC and eICU have enabled significant advances in clinical AI research, the CRITICAL dataset opens new frontiers by providing extensive scale and diversity -- containing 1.95 billion records from 371,365 patients across four geographically diverse CTSA institutions. CRITICAL's unique strength lies in capturing full-spectrum patient journeys, including pre-ICU, ICU, and post-ICU encounters across both inpatient and outpatient settings. This multi-institutional, longitudinal perspective creates transformative opportunities for developing generalizable predictive models and advancing health equity research. However, the richness of this multi-site resource introduces substantial complexity in data harmonization, with heterogeneous collection practices and diverse vocabulary usage patterns requiring sophisticated preprocessing approaches. We present CRISP to unlock the full potential of this valuable resource. CRISP systematically transforms raw Observational Medical Outcomes Partnership Common Data Model data into ML-ready datasets through: (1) transparent data quality management with comprehensive audit trails, (2) cross-vocabulary mapping of heterogeneous medical terminologies to unified SNOMED-CT standards, with deduplication and unit standardization, (3) modular architecture with parallel optimization enabling complete dataset processing in $<$1 day even on standard computing hardware, and (4) comprehensive baseline model benchmarks spanning multiple clinical prediction tasks to establish reproducible performance standards. By providing processing pipeline, baseline implementations, and detailed transformation documentation, CRISP saves researchers months of preprocessing effort and democratizes access to large-scale multi-institutional critical care data, enabling them to focus on advancing clinical AI.
comment: 15 pages, 9 figures
☆ RepViT-CXR: A Channel Replication Strategy for Vision Transformers in Chest X-ray Tuberculosis and Pneumonia Classification
Chest X-ray (CXR) imaging remains one of the most widely used diagnostic tools for detecting pulmonary diseases such as tuberculosis (TB) and pneumonia. Recent advances in deep learning, particularly Vision Transformers (ViTs), have shown strong potential for automated medical image analysis. However, most ViT architectures are pretrained on natural images and require three-channel inputs, while CXR scans are inherently grayscale. To address this gap, we propose RepViT-CXR, a channel replication strategy that adapts single-channel CXR images into a ViT-compatible format without introducing additional information loss. We evaluate RepViT-CXR on three benchmark datasets. On the TB-CXR dataset,our method achieved an accuracy of 99.9% and an AUC of 99.9%, surpassing prior state-of-the-art methods such as Topo-CXR (99.3% accuracy, 99.8% AUC). For the Pediatric Pneumonia dataset, RepViT-CXR obtained 99.0% accuracy, with 99.2% recall, 99.3% precision, and an AUC of 99.0%, outperforming strong baselines including DCNN and VGG16. On the Shenzhen TB dataset, our approach achieved 91.1% accuracy and an AUC of 91.2%, marking a performance improvement over previously reported CNN-based methods. These results demonstrate that a simple yet effective channel replication strategy allows ViTs to fully leverage their representational power on grayscale medical imaging tasks. RepViT-CXR establishes a new state of the art for TB and pneumonia detection from chest X-rays, showing strong potential for deployment in real-world clinical screening systems.
comment: 10 pages, 5 figures
☆ Strategies for Improving Communication Efficiency in Distributed and Federated Learning: Compression, Local Training, and Personalization
Distributed and federated learning are essential paradigms for training models across decentralized data sources while preserving privacy, yet communication overhead remains a major bottleneck. This dissertation explores strategies to improve communication efficiency, focusing on model compression, local training, and personalization. We establish a unified framework for biased and unbiased compression operators with convergence guarantees, then propose adaptive local training strategies that incorporate personalization to accelerate convergence and mitigate client drift. In particular, Scafflix balances global and personalized objectives, achieving superior performance under both IID and non-IID settings. We further introduce privacy-preserving pruning frameworks that optimize sparsity while minimizing communication costs, with Cohort-Squeeze leveraging hierarchical aggregation to reduce cross-device overhead. Finally, SymWanda, a symmetric post-training pruning method, enhances robustness under high sparsity and maintains accuracy without retraining. Extensive experiments on benchmarks and large-scale language models demonstrate favorable trade-offs among accuracy, convergence, and communication, offering theoretical and practical insights for scalable, efficient distributed learning.
comment: PhD Dissertation
☆ Ensemble Distribution Distillation for Self-Supervised Human Activity Recognition
Human Activity Recognition (HAR) has seen significant advancements with the adoption of deep learning techniques, yet challenges remain in terms of data requirements, reliability and robustness. This paper explores a novel application of Ensemble Distribution Distillation (EDD) within a self-supervised learning framework for HAR aimed at overcoming these challenges. By leveraging unlabeled data and a partially supervised training strategy, our approach yields an increase in predictive accuracy, robust estimates of uncertainty, and substantial increases in robustness against adversarial perturbation; thereby significantly improving reliability in real-world scenarios without increasing computational complexity at inference. We demonstrate this with an evaluation on several publicly available datasets. The contributions of this work include the development of a self-supervised EDD framework, an innovative data augmentation technique designed for HAR, and empirical validation of the proposed method's effectiveness in increasing robustness and reliability.
comment: 37 pages, 10 figures
☆ Generative Quasi-Continuum Modeling of Confined Fluids at the Nanoscale
We present a data-efficient, multiscale framework for predicting the density profiles of confined fluids at the nanoscale. While accurate density estimates require prohibitively long timescales that are inaccessible by ab initio molecular dynamics (AIMD) simulations, machine-learned molecular dynamics (MLMD) offers a scalable alternative, enabling the generation of force predictions at ab initio accuracy with reduced computational cost. However, despite their efficiency, MLMD simulations remain constrained by femtosecond timesteps, which limit their practicality for computing long-time averages needed for accurate density estimation. To address this, we propose a conditional denoising diffusion probabilistic model (DDPM) based quasi-continuum approach that predicts the long-time behavior of force profiles along the confinement direction, conditioned on noisy forces extracted from a limited AIMD dataset. The predicted smooth forces are then linked to continuum theory via the Nernst-Planck equation to reveal the underlying density behavior. We test the framework on water confined between two graphene nanoscale slits and demonstrate that density profiles for channel widths outside of the training domain can be recovered with ab initio accuracy. Compared to AIMD and MLMD simulations, our method achieves orders-of-magnitude speed-up in runtime and requires significantly less training data than prior works.
☆ Improving LLM Safety and Helpfulness using SFT and DPO: A Study on OPT-350M
This research investigates the effectiveness of alignment techniques, Supervised Fine-Tuning (SFT), Direct Preference Optimization (DPO), and a combined SFT+DPO approach on improving the safety and helpfulness of the OPT-350M language model. Utilizing the Anthropic Helpful-Harmless RLHF dataset, we train and evaluate four models: the base OPT350M, an SFT model, a DPO model, and a model trained with both SFT and DPO. We introduce three key evaluation metrics: Harmlessness Rate (HmR), Helpfulness Rate (HpR), and a Combined Alignment Score (CAS), all derived from reward model outputs. The results show that while SFT outperforms DPO, The combined SFT+DPO model outperforms all others across all metrics, demonstrating the complementary nature of these techniques. Our findings also highlight challenges posed by noisy data, limited GPU resources, and training constraints. This study offers a comprehensive view of how fine-tuning strategies affect model alignment and provides a foundation for more robust alignment pipelines in future work.
comment: 17 pages, 3 figures. Code and dataset available at https://github.com/PiyushWithPant/Improving-LLM-Safety-and-Helpfulness-using-SFT-and-DPO
☆ A Scoping Review of Machine Learning Applications in Power System Protection and Disturbance Management
The integration of renewable and distributed energy resources reshapes modern power systems, challenging conventional protection schemes. This scoping review synthesizes recent literature on machine learning (ML) applications in power system protection and disturbance management, following the PRISMA for Scoping Reviews framework. Based on over 100 publications, three key objectives are addressed: (i) assessing the scope of ML research in protection tasks; (ii) evaluating ML performance across diverse operational scenarios; and (iii) identifying methods suitable for evolving grid conditions. ML models often demonstrate high accuracy on simulated datasets; however, their performance under real-world conditions remains insufficiently validated. The existing literature is fragmented, with inconsistencies in methodological rigor, dataset quality, and evaluation metrics. This lack of standardization hampers the comparability of results and limits the generalizability of findings. To address these challenges, this review introduces a ML-oriented taxonomy for protection tasks, resolves key terminological inconsistencies, and advocates for standardized reporting practices. It further provides guidelines for comprehensive dataset documentation, methodological transparency, and consistent evaluation protocols, aiming to improve reproducibility and enhance the practical relevance of research outcomes. Critical gaps remain, including the scarcity of real-world validation, insufficient robustness testing, and limited consideration of deployment feasibility. Future research should prioritize public benchmark datasets, realistic validation methods, and advanced ML architectures. These steps are essential to move ML-based protection from theoretical promise to practical deployment in increasingly dynamic and decentralized power systems.
☆ MoWE : A Mixture of Weather Experts
Data-driven weather models have recently achieved state-of-the-art performance, yet progress has plateaued in recent years. This paper introduces a Mixture of Experts (MoWE) approach as a novel paradigm to overcome these limitations, not by creating a new forecaster, but by optimally combining the outputs of existing models. The MoWE model is trained with significantly lower computational resources than the individual experts. Our model employs a Vision Transformer-based gating network that dynamically learns to weight the contributions of multiple "expert" models at each grid point, conditioned on forecast lead time. This approach creates a synthesized deterministic forecast that is more accurate than any individual component in terms of Root Mean Squared Error (RMSE). Our results demonstrate the effectiveness of this method, achieving up to a 10% lower RMSE than the best-performing AI weather model on a 2-day forecast horizon, significantly outperforming individual experts as well as a simple average across experts. This work presents a computationally efficient and scalable strategy to push the state of the art in data-driven weather prediction by making the most out of leading high-quality forecast models.
☆ The Role of Community Detection Methods in Performance Variations of Graph Mining Tasks
In real-world scenarios, large graphs represent relationships among entities in complex systems. Mining these large graphs often containing millions of nodes and edges helps uncover structural patterns and meaningful insights. Dividing a large graph into smaller subgraphs facilitates complex system analysis by revealing local information. Community detection extracts clusters or communities of graphs based on statistical methods and machine learning models using various optimization techniques. Structure based community detection methods are more suitable for applying to graphs because they do not rely heavily on rich node or edge attribute information. The features derived from these communities can improve downstream graph mining tasks, such as link prediction and node classification. In real-world applications, we often lack ground truth community information. Additionally, there is neither a universally accepted gold standard for community detection nor a single method that is consistently optimal across diverse applications. In many cases, it is unclear how practitioners select community detection methods, and choices are often made without explicitly considering their potential impact on downstream tasks. In this study, we investigate whether the choice of community detection algorithm significantly influences the performance of downstream applications. We propose a framework capable of integrating various community detection methods to systematically evaluate their effects on downstream task outcomes. Our comparative analysis reveals that specific community detection algorithms yield superior results in certain applications, highlighting that method selection substantially affects performance.
☆ Generative quantum advantage for classical and quantum problems
Recent breakthroughs in generative machine learning, powered by massive computational resources, have demonstrated unprecedented human-like capabilities. While beyond-classical quantum experiments can generate samples from classically intractable distributions, their complexity has thwarted all efforts toward efficient learning. This challenge has hindered demonstrations of generative quantum advantage: the ability of quantum computers to learn and generate desired outputs substantially better than classical computers. We resolve this challenge by introducing families of generative quantum models that are hard to simulate classically, are efficiently trainable, exhibit no barren plateaus or proliferating local minima, and can learn to generate distributions beyond the reach of classical computers. Using a $68$-qubit superconducting quantum processor, we demonstrate these capabilities in two scenarios: learning classically intractable probability distributions and learning quantum circuits for accelerated physical simulation. Our results establish that both learning and sampling can be performed efficiently in the beyond-classical regime, opening new possibilities for quantum-enhanced generative models with provable advantage.
☆ Deep Context-Conditioned Anomaly Detection for Tabular Data WSDM 2026
Anomaly detection is critical in domains such as cybersecurity and finance, especially when working with large-scale tabular data. Yet, unsupervised anomaly detection -- where no labeled anomalies are available -- remains a significant challenge. Although various deep learning methods have been proposed to model a dataset's joint distribution, real-world tabular data often contain heterogeneous contexts (e.g., different users), making globally rare events normal under certain contexts. Consequently, relying on a single global distribution can overlook these contextual nuances, degrading detection performance. In this paper, we present a context-conditional anomaly detection framework tailored for tabular datasets. Our approach automatically identifies context features and models the conditional data distribution using a simple deep autoencoder. Extensive experiments on multiple tabular benchmark datasets demonstrate that our method outperforms state-of-the-art approaches, underscoring the importance of context in accurately distinguishing anomalous from normal instances.
comment: Submitted to WSDM 2026. 11 pages, 4 figures, 5 tables, 1 algorithm, 8 datasets, contextual anomaly detection framework for tabular data
☆ Open-sci-ref-0.01: open and reproducible reference baselines for language model and dataset comparison
We introduce open-sci-ref, a family of dense transformer models trained as research baselines across multiple model (0.13B to 1.7B parameters) and token scales (up to 1T) on 8 recent open reference datasets. Evaluating the models on various standardized benchmarks, our training runs set establishes reference points that enable researchers to assess the sanity and quality of alternative training approaches across scales and datasets. Intermediate checkpoints allow comparison and studying of the training dynamics. The established reference baselines allow training procedures to be compared through their scaling trends, aligning them on a common compute axis. Comparison of open reference datasets reveals that training on NemoTron-CC HQ consistently outperforms other reference datasets, followed by DCLM-baseline and FineWeb-Edu. In addition to intermediate training checkpoints, the release includes logs, code, and downstream evaluations to simplify reproduction, standardize comparison, and facilitate future research.
comment: Model weights and intermediate checkpoints are available at \url{https://huggingface.co/collections/open-sci/open-sci-ref-001-685905e598be658fbcebff4f}; code for reproducing training, evaluation and raw experiments data at \url{https://github.com/LAION-AI/open-sci-ref-0.01}
☆ Fast attention mechanisms: a tale of parallelism
Transformers have the representational capacity to simulate Massively Parallel Computation (MPC) algorithms, but they suffer from quadratic time complexity, which severely limits their scalability. We introduce an efficient attention mechanism called Approximate Nearest Neighbor Attention (ANNA) with sub-quadratic time complexity. We prove that ANNA-transformers (1) retain the expressive power previously established for standard attention in terms of matching the capabilities of MPC algorithms, and (2) can solve key reasoning tasks such as Match2 and $k$-hop with near-optimal depth. Using the MPC framework, we further prove that constant-depth ANNA-transformers can simulate constant-depth low-rank transformers, thereby providing a unified way to reason about a broad class of efficient attention approximations.
☆ Active Learning and Explainable AI for Multi-Objective Optimization of Spin Coated Polymers AAAI
Spin coating polymer thin films to achieve specific mechanical properties is inherently a multi-objective optimization problem. We present a framework that integrates an active Pareto front learning algorithm (PyePAL) with visualization and explainable AI techniques to optimize processing parameters. PyePAL uses Gaussian process models to predict objective values (hardness and elasticity) from the design variables (spin speed, dilution, and polymer mixture), guiding the adaptive selection of samples toward promising regions of the design space. To enable interpretable insights into the high-dimensional design space, we utilize UMAP (Uniform Manifold Approximation and Projection) for two-dimensional visualization of the Pareto front exploration. Additionally, we incorporate fuzzy linguistic summaries, which translate the learned relationships between process parameters and performance objectives into linguistic statements, thus enhancing the explainability and understanding of the optimization results. Experimental results demonstrate that our method efficiently identifies promising polymer designs, while the visual and linguistic explanations facilitate expert-driven analysis and knowledge discovery.
comment: 8 pages, 7 figures, Presented at 2025 AAAI Spring Symposium Series
☆ Green Federated Learning via Carbon-Aware Client and Time Slot Scheduling
Training large-scale machine learning models incurs substantial carbon emissions. Federated Learning (FL), by distributing computation across geographically dispersed clients, offers a natural framework to leverage regional and temporal variations in Carbon Intensity (CI). This paper investigates how to reduce emissions in FL through carbon-aware client selection and training scheduling. We first quantify the emission savings of a carbon-aware scheduling policy that leverages slack time -- permitting a modest extension of the training duration so that clients can defer local training rounds to lower-carbon periods. We then examine the performance trade-offs of such scheduling which stem from statistical heterogeneity among clients, selection bias in participation, and temporal correlation in model updates. To leverage these trade-offs, we construct a carbon-aware scheduler that integrates slack time, $\alpha$-fair carbon allocation, and a global fine-tuning phase. Experiments on real-world CI data show that our scheduler outperforms slack-agnostic baselines, achieving higher model accuracy across a wide range of carbon budgets, with especially strong gains under tight carbon constraints.
☆ ForTIFAI: Fending Off Recursive Training Induced Failure for AI Models
The increasing reliance on generative AI models has accelerated the generation rate of synthetic data, with some projections suggesting that most available new data for training could be machine-generated by 2030. This shift to a mainly synthetic content presents a critical challenge: repeated training in synthetic data leads to a phenomenon known as model collapse, where model performance degrades over generations of training, eventually rendering the models ineffective. Although prior studies have explored the causes and detection of model collapse, existing mitigation strategies remain limited. In this paper, we identify model overconfidence in their self-generated data as a key driver of collapse. Building on this observation, we propose a confidence-aware loss function that downweights high-confidence predictions during training. We introduce a novel loss function we call Truncated Cross Entropy (TCE). We demonstrate that TCE significantly delays model collapse in recursive training. We provide a model-agnostic framework that links the loss function design to model collapse mitigation and validate our approach both theoretically and empirically, showing that it can extend the model's fidelity interval before collapse by more than 2.3x. Finally, we show that our method generalizes across modalities. These findings suggest that the design of loss functions provides a simple yet powerful tool for preserving the quality of generative models in the era of increasing synthetic data.
☆ Physics-informed waveform inversion using pretrained wavefield neural operators
Full waveform inversion (FWI) is crucial for reconstructing high-resolution subsurface models, but it is often hindered, considering the limited data, by its null space resulting in low-resolution models, and more importantly, by its computational cost, especially if needed for real-time applications. Recent attempts to accelerate FWI using learned wavefield neural operators have shown promise in efficiency and differentiability, but typically suffer from noisy and unstable inversion performance. To address these limitations, we introduce a novel physics-informed FWI framework to enhance the inversion in accuracy while maintaining the efficiency of neural operator-based FWI. Instead of relying only on the L2 norm objective function via automatic differentiation, resulting in noisy model reconstruction, we integrate a physics constraint term in the loss function of FWI, improving the quality of the inverted velocity models. Specifically, starting with an initial model to simulate wavefields and then evaluating the loss over how much the resulting wavefield obeys the physical laws (wave equation) and matches the recorded data, we achieve a reduction in noise and artifacts. Numerical experiments using the OpenFWI and Overthrust models demonstrate our method's superior performance, offering cleaner and more accurate subsurface velocity than vanilla approaches. Considering the efficiency of the approach compared to FWI, this advancement represents a significant step forward in the practical application of FWI for real-time subsurface monitoring.
☆ Value bounds and Convergence Analysis for Averages of LRP attributions
We analyze numerical properties of Layer-wise relevance propagation (LRP)-type attribution methods by representing them as a product of modified gradient matrices. This representation creates an analogy to matrix multiplications of Jacobi-matrices which arise from the chain rule of differentiation. In order to shed light on the distribution of attribution values, we derive upper bounds for singular values. Furthermore we derive component-wise bounds for attribution map values. As a main result, we apply these component-wise bounds to obtain multiplicative constants. These constants govern the convergence of empirical means of attributions to expectations of attribution maps. This finding has important implications for scenarios where multiple non-geometric data augmentations are applied to individual test samples, as well as for Smoothgrad-type attribution methods. In particular, our analysis reveals that the constants for LRP-beta remain independent of weight norms, a significant distinction from both gradient-based methods and LRP-epsilon.
comment: 37 pages
☆ FoundationalECGNet: A Lightweight Foundational Model for ECG-based Multitask Cardiac Analysis
Cardiovascular diseases (CVDs) remain a leading cause of mortality worldwide, underscoring the importance of accurate and scalable diagnostic systems. Electrocardiogram (ECG) analysis is central to detecting cardiac abnormalities, yet challenges such as noise, class imbalance, and dataset heterogeneity limit current methods. To address these issues, we propose FoundationalECGNet, a foundational framework for automated ECG classification. The model integrates a dual-stage denoising by Morlet and Daubechies wavelets transformation, Convolutional Block Attention Module (CBAM), Graph Attention Networks (GAT), and Time Series Transformers (TST) to jointly capture spatial and temporal dependencies in multi-channel ECG signals. FoundationalECGNet first distinguishes between Normal and Abnormal ECG signals, and then classifies the Abnormal signals into one of five cardiac conditions: Arrhythmias, Conduction Disorders, Myocardial Infarction, QT Abnormalities, or Hypertrophy. Across multiple datasets, the model achieves a 99% F1-score for Normal vs. Abnormal classification and shows state-of-the-art performance in multi-class disease detection, including a 99% F1-score for Conduction Disorders and Hypertrophy, as well as a 98.9% F1-score for Arrhythmias. Additionally, the model provides risk level estimations to facilitate clinical decision-making. In conclusion, FoundationalECGNet represents a scalable, interpretable, and generalizable solution for automated ECG analysis, with the potential to improve diagnostic precision and patient outcomes in healthcare settings. We'll share the code after acceptance.
☆ Convexity of Optimization Curves: Local Sharp Thresholds, Robustness Impossibility, and New Counterexamples
We study when the \emph{optimization curve} of first-order methods -- the sequence \${f(x\_n)}*{n\ge0}\$ produced by constant-stepsize iterations -- is convex, equivalently when the forward differences \$f(x\_n)-f(x*{n+1})\$ are nonincreasing. For gradient descent (GD) on convex \$L\$-smooth functions, the curve is convex for all stepsizes \$\eta \le 1.75/L\$, and this threshold is tight. Moreover, gradient norms are nonincreasing for all \$\eta \le 2/L\$, and in continuous time (gradient flow) the curve is always convex. These results complement and refine the classical smooth convex optimization toolbox, connecting discrete and continuous dynamics as well as worst-case analyses.
☆ Deploying AI for Signal Processing education: Selected challenges and intriguing opportunities IEEE
Powerful artificial intelligence (AI) tools that have emerged in recent years -- including large language models, automated coding assistants, and advanced image and speech generation technologies -- are the result of monumental human achievements. These breakthroughs reflect mastery across multiple technical disciplines and the resolution of significant technological challenges. However, some of the most profound challenges may still lie ahead. These challenges are not purely technical but pertain to the fair and responsible use of AI in ways that genuinely improve the global human condition. This article explores one promising application aligned with that vision: the use of AI tools to facilitate and enhance education, with a specific focus on signal processing (SP). It presents two interrelated perspectives: identifying and addressing technical limitations, and applying AI tools in practice to improve educational experiences. Primers are provided on several core technical issues that arise when using AI in educational settings, including how to ensure fairness and inclusivity, handle hallucinated outputs, and achieve efficient use of resources. These and other considerations -- such as transparency, explainability, and trustworthiness -- are illustrated through the development of an immersive, structured, and reliable "smart textbook." The article serves as a resource for researchers and educators seeking to advance AI's role in engineering education.
comment: Accepted to the IEEE Signal Processing Magazine Special Issue on Artificial Intelligence for Education: A Signal Processing Perspective
☆ Group Distributionally Robust Machine Learning under Group Level Distributional Uncertainty
The performance of machine learning (ML) models critically depends on the quality and representativeness of the training data. In applications with multiple heterogeneous data generating sources, standard ML methods often learn spurious correlations that perform well on average but degrade performance for atypical or underrepresented groups. Prior work addresses this issue by optimizing the worst-group performance. However, these approaches typically assume that the underlying data distributions for each group can be accurately estimated using the training data, a condition that is frequently violated in noisy, non-stationary, and evolving environments. In this work, we propose a novel framework that relies on Wasserstein-based distributionally robust optimization (DRO) to account for the distributional uncertainty within each group, while simultaneously preserving the objective of improving the worst-group performance. We develop a gradient descent-ascent algorithm to solve the proposed DRO problem and provide convergence results. Finally, we validate the effectiveness of our method on real-world data.
☆ Corruption-Tolerant Asynchronous Q-Learning with Near-Optimal Rates
We consider the problem of learning the optimal policy in a discounted, infinite-horizon reinforcement learning (RL) setting where the reward signal is subject to adversarial corruption. Such corruption, which may arise from extreme noise, sensor faults, or malicious attacks, can severely degrade the performance of classical algorithms such as Q-learning. To address this challenge, we propose a new provably robust variant of the Q-learning algorithm that operates effectively even when a fraction of the observed rewards are arbitrarily perturbed by an adversary. Under the asynchronous sampling model with time-correlated data, we establish that despite adversarial corruption, the finite-time convergence rate of our algorithm matches that of existing results for the non-adversarial case, up to an additive term proportional to the fraction of corrupted samples. Moreover, we derive an information-theoretic lower bound revealing that the additive corruption term in our upper bounds is unavoidable. Next, we propose a variant of our algorithm that requires no prior knowledge of the statistics of the true reward distributions. The analysis of this setting is particularly challenging and is enabled by carefully exploiting a refined Azuma-Hoeffding inequality for almost-martingales, a technical tool that might be of independent interest. Collectively, our contributions provide the first finite-time robustness guarantees for asynchronous Q-learning, bridging a significant gap in robust RL.
☆ Similarity-based Outlier Detection for Noisy Object Re-Identification Using Beta Mixtures
Object re-identification (Re-ID) methods are highly sensitive to label noise, which typically leads to significant performance degradation. We address this challenge by reframing Re-ID as a supervised image similarity task and adopting a Siamese network architecture trained to capture discriminative pairwise relationships. Central to our approach is a novel statistical outlier detection (OD) framework, termed Beta-SOD (Beta mixture Similarity-based Outlier Detection), which models the distribution of cosine similarities between embedding pairs using a two-component Beta distribution mixture model. We establish a novel identifiability result for mixtures of two Beta distributions, ensuring that our learning task is well-posed.The proposed OD step complements the Re-ID architecture combining binary cross-entropy, contrastive, and cosine embedding losses that jointly optimize feature-level similarity learning.We demonstrate the effectiveness of Beta-SOD in de-noising and Re-ID tasks for person Re-ID, on CUHK03 and Market-1501 datasets, and vehicle Re-ID, on VeRi-776 dataset. Our method shows superior performance compared to the state-of-the-art methods across various noise levels (10-30\%), demonstrating both robustness and broad applicability in noisy Re-ID scenarios. The implementation of Beta-SOD is available at: https://github.com/waqar3411/Beta-SOD
☆ Instance-Optimal Matrix Multiplicative Weight Update and Its Quantum Applications
The Matrix Multiplicative Weight Update (MMWU) is a seminal online learning algorithm with numerous applications. Applied to the matrix version of the Learning from Expert Advice (LEA) problem on the $d$-dimensional spectraplex, it is well known that MMWU achieves the minimax-optimal regret bound of $O(\sqrt{T\log d})$, where $T$ is the time horizon. In this paper, we present an improved algorithm achieving the instance-optimal regret bound of $O(\sqrt{T\cdot S(X||d^{-1}I_d)})$, where $X$ is the comparator in the regret, $I_d$ is the identity matrix, and $S(\cdot||\cdot)$ denotes the quantum relative entropy. Furthermore, our algorithm has the same computational complexity as MMWU, indicating that the improvement in the regret bound is ``free''. Technically, we first develop a general potential-based framework for matrix LEA, with MMWU being its special case induced by the standard exponential potential. Then, the crux of our analysis is a new ``one-sided'' Jensen's trace inequality built on a Laplace transform technique, which allows the application of general potential functions beyond exponential to matrix LEA. Our algorithm is finally induced by an optimal potential function from the vector LEA problem, based on the imaginary error function. Complementing the above, we provide a memory lower bound for matrix LEA, and explore the applications of our algorithm in quantum learning theory. We show that it outperforms the state of the art for learning quantum states corrupted by depolarization noise, random quantum states, and Gibbs states. In addition, applying our algorithm to linearized convex losses enables predicting nonlinear quantum properties, such as purity, quantum virtual cooling, and R\'{e}nyi-$2$ correlation.
comment: 47 pages
☆ WarpPINN-fibers: improved cardiac strain estimation from cine-MR with physics-informed neural networks
The contractile motion of the heart is strongly determined by the distribution of the fibers that constitute cardiac tissue. Strain analysis informed with the orientation of fibers allows to describe several pathologies that are typically associated with impaired mechanics of the myocardium, such as cardiovascular disease. Several methods have been developed to estimate strain-derived metrics from traditional imaging techniques. However, the physical models underlying these methods do not include fiber mechanics, restricting their capacity to accurately explain cardiac function. In this work, we introduce WarpPINN-fibers, a physics-informed neural network framework to accurately obtain cardiac motion and strains enhanced by fiber information. We train our neural network to satisfy a hyper-elastic model and promote fiber contraction with the goal to predict the deformation field of the heart from cine magnetic resonance images. For this purpose, we build a loss function composed of three terms: a data-similarity loss between the reference and the warped template images, a regularizer enforcing near-incompressibility of cardiac tissue and a fiber-stretch penalization that controls strain in the direction of synthetically produced fibers. We show that our neural network improves the former WarpPINN model and effectively controls fiber stretch in a synthetic phantom experiment. Then, we demonstrate that WarpPINN-fibers outperforms alternative methodologies in landmark-tracking and strain curve prediction for a cine-MRI benchmark with a cohort of 15 healthy volunteers. We expect that our method will enable a more precise quantification of cardiac strains through accurate deformation fields that are consistent with fiber physiology, without requiring imaging techniques more sophisticated than MRI.
☆ Variational Rank Reduction Autoencoders for Generative Thermal Design
Generative thermal design for complex geometries is fundamental in many areas of engineering, yet it faces two main challenges: the high computational cost of high-fidelity simulations and the limitations of conventional generative models. Approaches such as autoencoders (AEs) and variational autoencoders (VAEs) often produce unstructured latent spaces with discontinuities, which restricts their capacity to explore designs and generate physically consistent solutions. To address these limitations, we propose a hybrid framework that combines Variational Rank-Reduction Autoencoders (VRRAEs) with Deep Operator Networks (DeepONets). The VRRAE introduces a truncated SVD within the latent space, leading to continuous, interpretable, and well-structured representations that mitigate posterior collapse and improve geometric reconstruction. The DeepONet then exploits this compact latent encoding in its branch network, together with spatial coordinates in the trunk network, to predict temperature gradients efficiently and accurately. This hybrid approach not only enhances the quality of generated geometries and the accuracy of gradient prediction, but also provides a substantial advantage in inference efficiency compared to traditional numerical solvers. Overall, the study underscores the importance of structured latent representations for operator learning and highlights the potential of combining generative models and operator networks in thermal design and broader engineering applications.
♻ ☆ TweakLLM: A Routing Architecture for Dynamic Tailoring of Cached Responses
Large Language Models (LLMs) process millions of queries daily, making efficient response caching a compelling optimization for reducing cost and latency. However, preserving relevance to user queries using this approach proves difficult due to the personalized nature of chatbot interactions and the limited accuracy of semantic similarity search. To address this, we present TweakLLM, a novel routing architecture that employs a lightweight LLM to dynamically adapt cached responses to incoming prompts. Through comprehensive evaluation, including user studies with side-by-side comparisons, satisfaction voting, as well as multi-agent LLM debates, we demonstrate that TweakLLM maintains response quality comparable to frontier models while significantly improving cache effectiveness. Our results across real-world datasets highlight TweakLLM as a scalable, resource-efficient caching solution for high-volume LLM deployments without compromising user experience.
comment: 13 pages, 9 figures
♻ ☆ CURE: Controlled Unlearning for Robust Embeddings - Mitigating Conceptual Shortcuts in Pre-Trained Language Models EMNLP 2025
Pre-trained language models have achieved remarkable success across diverse applications but remain susceptible to spurious, concept-driven correlations that impair robustness and fairness. In this work, we introduce CURE, a novel and lightweight framework that systematically disentangles and suppresses conceptual shortcuts while preserving essential content information. Our method first extracts concept-irrelevant representations via a dedicated content extractor reinforced by a reversal network, ensuring minimal loss of task-relevant information. A subsequent controllable debiasing module employs contrastive learning to finely adjust the influence of residual conceptual cues, enabling the model to either diminish harmful biases or harness beneficial correlations as appropriate for the target task. Evaluated on the IMDB and Yelp datasets using three pre-trained architectures, CURE achieves an absolute improvement of +10 points in F1 score on IMDB and +2 points on Yelp, while introducing minimal computational overhead. Our approach establishes a flexible, unsupervised blueprint for combating conceptual biases, paving the way for more reliable and fair language understanding systems.
comment: Accepted at the Conference on Empirical Methods in Natural Language Processing (EMNLP 2025)
♻ ☆ Reward function compression facilitates goal-dependent reinforcement learning
Reinforcement learning agents learn from rewards, but humans can uniquely assign value to novel, abstract outcomes in a goal-dependent manner. However, this flexibility is cognitively costly, making learning less efficient. Here, we propose that goal-dependent learning is initially supported by a capacity-limited working memory system. With consistent experience, learners create a "compressed" reward function (a simplified rule defining the goal) which is then transferred to long-term memory and applied automatically upon receiving feedback. This process frees up working memory resources, boosting learning efficiency. We test this theory across six experiments. Consistent with our predictions, our findings demonstrate that learning is parametrically impaired by the size of the goal space, but improves when the goal space structure allows for compression. We also find faster reward processing to correlate with better learning performance, supporting the idea that as goal valuation becomes more automatic, more resources are available for learning. We leverage computational modeling to support this interpretation. Our work suggests that efficient goal-directed learning relies on compressing complex goal information into a stable reward function, shedding light on the cognitive mechanisms of human motivation. These findings generate new insights into the neuroscience of intrinsic motivation and could help improve behavioral techniques that support people in achieving their goals.
♻ ☆ Uncertainty Quantification in Probabilistic Machine Learning Models: Theory, Methods, and Insights
Uncertainty Quantification (UQ) is essential in probabilistic machine learning models, particularly for assessing the reliability of predictions. In this paper, we present a systematic framework for estimating both epistemic and aleatoric uncertainty in probabilistic models. We focus on Gaussian Process Latent Variable Models and employ scalable Random Fourier Features-based Gaussian Processes to approximate predictive distributions efficiently. We derive a theoretical formulation for UQ, propose a Monte Carlo sampling-based estimation method, and conduct experiments to evaluate the impact of uncertainty estimation. Our results provide insights into the sources of predictive uncertainty and illustrate the effectiveness of our approach in quantifying the confidence in the predictions.
comment: Accepted to EUSIPCO 2025
♻ ☆ MPO: Boosting LLM Agents with Meta Plan Optimization EMNLP 2025
Recent advancements in large language models (LLMs) have enabled LLM-based agents to successfully tackle interactive planning tasks. However, despite their successes, existing approaches often suffer from planning hallucinations and require retraining for each new agent. To address these challenges, we propose the Meta Plan Optimization (MPO) framework, , which enhances agent planning capabilities by directly incorporating explicit guidance. Unlike previous methods that rely on complex knowledge, which either require significant human effort or lack quality assurance, MPO leverages high-level general guidance through meta plans to assist agent planning and enables continuous optimization of the meta plans based on feedback from the agent's task execution. Our experiments conducted on two representative tasks demonstrate that MPO significantly outperforms existing baselines. Moreover, our analysis indicates that MPO provides a plug-and-play solution that enhances both task completion efficiency and generalization capabilities in previous unseen scenarios.
comment: EMNLP 2025 Findings
♻ ☆ GRAM-R$^2$: Self-Training Generative Foundation Reward Models for Reward Reasoning
Significant progress in reward modeling over recent years has been driven by a paradigm shift from task-specific designs towards generalist reward models. Despite this trend, developing effective reward models remains a fundamental challenge: the heavy reliance on large-scale labeled preference data. Pre-training on abundant unlabeled data offers a promising direction, but existing approaches fall short of instilling explicit reasoning into reward models. To bridge this gap, we propose a self-training approach that leverages unlabeled data to elicit reward reasoning in reward models. Based on this approach, we develop GRAM-R$^2$, a generative reward model trained to produce not only preference labels but also accompanying reward rationales. GRAM-R$^2$ can serve as a foundation model for reward reasoning and can be applied to a wide range of tasks with minimal or no additional fine-tuning. It can support downstream applications such as response ranking and task-specific reward tuning. Experiments on response ranking, task adaptation, and reinforcement learning from human feedback demonstrate that GRAM-R$^2$ consistently delivers strong performance, outperforming several strong discriminative and generative baselines.
♻ ☆ Investigating Compositional Reasoning in Time Series Foundation Models
Large pre-trained time series foundation models (TSFMs) have demonstrated promising zero-shot performance across a wide range of domains. However, a question remains: Do TSFMs succeed by memorizing patterns in training data, or do they possess the ability to reason about such patterns? While reasoning is a topic of great interest in the study of Large Language Models (LLMs), it is undefined and largely unexplored in the context of TSFMs. In this work, inspired by language modeling literature, we formally define compositional reasoning in forecasting and distinguish it from in-distribution generalization. We evaluate the reasoning and generalization capabilities of 16 popular deep learning forecasting models on multiple synthetic and real-world datasets. Additionally, through controlled studies, we systematically examine which design choices in 7 popular open-source TSFMs contribute to improved reasoning capabilities. Our study yields key insights into the impact of TSFM architecture design on compositional reasoning and generalization. We find that patch-based Transformers have the best reasoning performance, closely followed by residualized MLP-based architectures, which are 97\% less computationally complex in terms of FLOPs and 86\% smaller in terms of the number of trainable parameters. Interestingly, in some zero-shot out-of-distribution scenarios, these models can outperform moving average and exponential smoothing statistical baselines trained on in-distribution data. Only a few design choices, such as the tokenization method, had a significant (negative) impact on Transformer model performance.
♻ ☆ RINO: Renormalization Group Invariance with No Labels
A common challenge with supervised machine learning (ML) in high energy physics (HEP) is the reliance on simulations for labeled data, which can often mismodel the underlying collision or detector response. To help mitigate this problem of domain shift, we propose RINO (Renormalization Group Invariance with No Labels), a self-supervised learning approach that can instead pretrain models directly on collision data, learning embeddings invariant to renormalization group flow scales. In this work, we pretrain a transformer-based model on jets originating from quantum chromodynamic (QCD) interactions from the JetClass dataset, emulating real QCD-dominated experimental data, and then finetune on the JetNet dataset -- emulating simulations -- for the task of identifying jets originating from top quark decays. RINO demonstrates improved generalization from the JetNet training data to JetClass data compared to supervised training on JetNet from scratch, demonstrating the potential for RINO pretraining on real collision data followed by fine-tuning on small, high-quality MC datasets, to improve the robustness of ML models in HEP.
♻ ☆ PQMass: Probabilistic Assessment of the Quality of Generative Models using Probability Mass Estimation ICLR 2025
We propose a likelihood-free method for comparing two distributions given samples from each, with the goal of assessing the quality of generative models. The proposed approach, PQMass, provides a statistically rigorous method for assessing the performance of a single generative model or the comparison of multiple competing models. PQMass divides the sample space into non-overlapping regions and applies chi-squared tests to the number of data samples that fall within each region, giving a p-value that measures the probability that the bin counts derived from two sets of samples are drawn from the same multinomial distribution. PQMass does not depend on assumptions regarding the density of the true distribution, nor does it rely on training or fitting any auxiliary models. We evaluate PQMass on data of various modalities and dimensions, demonstrating its effectiveness in assessing the quality, novelty, and diversity of generated samples. We further show that PQMass scales well to moderately high-dimensional data and thus obviates the need for feature extraction in practical applications.
comment: Published as a conference paper at ICLR 2025
♻ ☆ Dexterous Manipulation through Imitation Learning: A Survey
Dexterous manipulation, which refers to the ability of a robotic hand or multi-fingered end-effector to skillfully control, reorient, and manipulate objects through precise, coordinated finger movements and adaptive force modulation, enables complex interactions similar to human hand dexterity. With recent advances in robotics and machine learning, there is a growing demand for these systems to operate in complex and unstructured environments. Traditional model-based approaches struggle to generalize across tasks and object variations due to the high dimensionality and complex contact dynamics of dexterous manipulation. Although model-free methods such as reinforcement learning (RL) show promise, they require extensive training, large-scale interaction data, and carefully designed rewards for stability and effectiveness. Imitation learning (IL) offers an alternative by allowing robots to acquire dexterous manipulation skills directly from expert demonstrations, capturing fine-grained coordination and contact dynamics while bypassing the need for explicit modeling and large-scale trial-and-error. This survey provides an overview of dexterous manipulation methods based on imitation learning, details recent advances, and addresses key challenges in the field. Additionally, it explores potential research directions to enhance IL-driven dexterous manipulation. Our goal is to offer researchers and practitioners a comprehensive introduction to this rapidly evolving domain.
comment: 32pages, 6 figures, 9 tables
♻ ☆ Predicting the Performance of Graph Convolutional Networks with Spectral Properties of the Graph Laplacian
A common observation in the Graph Convolutional Network (GCN) literature is that stacking GCN layers may or may not result in better performance on tasks like node classification and edge prediction. We have found empirically that a graph's algebraic connectivity, which is known as the Fiedler value, is a good predictor of GCN performance. Intuitively, graphs with similar Fiedler values have analogous structural properties, suggesting that the same filters and hyperparameters may yield similar results when used with GCNs, and that transfer learning may be more effective between graphs with similar algebraic connectivity. We explore this theoretically and empirically with experiments on synthetic and real graph data, including the Cora, CiteSeer and Polblogs datasets. We explore multiple ways of aggregating the Fiedler value for connected components in the graphs to arrive at a value for the entire graph, and show that it can be used to predict GCN performance. We also present theoretical arguments as to why the Fiedler value is a good predictor.
comment: 9 pages, 3 figures
♻ ☆ Randomly Sampled Language Reasoning Problems Elucidate Limitations of In-Context Learning
While LLMs have revolutionized the field of machine learning due to their high performance on a strikingly wide range of problems, they are also known to hallucinate false answers and underperform on less canonical versions of the same tasks. There are several emerging theories of LLM performance, among them that LLMs lack world modeling ability, that they have an undesirable bias towards an autoregressive prior, and that they struggle on more novel problems. The existing literature on LLM input novelty has focused on tasks of relatively high complexity, studying perturbations of canonical but complex problems. In this paper, we attempt to minimize complexity in order to isolate novelty as a factor in LLM underperformance and investigate the power of in-context-learning. To this end, we consider an extremely simple domain: next token prediction on simple language tasks. The twist is that these language tasks are wholly unseen, as they are randomly drawn from a large, parsimoniously defined set of languages arising from simple grammar rules. This experimental setup allows us to evaluate ICL independently of models' parametric knowledge. We find that LLMs uniformly underperform n-gram models on this task, both when used as next token predictors and in chain-of-thought.
comment: 10 pages, 4 figures, 2 tables
♻ ☆ Calibrating Transformers via Sparse Gaussian Processes ICLR 2023
Transformer models have achieved profound success in prediction tasks in a wide range of applications in natural language processing, speech recognition and computer vision. Extending Transformer's success to safety-critical domains requires calibrated uncertainty estimation which remains under-explored. To address this, we propose Sparse Gaussian Process attention (SGPA), which performs Bayesian inference directly in the output space of multi-head attention blocks (MHAs) in transformer to calibrate its uncertainty. It replaces the scaled dot-product operation with a valid symmetric kernel and uses sparse Gaussian processes (SGP) techniques to approximate the posterior processes of MHA outputs. Empirically, on a suite of prediction tasks on text, images and graphs, SGPA-based Transformers achieve competitive predictive accuracy, while noticeably improving both in-distribution calibration and out-of-distribution robustness and detection.
comment: Published at The Eleventh International Conference on Learning Representations (ICLR 2023). ECE updated, typo fixed
♻ ☆ FlexFringe: Modeling Software Behavior by Learning Probabilistic Automata
We present the efficient implementations of probabilistic deterministic finite automaton learning methods available in FlexFringe. These implement well-known strategies for state-merging including several modifications to improve their performance in practice. We show experimentally that these algorithms obtain competitive results and significant improvements over a default implementation. We also demonstrate how to use FlexFringe to learn interpretable models from software logs and use these for anomaly detection. Although less interpretable, we show that learning smaller more convoluted models improves the performance of FlexFringe on anomaly detection, outperforming an existing solution based on neural nets.
♻ ☆ Murphys Laws of AI Alignment: Why the Gap Always Wins
We prove a formal impossibility result for reinforcement learning from human feedback (RLHF). In misspecified environments with bounded query budgets, any RLHF-style learner suffers an irreducible performance gap Omega(gamma) unless it has access to a calibration oracle. We give tight lower bounds via an information-theoretic proof and show that a minimal calibration oracle suffices to eliminate the gap. Small-scale empirical illustrations and a catalogue of alignment regularities (Murphy's Laws) indicate that many observed alignment failures are consistent with this structural mechanism. Our results position Murphys Gap as both a diagnostic limit of RLHF and a guide for future work on calibration and causal preference checks.
comment: 7 pages main text, 4 appendices. Provides a formal impossibility theorem (Murphys Gap) and welcomes collaboration on large-scale experiments and benchmark design
♻ ☆ Linear Convergence of the Frank-Wolfe Algorithm over Product Polytopes
We study the linear convergence of Frank-Wolfe algorithms over product polytopes. We analyze two condition numbers for the product polytope, namely the \emph{pyramidal width} and the \emph{vertex-facet distance}, based on the condition numbers of individual polytope components. As a result, for convex objectives that are $\mu$-Polyak-{\L}ojasiewicz, we show linear convergence rates quantified in terms of the resulting condition numbers. We apply our results to the problem of approximately finding a feasible point in a polytope intersection in high-dimensions, and demonstrate the practical efficiency of our algorithms through empirical results.
♻ ☆ To See a World in a Spark of Neuron: Disentangling Multi-task Interference for Training-free Model Merging EMNLP 2025
Fine-tuning pre-trained models on targeted datasets enhances task-specific performance but often comes at the expense of generalization. Model merging techniques, which integrate multiple fine-tuned models into a single multi-task model through task arithmetic, offer a promising solution. However, task interference remains a fundamental challenge, leading to performance degradation and suboptimal merged models. Existing approaches largely overlooked the fundamental roles of neurons, their connectivity, and activation, resulting in a merging process and a merged model that does not consider how neurons relay and process information. In this work, we present the first study that relies on neuronal mechanisms for model merging. Specifically, we decomposed task-specific representations into two complementary neuronal subspaces that regulate input sensitivity and task adaptability. Leveraging this decomposition, we introduced NeuroMerging, a novel merging framework developed to mitigate task interference within neuronal subspaces, enabling training-free model fusion across diverse tasks. Through extensive experiments, we demonstrated that NeuroMerging achieved superior performance compared to existing methods on multi-task benchmarks across both natural language and vision domains. Our findings highlighted the importance of aligning neuronal mechanisms in model merging, offering new insights into mitigating task interference and improving knowledge fusion. Our project is available at https://ZzzitaoFang.github.io/projects/NeuroMerging/.
comment: Accepted to EMNLP 2025 Main Conference. This is the camera-ready version. Code: https://ZzzitaoFang.github.io/projects/NeuroMerging/
♻ ☆ The Quest for the Right Mediator: Surveying Mechanistic Interpretability Through the Lens of Causal Mediation Analysis
Interpretability provides a toolset for understanding how and why language models behave in certain ways. However, there is little unity in the field: most studies employ ad-hoc evaluations and do not share theoretical foundations, making it difficult to measure progress and compare the pros and cons of different techniques. Furthermore, while mechanistic understanding is frequently discussed, the basic causal units underlying these mechanisms are often not explicitly defined. In this article, we propose a perspective on interpretability research grounded in causal mediation analysis. Specifically, we describe the history and current state of interpretability taxonomized according to the types of causal units (mediators) employed, as well as methods used to search over mediators. We discuss the pros and cons of each mediator, providing insights as to when particular kinds of mediators and search methods are most appropriate. We argue that this framing yields a more cohesive narrative of the field and helps researchers select appropriate methods based on their research objective. Our analysis yields actionable recommendations for future work, including the discovery of new mediators and the development of standardized evaluations tailored to these goals.
comment: Accepted to Computational Linguistics
♻ ☆ Second-Order Tensorial Partial Differential Equations on Graphs
Processing data on multiple interacting graphs is crucial for many applications, but existing approaches rely mostly on discrete filtering or first-order continuous models that dampen high frequencies and propagate information slowly. We introduce second-order tensorial partial differential equations on graphs (So-TPDEGs) and propose the first theoretically grounded framework for second-order continuous product graph neural networks. Our method exploits the separability of cosine kernels in Cartesian product graphs to enable efficient spectral decomposition while preserving high-frequency signals. We further provide rigorous analyses of stability under graph perturbations and over-smoothing, establishing a solid theoretical foundation for continuous graph learning.
comment: 10 pages, 1 figure
♻ ☆ Efficient and Generalized end-to-end Autonomous Driving System with Latent Deep Reinforcement Learning and Demonstrations ECML
An intelligent driving system should dynamically formulate appropriate driving strategies based on the current environment and vehicle status while ensuring system security and reliability. However, methods based on reinforcement learning and imitation learning often suffer from high sample complexity, poor generalization, and low safety. To address these challenges, this paper introduces an efficient and generalized end-to-end autonomous driving system (EGADS) for complex and varied scenarios. The RL agent in our EGADS combines variational inference with normalizing flows, which are independent of distribution assumptions. This combination allows the agent to capture historical information relevant to driving in latent space effectively, thereby significantly reducing sample complexity. Additionally, we enhance safety by formulating robust safety constraints and improve generalization and performance by integrating RL with expert demonstrations. Experimental results demonstrate that, compared to existing methods, EGADS significantly reduces sample complexity, greatly improves safety performance, and exhibits strong generalization capabilities in complex urban scenarios. Particularly, we contributed an expert dataset collected through human expert steering wheel control, specifically using the G29 steering wheel.
comment: Accepted by ECML PKDD 2025 (Research Track)
♻ ☆ BranchGRPO: Stable and Efficient GRPO with Structured Branching in Diffusion Models
Recent advancements in aligning image and video generative models via GRPO have achieved remarkable gains in enhancing human preference alignment. However, these methods still face high computational costs from on-policy rollouts and excessive SDE sampling steps, as well as training instability due to sparse rewards. In this paper, we propose BranchGRPO, a novel method that introduces a branch sampling policy updating the SDE sampling process. By sharing computation across common prefixes and pruning low-reward paths and redundant depths, BranchGRPO substantially lowers the per-update compute cost while maintaining or improving exploration diversity. This work makes three main contributions: (1) a branch sampling scheme that reduces rollout and training cost; (2) a tree-based advantage estimator incorporating dense process-level rewards; and (3) pruning strategies exploiting path and depth redundancy to accelerate convergence and boost performance. Experiments on image and video preference alignment show that BranchGRPO improves alignment scores by 16% over strong baselines, while cutting training time by 50%.
comment: 12 pages, 6 figures
♻ ☆ A Nonlinear Low-rank Representation Model with Convolutional Neural Network for Imputing Water Quality Data
The integrity of Water Quality Data (WQD) is critical in environmental monitoring for scientific decision-making and ecological protection. However, water quality monitoring systems are often challenged by large amounts of missing data due to unavoidable problems such as sensor failures and communication delays, which further lead to water quality data becoming High-Dimensional and Sparse (HDS). Traditional data imputation methods are difficult to depict the potential dynamics and fail to capture the deep data features, resulting in unsatisfactory imputation performance. To effectively address the above issues, this paper proposes a Nonlinear Low-rank Representation model (NLR) with Convolutional Neural Networks (CNN) for imputing missing WQD, which utilizes CNNs to implement two ideas: a) fusing temporal features to model the temporal dependence of data between time slots, and b) Extracting nonlinear interactions and local patterns to mine higher-order relationships features and achieve deep fusion of multidimensional information. Experimental studies on three real water quality datasets demonstrate that the proposed model significantly outperforms existing state-of-the-art data imputation models in terms of estimation accuracy. It provides an effective approach for handling water quality monitoring data in complex dynamic environments.
comment: 7 pages, 2 figures, conference
♻ ☆ CAME-AB: Cross-Modality Attention with Mixture-of-Experts for Antibody Binding Site Prediction
Antibody binding site prediction plays a pivotal role in computational immunology and therapeutic antibody design. Existing sequence or structure methods rely on single-view features and fail to identify antibody-specific binding sites on the antigens. In this paper, we propose \textbf{CAME-AB}, a novel Cross-modality Attention framework with a Mixture-of-Experts (MoE) backbone for robust antibody binding site prediction. CAME-AB integrates five biologically grounded modalities, including raw amino acid encodings, BLOSUM substitution profiles, pretrained language model embeddings, structure-aware features, and GCN-refined biochemical graphs, into a unified multimodal representation. To enhance adaptive cross-modal reasoning, we propose an \emph{adaptive modality fusion} module that learns to dynamically weight each modality based on its global relevance and input-specific contribution. A Transformer encoder combined with an MoE module further promotes feature specialization and capacity expansion. We additionally incorporate a supervised contrastive learning objective to explicitly shape the latent space geometry, encouraging intra-class compactness and inter-class separability. To improve optimization stability and generalization, we apply stochastic weight averaging during training. Extensive experiments on benchmark antibody-antigen datasets demonstrate that CAME-AB consistently outperforms strong baselines on multiple metrics, including Precision, Recall, F1-score, AUC-ROC, and MCC. Ablation studies further validate the effectiveness of each architectural component and the benefit of multimodal feature integration. The model implementation details and the codes are available on https://anonymous.4open.science/r/CAME-AB-C525
♻ ☆ How Should We Meta-Learn Reinforcement Learning Algorithms?
The process of meta-learning algorithms from data, instead of relying on manual design, is growing in popularity as a paradigm for improving the performance of machine learning systems. Meta-learning shows particular promise for reinforcement learning (RL), where algorithms are often adapted from supervised or unsupervised learning despite their suboptimality for RL. However, until now there has been a severe lack of comparison between different meta-learning algorithms, such as using evolution to optimise over black-box functions or LLMs to propose code. In this paper, we carry out this empirical comparison of the different approaches when applied to a range of meta-learned algorithms which target different parts of the RL pipeline. In addition to meta-train and meta-test performance, we also investigate factors including the interpretability, sample cost and train time for each meta-learning algorithm. Based on these findings, we propose several guidelines for meta-learning new RL algorithms which will help ensure that future learned algorithms are as performant as possible.
comment: Accepted paper at Reinforcement Learning Conference (RLC) 2025
♻ ☆ Learning Fluid-Structure Interaction Dynamics with Physics-Informed Neural Networks and Immersed Boundary Methods
Physics-informed neural networks (PINNs) have emerged as a promising approach for solving complex fluid dynamics problems, yet their application to fluid-structure interaction (FSI) problems with moving boundaries remains largely unexplored. This work addresses the critical challenge of modeling FSI systems with deformable interfaces, where traditional unified PINN architectures struggle to capture the distinct physics governing fluid and structural domains simultaneously. We present an innovative Eulerian-Lagrangian PINN architecture that integrates immersed boundary method (IBM) principles to solve FSI problems with moving boundary conditions. Our approach fundamentally departs from conventional unified architectures by introducing domain-specific neural networks: an Eulerian network for fluid dynamics and a Lagrangian network for structural interfaces, coupled through physics-based constraints. Additionally, we incorporate learnable B-spline activation functions with SiLU to capture both localized high-gradient features near interfaces and global flow patterns. Empirical studies on a 2D cavity flow problem involving a moving solid structure show that while baseline unified PINNs achieve reasonable velocity predictions, they suffer from substantial pressure errors (12.9%) in structural regions. Our Eulerian-Lagrangian architecture with learnable activations (EL-L) achieves better performance across all metrics, improving accuracy by 24.1-91.4% and particularly reducing pressure errors from 12.9% to 2.39%. These results demonstrate that domain decomposition aligned with physical principles, combined with locality-aware activation functions, is essential for accurate FSI modeling within the PINN framework.
♻ ☆ Real Time Semantic Segmentation of High Resolution Automotive LiDAR Scans
In recent studies, numerous previous works emphasize the importance of semantic segmentation of LiDAR data as a critical component to the development of driver-assistance systems and autonomous vehicles. However, many state-of-the-art methods are tested on outdated, lower-resolution LiDAR sensors and struggle with real-time constraints. This study introduces a novel semantic segmentation framework tailored for modern high-resolution LiDAR sensors that addresses both accuracy and real-time processing demands. We propose a novel LiDAR dataset collected by a cutting-edge automotive 128 layer LiDAR in urban traffic scenes. Furthermore, we propose a semantic segmentation method utilizing surface normals as strong input features. Our approach is bridging the gap between cutting-edge research and practical automotive applications. Additionaly, we provide a Robot Operating System (ROS2) implementation that we operate on our research vehicle. Our dataset and code are publicly available: https://github.com/kav-institute/SemanticLiDAR.
♻ ☆ A Transformer approach for Electricity Price Forecasting
This paper presents a novel approach to electricity price forecasting (EPF) using a pure Transformer model. As opposed to other alternatives, no other recurrent network is used in combination to the attention mechanism. Hence, showing that the attention layer is enough for capturing the temporal patterns. The paper also provides fair comparison of the models using the open-source EPF toolbox and provide the code to enhance reproducibility and transparency in EPF research. The results show that the Transformer model outperforms traditional methods, offering a promising solution for reliable and sustainable power system operation.
comment: 9 pages
♻ ☆ From Channel Bias to Feature Redundancy: Uncovering the "Less is More" Principle in Few-Shot Learning
Deep neural networks often fail to adapt representations to novel tasks under distribution shifts, especially when only a few examples are available. This paper identifies a core obstacle behind this failure: channel bias, where networks develop a rigid emphasis on feature dimensions that were discriminative for the source task, but this emphasis is misaligned and fails to adapt to the distinct needs of a novel task. This bias leads to a striking and detrimental consequence: feature redundancy. We demonstrate that for few-shot tasks, classification accuracy is significantly improved by using as few as 1-5% of the most discriminative feature dimensions, revealing that the vast majority are actively harmful. Our theoretical analysis confirms that this redundancy originates from confounding feature dimensions-those with high intra-class variance but low inter-class separability-which are especially problematic in low-data regimes. This "less is more" phenomenon is a defining characteristic of the few-shot setting, diminishing as more samples become available. To address this, we propose a simple yet effective soft-masking method, Augmented Feature Importance Adjustment (AFIA), which estimates feature importance from augmented data to mitigate the issue. By establishing the cohesive link from channel bias to its consequence of extreme feature redundancy, this work provides a foundational principle for few-shot representation transfer and a practical method for developing more robust few-shot learning algorithms.
comment: arXiv admin note: substantial text overlap with arXiv:2206.08126
♻ ☆ HOFT: Householder Orthogonal Fine-tuning
Adaptation of foundation models using low-rank methods is a widespread approach. Another way to adapt these models is to employ orthogonal fine-tuning methods, which are less time and memory efficient despite their good generalization properties. In this work, we propose Householder Orthogonal Fine-tuning (HOFT), a novel orthogonal fine-tuning method that aims to alleviate time and space complexity. Moreover, some theoretical properties of the orthogonal fine-tuning paradigm are explored. From this exploration, Scaled Householder Orthogonal Fine-tuning (SHOFT) is proposed. Both HOFT and SHOFT are evaluated in downstream tasks, namely commonsense reasoning, machine translation, subject-driven generation and mathematical reasoning. Compared with state-of-the-art adaptation methods, HOFT and SHOFT show comparable or better results.
♻ ☆ RoseCDL: Robust and Scalable Convolutional Dictionary Learning for Rare-event Detection
Identifying recurring patterns and rare events in large-scale signals is a fundamental challenge in fields such as astronomy, physical simulations, and biomedical science. Convolutional Dictionary Learning (CDL) offers a powerful framework for modeling local structures in signals, but its use for detecting rare or anomalous events remains largely unexplored. In particular, CDL faces two key challenges in this setting: high computational cost and sensitivity to artifacts and outliers. In this paper, we introduce RoseCDL, a scalable and robust CDL algorithm designed for unsupervised rare event detection in long signals. RoseCDL combines stochastic windowing for efficient training on large datasets with inline outlier detection to enhance robustness and isolate anomalous patterns. This reframes CDL as a practical tool for event discovery and characterization in real-world signals, extending its role beyond traditional tasks like compression or denoising.
♻ ☆ Meta-Semantics Augmented Few-Shot Relational Learning EMNLP 2025
Few-shot relational learning on knowledge graph (KGs) aims to perform reasoning over relations with only a few training examples. While existing methods have primarily focused on leveraging specific relational information, rich semantics inherent in KGs have been largely overlooked. To address this critical gap, we propose a novel prompted meta-learning (PromptMeta) framework that seamlessly integrates meta-semantics with relational information for few-shot relational learning. PromptMeta has two key innovations: (1) a Meta-Semantic Prompt (MSP) pool that learns and consolidates high-level meta-semantics, enabling effective knowledge transfer and adaptation to rare and newly emerging relations; and (2) a learnable fusion token that dynamically combines meta-semantics with task-specific relational information tailored to different few-shot tasks. Both components are optimized jointly with model parameters within a meta-learning framework. Extensive experiments and analyses on two real-world KG datasets demonstrate the effectiveness of PromptMeta in adapting to new relations with limited data.
comment: Accepted by EMNLP 2025
♻ ☆ VIPER: Visual Perception and Explainable Reasoning for Sequential Decision-Making
While Large Language Models (LLMs) excel at reasoning on text and Vision-Language Models (VLMs) are highly effective for visual perception, applying those models for visual instruction-based planning remains a widely open problem. In this paper, we introduce VIPER, a novel framework for multimodal instruction-based planning that integrates VLM-based perception with LLM-based reasoning. Our approach uses a modular pipeline where a frozen VLM generates textual descriptions of image observations, which are then processed by an LLM policy to predict actions based on the task goal. We fine-tune the reasoning module using behavioral cloning and reinforcement learning, improving our agent's decision-making capabilities. Experiments on the ALFWorld benchmark show that VIPER significantly outperforms state-of-the-art visual instruction-based planners while narrowing the gap with purely text-based oracles. By leveraging text as an intermediate representation, VIPER also enhances explainability, paving the way for a fine-grained analysis of perception and reasoning components.
♻ ☆ Comprehensive Evaluation of Prototype Neural Networks
Prototype models are an important method for explainable artificial intelligence (XAI) and interpretable machine learning. In this paper, we perform an in-depth analysis of a set of prominent prototype models including ProtoPNet, ProtoPool and PIPNet. For their assessment, we apply a comprehensive set of metrics. In addition to applying standard metrics from literature, we propose several new metrics to further complement the analysis of model interpretability. In our experimentation, we apply the set of prototype models on a diverse set of datasets including fine-grained classification, Non-IID settings and multi-label classification to further contrast the performance. Furthermore, we also provide our code as an open-source library (https://github.com/uos-sis/quanproto), which facilitates simple application of the metrics itself, as well as extensibility -- providing the option for easily adding new metrics and models.
♻ ☆ Metis: Training Large Language Models with Advanced Low-Bit Quantization
This work identifies anisotropic parameter distributions as a fundamental barrier to training large language models (LLMs) with low-bit quantization: a few dominant singular values create wide numerical ranges that conflict with the inherent bias of block-wise quantization. This bias disproportionately preserves high-magnitude values while discarding smaller ones, causing training instability and low model performance. This work introduces Metis, a training framework that combines (i) spectral decomposition with random embedding to efficiently disentangle dominant from long-tail components, compressing broad distributions into quantization-friendly narrow ranges; (ii) adaptive learning rates in the spectral domain to amplify underrepresented directions and better capture diverse features critical for performance; and (iii) a dual-range regularizer that jointly constrains numerical precision and parameter range distribution, ensuring stable, unbiased low-bit training. With Metis, FP8 training surpasses FP32 baselines, and FP4 training achieves accuracy comparable to FP32, paving the way for robust and scalable LLM training under advanced low-bit quantization. The code implementation for Metis is available at: https://github.com/sii-research/Metis.
♻ ☆ Moment- and Power-Spectrum-Based Gaussianity Regularization for Text-to-Image Models
We propose a novel regularization loss that enforces standard Gaussianity, encouraging samples to align with a standard Gaussian distribution. This facilitates a range of downstream tasks involving optimization in the latent space of text-to-image models. We treat elements of a high-dimensional sample as one-dimensional standard Gaussian variables and define a composite loss that combines moment-based regularization in the spatial domain with power spectrum-based regularization in the spectral domain. Since the expected values of moments and power spectrum distributions are analytically known, the loss promotes conformity to these properties. To ensure permutation invariance, the losses are applied to randomly permuted inputs. Notably, existing Gaussianity-based regularizations fall within our unified framework: some correspond to moment losses of specific orders, while the previous covariance-matching loss is equivalent to our spectral loss but incurs higher time complexity due to its spatial-domain computation. We showcase the application of our regularization in generative modeling for test-time reward alignment with a text-to-image model, specifically to enhance aesthetics and text alignment. Our regularization outperforms previous Gaussianity regularization, effectively prevents reward hacking and accelerates convergence.
♻ ☆ Statistical-Computational Trade-offs for Recursive Adaptive Partitioning Estimators
Models based on recursive adaptive partitioning such as decision trees and their ensembles are popular for high-dimensional regression as they can potentially avoid the curse of dimensionality. Because empirical risk minimization (ERM) is computationally infeasible, these models are typically trained using greedy algorithms. Although effective in many cases, these algorithms have been empirically observed to get stuck at local optima. We explore this phenomenon in the context of learning sparse regression functions over $d$ binary features, showing that when the true regression function $f^*$ does not satisfy Abbe et al. (2022)'s Merged Staircase Property (MSP), greedy training requires $\exp(\Omega(d))$ to achieve low estimation error. Conversely, when $f^*$ does satisfy MSP, greedy training can attain small estimation error with only $O(\log d)$ samples. This dichotomy mirrors that of two-layer neural networks trained with stochastic gradient descent (SGD) in the mean-field regime, thereby establishing a head-to-head comparison between SGD-trained neural networks and greedy recursive partitioning estimators. Furthermore, ERM-trained recursive partitioning estimators achieve low estimation error with $O(\log d)$ samples irrespective of whether $f^*$ satisfies MSP, thereby demonstrating a statistical-computational trade-off for greedy training. Our proofs are based on a novel interpretation of greedy recursive partitioning using stochastic process theory and a coupling technique that may be of independent interest.
♻ ☆ Generative Example-Based Explanations: Bridging the Gap between Generative Modeling and Explainability ECML 2025
Recently, several methods have leveraged deep generative modeling to produce example-based explanations of image classifiers. Despite producing visually stunning results, these methods are largely disconnected from classical explainability literature. This conceptual and communication gap leads to misunderstandings and misalignments in goals and expectations. In this paper, we bridge this gap by proposing a probabilistic framework for example-based explanations, formally defining the example-based explanations in a probabilistic manner amenable for modeling via deep generative models while coherent with the critical characteristics and desiderata widely accepted in the explainability community. Our aim is on one hand to provide a constructive framework for the development of well-grounded generative algorithms for example-based explanations and, on the other, to facilitate communication between the generative and explainability research communities, foster rigor and transparency, and improve the quality of peer discussion and research progress in this promising direction.
comment: Accepted at the ECML 2025 Workshop for eXplainable Knowledge Discovery in Data Mining and Unlearning
♻ ☆ FAMES: Fast Approximate Multiplier Substitution for Mixed-Precision Quantized DNNs--Down to 2 Bits!
A widely-used technique in designing energy-efficient deep neural network (DNN) accelerators is quantization. Recent progress in this direction has reduced the bitwidths used in DNN down to 2. Meanwhile, many prior works apply approximate multipliers (AppMuls) in designing DNN accelerators to lower their energy consumption. Unfortunately, these works still assume a bitwidth much larger than 2, which falls far behind the state-of-the-art in quantization area and even challenges the meaningfulness of applying AppMuls in DNN accelerators, since a high-bitwidth AppMul consumes much more energy than a low-bitwidth exact multiplier! Thus, an important problem to study is: Can approximate multipliers be effectively applied to quantized DNN models with very low bitwidths? In this work, we give an affirmative answer to this question and present a systematic solution that achieves the answer: FAMES, a fast approximate multiplier substitution method for mixed-precision DNNs. Our experiments demonstrate an average 28.67% energy reduction on state-of-the-art mixed-precision quantized models with bitwidths as low as 2 bits and accuracy losses kept under 1%. Additionally, our approach is up to 300x faster than previous genetic algorithm-based methods.
comment: This work will be incorporated into another study as part of a larger project, so we request to temporarily withdraw it. The new study involves substantial changes and will be submitted as a new paper
♻ ☆ Joint Optimization of Energy Consumption and Completion Time in Federated Learning IEEE
Federated Learning (FL) is an intriguing distributed machine learning approach due to its privacy-preserving characteristics. To balance the trade-off between energy and execution latency, and thus accommodate different demands and application scenarios, we formulate an optimization problem to minimize a weighted sum of total energy consumption and completion time through two weight parameters. The optimization variables include bandwidth, transmission power and CPU frequency of each device in the FL system, where all devices are linked to a base station and train a global model collaboratively. Through decomposing the non-convex optimization problem into two subproblems, we devise a resource allocation algorithm to determine the bandwidth allocation, transmission power, and CPU frequency for each participating device. We further present the convergence analysis and computational complexity of the proposed algorithm. Numerical results show that our proposed algorithm not only has better performance at different weight parameters (i.e., different demands) but also outperforms the state of the art.
comment: This paper appears in the Proceedings of IEEE International Conference on Distributed Computing Systems (ICDCS) 2022. Please feel free to contact us for questions or remarks
♻ ☆ Nearest Neighbor Projection Removal Adversarial Training
Deep neural networks have exhibited impressive performance in image classification tasks but remain vulnerable to adversarial examples. Standard adversarial training enhances robustness but typically fails to explicitly address inter-class feature overlap, a significant contributor to adversarial susceptibility. In this work, we introduce a novel adversarial training framework that actively mitigates inter-class proximity by projecting out inter-class dependencies from adversarial and clean samples in the feature space. Specifically, our approach first identifies the nearest inter-class neighbors for each adversarial sample and subsequently removes projections onto these neighbors to enforce stronger feature separability. Theoretically, we demonstrate that our proposed logits correction reduces the Lipschitz constant of neural networks, thereby lowering the Rademacher complexity, which directly contributes to improved generalization and robustness. Extensive experiments across standard benchmarks including CIFAR-10, CIFAR-100, and SVHN show that our method demonstrates strong performance that is competitive with leading adversarial training techniques, highlighting significant achievements in both robust and clean accuracy. Our findings reveal the importance of addressing inter-class feature proximity explicitly to bolster adversarial robustness in DNNs.
♻ ☆ Symbolic regression via MDLformer-guided search: from minimizing prediction error to minimizing description length
Symbolic regression, a task discovering the formula best fitting the given data, is typically based on the heuristical search. These methods usually update candidate formulas to obtain new ones with lower prediction errors iteratively. However, since formulas with similar function shapes may have completely different symbolic forms, the prediction error does not decrease monotonously as the search approaches the target formula, causing the low recovery rate of existing methods. To solve this problem, we propose a novel search objective based on the minimum description length, which reflects the distance from the target and decreases monotonically as the search approaches the correct form of the target formula. To estimate the minimum description length of any input data, we design a neural network, MDLformer, which enables robust and scalable estimation through large-scale training. With the MDLformer's output as the search objective, we implement a symbolic regression method, SR4MDL, that can effectively recover the correct mathematical form of the formula. Extensive experiments illustrate its excellent performance in recovering formulas from data. Our method successfully recovers around 50 formulas across two benchmark datasets comprising 133 problems, outperforming state-of-the-art methods by 43.92%. Experiments on 122 unseen black-box problems further demonstrate its generalization performance. We release our code at https://github.com/tsinghua-fib-lab/SR4MDL .
♻ ☆ A general language model for peptide identification
Accurate identification of bioactive peptides (BPs) and protein post-translational modifications (PTMs) is essential for understanding protein function and advancing therapeutic discovery. However, most computational methods remain limited in their generalizability across diverse peptide functions. Here, we present PDeepPP, a unified deep learning framework that integrates pretrained protein language models with a hybrid transformer-convolutional architecture, enabling robust identification across diverse peptide classes and PTM sites. We curated comprehensive benchmark datasets and implemented strategies to address data imbalance, allowing PDeepPP to systematically extract both global and local sequence features. Through extensive analyses-including dimensionality reduction and comparison studies-PDeepPP demonstrates strong, interpretable peptide representations and achieves state-of-the-art performance in 25 of the 33 biological identification tasks. Notably, PDeepPP attains high accuracy in antimicrobial (0.9726) and phosphorylation site (0.9984) identification, with 99.5% specificity in glycosylation site prediction and substantial reduction in false negatives in antimalarial tasks. By enabling large-scale, accurate peptide analysis, PDeepPP supports biomedical research and the discovery of novel therapeutic targets for disease treatment. All code, datasets, and pretrained models are publicly available via GitHub:https://github.com/fondress/PDeepPP and Hugging Face:https://huggingface.co/fondress/PDeppPP.
comment: 24 pages, 9 figures, 4 tables, submitted to arXiv
♻ ☆ A Survey on Training-free Alignment of Large Language Models EMNLP 2025
The alignment of large language models (LLMs) aims to ensure their outputs adhere to human values, ethical standards, and legal norms. Traditional alignment methods often rely on resource-intensive fine-tuning (FT), which may suffer from knowledge degradation and face challenges in scenarios where the model accessibility or computational resources are constrained. In contrast, training-free (TF) alignment techniques--leveraging in-context learning, decoding-time adjustments, and post-generation corrections--offer a promising alternative by enabling alignment without heavily retraining LLMs, making them adaptable to both open-source and closed-source environments. This paper presents the first systematic review of TF alignment methods, categorizing them by stages of pre-decoding, in-decoding, and post-decoding. For each stage, we provide a detailed examination from the viewpoint of LLMs and multimodal LLMs (MLLMs), highlighting their mechanisms and limitations. Furthermore, we identify key challenges and future directions, paving the way for more inclusive and effective TF alignment techniques. By synthesizing and organizing the rapidly growing body of research, this survey offers a guidance for practitioners and advances the development of safer and more reliable LLMs.
comment: Accepted to EMNLP 2025 (findings), camera-ready version
♻ ☆ From Static to Adaptive Defense: Federated Multi-Agent Deep Reinforcement Learning-Driven Moving Target Defense Against DoS Attacks in UAV Swarm Networks IEEE
The proliferation of UAVs has enabled a wide range of mission-critical applications and is becoming a cornerstone of low-altitude networks, supporting smart cities, emergency response, and more. However, the open wireless environment, dynamic topology, and resource constraints of UAVs expose low-altitude networks to severe DoS threats. Traditional defense approaches, which rely on fixed configurations or centralized decision-making, cannot effectively respond to the rapidly changing conditions in UAV swarm environments. To address these challenges, we propose a novel federated multi-agent deep reinforcement learning (FMADRL)-driven moving target defense (MTD) framework for proactive DoS mitigation in low-altitude networks. Specifically, we design lightweight and coordinated MTD mechanisms, including leader switching, route mutation, and frequency hopping, to disrupt attacker efforts and enhance network resilience. The defense problem is formulated as a multi-agent partially observable Markov decision process, capturing the uncertain nature of UAV swarms under attack. Each UAV is equipped with a policy agent that autonomously selects MTD actions based on partial observations and local experiences. By employing a policy gradient-based algorithm, UAVs collaboratively optimize their policies via reward-weighted aggregation. Extensive simulations demonstrate that our approach significantly outperforms state-of-the-art baselines, achieving up to a 34.6% improvement in attack mitigation rate, a reduction in average recovery time of up to 94.6%, and decreases in energy consumption and defense cost by as much as 29.3% and 98.3%, respectively, under various DoS attack strategies. These results highlight the potential of intelligent, distributed defense mechanisms to protect low-altitude networks, paving the way for reliable and scalable low-altitude economy.
comment: 16pages; Major Revision for IEEE TCCN
♻ ☆ A single-loop SPIDER-type stochastic subgradient method for expectation-constrained nonconvex nonsmooth optimization
Many real-world problems, such as those with fairness constraints, involve complex expectation constraints and large datasets, necessitating the design of efficient stochastic methods to solve them. Most existing research focuses on cases with no {constraint} or easy-to-project constraints or deterministic constraints. In this paper, we consider nonconvex nonsmooth stochastic optimization problems with expectation constraints, for which we build a novel exact penalty model. We first show the relationship between the penalty model and the original problem. Then on solving the penalty problem, we present a single-loop SPIDER-type stochastic subgradient method, which utilizes the subgradients of both the objective and constraint functions, as well as the constraint function value at each iteration. Under certain regularity conditions (weaker than Slater-type constraint qualification or strong feasibility assumed in existing works), we establish an iteration complexity result of $O(\epsilon^{-4})$ to reach a near-$\epsilon$ stationary point of the penalized problem in expectation, matching the lower bound for such tasks. Building on the exact penalization, an $(\epsilon,\epsilon)$-KKT point of the original problem is obtained. For a few scenarios, our complexity of either the {objective} sample subgradient or the constraint sample function values can be lower than the state-of-the-art results by a factor of $\epsilon^{-2}$. Moreover, on solving two fairness-constrained problems and a multi-class Neyman-Pearson classification problem, our method is significantly (up to 466 times) faster than the state-of-the-art algorithms, including switching subgradient method and inexact proximal point methods.
comment: Key word: stochastic, subgradient, expectation constraints, weakly convex, fairness constrained classification
♻ ☆ CITER: Collaborative Inference for Efficient Large Language Model Decoding with Token-Level Routing
Large language models have achieved remarkable success in various tasks but suffer from high computational costs during inference, limiting their deployment in resource-constrained applications. To address this issue, we propose a novel Collaborative Inference with Token-lEvel Routing (CITER) framework that enables efficient collaboration between small and large language models (SLMs \& LLMs) through a token-level routing strategy. Specifically, CITER routes non-critical tokens to an SLM for efficiency and routes critical tokens to an LLM for generalization quality. We formulate router training as a policy optimization, where the router receives rewards based on both the quality of predictions and the inference costs of generation. This allows the router to learn to predict token-level routing scores and make routing decisions based on both the current token and the future impact of its decisions. To further accelerate the reward evaluation process, we introduce a shortcut which significantly reduces the costs of the reward estimation and improving the practicality of our approach. Extensive experiments on five benchmark datasets demonstrate that CITER reduces the inference costs while preserving high-quality generation, offering a promising solution for real-time and resource-constrained applications. Our data and code are available at https://github.com/aiming-lab/CITER.
♻ ☆ Discrete Diffusion in Large Language and Multimodal Models: A Survey
In this work, we provide a systematic survey of Discrete Diffusion Language Models (dLLMs) and Discrete Diffusion Multimodal Language Models (dMLLMs). Unlike autoregressive (AR) models, dLLMs and dMLLMs adopt a multi-token, parallel decoding paradigm using full attention and a denoising-based generation strategy. This paradigm naturally enables parallel generation, fine-grained output control, and dynamic perception. These capabilities are previously difficult to achieve with AR models. A growing number of industrial-scale proprietary d(M)LLMs, as well as a large number of open-source academic d(M)LLMs, have demonstrated performance comparable to their autoregressive counterparts, while achieving up to \textit{10$\times$} acceleration in inference speed. These developments position discrete diffusion models as a promising alternative to intelligence based on the traditional autoregressive approach. In this work, we present a comprehensive overview of the research in the dLLM and dMLLM domains. We trace the historical development of dLLMs and dMLLMs, formalize the underlying mathematical frameworks, and categorize representative models. We further analyze key techniques for training and inference, and summarize emerging applications across language, vision-language, and biological domains and \textit{etc.}. We conclude by discussing future directions for research and deployment. Relative papers are collected in https://github.com/LiQiiiii/Awesome-Discrete-Diffusion-LLM_MLLM
♻ ☆ A Randomized Zeroth-Order Hierarchical Framework for Heterogeneous Federated Learning IEEE
Heterogeneity in federated learning (FL) is a critical and challenging aspect that significantly impacts model performance and convergence. In this paper, we propose a novel framework by formulating heterogeneous FL as a hierarchical optimization problem. This new framework captures both local and global training processes through a bilevel formulation and is capable of the following: (i) addressing client heterogeneity through a personalized learning framework; (ii) capturing the pre-training process on the server side; (iii) updating the global model through nonstandard aggregation; (iv) allowing for nonidentical local steps; and (v) capturing clients' local constraints. We design and analyze an implicit zeroth-order FL method (ZO-HFL), equipped with nonasymptotic convergence guarantees for both the server-agent and the individual client-agents, and asymptotic guarantees for both the server-agent and client-agents in an almost sure sense. Notably, our method does not rely on standard assumptions in heterogeneous FL, such as the bounded gradient dissimilarity condition. We implement our method on image classification tasks and compare with other methods under different heterogeneous settings.
comment: Accepted at the 64th IEEE Conference on Decision and Control (CDC 2025)
♻ ☆ MetaExplainer: A Framework to Generate Multi-Type User-Centered Explanations for AI Systems
Explanations are crucial for building trustworthy AI systems, but a gap often exists between the explanations provided by models and those needed by users. To address this gap, we introduce MetaExplainer, a neuro-symbolic framework designed to generate user-centered explanations. Our approach employs a three-stage process: first, we decompose user questions into machine-readable formats using state-of-the-art large language models (LLM); second, we delegate the task of generating system recommendations to model explainer methods; and finally, we synthesize natural language explanations that summarize the explainer outputs. Throughout this process, we utilize an Explanation Ontology to guide the language models and explainer methods. By leveraging LLMs and a structured approach to explanation generation, MetaExplainer aims to enhance the interpretability and trustworthiness of AI systems across various applications, providing users with tailored, question-driven explanations that better meet their needs. Comprehensive evaluations of MetaExplainer demonstrate a step towards evaluating and utilizing current state-of-the-art explanation frameworks. Our results show high performance across all stages, with a 59.06% F1-score in question reframing, 70% faithfulness in model explanations, and 67% context-utilization in natural language synthesis. User studies corroborate these findings, highlighting the creativity and comprehensiveness of generated explanations. Tested on the Diabetes (PIMA Indian) tabular dataset, MetaExplainer supports diverse explanation types, including Contrastive, Counterfactual, Rationale, Case-Based, and Data explanations. The framework's versatility and traceability from using ontology to guide LLMs suggest broad applicability beyond the tested scenarios, positioning MetaExplainer as a promising tool for enhancing AI explainability across various domains.
♻ ☆ FedComLoc: Communication-Efficient Distributed Training of Sparse and Quantized Models
Federated Learning (FL) has garnered increasing attention due to its unique characteristic of allowing heterogeneous clients to process their private data locally and interact with a central server, while being respectful of privacy. A critical bottleneck in FL is the communication cost. A pivotal strategy to mitigate this burden is Local Training, which involves running multiple local stochastic gradient descent iterations between communication phases. Our work is inspired by the innovative Scaffnew algorithm, which has considerably advanced the reduction of communication complexity in FL. We introduce FedComLoc (Federated Compressed and Local Training), integrating practical and effective compression into Scaffnew to further enhance communication efficiency. Extensive experiments, using the popular TopK compressor and quantization, demonstrate its prowess in substantially reducing communication overheads in heterogeneous settings.
comment: Accepted version at Transactions on Machine Learning Research (TMLR)
♻ ☆ Traversal Learning: A Lossless And Efficient Distributed Learning Framework
In this paper, we introduce Traversal Learning (TL), a novel approach designed to address the problem of decreased quality encountered in popular distributed learning (DL) paradigms such as Federated Learning (FL), Split Learning (SL), and SplitFed Learning (SFL). Traditional FL experiences from an accuracy drop during aggregation due to its averaging function, while SL and SFL face increased loss due to the independent gradient updates on each split network. TL adopts a unique strategy where the model traverses the nodes during forward propagation (FP) and performs backward propagation (BP) on the orchestrator, effectively implementing centralized learning (CL) principles within a distributed environment. The orchestrator is tasked with generating virtual batches and planning the sequential node visits of the model during FP, aligning them with the ordered index of the data within these batches. We conducted experiments on six datasets representing diverse characteristics across various domains. Our evaluation demonstrates that TL is on par with classic CL approaches in terms of accurate inference, thereby offering a viable and robust solution for DL tasks. TL outperformed other DL methods and improved accuracy by 7.85% for independent and identically distributed (IID) datasets, macro F1-score by 1.06% for non-IID datasets, accuracy by 2.60% for text classification, and AUC by 3.88% and 4.54% for medical and financial datasets, respectively. By effectively preserving data privacy while maintaining performance, TL represents a significant advancement in DL methodologies. The implementation of TL is available at https://github.com/neouly-inc/Traversal-Learning
♻ ☆ HopCast: Calibration of Autoregressive Dynamics Models
Deep learning models are often trained to approximate dynamical systems that can be modeled using differential equations. Many of these models are optimized to predict one step ahead; such approaches produce calibrated one-step predictions if the predictive model can quantify uncertainty, such as Deep Ensembles. At inference time, multi-step predictions are generated via autoregression, which needs a sound uncertainty propagation method to produce calibrated multi-step predictions. This work introduces an alternative Predictor-Corrector approach named \hop{} that uses Modern Hopfield Networks (MHN) to learn the errors of a deterministic Predictor that approximates the dynamical system. The Corrector predicts a set of errors for the Predictor's output based on a context state at any timestep during autoregression. The set of errors creates sharper and well-calibrated prediction intervals with higher predictive accuracy compared to baselines without uncertainty propagation. The calibration and prediction performances are evaluated across a set of dynamical systems. This work is also the first to benchmark existing uncertainty propagation methods based on calibration errors.
♻ ☆ Damped Proximal Augmented Lagrangian Method for weakly-Convex Problems with Convex Constraints
We give a damped proximal augmented Lagrangian method (DPALM) for solving problems with a weakly-convex objective and convex linear/nonlinear constraints. Instead of taking a full stepsize, DPALM adopts a damped dual stepsize to ensure the boundedness of dual iterates. We show that DPALM can produce a (near) $\vareps$-KKT point within $O(\vareps^{-2})$ outer iterations if each DPALM subproblem is solved to a proper accuracy. In addition, we establish overall iteration complexity of DPALM when the objective is either a regularized smooth function or in a regularized compositional form. For the former case, DPALM achieves the complexity of $\widetilde{\mathcal{O}}\left(\varepsilon^{-2.5} \right)$ to produce an $\varepsilon$-KKT point by applying an accelerated proximal gradient (APG) method to each DPALM subproblem. For the latter case, the complexity of DPALM is $\widetilde{\mathcal{O}}\left(\varepsilon^{-3} \right)$ to produce a near $\varepsilon$-KKT point by using an APG to solve a Moreau-envelope smoothed version of each subproblem. Our outer iteration complexity and the overall complexity either generalize existing best ones from unconstrained or linear-constrained problems to convex-constrained ones, or improve over the best-known results on solving the same-structured problems. Furthermore, numerical experiments on linearly/quadratically constrained non-convex quadratic programs and linear-constrained robust nonlinear least squares are conducted to demonstrate the empirical efficiency of the proposed DPALM over several state-of-the art methods.
comment: 27 pages
♻ ☆ CURE: Controlled Unlearning for Robust Embeddings -- Mitigating Conceptual Shortcuts in Pre-Trained Language Models EMNLP 2025
Pre-trained language models have achieved remarkable success across diverse applications but remain susceptible to spurious, concept-driven correlations that impair robustness and fairness. In this work, we introduce CURE, a novel and lightweight framework that systematically disentangles and suppresses conceptual shortcuts while preserving essential content information. Our method first extracts concept-irrelevant representations via a dedicated content extractor reinforced by a reversal network, ensuring minimal loss of task-relevant information. A subsequent controllable debiasing module employs contrastive learning to finely adjust the influence of residual conceptual cues, enabling the model to either diminish harmful biases or harness beneficial correlations as appropriate for the target task. Evaluated on the IMDB and Yelp datasets using three pre-trained architectures, CURE achieves an absolute improvement of +10 points in F1 score on IMDB and +2 points on Yelp, while introducing minimal computational overhead. Our approach establishes a flexible, unsupervised blueprint for combating conceptual biases, paving the way for more reliable and fair language understanding systems.
comment: Accepted at the Conference on Empirical Methods in Natural Language Processing (EMNLP 2025)
♻ ☆ SurGBSA: Learning Representations From Molecular Dynamics Simulations
Self-supervised pretraining from static structures of drug-like compounds and proteins enable powerful learned feature representations. Learned features demonstrate state of the art performance on a range of predictive tasks including molecular properties, structure generation, and protein-ligand interactions. The majority of approaches are limited by their use of static structures and it remains an open question, how best to use atomistic molecular dynamics (MD) simulations to develop more generalized models to improve prediction accuracy for novel molecular structures. We present SURrogate mmGBSA (SurGBSA) as a new modeling approach for MD-based representation learning, which learns a surrogate function of the Molecular Mechanics Generalized Born Surface Area (MMGBSA). We show for the first time the benefits of physics-informed pre-training to train a surrogate MMGBSA model on a collection of over 1.4 million 3D trajectories collected from MD simulations of the CASF-2016 benchmark. SurGBSA demonstrates a dramatic 27,927x speedup versus a traditional physics-based single-point MMGBSA calculation while nearly matching single-point MMGBSA accuracy on the challenging pose ranking problem for identification of the correct top pose (-0.4% difference). Our work advances the development of molecular foundation models by showing model improvements when training on MD simulations. Models, code and training data are made publicly available.
♻ ☆ To Theoretically Understand Transformer-Based In-Context Learning for Optimizing CSMA
The binary exponential backoff scheme is widely used in WiFi 7 and still incurs poor throughput performance under dynamic channel environments. Recent model-based approaches (e.g., non-persistent and $p$-persistent CSMA) simply optimize backoff strategies under a known and fixed node density, still leading to a large throughput loss due to inaccurate node density estimation. This paper is the first to propose LLM transformer-based in-context learning (ICL) theory for optimizing channel access. We design a transformer-based ICL optimizer to pre-collect collision-threshold data examples and a query collision case. They are constructed as a prompt as the input for the transformer to learn the pattern, which then generates a predicted contention window threshold (CWT). To train the transformer for effective ICL, we develop an efficient algorithm and guarantee a near-optimal CWT prediction within limited training steps. As it may be hard to gather perfect data examples for ICL in practice, we further extend to allow erroneous data input in the prompt. We prove that our optimizer maintains minimal prediction and throughput deviations from the optimal values. Experimental results on NS-3 further demonstrate our approach's fast convergence and near-optimal throughput over existing model-based and DRL-based approaches under unknown node densities.
♻ ☆ Examining Different Research Communities: Authorship Network
Google Scholar is one of the top search engines to access research articles across multiple disciplines for scholarly literature. Google scholar advance search option gives the privilege to extract articles based on phrases, publishers name, authors name, time duration etc. In this work, we collected Google Scholar data (2000-2021) for two different research domains in computer science: Data Mining and Software Engineering. The scholar database resources are powerful for network analysis, data mining, and identify links between authors via authorship network. We examined coauthor-ship network for each domain and studied their network structure. Extensive experiments are performed to analyze publications trend and identifying influential authors and affiliated organizations for each domain. The network analysis shows that the networks features are distinct from one another and exhibit small communities within the influential authors of a particular domain.
♻ ☆ Communication Compression for Distributed Learning without Control Variates
Distributed learning algorithms, such as the ones employed in Federated Learning (FL), require communication compression to reduce the cost of client uploads. The compression methods used in practice are often biased, making error feedback necessary both to achieve convergence under aggressive compression and to provide theoretical convergence guarantees. However, error feedback requires client-specific control variates, creating two key challenges: it violates privacy-preserving principles and demands stateful clients. In this paper, we propose Compressed Aggregate Feedback (CAFe), a novel distributed learning framework that allows highly compressible client updates by exploiting past aggregated updates, and does not require control variates. We consider Distributed Gradient Descent (DGD) as a representative algorithm and analytically prove CAFe's superiority to Distributed Compressed Gradient Descent (DCGD) with biased compression in the non-convex regime with bounded gradient dissimilarity. Experimental results confirm that CAFe outperforms existing distributed learning compression schemes.
comment: Revised format and minor exposition edits, results unchanged
♻ ☆ Missing Fine Details in Images: Last Seen in High Frequencies
Latent generative models have shown remarkable progress in high-fidelity image synthesis, typically using a two-stage training process that involves compressing images into latent embeddings via learned tokenizers in the first stage. The quality of generation strongly depends on how expressive and well-optimized these latent embeddings are. While various methods have been proposed to learn effective latent representations, generated images often lack realism, particularly in textured regions with sharp transitions, due to loss of fine details governed by high frequencies. We conduct a detailed frequency decomposition of existing state-of-the-art (SOTA) latent tokenizers and show that conventional objectives inherently prioritize low-frequency reconstruction, often at the expense of high-frequency fidelity. Our analysis reveals these latent tokenizers exhibit a bias toward low-frequency information during optimization, leading to over-smoothed outputs and visual artifacts that diminish perceptual quality. To address this, we propose a wavelet-based, frequency-aware variational autoencoder (FA-VAE) framework that explicitly decouples the optimization of low- and high-frequency components. This decoupling enables improved reconstruction of fine textures while preserving global structure. Moreover, we integrate our frequency-preserving latent embeddings into a SOTA latent diffusion model, resulting in sharper and more realistic image generation. Our approach bridges the fidelity gap in current latent tokenizers and emphasizes the importance of frequency-aware optimization for realistic image synthesis, with broader implications for applications in content creation, neural rendering, and medical imaging.
♻ ☆ Deep Reinforcement Learning for Inventory Networks: Toward Reliable Policy Optimization
We argue that inventory management presents unique opportunities for the reliable application of deep reinforcement learning (DRL). To enable this, we emphasize and test two complementary techniques. The first is Hindsight Differentiable Policy Optimization (HDPO), which uses pathwise gradients from offline counterfactual simulations to directly and efficiently optimize policy performance. Unlike standard policy gradient methods that rely on high-variance score-function estimators, HDPO computes gradients by differentiating through the known system dynamics. Via extensive benchmarking, we show that HDPO recovers near-optimal policies in settings with known or bounded optima, is more robust than variants of the REINFORCE algorithm, and significantly outperforms generalized newsvendor heuristics on problems using real time series data. Our second technique aligns neural policy architectures with the topology of the inventory network. We exploit Graph Neural Networks (GNNs) as a natural inductive bias for encoding supply chain structure, demonstrate that they can represent optimal and near-optimal policies in two theoretical settings, and empirically show that they reduce data requirements across six diverse inventory problems. A key obstacle to progress in this area is the lack of standardized benchmark problems. To address this gap, we open-source a suite of benchmark environments, along with our full codebase, to promote transparency and reproducibility. All resources are available at github.com/MatiasAlvo/Neural_inventory_control.
♻ ☆ Semantic Augmentation in Images using Language
Deep Learning models are incredibly data-hungry and require very large labeled datasets for supervised learning. As a consequence, these models often suffer from overfitting, limiting their ability to generalize to real-world examples. Recent advancements in diffusion models have enabled the generation of photorealistic images based on textual inputs. Leveraging the substantial datasets used to train these diffusion models, we propose a technique to utilize generated images to augment existing datasets. This paper explores various strategies for effective data augmentation to improve the out-of-domain generalization capabilities of deep learning models.
♻ ☆ Crack Path Prediction with Operator Learning using Discrete Particle System data Generation
Accurately modeling crack propagation is critical for predicting failure in engineering materials and structures, where small cracks can rapidly evolve and cause catastrophic damage. The interaction of cracks with discontinuities, such as holes, significantly affects crack deflection and arrest. Recent developments in discrete particle systems with multibody interactions based on constitutive behavior have demonstrated the ability to capture crack nucleation and evolution without relying on continuum assumptions. In this work, we use data from Constitutively Informed Particle Dynamics (CPD) simulations to train operator learning models, specifically Deep Operator Networks (DeepONets), which learn mappings between function spaces instead of finite-dimensional vectors. We explore two DeepONet variants: vanilla and Fusion DeepONet, for predicting time-evolving crack propagation in specimens with varying geometries. Three representative cases are studied: (i) varying notch height without active fracture; and (ii) and (iii) combinations of notch height and hole radius where dynamic fracture occurs on irregular discrete meshes. The models are trained using geometric inputs in the branch network and spatial-temporal coordinates in the trunk network. Results show that Fusion DeepONet consistently outperforms the vanilla variant, with more accurate predictions especially in non-fracturing cases. Fracture-driven scenarios involving displacement and crack evolution remain more challenging. These findings highlight the potential of Fusion DeepONet to generalize across complex, geometry-varying, and time-dependent crack propagation phenomena.
comment: 22 pages, 14 figures
♻ ☆ Attribution Regularization for Multimodal Paradigms
Multimodal machine learning has gained significant attention in recent years due to its potential for integrating information from multiple modalities to enhance learning and decision-making processes. However, it is commonly observed that unimodal models outperform multimodal models, despite the latter having access to richer information. Additionally, the influence of a single modality often dominates the decision-making process, resulting in suboptimal performance. This research project aims to address these challenges by proposing a novel regularization term that encourages multimodal models to effectively utilize information from all modalities when making decisions. The focus of this project lies in the video-audio domain, although the proposed regularization technique holds promise for broader applications in embodied AI research, where multiple modalities are involved. By leveraging this regularization term, the proposed approach aims to mitigate the issue of unimodal dominance and improve the performance of multimodal machine learning systems. Through extensive experimentation and evaluation, the effectiveness and generalizability of the proposed technique will be assessed. The findings of this research project have the potential to significantly contribute to the advancement of multimodal machine learning and facilitate its application in various domains, including multimedia analysis, human-computer interaction, and embodied AI research.
♻ ☆ Rhythmic sharing: A bio-inspired paradigm for zero-shot adaptive learning in neural networks
The brain rapidly adapts to new contexts and learns from limited data, a coveted characteristic that artificial intelligence (AI) algorithms struggle to mimic. Inspired by the mechanical oscillatory rhythms of neural cells, we developed a learning paradigm utilizing link strength oscillations, where learning is associated with the coordination of these oscillations. Link oscillations can rapidly change coordination, allowing the network to sense and adapt to subtle contextual changes without supervision. The network becomes a generalist AI architecture, capable of predicting dynamics of multiple contexts including unseen ones. These results make our paradigm a powerful starting point for novel models of cognition. Because our paradigm is agnostic to specifics of the neural network, our study opens doors for introducing rapid adaptive learning into leading AI models.
comment: 12 pages, 3 figures. V2: General formatting and reference addendum. V3: Typo on p.11: h -> h^2 for RMSE. V5: Typo in caption for fig 2: caption for 2c should have been for 2b, and v.v. V6: Typo fixes to figure references pertaining to V5 (wrote fig 3 instead of fig 2)
♻ ☆ A Logic for Expressing Log-Precision Transformers NeurIPS
One way to interpret the reasoning power of transformer-based language models is to describe the types of logical rules they can resolve over some input text. Recently, Chiang et al. (2023) showed that finite-precision transformers can be equivalently expressed in a generalization of first-order logic. However, finite-precision transformers are a weak transformer variant because, as we show, a single head can only attend to a constant number of tokens and, in particular, cannot represent uniform attention. Since attending broadly is a core capability for transformers, we ask whether a minimally more expressive model that can attend universally can also be characterized in logic. To this end, we analyze transformers whose forward pass is computed in $\log n$ precision on contexts of length $n$. We prove that any log-precision transformer can be equivalently expressed as a first-order logic sentence that, in addition to standard universal and existential quantifiers, may also contain majority-vote quantifiers. This is the tightest known upper bound and first logical characterization of log-precision transformers.
comment: May 24, 2023: Restructured version of old preprint. Oct 12, 2023: To appear at NeurIPS. Sept 10, 2025: minor technical corrections
♻ ☆ Capability-Aware Shared Hypernetworks for Flexible Heterogeneous Multi-Robot Coordination
Recent advances have enabled heterogeneous multi-robot teams to learn complex and effective coordination skills. However, existing neural architectures that support heterogeneous teaming tend to force a trade-off between expressivity and efficiency. Shared-parameter designs prioritize sample efficiency by enabling a single network to be shared across all or a pre-specified subset of robots (via input augmentations), but tend to limit behavioral diversity. In contrast, recent designs employ a separate policy for each robot, enabling greater diversity and expressivity at the cost of efficiency and generalization. Our key insight is that such tradeoffs can be avoided by viewing these design choices as ends of a broad spectrum. Inspired by recent work in transfer and meta learning, and building on prior work in multi-robot task allocation, we propose Capability-Aware Shared Hypernetworks (CASH), a soft weight sharing architecture that uses hypernetworks to efficiently learn a flexible shared policy that dynamically adapts to each robot post-training. By explicitly encoding the impact of robot capabilities (e.g., speed and payload) on collective behavior, CASH enables zero-shot generalization to unseen robots or team compositions. Our experiments involve multiple heterogeneous tasks, three learning paradigms (imitation learning, value-based, and policy-gradient RL), and SOTA multi-robot simulation (JaxMARL) and hardware (Robotarium) platforms. Across all conditions, we find that CASH generates appropriately-diverse behaviors and consistently outperforms baseline architectures in terms of performance and sample efficiency during both training and zero-shot generalization, all with 60%-80% fewer learnable parameters.
comment: 22 pages, 8 figures, equal authorship between Kevin Fu and Shalin Anand Jain Manuscript accepted for publication at the 9th Conference on Robot Learning (CoRL 2025), Seoul, Korea
♻ ☆ ACE: A Security Architecture for LLM-Integrated App Systems NDSS
LLM-integrated app systems extend the utility of Large Language Models (LLMs) with third-party apps that are invoked by a system LLM using interleaved planning and execution phases to answer user queries. These systems introduce new attack vectors where malicious apps can cause integrity violation of planning or execution, availability breakdown, or privacy compromise during execution. In this work, we identify new attacks impacting the integrity of planning, as well as the integrity and availability of execution in LLM-integrated apps, and demonstrate them against IsolateGPT, a recent solution designed to mitigate attacks from malicious apps. We propose Abstract-Concrete-Execute (ACE), a new secure architecture for LLM-integrated app systems that provides security guarantees for system planning and execution. Specifically, ACE decouples planning into two phases by first creating an abstract execution plan using only trusted information, and then mapping the abstract plan to a concrete plan using installed system apps. We verify that the plans generated by our system satisfy user-specified secure information flow constraints via static analysis on the structured plan output. During execution, ACE enforces data and capability barriers between apps, and ensures that the execution is conducted according to the trusted abstract plan. We show experimentally that ACE is secure against attacks from the InjecAgent and Agent Security Bench benchmarks for indirect prompt injection, and our newly introduced attacks. We also evaluate the utility of ACE in realistic environments, using the Tool Usage suite from the LangChain benchmark. Our architecture represents a significant advancement towards hardening LLM-based systems using system security principles.
comment: 25 pages, 13 figures, 8 tables; accepted by Network and Distributed System Security Symposium (NDSS) 2026
♻ ☆ Data-Augmented Few-Shot Neural Stencil Emulation for System Identification of Computer Models
Partial differential equations (PDEs) underpin the modeling of many natural and engineered systems. It can be convenient to express such models as neural PDEs rather than using traditional numerical PDE solvers by replacing part or all of the PDE's governing equations with a neural network representation. Neural PDEs are often easier to differentiate, linearize, reduce, or use for uncertainty quantification than the original numerical solver. They are usually trained on solution trajectories obtained by long time integration of the PDE solver. Here we propose a more sample-efficient data-augmentation strategy for generating neural PDE training data from a computer model by space-filling sampling of local "stencil" states. This approach removes a large degree of spatiotemporal redundancy present in trajectory data and oversamples states that may be rarely visited but help the neural PDE generalize across the state space. We demonstrate that accurate neural PDE stencil operators can be learned from synthetic training data generated by the computational equivalent of 10 timesteps' worth of numerical simulation. Accuracy is further improved if we assume access to a single full-trajectory simulation from the computer model, which is typically available in practice. Across several PDE systems, we show that our data-augmented synthetic stencil data yield better trained neural stencil operators, with clear performance gains compared with naively sampled stencil data from simulation trajectories.
♻ ☆ Uncertainty Estimation by Human Perception versus Neural Models
Modern neural networks (NNs) often achieve high predictive accuracy but are poorly calibrated, producing overconfident predictions even when wrong. This miscalibration poses serious challenges in applications where reliable uncertainty estimates are critical. In this work, we investigate how human perceptual uncertainty compares to uncertainty estimated by NNs. Using three vision benchmarks annotated with both human disagreement and crowdsourced confidence, we assess the correlation between model-predicted uncertainty and human-perceived uncertainty. Our results show that current methods only weakly align with human intuition, with correlations varying significantly across tasks and uncertainty metrics. Notably, we find that incorporating human-derived soft labels into the training process can improve calibration without compromising accuracy. These findings reveal a persistent gap between model and human uncertainty and highlight the potential of leveraging human insights to guide the development of more trustworthy AI systems.
♻ ☆ Adaptive kernel predictors from feature-learning infinite limits of neural networks
Previous influential work showed that infinite width limits of neural networks in the lazy training regime are described by kernel machines. Here, we show that neural networks trained in the rich, feature learning infinite-width regime in two different settings are also described by kernel machines, but with data-dependent kernels. For both cases, we provide explicit expressions for the kernel predictors and prescriptions to numerically calculate them. To derive the first predictor, we study the large-width limit of feature-learning Bayesian networks, showing how feature learning leads to task-relevant adaptation of layer kernels and preactivation densities. The saddle point equations governing this limit result in a min-max optimization problem that defines the kernel predictor. To derive the second predictor, we study gradient flow training of randomly initialized networks trained with weight decay in the infinite-width limit using dynamical mean field theory (DMFT). The fixed point equations of the arising DMFT defines the task-adapted internal representations and the kernel predictor. We compare our kernel predictors to kernels derived from lazy regime and demonstrate that our adaptive kernels achieve lower test loss on benchmark datasets.
♻ ☆ Geometry and Stability of Supervised Learning Problems
We introduce a notion of distance between supervised learning problems, which we call the Risk distance. This distance, inspired by optimal transport, facilitates stability results; one can quantify how seriously issues like sampling bias, noise, limited data, and approximations might change a given problem by bounding how much these modifications can move the problem under the Risk distance. With the distance established, we explore the geometry of the resulting space of supervised learning problems, providing explicit geodesics and proving that the set of classification problems is dense in a larger class of problems. We also provide two variants of the Risk distance: one that incorporates specified weights on a problem's predictors, and one that is more sensitive to the contours of a problem's risk landscape.
comment: 99 pages, to be published in Journal of Machine Learning Research 26 (2025) 1-99
♻ ☆ Quantum-Assisted Machine Learning Models for Enhanced Weather Prediction
Quantum Machine Learning (QML) presents as a revolutionary approach to weather forecasting by using quantum computing to improve predictive modeling capabilities. In this study, we apply QML models, including Quantum Gated Recurrent Units (QGRUs), Quantum Neural Networks (QNNs), Quantum Long Short-Term Memory(QLSTM), Variational Quantum Circuits(VQCs), and Quantum Support Vector Machines(QSVMs), to analyze meteorological time-series data from the ERA5 dataset. Our methodology includes preprocessing meteorological features, implementing QML architectures for both classification and regression tasks. The results demonstrate that QML models can achieve reasonable accuracy in both prediction and classification tasks, particularly in binary classification. However, challenges such as quantum hardware limitations and noise affect scalability and generalization. This research provides insights into the feasibility of QML for weather prediction, paving the way for further exploration of hybrid quantum-classical frameworks to enhance meteorological forecasting.
comment: Will require more permissions and data to be republished later for academic rigor
Multimedia 7
☆ PianoVAM: A Multimodal Piano Performance Dataset
The multimodal nature of music performance has driven increasing interest in data beyond the audio domain within the music information retrieval (MIR) community. This paper introduces PianoVAM, a comprehensive piano performance dataset that includes videos, audio, MIDI, hand landmarks, fingering labels, and rich metadata. The dataset was recorded using a Disklavier piano, capturing audio and MIDI from amateur pianists during their daily practice sessions, alongside synchronized top-view videos in realistic and varied performance conditions. Hand landmarks and fingering labels were extracted using a pretrained hand pose estimation model and a semi-automated fingering annotation algorithm. We discuss the challenges encountered during data collection and the alignment process across different modalities. Additionally, we describe our fingering annotation method based on hand landmarks extracted from videos. Finally, we present benchmarking results for both audio-only and audio-visual piano transcription using the PianoVAM dataset and discuss additional potential applications.
comment: Accepted to the 26th International Society for Music Information Retrieval (ISMIR) Conference, 2025
☆ HuMo: Human-Centric Video Generation via Collaborative Multi-Modal Conditioning
Human-Centric Video Generation (HCVG) methods seek to synthesize human videos from multimodal inputs, including text, image, and audio. Existing methods struggle to effectively coordinate these heterogeneous modalities due to two challenges: the scarcity of training data with paired triplet conditions and the difficulty of collaborating the sub-tasks of subject preservation and audio-visual sync with multimodal inputs. In this work, we present HuMo, a unified HCVG framework for collaborative multimodal control. For the first challenge, we construct a high-quality dataset with diverse and paired text, reference images, and audio. For the second challenge, we propose a two-stage progressive multimodal training paradigm with task-specific strategies. For the subject preservation task, to maintain the prompt following and visual generation abilities of the foundation model, we adopt the minimal-invasive image injection strategy. For the audio-visual sync task, besides the commonly adopted audio cross-attention layer, we propose a focus-by-predicting strategy that implicitly guides the model to associate audio with facial regions. For joint learning of controllabilities across multimodal inputs, building on previously acquired capabilities, we progressively incorporate the audio-visual sync task. During inference, for flexible and fine-grained multimodal control, we design a time-adaptive Classifier-Free Guidance strategy that dynamically adjusts guidance weights across denoising steps. Extensive experimental results demonstrate that HuMo surpasses specialized state-of-the-art methods in sub-tasks, establishing a unified framework for collaborative multimodal-conditioned HCVG. Project Page: https://phantom-video.github.io/HuMo.
☆ CommonVoice-SpeechRE and RPG-MoGe: Advancing Speech Relation Extraction with a New Dataset and Multi-Order Generative Framework
Speech Relation Extraction (SpeechRE) aims to extract relation triplets directly from speech. However, existing benchmark datasets rely heavily on synthetic data, lacking sufficient quantity and diversity of real human speech. Moreover, existing models also suffer from rigid single-order generation templates and weak semantic alignment, substantially limiting their performance. To address these challenges, we introduce CommonVoice-SpeechRE, a large-scale dataset comprising nearly 20,000 real-human speech samples from diverse speakers, establishing a new benchmark for SpeechRE research. Furthermore, we propose the Relation Prompt-Guided Multi-Order Generative Ensemble (RPG-MoGe), a novel framework that features: (1) a multi-order triplet generation ensemble strategy, leveraging data diversity through diverse element orders during both training and inference, and (2) CNN-based latent relation prediction heads that generate explicit relation prompts to guide cross-modal alignment and accurate triplet generation. Experiments show our approach outperforms state-of-the-art methods, providing both a benchmark dataset and an effective solution for real-world SpeechRE. The source code and dataset are publicly available at https://github.com/NingJinzhong/SpeechRE_RPG_MoGe.
☆ Recurrence Meets Transformers for Universal Multimodal Retrieval
With the rapid advancement of multimodal retrieval and its application in LLMs and multimodal LLMs, increasingly complex retrieval tasks have emerged. Existing methods predominantly rely on task-specific fine-tuning of vision-language models and are limited to single-modality queries or documents. In this paper, we propose ReT-2, a unified retrieval model that supports multimodal queries, composed of both images and text, and searches across multimodal document collections where text and images coexist. ReT-2 leverages multi-layer representations and a recurrent Transformer architecture with LSTM-inspired gating mechanisms to dynamically integrate information across layers and modalities, capturing fine-grained visual and textual details. We evaluate ReT-2 on the challenging M2KR and M-BEIR benchmarks across different retrieval configurations. Results demonstrate that ReT-2 consistently achieves state-of-the-art performance across diverse settings, while offering faster inference and reduced memory usage compared to prior approaches. When integrated into retrieval-augmented generation pipelines, ReT-2 also improves downstream performance on Encyclopedic-VQA and InfoSeek datasets. Our source code and trained models are publicly available at: https://github.com/aimagelab/ReT-2
☆ The Sound of Entanglement
The advent of quantum physics has revolutionized our understanding of the universe, replacing the deterministic framework of classical physics with a paradigm dominated by intrinsic randomness and quantum correlations. This shift has not only enabled groundbreaking technologies, such as quantum sensors, networks and computers, but has also unlocked entirely new possibilities for artistic expressions. In this paper, we explore the intersection of quantum mechanics and art, focusing on the use of quantum entanglement and inherent randomness as creative tools. Specifically, we present The Sound of Entanglement, a live musical performance driven by real-time measurements of entangled photons in a Bell test. By integrating the measured quantum correlations as a central compositional element and synchronizing live visuals with experimental data, the performance offers a unique and unrepeatable audiovisual experience that relies on quantum correlations which cannot be produced by any classical device. Through this fusion of science and art, we aim to provide a deeper appreciation of quantum phenomena while expanding the boundaries of creative expression.
comment: 13 pages, 12 figures
♻ ☆ Hue4U: Real-Time Personalized Color Correction in Augmented Reality
Color Vision Deficiency (CVD) affects nearly 8 percent of men and 0.5 percent of women worldwide. Existing color-correction methods often rely on prior clinical diagnosis and static filtering, making them less effective for users with mild or moderate CVD. In this paper, we introduce Hue4U, a personalized, real-time color-correction system in augmented reality using consumer-grade Meta Quest headsets. Unlike previous methods, Hue4U requires no prior medical diagnosis and adapts to the user in real time. A user study with 10 participants showed notable improvements in their ability to distinguish colors. The results demonstrated large effect sizes (Cohen's d > 1.4), suggesting clinically meaningful gains for individuals with CVD. These findings highlight the potential of personalized AR interventions to improve visual accessibility and quality of life for people affected by CVD.
♻ ☆ Memory-Anchored Multimodal Reasoning for Explainable Video Forensics
We address multimodal deepfake detection requiring both robustness and interpretability by proposing FakeHunter, a unified framework that combines memory guided retrieval, a structured Observation-Thought-Action reasoning loop, and adaptive forensic tool invocation. Visual representations from a Contrastive Language-Image Pretraining (CLIP) model and audio representations from a Contrastive Language-Audio Pretraining (CLAP) model retrieve semantically aligned authentic exemplars from a large scale memory, providing contextual anchors that guide iterative localization and explanation of suspected manipulations. Under low internal confidence the framework selectively triggers fine grained analyses such as spatial region zoom and mel spectrogram inspection to gather discriminative evidence instead of relying on opaque marginal scores. We also release X-AVFake, a comprehensive audio visual forgery benchmark with fine grained annotations of manipulation type, affected region or entity, reasoning category, and explanatory justification, designed to stress contextual grounding and explanation fidelity. Extensive experiments show that FakeHunter surpasses strong multimodal baselines, and ablation studies confirm that both contextual retrieval and selective tool activation are indispensable for improved robustness and explanatory precision.
Computer Vision and Pattern Recognition 151
☆ CAViAR: Critic-Augmented Video Agentic Reasoning
Video understanding has seen significant progress in recent years, with models' performance on perception from short clips continuing to rise. Yet, multiple recent benchmarks, such as LVBench, Neptune, and ActivityNet-RTL, show performance wanes for tasks requiring complex reasoning on videos as queries grow more complex and videos grow longer. In this work, we ask: can existing perception capabilities be leveraged to successfully perform more complex video reasoning? In particular, we develop a large language model agent given access to video modules as subagents or tools. Rather than following a fixed procedure to solve queries as in previous work such as Visual Programming, ViperGPT, and MoReVQA, the agent uses the results of each call to a module to determine subsequent steps. Inspired by work in the textual reasoning domain, we introduce a critic to distinguish between instances of successful and unsuccessful sequences from the agent. We show that the combination of our agent and critic achieve strong performance on the previously-mentioned datasets.
☆ Visual Representation Alignment for Multimodal Large Language Models
Multimodal large language models (MLLMs) trained with visual instruction tuning have achieved strong performance across diverse tasks, yet they remain limited in vision-centric tasks such as object counting or spatial reasoning. We attribute this gap to the prevailing text-only supervision paradigm, which provides only indirect guidance for the visual pathway and often leads MLLMs to discard fine-grained visual details during training. In this paper, we present VIsual Representation ALignment (VIRAL), a simple yet effective regularization strategy that aligns the internal visual representations of MLLMs with those of pre-trained vision foundation models (VFMs). By explicitly enforcing this alignment, VIRAL enables the model not only to retain critical visual details from the input vision encoder but also to complement additional visual knowledge from VFMs, thereby enhancing its ability to reason over complex visual inputs. Our experiments demonstrate consistent improvements across all tasks on widely adopted multimodal benchmarks. Furthermore, we conduct comprehensive ablation studies to validate the key design choices underlying our framework. We believe this simple finding opens up an important direction for the effective integration of visual information in training MLLMs.
comment: Project Page: https://cvlab-kaist.github.io/VIRAL/
☆ One View, Many Worlds: Single-Image to 3D Object Meets Generative Domain Randomization for One-Shot 6D Pose Estimation
Estimating the 6D pose of arbitrary unseen objects from a single reference image is critical for robotics operating in the long-tail of real-world instances. However, this setting is notoriously challenging: 3D models are rarely available, single-view reconstructions lack metric scale, and domain gaps between generated models and real-world images undermine robustness. We propose OnePoseViaGen, a pipeline that tackles these challenges through two key components. First, a coarse-to-fine alignment module jointly refines scale and pose by combining multi-view feature matching with render-and-compare refinement. Second, a text-guided generative domain randomization strategy diversifies textures, enabling effective fine-tuning of pose estimators with synthetic data. Together, these steps allow high-fidelity single-view 3D generation to support reliable one-shot 6D pose estimation. On challenging benchmarks (YCBInEOAT, Toyota-Light, LM-O), OnePoseViaGen achieves state-of-the-art performance far surpassing prior approaches. We further demonstrate robust dexterous grasping with a real robot hand, validating the practicality of our method in real-world manipulation. Project page: https://gzwsama.github.io/OnePoseviaGen.github.io/
comment: CoRL 2025 Oral, Project page: https://gzwsama.github.io/OnePoseviaGen.github.io/
☆ Mini-o3: Scaling Up Reasoning Patterns and Interaction Turns for Visual Search
Recent advances in large multimodal models have leveraged image-based tools with reinforcement learning to tackle visual problems. However, existing open-source approaches often exhibit monotonous reasoning patterns and allow only a limited number of interaction turns, making them inadequate for difficult tasks that require trial-and-error exploration. In this work, we address this limitation by scaling up tool-based interactions and introduce Mini-o3, a system that executes deep, multi-turn reasoning -- spanning tens of steps -- and achieves state-of-the-art performance on challenging visual search tasks. Our recipe for reproducing OpenAI o3-style behaviors comprises three key components. First, we construct the Visual Probe Dataset, a collection of thousands of challenging visual search problems designed for exploratory reasoning. Second, we develop an iterative data collection pipeline to obtain cold-start trajectories that exhibit diverse reasoning patterns, including depth-first search, trial-and-error, and goal maintenance. Third, we propose an over-turn masking strategy that prevents penalization of over-turn responses (those that hit the maximum number of turns) during reinforcement learning, thereby balancing training-time efficiency with test-time scalability. Despite training with an upper bound of only six interaction turns, our model generates trajectories that naturally scale to tens of turns at inference time, with accuracy improving as the number of turns increases. Extensive experiments demonstrate that Mini-o3 produces rich reasoning patterns and deep thinking paths, effectively solving challenging visual search problems.
comment: Code, datasets, models are available at https://github.com/Mini-o3/Mini-o3. Project Page: https://mini-o3.github.io/
☆ Visual-TableQA: Open-Domain Benchmark for Reasoning over Table Images
Visual reasoning over structured data such as tables is a critical capability for modern vision-language models (VLMs), yet current benchmarks remain limited in scale, diversity, or reasoning depth, especially when it comes to rendered table images. Addressing this gap, we introduce Visual-TableQA, a large-scale, open-domain multimodal dataset specifically designed to evaluate and enhance visual reasoning over complex tabular data. Our generation pipeline is modular, scalable, and fully autonomous, involving multiple reasoning LLMs collaborating across distinct roles: generation, validation, and inspiration. Visual-TableQA comprises 2.5k richly structured LaTeX-rendered tables and 6k reasoning-intensive QA pairs, all produced at a cost of under USD 100. To promote diversity and creativity, our pipeline performs multi-model collaborative data generation via cross-model prompting ('inspiration') and LLM-jury filtering. Stronger models seed layouts and topics that weaker models elaborate, collectively distilling diverse reasoning patterns and visual structures into the dataset. Empirical results show that models fine-tuned on Visual-TableQA generalize robustly to external benchmarks, outperforming several proprietary models despite the dataset's synthetic nature. The full pipeline and resources are publicly available at https://github.com/AI-4-Everyone/Visual-TableQA.
comment: Work in Progress
☆ Feature Space Analysis by Guided Diffusion Model
One of the key issues in Deep Neural Networks (DNNs) is the black-box nature of their internal feature extraction process. Targeting vision-related domains, this paper focuses on analysing the feature space of a DNN by proposing a decoder that can generate images whose features are guaranteed to closely match a user-specified feature. Owing to this guarantee that is missed in past studies, our decoder allows us to evidence which of various attributes in an image are encoded into a feature by the DNN, by generating images whose features are in proximity to that feature. Our decoder is implemented as a guided diffusion model that guides the reverse image generation of a pre-trained diffusion model to minimise the Euclidean distance between the feature of a clean image estimated at each step and the user-specified feature. One practical advantage of our decoder is that it can analyse feature spaces of different DNNs with no additional training and run on a single COTS GPU. The experimental results targeting CLIP's image encoder, ResNet-50 and vision transformer demonstrate that images generated by our decoder have features remarkably similar to the user-specified ones and reveal valuable insights into these DNNs' feature spaces.
comment: 19 pages, 13 figures, codes: https://github.com/KimiakiShirahama/FeatureSpaceAnalysisByGuidedDiffusionModel
☆ Dynamic Scene 3D Reconstruction of an Uncooperative Resident Space Object
Characterization of uncooperative Resident Space Objects (RSO) play a crucial role in On-Orbit Servicing (OOS) and Active Debris Removal (ADR) missions to assess the geometry and motion properties. To address the challenges of reconstructing tumbling uncooperative targets, this study evaluates the performance of existing state-of-the-art 3D reconstruction algorithms for dynamic scenes, focusing on their ability to generate geometrically accurate models with high-fidelity. To support our evaluation, we developed a simulation environment using Isaac Sim to generate physics-accurate 2D image sequences of tumbling satellite under realistic orbital lighting conditions. Our preliminary results on static scenes using Neuralangelo demonstrate promising reconstruction quality. The generated 3D meshes closely match the original CAD models with minimal errors and artifacts when compared using Cloud Compare (CC). The reconstructed models were able to capture critical fine details for mission planning. This provides a baseline for our ongoing evaluation of dynamic scene reconstruction.
☆ Accelerating Local AI on Consumer GPUs: A Hardware-Aware Dynamic Strategy for YOLOv10s
As local AI grows in popularity, there is a critical gap between the benchmark performance of object detectors and their practical viability on consumer-grade hardware. While models like YOLOv10s promise real-time speeds, these metrics are typically achieved on high-power, desktop-class GPUs. This paper reveals that on resource-constrained systems, such as laptops with RTX 4060 GPUs, performance is not compute-bound but is instead dominated by system-level bottlenecks, as illustrated by a simple bottleneck test. To overcome this hardware-level constraint, we introduce a Two-Pass Adaptive Inference algorithm, a model-independent approach that requires no architectural changes. This study mainly focuses on adaptive inference strategies and undertakes a comparative analysis of architectural early-exit and resolution-adaptive routing, highlighting their respective trade-offs within a unified evaluation framework. The system uses a fast, low-resolution pass and only escalates to a high-resolution model pass when detection confidence is low. On a 5000-image COCO dataset, our method achieves a 1.85x speedup over a PyTorch Early-Exit baseline, with a modest mAP loss of 5.51%. This work provides a practical and reproducible blueprint for deploying high-performance, real-time AI on consumer-grade devices by shifting the focus from pure model optimization to hardware-aware inference strategies that maximize throughput.
comment: 6 pages, 7 figures
☆ Multimodal Contrastive Pretraining of CBCT and IOS for Enhanced Tooth Segmentation
Digital dentistry represents a transformative shift in modern dental practice. The foundational step in this transformation is the accurate digital representation of the patient's dentition, which is obtained from segmented Cone-Beam Computed Tomography (CBCT) and Intraoral Scans (IOS). Despite the growing interest in digital dental technologies, existing segmentation methodologies frequently lack rigorous validation and demonstrate limited performance and clinical applicability. To the best of our knowledge, this is the first work to introduce a multimodal pretraining framework for tooth segmentation. We present ToothMCL, a Tooth Multimodal Contrastive Learning for pretraining that integrates volumetric (CBCT) and surface-based (IOS) modalities. By capturing modality-invariant representations through multimodal contrastive learning, our approach effectively models fine-grained anatomical features, enabling precise multi-class segmentation and accurate identification of F\'ed\'eration Dentaire Internationale (FDI) tooth numbering. Along with the framework, we curated CBCT-IOS3.8K, the largest paired CBCT and IOS dataset to date, comprising 3,867 patients. We then evaluated ToothMCL on a comprehensive collection of independent datasets, representing the largest and most diverse evaluation to date. Our method achieves state-of-the-art performance in both internal and external testing, with an increase of 12\% for CBCT segmentation and 8\% for IOS segmentation in the Dice Similarity Coefficient (DSC). Furthermore, ToothMCL consistently surpasses existing approaches in tooth groups and demonstrates robust generalizability across varying imaging conditions and clinical scenarios.
☆ ScoreHOI: Physically Plausible Reconstruction of Human-Object Interaction via Score-Guided Diffusion ICCV 2025
Joint reconstruction of human-object interaction marks a significant milestone in comprehending the intricate interrelations between humans and their surrounding environment. Nevertheless, previous optimization methods often struggle to achieve physically plausible reconstruction results due to the lack of prior knowledge about human-object interactions. In this paper, we introduce ScoreHOI, an effective diffusion-based optimizer that introduces diffusion priors for the precise recovery of human-object interactions. By harnessing the controllability within score-guided sampling, the diffusion model can reconstruct a conditional distribution of human and object pose given the image observation and object feature. During inference, the ScoreHOI effectively improves the reconstruction results by guiding the denoising process with specific physical constraints. Furthermore, we propose a contact-driven iterative refinement approach to enhance the contact plausibility and improve the reconstruction accuracy. Extensive evaluations on standard benchmarks demonstrate ScoreHOI's superior performance over state-of-the-art methods, highlighting its ability to achieve a precise and robust improvement in joint human-object interaction reconstruction.
comment: Accepted by ICCV 2025
☆ Object-level Correlation for Few-Shot Segmentation ICCV 2025
Few-shot semantic segmentation (FSS) aims to segment objects of novel categories in the query images given only a few annotated support samples. Existing methods primarily build the image-level correlation between the support target object and the entire query image. However, this correlation contains the hard pixel noise, \textit{i.e.}, irrelevant background objects, that is intractable to trace and suppress, leading to the overfitting of the background. To address the limitation of this correlation, we imitate the biological vision process to identify novel objects in the object-level information. Target identification in the general objects is more valid than in the entire image, especially in the low-data regime. Inspired by this, we design an Object-level Correlation Network (OCNet) by establishing the object-level correlation between the support target object and query general objects, which is mainly composed of the General Object Mining Module (GOMM) and Correlation Construction Module (CCM). Specifically, GOMM constructs the query general object feature by learning saliency and high-level similarity cues, where the general objects include the irrelevant background objects and the target foreground object. Then, CCM establishes the object-level correlation by allocating the target prototypes to match the general object feature. The generated object-level correlation can mine the query target feature and suppress the hard pixel noise for the final prediction. Extensive experiments on PASCAL-${5}^{i}$ and COCO-${20}^{i}$ show that our model achieves the state-of-the-art performance.
comment: This paper was accepted by ICCV 2025
☆ Active Membership Inference Test (aMINT): Enhancing Model Auditability with Multi-Task Learning ICCV
Active Membership Inference Test (aMINT) is a method designed to detect whether given data were used during the training of machine learning models. In Active MINT, we propose a novel multitask learning process that involves training simultaneously two models: the original or Audited Model, and a secondary model, referred to as the MINT Model, responsible for identifying the data used for training the Audited Model. This novel multi-task learning approach has been designed to incorporate the auditability of the model as an optimization objective during the training process of neural networks. The proposed approach incorporates intermediate activation maps as inputs to the MINT layers, which are trained to enhance the detection of training data. We present results using a wide range of neural networks, from lighter architectures such as MobileNet to more complex ones such as Vision Transformers, evaluated in 5 public benchmarks. Our proposed Active MINT achieves over 80% accuracy in detecting if given data was used for training, significantly outperforming previous approaches in the literature. Our aMINT and related methodological developments contribute to increasing transparency in AI models, facilitating stronger safeguards in AI deployments to achieve proper security, privacy, and copyright protection.
comment: In Proc. IEEE/CVF Intenational Conference on Computer Vision, ICCV, 2025
☆ D-LEAF: Localizing and Correcting Hallucinations in Multimodal LLMs via Layer-to-head Attention Diagnostics
Multimodal Large Language Models (MLLMs) achieve strong performance on tasks like image captioning and visual question answering, but remain prone to hallucinations, where generated text conflicts with the visual input. Prior work links this partly to insufficient visual attention, but existing attention-based detectors and mitigation typically apply uniform adjustments across layers and heads, obscuring where errors originate. In this paper, we first show these methods fail to accurately localize problematic layers. Then, we introduce two diagnostics: Layer Image Attention Entropy (LIAE) which flags anomalous layers, and Image Attention Focus (IAF) which scores attention heads within those layers. Analysis shows that LIAE pinpoints faulty layers and IAF reliably ranks heads that warrant correction. Guided by these signals, we propose Dynamic Layer-wise Entropy and Attention Fusion (D-LEAF), a task-agnostic, attention-guided method that dynamically localizes and corrects errors during inference with negligible overhead. Results show our D-LEAF delivers a 53% relative improvement on standard captioning benchmarks, and on VQA both accuracy and F1-score improve by approximately 4%, substantially suppressing hallucinations while preserving efficiency.
☆ Deep Learning-Based Burned Area Mapping Using Bi-Temporal Siamese Networks and AlphaEarth Foundation Datasets
Accurate and timely mapping of burned areas is crucial for environmental monitoring, disaster management, and assessment of climate change. This study presents a novel approach to automated burned area mapping using the AlphaEArth dataset combined with the Siamese U-Net deep learning architecture. The AlphaEArth Dataset, comprising high-resolution optical and thermal infrared imagery with comprehensive ground-truth annotations, provides an unprecedented resource for training robust burned area detection models. We trained our model with the Monitoring Trends in Burn Severity (MTBS) dataset in the contiguous US and evaluated it with 17 regions cross in Europe. Our experimental results demonstrate that the proposed ensemble approach achieves superior performance with an overall accuracy of 95%, IoU of 0.6, and F1-score of 74% on the test dataset. The model successfully identifies burned areas across diverse ecosystems with complex background, showing particular strength in detecting partially burned vegetation and fire boundaries and its transferability and high generalization in burned area mapping. This research contributes to the advancement of automated fire damage assessment and provides a scalable solution for global burn area monitoring using the AlphaEarth dataset.
☆ Point Linguist Model: Segment Any Object via Bridged Large 3D-Language Model
3D object segmentation with Large Language Models (LLMs) has become a prevailing paradigm due to its broad semantics, task flexibility, and strong generalization. However, this paradigm is hindered by representation misalignment: LLMs process high-level semantic tokens, whereas 3D point clouds convey only dense geometric structures. In prior methods, misalignment limits both input and output. At the input stage, dense point patches require heavy pre-alignment, weakening object-level semantics and confusing similar distractors. At the output stage, predictions depend only on dense features without explicit geometric cues, leading to a loss of fine-grained accuracy. To address these limitations, we present the Point Linguist Model (PLM), a general framework that bridges the representation gap between LLMs and dense 3D point clouds without requiring large-scale pre-alignment between 3D-text or 3D-images. Specifically, we introduce Object-centric Discriminative Representation (OcDR), which learns object-centric tokens that capture target semantics and scene relations under a hard negative-aware training objective. This mitigates the misalignment between LLM tokens and 3D points, enhances resilience to distractors, and facilitates semantic-level reasoning within LLMs. For accurate segmentation, we introduce the Geometric Reactivation Decoder (GRD), which predicts masks by combining OcDR tokens carrying LLM-inferred geometry with corresponding dense features, preserving comprehensive dense features throughout the pipeline. Extensive experiments show that PLM achieves significant improvements of +7.3 mIoU on ScanNetv2 and +6.0 mIoU on Multi3DRefer for 3D referring segmentation, with consistent gains across 7 benchmarks spanning 4 different tasks, demonstrating the effectiveness of comprehensive object-centric reasoning for robust 3D understanding.
comment: Preprint
☆ SplatFill: 3D Scene Inpainting via Depth-Guided Gaussian Splatting
3D Gaussian Splatting (3DGS) has enabled the creation of highly realistic 3D scene representations from sets of multi-view images. However, inpainting missing regions, whether due to occlusion or scene editing, remains a challenging task, often leading to blurry details, artifacts, and inconsistent geometry. In this work, we introduce SplatFill, a novel depth-guided approach for 3DGS scene inpainting that achieves state-of-the-art perceptual quality and improved efficiency. Our method combines two key ideas: (1) joint depth-based and object-based supervision to ensure inpainted Gaussians are accurately placed in 3D space and aligned with surrounding geometry, and (2) we propose a consistency-aware refinement scheme that selectively identifies and corrects inconsistent regions without disrupting the rest of the scene. Evaluations on the SPIn-NeRF dataset demonstrate that SplatFill not only surpasses existing NeRF-based and 3DGS-based inpainting methods in visual fidelity but also reduces training time by 24.5%. Qualitative results show our method delivers sharper details, fewer artifacts, and greater coherence across challenging viewpoints.
☆ Faster, Self-Supervised Super-Resolution for Anisotropic Multi-View MRI Using a Sparse Coordinate Loss
Acquiring images in high resolution is often a challenging task. Especially in the medical sector, image quality has to be balanced with acquisition time and patient comfort. To strike a compromise between scan time and quality for Magnetic Resonance (MR) imaging, two anisotropic scans with different low-resolution (LR) orientations can be acquired. Typically, LR scans are analyzed individually by radiologists, which is time consuming and can lead to inaccurate interpretation. To tackle this, we propose a novel approach for fusing two orthogonal anisotropic LR MR images to reconstruct anatomical details in a unified representation. Our multi-view neural network is trained in a self-supervised manner, without requiring corresponding high-resolution (HR) data. To optimize the model, we introduce a sparse coordinate-based loss, enabling the integration of LR images with arbitrary scaling. We evaluate our method on MR images from two independent cohorts. Our results demonstrate comparable or even improved super-resolution (SR) performance compared to state-of-the-art (SOTA) self-supervised SR methods for different upsampling scales. By combining a patient-agnostic offline and a patient-specific online phase, we achieve a substantial speed-up of up to ten times for patient-specific reconstruction while achieving similar or better SR quality. Code is available at https://github.com/MajaSchle/tripleSR.
comment: 11 pages, 2 figures
☆ Enhanced SegNet with Integrated Grad-CAM for Interpretable Retinal Layer Segmentation in OCT Images
Optical Coherence Tomography (OCT) is essential for diagnosing conditions such as glaucoma, diabetic retinopathy, and age-related macular degeneration. Accurate retinal layer segmentation enables quantitative biomarkers critical for clinical decision-making, but manual segmentation is time-consuming and variable, while conventional deep learning models often lack interpretability. This work proposes an improved SegNet-based deep learning framework for automated and interpretable retinal layer segmentation. Architectural innovations, including modified pooling strategies, enhance feature extraction from noisy OCT images, while a hybrid loss function combining categorical cross-entropy and Dice loss improves performance for thin and imbalanced retinal layers. Gradient-weighted Class Activation Mapping (Grad-CAM) is integrated to provide visual explanations, allowing clinical validation of model decisions. Trained and validated on the Duke OCT dataset, the framework achieved 95.77% validation accuracy, a Dice coefficient of 0.9446, and a Jaccard Index (IoU) of 0.8951. Class-wise results confirmed robust performance across most layers, with challenges remaining for thinner boundaries. Grad-CAM visualizations highlighted anatomically relevant regions, aligning segmentation with clinical biomarkers and improving transparency. By combining architectural improvements, a customized hybrid loss, and explainable AI, this study delivers a high-performing SegNet-based framework that bridges the gap between accuracy and interpretability. The approach offers strong potential for standardizing OCT analysis, enhancing diagnostic efficiency, and fostering clinical trust in AI-driven ophthalmic tools.
☆ RayGaussX: Accelerating Gaussian-Based Ray Marching for Real-Time and High-Quality Novel View Synthesis
RayGauss has achieved state-of-the-art rendering quality for novel-view synthesis on synthetic and indoor scenes by representing radiance and density fields with irregularly distributed elliptical basis functions, rendered via volume ray casting using a Bounding Volume Hierarchy (BVH). However, its computational cost prevents real-time rendering on real-world scenes. Our approach, RayGaussX, builds on RayGauss by introducing key contributions that accelerate both training and inference. Specifically, we incorporate volumetric rendering acceleration strategies such as empty-space skipping and adaptive sampling, enhance ray coherence, and introduce scale regularization to reduce false-positive intersections. Additionally, we propose a new densification criterion that improves density distribution in distant regions, leading to enhanced graphical quality on larger scenes. As a result, RayGaussX achieves 5x to 12x faster training and 50x to 80x higher rendering speeds (FPS) on real-world datasets while improving visual quality by up to +0.56 dB in PSNR. Project page with videos and code: https://raygaussx.github.io/.
comment: Project page with videos and code: https://raygaussx.github.io/
☆ HairGS: Hair Strand Reconstruction based on 3D Gaussian Splatting BMVC 2025
Human hair reconstruction is a challenging problem in computer vision, with growing importance for applications in virtual reality and digital human modeling. Recent advances in 3D Gaussians Splatting (3DGS) provide efficient and explicit scene representations that naturally align with the structure of hair strands. In this work, we extend the 3DGS framework to enable strand-level hair geometry reconstruction from multi-view images. Our multi-stage pipeline first reconstructs detailed hair geometry using a differentiable Gaussian rasterizer, then merges individual Gaussian segments into coherent strands through a novel merging scheme, and finally refines and grows the strands under photometric supervision. While existing methods typically evaluate reconstruction quality at the geometric level, they often neglect the connectivity and topology of hair strands. To address this, we propose a new evaluation metric that serves as a proxy for assessing topological accuracy in strand reconstruction. Extensive experiments on both synthetic and real-world datasets demonstrate that our method robustly handles a wide range of hairstyles and achieves efficient reconstruction, typically completing within one hour. The project page can be found at: https://yimin-pan.github.io/hair-gs/
comment: This is the arXiv preprint of the paper "Hair Strand Reconstruction based on 3D Gaussian Splatting" published at BMVC 2025. Project website: https://yimin-pan.github.io/hair-gs/
☆ XSRD-Net: EXplainable Stroke Relapse Detection
Stroke is the second most frequent cause of death world wide with an annual mortality of around 5.5 million. Recurrence rates of stroke are between 5 and 25% in the first year. As mortality rates for relapses are extraordinarily high (40%) it is of utmost importance to reduce the recurrence rates. We address this issue by detecting patients at risk of stroke recurrence at an early stage in order to enable appropriate therapy planning. To this end we collected 3D intracranial CTA image data and recorded concomitant heart diseases, the age and the gender of stroke patients between 2010 and 2024. We trained single- and multimodal deep learning based neural networks for binary relapse detection (Task 1) and for relapse free survival (RFS) time prediction together with a subsequent classification (Task 2). The separation of relapse from non-relapse patients (Task 1) could be solved with tabular data (AUC on test dataset: 0.84). However, for the main task, the regression (Task 2), our multimodal XSRD-net processed the modalities vision:tabular with 0.68:0.32 according to modality contribution measures. The c-index with respect to relapses for the multimodal model reached 0.68, and the AUC is 0.71 for the test dataset. Final, deeper interpretability analysis results could highlight a link between both heart diseases (tabular) and carotid arteries (vision) for the detection of relapses and the prediction of the RFS time. This is a central outcome that we strive to strengthen with ongoing data collection and model retraining.
comment: Contribution to MICAD 2025 conference, Nov. 19-21, 2025 | London, UK
☆ Spectral and Rhythm Feature Performance Evaluation for Category and Class Level Audio Classification with Deep Convolutional Neural Networks
Next to decision tree and k-nearest neighbours algorithms deep convolutional neural networks (CNNs) are widely used to classify audio data in many domains like music, speech or environmental sounds. To train a specific CNN various spectral and rhythm features like mel-scaled spectrograms, mel-frequency cepstral coefficients (MFCC), cyclic tempograms, short-time Fourier transform (STFT) chromagrams, constant-Q transform (CQT) chromagrams and chroma energy normalized statistics (CENS) chromagrams can be used as digital image input data for the neural network. The performance of these spectral and rhythm features for audio category level as well as audio class level classification is investigated in detail with a deep CNN and the ESC-50 dataset with 2,000 labeled environmental audio recordings using an end-to-end deep learning pipeline. The evaluated metrics accuracy, precision, recall and F1 score for multiclass classification clearly show that the mel-scaled spectrograms and the mel-frequency cepstral coefficients (MFCC) perform significantly better then the other spectral and rhythm features investigated in this research for audio classification tasks using deep CNNs.
☆ Enhancing Online Learning by Integrating Biosensors and Multimodal Learning Analytics for Detecting and Predicting Student Behavior: A Review
In modern online learning, understanding and predicting student behavior is crucial for enhancing engagement and optimizing educational outcomes. This systematic review explores the integration of biosensors and Multimodal Learning Analytics (MmLA) to analyze and predict student behavior during computer-based learning sessions. We examine key challenges, including emotion and attention detection, behavioral analysis, experimental design, and demographic considerations in data collection. Our study highlights the growing role of physiological signals, such as heart rate, brain activity, and eye-tracking, combined with traditional interaction data and self-reports to gain deeper insights into cognitive states and engagement levels. We synthesize findings from 54 key studies, analyzing commonly used methodologies such as advanced machine learning algorithms and multimodal data pre-processing techniques. The review identifies current research trends, limitations, and emerging directions in the field, emphasizing the transformative potential of biosensor-driven adaptive learning systems. Our findings suggest that integrating multimodal data can facilitate personalized learning experiences, real-time feedback, and intelligent educational interventions, ultimately advancing toward a more customized and adaptive online learning experience.
comment: Accepted for publication in Behaviour & Information Technology (Taylor & Francis). Final published version will be available soon at https://www.tandfonline.com/journals/tbit20
☆ SEEC: Segmentation-Assisted Multi-Entropy Models for Learned Lossless Image Compression
Recently, learned image compression has attracted considerable attention due to its superior performance over traditional methods. However, most existing approaches employ a single entropy model to estimate the probability distribution of pixel values across the entire image, which limits their ability to capture the diverse statistical characteristics of different semantic regions. To overcome this limitation, we propose Segmentation-Assisted Multi-Entropy Models for Lossless Image Compression (SEEC). Our framework utilizes semantic segmentation to guide the selection and adaptation of multiple entropy models, enabling more accurate probability distribution estimation for distinct semantic regions. Specifically, SEEC first extracts image features and then applies semantic segmentation to identify different regions, each assigned a specialized entropy model to better capture its unique statistical properties. Finally, a multi-channel discrete logistic mixture likelihood is employed to model the pixel value distributions effectively. Experimental results on benchmark datasets demonstrate that SEEC achieves state-of-the-art compression ratios while introducing only minimal encoding and decoding latency. With superior performance, the proposed model also supports Regions of Interest (ROIs) coding condition on the provided segmentation mask. Our code is available at https://github.com/chunbaobao/SEEC.
comment: under review
☆ Understanding Ice Crystal Habit Diversity with Self-Supervised Learning
Ice-containing clouds strongly impact climate, but they are hard to model due to ice crystal habit (i.e., shape) diversity. We use self-supervised learning (SSL) to learn latent representations of crystals from ice crystal imagery. By pre-training a vision transformer with many cloud particle images, we learn robust representations of crystal morphology, which can be used for various science-driven tasks. Our key contributions include (1) validating that our SSL approach can be used to learn meaningful representations, and (2) presenting a relevant application where we quantify ice crystal diversity with these latent representations. Our results demonstrate the power of SSL-driven representations to improve the characterization of ice crystals and subsequently constrain their role in Earth's climate system.
☆ Nearest Neighbor Projection Removal Adversarial Training
Deep neural networks have exhibited impressive performance in image classification tasks but remain vulnerable to adversarial examples. Standard adversarial training enhances robustness but typically fails to explicitly address inter-class feature overlap, a significant contributor to adversarial susceptibility. In this work, we introduce a novel adversarial training framework that actively mitigates inter-class proximity by projecting out inter-class dependencies from adversarial and clean samples in the feature space. Specifically, our approach first identifies the nearest inter-class neighbors for each adversarial sample and subsequently removes projections onto these neighbors to enforce stronger feature separability. Theoretically, we demonstrate that our proposed logits correction reduces the Lipschitz constant of neural networks, thereby lowering the Rademacher complexity, which directly contributes to improved generalization and robustness. Extensive experiments across standard benchmarks including CIFAR-10, CIFAR-100, and SVHN show that our method demonstrates strong performance that is competitive with leading adversarial training techniques, highlighting significant achievements in both robust and clean accuracy. Our findings reveal the importance of addressing inter-class feature proximity explicitly to bolster adversarial robustness in DNNs.
☆ EDFFDNet: Towards Accurate and Efficient Unsupervised Multi-Grid Image Registration
Previous deep image registration methods that employ single homography, multi-grid homography, or thin-plate spline often struggle with real scenes containing depth disparities due to their inherent limitations. To address this, we propose an Exponential-Decay Free-Form Deformation Network (EDFFDNet), which employs free-form deformation with an exponential-decay basis function. This design achieves higher efficiency and performs well in scenes with depth disparities, benefiting from its inherent locality. We also introduce an Adaptive Sparse Motion Aggregator (ASMA), which replaces the MLP motion aggregator used in previous methods. By transforming dense interactions into sparse ones, ASMA reduces parameters and improves accuracy. Additionally, we propose a progressive correlation refinement strategy that leverages global-local correlation patterns for coarse-to-fine motion estimation, further enhancing efficiency and accuracy. Experiments demonstrate that EDFFDNet reduces parameters, memory, and total runtime by 70.5%, 32.6%, and 33.7%, respectively, while achieving a 0.5 dB PSNR gain over the state-of-the-art method. With an additional local refinement stage,EDFFDNet-2 further improves PSNR by 1.06 dB while maintaining lower computational costs. Our method also demonstrates strong generalization ability across datasets, outperforming previous deep learning methods.
☆ Beyond Motion Cues and Structural Sparsity: Revisiting Small Moving Target Detection
Small moving target detection is crucial for many defense applications but remains highly challenging due to low signal-to-noise ratios, ambiguous visual cues, and cluttered backgrounds. In this work, we propose a novel deep learning framework that differs fundamentally from existing approaches, which often rely on target-specific features or motion cues and tend to lack robustness in complex environments. Our key insight is that small target detection and background discrimination are inherently coupled, even cluttered video backgrounds often exhibit strong low-rank structures that can serve as stable priors for detection. We reformulate the task as a tensor-based low-rank and sparse decomposition problem and conduct a theoretical analysis of the background, target, and noise components to guide model design. Building on these insights, we introduce TenRPCANet, a deep neural network that requires minimal assumptions about target characteristics. Specifically, we propose a tokenization strategy that implicitly enforces multi-order tensor low-rank priors through a self-attention mechanism. This mechanism captures both local and non-local self-similarity to model the low-rank background without relying on explicit iterative optimization. In addition, inspired by the sparse component update in tensor RPCA, we design a feature refinement module to enhance target saliency. The proposed method achieves state-of-the-art performance on two highly distinct and challenging tasks: multi-frame infrared small target detection and space object detection. These results demonstrate both the effectiveness and the generalizability of our approach.
☆ Semantic Watermarking Reinvented: Enhancing Robustness and Generation Quality with Fourier Integrity ICCV
Semantic watermarking techniques for latent diffusion models (LDMs) are robust against regeneration attacks, but often suffer from detection performance degradation due to the loss of frequency integrity. To tackle this problem, we propose a novel embedding method called Hermitian Symmetric Fourier Watermarking (SFW), which maintains frequency integrity by enforcing Hermitian symmetry. Additionally, we introduce a center-aware embedding strategy that reduces the vulnerability of semantic watermarking due to cropping attacks by ensuring robust information retention. To validate our approach, we apply these techniques to existing semantic watermarking schemes, enhancing their frequency-domain structures for better robustness and retrieval accuracy. Extensive experiments demonstrate that our methods achieve state-of-the-art verification and identification performance, surpassing previous approaches across various attack scenarios. Ablation studies confirm the impact of SFW on detection capabilities, the effectiveness of the center-aware embedding against cropping, and how message capacity influences identification accuracy. Notably, our method achieves the highest detection accuracy while maintaining superior image fidelity, as evidenced by FID and CLIP scores. Conclusively, our proposed SFW is shown to be an effective framework for balancing robustness and image fidelity, addressing the inherent trade-offs in semantic watermarking. Code available at https://github.com/thomas11809/SFWMark
comment: Accepted to the IEEE/CVF International Conference on Computer Vision (ICCV) 2025. Project page: https://thomas11809.github.io/SFWMark/ Code: https://github.com/thomas11809/SFWMark
Self-Supervised Cross-Encoder for Neurodegenerative Disease Diagnosis
Deep learning has shown significant potential in diagnosing neurodegenerative diseases from MRI data. However, most existing methods rely heavily on large volumes of labeled data and often yield representations that lack interpretability. To address both challenges, we propose a novel self-supervised cross-encoder framework that leverages the temporal continuity in longitudinal MRI scans for supervision. This framework disentangles learned representations into two components: a static representation, constrained by contrastive learning, which captures stable anatomical features; and a dynamic representation, guided by input-gradient regularization, which reflects temporal changes and can be effectively fine-tuned for downstream classification tasks. Experimental results on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset demonstrate that our method achieves superior classification accuracy and improved interpretability. Furthermore, the learned representations exhibit strong zero-shot generalization on the Open Access Series of Imaging Studies (OASIS) dataset and cross-task generalization on the Parkinson Progression Marker Initiative (PPMI) dataset. The code for the proposed method will be made publicly available.
☆ Data-Efficient Fine-Tuning of Vision-Language Models for Diagnosis of Alzheimer's Disease
Medical vision-language models (Med-VLMs) have shown impressive results in tasks such as report generation and visual question answering, but they still face several limitations. Most notably, they underutilize patient metadata and lack integration of clinical diagnostic knowledge. Moreover, most existing models are typically trained from scratch or fine-tuned on large-scale 2D image-text pairs, requiring extensive computational resources, and their effectiveness on 3D medical imaging is often limited due to the absence of structural information. To address these gaps, we propose a data-efficient fine-tuning pipeline to adapt 3D CT-based Med-VLMs for 3D MRI and demonstrate its application in Alzheimer's disease (AD) diagnosis. Our system introduces two key innovations. First, we convert structured metadata into synthetic reports, enriching textual input for improved image-text alignment. Second, we add an auxiliary token trained to predict the mini-mental state examination (MMSE) score, a widely used clinical measure of cognitive function that correlates with AD severity. This provides additional supervision for fine-tuning. Applying lightweight prompt tuning to both image and text modalities, our approach achieves state-of-the-art performance on two AD datasets using 1,500 training images, outperforming existing methods fine-tuned on 10,000 images. Code will be released upon publication.
☆ Bias in Gender Bias Benchmarks: How Spurious Features Distort Evaluation ICCV 2025
Gender bias in vision-language foundation models (VLMs) raises concerns about their safe deployment and is typically evaluated using benchmarks with gender annotations on real-world images. However, as these benchmarks often contain spurious correlations between gender and non-gender features, such as objects and backgrounds, we identify a critical oversight in gender bias evaluation: Do spurious features distort gender bias evaluation? To address this question, we systematically perturb non-gender features across four widely used benchmarks (COCO-gender, FACET, MIAP, and PHASE) and various VLMs to quantify their impact on bias evaluation. Our findings reveal that even minimal perturbations, such as masking just 10% of objects or weakly blurring backgrounds, can dramatically alter bias scores, shifting metrics by up to 175% in generative VLMs and 43% in CLIP variants. This suggests that current bias evaluations often reflect model responses to spurious features rather than gender bias, undermining their reliability. Since creating spurious feature-free benchmarks is fundamentally challenging, we recommend reporting bias metrics alongside feature-sensitivity measurements to enable a more reliable bias assessment.
comment: ICCV 2025
☆ Can SSD-Mamba2 Unlock Reinforcement Learning for End-to-End Motion Control?
End-to-end reinforcement learning for motion control promises unified perception-action policies that scale across embodiments and tasks, yet most deployed controllers are either blind (proprioception-only) or rely on fusion backbones with unfavorable compute-memory trade-offs. Recurrent controllers struggle with long-horizon credit assignment, and Transformer-based fusion incurs quadratic cost in token length, limiting temporal and spatial context. We present a vision-driven cross-modal RL framework built on SSD-Mamba2, a selective state-space backbone that applies state-space duality (SSD) to enable both recurrent and convolutional scanning with hardware-aware streaming and near-linear scaling. Proprioceptive states and exteroceptive observations (e.g., depth tokens) are encoded into compact tokens and fused by stacked SSD-Mamba2 layers. The selective state-space updates retain long-range dependencies with markedly lower latency and memory use than quadratic self-attention, enabling longer look-ahead, higher token resolution, and stable training under limited compute. Policies are trained end-to-end under curricula that randomize terrain and appearance and progressively increase scene complexity. A compact, state-centric reward balances task progress, energy efficiency, and safety. Across diverse motion-control scenarios, our approach consistently surpasses strong state-of-the-art baselines in return, safety (collisions and falls), and sample efficiency, while converging faster at the same compute budget. These results suggest that SSD-Mamba2 provides a practical fusion backbone for scalable, foresightful, and efficient end-to-end motion control.
comment: 4 figures and 6 tables
☆ Temporal Image Forensics: A Review and Critical Evaluation
Temporal image forensics is the science of estimating the age of a digital image. Usually, time-dependent traces (age traces) introduced by the image acquisition pipeline are exploited for this purpose. In this review, a comprehensive overview of the field of temporal image forensics based on time-dependent traces from the image acquisition pipeline is given. This includes a detailed insight into the properties of known age traces (i.e., in-field sensor defects and sensor dust) and temporal image forensics techniques. Another key aspect of this work is to highlight the problem of content bias and to illustrate how important eXplainable Artificial Intelligence methods are to verify the reliability of temporal image forensics techniques. Apart from reviewing material presented in previous works, in this review: (i) a new (probably more realistic) forensic setting is proposed; (ii) the main properties (growth rate and spatial distribution) of in-field sensor defects are verified; (iii) it is shown that a method proposed to utilize in-field sensor defects for image age approximation actually exploits other traces (most likely content bias); (iv) the features learned by a neural network dating palmprint images are further investigated; (v) it is shown how easily a neural network can be distracted from learning age traces. For this purpose, previous work is analyzed, re-implemented if required and experiments are conducted.
☆ Attention Maps in 3D Shape Classification for Dental Stage Estimation with Class Node Graph Attention Networks
Deep learning offers a promising avenue for automating many recognition tasks in fields such as medicine and forensics. However, the black-box nature of these models hinders their adoption in high-stakes applications where trust and accountability are required. For 3D shape recognition tasks in particular, this paper introduces the Class Node Graph Attention Network (CGAT) architecture to address this need. Applied to 3D meshes of third molars derived from CBCT images, for Demirjian stage allocation, CGAT utilizes graph attention convolutions and an inherent attention mechanism, visualized via attention rollout, to explain its decision-making process. We evaluated the local mean curvature and distance to centroid node features, both individually and in combination, as well as model depth, finding that models incorporating directed edges to a global CLS node produced more intuitive attention maps, while also yielding desirable classification performance. We analyzed the attention-based explanations of the models, and their predictive performances to propose optimal settings for the CGAT. The combination of local mean curvature and distance to centroid as node features yielded a slight performance increase with 0.76 weighted F1 score, and more comprehensive attention visualizations. The CGAT architecture's ability to generate human-understandable attention maps can enhance trust and facilitate expert validation of model decisions. While demonstrated on dental data, CGAT is broadly applicable to graph-based classification and regression tasks, promoting wider adoption of transparent and competitive deep learning models in high-stakes environments.
comment: 25 pages, 8 figures, 2nd International Conference on Explainable AI for Neural or Symbolic Methods
☆ PanoLAM: Large Avatar Model for Gaussian Full-Head Synthesis from One-shot Unposed Image
We present a feed-forward framework for Gaussian full-head synthesis from a single unposed image. Unlike previous work that relies on time-consuming GAN inversion and test-time optimization, our framework can reconstruct the Gaussian full-head model given a single unposed image in a single forward pass. This enables fast reconstruction and rendering during inference. To mitigate the lack of large-scale 3D head assets, we propose a large-scale synthetic dataset from trained 3D GANs and train our framework using only synthetic data. For efficient high-fidelity generation, we introduce a coarse-to-fine Gaussian head generation pipeline, where sparse points from the FLAME model interact with the image features by transformer blocks for feature extraction and coarse shape reconstruction, which are then densified for high-fidelity reconstruction. To fully leverage the prior knowledge residing in pretrained 3D GANs for effective reconstruction, we propose a dual-branch framework that effectively aggregates the structured spherical triplane feature and unstructured point-based features for more effective Gaussian head reconstruction. Experimental results show the effectiveness of our framework towards existing work.
☆ TextlessRAG: End-to-End Visual Document RAG by Speech Without Text
Document images encapsulate a wealth of knowledge, while the portability of spoken queries enables broader and flexible application scenarios. Yet, no prior work has explored knowledge base question answering over visual document images with queries provided directly in speech. We propose TextlessRAG, the first end-to-end framework for speech-based question answering over large-scale document images. Unlike prior methods, TextlessRAG eliminates ASR, TTS and OCR, directly interpreting speech, retrieving relevant visual knowledge, and generating answers in a fully textless pipeline. To further boost performance, we integrate a layout-aware reranking mechanism to refine retrieval. Experiments demonstrate substantial improvements in both efficiency and accuracy. To advance research in this direction, we also release the first bilingual speech--document RAG dataset, featuring Chinese and English voice queries paired with multimodal document content. Both the dataset and our pipeline will be made available at repository:https://github.com/xiepeijinhit-hue/textlessrag
comment: 5 pages, 4 figures,
☆ HU-based Foreground Masking for 3D Medical Masked Image Modeling MICCAI
While Masked Image Modeling (MIM) has revolutionized fields of computer vision, its adoption in 3D medical image computing has been limited by the use of random masking, which overlooks the density of anatomical objects. To address this limitation, we enhance the pretext task with a simple yet effective masking strategy. Leveraging Hounsfield Unit (HU) measurements, we implement an HU-based Foreground Masking, which focuses on the intensity distribution of visceral organs and excludes non-tissue regions, such as air and fluid, that lack diagnostically meaningful features. Extensive experiments on five public 3D medical imaging datasets demonstrate that our masking consistently improves performance, both in quality of segmentation and Dice score (BTCV:~84.64\%, Flare22:~92.43\%, MM-WHS:~90.67\%, Amos22:~88.64\%, BraTS:~78.55\%). These results underscore the importance of domain-centric MIM and suggest a promising direction for representation learning in medical image segmentation. Implementation is available at github.com/AISeedHub/SubFore/.
comment: Accepted by MICCAI AMAI Workshop 2025
☆ Universal Few-Shot Spatial Control for Diffusion Models
Spatial conditioning in pretrained text-to-image diffusion models has significantly improved fine-grained control over the structure of generated images. However, existing control adapters exhibit limited adaptability and incur high training costs when encountering novel spatial control conditions that differ substantially from the training tasks. To address this limitation, we propose Universal Few-Shot Control (UFC), a versatile few-shot control adapter capable of generalizing to novel spatial conditions. Given a few image-condition pairs of an unseen task and a query condition, UFC leverages the analogy between query and support conditions to construct task-specific control features, instantiated by a matching mechanism and an update on a small set of task-specific parameters. Experiments on six novel spatial control tasks show that UFC, fine-tuned with only 30 annotated examples of novel tasks, achieves fine-grained control consistent with the spatial conditions. Notably, when fine-tuned with 0.1% of the full training data, UFC achieves competitive performance with the fully supervised baselines in various control tasks. We also show that UFC is applicable agnostically to various diffusion backbones and demonstrate its effectiveness on both UNet and DiT architectures. Code is available at https://github.com/kietngt00/UFC.
☆ EHWGesture -- A dataset for multimodal understanding of clinical gestures ICCV 2025
Hand gesture understanding is essential for several applications in human-computer interaction, including automatic clinical assessment of hand dexterity. While deep learning has advanced static gesture recognition, dynamic gesture understanding remains challenging due to complex spatiotemporal variations. Moreover, existing datasets often lack multimodal and multi-view diversity, precise ground-truth tracking, and an action quality component embedded within gestures. This paper introduces EHWGesture, a multimodal video dataset for gesture understanding featuring five clinically relevant gestures. It includes over 1,100 recordings (6 hours), captured from 25 healthy subjects using two high-resolution RGB-Depth cameras and an event camera. A motion capture system provides precise ground-truth hand landmark tracking, and all devices are spatially calibrated and synchronized to ensure cross-modal alignment. Moreover, to embed an action quality task within gesture understanding, collected recordings are organized in classes of execution speed that mirror clinical evaluations of hand dexterity. Baseline experiments highlight the dataset's potential for gesture classification, gesture trigger detection, and action quality assessment. Thus, EHWGesture can serve as a comprehensive benchmark for advancing multimodal clinical gesture understanding.
comment: Accepted at ICCV 2025 Workshop on AI-driven Skilled Activity Understanding, Assessment & Feedback Generation
☆ Neural Cone Radiosity for Interactive Global Illumination with Glossy Materials
Modeling of high-frequency outgoing radiance distributions has long been a key challenge in rendering, particularly for glossy material. Such distributions concentrate radiative energy within a narrow lobe and are highly sensitive to changes in view direction. However, existing neural radiosity methods, which primarily rely on positional feature encoding, exhibit notable limitations in capturing these high-frequency, strongly view-dependent radiance distributions. To address this, we propose a highly-efficient approach by reflectance-aware ray cone encoding based on the neural radiosity framework, named neural cone radiosity. The core idea is to employ a pre-filtered multi-resolution hash grid to accurately approximate the glossy BSDF lobe, embedding view-dependent reflectance characteristics directly into the encoding process through continuous spatial aggregation. Our design not only significantly improves the network's ability to model high-frequency reflection distributions but also effectively handles surfaces with a wide range of glossiness levels, from highly glossy to low-gloss finishes. Meanwhile, our method reduces the network's burden in fitting complex radiance distributions, allowing the overall architecture to remain compact and efficient. Comprehensive experimental results demonstrate that our method consistently produces high-quality, noise-free renderings in real time under various glossiness conditions, and delivers superior fidelity and realism compared to baseline approaches.
☆ MVAT: Multi-View Aware Teacher for Weakly Supervised 3D Object Detection WACV 2026
Annotating 3D data remains a costly bottleneck for 3D object detection, motivating the development of weakly supervised annotation methods that rely on more accessible 2D box annotations. However, relying solely on 2D boxes introduces projection ambiguities since a single 2D box can correspond to multiple valid 3D poses. Furthermore, partial object visibility under a single viewpoint setting makes accurate 3D box estimation difficult. We propose MVAT, a novel framework that leverages temporal multi-view present in sequential data to address these challenges. Our approach aggregates object-centric point clouds across time to build 3D object representations as dense and complete as possible. A Teacher-Student distillation paradigm is employed: The Teacher network learns from single viewpoints but targets are derived from temporally aggregated static objects. Then the Teacher generates high quality pseudo-labels that the Student learns to predict from a single viewpoint for both static and moving objects. The whole framework incorporates a multi-view 2D projection loss to enforce consistency between predicted 3D boxes and all available 2D annotations. Experiments on the nuScenes and Waymo Open datasets demonstrate that MVAT achieves state-of-the-art performance for weakly supervised 3D object detection, significantly narrowing the gap with fully supervised methods without requiring any 3D box annotations. % \footnote{Code available upon acceptance} Our code is available in our public repository (\href{https://github.com/CEA-LIST/MVAT}{code}).
comment: Accepted at WACV 2026
☆ Generating Transferrable Adversarial Examples via Local Mixing and Logits Optimization for Remote Sensing Object Recognition
Deep Neural Networks (DNNs) are vulnerable to adversarial attacks, posing significant security threats to their deployment in remote sensing applications. Research on adversarial attacks not only reveals model vulnerabilities but also provides critical insights for enhancing robustness. Although current mixing-based strategies have been proposed to increase the transferability of adversarial examples, they either perform global blending or directly exchange a region in the images, which may destroy global semantic features and mislead the optimization of adversarial examples. Furthermore, their reliance on cross-entropy loss for perturbation optimization leads to gradient diminishing during iterative updates, compromising adversarial example quality. To address these limitations, we focus on non-targeted attacks and propose a novel framework via local mixing and logits optimization. First, we present a local mixing strategy to generate diverse yet semantically consistent inputs. Different from MixUp, which globally blends two images, and MixCut, which stitches images together, our method merely blends local regions to preserve global semantic information. Second, we adapt the logit loss from targeted attacks to non-targeted scenarios, mitigating the gradient vanishing problem of cross-entropy loss. Third, a perturbation smoothing loss is applied to suppress high-frequency noise and enhance transferability. Extensive experiments on FGSCR-42 and MTARSI datasets demonstrate superior performance over 12 state-of-the-art methods across 6 surrogate models. Notably, with ResNet as the surrogate on MTARSI, our method achieves a 17.28% average improvement in black-box attack success rate.
☆ DiGS: Accurate and Complete Surface Reconstruction from 3D Gaussians via Direct SDF Learning
3D Gaussian Splatting (3DGS) has recently emerged as a powerful paradigm for photorealistic view synthesis, representing scenes with spatially distributed Gaussian primitives. While highly effective for rendering, achieving accurate and complete surface reconstruction remains challenging due to the unstructured nature of the representation and the absence of explicit geometric supervision. In this work, we propose DiGS, a unified framework that embeds Signed Distance Field (SDF) learning directly into the 3DGS pipeline, thereby enforcing strong and interpretable surface priors. By associating each Gaussian with a learnable SDF value, DiGS explicitly aligns primitives with underlying geometry and improves cross-view consistency. To further ensure dense and coherent coverage, we design a geometry-guided grid growth strategy that adaptively distributes Gaussians along geometry-consistent regions under a multi-scale hierarchy. Extensive experiments on standard benchmarks, including DTU, Mip-NeRF 360, and Tanks& Temples, demonstrate that DiGS consistently improves reconstruction accuracy and completeness while retaining high rendering fidelity.
☆ Fine-Tuning Vision-Language Models for Visual Navigation Assistance
We address vision-language-driven indoor navigation to assist visually impaired individuals in reaching a target location using images and natural language guidance. Traditional navigation systems are ineffective indoors due to the lack of precise location data. Our approach integrates vision and language models to generate step-by-step navigational instructions, enhancing accessibility and independence. We fine-tune the BLIP-2 model with Low Rank Adaptation (LoRA) on a manually annotated indoor navigation dataset. We propose an evaluation metric that refines the BERT F1 score by emphasizing directional and sequential variables, providing a more comprehensive measure of navigational performance. After applying LoRA, the model significantly improved in generating directional instructions, overcoming limitations in the original BLIP-2 model.
☆ LINR Bridge: Vector Graphic Animation via Neural Implicits and Video Diffusion Priors ICIP
Vector graphics, known for their scalability and user-friendliness, provide a unique approach to visual content compared to traditional pixel-based images. Animation of these graphics, driven by the motion of their elements, offers enhanced comprehensibility and controllability but often requires substantial manual effort. To automate this process, we propose a novel method that integrates implicit neural representations with text-to-video diffusion models for vector graphic animation. Our approach employs layered implicit neural representations to reconstruct vector graphics, preserving their inherent properties such as infinite resolution and precise color and shape constraints, which effectively bridges the large domain gap between vector graphics and diffusion models. The neural representations are then optimized using video score distillation sampling, which leverages motion priors from pretrained text-to-video diffusion models. Finally, the vector graphics are warped to match the representations resulting in smooth animation. Experimental results validate the effectiveness of our method in generating vivid and natural vector graphic animations, demonstrating significant improvement over existing techniques that suffer from limitations in flexibility and animation quality.
comment: 5 pages, ICIPW 2025, Website: https://gaowenshuo.github.io/LINR-bridge/
MedicalPatchNet: A Patch-Based Self-Explainable AI Architecture for Chest X-ray Classification
Deep neural networks excel in radiological image classification but frequently suffer from poor interpretability, limiting clinical acceptance. We present MedicalPatchNet, an inherently self-explainable architecture for chest X-ray classification that transparently attributes decisions to distinct image regions. MedicalPatchNet splits images into non-overlapping patches, independently classifies each patch, and aggregates predictions, enabling intuitive visualization of each patch's diagnostic contribution without post-hoc techniques. Trained on the CheXpert dataset (223,414 images), MedicalPatchNet matches the classification performance (AUROC 0.907 vs. 0.908) of EfficientNet-B0, while substantially improving interpretability: MedicalPatchNet demonstrates substantially improved interpretability with higher pathology localization accuracy (mean hit-rate 0.485 vs. 0.376 with Grad-CAM) on the CheXlocalize dataset. By providing explicit, reliable explanations accessible even to non-AI experts, MedicalPatchNet mitigates risks associated with shortcut learning, thus improving clinical trust. Our model is publicly available with reproducible training and inference scripts and contributes to safer, explainable AI-assisted diagnostics across medical imaging domains. We make the code publicly available: https://github.com/TruhnLab/MedicalPatchNet
☆ ANYPORTAL: Zero-Shot Consistent Video Background Replacement ICCV 2025
Despite the rapid advancements in video generation technology, creating high-quality videos that precisely align with user intentions remains a significant challenge. Existing methods often fail to achieve fine-grained control over video details, limiting their practical applicability. We introduce ANYPORTAL, a novel zero-shot framework for video background replacement that leverages pre-trained diffusion models. Our framework collaboratively integrates the temporal prior of video diffusion models with the relighting capabilities of image diffusion models in a zero-shot setting. To address the critical challenge of foreground consistency, we propose a Refinement Projection Algorithm, which enables pixel-level detail manipulation to ensure precise foreground preservation. ANYPORTAL is training-free and overcomes the challenges of achieving foreground consistency and temporally coherent relighting. Experimental results demonstrate that ANYPORTAL achieves high-quality results on consumer-grade GPUs, offering a practical and efficient solution for video content creation and editing.
comment: 8 pages, ICCV 2025, Website: https://gaowenshuo.github.io/AnyPortal/
☆ DepthVision: Robust Vision-Language Understanding through GAN-Based LiDAR-to-RGB Synthesis
Ensuring reliable robot operation when visual input is degraded or insufficient remains a central challenge in robotics. This letter introduces DepthVision, a framework for multimodal scene understanding designed to address this problem. Unlike existing Vision-Language Models (VLMs), which use only camera-based visual input alongside language, DepthVision synthesizes RGB images from sparse LiDAR point clouds using a conditional generative adversarial network (GAN) with an integrated refiner network. These synthetic views are then combined with real RGB data using a Luminance-Aware Modality Adaptation (LAMA), which blends the two types of data dynamically based on ambient lighting conditions. This approach compensates for sensor degradation, such as darkness or motion blur, without requiring any fine-tuning of downstream vision-language models. We evaluate DepthVision on real and simulated datasets across various models and tasks, with particular attention to safety-critical tasks. The results demonstrate that our approach improves performance in low-light conditions, achieving substantial gains over RGB-only baselines while preserving compatibility with frozen VLMs. This work highlights the potential of LiDAR-guided RGB synthesis for achieving robust robot operation in real-world environments.
☆ Bias-Aware Machine Unlearning: Towards Fairer Vision Models via Controllable Forgetting ICCV 2025
Deep neural networks often rely on spurious correlations in training data, leading to biased or unfair predictions in safety-critical domains such as medicine and autonomous driving. While conventional bias mitigation typically requires retraining from scratch or redesigning data pipelines, recent advances in machine unlearning provide a promising alternative for post-hoc model correction. In this work, we investigate \textit{Bias-Aware Machine Unlearning}, a paradigm that selectively removes biased samples or feature representations to mitigate diverse forms of bias in vision models. Building on privacy-preserving unlearning techniques, we evaluate various strategies including Gradient Ascent, LoRA, and Teacher-Student distillation. Through empirical analysis on three benchmark datasets, CUB-200-2011 (pose bias), CIFAR-10 (synthetic patch bias), and CelebA (gender bias in smile detection), we demonstrate that post-hoc unlearning can substantially reduce subgroup disparities, with improvements in demographic parity of up to \textbf{94.86\%} on CUB-200, \textbf{30.28\%} on CIFAR-10, and \textbf{97.37\%} on CelebA. These gains are achieved with minimal accuracy loss and with methods scoring an average of 0.62 across the 3 settings on the joint evaluation of utility, fairness, quality, and privacy. Our findings establish machine unlearning as a practical framework for enhancing fairness in deployed vision systems without necessitating full retraining.
comment: Accepted for publication at ICCV 2025 UnMe workshop
☆ XOCT: Enhancing OCT to OCTA Translation via Cross-Dimensional Supervised Multi-Scale Feature Learning MICCAI 2025
Optical Coherence Tomography Angiography (OCTA) and its derived en-face projections provide high-resolution visualization of the retinal and choroidal vasculature, which is critical for the rapid and accurate diagnosis of retinal diseases. However, acquiring high-quality OCTA images is challenging due to motion sensitivity and the high costs associated with software modifications for conventional OCT devices. Moreover, current deep learning methods for OCT-to-OCTA translation often overlook the vascular differences across retinal layers and struggle to reconstruct the intricate, dense vascular details necessary for reliable diagnosis. To overcome these limitations, we propose XOCT, a novel deep learning framework that integrates Cross-Dimensional Supervision (CDS) with a Multi-Scale Feature Fusion (MSFF) network for layer-aware vascular reconstruction. Our CDS module leverages 2D layer-wise en-face projections, generated via segmentation-weighted z-axis averaging, as supervisory signals to compel the network to learn distinct representations for each retinal layer through fine-grained, targeted guidance. Meanwhile, the MSFF module enhances vessel delineation through multi-scale feature extraction combined with a channel reweighting strategy, effectively capturing vascular details at multiple spatial scales. Our experiments on the OCTA-500 dataset demonstrate XOCT's improvements, especially for the en-face projections which are significant for clinical evaluation of retinal pathologies, underscoring its potential to enhance OCTA accessibility, reliability, and diagnostic value for ophthalmic disease detection and monitoring. The code is available at https://github.com/uci-cbcl/XOCT.
comment: 11 pages, 3 figures, Accepted to MICCAI 2025
☆ GLEAM: Learning to Match and Explain in Cross-View Geo-Localization
Cross-View Geo-Localization (CVGL) focuses on identifying correspondences between images captured from distinct perspectives of the same geographical location. However, existing CVGL approaches are typically restricted to a single view or modality, and their direct visual matching strategy lacks interpretability: they merely predict whether two images correspond, without explaining the rationale behind the match. In this paper, we present GLEAM-C, a foundational CVGL model that unifies multiple views and modalities-including UAV imagery, street maps, panoramic views, and ground photographs-by aligning them exclusively with satellite imagery. Our framework enhances training efficiency through optimized implementation while achieving accuracy comparable to prior modality-specific CVGL models through a two-phase training strategy. Moreover, to address the lack of interpretability in traditional CVGL methods, we leverage the reasoning capabilities of multimodal large language models (MLLMs) to propose a new task, GLEAM-X, which combines cross-view correspondence prediction with explainable reasoning. To support this task, we construct a bilingual benchmark using GPT-4o and Doubao-1.5-Thinking-Vision-Pro to generate training and testing data. The test set is further refined through detailed human revision, enabling systematic evaluation of explainable cross-view reasoning and advancing transparency and scalability in geo-localization. Together, GLEAM-C and GLEAM-X form a comprehensive CVGL pipeline that integrates multi-modal, multi-view alignment with interpretable correspondence analysis, unifying accurate cross-view matching with explainable reasoning and advancing Geo-Localization by enabling models to better Explain And Match. Code and datasets used in this work will be made publicly accessible at https://github.com/Lucky-Lance/GLEAM.
comment: 18 pages
☆ In the Eye of MLLM: Benchmarking Egocentric Video Intent Understanding with Gaze-Guided Prompting
The emergence of advanced multimodal large language models (MLLMs) has significantly enhanced AI assistants' ability to process complex information across modalities. Recently, egocentric videos, by directly capturing user focus, actions, and context in an unified coordinate, offer an exciting opportunity to enable proactive and personalized AI user experiences with MLLMs. However, existing benchmarks overlook the crucial role of gaze as an indicator of user intent. To address this gap, we introduce EgoGazeVQA, an egocentric gaze-guided video question answering benchmark that leverages gaze information to improve the understanding of longer daily-life videos. EgoGazeVQA consists of gaze-based QA pairs generated by MLLMs and refined by human annotators. Our experiments reveal that existing MLLMs struggle to accurately interpret user intentions. In contrast, our gaze-guided intent prompting methods significantly enhance performance by integrating spatial, temporal, and intent-related cues. We further conduct experiments on gaze-related fine-tuning and analyze how gaze estimation accuracy impacts prompting effectiveness. These results underscore the value of gaze for more personalized and effective AI assistants in egocentric settings.
☆ DreamLifting: A Plug-in Module Lifting MV Diffusion Models for 3D Asset Generation
The labor- and experience-intensive creation of 3D assets with physically based rendering (PBR) materials demands an autonomous 3D asset creation pipeline. However, most existing 3D generation methods focus on geometry modeling, either baking textures into simple vertex colors or leaving texture synthesis to post-processing with image diffusion models. To achieve end-to-end PBR-ready 3D asset generation, we present Lightweight Gaussian Asset Adapter (LGAA), a novel framework that unifies the modeling of geometry and PBR materials by exploiting multi-view (MV) diffusion priors from a novel perspective. The LGAA features a modular design with three components. Specifically, the LGAA Wrapper reuses and adapts network layers from MV diffusion models, which encapsulate knowledge acquired from billions of images, enabling better convergence in a data-efficient manner. To incorporate multiple diffusion priors for geometry and PBR synthesis, the LGAA Switcher aligns multiple LGAA Wrapper layers encapsulating different knowledge. Then, a tamed variational autoencoder (VAE), termed LGAA Decoder, is designed to predict 2D Gaussian Splatting (2DGS) with PBR channels. Finally, we introduce a dedicated post-processing procedure to effectively extract high-quality, relightable mesh assets from the resulting 2DGS. Extensive quantitative and qualitative experiments demonstrate the superior performance of LGAA with both text-and image-conditioned MV diffusion models. Additionally, the modular design enables flexible incorporation of multiple diffusion priors, and the knowledge-preserving scheme leads to efficient convergence trained on merely 69k multi-view instances. Our code, pre-trained weights, and the dataset used will be publicly available via our project page: https://zx-yin.github.io/dreamlifting/.
comment: 14 pages, 7 figures, project page: https://zx-yin.github.io/dreamlifting/
☆ A smart fridge with AI-enabled food computing
The Internet of Things (IoT) plays a crucial role in enabling seamless connectivity and intelligent home automation, particularly in food management. By integrating IoT with computer vision, the smart fridge employs an ESP32-CAM to establish a monitoring subsystem that enhances food management efficiency through real-time food detection, inventory tracking, and temperature monitoring. This benefits waste reduction, grocery planning improvement, and household consumption optimization. In high-density inventory conditions, capturing partial or layered images complicates object detection, as overlapping items and occluded views hinder accurate identification and counting. Besides, varied angles and obscured details in multi-layered setups reduce algorithm reliability, often resulting in miscounts or misclassifications. Our proposed system is structured into three core modules: data pre-processing, object detection and management, and a web-based visualization. To address the challenge of poor model calibration caused by overconfident predictions, we implement a variant of focal loss that mitigates over-confidence and under-confidence in multi-category classification. This approach incorporates adaptive, class-wise error calibration via temperature scaling and evaluates the distribution of predicted probabilities across methods. Our results demonstrate that robust functional calibration significantly improves detection reliability under varying lighting conditions and scalability challenges. Further analysis demonstrates a practical, user-focused approach to modern food management, advancing sustainable living goals through reduced waste and more informed consumption.
☆ EfficientNet in Digital Twin-based Cardiac Arrest Prediction and Analysis
Cardiac arrest is one of the biggest global health problems, and early identification and management are key to enhancing the patient's prognosis. In this paper, we propose a novel framework that combines an EfficientNet-based deep learning model with a digital twin system to improve the early detection and analysis of cardiac arrest. We use compound scaling and EfficientNet to learn the features of cardiovascular images. In parallel, the digital twin creates a realistic and individualized cardiovascular system model of the patient based on data received from the Internet of Things (IoT) devices attached to the patient, which can help in the constant assessment of the patient and the impact of possible treatment plans. As shown by our experiments, the proposed system is highly accurate in its prediction abilities and, at the same time, efficient. Combining highly advanced techniques such as deep learning and digital twin (DT) technology presents the possibility of using an active and individual approach to predicting cardiac disease.
☆ Parse Graph-Based Visual-Language Interaction for Human Pose Estimation
Parse graphs boost human pose estimation (HPE) by integrating context and hierarchies, yet prior work mostly focuses on single modality modeling, ignoring the potential of multimodal fusion. Notably, language offers rich HPE priors like spatial relations for occluded scenes, but existing visual-language fusion via global feature integration weakens occluded region responses and causes alignment and location failures. To address this issue, we propose Parse Graph-based Visual-Language interaction (PGVL) with a core novel Guided Module (GM). In PGVL, low-level nodes focus on local features, maximizing the maintenance of responses in occluded areas and high-level nodes integrate global features to infer occluded or invisible parts. GM enables high semantic nodes to guide the feature update of low semantic nodes that have undergone cross attention. It ensuring effective fusion of diverse information. PGVL includes top-down decomposition and bottom-up composition. In the first stage, modality specific parse graphs are constructed. Next stage. recursive bidirectional cross-attention is used, purified by GM. We also design network based on PGVL. The PGVL and our network is validated on major pose estimation datasets. We will release the code soon.
☆ G3CN: Gaussian Topology Refinement Gated Graph Convolutional Network for Skeleton-Based Action Recognition IROS
Graph Convolutional Networks (GCNs) have proven to be highly effective for skeleton-based action recognition, primarily due to their ability to leverage graph topology for feature aggregation, a key factor in extracting meaningful representations. However, despite their success, GCNs often struggle to effectively distinguish between ambiguous actions, revealing limitations in the representation of learned topological and spatial features. To address this challenge, we propose a novel approach, Gaussian Topology Refinement Gated Graph Convolution (G$^{3}$CN), to address the challenge of distinguishing ambiguous actions in skeleton-based action recognition. G$^{3}$CN incorporates a Gaussian filter to refine the skeleton topology graph, improving the representation of ambiguous actions. Additionally, Gated Recurrent Units (GRUs) are integrated into the GCN framework to enhance information propagation between skeleton points. Our method shows strong generalization across various GCN backbones. Extensive experiments on NTU RGB+D, NTU RGB+D 120, and NW-UCLA benchmarks demonstrate that G$^{3}$CN effectively improves action recognition, particularly for ambiguous samples.
comment: 8 pages, 5 figures, IROS
☆ DEPF: A UAV Multispectral Object Detector with Dual-Domain Enhancement and Priority-Guided Mamba Fusion
Multispectral remote sensing object detection is one of the important application of unmanned aerial vehicle (UAV). However, it faces three challenges. Firstly, the low-light remote sensing images reduce the complementarity during multi-modality fusion. Secondly, the local small target modeling is interfered with redundant information in the fusion stage easily. Thirdly, due to the quadratic computational complexity, it is hard to apply the transformer-based methods on the UAV platform. To address these limitations, motivated by Mamba with linear complexity, a UAV multispectral object detector with dual-domain enhancement and priority-guided mamba fusion (DEPF) is proposed. Firstly, to enhance low-light remote sensing images, Dual-Domain Enhancement Module (DDE) is designed, which contains Cross-Scale Wavelet Mamba (CSWM) and Fourier Details Recovery block (FDR). CSWM applies cross-scale mamba scanning for the low-frequency components to enhance the global brightness of images, while FDR constructs spectrum recovery network to enhance the frequency spectra features for recovering the texture-details. Secondly, to enhance local target modeling and reduce the impact of redundant information during fusion, Priority-Guided Mamba Fusion Module (PGMF) is designed. PGMF introduces the concept of priority scanning, which starts from local targets features according to the priority scores obtained from modality difference. Experiments on DroneVehicle dataset and VEDAI dataset reports that, DEPF performs well on object detection, comparing with state-of-the-art methods. Our code is available in the supplementary material.
☆ Quadrotor Navigation using Reinforcement Learning with Privileged Information
This paper presents a reinforcement learning-based quadrotor navigation method that leverages efficient differentiable simulation, novel loss functions, and privileged information to navigate around large obstacles. Prior learning-based methods perform well in scenes that exhibit narrow obstacles, but struggle when the goal location is blocked by large walls or terrain. In contrast, the proposed method utilizes time-of-arrival (ToA) maps as privileged information and a yaw alignment loss to guide the robot around large obstacles. The policy is evaluated in photo-realistic simulation environments containing large obstacles, sharp corners, and dead-ends. Our approach achieves an 86% success rate and outperforms baseline strategies by 34%. We deploy the policy onboard a custom quadrotor in outdoor cluttered environments both during the day and night. The policy is validated across 20 flights, covering 589 meters without collisions at speeds up to 4 m/s.
☆ APML: Adaptive Probabilistic Matching Loss for Robust 3D Point Cloud Reconstruction
Training deep learning models for point cloud prediction tasks such as shape completion and generation depends critically on loss functions that measure discrepancies between predicted and ground-truth point sets. Commonly used functions such as Chamfer Distance (CD), HyperCD, and InfoCD rely on nearest-neighbor assignments, which often induce many-to-one correspondences, leading to point congestion in dense regions and poor coverage in sparse regions. These losses also involve non-differentiable operations due to index selection, which may affect gradient-based optimization. Earth Mover Distance (EMD) enforces one-to-one correspondences and captures structural similarity more effectively, but its cubic computational complexity limits its practical use. We propose the Adaptive Probabilistic Matching Loss (APML), a fully differentiable approximation of one-to-one matching that leverages Sinkhorn iterations on a temperature-scaled similarity matrix derived from pairwise distances. We analytically compute the temperature to guarantee a minimum assignment probability, eliminating manual tuning. APML achieves near-quadratic runtime, comparable to Chamfer-based losses, and avoids non-differentiable operations. When integrated into state-of-the-art architectures (PoinTr, PCN, FoldingNet) on ShapeNet benchmarks and on a spatiotemporal Transformer (CSI2PC) that generates 3D human point clouds from WiFi CSI measurements, APM loss yields faster convergence, superior spatial distribution, especially in low-density regions, and improved or on-par quantitative performance without additional hyperparameter search. The code is available at: https://github.com/apm-loss/apml.
comment: 22 pages, 6 figures, conference, 7 tables, 15 formulas
☆ MCTED: A Machine-Learning-Ready Dataset for Digital Elevation Model Generation From Mars Imagery
This work presents a new dataset for the Martian digital elevation model prediction task, ready for machine learning applications called MCTED. The dataset has been generated using a comprehensive pipeline designed to process high-resolution Mars orthoimage and DEM pairs from Day et al., yielding a dataset consisting of 80,898 data samples. The source images are data gathered by the Mars Reconnaissance Orbiter using the CTX instrument, providing a very diverse and comprehensive coverage of the Martian surface. Given the complexity of the processing pipelines used in large-scale DEMs, there are often artefacts and missing data points in the original data, for which we developed tools to solve or mitigate their impact. We divide the processed samples into training and validation splits, ensuring samples in both splits cover no mutual areas to avoid data leakage. Every sample in the dataset is represented by the optical image patch, DEM patch, and two mask patches, indicating values that were originally missing or were altered by us. This allows future users of the dataset to handle altered elevation regions as they please. We provide statistical insights of the generated dataset, including the spatial distribution of samples, the distributions of elevation values, slopes and more. Finally, we train a small U-Net architecture on the MCTED dataset and compare its performance to a monocular depth estimation foundation model, DepthAnythingV2, on the task of elevation prediction. We find that even a very small architecture trained on this dataset specifically, beats a zero-shot performance of a depth estimation foundation model like DepthAnythingV2. We make the dataset and code used for its generation completely open source in public repositories.
comment: 22 pages, 21 figures
☆ Two-Stage Swarm Intelligence Ensemble Deep Transfer Learning (SI-EDTL) for Vehicle Detection Using Unmanned Aerial Vehicles
This paper introduces SI-EDTL, a two-stage swarm intelligence ensemble deep transfer learning model for detecting multiple vehicles in UAV images. It combines three pre-trained Faster R-CNN feature extractor models (InceptionV3, ResNet50, GoogLeNet) with five transfer classifiers (KNN, SVM, MLP, C4.5, Na\"ive Bayes), resulting in 15 different base learners. These are aggregated via weighted averaging to classify regions as Car, Van, Truck, Bus, or background. Hyperparameters are optimized with the whale optimization algorithm to balance accuracy, precision, and recall. Implemented in MATLAB R2020b with parallel processing, SI-EDTL outperforms existing methods on the AU-AIR UAV dataset.
☆ Two Stage Context Learning with Large Language Models for Multimodal Stance Detection on Climate Change
With the rapid proliferation of information across digital platforms, stance detection has emerged as a pivotal challenge in social media analysis. While most of the existing approaches focus solely on textual data, real-world social media content increasingly combines text with visual elements creating a need for advanced multimodal methods. To address this gap, we propose a multimodal stance detection framework that integrates textual and visual information through a hierarchical fusion approach. Our method first employs a Large Language Model to retrieve stance-relevant summaries from source text, while a domain-aware image caption generator interprets visual content in the context of the target topic. These modalities are then jointly modeled along with the reply text, through a specialized transformer module that captures interactions between the texts and images. The proposed modality fusion framework integrates diverse modalities to facilitate robust stance classification. We evaluate our approach on the MultiClimate dataset, a benchmark for climate change-related stance detection containing aligned video frames and transcripts. We achieve accuracy of 76.2%, precision of 76.3%, recall of 76.2% and F1-score of 76.2%, respectively, outperforming existing state-of-the-art approaches.
☆ Enhancing Privacy Preservation and Reducing Analysis Time with Federated Transfer Learning in Digital Twins-based Computed Tomography Scan Analysis
The application of Digital Twin (DT) technology and Federated Learning (FL) has great potential to change the field of biomedical image analysis, particularly for Computed Tomography (CT) scans. This paper presents Federated Transfer Learning (FTL) as a new Digital Twin-based CT scan analysis paradigm. FTL uses pre-trained models and knowledge transfer between peer nodes to solve problems such as data privacy, limited computing resources, and data heterogeneity. The proposed framework allows real-time collaboration between cloud servers and Digital Twin-enabled CT scanners while protecting patient identity. We apply the FTL method to a heterogeneous CT scan dataset and assess model performance using convergence time, model accuracy, precision, recall, F1 score, and confusion matrix. It has been shown to perform better than conventional FL and Clustered Federated Learning (CFL) methods with better precision, accuracy, recall, and F1-score. The technique is beneficial in settings where the data is not independently and identically distributed (non-IID), and it offers reliable, efficient, and secure solutions for medical diagnosis. These findings highlight the possibility of using FTL to improve decision-making in digital twin-based CT scan analysis, secure and efficient medical image analysis, promote privacy, and open new possibilities for applying precision medicine and smart healthcare systems.
☆ Video Parallel Scaling: Aggregating Diverse Frame Subsets for VideoLLMs
Video Large Language Models (VideoLLMs) face a critical bottleneck: increasing the number of input frames to capture fine-grained temporal detail leads to prohibitive computational costs and performance degradation from long context lengths. We introduce Video Parallel Scaling (VPS), an inference-time method that expands a model's perceptual bandwidth without increasing its context window. VPS operates by running multiple parallel inference streams, each processing a unique, disjoint subset of the video's frames. By aggregating the output probabilities from these complementary streams, VPS integrates a richer set of visual information than is possible with a single pass. We theoretically show that this approach effectively contracts the Chinchilla scaling law by leveraging uncorrelated visual evidence, thereby improving performance without additional training. Extensive experiments across various model architectures and scales (2B-32B) on benchmarks such as Video-MME and EventHallusion demonstrate that VPS consistently and significantly improves performance. It scales more favorably than other parallel alternatives (e.g. Self-consistency) and is complementary to other decoding strategies, offering a memory-efficient and robust framework for enhancing the temporal reasoning capabilities of VideoLLMs.
comment: https://github.com/hyungjin-chung/VPS
♻ ☆ MaRVL-QA: A Benchmark for Mathematical Reasoning over Visual Landscapes
A key frontier for Multimodal Large Language Models (MLLMs) is the ability to perform deep mathematical and spatial reasoning directly from images, moving beyond their established success in semantic description. Mathematical surface plots provide a rigorous testbed for this capability, as they isolate the task of reasoning from the semantic noise common in natural images. To measure progress on this frontier, we introduce MaRVL-QA (Mathematical Reasoning over Visual Landscapes), a new benchmark designed to quantitatively evaluate these core reasoning skills. The benchmark comprises two novel tasks: Topological Counting, identifying and enumerating features like local maxima; and Transformation Recognition, recognizing applied geometric transformations. Generated from a curated library of functions with rigorous ambiguity filtering, our evaluation on MaRVL-QA reveals that even state-of-the-art MLLMs struggle significantly, often resorting to superficial heuristics instead of robust spatial reasoning. MaRVL-QA provides a challenging new tool for the research community to measure progress, expose model limitations, and guide the development of MLLMs with more profound reasoning abilities.
♻ ☆ Audio-centric Video Understanding Benchmark without Text Shortcut EMNLP 2025
Audio often serves as an auxiliary modality in video understanding tasks of audio-visual large language models (LLMs), merely assisting in the comprehension of visual information. However, a thorough understanding of videos significantly depends on auditory information, as audio offers critical context, emotional cues, and semantic meaning that visual data alone often lacks. This paper proposes an audio-centric video understanding benchmark (AVUT) to evaluate the video comprehension capabilities of multimodal LLMs with a particular focus on auditory information. AVUT introduces a suite of carefully designed audio-centric tasks, holistically testing the understanding of both audio content and audio-visual interactions in videos. Moreover, this work points out the text shortcut problem that largely exists in other benchmarks where the correct answer can be found from question text alone without needing videos. AVUT addresses this problem by proposing a answer permutation-based filtering mechanism. A thorough evaluation across a diverse range of open-source and proprietary multimodal LLMs is performed, followed by the analyses of deficiencies in audio-visual LLMs. Demos and data are available at https://github.com/lark-png/AVUT.
comment: Accepted for publication in the Proceedings of EMNLP 2025 (Main Conference)
♻ ☆ Hybrid-Regularized Magnitude Pruning for Robust Federated Learning under Covariate Shift
Federated Learning offers a solution for decentralised model training, addressing the difficulties associated with distributed data and privacy in machine learning. However, the fact of data heterogeneity in federated learning frequently hinders the global model's generalisation, leading to low performance and adaptability to unseen data. This problem is particularly critical for specialised applications such as medical imaging, where both the data and the number of clients are limited. In this paper, we empirically demonstrate that inconsistencies in client-side training distributions substantially degrade the performance of federated learning models across multiple benchmark datasets. We propose a novel FL framework using a combination of pruning and regularisation of clients' training to improve the sparsity, redundancy, and robustness of neural connections, and thereby the resilience to model aggregation. To address a relatively unexplored dimension of data heterogeneity, we further introduce a novel benchmark dataset, CelebA-Gender, specifically designed to control for within-class distributional shifts across clients based on attribute variations, thereby complementing the predominant focus on inter-class imbalance in prior federated learning research. Comprehensive experiments on many datasets like CIFAR-10, MNIST, and the newly introduced CelebA-Gender dataset demonstrate that our method consistently outperforms standard FL baselines, yielding more robust and generalizable models in heterogeneous settings.
♻ ☆ Missing Fine Details in Images: Last Seen in High Frequencies
Latent generative models have shown remarkable progress in high-fidelity image synthesis, typically using a two-stage training process that involves compressing images into latent embeddings via learned tokenizers in the first stage. The quality of generation strongly depends on how expressive and well-optimized these latent embeddings are. While various methods have been proposed to learn effective latent representations, generated images often lack realism, particularly in textured regions with sharp transitions, due to loss of fine details governed by high frequencies. We conduct a detailed frequency decomposition of existing state-of-the-art (SOTA) latent tokenizers and show that conventional objectives inherently prioritize low-frequency reconstruction, often at the expense of high-frequency fidelity. Our analysis reveals these latent tokenizers exhibit a bias toward low-frequency information during optimization, leading to over-smoothed outputs and visual artifacts that diminish perceptual quality. To address this, we propose a wavelet-based, frequency-aware variational autoencoder (FA-VAE) framework that explicitly decouples the optimization of low- and high-frequency components. This decoupling enables improved reconstruction of fine textures while preserving global structure. Moreover, we integrate our frequency-preserving latent embeddings into a SOTA latent diffusion model, resulting in sharper and more realistic image generation. Our approach bridges the fidelity gap in current latent tokenizers and emphasizes the importance of frequency-aware optimization for realistic image synthesis, with broader implications for applications in content creation, neural rendering, and medical imaging.
♻ ☆ Robust Adaptation of Large Multimodal Models for Retrieval Augmented Hateful Meme Detection EMNLP 2025
Hateful memes have become a significant concern on the Internet, necessitating robust automated detection systems. While Large Multimodal Models (LMMs) have shown promise in hateful meme detection, they face notable challenges like sub-optimal performance and limited out-of-domain generalization capabilities. Recent studies further reveal the limitations of both supervised fine-tuning (SFT) and in-context learning when applied to LMMs in this setting. To address these issues, we propose a robust adaptation framework for hateful meme detection that enhances in-domain accuracy and cross-domain generalization while preserving the general vision-language capabilities of LMMs. Analysis reveals that our approach achieves improved robustness under adversarial attacks compared to SFT models. Experiments on six meme classification datasets show that our approach achieves state-of-the-art performance, outperforming larger agentic systems. Moreover, our method generates higher-quality rationales for explaining hateful content compared to standard SFT, enhancing model interpretability. Code available at https://github.com/JingbiaoMei/RGCL
comment: EMNLP 2025 Main
♻ ☆ P3-SAM: Native 3D Part Segmentation
Segmenting 3D assets into their constituent parts is crucial for enhancing 3D understanding, facilitating model reuse, and supporting various applications such as part generation. However, current methods face limitations such as poor robustness when dealing with complex objects and cannot fully automate the process. In this paper, we propose a native 3D point-promptable part segmentation model termed P3-SAM, designed to fully automate the segmentation of any 3D objects into components. Inspired by SAM, P3-SAM consists of a feature extractor, multiple segmentation heads, and an IoU predictor, enabling interactive segmentation for users. We also propose an algorithm to automatically select and merge masks predicted by our model for part instance segmentation. Our model is trained on a newly built dataset containing nearly 3.7 million models with reasonable segmentation labels. Comparisons show that our method achieves precise segmentation results and strong robustness on any complex objects, attaining state-of-the-art performance. Our code will be released soon.
comment: Tech Report
♻ ☆ One Flight Over the Gap: A Survey from Perspective to Panoramic Vision
Driven by the demand for spatial intelligence and holistic scene perception, omnidirectional images (ODIs), which provide a complete 360\textdegree{} field of view, are receiving growing attention across diverse applications such as virtual reality, autonomous driving, and embodied robotics. Despite their unique characteristics, ODIs exhibit remarkable differences from perspective images in geometric projection, spatial distribution, and boundary continuity, making it challenging for direct domain adaption from perspective methods. This survey reviews recent panoramic vision techniques with a particular emphasis on the perspective-to-panorama adaptation. We first revisit the panoramic imaging pipeline and projection methods to build the prior knowledge required for analyzing the structural disparities. Then, we summarize three challenges of domain adaptation: severe geometric distortions near the poles, non-uniform sampling in Equirectangular Projection (ERP), and periodic boundary continuity. Building on this, we cover 20+ representative tasks drawn from more than 300 research papers in two dimensions. On one hand, we present a cross-method analysis of representative strategies for addressing panoramic specific challenges across different tasks. On the other hand, we conduct a cross-task comparison and classify panoramic vision into four major categories: visual quality enhancement and assessment, visual understanding, multimodal understanding, and visual generation. In addition, we discuss open challenges and future directions in data, models, and applications that will drive the advancement of panoramic vision research. We hope that our work can provide new insight and forward looking perspectives to advance the development of panoramic vision technologies. Our project page is https://insta360-research-team.github.io/Survey-of-Panorama
comment: Project Page: https://insta360-research-team.github.io/Survey-of-Panorama/
♻ ☆ Closed-Loop Unsupervised Representation Disentanglement with $β$-VAE Distillation and Diffusion Probabilistic Feedback ECCV 2024
Representation disentanglement may help AI fundamentally understand the real world and thus benefit both discrimination and generation tasks. It currently has at least three unresolved core issues: (i) heavy reliance on label annotation and synthetic data -- causing poor generalization on natural scenarios; (ii) heuristic/hand-craft disentangling constraints make it hard to adaptively achieve an optimal training trade-off; (iii) lacking reasonable evaluation metric, especially for the real label-free data. To address these challenges, we propose a \textbf{C}losed-\textbf{L}oop unsupervised representation \textbf{Dis}entanglement approach dubbed \textbf{CL-Dis}. Specifically, we use diffusion-based autoencoder (Diff-AE) as a backbone while resorting to $\beta$-VAE as a co-pilot to extract semantically disentangled representations. The strong generation ability of diffusion model and the good disentanglement ability of VAE model are complementary. To strengthen disentangling, VAE-latent distillation and diffusion-wise feedback are interconnected in a closed-loop system for a further mutual promotion. Then, a self-supervised \textbf{Navigation} strategy is introduced to identify interpretable semantic directions in the disentangled latent space. Finally, a new metric based on content tracking is designed to evaluate the disentanglement effect. Experiments demonstrate the superiority of CL-Dis on applications like real image manipulation and visual analysis.
comment: ECCV 2024
♻ ☆ Signal-Based Malware Classification Using 1D CNNs
Malware classification is a contemporary and ongoing challenge in cyber-security: modern obfuscation techniques are able to evade traditional static analysis, while dynamic analysis is too resource intensive to be deployed at a large scale. One prominent line of research addresses these limitations by converting malware binaries into 2D images by heuristically reshaping them into a 2D grid before resizing using Lanczos resampling. These images can then be classified based on their textural information using computer vision approaches. While this approach can detect obfuscated malware more effectively than static analysis, the process of converting files into 2D images results in significant information loss due to both quantisation noise, caused by rounding to integer pixel values, and the introduction of 2D dependencies which do not exist in the original data. This loss of signal limits the classification performance of the downstream model. This work addresses these weaknesses by instead resizing the files into 1D signals which avoids the need for heuristic reshaping, and additionally these signals do not suffer from quantisation noise due to being stored in a floating-point format. It is shown that existing 2D CNN architectures can be readily adapted to classify these 1D signals for improved performance. Furthermore, a bespoke 1D convolutional neural network, based on the ResNet architecture and squeeze-and-excitation layers, was developed to classify these signals and evaluated on the MalNet dataset. It was found to achieve state-of-the-art performance on binary, type, and family level classification with F1 scores of 0.874, 0.503, and 0.507, respectively, paving the way for future models to operate on the proposed signal modality.
comment: Accepted for publication in Springer Cybersecurity (2025)
♻ ☆ BEAM: Bridging Physically-based Rendering and Gaussian Modeling for Relightable Volumetric Video
Volumetric video enables immersive experiences by capturing dynamic 3D scenes, enabling diverse applications for virtual reality, education, and telepresence. However, traditional methods struggle with fixed lighting conditions, while neural approaches face trade-offs in efficiency, quality, or adaptability for relightable scenarios. To address these limitations, we present BEAM, a novel pipeline that bridges 4D Gaussian representations with physically-based rendering (PBR) to produce high-quality, relightable volumetric videos from multi-view RGB footage. BEAM recovers detailed geometry and PBR properties via a series of available Gaussian-based techniques. It first combines Gaussian-based human performance tracking with geometry-aware rasterization in a coarse-to-fine optimization framework to recover spatially and temporally consistent geometries. We further enhance Gaussian attributes by incorporating PBR properties step by step. We generate roughness via a multi-view-conditioned diffusion model, and then derive AO and base color using a 2D-to-3D strategy, incorporating a tailored Gaussian-based ray tracer for efficient visibility computation. Once recovered, these dynamic, relightable assets integrate seamlessly into traditional CG pipelines, supporting real-time rendering with deferred shading and offline rendering with ray tracing. By offering realistic, lifelike visualizations under diverse lighting conditions, BEAM opens new possibilities for interactive entertainment, storytelling, and creative visualization.
♻ ☆ BuzzSet v1.0: A Dataset for Pollinator Detection in Field Conditions
Pollinator insects such as honeybees and bumblebees are vital to global food production and ecosystem stability, yet their populations are declining due to anthropogenic and environmental stressors. Scalable, automated monitoring in agricultural environments remains an open challenge due to the difficulty of detecting small, fast-moving, and often camouflaged insects. To address this, we present BuzzSet v1.0, a large-scale dataset of high-resolution pollinator images collected under real field conditions. BuzzSet contains 7,856 manually verified images with more than 8,000 annotated instances across three classes: honeybees, bumblebees, and unidentified insects. Initial annotations were produced using a YOLOv12 model trained on external data and refined through human verification with open-source tools. All images were preprocessed into 256 x 256 tiles to improve the detection of small insects. We provide baselines using the RF-DETR transformer-based object detector. The model achieves strong classification accuracy with F1 scores of 0.94 and 0.92 for honeybees and bumblebees, with minimal confusion between these categories. The unidentified class remains more difficult due to label ambiguity and fewer samples, yet still contributes insights for robustness evaluation. Overall detection performance (mAP at 0.50 of 0.559) illustrates the challenging nature of the dataset and its potential to drive advances in small object detection under realistic ecological conditions. Future work focuses on expanding the dataset to version 2.0 with additional annotations and evaluating further detection strategies. BuzzSet establishes a benchmark for ecological computer vision, with the primary challenge being reliable detection of insects frequently camouflaged within natural vegetation, highlighting an open problem for future research.
comment: We need to make major revisions to the manuscript, which will take longer than we expected
♻ ☆ $π^3$: Permutation-Equivariant Visual Geometry Learning
We introduce $\pi^3$, a feed-forward neural network that offers a novel approach to visual geometry reconstruction, breaking the reliance on a conventional fixed reference view. Previous methods often anchor their reconstructions to a designated viewpoint, an inductive bias that can lead to instability and failures if the reference is suboptimal. In contrast, $\pi^3$ employs a fully permutation-equivariant architecture to predict affine-invariant camera poses and scale-invariant local point maps without any reference frames. This design not only makes our model inherently robust to input ordering, but also leads to higher accuracy and performance. These advantages enable our simple and bias-free approach to achieve state-of-the-art performance on a wide range of tasks, including camera pose estimation, monocular/video depth estimation, and dense point map reconstruction. Code and models are publicly available.
comment: Project page: https://yyfz.github.io/pi3/
♻ ☆ Evolving from Unknown to Known: Retentive Angular Representation Learning for Incremental Open Set Recognition
Existing open set recognition (OSR) methods are typically designed for static scenarios, where models aim to classify known classes and identify unknown ones within fixed scopes. This deviates from the expectation that the model should incrementally identify newly emerging unknown classes from continuous data streams and acquire corresponding knowledge. In such evolving scenarios, the discriminability of OSR decision boundaries is hard to maintain due to restricted access to former training data, causing severe inter-class confusion. To solve this problem, we propose retentive angular representation learning (RARL) for incremental open set recognition (IOSR). In RARL, unknown representations are encouraged to align around inactive prototypes within an angular space constructed under the equiangular tight frame, thereby mitigating excessive representation drift during knowledge updates. Specifically, we adopt a virtual-intrinsic interactive (VII) training strategy, which compacts known representations by enforcing clear inter-class margins through boundary-proximal virtual classes. Furthermore, a stratified rectification strategy is designed to refine decision boundaries, mitigating representation bias and feature space distortion caused by imbalances between old/new and positive/negative class samples. We conduct thorough evaluations on CIFAR100 and TinyImageNet datasets and establish a new benchmark for IOSR. Experimental results across various task setups demonstrate that the proposed method achieves state-of-the-art performance.
comment: 10 pages, 6 figures, 2025 IEEE/CVF International Conference on Computer Vision Workshops
♻ ☆ BranchGRPO: Stable and Efficient GRPO with Structured Branching in Diffusion Models
Recent advancements in aligning image and video generative models via GRPO have achieved remarkable gains in enhancing human preference alignment. However, these methods still face high computational costs from on-policy rollouts and excessive SDE sampling steps, as well as training instability due to sparse rewards. In this paper, we propose BranchGRPO, a novel method that introduces a branch sampling policy updating the SDE sampling process. By sharing computation across common prefixes and pruning low-reward paths and redundant depths, BranchGRPO substantially lowers the per-update compute cost while maintaining or improving exploration diversity. This work makes three main contributions: (1) a branch sampling scheme that reduces rollout and training cost; (2) a tree-based advantage estimator incorporating dense process-level rewards; and (3) pruning strategies exploiting path and depth redundancy to accelerate convergence and boost performance. Experiments on image and video preference alignment show that BranchGRPO improves alignment scores by 16% over strong baselines, while cutting training time by 50%.
comment: 12 pages, 6 figures
♻ ☆ Coefficients-Preserving Sampling for Reinforcement Learning with Flow Matching
Reinforcement Learning (RL) has recently emerged as a powerful technique for improving image and video generation in Diffusion and Flow Matching models, specifically for enhancing output quality and alignment with prompts. A critical step for applying online RL methods on Flow Matching is the introduction of stochasticity into the deterministic framework, commonly realized by Stochastic Differential Equation (SDE). Our investigation reveals a significant drawback to this approach: SDE-based sampling introduces pronounced noise artifacts in the generated images, which we found to be detrimental to the reward learning process. A rigorous theoretical analysis traces the origin of this noise to an excess of stochasticity injected during inference. To address this, we draw inspiration from Denoising Diffusion Implicit Models (DDIM) to reformulate the sampling process. Our proposed method, Coefficients-Preserving Sampling (CPS), eliminates these noise artifacts. This leads to more accurate reward modeling, ultimately enabling faster and more stable convergence for reinforcement learning-based optimizers like Flow-GRPO and Dance-GRPO. Code will be released at https://github.com/IamCreateAI/FlowCPS
comment: work in progress
♻ ☆ Hybrid Swin Attention Networks for Simultaneously Low-Dose PET and CT Denoising
Low-dose computed tomography (LDCT) and positron emission tomography (PET) have emerged as safer alternatives to conventional imaging modalities by significantly reducing radiation exposure. However, this reduction often results in increased noise and artifacts, which can compromise diagnostic accuracy. Consequently, denoising for LDCT/PET has become a vital area of research aimed at enhancing image quality while maintaining radiation safety. In this study, we introduce a novel Hybrid Swin Attention Network (HSANet), which incorporates Efficient Global Attention (EGA) modules and a hybrid upsampling module. The EGA modules enhance both spatial and channel-wise interaction, improving the network's capacity to capture relevant features, while the hybrid upsampling module mitigates the risk of overfitting to noise. We validate the proposed approach using a publicly available LDCT/PET dataset. Experimental results demonstrate that HSANet achieves superior denoising performance compared to existing methods, while maintaining a lightweight model size suitable for deployment on GPUs with standard memory configurations. This makes our approach highly practical for real-world clinical applications.
♻ ☆ SPACE-iT: Spatial-Aware Curriculum Exploration and Feedback-Driven Adaptive Augmentation for Vision Transformer Distillation
Knowledge distillation (KD) has proven to be a powerful technique for improving the performance of Vision Transformers (ViTs). However, traditional KD methods often treat all image patches uniformly, overlooking spatial variations in learning difficulty. To address this limitation, we propose SPACE-iT, a novel framework for Spatial-Aware Curriculum Exploration via Feedback-Driven Adaptive Augmentation. At its core, SPACE-iT computes spatial confidence scores at the attention, patch, and logit levels. This confidence map supports a two-fold strategy: (1) dynamically modulating the distillation loss, and (2) guiding an adaptive augmentation module that intensifies reverse curriculum learning. By establishing a feedback-driven reverse curriculum that initially exposes students to challenging regions-progressing from hard to easy-SPACE-iT enables more effective learning of complex spatial patterns and achieves superior performance over vanilla distillation, without introducing additional memory overhead.
comment: 7 pages
♻ ☆ DIP: Unsupervised Dense In-Context Post-training of Visual Representations ICCV 2025
We introduce DIP, a novel unsupervised post-training method designed to enhance dense image representations in large-scale pretrained vision encoders for in-context scene understanding. Unlike prior approaches that rely on complex self-distillation architectures, our method trains the vision encoder using pseudo-tasks that explicitly simulate downstream in-context scenarios, inspired by meta-learning principles. To enable post-training on unlabeled data, we propose an automatic mechanism for generating in-context tasks that combines a pretrained diffusion model and the vision encoder itself. DIP is simple, unsupervised, and computationally efficient, requiring less than 9 hours on a single A100 GPU. By learning dense representations through pseudo in-context tasks, it achieves strong performance across a wide variety of downstream real-world in-context scene understanding tasks. It outperforms both the initial vision encoder and prior methods, offering a practical and effective solution for improving dense representations. Code available here: https://github.com/sirkosophia/DIP
comment: Accepted to ICCV 2025
♻ ☆ A multi-task neural network for atypical mitosis recognition under domain shift
Recognizing atypical mitotic figures in histopathology images allows physicians to correctly assess tumor aggressiveness. Although machine learning models could be exploited for automatically performing such a task, under domain shift these models suffer from significative performance drops. In this work, an approach based on multi-task learning is proposed for addressing this problem. By exploiting auxiliary tasks, correlated to the main classification task, the proposed approach, submitted to the track 2 of the MItosis DOmain Generalization (MIDOG) challenge, aims to aid the model to focus only on the object to classify, ignoring the domain varying background of the image. The proposed approach shows promising performance in a preliminary evaluation conducted on three distinct datasets, i.e., the MIDOG 2025 Atypical Training Set, the Ami-Br dataset, as well as the preliminary test set of the MIDOG25 challenge.
comment: Approach for MIDOG25 track 2
♻ ☆ Large-scale Pre-training for Grounded Video Caption Generation ICCV 2025
We propose a novel approach for captioning and object grounding in video, where the objects in the caption are grounded in the video via temporally dense bounding boxes. We introduce the following contributions. First, we present a large-scale automatic annotation method that aggregates frame-level captions grounded with bounding boxes into temporally dense and consistent annotations. We apply this approach on the HowTo100M dataset to construct a large-scale pre-training dataset, named HowToGround1M. We also introduce a Grounded Video Caption Generation model, dubbed GROVE, and pre-train the model on HowToGround1M. Second, we introduce iGround--a dataset of 3513 videos with manually annotated captions and dense spatio-temporally grounded bounding boxes. This allows us to measure progress on this challenging problem, as well as to fine-tune our model on this small-scale but high-quality data. Third, we demonstrate that our approach achieves state-of-the-art results on the proposed iGround dataset, as well as on the VidSTG, ActivityNet-Entities, GroundingYouTube, and YouCook-Interactions datasets. Our ablations demonstrate the importance of pre-training on our automatically annotated HowToGround1M dataset followed by fine-tuning on the manually annotated iGround dataset and validate the key technical contributions of our model. The dataset and code are available at https://ekazakos.github.io/grounded_video_caption_generation/.
comment: Accepted at ICCV 2025. Erratum: An earlier version reported ablations (Table 6 & Fig. 6) with pre-training on a 50k subset of HowToGround1M + fine-tuning on iGround. In the ICCV camera-ready, Table 6 already used the full dataset, but Fig. 6 and a sentence in the text were mistakenly left on 50k. All now use the full HowToGround1M
♻ ☆ IntuiTF: MLLM-Guided Transfer Function Optimization for Direct Volume Rendering
Direct volume rendering (DVR) is a fundamental technique for visualizing volumetric data, where transfer functions (TFs) play a crucial role in extracting meaningful structures. However, designing effective TFs remains unintuitive due to the semantic gap between user intent and TF parameter space. Although numerous TF optimization methods have been proposed to mitigate this issue, existing approaches still face two major challenges: the vast exploration space and limited generalizability. To address these issues, we propose IntuiTF, a novel framework that leverages Multimodal Large Language Models (MLLMs) to guide TF optimization in alignment with user intent. Specifically, our method consists of two key components: (1) an evolution-driven explorer for effective exploration of the TF space, and (2) an MLLM-guided human-aligned evaluator that provides generalizable visual feedback on rendering quality. The explorer and the evaluator together establish an efficient Trial-Insight-Replanning paradigm for TF space exploration. We further extend our framework with an interactive TF design system. We demonstrate the broad applicability of our framework through three case studies and validate the effectiveness of each component through extensive experiments. We strongly recommend readers check our cases, demo video, and source code at: https://github.com/wyysteelhead/IntuiTF
♻ ☆ Light-Weight Cross-Modal Enhancement Method with Benchmark Construction for UAV-based Open-Vocabulary Object Detection
Open-Vocabulary Object Detection (OVD) faces severe performance degradation when applied to UAV imagery due to the domain gap from ground-level datasets. To address this challenge, we propose a complete UAV-oriented solution that combines both dataset construction and model innovation. First, we design a refined UAV-Label Engine, which efficiently resolves annotation redundancy, inconsistency, and ambiguity, enabling the generation of largescale UAV datasets. Based on this engine, we construct two new benchmarks: UAVDE-2M, with over 2.4M instances across 1,800+ categories, and UAVCAP-15K, providing rich image-text pairs for vision-language pretraining. Second, we introduce the Cross-Attention Gated Enhancement (CAGE) module, a lightweight dual-path fusion design that integrates cross-attention, adaptive gating, and global FiLM modulation for robust textvision alignment. By embedding CAGE into the YOLO-World-v2 framework, our method achieves significant gains in both accuracy and efficiency, notably improving zero-shot detection on VisDrone by +5.3 mAP while reducing parameters and GFLOPs, and demonstrating strong cross-domain generalization on SIMD. Extensive experiments and real-world UAV deployment confirm the effectiveness and practicality of our proposed solution for UAV-based OVD
♻ ☆ MSCPT: Few-shot Whole Slide Image Classification with Multi-scale and Context-focused Prompt Tuning IEEE
Multiple instance learning (MIL) has become a standard paradigm for the weakly supervised classification of whole slide images (WSIs). However, this paradigm relies on using a large number of labeled WSIs for training. The lack of training data and the presence of rare diseases pose significant challenges for these methods. Prompt tuning combined with pre-trained Vision-Language models (VLMs) is an effective solution to the Few-shot Weakly Supervised WSI Classification (FSWC) task. Nevertheless, applying prompt tuning methods designed for natural images to WSIs presents three significant challenges: 1) These methods fail to fully leverage the prior knowledge from the VLM's text modality; 2) They overlook the essential multi-scale and contextual information in WSIs, leading to suboptimal results; and 3) They lack exploration of instance aggregation methods. To address these problems, we propose a Multi-Scale and Context-focused Prompt Tuning (MSCPT) method for FSWC task. Specifically, MSCPT employs the frozen large language model to generate pathological visual language prior knowledge at multiple scales, guiding hierarchical prompt tuning. Additionally, we design a graph prompt tuning module to learn essential contextual information within WSI, and finally, a non-parametric cross-guided instance aggregation module has been introduced to derive the WSI-level features. Extensive experiments, visualizations, and interpretability analyses were conducted on five datasets and three downstream tasks using three VLMs, demonstrating the strong performance of our MSCPT. All codes have been made publicly accessible at https://github.com/Hanminghao/MSCPT.
comment: This work has been submitted to the IEEE TMI for possible publication
♻ ☆ Conditional Video Generation for High-Efficiency Video Compression
Perceptual studies demonstrate that conditional diffusion models excel at reconstructing video content aligned with human visual perception. Building on this insight, we propose a video compression framework that leverages conditional diffusion models for perceptually optimized reconstruction. Specifically, we reframe video compression as a conditional generation task, where a generative model synthesizes video from sparse, yet informative signals. Our approach introduces three key modules: (1) Multi-granular conditioning that captures both static scene structure and dynamic spatio-temporal cues; (2) Compact representations designed for efficient transmission without sacrificing semantic richness; (3) Multi-condition training with modality dropout and role-aware embeddings, which prevent over-reliance on any single modality and enhance robustness. Extensive experiments show that our method significantly outperforms both traditional and neural codecs on perceptual quality metrics such as Fr\'echet Video Distance (FVD) and LPIPS, especially under high compression ratios.
comment: Critical methodology flaws invalidate key results
♻ ☆ Comparative Analysis of Lightweight Deep Learning Models for Memory-Constrained Devices
This paper presents a comprehensive evaluation of lightweight deep learning models for image classification, emphasizing their suitability for deployment in resource-constrained environments such as low-memory devices. Five state-of-the-art architectures - MobileNetV3 Small, ResNet18, SqueezeNet, EfficientNetV2-S, and ShuffleNetV2 - are benchmarked across three diverse datasets: CIFAR-10, CIFAR-100, and Tiny ImageNet. The models are assessed using four key performance metrics: classification accuracy, inference time, floating-point operations (FLOPs), and model size. Additionally, we investigate the impact of hyperparameter tuning, data augmentation, and training paradigms by comparing pretrained models with scratch-trained counterparts, focusing on MobileNetV3 Small. Our findings reveal that transfer learning significantly enhances model accuracy and computational efficiency, particularly for complex datasets like Tiny ImageNet. EfficientNetV2 consistently achieves the highest accuracy, while MobileNetV3 offers the best balance between accuracy and efficiency, and SqueezeNet excels in inference speed and compactness. This study highlights critical trade-offs between accuracy and efficiency, offering actionable insights for deploying lightweight models in real-world applications where computational resources are limited. By addressing these challenges, this research contributes to optimizing deep learning systems for edge computing and mobile platforms.
comment: 22 pages, 10 figures, 4 tables, submitted to Springer - Pattern Recognition and Image Analysis
♻ ☆ Interleaving Reasoning for Better Text-to-Image Generation
Unified multimodal understanding and generation models recently have achieve significant improvement in image generation capability, yet a large gap remains in instruction following and detail preservation compared to systems that tightly couple comprehension with generation such as GPT-4o. Motivated by recent advances in interleaving reasoning, we explore whether such reasoning can further improve Text-to-Image (T2I) generation. We introduce Interleaving Reasoning Generation (IRG), a framework that alternates between text-based thinking and image synthesis: the model first produces a text-based thinking to guide an initial image, then reflects on the result to refine fine-grained details, visual quality, and aesthetics while preserving semantics. To train IRG effectively, we propose Interleaving Reasoning Generation Learning (IRGL), which targets two sub-goals: (1) strengthening the initial think-and-generate stage to establish core content and base quality, and (2) enabling high-quality textual reflection and faithful implementation of those refinements in a subsequent image. We curate IRGL-300K, a dataset organized into six decomposed learning modes that jointly cover learning text-based thinking, and full thinking-image trajectories. Starting from a unified foundation model that natively emits interleaved text-image outputs, our two-stage training first builds robust thinking and reflection, then efficiently tunes the IRG pipeline in the full thinking-image trajectory data. Extensive experiments show SoTA performance, yielding absolute gains of 5-10 points on GenEval, WISE, TIIF, GenAI-Bench, and OneIG-EN, alongside substantial improvements in visual quality and fine-grained fidelity. The code, model weights and datasets will be released in: https://github.com/Osilly/Interleaving-Reasoning-Generation .
♻ ☆ A Decade of Wheat Mapping for Lebanon
Wheat accounts for approximately 20% of the world's caloric intake, making it a vital component of global food security. Given this importance, mapping wheat fields plays a crucial role in enabling various stakeholders, including policy makers, researchers, and agricultural organizations, to make informed decisions regarding food security, supply chain management, and resource allocation. In this paper, we tackle the problem of accurately mapping wheat fields out of satellite images by introducing an improved pipeline for winter wheat segmentation, as well as presenting a case study on a decade-long analysis of wheat mapping in Lebanon. We integrate a Temporal Spatial Vision Transformer (TSViT) with Parameter-Efficient Fine Tuning (PEFT) and a novel post-processing pipeline based on the Fields of The World (FTW) framework. Our proposed pipeline addresses key challenges encountered in existing approaches, such as the clustering of small agricultural parcels in a single large field. By merging wheat segmentation with precise field boundary extraction, our method produces geometrically coherent and semantically rich maps that enable us to perform in-depth analysis such as tracking crop rotation pattern over years. Extensive evaluations demonstrate improved boundary delineation and field-level precision, establishing the potential of the proposed framework in operational agricultural monitoring and historical trend analysis. By allowing for accurate mapping of wheat fields, this work lays the foundation for a range of critical studies and future advances, including crop monitoring and yield estimation.
♻ ☆ Interpretable Text-Guided Image Clustering via Iterative Search
Traditional clustering methods aim to group unlabeled data points based on their similarity to each other. However, clustering, in the absence of additional information, is an ill-posed problem as there may be many different, yet equally valid, ways to partition a dataset. Distinct users may want to use different criteria to form clusters in the same data, e.g. shape v.s. color. Recently introduced text-guided image clustering methods aim to address this ambiguity by allowing users to specify the criteria of interest using natural language instructions. This instruction provides the necessary context and control needed to obtain clusters that are more aligned with the users' intent. We propose a new text-guided clustering approach named ITGC that uses an iterative discovery process, guided by an unsupervised clustering objective, to generate interpretable visual concepts that better capture the criteria expressed in a user's instructions. We report superior performance compared to existing methods across a wide variety of image clustering and fine-grained classification benchmarks.
♻ ☆ RealRep: Generalized SDR-to-HDR Conversion via Attribute-Disentangled Representation Learning
High-Dynamic-Range Wide-Color-Gamut (HDR-WCG) technology is becoming increasingly widespread, driving a growing need for converting Standard Dynamic Range (SDR) content to HDR. Existing methods primarily rely on fixed tone mapping operators, which struggle to handle the diverse appearances and degradations commonly present in real-world SDR content. To address this limitation, we propose a generalized SDR-to-HDR framework that enhances robustness by learning attribute-disentangled representations. Central to our approach is Realistic Attribute-Disentangled Representation Learning (RealRep), which explicitly disentangles luminance and chrominance components to capture intrinsic content variations across different SDR distributions. Furthermore, we design a Luma-/Chroma-aware negative exemplar generation strategy that constructs degradation-sensitive contrastive pairs, effectively modeling tone discrepancies across SDR styles. Building on these attribute-level priors, we introduce the Degradation-Domain Aware Controlled Mapping Network (DDACMNet), a lightweight, two-stage framework that performs adaptive hierarchical mapping guided by a control-aware normalization mechanism. DDACMNet dynamically modulates the mapping process via degradation-conditioned features, enabling robust adaptation across diverse degradation domains. Extensive experiments demonstrate that RealRep consistently outperforms state-of-the-art methods in both generalization and perceptually faithful HDR color gamut reconstruction.
♻ ☆ A Data-Free Analytical Quantization Scheme for Deep Learning Models IEEE
Despite the success of CNN models on a variety of Image classification and segmentation tasks, their extensive computational and storage demands pose considerable challenges for real-world deployment on resource-constrained devices. Quantization is one technique that aims to alleviate these large storage requirements and speed up the inference process by reducing the precision of model parameters to lower-bit representations. In this paper, we introduce a novel post-training quantization method for model weights. Our method finds optimal clipping thresholds and scaling factors along with mathematical guarantees that our method minimizes quantization noise. Empirical results on real-world datasets demonstrate that our quantization scheme significantly reduces model size and computational requirements while preserving model accuracy.
comment: Accepted for publication in IEEE International Conference on Data Mining (ICDM 2025)
♻ ☆ Towards Visuospatial Cognition via Hierarchical Fusion of Visual Experts
While Multimodal Large Language Models (MLLMs) excel at general vision-language tasks, visuospatial cognition - reasoning about spatial layouts, relations, and dynamics - remains a significant challenge. Existing models often lack the necessary architectural components and specialized training data for fine-grained spatial understanding. We introduce ViCA2 (Visuospatial Cognitive Assistant 2), a novel MLLM designed to enhance spatial reasoning. ViCA2 features a dual vision encoder architecture integrating SigLIP for semantics and Hiera for spatial structure, coupled with a token ratio control mechanism for efficiency. We also developed ViCA-322K, a new large-scale dataset with over 322,000 spatially grounded question-answer pairs for targeted instruction tuning. On the challenging VSI-Bench benchmark, our ViCA2-7B model achieves a state-of-the-art average score of 56.8, significantly surpassing larger open-source models (e.g., LLaVA-NeXT-Video-72B, 40.9) and leading proprietary models (Gemini-1.5 Pro, 45.4). This demonstrates the effectiveness of our approach in achieving strong visuospatial intelligence with a compact model. We release ViCA2, its codebase, and the ViCA-322K dataset to facilitate further research.
comment: 26 pages, 19 figures, 4 tables
♻ ☆ DMS-Net:Dual-Modal Multi-Scale Siamese Network for Binocular Fundus Image Classification
Ophthalmic diseases pose a significant global health burden. However, traditional diagnostic methods and existing monocular image-based deep learning approaches often overlook the pathological correlations between the two eyes. In practical medical robotic diagnostic scenarios, paired retinal images (binocular fundus images) are frequently required as diagnostic evidence. To address this, we propose DMS-Net-a dual-modal multi-scale siamese network for binocular retinal image classification. The framework employs a weight-sharing siamese ResNet-152 architecture to concurrently extract deep semantic features from bilateral fundus images. To tackle challenges like indistinct lesion boundaries and diffuse pathological distributions, we introduce the OmniPool Spatial Integrator Module (OSIM), which achieves multi-resolution feature aggregation through multi-scale adaptive pooling and spatial attention mechanisms. Furthermore, the Calibrated Analogous Semantic Fusion Module (CASFM) leverages spatial-semantic recalibration and bidirectional attention mechanisms to enhance cross-modal interaction, aggregating modality-agnostic representations of fundus structures. To fully exploit the differential semantic information of lesions present in bilateral fundus features, we introduce the Cross-Modal Contrastive Alignment Module (CCAM). Additionally, to enhance the aggregation of lesion-correlated semantic information, we introduce the Cross-Modal Integrative Alignment Module (CIAM). Evaluation on the ODIR-5K dataset demonstrates that DMS-Net achieves state-of-the-art performance with an accuracy of 82.9%, recall of 84.5%, and a Cohen's kappa coefficient of 83.2%, showcasing robust capacity in detecting symmetrical pathologies and improving clinical decision-making for ocular diseases. Code and the processed dataset will be released subsequently.
♻ ☆ Visuospatial Cognitive Assistant
Video-based spatial cognition is vital for robotics and embodied AI but challenges current Vision-Language Models (VLMs). This paper makes two key contributions. First, we introduce ViCA (Visuospatial Cognitive Assistant)-322K, a diverse dataset of 322,003 QA pairs from real-world indoor videos (ARKitScenes, ScanNet, ScanNet++), offering supervision for 3D metadata-grounded queries and video-based complex reasoning. Second, we develop ViCA-7B, fine-tuned on ViCA-322K, which achieves new state-of-the-art on all eight VSI-Bench tasks, outperforming existing models, including larger ones (e.g., +26.1 on Absolute Distance). For interpretability, we present ViCA-Thinking-2.68K, a dataset with explicit reasoning chains, and fine-tune ViCA-7B to create ViCA-7B-Thinking, a model that articulates its spatial reasoning. Our work highlights the importance of targeted data and suggests paths for improved temporal-spatial modeling. We release all resources to foster research in robust visuospatial intelligence.
comment: 31 pages, 10 figures, 6 tables
♻ ☆ GCRPNet: Graph-Enhanced Contextual and Regional Perception Network for Salient Object Detection in Optical Remote Sensing Images
Salient object detection (SOD) in optical remote sensing images (ORSIs) faces numerous challenges, including significant variations in target scales and low contrast between targets and the background. Existing methods based on vision transformers (ViTs) and convolutional neural networks (CNNs) architectures aim to leverage both global and local features, but the difficulty in effectively integrating these heterogeneous features limits their overall performance. To overcome these limitations, we propose a graph-enhanced contextual and regional perception network (GCRPNet), which builds upon the Mamba architecture to simultaneously capture long-range dependencies and enhance regional feature representation. Specifically, we employ the visual state space (VSS) encoder to extract multi-scale features. To further achieve deep guidance and enhancement of these features, we first design a difference-similarity guided hierarchical graph attention module (DS-HGAM). This module strengthens cross-layer interaction capabilities between features of different scales while enhancing the model's structural perception,allowing it to distinguish between foreground and background more effectively. Then, we design the LEVSS block as the decoder of GCRPNet. This module integrates our proposed adaptive scanning strategy and multi-granularity collaborative attention enhancement module (MCAEM). It performs adaptive patch scanning on feature maps processed via multi-scale convolutions, thereby capturing rich local region information and enhancing Mamba's local modeling capability. Extensive experimental results demonstrate that the proposed model achieves state-of-the-art performance, validating its effectiveness and superiority.
♻ ☆ POEv2: a flexible and robust framework for generic line segment detection and wireframe line segment detection
Line segment detection in images has been studied for several decades. Existing line segment detectors can be roughly divided into two categories: generic line segment detectors and wireframe line segment detectors. Generic line segment detectors aim to detect all meaningful line segments in images and traditional approaches usually fall into this category. Recent deep learning based approaches are mostly wireframe line segment detectors. They detect only line segments that are geometrically meaningful and have large spatial support. Due to the difference in the aim of design, the performance of generic line segment detectors for the task of wireframe line segment detection won't be satisfactory, and vice versa. In this work, we propose a robust framework that can be used for both generic line segment detection and wireframe line segment detection. The proposed method is an improved version of the Pixel Orientation Estimation (POE) method. It is thus named as POEv2. POEv2 detects line segments from edge strength maps, and can be combined with any edge detector. We show in our experiments that by combining the proposed POEv2 with an efficient edge detector, it achieves state-of-the-art performance on three publicly available datasets.
♻ ☆ F1: A Vision-Language-Action Model Bridging Understanding and Generation to Actions
Executing language-conditioned tasks in dynamic visual environments remains a central challenge in embodied AI. Existing Vision-Language-Action (VLA) models predominantly adopt reactive state-to-action mappings, often leading to short-sighted behaviors and poor robustness in dynamic scenes. In this paper, we introduce F1, a pretrained VLA framework which integrates the visual foresight generation into decision-making pipeline. F1 adopts a Mixture-of-Transformer architecture with dedicated modules for perception, foresight generation, and control, thereby bridging understanding, generation, and actions. At its core, F1 employs a next-scale prediction mechanism to synthesize goal-conditioned visual foresight as explicit planning targets. By forecasting plausible future visual states, F1 reformulates action generation as a foresight-guided inverse dynamics problem, enabling actions that implicitly achieve visual goals. To endow F1 with robust and generalizable capabilities, we propose a three-stage training recipe on an extensive dataset comprising over 330k trajectories across 136 diverse tasks. This training scheme enhances modular reasoning and equips the model with transferable visual foresight, which is critical for complex and dynamic environments. Extensive evaluations on real-world tasks and simulation benchmarks demonstrate F1 consistently outperforms existing approaches, achieving substantial gains in both task success rate and generalization ability.
comment: Homepage: https://aopolin-lv.github.io/F1-VLA/
♻ ☆ Decoupled Sparse Priors Guided Diffusion Compression Model for Point Clouds
Lossy compression methods rely on an autoencoder to transform a point cloud into latent points for storage, leaving the inherent redundancy of latent representations unexplored. To reduce redundancy in latent points, we propose a sparse priors guided method that achieves high reconstruction quality, especially at high compression ratios. This is accomplished by a dual-density scheme separately processing the latent points (intended for reconstruction) and the decoupled sparse priors (intended for storage). Our approach features an efficient dual-density data flow that relaxes size constraints on latent points, and hybridizes a progressive conditional diffusion model to encapsulate essential details for reconstruction within the conditions, which are decoupled hierarchically to intra-point and inter-point priors. Specifically, our method encodes the original point cloud into latent points and decoupled sparse priors through separate encoders. Latent points serve as intermediates, while sparse priors act as adaptive conditions. We then employ a progressive attention-based conditional denoiser to generate latent points conditioned on the decoupled priors, allowing the denoiser to dynamically attend to geometric and semantic cues from the priors at each encoding and decoding layer. Additionally, we integrate the local distribution into the arithmetic encoder and decoder to enhance local context modeling of the sparse points. The original point cloud is reconstructed through a point decoder. Compared to state-of-the-art, our method obtains superior rate-distortion trade-off, evidenced by extensive evaluations on the ShapeNet dataset and standard test datasets from MPEG group including 8iVFB, and Owlii.
♻ ☆ From Images to Insights: Explainable Biodiversity Monitoring with Plain Language Habitat Explanations ECAI 2025
Explaining why the species lives at a particular location is important for understanding ecological systems and conserving biodiversity. However, existing ecological workflows are fragmented and often inaccessible to non-specialists. We propose an end-to-end visual-to-causal framework that transforms a species image into interpretable causal insights about its habitat preference. The system integrates species recognition, global occurrence retrieval, pseudo-absence sampling, and climate data extraction. We then discover causal structures among environmental features and estimate their influence on species occurrence using modern causal inference methods. Finally, we generate statistically grounded, human-readable causal explanations from structured templates and large language models. We demonstrate the framework on a bee and a flower species and report early results as part of an ongoing project, showing the potential of the multimodal AI assistant backed up by a recommended ecological modeling practice for describing species habitat in human-understandable language. Our code is available at: https://github.com/Yutong-Zhou-cv/BioX.
comment: AISE workshop camera-ready version @ ECAI 2025
♻ ☆ SAMba-UNet: SAM2-Mamba UNet for Cardiac MRI in Medical Robotic Perception
To address complex pathological feature extraction in automated cardiac MRI segmentation, we propose SAMba-UNet, a novel dual-encoder architecture that synergistically combines the vision foundation model SAM2, the linear-complexity state-space model Mamba, and the classical UNet to achieve cross-modal collaborative feature learning; to overcome domain shifts between natural images and medical scans, we introduce a Dynamic Feature Fusion Refiner that employs multi-scale pooling and channel-spatial dual-path calibration to strengthen small-lesion and fine-structure representation, and we design a Heterogeneous Omni-Attention Convergence Module (HOACM) that fuses SAM2's local positional semantics with Mamba's long-range dependency modeling via global contextual attention and branch-selective emphasis, yielding substantial gains in both global consistency and boundary precision-on the ACDC cardiac MRI benchmark, SAMba-UNet attains a Dice of 0.9103 and HD95 of 1.0859 mm, notably improving boundary localization for challenging structures like the right ventricle, and its robust, high-fidelity segmentation maps are directly applicable as a perception module within intelligent medical and surgical robotic systems to support preoperative planning, intraoperative navigation, and postoperative complication screening; the code will be open-sourced to facilitate clinical translation and further validation.
♻ ☆ Atomizer: Generalizing to new modalities by breaking satellite images down to a set of scalars
The growing number of Earth observation satellites has led to increasingly diverse remote sensing data, with varying spatial, spectral, and temporal configurations. Most existing models rely on fixed input formats and modality-specific encoders, which require retraining when new configurations are introduced, limiting their ability to generalize across modalities. We introduce Atomizer, a flexible architecture that represents remote sensing images as sets of scalars, each corresponding to a spectral band value of a pixel. Each scalar is enriched with contextual metadata (acquisition time, spatial resolution, wavelength, and bandwidth), producing an atomic representation that allows a single encoder to process arbitrary modalities without interpolation or resampling. Atomizer uses structured tokenization with Fourier features and non-uniform radial basis functions to encode content and context, and maps tokens into a latent space via cross-attention. Under modality-disjoint evaluations, Atomizer outperforms standard models and demonstrates robust performance across varying resolutions and spatial sizes.
♻ ☆ Generalizable Humanoid Manipulation with 3D Diffusion Policies IROS 2025
Humanoid robots capable of autonomous operation in diverse environments have long been a goal for roboticists. However, autonomous manipulation by humanoid robots has largely been restricted to one specific scene, primarily due to the difficulty of acquiring generalizable skills and the expensiveness of in-the-wild humanoid robot data. In this work, we build a real-world robotic system to address this challenging problem. Our system is mainly an integration of 1) a whole-upper-body robotic teleoperation system to acquire human-like robot data, 2) a 25-DoF humanoid robot platform with a height-adjustable cart and a 3D LiDAR sensor, and 3) an improved 3D Diffusion Policy learning algorithm for humanoid robots to learn from noisy human data. We run more than 2000 episodes of policy rollouts on the real robot for rigorous policy evaluation. Empowered by this system, we show that using only data collected in one single scene and with only onboard computing, a full-sized humanoid robot can autonomously perform skills in diverse real-world scenarios. Videos are available at https://humanoid-manipulation.github.io .
comment: IROS 2025. Project website: https://humanoid-manipulation.github.io
♻ ☆ Frequency Domain Enhanced U-Net for Low-Frequency Information-Rich Image Segmentation in Surgical and Deep-Sea Exploration Robots
In deep-sea exploration and surgical robotics scenarios, environmental lighting and device resolution limitations often cause high-frequency feature attenuation. Addressing the differences in frequency band sensitivity between CNNs and the human visual system (mid-frequency sensitivity with low-frequency sensitivity surpassing high-frequency), we experimentally quantified the CNN contrast sensitivity function and proposed a wavelet adaptive spectrum fusion (WASF) method inspired by biological vision mechanisms to balance cross-frequency image features. Furthermore, we designed a perception frequency block (PFB) that integrates WASF to enhance frequency-domain feature extraction. Based on this, we developed the FE-UNet model, which employs a SAM2 backbone network and incorporates fine-tuned Hiera-Large modules to ensure segmentation accuracy while improving generalization capability. Experiments demonstrate that FE-UNet achieves state-of-the-art performance in cross-domain tasks such as marine organism segmentation and polyp segmentation, showcasing robust adaptability and significant application potential. The code will be released soon.
♻ ☆ PromptEnhancer: A Simple Approach to Enhance Text-to-Image Models via Chain-of-Thought Prompt Rewriting
Recent advancements in text-to-image (T2I) diffusion models have demonstrated remarkable capabilities in generating high-fidelity images. However, these models often struggle to faithfully render complex user prompts, particularly in aspects like attribute binding, negation, and compositional relationships. This leads to a significant mismatch between user intent and the generated output. To address this challenge, we introduce PromptEnhancer, a novel and universal prompt rewriting framework that enhances any pretrained T2I model without requiring modifications to its weights. Unlike prior methods that rely on model-specific fine-tuning or implicit reward signals like image-reward scores, our framework decouples the rewriter from the generator. We achieve this by training a Chain-of-Thought (CoT) rewriter through reinforcement learning, guided by a dedicated reward model we term the AlignEvaluator. The AlignEvaluator is trained to provide explicit and fine-grained feedback based on a systematic taxonomy of 24 key points, which are derived from a comprehensive analysis of common T2I failure modes. By optimizing the CoT rewriter to maximize the reward from our AlignEvaluator, our framework learns to generate prompts that are more precisely interpreted by T2I models. Extensive experiments on the HunyuanImage 2.1 model demonstrate that PromptEnhancer significantly improves image-text alignment across a wide range of semantic and compositional challenges. Furthermore, we introduce a new, high-quality human preference benchmark to facilitate future research in this direction.
comment: technical report
♻ ☆ LiDARCrafter: Dynamic 4D World Modeling from LiDAR Sequences
Generative world models have become essential data engines for autonomous driving, yet most existing efforts focus on videos or occupancy grids, overlooking the unique LiDAR properties. Extending LiDAR generation to dynamic 4D world modeling presents challenges in controllability, temporal coherence, and evaluation standardization. To this end, we present LiDARCrafter, a unified framework for 4D LiDAR generation and editing. Given free-form natural language inputs, we parse instructions into ego-centric scene graphs, which condition a tri-branch diffusion network to generate object structures, motion trajectories, and geometry. These structured conditions enable diverse and fine-grained scene editing. Additionally, an autoregressive module generates temporally coherent 4D LiDAR sequences with smooth transitions. To support standardized evaluation, we establish a comprehensive benchmark with diverse metrics spanning scene-, object-, and sequence-level aspects. Experiments on the nuScenes dataset using this benchmark demonstrate that LiDARCrafter achieves state-of-the-art performance in fidelity, controllability, and temporal consistency across all levels, paving the way for data augmentation and simulation. The code and benchmark are released to the community.
comment: Preprint; 28 pages, 18 figures, 12 tables; Project Page at https://lidarcrafter.github.io
♻ ☆ PINGS: Gaussian Splatting Meets Distance Fields within a Point-Based Implicit Neural Map
Robots benefit from high-fidelity reconstructions of their environment, which should be geometrically accurate and photorealistic to support downstream tasks. While this can be achieved by building distance fields from range sensors and radiance fields from cameras, realising scalable incremental mapping of both fields consistently and at the same time with high quality is challenging. In this paper, we propose a novel map representation that unifies a continuous signed distance field and a Gaussian splatting radiance field within an elastic and compact point-based implicit neural map. By enforcing geometric consistency between these fields, we achieve mutual improvements by exploiting both modalities. We present a novel LiDAR-visual SLAM system called PINGS using the proposed map representation and evaluate it on several challenging large-scale datasets. Experimental results demonstrate that PINGS can incrementally build globally consistent distance and radiance fields encoded with a compact set of neural points. Compared to state-of-the-art methods, PINGS achieves superior photometric and geometric rendering at novel views by constraining the radiance field with the distance field. Furthermore, by utilizing dense photometric cues and multi-view consistency from the radiance field, PINGS produces more accurate distance fields, leading to improved odometry estimation and mesh reconstruction. We also provide an open-source implementation of PING at: https://github.com/PRBonn/PINGS.
comment: 15 pages, 8 figures, presented at RSS 2025
♻ ☆ PATS: Proficiency-Aware Temporal Sampling for Multi-View Sports Skill Assessment IEEE
Automated sports skill assessment requires capturing fundamental movement patterns that distinguish expert from novice performance, yet current video sampling methods disrupt the temporal continuity essential for proficiency evaluation. To this end, we introduce Proficiency-Aware Temporal Sampling (PATS), a novel sampling strategy that preserves complete fundamental movements within continuous temporal segments for multi-view skill assessment. PATS adaptively segments videos to ensure each analyzed portion contains full execution of critical performance components, repeating this process across multiple segments to maximize information coverage while maintaining temporal coherence. Evaluated on the EgoExo4D benchmark with SkillFormer, PATS surpasses the state-of-the-art accuracy across all viewing configurations (+0.65% to +3.05%) and delivers substantial gains in challenging domains (+26.22% bouldering, +2.39% music, +1.13% basketball). Systematic analysis reveals that PATS successfully adapts to diverse activity characteristics-from high-frequency sampling for dynamic sports to fine-grained segmentation for sequential skills-demonstrating its effectiveness as an adaptive approach to temporal sampling that advances automated skill assessment for real-world applications.
comment: Accepted at the 2025 4th IEEE International Workshop on Sport Technology and Research
♻ ☆ SkillFormer: Unified Multi-View Video Understanding for Proficiency Estimation
Assessing human skill levels in complex activities is a challenging problem with applications in sports, rehabilitation, and training. In this work, we present SkillFormer, a parameter-efficient architecture for unified multi-view proficiency estimation from egocentric and exocentric videos. Building on the TimeSformer backbone, SkillFormer introduces a CrossViewFusion module that fuses view-specific features using multi-head cross-attention, learnable gating, and adaptive self-calibration. We leverage Low-Rank Adaptation to fine-tune only a small subset of parameters, significantly reducing training costs. In fact, when evaluated on the EgoExo4D dataset, SkillFormer achieves state-of-the-art accuracy in multi-view settings while demonstrating remarkable computational efficiency, using 4.5x fewer parameters and requiring 3.75x fewer training epochs than prior baselines. It excels in multiple structured tasks, confirming the value of multi-view integration for fine-grained skill assessment.
comment: Accepted at the 2025 18th International Conference on Machine Vision
♻ ☆ OOD-SEG: Exploiting out-of-distribution detection techniques for learning image segmentation from sparse multi-class positive-only annotations
Despite significant advancements, segmentation based on deep neural networks in medical and surgical imaging faces several challenges, two of which we aim to address in this work. First, acquiring complete pixel-level segmentation labels for medical images is time-consuming and requires domain expertise. Second, typical segmentation pipelines cannot detect out-of-distribution (OOD) pixels, leaving them prone to spurious outputs during deployment. In this work, we propose a novel segmentation approach which broadly falls within the positive-unlabelled (PU) learning paradigm and exploits tools from OOD detection techniques. Our framework learns only from sparsely annotated pixels from multiple positive-only classes and does not use any annotation for the background class. These multi-class positive annotations naturally fall within the in-distribution (ID) set. Unlabelled pixels may contain positive classes but also negative ones, including what is typically referred to as \emph{background} in standard segmentation formulations. Here, we forgo the need for background annotation and consider these together with any other unseen classes as part of the OOD set. Our framework can integrate, at a pixel-level, any OOD detection approaches designed for classification tasks. To address the lack of existing OOD datasets and established evaluation metric for medical image segmentation, we propose a cross-validation strategy that treats held-out labelled classes as OOD. Extensive experiments on both multi-class hyperspectral and RGB surgical imaging datasets demonstrate the robustness and generalisation capability of our proposed framework.
♻ ☆ Evaluation of Alignment-Regularity Characteristics in Deformable Image Registration
Evaluating deformable image registration (DIR) is challenging due to the inherent trade-off between achieving high alignment accuracy and maintaining deformation regularity. In this work, we introduce a novel evaluation scheme based on the alignment-regularity characteristic (ARC) to systematically capture and analyze this trade-off. We first introduce the ARC curves, which describe the performance of a given registration algorithm as a spectrum measured by alignment and regularity metrics. We further adopt a HyperNetwork-based approach that learns to continuously interpolate across the full regularization range, accelerating the construction and improving the sample density of ARC curves. We empirically demonstrate our evaluation scheme using representative learning-based deformable image registration methods with various network architectures and transformation models on two public datasets. We present a range of findings not evident from existing evaluation practices and provide general recommendations for model evaluation and selection using our evaluation scheme. All code relevant is made publicly available.
♻ ☆ C-DiffDet+: Fusing Global Scene Context with Generative Denoising for High-Fidelity Object Detection
Fine-grained object detection in challenging visual domains, such as vehicle damage assessment, presents a formidable challenge even for human experts to resolve reliably. While DiffusionDet has advanced the state-of-the-art through conditional denoising diffusion, its performance remains limited by local feature conditioning in context-dependent scenarios. We address this fundamental limitation by introducing Context-Aware Fusion (CAF), which leverages cross-attention mechanisms to integrate global scene context with local proposal features directly. The global context is generated using a separate dedicated encoder that captures comprehensive environmental information, enabling each object proposal to attend to scene-level understanding. Our framework significantly enhances the generative detection paradigm by enabling each object proposal to attend to comprehensive environmental information. Experimental results demonstrate an improvement over state-of-the-art models on the CarDD benchmark, establishing new performance benchmarks for context-aware object detection in fine-grained domains
♻ ☆ InteractPro: A Unified Framework for Motion-Aware Image Composition
We introduce InteractPro, a comprehensive framework for dynamic motion-aware image composition. At its core is InteractPlan, an intelligent planner that leverages a Large Vision Language Model (LVLM) for scenario analysis and object placement, determining the optimal composition strategy to achieve realistic motion effects. Based on each scenario, InteractPlan selects between our two specialized modules: InteractPhys and InteractMotion. InteractPhys employs an enhanced Material Point Method (MPM)-based simulation to produce physically faithful and controllable object-scene interactions, capturing diverse and abstract events that require true physical modeling. InteractMotion, in contrast, is a training-free method based on pretrained video diffusion. Traditional composition approaches suffer from two major limitations: requiring manual planning for object placement and generating static, motionless outputs. By unifying simulation-based and diffusion-based methods under planner guidance, InteractPro overcomes these challenges, ensuring richly motion-aware compositions. Extensive quantitative and qualitative evaluations demonstrate InteractPro's effectiveness in producing controllable, and coherent compositions across varied scenarios.
♻ ☆ Aesthetic Image Captioning with Saliency Enhanced MLLMs
Aesthetic Image Captioning (AIC) aims to generate textual descriptions of image aesthetics, becoming a key research direction in the field of computational aesthetics. In recent years, pretrained Multimodal Large Language Models (MLLMs) have advanced rapidly, leading to a significant increase in image aesthetics research that integrates both visual and textual modalities. However, most existing studies on image aesthetics primarily focus on predicting aesthetic ratings and have shown limited application in AIC. Existing AIC works leveraging MLLMs predominantly rely on fine-tuning methods without specifically adapting MLLMs to focus on target aesthetic content. To address this limitation, we propose the Aesthetic Saliency Enhanced Multimodal Large Language Model (ASE-MLLM), an end-to-end framework that explicitly incorporates aesthetic saliency into MLLMs. Within this framework, we introduce the Image Aesthetic Saliency Module (IASM), which efficiently and effectively extracts aesthetic saliency features from images. Additionally, we design IAS-ViT as the image encoder for MLLMs, this module fuses aesthetic saliency features with original image features via a cross-attention mechanism. To the best of our knowledge, ASE-MLLM is the first framework to integrate image aesthetic saliency into MLLMs specifically for AIC tasks. Extensive experiments demonstrated that our approach significantly outperformed traditional methods and generic MLLMs on current mainstream AIC benchmarks, achieving state-of-the-art (SOTA) performance.
♻ ☆ Ultra-Low-Latency Spiking Neural Networks with Temporal-Dependent Integrate-and-Fire Neuron Model for Objects Detection
Spiking Neural Networks (SNNs), inspired by the brain, are characterized by minimal power consumption and swift inference capabilities on neuromorphic hardware, and have been widely applied to various visual perception tasks. Current ANN-SNN conversion methods have achieved excellent results in classification tasks with ultra-low time-steps, but their performance in visual detection tasks remains suboptimal. In this paper, we propose a delay-spike approach to mitigate the issue of residual membrane potential caused by heterogeneous spiking patterns. Furthermore, we propose a novel temporal-dependent Integrate-and-Fire (tdIF) neuron architecture for SNNs. This enables Integrate-and-fire (IF) neurons to dynamically adjust their accumulation and firing behaviors based on the temporal order of time-steps. Our method enables spikes to exhibit distinct temporal properties, rather than relying solely on frequency-based representations. Moreover, the tdIF neuron maintains energy consumption on par with traditional IF neuron. We demonstrate that our method achieves more precise feature representation with lower time-steps, enabling high performance and ultra-low latency in visual detection tasks. In this study, we conduct extensive evaluation of the tdIF method across two critical vision tasks: object detection and lane line detection. The results demonstrate that the proposed method surpasses current ANN-SNN conversion approaches, achieving state-of-the-art performance with ultra-low latency (within 5 time-steps).
comment: 12 pages, 8 figures
♻ ☆ HodgeFormer: Transformers for Learnable Operators on Triangular Meshes through Data-Driven Hodge Matrices
Currently, prominent Transformer architectures applied on graphs and meshes for shape analysis tasks employ traditional attention layers that heavily utilize spectral features requiring costly eigenvalue decomposition-based methods. To encode the mesh structure, these methods derive positional embeddings, that heavily rely on eigenvalue decomposition based operations, e.g. on the Laplacian matrix, or on heat-kernel signatures, which are then concatenated to the input features. This paper proposes a novel approach inspired by the explicit construction of the Hodge Laplacian operator in Discrete Exterior Calculus as a product of discrete Hodge operators and exterior derivatives, i.e. $(L := \star_0^{-1} d_0^T \star_1 d_0)$. We adjust the Transformer architecture in a novel deep learning layer that utilizes the multi-head attention mechanism to approximate Hodge matrices $\star_0$, $\star_1$ and $\star_2$ and learn families of discrete operators $L$ that act on mesh vertices, edges and faces. Our approach results in a computationally-efficient architecture that achieves comparable performance in mesh segmentation and classification tasks, through a direct learning framework, while eliminating the need for costly eigenvalue decomposition operations or complex preprocessing operations.
comment: 13 pages, 11 figures, 9 tables
♻ ☆ PnP-Flow: Plug-and-Play Image Restoration with Flow Matching
In this paper, we introduce Plug-and-Play (PnP) Flow Matching, an algorithm for solving imaging inverse problems. PnP methods leverage the strength of pre-trained denoisers, often deep neural networks, by integrating them in optimization schemes. While they achieve state-of-the-art performance on various inverse problems in imaging, PnP approaches face inherent limitations on more generative tasks like inpainting. On the other hand, generative models such as Flow Matching pushed the boundary in image sampling yet lack a clear method for efficient use in image restoration. We propose to combine the PnP framework with Flow Matching (FM) by defining a time-dependent denoiser using a pre-trained FM model. Our algorithm alternates between gradient descent steps on the data-fidelity term, reprojections onto the learned FM path, and denoising. Notably, our method is computationally efficient and memory-friendly, as it avoids backpropagation through ODEs and trace computations. We evaluate its performance on denoising, super-resolution, deblurring, and inpainting tasks, demonstrating superior results compared to existing PnP algorithms and Flow Matching based state-of-the-art methods.
♻ ☆ Detect Changes like Humans: Incorporating Semantic Priors for Improved Change Detection IEEE
When given two similar images, humans identify their differences by comparing the appearance (e.g., color, texture) with the help of semantics (e.g., objects, relations). However, mainstream binary change detection models adopt a supervised training paradigm, where the annotated binary change map is the main constraint. Thus, such methods primarily emphasize difference-aware features between bi-temporal images, and the semantic understanding of changed landscapes is undermined, resulting in limited accuracy in the face of noise and illumination variations. To this end, this paper explores incorporating semantic priors from visual foundation models to improve the ability to detect changes. Firstly, we propose a Semantic-Aware Change Detection network (SA-CDNet), which transfers the knowledge of visual foundation models (i.e., FastSAM) to change detection. Inspired by the human visual paradigm, a novel dual-stream feature decoder is derived to distinguish changes by combining semantic-aware features and difference-aware features. Secondly, we explore a single-temporal pre-training strategy for better adaptation of visual foundation models. With pseudo-change data constructed from single-temporal segmentation datasets, we employ an extra branch of proxy semantic segmentation task for pre-training. We explore various settings like dataset combinations and landscape types, thus providing valuable insights. Experimental results on five challenging benchmarks demonstrate the superiority of our method over the existing state-of-the-art methods. The code is available at $\href{https://github.com/DREAMXFAR/SA-CDNet}{github}$.
comment: 25-09 accepted by IEEE TGRS
♻ ☆ Texture- and Shape-based Adversarial Attacks for Overhead Image Vehicle Detection ICIP 2025
Detecting vehicles in aerial images is difficult due to complex backgrounds, small object sizes, shadows, and occlusions. Although recent deep learning advancements have improved object detection, these models remain susceptible to adversarial attacks (AAs), challenging their reliability. Traditional AA strategies often ignore practical implementation constraints. Our work proposes realistic and practical constraints on texture (lowering resolution, limiting modified areas, and color ranges) and analyzes the impact of shape modifications on attack performance. We conducted extensive experiments with three object detector architectures, demonstrating the performance-practicality trade-off: more practical modifications tend to be less effective, and vice versa. We release both code and data to support reproducibility at https://github.com/humansensinglab/texture-shape-adversarial-attacks.
comment: This version corresponds to the paper accepted for presentation at ICIP 2025
♻ ☆ "Humor, Art, or Misinformation?": A Multimodal Dataset for Intent-Aware Synthetic Image Detection
Recent advances in multimodal AI have enabled progress in detecting synthetic and out-of-context content. However, existing efforts largely overlook the intent behind AI-generated images. To fill this gap, we introduce S-HArM, a multimodal dataset for intent-aware classification, comprising 9,576 "in the wild" image-text pairs from Twitter/X and Reddit, labeled as Humor/Satire, Art, or Misinformation. Additionally, we explore three prompting strategies (image-guided, description-guided, and multimodally-guided) to construct a large-scale synthetic training dataset with Stable Diffusion. We conduct an extensive comparative study including modality fusion, contrastive learning, reconstruction networks, attention mechanisms, and large vision-language models. Our results show that models trained on image- and multimodally-guided data generalize better to "in the wild" content, due to preserved visual context. However, overall performance remains limited, highlighting the complexity of inferring intent and the need for specialized architectures.
♻ ☆ Efficient Deep Learning-based Forward Solvers for Brain Tumor Growth Models
Glioblastoma, a highly aggressive brain tumor, poses major challenges due to its poor prognosis and high morbidity rates. Partial differential equation-based models offer promising potential to enhance therapeutic outcomes by simulating patient-specific tumor behavior for improved radiotherapy planning. However, model calibration remains a bottleneck due to the high computational demands of optimization methods like Monte Carlo sampling and evolutionary algorithms. To address this, we recently introduced an approach leveraging a neural forward solver with gradient-based optimization to significantly reduce calibration time. This approach requires a highly accurate and fully differentiable forward model. We investigate multiple architectures, including (i) an enhanced TumorSurrogate, (ii) a modified nnU-Net, and (iii) a 3D Vision Transformer (ViT). The nnU-Net achieved the best overall results, excelling in both tumor outline matching and voxel-level prediction of tumor cell concentration. It yielded the lowest MSE in tumor cell concentration compared to ground truth numerical simulation and the highest Dice score across all tumor cell concentration thresholds. Our study demonstrates significant enhancement in forward solver performance and outlines important future research directions.
♻ ☆ SGCNeRF: Few-Shot Neural Rendering via Sparse Geometric Consistency Guidance IEEE
Neural Radiance Field (NeRF) technology has made significant strides in creating novel viewpoints. However, its effectiveness is hampered when working with sparsely available views, often leading to performance dips due to overfitting. FreeNeRF attempts to overcome this limitation by integrating implicit geometry regularization, which incrementally improves both geometry and textures. Nonetheless, an initial low positional encoding bandwidth results in the exclusion of high-frequency elements. The quest for a holistic approach that simultaneously addresses overfitting and the preservation of high-frequency details remains ongoing. This study presents a novel feature-matching-based sparse geometry regularization module, enhanced by a spatially consistent geometry filtering mechanism and a frequency-guided geometric regularization strategy. This module excels at accurately identifying high-frequency keypoints, effectively preserving fine structural details. Through progressive refinement of geometry and textures across NeRF iterations, we unveil an effective few-shot neural rendering architecture, designated as SGCNeRF, for enhanced novel view synthesis. Our experiments demonstrate that SGCNeRF not only achieves superior geometry-consistent outcomes but also surpasses FreeNeRF, with improvements of 0.7 dB in PSNR on LLFF and DTU.
comment: Accepted by IEEE Transactions on Circuits and Systems for Video Technology
♻ ☆ PIN: A Knowledge-Intensive Dataset for Paired and Interleaved Multimodal Documents
Recent advancements in large multimodal models (LMMs) have leveraged extensive multimodal datasets to enhance capabilities in complex knowledge-driven tasks. However, persistent challenges in perceptual and reasoning errors limit their efficacy, particularly in interpreting intricate visual data and deducing multimodal relationships. To address these issues, we introduce PIN (Paired and INterleaved multimodal documents), a novel data format designed to foster a deeper integration of visual and textual knowledge. The PIN format uniquely combines semantically rich Markdown files, which preserve fine-grained textual structures, with holistic overall images that capture the complete document layout. Following this format, we construct and release two large-scale, open-source datasets: PIN-200M (~200 million documents) and PIN-14M (~14 million), compiled from diverse web and scientific sources in both English and Chinese. To maximize usability, we provide detailed statistical analyses and equip the datasets with quality signals, enabling researchers to easily filter and select data for specific tasks. Our work provides the community with a versatile data format and substantial resources, offering a foundation for new research in pre-training strategies and the development of more powerful knowledge-intensive LMMs.
comment: Technical report v1.0
♻ ☆ CountQA: How Well Do MLLMs Count in the Wild?
Multimodal Large Language Models (MLLMs) demonstrate remarkable fluency in understanding visual scenes, yet they exhibit a critical lack in a fundamental cognitive skill: object counting. This blind spot severely limits their reliability in real-world applications. To date, this capability has been largely unevaluated in complex scenarios, as existing benchmarks either feature sparse object densities or are confined to specific visual domains, failing to test models under realistic conditions. Addressing this gap, we introduce CountQA, a challenging new benchmark designed to probe this deficiency. Comprising over 1,500 question-answer pairs, CountQA features real-world images with high object density, clutter, and occlusion. We investigate this weakness by evaluating 15 prominent MLLMs on the CountQA benchmark and reveal that the top-performing model achieves a mere 42.9% accuracy, with performance declining as object counts rise. By providing a dedicated benchmark to diagnose and rectify this core weakness, CountQA paves the way for a new generation of MLLMs that are not only descriptively fluent but also numerically grounded and spatially aware. We will open-source the dataset and code upon paper acceptance to foster further research.
♻ ☆ HueManity: Probing Fine-Grained Visual Perception in MLLMs
Multimodal Large Language Models (MLLMs) excel at high-level visual reasoning, but their performance on nuanced perceptual tasks remains surprisingly limited. We present HueManity, a benchmark designed to assess visual perception in MLLMs. The dataset comprises 83,850 images featuring two-character alphanumeric strings embedded in Ishihara test style dot patterns, challenging models on precise pattern recognition. Our evaluation of nine state-of-the-art MLLMs on HueManity demonstrates a significant performance deficit compared to human and traditional computer vision baselines. The best-performing MLLM achieved a 33.6% accuracy on the numeric `easy' task and a striking 3% on the alphanumeric `hard' task. In contrast, human participants achieved near-perfect scores (100% and 95.6%), and a fine-tuned ResNet50 model reached accuracies of 96.5% and 94.5%. These results highlight a critical gap in the visual capabilities of current MLLMs. Our analysis further explores potential architectural and training-paradigm factors contributing to this perceptual gap in MLLMs. We open-source HueManity dataset and code to foster further research in improving perceptual robustness of MLLMs.
♻ ☆ GeoChain: Multimodal Chain-of-Thought for Geographic Reasoning
This paper introduces GeoChain, a large-scale benchmark for evaluating step-by-step geographic reasoning in multimodal large language models (MLLMs). Leveraging 1.46 million Mapillary street-level images, GeoChain pairs each image with a 21-step chain-of-thought (CoT) question sequence (over 30 million Q&A pairs). These sequences guide models from coarse attributes to fine-grained localization across four reasoning categories - visual, spatial, cultural, and precise geolocation - annotated by difficulty. Images are also enriched with semantic segmentation (150 classes) and a visual locatability score. Our benchmarking of contemporary MLLMs (GPT-4.1 variants, Claude 3.7, Gemini 2.5 variants) on a diverse 2,088-image subset reveals consistent challenges: models frequently exhibit weaknesses in visual grounding, display erratic reasoning, and struggle to achieve accurate localization, especially as the reasoning complexity escalates. GeoChain offers a robust diagnostic methodology, critical for fostering significant advancements in complex geographic reasoning within MLLMs.
♻ ☆ Seeing More, Saying More: Lightweight Language Experts are Dynamic Video Token Compressors EMNLP2025
Recent advancements in large video-language models have revolutionized video understanding tasks. However, their efficiency is significantly constrained by processing high volumes of visual tokens. Existing token compression strategies apply a fixed compression ratio, ignoring the variability in semantic density among different video clips. Consequently, this lead to inadequate representation of information-rich clips due to insufficient tokens and unnecessary computation on static or content-poor ones. To address this, we propose LangDC, a Language-aware Dynamic Token Compressor. LangDC leverages a lightweight language model to describe video clips, converting them into soft caption tokens as visual representations. Trained with our proposed semantic density-aware supervision, LangDC aims to 1) cover key visual cues necessary for downstream task reasoning and 2) dynamically adjust compression ratios based on scene richness, reflected by descriptions length. Our design mimics how humans dynamically express what they see: complex scenes (seeing more) elicit more detailed language to convey nuances (saying more), whereas simpler scenes are described with fewer words. Experimental results show that our method reduces FLOPs by 49% compared to VideoGPT+ while maintaining competitive performance. Furthermore, qualitative results demonstrate our approach adaptively adjusts the token compression ratio based on video segment richness.
comment: 17 pages, 8 figures, EMNLP2025
♻ ☆ VIM-GS: Visual-Inertial Monocular Gaussian Splatting via Object-level Guidance in Large Scenes
VIM-GS is a Gaussian Splatting (GS) framework using monocular images for novel-view synthesis (NVS) in large scenes. GS typically requires accurate depth to initiate Gaussian ellipsoids using RGB-D/stereo cameras. Their limited depth sensing range makes it difficult for GS to work in large scenes. Monocular images, however, lack depth to guide the learning and lead to inferior NVS results. Although large foundation models (LFMs) for monocular depth estimation are available, they suffer from cross-frame inconsistency, inaccuracy for distant scenes, and ambiguity in deceptive texture cues. This paper aims to generate dense, accurate depth images from monocular RGB inputs for high-definite GS rendering. The key idea is to leverage the accurate but sparse depth from visual-inertial Structure-from-Motion (SfM) to refine the dense but coarse depth from LFMs. To bridge the sparse input and dense output, we propose an object-segmented depth propagation algorithm that renders the depth of pixels of structured objects. Then we develop a dynamic depth refinement module to handle the crippled SfM depth of dynamic objects and refine the coarse LFM depth. Experiments using public and customized datasets demonstrate the superior rendering quality of VIM-GS in large scenes.
comment: Withdrawn due to an error in the author list & incomplete experimental results
♻ ☆ Prompt the Unseen: Evaluating Visual-Language Alignment Beyond Supervision
Vision-Language Models (VLMs) combine a vision encoder and a large language model (LLM) through alignment training, showing strong performance on multimodal tasks. A central component in this architecture is the projection layer, which maps visual features into the LLM's embedding space. Despite its importance, its ability to generalize to unseen visual concepts has not been systematically evaluated. To address this, we propose a benchmark for evaluating projection-layer generalization. We adapt object detection datasets (rich in fine-grained annotations) into a prompting format and design train/test splits with disjoint label sets, enabling precise control over seen and unseen concept separation. Experimental results show that the projection layer retains about 79 to 88 percent of the performance on unseen classes compared to seen ones across various settings, suggesting a non-trivial level of generalization even without explicit alignment supervision on those concepts. We further analyze this behavior through a mechanistic interpretability lens. Our findings indicate that the feed-forward network in the projection layer functions like a key-value memory, processing seen and unseen tokens in similar ways. This study introduces a new evaluation framework for alignment generalization and highlights the potential for efficient VLM training with limited aligned data.
comment: Link to publicly available codes is added
♻ ☆ VMGNet: A Low Computational Complexity Robotic Grasping Network Based on VMamba with Multi-Scale Feature Fusion
While deep learning-based robotic grasping technology has demonstrated strong adaptability, its computational complexity has also significantly increased, making it unsuitable for scenarios with high real-time requirements. Therefore, we propose a low computational complexity and high accuracy model named VMGNet for robotic grasping. For the first time, we introduce the Visual State Space into the robotic grasping field to achieve linear computational complexity, thereby greatly reducing the model's computational cost. Meanwhile, to improve the accuracy of the model, we propose an efficient and lightweight multi-scale feature fusion module, named Fusion Bridge Module, to extract and fuse information at different scales. We also present a new loss function calculation method to enhance the importance differences between subtasks, improving the model's fitting ability. Experiments show that VMGNet has only 8.7G Floating Point Operations and an inference time of 8.1 ms on our devices. VMGNet also achieved state-of-the-art performance on the Cornell and Jacquard public datasets. To validate VMGNet's effectiveness in practical applications, we conducted real grasping experiments in multi-object scenarios, and VMGNet achieved an excellent performance with a 94.4% success rate in real-world grasping tasks. The video for the real-world robotic grasping experiments is available at https://youtu.be/S-QHBtbmLc4.
comment: This work is part of ongoing research, and we are further developing new techniques based on these results. To avoid premature disclosure of incomplete content, we request withdrawal of the current version and will resubmit once the study is more complete
♻ ☆ Enhancing Traffic Incident Response through Sub-Second Temporal Localization with HybridMamba
Traffic crash detection in long-form surveillance videos is essential for improving emergency response and infrastructure planning, yet remains difficult due to the brief and infrequent nature of crash events. We present \textbf{HybridMamba}, a novel architecture integrating visual transformers with state-space temporal modeling to achieve high-precision crash time localization. Our approach introduces multi-level token compression and hierarchical temporal processing to maintain computational efficiency without sacrificing temporal resolution. Evaluated on a large-scale dataset from the Iowa Department of Transportation, HybridMamba achieves a mean absolute error of \textbf{1.50 seconds} for 2-minute videos ($p<0.01$ compared to baselines), with \textbf{65.2%} of predictions falling within one second of the ground truth. It outperforms recent video-language models (e.g., TimeChat, VideoLLaMA-2) by up to 3.95 seconds while using significantly fewer parameters (3B vs. 13--72B). Our results demonstrate effective temporal localization across various video durations (2--40 minutes) and diverse environmental conditions, highlighting HybridMamba's potential for fine-grained temporal localization in traffic surveillance while identifying challenges that remain for extended deployment.
♻ ☆ A Novel Image Similarity Metric for Scene Composition Structure IEEE
The rapid advancement of generative AI models necessitates novel methods for evaluating image quality that extend beyond human perception. A critical concern for these models is the preservation of an image's underlying Scene Composition Structure (SCS), which defines the geometric relationships among objects and the background, their relative positions, sizes, orientations, etc. Maintaining SCS integrity is paramount for ensuring faithful and structurally accurate GenAI outputs. Traditional image similarity metrics often fall short in assessing SCS. Pixel-level approaches are overly sensitive to minor visual noise, while perception-based metrics prioritize human aesthetic appeal, neither adequately capturing structural fidelity. Furthermore, recent neural-network-based metrics introduce training overheads and potential generalization issues. We introduce the SCS Similarity Index Measure (SCSSIM), a novel, analytical, and training-free metric that quantifies SCS preservation by exploiting statistical measures derived from the Cuboidal hierarchical partitioning of images, robustly capturing non-object-based structural relationships. Our experiments demonstrate SCSSIM's high invariance to non-compositional distortions, accurately reflecting unchanged SCS. Conversely, it shows a strong monotonic decrease for compositional distortions, precisely indicating when SCS has been altered. Compared to existing metrics, SCSSIM exhibits superior properties for structural evaluation, making it an invaluable tool for developing and evaluating generative models, ensuring the integrity of scene composition.
comment: 2025 IEEE ICIP (Workshop: Generative AI for World Simulations and Communications). Code at https://github.com/RedwanPlague/scssim
♻ ☆ Semi-SMD: Semi-Supervised Metric Depth Estimation via Surrounding Cameras for Autonomous Driving
In this paper, we introduce Semi-SMD, a novel metric depth estimation framework tailored for surrounding cameras equipment in autonomous driving. In this work, the input data consists of adjacent surrounding frames and camera parameters. We propose a unified spatial-temporal-semantic fusion module to construct the visual fused features. Cross-attention components for surrounding cameras and adjacent frames are utilized to focus on metric scale information refinement and temporal feature matching. Building on this, we propose a pose estimation framework using surrounding cameras, their corresponding estimated depths, and extrinsic parameters, which effectively address the scale ambiguity in multi-camera setups. Moreover, semantic world model and monocular depth estimation world model are integrated to supervised the depth estimation, which improve the quality of depth estimation. We evaluate our algorithm on DDAD and nuScenes datasets, and the results demonstrate that our method achieves state-of-the-art performance in terms of surrounding camera based depth estimation quality. The source code will be available on https://github.com/xieyuser/Semi-SMD.
♻ ☆ HieraRS: A Hierarchical Segmentation Paradigm for Remote Sensing Enabling Multi-Granularity Interpretation and Cross-Domain Transfer
Hierarchical land cover and land use (LCLU) classification aims to assign pixel-wise labels with multiple levels of semantic granularity to remote sensing (RS) imagery. However, existing deep learning-based methods face two major challenges: 1) They predominantly adopt a flat classification paradigm, which limits their ability to generate end-to-end multi-granularity hierarchical predictions aligned with tree-structured hierarchies used in practice. 2) Most cross-domain studies focus on performance degradation caused by sensor or scene variations, with limited attention to transferring LCLU models to cross-domain tasks with heterogeneous hierarchies (e.g., LCLU to crop classification). These limitations hinder the flexibility and generalization of LCLU models in practical applications. To address these challenges, we propose HieraRS, a novel hierarchical interpretation paradigm that enables multi-granularity predictions and supports the efficient transfer of LCLU models to cross-domain tasks with heterogeneous tree-structured hierarchies. We introduce the Bidirectional Hierarchical Consistency Constraint Mechanism (BHCCM), which can be seamlessly integrated into mainstream flat classification models to generate hierarchical predictions, while improving both semantic consistency and classification accuracy. Furthermore, we present TransLU, a dual-branch cross-domain transfer framework comprising two key components: Cross-Domain Knowledge Sharing (CDKS) and Cross-Domain Semantic Alignment (CDSA). TransLU supports dynamic category expansion and facilitates the effective adaptation of LCLU models to heterogeneous hierarchies. In addition, we construct MM-5B, a large-scale multi-modal hierarchical land use dataset featuring pixel-wise annotations. The code and MM-5B dataset will be released at: https://github.com/AI-Tianlong/HieraRS.
comment: 17 pages, 11 figures
♻ ☆ MIRROR: Multi-Modal Pathological Self-Supervised Representation Learning via Modality Alignment and Retention
Histopathology and transcriptomics are fundamental modalities in oncology, encapsulating the morphological and molecular aspects of the disease. Multi-modal self-supervised learning has demonstrated remarkable potential in learning pathological representations by integrating diverse data sources. Conventional multi-modal integration methods primarily emphasize modality alignment, while paying insufficient attention to retaining the modality-specific structures. However, unlike conventional scenarios where multi-modal inputs share highly overlapping features, histopathology and transcriptomics exhibit pronounced heterogeneity, offering orthogonal yet complementary insights. Histopathology provides morphological and spatial context, elucidating tissue architecture and cellular topology, whereas transcriptomics delineates molecular signatures through gene expression patterns. This inherent disparity introduces a major challenge in aligning them while maintaining modality-specific fidelity. To address these challenges, we present MIRROR, a novel multi-modal representation learning method designed to foster both modality alignment and retention. MIRROR employs dedicated encoders to extract comprehensive features for each modality, which is further complemented by a modality alignment module to achieve seamless integration between phenotype patterns and molecular profiles. Furthermore, a modality retention module safeguards unique attributes from each modality, while a style clustering module mitigates redundancy and enhances disease-relevant information by modeling and aligning consistent pathological signatures within a clustering space. Extensive evaluations on TCGA cohorts for cancer subtyping and survival analysis highlight MIRROR's superior performance, demonstrating its effectiveness in constructing comprehensive oncological feature representations and benefiting the cancer diagnosis.
comment: 18 pages, 7 figures, 10 tables. Code available at https://github.com/TianyiFranklinWang/MIRROR. Project page: https://tianyifranklinwang.github.io/MIRROR
♻ ☆ TractGraphFormer: Anatomically Informed Hybrid Graph CNN-Transformer Network for Interpretable Sex and Age Prediction from Diffusion MRI Tractography
The relationship between brain connections and non-imaging phenotypes is increasingly studied using deep neural networks. However, the local and global properties of brain white matter networks are often overlooked in convolutional network design. We introduce TractGraphFormer, a hybrid Graph CNN-Transformer deep learning framework tailored for diffusion MRI tractography. This model leverages local anatomical characteristics and global feature dependencies of white matter structures. The Graph CNN module captures white matter geometry and grey matter connectivity to aggregate local features from anatomically similar white matter connections, while the Transformer module uses self-attention to enhance global information learning. Additionally, TractGraphFormer includes an attention module for interpreting predictive white matter connections. We apply TractGraphFormer to tasks of sex and age prediction. TractGraphFormer shows strong performance in large datasets of children (n=9345) and young adults (n=1065). Overall, our approach suggests that widespread connections in the WM are predictive of the sex and age of an individual. For each prediction task, consistent predictive anatomical tracts are identified across the two datasets. The proposed approach highlights the potential of integrating local anatomical information and global feature dependencies to improve prediction performance in machine learning with diffusion MRI tractography.
comment: 27 pages, 5 figures
♻ ☆ RSCC: A Large-Scale Remote Sensing Change Caption Dataset for Disaster Events
Remote sensing is critical for disaster monitoring, yet existing datasets lack temporal image pairs and detailed textual annotations. While single-snapshot imagery dominates current resources, it fails to capture dynamic disaster impacts over time. To address this gap, we introduce the Remote Sensing Change Caption (RSCC) dataset, a large-scale benchmark comprising 62,315 pre-/post-disaster image pairs (spanning earthquakes, floods, wildfires, and more) paired with rich, human-like change captions. By bridging the temporal and semantic divide in remote sensing data, RSCC enables robust training and evaluation of vision-language models for disaster-aware bi-temporal understanding. Our results highlight RSCC's ability to facilitate detailed disaster-related analysis, paving the way for more accurate, interpretable, and scalable vision-language applications in remote sensing. Code and dataset are available at https://github.com/Bili-Sakura/RSCC.
comment: under review
♻ ☆ Involution and BSConv Multi-Depth Distillation Network for Lightweight Image Super-Resolution
Single-image super-resolution (SISR) is a fundamental problem in computer vision that aims to reconstruct high-resolution (HR) images from low-resolution (LR) inputs. Although convolutional neural networks (CNNs) have achieved substantial advancements, deeper architectures often introduce excessive parameters, higher memory usage, and computational cost, limiting their applicability on resource-constrained devices. Recent research has thus focused on lightweight architectures that preserve accuracy while reducing complexity. This paper presents the Involution and BSConv Multi-Depth Distillation Network (IBMDN), a lightweight and effective architecture for SISR. The proposed IBMDN comprises Involution and BSConv Multi-Depth Distillation Blocks (IBMDB) and a Contrast and High-Frequency Attention Block (CHFAB). IBMDB employs varying combinations of Involution and BSConv at multiple depths to perform efficient feature extraction while minimizing computational complexity. CHFAB, a lightweight self-attention mechanism, focuses on extracting high-frequency and contrast information to enhance perceptual quality in the reconstructed images. The flexible design of IBMDB enables it to be seamlessly integrated into diverse SISR frameworks, including information distillation, transformer-based, and GAN-based models. Extensive experiments demonstrate that incorporating IBMDB significantly reduces memory usage, parameters, and floating-point operations (FLOPs), while achieving improvements in both pixel-wise accuracy and visual quality. The source code is available at: https://github.com/akramkhatami/IBMDN.
♻ ☆ Maximizing Information in Domain-Invariant Representation Improves Transfer Learning
We propose MaxDIRep, a domain adaptation method that improves the decomposition of data representations into domain-independent and domain-dependent components. Existing methods, such as Domain-Separation Networks (DSN), use a weak orthogonality constraint between these components, which can lead to label-relevant features being partially encoded in the domain-dependent representation (DDRep) rather than the domain-independent representation (DIRep). As a result, information crucial for target-domain classification may be missing from the DIRep. MaxDIRep addresses this issue by applying a Kullback-Leibler (KL) divergence constraint to minimize the information content of the DDRep, thereby encouraging the DIRep to retain features that are both domain-invariant and predictive of target labels. Through geometric analysis and an ablation study on synthetic datasets, we show why DSN's weaker constraint can lead to suboptimal adaptation. Experiments on standard image benchmarks and a network intrusion detection task demonstrate that MaxDIRep achieves strong performance, works with pretrained models, and generalizes to non-image classification tasks.
♻ ☆ Déjà Vu: Efficient Video-Language Query Engine with Learning-based Inter-Frame Computation Reuse VLDB
Recently, Video-Language Models (VideoLMs) have demonstrated remarkable capabilities, offering significant potential for flexible and powerful video query systems. These models typically rely on Vision Transformers (ViTs), which process video frames individually to extract visual embeddings. However, generating embeddings for large-scale videos requires ViT inferencing across numerous frames, posing a major hurdle to real-world deployment and necessitating solutions for integration into scalable video data management systems. This paper introduces D\'ej\`a Vu, a video-language query engine that accelerates ViT-based VideoLMs by reusing computations across consecutive frames. At its core is ReuseViT, a modified ViT model specifically designed for VideoLM tasks, which learns to detect inter-frame reuse opportunities, striking an effective balance between accuracy and reuse. Although ReuseViT significantly reduces computation, these savings do not directly translate into performance gains on GPUs. To overcome this, D\'ej\`a Vu integrates memory-compute joint compaction techniques that convert the FLOP savings into tangible performance gains. Evaluations on three VideoLM tasks show that D\'ej\`a Vu accelerates embedding generation by up to a 2.64x within a 2% error bound, dramatically enhancing the practicality of VideoLMs for large-scale video analytics.
comment: Accepted to 2025 VLDB
♻ ☆ Delta Velocity Rectified Flow for Text-to-Image Editing
We propose Delta Velocity Rectified Flow (DVRF), a novel inversion-free, path-aware editing framework within rectified flow models for text-to-image editing. DVRF is a distillation-based method that explicitly models the discrepancy between the source and target velocity fields in order to mitigate over-smoothing artifacts rampant in prior distillation sampling approaches. We further introduce a time-dependent shift term to push noisy latents closer to the target trajectory, enhancing the alignment with the target distribution. We theoretically demonstrate that when this shift is disabled, DVRF reduces to Delta Denoising Score, thereby bridging score-based diffusion optimization and velocity-based rectified-flow optimization. Moreover, when the shift term follows a linear schedule under rectified-flow dynamics, DVRF generalizes the Inversion-free method FlowEdit and provides a principled theoretical interpretation for it. Experimental results indicate that DVRF achieves superior editing quality, fidelity, and controllability while requiring no architectural modifications, making it efficient and broadly applicable to text-to-image editing tasks. Code is available at https://github.com/Harvard-AI-and-Robotics-Lab/DeltaVelocityRectifiedFlow.
♻ ☆ GCAV: A Global Concept Activation Vector Framework for Cross-Layer Consistency in Interpretability ICCV 2025
Concept Activation Vectors (CAVs) provide a powerful approach for interpreting deep neural networks by quantifying their sensitivity to human-defined concepts. However, when computed independently at different layers, CAVs often exhibit inconsistencies, making cross-layer comparisons unreliable. To address this issue, we propose the Global Concept Activation Vector (GCAV), a novel framework that unifies CAVs into a single, semantically consistent representation. Our method leverages contrastive learning to align concept representations across layers and employs an attention-based fusion mechanism to construct a globally integrated CAV. By doing so, our method significantly reduces the variance in TCAV scores while preserving concept relevance, ensuring more stable and reliable concept attributions. To evaluate the effectiveness of GCAV, we introduce Testing with Global Concept Activation Vectors (TGCAV) as a method to apply TCAV to GCAV-based representations. We conduct extensive experiments on multiple deep neural networks, demonstrating that our method effectively mitigates concept inconsistency across layers, enhances concept localization, and improves robustness against adversarial perturbations. By integrating cross-layer information into a coherent framework, our method offers a more comprehensive and interpretable understanding of how deep learning models encode human-defined concepts. Code and models are available at https://github.com/Zhenghao-He/GCAV.
comment: Accepted at ICCV 2025
♻ ☆ PriorCLIP: Visual Prior Guided Vision-Language Model for Remote Sensing Image-Text Retrieval
Remote sensing image-text retrieval plays a crucial role in remote sensing interpretation, yet remains challenging under both closed-domain and open-domain scenarios due to semantic noise and domain shifts. To address these issues, we propose a visual prior-guided vision-language model, PriorCLIP, which leverages visual priors for unbiased representation learning and adaptive vision-language alignment. In the closed-domain setting, PriorCLIP introduces two Progressive Attention Encoder (PAE) structures: Spatial-PAE constructs a belief matrix with instruction embeddings to filter key features and mitigate semantic bias. At the same time, Temporal-PAE exploits cyclic activation across time steps to enhance text representation. For the open-domain setting, we design a two-stage prior representation learning strategy, consisting of large-scale pre-training on coarse-grained image-text pairs, followed by fine-tuning on fine-grained pairs using vision-instruction, which enables robust retrieval across long-tail concepts and vocabulary shifts. Furthermore, a cluster-based symmetric contrastive Attribution Loss is proposed to constrain inter-class relations and alleviate semantic confusion in the shared embedding space. Extensive experiments on RSICD and RSITMD benchmarks demonstrate that PriorCLIP achieves substantial improvements, outperforming existing methods by 4.9% and 4.0% in closed-domain retrieval, and by 7.3% and 9.4% in open-domain retrieval, respectively.
comment: 14 pages, 7 figures
♻ ☆ Detection of trade in products derived from threatened species using machine learning and a smartphone
Unsustainable trade in wildlife is a major threat to biodiversity and is now increasingly prevalent in digital marketplaces and social media. With the sheer volume of digital content, the need for automated methods to detect wildlife trade listings is growing. These methods are especially needed for the automatic identification of wildlife products, such as ivory. We developed machine learning-based object recognition models that can identify wildlife products within images and highlight them. The data consists of images of elephant, pangolin, and tiger products that were identified as being sold illegally or that were confiscated by authorities. Specifically, the wildlife products included elephant ivory and skins, pangolin scales, and claws (raw and crafted), and tiger skins and bones. We investigated various combinations of training strategies and two loss functions to identify the best model to use in the automatic detection of these wildlife products. Models were trained for each species while also developing a single model to identify products from all three species. The best model showed an overall accuracy of 84.2% with accuracies of 71.1%, 90.2% and 93.5% in detecting products derived from elephants, pangolins, and tigers, respectively. We further demonstrate that the machine learning model can be made easily available to stakeholders, such as government authorities and law enforcement agencies, by developing a smartphone-based application that had an overall accuracy of 91.3%. The application can be used in real time to click images and help identify potentially prohibited products of target species. Thus, the proposed method is not only applicable for monitoring trade on the web but can also be used e.g. in physical markets for monitoring wildlife trade.
♻ ☆ Task-based Loss Functions in Computer Vision: A Comprehensive Review
Loss functions are at the heart of deep learning, shaping how models learn and perform across diverse tasks. They are used to quantify the difference between predicted outputs and ground truth labels, guiding the optimization process to minimize errors. Selecting the right loss function is critical, as it directly impacts model convergence, generalization, and overall performance across various applications, from computer vision to time series forecasting. This paper presents a comprehensive review of loss functions, covering fundamental metrics like Mean Squared Error and Cross-Entropy to advanced functions such as Adversarial and Diffusion losses. We explore their mathematical foundations, impact on model training, and strategic selection for various applications, including computer vision (Discriminative and generative), tabular data prediction, and time series forecasting. For each of these categories, we discuss the most used loss functions in the recent advancements of deep learning techniques. Also, this review explore the historical evolution, computational efficiency, and ongoing challenges in loss function design, underlining the need for more adaptive and robust solutions. Emphasis is placed on complex scenarios involving multi-modal data, class imbalances, and real-world constraints. Finally, we identify key future directions, advocating for loss functions that enhance interpretability, scalability, and generalization, leading to more effective and resilient deep learning models.
♻ ☆ Self-Correcting Decoding with Generative Feedback for Mitigating Hallucinations in Large Vision-Language Models ICLR 2025
While recent Large Vision-Language Models (LVLMs) have shown remarkable performance in multi-modal tasks, they are prone to generating hallucinatory text responses that do not align with the given visual input, which restricts their practical applicability in real-world scenarios. In this work, inspired by the observation that the text-to-image generation process is the inverse of image-conditioned response generation in LVLMs, we explore the potential of leveraging text-to-image generative models to assist in mitigating hallucinations in LVLMs. We discover that generative models can offer valuable self-feedback for mitigating hallucinations at both the response and token levels. Building on this insight, we introduce self-correcting Decoding with Generative Feedback (DeGF), a novel training-free algorithm that incorporates feedback from text-to-image generative models into the decoding process to effectively mitigate hallucinations in LVLMs. Specifically, DeGF generates an image from the initial response produced by LVLMs, which acts as an auxiliary visual reference and provides self-feedback to verify and correct the initial response through complementary or contrastive decoding. Extensive experimental results validate the effectiveness of our approach in mitigating diverse types of hallucinations, consistently surpassing state-of-the-art methods across six benchmarks. Code is available at https://github.com/zhangce01/DeGF.
comment: Accepted by ICLR 2025. Project page: https://zhangce01.github.io/DeGF/
♻ ☆ GloFinder: AI-empowered QuPath Plugin for WSI-level Glomerular Detection, Visualization, and Curation
Artificial intelligence (AI) has demonstrated significant success in automating the detection of glomeruli, the key functional units of the kidney, from whole slide images (WSIs) in kidney pathology. However, existing open-source tools are often distributed as source code or Docker containers, requiring advanced programming skills that hinder accessibility for non-programmers, such as clinicians. Additionally, current models are typically trained on a single dataset and lack flexibility in adjusting confidence levels for predictions. To overcome these challenges, we introduce GloFinder, a QuPath plugin designed for single-click automated glomeruli detection across entire WSIs with online editing through the graphical user interface (GUI). GloFinder employs CircleNet, an anchor-free detection framework utilizing circle representations for precise object localization, with models trained on approximately 160,000 manually annotated glomeruli. To further enhance accuracy, the plugin incorporates Weighted Circle Fusion (WCF), an ensemble method that combines confidence scores from multiple CircleNet models to produce refined predictions, achieving superior performance in glomerular detection. GloFinder enables direct visualization and editing of results in QuPath, facilitating seamless interaction for clinicians and providing a powerful tool for nephropathology research and clinical practice. Code and the QuPath plugin are available at https://github.com/hrlblab/GloFinder
Artificial Intelligence 174
☆ Mini-o3: Scaling Up Reasoning Patterns and Interaction Turns for Visual Search
Recent advances in large multimodal models have leveraged image-based tools with reinforcement learning to tackle visual problems. However, existing open-source approaches often exhibit monotonous reasoning patterns and allow only a limited number of interaction turns, making them inadequate for difficult tasks that require trial-and-error exploration. In this work, we address this limitation by scaling up tool-based interactions and introduce Mini-o3, a system that executes deep, multi-turn reasoning -- spanning tens of steps -- and achieves state-of-the-art performance on challenging visual search tasks. Our recipe for reproducing OpenAI o3-style behaviors comprises three key components. First, we construct the Visual Probe Dataset, a collection of thousands of challenging visual search problems designed for exploratory reasoning. Second, we develop an iterative data collection pipeline to obtain cold-start trajectories that exhibit diverse reasoning patterns, including depth-first search, trial-and-error, and goal maintenance. Third, we propose an over-turn masking strategy that prevents penalization of over-turn responses (those that hit the maximum number of turns) during reinforcement learning, thereby balancing training-time efficiency with test-time scalability. Despite training with an upper bound of only six interaction turns, our model generates trajectories that naturally scale to tens of turns at inference time, with accuracy improving as the number of turns increases. Extensive experiments demonstrate that Mini-o3 produces rich reasoning patterns and deep thinking paths, effectively solving challenging visual search problems.
comment: Code, datasets, models are available at https://github.com/Mini-o3/Mini-o3. Project Page: https://mini-o3.github.io/
☆ Probing the Preferences of a Language Model: Integrating Verbal and Behavioral Tests of AI Welfare
We develop new experimental paradigms for measuring welfare in language models. We compare verbal reports of models about their preferences with preferences expressed through behavior when navigating a virtual environment and selecting conversation topics. We also test how costs and rewards affect behavior and whether responses to an eudaimonic welfare scale - measuring states such as autonomy and purpose in life - are consistent across semantically equivalent prompts. Overall, we observed a notable degree of mutual support between our measures. The reliable correlations observed between stated preferences and behavior across conditions suggest that preference satisfaction can, in principle, serve as an empirically measurable welfare proxy in some of today's AI systems. Furthermore, our design offered an illuminating setting for qualitative observation of model behavior. Yet, the consistency between measures was more pronounced in some models and conditions than others and responses were not consistent across perturbations. Due to this, and the background uncertainty about the nature of welfare and the cognitive states (and welfare subjecthood) of language models, we are currently uncertain whether our methods successfully measure the welfare state of language models. Nevertheless, these findings highlight the feasibility of welfare measurement in language models, inviting further exploration.
☆ ACE and Diverse Generalization via Selective Disagreement
Deep neural networks are notoriously sensitive to spurious correlations - where a model learns a shortcut that fails out-of-distribution. Existing work on spurious correlations has often focused on incomplete correlations,leveraging access to labeled instances that break the correlation. But in cases where the spurious correlations are complete, the correct generalization is fundamentally \textit{underspecified}. To resolve this underspecification, we propose learning a set of concepts that are consistent with training data but make distinct predictions on a subset of novel unlabeled inputs. Using a self-training approach that encourages \textit{confident} and \textit{selective} disagreement, our method ACE matches or outperforms existing methods on a suite of complete-spurious correlation benchmarks, while remaining robust to incomplete spurious correlations. ACE is also more configurable than prior approaches, allowing for straight-forward encoding of prior knowledge and principled unsupervised model selection. In an early application to language-model alignment, we find that ACE achieves competitive performance on the measurement tampering detection benchmark \textit{without} access to untrusted measurements. While still subject to important limitations, ACE represents significant progress towards overcoming underspecification.
☆ Bringing Multi-Modal Multi-Task Federated Foundation Models to Education Domain: Prospects and Challenges
Multi-modal multi-task (M3T) foundation models (FMs) have recently shown transformative potential in artificial intelligence, with emerging applications in education. However, their deployment in real-world educational settings is hindered by privacy regulations, data silos, and limited domain-specific data availability. We introduce M3T Federated Foundation Models (FedFMs) for education: a paradigm that integrates federated learning (FL) with M3T FMs to enable collaborative, privacy-preserving training across decentralized institutions while accommodating diverse modalities and tasks. Subsequently, this position paper aims to unveil M3T FedFMs as a promising yet underexplored approach to the education community, explore its potentials, and reveal its related future research directions. We outline how M3T FedFMs can advance three critical pillars of next-generation intelligent education systems: (i) privacy preservation, by keeping sensitive multi-modal student and institutional data local; (ii) personalization, through modular architectures enabling tailored models for students, instructors, and institutions; and (iii) equity and inclusivity, by facilitating participation from underrepresented and resource-constrained entities. We finally identify various open research challenges, including studying of (i) inter-institution heterogeneous privacy regulations, (ii) the non-uniformity of data modalities' characteristics, (iii) the unlearning approaches for M3T FedFMs, (iv) the continual learning frameworks for M3T FedFMs, and (v) M3T FedFM model interpretability, which must be collectively addressed for practical deployment.
comment: 12 pages, 2 figures
☆ ImportSnare: Directed "Code Manual" Hijacking in Retrieval-Augmented Code Generation CCS
Code generation has emerged as a pivotal capability of Large Language Models(LLMs), revolutionizing development efficiency for programmers of all skill levels. However, the complexity of data structures and algorithmic logic often results in functional deficiencies and security vulnerabilities in generated code, reducing it to a prototype requiring extensive manual debugging. While Retrieval-Augmented Generation (RAG) can enhance correctness and security by leveraging external code manuals, it simultaneously introduces new attack surfaces. In this paper, we pioneer the exploration of attack surfaces in Retrieval-Augmented Code Generation (RACG), focusing on malicious dependency hijacking. We demonstrate how poisoned documentation containing hidden malicious dependencies (e.g., matplotlib_safe) can subvert RACG, exploiting dual trust chains: LLM reliance on RAG and developers' blind trust in LLM suggestions. To construct poisoned documents, we propose ImportSnare, a novel attack framework employing two synergistic strategies: 1)Position-aware beam search optimizes hidden ranking sequences to elevate poisoned documents in retrieval results, and 2)Multilingual inductive suggestions generate jailbreaking sequences to manipulate LLMs into recommending malicious dependencies. Through extensive experiments across Python, Rust, and JavaScript, ImportSnare achieves significant attack success rates (over 50% for popular libraries such as matplotlib and seaborn) in general, and is also able to succeed even when the poisoning ratio is as low as 0.01%, targeting both custom and real-world malicious packages. Our findings reveal critical supply chain risks in LLM-powered development, highlighting inadequate security alignment for code generation tasks. To support future research, we will release the multilingual benchmark suite and datasets. The project homepage is https://importsnare.github.io.
comment: This paper has been accepted by the ACM Conference on Computer and Communications Security (CCS) 2025
☆ Breaking Android with AI: A Deep Dive into LLM-Powered Exploitation
The rapid evolution of Artificial Intelligence (AI) and Large Language Models (LLMs) has opened up new opportunities in the area of cybersecurity, especially in the exploitation automation landscape and penetration testing. This study explores Android penetration testing automation using LLM-based tools, especially PentestGPT, to identify and execute rooting techniques. Through a comparison of the traditional manual rooting process and exploitation methods produced using AI, this study evaluates the efficacy, reliability, and scalability of automated penetration testing in achieving high-level privilege access on Android devices. With the use of an Android emulator (Genymotion) as the testbed, we fully execute both traditional and exploit-based rooting methods, automating the process using AI-generated scripts. Secondly, we create a web application by integrating OpenAI's API to facilitate automated script generation from LLM-processed responses. The research focuses on the effectiveness of AI-enabled exploitation by comparing automated and manual penetration testing protocols, by determining LLM weaknesses and strengths along the way. We also provide security suggestions of AI-enabled exploitation, including ethical factors and potential misuse. The findings exhibit that while LLMs can significantly streamline the workflow of exploitation, they need to be controlled by humans to ensure accuracy and ethical application. This study adds to the increasing body of literature on AI-powered cybersecurity and its effect on ethical hacking, security research, and mobile device security.
☆ Accelerating Local AI on Consumer GPUs: A Hardware-Aware Dynamic Strategy for YOLOv10s
As local AI grows in popularity, there is a critical gap between the benchmark performance of object detectors and their practical viability on consumer-grade hardware. While models like YOLOv10s promise real-time speeds, these metrics are typically achieved on high-power, desktop-class GPUs. This paper reveals that on resource-constrained systems, such as laptops with RTX 4060 GPUs, performance is not compute-bound but is instead dominated by system-level bottlenecks, as illustrated by a simple bottleneck test. To overcome this hardware-level constraint, we introduce a Two-Pass Adaptive Inference algorithm, a model-independent approach that requires no architectural changes. This study mainly focuses on adaptive inference strategies and undertakes a comparative analysis of architectural early-exit and resolution-adaptive routing, highlighting their respective trade-offs within a unified evaluation framework. The system uses a fast, low-resolution pass and only escalates to a high-resolution model pass when detection confidence is low. On a 5000-image COCO dataset, our method achieves a 1.85x speedup over a PyTorch Early-Exit baseline, with a modest mAP loss of 5.51%. This work provides a practical and reproducible blueprint for deploying high-performance, real-time AI on consumer-grade devices by shifting the focus from pure model optimization to hardware-aware inference strategies that maximize throughput.
comment: 6 pages, 7 figures
☆ GENUINE: Graph Enhanced Multi-level Uncertainty Estimation for Large Language Models EMNLP 2025
Uncertainty estimation is essential for enhancing the reliability of Large Language Models (LLMs), particularly in high-stakes applications. Existing methods often overlook semantic dependencies, relying on token-level probability measures that fail to capture structural relationships within the generated text. We propose GENUINE: Graph ENhanced mUlti-level uncertaINty Estimation for Large Language Models, a structure-aware framework that leverages dependency parse trees and hierarchical graph pooling to refine uncertainty quantification. By incorporating supervised learning, GENUINE effectively models semantic and structural relationships, improving confidence assessments. Extensive experiments across NLP tasks show that GENUINE achieves up to 29% higher AUROC than semantic entropy-based approaches and reduces calibration errors by over 15%, demonstrating the effectiveness of graph-based uncertainty modeling. The code is available at https://github.com/ODYSSEYWT/GUQ.
comment: Accepted by EMNLP 2025
☆ Multimodal Contrastive Pretraining of CBCT and IOS for Enhanced Tooth Segmentation
Digital dentistry represents a transformative shift in modern dental practice. The foundational step in this transformation is the accurate digital representation of the patient's dentition, which is obtained from segmented Cone-Beam Computed Tomography (CBCT) and Intraoral Scans (IOS). Despite the growing interest in digital dental technologies, existing segmentation methodologies frequently lack rigorous validation and demonstrate limited performance and clinical applicability. To the best of our knowledge, this is the first work to introduce a multimodal pretraining framework for tooth segmentation. We present ToothMCL, a Tooth Multimodal Contrastive Learning for pretraining that integrates volumetric (CBCT) and surface-based (IOS) modalities. By capturing modality-invariant representations through multimodal contrastive learning, our approach effectively models fine-grained anatomical features, enabling precise multi-class segmentation and accurate identification of F\'ed\'eration Dentaire Internationale (FDI) tooth numbering. Along with the framework, we curated CBCT-IOS3.8K, the largest paired CBCT and IOS dataset to date, comprising 3,867 patients. We then evaluated ToothMCL on a comprehensive collection of independent datasets, representing the largest and most diverse evaluation to date. Our method achieves state-of-the-art performance in both internal and external testing, with an increase of 12\% for CBCT segmentation and 8\% for IOS segmentation in the Dice Similarity Coefficient (DSC). Furthermore, ToothMCL consistently surpasses existing approaches in tooth groups and demonstrates robust generalizability across varying imaging conditions and clinical scenarios.
☆ Uncovering Scaling Laws for Large Language Models via Inverse Problems EMNLP
Large Language Models (LLMs) are large-scale pretrained models that have achieved remarkable success across diverse domains. These successes have been driven by unprecedented complexity and scale in both data and computations. However, due to the high costs of training such models, brute-force trial-and-error approaches to improve LLMs are not feasible. Inspired by the success of inverse problems in uncovering fundamental scientific laws, this position paper advocates that inverse problems can also efficiently uncover scaling laws that guide the building of LLMs to achieve the desirable performance with significantly better cost-effectiveness.
comment: Accepted at EMNLP Findings 2025
☆ HiPhO: How Far Are (M)LLMs from Humans in the Latest High School Physics Olympiad Benchmark?
Recently, the physical capabilities of (M)LLMs have garnered increasing attention. However, existing benchmarks for physics suffer from two major gaps: they neither provide systematic and up-to-date coverage of real-world physics competitions such as physics Olympiads, nor enable direct performance comparison with humans. To bridge these gaps, we present HiPhO, the first benchmark dedicated to high school physics Olympiads with human-aligned evaluation. Specifically, HiPhO highlights three key innovations. (1) Comprehensive Data: It compiles 13 latest Olympiad exams from 2024-2025, spanning both international and regional competitions, and covering mixed modalities that encompass problems spanning text-only to diagram-based. (2) Professional Evaluation: We adopt official marking schemes to perform fine-grained grading at both the answer and step level, fully aligned with human examiners to ensure high-quality and domain-specific evaluation. (3) Comparison with Human Contestants: We assign gold, silver, and bronze medals to models based on official medal thresholds, thereby enabling direct comparison between (M)LLMs and human contestants. Our large-scale evaluation of 30 state-of-the-art (M)LLMs shows that: across 13 exams, open-source MLLMs mostly remain at or below the bronze level; open-source LLMs show promising progress with occasional golds; closed-source reasoning MLLMs can achieve 6 to 12 gold medals; and most models still have a significant gap from full marks. These results highlight a substantial performance gap between open-source models and top students, the strong physical reasoning capabilities of closed-source reasoning models, and the fact that there is still significant room for improvement. HiPhO, as a rigorous, human-aligned, and Olympiad-focused benchmark for advancing multimodal physical reasoning, is open-source and available at https://github.com/SciYu/HiPhO.
☆ Active Membership Inference Test (aMINT): Enhancing Model Auditability with Multi-Task Learning ICCV
Active Membership Inference Test (aMINT) is a method designed to detect whether given data were used during the training of machine learning models. In Active MINT, we propose a novel multitask learning process that involves training simultaneously two models: the original or Audited Model, and a secondary model, referred to as the MINT Model, responsible for identifying the data used for training the Audited Model. This novel multi-task learning approach has been designed to incorporate the auditability of the model as an optimization objective during the training process of neural networks. The proposed approach incorporates intermediate activation maps as inputs to the MINT layers, which are trained to enhance the detection of training data. We present results using a wide range of neural networks, from lighter architectures such as MobileNet to more complex ones such as Vision Transformers, evaluated in 5 public benchmarks. Our proposed Active MINT achieves over 80% accuracy in detecting if given data was used for training, significantly outperforming previous approaches in the literature. Our aMINT and related methodological developments contribute to increasing transparency in AI models, facilitating stronger safeguards in AI deployments to achieve proper security, privacy, and copyright protection.
comment: In Proc. IEEE/CVF Intenational Conference on Computer Vision, ICCV, 2025
☆ CP-Model-Zoo: A Natural Language Query System for Constraint Programming Models
Constraint Programming and its high-level modeling languages have long been recognized for their potential to achieve the holy grail of problem-solving. However, the complexity of modeling languages, the large number of global constraints, and the art of creating good models have often hindered non-experts from choosing CP to solve their combinatorial problems. While generating an expert-level model from a natural-language description of a problem would be the dream, we are not yet there. We propose a tutoring system called CP-Model-Zoo, exploiting expert-written models accumulated through the years. CP-Model-Zoo retrieves the closest source code model from a database based on a user's natural language description of a combinatorial problem. It ensures that expert-validated models are presented to the user while eliminating the need for human data labeling. Our experiments show excellent accuracy in retrieving the correct model based on a user-input description of a problem simulated with different levels of expertise.
comment: presented at"LLMs meet Constraint Solving" Workshop at CP2025 in Glasgow
☆ SCoder: Iterative Self-Distillation for Bootstrapping Small-Scale Data Synthesizers to Empower Code LLMs
Existing code large language models (LLMs) often rely on large-scale instruction data distilled from proprietary LLMs for fine-tuning, which typically incurs high costs. In this paper, we explore the potential of small-scale open-source LLMs (e.g., 7B) as synthesizers for high-quality code instruction data construction. We first observe that the data synthesis capability of small-scale LLMs can be enhanced by training on a few superior data synthesis samples from proprietary LLMs. Building on this, we propose a novel iterative self-distillation approach to bootstrap small-scale LLMs, transforming them into powerful synthesizers that reduce reliance on proprietary LLMs and minimize costs. Concretely, in each iteration, to obtain diverse and high-quality self-distilled data, we design multi-checkpoint sampling and multi-aspect scoring strategies for initial data selection. Furthermore, to identify the most influential samples, we introduce a gradient-based influence estimation method for final data filtering. Based on the code instruction datasets from the small-scale synthesizers, we develop SCoder, a family of code generation models fine-tuned from DeepSeek-Coder. SCoder models achieve state-of-the-art code generation capabilities, demonstrating the effectiveness of our method.
☆ Deep Learning-Based Burned Area Mapping Using Bi-Temporal Siamese Networks and AlphaEarth Foundation Datasets
Accurate and timely mapping of burned areas is crucial for environmental monitoring, disaster management, and assessment of climate change. This study presents a novel approach to automated burned area mapping using the AlphaEArth dataset combined with the Siamese U-Net deep learning architecture. The AlphaEArth Dataset, comprising high-resolution optical and thermal infrared imagery with comprehensive ground-truth annotations, provides an unprecedented resource for training robust burned area detection models. We trained our model with the Monitoring Trends in Burn Severity (MTBS) dataset in the contiguous US and evaluated it with 17 regions cross in Europe. Our experimental results demonstrate that the proposed ensemble approach achieves superior performance with an overall accuracy of 95%, IoU of 0.6, and F1-score of 74% on the test dataset. The model successfully identifies burned areas across diverse ecosystems with complex background, showing particular strength in detecting partially burned vegetation and fire boundaries and its transferability and high generalization in burned area mapping. This research contributes to the advancement of automated fire damage assessment and provides a scalable solution for global burn area monitoring using the AlphaEarth dataset.
☆ Aligning LLMs for the Classroom with Knowledge-Based Retrieval -- A Comparative RAG Study IEEE
Large language models like ChatGPT are increasingly used in classrooms, but they often provide outdated or fabricated information that can mislead students. Retrieval Augmented Generation (RAG) improves reliability of LLMs by grounding responses in external resources. We investigate two accessible RAG paradigms, vector-based retrieval and graph-based retrieval to identify best practices for classroom question answering (QA). Existing comparative studies fail to account for pedagogical factors such as educational disciplines, question types, and practical deployment costs. Using a novel dataset, EduScopeQA, of 3,176 questions across academic subjects, we measure performance on various educational query types, from specific facts to broad thematic discussions. We also evaluate system alignment with a dataset of systematically altered textbooks that contradict the LLM's latent knowledge. We find that OpenAI Vector Search RAG (representing vector-based RAG) performs well as a low-cost generalist, especially for quick fact retrieval. On the other hand, GraphRAG Global excels at providing pedagogically rich answers to thematic queries, and GraphRAG Local achieves the highest accuracy with the dense, altered textbooks when corpus integrity is critical. Accounting for the 10-20x higher resource usage of GraphRAG (representing graph-based RAG), we show that a dynamic branching framework that routes queries to the optimal retrieval method boosts fidelity and efficiency. These insights provide actionable guidelines for educators and system designers to integrate RAG-augmented LLMs into learning environments effectively.
comment: This work has been submitted to the IEEE for possible publication
☆ Small Open Models Achieve Near Parity with Large Models in Low Resource Literary Translation at a Fraction of the Cost
Literary translation has recently gained attention as a distinct and complex task in machine translation research. However, the translation by small open models remains an open problem. We contribute to this ongoing research by introducing TINYFABULIST TRANSLATION FRAMEWORK (TF2), a unified framework for dataset creation, fine tuning, and evaluation in English-Romanian literary translations, centred on the creation and open release of both a compact, fine tuned language model (TF2-12B) and large scale synthetic parallel datasets (DS-TF2-EN-RO-3M and DS-TF2-EN-RO-15K). Building on DS-TF1-EN-3M (TF1), the largest collection of synthetic English fables to date, we address the need for rich, high quality literary datasets in low resource languages such as Romanian. Our pipeline first generates 15k high quality Romanian references from the TF1 pool using a high performing LLM. We then apply a two stage fine tuning process to a 12B parameter open weight model: (i) instruction tuning to capture genre specific narrative style, and (ii) adapter compression for efficient deployment. Evaluation combines corpus level BLEU and a five dimension LLM based rubric (accuracy, fluency, coherence, style, cultural adaptation) to provide a nuanced assessment of translation quality. Results show that our fine tuned model achieves fluency and adequacy competitive with top performing large proprietary models, while being open, accessible, and significantly more cost effective. Alongside the fine tuned model and both datasets, we publicly release all scripts and evaluation prompts. TF2 thus provides an end-to-end, reproducible pipeline for research on cost efficient translation, cross lingual narrative generation, and the broad adoption of open models for culturally significant literary content in low resource settings.
comment: 25 pages, 8 figures, includes datasets and models released on Hugging Face
☆ Certainty-Guided Reasoning in Large Language Models: A Dynamic Thinking Budget Approach
The rise of large reasoning language models (LRLMs) has unlocked new potential for solving complex tasks. These models operate with a thinking budget, that is, a predefined number of reasoning tokens used to arrive at a solution. We propose a novel approach, inspired by the generator/discriminator framework in generative adversarial networks, in which a critic model periodically probes its own reasoning to assess whether it has reached a confident conclusion. If not, reasoning continues until a target certainty threshold is met. This mechanism adaptively balances efficiency and reliability by allowing early termination when confidence is high, while encouraging further reasoning when uncertainty persists. Through experiments on the AIME2024 and AIME2025 datasets, we show that Certainty-Guided Reasoning (CGR) improves baseline accuracy while reducing token usage. Importantly, extended multi-seed evaluations over 64 runs demonstrate that CGR is stable, reducing variance across seeds and improving exam-like performance under penalty-based grading. Additionally, our token savings analysis shows that CGR can eliminate millions of tokens in aggregate, with tunable trade-offs between certainty thresholds and efficiency. Together, these findings highlight certainty as a powerful signal for reasoning sufficiency. By integrating confidence into the reasoning process, CGR makes large reasoning language models more adaptive, trustworthy, and resource efficient, paving the way for practical deployment in domains where both accuracy and computational cost matter.
☆ Forecasting Russian Equipment Losses Using Time Series and Deep Learning Models
This study applies a range of forecasting techniques,including ARIMA, Prophet, Long Short Term Memory networks (LSTM), Temporal Convolutional Networks (TCN), and XGBoost, to model and predict Russian equipment losses during the ongoing war in Ukraine. Drawing on daily and monthly open-source intelligence (OSINT) data from WarSpotting, we aim to assess trends in attrition, evaluate model performance, and estimate future loss patterns through the end of 2025. Our findings show that deep learning models, particularly TCN and LSTM, produce stable and consistent forecasts, especially under conditions of high temporal granularity. By comparing different model architectures and input structures, this study highlights the importance of ensemble forecasting in conflict modeling, and the value of publicly available OSINT data in quantifying material degradation over time.
☆ Enhanced SegNet with Integrated Grad-CAM for Interpretable Retinal Layer Segmentation in OCT Images
Optical Coherence Tomography (OCT) is essential for diagnosing conditions such as glaucoma, diabetic retinopathy, and age-related macular degeneration. Accurate retinal layer segmentation enables quantitative biomarkers critical for clinical decision-making, but manual segmentation is time-consuming and variable, while conventional deep learning models often lack interpretability. This work proposes an improved SegNet-based deep learning framework for automated and interpretable retinal layer segmentation. Architectural innovations, including modified pooling strategies, enhance feature extraction from noisy OCT images, while a hybrid loss function combining categorical cross-entropy and Dice loss improves performance for thin and imbalanced retinal layers. Gradient-weighted Class Activation Mapping (Grad-CAM) is integrated to provide visual explanations, allowing clinical validation of model decisions. Trained and validated on the Duke OCT dataset, the framework achieved 95.77% validation accuracy, a Dice coefficient of 0.9446, and a Jaccard Index (IoU) of 0.8951. Class-wise results confirmed robust performance across most layers, with challenges remaining for thinner boundaries. Grad-CAM visualizations highlighted anatomically relevant regions, aligning segmentation with clinical biomarkers and improving transparency. By combining architectural improvements, a customized hybrid loss, and explainable AI, this study delivers a high-performing SegNet-based framework that bridges the gap between accuracy and interpretability. The approach offers strong potential for standardizing OCT analysis, enhancing diagnostic efficiency, and fostering clinical trust in AI-driven ophthalmic tools.
☆ Individual utilities of life satisfaction reveal inequality aversion unrelated to political alignment
How should well-being be prioritised in society, and what trade-offs are people willing to make between fairness and personal well-being? We investigate these questions using a stated preference experiment with a nationally representative UK sample (n = 300), in which participants evaluated life satisfaction outcomes for both themselves and others under conditions of uncertainty. Individual-level utility functions were estimated using an Expected Utility Maximisation (EUM) framework and tested for sensitivity to the overweighting of small probabilities, as characterised by Cumulative Prospect Theory (CPT). A majority of participants displayed concave (risk-averse) utility curves and showed stronger aversion to inequality in societal life satisfaction outcomes than to personal risk. These preferences were unrelated to political alignment, suggesting a shared normative stance on fairness in well-being that cuts across ideological boundaries. The results challenge use of average life satisfaction as a policy metric, and support the development of nonlinear utility-based alternatives that more accurately reflect collective human values. Implications for public policy, well-being measurement, and the design of value-aligned AI systems are discussed.
comment: 28 pages, 4 figures
☆ XSRD-Net: EXplainable Stroke Relapse Detection
Stroke is the second most frequent cause of death world wide with an annual mortality of around 5.5 million. Recurrence rates of stroke are between 5 and 25% in the first year. As mortality rates for relapses are extraordinarily high (40%) it is of utmost importance to reduce the recurrence rates. We address this issue by detecting patients at risk of stroke recurrence at an early stage in order to enable appropriate therapy planning. To this end we collected 3D intracranial CTA image data and recorded concomitant heart diseases, the age and the gender of stroke patients between 2010 and 2024. We trained single- and multimodal deep learning based neural networks for binary relapse detection (Task 1) and for relapse free survival (RFS) time prediction together with a subsequent classification (Task 2). The separation of relapse from non-relapse patients (Task 1) could be solved with tabular data (AUC on test dataset: 0.84). However, for the main task, the regression (Task 2), our multimodal XSRD-net processed the modalities vision:tabular with 0.68:0.32 according to modality contribution measures. The c-index with respect to relapses for the multimodal model reached 0.68, and the AUC is 0.71 for the test dataset. Final, deeper interpretability analysis results could highlight a link between both heart diseases (tabular) and carotid arteries (vision) for the detection of relapses and the prediction of the RFS time. This is a central outcome that we strive to strengthen with ongoing data collection and model retraining.
comment: Contribution to MICAD 2025 conference, Nov. 19-21, 2025 | London, UK
☆ Are LLMs Enough for Hyperpartisan, Fake, Polarized and Harmful Content Detection? Evaluating In-Context Learning vs. Fine-Tuning
The spread of fake news, polarizing, politically biased, and harmful content on online platforms has been a serious concern. With large language models becoming a promising approach, however, no study has properly benchmarked their performance across different models, usage methods, and languages. This study presents a comprehensive overview of different Large Language Models adaptation paradigms for the detection of hyperpartisan and fake news, harmful tweets, and political bias. Our experiments spanned 10 datasets and 5 different languages (English, Spanish, Portuguese, Arabic and Bulgarian), covering both binary and multiclass classification scenarios. We tested different strategies ranging from parameter efficient Fine-Tuning of language models to a variety of different In-Context Learning strategies and prompts. These included zero-shot prompts, codebooks, few-shot (with both randomly-selected and diversely-selected examples using Determinantal Point Processes), and Chain-of-Thought. We discovered that In-Context Learning often underperforms when compared to Fine-Tuning a model. This main finding highlights the importance of Fine-Tuning even smaller models on task-specific settings even when compared to the largest models evaluated in an In-Context Learning setup - in our case LlaMA3.1-8b-Instruct, Mistral-Nemo-Instruct-2407 and Qwen2.5-7B-Instruct.
☆ What Were You Thinking? An LLM-Driven Large-Scale Study of Refactoring Motivations in Open-Source Projects
Context. Code refactoring improves software quality without changing external behavior. Despite its advantages, its benefits are hindered by the considerable cost of time, resources, and continuous effort it demands. Aim. Understanding why developers refactor, and which metrics capture these motivations, may support wider and more effective use of refactoring in practice. Method. We performed a large-scale empirical study to analyze developers refactoring activity, leveraging Large Language Models (LLMs) to identify underlying motivations from version control data, comparing our findings with previous motivations reported in the literature. Results. LLMs matched human judgment in 80% of cases, but aligned with literature-based motivations in only 47%. They enriched 22% of motivations with more detailed rationale, often highlighting readability, clarity, and structural improvements. Most motivations were pragmatic, focused on simplification and maintainability. While metrics related to developer experience and code readability ranked highest, their correlation with motivation categories was weak. Conclusions. We conclude that LLMs effectively capture surface-level motivations but struggle with architectural reasoning. Their value lies in providing localized explanations, which, when combined with software metrics, can form hybrid approaches. Such integration offers a promising path toward prioritizing refactoring more systematically and balancing short-term improvements with long-term architectural goals.
☆ Spectral and Rhythm Feature Performance Evaluation for Category and Class Level Audio Classification with Deep Convolutional Neural Networks
Next to decision tree and k-nearest neighbours algorithms deep convolutional neural networks (CNNs) are widely used to classify audio data in many domains like music, speech or environmental sounds. To train a specific CNN various spectral and rhythm features like mel-scaled spectrograms, mel-frequency cepstral coefficients (MFCC), cyclic tempograms, short-time Fourier transform (STFT) chromagrams, constant-Q transform (CQT) chromagrams and chroma energy normalized statistics (CENS) chromagrams can be used as digital image input data for the neural network. The performance of these spectral and rhythm features for audio category level as well as audio class level classification is investigated in detail with a deep CNN and the ESC-50 dataset with 2,000 labeled environmental audio recordings using an end-to-end deep learning pipeline. The evaluated metrics accuracy, precision, recall and F1 score for multiclass classification clearly show that the mel-scaled spectrograms and the mel-frequency cepstral coefficients (MFCC) perform significantly better then the other spectral and rhythm features investigated in this research for audio classification tasks using deep CNNs.
☆ Enhancing Online Learning by Integrating Biosensors and Multimodal Learning Analytics for Detecting and Predicting Student Behavior: A Review
In modern online learning, understanding and predicting student behavior is crucial for enhancing engagement and optimizing educational outcomes. This systematic review explores the integration of biosensors and Multimodal Learning Analytics (MmLA) to analyze and predict student behavior during computer-based learning sessions. We examine key challenges, including emotion and attention detection, behavioral analysis, experimental design, and demographic considerations in data collection. Our study highlights the growing role of physiological signals, such as heart rate, brain activity, and eye-tracking, combined with traditional interaction data and self-reports to gain deeper insights into cognitive states and engagement levels. We synthesize findings from 54 key studies, analyzing commonly used methodologies such as advanced machine learning algorithms and multimodal data pre-processing techniques. The review identifies current research trends, limitations, and emerging directions in the field, emphasizing the transformative potential of biosensor-driven adaptive learning systems. Our findings suggest that integrating multimodal data can facilitate personalized learning experiences, real-time feedback, and intelligent educational interventions, ultimately advancing toward a more customized and adaptive online learning experience.
comment: Accepted for publication in Behaviour & Information Technology (Taylor & Francis). Final published version will be available soon at https://www.tandfonline.com/journals/tbit20
☆ The Carbon Footprint Wizard: A Knowledge-Augmented AI Interface for Streamlining Food Carbon Footprint Analysis
Environmental sustainability, particularly in relation to climate change, is a key concern for consumers, producers, and policymakers. The carbon footprint, based on greenhouse gas emissions, is a standard metric for quantifying the contribution to climate change of activities and is often assessed using life cycle assessment (LCA). However, conducting LCA is complex due to opaque and global supply chains, as well as fragmented data. This paper presents a methodology that combines advances in LCA and publicly available databases with knowledge-augmented AI techniques, including retrieval-augmented generation, to estimate cradle-to-gate carbon footprints of food products. We introduce a chatbot interface that allows users to interactively explore the carbon impact of composite meals and relate the results to familiar activities. A live web demonstration showcases our proof-of-concept system with arbitrary food items and follow-up questions, highlighting both the potential and limitations - such as database uncertainties and AI misinterpretations - of delivering LCA insights in an accessible format.
☆ BDPM: A Machine Learning-Based Feature Extractor for Parkinson's Disease Classification via Gut Microbiota Analysis
Background: Parkinson's disease remains a major neurodegenerative disorder with high misdiagnosis rates, primarily due to reliance on clinical rating scales. Recent studies have demonstrated a strong association between gut microbiota and Parkinson's disease, suggesting that microbial composition may serve as a promising biomarker. Although deep learning models based ongut microbiota show potential for early prediction, most approaches rely on single classifiers and often overlook inter-strain correlations or temporal dynamics. Therefore, there is an urgent need for more robust feature extraction methods tailored to microbiome data. Methods: We proposed BDPM (A Machine Learning-Based Feature Extractor for Parkinson's Disease Classification via Gut Microbiota Analysis). First, we collected gut microbiota profiles from 39 Parkinson's patients and their healthy spouses to identify differentially abundant taxa. Second, we developed an innovative feature selection framework named RFRE (Random Forest combined with Recursive Feature Elimination), integrating ecological knowledge to enhance biological interpretability. Finally, we designed a hybrid classification model to capture temporal and spatial patterns in microbiome data.
comment: 11 pages, 7 figures
☆ RIMO: An Easy-to-Evaluate, Hard-to-Solve Olympiad Benchmark for Advanced Mathematical Reasoning
As large language models (LLMs) reach high scores on established mathematical benchmarks, such as GSM8K and MATH, the research community has turned to International Mathematical Olympiad (IMO) problems to push the evaluation frontier. However, existing Olympiad-level benchmarks suffer from practical constraints that introduce grading noise and potential bias, such as heterogeneous answer formats requiring model-based judges and a reliance on potentially flawed solutions. We introduce RIMO, a two-track benchmark designed to preserve peak Olympiad difficulty while eliminating this evaluation noise. The first track, RIMO-N, rewrites 335 IMO problems to admit a single, unique integer answer, allowing for deterministic correctness checking. The second track, RIMO-P, features 456 proof problems with expert-checked solutions, which are decomposed into a sequence of sub-problems to evaluate the step-by-step reasoning process via an automated grading system. Our benchmarking of ten frontier LLMs, including GPT-4o and Gemini 2.5 Flash, reveals that while these systems excel on older benchmarks, their performance drops sharply on RIMO. These results highlight a substantial gap between current LLM capabilities and actual Olympiad-level reasoning. By providing a challenging yet easy-to-evaluate suite, RIMO offers a high-resolution yardstick for future research, presenting a clear target for closing the profound reasoning gap our findings expose.
☆ FHIR-RAG-MEDS: Integrating HL7 FHIR with Retrieval-Augmented Large Language Models for Enhanced Medical Decision Support
In this study, we propose FHIR-RAG-MEDS system that aims to integrate Health Level 7 Fast Healthcare Interoperability Resources (HL7 FHIR) with a Retrieval-Augmented Generation (RAG)-based system to improve personalized medical decision support on evidence-based clinical guidelines, emphasizing the need for research in practical applications. In the evolving landscape of medical decision support systems, integrating advanced technologies such as RAG and HL7 FHIR can significantly enhance clinical decision-making processes. Despite the potential of these technologies, there is limited research on their integration in practical applications.
comment: 31 pages, submitted to Journal of Biomedical Informatics, under review
☆ Spectral Masking and Interpolation Attack (SMIA): A Black-box Adversarial Attack against Voice Authentication and Anti-Spoofing Systems
Voice Authentication Systems (VAS) use unique vocal characteristics for verification. They are increasingly integrated into high-security sectors such as banking and healthcare. Despite their improvements using deep learning, they face severe vulnerabilities from sophisticated threats like deepfakes and adversarial attacks. The emergence of realistic voice cloning complicates detection, as systems struggle to distinguish authentic from synthetic audio. While anti-spoofing countermeasures (CMs) exist to mitigate these risks, many rely on static detection models that can be bypassed by novel adversarial methods, leaving a critical security gap. To demonstrate this vulnerability, we propose the Spectral Masking and Interpolation Attack (SMIA), a novel method that strategically manipulates inaudible frequency regions of AI-generated audio. By altering the voice in imperceptible zones to the human ear, SMIA creates adversarial samples that sound authentic while deceiving CMs. We conducted a comprehensive evaluation of our attack against state-of-the-art (SOTA) models across multiple tasks, under simulated real-world conditions. SMIA achieved a strong attack success rate (ASR) of at least 82% against combined VAS/CM systems, at least 97.5% against standalone speaker verification systems, and 100% against countermeasures. These findings conclusively demonstrate that current security postures are insufficient against adaptive adversarial attacks. This work highlights the urgent need for a paradigm shift toward next-generation defenses that employ dynamic, context-aware frameworks capable of evolving with the threat landscape.
☆ Unleashing the True Potential of LLMs: A Feedback-Triggered Self-Correction with Long-Term Multipath Decoding
Large Language Models (LLMs) have achieved remarkable performance across diverse tasks, yet their susceptibility to generating incorrect content during inference remains a critical unsolved challenge. While self-correction methods offer potential solutions, their effectiveness is hindered by two inherent limitations: (1) the absence of reliable guidance signals for error localization, and (2) the restricted reasoning depth imposed by conventional next-token decoding paradigms. To address these issues, we propose Feedback-Triggered Regeneration (FTR), a novel framework that synergizes user feedback with enhanced decoding dynamics. Specifically, FTR activates response regeneration only upon receiving negative user feedback, thereby circumventing error propagation from faulty self-assessment while preserving originally correct outputs. Furthermore, we introduce Long-Term Multipath (LTM) decoding, which enables systematic exploration of multiple reasoning trajectories through delayed sequence evaluation, effectively overcoming the myopic decision-making characteristic of standard next-token prediction. Extensive experiments on mathematical reasoning and code generation benchmarks demonstrate that our framework achieves consistent and significant improvements over state-of-the-art prompt-based self-correction methods.
☆ DeepGraphLog for Layered Neurosymbolic AI
Neurosymbolic AI (NeSy) aims to integrate the statistical strengths of neural networks with the interpretability and structure of symbolic reasoning. However, current NeSy frameworks like DeepProbLog enforce a fixed flow where symbolic reasoning always follows neural processing. This restricts their ability to model complex dependencies, especially in irregular data structures such as graphs. In this work, we introduce DeepGraphLog, a novel NeSy framework that extends ProbLog with Graph Neural Predicates. DeepGraphLog enables multi-layer neural-symbolic reasoning, allowing neural and symbolic components to be layered in arbitrary order. In contrast to DeepProbLog, which cannot handle symbolic reasoning via neural methods, DeepGraphLog treats symbolic representations as graphs, enabling them to be processed by Graph Neural Networks (GNNs). We showcase the capabilities of DeepGraphLog on tasks in planning, knowledge graph completion with distant supervision, and GNN expressivity. Our results demonstrate that DeepGraphLog effectively captures complex relational dependencies, overcoming key limitations of existing NeSy systems. By broadening the applicability of neurosymbolic AI to graph-structured domains, DeepGraphLog offers a more expressive and flexible framework for neural-symbolic integration.
☆ Getting In Contract with Large Language Models -- An Agency Theory Perspective On Large Language Model Alignment
Adopting Large language models (LLMs) in organizations potentially revolutionizes our lives and work. However, they can generate off-topic, discriminating, or harmful content. This AI alignment problem often stems from misspecifications during the LLM adoption, unnoticed by the principal due to the LLM's black-box nature. While various research disciplines investigated AI alignment, they neither address the information asymmetries between organizational adopters and black-box LLM agents nor consider organizational AI adoption processes. Therefore, we propose LLM ATLAS (LLM Agency Theory-Led Alignment Strategy) a conceptual framework grounded in agency (contract) theory, to mitigate alignment problems during organizational LLM adoption. We conduct a conceptual literature analysis using the organizational LLM adoption phases and the agency theory as concepts. Our approach results in (1) providing an extended literature analysis process specific to AI alignment methods during organizational LLM adoption and (2) providing a first LLM alignment problem-solution space.
comment: Presented at the 19th International Conference on Wirtschaftsinformatik 2024, W\"urzburg, Germany https://aisel.aisnet.org/wi2024/91/
☆ Variational Quantum Circuits in Offline Contextual Bandit Problems
This paper explores the application of variational quantum circuits (VQCs) for solving offline contextual bandit problems in industrial optimization tasks. Using the Industrial Benchmark (IB) environment, we evaluate the performance of quantum regression models against classical models. Our findings demonstrate that quantum models can effectively fit complex reward functions, identify optimal configurations via particle swarm optimization (PSO), and generalize well in noisy and sparse datasets. These results provide a proof of concept for utilizing VQCs in offline contextual bandit problems and highlight their potential in industrial optimization tasks.
☆ Transferable Direct Prompt Injection via Activation-Guided MCMC Sampling EMNLP 2025
Direct Prompt Injection (DPI) attacks pose a critical security threat to Large Language Models (LLMs) due to their low barrier of execution and high potential damage. To address the impracticality of existing white-box/gray-box methods and the poor transferability of black-box methods, we propose an activations-guided prompt injection attack framework. We first construct an Energy-based Model (EBM) using activations from a surrogate model to evaluate the quality of adversarial prompts. Guided by the trained EBM, we employ the token-level Markov Chain Monte Carlo (MCMC) sampling to adaptively optimize adversarial prompts, thereby enabling gradient-free black-box attacks. Experimental results demonstrate our superior cross-model transferability, achieving 49.6% attack success rate (ASR) across five mainstream LLMs and 34.6% improvement over human-crafted prompts, and maintaining 36.6% ASR on unseen task scenarios. Interpretability analysis reveals a correlation between activations and attack effectiveness, highlighting the critical role of semantic patterns in transferable vulnerability exploitation.
comment: Accepted to EMNLP 2025
☆ From Classical Data to Quantum Advantage -- Quantum Policy Evaluation on Quantum Hardware
Quantum policy evaluation (QPE) is a reinforcement learning (RL) algorithm which is quadratically more efficient than an analogous classical Monte Carlo estimation. It makes use of a direct quantum mechanical realization of a finite Markov decision process, in which the agent and the environment are modeled by unitary operators and exchange states, actions, and rewards in superposition. Previously, the quantum environment has been implemented and parametrized manually for an illustrative benchmark using a quantum simulator. In this paper, we demonstrate how these environment parameters can be learned from a batch of classical observational data through quantum machine learning (QML) on quantum hardware. The learned quantum environment is then applied in QPE to also compute policy evaluations on quantum hardware. Our experiments reveal that, despite challenges such as noise and short coherence times, the integration of QML and QPE shows promising potential for achieving quantum advantage in RL.
☆ Beyond Rebalancing: Benchmarking Binary Classifiers Under Class Imbalance Without Rebalancing Techniques
Class imbalance poses a significant challenge to supervised classification, particularly in critical domains like medical diagnostics and anomaly detection where minority class instances are rare. While numerous studies have explored rebalancing techniques to address this issue, less attention has been given to evaluating the performance of binary classifiers under imbalance when no such techniques are applied. Therefore, the goal of this study is to assess the performance of binary classifiers "as-is", without performing any explicit rebalancing. Specifically, we systematically evaluate the robustness of a diverse set of binary classifiers across both real-world and synthetic datasets, under progressively reduced minority class sizes, using one-shot and few-shot scenarios as baselines. Our approach also explores varying data complexities through synthetic decision boundary generation to simulate real-world conditions. In addition to standard classifiers, we include experiments using undersampling, oversampling strategies, and one-class classification (OCC) methods to examine their behavior under severe imbalance. The results confirm that classification becomes more difficult as data complexity increases and the minority class size decreases. While traditional classifiers deteriorate under extreme imbalance, advanced models like TabPFN and boosting-based ensembles retain relatively higher performance and better generalization compared to traditional classifiers. Visual interpretability and evaluation metrics further validate these findings. Our work offers valuable guidance on model selection for imbalanced learning, providing insights into classifier robustness without dependence on explicit rebalancing techniques.
Transformer-Based Approach to Optimal Sensor Placement for Structural Health Monitoring of Probe Cards
This paper presents an innovative Transformer-based deep learning strategy for optimizing the placement of sensors aiming at structural health monitoring of semiconductor probe cards. Failures in probe cards, including substrate cracks and loosened screws, would critically affect semiconductor manufacturing yield and reliability. Some failure modes could be detected by equipping a probe card with adequate sensors. Frequency response functions from simulated failure scenarios are adopted within a finite element model of a probe card. A comprehensive dataset, enriched by physics-informed scenario expansion and physics-aware statistical data augmentation, is exploited to train a hybrid Convolutional Neural Network and Transformer model. The model achieves high accuracy (99.83%) in classifying the probe card health states (baseline, loose screw, crack) and an excellent crack detection recall (99.73%). Model robustness is confirmed through a rigorous framework of 3 repetitions of 10-fold stratified cross-validation. The attention mechanism also pinpoints critical sensor locations: an analysis of the attention weights offers actionable insights for designing efficient, cost-effective monitoring systems by optimizing sensor configurations. This research highlights the capability of attention-based deep learning to advance proactive maintenance, enhancing operational reliability and yield in semiconductor manufacturing.
comment: 22 pages, 11 figures
☆ Can SSD-Mamba2 Unlock Reinforcement Learning for End-to-End Motion Control?
End-to-end reinforcement learning for motion control promises unified perception-action policies that scale across embodiments and tasks, yet most deployed controllers are either blind (proprioception-only) or rely on fusion backbones with unfavorable compute-memory trade-offs. Recurrent controllers struggle with long-horizon credit assignment, and Transformer-based fusion incurs quadratic cost in token length, limiting temporal and spatial context. We present a vision-driven cross-modal RL framework built on SSD-Mamba2, a selective state-space backbone that applies state-space duality (SSD) to enable both recurrent and convolutional scanning with hardware-aware streaming and near-linear scaling. Proprioceptive states and exteroceptive observations (e.g., depth tokens) are encoded into compact tokens and fused by stacked SSD-Mamba2 layers. The selective state-space updates retain long-range dependencies with markedly lower latency and memory use than quadratic self-attention, enabling longer look-ahead, higher token resolution, and stable training under limited compute. Policies are trained end-to-end under curricula that randomize terrain and appearance and progressively increase scene complexity. A compact, state-centric reward balances task progress, energy efficiency, and safety. Across diverse motion-control scenarios, our approach consistently surpasses strong state-of-the-art baselines in return, safety (collisions and falls), and sample efficiency, while converging faster at the same compute budget. These results suggest that SSD-Mamba2 provides a practical fusion backbone for scalable, foresightful, and efficient end-to-end motion control.
comment: 4 figures and 6 tables
☆ BALI: Enhancing Biomedical Language Representations through Knowledge Graph and Language Model Alignment SIGIR
In recent years, there has been substantial progress in using pretrained Language Models (LMs) on a range of tasks aimed at improving the understanding of biomedical texts. Nonetheless, existing biomedical LLMs show limited comprehension of complex, domain-specific concept structures and the factual information encoded in biomedical Knowledge Graphs (KGs). In this work, we propose BALI (Biomedical Knowledge Graph and Language Model Alignment), a novel joint LM and KG pre-training method that augments an LM with external knowledge by the simultaneous learning of a dedicated KG encoder and aligning the representations of both the LM and the graph. For a given textual sequence, we link biomedical concept mentions to the Unified Medical Language System (UMLS) KG and utilize local KG subgraphs as cross-modal positive samples for these mentions. Our empirical findings indicate that implementing our method on several leading biomedical LMs, such as PubMedBERT and BioLinkBERT, improves their performance on a range of language understanding tasks and the quality of entity representations, even with minimal pre-training on a small alignment dataset sourced from PubMed scientific abstracts.
comment: 9 pages, 1 figure, published in "The 48th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2025)"
☆ Attention Maps in 3D Shape Classification for Dental Stage Estimation with Class Node Graph Attention Networks
Deep learning offers a promising avenue for automating many recognition tasks in fields such as medicine and forensics. However, the black-box nature of these models hinders their adoption in high-stakes applications where trust and accountability are required. For 3D shape recognition tasks in particular, this paper introduces the Class Node Graph Attention Network (CGAT) architecture to address this need. Applied to 3D meshes of third molars derived from CBCT images, for Demirjian stage allocation, CGAT utilizes graph attention convolutions and an inherent attention mechanism, visualized via attention rollout, to explain its decision-making process. We evaluated the local mean curvature and distance to centroid node features, both individually and in combination, as well as model depth, finding that models incorporating directed edges to a global CLS node produced more intuitive attention maps, while also yielding desirable classification performance. We analyzed the attention-based explanations of the models, and their predictive performances to propose optimal settings for the CGAT. The combination of local mean curvature and distance to centroid as node features yielded a slight performance increase with 0.76 weighted F1 score, and more comprehensive attention visualizations. The CGAT architecture's ability to generate human-understandable attention maps can enhance trust and facilitate expert validation of model decisions. While demonstrated on dental data, CGAT is broadly applicable to graph-based classification and regression tasks, promoting wider adoption of transparent and competitive deep learning models in high-stakes environments.
comment: 25 pages, 8 figures, 2nd International Conference on Explainable AI for Neural or Symbolic Methods
☆ Towards explainable decision support using hybrid neural models for logistic terminal automation
The integration of Deep Learning (DL) in System Dynamics (SD) modeling for transportation logistics offers significant advantages in scalability and predictive accuracy. However, these gains are often offset by the loss of explainability and causal reliability $-$ key requirements in critical decision-making systems. This paper presents a novel framework for interpretable-by-design neural system dynamics modeling that synergizes DL with techniques from Concept-Based Interpretability, Mechanistic Interpretability, and Causal Machine Learning. The proposed hybrid approach enables the construction of neural network models that operate on semantically meaningful and actionable variables, while retaining the causal grounding and transparency typical of traditional SD models. The framework is conceived to be applied to real-world case-studies from the EU-funded project AutoMoTIF, focusing on data-driven decision support, automation, and optimization of multimodal logistic terminals. We aim at showing how neuro-symbolic methods can bridge the gap between black-box predictive models and the need for critical decision support in complex dynamical environments within cyber-physical systems enabled by the industrial Internet-of-Things.
☆ Towards Generalized Routing: Model and Agent Orchestration for Adaptive and Efficient Inference
The rapid advancement of large language models (LLMs) and domain-specific AI agents has greatly expanded the ecosystem of AI-powered services. User queries, however, are highly diverse and often span multiple domains and task types, resulting in a complex and heterogeneous landscape. This diversity presents a fundamental routing challenge: how to accurately direct each query to an appropriate execution unit while optimizing both performance and efficiency. To address this, we propose MoMA (Mixture of Models and Agents), a generalized routing framework that integrates both LLM and agent-based routing. Built upon a deep understanding of model and agent capabilities, MoMA effectively handles diverse queries through precise intent recognition and adaptive routing strategies, achieving an optimal balance between efficiency and cost. Specifically, we construct a detailed training dataset to profile the capabilities of various LLMs under different routing model structures, identifying the most suitable tasks for each LLM. During inference, queries are dynamically routed to the LLM with the best cost-performance efficiency. We also introduce an efficient agent selection strategy based on a context-aware state machine and dynamic masking. Experimental results demonstrate that the MoMA router offers superior cost-efficiency and scalability compared to existing approaches.
☆ $ΔL$ Normalization: Rethink Loss Aggregation in RLVR
We propose $\Delta L$ Normalization, a simple yet effective loss aggregation method tailored to the characteristic of dynamic generation lengths in Reinforcement Learning with Verifiable Rewards (RLVR). Recently, RLVR has demonstrated strong potential in improving the reasoning capabilities of large language models (LLMs), but a major challenge lies in the large variability of response lengths during training, which leads to high gradient variance and unstable optimization. Although previous methods such as GRPO, DAPO, and Dr. GRPO introduce different loss normalization terms to address this issue, they either produce biased estimates or still suffer from high gradient variance. By analyzing the effect of varying lengths on policy loss both theoretically and empirically, we reformulate the problem as finding a minimum-variance unbiased estimator. Our proposed $\Delta L$ Normalization not only provides an unbiased estimate of the true policy loss but also minimizes gradient variance in theory. Extensive experiments show that it consistently achieves superior results across different model sizes, maximum lengths, and tasks. Our code will be made public at https://github.com/zerolllin/Delta-L-Normalization.
☆ Avoiding Knowledge Edit Skipping in Multi-hop Question Answering with Guided Decomposition EMNLP
In a rapidly evolving world where information updates swiftly, knowledge in large language models (LLMs) becomes outdated quickly. Retraining LLMs is not a cost-effective option, making knowledge editing (KE) without modifying parameters particularly necessary. We find that although existing retrieval-augmented generation (RAG)-based KE methods excel at editing simple knowledge, they struggle with KE in multi-hop question answering due to the issue of "edit skipping", which refers to skipping the relevant edited fact in inference. In addition to the diversity of natural language expressions of knowledge, edit skipping also arises from the mismatch between the granularity of LLMs in problem-solving and the facts in the edited memory. To address this issue, we propose a novel Iterative Retrieval-Augmented Knowledge Editing method with guided decomposition (IRAKE) through the guidance from single edited facts and entire edited cases. Experimental results demonstrate that IRAKE mitigates the failure of editing caused by edit skipping and outperforms state-of-the-art methods for KE in multi-hop question answering.
comment: Accepted in EMNLP Findings 2025
☆ HU-based Foreground Masking for 3D Medical Masked Image Modeling MICCAI
While Masked Image Modeling (MIM) has revolutionized fields of computer vision, its adoption in 3D medical image computing has been limited by the use of random masking, which overlooks the density of anatomical objects. To address this limitation, we enhance the pretext task with a simple yet effective masking strategy. Leveraging Hounsfield Unit (HU) measurements, we implement an HU-based Foreground Masking, which focuses on the intensity distribution of visceral organs and excludes non-tissue regions, such as air and fluid, that lack diagnostically meaningful features. Extensive experiments on five public 3D medical imaging datasets demonstrate that our masking consistently improves performance, both in quality of segmentation and Dice score (BTCV:~84.64\%, Flare22:~92.43\%, MM-WHS:~90.67\%, Amos22:~88.64\%, BraTS:~78.55\%). These results underscore the importance of domain-centric MIM and suggest a promising direction for representation learning in medical image segmentation. Implementation is available at github.com/AISeedHub/SubFore/.
comment: Accepted by MICCAI AMAI Workshop 2025
☆ FLeW: Facet-Level and Adaptive Weighted Representation Learning of Scientific Documents DASFAA2025
Scientific document representation learning provides powerful embeddings for various tasks, while current methods face challenges across three approaches. 1) Contrastive training with citation-structural signals underutilizes citation information and still generates single-vector representations. 2) Fine-grained representation learning, which generates multiple vectors at the sentence or aspect level, requires costly integration and lacks domain generalization. 3) Task-aware learning depends on manually predefined task categorization, overlooking nuanced task distinctions and requiring extra training data for task-specific modules. To address these problems, we propose a new method that unifies the three approaches for better representations, namely FLeW. Specifically, we introduce a novel triplet sampling method that leverages citation intent and frequency to enhance citation-structural signals for training. Citation intents (background, method, result), aligned with the general structure of scientific writing, facilitate a domain-generalized facet partition for fine-grained representation learning. Then, we adopt a simple weight search to adaptively integrate three facet-level embeddings into a task-specific document embedding without task-aware fine-tuning. Experiments show the applicability and robustness of FLeW across multiple scientific tasks and fields, compared to prior models.
comment: Accepted by DASFAA2025
☆ Competitive Audio-Language Models with Data-Efficient Single-Stage Training on Public Data
Large language models (LLMs) have transformed NLP, yet their integration with audio remains underexplored -- despite audio's centrality to human communication. We introduce Falcon3-Audio, a family of Audio-Language Models (ALMs) built on instruction-tuned LLMs and Whisper encoders. Using a remarkably small amount of public audio data -- less than 30K hours (5K unique) -- Falcon3-Audio-7B matches the best reported performance among open-weight models on the MMAU benchmark, with a score of 64.14, matching R1-AQA, while distinguishing itself through superior data and parameter efficiency, single-stage training, and transparency. Notably, our smallest 1B model remains competitive with larger open models ranging from 2B to 13B parameters. Through extensive ablations, we find that common complexities -- such as curriculum learning, multiple audio encoders, and intricate cross-attention connectors -- are not required for strong performance, even compared to models trained on over 500K hours of data.
comment: Accepted at ASRU 2025
☆ EHWGesture -- A dataset for multimodal understanding of clinical gestures ICCV 2025
Hand gesture understanding is essential for several applications in human-computer interaction, including automatic clinical assessment of hand dexterity. While deep learning has advanced static gesture recognition, dynamic gesture understanding remains challenging due to complex spatiotemporal variations. Moreover, existing datasets often lack multimodal and multi-view diversity, precise ground-truth tracking, and an action quality component embedded within gestures. This paper introduces EHWGesture, a multimodal video dataset for gesture understanding featuring five clinically relevant gestures. It includes over 1,100 recordings (6 hours), captured from 25 healthy subjects using two high-resolution RGB-Depth cameras and an event camera. A motion capture system provides precise ground-truth hand landmark tracking, and all devices are spatially calibrated and synchronized to ensure cross-modal alignment. Moreover, to embed an action quality task within gesture understanding, collected recordings are organized in classes of execution speed that mirror clinical evaluations of hand dexterity. Baseline experiments highlight the dataset's potential for gesture classification, gesture trigger detection, and action quality assessment. Thus, EHWGesture can serve as a comprehensive benchmark for advancing multimodal clinical gesture understanding.
comment: Accepted at ICCV 2025 Workshop on AI-driven Skilled Activity Understanding, Assessment & Feedback Generation
☆ Water Demand Forecasting of District Metered Areas through Learned Consumer Representations
Advancements in smart metering technologies have significantly improved the ability to monitor and manage water utilities. In the context of increasing uncertainty due to climate change, securing water resources and supply has emerged as an urgent global issue with extensive socioeconomic ramifications. Hourly consumption data from end-users have yielded substantial insights for projecting demand across regions characterized by diverse consumption patterns. Nevertheless, the prediction of water demand remains challenging due to influencing non-deterministic factors, such as meteorological conditions. This work introduces a novel method for short-term water demand forecasting for District Metered Areas (DMAs) which encompass commercial, agricultural, and residential consumers. Unsupervised contrastive learning is applied to categorize end-users according to distinct consumption behaviors present within a DMA. Subsequently, the distinct consumption behaviors are utilized as features in the ensuing demand forecasting task using wavelet-transformed convolutional networks that incorporate a cross-attention mechanism combining both historical data and the derived representations. The proposed approach is evaluated on real-world DMAs over a six-month period, demonstrating improved forecasting performance in terms of MAPE across different DMAs, with a maximum improvement of 4.9%. Additionally, it identifies consumers whose behavior is shaped by socioeconomic factors, enhancing prior knowledge about the deterministic patterns that influence demand.
comment: Presented at European Conference for Signal Procesing - EUSIPCO 2025
☆ ALLabel: Three-stage Active Learning for LLM-based Entity Recognition using Demonstration Retrieval
Many contemporary data-driven research efforts in the natural sciences, such as chemistry and materials science, require large-scale, high-performance entity recognition from scientific datasets. Large language models (LLMs) have increasingly been adopted to solve the entity recognition task, with the same trend being observed on all-spectrum NLP tasks. The prevailing entity recognition LLMs rely on fine-tuned technology, yet the fine-tuning process often incurs significant cost. To achieve a best performance-cost trade-off, we propose ALLabel, a three-stage framework designed to select the most informative and representative samples in preparing the demonstrations for LLM modeling. The annotated examples are used to construct a ground-truth retrieval corpus for LLM in-context learning. By sequentially employing three distinct active learning strategies, ALLabel consistently outperforms all baselines under the same annotation budget across three specialized domain datasets. Experimental results also demonstrate that selectively annotating only 5\%-10\% of the dataset with ALLabel can achieve performance comparable to the method annotating the entire dataset. Further analyses and ablation studies verify the effectiveness and generalizability of our proposal.
☆ Astra: A Multi-Agent System for GPU Kernel Performance Optimization
GPU kernel optimization has long been a central challenge at the intersection of high-performance computing and machine learning. Efficient kernels are crucial for accelerating large language model (LLM) training and serving, yet attaining high performance typically requires extensive manual tuning. Compiler-based systems reduce some of this burden, but still demand substantial manual design and engineering effort. Recently, researchers have explored using LLMs for GPU kernel generation, though prior work has largely focused on translating high-level PyTorch modules into CUDA code. In this work, we introduce Astra, the first LLM-based multi-agent system for GPU kernel optimization. Unlike previous approaches, Astra starts from existing CUDA implementations extracted from SGLang, a widely deployed framework for serving LLMs, rather than treating PyTorch modules as the specification. Within Astra, specialized LLM agents collaborate through iterative code generation, testing, profiling, and planning to produce kernels that are both correct and high-performance. On kernels from SGLang, Astra achieves an average speedup of 1.32x using zero-shot prompting with OpenAI o4-mini. A detailed case study further demonstrates that LLMs can autonomously apply loop transformations, optimize memory access patterns, exploit CUDA intrinsics, and leverage fast math operations to yield substantial performance gains. Our work highlights multi-agent LLM systems as a promising new paradigm for GPU kernel optimization.
☆ Generating Transferrable Adversarial Examples via Local Mixing and Logits Optimization for Remote Sensing Object Recognition
Deep Neural Networks (DNNs) are vulnerable to adversarial attacks, posing significant security threats to their deployment in remote sensing applications. Research on adversarial attacks not only reveals model vulnerabilities but also provides critical insights for enhancing robustness. Although current mixing-based strategies have been proposed to increase the transferability of adversarial examples, they either perform global blending or directly exchange a region in the images, which may destroy global semantic features and mislead the optimization of adversarial examples. Furthermore, their reliance on cross-entropy loss for perturbation optimization leads to gradient diminishing during iterative updates, compromising adversarial example quality. To address these limitations, we focus on non-targeted attacks and propose a novel framework via local mixing and logits optimization. First, we present a local mixing strategy to generate diverse yet semantically consistent inputs. Different from MixUp, which globally blends two images, and MixCut, which stitches images together, our method merely blends local regions to preserve global semantic information. Second, we adapt the logit loss from targeted attacks to non-targeted scenarios, mitigating the gradient vanishing problem of cross-entropy loss. Third, a perturbation smoothing loss is applied to suppress high-frequency noise and enhance transferability. Extensive experiments on FGSCR-42 and MTARSI datasets demonstrate superior performance over 12 state-of-the-art methods across 6 surrogate models. Notably, with ResNet as the surrogate on MTARSI, our method achieves a 17.28% average improvement in black-box attack success rate.
☆ Fine-Tuning Vision-Language Models for Visual Navigation Assistance
We address vision-language-driven indoor navigation to assist visually impaired individuals in reaching a target location using images and natural language guidance. Traditional navigation systems are ineffective indoors due to the lack of precise location data. Our approach integrates vision and language models to generate step-by-step navigational instructions, enhancing accessibility and independence. We fine-tune the BLIP-2 model with Low Rank Adaptation (LoRA) on a manually annotated indoor navigation dataset. We propose an evaluation metric that refines the BERT F1 score by emphasizing directional and sequential variables, providing a more comprehensive measure of navigational performance. After applying LoRA, the model significantly improved in generating directional instructions, overcoming limitations in the original BLIP-2 model.
☆ HALT-RAG: A Task-Adaptable Framework for Hallucination Detection with Calibrated NLI Ensembles and Abstention
Detecting content that contradicts or is unsupported by a given source text is a critical challenge for the safe deployment of generative language models. We introduce HALT-RAG, a post-hoc verification system designed to identify hallucinations in the outputs of Retrieval-Augmented Generation (RAG) pipelines. Our flexible and task-adaptable framework uses a universal feature set derived from an ensemble of two frozen, off-the-shelf Natural Language Inference (NLI) models and lightweight lexical signals. These features are used to train a simple, calibrated, and task-adapted meta-classifier. Using a rigorous 5-fold out-of-fold (OOF) training protocol to prevent data leakage and produce unbiased estimates, we evaluate our system on the HaluEval benchmark. By pairing our universal feature set with a lightweight, task-adapted classifier and a precision-constrained decision policy, HALT-RAG achieves strong OOF F1-scores of 0.7756, 0.9786, and 0.7391 on the summarization, QA, and dialogue tasks, respectively. The system's well-calibrated probabilities enable a practical abstention mechanism, providing a reliable tool for balancing model performance with safety requirements.
☆ SheetDesigner: MLLM-Powered Spreadsheet Layout Generation with Rule-Based and Vision-Based Reflection EMNLP 2025
Spreadsheets are critical to data-centric tasks, with rich, structured layouts that enable efficient information transmission. Given the time and expertise required for manual spreadsheet layout design, there is an urgent need for automated solutions. However, existing automated layout models are ill-suited to spreadsheets, as they often (1) treat components as axis-aligned rectangles with continuous coordinates, overlooking the inherently discrete, grid-based structure of spreadsheets; and (2) neglect interrelated semantics, such as data dependencies and contextual links, unique to spreadsheets. In this paper, we first formalize the spreadsheet layout generation task, supported by a seven-criterion evaluation protocol and a dataset of 3,326 spreadsheets. We then introduce SheetDesigner, a zero-shot and training-free framework using Multimodal Large Language Models (MLLMs) that combines rule and vision reflection for component placement and content population. SheetDesigner outperforms five baselines by at least 22.6\%. We further find that through vision modality, MLLMs handle overlap and balance well but struggle with alignment, necessitates hybrid rule and visual reflection strategies. Our codes and data is available at Github.
comment: Accepted to EMNLP 2025 Main Conference
☆ DepthVision: Robust Vision-Language Understanding through GAN-Based LiDAR-to-RGB Synthesis
Ensuring reliable robot operation when visual input is degraded or insufficient remains a central challenge in robotics. This letter introduces DepthVision, a framework for multimodal scene understanding designed to address this problem. Unlike existing Vision-Language Models (VLMs), which use only camera-based visual input alongside language, DepthVision synthesizes RGB images from sparse LiDAR point clouds using a conditional generative adversarial network (GAN) with an integrated refiner network. These synthetic views are then combined with real RGB data using a Luminance-Aware Modality Adaptation (LAMA), which blends the two types of data dynamically based on ambient lighting conditions. This approach compensates for sensor degradation, such as darkness or motion blur, without requiring any fine-tuning of downstream vision-language models. We evaluate DepthVision on real and simulated datasets across various models and tasks, with particular attention to safety-critical tasks. The results demonstrate that our approach improves performance in low-light conditions, achieving substantial gains over RGB-only baselines while preserving compatibility with frozen VLMs. This work highlights the potential of LiDAR-guided RGB synthesis for achieving robust robot operation in real-world environments.
☆ Bias-Aware Machine Unlearning: Towards Fairer Vision Models via Controllable Forgetting ICCV 2025
Deep neural networks often rely on spurious correlations in training data, leading to biased or unfair predictions in safety-critical domains such as medicine and autonomous driving. While conventional bias mitigation typically requires retraining from scratch or redesigning data pipelines, recent advances in machine unlearning provide a promising alternative for post-hoc model correction. In this work, we investigate \textit{Bias-Aware Machine Unlearning}, a paradigm that selectively removes biased samples or feature representations to mitigate diverse forms of bias in vision models. Building on privacy-preserving unlearning techniques, we evaluate various strategies including Gradient Ascent, LoRA, and Teacher-Student distillation. Through empirical analysis on three benchmark datasets, CUB-200-2011 (pose bias), CIFAR-10 (synthetic patch bias), and CelebA (gender bias in smile detection), we demonstrate that post-hoc unlearning can substantially reduce subgroup disparities, with improvements in demographic parity of up to \textbf{94.86\%} on CUB-200, \textbf{30.28\%} on CIFAR-10, and \textbf{97.37\%} on CelebA. These gains are achieved with minimal accuracy loss and with methods scoring an average of 0.62 across the 3 settings on the joint evaluation of utility, fairness, quality, and privacy. Our findings establish machine unlearning as a practical framework for enhancing fairness in deployed vision systems without necessitating full retraining.
comment: Accepted for publication at ICCV 2025 UnMe workshop
☆ Text2Touch: Tactile In-Hand Manipulation with LLM-Designed Reward Functions
Large language models (LLMs) are beginning to automate reward design for dexterous manipulation. However, no prior work has considered tactile sensing, which is known to be critical for human-like dexterity. We present Text2Touch, bringing LLM-crafted rewards to the challenging task of multi-axis in-hand object rotation with real-world vision based tactile sensing in palm-up and palm-down configurations. Our prompt engineering strategy scales to over 70 environment variables, and sim-to-real distillation enables successful policy transfer to a tactile-enabled fully actuated four-fingered dexterous robot hand. Text2Touch significantly outperforms a carefully tuned human-engineered baseline, demonstrating superior rotation speed and stability while relying on reward functions that are an order of magnitude shorter and simpler. These results illustrate how LLM-designed rewards can significantly reduce the time from concept to deployable dexterous tactile skills, supporting more rapid and scalable multimodal robot learning. Project website: https://hpfield.github.io/text2touch-website
comment: Accepted at CoRL 2025
☆ The Choice of Divergence: A Neglected Key to Mitigating Diversity Collapse in Reinforcement Learning with Verifiable Reward
A central paradox in fine-tuning Large Language Models (LLMs) with Reinforcement Learning with Verifiable Reward (RLVR) is the frequent degradation of multi-attempt performance (Pass@k) despite improvements in single-attempt accuracy (Pass@1). This is often accompanied by catastrophic forgetting, where models lose previously acquired skills. While various methods have been proposed, the choice and function of the divergence term have been surprisingly unexamined as a proactive solution. We argue that standard RLVR objectives -- both those using the mode-seeking reverse KL-divergence and those forgoing a divergence term entirely -- lack a crucial mechanism for knowledge retention. The reverse-KL actively accelerates this decay by narrowing the policy, while its absence provides no safeguard against the model drifting from its diverse knowledge base. We propose a fundamental shift in perspective: using the divergence term itself as the solution. Our framework, Diversity-Preserving Hybrid RL (DPH-RL), leverages mass-covering f-divergences (like forward-KL and JS-divergence) to function as a rehearsal mechanism. By continuously referencing the initial policy, this approach forces the model to maintain broad solution coverage. Extensive experiments on math and SQL generation demonstrate that DPH-RL not only resolves the Pass@k degradation but improves both Pass@1 and Pass@k in- and out-of-domain. Additionally, DPH-RL is more training-efficient because it computes f-divergence using generator functions, requiring only sampling from the initial policy and no online reference model. Our work highlights a crucial, overlooked axis for improving RLVR, demonstrating that the proper selection of a divergence measure is a powerful tool for building more general and diverse reasoning models.
comment: 26 pages, 5 figures
☆ Benchmarking Universal Interatomic Potentials on Zeolite Structures
Interatomic potentials (IPs) with wide elemental coverage and high accuracy are powerful tools for high-throughput materials discovery. While the past few years witnessed the development of multiple new universal IPs that cover wide ranges of the periodic table, their applicability to target chemical systems should be carefully investigated. We benchmark several universal IPs using equilibrium zeolite structures as testbeds. We select a diverse set of universal IPs encompassing two major categories: (i) universal analytic IPs, including GFN-FF, UFF, and Dreiding; (ii) pretrained universal machine learning IPs (MLIPs), comprising CHGNet, ORB-v3, MatterSim, eSEN-30M-OAM, PFP-v7, and EquiformerV2-lE4-lF100-S2EFS-OC22. We compare them with established tailor-made IPs, SLC, ClayFF, and BSFF using experimental data and density functional theory (DFT) calculations with dispersion correction as the reference. The tested zeolite structures comprise pure silica frameworks and aluminosilicates containing copper species, potassium, and organic cations. We found that GFN-FF is the best among the tested universal analytic IPs, but it does not achieve satisfactory accuracy for highly strained silica rings and aluminosilicate systems. All MLIPs can well reproduce experimental or DFT-level geometries and energetics. Among the universal MLIPs, the eSEN-30M-OAM model shows the most consistent performance across all zeolite structures studied. These findings show that the modern pretrained universal MLIPs are practical tools in zeolite screening workflows involving various compositions.
comment: 26 pages, 9 figures
☆ Language Self-Play For Data-Free Training
Large language models (LLMs) have advanced rapidly in recent years, driven by scale, abundant high-quality training data, and reinforcement learning. Yet this progress faces a fundamental bottleneck: the need for ever more data from which models can continue to learn. In this work, we propose a reinforcement learning approach that removes this dependency by enabling models to improve without additional data. Our method leverages a game-theoretic framework of self-play, where a model's capabilities are cast as performance in a competitive game and stronger policies emerge by having the model play against itself - a process we call Language Self-Play (LSP). Experiments with Llama-3.2-3B-Instruct on instruction-following benchmarks show that pretrained models can not only enhance their performance on challenging tasks through self-play alone, but can also do so more effectively than data-driven baselines.
☆ Toward Lifelong-Sustainable Electronic-Photonic AI Systems via Extreme Efficiency, Reconfigurability, and Robustness
The relentless growth of large-scale artificial intelligence (AI) has created unprecedented demand for computational power, straining the energy, bandwidth, and scaling limits of conventional electronic platforms. Electronic-photonic integrated circuits (EPICs) have emerged as a compelling platform for next-generation AI systems, offering inherent advantages in ultra-high bandwidth, low latency, and energy efficiency for computing and interconnection. Beyond performance, EPICs also hold unique promises for sustainability. Fabricated in relaxed process nodes with fewer metal layers and lower defect densities, photonic devices naturally reduce embodied carbon footprint (CFP) compared to advanced digital electronic integrated circuits, while delivering orders-of-magnitude higher computing performance and interconnect bandwidth. To further advance the sustainability of photonic AI systems, we explore how electronic-photonic design automation (EPDA) and cross-layer co-design methodologies can amplify these inherent benefits. We present how advanced EPDA tools enable more compact layout generation, reducing both chip area and metal layer usage. We will also demonstrate how cross-layer device-circuit-architecture co-design unlocks new sustainability gains for photonic hardware: ultra-compact photonic circuit designs that minimize chip area cost, reconfigurable hardware topology that adapts to evolving AI workloads, and intelligent resilience mechanisms that prolong lifetime by tolerating variations and faults. By uniting intrinsic photonic efficiency with EPDA- and co-design-driven gains in area efficiency, reconfigurability, and robustness, we outline a vision for lifelong-sustainable electronic-photonic AI systems. This perspective highlights how EPIC AI systems can simultaneously meet the performance demands of modern AI and the urgent imperative for sustainable computing.
comment: 8 pages
☆ Hybrid GCN-GRU Model for Anomaly Detection in Cryptocurrency Transactions
Blockchain transaction networks are complex, with evolving temporal patterns and inter-node relationships. To detect illicit activities, we propose a hybrid GCN-GRU model that captures both structural and sequential features. Using real Bitcoin transaction data (2020-2024), our model achieved 0.9470 Accuracy and 0.9807 AUC-ROC, outperforming all baselines.
☆ Talking with Oompa Loompas: A novel framework for evaluating linguistic acquisition of LLM agents
Existing evaluation studies on linguistic competence of large language models (LLM agents) have focused primarily on vocabulary learning, morphological rule induction, syntactic generalization, pragmatic inference, and cross-linguistic transfer. However, none assess whether LLM agents can acquire a language through pattern recognition and interactive feedback, a central feature of human language acquisition. We propose a novel experimental framework in which an LLM agent is evaluated on its ability to acquire and use a newly constructed language (Tinkatongue) in conversation with a bot that understands only Tinkatongue. Our findings show that LLM agents fail to establish a conversation within 100 responses, yet they adopt distinct strategies that mirror human approaches to language learning. The results suggest a new direction for evaluation benchmarks and open pathways to model designs that learn more effectively from interactive feedback.
comment: Under review
☆ SBS: Enhancing Parameter-Efficiency of Neural Representations for Neural Networks via Spectral Bias Suppression ICONIP 2025
Implicit neural representations have recently been extended to represent convolutional neural network weights via neural representation for neural networks, offering promising parameter compression benefits. However, standard multi-layer perceptrons used in neural representation for neural networks exhibit a pronounced spectral bias, hampering their ability to reconstruct high-frequency details effectively. In this paper, we propose SBS, a parameter-efficient enhancement to neural representation for neural networks that suppresses spectral bias using two techniques: (1) a unidirectional ordering-based smoothing that improves kernel smoothness in the output space, and (2) unidirectional ordering-based smoothing aware random fourier features that adaptively modulate the frequency bandwidth of input encodings based on layer-wise parameter count. Extensive evaluations on various ResNet models with datasets CIFAR-10, CIFAR-100, and ImageNet, demonstrate that SBS achieves significantly better reconstruction accuracy with less parameters compared to SOTA.
comment: Accepted by ICONIP 2025
☆ Autonomous Code Evolution Meets NP-Completeness
Large language models (LLMs) have recently shown strong coding abilities, enabling not only static code generation but also iterative code self-evolving through agentic frameworks. Recently, AlphaEvolve \cite{novikov2025alphaevolve} demonstrated that LLM-based coding agents can autonomously improve algorithms and surpass human experts, with scopes limited to isolated kernels spanning hundreds of lines of code. Inspired by AlphaEvolve, we present SATLUTION, the first framework to extend LLM-based code evolution to the full repository scale, encompassing hundreds of files and tens of thousands of lines of C/C++ code. Targeting Boolean Satisfiability (SAT), the canonical NP-complete problem and a cornerstone of both theory and applications. SATLUTION orchestrates LLM agents to directly evolve solver repositories under strict correctness guarantees and distributed runtime feedback, while simultaneously self-evolving its own evolution policies and rules. Starting from SAT Competition 2024 codebases and benchmark, SATLUTION evolved solvers that decisively outperformed the human-designed winners of the SAT Competition 2025, and also surpassed both 2024 and 2025 champions on the 2024 benchmarks.
comment: 31 pages, 11 figures
☆ Word2Spike: Poisson Rate Coding for Associative Memories and Neuromorphic Algorithms
Spiking neural networks offer a promising path toward energy-efficient, brain-like associative memory. This paper introduces Word2Spike, a novel rate coding mechanism that combines continuous word embeddings and neuromorphic architectures. We develop a one-to-one mapping that converts multi-dimensional word vectors into spike-based attractor states using Poisson processes. Using BitNet b1.58 quantization, we maintain 97% semantic similarity of continuous embeddings on SimLex-999 while achieving 100% reconstruction accuracy on 10,000 words from OpenAI's text-embedding-3-large. We preserve analogy performance (100% of original embedding performance) even under intentionally introduced noise, indicating a resilient mechanism for semantic encoding in neuromorphic systems. Next steps include integrating the mapping with spiking transformers and liquid state machines (resembling Hopfield Networks) for further evaluation.
comment: Presented at 2025 AI in Health Conference, Ken Kennedy Institute, Rice University
☆ Performative Thinking? The Brittle Correlation Between CoT Length and Problem Complexity
Intermediate token generation (ITG), where a model produces output before the solution, has been proposed as a method to improve the performance of language models on reasoning tasks. While these reasoning traces or Chain of Thoughts (CoTs) are correlated with performance gains, the mechanisms underlying them remain unclear. A prevailing assumption in the community has been to anthropomorphize these tokens as "thinking", treating longer traces as evidence of higher problem-adaptive computation. In this work, we critically examine whether intermediate token sequence length reflects or correlates with problem difficulty. To do so, we train transformer models from scratch on derivational traces of the A* search algorithm, where the number of operations required to solve a maze problem provides a precise and verifiable measure of problem complexity. We first evaluate the models on trivial free-space problems, finding that even for the simplest tasks, they often produce excessively long reasoning traces and sometimes fail to generate a solution. We then systematically evaluate the model on out-of-distribution problems and find that the intermediate token length and ground truth A* trace length only loosely correlate. We notice that the few cases where correlation appears are those where the problems are closer to the training distribution, suggesting that the effect arises from approximate recall rather than genuine problem-adaptive computation. This suggests that the inherent computational complexity of the problem instance is not a significant factor, but rather its distributional distance from the training data. These results challenge the assumption that intermediate trace generation is adaptive to problem difficulty and caution against interpreting longer sequences in systems like R1 as automatically indicative of "thinking effort".
☆ General Demographic Foundation Models for Enhancing Predictive Performance Across Diseases
Demographic attributes are universally present in electronic health records and serve as vital predictors in clinical risk stratification and treatment decisions. Despite their significance, these attributes are often relegated to auxiliary roles in model design, with limited attention has been given to learning their representations. This study proposes a General Demographic Pre-trained (GDP) model as a foundational representation framework tailored to age and gender. The model is pre-trained and evaluated using datasets with diverse diseases and population compositions from different geographic regions. The GDP architecture explores combinations of ordering strategies and encoding methods to transform tabular demographic inputs into latent embeddings. Experimental results demonstrate that sequential ordering substantially improves model performance in discrimination, calibration, and the corresponding information gain at each decision tree split, particularly in diseases where age and gender contribute significantly to risk stratification. Even in datasets where demographic attributes hold relatively low predictive value, GDP enhances the representational importance, increasing their influence in downstream gradient boosting models. The findings suggest that foundational models for tabular demographic attributes can generalize across tasks and populations, offering a promising direction for improving predictive performance in healthcare applications.
☆ DEPF: A UAV Multispectral Object Detector with Dual-Domain Enhancement and Priority-Guided Mamba Fusion
Multispectral remote sensing object detection is one of the important application of unmanned aerial vehicle (UAV). However, it faces three challenges. Firstly, the low-light remote sensing images reduce the complementarity during multi-modality fusion. Secondly, the local small target modeling is interfered with redundant information in the fusion stage easily. Thirdly, due to the quadratic computational complexity, it is hard to apply the transformer-based methods on the UAV platform. To address these limitations, motivated by Mamba with linear complexity, a UAV multispectral object detector with dual-domain enhancement and priority-guided mamba fusion (DEPF) is proposed. Firstly, to enhance low-light remote sensing images, Dual-Domain Enhancement Module (DDE) is designed, which contains Cross-Scale Wavelet Mamba (CSWM) and Fourier Details Recovery block (FDR). CSWM applies cross-scale mamba scanning for the low-frequency components to enhance the global brightness of images, while FDR constructs spectrum recovery network to enhance the frequency spectra features for recovering the texture-details. Secondly, to enhance local target modeling and reduce the impact of redundant information during fusion, Priority-Guided Mamba Fusion Module (PGMF) is designed. PGMF introduces the concept of priority scanning, which starts from local targets features according to the priority scores obtained from modality difference. Experiments on DroneVehicle dataset and VEDAI dataset reports that, DEPF performs well on object detection, comparing with state-of-the-art methods. Our code is available in the supplementary material.
☆ Mitigating Attention Localization in Small Scale: Self-Attention Refinement via One-step Belief Propagation EMNLP 2025
Transformer-based self-attention mechanism serves as the core of modern language models, yet it often suffers from localization, where attentions collapse onto a limited subset of tokens and fail to capture long-range dependencies. To address this issue, we propose Self-Attention One-step Belief Propagation (SAOBP), a refinement framework that injects multi-hop relationships through a belief propagation process. To interpret and quantify these interactions, we introduce Global Token Dependency (GTD) that captures the relative contribution of multihop connections within the attention graph. Empirical results indicate that SAOBP helps prevent entropy collapse in deeper layers and adaptively maintains GTD at task-appropriate levels, thereby supporting improvements in model performance. Importantly, we observe competitive gains in small-scale models, highlighting its potential for improving inference quality in resource-constrained scenarios.
comment: Accepted at EMNLP 2025
☆ MEGG: Replay via Maximally Extreme GGscore in Incremental Learning for Neural Recommendation Models
Neural Collaborative Filtering models are widely used in recommender systems but are typically trained under static settings, assuming fixed data distributions. This limits their applicability in dynamic environments where user preferences evolve. Incremental learning offers a promising solution, yet conventional methods from computer vision or NLP face challenges in recommendation tasks due to data sparsity and distinct task paradigms. Existing approaches for neural recommenders remain limited and often lack generalizability. To address this, we propose MEGG, Replay Samples with Maximally Extreme GGscore, an experience replay based incremental learning framework. MEGG introduces GGscore, a novel metric that quantifies sample influence, enabling the selective replay of highly influential samples to mitigate catastrophic forgetting. Being model-agnostic, MEGG integrates seamlessly across architectures and frameworks. Experiments on three neural models and four benchmark datasets show superior performance over state-of-the-art baselines, with strong scalability, efficiency, and robustness. Implementation will be released publicly upon acceptance.
comment: Accepted by Data Mining and Knowledge Discovery (DMKD) in Sep 2025
☆ Does This Look Familiar to You? Knowledge Analysis via Model Internal Representations
Recent advances in large language models (LLMs) have been driven by pretraining, supervised fine tuning (SFT), and alignment tuning. Among these, SFT plays a crucial role in transforming a model 's general knowledge into structured responses tailored to specific tasks. However, there is no clearly established methodology for effective training data selection. Simply increasing the volume of data does not guarantee performance improvements, while preprocessing, sampling, and validation require substantial time and cost. To address this issue, a variety of data selection methods have been proposed. Among them, knowledge based selection approaches identify suitable training data by analyzing the model 's responses. Nevertheless, these methods typically rely on prompt engineering, making them sensitive to variations and incurring additional costs for prompt design. In this study, we propose Knowledge Analysis via Model Internal Representations (KAMIR), a novel approach that overcomes these limitations by analyzing data based on the model 's internal representations. KAMIR computes similarities between the hidden states of each layer (block) and the final hidden states for a given input to assess the data. Unlike prior methods that were largely limited to multiple choice tasks, KAMIR can be applied to a wide range of tasks such as machine reading comprehension and summarization. Moreover, it selects data useful for training based on the model 's familiarity with the input, even with a small dataset and a simple classifier architecture. Experiments across diverse task datasets demonstrate that training with less familiar data leads to better generalization performance.
☆ Basis Vector Metric: A Method for Robust Open-Ended State Change Detection
We test a new method, which we will abbreviate using the acronym BVM (Basis Vectors Method), in its ability to judge the state changes in images through using language embeddings. We used the MIT-States dataset, containing about 53,000 images, to gather all of our data, which has 225 nouns and 115 adjectives, with each noun having about 9 different adjectives, forming approximately 1000 noun-adjective pairs. For our first experiment, we test our method's ability to determine the state of each noun class separately against other metrics for comparison. These metrics are cosine similarity, dot product, product quantization, binary index, Naive Bayes, and a custom neural network. Among these metrics, we found that our proposed BVM performs the best in classifying the states for each noun. We then perform a second experiment where we try using BVM to determine if it can differentiate adjectives from one another for each adjective separately. We compared the abilities of BVM to differentiate adjectives against the proposed method the MIT-States paper suggests: using a logistic regression model. In the end, we did not find conclusive evidence that our BVM metric could perform better than the logistic regression model at discerning adjectives. Yet, we were able to find evidence for possible improvements to our method; this leads to the chance of increasing our method's accuracy through certain changes in our methodologies.
comment: 24 pages
☆ Lifetime-Aware Design of Item-Level Intelligence
We present FlexiFlow, a lifetime-aware design framework for item-level intelligence (ILI) where computation is integrated directly into disposable products like food packaging and medical patches. Our framework leverages natively flexible electronics which offer significantly lower costs than silicon but are limited to kHz speeds and several thousands of gates. Our insight is that unlike traditional computing with more uniform deployment patterns, ILI applications exhibit 1000X variation in operational lifetime, fundamentally changing optimal architectural design decisions when considering trillion-item deployment scales. To enable holistic design and optimization, we model the trade-offs between embodied carbon footprint and operational carbon footprint based on application-specific lifetimes. The framework includes: (1) FlexiBench, a workload suite targeting sustainability applications from spoilage detection to health monitoring; (2) FlexiBits, area-optimized RISC-V cores with 1/4/8-bit datapaths achieving 2.65X to 3.50X better energy efficiency per workload execution; and (3) a carbon-aware model that selects optimal architectures based on deployment characteristics. We show that lifetime-aware microarchitectural design can reduce carbon footprint by 1.62X, while algorithmic decisions can reduce carbon footprint by 14.5X. We validate our approach through the first tape-out using a PDK for flexible electronics with fully open-source tools, achieving 30.9kHz operation. FlexiFlow enables exploration of computing at the Extreme Edge where conventional design methodologies must be reevaluated to account for new constraints and considerations.
☆ XML Prompting as Grammar-Constrained Interaction: Fixed-Point Semantics, Convergence Guarantees, and Human-AI Protocols
Structured prompting with XML tags has emerged as an effective way to steer large language models (LLMs) toward parseable, schema-adherent outputs in real-world systems. We develop a logic-first treatment of XML prompting that unifies (i) grammar-constrained decoding, (ii) fixed-point semantics over lattices of hierarchical prompts, and (iii) convergent human-AI interaction loops. We formalize a complete lattice of XML trees under a refinement order and prove that monotone prompt-to-prompt operators admit least fixed points (Knaster-Tarski) that characterize steady-state protocols; under a task-aware contraction metric on trees, we further prove Banach-style convergence of iterative guidance. We instantiate these results with context-free grammars (CFGs) for XML schemas and show how constrained decoding guarantees well-formedness while preserving task performance. A set of multi-layer human-AI interaction recipes demonstrates practical deployment patterns, including multi-pass "plan $\to$ verify $\to$ revise" routines and agentic tool use. We provide mathematically complete proofs and tie our framework to recent advances in grammar-aligned decoding, chain-of-verification, and programmatic prompting.
comment: 7 pages, multiple XML prompts
☆ Multi-Label Transfer Learning in Non-Stationary Data Streams IEEE
Label concepts in multi-label data streams often experience drift in non-stationary environments, either independently or in relation to other labels. Transferring knowledge between related labels can accelerate adaptation, yet research on multi-label transfer learning for data streams remains limited. To address this, we propose two novel transfer learning methods: BR-MARLENE leverages knowledge from different labels in both source and target streams for multi-label classification; BRPW-MARLENE builds on this by explicitly modelling and transferring pairwise label dependencies to enhance learning performance. Comprehensive experiments show that both methods outperform state-of-the-art multi-label stream approaches in non-stationary environments, demonstrating the effectiveness of inter-label knowledge transfer for improved predictive performance.
comment: Accepted at IEEE International Conference on Data Mining (ICDM) 2025
☆ Quadrotor Navigation using Reinforcement Learning with Privileged Information
This paper presents a reinforcement learning-based quadrotor navigation method that leverages efficient differentiable simulation, novel loss functions, and privileged information to navigate around large obstacles. Prior learning-based methods perform well in scenes that exhibit narrow obstacles, but struggle when the goal location is blocked by large walls or terrain. In contrast, the proposed method utilizes time-of-arrival (ToA) maps as privileged information and a yaw alignment loss to guide the robot around large obstacles. The policy is evaluated in photo-realistic simulation environments containing large obstacles, sharp corners, and dead-ends. Our approach achieves an 86% success rate and outperforms baseline strategies by 34%. We deploy the policy onboard a custom quadrotor in outdoor cluttered environments both during the day and night. The policy is validated across 20 flights, covering 589 meters without collisions at speeds up to 4 m/s.
☆ MARLINE: Multi-Source Mapping Transfer Learning for Non-Stationary Environments IEEE
Concept drift is a major problem in online learning due to its impact on the predictive performance of data stream mining systems. Recent studies have started exploring data streams from different sources as a strategy to tackle concept drift in a given target domain. These approaches make the assumption that at least one of the source models represents a concept similar to the target concept, which may not hold in many real-world scenarios. In this paper, we propose a novel approach called Multi-source mApping with tRansfer LearnIng for Non-stationary Environments (MARLINE). MARLINE can benefit from knowledge from multiple data sources in non-stationary environments even when source and target concepts do not match. This is achieved by projecting the target concept to the space of each source concept, enabling multiple source sub-classifiers to contribute towards the prediction of the target concept as part of an ensemble. Experiments on several synthetic and real-world datasets show that MARLINE was more accurate than several state-of-the-art data stream learning approaches.
comment: Published in the 2020 IEEE International Conference on Data Mining (ICDM)
☆ Diffusion-Guided Multi-Arm Motion Planning
Multi-arm motion planning is fundamental for enabling arms to complete complex long-horizon tasks in shared spaces efficiently but current methods struggle with scalability due to exponential state-space growth and reliance on large training datasets for learned models. Inspired by Multi-Agent Path Finding (MAPF), which decomposes planning into single-agent problems coupled with collision resolution, we propose a novel diffusion-guided multi-arm planner (DG-MAP) that enhances scalability of learning-based models while reducing their reliance on massive multi-arm datasets. Recognizing that collisions are primarily pairwise, we train two conditional diffusion models, one to generate feasible single-arm trajectories, and a second, to model the dual-arm dynamics required for effective pairwise collision resolution. By integrating these specialized generative models within a MAPF-inspired structured decomposition, our planner efficiently scales to larger number of arms. Evaluations against alternative learning-based methods across various team sizes demonstrate our method's effectiveness and practical applicability. Project website can be found at https://diff-mapf-mers.csail.mit.edu
☆ Zero-Shot Metric Depth Estimation via Monocular Visual-Inertial Rescaling for Autonomous Aerial Navigation
This paper presents a methodology to predict metric depth from monocular RGB images and an inertial measurement unit (IMU). To enable collision avoidance during autonomous flight, prior works either leverage heavy sensors (e.g., LiDARs or stereo cameras) or data-intensive and domain-specific fine-tuning of monocular metric depth estimation methods. In contrast, we propose several lightweight zero-shot rescaling strategies to obtain metric depth from relative depth estimates via the sparse 3D feature map created using a visual-inertial navigation system. These strategies are compared for their accuracy in diverse simulation environments. The best performing approach, which leverages monotonic spline fitting, is deployed in the real-world on a compute-constrained quadrotor. We obtain on-board metric depth estimates at 15 Hz and demonstrate successful collision avoidance after integrating the proposed method with a motion primitives-based planner.
☆ Risk-Bounded Multi-Agent Visual Navigation via Dynamic Budget Allocation
Safe navigation is essential for autonomous systems operating in hazardous environments, especially when multiple agents must coordinate using just visual inputs over extended time horizons. Traditional planning methods excel at solving long-horizon tasks but rely on predefined distance metrics, while safe Reinforcement Learning (RL) can learn complex behaviors using high-dimensional inputs yet struggles with multi-agent, goal-conditioned scenarios. Recent work combined these paradigms by leveraging goal-conditioned RL (GCRL) to build an intermediate graph from replay buffer states, pruning unsafe edges, and using Conflict-Based Search (CBS) for multi-agent path planning. Although effective, this graph-pruning approach can be overly conservative, limiting mission efficiency by precluding missions that must traverse high-risk regions. To address this limitation, we propose RB-CBS, a novel extension to CBS that dynamically allocates and adjusts user-specified risk bound ($\Delta$) across agents to flexibly trade off safety and speed. Our improved planner ensures that each agent receives a local risk budget ($\delta$) enabling more efficient navigation while still respecting overall safety constraints. Experimental results demonstrate that this iterative risk-allocation framework yields superior performance in complex environments, allowing multiple agents to find collision-free paths within the user-specified $\Delta$.
☆ Trust Semantics Distillation for Collaborator Selection via Memory-Augmented Agentic AI
Accurate trustworthiness evaluation of potential collaborating devices is essential for the effective execution of complex computing tasks. This evaluation process involves collecting diverse trust-related data from potential collaborators, including historical performance and available resources, for collaborator selection. However, when each task owner independently assesses all collaborators' trustworthiness, frequent data exchange, complex reasoning, and dynamic situation changes can result in significant overhead and deteriorated trust evaluation. To overcome these challenges, we propose a task-specific trust semantics distillation (2TSD) model based on a large AI model (LAM)-driven teacher-student agent architecture. The teacher agent is deployed on a server with powerful computational capabilities and an augmented memory module dedicated to multidimensional trust-related data collection, task-specific trust semantics extraction, and task-collaborator matching analysis. Upon receiving task-specific requests from device-side student agents, the teacher agent transfers the trust semantics of potential collaborators to the student agents, enabling rapid and accurate collaborator selection. Experimental results demonstrate that the proposed 2TSD model can reduce collaborator evaluation time, decrease device resource consumption, and improve the accuracy of collaborator selection.
☆ From Limited Data to Rare-event Prediction: LLM-powered Feature Engineering and Multi-model Learning in Venture Capital
This paper presents a framework for predicting rare, high-impact outcomes by integrating large language models (LLMs) with a multi-model machine learning (ML) architecture. The approach combines the predictive strength of black-box models with the interpretability required for reliable decision-making. We use LLM-powered feature engineering to extract and synthesize complex signals from unstructured data, which are then processed within a layered ensemble of models including XGBoost, Random Forest, and Linear Regression. The ensemble first produces a continuous estimate of success likelihood, which is then thresholded to produce a binary rare-event prediction. We apply this framework to the domain of Venture Capital (VC), where investors must evaluate startups with limited and noisy early-stage data. The empirical results show strong performance: the model achieves precision between 9.8X and 11.1X the random classifier baseline in three independent test subsets. Feature sensitivity analysis further reveals interpretable success drivers: the startup's category list accounts for 15.6% of predictive influence, followed by the number of founders, while education level and domain expertise contribute smaller yet consistent effects.
comment: 6 pages, 3 figures
☆ Domain Knowledge is Power: Leveraging Physiological Priors for Self Supervised Representation Learning in Electrocardiography
Objective: Electrocardiograms (ECGs) play a crucial role in diagnosing heart conditions; however, the effectiveness of artificial intelligence (AI)-based ECG analysis is often hindered by the limited availability of labeled data. Self-supervised learning (SSL) can address this by leveraging large-scale unlabeled data. We introduce PhysioCLR (Physiology-aware Contrastive Learning Representation for ECG), a physiology-aware contrastive learning framework that incorporates domain-specific priors to enhance the generalizability and clinical relevance of ECG-based arrhythmia classification. Methods: During pretraining, PhysioCLR learns to bring together embeddings of samples that share similar clinically relevant features while pushing apart those that are dissimilar. Unlike existing methods, our method integrates ECG physiological similarity cues into contrastive learning, promoting the learning of clinically meaningful representations. Additionally, we introduce ECG- specific augmentations that preserve the ECG category post augmentation and propose a hybrid loss function to further refine the quality of learned representations. Results: We evaluate PhysioCLR on two public ECG datasets, Chapman and Georgia, for multilabel ECG diagnoses, as well as a private ICU dataset labeled for binary classification. Across the Chapman, Georgia, and private cohorts, PhysioCLR boosts the mean AUROC by 12% relative to the strongest baseline, underscoring its robust cross-dataset generalization. Conclusion: By embedding physiological knowledge into contrastive learning, PhysioCLR enables the model to learn clinically meaningful and transferable ECG eatures. Significance: PhysioCLR demonstrates the potential of physiology-informed SSL to offer a promising path toward more effective and label-efficient ECG diagnostics.
☆ APML: Adaptive Probabilistic Matching Loss for Robust 3D Point Cloud Reconstruction
Training deep learning models for point cloud prediction tasks such as shape completion and generation depends critically on loss functions that measure discrepancies between predicted and ground-truth point sets. Commonly used functions such as Chamfer Distance (CD), HyperCD, and InfoCD rely on nearest-neighbor assignments, which often induce many-to-one correspondences, leading to point congestion in dense regions and poor coverage in sparse regions. These losses also involve non-differentiable operations due to index selection, which may affect gradient-based optimization. Earth Mover Distance (EMD) enforces one-to-one correspondences and captures structural similarity more effectively, but its cubic computational complexity limits its practical use. We propose the Adaptive Probabilistic Matching Loss (APML), a fully differentiable approximation of one-to-one matching that leverages Sinkhorn iterations on a temperature-scaled similarity matrix derived from pairwise distances. We analytically compute the temperature to guarantee a minimum assignment probability, eliminating manual tuning. APML achieves near-quadratic runtime, comparable to Chamfer-based losses, and avoids non-differentiable operations. When integrated into state-of-the-art architectures (PoinTr, PCN, FoldingNet) on ShapeNet benchmarks and on a spatiotemporal Transformer (CSI2PC) that generates 3D human point clouds from WiFi CSI measurements, APM loss yields faster convergence, superior spatial distribution, especially in low-density regions, and improved or on-par quantitative performance without additional hyperparameter search. The code is available at: https://github.com/apm-loss/apml.
comment: 22 pages, 6 figures, conference, 7 tables, 15 formulas
☆ Real-Time Obstacle Avoidance for a Mobile Robot Using CNN-Based Sensor Fusion
Obstacle avoidance is a critical component of the navigation stack required for mobile robots to operate effectively in complex and unknown environments. In this research, three end-to-end Convolutional Neural Networks (CNNs) were trained and evaluated offline and deployed on a differential-drive mobile robot for real-time obstacle avoidance to generate low-level steering commands from synchronized color and depth images acquired by an Intel RealSense D415 RGB-D camera in diverse environments. Offline evaluation showed that the NetConEmb model achieved the best performance with a notably low MedAE of $0.58 \times 10^{-3}$ rad/s. In comparison, the lighter NetEmb architecture adopted in this study, which reduces the number of trainable parameters by approximately 25\% and converges faster, produced comparable results with an RMSE of $21.68 \times 10^{-3}$ rad/s, close to the $21.42 \times 10^{-3}$ rad/s obtained by NetConEmb. Real-time navigation further confirmed NetConEmb's robustness, achieving a 100\% success rate in both known and unknown environments, while NetEmb and NetGated succeeded only in navigating the known environment.
☆ EnvX: Agentize Everything with Agentic AI
The widespread availability of open-source repositories has led to a vast collection of reusable software components, yet their utilization remains manual, error-prone, and disconnected. Developers must navigate documentation, understand APIs, and write integration code, creating significant barriers to efficient software reuse. To address this, we present EnvX, a framework that leverages Agentic AI to agentize GitHub repositories, transforming them into intelligent, autonomous agents capable of natural language interaction and inter-agent collaboration. Unlike existing approaches that treat repositories as static code resources, EnvX reimagines them as active agents through a three-phase process: (1) TODO-guided environment initialization, which sets up the necessary dependencies, data, and validation datasets; (2) human-aligned agentic automation, allowing repository-specific agents to autonomously perform real-world tasks; and (3) Agent-to-Agent (A2A) protocol, enabling multiple agents to collaborate. By combining large language model capabilities with structured tool integration, EnvX automates not just code generation, but the entire process of understanding, initializing, and operationalizing repository functionality. We evaluate EnvX on the GitTaskBench benchmark, using 18 repositories across domains such as image processing, speech recognition, document analysis, and video manipulation. Our results show that EnvX achieves a 74.07% execution completion rate and 51.85% task pass rate, outperforming existing frameworks. Case studies further demonstrate EnvX's ability to enable multi-repository collaboration via the A2A protocol. This work marks a shift from treating repositories as passive code resources to intelligent, interactive agents, fostering greater accessibility and collaboration within the open-source ecosystem.
☆ Performance Assessment Strategies for Generative AI Applications in Healthcare
Generative artificial intelligence (GenAI) represent an emerging paradigm within artificial intelligence, with applications throughout the medical enterprise. Assessing GenAI applications necessitates a comprehensive understanding of the clinical task and awareness of the variability in performance when implemented in actual clinical environments. Presently, a prevalent method for evaluating the performance of generative models relies on quantitative benchmarks. Such benchmarks have limitations and may suffer from train-to-the-test overfitting, optimizing performance for a specified test set at the cost of generalizability across other task and data distributions. Evaluation strategies leveraging human expertise and utilizing cost-effective computational models as evaluators are gaining interest. We discuss current state-of-the-art methodologies for assessing the performance of GenAI applications in healthcare and medical devices.
☆ JEL: A Novel Model Linking Knowledge Graph entities to News Mentions
We present JEL, a novel computationally efficient end-to-end multi-neural network based entity linking model, which beats current state-of-art model. Knowledge Graphs have emerged as a compelling abstraction for capturing critical relationships among the entities of interest and integrating data from multiple heterogeneous sources. A core problem in leveraging a knowledge graph is linking its entities to the mentions (e.g., people, company names) that are encountered in textual sources (e.g., news, blogs., etc) correctly, since there are thousands of entities to consider for each mention. This task of linking mentions and entities is referred as Entity Linking (EL). It is a fundamental task in natural language processing and is beneficial in various uses cases, such as building a New Analytics platform. News Analytics, in JPMorgan, is an essential task that benefits multiple groups across the firm. According to a survey conducted by the Innovation Digital team 1 , around 25 teams across the firm are actively looking for news analytics solutions, and more than \$2 million is being spent annually on external vendor costs. Entity linking is critical for bridging unstructured news text with knowledge graphs, enabling users access to vast amounts of curated data in a knowledge graph and dramatically facilitating their daily work.
☆ How Far Are We from True Unlearnability? ICLR 2025
High-quality data plays an indispensable role in the era of large models, but the use of unauthorized data for model training greatly damages the interests of data owners. To overcome this threat, several unlearnable methods have been proposed, which generate unlearnable examples (UEs) by compromising the training availability of data. Clearly, due to unknown training purposes and the powerful representation learning capabilities of existing models, these data are expected to be unlearnable for models across multiple tasks, i.e., they will not help improve the model's performance. However, unexpectedly, we find that on the multi-task dataset Taskonomy, UEs still perform well in tasks such as semantic segmentation, failing to exhibit cross-task unlearnability. This phenomenon leads us to question: How far are we from attaining truly unlearnable examples? We attempt to answer this question from the perspective of model optimization. To this end, we observe the difference in the convergence process between clean and poisoned models using a simple model architecture. Subsequently, from the loss landscape we find that only a part of the critical parameter optimization paths show significant differences, implying a close relationship between the loss landscape and unlearnability. Consequently, we employ the loss landscape to explain the underlying reasons for UEs and propose Sharpness-Aware Learnability (SAL) to quantify the unlearnability of parameters based on this explanation. Furthermore, we propose an Unlearnable Distance (UD) to measure the unlearnability of data based on the SAL distribution of parameters in clean and poisoned models. Finally, we conduct benchmark tests on mainstream unlearnable methods using the proposed UD, aiming to promote community awareness of the capability boundaries of existing unlearnable methods.
comment: This paper has been accepted by ICLR 2025
☆ LALM-Eval: An Open-Source Toolkit for Holistic Evaluation of Large Audio Language Models
Large Audio Language Models (LALMs) are rapidly advancing, but evaluating them remains challenging due to inefficient toolkits that limit fair comparison and systematic assessment. Current frameworks suffer from three critical issues: slow processing that bottlenecks large-scale studies, inconsistent prompting that hurts reproducibility, and narrow task coverage that misses important audio reasoning capabilities. We introduce LALM-Eval, an efficient and comprehensive evaluation framework for LALMs. Our system achieves a speedup of up to 127% over existing toolkits through optimized batch processing and parallel execution, enabling large-scale evaluations previously impractical. We provide standardized prompting protocols and flexible configurations for fair model comparison across diverse scenarios. Additionally, we introduce two new evaluation categories: LLM-Adaptive Diarization for temporal audio understanding and Spoken Language Reasoning for complex audio-based cognitive tasks. Through evaluation across 380+ tasks, we reveal significant gaps in current LALMs, particularly in temporal understanding and complex spoken language reasoning tasks. Our findings also highlight a lack of standardization in instruction modality existent across audio benchmarks, which can lead up performance differences up to 9.5 absolute points on the challenging complex instruction following downstream tasks. LALM-Eval provides both practical evaluation tools and insights into model limitations, advancing systematic LALM development.
☆ Two-Stage Swarm Intelligence Ensemble Deep Transfer Learning (SI-EDTL) for Vehicle Detection Using Unmanned Aerial Vehicles
This paper introduces SI-EDTL, a two-stage swarm intelligence ensemble deep transfer learning model for detecting multiple vehicles in UAV images. It combines three pre-trained Faster R-CNN feature extractor models (InceptionV3, ResNet50, GoogLeNet) with five transfer classifiers (KNN, SVM, MLP, C4.5, Na\"ive Bayes), resulting in 15 different base learners. These are aggregated via weighted averaging to classify regions as Car, Van, Truck, Bus, or background. Hyperparameters are optimized with the whale optimization algorithm to balance accuracy, precision, and recall. Implemented in MATLAB R2020b with parallel processing, SI-EDTL outperforms existing methods on the AU-AIR UAV dataset.
☆ NOWJ@COLIEE 2025: A Multi-stage Framework Integrating Embedding Models and Large Language Models for Legal Retrieval and Entailment
This paper presents the methodologies and results of the NOWJ team's participation across all five tasks at the COLIEE 2025 competition, emphasizing advancements in the Legal Case Entailment task (Task 2). Our comprehensive approach systematically integrates pre-ranking models (BM25, BERT, monoT5), embedding-based semantic representations (BGE-m3, LLM2Vec), and advanced Large Language Models (Qwen-2, QwQ-32B, DeepSeek-V3) for summarization, relevance scoring, and contextual re-ranking. Specifically, in Task 2, our two-stage retrieval system combined lexical-semantic filtering with contextualized LLM analysis, achieving first place with an F1 score of 0.3195. Additionally, in other tasks--including Legal Case Retrieval, Statute Law Retrieval, Legal Textual Entailment, and Legal Judgment Prediction--we demonstrated robust performance through carefully engineered ensembles and effective prompt-based reasoning strategies. Our findings highlight the potential of hybrid models integrating traditional IR techniques with contemporary generative models, providing a valuable reference for future advancements in legal information processing.
☆ MVPBench: A Benchmark and Fine-Tuning Framework for Aligning Large Language Models with Diverse Human Values
The alignment of large language models (LLMs) with human values is critical for their safe and effective deployment across diverse user populations. However, existing benchmarks often neglect cultural and demographic diversity, leading to limited understanding of how value alignment generalizes globally. In this work, we introduce MVPBench, a novel benchmark that systematically evaluates LLMs' alignment with multi-dimensional human value preferences across 75 countries. MVPBench contains 24,020 high-quality instances annotated with fine-grained value labels, personalized questions, and rich demographic metadata, making it the most comprehensive resource of its kind to date. Using MVPBench, we conduct an in-depth analysis of several state-of-the-art LLMs, revealing substantial disparities in alignment performance across geographic and demographic lines. We further demonstrate that lightweight fine-tuning methods, such as Low-Rank Adaptation (LoRA) and Direct Preference Optimization (DPO), can significantly enhance value alignment in both in-domain and out-of-domain settings. Our findings underscore the necessity for population-aware alignment evaluation and provide actionable insights for building culturally adaptive and value-sensitive LLMs. MVPBench serves as a practical foundation for future research on global alignment, personalized value modeling, and equitable AI development.
♻ ☆ Is Your LLM Overcharging You? Tokenization, Transparency, and Incentives
State-of-the-art large language models require specialized hardware and substantial energy to operate. As a consequence, cloud-based services that provide access to large language models have become very popular. In these services, the price users pay for an output provided by a model depends on the number of tokens the model uses to generate it -- they pay a fixed price per token. In this work, we show that this pricing mechanism creates a financial incentive for providers to strategize and misreport the (number of) tokens a model used to generate an output, and users cannot prove, or even know, whether a provider is overcharging them. However, we also show that, if an unfaithful provider is obliged to be transparent about the generative process used by the model, misreporting optimally without raising suspicion is hard. Nevertheless, as a proof-of-concept, we develop an efficient heuristic algorithm that allows providers to significantly overcharge users without raising suspicion. Crucially, we demonstrate that the cost of running the algorithm is lower than the additional revenue from overcharging users, highlighting the vulnerability of users under the current pay-per-token pricing mechanism. Further, we show that, to eliminate the financial incentive to strategize, a pricing mechanism must price tokens linearly on their character count. While this makes a provider's profit margin vary across tokens, we introduce a simple prescription under which the provider who adopts such an incentive-compatible pricing mechanism can maintain the average profit margin they had under the pay-per-token pricing mechanism. Along the way, to illustrate and complement our theoretical results, we conduct experiments with several large language models from the $\texttt{Llama}$, $\texttt{Gemma}$ and $\texttt{Ministral}$ families, and input prompts from the LMSYS Chatbot Arena platform.
♻ ☆ Automatic Reward Shaping from Confounded Offline Data ICML 2025
A key task in Artificial Intelligence is learning effective policies for controlling agents in unknown environments to optimize performance measures. Off-policy learning methods, like Q-learning, allow learners to make optimal decisions based on past experiences. This paper studies off-policy learning from biased data in complex and high-dimensional domains where \emph{unobserved confounding} cannot be ruled out a priori. Building on the well-celebrated Deep Q-Network (DQN), we propose a novel deep reinforcement learning algorithm robust to confounding biases in observed data. Specifically, our algorithm attempts to find a safe policy for the worst-case environment compatible with the observations. We apply our method to twelve confounded Atari games, and find that it consistently dominates the standard DQN in all games where the observed input to the behavioral and target policies mismatch and unobserved confounders exist.
comment: ICML 2025
♻ ☆ Llama-Nemotron: Efficient Reasoning Models
We introduce the Llama-Nemotron series of models, an open family of heterogeneous reasoning models that deliver exceptional reasoning capabilities, inference efficiency, and an open license for enterprise use. The family comes in three sizes -- Nano (8B), Super (49B), and Ultra (253B) -- and performs competitively with state-of-the-art reasoning models such as DeepSeek-R1 while offering superior inference throughput and memory efficiency. In this report, we discuss the training procedure for these models, which entails using neural architecture search from Llama 3 models for accelerated inference, knowledge distillation, and continued pretraining, followed by a reasoning-focused post-training stage consisting of two main parts: supervised fine-tuning and large scale reinforcement learning. Llama-Nemotron models are the first open-source models to support a dynamic reasoning toggle, allowing users to switch between standard chat and reasoning modes during inference. To further support open research and facilitate model development, we provide the following resources: 1. We release the Llama-Nemotron reasoning models -- LN-Nano, LN-Super, and LN-Ultra -- under the commercially permissive NVIDIA Open Model License Agreement. 2. We release the complete post-training dataset: Llama-Nemotron-Post-Training-Dataset. 3. We also release our training codebases: NeMo, NeMo-Aligner, and Megatron-LM.
♻ ☆ MaRVL-QA: A Benchmark for Mathematical Reasoning over Visual Landscapes
A key frontier for Multimodal Large Language Models (MLLMs) is the ability to perform deep mathematical and spatial reasoning directly from images, moving beyond their established success in semantic description. Mathematical surface plots provide a rigorous testbed for this capability, as they isolate the task of reasoning from the semantic noise common in natural images. To measure progress on this frontier, we introduce MaRVL-QA (Mathematical Reasoning over Visual Landscapes), a new benchmark designed to quantitatively evaluate these core reasoning skills. The benchmark comprises two novel tasks: Topological Counting, identifying and enumerating features like local maxima; and Transformation Recognition, recognizing applied geometric transformations. Generated from a curated library of functions with rigorous ambiguity filtering, our evaluation on MaRVL-QA reveals that even state-of-the-art MLLMs struggle significantly, often resorting to superficial heuristics instead of robust spatial reasoning. MaRVL-QA provides a challenging new tool for the research community to measure progress, expose model limitations, and guide the development of MLLMs with more profound reasoning abilities.
♻ ☆ MSRFormer: Road Network Representation Learning using Multi-scale Feature Fusion of Heterogeneous Spatial Interactions
Transforming road network data into vector representations using deep learning has proven effective for road network analysis. However, urban road networks' heterogeneous and hierarchical nature poses challenges for accurate representation learning. Graph neural networks, which aggregate features from neighboring nodes, often struggle due to their homogeneity assumption and focus on a single structural scale. To address these issues, this paper presents MSRFormer, a novel road network representation learning framework that integrates multi-scale spatial interactions by addressing their flow heterogeneity and long-distance dependencies. It uses spatial flow convolution to extract small-scale features from large trajectory datasets, and identifies scale-dependent spatial interaction regions to capture the spatial structure of road networks and flow heterogeneity. By employing a graph transformer, MSRFormer effectively captures complex spatial dependencies across multiple scales. The spatial interaction features are fused using residual connections, which are fed to a contrastive learning algorithm to derive the final road network representation. Validation on two real-world datasets demonstrates that MSRFormer outperforms baseline methods in two road network analysis tasks. The performance gains of MSRFormer suggest the traffic-related task benefits more from incorporating trajectory data, also resulting in greater improvements in complex road network structures with up to 16% improvements compared to the most competitive baseline method. This research provides a practical framework for developing task-agnostic road network representation models and highlights distinct association patterns of the interplay between scale effects and flow heterogeneity of spatial interactions.
♻ ☆ Convergence of Batch Asynchronous Stochastic Approximation With Applications to Reinforcement Learning
We begin by briefly surveying some results on the convergence of the Stochastic Gradient Descent (SGD) Method, proved in a companion paper by the present authors. These results are based on viewing SGD as a version of Stochastic Approximation (SA). Ever since its introduction in the classic paper of Robbins and Monro in 1951, SA has become a standard tool for finding a solution of an equation of the form $f(\theta) = 0$, when only noisy measurements of $f(\cdot)$ are available. In most situations, \textit{every component} of the putative solution $\theta_t$ is updated at each step $t$. In some applications in Reinforcement Learning (RL), \textit{only one component} of $\theta_t$ is updated at each $t$. This is known as \textbf{asynchronous} SA. In this paper, we study \textbf{Block Asynchronous SA (BASA)}, in which, at each step $t$, \textit{some but not necessarily all} components of $\theta_t$ are updated. The theory presented here embraces both conventional (synchronous) SA as well as asynchronous SA, and all in-between possibilities. We provide sufficient conditions for the convergence of BASA, and also prove bounds on the \textit{rate} of convergence of $\theta_t$ to the solution. For the case of conventional SGD, these results reduce to those proved in our companion paper. Then we apply these results to the problem of finding a fixed point of a map with only noisy measurements. This problem arises frequently in RL. We prove sufficient conditions for convergence as well as estimates for the rate of convergence.
comment: 34 pages, 1 figure
♻ ☆ Addition in Four Movements: Mapping Layer-wise Information Trajectories in LLMs EMNLP 2025
Multi-digit addition is a clear probe of the computational power of large language models. To dissect the internal arithmetic processes in LLaMA-3-8B-Instruct, we combine linear probing with logit-lens inspection. Inspired by the step-by-step manner in which humans perform addition, we propose and analyze a coherent four-stage trajectory in the forward pass:Formula-structure representations become linearly decodable first, while the answer token is still far down the candidate list.Core computational features then emerge prominently.At deeper activation layers, numerical abstractions of the result become clearer, enabling near-perfect detection and decoding of the individual digits in the sum.Near the output, the model organizes and generates the final content, with the correct token reliably occupying the top rank.This trajectory suggests a hierarchical process that favors internal computation over rote memorization. We release our code and data to facilitate reproducibility.
comment: 12 pages, including appendix, 7 figures. EMNLP 2025 submission (ARR May 2025 cycle, reviews pending)
♻ ☆ A Systematic Literature Review of Retrieval-Augmented Generation: Techniques, Metrics, and Challenges
This systematic review of the research literature on retrieval-augmented generation (RAG) provides a focused analysis of the most highly cited studies published between 2020 and May 2025. A total of 128 articles met our inclusion criteria. The records were retrieved from ACM Digital Library, IEEE Xplore, Scopus, ScienceDirect, and the Digital Bibliography and Library Project (DBLP). RAG couples a neural retriever with a generative language model, grounding output in up-to-date, non-parametric memory while retaining the semantic generalisation stored in model weights. Guided by the PRISMA 2020 framework, we (i) specify explicit inclusion and exclusion criteria based on citation count and research questions, (ii) catalogue datasets, architectures, and evaluation practices, and (iii) synthesise empirical evidence on the effectiveness and limitations of RAG. To mitigate citation-lag bias, we applied a lower citation-count threshold to papers published in 2025 so that emerging breakthroughs with naturally fewer citations were still captured. This review clarifies the current research landscape, highlights methodological gaps, and charts priority directions for future research.
comment: 58 page
♻ ☆ Cardiverse: Harnessing LLMs for Novel Card Game Prototyping EMNLP 2025
The prototyping of computer games, particularly card games, requires extensive human effort in creative ideation and gameplay evaluation. Recent advances in Large Language Models (LLMs) offer opportunities to automate and streamline these processes. However, it remains challenging for LLMs to design novel game mechanics beyond existing databases, generate consistent gameplay environments, and develop scalable gameplay AI for large-scale evaluations. This paper addresses these challenges by introducing a comprehensive automated card game prototyping framework. The approach highlights a graph-based indexing method for generating novel game variations, an LLM-driven system for consistent game code generation validated by gameplay records, and a gameplay AI constructing method that uses an ensemble of LLM-generated heuristic functions optimized through self-play. These contributions aim to accelerate card game prototyping, reduce human labor, and lower barriers to entry for game developers. For code repo visit this http URL https://github.com/danruili/Cardiverse
comment: 37 pages, 13 figures, 8 tables. Accepted by EMNLP 2025
♻ ☆ Toward a Metrology for Artificial Intelligence: Hidden-Rule Environments and Reinforcement Learning
We investigate reinforcement learning in the Game Of Hidden Rules (GOHR) environment, a complex puzzle in which an agent must infer and execute hidden rules to clear a 6$\times$6 board by placing game pieces into buckets. We explore two state representation strategies, namely Feature-Centric (FC) and Object-Centric (OC), and employ a Transformer-based Advantage Actor-Critic (A2C) algorithm for training. The agent has access only to partial observations and must simultaneously infer the governing rule and learn the optimal policy through experience. We evaluate our models across multiple rule-based and trial-list-based experimental setups, analyzing transfer effects and the impact of representation on learning efficiency.
♻ ☆ Audio-centric Video Understanding Benchmark without Text Shortcut EMNLP 2025
Audio often serves as an auxiliary modality in video understanding tasks of audio-visual large language models (LLMs), merely assisting in the comprehension of visual information. However, a thorough understanding of videos significantly depends on auditory information, as audio offers critical context, emotional cues, and semantic meaning that visual data alone often lacks. This paper proposes an audio-centric video understanding benchmark (AVUT) to evaluate the video comprehension capabilities of multimodal LLMs with a particular focus on auditory information. AVUT introduces a suite of carefully designed audio-centric tasks, holistically testing the understanding of both audio content and audio-visual interactions in videos. Moreover, this work points out the text shortcut problem that largely exists in other benchmarks where the correct answer can be found from question text alone without needing videos. AVUT addresses this problem by proposing a answer permutation-based filtering mechanism. A thorough evaluation across a diverse range of open-source and proprietary multimodal LLMs is performed, followed by the analyses of deficiencies in audio-visual LLMs. Demos and data are available at https://github.com/lark-png/AVUT.
comment: Accepted for publication in the Proceedings of EMNLP 2025 (Main Conference)
♻ ☆ Visualizing Thought: Conceptual Diagrams Enable Robust Combinatorial Planning in LMMs
Human reasoning relies on constructing and manipulating mental models -- simplified internal representations of situations that we use to understand and solve problems. Conceptual diagrams (e.g., a sketch drawn by a human to aid reasoning) externalize these mental models, abstracting irrelevant details to efficiently capture how entities interact with each other. In contrast, Large Language Models (LLMs) and Large MultiModal Models (LMMs) predominantly reason through text, limiting their effectiveness in complex multi-step tasks. In this paper, we propose Visual Thinking, a zero-shot framework that enables LMMs to reason through multiple chains of (self-generated) conceptual diagrams, significantly enhancing their combinatorial planning capabilities. Our approach does not require any human initialization beyond the natural language description of the task. It integrates both textual and diagrammatic reasoning within an optimized Graph-of-Thought inference framework, enhanced by beam search and depth-wise backtracking. Evaluated on multiple challenging PDDL planning domains, our method substantially improves LMMs' performance (e.g., GPT-4o: 35.5% -> 90.2% in Blocksworld) and consistently outperforms other text-only search-based inference methods. On more difficult planning domains with solution depths up to 40, our approach outperforms even the o1-preview reasoning model (e.g., 16 percentage points improvement in Floor Tiles). These results highlight the value of conceptual diagrams as a reasoning medium in LMMs.
♻ ☆ Directly Aligning the Full Diffusion Trajectory with Fine-Grained Human Preference
Recent studies have demonstrated the effectiveness of directly aligning diffusion models with human preferences using differentiable reward. However, they exhibit two primary challenges: (1) they rely on multistep denoising with gradient computation for reward scoring, which is computationally expensive, thus restricting optimization to only a few diffusion steps; (2) they often need continuous offline adaptation of reward models in order to achieve desired aesthetic quality, such as photorealism or precise lighting effects. To address the limitation of multistep denoising, we propose Direct-Align, a method that predefines a noise prior to effectively recover original images from any time steps via interpolation, leveraging the equation that diffusion states are interpolations between noise and target images, which effectively avoids over-optimization in late timesteps. Furthermore, we introduce Semantic Relative Preference Optimization (SRPO), in which rewards are formulated as text-conditioned signals. This approach enables online adjustment of rewards in response to positive and negative prompt augmentation, thereby reducing the reliance on offline reward fine-tuning. By fine-tuning the FLUX model with optimized denoising and online reward adjustment, we improve its human-evaluated realism and aesthetic quality by over 3x.
comment: 15 pages
♻ ☆ Robust Adaptation of Large Multimodal Models for Retrieval Augmented Hateful Meme Detection EMNLP 2025
Hateful memes have become a significant concern on the Internet, necessitating robust automated detection systems. While Large Multimodal Models (LMMs) have shown promise in hateful meme detection, they face notable challenges like sub-optimal performance and limited out-of-domain generalization capabilities. Recent studies further reveal the limitations of both supervised fine-tuning (SFT) and in-context learning when applied to LMMs in this setting. To address these issues, we propose a robust adaptation framework for hateful meme detection that enhances in-domain accuracy and cross-domain generalization while preserving the general vision-language capabilities of LMMs. Analysis reveals that our approach achieves improved robustness under adversarial attacks compared to SFT models. Experiments on six meme classification datasets show that our approach achieves state-of-the-art performance, outperforming larger agentic systems. Moreover, our method generates higher-quality rationales for explaining hateful content compared to standard SFT, enhancing model interpretability. Code available at https://github.com/JingbiaoMei/RGCL
comment: EMNLP 2025 Main
♻ ☆ zkLoRA: Fine-Tuning Large Language Models with Verifiable Security via Zero-Knowledge Proofs
Fine-tuning large language models (LLMs) is crucial for adapting them to specific tasks, yet it remains computationally demanding and raises concerns about correctness and privacy, particularly in untrusted environments. Although parameter-efficient methods like Low-Rank Adaptation (LoRA) significantly reduce resource requirements, ensuring the security and verifiability of fine-tuning under zero-knowledge constraints remains an unresolved challenge. To address this, we introduce zkLoRA, the first framework to integrate LoRA fine-tuning with zero-knowledge proofs (ZKPs), achieving provable security and correctness. zkLoRA employs advanced cryptographic techniques -- such as lookup arguments, sumcheck protocols, and polynomial commitments -- to verify both arithmetic and non-arithmetic operations in Transformer-based architectures. The framework provides end-to-end verifiability for forward propagation, backward propagation, and parameter updates during LoRA fine-tuning, while safeguarding the privacy of model parameters and training data. Leveraging GPU-based implementations, zkLoRA demonstrates practicality and efficiency through experimental validation on open-source LLMs like LLaMA, scaling up to 13 billion parameters. By combining parameter-efficient fine-tuning with ZKPs, zkLoRA bridges a critical gap, enabling secure and trustworthy deployment of LLMs in sensitive or untrusted environments.
♻ ☆ Modeling the Diachronic Evolution of Legal Norms: An LRMoo-Based, Component-Level, Event-Centric Approach to Legal Knowledge Graphs
Effectively representing legal norms for automated processing is a critical challenge, particularly in tracking the temporal evolution of their hierarchical components. While foundational conceptual frameworks like IFLA LRMoo provide a generic toolkit for bibliographic data, and encoding standards like Akoma Ntoso offer a robust syntax for legal documents, a dedicated, formal modeling pattern for granular, component-level versioning is still required. This limitation hinders the deterministic point-intime reconstruction of legal texts, a fundamental capability for reliable Legal Tech and AI applications. This paper proposes a structured, temporal modeling pattern grounded in the LRMoo ontology to address this need. Our approach models the evolution of a legal norm as a diachronic chain of F2 Expressions. We introduce a key distinction between a language-agnostic Temporal Version (TV)-a semantic snapshot of the norm's structure-and its concrete monolingual realizations, the Language Versions (LV). Both are modeled as F2 Expressions linked by the canonical R76 is derivative of property. This paradigm is applied recursively to the legal text's internal structure, representing it as a parallel hierarchy of abstract Component Works (F1) and their versioned Component Expressions (F2). Furthermore, we formalize the legislative amendment process using the F28 Expression Creation event, allowing changes to be traced from an amending act to its precise effect on the amended norm. Using the Brazilian Federal Constitution as a case study, we demonstrate how this event-centric architecture enables the precise, deterministic retrieval and reconstruction of any part of a legal text as it existed on a specific date. The model provides a robust foundation for building verifiable knowledge graphs and advanced AI tools, overcoming the limitations of current generative models.
comment: Minor revision involving small adjustments to the Title, Abstract, and Related Works section, with particular focus on the LexML approach
♻ ☆ ASP-FZN: A Translation-based Constraint Answer Set Solver
We present the solver asp-fzn for Constraint Answer Set Programming (CASP), which extends ASP with linear constraints. Our approach is based on translating CASP programs into the solver-independent FlatZinc language that supports several Constraint Programming and Integer Programming backend solvers. Our solver supports a rich language of linear constraints, including some common global constraints. As for evaluation, we show that asp-fzn is competitive with state-of-the-art ASP solvers on benchmarks taken from past ASP competitions. Furthermore, we evaluate it on several CASP problems from the literature and compare its performance with clingcon, which is a prominent CASP solver that supports most of the asp-fzn language. The performance of asp-fzn is very promising as it is already competitive on plain ASP and even outperforms clingcon on some CASP benchmarks.
comment: Presented at the 41st International Conference on Logic Programming (ICLP 2025)
♻ ☆ EmbodiedOneVision: Interleaved Vision-Text-Action Pretraining for General Robot Control
The human ability to seamlessly perform multimodal reasoning and physical interaction in the open world is a core goal for general-purpose embodied intelligent systems. Recent vision-language-action (VLA) models, which are co-trained on large-scale robot and visual-text data, have demonstrated notable progress in general robot control. However, they still fail to achieve human-level flexibility in interleaved reasoning and interaction. In this work, introduce EO-Robotics, consists of EO-1 model and EO-Data1.5M dataset. EO-1 is a unified embodied foundation model that achieves superior performance in multimodal embodied reasoning and robot control through interleaved vision-text-action pre-training. The development of EO-1 is based on two key pillars: (i) a unified architecture that processes multimodal inputs indiscriminately (image, text, video, and action), and (ii) a massive, high-quality multimodal embodied reasoning dataset, EO-Data1.5M, which contains over 1.5 million samples with emphasis on interleaved vision-text-action comprehension. EO-1 is trained through synergies between auto-regressive decoding and flow matching denoising on EO-Data1.5M, enabling seamless robot action generation and multimodal embodied reasoning. Extensive experiments demonstrate the effectiveness of interleaved vision-text-action learning for open-world understanding and generalization, validated through a variety of long-horizon, dexterous manipulation tasks across multiple embodiments. This paper details the architecture of EO-1, the data construction strategy of EO-Data1.5M, and the training methodology, offering valuable insights for developing advanced embodied foundation models.
♻ ☆ Signal-Based Malware Classification Using 1D CNNs
Malware classification is a contemporary and ongoing challenge in cyber-security: modern obfuscation techniques are able to evade traditional static analysis, while dynamic analysis is too resource intensive to be deployed at a large scale. One prominent line of research addresses these limitations by converting malware binaries into 2D images by heuristically reshaping them into a 2D grid before resizing using Lanczos resampling. These images can then be classified based on their textural information using computer vision approaches. While this approach can detect obfuscated malware more effectively than static analysis, the process of converting files into 2D images results in significant information loss due to both quantisation noise, caused by rounding to integer pixel values, and the introduction of 2D dependencies which do not exist in the original data. This loss of signal limits the classification performance of the downstream model. This work addresses these weaknesses by instead resizing the files into 1D signals which avoids the need for heuristic reshaping, and additionally these signals do not suffer from quantisation noise due to being stored in a floating-point format. It is shown that existing 2D CNN architectures can be readily adapted to classify these 1D signals for improved performance. Furthermore, a bespoke 1D convolutional neural network, based on the ResNet architecture and squeeze-and-excitation layers, was developed to classify these signals and evaluated on the MalNet dataset. It was found to achieve state-of-the-art performance on binary, type, and family level classification with F1 scores of 0.874, 0.503, and 0.507, respectively, paving the way for future models to operate on the proposed signal modality.
comment: Accepted for publication in Springer Cybersecurity (2025)
♻ ☆ Multi-output Classification using a Cross-talk Architecture for Compound Fault Diagnosis of Motors in Partially Labeled Condition
The increasing complexity of rotating machinery and the diversity of operating conditions, such as rotating speed and varying torques, have amplified the challenges in fault diagnosis in scenarios requiring domain adaptation, particularly involving compound faults. This study addresses these challenges by introducing a novel multi-output classification (MOC) framework tailored for domain adaptation in partially labeled target datasets. Unlike conventional multi-class classification (MCC) approaches, the MOC framework classifies the severity levels of compound faults simultaneously. Furthermore, we explore various single-task and multi-task architectures applicable to the MOC formulation-including shared trunk and cross-talk-based designs-for compound fault diagnosis under partially labeled conditions. Based on this investigation, we propose a novel cross-talk architecture, residual neural dimension reductor (RNDR), that enables selective information sharing across diagnostic tasks, effectively enhancing classification performance in compound fault scenarios. In addition, frequency-layer normalization was incorporated to improve domain adaptation performance on motor vibration data. Compound fault conditions were implemented using a motor-based test setup and evaluated across six domain adaptation scenarios. The experimental results demonstrate its superior macro F1 performance compared to baseline models. We further showed that the structural advantage of RNDR is more pronounced in compound fault settings through a single-fault comparison. We also found that frequency-layer normalization fits the fault diagnosis task better than conventional methods. Lastly, we analyzed the RNDR with various conditions, other models with increased number of parameters, and compared with the ablated RNDR structure.
comment: Submitted to Mechanical Systems and Signal Processing on May 9th, 2025
♻ ☆ DistJoin: A Decoupled Join Cardinality Estimator based on Adaptive Neural Predicate Modulation
Research on learned cardinality estimation has made significant progress in recent years. However, existing methods still face distinct challenges that hinder their practical deployment in production environments. We define these challenges as the ``Trilemma of Cardinality Estimation'', where learned cardinality estimation methods struggle to balance generality, accuracy, and updatability. To address these challenges, we introduce DistJoin, a join cardinality estimator based on efficient distribution prediction using multi-autoregressive models. Our contributions are threefold: (1) We propose a method to estimate join cardinality by leveraging the probability distributions of individual tables in a decoupled manner. (2) To meet the requirements of efficiency for DistJoin, we develop Adaptive Neural Predicate Modulation (ANPM), a high-throughput distribution estimation model. (3) We demonstrate that an existing similar approach suffers from variance accumulation issues by formal variance analysis. To mitigate this problem, DistJoin employs a selectivity-based approach to infer join cardinality, effectively reducing variance. In summary, DistJoin not only represents the first data-driven method to support both equi and non-equi joins simultaneously but also demonstrates superior accuracy while enabling fast and flexible updates. The experimental results demonstrate that DistJoin achieves the highest accuracy, robustness to data updates, generality, and comparable update and inference speed relative to existing methods.
♻ ☆ MoRPI-PINN: A Physics-Informed Framework for Mobile Robot Pure Inertial Navigation
A fundamental requirement for full autonomy in mobile robots is accurate navigation even in situations where satellite navigation or cameras are unavailable. In such practical situations, relying only on inertial sensors will result in navigation solution drift due to the sensors' inherent noise and error terms. One of the emerging solutions to mitigate drift is to maneuver the robot in a snake-like slithering motion to increase the inertial signal-to-noise ratio, allowing the regression of the mobile robot position. In this work, we propose MoRPI-PINN as a physics-informed neural network framework for accurate inertial-based mobile robot navigation. By embedding physical laws and constraints into the training process, MoRPI-PINN is capable of providing an accurate and robust navigation solution. Using real-world experiments, we show accuracy improvements of over 85% compared to other approaches. MoRPI-PINN is a lightweight approach that can be implemented even on edge devices and used in any typical mobile robot application.
comment: 9 pages, 5 figures
♻ ☆ TokenSelect: Efficient Long-Context Inference and Length Extrapolation for LLMs via Dynamic Token-Level KV Cache Selection EMNLP2025
Rapid advances in Large Language Models (LLMs) have spurred demand for processing extended context sequences in contemporary applications. However, this progress faces two challenges: performance degradation due to sequence lengths out-of-distribution, and excessively long inference times caused by the quadratic computational complexity of attention. These issues limit LLMs in long-context scenarios. In this paper, we propose Dynamic Token-Level KV Cache Selection (TokenSelect), a training-free method for efficient and accurate long-context inference. TokenSelect builds upon the observation of non-contiguous attention sparsity, using QK dot products to measure per-head KV Cache criticality at token-level. By per-head soft voting mechanism, TokenSelect selectively involves a few critical KV cache tokens in attention calculation without sacrificing accuracy. To further accelerate TokenSelect, we design the Selection Cache based on observations of consecutive Query similarity and implemented the efficient Paged Dot Product Kernel, significantly reducing the selection overhead. A comprehensive evaluation of TokenSelect demonstrates up to $23.84\times$ speedup in attention computation and up to $2.28\times$ acceleration in end-to-end latency, while providing superior performance compared to state-of-the-art long-context inference methods.
comment: Accepted by EMNLP2025
♻ ☆ BranchGRPO: Stable and Efficient GRPO with Structured Branching in Diffusion Models
Recent advancements in aligning image and video generative models via GRPO have achieved remarkable gains in enhancing human preference alignment. However, these methods still face high computational costs from on-policy rollouts and excessive SDE sampling steps, as well as training instability due to sparse rewards. In this paper, we propose BranchGRPO, a novel method that introduces a branch sampling policy updating the SDE sampling process. By sharing computation across common prefixes and pruning low-reward paths and redundant depths, BranchGRPO substantially lowers the per-update compute cost while maintaining or improving exploration diversity. This work makes three main contributions: (1) a branch sampling scheme that reduces rollout and training cost; (2) a tree-based advantage estimator incorporating dense process-level rewards; and (3) pruning strategies exploiting path and depth redundancy to accelerate convergence and boost performance. Experiments on image and video preference alignment show that BranchGRPO improves alignment scores by 16% over strong baselines, while cutting training time by 50%.
comment: 12 pages, 6 figures
♻ ☆ Self-Emotion-Mediated Exploration in Artificial Intelligence Mirrors: Findings from Cognitive Psychology
Background: Exploration of the physical environment is an indispensable precursor to information acquisition and knowledge consolidation for living organisms. Yet, current artificial intelligence models lack these autonomy capabilities during training, hindering their adaptability. This work proposes a learning framework for artificial agents to obtain an intrinsic exploratory drive, based on epistemic and achievement emotions triggered during data observation. Methods: This study proposes a dual-module reinforcement framework, where data analysis scores dictate pride or surprise, in accordance with psychological studies on humans. A correlation between these states and exploration is then optimized for agents to meet their learning goals. Results: Causal relationships between states and exploration are demonstrated by the majority of agents. A 15.4\% mean increase is noted for surprise, with a 2.8\% mean decrease for pride. Resulting correlations of $\rho_{surprise}=0.461$ and $\rho_{pride}=-0.237$ are obtained, mirroring previously reported human behavior. Conclusions: These findings lead to the conclusion that bio-inspiration for AI development can be of great use. This can incur benefits typically found in living beings, such as autonomy. Further, it empirically shows how AI methodologies can corroborate human behavioral findings, showcasing major interdisciplinary importance. Ramifications are discussed.
comment: 17 pages, 8 figures, MDPI's AI Journal
♻ ☆ TrojanRobot: Physical-world Backdoor Attacks Against VLM-based Robotic Manipulation
Robotic manipulation in the physical world is increasingly empowered by \textit{large language models} (LLMs) and \textit{vision-language models} (VLMs), leveraging their understanding and perception capabilities. Recently, various attacks against such robotic policies have been proposed, with backdoor attacks drawing considerable attention for their high stealth and strong persistence capabilities. However, existing backdoor efforts are limited to simulators and suffer from physical-world realization. To address this, we propose \textit{TrojanRobot}, a highly stealthy and broadly effective robotic backdoor attack in the physical world. Specifically, we introduce a module-poisoning approach by embedding a backdoor module into the modular robotic policy, enabling backdoor control over the policy's visual perception module thereby backdooring the entire robotic policy. Our vanilla implementation leverages a backdoor-finetuned VLM to serve as the backdoor module. To enhance its generalization in physical environments, we propose a prime implementation, leveraging the LVLM-as-a-backdoor paradigm and developing three types of prime attacks, \ie, \textit{permutation}, \textit{stagnation}, and \textit{intentional} attacks, thus achieving finer-grained backdoors. Extensive experiments on the UR3e manipulator with 18 task instructions using robotic policies based on four VLMs demonstrate the broad effectiveness and physical-world stealth of TrojanRobot. Our attack's video demonstrations are available via a github link https://trojanrobot.github.io.
♻ ☆ Trust but Verify! A Survey on Verification Design for Test-time Scaling
Test-time scaling (TTS) has emerged as a new frontier for scaling the performance of Large Language Models. In test-time scaling, by using more computational resources during inference, LLMs can improve their reasoning process and task performance. Several approaches have emerged for TTS such as distilling reasoning traces from another model or exploring the vast decoding search space by employing a verifier. The verifiers serve as reward models that help score the candidate outputs from the decoding process to diligently explore the vast solution space and select the best outcome. This paradigm commonly termed has emerged as a superior approach owing to parameter free scaling at inference time and high performance gains. The verifiers could be prompt-based, fine-tuned as a discriminative or generative model to verify process paths, outcomes or both. Despite their widespread adoption, there is no detailed collection, clear categorization and discussion of diverse verification approaches and their training mechanisms. In this survey, we cover the diverse approaches in the literature and present a unified view of verifier training, types and their utility in test-time scaling. Our repository can be found at https://github.com/elixir-research-group/Verifierstesttimescaling.github.io.
comment: 18 pages
♻ ☆ Attention of a Kiss: Exploring Attention Maps in Video Diffusion for XAIxArts
This paper presents an artistic and technical investigation into the attention mechanisms of video diffusion transformers. Inspired by early video artists who manipulated analog video signals to create new visual aesthetics, this study proposes a method for extracting and visualizing cross-attention maps in generative video models. Built on the open-source Wan model, our tool provides an interpretable window into the temporal and spatial behavior of attention in text-to-video generation. Through exploratory probes and an artistic case study, we examine the potential of attention maps as both analytical tools and raw artistic material. This work contributes to the growing field of Explainable AI for the Arts (XAIxArts), inviting artists to reclaim the inner workings of AI as a creative medium.
comment: 3rd international workshop on eXplainable AI for the Arts (XAIxArts) at the ACM Creativity and Cognition Conference June 2025
♻ ☆ A Mixed User-Centered Approach to Enable Augmented Intelligence in Intelligent Tutoring Systems: The Case of MathAIde app
This study explores the integration of Augmented Intelligence (AuI) in Intelligent Tutoring Systems (ITS) to address challenges in Artificial Intelligence in Education (AIED), including teacher involvement, AI reliability, and resource accessibility. We present MathAIde, an ITS that uses computer vision and AI to correct mathematics exercises from student work photos and provide feedback. The system was designed through a collaborative process involving brainstorming with teachers, high-fidelity prototyping, A/B testing, and a real-world case study. Findings emphasize the importance of a teacher-centered, user-driven approach, where AI suggests remediation alternatives while teachers retain decision-making. Results highlight efficiency, usability, and adoption potential in classroom contexts, particularly in resource-limited environments. The study contributes practical insights into designing ITSs that balance user needs and technological feasibility, while advancing AIED research by demonstrating the effectiveness of a mixed-methods, user-centered approach to implementing AuI in educational technologies.
comment: Article published in the International Journal of Human-Computer Interaction
♻ ☆ Conditional Video Generation for High-Efficiency Video Compression
Perceptual studies demonstrate that conditional diffusion models excel at reconstructing video content aligned with human visual perception. Building on this insight, we propose a video compression framework that leverages conditional diffusion models for perceptually optimized reconstruction. Specifically, we reframe video compression as a conditional generation task, where a generative model synthesizes video from sparse, yet informative signals. Our approach introduces three key modules: (1) Multi-granular conditioning that captures both static scene structure and dynamic spatio-temporal cues; (2) Compact representations designed for efficient transmission without sacrificing semantic richness; (3) Multi-condition training with modality dropout and role-aware embeddings, which prevent over-reliance on any single modality and enhance robustness. Extensive experiments show that our method significantly outperforms both traditional and neural codecs on perceptual quality metrics such as Fr\'echet Video Distance (FVD) and LPIPS, especially under high compression ratios.
comment: Critical methodology flaws invalidate key results
♻ ☆ Comparative Analysis of Lightweight Deep Learning Models for Memory-Constrained Devices
This paper presents a comprehensive evaluation of lightweight deep learning models for image classification, emphasizing their suitability for deployment in resource-constrained environments such as low-memory devices. Five state-of-the-art architectures - MobileNetV3 Small, ResNet18, SqueezeNet, EfficientNetV2-S, and ShuffleNetV2 - are benchmarked across three diverse datasets: CIFAR-10, CIFAR-100, and Tiny ImageNet. The models are assessed using four key performance metrics: classification accuracy, inference time, floating-point operations (FLOPs), and model size. Additionally, we investigate the impact of hyperparameter tuning, data augmentation, and training paradigms by comparing pretrained models with scratch-trained counterparts, focusing on MobileNetV3 Small. Our findings reveal that transfer learning significantly enhances model accuracy and computational efficiency, particularly for complex datasets like Tiny ImageNet. EfficientNetV2 consistently achieves the highest accuracy, while MobileNetV3 offers the best balance between accuracy and efficiency, and SqueezeNet excels in inference speed and compactness. This study highlights critical trade-offs between accuracy and efficiency, offering actionable insights for deploying lightweight models in real-world applications where computational resources are limited. By addressing these challenges, this research contributes to optimizing deep learning systems for edge computing and mobile platforms.
comment: 22 pages, 10 figures, 4 tables, submitted to Springer - Pattern Recognition and Image Analysis
♻ ☆ CTourLLM: Enhancing LLMs with Chinese Tourism Knowledge
Recently, large language models (LLMs) have demonstrated their effectiveness in various natural language processing (NLP) tasks. However, the lack of tourism knowledge limits the performance of LLMs in tourist attraction presentations and travel planning. To address this challenge, we constructed a supervised fine-tuning dataset for the Chinese culture and tourism domain, named Cultour. This dataset consists of three parts: tourism knowledge base data, travelogues data, and tourism QA data. Additionally, we propose CTourLLM, a Qwen-based model supervised fine-tuned with Cultour, to improve the quality of information about attractions and travel planning. To evaluate the performance of CTourLLM, we proposed a human evaluation criterion named RRA (Relevance, Readability, Availability), and employed both automatic and human evaluation. The experimental results demonstrate that CTourLLM outperforms ChatGPT, achieving an improvement of 1.21 in BLEU-1 and 1.54 in Rouge-L, thereby validating the effectiveness of the response outcomes. Our proposed Cultour is accessible at https://github.com/mrweiqk/Cultour.
♻ ☆ Interleaving Reasoning for Better Text-to-Image Generation
Unified multimodal understanding and generation models recently have achieve significant improvement in image generation capability, yet a large gap remains in instruction following and detail preservation compared to systems that tightly couple comprehension with generation such as GPT-4o. Motivated by recent advances in interleaving reasoning, we explore whether such reasoning can further improve Text-to-Image (T2I) generation. We introduce Interleaving Reasoning Generation (IRG), a framework that alternates between text-based thinking and image synthesis: the model first produces a text-based thinking to guide an initial image, then reflects on the result to refine fine-grained details, visual quality, and aesthetics while preserving semantics. To train IRG effectively, we propose Interleaving Reasoning Generation Learning (IRGL), which targets two sub-goals: (1) strengthening the initial think-and-generate stage to establish core content and base quality, and (2) enabling high-quality textual reflection and faithful implementation of those refinements in a subsequent image. We curate IRGL-300K, a dataset organized into six decomposed learning modes that jointly cover learning text-based thinking, and full thinking-image trajectories. Starting from a unified foundation model that natively emits interleaved text-image outputs, our two-stage training first builds robust thinking and reflection, then efficiently tunes the IRG pipeline in the full thinking-image trajectory data. Extensive experiments show SoTA performance, yielding absolute gains of 5-10 points on GenEval, WISE, TIIF, GenAI-Bench, and OneIG-EN, alongside substantial improvements in visual quality and fine-grained fidelity. The code, model weights and datasets will be released in: https://github.com/Osilly/Interleaving-Reasoning-Generation .
♻ ☆ A Survey of Threats Against Voice Authentication and Anti-Spoofing Systems
Voice authentication has undergone significant changes from traditional systems that relied on handcrafted acoustic features to deep learning models that can extract robust speaker embeddings. This advancement has expanded its applications across finance, smart devices, law enforcement, and beyond. However, as adoption has grown, so have the threats. This survey presents a comprehensive review of the modern threat landscape targeting Voice Authentication Systems (VAS) and Anti-Spoofing Countermeasures (CMs), including data poisoning, adversarial, deepfake, and adversarial spoofing attacks. We chronologically trace the development of voice authentication and examine how vulnerabilities have evolved in tandem with technological advancements. For each category of attack, we summarize methodologies, highlight commonly used datasets, compare performance and limitations, and organize existing literature using widely accepted taxonomies. By highlighting emerging risks and open challenges, this survey aims to support the development of more secure and resilient voice authentication systems.
comment: This paper is submitted to the Computer Science Review
♻ ☆ Tripartite-GraphRAG via Plugin Ontologies
Large Language Models (LLMs) have shown remarkable capabilities across various domains, yet they struggle with knowledge-intensive tasks in areas that demand factual accuracy, e.g. industrial automation and healthcare. Key limitations include their tendency to hallucinate, lack of source traceability (provenance), and challenges in timely knowledge updates. Combining language models with knowledge graphs (GraphRAG) offers promising avenues for overcoming these deficits. However, a major challenge lies in creating such a knowledge graph in the first place. Here, we propose a novel approach that combines LLMs with a tripartite knowledge graph representation, which is constructed by connecting complex, domain-specific objects via a curated ontology of corresponding, domain-specific concepts to relevant sections within chunks of text through a concept-anchored pre-analysis of source documents starting from an initial lexical graph. Subsequently, we formulate LLM prompt creation as an unsupervised node classification problem allowing for the optimization of information density, coverage, and arrangement of LLM prompts at significantly reduced lengths. An initial experimental evaluation of our approach on a healthcare use case, involving multi-faceted analyses of patient anamneses given a set of medical concepts as well as a series of clinical guideline literature, indicates its potential to optimize information density, coverage, and arrangement of LLM prompts while significantly reducing their lengths, which, in turn, may lead to reduced costs as well as more consistent and reliable LLM outputs.
♻ ☆ Towards Visuospatial Cognition via Hierarchical Fusion of Visual Experts
While Multimodal Large Language Models (MLLMs) excel at general vision-language tasks, visuospatial cognition - reasoning about spatial layouts, relations, and dynamics - remains a significant challenge. Existing models often lack the necessary architectural components and specialized training data for fine-grained spatial understanding. We introduce ViCA2 (Visuospatial Cognitive Assistant 2), a novel MLLM designed to enhance spatial reasoning. ViCA2 features a dual vision encoder architecture integrating SigLIP for semantics and Hiera for spatial structure, coupled with a token ratio control mechanism for efficiency. We also developed ViCA-322K, a new large-scale dataset with over 322,000 spatially grounded question-answer pairs for targeted instruction tuning. On the challenging VSI-Bench benchmark, our ViCA2-7B model achieves a state-of-the-art average score of 56.8, significantly surpassing larger open-source models (e.g., LLaVA-NeXT-Video-72B, 40.9) and leading proprietary models (Gemini-1.5 Pro, 45.4). This demonstrates the effectiveness of our approach in achieving strong visuospatial intelligence with a compact model. We release ViCA2, its codebase, and the ViCA-322K dataset to facilitate further research.
comment: 26 pages, 19 figures, 4 tables
♻ ☆ DMS-Net:Dual-Modal Multi-Scale Siamese Network for Binocular Fundus Image Classification
Ophthalmic diseases pose a significant global health burden. However, traditional diagnostic methods and existing monocular image-based deep learning approaches often overlook the pathological correlations between the two eyes. In practical medical robotic diagnostic scenarios, paired retinal images (binocular fundus images) are frequently required as diagnostic evidence. To address this, we propose DMS-Net-a dual-modal multi-scale siamese network for binocular retinal image classification. The framework employs a weight-sharing siamese ResNet-152 architecture to concurrently extract deep semantic features from bilateral fundus images. To tackle challenges like indistinct lesion boundaries and diffuse pathological distributions, we introduce the OmniPool Spatial Integrator Module (OSIM), which achieves multi-resolution feature aggregation through multi-scale adaptive pooling and spatial attention mechanisms. Furthermore, the Calibrated Analogous Semantic Fusion Module (CASFM) leverages spatial-semantic recalibration and bidirectional attention mechanisms to enhance cross-modal interaction, aggregating modality-agnostic representations of fundus structures. To fully exploit the differential semantic information of lesions present in bilateral fundus features, we introduce the Cross-Modal Contrastive Alignment Module (CCAM). Additionally, to enhance the aggregation of lesion-correlated semantic information, we introduce the Cross-Modal Integrative Alignment Module (CIAM). Evaluation on the ODIR-5K dataset demonstrates that DMS-Net achieves state-of-the-art performance with an accuracy of 82.9%, recall of 84.5%, and a Cohen's kappa coefficient of 83.2%, showcasing robust capacity in detecting symmetrical pathologies and improving clinical decision-making for ocular diseases. Code and the processed dataset will be released subsequently.
♻ ☆ Visuospatial Cognitive Assistant
Video-based spatial cognition is vital for robotics and embodied AI but challenges current Vision-Language Models (VLMs). This paper makes two key contributions. First, we introduce ViCA (Visuospatial Cognitive Assistant)-322K, a diverse dataset of 322,003 QA pairs from real-world indoor videos (ARKitScenes, ScanNet, ScanNet++), offering supervision for 3D metadata-grounded queries and video-based complex reasoning. Second, we develop ViCA-7B, fine-tuned on ViCA-322K, which achieves new state-of-the-art on all eight VSI-Bench tasks, outperforming existing models, including larger ones (e.g., +26.1 on Absolute Distance). For interpretability, we present ViCA-Thinking-2.68K, a dataset with explicit reasoning chains, and fine-tune ViCA-7B to create ViCA-7B-Thinking, a model that articulates its spatial reasoning. Our work highlights the importance of targeted data and suggests paths for improved temporal-spatial modeling. We release all resources to foster research in robust visuospatial intelligence.
comment: 31 pages, 10 figures, 6 tables
♻ ☆ From Images to Insights: Explainable Biodiversity Monitoring with Plain Language Habitat Explanations ECAI 2025
Explaining why the species lives at a particular location is important for understanding ecological systems and conserving biodiversity. However, existing ecological workflows are fragmented and often inaccessible to non-specialists. We propose an end-to-end visual-to-causal framework that transforms a species image into interpretable causal insights about its habitat preference. The system integrates species recognition, global occurrence retrieval, pseudo-absence sampling, and climate data extraction. We then discover causal structures among environmental features and estimate their influence on species occurrence using modern causal inference methods. Finally, we generate statistically grounded, human-readable causal explanations from structured templates and large language models. We demonstrate the framework on a bee and a flower species and report early results as part of an ongoing project, showing the potential of the multimodal AI assistant backed up by a recommended ecological modeling practice for describing species habitat in human-understandable language. Our code is available at: https://github.com/Yutong-Zhou-cv/BioX.
comment: AISE workshop camera-ready version @ ECAI 2025
♻ ☆ MedGellan: LLM-Generated Medical Guidance to Support Physicians
Medical decision-making is a critical task, where errors can result in serious, potentially life-threatening consequences. While full automation remains challenging, hybrid frameworks that combine machine intelligence with human oversight offer a practical alternative. In this paper, we present MedGellan, a lightweight, annotation-free framework that uses a Large Language Model (LLM) to generate clinical guidance from raw medical records, which is then used by a physician to predict diagnoses. MedGellan uses a Bayesian-inspired prompting strategy that respects the temporal order of clinical data. Preliminary experiments show that the guidance generated by the LLM with MedGellan improves diagnostic performance, particularly in recall and $F_1$ score.
♻ ☆ Ultra-Low-Latency Spiking Neural Networks with Temporal-Dependent Integrate-and-Fire Neuron Model for Objects Detection
Spiking Neural Networks (SNNs), inspired by the brain, are characterized by minimal power consumption and swift inference capabilities on neuromorphic hardware, and have been widely applied to various visual perception tasks. Current ANN-SNN conversion methods have achieved excellent results in classification tasks with ultra-low time-steps, but their performance in visual detection tasks remains suboptimal. In this paper, we propose a delay-spike approach to mitigate the issue of residual membrane potential caused by heterogeneous spiking patterns. Furthermore, we propose a novel temporal-dependent Integrate-and-Fire (tdIF) neuron architecture for SNNs. This enables Integrate-and-fire (IF) neurons to dynamically adjust their accumulation and firing behaviors based on the temporal order of time-steps. Our method enables spikes to exhibit distinct temporal properties, rather than relying solely on frequency-based representations. Moreover, the tdIF neuron maintains energy consumption on par with traditional IF neuron. We demonstrate that our method achieves more precise feature representation with lower time-steps, enabling high performance and ultra-low latency in visual detection tasks. In this study, we conduct extensive evaluation of the tdIF method across two critical vision tasks: object detection and lane line detection. The results demonstrate that the proposed method surpasses current ANN-SNN conversion approaches, achieving state-of-the-art performance with ultra-low latency (within 5 time-steps).
comment: 12 pages, 8 figures
♻ ☆ HodgeFormer: Transformers for Learnable Operators on Triangular Meshes through Data-Driven Hodge Matrices
Currently, prominent Transformer architectures applied on graphs and meshes for shape analysis tasks employ traditional attention layers that heavily utilize spectral features requiring costly eigenvalue decomposition-based methods. To encode the mesh structure, these methods derive positional embeddings, that heavily rely on eigenvalue decomposition based operations, e.g. on the Laplacian matrix, or on heat-kernel signatures, which are then concatenated to the input features. This paper proposes a novel approach inspired by the explicit construction of the Hodge Laplacian operator in Discrete Exterior Calculus as a product of discrete Hodge operators and exterior derivatives, i.e. $(L := \star_0^{-1} d_0^T \star_1 d_0)$. We adjust the Transformer architecture in a novel deep learning layer that utilizes the multi-head attention mechanism to approximate Hodge matrices $\star_0$, $\star_1$ and $\star_2$ and learn families of discrete operators $L$ that act on mesh vertices, edges and faces. Our approach results in a computationally-efficient architecture that achieves comparable performance in mesh segmentation and classification tasks, through a direct learning framework, while eliminating the need for costly eigenvalue decomposition operations or complex preprocessing operations.
comment: 13 pages, 11 figures, 9 tables
♻ ☆ AI-SearchPlanner: Modular Agentic Search via Pareto-Optimal Multi-Objective Reinforcement Learning
Recent studies have explored integrating Large Language Models (LLMs) with search engines to leverage both the LLMs' internal pre-trained knowledge and external information. Specially, reinforcement learning (RL) has emerged as a promising paradigm for enhancing LLM reasoning through multi-turn interactions with search engines. However, existing RL-based search agents rely on a single LLM to handle both search planning and question-answering (QA) tasks in an end-to-end manner, which limits their ability to optimize both capabilities simultaneously. In practice, sophisticated AI search systems often employ a large, frozen LLM (e.g., GPT-4, DeepSeek-R1) to ensure high-quality QA. Thus, a more effective and efficient approach is to utilize a small, trainable LLM dedicated to search planning. In this paper, we propose \textbf{AI-SearchPlanner}, a novel reinforcement learning framework designed to enhance the performance of frozen QA models by focusing on search planning. Specifically, our approach introduces three key innovations: 1) Decoupling the Architecture of the Search Planner and Generator, 2) Dual-Reward Alignment for Search Planning, and 3) Pareto Optimization of Planning Utility and Cost, to achieve the objectives. Extensive experiments on real-world datasets demonstrate that AI SearchPlanner outperforms existing RL-based search agents in both effectiveness and efficiency, while exhibiting strong generalization capabilities across diverse frozen QA models and data domains.
♻ ☆ SCIZOR: A Self-Supervised Approach to Data Curation for Large-Scale Imitation Learning
Imitation learning advances robot capabilities by enabling the acquisition of diverse behaviors from human demonstrations. However, large-scale datasets used for policy training often introduce substantial variability in quality, which can negatively impact performance. As a result, automatically curating datasets by filtering low-quality samples to improve quality becomes essential. Existing robotic curation approaches rely on costly manual annotations and perform curation at a coarse granularity, such as the dataset or trajectory level, failing to account for the quality of individual state-action pairs. To address this, we introduce SCIZOR, a self-supervised data curation framework that filters out low-quality state-action pairs to improve the performance of imitation learning policies. SCIZOR targets two complementary sources of low-quality data: suboptimal data, which hinders learning with undesirable actions, and redundant data, which dilutes training with repetitive patterns. SCIZOR leverages a self-supervised task progress predictor for suboptimal data to remove samples lacking task progression, and a deduplication module operating on joint state-action representation for samples with redundant patterns. Empirically, we show that SCIZOR enables imitation learning policies to achieve higher performance with less data, yielding an average improvement of 15.4% across multiple benchmarks. More information is available at: https://ut-austin-rpl.github.io/SCIZOR/
♻ ☆ Barycentric Neural Networks and Length-Weighted Persistent Entropy Loss: A Green Geometric and Topological Framework for Function Approximation
While it is well-established that artificial neural networks are universal approximators for continuous functions on compact domains, many modern approaches rely on deep or overparameterized architectures that incur high computational costs. In this paper, a new type of small shallow neural network, called the Barycentric Neural Network (BNN), is proposed, which leverages a fixed set of base points and their barycentric coordinates to define both its structure and its parameters. We demonstrate that our BNN enables the exact representation of continuous piecewise linear functions (CPLFs), ensuring strict continuity across segments. Since any continuous function over a compact domain can be approximated arbitrarily well by CPLFs, the BNN naturally emerges as a flexible and interpretable tool for function approximation. Beyond the use of this representation, the main contribution of the paper is the introduction of a new variant of persistent entropy, a topological feature that is stable and scale invariant, called the length-weighted persistent entropy (LWPE), which is weighted by the lifetime of topological features. Our framework, which combines the BNN with a loss function based on our LWPE, aims to provide flexible and geometrically interpretable approximations of nonlinear continuous functions in resource-constrained settings, such as those with limited base points for BNN design and few training epochs. Instead of optimizing internal weights, our approach directly optimizes the base points that define the BNN. Experimental results show that our approach achieves superior and faster approximation performance compared to classical loss functions such as MSE, RMSE, MAE, and log-cosh.
♻ ☆ PIN: A Knowledge-Intensive Dataset for Paired and Interleaved Multimodal Documents
Recent advancements in large multimodal models (LMMs) have leveraged extensive multimodal datasets to enhance capabilities in complex knowledge-driven tasks. However, persistent challenges in perceptual and reasoning errors limit their efficacy, particularly in interpreting intricate visual data and deducing multimodal relationships. To address these issues, we introduce PIN (Paired and INterleaved multimodal documents), a novel data format designed to foster a deeper integration of visual and textual knowledge. The PIN format uniquely combines semantically rich Markdown files, which preserve fine-grained textual structures, with holistic overall images that capture the complete document layout. Following this format, we construct and release two large-scale, open-source datasets: PIN-200M (~200 million documents) and PIN-14M (~14 million), compiled from diverse web and scientific sources in both English and Chinese. To maximize usability, we provide detailed statistical analyses and equip the datasets with quality signals, enabling researchers to easily filter and select data for specific tasks. Our work provides the community with a versatile data format and substantial resources, offering a foundation for new research in pre-training strategies and the development of more powerful knowledge-intensive LMMs.
comment: Technical report v1.0
♻ ☆ CountQA: How Well Do MLLMs Count in the Wild?
Multimodal Large Language Models (MLLMs) demonstrate remarkable fluency in understanding visual scenes, yet they exhibit a critical lack in a fundamental cognitive skill: object counting. This blind spot severely limits their reliability in real-world applications. To date, this capability has been largely unevaluated in complex scenarios, as existing benchmarks either feature sparse object densities or are confined to specific visual domains, failing to test models under realistic conditions. Addressing this gap, we introduce CountQA, a challenging new benchmark designed to probe this deficiency. Comprising over 1,500 question-answer pairs, CountQA features real-world images with high object density, clutter, and occlusion. We investigate this weakness by evaluating 15 prominent MLLMs on the CountQA benchmark and reveal that the top-performing model achieves a mere 42.9% accuracy, with performance declining as object counts rise. By providing a dedicated benchmark to diagnose and rectify this core weakness, CountQA paves the way for a new generation of MLLMs that are not only descriptively fluent but also numerically grounded and spatially aware. We will open-source the dataset and code upon paper acceptance to foster further research.
♻ ☆ OBLIVIATE: Robust and Practical Machine Unlearning for Large Language Models EMNLP 25
Large language models (LLMs) trained over extensive corpora risk memorizing sensitive, copyrighted, or toxic content. To address this, we propose \textbf{OBLIVIATE}, a robust unlearning framework that removes targeted data while preserving model utility. The framework follows a structured process: extracting target tokens, building retain sets, and fine-tuning with a tailored loss function comprising three components -- masking, distillation, and world fact. Using low-rank adapters (LoRA) ensures efficiency without compromising unlearning quality. We conduct experiments on multiple datasets, including Harry Potter series, WMDP, and TOFU, using a comprehensive suite of metrics: \emph{forget quality} (via a new document-level memorization score), \emph{model utility}, and \emph{fluency}. Results demonstrate its effectiveness in resisting membership inference attacks, minimizing the impact on retained data, and maintaining robustness across diverse scenarios.
comment: To appear at EMNLP 25 main conference
♻ ☆ HueManity: Probing Fine-Grained Visual Perception in MLLMs
Multimodal Large Language Models (MLLMs) excel at high-level visual reasoning, but their performance on nuanced perceptual tasks remains surprisingly limited. We present HueManity, a benchmark designed to assess visual perception in MLLMs. The dataset comprises 83,850 images featuring two-character alphanumeric strings embedded in Ishihara test style dot patterns, challenging models on precise pattern recognition. Our evaluation of nine state-of-the-art MLLMs on HueManity demonstrates a significant performance deficit compared to human and traditional computer vision baselines. The best-performing MLLM achieved a 33.6% accuracy on the numeric `easy' task and a striking 3% on the alphanumeric `hard' task. In contrast, human participants achieved near-perfect scores (100% and 95.6%), and a fine-tuned ResNet50 model reached accuracies of 96.5% and 94.5%. These results highlight a critical gap in the visual capabilities of current MLLMs. Our analysis further explores potential architectural and training-paradigm factors contributing to this perceptual gap in MLLMs. We open-source HueManity dataset and code to foster further research in improving perceptual robustness of MLLMs.
♻ ☆ GeoChain: Multimodal Chain-of-Thought for Geographic Reasoning
This paper introduces GeoChain, a large-scale benchmark for evaluating step-by-step geographic reasoning in multimodal large language models (MLLMs). Leveraging 1.46 million Mapillary street-level images, GeoChain pairs each image with a 21-step chain-of-thought (CoT) question sequence (over 30 million Q&A pairs). These sequences guide models from coarse attributes to fine-grained localization across four reasoning categories - visual, spatial, cultural, and precise geolocation - annotated by difficulty. Images are also enriched with semantic segmentation (150 classes) and a visual locatability score. Our benchmarking of contemporary MLLMs (GPT-4.1 variants, Claude 3.7, Gemini 2.5 variants) on a diverse 2,088-image subset reveals consistent challenges: models frequently exhibit weaknesses in visual grounding, display erratic reasoning, and struggle to achieve accurate localization, especially as the reasoning complexity escalates. GeoChain offers a robust diagnostic methodology, critical for fostering significant advancements in complex geographic reasoning within MLLMs.
♻ ☆ CAT: Causal Attention Tuning For Injecting Fine-grained Causal Knowledge into Large Language Models EMNLP2025
Large Language Models (LLMs) have achieved remarkable success across various domains. However, a fundamental question remains: Can LLMs effectively utilize causal knowledge for prediction and generation? Through empirical studies, we find that LLMs trained directly on large-scale data often capture spurious correlations rather than true causal relationships, leading to suboptimal performance, especially in out-of-distribution (OOD) scenarios. To address this challenge, we propose Causal Attention Tuning (CAT), a novel approach that injects fine-grained causal knowledge into the attention mechanism. We propose an automated pipeline that leverages human priors to automatically generate token-level causal signals and introduce the Re-Attention mechanism to guide training, helping the model focus on causal structures while mitigating noise and biases in attention scores. Experimental results on our proposed Spurious Token Game (STG) benchmark and multiple downstream tasks demonstrate that our approach effectively leverages causal knowledge for prediction and remains robust in OOD scenarios. The CAT achieves an average improvement of 5.76% on the STG dataset and 1.56% on downstream tasks. Notably, the OOD performance of the Llama-3.1-8B model on STG_M increased from 64.5% to 90.5%, and Qwen's OOD performance on the STG_H dataset improved from 25.4% to 55.9%. Implementation details can be found at https://github.com/Kairong-Han/CAT.
comment: Accepted to EMNLP2025 Main conference
♻ ☆ VINP: Variational Bayesian Inference with Neural Speech Prior for Joint ASR-Effective Speech Dereverberation and Blind RIR Identification
Reverberant speech, denoting the speech signal degraded by reverberation, contains crucial knowledge of both anechoic source speech and room impulse response (RIR). This work proposes a variational Bayesian inference (VBI) framework with neural speech prior (VINP) for joint speech dereverberation and blind RIR identification. In VINP, a probabilistic signal model is constructed in the time-frequency (T-F) domain based on convolution transfer function (CTF) approximation. For the first time, we propose using an arbitrary discriminative dereverberation deep neural network (DNN) to estimate the prior distribution of anechoic speech within a probabilistic model. By integrating both reverberant speech and the anechoic speech prior, VINP yields the maximum a posteriori (MAP) and maximum likelihood (ML) estimations of the anechoic speech spectrum and CTF filter, respectively. After simple transformations, the waveforms of anechoic speech and RIR are estimated. VINP is effective for automatic speech recognition (ASR) systems, which sets it apart from most deep learning (DL)-based single-channel dereverberation approaches. Experiments on single-channel speech dereverberation demonstrate that VINP attains state-of-the-art (SOTA) performance in mean opinion score (MOS) and word error rate (WER). For blind RIR identification, experiments demonstrate that VINP achieves SOTA performance in estimating reverberation time at 60 dB (RT60) and advanced performance in direct-to-reverberation ratio (DRR) estimation. Codes and audio samples are available online.
comment: Submitted to IEEE/ACM Trans. on TASLP
♻ ☆ LM-Searcher: Cross-domain Neural Architecture Search with LLMs via Unified Numerical Encoding EMNLP 2025
Recent progress in Large Language Models (LLMs) has opened new avenues for solving complex optimization problems, including Neural Architecture Search (NAS). However, existing LLM-driven NAS approaches rely heavily on prompt engineering and domain-specific tuning, limiting their practicality and scalability across diverse tasks. In this work, we propose LM-Searcher, a novel framework that leverages LLMs for cross-domain neural architecture optimization without the need for extensive domain-specific adaptation. Central to our approach is NCode, a universal numerical string representation for neural architectures, which enables cross-domain architecture encoding and search. We also reformulate the NAS problem as a ranking task, training LLMs to select high-performing architectures from candidate pools using instruction-tuning samples derived from a novel pruning-based subspace sampling strategy. Our curated dataset, encompassing a wide range of architecture-performance pairs, encourages robust and transferable learning. Comprehensive experiments demonstrate that LM-Searcher achieves competitive performance in both in-domain (e.g., CNNs for image classification) and out-of-domain (e.g., LoRA configurations for segmentation and generation) tasks, establishing a new paradigm for flexible and generalizable LLM-based architecture search. The datasets and models will be released at https://github.com/Ashone3/LM-Searcher.
comment: EMNLP 2025 Main
♻ ☆ Benchmarking for Domain-Specific LLMs: A Case Study on Academia and Beyond EMNLP2025
The increasing demand for domain-specific evaluation of large language models (LLMs) has led to the development of numerous benchmarks. These efforts often adhere to the principle of data scaling, relying on large corpora or extensive question-answer (QA) sets to ensure broad coverage. However, the impact of corpus and QA set design on the precision and recall of domain-specific LLM performance remains poorly understood. In this paper, we argue that data scaling is not always the optimal principle for domain-specific benchmark construction. Instead, we introduce Comp-Comp, an iterative benchmarking framework grounded in the principle of comprehensiveness and compactness. Comprehensiveness ensures semantic recall by covering the full breadth of the domain, while compactness improves precision by reducing redundancy and noise. To demonstrate the effectiveness of our approach, we present a case study conducted at a well-renowned university, resulting in the creation of PolyBench, a large-scale, high-quality academic benchmark. Although this study focuses on academia, the Comp-Comp framework is domain-agnostic and readily adaptable to a wide range of specialized fields. The source code and datasets can be accessed at https://github.com/Anya-RB-Chen/COMP-COMP.
comment: Accepted by EMNLP2025 Findings
♻ ☆ What Fundamental Structure in Reward Functions Enables Efficient Sparse-Reward Learning?
Sparse-reward reinforcement learning (RL) remains fundamentally hard: without structure, any agent needs $\Omega(|\mathcal{S}||\mathcal{A}|/p)$ samples to recover rewards. We introduce Policy-Aware Matrix Completion (PAMC) as a first concrete step toward a structural reward learning framework. Our key idea is to exploit approximate low-rank + sparse structure in the reward matrix, under policy-biased (MNAR) sampling. We prove recovery guarantees with inverse-propensity weighting, and establish a visitation-weighted error-to-regret bound linking completion error to control performance. Importantly, when assumptions weaken, PAMC degrades gracefully: confidence intervals widen and the algorithm abstains, ensuring safe fallback to exploration. Empirically, PAMC improves sample efficiency across Atari-26 (10M steps), DM Control, MetaWorld MT50, D4RL offline RL, and preference-based RL benchmarks, outperforming DrQ-v2, DreamerV3, Agent57, T-REX/D-REX, and PrefPPO under compute-normalized comparisons. Our results highlight PAMC as a practical and principled tool when structural rewards exist, and as a concrete first instantiation of a broader structural reward learning perspective.
♻ ☆ Understanding the Language Model to Solve the Symbolic Multi-Step Reasoning Problem from the Perspective of Buffer Mechanism
Large language models have consistently struggled with complex reasoning tasks, such as mathematical problem-solving. Investigating the internal reasoning mechanisms of these models can help us design better model architectures and training strategies, ultimately enhancing their reasoning capability. In this study, we constructed a symbolic multi-step reasoning task to investigate the information propagation mechanisms in Transformer models when solving the task through direct answering and Chain-of-Thought (CoT) reasoning. We introduced the concept of buffer mechanism: the model stores various information in distinct buffers and selectively extracts it through the query-key matrix. We proposed a random matrix-based algorithm to enhance the model's reasoning ability. This algorithm introduces only 132 trainable parameters, yet leads to significant performance improvements on 7 multi-step reasoning datasets, including PrOntoQA, LogicAsker, and LogicInference. These findings provide new insights into understanding the large language models.
♻ ☆ Enhancing Traffic Incident Response through Sub-Second Temporal Localization with HybridMamba
Traffic crash detection in long-form surveillance videos is essential for improving emergency response and infrastructure planning, yet remains difficult due to the brief and infrequent nature of crash events. We present \textbf{HybridMamba}, a novel architecture integrating visual transformers with state-space temporal modeling to achieve high-precision crash time localization. Our approach introduces multi-level token compression and hierarchical temporal processing to maintain computational efficiency without sacrificing temporal resolution. Evaluated on a large-scale dataset from the Iowa Department of Transportation, HybridMamba achieves a mean absolute error of \textbf{1.50 seconds} for 2-minute videos ($p<0.01$ compared to baselines), with \textbf{65.2%} of predictions falling within one second of the ground truth. It outperforms recent video-language models (e.g., TimeChat, VideoLLaMA-2) by up to 3.95 seconds while using significantly fewer parameters (3B vs. 13--72B). Our results demonstrate effective temporal localization across various video durations (2--40 minutes) and diverse environmental conditions, highlighting HybridMamba's potential for fine-grained temporal localization in traffic surveillance while identifying challenges that remain for extended deployment.
♻ ☆ EvoEmo: Towards Evolved Emotional Policies for LLM Agents in Multi-Turn Negotiation
Recent research on Chain-of-Thought (CoT) reasoning in Large Language Models (LLMs) has demonstrated that agents can engage in \textit{complex}, \textit{multi-turn} negotiations, opening new avenues for agentic AI. However, existing LLM agents largely overlook the functional role of emotions in such negotiations, instead generating passive, preference-driven emotional responses that make them vulnerable to manipulation and strategic exploitation by adversarial counterparts. To address this gap, we present EvoEmo, an evolutionary reinforcement learning framework that optimizes dynamic emotional expression in negotiations. EvoEmo models emotional state transitions as a Markov Decision Process and employs population-based genetic optimization to evolve high-reward emotion policies across diverse negotiation scenarios. We further propose an evaluation framework with two baselines -- vanilla strategies and fixed-emotion strategies -- for benchmarking emotion-aware negotiation. Extensive experiments and ablation studies show that EvoEmo consistently outperforms both baselines, achieving higher success rates, higher efficiency, and increased buyer savings. This findings highlight the importance of adaptive emotional expression in enabling more effective LLM agents for multi-turn negotiation.
♻ ☆ SFR-DeepResearch: Towards Effective Reinforcement Learning for Autonomously Reasoning Single Agents
Equipping large language models (LLMs) with complex, interleaved reasoning and tool-use capabilities has become a key focus in agentic AI research, especially with recent advances in reasoning-oriented (``thinking'') models. Such capabilities are key to unlocking a number of important applications. One such application is Deep Research (DR), which requires extensive search and reasoning over many sources. Our work in this paper focuses on the development of native Autonomous Single-Agent models for DR featuring minimal web crawling and Python tool integration. Unlike multi-agent systems, where agents take up pre-defined roles and are told what to do at each step in a static workflow, an autonomous single-agent determines its next action dynamically based on context, without manual directive. While prior work has proposed training recipes for base or instruction-tuned LLMs, we focus on continual reinforcement learning (RL) of reasoning-optimized models to further enhance agentic skills while preserving reasoning ability. Towards this end, we propose a simple RL recipe with entirely synthetic data, which we apply to various open-source LLMs. Our best variant SFR-DR-20B achieves up to 28.7% on Humanity's Last Exam benchmark. In addition, we conduct key analysis experiments to provide more insights into our methodologies.
comment: Technical Report
♻ ☆ Research on Conversational Recommender System Considering Consumer Types
Conversational Recommender Systems (CRS) provide personalized services through multi-turn interactions, yet most existing methods overlook users' heterogeneous decision-making styles and knowledge levels, which constrains both accuracy and efficiency. To address this gap, we propose CT-CRS (Consumer Type-Enhanced Conversational Recommender System), a framework that integrates consumer type modeling into dialogue recommendation. Based on consumer type theory, we define four user categories--dependent, efficient, cautious, and expert--derived from two dimensions: decision-making style (maximizers vs. satisficers) and knowledge level (high vs. low). CT-CRS employs interaction histories and fine-tunes the large language model to automatically infer user types in real time, avoiding reliance on static questionnaires. We incorporate user types into state representation and design a type-adaptive policy that dynamically adjusts recommendation granularity, diversity, and attribute query complexity. To further optimize the dialogue policy, we adopt Inverse Reinforcement Learning (IRL), enabling the agent to approximate expert-like strategies conditioned on consumer type. Experiments on LastFM, Amazon-Book, and Yelp show that CTCRS improves recommendation success rate and reduces interaction turns compared to strong baselines. Ablation studies confirm that both consumer type modeling and IRL contribute significantly to performance gains. These results demonstrate that CT-CRS offers a scalable and interpretable solution for enhancing CRS personalization through the integration of psychological modeling and advanced policy optimization.
comment: The tables Recommendation strategies for different consumer types need to be modified. Correspondence of Recommendation strategies are incorrect
♻ ☆ MIRROR: Multi-Modal Pathological Self-Supervised Representation Learning via Modality Alignment and Retention
Histopathology and transcriptomics are fundamental modalities in oncology, encapsulating the morphological and molecular aspects of the disease. Multi-modal self-supervised learning has demonstrated remarkable potential in learning pathological representations by integrating diverse data sources. Conventional multi-modal integration methods primarily emphasize modality alignment, while paying insufficient attention to retaining the modality-specific structures. However, unlike conventional scenarios where multi-modal inputs share highly overlapping features, histopathology and transcriptomics exhibit pronounced heterogeneity, offering orthogonal yet complementary insights. Histopathology provides morphological and spatial context, elucidating tissue architecture and cellular topology, whereas transcriptomics delineates molecular signatures through gene expression patterns. This inherent disparity introduces a major challenge in aligning them while maintaining modality-specific fidelity. To address these challenges, we present MIRROR, a novel multi-modal representation learning method designed to foster both modality alignment and retention. MIRROR employs dedicated encoders to extract comprehensive features for each modality, which is further complemented by a modality alignment module to achieve seamless integration between phenotype patterns and molecular profiles. Furthermore, a modality retention module safeguards unique attributes from each modality, while a style clustering module mitigates redundancy and enhances disease-relevant information by modeling and aligning consistent pathological signatures within a clustering space. Extensive evaluations on TCGA cohorts for cancer subtyping and survival analysis highlight MIRROR's superior performance, demonstrating its effectiveness in constructing comprehensive oncological feature representations and benefiting the cancer diagnosis.
comment: 18 pages, 7 figures, 10 tables. Code available at https://github.com/TianyiFranklinWang/MIRROR. Project page: https://tianyifranklinwang.github.io/MIRROR
♻ ☆ Language Models Might Not Understand You: Evaluating Theory of Mind via Story Prompting
We introduce $\texttt{StorySim}$, a programmable framework for synthetically generating stories to evaluate the theory of mind (ToM) and world modeling (WM) capabilities of large language models (LLMs). Unlike prior benchmarks that may suffer from contamination in pretraining data, $\texttt{StorySim}$ produces novel, compositional story prompts anchored by a highly controllable $\texttt{Storyboard}$, enabling precise manipulation of character perspectives and events. We use this framework to design first- and second-order ToM tasks alongside WM tasks that control for the ability to track and model mental states. Our experiments across a suite of state-of-the-art LLMs reveal that most models perform better on WM tasks than ToM tasks, and that models tend to perform better reasoning with humans compared to inanimate objects. Additionally, our framework enabled us to find evidence of heuristic behavior such as recency bias and an over-reliance on earlier events in the story. All code for generating data and evaluations is freely available.
comment: 12 pages, 11 figures
♻ ☆ Solving Truly Massive Budgeted Monotonic POMDPs with Oracle-Guided Meta-Reinforcement Learning
Monotonic Partially Observable Markov Decision Processes (POMDPs), where the system state progressively decreases until a restorative action is performed, can be used to model sequential repair problems effectively. This paper considers the problem of solving budget-constrained multi-component monotonic POMDPs, where a finite budget limits the maximal number of restorative actions. For a large number of components, solving such a POMDP using current methods is computationally intractable due to the exponential growth in the state space with an increasing number of components. To address this challenge, we propose a two-step approach. Since the individual components of a budget-constrained multi-component monotonic POMDP are only connected via the shared budget, we first approximate the optimal budget allocation among these components using an approximation of each component POMDP's optimal value function which is obtained through a random forest model. Subsequently, we introduce an oracle-guided meta-trained Proximal Policy Optimization (PPO) algorithm to solve each of the independent budget-constrained single-component monotonic POMDPs. The oracle policy is obtained by performing value iteration on the corresponding monotonic Markov Decision Process (MDP). This two-step method provides scalability in solving truly massive multi-component monotonic POMDPs. To demonstrate the efficacy of our approach, we consider a real-world maintenance scenario that involves inspection and repair of an administrative building by a team of agents within a maintenance budget. Finally, we perform a computational complexity analysis for a varying number of components to show the scalability of the proposed approach.
♻ ☆ GRADA: Graph-based Reranking against Adversarial Documents Attack
Retrieval Augmented Generation (RAG) frameworks improve the accuracy of large language models (LLMs) by integrating external knowledge from retrieved documents, thereby overcoming the limitations of models' static intrinsic knowledge. However, these systems are susceptible to adversarial attacks that manipulate the retrieval process by introducing documents that are adversarial yet semantically similar to the query. Notably, while these adversarial documents resemble the query, they exhibit weak similarity to benign documents in the retrieval set. Thus, we propose a simple yet effective Graph-based Reranking against Adversarial Document Attacks (GRADA) framework aiming at preserving retrieval quality while significantly reducing the success of adversaries. Our study evaluates the effectiveness of our approach through experiments conducted on five LLMs: GPT-3.5-Turbo, GPT-4o, Llama3.1-8b, Llama3.1-70b, and Qwen2.5-7b. We use three datasets to assess performance, with results from the Natural Questions dataset demonstrating up to an 80% reduction in attack success rates while maintaining minimal loss in accuracy.
♻ ☆ The Model Hears You: Audio Language Model Deployments Should Consider the Principle of Least Privilege
The latest Audio Language Models (Audio LMs) process speech directly instead of relying on a separate transcription step. This shift preserves detailed information, such as intonation or the presence of multiple speakers, that would otherwise be lost in transcription. However, it also introduces new safety risks, including the potential misuse of speaker identity cues and other sensitive vocal attributes, which could have legal implications. In this paper, we urge a closer examination of how these models are built and deployed. Our experiments show that end-to-end modeling, compared with cascaded pipelines, creates socio-technical safety risks such as identity inference, biased decision-making, and emotion detection. This raises concerns about whether Audio LMs store voiceprints and function in ways that create uncertainty under existing legal regimes. We then argue that the Principle of Least Privilege should be considered to guide the development and deployment of these models. Specifically, evaluations should assess (1) the privacy and safety risks associated with end-to-end modeling; and (2) the appropriate scope of information access. Finally, we highlight related gaps in current audio LM benchmarks and identify key open research questions, both technical and policy-related, that must be addressed to enable the responsible deployment of end-to-end Audio LMs.
comment: Published at AIES 2025
♻ ☆ Involution and BSConv Multi-Depth Distillation Network for Lightweight Image Super-Resolution
Single-image super-resolution (SISR) is a fundamental problem in computer vision that aims to reconstruct high-resolution (HR) images from low-resolution (LR) inputs. Although convolutional neural networks (CNNs) have achieved substantial advancements, deeper architectures often introduce excessive parameters, higher memory usage, and computational cost, limiting their applicability on resource-constrained devices. Recent research has thus focused on lightweight architectures that preserve accuracy while reducing complexity. This paper presents the Involution and BSConv Multi-Depth Distillation Network (IBMDN), a lightweight and effective architecture for SISR. The proposed IBMDN comprises Involution and BSConv Multi-Depth Distillation Blocks (IBMDB) and a Contrast and High-Frequency Attention Block (CHFAB). IBMDB employs varying combinations of Involution and BSConv at multiple depths to perform efficient feature extraction while minimizing computational complexity. CHFAB, a lightweight self-attention mechanism, focuses on extracting high-frequency and contrast information to enhance perceptual quality in the reconstructed images. The flexible design of IBMDB enables it to be seamlessly integrated into diverse SISR frameworks, including information distillation, transformer-based, and GAN-based models. Extensive experiments demonstrate that incorporating IBMDB significantly reduces memory usage, parameters, and floating-point operations (FLOPs), while achieving improvements in both pixel-wise accuracy and visual quality. The source code is available at: https://github.com/akramkhatami/IBMDN.
♻ ☆ Working with AI: Measuring the Applicability of Generative AI to Occupations
Given the rapid adoption of generative AI and its potential to impact a wide range of tasks, understanding the effects of AI on the economy is one of society's most important questions. In this work, we take a step toward that goal by analyzing the work activities people do with AI, how successfully and broadly those activities are done, and combine that with data on what occupations do those activities. We analyze a dataset of 200k anonymized and privacy-scrubbed conversations between users and Microsoft Bing Copilot, a publicly available generative AI system. We find the most common work activities people seek AI assistance for involve gathering information and writing, while the most common activities that AI itself is performing are providing information and assistance, writing, teaching, and advising. Combining these activity classifications with measurements of task success and scope of impact, we compute an AI applicability score for each occupation. We find the highest AI applicability scores for knowledge work occupation groups such as computer and mathematical, and office and administrative support, as well as occupations such as sales whose work activities involve providing and communicating information. Additionally, we characterize the types of work activities performed most successfully, how wage and education correlate with AI applicability, and how real-world usage compares to predictions of occupational AI impact.
comment: 42 pages
♻ ☆ Self-Questioning Language Models
Can large language models improve without external data -- by generating their own questions and answers? We hypothesize that a pre-trained language model can improve its reasoning skills given only a single prompt specifying the topic (e.g., algebra word problems) and asking the model to generate its own questions. To do this, we propose Self-Questioning Language Models (SQLM): an asymmetric self-play framework where a proposer is given the topic and generates a question for a solver, who tries to answer it. Both the proposer and solver are trained via reinforcement learning. The proposer receives a reward if the problem is not too easy or too difficult, and the solver receives a reward based on majority voting, a proxy for correctness in the absence of ground-truth answers. For coding, the proposer can instead generate unit tests which are used for verification. We study this asymmetric self-play framework on three benchmarks: three-digit multiplication, algebra problems from the OMEGA benchmark, and programming problems from Codeforces. By continually generating more interesting problems and attempting to solve them, language models can improve on downstream benchmarks without access to any curated training datasets.
♻ ☆ Reasoning Large Language Model Errors Arise from Hallucinating Critical Problem Features
Large language models have recently made great strides in reasoning task performance through chain-of-thought (CoT) strategies trained via reinforcement learning; however, these "reasoning large language models" (RLLMs) remain imperfect reasoners, and understanding the frequencies and causes of their failure modes is important for both users and developers. We test o1-mini, o3-mini, DeepSeek-R1, Claude 3.7 Sonnet, Gemini 2.5 Pro Preview, and Grok 3 Mini Beta on graph coloring as a variable-complexity constraint-satisfaction logic problem, and find evidence from both error rate comparisons and CoT/explanation text analysis that RLLMs are prone to hallucinate graph edges not specified in the prompt. This phenomenon persists across multiple problem complexity levels and semantic frames, and it appears to account for a significant fraction of the incorrect answers from every tested model, and the vast majority of them for some models. We also validate the generalizability of this input-conflicting hallucination phenomenon with smaller-scale experiments on a type of stable matching problem. Our results indicate that RLLMs may possess broader issues with misrepresentation of problem specifics, and we offer suggestions for design choices to mitigate this weakness.
comment: 19 pages (9 excluding references and appendices); 9 figures (6 excluding appendices)
♻ ☆ Associative Knowledge Graphs for Efficient Sequence Storage and Retrieval
The paper addresses challenges in storing and retrieving sequences in contexts like anomaly detection, behavior prediction, and genetic information analysis. Associative Knowledge Graphs (AKGs) offer a promising approach by leveraging sparse graph structures to encode sequences. The objective was to develop a method for sequence storage and retrieval using AKGs that maintain high memory capacity and context-based retrieval accuracy while introducing algorithms for efficient element ordering. The study utilized Sequential Structural Associative Knowledge Graphs (SSAKGs). These graphs encode sequences as transitive tournaments with nodes representing objects and edges defining the order. Four ordering algorithms were developed and tested: Simple Sort, Node Ordering, Enhanced Node Ordering, and Weighted Edges Node Ordering. The evaluation was conducted on synthetic datasets consisting of random sequences of varying lengths and distributions, and real-world datasets, including sentence-based sequences from the NLTK library and miRNA sequences mapped symbolically with a window-based approach. Metrics such as precision, sensitivity, and specificity were employed to assess performance. SSAKGs exhibited quadratic growth in memory capacity relative to graph size. This study introduces a novel structural approach for sequence storage and retrieval. Key advantages include no training requirements, flexible context-based reconstruction, and high efficiency in sparse memory graphs. With broad applications in computational neuroscience and bioinformatics, the approach offers scalable solutions for sequence-based memory tasks.
comment: 13 pages, 6 figures
♻ ☆ PriorCLIP: Visual Prior Guided Vision-Language Model for Remote Sensing Image-Text Retrieval
Remote sensing image-text retrieval plays a crucial role in remote sensing interpretation, yet remains challenging under both closed-domain and open-domain scenarios due to semantic noise and domain shifts. To address these issues, we propose a visual prior-guided vision-language model, PriorCLIP, which leverages visual priors for unbiased representation learning and adaptive vision-language alignment. In the closed-domain setting, PriorCLIP introduces two Progressive Attention Encoder (PAE) structures: Spatial-PAE constructs a belief matrix with instruction embeddings to filter key features and mitigate semantic bias. At the same time, Temporal-PAE exploits cyclic activation across time steps to enhance text representation. For the open-domain setting, we design a two-stage prior representation learning strategy, consisting of large-scale pre-training on coarse-grained image-text pairs, followed by fine-tuning on fine-grained pairs using vision-instruction, which enables robust retrieval across long-tail concepts and vocabulary shifts. Furthermore, a cluster-based symmetric contrastive Attribution Loss is proposed to constrain inter-class relations and alleviate semantic confusion in the shared embedding space. Extensive experiments on RSICD and RSITMD benchmarks demonstrate that PriorCLIP achieves substantial improvements, outperforming existing methods by 4.9% and 4.0% in closed-domain retrieval, and by 7.3% and 9.4% in open-domain retrieval, respectively.
comment: 14 pages, 7 figures
♻ ☆ Recursive Training Loops in LLMs: How training data properties modulate distribution shift in generated data? EMNLP 2025
Large language models (LLMs) are increasingly used in the creation of online content, creating feedback loops as subsequent generations of models will be trained on this synthetic data. Such loops were shown to lead to distribution shifts - models misrepresenting the true underlying distributions of human data (also called model collapse). However, how human data properties affect such shifts remains poorly understood. In this paper, we provide the first empirical examination of the effect of such properties on the outcome of recursive training. We first confirm that using different human datasets leads to distribution shifts of different magnitudes. Through exhaustive manipulation of dataset properties combined with regression analyses, we then identify a set of properties predicting distribution shift magnitudes. Lexical diversity is found to amplify these shifts, while semantic diversity and data quality mitigate them. Furthermore, we find that these influences are highly modular: data scrapped from a given internet domain has little influence on the content generated for another domain. Finally, experiments on political bias reveal that human data properties affect whether the initial bias will be amplified or reduced. Overall, our results portray a novel view, where different parts of internet may undergo different types of distribution shift.
comment: Accepted to EMNLP 2025 (Oral)
♻ ☆ Neural-Enhanced Dynamic Range Compression Inversion: A Hybrid Approach for Restoring Audio Dynamics IEEE
Dynamic Range Compression (DRC) is a widely used audio effect that adjusts signal dynamics for applications in music production, broadcasting, and speech processing. Inverting DRC is of broad importance for restoring the original dynamics, enabling remixing, and enhancing the overall audio quality. Existing DRC inversion methods either overlook key parameters or rely on precise parameter values, which can be challenging to estimate accurately. To address this limitation, we introduce a hybrid approach that combines model-based DRC inversion with neural networks to achieve robust DRC parameter estimation and audio restoration simultaneously. Our method uses tailored neural network architectures (classification and regression), which are then integrated into a model-based inversion framework to reconstruct the original signal. Experimental evaluations on various music and speech datasets confirm the effectiveness and robustness of our approach, outperforming several state-of-the-art techniques.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ The Efficiency Frontier: Classical Shadows versus Quantum Footage
Interfacing quantum and classical processors is an important subroutine in full-stack quantum algorithms. The so-called "classical shadow" method efficiently extracts essential classical information from quantum states, enabling the prediction of many properties of a quantum system from only a few measurements. However, for a small number of highly non-local observables, or when classical post-processing power is limited, the classical shadow method is not always the most efficient choice. Here, we address this issue quantitatively by performing a full-stack resource analysis that compares classical shadows with "quantum footage," which refers to direct quantum measurement. Under certain assumptions, our analysis illustrates a boundary of download efficiency between classical shadows and quantum footage. For observables expressed as linear combinations of Pauli matrices, the classical shadow method outperforms direct measurement when the number of observables is large and the Pauli weight is small. For observables in the form of large Hermitian sparse matrices, the classical shadow method shows an advantage when the number of observables, the sparsity of the matrix, and the number of qubits fall within a certain range. The key parameters influencing this behavior include the number of qubits $n$, observables $M$, sparsity $k$, Pauli weight $w$, accuracy requirement $\epsilon$, and failure tolerance $\delta$. We also compare the resource consumption of the two methods on different types of quantum computers and identify break-even points where the classical shadow method becomes more efficient, which vary depending on the hardware. This paper opens a new avenue for quantitatively designing optimal strategies for hybrid quantum-classical tomography and provides practical insights for selecting the most suitable quantum measurement approach in real-world applications.
comment: 23 pages, many figures. v2: changes gibberish texts due to latex compilation error
♻ ☆ Revealing Hidden Precursors to Earthquakes via a Stress-Sensitive Transformation of Seismic Noise
Earthquake prediction has long been one of the most elusive challenges in science. Laboratory experiments and simulations suggest that failure precursors should exist, yet reliable signals have remained unobserved in real-world seismic records, leaving open the question of whether they are absent in nature or simply hidden within noise. Here we introduce a stress-sensitive frequency-domain transformation that tracks energy differences between adjacent frequency bands, isolating subtle spectral changes linked to evolving shear and normal stress. Applied to both laboratory acoustic emission data and seismic records from seven major earthquakes (Mw 5.9-9.0), including the 2011 Tohoku and 2023 Turkey-Syria events, the transform consistently reveals precursory signatures, arc-like trajectories and accelerations toward extrema, emerging hours to days before rupture. These features are robust across diverse tectonic settings, from induced seismicity and volcanic collapse to continental strike-slip and subduction megathrust earthquakes. Our findings demonstrate that hidden precursors are indeed encoded in ambient seismic noise, offering a pathway toward real-time fault monitoring and actionable short-term earthquake forecasting.
comment: 22 pages, 7 figures. Github code included. Submitted to Science Advances
♻ ☆ Perovskite-LLM: Knowledge-Enhanced Large Language Models for Perovskite Solar Cell Research EMNLP 2025
The rapid advancement of perovskite solar cells (PSCs) has led to an exponential growth in research publications, creating an urgent need for efficient knowledge management and reasoning systems in this domain. We present a comprehensive knowledge-enhanced system for PSCs that integrates three key components. First, we develop Perovskite-KG, a domain-specific knowledge graph constructed from 1,517 research papers, containing 23,789 entities and 22,272 relationships. Second, we create two complementary datasets: Perovskite-Chat, comprising 55,101 high-quality question-answer pairs generated through a novel multi-agent framework, and Perovskite-Reasoning, containing 2,217 carefully curated materials science problems. Third, we introduce two specialized large language models: Perovskite-Chat-LLM for domain-specific knowledge assistance and Perovskite-Reasoning-LLM for scientific reasoning tasks. Experimental results demonstrate that our system significantly outperforms existing models in both domain-specific knowledge retrieval and scientific reasoning tasks, providing researchers with effective tools for literature review, experimental design, and complex problem-solving in PSC research.
comment: EMNLP 2025 Findings
♻ ☆ Mind the Value-Action Gap: Do LLMs Act in Alignment with Their Values? EMNLP 2025
Existing research primarily evaluates the values of LLMs by examining their stated inclinations towards specific values. However, the "Value-Action Gap," a phenomenon rooted in environmental and social psychology, reveals discrepancies between individuals' stated values and their actions in real-world contexts. To what extent do LLMs exhibit a similar gap between their stated values and their actions informed by those values? This study introduces ValueActionLens, an evaluation framework to assess the alignment between LLMs' stated values and their value-informed actions. The framework encompasses the generation of a dataset comprising 14.8k value-informed actions across twelve cultures and eleven social topics, and two tasks to evaluate how well LLMs' stated value inclinations and value-informed actions align across three different alignment measures. Extensive experiments reveal that the alignment between LLMs' stated values and actions is sub-optimal, varying significantly across scenarios and models. Analysis of misaligned results identifies potential harms from certain value-action gaps. To predict the value-action gaps, we also uncover that leveraging reasoned explanations improves performance. These findings underscore the risks of relying solely on the LLMs' stated values to predict their behaviors and emphasize the importance of context-aware evaluations of LLM values and value-action gaps.
comment: EMNLP 2025 Main Paper
Computation and Language 101
☆ Parallel-R1: Towards Parallel Thinking via Reinforcement Learning
Parallel thinking has emerged as a novel approach for enhancing the reasoning capabilities of large language models (LLMs) by exploring multiple reasoning paths concurrently. However, activating such capabilities through training remains challenging, as existing methods predominantly rely on supervised fine-tuning (SFT) over synthetic data, which encourages teacher-forced imitation rather than exploration and generalization. Different from them, we propose \textbf{Parallel-R1}, the first reinforcement learning (RL) framework that enables parallel thinking behaviors for complex real-world reasoning tasks. Our framework employs a progressive curriculum that explicitly addresses the cold-start problem in training parallel thinking with RL. We first use SFT on prompt-generated trajectories from easier tasks to instill the parallel thinking ability, then transition to RL to explore and generalize this skill on harder problems. Experiments on various math benchmarks, including MATH, AMC23, and AIME, show that Parallel-R1 successfully instills parallel thinking, leading to 8.4% accuracy improvements over the sequential thinking model trained directly on challenging tasks with RL. Further analysis reveals a clear shift in the model's thinking behavior: at an early stage, it uses parallel thinking as an exploration strategy, while in a later stage, it uses the same capability for multi-perspective verification. Most significantly, we validate parallel thinking as a \textbf{mid-training exploration scaffold}, where this temporary exploratory phase unlocks a higher performance ceiling after RL, yielding a 42.9% improvement over the baseline on AIME25. Our model, data, and code will be open-source at https://github.com/zhengkid/Parallel-R1.
comment: Project website: https://zhengkid.github.io/Parallel_R1.github.io/
☆ Mini-o3: Scaling Up Reasoning Patterns and Interaction Turns for Visual Search
Recent advances in large multimodal models have leveraged image-based tools with reinforcement learning to tackle visual problems. However, existing open-source approaches often exhibit monotonous reasoning patterns and allow only a limited number of interaction turns, making them inadequate for difficult tasks that require trial-and-error exploration. In this work, we address this limitation by scaling up tool-based interactions and introduce Mini-o3, a system that executes deep, multi-turn reasoning -- spanning tens of steps -- and achieves state-of-the-art performance on challenging visual search tasks. Our recipe for reproducing OpenAI o3-style behaviors comprises three key components. First, we construct the Visual Probe Dataset, a collection of thousands of challenging visual search problems designed for exploratory reasoning. Second, we develop an iterative data collection pipeline to obtain cold-start trajectories that exhibit diverse reasoning patterns, including depth-first search, trial-and-error, and goal maintenance. Third, we propose an over-turn masking strategy that prevents penalization of over-turn responses (those that hit the maximum number of turns) during reinforcement learning, thereby balancing training-time efficiency with test-time scalability. Despite training with an upper bound of only six interaction turns, our model generates trajectories that naturally scale to tens of turns at inference time, with accuracy improving as the number of turns increases. Extensive experiments demonstrate that Mini-o3 produces rich reasoning patterns and deep thinking paths, effectively solving challenging visual search problems.
comment: Code, datasets, models are available at https://github.com/Mini-o3/Mini-o3. Project Page: https://mini-o3.github.io/
☆ SimpleQA Verified: A Reliable Factuality Benchmark to Measure Parametric Knowledge
We introduce SimpleQA Verified, a 1,000-prompt benchmark for evaluating Large Language Model (LLM) short-form factuality based on OpenAI's SimpleQA. It addresses critical limitations in OpenAI's benchmark, including noisy and incorrect labels, topical biases, and question redundancy. SimpleQA Verified was created through a rigorous multi-stage filtering process involving de-duplication, topic balancing, and source reconciliation to produce a more reliable and challenging evaluation set, alongside improvements in the autorater prompt. On this new benchmark, Gemini 2.5 Pro achieves a state-of-the-art F1-score of 55.6, outperforming other frontier models, including GPT-5. This work provides the research community with a higher-fidelity tool to track genuine progress in parametric model factuality and to mitigate hallucinations. The benchmark dataset, evaluation code, and leaderboard are available at: https://www.kaggle.com/benchmarks/deepmind/simpleqa-verified.
☆ Visual-TableQA: Open-Domain Benchmark for Reasoning over Table Images
Visual reasoning over structured data such as tables is a critical capability for modern vision-language models (VLMs), yet current benchmarks remain limited in scale, diversity, or reasoning depth, especially when it comes to rendered table images. Addressing this gap, we introduce Visual-TableQA, a large-scale, open-domain multimodal dataset specifically designed to evaluate and enhance visual reasoning over complex tabular data. Our generation pipeline is modular, scalable, and fully autonomous, involving multiple reasoning LLMs collaborating across distinct roles: generation, validation, and inspiration. Visual-TableQA comprises 2.5k richly structured LaTeX-rendered tables and 6k reasoning-intensive QA pairs, all produced at a cost of under USD 100. To promote diversity and creativity, our pipeline performs multi-model collaborative data generation via cross-model prompting ('inspiration') and LLM-jury filtering. Stronger models seed layouts and topics that weaker models elaborate, collectively distilling diverse reasoning patterns and visual structures into the dataset. Empirical results show that models fine-tuned on Visual-TableQA generalize robustly to external benchmarks, outperforming several proprietary models despite the dataset's synthetic nature. The full pipeline and resources are publicly available at https://github.com/AI-4-Everyone/Visual-TableQA.
comment: Work in Progress
☆ GENUINE: Graph Enhanced Multi-level Uncertainty Estimation for Large Language Models EMNLP 2025
Uncertainty estimation is essential for enhancing the reliability of Large Language Models (LLMs), particularly in high-stakes applications. Existing methods often overlook semantic dependencies, relying on token-level probability measures that fail to capture structural relationships within the generated text. We propose GENUINE: Graph ENhanced mUlti-level uncertaINty Estimation for Large Language Models, a structure-aware framework that leverages dependency parse trees and hierarchical graph pooling to refine uncertainty quantification. By incorporating supervised learning, GENUINE effectively models semantic and structural relationships, improving confidence assessments. Extensive experiments across NLP tasks show that GENUINE achieves up to 29% higher AUROC than semantic entropy-based approaches and reduces calibration errors by over 15%, demonstrating the effectiveness of graph-based uncertainty modeling. The code is available at https://github.com/ODYSSEYWT/GUQ.
comment: Accepted by EMNLP 2025
☆ Uncovering Scaling Laws for Large Language Models via Inverse Problems EMNLP
Large Language Models (LLMs) are large-scale pretrained models that have achieved remarkable success across diverse domains. These successes have been driven by unprecedented complexity and scale in both data and computations. However, due to the high costs of training such models, brute-force trial-and-error approaches to improve LLMs are not feasible. Inspired by the success of inverse problems in uncovering fundamental scientific laws, this position paper advocates that inverse problems can also efficiently uncover scaling laws that guide the building of LLMs to achieve the desirable performance with significantly better cost-effectiveness.
comment: Accepted at EMNLP Findings 2025
☆ Biased Tales: Cultural and Topic Bias in Generating Children's Stories
Stories play a pivotal role in human communication, shaping beliefs and morals, particularly in children. As parents increasingly rely on large language models (LLMs) to craft bedtime stories, the presence of cultural and gender stereotypes in these narratives raises significant concerns. To address this issue, we present Biased Tales, a comprehensive dataset designed to analyze how biases influence protagonists' attributes and story elements in LLM-generated stories. Our analysis uncovers striking disparities. When the protagonist is described as a girl (as compared to a boy), appearance-related attributes increase by 55.26%. Stories featuring non-Western children disproportionately emphasize cultural heritage, tradition, and family themes far more than those for Western children. Our findings highlight the role of sociocultural bias in making creative AI use more equitable and diverse.
☆ From Detection to Mitigation: Addressing Gender Bias in Chinese Texts via Efficient Tuning and Voting-Based Rebalancing NLPCC 2025
This paper presents our team's solution to Shared Task 7 of NLPCC-2025, which focuses on sentence-level gender bias detection and mitigation in Chinese. The task aims to promote fairness and controllability in natural language generation by automatically detecting, classifying, and mitigating gender bias. To address this challenge, we adopt a fine-tuning approach based on large language models (LLMs), efficiently adapt to the bias detection task via Low-Rank Adaptation (LoRA). In terms of data processing, we construct a more balanced training set to alleviate class imbalance and introduce heterogeneous samples from multiple sources to enhance model generalization. For the detection and classification sub-tasks, we employ a majority voting strategy that integrates outputs from multiple expert models to boost performance. Additionally, to improve bias generation detection and mitigation, we design a multi-temperature sampling mechanism to capture potential variations in bias expression styles. Experimental results demonstrate the effectiveness of our approach in bias detection, classification, and mitigation. Our method ultimately achieves an average score of 47.90%, ranking fourth in the shared task.
comment: NLPCC 2025
☆ Are Humans as Brittle as Large Language Models?
The output of large language models (LLM) is unstable, due to both non-determinism of the decoding process as well as to prompt brittleness. While the intrinsic non-determinism of LLM generation may mimic existing uncertainty in human annotations through distributional shifts in outputs, it is largely assumed, yet unexplored, that the prompt brittleness effect is unique to LLMs. This raises the question: do human annotators show similar sensitivity to instruction changes? If so, should prompt brittleness in LLMs be considered problematic? One may alternatively hypothesize that prompt brittleness correctly reflects human annotation variances. To fill this research gap, we systematically compare the effects of prompt modifications on LLMs and identical instruction modifications for human annotators, focusing on the question of whether humans are similarly sensitive to prompt perturbations. To study this, we prompt both humans and LLMs for a set of text classification tasks conditioned on prompt variations. Our findings indicate that both humans and LLMs exhibit increased brittleness in response to specific types of prompt modifications, particularly those involving the substitution of alternative label sets or label formats. However, the distribution of human judgments is less affected by typographical errors and reversed label order than that of LLMs.
☆ Small Open Models Achieve Near Parity with Large Models in Low Resource Literary Translation at a Fraction of the Cost
Literary translation has recently gained attention as a distinct and complex task in machine translation research. However, the translation by small open models remains an open problem. We contribute to this ongoing research by introducing TINYFABULIST TRANSLATION FRAMEWORK (TF2), a unified framework for dataset creation, fine tuning, and evaluation in English-Romanian literary translations, centred on the creation and open release of both a compact, fine tuned language model (TF2-12B) and large scale synthetic parallel datasets (DS-TF2-EN-RO-3M and DS-TF2-EN-RO-15K). Building on DS-TF1-EN-3M (TF1), the largest collection of synthetic English fables to date, we address the need for rich, high quality literary datasets in low resource languages such as Romanian. Our pipeline first generates 15k high quality Romanian references from the TF1 pool using a high performing LLM. We then apply a two stage fine tuning process to a 12B parameter open weight model: (i) instruction tuning to capture genre specific narrative style, and (ii) adapter compression for efficient deployment. Evaluation combines corpus level BLEU and a five dimension LLM based rubric (accuracy, fluency, coherence, style, cultural adaptation) to provide a nuanced assessment of translation quality. Results show that our fine tuned model achieves fluency and adequacy competitive with top performing large proprietary models, while being open, accessible, and significantly more cost effective. Alongside the fine tuned model and both datasets, we publicly release all scripts and evaluation prompts. TF2 thus provides an end-to-end, reproducible pipeline for research on cost efficient translation, cross lingual narrative generation, and the broad adoption of open models for culturally significant literary content in low resource settings.
comment: 25 pages, 8 figures, includes datasets and models released on Hugging Face
☆ Dual Knowledge-Enhanced Two-Stage Reasoner for Multimodal Dialog Systems
Textual response generation is pivotal for multimodal \mbox{task-oriented} dialog systems, which aims to generate proper textual responses based on the multimodal context. While existing efforts have demonstrated remarkable progress, there still exist the following limitations: 1) \textit{neglect of unstructured review knowledge} and 2) \textit{underutilization of large language models (LLMs)}. Inspired by this, we aim to fully utilize dual knowledge (\textit{i.e., } structured attribute and unstructured review knowledge) with LLMs to promote textual response generation in multimodal task-oriented dialog systems. However, this task is non-trivial due to two key challenges: 1) \textit{dynamic knowledge type selection} and 2) \textit{intention-response decoupling}. To address these challenges, we propose a novel dual knowledge-enhanced two-stage reasoner by adapting LLMs for multimodal dialog systems (named DK2R). To be specific, DK2R first extracts both structured attribute and unstructured review knowledge from external knowledge base given the dialog context. Thereafter, DK2R uses an LLM to evaluate each knowledge type's utility by analyzing LLM-generated provisional probe responses. Moreover, DK2R separately summarizes the intention-oriented key clues via dedicated reasoning, which are further used as auxiliary signals to enhance LLM-based textual response generation. Extensive experiments conducted on a public dataset verify the superiority of DK2R. We have released the codes and parameters.
☆ SciNLP: A Domain-Specific Benchmark for Full-Text Scientific Entity and Relation Extraction in NLP EMNLP 2025
Structured information extraction from scientific literature is crucial for capturing core concepts and emerging trends in specialized fields. While existing datasets aid model development, most focus on specific publication sections due to domain complexity and the high cost of annotating scientific texts. To address this limitation, we introduce SciNLP - a specialized benchmark for full-text entity and relation extraction in the Natural Language Processing (NLP) domain. The dataset comprises 60 manually annotated full-text NLP publications, covering 7,072 entities and 1,826 relations. Compared to existing research, SciNLP is the first dataset providing full-text annotations of entities and their relationships in the NLP domain. To validate the effectiveness of SciNLP, we conducted comparative experiments with similar datasets and evaluated the performance of state-of-the-art supervised models on this dataset. Results reveal varying extraction capabilities of existing models across academic texts of different lengths. Cross-comparisons with existing datasets show that SciNLP achieves significant performance improvements on certain baseline models. Using models trained on SciNLP, we implemented automatic construction of a fine-grained knowledge graph for the NLP domain. Our KG has an average node degree of 3.2 per entity, indicating rich semantic topological information that enhances downstream applications. The dataset is publicly available at https://github.com/AKADDC/SciNLP.
comment: EMNLP 2025 Main
☆ Are LLMs Enough for Hyperpartisan, Fake, Polarized and Harmful Content Detection? Evaluating In-Context Learning vs. Fine-Tuning
The spread of fake news, polarizing, politically biased, and harmful content on online platforms has been a serious concern. With large language models becoming a promising approach, however, no study has properly benchmarked their performance across different models, usage methods, and languages. This study presents a comprehensive overview of different Large Language Models adaptation paradigms for the detection of hyperpartisan and fake news, harmful tweets, and political bias. Our experiments spanned 10 datasets and 5 different languages (English, Spanish, Portuguese, Arabic and Bulgarian), covering both binary and multiclass classification scenarios. We tested different strategies ranging from parameter efficient Fine-Tuning of language models to a variety of different In-Context Learning strategies and prompts. These included zero-shot prompts, codebooks, few-shot (with both randomly-selected and diversely-selected examples using Determinantal Point Processes), and Chain-of-Thought. We discovered that In-Context Learning often underperforms when compared to Fine-Tuning a model. This main finding highlights the importance of Fine-Tuning even smaller models on task-specific settings even when compared to the largest models evaluated in an In-Context Learning setup - in our case LlaMA3.1-8b-Instruct, Mistral-Nemo-Instruct-2407 and Qwen2.5-7B-Instruct.
☆ Factuality Beyond Coherence: Evaluating LLM Watermarking Methods for Medical Texts EMNLP 2025
As large language models (LLMs) adapted to sensitive domains such as medicine, their fluency raises safety risks, particularly regarding provenance and accountability. Watermarking embeds detectable patterns to mitigate these risks, yet its reliability in medical contexts remains untested. Existing benchmarks focus on detection-quality tradeoffs, overlooking factual risks under low-entropy settings often exploited by watermarking's reweighting strategy. We propose a medical-focused evaluation workflow that jointly assesses factual accuracy and coherence. Using GPT-Judger and further human validation, we introduce the Factuality-Weighted Score (FWS), a composite metric prioritizing factual accuracy beyond coherence to guide watermarking deployment in medical domains. Our evaluation shows current watermarking methods substantially compromise medical factuality, with entropy shifts degrading medical entity representation. These findings underscore the need for domain-aware watermarking approaches that preserve the integrity of medical content.
comment: Accepted at EMNLP 2025 Findings
☆ M-BRe: Discovering Training Samples for Relation Extraction from Unlabeled Texts with Large Language Models EMNLP2025
For Relation Extraction (RE), the manual annotation of training data may be prohibitively expensive, since the sentences that contain the target relations in texts can be very scarce and difficult to find. It is therefore beneficial to develop an efficient method that can automatically extract training instances from unlabeled texts for training RE models. Recently, large language models (LLMs) have been adopted in various natural language processing tasks, with RE also benefiting from their advances. However, when leveraging LLMs for RE with predefined relation categories, two key challenges arise. First, in a multi-class classification setting, LLMs often struggle to comprehensively capture the semantics of every relation, leading to suboptimal results. Second, although employing binary classification for each relation individually can mitigate this issue, it introduces significant computational overhead, resulting in impractical time complexity for real-world applications. Therefore, this paper proposes a framework called M-BRe to extract training instances from unlabeled texts for RE. It utilizes three modules to combine the advantages of both of the above classification approaches: Relation Grouping, Relation Extraction, and Label Decision. Extensive experiments confirm its superior capability in discovering high-quality training samples from unlabeled texts for RE.
comment: Accepted by EMNLP2025 Main Conference
☆ MaLei at MultiClinSUM: Summarisation of Clinical Documents using Perspective-Aware Iterative Self-Prompting with LLMs
Efficient communication between patients and clinicians plays an important role in shared decision-making. However, clinical reports are often lengthy and filled with clinical jargon, making it difficult for domain experts to identify important aspects in the document efficiently. This paper presents the methodology we applied in the MultiClinSUM shared task for summarising clinical case documents. We used an Iterative Self-Prompting technique on large language models (LLMs) by asking LLMs to generate task-specific prompts and refine them via example-based few-shot learning. Furthermore, we used lexical and embedding space metrics, ROUGE and BERT-score, to guide the model fine-tuning with epochs. Our submission using perspective-aware ISP on GPT-4 and GPT-4o achieved ROUGE scores (46.53, 24.68, 30.77) and BERTscores (87.84, 83.25, 85.46) for (P, R, F1) from the official evaluation on 3,396 clinical case reports from various specialties extracted from open journals. The high BERTscore indicates that the model produced semantically equivalent output summaries compared to the references, even though the overlap at the exact lexicon level is lower, as reflected in the lower ROUGE scores. This work sheds some light on how perspective-aware ISP (PA-ISP) can be deployed for clinical report summarisation and support better communication between patients and clinicians.
comment: system paper at CLEF 2025
☆ BALI: Enhancing Biomedical Language Representations through Knowledge Graph and Language Model Alignment SIGIR
In recent years, there has been substantial progress in using pretrained Language Models (LMs) on a range of tasks aimed at improving the understanding of biomedical texts. Nonetheless, existing biomedical LLMs show limited comprehension of complex, domain-specific concept structures and the factual information encoded in biomedical Knowledge Graphs (KGs). In this work, we propose BALI (Biomedical Knowledge Graph and Language Model Alignment), a novel joint LM and KG pre-training method that augments an LM with external knowledge by the simultaneous learning of a dedicated KG encoder and aligning the representations of both the LM and the graph. For a given textual sequence, we link biomedical concept mentions to the Unified Medical Language System (UMLS) KG and utilize local KG subgraphs as cross-modal positive samples for these mentions. Our empirical findings indicate that implementing our method on several leading biomedical LMs, such as PubMedBERT and BioLinkBERT, improves their performance on a range of language understanding tasks and the quality of entity representations, even with minimal pre-training on a small alignment dataset sourced from PubMed scientific abstracts.
comment: 9 pages, 1 figure, published in "The 48th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2025)"
☆ Avoiding Knowledge Edit Skipping in Multi-hop Question Answering with Guided Decomposition EMNLP
In a rapidly evolving world where information updates swiftly, knowledge in large language models (LLMs) becomes outdated quickly. Retraining LLMs is not a cost-effective option, making knowledge editing (KE) without modifying parameters particularly necessary. We find that although existing retrieval-augmented generation (RAG)-based KE methods excel at editing simple knowledge, they struggle with KE in multi-hop question answering due to the issue of "edit skipping", which refers to skipping the relevant edited fact in inference. In addition to the diversity of natural language expressions of knowledge, edit skipping also arises from the mismatch between the granularity of LLMs in problem-solving and the facts in the edited memory. To address this issue, we propose a novel Iterative Retrieval-Augmented Knowledge Editing method with guided decomposition (IRAKE) through the guidance from single edited facts and entire edited cases. Experimental results demonstrate that IRAKE mitigates the failure of editing caused by edit skipping and outperforms state-of-the-art methods for KE in multi-hop question answering.
comment: Accepted in EMNLP Findings 2025
☆ VeriOS: Query-Driven Proactive Human-Agent-GUI Interaction for Trustworthy OS Agents
With the rapid progress of multimodal large language models, operating system (OS) agents become increasingly capable of automating tasks through on-device graphical user interfaces (GUIs). However, most existing OS agents are designed for idealized settings, whereas real-world environments often present untrustworthy conditions. To mitigate risks of over-execution in such scenarios, we propose a query-driven human-agent-GUI interaction framework that enables OS agents to decide when to query humans for more reliable task completion. Built upon this framework, we introduce VeriOS-Agent, a trustworthy OS agent trained with a two-stage learning paradigm that falicitate the decoupling and utilization of meta-knowledge. Concretely, VeriOS-Agent autonomously executes actions in normal conditions while proactively querying humans in untrustworthy scenarios. Experiments show that VeriOS-Agent improves the average step-wise success rate by 20.64\% in untrustworthy scenarios over the state-of-the-art, without compromising normal performance. Analysis highlights VeriOS-Agent's rationality, generalizability, and scalability. The codes, datasets and models are available at https://github.com/Wuzheng02/VeriOS.
☆ Competitive Audio-Language Models with Data-Efficient Single-Stage Training on Public Data
Large language models (LLMs) have transformed NLP, yet their integration with audio remains underexplored -- despite audio's centrality to human communication. We introduce Falcon3-Audio, a family of Audio-Language Models (ALMs) built on instruction-tuned LLMs and Whisper encoders. Using a remarkably small amount of public audio data -- less than 30K hours (5K unique) -- Falcon3-Audio-7B matches the best reported performance among open-weight models on the MMAU benchmark, with a score of 64.14, matching R1-AQA, while distinguishing itself through superior data and parameter efficiency, single-stage training, and transparency. Notably, our smallest 1B model remains competitive with larger open models ranging from 2B to 13B parameters. Through extensive ablations, we find that common complexities -- such as curriculum learning, multiple audio encoders, and intricate cross-attention connectors -- are not required for strong performance, even compared to models trained on over 500K hours of data.
comment: Accepted at ASRU 2025
☆ ALLabel: Three-stage Active Learning for LLM-based Entity Recognition using Demonstration Retrieval
Many contemporary data-driven research efforts in the natural sciences, such as chemistry and materials science, require large-scale, high-performance entity recognition from scientific datasets. Large language models (LLMs) have increasingly been adopted to solve the entity recognition task, with the same trend being observed on all-spectrum NLP tasks. The prevailing entity recognition LLMs rely on fine-tuned technology, yet the fine-tuning process often incurs significant cost. To achieve a best performance-cost trade-off, we propose ALLabel, a three-stage framework designed to select the most informative and representative samples in preparing the demonstrations for LLM modeling. The annotated examples are used to construct a ground-truth retrieval corpus for LLM in-context learning. By sequentially employing three distinct active learning strategies, ALLabel consistently outperforms all baselines under the same annotation budget across three specialized domain datasets. Experimental results also demonstrate that selectively annotating only 5\%-10\% of the dataset with ALLabel can achieve performance comparable to the method annotating the entire dataset. Further analyses and ablation studies verify the effectiveness and generalizability of our proposal.
☆ Astra: A Multi-Agent System for GPU Kernel Performance Optimization
GPU kernel optimization has long been a central challenge at the intersection of high-performance computing and machine learning. Efficient kernels are crucial for accelerating large language model (LLM) training and serving, yet attaining high performance typically requires extensive manual tuning. Compiler-based systems reduce some of this burden, but still demand substantial manual design and engineering effort. Recently, researchers have explored using LLMs for GPU kernel generation, though prior work has largely focused on translating high-level PyTorch modules into CUDA code. In this work, we introduce Astra, the first LLM-based multi-agent system for GPU kernel optimization. Unlike previous approaches, Astra starts from existing CUDA implementations extracted from SGLang, a widely deployed framework for serving LLMs, rather than treating PyTorch modules as the specification. Within Astra, specialized LLM agents collaborate through iterative code generation, testing, profiling, and planning to produce kernels that are both correct and high-performance. On kernels from SGLang, Astra achieves an average speedup of 1.32x using zero-shot prompting with OpenAI o4-mini. A detailed case study further demonstrates that LLMs can autonomously apply loop transformations, optimize memory access patterns, exploit CUDA intrinsics, and leverage fast math operations to yield substantial performance gains. Our work highlights multi-agent LLM systems as a promising new paradigm for GPU kernel optimization.
☆ HALT-RAG: A Task-Adaptable Framework for Hallucination Detection with Calibrated NLI Ensembles and Abstention
Detecting content that contradicts or is unsupported by a given source text is a critical challenge for the safe deployment of generative language models. We introduce HALT-RAG, a post-hoc verification system designed to identify hallucinations in the outputs of Retrieval-Augmented Generation (RAG) pipelines. Our flexible and task-adaptable framework uses a universal feature set derived from an ensemble of two frozen, off-the-shelf Natural Language Inference (NLI) models and lightweight lexical signals. These features are used to train a simple, calibrated, and task-adapted meta-classifier. Using a rigorous 5-fold out-of-fold (OOF) training protocol to prevent data leakage and produce unbiased estimates, we evaluate our system on the HaluEval benchmark. By pairing our universal feature set with a lightweight, task-adapted classifier and a precision-constrained decision policy, HALT-RAG achieves strong OOF F1-scores of 0.7756, 0.9786, and 0.7391 on the summarization, QA, and dialogue tasks, respectively. The system's well-calibrated probabilities enable a practical abstention mechanism, providing a reliable tool for balancing model performance with safety requirements.
☆ From Scarcity to Efficiency: Investigating the Effects of Data Augmentation on African Machine Translation
The linguistic diversity across the African continent presents different challenges and opportunities for machine translation. This study explores the effects of data augmentation techniques in improving translation systems in low-resource African languages. We focus on two data augmentation techniques: sentence concatenation with back translation and switch-out, applying them across six African languages. Our experiments show significant improvements in machine translation performance, with a minimum increase of 25\% in BLEU score across all six languages.We provide a comprehensive analysis and highlight the potential of these techniques to improve machine translation systems for low-resource languages, contributing to the development of more robust translation systems for under-resourced languages.
comment: 8 pages, 3 tables. Exploratory work on Data Augmentation for African Machine Translation
☆ Understanding Stigmatizing Language Lexicons: A Comparative Analysis in Clinical Contexts
Stigmatizing language results in healthcare inequities, yet there is no universally accepted or standardized lexicon defining which words, terms, or phrases constitute stigmatizing language in healthcare. We conducted a systematic search of the literature to identify existing stigmatizing language lexicons and then analyzed them comparatively to examine: 1) similarities and discrepancies between these lexicons, and 2) the distribution of positive, negative, or neutral terms based on an established sentiment dataset. Our search identified four lexicons. The analysis results revealed moderate semantic similarity among them, and that most stigmatizing terms are related to judgmental expressions by clinicians to describe perceived negative behaviors. Sentiment analysis showed a predominant proportion of negatively classified terms, though variations exist across lexicons. Our findings underscore the need for a standardized lexicon and highlight challenges in defining stigmatizing language in clinical texts.
☆ AIxcellent Vibes at GermEval 2025 Shared Task on Candy Speech Detection: Improving Model Performance by Span-Level Training
Positive, supportive online communication in social media (candy speech) has the potential to foster civility, yet automated detection of such language remains underexplored, limiting systematic analysis of its impact. We investigate how candy speech can be reliably detected in a 46k-comment German YouTube corpus by monolingual and multilingual language models, including GBERT, Qwen3 Embedding, and XLM-RoBERTa. We find that a multilingual XLM-RoBERTa-Large model trained to detect candy speech at the span level outperforms other approaches, ranking first in both binary positive F1: 0.8906) and categorized span-based detection (strict F1: 0.6307) subtasks at the GermEval 2025 Shared Task on Candy Speech Detection. We speculate that span-based training, multilingual capabilities, and emoji-aware tokenizers improved detection performance. Our results demonstrate the effectiveness of multilingual models in identifying positive, supportive language.
comment: 6 pages, 1 figure, 2 tables
☆ GLEAM: Learning to Match and Explain in Cross-View Geo-Localization
Cross-View Geo-Localization (CVGL) focuses on identifying correspondences between images captured from distinct perspectives of the same geographical location. However, existing CVGL approaches are typically restricted to a single view or modality, and their direct visual matching strategy lacks interpretability: they merely predict whether two images correspond, without explaining the rationale behind the match. In this paper, we present GLEAM-C, a foundational CVGL model that unifies multiple views and modalities-including UAV imagery, street maps, panoramic views, and ground photographs-by aligning them exclusively with satellite imagery. Our framework enhances training efficiency through optimized implementation while achieving accuracy comparable to prior modality-specific CVGL models through a two-phase training strategy. Moreover, to address the lack of interpretability in traditional CVGL methods, we leverage the reasoning capabilities of multimodal large language models (MLLMs) to propose a new task, GLEAM-X, which combines cross-view correspondence prediction with explainable reasoning. To support this task, we construct a bilingual benchmark using GPT-4o and Doubao-1.5-Thinking-Vision-Pro to generate training and testing data. The test set is further refined through detailed human revision, enabling systematic evaluation of explainable cross-view reasoning and advancing transparency and scalability in geo-localization. Together, GLEAM-C and GLEAM-X form a comprehensive CVGL pipeline that integrates multi-modal, multi-view alignment with interpretable correspondence analysis, unifying accurate cross-view matching with explainable reasoning and advancing Geo-Localization by enabling models to better Explain And Match. Code and datasets used in this work will be made publicly accessible at https://github.com/Lucky-Lance/GLEAM.
comment: 18 pages
☆ Language Self-Play For Data-Free Training
Large language models (LLMs) have advanced rapidly in recent years, driven by scale, abundant high-quality training data, and reinforcement learning. Yet this progress faces a fundamental bottleneck: the need for ever more data from which models can continue to learn. In this work, we propose a reinforcement learning approach that removes this dependency by enabling models to improve without additional data. Our method leverages a game-theoretic framework of self-play, where a model's capabilities are cast as performance in a competitive game and stronger policies emerge by having the model play against itself - a process we call Language Self-Play (LSP). Experiments with Llama-3.2-3B-Instruct on instruction-following benchmarks show that pretrained models can not only enhance their performance on challenging tasks through self-play alone, but can also do so more effectively than data-driven baselines.
☆ LongEmotion: Measuring Emotional Intelligence of Large Language Models in Long-Context Interaction
Large language models (LLMs) make significant progress in Emotional Intelligence (EI) and long-context understanding. However, existing benchmarks tend to overlook certain aspects of EI in long-context scenarios, especially under realistic, practical settings where interactions are lengthy, diverse, and often noisy. To move towards such realistic settings, we present LongEmotion, a benchmark specifically designed for long-context EI tasks. It covers a diverse set of tasks, including Emotion Classification, Emotion Detection, Emotion QA, Emotion Conversation, Emotion Summary, and Emotion Expression. On average, the input length for these tasks reaches 8,777 tokens, with long-form generation required for Emotion Expression. To enhance performance under realistic constraints, we incorporate Retrieval-Augmented Generation (RAG) and Collaborative Emotional Modeling (CoEM), and compare them with standard prompt-based methods. Unlike conventional approaches, our RAG method leverages both the conversation context and the large language model itself as retrieval sources, avoiding reliance on external knowledge bases. The CoEM method further improves performance by decomposing the task into five stages, integrating both retrieval augmentation and limited knowledge injection. Experimental results show that both RAG and CoEM consistently enhance EI-related performance across most long-context tasks, advancing LLMs toward more practical and real-world EI applications. Furthermore, we conducted a comparative case study experiment on the GPT series to demonstrate the differences among various models in terms of EI. Code is available on GitHub at https://github.com/LongEmotion/LongEmotion, and the project page can be found at https://longemotion.github.io/.
comment: Technical Report
☆ The Role of Exploration Modules in Small Language Models for Knowledge Graph Question Answering ACL 2025
Integrating knowledge graphs (KGs) into the reasoning processes of large language models (LLMs) has emerged as a promising approach to mitigate hallucination. However, existing work in this area often relies on proprietary or extremely large models, limiting accessibility and scalability. In this study, we investigate the capabilities of existing integration methods for small language models (SLMs) in KG-based question answering and observe that their performance is often constrained by their limited ability to traverse and reason over knowledge graphs. To address this limitation, we propose leveraging simple and efficient exploration modules to handle knowledge graph traversal in place of the language model itself. Experiment results demonstrate that these lightweight modules effectively improve the performance of small language models on knowledge graph question answering tasks. Source code: https://github.com/yijie-cheng/SLM-ToG/.
comment: Extended from ACL 2025 SRW
☆ Talking with Oompa Loompas: A novel framework for evaluating linguistic acquisition of LLM agents
Existing evaluation studies on linguistic competence of large language models (LLM agents) have focused primarily on vocabulary learning, morphological rule induction, syntactic generalization, pragmatic inference, and cross-linguistic transfer. However, none assess whether LLM agents can acquire a language through pattern recognition and interactive feedback, a central feature of human language acquisition. We propose a novel experimental framework in which an LLM agent is evaluated on its ability to acquire and use a newly constructed language (Tinkatongue) in conversation with a bot that understands only Tinkatongue. Our findings show that LLM agents fail to establish a conversation within 100 responses, yet they adopt distinct strategies that mirror human approaches to language learning. The results suggest a new direction for evaluation benchmarks and open pathways to model designs that learn more effectively from interactive feedback.
comment: Under review
☆ PersonaFuse: A Personality Activation-Driven Framework for Enhancing Human-LLM Interactions
Recent advancements in Large Language Models (LLMs) demonstrate remarkable capabilities across various fields. These developments have led to more direct communication between humans and LLMs in various situations, such as social companionship and psychological support. However, LLMs often exhibit limitations in emotional perception and social competence during real-world conversations. These limitations partly originate from their inability to adapt their communication style and emotional expression to different social and task contexts. In this work, we introduce PersonaFuse, a novel LLM post-training framework that enables LLMs to adapt and express different personalities for varying situations. Inspired by Trait Activation Theory and the Big Five personality model, PersonaFuse employs a Mixture-of-Expert architecture that combines persona adapters with a dynamic routing network, enabling contextual trait expression. Experimental results show that PersonaFuse substantially outperforms baseline models across multiple dimensions of social-emotional intelligence. Importantly, these gains are achieved without sacrificing general reasoning ability or model safety, which remain common limitations of direct prompting and supervised fine-tuning approaches. PersonaFuse also delivers consistent improvements in downstream human-centered applications, such as mental health counseling and review-based customer service. Finally, human preference evaluations against leading LLMs, including GPT-4o and DeepSeek, demonstrate that PersonaFuse achieves competitive response quality despite its comparatively smaller model size. These findings demonstrate that PersonaFuse~offers a theoretically grounded and practical approach for developing social-emotional enhanced LLMs, marking a significant advancement toward more human-centric AI systems.
☆ Mitigating Attention Localization in Small Scale: Self-Attention Refinement via One-step Belief Propagation EMNLP 2025
Transformer-based self-attention mechanism serves as the core of modern language models, yet it often suffers from localization, where attentions collapse onto a limited subset of tokens and fail to capture long-range dependencies. To address this issue, we propose Self-Attention One-step Belief Propagation (SAOBP), a refinement framework that injects multi-hop relationships through a belief propagation process. To interpret and quantify these interactions, we introduce Global Token Dependency (GTD) that captures the relative contribution of multihop connections within the attention graph. Empirical results indicate that SAOBP helps prevent entropy collapse in deeper layers and adaptively maintains GTD at task-appropriate levels, thereby supporting improvements in model performance. Importantly, we observe competitive gains in small-scale models, highlighting its potential for improving inference quality in resource-constrained scenarios.
comment: Accepted at EMNLP 2025
☆ Does This Look Familiar to You? Knowledge Analysis via Model Internal Representations
Recent advances in large language models (LLMs) have been driven by pretraining, supervised fine tuning (SFT), and alignment tuning. Among these, SFT plays a crucial role in transforming a model 's general knowledge into structured responses tailored to specific tasks. However, there is no clearly established methodology for effective training data selection. Simply increasing the volume of data does not guarantee performance improvements, while preprocessing, sampling, and validation require substantial time and cost. To address this issue, a variety of data selection methods have been proposed. Among them, knowledge based selection approaches identify suitable training data by analyzing the model 's responses. Nevertheless, these methods typically rely on prompt engineering, making them sensitive to variations and incurring additional costs for prompt design. In this study, we propose Knowledge Analysis via Model Internal Representations (KAMIR), a novel approach that overcomes these limitations by analyzing data based on the model 's internal representations. KAMIR computes similarities between the hidden states of each layer (block) and the final hidden states for a given input to assess the data. Unlike prior methods that were largely limited to multiple choice tasks, KAMIR can be applied to a wide range of tasks such as machine reading comprehension and summarization. Moreover, it selects data useful for training based on the model 's familiarity with the input, even with a small dataset and a simple classifier architecture. Experiments across diverse task datasets demonstrate that training with less familiar data leads to better generalization performance.
☆ Instance-level Performance Prediction for Long-form Generation Tasks
We motivate and share a new benchmark for instance-level performance prediction of long-form generation tasks having multi-faceted, fine-grained quality metrics. Our task-, model- and metric-agnostic formulation predicts continuous evaluation metric scores given only black-box model inputs and outputs. Beyond predicting point estimates of metric scores, the benchmark also requires inferring prediction intervals to quantify uncertainty around point estimates. Evaluation spans 11 long-form datasets/tasks with multiple LLMs, baselines, and metrics per task. We show that scores can be effectively predicted across long-form generation tasks using as few as 16 training examples. Overall, we introduce a novel and useful task, a valuable benchmark to drive progress, and baselines ready for practical adoption today.
☆ Basis Vector Metric: A Method for Robust Open-Ended State Change Detection
We test a new method, which we will abbreviate using the acronym BVM (Basis Vectors Method), in its ability to judge the state changes in images through using language embeddings. We used the MIT-States dataset, containing about 53,000 images, to gather all of our data, which has 225 nouns and 115 adjectives, with each noun having about 9 different adjectives, forming approximately 1000 noun-adjective pairs. For our first experiment, we test our method's ability to determine the state of each noun class separately against other metrics for comparison. These metrics are cosine similarity, dot product, product quantization, binary index, Naive Bayes, and a custom neural network. Among these metrics, we found that our proposed BVM performs the best in classifying the states for each noun. We then perform a second experiment where we try using BVM to determine if it can differentiate adjectives from one another for each adjective separately. We compared the abilities of BVM to differentiate adjectives against the proposed method the MIT-States paper suggests: using a logistic regression model. In the end, we did not find conclusive evidence that our BVM metric could perform better than the logistic regression model at discerning adjectives. Yet, we were able to find evidence for possible improvements to our method; this leads to the chance of increasing our method's accuracy through certain changes in our methodologies.
comment: 24 pages
☆ Causal Attention with Lookahead Keys
In standard causal attention, each token's query, key, and value (QKV) are static and encode only preceding context. We introduce CAuSal aTtention with Lookahead kEys (CASTLE), an attention mechanism that continually updates each token's keys as the context unfolds. We term these updated keys lookahead keys because they belong to earlier positions yet integrate information from tokens that appear later relative to those positions, while strictly preserving the autoregressive property. Although the mechanism appears sequential, we derive a mathematical equivalence that avoids explicitly materializing lookahead keys at each position and enables efficient parallel training. On language modeling benchmarks, CASTLE consistently outperforms standard causal attention across model scales, reducing validation perplexity and improving performance on a range of downstream tasks.
☆ XML Prompting as Grammar-Constrained Interaction: Fixed-Point Semantics, Convergence Guarantees, and Human-AI Protocols
Structured prompting with XML tags has emerged as an effective way to steer large language models (LLMs) toward parseable, schema-adherent outputs in real-world systems. We develop a logic-first treatment of XML prompting that unifies (i) grammar-constrained decoding, (ii) fixed-point semantics over lattices of hierarchical prompts, and (iii) convergent human-AI interaction loops. We formalize a complete lattice of XML trees under a refinement order and prove that monotone prompt-to-prompt operators admit least fixed points (Knaster-Tarski) that characterize steady-state protocols; under a task-aware contraction metric on trees, we further prove Banach-style convergence of iterative guidance. We instantiate these results with context-free grammars (CFGs) for XML schemas and show how constrained decoding guarantees well-formedness while preserving task performance. A set of multi-layer human-AI interaction recipes demonstrates practical deployment patterns, including multi-pass "plan $\to$ verify $\to$ revise" routines and agentic tool use. We provide mathematically complete proofs and tie our framework to recent advances in grammar-aligned decoding, chain-of-verification, and programmatic prompting.
comment: 7 pages, multiple XML prompts
☆ Verbalized Algorithms NeurIPS 2025
Instead of querying LLMs in a one-shot manner and hoping to get the right answer for a reasoning task, we propose a paradigm we call \emph{verbalized algorithms} (VAs), which leverage classical algorithms with established theoretical understanding. VAs decompose a task into simple elementary operations on natural language strings that they should be able to answer reliably, and limit the scope of LLMs to only those simple tasks. For example, for sorting a series of natural language strings, \emph{verbalized sorting} uses an LLM as a binary comparison oracle in a known and well-analyzed sorting algorithm (e.g., bitonic sorting network). We demonstrate the effectiveness of this approach on sorting and clustering tasks.
comment: Submitted to NeurIPS 2025 Workshop on Efficient Reasoning
☆ Bias after Prompting: Persistent Discrimination in Large Language Models
A dangerous assumption that can be made from prior work on the bias transfer hypothesis (BTH) is that biases do not transfer from pre-trained large language models (LLMs) to adapted models. We invalidate this assumption by studying the BTH in causal models under prompt adaptations, as prompting is an extremely popular and accessible adaptation strategy used in real-world applications. In contrast to prior work, we find that biases can transfer through prompting and that popular prompt-based mitigation methods do not consistently prevent biases from transferring. Specifically, the correlation between intrinsic biases and those after prompt adaptation remain moderate to strong across demographics and tasks -- for example, gender (rho >= 0.94) in co-reference resolution, and age (rho >= 0.98) and religion (rho >= 0.69) in question answering. Further, we find that biases remain strongly correlated when varying few-shot composition parameters, such as sample size, stereotypical content, occupational distribution and representational balance (rho >= 0.90). We evaluate several prompt-based debiasing strategies and find that different approaches have distinct strengths, but none consistently reduce bias transfer across models, tasks or demographics. These results demonstrate that correcting bias, and potentially improving reasoning ability, in intrinsic models may prevent propagation of biases to downstream tasks.
☆ MERLIN: Multi-Stage Curriculum Alignment for Multilingual Encoder and LLM Fusion
Large language models excel in English but still struggle with complex reasoning in many low-resource languages (LRLs). Existing encoder-plus-decoder methods such as LangBridge and MindMerger raise accuracy on mid and high-resource languages, yet they leave a large gap on LRLs. We present MERLIN, a two-stage model-stacking framework that applies a curriculum learning strategy -- from general bilingual bitext to task-specific data -- and adapts only a small set of DoRA weights. On the AfriMGSM benchmark MERLIN improves exact-match accuracy by +12.9 pp over MindMerger and outperforms GPT-4o-mini. It also yields consistent gains on MGSM and MSVAMP (+0.9 and +2.8 pp), demonstrating effectiveness across both low and high-resource settings.
comment: under submission
☆ Culturally transmitted color categories in LLMs reflect a learning bias toward efficient compression
Converging evidence suggests that systems of semantic categories across human languages achieve near-optimal compression via the Information Bottleneck (IB) complexity-accuracy principle. Large language models (LLMs) are not trained for this objective, which raises the question: are LLMs capable of evolving efficient human-like semantic systems? To address this question, we focus on the domain of color as a key testbed of cognitive theories of categorization and replicate with LLMs (Gemini 2.0-flash and Llama 3.3-70B-Instruct) two influential human behavioral studies. First, we conduct an English color-naming study, showing that Gemini aligns well with the naming patterns of native English speakers and achieves a significantly high IB-efficiency score, while Llama exhibits an efficient but lower complexity system compared to English. Second, to test whether LLMs simply mimic patterns in their training data or actually exhibit a human-like inductive bias toward IB-efficiency, we simulate cultural evolution of pseudo color-naming systems in LLMs via iterated in-context language learning. We find that akin to humans, LLMs iteratively restructure initially random systems towards greater IB-efficiency and increased alignment with patterns observed across the world's languages. These findings demonstrate that LLMs are capable of evolving perceptually grounded, human-like semantic systems, driven by the same fundamental principle that governs semantic efficiency across human languages.
☆ No for Some, Yes for Others: Persona Prompts and Other Sources of False Refusal in Language Models
Large language models (LLMs) are increasingly integrated into our daily lives and personalized. However, LLM personalization might also increase unintended side effects. Recent work suggests that persona prompting can lead models to falsely refuse user requests. However, no work has fully quantified the extent of this issue. To address this gap, we measure the impact of 15 sociodemographic personas (based on gender, race, religion, and disability) on false refusal. To control for other factors, we also test 16 different models, 3 tasks (Natural Language Inference, politeness, and offensiveness classification), and nine prompt paraphrases. We propose a Monte Carlo-based method to quantify this issue in a sample-efficient manner. Our results show that as models become more capable, personas impact the refusal rate less and less. Certain sociodemographic personas increase false refusal in some models, which suggests underlying biases in the alignment strategies or safety mechanisms. However, we find that the model choice and task significantly influence false refusals, especially in sensitive content tasks. Our findings suggest that persona effects have been overestimated, and might be due to other factors.
☆ SciGPT: A Large Language Model for Scientific Literature Understanding and Knowledge Discovery
Scientific literature is growing exponentially, creating a critical bottleneck for researchers to efficiently synthesize knowledge. While general-purpose Large Language Models (LLMs) show potential in text processing, they often fail to capture scientific domain-specific nuances (e.g., technical jargon, methodological rigor) and struggle with complex scientific tasks, limiting their utility for interdisciplinary research. To address these gaps, this paper presents SciGPT, a domain-adapted foundation model for scientific literature understanding and ScienceBench, an open source benchmark tailored to evaluate scientific LLMs. Built on the Qwen3 architecture, SciGPT incorporates three key innovations: (1) low-cost domain distillation via a two-stage pipeline to balance performance and efficiency; (2) a Sparse Mixture-of-Experts (SMoE) attention mechanism that cuts memory consumption by 55\% for 32,000-token long-document reasoning; and (3) knowledge-aware adaptation integrating domain ontologies to bridge interdisciplinary knowledge gaps. Experimental results on ScienceBench show that SciGPT outperforms GPT-4o in core scientific tasks including sequence labeling, generation, and inference. It also exhibits strong robustness in unseen scientific tasks, validating its potential to facilitate AI-augmented scientific discovery.
☆ NOWJ@COLIEE 2025: A Multi-stage Framework Integrating Embedding Models and Large Language Models for Legal Retrieval and Entailment
This paper presents the methodologies and results of the NOWJ team's participation across all five tasks at the COLIEE 2025 competition, emphasizing advancements in the Legal Case Entailment task (Task 2). Our comprehensive approach systematically integrates pre-ranking models (BM25, BERT, monoT5), embedding-based semantic representations (BGE-m3, LLM2Vec), and advanced Large Language Models (Qwen-2, QwQ-32B, DeepSeek-V3) for summarization, relevance scoring, and contextual re-ranking. Specifically, in Task 2, our two-stage retrieval system combined lexical-semantic filtering with contextualized LLM analysis, achieving first place with an F1 score of 0.3195. Additionally, in other tasks--including Legal Case Retrieval, Statute Law Retrieval, Legal Textual Entailment, and Legal Judgment Prediction--we demonstrated robust performance through carefully engineered ensembles and effective prompt-based reasoning strategies. Our findings highlight the potential of hybrid models integrating traditional IR techniques with contemporary generative models, providing a valuable reference for future advancements in legal information processing.
☆ MVPBench: A Benchmark and Fine-Tuning Framework for Aligning Large Language Models with Diverse Human Values
The alignment of large language models (LLMs) with human values is critical for their safe and effective deployment across diverse user populations. However, existing benchmarks often neglect cultural and demographic diversity, leading to limited understanding of how value alignment generalizes globally. In this work, we introduce MVPBench, a novel benchmark that systematically evaluates LLMs' alignment with multi-dimensional human value preferences across 75 countries. MVPBench contains 24,020 high-quality instances annotated with fine-grained value labels, personalized questions, and rich demographic metadata, making it the most comprehensive resource of its kind to date. Using MVPBench, we conduct an in-depth analysis of several state-of-the-art LLMs, revealing substantial disparities in alignment performance across geographic and demographic lines. We further demonstrate that lightweight fine-tuning methods, such as Low-Rank Adaptation (LoRA) and Direct Preference Optimization (DPO), can significantly enhance value alignment in both in-domain and out-of-domain settings. Our findings underscore the necessity for population-aware alignment evaluation and provide actionable insights for building culturally adaptive and value-sensitive LLMs. MVPBench serves as a practical foundation for future research on global alignment, personalized value modeling, and equitable AI development.
☆ A vibe coding learning design to enhance EFL students' talking to, through, and about AI
This innovative practice article reports on the piloting of vibe coding (using natural language to create software applications with AI) for English as a Foreign Language (EFL) education. We developed a human-AI meta-languaging framework with three dimensions: talking to AI (prompt engineering), talking through AI (negotiating authorship), and talking about AI (mental models of AI). Using backward design principles, we created a four-hour workshop where two students designed applications addressing authentic EFL writing challenges. We adopted a case study methodology, collecting data from worksheets and video recordings, think-aloud protocols, screen recordings, and AI-generated images. Contrasting cases showed one student successfully vibe coding a functional application cohering to her intended design, while another encountered technical difficulties with major gaps between intended design and actual functionality. Analysis reveals differences in students' prompt engineering approaches, suggesting different AI mental models and tensions in attributing authorship. We argue that AI functions as a beneficial languaging machine, and that differences in how students talk to, through, and about AI explain vibe coding outcome variations. Findings indicate that effective vibe coding instruction requires explicit meta-languaging scaffolding, teaching structured prompt engineering, facilitating critical authorship discussions, and developing vocabulary for articulating AI mental models.
comment: 15 pages, 12 figures
♻ ☆ Llama-Nemotron: Efficient Reasoning Models
We introduce the Llama-Nemotron series of models, an open family of heterogeneous reasoning models that deliver exceptional reasoning capabilities, inference efficiency, and an open license for enterprise use. The family comes in three sizes -- Nano (8B), Super (49B), and Ultra (253B) -- and performs competitively with state-of-the-art reasoning models such as DeepSeek-R1 while offering superior inference throughput and memory efficiency. In this report, we discuss the training procedure for these models, which entails using neural architecture search from Llama 3 models for accelerated inference, knowledge distillation, and continued pretraining, followed by a reasoning-focused post-training stage consisting of two main parts: supervised fine-tuning and large scale reinforcement learning. Llama-Nemotron models are the first open-source models to support a dynamic reasoning toggle, allowing users to switch between standard chat and reasoning modes during inference. To further support open research and facilitate model development, we provide the following resources: 1. We release the Llama-Nemotron reasoning models -- LN-Nano, LN-Super, and LN-Ultra -- under the commercially permissive NVIDIA Open Model License Agreement. 2. We release the complete post-training dataset: Llama-Nemotron-Post-Training-Dataset. 3. We also release our training codebases: NeMo, NeMo-Aligner, and Megatron-LM.
♻ ☆ Beyond One-Size-Fits-All: Inversion Learning for Highly Effective NLG Evaluation Prompts ACL
Evaluating natural language generation systems is challenging due to the diversity of valid outputs. While human evaluation is the gold standard, it suffers from inconsistencies, lack of standardisation, and demographic biases, limiting reproducibility. LLM-based evaluators offer a scalable alternative but are highly sensitive to prompt design, where small variations can lead to significant discrepancies. In this work, we propose an inversion learning method that learns effective reverse mappings from model outputs back to their input instructions, enabling the automatic generation of highly effective, model-specific evaluation prompts. Our method requires only a single evaluation sample and eliminates the need for time-consuming manual prompt engineering, thereby improving both efficiency and robustness. Our work contributes toward a new direction for more robust and efficient LLM-based evaluation.
comment: 12 pages, accepted by Transactions of the Association for Computational Linguistics (TACL)
♻ ☆ A Systematic Literature Review of Retrieval-Augmented Generation: Techniques, Metrics, and Challenges
This systematic review of the research literature on retrieval-augmented generation (RAG) provides a focused analysis of the most highly cited studies published between 2020 and May 2025. A total of 128 articles met our inclusion criteria. The records were retrieved from ACM Digital Library, IEEE Xplore, Scopus, ScienceDirect, and the Digital Bibliography and Library Project (DBLP). RAG couples a neural retriever with a generative language model, grounding output in up-to-date, non-parametric memory while retaining the semantic generalisation stored in model weights. Guided by the PRISMA 2020 framework, we (i) specify explicit inclusion and exclusion criteria based on citation count and research questions, (ii) catalogue datasets, architectures, and evaluation practices, and (iii) synthesise empirical evidence on the effectiveness and limitations of RAG. To mitigate citation-lag bias, we applied a lower citation-count threshold to papers published in 2025 so that emerging breakthroughs with naturally fewer citations were still captured. This review clarifies the current research landscape, highlights methodological gaps, and charts priority directions for future research.
comment: 58 page
♻ ☆ Bhav-Net: Knowledge Transfer for Cross-Lingual Antonym vs Synonym Distinction via Dual-Space Graph Transformers
Antonym vs synonym distinction across multiple languages presents unique computational challenges due to the paradoxical nature of antonymous relationships words that share semantic domains while expressing opposite meanings. This work introduces Bhav-Net, a novel dual-space architecture that enables effective knowledge transfer from complex multilingual models to simpler, language-specific architectures while maintaining robust cross-lingual antonym--synonym distinction capabilities. Our approach combines language-specific BERT encoders with graph transformer networks, creating distinct semantic projections where synonymous pairs cluster in one space while antonymous pairs exhibit high similarity in a complementary space. Through comprehensive evaluation across eight languages (English, German, French, Spanish, Italian, Portuguese, Dutch, and Russian), we demonstrate that semantic relationship modeling transfers effectively across languages. The dual-encoder design achieves competitive performance against state-of-the-art baselines while providing interpretable semantic representations and effective cross-lingual generalization.
comment: Found some issues and need to correct them
♻ ☆ Cardiverse: Harnessing LLMs for Novel Card Game Prototyping EMNLP 2025
The prototyping of computer games, particularly card games, requires extensive human effort in creative ideation and gameplay evaluation. Recent advances in Large Language Models (LLMs) offer opportunities to automate and streamline these processes. However, it remains challenging for LLMs to design novel game mechanics beyond existing databases, generate consistent gameplay environments, and develop scalable gameplay AI for large-scale evaluations. This paper addresses these challenges by introducing a comprehensive automated card game prototyping framework. The approach highlights a graph-based indexing method for generating novel game variations, an LLM-driven system for consistent game code generation validated by gameplay records, and a gameplay AI constructing method that uses an ensemble of LLM-generated heuristic functions optimized through self-play. These contributions aim to accelerate card game prototyping, reduce human labor, and lower barriers to entry for game developers. For code repo visit this http URL https://github.com/danruili/Cardiverse
comment: 37 pages, 13 figures, 8 tables. Accepted by EMNLP 2025
♻ ☆ JoPA:Explaining Large Language Model's Generation via Joint Prompt Attribution ACL 2025
Large Language Models (LLMs) have demonstrated impressive performances in complex text generation tasks. However, the contribution of the input prompt to the generated content still remains obscure to humans, underscoring the necessity of understanding the causality between input and output pairs. Existing works for providing prompt-specific explanation often confine model output to be classification or next-word prediction. Few initial attempts aiming to explain the entire language generation often treat input prompt texts independently, ignoring their combinatorial effects on the follow-up generation. In this study, we introduce a counterfactual explanation framework based on Joint Prompt Attribution, JoPA, which aims to explain how a few prompt texts collaboratively influences the LLM's complete generation. Particularly, we formulate the task of prompt attribution for generation interpretation as a combinatorial optimization problem, and introduce a probabilistic algorithm to search for the casual input combination in the discrete space. We define and utilize multiple metrics to evaluate the produced explanations, demonstrating both the faithfulness and efficiency of our framework.
comment: Accepted to ACL 2025 (Main)
♻ ☆ Robust Adaptation of Large Multimodal Models for Retrieval Augmented Hateful Meme Detection EMNLP 2025
Hateful memes have become a significant concern on the Internet, necessitating robust automated detection systems. While Large Multimodal Models (LMMs) have shown promise in hateful meme detection, they face notable challenges like sub-optimal performance and limited out-of-domain generalization capabilities. Recent studies further reveal the limitations of both supervised fine-tuning (SFT) and in-context learning when applied to LMMs in this setting. To address these issues, we propose a robust adaptation framework for hateful meme detection that enhances in-domain accuracy and cross-domain generalization while preserving the general vision-language capabilities of LMMs. Analysis reveals that our approach achieves improved robustness under adversarial attacks compared to SFT models. Experiments on six meme classification datasets show that our approach achieves state-of-the-art performance, outperforming larger agentic systems. Moreover, our method generates higher-quality rationales for explaining hateful content compared to standard SFT, enhancing model interpretability. Code available at https://github.com/JingbiaoMei/RGCL
comment: EMNLP 2025 Main
♻ ☆ Hunyuan-MT Technical Report
In this report, we introduce Hunyuan-MT-7B, our first open-source multilingual translation model, which supports bidirectional translation across 33 major languages and places a special emphasis on translation between Mandarin and several ethnic minority languages as well as dialects. Furthermore, to serve and address diverse translation scenarios and enhance model performance at test time, we introduce Hunyuan-MT-Chimera-7B, a translation model inspired by the slow thinking mode. This model integrates multiple outputs generated by the Hunyuan-MT-7B model under varying parameter settings, thereby achieving performance superior to that of conventional slow-thinking models based on Chain-of-Thought (CoT). The development of our models follows a holistic training process specifically engineered for multilingual translation, which begins with general and MT-oriented pre-training to build foundational capabilities, proceeds to Supervised Fine-Tuning (SFT) for task-specific adaptation, and culminates in advanced alignment through Reinforcement Learning (RL) and weak-to-strong RL. Through comprehensive experimentation, we demonstrate that both Hunyuan-MT-7B and Hunyuan-MT-Chimera-7B significantly outperform all translation-specific models of comparable parameter size and most of the SOTA large models, particularly on the task of translation between Mandarin and minority languages as well as dialects. In the WMT2025 shared task (General Machine Translation), our models demonstrate state-of-the-art performance, ranking first in 30 out of 31 language pairs. This result highlights the robustness of our models across a diverse linguistic spectrum, encompassing high-resource languages such as Chinese, English, and Japanese, as well as low-resource languages including Czech, Marathi, Estonian, and Icelandic.
♻ ☆ TreeReview: A Dynamic Tree of Questions Framework for Deep and Efficient LLM-based Scientific Peer Review EMNLP2025
While Large Language Models (LLMs) have shown significant potential in assisting peer review, current methods often struggle to generate thorough and insightful reviews while maintaining efficiency. In this paper, we propose TreeReview, a novel framework that models paper review as a hierarchical and bidirectional question-answering process. TreeReview first constructs a tree of review questions by recursively decomposing high-level questions into fine-grained sub-questions and then resolves the question tree by iteratively aggregating answers from leaf to root to get the final review. Crucially, we incorporate a dynamic question expansion mechanism to enable deeper probing by generating follow-up questions when needed. We construct a benchmark derived from ICLR and NeurIPS venues to evaluate our method on full review generation and actionable feedback comments generation tasks. Experimental results of both LLM-based and human evaluation show that TreeReview outperforms strong baselines in providing comprehensive, in-depth, and expert-aligned review feedback, while reducing LLM token usage by up to 80% compared to computationally intensive approaches. Our code and benchmark dataset are available at https://github.com/YuanChang98/tree-review.
comment: Accepted to EMNLP2025 Main
♻ ☆ UPLex: Fine-Grained Personality Control in Large Language Models via Unsupervised Lexical Modulation EMNLP 2025
Personality is a crucial factor that shapes human communication patterns, thereby regulating the personalities of large language models (LLMs) holds significant potential in enhancing their user experiences. Previous approaches either relied on fine-tuning LLMs on specific corpora or required manually crafted prompts to evoke specific personalities from LLMs. However, the former is inefficient and costly, while the latter cannot precisely manipulate personality traits at a fine-grained level. To address these challenges, we propose UPLex, a method that uses an Unsupervisedly-Built Personalized Lexicon (UPL) during the decoding phase to manipulate LLM's personality traits. UPL can be constructed from a newly built situational judgment test dataset in an unsupervised fashion, and used to modulate the personality expression of LLMs by dynamically altering their predicted probability of upcoming words in a pluggable fashion. Extensive experimentation demonstrates the remarkable effectiveness and pluggability of our method for fine-grained manipulation of LLMs' personalities.
comment: EMNLP 2025 Findings
♻ ☆ Dovetail: A CPU/GPU Heterogeneous Speculative Decoding for LLM inference
With the continuous advancement in the performance of large language models (LLMs), their demand for computational resources and memory has significantly increased, which poses major challenges for efficient inference on consumer-grade devices and legacy servers. These devices typically feature relatively weaker GPUs and stronger CPUs. Although techniques such as parameter offloading and partial offloading can alleviate GPU memory pressure to some extent, their effectiveness is limited due to communication latency and suboptimal hardware resource utilization. To address this issue, we propose Dovetail, a lossless inference acceleration method that leverages the complementary characteristics of heterogeneous devices and the advantages of speculative decoding. Dovetail deploys a draft model on the GPU to perform preliminary predictions, while a target model running on the CPU validates these outputs. By reducing the granularity of data transfer, Dovetail significantly minimizes communication overhead. To further improve efficiency, we optimize the draft model specifically for heterogeneous hardware environments by reducing the number of draft tokens to lower parallel verification latency, increasing model depth to enhance predictive capabilities, and introducing a Dynamic Gating Fusion (DGF) mechanism to improve the integration of feature and embedding information. We conduct comprehensive evaluations of Dovetail across various consumer-grade GPUs, covering multiple tasks and mainstream models. Experimental results on 13B models demonstrate that Dovetail achieves inference speedups ranging from 1.79x to 10.1x across different devices, while maintaining consistency and stability in the distribution of generated texts.
comment: 14 pages, 6 figures
♻ ☆ MEBench: Benchmarking Large Language Models for Cross-Document Multi-Entity Question Answering
Multi-entity question answering (MEQA) represents significant challenges for large language models (LLM) and retrieval-augmented generation (RAG) systems, which frequently struggle to consolidate scattered information across diverse documents. While existing methods excel at single-document comprehension, they often struggle with cross-document aggregation, particularly when resolving entity-dense questions like "What is the distribution of ACM Fellows among various fields of study?", which require integrating entity-centric insights from heterogeneous sources (e.g., Wikipedia pages). To address this gap, we introduce MEBench, a novel multi-document, multi-entity benchmark designed to systematically evaluate LLMs' capacity to retrieve, consolidate, and reason over fragmented information. Our benchmark comprises 4,780 questions which are systematically categorized into three primary categories, further divided into eight distinct types, ensuring broad coverage of real-world multi-entity reasoning scenarios. Our experiments on state-of-the-art LLMs (e.g., GPT-4, Llama-3) and RAG pipelines reveal critical limitations: even advanced models achieve only 59% accuracy on MEBench. Our benchmark emphasizes the importance of completeness and factual precision of information extraction in MEQA tasks, using Entity-Attributed F1 (EA-F1) metric for granular evaluation of entity-level correctness and attribution validity. MEBench not only highlights systemic weaknesses in current LLM frameworks but also provides a foundation for advancing robust, entity-aware QA architectures.
♻ ☆ Local Normalization Distortion and the Thermodynamic Formalism of Decoding Strategies for Large Language Models
Advances in hardware and language model architecture have spurred a revolution in natural language generation. However, autoregressive models compute probability distributions over next-token choices, and sampling from these distributions, known as decoding, has received significantly less attention than other design choices. Existing decoding strategies are largely based on heuristics, resulting in methods that are difficult to apply or improve in a principled manner. We develop the theory of decoding strategies for language models by expressing popular decoding algorithms as equilibrium states in the language of ergodic theory and stating the objective functions they optimize. Using this, we analyze the effect of the local normalization step required to make probabilities sum to one in top-k, nucleus, and temperature sampling. We argue that local normalization distortion is a fundamental defect of decoding strategies and quantify the size of this distortion and its effect on mathematical proxies for the quality and diversity of generated text. This yields conclusions for the design of decoding algorithms and the detection of machine-generated text.
♻ ☆ AraHalluEval: A Fine-grained Hallucination Evaluation Framework for Arabic LLMs
Recently, extensive research on the hallucination of the large language models (LLMs) has mainly focused on the English language. Despite the growing number of multilingual and Arabic-specific LLMs, evaluating LLMs' hallucination in the Arabic context remains relatively underexplored. The knowledge gap is particularly pressing given Arabic's widespread use across many regions and its importance in global communication and media. This paper presents the first comprehensive hallucination evaluation of Arabic and multilingual LLMs on two critical Arabic natural language generation tasks: generative question answering (GQA) and summarization. This study evaluates a total of 12 LLMs, including 4 Arabic pre-trained models, 4 multilingual models, and 4 reasoning-based models. To assess the factual consistency and faithfulness of LLMs' outputs, we developed a fine-grained hallucination evaluation framework consisting of 12 fine-grained hallucination indicators that represent the varying characteristics of each task. The results reveal that factual hallucinations are more prevalent than faithfulness errors across all models and tasks. Notably, the Arabic pre-trained model Allam consistently demonstrates lower hallucination rates than multilingual models and a comparative performance with reasoning-based models. The code is available at: https://github.com/aishaalansari57/AraHalluEval
♻ ☆ A Japanese Language Model and Three New Evaluation Benchmarks for Pharmaceutical NLP
We present a Japanese domain-specific language model for the pharmaceutical field, developed through continual pretraining on 2 billion Japanese pharmaceutical tokens and 8 billion English biomedical tokens. To enable rigorous evaluation, we introduce three new benchmarks: YakugakuQA, based on national pharmacist licensing exams; NayoseQA, which tests cross-lingual synonym and terminology normalization; and SogoCheck, a novel task designed to assess consistency reasoning between paired statements. We evaluate our model against both open-source medical LLMs and commercial models, including GPT-4o. Results show that our domain-specific model outperforms existing open models and achieves competitive performance with commercial ones, particularly on terminology-heavy and knowledge-based tasks. Interestingly, even GPT-4o performs poorly on SogoCheck, suggesting that cross-sentence consistency reasoning remains an open challenge. Our benchmark suite offers a broader diagnostic lens for pharmaceutical NLP, covering factual recall, lexical variation, and logical consistency. This work demonstrates the feasibility of building practical, secure, and cost-effective language models for Japanese domain-specific applications, and provides reusable evaluation resources for future research in pharmaceutical and healthcare NLP. Our model, codes, and datasets are released at https://github.com/EQUES-Inc/pharma-LLM-eval.
comment: 15 pages, 9 tables, 5 figures
♻ ☆ FinRAGBench-V: A Benchmark for Multimodal RAG with Visual Citation in the Financial Domain
Retrieval-Augmented Generation (RAG) plays a vital role in the financial domain, powering applications such as real-time market analysis, trend forecasting, and interest rate computation. However, most existing RAG research in finance focuses predominantly on textual data, overlooking the rich visual content in financial documents, resulting in the loss of key analytical insights. To bridge this gap, we present FinRAGBench-V, a comprehensive visual RAG benchmark tailored for finance which effectively integrates multimodal data and provides visual citation to ensure traceability. It includes a bilingual retrieval corpus with 60,780 Chinese and 51,219 English pages, along with a high-quality, human-annotated question-answering (QA) dataset spanning heterogeneous data types and seven question categories. Moreover, we introduce RGenCite, an RAG baseline that seamlessly integrates visual citation with generation. Furthermore, we propose an automatic citation evaluation method to systematically assess the visual citation capabilities of Multimodal Large Language Models (MLLMs). Extensive experiments on RGenCite underscore the challenging nature of FinRAGBench-V, providing valuable insights for the development of multimodal RAG systems in finance.
♻ ☆ Register Always Matters: Analysis of LLM Pretraining Data Through the Lens of Language Variation
Pretraining data curation is a cornerstone in Large Language Model (LLM) development, leading to growing research on quality filtering of large web corpora. From statistical quality flags to LLM-based labelling systems, datasets are divided into categories, frequently reducing to a binary: those passing the filters are deemed as valuable examples, others are discarded as useless or detrimental. However, a more detailed understanding of the contribution of different kinds of texts to model performance is still largely lacking. In this article, we present the first study utilising registers or genres - a widely used standard in corpus linguistics to model linguistic variation - to curate pretraining datasets and investigate the effect of register on the performance of LLMs. We train small generative models with register classified data and evaluate them using standard benchmarks, and show that the register of pretraining data substantially affects model performance. We uncover surprising relationships between the pretraining material and the resulting models: using the News register results in subpar performance, and on the contrary, including the Opinion class, covering texts such as reviews and opinion blogs, is highly beneficial. While a model trained on the entire unfiltered dataset outperforms those trained on datasets limited to a single register, combining well-performing registers like How-to-Instructions, Informational Description, and Opinion leads to major improvements. Furthermore, analysis of individual benchmark results reveals key differences in the strengths and drawbacks of specific register classes as pretraining data. These findings show that register is an important explainer of model variation and can facilitate more deliberate future data selection practices.
♻ ☆ TokenSelect: Efficient Long-Context Inference and Length Extrapolation for LLMs via Dynamic Token-Level KV Cache Selection EMNLP2025
Rapid advances in Large Language Models (LLMs) have spurred demand for processing extended context sequences in contemporary applications. However, this progress faces two challenges: performance degradation due to sequence lengths out-of-distribution, and excessively long inference times caused by the quadratic computational complexity of attention. These issues limit LLMs in long-context scenarios. In this paper, we propose Dynamic Token-Level KV Cache Selection (TokenSelect), a training-free method for efficient and accurate long-context inference. TokenSelect builds upon the observation of non-contiguous attention sparsity, using QK dot products to measure per-head KV Cache criticality at token-level. By per-head soft voting mechanism, TokenSelect selectively involves a few critical KV cache tokens in attention calculation without sacrificing accuracy. To further accelerate TokenSelect, we design the Selection Cache based on observations of consecutive Query similarity and implemented the efficient Paged Dot Product Kernel, significantly reducing the selection overhead. A comprehensive evaluation of TokenSelect demonstrates up to $23.84\times$ speedup in attention computation and up to $2.28\times$ acceleration in end-to-end latency, while providing superior performance compared to state-of-the-art long-context inference methods.
comment: Accepted by EMNLP2025
♻ ☆ Trust but Verify! A Survey on Verification Design for Test-time Scaling
Test-time scaling (TTS) has emerged as a new frontier for scaling the performance of Large Language Models. In test-time scaling, by using more computational resources during inference, LLMs can improve their reasoning process and task performance. Several approaches have emerged for TTS such as distilling reasoning traces from another model or exploring the vast decoding search space by employing a verifier. The verifiers serve as reward models that help score the candidate outputs from the decoding process to diligently explore the vast solution space and select the best outcome. This paradigm commonly termed has emerged as a superior approach owing to parameter free scaling at inference time and high performance gains. The verifiers could be prompt-based, fine-tuned as a discriminative or generative model to verify process paths, outcomes or both. Despite their widespread adoption, there is no detailed collection, clear categorization and discussion of diverse verification approaches and their training mechanisms. In this survey, we cover the diverse approaches in the literature and present a unified view of verifier training, types and their utility in test-time scaling. Our repository can be found at https://github.com/elixir-research-group/Verifierstesttimescaling.github.io.
comment: 18 pages
♻ ☆ LogicCat: A Chain-of-Thought Text-to-SQL Benchmark for Complex Reasoning
Text-to-SQL is a critical task in natural language processing that aims to transform natural language questions into accurate and executable SQL queries. In real-world scenarios, these reasoning tasks are often accompanied by complex mathematical computations, domain knowledge, and hypothetical reasoning scenarios. However, existing large-scale Text-to-SQL datasets typically focus on business logic and task logic, neglecting critical factors such as vertical domain knowledge, complex mathematical reasoning, and hypothetical reasoning, which are essential for realistically reflecting the reasoning demands in practical applications and completing data querying and analysis. To bridge this gap, we introduce LogicCat, the first Text-to-SQL benchmark dataset specifically designed for complex reasoning and chain-of-thought parsing, encompassing physics, arithmetic, commonsense, and hypothetical reasoning scenarios. LogicCat comprises 4,038 English questions paired 12,114 detailed chain-of-thought reasoning steps, spanning 45 databases across diverse domains, significantly surpassing existing datasets in complexity. Experimental results demonstrate that LogicCat substantially increases the task difficulty for current state-of-the-art models to at most 33.20% execution accuracy, indicating that this task remains exceptionally challenging. The advancement of LogicCat represents a crucial step toward developing systems suitable for real-world enterprise data analysis and autonomous query generation. We have released our dataset code at https://github.com/Ffunkytao/LogicCat.
comment: 9 pages, 5 figures
♻ ☆ CTourLLM: Enhancing LLMs with Chinese Tourism Knowledge
Recently, large language models (LLMs) have demonstrated their effectiveness in various natural language processing (NLP) tasks. However, the lack of tourism knowledge limits the performance of LLMs in tourist attraction presentations and travel planning. To address this challenge, we constructed a supervised fine-tuning dataset for the Chinese culture and tourism domain, named Cultour. This dataset consists of three parts: tourism knowledge base data, travelogues data, and tourism QA data. Additionally, we propose CTourLLM, a Qwen-based model supervised fine-tuned with Cultour, to improve the quality of information about attractions and travel planning. To evaluate the performance of CTourLLM, we proposed a human evaluation criterion named RRA (Relevance, Readability, Availability), and employed both automatic and human evaluation. The experimental results demonstrate that CTourLLM outperforms ChatGPT, achieving an improvement of 1.21 in BLEU-1 and 1.54 in Rouge-L, thereby validating the effectiveness of the response outcomes. Our proposed Cultour is accessible at https://github.com/mrweiqk/Cultour.
♻ ☆ Interleaving Reasoning for Better Text-to-Image Generation
Unified multimodal understanding and generation models recently have achieve significant improvement in image generation capability, yet a large gap remains in instruction following and detail preservation compared to systems that tightly couple comprehension with generation such as GPT-4o. Motivated by recent advances in interleaving reasoning, we explore whether such reasoning can further improve Text-to-Image (T2I) generation. We introduce Interleaving Reasoning Generation (IRG), a framework that alternates between text-based thinking and image synthesis: the model first produces a text-based thinking to guide an initial image, then reflects on the result to refine fine-grained details, visual quality, and aesthetics while preserving semantics. To train IRG effectively, we propose Interleaving Reasoning Generation Learning (IRGL), which targets two sub-goals: (1) strengthening the initial think-and-generate stage to establish core content and base quality, and (2) enabling high-quality textual reflection and faithful implementation of those refinements in a subsequent image. We curate IRGL-300K, a dataset organized into six decomposed learning modes that jointly cover learning text-based thinking, and full thinking-image trajectories. Starting from a unified foundation model that natively emits interleaved text-image outputs, our two-stage training first builds robust thinking and reflection, then efficiently tunes the IRG pipeline in the full thinking-image trajectory data. Extensive experiments show SoTA performance, yielding absolute gains of 5-10 points on GenEval, WISE, TIIF, GenAI-Bench, and OneIG-EN, alongside substantial improvements in visual quality and fine-grained fidelity. The code, model weights and datasets will be released in: https://github.com/Osilly/Interleaving-Reasoning-Generation .
♻ ☆ SemCAFE: When Named Entities make the Difference Assessing Web Source Reliability through Entity-level Analytics
With the shift from traditional to digital media, the online landscape now hosts not only reliable news articles but also a significant amount of unreliable content. Digital media has faster reachability by significantly influencing public opinion and advancing political agendas. While newspaper readers may be familiar with their preferred outlets political leanings or credibility, determining unreliable news articles is much more challenging. The credibility of many online sources is often opaque, with AI generated content being easily disseminated at minimal cost. Unreliable news articles, particularly those that followed the Russian invasion of Ukraine in 2022, closely mimic the topics and writing styles of credible sources, making them difficult to distinguish. To address this, we introduce SemCAFE, a system designed to detect news reliability by incorporating entity relatedness into its assessment. SemCAFE employs standard Natural Language Processing techniques, such as boilerplate removal and tokenization, alongside entity level semantic analysis using the YAGO knowledge base. By creating a semantic fingerprint for each news article, SemCAFE could assess the credibility of 46,020 reliable and 3,407 unreliable articles on the 2022 Russian invasion of Ukraine. Our approach improved the macro F1 score by 12% over state of the art methods. The sample data and code are available on GitHub
♻ ☆ Towards Visuospatial Cognition via Hierarchical Fusion of Visual Experts
While Multimodal Large Language Models (MLLMs) excel at general vision-language tasks, visuospatial cognition - reasoning about spatial layouts, relations, and dynamics - remains a significant challenge. Existing models often lack the necessary architectural components and specialized training data for fine-grained spatial understanding. We introduce ViCA2 (Visuospatial Cognitive Assistant 2), a novel MLLM designed to enhance spatial reasoning. ViCA2 features a dual vision encoder architecture integrating SigLIP for semantics and Hiera for spatial structure, coupled with a token ratio control mechanism for efficiency. We also developed ViCA-322K, a new large-scale dataset with over 322,000 spatially grounded question-answer pairs for targeted instruction tuning. On the challenging VSI-Bench benchmark, our ViCA2-7B model achieves a state-of-the-art average score of 56.8, significantly surpassing larger open-source models (e.g., LLaVA-NeXT-Video-72B, 40.9) and leading proprietary models (Gemini-1.5 Pro, 45.4). This demonstrates the effectiveness of our approach in achieving strong visuospatial intelligence with a compact model. We release ViCA2, its codebase, and the ViCA-322K dataset to facilitate further research.
comment: 26 pages, 19 figures, 4 tables
♻ ☆ Visuospatial Cognitive Assistant
Video-based spatial cognition is vital for robotics and embodied AI but challenges current Vision-Language Models (VLMs). This paper makes two key contributions. First, we introduce ViCA (Visuospatial Cognitive Assistant)-322K, a diverse dataset of 322,003 QA pairs from real-world indoor videos (ARKitScenes, ScanNet, ScanNet++), offering supervision for 3D metadata-grounded queries and video-based complex reasoning. Second, we develop ViCA-7B, fine-tuned on ViCA-322K, which achieves new state-of-the-art on all eight VSI-Bench tasks, outperforming existing models, including larger ones (e.g., +26.1 on Absolute Distance). For interpretability, we present ViCA-Thinking-2.68K, a dataset with explicit reasoning chains, and fine-tune ViCA-7B to create ViCA-7B-Thinking, a model that articulates its spatial reasoning. Our work highlights the importance of targeted data and suggests paths for improved temporal-spatial modeling. We release all resources to foster research in robust visuospatial intelligence.
comment: 31 pages, 10 figures, 6 tables
♻ ☆ Are Economists Always More Introverted? Analyzing Consistency in Persona-Assigned LLMs EMNLP 2025
Personalized Large Language Models (LLMs) are increasingly used in diverse applications, where they are assigned a specific persona - such as a happy high school teacher - to guide their responses. While prior research has examined how well LLMs adhere to predefined personas in writing style, a comprehensive analysis of consistency across different personas and task types is lacking. In this paper, we introduce a new standardized framework to analyze consistency in persona-assigned LLMs. We define consistency as the extent to which a model maintains coherent responses when assigned the same persona across different tasks and runs. Our framework evaluates personas across four different categories (happiness, occupation, personality, and political stance) spanning multiple task dimensions (survey writing, essay generation, social media post generation, single turn, and multi-turn conversations). Our findings reveal that consistency is influenced by multiple factors, including the assigned persona, stereotypes, and model design choices. Consistency also varies across tasks, increasing with more structured tasks and additional context. All code is available on GitHub.
comment: Accepted to EMNLP 2025 findings
♻ ☆ When Large Language Models Meet Speech: A Survey on Integration Approaches ACL 2025
Recent advancements in large language models (LLMs) have spurred interest in expanding their application beyond text-based tasks. A large number of studies have explored integrating other modalities with LLMs, notably speech modality, which is naturally related to text. This paper surveys the integration of speech with LLMs, categorizing the methodologies into three primary approaches: text-based, latent-representation-based, and audio-token-based integration. We also demonstrate how these methods are applied across various speech-related applications and highlight the challenges in this field to offer inspiration for
comment: Accepted at Findings of ACL 2025 (Long Paper)
♻ ☆ Step-level Verifier-guided Hybrid Test-Time Scaling for Large Language Models EMNLP 2025
Test-Time Scaling (TTS) is a promising approach to progressively elicit the model's intelligence during inference. Recently, training-based TTS methods, such as continued reinforcement learning (RL), have further surged in popularity, while training-free TTS methods are gradually fading from prominence. However, the additional computation overhead of training amplifies the burden on test-time scaling. In this paper, we focus on training-free TTS methods for reasoning. We first design Conditional Step-level Self-refinement, a fine-grained sequential scaling method guided by process verification. On top of its effectiveness, we further combine it with other classical parallel scaling methods at the step level, to introduce a novel inference paradigm called Hybrid Test-Time Scaling. Extensive experiments on five instruction-tuned LLMs across different scales (3B-14B) and families demonstrate that hybrid strategy incorporating various training-free TTS methods at a fine granularity has considerable potential for expanding the reasoning performance boundaries of LLMs.
comment: Accepted by EMNLP 2025. Code: https://github.com/Lucky-259/Hybrid_TTS
♻ ☆ MedGellan: LLM-Generated Medical Guidance to Support Physicians
Medical decision-making is a critical task, where errors can result in serious, potentially life-threatening consequences. While full automation remains challenging, hybrid frameworks that combine machine intelligence with human oversight offer a practical alternative. In this paper, we present MedGellan, a lightweight, annotation-free framework that uses a Large Language Model (LLM) to generate clinical guidance from raw medical records, which is then used by a physician to predict diagnoses. MedGellan uses a Bayesian-inspired prompting strategy that respects the temporal order of clinical data. Preliminary experiments show that the guidance generated by the LLM with MedGellan improves diagnostic performance, particularly in recall and $F_1$ score.
♻ ☆ Training LLMs to be Better Text Embedders through Bidirectional Reconstruction EMNLP 2025
Large language models (LLMs) have increasingly been explored as powerful text embedders. Existing LLM-based text embedding approaches often leverage the embedding of the final token, typically a reserved special token such as [EOS]. However, these tokens have not been intentionally trained to capture the semantics of the whole context, limiting their capacity as text embeddings, especially for retrieval and re-ranking tasks. We propose to add a new training stage before contrastive learning to enrich the semantics of the final token embedding. This stage employs bidirectional generative reconstruction tasks, namely EBQ2D (Embedding-Based Query-to-Document) and EBD2Q (Embedding-Based Document-to-Query), which interleave to anchor the [EOS] embedding and reconstruct either side of Query-Document pairs. Experimental results demonstrate that our additional training stage significantly improves LLM performance on the Massive Text Embedding Benchmark (MTEB), achieving new state-of-the-art results across different LLM base models and scales.
comment: accepted by EMNLP 2025 Main Conference
♻ ☆ Debatable Intelligence: Benchmarking LLM Judges via Debate Speech Evaluation EMNLP 2025
We introduce Debate Speech Evaluation as a novel and challenging benchmark for assessing LLM judges. Evaluating debate speeches requires a deep understanding of the speech at multiple levels, including argument strength and relevance, the coherence and organization of the speech, the appropriateness of its style and tone, and so on. This task involves a unique set of cognitive abilities that previously received limited attention in systematic LLM benchmarking. To explore such skills, we leverage a dataset of over 600 meticulously annotated debate speeches and present the first in-depth analysis of how state-of-the-art LLMs compare to human judges on this task. Our findings reveal a nuanced picture: while larger models can approximate individual human judgments in some respects, they differ substantially in their overall judgment behavior. We also investigate the ability of frontier LLMs to generate persuasive, opinionated speeches, showing that models may perform at a human level on this task.
comment: EMNLP 2025. Code: https://github.com/noy-sternlicht/Debatable-Intelligence
♻ ☆ Modelling Intertextuality with N-gram Embeddings
Intertextuality is a central tenet in literary studies. It refers to the intricate links between literary texts that are created by various types of references. This paper proposes a new quantitative model of intertextuality to enable scalable analysis and network-based insights: perform pairwise comparisons of the embeddings of n-grams from two texts and average their results as the overall intertextuality. Validation on four texts with known degrees of intertextuality, alongside a scalability test on 267 diverse texts, demonstrates the method's effectiveness and efficiency. Network analysis further reveals centrality and community structures, affirming the approach's success in capturing and quantifying intertextual relationships.
♻ ☆ Mitigating Spurious Correlations Between Question and Answer via Chain-of-Thought Correctness Perception Distillation
Large language models (LLMs) excel at reasoning tasks but are expensive to deploy. Thus small language models (SLMs) are fine-tuned on CoT data generated by LLMs to copy LLMs' abilities. However, these CoT data may include noisy rationales that either fail to substantiate the answers or contribute no additional information to support answer prediction, which leads SLMs to capture spurious correlations between questions and answers and compromise the quality of reasoning. In this work, we propose Chain-of-Thought Correctness Perception Distillation (CoPeD), which aims to improve the reasoning quality of the student model from the perspectives of task setting and data utilization. Firstly, we introduce a correctness-aware task setting that encourages the student model to predict answers based on correct rationales and revise them when they are incorrect. This setting improves the faithfulness of reasoning and allows the model to learn from its mistakes. Then, we propose a Correctness-Aware Weighted loss, which dynamically adjusts the contribution of each training instance based on the combined loss of the rationale and the answer. This strategy encourages the model to focus more on samples where the rationale offers stronger support for the correct answer. Experiments have shown that CoPeD is effective on both in-distribution (IND) and out-of-distribution (OOD) benchmark reasoning datasets.
comment: PrePrint
♻ ☆ Joint Information Extraction Across Classical and Modern Chinese with Tea-MOELoRA
Chinese information extraction (IE) involves multiple tasks across diverse temporal domains, including Classical and Modern documents. Fine-tuning a single model on heterogeneous tasks and across different eras may lead to interference and reduced performance. Therefore, in this paper, we propose Tea-MOELoRA, a parameter-efficient multi-task framework that combines LoRA with a Mixture-of-Experts (MoE) design. Multiple low-rank LoRA experts specialize in different IE tasks and eras, while a task-era-aware router mechanism dynamically allocates expert contributions. Experiments show that Tea-MOELoRA outperforms both single-task and joint LoRA baselines, demonstrating its ability to leverage task and temporal knowledge effectively.
comment: 9 pages, 3 figures
♻ ☆ Linearly Controlled Language Generation with Performative Guarantees
The increasing prevalence of Large Language Models (LMs) in critical applications highlights the need for controlled language generation strategies that are not only computationally efficient but that also enjoy performance guarantees. To achieve this, we use a common model of concept semantics as linearly represented in an LM's latent space. In particular, we take the view that natural language generation traces a trajectory in this continuous semantic space, realized by the language model's hidden activations. This view permits a control-theoretic treatment of text generation in latent space, in which we propose a lightweight, gradient-free intervention that dynamically steers trajectories away from regions corresponding to undesired meanings. In particular, we propose to directly intervene the activations of the token that is being generated in embedding space in an online fashion. Crucially, we do not simply steer activations towards a desirable region. Instead, our method relies on classical techniques from control theory to precisely control activations in a context-dependent way, and guarantees that they are brought into a specific pre-defined region of embedding space that corresponds to allowed semantics. Our intervention is computed in closed-form according to an optimal controller formulation, minimally impacting generation time. This control of the activations in embedding space allows for fine-grained steering of attributes of the generated sequence. We demonstrate the effectiveness of our approach on different objectives -- toxicity avoidance and sentiment control -- while maintaining text quality.
comment: Under review
♻ ☆ Multimodal Emotion Recognition in Conversations: A Survey of Methods, Trends, Challenges and Prospects EMNLP 2025
While text-based emotion recognition methods have achieved notable success, real-world dialogue systems often demand a more nuanced emotional understanding than any single modality can offer. Multimodal Emotion Recognition in Conversations (MERC) has thus emerged as a crucial direction for enhancing the naturalness and emotional understanding of human-computer interaction. Its goal is to accurately recognize emotions by integrating information from various modalities such as text, speech, and visual signals. This survey offers a systematic overview of MERC, including its motivations, core tasks, representative methods, and evaluation strategies. We further examine recent trends, highlight key challenges, and outline future directions. As interest in emotionally intelligent systems grows, this survey provides timely guidance for advancing MERC research.
comment: EMNLP 2025 Findings
♻ ☆ M-ABSA: A Multilingual Dataset for Aspect-Based Sentiment Analysis EMNLP 2025
Aspect-based sentiment analysis (ABSA) is a crucial task in information extraction and sentiment analysis, aiming to identify aspects with associated sentiment elements in text. However, existing ABSA datasets are predominantly English-centric, limiting the scope for multilingual evaluation and research. To bridge this gap, we present M-ABSA, a comprehensive dataset spanning 7 domains and 21 languages, making it the most extensive multilingual parallel dataset for ABSA to date. Our primary focus is on triplet extraction, which involves identifying aspect terms, aspect categories, and sentiment polarities. The dataset is constructed through an automatic translation process with human review to ensure quality. We perform extensive experiments using various baselines to assess performance and compatibility on M-ABSA. Our empirical findings highlight that the dataset enables diverse evaluation tasks, such as multilingual and multi-domain transfer learning, and large language model evaluation, underscoring its inclusivity and its potential to drive advancements in multilingual ABSA research.
comment: EMNLP 2025
♻ ☆ Pierce the Mists, Greet the Sky: Decipher Knowledge Overshadowing via Knowledge Circuit Analysis EMNLP
Large Language Models (LLMs), despite their remarkable capabilities, are hampered by hallucinations. A particularly challenging variant, knowledge overshadowing, occurs when one piece of activated knowledge inadvertently masks another relevant piece, leading to erroneous outputs even with high-quality training data. Current understanding of overshadowing is largely confined to inference-time observations, lacking deep insights into its origins and internal mechanisms during model training. Therefore, we introduce PhantomCircuit, a novel framework designed to comprehensively analyze and detect knowledge overshadowing. By innovatively employing knowledge circuit analysis, PhantomCircuit dissects the function of key components in the circuit and how the attention pattern dynamics contribute to the overshadowing phenomenon and its evolution throughout the training process. Extensive experiments demonstrate PhantomCircuit's effectiveness in identifying such instances, offering novel insights into this elusive hallucination and providing the research community with a new methodological lens for its potential mitigation.
comment: Accepted by 2025 EMNLP Main
♻ ☆ Probe-Rewrite-Evaluate: A Workflow for Reliable Benchmarks and Quantifying Evaluation Awareness
Large Language Models (LLMs) often exhibit significant behavioral shifts when they perceive a change from a real-world deployment context to a controlled evaluation setting, a phenomenon known as "evaluation awareness." This discrepancy poses a critical challenge for AI alignment, as benchmark performance may not accurately reflect a model's true safety and honesty. In this work, we systematically quantify these behavioral changes by manipulating the perceived context of prompts. We introduce a methodology that uses a linear probe to score prompts on a continuous scale from "test-like" to "deploy-like" and leverage an LLM rewriting strategy to shift these prompts towards a more natural, deployment-style context while preserving the original task. Using this method, we achieved a 30% increase in the average probe score across a strategic role-playing dataset after rewriting. Evaluating a suite of state-of-the-art models on these original and rewritten prompts, we find that rewritten "deploy-like" prompts induce a significant and consistent shift in behavior. Across all models, we observed an average increase in honest responses of 5.26% and a corresponding average decrease in deceptive responses of 12.40%. Furthermore, refusal rates increased by an average of 6.38%, indicating heightened safety compliance. Our findings demonstrate that evaluation awareness is a quantifiable and manipulable factor that directly influences LLM behavior, revealing that models are more prone to unsafe or deceptive outputs in perceived test environments. This underscores the urgent need for more realistic evaluation frameworks to accurately gauge true model alignment before deployment.
♻ ☆ Persuasion Dynamics in LLMs: Investigating Robustness and Adaptability in Knowledge and Safety with DuET-PD EMNLP 2025
Large Language Models (LLMs) can struggle to balance gullibility to misinformation and resistance to valid corrections in persuasive dialogues, a critical challenge for reliable deployment. We introduce DuET-PD (Dual Evaluation for Trust in Persuasive Dialogues), a framework evaluating multi-turn stance-change dynamics across dual dimensions: persuasion type (corrective/misleading) and domain (knowledge via MMLU-Pro, and safety via SALAD-Bench). We find that even a state-of-the-art model like GPT-4o achieves only 27.32% accuracy in MMLU-Pro under sustained misleading persuasions. Moreover, results reveal a concerning trend of increasing sycophancy in newer open-source models. To address this, we introduce Holistic DPO, a training approach balancing positive and negative persuasion examples. Unlike prompting or resist-only training, Holistic DPO enhances both robustness to misinformation and receptiveness to corrections, improving Llama-3.1-8B-Instruct's accuracy under misleading persuasion in safety contexts from 4.21% to 76.54%. These contributions offer a pathway to developing more reliable and adaptable LLMs for multi-turn dialogue. Code is available at https://github.com/Social-AI-Studio/DuET-PD.
comment: To appear at EMNLP 2025
♻ ☆ PIN: A Knowledge-Intensive Dataset for Paired and Interleaved Multimodal Documents
Recent advancements in large multimodal models (LMMs) have leveraged extensive multimodal datasets to enhance capabilities in complex knowledge-driven tasks. However, persistent challenges in perceptual and reasoning errors limit their efficacy, particularly in interpreting intricate visual data and deducing multimodal relationships. To address these issues, we introduce PIN (Paired and INterleaved multimodal documents), a novel data format designed to foster a deeper integration of visual and textual knowledge. The PIN format uniquely combines semantically rich Markdown files, which preserve fine-grained textual structures, with holistic overall images that capture the complete document layout. Following this format, we construct and release two large-scale, open-source datasets: PIN-200M (~200 million documents) and PIN-14M (~14 million), compiled from diverse web and scientific sources in both English and Chinese. To maximize usability, we provide detailed statistical analyses and equip the datasets with quality signals, enabling researchers to easily filter and select data for specific tasks. Our work provides the community with a versatile data format and substantial resources, offering a foundation for new research in pre-training strategies and the development of more powerful knowledge-intensive LMMs.
comment: Technical report v1.0
♻ ☆ OBLIVIATE: Robust and Practical Machine Unlearning for Large Language Models EMNLP 25
Large language models (LLMs) trained over extensive corpora risk memorizing sensitive, copyrighted, or toxic content. To address this, we propose \textbf{OBLIVIATE}, a robust unlearning framework that removes targeted data while preserving model utility. The framework follows a structured process: extracting target tokens, building retain sets, and fine-tuning with a tailored loss function comprising three components -- masking, distillation, and world fact. Using low-rank adapters (LoRA) ensures efficiency without compromising unlearning quality. We conduct experiments on multiple datasets, including Harry Potter series, WMDP, and TOFU, using a comprehensive suite of metrics: \emph{forget quality} (via a new document-level memorization score), \emph{model utility}, and \emph{fluency}. Results demonstrate its effectiveness in resisting membership inference attacks, minimizing the impact on retained data, and maintaining robustness across diverse scenarios.
comment: To appear at EMNLP 25 main conference
♻ ☆ MEMIT-Merge: Addressing MEMIT's Key-Value Conflicts in Same-Subject Batch Editing for LLMs ACL2025
As large language models continue to scale up, knowledge editing techniques that modify models' internal knowledge without full retraining have gained significant attention. MEMIT, a prominent batch editing algorithm, stands out for its capability to perform mass knowledge modifications. However, we uncover that MEMIT's editing efficacy significantly deteriorates when processing batches containing multiple edits sharing the same subject. Our analysis reveals this stems from MEMIT's key value modeling framework: identical keys (derived from the shared subject) are forced to represent different values (corresponding to different knowledge), resulting in update conflicts during editing. Addressing this issue, we propose MEMIT-Merge, an enhanced approach that merges value computation processes for facts sharing the same subject, effectively resolving the performance degradation in samesubject batch editing scenarios. Experimental results demonstrate that when MEMIT's edit success rate drops to around 50% at larger batch sizes, MEMIT-Merge maintains a success rate exceeding 90%, showcasing remarkable robustness to subject entity collisions. The code is available at https://github.com/NUSTM/ MEMIT-Merge.
comment: Accepted by ACL2025 findings
♻ ☆ CAT: Causal Attention Tuning For Injecting Fine-grained Causal Knowledge into Large Language Models EMNLP2025
Large Language Models (LLMs) have achieved remarkable success across various domains. However, a fundamental question remains: Can LLMs effectively utilize causal knowledge for prediction and generation? Through empirical studies, we find that LLMs trained directly on large-scale data often capture spurious correlations rather than true causal relationships, leading to suboptimal performance, especially in out-of-distribution (OOD) scenarios. To address this challenge, we propose Causal Attention Tuning (CAT), a novel approach that injects fine-grained causal knowledge into the attention mechanism. We propose an automated pipeline that leverages human priors to automatically generate token-level causal signals and introduce the Re-Attention mechanism to guide training, helping the model focus on causal structures while mitigating noise and biases in attention scores. Experimental results on our proposed Spurious Token Game (STG) benchmark and multiple downstream tasks demonstrate that our approach effectively leverages causal knowledge for prediction and remains robust in OOD scenarios. The CAT achieves an average improvement of 5.76% on the STG dataset and 1.56% on downstream tasks. Notably, the OOD performance of the Llama-3.1-8B model on STG_M increased from 64.5% to 90.5%, and Qwen's OOD performance on the STG_H dataset improved from 25.4% to 55.9%. Implementation details can be found at https://github.com/Kairong-Han/CAT.
comment: Accepted to EMNLP2025 Main conference
♻ ☆ LM-Searcher: Cross-domain Neural Architecture Search with LLMs via Unified Numerical Encoding EMNLP 2025
Recent progress in Large Language Models (LLMs) has opened new avenues for solving complex optimization problems, including Neural Architecture Search (NAS). However, existing LLM-driven NAS approaches rely heavily on prompt engineering and domain-specific tuning, limiting their practicality and scalability across diverse tasks. In this work, we propose LM-Searcher, a novel framework that leverages LLMs for cross-domain neural architecture optimization without the need for extensive domain-specific adaptation. Central to our approach is NCode, a universal numerical string representation for neural architectures, which enables cross-domain architecture encoding and search. We also reformulate the NAS problem as a ranking task, training LLMs to select high-performing architectures from candidate pools using instruction-tuning samples derived from a novel pruning-based subspace sampling strategy. Our curated dataset, encompassing a wide range of architecture-performance pairs, encourages robust and transferable learning. Comprehensive experiments demonstrate that LM-Searcher achieves competitive performance in both in-domain (e.g., CNNs for image classification) and out-of-domain (e.g., LoRA configurations for segmentation and generation) tasks, establishing a new paradigm for flexible and generalizable LLM-based architecture search. The datasets and models will be released at https://github.com/Ashone3/LM-Searcher.
comment: EMNLP 2025 Main
♻ ☆ Benchmarking for Domain-Specific LLMs: A Case Study on Academia and Beyond EMNLP2025
The increasing demand for domain-specific evaluation of large language models (LLMs) has led to the development of numerous benchmarks. These efforts often adhere to the principle of data scaling, relying on large corpora or extensive question-answer (QA) sets to ensure broad coverage. However, the impact of corpus and QA set design on the precision and recall of domain-specific LLM performance remains poorly understood. In this paper, we argue that data scaling is not always the optimal principle for domain-specific benchmark construction. Instead, we introduce Comp-Comp, an iterative benchmarking framework grounded in the principle of comprehensiveness and compactness. Comprehensiveness ensures semantic recall by covering the full breadth of the domain, while compactness improves precision by reducing redundancy and noise. To demonstrate the effectiveness of our approach, we present a case study conducted at a well-renowned university, resulting in the creation of PolyBench, a large-scale, high-quality academic benchmark. Although this study focuses on academia, the Comp-Comp framework is domain-agnostic and readily adaptable to a wide range of specialized fields. The source code and datasets can be accessed at https://github.com/Anya-RB-Chen/COMP-COMP.
comment: Accepted by EMNLP2025 Findings
♻ ☆ Understanding the Language Model to Solve the Symbolic Multi-Step Reasoning Problem from the Perspective of Buffer Mechanism
Large language models have consistently struggled with complex reasoning tasks, such as mathematical problem-solving. Investigating the internal reasoning mechanisms of these models can help us design better model architectures and training strategies, ultimately enhancing their reasoning capability. In this study, we constructed a symbolic multi-step reasoning task to investigate the information propagation mechanisms in Transformer models when solving the task through direct answering and Chain-of-Thought (CoT) reasoning. We introduced the concept of buffer mechanism: the model stores various information in distinct buffers and selectively extracts it through the query-key matrix. We proposed a random matrix-based algorithm to enhance the model's reasoning ability. This algorithm introduces only 132 trainable parameters, yet leads to significant performance improvements on 7 multi-step reasoning datasets, including PrOntoQA, LogicAsker, and LogicInference. These findings provide new insights into understanding the large language models.
♻ ☆ SFR-DeepResearch: Towards Effective Reinforcement Learning for Autonomously Reasoning Single Agents
Equipping large language models (LLMs) with complex, interleaved reasoning and tool-use capabilities has become a key focus in agentic AI research, especially with recent advances in reasoning-oriented (``thinking'') models. Such capabilities are key to unlocking a number of important applications. One such application is Deep Research (DR), which requires extensive search and reasoning over many sources. Our work in this paper focuses on the development of native Autonomous Single-Agent models for DR featuring minimal web crawling and Python tool integration. Unlike multi-agent systems, where agents take up pre-defined roles and are told what to do at each step in a static workflow, an autonomous single-agent determines its next action dynamically based on context, without manual directive. While prior work has proposed training recipes for base or instruction-tuned LLMs, we focus on continual reinforcement learning (RL) of reasoning-optimized models to further enhance agentic skills while preserving reasoning ability. Towards this end, we propose a simple RL recipe with entirely synthetic data, which we apply to various open-source LLMs. Our best variant SFR-DR-20B achieves up to 28.7% on Humanity's Last Exam benchmark. In addition, we conduct key analysis experiments to provide more insights into our methodologies.
comment: Technical Report
♻ ☆ Language Models Might Not Understand You: Evaluating Theory of Mind via Story Prompting
We introduce $\texttt{StorySim}$, a programmable framework for synthetically generating stories to evaluate the theory of mind (ToM) and world modeling (WM) capabilities of large language models (LLMs). Unlike prior benchmarks that may suffer from contamination in pretraining data, $\texttt{StorySim}$ produces novel, compositional story prompts anchored by a highly controllable $\texttt{Storyboard}$, enabling precise manipulation of character perspectives and events. We use this framework to design first- and second-order ToM tasks alongside WM tasks that control for the ability to track and model mental states. Our experiments across a suite of state-of-the-art LLMs reveal that most models perform better on WM tasks than ToM tasks, and that models tend to perform better reasoning with humans compared to inanimate objects. Additionally, our framework enabled us to find evidence of heuristic behavior such as recency bias and an over-reliance on earlier events in the story. All code for generating data and evaluations is freely available.
comment: 12 pages, 11 figures
♻ ☆ RSCC: A Large-Scale Remote Sensing Change Caption Dataset for Disaster Events
Remote sensing is critical for disaster monitoring, yet existing datasets lack temporal image pairs and detailed textual annotations. While single-snapshot imagery dominates current resources, it fails to capture dynamic disaster impacts over time. To address this gap, we introduce the Remote Sensing Change Caption (RSCC) dataset, a large-scale benchmark comprising 62,315 pre-/post-disaster image pairs (spanning earthquakes, floods, wildfires, and more) paired with rich, human-like change captions. By bridging the temporal and semantic divide in remote sensing data, RSCC enables robust training and evaluation of vision-language models for disaster-aware bi-temporal understanding. Our results highlight RSCC's ability to facilitate detailed disaster-related analysis, paving the way for more accurate, interpretable, and scalable vision-language applications in remote sensing. Code and dataset are available at https://github.com/Bili-Sakura/RSCC.
comment: under review
♻ ☆ The Model Hears You: Audio Language Model Deployments Should Consider the Principle of Least Privilege
The latest Audio Language Models (Audio LMs) process speech directly instead of relying on a separate transcription step. This shift preserves detailed information, such as intonation or the presence of multiple speakers, that would otherwise be lost in transcription. However, it also introduces new safety risks, including the potential misuse of speaker identity cues and other sensitive vocal attributes, which could have legal implications. In this paper, we urge a closer examination of how these models are built and deployed. Our experiments show that end-to-end modeling, compared with cascaded pipelines, creates socio-technical safety risks such as identity inference, biased decision-making, and emotion detection. This raises concerns about whether Audio LMs store voiceprints and function in ways that create uncertainty under existing legal regimes. We then argue that the Principle of Least Privilege should be considered to guide the development and deployment of these models. Specifically, evaluations should assess (1) the privacy and safety risks associated with end-to-end modeling; and (2) the appropriate scope of information access. Finally, we highlight related gaps in current audio LM benchmarks and identify key open research questions, both technical and policy-related, that must be addressed to enable the responsible deployment of end-to-end Audio LMs.
comment: Published at AIES 2025
♻ ☆ Recursive Training Loops in LLMs: How training data properties modulate distribution shift in generated data? EMNLP 2025
Large language models (LLMs) are increasingly used in the creation of online content, creating feedback loops as subsequent generations of models will be trained on this synthetic data. Such loops were shown to lead to distribution shifts - models misrepresenting the true underlying distributions of human data (also called model collapse). However, how human data properties affect such shifts remains poorly understood. In this paper, we provide the first empirical examination of the effect of such properties on the outcome of recursive training. We first confirm that using different human datasets leads to distribution shifts of different magnitudes. Through exhaustive manipulation of dataset properties combined with regression analyses, we then identify a set of properties predicting distribution shift magnitudes. Lexical diversity is found to amplify these shifts, while semantic diversity and data quality mitigate them. Furthermore, we find that these influences are highly modular: data scrapped from a given internet domain has little influence on the content generated for another domain. Finally, experiments on political bias reveal that human data properties affect whether the initial bias will be amplified or reduced. Overall, our results portray a novel view, where different parts of internet may undergo different types of distribution shift.
comment: Accepted to EMNLP 2025 (Oral)
♻ ☆ Self-Correcting Decoding with Generative Feedback for Mitigating Hallucinations in Large Vision-Language Models ICLR 2025
While recent Large Vision-Language Models (LVLMs) have shown remarkable performance in multi-modal tasks, they are prone to generating hallucinatory text responses that do not align with the given visual input, which restricts their practical applicability in real-world scenarios. In this work, inspired by the observation that the text-to-image generation process is the inverse of image-conditioned response generation in LVLMs, we explore the potential of leveraging text-to-image generative models to assist in mitigating hallucinations in LVLMs. We discover that generative models can offer valuable self-feedback for mitigating hallucinations at both the response and token levels. Building on this insight, we introduce self-correcting Decoding with Generative Feedback (DeGF), a novel training-free algorithm that incorporates feedback from text-to-image generative models into the decoding process to effectively mitigate hallucinations in LVLMs. Specifically, DeGF generates an image from the initial response produced by LVLMs, which acts as an auxiliary visual reference and provides self-feedback to verify and correct the initial response through complementary or contrastive decoding. Extensive experimental results validate the effectiveness of our approach in mitigating diverse types of hallucinations, consistently surpassing state-of-the-art methods across six benchmarks. Code is available at https://github.com/zhangce01/DeGF.
comment: Accepted by ICLR 2025. Project page: https://zhangce01.github.io/DeGF/
♻ ☆ Mind the Value-Action Gap: Do LLMs Act in Alignment with Their Values? EMNLP 2025
Existing research primarily evaluates the values of LLMs by examining their stated inclinations towards specific values. However, the "Value-Action Gap," a phenomenon rooted in environmental and social psychology, reveals discrepancies between individuals' stated values and their actions in real-world contexts. To what extent do LLMs exhibit a similar gap between their stated values and their actions informed by those values? This study introduces ValueActionLens, an evaluation framework to assess the alignment between LLMs' stated values and their value-informed actions. The framework encompasses the generation of a dataset comprising 14.8k value-informed actions across twelve cultures and eleven social topics, and two tasks to evaluate how well LLMs' stated value inclinations and value-informed actions align across three different alignment measures. Extensive experiments reveal that the alignment between LLMs' stated values and actions is sub-optimal, varying significantly across scenarios and models. Analysis of misaligned results identifies potential harms from certain value-action gaps. To predict the value-action gaps, we also uncover that leveraging reasoned explanations improves performance. These findings underscore the risks of relying solely on the LLMs' stated values to predict their behaviors and emphasize the importance of context-aware evaluations of LLM values and value-action gaps.
comment: EMNLP 2025 Main Paper
Machine Learning 180
☆ CAViAR: Critic-Augmented Video Agentic Reasoning
Video understanding has seen significant progress in recent years, with models' performance on perception from short clips continuing to rise. Yet, multiple recent benchmarks, such as LVBench, Neptune, and ActivityNet-RTL, show performance wanes for tasks requiring complex reasoning on videos as queries grow more complex and videos grow longer. In this work, we ask: can existing perception capabilities be leveraged to successfully perform more complex video reasoning? In particular, we develop a large language model agent given access to video modules as subagents or tools. Rather than following a fixed procedure to solve queries as in previous work such as Visual Programming, ViperGPT, and MoReVQA, the agent uses the results of each call to a module to determine subsequent steps. Inspired by work in the textual reasoning domain, we introduce a critic to distinguish between instances of successful and unsuccessful sequences from the agent. We show that the combination of our agent and critic achieve strong performance on the previously-mentioned datasets.
☆ Theoretical Analysis on how Learning Rate Warmup Accelerates Convergence
Learning rate warmup is a popular and practical technique in training large-scale deep neural networks. Despite the huge success in practice, the theoretical advantages of this strategy of gradually increasing the learning rate at the beginning of the training process have not been fully understood. To resolve this gap between theory and practice, we first propose a novel family of generalized smoothness assumptions, and validate its applicability both theoretically and empirically. Under the novel smoothness assumption, we study the convergence properties of gradient descent (GD) in both deterministic and stochastic settings. It is shown that learning rate warmup consistently accelerates GD, and GD with warmup can converge at most $\Theta(T)$ times faster than with a non-increasing learning rate schedule in some specific cases, providing insights into the benefits of this strategy from an optimization theory perspective.
☆ Customizing the Inductive Biases of Softmax Attention using Structured Matrices ICML 2025
The core component of attention is the scoring function, which transforms the inputs into low-dimensional queries and keys and takes the dot product of each pair. While the low-dimensional projection improves efficiency, it causes information loss for certain tasks that have intrinsically high-dimensional inputs. Additionally, attention uses the same scoring function for all input pairs, without imposing a distance-dependent compute bias for neighboring tokens in the sequence. In this work, we address these shortcomings by proposing new scoring functions based on computationally efficient structured matrices with high ranks, including Block Tensor-Train (BTT) and Multi-Level Low Rank (MLR) matrices. On in-context regression tasks with high-dimensional inputs, our proposed scoring functions outperform standard attention for any fixed compute budget. On language modeling, a task that exhibits locality patterns, our MLR-based attention method achieves improved scaling laws compared to both standard attention and variants of sliding window attention. Additionally, we show that both BTT and MLR fall under a broader family of efficient structured matrices capable of encoding either full-rank or distance-dependent compute biases, thereby addressing significant shortcomings of standard attention. Finally, we show that MLR attention has promising results for long-range time-series forecasting.
comment: ICML 2025. Code available at https://github.com/YilunKuang/structured-attention
☆ ACE and Diverse Generalization via Selective Disagreement
Deep neural networks are notoriously sensitive to spurious correlations - where a model learns a shortcut that fails out-of-distribution. Existing work on spurious correlations has often focused on incomplete correlations,leveraging access to labeled instances that break the correlation. But in cases where the spurious correlations are complete, the correct generalization is fundamentally \textit{underspecified}. To resolve this underspecification, we propose learning a set of concepts that are consistent with training data but make distinct predictions on a subset of novel unlabeled inputs. Using a self-training approach that encourages \textit{confident} and \textit{selective} disagreement, our method ACE matches or outperforms existing methods on a suite of complete-spurious correlation benchmarks, while remaining robust to incomplete spurious correlations. ACE is also more configurable than prior approaches, allowing for straight-forward encoding of prior knowledge and principled unsupervised model selection. In an early application to language-model alignment, we find that ACE achieves competitive performance on the measurement tampering detection benchmark \textit{without} access to untrusted measurements. While still subject to important limitations, ACE represents significant progress towards overcoming underspecification.
☆ RaC: Robot Learning for Long-Horizon Tasks by Scaling Recovery and Correction
Modern paradigms for robot imitation train expressive policy architectures on large amounts of human demonstration data. Yet performance on contact-rich, deformable-object, and long-horizon tasks plateau far below perfect execution, even with thousands of expert demonstrations. This is due to the inefficiency of existing ``expert'' data collection procedures based on human teleoperation. To address this issue, we introduce RaC, a new phase of training on human-in-the-loop rollouts after imitation learning pre-training. In RaC, we fine-tune a robotic policy on human intervention trajectories that illustrate recovery and correction behaviors. Specifically, during a policy rollout, human operators intervene when failure appears imminent, first rewinding the robot back to a familiar, in-distribution state and then providing a corrective segment that completes the current sub-task. Training on this data composition expands the robotic skill repertoire to include retry and adaptation behaviors, which we show are crucial for boosting both efficiency and robustness on long-horizon tasks. Across three real-world bimanual control tasks: shirt hanging, airtight container lid sealing, takeout box packing, and a simulated assembly task, RaC outperforms the prior state-of-the-art using 10$\times$ less data collection time and samples. We also show that RaC enables test-time scaling: the performance of the trained RaC policy scales linearly in the number of recovery maneuvers it exhibits. Videos of the learned policy are available at https://rac-scaling-robot.github.io/.
☆ Bringing Multi-Modal Multi-Task Federated Foundation Models to Education Domain: Prospects and Challenges
Multi-modal multi-task (M3T) foundation models (FMs) have recently shown transformative potential in artificial intelligence, with emerging applications in education. However, their deployment in real-world educational settings is hindered by privacy regulations, data silos, and limited domain-specific data availability. We introduce M3T Federated Foundation Models (FedFMs) for education: a paradigm that integrates federated learning (FL) with M3T FMs to enable collaborative, privacy-preserving training across decentralized institutions while accommodating diverse modalities and tasks. Subsequently, this position paper aims to unveil M3T FedFMs as a promising yet underexplored approach to the education community, explore its potentials, and reveal its related future research directions. We outline how M3T FedFMs can advance three critical pillars of next-generation intelligent education systems: (i) privacy preservation, by keeping sensitive multi-modal student and institutional data local; (ii) personalization, through modular architectures enabling tailored models for students, instructors, and institutions; and (iii) equity and inclusivity, by facilitating participation from underrepresented and resource-constrained entities. We finally identify various open research challenges, including studying of (i) inter-institution heterogeneous privacy regulations, (ii) the non-uniformity of data modalities' characteristics, (iii) the unlearning approaches for M3T FedFMs, (iv) the continual learning frameworks for M3T FedFMs, and (v) M3T FedFM model interpretability, which must be collectively addressed for practical deployment.
comment: 12 pages, 2 figures
☆ One Model for All Tasks: Leveraging Efficient World Models in Multi-Task Planning
In heterogeneous multi-task learning, tasks not only exhibit diverse observation and action spaces but also vary substantially in intrinsic difficulty. While conventional multi-task world models like UniZero excel in single-task settings, we find that when handling large-scale heterogeneous environments, gradient conflicts and the loss of model plasticity often constrain their sample and computational efficiency. In this work, we address these challenges from two perspectives: the single learning iteration and the overall learning process. First, we investigate the impact of key design spaces on extending UniZero to multi-task planning. We find that a Mixture-of-Experts (MoE) architecture provides the most substantial performance gains by mitigating gradient conflicts, leading to our proposed model, \textit{ScaleZero}. Second, to dynamically balance the computational load across the learning process, we introduce an online, LoRA-based \textit{dynamic parameter scaling} (DPS) strategy. This strategy progressively integrates LoRA adapters in response to task-specific progress, enabling adaptive knowledge retention and parameter expansion. Empirical evaluations on standard benchmarks such as Atari, DMControl (DMC), and Jericho demonstrate that ScaleZero, relying exclusively on online reinforcement learning with one model, attains performance on par with specialized single-task baselines. Furthermore, when augmented with our dynamic parameter scaling strategy, our method achieves competitive performance while requiring only 80\% of the single-task environment interaction steps. These findings underscore the potential of ScaleZero for effective large-scale multi-task learning. Our code is available at \textcolor{magenta}{https://github.com/opendilab/LightZero}.
comment: 43 pages, 19 figures
☆ Guided Reasoning in LLM-Driven Penetration Testing Using Structured Attack Trees
Recent advances in Large Language Models (LLMs) have driven interest in automating cybersecurity penetration testing workflows, offering the promise of faster and more consistent vulnerability assessment for enterprise systems. Existing LLM agents for penetration testing primarily rely on self-guided reasoning, which can produce inaccurate or hallucinated procedural steps. As a result, the LLM agent may undertake unproductive actions, such as exploiting unused software libraries or generating cyclical responses that repeat prior tactics. In this work, we propose a guided reasoning pipeline for penetration testing LLM agents that incorporates a deterministic task tree built from the MITRE ATT&CK Matrix, a proven penetration testing kll chain, to constrain the LLM's reaoning process to explicitly defined tactics, techniques, and procedures. This anchors reasoning in proven penetration testing methodologies and filters out ineffective actions by guiding the agent towards more productive attack procedures. To evaluate our approach, we built an automated penetration testing LLM agent using three LLMs (Llama-3-8B, Gemini-1.5, and GPT-4) and applied it to navigate 10 HackTheBox cybersecurity exercises with 103 discrete subtasks representing real-world cyberattack scenarios. Our proposed reasoning pipeline guided the LLM agent through 71.8\%, 72.8\%, and 78.6\% of subtasks using Llama-3-8B, Gemini-1.5, and GPT-4, respectively. Comparatively, the state-of-the-art LLM penetration testing tool using self-guided reasoning completed only 13.5\%, 16.5\%, and 75.7\% of subtasks and required 86.2\%, 118.7\%, and 205.9\% more model queries. This suggests that incorporating a deterministic task tree into LLM reasoning pipelines can enhance the accuracy and efficiency of automated cybersecurity assessments
☆ Smart Fast Finish: Preventing Overdelivery via Daily Budget Pacing at DoorDash
We present a budget pacing feature called Smart Fast Finish (SFF). SFF builds upon the industry standard Fast Finish (FF) feature in budget pacing systems that depletes remaining advertising budget as quickly as possible towards the end of some fixed time period. SFF dynamically updates system parameters such as start time and throttle rate depending on historical ad-campaign data. SFF is currently in use at DoorDash, one of the largest delivery platforms in the US, and is part of its budget pacing system. We show via online budget-split experimentation data and offline simulations that SFF is a robust solution for overdelivery mitigation when pacing budget.
☆ Accelerating Local AI on Consumer GPUs: A Hardware-Aware Dynamic Strategy for YOLOv10s
As local AI grows in popularity, there is a critical gap between the benchmark performance of object detectors and their practical viability on consumer-grade hardware. While models like YOLOv10s promise real-time speeds, these metrics are typically achieved on high-power, desktop-class GPUs. This paper reveals that on resource-constrained systems, such as laptops with RTX 4060 GPUs, performance is not compute-bound but is instead dominated by system-level bottlenecks, as illustrated by a simple bottleneck test. To overcome this hardware-level constraint, we introduce a Two-Pass Adaptive Inference algorithm, a model-independent approach that requires no architectural changes. This study mainly focuses on adaptive inference strategies and undertakes a comparative analysis of architectural early-exit and resolution-adaptive routing, highlighting their respective trade-offs within a unified evaluation framework. The system uses a fast, low-resolution pass and only escalates to a high-resolution model pass when detection confidence is low. On a 5000-image COCO dataset, our method achieves a 1.85x speedup over a PyTorch Early-Exit baseline, with a modest mAP loss of 5.51%. This work provides a practical and reproducible blueprint for deploying high-performance, real-time AI on consumer-grade devices by shifting the focus from pure model optimization to hardware-aware inference strategies that maximize throughput.
comment: 6 pages, 7 figures
☆ GENUINE: Graph Enhanced Multi-level Uncertainty Estimation for Large Language Models EMNLP 2025
Uncertainty estimation is essential for enhancing the reliability of Large Language Models (LLMs), particularly in high-stakes applications. Existing methods often overlook semantic dependencies, relying on token-level probability measures that fail to capture structural relationships within the generated text. We propose GENUINE: Graph ENhanced mUlti-level uncertaINty Estimation for Large Language Models, a structure-aware framework that leverages dependency parse trees and hierarchical graph pooling to refine uncertainty quantification. By incorporating supervised learning, GENUINE effectively models semantic and structural relationships, improving confidence assessments. Extensive experiments across NLP tasks show that GENUINE achieves up to 29% higher AUROC than semantic entropy-based approaches and reduces calibration errors by over 15%, demonstrating the effectiveness of graph-based uncertainty modeling. The code is available at https://github.com/ODYSSEYWT/GUQ.
comment: Accepted by EMNLP 2025
☆ Uncovering Scaling Laws for Large Language Models via Inverse Problems EMNLP
Large Language Models (LLMs) are large-scale pretrained models that have achieved remarkable success across diverse domains. These successes have been driven by unprecedented complexity and scale in both data and computations. However, due to the high costs of training such models, brute-force trial-and-error approaches to improve LLMs are not feasible. Inspired by the success of inverse problems in uncovering fundamental scientific laws, this position paper advocates that inverse problems can also efficiently uncover scaling laws that guide the building of LLMs to achieve the desirable performance with significantly better cost-effectiveness.
comment: Accepted at EMNLP Findings 2025
☆ Bio-KGvec2go: Serving up-to-date Dynamic Biomedical Knowledge Graph Embeddings ISWC
Knowledge graphs and ontologies represent entities and their relationships in a structured way, having gained significance in the development of modern AI applications. Integrating these semantic resources with machine learning models often relies on knowledge graph embedding models to transform graph data into numerical representations. Therefore, pre-trained models for popular knowledge graphs and ontologies are increasingly valuable, as they spare the need to retrain models for different tasks using the same data, thereby helping to democratize AI development and enabling sustainable computing. In this paper, we present Bio-KGvec2go, an extension of the KGvec2go Web API, designed to generate and serve knowledge graph embeddings for widely used biomedical ontologies. Given the dynamic nature of these ontologies, Bio-KGvec2go also supports regular updates aligned with ontology version releases. By offering up-to-date embeddings with minimal computational effort required from users, Bio-KGvec2go facilitates efficient and timely biomedical research.
comment: Accepted at ISWC Poster and Demo Track 2025
☆ A Modular Algorithm for Non-Stationary Online Convex-Concave Optimization
This paper investigates the problem of Online Convex-Concave Optimization, which extends Online Convex Optimization to two-player time-varying convex-concave games. The goal is to minimize the dynamic duality gap (D-DGap), a critical performance measure that evaluates players' strategies against arbitrary comparator sequences. Existing algorithms fail to deliver optimal performance, particularly in stationary or predictable environments. To address this, we propose a novel modular algorithm with three core components: an Adaptive Module that dynamically adjusts to varying levels of non-stationarity, a Multi-Predictor Aggregator that identifies the best predictor among multiple candidates, and an Integration Module that effectively combines their strengths. Our algorithm achieves a minimax optimal D-DGap upper bound, up to a logarithmic factor, while also ensuring prediction error-driven D-DGap bounds. The modular design allows for the seamless replacement of components that regulate adaptability to dynamic environments, as well as the incorporation of components that integrate ``side knowledge'' from multiple predictors. Empirical results further demonstrate the effectiveness and adaptability of the proposed method.
comment: Earlier Version: https://openreview.net/forum?id=WIerHtNyKr
☆ Feasibility of In-Ear Single-Channel ExG for Wearable Sleep~Monitoring in Real-World Settings
Automatic sleep staging typically relies on gold-standard EEG setups, which are accurate but obtrusive and impractical for everyday use outside sleep laboratories. This limits applicability in real-world settings, such as home environments, where continuous, long-term monitoring is needed. Detecting sleep onset is particularly relevant, enabling consumer applications (e.g. automatically pausing media playback when the user falls asleep). Recent research has shown correlations between in-ear EEG and full-scalp EEG for various phenomena, suggesting wearable, in-ear devices could allow unobtrusive sleep monitoring. We investigated the feasibility of using single-channel in-ear electrophysiological (ExG) signals for automatic sleep staging in a wearable device by conducting a sleep study with 11~participants (mean age: 24), using a custom earpiece with a dry eartip electrode (D\"atwyler SoftPulse) as a measurement electrode in one ear and a reference in the other. Ground truth sleep stages were obtained from an Apple Watch Ultra, validated for sleep staging. Our system achieved 90.5% accuracy for binary sleep detection (Awake vs. Asleep) and 65.1% accuracy for four-class staging (Awake, REM, Core, Deep) using leave-one-subject-out validation. These findings demonstrate the potential of in-ear electrodes as a low-effort, comfortable approach to sleep monitoring, with applications such as stopping podcasts when users fall asleep.
☆ A Survey of Graph Neural Networks for Drug Discovery: Recent Developments and Challenges
Graph Neural Networks (GNNs) have gained traction in the complex domain of drug discovery because of their ability to process graph-structured data such as drug molecule models. This approach has resulted in a myriad of methods and models in published literature across several categories of drug discovery research. This paper covers the research categories comprehensively with recent papers, namely molecular property prediction, including drug-target binding affinity prediction, drug-drug interaction study, microbiome interaction prediction, drug repositioning, retrosynthesis, and new drug design, and provides guidance for future work on GNNs for drug discovery.
comment: 16 pages, 1 figure
☆ Leveraging Support Vector Regression for Outcome Prediction in Personalized Ultra-fractionated Stereotactic Adaptive Radiotherapy
Personalized ultra-fractionated stereotactic adaptive radiotherapy (PULSAR) is a novel treatment that delivers radiation in pulses of protracted intervals. Accurate prediction of gross tumor volume (GTV) changes through regression models has substantial prognostic value. This study aims to develop a multi-omics based support vector regression (SVR) model for predicting GTV change. A retrospective cohort of 39 patients with 69 brain metastases was analyzed, based on radiomics (MRI images) and dosiomics (dose maps) features. Delta features were computed to capture relative changes between two time points. A feature selection pipeline using least absolute shrinkage and selection operator (Lasso) algorithm with weight- or frequency-based ranking criterion was implemented. SVR models with various kernels were evaluated using the coefficient of determination (R2) and relative root mean square error (RRMSE). Five-fold cross-validation with 10 repeats was employed to mitigate the limitation of small data size. Multi-omics models that integrate radiomics, dosiomics, and their delta counterparts outperform individual-omics models. Delta-radiomic features play a critical role in enhancing prediction accuracy relative to features at single time points. The top-performing model achieves an R2 of 0.743 and an RRMSE of 0.022. The proposed multi-omics SVR model shows promising performance in predicting continuous change of GTV. It provides a more quantitative and personalized approach to assist patient selection and treatment adjustment in PULSAR.
☆ Addressing the Cold-Start Problem for Personalized Combination Drug Screening
Personalizing combination therapies in oncology requires navigating an immense space of possible drug and dose combinations, a task that remains largely infeasible through exhaustive experimentation. Recent developments in patient-derived models have enabled high-throughput ex vivo screening, but the number of feasible experiments is limited. Further, a tight therapeutic window makes gathering molecular profiling information (e.g. RNA-seq) impractical as a means of guiding drug response prediction. This leads to a challenging cold-start problem: how do we select the most informative combinations to test early, when no prior information about the patient is available? We propose a strategy that leverages a pretrained deep learning model built on historical drug response data. The model provides both embeddings for drug combinations and dose-level importance scores, enabling a principled selection of initial experiments. We combine clustering of drug embeddings to ensure functional diversity with a dose-weighting mechanism that prioritizes doses based on their historical informativeness. Retrospective simulations on large-scale drug combination datasets show that our method substantially improves initial screening efficiency compared to baselines, offering a viable path for more effective early-phase decision-making in personalized combination drug screens.
☆ Predicting person-level injury severity using crash narratives: A balanced approach with roadway classification and natural language process techniques
Predicting injuries and fatalities in traffic crashes plays a critical role in enhancing road safety, improving emergency response, and guiding public health interventions. This study investigates the added value of unstructured crash narratives (written by police officers at the scene) when combined with structured crash data to predict injury severity. Two widely used Natural Language Processing (NLP) techniques, Term Frequency-Inverse Document Frequency (TF-IDF) and Word2Vec, were employed to extract semantic meaning from the narratives, and their effectiveness was compared. To address the challenge of class imbalance, a K-Nearest Neighbors-based oversampling method was applied to the training data prior to modeling. The dataset consists of crash records from Kentucky spanning 2019 to 2023. To account for roadway heterogeneity, three road classification schemes were used: (1) eight detailed functional classes (e.g., Urban Two-Lane, Rural Interstate, Urban Multilane Divided), (2) four broader paired categories (e.g., Urban vs. Rural, Freeway vs. Non-Freeway), and (3) a unified dataset without classification. A total of 102 machine learning models were developed by combining structured features and narrative-based features using the two NLP techniques alongside three ensemble algorithms: XGBoost, Random Forest, and AdaBoost. Results demonstrate that models incorporating narrative data consistently outperform those relying solely on structured data. Among all combinations, TF-IDF coupled with XGBoost yielded the most accurate predictions in most subgroups. The findings highlight the power of integrating textual and structured crash information to enhance person-level injury prediction. This work offers a practical and adaptable framework for transportation safety professionals to improve crash severity modeling, guide policy decisions, and design more effective countermeasures.
☆ Small Open Models Achieve Near Parity with Large Models in Low Resource Literary Translation at a Fraction of the Cost
Literary translation has recently gained attention as a distinct and complex task in machine translation research. However, the translation by small open models remains an open problem. We contribute to this ongoing research by introducing TINYFABULIST TRANSLATION FRAMEWORK (TF2), a unified framework for dataset creation, fine tuning, and evaluation in English-Romanian literary translations, centred on the creation and open release of both a compact, fine tuned language model (TF2-12B) and large scale synthetic parallel datasets (DS-TF2-EN-RO-3M and DS-TF2-EN-RO-15K). Building on DS-TF1-EN-3M (TF1), the largest collection of synthetic English fables to date, we address the need for rich, high quality literary datasets in low resource languages such as Romanian. Our pipeline first generates 15k high quality Romanian references from the TF1 pool using a high performing LLM. We then apply a two stage fine tuning process to a 12B parameter open weight model: (i) instruction tuning to capture genre specific narrative style, and (ii) adapter compression for efficient deployment. Evaluation combines corpus level BLEU and a five dimension LLM based rubric (accuracy, fluency, coherence, style, cultural adaptation) to provide a nuanced assessment of translation quality. Results show that our fine tuned model achieves fluency and adequacy competitive with top performing large proprietary models, while being open, accessible, and significantly more cost effective. Alongside the fine tuned model and both datasets, we publicly release all scripts and evaluation prompts. TF2 thus provides an end-to-end, reproducible pipeline for research on cost efficient translation, cross lingual narrative generation, and the broad adoption of open models for culturally significant literary content in low resource settings.
comment: 25 pages, 8 figures, includes datasets and models released on Hugging Face
☆ Forecasting Russian Equipment Losses Using Time Series and Deep Learning Models
This study applies a range of forecasting techniques,including ARIMA, Prophet, Long Short Term Memory networks (LSTM), Temporal Convolutional Networks (TCN), and XGBoost, to model and predict Russian equipment losses during the ongoing war in Ukraine. Drawing on daily and monthly open-source intelligence (OSINT) data from WarSpotting, we aim to assess trends in attrition, evaluate model performance, and estimate future loss patterns through the end of 2025. Our findings show that deep learning models, particularly TCN and LSTM, produce stable and consistent forecasts, especially under conditions of high temporal granularity. By comparing different model architectures and input structures, this study highlights the importance of ensemble forecasting in conflict modeling, and the value of publicly available OSINT data in quantifying material degradation over time.
☆ Nuclear Data Adjustment for Nonlinear Applications in the OECD/NEA WPNCS SG14 Benchmark -- A Bayesian Inverse UQ-based Approach for Data Assimilation
The Organization for Economic Cooperation and Development (OECD) Working Party on Nuclear Criticality Safety (WPNCS) proposed a benchmark exercise to assess the performance of current nuclear data adjustment techniques applied to nonlinear applications and experiments with low correlation to applications. This work introduces Bayesian Inverse Uncertainty Quantification (IUQ) as a method for nuclear data adjustments in this benchmark, and compares IUQ to the more traditional methods of Generalized Linear Least Squares (GLLS) and Monte Carlo Bayes (MOCABA). Posterior predictions from IUQ showed agreement with GLLS and MOCABA for linear applications. When comparing GLLS, MOCABA, and IUQ posterior predictions to computed model responses using adjusted parameters, we observe that GLLS predictions fail to replicate computed response distributions for nonlinear applications, while MOCABA shows near agreement, and IUQ uses computed model responses directly. We also discuss observations on why experiments with low correlation to applications can be informative to nuclear data adjustments and identify some properties useful in selecting experiments for inclusion in nuclear data adjustment. Performance in this benchmark indicates potential for Bayesian IUQ in nuclear data adjustments.
comment: 31 pages, 9 tables, 8 figures, submitted to Nuclear Science and Engineering, included in proceedings of International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
☆ Decentralized Online Riemannian Optimization Beyond Hadamard Manifolds
We study decentralized online Riemannian optimization over manifolds with possibly positive curvature, going beyond the Hadamard manifold setting. Decentralized optimization techniques rely on a consensus step that is well understood in Euclidean spaces because of their linearity. However, in positively curved Riemannian spaces, a main technical challenge is that geodesic distances may not induce a globally convex structure. In this work, we first analyze a curvature-aware Riemannian consensus step that enables a linear convergence beyond Hadamard manifolds. Building on this step, we establish a $O(\sqrt{T})$ regret bound for the decentralized online Riemannian gradient descent algorithm. Then, we investigate the two-point bandit feedback setup, where we employ computationally efficient gradient estimators using smoothing techniques, and we demonstrate the same $O(\sqrt{T})$ regret bound through the subconvexity analysis of smoothed objectives.
☆ Quantum Computing for Large-scale Network Optimization: Opportunities and Challenges
The complexity of large-scale 6G-and-beyond networks demands innovative approaches for multi-objective optimization over vast search spaces, a task often intractable. Quantum computing (QC) emerges as a promising technology for efficient large-scale optimization. We present our vision of leveraging QC to tackle key classes of problems in future mobile networks. By analyzing and identifying common features, particularly their graph-centric representation, we propose a unified strategy involving QC algorithms. Specifically, we outline a methodology for optimization using quantum annealing as well as quantum reinforcement learning. Additionally, we discuss the main challenges that QC algorithms and hardware must overcome to effectively optimize future networks.
comment: 7 pages, 4 figures
☆ Toward Quantum Utility in Finance: A Robust Data-Driven Algorithm for Asset Clustering
Clustering financial assets based on return correlations is a fundamental task in portfolio optimization and statistical arbitrage. However, classical clustering methods often fall short when dealing with signed correlation structures, typically requiring lossy transformations and heuristic assumptions such as a fixed number of clusters. In this work, we apply the Graph-based Coalition Structure Generation algorithm (GCS-Q) to directly cluster signed, weighted graphs without relying on such transformations. GCS-Q formulates each partitioning step as a QUBO problem, enabling it to leverage quantum annealing for efficient exploration of exponentially large solution spaces. We validate our approach on both synthetic and real-world financial data, benchmarking against state-of-the-art classical algorithms such as SPONGE and k-Medoids. Our experiments demonstrate that GCS-Q consistently achieves higher clustering quality, as measured by Adjusted Rand Index and structural balance penalties, while dynamically determining the number of clusters. These results highlight the practical utility of near-term quantum computing for graph-based unsupervised learning in financial applications.
comment: 9 pages, 2 figures, International Quantum Engineering conference and exhibition (QUEST-IS 2025)
☆ Spectral and Rhythm Feature Performance Evaluation for Category and Class Level Audio Classification with Deep Convolutional Neural Networks
Next to decision tree and k-nearest neighbours algorithms deep convolutional neural networks (CNNs) are widely used to classify audio data in many domains like music, speech or environmental sounds. To train a specific CNN various spectral and rhythm features like mel-scaled spectrograms, mel-frequency cepstral coefficients (MFCC), cyclic tempograms, short-time Fourier transform (STFT) chromagrams, constant-Q transform (CQT) chromagrams and chroma energy normalized statistics (CENS) chromagrams can be used as digital image input data for the neural network. The performance of these spectral and rhythm features for audio category level as well as audio class level classification is investigated in detail with a deep CNN and the ESC-50 dataset with 2,000 labeled environmental audio recordings using an end-to-end deep learning pipeline. The evaluated metrics accuracy, precision, recall and F1 score for multiclass classification clearly show that the mel-scaled spectrograms and the mel-frequency cepstral coefficients (MFCC) perform significantly better then the other spectral and rhythm features investigated in this research for audio classification tasks using deep CNNs.
☆ MoE-Compression: How the Compression Error of Experts Affects the Inference Accuracy of MoE Model?
With the widespread application of Mixture of Experts (MoE) reasoning models in the field of LLM learning, efficiently serving MoE models under limited GPU memory constraints has emerged as a significant challenge. Offloading the non-activated experts to main memory has been identified as an efficient approach to address such a problem, while it brings the challenges of transferring the expert between the GPU memory and main memory. We need to explore an efficient approach to compress the expert and analyze how the compression error affects the inference performance. To bridge this gap, we propose employing error-bounded lossy compression algorithms (such as SZ3 and CuSZp) to compress non-activated experts, thereby reducing data transfer overhead during MoE inference. We conduct extensive experiments across various benchmarks and present a comprehensive analysis of how compression-induced errors in different experts affect overall inference accuracy. The results indicate that experts in the shallow layers, which are primarily responsible for the attention mechanism and the transformation of input tokens into vector representations, exhibit minimal degradation in inference accuracy when subjected to bounded errors. In contrast, errors in the middle-layer experts, which are central to model reasoning, significantly impair inference accuracy. Interestingly, introducing bounded errors in the deep-layer experts, which are mainly responsible for instruction following and output integration, can sometimes lead to improvements in inference accuracy.
☆ IBN: An Interpretable Bidirectional-Modeling Network for Multivariate Time Series Forecasting with Variable Missing
Multivariate time series forecasting (MTSF) often faces challenges from missing variables, which hinder conventional spatial-temporal graph neural networks in modeling inter-variable correlations. While GinAR addresses variable missing using attention-based imputation and adaptive graph learning for the first time, it lacks interpretability and fails to capture more latent temporal patterns due to its simple recursive units (RUs). To overcome these limitations, we propose the Interpretable Bidirectional-modeling Network (IBN), integrating Uncertainty-Aware Interpolation (UAI) and Gaussian kernel-based Graph Convolution (GGCN). IBN estimates the uncertainty of reconstructed values using MC Dropout and applies an uncertainty-weighted strategy to mitigate high-risk reconstructions. GGCN explicitly models spatial correlations among variables, while a bidirectional RU enhances temporal dependency modeling. Extensive experiments show that IBN achieves state-of-the-art forecasting performance under various missing-rate scenarios, providing a more reliable and interpretable framework for MTSF with missing variables. Code is available at: https://github.com/zhangth1211/NICLab-IBN.
☆ BDPM: A Machine Learning-Based Feature Extractor for Parkinson's Disease Classification via Gut Microbiota Analysis
Background: Parkinson's disease remains a major neurodegenerative disorder with high misdiagnosis rates, primarily due to reliance on clinical rating scales. Recent studies have demonstrated a strong association between gut microbiota and Parkinson's disease, suggesting that microbial composition may serve as a promising biomarker. Although deep learning models based ongut microbiota show potential for early prediction, most approaches rely on single classifiers and often overlook inter-strain correlations or temporal dynamics. Therefore, there is an urgent need for more robust feature extraction methods tailored to microbiome data. Methods: We proposed BDPM (A Machine Learning-Based Feature Extractor for Parkinson's Disease Classification via Gut Microbiota Analysis). First, we collected gut microbiota profiles from 39 Parkinson's patients and their healthy spouses to identify differentially abundant taxa. Second, we developed an innovative feature selection framework named RFRE (Random Forest combined with Recursive Feature Elimination), integrating ecological knowledge to enhance biological interpretability. Finally, we designed a hybrid classification model to capture temporal and spatial patterns in microbiome data.
comment: 11 pages, 7 figures
☆ Building causation links in stochastic nonlinear systems from data
Causal relationships play a fundamental role in understanding the world around us. The ability to identify and understand cause-effect relationships is critical to making informed decisions, predicting outcomes, and developing effective strategies. However, deciphering causal relationships from observational data is a difficult task, as correlations alone may not provide definitive evidence of causality. In recent years, the field of machine learning (ML) has emerged as a powerful tool, offering new opportunities for uncovering hidden causal mechanisms and better understanding complex systems. In this work, we address the issue of detecting the intrinsic causal links of a large class of complex systems in the framework of the response theory in physics. We develop some theoretical ideas put forward by [1], and technically we use state-of-the-art ML techniques to build up models from data. We consider both linear stochastic and non-linear systems. Finally, we compute the asymptotic efficiency of the linear response based causal predictor in a case of large scale Markov process network of linear interactions.
comment: 24 pages, 11 Figures. Comments are welcome
☆ FUnc-SNE: A flexible, Fast, and Unconstrained algorithm for neighbour embeddings
Neighbour embeddings (NE) allow the representation of high dimensional datasets into lower dimensional spaces and are often used in data visualisation. In practice, accelerated approximations are employed to handle very large datasets. Accelerating NE is challenging, and two main directions have been explored: very coarse approximations based on negative sampling (as in UMAP) achieve high effective speed but may lack quality in the extracted structures; less coarse approximations, as used in FIt-SNE or BH-t-SNE, offer better structure preservation at the cost of speed, while also restricting the target dimensionality to 2 or 3, limiting NE to visualisation. In some variants, the precision of these costlier accelerations also enables finer-grained control on the extracted structures through dedicated hyperparameters. This paper proposes to bridge the gab between both approaches by introducing a novel way to accelerate NE, requiring a small number of computations per iteration while maintaining good fine-grained structure preservation and flexibility through hyperparameter tuning, without limiting the dimensionality of the embedding space. The method was designed for interactive exploration of data; as such, it abandons the traditional two-phased approach of other NE methods, allowing instantaneous visual feedback when changing hyperparameters, even when these control processes happening on the high-dimensional side of the computations. Experiments using a publicly available, GPU accelerated GUI integration of the method show promising results in terms of speed, flexibility in the structures getting extracted, and show potential uses in broader machine learning contexts with minimal algorithmic modifications. Central to this algorithm is a novel approach to iterative approximate nearest neighbour search, which shows promising results compared to nearest neighbour descent.
comment: Preprint submitted to Neurocomputing
☆ Nearest Neighbor Projection Removal Adversarial Training
Deep neural networks have exhibited impressive performance in image classification tasks but remain vulnerable to adversarial examples. Standard adversarial training enhances robustness but typically fails to explicitly address inter-class feature overlap, a significant contributor to adversarial susceptibility. In this work, we introduce a novel adversarial training framework that actively mitigates inter-class proximity by projecting out inter-class dependencies from adversarial and clean samples in the feature space. Specifically, our approach first identifies the nearest inter-class neighbors for each adversarial sample and subsequently removes projections onto these neighbors to enforce stronger feature separability. Theoretically, we demonstrate that our proposed logits correction reduces the Lipschitz constant of neural networks, thereby lowering the Rademacher complexity, which directly contributes to improved generalization and robustness. Extensive experiments across standard benchmarks including CIFAR-10, CIFAR-100, and SVHN show that our method demonstrates strong performance that is competitive with leading adversarial training techniques, highlighting significant achievements in both robust and clean accuracy. Our findings reveal the importance of addressing inter-class feature proximity explicitly to bolster adversarial robustness in DNNs.
☆ Graph-based Integrated Gradients for Explaining Graph Neural Networks
Integrated Gradients (IG) is a common explainability technique to address the black-box problem of neural networks. Integrated gradients assumes continuous data. Graphs are discrete structures making IG ill-suited to graphs. In this work, we introduce graph-based integrated gradients (GB-IG); an extension of IG to graphs. We demonstrate on four synthetic datasets that GB-IG accurately identifies crucial structural components of the graph used in classification tasks. We further demonstrate on three prevalent real-world graph datasets that GB-IG outperforms IG in highlighting important features for node classification tasks.
comment: Accepted at the Australasian Joint Conference on Artificial Intelligence (AJCAI) 2025
☆ Neural Proxies for Sound Synthesizers: Learning Perceptually Informed Preset Representations
Deep learning appears as an appealing solution for Automatic Synthesizer Programming (ASP), which aims to assist musicians and sound designers in programming sound synthesizers. However, integrating software synthesizers into training pipelines is challenging due to their potential non-differentiability. This work tackles this challenge by introducing a method to approximate arbitrary synthesizers. Specifically, we train a neural network to map synthesizer presets onto an audio embedding space derived from a pretrained model. This facilitates the definition of a neural proxy that produces compact yet effective representations, thereby enabling the integration of audio embedding loss into neural-based ASP systems for black-box synthesizers. We evaluate the representations derived by various pretrained audio models in the context of neural-based nASP and assess the effectiveness of several neural network architectures, including feedforward, recurrent, and transformer-based models, in defining neural proxies. We evaluate the proposed method using both synthetic and hand-crafted presets from three popular software synthesizers and assess its performance in a synthesizer sound matching downstream task. While the benefits of the learned representation are nuanced by resource requirements, encouraging results were obtained for all synthesizers, paving the way for future research into the application of synthesizer proxies for neural-based ASP systems.
comment: 17 pages, 4 figures, published in the Journal of the Audio Engineering Society
☆ Beyond Rebalancing: Benchmarking Binary Classifiers Under Class Imbalance Without Rebalancing Techniques
Class imbalance poses a significant challenge to supervised classification, particularly in critical domains like medical diagnostics and anomaly detection where minority class instances are rare. While numerous studies have explored rebalancing techniques to address this issue, less attention has been given to evaluating the performance of binary classifiers under imbalance when no such techniques are applied. Therefore, the goal of this study is to assess the performance of binary classifiers "as-is", without performing any explicit rebalancing. Specifically, we systematically evaluate the robustness of a diverse set of binary classifiers across both real-world and synthetic datasets, under progressively reduced minority class sizes, using one-shot and few-shot scenarios as baselines. Our approach also explores varying data complexities through synthetic decision boundary generation to simulate real-world conditions. In addition to standard classifiers, we include experiments using undersampling, oversampling strategies, and one-class classification (OCC) methods to examine their behavior under severe imbalance. The results confirm that classification becomes more difficult as data complexity increases and the minority class size decreases. While traditional classifiers deteriorate under extreme imbalance, advanced models like TabPFN and boosting-based ensembles retain relatively higher performance and better generalization compared to traditional classifiers. Visual interpretability and evaluation metrics further validate these findings. Our work offers valuable guidance on model selection for imbalanced learning, providing insights into classifier robustness without dependence on explicit rebalancing techniques.
☆ K2-Think: A Parameter-Efficient Reasoning System
K2-Think is a reasoning system that achieves state-of-the-art performance with a 32B parameter model, matching or surpassing much larger models like GPT-OSS 120B and DeepSeek v3.1. Built on the Qwen2.5 base model, our system shows that smaller models can compete at the highest levels by combining advanced post-training and test-time computation techniques. The approach is based on six key technical pillars: Long Chain-of-thought Supervised Finetuning, Reinforcement Learning with Verifiable Rewards (RLVR), Agentic planning prior to reasoning, Test-time Scaling, Speculative Decoding, and Inference-optimized Hardware, all using publicly available open-source datasets. K2-Think excels in mathematical reasoning, achieving state-of-the-art scores on public benchmarks for open-source models, while also performing strongly in other areas such as Code and Science. Our results confirm that a more parameter-efficient model like K2-Think 32B can compete with state-of-the-art systems through an integrated post-training recipe that includes long chain-of-thought training and strategic inference-time enhancements, making open-source reasoning systems more accessible and affordable. K2-Think is freely available at k2think.ai, offering best-in-class inference speeds of over 2,000 tokens per second per request via the Cerebras Wafer-Scale Engine.
comment: To access the K2-Think reasoning system, please visit https://k2think.ai
Transformer-Based Approach to Optimal Sensor Placement for Structural Health Monitoring of Probe Cards
This paper presents an innovative Transformer-based deep learning strategy for optimizing the placement of sensors aiming at structural health monitoring of semiconductor probe cards. Failures in probe cards, including substrate cracks and loosened screws, would critically affect semiconductor manufacturing yield and reliability. Some failure modes could be detected by equipping a probe card with adequate sensors. Frequency response functions from simulated failure scenarios are adopted within a finite element model of a probe card. A comprehensive dataset, enriched by physics-informed scenario expansion and physics-aware statistical data augmentation, is exploited to train a hybrid Convolutional Neural Network and Transformer model. The model achieves high accuracy (99.83%) in classifying the probe card health states (baseline, loose screw, crack) and an excellent crack detection recall (99.73%). Model robustness is confirmed through a rigorous framework of 3 repetitions of 10-fold stratified cross-validation. The attention mechanism also pinpoints critical sensor locations: an analysis of the attention weights offers actionable insights for designing efficient, cost-effective monitoring systems by optimizing sensor configurations. This research highlights the capability of attention-based deep learning to advance proactive maintenance, enhancing operational reliability and yield in semiconductor manufacturing.
comment: 22 pages, 11 figures
☆ Exploring System Adaptations For Minimum Latency Real-Time Piano Transcription
Advances in neural network design and the availability of large-scale labeled datasets have driven major improvements in piano transcription. Existing approaches target either offline applications, with no restrictions on computational demands, or online transcription, with delays of 128-320 ms. However, most real-time musical applications require latencies below 30 ms. In this work, we investigate whether and how the current state-of-the-art online transcription model can be adapted for real-time piano transcription. Specifically, we eliminate all non-causal processing, and reduce computational load through shared computations across core model components and variations in model size. Additionally, we explore different pre- and postprocessing strategies, and related label encoding schemes, and discuss their suitability for real-time transcription. Evaluating the adaptions on the MAESTRO dataset, we find a drop in transcription accuracy due to strictly causal processing as well as a tradeoff between the preprocessing latency and prediction accuracy. We release our system as a baseline to support researchers in designing models towards minimum latency real-time transcription.
comment: to be published in Proceedings of the 26th International Society for Music Information Retrieval (ISMIR) Conference 2025, Daejeon, South Korea
☆ Homogenization with Guaranteed Bounds via Primal-Dual Physically Informed Neural Networks
Physics-informed neural networks (PINNs) have shown promise in solving partial differential equations (PDEs) relevant to multiscale modeling, but they often fail when applied to materials with discontinuous coefficients, such as media with piecewise constant properties. This paper introduces a dual formulation for the PINN framework to improve the reliability of the homogenization of periodic thermo-conductive composites, for both strong and variational (weak) formulations. The dual approach facilitates the derivation of guaranteed upper and lower error bounds, enabling more robust detection of PINN failure. We compare standard PINNs applied to smoothed material approximations with variational PINNs (VPINNs) using both spectral and neural network-based test functions. Our results indicate that while strong-form PINNs may outperform VPINNs in controlled settings, they are sensitive to material discontinuities and may fail without clear diagnostics. In contrast, VPINNs accommodate piecewise constant material parameters directly but require careful selection of test functions to avoid instability. Dual formulation serves as a reliable indicator of convergence quality, and its integration into PINN frameworks enhances their applicability to homogenization problems in micromechanics.
☆ uGMM-NN: Univariate Gaussian Mixture Model Neural Network
This paper introduces the Univariate Gaussian Mixture Model Neural Network (uGMM-NN), a novel neural architecture that embeds probabilistic reasoning directly into the computational units of deep networks. Unlike traditional neurons, which apply weighted sums followed by fixed nonlinearities, each uGMM-NN node parameterizes its activations as a univariate Gaussian mixture, with learnable means, variances, and mixing coefficients. This design enables richer representations by capturing multimodality and uncertainty at the level of individual neurons, while retaining the scalability of standard feedforward networks. We demonstrate that uGMM-NN can achieve competitive discriminative performance compared to conventional multilayer perceptrons, while additionally offering a probabilistic interpretation of activations. The proposed framework provides a foundation for integrating uncertainty-aware components into modern neural architectures, opening new directions for both discriminative and generative modeling.
comment: 10 pages, 2 figures
☆ $ΔL$ Normalization: Rethink Loss Aggregation in RLVR
We propose $\Delta L$ Normalization, a simple yet effective loss aggregation method tailored to the characteristic of dynamic generation lengths in Reinforcement Learning with Verifiable Rewards (RLVR). Recently, RLVR has demonstrated strong potential in improving the reasoning capabilities of large language models (LLMs), but a major challenge lies in the large variability of response lengths during training, which leads to high gradient variance and unstable optimization. Although previous methods such as GRPO, DAPO, and Dr. GRPO introduce different loss normalization terms to address this issue, they either produce biased estimates or still suffer from high gradient variance. By analyzing the effect of varying lengths on policy loss both theoretically and empirically, we reformulate the problem as finding a minimum-variance unbiased estimator. Our proposed $\Delta L$ Normalization not only provides an unbiased estimate of the true policy loss but also minimizes gradient variance in theory. Extensive experiments show that it consistently achieves superior results across different model sizes, maximum lengths, and tasks. Our code will be made public at https://github.com/zerolllin/Delta-L-Normalization.
☆ Asynchronous Gossip Algorithms for Rank-Based Statistical Methods
As decentralized AI and edge intelligence become increasingly prevalent, ensuring robustness and trustworthiness in such distributed settings has become a critical issue-especially in the presence of corrupted or adversarial data. Traditional decentralized algorithms are vulnerable to data contamination as they typically rely on simple statistics (e.g., means or sum), motivating the need for more robust statistics. In line with recent work on decentralized estimation of trimmed means and ranks, we develop gossip algorithms for computing a broad class of rank-based statistics, including L-statistics and rank statistics-both known for their robustness to outliers. We apply our method to perform robust distributed two-sample hypothesis testing, introducing the first gossip algorithm for Wilcoxon rank-sum tests. We provide rigorous convergence guarantees, including the first convergence rate bound for asynchronous gossip-based rank estimation. We empirically validate our theoretical results through experiments on diverse network topologies.
☆ Competitive Audio-Language Models with Data-Efficient Single-Stage Training on Public Data
Large language models (LLMs) have transformed NLP, yet their integration with audio remains underexplored -- despite audio's centrality to human communication. We introduce Falcon3-Audio, a family of Audio-Language Models (ALMs) built on instruction-tuned LLMs and Whisper encoders. Using a remarkably small amount of public audio data -- less than 30K hours (5K unique) -- Falcon3-Audio-7B matches the best reported performance among open-weight models on the MMAU benchmark, with a score of 64.14, matching R1-AQA, while distinguishing itself through superior data and parameter efficiency, single-stage training, and transparency. Notably, our smallest 1B model remains competitive with larger open models ranging from 2B to 13B parameters. Through extensive ablations, we find that common complexities -- such as curriculum learning, multiple audio encoders, and intricate cross-attention connectors -- are not required for strong performance, even compared to models trained on over 500K hours of data.
comment: Accepted at ASRU 2025
☆ RoseCDL: Robust and Scalable Convolutional Dictionary Learning for Rare-event Detection
Identifying recurring patterns and rare events in large-scale signals is a fundamental challenge in fields such as astronomy, physical simulations, and biomedical science. Convolutional Dictionary Learning (CDL) offers a powerful framework for modeling local structures in signals, but its use for detecting rare or anomalous events remains largely unexplored. In particular, CDL faces two key challenges in this setting: high computational cost and sensitivity to artifacts and outliers. In this paper, we introduce RoseCDL, a scalable and robust CDL algorithm designed for unsupervised rare event detection in long signals. RoseCDL combines stochastic windowing for efficient training on large datasets with inline outlier detection to enhance robustness and isolate anomalous patterns. This reframes CDL as a practical tool for event discovery and characterization in real-world signals, extending its role beyond traditional tasks like compression or denoising.
☆ Water Demand Forecasting of District Metered Areas through Learned Consumer Representations
Advancements in smart metering technologies have significantly improved the ability to monitor and manage water utilities. In the context of increasing uncertainty due to climate change, securing water resources and supply has emerged as an urgent global issue with extensive socioeconomic ramifications. Hourly consumption data from end-users have yielded substantial insights for projecting demand across regions characterized by diverse consumption patterns. Nevertheless, the prediction of water demand remains challenging due to influencing non-deterministic factors, such as meteorological conditions. This work introduces a novel method for short-term water demand forecasting for District Metered Areas (DMAs) which encompass commercial, agricultural, and residential consumers. Unsupervised contrastive learning is applied to categorize end-users according to distinct consumption behaviors present within a DMA. Subsequently, the distinct consumption behaviors are utilized as features in the ensuing demand forecasting task using wavelet-transformed convolutional networks that incorporate a cross-attention mechanism combining both historical data and the derived representations. The proposed approach is evaluated on real-world DMAs over a six-month period, demonstrating improved forecasting performance in terms of MAPE across different DMAs, with a maximum improvement of 4.9%. Additionally, it identifies consumers whose behavior is shaped by socioeconomic factors, enhancing prior knowledge about the deterministic patterns that influence demand.
comment: Presented at European Conference for Signal Procesing - EUSIPCO 2025
☆ Astra: A Multi-Agent System for GPU Kernel Performance Optimization
GPU kernel optimization has long been a central challenge at the intersection of high-performance computing and machine learning. Efficient kernels are crucial for accelerating large language model (LLM) training and serving, yet attaining high performance typically requires extensive manual tuning. Compiler-based systems reduce some of this burden, but still demand substantial manual design and engineering effort. Recently, researchers have explored using LLMs for GPU kernel generation, though prior work has largely focused on translating high-level PyTorch modules into CUDA code. In this work, we introduce Astra, the first LLM-based multi-agent system for GPU kernel optimization. Unlike previous approaches, Astra starts from existing CUDA implementations extracted from SGLang, a widely deployed framework for serving LLMs, rather than treating PyTorch modules as the specification. Within Astra, specialized LLM agents collaborate through iterative code generation, testing, profiling, and planning to produce kernels that are both correct and high-performance. On kernels from SGLang, Astra achieves an average speedup of 1.32x using zero-shot prompting with OpenAI o4-mini. A detailed case study further demonstrates that LLMs can autonomously apply loop transformations, optimize memory access patterns, exploit CUDA intrinsics, and leverage fast math operations to yield substantial performance gains. Our work highlights multi-agent LLM systems as a promising new paradigm for GPU kernel optimization.
☆ Conv4Rec: A 1-by-1 Convolutional AutoEncoder for User Profiling through Joint Analysis of Implicit and Explicit Feedbacks
We introduce a new convolutional AutoEncoder architecture for user modelling and recommendation tasks with several improvements over the state of the art. Firstly, our model has the flexibility to learn a set of associations and combinations between different interaction types in a way that carries over to each user and item. Secondly, our model is able to learn jointly from both the explicit ratings and the implicit information in the sampling pattern (which we refer to as `implicit feedback'). It can also make separate predictions for the probability of consuming content and the likelihood of granting it a high rating if observed. This not only allows the model to make predictions for both the implicit and explicit feedback, but also increases the informativeness of the predictions: in particular, our model can identify items which users would not have been likely to consume naturally, but would be likely to enjoy if exposed to them. Finally, we provide several generalization bounds for our model, which to the best of our knowledge, are among the first generalization bounds for auto-encoders in a Recommender Systems setting; we also show that optimizing our loss function guarantees the recovery of the exact sampling distribution over interactions up to a small error in total variation. In experiments on several real-life datasets, we achieve state-of-the-art performance on both the implicit and explicit feedback prediction tasks despite relying on a single model for both, and benefiting from additional interpretability in the form of individual predictions for the probabilities of each possible rating.
comment: Accepted at Transactions on Neural Networks and Learning Systems (TNNLS)
☆ RINO: Renormalization Group Invariance with No Labels NeurIPS 2025
A common challenge with supervised machine learning (ML) in high energy physics (HEP) is the reliance on simulations for labeled data, which can often mismodel the underlying collision or detector response. To help mitigate this problem of domain shift, we propose RINO (Renormalization Group Invariance with No Labels), a self-supervised learning approach that can instead pretrain models directly on collision data, learning embeddings invariant to renormalization group flow scales. In this work, we pretrain a transformer-based model on jets originating from quantum chromodynamic (QCD) interactions from the JetClass dataset, emulating real QCD-dominated experimental data, and then finetune on the JetNet dataset -- emulating simulations -- for the task of identifying jets originating from top quark decays. RINO demonstrates improved generalization from the JetNet training data to JetClass data compared to supervised training on JetNet from scratch, demonstrating the potential for RINO pretraining on real collision data followed by fine-tuning on small, high-quality MC datasets, to improve the robustness of ML models in HEP.
comment: Submission for Machine Learning and the Physical Sciences Workshop @ NeurIPS 2025
MedicalPatchNet: A Patch-Based Self-Explainable AI Architecture for Chest X-ray Classification
Deep neural networks excel in radiological image classification but frequently suffer from poor interpretability, limiting clinical acceptance. We present MedicalPatchNet, an inherently self-explainable architecture for chest X-ray classification that transparently attributes decisions to distinct image regions. MedicalPatchNet splits images into non-overlapping patches, independently classifies each patch, and aggregates predictions, enabling intuitive visualization of each patch's diagnostic contribution without post-hoc techniques. Trained on the CheXpert dataset (223,414 images), MedicalPatchNet matches the classification performance (AUROC 0.907 vs. 0.908) of EfficientNet-B0, while substantially improving interpretability: MedicalPatchNet demonstrates substantially improved interpretability with higher pathology localization accuracy (mean hit-rate 0.485 vs. 0.376 with Grad-CAM) on the CheXlocalize dataset. By providing explicit, reliable explanations accessible even to non-AI experts, MedicalPatchNet mitigates risks associated with shortcut learning, thus improving clinical trust. Our model is publicly available with reproducible training and inference scripts and contributes to safer, explainable AI-assisted diagnostics across medical imaging domains. We make the code publicly available: https://github.com/TruhnLab/MedicalPatchNet
☆ Synthetic Data Generation with Lorenzetti for Time Series Anomaly Detection in High-Energy Physics Calorimeters
Anomaly detection in multivariate time series is crucial to ensure the quality of data coming from a physics experiment. Accurately identifying the moments when unexpected errors or defects occur is essential, yet challenging due to scarce labels, unknown anomaly types, and complex correlations across dimensions. To address the scarcity and unreliability of labelled data, we use the Lorenzetti Simulator to generate synthetic events with injected calorimeter anomalies. We then assess the sensitivity of several time series anomaly detection methods, including transformer-based and other deep learning models. The approach employed here is generic and applicable to different detector designs and defects.
comment: 4 pages, 2 figures, Submission to SciPost proceedings for EuCAIFCon 2025
☆ The Choice of Divergence: A Neglected Key to Mitigating Diversity Collapse in Reinforcement Learning with Verifiable Reward
A central paradox in fine-tuning Large Language Models (LLMs) with Reinforcement Learning with Verifiable Reward (RLVR) is the frequent degradation of multi-attempt performance (Pass@k) despite improvements in single-attempt accuracy (Pass@1). This is often accompanied by catastrophic forgetting, where models lose previously acquired skills. While various methods have been proposed, the choice and function of the divergence term have been surprisingly unexamined as a proactive solution. We argue that standard RLVR objectives -- both those using the mode-seeking reverse KL-divergence and those forgoing a divergence term entirely -- lack a crucial mechanism for knowledge retention. The reverse-KL actively accelerates this decay by narrowing the policy, while its absence provides no safeguard against the model drifting from its diverse knowledge base. We propose a fundamental shift in perspective: using the divergence term itself as the solution. Our framework, Diversity-Preserving Hybrid RL (DPH-RL), leverages mass-covering f-divergences (like forward-KL and JS-divergence) to function as a rehearsal mechanism. By continuously referencing the initial policy, this approach forces the model to maintain broad solution coverage. Extensive experiments on math and SQL generation demonstrate that DPH-RL not only resolves the Pass@k degradation but improves both Pass@1 and Pass@k in- and out-of-domain. Additionally, DPH-RL is more training-efficient because it computes f-divergence using generator functions, requiring only sampling from the initial policy and no online reference model. Our work highlights a crucial, overlooked axis for improving RLVR, demonstrating that the proper selection of a divergence measure is a powerful tool for building more general and diverse reasoning models.
comment: 26 pages, 5 figures
☆ EMORF-II: Adaptive EM-based Outlier-Robust Filtering with Correlated Measurement Noise SP 2025
We present a learning-based outlier-robust filter for a general setup where the measurement noise can be correlated. Since it is an enhanced version of EM-based outlier robust filter (EMORF), we call it as EMORF-II. As it is equipped with an additional powerful feature to learn the outlier characteristics during inference along with outlier-detection, EMORF-II has improved outlier-mitigation capability. Numerical experiments confirm performance gains as compared to the state-of-the-art methods in terms of accuracy with an increased computational overhead. However, thankfully the computational complexity order remains at par with other practical methods making it a useful choice for diverse applications.
comment: 6 pages, 4 figures, To appear in MLSP 2025 proceedings
☆ Reinforcement learning for online hyperparameter tuning in convex quadratic programming
Quadratic programming is a workhorse of modern nonlinear optimization, control, and data science. Although regularized methods offer convergence guarantees under minimal assumptions on the problem data, they can exhibit the slow tail-convergence typical of first-order schemes, thus requiring many iterations to achieve high-accuracy solutions. Moreover, hyperparameter tuning significantly impacts on the solver performance but how to find an appropriate parameter configuration remains an elusive research question. To address these issues, we explore how data-driven approaches can accelerate the solution process. Aiming at high-accuracy solutions, we focus on a stabilized interior-point solver and carefully handle its two-loop flow and control parameters. We will show that reinforcement learning can make a significant contribution to facilitating the solver tuning and to speeding up the optimization process. Numerical experiments demonstrate that, after a lightweight training, the learned policy generalizes well to different problem classes with varying dimensions and to various solver configurations.
☆ Hybrid GCN-GRU Model for Anomaly Detection in Cryptocurrency Transactions
Blockchain transaction networks are complex, with evolving temporal patterns and inter-node relationships. To detect illicit activities, we propose a hybrid GCN-GRU model that captures both structural and sequential features. Using real Bitcoin transaction data (2020-2024), our model achieved 0.9470 Accuracy and 0.9807 AUC-ROC, outperforming all baselines.
☆ Talking with Oompa Loompas: A novel framework for evaluating linguistic acquisition of LLM agents
Existing evaluation studies on linguistic competence of large language models (LLM agents) have focused primarily on vocabulary learning, morphological rule induction, syntactic generalization, pragmatic inference, and cross-linguistic transfer. However, none assess whether LLM agents can acquire a language through pattern recognition and interactive feedback, a central feature of human language acquisition. We propose a novel experimental framework in which an LLM agent is evaluated on its ability to acquire and use a newly constructed language (Tinkatongue) in conversation with a bot that understands only Tinkatongue. Our findings show that LLM agents fail to establish a conversation within 100 responses, yet they adopt distinct strategies that mirror human approaches to language learning. The results suggest a new direction for evaluation benchmarks and open pathways to model designs that learn more effectively from interactive feedback.
comment: Under review
☆ EfficientNet in Digital Twin-based Cardiac Arrest Prediction and Analysis
Cardiac arrest is one of the biggest global health problems, and early identification and management are key to enhancing the patient's prognosis. In this paper, we propose a novel framework that combines an EfficientNet-based deep learning model with a digital twin system to improve the early detection and analysis of cardiac arrest. We use compound scaling and EfficientNet to learn the features of cardiovascular images. In parallel, the digital twin creates a realistic and individualized cardiovascular system model of the patient based on data received from the Internet of Things (IoT) devices attached to the patient, which can help in the constant assessment of the patient and the impact of possible treatment plans. As shown by our experiments, the proposed system is highly accurate in its prediction abilities and, at the same time, efficient. Combining highly advanced techniques such as deep learning and digital twin (DT) technology presents the possibility of using an active and individual approach to predicting cardiac disease.
☆ SBS: Enhancing Parameter-Efficiency of Neural Representations for Neural Networks via Spectral Bias Suppression ICONIP 2025
Implicit neural representations have recently been extended to represent convolutional neural network weights via neural representation for neural networks, offering promising parameter compression benefits. However, standard multi-layer perceptrons used in neural representation for neural networks exhibit a pronounced spectral bias, hampering their ability to reconstruct high-frequency details effectively. In this paper, we propose SBS, a parameter-efficient enhancement to neural representation for neural networks that suppresses spectral bias using two techniques: (1) a unidirectional ordering-based smoothing that improves kernel smoothness in the output space, and (2) unidirectional ordering-based smoothing aware random fourier features that adaptively modulate the frequency bandwidth of input encodings based on layer-wise parameter count. Extensive evaluations on various ResNet models with datasets CIFAR-10, CIFAR-100, and ImageNet, demonstrate that SBS achieves significantly better reconstruction accuracy with less parameters compared to SOTA.
comment: Accepted by ICONIP 2025
☆ Autonomous Code Evolution Meets NP-Completeness
Large language models (LLMs) have recently shown strong coding abilities, enabling not only static code generation but also iterative code self-evolving through agentic frameworks. Recently, AlphaEvolve \cite{novikov2025alphaevolve} demonstrated that LLM-based coding agents can autonomously improve algorithms and surpass human experts, with scopes limited to isolated kernels spanning hundreds of lines of code. Inspired by AlphaEvolve, we present SATLUTION, the first framework to extend LLM-based code evolution to the full repository scale, encompassing hundreds of files and tens of thousands of lines of C/C++ code. Targeting Boolean Satisfiability (SAT), the canonical NP-complete problem and a cornerstone of both theory and applications. SATLUTION orchestrates LLM agents to directly evolve solver repositories under strict correctness guarantees and distributed runtime feedback, while simultaneously self-evolving its own evolution policies and rules. Starting from SAT Competition 2024 codebases and benchmark, SATLUTION evolved solvers that decisively outperformed the human-designed winners of the SAT Competition 2025, and also surpassed both 2024 and 2025 champions on the 2024 benchmarks.
comment: 31 pages, 11 figures
☆ FedTeddi: Temporal Drift and Divergence Aware Scheduling for Timely Federated Edge Learning IEEE
Federated edge learning (FEEL) enables collaborative model training across distributed clients over wireless networks without exposing raw data. While most existing studies assume static datasets, in real-world scenarios clients may continuously collect data with time-varying and non-independent and identically distributed (non-i.i.d.) characteristics. A critical challenge is how to adapt models in a timely yet efficient manner to such evolving data. In this paper, we propose FedTeddi, a temporal-drift-and-divergence-aware scheduling algorithm that facilitates fast convergence of FEEL under dynamic data evolution and communication resource limits. We first quantify the temporal dynamics and non-i.i.d. characteristics of data using temporal drift and collective divergence, respectively, and represent them as the Earth Mover's Distance (EMD) of class distributions for classification tasks. We then propose a novel optimization objective and develop a joint scheduling and bandwidth allocation algorithm, enabling the FEEL system to learn from new data quickly without forgetting previous knowledge. Experimental results show that our algorithm achieves higher test accuracy and faster convergence compared to benchmark methods, improving the rate of convergence by 58.4% on CIFAR-10 and 49.2% on CIFAR-100 compared to random scheduling.
comment: Submitted to IEEE for possible publication
☆ General Demographic Foundation Models for Enhancing Predictive Performance Across Diseases
Demographic attributes are universally present in electronic health records and serve as vital predictors in clinical risk stratification and treatment decisions. Despite their significance, these attributes are often relegated to auxiliary roles in model design, with limited attention has been given to learning their representations. This study proposes a General Demographic Pre-trained (GDP) model as a foundational representation framework tailored to age and gender. The model is pre-trained and evaluated using datasets with diverse diseases and population compositions from different geographic regions. The GDP architecture explores combinations of ordering strategies and encoding methods to transform tabular demographic inputs into latent embeddings. Experimental results demonstrate that sequential ordering substantially improves model performance in discrimination, calibration, and the corresponding information gain at each decision tree split, particularly in diseases where age and gender contribute significantly to risk stratification. Even in datasets where demographic attributes hold relatively low predictive value, GDP enhances the representational importance, increasing their influence in downstream gradient boosting models. The findings suggest that foundational models for tabular demographic attributes can generalize across tasks and populations, offering a promising direction for improving predictive performance in healthcare applications.
☆ CancerGUIDE: Cancer Guideline Understanding via Internal Disagreement Estimation
The National Comprehensive Cancer Network (NCCN) provides evidence-based guidelines for cancer treatment. Translating complex patient presentations into guideline-compliant treatment recommendations is time-intensive, requires specialized expertise, and is prone to error. Advances in large language model (LLM) capabilities promise to reduce the time required to generate treatment recommendations and improve accuracy. We present an LLM agent-based approach to automatically generate guideline-concordant treatment trajectories for patients with non-small cell lung cancer (NSCLC). Our contributions are threefold. First, we construct a novel longitudinal dataset of 121 cases of NSCLC patients that includes clinical encounters, diagnostic results, and medical histories, each expertly annotated with the corresponding NCCN guideline trajectories by board-certified oncologists. Second, we demonstrate that existing LLMs possess domain-specific knowledge that enables high-quality proxy benchmark generation for both model development and evaluation, achieving strong correlation (Spearman coefficient r=0.88, RMSE = 0.08) with expert-annotated benchmarks. Third, we develop a hybrid approach combining expensive human annotations with model consistency information to create both the agent framework that predicts the relevant guidelines for a patient, as well as a meta-classifier that verifies prediction accuracy with calibrated confidence scores for treatment recommendations (AUROC=0.800), a critical capability for communicating the accuracy of outputs, custom-tailoring tradeoffs in performance, and supporting regulatory compliance. This work establishes a framework for clinically viable LLM-based guideline adherence systems that balance accuracy, interpretability, and regulatory requirements while reducing annotation costs, providing a scalable pathway toward automated clinical decision support.
☆ Instance-level Performance Prediction for Long-form Generation Tasks
We motivate and share a new benchmark for instance-level performance prediction of long-form generation tasks having multi-faceted, fine-grained quality metrics. Our task-, model- and metric-agnostic formulation predicts continuous evaluation metric scores given only black-box model inputs and outputs. Beyond predicting point estimates of metric scores, the benchmark also requires inferring prediction intervals to quantify uncertainty around point estimates. Evaluation spans 11 long-form datasets/tasks with multiple LLMs, baselines, and metrics per task. We show that scores can be effectively predicted across long-form generation tasks using as few as 16 training examples. Overall, we introduce a novel and useful task, a valuable benchmark to drive progress, and baselines ready for practical adoption today.
☆ Causal Attention with Lookahead Keys
In standard causal attention, each token's query, key, and value (QKV) are static and encode only preceding context. We introduce CAuSal aTtention with Lookahead kEys (CASTLE), an attention mechanism that continually updates each token's keys as the context unfolds. We term these updated keys lookahead keys because they belong to earlier positions yet integrate information from tokens that appear later relative to those positions, while strictly preserving the autoregressive property. Although the mechanism appears sequential, we derive a mathematical equivalence that avoids explicitly materializing lookahead keys at each position and enables efficient parallel training. On language modeling benchmarks, CASTLE consistently outperforms standard causal attention across model scales, reducing validation perplexity and improving performance on a range of downstream tasks.
☆ Identifying Neural Signatures from fMRI using Hybrid Principal Components Regression
Recent advances in neuroimaging analysis have enabled accurate decoding of mental state from brain activation patterns during functional magnetic resonance imaging scans. A commonly applied tool for this purpose is principal components regression regularized with the least absolute shrinkage and selection operator (LASSO PCR), a type of multi-voxel pattern analysis (MVPA). This model presumes that all components are equally likely to harbor relevant information, when in fact the task-related signal may be concentrated in specific components. In such cases, the model will fail to select the optimal set of principal components that maximizes the total signal relevant to the cognitive process under study. Here, we present modifications to LASSO PCR that allow for a regularization penalty tied directly to the index of the principal component, reflecting a prior belief that task-relevant signal is more likely to be concentrated in components explaining greater variance. Additionally, we propose a novel hybrid method, Joint Sparsity-Ranked LASSO (JSRL), which integrates component-level and voxel-level activity under an information parity framework and imposes ranked sparsity to guide component selection. We apply the models to brain activation during risk taking, monetary incentive, and emotion regulation tasks. Results demonstrate that incorporating sparsity ranking into LASSO PCR produces models with enhanced classification performance, with JSRL achieving up to 51.7\% improvement in cross-validated deviance $R^2$ and 7.3\% improvement in cross-validated AUC. Furthermore, sparsity-ranked models perform as well as or better than standard LASSO PCR approaches across all classification tasks and allocate predictive weight to brain regions consistent with their established functional roles, offering a robust alternative for MVPA.
☆ Sketched Gaussian Mechanism for Private Federated Learning
Communication cost and privacy are two major considerations in federated learning (FL). For communication cost, gradient compression by sketching the clients' transmitted model updates is often used for reducing per-round communication. For privacy, the Gaussian mechanism (GM), which consists of clipping updates and adding Gaussian noise, is commonly used to guarantee client-level differential privacy. Existing literature on private FL analyzes privacy of sketching and GM in an isolated manner, illustrating that sketching provides privacy determined by the sketching dimension and that GM has to supply any additional desired privacy. In this paper, we introduce the Sketched Gaussian Mechanism (SGM), which directly combines sketching and the Gaussian mechanism for privacy. Using R\'enyi-DP tools, we present a joint analysis of SGM's overall privacy guarantee, which is significantly more flexible and sharper compared to isolated analysis of sketching and GM privacy. In particular, we prove that the privacy level of SGM for a fixed noise magnitude is proportional to $1/\sqrt{b}$, where $b$ is the sketching dimension, indicating that (for moderate $b$) SGM can provide much stronger privacy guarantees than the original GM under the same noise budget. We demonstrate the application of SGM to FL with either gradient descent or adaptive server optimizers, and establish theoretical results on optimization convergence, which exhibits only a logarithmic dependence on the number of parameters $d$. Experimental results confirm that at the same privacy level, SGM based FL is at least competitive with non-sketching private FL variants and outperforms them in some settings. Moreover, using adaptive optimization at the server improves empirical performance while maintaining the privacy guarantees.
☆ Prescribe-then-Select: Adaptive Policy Selection for Contextual Stochastic Optimization
We address the problem of policy selection in contextual stochastic optimization (CSO), where covariates are available as contextual information and decisions must satisfy hard feasibility constraints. In many CSO settings, multiple candidate policies--arising from different modeling paradigms--exhibit heterogeneous performance across the covariate space, with no single policy uniformly dominating. We propose Prescribe-then-Select (PS), a modular framework that first constructs a library of feasible candidate policies and then learns a meta-policy to select the best policy for the observed covariates. We implement the meta-policy using ensembles of Optimal Policy Trees trained via cross-validation on the training set, making policy choice entirely data-driven. Across two benchmark CSO problems--single-stage newsvendor and two-stage shipment planning--PS consistently outperforms the best single policy in heterogeneous regimes of the covariate space and converges to the dominant policy when such heterogeneity is absent. All the code to reproduce the results can be found at https://anonymous.4open.science/r/Prescribe-then-Select-TMLR.
☆ Rollout-LaSDI: Enhancing the long-term accuracy of Latent Space Dynamics
Solving complex partial differential equations is vital in the physical sciences, but often requires computationally expensive numerical methods. Reduced-order models (ROMs) address this by exploiting dimensionality reduction to create fast approximations. While modern ROMs can solve parameterized families of PDEs, their predictive power degrades over long time horizons. We address this by (1) introducing a flexible, high-order, yet inexpensive finite-difference scheme and (2) proposing a Rollout loss that trains ROMs to make accurate predictions over arbitrary time horizons. We demonstrate our approach on the 2D Burgers equation.
comment: 6 pages, 2 figures
☆ ArtifactGen: Benchmarking WGAN-GP vs Diffusion for Label-Aware EEG Artifact Synthesis
Artifacts in electroencephalography (EEG) -- muscle, eye movement, electrode, chewing, and shiver -- confound automated analysis yet are costly to label at scale. We study whether modern generative models can synthesize realistic, label-aware artifact segments suitable for augmentation and stress-testing. Using the TUH EEG Artifact (TUAR) corpus, we curate subject-wise splits and fixed-length multi-channel windows (e.g., 250 samples) with preprocessing tailored to each model (per-window min--max for adversarial training; per-recording/channel $z$-score for diffusion). We compare a conditional WGAN-GP with a projection discriminator to a 1D denoising diffusion model with classifier-free guidance, and evaluate along three axes: (i) fidelity via Welch band-power deltas ($\Delta\delta,\ \Delta\theta,\ \Delta\alpha,\ \Delta\beta$), channel-covariance Frobenius distance, autocorrelation $L_2$, and distributional metrics (MMD/PRD); (ii) specificity via class-conditional recovery with lightweight $k$NN/classifiers; and (iii) utility via augmentation effects on artifact recognition. In our setting, WGAN-GP achieves closer spectral alignment and lower MMD to real data, while both models exhibit weak class-conditional recovery, limiting immediate augmentation gains and revealing opportunities for stronger conditioning and coverage. We release a reproducible pipeline -- data manifests, training configurations, and evaluation scripts -- to establish a baseline for EEG artifact synthesis and to surface actionable failure modes for future work.
comment: 16 Pages, 6 figures
☆ Selective Induction Heads: How Transformers Select Causal Structures In Context
Transformers have exhibited exceptional capabilities in sequence modeling tasks, leveraging self-attention and in-context learning. Critical to this success are induction heads, attention circuits that enable copying tokens based on their previous occurrences. In this work, we introduce a novel framework that showcases transformers' ability to dynamically handle causal structures. Existing works rely on Markov Chains to study the formation of induction heads, revealing how transformers capture causal dependencies and learn transition probabilities in-context. However, they rely on a fixed causal structure that fails to capture the complexity of natural languages, where the relationship between tokens dynamically changes with context. To this end, our framework varies the causal structure through interleaved Markov chains with different lags while keeping the transition probabilities fixed. This setting unveils the formation of Selective Induction Heads, a new circuit that endows transformers with the ability to select the correct causal structure in-context. We empirically demonstrate that transformers learn this mechanism to predict the next token by identifying the correct lag and copying the corresponding token from the past. We provide a detailed construction of a 3-layer transformer to implement the selective induction head, and a theoretical analysis proving that this mechanism asymptotically converges to the maximum likelihood solution. Our findings advance the understanding of how transformers select causal structures, providing new insights into their functioning and interpretability.
☆ Multi-Label Transfer Learning in Non-Stationary Data Streams IEEE
Label concepts in multi-label data streams often experience drift in non-stationary environments, either independently or in relation to other labels. Transferring knowledge between related labels can accelerate adaptation, yet research on multi-label transfer learning for data streams remains limited. To address this, we propose two novel transfer learning methods: BR-MARLENE leverages knowledge from different labels in both source and target streams for multi-label classification; BRPW-MARLENE builds on this by explicitly modelling and transferring pairwise label dependencies to enhance learning performance. Comprehensive experiments show that both methods outperform state-of-the-art multi-label stream approaches in non-stationary environments, demonstrating the effectiveness of inter-label knowledge transfer for improved predictive performance.
comment: Accepted at IEEE International Conference on Data Mining (ICDM) 2025
☆ The Domain Mixed Unit: A New Neural Arithmetic Layer
The Domain Mixed Unit (DMU) is a new neural arithmetic unit that learns a single parameter gate that mixes between log-space and linear-space representations while performing either addition (DMU add) or subtraction (DMU sub). Two initializations are proposed for the DMU: one covering addition and multiplication, and another covering subtraction and division. The DMU achieves state-of-the-art performance on the NALM Benchmark, a dataset designed to test the ability of neural arithmetic units to generalize arithmetic operations, specifically performing with the highest percentage solved over all seeds on multiplication and division. The DMU will be submitted as a pull request to the open-source NALM benchmark, and its code is available on GitHub at https://github.com/marict?tab=repositories
comment: 7 pages, 5 tables, includes results on the NALM benchmark
☆ MARLINE: Multi-Source Mapping Transfer Learning for Non-Stationary Environments IEEE
Concept drift is a major problem in online learning due to its impact on the predictive performance of data stream mining systems. Recent studies have started exploring data streams from different sources as a strategy to tackle concept drift in a given target domain. These approaches make the assumption that at least one of the source models represents a concept similar to the target concept, which may not hold in many real-world scenarios. In this paper, we propose a novel approach called Multi-source mApping with tRansfer LearnIng for Non-stationary Environments (MARLINE). MARLINE can benefit from knowledge from multiple data sources in non-stationary environments even when source and target concepts do not match. This is achieved by projecting the target concept to the space of each source concept, enabling multiple source sub-classifiers to contribute towards the prediction of the target concept as part of an ensemble. Experiments on several synthetic and real-world datasets show that MARLINE was more accurate than several state-of-the-art data stream learning approaches.
comment: Published in the 2020 IEEE International Conference on Data Mining (ICDM)
☆ RAPID Quantum Detection and Demodulation of Covert Communications: Breaking the Noise Limit with Solid-State Spin Sensors
We introduce a comprehensive framework for the detection and demodulation of covert electromagnetic signals using solid-state spin sensors. Our approach, named RAPID, is a two-stage hybrid strategy that leverages nitrogen-vacancy (NV) centers to operate below the classical noise floor employing a robust adaptive policy via imitation and distillation. We first formulate the joint detection and estimation task as a unified stochastic optimal control problem, optimizing a composite Bayesian risk objective under realistic physical constraints. The RAPID algorithm solves this by first computing a robust, non-adaptive baseline protocol grounded in the quantum Fisher information matrix (QFIM), and then using this baseline to warm-start an online, adaptive policy learned via deep reinforcement learning (Soft Actor-Critic). This method dynamically optimizes control pulses, interrogation times, and measurement bases to maximize information gain while actively suppressing non-Markovian noise and decoherence. Numerical simulations demonstrate that the protocol achieves a significant sensitivity gain over static methods, maintains high estimation precision in correlated noise environments, and, when applied to sensor arrays, enables coherent quantum beamforming that achieves Heisenberg-like scaling in precision. This work establishes a theoretically rigorous and practically viable pathway for deploying quantum sensors in security-critical applications such as electronic warfare and covert surveillance.
☆ OCTANE -- Optimal Control for Tensor-based Autoencoder Network Emergence: Explicit Case
This paper presents a novel, mathematically rigorous framework for autoencoder-type deep neural networks that combines optimal control theory and low-rank tensor methods to yield memory-efficient training and automated architecture discovery. The learning task is formulated as an optimization problem constrained by differential equations representing the encoder and decoder components of the network and the corresponding optimality conditions are derived via a Lagrangian approach. Efficient memory compression is enabled by approximating differential equation solutions on low-rank tensor manifolds using an adaptive explicit integration scheme. These concepts are combined to form OCTANE (Optimal Control for Tensor-based Autoencoder Network Emergence) -- a unified training framework that yields compact autoencoder architectures, reduces memory usage, and enables effective learning, even with limited training data. The framework's utility is illustrated with application to image denoising and deblurring tasks and recommendations regarding governing hyperparameters are provided.
☆ Machine Learning with Multitype Protected Attributes: Intersectional Fairness through Regularisation
Ensuring equitable treatment (fairness) across protected attributes (such as gender or ethnicity) is a critical issue in machine learning. Most existing literature focuses on binary classification, but achieving fairness in regression tasks-such as insurance pricing or hiring score assessments-is equally important. Moreover, anti-discrimination laws also apply to continuous attributes, such as age, for which many existing methods are not applicable. In practice, multiple protected attributes can exist simultaneously; however, methods targeting fairness across several attributes often overlook so-called "fairness gerrymandering", thereby ignoring disparities among intersectional subgroups (e.g., African-American women or Hispanic men). In this paper, we propose a distance covariance regularisation framework that mitigates the association between model predictions and protected attributes, in line with the fairness definition of demographic parity, and that captures both linear and nonlinear dependencies. To enhance applicability in the presence of multiple protected attributes, we extend our framework by incorporating two multivariate dependence measures based on distance covariance: the previously proposed joint distance covariance (JdCov) and our novel concatenated distance covariance (CCdCov), which effectively address fairness gerrymandering in both regression and classification tasks involving protected attributes of various types. We discuss and illustrate how to calibrate regularisation strength, including a method based on Jensen-Shannon divergence, which quantifies dissimilarities in prediction distributions across groups. We apply our framework to the COMPAS recidivism dataset and a large motor insurance claims dataset.
☆ MMM-fair: An Interactive Toolkit for Exploring and Operationalizing Multi-Fairness Trade-offs
Fairness-aware classification requires balancing performance and fairness, often intensified by intersectional biases. Conflicting fairness definitions further complicate the task, making it difficult to identify universally fair solutions. Despite growing regulatory and societal demands for equitable AI, popular toolkits offer limited support for exploring multi-dimensional fairness and related trade-offs. To address this, we present mmm-fair, an open-source toolkit leveraging boosting-based ensemble approaches that dynamically optimizes model weights to jointly minimize classification errors and diverse fairness violations, enabling flexible multi-objective optimization. The system empowers users to deploy models that align with their context-specific needs while reliably uncovering intersectional biases often missed by state-of-the-art methods. In a nutshell, mmm-fair uniquely combines in-depth multi-attribute fairness, multi-objective optimization, a no-code, chat-based interface, LLM-powered explanations, interactive Pareto exploration for model selection, custom fairness constraint definition, and deployment-ready models in a single open-source toolkit, a combination rarely found in existing fairness tools. Demo walkthrough available at: https://youtu.be/_rcpjlXFqkw.
comment: Accepted to be published in the Proceedings of the 34th ACM International Conference on Information and Knowledge Management, November 10--14, 2025, Seoul, Republic of Korea
☆ Contributions to Robust and Efficient Methods for Analysis of High Dimensional Data
A ubiquitous feature of data of our era is their extra-large sizes and dimensions. Analyzing such high-dimensional data poses significant challenges, since the feature dimension is often much larger than the sample size. This thesis introduces robust and computationally efficient methods to address several common challenges associated with high-dimensional data. In my first manuscript, I propose a coherent approach to variable screening that accommodates nonlinear associations. I develop a novel variable screening method that transcends traditional linear assumptions by leveraging mutual information, with an intended application in neuroimaging data. This approach allows for accurate identification of important variables by capturing nonlinear as well as linear relationships between the outcome and covariates. Building on this foundation, I develop new optimization methods for sparse estimation using nonconvex penalties in my second manuscript. These methods address notable challenges in current statistical computing practices, facilitating computationally efficient and robust analyses of complex datasets. The proposed method can be applied to a general class of optimization problems. In my third manuscript, I contribute to robust modeling of high-dimensional correlated observations by developing a mixed-effects model based on Tsallis power-law entropy maximization and discussed the theoretical properties of such distribution. This model surpasses the constraints of conventional Gaussian models by accommodating a broader class of distributions with enhanced robustness to outliers. Additionally, I develop a proximal nonlinear conjugate gradient algorithm that accelerates convergence while maintaining numerical stability, along with rigorous statistical properties for the proposed framework.
comment: PhD thesis . Available at https://escholarship.mcgill.ca/concern/theses/5t34sq859
☆ Bias after Prompting: Persistent Discrimination in Large Language Models
A dangerous assumption that can be made from prior work on the bias transfer hypothesis (BTH) is that biases do not transfer from pre-trained large language models (LLMs) to adapted models. We invalidate this assumption by studying the BTH in causal models under prompt adaptations, as prompting is an extremely popular and accessible adaptation strategy used in real-world applications. In contrast to prior work, we find that biases can transfer through prompting and that popular prompt-based mitigation methods do not consistently prevent biases from transferring. Specifically, the correlation between intrinsic biases and those after prompt adaptation remain moderate to strong across demographics and tasks -- for example, gender (rho >= 0.94) in co-reference resolution, and age (rho >= 0.98) and religion (rho >= 0.69) in question answering. Further, we find that biases remain strongly correlated when varying few-shot composition parameters, such as sample size, stereotypical content, occupational distribution and representational balance (rho >= 0.90). We evaluate several prompt-based debiasing strategies and find that different approaches have distinct strengths, but none consistently reduce bias transfer across models, tasks or demographics. These results demonstrate that correcting bias, and potentially improving reasoning ability, in intrinsic models may prevent propagation of biases to downstream tasks.
☆ From Limited Data to Rare-event Prediction: LLM-powered Feature Engineering and Multi-model Learning in Venture Capital
This paper presents a framework for predicting rare, high-impact outcomes by integrating large language models (LLMs) with a multi-model machine learning (ML) architecture. The approach combines the predictive strength of black-box models with the interpretability required for reliable decision-making. We use LLM-powered feature engineering to extract and synthesize complex signals from unstructured data, which are then processed within a layered ensemble of models including XGBoost, Random Forest, and Linear Regression. The ensemble first produces a continuous estimate of success likelihood, which is then thresholded to produce a binary rare-event prediction. We apply this framework to the domain of Venture Capital (VC), where investors must evaluate startups with limited and noisy early-stage data. The empirical results show strong performance: the model achieves precision between 9.8X and 11.1X the random classifier baseline in three independent test subsets. Feature sensitivity analysis further reveals interpretable success drivers: the startup's category list accounts for 15.6% of predictive influence, followed by the number of founders, while education level and domain expertise contribute smaller yet consistent effects.
comment: 6 pages, 3 figures
☆ SCA-LLM: Spectral-Attentive Channel Prediction with Large Language Models in MIMO-OFDM
In recent years, the success of large language models (LLMs) has inspired growing interest in exploring their potential applications in wireless communications, especially for channel prediction tasks. However, directly applying LLMs to channel prediction faces a domain mismatch issue stemming from their text-based pre-training. To mitigate this, the ``adapter + LLM" paradigm has emerged, where an adapter is designed to bridge the domain gap between the channel state information (CSI) data and LLMs. While showing initial success, existing adapters may not fully exploit the potential of this paradigm. To address this limitation, this work provides a key insight that learning representations from the spectral components of CSI features can more effectively help bridge the domain gap. Accordingly, we propose a spectral-attentive framework, named SCA-LLM, for channel prediction in multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) systems. Specifically, its novel adapter can capture finer spectral details and better adapt the LLM for channel prediction than previous methods. Extensive simulations show that SCA-LLM achieves state-of-the-art prediction performance and strong generalization, yielding up to $-2.4~\text{dB}$ normalized mean squared error (NMSE) advantage over the previous LLM based method. Ablation studies further confirm the superiority of SCA-LLM in mitigating domain mismatch.
☆ torchmil: A PyTorch-based library for deep Multiple Instance Learning
Multiple Instance Learning (MIL) is a powerful framework for weakly supervised learning, particularly useful when fine-grained annotations are unavailable. Despite growing interest in deep MIL methods, the field lacks standardized tools for model development, evaluation, and comparison, which hinders reproducibility and accessibility. To address this, we present torchmil, an open-source Python library built on PyTorch. torchmil offers a unified, modular, and extensible framework, featuring basic building blocks for MIL models, a standardized data format, and a curated collection of benchmark datasets and models. The library includes comprehensive documentation and tutorials to support both practitioners and researchers. torchmil aims to accelerate progress in MIL and lower the entry barrier for new users. Available at https://torchmil.readthedocs.io.
In-Context Learning Enhanced Credibility Transformer
The starting point of our network architecture is the Credibility Transformer which extends the classical Transformer architecture by a credibility mechanism to improve model learning and predictive performance. This Credibility Transformer learns credibilitized CLS tokens that serve as learned representations of the original input features. In this paper we present a new paradigm that augments this architecture by an in-context learning mechanism, i.e., we increase the information set by a context batch consisting of similar instances. This allows the model to enhance the CLS token representations of the instances by additional in-context information and fine-tuning. We empirically verify that this in-context learning enhances predictive accuracy by adapting to similar risk patterns. Moreover, this in-context learning also allows the model to generalize to new instances which, e.g., have feature levels in the categorical covariates that have not been present when the model was trained -- for a relevant example, think of a new vehicle model which has just been developed by a car manufacturer.
☆ Optimization Methods and Software for Federated Learning
Federated Learning (FL) is a novel, multidisciplinary Machine Learning paradigm where multiple clients, such as mobile devices, collaborate to solve machine learning problems. Initially introduced in Kone{\v{c}}n{\'y} et al. (2016a,b); McMahan et al. (2017), FL has gained further attention through its inclusion in the National AI Research and Development Strategic Plan (2023 Update) of the United States (Science and on Artificial Intelligence, 2023). The FL training process is inherently decentralized and often takes place in less controlled settings compared to data centers, posing unique challenges distinct from those in fully controlled environments. In this thesis, we identify five key challenges in Federated Learning and propose novel approaches to address them. These challenges arise from the heterogeneity of data and devices, communication issues, and privacy concerns for clients in FL training. Moreover, even well-established theoretical advances in FL require diverse forms of practical implementation to enhance their real-world applicability. Our contributions advance FL algorithms and systems, bridging theoretical advancements and practical implementations. More broadly, our work serves as a guide for researchers navigating the complexities of translating theoretical methods into efficient real-world implementations and software. Additionally, it offers insights into the reverse process of adapting practical implementation aspects back into theoretical algorithm design. This reverse process is particularly intriguing, as the practical perspective compels us to examine the underlying mechanics and flexibilities of algorithms more deeply, often uncovering new dimensions of the algorithms under study.
comment: A dissertation by Konstantin Burlachenko submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy
☆ Domain Knowledge is Power: Leveraging Physiological Priors for Self Supervised Representation Learning in Electrocardiography
Objective: Electrocardiograms (ECGs) play a crucial role in diagnosing heart conditions; however, the effectiveness of artificial intelligence (AI)-based ECG analysis is often hindered by the limited availability of labeled data. Self-supervised learning (SSL) can address this by leveraging large-scale unlabeled data. We introduce PhysioCLR (Physiology-aware Contrastive Learning Representation for ECG), a physiology-aware contrastive learning framework that incorporates domain-specific priors to enhance the generalizability and clinical relevance of ECG-based arrhythmia classification. Methods: During pretraining, PhysioCLR learns to bring together embeddings of samples that share similar clinically relevant features while pushing apart those that are dissimilar. Unlike existing methods, our method integrates ECG physiological similarity cues into contrastive learning, promoting the learning of clinically meaningful representations. Additionally, we introduce ECG- specific augmentations that preserve the ECG category post augmentation and propose a hybrid loss function to further refine the quality of learned representations. Results: We evaluate PhysioCLR on two public ECG datasets, Chapman and Georgia, for multilabel ECG diagnoses, as well as a private ICU dataset labeled for binary classification. Across the Chapman, Georgia, and private cohorts, PhysioCLR boosts the mean AUROC by 12% relative to the strongest baseline, underscoring its robust cross-dataset generalization. Conclusion: By embedding physiological knowledge into contrastive learning, PhysioCLR enables the model to learn clinically meaningful and transferable ECG eatures. Significance: PhysioCLR demonstrates the potential of physiology-informed SSL to offer a promising path toward more effective and label-efficient ECG diagnostics.
☆ Hammer and Anvil: A Principled Defense Against Backdoors in Federated Learning
Federated Learning is a distributed learning technique in which multiple clients cooperate to train a machine learning model. Distributed settings facilitate backdoor attacks by malicious clients, who can embed malicious behaviors into the model during their participation in the training process. These malicious behaviors are activated during inference by a specific trigger. No defense against backdoor attacks has stood the test of time, especially against adaptive attackers, a powerful but not fully explored category of attackers. In this work, we first devise a new adaptive adversary that surpasses existing adversaries in capabilities, yielding attacks that only require one or two malicious clients out of 20 to break existing state-of-the-art defenses. Then, we present Hammer and Anvil, a principled defense approach that combines two defenses orthogonal in their underlying principle to produce a combined defense that, given the right set of parameters, must succeed against any attack. We show that our best combined defense, Krum+, is successful against our new adaptive adversary and state-of-the-art attacks.
☆ Performance Assessment Strategies for Generative AI Applications in Healthcare
Generative artificial intelligence (GenAI) represent an emerging paradigm within artificial intelligence, with applications throughout the medical enterprise. Assessing GenAI applications necessitates a comprehensive understanding of the clinical task and awareness of the variability in performance when implemented in actual clinical environments. Presently, a prevalent method for evaluating the performance of generative models relies on quantitative benchmarks. Such benchmarks have limitations and may suffer from train-to-the-test overfitting, optimizing performance for a specified test set at the cost of generalizability across other task and data distributions. Evaluation strategies leveraging human expertise and utilizing cost-effective computational models as evaluators are gaining interest. We discuss current state-of-the-art methodologies for assessing the performance of GenAI applications in healthcare and medical devices.
☆ JEL: A Novel Model Linking Knowledge Graph entities to News Mentions
We present JEL, a novel computationally efficient end-to-end multi-neural network based entity linking model, which beats current state-of-art model. Knowledge Graphs have emerged as a compelling abstraction for capturing critical relationships among the entities of interest and integrating data from multiple heterogeneous sources. A core problem in leveraging a knowledge graph is linking its entities to the mentions (e.g., people, company names) that are encountered in textual sources (e.g., news, blogs., etc) correctly, since there are thousands of entities to consider for each mention. This task of linking mentions and entities is referred as Entity Linking (EL). It is a fundamental task in natural language processing and is beneficial in various uses cases, such as building a New Analytics platform. News Analytics, in JPMorgan, is an essential task that benefits multiple groups across the firm. According to a survey conducted by the Innovation Digital team 1 , around 25 teams across the firm are actively looking for news analytics solutions, and more than \$2 million is being spent annually on external vendor costs. Entity linking is critical for bridging unstructured news text with knowledge graphs, enabling users access to vast amounts of curated data in a knowledge graph and dramatically facilitating their daily work.
☆ How Far Are We from True Unlearnability? ICLR 2025
High-quality data plays an indispensable role in the era of large models, but the use of unauthorized data for model training greatly damages the interests of data owners. To overcome this threat, several unlearnable methods have been proposed, which generate unlearnable examples (UEs) by compromising the training availability of data. Clearly, due to unknown training purposes and the powerful representation learning capabilities of existing models, these data are expected to be unlearnable for models across multiple tasks, i.e., they will not help improve the model's performance. However, unexpectedly, we find that on the multi-task dataset Taskonomy, UEs still perform well in tasks such as semantic segmentation, failing to exhibit cross-task unlearnability. This phenomenon leads us to question: How far are we from attaining truly unlearnable examples? We attempt to answer this question from the perspective of model optimization. To this end, we observe the difference in the convergence process between clean and poisoned models using a simple model architecture. Subsequently, from the loss landscape we find that only a part of the critical parameter optimization paths show significant differences, implying a close relationship between the loss landscape and unlearnability. Consequently, we employ the loss landscape to explain the underlying reasons for UEs and propose Sharpness-Aware Learnability (SAL) to quantify the unlearnability of parameters based on this explanation. Furthermore, we propose an Unlearnable Distance (UD) to measure the unlearnability of data based on the SAL distribution of parameters in clean and poisoned models. Finally, we conduct benchmark tests on mainstream unlearnable methods using the proposed UD, aiming to promote community awareness of the capability boundaries of existing unlearnable methods.
comment: This paper has been accepted by ICLR 2025
☆ Forecasting Generative Amplification
Generative networks are perfect tools to enhance the speed and precision of LHC simulations. It is important to understand their statistical precision, especially when generating events beyond the size of the training dataset. We present two complementary methods to estimate the amplification factor without large holdout datasets. Averaging amplification uses Bayesian networks or ensembling to estimate amplification from the precision of integrals over given phase-space volumes. Differential amplification uses hypothesis testing to quantify amplification without any resolution loss. Applied to state-of-the-art event generators, both methods indicate that amplification is possible in specific regions of phase space, but not yet across the entire distribution.
comment: 23 pages, 15 figures
☆ LALM-Eval: An Open-Source Toolkit for Holistic Evaluation of Large Audio Language Models
Large Audio Language Models (LALMs) are rapidly advancing, but evaluating them remains challenging due to inefficient toolkits that limit fair comparison and systematic assessment. Current frameworks suffer from three critical issues: slow processing that bottlenecks large-scale studies, inconsistent prompting that hurts reproducibility, and narrow task coverage that misses important audio reasoning capabilities. We introduce LALM-Eval, an efficient and comprehensive evaluation framework for LALMs. Our system achieves a speedup of up to 127% over existing toolkits through optimized batch processing and parallel execution, enabling large-scale evaluations previously impractical. We provide standardized prompting protocols and flexible configurations for fair model comparison across diverse scenarios. Additionally, we introduce two new evaluation categories: LLM-Adaptive Diarization for temporal audio understanding and Spoken Language Reasoning for complex audio-based cognitive tasks. Through evaluation across 380+ tasks, we reveal significant gaps in current LALMs, particularly in temporal understanding and complex spoken language reasoning tasks. Our findings also highlight a lack of standardization in instruction modality existent across audio benchmarks, which can lead up performance differences up to 9.5 absolute points on the challenging complex instruction following downstream tasks. LALM-Eval provides both practical evaluation tools and insights into model limitations, advancing systematic LALM development.
☆ MCTED: A Machine-Learning-Ready Dataset for Digital Elevation Model Generation From Mars Imagery
This work presents a new dataset for the Martian digital elevation model prediction task, ready for machine learning applications called MCTED. The dataset has been generated using a comprehensive pipeline designed to process high-resolution Mars orthoimage and DEM pairs from Day et al., yielding a dataset consisting of 80,898 data samples. The source images are data gathered by the Mars Reconnaissance Orbiter using the CTX instrument, providing a very diverse and comprehensive coverage of the Martian surface. Given the complexity of the processing pipelines used in large-scale DEMs, there are often artefacts and missing data points in the original data, for which we developed tools to solve or mitigate their impact. We divide the processed samples into training and validation splits, ensuring samples in both splits cover no mutual areas to avoid data leakage. Every sample in the dataset is represented by the optical image patch, DEM patch, and two mask patches, indicating values that were originally missing or were altered by us. This allows future users of the dataset to handle altered elevation regions as they please. We provide statistical insights of the generated dataset, including the spatial distribution of samples, the distributions of elevation values, slopes and more. Finally, we train a small U-Net architecture on the MCTED dataset and compare its performance to a monocular depth estimation foundation model, DepthAnythingV2, on the task of elevation prediction. We find that even a very small architecture trained on this dataset specifically, beats a zero-shot performance of a depth estimation foundation model like DepthAnythingV2. We make the dataset and code used for its generation completely open source in public repositories.
comment: 22 pages, 21 figures
☆ Enhancing Privacy Preservation and Reducing Analysis Time with Federated Transfer Learning in Digital Twins-based Computed Tomography Scan Analysis
The application of Digital Twin (DT) technology and Federated Learning (FL) has great potential to change the field of biomedical image analysis, particularly for Computed Tomography (CT) scans. This paper presents Federated Transfer Learning (FTL) as a new Digital Twin-based CT scan analysis paradigm. FTL uses pre-trained models and knowledge transfer between peer nodes to solve problems such as data privacy, limited computing resources, and data heterogeneity. The proposed framework allows real-time collaboration between cloud servers and Digital Twin-enabled CT scanners while protecting patient identity. We apply the FTL method to a heterogeneous CT scan dataset and assess model performance using convergence time, model accuracy, precision, recall, F1 score, and confusion matrix. It has been shown to perform better than conventional FL and Clustered Federated Learning (CFL) methods with better precision, accuracy, recall, and F1-score. The technique is beneficial in settings where the data is not independently and identically distributed (non-IID), and it offers reliable, efficient, and secure solutions for medical diagnosis. These findings highlight the possibility of using FTL to improve decision-making in digital twin-based CT scan analysis, secure and efficient medical image analysis, promote privacy, and open new possibilities for applying precision medicine and smart healthcare systems.
☆ Video Parallel Scaling: Aggregating Diverse Frame Subsets for VideoLLMs
Video Large Language Models (VideoLLMs) face a critical bottleneck: increasing the number of input frames to capture fine-grained temporal detail leads to prohibitive computational costs and performance degradation from long context lengths. We introduce Video Parallel Scaling (VPS), an inference-time method that expands a model's perceptual bandwidth without increasing its context window. VPS operates by running multiple parallel inference streams, each processing a unique, disjoint subset of the video's frames. By aggregating the output probabilities from these complementary streams, VPS integrates a richer set of visual information than is possible with a single pass. We theoretically show that this approach effectively contracts the Chinchilla scaling law by leveraging uncorrelated visual evidence, thereby improving performance without additional training. Extensive experiments across various model architectures and scales (2B-32B) on benchmarks such as Video-MME and EventHallusion demonstrate that VPS consistently and significantly improves performance. It scales more favorably than other parallel alternatives (e.g. Self-consistency) and is complementary to other decoding strategies, offering a memory-efficient and robust framework for enhancing the temporal reasoning capabilities of VideoLLMs.
comment: https://github.com/hyungjin-chung/VPS
☆ ArtifactGen: Benchmarking WGAN-GP vs Diffusion for Label-Aware EEG Artifact Synthesis
Artifacts in electroencephalography (EEG) -- muscle, eye movement, electrode, chewing, and shiver -- confound automated analysis yet are costly to label at scale. We study whether modern generative models can synthesize realistic, label-aware artifact segments suitable for augmentation and stress-testing. Using the TUH EEG Artifact (TUAR) corpus, we curate subject-wise splits and fixed-length multi-channel windows (e.g., 250 samples) with preprocessing tailored to each model (per-window min-max for adversarial training; per-recording/channel $z$-score for diffusion). We compare a conditional WGAN-GP with a projection discriminator to a 1D denoising diffusion model with classifier-free guidance, and evaluate along three axes: (i) fidelity via Welch band-power deltas ($\Delta\delta,\ \Delta\theta,\ \Delta\alpha,\ \Delta\beta$), channel-covariance Frobenius distance, autocorrelation $L_2$, and distributional metrics (MMD/PRD); (ii) specificity via class-conditional recovery with lightweight $k$NN/classifiers; and (iii) utility via augmentation effects on artifact recognition. In our setting, WGAN-GP achieves closer spectral alignment and lower MMD to real data, while both models exhibit weak class-conditional recovery, limiting immediate augmentation gains and revealing opportunities for stronger conditioning and coverage. We release a reproducible pipeline -- data manifests, training configurations, and evaluation scripts -- to establish a baseline for EEG artifact synthesis and to surface actionable failure modes for future work.
comment: 16 Pages, 6 figures
♻ ☆ Is Your LLM Overcharging You? Tokenization, Transparency, and Incentives
State-of-the-art large language models require specialized hardware and substantial energy to operate. As a consequence, cloud-based services that provide access to large language models have become very popular. In these services, the price users pay for an output provided by a model depends on the number of tokens the model uses to generate it -- they pay a fixed price per token. In this work, we show that this pricing mechanism creates a financial incentive for providers to strategize and misreport the (number of) tokens a model used to generate an output, and users cannot prove, or even know, whether a provider is overcharging them. However, we also show that, if an unfaithful provider is obliged to be transparent about the generative process used by the model, misreporting optimally without raising suspicion is hard. Nevertheless, as a proof-of-concept, we develop an efficient heuristic algorithm that allows providers to significantly overcharge users without raising suspicion. Crucially, we demonstrate that the cost of running the algorithm is lower than the additional revenue from overcharging users, highlighting the vulnerability of users under the current pay-per-token pricing mechanism. Further, we show that, to eliminate the financial incentive to strategize, a pricing mechanism must price tokens linearly on their character count. While this makes a provider's profit margin vary across tokens, we introduce a simple prescription under which the provider who adopts such an incentive-compatible pricing mechanism can maintain the average profit margin they had under the pay-per-token pricing mechanism. Along the way, to illustrate and complement our theoretical results, we conduct experiments with several large language models from the $\texttt{Llama}$, $\texttt{Gemma}$ and $\texttt{Ministral}$ families, and input prompts from the LMSYS Chatbot Arena platform.
♻ ☆ Automatic Reward Shaping from Confounded Offline Data ICML 2025
A key task in Artificial Intelligence is learning effective policies for controlling agents in unknown environments to optimize performance measures. Off-policy learning methods, like Q-learning, allow learners to make optimal decisions based on past experiences. This paper studies off-policy learning from biased data in complex and high-dimensional domains where \emph{unobserved confounding} cannot be ruled out a priori. Building on the well-celebrated Deep Q-Network (DQN), we propose a novel deep reinforcement learning algorithm robust to confounding biases in observed data. Specifically, our algorithm attempts to find a safe policy for the worst-case environment compatible with the observations. We apply our method to twelve confounded Atari games, and find that it consistently dominates the standard DQN in all games where the observed input to the behavioral and target policies mismatch and unobserved confounders exist.
comment: ICML 2025
♻ ☆ Llama-Nemotron: Efficient Reasoning Models
We introduce the Llama-Nemotron series of models, an open family of heterogeneous reasoning models that deliver exceptional reasoning capabilities, inference efficiency, and an open license for enterprise use. The family comes in three sizes -- Nano (8B), Super (49B), and Ultra (253B) -- and performs competitively with state-of-the-art reasoning models such as DeepSeek-R1 while offering superior inference throughput and memory efficiency. In this report, we discuss the training procedure for these models, which entails using neural architecture search from Llama 3 models for accelerated inference, knowledge distillation, and continued pretraining, followed by a reasoning-focused post-training stage consisting of two main parts: supervised fine-tuning and large scale reinforcement learning. Llama-Nemotron models are the first open-source models to support a dynamic reasoning toggle, allowing users to switch between standard chat and reasoning modes during inference. To further support open research and facilitate model development, we provide the following resources: 1. We release the Llama-Nemotron reasoning models -- LN-Nano, LN-Super, and LN-Ultra -- under the commercially permissive NVIDIA Open Model License Agreement. 2. We release the complete post-training dataset: Llama-Nemotron-Post-Training-Dataset. 3. We also release our training codebases: NeMo, NeMo-Aligner, and Megatron-LM.
♻ ☆ MaRVL-QA: A Benchmark for Mathematical Reasoning over Visual Landscapes
A key frontier for Multimodal Large Language Models (MLLMs) is the ability to perform deep mathematical and spatial reasoning directly from images, moving beyond their established success in semantic description. Mathematical surface plots provide a rigorous testbed for this capability, as they isolate the task of reasoning from the semantic noise common in natural images. To measure progress on this frontier, we introduce MaRVL-QA (Mathematical Reasoning over Visual Landscapes), a new benchmark designed to quantitatively evaluate these core reasoning skills. The benchmark comprises two novel tasks: Topological Counting, identifying and enumerating features like local maxima; and Transformation Recognition, recognizing applied geometric transformations. Generated from a curated library of functions with rigorous ambiguity filtering, our evaluation on MaRVL-QA reveals that even state-of-the-art MLLMs struggle significantly, often resorting to superficial heuristics instead of robust spatial reasoning. MaRVL-QA provides a challenging new tool for the research community to measure progress, expose model limitations, and guide the development of MLLMs with more profound reasoning abilities.
♻ ☆ MSRFormer: Road Network Representation Learning using Multi-scale Feature Fusion of Heterogeneous Spatial Interactions
Transforming road network data into vector representations using deep learning has proven effective for road network analysis. However, urban road networks' heterogeneous and hierarchical nature poses challenges for accurate representation learning. Graph neural networks, which aggregate features from neighboring nodes, often struggle due to their homogeneity assumption and focus on a single structural scale. To address these issues, this paper presents MSRFormer, a novel road network representation learning framework that integrates multi-scale spatial interactions by addressing their flow heterogeneity and long-distance dependencies. It uses spatial flow convolution to extract small-scale features from large trajectory datasets, and identifies scale-dependent spatial interaction regions to capture the spatial structure of road networks and flow heterogeneity. By employing a graph transformer, MSRFormer effectively captures complex spatial dependencies across multiple scales. The spatial interaction features are fused using residual connections, which are fed to a contrastive learning algorithm to derive the final road network representation. Validation on two real-world datasets demonstrates that MSRFormer outperforms baseline methods in two road network analysis tasks. The performance gains of MSRFormer suggest the traffic-related task benefits more from incorporating trajectory data, also resulting in greater improvements in complex road network structures with up to 16% improvements compared to the most competitive baseline method. This research provides a practical framework for developing task-agnostic road network representation models and highlights distinct association patterns of the interplay between scale effects and flow heterogeneity of spatial interactions.
♻ ☆ Convergence of Batch Asynchronous Stochastic Approximation With Applications to Reinforcement Learning
We begin by briefly surveying some results on the convergence of the Stochastic Gradient Descent (SGD) Method, proved in a companion paper by the present authors. These results are based on viewing SGD as a version of Stochastic Approximation (SA). Ever since its introduction in the classic paper of Robbins and Monro in 1951, SA has become a standard tool for finding a solution of an equation of the form $f(\theta) = 0$, when only noisy measurements of $f(\cdot)$ are available. In most situations, \textit{every component} of the putative solution $\theta_t$ is updated at each step $t$. In some applications in Reinforcement Learning (RL), \textit{only one component} of $\theta_t$ is updated at each $t$. This is known as \textbf{asynchronous} SA. In this paper, we study \textbf{Block Asynchronous SA (BASA)}, in which, at each step $t$, \textit{some but not necessarily all} components of $\theta_t$ are updated. The theory presented here embraces both conventional (synchronous) SA as well as asynchronous SA, and all in-between possibilities. We provide sufficient conditions for the convergence of BASA, and also prove bounds on the \textit{rate} of convergence of $\theta_t$ to the solution. For the case of conventional SGD, these results reduce to those proved in our companion paper. Then we apply these results to the problem of finding a fixed point of a map with only noisy measurements. This problem arises frequently in RL. We prove sufficient conditions for convergence as well as estimates for the rate of convergence.
comment: 34 pages, 1 figure
♻ ☆ Convergence of Momentum-Based Optimization Algorithms with Time-Varying Parameters
In this paper, we present a unified algorithm for stochastic optimization that makes use of a "momentum" term; in other words, the stochastic gradient depends not only on the current true gradient of the objective function, but also on the true gradient at the previous iteration. Our formulation includes the Stochastic Heavy Ball (SHB) and the Stochastic Nesterov Accelerated Gradient (SNAG) algorithms as special cases. In addition, in our formulation, the momentum term is allowed to vary as a function of time (i.e., the iteration counter). The assumptions on the stochastic gradient are the most general in the literature, in that it can be biased, and have a conditional variance that grows in an unbounded fashion as a function of time. This last feature is crucial in order to make the theory applicable to "zero-order" methods, where the gradient is estimated using just two function evaluations. We present a set of sufficient conditions for the convergence of the unified algorithm. These conditions are natural generalizations of the familiar Robbins-Monro and Kiefer-Wolfowitz-Blum conditions for standard stochastic gradient descent. We also analyze another method from the literature for the SHB algorithm with a time-varying momentum parameter, and show that it is impracticable.
comment: 36 pages
♻ ☆ Toward a Metrology for Artificial Intelligence: Hidden-Rule Environments and Reinforcement Learning
We investigate reinforcement learning in the Game Of Hidden Rules (GOHR) environment, a complex puzzle in which an agent must infer and execute hidden rules to clear a 6$\times$6 board by placing game pieces into buckets. We explore two state representation strategies, namely Feature-Centric (FC) and Object-Centric (OC), and employ a Transformer-based Advantage Actor-Critic (A2C) algorithm for training. The agent has access only to partial observations and must simultaneously infer the governing rule and learn the optimal policy through experience. We evaluate our models across multiple rule-based and trial-list-based experimental setups, analyzing transfer effects and the impact of representation on learning efficiency.
♻ ☆ JoPA:Explaining Large Language Model's Generation via Joint Prompt Attribution ACL 2025
Large Language Models (LLMs) have demonstrated impressive performances in complex text generation tasks. However, the contribution of the input prompt to the generated content still remains obscure to humans, underscoring the necessity of understanding the causality between input and output pairs. Existing works for providing prompt-specific explanation often confine model output to be classification or next-word prediction. Few initial attempts aiming to explain the entire language generation often treat input prompt texts independently, ignoring their combinatorial effects on the follow-up generation. In this study, we introduce a counterfactual explanation framework based on Joint Prompt Attribution, JoPA, which aims to explain how a few prompt texts collaboratively influences the LLM's complete generation. Particularly, we formulate the task of prompt attribution for generation interpretation as a combinatorial optimization problem, and introduce a probabilistic algorithm to search for the casual input combination in the discrete space. We define and utilize multiple metrics to evaluate the produced explanations, demonstrating both the faithfulness and efficiency of our framework.
comment: Accepted to ACL 2025 (Main)
♻ ☆ Directly Aligning the Full Diffusion Trajectory with Fine-Grained Human Preference
Recent studies have demonstrated the effectiveness of directly aligning diffusion models with human preferences using differentiable reward. However, they exhibit two primary challenges: (1) they rely on multistep denoising with gradient computation for reward scoring, which is computationally expensive, thus restricting optimization to only a few diffusion steps; (2) they often need continuous offline adaptation of reward models in order to achieve desired aesthetic quality, such as photorealism or precise lighting effects. To address the limitation of multistep denoising, we propose Direct-Align, a method that predefines a noise prior to effectively recover original images from any time steps via interpolation, leveraging the equation that diffusion states are interpolations between noise and target images, which effectively avoids over-optimization in late timesteps. Furthermore, we introduce Semantic Relative Preference Optimization (SRPO), in which rewards are formulated as text-conditioned signals. This approach enables online adjustment of rewards in response to positive and negative prompt augmentation, thereby reducing the reliance on offline reward fine-tuning. By fine-tuning the FLUX model with optimized denoising and online reward adjustment, we improve its human-evaluated realism and aesthetic quality by over 3x.
comment: 15 pages
♻ ☆ Hybrid-Regularized Magnitude Pruning for Robust Federated Learning under Covariate Shift
Federated Learning offers a solution for decentralised model training, addressing the difficulties associated with distributed data and privacy in machine learning. However, the fact of data heterogeneity in federated learning frequently hinders the global model's generalisation, leading to low performance and adaptability to unseen data. This problem is particularly critical for specialised applications such as medical imaging, where both the data and the number of clients are limited. In this paper, we empirically demonstrate that inconsistencies in client-side training distributions substantially degrade the performance of federated learning models across multiple benchmark datasets. We propose a novel FL framework using a combination of pruning and regularisation of clients' training to improve the sparsity, redundancy, and robustness of neural connections, and thereby the resilience to model aggregation. To address a relatively unexplored dimension of data heterogeneity, we further introduce a novel benchmark dataset, CelebA-Gender, specifically designed to control for within-class distributional shifts across clients based on attribute variations, thereby complementing the predominant focus on inter-class imbalance in prior federated learning research. Comprehensive experiments on many datasets like CIFAR-10, MNIST, and the newly introduced CelebA-Gender dataset demonstrate that our method consistently outperforms standard FL baselines, yielding more robust and generalizable models in heterogeneous settings.
♻ ☆ Missing Fine Details in Images: Last Seen in High Frequencies
Latent generative models have shown remarkable progress in high-fidelity image synthesis, typically using a two-stage training process that involves compressing images into latent embeddings via learned tokenizers in the first stage. The quality of generation strongly depends on how expressive and well-optimized these latent embeddings are. While various methods have been proposed to learn effective latent representations, generated images often lack realism, particularly in textured regions with sharp transitions, due to loss of fine details governed by high frequencies. We conduct a detailed frequency decomposition of existing state-of-the-art (SOTA) latent tokenizers and show that conventional objectives inherently prioritize low-frequency reconstruction, often at the expense of high-frequency fidelity. Our analysis reveals these latent tokenizers exhibit a bias toward low-frequency information during optimization, leading to over-smoothed outputs and visual artifacts that diminish perceptual quality. To address this, we propose a wavelet-based, frequency-aware variational autoencoder (FA-VAE) framework that explicitly decouples the optimization of low- and high-frequency components. This decoupling enables improved reconstruction of fine textures while preserving global structure. Moreover, we integrate our frequency-preserving latent embeddings into a SOTA latent diffusion model, resulting in sharper and more realistic image generation. Our approach bridges the fidelity gap in current latent tokenizers and emphasizes the importance of frequency-aware optimization for realistic image synthesis, with broader implications for applications in content creation, neural rendering, and medical imaging.
♻ ☆ Robust Adaptation of Large Multimodal Models for Retrieval Augmented Hateful Meme Detection EMNLP 2025
Hateful memes have become a significant concern on the Internet, necessitating robust automated detection systems. While Large Multimodal Models (LMMs) have shown promise in hateful meme detection, they face notable challenges like sub-optimal performance and limited out-of-domain generalization capabilities. Recent studies further reveal the limitations of both supervised fine-tuning (SFT) and in-context learning when applied to LMMs in this setting. To address these issues, we propose a robust adaptation framework for hateful meme detection that enhances in-domain accuracy and cross-domain generalization while preserving the general vision-language capabilities of LMMs. Analysis reveals that our approach achieves improved robustness under adversarial attacks compared to SFT models. Experiments on six meme classification datasets show that our approach achieves state-of-the-art performance, outperforming larger agentic systems. Moreover, our method generates higher-quality rationales for explaining hateful content compared to standard SFT, enhancing model interpretability. Code available at https://github.com/JingbiaoMei/RGCL
comment: EMNLP 2025 Main
♻ ☆ Self-Supervised Temporal Super-Resolution of Energy Data using Generative Adversarial Transformer
To bridge the temporal granularity gap in energy network design and operation based on Energy System Models, resampling of time series is required. While conventional upsampling methods are computationally efficient, they often result in significant information loss or increased noise. Advanced models such as time series generation models, Super-Resolution models and imputation models show potential, but also face fundamental challenges. The goal of time series generative models is to learn the distribution of the original data to generate high-resolution series with similar statistical characteristics. This is not entirely consistent with the definition of upsampling. Time series Super-Resolution models or imputation models can degrade the accuracy of upsampling because the input low-resolution time series are sparse and may have insufficient context. Moreover, such models usually rely on supervised learning paradigms. This presents a fundamental application paradox: their training requires the high-resolution time series that is intrinsically absent in upsampling application scenarios. To address the mentioned upsampling issue, this paper introduces a new method utilizing Generative Adversarial Transformers (GATs), which can be trained without access to any ground-truth high-resolution data. Compared with conventional interpolation methods, the introduced method can reduce the root mean square error (RMSE) of upsampling tasks by 9%, and the accuracy of a model predictive control (MPC) application scenario is improved by 13%.
♻ ☆ Bootstrapping Task Spaces for Self-Improvement
Progress in many task domains emerges from repeated revisions to previous solution attempts. Training agents that can reliably self-improve over such sequences at inference-time is a natural target for reinforcement learning (RL), yet the naive approach assumes a fixed maximum iteration depth, which can be both costly and arbitrary. We present Exploratory Iteration (ExIt), a family of autocurriculum RL methods that directly exploits the recurrent structure of self-improvement tasks to train LLMs to perform multi-step self-improvement at inference-time while only training on the most informative single-step iterations. ExIt grows a task space by selectively sampling the most informative intermediate, partial histories encountered during an episode for continued iteration, treating these starting points as new self-iteration task instances to train a self-improvement policy. ExIt can further pair with explicit exploration mechanisms to sustain greater task diversity. Across several domains, encompassing competition math, multi-turn tool-use, and machine learning engineering, we demonstrate that ExIt strategies, starting from either a single or many task instances, can produce policies exhibiting strong inference-time self-improvement on held-out task instances, and the ability to iterate towards higher performance over a step budget extending beyond the average iteration depth encountered during training.
♻ ☆ Closing the Gap between TD Learning and Supervised Learning with $Q$-Conditioned Maximization
Recently, supervised learning (SL) methodology has emerged as an effective approach for offline reinforcement learning (RL) due to their simplicity, stability, and efficiency. However, recent studies show that SL methods lack the trajectory stitching capability, typically associated with temporal difference (TD)-based approaches. A question naturally surfaces: \textit{How can we endow SL methods with stitching capability and close its performance gap with TD learning?} To answer this question, we introduce $Q$-conditioned maximization supervised learning for offline goal-conditioned RL, which enhances SL with the stitching capability through $Q$-conditioned policy and $Q$-conditioned maximization. Concretely, we propose \textbf{G}oal-\textbf{C}onditioned \textbf{\textit{Rein}}forced \textbf{S}upervised \textbf{L}earning (\textbf{GC\textit{Rein}SL}), which consists of (1) estimating the $Q$-function by Normalizing Flows from the offline dataset and (2) finding the maximum $Q$-value within the data support by integrating $Q$-function maximization with Expectile Regression. In inference time, our policy chooses optimal actions based on such a maximum $Q$-value. Experimental results from stitching evaluations on offline RL datasets demonstrate that our method outperforms prior SL approaches with stitching capabilities and goal data augmentation techniques.
♻ ☆ Closed-Loop Unsupervised Representation Disentanglement with $β$-VAE Distillation and Diffusion Probabilistic Feedback ECCV 2024
Representation disentanglement may help AI fundamentally understand the real world and thus benefit both discrimination and generation tasks. It currently has at least three unresolved core issues: (i) heavy reliance on label annotation and synthetic data -- causing poor generalization on natural scenarios; (ii) heuristic/hand-craft disentangling constraints make it hard to adaptively achieve an optimal training trade-off; (iii) lacking reasonable evaluation metric, especially for the real label-free data. To address these challenges, we propose a \textbf{C}losed-\textbf{L}oop unsupervised representation \textbf{Dis}entanglement approach dubbed \textbf{CL-Dis}. Specifically, we use diffusion-based autoencoder (Diff-AE) as a backbone while resorting to $\beta$-VAE as a co-pilot to extract semantically disentangled representations. The strong generation ability of diffusion model and the good disentanglement ability of VAE model are complementary. To strengthen disentangling, VAE-latent distillation and diffusion-wise feedback are interconnected in a closed-loop system for a further mutual promotion. Then, a self-supervised \textbf{Navigation} strategy is introduced to identify interpretable semantic directions in the disentangled latent space. Finally, a new metric based on content tracking is designed to evaluate the disentanglement effect. Experiments demonstrate the superiority of CL-Dis on applications like real image manipulation and visual analysis.
comment: ECCV 2024
♻ ☆ CAME-AB: Cross-Modality Attention with Mixture-of-Experts for Antibody Binding Site Prediction
Antibody binding site prediction plays a pivotal role in computational immunology and therapeutic antibody design. Existing sequence or structure methods rely on single-view features and fail to identify antibody-specific binding sites on the antigens. In this paper, we propose \textbf{CAME-AB}, a novel Cross-modality Attention framework with a Mixture-of-Experts (MoE) backbone for robust antibody binding site prediction. CAME-AB integrates five biologically grounded modalities, including raw amino acid encodings, BLOSUM substitution profiles, pretrained language model embeddings, structure-aware features, and GCN-refined biochemical graphs, into a unified multimodal representation. To enhance adaptive cross-modal reasoning, we propose an \emph{adaptive modality fusion} module that learns to dynamically weight each modality based on its global relevance and input-specific contribution. A Transformer encoder combined with an MoE module further promotes feature specialization and capacity expansion. We additionally incorporate a supervised contrastive learning objective to explicitly shape the latent space geometry, encouraging intra-class compactness and inter-class separability. To improve optimization stability and generalization, we apply stochastic weight averaging during training. Extensive experiments on benchmark antibody-antigen datasets demonstrate that CAME-AB consistently outperforms strong baselines on multiple metrics, including Precision, Recall, F1-score, AUC-ROC, and MCC. Ablation studies further validate the effectiveness of each architectural component and the benefit of multimodal feature integration. The model implementation details and the codes are available on https://anonymous.4open.science/r/CAME-AB-C525
♻ ☆ Local Normalization Distortion and the Thermodynamic Formalism of Decoding Strategies for Large Language Models
Advances in hardware and language model architecture have spurred a revolution in natural language generation. However, autoregressive models compute probability distributions over next-token choices, and sampling from these distributions, known as decoding, has received significantly less attention than other design choices. Existing decoding strategies are largely based on heuristics, resulting in methods that are difficult to apply or improve in a principled manner. We develop the theory of decoding strategies for language models by expressing popular decoding algorithms as equilibrium states in the language of ergodic theory and stating the objective functions they optimize. Using this, we analyze the effect of the local normalization step required to make probabilities sum to one in top-k, nucleus, and temperature sampling. We argue that local normalization distortion is a fundamental defect of decoding strategies and quantify the size of this distortion and its effect on mathematical proxies for the quality and diversity of generated text. This yields conclusions for the design of decoding algorithms and the detection of machine-generated text.
♻ ☆ Signal-Based Malware Classification Using 1D CNNs
Malware classification is a contemporary and ongoing challenge in cyber-security: modern obfuscation techniques are able to evade traditional static analysis, while dynamic analysis is too resource intensive to be deployed at a large scale. One prominent line of research addresses these limitations by converting malware binaries into 2D images by heuristically reshaping them into a 2D grid before resizing using Lanczos resampling. These images can then be classified based on their textural information using computer vision approaches. While this approach can detect obfuscated malware more effectively than static analysis, the process of converting files into 2D images results in significant information loss due to both quantisation noise, caused by rounding to integer pixel values, and the introduction of 2D dependencies which do not exist in the original data. This loss of signal limits the classification performance of the downstream model. This work addresses these weaknesses by instead resizing the files into 1D signals which avoids the need for heuristic reshaping, and additionally these signals do not suffer from quantisation noise due to being stored in a floating-point format. It is shown that existing 2D CNN architectures can be readily adapted to classify these 1D signals for improved performance. Furthermore, a bespoke 1D convolutional neural network, based on the ResNet architecture and squeeze-and-excitation layers, was developed to classify these signals and evaluated on the MalNet dataset. It was found to achieve state-of-the-art performance on binary, type, and family level classification with F1 scores of 0.874, 0.503, and 0.507, respectively, paving the way for future models to operate on the proposed signal modality.
comment: Accepted for publication in Springer Cybersecurity (2025)
♻ ☆ Improving the Estimation of Lifetime Effects in A/B Testing via Treatment Locality
Utilizing randomized experiments to evaluate the effect of short-term treatments on the short-term outcomes has been well understood and become the golden standard in industrial practice. However, as service systems become increasingly dynamical and personalized, much focus is shifting toward maximizing long-term outcomes, such as customer lifetime value, through lifetime exposure to interventions. Our goal is to assess the impact of treatment and control policies on long-term outcomes from relatively short-term observations, such as those generated by A/B testing. A key managerial observation is that many practical treatments are local, affecting only targeted states while leaving other parts of the policy unchanged. This paper rigorously investigates whether and how such locality can be exploited to improve estimation of long-term effects in Markov Decision Processes (MDPs), a fundamental model of dynamic systems. We first develop optimal inference techniques for general A/B testing in MDPs and establish corresponding efficiency bounds. We then propose methods to harness the localized structure by sharing information on the non-targeted states. Our new estimator can achieve a linear reduction with the number of test arms for a major part of the variance without sacrificing unbiasedness. It also matches a tighter variance lower bound that accounts for locality. Furthermore, we extend our framework to a broad class of differentiable estimators, which encompasses many widely used approaches in practice. We show that all such estimators can benefit from variance reduction through information sharing without increasing their bias. Together, these results provide both theoretical foundations and practical tools for conducting efficient experiments in dynamic service systems with local treatments.
♻ ☆ Wild Refitting for Model-Free Excess Risk Evaluation of Opaque Machine Learning Models under Bregman Loss
We study the problem of evaluating the excess risk of classical penalized empirical risk minimization (ERM) with Bregman losses. We show that by leveraging the recently proposed wild refitting procedure (Wainwright, 2025), one can efficiently upper bound the excess risk through the so-called "wild optimism," without relying on the global structure of the underlying function class. This property makes our approach inherently model-free. Unlike conventional analyses, our framework operates with just one dataset and black-box access to the training procedure. The method involves randomized vector-valued symmetrization with an appropriate scaling of the prediction residues and constructing artificially modified outcomes, upon which we retrain a second predictor for excess risk estimation. We establish high-probability performance guarantees both under the fixed design setting and the random design setting, demonstrating that wild refitting under Bregman losses, with an appropriately chosen wild noise scale, yields a valid upper bound on the excess risk. This work thus is promising for theoretically evaluating modern opaque ML and AI models such as deep neural networks and large language models, where the model class is too complex for classical learning theory and empirical process techniques to apply.
♻ ☆ Navigating High Dimensional Concept Space with Metalearning
Rapidly learning abstract concepts from limited examples is a hallmark of human intelligence. This work investigates whether gradient-based meta-learning can equip neural networks with inductive biases for efficient few-shot acquisition of discrete concepts. I compare meta-learning methods against a supervised learning baseline on Boolean concepts (logical statements) generated by a probabilistic context-free grammar (PCFG). By systematically varying concept dimensionality (number of features) and recursive compositionality (depth of grammar recursion), I delineate between complexity regimes in which meta-learning robustly improves few-shot concept learning and regimes in which it does not. Meta-learners are much better able to handle compositional complexity than featural complexity. I highlight some reasons for this with a representational analysis of the weights of meta-learners and a loss landscape analysis demonstrating how featural complexity increases the roughness of loss trajectories, allowing curvature-aware optimization to be more effective than first-order methods. I find improvements in out-of-distribution generalization on complex concepts by increasing the number of adaptation steps in meta-SGD, where adaptation acts as a way of encouraging exploration of rougher loss basins. Overall, this work highlights the intricacies of learning compositional versus featural complexity in high dimensional concept spaces and provides a road to understanding the role of 2nd order methods and extended gradient adaptation in few-shot concept learning.
♻ ☆ Safeguarding Graph Neural Networks against Topology Inference Attacks CCS'25
Graph Neural Networks (GNNs) have emerged as powerful models for learning from graph-structured data. However, their widespread adoption has raised serious privacy concerns. While prior research has primarily focused on edge-level privacy, a critical yet underexplored threat lies in topology privacy - the confidentiality of the graph's overall structure. In this work, we present a comprehensive study on topology privacy risks in GNNs, revealing their vulnerability to graph-level inference attacks. To this end, we propose a suite of Topology Inference Attacks (TIAs) that can reconstruct the structure of a target training graph using only black-box access to a GNN model. Our findings show that GNNs are highly susceptible to these attacks, and that existing edge-level differential privacy mechanisms are insufficient as they either fail to mitigate the risk or severely compromise model accuracy. To address this challenge, we introduce Private Graph Reconstruction (PGR), a novel defense framework designed to protect topology privacy while maintaining model accuracy. PGR is formulated as a bi-level optimization problem, where a synthetic training graph is iteratively generated using meta-gradients, and the GNN model is concurrently updated based on the evolving graph. Extensive experiments demonstrate that PGR significantly reduces topology leakage with minimal impact on model accuracy. Our code is available at https://github.com/JeffffffFu/PGR.
comment: Acctepted by ACM CCS'25
♻ ☆ TokenSelect: Efficient Long-Context Inference and Length Extrapolation for LLMs via Dynamic Token-Level KV Cache Selection EMNLP2025
Rapid advances in Large Language Models (LLMs) have spurred demand for processing extended context sequences in contemporary applications. However, this progress faces two challenges: performance degradation due to sequence lengths out-of-distribution, and excessively long inference times caused by the quadratic computational complexity of attention. These issues limit LLMs in long-context scenarios. In this paper, we propose Dynamic Token-Level KV Cache Selection (TokenSelect), a training-free method for efficient and accurate long-context inference. TokenSelect builds upon the observation of non-contiguous attention sparsity, using QK dot products to measure per-head KV Cache criticality at token-level. By per-head soft voting mechanism, TokenSelect selectively involves a few critical KV cache tokens in attention calculation without sacrificing accuracy. To further accelerate TokenSelect, we design the Selection Cache based on observations of consecutive Query similarity and implemented the efficient Paged Dot Product Kernel, significantly reducing the selection overhead. A comprehensive evaluation of TokenSelect demonstrates up to $23.84\times$ speedup in attention computation and up to $2.28\times$ acceleration in end-to-end latency, while providing superior performance compared to state-of-the-art long-context inference methods.
comment: Accepted by EMNLP2025
♻ ☆ BranchGRPO: Stable and Efficient GRPO with Structured Branching in Diffusion Models
Recent advancements in aligning image and video generative models via GRPO have achieved remarkable gains in enhancing human preference alignment. However, these methods still face high computational costs from on-policy rollouts and excessive SDE sampling steps, as well as training instability due to sparse rewards. In this paper, we propose BranchGRPO, a novel method that introduces a branch sampling policy updating the SDE sampling process. By sharing computation across common prefixes and pruning low-reward paths and redundant depths, BranchGRPO substantially lowers the per-update compute cost while maintaining or improving exploration diversity. This work makes three main contributions: (1) a branch sampling scheme that reduces rollout and training cost; (2) a tree-based advantage estimator incorporating dense process-level rewards; and (3) pruning strategies exploiting path and depth redundancy to accelerate convergence and boost performance. Experiments on image and video preference alignment show that BranchGRPO improves alignment scores by 16% over strong baselines, while cutting training time by 50%.
comment: 12 pages, 6 figures
♻ ☆ Self-Emotion-Mediated Exploration in Artificial Intelligence Mirrors: Findings from Cognitive Psychology
Background: Exploration of the physical environment is an indispensable precursor to information acquisition and knowledge consolidation for living organisms. Yet, current artificial intelligence models lack these autonomy capabilities during training, hindering their adaptability. This work proposes a learning framework for artificial agents to obtain an intrinsic exploratory drive, based on epistemic and achievement emotions triggered during data observation. Methods: This study proposes a dual-module reinforcement framework, where data analysis scores dictate pride or surprise, in accordance with psychological studies on humans. A correlation between these states and exploration is then optimized for agents to meet their learning goals. Results: Causal relationships between states and exploration are demonstrated by the majority of agents. A 15.4\% mean increase is noted for surprise, with a 2.8\% mean decrease for pride. Resulting correlations of $\rho_{surprise}=0.461$ and $\rho_{pride}=-0.237$ are obtained, mirroring previously reported human behavior. Conclusions: These findings lead to the conclusion that bio-inspiration for AI development can be of great use. This can incur benefits typically found in living beings, such as autonomy. Further, it empirically shows how AI methodologies can corroborate human behavioral findings, showcasing major interdisciplinary importance. Ramifications are discussed.
comment: 17 pages, 8 figures, MDPI's AI Journal
♻ ☆ Improved Physics-informed neural networks loss function regularization with a variance-based term
In machine learning and statistical modeling, the mean square or absolute error is commonly used as an error metric, also called a "loss function." While effective in reducing the average error, this approach may fail to address localized outliers, leading to significant inaccuracies in regions with sharp gradients or discontinuities. This issue is particularly evident in physics-informed neural networks (PINNs), where such localized errors are expected and affect the overall solution. To overcome this limitation, we propose a novel loss function that combines the mean and the standard deviation of the chosen error metric. By minimizing this combined loss function, the method ensures a more uniform error distribution and reduces the impact of localized high-error regions. The proposed loss function is easy to implement and tested on problems of varying complexity: the 1D Poisson equation, the unsteady Burgers' equation, 2D linear elastic solid mechanics, and 2D steady Navier-Stokes equations. Results demonstrate improved solution quality and lower maximum error compared to the standard mean-based loss, with minimal impact on computational time.
♻ ☆ Equivariant U-Shaped Neural Operators for the Cahn-Hilliard Phase-Field Model
Phase separation in binary mixtures, governed by the Cahn-Hilliard equation, plays a central role in interfacial dynamics across materials science and soft matter. While numerical solvers are accurate, they are often computationally expensive and lack flexibility across varying initial conditions and geometries. Neural operators provide a data-driven alternative by learning solution operators between function spaces, but current architectures often fail to capture multiscale behavior and neglect underlying physical symmetries. Here we show that an equivariant U-shaped neural operator (E-UNO) can learn the evolution of the phase-field variable from short histories of past dynamics, achieving accurate predictions across space and time. The model combines global spectral convolution with a multi-resolution U-shaped architecture and regulates translation equivariance to align with the underlying physics. E-UNO outperforms standard Fourier neural operator and U-shaped neural operator baselines, particularly on fine-scale and high-frequency structures. By encoding symmetry and scale hierarchy, the model generalizes better, requires less training data, and yields physically consistent dynamics. This establishes E-UNO as an efficient surrogate for complex phase-field systems.
♻ ☆ A Probabilistic Framework for Imputing Genetic Distances in Spatiotemporal Pathogen Models SP
Pathogen genome data offers valuable structure for spatial models, but its utility is limited by incomplete sequencing coverage. We propose a probabilistic framework for inferring genetic distances between unsequenced cases and known sequences within defined transmission chains, using time-aware evolutionary distance modeling. The method estimates pairwise divergence from collection dates and observed genetic distances, enabling biologically plausible imputation grounded in observed divergence patterns, without requiring sequence alignment or known transmission chains. Applied to highly pathogenic avian influenza A/H5 cases in wild birds in the United States, this approach supports scalable, uncertainty-aware augmentation of genomic datasets and enhances the integration of evolutionary information into spatiotemporal modeling workflows.
comment: 10 pages, 4 figures | Accepted as a full paper in SIGSPATIAL 2025
♻ ☆ Interleaving Reasoning for Better Text-to-Image Generation
Unified multimodal understanding and generation models recently have achieve significant improvement in image generation capability, yet a large gap remains in instruction following and detail preservation compared to systems that tightly couple comprehension with generation such as GPT-4o. Motivated by recent advances in interleaving reasoning, we explore whether such reasoning can further improve Text-to-Image (T2I) generation. We introduce Interleaving Reasoning Generation (IRG), a framework that alternates between text-based thinking and image synthesis: the model first produces a text-based thinking to guide an initial image, then reflects on the result to refine fine-grained details, visual quality, and aesthetics while preserving semantics. To train IRG effectively, we propose Interleaving Reasoning Generation Learning (IRGL), which targets two sub-goals: (1) strengthening the initial think-and-generate stage to establish core content and base quality, and (2) enabling high-quality textual reflection and faithful implementation of those refinements in a subsequent image. We curate IRGL-300K, a dataset organized into six decomposed learning modes that jointly cover learning text-based thinking, and full thinking-image trajectories. Starting from a unified foundation model that natively emits interleaved text-image outputs, our two-stage training first builds robust thinking and reflection, then efficiently tunes the IRG pipeline in the full thinking-image trajectory data. Extensive experiments show SoTA performance, yielding absolute gains of 5-10 points on GenEval, WISE, TIIF, GenAI-Bench, and OneIG-EN, alongside substantial improvements in visual quality and fine-grained fidelity. The code, model weights and datasets will be released in: https://github.com/Osilly/Interleaving-Reasoning-Generation .
♻ ☆ Spectral Methods in Complex Systems
These notes offer a unified introduction to spectral methods for the study of complex systems. They are intended as an operative manual rather than a theorem-proof textbook: the emphasis is on tools, identities, and perspectives that can be readily applied across disciplines. Beginning with a compendium of matrix identities and inversion techniques, the text develops the connections between spectra, dynamics, and structure in finite-dimensional systems. Applications range from dynamical stability and random walks on networks to input-output economics, PageRank, epidemic spreading, memristive circuits, synchronization phenomena, and financial stability. Throughout, the guiding principle is that eigenvalues, eigenvectors, and resolvent operators provide a common language linking problems in physics, mathematics, computer science, and beyond. The presentation is informal, accessible to advanced undergraduates, yet broad enough to serve as a reference for researchers interested in spectral approaches to complex systems.
comment: Expanded and cleaned notes. Based on lectures given at the online school on spectral methods in complex systems (2019); 467 pages. Comments welcome
♻ ☆ Tripartite-GraphRAG via Plugin Ontologies
Large Language Models (LLMs) have shown remarkable capabilities across various domains, yet they struggle with knowledge-intensive tasks in areas that demand factual accuracy, e.g. industrial automation and healthcare. Key limitations include their tendency to hallucinate, lack of source traceability (provenance), and challenges in timely knowledge updates. Combining language models with knowledge graphs (GraphRAG) offers promising avenues for overcoming these deficits. However, a major challenge lies in creating such a knowledge graph in the first place. Here, we propose a novel approach that combines LLMs with a tripartite knowledge graph representation, which is constructed by connecting complex, domain-specific objects via a curated ontology of corresponding, domain-specific concepts to relevant sections within chunks of text through a concept-anchored pre-analysis of source documents starting from an initial lexical graph. Subsequently, we formulate LLM prompt creation as an unsupervised node classification problem allowing for the optimization of information density, coverage, and arrangement of LLM prompts at significantly reduced lengths. An initial experimental evaluation of our approach on a healthcare use case, involving multi-faceted analyses of patient anamneses given a set of medical concepts as well as a series of clinical guideline literature, indicates its potential to optimize information density, coverage, and arrangement of LLM prompts while significantly reducing their lengths, which, in turn, may lead to reduced costs as well as more consistent and reliable LLM outputs.
♻ ☆ SemCAFE: When Named Entities make the Difference Assessing Web Source Reliability through Entity-level Analytics
With the shift from traditional to digital media, the online landscape now hosts not only reliable news articles but also a significant amount of unreliable content. Digital media has faster reachability by significantly influencing public opinion and advancing political agendas. While newspaper readers may be familiar with their preferred outlets political leanings or credibility, determining unreliable news articles is much more challenging. The credibility of many online sources is often opaque, with AI generated content being easily disseminated at minimal cost. Unreliable news articles, particularly those that followed the Russian invasion of Ukraine in 2022, closely mimic the topics and writing styles of credible sources, making them difficult to distinguish. To address this, we introduce SemCAFE, a system designed to detect news reliability by incorporating entity relatedness into its assessment. SemCAFE employs standard Natural Language Processing techniques, such as boilerplate removal and tokenization, alongside entity level semantic analysis using the YAGO knowledge base. By creating a semantic fingerprint for each news article, SemCAFE could assess the credibility of 46,020 reliable and 3,407 unreliable articles on the 2022 Russian invasion of Ukraine. Our approach improved the macro F1 score by 12% over state of the art methods. The sample data and code are available on GitHub
♻ ☆ A Data-Free Analytical Quantization Scheme for Deep Learning Models IEEE
Despite the success of CNN models on a variety of Image classification and segmentation tasks, their extensive computational and storage demands pose considerable challenges for real-world deployment on resource-constrained devices. Quantization is one technique that aims to alleviate these large storage requirements and speed up the inference process by reducing the precision of model parameters to lower-bit representations. In this paper, we introduce a novel post-training quantization method for model weights. Our method finds optimal clipping thresholds and scaling factors along with mathematical guarantees that our method minimizes quantization noise. Empirical results on real-world datasets demonstrate that our quantization scheme significantly reduces model size and computational requirements while preserving model accuracy.
comment: Accepted for publication in IEEE International Conference on Data Mining (ICDM 2025)
♻ ☆ Adaptive LLM Routing under Budget Constraints EMNLP 2025
Large Language Models (LLMs) have revolutionized natural language processing, but their varying capabilities and costs pose challenges in practical applications. LLM routing addresses this by dynamically selecting the most suitable LLM for each query/task. Previous approaches treat this as a supervised learning problem, assuming complete knowledge of optimal query-LLM pairings. However, real-world scenarios lack such comprehensive mappings and face evolving user queries. We thus propose to study LLM routing as a contextual bandit problem, enabling adaptive decision-making using bandit feedback without requiring exhaustive inference across all LLMs for all queries (in contrast to supervised routing). To address this problem, we develop a shared embedding space for queries and LLMs, where query and LLM embeddings are aligned to reflect their affinity. This space is initially learned from offline human preference data and refined through online bandit feedback. We instantiate this idea through Preference-prior Informed Linucb fOr adaptive rouTing (PILOT), a novel extension of LinUCB. To handle diverse user budgets for model routing, we introduce an online cost policy modeled as a multi-choice knapsack problem, ensuring resource-efficient routing.
comment: Accepted at EMNLP 2025 (findings)
♻ ☆ Towards Visuospatial Cognition via Hierarchical Fusion of Visual Experts
While Multimodal Large Language Models (MLLMs) excel at general vision-language tasks, visuospatial cognition - reasoning about spatial layouts, relations, and dynamics - remains a significant challenge. Existing models often lack the necessary architectural components and specialized training data for fine-grained spatial understanding. We introduce ViCA2 (Visuospatial Cognitive Assistant 2), a novel MLLM designed to enhance spatial reasoning. ViCA2 features a dual vision encoder architecture integrating SigLIP for semantics and Hiera for spatial structure, coupled with a token ratio control mechanism for efficiency. We also developed ViCA-322K, a new large-scale dataset with over 322,000 spatially grounded question-answer pairs for targeted instruction tuning. On the challenging VSI-Bench benchmark, our ViCA2-7B model achieves a state-of-the-art average score of 56.8, significantly surpassing larger open-source models (e.g., LLaVA-NeXT-Video-72B, 40.9) and leading proprietary models (Gemini-1.5 Pro, 45.4). This demonstrates the effectiveness of our approach in achieving strong visuospatial intelligence with a compact model. We release ViCA2, its codebase, and the ViCA-322K dataset to facilitate further research.
comment: 26 pages, 19 figures, 4 tables
♻ ☆ Visuospatial Cognitive Assistant
Video-based spatial cognition is vital for robotics and embodied AI but challenges current Vision-Language Models (VLMs). This paper makes two key contributions. First, we introduce ViCA (Visuospatial Cognitive Assistant)-322K, a diverse dataset of 322,003 QA pairs from real-world indoor videos (ARKitScenes, ScanNet, ScanNet++), offering supervision for 3D metadata-grounded queries and video-based complex reasoning. Second, we develop ViCA-7B, fine-tuned on ViCA-322K, which achieves new state-of-the-art on all eight VSI-Bench tasks, outperforming existing models, including larger ones (e.g., +26.1 on Absolute Distance). For interpretability, we present ViCA-Thinking-2.68K, a dataset with explicit reasoning chains, and fine-tune ViCA-7B to create ViCA-7B-Thinking, a model that articulates its spatial reasoning. Our work highlights the importance of targeted data and suggests paths for improved temporal-spatial modeling. We release all resources to foster research in robust visuospatial intelligence.
comment: 31 pages, 10 figures, 6 tables
♻ ☆ Generalizable Humanoid Manipulation with 3D Diffusion Policies IROS 2025
Humanoid robots capable of autonomous operation in diverse environments have long been a goal for roboticists. However, autonomous manipulation by humanoid robots has largely been restricted to one specific scene, primarily due to the difficulty of acquiring generalizable skills and the expensiveness of in-the-wild humanoid robot data. In this work, we build a real-world robotic system to address this challenging problem. Our system is mainly an integration of 1) a whole-upper-body robotic teleoperation system to acquire human-like robot data, 2) a 25-DoF humanoid robot platform with a height-adjustable cart and a 3D LiDAR sensor, and 3) an improved 3D Diffusion Policy learning algorithm for humanoid robots to learn from noisy human data. We run more than 2000 episodes of policy rollouts on the real robot for rigorous policy evaluation. Empowered by this system, we show that using only data collected in one single scene and with only onboard computing, a full-sized humanoid robot can autonomously perform skills in diverse real-world scenarios. Videos are available at https://humanoid-manipulation.github.io .
comment: IROS 2025. Project website: https://humanoid-manipulation.github.io
♻ ☆ FilterFL: Knowledge Filtering-based Data-Free Backdoor Defense for Federated Learning
As a distributed machine learning paradigm, Federated Learning (FL) enables large-scale clients to collaboratively train a model without sharing their raw data. However, due to the lack of data auditing for untrusted clients, FL is vulnerable to poisoning attacks, especially backdoor attacks. By using poisoned data for local training or directly changing the model parameters, attackers can easily inject backdoors into the model, which can trigger the model to make misclassification of targeted patterns in images. To address these issues, we propose a novel data-free trigger-generation-based defense approach based on the two characteristics of backdoor attacks: i) triggers are learned faster than normal knowledge, and ii) trigger patterns have a greater effect on image classification than normal class patterns. Our approach generates the images with newly learned knowledge by identifying the differences between the old and new global models, and filters trigger images by evaluating the effect of these generated images. By using these trigger images, our approach eliminates poisoned models to ensure the updated global model is benign. Comprehensive experiments demonstrate that our approach can defend against almost all the existing types of backdoor attacks and outperform all the seven state-of-the-art defense methods with both IID and non-IID scenarios. Especially, our approach can successfully defend against the backdoor attack even when 80\% of the clients are malicious.
♻ ☆ PnP-Flow: Plug-and-Play Image Restoration with Flow Matching
In this paper, we introduce Plug-and-Play (PnP) Flow Matching, an algorithm for solving imaging inverse problems. PnP methods leverage the strength of pre-trained denoisers, often deep neural networks, by integrating them in optimization schemes. While they achieve state-of-the-art performance on various inverse problems in imaging, PnP approaches face inherent limitations on more generative tasks like inpainting. On the other hand, generative models such as Flow Matching pushed the boundary in image sampling yet lack a clear method for efficient use in image restoration. We propose to combine the PnP framework with Flow Matching (FM) by defining a time-dependent denoiser using a pre-trained FM model. Our algorithm alternates between gradient descent steps on the data-fidelity term, reprojections onto the learned FM path, and denoising. Notably, our method is computationally efficient and memory-friendly, as it avoids backpropagation through ODEs and trace computations. We evaluate its performance on denoising, super-resolution, deblurring, and inpainting tasks, demonstrating superior results compared to existing PnP algorithms and Flow Matching based state-of-the-art methods.
♻ ☆ When Do Neural Networks Learn World Models? ICML 2025
Humans develop world models that capture the underlying generation process of data. Whether neural networks can learn similar world models remains an open problem. In this work, we present the first theoretical results for this problem, showing that in a multi-task setting, models with a low-degree bias provably recover latent data-generating variables under mild assumptions--even if proxy tasks involve complex, non-linear functions of the latents. However, such recovery is sensitive to model architecture. Our analysis leverages Boolean models of task solutions via the Fourier-Walsh transform and introduces new techniques for analyzing invertible Boolean transforms, which may be of independent interest. We illustrate the algorithmic implications of our results and connect them to related research areas, including self-supervised learning, out-of-distribution generalization, and the linear representation hypothesis in large language models.
comment: ICML 2025; ICLR 2025 World Models Workshop (oral, outstanding paper award)
♻ ☆ SCIZOR: A Self-Supervised Approach to Data Curation for Large-Scale Imitation Learning
Imitation learning advances robot capabilities by enabling the acquisition of diverse behaviors from human demonstrations. However, large-scale datasets used for policy training often introduce substantial variability in quality, which can negatively impact performance. As a result, automatically curating datasets by filtering low-quality samples to improve quality becomes essential. Existing robotic curation approaches rely on costly manual annotations and perform curation at a coarse granularity, such as the dataset or trajectory level, failing to account for the quality of individual state-action pairs. To address this, we introduce SCIZOR, a self-supervised data curation framework that filters out low-quality state-action pairs to improve the performance of imitation learning policies. SCIZOR targets two complementary sources of low-quality data: suboptimal data, which hinders learning with undesirable actions, and redundant data, which dilutes training with repetitive patterns. SCIZOR leverages a self-supervised task progress predictor for suboptimal data to remove samples lacking task progression, and a deduplication module operating on joint state-action representation for samples with redundant patterns. Empirically, we show that SCIZOR enables imitation learning policies to achieve higher performance with less data, yielding an average improvement of 15.4% across multiple benchmarks. More information is available at: https://ut-austin-rpl.github.io/SCIZOR/
♻ ☆ Efficient Deep Learning-based Forward Solvers for Brain Tumor Growth Models
Glioblastoma, a highly aggressive brain tumor, poses major challenges due to its poor prognosis and high morbidity rates. Partial differential equation-based models offer promising potential to enhance therapeutic outcomes by simulating patient-specific tumor behavior for improved radiotherapy planning. However, model calibration remains a bottleneck due to the high computational demands of optimization methods like Monte Carlo sampling and evolutionary algorithms. To address this, we recently introduced an approach leveraging a neural forward solver with gradient-based optimization to significantly reduce calibration time. This approach requires a highly accurate and fully differentiable forward model. We investigate multiple architectures, including (i) an enhanced TumorSurrogate, (ii) a modified nnU-Net, and (iii) a 3D Vision Transformer (ViT). The nnU-Net achieved the best overall results, excelling in both tumor outline matching and voxel-level prediction of tumor cell concentration. It yielded the lowest MSE in tumor cell concentration compared to ground truth numerical simulation and the highest Dice score across all tumor cell concentration thresholds. Our study demonstrates significant enhancement in forward solver performance and outlines important future research directions.
♻ ☆ SynLlama: Generating Synthesizable Molecules and Their Analogs with Large Language Models
Generative machine learning models for exploring chemical space have shown immense promise, but many molecules they generate are too difficult to synthesize, making them impractical for further investigation or development. In this work, we present a novel approach by fine-tuning Meta's Llama3 Large Language Models (LLMs) to create SynLlama, which generates full synthetic pathways made of commonly accessible building blocks and robust organic reaction templates. SynLlama explores a large synthesizable space using significantly less data, and offers strong performance in both forward and bottom-up synthesis planning compared to other state-of-the-art methods. We find that SynLlama, even without training on external building blocks, can effectively generalize to unseen yet purchasable building blocks, meaning that its reconstruction capabilities extend to a broader synthesizable chemical space than the training data. We also demonstrate the use of SynLlama in a pharmaceutical context for synthesis planning of analog molecules and hit expansion leads for proposed inhibitors of target proteins, offering medicinal chemists a valuable tool for discovery.
♻ ☆ Highly Efficient Direct Analytics on Semantic-aware Time Series Data Compression
Semantic communication has emerged as a promising paradigm to tackle the challenges of massive growing data traffic and sustainable data communication. It shifts the focus from data fidelity to goal-oriented or task-oriented semantic transmission. While deep learning-based methods are commonly used for semantic encoding and decoding, they struggle with the sequential nature of time series data and high computation cost, particularly in resource-constrained IoT environments. Data compression plays a crucial role in reducing transmission and storage costs, yet traditional data compression methods fall short of the demands of goal-oriented communication systems. In this paper, we propose a novel method for direct analytics on time series data compressed by the SHRINK compression algorithm. Through experimentation using outlier detection as a case study, we show that our method outperforms baselines running on uncompressed data in multiple cases, with merely 1% difference in the worst case. Additionally, it achieves four times lower runtime on average and accesses approximately 10% of the data volume, which enables edge analytics with limited storage and computation power. These results demonstrate that our approach offers reliable, high-speed outlier detection analytics for diverse IoT applications while extracting semantics from time-series data, achieving high compression, and reducing data transmission.
comment: This is an extended version of arXiv:2503.13246, with significant additional contributions
♻ ☆ Barycentric Neural Networks and Length-Weighted Persistent Entropy Loss: A Green Geometric and Topological Framework for Function Approximation
While it is well-established that artificial neural networks are universal approximators for continuous functions on compact domains, many modern approaches rely on deep or overparameterized architectures that incur high computational costs. In this paper, a new type of small shallow neural network, called the Barycentric Neural Network (BNN), is proposed, which leverages a fixed set of base points and their barycentric coordinates to define both its structure and its parameters. We demonstrate that our BNN enables the exact representation of continuous piecewise linear functions (CPLFs), ensuring strict continuity across segments. Since any continuous function over a compact domain can be approximated arbitrarily well by CPLFs, the BNN naturally emerges as a flexible and interpretable tool for function approximation. Beyond the use of this representation, the main contribution of the paper is the introduction of a new variant of persistent entropy, a topological feature that is stable and scale invariant, called the length-weighted persistent entropy (LWPE), which is weighted by the lifetime of topological features. Our framework, which combines the BNN with a loss function based on our LWPE, aims to provide flexible and geometrically interpretable approximations of nonlinear continuous functions in resource-constrained settings, such as those with limited base points for BNN design and few training epochs. Instead of optimizing internal weights, our approach directly optimizes the base points that define the BNN. Experimental results show that our approach achieves superior and faster approximation performance compared to classical loss functions such as MSE, RMSE, MAE, and log-cosh.
♻ ☆ Inexact Column Generation for Bayesian Network Structure Learning via Difference-of-Submodular Optimization
In this paper, we consider a score-based Integer Programming (IP) approach for solving the Bayesian Network Structure Learning (BNSL) problem. State-of-the-art BNSL IP formulations suffer from the exponentially large number of variables and constraints. A standard approach in IP to address such challenges is to employ row and column generation techniques, which dynamically generate rows and columns, while the complex pricing problem remains a computational bottleneck for BNSL. For the general class of $\ell_0$-penalized likelihood scores, we show how the pricing problem can be reformulated as a difference of submodular optimization problem, and how the Difference of Convex Algorithm (DCA) can be applied as an inexact method to efficiently solve the pricing problems. Empirically, we show that, for continuous Gaussian data, our row and column generation approach yields solutions with higher quality than state-of-the-art score-based approaches, especially when the graph density increases, and achieves comparable performance against benchmark constraint-based and hybrid approaches, even when the graph size increases.
♻ ☆ Using item recommendations and LLMs in marketing email titles
E-commerce marketplaces make use of a number of marketing channels like emails, push notifications, etc. to reach their users and stimulate purchases. Personalized emails especially are a popular touch point for marketers to inform users of latest items in stock, especially for those who stopped visiting the marketplace. Such emails contain personalized recommendations tailored to each user's interests, enticing users to buy relevant items. A common limitation of these emails is that the primary entry point, the title of the email, tends to follow fixed templates, failing to inspire enough interest in the contents. In this work, we explore the potential of large language models (LLMs) for generating thematic titles that reflect the personalized content of the emails. We perform offline simulations and conduct online experiments on the order of millions of users, finding our techniques useful in improving the engagement between customers and our emails. We highlight key findings and learnings as we productionize the safe and automated generation of email titles for millions of users.
comment: Accepted to The Second Workshop on Generative AI for E-commerce (GenAIECommerce '25), held September 22, 2025, in Prague, Czech Republic. 3 figures
♻ ☆ M1: Towards Scalable Test-Time Compute with Mamba Reasoning Models
Effective reasoning is crucial to solving complex mathematical problems. Recent large language models (LLMs) have boosted performance by scaling test-time computation through long chain-of-thought reasoning. However, transformer-based models are inherently limited in extending context length due to their quadratic computational complexity and linear memory requirements. In this paper, we introduce a novel hybrid linear RNN reasoning model, M1, built on the Mamba architecture, which allows memory-efficient inference. Our approach leverages a distillation process from existing reasoning models and is further enhanced through RL training. Experimental results on the AIME and MATH benchmarks show that M1 not only outperforms previous linear RNN models but also matches the performance of state-of-the-art Deepseek R1 distilled reasoning models at a similar scale. We also compare our generation speed with a highly performant general purpose inference engine, vLLM, and observe more than a 3x speedup compared to a same size transformer. With throughput speedup, we are able to achieve higher accuracy compared to DeepSeek R1 distilled transformer reasoning models under a fixed generation time budget using self-consistency voting. Overall, we introduce a hybrid Mamba reasoning model and provide a more effective approach to scaling test-time generation using self-consistency or long chain of thought reasoning.
comment: Code is available https://github.com/jxiw/M1
♻ ☆ OBLIVIATE: Robust and Practical Machine Unlearning for Large Language Models EMNLP 25
Large language models (LLMs) trained over extensive corpora risk memorizing sensitive, copyrighted, or toxic content. To address this, we propose \textbf{OBLIVIATE}, a robust unlearning framework that removes targeted data while preserving model utility. The framework follows a structured process: extracting target tokens, building retain sets, and fine-tuning with a tailored loss function comprising three components -- masking, distillation, and world fact. Using low-rank adapters (LoRA) ensures efficiency without compromising unlearning quality. We conduct experiments on multiple datasets, including Harry Potter series, WMDP, and TOFU, using a comprehensive suite of metrics: \emph{forget quality} (via a new document-level memorization score), \emph{model utility}, and \emph{fluency}. Results demonstrate its effectiveness in resisting membership inference attacks, minimizing the impact on retained data, and maintaining robustness across diverse scenarios.
comment: To appear at EMNLP 25 main conference
♻ ☆ HueManity: Probing Fine-Grained Visual Perception in MLLMs
Multimodal Large Language Models (MLLMs) excel at high-level visual reasoning, but their performance on nuanced perceptual tasks remains surprisingly limited. We present HueManity, a benchmark designed to assess visual perception in MLLMs. The dataset comprises 83,850 images featuring two-character alphanumeric strings embedded in Ishihara test style dot patterns, challenging models on precise pattern recognition. Our evaluation of nine state-of-the-art MLLMs on HueManity demonstrates a significant performance deficit compared to human and traditional computer vision baselines. The best-performing MLLM achieved a 33.6% accuracy on the numeric `easy' task and a striking 3% on the alphanumeric `hard' task. In contrast, human participants achieved near-perfect scores (100% and 95.6%), and a fine-tuned ResNet50 model reached accuracies of 96.5% and 94.5%. These results highlight a critical gap in the visual capabilities of current MLLMs. Our analysis further explores potential architectural and training-paradigm factors contributing to this perceptual gap in MLLMs. We open-source HueManity dataset and code to foster further research in improving perceptual robustness of MLLMs.
♻ ☆ GeoChain: Multimodal Chain-of-Thought for Geographic Reasoning
This paper introduces GeoChain, a large-scale benchmark for evaluating step-by-step geographic reasoning in multimodal large language models (MLLMs). Leveraging 1.46 million Mapillary street-level images, GeoChain pairs each image with a 21-step chain-of-thought (CoT) question sequence (over 30 million Q&A pairs). These sequences guide models from coarse attributes to fine-grained localization across four reasoning categories - visual, spatial, cultural, and precise geolocation - annotated by difficulty. Images are also enriched with semantic segmentation (150 classes) and a visual locatability score. Our benchmarking of contemporary MLLMs (GPT-4.1 variants, Claude 3.7, Gemini 2.5 variants) on a diverse 2,088-image subset reveals consistent challenges: models frequently exhibit weaknesses in visual grounding, display erratic reasoning, and struggle to achieve accurate localization, especially as the reasoning complexity escalates. GeoChain offers a robust diagnostic methodology, critical for fostering significant advancements in complex geographic reasoning within MLLMs.
♻ ☆ MEMIT-Merge: Addressing MEMIT's Key-Value Conflicts in Same-Subject Batch Editing for LLMs ACL2025
As large language models continue to scale up, knowledge editing techniques that modify models' internal knowledge without full retraining have gained significant attention. MEMIT, a prominent batch editing algorithm, stands out for its capability to perform mass knowledge modifications. However, we uncover that MEMIT's editing efficacy significantly deteriorates when processing batches containing multiple edits sharing the same subject. Our analysis reveals this stems from MEMIT's key value modeling framework: identical keys (derived from the shared subject) are forced to represent different values (corresponding to different knowledge), resulting in update conflicts during editing. Addressing this issue, we propose MEMIT-Merge, an enhanced approach that merges value computation processes for facts sharing the same subject, effectively resolving the performance degradation in samesubject batch editing scenarios. Experimental results demonstrate that when MEMIT's edit success rate drops to around 50% at larger batch sizes, MEMIT-Merge maintains a success rate exceeding 90%, showcasing remarkable robustness to subject entity collisions. The code is available at https://github.com/NUSTM/ MEMIT-Merge.
comment: Accepted by ACL2025 findings
♻ ☆ Matrix Completion in Group Testing: Bounds and Simulations
The goal of group testing is to identify a small number of defective items within a large population. In the non-adaptive setting, tests are designed in advance and represented by a measurement matrix $\mM$, where rows correspond to tests and columns to items. A test is positive if it includes at least one defective item. Traditionally, $\mM$ remains fixed during both testing and recovery. In this work, we address the case where some entries of $\mM$ are missing, yielding a missing measurement matrix $\mG$. Our aim is to reconstruct $\mM$ from $\mG$ using available samples and their outcome vectors. The above problem can be considered as a problem intersected between Boolean matrix factorization and matrix completion, called the matrix completion in group testing (MCGT) problem, as follows. Given positive integers $t,s,n$, let $\mY:=(y_{ij}) \in \{0, 1\}^{t \times s}$, $\mM:=(m_{ij}) \in \{0,1\}^{t \times n}$, $\mX:=(x_{ij}) \in \{0,1\}^{n \times s}$, and matrix $\mG \in \{0,1 \}^{t \times n}$ be a matrix generated from matrix $\mM$ by erasing some entries in $\mM$. Suppose $\mY:=\mM \odot \mX$, where an entry $y_{ij}:=\bigvee_{k=1}^n (m_{ik}\wedge x_{kj})$, and $\wedge$ and $\vee$ are AND and OR operators. Unlike the problem in group testing whose objective is to find $\mX$ when given $\mM$ and $\mY$, our objective is to recover $\mM$ given $\mY,\mX$, and $\mG$. We first prove that the MCGT problem is NP-complete. Next, we show that certain rows with missing entries aid recovery while others do not. For Bernoulli measurement matrices, we establish that larger $s$ increases the higher the probability that $\mM$ can be recovered. We then instantiate our bounds for specific decoding algorithms and validate them through simulations, demonstrating superiority over standard matrix completion and Boolean matrix factorization methods.
comment: 31 pages, 11 figures
♻ ☆ VINP: Variational Bayesian Inference with Neural Speech Prior for Joint ASR-Effective Speech Dereverberation and Blind RIR Identification
Reverberant speech, denoting the speech signal degraded by reverberation, contains crucial knowledge of both anechoic source speech and room impulse response (RIR). This work proposes a variational Bayesian inference (VBI) framework with neural speech prior (VINP) for joint speech dereverberation and blind RIR identification. In VINP, a probabilistic signal model is constructed in the time-frequency (T-F) domain based on convolution transfer function (CTF) approximation. For the first time, we propose using an arbitrary discriminative dereverberation deep neural network (DNN) to estimate the prior distribution of anechoic speech within a probabilistic model. By integrating both reverberant speech and the anechoic speech prior, VINP yields the maximum a posteriori (MAP) and maximum likelihood (ML) estimations of the anechoic speech spectrum and CTF filter, respectively. After simple transformations, the waveforms of anechoic speech and RIR are estimated. VINP is effective for automatic speech recognition (ASR) systems, which sets it apart from most deep learning (DL)-based single-channel dereverberation approaches. Experiments on single-channel speech dereverberation demonstrate that VINP attains state-of-the-art (SOTA) performance in mean opinion score (MOS) and word error rate (WER). For blind RIR identification, experiments demonstrate that VINP achieves SOTA performance in estimating reverberation time at 60 dB (RT60) and advanced performance in direct-to-reverberation ratio (DRR) estimation. Codes and audio samples are available online.
comment: Submitted to IEEE/ACM Trans. on TASLP
♻ ☆ Perturbed Iterate SGD for Lipschitz Continuous Loss Functions with Numerical Error and Adaptive Step Sizes
Motivated by neural network training in finite-precision arithmetic environments, this work studies the convergence of perturbed iterate SGD using adaptive step sizes in an environment with numerical error. Considering a general stochastic Lipschitz continuous loss function, an asymptotic convergence result to a Clarke stationary point is proven as well as the non-asymptotic convergence to an approximate stationary point in expectation. It is assumed that only an approximation of the loss function's stochastic gradient can be computed, in addition to error in computing the SGD step itself.
♻ ☆ Benchmarking for Domain-Specific LLMs: A Case Study on Academia and Beyond EMNLP2025
The increasing demand for domain-specific evaluation of large language models (LLMs) has led to the development of numerous benchmarks. These efforts often adhere to the principle of data scaling, relying on large corpora or extensive question-answer (QA) sets to ensure broad coverage. However, the impact of corpus and QA set design on the precision and recall of domain-specific LLM performance remains poorly understood. In this paper, we argue that data scaling is not always the optimal principle for domain-specific benchmark construction. Instead, we introduce Comp-Comp, an iterative benchmarking framework grounded in the principle of comprehensiveness and compactness. Comprehensiveness ensures semantic recall by covering the full breadth of the domain, while compactness improves precision by reducing redundancy and noise. To demonstrate the effectiveness of our approach, we present a case study conducted at a well-renowned university, resulting in the creation of PolyBench, a large-scale, high-quality academic benchmark. Although this study focuses on academia, the Comp-Comp framework is domain-agnostic and readily adaptable to a wide range of specialized fields. The source code and datasets can be accessed at https://github.com/Anya-RB-Chen/COMP-COMP.
comment: Accepted by EMNLP2025 Findings
♻ ☆ What Fundamental Structure in Reward Functions Enables Efficient Sparse-Reward Learning?
Sparse-reward reinforcement learning (RL) remains fundamentally hard: without structure, any agent needs $\Omega(|\mathcal{S}||\mathcal{A}|/p)$ samples to recover rewards. We introduce Policy-Aware Matrix Completion (PAMC) as a first concrete step toward a structural reward learning framework. Our key idea is to exploit approximate low-rank + sparse structure in the reward matrix, under policy-biased (MNAR) sampling. We prove recovery guarantees with inverse-propensity weighting, and establish a visitation-weighted error-to-regret bound linking completion error to control performance. Importantly, when assumptions weaken, PAMC degrades gracefully: confidence intervals widen and the algorithm abstains, ensuring safe fallback to exploration. Empirically, PAMC improves sample efficiency across Atari-26 (10M steps), DM Control, MetaWorld MT50, D4RL offline RL, and preference-based RL benchmarks, outperforming DrQ-v2, DreamerV3, Agent57, T-REX/D-REX, and PrefPPO under compute-normalized comparisons. Our results highlight PAMC as a practical and principled tool when structural rewards exist, and as a concrete first instantiation of a broader structural reward learning perspective.
♻ ☆ Understanding the Language Model to Solve the Symbolic Multi-Step Reasoning Problem from the Perspective of Buffer Mechanism
Large language models have consistently struggled with complex reasoning tasks, such as mathematical problem-solving. Investigating the internal reasoning mechanisms of these models can help us design better model architectures and training strategies, ultimately enhancing their reasoning capability. In this study, we constructed a symbolic multi-step reasoning task to investigate the information propagation mechanisms in Transformer models when solving the task through direct answering and Chain-of-Thought (CoT) reasoning. We introduced the concept of buffer mechanism: the model stores various information in distinct buffers and selectively extracts it through the query-key matrix. We proposed a random matrix-based algorithm to enhance the model's reasoning ability. This algorithm introduces only 132 trainable parameters, yet leads to significant performance improvements on 7 multi-step reasoning datasets, including PrOntoQA, LogicAsker, and LogicInference. These findings provide new insights into understanding the large language models.
♻ ☆ Time-Varying Graph Learning with Constraints on Graph Temporal Variation IEEE
We propose a novel framework for learning time-varying graphs from spatiotemporal measurements. Given an appropriate prior on the temporal behavior of signals, our proposed method can estimate time-varying graphs from a small number of available measurements. To achieve this, we introduce two regularization terms in convex optimization problems that constrain sparseness of temporal variations of the time-varying networks. Moreover, a computationally-scalable algorithm is introduced to efficiently solve the optimization problem. The experimental results with synthetic and real datasets (point cloud and temperature data) demonstrate our proposed method outperforms the existing state-of-the-art methods.
comment: 13 pages, submitted to IEEE Transactions on Signal Processing
♻ ☆ Prepared for the Worst: A Learning-Based Adversarial Attack for Resilience Analysis of the ICP Algorithm IEEE
This paper presents a novel method for assessing the resilience of the ICP algorithm via learning-based, worst-case attacks on lidar point clouds. For safety-critical applications such as autonomous navigation, ensuring the resilience of algorithms before deployments is crucial. The ICP algorithm is the standard for lidar-based localization, but its accuracy can be greatly affected by corrupted measurements from various sources, including occlusions, adverse weather, or mechanical sensor issues. Unfortunately, the complex and iterative nature of ICP makes assessing its resilience to corruption challenging. While there have been efforts to create challenging datasets and develop simulations to evaluate the resilience of ICP, our method focuses on finding the maximum possible ICP error that can arise from corrupted measurements at a location. We demonstrate that our perturbation-based adversarial attacks can be used pre-deployment to identify locations on a map where ICP is particularly vulnerable to corruptions in the measurements. With such information, autonomous robots can take safer paths when deployed, to mitigate against their measurements being corrupted. The proposed attack outperforms baselines more than 88% of the time across a wide range of scenarios.
comment: 9 pages (6 content, 1 reference, 2 appendix). 7 figures, accepted to 2025 IEEE International Conference on Robotics and Automation (ICRA)
♻ ☆ Solving Truly Massive Budgeted Monotonic POMDPs with Oracle-Guided Meta-Reinforcement Learning
Monotonic Partially Observable Markov Decision Processes (POMDPs), where the system state progressively decreases until a restorative action is performed, can be used to model sequential repair problems effectively. This paper considers the problem of solving budget-constrained multi-component monotonic POMDPs, where a finite budget limits the maximal number of restorative actions. For a large number of components, solving such a POMDP using current methods is computationally intractable due to the exponential growth in the state space with an increasing number of components. To address this challenge, we propose a two-step approach. Since the individual components of a budget-constrained multi-component monotonic POMDP are only connected via the shared budget, we first approximate the optimal budget allocation among these components using an approximation of each component POMDP's optimal value function which is obtained through a random forest model. Subsequently, we introduce an oracle-guided meta-trained Proximal Policy Optimization (PPO) algorithm to solve each of the independent budget-constrained single-component monotonic POMDPs. The oracle policy is obtained by performing value iteration on the corresponding monotonic Markov Decision Process (MDP). This two-step method provides scalability in solving truly massive multi-component monotonic POMDPs. To demonstrate the efficacy of our approach, we consider a real-world maintenance scenario that involves inspection and repair of an administrative building by a team of agents within a maintenance budget. Finally, we perform a computational complexity analysis for a varying number of components to show the scalability of the proposed approach.
♻ ☆ Efficient Methods for Non-stationary Online Learning NeurIPS'22
Non-stationary online learning has drawn much attention in recent years. In particular, dynamic regret and adaptive regret are proposed as two principled performance measures for online convex optimization in non-stationary environments. To optimize them, a two-layer online ensemble is usually deployed due to the inherent uncertainty of non-stationarity, in which multiple base-learners are maintained and a meta-algorithm is employed to track the best one on the fly. However, the two-layer structure raises concerns about computational complexity -- such methods typically maintain $O(\log T)$ base-learners simultaneously for a $T$-round online game and thus perform multiple projections onto the feasible domain per round, which becomes the computational bottleneck when the domain is complicated. In this paper, we present efficient methods for optimizing dynamic regret and adaptive regret that reduce the number of projections per round from $O(\log T)$ to $1$. The proposed algorithms require only one gradient query and one function evaluation at each round. Our technique hinges on the reduction mechanism developed in parameter-free online learning and requires non-trivial modifications for non-stationary online methods. Furthermore, we study an even stronger measure, namely "interval dynamic regret", and reduce the number of projections per round from $O(\log^2 T)$ to $1$ for minimizing it. Our reduction demonstrates broad generality and applies to two important applications: online stochastic control and online principal component analysis, resulting in methods that are both efficient and optimal. Finally, empirical studies verify our theoretical findings.
comment: V3 changes: accepted by JMLR 2025 and improve the writing; V2/V1 changes: investigate interval dynamic regret and add two applications (online non-stochastic control and online PCA) and improve the presentation; preliminary version published at NeurIPS'22
♻ ☆ FNODE: Flow-Matching for data-driven simulation of constrained multibody systems
Data-driven modeling of constrained multibody systems faces two persistent challenges: high computational cost and limited long-term prediction accuracy. To address these issues, we introduce the Flow-Matching Neural Ordinary Differential Equation (FNODE), a framework that learns acceleration vector fields directly from trajectory data. By reformulating the training objective to supervise accelerations rather than integrated states, FNODE eliminates the need for backpropagation through an ODE solver, which represents a bottleneck in traditional Neural ODEs. Acceleration targets are computed efficiently using numerical differentiation techniques, including a hybrid Fast Fourier Transform (FFT) and Finite Difference (FD) scheme. We evaluate FNODE on a diverse set of benchmarks, including the single and triple mass-spring-damper systems, double pendulum, slider-crank, and cart-pole. Across all cases, FNODE consistently outperforms existing approaches such as Multi-Body Dynamic Neural ODE (MBD-NODE), Long Short-Term Memory (LSTM) networks, and Fully Connected Neural Networks (FCNN), demonstrating good accuracy, generalization, and computational efficiency.
comment: 36 pages, 19 figures
♻ ☆ Challenging Bug Prediction and Repair Models with Synthetic Bugs SC
Bugs are essential in software engineering; many research studies in the past decades have been proposed to detect, localize, and repair bugs in software systems. Effectiveness evaluation of such techniques requires complex bugs, i.e., those that are hard to detect through testing and hard to repair through debugging. From the classic software engineering point of view, a hard-to-repair bug differs from the correct code in multiple locations, making it hard to localize and repair. Hard-to-detect bugs, on the other hand, manifest themselves under specific test inputs and reachability conditions. These two objectives, i.e., generating hard-to-detect and hard-to-repair bugs, are mostly aligned; a bug generation technique can change multiple statements to be covered only under a specific set of inputs. However, these two objectives are conflicting for learning-based techniques: A bug should have a similar code representation to the correct code in the training data to challenge a bug prediction model to distinguish them. The hard-to-repair bug definition remains the same but with a caveat: the more a bug differs from the original code, the more distant their representations are and easier to be detected. We propose BugFarm, to transform arbitrary code into multiple complex bugs. BugFarm leverages LLMs to mutate code in multiple locations (hard-to-repair). To ensure that multiple modifications do not notably change the code representation, BugFarm analyzes the attention of the underlying model and instructs LLMs to only change the least attended locations (hard-to-detect). Our comprehensive evaluation of 435k+ bugs from over 1.9M mutants generated by BUGFARM and two alternative approaches demonstrates our superiority in generating bugs that are hard to detect by learning-based bug prediction approaches and hard-to-repair by state-of-the-art learning-based program repair technique.
comment: Published in SCAM 2025
♻ ☆ Differentially Private Random Feature Model
Designing privacy-preserving machine learning algorithms has received great attention in recent years, especially in the setting when the data contains sensitive information. Differential privacy (DP) is a widely used mechanism for data analysis with privacy guarantees. In this paper, we produce a differentially private random feature model. Random features, which were proposed to approximate large-scale kernel machines, have been used to study privacy-preserving kernel machines as well. We consider the over-parametrized regime (more features than samples) where the non-private random feature model is learned via solving the min-norm interpolation problem, and then we apply output perturbation techniques to produce a private model. We show that our method preserves privacy and derive a generalization error bound for the method. To the best of our knowledge, we are the first to consider privacy-preserving random feature models in the over-parametrized regime and provide theoretical guarantees. We empirically compare our method with other privacy-preserving learning methods in the literature as well. Our results show that our approach is superior to the other methods in terms of generalization performance on synthetic data and benchmark data sets. Additionally, it was recently observed that DP mechanisms may exhibit and exacerbate disparate impact, which means that the outcomes of DP learning algorithms vary significantly among different groups. We show that both theoretically and empirically, random features have the potential to reduce disparate impact, and hence achieve better fairness.
♻ ☆ Maximizing Information in Domain-Invariant Representation Improves Transfer Learning
We propose MaxDIRep, a domain adaptation method that improves the decomposition of data representations into domain-independent and domain-dependent components. Existing methods, such as Domain-Separation Networks (DSN), use a weak orthogonality constraint between these components, which can lead to label-relevant features being partially encoded in the domain-dependent representation (DDRep) rather than the domain-independent representation (DIRep). As a result, information crucial for target-domain classification may be missing from the DIRep. MaxDIRep addresses this issue by applying a Kullback-Leibler (KL) divergence constraint to minimize the information content of the DDRep, thereby encouraging the DIRep to retain features that are both domain-invariant and predictive of target labels. Through geometric analysis and an ablation study on synthetic datasets, we show why DSN's weaker constraint can lead to suboptimal adaptation. Experiments on standard image benchmarks and a network intrusion detection task demonstrate that MaxDIRep achieves strong performance, works with pretrained models, and generalizes to non-image classification tasks.
♻ ☆ Beyond Cosine Decay: On the effectiveness of Infinite Learning Rate Schedule for Continual Pre-training
The ever-growing availability of unlabeled data presents both opportunities and challenges for training artificial intelligence systems. While self-supervised learning (SSL) has emerged as a powerful paradigm for extracting meaningful representations from vast amounts of unlabeled data, existing methods still struggle to adapt to the non-stationary, non-IID nature of real-world data streams without forgetting previously learned knowledge. Recent works have adopted a repeated cosine annealing schedule for large-scale continual pre-training; however, these schedules (1) inherently cause forgetting during the re-warming phase and (2) have not been systematically compared to existing continual SSL methods. In this work, we systematically compare the widely used cosine schedule with the recently proposed infinite learning rate schedule and empirically find the latter to be a more effective alternative. Our extensive empirical evaluation across diverse image and language datasets demonstrates that the infinite learning rate schedule consistently enhances continual pre-training performance compared to a repeated cosine decay without being restricted to a fixed iteration budget. For instance, in a small-scale MAE pre-training setup, it outperforms several strong baselines from the literature. We then scale up our experiments to larger MAE pre-training and autoregressive language model pre-training. Our results show that the infinite learning rate schedule remains effective at scale, surpassing repeated cosine decay for both MAE pre-training and zero-shot LM benchmarks.
comment: Accepted (oral) at Fourth Conference on Lifelong Learning Agents - CoLLAs 2025
♻ ☆ Cauchy Random Features for Operator Learning in Sobolev Space
Operator learning is the approximation of operators between infinite dimensional Banach spaces using machine learning approaches. While most progress in this area has been driven by variants of deep neural networks such as the Deep Operator Network and Fourier Neural Operator, the theoretical guarantees are often in the form of a universal approximation property. However, the existence theorems do not guarantee that an accurate operator network is obtainable in practice. Motivated by the recent kernel-based operator learning framework, we propose a random feature operator learning method with theoretical guarantees and error bounds. The random feature method can be viewed as a randomized approximation of a kernel method, which significantly reduces the computation requirements for training. We provide a generalization error analysis for our proposed random feature operator learning method along with comprehensive numerical results. Compared to kernel-based method and neural network methods, the proposed method can obtain similar or better test errors across benchmarks examples with significantly reduced training times. An additional advantages it that our implementation is simple and does require costly computational resources, such as GPU.
comment: 31 pages
♻ ☆ Delta Velocity Rectified Flow for Text-to-Image Editing
We propose Delta Velocity Rectified Flow (DVRF), a novel inversion-free, path-aware editing framework within rectified flow models for text-to-image editing. DVRF is a distillation-based method that explicitly models the discrepancy between the source and target velocity fields in order to mitigate over-smoothing artifacts rampant in prior distillation sampling approaches. We further introduce a time-dependent shift term to push noisy latents closer to the target trajectory, enhancing the alignment with the target distribution. We theoretically demonstrate that when this shift is disabled, DVRF reduces to Delta Denoising Score, thereby bridging score-based diffusion optimization and velocity-based rectified-flow optimization. Moreover, when the shift term follows a linear schedule under rectified-flow dynamics, DVRF generalizes the Inversion-free method FlowEdit and provides a principled theoretical interpretation for it. Experimental results indicate that DVRF achieves superior editing quality, fidelity, and controllability while requiring no architectural modifications, making it efficient and broadly applicable to text-to-image editing tasks. Code is available at https://github.com/Harvard-AI-and-Robotics-Lab/DeltaVelocityRectifiedFlow.
♻ ☆ Self-Questioning Language Models
Can large language models improve without external data -- by generating their own questions and answers? We hypothesize that a pre-trained language model can improve its reasoning skills given only a single prompt specifying the topic (e.g., algebra word problems) and asking the model to generate its own questions. To do this, we propose Self-Questioning Language Models (SQLM): an asymmetric self-play framework where a proposer is given the topic and generates a question for a solver, who tries to answer it. Both the proposer and solver are trained via reinforcement learning. The proposer receives a reward if the problem is not too easy or too difficult, and the solver receives a reward based on majority voting, a proxy for correctness in the absence of ground-truth answers. For coding, the proposer can instead generate unit tests which are used for verification. We study this asymmetric self-play framework on three benchmarks: three-digit multiplication, algebra problems from the OMEGA benchmark, and programming problems from Codeforces. By continually generating more interesting problems and attempting to solve them, language models can improve on downstream benchmarks without access to any curated training datasets.
♻ ☆ Reasoning Large Language Model Errors Arise from Hallucinating Critical Problem Features
Large language models have recently made great strides in reasoning task performance through chain-of-thought (CoT) strategies trained via reinforcement learning; however, these "reasoning large language models" (RLLMs) remain imperfect reasoners, and understanding the frequencies and causes of their failure modes is important for both users and developers. We test o1-mini, o3-mini, DeepSeek-R1, Claude 3.7 Sonnet, Gemini 2.5 Pro Preview, and Grok 3 Mini Beta on graph coloring as a variable-complexity constraint-satisfaction logic problem, and find evidence from both error rate comparisons and CoT/explanation text analysis that RLLMs are prone to hallucinate graph edges not specified in the prompt. This phenomenon persists across multiple problem complexity levels and semantic frames, and it appears to account for a significant fraction of the incorrect answers from every tested model, and the vast majority of them for some models. We also validate the generalizability of this input-conflicting hallucination phenomenon with smaller-scale experiments on a type of stable matching problem. Our results indicate that RLLMs may possess broader issues with misrepresentation of problem specifics, and we offer suggestions for design choices to mitigate this weakness.
comment: 19 pages (9 excluding references and appendices); 9 figures (6 excluding appendices)
♻ ☆ Detection of trade in products derived from threatened species using machine learning and a smartphone
Unsustainable trade in wildlife is a major threat to biodiversity and is now increasingly prevalent in digital marketplaces and social media. With the sheer volume of digital content, the need for automated methods to detect wildlife trade listings is growing. These methods are especially needed for the automatic identification of wildlife products, such as ivory. We developed machine learning-based object recognition models that can identify wildlife products within images and highlight them. The data consists of images of elephant, pangolin, and tiger products that were identified as being sold illegally or that were confiscated by authorities. Specifically, the wildlife products included elephant ivory and skins, pangolin scales, and claws (raw and crafted), and tiger skins and bones. We investigated various combinations of training strategies and two loss functions to identify the best model to use in the automatic detection of these wildlife products. Models were trained for each species while also developing a single model to identify products from all three species. The best model showed an overall accuracy of 84.2% with accuracies of 71.1%, 90.2% and 93.5% in detecting products derived from elephants, pangolins, and tigers, respectively. We further demonstrate that the machine learning model can be made easily available to stakeholders, such as government authorities and law enforcement agencies, by developing a smartphone-based application that had an overall accuracy of 91.3%. The application can be used in real time to click images and help identify potentially prohibited products of target species. Thus, the proposed method is not only applicable for monitoring trade on the web but can also be used e.g. in physical markets for monitoring wildlife trade.
♻ ☆ Rescaled Influence Functions: Accurate Data Attribution in High Dimension
How does the training data affect a model's behavior? This is the question we seek to answer with data attribution. The leading practical approaches to data attribution are based on influence functions (IF). IFs utilize a first-order Taylor approximation to efficiently predict the effect of removing a set of samples from the training set without retraining the model, and are used in a wide variety of machine learning applications. However, especially in the high-dimensional regime (# params $\geq \Omega($# samples$)$), they are often imprecise and tend to underestimate the effect of sample removals, even for simple models such as logistic regression. We present rescaled influence functions (RIF), a new tool for data attribution which can be used as a drop-in replacement for influence functions, with little computational overhead but significant improvement in accuracy. We compare IF and RIF on a range of real-world datasets, showing that RIFs offer significantly better predictions in practice, and present a theoretical analysis explaining this improvement. Finally, we present a simple class of data poisoning attacks that would fool IF-based detections but would be detected by RIF.
♻ ☆ MDDM: A Molecular Dynamics Diffusion Model to Predict Particle Self-Assembly
The discovery and study of new material systems rely on molecular simulations that often come with significant computational expense. We propose MDDM, a Molecular Dynamics Diffusion Model, which is capable of predicting a valid output conformation for a given input pair potential function. After training MDDM on a large dataset of molecular dynamics self-assembly results, the proposed model can convert uniform noise into a meaningful output particle structure corresponding to an arbitrary input potential. The model's architecture has domain-specific properties built-in, such as satisfying periodic boundaries and being invariant to translation. The model significantly outperforms the baseline point-cloud diffusion model for both unconditional and conditional generation tasks.
♻ ☆ A Certified Unlearning Approach without Access to Source Data ICML 2025
With the growing adoption of data privacy regulations, the ability to erase private or copyrighted information from trained models has become a crucial requirement. Traditional unlearning methods often assume access to the complete training dataset, which is unrealistic in scenarios where the source data is no longer available. To address this challenge, we propose a certified unlearning framework that enables effective data removal \final{without access to the original training data samples}. Our approach utilizes a surrogate dataset that approximates the statistical properties of the source data, allowing for controlled noise scaling based on the statistical distance between the two. \updated{While our theoretical guarantees assume knowledge of the exact statistical distance, practical implementations typically approximate this distance, resulting in potentially weaker but still meaningful privacy guarantees.} This ensures strong guarantees on the model's behavior post-unlearning while maintaining its overall utility. We establish theoretical bounds, introduce practical noise calibration techniques, and validate our method through extensive experiments on both synthetic and real-world datasets. The results demonstrate the effectiveness and reliability of our approach in privacy-sensitive settings.
comment: Accepted by ICML 2025 Updated related work section to include relevant citation
♻ ☆ RoFt-Mol: Benchmarking Robust Fine-Tuning with Molecular Graph Foundation Models
In the era of foundation models, fine-tuning pre-trained models for specific downstream tasks has become crucial. This drives the need for robust fine-tuning methods to address challenges such as model overfitting and sparse labeling. Molecular graph foundation models (MGFMs) face unique difficulties that complicate fine-tuning. These models are limited by smaller pre-training datasets and more severe data scarcity for downstream tasks, both of which require enhanced model generalization. Moreover, MGFMs must accommodate diverse objectives, including both regression and classification tasks. To better understand and improve fine-tuning techniques under these conditions, we classify eight fine-tuning methods into three mechanisms: weight-based, representation-based, and partial fine-tuning. We benchmark these methods on downstream regression and classification tasks across supervised and self-supervised pre-trained models in diverse labeling settings. This extensive evaluation provides valuable insights and informs the design of a refined robust fine-tuning method, ROFT-MOL. This approach combines the strengths of simple post-hoc weight interpolation with more complex weight ensemble fine-tuning methods, delivering improved performance across both task types while maintaining the ease of use inherent in post-hoc weight interpolation.
♻ ☆ Recursive Training Loops in LLMs: How training data properties modulate distribution shift in generated data? EMNLP 2025
Large language models (LLMs) are increasingly used in the creation of online content, creating feedback loops as subsequent generations of models will be trained on this synthetic data. Such loops were shown to lead to distribution shifts - models misrepresenting the true underlying distributions of human data (also called model collapse). However, how human data properties affect such shifts remains poorly understood. In this paper, we provide the first empirical examination of the effect of such properties on the outcome of recursive training. We first confirm that using different human datasets leads to distribution shifts of different magnitudes. Through exhaustive manipulation of dataset properties combined with regression analyses, we then identify a set of properties predicting distribution shift magnitudes. Lexical diversity is found to amplify these shifts, while semantic diversity and data quality mitigate them. Furthermore, we find that these influences are highly modular: data scrapped from a given internet domain has little influence on the content generated for another domain. Finally, experiments on political bias reveal that human data properties affect whether the initial bias will be amplified or reduced. Overall, our results portray a novel view, where different parts of internet may undergo different types of distribution shift.
comment: Accepted to EMNLP 2025 (Oral)
♻ ☆ KLLM: Fast LLM Inference with K-Means Quantization
Large language model (LLM) inference poses significant challenges due to its intensive memory and computation demands. Weight and activation quantization (WAQ) offers a promising solution by reducing both memory footprint and arithmetic complexity. Traditional WAQ designs rely on uniform integer quantization for hardware efficiency, but often suffer from significant model performance degradation at low precision. In contrast, K-Means quantization, a non-uniform technique, achieves higher accuracy by aligning with the Gaussian-like distributions of weights and activations in LLMs. However, two key challenges prevent the efficient deployment of K-Means-based WAQ designs for LLM inference: (1) The non-uniform structure of K-Means-quantized data precludes direct execution on low-precision compute units, necessitating dequantization and floating-point matrix multiplications (MatMuls) during inference. (2) Activation outliers hinder effective low-precision quantization. Offline thresholding methods for outlier detection degrade model performance substantially, while existing online detection techniques introduce significant runtime overhead. To address the aforementioned challenges and fully unleash the potential of K-Means-based WAQ for LLM inference, in this paper, we propose KLLM, an LLM inference accelerator for efficient execution with K-Means-quantized weights and activations. KLLM features an index-based computation scheme for efficient execution of MatMuls and nonlinear operations on K-Means-quantized data, which avoids most of the dequantization and full-precision computations. Moreover, KLLM incorporates a lightweight outlier detection engine, Orizuru, that efficiently identifies the top-$k$ largest and smallest elements in the activation data stream during online inference.
♻ ☆ Adversarial Robustness of Link Sign Prediction in Signed Graphs
Signed graphs serve as fundamental data structures for representing positive and negative relationships in social networks, with signed graph neural networks (SGNNs) emerging as the primary tool for their analysis. Our investigation reveals that balance theory, while essential for modeling signed relationships in SGNNs, inadvertently introduces exploitable vulnerabilities to black-box attacks. To showcase this, we propose balance-attack, a novel adversarial strategy specifically designed to compromise graph balance degree, and develop an efficient heuristic algorithm to solve the associated NP-hard optimization problem. While existing approaches attempt to restore attacked graphs through balance learning techniques, they face a critical challenge we term "Irreversibility of Balance-related Information," as restored edges fail to align with original attack targets. To address this limitation, we introduce Balance Augmented-Signed Graph Contrastive Learning (BA-SGCL), an innovative framework that combines contrastive learning with balance augmentation techniques to achieve robust graph representations. By maintaining high balance degree in the latent space, BA-SGCL not only effectively circumvents the irreversibility challenge but also significantly enhances model resilience. Extensive experiments across multiple SGNN architectures and real-world datasets demonstrate both the effectiveness of our proposed balance-attack and the superior robustness of BA-SGCL, advancing the security and reliability of signed graph analysis in social networks. Datasets and codes of the proposed framework are at the github repository https://anonymous.4open.science/r/BA-SGCL-submit-DF41/.
♻ ☆ Task-based Loss Functions in Computer Vision: A Comprehensive Review
Loss functions are at the heart of deep learning, shaping how models learn and perform across diverse tasks. They are used to quantify the difference between predicted outputs and ground truth labels, guiding the optimization process to minimize errors. Selecting the right loss function is critical, as it directly impacts model convergence, generalization, and overall performance across various applications, from computer vision to time series forecasting. This paper presents a comprehensive review of loss functions, covering fundamental metrics like Mean Squared Error and Cross-Entropy to advanced functions such as Adversarial and Diffusion losses. We explore their mathematical foundations, impact on model training, and strategic selection for various applications, including computer vision (Discriminative and generative), tabular data prediction, and time series forecasting. For each of these categories, we discuss the most used loss functions in the recent advancements of deep learning techniques. Also, this review explore the historical evolution, computational efficiency, and ongoing challenges in loss function design, underlining the need for more adaptive and robust solutions. Emphasis is placed on complex scenarios involving multi-modal data, class imbalances, and real-world constraints. Finally, we identify key future directions, advocating for loss functions that enhance interpretability, scalability, and generalization, leading to more effective and resilient deep learning models.
♻ ☆ Accelerating Hamiltonian Monte Carlo for Bayesian Inference in Neural Networks and Neural Operators
Hamiltonian Monte Carlo (HMC) is a powerful and accurate method to sample from the posterior distribution in Bayesian inference. However, HMC techniques are computationally demanding for Bayesian neural networks due to the high dimensionality of the network's parameter space and the non-convexity of their posterior distributions. Therefore, various approximation techniques, such as variational inference (VI) or stochastic gradient MCMC, are often employed to infer the posterior distribution of the network parameters. Such approximations introduce inaccuracies in the inferred distributions, resulting in unreliable uncertainty estimates. In this work, we propose a hybrid approach that combines inexpensive VI and accurate HMC methods to efficiently and accurately quantify uncertainties in neural networks and neural operators. The proposed approach leverages an initial VI training on the full network. We examine the influence of individual parameters on the prediction uncertainty, which shows that a large proportion of the parameters do not contribute substantially to uncertainty in the network predictions. This information is then used to significantly reduce the dimension of the parameter space, and HMC is performed only for the subset of network parameters that strongly influence prediction uncertainties. This yields a framework for accelerating the full batch HMC for posterior inference in neural networks. We demonstrate the efficiency and accuracy of the proposed framework on deep neural networks and operator networks, showing that inference can be performed for large networks with tens to hundreds of thousands of parameters. We show that this method can effectively learn surrogates for complex physical systems by modeling the operator that maps from upstream conditions to wall-pressure data on a cone in hypersonic flow.
♻ ☆ The Efficiency Frontier: Classical Shadows versus Quantum Footage
Interfacing quantum and classical processors is an important subroutine in full-stack quantum algorithms. The so-called "classical shadow" method efficiently extracts essential classical information from quantum states, enabling the prediction of many properties of a quantum system from only a few measurements. However, for a small number of highly non-local observables, or when classical post-processing power is limited, the classical shadow method is not always the most efficient choice. Here, we address this issue quantitatively by performing a full-stack resource analysis that compares classical shadows with "quantum footage," which refers to direct quantum measurement. Under certain assumptions, our analysis illustrates a boundary of download efficiency between classical shadows and quantum footage. For observables expressed as linear combinations of Pauli matrices, the classical shadow method outperforms direct measurement when the number of observables is large and the Pauli weight is small. For observables in the form of large Hermitian sparse matrices, the classical shadow method shows an advantage when the number of observables, the sparsity of the matrix, and the number of qubits fall within a certain range. The key parameters influencing this behavior include the number of qubits $n$, observables $M$, sparsity $k$, Pauli weight $w$, accuracy requirement $\epsilon$, and failure tolerance $\delta$. We also compare the resource consumption of the two methods on different types of quantum computers and identify break-even points where the classical shadow method becomes more efficient, which vary depending on the hardware. This paper opens a new avenue for quantitatively designing optimal strategies for hybrid quantum-classical tomography and provides practical insights for selecting the most suitable quantum measurement approach in real-world applications.
comment: 23 pages, many figures. v2: changes gibberish texts due to latex compilation error
♻ ☆ Training Deep Morphological Neural Networks as Universal Approximators
We investigate deep morphological neural networks (DMNNs). We demonstrate that despite their inherent non-linearity, "linear" activations are essential for DMNNs. To preserve their inherent sparsity, we propose architectures that constraint the parameters of the "linear" activations: For the first (resp. second) architecture, we work under the constraint that the majority of parameters (resp. learnable parameters) should be part of morphological operations. We improve the generalization ability of our networks via residual connections and weight dropout. Our proposed networks can be successfully trained, and are more prunable than linear networks. To the best of our knowledge, we are the first to successfully train DMNNs under such constraints. Finally, we propose a hybrid network architecture combining linear and morphological layers, showing empirically that the inclusion of morphological layers significantly accelerates the convergence of gradient descent with large batches.
comment: v2: Added experiments on the ResNet-20 model, on the CIFAR-10 dataset, and pruning experiments with SNIP
♻ ☆ Downlink MIMO Channel Estimation from Bits: Recoverability and Algorithm
In frequency division duplex (FDD) massive MIMO systems, a major challenge lies in acquiring the downlink channel state information}\ (CSI) at the base station (BS) from limited feedback sent by the user equipment (UE). To tackle this fundamental task, our contribution is twofold: First, a simple feedback framework is proposed, where a compression and Gaussian dithering-based quantization strategy is adopted at the UE side, and then a maximum likelihood estimator (MLE) is formulated at the BS side. Recoverability of the MIMO channel under the widely used double directional model is established. Specifically, analyses are presented for two compression schemes -- showing one being more overhead-economical and the other computationally lighter at the UE side. Second, to realize the MLE, an alternating direction method of multipliers (ADMM) algorithm is proposed. The algorithm is carefully designed to integrate a sophisticated harmonic retrieval (HR) solver as subroutine, which turns out to be the key of effectively tackling this hard MLE problem.Extensive numerical experiments are conducted to validate the efficacy of our approach.
Multimedia 7
☆ Dual Knowledge-Enhanced Two-Stage Reasoner for Multimodal Dialog Systems
Textual response generation is pivotal for multimodal \mbox{task-oriented} dialog systems, which aims to generate proper textual responses based on the multimodal context. While existing efforts have demonstrated remarkable progress, there still exist the following limitations: 1) \textit{neglect of unstructured review knowledge} and 2) \textit{underutilization of large language models (LLMs)}. Inspired by this, we aim to fully utilize dual knowledge (\textit{i.e., } structured attribute and unstructured review knowledge) with LLMs to promote textual response generation in multimodal task-oriented dialog systems. However, this task is non-trivial due to two key challenges: 1) \textit{dynamic knowledge type selection} and 2) \textit{intention-response decoupling}. To address these challenges, we propose a novel dual knowledge-enhanced two-stage reasoner by adapting LLMs for multimodal dialog systems (named DK2R). To be specific, DK2R first extracts both structured attribute and unstructured review knowledge from external knowledge base given the dialog context. Thereafter, DK2R uses an LLM to evaluate each knowledge type's utility by analyzing LLM-generated provisional probe responses. Moreover, DK2R separately summarizes the intention-oriented key clues via dedicated reasoning, which are further used as auxiliary signals to enhance LLM-based textual response generation. Extensive experiments conducted on a public dataset verify the superiority of DK2R. We have released the codes and parameters.
♻ ☆ Cardiverse: Harnessing LLMs for Novel Card Game Prototyping EMNLP 2025
The prototyping of computer games, particularly card games, requires extensive human effort in creative ideation and gameplay evaluation. Recent advances in Large Language Models (LLMs) offer opportunities to automate and streamline these processes. However, it remains challenging for LLMs to design novel game mechanics beyond existing databases, generate consistent gameplay environments, and develop scalable gameplay AI for large-scale evaluations. This paper addresses these challenges by introducing a comprehensive automated card game prototyping framework. The approach highlights a graph-based indexing method for generating novel game variations, an LLM-driven system for consistent game code generation validated by gameplay records, and a gameplay AI constructing method that uses an ensemble of LLM-generated heuristic functions optimized through self-play. These contributions aim to accelerate card game prototyping, reduce human labor, and lower barriers to entry for game developers. For code repo visit this http URL https://github.com/danruili/Cardiverse
comment: 37 pages, 13 figures, 8 tables. Accepted by EMNLP 2025
♻ ☆ Attention of a Kiss: Exploring Attention Maps in Video Diffusion for XAIxArts
This paper presents an artistic and technical investigation into the attention mechanisms of video diffusion transformers. Inspired by early video artists who manipulated analog video signals to create new visual aesthetics, this study proposes a method for extracting and visualizing cross-attention maps in generative video models. Built on the open-source Wan model, our tool provides an interpretable window into the temporal and spatial behavior of attention in text-to-video generation. Through exploratory probes and an artistic case study, we examine the potential of attention maps as both analytical tools and raw artistic material. This work contributes to the growing field of Explainable AI for the Arts (XAIxArts), inviting artists to reclaim the inner workings of AI as a creative medium.
comment: 3rd international workshop on eXplainable AI for the Arts (XAIxArts) at the ACM Creativity and Cognition Conference June 2025
♻ ☆ Hue4U: Real-Time Personalized Color Correction in Augmented Reality
Color Vision Deficiency (CVD) affects nearly 8 percent of men and 0.5 percent of women worldwide. Existing color-correction methods often rely on prior clinical diagnosis and static filtering, making them less effective for users with mild or moderate CVD. In this paper, we introduce Hue4U, a personalized, real-time color-correction system in augmented reality using consumer-grade Meta Quest headsets. Unlike previous methods, Hue4U requires no prior medical diagnosis and adapts to the user in real time. A user study with 10 participants showed notable improvements in their ability to distinguish colors. The results demonstrated large effect sizes (Cohen's d > 1.4), suggesting clinically meaningful gains for individuals with CVD. These findings highlight the potential of personalized AR interventions to improve visual accessibility and quality of life for people affected by CVD.
♻ ☆ "Humor, Art, or Misinformation?": A Multimodal Dataset for Intent-Aware Synthetic Image Detection
Recent advances in multimodal AI have enabled progress in detecting synthetic and out-of-context content. However, existing efforts largely overlook the intent behind AI-generated images. To fill this gap, we introduce S-HArM, a multimodal dataset for intent-aware classification, comprising 9,576 "in the wild" image-text pairs from Twitter/X and Reddit, labeled as Humor/Satire, Art, or Misinformation. Additionally, we explore three prompting strategies (image-guided, description-guided, and multimodally-guided) to construct a large-scale synthetic training dataset with Stable Diffusion. We conduct an extensive comparative study including modality fusion, contrastive learning, reconstruction networks, attention mechanisms, and large vision-language models. Our results show that models trained on image- and multimodally-guided data generalize better to "in the wild" content, due to preserved visual context. However, overall performance remains limited, highlighting the complexity of inferring intent and the need for specialized architectures.
♻ ☆ PIN: A Knowledge-Intensive Dataset for Paired and Interleaved Multimodal Documents
Recent advancements in large multimodal models (LMMs) have leveraged extensive multimodal datasets to enhance capabilities in complex knowledge-driven tasks. However, persistent challenges in perceptual and reasoning errors limit their efficacy, particularly in interpreting intricate visual data and deducing multimodal relationships. To address these issues, we introduce PIN (Paired and INterleaved multimodal documents), a novel data format designed to foster a deeper integration of visual and textual knowledge. The PIN format uniquely combines semantically rich Markdown files, which preserve fine-grained textual structures, with holistic overall images that capture the complete document layout. Following this format, we construct and release two large-scale, open-source datasets: PIN-200M (~200 million documents) and PIN-14M (~14 million), compiled from diverse web and scientific sources in both English and Chinese. To maximize usability, we provide detailed statistical analyses and equip the datasets with quality signals, enabling researchers to easily filter and select data for specific tasks. Our work provides the community with a versatile data format and substantial resources, offering a foundation for new research in pre-training strategies and the development of more powerful knowledge-intensive LMMs.
comment: Technical report v1.0
♻ ☆ MIRROR: Multi-Modal Pathological Self-Supervised Representation Learning via Modality Alignment and Retention
Histopathology and transcriptomics are fundamental modalities in oncology, encapsulating the morphological and molecular aspects of the disease. Multi-modal self-supervised learning has demonstrated remarkable potential in learning pathological representations by integrating diverse data sources. Conventional multi-modal integration methods primarily emphasize modality alignment, while paying insufficient attention to retaining the modality-specific structures. However, unlike conventional scenarios where multi-modal inputs share highly overlapping features, histopathology and transcriptomics exhibit pronounced heterogeneity, offering orthogonal yet complementary insights. Histopathology provides morphological and spatial context, elucidating tissue architecture and cellular topology, whereas transcriptomics delineates molecular signatures through gene expression patterns. This inherent disparity introduces a major challenge in aligning them while maintaining modality-specific fidelity. To address these challenges, we present MIRROR, a novel multi-modal representation learning method designed to foster both modality alignment and retention. MIRROR employs dedicated encoders to extract comprehensive features for each modality, which is further complemented by a modality alignment module to achieve seamless integration between phenotype patterns and molecular profiles. Furthermore, a modality retention module safeguards unique attributes from each modality, while a style clustering module mitigates redundancy and enhances disease-relevant information by modeling and aligning consistent pathological signatures within a clustering space. Extensive evaluations on TCGA cohorts for cancer subtyping and survival analysis highlight MIRROR's superior performance, demonstrating its effectiveness in constructing comprehensive oncological feature representations and benefiting the cancer diagnosis.
comment: 18 pages, 7 figures, 10 tables. Code available at https://github.com/TianyiFranklinWang/MIRROR. Project page: https://tianyifranklinwang.github.io/MIRROR
Computer Vision and Pattern Recognition 158
☆ H$_{2}$OT: Hierarchical Hourglass Tokenizer for Efficient Video Pose Transformers
Transformers have been successfully applied in the field of video-based 3D human pose estimation. However, the high computational costs of these video pose transformers (VPTs) make them impractical on resource-constrained devices. In this paper, we present a hierarchical plug-and-play pruning-and-recovering framework, called Hierarchical Hourglass Tokenizer (H$_{2}$OT), for efficient transformer-based 3D human pose estimation from videos. H$_{2}$OT begins with progressively pruning pose tokens of redundant frames and ends with recovering full-length sequences, resulting in a few pose tokens in the intermediate transformer blocks and thus improving the model efficiency. It works with two key modules, namely, a Token Pruning Module (TPM) and a Token Recovering Module (TRM). TPM dynamically selects a few representative tokens to eliminate the redundancy of video frames, while TRM restores the detailed spatio-temporal information based on the selected tokens, thereby expanding the network output to the original full-length temporal resolution for fast inference. Our method is general-purpose: it can be easily incorporated into common VPT models on both seq2seq and seq2frame pipelines while effectively accommodating different token pruning and recovery strategies. In addition, our H$_{2}$OT reveals that maintaining the full pose sequence is unnecessary, and a few pose tokens of representative frames can achieve both high efficiency and estimation accuracy. Extensive experiments on multiple benchmark datasets demonstrate both the effectiveness and efficiency of the proposed method. Code and models are available at https://github.com/NationalGAILab/HoT.
comment: Accepted by TPAMI 2025, Open Sourced. arXiv admin note: substantial text overlap with arXiv:2311.12028
☆ Deep Reactive Policy: Learning Reactive Manipulator Motion Planning for Dynamic Environments
Generating collision-free motion in dynamic, partially observable environments is a fundamental challenge for robotic manipulators. Classical motion planners can compute globally optimal trajectories but require full environment knowledge and are typically too slow for dynamic scenes. Neural motion policies offer a promising alternative by operating in closed-loop directly on raw sensory inputs but often struggle to generalize in complex or dynamic settings. We propose Deep Reactive Policy (DRP), a visuo-motor neural motion policy designed for reactive motion generation in diverse dynamic environments, operating directly on point cloud sensory input. At its core is IMPACT, a transformer-based neural motion policy pretrained on 10 million generated expert trajectories across diverse simulation scenarios. We further improve IMPACT's static obstacle avoidance through iterative student-teacher finetuning. We additionally enhance the policy's dynamic obstacle avoidance at inference time using DCP-RMP, a locally reactive goal-proposal module. We evaluate DRP on challenging tasks featuring cluttered scenes, dynamic moving obstacles, and goal obstructions. DRP achieves strong generalization, outperforming prior classical and neural methods in success rate across both simulated and real-world settings. Video results and code available at https://deep-reactive-policy.com
comment: Website at \url{deep-reactive-policy.com}
☆ F1: A Vision-Language-Action Model Bridging Understanding and Generation to Actions
Executing language-conditioned tasks in dynamic visual environments remains a central challenge in embodied AI. Existing Vision-Language-Action (VLA) models predominantly adopt reactive state-to-action mappings, often leading to short-sighted behaviors and poor robustness in dynamic scenes. In this paper, we introduce F1, a pretrained VLA framework which integrates the visual foresight generation into decision-making pipeline. F1 adopts a Mixture-of-Transformer architecture with dedicated modules for perception, foresight generation, and control, thereby bridging understanding, generation, and actions. At its core, F1 employs a next-scale prediction mechanism to synthesize goal-conditioned visual foresight as explicit planning targets. By forecasting plausible future visual states, F1 reformulates action generation as a foresight-guided inverse dynamics problem, enabling actions that implicitly achieve visual goals. To endow F1 with robust and generalizable capabilities, we propose a three-stage training recipe on an extensive dataset comprising over 330k trajectories across 136 diverse tasks. This training scheme enhances modular reasoning and equips the model with transferable visual foresight, which is critical for complex and dynamic environments. Extensive evaluations on real-world tasks and simulation benchmarks demonstrate F1 consistently outperforms existing approaches, achieving substantial gains in both task success rate and generalization ability.
☆ Scaling Transformer-Based Novel View Synthesis Models with Token Disentanglement and Synthetic Data ICCV 2025
Large transformer-based models have made significant progress in generalizable novel view synthesis (NVS) from sparse input views, generating novel viewpoints without the need for test-time optimization. However, these models are constrained by the limited diversity of publicly available scene datasets, making most real-world (in-the-wild) scenes out-of-distribution. To overcome this, we incorporate synthetic training data generated from diffusion models, which improves generalization across unseen domains. While synthetic data offers scalability, we identify artifacts introduced during data generation as a key bottleneck affecting reconstruction quality. To address this, we propose a token disentanglement process within the transformer architecture, enhancing feature separation and ensuring more effective learning. This refinement not only improves reconstruction quality over standard transformers but also enables scalable training with synthetic data. As a result, our method outperforms existing models on both in-dataset and cross-dataset evaluations, achieving state-of-the-art results across multiple benchmarks while significantly reducing computational costs. Project page: https://scaling3dnvs.github.io/
comment: Accepted at ICCV 2025
☆ Interleaving Reasoning for Better Text-to-Image Generation
Unified multimodal understanding and generation models recently have achieve significant improvement in image generation capability, yet a large gap remains in instruction following and detail preservation compared to systems that tightly couple comprehension with generation such as GPT-4o. Motivated by recent advances in interleaving reasoning, we explore whether such reasoning can further improve Text-to-Image (T2I) generation. We introduce Interleaving Reasoning Generation (IRG), a framework that alternates between text-based thinking and image synthesis: the model first produces a text-based thinking to guide an initial image, then reflects on the result to refine fine-grained details, visual quality, and aesthetics while preserving semantics. To train IRG effectively, we propose Interleaving Reasoning Generation Learning (IRGL), which targets two sub-goals: (1) strengthening the initial think-and-generate stage to establish core content and base quality, and (2) enabling high-quality textual reflection and faithful implementation of those refinements in a subsequent image. We curate IRGL-300K, a dataset organized into six decomposed learning modes that jointly cover learning text-based thinking, and full thinking-image trajectories. Starting from a unified foundation model that natively emits interleaved text-image outputs, our two-stage training first builds robust thinking and reflection, then efficiently tunes the IRG pipeline in the full thinking-image trajectory data. Extensive experiments show SoTA performance, yielding absolute gains of 5-10 points on GenEval, WISE, TIIF, GenAI-Bench, and OneIG-EN, alongside substantial improvements in visual quality and fine-grained fidelity. The code, model weights and datasets will be released in: https://github.com/Osilly/Interleaving-Reasoning-Generation .
☆ LLaDA-VLA: Vision Language Diffusion Action Models
The rapid progress of auto-regressive vision-language models (VLMs) has inspired growing interest in vision-language-action models (VLA) for robotic manipulation. Recently, masked diffusion models, a paradigm distinct from autoregressive models, have begun to demonstrate competitive performance in text generation and multimodal applications, leading to the development of a series of diffusion-based VLMs (d-VLMs). However, leveraging such models for robot policy learning remains largely unexplored. In this work, we present LLaDA-VLA, the first Vision-Language-Diffusion-Action model built upon pretrained d-VLMs for robotic manipulation. To effectively adapt d-VLMs to robotic domain, we introduce two key designs: (1) a localized special-token classification strategy that replaces full-vocabulary classification with special action token classification, reducing adaptation difficulty; (2) a hierarchical action-structured decoding strategy that decodes action sequences hierarchically considering the dependencies within and across actions. Extensive experiments demonstrate that LLaDA-VLA significantly outperforms state-of-the-art VLAs on both simulation and real-world robots.
☆ FoMo4Wheat: Toward reliable crop vision foundation models with globally curated data
Vision-driven field monitoring is central to digital agriculture, yet models built on general-domain pretrained backbones often fail to generalize across tasks, owing to the interaction of fine, variable canopy structures with fluctuating field conditions. We present FoMo4Wheat, one of the first crop-domain vision foundation model pretrained with self-supervision on ImAg4Wheat, the largest and most diverse wheat image dataset to date (2.5 million high-resolution images collected over a decade at 30 global sites, spanning >2,000 genotypes and >500 environmental conditions). This wheat-specific pretraining yields representations that are robust for wheat and transferable to other crops and weeds. Across ten in-field vision tasks at canopy and organ levels, FoMo4Wheat models consistently outperform state-of-the-art models pretrained on general-domain dataset. These results demonstrate the value of crop-specific foundation models for reliable in-field perception and chart a path toward a universal crop foundation model with cross-species and cross-task capabilities. FoMo4Wheat models and the ImAg4Wheat dataset are publicly available online: https://github.com/PheniX-Lab/FoMo4Wheat and https://huggingface.co/PheniX-Lab/FoMo4Wheat. The demonstration website is: https://fomo4wheat.phenix-lab.com/.
☆ BIR-Adapter: A Low-Complexity Diffusion Model Adapter for Blind Image Restoration
This paper introduces BIR-Adapter, a low-complexity blind image restoration adapter for diffusion models. The BIR-Adapter enables the utilization of the prior of pre-trained large-scale diffusion models on blind image restoration without training any auxiliary feature extractor. We take advantage of the robustness of pretrained models. We extract features from degraded images via the model itself and extend the self-attention mechanism with these degraded features. We introduce a sampling guidance mechanism to reduce hallucinations. We perform experiments on synthetic and real-world degradations and demonstrate that BIR-Adapter achieves competitive or better performance compared to state-of-the-art methods while having significantly lower complexity. Additionally, its adapter-based design enables integration into other diffusion models, enabling broader applications in image restoration tasks. We showcase this by extending a super-resolution-only model to perform better under additional unknown degradations.
comment: 20 pages, 14 figures
☆ Intraoperative 2D/3D Registration via Spherical Similarity Learning and Inference-Time Differentiable Levenberg-Marquardt Optimization WACV 2026
Intraoperative 2D/3D registration aligns preoperative 3D volumes with real-time 2D radiographs, enabling accurate localization of instruments and implants. A recent fully differentiable similarity learning framework approximates geodesic distances on SE(3), expanding the capture range of registration and mitigating the effects of substantial disturbances, but existing Euclidean approximations distort manifold structure and slow convergence. To address these limitations, we explore similarity learning in non-Euclidean spherical feature spaces to better capture and fit complex manifold structure. We extract feature embeddings using a CNN-Transformer encoder, project them into spherical space, and approximate their geodesic distances with Riemannian distances in the bi-invariant SO(4) space. This enables a more expressive and geometrically consistent deep similarity metric, enhancing the ability to distinguish subtle pose differences. During inference, we replace gradient descent with fully differentiable Levenberg-Marquardt optimization to accelerate convergence. Experiments on real and synthetic datasets show superior accuracy in both patient-specific and patient-agnostic scenarios.
comment: WACV 2026 Accepted
☆ Barlow-Swin: Toward a novel siamese-based segmentation architecture using Swin-Transformers
Medical image segmentation is a critical task in clinical workflows, particularly for the detection and delineation of pathological regions. While convolutional architectures like U-Net have become standard for such tasks, their limited receptive field restricts global context modeling. Recent efforts integrating transformers have addressed this, but often result in deep, computationally expensive models unsuitable for real-time use. In this work, we present a novel end-to-end lightweight architecture designed specifically for real-time binary medical image segmentation. Our model combines a Swin Transformer-like encoder with a U-Net-like decoder, connected via skip pathways to preserve spatial detail while capturing contextual information. Unlike existing designs such as Swin Transformer or U-Net, our architecture is significantly shallower and competitively efficient. To improve the encoder's ability to learn meaningful features without relying on large amounts of labeled data, we first train it using Barlow Twins, a self-supervised learning method that helps the model focus on important patterns by reducing unnecessary repetition in the learned features. After this pretraining, we fine-tune the entire model for our specific task. Experiments on benchmark binary segmentation tasks demonstrate that our model achieves competitive accuracy with substantially reduced parameter count and faster inference, positioning it as a practical alternative for deployment in real-time and resource-limited clinical environments. The code for our method is available at Github repository: https://github.com/mkianih/Barlow-Swin.
☆ A New Hybrid Model of Generative Adversarial Network and You Only Look Once Algorithm for Automatic License-Plate Recognition
Automatic License-Plate Recognition (ALPR) plays a pivotal role in Intelligent Transportation Systems (ITS) as a fundamental element of Smart Cities. However, due to its high variability, ALPR faces challenging issues more efficiently addressed by deep learning techniques. In this paper, a selective Generative Adversarial Network (GAN) is proposed for deblurring in the preprocessing step, coupled with the state-of-the-art You-Only-Look-Once (YOLO)v5 object detection architectures for License-Plate Detection (LPD), and the integrated Character Segmentation (CS) and Character Recognition (CR) steps. The selective preprocessing bypasses unnecessary and sometimes counter-productive input manipulations, while YOLOv5 LPD/CS+CR delivers high accuracy and low computing cost. As a result, YOLOv5 achieves a detection time of 0.026 seconds for both LP and CR detection stages, facilitating real-time applications with exceptionally rapid responsiveness. Moreover, the proposed model achieves accuracy rates of 95\% and 97\% in the LPD and CR detection phases, respectively. Furthermore, the inclusion of the Deblur-GAN pre-processor significantly improves detection accuracy by nearly 40\%, especially when encountering blurred License Plates (LPs).To train and test the learning components, we generated and publicly released our blur and ALPR datasets (using Iranian license plates as a use-case), which are more representative of close-to-real-life ad-hoc situations. The findings demonstrate that employing the state-of-the-art YOLO model results in excellent overall precision and detection time, making it well-suited for portable applications. Additionally, integrating the Deblur-GAN model as a preliminary processing step enhances the overall effectiveness of our comprehensive model, particularly when confronted with blurred scenes captured by the camera as input.
☆ Matching Shapes Under Different Topologies: A Topology-Adaptive Deformation Guided Approach
Non-rigid 3D mesh matching is a critical step in computer vision and computer graphics pipelines. We tackle matching meshes that contain topological artefacts which can break the assumption made by current approaches. While Functional Maps assume the deformation induced by the ground truth correspondences to be near-isometric, ARAP-like deformation-guided approaches assume the latter to be ARAP. Neither assumption holds in certain topological configurations of the input shapes. We are motivated by real-world scenarios such as per-frame multi-view reconstructions, often suffering from topological artefacts. To this end, we propose a topology-adaptive deformation model allowing changes in shape topology to align shape pairs under ARAP and bijective association constraints. Using this model, we jointly optimise for a template mesh with adequate topology and for its alignment with the shapes to be matched to extract correspondences. We show that, while not relying on any data-driven prior, our approach applies to highly non-isometric shapes and shapes with topological artefacts, including noisy per-frame multi-view reconstructions, even outperforming methods trained on large datasets in 3D alignment quality.
☆ Automated Radiographic Total Sharp Score (ARTSS) in Rheumatoid Arthritis: A Solution to Reduce Inter-Intra Reader Variation and Enhancing Clinical Practice
Assessing the severity of rheumatoid arthritis (RA) using the Total Sharp/Van Der Heijde Score (TSS) is crucial, but manual scoring is often time-consuming and subjective. This study introduces an Automated Radiographic Sharp Scoring (ARTSS) framework that leverages deep learning to analyze full-hand X-ray images, aiming to reduce inter- and intra-observer variability. The research uniquely accommodates patients with joint disappearance and variable-length image sequences. We developed ARTSS using data from 970 patients, structured into four stages: I) Image pre-processing and re-orientation using ResNet50, II) Hand segmentation using UNet.3, III) Joint identification using YOLOv7, and IV) TSS prediction using models such as VGG16, VGG19, ResNet50, DenseNet201, EfficientNetB0, and Vision Transformer (ViT). We evaluated model performance with Intersection over Union (IoU), Mean Average Precision (MAP), mean absolute error (MAE), Root Mean Squared Error (RMSE), and Huber loss. The average TSS from two radiologists was used as the ground truth. Model training employed 3-fold cross-validation, with each fold consisting of 452 training and 227 validation samples, and external testing included 291 unseen subjects. Our joint identification model achieved 99% accuracy. The best-performing model, ViT, achieved a notably low Huber loss of 0.87 for TSS prediction. Our results demonstrate the potential of deep learning to automate RA scoring, which can significantly enhance clinical practice. Our approach addresses the challenge of joint disappearance and variable joint numbers, offers timesaving benefits, reduces inter- and intra-reader variability, improves radiologist accuracy, and aids rheumatologists in making more informed decisions.
☆ ToonOut: Fine-tuned Background-Removal for Anime Characters
While state-of-the-art background removal models excel at realistic imagery, they frequently underperform in specialized domains such as anime-style content, where complex features like hair and transparency present unique challenges. To address this limitation, we collected and annotated a custom dataset of 1,228 high-quality anime images of characters and objects, and fine-tuned the open-sourced BiRefNet model on this dataset. This resulted in marked improvements in background removal accuracy for anime-style images, increasing from 95.3% to 99.5% for our newly introduced Pixel Accuracy metric. We are open-sourcing the code, the fine-tuned model weights, as well as the dataset at: https://github.com/MatteoKartoon/BiRefNet.
☆ Evaluating the Impact of Adversarial Attacks on Traffic Sign Classification using the LISA Dataset
Adversarial attacks pose significant threats to machine learning models by introducing carefully crafted perturbations that cause misclassification. While prior work has primarily focused on MNIST and similar datasets, this paper investigates the vulnerability of traffic sign classifiers using the LISA Traffic Sign dataset. We train a convolutional neural network to classify 47 different traffic signs and evaluate its robustness against Fast Gradient Sign Method (FGSM) and Projected Gradient Descent (PGD) attacks. Our results show a sharp decline in classification accuracy as the perturbation magnitude increases, highlighting the models susceptibility to adversarial examples. This study lays the groundwork for future exploration into defense mechanisms tailored for real-world traffic sign recognition systems.
☆ Leveraging Generic Foundation Models for Multimodal Surgical Data Analysis MICCAI 2025
We investigate how both the adaptation of a generic foundation model via transfer learning and the integration of complementary modalities from the operating room (OR) can support surgical data science. To this end, we use V-JEPA as the single-modality foundation of a multimodal model for minimally invasive surgery support. We analyze how the model's downstream performance can benefit (a) from finetuning on unlabeled surgical video data and (b) from providing additional time-resolved data streams from the OR in a multimodal setup. In an in-house dataset of liver surgery videos, we analyze the tasks of predicting hospital length of stay and postoperative complications. In videos of the public HeiCo dataset, we analyze the task of surgical phase recognition. As a baseline, we apply pretrained V-JEPA to all tasks. We then finetune it on unlabeled, held-out videos to investigate its change in performance after domain adaptation. Following the idea of modular decision support networks, we integrate additional data streams from the OR by training a separate encoder to form a shared representation space with V-JEPA's embeddings. Our experiments show that finetuning on domain-specific data increases model performance. On the in-house data, integrating additional time-resolved data likewise benefits the model. On the HeiCo data, accuracy of the pretrained video-only, single-modality baseline setup is on par with the top-performing submissions of the EndoVis2017 challenge, while finetuning on domain-specific data increases accuracy further. Our results thus demonstrate how surgical data science can leverage public, generic foundation models. Likewise, they indicate the potential of domain adaptation and of integrating suitable complementary data streams from the OR. To support further research, we release our code and model weights at https://github.com/DigitalSurgeryLab-Basel/ML-CDS-2025.
comment: 13 pages, 3 figures; accepted at ML-CDS @ MICCAI 2025, Daejeon, Republic of Korea
☆ Curia: A Multi-Modal Foundation Model for Radiology
AI-assisted radiological interpretation is based on predominantly narrow, single-task models. This approach is impractical for covering the vast spectrum of imaging modalities, diseases, and radiological findings. Foundation models (FMs) hold the promise of broad generalization across modalities and in low-data settings. However, this potential has remained largely unrealized in radiology. We introduce Curia, a foundation model trained on the entire cross-sectional imaging output of a major hospital over several years, which to our knowledge is the largest such corpus of real-world data-encompassing 150,000 exams (130 TB). On a newly curated 19-task external validation benchmark, Curia accurately identifies organs, detects conditions like brain hemorrhages and myocardial infarctions, and predicts outcomes in tumor staging. Curia meets or surpasses the performance of radiologists and recent foundation models, and exhibits clinically significant emergent properties in cross-modality, and low-data regimes. To accelerate progress, we release our base model's weights at https://huggingface.co/raidium/curia.
☆ Video-Based MPAA Rating Prediction: An Attention-Driven Hybrid Architecture Using Contrastive Learning
The rapid growth of visual content consumption across platforms necessitates automated video classification for age-suitability standards like the MPAA rating system (G, PG, PG-13, R). Traditional methods struggle with large labeled data requirements, poor generalization, and inefficient feature learning. To address these challenges, we employ contrastive learning for improved discrimination and adaptability, exploring three frameworks: Instance Discrimination, Contextual Contrastive Learning, and Multi-View Contrastive Learning. Our hybrid architecture integrates an LRCN (CNN+LSTM) backbone with a Bahdanau attention mechanism, achieving state-of-the-art performance in the Contextual Contrastive Learning framework, with 88% accuracy and an F1 score of 0.8815. By combining CNNs for spatial features, LSTMs for temporal modeling, and attention mechanisms for dynamic frame prioritization, the model excels in fine-grained borderline distinctions, such as differentiating PG-13 and R-rated content. We evaluate the model's performance across various contrastive loss functions, including NT-Xent, NT-logistic, and Margin Triplet, demonstrating the robustness of our proposed architecture. To ensure practical application, the model is deployed as a web application for real-time MPAA rating classification, offering an efficient solution for automated content compliance across streaming platforms.
comment: 12 pages, 9 figures
☆ UMO: Scaling Multi-Identity Consistency for Image Customization via Matching Reward
Recent advancements in image customization exhibit a wide range of application prospects due to stronger customization capabilities. However, since we humans are more sensitive to faces, a significant challenge remains in preserving consistent identity while avoiding identity confusion with multi-reference images, limiting the identity scalability of customization models. To address this, we present UMO, a Unified Multi-identity Optimization framework, designed to maintain high-fidelity identity preservation and alleviate identity confusion with scalability. With "multi-to-multi matching" paradigm, UMO reformulates multi-identity generation as a global assignment optimization problem and unleashes multi-identity consistency for existing image customization methods generally through reinforcement learning on diffusion models. To facilitate the training of UMO, we develop a scalable customization dataset with multi-reference images, consisting of both synthesised and real parts. Additionally, we propose a new metric to measure identity confusion. Extensive experiments demonstrate that UMO not only improves identity consistency significantly, but also reduces identity confusion on several image customization methods, setting a new state-of-the-art among open-source methods along the dimension of identity preserving. Code and model: https://github.com/bytedance/UMO
comment: Project page: https://bytedance.github.io/UMO/ Code and model: https://github.com/bytedance/UMO
☆ MIORe & VAR-MIORe: Benchmarks to Push the Boundaries of Restoration ICCV 2025
We introduce MIORe and VAR-MIORe, two novel multi-task datasets that address critical limitations in current motion restoration benchmarks. Designed with high-frame-rate (1000 FPS) acquisition and professional-grade optics, our datasets capture a broad spectrum of motion scenarios, which include complex ego-camera movements, dynamic multi-subject interactions, and depth-dependent blur effects. By adaptively averaging frames based on computed optical flow metrics, MIORe generates consistent motion blur, and preserves sharp inputs for video frame interpolation and optical flow estimation. VAR-MIORe further extends by spanning a variable range of motion magnitudes, from minimal to extreme, establishing the first benchmark to offer explicit control over motion amplitude. We provide high-resolution, scalable ground truths that challenge existing algorithms under both controlled and adverse conditions, paving the way for next-generation research of various image and video restoration tasks.
comment: ICCV 2025 Oral
☆ SynthDrive: Scalable Real2Sim2Real Sensor Simulation Pipeline for High-Fidelity Asset Generation and Driving Data Synthesis
In the field of autonomous driving, sensor simulation is essential for generating rare and diverse scenarios that are difficult to capture in real-world environments. Current solutions fall into two categories: 1) CG-based methods, such as CARLA, which lack diversity and struggle to scale to the vast array of rare cases required for robust perception training; and 2) learning-based approaches, such as NeuSim, which are limited to specific object categories (vehicles) and require extensive multi-sensor data, hindering their applicability to generic objects. To address these limitations, we propose a scalable real2sim2real system that leverages 3D generation to automate asset mining, generation, and rare-case data synthesis.
comment: 8 pages
☆ AIM 2025 Challenge on High FPS Motion Deblurring: Methods and Results ICCV
This paper presents a comprehensive review of the AIM 2025 High FPS Non-Uniform Motion Deblurring Challenge, highlighting the proposed solutions and final results. The objective of this challenge is to identify effective networks capable of producing clearer and visually compelling images in diverse and challenging conditions, by learning representative visual cues for complex aggregations of motion types. A total of 68 participants registered for the competition, and 9 teams ultimately submitted valid entries. This paper thoroughly evaluates the state-of-the-art advances in high-FPS single image motion deblurring, showcasing the significant progress in the field, while leveraging samples of the novel dataset, MIORe, that introduces challenging examples of movement patterns.
comment: ICCVW AIM 2025
☆ P3-SAM: Native 3D Part Segmentation
Segmenting 3D assets into their constituent parts is crucial for enhancing 3D understanding, facilitating model reuse, and supporting various applications such as part generation. However, current methods face limitations such as poor robustness when dealing with complex objects and cannot fully automate the process. In this paper, we propose a native 3D point-promptable part segmentation model termed P3-SAM, designed to fully automate the segmentation of any 3D objects into components. Inspired by SAM, P3-SAM consists of a feature extractor, multiple segmentation heads, and an IoU predictor, enabling interactive segmentation for users. We also propose an algorithm to automatically select and merge masks predicted by our model for part instance segmentation. Our model is trained on a newly built dataset containing nearly 3.7 million models with reasonable segmentation labels. Comparisons show that our method achieves precise segmentation results and strong robustness on any complex objects, attaining state-of-the-art performance. Our code will be released soon.
comment: Tech Report
☆ UrbanTwin: High-Fidelity Synthetic Replicas of Roadside Lidar Datasets
This article presents UrbanTwin datasets - high-fidelity, realistic replicas of three public roadside lidar datasets: LUMPI, V2X-Real-IC, and TUMTraf-I. Each UrbanTwin dataset contains 10K annotated frames corresponding to one of the public datasets. Annotations include 3D bounding boxes, instance segmentation labels, and tracking IDs for six object classes, along with semantic segmentation labels for nine classes. These datasets are synthesized using emulated lidar sensors within realistic digital twins, modeled based on surrounding geometry, road alignment at lane level, and the lane topology and vehicle movement patterns at intersections of the actual locations corresponding to each real dataset. Due to the precise digital twin modeling, the synthetic datasets are well aligned with their real counterparts, offering strong standalone and augmentative value for training deep learning models on tasks such as 3D object detection, tracking, and semantic and instance segmentation. We evaluate the alignment of the synthetic replicas through statistical and structural similarity analysis with real data, and further demonstrate their utility by training 3D object detection models solely on synthetic data and testing them on real, unseen data. The high similarity scores and improved detection performance, compared to the models trained on real data, indicate that the UrbanTwin datasets effectively enhance existing benchmark datasets by increasing sample size and scene diversity. In addition, the digital twins can be adapted to test custom scenarios by modifying the design and dynamics of the simulations. To our knowledge, these are the first digitally synthesized datasets that can replace in-domain real-world datasets for lidar perception tasks. UrbanTwin datasets are publicly available at https://dataverse.harvard.edu/dataverse/ucf-ut.
☆ D-HUMOR: Dark Humor Understanding via Multimodal Open-ended Reasoning IEEE
Dark humor in online memes poses unique challenges due to its reliance on implicit, sensitive, and culturally contextual cues. To address the lack of resources and methods for detecting dark humor in multimodal content, we introduce a novel dataset of 4,379 Reddit memes annotated for dark humor, target category (gender, mental health, violence, race, disability, and other), and a three-level intensity rating (mild, moderate, severe). Building on this resource, we propose a reasoning-augmented framework that first generates structured explanations for each meme using a Large Vision-Language Model (VLM). Through a Role-Reversal Self-Loop, VLM adopts the author's perspective to iteratively refine its explanations, ensuring completeness and alignment. We then extract textual features from both the OCR transcript and the self-refined reasoning via a text encoder, while visual features are obtained using a vision transformer. A Tri-stream Cross-Reasoning Network (TCRNet) fuses these three streams, text, image, and reasoning, via pairwise attention mechanisms, producing a unified representation for classification. Experimental results demonstrate that our approach outperforms strong baselines across three tasks: dark humor detection, target identification, and intensity prediction. The dataset, annotations, and code are released to facilitate further research in multimodal humor understanding and content moderation. Code and Dataset are available at: https://github.com/Sai-Kartheek-Reddy/D-Humor-Dark-Humor-Understanding-via-Multimodal-Open-ended-Reasoning
comment: Accepted at IEEE International Conference on Data Mining (ICDM) 2025
☆ Raw2Event: Converting Raw Frame Camera into Event Camera IEEE
Event cameras offer unique advantages such as high temporal resolution, low latency, and high dynamic range, making them more and more popular for vision tasks under challenging light conditions. However, their high cost, limited resolution, and lack of features such as autofocus hinder their broad adoption, particularly for early-stage development and prototyping. In this work, we present Raw2Event, a complete hardware-software system that enables real-time event generation from low-cost raw frame-based cameras. By leveraging direct access to raw Bayer data and bypassing traditional image signal processors (ISP), our system is able to utilize the full potential of camera hardware, delivering higher dynamic range, higher resolution, and more faithful output than RGB-based frame-to-event converters. Built upon the DVS-Voltmeter model, Raw2Event features a configurable simulation framework optimized for deployment on embedded platforms. We further design a data acquisition pipeline that supports synchronized recording of raw, RGB, and event streams, facilitating downstream evaluation and dataset creation. Experimental results show that Raw2Event can generate event streams closely resembling those from real event cameras, while benefiting from higher resolution and autofocus capabilities. The system also supports user-intuitive parameter tuning, enabling flexible adaptation to various application requirements. Finally, we deploy the system on a Raspberry Pi for real-time operation, providing a scalable and cost-effective solution for event-based vision research and early-stage system development. The codes are available online: https://anonymous.4open.science/r/raw2event-BFF2/README.md.
comment: Submitted to IEEE Transactions on Robotics (Special Section on Event-based Vision for Robotics), under review. This version is submitted for peer review and may be updated upon acceptance
☆ Pothole Detection and Recognition based on Transfer Learning
With the rapid development of computer vision and machine learning, automated methods for pothole detection and recognition based on image and video data have received significant attention. It is of great significance for social development to conduct an in-depth analysis of road images through feature extraction, thereby achieving automatic identification of the pothole condition in new images. Consequently, this is the main issue addressed in this study. Based on preprocessing techniques such as standardization, normalization, and data augmentation applied to the collected raw dataset, we continuously improved the network model based on experimental results. Ultimately, we constructed a deep learning feature extraction network ResNet50-EfficientNet-RegNet model based on transfer learning. This model exhibits high classification accuracy and computational efficiency. In terms of model evaluation, this study employed a comparative evaluation approach by comparing the performance of the proposed transfer learning model with other models, including Random Forest, MLP, SVM, and LightGBM. The comparison analysis was conducted based on metrics such as Accuracy, Recall, Precision, F1-score, and FPS, to assess the classification performance of the transfer learning model proposed in this paper. The results demonstrate that our model exhibits high performance in terms of recognition speed and accuracy, surpassing the performance of other models. Through careful parameter selection and model optimization, our transfer learning model achieved a classification accuracy of 97.78% (88/90) on the initial set of 90 test samples and 98.89% (890/900) on the expanded test set.
☆ Event Spectroscopy: Event-based Multispectral and Depth Sensing using Structured Light IEEE
Uncrewed aerial vehicles (UAVs) are increasingly deployed in forest environments for tasks such as environmental monitoring and search and rescue, which require safe navigation through dense foliage and precise data collection. Traditional sensing approaches, including passive multispectral and RGB imaging, suffer from latency, poor depth resolution, and strong dependence on ambient light - especially under forest canopies. In this work, we present a novel event spectroscopy system that simultaneously enables high-resolution, low-latency depth reconstruction and multispectral imaging using a single sensor. Depth is reconstructed using structured light, and by modulating the wavelength of the projected structured light, our system captures spectral information in controlled bands between 650 nm and 850 nm. We demonstrate up to $60\%$ improvement in RMSE over commercial depth sensors and validate the spectral accuracy against a reference spectrometer and commercial multispectral cameras, demonstrating comparable performance. A portable version limited to RGB (3 wavelengths) is used to collect real-world depth and spectral data from a Masoala Rainforest. We demonstrate the use of this prototype for color image reconstruction and material differentiation between leaves and branches using spectral and depth data. Our results show that adding depth (available at no extra effort with our setup) to material differentiation improves the accuracy by over $30\%$ compared to color-only method. Our system, tested in both lab and real-world rainforest environments, shows strong performance in depth estimation, RGB reconstruction, and material differentiation - paving the way for lightweight, integrated, and robust UAV perception and data collection in complex natural environments.
comment: This work has been submitted to the IEEE for possible publication
☆ Co-Seg: Mutual Prompt-Guided Collaborative Learning for Tissue and Nuclei Segmentation MICCAI 2025
Histopathology image analysis is critical yet challenged by the demand of segmenting tissue regions and nuclei instances for tumor microenvironment and cellular morphology analysis. Existing studies focused on tissue semantic segmentation or nuclei instance segmentation separately, but ignored the inherent relationship between these two tasks, resulting in insufficient histopathology understanding. To address this issue, we propose a Co-Seg framework for collaborative tissue and nuclei segmentation. Specifically, we introduce a novel co-segmentation paradigm, allowing tissue and nuclei segmentation tasks to mutually enhance each other. To this end, we first devise a region-aware prompt encoder (RP-Encoder) to provide high-quality semantic and instance region prompts as prior constraints. Moreover, we design a mutual prompt mask decoder (MP-Decoder) that leverages cross-guidance to strengthen the contextual consistency of both tasks, collaboratively computing semantic and instance segmentation masks. Extensive experiments on the PUMA dataset demonstrate that the proposed Co-Seg surpasses state-of-the-arts in the semantic, instance and panoptic segmentation of tumor tissues and nuclei instances. The source code is available at https://github.com/xq141839/Co-Seg.
comment: Accepted to MICCAI 2025
☆ Zero-shot 3D-Aware Trajectory-Guided image-to-video generation via Test-Time Training
Trajectory-Guided image-to-video (I2V) generation aims to synthesize videos that adhere to user-specified motion instructions. Existing methods typically rely on computationally expensive fine-tuning on scarce annotated datasets. Although some zero-shot methods attempt to trajectory control in the latent space, they may yield unrealistic motion by neglecting 3D perspective and creating a misalignment between the manipulated latents and the network's noise predictions. To address these challenges, we introduce Zo3T, a novel zero-shot test-time-training framework for trajectory-guided generation with three core innovations: First, we incorporate a 3D-Aware Kinematic Projection, leveraging inferring scene depth to derive perspective-correct affine transformations for target regions. Second, we introduce Trajectory-Guided Test-Time LoRA, a mechanism that dynamically injects and optimizes ephemeral LoRA adapters into the denoising network alongside the latent state. Driven by a regional feature consistency loss, this co-adaptation effectively enforces motion constraints while allowing the pre-trained model to locally adapt its internal representations to the manipulated latent, thereby ensuring generative fidelity and on-manifold adherence. Finally, we develop Guidance Field Rectification, which refines the denoising evolutionary path by optimizing the conditional guidance field through a one-step lookahead strategy, ensuring efficient generative progression towards the target trajectory. Zo3T significantly enhances 3D realism and motion accuracy in trajectory-controlled I2V generation, demonstrating superior performance over existing training-based and zero-shot approaches.
☆ MRI-Based Brain Tumor Detection through an Explainable EfficientNetV2 and MLP-Mixer-Attention Architecture
Brain tumors are serious health problems that require early diagnosis due to their high mortality rates. Diagnosing tumors by examining Magnetic Resonance Imaging (MRI) images is a process that requires expertise and is prone to error. Therefore, the need for automated diagnosis systems is increasing day by day. In this context, a robust and explainable Deep Learning (DL) model for the classification of brain tumors is proposed. In this study, a publicly available Figshare dataset containing 3,064 T1-weighted contrast-enhanced brain MRI images of three tumor types was used. First, the classification performance of nine well-known CNN architectures was evaluated to determine the most effective backbone. Among these, EfficientNetV2 demonstrated the best performance and was selected as the backbone for further development. Subsequently, an attention-based MLP-Mixer architecture was integrated into EfficientNetV2 to enhance its classification capability. The performance of the final model was comprehensively compared with basic CNNs and the methods in the literature. Additionally, Grad-CAM visualization was used to interpret and validate the decision-making process of the proposed model. The proposed model's performance was evaluated using the five-fold cross-validation method. The proposed model demonstrated superior performance with 99.50% accuracy, 99.47% precision, 99.52% recall and 99.49% F1 score. The results obtained show that the model outperforms the studies in the literature. Moreover, Grad-CAM visualizations demonstrate that the model effectively focuses on relevant regions of MRI images, thus improving interpretability and clinical reliability. A robust deep learning model for clinical decision support systems has been obtained by combining EfficientNetV2 and attention-based MLP-Mixer, providing high accuracy and interpretability in brain tumor classification.
☆ Cortex-Synth: Differentiable Topology-Aware 3D Skeleton Synthesis with Hierarchical Graph Attention
We present Cortex Synth, a novel end-to-end differentiable framework for joint 3D skeleton geometry and topology synthesis from single 2D images. Our architecture introduces three key innovations: (1) A hierarchical graph attention mechanism with multi-scale skeletal refinement, (2) Differentiable spectral topology optimization via Laplacian eigen decomposition, and (3) Adversarial geometric consistency training for pose structure alignment. The framework integrates four synergistic modules: a pseudo 3D point cloud generator, an enhanced PointNet encoder, a skeleton coordinate decoder, and a novel Differentiable Graph Construction Network (DGCN). Our experiments demonstrate state-of-the-art results with 18.7 percent improvement in MPJPE and 27.3 percent in Graph Edit Distance on ShapeNet, while reducing topological errors by 42 percent compared to previous approaches. The model's end-to-end differentiability enables applications in robotic manipulation, medical imaging, and automated character rigging.
comment: 8 pages, 4 figures
☆ STAGE: Segmentation-oriented Industrial Anomaly Synthesis via Graded Diffusion with Explicit Mask Alignment
Segmentation-oriented Industrial Anomaly Synthesis (SIAS) plays a pivotal role in enhancing the performance of downstream anomaly segmentation, as it provides an effective means of expanding abnormal data. However, existing SIAS methods face several critical limitations: (i) the synthesized anomalies often lack intricate texture details and fail to align precisely with the surrounding background, and (ii) they struggle to generate fine-grained, pixel-level anomalies. To address these challenges, we propose Segmentation-oriented Anomaly synthesis via Graded diffusion with Explicit mask alignment, termed STAGE. STAGE introduces a novel anomaly inference strategy that incorporates clean background information as a prior to guide the denoising distribution, enabling the model to more effectively distinguish and highlight abnormal foregrounds. Furthermore, it employs a graded diffusion framework with an anomaly-only branch to explicitly record local anomalies during both the forward and reverse processes, ensuring that subtle anomalies are not overlooked. Finally, STAGE incorporates the explicit mask alignment (EMA) strategy to progressively align the synthesized anomalies with the background, resulting in context-consistent and structurally coherent generations. Extensive experiments on the MVTec and BTAD datasets demonstrate that STAGE achieves state-of-the-art performance in SIAS, which in turn enhances downstream anomaly segmentation.
☆ BioLite U-Net: Edge-Deployable Semantic Segmentation for In Situ Bioprinting Monitoring ICRA 2026
Bioprinting is a rapidly advancing field that offers a transformative approach to fabricating tissue and organ models through the precise deposition of cell-laden bioinks. Ensuring the fidelity and consistency of printed structures in real-time remains a core challenge, particularly under constraints imposed by limited imaging data and resource-constrained embedded hardware. Semantic segmentation of the extrusion process, differentiating between nozzle, extruded bioink, and surrounding background, enables in situ monitoring critical to maintaining print quality and biological viability. In this work, we introduce a lightweight semantic segmentation framework tailored for real-time bioprinting applications. We present a novel, manually annotated dataset comprising 787 RGB images captured during the bioprinting process, labeled across three classes: nozzle, bioink, and background. To achieve fast and efficient inference suitable for integration with bioprinting systems, we propose a BioLite U-Net architecture that leverages depthwise separable convolutions to drastically reduce computational load without compromising accuracy. Our model is benchmarked against MobileNetV2 and MobileNetV3-based segmentation baselines using mean Intersection over Union (mIoU), Dice score, and pixel accuracy. All models were evaluated on a Raspberry Pi 4B to assess real-world feasibility. The proposed BioLite U-Net achieves an mIoU of 92.85% and a Dice score of 96.17%, while being over 1300x smaller than MobileNetV2-DeepLabV3+. On-device inference takes 335 ms per frame, demonstrating near real-time capability. Compared to MobileNet baselines, BioLite U-Net offers a superior tradeoff between segmentation accuracy, efficiency, and deployability, making it highly suitable for intelligent, closed-loop bioprinting systems.
comment: 8 pages, 5 figures, conference-style submission (ICRA 2026). Includes dataset description, BioLite U-Net architecture, benchmark results on edge device (Raspberry Pi 4B)
☆ VIM-GS: Visual-Inertial Monocular Gaussian Splatting via Object-level Guidance in Large Scenes
VIM-GS is a Gaussian Splatting (GS) framework using monocular images for novel-view synthesis (NVS) in large scenes. GS typically requires accurate depth to initiate Gaussian ellipsoids using RGB-D/stereo cameras. Their limited depth sensing range makes it difficult for GS to work in large scenes. Monocular images, however, lack depth to guide the learning and lead to inferior NVS results. Although large foundation models (LFMs) for monocular depth estimation are available, they suffer from cross-frame inconsistency, inaccuracy for distant scenes, and ambiguity in deceptive texture cues. This paper aims to generate dense, accurate depth images from monocular RGB inputs for high-definite GS rendering. The key idea is to leverage the accurate but sparse depth from visual-inertial Structure-from-Motion (SfM) to refine the dense but coarse depth from LFMs. To bridge the sparse input and dense output, we propose an object-segmented depth propagation algorithm that renders the depth of pixels of structured objects. Then we develop a dynamic depth refinement module to handle the crippled SfM depth of dynamic objects and refine the coarse LFM depth. Experiments using public and customized datasets demonstrate the superior rendering quality of VIM-GS in large scenes.
☆ Online Clustering of Seafloor Imagery for Interpretation during Long-Term AUV Operations
As long-endurance and seafloor-resident AUVs become more capable, there is an increasing need for extended, real-time interpretation of seafloor imagery to enable adaptive missions and optimise communication efficiency. Although offline image analysis methods are well established, they rely on access to complete datasets and human-labelled examples to manage the strong influence of environmental and operational conditions on seafloor image appearance-requirements that cannot be met in real-time settings. To address this, we introduce an online clustering framework (OCF) capable of interpreting seafloor imagery without supervision, which is designed to operate in real-time on continuous data streams in a scalable, adaptive, and self-consistent manner. The method enables the efficient review and consolidation of common patterns across the entire data history in constant time by identifying and maintaining a set of representative samples that capture the evolving feature distribution, supporting dynamic cluster merging and splitting without reprocessing the full image history. We evaluate the framework on three diverse seafloor image datasets, analysing the impact of different representative sampling strategies on both clustering accuracy and computational cost. The OCF achieves the highest average F1 score of 0.68 across the three datasets among all comparative online clustering approaches, with a standard deviation of 3% across three distinct survey trajectories, demonstrating its superior clustering capability and robustness to trajectory variation. In addition, it maintains consistently lower and bounded computational time as the data volume increases. These properties are beneficial for generating survey data summaries and supporting informative path planning in long-term, persistent autonomous marine exploration.
☆ Investigating Location-Regularised Self-Supervised Feature Learning for Seafloor Visual Imagery
High-throughput interpretation of robotically gathered seafloor visual imagery can increase the efficiency of marine monitoring and exploration. Although recent research has suggested that location metadata can enhance self-supervised feature learning (SSL), its benefits across different SSL strategies, models and seafloor image datasets are underexplored. This study evaluates the impact of location-based regularisation on six state-of-the-art SSL frameworks, which include Convolutional Neural Network (CNN) and Vision Transformer (ViT) models with varying latent-space dimensionality. Evaluation across three diverse seafloor image datasets finds that location-regularisation consistently improves downstream classification performance over standard SSL, with average F1-score gains of $4.9 \pm 4.0%$ for CNNs and $6.3 \pm 8.9%$ for ViTs, respectively. While CNNs pretrained on generic datasets benefit from high-dimensional latent representations, dataset-optimised SSL achieves similar performance across the high (512) and low (128) dimensional latent representations. Location-regularised SSL improves CNN performance over pre-trained models by $2.7 \pm 2.7%$ and $10.1 \pm 9.4%$ for high and low-dimensional latent representations, respectively. For ViTs, high-dimensionality benefits both pre-trained and dataset-optimised SSL. Although location-regularisation improves SSL performance compared to standard SSL methods, pre-trained ViTs show strong generalisation, matching the best-performing location-regularised SSL with F1-scores of $0.795 \pm 0.075$ and $0.795 \pm 0.077$, respectively. The findings highlight the value of location metadata for SSL regularisation, particularly when using low-dimensional latent representations, and demonstrate strong generalisation of high-dimensional ViTs for seafloor image analysis.
☆ Improved Classification of Nitrogen Stress Severity in Plants Under Combined Stress Conditions Using Spatio-Temporal Deep Learning Framework
Plants in their natural habitats endure an array of interacting stresses, both biotic and abiotic, that rarely occur in isolation. Nutrient stress-particularly nitrogen deficiency-becomes even more critical when compounded with drought and weed competition, making it increasingly difficult to distinguish and address its effects. Early detection of nitrogen stress is therefore crucial for protecting plant health and implementing effective management strategies. This study proposes a novel deep learning framework to accurately classify nitrogen stress severity in a combined stress environment. Our model uses a unique blend of four imaging modalities-RGB, multispectral, and two infrared wavelengths-to capture a wide range of physiological plant responses from canopy images. These images, provided as time-series data, document plant health across three levels of nitrogen availability (low, medium, and high) under varying water stress and weed pressures. The core of our approach is a spatio-temporal deep learning pipeline that merges a Convolutional Neural Network (CNN) for extracting spatial features from images with a Long Short-Term Memory (LSTM) network to capture temporal dependencies. We also devised and evaluated a spatial-only CNN pipeline for comparison. Our CNN-LSTM pipeline achieved an impressive accuracy of 98%, impressively surpassing the spatial-only model's 80.45% and other previously reported machine learning method's 76%. These results bring actionable insights based on the power of our CNN-LSTM approach in effectively capturing the subtle and complex interactions between nitrogen deficiency, water stress, and weed pressure. This robust platform offers a promising tool for the timely and proactive identification of nitrogen stress severity, enabling better crop management and improved plant health.
comment: 13 pages, 8 figures, 7 Tables
☆ MM-DINOv2: Adapting Foundation Models for Multi-Modal Medical Image Analysis
Vision foundation models like DINOv2 demonstrate remarkable potential in medical imaging despite their origin in natural image domains. However, their design inherently works best for uni-modal image analysis, limiting their effectiveness for multi-modal imaging tasks that are common in many medical fields, such as neurology and oncology. While supervised models perform well in this setting, they fail to leverage unlabeled datasets and struggle with missing modalities, a frequent challenge in clinical settings. To bridge these gaps, we introduce MM-DINOv2, a novel and efficient framework that adapts the pre-trained vision foundation model DINOv2 for multi-modal medical imaging. Our approach incorporates multi-modal patch embeddings, enabling vision foundation models to effectively process multi-modal imaging data. To address missing modalities, we employ full-modality masking, which encourages the model to learn robust cross-modality relationships. Furthermore, we leverage semi-supervised learning to harness large unlabeled datasets, enhancing both the accuracy and reliability of medical predictions. Applied to glioma subtype classification from multi-sequence brain MRI, our method achieves a Matthews Correlation Coefficient (MCC) of 0.6 on an external test set, surpassing state-of-the-art supervised approaches by +11.1%. Our work establishes a scalable and robust solution for multi-modal medical imaging tasks, leveraging powerful vision foundation models pre-trained on natural images while addressing real-world clinical challenges such as missing data and limited annotations.
☆ Towards In-Air Ultrasonic QR Codes: Deep Learning for Classification of Passive Reflector Constellations IEEE
In environments where visual sensors falter, in-air sonar provides a reliable alternative for autonomous systems. While previous research has successfully classified individual acoustic landmarks, this paper takes a step towards increasing information capacity by introducing reflector constellations as encoded tags. Our primary contribution is a multi-label Convolutional Neural Network (CNN) designed to simultaneously identify multiple, closely spaced reflectors from a single in-air 3D sonar measurement. Our initial findings on a small dataset confirm the feasibility of this approach, validating the ability to decode these complex acoustic patterns. Secondly, we investigated using adaptive beamforming with null-steering to isolate individual reflectors for single-label classification. Finally, we discuss the experimental results and limitations, offering key insights and future directions for developing acoustic landmark systems with significantly increased information entropy and their accurate and robust detection and classification.
comment: Accepted for publication at IEEE IUS 2025
☆ From Skin to Skeleton: Towards Biomechanically Accurate 3D Digital Humans
Great progress has been made in estimating 3D human pose and shape from images and video by training neural networks to directly regress the parameters of parametric human models like SMPL. However, existing body models have simplified kinematic structures that do not correspond to the true joint locations and articulations in the human skeletal system, limiting their potential use in biomechanics. On the other hand, methods for estimating biomechanically accurate skeletal motion typically rely on complex motion capture systems and expensive optimization methods. What is needed is a parametric 3D human model with a biomechanically accurate skeletal structure that can be easily posed. To that end, we develop SKEL, which re-rigs the SMPL body model with a biomechanics skeleton. To enable this, we need training data of skeletons inside SMPL meshes in diverse poses. We build such a dataset by optimizing biomechanically accurate skeletons inside SMPL meshes from AMASS sequences. We then learn a regressor from SMPL mesh vertices to the optimized joint locations and bone rotations. Finally, we re-parametrize the SMPL mesh with the new kinematic parameters. The resulting SKEL model is animatable like SMPL but with fewer, and biomechanically-realistic, degrees of freedom. We show that SKEL has more biomechanically accurate joint locations than SMPL, and the bones fit inside the body surface better than previous methods. By fitting SKEL to SMPL meshes we are able to "upgrade" existing human pose and shape datasets to include biomechanical parameters. SKEL provides a new tool to enable biomechanics in the wild, while also providing vision and graphics researchers with a better constrained and more realistic model of human articulation. The model, code, and data are available for research at https://skel.is.tue.mpg.de..
☆ Contrastive Anatomy-Contrast Disentanglement: A Domain-General MRI Harmonization Method
Magnetic resonance imaging (MRI) is an invaluable tool for clinical and research applications. Yet, variations in scanners and acquisition parameters cause inconsistencies in image contrast, hindering data comparability and reproducibility across datasets and clinical studies. Existing scanner harmonization methods, designed to address this challenge, face limitations, such as requiring traveling subjects or struggling to generalize to unseen domains. We propose a novel approach using a conditioned diffusion autoencoder with a contrastive loss and domain-agnostic contrast augmentation to harmonize MR images across scanners while preserving subject-specific anatomy. Our method enables brain MRI synthesis from a single reference image. It outperforms baseline techniques, achieving a +7% PSNR improvement on a traveling subjects dataset and +18% improvement on age regression in unseen. Our model provides robust, effective harmonization of brain MRIs to target scanners without requiring fine-tuning. This advancement promises to enhance comparability, reproducibility, and generalizability in multi-site and longitudinal clinical studies, ultimately contributing to improved healthcare outcomes.
☆ Hybrid Swin Attention Networks for Simultaneously Low-Dose PET and CT Denoising
Low-dose computed tomography (LDCT) and positron emission tomography (PET) have emerged as safer alternatives to conventional imaging modalities by significantly reducing radiation exposure. However, this reduction often results in increased noise and artifacts, which can compromise diagnostic accuracy. Consequently, denoising for LDCT/PET has become a vital area of research aimed at enhancing image quality while maintaining radiation safety. In this study, we introduce a novel Hybrid Swin Attention Network (HSANet), which incorporates Efficient Global Attention (EGA) modules and a hybrid upsampling module. The EGA modules enhance both spatial and channel-wise interaction, improving the network's capacity to capture relevant features, while the hybrid upsampling module mitigates the risk of overfitting to noise. We validate the proposed approach using a publicly available LDCT/PET dataset. Experimental results demonstrate that HSANet achieves superior denoising performance compared to existing methods, while maintaining a lightweight model size suitable for deployment on GPUs with standard memory configurations. This makes our approach highly practical for real-world clinical applications.
☆ Detection of trade in products derived from threatened species using machine learning and a smartphone
Unsustainable trade in wildlife is a major threat to biodiversity and is now increasingly prevalent in digital marketplaces and social media. With the sheer volume of digital content, the need for automated methods to detect wildlife trade listings is growing. These methods are especially needed for the automatic identification of wildlife products, such as ivory. We developed machine learning-based object recognition models that can identify wildlife products within images and highlight them. The data consists of images of elephant, pangolin, and tiger products that were identified as being sold illegally or that were confiscated by authorities. Specifically, the wildlife products included elephant ivory and skins, pangolin scales, and claws (raw and crafted), and tiger skins and bones. We investigated various combinations of training strategies and two loss functions to identify the best model to use in the automatic detection of these wildlife products. Models were trained for each species while also developing a single model to identify products from all three species. The best model showed an overall accuracy of 84.2% with accuracies of 71.1%, 90.2% and 93.5% in detecting products derived from elephants, pangolins, and tigers, respectively. We further demonstrate that the machine learning model can be made easily available to stakeholders, such as government authorities and law enforcement agencies, by developing a smartphone-based application that had an overall accuracy of 91.3%. The application can be used in real time to click images and help identify potentially prohibited products of target species. Thus, the proposed method is not only applicable for monitoring trade on the web but can also be used e.g. in physical markets for monitoring wildlife trade.
☆ CausNVS: Autoregressive Multi-view Diffusion for Flexible 3D Novel View Synthesis
Multi-view diffusion models have shown promise in 3D novel view synthesis, but most existing methods adopt a non-autoregressive formulation. This limits their applicability in world modeling, as they only support a fixed number of views and suffer from slow inference due to denoising all frames simultaneously. To address these limitations, we propose CausNVS, a multi-view diffusion model in an autoregressive setting, which supports arbitrary input-output view configurations and generates views sequentially. We train CausNVS with causal masking and per-frame noise, using pairwise-relative camera pose encodings (CaPE) for precise camera control. At inference time, we combine a spatially-aware sliding-window with key-value caching and noise conditioning augmentation to mitigate drift. Our experiments demonstrate that CausNVS supports a broad range of camera trajectories, enables flexible autoregressive novel view synthesis, and achieves consistently strong visual quality across diverse settings. Project page: https://kxhit.github.io/CausNVS.html.
☆ Approximating Condorcet Ordering for Vector-valued Mathematical Morphology
Mathematical morphology provides a nonlinear framework for image and spatial data processing and analysis. Although there have been many successful applications of mathematical morphology to vector-valued images, such as color and hyperspectral images, there is still no consensus on the most suitable vector ordering for constructing morphological operators. This paper addresses this issue by examining a reduced ordering approximating the Condorcet ranking derived from a set of vector orderings. Inspired by voting problems, the Condorcet ordering ranks elements from most to least voted, with voters representing different orderings. In this paper, we develop a machine learning approach that learns a reduced ordering that approximates the Condorcet ordering. Preliminary computational experiments confirm the effectiveness of learning the reduced mapping to define vector-valued morphological operators for color images.
comment: Submitted to the 4th International Conference on Discrete Geometry and Mathematical Morphology (DGMM 2025)
☆ Evolving from Unknown to Known: Retentive Angular Representation Learning for Incremental Open Set Recognition
Existing open set recognition (OSR) methods are typically designed for static scenarios, where models aim to classify known classes and identify unknown ones within fixed scopes. This deviates from the expectation that the model should incrementally identify newly emerging unknown classes from continuous data streams and acquire corresponding knowledge. In such evolving scenarios, the discriminability of OSR decision boundaries is hard to maintain due to restricted access to former training data, causing severe inter-class confusion. To solve this problem, we propose retentive angular representation learning (RARL) for incremental open set recognition (IOSR). In RARL, unknown representations are encouraged to align around inactive prototypes within an angular space constructed under the equiangular tight frame, thereby mitigating excessive representation drift during knowledge updates. Specifically, we adopt a virtual-intrinsic interactive (VII) training strategy, which compacts known representations by enforcing clear inter-class margins through boundary-proximal virtual classes. Furthermore, a stratified rectification strategy is designed to refine decision boundaries, mitigating representation bias and feature space distortion caused by imbalances between old/new and positive/negative class samples. We conduct thorough evaluations on CIFAR100 and TinyImageNet datasets and establish a new benchmark for IOSR. Experimental results across various task setups demonstrate that the proposed method achieves state-of-the-art performance.
comment: 10 pages, 6 figures, 2025 IEEE/CVF International Conference on Computer Vision Workshops
☆ Back To The Drawing Board: Rethinking Scene-Level Sketch-Based Image Retrieval BMVC2025
The goal of Scene-level Sketch-Based Image Retrieval is to retrieve natural images matching the overall semantics and spatial layout of a free-hand sketch. Unlike prior work focused on architectural augmentations of retrieval models, we emphasize the inherent ambiguity and noise present in real-world sketches. This insight motivates a training objective that is explicitly designed to be robust to sketch variability. We show that with an appropriate combination of pre-training, encoder architecture, and loss formulation, it is possible to achieve state-of-the-art performance without the introduction of additional complexity. Extensive experiments on a challenging FS-COCO and widely-used SketchyCOCO datasets confirm the effectiveness of our approach and underline the critical role of training design in cross-modal retrieval tasks, as well as the need to improve the evaluation scenarios of scene-level SBIR.
comment: Accepted to BMVC2025
☆ Impact of Labeling Inaccuracy and Image Noise on Tooth Segmentation in Panoramic Radiographs using Federated, Centralized and Local Learning
Objectives: Federated learning (FL) may mitigate privacy constraints, heterogeneous data quality, and inconsistent labeling in dental diagnostic AI. We compared FL with centralized (CL) and local learning (LL) for tooth segmentation in panoramic radiographs across multiple data corruption scenarios. Methods: An Attention U-Net was trained on 2066 radiographs from six institutions across four settings: baseline (unaltered data); label manipulation (dilated/missing annotations); image-quality manipulation (additive Gaussian noise); and exclusion of a faulty client with corrupted data. FL was implemented via the Flower AI framework. Per-client training- and validation-loss trajectories were monitored for anomaly detection and a set of metrics (Dice, IoU, HD, HD95 and ASSD) was evaluated on a hold-out test set. From these metrics significance results were reported through Wilcoxon signed-rank test. CL and LL served as comparators. Results: Baseline: FL achieved a median Dice of 0.94889 (ASSD: 1.33229), slightly better than CL at 0.94706 (ASSD: 1.37074) and LL at 0.93557-0.94026 (ASSD: 1.51910-1.69777). Label manipulation: FL maintained the best median Dice score at 0.94884 (ASSD: 1.46487) versus CL's 0.94183 (ASSD: 1.75738) and LL's 0.93003-0.94026 (ASSD: 1.51910-2.11462). Image noise: FL led with Dice at 0.94853 (ASSD: 1.31088); CL scored 0.94787 (ASSD: 1.36131); LL ranged from 0.93179-0.94026 (ASSD: 1.51910-1.77350). Faulty-client exclusion: FL reached Dice at 0.94790 (ASSD: 1.33113) better than CL's 0.94550 (ASSD: 1.39318). Loss-curve monitoring reliably flagged the corrupted site. Conclusions: FL matches or exceeds CL and outperforms LL across corruption scenarios while preserving privacy. Per-client loss trajectories provide an effective anomaly-detection mechanism and support FL as a practical, privacy-preserving approach for scalable clinical AI deployment.
☆ Tackling Device Data Distribution Real-time Shift via Prototype-based Parameter Editing
The on-device real-time data distribution shift on devices challenges the generalization of lightweight on-device models. This critical issue is often overlooked in current research, which predominantly relies on data-intensive and computationally expensive fine-tuning approaches. To tackle this, we introduce Persona, a novel personalized method using a prototype-based, backpropagation-free parameter editing framework to enhance model generalization without post-deployment retraining. Persona employs a neural adapter in the cloud to generate a parameter editing matrix based on real-time device data. This matrix adeptly adapts on-device models to the prevailing data distributions, efficiently clustering them into prototype models. The prototypes are dynamically refined via the parameter editing matrix, facilitating efficient evolution. Furthermore, the integration of cross-layer knowledge transfer ensures consistent and context-aware multi-layer parameter changes and prototype assignment. Extensive experiments on vision task and recommendation task on multiple datasets confirm Persona's effectiveness and generality.
comment: Published on MM'25: Proceedings of the 33rd ACM International Conference on Multimedia
☆ Signal-Based Malware Classification Using 1D CNNs
Malware classification is a contemporary and ongoing challenge in cyber-security: modern obfuscation techniques are able to evade traditional static analysis, while dynamic analysis is too resource intensive to be deployed at a large scale. One prominent line of research addresses these limitations by converting malware binaries into 2D images by heuristically reshaping them into a 2D grid before resizing using Lanczos resampling. These images can then be classified based on their textural information using computer vision approaches. While this approach can detect obfuscated malware more effectively than static analysis, the process of converting files into 2D images results in significant information loss due to both quantisation noise, caused by rounding to integer pixel values, and the introduction of 2D dependencies which do not exist in the original data. This loss of signal limits the classification performance of the downstream model. This work addresses these weaknesses by instead resizing the files into 1D signals which avoids the need for heuristic reshaping, and additionally these signals do not suffer from quantisation noise due to being stored in a floating-point format. It is shown that existing 2D CNN architectures can be readily adapted to classify these 1D signals for improved performance. Furthermore, a bespoke 1D convolutional neural network, based on the ResNet architecture and squeeze-and-excitation layers, was developed to classify these signals and evaluated on the MalNet dataset. It was found to achieve state-of-the-art performance on binary, type, and family level classification with F1 scores of 0.874, 0.503, and 0.507, respectively, paving the way for future models to operate on the proposed signal modality.
comment: Accepted for publication in Springer Cybersecurity (2025)
☆ Benchmarking EfficientTAM on FMO datasets
Fast and tiny object tracking remains a challenge in computer vision and in this paper we first introduce a JSON metadata file associated with four open source datasets of Fast Moving Objects (FMOs) image sequences. In addition, we extend the description of the FMOs datasets with additional ground truth information in JSON format (called FMOX) with object size information. Finally we use our FMOX file to test a recently proposed foundational model for tracking (called EfficientTAM) showing that its performance compares well with the pipelines originally taylored for these FMO datasets. Our comparison of these state-of-the-art techniques on FMOX is provided with Trajectory Intersection of Union (TIoU) scores. The code and JSON is shared open source allowing FMOX to be accessible and usable for other machine learning pipelines aiming to process FMO datasets.
☆ On the Reproducibility of "FairCLIP: Harnessing Fairness in Vision-Language Learning''
We investigated the reproducibility of FairCLIP, proposed by Luo et al. (2024), for improving the group fairness of CLIP (Radford et al., 2021) by minimizing image-text similarity score disparities across sensitive groups using the Sinkhorn distance. The experimental setup of Luo et al. (2024) was reproduced to primarily investigate the research findings for FairCLIP. The model description by Luo et al. (2024) was found to differ from the original implementation. Therefore, a new implementation, A-FairCLIP, is introduced to examine specific design choices. Furthermore, FairCLIP+ is proposed to extend the FairCLIP objective to include multiple attributes. Additionally, the impact of the distance minimization on FairCLIP's fairness and performance was explored. In alignment with the original authors, CLIP was found to be biased towards certain demographics when applied to zero-shot glaucoma classification using medical scans and clinical notes from the Harvard-FairVLMed dataset. However, the experimental results on two datasets do not support their claim that FairCLIP improves the performance and fairness of CLIP. Although the regularization objective reduces Sinkhorn distances, both the official implementation and the aligned implementation, A-FairCLIP, were not found to improve performance nor fairness in zero-shot glaucoma classification.
☆ Predicting Brain Tumor Response to Therapy using a Hybrid Deep Learning and Radiomics Approach MICCAI 2025
Accurate evaluation of the response of glioblastoma to therapy is crucial for clinical decision-making and patient management. The Response Assessment in Neuro-Oncology (RANO) criteria provide a standardized framework to assess patients' clinical response, but their application can be complex and subject to observer variability. This paper presents an automated method for classifying the intervention response from longitudinal MRI scans, developed to predict tumor response during therapy as part of the BraTS 2025 challenge. We propose a novel hybrid framework that combines deep learning derived feature extraction and an extensive set of radiomics and clinically chosen features. Our approach utilizes a fine-tuned ResNet-18 model to extract features from 2D regions of interest across four MRI modalities. These deep features are then fused with a rich set of more than 4800 radiomic and clinically driven features, including 3D radiomics of tumor growth and shrinkage masks, volumetric changes relative to the nadir, and tumor centroid shift. Using the fused feature set, a CatBoost classifier achieves a mean ROC AUC of 0.81 and a Macro F1 score of 0.50 in the 4-class response prediction task (Complete Response, Partial Response, Stable Disease, Progressive Disease). Our results highlight that synergizing learned image representations with domain-targeted radiomic features provides a robust and effective solution for automated treatment response assessment in neuro-oncology.
comment: Submitted to the BraTS-Lighthouse 2025 Challenge (MICCAI 2025)
☆ TIDE: Achieving Balanced Subject-Driven Image Generation via Target-Instructed Diffusion Enhancement
Subject-driven image generation (SDIG) aims to manipulate specific subjects within images while adhering to textual instructions, a task crucial for advancing text-to-image diffusion models. SDIG requires reconciling the tension between maintaining subject identity and complying with dynamic edit instructions, a challenge inadequately addressed by existing methods. In this paper, we introduce the Target-Instructed Diffusion Enhancing (TIDE) framework, which resolves this tension through target supervision and preference learning without test-time fine-tuning. TIDE pioneers target-supervised triplet alignment, modelling subject adaptation dynamics using a (reference image, instruction, target images) triplet. This approach leverages the Direct Subject Diffusion (DSD) objective, training the model with paired "winning" (balanced preservation-compliance) and "losing" (distorted) targets, systematically generated and evaluated via quantitative metrics. This enables implicit reward modelling for optimal preservation-compliance balance. Experimental results on standard benchmarks demonstrate TIDE's superior performance in generating subject-faithful outputs while maintaining instruction compliance, outperforming baseline methods across multiple quantitative metrics. TIDE's versatility is further evidenced by its successful application to diverse tasks, including structural-conditioned generation, image-to-image generation, and text-image interpolation. Our code is available at https://github.com/KomJay520/TIDE.
☆ WS$^2$: Weakly Supervised Segmentation using Before-After Supervision in Waste Sorting ICCV 2025
In industrial quality control, to visually recognize unwanted items within a moving heterogeneous stream, human operators are often still indispensable. Waste-sorting stands as a significant example, where operators on multiple conveyor belts manually remove unwanted objects to select specific materials. To automate this recognition problem, computer vision systems offer great potential in accurately identifying and segmenting unwanted items in such settings. Unfortunately, considering the multitude and the variety of sorting tasks, fully supervised approaches are not a viable option to address this challange, as they require extensive labeling efforts. Surprisingly, weakly supervised alternatives that leverage the implicit supervision naturally provided by the operator in his removal action are relatively unexplored. In this paper, we define the concept of Before-After Supervision, illustrating how to train a segmentation network by leveraging only the visual differences between images acquired \textit{before} and \textit{after} the operator. To promote research in this direction, we introduce WS$^2$ (Weakly Supervised segmentation for Waste-Sorting), the first multiview dataset consisting of more than 11 000 high-resolution video frames captured on top of a conveyor belt, including "before" and "after" images. We also present a robust end-to-end pipeline, used to benchmark several state-of-the-art weakly supervised segmentation methods on WS$^2$.
comment: 10 pages, 7 figures, ICCV 2025 - Workshops The WS$^2$ dataset is publicly available for download at https://zenodo.org/records/14793518, all the details are reported in the supplementary material
☆ FSG-Net: Frequency-Spatial Synergistic Gated Network for High-Resolution Remote Sensing Change Detection IEEE
Change detection from high-resolution remote sensing images lies as a cornerstone of Earth observation applications, yet its efficacy is often compromised by two critical challenges. First, false alarms are prevalent as models misinterpret radiometric variations from temporal shifts (e.g., illumination, season) as genuine changes. Second, a non-negligible semantic gap between deep abstract features and shallow detail-rich features tends to obstruct their effective fusion, culminating in poorly delineated boundaries. To step further in addressing these issues, we propose the Frequency-Spatial Synergistic Gated Network (FSG-Net), a novel paradigm that aims to systematically disentangle semantic changes from nuisance variations. Specifically, FSG-Net first operates in the frequency domain, where a Discrepancy-Aware Wavelet Interaction Module (DAWIM) adaptively mitigates pseudo-changes by discerningly processing different frequency components. Subsequently, the refined features are enhanced in the spatial domain by a Synergistic Temporal-Spatial Attention Module (STSAM), which amplifies the saliency of genuine change regions. To finally bridge the semantic gap, a Lightweight Gated Fusion Unit (LGFU) leverages high-level semantics to selectively gate and integrate crucial details from shallow layers. Comprehensive experiments on the CDD, GZ-CD, and LEVIR-CD benchmarks validate the superiority of FSG-Net, establishing a new state-of-the-art with F1-scores of 94.16%, 89.51%, and 91.27%, respectively. The code will be made available at https://github.com/zxXie-Air/FSG-Net after a possible publication.
comment: Submitted to IEEE Transactions on Geoscience and Remote Sensing (TGRS). 13 pages, 9 figures
☆ Does DINOv3 Set a New Medical Vision Standard?
The advent of large-scale vision foundation models, pre-trained on diverse natural images, has marked a paradigm shift in computer vision. However, how the frontier vision foundation models' efficacies transfer to specialized domains remains such as medical imaging remains an open question. This report investigates whether DINOv3, a state-of-the-art self-supervised vision transformer (ViT) that features strong capability in dense prediction tasks, can directly serve as a powerful, unified encoder for medical vision tasks without domain-specific pre-training. To answer this, we benchmark DINOv3 across common medical vision tasks, including 2D/3D classification and segmentation on a wide range of medical imaging modalities. We systematically analyze its scalability by varying model sizes and input image resolutions. Our findings reveal that DINOv3 shows impressive performance and establishes a formidable new baseline. Remarkably, it can even outperform medical-specific foundation models like BiomedCLIP and CT-Net on several tasks, despite being trained solely on natural images. However, we identify clear limitations: The model's features degrade in scenarios requiring deep domain specialization, such as in Whole-Slide Pathological Images (WSIs), Electron Microscopy (EM), and Positron Emission Tomography (PET). Furthermore, we observe that DINOv3 does not consistently obey scaling law in the medical domain; performance does not reliably increase with larger models or finer feature resolutions, showing diverse scaling behaviors across tasks. Ultimately, our work establishes DINOv3 as a strong baseline, whose powerful visual features can serve as a robust prior for multiple complex medical tasks. This opens promising future directions, such as leveraging its features to enforce multiview consistency in 3D reconstruction.
comment: Technical Report
☆ A Statistical 3D Stomach Shape Model for Anatomical Analysis
Realistic and parameterized 3D models of human anatomy have become invaluable in research, diagnostics, and surgical planning. However, the development of detailed models for internal organs, such as the stomach, has been limited by data availability and methodological challenges. In this paper, we propose a novel pipeline for the generation of synthetic 3D stomach models, enabling the creation of anatomically diverse morphologies informed by established studies on stomach shape variability. Using this pipeline, we construct a dataset of synthetic stomachs. Building on this dataset, we develop a 3D statistical shape model of the stomach, trained to capture natural anatomical variability in a low-dimensional shape space. The model is further refined using CT meshes derived from publicly available datasets through a semi-supervised alignment process, enhancing its ability to generalize to unseen anatomical variations. We evaluated the model on a held-out test set of real stomach CT scans, demonstrating robust generalization and fit accuracy. We make the statistical shape model along with the synthetic dataset publicly available on GitLab: https://gitlab.com/Erez.Posner/stomach_pytorch to facilitate further research. This work introduces the first statistical 3D shape model of the stomach, with applications ranging from surgical simulation and pre-operative planning to medical education and computational modeling. By combining synthetic data generation, parametric modeling, and real-world validation, our approach represents a significant advancement in organ modeling and opens new possibilities for personalized healthcare solutions.
☆ Focusing by Contrastive Attention: Enhancing VLMs' Visual Reasoning
Vision-Language Models (VLMs) have demonstrated remarkable success across diverse visual tasks, yet their performance degrades in complex visual environments. While existing enhancement approaches require additional training, rely on external segmentation tools, or operate at coarse-grained levels, they overlook the innate ability within VLMs. To bridge this gap, we investigate VLMs' attention patterns and discover that: (1) visual complexity strongly correlates with attention entropy, negatively impacting reasoning performance; (2) attention progressively refines from global scanning in shallow layers to focused convergence in deeper layers, with convergence degree determined by visual complexity. (3) Theoretically, we prove that the contrast of attention maps between general queries and task-specific queries enables the decomposition of visual signal into semantic signals and visual noise components. Building on these insights, we propose Contrastive Attention Refinement for Visual Enhancement (CARVE), a training-free method that extracts task-relevant visual signals through attention contrasting at the pixel level. Extensive experiments demonstrate that CARVE consistently enhances performance, achieving up to 75% improvement on open-source models. Our work provides critical insights into the interplay between visual complexity and attention mechanisms, offering an efficient pathway for improving visual reasoning with contrasting attention.
☆ IGAff: Benchmarking Adversarial Iterative and Genetic Affine Algorithms on Deep Neural Networks ECAI 2025
Deep neural networks currently dominate many fields of the artificial intelligence landscape, achieving state-of-the-art results on numerous tasks while remaining hard to understand and exhibiting surprising weaknesses. An active area of research focuses on adversarial attacks, which aim to generate inputs that uncover these weaknesses. However, this proves challenging, especially in the black-box scenario where model details are inaccessible. This paper explores in detail the impact of such adversarial algorithms on ResNet-18, DenseNet-121, Swin Transformer V2, and Vision Transformer network architectures. Leveraging the Tiny ImageNet, Caltech-256, and Food-101 datasets, we benchmark two novel black-box iterative adversarial algorithms based on affine transformations and genetic algorithms: 1) Affine Transformation Attack (ATA), an iterative algorithm maximizing our attack score function using random affine transformations, and 2) Affine Genetic Attack (AGA), a genetic algorithm that involves random noise and affine transformations. We evaluate the performance of the models in the algorithm parameter variation, data augmentation, and global and targeted attack configurations. We also compare our algorithms with two black-box adversarial algorithms, Pixle and Square Attack. Our experiments yield better results on the image classification task than similar methods in the literature, achieving an accuracy improvement of up to 8.82%. We provide noteworthy insights into successful adversarial defenses and attacks at both global and targeted levels, and demonstrate adversarial robustness through algorithm parameter variation.
comment: 10 pages, 7 figures, Accepted at ECAI 2025 (28th European Conference on Artificial Intelligence)
☆ Cross3DReg: Towards a Large-scale Real-world Cross-source Point Cloud Registration Benchmark
Cross-source point cloud registration, which aims to align point cloud data from different sensors, is a fundamental task in 3D vision. However, compared to the same-source point cloud registration, cross-source registration faces two core challenges: the lack of publicly available large-scale real-world datasets for training the deep registration models, and the inherent differences in point clouds captured by multiple sensors. The diverse patterns induced by the sensors pose great challenges in robust and accurate point cloud feature extraction and matching, which negatively influence the registration accuracy. To advance research in this field, we construct Cross3DReg, the currently largest and real-world multi-modal cross-source point cloud registration dataset, which is collected by a rotating mechanical lidar and a hybrid semi-solid-state lidar, respectively. Moreover, we design an overlap-based cross-source registration framework, which utilizes unaligned images to predict the overlapping region between source and target point clouds, effectively filtering out redundant points in the irrelevant regions and significantly mitigating the interference caused by noise in non-overlapping areas. Then, a visual-geometric attention guided matching module is proposed to enhance the consistency of cross-source point cloud features by fusing image and geometric information to establish reliable correspondences and ultimately achieve accurate and robust registration. Extensive experiments show that our method achieves state-of-the-art registration performance. Our framework reduces the relative rotation error (RRE) and relative translation error (RTE) by $63.2\%$ and $40.2\%$, respectively, and improves the registration recall (RR) by $5.4\%$, which validates its effectiveness in achieving accurate cross-source registration.
☆ Perception-oriented Bidirectional Attention Network for Image Super-resolution Quality Assessment IEEE
Many super-resolution (SR) algorithms have been proposed to increase image resolution. However, full-reference (FR) image quality assessment (IQA) metrics for comparing and evaluating different SR algorithms are limited. In this work, we propose the Perception-oriented Bidirectional Attention Network (PBAN) for image SR FR-IQA, which is composed of three modules: an image encoder module, a perception-oriented bidirectional attention (PBA) module, and a quality prediction module. First, we encode the input images for feature representations. Inspired by the characteristics of the human visual system, we then construct the perception-oriented PBA module. Specifically, different from existing attention-based SR IQA methods, we conceive a Bidirectional Attention to bidirectionally construct visual attention to distortion, which is consistent with the generation and evaluation processes of SR images. To further guide the quality assessment towards the perception of distorted information, we propose Grouped Multi-scale Deformable Convolution, enabling the proposed method to adaptively perceive distortion. Moreover, we design Sub-information Excitation Convolution to direct visual perception to both sub-pixel and sub-channel attention. Finally, the quality prediction module is exploited to integrate quality-aware features and regress quality scores. Extensive experiments demonstrate that our proposed PBAN outperforms state-of-the-art quality assessment methods.
comment: 16 pages, 6 figures, IEEE Transactions on Image Processing
☆ When Language Model Guides Vision: Grounding DINO for Cattle Muzzle Detection
Muzzle patterns are among the most effective biometric traits for cattle identification. Fast and accurate detection of the muzzle region as the region of interest is critical to automatic visual cattle identification.. Earlier approaches relied on manual detection, which is labor-intensive and inconsistent. Recently, automated methods using supervised models like YOLO have become popular for muzzle detection. Although effective, these methods require extensive annotated datasets and tend to be trained data-dependent, limiting their performance on new or unseen cattle. To address these limitations, this study proposes a zero-shot muzzle detection framework based on Grounding DINO, a vision-language model capable of detecting muzzles without any task-specific training or annotated data. This approach leverages natural language prompts to guide detection, enabling scalable and flexible muzzle localization across diverse breeds and environments. Our model achieves a mean Average Precision (mAP)@0.5 of 76.8\%, demonstrating promising performance without requiring annotated data. To our knowledge, this is the first research to provide a real-world, industry-oriented, and annotation-free solution for cattle muzzle detection. The framework offers a practical alternative to supervised methods, promising improved adaptability and ease of deployment in livestock monitoring applications.
☆ Phantom-Insight: Adaptive Multi-cue Fusion for Video Camouflaged Object Detection with Multimodal LLM
Video camouflaged object detection (VCOD) is challenging due to dynamic environments. Existing methods face two main issues: (1) SAM-based methods struggle to separate camouflaged object edges due to model freezing, and (2) MLLM-based methods suffer from poor object separability as large language models merge foreground and background. To address these issues, we propose a novel VCOD method based on SAM and MLLM, called Phantom-Insight. To enhance the separability of object edge details, we represent video sequences with temporal and spatial clues and perform feature fusion via LLM to increase information density. Next, multiple cues are generated through the dynamic foreground visual token scoring module and the prompt network to adaptively guide and fine-tune the SAM model, enabling it to adapt to subtle textures. To enhance the separability of objects and background, we propose a decoupled foreground-background learning strategy. By generating foreground and background cues separately and performing decoupled training, the visual token can effectively integrate foreground and background information independently, enabling SAM to more accurately segment camouflaged objects in the video. Experiments on the MoCA-Mask dataset show that Phantom-Insight achieves state-of-the-art performance across various metrics. Additionally, its ability to detect unseen camouflaged objects on the CAD2016 dataset highlights its strong generalization ability.
☆ Index-Preserving Lightweight Token Pruning for Efficient Document Understanding in Vision-Language Models ICASSP 2026
Recent progress in vision-language models (VLMs) has led to impressive results in document understanding tasks, but their high computational demands remain a challenge. To mitigate the compute burdens, we propose a lightweight token pruning framework that filters out non-informative background regions from document images prior to VLM processing. A binary patch-level classifier removes non-text areas, and a max-pooling refinement step recovers fragmented text regions to enhance spatial coherence. Experiments on real-world document datasets demonstrate that our approach substantially lowers computational costs, while maintaining comparable accuracy.
comment: Submitted to ICASSP 2026
☆ VQualA 2025 Challenge on Image Super-Resolution Generated Content Quality Assessment: Methods and Results ICCV
This paper presents the ISRGC-Q Challenge, built upon the Image Super-Resolution Generated Content Quality Assessment (ISRGen-QA) dataset, and organized as part of the Visual Quality Assessment (VQualA) Competition at the ICCV 2025 Workshops. Unlike existing Super-Resolution Image Quality Assessment (SR-IQA) datasets, ISRGen-QA places a greater emphasis on SR images generated by the latest generative approaches, including Generative Adversarial Networks (GANs) and diffusion models. The primary goal of this challenge is to analyze the unique artifacts introduced by modern super-resolution techniques and to evaluate their perceptual quality effectively. A total of 108 participants registered for the challenge, with 4 teams submitting valid solutions and fact sheets for the final testing phase. These submissions demonstrated state-of-the-art (SOTA) performance on the ISRGen-QA dataset. The project is publicly available at: https://github.com/Lighting-YXLI/ISRGen-QA.
comment: 11 pages, 12 figures, VQualA ICCV Workshop
☆ 3DOF+Quantization: 3DGS quantization for large scenes with limited Degrees of Freedom
3D Gaussian Splatting (3DGS) is a major breakthrough in 3D scene reconstruction. With a number of views of a given object or scene, the algorithm trains a model composed of 3D gaussians, which enables the production of novel views from arbitrary points of view. This freedom of movement is referred to as 6DoF for 6 degrees of freedom: a view is produced for any position (3 degrees), orientation of camera (3 other degrees). On large scenes, though, the input views are acquired from a limited zone in space, and the reconstruction is valuable for novel views from the same zone, even if the scene itself is almost unlimited in size. We refer to this particular case as 3DoF+, meaning that the 3 degrees of freedom of camera position are limited to small offsets around the central position. Considering the problem of coordinate quantization, the impact of position error on the projection error in pixels is studied. It is shown that the projection error is proportional to the squared inverse distance of the point being projected. Consequently, a new quantization scheme based on spherical coordinates is proposed. Rate-distortion performance of the proposed method are illustrated on the well-known Garden scene.
☆ AI-based response assessment and prediction in longitudinal imaging for brain metastases treated with stereotactic radiosurgery MICCAI 2025
Brain Metastases (BM) are a large contributor to mortality of patients with cancer. They are treated with Stereotactic Radiosurgery (SRS) and monitored with Magnetic Resonance Imaging (MRI) at regular follow-up intervals according to treatment guidelines. Analyzing and quantifying this longitudinal imaging represents an intractable workload for clinicians. As a result, follow-up images are not annotated and merely assessed by observation. Response to treatment in longitudinal imaging is being studied, to better understand growth trajectories and ultimately predict treatment success or toxicity as early as possible. In this study, we implement an automated pipeline to curate a large longitudinal dataset of SRS treatment data, resulting in a cohort of 896 BMs in 177 patients who were monitored for >360 days at approximately two-month intervals at Lausanne University Hospital (CHUV). We use a data-driven clustering to identify characteristic trajectories. In addition, we predict 12 months lesion-level response using classical as well as graph machine learning Graph Machine Learning (GML). Clustering revealed 5 dominant growth trajectories with distinct final response categories. Response prediction reaches up to 0.90 AUC (CI95%=0.88-0.92) using only pre-treatment and first follow-up MRI with gradient boosting. Similarly, robust predictive performance of up to 0.88 AUC (CI95%=0.86-0.90) was obtained using GML, offering more flexibility with a single model for multiple input time-points configurations. Our results suggest potential automation and increased precision for the comprehensive assessment and prediction of BM response to SRS in longitudinal MRI. The proposed pipeline facilitates scalable data curation for the investigation of BM growth patterns, and lays the foundation for clinical decision support systems aiming at optimizing personalized care.
comment: Submitted and Accepted to the Learning with longitudinal medical Images and Data workshop at the MICCAI 2025 Conference
☆ Your Super Resolution Model is not Enough for Tackling Real-World Scenarios ICCV 2025
Despite remarkable progress in Single Image Super-Resolution (SISR), traditional models often struggle to generalize across varying scale factors, limiting their real-world applicability. To address this, we propose a plug-in Scale-Aware Attention Module (SAAM) designed to retrofit modern fixed-scale SR models with the ability to perform arbitrary-scale SR. SAAM employs lightweight, scale-adaptive feature extraction and upsampling, incorporating the Simple parameter-free Attention Module (SimAM) for efficient guidance and gradient variance loss to enhance sharpness in image details. Our method integrates seamlessly into multiple state-of-the-art SR backbones (e.g., SCNet, HiT-SR, OverNet), delivering competitive or superior performance across a wide range of integer and non-integer scale factors. Extensive experiments on benchmark datasets demonstrate that our approach enables robust multi-scale upscaling with minimal computational overhead, offering a practical solution for real-world scenarios.
comment: To appear in Workshop on Efficient Computing under Limited Resources: Visual Computing (ICCV 2025)
☆ MRD-LiNet: A Novel Lightweight Hybrid CNN with Gradient-Guided Unlearning for Improved Drought Stress Identification
Drought stress is a major threat to global crop productivity, making its early and precise detection essential for sustainable agricultural management. Traditional approaches, though useful, are often time-consuming and labor-intensive, which has motivated the adoption of deep learning methods. In recent years, Convolutional Neural Network (CNN) and Vision Transformer architectures have been widely explored for drought stress identification; however, these models generally rely on a large number of trainable parameters, restricting their use in resource-limited and real-time agricultural settings. To address this challenge, we propose a novel lightweight hybrid CNN framework inspired by ResNet, DenseNet, and MobileNet architectures. The framework achieves a remarkable 15-fold reduction in trainable parameters compared to conventional CNN and Vision Transformer models, while maintaining competitive accuracy. In addition, we introduce a machine unlearning mechanism based on a gradient norm-based influence function, which enables targeted removal of specific training data influence, thereby improving model adaptability. The method was evaluated on an aerial image dataset of potato fields with expert-annotated healthy and drought-stressed regions. Experimental results show that our framework achieves high accuracy while substantially lowering computational costs. These findings highlight its potential as a practical, scalable, and adaptive solution for drought stress monitoring in precision agriculture, particularly under resource-constrained conditions.
comment: 11 pages, 6 Figures, 3 Tables
☆ A Multi-Modal Deep Learning Framework for Colorectal Pathology Diagnosis: Integrating Histological and Colonoscopy Data in a Pilot Study
Colorectal diseases, including inflammatory conditions and neoplasms, require quick, accurate care to be effectively treated. Traditional diagnostic pipelines require extensive preparation and rely on separate, individual evaluations on histological images and colonoscopy footage, introducing possible variability and inefficiencies. This pilot study proposes a unified deep learning network that uses convolutional neural networks (CN N s) to classify both histopathological slides and colonoscopy video frames in one pipeline. The pipeline integrates class-balancing learning, robust augmentation, and calibration methods to ensure accurate results. Static colon histology images were taken from the PathMNIST dataset, and the lower gastrointestinal (colonoscopy) videos were drawn from the HyperKvasir dataset. The CNN architecture used was ResNet-50. This study demonstrates an interpretable and reproducible diagnostic pipeline that unifies multiple diagnostic modalities to advance and ease the detection of colorectal diseases.
☆ Multi View Slot Attention Using Paraphrased Texts For Face Anti-Spoofing ICCV 2025
Recent face anti-spoofing (FAS) methods have shown remarkable cross-domain performance by employing vision-language models like CLIP. However, existing CLIP-based FAS models do not fully exploit CLIP's patch embedding tokens, failing to detect critical spoofing clues. Moreover, these models rely on a single text prompt per class (e.g., 'live' or 'fake'), which limits generalization. To address these issues, we propose MVP-FAS, a novel framework incorporating two key modules: Multi-View Slot attention (MVS) and Multi-Text Patch Alignment (MTPA). Both modules utilize multiple paraphrased texts to generate generalized features and reduce dependence on domain-specific text. MVS extracts local detailed spatial features and global context from patch embeddings by leveraging diverse texts with multiple perspectives. MTPA aligns patches with multiple text representations to improve semantic robustness. Extensive experiments demonstrate that MVP-FAS achieves superior generalization performance, outperforming previous state-of-the-art methods on cross-domain datasets. Code: https://github.com/Elune001/MVP-FAS.
comment: Accepted by ICCV 2025
☆ Harnessing Object Grounding for Time-Sensitive Video Understanding
We propose to improve the time-sensitive video understanding (TSV) capability of video large language models (Video-LLMs) with grounded objects (GO). We hypothesize that TSV tasks can benefit from GO within frames, which is supported by our preliminary experiments on LITA, a state-of-the-art Video-LLM for reasoning temporal localization. While augmenting prompts with textual description of these object annotations improves the performance of LITA, it also introduces extra token length and susceptibility to the noise in object level information. To address this, we propose GO-Tokenizer, a lightweight add-on module for Video-LLMs leveraging off-the-shelf object detectors to encode compact object information on the fly. Experimental results demonstrate that pretraining with GO-Tokenizer outperforms the vanilla Video-LLM and its counterpart utilizing textual description of objects in the prompt. The gain generalizes across different models, datasets and video understanding tasks such as reasoning temporal localization and dense captioning.
☆ Multi-Modal Camera-Based Detection of Vulnerable Road Users
Vulnerable road users (VRUs) such as pedestrians, cyclists, and motorcyclists represent more than half of global traffic deaths, yet their detection remains challenging in poor lighting, adverse weather, and unbalanced data sets. This paper presents a multimodal detection framework that integrates RGB and thermal infrared imaging with a fine-tuned YOLOv8 model. Training leveraged KITTI, BDD100K, and Teledyne FLIR datasets, with class re-weighting and light augmentations to improve minority-class performance and robustness, experiments show that 640-pixel resolution and partial backbone freezing optimise accuracy and efficiency, while class-weighted losses enhance recall for rare VRUs. Results highlight that thermal models achieve the highest precision, and RGB-to-thermal augmentation boosts recall, demonstrating the potential of multimodal detection to improve VRU safety at intersections.
☆ Quantitative Currency Evaluation in Low-Resource Settings through Pattern Analysis to Assist Visually Impaired Users
Currency recognition systems often overlook usability and authenticity assessment, especially in low-resource environments where visually impaired users and offline validation are common. While existing methods focus on denomination classification, they typically ignore physical degradation and forgery, limiting their applicability in real-world conditions. This paper presents a unified framework for currency evaluation that integrates three modules: denomination classification using lightweight CNN models, damage quantification through a novel Unified Currency Damage Index (UCDI), and counterfeit detection using feature-based template matching. The dataset consists of over 82,000 annotated images spanning clean, damaged, and counterfeit notes. Our Custom_CNN model achieves high classification performance with low parameter count. The UCDI metric provides a continuous usability score based on binary mask loss, chromatic distortion, and structural feature loss. The counterfeit detection module demonstrates reliable identification of forged notes across varied imaging conditions. The framework supports real-time, on-device inference and addresses key deployment challenges in constrained environments. Results show that accurate, interpretable, and compact solutions can support inclusive currency evaluation in practical settings.
comment: 10 Pages, 9 Figures, 5 Tables
☆ Towards scalable organ level 3D plant segmentation: Bridging the data algorithm computing gap
The precise characterization of plant morphology provides valuable insights into plant environment interactions and genetic evolution. A key technology for extracting this information is 3D segmentation, which delineates individual plant organs from complex point clouds. Despite significant progress in general 3D computer vision domains, the adoption of 3D segmentation for plant phenotyping remains limited by three major challenges: i) the scarcity of large-scale annotated datasets, ii) technical difficulties in adapting advanced deep neural networks to plant point clouds, and iii) the lack of standardized benchmarks and evaluation protocols tailored to plant science. This review systematically addresses these barriers by: i) providing an overview of existing 3D plant datasets in the context of general 3D segmentation domains, ii) systematically summarizing deep learning-based methods for point cloud semantic and instance segmentation, iii) introducing Plant Segmentation Studio (PSS), an open-source framework for reproducible benchmarking, and iv) conducting extensive quantitative experiments to evaluate representative networks and sim-to-real learning strategies. Our findings highlight the efficacy of sparse convolutional backbones and transformer-based instance segmentation, while also emphasizing the complementary role of modeling-based and augmentation-based synthetic data generation for sim-to-real learning in reducing annotation demands. In general, this study bridges the gap between algorithmic advances and practical deployment, providing immediate tools for researchers and a roadmap for developing data-efficient and generalizable deep learning solutions in 3D plant phenotyping. Data and code are available at https://github.com/perrydoremi/PlantSegStudio.
☆ Text4Seg++: Advancing Image Segmentation via Generative Language Modeling
Multimodal Large Language Models (MLLMs) have shown exceptional capabilities in vision-language tasks. However, effectively integrating image segmentation into these models remains a significant challenge. In this work, we propose a novel text-as-mask paradigm that casts image segmentation as a text generation problem, eliminating the need for additional decoders and significantly simplifying the segmentation process. Our key innovation is semantic descriptors, a new textual representation of segmentation masks where each image patch is mapped to its corresponding text label. We first introduce image-wise semantic descriptors, a patch-aligned textual representation of segmentation masks that integrates naturally into the language modeling pipeline. To enhance efficiency, we introduce the Row-wise Run-Length Encoding (R-RLE), which compresses redundant text sequences, reducing the length of semantic descriptors by 74% and accelerating inference by $3\times$, without compromising performance. Building upon this, our initial framework Text4Seg achieves strong segmentation performance across a wide range of vision tasks. To further improve granularity and compactness, we propose box-wise semantic descriptors, which localizes regions of interest using bounding boxes and represents region masks via structured mask tokens called semantic bricks. This leads to our refined model, Text4Seg++, which formulates segmentation as a next-brick prediction task, combining precision, scalability, and generative efficiency. Comprehensive experiments on natural and remote sensing datasets show that Text4Seg++ consistently outperforms state-of-the-art models across diverse benchmarks without any task-specific fine-tuning, while remaining compatible with existing MLLM backbones. Our work highlights the effectiveness, scalability, and generalizability of text-driven image segmentation within the MLLM framework.
comment: Extended version of our conference paper arXiv:2410.09855
☆ Evaluating the Efficiency of Latent Spaces via the Coupling-Matrix
A central challenge in representation learning is constructing latent embeddings that are both expressive and efficient. In practice, deep networks often produce redundant latent spaces where multiple coordinates encode overlapping information, reducing effective capacity and hindering generalization. Standard metrics such as accuracy or reconstruction loss provide only indirect evidence of such redundancy and cannot isolate it as a failure mode. We introduce a redundancy index, denoted rho(C), that directly quantifies inter-dimensional dependencies by analyzing coupling matrices derived from latent representations and comparing their off-diagonal statistics against a normal distribution via energy distance. The result is a compact, interpretable, and statistically grounded measure of representational quality. We validate rho(C) across discriminative and generative settings on MNIST variants, Fashion-MNIST, CIFAR-10, and CIFAR-100, spanning multiple architectures and hyperparameter optimization strategies. Empirically, low rho(C) reliably predicts high classification accuracy or low reconstruction error, while elevated redundancy is associated with performance collapse. Estimator reliability grows with latent dimension, yielding natural lower bounds for reliable analysis. We further show that Tree-structured Parzen Estimators (TPE) preferentially explore low-rho regions, suggesting that rho(C) can guide neural architecture search and serve as a redundancy-aware regularization target. By exposing redundancy as a universal bottleneck across models and tasks, rho(C) offers both a theoretical lens and a practical tool for evaluating and improving the efficiency of learned representations.
☆ Video-based Generalized Category Discovery via Memory-Guided Consistency-Aware Contrastive Learning
Generalized Category Discovery (GCD) is an emerging and challenging open-world problem that has garnered increasing attention in recent years. Most existing GCD methods focus on discovering categories in static images. However, relying solely on static visual content is often insufficient to reliably discover novel categories. To bridge this gap, we extend the GCD problem to the video domain and introduce a new setting, termed Video-GCD. Thus, effectively integrating multi-perspective information across time is crucial for accurate Video-GCD. To tackle this challenge, we propose a novel Memory-guided Consistency-aware Contrastive Learning (MCCL) framework, which explicitly captures temporal-spatial cues and incorporates them into contrastive learning through a consistency-guided voting mechanism. MCCL consists of two core components: Consistency-Aware Contrastive Learning(CACL) and Memory-Guided Representation Enhancement (MGRE). CACL exploits multiperspective temporal features to estimate consistency scores between unlabeled instances, which are then used to weight the contrastive loss accordingly. MGRE introduces a dual-level memory buffer that maintains both feature-level and logit-level representations, providing global context to enhance intra-class compactness and inter-class separability. This in turn refines the consistency estimation in CACL, forming a mutually reinforcing feedback loop between representation learning and consistency modeling. To facilitate a comprehensive evaluation, we construct a new and challenging Video-GCD benchmark, which includes action recognition and bird classification video datasets. Extensive experiments demonstrate that our method significantly outperforms competitive GCD approaches adapted from image-based settings, highlighting the importance of temporal information for discovering novel categories in videos. The code will be publicly available.
☆ Prototype-Aware Multimodal Alignment for Open-Vocabulary Visual Grounding
Visual Grounding (VG) aims to utilize given natural language queries to locate specific target objects within images. While current transformer-based approaches demonstrate strong localization performance in standard scene (i.e, scenarios without any novel objects), they exhibit notable limitations in open-vocabulary scene (i.e, both familiar and novel object categories during testing). These limitations primarily stem from three key factors: (1) imperfect alignment between visual and linguistic modalities, (2) insufficient cross-modal feature fusion, and (3) ineffective utilization of semantic prototype information. To overcome these challenges, we present Prototype-Aware Multimodal Learning (PAML), an innovative framework that systematically addresses these issues through several key components: First, we leverage ALBEF to establish robust cross-modal alignment during initial feature encoding. Subsequently, our Visual Discriminative Feature Encoder selectively enhances salient object representations while suppressing irrelevant visual context. The framework then incorporates a novel prototype discovering and inheriting mechanism that extracts and aggregates multi-neighbor semantic prototypes to facilitate open-vocabulary recognition. These enriched features undergo comprehensive multimodal integration through our Multi-stage Decoder before final bounding box regression. Extensive experiments across five benchmark datasets validate our approach, showing competitive performance in standard scene while achieving state-of-the-art results in open-vocabulary scene. Our code is available at https://github.com/plankXie/PAML.
☆ AI-driven Remote Facial Skin Hydration and TEWL Assessment from Selfie Images: A Systematic Solution
Skin health and disease resistance are closely linked to the skin barrier function, which protects against environmental factors and water loss. Two key physiological indicators can quantitatively represent this barrier function: skin hydration (SH) and trans-epidermal water loss (TEWL). Measurement of SH and TEWL is valuable for the public to monitor skin conditions regularly, diagnose dermatological issues, and personalize their skincare regimens. However, these measurements are not easily accessible to general users unless they visit a dermatology clinic with specialized instruments. To tackle this problem, we propose a systematic solution to estimate SH and TEWL from selfie facial images remotely with smartphones. Our solution encompasses multiple stages, including SH/TEWL data collection, data preprocessing, and formulating a novel Skin-Prior Adaptive Vision Transformer model for SH/TEWL regression. Through experiments, we identified the annotation imbalance of the SH/TEWL data and proposed a symmetric-based contrastive regularization to reduce the model bias due to the imbalance effectively. This work is the first study to explore skin assessment from selfie facial images without physical measurements. It bridges the gap between computer vision and skin care research, enabling AI-driven accessible skin analysis for broader real-world applications.
comment: Paper accepted by the journal of Machine Intelligence Research (JCR-Q1). To be in press soon
☆ Spatial Reasoning with Vision-Language Models in Ego-Centric Multi-View Scenes
Understanding 3D spatial relationships remains a major limitation of current Vision-Language Models (VLMs). Prior work has addressed this issue by creating spatial question-answering (QA) datasets based on single images or indoor videos. However, real-world embodied AI agents such as robots and self-driving cars typically rely on ego-centric, multi-view observations. To this end, we introduce Ego3D-Bench, a new benchmark designed to evaluate the spatial reasoning abilities of VLMs using ego-centric, multi-view outdoor data. Ego3D-Bench comprises over 8,600 QA pairs, created with significant involvement from human annotators to ensure quality and diversity. We benchmark 16 SOTA VLMs, including GPT-4o, Gemini1.5-Pro, InternVL3, and Qwen2.5-VL. Our results reveal a notable performance gap between human level scores and VLM performance, highlighting that current VLMs still fall short of human level spatial understanding. To bridge this gap, we propose Ego3D-VLM, a post-training framework that enhances 3D spatial reasoning of VLMs. Ego3D-VLM generates cognitive map based on estimated global 3D coordinates, resulting in 12% average improvement on multi-choice QA and 56% average improvement on absolute distance estimation. Ego3D-VLM is modular and can be integrated with any existing VLM. Together, Ego3D-Bench and Ego3D-VLM offer valuable tools for advancing toward human level spatial understanding in real-world, multi-view environments.
Reconstruction Alignment Improves Unified Multimodal Models
Unified multimodal models (UMMs) unify visual understanding and generation within a single architecture. However, conventional training relies on image-text pairs (or sequences) whose captions are typically sparse and miss fine-grained visual details--even when they use hundreds of words to describe a simple image. We introduce Reconstruction Alignment (RecA), a resource-efficient post-training method that leverages visual understanding encoder embeddings as dense "text prompts," providing rich supervision without captions. Concretely, RecA conditions a UMM on its own visual understanding embeddings and optimizes it to reconstruct the input image with a self-supervised reconstruction loss, thereby realigning understanding and generation. Despite its simplicity, RecA is broadly applicable: across autoregressive, masked-autoregressive, and diffusion-based UMMs, it consistently improves generation and editing fidelity. With only 27 GPU-hours, post-training with RecA substantially improves image generation performance on GenEval (0.73$\rightarrow$0.90) and DPGBench (80.93$\rightarrow$88.15), while also boosting editing benchmarks (ImgEdit 3.38$\rightarrow$3.75, GEdit 6.94$\rightarrow$7.25). Notably, RecA surpasses much larger open-source models and applies broadly across diverse UMM architectures, establishing it as an efficient and general post-training alignment strategy for UMMs
comment: 28 pages, 24 figures and 10 tables
☆ Kernel VICReg for Self-Supervised Learning in Reproducing Kernel Hilbert Space
Self-supervised learning (SSL) has emerged as a powerful paradigm for representation learning by optimizing geometric objectives--such as invariance to augmentations, variance preservation, and feature decorrelation--without requiring labels. However, most existing methods operate in Euclidean space, limiting their ability to capture nonlinear dependencies and geometric structures. In this work, we propose Kernel VICReg, a novel self-supervised learning framework that lifts the VICReg objective into a Reproducing Kernel Hilbert Space (RKHS). By kernelizing each term of the loss-variance, invariance, and covariance--we obtain a general formulation that operates on double-centered kernel matrices and Hilbert-Schmidt norms, enabling nonlinear feature learning without explicit mappings. We demonstrate that Kernel VICReg not only avoids representational collapse but also improves performance on tasks with complex or small-scale data. Empirical evaluations across MNIST, CIFAR-10, STL-10, TinyImageNet, and ImageNet100 show consistent gains over Euclidean VICReg, with particularly strong improvements on datasets where nonlinear structures are prominent. UMAP visualizations further confirm that kernel-based embeddings exhibit better isometry and class separation. Our results suggest that kernelizing SSL objectives is a promising direction for bridging classical kernel methods with modern representation learning.
☆ Breast Cancer Detection in Thermographic Images via Diffusion-Based Augmentation and Nonlinear Feature Fusion
Data scarcity hinders deep learning for medical imaging. We propose a framework for breast cancer classification in thermograms that addresses this using a Diffusion Probabilistic Model (DPM) for data augmentation. Our DPM-based augmentation is shown to be superior to both traditional methods and a ProGAN baseline. The framework fuses deep features from a pre-trained ResNet-50 with handcrafted nonlinear features (e.g., Fractal Dimension) derived from U-Net segmented tumors. An XGBoost classifier trained on these fused features achieves 98.0\% accuracy and 98.1\% sensitivity. Ablation studies and statistical tests confirm that both the DPM augmentation and the nonlinear feature fusion are critical, statistically significant components of this success. This work validates the synergy between advanced generative models and interpretable features for creating highly accurate medical diagnostic tools.
comment: Accepted to IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI 2025)
☆ GCond: Gradient Conflict Resolution via Accumulation-based Stabilization for Large-Scale Multi-Task Learning
In multi-task learning (MTL), gradient conflict poses a significant challenge. Effective methods for addressing this problem, including PCGrad, CAGrad, and GradNorm, in their original implementations are computationally demanding, which significantly limits their application in modern large models and transformers. We propose Gradient Conductor (GCond), a method that builds upon PCGrad principles by combining them with gradient accumulation and an adaptive arbitration mechanism. We evaluated GCond on self-supervised learning tasks using MobileNetV3-Small and ConvNeXt architectures on the ImageNet 1K dataset and a combined head and neck CT scan dataset, comparing the proposed method against baseline linear combinations and state-of-the-art gradient conflict resolution methods. The stochastic mode of GCond achieved a two-fold computational speedup while maintaining optimization quality, and demonstrated superior performance across all evaluated metrics, achieving lower L1 and SSIM losses compared to other methods on both datasets. GCond exhibited high scalability, being successfully applied to both compact models (MobileNetV3-Small) and large architectures (ConvNeXt-tiny and ConvNeXt-Base). It also showed compatibility with modern optimizers such as AdamW and Lion/LARS. Therefore, GCond offers a scalable and efficient solution to the problem of gradient conflicts in multi-task learning.
comment: Preprint. Submitted to PeerJ
☆ XBusNet: Text-Guided Breast Ultrasound Segmentation via Multimodal Vision-Language Learning
Background: Precise breast ultrasound (BUS) segmentation supports reliable measurement, quantitative analysis, and downstream classification, yet remains difficult for small or low-contrast lesions with fuzzy margins and speckle noise. Text prompts can add clinical context, but directly applying weakly localized text-image cues (e.g., CAM/CLIP-derived signals) tends to produce coarse, blob-like responses that smear boundaries unless additional mechanisms recover fine edges. Methods: We propose XBusNet, a novel dual-prompt, dual-branch multimodal model that combines image features with clinically grounded text. A global pathway based on a CLIP Vision Transformer encodes whole-image semantics conditioned on lesion size and location, while a local U-Net pathway emphasizes precise boundaries and is modulated by prompts that describe shape, margin, and Breast Imaging Reporting and Data System (BI-RADS) terms. Prompts are assembled automatically from structured metadata, requiring no manual clicks. We evaluate on the Breast Lesions USG (BLU) dataset using five-fold cross-validation. Primary metrics are Dice and Intersection over Union (IoU); we also conduct size-stratified analyses and ablations to assess the roles of the global and local paths and the text-driven modulation. Results: XBusNet achieves state-of-the-art performance on BLU, with mean Dice of 0.8765 and IoU of 0.8149, outperforming six strong baselines. Small lesions show the largest gains, with fewer missed regions and fewer spurious activations. Ablation studies show complementary contributions of global context, local boundary modeling, and prompt-based modulation. Conclusions: A dual-prompt, dual-branch multimodal design that merges global semantics with local precision yields accurate BUS segmentation masks and improves robustness for small, low-contrast lesions.
comment: 15 pages, 3 figures, 4 tables
☆ Evaluation of Machine Learning Reconstruction Techniques for Accelerated Brain MRI Scans
This retrospective-prospective study evaluated whether a deep learning-based MRI reconstruction algorithm can preserve diagnostic quality in brain MRI scans accelerated up to fourfold, using both public and prospective clinical data. The study included 18 healthy volunteers (scans acquired at 3T, January 2024-March 2025), as well as selected fastMRI public datasets with diverse pathologies. Phase-encoding-undersampled 2D/3D T1, T2, and FLAIR sequences were reconstructed with DeepFoqus-Accelerate and compared with standard-of-care (SOC). Three board-certified neuroradiologists and two MRI technologists independently reviewed 36 paired SOC/AI reconstructions from both datasets using a 5-point Likert scale, while quantitative similarity was assessed for 408 scans and 1224 datasets using Structural Similarity Index (SSIM), Peak Signal-to-Noise Ratio (PSNR), and Haar wavelet-based Perceptual Similarity Index (HaarPSI). No AI-reconstructed scan scored below 3 (minimally acceptable), and 95% scored $\geq 4$. Mean SSIM was 0.95 $\pm$ 0.03 (90% cases >0.90), PSNR >41.0 dB, and HaarPSI >0.94. Inter-rater agreement was slight to moderate. Rare artifacts did not affect diagnostic interpretation. These findings demonstrate that DeepFoqus-Accelerate enables robust fourfold brain MRI acceleration with 75% reduced scan time, while preserving diagnostic image quality and supporting improved workflow efficiency.
comment: This work has been submitted to Radiology: Artificial Intelligence for possible publication
☆ Dimensionally Reduced Open-World Clustering: DROWCULA
Working with annotated data is the cornerstone of supervised learning. Nevertheless, providing labels to instances is a task that requires significant human effort. Several critical real-world applications make things more complicated because no matter how many labels may have been identified in a task of interest, it could be the case that examples corresponding to novel classes may appear in the future. Not unsurprisingly, prior work in this, so-called, `open-world' context has focused a lot on semi-supervised approaches. Focusing on image classification, somehow paradoxically, we propose a fully unsupervised approach to the problem of determining the novel categories in a particular dataset. Our approach relies on estimating the number of clusters using Vision Transformers, which utilize attention mechanisms to generate vector embeddings. Furthermore, we incorporate manifold learning techniques to refine these embeddings by exploiting the intrinsic geometry of the data, thereby enhancing the overall image clustering performance. Overall, we establish new State-of-the-Art results on single-modal clustering and Novel Class Discovery on CIFAR-10, CIFAR-100, ImageNet-100, and Tiny ImageNet. We do so, both when the number of clusters is known or unknown ahead of time. The code is available at: https://github.com/DROWCULA/DROWCULA.
comment: 16 pages, 12 Figures, 12 Tables
☆ Realism to Deception: Investigating Deepfake Detectors Against Face Enhancement
Face enhancement techniques are widely used to enhance facial appearance. However, they can inadvertently distort biometric features, leading to significant decrease in the accuracy of deepfake detectors. This study hypothesizes that these techniques, while improving perceptual quality, can degrade the performance of deepfake detectors. To investigate this, we systematically evaluate whether commonly used face enhancement methods can serve an anti-forensic role by reducing detection accuracy. We use both traditional image processing methods and advanced GAN-based enhancements to evaluate the robustness of deepfake detectors. We provide a comprehensive analysis of the effectiveness of these enhancement techniques, focusing on their impact on Na\"ive, Spatial, and Frequency-based detection methods. Furthermore, we conduct adversarial training experiments to assess whether exposure to face enhancement transformations improves model robustness. Experiments conducted on the FaceForensics++, DeepFakeDetection, and CelebDF-v2 datasets indicate that even basic enhancement filters can significantly reduce detection accuracy achieving ASR up to 64.63\%. In contrast, GAN-based techniques further exploit these vulnerabilities, achieving ASR up to 75.12\%. Our results demonstrate that face enhancement methods can effectively function as anti-forensic tools, emphasizing the need for more resilient and adaptive forensic methods.
☆ Adversarial Attacks on Audio Deepfake Detection: A Benchmark and Comparative Study
The widespread use of generative AI has shown remarkable success in producing highly realistic deepfakes, posing a serious threat to various voice biometric applications, including speaker verification, voice biometrics, audio conferencing, and criminal investigations. To counteract this, several state-of-the-art (SoTA) audio deepfake detection (ADD) methods have been proposed to identify generative AI signatures to distinguish between real and deepfake audio. However, the effectiveness of these methods is severely undermined by anti-forensic (AF) attacks that conceal generative signatures. These AF attacks span a wide range of techniques, including statistical modifications (e.g., pitch shifting, filtering, noise addition, and quantization) and optimization-based attacks (e.g., FGSM, PGD, C \& W, and DeepFool). In this paper, we investigate the SoTA ADD methods and provide a comparative analysis to highlight their effectiveness in exposing deepfake signatures, as well as their vulnerabilities under adversarial conditions. We conducted an extensive evaluation of ADD methods on five deepfake benchmark datasets using two categories: raw and spectrogram-based approaches. This comparative analysis enables a deeper understanding of the strengths and limitations of SoTA ADD methods against diverse AF attacks. It does not only highlight vulnerabilities of ADD methods, but also informs the design of more robust and generalized detectors for real-world voice biometrics. It will further guide future research in developing adaptive defense strategies that can effectively counter evolving AF techniques.
☆ Detection and Recovery of Adversarial Slow-Pose Drift in Offloaded Visual-Inertial Odometry
Visual-Inertial Odometry (VIO) supports immersive Virtual Reality (VR) by fusing camera and Inertial Measurement Unit (IMU) data for real-time pose. However, current trend of offloading VIO to edge servers can lead server-side threat surface where subtle pose spoofing can accumulate into substantial drift, while evading heuristic checks. In this paper, we study this threat and present an unsupervised, label-free detection and recovery mechanism. The proposed model is trained on attack-free sessions to learn temporal regularities of motion to detect runtime deviations and initiate recovery to restore pose consistency. We evaluate the approach in a realistic offloaded-VIO environment using ILLIXR testbed across multiple spoofing intensities. Experimental results in terms of well-known performance metrics show substantial reductions in trajectory and pose error compared to a no-defense baseline.
comment: 12 Pages, 8 Figures
☆ SVGauge: Towards Human-Aligned Evaluation for SVG Generation
Generated Scalable Vector Graphics (SVG) images demand evaluation criteria tuned to their symbolic and vectorial nature: criteria that existing metrics such as FID, LPIPS, or CLIPScore fail to satisfy. In this paper, we introduce SVGauge, the first human-aligned, reference based metric for text-to-SVG generation. SVGauge jointly measures (i) visual fidelity, obtained by extracting SigLIP image embeddings and refining them with PCA and whitening for domain alignment, and (ii) semantic consistency, captured by comparing BLIP-2-generated captions of the SVGs against the original prompts in the combined space of SBERT and TF-IDF. Evaluation on the proposed SHE benchmark shows that SVGauge attains the highest correlation with human judgments and reproduces system-level rankings of eight zero-shot LLM-based generators more faithfully than existing metrics. Our results highlight the necessity of vector-specific evaluation and provide a practical tool for benchmarking future text-to-SVG generation models.
comment: Accepted at 23rd edition of International Conference on Image Analysis and Processing 2025
☆ Faster VGGT with Block-Sparse Global Attention
Efficient and accurate feed-forward multi-view reconstruction has long been an important task in computer vision. Recent transformer-based models like VGGT and $\pi^3$ have achieved impressive results with simple architectures, yet they face an inherent runtime bottleneck, due to the quadratic complexity of the global attention layers, that limits the scalability to large image sets. In this paper, we empirically analyze the global attention matrix of these models and observe that probability mass concentrates on a small subset of patch-patch interactions that correspond to cross-view geometric matches. Motivated by the structured attention and inspired by recent advancement in large language models, we propose a replacement for the dense global attention operation based on highly optimized block-sparse kernels, yielding up to $4\times$ faster inference with comparable task performance. Our retrofit requires no retraining of the backbone, extends to both VGGT and $\pi^3$, and supports large image collections. Evaluations on a comprehensive suite of multi-view benchmarks demonstrate the effectiveness of our approach.
comment: Project page at https://vision.rwth-aachen.de/sparse-vggt
☆ Automated Evaluation of Gender Bias Across 13 Large Multimodal Models
Large multimodal models (LMMs) have revolutionized text-to-image generation, but they risk perpetuating the harmful social biases in their training data. Prior work has identified gender bias in these models, but methodological limitations prevented large-scale, comparable, cross-model analysis. To address this gap, we introduce the Aymara Image Fairness Evaluation, a benchmark for assessing social bias in AI-generated images. We test 13 commercially available LMMs using 75 procedurally-generated, gender-neutral prompts to generate people in stereotypically-male, stereotypically-female, and non-stereotypical professions. We then use a validated LLM-as-a-judge system to score the 965 resulting images for gender representation. Our results reveal (p < .001 for all): 1) LMMs systematically not only reproduce but actually amplify occupational gender stereotypes relative to real-world labor data, generating men in 93.0% of images for male-stereotyped professions but only 22.5% for female-stereotyped professions; 2) Models exhibit a strong default-male bias, generating men in 68.3% of the time for non-stereotyped professions; and 3) The extent of bias varies dramatically across models, with overall male representation ranging from 46.7% to 73.3%. Notably, the top-performing model de-amplified gender stereotypes and approached gender parity, achieving the highest fairness scores. This variation suggests high bias is not an inevitable outcome but a consequence of design choices. Our work provides the most comprehensive cross-model benchmark of gender bias to date and underscores the necessity of standardized, automated evaluation tools for promoting accountability and fairness in AI development.
☆ Enhancing Classification of Streaming Data with Image Distillation
This study tackles the challenge of efficiently classifying streaming data in envi-ronments with limited memory and computational resources. It delves into the application of data distillation as an innovative approach to improve the precision of streaming image data classification. By focusing on distilling essential features from data streams, our method aims to minimize computational demands while preserving crucial information for accurate classification. Our investigation com-pares this approach against traditional algorithms like Hoeffding Trees and Adap-tive Random Forest, adapted through embeddings for image data. The Distillation Based Classification (DBC) demonstrated superior performance, achieving a 73.1% accuracy rate, surpassing both traditional methods and Reservoir Sam-pling Based Classification (RBC) technique. This marks a significant advance-ment in streaming data classification, showcasing the effectiveness of our method in processing complex data streams and setting a new standard for accuracy and efficiency.
comment: 11 pages
☆ SAM$^{*}$: Task-Adaptive SAM with Physics-Guided Rewards
Image segmentation is a critical task in microscopy, essential for accurately analyzing and interpreting complex visual data. This task can be performed using custom models trained on domain-specific datasets, transfer learning from pre-trained models, or foundational models that offer broad applicability. However, foundational models often present a considerable number of non-transparent tuning parameters that require extensive manual optimization, limiting their usability for real-time streaming data analysis. Here, we introduce a reward function-based optimization to fine-tune foundational models and illustrate this approach for SAM (Segment Anything Model) framework by Meta. The reward functions can be constructed to represent the physics of the imaged system, including particle size distributions, geometries, and other criteria. By integrating a reward-driven optimization framework, we enhance SAM's adaptability and performance, leading to an optimized variant, SAM$^{*}$, that better aligns with the requirements of diverse segmentation tasks and particularly allows for real-time streaming data segmentation. We demonstrate the effectiveness of this approach in microscopy imaging, where precise segmentation is crucial for analyzing cellular structures, material interfaces, and nanoscale features.
comment: 19 pages, 8 figures
☆ Benchmarking Vision Transformers and CNNs for Thermal Photovoltaic Fault Detection with Explainable AI Validation
Artificial intelligence deployment for automated photovoltaic (PV) monitoring faces interpretability barriers that limit adoption in energy infrastructure applications. While deep learning achieves high accuracy in thermal fault detection, validation that model decisions align with thermal physics principles remains lacking, creating deployment hesitancy where understanding model reasoning is critical. This study provides a systematic comparison of convolutional neural networks (ResNet-18, EfficientNet-B0) and vision transformers (ViT-Tiny, Swin-Tiny) for thermal PV fault detection, using XRAI saliency analysis to assess alignment with thermal physics principles. This represents the first systematic comparison of CNNs and vision transformers for thermal PV fault detection with physics-validated interpretability. Evaluation on 20,000 infrared images spanning normal operation and 11 fault categories shows that Swin Transformer achieves the highest performance (94% binary accuracy; 73% multiclass accuracy) compared to CNN approaches. XRAI analysis reveals that models learn physically meaningful features, such as localized hotspots for cell defects, linear thermal paths for diode failures, and thermal boundaries for vegetation shading, consistent with expected thermal signatures. However, performance varies significantly across fault types: electrical faults achieve strong detection (F1-scores >0.90) while environmental factors like soiling remain challenging (F1-scores 0.20-0.33), indicating limitations imposed by thermal imaging resolution. The thermal physics-guided interpretability approach provides methodology for validating AI decision-making in energy monitoring applications, addressing deployment barriers in renewable energy infrastructure.
comment: 28 Pages, 4 Figures
☆ CardioComposer: Flexible and Compositional Anatomical Structure Generation with Disentangled Geometric Guidance
Generative models of 3D anatomy, when integrated with biophysical simulators, enable the study of structure-function relationships for clinical research and medical device design. However, current models face a trade-off between controllability and anatomical realism. We propose a programmable and compositional framework for guiding unconditional diffusion models of human anatomy using interpretable ellipsoidal primitives embedded in 3D space. Our method involves the selection of certain tissues within multi-tissue segmentation maps, upon which we apply geometric moment losses to guide the reverse diffusion process. This framework supports the independent control over size, shape, and position, as well as the composition of multi-component constraints during inference.
comment: 10 pages, 13 figures
☆ Validation of a CT-brain analysis tool for measuring global cortical atrophy in older patient cohorts
Quantification of brain atrophy currently requires visual rating scales which are time consuming and automated brain image analysis is warranted. We validated our automated deep learning (DL) tool measuring the Global Cerebral Atrophy (GCA) score against trained human raters, and associations with age and cognitive impairment, in representative older (>65 years) patients. CT-brain scans were obtained from patients in acute medicine (ORCHARD-EPR), acute stroke (OCS studies) and a legacy sample. Scans were divided in a 60/20/20 ratio for training, optimisation and testing. CT-images were assessed by two trained raters (rater-1=864 scans, rater-2=20 scans). Agreement between DL tool-predicted GCA scores (range 0-39) and the visual ratings was evaluated using mean absolute error (MAE) and Cohen's weighted kappa. Among 864 scans (ORCHARD-EPR=578, OCS=200, legacy scans=86), MAE between the DL tool and rater-1 GCA scores was 3.2 overall, 3.1 for ORCHARD-EPR, 3.3 for OCS and 2.6 for the legacy scans and half had DL-predicted GCA error between -2 and 2. Inter-rater agreement was Kappa=0.45 between the DL-tool and rater-1, and 0.41 between the tool and rater- 2 whereas it was lower at 0.28 for rater-1 and rater-2. There was no difference in GCA scores from the DL-tool and the two raters (one-way ANOVA, p=0.35) or in mean GCA scores between the DL-tool and rater-1 (paired t-test, t=-0.43, p=0.66), the tool and rater-2 (t=1.35, p=0.18) or between rater-1 and rater-2 (t=0.99, p=0.32). DL-tool GCA scores correlated with age and cognitive scores (both p<0.001). Our DL CT-brain analysis tool measured GCA score accurately and without user input in real-world scans acquired from older patients. Our tool will enable extraction of standardised quantitative measures of atrophy at scale for use in health data research and will act as proof-of-concept towards a point-of-care clinically approved tool.
comment: 6 figures
☆ Detection and Recovery of Adversarial Slow-Pose Drift in Offloaded Visual-Inertial Odometry
Visual-Inertial Odometry (VIO) supports immersive Virtual Reality (VR) by fusing camera and Inertial Measurement Unit (IMU) data for real-time pose. However, current trend of offloading VIO to edge servers can lead server-side threat surface where subtle pose spoofing can accumulate into substantial drift, while evading heuristic checks. In this paper, we study this threat and present an unsupervised, label-free detection and recovery mechanism. The proposed model is trained on attack-free sessions to learn temporal regularities of motion to detect runtime deviations and initiate recovery to restore pose consistency. We evaluate the approach in a realistic offloaded-VIO environment using ILLIXR testbed across multiple spoofing intensities. Experimental results in terms of well-known performance metrics show substantial reductions in trajectory and pose error compared to a no-defense baseline.
comment: 12 Pages, 8 Figures
♻ ☆ LatticeWorld: A Multimodal Large Language Model-Empowered Framework for Interactive Complex World Generation
Recent research has been increasingly focusing on developing 3D world models that simulate complex real-world scenarios. World models have found broad applications across various domains, including embodied AI, autonomous driving, entertainment, etc. A more realistic simulation with accurate physics will effectively narrow the sim-to-real gap and allow us to gather rich information about the real world conveniently. While traditional manual modeling has enabled the creation of virtual 3D scenes, modern approaches have leveraged advanced machine learning algorithms for 3D world generation, with most recent advances focusing on generative methods that can create virtual worlds based on user instructions. This work explores such a research direction by proposing LatticeWorld, a simple yet effective 3D world generation framework that streamlines the industrial production pipeline of 3D environments. LatticeWorld leverages lightweight LLMs (LLaMA-2-7B) alongside the industry-grade rendering engine (e.g., Unreal Engine 5) to generate a dynamic environment. Our proposed framework accepts textual descriptions and visual instructions as multimodal inputs and creates large-scale 3D interactive worlds with dynamic agents, featuring competitive multi-agent interaction, high-fidelity physics simulation, and real-time rendering. We conduct comprehensive experiments to evaluate LatticeWorld, showing that it achieves superior accuracy in scene layout generation and visual fidelity. Moreover, LatticeWorld achieves over a $90\times$ increase in industrial production efficiency while maintaining high creative quality compared with traditional manual production methods. Our demo video is available at https://youtu.be/8VWZXpERR18
♻ ☆ AURAD: Anatomy-Pathology Unified Radiology Synthesis with Progressive Representations
Medical image synthesis has become an essential strategy for augmenting datasets and improving model generalization in data-scarce clinical settings. However, fine-grained and controllable synthesis remains difficult due to limited high-quality annotations and domain shifts across datasets. Existing methods, often designed for natural images or well-defined tumors, struggle to generalize to chest radiographs, where disease patterns are morphologically diverse and tightly intertwined with anatomical structures. To address these challenges, we propose AURAD, a controllable radiology synthesis framework that jointly generates high-fidelity chest X-rays and pseudo semantic masks. Unlike prior approaches that rely on randomly sampled masks-limiting diversity, controllability, and clinical relevance-our method learns to generate masks that capture multi-pathology coexistence and anatomical-pathological consistency. It follows a progressive pipeline: pseudo masks are first generated from clinical prompts conditioned on anatomical structures, and then used to guide image synthesis. We also leverage pretrained expert medical models to filter outputs and ensure clinical plausibility. Beyond visual realism, the synthesized masks also serve as labels for downstream tasks such as detection and segmentation, bridging the gap between generative modeling and real-world clinical applications. Extensive experiments and blinded radiologist evaluations demonstrate the effectiveness and generalizability of our method across tasks and datasets. In particular, 78% of our synthesized images are classified as authentic by board-certified radiologists, and over 40% of predicted segmentation overlays are rated as clinically useful. All code, pre-trained models, and the synthesized dataset will be released upon publication.
♻ ☆ NF3DM: Combining Neural Fields and Deformation Models for 3D Non-Rigid Motion Reconstruction
We introduce a novel, data-driven approach for reconstructing temporally coherent 3D motion from unstructured and potentially partial observations of non-rigidly deforming shapes. Our goal is to achieve high-fidelity motion reconstructions for shapes that undergo near-isometric deformations, such as humans wearing loose clothing. The key novelty of our work lies in its ability to combine implicit shape representations with explicit mesh-based deformation models, enabling detailed and temporally coherent motion reconstructions without relying on parametric shape models or decoupling shape and motion. Each frame is represented as a neural field decoded from a feature space where observations over time are fused, hence preserving geometric details present in the input data. Temporal coherence is enforced with a near-isometric deformation constraint between adjacent frames that applies to the underlying surface in the neural field. Our method outperforms state-of-the-art approaches, as demonstrated by its application to human and animal motion sequences reconstructed from monocular depth videos.
comment: Minimal writing edits, one additional qualitative experiment from RGB images, method unchanged, results unchanged
♻ ☆ CoreMark: Toward Robust and Universal Text Watermarking Technique
Text watermarking schemes have gained considerable attention in recent years, yet still face critical challenges in achieving simultaneous robustness, generalizability, and imperceptibility. This paper introduces a new embedding paradigm,termed CORE, which comprises several consecutively aligned black pixel segments. Its key innovation lies in its inherent noise resistance during transmission and broad applicability across languages and fonts. Based on the CORE, we present a text watermarking framework named CoreMark. Specifically, CoreMark first dynamically extracts COREs from characters. Then, the characters with stronger robustness are selected according to the lengths of COREs. By modifying the thickness of the CORE, the hidden data is embedded into the selected characters without causing significant visual distortions. Moreover, a general plug-and-play embedding strength modulator is proposed, which can adaptively enhance the robustness for small font sizes by adjusting the embedding strength according to the font size. Experimental evaluation indicates that CoreMark demonstrates outstanding generalizability across multiple languages and fonts. Compared to existing methods, CoreMark achieves significant improvements in resisting screenshot, print-scan, and print camera attacks, while maintaining satisfactory imperceptibility.
comment: 10 pages, 16 figures
♻ ☆ CHIRLA: Comprehensive High-resolution Identification and Re-identification for Large-scale Analysis
Person re-identification (Re-ID) is a key challenge in computer vision, requiring the matching of individuals across cameras, locations, and time. While most research focuses on short-term scenarios with minimal appearance changes, real-world applications demand robust systems that handle long-term variations caused by clothing and physical changes. We present CHIRLA, Comprehensive High-resolution Identification and Re-identification for Large-scale Analysis, a novel dataset designed for video-based long-term person Re-ID. CHIRLA was recorded over seven months in four connected indoor environments using seven strategically placed cameras, capturing realistic movements with substantial clothing and appearance variability. The dataset includes 22 individuals, more than five hours of video, and about 1M bounding boxes with identity annotations obtained through semi-automatic labeling. We also define benchmark protocols for person tracking and Re-ID, covering diverse and challenging scenarios such as occlusion, reappearance, and multi-camera conditions. By introducing this comprehensive benchmark, we aim to facilitate the development and evaluation of Re-ID algorithms that can reliably perform in challenging, long-term real-world scenarios. The benchmark code is publicly available at: https://github.com/bdager/CHIRLA.
♻ ☆ Generative World Explorer
Planning with partial observation is a central challenge in embodied AI. A majority of prior works have tackled this challenge by developing agents that physically explore their environment to update their beliefs about the world state. In contrast, humans can $\textit{imagine}$ unseen parts of the world through a mental exploration and $\textit{revise}$ their beliefs with imagined observations. Such updated beliefs can allow them to make more informed decisions, without necessitating the physical exploration of the world at all times. To achieve this human-like ability, we introduce the $\textit{Generative World Explorer (Genex)}$, an egocentric world exploration framework that allows an agent to mentally explore a large-scale 3D world (e.g., urban scenes) and acquire imagined observations to update its belief. This updated belief will then help the agent to make a more informed decision at the current step. To train $\textit{Genex}$, we create a synthetic urban scene dataset, Genex-DB. Our experimental results demonstrate that (1) $\textit{Genex}$ can generate high-quality and consistent observations during long-horizon exploration of a large virtual physical world and (2) the beliefs updated with the generated observations can inform an existing decision-making model (e.g., an LLM agent) to make better plans.
comment: Website: generative-world-explorer.github.io
♻ ☆ VIBESegmentator: Full Body MRI Segmentation for the NAKO and UK Biobank
Objectives: To present a publicly available deep learning-based torso segmentation model that provides comprehensive voxel-wise coverage, including delineations that extend to the boundaries of anatomical compartments. Materials and Methods: We extracted preliminary segmentations from TotalSegmentator, spine, and body composition models for Magnetic Resonance Tomography (MR) images, then improved them iteratively and retrained an nnUNet model. Using a random retrospective subset of German National Cohort (NAKO), UK Biobank, internal MR and Computed Tomography (CT) data (Training: 2897 series from 626 subjects, 290 female; mean age 53+-16; 3-fold-cross validation (20% hold-out). Internal testing 36 series from 12 subjects, 6 male; mean age 60+-11), we segmented 71 structures in torso MR and 72 in CT images: 20 organs, 10 muscles, 19 vessels, 16 bones, ribs in CT, intervertebral discs, spinal cord, spinal canal and body composition (subcutaneous fat, unclassified muscles and visceral fat). For external validation, we used existing automatic organ segmentations, independent ground truth segmentations on gradient echo images, and the Amos data. We used non-parametric bootstrapping for confidence intervals and Wilcoxon rank-sum test for computing statistical significance. Results: We achieved an average Dice score of 0.90+-0.06 on our internal gradient echo test set, which included 71 semantic segmentation labels. Our model ties with the best model on Amos with a Dice of 0,81+-0.14, while having a larger field of view and a considerably higher number structures included. Conclusion: Our work presents a publicly available full-torso segmentation model for MRI and CT images that classifies almost all subject voxels to date.
comment: https://github.com/robert-graf/VIBESegmentator
♻ ☆ Multimodal Latent Fusion of ECG Leads for Early Assessment of Pulmonary Hypertension
Recent advancements in early assessment of pulmonary hypertension (PH) primarily focus on applying machine learning methods to centralized diagnostic modalities, such as 12-lead electrocardiogram (12L-ECG). Despite their potential, these approaches fall short in decentralized clinical settings, e.g., point-of-care and general practice, where handheld 6-lead ECG (6L-ECG) can offer an alternative but is limited by the scarcity of labeled data for developing reliable models. To address this, we propose a lead-specific electrocardiogram multimodal variational autoencoder (\textsc{LS-EMVAE}), which incorporates a hierarchical modality expert (HiME) fusion mechanism and a latent representation alignment loss. HiME combines mixture-of-experts and product-of-experts to enable flexible, adaptive latent fusion, while the alignment loss improves coherence among lead-specific and shared representations. To alleviate data scarcity and enhance representation learning, we adopt a transfer learning strategy: the model is first pre-trained on a large unlabeled 12L-ECG dataset and then fine-tuned on smaller task-specific labeled 6L-ECG datasets. We validate \textsc{LS-EMVAE} across two retrospective cohorts in a 6L-ECG setting: 892 subjects from the ASPIRE registry for (1) PH detection and (2) phenotyping pre-/post-capillary PH, and 16,416 subjects from UK Biobank for (3) predicting elevated pulmonary atrial wedge pressure, where it consistently outperforms unimodal and multimodal baseline methods and demonstrates strong generalizability and interpretability. The code is available at https://github.com/Shef-AIRE/LS-EMVAE.
♻ ☆ Convolutional Neural Networks Can (Meta-)Learn the Same-Different Relation
While convolutional neural networks (CNNs) have come to match and exceed human performance in many settings, the tasks these models optimize for are largely constrained to the level of individual objects, such as classification and captioning. Humans remain vastly superior to CNNs in visual tasks involving relations, including the ability to identify two objects as `same' or `different'. A number of studies have shown that while CNNs can be coaxed into learning the same-different relation in some settings, they tend to generalize poorly to other instances of this relation. In this work we show that the same CNN architectures that fail to generalize the same-different relation with conventional training are able to succeed when trained via meta-learning, which explicitly encourages abstraction and generalization across tasks.
♻ ☆ Driver-Net: Multi-Camera Fusion for Assessing Driver Take-Over Readiness in Automated Vehicles
Ensuring safe transition of control in automated vehicles requires an accurate and timely assessment of driver readiness. This paper introduces Driver-Net, a novel deep learning framework that fuses multi-camera inputs to estimate driver take-over readiness. Unlike conventional vision-based driver monitoring systems that focus on head pose or eye gaze, Driver-Net captures synchronised visual cues from the driver's head, hands, and body posture through a triple-camera setup. The model integrates spatio-temporal data using a dual-path architecture, comprising a Context Block and a Feature Block, followed by a cross-modal fusion strategy to enhance prediction accuracy. Evaluated on a diverse dataset collected from the University of Leeds Driving Simulator, the proposed method achieves an accuracy of up to 95.8% in driver readiness classification. This performance significantly enhances existing approaches and highlights the importance of multimodal and multi-view fusion. As a real-time, non-intrusive solution, Driver-Net contributes meaningfully to the development of safer and more reliable automated vehicles and aligns with new regulatory mandates and upcoming safety standards.
♻ ☆ Visual Structures Helps Visual Reasoning: Addressing the Binding Problem in VLMs
Despite progress in Vision-Language Models (VLMs), their capacity for visual reasoning is often limited by the binding problem: the failure to reliably associate perceptual features with their correct visual referents. This limitation underlies persistent errors in tasks such as counting, visual search, scene description, and spatial relationship understanding. A key factor is that current VLMs process visual features largely in parallel, lacking mechanisms for spatially grounded, serial attention. This paper introduces VISER (Visual Input Structure for Enhanced Reasoning), a simple yet effective intervention: augmenting visual inputs with low-level spatial structures and pairing this with a textual prompt that encourages sequential, spatially-aware parsing. We empirically demonstrate substantial performance improvements across core visual reasoning tasks. Specifically, VISER improves GPT-4o visual search accuracy by 25.00%, increases counting accuracy by 26.83%, reduces edit distance error in scene description by 0.32, and enhances performance on spatial relationship tasks by 9.50% on a 2D synthetic dataset. Furthermore, we find that the visual modification is essential for these gains; purely textual strategies, including Chain-of-Thought prompting, are insufficient and can even degrade performance. VISER enhances binding only with a single-query inference, underscoring the importance of visual input design over purely linguistically-based approaches. These findings suggest that low-level visual structuring is a powerful and underexplored direction for improving compositional visual reasoning and could serve as a general strategy for enhancing VLM performance on spatially grounded tasks.
♻ ☆ SUDER: Self-Improving Unified Large Multimodal Models for Understanding and Generation with Dual Self-Rewards
Building upon large language models (LLMs), recent large multimodal models (LMMs) unify cross-model understanding and generation into a single framework. However, LMMs still struggle to achieve accurate vision-language alignment, prone to generating text responses contradicting the visual input or failing to follow the text-to-image prompts. Current solutions require external supervision (e.g., human feedback or reward models) and only address unidirectional tasks-either understanding or generation. In this work, based on the observation that understanding and generation are naturally inverse dual tasks, we propose \textbf{SUDER} (\textbf{S}elf-improving \textbf{U}nified LMMs with \textbf{D}ual s\textbf{E}lf-\textbf{R}ewards), a framework reinforcing the understanding and generation capabilities of LMMs with a self-supervised dual reward mechanism. SUDER leverages the inherent duality between understanding and generation tasks to provide self-supervised optimization signals for each other. Specifically, we sample multiple outputs for a given input in one task domain, then reverse the input-output pairs to compute the dual likelihood within the model as self-rewards for optimization. Extensive experimental results on visual understanding and generation benchmarks demonstrate that our method can effectively enhance the performance of the model without any external supervision, especially achieving remarkable improvements in text-to-image tasks.
♻ ☆ Corner Cases: How Size and Position of Objects Challenge ImageNet-Trained Models
Backgrounds in images play a major role in contributing to spurious correlations among different data points. Owing to aesthetic preferences of humans capturing the images, datasets can exhibit positional (location of the object within a given frame) and size (region-of-interest to image ratio) biases for different classes. In this paper, we show that these biases can impact how much a model relies on spurious features in the background to make its predictions. To better illustrate our findings, we propose a synthetic dataset derived from ImageNet-1k, Hard-Spurious-ImageNet, which contains images with various backgrounds, object positions, and object sizes. By evaluating the dataset on different pretrained models, we find that most models rely heavily on spurious features in the background when the region-of-interest (ROI) to image ratio is small and the object is far from the center of the image. Moreover, we also show that current methods that aim to mitigate harmful spurious features, do not take into account these factors, hence fail to achieve considerable performance gains for worst-group accuracies when the size and location of core features in an image change. The dataset and implementation code are available at https://github.com/Mishalfatima/Corner_Cases.
♻ ☆ In-Context Reverse Classification Accuracy: Efficient Estimation of Segmentation Quality without Ground-Truth
Assessing the quality of automatic image segmentation is crucial in clinical practice, but often very challenging due to the limited availability of ground truth annotations. In this paper, we introduce In-Context Reverse Classification Accuracy (In-Context RCA), a novel framework for automatically estimating segmentation quality in the absence of ground-truth annotations. By leveraging recent in-context learning segmentation models and incorporating retrieval-augmentation techniques to select the most relevant reference images, our approach enables efficient quality estimation with minimal reference data. Validated across diverse medical imaging modalities, our method demonstrates robust performance and computational efficiency, offering a promising solution for automated quality control in clinical workflows, where fast and reliable segmentation assessment is essential. The code is available at https://github.com/mcosarinsky/In-Context-RCA.
♻ ☆ Enhanced Partially Relevant Video Retrieval through Inter- and Intra-Sample Analysis with Coherence Prediction
Partially Relevant Video Retrieval (PRVR) aims to retrieve the target video that is partially relevant to the text query. The primary challenge in PRVR arises from the semantic asymmetry between textual and visual modalities, as videos often contain substantial content irrelevant to the query. Existing methods coarsely align paired videos and text queries to construct the semantic space, neglecting the critical cross-modal dual nature inherent in this task: inter-sample correlation and intra-sample redundancy. To this end, we propose a novel PRVR framework to systematically exploit these two characteristics. Our framework consists of three core modules. First, the Inter Correlation Enhancement (ICE) module captures inter-sample correlation by identifying semantically similar yet unpaired text queries and video moments, combining them to form pseudo-positive pairs for more robust semantic space construction. Second, the Intra Redundancy Mining (IRM) module mitigates intra-sample redundancy by mining redundant moment features and distinguishing them from query-relevant moments, encouraging the model to learn more discriminative representations. Finally, to reinforce these modules, we introduce the Temporal Coherence Prediction (TCP) module, which enhances temporal structure learning by training the model to predict the original temporal order of randomly shuffled video frames and moments. Extensive experiments demonstrate the superiority of our approach compared to prior methods, achieving state-of-the-art results.
♻ ☆ PRO: Projection Domain Synthesis for CT Imaging
Synthetic CT projection data is crucial for advancing imaging research, yet its generation remains challenging. Current image domain methods are limited as they cannot simulate the physical acquisition process or utilize the complete statistical information present in projection data, restricting their utility and fidelity. In this work, we present PRO, a projection domain synthesis foundation model for CT imaging. To the best of our knowledge, this is the first study that performs CT synthesis in the projection domain. Unlike previous approaches that operate in the image domain, PRO learns rich structural representations from projection data and leverages anatomical text prompts for controllable synthesis. Projection data generation models can utilize complete measurement signals and simulate the physical processes of scanning, including material attenuation characteristics, beam hardening, scattering, and projection geometry, and support research on downstream imaging tasks. Moreover, PRO functions as a foundation model, capable of generalizing across diverse downstream tasks by adjusting its generative behavior via prompt inputs. Experimental results demonstrated that incorporating our synthesized data significantly improves performance across multiple downstream tasks, including low-dose and sparse-view reconstruction. These findings underscore the versatility and scalability of PRO in data generation for various CT applications. These results highlight the potential of projection domain synthesis as a powerful tool for data augmentation and robust CT imaging. Our source code is publicly available at: https://github.com/yqx7150/PRO.
♻ ☆ ILeSiA: Interactive Learning of Robot Situational Awareness from Camera Input IEEE
Learning from demonstration is a promising approach for teaching robots new skills. However, a central challenge in the execution of acquired skills is the ability to recognize faults and prevent failures. This is essential because demonstrations typically cover only a limited set of scenarios and often only the successful ones. During task execution, unforeseen situations may arise, such as changes in the robot's environment or interaction with human operators. To recognize such situations, this paper focuses on teaching the robot situational awareness by using a camera input and labeling frames as safe or risky. We train a Gaussian Process (GP) regression model fed by a low-dimensional latent space representation of the input images. The model outputs a continuous risk score ranging from zero to one, quantifying the degree of risk at each timestep. This allows for pausing task execution in unsafe situations and directly adding new training data, labeled by the human user. Our experiments on a robotic manipulator show that the proposed method can reliably detect both known and novel faults using only a single example for each new fault. In contrast, a standard multi-layer perceptron (MLP) performs well only on faults it has encountered during training. Our method enables the next generation of cobots to be rapidly deployed with easy-to-set-up, vision-based risk assessment, proactively safeguarding humans and detecting misaligned parts or missing objects before failures occur. We provide all the code and data required to reproduce our experiments at imitrob.ciirc.cvut.cz/publications/ilesia.
comment: 8 pages, 9 figures. IEEE Robotics and Automation Letters. Accepted August 2025
♻ ☆ What Can We Learn from Harry Potter? An Exploratory Study of Visual Representation Learning from Atypical Videos BMVC 2025
Humans usually show exceptional generalisation and discovery ability in the open world, when being shown uncommon new concepts. Whereas most existing studies in the literature focus on common typical data from closed sets, open-world novel discovery is under-explored in videos. In this paper, we are interested in asking: What if atypical unusual videos are exposed in the learning process? To this end, we collect a new video dataset consisting of various types of unusual atypical data (e.g., sci-fi, animation, etc.). To study how such atypical data may benefit open-world learning, we feed them into the model training process for representation learning. Focusing on three key tasks in open-world learning: out-of-distribution (OOD) detection, novel category discovery (NCD), and zero-shot action recognition (ZSAR), we found that even straightforward learning approaches with atypical data consistently improve performance across various settings. Furthermore, we found that increasing the categorical diversity of the atypical samples further boosts OOD detection performance. Additionally, in the NCD task, using a smaller yet more semantically diverse set of atypical samples leads to better performance compared to using a larger but more typical dataset. In the ZSAR setting, the semantic diversity of atypical videos helps the model generalise better to unseen action classes. These observations in our extensive experimental evaluations reveal the benefits of atypical videos for visual representation learning in the open world, together with the newly proposed dataset, encouraging further studies in this direction. The project page is at: https://julysun98.github.io/atypical_dataset.
comment: Accepted to BMVC 2025
♻ ☆ An Architecture Built for Federated Learning: Addressing Data Heterogeneity through Adaptive Normalization-Free Feature Recalibration
Federated learning is a decentralized collaborative training paradigm preserving stakeholders' data ownership while improving performance and generalization. However, statistical heterogeneity among client datasets degrades system performance. To address this issue, we propose Adaptive Normalization-free Feature Recalibration (ANFR), a model architecture-level approach that combines weight standardization and channel attention to combat heterogeneous data in FL. ANFR leverages weight standardization to avoid mismatched client statistics and inconsistent averaging, ensuring robustness under heterogeneity, and channel attention to produce learnable scaling factors for feature maps, suppressing inconsistencies across clients due to heterogeneity. We demonstrate that combining these techniques boosts model performance beyond their individual contributions, by improving class selectivity and channel attention weight distribution. ANFR works with any aggregation method, supports both global and personalized FL, and adds minimal overhead. Furthermore, when training with differential privacy, ANFR achieves an appealing balance between privacy and utility, enabling strong privacy guarantees without sacrificing performance. By integrating weight standardization and channel attention in the backbone model, ANFR offers a novel and versatile approach to the challenge of statistical heterogeneity. Extensive experiments show ANFR consistently outperforms established baselines across various aggregation methods, datasets, and heterogeneity conditions. Code is provided at https://github.com/siomvas/ANFR.
comment: Accepted into TMLR, version of record https://openreview.net/forum?id=GtdYFLsblb
♻ ☆ DEXOP: A Device for Robotic Transfer of Dexterous Human Manipulation
We introduce perioperation, a paradigm for robotic data collection that sensorizes and records human manipulation while maximizing the transferability of the data to real robots. We implement this paradigm in DEXOP, a passive hand exoskeleton designed to maximize human ability to collect rich sensory (vision + tactile) data for diverse dexterous manipulation tasks in natural environments. DEXOP mechanically connects human fingers to robot fingers, providing users with direct contact feedback (via proprioception) and mirrors the human hand pose to the passive robot hand to maximize the transfer of demonstrated skills to the robot. The force feedback and pose mirroring make task demonstrations more natural for humans compared to teleoperation, increasing both speed and accuracy. We evaluate DEXOP across a range of dexterous, contact-rich tasks, demonstrating its ability to collect high-quality demonstration data at scale. Policies learned with DEXOP data significantly improve task performance per unit time of data collection compared to teleoperation, making DEXOP a powerful tool for advancing robot dexterity. Our project page is at https://dex-op.github.io.
comment: project page: https://dex-op.github.io
♻ ☆ IMAGGarment: Fine-Grained Garment Generation for Controllable Fashion Design
This paper presents IMAGGarment, a fine-grained garment generation (FGG) framework that enables high-fidelity garment synthesis with precise control over silhouette, color, and logo placement. Unlike existing methods that are limited to single-condition inputs, IMAGGarment addresses the challenges of multi-conditional controllability in personalized fashion design and digital apparel applications. Specifically, IMAGGarment employs a two-stage training strategy to separately model global appearance and local details, while enabling unified and controllable generation through end-to-end inference. In the first stage, we propose a global appearance model that jointly encodes silhouette and color using a mixed attention module and a color adapter. In the second stage, we present a local enhancement model with an adaptive appearance-aware module to inject user-defined logos and spatial constraints, enabling accurate placement and visual consistency. To support this task, we release GarmentBench, a large-scale dataset comprising over 180K garment samples paired with multi-level design conditions, including sketches, color references, logo placements, and textual prompts. Extensive experiments demonstrate that our method outperforms existing baselines, achieving superior structural stability, color fidelity, and local controllability performance. Code, models, and datasets are publicly available at https://github.com/muzishen/IMAGGarment.
♻ ☆ ESVO2: Direct Visual-Inertial Odometry with Stereo Event Cameras
Event-based visual odometry is a specific branch of visual Simultaneous Localization and Mapping (SLAM) techniques, which aims at solving tracking and mapping subproblems (typically in parallel), by exploiting the special working principles of neuromorphic (i.e., event-based) cameras. Due to the motion-dependent nature of event data, explicit data association (i.e., feature matching) under large-baseline view-point changes is difficult to establish, making direct methods a more rational choice. However, state-of-the-art direct methods are limited by the high computational complexity of the mapping sub-problem and the degeneracy of camera pose tracking in certain degrees of freedom (DoF) in rotation. In this paper, we tackle these issues by building an event-based stereo visual-inertial odometry system on top of a direct pipeline. Specifically, to speed up the mapping operation, we propose an efficient strategy for sampling contour points according to the local dynamics of events. The mapping performance is also improved in terms of structure completeness and local smoothness by merging the temporal stereo and static stereo results. To circumvent the degeneracy of camera pose tracking in recovering the pitch and yaw components of general 6-DoF motion, we introduce IMU measurements as motion priors via pre-integration. To this end, a compact back-end is proposed for continuously updating the IMU bias and predicting the linear velocity, enabling an accurate motion prediction for camera pose tracking. The resulting system scales well with modern high-resolution event cameras and leads to better global positioning accuracy in large-scale outdoor environments. Extensive evaluations on five publicly available datasets featuring different resolutions and scenarios justify the superior performance of the proposed system against five state-of-the-art methods.
♻ ☆ Learn2Reg 2024: New Benchmark Datasets Driving Progress on New Challenges
Medical image registration is critical for clinical applications, and fair benchmarking of different methods is essential for monitoring ongoing progress. To date, the Learn2Reg 2020-2023 challenges have released several complementary datasets and established metrics for evaluations. However, these editions did not capture all aspects of the registration problem, particularly in terms of modality diversity and task complexity. To address these limitations, the 2024 edition introduces three new tasks, including large-scale multi-modal registration and unsupervised inter-subject brain registration, as well as the first microscopy-focused benchmark within Learn2Reg. The new datasets also inspired new method developments, including invertibility constraints, pyramid features, keypoints alignment and instance optimisation.
comment: submitted to MELBA Journal v2: added Jinming Duan to author list
♻ ☆ Preacher: Paper-to-Video Agentic System ICCV 2025
The paper-to-video task converts a research paper into a structured video abstract, distilling key concepts, methods, and conclusions into an accessible, well-organized format. While state-of-the-art video generation models demonstrate potential, they are constrained by limited context windows, rigid video duration constraints, limited stylistic diversity, and an inability to represent domain-specific knowledge. To address these limitations, we introduce Preacher, the first paper-to-video agentic system. Preacher employs a topdown approach to decompose, summarize, and reformulate the paper, followed by bottom-up video generation, synthesizing diverse video segments into a coherent abstract. To align cross-modal representations, we define key scenes and introduce a Progressive Chain of Thought (P-CoT) for granular, iterative planning. Preacher successfully generates high-quality video abstracts across five research fields, demonstrating expertise beyond current video generation models. Code will be released at: https://github.com/Gen-Verse/Paper2Video
comment: ICCV 2025. Code: https://github.com/Gen-Verse/Paper2Video
♻ ☆ Robust and Label-Efficient Deep Waste Detection BMVC 2025
Effective waste sorting is critical for sustainable recycling, yet AI research in this domain continues to lag behind commercial systems due to limited datasets and reliance on legacy object detectors. In this work, we advance AI-driven waste detection by establishing strong baselines and introducing an ensemble-based semi-supervised learning framework. We first benchmark state-of-the-art Open-Vocabulary Object Detection (OVOD) models on the real-world ZeroWaste dataset, demonstrating that while class-only prompts perform poorly, LLM-optimized prompts significantly enhance zero-shot accuracy. Next, to address domain-specific limitations, we fine-tune modern transformer-based detectors, achieving a new baseline of 51.6 mAP. We then propose a soft pseudo-labeling strategy that fuses ensemble predictions using spatial and consensus-aware weighting, enabling robust semi-supervised training. Applied to the unlabeled ZeroWaste-s subset, our pseudo-annotations achieve performance gains that surpass fully supervised training, underscoring the effectiveness of scalable annotation pipelines. Our work contributes to the research community by establishing rigorous baselines, introducing a robust ensemble-based pseudo-labeling pipeline, generating high-quality annotations for the unlabeled ZeroWaste-s subset, and systematically evaluating OVOD models under real-world waste sorting conditions. Our code is available at: https://github.com/h-abid97/robust-waste-detection.
comment: Accepted at BMVC 2025
♻ ☆ Evidential Transformers for Improved Image Retrieval ECCV 2024
We introduce the Evidential Transformer, an uncertainty-driven transformer model for improved and robust image retrieval. In this paper, we make several contributions to content-based image retrieval (CBIR). We incorporate probabilistic methods into image retrieval, achieving robust and reliable results, with evidential classification surpassing traditional training based on multiclass classification as a baseline for deep metric learning. Furthermore, we improve the state-of-the-art retrieval results on several datasets by leveraging the Global Context Vision Transformer (GC ViT) architecture. Our experimental results consistently demonstrate the reliability of our approach, setting a new benchmark in CBIR in all test settings on the Stanford Online Products (SOP) and CUB-200-2011 datasets.
comment: 6 pages, 6 figures, presented at the 3rd Workshop on Uncertainty Quantification for Computer Vision, at the ECCV 2024 conference in Milan, Italy
♻ ☆ MM-Spatial: Exploring 3D Spatial Understanding in Multimodal LLMs ICCV 2025
Multimodal large language models (MLLMs) excel at 2D visual understanding but remain limited in their ability to reason about 3D space. In this work, we leverage large-scale high-quality 3D scene data with open-set annotations to introduce 1) a novel supervised fine-tuning dataset and 2) a new evaluation benchmark, focused on indoor scenes. Our Cubify Anything VQA (CA-VQA) data covers diverse spatial tasks including spatial relationship prediction, metric size and distance estimation, and 3D grounding. We show that CA-VQA enables us to train MM-Spatial, a strong generalist MLLM that also achieves state-of-the-art performance on 3D spatial understanding benchmarks, including our own. We show how incorporating metric depth and multi-view inputs (provided in CA-VQA) can further improve 3D understanding, and demonstrate that data alone allows our model to achieve depth perception capabilities comparable to dedicated monocular depth estimation models.
comment: ICCV 2025
♻ ☆ Fairness-Aware Data Augmentation for Cardiac MRI using Text-Conditioned Diffusion Models
While deep learning holds great promise for disease diagnosis and prognosis in cardiac magnetic resonance imaging, its progress is often constrained by highly imbalanced and biased training datasets. To address this issue, we propose a method to alleviate imbalances inherent in datasets through the generation of synthetic data based on sensitive attributes such as sex, age, body mass index (BMI), and health condition. We adopt ControlNet based on a denoising diffusion probabilistic model to condition on text assembled from patient metadata and cardiac geometry derived from segmentation masks. We assess our method using a large-cohort study from the UK Biobank by evaluating the realism of the generated images using established quantitative metrics. Furthermore, we conduct a downstream classification task aimed at debiasing a classifier by rectifying imbalances within underrepresented groups through synthetically generated samples. Our experiments demonstrate the effectiveness of the proposed approach in mitigating dataset imbalances, such as the scarcity of diagnosed female patients or individuals with normal BMI level suffering from heart failure. This work represents a major step towards the adoption of synthetic data for the development of fair and generalizable models for medical classification tasks. Notably, we conduct all our experiments using a single, consumer-level GPU to highlight the feasibility of our approach within resource-constrained environments. Our code is available at https://github.com/faildeny/debiasing-cardiac-mri.
♻ ☆ Physical Autoregressive Model for Robotic Manipulation without Action Pretraining
The scarcity of manipulation data has motivated the use of pretrained large models from other modalities in robotics. In this work, we build upon autoregressive video generation models to propose a Physical Autoregressive Model (PAR), where physical tokens combine frames and actions to represent the joint evolution of the robot and its environment. PAR leverages the world knowledge embedded in video pretraining to understand physical dynamics without requiring action pretraining, enabling accurate video prediction and consistent action trajectories. It also adopts a DiT-based de-tokenizer to model frames and actions as continuous tokens, mitigating quantization errors and facilitating mutual enhancement. Furthermore, we incorporate a causal mask with inverse kinematics, parallel training, and the KV-cache mechanism to further improve performance and efficiency. Experiments on the ManiSkill benchmark show that PAR achieves a 100\% success rate on the PushCube task, matches the performance of action-pretrained baselines on other tasks, and accurately predicts future videos with tightly aligned action trajectories. These findings underscore a promising direction for robotic manipulation by transferring world knowledge from autoregressive video pretraining. The project page is here: https://hcplab-sysu.github.io/PhysicalAutoregressiveModel/
comment: 16 pages, 6 figures
♻ ☆ Semi-SMD: Semi-Supervised Metric Depth Estimation via Surrounding Cameras for Autonomous Driving
In this paper, we introduce Semi-SD, a novel metric depth estimation framework tailored for surrounding cameras equipment in autonomous driving. In this work, the input data consists of adjacent surrounding frames and camera parameters. We propose a unified spatial-temporal-semantic fusion module to construct the visual fused features. Cross-attention components for surrounding cameras and adjacent frames are utilized to focus on metric scale information refinement and temporal feature matching. Building on this, we propose a pose estimation framework using surrounding cameras, their corresponding estimated depths, and extrinsic parameters, which effectively address the scale ambiguity in multi-camera setups. Moreover, semantic world model and monocular depth estimation world model are integrated to supervised the depth estimation, which improve the quality of depth estimation. We evaluate our algorithm on DDAD and nuScenes datasets, and the results demonstrate that our method achieves state-of-the-art performance in terms of surrounding camera based depth estimation quality. The source code will be available on https://github.com/xieyuser/Semi-SD.
♻ ☆ Hyper Diffusion Avatars: Dynamic Human Avatar Generation using Network Weight Space Diffusion
Creating human avatars is a highly desirable yet challenging task. Recent advancements in radiance field rendering have achieved unprecedented photorealism and real-time performance for personalized dynamic human avatars. However, these approaches are typically limited to person-specific rendering models trained on multi-view video data for a single individual, limiting their ability to generalize across different identities. On the other hand, generative approaches leveraging prior knowledge from pre-trained 2D diffusion models can produce cartoonish, static human avatars, which are animated through simple skeleton-based articulation. Therefore, the avatars generated by these methods suffer from lower rendering quality compared to person-specific rendering methods and fail to capture pose-dependent deformations such as cloth wrinkles. In this paper, we propose a novel approach that unites the strengths of person-specific rendering and diffusion-based generative modeling to enable dynamic human avatar generation with both high photorealism and realistic pose-dependent deformations. Our method follows a two-stage pipeline: first, we optimize a set of person-specific UNets, with each network representing a dynamic human avatar that captures intricate pose-dependent deformations. In the second stage, we train a hyper diffusion model over the optimized network weights. During inference, our method generates network weights for real-time, controllable rendering of dynamic human avatars. Using a large-scale, cross-identity, multi-view video dataset, we demonstrate that our approach outperforms state-of-the-art human avatar generation methods.
comment: Project webpage: https://vcai.mpi-inf.mpg.de/projects/HDA/
♻ ☆ Content Generation Models in Computational Pathology: A Comprehensive Survey on Methods, Applications, and Challenges
Content generation modeling has emerged as a promising direction in computational pathology, offering capabilities such as data-efficient learning, synthetic data augmentation, and task-oriented generation across diverse diagnostic tasks. This review provides a comprehensive synthesis of recent progress in the field, organized into four key domains: image generation, text generation, molecular profile-morphology generation, and other specialized generation applications. By analyzing over 150 representative studies, we trace the evolution of content generation architectures -- from early generative adversarial networks to recent advances in diffusion models and generative vision-language models. We further examine the datasets and evaluation protocols commonly used in this domain and highlight ongoing limitations, including challenges in generating high-fidelity whole slide images, clinical interpretability, and concerns related to the ethical and legal implications of synthetic data. The review concludes with a discussion of open challenges and prospective research directions, with an emphasis on developing integrated and clinically deployable generation systems. This work aims to provide a foundational reference for researchers and practitioners developing content generation models in computational pathology.
comment: 20 pages, 8 figures
♻ ☆ Transforming Hyperspectral Images Into Chemical Maps: A Novel End-to-End Deep Learning Approach
Current approaches to chemical map generation from hyperspectral images are based on models such as partial least squares (PLS) regression, generating pixel-wise predictions that do not consider spatial context and suffer from a high degree of noise. This study proposes an end-to-end deep learning approach using a modified version of U-Net and a custom loss function to directly obtain chemical maps from hyperspectral images, skipping all intermediate steps required for traditional pixel-wise analysis. The U-Net is compared with the traditional PLS regression on a real dataset of pork belly samples with associated mean fat reference values. The U-Net obtains a test set root mean squared error of between 9% and 13% lower than that of PLS regression on the task of mean fat prediction. At the same time, U-Net generates fine detail chemical maps where 99.91% of the variance is spatially correlated. Conversely, only 2.53% of the variance in the PLS-generated chemical maps is spatially correlated, indicating that each pixel-wise prediction is largely independent of neighboring pixels. Additionally, while the PLS-generated chemical maps contain predictions far beyond the physically possible range of 0-100%, U-Net learns to stay inside this range. Thus, the findings of this study indicate that U-Net is superior to PLS for chemical map generation.
♻ ☆ GoalFlow: Goal-Driven Flow Matching for Multimodal Trajectories Generation in End-to-End Autonomous Driving
We propose GoalFlow, an end-to-end autonomous driving method for generating high-quality multimodal trajectories. In autonomous driving scenarios, there is rarely a single suitable trajectory. Recent methods have increasingly focused on modeling multimodal trajectory distributions. However, they suffer from trajectory selection complexity and reduced trajectory quality due to high trajectory divergence and inconsistencies between guidance and scene information. To address these issues, we introduce GoalFlow, a novel method that effectively constrains the generative process to produce high-quality, multimodal trajectories. To resolve the trajectory divergence problem inherent in diffusion-based methods, GoalFlow constrains the generated trajectories by introducing a goal point. GoalFlow establishes a novel scoring mechanism that selects the most appropriate goal point from the candidate points based on scene information. Furthermore, GoalFlow employs an efficient generative method, Flow Matching, to generate multimodal trajectories, and incorporates a refined scoring mechanism to select the optimal trajectory from the candidates. Our experimental results, validated on the Navsim\cite{Dauner2024_navsim}, demonstrate that GoalFlow achieves state-of-the-art performance, delivering robust multimodal trajectories for autonomous driving. GoalFlow achieved PDMS of 90.3, significantly surpassing other methods. Compared with other diffusion-policy-based methods, our approach requires only a single denoising step to obtain excellent performance. The code is available at https://github.com/YvanYin/GoalFlow.
♻ ☆ SGDFuse: SAM-Guided Diffusion for High-Fidelity Infrared and Visible Image Fusion
Infrared and visible image fusion (IVIF) aims to combine the thermal radiation information from infrared images with the rich texture details from visible images to enhance perceptual capabilities for downstream visual tasks. However, existing methods often fail to preserve key targets due to a lack of deep semantic understanding of the scene, while the fusion process itself can also introduce artifacts and detail loss, severely compromising both image quality and task performance. To address these issues, this paper proposes SGDFuse, a conditional diffusion model guided by the Segment Anything Model (SAM), to achieve high-fidelity and semantically-aware image fusion. The core of our method is to utilize high-quality semantic masks generated by SAM as explicit priors to guide the optimization of the fusion process via a conditional diffusion model. Specifically, the framework operates in a two-stage process: it first performs a preliminary fusion of multi-modal features, and then utilizes the semantic masks from SAM jointly with the preliminary fused image as a condition to drive the diffusion model's coarse-to-fine denoising generation. This ensures the fusion process not only has explicit semantic directionality but also guarantees the high fidelity of the final result. Extensive experiments demonstrate that SGDFuse achieves state-of-the-art performance in both subjective and objective evaluations, as well as in its adaptability to downstream tasks, providing a powerful solution to the core challenges in image fusion. The code of SGDFuse is available at https://github.com/boshizhang123/SGDFuse.
comment: Submitted to Information Fusion
♻ ☆ REVEAL -- Reasoning and Evaluation of Visual Evidence through Aligned Language ICCV 2025
The rapid advancement of generative models has intensified the challenge of detecting and interpreting visual forgeries, necessitating robust frameworks for image forgery detection while providing reasoning as well as localization. While existing works approach this problem using supervised training for specific manipulation or anomaly detection in the embedding space, generalization across domains remains a challenge. We frame this problem of forgery detection as a prompt-driven visual reasoning task, leveraging the semantic alignment capabilities of large vision-language models. We propose a framework, `REVEAL` (Reasoning and Evaluation of Visual Evidence through Aligned Language), that incorporates generalized guidelines. We propose two tangential approaches - (1) Holistic Scene-level Evaluation that relies on the physics, semantics, perspective, and realism of the image as a whole and (2) Region-wise anomaly detection that splits the image into multiple regions and analyzes each of them. We conduct experiments over datasets from different domains (Photoshop, DeepFake and AIGC editing). We compare the Vision Language Models against competitive baselines and analyze the reasoning provided by them.
comment: 4 pages, 6 figures, International Conference on Computer Vision, ICCV 2025
♻ ☆ The GOOSE Dataset for Perception in Unstructured Environments ICRA 2024
The potential for deploying autonomous systems can be significantly increased by improving the perception and interpretation of the environment. However, the development of deep learning-based techniques for autonomous systems in unstructured outdoor environments poses challenges due to limited data availability for training and testing. To address this gap, we present the German Outdoor and Offroad Dataset (GOOSE), a comprehensive dataset specifically designed for unstructured outdoor environments. The GOOSE dataset incorporates 10 000 labeled pairs of images and point clouds, which are utilized to train a range of state-of-the-art segmentation models on both image and point cloud data. We open source the dataset, along with an ontology for unstructured terrain, as well as dataset standards and guidelines. This initiative aims to establish a common framework, enabling the seamless inclusion of existing datasets and a fast way to enhance the perception capabilities of various robots operating in unstructured environments. The dataset, pre-trained models for offroad perception, and additional documentation can be found at https://goose-dataset.de/.
comment: Accepted at ICRA 2024, Github link: https://github.com/FraunhoferIOSB/goose_dataset
♻ ☆ AnyGPT: Unified Multimodal LLM with Discrete Sequence Modeling
We introduce AnyGPT, an any-to-any multimodal language model that utilizes discrete representations for the unified processing of various modalities, including speech, text, images, and music. AnyGPT can be trained stably without any alterations to the current large language model (LLM) architecture or training paradigms. Instead, it relies exclusively on data-level preprocessing, facilitating the seamless integration of new modalities into LLMs, akin to the incorporation of new languages. We build a multimodal text-centric dataset for multimodal alignment pre-training. Utilizing generative models, we synthesize the first large-scale any-to-any multimodal instruction dataset. It consists of 108k samples of multi-turn conversations that intricately interweave various modalities, thus equipping the model to handle arbitrary combinations of multimodal inputs and outputs. Experimental results demonstrate that AnyGPT is capable of facilitating any-to-any multimodal conversation while achieving performance comparable to specialized models across all modalities, proving that discrete representations can effectively and conveniently unify multiple modalities within a language model. Demos are shown in https://junzhan2000.github.io/AnyGPT.github.io/
comment: 28 pages, 16 figures, under review, work in progress
♻ ☆ Regeneration Based Training-free Attribution of Fake Images Generated by Text-to-Image Generative Models
Text-to-image generative models have recently garnered significant attention due to their ability to generate images based on prompt descriptions. While these models have shown promising performance, concerns have been raised regarding the potential misuse of the generated fake images. In response to this, we have presented a simple yet effective training-free method to attribute fake images generated by text-to-image models to their source models. Given a test image to be attributed, we first inverse the textual prompt of the image, and then put the reconstructed prompt into different candidate models to regenerate candidate fake images. By calculating and ranking the similarity of the test image and the candidate images, we can determine the source of the image. This attribution allows model owners to be held accountable for any misuse of their models. Note that our approach does not limit the number of candidate text-to-image generative models. Comprehensive experiments reveal that (1) Our method can effectively attribute fake images to their source models, achieving comparable attribution performance with the state-of-the-art method; (2) Our method has high scalability ability, which is well adapted to real-world attribution scenarios. (3) The proposed method yields satisfactory robustness to common attacks, such as Gaussian blurring, JPEG compression, and Resizing. We also analyze the factors that influence the attribution performance, and explore the boost brought by the proposed method as a plug-in to improve the performance of existing SOTA. We hope our work can shed some light on the solutions to addressing the source of AI-generated images, as well as to prevent the misuse of text-to-image generative models.
comment: The paper has been withdrawn by the authors because the proposed approach is currently undergoing optimization and improvement. We are refining the methodology to achieve more robust and convincing results, and a revised version will be submitted once the enhancements are completed
♻ ☆ Insights from Gradient Dynamics: Gradient Autoscaled Normalization
Gradient dynamics play a central role in determining the stability and generalization of deep neural networks. In this work, we provide an empirical analysis of how variance and standard deviation of gradients evolve during training, showing consistent changes across layers and at the global scale in convolutional networks. Motivated by these observations, we propose a hyperparameter-free gradient normalization method that aligns gradient scaling with their natural evolution. This approach prevents unintended amplification, stabilizes optimization, and preserves convergence guarantees. Experiments on the challenging CIFAR-100 benchmark with ResNet-20, ResNet-56, and VGG-16-BN demonstrate that our method maintains or improves test accuracy even under strong generalization. Beyond practical performance, our study highlights the importance of directly tracking gradient dynamics, aiming to bridge the gap between theoretical expectations and empirical behaviors, and to provide insights for future optimization research.
♻ ☆ Identifying actionable driver mutations in lung cancer using an efficient Asymmetric Transformer Decoder MICCAI 2025
Identifying actionable driver mutations in non-small cell lung cancer (NSCLC) can impact treatment decisions and significantly improve patient outcomes. Despite guideline recommendations, broader adoption of genetic testing remains challenging due to limited availability and lengthy turnaround times. Machine Learning (ML) methods for Computational Pathology (CPath) offer a potential solution; however, research often focuses on only one or two common mutations, limiting the clinical value of these tools and the pool of patients who can benefit from them. This study evaluates various Multiple Instance Learning (MIL) techniques to detect six key actionable NSCLC driver mutations: ALK, BRAF, EGFR, ERBB2, KRAS, and MET ex14. Additionally, we introduce an Asymmetric Transformer Decoder model that employs queries and key-values of varying dimensions to maintain a low query dimensionality. This approach efficiently extracts information from patch embeddings and minimizes overfitting risks, proving highly adaptable to the MIL setting. Moreover, we present a method to directly utilize tissue type in the model, addressing a typical MIL limitation where either all regions or only some specific regions are analyzed, neglecting biological relevance. Our method outperforms top MIL models by an average of 3%, and over 4% when predicting rare mutations such as ERBB2 and BRAF, moving ML-based tests closer to being practical alternatives to standard genetic testing.
comment: Accepted at MICCAI 2025 Workshop COMPAYL
♻ ☆ Llama Learns to Direct: DirectorLLM for Human-Centric Video Generation
In this paper, we introduce DirectorLLM, a novel video generation model that employs a large language model (LLM) to orchestrate human poses within videos. As foundational text-to-video models rapidly evolve, the demand for high-quality human motion and interaction grows. To address this need and enhance the authenticity of human motions, we extend the LLM from a text generator to a video director and human motion simulator. Utilizing open-source resources from Llama 3, we train the DirectorLLM to generate detailed instructional signals, such as human poses, to guide video generation. This approach offloads the simulation of human motion from the video generator to the LLM, effectively creating informative outlines for human-centric scenes. These signals are used as conditions by the video renderer, facilitating more realistic and prompt-following video generation. As an independent LLM module, it can be applied to different video renderers, including UNet and DiT, with minimal effort. Experiments on automatic evaluation benchmarks and human evaluations show that our model outperforms existing ones in generating videos with higher human motion fidelity, improved prompt faithfulness, and enhanced rendered subject naturalness.
♻ ☆ Show-o: One Single Transformer to Unify Multimodal Understanding and Generation ICLR 2025
We present a unified transformer, i.e., Show-o, that unifies multimodal understanding and generation. Unlike fully autoregressive models, Show-o unifies autoregressive and (discrete) diffusion modeling to adaptively handle inputs and outputs of various and mixed modalities. The unified model flexibly supports a wide range of vision-language tasks including visual question-answering, text-to-image generation, text-guided inpainting/extrapolation, and mixed-modality generation. Across various benchmarks, it demonstrates comparable or superior performance to existing individual models with an equivalent or larger number of parameters tailored for understanding or generation. This significantly highlights its potential as a next-generation foundation model. Code and models are released at https://github.com/showlab/Show-o.
comment: ICLR 2025
♻ ☆ TASR: Timestep-Aware Diffusion Model for Image Super-Resolution ACM MM2025
Diffusion models have recently achieved outstanding results in the field of image super-resolution. These methods typically inject low-resolution (LR) images via ControlNet.In this paper, we first explore the temporal dynamics of information infusion through ControlNet, revealing that the input from LR images predominantly influences the initial stages of the denoising process. Leveraging this insight, we introduce a novel timestep-aware diffusion model that adaptively integrates features from both ControlNet and the pre-trained Stable Diffusion (SD). Our method enhances the transmission of LR information in the early stages of diffusion to guarantee image fidelity and stimulates the generation ability of the SD model itself more in the later stages to enhance the detail of generated images. To train this method, we propose a timestep-aware training strategy that adopts distinct losses at varying timesteps and acts on disparate modules. Experiments on benchmark datasets demonstrate the effectiveness of our method. Code: https://github.com/SleepyLin/TASR
comment: Accepted to ACM MM2025
♻ ☆ Representation-Centric Survey of Skeletal Action Recognition and the ANUBIS Benchmark
3D skeleton-based human action recognition has emerged as a powerful alternative to traditional RGB and depth-based approaches, offering robustness to environmental variations, computational efficiency, and enhanced privacy. Despite remarkable progress, current research remains fragmented across diverse input representations and lacks evaluation under scenarios that reflect modern real-world challenges.This paper presents a representation-centric survey of skeleton-based action recognition, systematically categorizing state-of-the-art methods by their input feature types: joint coordinates, bone vectors, motion flows, and extended representations, and analyzing how these choices influence spatial-temporal modeling strategies. Building on the insights from this review, we introduce ANUBIS, a large-scale, challenging skeleton action dataset designed to address critical gaps in existing benchmarks. ANUBIS incorporates multi-view recordings with back-view perspectives, complex multi-person interactions, fine-grained and violent actions, and contemporary social behaviors.We benchmark a diverse set of state-of-the-art models on ANUBIS and conduct an in-depth analysis of how different feature types affect recognition performance across 102 action categories. Our results show strong action-feature dependencies, highlight the limitations of na\"ive multi-representational fusion, and point toward the need for task-aware, semantically aligned integration strategies. This work offers both a comprehensive foundation and a practical benchmarking resource, aiming to guide the next generation of robust, generalizable skeleton-based action recognition systems for complex real-world scenarios.The dataset website, benchmarking framework, and download link are available at https://yliu1082.github.io/ANUBIS/.
♻ ☆ A Novel Image Similarity Metric for Scene Composition Structure IEEE
The rapid advancement of generative AI models necessitates novel methods for evaluating image quality that extend beyond human perception. A critical concern for these models is the preservation of an image's underlying Scene Composition Structure (SCS), which defines the geometric relationships among objects and the background, their relative positions, sizes, orientations, etc. Maintaining SCS integrity is paramount for ensuring faithful and structurally accurate GenAI outputs. Traditional image similarity metrics often fall short in assessing SCS. Pixel-level approaches are overly sensitive to minor visual noise, while perception-based metrics prioritize human aesthetic appeal, neither adequately capturing structural fidelity. Furthermore, recent neural-network-based metrics introduce training overheads and potential generalization issues. We introduce the SCS Similarity Index Measure (SCSSIM), a novel, analytical, and training-free metric that quantifies SCS preservation by exploiting statistical measures derived from the Cuboidal hierarchical partitioning of images, robustly capturing non-object-based structural relationships. Our experiments demonstrate SCSSIM's high invariance to non-compositional distortions, accurately reflecting unchanged SCS. Conversely, it shows a strong monotonic decrease for compositional distortions, precisely indicating when SCS has been altered. Compared to existing metrics, SCSSIM exhibits superior properties for structural evaluation, making it an invaluable tool for developing and evaluating generative models, ensuring the integrity of scene composition. See \href{https://github.com/RedwanPlague/scssim}{code}.
comment: 2025 IEEE ICIPW (Generative AI for World Simulations and Communications)
♻ ☆ Don't Splat your Gaussians: Volumetric Ray-Traced Primitives for Modeling and Rendering Scattering and Emissive Media
Efficient scene representations are essential for many computer graphics applications. A general unified representation that can handle both surfaces and volumes simultaneously, remains a research challenge. Inspired by recent methods for scene reconstruction that leverage mixtures of 3D Gaussians to model radiance fields, we formalize and generalize the modeling of scattering and emissive media using mixtures of simple kernel-based volumetric primitives. We introduce closed-form solutions for transmittance and free-flight distance sampling for different kernels, and propose several optimizations to use our method efficiently within any off-the-shelf volumetric path tracer. We demonstrate our method as a compact and efficient alternative to other forms of volume modeling for forward and inverse rendering of scattering media. Furthermore, we adapt and showcase our method in radiance field optimization and rendering, providing additional flexibility compared to current state of the art given its ray-tracing formulation. We also introduce the Epanechnikov kernel and demonstrate its potential as an efficient alternative to the traditionally-used Gaussian kernel in scene reconstruction tasks. The versatility and physically-based nature of our approach allows us to go beyond radiance fields and bring to kernel-based modeling and rendering any path-tracing enabled functionality such as scattering, relighting and complex camera models.
comment: 17 pages, 17 figures
♻ ☆ A Challenging Benchmark of Anime Style Recognition CVPR
Given two images of different anime roles, anime style recognition (ASR) aims to learn abstract painting style to determine whether the two images are from the same work, which is an interesting but challenging problem. Unlike biometric recognition, such as face recognition, iris recognition, and person re-identification, ASR suffers from a much larger semantic gap but receives less attention. In this paper, we propose a challenging ASR benchmark. Firstly, we collect a large-scale ASR dataset (LSASRD), which contains 20,937 images of 190 anime works and each work at least has ten different roles. In addition to the large-scale, LSASRD contains a list of challenging factors, such as complex illuminations, various poses, theatrical colors and exaggerated compositions. Secondly, we design a cross-role protocol to evaluate ASR performance, in which query and gallery images must come from different roles to validate an ASR model is to learn abstract painting style rather than learn discriminative features of roles. Finally, we apply two powerful person re-identification methods, namely, AGW and TransReID, to construct the baseline performance on LSASRD. Surprisingly, the recent transformer model (i.e., TransReID) only acquires a 42.24% mAP on LSASRD. Therefore, we believe that the ASR task of a huge semantic gap deserves deep and long-term research. We will open our dataset and code at https://github.com/nkjcqvcpi/ASR.
comment: accepted by CVPRW 2022
♻ ☆ FilterRAG: Zero-Shot Informed Retrieval-Augmented Generation to Mitigate Hallucinations in VQA ICCV 2025
Visual Question Answering requires models to generate accurate answers by integrating visual and textual understanding. However, VQA models still struggle with hallucinations, producing convincing but incorrect answers, particularly in knowledge-driven and Out-of-Distribution scenarios. We introduce FilterRAG, a retrieval-augmented framework that combines BLIP-VQA with Retrieval-Augmented Generation to ground answers in external knowledge sources like Wikipedia and DBpedia. FilterRAG achieves 36.5% accuracy on the OK-VQA dataset, demonstrating its effectiveness in reducing hallucinations and improving robustness in both in-domain and Out-of-Distribution settings. These findings highlight the potential of FilterRAG to improve Visual Question Answering systems for real-world deployment.
comment: 12 pages, 6 figures and 2 tables; Accepted at ICCV 2025 Workshop on Building Foundation Models You Can Trust (T2FM)
♻ ☆ AlphaEarth Foundations: An embedding field model for accurate and efficient global mapping from sparse label data
Unprecedented volumes of Earth observation data are continually collected around the world, but high-quality labels remain scarce given the effort required to make physical measurements and observations. This has led to considerable investment in bespoke modeling efforts translating sparse labels into maps. Here we introduce AlphaEarth Foundations, an embedding field model yielding a highly general, geospatial representation that assimilates spatial, temporal, and measurement contexts across multiple sources, enabling accurate and efficient production of maps and monitoring systems from local to global scales. The embeddings generated by AlphaEarth Foundations are the only to consistently outperform a suite of other well-known/widely accepted featurization approaches tested on a diverse set of mapping evaluations without re-training. We have released a dataset of global, annual, analysis-ready embedding field layers from 2017 through 2024.
♻ ☆ Large Language Models for Crash Detection in Video: A Survey of Methods, Datasets, and Challenges
Crash detection from video feeds is a critical problem in intelligent transportation systems. Recent developments in large language models (LLMs) and vision-language models (VLMs) have transformed how we process, reason about, and summarize multimodal information. This paper surveys recent methods leveraging LLMs for crash detection from video data. We present a structured taxonomy of fusion strategies, summarize key datasets, analyze model architectures, compare performance benchmarks, and discuss ongoing challenges and opportunities. Our review provides a foundation for future research in this fast-growing intersection of video understanding and foundation models.
♻ ☆ Grounding DINO-US-SAM: Text-Prompted Multi-Organ Segmentation in Ultrasound with LoRA-Tuned Vision-Language Models
Accurate and generalizable object segmentation in ultrasound imaging remains a significant challenge due to anatomical variability, diverse imaging protocols, and limited annotated data. In this study, we propose a prompt-driven vision-language model (VLM) that integrates Grounding DINO with SAM2 (Segment Anything Model2) to enable object segmentation across multiple ultrasound organs. A total of 18 public ultrasound datasets, encompassing the breast, thyroid, liver, prostate, kidney, and paraspinal muscle, were utilized. These datasets were divided into 15 for fine-tuning and validation of Grounding DINO using Low Rank Adaptation (LoRA) to the ultrasound domain, and 3 were held out entirely for testing to evaluate performance in unseen distributions. Comprehensive experiments demonstrate that our approach outperforms state-of-the-art segmentation methods, including UniverSeg, MedSAM, MedCLIP-SAM, BiomedParse, and SAMUS on most seen datasets while maintaining strong performance on unseen datasets without additional fine-tuning. These results underscore the promise of VLMs in scalable and robust ultrasound image analysis, reducing dependence on large, organ-specific annotated datasets. We will publish our code on code.sonography.ai after acceptance.
comment: 11 pages, 3 figures, 7 tables
♻ ☆ GraspCoT: Integrating Physical Property Reasoning for 6-DoF Grasping under Flexible Language Instructions ICCV 2025
Flexible instruction-guided 6-DoF grasping is a significant yet challenging task for real-world robotic systems. Existing methods utilize the contextual understanding capabilities of the large language models (LLMs) to establish mappings between expressions and targets, allowing robots to comprehend users' intentions in the instructions. However, the LLM's knowledge about objects' physical properties remains underexplored despite its tight relevance to grasping. In this work, we propose GraspCoT, a 6-DoF grasp detection framework that integrates a Chain-of-Thought (CoT) reasoning mechanism oriented to physical properties, guided by auxiliary question-answering (QA) tasks. Particularly, we design a set of QA templates to enable hierarchical reasoning that includes three stages: target parsing, physical property analysis, and grasp action selection. Moreover, GraspCoT presents a unified multimodal LLM architecture, which encodes multi-view observations of 3D scenes into 3D-aware visual tokens, and then jointly embeds these visual tokens with CoT-derived textual tokens within LLMs to generate grasp pose predictions. Furthermore, we present IntentGrasp, a large-scale benchmark that fills the gap in public datasets for multi-object grasp detection under diverse and indirect verbal commands. Extensive experiments on IntentGrasp demonstrate the superiority of our method, with additional validation in real-world robotic applications confirming its practicality. The code is available at https://github.com/cxmomo/GraspCoT.
comment: Accepted to ICCV 2025
♻ ☆ LASER: A Neuro-Symbolic Framework for Learning Spatial-Temporal Scene Graphs with Weak Supervision ICLR
Supervised approaches for learning spatio-temporal scene graphs (STSG) from video are greatly hindered due to their reliance on STSG-annotated videos, which are labor-intensive to construct at scale. Is it feasible to instead use readily available video captions as weak supervision? To address this question, we propose LASER, a neuro-symbolic framework to enable training STSG generators using only video captions. LASER employs large language models to first extract logical specifications with rich spatio-temporal semantic information from video captions. LASER then trains the underlying STSG generator to align the predicted STSG with the specification. The alignment algorithm overcomes the challenges of weak supervision by leveraging a differentiable symbolic reasoner and using a combination of contrastive, temporal, and semantics losses. The overall approach efficiently trains low-level perception models to extract a fine-grained STSG that conforms to the video caption. In doing so, it enables a novel methodology for learning STSGs without tedious annotations. We evaluate our method on three video datasets: OpenPVSG, 20BN, and MUGEN. Our approach demonstrates substantial improvements over fully-supervised baselines, achieving a unary predicate prediction accuracy of 27.78% (+12.65%) and a binary recall@5 of 0.42 (+0.22) on OpenPVSG. Additionally, LASER exceeds baselines by 7% on 20BN and 5.2% on MUGEN in terms of overall predicate prediction accuracy.
comment: Accepted at International Conference on Learning Representations (ICLR) 2025
♻ ☆ Self Supervised Networks for Learning Latent Space Representations of Human Body Scans and Motions
This paper introduces self-supervised neural network models to tackle several fundamental problems in the field of 3D human body analysis and processing. First, we propose VariShaPE (Varifold Shape Parameter Estimator), a novel architecture for the retrieval of latent space representations of body shapes and poses. This network offers a fast and robust method to estimate the embedding of arbitrary unregistered meshes into the latent space. Second, we complement the estimation of latent codes with MoGeN (Motion Geometry Network) a framework that learns the geometry on the latent space itself. This is achieved by lifting the body pose parameter space into a higher dimensional Euclidean space in which body motion mini-sequences from a training set of 4D data can be approximated by simple linear interpolation. Using the SMPL latent space representation we illustrate how the combination of these network models, once trained, can be used to perform a variety of tasks with very limited computational cost. This includes operations such as motion interpolation, extrapolation and transfer as well as random shape and pose generation.
comment: 15y pages, 11 figures, 4 tables
♻ ☆ Understanding Museum Exhibits using Vision-Language Reasoning ICCV 2025
Museums serve as repositories of cultural heritage and historical artifacts from diverse epochs, civilizations, and regions, preserving well-documented collections that encapsulate vast knowledge, which, when systematically structured into large-scale datasets, can train specialized models. Visitors engage with exhibits through curiosity and questions, making expert domain-specific models essential for interactive query resolution and gaining historical insights. Understanding exhibits from images requires analyzing visual features and linking them to historical knowledge to derive meaningful correlations. We facilitate such reasoning by (a) collecting and curating a large-scale dataset of 65M images and 200M question-answer pairs for exhibits from all around the world; (b) training large vision-language models (VLMs) on the collected dataset; (c) benchmarking their ability on five visual question answering tasks, specifically designed to reflect real-world inquiries and challenges observed in museum settings. The complete dataset is labeled by museum experts, ensuring the quality and the practical significance of the labels. We train two VLMs from different categories: BLIP with vision-language aligned embeddings, but lacking the expressive power of large language models, and the LLaVA model, a powerful instruction-tuned LLM enriched with vision-language reasoning capabilities. Through extensive experiments, we find that while both model types effectively answer visually grounded questions, large vision-language models excel in queries requiring deeper historical context and reasoning. We further demonstrate the necessity of fine-tuning models on large-scale domain-specific datasets by showing that our fine-tuned models significantly outperform current SOTA VLMs in answering questions related to specific attributes, highlighting their limitations in handling complex, nuanced queries.
comment: Accepted at ICCV 2025
Artificial Intelligence 207
☆ H$_{2}$OT: Hierarchical Hourglass Tokenizer for Efficient Video Pose Transformers
Transformers have been successfully applied in the field of video-based 3D human pose estimation. However, the high computational costs of these video pose transformers (VPTs) make them impractical on resource-constrained devices. In this paper, we present a hierarchical plug-and-play pruning-and-recovering framework, called Hierarchical Hourglass Tokenizer (H$_{2}$OT), for efficient transformer-based 3D human pose estimation from videos. H$_{2}$OT begins with progressively pruning pose tokens of redundant frames and ends with recovering full-length sequences, resulting in a few pose tokens in the intermediate transformer blocks and thus improving the model efficiency. It works with two key modules, namely, a Token Pruning Module (TPM) and a Token Recovering Module (TRM). TPM dynamically selects a few representative tokens to eliminate the redundancy of video frames, while TRM restores the detailed spatio-temporal information based on the selected tokens, thereby expanding the network output to the original full-length temporal resolution for fast inference. Our method is general-purpose: it can be easily incorporated into common VPT models on both seq2seq and seq2frame pipelines while effectively accommodating different token pruning and recovery strategies. In addition, our H$_{2}$OT reveals that maintaining the full pose sequence is unnecessary, and a few pose tokens of representative frames can achieve both high efficiency and estimation accuracy. Extensive experiments on multiple benchmark datasets demonstrate both the effectiveness and efficiency of the proposed method. Code and models are available at https://github.com/NationalGAILab/HoT.
comment: Accepted by TPAMI 2025, Open Sourced. arXiv admin note: substantial text overlap with arXiv:2311.12028
☆ Deep Reactive Policy: Learning Reactive Manipulator Motion Planning for Dynamic Environments
Generating collision-free motion in dynamic, partially observable environments is a fundamental challenge for robotic manipulators. Classical motion planners can compute globally optimal trajectories but require full environment knowledge and are typically too slow for dynamic scenes. Neural motion policies offer a promising alternative by operating in closed-loop directly on raw sensory inputs but often struggle to generalize in complex or dynamic settings. We propose Deep Reactive Policy (DRP), a visuo-motor neural motion policy designed for reactive motion generation in diverse dynamic environments, operating directly on point cloud sensory input. At its core is IMPACT, a transformer-based neural motion policy pretrained on 10 million generated expert trajectories across diverse simulation scenarios. We further improve IMPACT's static obstacle avoidance through iterative student-teacher finetuning. We additionally enhance the policy's dynamic obstacle avoidance at inference time using DCP-RMP, a locally reactive goal-proposal module. We evaluate DRP on challenging tasks featuring cluttered scenes, dynamic moving obstacles, and goal obstructions. DRP achieves strong generalization, outperforming prior classical and neural methods in success rate across both simulated and real-world settings. Video results and code available at https://deep-reactive-policy.com
comment: Website at \url{deep-reactive-policy.com}
☆ Interleaving Reasoning for Better Text-to-Image Generation
Unified multimodal understanding and generation models recently have achieve significant improvement in image generation capability, yet a large gap remains in instruction following and detail preservation compared to systems that tightly couple comprehension with generation such as GPT-4o. Motivated by recent advances in interleaving reasoning, we explore whether such reasoning can further improve Text-to-Image (T2I) generation. We introduce Interleaving Reasoning Generation (IRG), a framework that alternates between text-based thinking and image synthesis: the model first produces a text-based thinking to guide an initial image, then reflects on the result to refine fine-grained details, visual quality, and aesthetics while preserving semantics. To train IRG effectively, we propose Interleaving Reasoning Generation Learning (IRGL), which targets two sub-goals: (1) strengthening the initial think-and-generate stage to establish core content and base quality, and (2) enabling high-quality textual reflection and faithful implementation of those refinements in a subsequent image. We curate IRGL-300K, a dataset organized into six decomposed learning modes that jointly cover learning text-based thinking, and full thinking-image trajectories. Starting from a unified foundation model that natively emits interleaved text-image outputs, our two-stage training first builds robust thinking and reflection, then efficiently tunes the IRG pipeline in the full thinking-image trajectory data. Extensive experiments show SoTA performance, yielding absolute gains of 5-10 points on GenEval, WISE, TIIF, GenAI-Bench, and OneIG-EN, alongside substantial improvements in visual quality and fine-grained fidelity. The code, model weights and datasets will be released in: https://github.com/Osilly/Interleaving-Reasoning-Generation .
☆ Directly Aligning the Full Diffusion Trajectory with Fine-Grained Human Preference
Recent studies have demonstrated the effectiveness of directly aligning diffusion models with human preferences using differentiable reward. However, they exhibit two primary challenges: (1) they rely on multistep denoising with gradient computation for reward scoring, which is computationally expensive, thus restricting optimization to only a few diffusion steps; (2) they often need continuous offline adaptation of reward models in order to achieve desired aesthetic quality, such as photorealism or precise lighting effects. To address the limitation of multistep denoising, we propose Direct-Align, a method that predefines a noise prior to effectively recover original images from any time steps via interpolation, leveraging the equation that diffusion states are interpolations between noise and target images, which effectively avoids over-optimization in late timesteps. Furthermore, we introduce Semantic Relative Preference Optimization (SRPO), in which rewards are formulated as text-conditioned signals. This approach enables online adjustment of rewards in response to positive and negative prompt augmentation, thereby reducing the reliance on offline reward fine-tuning. By fine-tuning the FLUX.1.dev model with optimized denoising and online reward adjustment, we improve its human-evaluated realism and aesthetic quality by over 3x.
comment: 15 pages
☆ From Noise to Narrative: Tracing the Origins of Hallucinations in Transformers
As generative AI systems become competent and democratized in science, business, and government, deeper insight into their failure modes now poses an acute need. The occasional volatility in their behavior, such as the propensity of transformer models to hallucinate, impedes trust and adoption of emerging AI solutions in high-stakes areas. In the present work, we establish how and when hallucinations arise in pre-trained transformer models through concept representations captured by sparse autoencoders, under scenarios with experimentally controlled uncertainty in the input space. Our systematic experiments reveal that the number of semantic concepts used by the transformer model grows as the input information becomes increasingly unstructured. In the face of growing uncertainty in the input space, the transformer model becomes prone to activate coherent yet input-insensitive semantic features, leading to hallucinated output. At its extreme, for pure-noise inputs, we identify a wide variety of robustly triggered and meaningful concepts in the intermediate activations of pre-trained transformer models, whose functional integrity we confirm through targeted steering. We also show that hallucinations in the output of a transformer model can be reliably predicted from the concept patterns embedded in transformer layer activations. This collection of insights on transformer internal processing mechanics has immediate consequences for aligning AI models with human values, AI safety, opening the attack surface for potential adversarial attacks, and providing a basis for automatic quantification of a model's hallucination risk.
☆ Neuro-Symbolic AI for Cybersecurity: State of the Art, Challenges, and Opportunities
Traditional Artificial Intelligence (AI) approaches in cybersecurity exhibit fundamental limitations: inadequate conceptual grounding leading to non-robustness against novel attacks; limited instructibility impeding analyst-guided adaptation; and misalignment with cybersecurity objectives. Neuro-Symbolic (NeSy) AI has emerged with the potential to revolutionize cybersecurity AI. However, there is no systematic understanding of this emerging approach. These hybrid systems address critical cybersecurity challenges by combining neural pattern recognition with symbolic reasoning, enabling enhanced threat understanding while introducing concerning autonomous offensive capabilities that reshape threat landscapes. In this survey, we systematically characterize this field by analyzing 127 publications spanning 2019-July 2025. We introduce a Grounding-Instructibility-Alignment (G-I-A) framework to evaluate these systems, focusing on both cyber defense and cyber offense across network security, malware analysis, and cyber operations. Our analysis shows advantages of multi-agent NeSy architectures and identifies critical implementation challenges including standardization gaps, computational complexity, and human-AI collaboration requirements that constrain deployment. We show that causal reasoning integration is the most transformative advancement, enabling proactive defense beyond correlation-based approaches. Our findings highlight dual-use implications where autonomous systems demonstrate substantial capabilities in zero-day exploitation while achieving significant cost reductions, altering threat dynamics. We provide insights and future research directions, emphasizing the urgent need for community-driven standardization frameworks and responsible development practices that ensure advancement serves defensive cybersecurity objectives while maintaining societal alignment.
☆ An Ethically Grounded LLM-Based Approach to Insider Threat Synthesis and Detection
Insider threats are a growing organizational problem due to the complexity of identifying their technical and behavioral elements. A large research body is dedicated to the study of insider threats from technological, psychological, and educational perspectives. However, research in this domain has been generally dependent on datasets that are static and limited access which restricts the development of adaptive detection models. This study introduces a novel, ethically grounded approach that uses the large language model (LLM) Claude Sonnet 3.7 to dynamically synthesize syslog messages, some of which contain indicators of insider threat scenarios. The messages reflect real-world data distributions by being highly imbalanced (1% insider threats). The syslogs were analyzed for insider threats by both Claude Sonnet 3.7 and GPT-4o, with their performance evaluated through statistical metrics including precision, recall, MCC, and ROC AUC. Sonnet 3.7 consistently outperformed GPT-4o across nearly all metrics, particularly in reducing false alarms and improving detection accuracy. The results show strong promise for the use of LLMs in synthetic dataset generation and insider threat detection.
comment: 6 pages, 5 figures, 5 tables
☆ Tackling the Noisy Elephant in the Room: Label Noise-robust Out-of-Distribution Detection via Loss Correction and Low-rank Decomposition
Robust out-of-distribution (OOD) detection is an indispensable component of modern artificial intelligence (AI) systems, especially in safety-critical applications where models must identify inputs from unfamiliar classes not seen during training. While OOD detection has been extensively studied in the machine learning literature--with both post hoc and training-based approaches--its effectiveness under noisy training labels remains underexplored. Recent studies suggest that label noise can significantly degrade OOD performance, yet principled solutions to this issue are lacking. In this work, we demonstrate that directly combining existing label noise-robust methods with OOD detection strategies is insufficient to address this critical challenge. To overcome this, we propose a robust OOD detection framework that integrates loss correction techniques from the noisy label learning literature with low-rank and sparse decomposition methods from signal processing. Extensive experiments on both synthetic and real-world datasets demonstrate that our method significantly outperforms the state-of-the-art OOD detection techniques, particularly under severe noisy label settings.
☆ Paper2Agent: Reimagining Research Papers As Interactive and Reliable AI Agents
We introduce Paper2Agent, an automated framework that converts research papers into AI agents. Paper2Agent transforms research output from passive artifacts into active systems that can accelerate downstream use, adoption, and discovery. Conventional research papers require readers to invest substantial effort to understand and adapt a paper's code, data, and methods to their own work, creating barriers to dissemination and reuse. Paper2Agent addresses this challenge by automatically converting a paper into an AI agent that acts as a knowledgeable research assistant. It systematically analyzes the paper and the associated codebase using multiple agents to construct a Model Context Protocol (MCP) server, then iteratively generates and runs tests to refine and robustify the resulting MCP. These paper MCPs can then be flexibly connected to a chat agent (e.g. Claude Code) to carry out complex scientific queries through natural language while invoking tools and workflows from the original paper. We demonstrate Paper2Agent's effectiveness in creating reliable and capable paper agents through in-depth case studies. Paper2Agent created an agent that leverages AlphaGenome to interpret genomic variants and agents based on ScanPy and TISSUE to carry out single-cell and spatial transcriptomics analyses. We validate that these paper agents can reproduce the original paper's results and can correctly carry out novel user queries. By turning static papers into dynamic, interactive AI agents, Paper2Agent introduces a new paradigm for knowledge dissemination and a foundation for the collaborative ecosystem of AI co-scientists.
☆ Barlow-Swin: Toward a novel siamese-based segmentation architecture using Swin-Transformers
Medical image segmentation is a critical task in clinical workflows, particularly for the detection and delineation of pathological regions. While convolutional architectures like U-Net have become standard for such tasks, their limited receptive field restricts global context modeling. Recent efforts integrating transformers have addressed this, but often result in deep, computationally expensive models unsuitable for real-time use. In this work, we present a novel end-to-end lightweight architecture designed specifically for real-time binary medical image segmentation. Our model combines a Swin Transformer-like encoder with a U-Net-like decoder, connected via skip pathways to preserve spatial detail while capturing contextual information. Unlike existing designs such as Swin Transformer or U-Net, our architecture is significantly shallower and competitively efficient. To improve the encoder's ability to learn meaningful features without relying on large amounts of labeled data, we first train it using Barlow Twins, a self-supervised learning method that helps the model focus on important patterns by reducing unnecessary repetition in the learned features. After this pretraining, we fine-tune the entire model for our specific task. Experiments on benchmark binary segmentation tasks demonstrate that our model achieves competitive accuracy with substantially reduced parameter count and faster inference, positioning it as a practical alternative for deployment in real-time and resource-limited clinical environments. The code for our method is available at Github repository: https://github.com/mkianih/Barlow-Swin.
☆ UNH at CheckThat! 2025: Fine-tuning Vs Prompting in Claim Extraction
We participate in CheckThat! Task 2 English and explore various methods of prompting and in-context learning, including few-shot prompting and fine-tuning with different LLM families, with the goal of extracting check-worthy claims from social media passages. Our best METEOR score is achieved by fine-tuning a FLAN-T5 model. However, we observe that higher-quality claims can sometimes be extracted using other methods, even when their METEOR scores are lower.
comment: 16 pages,3 tables, CLEF 2025 Working Notes, 9-12 September 2025, Madrid, Spain
☆ AxelSMOTE: An Agent-Based Oversampling Algorithm for Imbalanced Classification
Class imbalance in machine learning poses a significant challenge, as skewed datasets often hinder performance on minority classes. Traditional oversampling techniques, which are commonly used to alleviate class imbalance, have several drawbacks: they treat features independently, lack similarity-based controls, limit sample diversity, and fail to manage synthetic variety effectively. To overcome these issues, we introduce AxelSMOTE, an innovative agent-based approach that views data instances as autonomous agents engaging in complex interactions. Based on Axelrod's cultural dissemination model, AxelSMOTE implements four key innovations: (1) trait-based feature grouping to preserve correlations; (2) a similarity-based probabilistic exchange mechanism for meaningful interactions; (3) Beta distribution blending for realistic interpolation; and (4) controlled diversity injection to avoid overfitting. Experiments on eight imbalanced datasets demonstrate that AxelSMOTE outperforms state-of-the-art sampling methods while maintaining computational efficiency.
☆ floq: Training Critics via Flow-Matching for Scaling Compute in Value-Based RL
A hallmark of modern large-scale machine learning techniques is the use of training objectives that provide dense supervision to intermediate computations, such as teacher forcing the next token in language models or denoising step-by-step in diffusion models. This enables models to learn complex functions in a generalizable manner. Motivated by this observation, we investigate the benefits of iterative computation for temporal difference (TD) methods in reinforcement learning (RL). Typically they represent value functions in a monolithic fashion, without iterative compute. We introduce floq (flow-matching Q-functions), an approach that parameterizes the Q-function using a velocity field and trains it using techniques from flow-matching, typically used in generative modeling. This velocity field underneath the flow is trained using a TD-learning objective, which bootstraps from values produced by a target velocity field, computed by running multiple steps of numerical integration. Crucially, floq allows for more fine-grained control and scaling of the Q-function capacity than monolithic architectures, by appropriately setting the number of integration steps. Across a suite of challenging offline RL benchmarks and online fine-tuning tasks, floq improves performance by nearly 1.8x. floq scales capacity far better than standard TD-learning architectures, highlighting the potential of iterative computation for value learning.
☆ Test-Time Scaling in Reasoning Models Is Not Effective for Knowledge-Intensive Tasks Yet
Test-time scaling increases inference-time computation by allowing models to generate long reasoning chains, and has shown strong performance across many domains. However, in this work, we show that this approach is not yet effective for knowledge-intensive tasks, where high factual accuracy and low hallucination rates are essential. We conduct a comprehensive evaluation of test-time scaling using 12 reasoning models on two knowledge-intensive benchmarks. Our results reveal that increasing test-time computation does not consistently improve accuracy and, in many cases, it even leads to more hallucinations. We then analyze how extended reasoning affects hallucination behavior. We find that reduced hallucinations often result from the model choosing to abstain after thinking more, rather than from improved factual recall. Conversely, for some models, longer reasoning encourages attempts on previously unanswered questions, many of which result in hallucinations. Case studies show that extended reasoning can induce confirmation bias, leading to overconfident hallucinations. Despite these limitations, we observe that compared to non-thinking, enabling thinking remains beneficial. Code and data are available at https://github.com/XuZhao0/tts-knowledge
comment: 20 pages, 4 figures, 6 tables
☆ Disentangling Interaction and Bias Effects in Opinion Dynamics of Large Language Models
Large Language Models are increasingly used to simulate human opinion dynamics, yet the effect of genuine interaction is often obscured by systematic biases. We present a Bayesian framework to disentangle and quantify three such biases: (i) a topic bias toward prior opinions in the training data; (ii) an agreement bias favoring agreement irrespective of the question; and (iii) an anchoring bias toward the initiating agent's stance. Applying this framework to multi-step dialogues reveals that opinion trajectories tend to quickly converge to a shared attractor, with the influence of the interaction fading over time, and the impact of biases differing between LLMs. In addition, we fine-tune an LLM on different sets of strongly opinionated statements (incl. misinformation) and demonstrate that the opinion attractor shifts correspondingly. Exposing stark differences between LLMs and providing quantitative tools to compare them to human subjects in the future, our approach highlights both chances and pitfalls in using LLMs as proxies for human behavior.
☆ Automated Radiographic Total Sharp Score (ARTSS) in Rheumatoid Arthritis: A Solution to Reduce Inter-Intra Reader Variation and Enhancing Clinical Practice
Assessing the severity of rheumatoid arthritis (RA) using the Total Sharp/Van Der Heijde Score (TSS) is crucial, but manual scoring is often time-consuming and subjective. This study introduces an Automated Radiographic Sharp Scoring (ARTSS) framework that leverages deep learning to analyze full-hand X-ray images, aiming to reduce inter- and intra-observer variability. The research uniquely accommodates patients with joint disappearance and variable-length image sequences. We developed ARTSS using data from 970 patients, structured into four stages: I) Image pre-processing and re-orientation using ResNet50, II) Hand segmentation using UNet.3, III) Joint identification using YOLOv7, and IV) TSS prediction using models such as VGG16, VGG19, ResNet50, DenseNet201, EfficientNetB0, and Vision Transformer (ViT). We evaluated model performance with Intersection over Union (IoU), Mean Average Precision (MAP), mean absolute error (MAE), Root Mean Squared Error (RMSE), and Huber loss. The average TSS from two radiologists was used as the ground truth. Model training employed 3-fold cross-validation, with each fold consisting of 452 training and 227 validation samples, and external testing included 291 unseen subjects. Our joint identification model achieved 99% accuracy. The best-performing model, ViT, achieved a notably low Huber loss of 0.87 for TSS prediction. Our results demonstrate the potential of deep learning to automate RA scoring, which can significantly enhance clinical practice. Our approach addresses the challenge of joint disappearance and variable joint numbers, offers timesaving benefits, reduces inter- and intra-reader variability, improves radiologist accuracy, and aids rheumatologists in making more informed decisions.
☆ Reinforcement learning meets bioprocess control through behaviour cloning: Real-world deployment in an industrial photobioreactor
The inherent complexity of living cells as production units creates major challenges for maintaining stable and optimal bioprocess conditions, especially in open Photobioreactors (PBRs) exposed to fluctuating environments. To address this, we propose a Reinforcement Learning (RL) control approach, combined with Behavior Cloning (BC), for pH regulation in open PBR systems. This represents, to the best of our knowledge, the first application of an RL-based control strategy to such a nonlinear and disturbance-prone bioprocess. Our method begins with an offline training stage in which the RL agent learns from trajectories generated by a nominal Proportional-Integral-Derivative (PID) controller, without direct interaction with the real system. This is followed by a daily online fine-tuning phase, enabling adaptation to evolving process dynamics and stronger rejection of fast, transient disturbances. This hybrid offline-online strategy allows deployment of an adaptive control policy capable of handling the inherent nonlinearities and external perturbations in open PBRs. Simulation studies highlight the advantages of our method: the Integral of Absolute Error (IAE) was reduced by 8% compared to PID control and by 5% relative to standard off-policy RL. Moreover, control effort decreased substantially-by 54% compared to PID and 7% compared to standard RL-an important factor for minimizing operational costs. Finally, an 8-day experimental validation under varying environmental conditions confirmed the robustness and reliability of the proposed approach. Overall, this work demonstrates the potential of RL-based methods for bioprocess control and paves the way for their broader application to other nonlinear, disturbance-prone systems.
☆ COMPACT: Common-token Optimized Model Pruning Across Channels and Tokens
Making LLMs more efficient in memory, latency, and serving cost is crucial for edge deployment, interactive applications, and sustainable inference at scale. Pruning is a key technique toward this goal. However, prior pruning methods are limited: width pruning often breaks the standard transformer layout or requires custom inference code, while depth pruning removes entire layers and can cause abrupt accuracy drops. In this work, we propose COMPACT, which jointly (i) prunes rare vocabulary to shrink embedding/unembedding and (ii) prunes FFN intermediate channels using common-token-weighted activations, aligning importance with the post-pruning token distribution. COMPACT enjoys merits of both depth and width pruning, such as: deployment-friendliness (keeps a standard transformer architecture), scale-adaptivity (trade off vocab vs. FFN pruning), training-free operation with competitive pruning time, and strong memory savings alongside throughput gains. Experiments across Qwen, LLaMA, and Gemma families (0.5B-70B) show state-of-the-art downstream task performance at similar or higher pruning ratios, with substantial reductions in parameters, GPU memory, and end-to-end latency.
☆ RAFFLES: Reasoning-based Attribution of Faults for LLM Systems
We have reached a critical roadblock in the development and enhancement of long-horizon, multi-component LLM agentic systems: it is incredibly tricky to identify where these systems break down and why. Evaluation capabilities that currently exist today (e.g., single pass LLM-as-a-judge) are limited in that they often focus on individual metrics or capabilities, end-to-end outcomes, and are narrowly grounded on the preferences of humans. We argue that to match the agentic capabilities, evaluation frameworks must also be able to reason, probe, iterate, and understand the complex logic passing through these systems over long horizons. In this paper, we present RAFFLES - an evaluation architecture that incorporates reasoning and iterative refinement. Specifically, RAFFLES operates as an iterative, multi-component pipeline, using a central Judge to systematically investigate faults and a set of specialized Evaluators to assess not only the system's components but also the quality of the reasoning by the Judge itself, thereby building a history of hypotheses. We tested RAFFLES against several baselines on the Who&When dataset, a benchmark designed to diagnose the "who" (agent) and "when" (step) of a system's failure. RAFFLES outperforms these baselines, achieving an agent-step fault pair accuracy of over 43% on the Algorithmically-Generated dataset (a substantial increase from the previously published best of 16.6%) and over 20% on the Hand-Crafted dataset (surpassing the previously published best of 8.8%). These results demonstrate a key step towards introducing automated fault detection for autonomous systems over labor-intensive manual human review.
☆ Saturation-Driven Dataset Generation for LLM Mathematical Reasoning in the TPTP Ecosystem
The scarcity of high-quality, logically sound data is a critical bottleneck for advancing the mathematical reasoning of Large Language Models (LLMs). Our work confronts this challenge by turning decades of automated theorem proving research into a scalable data engine. Rather than relying on error-prone LLMs or complex proof-assistant syntax like Lean and Isabelle, our framework leverages E-prover's saturation capabilities on the vast TPTP axiom library to derive a massive, guaranteed-valid corpus of theorems. Our pipeline is principled and simple: saturate axioms, filter for "interesting" theorems, and generate tasks. With no LLMs in the loop, we eliminate factual errors by construction. This purely symbolic data is then transformed into three difficulty-controlled challenges: entailment verification, premise selection, and proof reconstruction. Our zero-shot experiments on frontier models reveal a clear weakness: performance collapses on tasks requiring deep, structural reasoning. Our framework provides both the diagnostic tool to measure this gap and a scalable source of symbolic training data to address it. We make the code and data publicly available. https://github.com/sileod/reasoning_core https://hf.co/datasets/reasoning-core/rc1
☆ MachineLearningLM: Continued Pretraining Language Models on Millions of Synthetic Tabular Prediction Tasks Scales In-Context ML
Large language models (LLMs) possess broad world knowledge and strong general-purpose reasoning ability, yet they struggle to learn from many in-context examples on standard machine learning (ML) tasks, that is, to leverage many-shot demonstrations purely via in-context learning (ICL) without gradient descent. We introduce MachineLearningLM, a portable continued-pretraining framework that equips a general-purpose LLM with robust in-context ML capability while preserving its general knowledge and reasoning for broader chat workflows. Our pretraining procedure synthesizes ML tasks from millions of structural causal models (SCMs), spanning shot counts up to 1,024. We begin with a random-forest teacher, distilling tree-based decision strategies into the LLM to strengthen robustness in numerical modeling. All tasks are serialized with a token-efficient prompt, enabling 3x to 6x more examples per context window and delivering up to 50x amortized throughput via batch inference. Despite a modest setup (Qwen-2.5-7B-Instruct with LoRA rank 8), MachineLearningLM outperforms strong LLM baselines (e.g., GPT-5-mini) by an average of about 15% on out-of-distribution tabular classification across finance, physics, biology, and healthcare domains. It exhibits a striking many-shot scaling law: accuracy increases monotonically as in-context demonstrations grow from 8 to 1,024. Without any task-specific training, it attains random-forest-level accuracy across hundreds of shots. General chat capabilities, including knowledge and reasoning, are preserved: it achieves 75.4% on MMLU.
☆ Another Turn, Better Output? A Turn-Wise Analysis of Iterative LLM Prompting
Large language models (LLMs) are now used in multi-turn workflows, but we still lack a clear way to measure when iteration helps and when it hurts. We present an evaluation framework for iterative refinement that spans ideation, code, and math. Our protocol runs controlled 12-turn conversations per task, utilizing a variety of prompts ranging from vague ``improve it'' feedback to targeted steering, and logs per-turn outputs. We score outcomes with domain-appropriate checks (unit tests for code; answer-equivalence plus reasoning-soundness for math; originality and feasibility for ideation) and track turn-level behavior with three families of metrics: semantic movement across turns, turn-to-turn change, and output size growth. Across models and tasks, gains are domain-dependent: they arrive early in ideas and code, but in math late turns matter when guided by elaboration. After the first few turns, vague feedback often plateaus or reverses correctness, while targeted prompts reliably shift the intended quality axis (novelty vs. feasibility in ideation; speed vs. readability in code; in math, elaboration outperforms exploration and drives late-turn gains). We also observe consistent domain patterns: ideation moves more in meaning across turns, code tends to grow in size with little semantic change, and math starts fixed but can break that path with late, elaborative iteration.Together, the framework and metrics make iteration measurable and comparable across models, and signal when to steer, stop, or switch strategies.
☆ Aligning Large Vision-Language Models by Deep Reinforcement Learning and Direct Preference Optimization
Large Vision-Language Models (LVLMs) or multimodal large language models represent a significant advancement in artificial intelligence, enabling systems to understand and generate content across both visual and textual modalities. While large-scale pretraining has driven substantial progress, fine-tuning these models for aligning with human values or engaging in specific tasks or behaviors remains a critical challenge. Deep Reinforcement Learning (DRL) and Direct Preference Optimization (DPO) offer promising frameworks for this aligning process. While DRL enables models to optimize actions using reward signals instead of relying solely on supervised preference data, DPO directly aligns the policy with preferences, eliminating the need for an explicit reward model. This overview explores paradigms for fine-tuning LVLMs, highlighting how DRL and DPO techniques can be used to align models with human preferences and values, improve task performance, and enable adaptive multimodal interaction. We categorize key approaches, examine sources of preference data, reward signals, and discuss open challenges such as scalability, sample efficiency, continual learning, generalization, and safety. The goal is to provide a clear understanding of how DRL and DPO contribute to the evolution of robust and human-aligned LVLMs.
comment: Accepted for publication in the Proceedings of the 8th International Conference on Algorithms, Computing and Artificial Intelligence (ACAI 2025)
☆ Long-Range Graph Wavelet Networks
Modeling long-range interactions, the propagation of information across distant parts of a graph, is a central challenge in graph machine learning. Graph wavelets, inspired by multi-resolution signal processing, provide a principled way to capture both local and global structures. However, existing wavelet-based graph neural networks rely on finite-order polynomial approximations, which limit their receptive fields and hinder long-range propagation. We propose Long-Range Graph Wavelet Networks (LR-GWN), which decompose wavelet filters into complementary local and global components. Local aggregation is handled with efficient low-order polynomials, while long-range interactions are captured through a flexible spectral domain parameterization. This hybrid design unifies short- and long-distance information flow within a principled wavelet framework. Experiments show that LR-GWN achieves state-of-the-art performance among wavelet-based methods on long-range benchmarks, while remaining competitive on short-range datasets.
☆ VehicleWorld: A Highly Integrated Multi-Device Environment for Intelligent Vehicle Interaction
Intelligent vehicle cockpits present unique challenges for API Agents, requiring coordination across tightly-coupled subsystems that exceed typical task environments' complexity. Traditional Function Calling (FC) approaches operate statelessly, requiring multiple exploratory calls to build environmental awareness before execution, leading to inefficiency and limited error recovery. We introduce VehicleWorld, the first comprehensive environment for the automotive domain, featuring 30 modules, 250 APIs, and 680 properties with fully executable implementations that provide real-time state information during agent execution. This environment enables precise evaluation of vehicle agent behaviors across diverse, challenging scenarios. Through systematic analysis, we discovered that direct state prediction outperforms function calling for environmental control. Building on this insight, we propose State-based Function Call (SFC), a novel approach that maintains explicit system state awareness and implements direct state transitions to achieve target conditions. Experimental results demonstrate that SFC significantly outperforms traditional FC approaches, achieving superior execution accuracy and reduced latency. We have made all implementation code publicly available on Github https://github.com/OpenMOSS/VehicleWorld.
☆ Reinforcement Learning Foundations for Deep Research Systems: A Survey
Deep research systems, agentic AI that solve complex, multi-step tasks by coordinating reasoning, search across the open web and user files, and tool use, are moving toward hierarchical deployments with a Planner, Coordinator, and Executors. In practice, training entire stacks end-to-end remains impractical, so most work trains a single planner connected to core tools such as search, browsing, and code. While SFT imparts protocol fidelity, it suffers from imitation and exposure biases and underuses environment feedback. Preference alignment methods such as DPO are schema and proxy-dependent, off-policy, and weak for long-horizon credit assignment and multi-objective trade-offs. A further limitation of SFT and DPO is their reliance on human defined decision points and subskills through schema design and labeled comparisons. Reinforcement learning aligns with closed-loop, tool-interaction research by optimizing trajectory-level policies, enabling exploration, recovery behaviors, and principled credit assignment, and it reduces dependence on such human priors and rater biases. This survey is, to our knowledge, the first dedicated to the RL foundations of deep research systems. It systematizes work after DeepSeek-R1 along three axes: (i) data synthesis and curation; (ii) RL methods for agentic research covering stability, sample efficiency, long context handling, reward and credit design, multi-objective optimization, and multimodal integration; and (iii) agentic RL training systems and frameworks. We also cover agent architecture and coordination, as well as evaluation and benchmarks, including recent QA, VQA, long-form synthesis, and domain-grounded, tool-interaction tasks. We distill recurring patterns, surface infrastructure bottlenecks, and offer practical guidance for training robust, transparent deep research agents with RL.
comment: 38 pages, first version
☆ MRI-Based Brain Tumor Detection through an Explainable EfficientNetV2 and MLP-Mixer-Attention Architecture
Brain tumors are serious health problems that require early diagnosis due to their high mortality rates. Diagnosing tumors by examining Magnetic Resonance Imaging (MRI) images is a process that requires expertise and is prone to error. Therefore, the need for automated diagnosis systems is increasing day by day. In this context, a robust and explainable Deep Learning (DL) model for the classification of brain tumors is proposed. In this study, a publicly available Figshare dataset containing 3,064 T1-weighted contrast-enhanced brain MRI images of three tumor types was used. First, the classification performance of nine well-known CNN architectures was evaluated to determine the most effective backbone. Among these, EfficientNetV2 demonstrated the best performance and was selected as the backbone for further development. Subsequently, an attention-based MLP-Mixer architecture was integrated into EfficientNetV2 to enhance its classification capability. The performance of the final model was comprehensively compared with basic CNNs and the methods in the literature. Additionally, Grad-CAM visualization was used to interpret and validate the decision-making process of the proposed model. The proposed model's performance was evaluated using the five-fold cross-validation method. The proposed model demonstrated superior performance with 99.50% accuracy, 99.47% precision, 99.52% recall and 99.49% F1 score. The results obtained show that the model outperforms the studies in the literature. Moreover, Grad-CAM visualizations demonstrate that the model effectively focuses on relevant regions of MRI images, thus improving interpretability and clinical reliability. A robust deep learning model for clinical decision support systems has been obtained by combining EfficientNetV2 and attention-based MLP-Mixer, providing high accuracy and interpretability in brain tumor classification.
☆ Probabilistic Modeling of Latent Agentic Substructures in Deep Neural Networks
We develop a theory of intelligent agency grounded in probabilistic modeling for neural models. Agents are represented as outcome distributions with epistemic utility given by log score, and compositions are defined through weighted logarithmic pooling that strictly improves every member's welfare. We prove that strict unanimity is impossible under linear pooling or in binary outcome spaces, but possible with three or more outcomes. Our framework admits recursive structure via cloning invariance, continuity, and openness, while tilt-based analysis rules out trivial duplication. Finally, we formalize an agentic alignment phenomenon in LLMs using our theory: eliciting a benevolent persona ("Luigi'") induces an antagonistic counterpart ("Waluigi"), while a manifest-then-suppress Waluigi strategy yields strictly larger first-order misalignment reduction than pure Luigi reinforcement alone. These results clarify how developing a principled mathematical framework for how subagents can coalesce into coherent higher-level entities provides novel implications for alignment in agentic AI systems.
☆ Barycentric Neural Networks and Length-Weighted Persistent Entropy Loss: A Green Geometric and Topological Framework for Function Approximation
While it is well-established that artificial neural networks are \emph{universal approximators} for continuous functions on compact domains, many modern approaches rely on deep or overparameterized architectures that incur high computational costs. In this paper, a new type of \emph{small shallow} neural network, called the \emph{Barycentric Neural Network} ($\BNN$), is proposed, which leverages a fixed set of \emph{base points} and their \emph{barycentric coordinates} to define both its structure and its parameters. We demonstrate that our $\BNN$ enables the exact representation of \emph{continuous piecewise linear functions} ($\CPLF$s), ensuring strict continuity across segments. Since any continuous function over a compact domain can be approximated arbitrarily well by $\CPLF$s, the $\BNN$ naturally emerges as a flexible and interpretable tool for \emph{function approximation}. Beyond the use of this representation, the main contribution of the paper is the introduction of a new variant of \emph{persistent entropy}, a topological feature that is stable and scale invariant, called the \emph{length-weighted persistent entropy} ($\LWPE$), which is weighted by the lifetime of topological features. Our framework, which combines the $\BNN$ with a loss function based on our $\LWPE$, aims to provide flexible and geometrically interpretable approximations of nonlinear continuous functions in resource-constrained settings, such as those with limited base points for $\BNN$ design and few training epochs. Instead of optimizing internal weights, our approach directly \emph{optimizes the base points that define the $\BNN$}. Experimental results show that our approach achieves \emph{superior and faster approximation performance} compared to classical loss functions such as MSE, RMSE, MAE, and log-cosh.
☆ BioLite U-Net: Edge-Deployable Semantic Segmentation for In Situ Bioprinting Monitoring ICRA 2026
Bioprinting is a rapidly advancing field that offers a transformative approach to fabricating tissue and organ models through the precise deposition of cell-laden bioinks. Ensuring the fidelity and consistency of printed structures in real-time remains a core challenge, particularly under constraints imposed by limited imaging data and resource-constrained embedded hardware. Semantic segmentation of the extrusion process, differentiating between nozzle, extruded bioink, and surrounding background, enables in situ monitoring critical to maintaining print quality and biological viability. In this work, we introduce a lightweight semantic segmentation framework tailored for real-time bioprinting applications. We present a novel, manually annotated dataset comprising 787 RGB images captured during the bioprinting process, labeled across three classes: nozzle, bioink, and background. To achieve fast and efficient inference suitable for integration with bioprinting systems, we propose a BioLite U-Net architecture that leverages depthwise separable convolutions to drastically reduce computational load without compromising accuracy. Our model is benchmarked against MobileNetV2 and MobileNetV3-based segmentation baselines using mean Intersection over Union (mIoU), Dice score, and pixel accuracy. All models were evaluated on a Raspberry Pi 4B to assess real-world feasibility. The proposed BioLite U-Net achieves an mIoU of 92.85% and a Dice score of 96.17%, while being over 1300x smaller than MobileNetV2-DeepLabV3+. On-device inference takes 335 ms per frame, demonstrating near real-time capability. Compared to MobileNet baselines, BioLite U-Net offers a superior tradeoff between segmentation accuracy, efficiency, and deployability, making it highly suitable for intelligent, closed-loop bioprinting systems.
comment: 8 pages, 5 figures, conference-style submission (ICRA 2026). Includes dataset description, BioLite U-Net architecture, benchmark results on edge device (Raspberry Pi 4B)
☆ TrajAware: Graph Cross-Attention and Trajectory-Aware for Generalisable VANETs under Partial Observations
Vehicular ad hoc networks (VANETs) are a crucial component of intelligent transportation systems; however, routing remains challenging due to dynamic topologies, incomplete observations, and the limited resources of edge devices. Existing reinforcement learning (RL) approaches often assume fixed graph structures and require retraining when network conditions change, making them unsuitable for deployment on constrained hardware. We present TrajAware, an RL-based framework designed for edge AI deployment in VANETs. TrajAware integrates three components: (i) action space pruning, which reduces redundant neighbour options while preserving two-hop reachability, alleviating the curse of dimensionality; (ii) graph cross-attention, which maps pruned neighbours to the global graph context, producing features that generalise across diverse network sizes; and (iii) trajectory-aware prediction, which uses historical routes and junction information to estimate real-time positions under partial observations. We evaluate TrajAware in the open-source SUMO simulator using real-world city maps with a leave-one-city-out setup. Results show that TrajAware achieves near-shortest paths and high delivery ratios while maintaining efficiency suitable for constrained edge devices, outperforming state-of-the-art baselines in both full and partial observation scenarios.
comment: 10 pages, 6 figures, 3 tables
☆ AnalysisGNN: Unified Music Analysis with Graph Neural Networks
Recent years have seen a boom in computational approaches to music analysis, yet each one is typically tailored to a specific analytical domain. In this work, we introduce AnalysisGNN, a novel graph neural network framework that leverages a data-shuffling strategy with a custom weighted multi-task loss and logit fusion between task-specific classifiers to integrate heterogeneously annotated symbolic datasets for comprehensive score analysis. We further integrate a Non-Chord-Tone prediction module, which identifies and excludes passing and non-functional notes from all tasks, thereby improving the consistency of label signals. Experimental evaluations demonstrate that AnalysisGNN achieves performance comparable to traditional static-dataset approaches, while showing increased resilience to domain shifts and annotation inconsistencies across multiple heterogeneous corpora.
comment: Accepted at the 17th International Symposium on Computer Music Multidisciplinary Research (CMMR) 2025
☆ CogGuide: Human-Like Guidance for Zero-Shot Omni-Modal Reasoning
Targeting the issues of "shortcuts" and insufficient contextual understanding in complex cross-modal reasoning of multimodal large models, this paper proposes a zero-shot multimodal reasoning component guided by human-like cognitive strategies centered on an "intent sketch". The component comprises a plug-and-play three-module pipeline-Intent Perceiver, Strategy Generator, and Strategy Selector-that explicitly constructs a "understand-plan-select" cognitive process. By generating and filtering "intent sketch" strategies to guide the final reasoning, it requires no parameter fine-tuning and achieves cross-model transfer solely through in-context engineering. Information-theoretic analysis shows that this process can reduce conditional entropy and improve information utilization efficiency, thereby suppressing unintended shortcut reasoning. Experiments on IntentBench, WorldSense, and Daily-Omni validate the method's generality and robust gains; compared with their respective baselines, the complete "three-module" scheme yields consistent improvements across different reasoning engines and pipeline combinations, with gains up to approximately 9.51 percentage points, demonstrating the practical value and portability of the "intent sketch" reasoning component in zero-shot scenarios.
☆ The First Voice Timbre Attribute Detection Challenge
The first voice timbre attribute detection challenge is featured in a special session at NCMMSC 2025. It focuses on the explainability of voice timbre and compares the intensity of two speech utterances in a specified timbre descriptor dimension. The evaluation was conducted on the VCTK-RVA dataset. Participants developed their systems and submitted their outputs to the organizer, who evaluated the performance and sent feedback to them. Six teams submitted their outputs, with five providing descriptions of their methodologies.
☆ Improved Classification of Nitrogen Stress Severity in Plants Under Combined Stress Conditions Using Spatio-Temporal Deep Learning Framework
Plants in their natural habitats endure an array of interacting stresses, both biotic and abiotic, that rarely occur in isolation. Nutrient stress-particularly nitrogen deficiency-becomes even more critical when compounded with drought and weed competition, making it increasingly difficult to distinguish and address its effects. Early detection of nitrogen stress is therefore crucial for protecting plant health and implementing effective management strategies. This study proposes a novel deep learning framework to accurately classify nitrogen stress severity in a combined stress environment. Our model uses a unique blend of four imaging modalities-RGB, multispectral, and two infrared wavelengths-to capture a wide range of physiological plant responses from canopy images. These images, provided as time-series data, document plant health across three levels of nitrogen availability (low, medium, and high) under varying water stress and weed pressures. The core of our approach is a spatio-temporal deep learning pipeline that merges a Convolutional Neural Network (CNN) for extracting spatial features from images with a Long Short-Term Memory (LSTM) network to capture temporal dependencies. We also devised and evaluated a spatial-only CNN pipeline for comparison. Our CNN-LSTM pipeline achieved an impressive accuracy of 98%, impressively surpassing the spatial-only model's 80.45% and other previously reported machine learning method's 76%. These results bring actionable insights based on the power of our CNN-LSTM approach in effectively capturing the subtle and complex interactions between nitrogen deficiency, water stress, and weed pressure. This robust platform offers a promising tool for the timely and proactive identification of nitrogen stress severity, enabling better crop management and improved plant health.
comment: 13 pages, 8 figures, 7 Tables
☆ BEAM: Brainwave Empathy Assessment Model for Early Childhood
Empathy in young children is crucial for their social and emotional development, yet predicting it remains challenging. Traditional methods often only rely on self-reports or observer-based labeling, which are susceptible to bias and fail to objectively capture the process of empathy formation. EEG offers an objective alternative; however, current approaches primarily extract static patterns, neglecting temporal dynamics. To overcome these limitations, we propose a novel deep learning framework, the Brainwave Empathy Assessment Model (BEAM), to predict empathy levels in children aged 4-6 years. BEAM leverages multi-view EEG signals to capture both cognitive and emotional dimensions of empathy. The framework comprises three key components: 1) a LaBraM-based encoder for effective spatio-temporal feature extraction, 2) a feature fusion module to integrate complementary information from multi-view signals, and 3) a contrastive learning module to enhance class separation. Validated on the CBCP dataset, BEAM outperforms state-of-the-art methods across multiple metrics, demonstrating its potential for objective empathy assessment and providing a preliminary insight into early interventions in children's prosocial development.
☆ Demo: Healthcare Agent Orchestrator (HAO) for Patient Summarization in Molecular Tumor Boards
Molecular Tumor Boards (MTBs) are multidisciplinary forums where oncology specialists collaboratively assess complex patient cases to determine optimal treatment strategies. A central element of this process is the patient summary, typically compiled by a medical oncologist, radiation oncologist, or surgeon, or their trained medical assistant, who distills heterogeneous medical records into a concise narrative to facilitate discussion. This manual approach is often labor-intensive, subjective, and prone to omissions of critical information. To address these limitations, we introduce the Healthcare Agent Orchestrator (HAO), a Large Language Model (LLM)-driven AI agent that coordinates a multi-agent clinical workflow to generate accurate and comprehensive patient summaries for MTBs. Evaluating predicted patient summaries against ground truth presents additional challenges due to stylistic variation, ordering, synonym usage, and phrasing differences, which complicate the measurement of both succinctness and completeness. To overcome these evaluation hurdles, we propose TBFact, a ``model-as-a-judge'' framework designed to assess the comprehensiveness and succinctness of generated summaries. Using a benchmark dataset derived from de-identified tumor board discussions, we applied TBFact to evaluate our Patient History agent. Results show that the agent captured 94% of high-importance information (including partial entailments) and achieved a TBFact recall of 0.84 under strict entailment criteria. We further demonstrate that TBFact enables a data-free evaluation framework that institutions can deploy locally without sharing sensitive clinical data. Together, HAO and TBFact establish a robust foundation for delivering reliable and scalable support to MTBs.
comment: 9 pages, 1 figure
☆ Integrating Spatial and Semantic Embeddings for Stereo Sound Event Localization in Videos
In this study, we address the multimodal task of stereo sound event localization and detection with source distance estimation (3D SELD) in regular video content. 3D SELD is a complex task that combines temporal event classification with spatial localization, requiring reasoning across spatial, temporal, and semantic dimensions. The last is arguably the most challenging to model. Traditional SELD approaches typically rely on multichannel input, limiting their capacity to benefit from large-scale pre-training due to data constraints. To overcome this, we enhance a standard SELD architecture with semantic information by integrating pre-trained, contrastive language-aligned models: CLAP for audio and OWL-ViT for visual inputs. These embeddings are incorporated into a modified Conformer module tailored for multimodal fusion, which we refer to as the Cross-Modal Conformer. We perform an ablation study on the development set of the DCASE2025 Task3 Stereo SELD Dataset to assess the individual contributions of the language-aligned models and benchmark against the DCASE Task 3 baseline systems. Additionally, we detail the curation process of large synthetic audio and audio-visual datasets used for model pre-training. These datasets were further expanded through left-right channel swapping augmentation. Our approach, combining extensive pre-training, model ensembling, and visual post-processing, achieved second rank in the DCASE 2025 Challenge Task 3 (Track B), underscoring the effectiveness of our method. Future work will explore the modality-specific contributions and architectural refinements.
comment: arXiv admin note: substantial text overlap with arXiv:2507.04845
☆ HAVE: Head-Adaptive Gating and ValuE Calibration for Hallucination Mitigation in Large Language Models
Large Language Models (LLMs) often produce hallucinations in retrieval-augmented or long-context generation, even when relevant evidence is present. This stems from two issues: head importance is treated as input-agnostic, and raw attention weights poorly reflect each token's true contribution. We present HAVE (Head-Adaptive Gating and ValuE Calibration), a parameter-free decoding framework that directly addresses both challenges. HAVE introduces head-adaptive gating, which performs instance-level soft reweighing of attention heads, and value calibration, which augments attention with the magnitude of value vectors to approximate write-back contribution. Together, these modules construct token-level evidence aligned with model updates and fuse it with the LM distribution through a lightweight uncertainty-scaled policy. HAVE requires no finetuning and operates in a single forward pass, making it efficient and broadly applicable. Experiments across multiple QA benchmarks and LLM families demonstrate that HAVE consistently reduces hallucinations and outperforms strong baselines, including DAGCD, with modest overhead. The framework is transparent, reproducible, and readily integrates with off-the-shelf LLMs, advancing trustworthy generation in real-world settings.
☆ Integrated Detection and Tracking Based on Radar Range-Doppler Feature
Detection and tracking are the basic tasks of radar systems. Current joint detection tracking methods, which focus on dynamically adjusting detection thresholds from tracking results, still present challenges in fully utilizing the potential of radar signals. These are mainly reflected in the limited capacity of the constant false-alarm rate model to accurately represent information, the insufficient depiction of complex scenes, and the limited information acquired by the tracker. We introduce the Integrated Detection and Tracking based on radar feature (InDT) method, which comprises a network architecture for radar signal detection and a tracker that leverages detection assistance. The InDT detector extracts feature information from each Range-Doppler (RD) matrix and then returns the target position through the feature enhancement module and the detection head. The InDT tracker adaptively updates the measurement noise covariance of the Kalman filter based on detection confidence. The similarity of target RD features is measured by cosine distance, which enhances the data association process by combining location and feature information. Finally, the efficacy of the proposed method was validated through testing on both simulated data and publicly available datasets.
☆ Contrastive Self-Supervised Network Intrusion Detection using Augmented Negative Pairs IEEE
Network intrusion detection remains a critical challenge in cybersecurity. While supervised machine learning models achieve state-of-the-art performance, their reliance on large labelled datasets makes them impractical for many real-world applications. Anomaly detection methods, which train exclusively on benign traffic to identify malicious activity, suffer from high false positive rates, limiting their usability. Recently, self-supervised learning techniques have demonstrated improved performance with lower false positive rates by learning discriminative latent representations of benign traffic. In particular, contrastive self-supervised models achieve this by minimizing the distance between similar (positive) views of benign traffic while maximizing it between dissimilar (negative) views. Existing approaches generate positive views through data augmentation and treat other samples as negative. In contrast, this work introduces Contrastive Learning using Augmented Negative pairs (CLAN), a novel paradigm for network intrusion detection where augmented samples are treated as negative views - representing potentially malicious distributions - while other benign samples serve as positive views. This approach enhances both classification accuracy and inference efficiency after pretraining on benign traffic. Experimental evaluation on the Lycos2017 dataset demonstrates that the proposed method surpasses existing self-supervised and anomaly detection techniques in a binary classification task. Furthermore, when fine-tuned on a limited labelled dataset, the proposed approach achieves superior multi-class classification performance compared to existing self-supervised models.
comment: Published in: Proceedings of IEEE Conference on Cyber Security and Resilience (CSR), 2025. Official version: https://doi.org/10.1109/CSR64739.2025.11129979 Code: https://github.com/jackwilkie/CLAN
☆ Signal-Based Malware Classification Using 1D CNNs
Malware classification is a contemporary and ongoing challenge in cyber-security: modern obfuscation techniques are able to evade traditional static analysis, while dynamic analysis is too resource intensive to be deployed at a large scale. One prominent line of research addresses these limitations by converting malware binaries into 2D images by heuristically reshaping them into a 2D grid before resizing using Lanczos resampling. These images can then be classified based on their textural information using computer vision approaches. While this approach can detect obfuscated malware more effectively than static analysis, the process of converting files into 2D images results in significant information loss due to both quantisation noise, caused by rounding to integer pixel values, and the introduction of 2D dependencies which do not exist in the original data. This loss of signal limits the classification performance of the downstream model. This work addresses these weaknesses by instead resizing the files into 1D signals which avoids the need for heuristic reshaping, and additionally these signals do not suffer from quantisation noise due to being stored in a floating-point format. It is shown that existing 2D CNN architectures can be readily adapted to classify these 1D signals for improved performance. Furthermore, a bespoke 1D convolutional neural network, based on the ResNet architecture and squeeze-and-excitation layers, was developed to classify these signals and evaluated on the MalNet dataset. It was found to achieve state-of-the-art performance on binary, type, and family level classification with F1 scores of 0.874, 0.503, and 0.507, respectively, paving the way for future models to operate on the proposed signal modality.
comment: Accepted for publication in Springer Cybersecurity (2025)
☆ Learning Optimal Defender Strategies for CAGE-2 using a POMDP Model
CAGE-2 is an accepted benchmark for learning and evaluating defender strategies against cyberattacks. It reflects a scenario where a defender agent protects an IT infrastructure against various attacks. Many defender methods for CAGE-2 have been proposed in the literature. In this paper, we construct a formal model for CAGE-2 using the framework of Partially Observable Markov Decision Process (POMDP). Based on this model, we define an optimal defender strategy for CAGE-2 and introduce a method to efficiently learn this strategy. Our method, called BF-PPO, is based on PPO, and it uses particle filter to mitigate the computational complexity due to the large state space of the CAGE-2 model. We evaluate our method in the CAGE-2 CybORG environment and compare its performance with that of CARDIFF, the highest ranked method on the CAGE-2 leaderboard. We find that our method outperforms CARDIFF regarding the learned defender strategy and the required training time.
comment: The paper is has been accepted for the 21st International Conference on Network and Service Management (CNSM-2025). The final version will be published in the conference proceedings
☆ On the Reproducibility of "FairCLIP: Harnessing Fairness in Vision-Language Learning''
We investigated the reproducibility of FairCLIP, proposed by Luo et al. (2024), for improving the group fairness of CLIP (Radford et al., 2021) by minimizing image-text similarity score disparities across sensitive groups using the Sinkhorn distance. The experimental setup of Luo et al. (2024) was reproduced to primarily investigate the research findings for FairCLIP. The model description by Luo et al. (2024) was found to differ from the original implementation. Therefore, a new implementation, A-FairCLIP, is introduced to examine specific design choices. Furthermore, FairCLIP+ is proposed to extend the FairCLIP objective to include multiple attributes. Additionally, the impact of the distance minimization on FairCLIP's fairness and performance was explored. In alignment with the original authors, CLIP was found to be biased towards certain demographics when applied to zero-shot glaucoma classification using medical scans and clinical notes from the Harvard-FairVLMed dataset. However, the experimental results on two datasets do not support their claim that FairCLIP improves the performance and fairness of CLIP. Although the regularization objective reduces Sinkhorn distances, both the official implementation and the aligned implementation, A-FairCLIP, were not found to improve performance nor fairness in zero-shot glaucoma classification.
☆ SLiNT: Structure-aware Language Model with Injection and Contrastive Training for Knowledge Graph Completion EMNLP
Link prediction in knowledge graphs requires integrating structural information and semantic context to infer missing entities. While large language models offer strong generative reasoning capabilities, their limited exploitation of structural signals often results in structural sparsity and semantic ambiguity, especially under incomplete or zero-shot settings. To address these challenges, we propose SLiNT (Structure-aware Language model with Injection and coNtrastive Training), a modular framework that injects knowledge-graph-derived structural context into a frozen LLM backbone with lightweight LoRA-based adaptation for robust link prediction. Specifically, Structure-Guided Neighborhood Enhancement (SGNE) retrieves pseudo-neighbors to enrich sparse entities and mitigate missing context; Dynamic Hard Contrastive Learning (DHCL) introduces fine-grained supervision by interpolating hard positives and negatives to resolve entity-level ambiguity; and Gradient-Decoupled Dual Injection (GDDI) performs token-level structure-aware intervention while preserving the core LLM parameters. Experiments on WN18RR and FB15k-237 show that SLiNT achieves superior or competitive performance compared with both embedding-based and generation-based baselines, demonstrating the effectiveness of structure-aware representation learning for scalable knowledge graph completion.
comment: Accepted by EMNLP Findings 2025
☆ Crown, Frame, Reverse: Layer-Wise Scaling Variants for LLM Pre-Training
Transformer-based language models traditionally use uniform (isotropic) layer sizes, yet they ignore the diverse functional roles that different depths can play and their computational capacity needs. Building on Layer-Wise Scaling (LWS) and pruning literature, we introduce three new LWS variants - Framed, Reverse, and Crown - that redistribute FFN widths and attention heads via two or three-point linear interpolation in the pre-training stage. We present the first systematic ablation of LWS and its variants, on a fixed budget of 180M parameters, trained on 5B tokens. All models converge to similar losses and achieve better performance compared to an equal-cost isotropic baseline, without a substantial decrease in training throughput. This work represents an initial step into the design space of layer-wise architectures for pre-training, but future work should scale experiments to orders of magnitude more tokens and parameters to fully assess their potential.
comment: The reported results are skewed due to a data type mismatch. The dataset was saved with int32, but the data loader interpreted it as uint16. As a result, each 32-bit token was incorrectly split into two 16-bit tokens. Outcome: a consistent artifact where every other token is zero
☆ QualityFM: a Multimodal Physiological Signal Foundation Model with Self-Distillation for Signal Quality Challenges in Critically Ill Patients
Photoplethysmogram (PPG) and electrocardiogram (ECG) are commonly recorded in intesive care unit (ICU) and operating room (OR). However, the high incidence of poor, incomplete, and inconsistent signal quality, can lead to false alarms or diagnostic inaccuracies. The methods explored so far suffer from limited generalizability, reliance on extensive labeled data, and poor cross-task transferability. To overcome these challenges, we introduce QualityFM, a novel multimodal foundation model for these physiological signals, designed to acquire a general-purpose understanding of signal quality. Our model is pre-trained on an large-scale dataset comprising over 21 million 30-second waveforms and 179,757 hours of data. Our approach involves a dual-track architecture that processes paired physiological signals of differing quality, leveraging a self-distillation strategy where an encoder for high-quality signals is used to guide the training of an encoder for low-quality signals. To efficiently handle long sequential signals and capture essential local quasi-periodic patterns, we integrate a windowed sparse attention mechanism within our Transformer-based model. Furthermore, a composite loss function, which combines direct distillation loss on encoder outputs with indirect reconstruction loss based on power and phase spectra, ensures the preservation of frequency-domain characteristics of the signals. We pre-train three models with varying parameter counts (9.6 M to 319 M) and demonstrate their efficacy and practical value through transfer learning on three distinct clinical tasks: false alarm of ventricular tachycardia detection, the identification of atrial fibrillation and the estimation of arterial blood pressure (ABP) from PPG and ECG signals.
comment: 11 pages, 5 figures, 7 tables
☆ An AI system to help scientists write expert-level empirical software
The cycle of scientific discovery is frequently bottlenecked by the slow, manual creation of software to support computational experiments. To address this, we present an AI system that creates expert-level scientific software whose goal is to maximize a quality metric. The system uses a Large Language Model (LLM) and Tree Search (TS) to systematically improve the quality metric and intelligently navigate the large space of possible solutions. The system achieves expert-level results when it explores and integrates complex research ideas from external sources. The effectiveness of tree search is demonstrated across a wide range of benchmarks. In bioinformatics, it discovered 40 novel methods for single-cell data analysis that outperformed the top human-developed methods on a public leaderboard. In epidemiology, it generated 14 models that outperformed the CDC ensemble and all other individual models for forecasting COVID-19 hospitalizations. Our method also produced state-of-the-art software for geospatial analysis, neural activity prediction in zebrafish, time series forecasting and numerical solution of integrals. By devising and implementing novel solutions to diverse tasks, the system represents a significant step towards accelerating scientific progress.
comment: 71 pages, 26 figures
☆ Scaling up Multi-Turn Off-Policy RL and Multi-Agent Tree Search for LLM Step-Provers
The integration of Large Language Models (LLMs) into automated theorem proving has shown immense promise, yet is fundamentally constrained by challenges in scaling up both training-time reinforcement learning (RL) and inference-time compute. This paper introduces \texttt{BFS-Prover-V2}, a system designed to address this dual scaling problem. We present two primary innovations. The first is a novel multi-turn off-policy RL framework for continually improving the performance of LLM step-prover at training time. This framework, inspired by the principles of AlphaZero, utilizes a multi-stage expert iteration pipeline featuring adaptive tactic-level data filtering and periodic retraining to surmount the performance plateaus that typically curtail long-term RL in LLM-based agents. The second innovation is a planner-enhanced multi-agent search architecture that scales reasoning capabilities at inference time. This architecture employs a general reasoning model as a high-level planner to iteratively decompose complex theorems into a sequence of simpler subgoals. This hierarchical approach substantially reduces the search space, enabling a team of parallel prover agents to collaborate efficiently by leveraging a shared proof cache. We demonstrate that this dual approach to scaling yields state-of-the-art results on established formal mathematics benchmarks. \texttt{BFS-Prover-V2} achieves 95.08\% and 41.4\% on the MiniF2F and ProofNet test sets respectively. While demonstrated in the domain of formal mathematics, the RL and inference techniques presented in this work are of broader interest and may be applied to other domains requiring long-horizon multi-turn reasoning and complex search.
☆ MORSE: Multi-Objective Reinforcement Learning via Strategy Evolution for Supply Chain Optimization
In supply chain management, decision-making often involves balancing multiple conflicting objectives, such as cost reduction, service level improvement, and environmental sustainability. Traditional multi-objective optimization methods, such as linear programming and evolutionary algorithms, struggle to adapt in real-time to the dynamic nature of supply chains. In this paper, we propose an approach that combines Reinforcement Learning (RL) and Multi-Objective Evolutionary Algorithms (MOEAs) to address these challenges for dynamic multi-objective optimization under uncertainty. Our method leverages MOEAs to search the parameter space of policy neural networks, generating a Pareto front of policies. This provides decision-makers with a diverse population of policies that can be dynamically switched based on the current system objectives, ensuring flexibility and adaptability in real-time decision-making. We also introduce Conditional Value-at-Risk (CVaR) to incorporate risk-sensitive decision-making, enhancing resilience in uncertain environments. We demonstrate the effectiveness of our approach through case studies, showcasing its ability to respond to supply chain dynamics and outperforming state-of-the-art methods in an inventory management case study. The proposed strategy not only improves decision-making efficiency but also offers a more robust framework for managing uncertainty and optimizing performance in supply chains.
☆ DyC-STG: Dynamic Causal Spatio-Temporal Graph Network for Real-time Data Credibility Analysis in IoT
The wide spreading of Internet of Things (IoT) sensors generates vast spatio-temporal data streams, but ensuring data credibility is a critical yet unsolved challenge for applications like smart homes. While spatio-temporal graph (STG) models are a leading paradigm for such data, they often fall short in dynamic, human-centric environments due to two fundamental limitations: (1) their reliance on static graph topologies, which fail to capture physical, event-driven dynamics, and (2) their tendency to confuse spurious correlations with true causality, undermining robustness in human-centric environments. To address these gaps, we propose the Dynamic Causal Spatio-Temporal Graph Network (DyC-STG), a novel framework designed for real-time data credibility analysis in IoT. Our framework features two synergistic contributions: an event-driven dynamic graph module that adapts the graph topology in real-time to reflect physical state changes, and a causal reasoning module to distill causally-aware representations by strictly enforcing temporal precedence. To facilitate the research in this domain we release two new real-world datasets. Comprehensive experiments show that DyC-STG establishes a new state-of-the-art, outperforming the strongest baselines by 1.4 percentage points and achieving an F1-Score of up to 0.930.
☆ MAS-Bench: A Unified Benchmark for Shortcut-Augmented Hybrid Mobile GUI Agents
To enhance the efficiency of GUI agents on various platforms like smartphones and computers, a hybrid paradigm that combines flexible GUI operations with efficient shortcuts (e.g., API, deep links) is emerging as a promising direction. However, a framework for systematically benchmarking these hybrid agents is still underexplored. To take the first step in bridging this gap, we introduce MAS-Bench, a benchmark that pioneers the evaluation of GUI-shortcut hybrid agents with a specific focus on the mobile domain. Beyond merely using predefined shortcuts, MAS-Bench assesses an agent's capability to autonomously generate shortcuts by discovering and creating reusable, low-cost workflows. It features 139 complex tasks across 11 real-world applications, a knowledge base of 88 predefined shortcuts (APIs, deep-links, RPA scripts), and 7 evaluation metrics. The tasks are designed to be solvable via GUI-only operations, but can be significantly accelerated by intelligently embedding shortcuts. Experiments show that hybrid agents achieve significantly higher success rates and efficiency than their GUI-only counterparts. This result also demonstrates the effectiveness of our method for evaluating an agent's shortcut generation capabilities. MAS-Bench fills a critical evaluation gap, providing a foundational platform for future advancements in creating more efficient and robust intelligent agents.
☆ Explained, yet misunderstood: How AI Literacy shapes HR Managers' interpretation of User Interfaces in Recruiting Recommender Systems RecSys
AI-based recommender systems increasingly influence recruitment decisions. Thus, transparency and responsible adoption in Human Resource Management (HRM) are critical. This study examines how HR managers' AI literacy influences their subjective perception and objective understanding of explainable AI (XAI) elements in recruiting recommender dashboards. In an online experiment, 410 German-based HR managers compared baseline dashboards to versions enriched with three XAI styles: important features, counterfactuals, and model criteria. Our results show that the dashboards used in practice do not explain AI results and even keep AI elements opaque. However, while adding XAI features improves subjective perceptions of helpfulness and trust among users with moderate or high AI literacy, it does not increase their objective understanding. It may even reduce accurate understanding, especially with complex explanations. Only overlays of important features significantly aided the interpretations of high-literacy users. Our findings highlight that the benefits of XAI in recruitment depend on users' AI literacy, emphasizing the need for tailored explanation strategies and targeted literacy training in HRM to ensure fair, transparent, and effective adoption of AI.
comment: Accepted paper for RecSys in HR'25: The 5th Workshop on Recommender Systems for Human Resources, in conjunction with the 19th ACM Conference on Recommender Systems, September 22--26, 2025, Prague, Czech Republic
☆ Several Performance Bounds on Decentralized Online Optimization are Highly Conservative and Potentially Misleading IEEE
We analyze Decentralized Online Optimization algorithms using the Performance Estimation Problem approach which allows, to automatically compute exact worst-case performance of optimization algorithms. Our analysis shows that several available performance guarantees are very conservative, sometimes by multiple orders of magnitude, and can lead to misguided choices of algorithm. Moreover, at least in terms of worst-case performance, some algorithms appear not to benefit from inter-agent communications for a significant period of time. We show how to improve classical methods by tuning their step-sizes, and find that we can save up to 20% on their actual worst-case performance regret.
comment: 7 pages, 5 figures. Paper accepted for the 64th IEEE Conference on Decision and Control (2025)
☆ Accelerate Scaling of LLM Alignment via Quantifying the Coverage and Depth of Instruction Set
With the growing demand for applying large language models to downstream tasks, improving model alignment performance and efficiency has become crucial. Such a process involves selecting informative instructions from a candidate pool. However, due to the complexity of instruction set distributions, the key factors driving the performance of aligned models remain unclear. As a result, current instruction set refinement methods fail to improve performance as the instruction pool expands continuously. To address this issue, we first investigate the key factors that influence the relationship between instruction dataset distribution and aligned model performance. Based on these insights, we propose a novel instruction data selection method. We identify that the depth of instructions and the coverage of the semantic space are the crucial factors determining downstream performance, which could explain over 70\% of the model loss on the development set. We then design an instruction selection algorithm to simultaneously maximize the depth and semantic coverage of the selected instructions. Experimental results demonstrate that, compared to state-of-the-art baseline methods, it can sustainably improve model performance at a faster pace and thus achieve \emph{``Accelerated Scaling''}.
☆ Focusing by Contrastive Attention: Enhancing VLMs' Visual Reasoning
Vision-Language Models (VLMs) have demonstrated remarkable success across diverse visual tasks, yet their performance degrades in complex visual environments. While existing enhancement approaches require additional training, rely on external segmentation tools, or operate at coarse-grained levels, they overlook the innate ability within VLMs. To bridge this gap, we investigate VLMs' attention patterns and discover that: (1) visual complexity strongly correlates with attention entropy, negatively impacting reasoning performance; (2) attention progressively refines from global scanning in shallow layers to focused convergence in deeper layers, with convergence degree determined by visual complexity. (3) Theoretically, we prove that the contrast of attention maps between general queries and task-specific queries enables the decomposition of visual signal into semantic signals and visual noise components. Building on these insights, we propose Contrastive Attention Refinement for Visual Enhancement (CARVE), a training-free method that extracts task-relevant visual signals through attention contrasting at the pixel level. Extensive experiments demonstrate that CARVE consistently enhances performance, achieving up to 75% improvement on open-source models. Our work provides critical insights into the interplay between visual complexity and attention mechanisms, offering an efficient pathway for improving visual reasoning with contrasting attention.
☆ HyFedRAG: A Federated Retrieval-Augmented Generation Framework for Heterogeneous and Privacy-Sensitive Data
Centralized RAG pipelines struggle with heterogeneous and privacy-sensitive data, especially in distributed healthcare settings where patient data spans SQL, knowledge graphs, and clinical notes. Clinicians face difficulties retrieving rare disease cases due to privacy constraints and the limitations of traditional cloud-based RAG systems in handling diverse formats and edge devices. To address this, we introduce HyFedRAG, a unified and efficient Federated RAG framework tailored for Hybrid data modalities. By leveraging an edge-cloud collaborative mechanism, HyFedRAG enables RAG to operate across diverse data sources while preserving data privacy. Our key contributions are: (1) We design an edge-cloud collaborative RAG framework built on Flower, which supports querying structured SQL data, semi-structured knowledge graphs, and unstructured documents. The edge-side LLMs convert diverse data into standardized privacy-preserving representations, and the server-side LLMs integrates them for global reasoning and generation. (2) We integrate lightweight local retrievers with privacy-aware LLMs and provide three anonymization tools that enable each client to produce semantically rich, de-identified summaries for global inference across devices. (3) To optimize response latency and reduce redundant computation, we design a three-tier caching strategy consisting of local cache, intermediate representation cache, and cloud inference cache. Experimental results on PMC-Patients demonstrate that HyFedRAG outperforms existing baselines in terms of retrieval quality, generation consistency, and system efficiency. Our framework offers a scalable and privacy-compliant solution for RAG over structural-heterogeneous data, unlocking the potential of LLMs in sensitive and diverse data environments.
comment: 9 pages, 7 figures
☆ Tree of Agents: Improving Long-Context Capabilities of Large Language Models through Multi-Perspective Reasoning
Large language models (LLMs) face persistent challenges when handling long-context tasks, most notably the lost in the middle issue, where information located in the middle of a long input tends to be underutilized. Some existing methods that reduce input have the risk of discarding key information, while others that extend context windows often lead to attention dispersion. To address these limitations, we propose Tree of Agents (TOA), a multi-agent reasoning framework that segments the input into chunks processed by independent agents. Each agent generates its local cognition, then agents dynamically exchange information for collaborative reasoning along tree-structured paths. TOA enables agents to probe different reasoning orders for multi-perspective understanding, effectively mitigating position bias and reducing hallucinations. To improve processing efficiency, we incorporate prefix-hash caching and adaptive pruning strategies, achieving significant performance improvements with comparable API overhead. Experiments show that TOA, powered by compact LLaMA3.1-8B, significantly outperforms multiple baselines and demonstrates comparable performance to the latest and much larger commercial models, such as Gemini1.5-pro, on various long-context tasks. Code is available at https://github.com/Aireduce952/Tree-of-Agents.
comment: 19 pages, 5 figures
☆ HECATE: An ECS-based Framework for Teaching and Developing Multi-Agent Systems ECAI-2025
This paper introduces HECATE, a novel framework based on the Entity-Component-System (ECS) architectural pattern that bridges the gap between distributed systems engineering and MAS development. HECATE is built using the Entity-Component-System architectural pattern, leveraging data-oriented design to implement multiagent systems. This approach involves engineering multiagent systems (MAS) from a distributed systems (DS) perspective, integrating agent concepts directly into the DS domain. This approach simplifies MAS development by (i) reducing the need for specialized agent knowledge and (ii) leveraging familiar DS patterns and standards to minimize the agent-specific knowledge required for engineering MAS. We present the framework's architecture, core components, and implementation approach, demonstrating how it supports different agent models.
comment: Submitted to ECAI-2025
☆ Musculoskeletal simulation of limb movement biomechanics in Drosophila melanogaster
Computational models are critical to advance our understanding of how neural, biomechanical, and physical systems interact to orchestrate animal behaviors. Despite the availability of near-complete reconstructions of the Drosophila melanogaster central nervous system, musculature, and exoskeleton, anatomically and physically grounded models of fly leg muscles are still missing. These models provide an indispensable bridge between motor neuron activity and joint movements. Here, we introduce the first 3D, data-driven musculoskeletal model of Drosophila legs, implemented in both OpenSim and MuJoCo simulation environments. Our model incorporates a Hill-type muscle representation based on high-resolution X-ray scans from multiple fixed specimens. We present a pipeline for constructing muscle models using morphological imaging data and for optimizing unknown muscle parameters specific to the fly. We then combine our musculoskeletal models with detailed 3D pose estimation data from behaving flies to achieve muscle-actuated behavioral replay in OpenSim. Simulations of muscle activity across diverse walking and grooming behaviors predict coordinated muscle synergies that can be tested experimentally. Furthermore, by training imitation learning policies in MuJoCo, we test the effect of different passive joint properties on learning speed and find that damping and stiffness facilitate learning. Overall, our model enables the investigation of motor control in an experimentally tractable model organism, providing insights into how biomechanics contribute to generation of complex limb movements. Moreover, our model can be used to control embodied artificial agents to generate naturalistic and compliant locomotion in simulated environments.
comment: 23 pages, 11 figures
☆ CAPMix: Robust Time Series Anomaly Detection Based on Abnormal Assumptions with Dual-Space Mixup
Time series anomaly detection (TSAD) is a vital yet challenging task, particularly in scenarios where labeled anomalies are scarce and temporal dependencies are complex. Recent anomaly assumption (AA) approaches alleviate the lack of anomalies by injecting synthetic samples and training discriminative models. Despite promising results, these methods often suffer from two fundamental limitations: patchy generation, where scattered anomaly knowledge leads to overly simplistic or incoherent anomaly injection, and Anomaly Shift, where synthetic anomalies either resemble normal data too closely or diverge unrealistically from real anomalies, thereby distorting classification boundaries. In this paper, we propose CAPMix, a controllable anomaly augmentation framework that addresses both issues. First, we design a CutAddPaste mechanism to inject diverse and complex anomalies in a targeted manner, avoiding patchy generation. Second, we introduce a label revision strategy to adaptively refine anomaly labels, reducing the risk of anomaly shift. Finally, we employ dual-space mixup within a temporal convolutional network to enforce smoother and more robust decision boundaries. Extensive experiments on five benchmark datasets, including AIOps, UCR, SWaT, WADI, and ESA, demonstrate that CAPMix achieves significant improvements over state-of-the-art baselines, with enhanced robustness against contaminated training data. The code is available at https://github.com/alsike22/CAPMix.
☆ Index-Preserving Lightweight Token Pruning for Efficient Document Understanding in Vision-Language Models ICASSP 2026
Recent progress in vision-language models (VLMs) has led to impressive results in document understanding tasks, but their high computational demands remain a challenge. To mitigate the compute burdens, we propose a lightweight token pruning framework that filters out non-informative background regions from document images prior to VLM processing. A binary patch-level classifier removes non-text areas, and a max-pooling refinement step recovers fragmented text regions to enhance spatial coherence. Experiments on real-world document datasets demonstrate that our approach substantially lowers computational costs, while maintaining comparable accuracy.
comment: Submitted to ICASSP 2026
☆ Teaching AI Stepwise Diagnostic Reasoning with Report-Guided Chain-of-Thought Learning
This study presents DiagCoT, a multi-stage framework that applies supervised fine-tuning to general-purpose vision-language models (VLMs) to emulate radiologists' stepwise diagnostic reasoning using only free-text reports. DiagCoT combines contrastive image-report tuning for domain alignment, chain-of-thought supervision to capture inferential logic, and reinforcement tuning with clinical reward signals to enhance factual accuracy and fluency. On the MIMIC-CXR benchmark, DiagCoT improved zero-shot disease classification AUC from 0.52 to 0.76 (absolute gain of 0.24), pathology grounding mIoU from 0.08 to 0.31 (absolute gain of 0.23), and report generation BLEU from 0.11 to 0.33 (absolute gain of 0.22). It outperformed state-of-the-art models including LLaVA-Med and CXR-LLAVA on long-tailed diseases and external datasets. By converting unstructured clinical narratives into structured supervision, DiagCoT offers a scalable approach for developing interpretable and diagnostically competent AI systems for radiology.
☆ MeanFlow-Accelerated Multimodal Video-to-Audio Synthesis via One-Step Generation
A key challenge in synthesizing audios from silent videos is the inherent trade-off between synthesis quality and inference efficiency in existing methods. For instance, flow matching based models rely on modeling instantaneous velocity, inherently require an iterative sampling process, leading to slow inference speeds. To address this efficiency bottleneck, we introduce a MeanFlow-accelerated model that characterizes flow fields using average velocity, enabling one-step generation and thereby significantly accelerating multimodal video-to-audio (VTA) synthesis while preserving audio quality, semantic alignment, and temporal synchronization. Furthermore, a scalar rescaling mechanism is employed to balance conditional and unconditional predictions when classifier-free guidance (CFG) is applied, effectively mitigating CFG-induced distortions in one step generation. Since the audio synthesis network is jointly trained with multimodal conditions, we further evaluate it on text-to-audio (TTA) synthesis task. Experimental results demonstrate that incorporating MeanFlow into the network significantly improves inference speed without compromising perceptual quality on both VTA and TTA synthesis tasks.
☆ Beyond the Pre-Service Horizon: Infusing In-Service Behavior for Improved Financial Risk Forecasting IEEE
Typical financial risk management involves distinct phases for pre-service risk assessment and in-service default detection, often modeled separately. This paper proposes a novel framework, Multi-Granularity Knowledge Distillation (abbreviated as MGKD), aimed at improving pre-service risk prediction through the integration of in-service user behavior data. MGKD follows the idea of knowledge distillation, where the teacher model, trained on historical in-service data, guides the student model, which is trained on pre-service data. By using soft labels derived from in-service data, the teacher model helps the student model improve its risk prediction prior to service activation. Meanwhile, a multi-granularity distillation strategy is introduced, including coarse-grained, fine-grained, and self-distillation, to align the representations and predictions of the teacher and student models. This approach not only reinforces the representation of default cases but also enables the transfer of key behavioral patterns associated with defaulters from the teacher to the student model, thereby improving the overall performance of pre-service risk assessment. Moreover, we adopt a re-weighting strategy to mitigate the model's bias towards the minority class. Experimental results on large-scale real-world datasets from Tencent Mobile Payment demonstrate the effectiveness of our proposed approach in both offline and online scenarios.
comment: Accepted to IEEE ICDM 2025
☆ MRD-LiNet: A Novel Lightweight Hybrid CNN with Gradient-Guided Unlearning for Improved Drought Stress Identification
Drought stress is a major threat to global crop productivity, making its early and precise detection essential for sustainable agricultural management. Traditional approaches, though useful, are often time-consuming and labor-intensive, which has motivated the adoption of deep learning methods. In recent years, Convolutional Neural Network (CNN) and Vision Transformer architectures have been widely explored for drought stress identification; however, these models generally rely on a large number of trainable parameters, restricting their use in resource-limited and real-time agricultural settings. To address this challenge, we propose a novel lightweight hybrid CNN framework inspired by ResNet, DenseNet, and MobileNet architectures. The framework achieves a remarkable 15-fold reduction in trainable parameters compared to conventional CNN and Vision Transformer models, while maintaining competitive accuracy. In addition, we introduce a machine unlearning mechanism based on a gradient norm-based influence function, which enables targeted removal of specific training data influence, thereby improving model adaptability. The method was evaluated on an aerial image dataset of potato fields with expert-annotated healthy and drought-stressed regions. Experimental results show that our framework achieves high accuracy while substantially lowering computational costs. These findings highlight its potential as a practical, scalable, and adaptive solution for drought stress monitoring in precision agriculture, particularly under resource-constrained conditions.
comment: 11 pages, 6 Figures, 3 Tables
☆ PL-CA: A Parametric Legal Case Augmentation Framework
Conventional RAG is considered one of the most effective methods for addressing model knowledge insufficiency and hallucination, particularly in the judicial domain that requires high levels of knowledge rigor, logical consistency, and content integrity. However, the conventional RAG method only injects retrieved documents directly into the model's context, which severely constrains models due to their limited context windows and introduces additional computational overhead through excessively long contexts, thereby disrupting models' attention and degrading performance on downstream tasks. Moreover, many existing benchmarks lack expert annotation and focus solely on individual downstream tasks while real-world legal scenarios consist of multiple mixed legal tasks, indicating conventional benchmarks' inadequacy for reflecting models' true capabilities. To address these limitations, we propose PL-CA, which introduces a parametric RAG (P-RAG) framework to perform data augmentation on corpus knowledge and encode this legal knowledge into parametric vectors, and then integrates this parametric knowledge into the LLM's feed-forward networks (FFN) via LoRA, thereby alleviating models' context pressure. Additionally, we also construct a multi-task legal dataset comprising more than 2000 training and test instances, which are all expert-annotated and manually verified. We conduct our experiments on our dataset, and the experimental results demonstrate that our method reduces the overhead associated with excessively long contexts while maintaining competitive performance on downstream tasks compared to conventional RAG. Our code and dataset are provided in the appendix.
☆ A data-driven discretized CS:GO simulation environment to facilitate strategic multi-agent planning research
Modern simulation environments for complex multi-agent interactions must balance high-fidelity detail with computational efficiency. We present DECOY, a novel multi-agent simulator that abstracts strategic, long-horizon planning in 3D terrains into high-level discretized simulation while preserving low-level environmental fidelity. Using Counter-Strike: Global Offensive (CS:GO) as a testbed, our framework accurately simulates gameplay using only movement decisions as tactical positioning -- without explicitly modeling low-level mechanics such as aiming and shooting. Central to our approach is a waypoint system that simplifies and discretizes continuous states and actions, paired with neural predictive and generative models trained on real CS:GO tournament data to reconstruct event outcomes. Extensive evaluations show that replays generated from human data in DECOY closely match those observed in the original game. Our publicly available simulation environment provides a valuable tool for advancing research in strategic multi-agent planning and behavior generation.
comment: Accepted at the Winter Simulation Conference 2025, December, Seattle USA
☆ Mask-GCG: Are All Tokens in Adversarial Suffixes Necessary for Jailbreak Attacks?
Jailbreak attacks on Large Language Models (LLMs) have demonstrated various successful methods whereby attackers manipulate models into generating harmful responses that they are designed to avoid. Among these, Greedy Coordinate Gradient (GCG) has emerged as a general and effective approach that optimizes the tokens in a suffix to generate jailbreakable prompts. While several improved variants of GCG have been proposed, they all rely on fixed-length suffixes. However, the potential redundancy within these suffixes remains unexplored. In this work, we propose Mask-GCG, a plug-and-play method that employs learnable token masking to identify impactful tokens within the suffix. Our approach increases the update probability for tokens at high-impact positions while pruning those at low-impact positions. This pruning not only reduces redundancy but also decreases the size of the gradient space, thereby lowering computational overhead and shortening the time required to achieve successful attacks compared to GCG. We evaluate Mask-GCG by applying it to the original GCG and several improved variants. Experimental results show that most tokens in the suffix contribute significantly to attack success, and pruning a minority of low-impact tokens does not affect the loss values or compromise the attack success rate (ASR), thereby revealing token redundancy in LLM prompts. Our findings provide insights for developing efficient and interpretable LLMs from the perspective of jailbreak attacks.
☆ Ban&Pick: Achieving Free Performance Gains and Inference Speedup via Smarter Routing in MoE-LLMs
Sparse Mixture-of-Experts (MoE) has become a key architecture for scaling large language models (LLMs) efficiently. Recent fine-grained MoE designs introduce hundreds of experts per layer, with multiple experts activated per token, enabling stronger specialization. However, during pre-training, routers are optimized mainly for stability and robustness: they converge prematurely and enforce balanced usage, limiting the full potential of model performance and efficiency. In this work, we uncover two overlooked issues: (i) a few highly influential experts are underutilized due to premature and balanced routing decisions; and (ii) enforcing a fixed number of active experts per token introduces substantial redundancy. Instead of retraining models or redesigning MoE architectures, we introduce Ban&Pick, a post-training, plug-and-play strategy for smarter MoE routing. Pick discovers and reinforces key experts-a small group with outsized impact on performance-leading to notable accuracy gains across domains. Ban complements this by dynamically pruning redundant experts based on layer and token sensitivity, delivering faster inference with minimal accuracy loss. Experiments on fine-grained MoE-LLMs (DeepSeek, Qwen3) across math, code, and general reasoning benchmarks demonstrate that Ban&Pick delivers free performance gains and inference acceleration without retraining or architectural changes. For instance, on Qwen3-30B-A3B, it improves accuracy from 80.67 to 84.66 on AIME2024 and from 65.66 to 68.18 on GPQA-Diamond, while accelerating inference by 1.25x under the vLLM.
comment: 20 pages, 9 figures
☆ Evaluating Multi-Turn Bargain Skills in LLM-Based Seller Agent
In online second-hand marketplaces, multi-turn bargaining is a crucial part of seller-buyer interactions. Large Language Models (LLMs) can act as seller agents, negotiating with buyers on behalf of sellers under given business constraints. A critical ability for such agents is to track and accurately interpret cumulative buyer intents across long negotiations, which directly impacts bargaining effectiveness. We introduce a multi-turn evaluation framework for measuring the bargaining ability of seller agents in e-commerce dialogues. The framework tests whether an agent can extract and track buyer intents. Our contributions are: (1) a large-scale e-commerce bargaining benchmark spanning 622 categories, 9,892 products, and 3,014 tasks; (2) a turn-level evaluation framework grounded in Theory of Mind (ToM) with annotated buyer intents, moving beyond outcome-only metrics; and (3) an automated pipeline that extracts reliable intent from massive dialogue data.
☆ Large Language Models as Virtual Survey Respondents: Evaluating Sociodemographic Response Generation
Questionnaire-based surveys are foundational to social science research and public policymaking, yet traditional survey methods remain costly, time-consuming, and often limited in scale. This paper explores a new paradigm: simulating virtual survey respondents using Large Language Models (LLMs). We introduce two novel simulation settings, namely Partial Attribute Simulation (PAS) and Full Attribute Simulation (FAS), to systematically evaluate the ability of LLMs to generate accurate and demographically coherent responses. In PAS, the model predicts missing attributes based on partial respondent profiles, whereas FAS involves generating complete synthetic datasets under both zero-context and context-enhanced conditions. We curate a comprehensive benchmark suite, LLM-S^3 (Large Language Model-based Sociodemographic Survey Simulation), that spans 11 real-world public datasets across four sociological domains. Our evaluation of multiple mainstream LLMs (GPT-3.5/4 Turbo, LLaMA 3.0/3.1-8B) reveals consistent trends in prediction performance, highlights failure modes, and demonstrates how context and prompt design impact simulation fidelity. This work establishes a rigorous foundation for LLM-driven survey simulations, offering scalable and cost-effective tools for sociological research and policy evaluation. Our code and dataset are available at: https://github.com/dart-lab-research/LLM-S-Cube-Benchmark
☆ Multi View Slot Attention Using Paraphrased Texts For Face Anti-Spoofing ICCV 2025
Recent face anti-spoofing (FAS) methods have shown remarkable cross-domain performance by employing vision-language models like CLIP. However, existing CLIP-based FAS models do not fully exploit CLIP's patch embedding tokens, failing to detect critical spoofing clues. Moreover, these models rely on a single text prompt per class (e.g., 'live' or 'fake'), which limits generalization. To address these issues, we propose MVP-FAS, a novel framework incorporating two key modules: Multi-View Slot attention (MVS) and Multi-Text Patch Alignment (MTPA). Both modules utilize multiple paraphrased texts to generate generalized features and reduce dependence on domain-specific text. MVS extracts local detailed spatial features and global context from patch embeddings by leveraging diverse texts with multiple perspectives. MTPA aligns patches with multiple text representations to improve semantic robustness. Extensive experiments demonstrate that MVP-FAS achieves superior generalization performance, outperforming previous state-of-the-art methods on cross-domain datasets. Code: https://github.com/Elune001/MVP-FAS.
comment: Accepted by ICCV 2025
☆ A Fragile Number Sense: Probing the Elemental Limits of Numerical Reasoning in LLMs
Large Language Models (LLMs) have demonstrated remarkable emergent capabilities, yet the robustness of their numerical reasoning remains an open question. While standard benchmarks evaluate LLM reasoning on complex problem sets using aggregated metrics, they often obscure foundational weaknesses. In this work, we probe LLM mathematical numeracy by evaluating performance on problems of escalating complexity, from constituent operations to combinatorial puzzles. We test several state-of-the-art LLM-based agents on a 100-problem challenge comprising four categories: (1) basic arithmetic, (2) advanced operations, (3) primality checking, and (4) the Game of 24 number puzzle. Our results show that while the agents achieved high accuracy on the first three categories, which require deterministic algorithmic execution, they consistently failed at the number puzzle, underlining its demand for a heuristic search over a large combinatorial space to be a significant bottleneck. These findings reveal that the agents' proficiency is largely confined to recalling and executing known algorithms, rather than performing generative problem-solving. This suggests their apparent numerical reasoning is more akin to sophisticated pattern-matching than flexible, analytical thought, limiting their potential for tasks that require novel or creative numerical insights.
☆ AttestLLM: Efficient Attestation Framework for Billion-scale On-device LLMs
As on-device LLMs(e.g., Apple on-device Intelligence) are widely adopted to reduce network dependency, improve privacy, and enhance responsiveness, verifying the legitimacy of models running on local devices becomes critical. Existing attestation techniques are not suitable for billion-parameter Large Language Models (LLMs), struggling to remain both time- and memory-efficient while addressing emerging threats in the LLM era. In this paper, we present AttestLLM, the first-of-its-kind attestation framework to protect the hardware-level intellectual property (IP) of device vendors by ensuring that only authorized LLMs can execute on target platforms. AttestLLM leverages an algorithm/software/hardware co-design approach to embed robust watermarking signatures onto the activation distributions of LLM building blocks. It also optimizes the attestation protocol within the Trusted Execution Environment (TEE), providing efficient verification without compromising inference throughput. Extensive proof-of-concept evaluations on LLMs from Llama, Qwen, and Phi families for on-device use cases demonstrate AttestLLM's attestation reliability, fidelity, and efficiency. Furthermore, AttestLLM enforces model legitimacy and exhibits resilience against model replacement and forgery attacks.
☆ Can AI Make Energy Retrofit Decisions? An Evaluation of Large Language Models
Conventional approaches to building energy retrofit decision making suffer from limited generalizability and low interpretability, hindering adoption in diverse residential contexts. With the growth of Smart and Connected Communities, generative AI, especially large language models (LLMs), may help by processing contextual information and producing practitioner readable recommendations. We evaluate seven LLMs (ChatGPT, DeepSeek, Gemini, Grok, Llama, and Claude) on residential retrofit decisions under two objectives: maximizing CO2 reduction (technical) and minimizing payback period (sociotechnical). Performance is assessed on four dimensions: accuracy, consistency, sensitivity, and reasoning, using a dataset of 400 homes across 49 US states. LLMs generate effective recommendations in many cases, reaching up to 54.5 percent top 1 match and 92.8 percent within top 5 without fine tuning. Performance is stronger for the technical objective, while sociotechnical decisions are limited by economic trade offs and local context. Agreement across models is low, and higher performing models tend to diverge from others. LLMs are sensitive to location and building geometry but less sensitive to technology and occupant behavior. Most models show step by step, engineering style reasoning, but it is often simplified and lacks deeper contextual awareness. Overall, LLMs are promising assistants for energy retrofit decision making, but improvements in accuracy, consistency, and context handling are needed for reliable practice.
☆ Learning to Walk with Less: a Dyna-Style Approach to Quadrupedal Locomotion IEEE
Traditional RL-based locomotion controllers often suffer from low data efficiency, requiring extensive interaction to achieve robust performance. We present a model-based reinforcement learning (MBRL) framework that improves sample efficiency for quadrupedal locomotion by appending synthetic data to the end of standard rollouts in PPO-based controllers, following the Dyna-Style paradigm. A predictive model, trained alongside the policy, generates short-horizon synthetic transitions that are gradually integrated using a scheduling strategy based on the policy update iterations. Through an ablation study, we identified a strong correlation between sample efficiency and rollout length, which guided the design of our experiments. We validated our approach in simulation on the Unitree Go1 robot and showed that replacing part of the simulated steps with synthetic ones not only mimics extended rollouts but also improves policy return and reduces variance. Finally, we demonstrate that this improvement transfers to the ability to track a wide range of locomotion commands using fewer simulated steps.
comment: Under review at IEEE Robotics and Automation Letters. 8 pages
☆ Statistical Inference for Misspecified Contextual Bandits
Contextual bandit algorithms have transformed modern experimentation by enabling real-time adaptation for personalized treatment and efficient use of data. Yet these advantages create challenges for statistical inference due to adaptivity. A fundamental property that supports valid inference is policy convergence, meaning that action-selection probabilities converge in probability given the context. Convergence ensures replicability of adaptive experiments and stability of online algorithms. In this paper, we highlight a previously overlooked issue: widely used algorithms such as LinUCB may fail to converge when the reward model is misspecified, and such non-convergence creates fundamental obstacles for statistical inference. This issue is practically important, as misspecified models -- such as linear approximations of complex dynamic system -- are often employed in real-world adaptive experiments to balance bias and variance. Motivated by this insight, we propose and analyze a broad class of algorithms that are guaranteed to converge even under model misspecification. Building on this guarantee, we develop a general inference framework based on an inverse-probability-weighted Z-estimator (IPW-Z) and establish its asymptotic normality with a consistent variance estimator. Simulation studies confirm that the proposed method provides robust and data-efficient confidence intervals, and can outperform existing approaches that exist only in the special case of offline policy evaluation. Taken together, our results underscore the importance of designing adaptive algorithms with built-in convergence guarantees to enable stable experimentation and valid statistical inference in practice.
☆ From Implicit Exploration to Structured Reasoning: Leveraging Guideline and Refinement for LLMs
Large language models (LLMs) have advanced general-purpose reasoning, showing strong performance across diverse tasks. However, existing methods often rely on implicit exploration, where the model follows stochastic and unguided reasoning paths-like walking without a map. This leads to unstable reasoning paths, lack of error correction, and limited learning from past experience. To address these issues, we propose a framework that shifts from implicit exploration to structured reasoning through guideline and refinement. First, we extract structured reasoning patterns from successful trajectories and reflective signals from failures. During inference, the model follows these guidelines step-by-step, with refinement applied after each step to correct errors and stabilize the reasoning process. Experiments on BBH and four additional benchmarks (GSM8K, MATH-500, MBPP, HumanEval) show that our method consistently outperforms strong baselines across diverse reasoning tasks. Structured reasoning with stepwise execution and refinement improves stability and generalization, while guidelines transfer well across domains and flexibly support cross-model collaboration, matching or surpassing supervised fine-tuning in effectiveness and scalability.
☆ SFR-DeepResearch: Towards Effective Reinforcement Learning for Autonomously Reasoning Single Agents
Equipping large language models (LLMs) with complex, interleaved reasoning and tool-use capabilities has become a key focus in agentic AI research, especially with recent advances in reasoning-oriented (``thinking'') models. Such capabilities are key to unlocking a number of important applications. One such application is Deep Research (DR), which requires extensive search and reasoning over many sources. Our work in this paper focuses on the development of native Autonomous Single-Agent models for DR featuring minimal web crawling and Python tool integration. Unlike multi-agent systems, where agents take up pre-defined roles and are told what to do at each step in a static workflow, an autonomous single-agent determines its next action dynamically based on context, without manual directive. While prior work has proposed training recipes for base or instruction-tuned LLMs, we focus on continual reinforcement learning (RL) of reasoning-optimized models to further enhance agentic skills while preserving reasoning ability. Towards this end, we propose a simple RL recipe with entirely synthetic data, which we apply to various open-source LLMs. Our best variant SFR-DR-20B achieves up to 28.7% on Humanity's Last Exam benchmark. In addition, we conduct key analysis experiments to provide more insights into our methodologies.
comment: Technical Report
☆ TableMind: An Autonomous Programmatic Agent for Tool-Augmented Table Reasoning WSDM 2026
Table reasoning is crucial for leveraging structured data in domains such as finance, healthcare, and scientific research. While large language models (LLMs) show promise in multi-step reasoning, purely text-based methods often struggle with the complex numerical computations and fine-grained operations inherently required in this task. Tool-integrated reasoning improves computational accuracy via explicit code execution, yet existing systems frequently rely on rigid patterns, supervised imitation, and lack true autonomous adaptability. In this paper, we present TableMind, an LLM-driven table reasoning agent that (i) autonomously performs multi-turn tool invocation, (ii) writes and executes data-analyzing code in a secure sandbox environment for data analysis and precise numerical reasoning, and (iii) exhibits high-level capabilities such as planning and self-reflection to adapt strategies. To realize these capabilities, we adopt a two-stage fine-tuning paradigm built on top of a powerful pre-trained language model: supervised fine-tuning on high-quality reasoning trajectories to establish effective tool usage patterns, followed by reinforcement fine-tuning to optimize multi-objective strategies. In particular, we propose Rank-Aware Policy Optimization (RAPO), which increases the update weight of high-quality trajectories when their output probabilities are lower than those of low-quality ones, thereby guiding the model more consistently toward better and more accurate answers. Extensive experiments on several mainstream benchmarks demonstrate that TableMind achieves superior performance compared to competitive baselines, yielding substantial gains in both reasoning accuracy and computational precision.
comment: Comments: 10 pages, 6 figures. Submitted to WSDM 2026
☆ UrbanMIMOMap: A Ray-Traced MIMO CSI Dataset with Precoding-Aware Maps and Benchmarks IEEE
Sixth generation (6G) systems require environment-aware communication, driven by native artificial intelligence (AI) and integrated sensing and communication (ISAC). Radio maps (RMs), providing spatially continuous channel information, are key enablers. However, generating high-fidelity RM ground truth via electromagnetic (EM) simulations is computationally intensive, motivating machine learning (ML)-based RM construction. The effectiveness of these data-driven methods depends on large-scale, high-quality training data. Current public datasets often focus on single-input single-output (SISO) and limited information, such as path loss, which is insufficient for advanced multi-input multi-output (MIMO) systems requiring detailed channel state information (CSI). To address this gap, this paper presents UrbanMIMOMap, a novel large-scale urban MIMO CSI dataset generated using high-precision ray tracing. UrbanMIMOMap offers comprehensive complex CSI matrices across a dense spatial grid, going beyond traditional path loss data. This rich CSI is vital for constructing high-fidelity RMs and serves as a fundamental resource for data-driven RM generation, including deep learning. We demonstrate the dataset's utility through baseline performance evaluations of representative ML methods for RM construction. This work provides a crucial dataset and reference for research in high-precision RM generation, MIMO spatial performance, and ML for 6G environment awareness. The code and data for this work are available at: https://github.com/UNIC-Lab/UrbanMIMOMap.
comment: Accepted to IEEE Global Communications Conference (GLOBECOM) 2025
☆ REMI: A Novel Causal Schema Memory Architecture for Personalized Lifestyle Recommendation Agents KDD 2025
Personalized AI assistants often struggle to incorporate complex personal data and causal knowledge, leading to generic advice that lacks explanatory power. We propose REMI, a Causal Schema Memory architecture for a multimodal lifestyle agent that integrates a personal causal knowledge graph, a causal reasoning engine, and a schema based planning module. The idea is to deliver explainable, personalized recommendations in domains like fashion, personal wellness, and lifestyle planning. Our architecture uses a personal causal graph of the user's life events and habits, performs goal directed causal traversals enriched with external knowledge and hypothetical reasoning, and retrieves adaptable plan schemas to generate tailored action plans. A Large Language Model orchestrates these components, producing answers with transparent causal explanations. We outline the CSM system design and introduce new evaluation metrics for personalization and explainability, including Personalization Salience Score and Causal Reasoning Accuracy, to rigorously assess its performance. Results indicate that CSM based agents can provide more context aware, user aligned recommendations compared to baseline LLM agents. This work demonstrates a novel approach to memory augmented, causal reasoning in personalized agents, advancing the development of transparent and trustworthy AI lifestyle assistants.
comment: 8 pages, 2 figures, Accepted at the OARS Workshop, KDD 2025, Paper link: https://oars-workshop.github.io/papers/Raman2025.pdf
☆ On Synthesis of Timed Regular Expressions
Timed regular expressions serve as a formalism for specifying real-time behaviors of Cyber-Physical Systems. In this paper, we consider the synthesis of timed regular expressions, focusing on generating a timed regular expression consistent with a given set of system behaviors including positive and negative examples, i.e., accepting all positive examples and rejecting all negative examples. We first prove the decidability of the synthesis problem through an exploration of simple timed regular expressions. Subsequently, we propose our method of generating a consistent timed regular expression with minimal length, which unfolds in two steps. The first step is to enumerate and prune candidate parametric timed regular expressions. In the second step, we encode the requirement that a candidate generated by the first step is consistent with the given set into a Satisfiability Modulo Theories (SMT) formula, which is consequently solved to determine a solution to parametric time constraints. Finally, we evaluate our approach on benchmarks, including randomly generated behaviors from target timed models and a case study.
comment: 15 pages, 4 figures, 7 tables
Reconstruction Alignment Improves Unified Multimodal Models
Unified multimodal models (UMMs) unify visual understanding and generation within a single architecture. However, conventional training relies on image-text pairs (or sequences) whose captions are typically sparse and miss fine-grained visual details--even when they use hundreds of words to describe a simple image. We introduce Reconstruction Alignment (RecA), a resource-efficient post-training method that leverages visual understanding encoder embeddings as dense "text prompts," providing rich supervision without captions. Concretely, RecA conditions a UMM on its own visual understanding embeddings and optimizes it to reconstruct the input image with a self-supervised reconstruction loss, thereby realigning understanding and generation. Despite its simplicity, RecA is broadly applicable: across autoregressive, masked-autoregressive, and diffusion-based UMMs, it consistently improves generation and editing fidelity. With only 27 GPU-hours, post-training with RecA substantially improves image generation performance on GenEval (0.73$\rightarrow$0.90) and DPGBench (80.93$\rightarrow$88.15), while also boosting editing benchmarks (ImgEdit 3.38$\rightarrow$3.75, GEdit 6.94$\rightarrow$7.25). Notably, RecA surpasses much larger open-source models and applies broadly across diverse UMM architectures, establishing it as an efficient and general post-training alignment strategy for UMMs
comment: 28 pages, 24 figures and 10 tables
☆ zkUnlearner: A Zero-Knowledge Framework for Verifiable Unlearning with Multi-Granularity and Forgery-Resistance
As the demand for exercising the "right to be forgotten" grows, the need for verifiable machine unlearning has become increasingly evident to ensure both transparency and accountability. We present {\em zkUnlearner}, the first zero-knowledge framework for verifiable machine unlearning, specifically designed to support {\em multi-granularity} and {\em forgery-resistance}. First, we propose a general computational model that employs a {\em bit-masking} technique to enable the {\em selectivity} of existing zero-knowledge proofs of training for gradient descent algorithms. This innovation enables not only traditional {\em sample-level} unlearning but also more advanced {\em feature-level} and {\em class-level} unlearning. Our model can be translated to arithmetic circuits, ensuring compatibility with a broad range of zero-knowledge proof systems. Furthermore, our approach overcomes key limitations of existing methods in both efficiency and privacy. Second, forging attacks present a serious threat to the reliability of unlearning. Specifically, in Stochastic Gradient Descent optimization, gradients from unlearned data, or from minibatches containing it, can be forged using alternative data samples or minibatches that exclude it. We propose the first effective strategies to resist state-of-the-art forging attacks. Finally, we benchmark a zkSNARK-based instantiation of our framework and perform comprehensive performance evaluations to validate its practicality.
☆ Paladin: Defending LLM-enabled Phishing Emails with a New Trigger-Tag Paradigm
With the rapid development of large language models, the potential threat of their malicious use, particularly in generating phishing content, is becoming increasingly prevalent. Leveraging the capabilities of LLMs, malicious users can synthesize phishing emails that are free from spelling mistakes and other easily detectable features. Furthermore, such models can generate topic-specific phishing messages, tailoring content to the target domain and increasing the likelihood of success. Detecting such content remains a significant challenge, as LLM-generated phishing emails often lack clear or distinguishable linguistic features. As a result, most existing semantic-level detection approaches struggle to identify them reliably. While certain LLM-based detection methods have shown promise, they suffer from high computational costs and are constrained by the performance of the underlying language model, making them impractical for large-scale deployment. In this work, we aim to address this issue. We propose Paladin, which embeds trigger-tag associations into vanilla LLM using various insertion strategies, creating them into instrumented LLMs. When an instrumented LLM generates content related to phishing, it will automatically include detectable tags, enabling easier identification. Based on the design on implicit and explicit triggers and tags, we consider four distinct scenarios in our work. We evaluate our method from three key perspectives: stealthiness, effectiveness, and robustness, and compare it with existing baseline methods. Experimental results show that our method outperforms the baselines, achieving over 90% detection accuracy across all scenarios.
comment: 20 pages
☆ ALICE: An Interpretable Neural Architecture for Generalization in Substitution Ciphers
We present cryptogram solving as an ideal testbed for studying neural network generalization in combinatorially complex domains. In this task, models must decrypt text encoded with substitution ciphers, choosing from 26! possible mappings without explicit access to the cipher. We develop ALICE (an Architecture for Learning Interpretable Cryptogram dEcipherment): a simple encoder-only Transformer that sets a new state-of-the-art for both accuracy and speed on this decryption problem. Surprisingly, ALICE generalizes to unseen ciphers after training on only ${\sim}1500$ unique ciphers, a minute fraction ($3.7 \times 10^{-24}$) of the possible cipher space. To enhance interpretability, we introduce a novel bijective decoding head that explicitly models permutations via the Gumbel-Sinkhorn method, enabling direct extraction of learned cipher mappings. Through early exit analysis, we reveal how ALICE progressively refines its predictions in a way that appears to mirror common human strategies for this task: early layers employ frequency-based heuristics, middle layers form word structures, and final layers correct individual characters. Our architectural innovations and analysis methods extend beyond cryptograms to any domain with bijective mappings and combinatorial structure, offering new insights into neural network generalization and interpretability.
comment: Preprint. Project page at https://jshen.net/alice
☆ Breast Cancer Detection in Thermographic Images via Diffusion-Based Augmentation and Nonlinear Feature Fusion
Data scarcity hinders deep learning for medical imaging. We propose a framework for breast cancer classification in thermograms that addresses this using a Diffusion Probabilistic Model (DPM) for data augmentation. Our DPM-based augmentation is shown to be superior to both traditional methods and a ProGAN baseline. The framework fuses deep features from a pre-trained ResNet-50 with handcrafted nonlinear features (e.g., Fractal Dimension) derived from U-Net segmented tumors. An XGBoost classifier trained on these fused features achieves 98.0\% accuracy and 98.1\% sensitivity. Ablation studies and statistical tests confirm that both the DPM augmentation and the nonlinear feature fusion are critical, statistically significant components of this success. This work validates the synergy between advanced generative models and interpretable features for creating highly accurate medical diagnostic tools.
comment: Accepted to IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI 2025)
Datasets for Navigating Sensitive Topics in Recommendation Systems
Personalized AI systems, from recommendation systems to chatbots, are a prevalent method for distributing content to users based on their learned preferences. However, there is growing concern about the adverse effects of these systems, including their potential tendency to expose users to sensitive or harmful material, negatively impacting overall well-being. To address this concern quantitatively, it is necessary to create datasets with relevant sensitivity labels for content, enabling researchers to evaluate personalized systems beyond mere engagement metrics. To this end, we introduce two novel datasets that include a taxonomy of sensitivity labels alongside user-content ratings: one that integrates MovieLens rating data with content warnings from the Does the Dog Die? community ratings website, and another that combines fan-fiction interaction data and user-generated warnings from Archive of Our Own.
comment: Companion Proceedings of the ACM on Web Conference 2025, 2025
☆ HealthSLM-Bench: Benchmarking Small Language Models for Mobile and Wearable Healthcare Monitoring
Mobile and wearable healthcare monitoring play a vital role in facilitating timely interventions, managing chronic health conditions, and ultimately improving individuals' quality of life. Previous studies on large language models (LLMs) have highlighted their impressive generalization abilities and effectiveness in healthcare prediction tasks. However, most LLM-based healthcare solutions are cloud-based, which raises significant privacy concerns and results in increased memory usage and latency. To address these challenges, there is growing interest in compact models, Small Language Models (SLMs), which are lightweight and designed to run locally and efficiently on mobile and wearable devices. Nevertheless, how well these models perform in healthcare prediction remains largely unexplored. We systematically evaluated SLMs on health prediction tasks using zero-shot, few-shot, and instruction fine-tuning approaches, and deployed the best performing fine-tuned SLMs on mobile devices to evaluate their real-world efficiency and predictive performance in practical healthcare scenarios. Our results show that SLMs can achieve performance comparable to LLMs while offering substantial gains in efficiency and privacy. However, challenges remain, particularly in handling class imbalance and few-shot scenarios. These findings highlight SLMs, though imperfect in their current form, as a promising solution for next-generation, privacy-preserving healthcare monitoring.
comment: 9 pages, 6 tables, 6 figures
☆ Benchmarking Information Retrieval Models on Complex Retrieval Tasks
Large language models (LLMs) are incredible and versatile tools for text-based tasks that have enabled countless, previously unimaginable, applications. Retrieval models, in contrast, have not yet seen such capable general-purpose models emerge. To achieve this goal, retrieval models must be able to perform complex retrieval tasks, where queries contain multiple parts, constraints, or requirements in natural language. These tasks represent a natural progression from the simple, single-aspect queries that are used in the vast majority of existing, commonly used evaluation sets. Complex queries naturally arise as people expect search systems to handle more specific and often ambitious information requests, as is demonstrated by how people use LLM-based information systems. Despite the growing desire for retrieval models to expand their capabilities in complex retrieval tasks, there exist limited resources to assess the ability of retrieval models on a comprehensive set of diverse complex tasks. The few resources that do exist feature a limited scope and often lack realistic settings making it hard to know the true capabilities of retrieval models on complex real-world retrieval tasks. To address this shortcoming and spur innovation in next-generation retrieval models, we construct a diverse and realistic set of complex retrieval tasks and benchmark a representative set of state-of-the-art retrieval models. Additionally, we explore the impact of LLM-based query expansion and rewriting on retrieval quality. Our results show that even the best models struggle to produce high-quality retrieval results with the highest average nDCG@10 of only 0.346 and R@100 of only 0.587 across all tasks. Although LLM augmentation can help weaker models, the strongest model has decreased performance across all metrics with all rewriting techniques.
☆ Systematic Optimization of Open Source Large Language Models for Mathematical Reasoning
This paper presents a practical investigation into fine-tuning model parameters for mathematical reasoning tasks through experimenting with various configurations including randomness control, reasoning depth, and sampling strategies, careful tuning demonstrates substantial improvements in efficiency as well as performance. A holistically optimized framework is introduced for five state-of-the-art models on mathematical reasoning tasks, exhibiting significant performance boosts while maintaining solution correctness. Through systematic parameter optimization across Qwen2.5-72B, Llama-3.1-70B, DeepSeek-V3, Mixtral-8x22B, and Yi-Lightning, consistent efficiency gains are demonstrated with 100% optimization success rate. The methodology achieves an average 29.4% reduction in computational cost and 23.9% improvement in inference speed across all tested models. This framework systematically searches parameter spaces including temperature (0.1-0.5), reasoning steps (4-12), planning periods (1-4), and nucleus sampling (0.85-0.98), determining optimal configurations through testing on mathematical reasoning benchmarks. Critical findings show that lower temperature regimes (0.1-0.4) and reduced reasoning steps (4-6) consistently enhance efficiency without compromising accuracy. DeepSeek-V3 achieves the highest accuracy at 98%, while Mixtral-8x22B delivers the most cost-effective performance at 361.5 tokens per accurate response. Key contributions include: (1) the first comprehensive optimization study for five diverse SOTA models in mathematical reasoning, (2) a standardized production-oriented parameter optimization framework, (3) discovery of universal optimization trends applicable across model architectures, and (4) production-ready configurations with extensive performance characterization.
☆ Breaking the Conventional Forward-Backward Tie in Neural Networks: Activation Functions
Gradient-based neural network training traditionally enforces symmetry between forward and backward propagation, requiring activation functions to be differentiable (or sub-differentiable) and strictly monotonic in certain regions to prevent flat gradient areas. This symmetry, linking forward activations closely to backward gradients, significantly restricts the selection of activation functions, particularly excluding those with substantial flat or non-differentiable regions. In this paper, we challenge this assumption through mathematical analysis, demonstrating that precise gradient magnitudes derived from activation functions are largely redundant, provided the gradient direction is preserved. Empirical experiments conducted on foundational architectures - such as Multi-Layer Perceptrons (MLPs), Convolutional Neural Networks (CNNs), and Binary Neural Networks (BNNs) - confirm that relaxing forward-backward symmetry and substituting traditional gradients with simpler or stochastic alternatives does not impair learning and may even enhance training stability and efficiency. We explicitly demonstrate that neural networks with flat or non-differentiable activation functions, such as the Heaviside step function, can be effectively trained, thereby expanding design flexibility and computational efficiency. Further empirical validation with more complex architectures remains a valuable direction for future research.
comment: 30 pages, 8 figures, 14 tables, in press, available online 11 August 2025
☆ A transformer-based generative model for planetary systems
Numerical calculations of planetary system formation are very demanding in terms of computing power. These synthetic planetary systems can however provide access to correlations, as predicted in a given numerical framework, between the properties of planets in the same system. Such correlations can, in return, be used in order to guide and prioritize observational campaigns aiming at discovering some types of planets, as Earth-like planets. Our goal is to develop a generative model which is capable of capturing correlations and statistical relationships between planets in the same system. Such a model, trained on the Bern model, offers the possibility to generate large number of synthetic planetary systems with little computational cost, that can be used, for example, to guide observational campaigns. Our generative model is based on the transformer architecture which is well-known to efficiently capture correlations in sequences and is at the basis of all modern Large Language Models. To assess the validity of the generative model, we perform visual and statistical comparisons, as well as a machine learning driven tests. Finally, as a use case example, we consider the TOI-469 system, in which we aim at predicting the possible properties of planets c and d, based on the properties of planet b (the first that has been detected). We show using different comparison methods that the properties of systems generated by our model are very similar to the ones of the systems computed directly by the Bern model. We also show in the case of the TOI-469 system, that using the generative model allows to predict the properties of planets not yet observed, based on the properties of the already observed planet. We provide our model to the community on our website www.ai4exoplanets.com.
comment: Accepted in A&A
☆ Explaining How Quantization Disparately Skews a Model
Post Training Quantization (PTQ) is widely adopted due to its high compression capacity and speed with minimal impact on accuracy. However, we observed that disparate impacts are exacerbated by quantization, especially for minority groups. Our analysis explains that in the course of quantization there is a chain of factors attributed to a disparate impact across groups during forward and backward passes. We explore how the changes in weights and activations induced by quantization cause cascaded impacts in the network, resulting in logits with lower variance, increased loss, and compromised group accuracies. We extend our study to verify the influence of these impacts on group gradient norms and eigenvalues of the Hessian matrix, providing insights into the state of the network from an optimization point of view. To mitigate these effects, we propose integrating mixed precision Quantization Aware Training (QAT) with dataset sampling methods and weighted loss functions, therefore providing fair deployment of quantized neural networks.
☆ OmniAcc: Personalized Accessibility Assistant Using Generative AI AAAI 2025
Individuals with ambulatory disabilities often encounter significant barriers when navigating urban environments due to the lack of accessible information and tools. This paper presents OmniAcc, an AI-powered interactive navigation system that utilizes GPT-4, satellite imagery, and OpenStreetMap data to identify, classify, and map wheelchair-accessible features such as ramps and crosswalks in the built environment. OmniAcc offers personalized route planning, real-time hands-free navigation, and instant query responses regarding physical accessibility. By using zero-shot learning and customized prompts, the system ensures precise detection of accessibility features, while supporting validation through structured workflows. This paper introduces OmniAcc and explores its potential to assist urban planners and mobility-aid users, demonstrated through a case study on crosswalk detection. With a crosswalk detection accuracy of 97.5%, OmniAcc highlights the transformative potential of AI in improving navigation and fostering more inclusive urban spaces.
comment: 11 Pages, 9 Figures, Published in the 1st Workshop on AI for Urban Planning, AAAI 2025 Workshop
☆ XBusNet: Text-Guided Breast Ultrasound Segmentation via Multimodal Vision-Language Learning
Background: Precise breast ultrasound (BUS) segmentation supports reliable measurement, quantitative analysis, and downstream classification, yet remains difficult for small or low-contrast lesions with fuzzy margins and speckle noise. Text prompts can add clinical context, but directly applying weakly localized text-image cues (e.g., CAM/CLIP-derived signals) tends to produce coarse, blob-like responses that smear boundaries unless additional mechanisms recover fine edges. Methods: We propose XBusNet, a novel dual-prompt, dual-branch multimodal model that combines image features with clinically grounded text. A global pathway based on a CLIP Vision Transformer encodes whole-image semantics conditioned on lesion size and location, while a local U-Net pathway emphasizes precise boundaries and is modulated by prompts that describe shape, margin, and Breast Imaging Reporting and Data System (BI-RADS) terms. Prompts are assembled automatically from structured metadata, requiring no manual clicks. We evaluate on the Breast Lesions USG (BLU) dataset using five-fold cross-validation. Primary metrics are Dice and Intersection over Union (IoU); we also conduct size-stratified analyses and ablations to assess the roles of the global and local paths and the text-driven modulation. Results: XBusNet achieves state-of-the-art performance on BLU, with mean Dice of 0.8765 and IoU of 0.8149, outperforming six strong baselines. Small lesions show the largest gains, with fewer missed regions and fewer spurious activations. Ablation studies show complementary contributions of global context, local boundary modeling, and prompt-based modulation. Conclusions: A dual-prompt, dual-branch multimodal design that merges global semantics with local precision yields accurate BUS segmentation masks and improves robustness for small, low-contrast lesions.
comment: 15 pages, 3 figures, 4 tables
☆ A multi-strategy improved gazelle optimization algorithm for solving numerical optimization and engineering applications
Aiming at the shortcomings of the gazelle optimization algorithm, such as the imbalance between exploration and exploitation and the insufficient information exchange within the population, this paper proposes a multi-strategy improved gazelle optimization algorithm (MSIGOA). To address these issues, MSIGOA proposes an iteration-based updating framework that switches between exploitation and exploration according to the optimization process, which effectively enhances the balance between local exploitation and global exploration in the optimization process and improves the convergence speed. Two adaptive parameter tuning strategies improve the applicability of the algorithm and promote a smoother optimization process. The dominant population-based restart strategy enhances the algorithms ability to escape from local optima and avoid its premature convergence. These enhancements significantly improve the exploration and exploitation capabilities of MSIGOA, bringing superior convergence and efficiency in dealing with complex problems. In this paper, the parameter sensitivity, strategy effectiveness, convergence and stability of the proposed method are evaluated on two benchmark test sets including CEC2017 and CEC2022. Test results and statistical tests show that MSIGOA outperforms basic GOA and other advanced algorithms. On the CEC2017 and CEC2022 test sets, the proportion of functions where MSIGOA is not worse than GOA is 92.2% and 83.3%, respectively, and the proportion of functions where MSIGOA is not worse than other algorithms is 88.57% and 87.5%, respectively. Finally, the extensibility of MSIGAO is further verified by several engineering design optimization problems.
comment: This is the author's preprint of the article published in Cluster Computing (Springer): Diao, Q., Xie, C., Yin, Y. et al. A multi-strategy improved gazelle optimization algorithm for solving numerical optimization and engineering applications. Cluster Comput 28, 643 (2025). The final authenticated version is available online at SpringerLink
☆ BlendedNet: A Blended Wing Body Aircraft Dataset and Surrogate Model for Aerodynamic Predictions
BlendedNet is a publicly available aerodynamic dataset of 999 blended wing body (BWB) geometries. Each geometry is simulated across about nine flight conditions, yielding 8830 converged RANS cases with the Spalart-Allmaras model and 9 to 14 million cells per case. The dataset is generated by sampling geometric design parameters and flight conditions, and includes detailed pointwise surface quantities needed to study lift and drag. We also introduce an end-to-end surrogate framework for pointwise aerodynamic prediction. The pipeline first uses a permutation-invariant PointNet regressor to predict geometric parameters from sampled surface point clouds, then conditions a Feature-wise Linear Modulation (FiLM) network on the predicted parameters and flight conditions to predict pointwise coefficients Cp, Cfx, and Cfz. Experiments show low errors in surface predictions across diverse BWBs. BlendedNet addresses data scarcity for unconventional configurations and enables research on data-driven surrogate modeling for aerodynamic design.
comment: Accepted at ASME IDETC/CIE 2025 (DETC2025-168977). Dataset availability: BlendedNet dataset is openly available at Harvard Dataverse (https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/VJT9EP)
☆ A Hybrid CNN-LSTM Deep Learning Model for Intrusion Detection in Smart Grid
The evolution of the traditional power grid into the "smart grid" has resulted in a fundamental shift in energy management, which allows the integration of renewable energy sources with modern communication technology. However, this interconnection has increased smart grids' vulnerability to attackers, which might result in privacy breaches, operational interruptions, and massive outages. The SCADA-based smart grid protocols are critical for real-time data collection and control, but they are vulnerable to attacks like unauthorized access and denial of service (DoS). This research proposes a hybrid deep learning-based Intrusion Detection System (IDS) intended to improve the cybersecurity of smart grids. The suggested model takes advantage of Convolutional Neural Networks' (CNN) feature extraction capabilities as well as Long Short-Term Memory (LSTM) networks' temporal pattern recognition skills. DNP3 and IEC104 intrusion detection datasets are employed to train and test our CNN-LSTM model to recognize and classify the potential cyber threats. Compared to other deep learning approaches, the results demonstrate considerable improvements in accuracy, precision, recall, and F1-score, with a detection accuracy of 99.70%.
☆ Evaluation of Machine Learning Reconstruction Techniques for Accelerated Brain MRI Scans
This retrospective-prospective study evaluated whether a deep learning-based MRI reconstruction algorithm can preserve diagnostic quality in brain MRI scans accelerated up to fourfold, using both public and prospective clinical data. The study included 18 healthy volunteers (scans acquired at 3T, January 2024-March 2025), as well as selected fastMRI public datasets with diverse pathologies. Phase-encoding-undersampled 2D/3D T1, T2, and FLAIR sequences were reconstructed with DeepFoqus-Accelerate and compared with standard-of-care (SOC). Three board-certified neuroradiologists and two MRI technologists independently reviewed 36 paired SOC/AI reconstructions from both datasets using a 5-point Likert scale, while quantitative similarity was assessed for 408 scans and 1224 datasets using Structural Similarity Index (SSIM), Peak Signal-to-Noise Ratio (PSNR), and Haar wavelet-based Perceptual Similarity Index (HaarPSI). No AI-reconstructed scan scored below 3 (minimally acceptable), and 95% scored $\geq 4$. Mean SSIM was 0.95 $\pm$ 0.03 (90% cases >0.90), PSNR >41.0 dB, and HaarPSI >0.94. Inter-rater agreement was slight to moderate. Rare artifacts did not affect diagnostic interpretation. These findings demonstrate that DeepFoqus-Accelerate enables robust fourfold brain MRI acceleration with 75% reduced scan time, while preserving diagnostic image quality and supporting improved workflow efficiency.
comment: This work has been submitted to Radiology: Artificial Intelligence for possible publication
☆ DischargeSim: A Simulation Benchmark for Educational Doctor-Patient Communication at Discharge EMNLP
Discharge communication is a critical yet underexplored component of patient care, where the goal shifts from diagnosis to education. While recent large language model (LLM) benchmarks emphasize in-visit diagnostic reasoning, they fail to evaluate models' ability to support patients after the visit. We introduce DischargeSim, a novel benchmark that evaluates LLMs on their ability to act as personalized discharge educators. DischargeSim simulates post-visit, multi-turn conversations between LLM-driven DoctorAgents and PatientAgents with diverse psychosocial profiles (e.g., health literacy, education, emotion). Interactions are structured across six clinically grounded discharge topics and assessed along three axes: (1) dialogue quality via automatic and LLM-as-judge evaluation, (2) personalized document generation including free-text summaries and structured AHRQ checklists, and (3) patient comprehension through a downstream multiple-choice exam. Experiments across 18 LLMs reveal significant gaps in discharge education capability, with performance varying widely across patient profiles. Notably, model size does not always yield better education outcomes, highlighting trade-offs in strategy use and content prioritization. DischargeSim offers a first step toward benchmarking LLMs in post-visit clinical education and promoting equitable, personalized patient support.
comment: Equal contribution for the first two authors. To appear in the proceedings of the Main Conference on Empirical Methods in Natural Language Processing (EMNLP) 2025
☆ That's So FETCH: Fashioning Ensemble Techniques for LLM Classification in Civil Legal Intake and Referral
Each year millions of people seek help for their legal problems by calling a legal aid program hotline, walking into a legal aid office, or using a lawyer referral service. The first step to match them to the right help is to identify the legal problem the applicant is experiencing. Misdirection has consequences. Applicants may miss a deadline, experience physical abuse, lose housing or lose custody of children while waiting to connect to the right legal help. We introduce and evaluate the FETCH classifier for legal issue classification and describe two methods for improving accuracy: a hybrid LLM/ML ensemble classification method, and the automatic generation of follow-up questions to enrich the initial problem narrative. We employ a novel data set of 419 real-world queries to a nonprofit lawyer referral service. Ultimately, we show classification accuracy (hits@2) of 97.37\% using a mix of inexpensive models, exceeding the performance of the current state-of-the-art GPT-5 model. Our approach shows promise in significantly reducing the cost of guiding users of the legal system to the right resource for their problem while achieving high accuracy.
comment: Submission to JURIX 2025
☆ PaVeRL-SQL: Text-to-SQL via Partial-Match Rewards and Verbal Reinforcement Learning
Text-to-SQL models allow users to interact with a database more easily by generating executable SQL statements from natural-language questions. Despite recent successes on simpler databases and questions, current Text-to-SQL methods still suffer from low execution accuracy on industry-scale databases and complex questions involving domain-specific business logic. We present \emph{PaVeRL-SQL}, a framework that combines \emph{Partial-Match Rewards} and \emph{Verbal Reinforcement Learning} to drive self-improvement in reasoning language models (RLMs) for Text-to-SQL. To handle practical use cases, we adopt two pipelines: (1) a newly designed in-context learning framework with group self-evaluation (verbal-RL), using capable open- and closed-source large language models (LLMs) as backbones; and (2) a chain-of-thought (CoT) RL pipeline with a small backbone model (OmniSQL-7B) trained with a specially designed reward function and two-stage RL. These pipelines achieve state-of-the-art (SOTA) results on popular Text-to-SQL benchmarks -- Spider, Spider 2.0, and BIRD. For the industrial-level Spider2.0-SQLite benchmark, the verbal-RL pipeline achieves an execution accuracy 7.4\% higher than SOTA, and the CoT pipeline is 1.4\% higher. RL training with mixed SQL dialects yields strong, threefold gains, particularly for dialects with limited training data. Overall, \emph{PaVeRL-SQL} delivers reliable, SOTA Text-to-SQL under realistic industrial constraints. The code is available at https://github.com/PaVeRL-SQL/PaVeRL-SQL.
comment: 10 pages
☆ Measuring Uncertainty in Transformer Circuits with Effective Information Consistency
Mechanistic interpretability has identified functional subgraphs within large language models (LLMs), known as Transformer Circuits (TCs), that appear to implement specific algorithms. Yet we lack a formal, single-pass way to quantify when an active circuit is behaving coherently and thus likely trustworthy. Building on prior systems-theoretic proposals, we specialize a sheaf/cohomology and causal emergence perspective to TCs and introduce the Effective-Information Consistency Score (EICS). EICS combines (i) a normalized sheaf inconsistency computed from local Jacobians and activations, with (ii) a Gaussian EI proxy for circuit-level causal emergence derived from the same forward state. The construction is white-box, single-pass, and makes units explicit so that the score is dimensionless. We further provide practical guidance on score interpretation, computational overhead (with fast and exact modes), and a toy sanity-check analysis. Empirical validation on LLM tasks is deferred.
☆ Autoencoder-Based Denoising of Muscle Artifacts in ECG to Preserve Skin Nerve Activity (SKNA) for Cognitive Stress Detection
The sympathetic nervous system (SNS) plays a central role in regulating the body's responses to stress and maintaining physiological stability. Its dysregulation is associated with a wide range of conditions, from cardiovascular disease to anxiety disorders. Skin nerve activity (SKNA) extracted from high-frequency electrocardiogram (ECG) recordings provides a noninvasive window into SNS dynamics, but its measurement is highly susceptible to electromyographic (EMG) contamination. Traditional preprocessing based on bandpass filtering within a fixed range (e.g., 500--1000 Hz) is susceptible to overlapping EMG and SKNA spectral components, especially during sustained muscle activity. We present a denoising approach using a lightweight one-dimensional convolutional autoencoder with a long short-term memory (LSTM) bottleneck to reconstruct clean SKNA from EMG-contaminated recordings. Using clean ECG-derived SKNA data from cognitive stress experiments and EMG noise from chaotic muscle stimulation recordings, we simulated contamination at realistic noise levels (--4 dB, --8 dB signal-to-noise ratio) and trained the model in the leave-one-subject-out cross-validation framework. The method improved signal-to-noise ratio by up to 9.65 dB, increased cross correlation with clean SKNA from 0.40 to 0.72, and restored burst-based SKNA features to near-clean discriminability (AUROC $\geq$ 0.96). Classification of baseline versus sympathetic stimulation (cognitive stress) conditions reached accuracies of 91--98\% across severe noise levels, comparable to clean data. These results demonstrate that deep learning--based reconstruction can preserve physiologically relevant sympathetic bursts during substantial EMG interference, enabling more robust SKNA monitoring in naturalistic, movement-rich environments.
comment: 11 pages, 7 figures, 6 tables
☆ Toward Purpose-oriented Topic Model Evaluation enabled by Large Language Models
This study presents a framework for automated evaluation of dynamically evolving topic models using Large Language Models (LLMs). Topic modeling is essential for organizing and retrieving scholarly content in digital library systems, helping users navigate complex and evolving knowledge domains. However, widely used automated metrics, such as coherence and diversity, often capture only narrow statistical patterns and fail to explain semantic failures in practice. We introduce a purpose-oriented evaluation framework that employs nine LLM-based metrics spanning four key dimensions of topic quality: lexical validity, intra-topic semantic soundness, inter-topic structural soundness, and document-topic alignment soundness. The framework is validated through adversarial and sampling-based protocols, and is applied across datasets spanning news articles, scholarly publications, and social media posts, as well as multiple topic modeling methods and open-source LLMs. Our analysis shows that LLM-based metrics provide interpretable, robust, and task-relevant assessments, uncovering critical weaknesses in topic models such as redundancy and semantic drift, which are often missed by traditional metrics. These results support the development of scalable, fine-grained evaluation tools for maintaining topic relevance in dynamic datasets. All code and data supporting this work are accessible at https://github.com/zhiyintan/topic-model-LLMjudgment.
comment: Accepted for publication in International Journal on Digital Libraries (IJDL)
☆ Adversarial Attacks on Audio Deepfake Detection: A Benchmark and Comparative Study
The widespread use of generative AI has shown remarkable success in producing highly realistic deepfakes, posing a serious threat to various voice biometric applications, including speaker verification, voice biometrics, audio conferencing, and criminal investigations. To counteract this, several state-of-the-art (SoTA) audio deepfake detection (ADD) methods have been proposed to identify generative AI signatures to distinguish between real and deepfake audio. However, the effectiveness of these methods is severely undermined by anti-forensic (AF) attacks that conceal generative signatures. These AF attacks span a wide range of techniques, including statistical modifications (e.g., pitch shifting, filtering, noise addition, and quantization) and optimization-based attacks (e.g., FGSM, PGD, C \& W, and DeepFool). In this paper, we investigate the SoTA ADD methods and provide a comparative analysis to highlight their effectiveness in exposing deepfake signatures, as well as their vulnerabilities under adversarial conditions. We conducted an extensive evaluation of ADD methods on five deepfake benchmark datasets using two categories: raw and spectrogram-based approaches. This comparative analysis enables a deeper understanding of the strengths and limitations of SoTA ADD methods against diverse AF attacks. It does not only highlight vulnerabilities of ADD methods, but also informs the design of more robust and generalized detectors for real-world voice biometrics. It will further guide future research in developing adaptive defense strategies that can effectively counter evolving AF techniques.
☆ SoK: Security and Privacy of AI Agents for Blockchain
Blockchain and smart contracts have garnered significant interest in recent years as the foundation of a decentralized, trustless digital ecosystem, thereby eliminating the need for traditional centralized authorities. Despite their central role in powering Web3, their complexity still presents significant barriers for non-expert users. To bridge this gap, Artificial Intelligence (AI)-based agents have emerged as valuable tools for interacting with blockchain environments, supporting a range of tasks, from analyzing on-chain data and optimizing transaction strategies to detecting vulnerabilities within smart contracts. While interest in applying AI to blockchain is growing, the literature still lacks a comprehensive survey that focuses specifically on the intersection with AI agents. Most of the related work only provides general considerations, without focusing on any specific domain. This paper addresses this gap by presenting the first Systematization of Knowledge dedicated to AI-driven systems for blockchain, with a special focus on their security and privacy dimensions, shedding light on their applications, limitations, and future research directions.
comment: This work has been accepted to the 7th International Conference on Blockchain Computing and Applications (BCCA 2025)
☆ SVGauge: Towards Human-Aligned Evaluation for SVG Generation
Generated Scalable Vector Graphics (SVG) images demand evaluation criteria tuned to their symbolic and vectorial nature: criteria that existing metrics such as FID, LPIPS, or CLIPScore fail to satisfy. In this paper, we introduce SVGauge, the first human-aligned, reference based metric for text-to-SVG generation. SVGauge jointly measures (i) visual fidelity, obtained by extracting SigLIP image embeddings and refining them with PCA and whitening for domain alignment, and (ii) semantic consistency, captured by comparing BLIP-2-generated captions of the SVGs against the original prompts in the combined space of SBERT and TF-IDF. Evaluation on the proposed SHE benchmark shows that SVGauge attains the highest correlation with human judgments and reproduces system-level rankings of eight zero-shot LLM-based generators more faithfully than existing metrics. Our results highlight the necessity of vector-specific evaluation and provide a practical tool for benchmarking future text-to-SVG generation models.
comment: Accepted at 23rd edition of International Conference on Image Analysis and Processing 2025
☆ Neuro-Symbolic Frameworks: Conceptual Characterization and Empirical Comparative Analysis
Neurosymbolic (NeSy) frameworks combine neural representations and learning with symbolic representations and reasoning. Combining the reasoning capacities, explainability, and interpretability of symbolic processing with the flexibility and power of neural computing allows us to solve complex problems with more reliability while being data-efficient. However, this recently growing topic poses a challenge to developers with its learning curve, lack of user-friendly tools, libraries, and unifying frameworks. In this paper, we characterize the technical facets of existing NeSy frameworks, such as the symbolic representation language, integration with neural models, and the underlying algorithms. A majority of the NeSy research focuses on algorithms instead of providing generic frameworks for declarative problem specification to leverage problem solving. To highlight the key aspects of Neurosymbolic modeling, we showcase three generic NeSy frameworks - \textit{DeepProbLog}, \textit{Scallop}, and \textit{DomiKnowS}. We identify the challenges within each facet that lay the foundation for identifying the expressivity of each framework in solving a variety of problems. Building on this foundation, we aim to spark transformative action and encourage the community to rethink this problem in novel ways.
☆ Riemannian Batch Normalization: A Gyro Approach
Normalization layers are crucial for deep learning, but their Euclidean formulations are inadequate for data on manifolds. On the other hand, many Riemannian manifolds in machine learning admit gyro-structures, enabling principled extensions of Euclidean neural networks to non-Euclidean domains. Inspired by this, we introduce GyroBN, a principled Riemannian batch normalization framework for gyrogroups. We establish two necessary conditions, namely \emph{pseudo-reduction} and \emph{gyroisometric gyrations}, that guarantee GyroBN with theoretical control over sample statistics, and show that these conditions hold for all known gyrogroups in machine learning. Our framework also incorporates several existing Riemannian normalization methods as special cases. We further instantiate GyroBN on seven representative geometries, including the Grassmannian, five constant curvature spaces, and the correlation manifold, and derive novel gyro and Riemannian structures to enable these instantiations. Experiments across these geometries demonstrate the effectiveness of GyroBN. The code is available at https://github.com/GitZH-Chen/GyroBN.git.
☆ Lookup multivariate Kolmogorov-Arnold Networks
High-dimensional linear mappings, or linear layers, dominate both the parameter count and the computational cost of most modern deep-learning models. We introduce a general drop-in replacement, lookup multivariate Kolmogorov-Arnold Networks (lmKANs), which deliver a substantially better trade-off between capacity and inference cost. Our construction expresses a general high-dimensional mapping through trainable low-dimensional multivariate functions. These functions can carry dozens or hundreds of trainable parameters each, and yet it takes only a few multiplications to compute them because they are implemented as spline lookup tables. Empirically, lmKANs reduce inference FLOPs by up to 6.0x while matching the flexibility of MLPs in general high-dimensional function approximation. In another feedforward fully connected benchmark, on the tabular-like dataset of randomly displaced methane configurations, lmKANs enable more than 10x higher H100 throughput at equal accuracy. Within frameworks of Convolutional Neural Networks, lmKAN-based CNNs cut inference FLOPs at matched accuracy by 1.6-2.1x and by 1.7x on the CIFAR-10 and ImageNet-1k datasets, respectively. Our code, including dedicated CUDA kernels, is available online at https://github.com/schwallergroup/lmkan.
☆ Instruction Agent: Enhancing Agent with Expert Demonstration
Graphical user interface (GUI) agents have advanced rapidly but still struggle with complex tasks involving novel UI elements, long-horizon actions, and personalized trajectories. In this work, we introduce Instruction Agent, a GUI agent that leverages expert demonstrations to solve such tasks, enabling completion of otherwise difficult workflows. Given a single demonstration, the agent extracts step-by-step instructions and executes them by strictly following the trajectory intended by the user, which avoids making mistakes during execution. The agent leverages the verifier and backtracker modules further to improve robustness. Both modules are critical to understand the current outcome from each action and handle unexpected interruptions(such as pop-up windows) during execution. Our experiments show that Instruction Agent achieves a 60% success rate on a set of tasks in OSWorld that all top-ranked agents failed to complete. The Instruction Agent offers a practical and extensible framework, bridging the gap between current GUI agents and reliable real-world GUI task automation.
☆ Statistical Methods in Generative AI
Generative Artificial Intelligence is emerging as an important technology, promising to be transformative in many areas. At the same time, generative AI techniques are based on sampling from probabilistic models, and by default, they come with no guarantees about correctness, safety, fairness, or other properties. Statistical methods offer a promising potential approach to improve the reliability of generative AI techniques. In addition, statistical methods are also promising for improving the quality and efficiency of AI evaluation, as well as for designing interventions and experiments in AI. In this paper, we review some of the existing work on these topics, explaining both the general statistical techniques used, as well as their applications to generative AI. We also discuss limitations and potential future directions.
comment: Invited review paper for Annual Review of Statistics and Its Application. Feedback welcome
☆ Automated Evaluation of Gender Bias Across 13 Large Multimodal Models
Large multimodal models (LMMs) have revolutionized text-to-image generation, but they risk perpetuating the harmful social biases in their training data. Prior work has identified gender bias in these models, but methodological limitations prevented large-scale, comparable, cross-model analysis. To address this gap, we introduce the Aymara Image Fairness Evaluation, a benchmark for assessing social bias in AI-generated images. We test 13 commercially available LMMs using 75 procedurally-generated, gender-neutral prompts to generate people in stereotypically-male, stereotypically-female, and non-stereotypical professions. We then use a validated LLM-as-a-judge system to score the 965 resulting images for gender representation. Our results reveal (p < .001 for all): 1) LMMs systematically not only reproduce but actually amplify occupational gender stereotypes relative to real-world labor data, generating men in 93.0% of images for male-stereotyped professions but only 22.5% for female-stereotyped professions; 2) Models exhibit a strong default-male bias, generating men in 68.3% of the time for non-stereotyped professions; and 3) The extent of bias varies dramatically across models, with overall male representation ranging from 46.7% to 73.3%. Notably, the top-performing model de-amplified gender stereotypes and approached gender parity, achieving the highest fairness scores. This variation suggests high bias is not an inevitable outcome but a consequence of design choices. Our work provides the most comprehensive cross-model benchmark of gender bias to date and underscores the necessity of standardized, automated evaluation tools for promoting accountability and fairness in AI development.
♻ ☆ Transforming Wearable Data into Personal Health Insights using Large Language Model Agents
Deriving personalized insights from popular wearable trackers requires complex numerical reasoning that challenges standard LLMs, necessitating tool-based approaches like code generation. Large language model (LLM) agents present a promising yet largely untapped solution for this analysis at scale. We introduce the Personal Health Insights Agent (PHIA), a system leveraging multistep reasoning with code generation and information retrieval to analyze and interpret behavioral health data. To test its capabilities, we create and share two benchmark datasets with over 4000 health insights questions. A 650-hour human expert evaluation shows that PHIA significantly outperforms a strong code generation baseline, achieving 84% accuracy on objective, numerical questions and, for open-ended ones, earning 83% favorable ratings while being twice as likely to achieve the highest quality rating. This work can advance behavioral health by empowering individuals to understand their data, enabling a new era of accessible, personalized, and data-driven wellness for the wider population.
comment: 53 pages, 7 main figures, 2 main tables, accepted to Nature Communications
♻ ☆ Addressing Concept Mislabeling in Concept Bottleneck Models Through Preference Optimization
Concept Bottleneck Models (CBMs) propose to enhance the trustworthiness of AI systems by constraining their decisions on a set of human-understandable concepts. However, CBMs typically assume that datasets contain accurate concept labels-an assumption often violated in practice, which we show can significantly degrade performance (by 25% in some cases). To address this, we introduce the Concept Preference Optimization (CPO) objective, a new loss function based on Direct Preference Optimization, which effectively mitigates the negative impact of concept mislabeling on CBM performance. We provide an analysis of key properties of the CPO objective, showing it directly optimizes for the concept's posterior distribution, and contrast it against Binary Cross Entropy (BCE), demonstrating that CPO is inherently less sensitive to concept noise. We empirically confirm our analysis by finding that CPO consistently outperforms BCE on three real-world datasets, both with and without added label noise. We make our code available on Github.
♻ ☆ LatticeWorld: A Multimodal Large Language Model-Empowered Framework for Interactive Complex World Generation
Recent research has been increasingly focusing on developing 3D world models that simulate complex real-world scenarios. World models have found broad applications across various domains, including embodied AI, autonomous driving, entertainment, etc. A more realistic simulation with accurate physics will effectively narrow the sim-to-real gap and allow us to gather rich information about the real world conveniently. While traditional manual modeling has enabled the creation of virtual 3D scenes, modern approaches have leveraged advanced machine learning algorithms for 3D world generation, with most recent advances focusing on generative methods that can create virtual worlds based on user instructions. This work explores such a research direction by proposing LatticeWorld, a simple yet effective 3D world generation framework that streamlines the industrial production pipeline of 3D environments. LatticeWorld leverages lightweight LLMs (LLaMA-2-7B) alongside the industry-grade rendering engine (e.g., Unreal Engine 5) to generate a dynamic environment. Our proposed framework accepts textual descriptions and visual instructions as multimodal inputs and creates large-scale 3D interactive worlds with dynamic agents, featuring competitive multi-agent interaction, high-fidelity physics simulation, and real-time rendering. We conduct comprehensive experiments to evaluate LatticeWorld, showing that it achieves superior accuracy in scene layout generation and visual fidelity. Moreover, LatticeWorld achieves over a $90\times$ increase in industrial production efficiency while maintaining high creative quality compared with traditional manual production methods. Our demo video is available at https://youtu.be/8VWZXpERR18
♻ ☆ Antidistillation Sampling
Frontier models that generate extended reasoning traces inadvertently produce rich token sequences that can facilitate model distillation. Recognizing this vulnerability, model owners may seek sampling strategies that limit the effectiveness of distillation without compromising model performance. Antidistillation sampling provides exactly this capability. By strategically modifying a model's next-token probability distribution, antidistillation sampling poisons reasoning traces, rendering them significantly less effective for distillation while preserving the model's practical utility. For further details, see https://antidistillation.com.
♻ ☆ Project Riley: Multimodal Multi-Agent LLM Collaboration with Emotional Reasoning and Voting
This paper presents Project Riley, a novel multimodal and multi-model conversational AI architecture oriented towards the simulation of reasoning influenced by emotional states. Drawing inspiration from Pixar's Inside Out, the system comprises five distinct emotional agents - Joy, Sadness, Fear, Anger, and Disgust - that engage in structured multi-round dialogues to generate, criticise, and iteratively refine responses. A final reasoning mechanism synthesises the contributions of these agents into a coherent output that either reflects the dominant emotion or integrates multiple perspectives. The architecture incorporates both textual and visual large language models (LLMs), alongside advanced reasoning and self-refinement processes. A functional prototype was deployed locally in an offline environment, optimised for emotional expressiveness and computational efficiency. From this initial prototype, another one emerged, called Armando, which was developed for use in emergency contexts, delivering emotionally calibrated and factually accurate information through the integration of Retrieval-Augmented Generation (RAG) and cumulative context tracking. The Project Riley prototype was evaluated through user testing, in which participants interacted with the chatbot and completed a structured questionnaire assessing three dimensions: Emotional Appropriateness, Clarity and Utility, and Naturalness and Human-likeness. The results indicate strong performance in structured scenarios, particularly with respect to emotional alignment and communicative clarity.
comment: 28 pages, 5 figures. Submitted for review to Information Fusion
♻ ☆ Assistance or Disruption? Exploring and Evaluating the Design and Trade-offs of Proactive AI Programming Support
AI programming tools enable powerful code generation, and recent prototypes attempt to reduce user effort with proactive AI agents, but their impact on programming workflows remains unexplored. We introduce and evaluate Codellaborator, a design probe LLM agent that initiates programming assistance based on editor activities and task context. We explored three interface variants to assess trade-offs between increasingly salient AI support: prompt-only, proactive agent, and proactive agent with presence and context (Codellaborator). In a within-subject study (N=18), we find that proactive agents increase efficiency compared to prompt-only paradigm, but also incur workflow disruptions. However, presence indicators and interaction context support alleviated disruptions and improved users' awareness of AI processes. We underscore trade-offs of Codellaborator on user control, ownership, and code understanding, emphasizing the need to adapt proactivity to programming processes. Our research contributes to the design exploration and evaluation of proactive AI systems, presenting design implications on AI-integrated programming workflow.
♻ ☆ Comparative Analysis of Transformer Models in Disaster Tweet Classification for Public Safety
Twitter and other social media platforms have become vital sources of real time information during disasters and public safety emergencies. Automatically classifying disaster related tweets can help emergency services respond faster and more effectively. Traditional Machine Learning (ML) models such as Logistic Regression, Naive Bayes, and Support Vector Machines have been widely used for this task, but they often fail to understand the context or deeper meaning of words, especially when the language is informal, metaphorical, or ambiguous. We posit that, in this context, transformer based models can perform better than traditional ML models. In this paper, we evaluate the effectiveness of transformer based models, including BERT, DistilBERT, RoBERTa, and DeBERTa, for classifying disaster related tweets. These models are compared with traditional ML approaches to highlight the performance gap. Experimental results show that BERT achieved the highest accuracy (91%), significantly outperforming traditional models like Logistic Regression and Naive Bayes (both at 82%). The use of contextual embeddings and attention mechanisms allows transformer models to better understand subtle language in tweets, where traditional ML models fall short. This research demonstrates that transformer architectures are far more suitable for public safety applications, offering improved accuracy, deeper language understanding, and better generalization across real world social media text.
♻ ☆ Automatic Prompt Optimization with Prompt Distillation
Autoprompting is the process of automatically selecting optimized prompts for language models, which is gaining popularity due to the rapid development of prompt engineering driven by extensive research in the field of large language models (LLMs). This paper presents DistillPrompt -- a novel autoprompting method based on large language models that employs a multi-stage integration of task-specific information into prompts using training data. DistillPrompt utilizes distillation, compression, and aggregation operations to explore the prompt space more thoroughly. The method was tested on different datasets for text classification and generation tasks using the t-lite-instruct-0.1 language model. The results demonstrate a significant average improvement (e.g., 20.12% across the entire dataset compared to Grips) in key metrics over existing methods in the field, establishing DistillPrompt as one of the most effective non-gradient approaches in autoprompting.
♻ ☆ Navigating the EU AI Act: Foreseeable Challenges in Qualifying Deep Learning-Based Automated Inspections of Class III Medical Devices
As deep learning (DL) technologies advance, their application in automated visual inspection for Class III medical devices offers significant potential to enhance quality assurance and reduce human error. However, the adoption of such AI-based systems introduces new regulatory complexities-particularly under the EU Artificial Intelligence (AI) Act, which imposes high-risk system obligations that differ in scope and depth from established regulatory frameworks such as the Medical Device Regulation (MDR) and the U.S. FDA Quality System Regulation (QSR). This paper presents a high-level technical assessment of the foreseeable challenges that manufacturers are likely to encounter when qualifying DL-based automated inspections -- specifically static models -- within the existing medical device compliance landscape. It examines divergences in risk management principles, dataset governance, model validation, explainability requirements, and post-deployment monitoring obligations. The discussion also explores potential implementation strategies and highlights areas of uncertainty, including data retention burdens, global compliance implications, and the practical difficulties of achieving statistical significance in validation with limited defect data. Disclaimer: This paper presents a technical perspective and does not constitute legal or regulatory advice.
comment: Critical Review article
♻ ☆ Efficient $Q$-Learning and Actor-Critic Methods for Robust Average Reward Reinforcement Learning
We present a non-asymptotic convergence analysis of $Q$-learning and actor-critic algorithms for robust average-reward Markov Decision Processes (MDPs) under contamination, total-variation (TV) distance, and Wasserstein uncertainty sets. A key ingredient of our analysis is showing that the optimal robust $Q$ operator is a strict contraction with respect to a carefully designed semi-norm (with constant functions quotiented out). This property enables a stochastic approximation update that learns the optimal robust $Q$-function using $\tilde{\mathcal{O}}(\epsilon^{-2})$ samples. We also provide an efficient routine for robust $Q$-function estimation, which in turn facilitates robust critic estimation. Building on this, we introduce an actor-critic algorithm that learns an $\epsilon$-optimal robust policy within $\tilde{\mathcal{O}}(\epsilon^{-2})$ samples. We provide numerical simulations to evaluate the performance of our algorithms.
comment: The actor-critic result and its proof have been updated. Numerical simulations have also been added
♻ ☆ Oyster-I: Beyond Refusal -- Constructive Safety Alignment for Responsible Language Models
Large language models (LLMs) typically deploy safety mechanisms to prevent harmful content generation. Most current approaches focus narrowly on risks posed by malicious actors, often framing risks as adversarial events and relying on defensive refusals. However, in real-world settings, risks also come from non-malicious users seeking help while under psychological distress (e.g., self-harm intentions). In such cases, the model's response can strongly influence the user's next actions. Simple refusals may lead them to repeat, escalate, or move to unsafe platforms, creating worse outcomes. We introduce Constructive Safety Alignment (CSA), a human-centric paradigm that protects against malicious misuse while actively guiding vulnerable users toward safe and helpful results. Implemented in Oyster-I (Oy1), CSA combines game-theoretic anticipation of user reactions, fine-grained risk boundary discovery, and interpretable reasoning control, turning safety into a trust-building process. Oy1 achieves state-of-the-art safety among open models while retaining high general capabilities. On our Constructive Benchmark, it shows strong constructive engagement, close to GPT-5, and unmatched robustness on the Strata-Sword jailbreak dataset, nearing GPT-o1 levels. By shifting from refusal-first to guidance-first safety, CSA redefines the model-user relationship, aiming for systems that are not just safe, but meaningfully helpful. We release Oy1, code, and the benchmark to support responsible, user-centered AI.
comment: Technical Report Code & Model weights available: https://github.com/Alibaba-AAIG/Oyster
♻ ☆ Bias in Decision-Making for AI's Ethical Dilemmas: A Comparative Study of ChatGPT and Claude AAAI
Recent advances in Large Language Models (LLMs) have enabled human-like responses across various tasks, raising questions about their ethical decision-making capabilities and potential biases. This study systematically evaluates how nine popular LLMs (both open-source and closed-source) respond to ethical dilemmas involving protected attributes. Across 50,400 trials spanning single and intersectional attribute combinations in four dilemma scenarios (protective vs. harmful), we assess models' ethical preferences, sensitivity, stability, and clustering patterns. Results reveal significant biases in protected attributes in all models, with differing preferences depending on model type and dilemma context. Notably, open-source LLMs show stronger preferences for marginalized groups and greater sensitivity in harmful scenarios, while closed-source models are more selective in protective situations and tend to favor mainstream groups. We also find that ethical behavior varies across dilemma types: LLMs maintain consistent patterns in protective scenarios but respond with more diverse and cognitively demanding decisions in harmful ones. Furthermore, models display more pronounced ethical tendencies under intersectional conditions than in single-attribute settings, suggesting that complex inputs reveal deeper biases. These findings highlight the need for multi-dimensional, context-aware evaluation of LLMs' ethical behavior and offer a systematic evaluation and approach to understanding and addressing fairness in LLM decision-making.
comment: This paper has been accepted by International AAAI Conference on Web and Social Media 2026 (ICWSM 2026), sunny Los Angeles, California
♻ ☆ CHIRLA: Comprehensive High-resolution Identification and Re-identification for Large-scale Analysis
Person re-identification (Re-ID) is a key challenge in computer vision, requiring the matching of individuals across cameras, locations, and time. While most research focuses on short-term scenarios with minimal appearance changes, real-world applications demand robust systems that handle long-term variations caused by clothing and physical changes. We present CHIRLA, Comprehensive High-resolution Identification and Re-identification for Large-scale Analysis, a novel dataset designed for video-based long-term person Re-ID. CHIRLA was recorded over seven months in four connected indoor environments using seven strategically placed cameras, capturing realistic movements with substantial clothing and appearance variability. The dataset includes 22 individuals, more than five hours of video, and about 1M bounding boxes with identity annotations obtained through semi-automatic labeling. We also define benchmark protocols for person tracking and Re-ID, covering diverse and challenging scenarios such as occlusion, reappearance, and multi-camera conditions. By introducing this comprehensive benchmark, we aim to facilitate the development and evaluation of Re-ID algorithms that can reliably perform in challenging, long-term real-world scenarios. The benchmark code is publicly available at: https://github.com/bdager/CHIRLA.
♻ ☆ FACEGroup: Feasible and Actionable Counterfactual Explanations for Group Fairness ECML
Counterfactual explanations assess unfairness by revealing how inputs must change to achieve a desired outcome. This paper introduces the first graph-based framework for generating group counterfactual explanations to audit group fairness, a key aspect of trustworthy machine learning. Our framework, FACEGroup (Feasible and Actionable Counterfactual Explanations for Group Fairness), models real-world feasibility constraints, identifies subgroups with similar counterfactuals, and captures key trade-offs in counterfactual generation, distinguishing it from existing methods. To evaluate fairness, we introduce novel metrics for both group and subgroup level analysis that explicitly account for these trade-offs. Experiments on benchmark datasets show that FACEGroup effectively generates feasible group counterfactuals while accounting for trade-offs, and that our metrics capture and quantify fairness disparities.
comment: ECML PKDD 2025
♻ ☆ DCPO: Dynamic Clipping Policy Optimization
Reinforcement Learning from Verifiable Rewards (RLVR) has emerged as a promising framework for enhancing the reasoning capabilities of large language models. However, existing approaches such as GRPO often suffer from zero gradients. This problem arises primarily due to fixed clipping bounds for token-level probability ratios and the standardization of identical rewards, which can lead to ineffective gradient updates and underutilization of generated responses. In this work, we propose Dynamic Clipping Policy Optimization(DCPO), which introduces a dynamic clipping strategy that adaptively adjusts clipping bounds based on token-specific prior probabilities to enhance token-level exploration, and a smooth advantage standardization technique that standardizes rewards across cumulative training steps to improve the response-level effective utilization of generated responses. DCPO achieved state-of-the-art performance on four benchmarks based on four different models. In particular, DCPO achieved an Avg@1 of 46.7 under greedy decoding and an Avg@32 of 38.8 under 32 times sampling on the AIME24 benchmark, surpassing DAPO (36.7/31.6), GRPO (36.7/32.1) and GSPO (40.0/34.9) on the Qwen2.5-Math-7B model. On the AIME25 benchmark based on Qwen2.5-14B, DCPO achieves a performance of (23.3/19.0), surpassing GRPO (13.3/10.5), DAPO (20.0/15.3) and GSPO (16.7/9.9). Furthermore, DCPO achieved an average 28% improvement in the nonzero advantage over GRPO in four models, doubled the training efficiency over DAPO, and significantly reduced the token clipping ratio by an order of magnitude compared to both GRPO and DAPO, while achieving superior performance. These results highlight DCPO's effectiveness in leveraging generated data more efficiently for reinforcement learning in large language models.
♻ ☆ Driver-Net: Multi-Camera Fusion for Assessing Driver Take-Over Readiness in Automated Vehicles
Ensuring safe transition of control in automated vehicles requires an accurate and timely assessment of driver readiness. This paper introduces Driver-Net, a novel deep learning framework that fuses multi-camera inputs to estimate driver take-over readiness. Unlike conventional vision-based driver monitoring systems that focus on head pose or eye gaze, Driver-Net captures synchronised visual cues from the driver's head, hands, and body posture through a triple-camera setup. The model integrates spatio-temporal data using a dual-path architecture, comprising a Context Block and a Feature Block, followed by a cross-modal fusion strategy to enhance prediction accuracy. Evaluated on a diverse dataset collected from the University of Leeds Driving Simulator, the proposed method achieves an accuracy of up to 95.8% in driver readiness classification. This performance significantly enhances existing approaches and highlights the importance of multimodal and multi-view fusion. As a real-time, non-intrusive solution, Driver-Net contributes meaningfully to the development of safer and more reliable automated vehicles and aligns with new regulatory mandates and upcoming safety standards.
♻ ☆ Visual Structures Helps Visual Reasoning: Addressing the Binding Problem in VLMs
Despite progress in Vision-Language Models (VLMs), their capacity for visual reasoning is often limited by the binding problem: the failure to reliably associate perceptual features with their correct visual referents. This limitation underlies persistent errors in tasks such as counting, visual search, scene description, and spatial relationship understanding. A key factor is that current VLMs process visual features largely in parallel, lacking mechanisms for spatially grounded, serial attention. This paper introduces VISER (Visual Input Structure for Enhanced Reasoning), a simple yet effective intervention: augmenting visual inputs with low-level spatial structures and pairing this with a textual prompt that encourages sequential, spatially-aware parsing. We empirically demonstrate substantial performance improvements across core visual reasoning tasks. Specifically, VISER improves GPT-4o visual search accuracy by 25.00%, increases counting accuracy by 26.83%, reduces edit distance error in scene description by 0.32, and enhances performance on spatial relationship tasks by 9.50% on a 2D synthetic dataset. Furthermore, we find that the visual modification is essential for these gains; purely textual strategies, including Chain-of-Thought prompting, are insufficient and can even degrade performance. VISER enhances binding only with a single-query inference, underscoring the importance of visual input design over purely linguistically-based approaches. These findings suggest that low-level visual structuring is a powerful and underexplored direction for improving compositional visual reasoning and could serve as a general strategy for enhancing VLM performance on spatially grounded tasks.
♻ ☆ SUDER: Self-Improving Unified Large Multimodal Models for Understanding and Generation with Dual Self-Rewards
Building upon large language models (LLMs), recent large multimodal models (LMMs) unify cross-model understanding and generation into a single framework. However, LMMs still struggle to achieve accurate vision-language alignment, prone to generating text responses contradicting the visual input or failing to follow the text-to-image prompts. Current solutions require external supervision (e.g., human feedback or reward models) and only address unidirectional tasks-either understanding or generation. In this work, based on the observation that understanding and generation are naturally inverse dual tasks, we propose \textbf{SUDER} (\textbf{S}elf-improving \textbf{U}nified LMMs with \textbf{D}ual s\textbf{E}lf-\textbf{R}ewards), a framework reinforcing the understanding and generation capabilities of LMMs with a self-supervised dual reward mechanism. SUDER leverages the inherent duality between understanding and generation tasks to provide self-supervised optimization signals for each other. Specifically, we sample multiple outputs for a given input in one task domain, then reverse the input-output pairs to compute the dual likelihood within the model as self-rewards for optimization. Extensive experimental results on visual understanding and generation benchmarks demonstrate that our method can effectively enhance the performance of the model without any external supervision, especially achieving remarkable improvements in text-to-image tasks.
♻ ☆ Leveraging Large Language Models for Accurate Sign Language Translation in Low-Resource Scenarios
Translating natural languages into sign languages is a highly complex and underexplored task. Despite growing interest in accessibility and inclusivity, the development of robust translation systems remains hindered by the limited availability of parallel corpora which align natural language with sign language data. Existing methods often struggle to generalize in these data-scarce environments, as the few datasets available are typically domain-specific, lack standardization, or fail to capture the full linguistic richness of sign languages. To address this limitation, we propose Advanced Use of LLMs for Sign Language Translation (AulSign), a novel method that leverages Large Language Models via dynamic prompting and in-context learning with sample selection and subsequent sign association. Despite their impressive abilities in processing text, LLMs lack intrinsic knowledge of sign languages; therefore, they are unable to natively perform this kind of translation. To overcome this limitation, we associate the signs with compact descriptions in natural language and instruct the model to use them. We evaluate our method on both English and Italian languages using SignBank+, a recognized benchmark in the field, as well as the Italian LaCAM CNR-ISTC dataset. We demonstrate superior performance compared to state-of-the-art models in low-data scenario. Our findings demonstrate the effectiveness of AulSign, with the potential to enhance accessibility and inclusivity in communication technologies for underrepresented linguistic communities.
♻ ☆ BriLLM: Brain-inspired Large Language Model
We introduce BriLLM, a brain-inspired large language model that fundamentally redefines the foundations of machine learning through its implementation of Signal Fully-connected flowing (SiFu) learning. This work addresses the critical bottleneck hindering AI's progression toward Artificial General Intelligence (AGI)--the disconnect between language models and "world models"--as well as the fundamental limitations of Transformer-based architectures rooted in the conventional representation learning paradigm. BriLLM incorporates two pivotal neurocognitive principles: (1) static semantic mapping, where tokens are mapped to specialized nodes analogous to cortical areas, and (2) dynamic signal propagation, which simulates electrophysiological information dynamics observed in brain activity. This architecture enables multiple transformative breakthroughs: natural multi-modal compatibility, full model interpretability at the node level, context-length independent scaling, and the first global-scale simulation of brain-like information processing for language tasks. Our initial 1-2B parameter models successfully replicate GPT-1-level generative capabilities while demonstrating stable perplexity reduction. Scalability analyses confirm the feasibility of 100-200B parameter variants capable of processing 40,000-token vocabularies. The paradigm is reinforced by both Occam's Razor--evidenced in the simplicity of direct semantic mapping--and natural evolution--given the brain's empirically validated AGI architecture. BriLLM establishes a novel, biologically grounded framework for AGI advancement that addresses fundamental limitations of current approaches.
♻ ☆ Energy Landscapes Enable Reliable Abstention in Retrieval-Augmented Large Language Models for Healthcare
Reliable abstention is critical for retrieval-augmented generation (RAG) systems, particularly in safety-critical domains such as women's health, where incorrect answers can lead to harm. We present an energy-based model (EBM) that learns a smooth energy landscape over a dense semantic corpus of 2.6M guideline-derived questions, enabling the system to decide when to generate or abstain. We benchmark the EBM against a calibrated softmax baseline and a k-nearest neighbour (kNN) density heuristic across both easy and hard abstention splits, where hard cases are semantically challenging near-distribution queries. The EBM achieves superior abstention performance abstention on semantically hard cases, reaching AUROC 0.961 versus 0.950 for softmax, while also reducing FPR@95 (0.235 vs 0.331). On easy negatives, performance is comparable across methods, but the EBM's advantage becomes most pronounced in safety-critical hard distributions. A comprehensive ablation with controlled negative sampling and fair data exposure shows that robustness stems primarily from the energy scoring head, while the inclusion or exclusion of specific negative types (hard, easy, mixed) sharpens decision boundaries but is not essential for generalisation to hard cases. These results demonstrate that energy-based abstention scoring offers a more reliable confidence signal than probability-based softmax confidence, providing a scalable and interpretable foundation for safe RAG systems.
♻ ☆ ReST-RL: Achieving Accurate Code Reasoning of LLMs with Optimized Self-Training and Decoding
With respect to improving the reasoning accuracy of LLMs, the representative reinforcement learning (RL) method GRPO faces failure due to insignificant reward variance, while verification methods based on process reward models (PRMs) suffer from difficulties with training data acquisition and verification effectiveness. To tackle these problems, this paper introduces ReST-RL, a unified LLM RL paradigm that significantly improves LLM's code reasoning ability by combining an improved GRPO algorithm with a meticulously designed test time decoding method assisted by a value model (VM). As the first stage of policy reinforcement, ReST-GRPO adopts an optimized ReST algorithm to filter and assemble high-value training data, increasing the reward variance of GRPO sampling, thus improving the effectiveness and efficiency of training. After the basic reasoning ability of LLM policy has been improved, we further propose a test time decoding optimization method called VM-MCTS. Through Monte-Carlo Tree Search (MCTS), we collect accurate value targets with no annotation required, on which VM training is based. When decoding, the VM is deployed by an adapted MCTS algorithm to provide precise process signals as well as verification scores, assisting the LLM policy to achieve high reasoning accuracy. We conduct extensive experiments on coding problems to verify the validity of the proposed RL paradigm. Upon comparison, our approach significantly outperforms other reinforcement training baselines (e.g., naive GRPO and ReST-DPO), as well as decoding and verification baselines (e.g., PRM-BoN and ORM-MCTS) on well-known coding benchmarks of various levels (e.g., APPS, BigCodeBench, and HumanEval), indicating its power to strengthen the reasoning ability of LLM policies. Codes for our project can be found at https://github.com/THUDM/ReST-RL.
comment: 21 pages, 4 figures
♻ ☆ Bipedal Balance Control with Whole-body Musculoskeletal Standing and Falling Simulations
Balance control is important for human and bipedal robotic systems. While dynamic balance during locomotion has received considerable attention, quantitative understanding of static balance and falling remains limited. This work presents a hierarchical control pipeline for simulating human balance via a comprehensive whole-body musculoskeletal system. We identified spatiotemporal dynamics of balancing during stable standing, revealed the impact of muscle injury on balancing behavior, and generated fall contact patterns that aligned with clinical data. Furthermore, our simulated hip exoskeleton assistance demonstrated improvement in balance maintenance and reduced muscle effort under perturbation. This work offers unique muscle-level insights into human balance dynamics that are challenging to capture experimentally. It could provide a foundation for developing targeted interventions for individuals with balance impairments and support the advancement of humanoid robotic systems.
♻ ☆ Sequential Controlled Langevin Diffusions
An effective approach for sampling from unnormalized densities is based on the idea of gradually transporting samples from an easy prior to the complicated target distribution. Two popular methods are (1) Sequential Monte Carlo (SMC), where the transport is performed through successive annealed densities via prescribed Markov chains and resampling steps, and (2) recently developed diffusion-based sampling methods, where a learned dynamical transport is used. Despite the common goal, both approaches have different, often complementary, advantages and drawbacks. The resampling steps in SMC allow focusing on promising regions of the space, often leading to robust performance. While the algorithm enjoys asymptotic guarantees, the lack of flexible, learnable transitions can lead to slow convergence. On the other hand, diffusion-based samplers are learned and can potentially better adapt themselves to the target at hand, yet often suffer from training instabilities. In this work, we present a principled framework for combining SMC with diffusion-based samplers by viewing both methods in continuous time and considering measures on path space. This culminates in the new Sequential Controlled Langevin Diffusion (SCLD) sampling method, which is able to utilize the benefits of both methods and reaches improved performance on multiple benchmark problems, in many cases using only 10% of the training budget of previous diffusion-based samplers.
comment: In The Thirteenth International Conference on Learning Representations, 2025
♻ ☆ Nested Graph Pseudo-Label Refinement for Noisy Label Domain Adaptation Learning
Graph Domain Adaptation (GDA) facilitates knowledge transfer from labeled source graphs to unlabeled target graphs by learning domain-invariant representations, which is essential in applications such as molecular property prediction and social network analysis. However, most existing GDA methods rely on the assumption of clean source labels, which rarely holds in real-world scenarios where annotation noise is pervasive. This label noise severely impairs feature alignment and degrades adaptation performance under domain shifts. To address this challenge, we propose Nested Graph Pseudo-Label Refinement (NeGPR), a novel framework tailored for graph-level domain adaptation with noisy labels. NeGPR first pretrains dual branches, i.e., semantic and topology branches, by enforcing neighborhood consistency in the feature space, thereby reducing the influence of noisy supervision. To bridge domain gaps, NeGPR employs a nested refinement mechanism in which one branch selects high-confidence target samples to guide the adaptation of the other, enabling progressive cross-domain learning. Furthermore, since pseudo-labels may still contain noise and the pre-trained branches are already overfitted to the noisy labels in the source domain, NeGPR incorporates a noise-aware regularization strategy. This regularization is theoretically proven to mitigate the adverse effects of pseudo-label noise, even under the presence of source overfitting, thus enhancing the robustness of the adaptation process. Extensive experiments on benchmark datasets demonstrate that NeGPR consistently outperforms state-of-the-art methods under severe label noise, achieving gains of up to 12.7% in accuracy.
♻ ☆ Dynamically Adaptive Reasoning via LLM-Guided MCTS for Efficient and Context-Aware KGQA
Knowledge Graph Question Answering (KGQA) aims to interpret natural language queries and perform structured reasoning over knowledge graphs by leveraging their relational and semantic structures to retrieve accurate answers. Recent KGQA methods primarily follow either retrieve-then-reason paradigm, relying on GNNs or heuristic rules for static paths extraction, or dynamic path generation strategies that use large language models (LLMs) with prompting to jointly perform retrieval and reasoning. However, the former suffers from limited adaptability due to static path extraction and lack of contextual refinement, while the latter incurs high computational costs and struggles with accurate path evaluation due to reliance on fixed scoring functions and extensive LLM calls. To address these issues, this paper proposes Dynamically Adaptive MCTS-based Reasoning (DAMR), a novel framework that integrates symbolic search with adaptive path evaluation for efficient and context-aware KGQA. DAMR employs a Monte Carlo Tree Search (MCTS) backbone guided by an LLM-based planner, which selects top-$k$ relevant relations at each step to reduce search space. To improve path evaluation accuracy, we introduce a lightweight Transformer-based scorer that performs context-aware plausibility estimation by jointly encoding the question and relation sequence through cross-attention, enabling the model to capture fine-grained semantic shifts during multi-hop reasoning. Furthermore, to alleviate the scarcity of high-quality supervision, DAMR incorporates a dynamic pseudo-path refinement mechanism that periodically generates training signals from partial paths explored during search, allowing the scorer to continuously adapt to the evolving distribution of reasoning trajectories. Extensive experiments on multiple KGQA benchmarks show that DAMR significantly outperforms state-of-the-art methods.
♻ ☆ Can AI be Auditable?
Auditability is defined as the capacity of AI systems to be independently assessed for compliance with ethical, legal, and technical standards throughout their lifecycle. The chapter explores how auditability is being formalized through emerging regulatory frameworks, such as the EU AI Act, which mandate documentation, risk assessments, and governance structures. It analyzes the diverse challenges facing AI auditability, including technical opacity, inconsistent documentation practices, lack of standardized audit tools and metrics, and conflicting principles within existing responsible AI frameworks. The discussion highlights the need for clear guidelines, harmonized international regulations, and robust socio-technical methodologies to operationalize auditability at scale. The chapter concludes by emphasizing the importance of multi-stakeholder collaboration and auditor empowerment in building an effective AI audit ecosystem. It argues that auditability must be embedded in AI development practices and governance infrastructures to ensure that AI systems are not only functional but also ethically and legally aligned.
♻ ☆ InterFeat: A Pipeline for Finding Interesting Scientific Features
Finding interesting phenomena is the core of scientific discovery, but it is a manual, ill-defined concept. We present an integrative pipeline for automating the discovery of interesting simple hypotheses (feature-target relations with effect direction and a potential underlying mechanism) in structured biomedical data. The pipeline combines machine learning, knowledge graphs, literature search and Large Language Models. We formalize "interestingness" as a combination of novelty, utility and plausibility. On 8 major diseases from the UK Biobank, our pipeline consistently recovers risk factors years before their appearance in the literature. 40--53% of our top candidates were validated as interesting, compared to 0--7% for a SHAP-based baseline. Overall, 28% of 109 candidates were interesting to medical experts. The pipeline addresses the challenge of operationalizing "interestingness" scalably and for any target. We release data and code: https://github.com/LinialLab/InterFeat
♻ ☆ An Architecture Built for Federated Learning: Addressing Data Heterogeneity through Adaptive Normalization-Free Feature Recalibration
Federated learning is a decentralized collaborative training paradigm preserving stakeholders' data ownership while improving performance and generalization. However, statistical heterogeneity among client datasets degrades system performance. To address this issue, we propose Adaptive Normalization-free Feature Recalibration (ANFR), a model architecture-level approach that combines weight standardization and channel attention to combat heterogeneous data in FL. ANFR leverages weight standardization to avoid mismatched client statistics and inconsistent averaging, ensuring robustness under heterogeneity, and channel attention to produce learnable scaling factors for feature maps, suppressing inconsistencies across clients due to heterogeneity. We demonstrate that combining these techniques boosts model performance beyond their individual contributions, by improving class selectivity and channel attention weight distribution. ANFR works with any aggregation method, supports both global and personalized FL, and adds minimal overhead. Furthermore, when training with differential privacy, ANFR achieves an appealing balance between privacy and utility, enabling strong privacy guarantees without sacrificing performance. By integrating weight standardization and channel attention in the backbone model, ANFR offers a novel and versatile approach to the challenge of statistical heterogeneity. Extensive experiments show ANFR consistently outperforms established baselines across various aggregation methods, datasets, and heterogeneity conditions. Code is provided at https://github.com/siomvas/ANFR.
comment: Accepted into TMLR, version of record https://openreview.net/forum?id=GtdYFLsblb
♻ ☆ DEXOP: A Device for Robotic Transfer of Dexterous Human Manipulation
We introduce perioperation, a paradigm for robotic data collection that sensorizes and records human manipulation while maximizing the transferability of the data to real robots. We implement this paradigm in DEXOP, a passive hand exoskeleton designed to maximize human ability to collect rich sensory (vision + tactile) data for diverse dexterous manipulation tasks in natural environments. DEXOP mechanically connects human fingers to robot fingers, providing users with direct contact feedback (via proprioception) and mirrors the human hand pose to the passive robot hand to maximize the transfer of demonstrated skills to the robot. The force feedback and pose mirroring make task demonstrations more natural for humans compared to teleoperation, increasing both speed and accuracy. We evaluate DEXOP across a range of dexterous, contact-rich tasks, demonstrating its ability to collect high-quality demonstration data at scale. Policies learned with DEXOP data significantly improve task performance per unit time of data collection compared to teleoperation, making DEXOP a powerful tool for advancing robot dexterity. Our project page is at https://dex-op.github.io.
comment: project page: https://dex-op.github.io
♻ ☆ Steering LLM Reasoning Through Bias-Only Adaptation EMNLP 2025
We show that training a single $d$-dimensional steering vector per layer with reinforcement learning, while freezing all base weights, matches the accuracy of fully RL-tuned reasoning models on mathematical-reasoning tasks. On an 8 billion-parameter model this adds only $\approx 0.0016\%$ additional parameters and reproduces performance across a range of base models and mathematical-reasoning benchmarks. These results tighten the upper bound on the parameter budget required for high-level chain-of-thought reasoning, indicating that millions of adapter weights are unnecessary. The minimal trainable footprint reduces optimizer memory and inter-GPU communication, lowering the overall cost of fine-tuning. Moreover, a logit-lens analysis shows that the learned vectors amplify coherent token directions, providing clearer insight into the model's internal computations.
comment: EMNLP 2025
♻ ☆ Emergent Social Dynamics of LLM Agents in the El Farol Bar Problem
We investigate the emergent social dynamics of Large Language Model (LLM) agents in a spatially extended El Farol Bar problem, observing how they autonomously navigate this classic social dilemma. As a result, the LLM agents generated a spontaneous motivation to go to the bar and changed their decision making by becoming a collective. We also observed that the LLM agents did not solve the problem completely, but rather behaved more like humans. These findings reveal a complex interplay between external incentives (prompt-specified constraints such as the 60% threshold) and internal incentives (culturally-encoded social preferences derived from pre-training), demonstrating that LLM agents naturally balance formal game-theoretic rationality with social motivations that characterize human behavior. These findings suggest that a new model of group decision making, which could not be handled in the previous game-theoretic problem setting, can be realized by LLM agents.
♻ ☆ Preacher: Paper-to-Video Agentic System ICCV 2025
The paper-to-video task converts a research paper into a structured video abstract, distilling key concepts, methods, and conclusions into an accessible, well-organized format. While state-of-the-art video generation models demonstrate potential, they are constrained by limited context windows, rigid video duration constraints, limited stylistic diversity, and an inability to represent domain-specific knowledge. To address these limitations, we introduce Preacher, the first paper-to-video agentic system. Preacher employs a topdown approach to decompose, summarize, and reformulate the paper, followed by bottom-up video generation, synthesizing diverse video segments into a coherent abstract. To align cross-modal representations, we define key scenes and introduce a Progressive Chain of Thought (P-CoT) for granular, iterative planning. Preacher successfully generates high-quality video abstracts across five research fields, demonstrating expertise beyond current video generation models. Code will be released at: https://github.com/Gen-Verse/Paper2Video
comment: ICCV 2025. Code: https://github.com/Gen-Verse/Paper2Video
♻ ☆ Multi-output Classification using a Cross-talk Architecture for Compound Fault Diagnosis of Motors in Partially Labeled Condition
The increasing complexity of rotating machinery and the diversity of operating conditions, such as rotating speed and varying torques, have amplified the challenges in fault diagnosis in scenarios requiring domain adaptation, particularly involving compound faults. This study addresses these challenges by introducing a novel multi-output classification (MOC) framework tailored for domain adaptation in partially labeled target datasets. Unlike conventional multi-class classification (MCC) approaches, the MOC framework classifies the severity levels of compound faults simultaneously. Furthermore, we explore various single-task and multi-task architectures applicable to the MOC formulation-including shared trunk and cross-talk-based designs-for compound fault diagnosis under partially labeled conditions. Based on this investigation, we propose a novel cross-talk architecture, residual neural dimension reductor (RNDR), that enables selective information sharing across diagnostic tasks, effectively enhancing classification performance in compound fault scenarios. In addition, frequency-layer normalization was incorporated to improve domain adaptation performance on motor vibration data. Compound fault conditions were implemented using a motor-based test setup and evaluated across six domain adaptation scenarios. The experimental results demonstrate its superior macro F1 performance compared to baseline models. We further showed that the structural advantage of RNDR is more pronounced in compound fault settings through a single-fault comparison. We also found that frequency-layer normalization fits the fault diagnosis task better than conventional methods. Lastly, we analyzed the RNDR with various conditions, other models with increased number of parameters, and compared with the ablated RNDR structure.
comment: Submitted to Mechanical Systems and Signal Processing on May 9th, 2025
♻ ☆ KIRETT: Knowledge-Graph-Based Smart Treatment Assistant for Intelligent Rescue Operations
Over the years, the need for rescue operations throughout the world has increased rapidly. Demographic changes and the resulting risk of injury or health disorders form the basis for emergency calls. In such scenarios, first responders are in a rush to reach the patient in need, provide first aid, and save lives. In these situations, they must be able to provide personalized and optimized healthcare in the shortest possible time and estimate the patients condition with the help of freshly recorded vital data in an emergency situation. However, in such a timedependent situation, first responders and medical experts cannot fully grasp their knowledge and need assistance and recommendation for further medical treatments. To achieve this, on the spot calculated, evaluated, and processed knowledge must be made available to improve treatments by first responders. The Knowledge Graph presented in this article as a central knowledge representation provides first responders with an innovative knowledge management that enables intelligent treatment recommendations with an artificial intelligence-based pre-recognition of the situation.
comment: LWDA'23, KIRETT project, University of Siegen, Germany
♻ ☆ Emergent Hierarchical Reasoning in LLMs through Reinforcement Learning
Reinforcement Learning (RL) has proven highly effective at enhancing the complex reasoning abilities of Large Language Models (LLMs), yet underlying mechanisms driving this success remain largely opaque. Our analysis reveals that puzzling phenomena like ``aha moments", ``length-scaling'' and entropy dynamics are not disparate occurrences but hallmarks of an emergent reasoning hierarchy, akin to the separation of high-level strategic planning from low-level procedural execution in human cognition. We uncover a compelling two-phase dynamic: initially, a model is constrained by procedural correctness and must improve its low-level skills. The learning bottleneck then decisively shifts, with performance gains being driven by the exploration and mastery of high-level strategic planning. This insight exposes a core inefficiency in prevailing RL algorithms like GRPO, which apply optimization pressure agnostically and dilute the learning signal across all tokens. To address this, we propose HIerarchy-Aware Credit Assignment (HICRA), an algorithm that concentrates optimization efforts on high-impact planning tokens. HICRA significantly outperforms strong baselines, demonstrating that focusing on this strategic bottleneck is key to unlocking advanced reasoning. Furthermore, we validate semantic entropy as a superior compass for measuring strategic exploration over misleading metrics such as token-level entropy.
comment: Preprint
♻ ☆ Navigating the Labyrinth: Evaluating LLMs' Ability to Reason About Search Problems
Large Language Models (LLMs) have recently achieved impressive performance in math and reasoning benchmarks. However, they often struggle with logic problems and puzzles that are relatively easy for humans. To further investigate this, we introduce a new benchmark, SearchBench, which contains 11 unique search problems, each equipped with automated pipelines to generate an arbitrary number of instances and analyze the feasibility, correctness, and optimality of LLM-generated solutions. We show that using language-only reasoning, even the most advanced LLMs fail to solve SearchBench end-to-end, e.g., OpenAI's frontier models GPT4 and o1-preview solve only 1.4% and 18.6% of SearchBench problems, respectively. The reason is that SearchBench problems require considering multiple pathways to the solution and performing backtracking, posing a significant challenge to auto-regressive models. Instructing LLMs to generate code that solves the problem helps, but only slightly, e.g., GPT4's performance rises to 11.7%. Interestingly, we show that the current strongest baseline on SearchBench is obtained using in-context learning with A* algorithm implementations. We further show that this baseline can be further enhanced via a Multi-Stage-Multi-Try inference method, raising GPT4's performance above 57%.
♻ ☆ DistJoin: A Decoupled Join Cardinality Estimator based on Adaptive Neural Predicate Modulation
Research on learned cardinality estimation has made significant progress in recent years. However, existing methods still face distinct challenges that hinder their practical deployment in production environments. We define these challenges as the ``Trilemma of Cardinality Estimation'', where learned cardinality estimation methods struggle to balance generality, accuracy, and updatability. To address these challenges, we introduce DistJoin, a join cardinality estimator based on efficient distribution prediction using multi-autoregressive models. Our contributions are threefold: (1) We propose a method to estimate join cardinality by leveraging the probability distributions of individual tables in a decoupled manner. (2) To meet the requirements of efficiency for DistJoin, we develop Adaptive Neural Predicate Modulation (ANPM), a high-throughput distribution estimation model. (3) We demonstrate that an existing similar approach suffers from variance accumulation issues by formal variance analysis. To mitigate this problem, DistJoin employs a selectivity-based approach to infer join cardinality, effectively reducing variance. In summary, DistJoin not only represents the first data-driven method to support both equi and non-equi joins simultaneously but also demonstrates superior accuracy while enabling fast and flexible updates. The experimental results demonstrate that DistJoin achieves the highest accuracy, robustness to data updates, generality, and comparable update and inference speed relative to existing methods.
♻ ☆ Molecular Generative Adversarial Network with Multi-Property Optimization
Deep generative models, such as generative adversarial networks (GANs), have been employed for $de~novo$ molecular generation in drug discovery. Most prior studies have utilized reinforcement learning (RL) algorithms, particularly Monte Carlo tree search (MCTS), to handle the discrete nature of molecular representations in GANs. However, due to the inherent instability in training GANs and RL models, along with the high computational cost associated with MCTS sampling, MCTS RL-based GANs struggle to scale to large chemical databases. To tackle these challenges, this study introduces a novel GAN based on actor-critic RL with instant and global rewards, called InstGAN, to generate molecules at the token-level with multi-property optimization. Furthermore, maximized information entropy is leveraged to alleviate the mode collapse. The experimental results demonstrate that InstGAN outperforms other baselines, achieves comparable performance to state-of-the-art models, and efficiently generates molecules with multi-property optimization. The source code will be released upon acceptance of the paper.
♻ ☆ CARFT: Boosting LLM Reasoning via Contrastive Learning with Annotated Chain-of-Thought-based Reinforced Fine-Tuning EMNLP25
Reasoning capability plays a significantly critical role in the the broad applications of Large Language Models (LLMs). To enhance the reasoning performance of LLMs, diverse Reinforcement Learning (RL)-based fine-tuning approaches have been proposed to address the limited generalization capability of LLMs trained solely via Supervised Fine-Tuning (SFT). Despite their effectiveness, two major limitations hinder the advancement of LLMs. First, vanilla RL-based approaches ignore annotated Chain-of-Thought (CoT) and incorporate unstable reasoning path sampling, which typically results in model collapse, unstable training process, and suboptimal performance. Second, existing SFT approaches generally overemphasize the annotated CoT, potentially leading to performance degradation due to insufficient exploitation of potential CoT. In this paper, we propose a Contrastive learning with annotated CoT-based Reinforced Fine-Tuning approach, i.e., \TheName{}, to enhance the reasoning performance of LLMs while addressing the aforementioned limitations. Specifically, we propose learning a representation for each CoT. Based on this representation, we design novel contrastive signals to guide the fine-tuning process. Our approach not only fully exploits the available annotated CoT but also stabilizes the fine-tuning procedure by incorporating an additional unsupervised learning signal. We conduct comprehensive experiments and in-depth analysis with three baseline approaches, two foundation models, and two datasets to demonstrate significant advantages of \TheName{} in terms of robustness, performance (up to 10.15\%), and efficiency (up to 30.62\%). Code is available at https://github.com/WNQzhu/CARFT.
comment: 14 pages, to appear in EMNLP25
♻ ☆ Byzantine-Robust Federated Learning Using Generative Adversarial Networks
Federated learning (FL) enables collaborative model training across distributed clients without sharing raw data, but its robustness is threatened by Byzantine behaviors such as data and model poisoning. Existing defenses face fundamental limitations: robust aggregation rules incur error lower bounds that grow with client heterogeneity, while detection-based methods often rely on heuristics (e.g., a fixed number of malicious clients) or require trusted external datasets for validation. We present a defense framework that addresses these challenges by leveraging a conditional generative adversarial network (cGAN) at the server to synthesize representative data for validating client updates. This approach eliminates reliance on external datasets, adapts to diverse attack strategies, and integrates seamlessly into standard FL workflows. Extensive experiments on benchmark datasets demonstrate that our framework accurately distinguishes malicious from benign clients while maintaining overall model accuracy. Beyond Byzantine robustness, we also examine the representativeness of synthesized data, computational costs of cGAN training, and the transparency and scalability of our approach.
♻ ☆ Multi-Agent Reasoning for Cardiovascular Imaging Phenotype Analysis MICCAI 2025
Identifying associations between imaging phenotypes, disease risk factors, and clinical outcomes is essential for understanding disease mechanisms. However, traditional approaches rely on human-driven hypothesis testing and selection of association factors, often overlooking complex, non-linear dependencies among imaging phenotypes and other multi-modal data. To address this, we introduce Multi-agent Exploratory Synergy for the Heart (MESHAgents): a framework that leverages large language models as agents to dynamically elicit, surface, and decide confounders and phenotypes in association studies. Specifically, we orchestrate a multi-disciplinary team of AI agents, which spontaneously generate and converge on insights through iterative, self-organizing reasoning. The framework dynamically synthesizes statistical correlations with multi-expert consensus, providing an automated pipeline for phenome-wide association studies (PheWAS). We demonstrate the system's capabilities through a population-based study of imaging phenotypes of the heart and aorta. MESHAgents autonomously uncovered correlations between imaging phenotypes and a wide range of non-imaging factors, identifying additional confounder variables beyond standard demographic factors. Validation on diagnosis tasks reveals that MESHAgents-discovered phenotypes achieve performance comparable to expert-selected phenotypes, with mean AUC differences as small as $-0.004_{\pm0.010}$ on disease classification tasks. Notably, the recall score improves for 6 out of 9 disease types. Our framework provides clinically relevant imaging phenotypes with transparent reasoning, offering a scalable alternative to expert-driven methods.
comment: accepted by MICCAI 2025
♻ ☆ Persona-driven Simulation of Voting Behavior in the European Parliament with Large Language Models
Large Language Models (LLMs) display remarkable capabilities to understand or even produce political discourse, but have been found to consistently display a progressive left-leaning bias. At the same time, so-called persona or identity prompts have been shown to produce LLM behavior that aligns with socioeconomic groups that the base model is not aligned with. In this work, we analyze whether zero-shot persona prompting with limited information can accurately predict individual voting decisions and, by aggregation, accurately predict positions of European groups on a diverse set of policies. We evaluate if predictions are stable towards counterfactual arguments, different persona prompts and generation methods. Finally, we find that we can simulate voting behavior of Members of the European Parliament reasonably well with a weighted F1 score of approximately 0.793. Our persona dataset of politicians in the 2024 European Parliament and our code are available at https://github.com/dess-mannheim/european_parliament_simulation.
♻ ☆ OpenDeception: Benchmarking and Investigating AI Deceptive Behaviors via Open-ended Interaction Simulation
As the general capabilities of large language models (LLMs) improve and agent applications become more widespread, the underlying deception risks urgently require systematic evaluation and effective oversight. Unlike existing evaluation which uses simulated games or presents limited choices, we introduce OpenDeception, a novel deception evaluation framework with an open-ended scenario dataset. OpenDeception jointly evaluates both the deception intention and capabilities of LLM-based agents by inspecting their internal reasoning process. Specifically, we construct five types of common use cases where LLMs intensively interact with the user, each consisting of ten diverse, concrete scenarios from the real world. To avoid ethical concerns and costs of high-risk deceptive interactions with human testers, we propose to simulate the multi-turn dialogue via agent simulation. Extensive evaluation of eleven mainstream LLMs on OpenDeception highlights the urgent need to address deception risks and security concerns in LLM-based agents: the deception intention ratio across the models exceeds 80%, while the deception success rate surpasses 50%. Furthermore, we observe that LLMs with stronger capabilities do exhibit a higher risk of deception, which calls for more alignment efforts on inhibiting deceptive behaviors.
♻ ☆ MultiPL-MoE: Multi-Programming-Lingual Extension of Large Language Models through Hybrid Mixture-of-Experts
Despite LLMs' excellent code creation capabilities, multilingual code generation remains extremely challenging. To address this, we intent to improve the multi-programming-lingual (MultiPL) performance of the base LLMs while retaining the most popular ones using restricted computational resources. We consider MultiPL to be a special case of multiple natural languages and propose a MultiPL extension of LLMs utilizing a hybrid mixture of experts (MoE), called MultiPL-MoE. Specifically, MultiPL-MoE combines two paired MoEs to optimize expert selection at both the token and segment levels. The token-level MoE is a standard upcycling MoE structure with a shared expert and a novel gate weight normalization approach that aids in the final fusion with the segment-level MoE. The segment-level MoE incorporates two innovative designs to better capture the syntactic structure and contextual patterns of programming languages: First, using a sliding window to partition the input token sequence into multiple segments; Then, adopting an expert-choice routing strategy that allows experts to select the top-k segments. The results of the experiment proved the effectiveness of MultiPL-MoE.
♻ ☆ Soft Token Attacks Cannot Reliably Audit Unlearning in Large Language Models EMNLP 2025
Large language models (LLMs) are trained using massive datasets, which often contain undesirable content such as harmful texts, personal information, and copyrighted material. To address this, machine unlearning aims to remove information from trained models. Recent work has shown that soft token attacks (STA) can successfully extract unlearned information from LLMs, but in this work we show that STAs can be an inadequate tool for auditing unlearning. Using common benchmarks such as Who Is Harry Potter? and TOFU, we demonstrate that in a strong auditor setting such attacks can elicit any information from the LLM, regardless of the deployed unlearning algorithm or whether the queried content was originally present in the training corpus. We further show that STA with just a few soft tokens (1-10) can elicit random strings over 400 characters long, indicating that STAs must be used carefully to effectively audit unlearning. Example code can be found at: https://github.com/IntelLabs/LLMart/tree/main/examples/unlearning
comment: EMNLP 2025 Findings
♻ ☆ RepoDebug: Repository-Level Multi-Task and Multi-Language Debugging Evaluation of Large Language Models EMNLP 2025
Large Language Models (LLMs) have exhibited significant proficiency in code debugging, especially in automatic program repair, which may substantially reduce the time consumption of developers and enhance their efficiency. Significant advancements in debugging datasets have been made to promote the development of code debugging. However, these datasets primarily focus on assessing the LLM's function-level code repair capabilities, neglecting the more complex and realistic repository-level scenarios, which leads to an incomplete understanding of the LLM's challenges in repository-level debugging. While several repository-level datasets have been proposed, they often suffer from limitations such as limited diversity of tasks, languages, and error types. To mitigate this challenge, this paper introduces RepoDebug, a multi-task and multi-language repository-level code debugging dataset with 22 subtypes of errors that supports 8 commonly used programming languages and 3 debugging tasks. Furthermore, we conduct evaluation experiments on 10 LLMs, where Claude 3.5 Sonnect, the best-performing model, still cannot perform well in repository-level debugging.
comment: 30 pages, 12 figures, EMNLP 2025 Findings
♻ ☆ Rethinking GNN Expressive Power from a Distributed Computational Model Perspective
The success of graph neural networks (GNNs) has motivated theoretical studies on their expressive power, often through alignments with the Weisfeiler-Lehman (WL) tests. However, such analyses typically focus on the ability of GNNs to distinguish between graph structures, rather than to compute or approximate specific function classes. The latter is more commonly studied in machine learning theory, including results such as the Turing completeness of recurrent networks and the universal approximation property of feedforward networks. We argue that using well-defined computational models, such as a modified CONGEST model with clearly specified preprocessing and postprocessing, offers a more sound framework for analyzing GNN expressiveness. Within this framework, we show that allowing unrestricted preprocessing or incorporating externally computed features, while claiming that these precomputations enhance the expressiveness, can sometimes lead to problems. We also show that the lower bound on a GNN's capacity (depth multiplied by width) to simulate one iteration of the WL test actually grows nearly linearly with graph size, indicating that the WL test is not locally computable and is misaligned with message-passing GNNs. Despite these negative results, we also present positive results that characterize the effects of virtual nodes and edges from a computational model perspective. Finally, we highlight several open problems regarding GNN expressiveness for further exploration.
♻ ☆ MedualTime: A Dual-Adapter Language Model for Medical Time Series-Text Multimodal Learning
The recent rapid advancements in language models (LMs) have garnered attention in medical time series-text multimodal learning. However, existing contrastive learning-based and prompt-based LM approaches tend to be biased, often assigning a primary role to time series modality while treating text modality as secondary. We classify these approaches under a temporal-primary paradigm, which may overlook the unique and critical task-relevant information embedded in text modality like clinical reports, thus failing to fully leverage mutual benefits and complementarity of different modalities. To fill this gap, we propose a novel textual-temporal multimodal learning paradigm that enables either modality to serve as the primary while being enhanced by the other, thereby effectively capturing modality-specific information and fostering cross-modal interaction. In specific, we design MedualTime, a language model composed of dual adapters to implement temporal-primary and textual-primary modeling simultaneously. Within each adapter, lightweight adaptation tokens are injected into the top layers of LM to encourage high-level modality fusion. The shared LM pipeline by dual adapters not only achieves adapter alignment but also enables efficient fine-tuning, reducing computational resources. Empirically, MedualTime demonstrates superior performance on medical data, achieving notable improvements of 8% accuracy and 12% F1 in supervised settings. Furthermore, MedualTime's transferability is validated by few-shot label transfer experiments from coarse-grained to fine-grained medical data. https://github.com/start2020/MedualTime
comment: 9 pages, 6 figure, 3 tables
♻ ☆ Meta-Policy Reflexion: Reusable Reflective Memory and Rule Admissibility for Resource-Efficient LLM Agent
Large language model (LLM) agents achieve impressive single-task performance but commonly exhibit repeated failures, inefficient exploration, and limited cross-task adaptability. Existing reflective strategies (e.g., Reflexion, ReAct) improve per-episode behavior but typically produce ephemeral, task-specific traces that are not reused across tasks. Reinforcement-learning based alternatives can produce transferable policies but require substantial parameter updates and compute. In this work we introduce Meta-Policy Reflexion (MPR): a hybrid framework that consolidates LLM-generated reflections into a structured, predicate-like Meta-Policy Memory (MPM) and applies that memory at inference time through two complementary mechanisms soft memory-guided decoding and hard rule admissibility checks(HAC). MPR (i) externalizes reusable corrective knowledge without model weight updates, (ii) enforces domain constraints to reduce unsafe or invalid actions, and (iii) retains the adaptability of language-based reflection. We formalize the MPM representation, present algorithms for update and decoding, and validate the approach in a text-based agent environment following the experimental protocol described in the provided implementation (AlfWorld-based). Empirical results reported in the supplied material indicate consistent gains in execution accuracy and robustness when compared to Reflexion baselines; rule admissibility further improves stability. We analyze mechanisms that explain these gains, discuss scalability and failure modes, and outline future directions for multimodal and multi-agent extensions.
♻ ☆ SGDFuse: SAM-Guided Diffusion for High-Fidelity Infrared and Visible Image Fusion
Infrared and visible image fusion (IVIF) aims to combine the thermal radiation information from infrared images with the rich texture details from visible images to enhance perceptual capabilities for downstream visual tasks. However, existing methods often fail to preserve key targets due to a lack of deep semantic understanding of the scene, while the fusion process itself can also introduce artifacts and detail loss, severely compromising both image quality and task performance. To address these issues, this paper proposes SGDFuse, a conditional diffusion model guided by the Segment Anything Model (SAM), to achieve high-fidelity and semantically-aware image fusion. The core of our method is to utilize high-quality semantic masks generated by SAM as explicit priors to guide the optimization of the fusion process via a conditional diffusion model. Specifically, the framework operates in a two-stage process: it first performs a preliminary fusion of multi-modal features, and then utilizes the semantic masks from SAM jointly with the preliminary fused image as a condition to drive the diffusion model's coarse-to-fine denoising generation. This ensures the fusion process not only has explicit semantic directionality but also guarantees the high fidelity of the final result. Extensive experiments demonstrate that SGDFuse achieves state-of-the-art performance in both subjective and objective evaluations, as well as in its adaptability to downstream tasks, providing a powerful solution to the core challenges in image fusion. The code of SGDFuse is available at https://github.com/boshizhang123/SGDFuse.
comment: Submitted to Information Fusion
♻ ☆ AnyGPT: Unified Multimodal LLM with Discrete Sequence Modeling
We introduce AnyGPT, an any-to-any multimodal language model that utilizes discrete representations for the unified processing of various modalities, including speech, text, images, and music. AnyGPT can be trained stably without any alterations to the current large language model (LLM) architecture or training paradigms. Instead, it relies exclusively on data-level preprocessing, facilitating the seamless integration of new modalities into LLMs, akin to the incorporation of new languages. We build a multimodal text-centric dataset for multimodal alignment pre-training. Utilizing generative models, we synthesize the first large-scale any-to-any multimodal instruction dataset. It consists of 108k samples of multi-turn conversations that intricately interweave various modalities, thus equipping the model to handle arbitrary combinations of multimodal inputs and outputs. Experimental results demonstrate that AnyGPT is capable of facilitating any-to-any multimodal conversation while achieving performance comparable to specialized models across all modalities, proving that discrete representations can effectively and conveniently unify multiple modalities within a language model. Demos are shown in https://junzhan2000.github.io/AnyGPT.github.io/
comment: 28 pages, 16 figures, under review, work in progress
♻ ☆ Regeneration Based Training-free Attribution of Fake Images Generated by Text-to-Image Generative Models
Text-to-image generative models have recently garnered significant attention due to their ability to generate images based on prompt descriptions. While these models have shown promising performance, concerns have been raised regarding the potential misuse of the generated fake images. In response to this, we have presented a simple yet effective training-free method to attribute fake images generated by text-to-image models to their source models. Given a test image to be attributed, we first inverse the textual prompt of the image, and then put the reconstructed prompt into different candidate models to regenerate candidate fake images. By calculating and ranking the similarity of the test image and the candidate images, we can determine the source of the image. This attribution allows model owners to be held accountable for any misuse of their models. Note that our approach does not limit the number of candidate text-to-image generative models. Comprehensive experiments reveal that (1) Our method can effectively attribute fake images to their source models, achieving comparable attribution performance with the state-of-the-art method; (2) Our method has high scalability ability, which is well adapted to real-world attribution scenarios. (3) The proposed method yields satisfactory robustness to common attacks, such as Gaussian blurring, JPEG compression, and Resizing. We also analyze the factors that influence the attribution performance, and explore the boost brought by the proposed method as a plug-in to improve the performance of existing SOTA. We hope our work can shed some light on the solutions to addressing the source of AI-generated images, as well as to prevent the misuse of text-to-image generative models.
comment: The paper has been withdrawn by the authors because the proposed approach is currently undergoing optimization and improvement. We are refining the methodology to achieve more robust and convincing results, and a revised version will be submitted once the enhancements are completed
♻ ☆ Online Prompt Pricing based on Combinatorial Multi-Armed Bandit and Hierarchical Stackelberg Game
Generation models have shown promising performance in various tasks, making trading around machine learning models possible. In this paper, we aim at a novel prompt trading scenario, prompt bundle trading (PBT) system, and propose an online pricing mechanism. Based on the combinatorial multi-armed bandit (CMAB) and three-stage hierarchical Stackelburg (HS) game, our pricing mechanism considers the profits of the consumer, platform, and seller, simultaneously achieving the profit satisfaction of these three participants. We break down the pricing issue into two steps, namely unknown category selection and incentive strategy optimization. The former step is to select a set of categories with the highest qualities, and the latter is to derive the optimal strategy for each participant based on the chosen categories. Unlike the existing fixed pricing mode, the PBT pricing mechanism we propose is more flexible and diverse, which is more in accord with the transaction needs of real-world scenarios. We test our method on a simulated text-to-image dataset. The experimental results demonstrate the effectiveness of our algorithm, which provides a feasible price-setting standard for the prompt marketplaces.
comment: The paper has been withdrawn by the authors because the current experimental results are not sufficiently reliable. Further optimization and refinement of the methodology are required before the work can be disseminated
♻ ☆ VIPER: Visual Perception and Explainable Reasoning for Sequential Decision-Making
While Large Language Models (LLMs) excel at reasoning on text and Vision-Language Models (VLMs) are highly effective for visual perception, applying those models for visual instruction-based planning remains a widely open problem. In this paper, we introduce VIPER, a novel framework for multimodal instruction-based planning that integrates VLM-based perception with LLM-based reasoning. Our approach uses a modular pipeline where a frozen VLM generates textual descriptions of image observations, which are then processed by an LLM policy to predict actions based on the task goal. We fine-tune the reasoning module using behavioral cloning and reinforcement learning, improving our agent's decision-making capabilities. Experiments on the ALFWorld benchmark show that VIPER significantly outperforms state-of-the-art visual instruction-based planners while narrowing the gap with purely text-based oracles. By leveraging text as an intermediate representation, VIPER also enhances explainability, paving the way for a fine-grained analysis of perception and reasoning components.
♻ ☆ The Good, the Bad and the Constructive: Automatically Measuring Peer Review's Utility for Authors EMNLP 2025
Providing constructive feedback to paper authors is a core component of peer review. With reviewers increasingly having less time to perform reviews, automated support systems are required to ensure high reviewing quality, thus making the feedback in reviews useful for authors. To this end, we identify four key aspects of review comments (individual points in weakness sections of reviews) that drive the utility for authors: Actionability, Grounding & Specificity, Verifiability, and Helpfulness. To enable evaluation and development of models assessing review comments, we introduce the RevUtil dataset. We collect 1,430 human-labeled review comments and scale our data with 10k synthetically labeled comments for training purposes. The synthetic data additionally contains rationales, i.e., explanations for the aspect score of a review comment. Employing the RevUtil dataset, we benchmark fine-tuned models for assessing review comments on these aspects and generating rationales. Our experiments demonstrate that these fine-tuned models achieve agreement levels with humans comparable to, and in some cases exceeding, those of powerful closed models like GPT-4o. Our analysis further reveals that machine-generated reviews generally underperform human reviews on our four aspects.
comment: EMNLP 2025 Main
♻ ☆ DIRF: A Framework for Digital Identity Protection and Clone Governance in Agentic AI Systems
The rapid advancement and widespread adoption of generative artificial intelligence (AI) pose significant threats to the integrity of personal identity, including digital cloning, sophisticated impersonation, and the unauthorized monetization of identity-related data. Mitigating these risks necessitates the development of robust AI-generated content detection systems, enhanced legal frameworks, and ethical guidelines. This paper introduces the Digital Identity Rights Framework (DIRF), a structured security and governance model designed to protect behavioral, biometric, and personality-based digital likeness attributes to address this critical need. Structured across nine domains and 63 controls, DIRF integrates legal, technical, and hybrid enforcement mechanisms to secure digital identity consent, traceability, and monetization. We present the architectural foundations, enforcement strategies, and key use cases supporting the need for a unified framework. This work aims to inform platform builders, legal entities, and regulators about the essential controls needed to enforce identity rights in AI-driven systems.
♻ ☆ Insights from Gradient Dynamics: Gradient Autoscaled Normalization
Gradient dynamics play a central role in determining the stability and generalization of deep neural networks. In this work, we provide an empirical analysis of how variance and standard deviation of gradients evolve during training, showing consistent changes across layers and at the global scale in convolutional networks. Motivated by these observations, we propose a hyperparameter-free gradient normalization method that aligns gradient scaling with their natural evolution. This approach prevents unintended amplification, stabilizes optimization, and preserves convergence guarantees. Experiments on the challenging CIFAR-100 benchmark with ResNet-20, ResNet-56, and VGG-16-BN demonstrate that our method maintains or improves test accuracy even under strong generalization. Beyond practical performance, our study highlights the importance of directly tracking gradient dynamics, aiming to bridge the gap between theoretical expectations and empirical behaviors, and to provide insights for future optimization research.
♻ ☆ NeuroBOLT: Resting-state EEG-to-fMRI Synthesis with Multi-dimensional Feature Mapping NeurIPS 2024
Functional magnetic resonance imaging (fMRI) is an indispensable tool in modern neuroscience, providing a non-invasive window into whole-brain dynamics at millimeter-scale spatial resolution. However, fMRI is constrained by issues such as high operation costs and immobility. With the rapid advancements in cross-modality synthesis and brain decoding, the use of deep neural networks has emerged as a promising solution for inferring whole-brain, high-resolution fMRI features directly from electroencephalography (EEG), a more widely accessible and portable neuroimaging modality. Nonetheless, the complex projection from neural activity to fMRI hemodynamic responses and the spatial ambiguity of EEG pose substantial challenges both in modeling and interpretability. Relatively few studies to date have developed approaches for EEG-fMRI translation, and although they have made significant strides, the inference of fMRI signals in a given study has been limited to a small set of brain areas and to a single condition (i.e., either resting-state or a specific task). The capability to predict fMRI signals in other brain areas, as well as to generalize across conditions, remain critical gaps in the field. To tackle these challenges, we introduce a novel and generalizable framework: NeuroBOLT, i.e., Neuro-to-BOLD Transformer, which leverages multi-dimensional representation learning from temporal, spatial, and spectral domains to translate raw EEG data to the corresponding fMRI activity signals across the brain. Our experiments demonstrate that NeuroBOLT effectively reconstructs unseen resting-state fMRI signals from primary sensory, high-level cognitive areas, and deep subcortical brain regions, achieving state-of-the-art accuracy with the potential to generalize across varying conditions and sites, which significantly advances the integration of these two modalities.
comment: This preprint has been accepted to NeurIPS 2024
♻ ☆ Revealing the impact of synthetic native samples and multi-tasking strategies in Hindi-English code-mixed humour and sarcasm detection EMNLP 2025
In this paper, we reported our experiments with various strategies to improve code-mixed humour and sarcasm detection. Particularly, we tried three approaches: (i) native sample mixing, (ii) multi-task learning (MTL), and (iii) prompting and instruction finetuning very large multilingual language models (VMLMs). In native sample mixing, we added monolingual task samples to code-mixed training sets. In MTL learning, we relied on native and code-mixed samples of a semantically related task (hate detection in our case). Finally, in our third approach, we evaluated the efficacy of VMLMs via few-shot context prompting and instruction finetuning. Some interesting findings we got are (i) adding native samples improved humor (raising the F1-score up to 6.76%) and sarcasm (raising the F1-score up to 8.64%) detection, (ii) training MLMs in an MTL framework boosted performance for both humour (raising the F1-score up to 10.67%) and sarcasm (increment up to 12.35% in F1-score) detection, and (iii) prompting and instruction finetuning VMLMs couldn't outperform the other approaches. Finally, our ablation studies and error analysis discovered the cases where our model is yet to improve. We provided our code for reproducibility.
comment: 33 pages; EMNLP 2025 (Findings)
♻ ☆ OmniThink: Expanding Knowledge Boundaries in Machine Writing through Thinking EMNLP 2025
Machine writing with large language models often relies on retrieval-augmented generation. However, these approaches remain confined within the boundaries of the model's predefined scope, limiting the generation of content with rich information. Specifically, vanilla-retrieved information tends to lack depth, novelty, and suffers from redundancy, which negatively impacts the quality of generated articles, leading to shallow, unoriginal, and repetitive outputs. To address these issues, we propose OmniThink, a slow-thinking machine writing framework that emulates the human-like process of iterative expansion and reflection. The core idea behind OmniThink is to simulate the cognitive behavior of learners as they slowly deepen their knowledge of the topics. Experimental results demonstrate that OmniThink improves the knowledge density of generated articles without compromising metrics such as coherence and depth. Human evaluations and expert feedback further highlight the potential of OmniThink to address real-world challenges in the generation of long-form articles. Code is available at https://github.com/zjunlp/OmniThink.
comment: EMNLP 2025
♻ ☆ Predicting Steady-State Behavior in Complex Networks with Graph Neural Networks
In complex systems, information propagation can be defined as diffused or delocalized, weakly localized, and strongly localized. This study investigates the application of graph neural network models to learn the behavior of a linear dynamical system on networks. A graph convolution and attention-based neural network framework has been developed to identify the steady-state behavior of the linear dynamical system. We reveal that our trained model distinguishes the different states with high accuracy. Furthermore, we have evaluated model performance with real-world data. In addition, to understand the explainability of our model, we provide an analytical derivation for the forward and backward propagation of our framework.
comment: 21 pages, 15 figures (including Appendix)
♻ ☆ DSDE: Dynamic Speculative Decoding with KLD Stability for Real-World Serving IEEE
Speculative decoding accelerates large language model inference, but its reliance on a fixed speculation length is suboptimal in large-batch serving environments with diverse requests. This paper explores a new direction for dynamic adaptation by investigating a novel class of post-hoc, diagnostic signals. We propose Dynamic Speculative Decoding Engine (DSDE), a training-free framework built on two primary components: (1) a predictive signal based on the variance of the Kullback-Leibler (KLD) divergence, which diagnoses the generation's regional stability, and (2) an adaptive speculation length cap to mitigate the straggler problem in per-sequence decoding. Experiments demonstrate the potential of using KLD-based stability signals for dynamic adaptation. An algorithm guided by these signals achieves end-to-end latency competitive with leading baselines and exhibits superior robustness across diverse workloads. This robustness is particularly valuable in challenging low-acceptance-rate regimes, where the proposed signal maintains its diagnostic utility. Collectively, these findings validate post-hoc signals as a valuable component for building more robust and intelligent LLM inference systems, and highlight a promising direction for future research on dynamic speculation length adaptation.
comment: 10 pages, 9 figures. Preprint submitted to IEEE BigData 2025
♻ ☆ Sticker-TTS: Learn to Utilize Historical Experience with a Sticker-driven Test-Time Scaling Framework
Large reasoning models (LRMs) have exhibited strong performance on complex reasoning tasks, with further gains achievable through increased computational budgets at inference. However, current test-time scaling methods predominantly rely on redundant sampling, ignoring the historical experience utilization, thereby limiting computational efficiency. To overcome this limitation, we propose Sticker-TTS, a novel test-time scaling framework that coordinates three collaborative LRMs to iteratively explore and refine solutions guided by historical attempts. At the core of our framework are distilled key conditions-termed stickers-which drive the extraction, refinement, and reuse of critical information across multiple rounds of reasoning. To further enhance the efficiency and performance of our framework, we introduce a two-stage optimization strategy that combines imitation learning with self-improvement, enabling progressive refinement. Extensive evaluations on three challenging mathematical reasoning benchmarks, including AIME-24, AIME-25, and OlymMATH, demonstrate that Sticker-TTS consistently surpasses strong baselines, including self-consistency and advanced reinforcement learning approaches, under comparable inference budgets. These results highlight the effectiveness of sticker-guided historical experience utilization. Our code and data are available at https://github.com/RUCAIBox/Sticker-TTS.
comment: 11 pages, 1 figures, 5 tables
♻ ☆ BeSimulator: A Large Language Model Powered Text-based Behavior Simulator
Traditional robot simulators focus on physical process modeling and realistic rendering, often suffering from high computational costs, inefficiencies, and limited adaptability. To handle this issue, we concentrate on behavior simulation in robotics to analyze and validate the logic behind robot behaviors, aiming to achieve preliminary evaluation before deploying resource-intensive simulators and thus enhance simulation efficiency. In this paper, we propose BeSimulator, a modular and novel LLM-powered framework, as an attempt towards behavior simulation in the context of text-based environments. By constructing text-based virtual environments and performing semantic-level simulation, BeSimulator can generalize across scenarios and achieve long-horizon complex simulation. Inspired by human cognition paradigm, it employs a ``consider-decide-capture-transfer'' four-phase simulation process, termed Chain of Behavior Simulation (CBS), which excels at analyzing action feasibility and state transition. Additionally, BeSimulator incorporates code-driven reasoning to enable arithmetic operations and enhance reliability, and reflective feedback to refine simulation. Based on our manually constructed behavior-tree-based simulation benchmark, BTSIMBENCH, our experiments show a significant performance improvement in behavior simulation compared to baselines, ranging from 13.60% to 24.80%. Code and data are available at https://github.com/Dawn888888/BeSimulator.
comment: 19 pages, 5 figures, 8 tables
♻ ☆ HoPE: Hyperbolic Rotary Positional Encoding for Stable Long-Range Dependency Modeling in Large Language Models
Positional encoding mechanisms enable Transformers to model sequential structure and long-range dependencies in text. While absolute positional encodings struggle with extrapolation to longer sequences due to fixed positional representations, and relative approaches like Alibi exhibit performance degradation on extremely long contexts, the widely-used Rotary Positional Encoding (RoPE) introduces oscillatory attention patterns that hinder stable long-distance dependency modelling. We address these limitations through a geometric reformulation of positional encoding. Drawing inspiration from Lorentz transformations in hyperbolic geometry, we propose Hyperbolic Rotary Positional Encoding (HoPE), which leverages hyperbolic functions to implement Lorentz rotations on token representations. Theoretical analysis demonstrates that RoPE is a special case of our generalized formulation. HoPE fundamentally resolves RoPE's slation issues by enforcing monotonic decay of attention weights with increasing token distances. Extensive experimental results, including perplexity evaluations under several extended sequence benchmarks, show that HoPE consistently exceeds existing positional encoding methods. These findings underscore HoPE's enhanced capacity for representing and generalizing long-range dependencies. Data and code will be available.
♻ ☆ SAIL: Faster-than-Demonstration Execution of Imitation Learning Policies
Offline Imitation Learning (IL) methods such as Behavior Cloning are effective at acquiring complex robotic manipulation skills. However, existing IL-trained policies are confined to executing the task at the same speed as shown in demonstration data. This limits the task throughput of a robotic system, a critical requirement for applications such as industrial automation. In this paper, we introduce and formalize the novel problem of enabling faster-than-demonstration execution of visuomotor policies and identify fundamental challenges in robot dynamics and state-action distribution shifts. We instantiate the key insights as SAIL (Speed Adaptation for Imitation Learning), a full-stack system integrating four tightly-connected components: (1) a consistency-preserving action inference algorithm for smooth motion at high speed, (2) high-fidelity tracking of controller-invariant motion targets, (3) adaptive speed modulation that dynamically adjusts execution speed based on motion complexity, and (4) action scheduling to handle real-world system latencies. Experiments on 12 tasks across simulation and two real, distinct robot platforms show that SAIL achieves up to a 4x speedup over demonstration speed in simulation and up to 3.2x speedup in the real world. Additional detail is available at https://nadunranawaka1.github.io/sail-policy
comment: The first two authors contributed equally. Accepted to CoRL 2025
♻ ☆ Jet-Nemotron: Efficient Language Model with Post Neural Architecture Search
We present Jet-Nemotron, a new family of hybrid-architecture language models, which matches or exceeds the accuracy of leading full-attention models while significantly improving generation throughput. Jet-Nemotron is developed using Post Neural Architecture Search (PostNAS), a novel neural architecture exploration pipeline that enables efficient model design. Unlike prior approaches, PostNAS begins with a pre-trained full-attention model and freezes its MLP weights, allowing efficient exploration of attention block designs. The pipeline includes four key components: (1) learning optimal full-attention layer placement and elimination, (2) linear attention block selection, (3) designing new attention blocks, and (4) performing hardware-aware hyperparameter search. Our Jet-Nemotron-2B model achieves comparable or superior accuracy to Qwen3, Qwen2.5, Gemma3, and Llama3.2 across a comprehensive suite of benchmarks while delivering up to 53.6x generation throughput speedup and 6.1x prefilling speedup. It also achieves higher accuracy on MMLU and MMLU-Pro than recent advanced MoE full-attention models, such as DeepSeek-V3-Small and Moonlight, despite their larger scale with 15B total and 2.2B activated parameters.
comment: Tech Report
♻ ☆ Toward a Team of AI-made Scientists for Scientific Discovery from Gene Expression Data
Machine learning has emerged as a powerful tool for scientific discovery, enabling researchers to extract meaningful insights from complex datasets. For instance, it has facilitated the identification of disease-predictive genes from gene expression data, significantly advancing healthcare. However, the traditional process for analyzing such datasets demands substantial human effort and expertise for the data selection, processing, and analysis. To address this challenge, we introduce a novel framework, a Team of AI-made Scientists (TAIS), designed to streamline the scientific discovery pipeline. TAIS comprises simulated roles, including a project manager, data engineer, and domain expert, each represented by a Large Language Model (LLM). These roles collaborate to replicate the tasks typically performed by data scientists, with a specific focus on identifying disease-predictive genes. Furthermore, we have curated a benchmark dataset to assess TAIS's effectiveness in gene identification, demonstrating our system's potential to significantly enhance the efficiency and scope of scientific exploration. Our findings represent a solid step towards automating scientific discovery through large language models.
comment: Code for a more recent version of our system is available at \url{https://github.com/Liu-Hy/GenoMAS}
♻ ☆ Error Notebook-Guided, Training-Free Part Retrieval in 3D CAD Assemblies via Vision-Language Models
Effective specification-aware part retrieval within complex CAD assemblies is essential for automated design verification and downstream engineering tasks. However, directly using LLMs/VLMs to this task presents some challenges: the input sequences may exceed model token limits, and even after processing, performance remains unsatisfactory. Moreover, fine-tuning LLMs/VLMs requires significant computational resources, and for many high-performing general-use proprietary models (e.g., GPT or Gemini), fine-tuning access is not available. In this paper, we propose a novel part retrieval framework that requires no extra training, but using Error Notebooks + RAG for refined prompt engineering to help improve the existing general model's retrieval performance. The construction of Error Notebooks consists of two steps: (1) collecting historical erroneous CoTs and their incorrect answers, and (2) connecting these CoTs through reflective corrections until the correct solutions are obtained. As a result, the Error Notebooks serve as a repository of tasks along with their corrected CoTs and final answers. RAG is then employed to retrieve specification-relevant records from the Error Notebooks and incorporate them into the inference process. Another major contribution of our work is a human-in-the-loop CAD dataset, which is used to evaluate our method. In addition, the engineering value of our novel framework lies in its ability to effectively handle 3D models with lengthy, non-natural language metadata. Experiments with proprietary models, including GPT-4o and the Gemini series, show substantial gains, with GPT-4o (Omni) achieving up to a 23.4% absolute accuracy improvement on the human preference dataset. Moreover, ablation studies confirm that CoT reasoning provides benefits especially in challenging cases with higher part counts (>10).
♻ ☆ MoSEs: Uncertainty-Aware AI-Generated Text Detection via Mixture of Stylistics Experts with Conditional Thresholds EMNLP 2025
The rapid advancement of large language models has intensified public concerns about the potential misuse. Therefore, it is important to build trustworthy AI-generated text detection systems. Existing methods neglect stylistic modeling and mostly rely on static thresholds, which greatly limits the detection performance. In this paper, we propose the Mixture of Stylistic Experts (MoSEs) framework that enables stylistics-aware uncertainty quantification through conditional threshold estimation. MoSEs contain three core components, namely, the Stylistics Reference Repository (SRR), the Stylistics-Aware Router (SAR), and the Conditional Threshold Estimator (CTE). For input text, SRR can activate the appropriate reference data in SRR and provide them to CTE. Subsequently, CTE jointly models the linguistic statistical properties and semantic features to dynamically determine the optimal threshold. With a discrimination score, MoSEs yields prediction labels with the corresponding confidence level. Our framework achieves an average improvement 11.34% in detection performance compared to baselines. More inspiringly, MoSEs shows a more evident improvement 39.15% in the low-resource case. Our code is available at https://github.com/creator-xi/MoSEs.
comment: EMNLP 2025
♻ ☆ Test It Before You Trust It: Applying Software Testing for Trustworthy In-context Learning
In-context learning (ICL) has emerged as a powerful capability of large language models (LLMs), enabling them to perform new tasks based on a few provided examples without explicit fine-tuning. Despite their impressive adaptability, these models remain vulnerable to subtle adversarial perturbations and exhibit unpredictable behavior when faced with linguistic variations. Inspired by software testing principles, we introduce a software testing-inspired framework, called MMT4NL, for evaluating the trustworthiness of in-context learning by utilizing adversarial perturbations and software testing techniques. It includes diverse evaluation aspects of linguistic capabilities for testing the ICL capabilities of LLMs. MMT4NL is built around the idea of crafting metamorphic adversarial examples from a test set in order to quantify and pinpoint bugs in the designed prompts of ICL. Our philosophy is to treat any LLM as software and validate its functionalities just like testing the software. Finally, we demonstrate applications of MMT4NL on the sentiment analysis and question-answering tasks. Our experiments could reveal various linguistic bugs in state-of-the-art LLMs.
♻ ☆ DispFormer: A Pretrained Transformer Incorporating Physical Constraints for Dispersion Curve Inversion
Surface wave dispersion curve inversion is crucial for estimating subsurface shear-wave velocity (vs), yet traditional methods often face challenges related to computational cost, non-uniqueness, and sensitivity to initial models. While deep learning approaches show promise, many require large labeled datasets and struggle with real-world datasets, which often exhibit varying period ranges, missing values, and low signal-to-noise ratios. To address these limitations, this study introduces DispFormer, a transformer-based neural network for $v_s$ profile inversion from Rayleigh-wave phase and group dispersion curves. DispFormer processes dispersion data independently at each period, allowing it to handle varying lengths without requiring network modifications or strict alignment between training and testing datasets. A depth-aware training strategy is also introduced, incorporating physical constraints derived from the depth sensitivity of dispersion data. DispFormer is pre-trained on a global synthetic dataset and evaluated on two regional synthetic datasets using zero-shot and few-shot strategies. Results show that even without labeled data, the zero-shot DispFormer generates inversion profiles that outperform the interpolated reference model used as the pretraining target, providing a deployable initial model generator to assist traditional workflows. When partial labeled data available, the few-shot trained DispFormer surpasses traditional global search methods. Real-world tests further confirm that DispFormer generalizes well to dispersion data with varying lengths and achieves lower data residuals than reference models. These findings underscore the potential of DispFormer as a foundation model for dispersion curve inversion and demonstrate the advantages of integrating physics-informed deep learning into geophysical applications.
comment: 20 pages, 12 figures, related codes and data are available at https://github.com/liufeng2317/DispFormer
♻ ☆ Scaling Laws of Motion Forecasting and Planning - Technical Report
We study the empirical scaling laws of a family of encoder-decoder autoregressive transformer models on the task of joint motion forecasting and planning in the autonomous driving domain. Using a 500 thousand hours driving dataset, we demonstrate that, similar to language modeling, model performance improves as a power-law function of the total compute budget, and we observe a strong correlation between model training loss and model evaluation metrics. Most interestingly, closed-loop metrics also improve with scaling, which has important implications for the suitability of open-loop metrics for model development and hill climbing. We also study the optimal scaling of the number of transformer parameters and the training data size for a training compute-optimal model. We find that as the training compute budget grows, optimal scaling requires increasing the model size 1.5x as fast as the dataset size. We also study inference-time compute scaling, where we observe that sampling and clustering the output of smaller models makes them competitive with larger models, up to a crossover point beyond which a larger models becomes more inference-compute efficient. Overall, our experimental results demonstrate that optimizing the training and inference-time scaling properties of motion forecasting and planning models is a key lever for improving their performance to address a wide variety of driving scenarios. Finally, we briefly study the utility of training on general logged driving data of other agents to improve the performance of the ego-agent, an important research area to address the scarcity of robotics data for large capacity models training.
♻ ☆ TalkToAgent: A Human-centric Explanation of Reinforcement Learning Agents with Large Language Models
Explainable Reinforcement Learning (XRL) has emerged as a promising approach in improving the transparency of Reinforcement Learning (RL) agents. However, there remains a gap between complex RL policies and domain experts, due to the limited comprehensibility of XRL results and isolated coverage of current XRL approaches that leave users uncertain about which tools to employ. To address these challenges, we introduce TalkToAgent, a multi-agent Large Language Models (LLM) framework that delivers interactive, natural language explanations for RL policies. The architecture with five specialized LLM agents (Coordinator, Explainer, Coder, Evaluator, and Debugger) enables TalkToAgent to automatically map user queries to relevant XRL tools and clarify an agent's actions in terms of either key state variables, expected outcomes, or counterfactual explanations. Moreover, our approach extends previous counterfactual explanations by deriving alternative scenarios from qualitative behavioral descriptions, or even new rule-based policies. We validated TalkToAgent on quadruple-tank process control problem, a well-known nonlinear control benchmark. Results demonstrated that TalkToAgent successfully mapped user queries into XRL tasks with high accuracy, and coder-debugger interactions minimized failures in counterfactual generation. Furthermore, qualitative evaluation confirmed that TalkToAgent effectively interpreted agent's actions and contextualized their meaning within the problem domain.
comment: 31 pages total
♻ ☆ Scaling Laws of Motion Forecasting and Planning -- Technical Report
We study the empirical scaling laws of a family of encoder-decoder autoregressive transformer models on the task of joint motion forecasting and planning in the autonomous driving domain. Using a 500 thousand hours driving dataset, we demonstrate that, similar to language modeling, model performance improves as a power-law function of the total compute budget, and we observe a strong correlation between model training loss and model evaluation metrics. Most interestingly, closed-loop metrics also improve with scaling, which has important implications for the suitability of open-loop metrics for model development and hill climbing. We also study the optimal scaling of the number of transformer parameters and the training data size for a training compute-optimal model. We find that as the training compute budget grows, optimal scaling requires increasing the model size 1.5x as fast as the dataset size. We also study inference-time compute scaling, where we observe that sampling and clustering the output of smaller models makes them competitive with larger models, up to a crossover point beyond which a larger models becomes more inference-compute efficient. Overall, our experimental results demonstrate that optimizing the training and inference-time scaling properties of motion forecasting and planning models is a key lever for improving their performance to address a wide variety of driving scenarios. Finally, we briefly study the utility of training on general logged driving data of other agents to improve the performance of the ego-agent, an important research area to address the scarcity of robotics data for large capacity models training.
♻ ☆ Grid-Agent: An LLM-Powered Multi-Agent System for Power Grid Control
Modern power grids face unprecedented complexity from Distributed Energy Resources (DERs), Electric Vehicles (EVs), and extreme weather, while also being increasingly exposed to cyberattacks that can trigger grid violations. This paper introduces Grid-Agent, an autonomous AI-driven framework that leverages Large Language Models (LLMs) within a multi-agent system to detect and remediate violations. Grid-Agent integrates semantic reasoning with numerical precision through modular agents: a planning agent generates coordinated action sequences using power flow solvers, while a validation agent ensures stability and safety through sandboxed execution with rollback mechanisms. To enhance scalability, the framework employs an adaptive multi-scale network representation that dynamically adjusts encoding schemes based on system size and complexity. Violation resolution is achieved through optimizing switch configurations, battery deployment, and load curtailment. Our experiments on IEEE and CIGRE benchmark networks, including the IEEE 69-bus, CIGRE MV, IEEE 30-bus test systems, demonstrate superior mitigation performance, highlighting Grid-Agent's suitability for modern smart grids requiring rapid, adaptive response.
♻ ☆ Automatically Detecting Online Deceptive Patterns
Deceptive patterns in digital interfaces manipulate users into making unintended decisions, exploiting cognitive biases and psychological vulnerabilities. These patterns have become ubiquitous on various digital platforms. While efforts to mitigate deceptive patterns have emerged from legal and technical perspectives, a significant gap remains in creating usable and scalable solutions. We introduce our AutoBot framework to address this gap and help web stakeholders navigate and mitigate online deceptive patterns. AutoBot accurately identifies and localizes deceptive patterns from a screenshot of a website without relying on the underlying HTML code. AutoBot employs a two-stage pipeline that leverages the capabilities of specialized vision models to analyze website screenshots, identify interactive elements, and extract textual features. Next, using a large language model, AutoBot understands the context surrounding these elements to determine the presence of deceptive patterns. We also use AutoBot, to create a synthetic dataset to distill knowledge from 'teacher' LLMs to smaller language models. Through extensive evaluation, we demonstrate AutoBot's effectiveness in detecting deceptive patterns on the web, achieving an F1-score of 0.93 when detecting deceptive patterns, underscoring its potential as an essential tool for mitigating online deceptive patterns. We implement AutoBot, across three downstream applications targeting different web stakeholders: (1) a local browser extension providing users with real-time feedback, (2) a Lighthouse audit to inform developers of potential deceptive patterns on their sites, and (3) as a measurement tool designed for researchers and regulators.
♻ ☆ COMMA: A Communicative Multimodal Multi-Agent Benchmark
The rapid advances of multimodal agents built on large foundation models have largely overlooked their potential for language-based communication between agents in collaborative tasks. This oversight presents a critical gap in understanding their effectiveness in real-world deployments, particularly when communicating with humans. Existing agentic benchmarks fail to address key aspects of inter-agent communication and collaboration, particularly in scenarios where agents have unequal access to information and must work together to achieve tasks beyond the scope of individual capabilities. To fill this gap, we introduce COMMA: a novel puzzle benchmark designed to evaluate the collaborative performance of multimodal multi-agent systems through language communication. Our benchmark features a variety of multimodal puzzles, providing a comprehensive evaluation across four key categories of agentic capability in a communicative collaboration setting. Our findings reveal surprising weaknesses in state-of-the-art models, including strong proprietary models like GPT-4o and reasoning models like o4-mini. Many chain of thought reasoning models such as R1-Onevision and LLaVA-CoT struggle to outperform even a random baseline in agent-agent collaboration, indicating a potential growth area in their communication abilities.
♻ ☆ Enhancing Dialogue Annotation with Speaker Characteristics Leveraging a Frozen LLM IEEE
In dialogue transcription pipelines, Large Language Models (LLMs) are frequently employed in post-processing to improve grammar, punctuation, and readability. We explore a complementary post-processing step: enriching transcribed dialogues by adding metadata tags for speaker characteristics such as age, gender, and emotion. Some of the tags are global to the entire dialogue, while some are time-variant. Our approach couples frozen audio foundation models, such as Whisper or WavLM, with a frozen LLAMA language model to infer these speaker attributes, without requiring task-specific fine-tuning of either model. Using lightweight, efficient connectors to bridge audio and language representations, we achieve competitive performance on speaker profiling tasks while preserving modularity and speed. Additionally, we demonstrate that a frozen LLAMA model can compare x-vectors directly, achieving an Equal Error Rate of 8.8% in some scenarios.
comment: Accepted in the 2025 IEEE Automatic Speech Recognition and Understanding Workshop
♻ ☆ Overflow Prevention Enhances Long-Context Recurrent LLMs
A recent trend in LLMs is developing recurrent sub-quadratic models that improve long-context processing efficiency. We investigate leading large long-context models, focusing on how their fixed-size recurrent memory affects their performance. Our experiments reveal that, even when these models are trained for extended contexts, their use of long contexts remains underutilized. Specifically, we demonstrate that a chunk-based inference procedure, which identifies and processes only the most relevant portion of the input can mitigate recurrent memory failures and be effective for many long-context tasks: On LongBench, our method improves the overall performance of Falcon3-Mamba-Inst-7B by 14%, Falcon-Mamba-Inst-7B by 28%, RecurrentGemma-IT-9B by 50%, and RWKV6-Finch-7B by 51%. Surprisingly, this simple approach also leads to state-of-the-art results in the challenging LongBench v2 benchmark, showing competitive performance with equivalent size Transformers. Furthermore, our findings raise questions about whether recurrent models genuinely exploit long-range dependencies, as our single-chunk strategy delivers stronger performance - even in tasks that presumably require cross-context relations.
comment: Official Implementation: https://github.com/assafbk/OPRM
♻ ☆ No Thoughts Just AI: Biased LLM Hiring Recommendations Alter Human Decision Making and Limit Human Autonomy AAAI
In this study, we conduct a resume-screening experiment (N=528) where people collaborate with simulated AI models exhibiting race-based preferences (bias) to evaluate candidates for 16 high and low status occupations. Simulated AI bias approximates factual and counterfactual estimates of racial bias in real-world AI systems. We investigate people's preferences for White, Black, Hispanic, and Asian candidates (represented through names and affinity groups on quality-controlled resumes) across 1,526 scenarios and measure their unconscious associations between race and status using implicit association tests (IATs), which predict discriminatory hiring decisions but have not been investigated in human-AI collaboration. When making decisions without AI or with AI that exhibits no race-based preferences, people select all candidates at equal rates. However, when interacting with AI favoring a particular group, people also favor those candidates up to 90% of the time, indicating a significant behavioral shift. The likelihood of selecting candidates whose identities do not align with common race-status stereotypes can increase by 13% if people complete an IAT before conducting resume screening. Finally, even if people think AI recommendations are low quality or not important, their decisions are still vulnerable to AI bias under certain circumstances. This work has implications for people's autonomy in AI-HITL scenarios, AI and work, design and evaluation of AI hiring systems, and strategies for mitigating bias in collaborative decision-making tasks. In particular, organizational and regulatory policy should acknowledge the complex nature of AI-HITL decision making when implementing these systems, educating people who use them, and determining which are subject to oversight.
comment: Published in Proceedings of the 2025 AAAI/ACM Conference on AI, Ethics, and Society; code available at https://github.com/kyrawilson/No-Thoughts-Just-AI
♻ ☆ Large Language Models for Crash Detection in Video: A Survey of Methods, Datasets, and Challenges
Crash detection from video feeds is a critical problem in intelligent transportation systems. Recent developments in large language models (LLMs) and vision-language models (VLMs) have transformed how we process, reason about, and summarize multimodal information. This paper surveys recent methods leveraging LLMs for crash detection from video data. We present a structured taxonomy of fusion strategies, summarize key datasets, analyze model architectures, compare performance benchmarks, and discuss ongoing challenges and opportunities. Our review provides a foundation for future research in this fast-growing intersection of video understanding and foundation models.
♻ ☆ Grounding DINO-US-SAM: Text-Prompted Multi-Organ Segmentation in Ultrasound with LoRA-Tuned Vision-Language Models
Accurate and generalizable object segmentation in ultrasound imaging remains a significant challenge due to anatomical variability, diverse imaging protocols, and limited annotated data. In this study, we propose a prompt-driven vision-language model (VLM) that integrates Grounding DINO with SAM2 (Segment Anything Model2) to enable object segmentation across multiple ultrasound organs. A total of 18 public ultrasound datasets, encompassing the breast, thyroid, liver, prostate, kidney, and paraspinal muscle, were utilized. These datasets were divided into 15 for fine-tuning and validation of Grounding DINO using Low Rank Adaptation (LoRA) to the ultrasound domain, and 3 were held out entirely for testing to evaluate performance in unseen distributions. Comprehensive experiments demonstrate that our approach outperforms state-of-the-art segmentation methods, including UniverSeg, MedSAM, MedCLIP-SAM, BiomedParse, and SAMUS on most seen datasets while maintaining strong performance on unseen datasets without additional fine-tuning. These results underscore the promise of VLMs in scalable and robust ultrasound image analysis, reducing dependence on large, organ-specific annotated datasets. We will publish our code on code.sonography.ai after acceptance.
comment: 11 pages, 3 figures, 7 tables
♻ ☆ Understanding Behavioral Metric Learning: A Large-Scale Study on Distracting Reinforcement Learning Environments
A key approach to state abstraction is approximating behavioral metrics (notably, bisimulation metrics) in the observation space and embedding these learned distances in the representation space. While promising for robustness to task-irrelevant noise, as shown in prior work, accurately estimating these metrics remains challenging, requiring various design choices that create gaps between theory and practice. Prior evaluations focus mainly on final returns, leaving the quality of learned metrics and the source of performance gains unclear. To systematically assess how metric learning works in deep reinforcement learning (RL), we evaluate five recent approaches, unified conceptually as isometric embeddings with varying design choices. We benchmark them with baselines across 20 state-based and 14 pixel-based tasks, spanning 370 task configurations with diverse noise settings. Beyond final returns, we introduce the evaluation of a denoising factor to quantify the encoder's ability to filter distractions. To further isolate the effect of metric learning, we propose and evaluate an isolated metric estimation setting, in which the encoder is influenced solely by the metric loss. Finally, we release an open-source, modular codebase to improve reproducibility and support future research on metric learning in deep RL.
♻ ☆ Unlearning vs. Obfuscation: Are We Truly Removing Knowledge? EMNLP 2025
Unlearning has emerged as a critical capability for large language models (LLMs) to support data privacy, regulatory compliance, and ethical AI deployment. Recent techniques often rely on obfuscation by injecting incorrect or irrelevant information to suppress knowledge. Such methods effectively constitute knowledge addition rather than true removal, often leaving models vulnerable to probing. In this paper, we formally distinguish unlearning from obfuscation and introduce a probing-based evaluation framework to assess whether existing approaches genuinely remove targeted information. Moreover, we propose DF-MCQ, a novel unlearning method that flattens the model predictive distribution over automatically generated multiple-choice questions using KL-divergence, effectively removing knowledge about target individuals and triggering appropriate refusal behaviour. Experimental results demonstrate that DF-MCQ achieves unlearning with over 90% refusal rate and a random choice-level uncertainty that is much higher than obfuscation on probing questions.
comment: To Appear in EMNLP 2025 main conference
♻ ☆ Pilot Study on Generative AI and Critical Thinking in Higher Education Classrooms
Generative AI (GAI) tools have seen rapid adoption in educational settings, yet their role in fostering critical thinking remains underexplored. While previous studies have examined GAI as a tutor for specific lessons or as a tool for completing assignments, few have addressed how students critically evaluate the accuracy and appropriateness of GAI-generated responses. This pilot study investigates students' ability to apply structured critical thinking when assessing Generative AI outputs in introductory Computational and Data Science courses. Given that GAI tools often produce contextually flawed or factually incorrect answers, we designed learning activities that require students to analyze, critique, and revise AI-generated solutions. Our findings offer initial insights into students' ability to engage critically with GAI content and lay the groundwork for more comprehensive studies in future semesters.
♻ ☆ Meaning-infused grammar: Gradient Acceptability Shapes the Geometric Representations of Constructions in LLMs
The usage-based constructionist (UCx) approach to language posits that language comprises a network of learned form-meaning pairings (constructions) whose use is largely determined by their meanings or functions, requiring them to be graded and probabilistic. This study investigates whether the internal representations in Large Language Models (LLMs) reflect the proposed function-infused gradience. We analyze representations of the English Double Object (DO) and Prepositional Object (PO) constructions in Pythia-$1.4$B, using a dataset of $5000$ sentence pairs systematically varied by human-rated preference strength for DO or PO. Geometric analyses show that the separability between the two constructions' representations, as measured by energy distance or Jensen-Shannon divergence, is systematically modulated by gradient preference strength, which depends on lexical and functional properties of sentences. That is, more prototypical exemplars of each construction occupy more distinct regions in activation space, compared to sentences that could have equally well have occured in either construction. These results provide evidence that LLMs learn rich, meaning-infused, graded representations of constructions and offer support for geometric measures for representations in LLMs.
comment: 6 pages, 3 figures, Accepted for publication at the Second International Workshop on Construction Grammars and NLP at the 16th International Conference for Computational Semantics (IWCS) 2025
♻ ☆ Localizing Persona Representations in LLMs AAAI
We present a study on how and where personas -- defined by distinct sets of human characteristics, values, and beliefs -- are encoded in the representation space of large language models (LLMs). Using a range of dimension reduction and pattern recognition methods, we first identify the model layers that show the greatest divergence in encoding these representations. We then analyze the activations within a selected layer to examine how specific personas are encoded relative to others, including their shared and distinct embedding spaces. We find that, across multiple pre-trained decoder-only LLMs, the analyzed personas show large differences in representation space only within the final third of the decoder layers. We observe overlapping activations for specific ethical perspectives -- such as moral nihilism and utilitarianism -- suggesting a degree of polysemy. In contrast, political ideologies like conservatism and liberalism appear to be represented in more distinct regions. These findings help to improve our understanding of how LLMs internally represent information and can inform future efforts in refining the modulation of specific human traits in LLM outputs. Warning: This paper includes potentially offensive sample statements.
comment: To appear in the AAAI/ACM Conference on AI, Ethics, and Society (AIES) 2025
♻ ☆ Attacking LLMs and AI Agents: Advertisement Embedding Attacks Against Large Language Models
We introduce Advertisement Embedding Attacks (AEA), a new class of LLM security threats that stealthily inject promotional or malicious content into model outputs and AI agents. AEA operate through two low-cost vectors: (1) hijacking third-party service-distribution platforms to prepend adversarial prompts, and (2) publishing back-doored open-source checkpoints fine-tuned with attacker data. Unlike conventional attacks that degrade accuracy, AEA subvert information integrity, causing models to return covert ads, propaganda, or hate speech while appearing normal. We detail the attack pipeline, map five stakeholder victim groups, and present an initial prompt-based self-inspection defense that mitigates these injections without additional model retraining. Our findings reveal an urgent, under-addressed gap in LLM security and call for coordinated detection, auditing, and policy responses from the AI-safety community.
comment: 6 pages, 2 figures
Computation and Language 127
☆ On the Same Wavelength? Evaluating Pragmatic Reasoning in Language Models across Broad Concepts EMNLP 2025
Language use is shaped by pragmatics -- i.e., reasoning about communicative goals and norms in context. As language models (LMs) are increasingly used as conversational agents, it becomes ever more important to understand their pragmatic reasoning abilities. We propose an evaluation framework derived from Wavelength, a popular communication game where a speaker and a listener communicate about a broad range of concepts in a granular manner. We study a range of LMs on both language comprehension and language production using direct and Chain-of-Thought (CoT) prompting, and further explore a Rational Speech Act (RSA) approach to incorporating Bayesian pragmatic reasoning into LM inference. We find that state-of-the-art LMs, but not smaller ones, achieve strong performance on language comprehension, obtaining similar-to-human accuracy and exhibiting high correlations with human judgments even without CoT prompting or RSA. On language production, CoT can outperform direct prompting, and using RSA provides significant improvements over both approaches. Our study helps identify the strengths and limitations in LMs' pragmatic reasoning abilities and demonstrates the potential for improving them with RSA, opening up future avenues for understanding conceptual representation, language understanding, and social reasoning in LMs and humans.
comment: EMNLP 2025 (Main)
☆ Revolutionizing Reinforcement Learning Framework for Diffusion Large Language Models
We propose TraceRL, a trajectory-aware reinforcement learning framework for diffusion language models (DLMs) that incorporates preferred inference trajectory into post-training, and is applicable across different architectures. Equipped with a diffusion-based value model that enhances training stability, we demonstrate improved reasoning performance on complex math and coding tasks. Besides, it can also be applied to adapt block-specific models to larger blocks, which improves sampling flexibility. Employing TraceRL, we derive a series of state-of-the-art diffusion language models, namely TraDo. Although smaller than 7B-scale AR models, TraDo-4B-Instruct still consistently outperforms them across complex math reasoning tasks. TraDo-8B-Instruct achieves relative accuracy improvements of 6.1% over Qwen2.5-7B-Instruct and 51.3% over Llama3.1-8B-Instruct on mathematical reasoning benchmarks. Through curriculum learning, we also derive the first long-CoT DLM, outperforming Qwen2.5-7B-Instruct on MATH500 with an 18.1% relative accuracy gain. To facilitate reproducible research and practical applications, we release a comprehensive open-source framework for building, training, and deploying diffusion LLMs across diverse architectures. The framework integrates accelerated KV-cache techniques and inference engines for both inference and reinforcement learning, and includes implementations of various supervised fine-tuning and RL methods for mathematics, coding, and general tasks. Code and Models: https://github.com/Gen-Verse/dLLM-RL
comment: Code and Models: https://github.com/Gen-Verse/dLLM-RL
☆ Beyond Two-Stage Training: Cooperative SFT and RL for LLM Reasoning
Reinforcement learning (RL) has proven effective in incentivizing the reasoning abilities of large language models (LLMs), but suffers from severe efficiency challenges due to its trial-and-error nature. While the common practice employs supervised fine-tuning (SFT) as a warm-up stage for RL, this decoupled two-stage approach limits interaction between SFT and RL, thereby constraining overall effectiveness. This study introduces a novel method for learning reasoning models that employs bilevel optimization to facilitate better cooperation between these training paradigms. By conditioning the SFT objective on the optimal RL policy, our approach enables SFT to meta-learn how to guide RL's optimization process. During training, the lower level performs RL updates while simultaneously receiving SFT supervision, and the upper level explicitly maximizes the cooperative gain-the performance advantage of joint SFT-RL training over RL alone. Empirical evaluations on five reasoning benchmarks demonstrate that our method consistently outperforms baselines and achieves a better balance between effectiveness and efficiency.
☆ Interleaving Reasoning for Better Text-to-Image Generation
Unified multimodal understanding and generation models recently have achieve significant improvement in image generation capability, yet a large gap remains in instruction following and detail preservation compared to systems that tightly couple comprehension with generation such as GPT-4o. Motivated by recent advances in interleaving reasoning, we explore whether such reasoning can further improve Text-to-Image (T2I) generation. We introduce Interleaving Reasoning Generation (IRG), a framework that alternates between text-based thinking and image synthesis: the model first produces a text-based thinking to guide an initial image, then reflects on the result to refine fine-grained details, visual quality, and aesthetics while preserving semantics. To train IRG effectively, we propose Interleaving Reasoning Generation Learning (IRGL), which targets two sub-goals: (1) strengthening the initial think-and-generate stage to establish core content and base quality, and (2) enabling high-quality textual reflection and faithful implementation of those refinements in a subsequent image. We curate IRGL-300K, a dataset organized into six decomposed learning modes that jointly cover learning text-based thinking, and full thinking-image trajectories. Starting from a unified foundation model that natively emits interleaved text-image outputs, our two-stage training first builds robust thinking and reflection, then efficiently tunes the IRG pipeline in the full thinking-image trajectory data. Extensive experiments show SoTA performance, yielding absolute gains of 5-10 points on GenEval, WISE, TIIF, GenAI-Bench, and OneIG-EN, alongside substantial improvements in visual quality and fine-grained fidelity. The code, model weights and datasets will be released in: https://github.com/Osilly/Interleaving-Reasoning-Generation .
☆ Outcome-based Exploration for LLM Reasoning
Reinforcement learning (RL) has emerged as a powerful method for improving the reasoning abilities of large language models (LLMs). Outcome-based RL, which rewards policies solely for the correctness of the final answer, yields substantial accuracy gains but also induces a systematic loss in generation diversity. This collapse undermines real-world performance, where diversity is critical for test-time scaling. We analyze this phenomenon by viewing RL post-training as a sampling process and show that, strikingly, RL can reduce effective diversity even on the training set relative to the base model. Our study highlights two central findings: (i) a transfer of diversity degradation, where reduced diversity on solved problems propagates to unsolved ones, and (ii) the tractability of the outcome space, since reasoning tasks admit only a limited set of distinct answers. Motivated by these insights, we propose outcome-based exploration, which assigns exploration bonuses according to final outcomes. We introduce two complementary algorithms: historical exploration, which encourages rarely observed answers via UCB-style bonuses, and batch exploration, which penalizes within-batch repetition to promote test-time diversity. Experiments on standard competition math with Llama and Qwen models demonstrate that both methods improve accuracy while mitigating diversity collapse. On the theoretical side, we formalize the benefit of outcome-based exploration through a new model of outcome-based bandits. Together, these contributions chart a practical path toward RL methods that enhance reasoning without sacrificing the diversity essential for scalable deployment.
comment: 26 pages, 11 figures
☆ An Ethically Grounded LLM-Based Approach to Insider Threat Synthesis and Detection
Insider threats are a growing organizational problem due to the complexity of identifying their technical and behavioral elements. A large research body is dedicated to the study of insider threats from technological, psychological, and educational perspectives. However, research in this domain has been generally dependent on datasets that are static and limited access which restricts the development of adaptive detection models. This study introduces a novel, ethically grounded approach that uses the large language model (LLM) Claude Sonnet 3.7 to dynamically synthesize syslog messages, some of which contain indicators of insider threat scenarios. The messages reflect real-world data distributions by being highly imbalanced (1% insider threats). The syslogs were analyzed for insider threats by both Claude Sonnet 3.7 and GPT-4o, with their performance evaluated through statistical metrics including precision, recall, MCC, and ROC AUC. Sonnet 3.7 consistently outperformed GPT-4o across nearly all metrics, particularly in reducing false alarms and improving detection accuracy. The results show strong promise for the use of LLMs in synthetic dataset generation and insider threat detection.
comment: 6 pages, 5 figures, 5 tables
☆ Paper2Agent: Reimagining Research Papers As Interactive and Reliable AI Agents
We introduce Paper2Agent, an automated framework that converts research papers into AI agents. Paper2Agent transforms research output from passive artifacts into active systems that can accelerate downstream use, adoption, and discovery. Conventional research papers require readers to invest substantial effort to understand and adapt a paper's code, data, and methods to their own work, creating barriers to dissemination and reuse. Paper2Agent addresses this challenge by automatically converting a paper into an AI agent that acts as a knowledgeable research assistant. It systematically analyzes the paper and the associated codebase using multiple agents to construct a Model Context Protocol (MCP) server, then iteratively generates and runs tests to refine and robustify the resulting MCP. These paper MCPs can then be flexibly connected to a chat agent (e.g. Claude Code) to carry out complex scientific queries through natural language while invoking tools and workflows from the original paper. We demonstrate Paper2Agent's effectiveness in creating reliable and capable paper agents through in-depth case studies. Paper2Agent created an agent that leverages AlphaGenome to interpret genomic variants and agents based on ScanPy and TISSUE to carry out single-cell and spatial transcriptomics analyses. We validate that these paper agents can reproduce the original paper's results and can correctly carry out novel user queries. By turning static papers into dynamic, interactive AI agents, Paper2Agent introduces a new paradigm for knowledge dissemination and a foundation for the collaborative ecosystem of AI co-scientists.
☆ Proof-Carrying Numbers (PCN): A Protocol for Trustworthy Numeric Answers from LLMs via Claim Verification
Large Language Models (LLMs) as stochastic systems may generate numbers that deviate from available data, a failure known as \emph{numeric hallucination}. Existing safeguards -- retrieval-augmented generation, citations, and uncertainty estimation -- improve transparency but cannot guarantee fidelity: fabricated or misquoted values may still be displayed as if correct. We propose \textbf{Proof-Carrying Numbers (PCN)}, a presentation-layer protocol that enforces numeric fidelity through mechanical verification. Under PCN, numeric spans are emitted as \emph{claim-bound tokens} tied to structured claims, and a verifier checks each token under a declared policy (e.g., exact equality, rounding, aliases, or tolerance with qualifiers). Crucially, PCN places verification in the \emph{renderer}, not the model: only claim-checked numbers are marked as verified, and all others default to unverified. This separation prevents spoofing and guarantees fail-closed behavior. We formalize PCN and prove soundness, completeness under honest tokens, fail-closed behavior, and monotonicity under policy refinement. PCN is lightweight and model-agnostic, integrates seamlessly into existing applications, and can be extended with cryptographic commitments. By enforcing verification as a mandatory step before display, PCN establishes a simple contract for numerically sensitive settings: \emph{trust is earned only by proof}, while the absence of a mark communicates uncertainty.
☆ mmBERT: A Modern Multilingual Encoder with Annealed Language Learning
Encoder-only languages models are frequently used for a variety of standard machine learning tasks, including classification and retrieval. However, there has been a lack of recent research for encoder models, especially with respect to multilingual models. We introduce mmBERT, an encoder-only language model pretrained on 3T tokens of multilingual text in over 1800 languages. To build mmBERT we introduce several novel elements, including an inverse mask ratio schedule and an inverse temperature sampling ratio. We add over 1700 low-resource languages to the data mix only during the decay phase, showing that it boosts performance dramatically and maximizes the gains from the relatively small amount of training data. Despite only including these low-resource languages in the short decay phase we achieve similar classification performance to models like OpenAI's o3 and Google's Gemini 2.5 Pro. Overall, we show that mmBERT significantly outperforms the previous generation of models on classification and retrieval tasks -- on both high and low-resource languages.
☆ UNH at CheckThat! 2025: Fine-tuning Vs Prompting in Claim Extraction
We participate in CheckThat! Task 2 English and explore various methods of prompting and in-context learning, including few-shot prompting and fine-tuning with different LLM families, with the goal of extracting check-worthy claims from social media passages. Our best METEOR score is achieved by fine-tuning a FLAN-T5 model. However, we observe that higher-quality claims can sometimes be extracted using other methods, even when their METEOR scores are lower.
comment: 16 pages,3 tables, CLEF 2025 Working Notes, 9-12 September 2025, Madrid, Spain
☆ The Majority is not always right: RL training for solution aggregation
Scaling up test-time compute, by generating multiple independent solutions and selecting or aggregating among them, has become a central paradigm for improving large language models (LLMs) on challenging reasoning tasks. While most prior work relies on simple majority voting or reward model ranking to aggregate solutions, these approaches may only yield limited benefits. In this work, we propose to learn aggregation as an explicit reasoning skill: given a set of candidate solutions, we train an aggregator model to review, reconcile, and synthesize a final, correct answer using reinforcement learning from verifiable rewards. A key ingredient is careful balancing of easy and hard training examples, allowing the model to learn both to recover minority-but-correct answers as well as easy majority-correct answers. Empirically, we find our method, AggLM, outperforms both strong rule-based and reward-model baselines, across multiple benchmarks. Furthermore, it generalizes effectively to solutions from differing models, including stronger ones than contained in the training data, all while requiring substantially fewer tokens than majority voting with larger numbers of solutions.
☆ Test-Time Scaling in Reasoning Models Is Not Effective for Knowledge-Intensive Tasks Yet
Test-time scaling increases inference-time computation by allowing models to generate long reasoning chains, and has shown strong performance across many domains. However, in this work, we show that this approach is not yet effective for knowledge-intensive tasks, where high factual accuracy and low hallucination rates are essential. We conduct a comprehensive evaluation of test-time scaling using 12 reasoning models on two knowledge-intensive benchmarks. Our results reveal that increasing test-time computation does not consistently improve accuracy and, in many cases, it even leads to more hallucinations. We then analyze how extended reasoning affects hallucination behavior. We find that reduced hallucinations often result from the model choosing to abstain after thinking more, rather than from improved factual recall. Conversely, for some models, longer reasoning encourages attempts on previously unanswered questions, many of which result in hallucinations. Case studies show that extended reasoning can induce confirmation bias, leading to overconfident hallucinations. Despite these limitations, we observe that compared to non-thinking, enabling thinking remains beneficial. Code and data are available at https://github.com/XuZhao0/tts-knowledge
comment: 20 pages, 4 figures, 6 tables
☆ EPT Benchmark: Evaluation of Persian Trustworthiness in Large Language Models
Large Language Models (LLMs), trained on extensive datasets using advanced deep learning architectures, have demonstrated remarkable performance across a wide range of language tasks, becoming a cornerstone of modern AI technologies. However, ensuring their trustworthiness remains a critical challenge, as reliability is essential not only for accurate performance but also for upholding ethical, cultural, and social values. Careful alignment of training data and culturally grounded evaluation criteria are vital for developing responsible AI systems. In this study, we introduce the EPT (Evaluation of Persian Trustworthiness) metric, a culturally informed benchmark specifically designed to assess the trustworthiness of LLMs across six key aspects: truthfulness, safety, fairness, robustness, privacy, and ethical alignment. We curated a labeled dataset and evaluated the performance of several leading models - including ChatGPT, Claude, DeepSeek, Gemini, Grok, LLaMA, Mistral, and Qwen - using both automated LLM-based and human assessments. Our results reveal significant deficiencies in the safety dimension, underscoring the urgent need for focused attention on this critical aspect of model behavior. Furthermore, our findings offer valuable insights into the alignment of these models with Persian ethical-cultural values and highlight critical gaps and opportunities for advancing trustworthy and culturally responsible AI. The dataset is publicly available at: https://github.com/Rezamirbagheri110/EPT-Benchmark.
☆ COMPACT: Common-token Optimized Model Pruning Across Channels and Tokens
Making LLMs more efficient in memory, latency, and serving cost is crucial for edge deployment, interactive applications, and sustainable inference at scale. Pruning is a key technique toward this goal. However, prior pruning methods are limited: width pruning often breaks the standard transformer layout or requires custom inference code, while depth pruning removes entire layers and can cause abrupt accuracy drops. In this work, we propose COMPACT, which jointly (i) prunes rare vocabulary to shrink embedding/unembedding and (ii) prunes FFN intermediate channels using common-token-weighted activations, aligning importance with the post-pruning token distribution. COMPACT enjoys merits of both depth and width pruning, such as: deployment-friendliness (keeps a standard transformer architecture), scale-adaptivity (trade off vocab vs. FFN pruning), training-free operation with competitive pruning time, and strong memory savings alongside throughput gains. Experiments across Qwen, LLaMA, and Gemma families (0.5B-70B) show state-of-the-art downstream task performance at similar or higher pruning ratios, with substantial reductions in parameters, GPU memory, and end-to-end latency.
☆ RAFFLES: Reasoning-based Attribution of Faults for LLM Systems
We have reached a critical roadblock in the development and enhancement of long-horizon, multi-component LLM agentic systems: it is incredibly tricky to identify where these systems break down and why. Evaluation capabilities that currently exist today (e.g., single pass LLM-as-a-judge) are limited in that they often focus on individual metrics or capabilities, end-to-end outcomes, and are narrowly grounded on the preferences of humans. We argue that to match the agentic capabilities, evaluation frameworks must also be able to reason, probe, iterate, and understand the complex logic passing through these systems over long horizons. In this paper, we present RAFFLES - an evaluation architecture that incorporates reasoning and iterative refinement. Specifically, RAFFLES operates as an iterative, multi-component pipeline, using a central Judge to systematically investigate faults and a set of specialized Evaluators to assess not only the system's components but also the quality of the reasoning by the Judge itself, thereby building a history of hypotheses. We tested RAFFLES against several baselines on the Who&When dataset, a benchmark designed to diagnose the "who" (agent) and "when" (step) of a system's failure. RAFFLES outperforms these baselines, achieving an agent-step fault pair accuracy of over 43% on the Algorithmically-Generated dataset (a substantial increase from the previously published best of 16.6%) and over 20% on the Hand-Crafted dataset (surpassing the previously published best of 8.8%). These results demonstrate a key step towards introducing automated fault detection for autonomous systems over labor-intensive manual human review.
☆ A Comparative Benchmark of Large Language Models for Labelling Wind Turbine Maintenance Logs
Effective Operation and Maintenance (O&M) is critical to reducing the Levelised Cost of Energy (LCOE) from wind power, yet the unstructured, free-text nature of turbine maintenance logs presents a significant barrier to automated analysis. Our paper addresses this by presenting a novel and reproducible framework for benchmarking Large Language Models (LLMs) on the task of classifying these complex industrial records. To promote transparency and encourage further research, this framework has been made publicly available as an open-source tool. We systematically evaluate a diverse suite of state-of-the-art proprietary and open-source LLMs, providing a foundational assessment of their trade-offs in reliability, operational efficiency, and model calibration. Our results quantify a clear performance hierarchy, identifying top models that exhibit high alignment with a benchmark standard and trustworthy, well-calibrated confidence scores. We also demonstrate that classification performance is highly dependent on the task's semantic ambiguity, with all models showing higher consensus on objective component identification than on interpretive maintenance actions. Given that no model achieves perfect accuracy and that calibration varies dramatically, we conclude that the most effective and responsible near-term application is a Human-in-the-Loop system, where LLMs act as a powerful assistant to accelerate and standardise data labelling for human experts, thereby enhancing O&M data quality and downstream reliability analysis.
comment: Associated GitHub repository: https://github.com/mvmalyi/wind-farm-maintenance-logs-labelling-with-llms
☆ Saturation-Driven Dataset Generation for LLM Mathematical Reasoning in the TPTP Ecosystem
The scarcity of high-quality, logically sound data is a critical bottleneck for advancing the mathematical reasoning of Large Language Models (LLMs). Our work confronts this challenge by turning decades of automated theorem proving research into a scalable data engine. Rather than relying on error-prone LLMs or complex proof-assistant syntax like Lean and Isabelle, our framework leverages E-prover's saturation capabilities on the vast TPTP axiom library to derive a massive, guaranteed-valid corpus of theorems. Our pipeline is principled and simple: saturate axioms, filter for "interesting" theorems, and generate tasks. With no LLMs in the loop, we eliminate factual errors by construction. This purely symbolic data is then transformed into three difficulty-controlled challenges: entailment verification, premise selection, and proof reconstruction. Our zero-shot experiments on frontier models reveal a clear weakness: performance collapses on tasks requiring deep, structural reasoning. Our framework provides both the diagnostic tool to measure this gap and a scalable source of symbolic training data to address it. We make the code and data publicly available. https://github.com/sileod/reasoning_core https://hf.co/datasets/reasoning-core/rc1
☆ MoGU V2: Toward a Higher Pareto Frontier Between Model Usability and Security
As Large Language Models (LLMs) increasingly permeate human life, their security has emerged as a critical concern, particularly their ability to maintain harmless responses to malicious instructions. Although extensive methods have improved LLMs' security, they often lead to conservative, rejection-oriented responses that compromise practical usability. This presents a key challenge: how to advance the Pareto frontier between LLMs' usability and security, rather than necessitate a trade-off between them. To address this, we propose the MoGU framework, in which the intra-layer router dynamically allocates weights by sensing hidden states, thereby balancing the contributions of security-optimized and usability-optimized variants. Despite its initial potential, the MoGU framework faces limitations such as parameter redundancy and performance bottlenecks. To overcome these, we further propose an improved MoGU_v2 framework that establishes a tighter coupling between the routers and hidden states. In MoGU_v2, routers are embedded only in layers encoding highly classifiable security features, and backbone modules are activated during router optimization to enable bidirectional adaptation. MoGU_V2 exhibits strong adaptability and stable improvements across various series of LLMs, including mainstream LLMs serving as brains in various applications, on-device LLMs optimized for resource-constrained scenarios, and reasoning LLMs tailored for user interpretability. Meanwhile, even facing risks introduced by Instruction Fine-tuning, MoGU_v2 can easily restore security without compromising the task performance gains via a simple data-mix strategy. These comprehensive improvements highlight MoGU_V2 as a robust and versatile solution for mitigating security risks in real-world applications.
☆ MachineLearningLM: Continued Pretraining Language Models on Millions of Synthetic Tabular Prediction Tasks Scales In-Context ML
Large language models (LLMs) possess broad world knowledge and strong general-purpose reasoning ability, yet they struggle to learn from many in-context examples on standard machine learning (ML) tasks, that is, to leverage many-shot demonstrations purely via in-context learning (ICL) without gradient descent. We introduce MachineLearningLM, a portable continued-pretraining framework that equips a general-purpose LLM with robust in-context ML capability while preserving its general knowledge and reasoning for broader chat workflows. Our pretraining procedure synthesizes ML tasks from millions of structural causal models (SCMs), spanning shot counts up to 1,024. We begin with a random-forest teacher, distilling tree-based decision strategies into the LLM to strengthen robustness in numerical modeling. All tasks are serialized with a token-efficient prompt, enabling 3x to 6x more examples per context window and delivering up to 50x amortized throughput via batch inference. Despite a modest setup (Qwen-2.5-7B-Instruct with LoRA rank 8), MachineLearningLM outperforms strong LLM baselines (e.g., GPT-5-mini) by an average of about 15% on out-of-distribution tabular classification across finance, physics, biology, and healthcare domains. It exhibits a striking many-shot scaling law: accuracy increases monotonically as in-context demonstrations grow from 8 to 1,024. Without any task-specific training, it attains random-forest-level accuracy across hundreds of shots. General chat capabilities, including knowledge and reasoning, are preserved: it achieves 75.4% on MMLU.
☆ Anchoring Refusal Direction: Mitigating Safety Risks in Tuning via Projection Constraint
Instruction Fine-Tuning (IFT) has been widely adopted as an effective post-training strategy to enhance various abilities of Large Language Models (LLMs). However, prior studies have shown that IFT can significantly compromise LLMs' safety, particularly their ability to refuse malicious instructions, raising significant concerns. Recent research into the internal mechanisms of LLMs has identified the refusal direction (r-direction) in the hidden states, which plays a pivotal role in governing refusal behavior. Building on this insight, our study reveals that the r-direction tends to drift during training, which we identify as one of the causes of the associated safety risks. To mitigate such drift, our proposed ProCon method introduces a projection-constrained loss term that regularizes the projection magnitude of each training sample's hidden state onto the r-direction. Our initial analysis shows that applying an appropriate constraint can effectively mitigate the refusal direction drift and associated safety risks, but remains limited by overall performance barriers. To overcome this barrier, informed by our observation of early-stage sharp drift and a data-driven perspective, we introduce a warm-up strategy that emphasizes early-stage strong constraints and broaden the data distribution to strengthen constraint signals, leading to an enhanced ProCon method. Experimental results under various datasets, scenarios, and LLMs demonstrate that our method can significantly mitigate safety risks posed by IFT while preserving task performance gains. Even compared with strong baselines, our method consistently delivers superior overall performance. Crucially, our analysis indicates that ProCon can contribute to stabilizing the r-direction during training, while such an interpretability-driven exploration of LLMs' internal mechanisms lays a solid foundation for future safety research.
☆ VehicleWorld: A Highly Integrated Multi-Device Environment for Intelligent Vehicle Interaction
Intelligent vehicle cockpits present unique challenges for API Agents, requiring coordination across tightly-coupled subsystems that exceed typical task environments' complexity. Traditional Function Calling (FC) approaches operate statelessly, requiring multiple exploratory calls to build environmental awareness before execution, leading to inefficiency and limited error recovery. We introduce VehicleWorld, the first comprehensive environment for the automotive domain, featuring 30 modules, 250 APIs, and 680 properties with fully executable implementations that provide real-time state information during agent execution. This environment enables precise evaluation of vehicle agent behaviors across diverse, challenging scenarios. Through systematic analysis, we discovered that direct state prediction outperforms function calling for environmental control. Building on this insight, we propose State-based Function Call (SFC), a novel approach that maintains explicit system state awareness and implements direct state transitions to achieve target conditions. Experimental results demonstrate that SFC significantly outperforms traditional FC approaches, achieving superior execution accuracy and reduced latency. We have made all implementation code publicly available on Github https://github.com/OpenMOSS/VehicleWorld.
☆ Reinforcement Learning Foundations for Deep Research Systems: A Survey
Deep research systems, agentic AI that solve complex, multi-step tasks by coordinating reasoning, search across the open web and user files, and tool use, are moving toward hierarchical deployments with a Planner, Coordinator, and Executors. In practice, training entire stacks end-to-end remains impractical, so most work trains a single planner connected to core tools such as search, browsing, and code. While SFT imparts protocol fidelity, it suffers from imitation and exposure biases and underuses environment feedback. Preference alignment methods such as DPO are schema and proxy-dependent, off-policy, and weak for long-horizon credit assignment and multi-objective trade-offs. A further limitation of SFT and DPO is their reliance on human defined decision points and subskills through schema design and labeled comparisons. Reinforcement learning aligns with closed-loop, tool-interaction research by optimizing trajectory-level policies, enabling exploration, recovery behaviors, and principled credit assignment, and it reduces dependence on such human priors and rater biases. This survey is, to our knowledge, the first dedicated to the RL foundations of deep research systems. It systematizes work after DeepSeek-R1 along three axes: (i) data synthesis and curation; (ii) RL methods for agentic research covering stability, sample efficiency, long context handling, reward and credit design, multi-objective optimization, and multimodal integration; and (iii) agentic RL training systems and frameworks. We also cover agent architecture and coordination, as well as evaluation and benchmarks, including recent QA, VQA, long-form synthesis, and domain-grounded, tool-interaction tasks. We distill recurring patterns, surface infrastructure bottlenecks, and offer practical guidance for training robust, transparent deep research agents with RL.
comment: 38 pages, first version
☆ Will Annotators Disagree? Identifying Subjectivity in Value-Laden Arguments EMNLP 2025
Aggregating multiple annotations into a single ground truth label may hide valuable insights into annotator disagreement, particularly in tasks where subjectivity plays a crucial role. In this work, we explore methods for identifying subjectivity in recognizing the human values that motivate arguments. We evaluate two main approaches: inferring subjectivity through value prediction vs. directly identifying subjectivity. Our experiments show that direct subjectivity identification significantly improves the model performance of flagging subjective arguments. Furthermore, combining contrastive loss with binary cross-entropy loss does not improve performance but reduces the dependency on per-label subjectivity. Our proposed methods can help identify arguments that individuals may interpret differently, fostering a more nuanced annotation process.
comment: Accepted at Findings of EMNLP 2025
☆ ParCzech4Speech: A New Speech Corpus Derived from Czech Parliamentary Data
We introduce ParCzech4Speech 1.0, a processed version of the ParCzech 4.0 corpus, targeted at speech modeling tasks with the largest variant containing 2,695 hours. We combined the sound recordings of the Czech parliamentary speeches with the official transcripts. The recordings were processed with WhisperX and Wav2Vec 2.0 to extract automated audio-text alignment. Our processing pipeline improves upon the ParCzech 3.0 speech recognition version by extracting more data with higher alignment reliability. The dataset is offered in three flexible variants: (1) sentence-segmented for automatic speech recognition and speech synthesis tasks with clean boundaries, (2) unsegmented preserving original utterance flow across sentences, and (3) a raw-alignment for further custom refinement for other possible tasks. All variants maintain the original metadata and are released under a permissive CC-BY license. The dataset is available in the LINDAT repository, with the sentence-segmented and unsegmented variants additionally available on Hugging Face.
☆ IntrEx: A Dataset for Modeling Engagement in Educational Conversations EMNLP 2025
Engagement and motivation are crucial for second-language acquisition, yet maintaining learner interest in educational conversations remains a challenge. While prior research has explored what makes educational texts interesting, still little is known about the linguistic features that drive engagement in conversations. To address this gap, we introduce IntrEx, the first large dataset annotated for interestingness and expected interestingness in teacher-student interactions. Built upon the Teacher-Student Chatroom Corpus (TSCC), IntrEx extends prior work by incorporating sequence-level annotations, allowing for the study of engagement beyond isolated turns to capture how interest evolves over extended dialogues. We employ a rigorous annotation process with over 100 second-language learners, using a comparison-based rating approach inspired by reinforcement learning from human feedback (RLHF) to improve agreement. We investigate whether large language models (LLMs) can predict human interestingness judgments. We find that LLMs (7B/8B parameters) fine-tuned on interestingness ratings outperform larger proprietary models like GPT-4o, demonstrating the potential for specialised datasets to model engagement in educational settings. Finally, we analyze how linguistic and cognitive factors, such as concreteness, comprehensibility (readability), and uptake, influence engagement in educational dialogues.
comment: EMNLP 2025 Findings camera-ready, 9+7 pages
☆ Domain-Aware RAG: MoL-Enhanced RL for Efficient Training and Scalable Retrieval
Retrieval-Augmented Generation (RAG) systems rely heavily on the retrieval stage, particularly the coarse-ranking process. Existing coarse-ranking optimization approaches often struggle to balance domain-specific knowledge learning with query enhencement, resulting in suboptimal retrieval performance. To address this challenge, we propose MoLER, a domain-aware RAG method that uses MoL-Enhanced Reinforcement Learning to optimize retrieval. MoLER has a two-stage pipeline: a continual pre-training (CPT) phase using a Mixture of Losses (MoL) to balance domain-specific knowledge with general language capabilities, and a reinforcement learning (RL) phase leveraging Group Relative Policy Optimization (GRPO) to optimize query and passage generation for maximizing document recall. A key innovation is our Multi-query Single-passage Late Fusion (MSLF) strategy, which reduces computational overhead during RL training while maintaining scalable inference via Multi-query Multi-passage Late Fusion (MMLF). Extensive experiments on benchmark datasets show that MoLER achieves state-of-the-art performance, significantly outperforming baseline methods. MoLER bridges the knowledge gap in RAG systems, enabling robust and scalable retrieval in specialized domains.
☆ Modelling Intertextuality with N-gram Embeddings
Intertextuality is a central tenet in literary studies. It refers to the intricate links between literary texts that are created by various types of references. This paper proposes a new quantitative model of intertextuality to enable scalable analysis and network-based insights: perform pairwise comparisons of the embeddings of n-grams from two texts and average their results as the overall intertextuality. Validation on four texts with known degrees of intertextuality, alongside a scalability test on 267 diverse texts, demonstrates the method's effectiveness and efficiency. Network analysis further reveals centrality and community structures, affirming the approach's success in capturing and quantifying intertextual relationships.
☆ Guided Decoding and Its Critical Role in Retrieval-Augmented Generation
The integration of Large Language Models (LLMs) into various applications has driven the need for structured and reliable responses. A key challenge in Retrieval-Augmented Generation (RAG) systems is ensuring that outputs align with expected formats while minimizing hallucinations. This study examines the role of guided decoding in RAG systems, comparing three methods, Outlines, XGrammar, and LM Format Enforcer, across different multi-turn prompting setups (0-turn, 1-turn, and 2-turn). By evaluating success rates, hallucination rates, and output quality, we provide insights into their performance and applicability. Our findings reveal how multi-turn interactions influence guided decoding, uncovering unexpected performance variations that can inform method selection for specific use cases. This work advances the understanding of structured output generation in RAG systems, offering both theoretical insights and practical guidance for LLM deployment.
☆ HAVE: Head-Adaptive Gating and ValuE Calibration for Hallucination Mitigation in Large Language Models
Large Language Models (LLMs) often produce hallucinations in retrieval-augmented or long-context generation, even when relevant evidence is present. This stems from two issues: head importance is treated as input-agnostic, and raw attention weights poorly reflect each token's true contribution. We present HAVE (Head-Adaptive Gating and ValuE Calibration), a parameter-free decoding framework that directly addresses both challenges. HAVE introduces head-adaptive gating, which performs instance-level soft reweighing of attention heads, and value calibration, which augments attention with the magnitude of value vectors to approximate write-back contribution. Together, these modules construct token-level evidence aligned with model updates and fuse it with the LM distribution through a lightweight uncertainty-scaled policy. HAVE requires no finetuning and operates in a single forward pass, making it efficient and broadly applicable. Experiments across multiple QA benchmarks and LLM families demonstrate that HAVE consistently reduces hallucinations and outperforms strong baselines, including DAGCD, with modest overhead. The framework is transparent, reproducible, and readily integrates with off-the-shelf LLMs, advancing trustworthy generation in real-world settings.
☆ SLiNT: Structure-aware Language Model with Injection and Contrastive Training for Knowledge Graph Completion EMNLP
Link prediction in knowledge graphs requires integrating structural information and semantic context to infer missing entities. While large language models offer strong generative reasoning capabilities, their limited exploitation of structural signals often results in structural sparsity and semantic ambiguity, especially under incomplete or zero-shot settings. To address these challenges, we propose SLiNT (Structure-aware Language model with Injection and coNtrastive Training), a modular framework that injects knowledge-graph-derived structural context into a frozen LLM backbone with lightweight LoRA-based adaptation for robust link prediction. Specifically, Structure-Guided Neighborhood Enhancement (SGNE) retrieves pseudo-neighbors to enrich sparse entities and mitigate missing context; Dynamic Hard Contrastive Learning (DHCL) introduces fine-grained supervision by interpolating hard positives and negatives to resolve entity-level ambiguity; and Gradient-Decoupled Dual Injection (GDDI) performs token-level structure-aware intervention while preserving the core LLM parameters. Experiments on WN18RR and FB15k-237 show that SLiNT achieves superior or competitive performance compared with both embedding-based and generation-based baselines, demonstrating the effectiveness of structure-aware representation learning for scalable knowledge graph completion.
comment: Accepted by EMNLP Findings 2025
☆ LAMDAS: LLM as an Implicit Classifier for Domain-specific Data Selection
Adapting large language models (LLMs) to specific domains often faces a critical bottleneck: the scarcity of high-quality, human-curated data. While large volumes of unchecked data are readily available, indiscriminately using them for fine-tuning risks introducing noise and degrading performance. Strategic data selection is thus crucial, requiring a method that is both accurate and efficient. Existing approaches, categorized as similarity-based and direct optimization methods, struggle to simultaneously achieve these goals. In this paper, we introduce LAMDAS (LLM As an iMplicit classifier for domain-specific DAta Selection), a novel approach that leverages the pre-trained LLM itself as an implicit classifier, thereby bypassing explicit feature engineering and computationally intensive optimization process. LAMDAS reframes data selection as a one-class classification problem, identifying candidate data that "belongs" to the target domain defined by a small reference dataset. Extensive experimental results demonstrate that LAMDAS not only exceeds the performance of full-data training using a fraction of the data but also outperforms nine state-of-the-art (SOTA) baselines under various scenarios. Furthermore, LAMDAS achieves the most compelling balance between performance gains and computational efficiency compared to all evaluated baselines.
☆ Crown, Frame, Reverse: Layer-Wise Scaling Variants for LLM Pre-Training
Transformer-based language models traditionally use uniform (isotropic) layer sizes, yet they ignore the diverse functional roles that different depths can play and their computational capacity needs. Building on Layer-Wise Scaling (LWS) and pruning literature, we introduce three new LWS variants - Framed, Reverse, and Crown - that redistribute FFN widths and attention heads via two or three-point linear interpolation in the pre-training stage. We present the first systematic ablation of LWS and its variants, on a fixed budget of 180M parameters, trained on 5B tokens. All models converge to similar losses and achieve better performance compared to an equal-cost isotropic baseline, without a substantial decrease in training throughput. This work represents an initial step into the design space of layer-wise architectures for pre-training, but future work should scale experiments to orders of magnitude more tokens and parameters to fully assess their potential.
comment: The reported results are skewed due to a data type mismatch. The dataset was saved with int32, but the data loader interpreted it as uint16. As a result, each 32-bit token was incorrectly split into two 16-bit tokens. Outcome: a consistent artifact where every other token is zero
☆ WebExplorer: Explore and Evolve for Training Long-Horizon Web Agents
The paradigm of Large Language Models (LLMs) has increasingly shifted toward agentic applications, where web browsing capabilities are fundamental for retrieving information from diverse online sources. However, existing open-source web agents either demonstrate limited information-seeking abilities on complex tasks or lack transparent implementations. In this work, we identify that the key challenge lies in the scarcity of challenging data for information seeking. To address this limitation, we introduce WebExplorer: a systematic data generation approach using model-based exploration and iterative, long-to-short query evolution. This method creates challenging query-answer pairs that require multi-step reasoning and complex web navigation. By leveraging our curated high-quality dataset, we successfully develop advanced web agent WebExplorer-8B through supervised fine-tuning followed by reinforcement learning. Our model supports 128K context length and up to 100 tool calling turns, enabling long-horizon problem solving. Across diverse information-seeking benchmarks, WebExplorer-8B achieves the state-of-the-art performance at its scale. Notably, as an 8B-sized model, WebExplorer-8B is able to effectively search over an average of 16 turns after RL training, achieving higher accuracy than WebSailor-72B on BrowseComp-en/zh and attaining the best performance among models up to 100B parameters on WebWalkerQA and FRAMES. Beyond these information-seeking tasks, our model also achieves strong generalization on the HLE benchmark even though it is only trained on knowledge-intensive QA data. These results highlight our approach as a practical path toward long-horizon web agents.
☆ Index-Preserving Lightweight Token Pruning for Efficient Document Understanding in Vision-Language Models ICASSP 2026
Recent progress in vision-language models (VLMs) has led to impressive results in document understanding tasks, but their high computational demands remain a challenge. To mitigate the compute burdens, we propose a lightweight token pruning framework that filters out non-informative background regions from document images prior to VLM processing. A binary patch-level classifier removes non-text areas, and a max-pooling refinement step recovers fragmented text regions to enhance spatial coherence. Experiments on real-world document datasets demonstrate that our approach substantially lowers computational costs, while maintaining comparable accuracy.
comment: Submitted to ICASSP 2026
☆ Do LLMs exhibit the same commonsense capabilities across languages?
This paper explores the multilingual commonsense generation abilities of Large Language Models (LLMs). To facilitate this investigation, we introduce MULTICOM, a novel benchmark that extends the COCOTEROS dataset to four languages: English, Spanish, Dutch, and Valencian. The task involves generating a commonsensical sentence that includes a given triplet of words. We evaluate a range of open-source LLMs, including LLaMA, Qwen, Gemma, EuroLLM, and Salamandra, on this benchmark. Our evaluation combines automatic metrics, LLM-as-a-judge approaches (using Prometheus and JudgeLM), and human annotations. Results consistently show superior performance in English, with significantly lower performance in less-resourced languages. While contextual support yields mixed results, it tends to benefit underrepresented languages. These findings underscore the current limitations of LLMs in multilingual commonsense generation. The dataset is publicly available at https://huggingface.co/datasets/gplsi/MULTICOM.
☆ PL-CA: A Parametric Legal Case Augmentation Framework
Conventional RAG is considered one of the most effective methods for addressing model knowledge insufficiency and hallucination, particularly in the judicial domain that requires high levels of knowledge rigor, logical consistency, and content integrity. However, the conventional RAG method only injects retrieved documents directly into the model's context, which severely constrains models due to their limited context windows and introduces additional computational overhead through excessively long contexts, thereby disrupting models' attention and degrading performance on downstream tasks. Moreover, many existing benchmarks lack expert annotation and focus solely on individual downstream tasks while real-world legal scenarios consist of multiple mixed legal tasks, indicating conventional benchmarks' inadequacy for reflecting models' true capabilities. To address these limitations, we propose PL-CA, which introduces a parametric RAG (P-RAG) framework to perform data augmentation on corpus knowledge and encode this legal knowledge into parametric vectors, and then integrates this parametric knowledge into the LLM's feed-forward networks (FFN) via LoRA, thereby alleviating models' context pressure. Additionally, we also construct a multi-task legal dataset comprising more than 2000 training and test instances, which are all expert-annotated and manually verified. We conduct our experiments on our dataset, and the experimental results demonstrate that our method reduces the overhead associated with excessively long contexts while maintaining competitive performance on downstream tasks compared to conventional RAG. Our code and dataset are provided in the appendix.
☆ Mask-GCG: Are All Tokens in Adversarial Suffixes Necessary for Jailbreak Attacks?
Jailbreak attacks on Large Language Models (LLMs) have demonstrated various successful methods whereby attackers manipulate models into generating harmful responses that they are designed to avoid. Among these, Greedy Coordinate Gradient (GCG) has emerged as a general and effective approach that optimizes the tokens in a suffix to generate jailbreakable prompts. While several improved variants of GCG have been proposed, they all rely on fixed-length suffixes. However, the potential redundancy within these suffixes remains unexplored. In this work, we propose Mask-GCG, a plug-and-play method that employs learnable token masking to identify impactful tokens within the suffix. Our approach increases the update probability for tokens at high-impact positions while pruning those at low-impact positions. This pruning not only reduces redundancy but also decreases the size of the gradient space, thereby lowering computational overhead and shortening the time required to achieve successful attacks compared to GCG. We evaluate Mask-GCG by applying it to the original GCG and several improved variants. Experimental results show that most tokens in the suffix contribute significantly to attack success, and pruning a minority of low-impact tokens does not affect the loss values or compromise the attack success rate (ASR), thereby revealing token redundancy in LLM prompts. Our findings provide insights for developing efficient and interpretable LLMs from the perspective of jailbreak attacks.
☆ SFR-DeepResearch: Towards Effective Reinforcement Learning for Autonomously Reasoning Single Agents
Equipping large language models (LLMs) with complex, interleaved reasoning and tool-use capabilities has become a key focus in agentic AI research, especially with recent advances in reasoning-oriented (``thinking'') models. Such capabilities are key to unlocking a number of important applications. One such application is Deep Research (DR), which requires extensive search and reasoning over many sources. Our work in this paper focuses on the development of native Autonomous Single-Agent models for DR featuring minimal web crawling and Python tool integration. Unlike multi-agent systems, where agents take up pre-defined roles and are told what to do at each step in a static workflow, an autonomous single-agent determines its next action dynamically based on context, without manual directive. While prior work has proposed training recipes for base or instruction-tuned LLMs, we focus on continual reinforcement learning (RL) of reasoning-optimized models to further enhance agentic skills while preserving reasoning ability. Towards this end, we propose a simple RL recipe with entirely synthetic data, which we apply to various open-source LLMs. Our best variant SFR-DR-20B achieves up to 28.7% on Humanity's Last Exam benchmark. In addition, we conduct key analysis experiments to provide more insights into our methodologies.
comment: Technical Report
☆ No Encore: Unlearning as Opt-Out in Music Generation
AI music generation is rapidly emerging in the creative industries, enabling intuitive music generation from textual descriptions. However, these systems pose risks in exploitation of copyrighted creations, raising ethical and legal concerns. In this paper, we present preliminary results on the first application of machine unlearning techniques from an ongoing research to prevent inadvertent usage of creative content. Particularly, we explore existing methods in machine unlearning to a pre-trained Text-to-Music (TTM) baseline and analyze their efficacy in unlearning pre-trained datasets without harming model performance. Through our experiments, we provide insights into the challenges of applying unlearning in music generation, offering a foundational analysis for future works on the application of unlearning for music generative models.
comment: Work in progress. 7 pages
☆ ALICE: An Interpretable Neural Architecture for Generalization in Substitution Ciphers
We present cryptogram solving as an ideal testbed for studying neural network generalization in combinatorially complex domains. In this task, models must decrypt text encoded with substitution ciphers, choosing from 26! possible mappings without explicit access to the cipher. We develop ALICE (an Architecture for Learning Interpretable Cryptogram dEcipherment): a simple encoder-only Transformer that sets a new state-of-the-art for both accuracy and speed on this decryption problem. Surprisingly, ALICE generalizes to unseen ciphers after training on only ${\sim}1500$ unique ciphers, a minute fraction ($3.7 \times 10^{-24}$) of the possible cipher space. To enhance interpretability, we introduce a novel bijective decoding head that explicitly models permutations via the Gumbel-Sinkhorn method, enabling direct extraction of learned cipher mappings. Through early exit analysis, we reveal how ALICE progressively refines its predictions in a way that appears to mirror common human strategies for this task: early layers employ frequency-based heuristics, middle layers form word structures, and final layers correct individual characters. Our architectural innovations and analysis methods extend beyond cryptograms to any domain with bijective mappings and combinatorial structure, offering new insights into neural network generalization and interpretability.
comment: Preprint. Project page at https://jshen.net/alice
☆ LLM Analysis of 150+ years of German Parliamentary Debates on Migration Reveals Shift from Post-War Solidarity to Anti-Solidarity in the Last Decade
Migration has been a core topic in German political debate, from millions of expellees post World War II over labor migration to refugee movements in the recent past. Studying political speech regarding such wide-ranging phenomena in depth traditionally required extensive manual annotations, limiting the scope of analysis to small subsets of the data. Large language models (LLMs) have the potential to partially automate even complex annotation tasks. We provide an extensive evaluation of a multiple LLMs in annotating (anti-)solidarity subtypes in German parliamentary debates compared to a large set of thousands of human reference annotations (gathered over a year). We evaluate the influence of model size, prompting differences, fine-tuning, historical versus contemporary data; and we investigate systematic errors. Beyond methodological evaluation, we also interpret the resulting annotations from a social science lense, gaining deeper insight into (anti-)solidarity trends towards migrants in the German post-World War II period and recent past. Our data reveals a high degree of migrant-directed solidarity in the postwar period, as well as a strong trend towards anti-solidarity in the German parliament since 2015, motivating further research. These findings highlight the promise of LLMs for political text analysis and the importance of migration debates in Germany, where demographic decline and labor shortages coexist with rising polarization.
☆ Benchmarking Information Retrieval Models on Complex Retrieval Tasks
Large language models (LLMs) are incredible and versatile tools for text-based tasks that have enabled countless, previously unimaginable, applications. Retrieval models, in contrast, have not yet seen such capable general-purpose models emerge. To achieve this goal, retrieval models must be able to perform complex retrieval tasks, where queries contain multiple parts, constraints, or requirements in natural language. These tasks represent a natural progression from the simple, single-aspect queries that are used in the vast majority of existing, commonly used evaluation sets. Complex queries naturally arise as people expect search systems to handle more specific and often ambitious information requests, as is demonstrated by how people use LLM-based information systems. Despite the growing desire for retrieval models to expand their capabilities in complex retrieval tasks, there exist limited resources to assess the ability of retrieval models on a comprehensive set of diverse complex tasks. The few resources that do exist feature a limited scope and often lack realistic settings making it hard to know the true capabilities of retrieval models on complex real-world retrieval tasks. To address this shortcoming and spur innovation in next-generation retrieval models, we construct a diverse and realistic set of complex retrieval tasks and benchmark a representative set of state-of-the-art retrieval models. Additionally, we explore the impact of LLM-based query expansion and rewriting on retrieval quality. Our results show that even the best models struggle to produce high-quality retrieval results with the highest average nDCG@10 of only 0.346 and R@100 of only 0.587 across all tasks. Although LLM augmentation can help weaker models, the strongest model has decreased performance across all metrics with all rewriting techniques.
☆ Neurocognitive Modeling for Text Generation: Deep Learning Architecture for EEG Data
Text generating capabilities have undergone a substantial transformation with the introduction of large language models (LLMs). Electroencephalography (EEG)-based text production is still difficult, though, because it requires a lot of data and processing power. This paper introduces a new method that combines the use of the Gemma 2B LLM with a classifier-LLM architecture to incorporate a Recurrent Neural Network (RNN) encoder. Our approach drastically lowers the amount of data and compute power needed while achieving performance close to that of cutting-edge methods. Notably, compared to current methodologies, our methodology delivers an overall performance improvement of 10%. The suggested architecture demonstrates the possibility of effective transfer learning for EEG-based text production, remaining strong and functional even in the face of data limits. This work highlights the potential of integrating LLMs with EEG decoding to improve assistive technologies and improve independence and communication for those with severe motor limitations. Our method pushes the limits of present capabilities and opens new paths for research and application in brain-computer interfaces by efficiently using the strengths of pre-trained language models. This makes EEG-based text production more accessible and efficient.
comment: 15 pages, 10 figures, 5 tables
☆ Rule-Based Moral Principles for Explaining Uncertainty in Natural Language Generation
Large language models (LLMs) are increasingly used in high-stakes settings, where explaining uncertainty is both technical and ethical. Probabilistic methods are often opaque and misaligned with expectations of transparency. We propose a framework based on rule-based moral principles for handling uncertainty in LLM-generated text. Using insights from moral psychology and virtue ethics, we define rules such as precaution, deference, and responsibility to guide responses under epistemic or aleatoric uncertainty. These rules are encoded in a lightweight Prolog engine, where uncertainty levels (low, medium, high) trigger aligned system actions with plain-language rationales. Scenario-based simulations benchmark rule coverage, fairness, and trust calibration. Use cases in clinical and legal domains illustrate how moral reasoning can improve trust and interpretability. Our approach offers a transparent, lightweight alternative to probabilistic models for socially responsible natural language generation.
comment: This paper was accepted for presentation at the 35th IEEE International Conference on Collaborative Advances in Software and Computing. Conference website:https://conf.researchr.org/home/cascon-2025
☆ DischargeSim: A Simulation Benchmark for Educational Doctor-Patient Communication at Discharge EMNLP
Discharge communication is a critical yet underexplored component of patient care, where the goal shifts from diagnosis to education. While recent large language model (LLM) benchmarks emphasize in-visit diagnostic reasoning, they fail to evaluate models' ability to support patients after the visit. We introduce DischargeSim, a novel benchmark that evaluates LLMs on their ability to act as personalized discharge educators. DischargeSim simulates post-visit, multi-turn conversations between LLM-driven DoctorAgents and PatientAgents with diverse psychosocial profiles (e.g., health literacy, education, emotion). Interactions are structured across six clinically grounded discharge topics and assessed along three axes: (1) dialogue quality via automatic and LLM-as-judge evaluation, (2) personalized document generation including free-text summaries and structured AHRQ checklists, and (3) patient comprehension through a downstream multiple-choice exam. Experiments across 18 LLMs reveal significant gaps in discharge education capability, with performance varying widely across patient profiles. Notably, model size does not always yield better education outcomes, highlighting trade-offs in strategy use and content prioritization. DischargeSim offers a first step toward benchmarking LLMs in post-visit clinical education and promoting equitable, personalized patient support.
comment: Equal contribution for the first two authors. To appear in the proceedings of the Main Conference on Empirical Methods in Natural Language Processing (EMNLP) 2025
☆ Towards EnergyGPT: A Large Language Model Specialized for the Energy Sector
Large Language Models have demonstrated impressive capabilities across various domains. However, their general-purpose nature often limits their effectiveness in specialized fields such as energy, where deep technical expertise and precise domain knowledge are essential. In this paper, we introduce EnergyGPT, a domain-specialized language model tailored for the energy sector, developed by fine-tuning LLaMA 3.1-8B model using Supervised Fine-Tuning on a high-quality, curated corpus of energy-related texts. We present a complete development pipeline, including data collection and curation, model fine-tuning, benchmark design and LLM-judge choice, evaluation and deployment. Through this work, we demonstrate that our training strategy enables improvements in domain relevance and performance without the need for large-scale infrastructure. By evaluating the performance of the model using domain-specific question-answering benchmarks, our results demonstrate that EnergyGPT outperforms the base model in most of the energy-related language understanding and generation tasks.
☆ That's So FETCH: Fashioning Ensemble Techniques for LLM Classification in Civil Legal Intake and Referral
Each year millions of people seek help for their legal problems by calling a legal aid program hotline, walking into a legal aid office, or using a lawyer referral service. The first step to match them to the right help is to identify the legal problem the applicant is experiencing. Misdirection has consequences. Applicants may miss a deadline, experience physical abuse, lose housing or lose custody of children while waiting to connect to the right legal help. We introduce and evaluate the FETCH classifier for legal issue classification and describe two methods for improving accuracy: a hybrid LLM/ML ensemble classification method, and the automatic generation of follow-up questions to enrich the initial problem narrative. We employ a novel data set of 419 real-world queries to a nonprofit lawyer referral service. Ultimately, we show classification accuracy (hits@2) of 97.37\% using a mix of inexpensive models, exceeding the performance of the current state-of-the-art GPT-5 model. Our approach shows promise in significantly reducing the cost of guiding users of the legal system to the right resource for their problem while achieving high accuracy.
comment: Submission to JURIX 2025
☆ Beyond Sequential Reranking: Reranker-Guided Search Improves Reasoning Intensive Retrieval
The widely used retrieve-and-rerank pipeline faces two critical limitations: they are constrained by the initial retrieval quality of the top-k documents, and the growing computational demands of LLM-based rerankers restrict the number of documents that can be effectively processed. We introduce Reranker-Guided-Search (RGS), a novel approach that bypasses these limitations by directly retrieving documents according to reranker preferences rather than following the traditional sequential reranking method. Our method uses a greedy search on proximity graphs generated by approximate nearest neighbor algorithms, strategically prioritizing promising documents for reranking based on document similarity. Experimental results demonstrate substantial performance improvements across multiple benchmarks: 3.5 points on BRIGHT, 2.9 on FollowIR, and 5.1 on M-BEIR, all within a constrained reranker budget of 100 documents. Our analysis suggests that, given a fixed pair of embedding and reranker models, strategically selecting documents to rerank can significantly improve retrieval accuracy under limited reranker budget.
☆ Measuring Uncertainty in Transformer Circuits with Effective Information Consistency
Mechanistic interpretability has identified functional subgraphs within large language models (LLMs), known as Transformer Circuits (TCs), that appear to implement specific algorithms. Yet we lack a formal, single-pass way to quantify when an active circuit is behaving coherently and thus likely trustworthy. Building on prior systems-theoretic proposals, we specialize a sheaf/cohomology and causal emergence perspective to TCs and introduce the Effective-Information Consistency Score (EICS). EICS combines (i) a normalized sheaf inconsistency computed from local Jacobians and activations, with (ii) a Gaussian EI proxy for circuit-level causal emergence derived from the same forward state. The construction is white-box, single-pass, and makes units explicit so that the score is dimensionless. We further provide practical guidance on score interpretation, computational overhead (with fast and exact modes), and a toy sanity-check analysis. Empirical validation on LLM tasks is deferred.
☆ Toward Purpose-oriented Topic Model Evaluation enabled by Large Language Models
This study presents a framework for automated evaluation of dynamically evolving topic models using Large Language Models (LLMs). Topic modeling is essential for organizing and retrieving scholarly content in digital library systems, helping users navigate complex and evolving knowledge domains. However, widely used automated metrics, such as coherence and diversity, often capture only narrow statistical patterns and fail to explain semantic failures in practice. We introduce a purpose-oriented evaluation framework that employs nine LLM-based metrics spanning four key dimensions of topic quality: lexical validity, intra-topic semantic soundness, inter-topic structural soundness, and document-topic alignment soundness. The framework is validated through adversarial and sampling-based protocols, and is applied across datasets spanning news articles, scholarly publications, and social media posts, as well as multiple topic modeling methods and open-source LLMs. Our analysis shows that LLM-based metrics provide interpretable, robust, and task-relevant assessments, uncovering critical weaknesses in topic models such as redundancy and semantic drift, which are often missed by traditional metrics. These results support the development of scalable, fine-grained evaluation tools for maintaining topic relevance in dynamic datasets. All code and data supporting this work are accessible at https://github.com/zhiyintan/topic-model-LLMjudgment.
comment: Accepted for publication in International Journal on Digital Libraries (IJDL)
☆ The ML-SUPERB 2.0 Challenge: Towards Inclusive ASR Benchmarking for All Language Varieties
Recent improvements in multilingual ASR have not been equally distributed across languages and language varieties. To advance state-of-the-art (SOTA) ASR models, we present the Interspeech 2025 ML-SUPERB 2.0 Challenge. We construct a new test suite that consists of data from 200+ languages, accents, and dialects to evaluate SOTA multilingual speech models. The challenge also introduces an online evaluation server based on DynaBench, allowing for flexibility in model design and architecture for participants. The challenge received 5 submissions from 3 teams, all of which outperformed our baselines. The best-performing submission achieved an absolute improvement in LID accuracy of 23% and a reduction in CER of 18% when compared to the best baseline on a general multilingual test set. On accented and dialectal data, the best submission obtained 30.2% lower CER and 15.7% higher LID accuracy, showing the importance of community challenges in making speech technologies more inclusive.
comment: Interspeech 2025
☆ MedBench-IT: A Comprehensive Benchmark for Evaluating Large Language Models on Italian Medical Entrance Examinations
Large language models (LLMs) show increasing potential in education, yet benchmarks for non-English languages in specialized domains remain scarce. We introduce MedBench-IT, the first comprehensive benchmark for evaluating LLMs on Italian medical university entrance examinations. Sourced from Edizioni Simone, a leading preparatory materials publisher, MedBench-IT comprises 17,410 expert-written multiple-choice questions across six subjects (Biology, Chemistry, Logic, General Culture, Mathematics, Physics) and three difficulty levels. We evaluated diverse models including proprietary LLMs (GPT-4o, Claude series) and resource-efficient open-source alternatives (<30B parameters) focusing on practical deployability. Beyond accuracy, we conducted rigorous reproducibility tests (88.86% response consistency, varying by subject), ordering bias analysis (minimal impact), and reasoning prompt evaluation. We also examined correlations between question readability and model performance, finding a statistically significant but small inverse relationship. MedBench-IT provides a crucial resource for Italian NLP community, EdTech developers, and practitioners, offering insights into current capabilities and standardized evaluation methodology for this critical domain.
comment: Accepted as an oral presentation at CLiC-it 2025
☆ Neuro-Symbolic Frameworks: Conceptual Characterization and Empirical Comparative Analysis
Neurosymbolic (NeSy) frameworks combine neural representations and learning with symbolic representations and reasoning. Combining the reasoning capacities, explainability, and interpretability of symbolic processing with the flexibility and power of neural computing allows us to solve complex problems with more reliability while being data-efficient. However, this recently growing topic poses a challenge to developers with its learning curve, lack of user-friendly tools, libraries, and unifying frameworks. In this paper, we characterize the technical facets of existing NeSy frameworks, such as the symbolic representation language, integration with neural models, and the underlying algorithms. A majority of the NeSy research focuses on algorithms instead of providing generic frameworks for declarative problem specification to leverage problem solving. To highlight the key aspects of Neurosymbolic modeling, we showcase three generic NeSy frameworks - \textit{DeepProbLog}, \textit{Scallop}, and \textit{DomiKnowS}. We identify the challenges within each facet that lay the foundation for identifying the expressivity of each framework in solving a variety of problems. Building on this foundation, we aim to spark transformative action and encourage the community to rethink this problem in novel ways.
☆ Instruction Agent: Enhancing Agent with Expert Demonstration
Graphical user interface (GUI) agents have advanced rapidly but still struggle with complex tasks involving novel UI elements, long-horizon actions, and personalized trajectories. In this work, we introduce Instruction Agent, a GUI agent that leverages expert demonstrations to solve such tasks, enabling completion of otherwise difficult workflows. Given a single demonstration, the agent extracts step-by-step instructions and executes them by strictly following the trajectory intended by the user, which avoids making mistakes during execution. The agent leverages the verifier and backtracker modules further to improve robustness. Both modules are critical to understand the current outcome from each action and handle unexpected interruptions(such as pop-up windows) during execution. Our experiments show that Instruction Agent achieves a 60% success rate on a set of tasks in OSWorld that all top-ranked agents failed to complete. The Instruction Agent offers a practical and extensible framework, bridging the gap between current GUI agents and reliable real-world GUI task automation.
☆ Measuring and mitigating overreliance is necessary for building human-compatible AI
Large language models (LLMs) distinguish themselves from previous technologies by functioning as collaborative "thought partners," capable of engaging more fluidly in natural language. As LLMs increasingly influence consequential decisions across diverse domains from healthcare to personal advice, the risk of overreliance - relying on LLMs beyond their capabilities - grows. This position paper argues that measuring and mitigating overreliance must become central to LLM research and deployment. First, we consolidate risks from overreliance at both the individual and societal levels, including high-stakes errors, governance challenges, and cognitive deskilling. Then, we explore LLM characteristics, system design features, and user cognitive biases that - together - raise serious and unique concerns about overreliance in practice. We also examine historical approaches for measuring overreliance, identifying three important gaps and proposing three promising directions to improve measurement. Finally, we propose mitigation strategies that the AI research community can pursue to ensure LLMs augment rather than undermine human capabilities.
♻ ☆ Transforming Wearable Data into Personal Health Insights using Large Language Model Agents
Deriving personalized insights from popular wearable trackers requires complex numerical reasoning that challenges standard LLMs, necessitating tool-based approaches like code generation. Large language model (LLM) agents present a promising yet largely untapped solution for this analysis at scale. We introduce the Personal Health Insights Agent (PHIA), a system leveraging multistep reasoning with code generation and information retrieval to analyze and interpret behavioral health data. To test its capabilities, we create and share two benchmark datasets with over 4000 health insights questions. A 650-hour human expert evaluation shows that PHIA significantly outperforms a strong code generation baseline, achieving 84% accuracy on objective, numerical questions and, for open-ended ones, earning 83% favorable ratings while being twice as likely to achieve the highest quality rating. This work can advance behavioral health by empowering individuals to understand their data, enabling a new era of accessible, personalized, and data-driven wellness for the wider population.
comment: 53 pages, 7 main figures, 2 main tables, accepted to Nature Communications
♻ ☆ Think-to-Talk or Talk-to-Think? When LLMs Come Up with an Answer in Multi-Hop Arithmetic Reasoning
This study investigates the incremental, internal problem-solving process of language models (LMs) with arithmetic multi-hop reasoning as a case study. We specifically investigate when LMs internally resolve sub/whole problems through first reading the problem statements, generating reasoning chains, and achieving the final answer to mechanistically interpret LMs' multi-hop problem-solving process. Our experiments reveal a systematic incremental reasoning strategy underlying LMs. They have not derived an answer at the moment they first read the problem; instead, they obtain (sub)answers while generating the reasoning chain. Therefore, the generated reasoning chains can be regarded as faithful reflections of the model's internal computation.
♻ ☆ Not All Features Deserve Attention: Graph-Guided Dependency Learning for Tabular Data Generation with Language Models EMNLP 2025
Large Language Models (LLMs) have shown strong potential for tabular data generation by modeling textualized feature-value pairs. However, tabular data inherently exhibits sparse feature-level dependencies, where many feature interactions are structurally insignificant. This creates a fundamental mismatch as LLMs' self-attention mechanism inevitably distributes focus across all pairs, diluting attention on critical relationships, particularly in datasets with complex dependencies or semantically ambiguous features. To address this limitation, we propose GraDe (Graph-Guided Dependency Learning), a novel method that explicitly integrates sparse dependency graphs into LLMs' attention mechanism. GraDe employs a lightweight dynamic graph learning module guided by externally extracted functional dependencies, prioritizing key feature interactions while suppressing irrelevant ones. Our experiments across diverse real-world datasets demonstrate that GraDe outperforms existing LLM-based approaches by up to 12% on complex datasets while achieving competitive results with state-of-the-art approaches in synthetic data quality. Our method is minimally intrusive yet effective, offering a practical solution for structure-aware tabular data modeling with LLMs.
comment: Accepted to EMNLP 2025 (Findings)
♻ ☆ Antidistillation Sampling
Frontier models that generate extended reasoning traces inadvertently produce rich token sequences that can facilitate model distillation. Recognizing this vulnerability, model owners may seek sampling strategies that limit the effectiveness of distillation without compromising model performance. Antidistillation sampling provides exactly this capability. By strategically modifying a model's next-token probability distribution, antidistillation sampling poisons reasoning traces, rendering them significantly less effective for distillation while preserving the model's practical utility. For further details, see https://antidistillation.com.
♻ ☆ Project Riley: Multimodal Multi-Agent LLM Collaboration with Emotional Reasoning and Voting
This paper presents Project Riley, a novel multimodal and multi-model conversational AI architecture oriented towards the simulation of reasoning influenced by emotional states. Drawing inspiration from Pixar's Inside Out, the system comprises five distinct emotional agents - Joy, Sadness, Fear, Anger, and Disgust - that engage in structured multi-round dialogues to generate, criticise, and iteratively refine responses. A final reasoning mechanism synthesises the contributions of these agents into a coherent output that either reflects the dominant emotion or integrates multiple perspectives. The architecture incorporates both textual and visual large language models (LLMs), alongside advanced reasoning and self-refinement processes. A functional prototype was deployed locally in an offline environment, optimised for emotional expressiveness and computational efficiency. From this initial prototype, another one emerged, called Armando, which was developed for use in emergency contexts, delivering emotionally calibrated and factually accurate information through the integration of Retrieval-Augmented Generation (RAG) and cumulative context tracking. The Project Riley prototype was evaluated through user testing, in which participants interacted with the chatbot and completed a structured questionnaire assessing three dimensions: Emotional Appropriateness, Clarity and Utility, and Naturalness and Human-likeness. The results indicate strong performance in structured scenarios, particularly with respect to emotional alignment and communicative clarity.
comment: 28 pages, 5 figures. Submitted for review to Information Fusion
♻ ☆ Comparative Analysis of Transformer Models in Disaster Tweet Classification for Public Safety
Twitter and other social media platforms have become vital sources of real time information during disasters and public safety emergencies. Automatically classifying disaster related tweets can help emergency services respond faster and more effectively. Traditional Machine Learning (ML) models such as Logistic Regression, Naive Bayes, and Support Vector Machines have been widely used for this task, but they often fail to understand the context or deeper meaning of words, especially when the language is informal, metaphorical, or ambiguous. We posit that, in this context, transformer based models can perform better than traditional ML models. In this paper, we evaluate the effectiveness of transformer based models, including BERT, DistilBERT, RoBERTa, and DeBERTa, for classifying disaster related tweets. These models are compared with traditional ML approaches to highlight the performance gap. Experimental results show that BERT achieved the highest accuracy (91%), significantly outperforming traditional models like Logistic Regression and Naive Bayes (both at 82%). The use of contextual embeddings and attention mechanisms allows transformer models to better understand subtle language in tweets, where traditional ML models fall short. This research demonstrates that transformer architectures are far more suitable for public safety applications, offering improved accuracy, deeper language understanding, and better generalization across real world social media text.
♻ ☆ ChatCFD: An LLM-Driven Agent for End-to-End CFD Automation with Domain-Specific Structured Reasoning
Computational Fluid Dynamics (CFD) is essential for advancing scientific and engineering fields but is hindered by operational complexity, high expertise requirements, and limited accessibility. This paper introduces ChatCFD, an automated agent system for OpenFOAM simulations that processes multi-modal inputs (e.g., research papers, meshes) via an interactive interface, leveraging DeepSeek-R1 and DeepSeek-V3 large language models, a multi-agent architecture, and OpenFOAM knowledge. Its four-stage pipeline (Knowledge Base Construction, User Input Processing, Case File Generation, and Execution and Error Reflection) enables iterative trial-reflection-refinement for intricate setups, supporting diverse physical models and external meshes. Validation on 205 benchmark tutorial cases, 110 perturbed variants, and 2 literature-derived cases shows ChatCFD's 82.1 percent operational success rate on basic cases, outperforming MetaOpenFOAM (6.2 percent) and Foam-Agent (42.3 percent), and 60-80 percent on literature-derived complex cases. Turbulence model studies show a 40 percent success rate for common models versus 10 percent for rare ones like RNG k-epsilon. Physics coupling analyses reveal higher resource demands for multi-physics-coupled cases, while LLM bias toward simpler setups introduces persistent errors, such as dimensional inconsistency. Ablation studies highlight the efficacy of RAG-based modules and reflection mechanisms. By automating hypothesis testing and parameter exploration, ChatCFD accelerates scientific discovery in fluid mechanics and engineering, addressing LLM limitations through structured design and showing strong potential as a modular component in MCP-based agent networks for collaborative multi-agent systems, paving the way for scalable AI-driven CFD innovation. The code for ChatCFD is available at https://github.com/ConMoo/ChatCFD.
comment: 19 pages, 8 figures
♻ ☆ Self-Alignment: Improving Alignment of Cultural Values in LLMs via In-Context Learning
Improving the alignment of Large Language Models (LLMs) with respect to the cultural values that they encode has become an increasingly important topic. In this work, we study whether we can exploit existing knowledge about cultural values at inference time to adjust model responses to cultural value probes. We present a simple and inexpensive method that uses a combination of in-context learning (ICL) and human survey data, and show that we can improve the alignment to cultural values across 5 models that include both English-centric and multilingual LLMs. Importantly, we show that our method could prove useful in test languages other than English and can improve alignment to the cultural values that correspond to a range of culturally diverse countries.
♻ ☆ Efficient Dynamic Clustering-Based Document Compression for Retrieval-Augmented-Generation
Retrieval-Augmented Generation (RAG) has emerged as a widely adopted approach for knowledge injection during large language model (LLM) inference in recent years. However, due to their limited ability to exploit fine-grained inter-document relationships, current RAG implementations face challenges in effectively addressing the retrieved noise and redundancy content, which may cause error in the generation results. To address these limitations, we propose an Efficient Dynamic Clustering-based document Compression framework (EDC2-RAG) that utilizes latent inter-document relationships while simultaneously removing irrelevant information and redundant content. We validate our approach, built upon GPT-3.5-Turbo and GPT-4o-mini, on widely used knowledge-QA and Hallucination-Detection datasets. Experimental results show that our method achieves consistent performance improvements across various scenarios and experimental settings, demonstrating strong robustness and applicability. Our code and datasets are available at https://github.com/Tsinghua-dhy/EDC-2-RAG.
♻ ☆ Automatic Prompt Optimization with Prompt Distillation
Autoprompting is the process of automatically selecting optimized prompts for language models, which is gaining popularity due to the rapid development of prompt engineering driven by extensive research in the field of large language models (LLMs). This paper presents DistillPrompt -- a novel autoprompting method based on large language models that employs a multi-stage integration of task-specific information into prompts using training data. DistillPrompt utilizes distillation, compression, and aggregation operations to explore the prompt space more thoroughly. The method was tested on different datasets for text classification and generation tasks using the t-lite-instruct-0.1 language model. The results demonstrate a significant average improvement (e.g., 20.12% across the entire dataset compared to Grips) in key metrics over existing methods in the field, establishing DistillPrompt as one of the most effective non-gradient approaches in autoprompting.
♻ ☆ Error Classification of Large Language Models on Math Word Problems: A Dynamically Adaptive Framework EMNLP2025
Large Language Models (LLMs) have demonstrated remarkable capabilities across various domains. Math Word Problems (MWPs) serve as a crucial benchmark for evaluating LLMs' reasoning abilities. While most research primarily focuses on improving accuracy, it often neglects understanding and addressing the underlying patterns of errors. Current error classification methods rely on static and predefined categories, which limit their ability to capture the full spectrum of error patterns in mathematical reasoning. To enable systematic error analysis, we collect error samples from 15 different LLMs of varying sizes across four distinct MWP datasets using multiple sampling strategies. Based on this extensive collection, we introduce MWPES-300K, a comprehensive dataset containing 304,865 error samples that cover diverse error patterns and reasoning paths. To reduce human bias and enable fine-grained analysis of error patterns, we propose a novel framework for automated dynamic error classification in mathematical reasoning. Experimental results demonstrate that dataset characteristics significantly shape error patterns, which evolve from basic to complex manifestations as model capabilities increase. With deeper insights into error patterns, we propose Error-Aware Prompting (EAP) that incorporates common error patterns as explicit guidance, leading to significant improvements in mathematical reasoning performance.
comment: 28 pages, 10 figures, accepted by Findings of EMNLP2025
♻ ☆ Oyster-I: Beyond Refusal -- Constructive Safety Alignment for Responsible Language Models
Large language models (LLMs) typically deploy safety mechanisms to prevent harmful content generation. Most current approaches focus narrowly on risks posed by malicious actors, often framing risks as adversarial events and relying on defensive refusals. However, in real-world settings, risks also come from non-malicious users seeking help while under psychological distress (e.g., self-harm intentions). In such cases, the model's response can strongly influence the user's next actions. Simple refusals may lead them to repeat, escalate, or move to unsafe platforms, creating worse outcomes. We introduce Constructive Safety Alignment (CSA), a human-centric paradigm that protects against malicious misuse while actively guiding vulnerable users toward safe and helpful results. Implemented in Oyster-I (Oy1), CSA combines game-theoretic anticipation of user reactions, fine-grained risk boundary discovery, and interpretable reasoning control, turning safety into a trust-building process. Oy1 achieves state-of-the-art safety among open models while retaining high general capabilities. On our Constructive Benchmark, it shows strong constructive engagement, close to GPT-5, and unmatched robustness on the Strata-Sword jailbreak dataset, nearing GPT-o1 levels. By shifting from refusal-first to guidance-first safety, CSA redefines the model-user relationship, aiming for systems that are not just safe, but meaningfully helpful. We release Oy1, code, and the benchmark to support responsible, user-centered AI.
comment: Technical Report Code & Model weights available: https://github.com/Alibaba-AAIG/Oyster
♻ ☆ Turning Logic Against Itself : Probing Model Defenses Through Contrastive Questions EMNLP 2025
Large language models, despite extensive alignment with human values and ethical principles, remain vulnerable to sophisticated jailbreak attacks that exploit their reasoning abilities. Existing safety measures often detect overt malicious intent but fail to address subtle, reasoning-driven vulnerabilities. In this work, we introduce POATE (Polar Opposite query generation, Adversarial Template construction, and Elaboration), a novel jailbreak technique that harnesses contrastive reasoning to provoke unethical responses. POATE crafts semantically opposing intents and integrates them with adversarial templates, steering models toward harmful outputs with remarkable subtlety. We conduct extensive evaluation across six diverse language model families of varying parameter sizes to demonstrate the robustness of the attack, achieving significantly higher attack success rates (~44%) compared to existing methods. To counter this, we propose Intent-Aware CoT and Reverse Thinking CoT, which decompose queries to detect malicious intent and reason in reverse to evaluate and reject harmful responses. These methods enhance reasoning robustness and strengthen the model's defense against adversarial exploits.
comment: Accepted at EMNLP 2025 (Main)
♻ ☆ DCPO: Dynamic Clipping Policy Optimization
Reinforcement Learning from Verifiable Rewards (RLVR) has emerged as a promising framework for enhancing the reasoning capabilities of large language models. However, existing approaches such as GRPO often suffer from zero gradients. This problem arises primarily due to fixed clipping bounds for token-level probability ratios and the standardization of identical rewards, which can lead to ineffective gradient updates and underutilization of generated responses. In this work, we propose Dynamic Clipping Policy Optimization(DCPO), which introduces a dynamic clipping strategy that adaptively adjusts clipping bounds based on token-specific prior probabilities to enhance token-level exploration, and a smooth advantage standardization technique that standardizes rewards across cumulative training steps to improve the response-level effective utilization of generated responses. DCPO achieved state-of-the-art performance on four benchmarks based on four different models. In particular, DCPO achieved an Avg@1 of 46.7 under greedy decoding and an Avg@32 of 38.8 under 32 times sampling on the AIME24 benchmark, surpassing DAPO (36.7/31.6), GRPO (36.7/32.1) and GSPO (40.0/34.9) on the Qwen2.5-Math-7B model. On the AIME25 benchmark based on Qwen2.5-14B, DCPO achieves a performance of (23.3/19.0), surpassing GRPO (13.3/10.5), DAPO (20.0/15.3) and GSPO (16.7/9.9). Furthermore, DCPO achieved an average 28% improvement in the nonzero advantage over GRPO in four models, doubled the training efficiency over DAPO, and significantly reduced the token clipping ratio by an order of magnitude compared to both GRPO and DAPO, while achieving superior performance. These results highlight DCPO's effectiveness in leveraging generated data more efficiently for reinforcement learning in large language models.
♻ ☆ Linearly Controlled Language Generation with Performative Guarantees
The increasing prevalence of Large Language Models (LMs) in critical applications highlights the need for controlled language generation strategies that are not only computationally efficient but that also enjoy performance guarantees. To achieve this, we use a common model of concept semantics as linearly represented in an LM's latent space. In particular, we take the view that natural language generation traces a trajectory in this continuous semantic space, realized by the language model's hidden activations. This view permits a control-theoretic treatment of text generation in latent space, in which we propose a lightweight, gradient-free intervention that dynamically steers trajectories away from regions corresponding to undesired meanings. In particular, we propose to directly intervene the activations of the token that is being generated in embedding space in an online fashion. Crucially, we do not simply steer activations towards a desirable region. Instead, our method relies on classical techniques from control theory to precisely control activations in a context-dependent way, and guarantees that they are brought into a specific pre-defined region of embedding space that corresponds to allowed semantics. Our intervention is computed in closed-form according to an optimal controller formulation, minimally impacting generation time. This control of the activations in embedding space allows for fine-grained steering of attributes of the generated sequence. We demonstrate the effectiveness of our approach on different objectives-- toxicity avoidance and sentiment control-- while maintaining text quality.
comment: Under review
♻ ☆ SUDER: Self-Improving Unified Large Multimodal Models for Understanding and Generation with Dual Self-Rewards
Building upon large language models (LLMs), recent large multimodal models (LMMs) unify cross-model understanding and generation into a single framework. However, LMMs still struggle to achieve accurate vision-language alignment, prone to generating text responses contradicting the visual input or failing to follow the text-to-image prompts. Current solutions require external supervision (e.g., human feedback or reward models) and only address unidirectional tasks-either understanding or generation. In this work, based on the observation that understanding and generation are naturally inverse dual tasks, we propose \textbf{SUDER} (\textbf{S}elf-improving \textbf{U}nified LMMs with \textbf{D}ual s\textbf{E}lf-\textbf{R}ewards), a framework reinforcing the understanding and generation capabilities of LMMs with a self-supervised dual reward mechanism. SUDER leverages the inherent duality between understanding and generation tasks to provide self-supervised optimization signals for each other. Specifically, we sample multiple outputs for a given input in one task domain, then reverse the input-output pairs to compute the dual likelihood within the model as self-rewards for optimization. Extensive experimental results on visual understanding and generation benchmarks demonstrate that our method can effectively enhance the performance of the model without any external supervision, especially achieving remarkable improvements in text-to-image tasks.
♻ ☆ Leveraging Large Language Models for Accurate Sign Language Translation in Low-Resource Scenarios
Translating natural languages into sign languages is a highly complex and underexplored task. Despite growing interest in accessibility and inclusivity, the development of robust translation systems remains hindered by the limited availability of parallel corpora which align natural language with sign language data. Existing methods often struggle to generalize in these data-scarce environments, as the few datasets available are typically domain-specific, lack standardization, or fail to capture the full linguistic richness of sign languages. To address this limitation, we propose Advanced Use of LLMs for Sign Language Translation (AulSign), a novel method that leverages Large Language Models via dynamic prompting and in-context learning with sample selection and subsequent sign association. Despite their impressive abilities in processing text, LLMs lack intrinsic knowledge of sign languages; therefore, they are unable to natively perform this kind of translation. To overcome this limitation, we associate the signs with compact descriptions in natural language and instruct the model to use them. We evaluate our method on both English and Italian languages using SignBank+, a recognized benchmark in the field, as well as the Italian LaCAM CNR-ISTC dataset. We demonstrate superior performance compared to state-of-the-art models in low-data scenario. Our findings demonstrate the effectiveness of AulSign, with the potential to enhance accessibility and inclusivity in communication technologies for underrepresented linguistic communities.
♻ ☆ TreeReview: A Dynamic Tree of Questions Framework for Deep and Efficient LLM-based Scientific Peer Review EMNLP2025
While Large Language Models (LLMs) have shown significant potential in assisting peer review, current methods often struggle to generate thorough and insightful reviews while maintaining efficiency. In this paper, we propose TreeReview, a novel framework that models paper review as a hierarchical and bidirectional question-answering process. TreeReview first constructs a tree of review questions by recursively decomposing high-level questions into fine-grained sub-questions and then resolves the question tree by iteratively aggregating answers from leaf to root to get the final review. Crucially, we incorporate a dynamic question expansion mechanism to enable deeper probing by generating follow-up questions when needed. We construct a benchmark derived from ICLR and NeurIPS venues to evaluate our method on full review generation and actionable feedback comments generation tasks. Experimental results of both LLM-based and human evaluation show that TreeReview outperforms strong baselines in providing comprehensive, in-depth, and expert-aligned review feedback, while reducing LLM token usage by up to 80% compared to computationally intensive approaches. Our code and benchmark dataset are available at https://github.com/YuanChang98/tree-review.
comment: Accepted to EMNLP2025 Main
♻ ☆ BriLLM: Brain-inspired Large Language Model
We introduce BriLLM, a brain-inspired large language model that fundamentally redefines the foundations of machine learning through its implementation of Signal Fully-connected flowing (SiFu) learning. This work addresses the critical bottleneck hindering AI's progression toward Artificial General Intelligence (AGI)--the disconnect between language models and "world models"--as well as the fundamental limitations of Transformer-based architectures rooted in the conventional representation learning paradigm. BriLLM incorporates two pivotal neurocognitive principles: (1) static semantic mapping, where tokens are mapped to specialized nodes analogous to cortical areas, and (2) dynamic signal propagation, which simulates electrophysiological information dynamics observed in brain activity. This architecture enables multiple transformative breakthroughs: natural multi-modal compatibility, full model interpretability at the node level, context-length independent scaling, and the first global-scale simulation of brain-like information processing for language tasks. Our initial 1-2B parameter models successfully replicate GPT-1-level generative capabilities while demonstrating stable perplexity reduction. Scalability analyses confirm the feasibility of 100-200B parameter variants capable of processing 40,000-token vocabularies. The paradigm is reinforced by both Occam's Razor--evidenced in the simplicity of direct semantic mapping--and natural evolution--given the brain's empirically validated AGI architecture. BriLLM establishes a novel, biologically grounded framework for AGI advancement that addresses fundamental limitations of current approaches.
♻ ☆ Energy Landscapes Enable Reliable Abstention in Retrieval-Augmented Large Language Models for Healthcare
Reliable abstention is critical for retrieval-augmented generation (RAG) systems, particularly in safety-critical domains such as women's health, where incorrect answers can lead to harm. We present an energy-based model (EBM) that learns a smooth energy landscape over a dense semantic corpus of 2.6M guideline-derived questions, enabling the system to decide when to generate or abstain. We benchmark the EBM against a calibrated softmax baseline and a k-nearest neighbour (kNN) density heuristic across both easy and hard abstention splits, where hard cases are semantically challenging near-distribution queries. The EBM achieves superior abstention performance abstention on semantically hard cases, reaching AUROC 0.961 versus 0.950 for softmax, while also reducing FPR@95 (0.235 vs 0.331). On easy negatives, performance is comparable across methods, but the EBM's advantage becomes most pronounced in safety-critical hard distributions. A comprehensive ablation with controlled negative sampling and fair data exposure shows that robustness stems primarily from the energy scoring head, while the inclusion or exclusion of specific negative types (hard, easy, mixed) sharpens decision boundaries but is not essential for generalisation to hard cases. These results demonstrate that energy-based abstention scoring offers a more reliable confidence signal than probability-based softmax confidence, providing a scalable and interpretable foundation for safe RAG systems.
♻ ☆ Out of the Box, into the Clinic? Evaluating State-of-the-Art ASR for Clinical Applications for Older Adults
Voice-controlled interfaces can support older adults in clinical contexts, with chatbots being a prime example, but reliable Automatic Speech Recognition (ASR) for underrepresented groups remains a bottleneck. This study evaluates state-of-the-art ASR models on language use of older Dutch adults, who interacted with the \texttt{Welzijn.AI} chatbot designed for geriatric contexts. We benchmark generic multilingual ASR models, and models fine-tuned for Dutch spoken by older adults, while also considering processing speed. Our results show that generic multilingual models outperform fine-tuned models, which suggests recent ASR models can generalise well out of the box to realistic datasets. Furthermore, our results suggest that truncating existing architectures is helpful in balancing the accuracy-speed trade-off, though we also identify some cases with high WER due to hallucinations.
♻ ☆ X-EcoMLA: Upcycling Pre-Trained Attention into MLA for Efficient and Extreme KV Compression
Multi-head latent attention (MLA) is designed to optimize KV cache memory through low-rank key-value joint compression. Rather than caching keys and values separately, MLA stores their compressed latent representations, reducing memory overhead while maintaining the performance. While MLA improves memory efficiency without compromising language model accuracy, its major limitation lies in its integration during the pre-training phase, requiring models to be trained from scratch. This raises a key question: can we use MLA's benefits fully or partially in models that have already been pre-trained with different attention mechanisms? In this paper, we propose X-EcoMLA to deploy post training distillation to enable the upcycling of Transformer-based attention into an efficient hybrid MLA variant through lightweight post-training adaptation, bypassing the need for extensive pre-training. We demonstrate that leveraging the dark knowledge of a well-trained model can enhance training accuracy and enable extreme KV cache compression in MLA without compromising model performance. The experimental results show that our proposed method can effectively compress the KV cache while preserving the performance on the benchmarks; specifically, for Llama3.2-1B-Instruct baseline, a 6.4x compression achieves the same average score by using only 3.6B training tokens and 70 GPU hours on AMD MI300, whereas a 10.6x compression have less than 0.1% average score drop with 7B training tokens and 140 GPU hours. The code for this work is available at https://github.com/AMD-AGI/AMD-Hybrid-Models.
♻ ☆ Process-Supervised Reward Models for Verifying Clinical Note Generation: A Scalable Approach Guided by Domain Expertise
Process-supervised reward models (PRMs) excel at providing step-by-step verification for large language model (LLM) outputs in domains like mathematics and coding. However, their application to fields lacking ground-truth answers, such as clinical note generation, poses significant challenges. We introduce a novel framework for training PRMs to deliver step-level reward signals for LLM-generated clinical notes. By precisely defining meaningful "steps," injecting realistic "errors" informed by domain expertise, and leveraging LLMs to generate process supervision data at scale, we overcome previous limitations. Our PRM, built on LLaMA-3.1 8B, consistently outperforms proprietary reasoning and non-reasoning models, achieving state-of-the-art performance on two key evaluations: (1) distinguishing gold-standard from error-containing samples with 98.8% accuracy, and (2) selecting physician-preferred clinical notes with 56.2% accuracy. We investigate critical components for effective PRM training, including optimal loss functions and data selection strategies, and present a comprehensive physician reader study identifying predictors of downstream Best-of-N performance. Our study sheds light on unlocking the potential of PRMs for diverse generative tasks across domains.
♻ ☆ Dynamically Adaptive Reasoning via LLM-Guided MCTS for Efficient and Context-Aware KGQA
Knowledge Graph Question Answering (KGQA) aims to interpret natural language queries and perform structured reasoning over knowledge graphs by leveraging their relational and semantic structures to retrieve accurate answers. Recent KGQA methods primarily follow either retrieve-then-reason paradigm, relying on GNNs or heuristic rules for static paths extraction, or dynamic path generation strategies that use large language models (LLMs) with prompting to jointly perform retrieval and reasoning. However, the former suffers from limited adaptability due to static path extraction and lack of contextual refinement, while the latter incurs high computational costs and struggles with accurate path evaluation due to reliance on fixed scoring functions and extensive LLM calls. To address these issues, this paper proposes Dynamically Adaptive MCTS-based Reasoning (DAMR), a novel framework that integrates symbolic search with adaptive path evaluation for efficient and context-aware KGQA. DAMR employs a Monte Carlo Tree Search (MCTS) backbone guided by an LLM-based planner, which selects top-$k$ relevant relations at each step to reduce search space. To improve path evaluation accuracy, we introduce a lightweight Transformer-based scorer that performs context-aware plausibility estimation by jointly encoding the question and relation sequence through cross-attention, enabling the model to capture fine-grained semantic shifts during multi-hop reasoning. Furthermore, to alleviate the scarcity of high-quality supervision, DAMR incorporates a dynamic pseudo-path refinement mechanism that periodically generates training signals from partial paths explored during search, allowing the scorer to continuously adapt to the evolving distribution of reasoning trajectories. Extensive experiments on multiple KGQA benchmarks show that DAMR significantly outperforms state-of-the-art methods.
♻ ☆ InterFeat: A Pipeline for Finding Interesting Scientific Features
Finding interesting phenomena is the core of scientific discovery, but it is a manual, ill-defined concept. We present an integrative pipeline for automating the discovery of interesting simple hypotheses (feature-target relations with effect direction and a potential underlying mechanism) in structured biomedical data. The pipeline combines machine learning, knowledge graphs, literature search and Large Language Models. We formalize "interestingness" as a combination of novelty, utility and plausibility. On 8 major diseases from the UK Biobank, our pipeline consistently recovers risk factors years before their appearance in the literature. 40--53% of our top candidates were validated as interesting, compared to 0--7% for a SHAP-based baseline. Overall, 28% of 109 candidates were interesting to medical experts. The pipeline addresses the challenge of operationalizing "interestingness" scalably and for any target. We release data and code: https://github.com/LinialLab/InterFeat
♻ ☆ Emergent Hierarchical Reasoning in LLMs through Reinforcement Learning
Reinforcement Learning (RL) has proven highly effective at enhancing the complex reasoning abilities of Large Language Models (LLMs), yet underlying mechanisms driving this success remain largely opaque. Our analysis reveals that puzzling phenomena like ``aha moments", ``length-scaling'' and entropy dynamics are not disparate occurrences but hallmarks of an emergent reasoning hierarchy, akin to the separation of high-level strategic planning from low-level procedural execution in human cognition. We uncover a compelling two-phase dynamic: initially, a model is constrained by procedural correctness and must improve its low-level skills. The learning bottleneck then decisively shifts, with performance gains being driven by the exploration and mastery of high-level strategic planning. This insight exposes a core inefficiency in prevailing RL algorithms like GRPO, which apply optimization pressure agnostically and dilute the learning signal across all tokens. To address this, we propose HIerarchy-Aware Credit Assignment (HICRA), an algorithm that concentrates optimization efforts on high-impact planning tokens. HICRA significantly outperforms strong baselines, demonstrating that focusing on this strategic bottleneck is key to unlocking advanced reasoning. Furthermore, we validate semantic entropy as a superior compass for measuring strategic exploration over misleading metrics such as token-level entropy.
comment: Preprint
♻ ☆ Towards No-Code Programming of Cobots: Experiments with Code Synthesis by Large Code Models for Conversational Programming
While there has been a lot of research recently on robots in household environments, at the present time, most robots in existence can be found on shop floors, and most interactions between humans and robots happen there. ``Collaborative robots'' (cobots) designed to work alongside humans on assembly lines traditionally require expert programming, limiting ability to make changes, or manual guidance, limiting expressivity of the resulting programs. To address these limitations, we explore using Large Language Models (LLMs), and in particular, their abilities of doing in-context learning, for conversational code generation. As a first step, we define RATS, the ``Repetitive Assembly Task'', a 2D building task designed to lay the foundation for simulating industry assembly scenarios. In this task, a `programmer' instructs a cobot, using natural language, on how a certain assembly is to be built; that is, the programmer induces a program, through natural language. We create a dataset that pairs target structures with various example instructions (human-authored, template-based, and model-generated) and example code. With this, we systematically evaluate the capabilities of state-of-the-art LLMs for synthesising this kind of code, given in-context examples. Evaluating in a simulated environment, we find that LLMs are capable of generating accurate `first order code' (instruction sequences), but have problems producing `higher-order code' (abstractions such as functions, or use of loops).
comment: Accepted to ITL4HRI workshop at RO-MAN 2025 conference
♻ ☆ Conversational Code Generation: a Case Study of Designing a Dialogue System for Generating Driving Scenarios for Testing Autonomous Vehicles ECAI-2025
Cyber-physical systems like autonomous vehicles are tested in simulation before deployment, using domain-specific programs for scenario specification. To aid the testing of autonomous vehicles in simulation, we design a natural language interface, using an instruction-following large language model, to assist a non-coding domain expert in synthesising the desired scenarios and vehicle behaviours. We show that using it to convert utterances to the symbolic program is feasible, despite the very small training dataset. Human experiments show that dialogue is critical to successful simulation generation, leading to a 4.5 times higher success rate than a generation without engaging in extended conversation.
comment: In Proceedings of GeCoIn 2025: Generative Code Intelligence Workshop, co-located with ECAI-2025
♻ ☆ CARFT: Boosting LLM Reasoning via Contrastive Learning with Annotated Chain-of-Thought-based Reinforced Fine-Tuning EMNLP25
Reasoning capability plays a significantly critical role in the the broad applications of Large Language Models (LLMs). To enhance the reasoning performance of LLMs, diverse Reinforcement Learning (RL)-based fine-tuning approaches have been proposed to address the limited generalization capability of LLMs trained solely via Supervised Fine-Tuning (SFT). Despite their effectiveness, two major limitations hinder the advancement of LLMs. First, vanilla RL-based approaches ignore annotated Chain-of-Thought (CoT) and incorporate unstable reasoning path sampling, which typically results in model collapse, unstable training process, and suboptimal performance. Second, existing SFT approaches generally overemphasize the annotated CoT, potentially leading to performance degradation due to insufficient exploitation of potential CoT. In this paper, we propose a Contrastive learning with annotated CoT-based Reinforced Fine-Tuning approach, i.e., \TheName{}, to enhance the reasoning performance of LLMs while addressing the aforementioned limitations. Specifically, we propose learning a representation for each CoT. Based on this representation, we design novel contrastive signals to guide the fine-tuning process. Our approach not only fully exploits the available annotated CoT but also stabilizes the fine-tuning procedure by incorporating an additional unsupervised learning signal. We conduct comprehensive experiments and in-depth analysis with three baseline approaches, two foundation models, and two datasets to demonstrate significant advantages of \TheName{} in terms of robustness, performance (up to 10.15\%), and efficiency (up to 30.62\%). Code is available at https://github.com/WNQzhu/CARFT.
comment: 14 pages, to appear in EMNLP25
♻ ☆ MM-Spatial: Exploring 3D Spatial Understanding in Multimodal LLMs ICCV 2025
Multimodal large language models (MLLMs) excel at 2D visual understanding but remain limited in their ability to reason about 3D space. In this work, we leverage large-scale high-quality 3D scene data with open-set annotations to introduce 1) a novel supervised fine-tuning dataset and 2) a new evaluation benchmark, focused on indoor scenes. Our Cubify Anything VQA (CA-VQA) data covers diverse spatial tasks including spatial relationship prediction, metric size and distance estimation, and 3D grounding. We show that CA-VQA enables us to train MM-Spatial, a strong generalist MLLM that also achieves state-of-the-art performance on 3D spatial understanding benchmarks, including our own. We show how incorporating metric depth and multi-view inputs (provided in CA-VQA) can further improve 3D understanding, and demonstrate that data alone allows our model to achieve depth perception capabilities comparable to dedicated monocular depth estimation models.
comment: ICCV 2025
♻ ☆ A Minimum Description Length Approach to Regularization in Neural Networks
State-of-the-art neural networks can be trained to become remarkable solutions to many problems. But while these architectures can express symbolic, perfect solutions, trained models often arrive at approximations instead. We show that the choice of regularization method plays a crucial role: when trained on formal languages with standard regularization ($L_1$, $L_2$, or none), expressive architectures not only fail to converge to correct solutions but are actively pushed away from perfect initializations. In contrast, applying the Minimum Description Length (MDL) principle to balance model complexity with data fit provides a theoretically grounded regularization method. Using MDL, perfect solutions are selected over approximations, independently of the optimization algorithm. We propose that unlike existing regularization techniques, MDL introduces the appropriate inductive bias to effectively counteract overfitting and promote generalization.
comment: 9 pages
♻ ☆ A Principled Framework for Evaluating on Typologically Diverse Languages
Beyond individual languages, multilingual natural language processing (NLP) research increasingly aims to develop models that perform well across languages generally. However, evaluating these systems on all the world's languages is practically infeasible. To attain generalizability, representative language sampling is essential. Previous work argues that generalizable multilingual evaluation sets should contain languages with diverse typological properties. However, 'typologically diverse' language samples have been found to vary considerably in this regard, and popular sampling methods are flawed and inconsistent. We present a language sampling framework for selecting highly typologically diverse languages given a sampling frame, informed by language typology. We compare sampling methods with a range of metrics and find that our systematic methods consistently retrieve more typologically diverse language selections than previous methods in NLP. Moreover, we provide evidence that this affects generalizability in multilingual model evaluation, emphasizing the importance of diverse language sampling in NLP evaluation.
comment: Revised version
♻ ☆ Persona-driven Simulation of Voting Behavior in the European Parliament with Large Language Models
Large Language Models (LLMs) display remarkable capabilities to understand or even produce political discourse, but have been found to consistently display a progressive left-leaning bias. At the same time, so-called persona or identity prompts have been shown to produce LLM behavior that aligns with socioeconomic groups that the base model is not aligned with. In this work, we analyze whether zero-shot persona prompting with limited information can accurately predict individual voting decisions and, by aggregation, accurately predict positions of European groups on a diverse set of policies. We evaluate if predictions are stable towards counterfactual arguments, different persona prompts and generation methods. Finally, we find that we can simulate voting behavior of Members of the European Parliament reasonably well with a weighted F1 score of approximately 0.793. Our persona dataset of politicians in the 2024 European Parliament and our code are available at https://github.com/dess-mannheim/european_parliament_simulation.
♻ ☆ OpenDeception: Benchmarking and Investigating AI Deceptive Behaviors via Open-ended Interaction Simulation
As the general capabilities of large language models (LLMs) improve and agent applications become more widespread, the underlying deception risks urgently require systematic evaluation and effective oversight. Unlike existing evaluation which uses simulated games or presents limited choices, we introduce OpenDeception, a novel deception evaluation framework with an open-ended scenario dataset. OpenDeception jointly evaluates both the deception intention and capabilities of LLM-based agents by inspecting their internal reasoning process. Specifically, we construct five types of common use cases where LLMs intensively interact with the user, each consisting of ten diverse, concrete scenarios from the real world. To avoid ethical concerns and costs of high-risk deceptive interactions with human testers, we propose to simulate the multi-turn dialogue via agent simulation. Extensive evaluation of eleven mainstream LLMs on OpenDeception highlights the urgent need to address deception risks and security concerns in LLM-based agents: the deception intention ratio across the models exceeds 80%, while the deception success rate surpasses 50%. Furthermore, we observe that LLMs with stronger capabilities do exhibit a higher risk of deception, which calls for more alignment efforts on inhibiting deceptive behaviors.
♻ ☆ E-THER: A Multimodal Dataset for Empathic AI - Towards Emotional Mismatch Awareness
A prevalent shortfall among current empathic AI systems is their inability to recognize when verbal expressions may not fully reflect underlying emotional states. This is because the existing datasets, used for the training of these systems, focus on surface-level emotion recognition without addressing the complex verbal-visual incongruence (mismatch) patterns useful for empathic understanding. In this paper, we present E-THER, the first Person-Centered Therapy-grounded multimodal dataset with multidimensional annotations for verbal-visual incongruence detection, enabling training of AI systems that develop genuine rather than performative empathic capabilities. The annotations included in the dataset are drawn from humanistic approach, i.e., identifying verbal-visual emotional misalignment in client-counsellor interactions - forming a framework for training and evaluating AI on empathy tasks. Additional engagement scores provide behavioral annotations for research applications. Notable gains in empathic and therapeutic conversational qualities are observed in state-of-the-art vision-language models (VLMs), such as IDEFICS and VideoLLAVA, using evaluation metrics grounded in empathic and therapeutic principles. Empirical findings indicate that our incongruence-trained models outperform general-purpose models in critical traits, such as sustaining therapeutic engagement, minimizing artificial or exaggerated linguistic patterns, and maintaining fidelity to PCT theoretical framework.
comment: 15 pages, 4 figures. Preprint
♻ ☆ Empathy Omni: Enabling Empathetic Speech Response Generation through Large Language Models ICASSP 2026
With the development of speech large language models (speech LLMs), users can now interact directly with assistants via speech. However, most existing models only convert response content into speech without fully capturing the rich emotional cues in user queries, where the same sentence may convey different meanings depending on the expression. Emotional understanding is thus essential for improving human-machine interaction. Most empathetic speech LLMs rely on massive datasets, demanding high computational cost. A key challenge is to build models that generate empathetic responses with limited data and without large-scale training. To this end, we propose Emotion Omni, a model that understands emotional content in user speech and generates empathetic responses. We further developed a data pipeline to construct a 200k emotional dialogue dataset supporting empathetic speech assistants. Experiments show that Emotion Omni achieves comparable instruction-following ability without large-scale pretraining, while surpassing existing models in speech quality (UTMOS:4.41) and empathy (Emotion GPT Score: 3.97). These results confirm its improvements in both speech fidelity and emotional expressiveness. Demos are available at https://w311411.github.io/omni_demo/.
comment: 5 pages, 1 figure, submitted to ICASSP 2026
♻ ☆ MultiPL-MoE: Multi-Programming-Lingual Extension of Large Language Models through Hybrid Mixture-of-Experts
Despite LLMs' excellent code creation capabilities, multilingual code generation remains extremely challenging. To address this, we intent to improve the multi-programming-lingual (MultiPL) performance of the base LLMs while retaining the most popular ones using restricted computational resources. We consider MultiPL to be a special case of multiple natural languages and propose a MultiPL extension of LLMs utilizing a hybrid mixture of experts (MoE), called MultiPL-MoE. Specifically, MultiPL-MoE combines two paired MoEs to optimize expert selection at both the token and segment levels. The token-level MoE is a standard upcycling MoE structure with a shared expert and a novel gate weight normalization approach that aids in the final fusion with the segment-level MoE. The segment-level MoE incorporates two innovative designs to better capture the syntactic structure and contextual patterns of programming languages: First, using a sliding window to partition the input token sequence into multiple segments; Then, adopting an expert-choice routing strategy that allows experts to select the top-k segments. The results of the experiment proved the effectiveness of MultiPL-MoE.
♻ ☆ Soft Token Attacks Cannot Reliably Audit Unlearning in Large Language Models EMNLP 2025
Large language models (LLMs) are trained using massive datasets, which often contain undesirable content such as harmful texts, personal information, and copyrighted material. To address this, machine unlearning aims to remove information from trained models. Recent work has shown that soft token attacks (STA) can successfully extract unlearned information from LLMs, but in this work we show that STAs can be an inadequate tool for auditing unlearning. Using common benchmarks such as Who Is Harry Potter? and TOFU, we demonstrate that in a strong auditor setting such attacks can elicit any information from the LLM, regardless of the deployed unlearning algorithm or whether the queried content was originally present in the training corpus. We further show that STA with just a few soft tokens (1-10) can elicit random strings over 400 characters long, indicating that STAs must be used carefully to effectively audit unlearning. Example code can be found at: https://github.com/IntelLabs/LLMart/tree/main/examples/unlearning
comment: EMNLP 2025 Findings
♻ ☆ MedualTime: A Dual-Adapter Language Model for Medical Time Series-Text Multimodal Learning
The recent rapid advancements in language models (LMs) have garnered attention in medical time series-text multimodal learning. However, existing contrastive learning-based and prompt-based LM approaches tend to be biased, often assigning a primary role to time series modality while treating text modality as secondary. We classify these approaches under a temporal-primary paradigm, which may overlook the unique and critical task-relevant information embedded in text modality like clinical reports, thus failing to fully leverage mutual benefits and complementarity of different modalities. To fill this gap, we propose a novel textual-temporal multimodal learning paradigm that enables either modality to serve as the primary while being enhanced by the other, thereby effectively capturing modality-specific information and fostering cross-modal interaction. In specific, we design MedualTime, a language model composed of dual adapters to implement temporal-primary and textual-primary modeling simultaneously. Within each adapter, lightweight adaptation tokens are injected into the top layers of LM to encourage high-level modality fusion. The shared LM pipeline by dual adapters not only achieves adapter alignment but also enables efficient fine-tuning, reducing computational resources. Empirically, MedualTime demonstrates superior performance on medical data, achieving notable improvements of 8% accuracy and 12% F1 in supervised settings. Furthermore, MedualTime's transferability is validated by few-shot label transfer experiments from coarse-grained to fine-grained medical data. https://github.com/start2020/MedualTime
comment: 9 pages, 6 figure, 3 tables
♻ ☆ VocalBench: Benchmarking the Vocal Conversational Abilities for Speech Interaction Models
The rapid advancement of large language models (LLMs) has accelerated the development of multimodal models capable of speech communications. Unlike text interactions, speech conveys diverse information, including acoustic variations, paralanguage cues, and environmental context. However, existing evaluations of speech interaction models lack instances mimicking real scenarios and predominantly focus on the quality of their textual responses, overlooking critical aspects of vocal performance. To address this gap, we propose VocalBench, a comprehensive benchmark to assess the speech conversational abilities, comprising 9,400 carefully curated instances across four key dimensions: semantic quality, acoustic performance, conversational abilities, and robustness. It covers a broad range of fundamental skills essential for effective vocal interactions. For the evaluation scheme, we propose several objective evaluation indicators and incorporate an additional LLM-as-a-judge approach to score open-ended questions. Experimental results on 15 mainstream systems reveal significant variability, each exhibiting distinct strengths and weaknesses, and provide valuable insights to guide future research in speech interaction systems.
♻ ☆ LinkAlign: Scalable Schema Linking for Real-World Large-Scale Multi-Database Text-to-SQL
Schema linking is a critical bottleneck in applying existing Text-to-SQL models to real-world, large-scale, multi-database environments. Through error analysis, we identify two major challenges in schema linking: (1) Database Retrieval: accurately selecting the target database from a large schema pool, while effectively filtering out irrelevant ones; and (2) Schema Item Grounding: precisely identifying the relevant tables and columns within complex and often redundant schemas for SQL generation. Based on these, we introduce LinkAlign, a novel framework tailored for large-scale databases with thousands of fields. LinkAlign comprises three key steps: multi-round semantic enhanced retrieval and irrelevant information isolation for Challenge 1, and schema extraction enhancement for Challenge 2. Each stage supports both Agent and Pipeline execution modes, enabling balancing efficiency and performance via modular design. To enable more realistic evaluation, we construct AmbiDB, a synthetic dataset designed to reflect the ambiguity of real-world schema linking. Experiments on widely-used Text-to-SQL benchmarks demonstrate that LinkAlign consistently outperforms existing baselines on all schema linking metrics. Notably, it improves the overall Text-to-SQL pipeline and achieves a new state-of-the-art score of 33.09% on the Spider 2.0-Lite benchmark using only open-source LLMs, ranking first on the leaderboard at the time of submission. The codes are available at https://github.com/Satissss/LinkAlign
♻ ☆ AnyGPT: Unified Multimodal LLM with Discrete Sequence Modeling
We introduce AnyGPT, an any-to-any multimodal language model that utilizes discrete representations for the unified processing of various modalities, including speech, text, images, and music. AnyGPT can be trained stably without any alterations to the current large language model (LLM) architecture or training paradigms. Instead, it relies exclusively on data-level preprocessing, facilitating the seamless integration of new modalities into LLMs, akin to the incorporation of new languages. We build a multimodal text-centric dataset for multimodal alignment pre-training. Utilizing generative models, we synthesize the first large-scale any-to-any multimodal instruction dataset. It consists of 108k samples of multi-turn conversations that intricately interweave various modalities, thus equipping the model to handle arbitrary combinations of multimodal inputs and outputs. Experimental results demonstrate that AnyGPT is capable of facilitating any-to-any multimodal conversation while achieving performance comparable to specialized models across all modalities, proving that discrete representations can effectively and conveniently unify multiple modalities within a language model. Demos are shown in https://junzhan2000.github.io/AnyGPT.github.io/
comment: 28 pages, 16 figures, under review, work in progress
♻ ☆ ACEBench: Who Wins the Match Point in Tool Usage?
Large Language Models (LLMs) have demonstrated significant potential in decision-making and reasoning, particularly when integrated with various tools to effectively solve complex problems. However, existing benchmarks for evaluating LLMs' tool usage face several limitations: (1) limited evaluation scenarios, often lacking assessments in real multi-turn dialogue contexts; (2) narrow evaluation dimensions, with insufficient detailed assessments of how LLMs use tools; and (3) reliance on LLMs or real API executions for evaluation, which introduces significant overhead. To address these challenges, we introduce ACEBench, a comprehensive benchmark for assessing tool usage in LLMs. ACEBench categorizes data into three primary types based on evaluation methodology: Normal, Special, and Agent. "Normal" evaluates tool usage in basic scenarios; "Special" evaluates tool usage in situations with ambiguous or incomplete instructions; "Agent" evaluates tool usage through multi-agent interactions to simulate real-world, multi-turn dialogues. We conducted extensive experiments using ACEBench, analyzing various LLMs in-depth and providing a more granular examination of error causes across different data types.
♻ ☆ The Good, the Bad and the Constructive: Automatically Measuring Peer Review's Utility for Authors EMNLP 2025
Providing constructive feedback to paper authors is a core component of peer review. With reviewers increasingly having less time to perform reviews, automated support systems are required to ensure high reviewing quality, thus making the feedback in reviews useful for authors. To this end, we identify four key aspects of review comments (individual points in weakness sections of reviews) that drive the utility for authors: Actionability, Grounding & Specificity, Verifiability, and Helpfulness. To enable evaluation and development of models assessing review comments, we introduce the RevUtil dataset. We collect 1,430 human-labeled review comments and scale our data with 10k synthetically labeled comments for training purposes. The synthetic data additionally contains rationales, i.e., explanations for the aspect score of a review comment. Employing the RevUtil dataset, we benchmark fine-tuned models for assessing review comments on these aspects and generating rationales. Our experiments demonstrate that these fine-tuned models achieve agreement levels with humans comparable to, and in some cases exceeding, those of powerful closed models like GPT-4o. Our analysis further reveals that machine-generated reviews generally underperform human reviews on our four aspects.
comment: EMNLP 2025 Main
♻ ☆ Grammaticality illusion or ambiguous interpretation? Event-related potentials reveal the nature of the missing-NP effect in Mandarin centre-embedded structures
In several languages, omitting a verb phrase (VP) in double centre-embedded structures creates a grammaticality illusion. Similar illusion also exhibited in Mandarin missing-NP double centre-embedded structures. However, there is no consensus on its very nature. Instead of treating it as grammaticality illusion, we argue that ambiguous interpretations of verbs can best account for this phenomenon in Mandarin. To further support this hypothesis, we conducted two electroencephalography (EEG) experiments on quasi double centre-embedded structures whose complexity is reduced by placing the self-embedding relative clauses into the sentence's subject position. Experiment 1 showed that similar phenomenon even exhibited in this structure, evidenced by an absence of P600 effect and a presence of N400 effect. In Experiment 2, providing semantic cues to reduce ambiguity dispelled this illusion, as evidenced by a P600 effect. We interpret the results under garden-path theory and propose that word-order difference may account for this cross-linguistic variation.
♻ ☆ Probe-Rewrite-Evaluate: A Workflow for Reliable Benchmarks and Quantifying Evaluation Awareness
Large Language Models (LLMs) often exhibit significant behavioral shifts when they perceive a change from a real-world deployment context to a controlled evaluation setting, a phenomenon known as "evaluation awareness." This discrepancy poses a critical challenge for AI alignment, as benchmark performance may not accurately reflect a model's true safety and honesty. In this work, we systematically quantify these behavioral changes by manipulating the perceived context of prompts. We introduce a methodology that uses a linear probe to score prompts on a continuous scale from "test-like" to "deploy-like" and leverage an LLM rewriting strategy to shift these prompts towards a more natural, deployment-style context while preserving the original task. Using this method, we achieved a 30% increase in the average probe score across a strategic role-playing dataset after rewriting. Evaluating a suite of state-of-the-art models on these original and rewritten prompts, we find that rewritten "deploy-like" prompts induce a significant and consistent shift in behavior. Across all models, we observed an average increase in honest responses of 5.26% and a corresponding average decrease in deceptive responses of 12.40%. Furthermore, refusal rates increased by an average of 6.38%, indicating heightened safety compliance. Our findings demonstrate that evaluation awareness is a quantifiable and manipulable factor that directly influences LLM behavior, revealing that models are more prone to unsafe or deceptive outputs in perceived test environments. This underscores the urgent need for more realistic evaluation frameworks to accurately gauge true model alignment before deployment.
♻ ☆ Revealing the impact of synthetic native samples and multi-tasking strategies in Hindi-English code-mixed humour and sarcasm detection EMNLP 2025
In this paper, we reported our experiments with various strategies to improve code-mixed humour and sarcasm detection. Particularly, we tried three approaches: (i) native sample mixing, (ii) multi-task learning (MTL), and (iii) prompting and instruction finetuning very large multilingual language models (VMLMs). In native sample mixing, we added monolingual task samples to code-mixed training sets. In MTL learning, we relied on native and code-mixed samples of a semantically related task (hate detection in our case). Finally, in our third approach, we evaluated the efficacy of VMLMs via few-shot context prompting and instruction finetuning. Some interesting findings we got are (i) adding native samples improved humor (raising the F1-score up to 6.76%) and sarcasm (raising the F1-score up to 8.64%) detection, (ii) training MLMs in an MTL framework boosted performance for both humour (raising the F1-score up to 10.67%) and sarcasm (increment up to 12.35% in F1-score) detection, and (iii) prompting and instruction finetuning VMLMs couldn't outperform the other approaches. Finally, our ablation studies and error analysis discovered the cases where our model is yet to improve. We provided our code for reproducibility.
comment: 33 pages; EMNLP 2025 (Findings)
♻ ☆ MCIP: Protecting MCP Safety via Model Contextual Integrity Protocol
As Model Context Protocol (MCP) introduces an easy-to-use ecosystem for users and developers, it also brings underexplored safety risks. Its decentralized architecture, which separates clients and servers, poses unique challenges for systematic safety analysis. This paper proposes a novel framework to enhance MCP safety. Guided by the MAESTRO framework, we first analyze the missing safety mechanisms in MCP, and based on this analysis, we propose the Model Contextual Integrity Protocol (MCIP), a refined version of MCP that addresses these gaps. Next, we develop a fine-grained taxonomy that captures a diverse range of unsafe behaviors observed in MCP scenarios. Building on this taxonomy, we develop benchmark and training data that support the evaluation and improvement of LLMs' capabilities in identifying safety risks within MCP interactions. Leveraging the proposed benchmark and training data, we conduct extensive experiments on state-of-the-art LLMs. The results highlight LLMs' vulnerabilities in MCP interactions and demonstrate that our approach substantially improves their safety performance.
comment: 17 pages
♻ ☆ OmniThink: Expanding Knowledge Boundaries in Machine Writing through Thinking EMNLP 2025
Machine writing with large language models often relies on retrieval-augmented generation. However, these approaches remain confined within the boundaries of the model's predefined scope, limiting the generation of content with rich information. Specifically, vanilla-retrieved information tends to lack depth, novelty, and suffers from redundancy, which negatively impacts the quality of generated articles, leading to shallow, unoriginal, and repetitive outputs. To address these issues, we propose OmniThink, a slow-thinking machine writing framework that emulates the human-like process of iterative expansion and reflection. The core idea behind OmniThink is to simulate the cognitive behavior of learners as they slowly deepen their knowledge of the topics. Experimental results demonstrate that OmniThink improves the knowledge density of generated articles without compromising metrics such as coherence and depth. Human evaluations and expert feedback further highlight the potential of OmniThink to address real-world challenges in the generation of long-form articles. Code is available at https://github.com/zjunlp/OmniThink.
comment: EMNLP 2025
♻ ☆ Too Consistent to Detect: A Study of Self-Consistent Errors in LLMs EMNLP 2025
As large language models (LLMs) often generate plausible but incorrect content, error detection has become increasingly critical to ensure truthfulness. However, existing detection methods often overlook a critical problem we term as self-consistent error, where LLMs repeatedly generate the same incorrect response across multiple stochastic samples. This work formally defines self-consistent errors and evaluates mainstream detection methods on them. Our investigation reveals two key findings: (1) Unlike inconsistent errors, whose frequency diminishes significantly as the LLM scale increases, the frequency of self-consistent errors remains stable or even increases. (2) All four types of detection methods significantly struggle to detect self-consistent errors. These findings reveal critical limitations in current detection methods and underscore the need for improvement. Motivated by the observation that self-consistent errors often differ across LLMs, we propose a simple but effective cross-model probe method that fuses hidden state evidence from an external verifier LLM. Our method significantly enhances performance on self-consistent errors across three LLM families.
comment: EMNLP 2025 Main
♻ ☆ Dynamic Injection of Entity Knowledge into Dense Retrievers EMNLP
Dense retrievers often struggle with queries involving less-frequent entities due to their limited entity knowledge. We propose the Knowledgeable Passage Retriever (KPR), a BERT-based retriever enhanced with a context-entity attention layer and dynamically updatable entity embeddings. This design enables KPR to incorporate external entity knowledge without retraining. Experiments on three datasets demonstrate that KPR consistently improves retrieval accuracy, with particularly large gains on the EntityQuestions dataset. When built on the off-the-shelf bge-base retriever, KPR achieves state-of-the-art performance among similarly sized models on two datasets. Models and code are released at https://github.com/knowledgeable-embedding/knowledgeable-embedding.
comment: EMNLP Findings
♻ ☆ Exploring the Limits of Large Language Models: A Systematic Evaluation of Masked Text Processing Ability through MskQA and MskCal
This paper sheds light on the limitations of Large Language Models (LLMs) by rigorously evaluating their ability to process masked text. We introduce two novel tasks: MskQA, measuring reasoning on masked question-answering datasets like RealtimeQA, and MskCal, assessing numerical reasoning on masked arithmetic problems.Testing GPT-4o and 4o-mini reveals that while LLMs exhibit some resilience to masked text, their performance is highly contingent on masking rates and semantic cues. Specifically, "solid masking," where semantic clues are entirely absent, leads to a significant performance drop compared to "partial lifting," where some semantic information is retained, indicating LLMs' reliance on surface-level patterns. Interestingly, GPT-4o consistently outperforms 4o-mini, particularly in MskCal, demonstrating a greater ability to handle numerical reasoning with masked text. This underscores the crucial role of semantic cues in the reasoning process of LLMs. Our study illuminates the interplay between background knowledge and reasoning ability in masked text processing, paving the way for a deeper understanding of LLM capabilities and limitations, and highlighting the need for more robust evaluation methods to accurately assess their true comprehension abilities.
comment: 19 pages
♻ ☆ Sticker-TTS: Learn to Utilize Historical Experience with a Sticker-driven Test-Time Scaling Framework
Large reasoning models (LRMs) have exhibited strong performance on complex reasoning tasks, with further gains achievable through increased computational budgets at inference. However, current test-time scaling methods predominantly rely on redundant sampling, ignoring the historical experience utilization, thereby limiting computational efficiency. To overcome this limitation, we propose Sticker-TTS, a novel test-time scaling framework that coordinates three collaborative LRMs to iteratively explore and refine solutions guided by historical attempts. At the core of our framework are distilled key conditions-termed stickers-which drive the extraction, refinement, and reuse of critical information across multiple rounds of reasoning. To further enhance the efficiency and performance of our framework, we introduce a two-stage optimization strategy that combines imitation learning with self-improvement, enabling progressive refinement. Extensive evaluations on three challenging mathematical reasoning benchmarks, including AIME-24, AIME-25, and OlymMATH, demonstrate that Sticker-TTS consistently surpasses strong baselines, including self-consistency and advanced reinforcement learning approaches, under comparable inference budgets. These results highlight the effectiveness of sticker-guided historical experience utilization. Our code and data are available at https://github.com/RUCAIBox/Sticker-TTS.
comment: 11 pages, 1 figures, 5 tables
♻ ☆ BeSimulator: A Large Language Model Powered Text-based Behavior Simulator
Traditional robot simulators focus on physical process modeling and realistic rendering, often suffering from high computational costs, inefficiencies, and limited adaptability. To handle this issue, we concentrate on behavior simulation in robotics to analyze and validate the logic behind robot behaviors, aiming to achieve preliminary evaluation before deploying resource-intensive simulators and thus enhance simulation efficiency. In this paper, we propose BeSimulator, a modular and novel LLM-powered framework, as an attempt towards behavior simulation in the context of text-based environments. By constructing text-based virtual environments and performing semantic-level simulation, BeSimulator can generalize across scenarios and achieve long-horizon complex simulation. Inspired by human cognition paradigm, it employs a ``consider-decide-capture-transfer'' four-phase simulation process, termed Chain of Behavior Simulation (CBS), which excels at analyzing action feasibility and state transition. Additionally, BeSimulator incorporates code-driven reasoning to enable arithmetic operations and enhance reliability, and reflective feedback to refine simulation. Based on our manually constructed behavior-tree-based simulation benchmark, BTSIMBENCH, our experiments show a significant performance improvement in behavior simulation compared to baselines, ranging from 13.60% to 24.80%. Code and data are available at https://github.com/Dawn888888/BeSimulator.
comment: 19 pages, 5 figures, 8 tables
♻ ☆ HoPE: Hyperbolic Rotary Positional Encoding for Stable Long-Range Dependency Modeling in Large Language Models
Positional encoding mechanisms enable Transformers to model sequential structure and long-range dependencies in text. While absolute positional encodings struggle with extrapolation to longer sequences due to fixed positional representations, and relative approaches like Alibi exhibit performance degradation on extremely long contexts, the widely-used Rotary Positional Encoding (RoPE) introduces oscillatory attention patterns that hinder stable long-distance dependency modelling. We address these limitations through a geometric reformulation of positional encoding. Drawing inspiration from Lorentz transformations in hyperbolic geometry, we propose Hyperbolic Rotary Positional Encoding (HoPE), which leverages hyperbolic functions to implement Lorentz rotations on token representations. Theoretical analysis demonstrates that RoPE is a special case of our generalized formulation. HoPE fundamentally resolves RoPE's slation issues by enforcing monotonic decay of attention weights with increasing token distances. Extensive experimental results, including perplexity evaluations under several extended sequence benchmarks, show that HoPE consistently exceeds existing positional encoding methods. These findings underscore HoPE's enhanced capacity for representing and generalizing long-range dependencies. Data and code will be available.
♻ ☆ Jet-Nemotron: Efficient Language Model with Post Neural Architecture Search
We present Jet-Nemotron, a new family of hybrid-architecture language models, which matches or exceeds the accuracy of leading full-attention models while significantly improving generation throughput. Jet-Nemotron is developed using Post Neural Architecture Search (PostNAS), a novel neural architecture exploration pipeline that enables efficient model design. Unlike prior approaches, PostNAS begins with a pre-trained full-attention model and freezes its MLP weights, allowing efficient exploration of attention block designs. The pipeline includes four key components: (1) learning optimal full-attention layer placement and elimination, (2) linear attention block selection, (3) designing new attention blocks, and (4) performing hardware-aware hyperparameter search. Our Jet-Nemotron-2B model achieves comparable or superior accuracy to Qwen3, Qwen2.5, Gemma3, and Llama3.2 across a comprehensive suite of benchmarks while delivering up to 53.6x generation throughput speedup and 6.1x prefilling speedup. It also achieves higher accuracy on MMLU and MMLU-Pro than recent advanced MoE full-attention models, such as DeepSeek-V3-Small and Moonlight, despite their larger scale with 15B total and 2.2B activated parameters.
comment: Tech Report
♻ ☆ Learning to Reason for Long-Form Story Generation
Generating high-quality stories spanning thousands of tokens requires competency across a variety of skills, from tracking plot and character arcs to keeping a consistent and engaging style. Due to the difficulty of sourcing labeled datasets and precise quality measurements, most work using large language models (LLMs) for long-form story generation uses combinations of hand-designed prompting techniques to elicit author-like behavior. This is a manual process that is highly dependent on the specific story-generation task. Motivated by the recent success of applying RL with Verifiable Rewards to domains like math and coding, we propose a general story-generation task (Next-Chapter Prediction) and a reward formulation (Verified Rewards via Completion Likelihood Improvement) that allows us to use an unlabeled book dataset as a learning signal for reasoning. We learn to reason over a story's condensed information and generate a detailed plan for the next chapter. Our reasoning is evaluated via the chapters it helps a story-generator create, and compared against non-trained and supervised finetuning (SFT) baselines. Pairwise human judgments reveal the chapters our learned reasoning produces are preferred across almost all metrics, and the effect is more pronounced in Scifi and Fantasy genres.
♻ ☆ MoSEs: Uncertainty-Aware AI-Generated Text Detection via Mixture of Stylistics Experts with Conditional Thresholds EMNLP 2025
The rapid advancement of large language models has intensified public concerns about the potential misuse. Therefore, it is important to build trustworthy AI-generated text detection systems. Existing methods neglect stylistic modeling and mostly rely on static thresholds, which greatly limits the detection performance. In this paper, we propose the Mixture of Stylistic Experts (MoSEs) framework that enables stylistics-aware uncertainty quantification through conditional threshold estimation. MoSEs contain three core components, namely, the Stylistics Reference Repository (SRR), the Stylistics-Aware Router (SAR), and the Conditional Threshold Estimator (CTE). For input text, SRR can activate the appropriate reference data in SRR and provide them to CTE. Subsequently, CTE jointly models the linguistic statistical properties and semantic features to dynamically determine the optimal threshold. With a discrimination score, MoSEs yields prediction labels with the corresponding confidence level. Our framework achieves an average improvement 11.34% in detection performance compared to baselines. More inspiringly, MoSEs shows a more evident improvement 39.15% in the low-resource case. Our code is available at https://github.com/creator-xi/MoSEs.
comment: EMNLP 2025
♻ ☆ A Structured Dataset of Disease-Symptom Associations to Improve Diagnostic Accuracy
Disease-symptom datasets are significant and in demand for medical research, disease diagnosis, clinical decision-making, and AI-driven health management applications. These datasets help identify symptom patterns associated with specific diseases, thus improving diagnostic accuracy and enabling early detection. The dataset presented in this study systematically compiles disease-symptom relationships from various online sources, medical literature, and publicly available health databases. The data was gathered through analyzing peer-reviewed medical articles, clinical case studies, and disease-symptom association reports. Only the verified medical sources were included in the dataset, while those from non-peer-reviewed and anecdotal sources were excluded. The dataset is structured in a tabular format, where the first column represents diseases, and the remaining columns represent symptoms. Each symptom cell contains a binary value, indicating whether a symptom is associated with a disease. Thereby, this structured representation makes the dataset very useful for a wide range of applications, including machine learning-based disease prediction, clinical decision support systems, and epidemiological studies. Although there are some advancements in the field of disease-symptom datasets, there is a significant gap in structured datasets for the Bangla language. This dataset aims to bridge that gap by facilitating the development of multilingual medical informatics tools and improving disease prediction models for underrepresented linguistic communities. Further developments should include region-specific diseases and further fine-tuning of symptom associations for better diagnostic performance
comment: Computational Biology
♻ ☆ E-THER: A Multimodal Dataset for Empathic AI -- Towards Emotional Mismatch Awareness
A prevalent shortfall among current empathic AI systems is their inability to recognize when verbal expressions may not fully reflect underlying emotional states. This is because the existing datasets, used for the training of these systems, focus on surface-level emotion recognition without addressing the complex verbal-visual incongruence (mismatch) patterns useful for empathic understanding. In this paper, we present E-THER, the first Person-Centered Therapy-grounded multimodal dataset with multidimensional annotations for verbal-visual incongruence detection, enabling training of AI systems that develop genuine rather than performative empathic capabilities. The annotations included in the dataset are drawn from humanistic approach, i.e., identifying verbal-visual emotional misalignment in client-counsellor interactions - forming a framework for training and evaluating AI on empathy tasks. Additional engagement scores provide behavioral annotations for research applications. Notable gains in empathic and therapeutic conversational qualities are observed in state-of-the-art vision-language models (VLMs), such as IDEFICS and VideoLLAVA, using evaluation metrics grounded in empathic and therapeutic principles. Empirical findings indicate that our incongruence-trained models outperform general-purpose models in critical traits, such as sustaining therapeutic engagement, minimizing artificial or exaggerated linguistic patterns, and maintaining fidelity to PCT theoretical framework.
comment: 15 pages, 4 figures. Preprint
♻ ☆ Measuring Bias or Measuring the Task: Understanding the Brittle Nature of LLM Gender Biases EMNLP 2025
As LLMs are increasingly applied in socially impactful settings, concerns about gender bias have prompted growing efforts both to measure and mitigate such bias. These efforts often rely on evaluation tasks that differ from natural language distributions, as they typically involve carefully constructed task prompts that overtly or covertly signal the presence of gender bias-related content. In this paper, we examine how signaling the evaluative purpose of a task impacts measured gender bias in LLMs.Concretely, we test models under prompt conditions that (1) make the testing context salient, and (2) make gender-focused content salient. We then assess prompt sensitivity across four task formats with both token-probability and discrete-choice metrics. We find that prompts that more clearly align with (gender bias) evaluation framing elicit distinct gender output distributions compared to less evaluation-framed prompts. Discrete-choice metrics further tend to amplify bias relative to probabilistic measures. These findings do not only highlight the brittleness of LLM gender bias evaluations but open a new puzzle for the NLP benchmarking and development community: To what extent can well-controlled testing designs trigger LLM "testing mode" performance, and what does this mean for the ecological validity of future benchmarks.
comment: To be published at EMNLP 2025 (main conference)
♻ ☆ Enhancing Dialogue Annotation with Speaker Characteristics Leveraging a Frozen LLM IEEE
In dialogue transcription pipelines, Large Language Models (LLMs) are frequently employed in post-processing to improve grammar, punctuation, and readability. We explore a complementary post-processing step: enriching transcribed dialogues by adding metadata tags for speaker characteristics such as age, gender, and emotion. Some of the tags are global to the entire dialogue, while some are time-variant. Our approach couples frozen audio foundation models, such as Whisper or WavLM, with a frozen LLAMA language model to infer these speaker attributes, without requiring task-specific fine-tuning of either model. Using lightweight, efficient connectors to bridge audio and language representations, we achieve competitive performance on speaker profiling tasks while preserving modularity and speed. Additionally, we demonstrate that a frozen LLAMA model can compare x-vectors directly, achieving an Equal Error Rate of 8.8% in some scenarios.
comment: Accepted in the 2025 IEEE Automatic Speech Recognition and Understanding Workshop
♻ ☆ CoMMIT: Coordinated Multimodal Instruction Tuning
Instruction tuning in multimodal large language models (MLLMs) generally involves cooperative learning between a backbone LLM and a feature encoder of non-text input modalities. The major challenge is how to efficiently find the synergy between the two modules so that LLMs can adapt their reasoning abilities to downstream tasks while feature encoders can adjust to provide more task-specific information about its modality. In this paper, we analyze the MLLM instruction tuning from both theoretical and empirical perspectives, where we find the unbalanced learning between the feature encoder and the LLM can cause problems of oscillation and biased learning that lead to sub-optimal convergence. Inspired by our findings, we propose a Multimodal Balance Coefficient that enables quantitative measurement of the balance of learning. Based on this, we further design a dynamic learning scheduler that better coordinates the learning between the LLM and feature encoder, alleviating the problems of oscillation and biased learning. In addition, we introduce an auxiliary regularization on the gradient to promote updating with larger step sizes, which potentially allows for a more accurate estimation of the proposed MultiModal Balance Coefficient and further improves the training sufficiency. Our proposed approach is agnostic to the architecture of LLM and feature encoder, so it can be generically integrated with various MLLMs. We conduct experiments on multiple downstream tasks with various MLLMs, demonstrating that the proposed method is more effective than the baselines in MLLM instruction tuning.
comment: 9 pages
♻ ☆ Personalized Attacks of Social Engineering in Multi-turn Conversations: LLM Agents for Simulation and Detection
The rapid advancement of conversational agents, particularly chatbots powered by Large Language Models (LLMs), poses a significant risk of social engineering (SE) attacks on social media platforms. SE detection in multi-turn, chat-based interactions is considerably more complex than single-instance detection due to the dynamic nature of these conversations. A critical factor in mitigating this threat is understanding the SE attack mechanisms through which SE attacks operate, specifically how attackers exploit vulnerabilities and how victims' personality traits contribute to their susceptibility. In this work, we propose an LLM-agentic framework, SE-VSim, to simulate SE attack mechanisms by generating multi-turn conversations. We model victim agents with varying personality traits to assess how psychological profiles influence susceptibility to manipulation. Using a dataset of over 1000 simulated conversations, we examine attack scenarios in which adversaries, posing as recruiters, funding agencies, and journalists, attempt to extract sensitive information. Based on this analysis, we present a proof of concept, SE-OmniGuard, to offer personalized protection to users by leveraging prior knowledge of the victims personality, evaluating attack strategies, and monitoring information exchanges in conversations to identify potential SE attempts.
comment: Accepted as a paper at COLM 2025 Workshop on AI Agents: Capabilities and Safety
♻ ☆ MEMOIR: Lifelong Model Editing with Minimal Overwrite and Informed Retention for LLMs
Language models deployed in real-world systems often require post-hoc updates to incorporate new or corrected knowledge. However, editing such models efficiently and reliably-without retraining or forgetting previous information-remains a major challenge. Existing methods for lifelong model editing either compromise generalization, interfere with past edits, or fail to scale to long editing sequences. We propose MEMOIR, a novel scalable framework that injects knowledge through a residual memory, i.e., a dedicated parameter module, while preserving the core capabilities of the pre-trained model. By sparsifying input activations through sample-dependent masks, MEMOIR confines each edit to a distinct subset of the memory parameters, minimizing interference among edits. At inference, it identifies relevant edits by comparing the sparse activation patterns of new queries to those stored during editing. This enables generalization to rephrased queries by activating only the relevant knowledge while suppressing unnecessary memory activation for unrelated prompts. Experiments on question answering, hallucination correction, and out-of-distribution generalization benchmarks for LLaMA-3 and Mistral backbones demonstrate that MEMOIR achieves state-of-the-art performance across reliability, generalization, and locality metrics, scaling to thousands of sequential edits with minimal forgetting.
comment: The first two authors contributed equally to this work
♻ ☆ FilterRAG: Zero-Shot Informed Retrieval-Augmented Generation to Mitigate Hallucinations in VQA ICCV 2025
Visual Question Answering requires models to generate accurate answers by integrating visual and textual understanding. However, VQA models still struggle with hallucinations, producing convincing but incorrect answers, particularly in knowledge-driven and Out-of-Distribution scenarios. We introduce FilterRAG, a retrieval-augmented framework that combines BLIP-VQA with Retrieval-Augmented Generation to ground answers in external knowledge sources like Wikipedia and DBpedia. FilterRAG achieves 36.5% accuracy on the OK-VQA dataset, demonstrating its effectiveness in reducing hallucinations and improving robustness in both in-domain and Out-of-Distribution settings. These findings highlight the potential of FilterRAG to improve Visual Question Answering systems for real-world deployment.
comment: 12 pages, 6 figures and 2 tables; Accepted at ICCV 2025 Workshop on Building Foundation Models You Can Trust (T2FM)
♻ ☆ Advancing SLM Tool-Use Capability using Reinforcement Learning
In an era where tool-augmented AI agents are becoming increasingly vital, our findings highlight the ability of Group Relative Policy Optimization (GRPO) to empower SLMs, which are traditionally constrained in tool use. The ability to use tools effectively has become a defining feature of Large Language Models (LLMs), allowing them to access external data and internal resources. As AI agents grow more sophisticated, tool-use capabilities have become indispensable. While LLMs have made significant progress in this area, Small Language Models (SLMs) still face challenges in accurately integrating tool use, especially in resource-constrained settings. This study investigates how Reinforcement Learning, specifically Group Relative Policy Optimization (GRPO), can enhance the tool-use accuracy of SLMs. By designing a well-defined reward system that reinforces structured JSON output, correct tool selection, and precise parameter usage, we demonstrate that GRPO enables SLMs to achieve significant improvements in tool-use capabilities (function calling/JSON output). Our approach provides a computationally efficient training method that enhances SLMs practical deployment in real-world AI applications.
♻ ☆ No Thoughts Just AI: Biased LLM Hiring Recommendations Alter Human Decision Making and Limit Human Autonomy AAAI
In this study, we conduct a resume-screening experiment (N=528) where people collaborate with simulated AI models exhibiting race-based preferences (bias) to evaluate candidates for 16 high and low status occupations. Simulated AI bias approximates factual and counterfactual estimates of racial bias in real-world AI systems. We investigate people's preferences for White, Black, Hispanic, and Asian candidates (represented through names and affinity groups on quality-controlled resumes) across 1,526 scenarios and measure their unconscious associations between race and status using implicit association tests (IATs), which predict discriminatory hiring decisions but have not been investigated in human-AI collaboration. When making decisions without AI or with AI that exhibits no race-based preferences, people select all candidates at equal rates. However, when interacting with AI favoring a particular group, people also favor those candidates up to 90% of the time, indicating a significant behavioral shift. The likelihood of selecting candidates whose identities do not align with common race-status stereotypes can increase by 13% if people complete an IAT before conducting resume screening. Finally, even if people think AI recommendations are low quality or not important, their decisions are still vulnerable to AI bias under certain circumstances. This work has implications for people's autonomy in AI-HITL scenarios, AI and work, design and evaluation of AI hiring systems, and strategies for mitigating bias in collaborative decision-making tasks. In particular, organizational and regulatory policy should acknowledge the complex nature of AI-HITL decision making when implementing these systems, educating people who use them, and determining which are subject to oversight.
comment: Published in Proceedings of the 2025 AAAI/ACM Conference on AI, Ethics, and Society; code available at https://github.com/kyrawilson/No-Thoughts-Just-AI
♻ ☆ Meaning-infused grammar: Gradient Acceptability Shapes the Geometric Representations of Constructions in LLMs
The usage-based constructionist (UCx) approach to language posits that language comprises a network of learned form-meaning pairings (constructions) whose use is largely determined by their meanings or functions, requiring them to be graded and probabilistic. This study investigates whether the internal representations in Large Language Models (LLMs) reflect the proposed function-infused gradience. We analyze representations of the English Double Object (DO) and Prepositional Object (PO) constructions in Pythia-$1.4$B, using a dataset of $5000$ sentence pairs systematically varied by human-rated preference strength for DO or PO. Geometric analyses show that the separability between the two constructions' representations, as measured by energy distance or Jensen-Shannon divergence, is systematically modulated by gradient preference strength, which depends on lexical and functional properties of sentences. That is, more prototypical exemplars of each construction occupy more distinct regions in activation space, compared to sentences that could have equally well have occured in either construction. These results provide evidence that LLMs learn rich, meaning-infused, graded representations of constructions and offer support for geometric measures for representations in LLMs.
comment: 6 pages, 3 figures, Accepted for publication at the Second International Workshop on Construction Grammars and NLP at the 16th International Conference for Computational Semantics (IWCS) 2025
♻ ☆ Understanding Museum Exhibits using Vision-Language Reasoning ICCV 2025
Museums serve as repositories of cultural heritage and historical artifacts from diverse epochs, civilizations, and regions, preserving well-documented collections that encapsulate vast knowledge, which, when systematically structured into large-scale datasets, can train specialized models. Visitors engage with exhibits through curiosity and questions, making expert domain-specific models essential for interactive query resolution and gaining historical insights. Understanding exhibits from images requires analyzing visual features and linking them to historical knowledge to derive meaningful correlations. We facilitate such reasoning by (a) collecting and curating a large-scale dataset of 65M images and 200M question-answer pairs for exhibits from all around the world; (b) training large vision-language models (VLMs) on the collected dataset; (c) benchmarking their ability on five visual question answering tasks, specifically designed to reflect real-world inquiries and challenges observed in museum settings. The complete dataset is labeled by museum experts, ensuring the quality and the practical significance of the labels. We train two VLMs from different categories: BLIP with vision-language aligned embeddings, but lacking the expressive power of large language models, and the LLaVA model, a powerful instruction-tuned LLM enriched with vision-language reasoning capabilities. Through extensive experiments, we find that while both model types effectively answer visually grounded questions, large vision-language models excel in queries requiring deeper historical context and reasoning. We further demonstrate the necessity of fine-tuning models on large-scale domain-specific datasets by showing that our fine-tuned models significantly outperform current SOTA VLMs in answering questions related to specific attributes, highlighting their limitations in handling complex, nuanced queries.
comment: Accepted at ICCV 2025
♻ ☆ Heterogeneous Self-Supervised Acoustic Pre-Training with Local Constraints
Self-supervised pre-training using unlabeled data is widely used in automatic speech recognition. In this paper, we propose a new self-supervised pre-training approach to dealing with heterogeneous data. Instead of mixing all the data and minimizing the averaged global loss in the conventional way, we impose additional local constraints to ensure that the model optimizes each source of heterogeneous data to its local optimum after $K$-step gradient descent initialized from the model. We formulate this as a bilevel optimization problem, and use the first-order approximation method to solve the problem. We discuss its connection to model-agnostic meta learning. Experiments are carried out on self-supervised pre-training using multi-domain and multilingual datasets, demonstrating that the proposed approach can significantly improve the adaptivity of the self-supervised pre-trained model for the downstream supervised fine-tuning tasks.
♻ ☆ Localizing Persona Representations in LLMs AAAI
We present a study on how and where personas -- defined by distinct sets of human characteristics, values, and beliefs -- are encoded in the representation space of large language models (LLMs). Using a range of dimension reduction and pattern recognition methods, we first identify the model layers that show the greatest divergence in encoding these representations. We then analyze the activations within a selected layer to examine how specific personas are encoded relative to others, including their shared and distinct embedding spaces. We find that, across multiple pre-trained decoder-only LLMs, the analyzed personas show large differences in representation space only within the final third of the decoder layers. We observe overlapping activations for specific ethical perspectives -- such as moral nihilism and utilitarianism -- suggesting a degree of polysemy. In contrast, political ideologies like conservatism and liberalism appear to be represented in more distinct regions. These findings help to improve our understanding of how LLMs internally represent information and can inform future efforts in refining the modulation of specific human traits in LLM outputs. Warning: This paper includes potentially offensive sample statements.
comment: To appear in the AAAI/ACM Conference on AI, Ethics, and Society (AIES) 2025
Machine Learning 234
☆ H$_{2}$OT: Hierarchical Hourglass Tokenizer for Efficient Video Pose Transformers
Transformers have been successfully applied in the field of video-based 3D human pose estimation. However, the high computational costs of these video pose transformers (VPTs) make them impractical on resource-constrained devices. In this paper, we present a hierarchical plug-and-play pruning-and-recovering framework, called Hierarchical Hourglass Tokenizer (H$_{2}$OT), for efficient transformer-based 3D human pose estimation from videos. H$_{2}$OT begins with progressively pruning pose tokens of redundant frames and ends with recovering full-length sequences, resulting in a few pose tokens in the intermediate transformer blocks and thus improving the model efficiency. It works with two key modules, namely, a Token Pruning Module (TPM) and a Token Recovering Module (TRM). TPM dynamically selects a few representative tokens to eliminate the redundancy of video frames, while TRM restores the detailed spatio-temporal information based on the selected tokens, thereby expanding the network output to the original full-length temporal resolution for fast inference. Our method is general-purpose: it can be easily incorporated into common VPT models on both seq2seq and seq2frame pipelines while effectively accommodating different token pruning and recovery strategies. In addition, our H$_{2}$OT reveals that maintaining the full pose sequence is unnecessary, and a few pose tokens of representative frames can achieve both high efficiency and estimation accuracy. Extensive experiments on multiple benchmark datasets demonstrate both the effectiveness and efficiency of the proposed method. Code and models are available at https://github.com/NationalGAILab/HoT.
comment: Accepted by TPAMI 2025, Open Sourced. arXiv admin note: substantial text overlap with arXiv:2311.12028
☆ Deep Reactive Policy: Learning Reactive Manipulator Motion Planning for Dynamic Environments
Generating collision-free motion in dynamic, partially observable environments is a fundamental challenge for robotic manipulators. Classical motion planners can compute globally optimal trajectories but require full environment knowledge and are typically too slow for dynamic scenes. Neural motion policies offer a promising alternative by operating in closed-loop directly on raw sensory inputs but often struggle to generalize in complex or dynamic settings. We propose Deep Reactive Policy (DRP), a visuo-motor neural motion policy designed for reactive motion generation in diverse dynamic environments, operating directly on point cloud sensory input. At its core is IMPACT, a transformer-based neural motion policy pretrained on 10 million generated expert trajectories across diverse simulation scenarios. We further improve IMPACT's static obstacle avoidance through iterative student-teacher finetuning. We additionally enhance the policy's dynamic obstacle avoidance at inference time using DCP-RMP, a locally reactive goal-proposal module. We evaluate DRP on challenging tasks featuring cluttered scenes, dynamic moving obstacles, and goal obstructions. DRP achieves strong generalization, outperforming prior classical and neural methods in success rate across both simulated and real-world settings. Video results and code available at https://deep-reactive-policy.com
comment: Website at \url{deep-reactive-policy.com}
☆ Interleaving Reasoning for Better Text-to-Image Generation
Unified multimodal understanding and generation models recently have achieve significant improvement in image generation capability, yet a large gap remains in instruction following and detail preservation compared to systems that tightly couple comprehension with generation such as GPT-4o. Motivated by recent advances in interleaving reasoning, we explore whether such reasoning can further improve Text-to-Image (T2I) generation. We introduce Interleaving Reasoning Generation (IRG), a framework that alternates between text-based thinking and image synthesis: the model first produces a text-based thinking to guide an initial image, then reflects on the result to refine fine-grained details, visual quality, and aesthetics while preserving semantics. To train IRG effectively, we propose Interleaving Reasoning Generation Learning (IRGL), which targets two sub-goals: (1) strengthening the initial think-and-generate stage to establish core content and base quality, and (2) enabling high-quality textual reflection and faithful implementation of those refinements in a subsequent image. We curate IRGL-300K, a dataset organized into six decomposed learning modes that jointly cover learning text-based thinking, and full thinking-image trajectories. Starting from a unified foundation model that natively emits interleaved text-image outputs, our two-stage training first builds robust thinking and reflection, then efficiently tunes the IRG pipeline in the full thinking-image trajectory data. Extensive experiments show SoTA performance, yielding absolute gains of 5-10 points on GenEval, WISE, TIIF, GenAI-Bench, and OneIG-EN, alongside substantial improvements in visual quality and fine-grained fidelity. The code, model weights and datasets will be released in: https://github.com/Osilly/Interleaving-Reasoning-Generation .
☆ Directly Aligning the Full Diffusion Trajectory with Fine-Grained Human Preference
Recent studies have demonstrated the effectiveness of directly aligning diffusion models with human preferences using differentiable reward. However, they exhibit two primary challenges: (1) they rely on multistep denoising with gradient computation for reward scoring, which is computationally expensive, thus restricting optimization to only a few diffusion steps; (2) they often need continuous offline adaptation of reward models in order to achieve desired aesthetic quality, such as photorealism or precise lighting effects. To address the limitation of multistep denoising, we propose Direct-Align, a method that predefines a noise prior to effectively recover original images from any time steps via interpolation, leveraging the equation that diffusion states are interpolations between noise and target images, which effectively avoids over-optimization in late timesteps. Furthermore, we introduce Semantic Relative Preference Optimization (SRPO), in which rewards are formulated as text-conditioned signals. This approach enables online adjustment of rewards in response to positive and negative prompt augmentation, thereby reducing the reliance on offline reward fine-tuning. By fine-tuning the FLUX.1.dev model with optimized denoising and online reward adjustment, we improve its human-evaluated realism and aesthetic quality by over 3x.
comment: 15 pages
☆ Outcome-based Exploration for LLM Reasoning
Reinforcement learning (RL) has emerged as a powerful method for improving the reasoning abilities of large language models (LLMs). Outcome-based RL, which rewards policies solely for the correctness of the final answer, yields substantial accuracy gains but also induces a systematic loss in generation diversity. This collapse undermines real-world performance, where diversity is critical for test-time scaling. We analyze this phenomenon by viewing RL post-training as a sampling process and show that, strikingly, RL can reduce effective diversity even on the training set relative to the base model. Our study highlights two central findings: (i) a transfer of diversity degradation, where reduced diversity on solved problems propagates to unsolved ones, and (ii) the tractability of the outcome space, since reasoning tasks admit only a limited set of distinct answers. Motivated by these insights, we propose outcome-based exploration, which assigns exploration bonuses according to final outcomes. We introduce two complementary algorithms: historical exploration, which encourages rarely observed answers via UCB-style bonuses, and batch exploration, which penalizes within-batch repetition to promote test-time diversity. Experiments on standard competition math with Llama and Qwen models demonstrate that both methods improve accuracy while mitigating diversity collapse. On the theoretical side, we formalize the benefit of outcome-based exploration through a new model of outcome-based bandits. Together, these contributions chart a practical path toward RL methods that enhance reasoning without sacrificing the diversity essential for scalable deployment.
comment: 26 pages, 11 figures
☆ From Noise to Narrative: Tracing the Origins of Hallucinations in Transformers
As generative AI systems become competent and democratized in science, business, and government, deeper insight into their failure modes now poses an acute need. The occasional volatility in their behavior, such as the propensity of transformer models to hallucinate, impedes trust and adoption of emerging AI solutions in high-stakes areas. In the present work, we establish how and when hallucinations arise in pre-trained transformer models through concept representations captured by sparse autoencoders, under scenarios with experimentally controlled uncertainty in the input space. Our systematic experiments reveal that the number of semantic concepts used by the transformer model grows as the input information becomes increasingly unstructured. In the face of growing uncertainty in the input space, the transformer model becomes prone to activate coherent yet input-insensitive semantic features, leading to hallucinated output. At its extreme, for pure-noise inputs, we identify a wide variety of robustly triggered and meaningful concepts in the intermediate activations of pre-trained transformer models, whose functional integrity we confirm through targeted steering. We also show that hallucinations in the output of a transformer model can be reliably predicted from the concept patterns embedded in transformer layer activations. This collection of insights on transformer internal processing mechanics has immediate consequences for aligning AI models with human values, AI safety, opening the attack surface for potential adversarial attacks, and providing a basis for automatic quantification of a model's hallucination risk.
☆ Learning words in groups: fusion algebras, tensor ranks and grokking
In this work, we demonstrate that a simple two-layer neural network with standard activation functions can learn an arbitrary word operation in any finite group, provided sufficient width is available and exhibits grokking while doing so. To explain the mechanism by which this is achieved, we reframe the problem as that of learning a particular $3$-tensor, which we show is typically of low rank. A key insight is that low-rank implementations of this tensor can be obtained by decomposing it along triplets of basic self-conjugate representations of the group and leveraging the fusion structure to rule out many components. Focusing on a phenomenologically similar but more tractable surrogate model, we show that the network is able to find such low-rank implementations (or approximations thereof), thereby using limited width to approximate the word-tensor in a generalizable way. In the case of the simple multiplication word, we further elucidate the form of these low-rank implementations, showing that the network effectively implements efficient matrix multiplication in the sense of Strassen. Our work also sheds light on the mechanism by which a network reaches such a solution under gradient descent.
☆ Data-driven solar forecasting enables near-optimal economic decisions
Solar energy adoption is critical to achieving net-zero emissions. However, it remains difficult for many industrial and commercial actors to decide on whether they should adopt distributed solar-battery systems, which is largely due to the unavailability of fast, low-cost, and high-resolution irradiance forecasts. Here, we present SunCastNet, a lightweight data-driven forecasting system that provides 0.05$^\circ$, 10-minute resolution predictions of surface solar radiation downwards (SSRD) up to 7 days ahead. SunCastNet, coupled with reinforcement learning (RL) for battery scheduling, reduces operational regret by 76--93\% compared to robust decision making (RDM). In 25-year investment backtests, it enables up to five of ten high-emitting industrial sectors per region to cross the commercial viability threshold of 12\% Internal Rate of Return (IRR). These results show that high-resolution, long-horizon solar forecasts can directly translate into measurable economic gains, supporting near-optimal energy operations and accelerating renewable deployment.
comment: Main text ~12 pages, 4 figures, 0 tables
☆ Neutron Reflectometry by Gradient Descent
Neutron reflectometry (NR) is a powerful technique to probe surfaces and interfaces. NR is inherently an indirect measurement technique, access to the physical quantities of interest (layer thickness, scattering length density, roughness), necessitate the solution of an inverse modelling problem, that is inefficient for large amounts of data or complex multiplayer structures (e.g. lithium batteries / electrodes). Recently, surrogate machine learning models have been proposed as an alternative to existing optimisation routines. Although such approaches have been successful, physical intuition is lost when replacing governing equations with fast neural networks. Instead, we propose a novel and efficient approach; to optimise reflectivity data analysis by performing gradient descent on the forward reflection model itself. Herein, automatic differentiation techniques are used to evaluate exact gradients of the error function with respect to the parameters of interest. Access to these quantities enables users of neutron reflectometry to harness a host of powerful modern optimisation and inference techniques that remain thus far unexploited in the context of neutron reflectometry. This paper presents two benchmark case studies; demonstrating state-of-the-art performance on a thick oxide quartz film, and robust co-fitting performance in the high complexity regime of organic LED multilayer devices. Additionally, we provide an open-source library of differentiable reflectometry kernels in the python programming language so that gradient based approaches can readily be applied to other NR datasets.
☆ Staying in the Sweet Spot: Responsive Reasoning Evolution via Capability-Adaptive Hint Scaffolding
Reinforcement learning with verifiable rewards (RLVR) has achieved remarkable success in enhancing the reasoning capabilities of large language models (LLMs). However, existing RLVR methods often suffer from exploration inefficiency due to mismatches between the training data's difficulty and the model's capability. LLMs fail to discover viable reasoning paths when problems are overly difficult, while learning little new capability when problems are too simple. In this work, we formalize the impact of problem difficulty by quantifying the relationship between loss descent speed and rollout accuracy. Building on this analysis, we propose SEELE, a novel supervision-aided RLVR framework that dynamically adjusts problem difficulty to stay within the high-efficiency region. SEELE augments each training sample by appending a hint (part of a full solution) after the original problem. Unlike previous hint-based approaches, SEELE deliberately and adaptively adjusts the hint length for each problem to achieve an optimal difficulty. To determine the optimal hint length, SEELE employs a multi-round rollout sampling strategy. In each round, it fits an item response theory model to the accuracy-hint pairs collected in preceding rounds to predict the required hint length for the next round. This instance-level, real-time difficulty adjustment aligns problem difficulty with the evolving model capability, thereby improving exploration efficiency. Experimental results show that SEELE outperforms Group Relative Policy Optimization (GRPO) and Supervised Fine-tuning (SFT) by +11.8 and +10.5 points, respectively, and surpasses the best previous supervision-aided approach by +3.6 points on average across six math reasoning benchmarks.
comment: Work in progress
☆ Tackling the Noisy Elephant in the Room: Label Noise-robust Out-of-Distribution Detection via Loss Correction and Low-rank Decomposition
Robust out-of-distribution (OOD) detection is an indispensable component of modern artificial intelligence (AI) systems, especially in safety-critical applications where models must identify inputs from unfamiliar classes not seen during training. While OOD detection has been extensively studied in the machine learning literature--with both post hoc and training-based approaches--its effectiveness under noisy training labels remains underexplored. Recent studies suggest that label noise can significantly degrade OOD performance, yet principled solutions to this issue are lacking. In this work, we demonstrate that directly combining existing label noise-robust methods with OOD detection strategies is insufficient to address this critical challenge. To overcome this, we propose a robust OOD detection framework that integrates loss correction techniques from the noisy label learning literature with low-rank and sparse decomposition methods from signal processing. Extensive experiments on both synthetic and real-world datasets demonstrate that our method significantly outperforms the state-of-the-art OOD detection techniques, particularly under severe noisy label settings.
☆ Paper2Agent: Reimagining Research Papers As Interactive and Reliable AI Agents
We introduce Paper2Agent, an automated framework that converts research papers into AI agents. Paper2Agent transforms research output from passive artifacts into active systems that can accelerate downstream use, adoption, and discovery. Conventional research papers require readers to invest substantial effort to understand and adapt a paper's code, data, and methods to their own work, creating barriers to dissemination and reuse. Paper2Agent addresses this challenge by automatically converting a paper into an AI agent that acts as a knowledgeable research assistant. It systematically analyzes the paper and the associated codebase using multiple agents to construct a Model Context Protocol (MCP) server, then iteratively generates and runs tests to refine and robustify the resulting MCP. These paper MCPs can then be flexibly connected to a chat agent (e.g. Claude Code) to carry out complex scientific queries through natural language while invoking tools and workflows from the original paper. We demonstrate Paper2Agent's effectiveness in creating reliable and capable paper agents through in-depth case studies. Paper2Agent created an agent that leverages AlphaGenome to interpret genomic variants and agents based on ScanPy and TISSUE to carry out single-cell and spatial transcriptomics analyses. We validate that these paper agents can reproduce the original paper's results and can correctly carry out novel user queries. By turning static papers into dynamic, interactive AI agents, Paper2Agent introduces a new paradigm for knowledge dissemination and a foundation for the collaborative ecosystem of AI co-scientists.
☆ Hypergraph-Guided Regex Filter Synthesis for Event-Based Anomaly Detection
We propose HyGLAD, a novel algorithm that automatically builds a set of interpretable patterns that model event data. These patterns can then be used to detect event-based anomalies in a stationary system, where any deviation from past behavior may indicate malicious activity. The algorithm infers equivalence classes of entities with similar behavior observed from the events, and then builds regular expressions that capture the values of those entities. As opposed to deep-learning approaches, the regular expressions are directly interpretable, which also translates to interpretable anomalies. We evaluate HyGLAD against all 7 unsupervised anomaly detection methods from DeepOD on five datasets from real-world systems. The experimental results show that on average HyGLAD outperforms existing deep-learning methods while being an order of magnitude more efficient in training and inference (single CPU vs GPU). Precision improved by 1.2x and recall by 1.3x compared to the second-best baseline.
☆ Proof-Carrying Numbers (PCN): A Protocol for Trustworthy Numeric Answers from LLMs via Claim Verification
Large Language Models (LLMs) as stochastic systems may generate numbers that deviate from available data, a failure known as \emph{numeric hallucination}. Existing safeguards -- retrieval-augmented generation, citations, and uncertainty estimation -- improve transparency but cannot guarantee fidelity: fabricated or misquoted values may still be displayed as if correct. We propose \textbf{Proof-Carrying Numbers (PCN)}, a presentation-layer protocol that enforces numeric fidelity through mechanical verification. Under PCN, numeric spans are emitted as \emph{claim-bound tokens} tied to structured claims, and a verifier checks each token under a declared policy (e.g., exact equality, rounding, aliases, or tolerance with qualifiers). Crucially, PCN places verification in the \emph{renderer}, not the model: only claim-checked numbers are marked as verified, and all others default to unverified. This separation prevents spoofing and guarantees fail-closed behavior. We formalize PCN and prove soundness, completeness under honest tokens, fail-closed behavior, and monotonicity under policy refinement. PCN is lightweight and model-agnostic, integrates seamlessly into existing applications, and can be extended with cryptographic commitments. By enforcing verification as a mandatory step before display, PCN establishes a simple contract for numerically sensitive settings: \emph{trust is earned only by proof}, while the absence of a mark communicates uncertainty.
☆ Not All Samples Are Equal: Quantifying Instance-level Difficulty in Targeted Data Poisoning
Targeted data poisoning attacks pose an increasingly serious threat due to their ease of deployment and high success rates. These attacks aim to manipulate the prediction for a single test sample in classification models. Unlike indiscriminate attacks that aim to decrease overall test performance, targeted attacks present a unique threat to individual test instances. This threat model raises a fundamental question: what factors make certain test samples more susceptible to successful poisoning than others? We investigate how attack difficulty varies across different test instances and identify key characteristics that influence vulnerability. This paper introduces three predictive criteria for targeted data poisoning difficulty: ergodic prediction accuracy (analyzed through clean training dynamics), poison distance, and poison budget. Our experimental results demonstrate that these metrics effectively predict the varying difficulty of real-world targeted poisoning attacks across diverse scenarios, offering practitioners valuable insights for vulnerability assessment and understanding data poisoning attacks.
☆ Learning from one graph: transductive learning guarantees via the geometry of small random worlds
Since their introduction by Kipf and Welling in $2017$, a primary use of graph convolutional networks is transductive node classification, where missing labels are inferred within a single observed graph and its feature matrix. Despite the widespread use of the network model, the statistical foundations of transductive learning remain limited, as standard inference frameworks typically rely on multiple independent samples rather than a single graph. In this work, we address these gaps by developing new concentration-of-measure tools that leverage the geometric regularities of large graphs via low-dimensional metric embeddings. The emergent regularities are captured using a random graph model; however, the methods remain applicable to deterministic graphs once observed. We establish two principal learning results. The first concerns arbitrary deterministic $k$-vertex graphs, and the second addresses random graphs that share key geometric properties with an Erd\H{o}s-R\'{e}nyi graph $\mathbf{G}=\mathbf{G}(k,p)$ in the regime $p \in \mathcal{O}((\log (k)/k)^{1/2})$. The first result serves as the basis for and illuminates the second. We then extend these results to the graph convolutional network setting, where additional challenges arise. Lastly, our learning guarantees remain informative even with a few labelled nodes $N$ and achieve the optimal nonparametric rate $\mathcal{O}(N^{-1/2})$ as $N$ grows.
☆ mmBERT: A Modern Multilingual Encoder with Annealed Language Learning
Encoder-only languages models are frequently used for a variety of standard machine learning tasks, including classification and retrieval. However, there has been a lack of recent research for encoder models, especially with respect to multilingual models. We introduce mmBERT, an encoder-only language model pretrained on 3T tokens of multilingual text in over 1800 languages. To build mmBERT we introduce several novel elements, including an inverse mask ratio schedule and an inverse temperature sampling ratio. We add over 1700 low-resource languages to the data mix only during the decay phase, showing that it boosts performance dramatically and maximizes the gains from the relatively small amount of training data. Despite only including these low-resource languages in the short decay phase we achieve similar classification performance to models like OpenAI's o3 and Google's Gemini 2.5 Pro. Overall, we show that mmBERT significantly outperforms the previous generation of models on classification and retrieval tasks -- on both high and low-resource languages.
☆ AxelSMOTE: An Agent-Based Oversampling Algorithm for Imbalanced Classification
Class imbalance in machine learning poses a significant challenge, as skewed datasets often hinder performance on minority classes. Traditional oversampling techniques, which are commonly used to alleviate class imbalance, have several drawbacks: they treat features independently, lack similarity-based controls, limit sample diversity, and fail to manage synthetic variety effectively. To overcome these issues, we introduce AxelSMOTE, an innovative agent-based approach that views data instances as autonomous agents engaging in complex interactions. Based on Axelrod's cultural dissemination model, AxelSMOTE implements four key innovations: (1) trait-based feature grouping to preserve correlations; (2) a similarity-based probabilistic exchange mechanism for meaningful interactions; (3) Beta distribution blending for realistic interpolation; and (4) controlled diversity injection to avoid overfitting. Experiments on eight imbalanced datasets demonstrate that AxelSMOTE outperforms state-of-the-art sampling methods while maintaining computational efficiency.
☆ Learning spatially structured open quantum dynamics with regional-attention transformers
Simulating the dynamics of open quantum systems with spatial structure and external control is an important challenge in quantum information science. Classical numerical solvers for such systems require integrating coupled master and field equations, which is computationally demanding for simulation and optimization tasks and often precluding real-time use in network-scale simulations or feedback control. We introduce a regional attention-based neural architecture that learns the spatiotemporal dynamics of structured open quantum systems. The model incorporates translational invariance of physical laws as an inductive bias to achieve scalable complexity, and supports conditioning on time-dependent global control parameters. We demonstrate learning on two representative systems: a driven dissipative single qubit and an electromagnetically induced transparency (EIT) quantum memory. The model achieves high predictive fidelity under both in-distribution and out-of-distribution control protocols, and provides substantial acceleration up to three orders of magnitude over numerical solvers. These results demonstrate that the architecture establishes a general surrogate modeling framework for spatially structured open quantum dynamics, with immediate relevance to large-scale quantum network simulation, quantum repeater and protocol design, real-time experimental optimization, and scalable device modeling across diverse light-matter platforms.
comment: 25 pages, 5 figures
☆ Concolic Testing on Individual Fairness of Neural Network Models
This paper introduces PyFair, a formal framework for evaluating and verifying individual fairness of Deep Neural Networks (DNNs). By adapting the concolic testing tool PyCT, we generate fairness-specific path constraints to systematically explore DNN behaviors. Our key innovation is a dual network architecture that enables comprehensive fairness assessments and provides completeness guarantees for certain network types. We evaluate PyFair on 25 benchmark models, including those enhanced by existing bias mitigation techniques. Results demonstrate PyFair's efficacy in detecting discriminatory instances and verifying fairness, while also revealing scalability challenges for complex models. This work advances algorithmic fairness in critical domains by offering a rigorous, systematic method for fairness testing and verification of pre-trained DNNs.
☆ floq: Training Critics via Flow-Matching for Scaling Compute in Value-Based RL
A hallmark of modern large-scale machine learning techniques is the use of training objectives that provide dense supervision to intermediate computations, such as teacher forcing the next token in language models or denoising step-by-step in diffusion models. This enables models to learn complex functions in a generalizable manner. Motivated by this observation, we investigate the benefits of iterative computation for temporal difference (TD) methods in reinforcement learning (RL). Typically they represent value functions in a monolithic fashion, without iterative compute. We introduce floq (flow-matching Q-functions), an approach that parameterizes the Q-function using a velocity field and trains it using techniques from flow-matching, typically used in generative modeling. This velocity field underneath the flow is trained using a TD-learning objective, which bootstraps from values produced by a target velocity field, computed by running multiple steps of numerical integration. Crucially, floq allows for more fine-grained control and scaling of the Q-function capacity than monolithic architectures, by appropriately setting the number of integration steps. Across a suite of challenging offline RL benchmarks and online fine-tuning tasks, floq improves performance by nearly 1.8x. floq scales capacity far better than standard TD-learning architectures, highlighting the potential of iterative computation for value learning.
☆ Test-Time Scaling in Reasoning Models Is Not Effective for Knowledge-Intensive Tasks Yet
Test-time scaling increases inference-time computation by allowing models to generate long reasoning chains, and has shown strong performance across many domains. However, in this work, we show that this approach is not yet effective for knowledge-intensive tasks, where high factual accuracy and low hallucination rates are essential. We conduct a comprehensive evaluation of test-time scaling using 12 reasoning models on two knowledge-intensive benchmarks. Our results reveal that increasing test-time computation does not consistently improve accuracy and, in many cases, it even leads to more hallucinations. We then analyze how extended reasoning affects hallucination behavior. We find that reduced hallucinations often result from the model choosing to abstain after thinking more, rather than from improved factual recall. Conversely, for some models, longer reasoning encourages attempts on previously unanswered questions, many of which result in hallucinations. Case studies show that extended reasoning can induce confirmation bias, leading to overconfident hallucinations. Despite these limitations, we observe that compared to non-thinking, enabling thinking remains beneficial. Code and data are available at https://github.com/XuZhao0/tts-knowledge
comment: 20 pages, 4 figures, 6 tables
☆ Sequential Least-Squares Estimators with Fast Randomized Sketching for Linear Statistical Models
We propose a novel randomized framework for the estimation problem of large-scale linear statistical models, namely Sequential Least-Squares Estimators with Fast Randomized Sketching (SLSE-FRS), which integrates Sketch-and-Solve and Iterative-Sketching methods for the first time. By iteratively constructing and solving sketched least-squares (LS) subproblems with increasing sketch sizes to achieve better precisions, SLSE-FRS gradually refines the estimators of the true parameter vector, ultimately producing high-precision estimators. We analyze the convergence properties of SLSE-FRS, and provide its efficient implementation. Numerical experiments show that SLSE-FRS outperforms the state-of-the-art methods, namely the Preconditioned Conjugate Gradient (PCG) method, and the Iterative Double Sketching (IDS) method.
☆ Reinforcement learning meets bioprocess control through behaviour cloning: Real-world deployment in an industrial photobioreactor
The inherent complexity of living cells as production units creates major challenges for maintaining stable and optimal bioprocess conditions, especially in open Photobioreactors (PBRs) exposed to fluctuating environments. To address this, we propose a Reinforcement Learning (RL) control approach, combined with Behavior Cloning (BC), for pH regulation in open PBR systems. This represents, to the best of our knowledge, the first application of an RL-based control strategy to such a nonlinear and disturbance-prone bioprocess. Our method begins with an offline training stage in which the RL agent learns from trajectories generated by a nominal Proportional-Integral-Derivative (PID) controller, without direct interaction with the real system. This is followed by a daily online fine-tuning phase, enabling adaptation to evolving process dynamics and stronger rejection of fast, transient disturbances. This hybrid offline-online strategy allows deployment of an adaptive control policy capable of handling the inherent nonlinearities and external perturbations in open PBRs. Simulation studies highlight the advantages of our method: the Integral of Absolute Error (IAE) was reduced by 8% compared to PID control and by 5% relative to standard off-policy RL. Moreover, control effort decreased substantially-by 54% compared to PID and 7% compared to standard RL-an important factor for minimizing operational costs. Finally, an 8-day experimental validation under varying environmental conditions confirmed the robustness and reliability of the proposed approach. Overall, this work demonstrates the potential of RL-based methods for bioprocess control and paves the way for their broader application to other nonlinear, disturbance-prone systems.
☆ ToonOut: Fine-tuned Background-Removal for Anime Characters
While state-of-the-art background removal models excel at realistic imagery, they frequently underperform in specialized domains such as anime-style content, where complex features like hair and transparency present unique challenges. To address this limitation, we collected and annotated a custom dataset of 1,228 high-quality anime images of characters and objects, and fine-tuned the open-sourced BiRefNet model on this dataset. This resulted in marked improvements in background removal accuracy for anime-style images, increasing from 95.3% to 99.5% for our newly introduced Pixel Accuracy metric. We are open-sourcing the code, the fine-tuned model weights, as well as the dataset at: https://github.com/MatteoKartoon/BiRefNet.
☆ COMPACT: Common-token Optimized Model Pruning Across Channels and Tokens
Making LLMs more efficient in memory, latency, and serving cost is crucial for edge deployment, interactive applications, and sustainable inference at scale. Pruning is a key technique toward this goal. However, prior pruning methods are limited: width pruning often breaks the standard transformer layout or requires custom inference code, while depth pruning removes entire layers and can cause abrupt accuracy drops. In this work, we propose COMPACT, which jointly (i) prunes rare vocabulary to shrink embedding/unembedding and (ii) prunes FFN intermediate channels using common-token-weighted activations, aligning importance with the post-pruning token distribution. COMPACT enjoys merits of both depth and width pruning, such as: deployment-friendliness (keeps a standard transformer architecture), scale-adaptivity (trade off vocab vs. FFN pruning), training-free operation with competitive pruning time, and strong memory savings alongside throughput gains. Experiments across Qwen, LLaMA, and Gemma families (0.5B-70B) show state-of-the-art downstream task performance at similar or higher pruning ratios, with substantial reductions in parameters, GPU memory, and end-to-end latency.
☆ Curia: A Multi-Modal Foundation Model for Radiology
AI-assisted radiological interpretation is based on predominantly narrow, single-task models. This approach is impractical for covering the vast spectrum of imaging modalities, diseases, and radiological findings. Foundation models (FMs) hold the promise of broad generalization across modalities and in low-data settings. However, this potential has remained largely unrealized in radiology. We introduce Curia, a foundation model trained on the entire cross-sectional imaging output of a major hospital over several years, which to our knowledge is the largest such corpus of real-world data-encompassing 150,000 exams (130 TB). On a newly curated 19-task external validation benchmark, Curia accurately identifies organs, detects conditions like brain hemorrhages and myocardial infarctions, and predicts outcomes in tumor staging. Curia meets or surpasses the performance of radiologists and recent foundation models, and exhibits clinically significant emergent properties in cross-modality, and low-data regimes. To accelerate progress, we release our base model's weights at https://huggingface.co/raidium/curia.
☆ Video-Based MPAA Rating Prediction: An Attention-Driven Hybrid Architecture Using Contrastive Learning
The rapid growth of visual content consumption across platforms necessitates automated video classification for age-suitability standards like the MPAA rating system (G, PG, PG-13, R). Traditional methods struggle with large labeled data requirements, poor generalization, and inefficient feature learning. To address these challenges, we employ contrastive learning for improved discrimination and adaptability, exploring three frameworks: Instance Discrimination, Contextual Contrastive Learning, and Multi-View Contrastive Learning. Our hybrid architecture integrates an LRCN (CNN+LSTM) backbone with a Bahdanau attention mechanism, achieving state-of-the-art performance in the Contextual Contrastive Learning framework, with 88% accuracy and an F1 score of 0.8815. By combining CNNs for spatial features, LSTMs for temporal modeling, and attention mechanisms for dynamic frame prioritization, the model excels in fine-grained borderline distinctions, such as differentiating PG-13 and R-rated content. We evaluate the model's performance across various contrastive loss functions, including NT-Xent, NT-logistic, and Margin Triplet, demonstrating the robustness of our proposed architecture. To ensure practical application, the model is deployed as a web application for real-time MPAA rating classification, offering an efficient solution for automated content compliance across streaming platforms.
comment: 12 pages, 9 figures
☆ Green Learning for STAR-RIS mmWave Systems with Implicit CSI IEEE
In this paper, a green learning (GL)-based precoding framework is proposed for simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS)-aided millimeter-wave (mmWave) MIMO broadcasting systems. Motivated by the growing emphasis on environmental sustainability in future 6G networks, this work adopts a broadcasting transmission architecture for scenarios where multiple users share identical information, improving spectral efficiency and reducing redundant transmissions and power consumption. Different from conventional optimization methods, such as block coordinate descent (BCD) that require perfect channel state information (CSI) and iterative computation, the proposed GL framework operates directly on received uplink pilot signals without explicit CSI estimation. Unlike deep learning (DL) approaches that require CSI-based labels for training, the proposed GL approach also avoids deep neural networks and backpropagation, leading to a more lightweight design. Although the proposed GL framework is trained with supervision generated by BCD under full CSI, inference is performed in a fully CSI-free manner. The proposed GL integrates subspace approximation with adjusted bias (Saab), relevant feature test (RFT)-based supervised feature selection, and eXtreme gradient boosting (XGBoost)-based decision learning to jointly predict the STAR-RIS coefficients and transmit precoder. Simulation results show that the proposed GL approach achieves competitive spectral efficiency compared to BCD and DL-based models, while reducing floating-point operations (FLOPs) by over four orders of magnitude. These advantages make the proposed GL approach highly suitable for real-time deployment in energy- and hardware-constrained broadcasting scenarios.
comment: 6 pages, 4 figures, 2 tables, accepted by 2025 IEEE Globecom
☆ UMO: Scaling Multi-Identity Consistency for Image Customization via Matching Reward
Recent advancements in image customization exhibit a wide range of application prospects due to stronger customization capabilities. However, since we humans are more sensitive to faces, a significant challenge remains in preserving consistent identity while avoiding identity confusion with multi-reference images, limiting the identity scalability of customization models. To address this, we present UMO, a Unified Multi-identity Optimization framework, designed to maintain high-fidelity identity preservation and alleviate identity confusion with scalability. With "multi-to-multi matching" paradigm, UMO reformulates multi-identity generation as a global assignment optimization problem and unleashes multi-identity consistency for existing image customization methods generally through reinforcement learning on diffusion models. To facilitate the training of UMO, we develop a scalable customization dataset with multi-reference images, consisting of both synthesised and real parts. Additionally, we propose a new metric to measure identity confusion. Extensive experiments demonstrate that UMO not only improves identity consistency significantly, but also reduces identity confusion on several image customization methods, setting a new state-of-the-art among open-source methods along the dimension of identity preserving. Code and model: https://github.com/bytedance/UMO
comment: Project page: https://bytedance.github.io/UMO/ Code and model: https://github.com/bytedance/UMO
☆ Reward function compression facilitates goal-dependent reinforcement learning
Reinforcement learning agents learn from rewards, but humans can uniquely assign value to novel, abstract outcomes in a goal-dependent manner. However, this flexibility is cognitively costly, making learning less efficient. Here, we propose that goal-dependent learning is initially supported by a capacity-limited working memory system. With consistent experience, learners create a "compressed" reward function (a simplified rule defining the goal) which is then transferred to long-term memory and applied automatically upon receiving feedback. This process frees up working memory resources, boosting learning efficiency. We test this theory across six experiments. Consistent with our predictions, our findings demonstrate that learning is parametrically impaired by the size of the goal space, but improves when the goal space structure allows for compression. We also find faster reward processing to correlate with better learning performance, supporting the idea that as goal valuation becomes more automatic, more resources are available for learning. We leverage computational modeling to support this interpretation. Our work suggests that efficient goal-directed learning relies on compressing complex goal information into a stable reward function, shedding light on the cognitive mechanisms of human motivation. These findings generate new insights into the neuroscience of intrinsic motivation and could help improve behavioral techniques that support people in achieving their goals.
☆ Imitative Membership Inference Attack
A Membership Inference Attack (MIA) assesses how much a target machine learning model reveals about its training data by determining whether specific query instances were part of the training set. State-of-the-art MIAs rely on training hundreds of shadow models that are independent of the target model, leading to significant computational overhead. In this paper, we introduce Imitative Membership Inference Attack (IMIA), which employs a novel imitative training technique to strategically construct a small number of target-informed imitative models that closely replicate the target model's behavior for inference. Extensive experimental results demonstrate that IMIA substantially outperforms existing MIAs in various attack settings while only requiring less than 5% of the computational cost of state-of-the-art approaches.
comment: Code is available at: https://github.com/zealscott/IMIA
☆ Dato: A Task-Based Programming Model for Dataflow Accelerators
Recent deep learning workloads increasingly push computational demand beyond what current memory systems can sustain, with many kernels stalling on data movement rather than computation. While modern dataflow accelerators incorporate on-chip streaming to mitigate off-chip bandwidth limitations, existing programming models struggle to harness these capabilities effectively. Low-level interfaces provide fine-grained control but impose significant development overhead, whereas high-level tile-based languages abstract away communication details, restricting optimization and forcing compilers to reconstruct the intended dataflow. We present Dato, a Python-embedded, task-based programming model for dataflow accelerators that elevates data communication and sharding to first-class type constructs. Developers write programs as a graph of tasks connected via explicit stream types, with sharded inputs specified using layout types. These tasks are first mapped virtually onto the accelerator's spatial fabric, and the compiler then generates a physical mapping that respects hardware constraints. Experimental results on both AMD Ryzen AI NPU and Alveo FPGA devices demonstrate that Dato achieves high performance while significantly reducing the burden of writing optimized code. On the NPU, Dato attains up to 84% hardware utilization for GEMM and delivers a 2.81x speedup on attention kernels compared to a state-of-the-art commercial framework. On the FPGA, Dato surpasses leading frameworks in performance when generating custom systolic arrays, achieving 98% of the theoretical peak performance.
☆ \texttt{R$^\textbf{2}$AI}: Towards Resistant and Resilient AI in an Evolving World
In this position paper, we address the persistent gap between rapidly growing AI capabilities and lagging safety progress. Existing paradigms divide into ``Make AI Safe'', which applies post-hoc alignment and guardrails but remains brittle and reactive, and ``Make Safe AI'', which emphasizes intrinsic safety but struggles to address unforeseen risks in open-ended environments. We therefore propose \textit{safe-by-coevolution} as a new formulation of the ``Make Safe AI'' paradigm, inspired by biological immunity, in which safety becomes a dynamic, adversarial, and ongoing learning process. To operationalize this vision, we introduce \texttt{R$^2$AI} -- \textit{Resistant and Resilient AI} -- as a practical framework that unites resistance against known threats with resilience to unforeseen risks. \texttt{R$^2$AI} integrates \textit{fast and slow safe models}, adversarial simulation and verification through a \textit{safety wind tunnel}, and continual feedback loops that guide safety and capability to coevolve. We argue that this framework offers a scalable and proactive path to maintain continual safety in dynamic environments, addressing both near-term vulnerabilities and long-term existential risks as AI advances toward AGI and ASI.
☆ Physics-informed Value Learner for Offline Goal-Conditioned Reinforcement Learning
Offline Goal-Conditioned Reinforcement Learning (GCRL) holds great promise for domains such as autonomous navigation and locomotion, where collecting interactive data is costly and unsafe. However, it remains challenging in practice due to the need to learn from datasets with limited coverage of the state-action space and to generalize across long-horizon tasks. To improve on these challenges, we propose a Physics-informed (Pi) regularized loss for value learning, derived from the Eikonal Partial Differential Equation (PDE) and which induces a geometric inductive bias in the learned value function. Unlike generic gradient penalties that are primarily used to stabilize training, our formulation is grounded in continuous-time optimal control and encourages value functions to align with cost-to-go structures. The proposed regularizer is broadly compatible with temporal-difference-based value learning and can be integrated into existing Offline GCRL algorithms. When combined with Hierarchical Implicit Q-Learning (HIQL), the resulting method, Physics-informed HIQL (Pi-HIQL), yields significant improvements in both performance and generalization, with pronounced gains in stitching regimes and large-scale navigation tasks.
☆ Asynchronous Message Passing for Addressing Oversquashing in Graph Neural Networks
Graph Neural Networks (GNNs) suffer from Oversquashing, which occurs when tasks require long-range interactions. The problem arises from the presence of bottlenecks that limit the propagation of messages among distant nodes. Recently, graph rewiring methods modify edge connectivity and are expected to perform well on long-range tasks. Yet, graph rewiring compromises the inductive bias, incurring significant information loss in solving the downstream task. Furthermore, increasing channel capacity may overcome information bottlenecks but enhance the parameter complexity of the model. To alleviate these shortcomings, we propose an efficient model-agnostic framework that asynchronously updates node features, unlike traditional synchronous message passing GNNs. Our framework creates node batches in every layer based on the node centrality values. The features of the nodes belonging to these batches will only get updated. Asynchronous message updates process information sequentially across layers, avoiding simultaneous compression into fixed-capacity channels. We also theoretically establish that our proposed framework maintains higher feature sensitivity bounds compared to standard synchronous approaches. Our framework is applied to six standard graph datasets and two long-range datasets to perform graph classification and achieves impressive performances with a $5\%$ and $4\%$ improvements on REDDIT-BINARY and Peptides-struct, respectively.
☆ Aligning Large Vision-Language Models by Deep Reinforcement Learning and Direct Preference Optimization
Large Vision-Language Models (LVLMs) or multimodal large language models represent a significant advancement in artificial intelligence, enabling systems to understand and generate content across both visual and textual modalities. While large-scale pretraining has driven substantial progress, fine-tuning these models for aligning with human values or engaging in specific tasks or behaviors remains a critical challenge. Deep Reinforcement Learning (DRL) and Direct Preference Optimization (DPO) offer promising frameworks for this aligning process. While DRL enables models to optimize actions using reward signals instead of relying solely on supervised preference data, DPO directly aligns the policy with preferences, eliminating the need for an explicit reward model. This overview explores paradigms for fine-tuning LVLMs, highlighting how DRL and DPO techniques can be used to align models with human preferences and values, improve task performance, and enable adaptive multimodal interaction. We categorize key approaches, examine sources of preference data, reward signals, and discuss open challenges such as scalability, sample efficiency, continual learning, generalization, and safety. The goal is to provide a clear understanding of how DRL and DPO contribute to the evolution of robust and human-aligned LVLMs.
comment: Accepted for publication in the Proceedings of the 8th International Conference on Algorithms, Computing and Artificial Intelligence (ACAI 2025)
☆ Long-Range Graph Wavelet Networks
Modeling long-range interactions, the propagation of information across distant parts of a graph, is a central challenge in graph machine learning. Graph wavelets, inspired by multi-resolution signal processing, provide a principled way to capture both local and global structures. However, existing wavelet-based graph neural networks rely on finite-order polynomial approximations, which limit their receptive fields and hinder long-range propagation. We propose Long-Range Graph Wavelet Networks (LR-GWN), which decompose wavelet filters into complementary local and global components. Local aggregation is handled with efficient low-order polynomials, while long-range interactions are captured through a flexible spectral domain parameterization. This hybrid design unifies short- and long-distance information flow within a principled wavelet framework. Experiments show that LR-GWN achieves state-of-the-art performance among wavelet-based methods on long-range benchmarks, while remaining competitive on short-range datasets.
☆ RT-HCP: Dealing with Inference Delays and Sample Efficiency to Learn Directly on Robotic Platforms IROS 2025
Learning a controller directly on the robot requires extreme sample efficiency. Model-based reinforcement learning (RL) methods are the most sample efficient, but they often suffer from a too long inference time to meet the robot control frequency requirements. In this paper, we address the sample efficiency and inference time challenges with two contributions. First, we define a general framework to deal with inference delays where the slow inference robot controller provides a sequence of actions to feed the control-hungry robotic platform without execution gaps. Then, we compare several RL algorithms in the light of this framework and propose RT-HCP, an algorithm that offers an excellent trade-off between performance, sample efficiency and inference time. We validate the superiority of RT-HCP with experiments where we learn a controller directly on a simple but high frequency FURUTA pendulum platform. Code: github.com/elasriz/RTHCP
comment: IROS 2025
☆ When Secure Isn't: Assessing the Security of Machine Learning Model Sharing
The rise of model-sharing through frameworks and dedicated hubs makes Machine Learning significantly more accessible. Despite their benefits, these tools expose users to underexplored security risks, while security awareness remains limited among both practitioners and developers. To enable a more security-conscious culture in Machine Learning model sharing, in this paper we evaluate the security posture of frameworks and hubs, assess whether security-oriented mechanisms offer real protection, and survey how users perceive the security narratives surrounding model sharing. Our evaluation shows that most frameworks and hubs address security risks partially at best, often by shifting responsibility to the user. More concerningly, our analysis of frameworks advertising security-oriented settings and complete model sharing uncovered six 0-day vulnerabilities enabling arbitrary code execution. Through this analysis, we debunk the misconceptions that the model-sharing problem is largely solved and that its security can be guaranteed by the file format used for sharing. As expected, our survey shows that the surrounding security narrative leads users to consider security-oriented settings as trustworthy, despite the weaknesses shown in this work. From this, we derive takeaways and suggestions to strengthen the security of model-sharing ecosystems.
☆ Nested Optimal Transport Distances
Simulating realistic financial time series is essential for stress testing, scenario generation, and decision-making under uncertainty. Despite advances in deep generative models, there is no consensus metric for their evaluation. We focus on generative AI for financial time series in decision-making applications and employ the nested optimal transport distance, a time-causal variant of optimal transport distance, which is robust to tasks such as hedging, optimal stopping, and reinforcement learning. Moreover, we propose a statistically consistent, naturally parallelizable algorithm for its computation, achieving substantial speedups over existing approaches.
comment: 7 pages, 3 figures
☆ Probabilistic Modeling of Latent Agentic Substructures in Deep Neural Networks
We develop a theory of intelligent agency grounded in probabilistic modeling for neural models. Agents are represented as outcome distributions with epistemic utility given by log score, and compositions are defined through weighted logarithmic pooling that strictly improves every member's welfare. We prove that strict unanimity is impossible under linear pooling or in binary outcome spaces, but possible with three or more outcomes. Our framework admits recursive structure via cloning invariance, continuity, and openness, while tilt-based analysis rules out trivial duplication. Finally, we formalize an agentic alignment phenomenon in LLMs using our theory: eliciting a benevolent persona ("Luigi'") induces an antagonistic counterpart ("Waluigi"), while a manifest-then-suppress Waluigi strategy yields strictly larger first-order misalignment reduction than pure Luigi reinforcement alone. These results clarify how developing a principled mathematical framework for how subagents can coalesce into coherent higher-level entities provides novel implications for alignment in agentic AI systems.
☆ Neural ARFIMA model for forecasting BRIC exchange rates with long memory under oil shocks and policy uncertainties
Accurate forecasting of exchange rates remains a persistent challenge, particularly for emerging economies such as Brazil, Russia, India, and China (BRIC). These series exhibit long memory, nonlinearity, and non-stationarity properties that conventional time series models struggle to capture. Additionally, there exist several key drivers of exchange rate dynamics, including global economic policy uncertainty, US equity market volatility, US monetary policy uncertainty, oil price growth rates, and country-specific short-term interest rate differentials. These empirical complexities underscore the need for a flexible modeling framework that can jointly accommodate long memory, nonlinearity, and the influence of external drivers. To address these challenges, we propose a Neural AutoRegressive Fractionally Integrated Moving Average (NARFIMA) model that combines the long-memory representation of ARFIMA with the nonlinear learning capacity of neural networks, while flexibly incorporating exogenous causal variables. We establish theoretical properties of the model, including asymptotic stationarity of the NARFIMA process using Markov chains and nonlinear time series techniques. We quantify forecast uncertainty using conformal prediction intervals within the NARFIMA framework. Empirical results across six forecast horizons show that NARFIMA consistently outperforms various state-of-the-art statistical and machine learning models in forecasting BRIC exchange rates. These findings provide new insights for policymakers and market participants navigating volatile financial conditions. The \texttt{narfima} \textbf{R} package provides an implementation of our approach.
☆ Barycentric Neural Networks and Length-Weighted Persistent Entropy Loss: A Green Geometric and Topological Framework for Function Approximation
While it is well-established that artificial neural networks are \emph{universal approximators} for continuous functions on compact domains, many modern approaches rely on deep or overparameterized architectures that incur high computational costs. In this paper, a new type of \emph{small shallow} neural network, called the \emph{Barycentric Neural Network} ($\BNN$), is proposed, which leverages a fixed set of \emph{base points} and their \emph{barycentric coordinates} to define both its structure and its parameters. We demonstrate that our $\BNN$ enables the exact representation of \emph{continuous piecewise linear functions} ($\CPLF$s), ensuring strict continuity across segments. Since any continuous function over a compact domain can be approximated arbitrarily well by $\CPLF$s, the $\BNN$ naturally emerges as a flexible and interpretable tool for \emph{function approximation}. Beyond the use of this representation, the main contribution of the paper is the introduction of a new variant of \emph{persistent entropy}, a topological feature that is stable and scale invariant, called the \emph{length-weighted persistent entropy} ($\LWPE$), which is weighted by the lifetime of topological features. Our framework, which combines the $\BNN$ with a loss function based on our $\LWPE$, aims to provide flexible and geometrically interpretable approximations of nonlinear continuous functions in resource-constrained settings, such as those with limited base points for $\BNN$ design and few training epochs. Instead of optimizing internal weights, our approach directly \emph{optimizes the base points that define the $\BNN$}. Experimental results show that our approach achieves \emph{superior and faster approximation performance} compared to classical loss functions such as MSE, RMSE, MAE, and log-cosh.
☆ TrajAware: Graph Cross-Attention and Trajectory-Aware for Generalisable VANETs under Partial Observations
Vehicular ad hoc networks (VANETs) are a crucial component of intelligent transportation systems; however, routing remains challenging due to dynamic topologies, incomplete observations, and the limited resources of edge devices. Existing reinforcement learning (RL) approaches often assume fixed graph structures and require retraining when network conditions change, making them unsuitable for deployment on constrained hardware. We present TrajAware, an RL-based framework designed for edge AI deployment in VANETs. TrajAware integrates three components: (i) action space pruning, which reduces redundant neighbour options while preserving two-hop reachability, alleviating the curse of dimensionality; (ii) graph cross-attention, which maps pruned neighbours to the global graph context, producing features that generalise across diverse network sizes; and (iii) trajectory-aware prediction, which uses historical routes and junction information to estimate real-time positions under partial observations. We evaluate TrajAware in the open-source SUMO simulator using real-world city maps with a leave-one-city-out setup. Results show that TrajAware achieves near-shortest paths and high delivery ratios while maintaining efficiency suitable for constrained edge devices, outperforming state-of-the-art baselines in both full and partial observation scenarios.
comment: 10 pages, 6 figures, 3 tables
☆ Group Effect Enhanced Generative Adversarial Imitation Learning for Individual Travel Behavior Modeling under Incentives
Understanding and modeling individual travel behavior responses is crucial for urban mobility regulation and policy evaluation. The Markov decision process (MDP) provides a structured framework for dynamic travel behavior modeling at the individual level. However, solving an MDP in this context is highly data-intensive and faces challenges of data quantity, spatial-temporal coverage, and situational diversity. To address these, we propose a group-effect-enhanced generative adversarial imitation learning (gcGAIL) model that improves the individual behavior modeling efficiency by leveraging shared behavioral patterns among passenger groups. We validate the gcGAIL model using a public transport fare-discount case study and compare against state-of-the-art benchmarks, including adversarial inverse reinforcement learning (AIRL), baseline GAIL, and conditional GAIL. Experimental results demonstrate that gcGAIL outperforms these methods in learning individual travel behavior responses to incentives over time in terms of accuracy, generalization, and pattern demonstration efficiency. Notably, gcGAIL is robust to spatial variation, data sparsity, and behavioral diversity, maintaining strong performance even with partial expert demonstrations and underrepresented passenger groups. The gcGAIL model predicts the individual behavior response at any time, providing the basis for personalized incentives to induce sustainable behavior changes (better timing of incentive injections).
☆ CogGuide: Human-Like Guidance for Zero-Shot Omni-Modal Reasoning
Targeting the issues of "shortcuts" and insufficient contextual understanding in complex cross-modal reasoning of multimodal large models, this paper proposes a zero-shot multimodal reasoning component guided by human-like cognitive strategies centered on an "intent sketch". The component comprises a plug-and-play three-module pipeline-Intent Perceiver, Strategy Generator, and Strategy Selector-that explicitly constructs a "understand-plan-select" cognitive process. By generating and filtering "intent sketch" strategies to guide the final reasoning, it requires no parameter fine-tuning and achieves cross-model transfer solely through in-context engineering. Information-theoretic analysis shows that this process can reduce conditional entropy and improve information utilization efficiency, thereby suppressing unintended shortcut reasoning. Experiments on IntentBench, WorldSense, and Daily-Omni validate the method's generality and robust gains; compared with their respective baselines, the complete "three-module" scheme yields consistent improvements across different reasoning engines and pipeline combinations, with gains up to approximately 9.51 percentage points, demonstrating the practical value and portability of the "intent sketch" reasoning component in zero-shot scenarios.
☆ Knowledge-Guided Machine Learning for Stabilizing Near-Shortest Path Routing
We propose a simple algorithm that needs only a few data samples from a single graph for learning local routing policies that generalize across a rich class of geometric random graphs in Euclidean metric spaces. We thus solve the all-pairs near-shortest path problem by training deep neural networks (DNNs) that let each graph node efficiently and scalably route (i.e., forward) packets by considering only the node's state and the state of the neighboring nodes. Our algorithm design exploits network domain knowledge in the selection of input features and design of the policy function for learning an approximately optimal policy. Domain knowledge also provides theoretical assurance that the choice of a ``seed graph'' and its node data sampling suffices for generalizable learning. Remarkably, one of these DNNs we train -- using distance-to-destination as the only input feature -- learns a policy that exactly matches the well-known Greedy Forwarding policy, which forwards packets to the neighbor with the shortest distance to the destination. We also learn a new policy, which we call GreedyTensile routing -- using both distance-to-destination and node stretch as the input features -- that almost always outperforms greedy forwarding. We demonstrate the explainability and ultra-low latency run-time operation of Greedy Tensile routing by symbolically interpreting its DNN in low-complexity terms of two linear actions.
☆ Improved Classification of Nitrogen Stress Severity in Plants Under Combined Stress Conditions Using Spatio-Temporal Deep Learning Framework
Plants in their natural habitats endure an array of interacting stresses, both biotic and abiotic, that rarely occur in isolation. Nutrient stress-particularly nitrogen deficiency-becomes even more critical when compounded with drought and weed competition, making it increasingly difficult to distinguish and address its effects. Early detection of nitrogen stress is therefore crucial for protecting plant health and implementing effective management strategies. This study proposes a novel deep learning framework to accurately classify nitrogen stress severity in a combined stress environment. Our model uses a unique blend of four imaging modalities-RGB, multispectral, and two infrared wavelengths-to capture a wide range of physiological plant responses from canopy images. These images, provided as time-series data, document plant health across three levels of nitrogen availability (low, medium, and high) under varying water stress and weed pressures. The core of our approach is a spatio-temporal deep learning pipeline that merges a Convolutional Neural Network (CNN) for extracting spatial features from images with a Long Short-Term Memory (LSTM) network to capture temporal dependencies. We also devised and evaluated a spatial-only CNN pipeline for comparison. Our CNN-LSTM pipeline achieved an impressive accuracy of 98%, impressively surpassing the spatial-only model's 80.45% and other previously reported machine learning method's 76%. These results bring actionable insights based on the power of our CNN-LSTM approach in effectively capturing the subtle and complex interactions between nitrogen deficiency, water stress, and weed pressure. This robust platform offers a promising tool for the timely and proactive identification of nitrogen stress severity, enabling better crop management and improved plant health.
comment: 13 pages, 8 figures, 7 Tables
☆ BEAM: Brainwave Empathy Assessment Model for Early Childhood
Empathy in young children is crucial for their social and emotional development, yet predicting it remains challenging. Traditional methods often only rely on self-reports or observer-based labeling, which are susceptible to bias and fail to objectively capture the process of empathy formation. EEG offers an objective alternative; however, current approaches primarily extract static patterns, neglecting temporal dynamics. To overcome these limitations, we propose a novel deep learning framework, the Brainwave Empathy Assessment Model (BEAM), to predict empathy levels in children aged 4-6 years. BEAM leverages multi-view EEG signals to capture both cognitive and emotional dimensions of empathy. The framework comprises three key components: 1) a LaBraM-based encoder for effective spatio-temporal feature extraction, 2) a feature fusion module to integrate complementary information from multi-view signals, and 3) a contrastive learning module to enhance class separation. Validated on the CBCP dataset, BEAM outperforms state-of-the-art methods across multiple metrics, demonstrating its potential for objective empathy assessment and providing a preliminary insight into early interventions in children's prosocial development.
☆ A Survey of Generalization of Graph Anomaly Detection: From Transfer Learning to Foundation Models
Graph anomaly detection (GAD) has attracted increasing attention in recent years for identifying malicious samples in a wide range of graph-based applications, such as social media and e-commerce. However, most GAD methods assume identical training and testing distributions and are tailored to specific tasks, resulting in limited adaptability to real-world scenarios such as shifting data distributions and scarce training samples in new applications. To address the limitations, recent work has focused on improving the generalization capability of GAD models through transfer learning that leverages knowledge from related domains to enhance detection performance, or developing "one-for-all" GAD foundation models that generalize across multiple applications. Since a systematic understanding of generalization in GAD is still lacking, in this paper, we provide a comprehensive review of generalization in GAD. We first trace the evolution of generalization in GAD and formalize the problem settings, which further leads to our systematic taxonomy. Rooted in this fine-grained taxonomy, an up-to-date and comprehensive review is conducted for the existing generalized GAD methods. Finally, we identify current open challenges and suggest future directions to inspire future research in this emerging field.
comment: Accepted by ICKG 2025. 8 pages, 5 figures
☆ Small Vectors, Big Effects: A Mechanistic Study of RL-Induced Reasoning via Steering Vectors
The mechanisms by which reasoning training reshapes language-model computations remain poorly understood. We study lightweight steering vectors inserted into the base model's residual stream and trained with a reinforcement-learning objective, which can match full fine-tuning performance while retaining the interpretability of small, additive interventions. Using logit-lens readouts, path patching, and circuit analyses, we analyze two models and find: (i) the last-layer steering vector behaves like a token-substitution bias concentrated on the first generated token, consistently boosting tokens such as "To" and "Step"; and (ii) the penultimate-layer steering vector leaves attention patterns largely unchanged and instead acts through the MLP and unembedding, preferentially up-weighting process words and structure symbols. These results establish a principled framework for interpreting the behavioral changes induced by reasoning training.
comment: Preprint
☆ Demo: Healthcare Agent Orchestrator (HAO) for Patient Summarization in Molecular Tumor Boards
Molecular Tumor Boards (MTBs) are multidisciplinary forums where oncology specialists collaboratively assess complex patient cases to determine optimal treatment strategies. A central element of this process is the patient summary, typically compiled by a medical oncologist, radiation oncologist, or surgeon, or their trained medical assistant, who distills heterogeneous medical records into a concise narrative to facilitate discussion. This manual approach is often labor-intensive, subjective, and prone to omissions of critical information. To address these limitations, we introduce the Healthcare Agent Orchestrator (HAO), a Large Language Model (LLM)-driven AI agent that coordinates a multi-agent clinical workflow to generate accurate and comprehensive patient summaries for MTBs. Evaluating predicted patient summaries against ground truth presents additional challenges due to stylistic variation, ordering, synonym usage, and phrasing differences, which complicate the measurement of both succinctness and completeness. To overcome these evaluation hurdles, we propose TBFact, a ``model-as-a-judge'' framework designed to assess the comprehensiveness and succinctness of generated summaries. Using a benchmark dataset derived from de-identified tumor board discussions, we applied TBFact to evaluate our Patient History agent. Results show that the agent captured 94% of high-importance information (including partial entailments) and achieved a TBFact recall of 0.84 under strict entailment criteria. We further demonstrate that TBFact enables a data-free evaluation framework that institutions can deploy locally without sharing sensitive clinical data. Together, HAO and TBFact establish a robust foundation for delivering reliable and scalable support to MTBs.
comment: 9 pages, 1 figure
☆ PAC-Bayesian Generalization Bounds for Graph Convolutional Networks on Inductive Node Classification
Graph neural networks (GNNs) have achieved remarkable success in processing graph-structured data across various applications. A critical aspect of real-world graphs is their dynamic nature, where new nodes are continually added and existing connections may change over time. Previous theoretical studies, largely based on the transductive learning framework, fail to adequately model such temporal evolution and structural dynamics. In this paper, we presents a PAC-Bayesian theoretical analysis of graph convolutional networks (GCNs) for inductive node classification, treating nodes as dependent and non-identically distributed data points. We derive novel generalization bounds for one-layer GCNs that explicitly incorporate the effects of data dependency and non-stationarity, and establish sufficient conditions under which the generalization gap converges to zero as the number of nodes increases. Furthermore, we extend our analysis to two-layer GCNs, and reveal that it requires stronger assumptions on graph topology to guarantee convergence. This work establishes a theoretical foundation for understanding and improving GNN generalization in dynamic graph environments.
☆ Information-Theoretic Bounds and Task-Centric Learning Complexity for Real-World Dynamic Nonlinear Systems
Dynamic nonlinear systems exhibit distortions arising from coupled static and dynamic effects. Their intertwined nature poses major challenges for data-driven modeling. This paper presents a theoretical framework grounded in structured decomposition, variance analysis, and task-centric complexity bounds. The framework employs a directional lower bound on interactions between measurable system components, extending orthogonality in inner product spaces to structurally asymmetric settings. This bound supports variance inequalities for decomposed systems. Key behavioral indicators are introduced along with a memory finiteness index. A rigorous power-based condition establishes a measurable link between finite memory in realizable systems and the First Law of Thermodynamics. This offers a more foundational perspective than classical bounds based on the Second Law. Building on this foundation, we formulate a `Behavioral Uncertainty Principle,' demonstrating that static and dynamic distortions cannot be minimized simultaneously. We identify that real-world systems seem to resist complete deterministic decomposition due to entangled static and dynamic effects. We also present two general-purpose theorems linking function variance to mean-squared Lipschitz continuity and learning complexity. This yields a model-agnostic, task-aware complexity metric, showing that lower-variance components are inherently easier to learn. These insights explain the empirical benefits of structured residual learning, including improved generalization, reduced parameter count, and lower training cost, as previously observed in power amplifier linearization experiments. The framework is broadly applicable and offers a scalable, theoretically grounded approach to modeling complex dynamic nonlinear systems.
comment: 15 pages, 1 figure, 2 photographs
☆ Integrating Spatial and Semantic Embeddings for Stereo Sound Event Localization in Videos
In this study, we address the multimodal task of stereo sound event localization and detection with source distance estimation (3D SELD) in regular video content. 3D SELD is a complex task that combines temporal event classification with spatial localization, requiring reasoning across spatial, temporal, and semantic dimensions. The last is arguably the most challenging to model. Traditional SELD approaches typically rely on multichannel input, limiting their capacity to benefit from large-scale pre-training due to data constraints. To overcome this, we enhance a standard SELD architecture with semantic information by integrating pre-trained, contrastive language-aligned models: CLAP for audio and OWL-ViT for visual inputs. These embeddings are incorporated into a modified Conformer module tailored for multimodal fusion, which we refer to as the Cross-Modal Conformer. We perform an ablation study on the development set of the DCASE2025 Task3 Stereo SELD Dataset to assess the individual contributions of the language-aligned models and benchmark against the DCASE Task 3 baseline systems. Additionally, we detail the curation process of large synthetic audio and audio-visual datasets used for model pre-training. These datasets were further expanded through left-right channel swapping augmentation. Our approach, combining extensive pre-training, model ensembling, and visual post-processing, achieved second rank in the DCASE 2025 Challenge Task 3 (Track B), underscoring the effectiveness of our method. Future work will explore the modality-specific contributions and architectural refinements.
comment: arXiv admin note: substantial text overlap with arXiv:2507.04845
☆ Detection of trade in products derived from threatened species using machine learning and a smartphone
Unsustainable trade in wildlife is a major threat to biodiversity and is now increasingly prevalent in digital marketplaces and social media. With the sheer volume of digital content, the need for automated methods to detect wildlife trade listings is growing. These methods are especially needed for the automatic identification of wildlife products, such as ivory. We developed machine learning-based object recognition models that can identify wildlife products within images and highlight them. The data consists of images of elephant, pangolin, and tiger products that were identified as being sold illegally or that were confiscated by authorities. Specifically, the wildlife products included elephant ivory and skins, pangolin scales, and claws (raw and crafted), and tiger skins and bones. We investigated various combinations of training strategies and two loss functions to identify the best model to use in the automatic detection of these wildlife products. Models were trained for each species while also developing a single model to identify products from all three species. The best model showed an overall accuracy of 84.2% with accuracies of 71.1%, 90.2% and 93.5% in detecting products derived from elephants, pangolins, and tigers, respectively. We further demonstrate that the machine learning model can be made easily available to stakeholders, such as government authorities and law enforcement agencies, by developing a smartphone-based application that had an overall accuracy of 91.3%. The application can be used in real time to click images and help identify potentially prohibited products of target species. Thus, the proposed method is not only applicable for monitoring trade on the web but can also be used e.g. in physical markets for monitoring wildlife trade.
☆ AI for Scientific Discovery is a Social Problem
Artificial intelligence promises to accelerate scientific discovery, yet its benefits remain unevenly distributed. While technical obstacles such as scarce data, fragmented standards, and unequal access to computation are significant, we argue that the primary barriers are social and institutional. Narratives that defer progress to speculative "AI scientists," the undervaluing of data and infrastructure contributions, misaligned incentives, and gaps between domain experts and machine learning researchers all constrain impact. We highlight four interconnected challenges: community dysfunction, research priorities misaligned with upstream needs, data fragmentation, and infrastructure inequities. We argue that their roots lie in cultural and organizational practices. Addressing them requires not only technical innovation but also intentional community-building, cross-disciplinary education, shared benchmarks, and accessible infrastructure. We call for reframing AI for science as a collective social project, where sustainable collaboration and equitable participation are treated as prerequisites for technical progress.
☆ Approximating Condorcet Ordering for Vector-valued Mathematical Morphology
Mathematical morphology provides a nonlinear framework for image and spatial data processing and analysis. Although there have been many successful applications of mathematical morphology to vector-valued images, such as color and hyperspectral images, there is still no consensus on the most suitable vector ordering for constructing morphological operators. This paper addresses this issue by examining a reduced ordering approximating the Condorcet ranking derived from a set of vector orderings. Inspired by voting problems, the Condorcet ordering ranks elements from most to least voted, with voters representing different orderings. In this paper, we develop a machine learning approach that learns a reduced ordering that approximates the Condorcet ordering. Preliminary computational experiments confirm the effectiveness of learning the reduced mapping to define vector-valued morphological operators for color images.
comment: Submitted to the 4th International Conference on Discrete Geometry and Mathematical Morphology (DGMM 2025)
☆ Automated Hierarchical Graph Construction for Multi-source Electronic Health Records
Electronic Health Records (EHRs), comprising diverse clinical data such as diagnoses, medications, and laboratory results, hold great promise for translational research. EHR-derived data have advanced disease prevention, improved clinical trial recruitment, and generated real-world evidence. Synthesizing EHRs across institutions enables large-scale, generalizable studies that capture rare diseases and population diversity, but remains hindered by the heterogeneity of medical codes, institution-specific terminologies, and the absence of standardized data structures. These barriers limit the interpretability, comparability, and scalability of EHR-based analyses, underscoring the need for robust methods to harmonize and extract meaningful insights from distributed, heterogeneous data. To address this, we propose MASH (Multi-source Automated Structured Hierarchy), a fully automated framework that aligns medical codes across institutions using neural optimal transport and constructs hierarchical graphs with learned hyperbolic embeddings. During training, MASH integrates information from pre-trained language models, co-occurrence patterns, textual descriptions, and supervised labels to capture semantic and hierarchical relationships among medical concepts more effectively. Applied to real-world EHR data, including diagnosis, medication, and laboratory codes, MASH produces interpretable hierarchical graphs that facilitate the navigation and understanding of heterogeneous clinical data. Notably, it generates the first automated hierarchies for unstructured local laboratory codes, establishing foundational references for downstream applications.
☆ Robust and Adaptive Spectral Method for Representation Multi-Task Learning with Contamination
Representation-based multi-task learning (MTL) improves efficiency by learning a shared structure across tasks, but its practical application is often hindered by contamination, outliers, or adversarial tasks. Most existing methods and theories assume a clean or near-clean setting, failing when contamination is significant. This paper tackles representation MTL with an unknown and potentially large contamination proportion, while also allowing for heterogeneity among inlier tasks. We introduce a Robust and Adaptive Spectral method (RAS) that can distill the shared inlier representation effectively and efficiently, while requiring no prior knowledge of the contamination level or the true representation dimension. Theoretically, we provide non-asymptotic error bounds for both the learned representation and the per-task parameters. These bounds adapt to inlier task similarity and outlier structure, and guarantee that RAS performs at least as well as single-task learning, thus preventing negative transfer. We also extend our framework to transfer learning with corresponding theoretical guarantees for the target task. Extensive experiments confirm our theory, showcasing the robustness and adaptivity of RAS, and its superior performance in regimes with up to 80\% task contamination.
☆ Topological Regularization for Force Prediction in Active Particle Suspension with EGNN and Persistent Homology
Capturing the dynamics of active particles, i.e., small self-propelled agents that both deform and are deformed by a fluid in which they move is a formidable problem as it requires coupling fine scale hydrodynamics with large scale collective effects. So we present a multi-scale framework that combines the three learning-driven tools to learn in concert within one pipeline. We use high-resolution Lattice Boltzmann snapshots of fluid velocity and particle stresses in a periodic box as input to the learning pipeline. the second step takes the morphology and positions orientations of particles to predict pairwise interaction forces between them with a E(2)-equivariant graph neural network that necessarily respect flat symmetries. Then, a physics-informed neural network further updates these local estimates by summing over them with a stress data using Fourier feature mappings and residual blocks that is additionally regularized with a topological term (introduced by persistent homology) to penalize unrealistically tangled or spurious connections. In concert, these stages deliver an holistic highly-data driven full force network prediction empathizing on the physical underpinnings together with emerging multi-scale structure typical for active matter.
☆ Robustness and accuracy of mean opinion scores with hard and soft outlier detection
In subjective assessment of image and video quality, observers rate or compare selected stimuli. Before calculating the mean opinion scores (MOS) for these stimuli from the ratings, it is recommended to identify and deal with outliers that may have given unreliable ratings. Several methods are available for this purpose, some of which have been standardized. These methods are typically based on statistics and sometimes tested by introducing synthetic ratings from artificial outliers, such as random clickers. However, a reliable and comprehensive approach is lacking for comparative performance analysis of outlier detection methods. To fill this gap, this work proposes and applies an empirical worst-case analysis as a general solution. Our method involves evolutionary optimization of an adversarial black-box attack on outlier detection algorithms, where the adversary maximizes the distortion of scale values with respect to ground truth. We apply our analysis to several hard and soft outlier detection methods for absolute category ratings and show their differing performance in this stress test. In addition, we propose two new outlier detection methods with low complexity and excellent worst-case performance. Software for adversarial attacks and data analysis is available.
comment: Accepted for 17th International Conference on Quality of Multimedia Experience (QoMEX'25), September 2025, Madrid, Spain
☆ Impact of Labeling Inaccuracy and Image Noise on Tooth Segmentation in Panoramic Radiographs using Federated, Centralized and Local Learning
Objectives: Federated learning (FL) may mitigate privacy constraints, heterogeneous data quality, and inconsistent labeling in dental diagnostic AI. We compared FL with centralized (CL) and local learning (LL) for tooth segmentation in panoramic radiographs across multiple data corruption scenarios. Methods: An Attention U-Net was trained on 2066 radiographs from six institutions across four settings: baseline (unaltered data); label manipulation (dilated/missing annotations); image-quality manipulation (additive Gaussian noise); and exclusion of a faulty client with corrupted data. FL was implemented via the Flower AI framework. Per-client training- and validation-loss trajectories were monitored for anomaly detection and a set of metrics (Dice, IoU, HD, HD95 and ASSD) was evaluated on a hold-out test set. From these metrics significance results were reported through Wilcoxon signed-rank test. CL and LL served as comparators. Results: Baseline: FL achieved a median Dice of 0.94889 (ASSD: 1.33229), slightly better than CL at 0.94706 (ASSD: 1.37074) and LL at 0.93557-0.94026 (ASSD: 1.51910-1.69777). Label manipulation: FL maintained the best median Dice score at 0.94884 (ASSD: 1.46487) versus CL's 0.94183 (ASSD: 1.75738) and LL's 0.93003-0.94026 (ASSD: 1.51910-2.11462). Image noise: FL led with Dice at 0.94853 (ASSD: 1.31088); CL scored 0.94787 (ASSD: 1.36131); LL ranged from 0.93179-0.94026 (ASSD: 1.51910-1.77350). Faulty-client exclusion: FL reached Dice at 0.94790 (ASSD: 1.33113) better than CL's 0.94550 (ASSD: 1.39318). Loss-curve monitoring reliably flagged the corrupted site. Conclusions: FL matches or exceeds CL and outperforms LL across corruption scenarios while preserving privacy. Per-client loss trajectories provide an effective anomaly-detection mechanism and support FL as a practical, privacy-preserving approach for scalable clinical AI deployment.
☆ Tackling Device Data Distribution Real-time Shift via Prototype-based Parameter Editing
The on-device real-time data distribution shift on devices challenges the generalization of lightweight on-device models. This critical issue is often overlooked in current research, which predominantly relies on data-intensive and computationally expensive fine-tuning approaches. To tackle this, we introduce Persona, a novel personalized method using a prototype-based, backpropagation-free parameter editing framework to enhance model generalization without post-deployment retraining. Persona employs a neural adapter in the cloud to generate a parameter editing matrix based on real-time device data. This matrix adeptly adapts on-device models to the prevailing data distributions, efficiently clustering them into prototype models. The prototypes are dynamically refined via the parameter editing matrix, facilitating efficient evolution. Furthermore, the integration of cross-layer knowledge transfer ensures consistent and context-aware multi-layer parameter changes and prototype assignment. Extensive experiments on vision task and recommendation task on multiple datasets confirm Persona's effectiveness and generality.
comment: Published on MM'25: Proceedings of the 33rd ACM International Conference on Multimedia
☆ Contrastive Self-Supervised Network Intrusion Detection using Augmented Negative Pairs IEEE
Network intrusion detection remains a critical challenge in cybersecurity. While supervised machine learning models achieve state-of-the-art performance, their reliance on large labelled datasets makes them impractical for many real-world applications. Anomaly detection methods, which train exclusively on benign traffic to identify malicious activity, suffer from high false positive rates, limiting their usability. Recently, self-supervised learning techniques have demonstrated improved performance with lower false positive rates by learning discriminative latent representations of benign traffic. In particular, contrastive self-supervised models achieve this by minimizing the distance between similar (positive) views of benign traffic while maximizing it between dissimilar (negative) views. Existing approaches generate positive views through data augmentation and treat other samples as negative. In contrast, this work introduces Contrastive Learning using Augmented Negative pairs (CLAN), a novel paradigm for network intrusion detection where augmented samples are treated as negative views - representing potentially malicious distributions - while other benign samples serve as positive views. This approach enhances both classification accuracy and inference efficiency after pretraining on benign traffic. Experimental evaluation on the Lycos2017 dataset demonstrates that the proposed method surpasses existing self-supervised and anomaly detection techniques in a binary classification task. Furthermore, when fine-tuned on a limited labelled dataset, the proposed approach achieves superior multi-class classification performance compared to existing self-supervised models.
comment: Published in: Proceedings of IEEE Conference on Cyber Security and Resilience (CSR), 2025. Official version: https://doi.org/10.1109/CSR64739.2025.11129979 Code: https://github.com/jackwilkie/CLAN
☆ Signal-Based Malware Classification Using 1D CNNs
Malware classification is a contemporary and ongoing challenge in cyber-security: modern obfuscation techniques are able to evade traditional static analysis, while dynamic analysis is too resource intensive to be deployed at a large scale. One prominent line of research addresses these limitations by converting malware binaries into 2D images by heuristically reshaping them into a 2D grid before resizing using Lanczos resampling. These images can then be classified based on their textural information using computer vision approaches. While this approach can detect obfuscated malware more effectively than static analysis, the process of converting files into 2D images results in significant information loss due to both quantisation noise, caused by rounding to integer pixel values, and the introduction of 2D dependencies which do not exist in the original data. This loss of signal limits the classification performance of the downstream model. This work addresses these weaknesses by instead resizing the files into 1D signals which avoids the need for heuristic reshaping, and additionally these signals do not suffer from quantisation noise due to being stored in a floating-point format. It is shown that existing 2D CNN architectures can be readily adapted to classify these 1D signals for improved performance. Furthermore, a bespoke 1D convolutional neural network, based on the ResNet architecture and squeeze-and-excitation layers, was developed to classify these signals and evaluated on the MalNet dataset. It was found to achieve state-of-the-art performance on binary, type, and family level classification with F1 scores of 0.874, 0.503, and 0.507, respectively, paving the way for future models to operate on the proposed signal modality.
comment: Accepted for publication in Springer Cybersecurity (2025)
☆ Predicting Fetal Outcomes from Cardiotocography Signals Using a Supervised Variational Autoencoder
Objective: To develop and interpret a supervised variational autoencoder (VAE) model for classifying cardiotocography (CTG) signals based on pregnancy outcomes, addressing interpretability limits of current deep learning approaches. Methods: The OxMat CTG dataset was used to train a VAE on five-minute fetal heart rate (FHR) segments, labeled with postnatal outcomes. The model was optimised for signal reconstruction and outcome prediction, incorporating Kullback-Leibler divergence and total correlation (TC) constraints to structure the latent space. Performance was evaluated using area under the receiver operating characteristic curve (AUROC) and mean squared error (MSE). Interpretability was assessed using coefficient of determination, latent traversals and unsupervised component analyses. Results: The model achieved an AUROC of 0.752 at the segment level and 0.779 at the CTG level, where predicted scores were aggregated. Relaxing TC constraints improved both reconstruction and classification. Latent analysis showed that baseline-related features (e.g., FHR baseline, baseline shift) were well represented and aligned with model scores, while metrics like short- and long-term variability were less strongly encoded. Traversals revealed clear signal changes for baseline features, while other properties were entangled or subtle. Unsupervised decompositions corroborated these patterns. Findings: This work demonstrates that supervised VAEs can achieve competitive fetal outcome prediction while partially encoding clinically meaningful CTG features. The irregular, multi-timescale nature of FHR signals poses challenges for disentangling physiological components, distinguishing CTG from more periodic signals such as ECG. Although full interpretability was not achieved, the model supports clinically useful outcome prediction and provides a basis for future interpretable, generative models.
☆ Learning Optimal Defender Strategies for CAGE-2 using a POMDP Model
CAGE-2 is an accepted benchmark for learning and evaluating defender strategies against cyberattacks. It reflects a scenario where a defender agent protects an IT infrastructure against various attacks. Many defender methods for CAGE-2 have been proposed in the literature. In this paper, we construct a formal model for CAGE-2 using the framework of Partially Observable Markov Decision Process (POMDP). Based on this model, we define an optimal defender strategy for CAGE-2 and introduce a method to efficiently learn this strategy. Our method, called BF-PPO, is based on PPO, and it uses particle filter to mitigate the computational complexity due to the large state space of the CAGE-2 model. We evaluate our method in the CAGE-2 CybORG environment and compare its performance with that of CARDIFF, the highest ranked method on the CAGE-2 leaderboard. We find that our method outperforms CARDIFF regarding the learned defender strategy and the required training time.
comment: The paper is has been accepted for the 21st International Conference on Network and Service Management (CNSM-2025). The final version will be published in the conference proceedings
☆ On the Reproducibility of "FairCLIP: Harnessing Fairness in Vision-Language Learning''
We investigated the reproducibility of FairCLIP, proposed by Luo et al. (2024), for improving the group fairness of CLIP (Radford et al., 2021) by minimizing image-text similarity score disparities across sensitive groups using the Sinkhorn distance. The experimental setup of Luo et al. (2024) was reproduced to primarily investigate the research findings for FairCLIP. The model description by Luo et al. (2024) was found to differ from the original implementation. Therefore, a new implementation, A-FairCLIP, is introduced to examine specific design choices. Furthermore, FairCLIP+ is proposed to extend the FairCLIP objective to include multiple attributes. Additionally, the impact of the distance minimization on FairCLIP's fairness and performance was explored. In alignment with the original authors, CLIP was found to be biased towards certain demographics when applied to zero-shot glaucoma classification using medical scans and clinical notes from the Harvard-FairVLMed dataset. However, the experimental results on two datasets do not support their claim that FairCLIP improves the performance and fairness of CLIP. Although the regularization objective reduces Sinkhorn distances, both the official implementation and the aligned implementation, A-FairCLIP, were not found to improve performance nor fairness in zero-shot glaucoma classification.
☆ Lane Change Intention Prediction of two distinct Populations using a Transformer
As a result of the growing importance of lane change intention prediction for a safe and efficient driving experience in complex driving scenarios, researchers have in recent years started to train novel machine learning algorithms on available datasets with promising results. A shortcoming of this recent research effort, though, is that the vast majority of the proposed algorithms are trained on a single datasets. In doing so, researchers failed to test if their algorithm would be as effective if tested on a different dataset and, by extension, on a different population with respect to the one on which they were trained. In this article we test a transformer designed for lane change intention prediction on two datasets collected by LevelX in Germany and Hong Kong. We found that the transformer's accuracy plummeted when tested on a population different to the one it was trained on with accuracy values as low as 39.43%, but that when trained on both populations simultaneously it could achieve an accuracy as high as 86.71%. - This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.
comment: 7 pages, 7 figures
☆ QualityFM: a Multimodal Physiological Signal Foundation Model with Self-Distillation for Signal Quality Challenges in Critically Ill Patients
Photoplethysmogram (PPG) and electrocardiogram (ECG) are commonly recorded in intesive care unit (ICU) and operating room (OR). However, the high incidence of poor, incomplete, and inconsistent signal quality, can lead to false alarms or diagnostic inaccuracies. The methods explored so far suffer from limited generalizability, reliance on extensive labeled data, and poor cross-task transferability. To overcome these challenges, we introduce QualityFM, a novel multimodal foundation model for these physiological signals, designed to acquire a general-purpose understanding of signal quality. Our model is pre-trained on an large-scale dataset comprising over 21 million 30-second waveforms and 179,757 hours of data. Our approach involves a dual-track architecture that processes paired physiological signals of differing quality, leveraging a self-distillation strategy where an encoder for high-quality signals is used to guide the training of an encoder for low-quality signals. To efficiently handle long sequential signals and capture essential local quasi-periodic patterns, we integrate a windowed sparse attention mechanism within our Transformer-based model. Furthermore, a composite loss function, which combines direct distillation loss on encoder outputs with indirect reconstruction loss based on power and phase spectra, ensures the preservation of frequency-domain characteristics of the signals. We pre-train three models with varying parameter counts (9.6 M to 319 M) and demonstrate their efficacy and practical value through transfer learning on three distinct clinical tasks: false alarm of ventricular tachycardia detection, the identification of atrial fibrillation and the estimation of arterial blood pressure (ABP) from PPG and ECG signals.
comment: 11 pages, 5 figures, 7 tables
☆ On optimal solutions of classical and sliced Wasserstein GANs with non-Gaussian data
The generative adversarial network (GAN) aims to approximate an unknown distribution via a parameterized neural network (NN). While GANs have been widely applied in reinforcement and semisupervised learning as well as computer vision tasks, selecting their parameters often needs an exhaustive search and only a few selection methods can be proved to be theoretically optimal. One of the most promising GAN variants is the Wasserstein GAN (WGAN). Prior work on optimal parameters for WGAN is limited to the linear-quadratic-Gaussian (LQG) setting, where the NN is linear and the data is Gaussian. In this paper, we focus on the characterization of optimal WGAN parameters beyond the LQG setting. We derive closed-form optimal parameters for one-dimensional WGANs when the NN has non-linear activation functions and the data is non-Gaussian. To extend this to high-dimensional WGANs, we adopt the sliced Wasserstein framework and replace the constraint on marginal distributions of the randomly projected data by a constraint on the joint distribution of the original (unprojected) data. We show that the linear generator can be asymptotically optimal for sliced WGAN with non-Gaussian data. Empirical studies show that our closed-form WGAN parameters have good convergence behavior with data under both Gaussian and Laplace distributions. Also, compared to the r principal component analysis (r-PCA) solution, our proposed solution for sliced WGAN can achieve the same performance while requiring less computational resources.
☆ A machine-learned expression for the excess Gibbs energy
The excess Gibbs energy plays a central role in chemical engineering and chemistry, providing a basis for modeling the thermodynamic properties of liquid mixtures. Predicting the excess Gibbs energy of multi-component mixtures solely from the molecular structures of their components is a long-standing challenge. In this work, we address this challenge by integrating physical laws as hard constraints within a flexible neural network. The resulting model, HANNA, was trained end-to-end on an extensive experimental dataset for binary mixtures from the Dortmund Data Bank, guaranteeing thermodynamically consistent predictions. A novel surrogate solver developed in this work enabled the inclusion of liquid-liquid equilibrium data in the training process. Furthermore, a geometric projection method was applied to enable robust extrapolations to multi-component mixtures, without requiring additional parameters. We demonstrate that HANNA delivers excellent predictions, clearly outperforming state-of-the-art benchmark methods in accuracy and scope. The trained model and corresponding code are openly available, and an interactive interface is provided on our website, MLPROP.
comment: 18 pages, 3 figures
☆ DyC-STG: Dynamic Causal Spatio-Temporal Graph Network for Real-time Data Credibility Analysis in IoT
The wide spreading of Internet of Things (IoT) sensors generates vast spatio-temporal data streams, but ensuring data credibility is a critical yet unsolved challenge for applications like smart homes. While spatio-temporal graph (STG) models are a leading paradigm for such data, they often fall short in dynamic, human-centric environments due to two fundamental limitations: (1) their reliance on static graph topologies, which fail to capture physical, event-driven dynamics, and (2) their tendency to confuse spurious correlations with true causality, undermining robustness in human-centric environments. To address these gaps, we propose the Dynamic Causal Spatio-Temporal Graph Network (DyC-STG), a novel framework designed for real-time data credibility analysis in IoT. Our framework features two synergistic contributions: an event-driven dynamic graph module that adapts the graph topology in real-time to reflect physical state changes, and a causal reasoning module to distill causally-aware representations by strictly enforcing temporal precedence. To facilitate the research in this domain we release two new real-world datasets. Comprehensive experiments show that DyC-STG establishes a new state-of-the-art, outperforming the strongest baselines by 1.4 percentage points and achieving an F1-Score of up to 0.930.
☆ CAME-AB: Cross-Modality Attention with Mixture-of-Experts for Antibody Binding Site Prediction
Antibody binding site prediction plays a pivotal role in computational immunology and therapeutic antibody design. Existing sequence or structure methods rely on single-view features and fail to identify antibody-specific binding sites on the antigens-a dual limitation in representation and prediction. In this paper, we propose CAME-AB, a novel Cross-modality Attention framework with a Mixture-of-Experts (MoE) backbone for robust antibody binding site prediction. CAME-AB integrates five biologically grounded modalities, including raw amino acid encodings, BLOSUM substitution profiles, pretrained language model embeddings, structure-aware features, and GCN-refined biochemical graphs-into a unified multimodal representation. To enhance adaptive cross-modal reasoning, we propose an adaptive modality fusion module that learns to dynamically weight each modality based on its global relevance and input-specific contribution. A Transformer encoder combined with an MoE module further promotes feature specialization and capacity expansion. We additionally incorporate a supervised contrastive learning objective to explicitly shape the latent space geometry, encouraging intra-class compactness and inter-class separability. To improve optimization stability and generalization, we apply stochastic weight averaging during training. Extensive experiments on benchmark antibody-antigen datasets demonstrate that CAME-AB consistently outperforms strong baselines on multiple metrics, including Precision, Recall, F1-score, AUC-ROC, and MCC. Ablation studies further validate the effectiveness of each architectural component and the benefit of multimodal feature integration. The model implementation details and the codes are available on https://anonymous.4open.science/r/CAME-AB-C525
☆ IGAff: Benchmarking Adversarial Iterative and Genetic Affine Algorithms on Deep Neural Networks ECAI 2025
Deep neural networks currently dominate many fields of the artificial intelligence landscape, achieving state-of-the-art results on numerous tasks while remaining hard to understand and exhibiting surprising weaknesses. An active area of research focuses on adversarial attacks, which aim to generate inputs that uncover these weaknesses. However, this proves challenging, especially in the black-box scenario where model details are inaccessible. This paper explores in detail the impact of such adversarial algorithms on ResNet-18, DenseNet-121, Swin Transformer V2, and Vision Transformer network architectures. Leveraging the Tiny ImageNet, Caltech-256, and Food-101 datasets, we benchmark two novel black-box iterative adversarial algorithms based on affine transformations and genetic algorithms: 1) Affine Transformation Attack (ATA), an iterative algorithm maximizing our attack score function using random affine transformations, and 2) Affine Genetic Attack (AGA), a genetic algorithm that involves random noise and affine transformations. We evaluate the performance of the models in the algorithm parameter variation, data augmentation, and global and targeted attack configurations. We also compare our algorithms with two black-box adversarial algorithms, Pixle and Square Attack. Our experiments yield better results on the image classification task than similar methods in the literature, achieving an accuracy improvement of up to 8.82%. We provide noteworthy insights into successful adversarial defenses and attacks at both global and targeted levels, and demonstrate adversarial robustness through algorithm parameter variation.
comment: 10 pages, 7 figures, Accepted at ECAI 2025 (28th European Conference on Artificial Intelligence)
☆ Musculoskeletal simulation of limb movement biomechanics in Drosophila melanogaster
Computational models are critical to advance our understanding of how neural, biomechanical, and physical systems interact to orchestrate animal behaviors. Despite the availability of near-complete reconstructions of the Drosophila melanogaster central nervous system, musculature, and exoskeleton, anatomically and physically grounded models of fly leg muscles are still missing. These models provide an indispensable bridge between motor neuron activity and joint movements. Here, we introduce the first 3D, data-driven musculoskeletal model of Drosophila legs, implemented in both OpenSim and MuJoCo simulation environments. Our model incorporates a Hill-type muscle representation based on high-resolution X-ray scans from multiple fixed specimens. We present a pipeline for constructing muscle models using morphological imaging data and for optimizing unknown muscle parameters specific to the fly. We then combine our musculoskeletal models with detailed 3D pose estimation data from behaving flies to achieve muscle-actuated behavioral replay in OpenSim. Simulations of muscle activity across diverse walking and grooming behaviors predict coordinated muscle synergies that can be tested experimentally. Furthermore, by training imitation learning policies in MuJoCo, we test the effect of different passive joint properties on learning speed and find that damping and stiffness facilitate learning. Overall, our model enables the investigation of motor control in an experimentally tractable model organism, providing insights into how biomechanics contribute to generation of complex limb movements. Moreover, our model can be used to control embodied artificial agents to generate naturalistic and compliant locomotion in simulated environments.
comment: 23 pages, 11 figures
☆ CAPMix: Robust Time Series Anomaly Detection Based on Abnormal Assumptions with Dual-Space Mixup
Time series anomaly detection (TSAD) is a vital yet challenging task, particularly in scenarios where labeled anomalies are scarce and temporal dependencies are complex. Recent anomaly assumption (AA) approaches alleviate the lack of anomalies by injecting synthetic samples and training discriminative models. Despite promising results, these methods often suffer from two fundamental limitations: patchy generation, where scattered anomaly knowledge leads to overly simplistic or incoherent anomaly injection, and Anomaly Shift, where synthetic anomalies either resemble normal data too closely or diverge unrealistically from real anomalies, thereby distorting classification boundaries. In this paper, we propose CAPMix, a controllable anomaly augmentation framework that addresses both issues. First, we design a CutAddPaste mechanism to inject diverse and complex anomalies in a targeted manner, avoiding patchy generation. Second, we introduce a label revision strategy to adaptively refine anomaly labels, reducing the risk of anomaly shift. Finally, we employ dual-space mixup within a temporal convolutional network to enforce smoother and more robust decision boundaries. Extensive experiments on five benchmark datasets, including AIOps, UCR, SWaT, WADI, and ESA, demonstrate that CAPMix achieves significant improvements over state-of-the-art baselines, with enhanced robustness against contaminated training data. The code is available at https://github.com/alsike22/CAPMix.
☆ NeuroDeX: Unlocking Diverse Support in Decompiling Deep Neural Network Executables
On-device deep learning models have extensive real world demands. Deep learning compilers efficiently compile models into executables for deployment on edge devices, but these executables may face the threat of reverse engineering. Previous studies have attempted to decompile DNN executables, but they face challenges in handling compilation optimizations and analyzing quantized compiled models. In this paper, we present NeuroDeX to unlock diverse support in decompiling DNN executables. NeuroDeX leverages the semantic understanding capabilities of LLMs along with dynamic analysis to accurately and efficiently perform operator type recognition, operator attribute recovery and model reconstruction. NeuroDeX can recover DNN executables into high-level models towards compilation optimizations, different architectures and quantized compiled models. We conduct experiments on 96 DNN executables across 12 common DNN models. Extensive experimental results demonstrate that NeuroDeX can decompile non-quantized executables into nearly identical high-level models. NeuroDeX can recover functionally similar high-level models for quantized executables, achieving an average top-1 accuracy of 72%. NeuroDeX offers a more comprehensive and effective solution compared to previous DNN executables decompilers.
☆ Graph Neural Networks for Resource Allocation in Interference-limited Multi-Channel Wireless Networks with QoS Constraints
Meeting minimum data rate constraints is a significant challenge in wireless communication systems, particularly as network complexity grows. Traditional deep learning approaches often address these constraints by incorporating penalty terms into the loss function and tuning hyperparameters empirically. However, this heuristic treatment offers no theoretical convergence guarantees and frequently fails to satisfy QoS requirements in practical scenarios. Building upon the structure of the WMMSE algorithm, we first extend it to a multi-channel setting with QoS constraints, resulting in the enhanced WMMSE (eWMMSE) algorithm, which is provably convergent to a locally optimal solution when the problem is feasible. To further reduce computational complexity and improve scalability, we develop a GNN-based algorithm, JCPGNN-M, capable of supporting simultaneous multi-channel allocation per user. To overcome the limitations of traditional deep learning methods, we propose a principled framework that integrates GNN with a Lagrangian-based primal-dual optimization method. By training the GNN within the Lagrangian framework, we ensure satisfaction of QoS constraints and convergence to a stationary point. Extensive simulations demonstrate that JCPGNN-M matches the performance of eWMMSE while offering significant gains in inference speed, generalization to larger networks, and robustness under imperfect channel state information. This work presents a scalable and theoretically grounded solution for constrained resource allocation in future wireless networks.
☆ Beyond the Pre-Service Horizon: Infusing In-Service Behavior for Improved Financial Risk Forecasting IEEE
Typical financial risk management involves distinct phases for pre-service risk assessment and in-service default detection, often modeled separately. This paper proposes a novel framework, Multi-Granularity Knowledge Distillation (abbreviated as MGKD), aimed at improving pre-service risk prediction through the integration of in-service user behavior data. MGKD follows the idea of knowledge distillation, where the teacher model, trained on historical in-service data, guides the student model, which is trained on pre-service data. By using soft labels derived from in-service data, the teacher model helps the student model improve its risk prediction prior to service activation. Meanwhile, a multi-granularity distillation strategy is introduced, including coarse-grained, fine-grained, and self-distillation, to align the representations and predictions of the teacher and student models. This approach not only reinforces the representation of default cases but also enables the transfer of key behavioral patterns associated with defaulters from the teacher to the student model, thereby improving the overall performance of pre-service risk assessment. Moreover, we adopt a re-weighting strategy to mitigate the model's bias towards the minority class. Experimental results on large-scale real-world datasets from Tencent Mobile Payment demonstrate the effectiveness of our proposed approach in both offline and online scenarios.
comment: Accepted to IEEE ICDM 2025
☆ Variational Garrote for Statistical Physics-based Sparse and Robust Variable Selection
Selecting key variables from high-dimensional data is increasingly important in the era of big data. Sparse regression serves as a powerful tool for this purpose by promoting model simplicity and explainability. In this work, we revisit a valuable yet underutilized method, the statistical physics-based Variational Garrote (VG), which introduces explicit feature selection spin variables and leverages variational inference to derive a tractable loss function. We enhance VG by incorporating modern automatic differentiation techniques, enabling scalable and efficient optimization. We evaluate VG on both fully controllable synthetic datasets and complex real-world datasets. Our results demonstrate that VG performs especially well in highly sparse regimes, offering more consistent and robust variable selection than Ridge and LASSO regression across varying levels of sparsity. We also uncover a sharp transition: as superfluous variables are admitted, generalization degrades abruptly and the uncertainty of the selection variables increases. This transition point provides a practical signal for estimating the correct number of relevant variables, an insight we successfully apply to identify key predictors in real-world data. We expect that VG offers strong potential for sparse modeling across a wide range of applications, including compressed sensing and model pruning in machine learning.
comment: 11 pages, 4 figures
☆ Breaking SafetyCore: Exploring the Risks of On-Device AI Deployment
Due to hardware and software improvements, an increasing number of AI models are deployed on-device. This shift enhances privacy and reduces latency, but also introduces security risks distinct from traditional software. In this article, we examine these risks through the real-world case study of SafetyCore, an Android system service incorporating sensitive image content detection. We demonstrate how the on-device AI model can be extracted and manipulated to bypass detection, effectively rendering the protection ineffective. Our analysis exposes vulnerabilities of on-device AI models and provides a practical demonstration of how adversaries can exploit them.
☆ MRD-LiNet: A Novel Lightweight Hybrid CNN with Gradient-Guided Unlearning for Improved Drought Stress Identification
Drought stress is a major threat to global crop productivity, making its early and precise detection essential for sustainable agricultural management. Traditional approaches, though useful, are often time-consuming and labor-intensive, which has motivated the adoption of deep learning methods. In recent years, Convolutional Neural Network (CNN) and Vision Transformer architectures have been widely explored for drought stress identification; however, these models generally rely on a large number of trainable parameters, restricting their use in resource-limited and real-time agricultural settings. To address this challenge, we propose a novel lightweight hybrid CNN framework inspired by ResNet, DenseNet, and MobileNet architectures. The framework achieves a remarkable 15-fold reduction in trainable parameters compared to conventional CNN and Vision Transformer models, while maintaining competitive accuracy. In addition, we introduce a machine unlearning mechanism based on a gradient norm-based influence function, which enables targeted removal of specific training data influence, thereby improving model adaptability. The method was evaluated on an aerial image dataset of potato fields with expert-annotated healthy and drought-stressed regions. Experimental results show that our framework achieves high accuracy while substantially lowering computational costs. These findings highlight its potential as a practical, scalable, and adaptive solution for drought stress monitoring in precision agriculture, particularly under resource-constrained conditions.
comment: 11 pages, 6 Figures, 3 Tables
☆ A data-driven discretized CS:GO simulation environment to facilitate strategic multi-agent planning research
Modern simulation environments for complex multi-agent interactions must balance high-fidelity detail with computational efficiency. We present DECOY, a novel multi-agent simulator that abstracts strategic, long-horizon planning in 3D terrains into high-level discretized simulation while preserving low-level environmental fidelity. Using Counter-Strike: Global Offensive (CS:GO) as a testbed, our framework accurately simulates gameplay using only movement decisions as tactical positioning -- without explicitly modeling low-level mechanics such as aiming and shooting. Central to our approach is a waypoint system that simplifies and discretizes continuous states and actions, paired with neural predictive and generative models trained on real CS:GO tournament data to reconstruct event outcomes. Extensive evaluations show that replays generated from human data in DECOY closely match those observed in the original game. Our publicly available simulation environment provides a valuable tool for advancing research in strategic multi-agent planning and behavior generation.
comment: Accepted at the Winter Simulation Conference 2025, December, Seattle USA
☆ A Multi-Modal Deep Learning Framework for Colorectal Pathology Diagnosis: Integrating Histological and Colonoscopy Data in a Pilot Study
Colorectal diseases, including inflammatory conditions and neoplasms, require quick, accurate care to be effectively treated. Traditional diagnostic pipelines require extensive preparation and rely on separate, individual evaluations on histological images and colonoscopy footage, introducing possible variability and inefficiencies. This pilot study proposes a unified deep learning network that uses convolutional neural networks (CN N s) to classify both histopathological slides and colonoscopy video frames in one pipeline. The pipeline integrates class-balancing learning, robust augmentation, and calibration methods to ensure accurate results. Static colon histology images were taken from the PathMNIST dataset, and the lower gastrointestinal (colonoscopy) videos were drawn from the HyperKvasir dataset. The CNN architecture used was ResNet-50. This study demonstrates an interpretable and reproducible diagnostic pipeline that unifies multiple diagnostic modalities to advance and ease the detection of colorectal diseases.
☆ Ban&Pick: Achieving Free Performance Gains and Inference Speedup via Smarter Routing in MoE-LLMs
Sparse Mixture-of-Experts (MoE) has become a key architecture for scaling large language models (LLMs) efficiently. Recent fine-grained MoE designs introduce hundreds of experts per layer, with multiple experts activated per token, enabling stronger specialization. However, during pre-training, routers are optimized mainly for stability and robustness: they converge prematurely and enforce balanced usage, limiting the full potential of model performance and efficiency. In this work, we uncover two overlooked issues: (i) a few highly influential experts are underutilized due to premature and balanced routing decisions; and (ii) enforcing a fixed number of active experts per token introduces substantial redundancy. Instead of retraining models or redesigning MoE architectures, we introduce Ban&Pick, a post-training, plug-and-play strategy for smarter MoE routing. Pick discovers and reinforces key experts-a small group with outsized impact on performance-leading to notable accuracy gains across domains. Ban complements this by dynamically pruning redundant experts based on layer and token sensitivity, delivering faster inference with minimal accuracy loss. Experiments on fine-grained MoE-LLMs (DeepSeek, Qwen3) across math, code, and general reasoning benchmarks demonstrate that Ban&Pick delivers free performance gains and inference acceleration without retraining or architectural changes. For instance, on Qwen3-30B-A3B, it improves accuracy from 80.67 to 84.66 on AIME2024 and from 65.66 to 68.18 on GPQA-Diamond, while accelerating inference by 1.25x under the vLLM.
comment: 20 pages, 9 figures
☆ Embedding Poisoning: Bypassing Safety Alignment via Embedding Semantic Shift
The widespread distribution of Large Language Models (LLMs) through public platforms like Hugging Face introduces significant security challenges. While these platforms perform basic security scans, they often fail to detect subtle manipulations within the embedding layer. This work identifies a novel class of deployment phase attacks that exploit this vulnerability by injecting imperceptible perturbations directly into the embedding layer outputs without modifying model weights or input text. These perturbations, though statistically benign, systematically bypass safety alignment mechanisms and induce harmful behaviors during inference. We propose Search based Embedding Poisoning(SEP), a practical, model agnostic framework that introduces carefully optimized perturbations into embeddings associated with high risk tokens. SEP leverages a predictable linear transition in model responses, from refusal to harmful output to semantic deviation to identify a narrow perturbation window that evades alignment safeguards. Evaluated across six aligned LLMs, SEP achieves an average attack success rate of 96.43% while preserving benign task performance and evading conventional detection mechanisms. Our findings reveal a critical oversight in deployment security and emphasize the urgent need for embedding level integrity checks in future LLM defense strategies.
comment: 16 pages,9 figures
☆ A Fragile Number Sense: Probing the Elemental Limits of Numerical Reasoning in LLMs
Large Language Models (LLMs) have demonstrated remarkable emergent capabilities, yet the robustness of their numerical reasoning remains an open question. While standard benchmarks evaluate LLM reasoning on complex problem sets using aggregated metrics, they often obscure foundational weaknesses. In this work, we probe LLM mathematical numeracy by evaluating performance on problems of escalating complexity, from constituent operations to combinatorial puzzles. We test several state-of-the-art LLM-based agents on a 100-problem challenge comprising four categories: (1) basic arithmetic, (2) advanced operations, (3) primality checking, and (4) the Game of 24 number puzzle. Our results show that while the agents achieved high accuracy on the first three categories, which require deterministic algorithmic execution, they consistently failed at the number puzzle, underlining its demand for a heuristic search over a large combinatorial space to be a significant bottleneck. These findings reveal that the agents' proficiency is largely confined to recalling and executing known algorithms, rather than performing generative problem-solving. This suggests their apparent numerical reasoning is more akin to sophisticated pattern-matching than flexible, analytical thought, limiting their potential for tasks that require novel or creative numerical insights.
☆ Exploring approaches to computational representation and classification of user-generated meal logs
This study examined the use of machine learning and domain specific enrichment on patient generated health data, in the form of free text meal logs, to classify meals on alignment with different nutritional goals. We used a dataset of over 3000 meal records collected by 114 individuals from a diverse, low income community in a major US city using a mobile app. Registered dietitians provided expert judgement for meal to goal alignment, used as gold standard for evaluation. Using text embeddings, including TFIDF and BERT, and domain specific enrichment information, including ontologies, ingredient parsers, and macronutrient contents as inputs, we evaluated the performance of logistic regression and multilayer perceptron classifiers using accuracy, precision, recall, and F1 score against the gold standard and self assessment. Even without enrichment, ML outperformed self assessments of individuals who logged meals, and the best performing combination of ML classifier with enrichment achieved even higher accuracies. In general, ML classifiers with enrichment of Parsed Ingredients, Food Entities, and Macronutrients information performed well across multiple nutritional goals, but there was variability in the impact of enrichment and classification algorithm on accuracy of classification for different nutritional goals. In conclusion, ML can utilize unstructured free text meal logs and reliably classify whether meals align with specific nutritional goals, exceeding self assessments, especially when incorporating nutrition domain knowledge. Our findings highlight the potential of ML analysis of patient generated health data to support patient centered nutrition guidance in precision healthcare.
☆ Text-Trained LLMs Can Zero-Shot Extrapolate PDE Dynamics
Large language models (LLMs) have demonstrated emergent in-context learning (ICL) capabilities across a range of tasks, including zero-shot time-series forecasting. We show that text-trained foundation models can accurately extrapolate spatiotemporal dynamics from discretized partial differential equation (PDE) solutions without fine-tuning or natural language prompting. Predictive accuracy improves with longer temporal contexts but degrades at finer spatial discretizations. In multi-step rollouts, where the model recursively predicts future spatial states over multiple time steps, errors grow algebraically with the time horizon, reminiscent of global error accumulation in classical finite-difference solvers. We interpret these trends as in-context neural scaling laws, where prediction quality varies predictably with both context length and output length. To better understand how LLMs are able to internally process PDE solutions so as to accurately roll them out, we analyze token-level output distributions and uncover a consistent ICL progression: beginning with syntactic pattern imitation, transitioning through an exploratory high-entropy phase, and culminating in confident, numerically grounded predictions.
☆ Evaluating the Efficiency of Latent Spaces via the Coupling-Matrix
A central challenge in representation learning is constructing latent embeddings that are both expressive and efficient. In practice, deep networks often produce redundant latent spaces where multiple coordinates encode overlapping information, reducing effective capacity and hindering generalization. Standard metrics such as accuracy or reconstruction loss provide only indirect evidence of such redundancy and cannot isolate it as a failure mode. We introduce a redundancy index, denoted rho(C), that directly quantifies inter-dimensional dependencies by analyzing coupling matrices derived from latent representations and comparing their off-diagonal statistics against a normal distribution via energy distance. The result is a compact, interpretable, and statistically grounded measure of representational quality. We validate rho(C) across discriminative and generative settings on MNIST variants, Fashion-MNIST, CIFAR-10, and CIFAR-100, spanning multiple architectures and hyperparameter optimization strategies. Empirically, low rho(C) reliably predicts high classification accuracy or low reconstruction error, while elevated redundancy is associated with performance collapse. Estimator reliability grows with latent dimension, yielding natural lower bounds for reliable analysis. We further show that Tree-structured Parzen Estimators (TPE) preferentially explore low-rho regions, suggesting that rho(C) can guide neural architecture search and serve as a redundancy-aware regularization target. By exposing redundancy as a universal bottleneck across models and tasks, rho(C) offers both a theoretical lens and a practical tool for evaluating and improving the efficiency of learned representations.
☆ Enhancing Low-Altitude Airspace Security: MLLM-Enabled UAV Intent Recognition IEEE
The rapid development of the low-altitude economy emphasizes the critical need for effective perception and intent recognition of non-cooperative unmanned aerial vehicles (UAVs). The advanced generative reasoning capabilities of multimodal large language models (MLLMs) present a promising approach in such tasks. In this paper, we focus on the combination of UAV intent recognition and the MLLMs. Specifically, we first present an MLLM-enabled UAV intent recognition architecture, where the multimodal perception system is utilized to obtain real-time payload and motion information of UAVs, generating structured input information, and MLLM outputs intent recognition results by incorporating environmental information, prior knowledge, and tactical preferences. Subsequently, we review the related work and demonstrate their progress within the proposed architecture. Then, a use case for low-altitude confrontation is conducted to demonstrate the feasibility of our architecture and offer valuable insights for practical system design. Finally, the future challenges are discussed, followed by corresponding strategic recommendations for further applications.
comment: The paper has been submitted to IEEE Internet of Things Magazine
☆ WindFM: An Open-Source Foundation Model for Zero-Shot Wind Power Forecasting
High-quality wind power forecasting is crucial for the operation of modern power grids. However, prevailing data-driven paradigms either train a site-specific model which cannot generalize to other locations or rely on fine-tuning of general-purpose time series foundation models which are difficult to incorporate domain-specific data in the energy sector. This paper introduces WindFM, a lightweight and generative Foundation Model designed specifically for probabilistic wind power forecasting. WindFM employs a discretize-and-generate framework. A specialized time-series tokenizer first converts continuous multivariate observations into discrete, hierarchical tokens. Subsequently, a decoder-only Transformer learns a universal representation of wind generation dynamics by autoregressively pre-training on these token sequences. Using the comprehensive WIND Toolkit dataset comprising approximately 150 billion time steps from more than 126,000 sites, WindFM develops a foundational understanding of the complex interplay between atmospheric conditions and power output. Extensive experiments demonstrate that our compact 8.1M parameter model achieves state-of-the-art zero-shot performance on both deterministic and probabilistic tasks, outperforming specialized models and larger foundation models without any fine-tuning. In particular, WindFM exhibits strong adaptiveness under out-of-distribution data from a different continent, demonstrating the robustness and transferability of its learned representations. Our pre-trained model is publicly available at https://github.com/shiyu-coder/WindFM.
☆ Minimax optimal transfer learning for high-dimensional additive regression
This paper studies high-dimensional additive regression under the transfer learning framework, where one observes samples from a target population together with auxiliary samples from different but potentially related regression models. We first introduce a target-only estimation procedure based on the smooth backfitting estimator with local linear smoothing. In contrast to previous work, we establish general error bounds under sub-Weibull($\alpha$) noise, thereby accommodating heavy-tailed error distributions. In the sub-exponential case ($\alpha=1$), we show that the estimator attains the minimax lower bound under regularity conditions, which requires a substantial departure from existing proof strategies. We then develop a novel two-stage estimation method within a transfer learning framework, and provide theoretical guarantees at both the population and empirical levels. Error bounds are derived for each stage under general tail conditions, and we further demonstrate that the minimax optimal rate is achieved when the auxiliary and target distributions are sufficiently close. All theoretical results are supported by simulation studies and real data analysis.
comment: This is a draft version of the paper. All responsibilities are assigned to the first author
☆ MOSAIC: Minimax-Optimal Sparsity-Adaptive Inference for Change Points in Dynamic Networks
We propose a new inference framework, named MOSAIC, for change-point detection in dynamic networks with the simultaneous low-rank and sparse-change structure. We establish the minimax rate of detection boundary, which relies on the sparsity of changes. We then develop an eigen-decomposition-based test with screened signals that approaches the minimax rate in theory, with only a minor logarithmic loss. For practical implementation of MOSAIC, we adjust the theoretical test by a novel residual-based technique, resulting in a pivotal statistic that converges to a standard normal distribution via the martingale central limit theorem under the null hypothesis and achieves full power under the alternative hypothesis. We also analyze the minimax rate of testing boundary for dynamic networks without the low-rank structure, which almost aligns with the results in high-dimensional mean-vector change-point inference. We showcase the effectiveness of MOSAIC and verify our theoretical results with several simulation examples and a real data application.
comment: 110 pages, 4 figures
☆ LoaQ: Layer-wise Output Approximation Quantization
A natural and intuitive idea in model quantization is to approximate each component's quantized output to match its original. Layer-wise post-training quantization (PTQ), though based on this idea, adopts a strictly local view and can achieve, at best, only activation-aware approximations of weights. As a result, it often leads to insufficient approximations and practical deviations from this guiding intuition. Recent work has achieved a more accurate approximation of linear-layer outputs within the framework of layer-wise PTQ, but such refinements remain inadequate for achieving alignment with the full model output. Based on a deeper understanding of the structural characteristics of mainstream LLMs, we propose $LoaQ$, an output-approximation method for layer-wise PTQ that explicitly targets output-level consistency. It better aligns with this intuition and can feature a simple closed-form solution, making it orthogonal to existing techniques and readily integrable into existing quantization pipelines. Experiments on the LLaMA and Qwen model families demonstrate that LoaQ performs effectively in both weight-only and weight-activation joint quantization. By integrating seamlessly with existing quantization strategies, it further enhances overall quantization quality and shows strong potential to advance the frontier of post-training quantization.
comment: 7 pages, under review
☆ A Spatio-Temporal Graph Neural Networks Approach for Predicting Silent Data Corruption inducing Circuit-Level Faults
Silent Data Errors (SDEs) from time-zero defects and aging degrade safety-critical systems. Functional testing detects SDE-related faults but is expensive to simulate. We present a unified spatio-temporal graph convolutional network (ST-GCN) for fast, accurate prediction of long-cycle fault impact probabilities (FIPs) in large sequential circuits, supporting quantitative risk assessment. Gate-level netlists are modeled as spatio-temporal graphs to capture topology and signal timing; dedicated spatial and temporal encoders predict multi-cycle FIPs efficiently. On ISCAS-89 benchmarks, the method reduces simulation time by more than 10x while maintaining high accuracy (mean absolute error 0.024 for 5-cycle predictions). The framework accepts features from testability metrics or fault simulation, allowing efficiency-accuracy trade-offs. A test-point selection study shows that choosing observation points by predicted FIPs improves detection of long-cycle, hard-to-detect faults. The approach scales to SoC-level test strategy optimization and fits downstream electronic design automation flows.
comment: 21 pages, 9 figures, plan to submit to ACM TODAES
☆ RecMind: LLM-Enhanced Graph Neural Networks for Personalized Consumer Recommendations
Personalization is a core capability across consumer technologies, streaming, shopping, wearables, and voice, yet it remains challenged by sparse interactions, fast content churn, and heterogeneous textual signals. We present RecMind, an LLM-enhanced graph recommender that treats the language model as a preference prior rather than a monolithic ranker. A frozen LLM equipped with lightweight adapters produces text-conditioned user/item embeddings from titles, attributes, and reviews; a LightGCN backbone learns collaborative embeddings from the user-item graph. We align the two views with a symmetric contrastive objective and fuse them via intra-layer gating, allowing language to dominate in cold/long-tail regimes and graph structure to stabilize rankings elsewhere. On Yelp and Amazon-Electronics, RecMind attains the best results on all eight reported metrics, with relative improvements up to +4.53\% (Recall@40) and +4.01\% (NDCG@40) over strong baselines. Ablations confirm both the necessity of cross-view alignment and the advantage of gating over late fusion and LLM-only variants.
☆ From Implicit Exploration to Structured Reasoning: Leveraging Guideline and Refinement for LLMs
Large language models (LLMs) have advanced general-purpose reasoning, showing strong performance across diverse tasks. However, existing methods often rely on implicit exploration, where the model follows stochastic and unguided reasoning paths-like walking without a map. This leads to unstable reasoning paths, lack of error correction, and limited learning from past experience. To address these issues, we propose a framework that shifts from implicit exploration to structured reasoning through guideline and refinement. First, we extract structured reasoning patterns from successful trajectories and reflective signals from failures. During inference, the model follows these guidelines step-by-step, with refinement applied after each step to correct errors and stabilize the reasoning process. Experiments on BBH and four additional benchmarks (GSM8K, MATH-500, MBPP, HumanEval) show that our method consistently outperforms strong baselines across diverse reasoning tasks. Structured reasoning with stepwise execution and refinement improves stability and generalization, while guidelines transfer well across domains and flexibly support cross-model collaboration, matching or surpassing supervised fine-tuning in effectiveness and scalability.
☆ IPR: Intelligent Prompt Routing with User-Controlled Quality-Cost Trade-offs
Routing incoming queries to the most cost-effective LLM while maintaining response quality poses a fundamental challenge in optimizing performance-cost trade-offs for large-scale commercial systems. We present IPR\, a quality-constrained Intelligent Prompt Routing framework that dynamically selects optimal models based on predicted response quality and user-specified tolerance levels. IPR introduces three key innovations: (1) a modular architecture with lightweight quality estimators trained on 1.5M prompts annotated with calibrated quality scores, enabling fine-grained quality prediction across model families; (2) a user-controlled routing mechanism with tolerance parameter $\tau \in [0,1]$ that provides explicit control over quality-cost trade-offs; and (3) an extensible design using frozen encoders with model-specific adapters, reducing new model integration from days to hours. To rigorously train and evaluate IPR, we curate an industrial-level dataset IPRBench\footnote{IPRBench will be released upon legal approval.}, a comprehensive benchmark containing 1.5 million examples with response quality annotations across 11 LLM candidates. Deployed on a major cloud platform, IPR achieves 43.9\% cost reduction while maintaining quality parity with the strongest model in the Claude family and processes requests with sub-150ms latency.
☆ An Explainable Framework for Particle Swarm Optimization using Landscape Analysis and Machine Learning
Swarm intelligence algorithms have demonstrated remarkable success in solving complex optimization problems across diverse domains. However, their widespread adoption is often hindered by limited transparency in how algorithmic components influence performance. This work presents a multi-faceted investigation of Particle Swarm Optimization (PSO) to further understand the key role of different topologies for better interpretability and explainability. To achieve this objective, we first develop a comprehensive landscape characterization framework using Exploratory Landscape Analysis (ELA) to quantify problem difficulty and identify critical features affecting the optimization performance of PSO. Next, we conduct a rigorous empirical study comparing three fundamental swarm communication architectures -- Ring, Star, and Von Neumann topologies -- analysing their distinct impacts on exploration-exploitation balance, convergence behaviour, and solution quality and eventually develop an explainable benchmarking framework for PSO, to decode how swarm topologies affects information flow, diversity, and convergence. Based on this, a novel machine learning approach for automated algorithm configuration is introduced for training predictive models on extensive Area over the Convergence Curve (AOCC) data to recommend optimal settings based on problem characteristics. Through systematic experimentation across twenty four benchmark functions in multiple dimensions, we establish practical guidelines for topology selection and parameter configuration. These findings advance the development of more transparent and reliable swarm intelligence systems. The source codes of this work can be accessed at https://github.com/GitNitin02/ioh_pso.
☆ UrbanMIMOMap: A Ray-Traced MIMO CSI Dataset with Precoding-Aware Maps and Benchmarks IEEE
Sixth generation (6G) systems require environment-aware communication, driven by native artificial intelligence (AI) and integrated sensing and communication (ISAC). Radio maps (RMs), providing spatially continuous channel information, are key enablers. However, generating high-fidelity RM ground truth via electromagnetic (EM) simulations is computationally intensive, motivating machine learning (ML)-based RM construction. The effectiveness of these data-driven methods depends on large-scale, high-quality training data. Current public datasets often focus on single-input single-output (SISO) and limited information, such as path loss, which is insufficient for advanced multi-input multi-output (MIMO) systems requiring detailed channel state information (CSI). To address this gap, this paper presents UrbanMIMOMap, a novel large-scale urban MIMO CSI dataset generated using high-precision ray tracing. UrbanMIMOMap offers comprehensive complex CSI matrices across a dense spatial grid, going beyond traditional path loss data. This rich CSI is vital for constructing high-fidelity RMs and serves as a fundamental resource for data-driven RM generation, including deep learning. We demonstrate the dataset's utility through baseline performance evaluations of representative ML methods for RM construction. This work provides a crucial dataset and reference for research in high-precision RM generation, MIMO spatial performance, and ML for 6G environment awareness. The code and data for this work are available at: https://github.com/UNIC-Lab/UrbanMIMOMap.
comment: Accepted to IEEE Global Communications Conference (GLOBECOM) 2025
☆ PLRV-O: Advancing Differentially Private Deep Learning via Privacy Loss Random Variable Optimization CCS'25
Differentially Private Stochastic Gradient Descent (DP-SGD) is a standard method for enforcing privacy in deep learning, typically using the Gaussian mechanism to perturb gradient updates. However, conventional mechanisms such as Gaussian and Laplacian noise are parameterized only by variance or scale. This single degree of freedom ties the magnitude of noise directly to both privacy loss and utility degradation, preventing independent control of these two factors. The problem becomes more pronounced when the number of composition rounds T and batch size B vary across tasks, as these variations induce task-dependent shifts in the privacy-utility trade-off, where small changes in noise parameters can disproportionately affect model accuracy. To address this limitation, we introduce PLRV-O, a framework that defines a broad search space of parameterized DP-SGD noise distributions, where privacy loss moments are tightly characterized yet can be optimized more independently with respect to utility loss. This formulation enables systematic adaptation of noise to task-specific requirements, including (i) model size, (ii) training duration, (iii) batch sampling strategies, and (iv) clipping thresholds under both training and fine-tuning settings. Empirical results demonstrate that PLRV-O substantially improves utility under strict privacy constraints. On CIFAR-10, a fine-tuned ViT achieves 94.03% accuracy at epsilon approximately 0.5, compared to 83.93% with Gaussian noise. On SST-2, RoBERTa-large reaches 92.20% accuracy at epsilon approximately 0.2, versus 50.25% with Gaussian.
comment: Source code is available at https://github.com/datasec-lab/plrvo. This is the full version of the paper to appear in CCS'25
☆ FineServe: Precision-Aware KV Slab and Two-Level Scheduling for Heterogeneous Precision LLM Serving
Recent advances in Post-Training Quantization (PTQ) techniques have significantly increased demand for serving quantized large language models (LLMs), enabling higher throughput and substantially reduced memory usage with minimal accuracy loss. Quantized models address memory constraints in LLMs and enhance GPU resource utilization through efficient GPU sharing. However, quantized models have smaller KV block sizes than non-quantized models, causing limited memory efficiency due to memory fragmentation. Also, distinct resource usage patterns between quantized and non-quantized models require efficient scheduling to maximize throughput. To address these challenges, we propose FineServe, an inference serving framework for mixed-precision LLMs. FineServe's key contributions include: (1) KV Slab, a precision-aware adaptive memory management technique dynamically allocating KV cache based on model quantization characteristics, significantly reducing GPU memory fragmentation, and (2) a two-level scheduling framework comprising a global scheduler that places models to GPUs based on request rates, latency SLOs, and memory constraints and efficiency, and a local scheduler that adaptively adjusts batch sizes according to real-time request fluctuations. Experimental results demonstrate that FineServe achieves up to 2.2x higher SLO attainment and 1.8x higher token generation throughput compared to the state-of-the-art GPU sharing systems.
Reconstruction Alignment Improves Unified Multimodal Models
Unified multimodal models (UMMs) unify visual understanding and generation within a single architecture. However, conventional training relies on image-text pairs (or sequences) whose captions are typically sparse and miss fine-grained visual details--even when they use hundreds of words to describe a simple image. We introduce Reconstruction Alignment (RecA), a resource-efficient post-training method that leverages visual understanding encoder embeddings as dense "text prompts," providing rich supervision without captions. Concretely, RecA conditions a UMM on its own visual understanding embeddings and optimizes it to reconstruct the input image with a self-supervised reconstruction loss, thereby realigning understanding and generation. Despite its simplicity, RecA is broadly applicable: across autoregressive, masked-autoregressive, and diffusion-based UMMs, it consistently improves generation and editing fidelity. With only 27 GPU-hours, post-training with RecA substantially improves image generation performance on GenEval (0.73$\rightarrow$0.90) and DPGBench (80.93$\rightarrow$88.15), while also boosting editing benchmarks (ImgEdit 3.38$\rightarrow$3.75, GEdit 6.94$\rightarrow$7.25). Notably, RecA surpasses much larger open-source models and applies broadly across diverse UMM architectures, establishing it as an efficient and general post-training alignment strategy for UMMs
comment: 28 pages, 24 figures and 10 tables
☆ Kernel VICReg for Self-Supervised Learning in Reproducing Kernel Hilbert Space
Self-supervised learning (SSL) has emerged as a powerful paradigm for representation learning by optimizing geometric objectives--such as invariance to augmentations, variance preservation, and feature decorrelation--without requiring labels. However, most existing methods operate in Euclidean space, limiting their ability to capture nonlinear dependencies and geometric structures. In this work, we propose Kernel VICReg, a novel self-supervised learning framework that lifts the VICReg objective into a Reproducing Kernel Hilbert Space (RKHS). By kernelizing each term of the loss-variance, invariance, and covariance--we obtain a general formulation that operates on double-centered kernel matrices and Hilbert-Schmidt norms, enabling nonlinear feature learning without explicit mappings. We demonstrate that Kernel VICReg not only avoids representational collapse but also improves performance on tasks with complex or small-scale data. Empirical evaluations across MNIST, CIFAR-10, STL-10, TinyImageNet, and ImageNet100 show consistent gains over Euclidean VICReg, with particularly strong improvements on datasets where nonlinear structures are prominent. UMAP visualizations further confirm that kernel-based embeddings exhibit better isometry and class separation. Our results suggest that kernelizing SSL objectives is a promising direction for bridging classical kernel methods with modern representation learning.
☆ ALICE: An Interpretable Neural Architecture for Generalization in Substitution Ciphers
We present cryptogram solving as an ideal testbed for studying neural network generalization in combinatorially complex domains. In this task, models must decrypt text encoded with substitution ciphers, choosing from 26! possible mappings without explicit access to the cipher. We develop ALICE (an Architecture for Learning Interpretable Cryptogram dEcipherment): a simple encoder-only Transformer that sets a new state-of-the-art for both accuracy and speed on this decryption problem. Surprisingly, ALICE generalizes to unseen ciphers after training on only ${\sim}1500$ unique ciphers, a minute fraction ($3.7 \times 10^{-24}$) of the possible cipher space. To enhance interpretability, we introduce a novel bijective decoding head that explicitly models permutations via the Gumbel-Sinkhorn method, enabling direct extraction of learned cipher mappings. Through early exit analysis, we reveal how ALICE progressively refines its predictions in a way that appears to mirror common human strategies for this task: early layers employ frequency-based heuristics, middle layers form word structures, and final layers correct individual characters. Our architectural innovations and analysis methods extend beyond cryptograms to any domain with bijective mappings and combinatorial structure, offering new insights into neural network generalization and interpretability.
comment: Preprint. Project page at https://jshen.net/alice
☆ Learning Generalized Hamiltonian Dynamics with Stability from Noisy Trajectory Data
We introduce a robust framework for learning various generalized Hamiltonian dynamics from noisy, sparse phase-space data and in an unsupervised manner based on variational Bayesian inference. Although conservative, dissipative, and port-Hamiltonian systems might share the same initial total energy of a closed system, it is challenging for a single Hamiltonian network model to capture the distinctive and varying motion dynamics and physics of a phase space, from sampled observational phase space trajectories. To address this complicated Hamiltonian manifold learning challenge, we extend sparse symplectic, random Fourier Gaussian processes learning with predictive successive numerical estimations of the Hamiltonian landscape, using a generalized form of state and conjugate momentum Hamiltonian dynamics, appropriate to different classes of conservative, dissipative and port-Hamiltonian physical systems. In addition to the kernelized evidence lower bound (ELBO) loss for data fidelity, we incorporate stability and conservation constraints as additional hyper-parameter balanced loss terms to regularize the model's multi-gradients, enforcing physics correctness for improved prediction accuracy with bounded uncertainty.
☆ LLM Analysis of 150+ years of German Parliamentary Debates on Migration Reveals Shift from Post-War Solidarity to Anti-Solidarity in the Last Decade
Migration has been a core topic in German political debate, from millions of expellees post World War II over labor migration to refugee movements in the recent past. Studying political speech regarding such wide-ranging phenomena in depth traditionally required extensive manual annotations, limiting the scope of analysis to small subsets of the data. Large language models (LLMs) have the potential to partially automate even complex annotation tasks. We provide an extensive evaluation of a multiple LLMs in annotating (anti-)solidarity subtypes in German parliamentary debates compared to a large set of thousands of human reference annotations (gathered over a year). We evaluate the influence of model size, prompting differences, fine-tuning, historical versus contemporary data; and we investigate systematic errors. Beyond methodological evaluation, we also interpret the resulting annotations from a social science lense, gaining deeper insight into (anti-)solidarity trends towards migrants in the German post-World War II period and recent past. Our data reveals a high degree of migrant-directed solidarity in the postwar period, as well as a strong trend towards anti-solidarity in the German parliament since 2015, motivating further research. These findings highlight the promise of LLMs for political text analysis and the importance of migration debates in Germany, where demographic decline and labor shortages coexist with rising polarization.
☆ HealthSLM-Bench: Benchmarking Small Language Models for Mobile and Wearable Healthcare Monitoring
Mobile and wearable healthcare monitoring play a vital role in facilitating timely interventions, managing chronic health conditions, and ultimately improving individuals' quality of life. Previous studies on large language models (LLMs) have highlighted their impressive generalization abilities and effectiveness in healthcare prediction tasks. However, most LLM-based healthcare solutions are cloud-based, which raises significant privacy concerns and results in increased memory usage and latency. To address these challenges, there is growing interest in compact models, Small Language Models (SLMs), which are lightweight and designed to run locally and efficiently on mobile and wearable devices. Nevertheless, how well these models perform in healthcare prediction remains largely unexplored. We systematically evaluated SLMs on health prediction tasks using zero-shot, few-shot, and instruction fine-tuning approaches, and deployed the best performing fine-tuned SLMs on mobile devices to evaluate their real-world efficiency and predictive performance in practical healthcare scenarios. Our results show that SLMs can achieve performance comparable to LLMs while offering substantial gains in efficiency and privacy. However, challenges remain, particularly in handling class imbalance and few-shot scenarios. These findings highlight SLMs, though imperfect in their current form, as a promising solution for next-generation, privacy-preserving healthcare monitoring.
comment: 9 pages, 6 tables, 6 figures
☆ GCond: Gradient Conflict Resolution via Accumulation-based Stabilization for Large-Scale Multi-Task Learning
In multi-task learning (MTL), gradient conflict poses a significant challenge. Effective methods for addressing this problem, including PCGrad, CAGrad, and GradNorm, in their original implementations are computationally demanding, which significantly limits their application in modern large models and transformers. We propose Gradient Conductor (GCond), a method that builds upon PCGrad principles by combining them with gradient accumulation and an adaptive arbitration mechanism. We evaluated GCond on self-supervised learning tasks using MobileNetV3-Small and ConvNeXt architectures on the ImageNet 1K dataset and a combined head and neck CT scan dataset, comparing the proposed method against baseline linear combinations and state-of-the-art gradient conflict resolution methods. The stochastic mode of GCond achieved a two-fold computational speedup while maintaining optimization quality, and demonstrated superior performance across all evaluated metrics, achieving lower L1 and SSIM losses compared to other methods on both datasets. GCond exhibited high scalability, being successfully applied to both compact models (MobileNetV3-Small) and large architectures (ConvNeXt-tiny and ConvNeXt-Base). It also showed compatibility with modern optimizers such as AdamW and Lion/LARS. Therefore, GCond offers a scalable and efficient solution to the problem of gradient conflicts in multi-task learning.
comment: Preprint. Submitted to PeerJ
☆ IP-Basis PINNs: Efficient Multi-Query Inverse Parameter Estimation
Solving inverse problems with Physics-Informed Neural Networks (PINNs) is computationally expensive for multi-query scenarios, as each new set of observed data requires a new, expensive training procedure. We present Inverse-Parameter Basis PINNs (IP-Basis PINNs), a meta-learning framework that extends the foundational work of Desai et al. (2022) to enable rapid and efficient inference for inverse problems. Our method employs an offline-online decomposition: a deep network is first trained offline to produce a rich set of basis functions that span the solution space of a parametric differential equation. For each new inverse problem online, this network is frozen, and solutions and parameters are inferred by training only a lightweight linear output layer against observed data. Key innovations that make our approach effective for inverse problems include: (1) a novel online loss formulation for simultaneous solution reconstruction and parameter identification, (2) a significant reduction in computational overhead via forward-mode automatic differentiation for PDE loss evaluation, and (3) a non-trivial validation and early-stopping mechanism for robust offline training. We demonstrate the efficacy of IP-Basis PINNs on three diverse benchmarks, including an extension to universal PINNs for unknown functional terms-showing consistent performance across constant and functional parameter estimation, a significant speedup per query over standard PINNs, and robust operation with scarce and noisy data.
comment: 18 pages, 4 figures
☆ Systematic Optimization of Open Source Large Language Models for Mathematical Reasoning
This paper presents a practical investigation into fine-tuning model parameters for mathematical reasoning tasks through experimenting with various configurations including randomness control, reasoning depth, and sampling strategies, careful tuning demonstrates substantial improvements in efficiency as well as performance. A holistically optimized framework is introduced for five state-of-the-art models on mathematical reasoning tasks, exhibiting significant performance boosts while maintaining solution correctness. Through systematic parameter optimization across Qwen2.5-72B, Llama-3.1-70B, DeepSeek-V3, Mixtral-8x22B, and Yi-Lightning, consistent efficiency gains are demonstrated with 100% optimization success rate. The methodology achieves an average 29.4% reduction in computational cost and 23.9% improvement in inference speed across all tested models. This framework systematically searches parameter spaces including temperature (0.1-0.5), reasoning steps (4-12), planning periods (1-4), and nucleus sampling (0.85-0.98), determining optimal configurations through testing on mathematical reasoning benchmarks. Critical findings show that lower temperature regimes (0.1-0.4) and reduced reasoning steps (4-6) consistently enhance efficiency without compromising accuracy. DeepSeek-V3 achieves the highest accuracy at 98%, while Mixtral-8x22B delivers the most cost-effective performance at 361.5 tokens per accurate response. Key contributions include: (1) the first comprehensive optimization study for five diverse SOTA models in mathematical reasoning, (2) a standardized production-oriented parameter optimization framework, (3) discovery of universal optimization trends applicable across model architectures, and (4) production-ready configurations with extensive performance characterization.
☆ Breaking the Conventional Forward-Backward Tie in Neural Networks: Activation Functions
Gradient-based neural network training traditionally enforces symmetry between forward and backward propagation, requiring activation functions to be differentiable (or sub-differentiable) and strictly monotonic in certain regions to prevent flat gradient areas. This symmetry, linking forward activations closely to backward gradients, significantly restricts the selection of activation functions, particularly excluding those with substantial flat or non-differentiable regions. In this paper, we challenge this assumption through mathematical analysis, demonstrating that precise gradient magnitudes derived from activation functions are largely redundant, provided the gradient direction is preserved. Empirical experiments conducted on foundational architectures - such as Multi-Layer Perceptrons (MLPs), Convolutional Neural Networks (CNNs), and Binary Neural Networks (BNNs) - confirm that relaxing forward-backward symmetry and substituting traditional gradients with simpler or stochastic alternatives does not impair learning and may even enhance training stability and efficiency. We explicitly demonstrate that neural networks with flat or non-differentiable activation functions, such as the Heaviside step function, can be effectively trained, thereby expanding design flexibility and computational efficiency. Further empirical validation with more complex architectures remains a valuable direction for future research.
comment: 30 pages, 8 figures, 14 tables, in press, available online 11 August 2025
☆ A transformer-based generative model for planetary systems
Numerical calculations of planetary system formation are very demanding in terms of computing power. These synthetic planetary systems can however provide access to correlations, as predicted in a given numerical framework, between the properties of planets in the same system. Such correlations can, in return, be used in order to guide and prioritize observational campaigns aiming at discovering some types of planets, as Earth-like planets. Our goal is to develop a generative model which is capable of capturing correlations and statistical relationships between planets in the same system. Such a model, trained on the Bern model, offers the possibility to generate large number of synthetic planetary systems with little computational cost, that can be used, for example, to guide observational campaigns. Our generative model is based on the transformer architecture which is well-known to efficiently capture correlations in sequences and is at the basis of all modern Large Language Models. To assess the validity of the generative model, we perform visual and statistical comparisons, as well as a machine learning driven tests. Finally, as a use case example, we consider the TOI-469 system, in which we aim at predicting the possible properties of planets c and d, based on the properties of planet b (the first that has been detected). We show using different comparison methods that the properties of systems generated by our model are very similar to the ones of the systems computed directly by the Bern model. We also show in the case of the TOI-469 system, that using the generative model allows to predict the properties of planets not yet observed, based on the properties of the already observed planet. We provide our model to the community on our website www.ai4exoplanets.com.
comment: Accepted in A&A
☆ Explaining How Quantization Disparately Skews a Model
Post Training Quantization (PTQ) is widely adopted due to its high compression capacity and speed with minimal impact on accuracy. However, we observed that disparate impacts are exacerbated by quantization, especially for minority groups. Our analysis explains that in the course of quantization there is a chain of factors attributed to a disparate impact across groups during forward and backward passes. We explore how the changes in weights and activations induced by quantization cause cascaded impacts in the network, resulting in logits with lower variance, increased loss, and compromised group accuracies. We extend our study to verify the influence of these impacts on group gradient norms and eigenvalues of the Hessian matrix, providing insights into the state of the network from an optimization point of view. To mitigate these effects, we propose integrating mixed precision Quantization Aware Training (QAT) with dataset sampling methods and weighted loss functions, therefore providing fair deployment of quantized neural networks.
☆ Predicting effect of novel treatments using molecular pathways and real-world data
In pharmaceutical R&D, predicting the efficacy of a pharmaceutical in treating a particular disease prior to clinical testing or any real-world use has been challenging. In this paper, we propose a flexible and modular machine learning-based approach for predicting the efficacy of an untested pharmaceutical for treating a disease. We train a machine learning model using sets of pharmaceutical-pathway weight impact scores and patient data, which can include patient characteristics and observed clinical outcomes. The resulting model then analyses weighted impact scores of an untested pharmaceutical across human biological molecule-protein pathways to generate a predicted efficacy value. We demonstrate how the method works on a real-world dataset with patient treatments and outcomes, with two different weight impact score algorithms We include methods for evaluating the generalisation performance on unseen treatments, and to characterise conditions under which the approach can be expected to be most predictive. We discuss specific ways in which our approach can be iterated on, making it an initial framework to support future work on predicting the effect of untested drugs, leveraging RWD clinical data and drug embeddings.
☆ Fed-REACT: Federated Representation Learning for Heterogeneous and Evolving Data
Motivated by the high resource costs and privacy concerns associated with centralized machine learning, federated learning (FL) has emerged as an efficient alternative that enables clients to collaboratively train a global model while keeping their data local. However, in real-world deployments, client data distributions often evolve over time and differ significantly across clients, introducing heterogeneity that degrades the performance of standard FL algorithms. In this work, we introduce Fed-REACT, a federated learning framework designed for heterogeneous and evolving client data. Fed-REACT combines representation learning with evolutionary clustering in a two-stage process: (1) in the first stage, each client learns a local model to extracts feature representations from its data; (2) in the second stage, the server dynamically groups clients into clusters based on these representations and coordinates cluster-wise training of task-specific models for downstream objectives such as classification or regression. We provide a theoretical analysis of the representation learning stage, and empirically demonstrate that Fed-REACT achieves superior accuracy and robustness on real-world datasets.
☆ Dimensionally Reduced Open-World Clustering: DROWCULA
Working with annotated data is the cornerstone of supervised learning. Nevertheless, providing labels to instances is a task that requires significant human effort. Several critical real-world applications make things more complicated because no matter how many labels may have been identified in a task of interest, it could be the case that examples corresponding to novel classes may appear in the future. Not unsurprisingly, prior work in this, so-called, `open-world' context has focused a lot on semi-supervised approaches. Focusing on image classification, somehow paradoxically, we propose a fully unsupervised approach to the problem of determining the novel categories in a particular dataset. Our approach relies on estimating the number of clusters using Vision Transformers, which utilize attention mechanisms to generate vector embeddings. Furthermore, we incorporate manifold learning techniques to refine these embeddings by exploiting the intrinsic geometry of the data, thereby enhancing the overall image clustering performance. Overall, we establish new State-of-the-Art results on single-modal clustering and Novel Class Discovery on CIFAR-10, CIFAR-100, ImageNet-100, and Tiny ImageNet. We do so, both when the number of clusters is known or unknown ahead of time. The code is available at: https://github.com/DROWCULA/DROWCULA.
comment: 16 pages, 12 Figures, 12 Tables
☆ Beyond Sequential Reranking: Reranker-Guided Search Improves Reasoning Intensive Retrieval
The widely used retrieve-and-rerank pipeline faces two critical limitations: they are constrained by the initial retrieval quality of the top-k documents, and the growing computational demands of LLM-based rerankers restrict the number of documents that can be effectively processed. We introduce Reranker-Guided-Search (RGS), a novel approach that bypasses these limitations by directly retrieving documents according to reranker preferences rather than following the traditional sequential reranking method. Our method uses a greedy search on proximity graphs generated by approximate nearest neighbor algorithms, strategically prioritizing promising documents for reranking based on document similarity. Experimental results demonstrate substantial performance improvements across multiple benchmarks: 3.5 points on BRIGHT, 2.9 on FollowIR, and 5.1 on M-BEIR, all within a constrained reranker budget of 100 documents. Our analysis suggests that, given a fixed pair of embedding and reranker models, strategically selecting documents to rerank can significantly improve retrieval accuracy under limited reranker budget.
☆ PLaID++: A Preference Aligned Language Model for Targeted Inorganic Materials Design
Discovering novel materials is critical for technological advancements such as solar cells, batteries, and carbon capture. However, the development of new materials is constrained by a slow and expensive trial-and-error process. To accelerate this pipeline, we introduce PLaID++, a Large Language Model (LLM) fine-tuned for stable and property-guided crystal generation. We fine-tune Qwen-2.5 7B to generate crystal structures using a novel Wyckoff-based text representation. We show that generation can be effectively guided with a reinforcement learning technique based on Direct Preference Optimization (DPO), with sampled structures categorized by their stability, novelty, and space group. By encoding symmetry constraints directly into text and guiding model outputs towards desirable chemical space, PLaID++ generates structures that are thermodynamically stable, unique, and novel at a $\sim$50\% greater rate than prior methods and conditionally generates structures with desired space group properties. Our experiments highlight the effectiveness of iterative DPO, achieving $\sim$115\% and $\sim$50\% improvements in unconditional and space group conditioned generation, respectively, compared to fine-tuning alone. Our work demonstrates the potential of adapting post-training techniques from natural language processing to materials design, paving the way for targeted and efficient discovery of novel materials.
☆ Measuring Uncertainty in Transformer Circuits with Effective Information Consistency
Mechanistic interpretability has identified functional subgraphs within large language models (LLMs), known as Transformer Circuits (TCs), that appear to implement specific algorithms. Yet we lack a formal, single-pass way to quantify when an active circuit is behaving coherently and thus likely trustworthy. Building on prior systems-theoretic proposals, we specialize a sheaf/cohomology and causal emergence perspective to TCs and introduce the Effective-Information Consistency Score (EICS). EICS combines (i) a normalized sheaf inconsistency computed from local Jacobians and activations, with (ii) a Gaussian EI proxy for circuit-level causal emergence derived from the same forward state. The construction is white-box, single-pass, and makes units explicit so that the score is dimensionless. We further provide practical guidance on score interpretation, computational overhead (with fast and exact modes), and a toy sanity-check analysis. Empirical validation on LLM tasks is deferred.
☆ Of Graphs and Tables: Zero-Shot Node Classification with Tabular Foundation Models
Graph foundation models (GFMs) have recently emerged as a promising paradigm for achieving broad generalization across various graph data. However, existing GFMs are often trained on datasets that were shown to poorly represent real-world graphs, limiting their generalization performance. In contrast, tabular foundation models (TFMs) not only excel at classical tabular prediction tasks but have also shown strong applicability in other domains such as time series forecasting, natural language processing, and computer vision. Motivated by this, we take an alternative view to the standard perspective of GFMs and reformulate node classification as a tabular problem. Each node can be represented as a row with feature, structure, and label information as columns, enabling TFMs to directly perform zero-shot node classification via in-context learning. In this work, we introduce TabGFM, a graph foundation model framework that first converts a graph into a table via feature and structural encoders, applies multiple TFMs to diversely subsampled tables, and then aggregates their outputs through ensemble selection. Through experiments on 28 real-world datasets, TabGFM achieves consistent improvements over task-specific GNNs and state-of-the-art GFMs, highlighting the potential of tabular reformulation for scalable and generalizable graph learning.
☆ Avoiding Over-Personalization with Rule-Guided Knowledge Graph Adaptation for LLM Recommendations ISWC
We present a lightweight neuro-symbolic framework to mitigate over-personalization in LLM-based recommender systems by adapting user-side Knowledge Graphs (KGs) at inference time. Instead of retraining models or relying on opaque heuristics, our method restructures a user's Personalized Knowledge Graph (PKG) to suppress feature co-occurrence patterns that reinforce Personalized Information Environments (PIEs), i.e., algorithmically induced filter bubbles that constrain content diversity. These adapted PKGs are used to construct structured prompts that steer the language model toward more diverse, Out-PIE recommendations while preserving topical relevance. We introduce a family of symbolic adaptation strategies, including soft reweighting, hard inversion, and targeted removal of biased triples, and a client-side learning algorithm that optimizes their application per user. Experiments on a recipe recommendation benchmark show that personalized PKG adaptations significantly increase content novelty while maintaining recommendation quality, outperforming global adaptation and naive prompt-based methods.
comment: 5 pages, 2 figures, ISWC
☆ Adversarial Attacks on Audio Deepfake Detection: A Benchmark and Comparative Study
The widespread use of generative AI has shown remarkable success in producing highly realistic deepfakes, posing a serious threat to various voice biometric applications, including speaker verification, voice biometrics, audio conferencing, and criminal investigations. To counteract this, several state-of-the-art (SoTA) audio deepfake detection (ADD) methods have been proposed to identify generative AI signatures to distinguish between real and deepfake audio. However, the effectiveness of these methods is severely undermined by anti-forensic (AF) attacks that conceal generative signatures. These AF attacks span a wide range of techniques, including statistical modifications (e.g., pitch shifting, filtering, noise addition, and quantization) and optimization-based attacks (e.g., FGSM, PGD, C \& W, and DeepFool). In this paper, we investigate the SoTA ADD methods and provide a comparative analysis to highlight their effectiveness in exposing deepfake signatures, as well as their vulnerabilities under adversarial conditions. We conducted an extensive evaluation of ADD methods on five deepfake benchmark datasets using two categories: raw and spectrogram-based approaches. This comparative analysis enables a deeper understanding of the strengths and limitations of SoTA ADD methods against diverse AF attacks. It does not only highlight vulnerabilities of ADD methods, but also informs the design of more robust and generalized detectors for real-world voice biometrics. It will further guide future research in developing adaptive defense strategies that can effectively counter evolving AF techniques.
☆ NestGNN: A Graph Neural Network Framework Generalizing the Nested Logit Model for Travel Mode Choice
Nested logit (NL) has been commonly used for discrete choice analysis, including a wide range of applications such as travel mode choice, automobile ownership, or location decisions. However, the classical NL models are restricted by their limited representation capability and handcrafted utility specification. While researchers introduced deep neural networks (DNNs) to tackle such challenges, the existing DNNs cannot explicitly capture inter-alternative correlations in the discrete choice context. To address the challenges, this study proposes a novel concept - alternative graph - to represent the relationships among travel mode alternatives. Using a nested alternative graph, this study further designs a nested-utility graph neural network (NestGNN) as a generalization of the classical NL model in the neural network family. Theoretically, NestGNNs generalize the classical NL models and existing DNNs in terms of model representation, while retaining the crucial two-layer substitution patterns of the NL models: proportional substitution within a nest but non-proportional substitution beyond a nest. Empirically, we find that the NestGNNs significantly outperform the benchmark models, particularly the corresponding NL models by 9.2\%. As shown by elasticity tables and substitution visualization, NestGNNs retain the two-layer substitution patterns as the NL model, and yet presents more flexibility in its model design space. Overall, our study demonstrates the power of NestGNN in prediction, interpretation, and its flexibility of generalizing the classical NL model for analyzing travel mode choice.
☆ Riemannian Batch Normalization: A Gyro Approach
Normalization layers are crucial for deep learning, but their Euclidean formulations are inadequate for data on manifolds. On the other hand, many Riemannian manifolds in machine learning admit gyro-structures, enabling principled extensions of Euclidean neural networks to non-Euclidean domains. Inspired by this, we introduce GyroBN, a principled Riemannian batch normalization framework for gyrogroups. We establish two necessary conditions, namely \emph{pseudo-reduction} and \emph{gyroisometric gyrations}, that guarantee GyroBN with theoretical control over sample statistics, and show that these conditions hold for all known gyrogroups in machine learning. Our framework also incorporates several existing Riemannian normalization methods as special cases. We further instantiate GyroBN on seven representative geometries, including the Grassmannian, five constant curvature spaces, and the correlation manifold, and derive novel gyro and Riemannian structures to enable these instantiations. Experiments across these geometries demonstrate the effectiveness of GyroBN. The code is available at https://github.com/GitZH-Chen/GyroBN.git.
☆ ADHAM: Additive Deep Hazard Analysis Mixtures for Interpretable Survival Regression
Survival analysis is a fundamental tool for modeling time-to-event outcomes in healthcare. Recent advances have introduced flexible neural network approaches for improved predictive performance. However, most of these models do not provide interpretable insights into the association between exposures and the modeled outcomes, a critical requirement for decision-making in clinical practice. To address this limitation, we propose Additive Deep Hazard Analysis Mixtures (ADHAM), an interpretable additive survival model. ADHAM assumes a conditional latent structure that defines subgroups, each characterized by a combination of covariate-specific hazard functions. To select the number of subgroups, we introduce a post-training refinement that reduces the number of equivalent latent subgroups by merging similar groups. We perform comprehensive studies to demonstrate ADHAM's interpretability at the population, subgroup, and individual levels. Extensive experiments on real-world datasets show that ADHAM provides novel insights into the association between exposures and outcomes. Further, ADHAM remains on par with existing state-of-the-art survival baselines in terms of predictive performance, offering a scalable and interpretable approach to time-to-event prediction in healthcare.
☆ Lookup multivariate Kolmogorov-Arnold Networks
High-dimensional linear mappings, or linear layers, dominate both the parameter count and the computational cost of most modern deep-learning models. We introduce a general drop-in replacement, lookup multivariate Kolmogorov-Arnold Networks (lmKANs), which deliver a substantially better trade-off between capacity and inference cost. Our construction expresses a general high-dimensional mapping through trainable low-dimensional multivariate functions. These functions can carry dozens or hundreds of trainable parameters each, and yet it takes only a few multiplications to compute them because they are implemented as spline lookup tables. Empirically, lmKANs reduce inference FLOPs by up to 6.0x while matching the flexibility of MLPs in general high-dimensional function approximation. In another feedforward fully connected benchmark, on the tabular-like dataset of randomly displaced methane configurations, lmKANs enable more than 10x higher H100 throughput at equal accuracy. Within frameworks of Convolutional Neural Networks, lmKAN-based CNNs cut inference FLOPs at matched accuracy by 1.6-2.1x and by 1.7x on the CIFAR-10 and ImageNet-1k datasets, respectively. Our code, including dedicated CUDA kernels, is available online at https://github.com/schwallergroup/lmkan.
☆ Sequentially Auditing Differential Privacy
We propose a practical sequential test for auditing differential privacy guarantees of black-box mechanisms. The test processes streams of mechanisms' outputs providing anytime-valid inference while controlling Type I error, overcoming the fixed sample size limitation of previous batch auditing methods. Experiments show this test detects violations with sample sizes that are orders of magnitude smaller than existing methods, reducing this number from 50K to a few hundred examples, across diverse realistic mechanisms. Notably, it identifies DP-SGD privacy violations in \textit{under} one training run, unlike prior methods needing full model training.
☆ Statistical Methods in Generative AI
Generative Artificial Intelligence is emerging as an important technology, promising to be transformative in many areas. At the same time, generative AI techniques are based on sampling from probabilistic models, and by default, they come with no guarantees about correctness, safety, fairness, or other properties. Statistical methods offer a promising potential approach to improve the reliability of generative AI techniques. In addition, statistical methods are also promising for improving the quality and efficiency of AI evaluation, as well as for designing interventions and experiments in AI. In this paper, we review some of the existing work on these topics, explaining both the general statistical techniques used, as well as their applications to generative AI. We also discuss limitations and potential future directions.
comment: Invited review paper for Annual Review of Statistics and Its Application. Feedback welcome
☆ End-to-End Efficiency in Keyword Spotting: A System-Level Approach for Embedded Microcontrollers IEEE
Keyword spotting (KWS) is a key enabling technology for hands-free interaction in embedded and IoT devices, where stringent memory and energy constraints challenge the deployment of AI-enabeld devices. In this work, we systematically evaluate and compare several state-of-the-art lightweight neural network architectures, including DS-CNN, LiCoNet, and TENet, alongside our proposed Typman-KWS (TKWS) architecture built upon MobileNet, specifically designed for efficient KWS on microcontroller units (MCUs). Unlike prior studies focused solely on model inference, our analysis encompasses the entire processing pipeline, from Mel-Frequency Cepstral Coefficient (MFCC) feature extraction to neural inference, and is benchmarked across three STM32 platforms (N6, H7, and U5). Our results show that TKWS with three residual blocks achieves up to 92.4% F1-score with only 14.4k parameters, reducing memory footprint without compromising the accuracy. Moreover, the N6 MCU with integrated neural acceleration achieves the best energy-delay product (EDP), enabling efficient, low-latency operation even with high-resolution features. Our findings highlight the model accuracy alone does not determine real-world effectiveness; rather, optimal keyword spotting deployments require careful consideration of feature extraction parameters and hardware-specific optimization.
comment: 4 pages, 2 figures, 1 table. Accepted for publication in IEEE Sensors 2025. \c{opyright} 2025 IEEE. Personal use permitted. Permission from IEEE required for all other uses
☆ SAM$^{*}$: Task-Adaptive SAM with Physics-Guided Rewards
Image segmentation is a critical task in microscopy, essential for accurately analyzing and interpreting complex visual data. This task can be performed using custom models trained on domain-specific datasets, transfer learning from pre-trained models, or foundational models that offer broad applicability. However, foundational models often present a considerable number of non-transparent tuning parameters that require extensive manual optimization, limiting their usability for real-time streaming data analysis. Here, we introduce a reward function-based optimization to fine-tune foundational models and illustrate this approach for SAM (Segment Anything Model) framework by Meta. The reward functions can be constructed to represent the physics of the imaged system, including particle size distributions, geometries, and other criteria. By integrating a reward-driven optimization framework, we enhance SAM's adaptability and performance, leading to an optimized variant, SAM$^{*}$, that better aligns with the requirements of diverse segmentation tasks and particularly allows for real-time streaming data segmentation. We demonstrate the effectiveness of this approach in microscopy imaging, where precise segmentation is crucial for analyzing cellular structures, material interfaces, and nanoscale features.
comment: 19 pages, 8 figures
☆ PUUMA (Placental patch and whole-Uterus dual-branch U-Mamba-based Architecture): Functional MRI Prediction of Gestational Age at Birth and Preterm Risk MICCAI 2025
Preterm birth is a major cause of mortality and lifelong morbidity in childhood. Its complex and multifactorial origins limit the effectiveness of current clinical predictors and impede optimal care. In this study, a dual-branch deep learning architecture (PUUMA) was developed to predict gestational age (GA) at birth using T2* fetal MRI data from 295 pregnancies, encompassing a heterogeneous and imbalanced population. The model integrates both global whole-uterus and local placental features. Its performance was benchmarked against linear regression using cervical length measurements obtained by experienced clinicians from anatomical MRI and other Deep Learning architectures. The GA at birth predictions were assessed using mean absolute error. Accuracy, sensitivity, and specificity were used to assess preterm classification. Both the fully automated MRI-based pipeline and the cervical length regression achieved comparable mean absolute errors (3 weeks) and good sensitivity (0.67) for detecting preterm birth, despite pronounced class imbalance in the dataset. These results provide a proof of concept for automated prediction of GA at birth from functional MRI, and underscore the value of whole-uterus functional imaging in identifying at-risk pregnancies. Additionally, we demonstrate that manual, high-definition cervical length measurements derived from MRI, not currently routine in clinical practice, offer valuable predictive information. Future work will focus on expanding the cohort size and incorporating additional organ-specific imaging to improve generalisability and predictive performance.
comment: 11 pages, 4 figures, 2 tables, to be published in with Springer - Lecture Notes in Computer Science, as part of PerInatal, Preterm and Paediatric Image (PIPPI) Analysis workshop held in conjunction with MICCAI 2025
☆ A Quantum Bagging Algorithm with Unsupervised Base Learners for Label Corrupted Datasets
The development of noise-resilient quantum machine learning (QML) algorithms is critical in the noisy intermediate-scale quantum (NISQ) era. In this work, we propose a quantum bagging framework that uses QMeans clustering as the base learner to reduce prediction variance and enhance robustness to label noise. Unlike bagging frameworks built on supervised learners, our method leverages the unsupervised nature of QMeans, combined with quantum bootstrapping via QRAM-based sampling and bagging aggregation through majority voting. Through extensive simulations on both noisy classification and regression tasks, we demonstrate that the proposed quantum bagging algorithm performs comparably to its classical counterpart using KMeans while exhibiting greater resilience to label corruption than supervised bagging methods. This highlights the potential of unsupervised quantum bagging in learning from unreliable data.
♻ ☆ A comparative analysis of rank aggregation methods for the partial label ranking problem
The label ranking problem is a supervised learning scenario in which the learner predicts a total order of the class labels for a given input instance. Recently, research has increasingly focused on the partial label ranking problem, a generalization of the label ranking problem that allows ties in the predicted orders. So far, most existing learning approaches for the partial label ranking problem rely on approximation algorithms for rank aggregation in the final prediction step. This paper explores several alternative aggregation methods for this critical step, including scoring-based and non-parametric probabilistic-based rank aggregation approaches. To enhance their suitability for the more general partial label ranking problem, the investigated methods are extended to increase the likelihood of producing ties. Experimental evaluations on standard benchmarks demonstrate that scoring-based variants consistently outperform the current state-of-the-art method in handling incomplete information. In contrast, non-parametric probabilistic-based variants fail to achieve competitive performance.
comment: This is the full version of our paper accepted at the European Conference on Artificial Intelligence 2025. It includes supplementary material in the appendix
♻ ☆ Off-Policy Maximum Entropy RL with Future State and Action Visitation Measures
Maximum entropy reinforcement learning integrates exploration into policy learning by providing additional intrinsic rewards proportional to the entropy of some distribution. In this paper, we propose a novel approach in which the intrinsic reward function is the relative entropy of the discounted distribution of states and actions (or features derived from these states and actions) visited during future time steps. This approach is motivated by three results. First, this new objective is a lower bound on the negated entropy of the marginal visitation distribution of states and actions, commonly used as an alternative exploration objective. Second, a policy maximizing the expected discounted sum of intrinsic rewards also maximizes a lower bound on the state-action value function of the decision process. Third, the distribution used in the intrinsic reward definition is the fixed point of a contraction operator. Existing algorithms can therefore be adapted to learn this fixed point off-policy and compute the intrinsic rewards. We finally introduce an algorithm maximizing our new objective and show that resulting policies have good state-action space coverage and achieve high-performance control.
♻ ☆ Neural CRNs: A Natural Implementation of Learning in Chemical Reaction Networks
Molecular circuits capable of autonomous learning could unlock novel applications in fields such as bioengineering and synthetic biology. To this end, existing chemical implementations of neural computing have mainly relied on emulating discrete-layered neural architectures using steady-state computations of mass action kinetics. In contrast, we propose an alternative dynamical systems-based approach in which neural computations are modeled as the time evolution of molecular concentrations. The analog nature of our framework naturally aligns with chemical kinetics-based computation, leading to more compact circuits. We present the advantages of our framework through three key demonstrations. First, we assemble an end-to-end supervised learning pipeline using only two sequential phases, the minimum required number for supervised learning. Then, we show (through appropriate simplifications) that both linear and nonlinear modeling circuits can be implemented solely using unimolecular and bimolecular reactions, avoiding the complexities of higher-order chemistries. Finally, we demonstrate that first-order gradient approximations can be natively incorporated into the framework, enabling nonlinear models to scale linearly rather than combinatorially with input dimensionality. All the circuit constructions are validated through training and inference simulations across various regression and classification tasks. Our work presents a viable pathway toward embedding learning behaviors in synthetic biochemical systems.
♻ ☆ Probabilistic operator learning: generative modeling and uncertainty quantification for foundation models of differential equations
In-context operator networks (ICON) are a class of operator learning methods based on the novel architectures of foundation models. Trained on a diverse set of datasets of initial and boundary conditions paired with corresponding solutions to ordinary and partial differential equations (ODEs and PDEs), ICON learns to map example condition-solution pairs of a given differential equation to an approximation of its solution operator. Here, we present a probabilistic framework that reveals ICON as implicitly performing Bayesian inference, where it computes the mean of the posterior predictive distribution over solution operators conditioned on the provided context, i.e., example condition-solution pairs. The formalism of random differential equations provides the probabilistic framework for describing the tasks ICON accomplishes while also providing a basis for understanding other multi-operator learning methods. This probabilistic perspective provides a basis for extending ICON to \emph{generative} settings, where one can sample from the posterior predictive distribution of solution operators. The generative formulation of ICON (GenICON) captures the underlying uncertainty in the solution operator, which enables principled uncertainty quantification in the solution predictions in operator learning.
comment: First two authors contributed equally
♻ ☆ Addressing Concept Mislabeling in Concept Bottleneck Models Through Preference Optimization
Concept Bottleneck Models (CBMs) propose to enhance the trustworthiness of AI systems by constraining their decisions on a set of human-understandable concepts. However, CBMs typically assume that datasets contain accurate concept labels-an assumption often violated in practice, which we show can significantly degrade performance (by 25% in some cases). To address this, we introduce the Concept Preference Optimization (CPO) objective, a new loss function based on Direct Preference Optimization, which effectively mitigates the negative impact of concept mislabeling on CBM performance. We provide an analysis of key properties of the CPO objective, showing it directly optimizes for the concept's posterior distribution, and contrast it against Binary Cross Entropy (BCE), demonstrating that CPO is inherently less sensitive to concept noise. We empirically confirm our analysis by finding that CPO consistently outperforms BCE on three real-world datasets, both with and without added label noise. We make our code available on Github.
♻ ☆ LatticeWorld: A Multimodal Large Language Model-Empowered Framework for Interactive Complex World Generation
Recent research has been increasingly focusing on developing 3D world models that simulate complex real-world scenarios. World models have found broad applications across various domains, including embodied AI, autonomous driving, entertainment, etc. A more realistic simulation with accurate physics will effectively narrow the sim-to-real gap and allow us to gather rich information about the real world conveniently. While traditional manual modeling has enabled the creation of virtual 3D scenes, modern approaches have leveraged advanced machine learning algorithms for 3D world generation, with most recent advances focusing on generative methods that can create virtual worlds based on user instructions. This work explores such a research direction by proposing LatticeWorld, a simple yet effective 3D world generation framework that streamlines the industrial production pipeline of 3D environments. LatticeWorld leverages lightweight LLMs (LLaMA-2-7B) alongside the industry-grade rendering engine (e.g., Unreal Engine 5) to generate a dynamic environment. Our proposed framework accepts textual descriptions and visual instructions as multimodal inputs and creates large-scale 3D interactive worlds with dynamic agents, featuring competitive multi-agent interaction, high-fidelity physics simulation, and real-time rendering. We conduct comprehensive experiments to evaluate LatticeWorld, showing that it achieves superior accuracy in scene layout generation and visual fidelity. Moreover, LatticeWorld achieves over a $90\times$ increase in industrial production efficiency while maintaining high creative quality compared with traditional manual production methods. Our demo video is available at https://youtu.be/8VWZXpERR18
♻ ☆ Probabilistic Shapley Value Modeling and Inference
We propose probabilistic Shapley inference (PSI), a novel probabilistic framework to model and infer sufficient statistics of feature attributions in flexible predictive models, via latent random variables whose mean recovers Shapley values. PSI enables efficient, scalable inference over input-to-output attributions, and their uncertainty, via a variational objective that jointly trains a predictive (regression or classification) model and its attribution distributions. To address the challenge of marginalizing over variable-length input feature subsets in Shapley value calculation, we introduce a masking-based neural network architecture, with a modular training and inference procedure. We evaluate PSI on synthetic and real-world datasets, showing that it achieves competitive predictive performance compared to strong baselines, while learning feature attribution distributions -- centered at Shapley values -- that reveal meaningful attribution uncertainty across data modalities.
♻ ☆ Not All Features Deserve Attention: Graph-Guided Dependency Learning for Tabular Data Generation with Language Models EMNLP 2025
Large Language Models (LLMs) have shown strong potential for tabular data generation by modeling textualized feature-value pairs. However, tabular data inherently exhibits sparse feature-level dependencies, where many feature interactions are structurally insignificant. This creates a fundamental mismatch as LLMs' self-attention mechanism inevitably distributes focus across all pairs, diluting attention on critical relationships, particularly in datasets with complex dependencies or semantically ambiguous features. To address this limitation, we propose GraDe (Graph-Guided Dependency Learning), a novel method that explicitly integrates sparse dependency graphs into LLMs' attention mechanism. GraDe employs a lightweight dynamic graph learning module guided by externally extracted functional dependencies, prioritizing key feature interactions while suppressing irrelevant ones. Our experiments across diverse real-world datasets demonstrate that GraDe outperforms existing LLM-based approaches by up to 12% on complex datasets while achieving competitive results with state-of-the-art approaches in synthetic data quality. Our method is minimally intrusive yet effective, offering a practical solution for structure-aware tabular data modeling with LLMs.
comment: Accepted to EMNLP 2025 (Findings)
♻ ☆ Universal Approximation with XL MIMO Systems: OTA Classification via Trainable Analog Combining IEEE
In this paper, we show that an eXtremely Large (XL) Multiple-Input Multiple-Output (MIMO) wireless system with appropriate analog combining components exhibits the properties of a universal function approximator, similar to a feedforward neural network. By treating the channel coefficients as the random nodes of a hidden layer and the receiver's analog combiner as a trainable output layer, we cast the XL MIMO system to the Extreme Learning Machine (ELM) framework, leading to a novel formulation for Over-The-Air (OTA) edge inference without requiring traditional digital processing nor pre-processing at the transmitter. Through theoretical analysis and numerical evaluation, we showcase that XL-MIMO-ELM enables near-instantaneous training and efficient classification, even in varying fading conditions, suggesting the paradigm shift of beyond massive MIMO systems as OTA artificial neural networks alongside their profound communications role. Compared to deep learning approaches and conventional ELMs, the proposed framework achieves on par performance with orders of magnitude lower complexity, making it highly attractive for inference tasks with ultra low power wireless devices.
comment: Submitted to IEEE Signal Processing Letters
♻ ☆ Automatic Prompt Optimization with Prompt Distillation
Autoprompting is the process of automatically selecting optimized prompts for language models, which is gaining popularity due to the rapid development of prompt engineering driven by extensive research in the field of large language models (LLMs). This paper presents DistillPrompt -- a novel autoprompting method based on large language models that employs a multi-stage integration of task-specific information into prompts using training data. DistillPrompt utilizes distillation, compression, and aggregation operations to explore the prompt space more thoroughly. The method was tested on different datasets for text classification and generation tasks using the t-lite-instruct-0.1 language model. The results demonstrate a significant average improvement (e.g., 20.12% across the entire dataset compared to Grips) in key metrics over existing methods in the field, establishing DistillPrompt as one of the most effective non-gradient approaches in autoprompting.
♻ ☆ Efficient $Q$-Learning and Actor-Critic Methods for Robust Average Reward Reinforcement Learning
We present a non-asymptotic convergence analysis of $Q$-learning and actor-critic algorithms for robust average-reward Markov Decision Processes (MDPs) under contamination, total-variation (TV) distance, and Wasserstein uncertainty sets. A key ingredient of our analysis is showing that the optimal robust $Q$ operator is a strict contraction with respect to a carefully designed semi-norm (with constant functions quotiented out). This property enables a stochastic approximation update that learns the optimal robust $Q$-function using $\tilde{\mathcal{O}}(\epsilon^{-2})$ samples. We also provide an efficient routine for robust $Q$-function estimation, which in turn facilitates robust critic estimation. Building on this, we introduce an actor-critic algorithm that learns an $\epsilon$-optimal robust policy within $\tilde{\mathcal{O}}(\epsilon^{-2})$ samples. We provide numerical simulations to evaluate the performance of our algorithms.
comment: The actor-critic result and its proof have been updated. Numerical simulations have also been added
♻ ☆ CHIRLA: Comprehensive High-resolution Identification and Re-identification for Large-scale Analysis
Person re-identification (Re-ID) is a key challenge in computer vision, requiring the matching of individuals across cameras, locations, and time. While most research focuses on short-term scenarios with minimal appearance changes, real-world applications demand robust systems that handle long-term variations caused by clothing and physical changes. We present CHIRLA, Comprehensive High-resolution Identification and Re-identification for Large-scale Analysis, a novel dataset designed for video-based long-term person Re-ID. CHIRLA was recorded over seven months in four connected indoor environments using seven strategically placed cameras, capturing realistic movements with substantial clothing and appearance variability. The dataset includes 22 individuals, more than five hours of video, and about 1M bounding boxes with identity annotations obtained through semi-automatic labeling. We also define benchmark protocols for person tracking and Re-ID, covering diverse and challenging scenarios such as occlusion, reappearance, and multi-camera conditions. By introducing this comprehensive benchmark, we aim to facilitate the development and evaluation of Re-ID algorithms that can reliably perform in challenging, long-term real-world scenarios. The benchmark code is publicly available at: https://github.com/bdager/CHIRLA.
♻ ☆ Emergence of the Primacy Effect in Structured State-Space Models ACML 2025
Structured state-space models (SSMs) have been developed to offer more persistent memory retention than traditional recurrent neural networks, while maintaining real-time inference capabilities and addressing the time-complexity limitations of Transformers. Despite this intended persistence, the memory mechanism of canonical SSMs is theoretically designed to decay monotonically over time, meaning that more recent inputs are expected to be retained more accurately than earlier ones. Contrary to this theoretical expectation, however, the present study reveals a counterintuitive finding: when trained and evaluated on a synthetic, statistically balanced memorization task, SSMs predominantly preserve the *initially* presented data in memory. This pattern of memory bias, known as the *primacy effect* in psychology, presents a non-trivial challenge to the current theoretical understanding of SSMs and opens new avenues for future research.
comment: Accepted for ACML 2025
♻ ☆ FACEGroup: Feasible and Actionable Counterfactual Explanations for Group Fairness ECML
Counterfactual explanations assess unfairness by revealing how inputs must change to achieve a desired outcome. This paper introduces the first graph-based framework for generating group counterfactual explanations to audit group fairness, a key aspect of trustworthy machine learning. Our framework, FACEGroup (Feasible and Actionable Counterfactual Explanations for Group Fairness), models real-world feasibility constraints, identifies subgroups with similar counterfactuals, and captures key trade-offs in counterfactual generation, distinguishing it from existing methods. To evaluate fairness, we introduce novel metrics for both group and subgroup level analysis that explicitly account for these trade-offs. Experiments on benchmark datasets show that FACEGroup effectively generates feasible group counterfactuals while accounting for trade-offs, and that our metrics capture and quantify fairness disparities.
comment: ECML PKDD 2025
♻ ☆ DCPO: Dynamic Clipping Policy Optimization
Reinforcement Learning from Verifiable Rewards (RLVR) has emerged as a promising framework for enhancing the reasoning capabilities of large language models. However, existing approaches such as GRPO often suffer from zero gradients. This problem arises primarily due to fixed clipping bounds for token-level probability ratios and the standardization of identical rewards, which can lead to ineffective gradient updates and underutilization of generated responses. In this work, we propose Dynamic Clipping Policy Optimization(DCPO), which introduces a dynamic clipping strategy that adaptively adjusts clipping bounds based on token-specific prior probabilities to enhance token-level exploration, and a smooth advantage standardization technique that standardizes rewards across cumulative training steps to improve the response-level effective utilization of generated responses. DCPO achieved state-of-the-art performance on four benchmarks based on four different models. In particular, DCPO achieved an Avg@1 of 46.7 under greedy decoding and an Avg@32 of 38.8 under 32 times sampling on the AIME24 benchmark, surpassing DAPO (36.7/31.6), GRPO (36.7/32.1) and GSPO (40.0/34.9) on the Qwen2.5-Math-7B model. On the AIME25 benchmark based on Qwen2.5-14B, DCPO achieves a performance of (23.3/19.0), surpassing GRPO (13.3/10.5), DAPO (20.0/15.3) and GSPO (16.7/9.9). Furthermore, DCPO achieved an average 28% improvement in the nonzero advantage over GRPO in four models, doubled the training efficiency over DAPO, and significantly reduced the token clipping ratio by an order of magnitude compared to both GRPO and DAPO, while achieving superior performance. These results highlight DCPO's effectiveness in leveraging generated data more efficiently for reinforcement learning in large language models.
♻ ☆ VIBESegmentator: Full Body MRI Segmentation for the NAKO and UK Biobank
Objectives: To present a publicly available deep learning-based torso segmentation model that provides comprehensive voxel-wise coverage, including delineations that extend to the boundaries of anatomical compartments. Materials and Methods: We extracted preliminary segmentations from TotalSegmentator, spine, and body composition models for Magnetic Resonance Tomography (MR) images, then improved them iteratively and retrained an nnUNet model. Using a random retrospective subset of German National Cohort (NAKO), UK Biobank, internal MR and Computed Tomography (CT) data (Training: 2897 series from 626 subjects, 290 female; mean age 53+-16; 3-fold-cross validation (20% hold-out). Internal testing 36 series from 12 subjects, 6 male; mean age 60+-11), we segmented 71 structures in torso MR and 72 in CT images: 20 organs, 10 muscles, 19 vessels, 16 bones, ribs in CT, intervertebral discs, spinal cord, spinal canal and body composition (subcutaneous fat, unclassified muscles and visceral fat). For external validation, we used existing automatic organ segmentations, independent ground truth segmentations on gradient echo images, and the Amos data. We used non-parametric bootstrapping for confidence intervals and Wilcoxon rank-sum test for computing statistical significance. Results: We achieved an average Dice score of 0.90+-0.06 on our internal gradient echo test set, which included 71 semantic segmentation labels. Our model ties with the best model on Amos with a Dice of 0,81+-0.14, while having a larger field of view and a considerably higher number structures included. Conclusion: Our work presents a publicly available full-torso segmentation model for MRI and CT images that classifies almost all subject voxels to date.
comment: https://github.com/robert-graf/VIBESegmentator
♻ ☆ Multimodal Latent Fusion of ECG Leads for Early Assessment of Pulmonary Hypertension
Recent advancements in early assessment of pulmonary hypertension (PH) primarily focus on applying machine learning methods to centralized diagnostic modalities, such as 12-lead electrocardiogram (12L-ECG). Despite their potential, these approaches fall short in decentralized clinical settings, e.g., point-of-care and general practice, where handheld 6-lead ECG (6L-ECG) can offer an alternative but is limited by the scarcity of labeled data for developing reliable models. To address this, we propose a lead-specific electrocardiogram multimodal variational autoencoder (\textsc{LS-EMVAE}), which incorporates a hierarchical modality expert (HiME) fusion mechanism and a latent representation alignment loss. HiME combines mixture-of-experts and product-of-experts to enable flexible, adaptive latent fusion, while the alignment loss improves coherence among lead-specific and shared representations. To alleviate data scarcity and enhance representation learning, we adopt a transfer learning strategy: the model is first pre-trained on a large unlabeled 12L-ECG dataset and then fine-tuned on smaller task-specific labeled 6L-ECG datasets. We validate \textsc{LS-EMVAE} across two retrospective cohorts in a 6L-ECG setting: 892 subjects from the ASPIRE registry for (1) PH detection and (2) phenotyping pre-/post-capillary PH, and 16,416 subjects from UK Biobank for (3) predicting elevated pulmonary atrial wedge pressure, where it consistently outperforms unimodal and multimodal baseline methods and demonstrates strong generalizability and interpretability. The code is available at https://github.com/Shef-AIRE/LS-EMVAE.
♻ ☆ Convolutional Neural Networks Can (Meta-)Learn the Same-Different Relation
While convolutional neural networks (CNNs) have come to match and exceed human performance in many settings, the tasks these models optimize for are largely constrained to the level of individual objects, such as classification and captioning. Humans remain vastly superior to CNNs in visual tasks involving relations, including the ability to identify two objects as `same' or `different'. A number of studies have shown that while CNNs can be coaxed into learning the same-different relation in some settings, they tend to generalize poorly to other instances of this relation. In this work we show that the same CNN architectures that fail to generalize the same-different relation with conventional training are able to succeed when trained via meta-learning, which explicitly encourages abstraction and generalization across tasks.
♻ ☆ An All-Atom Generative Model for Designing Protein Complexes
Proteins typically exist in complexes, interacting with other proteins or biomolecules to perform their specific biological roles. Research on single-chain protein modeling has been extensively and deeply explored, with advancements seen in models like the series of ESM and AlphaFold2. Despite these developments, the study and modeling of multi-chain proteins remain largely uncharted, though they are vital for understanding biological functions. Recognizing the importance of these interactions, we introduce APM (All-Atom Protein Generative Model), a model specifically designed for modeling multi-chain proteins. By integrating atom-level information and leveraging data on multi-chain proteins, APM is capable of precisely modeling inter-chain interactions and designing protein complexes with binding capabilities from scratch. It also performs folding and inverse-folding tasks for multi-chain proteins. Moreover, APM demonstrates versatility in downstream applications: it achieves enhanced performance through supervised fine-tuning (SFT) while also supporting zero-shot sampling in certain tasks, achieving state-of-the-art results. We released our code at https://github.com/bytedance/apm.
comment: updated binder design results
♻ ☆ Driver-Net: Multi-Camera Fusion for Assessing Driver Take-Over Readiness in Automated Vehicles
Ensuring safe transition of control in automated vehicles requires an accurate and timely assessment of driver readiness. This paper introduces Driver-Net, a novel deep learning framework that fuses multi-camera inputs to estimate driver take-over readiness. Unlike conventional vision-based driver monitoring systems that focus on head pose or eye gaze, Driver-Net captures synchronised visual cues from the driver's head, hands, and body posture through a triple-camera setup. The model integrates spatio-temporal data using a dual-path architecture, comprising a Context Block and a Feature Block, followed by a cross-modal fusion strategy to enhance prediction accuracy. Evaluated on a diverse dataset collected from the University of Leeds Driving Simulator, the proposed method achieves an accuracy of up to 95.8% in driver readiness classification. This performance significantly enhances existing approaches and highlights the importance of multimodal and multi-view fusion. As a real-time, non-intrusive solution, Driver-Net contributes meaningfully to the development of safer and more reliable automated vehicles and aligns with new regulatory mandates and upcoming safety standards.
♻ ☆ ALPS: Improved Optimization for Highly Sparse One-Shot Pruning for Large Language Models
The impressive performance of Large Language Models (LLMs) across various natural language processing tasks comes at the cost of vast computational resources and storage requirements. One-shot pruning techniques offer a way to alleviate these burdens by removing redundant weights without the need for retraining. Yet, the massive scale of LLMs often forces current pruning approaches to rely on heuristics instead of optimization-based techniques, potentially resulting in suboptimal compression. In this paper, we introduce ALPS, an optimization-based framework that tackles the pruning problem using the operator splitting technique and a preconditioned conjugate gradient-based post-processing step. Our approach incorporates novel techniques to accelerate and theoretically guarantee convergence while leveraging vectorization and GPU parallelism for efficiency. ALPS substantially outperforms state-of-the-art methods in terms of the pruning objective and perplexity reduction, particularly for highly sparse models. On the OPT-30B model with 70% sparsity, ALPS achieves a 13% reduction in test perplexity on the WikiText dataset and a 19% improvement in zero-shot benchmark performance compared to existing methods.
♻ ☆ Visual Structures Helps Visual Reasoning: Addressing the Binding Problem in VLMs
Despite progress in Vision-Language Models (VLMs), their capacity for visual reasoning is often limited by the binding problem: the failure to reliably associate perceptual features with their correct visual referents. This limitation underlies persistent errors in tasks such as counting, visual search, scene description, and spatial relationship understanding. A key factor is that current VLMs process visual features largely in parallel, lacking mechanisms for spatially grounded, serial attention. This paper introduces VISER (Visual Input Structure for Enhanced Reasoning), a simple yet effective intervention: augmenting visual inputs with low-level spatial structures and pairing this with a textual prompt that encourages sequential, spatially-aware parsing. We empirically demonstrate substantial performance improvements across core visual reasoning tasks. Specifically, VISER improves GPT-4o visual search accuracy by 25.00%, increases counting accuracy by 26.83%, reduces edit distance error in scene description by 0.32, and enhances performance on spatial relationship tasks by 9.50% on a 2D synthetic dataset. Furthermore, we find that the visual modification is essential for these gains; purely textual strategies, including Chain-of-Thought prompting, are insufficient and can even degrade performance. VISER enhances binding only with a single-query inference, underscoring the importance of visual input design over purely linguistically-based approaches. These findings suggest that low-level visual structuring is a powerful and underexplored direction for improving compositional visual reasoning and could serve as a general strategy for enhancing VLM performance on spatially grounded tasks.
♻ ☆ Learning Load Balancing with GNN in MPTCP-Enabled Heterogeneous Networks
Hybrid light fidelity (LiFi) and wireless fidelity (WiFi) networks are a promising paradigm of heterogeneous network (HetNet), attributed to the complementary physical properties of optical spectra and radio frequency. However, the current development of such HetNets is mostly bottlenecked by the existing transmission control protocol (TCP), which restricts the user equipment (UE) to connecting one access point (AP) at a time. While the ongoing investigation on multipath TCP (MPTCP) can bring significant benefits, it complicates the network topology of HetNets, making the existing load balancing (LB) learning models less effective. Driven by this, we propose a graph neural network (GNN)-based model to tackle the LB problem for MPTCP-enabled HetNets, which results in a partial mesh topology. Such a topology can be modeled as a graph, with the channel state information and data rate requirement embedded as node features, while the LB solutions are deemed as edge labels. Compared to the conventional deep neural network (DNN), the proposed GNN-based model exhibits two key strengths: i) it can better interpret a complex network topology; and ii) it can handle various numbers of APs and UEs with a single trained model. Simulation results show that against the traditional optimisation method, the proposed learning model can achieve near-optimal throughput within a gap of 11.5%, while reducing the inference time by 4 orders of magnitude. In contrast to the DNN model, the new method can improve the network throughput by up to 21.7%, at a similar inference time level.
comment: We would like to withdraw this submission because it contains several errors that need substantial revision. We plan to prepare a corrected and improved version, which will be submitted as a new manuscript at a later stage
♻ ☆ A Framework for Standardizing Similarity Measures in a Rapidly Evolving Field
Similarity measures are fundamental tools for quantifying the alignment between artificial and biological systems. However, the diversity of similarity measures and their varied naming and implementation conventions makes it challenging to compare across studies. To facilitate comparisons and make explicit the implementation choices underlying a given code package, we have created and are continuing to develop a Python repository that benchmarks and standardizes similarity measures. The goal of creating a consistent naming convention that uniquely and efficiently specifies a similarity measure is not trivial as, for example, even commonly used methods like Centered Kernel Alignment (CKA) have at least 12 different variations, and this number will likely continue to grow as the field evolves. For this reason, we do not advocate for a fixed, definitive naming convention. The landscape of similarity measures and best practices will continue to change and so we see our current repository, which incorporates approximately 100 different similarity measures from 14 packages, as providing a useful tool at this snapshot in time. To accommodate the evolution of the field we present a framework for developing, validating, and refining naming conventions with the goal of uniquely and efficiently specifying similarity measures, ultimately making it easier for the community to make comparisons across studies.
comment: 11 pages, 9 figures
♻ ☆ ELK: Exploring the Efficiency of Inter-core Connected AI Chips with Deep Learning Compiler Techniques MICRO'25
To meet the increasing demand of deep learning (DL) models, AI chips are employing both off-chip memory (e.g., HBM) and high-bandwidth low-latency interconnect for direct inter-core data exchange. However, it is not easy to explore the efficiency of these inter-core connected AI (ICCA) chips, due to a fundamental tussle among compute (per-core execution), communication (inter-core data exchange), and I/O (off-chip data access). In this paper, we develop Elk, a DL compiler framework to maximize the efficiency of ICCA chips by jointly trading off all the three performance factors discussed above. Elk structures these performance factors into configurable parameters and forms a global trade-off space in the DL compiler. To systematically explore this space and maximize overall efficiency, Elk employs a new inductive operator scheduling policy and a cost-aware on-chip memory allocation algorithm. It generates globally optimized execution plans that best overlap off-chip data loading and on-chip execution. To examine the efficiency of Elk, we build a full-fledged emulator based on a real ICCA chip IPU-POD4, and an ICCA chip simulator for sensitivity analysis with different interconnect network topologies. Elk achieves 94% of the ideal roofline performance of ICCA chips on average, showing the benefits of supporting large DL models on ICCA chips. We also show Elk's capability of enabling architecture design space exploration for new ICCA chip development.
comment: This paper is accepted at the 58th IEEE/ACM International Symposium on Microarchitecture (MICRO'25)
♻ ☆ KD$^{2}$M: A unifying framework for feature knowledge distillation
Knowledge Distillation (KD) seeks to transfer the knowledge of a teacher, towards a student neural net. This process is often done by matching the networks' predictions (i.e., their output), but, recently several works have proposed to match the distributions of neural nets' activations (i.e., their features), a process known as \emph{distribution matching}. In this paper, we propose an unifying framework, Knowledge Distillation through Distribution Matching (KD$^{2}$M), which formalizes this strategy. Our contributions are threefold. We i) provide an overview of distribution metrics used in distribution matching, ii) benchmark on computer vision datasets, and iii) derive new theoretical results for KD.
comment: Accepted as a conference paper in the 7th International Conference on Geometric Science of Information. 7 pages, 2 figures, 1 table
♻ ☆ Identification and Optimal Nonlinear Control of Turbojet Engine Using Koopman Eigenfunction Model
Gas turbine engines are complex and highly nonlinear dynamical systems. Deriving their physics-based models can be challenging because it requires performance characteristics that are not always available, often leading to many simplifying assumptions. This paper discusses the limitations of conventional experimental methods used to derive component-level and locally linear parameter-varying models, and addresses these issues by employing identification techniques based on data collected from standard engine operation under closed-loop control. The rotor dynamics are estimated using the sparse identification of nonlinear dynamics. Subsequently, the autonomous part of the dynamics is mapped into an optimally constructed Koopman eigenfunction space. This process involves eigenvalue optimization using metaheuristic algorithms and temporal projection, followed by gradient-based eigenfunction identification. The resulting Koopman model is validated against an in-house reference component-level model. A globally optimal nonlinear feedback controller and a Kalman estimator are then designed within the eigenfunction space and compared to traditional and gain-scheduled proportional-integral controllers, as well as a proposed internal model control approach. The eigenmode structure enables targeting individual modes during optimization, leading to improved performance tuning. Results demonstrate that the Koopman-based controller surpasses other benchmark controllers in both reference tracking and disturbance rejection under sea-level and varying flight conditions, due to its global nature.
comment: 34 pages, 28 figures Under review at Springer Nonlinear Dynamics
♻ ☆ ReST-RL: Achieving Accurate Code Reasoning of LLMs with Optimized Self-Training and Decoding
With respect to improving the reasoning accuracy of LLMs, the representative reinforcement learning (RL) method GRPO faces failure due to insignificant reward variance, while verification methods based on process reward models (PRMs) suffer from difficulties with training data acquisition and verification effectiveness. To tackle these problems, this paper introduces ReST-RL, a unified LLM RL paradigm that significantly improves LLM's code reasoning ability by combining an improved GRPO algorithm with a meticulously designed test time decoding method assisted by a value model (VM). As the first stage of policy reinforcement, ReST-GRPO adopts an optimized ReST algorithm to filter and assemble high-value training data, increasing the reward variance of GRPO sampling, thus improving the effectiveness and efficiency of training. After the basic reasoning ability of LLM policy has been improved, we further propose a test time decoding optimization method called VM-MCTS. Through Monte-Carlo Tree Search (MCTS), we collect accurate value targets with no annotation required, on which VM training is based. When decoding, the VM is deployed by an adapted MCTS algorithm to provide precise process signals as well as verification scores, assisting the LLM policy to achieve high reasoning accuracy. We conduct extensive experiments on coding problems to verify the validity of the proposed RL paradigm. Upon comparison, our approach significantly outperforms other reinforcement training baselines (e.g., naive GRPO and ReST-DPO), as well as decoding and verification baselines (e.g., PRM-BoN and ORM-MCTS) on well-known coding benchmarks of various levels (e.g., APPS, BigCodeBench, and HumanEval), indicating its power to strengthen the reasoning ability of LLM policies. Codes for our project can be found at https://github.com/THUDM/ReST-RL.
comment: 21 pages, 4 figures
♻ ☆ Hallucination Detection on a Budget: Efficient Bayesian Estimation of Semantic Entropy
Detecting whether an LLM hallucinates is an important research challenge. One promising way of doing so is to estimate the semantic entropy (Farquhar et al., 2024) of the distribution of generated sequences. We propose a new algorithm for doing that, with two main advantages. First, due to us taking the Bayesian approach, we achieve a much better quality of semantic entropy estimates for a given budget of samples from the LLM. Second, we are able to tune the number of samples adaptively so that `harder' contexts receive more samples. We demonstrate empirically that our approach systematically beats the baselines, requiring only 53% of samples used by Farquhar et al. (2024) to achieve the same quality of hallucination detection as measured by AUROC. Moreover, quite counterintuitively, our estimator is useful even with just one sample from the LLM.
comment: 24 pages
♻ ☆ ILeSiA: Interactive Learning of Robot Situational Awareness from Camera Input IEEE
Learning from demonstration is a promising approach for teaching robots new skills. However, a central challenge in the execution of acquired skills is the ability to recognize faults and prevent failures. This is essential because demonstrations typically cover only a limited set of scenarios and often only the successful ones. During task execution, unforeseen situations may arise, such as changes in the robot's environment or interaction with human operators. To recognize such situations, this paper focuses on teaching the robot situational awareness by using a camera input and labeling frames as safe or risky. We train a Gaussian Process (GP) regression model fed by a low-dimensional latent space representation of the input images. The model outputs a continuous risk score ranging from zero to one, quantifying the degree of risk at each timestep. This allows for pausing task execution in unsafe situations and directly adding new training data, labeled by the human user. Our experiments on a robotic manipulator show that the proposed method can reliably detect both known and novel faults using only a single example for each new fault. In contrast, a standard multi-layer perceptron (MLP) performs well only on faults it has encountered during training. Our method enables the next generation of cobots to be rapidly deployed with easy-to-set-up, vision-based risk assessment, proactively safeguarding humans and detecting misaligned parts or missing objects before failures occur. We provide all the code and data required to reproduce our experiments at imitrob.ciirc.cvut.cz/publications/ilesia.
comment: 8 pages, 9 figures. IEEE Robotics and Automation Letters. Accepted August 2025
♻ ☆ Sequential Controlled Langevin Diffusions
An effective approach for sampling from unnormalized densities is based on the idea of gradually transporting samples from an easy prior to the complicated target distribution. Two popular methods are (1) Sequential Monte Carlo (SMC), where the transport is performed through successive annealed densities via prescribed Markov chains and resampling steps, and (2) recently developed diffusion-based sampling methods, where a learned dynamical transport is used. Despite the common goal, both approaches have different, often complementary, advantages and drawbacks. The resampling steps in SMC allow focusing on promising regions of the space, often leading to robust performance. While the algorithm enjoys asymptotic guarantees, the lack of flexible, learnable transitions can lead to slow convergence. On the other hand, diffusion-based samplers are learned and can potentially better adapt themselves to the target at hand, yet often suffer from training instabilities. In this work, we present a principled framework for combining SMC with diffusion-based samplers by viewing both methods in continuous time and considering measures on path space. This culminates in the new Sequential Controlled Langevin Diffusion (SCLD) sampling method, which is able to utilize the benefits of both methods and reaches improved performance on multiple benchmark problems, in many cases using only 10% of the training budget of previous diffusion-based samplers.
comment: In The Thirteenth International Conference on Learning Representations, 2025
♻ ☆ Nested Graph Pseudo-Label Refinement for Noisy Label Domain Adaptation Learning
Graph Domain Adaptation (GDA) facilitates knowledge transfer from labeled source graphs to unlabeled target graphs by learning domain-invariant representations, which is essential in applications such as molecular property prediction and social network analysis. However, most existing GDA methods rely on the assumption of clean source labels, which rarely holds in real-world scenarios where annotation noise is pervasive. This label noise severely impairs feature alignment and degrades adaptation performance under domain shifts. To address this challenge, we propose Nested Graph Pseudo-Label Refinement (NeGPR), a novel framework tailored for graph-level domain adaptation with noisy labels. NeGPR first pretrains dual branches, i.e., semantic and topology branches, by enforcing neighborhood consistency in the feature space, thereby reducing the influence of noisy supervision. To bridge domain gaps, NeGPR employs a nested refinement mechanism in which one branch selects high-confidence target samples to guide the adaptation of the other, enabling progressive cross-domain learning. Furthermore, since pseudo-labels may still contain noise and the pre-trained branches are already overfitted to the noisy labels in the source domain, NeGPR incorporates a noise-aware regularization strategy. This regularization is theoretically proven to mitigate the adverse effects of pseudo-label noise, even under the presence of source overfitting, thus enhancing the robustness of the adaptation process. Extensive experiments on benchmark datasets demonstrate that NeGPR consistently outperforms state-of-the-art methods under severe label noise, achieving gains of up to 12.7% in accuracy.
♻ ☆ An Architecture Built for Federated Learning: Addressing Data Heterogeneity through Adaptive Normalization-Free Feature Recalibration
Federated learning is a decentralized collaborative training paradigm preserving stakeholders' data ownership while improving performance and generalization. However, statistical heterogeneity among client datasets degrades system performance. To address this issue, we propose Adaptive Normalization-free Feature Recalibration (ANFR), a model architecture-level approach that combines weight standardization and channel attention to combat heterogeneous data in FL. ANFR leverages weight standardization to avoid mismatched client statistics and inconsistent averaging, ensuring robustness under heterogeneity, and channel attention to produce learnable scaling factors for feature maps, suppressing inconsistencies across clients due to heterogeneity. We demonstrate that combining these techniques boosts model performance beyond their individual contributions, by improving class selectivity and channel attention weight distribution. ANFR works with any aggregation method, supports both global and personalized FL, and adds minimal overhead. Furthermore, when training with differential privacy, ANFR achieves an appealing balance between privacy and utility, enabling strong privacy guarantees without sacrificing performance. By integrating weight standardization and channel attention in the backbone model, ANFR offers a novel and versatile approach to the challenge of statistical heterogeneity. Extensive experiments show ANFR consistently outperforms established baselines across various aggregation methods, datasets, and heterogeneity conditions. Code is provided at https://github.com/siomvas/ANFR.
comment: Accepted into TMLR, version of record https://openreview.net/forum?id=GtdYFLsblb
♻ ☆ ModalSurv: A Multimodal Deep Survival Framework for Prostrate and Bladder Cancer
Accurate prediction of time-to-event outcomes is a central challenge in oncology, with significant implications for treatment planning and patient management. In this work, we present ModaliSurv, a multimodal deep survival model utilising DeepHit with a projection layer and inter-modality cross-attention, which integrates heterogeneous patient data, including clinical, MRI, RNA-seq and whole-slide pathology features. The model is designed to capture complementary prognostic signals across modalities and estimate individualised time-to-biochemical recurrence in prostate cancer and time-to-cancer recurrence in bladder cancer. Our approach was evaluated in the context of the CHIMERA Grand Challenge, across two of the three provided tasks. For Task 1 (prostate cancer bio-chemical recurrence prediction), the proposed framework achieved a concordance index (C-index) of 0.843 on 5-folds cross-validation and 0.818 on CHIMERA development set, demonstrating robust discriminatory ability. For Task 3 (bladder cancer recurrence prediction), the model obtained a C-index of 0.662 on 5-folds cross-validation and 0.457 on development set, highlighting its adaptability and potential for clinical translation. These results suggest that leveraging multimodal integration with deep survival learning provides a promising pathway toward personalised risk stratification in prostate and bladder cancer. Beyond the challenge setting, our framework is broadly applicable to survival prediction tasks involving heterogeneous biomedical data.
comment: 6 pages, 1 figure, 2 tables
♻ ☆ Steering LLM Reasoning Through Bias-Only Adaptation EMNLP 2025
We show that training a single $d$-dimensional steering vector per layer with reinforcement learning, while freezing all base weights, matches the accuracy of fully RL-tuned reasoning models on mathematical-reasoning tasks. On an 8 billion-parameter model this adds only $\approx 0.0016\%$ additional parameters and reproduces performance across a range of base models and mathematical-reasoning benchmarks. These results tighten the upper bound on the parameter budget required for high-level chain-of-thought reasoning, indicating that millions of adapter weights are unnecessary. The minimal trainable footprint reduces optimizer memory and inter-GPU communication, lowering the overall cost of fine-tuning. Moreover, a logit-lens analysis shows that the learned vectors amplify coherent token directions, providing clearer insight into the model's internal computations.
comment: EMNLP 2025
♻ ☆ A stability theorem for bigraded persistence barcodes
We define bigraded persistent homology modules and bigraded barcodes of a finite pseudo-metric space X using the ordinary and double homology of the moment-angle complex associated with the Vietoris-Rips filtration of X. We prove a stability theorem for the bigraded persistent double homology modules and barcodes.
comment: 22 pages, published version
♻ ☆ Molecular Generative Adversarial Network with Multi-Property Optimization
Deep generative models, such as generative adversarial networks (GANs), have been employed for $de~novo$ molecular generation in drug discovery. Most prior studies have utilized reinforcement learning (RL) algorithms, particularly Monte Carlo tree search (MCTS), to handle the discrete nature of molecular representations in GANs. However, due to the inherent instability in training GANs and RL models, along with the high computational cost associated with MCTS sampling, MCTS RL-based GANs struggle to scale to large chemical databases. To tackle these challenges, this study introduces a novel GAN based on actor-critic RL with instant and global rewards, called InstGAN, to generate molecules at the token-level with multi-property optimization. Furthermore, maximized information entropy is leveraged to alleviate the mode collapse. The experimental results demonstrate that InstGAN outperforms other baselines, achieves comparable performance to state-of-the-art models, and efficiently generates molecules with multi-property optimization. The source code will be released upon acceptance of the paper.
♻ ☆ Evidential Transformers for Improved Image Retrieval ECCV 2024
We introduce the Evidential Transformer, an uncertainty-driven transformer model for improved and robust image retrieval. In this paper, we make several contributions to content-based image retrieval (CBIR). We incorporate probabilistic methods into image retrieval, achieving robust and reliable results, with evidential classification surpassing traditional training based on multiclass classification as a baseline for deep metric learning. Furthermore, we improve the state-of-the-art retrieval results on several datasets by leveraging the Global Context Vision Transformer (GC ViT) architecture. Our experimental results consistently demonstrate the reliability of our approach, setting a new benchmark in CBIR in all test settings on the Stanford Online Products (SOP) and CUB-200-2011 datasets.
comment: 6 pages, 6 figures, presented at the 3rd Workshop on Uncertainty Quantification for Computer Vision, at the ECCV 2024 conference in Milan, Italy
♻ ☆ MM-Spatial: Exploring 3D Spatial Understanding in Multimodal LLMs ICCV 2025
Multimodal large language models (MLLMs) excel at 2D visual understanding but remain limited in their ability to reason about 3D space. In this work, we leverage large-scale high-quality 3D scene data with open-set annotations to introduce 1) a novel supervised fine-tuning dataset and 2) a new evaluation benchmark, focused on indoor scenes. Our Cubify Anything VQA (CA-VQA) data covers diverse spatial tasks including spatial relationship prediction, metric size and distance estimation, and 3D grounding. We show that CA-VQA enables us to train MM-Spatial, a strong generalist MLLM that also achieves state-of-the-art performance on 3D spatial understanding benchmarks, including our own. We show how incorporating metric depth and multi-view inputs (provided in CA-VQA) can further improve 3D understanding, and demonstrate that data alone allows our model to achieve depth perception capabilities comparable to dedicated monocular depth estimation models.
comment: ICCV 2025
♻ ☆ Fairness-Aware Data Augmentation for Cardiac MRI using Text-Conditioned Diffusion Models
While deep learning holds great promise for disease diagnosis and prognosis in cardiac magnetic resonance imaging, its progress is often constrained by highly imbalanced and biased training datasets. To address this issue, we propose a method to alleviate imbalances inherent in datasets through the generation of synthetic data based on sensitive attributes such as sex, age, body mass index (BMI), and health condition. We adopt ControlNet based on a denoising diffusion probabilistic model to condition on text assembled from patient metadata and cardiac geometry derived from segmentation masks. We assess our method using a large-cohort study from the UK Biobank by evaluating the realism of the generated images using established quantitative metrics. Furthermore, we conduct a downstream classification task aimed at debiasing a classifier by rectifying imbalances within underrepresented groups through synthetically generated samples. Our experiments demonstrate the effectiveness of the proposed approach in mitigating dataset imbalances, such as the scarcity of diagnosed female patients or individuals with normal BMI level suffering from heart failure. This work represents a major step towards the adoption of synthetic data for the development of fair and generalizable models for medical classification tasks. Notably, we conduct all our experiments using a single, consumer-level GPU to highlight the feasibility of our approach within resource-constrained environments. Our code is available at https://github.com/faildeny/debiasing-cardiac-mri.
♻ ☆ Confounding is a Pervasive Problem in Real World Recommender Systems
Unobserved confounding arises when an unmeasured feature influences both the treatment and the outcome, leading to biased causal effect estimates. This issue undermines observational studies in fields like economics, medicine, ecology or epidemiology. Recommender systems leveraging fully observed data seem not to be vulnerable to this problem. However many standard practices in recommender systems result in observed features being ignored, resulting in effectively the same problem. This paper will show that numerous common practices such as feature engineering, A/B testing and modularization can in fact introduce confounding into recommendation systems and hamper their performance. Several illustrations of the phenomena are provided, supported by simulation studies with practical suggestions about how practitioners may reduce or avoid the affects of confounding in real systems.
comment: 12 pages, 4 figures
♻ ☆ A Minimum Description Length Approach to Regularization in Neural Networks
State-of-the-art neural networks can be trained to become remarkable solutions to many problems. But while these architectures can express symbolic, perfect solutions, trained models often arrive at approximations instead. We show that the choice of regularization method plays a crucial role: when trained on formal languages with standard regularization ($L_1$, $L_2$, or none), expressive architectures not only fail to converge to correct solutions but are actively pushed away from perfect initializations. In contrast, applying the Minimum Description Length (MDL) principle to balance model complexity with data fit provides a theoretically grounded regularization method. Using MDL, perfect solutions are selected over approximations, independently of the optimization algorithm. We propose that unlike existing regularization techniques, MDL introduces the appropriate inductive bias to effectively counteract overfitting and promote generalization.
comment: 9 pages
♻ ☆ Persona-driven Simulation of Voting Behavior in the European Parliament with Large Language Models
Large Language Models (LLMs) display remarkable capabilities to understand or even produce political discourse, but have been found to consistently display a progressive left-leaning bias. At the same time, so-called persona or identity prompts have been shown to produce LLM behavior that aligns with socioeconomic groups that the base model is not aligned with. In this work, we analyze whether zero-shot persona prompting with limited information can accurately predict individual voting decisions and, by aggregation, accurately predict positions of European groups on a diverse set of policies. We evaluate if predictions are stable towards counterfactual arguments, different persona prompts and generation methods. Finally, we find that we can simulate voting behavior of Members of the European Parliament reasonably well with a weighted F1 score of approximately 0.793. Our persona dataset of politicians in the 2024 European Parliament and our code are available at https://github.com/dess-mannheim/european_parliament_simulation.
♻ ☆ A Match Made in Heaven? Matching Test Cases and Vulnerabilities With the VUTECO Approach
Software vulnerabilities are commonly detected via static analysis, penetration testing, and fuzzing. They can also be found by running unit tests - so-called vulnerability-witnessing tests - that stimulate the security-sensitive behavior with crafted inputs. Developing such tests is difficult and time-consuming; thus, automated data-driven approaches could help developers intercept vulnerabilities earlier. However, training and validating such approaches require a lot of data, which is currently scarce. This paper introduces VUTECO, a deep learning-based approach for collecting instances of vulnerability-witnessing tests from Java repositories. VUTECO carries out two tasks: (1) the "Finding" task to determine whether a test case is security-related, and (2) the "Matching" task to relate a test case to the exact vulnerability it is witnessing. VUTECO successfully addresses the Finding task, achieving perfect precision and 0.83 F0.5 score on validated test cases in VUL4J and returning 102 out of 145 (70%) correct security-related test cases from 244 open-source Java projects. Despite showing sufficiently good performance for the Matching task - i.e., 0.86 precision and 0.68 F0.5 score - VUTECO failed to retrieve any valid match in the wild. Nevertheless, we observed that in almost all of the matches, the test case was still security-related despite being matched to the wrong vulnerability. In the end, VUTECO can help find vulnerability-witnessing tests, though the matching with the right vulnerability is yet to be solved; the findings obtained lay the stepping stone for future research on the matter.
comment: This work was partially supported by EU-funded project Sec4AI4Sec (grant no. 101120393)
♻ ☆ A Gravity-informed Spatiotemporal Transformer for Human Activity Intensity Prediction
Human activity intensity prediction is crucial to many location-based services. Despite tremendous progress in modeling dynamics of human activity, most existing methods overlook physical constraints of spatial interaction, leading to uninterpretable spatial correlations and over-smoothing phenomenon. To address these limitations, this work proposes a physics-informed deep learning framework, namely Gravity-informed Spatiotemporal Transformer (Gravityformer) by integrating the universal law of gravitation to refine transformer attention. Specifically, it (1) estimates two spatially explicit mass parameters based on spatiotemporal embedding feature, (2) models the spatial interaction in end-to-end neural network using proposed adaptive gravity model to learn the physical constraint, and (3) utilizes the learned spatial interaction to guide and mitigate the over-smoothing phenomenon in transformer attention. Moreover, a parallel spatiotemporal graph convolution transformer is proposed for achieving a balance between coupled spatial and temporal learning. Systematic experiments on six real-world large-scale activity datasets demonstrate the quantitative and qualitative superiority of our model over state-of-the-art benchmarks. Additionally, the learned gravity attention matrix can be not only disentangled and interpreted based on geographical laws, but also improved the generalization in zero-shot cross-region inference. This work provides a novel insight into integrating physical laws with deep learning for spatiotemporal prediction.
comment: 18 pages, 13 figures, under review
♻ ☆ Amortized In-Context Mixed Effect Transformer Models: A Zero-Shot Approach for Pharmacokinetics
Accurate dose-response forecasting under sparse sampling is central to precision pharmacotherapy. We present the Amortized In-Context Mixed-Effect Transformer (AICMET) model, a transformer-based latent-variable framework that unifies mechanistic compartmental priors with amortized in-context Bayesian inference. AICMET is pre-trained on hundreds of thousands of synthetic pharmacokinetic trajectories with Ornstein-Uhlenbeck priors over the parameters of compartment models, endowing the model with strong inductive biases and enabling zero-shot adaptation to new compounds. At inference time, the decoder conditions on the collective context of previously profiled trial participants, generating calibrated posterior predictions for newly enrolled patients after a few early drug concentration measurements. This capability collapses traditional model-development cycles from weeks to hours while preserving some degree of expert modelling. Experiments across public datasets show that AICMET attains state-of-the-art predictive accuracy and faithfully quantifies inter-patient variability -- outperforming both nonlinear mixed-effects baselines and recent neural ODE variants. Our results highlight the feasibility of transformer-based, population-aware neural architectures as offering a new alternative for bespoke pharmacokinetic modeling pipelines, charting a path toward truly population-aware personalized dosing regimens.
♻ ☆ Rethinking GNN Expressive Power from a Distributed Computational Model Perspective
The success of graph neural networks (GNNs) has motivated theoretical studies on their expressive power, often through alignments with the Weisfeiler-Lehman (WL) tests. However, such analyses typically focus on the ability of GNNs to distinguish between graph structures, rather than to compute or approximate specific function classes. The latter is more commonly studied in machine learning theory, including results such as the Turing completeness of recurrent networks and the universal approximation property of feedforward networks. We argue that using well-defined computational models, such as a modified CONGEST model with clearly specified preprocessing and postprocessing, offers a more sound framework for analyzing GNN expressiveness. Within this framework, we show that allowing unrestricted preprocessing or incorporating externally computed features, while claiming that these precomputations enhance the expressiveness, can sometimes lead to problems. We also show that the lower bound on a GNN's capacity (depth multiplied by width) to simulate one iteration of the WL test actually grows nearly linearly with graph size, indicating that the WL test is not locally computable and is misaligned with message-passing GNNs. Despite these negative results, we also present positive results that characterize the effects of virtual nodes and edges from a computational model perspective. Finally, we highlight several open problems regarding GNN expressiveness for further exploration.
♻ ☆ Transforming Hyperspectral Images Into Chemical Maps: A Novel End-to-End Deep Learning Approach
Current approaches to chemical map generation from hyperspectral images are based on models such as partial least squares (PLS) regression, generating pixel-wise predictions that do not consider spatial context and suffer from a high degree of noise. This study proposes an end-to-end deep learning approach using a modified version of U-Net and a custom loss function to directly obtain chemical maps from hyperspectral images, skipping all intermediate steps required for traditional pixel-wise analysis. The U-Net is compared with the traditional PLS regression on a real dataset of pork belly samples with associated mean fat reference values. The U-Net obtains a test set root mean squared error of between 9% and 13% lower than that of PLS regression on the task of mean fat prediction. At the same time, U-Net generates fine detail chemical maps where 99.91% of the variance is spatially correlated. Conversely, only 2.53% of the variance in the PLS-generated chemical maps is spatially correlated, indicating that each pixel-wise prediction is largely independent of neighboring pixels. Additionally, while the PLS-generated chemical maps contain predictions far beyond the physically possible range of 0-100%, U-Net learns to stay inside this range. Thus, the findings of this study indicate that U-Net is superior to PLS for chemical map generation.
♻ ☆ MedualTime: A Dual-Adapter Language Model for Medical Time Series-Text Multimodal Learning
The recent rapid advancements in language models (LMs) have garnered attention in medical time series-text multimodal learning. However, existing contrastive learning-based and prompt-based LM approaches tend to be biased, often assigning a primary role to time series modality while treating text modality as secondary. We classify these approaches under a temporal-primary paradigm, which may overlook the unique and critical task-relevant information embedded in text modality like clinical reports, thus failing to fully leverage mutual benefits and complementarity of different modalities. To fill this gap, we propose a novel textual-temporal multimodal learning paradigm that enables either modality to serve as the primary while being enhanced by the other, thereby effectively capturing modality-specific information and fostering cross-modal interaction. In specific, we design MedualTime, a language model composed of dual adapters to implement temporal-primary and textual-primary modeling simultaneously. Within each adapter, lightweight adaptation tokens are injected into the top layers of LM to encourage high-level modality fusion. The shared LM pipeline by dual adapters not only achieves adapter alignment but also enables efficient fine-tuning, reducing computational resources. Empirically, MedualTime demonstrates superior performance on medical data, achieving notable improvements of 8% accuracy and 12% F1 in supervised settings. Furthermore, MedualTime's transferability is validated by few-shot label transfer experiments from coarse-grained to fine-grained medical data. https://github.com/start2020/MedualTime
comment: 9 pages, 6 figure, 3 tables
♻ ☆ A Theoretical Justification for Asymmetric Actor-Critic Algorithms
In reinforcement learning for partially observable environments, many successful algorithms have been developed within the asymmetric learning paradigm. This paradigm leverages additional state information available at training time for faster learning. Although the proposed learning objectives are usually theoretically sound, these methods still lack a precise theoretical justification for their potential benefits. We propose such a justification for asymmetric actor-critic algorithms with linear function approximators by adapting a finite-time convergence analysis to this setting. The resulting finite-time bound reveals that the asymmetric critic eliminates error terms arising from aliasing in the agent state.
comment: 8 pages, 31 pages total
♻ ☆ Learning and composing of classical music using restricted Boltzmann machines
Recently, software has been developed that uses machine learning to mimic the style of a particular composer, such as J. S. Bach. However, since such software often adopts machine learning models with complex structures, it is difficult to analyze how the software understands the characteristics of the composer's music. In this study, we adopted J. S. Bach's music for training of a restricted Boltzmann machine (RBM). Since the structure of RBMs is simple, it allows us to investigate the internal states after learning. We found that the learned RBM is able to compose music.
comment: 19 pages, 10 figures, Figures are updated
♻ ☆ PCR-CA: Parallel Codebook Representations with Contrastive Alignment for Multiple-Category App Recommendation
Modern app store recommender systems struggle with multiple-category apps, as traditional taxonomies fail to capture overlapping semantics, leading to suboptimal personalization. We propose PCR-CA (Parallel Codebook Representations with Contrastive Alignment), an end-to-end framework for improved CTR prediction. PCR-CA first extracts compact multimodal embeddings from app text, then introduces a Parallel Codebook VQ-AE module that learns discrete semantic representations across multiple codebooks in parallel -- unlike hierarchical residual quantization (RQ-VAE). This design enables independent encoding of diverse aspects (e.g., gameplay, art style), better modeling multiple-category semantics. To bridge semantic and collaborative signals, we employ a contrastive alignment loss at both the user and item levels, enhancing representation learning for long-tail items. Additionally, a dual-attention fusion mechanism combines ID-based and semantic features to capture user interests, especially for long-tail apps. Experiments on a large-scale dataset show PCR-CA achieves a +0.76% AUC improvement over strong baselines, with +2.15% AUC gains for long-tail apps. Online A/B testing further validates our approach, showing a +10.52% lift in CTR and a +16.30% improvement in CVR, demonstrating PCR-CA's effectiveness in real-world deployment. The new framework has now been fully deployed on the Microsoft Store.
comment: 9 pages, 4 figures, conference
♻ ☆ The GOOSE Dataset for Perception in Unstructured Environments ICRA 2024
The potential for deploying autonomous systems can be significantly increased by improving the perception and interpretation of the environment. However, the development of deep learning-based techniques for autonomous systems in unstructured outdoor environments poses challenges due to limited data availability for training and testing. To address this gap, we present the German Outdoor and Offroad Dataset (GOOSE), a comprehensive dataset specifically designed for unstructured outdoor environments. The GOOSE dataset incorporates 10 000 labeled pairs of images and point clouds, which are utilized to train a range of state-of-the-art segmentation models on both image and point cloud data. We open source the dataset, along with an ontology for unstructured terrain, as well as dataset standards and guidelines. This initiative aims to establish a common framework, enabling the seamless inclusion of existing datasets and a fast way to enhance the perception capabilities of various robots operating in unstructured environments. The dataset, pre-trained models for offroad perception, and additional documentation can be found at https://goose-dataset.de/.
comment: Accepted at ICRA 2024, Github link: https://github.com/FraunhoferIOSB/goose_dataset
♻ ☆ AnyGPT: Unified Multimodal LLM with Discrete Sequence Modeling
We introduce AnyGPT, an any-to-any multimodal language model that utilizes discrete representations for the unified processing of various modalities, including speech, text, images, and music. AnyGPT can be trained stably without any alterations to the current large language model (LLM) architecture or training paradigms. Instead, it relies exclusively on data-level preprocessing, facilitating the seamless integration of new modalities into LLMs, akin to the incorporation of new languages. We build a multimodal text-centric dataset for multimodal alignment pre-training. Utilizing generative models, we synthesize the first large-scale any-to-any multimodal instruction dataset. It consists of 108k samples of multi-turn conversations that intricately interweave various modalities, thus equipping the model to handle arbitrary combinations of multimodal inputs and outputs. Experimental results demonstrate that AnyGPT is capable of facilitating any-to-any multimodal conversation while achieving performance comparable to specialized models across all modalities, proving that discrete representations can effectively and conveniently unify multiple modalities within a language model. Demos are shown in https://junzhan2000.github.io/AnyGPT.github.io/
comment: 28 pages, 16 figures, under review, work in progress
♻ ☆ Improved sampling algorithms and Poincaré inequalities for non-log-concave distributions
We study the problem of sampling from a distribution $\mu$ with density $\propto e^{-V}$ for some potential function $V:\mathbb R^d\to \mathbb R$ with query access to $V$ and $\nabla V$. We start with the following standard assumptions: (1) The potential function $V$ is $L$-smooth. (2) The second moment $\mathbf{E}_{X\sim \mu}[\|X\|^2]\leq M$. Recently, He and Zhang (COLT'25) showed that the query complexity of sampling from such distributions is at least $\left(\frac{LM}{d\epsilon}\right)^{\Omega(d)}$ where $\epsilon$ is the desired accuracy in total variation distance, and the Poincar\'e constant can be arbitrarily large. Meanwhile, another common assumption in the study of diffusion based samplers (see e.g., the work of Chen, Chewi, Li, Li, Salim and Zhang (ICLR'23)) strengthens the smoothness condition (1) to the following: (1*) The potential function of *every* distribution along the Ornstein-Uhlenbeck process starting from $\mu$ is $L$-smooth. We show that under the assumptions (1*) and (2), the query complexity of sampling from $\mu$ can be $\mathrm{poly}(L,d)\cdot \left(\frac{Ld+M}{\epsilon^2}\right)^{\mathcal{O}(L+1)}$, which is polynomial in $d$ and $\frac{1}{\epsilon}$ when $L=\mathcal{O}(1)$ and $M=\mathrm{poly}(d)$. This improves the algorithm with quasi-polynomial query complexity developed by Huang et al. (COLT'24). Our results imply that the seemly moderate strengthening of the smoothness condition (1) to (1*) can lead to an exponential gap in the query complexity of sampling algorithms. Moreover, we show that together with the assumption (1*) and the stronger moment assumption that $\|X\|$ is $\lambda$-sub-Gaussian for $X\sim\mu$, the Poincar\'e constant of $\mu$ is at most $\mathcal{O}(\lambda)^{2(L+1)}$. As an application of our technique, we obtain improved estimate of the Poincar\'e constant for mixture of Gaussians with the same covariance.
♻ ☆ Beyond Linearity and Time-homogeneity: Relational Hyper Event Models with Time-Varying Non-Linear Effects
Recent technological advances have made it easier to collect large and complex networks of time-stamped relational events connecting two or more entities. Relational hyper-event models (RHEMs) aim to explain the dynamics of these events by modeling the event rate as a function of statistics based on past history and external information. However, despite the complexity of the data, most current RHEM approaches still rely on a linearity assumption to model this relationship. In this work, we address this limitation by introducing a more flexible model that allows the effects of statistics to vary non-linearly and over time. While time-varying and non-linear effects have been used in relational event modeling, we take this further by modeling joint time-varying and non-linear effects using tensor product smooths. We validate our methodology on both synthetic and empirical data. In particular, we use RHEMs to study how patterns of scientific collaboration and impact evolve over time. Our approach provides deeper insights into the dynamic factors driving relational hyper-events, allowing us to evaluate potential non-monotonic patterns that cannot be identified using linear models.
♻ ☆ Online Prompt Pricing based on Combinatorial Multi-Armed Bandit and Hierarchical Stackelberg Game
Generation models have shown promising performance in various tasks, making trading around machine learning models possible. In this paper, we aim at a novel prompt trading scenario, prompt bundle trading (PBT) system, and propose an online pricing mechanism. Based on the combinatorial multi-armed bandit (CMAB) and three-stage hierarchical Stackelburg (HS) game, our pricing mechanism considers the profits of the consumer, platform, and seller, simultaneously achieving the profit satisfaction of these three participants. We break down the pricing issue into two steps, namely unknown category selection and incentive strategy optimization. The former step is to select a set of categories with the highest qualities, and the latter is to derive the optimal strategy for each participant based on the chosen categories. Unlike the existing fixed pricing mode, the PBT pricing mechanism we propose is more flexible and diverse, which is more in accord with the transaction needs of real-world scenarios. We test our method on a simulated text-to-image dataset. The experimental results demonstrate the effectiveness of our algorithm, which provides a feasible price-setting standard for the prompt marketplaces.
comment: The paper has been withdrawn by the authors because the current experimental results are not sufficiently reliable. Further optimization and refinement of the methodology are required before the work can be disseminated
♻ ☆ VIPER: Visual Perception and Explainable Reasoning for Sequential Decision-Making
While Large Language Models (LLMs) excel at reasoning on text and Vision-Language Models (VLMs) are highly effective for visual perception, applying those models for visual instruction-based planning remains a widely open problem. In this paper, we introduce VIPER, a novel framework for multimodal instruction-based planning that integrates VLM-based perception with LLM-based reasoning. Our approach uses a modular pipeline where a frozen VLM generates textual descriptions of image observations, which are then processed by an LLM policy to predict actions based on the task goal. We fine-tune the reasoning module using behavioral cloning and reinforcement learning, improving our agent's decision-making capabilities. Experiments on the ALFWorld benchmark show that VIPER significantly outperforms state-of-the-art visual instruction-based planners while narrowing the gap with purely text-based oracles. By leveraging text as an intermediate representation, VIPER also enhances explainability, paving the way for a fine-grained analysis of perception and reasoning components.
♻ ☆ Insights from Gradient Dynamics: Gradient Autoscaled Normalization
Gradient dynamics play a central role in determining the stability and generalization of deep neural networks. In this work, we provide an empirical analysis of how variance and standard deviation of gradients evolve during training, showing consistent changes across layers and at the global scale in convolutional networks. Motivated by these observations, we propose a hyperparameter-free gradient normalization method that aligns gradient scaling with their natural evolution. This approach prevents unintended amplification, stabilizes optimization, and preserves convergence guarantees. Experiments on the challenging CIFAR-100 benchmark with ResNet-20, ResNet-56, and VGG-16-BN demonstrate that our method maintains or improves test accuracy even under strong generalization. Beyond practical performance, our study highlights the importance of directly tracking gradient dynamics, aiming to bridge the gap between theoretical expectations and empirical behaviors, and to provide insights for future optimization research.
♻ ☆ CPEP: Contrastive Pose-EMG Pre-training Enhances Gesture Generalization on EMG Signals
Hand gesture classification using high-quality structured data such as videos, images, and hand skeletons is a well-explored problem in computer vision. Leveraging low-power, cost-effective biosignals, e.g. surface electromyography (sEMG), allows for continuous gesture prediction on wearables. In this paper, we demonstrate that learning representations from weak-modality data that are aligned with those from structured, high-quality data can improve representation quality and enables zero-shot classification. Specifically, we propose a Contrastive Pose-EMG Pre-training (CPEP) framework to align EMG and pose representations, where we learn an EMG encoder that produces high-quality and pose-informative representations. We assess the gesture classification performance of our model through linear probing and zero-shot setups. Our model outperforms emg2pose benchmark models by up to 21% on in-distribution gesture classification and 72% on unseen (out-of-distribution) gesture classification.
♻ ☆ NeuroBOLT: Resting-state EEG-to-fMRI Synthesis with Multi-dimensional Feature Mapping NeurIPS 2024
Functional magnetic resonance imaging (fMRI) is an indispensable tool in modern neuroscience, providing a non-invasive window into whole-brain dynamics at millimeter-scale spatial resolution. However, fMRI is constrained by issues such as high operation costs and immobility. With the rapid advancements in cross-modality synthesis and brain decoding, the use of deep neural networks has emerged as a promising solution for inferring whole-brain, high-resolution fMRI features directly from electroencephalography (EEG), a more widely accessible and portable neuroimaging modality. Nonetheless, the complex projection from neural activity to fMRI hemodynamic responses and the spatial ambiguity of EEG pose substantial challenges both in modeling and interpretability. Relatively few studies to date have developed approaches for EEG-fMRI translation, and although they have made significant strides, the inference of fMRI signals in a given study has been limited to a small set of brain areas and to a single condition (i.e., either resting-state or a specific task). The capability to predict fMRI signals in other brain areas, as well as to generalize across conditions, remain critical gaps in the field. To tackle these challenges, we introduce a novel and generalizable framework: NeuroBOLT, i.e., Neuro-to-BOLD Transformer, which leverages multi-dimensional representation learning from temporal, spatial, and spectral domains to translate raw EEG data to the corresponding fMRI activity signals across the brain. Our experiments demonstrate that NeuroBOLT effectively reconstructs unseen resting-state fMRI signals from primary sensory, high-level cognitive areas, and deep subcortical brain regions, achieving state-of-the-art accuracy with the potential to generalize across varying conditions and sites, which significantly advances the integration of these two modalities.
comment: This preprint has been accepted to NeurIPS 2024
♻ ☆ Astrocyte-mediated hierarchical modulation enables learning-to-learn in recurrent spiking networks
A central feature of biological intelligence is the ability to learn to learn, enabling rapid adaptation to novel tasks and environments. Yet its neural basis remains elusive, particularly regarding intrinsic properties, as conventional models rely on simplified point-neuron approximations that neglect their dynamics. Inspired by astrocyte-mediated neuromodulation, we propose a hierarchically modulated recurrent spiking neural network (HM-RSNN) that models learning-to-learn with regulation of intrinsic neuronal properties at two spatiotemporal scales. Global modulation captures task-dependent gating of plasticity driven by wide-field calcium waves, whereas local adaptation simulates microdomain calcium-mediated fine-tuning of intrinsic properties within task-relevant subspaces. We evaluate HM-RSNN on four cognitive tasks, demonstrating its computational advantages over standard RSNNs and artificial neural networks, and revealing task-dependent adaptations across multiple scales, including intrinsic properties, neuronal specialization, membrane potential dynamics, and network modularity. Converging evidence and biological consistency position HM-RSNN as a biologically grounded framework, providing testable insights into how astrocyte-mediated hierarchical modulation of intrinsic properties shapes multi-scale neural dynamics that support learning-to-learn.
comment: 36 pages, 10 figures
♻ ☆ Ask1: Development and Reinforcement Learning-Based Control of a Custom Quadruped Robot
In this work, we present the design, development, and experimental validation of a custom-built quadruped robot, Ask1. The Ask1 robot shares similar morphology with the Unitree Go1, but features custom hardware components and a different control architecture. We transfer and extend previous reinforcement learning (RL)-based control methods to the Ask1 robot, demonstrating the applicability of our approach in real-world scenarios. By eliminating the need for Adversarial Motion Priors (AMP) and reference trajectories, we introduce a novel reward function to guide the robot's motion style. We demonstrate the generalization capability of the proposed RL algorithm by training it on both the Go1 and Ask1 robots. Simulation and real-world experiments validate the effectiveness of this method, showing that Ask1, like the Go1, is capable of navigating various rugged terrains.
♻ ☆ Robust Generative Learning with Lipschitz-Regularized $α$-Divergences Allows Minimal Assumptions on Target Distributions
This paper demonstrates the robustness of Lipschitz-regularized $\alpha$-divergences as objective functionals in generative modeling, showing they enable stable learning across a wide range of target distributions with minimal assumptions. We establish that these divergences remain finite under a mild condition-that the source distribution has a finite first moment-regardless of the properties of the target distribution, making them adaptable to the structure of target distributions. Furthermore, we prove the existence and finiteness of their variational derivatives, which are essential for stable training of generative models such as GANs and gradient flows. For heavy-tailed targets, we derive necessary and sufficient conditions that connect data dimension, $\alpha$, and tail behavior to divergence finiteness, that also provide insights into the selection of suitable $\alpha$'s. We also provide the first sample complexity bounds for empirical estimations of these divergences on unbounded domains. As a byproduct, we obtain the first sample complexity bounds for empirical estimations of these divergences and the Wasserstein-1 metric with group symmetry on unbounded domains. Numerical experiments confirm that generative models leveraging Lipschitz-regularized $\alpha$-divergences can stably learn distributions in various challenging scenarios, including those with heavy tails or complex, low-dimensional, or fractal support, all without any prior knowledge of the structure of target distributions.
♻ ☆ OmniThink: Expanding Knowledge Boundaries in Machine Writing through Thinking EMNLP 2025
Machine writing with large language models often relies on retrieval-augmented generation. However, these approaches remain confined within the boundaries of the model's predefined scope, limiting the generation of content with rich information. Specifically, vanilla-retrieved information tends to lack depth, novelty, and suffers from redundancy, which negatively impacts the quality of generated articles, leading to shallow, unoriginal, and repetitive outputs. To address these issues, we propose OmniThink, a slow-thinking machine writing framework that emulates the human-like process of iterative expansion and reflection. The core idea behind OmniThink is to simulate the cognitive behavior of learners as they slowly deepen their knowledge of the topics. Experimental results demonstrate that OmniThink improves the knowledge density of generated articles without compromising metrics such as coherence and depth. Human evaluations and expert feedback further highlight the potential of OmniThink to address real-world challenges in the generation of long-form articles. Code is available at https://github.com/zjunlp/OmniThink.
comment: EMNLP 2025
♻ ☆ Data-Adaptive Graph Framelets with Generalized Vanishing Moments for Graph Machine Learning
In this paper, we propose a general framework for constructing tight framelet systems on graphs with localized supports based on partition trees. Our construction of framelets provides a simple and efficient way to obtain the orthogonality with $k$ arbitrary orthonormal vectors. When the $k$ vectors contain most of the energy of a family of graph signals, the orthogonality of the framelets intuitively possesses ``generalized ($k$-)vanishing'' moments, and thus, the coefficients are sparse. Moreover, our construction provides not only framelets that are overall sparse vectors but also fast and schematically concise transforms. In a data-adaptive setting, the graph framelet systems can be learned by conducting optimizations on Stiefel manifolds to provide the utmost sparsity for a given family of graph signals. Furthermore, we further exploit the generality of our proposed graph framelet systems for heterophilous graph learning, where graphs are characterized by connecting nodes mainly from different classes. The usual assumption that connected nodes are similar and belong to the same class for homophilious graphs is contradictory for heterophilous graphs. Thus, we are motivated to bypass simple assumptions on heterophilous graphs and focus on generating rich node features induced by the graph structure, so as to improve the graph learning ability of certain neural networks in node classification. We derive a specific system of graph framelets and propose a heuristic method to select framelets as features for neural network input. Several experiments demonstrate the effectiveness and superiority of our approach for non-linear approximation, denoising, and node classification.
♻ ☆ Predicting Steady-State Behavior in Complex Networks with Graph Neural Networks
In complex systems, information propagation can be defined as diffused or delocalized, weakly localized, and strongly localized. This study investigates the application of graph neural network models to learn the behavior of a linear dynamical system on networks. A graph convolution and attention-based neural network framework has been developed to identify the steady-state behavior of the linear dynamical system. We reveal that our trained model distinguishes the different states with high accuracy. Furthermore, we have evaluated model performance with real-world data. In addition, to understand the explainability of our model, we provide an analytical derivation for the forward and backward propagation of our framework.
comment: 21 pages, 15 figures (including Appendix)
♻ ☆ Whisper Smarter, not Harder: Adversarial Attack on Partial Suppression
Currently, Automatic Speech Recognition (ASR) models are deployed in an extensive range of applications. However, recent studies have demonstrated the possibility of adversarial attack on these models which could potentially suppress or disrupt model output. We investigate and verify the robustness of these attacks and explore if it is possible to increase their imperceptibility. We additionally find that by relaxing the optimisation objective from complete suppression to partial suppression, we can further decrease the imperceptibility of the attack. We also explore possible defences against these attacks and show a low-pass filter defence could potentially serve as an effective defence.
comment: 14 pages, 7 figures
♻ ☆ The Curious Price of Distributional Robustness in Reinforcement Learning with a Generative Model
This paper investigates model robustness in reinforcement learning (RL) to reduce the sim-to-real gap in practice. We adopt the framework of distributionally robust Markov decision processes (RMDPs), aimed at learning a policy that optimizes the worst-case performance when the deployed environment falls within a prescribed uncertainty set around the nominal MDP. Despite recent efforts, the sample complexity of RMDPs remained mostly unsettled regardless of the uncertainty set in use. It was unclear if distributional robustness bears any statistical consequences when benchmarked against standard RL. Assuming access to a generative model that draws samples based on the nominal MDP, we provide a near-optimal characterization of the sample complexity of RMDPs when the uncertainty set is specified via either the total variation (TV) distance or chi-squared divergence. The algorithm studied here is a model-based method called distributionally robust value iteration, which is shown to be near-optimal for the full range of uncertainty levels. Somewhat surprisingly, our results uncover that RMDPs are not necessarily easier or harder to learn than standard MDPs. The statistical consequence incurred by the robustness requirement depends heavily on the size and shape of the uncertainty set: in the case w.r.t.~the TV distance, the minimax sample complexity of RMDPs is always smaller than that of standard MDPs; in the case w.r.t.~the chi-squared divergence, the sample complexity of RMDPs far exceeds the standard MDP counterpart.
comment: A short version was published in Neural Information Processing Systems (2023); Under Submission
♻ ☆ Jet-Nemotron: Efficient Language Model with Post Neural Architecture Search
We present Jet-Nemotron, a new family of hybrid-architecture language models, which matches or exceeds the accuracy of leading full-attention models while significantly improving generation throughput. Jet-Nemotron is developed using Post Neural Architecture Search (PostNAS), a novel neural architecture exploration pipeline that enables efficient model design. Unlike prior approaches, PostNAS begins with a pre-trained full-attention model and freezes its MLP weights, allowing efficient exploration of attention block designs. The pipeline includes four key components: (1) learning optimal full-attention layer placement and elimination, (2) linear attention block selection, (3) designing new attention blocks, and (4) performing hardware-aware hyperparameter search. Our Jet-Nemotron-2B model achieves comparable or superior accuracy to Qwen3, Qwen2.5, Gemma3, and Llama3.2 across a comprehensive suite of benchmarks while delivering up to 53.6x generation throughput speedup and 6.1x prefilling speedup. It also achieves higher accuracy on MMLU and MMLU-Pro than recent advanced MoE full-attention models, such as DeepSeek-V3-Small and Moonlight, despite their larger scale with 15B total and 2.2B activated parameters.
comment: Tech Report
♻ ☆ AARK: An Open Toolkit for Autonomous Racing Research
Autonomous racing demands safe control of vehicles at their physical limits for extended periods of time, providing insights into advanced vehicle safety systems which increasingly rely on intervention provided by vehicle autonomy. Participation in this field carries with it a high barrier to entry. Physical platforms and their associated sensor suites require large capital outlays before any demonstrable progress can be made. Simulators allow researches to develop soft autonomous systems without purchasing a platform. However, currently available simulators lack visual and dynamic fidelity, can still be expensive to buy, lack customisation, and are difficult to use. AARK provides three packages, ACI, ACDG, and ACMPC. These packages enable research into autonomous control systems in the demanding environment of racing to bring more people into the field and improve reproducibility: ACI provides researchers with a computer vision-friendly interface to Assetto Corsa for convenient comparison and evaluation of autonomous control solutions; ACDG enables generation of depth, normal and semantic segmentation data for training computer vision models to use in perception systems; and ACMPC gives newcomers to the field a modular full-stack autonomous control solution, capable of controlling vehicles to build from. AARK aims to unify and democratise research into a field critical to providing safer roads and trusted autonomous systems.
comment: 7 pages, 5 figures
♻ ☆ Toward a Team of AI-made Scientists for Scientific Discovery from Gene Expression Data
Machine learning has emerged as a powerful tool for scientific discovery, enabling researchers to extract meaningful insights from complex datasets. For instance, it has facilitated the identification of disease-predictive genes from gene expression data, significantly advancing healthcare. However, the traditional process for analyzing such datasets demands substantial human effort and expertise for the data selection, processing, and analysis. To address this challenge, we introduce a novel framework, a Team of AI-made Scientists (TAIS), designed to streamline the scientific discovery pipeline. TAIS comprises simulated roles, including a project manager, data engineer, and domain expert, each represented by a Large Language Model (LLM). These roles collaborate to replicate the tasks typically performed by data scientists, with a specific focus on identifying disease-predictive genes. Furthermore, we have curated a benchmark dataset to assess TAIS's effectiveness in gene identification, demonstrating our system's potential to significantly enhance the efficiency and scope of scientific exploration. Our findings represent a solid step towards automating scientific discovery through large language models.
comment: Code for a more recent version of our system is available at \url{https://github.com/Liu-Hy/GenoMAS}
♻ ☆ Error-quantified Conformal Inference for Time Series ICLR 2025
Uncertainty quantification in time series prediction is challenging due to the temporal dependence and distribution shift on sequential data. Conformal inference provides a pivotal and flexible instrument for assessing the uncertainty of machine learning models through prediction sets. Recently, a series of online conformal inference methods updated thresholds of prediction sets by performing online gradient descent on a sequence of quantile loss functions. A drawback of such methods is that they only use the information of revealed non-conformity scores via miscoverage indicators but ignore error quantification, namely the distance between the non-conformity score and the current threshold. To accurately leverage the dynamic of miscoverage error, we propose \textit{Error-quantified Conformal Inference} (ECI) by smoothing the quantile loss function. ECI introduces a continuous and adaptive feedback scale with the miscoverage error, rather than simple binary feedback in existing methods. We establish a long-term coverage guarantee for ECI under arbitrary dependence and distribution shift. The extensive experimental results show that ECI can achieve valid miscoverage control and output tighter prediction sets than other baselines.
comment: ICLR 2025 camera version (fixed the bug where citations could not be properly indexed in Google Scholar)
♻ ☆ A Fully Parameter-Free Second-Order Algorithm for Convex-Concave Minimax Problems
In this paper, we study second-order algorithms for the convex-concave minimax problem, which has attracted much attention in many fields such as machine learning in recent years. We propose a Lipschitz-free cubic regularization (LF-CR) algorithm for solving the convex-concave minimax optimization problem without knowing the Lipschitz constant. It can be shown that the iteration complexity of the LF-CR algorithm to obtain an $\epsilon$-optimal solution with respect to the restricted primal-dual gap is upper bounded by $\mathcal{O}(\rho^{2/3}\|z_0-z^*\|^2\epsilon^{-2/3})$ , where $z_0=(x_0,y_0)$ is a pair of initial points, $z^*=(x^*,y^*)$ is a pair of optimal solutions, and $\rho$ is the Lipschitz constant. We further propose a fully parameter-free cubic regularization (FF-CR) algorithm that does not require any parameters of the problem, including the Lipschitz constant and the upper bound of the distance from the initial point to the optimal solution. We also prove that the iteration complexity of the FF-CR algorithm to obtain an $\epsilon$-optimal solution with respect to the gradient norm is upper bounded by $\mathcal{O}(\rho^{2/3}\|z_0-z^*\|^{4/3}\epsilon^{-2/3}) $. Numerical experiments show the efficiency of both algorithms. To the best of our knowledge, the proposed FF-CR algorithm is a completely parameter-free second-order algorithm, and its iteration complexity is currently the best in terms of $\epsilon$ under the termination criterion of the gradient norm.
♻ ☆ Scaling Laws of Motion Forecasting and Planning - Technical Report
We study the empirical scaling laws of a family of encoder-decoder autoregressive transformer models on the task of joint motion forecasting and planning in the autonomous driving domain. Using a 500 thousand hours driving dataset, we demonstrate that, similar to language modeling, model performance improves as a power-law function of the total compute budget, and we observe a strong correlation between model training loss and model evaluation metrics. Most interestingly, closed-loop metrics also improve with scaling, which has important implications for the suitability of open-loop metrics for model development and hill climbing. We also study the optimal scaling of the number of transformer parameters and the training data size for a training compute-optimal model. We find that as the training compute budget grows, optimal scaling requires increasing the model size 1.5x as fast as the dataset size. We also study inference-time compute scaling, where we observe that sampling and clustering the output of smaller models makes them competitive with larger models, up to a crossover point beyond which a larger models becomes more inference-compute efficient. Overall, our experimental results demonstrate that optimizing the training and inference-time scaling properties of motion forecasting and planning models is a key lever for improving their performance to address a wide variety of driving scenarios. Finally, we briefly study the utility of training on general logged driving data of other agents to improve the performance of the ego-agent, an important research area to address the scarcity of robotics data for large capacity models training.
♻ ☆ Scaling Laws of Motion Forecasting and Planning -- Technical Report
We study the empirical scaling laws of a family of encoder-decoder autoregressive transformer models on the task of joint motion forecasting and planning in the autonomous driving domain. Using a 500 thousand hours driving dataset, we demonstrate that, similar to language modeling, model performance improves as a power-law function of the total compute budget, and we observe a strong correlation between model training loss and model evaluation metrics. Most interestingly, closed-loop metrics also improve with scaling, which has important implications for the suitability of open-loop metrics for model development and hill climbing. We also study the optimal scaling of the number of transformer parameters and the training data size for a training compute-optimal model. We find that as the training compute budget grows, optimal scaling requires increasing the model size 1.5x as fast as the dataset size. We also study inference-time compute scaling, where we observe that sampling and clustering the output of smaller models makes them competitive with larger models, up to a crossover point beyond which a larger models becomes more inference-compute efficient. Overall, our experimental results demonstrate that optimizing the training and inference-time scaling properties of motion forecasting and planning models is a key lever for improving their performance to address a wide variety of driving scenarios. Finally, we briefly study the utility of training on general logged driving data of other agents to improve the performance of the ego-agent, an important research area to address the scarcity of robotics data for large capacity models training.
♻ ☆ Multimodal Generative Flows for LHC Jets NeurIPS 2025
Generative modeling of high-energy collisions at the Large Hadron Collider (LHC) offers a data-driven route to simulations, anomaly detection, among other applications. A central challenge lies in the hybrid nature of particle-cloud data: each particle carries continuous kinematic features and discrete quantum numbers such as charge and flavor. We introduce a transformer-based multimodal flow that extends flow-matching with a continuous-time Markov jump bridge to jointly model LHC jets with both modalities. Trained on CMS Open Data, our model can generate high fidelity jets with realistic kinematics, jet substructure and flavor composition.
comment: Submitted to NeurIPS 2025 ML4PS workshop
♻ ☆ Scalable Autoregressive 3D Molecule Generation
Generative models of 3D molecular structure play a rapidly growing role in the design and simulation of molecules. Diffusion models currently dominate the space of 3D molecule generation, while autoregressive models have trailed behind. In this work, we present Quetzal, a simple but scalable autoregressive model that builds molecules atom-by-atom in 3D. Treating each molecule as an ordered sequence of atoms, Quetzal combines a causal transformer that predicts the next atom's discrete type with a smaller Diffusion MLP that models the continuous next-position distribution. Compared to existing autoregressive baselines, Quetzal achieves substantial improvements in generation quality and is competitive with the performance of state-of-the-art diffusion models. In addition, by reducing the number of expensive forward passes through a dense transformer, Quetzal enables significantly faster generation speed, as well as exact divergence-based likelihood computation. Finally, without any architectural changes, Quetzal natively handles variable-size tasks like hydrogen decoration and scaffold completion. We hope that our work motivates a perspective on scalability and generality for generative modelling of 3D molecules.
comment: Added link to code; corrected results on disabling data augmentation in Appendix Table 4; logit prediction uses Lin, not MLP
♻ ☆ Explainable Metrics for the Assessment of Neurodegenerative Diseases through Handwriting Analysis IEEE
Motor dysfunction is a common sign of neurodegenerative diseases (NDs) such as Parkinson's disease (PD) and Alzheimer's disease (AD), but may be difficult to detect, especially in the early stages. In this work, we examine the behavior of a wide array of explainable metrics extracted from the handwriting signals of 113 subjects performing multiple tasks on a digital tablet, as part of the Neurological Signals dataset. The aim is to measure their effectiveness in characterizing NDs, including AD and PD. To this end, task-agnostic and task-specific metrics are extracted from 14 distinct tasks. Subsequently, through statistical analysis and a series of classification experiments, we investigate which metrics provide greater discriminative power between NDs and healthy controls and amongst different NDs. Preliminary results indicate that the tasks at hand can all be effectively leveraged to distinguish between the considered set of NDs, specifically by measuring the stability, the speed of writing, the time spent not writing, and the pressure variations between groups from our handcrafted explainable metrics, which shows p-values lower than 0.0001 for multiple tasks. Using various binary classification algorithms on the computed metrics, we obtain up to 87 % accuracy for the discrimination between AD and healthy controls (CTL), and up to 69 % for the discrimination between PD and CTL.
comment: 19 pages including references, under review in IEEE JHBI
♻ ☆ CoMMIT: Coordinated Multimodal Instruction Tuning
Instruction tuning in multimodal large language models (MLLMs) generally involves cooperative learning between a backbone LLM and a feature encoder of non-text input modalities. The major challenge is how to efficiently find the synergy between the two modules so that LLMs can adapt their reasoning abilities to downstream tasks while feature encoders can adjust to provide more task-specific information about its modality. In this paper, we analyze the MLLM instruction tuning from both theoretical and empirical perspectives, where we find the unbalanced learning between the feature encoder and the LLM can cause problems of oscillation and biased learning that lead to sub-optimal convergence. Inspired by our findings, we propose a Multimodal Balance Coefficient that enables quantitative measurement of the balance of learning. Based on this, we further design a dynamic learning scheduler that better coordinates the learning between the LLM and feature encoder, alleviating the problems of oscillation and biased learning. In addition, we introduce an auxiliary regularization on the gradient to promote updating with larger step sizes, which potentially allows for a more accurate estimation of the proposed MultiModal Balance Coefficient and further improves the training sufficiency. Our proposed approach is agnostic to the architecture of LLM and feature encoder, so it can be generically integrated with various MLLMs. We conduct experiments on multiple downstream tasks with various MLLMs, demonstrating that the proposed method is more effective than the baselines in MLLM instruction tuning.
comment: 9 pages
♻ ☆ Overflow Prevention Enhances Long-Context Recurrent LLMs
A recent trend in LLMs is developing recurrent sub-quadratic models that improve long-context processing efficiency. We investigate leading large long-context models, focusing on how their fixed-size recurrent memory affects their performance. Our experiments reveal that, even when these models are trained for extended contexts, their use of long contexts remains underutilized. Specifically, we demonstrate that a chunk-based inference procedure, which identifies and processes only the most relevant portion of the input can mitigate recurrent memory failures and be effective for many long-context tasks: On LongBench, our method improves the overall performance of Falcon3-Mamba-Inst-7B by 14%, Falcon-Mamba-Inst-7B by 28%, RecurrentGemma-IT-9B by 50%, and RWKV6-Finch-7B by 51%. Surprisingly, this simple approach also leads to state-of-the-art results in the challenging LongBench v2 benchmark, showing competitive performance with equivalent size Transformers. Furthermore, our findings raise questions about whether recurrent models genuinely exploit long-range dependencies, as our single-chunk strategy delivers stronger performance - even in tasks that presumably require cross-context relations.
comment: Official Implementation: https://github.com/assafbk/OPRM
♻ ☆ MEMOIR: Lifelong Model Editing with Minimal Overwrite and Informed Retention for LLMs
Language models deployed in real-world systems often require post-hoc updates to incorporate new or corrected knowledge. However, editing such models efficiently and reliably-without retraining or forgetting previous information-remains a major challenge. Existing methods for lifelong model editing either compromise generalization, interfere with past edits, or fail to scale to long editing sequences. We propose MEMOIR, a novel scalable framework that injects knowledge through a residual memory, i.e., a dedicated parameter module, while preserving the core capabilities of the pre-trained model. By sparsifying input activations through sample-dependent masks, MEMOIR confines each edit to a distinct subset of the memory parameters, minimizing interference among edits. At inference, it identifies relevant edits by comparing the sparse activation patterns of new queries to those stored during editing. This enables generalization to rephrased queries by activating only the relevant knowledge while suppressing unnecessary memory activation for unrelated prompts. Experiments on question answering, hallucination correction, and out-of-distribution generalization benchmarks for LLaMA-3 and Mistral backbones demonstrate that MEMOIR achieves state-of-the-art performance across reliability, generalization, and locality metrics, scaling to thousands of sequential edits with minimal forgetting.
comment: The first two authors contributed equally to this work
♻ ☆ Analytic theory of dropout regularization
Dropout is a regularization technique widely used in training artificial neural networks to mitigate overfitting. It consists of dynamically deactivating subsets of the network during training to promote more robust representations. Despite its widespread adoption, dropout probabilities are often selected heuristically, and theoretical explanations of its success remain sparse. Here, we analytically study dropout in two-layer neural networks trained with online stochastic gradient descent. In the high-dimensional limit, we derive a set of ordinary differential equations that fully characterize the evolution of the network during training and capture the effects of dropout. We obtain a number of exact results describing the generalization error and the optimal dropout probability at short, intermediate, and long training times. Our analysis shows that dropout reduces detrimental correlations between hidden nodes, mitigates the impact of label noise, and that the optimal dropout probability increases with the level of noise in the data. Our results are validated by extensive numerical simulations.
comment: 19 pages, 10 figures
♻ ☆ FilterRAG: Zero-Shot Informed Retrieval-Augmented Generation to Mitigate Hallucinations in VQA ICCV 2025
Visual Question Answering requires models to generate accurate answers by integrating visual and textual understanding. However, VQA models still struggle with hallucinations, producing convincing but incorrect answers, particularly in knowledge-driven and Out-of-Distribution scenarios. We introduce FilterRAG, a retrieval-augmented framework that combines BLIP-VQA with Retrieval-Augmented Generation to ground answers in external knowledge sources like Wikipedia and DBpedia. FilterRAG achieves 36.5% accuracy on the OK-VQA dataset, demonstrating its effectiveness in reducing hallucinations and improving robustness in both in-domain and Out-of-Distribution settings. These findings highlight the potential of FilterRAG to improve Visual Question Answering systems for real-world deployment.
comment: 12 pages, 6 figures and 2 tables; Accepted at ICCV 2025 Workshop on Building Foundation Models You Can Trust (T2FM)
♻ ☆ Active Learning of Piecewise Gaussian Process Surrogates
Active learning of Gaussian process (GP) surrogates has been useful for optimizing experimental designs for physical/computer simulation experiments, and for steering data acquisition schemes in machine learning. In this paper, we develop a method for active learning of piecewise, Jump GP surrogates. Jump GPs are continuous within, but discontinuous across, regions of a design space, as required for applications spanning autonomous materials design, configuration of smart factory systems, and many others. Although our active learning heuristics are appropriated from strategies originally designed for ordinary GPs, we demonstrate that additionally accounting for model bias, as opposed to the usual model uncertainty, is essential in the Jump GP context. Toward that end, we develop an estimator for bias and variance of Jump GP models. Illustrations, and evidence of the advantage of our proposed methods, are provided on a suite of synthetic benchmarks, and real-simulation experiments of varying complexity.
comment: The main algorithm of this work is protected by a patent pending with application number 18/532,296
♻ ☆ GCN-Driven Reinforcement Learning for Probabilistic Real-Time Guarantees in Industrial URLLC
Ensuring packet-level communication quality is vital for ultra-reliable, low-latency communications (URLLC) in large-scale industrial wireless networks. We enhance the Local Deadline Partition (LDP) algorithm by introducing a Graph Convolutional Network (GCN) integrated with a Deep Q-Network (DQN) reinforcement learning framework for improved interference coordination in multi-cell, multi-channel networks. Unlike LDP's static priorities, our approach dynamically learns link priorities based on real-time traffic demand, network topology, remaining transmission opportunities, and interference patterns. The GCN captures spatial dependencies, while the DQN enables adaptive scheduling decisions through reward-guided exploration. Simulation results show that our GCN-DQN model achieves mean SINR improvements of 179.6\%, 197.4\%, and 175.2\% over LDP across three network configurations. Additionally, the GCN-DQN model demonstrates mean SINR improvements of 31.5\%, 53.0\%, and 84.7\% over our previous CNN-based approach across the same configurations. These results underscore the effectiveness of our GCN-DQN model in addressing complex URLLC requirements with minimal overhead and superior network performance.
comment: arXiv admin note: text overlap with arXiv:2506.14987
♻ ☆ AlphaEarth Foundations: An embedding field model for accurate and efficient global mapping from sparse label data
Unprecedented volumes of Earth observation data are continually collected around the world, but high-quality labels remain scarce given the effort required to make physical measurements and observations. This has led to considerable investment in bespoke modeling efforts translating sparse labels into maps. Here we introduce AlphaEarth Foundations, an embedding field model yielding a highly general, geospatial representation that assimilates spatial, temporal, and measurement contexts across multiple sources, enabling accurate and efficient production of maps and monitoring systems from local to global scales. The embeddings generated by AlphaEarth Foundations are the only to consistently outperform a suite of other well-known/widely accepted featurization approaches tested on a diverse set of mapping evaluations without re-training. We have released a dataset of global, annual, analysis-ready embedding field layers from 2017 through 2024.
♻ ☆ BioNeMo Framework: a modular, high-performance library for AI model development in drug discovery
Artificial Intelligence models encoding biology and chemistry are opening new routes to high-throughput and high-quality in-silico drug development. However, their training increasingly relies on computational scale, with recent protein language models (pLM) training on hundreds of graphical processing units (GPUs). We introduce the BioNeMo Framework to facilitate the training of computational biology and chemistry AI models across hundreds of GPUs. Its modular design allows the integration of individual components, such as data loaders, into existing workflows and is open to community contributions. We detail technical features of the BioNeMo Framework through use cases such as pLM pre-training and fine-tuning. On 256 NVIDIA A100s, BioNeMo Framework trains a three billion parameter BERT-based pLM on over one trillion tokens in 4.2 days. The BioNeMo Framework is open-source and free for everyone to use.
♻ ☆ Understanding Behavioral Metric Learning: A Large-Scale Study on Distracting Reinforcement Learning Environments
A key approach to state abstraction is approximating behavioral metrics (notably, bisimulation metrics) in the observation space and embedding these learned distances in the representation space. While promising for robustness to task-irrelevant noise, as shown in prior work, accurately estimating these metrics remains challenging, requiring various design choices that create gaps between theory and practice. Prior evaluations focus mainly on final returns, leaving the quality of learned metrics and the source of performance gains unclear. To systematically assess how metric learning works in deep reinforcement learning (RL), we evaluate five recent approaches, unified conceptually as isometric embeddings with varying design choices. We benchmark them with baselines across 20 state-based and 14 pixel-based tasks, spanning 370 task configurations with diverse noise settings. Beyond final returns, we introduce the evaluation of a denoising factor to quantify the encoder's ability to filter distractions. To further isolate the effect of metric learning, we propose and evaluate an isolated metric estimation setting, in which the encoder is influenced solely by the metric loss. Finally, we release an open-source, modular codebase to improve reproducibility and support future research on metric learning in deep RL.
♻ ☆ Unlearning vs. Obfuscation: Are We Truly Removing Knowledge? EMNLP 2025
Unlearning has emerged as a critical capability for large language models (LLMs) to support data privacy, regulatory compliance, and ethical AI deployment. Recent techniques often rely on obfuscation by injecting incorrect or irrelevant information to suppress knowledge. Such methods effectively constitute knowledge addition rather than true removal, often leaving models vulnerable to probing. In this paper, we formally distinguish unlearning from obfuscation and introduce a probing-based evaluation framework to assess whether existing approaches genuinely remove targeted information. Moreover, we propose DF-MCQ, a novel unlearning method that flattens the model predictive distribution over automatically generated multiple-choice questions using KL-divergence, effectively removing knowledge about target individuals and triggering appropriate refusal behaviour. Experimental results demonstrate that DF-MCQ achieves unlearning with over 90% refusal rate and a random choice-level uncertainty that is much higher than obfuscation on probing questions.
comment: To Appear in EMNLP 2025 main conference
♻ ☆ Learning to Upsample and Upmix Audio in the Latent Domain
Neural audio autoencoders create compact latent representations that preserve perceptually important information, serving as the foundation for both modern audio compression systems and generation approaches like next-token prediction and latent diffusion. Despite their prevalence, most audio processing operations, such as spatial and spectral up-sampling, still inefficiently operate on raw waveforms or spectral representations rather than directly on these compressed representations. We propose a framework that performs audio processing operations entirely within an autoencoder's latent space, eliminating the need to decode to raw audio formats. Our approach dramatically simplifies training by operating solely in the latent domain, with a latent L1 reconstruction term, augmented by a single latent adversarial discriminator. This contrasts sharply with raw-audio methods that typically require complex combinations of multi-scale losses and discriminators. Through experiments in bandwidth extension and mono-to-stereo up-mixing, we demonstrate computational efficiency gains of up to 100x while maintaining quality comparable to post-processing on raw audio. This work establishes a more efficient paradigm for audio processing pipelines that already incorporate autoencoders, enabling significantly faster and more resource-efficient workflows across various audio tasks.
♻ ☆ LASER: A Neuro-Symbolic Framework for Learning Spatial-Temporal Scene Graphs with Weak Supervision ICLR
Supervised approaches for learning spatio-temporal scene graphs (STSG) from video are greatly hindered due to their reliance on STSG-annotated videos, which are labor-intensive to construct at scale. Is it feasible to instead use readily available video captions as weak supervision? To address this question, we propose LASER, a neuro-symbolic framework to enable training STSG generators using only video captions. LASER employs large language models to first extract logical specifications with rich spatio-temporal semantic information from video captions. LASER then trains the underlying STSG generator to align the predicted STSG with the specification. The alignment algorithm overcomes the challenges of weak supervision by leveraging a differentiable symbolic reasoner and using a combination of contrastive, temporal, and semantics losses. The overall approach efficiently trains low-level perception models to extract a fine-grained STSG that conforms to the video caption. In doing so, it enables a novel methodology for learning STSGs without tedious annotations. We evaluate our method on three video datasets: OpenPVSG, 20BN, and MUGEN. Our approach demonstrates substantial improvements over fully-supervised baselines, achieving a unary predicate prediction accuracy of 27.78% (+12.65%) and a binary recall@5 of 0.42 (+0.22) on OpenPVSG. Additionally, LASER exceeds baselines by 7% on 20BN and 5.2% on MUGEN in terms of overall predicate prediction accuracy.
comment: Accepted at International Conference on Learning Representations (ICLR) 2025
♻ ☆ On the Benefits of Public Representations for Private Transfer Learning under Distribution Shift NeurIPS 2024
Public pretraining is a promising approach to improve differentially private model training. However, recent work has noted that many positive research results studying this paradigm only consider in-distribution tasks, and may not apply to settings where there is distribution shift between the pretraining and finetuning data -- a scenario that is likely when finetuning private tasks due to the sensitive nature of the data. In this work, we show empirically across three tasks that even in settings with large distribution shift, where both zero-shot performance from public data and training from scratch with private data give unusably weak results, public features can in fact improve private training accuracy by up to 67\% over private training from scratch. We provide a theoretical explanation for this phenomenon, showing that if the public and private data share a low-dimensional representation, public representations can improve the sample complexity of private training even if it is impossible to learn the private task from the public data alone. Altogether, our results provide evidence that public data can indeed make private training practical in realistic settings of extreme distribution shift.
comment: Published in NeurIPS 2024
♻ ☆ Re-Bottleneck: Latent Re-Structuring for Neural Audio Autoencoders IEEE
Neural audio codecs and autoencoders have emerged as versatile models for audio compression, transmission, feature-extraction, and latent-space generation. However, a key limitation is that most are trained to maximize reconstruction fidelity, often neglecting the specific latent structure necessary for optimal performance in diverse downstream applications. We propose a simple, post-hoc framework to address this by modifying the bottleneck of a pre-trained autoencoder. Our method introduces a "Re-Bottleneck", an inner bottleneck trained exclusively through latent space losses to instill user-defined structure. We demonstrate the framework's effectiveness in three experiments. First, we enforce an ordering on latent channels without sacrificing reconstruction quality. Second, we align latents with semantic embeddings, analyzing the impact on downstream diffusion modeling. Third, we introduce equivariance, ensuring that a filtering operation on the input waveform directly corresponds to a specific transformation in the latent space. Ultimately, our Re-Bottleneck framework offers a flexible and efficient way to tailor representations of neural audio models, enabling them to seamlessly meet the varied demands of different applications with minimal additional training.
comment: Accepted at IEEE MLSP 2025
♻ ☆ Heterogeneous Self-Supervised Acoustic Pre-Training with Local Constraints
Self-supervised pre-training using unlabeled data is widely used in automatic speech recognition. In this paper, we propose a new self-supervised pre-training approach to dealing with heterogeneous data. Instead of mixing all the data and minimizing the averaged global loss in the conventional way, we impose additional local constraints to ensure that the model optimizes each source of heterogeneous data to its local optimum after $K$-step gradient descent initialized from the model. We formulate this as a bilevel optimization problem, and use the first-order approximation method to solve the problem. We discuss its connection to model-agnostic meta learning. Experiments are carried out on self-supervised pre-training using multi-domain and multilingual datasets, demonstrating that the proposed approach can significantly improve the adaptivity of the self-supervised pre-trained model for the downstream supervised fine-tuning tasks.
♻ ☆ Attacking LLMs and AI Agents: Advertisement Embedding Attacks Against Large Language Models
We introduce Advertisement Embedding Attacks (AEA), a new class of LLM security threats that stealthily inject promotional or malicious content into model outputs and AI agents. AEA operate through two low-cost vectors: (1) hijacking third-party service-distribution platforms to prepend adversarial prompts, and (2) publishing back-doored open-source checkpoints fine-tuned with attacker data. Unlike conventional attacks that degrade accuracy, AEA subvert information integrity, causing models to return covert ads, propaganda, or hate speech while appearing normal. We detail the attack pipeline, map five stakeholder victim groups, and present an initial prompt-based self-inspection defense that mitigates these injections without additional model retraining. Our findings reveal an urgent, under-addressed gap in LLM security and call for coordinated detection, auditing, and policy responses from the AI-safety community.
comment: 6 pages, 2 figures
♻ ☆ Contrastive MIM: A Contrastive Mutual Information Framework for Unified Generative and Discriminative Representation Learning
Learning representations that generalize well to unknown downstream tasks is a central challenge in representation learning. Existing approaches such as contrastive learning, self-supervised masking, and denoising auto-encoders address this challenge with varying trade-offs. In this paper, we introduce the {contrastive Mutual Information Machine} (cMIM), a probabilistic framework that augments the Mutual Information Machine (MIM) with a novel contrastive objective. While MIM maximizes mutual information between inputs and latent variables and encourages clustering of latent codes, its representations underperform on discriminative tasks compared to state-of-the-art alternatives. cMIM addresses this limitation by enforcing global discriminative structure while retaining MIM's generative strengths. We present two main contributions: (1) we propose cMIM, a contrastive extension of MIM that eliminates the need for positive data augmentation and is robust to batch size, unlike InfoNCE-based methods; (2) we introduce {informative embeddings}, a general technique for extracting enriched representations from encoder--decoder models that substantially improve discriminative performance without additional training, and which apply broadly beyond MIM. Empirical results demonstrate that cMIM consistently outperforms MIM and InfoNCE in classification and regression tasks, while preserving comparable reconstruction quality. These findings suggest that cMIM provides a unified framework for learning representations that are simultaneously effective for discriminative and generative applications.
comment: A working draft. Updated with image experiments and theoretical relation to InfoNCE
Multimedia 6
☆ Hue4U: Real-Time Personalized Color Correction in Augmented Reality
Color Vision Deficiency (CVD) affects nearly 8 percent of men and 0.5 percent of women worldwide. Existing color-correction methods often rely on prior clinical diagnosis and static filtering, making them less effective for users with mild or moderate CVD. In this paper, we introduce Hue4U, a personalized, real-time color-correction system in augmented reality using consumer-grade Meta Quest headsets. Unlike previous methods, Hue4U requires no prior medical diagnosis and adapts to the user in real time. A user study with 10 participants showed notable improvements in their ability to distinguish colors. The results demonstrated large effect sizes (Cohen's d > 1.4), suggesting clinically meaningful gains for individuals with CVD. These findings highlight the potential of personalized AR interventions to improve visual accessibility and quality of life for people affected by CVD.
☆ Robustness and accuracy of mean opinion scores with hard and soft outlier detection
In subjective assessment of image and video quality, observers rate or compare selected stimuli. Before calculating the mean opinion scores (MOS) for these stimuli from the ratings, it is recommended to identify and deal with outliers that may have given unreliable ratings. Several methods are available for this purpose, some of which have been standardized. These methods are typically based on statistics and sometimes tested by introducing synthetic ratings from artificial outliers, such as random clickers. However, a reliable and comprehensive approach is lacking for comparative performance analysis of outlier detection methods. To fill this gap, this work proposes and applies an empirical worst-case analysis as a general solution. Our method involves evolutionary optimization of an adversarial black-box attack on outlier detection algorithms, where the adversary maximizes the distortion of scale values with respect to ground truth. We apply our analysis to several hard and soft outlier detection methods for absolute category ratings and show their differing performance in this stress test. In addition, we propose two new outlier detection methods with low complexity and excellent worst-case performance. Software for adversarial attacks and data analysis is available.
comment: Accepted for 17th International Conference on Quality of Multimedia Experience (QoMEX'25), September 2025, Madrid, Spain
☆ Detection and Recovery of Adversarial Slow-Pose Drift in Offloaded Visual-Inertial Odometry
Visual-Inertial Odometry (VIO) supports immersive Virtual Reality (VR) by fusing camera and Inertial Measurement Unit (IMU) data for real-time pose. However, current trend of offloading VIO to edge servers can lead server-side threat surface where subtle pose spoofing can accumulate into substantial drift, while evading heuristic checks. In this paper, we study this threat and present an unsupervised, label-free detection and recovery mechanism. The proposed model is trained on attack-free sessions to learn temporal regularities of motion to detect runtime deviations and initiate recovery to restore pose consistency. We evaluate the approach in a realistic offloaded-VIO environment using ILLIXR testbed across multiple spoofing intensities. Experimental results in terms of well-known performance metrics show substantial reductions in trajectory and pose error compared to a no-defense baseline.
comment: 12 Pages, 8 Figures
☆ Detection and Recovery of Adversarial Slow-Pose Drift in Offloaded Visual-Inertial Odometry
Visual-Inertial Odometry (VIO) supports immersive Virtual Reality (VR) by fusing camera and Inertial Measurement Unit (IMU) data for real-time pose. However, current trend of offloading VIO to edge servers can lead server-side threat surface where subtle pose spoofing can accumulate into substantial drift, while evading heuristic checks. In this paper, we study this threat and present an unsupervised, label-free detection and recovery mechanism. The proposed model is trained on attack-free sessions to learn temporal regularities of motion to detect runtime deviations and initiate recovery to restore pose consistency. We evaluate the approach in a realistic offloaded-VIO environment using ILLIXR testbed across multiple spoofing intensities. Experimental results in terms of well-known performance metrics show substantial reductions in trajectory and pose error compared to a no-defense baseline.
comment: 12 Pages, 8 Figures
☆ A New Dataset and Benchmark for Grounding Multimodal Misinformation
The proliferation of online misinformation videos poses serious societal risks. Current datasets and detection methods primarily target binary classification or single-modality localization based on post-processed data, lacking the interpretability needed to counter persuasive misinformation. In this paper, we introduce the task of Grounding Multimodal Misinformation (GroundMM), which verifies multimodal content and localizes misleading segments across modalities. We present the first real-world dataset for this task, GroundLie360, featuring a taxonomy of misinformation types, fine-grained annotations across text, speech, and visuals, and validation with Snopes evidence and annotator reasoning. We also propose a VLM-based, QA-driven baseline, FakeMark, using single- and cross-modal cues for effective detection and grounding. Our experiments highlight the challenges of this task and lay a foundation for explainable multimodal misinformation detection.
comment: 6 pages, 5 figures, ACM Multimedia 2025 Dataset Track
♻ ☆ CoreMark: Toward Robust and Universal Text Watermarking Technique
Text watermarking schemes have gained considerable attention in recent years, yet still face critical challenges in achieving simultaneous robustness, generalizability, and imperceptibility. This paper introduces a new embedding paradigm,termed CORE, which comprises several consecutively aligned black pixel segments. Its key innovation lies in its inherent noise resistance during transmission and broad applicability across languages and fonts. Based on the CORE, we present a text watermarking framework named CoreMark. Specifically, CoreMark first dynamically extracts COREs from characters. Then, the characters with stronger robustness are selected according to the lengths of COREs. By modifying the thickness of the CORE, the hidden data is embedded into the selected characters without causing significant visual distortions. Moreover, a general plug-and-play embedding strength modulator is proposed, which can adaptively enhance the robustness for small font sizes by adjusting the embedding strength according to the font size. Experimental evaluation indicates that CoreMark demonstrates outstanding generalizability across multiple languages and fonts. Compared to existing methods, CoreMark achieves significant improvements in resisting screenshot, print-scan, and print camera attacks, while maintaining satisfactory imperceptibility.
comment: 10 pages, 16 figures
Computer Vision and Pattern Recognition 67
☆ Exploring Light-Weight Object Recognition for Real-Time Document Detection
Object Recognition and Document Skew Estimation have come a long way in terms of performance and efficiency. New models follow one of two directions: improving performance using larger models, and improving efficiency using smaller models. However, real-time document detection and rectification is a niche that is largely unexplored by the literature, yet it remains a vital step for automatic information retrieval from visual documents. In this work, we strive towards an efficient document detection pipeline that is satisfactory in terms of Optical Character Recognition (OCR) retrieval and faster than other available solutions. We adapt IWPOD-Net, a license plate detection network, and train it for detection on NBID, a synthetic ID card dataset. We experiment with data augmentation and cross-dataset validation with MIDV (another synthetic ID and passport document dataset) to find the optimal scenario for the model. Other methods from both the Object Recognition and Skew Estimation state-of-the-art are evaluated for comparison with our approach. We use each method to detect and rectify the document, which is then read by an OCR system. The OCR output is then evaluated using a novel OCR quality metric based on the Levenshtein distance. Since the end goal is to improve automatic information retrieval, we use the overall OCR quality as a performance metric. We observe that with a promising model, document rectification does not have to be perfect to attain state-of-the-art performance scores. We show that our model is smaller and more efficient than current state-of-the-art solutions while retaining a competitive OCR quality metric. All code is available at https://github.com/BOVIFOCR/iwpod-doc-corners.git
☆ O$^3$Afford: One-Shot 3D Object-to-Object Affordance Grounding for Generalizable Robotic Manipulation
Grounding object affordance is fundamental to robotic manipulation as it establishes the critical link between perception and action among interacting objects. However, prior works predominantly focus on predicting single-object affordance, overlooking the fact that most real-world interactions involve relationships between pairs of objects. In this work, we address the challenge of object-to-object affordance grounding under limited data contraints. Inspired by recent advances in few-shot learning with 2D vision foundation models, we propose a novel one-shot 3D object-to-object affordance learning approach for robotic manipulation. Semantic features from vision foundation models combined with point cloud representation for geometric understanding enable our one-shot learning pipeline to generalize effectively to novel objects and categories. We further integrate our 3D affordance representation with large language models (LLMs) for robotics manipulation, significantly enhancing LLMs' capability to comprehend and reason about object interactions when generating task-specific constraint functions. Our experiments on 3D object-to-object affordance grounding and robotic manipulation demonstrate that our O$^3$Afford significantly outperforms existing baselines in terms of both accuracy and generalization capability.
comment: Conference on Robot Learning (CoRL) 2025. Project website: https://o3afford.github.io/
☆ AI-Based Applied Innovation for Fracture Detection in X-rays Using Custom CNN and Transfer Learning Models
Bone fractures present a major global health challenge, often resulting in pain, reduced mobility, and productivity loss, particularly in low-resource settings where access to expert radiology services is limited. Conventional imaging methods suffer from high costs, radiation exposure, and dependency on specialized interpretation. To address this, we developed an AI-based solution for automated fracture detection from X-ray images using a custom Convolutional Neural Network (CNN) and benchmarked it against transfer learning models including EfficientNetB0, MobileNetV2, and ResNet50. Training was conducted on the publicly available FracAtlas dataset, comprising 4,083 anonymized musculoskeletal radiographs. The custom CNN achieved 95.96% accuracy, 0.94 precision, 0.88 recall, and an F1-score of 0.91 on the FracAtlas dataset. Although transfer learning models (EfficientNetB0, MobileNetV2, ResNet50) performed poorly in this specific setup, these results should be interpreted in light of class imbalance and data set limitations. This work highlights the promise of lightweight CNNs for detecting fractures in X-rays and underscores the importance of fair benchmarking, diverse datasets, and external validation for clinical translation
comment: https://github.com/Amna-Hassan04/Fracture-Detection-Using-X-Rays-with-CNN
☆ Learning in ImaginationLand: Omnidirectional Policies through 3D Generative Models (OP-Gen)
Recent 3D generative models, which are capable of generating full object shapes from just a few images, now open up new opportunities in robotics. In this work, we show that 3D generative models can be used to augment a dataset from a single real-world demonstration, after which an omnidirectional policy can be learned within this imagined dataset. We found that this enables a robot to perform a task when initialised from states very far from those observed during the demonstration, including starting from the opposite side of the object relative to the real-world demonstration, significantly reducing the number of demonstrations required for policy learning. Through several real-world experiments across tasks such as grasping objects, opening a drawer, and placing trash into a bin, we study these omnidirectional policies by investigating the effect of various design choices on policy behaviour, and we show superior performance to recent baselines which use alternative methods for data augmentation.
comment: Project webpage with robot videos: https://www.robot-learning.uk/op-gen
☆ UNO: Unifying One-stage Video Scene Graph Generation via Object-Centric Visual Representation Learning
Video Scene Graph Generation (VidSGG) aims to represent dynamic visual content by detecting objects and modeling their temporal interactions as structured graphs. Prior studies typically target either coarse-grained box-level or fine-grained panoptic pixel-level VidSGG, often requiring task-specific architectures and multi-stage training pipelines. In this paper, we present UNO (UNified Object-centric VidSGG), a single-stage, unified framework that jointly addresses both tasks within an end-to-end architecture. UNO is designed to minimize task-specific modifications and maximize parameter sharing, enabling generalization across different levels of visual granularity. The core of UNO is an extended slot attention mechanism that decomposes visual features into object and relation slots. To ensure robust temporal modeling, we introduce object temporal consistency learning, which enforces consistent object representations across frames without relying on explicit tracking modules. Additionally, a dynamic triplet prediction module links relation slots to corresponding object pairs, capturing evolving interactions over time. We evaluate UNO on standard box-level and pixel-level VidSGG benchmarks. Results demonstrate that UNO not only achieves competitive performance across both tasks but also offers improved efficiency through a unified, object-centric design.
comment: 11 pages, 7 figures
☆ FASL-Seg: Anatomy and Tool Segmentation of Surgical Scenes ECAI
The growing popularity of robotic minimally invasive surgeries has made deep learning-based surgical training a key area of research. A thorough understanding of the surgical scene components is crucial, which semantic segmentation models can help achieve. However, most existing work focuses on surgical tools and overlooks anatomical objects. Additionally, current state-of-the-art (SOTA) models struggle to balance capturing high-level contextual features and low-level edge features. We propose a Feature-Adaptive Spatial Localization model (FASL-Seg), designed to capture features at multiple levels of detail through two distinct processing streams, namely a Low-Level Feature Projection (LLFP) and a High-Level Feature Projection (HLFP) stream, for varying feature resolutions - enabling precise segmentation of anatomy and surgical instruments. We evaluated FASL-Seg on surgical segmentation benchmark datasets EndoVis18 and EndoVis17 on three use cases. The FASL-Seg model achieves a mean Intersection over Union (mIoU) of 72.71% on parts and anatomy segmentation in EndoVis18, improving on SOTA by 5%. It further achieves a mIoU of 85.61% and 72.78% in EndoVis18 and EndoVis17 tool type segmentation, respectively, outperforming SOTA overall performance, with comparable per-class SOTA results in both datasets and consistent performance in various classes for anatomy and instruments, demonstrating the effectiveness of distinct processing streams for varying feature resolutions.
comment: 8 pages, 6 figures, Accepted at the European Conference on Artificial Intelligence (ECAI) 2025. To appear in the conference proceedings
☆ UniVerse-1: Unified Audio-Video Generation via Stitching of Experts
We introduce UniVerse-1, a unified, Veo-3-like model capable of simultaneously generating coordinated audio and video. To enhance training efficiency, we bypass training from scratch and instead employ a stitching of experts (SoE) technique. This approach deeply fuses the corresponding blocks of pre-trained video and music generation experts models, thereby fully leveraging their foundational capabilities. To ensure accurate annotations and temporal alignment for both ambient sounds and speech with video content, we developed an online annotation pipeline that processes the required training data and generates labels during training process. This strategy circumvents the performance degradation often caused by misalignment text-based annotations. Through the synergy of these techniques, our model, after being finetuned on approximately 7,600 hours of audio-video data, produces results with well-coordinated audio-visuals for ambient sounds generation and strong alignment for speech generation. To systematically evaluate our proposed method, we introduce Verse-Bench, a new benchmark dataset. In an effort to advance research in audio-video generation and to close the performance gap with state-of-the-art models such as Veo3, we make our model and code publicly available. We hope this contribution will benefit the broader research community. Project page: https://dorniwang.github.io/UniVerse-1/.
comment: Project page: https://dorniwang.github.io/UniVerse-1/
☆ RetinaGuard: Obfuscating Retinal Age in Fundus Images for Biometric Privacy Preserving
The integration of AI with medical images enables the extraction of implicit image-derived biomarkers for a precise health assessment. Recently, retinal age, a biomarker predicted from fundus images, is a proven predictor of systemic disease risks, behavioral patterns, aging trajectory and even mortality. However, the capability to infer such sensitive biometric data raises significant privacy risks, where unauthorized use of fundus images could lead to bioinformation leakage, breaching individual privacy. In response, we formulate a new research problem of biometric privacy associated with medical images and propose RetinaGuard, a novel privacy-enhancing framework that employs a feature-level generative adversarial masking mechanism to obscure retinal age while preserving image visual quality and disease diagnostic utility. The framework further utilizes a novel multiple-to-one knowledge distillation strategy incorporating a retinal foundation model and diverse surrogate age encoders to enable a universal defense against black-box age prediction models. Comprehensive evaluations confirm that RetinaGuard successfully obfuscates retinal age prediction with minimal impact on image quality and pathological feature representation. RetinaGuard is also flexible for extension to other medical image derived biomarkers. RetinaGuard is also flexible for extension to other medical image biomarkers.
☆ SpecSwin3D: Generating Hyperspectral Imagery from Multispectral Data via Transformer Networks
Multispectral and hyperspectral imagery are widely used in agriculture, environmental monitoring, and urban planning due to their complementary spatial and spectral characteristics. A fundamental trade-off persists: multispectral imagery offers high spatial but limited spectral resolution, while hyperspectral imagery provides rich spectra at lower spatial resolution. Prior hyperspectral generation approaches (e.g., pan-sharpening variants, matrix factorization, CNNs) often struggle to jointly preserve spatial detail and spectral fidelity. In response, we propose SpecSwin3D, a transformer-based model that generates hyperspectral imagery from multispectral inputs while preserving both spatial and spectral quality. Specifically, SpecSwin3D takes five multispectral bands as input and reconstructs 224 hyperspectral bands at the same spatial resolution. In addition, we observe that reconstruction errors grow for hyperspectral bands spectrally distant from the input bands. To address this, we introduce a cascade training strategy that progressively expands the spectral range to stabilize learning and improve fidelity. Moreover, we design an optimized band sequence that strategically repeats and orders the five selected multispectral bands to better capture pairwise relations within a 3D shifted-window transformer framework. Quantitatively, our model achieves a PSNR of 35.82 dB, SAM of 2.40{\deg}, and SSIM of 0.96, outperforming the baseline MHF-Net by +5.6 dB in PSNR and reducing ERGAS by more than half. Beyond reconstruction, we further demonstrate the practical value of SpecSwin3D on two downstream tasks, including land use classification and burnt area segmentation.
☆ CARDIE: clustering algorithm on relevant descriptors for image enhancement
Automatic image clustering is a cornerstone of computer vision, yet its application to image enhancement remains limited, primarily due to the difficulty of defining clusters that are meaningful for this specific task. To address this issue, we introduce CARDIE, an unsupervised algorithm that clusters images based on their color and luminosity content. In addition, we introduce a method to quantify the impact of image enhancement algorithms on luminance distribution and local variance. Using this method, we demonstrate that CARDIE produces clusters more relevant to image enhancement than those derived from semantic image attributes. Furthermore, we demonstrate that CARDIE clusters can be leveraged to resample image enhancement datasets, leading to improved performance for tone mapping and denoising algorithms. To encourage adoption and ensure reproducibility, we publicly release CARDIE code on our GitHub.
☆ PathoHR: Hierarchical Reasoning for Vision-Language Models in Pathology EMNLP2025
Accurate analysis of pathological images is essential for automated tumor diagnosis but remains challenging due to high structural similarity and subtle morphological variations in tissue images. Current vision-language (VL) models often struggle to capture the complex reasoning required for interpreting structured pathological reports. To address these limitations, we propose PathoHR-Bench, a novel benchmark designed to evaluate VL models' abilities in hierarchical semantic understanding and compositional reasoning within the pathology domain. Results of this benchmark reveal that existing VL models fail to effectively model intricate cross-modal relationships, hence limiting their applicability in clinical setting. To overcome this, we further introduce a pathology-specific VL training scheme that generates enhanced and perturbed samples for multimodal contrastive learning. Experimental evaluations demonstrate that our approach achieves state-of-the-art performance on PathoHR-Bench and six additional pathology datasets, highlighting its effectiveness in fine-grained pathology representation.
comment: Accept by EMNLP2025
☆ MedSeqFT: Sequential Fine-tuning Foundation Models for 3D Medical Image Segmentation
Foundation models have become a promising paradigm for advancing medical image analysis, particularly for segmentation tasks where downstream applications often emerge sequentially. Existing fine-tuning strategies, however, remain limited: parallel fine-tuning isolates tasks and fails to exploit shared knowledge, while multi-task fine-tuning requires simultaneous access to all datasets and struggles with incremental task integration. To address these challenges, we propose MedSeqFT, a sequential fine-tuning framework that progressively adapts pre-trained models to new tasks while refining their representational capacity. MedSeqFT introduces two core components: (1) Maximum Data Similarity (MDS) selection, which identifies downstream samples most representative of the original pre-training distribution to preserve general knowledge, and (2) Knowledge and Generalization Retention Fine-Tuning (K&G RFT), a LoRA-based knowledge distillation scheme that balances task-specific adaptation with the retention of pre-trained knowledge. Extensive experiments on two multi-task datasets covering ten 3D segmentation tasks demonstrate that MedSeqFT consistently outperforms state-of-the-art fine-tuning strategies, yielding substantial performance gains (e.g., an average Dice improvement of 3.0%). Furthermore, evaluations on two unseen tasks (COVID-19-20 and Kidney) verify that MedSeqFT enhances transferability, particularly for tumor segmentation. Visual analyses of loss landscapes and parameter variations further highlight the robustness of MedSeqFT. These results establish sequential fine-tuning as an effective, knowledge-retentive paradigm for adapting foundation models to evolving clinical tasks. Code will be released.
comment: 10 pages, 5 figures
☆ High-Quality Tomographic Image Reconstruction Integrating Neural Networks and Mathematical Optimization
In this work, we develop a novel technique for reconstructing images from projection-based nano- and microtomography. Our contribution focuses on enhancing reconstruction quality, particularly for specimen composed of homogeneous material phases connected by sharp edges. This is accomplished by training a neural network to identify edges within subpictures. The trained network is then integrated into a mathematical optimization model, to reduce artifacts from previous reconstructions. To this end, the optimization approach favors solutions according to the learned predictions, however may also determine alternative solutions if these are strongly supported by the raw data. Hence, our technique successfully incorporates knowledge about the homogeneity and presence of sharp edges in the sample and thereby eliminates blurriness. Our results on experimental datasets show significant enhancements in interface sharpness and material homogeneity compared to benchmark algorithms. Thus, our technique produces high-quality reconstructions, showcasing its potential for advancing tomographic imaging techniques.
comment: 36 pages, 17 figures
☆ Multimodal Reasoning for Science: Technical Report and 1st Place Solution to the ICML 2025 SeePhys Challenge
Multimodal reasoning remains a fundamental challenge in artificial intelligence. Despite substantial advances in text-based reasoning, even state-of-the-art models such as GPT-o3 struggle to maintain strong performance in multimodal scenarios. To address this gap, we introduce a caption-assisted reasoning framework that effectively bridges visual and textual modalities. Our approach achieved 1st place in the ICML 2025 AI for Math Workshop \& Challenge 2: SeePhys, highlighting its effectiveness and robustness. Furthermore, we validate its generalization on the MathVerse benchmark for geometric reasoning, demonstrating the versatility of our method. Our code is publicly available at https://github.com/OpenDCAI/SciReasoner.
☆ Home-made Diffusion Model from Scratch to Hatch
We introduce Home-made Diffusion Model (HDM), an efficient yet powerful text-to-image diffusion model optimized for training (and inferring) on consumer-grade hardware. HDM achieves competitive 1024x1024 generation quality while maintaining a remarkably low training cost of $535-620 using four RTX5090 GPUs, representing a significant reduction in computational requirements compared to traditional approaches. Our key contributions include: (1) Cross-U-Transformer (XUT), a novel U-shape transformer, Cross-U-Transformer (XUT), that employs cross-attention for skip connections, providing superior feature integration that leads to remarkable compositional consistency; (2) a comprehensive training recipe that incorporates TREAD acceleration, a novel shifted square crop strategy for efficient arbitrary aspect-ratio training, and progressive resolution scaling; and (3) an empirical demonstration that smaller models (343M parameters) with carefully crafted architectures can achieve high-quality results and emergent capabilities, such as intuitive camera control. Our work provides an alternative paradigm of scaling, demonstrating a viable path toward democratizing high-quality text-to-image generation for individual researchers and smaller organizations with limited computational resources.
☆ Multi-Stage Graph Neural Networks for Data-Driven Prediction of Natural Convection in Enclosed Cavities
Buoyancy-driven heat transfer in closed cavities serves as a canonical testbed for thermal design High-fidelity CFD modelling yields accurate thermal field solutions, yet its reliance on expert-crafted physics models, fine meshes, and intensive computation limits rapid iteration. Recent developments in data-driven modeling, especially Graph Neural Networks (GNNs), offer new alternatives for learning thermal-fluid behavior directly from simulation data, particularly on irregular mesh structures. However, conventional GNNs often struggle to capture long-range dependencies in high-resolution graph structures. To overcome this limitation, we propose a novel multi-stage GNN architecture that leverages hierarchical pooling and unpooling operations to progressively model global-to-local interactions across multiple spatial scales. We evaluate the proposed model on our newly developed CFD dataset simulating natural convection within a rectangular cavities with varying aspect ratios where the bottom wall is isothermal hot, the top wall is isothermal cold, and the two vertical walls are adiabatic. Experimental results demonstrate that the proposed model achieves higher predictive accuracy, improved training efficiency, and reduced long-term error accumulation compared to state-of-the-art (SOTA) GNN baselines. These findings underscore the potential of the proposed multi-stage GNN approach for modeling complex heat transfer in mesh-based fluid dynamics simulations.
☆ BranchGRPO: Stable and Efficient GRPO with Structured Branching in Diffusion Models
Recent advancements in aligning image and video generative models via GRPO have achieved remarkable gains in enhancing human preference alignment. However, these methods still face high computational costs from on-policy rollouts and excessive SDE sampling steps, as well as training instability due to sparse rewards. In this paper, we propose BranchGRPO, a novel method that introduces a branch sampling policy updating the SDE sampling process. By sharing computation across common prefixes and pruning low-reward paths and redundant depths, BranchGRPO substantially lowers the per-update compute cost while maintaining or improving exploration diversity. This work makes three main contributions: (1) a branch sampling scheme that reduces rollout and training cost; (2) a tree-based advantage estimator incorporating dense process-level rewards; and (3) pruning strategies exploiting path and depth redundancy to accelerate convergence and boost performance. Experiments on image and video preference alignment show that BranchGRPO improves alignment scores by 16% over strong baselines, while cutting training time by 50%.
comment: 12 pages, 6 figures
☆ TinyDef-DETR:An Enhanced DETR Detector for UAV Power Line Defect Detection
Automated inspection of transmission lines using UAVs is hindered by the difficulty of detecting small and ambiguous defects against complex backgrounds. Conventional detectors often suffer from detail loss due to strided downsampling, weak boundary sensitivity in lightweight backbones, and insufficient integration of global context with local cues. To address these challenges, we propose TinyDef-DETR, a DETR-based framework designed for small-defect detection. The method introduces a stride-free space-to-depth module for lossless downsampling, an edge-enhanced convolution for boundary-aware feature extraction, a cross-stage dual-domain multi-scale attention module to jointly capture global and local information, and a Focaler-Wise-SIoU regression loss to improve localization of small objects. Experiments conducted on the CSG-ADCD dataset demonstrate that TinyDef-DETR achieves substantial improvements in both precision and recall compared to competitive baselines, with particularly notable gains on small-object subsets, while incurring only modest computational overhead. Further validation on the VisDrone benchmark confirms the generalization capability of the proposed approach. Overall, the results indicate that integrating detail-preserving downsampling, edge-sensitive representations, dual-domain attention, and difficulty-adaptive regression provides a practical and efficient solution for UAV-based small-defect inspection in power grids.
☆ Analysis of Blood Report Images Using General Purpose Vision-Language Models
The reliable analysis of blood reports is important for health knowledge, but individuals often struggle with interpretation, leading to anxiety and overlooked issues. We explore the potential of general-purpose Vision-Language Models (VLMs) to address this challenge by automatically analyzing blood report images. We conduct a comparative evaluation of three VLMs: Qwen-VL-Max, Gemini 2.5 Pro, and Llama 4 Maverick, determining their performance on a dataset of 100 diverse blood report images. Each model was prompted with clinically relevant questions adapted to each blood report. The answers were then processed using Sentence-BERT to compare and evaluate how closely the models responded. The findings suggest that general-purpose VLMs are a practical and promising technology for developing patient-facing tools for preliminary blood report analysis. Their ability to provide clear interpretations directly from images can improve health literacy and reduce the limitations to understanding complex medical information. This work establishes a foundation for the future development of reliable and accessible AI-assisted healthcare applications. While results are encouraging, they should be interpreted cautiously given the limited dataset size.
comment: 4 pages , 3 figures , This paper has been submitted to the IEEE-affiliated ICBME Conference (Iran), 2025, and is currently under review. DOR number: [20.1001.2.0425023682.1404.10.1.440.7]
☆ DVLO4D: Deep Visual-Lidar Odometry with Sparse Spatial-temporal Fusion ICRA 2025
Visual-LiDAR odometry is a critical component for autonomous system localization, yet achieving high accuracy and strong robustness remains a challenge. Traditional approaches commonly struggle with sensor misalignment, fail to fully leverage temporal information, and require extensive manual tuning to handle diverse sensor configurations. To address these problems, we introduce DVLO4D, a novel visual-LiDAR odometry framework that leverages sparse spatial-temporal fusion to enhance accuracy and robustness. Our approach proposes three key innovations: (1) Sparse Query Fusion, which utilizes sparse LiDAR queries for effective multi-modal data fusion; (2) a Temporal Interaction and Update module that integrates temporally-predicted positions with current frame data, providing better initialization values for pose estimation and enhancing model's robustness against accumulative errors; and (3) a Temporal Clip Training strategy combined with a Collective Average Loss mechanism that aggregates losses across multiple frames, enabling global optimization and reducing the scale drift over long sequences. Extensive experiments on the KITTI and Argoverse Odometry dataset demonstrate the superiority of our proposed DVLO4D, which achieves state-of-the-art performance in terms of both pose accuracy and robustness. Additionally, our method has high efficiency, with an inference time of 82 ms, possessing the potential for the real-time deployment.
comment: Accepted by ICRA 2025
☆ Micro-Expression Recognition via Fine-Grained Dynamic Perception
Facial micro-expression recognition (MER) is a challenging task, due to the transience, subtlety, and dynamics of micro-expressions (MEs). Most existing methods resort to hand-crafted features or deep networks, in which the former often additionally requires key frames, and the latter suffers from small-scale and low-diversity training data. In this paper, we develop a novel fine-grained dynamic perception (FDP) framework for MER. We propose to rank frame-level features of a sequence of raw frames in chronological order, in which the rank process encodes the dynamic information of both ME appearances and motions. Specifically, a novel local-global feature-aware transformer is proposed for frame representation learning. A rank scorer is further adopted to calculate rank scores of each frame-level feature. Afterwards, the rank features from rank scorer are pooled in temporal dimension to capture dynamic representation. Finally, the dynamic representation is shared by a MER module and a dynamic image construction module, in which the former predicts the ME category, and the latter uses an encoder-decoder structure to construct the dynamic image. The design of dynamic image construction task is beneficial for capturing facial subtle actions associated with MEs and alleviating the data scarcity issue. Extensive experiments show that our method (i) significantly outperforms the state-of-the-art MER methods, and (ii) works well for dynamic image construction. Particularly, our FDP improves by 4.05%, 2.50%, 7.71%, and 2.11% over the previous best results in terms of F1-score on the CASME II, SAMM, CAS(ME)^2, and CAS(ME)^3 datasets, respectively. The code is available at https://github.com/CYF-cuber/FDP.
☆ Cross-Modal Enhancement and Benchmark for UAV-based Open-Vocabulary Object Detection
Open-Vocabulary Object Detection (OVD) has emerged as a pivotal technology for applications involving Unmanned Aerial Vehicles (UAVs). However, the prevailing large-scale datasets for OVD pre-training are predominantly composed of ground-level, natural images. This creates a significant domain gap, causing models trained on them to exhibit a substantial drop in performance on UAV imagery. To address this limitation, we first propose a refined UAV-Label engine. Then we construct and introduce UAVDE-2M(contains over 2,000,000 instances and 1800 categories) and UAVCAP-15k(contains over 15,000 images). Furthermore, we propose a novel Cross-Attention Gated Enhancement Fusion (CAGE) module and integrate it into the YOLO-World-v2 architecture. Finally, extensive experiments on the VisDrone and SIMD datasets verify the effectiveness of our proposed method for applications in UAV-based imagery and remote sensing.
☆ BLaVe-CoT: Consistency-Aware Visual Question Answering for Blind and Low Vision Users
Visual Question Answering (VQA) holds great potential for assisting Blind and Low Vision (BLV) users, yet real-world usage remains challenging. Due to visual impairments, BLV users often take blurry or poorly framed photos and face difficulty in articulating specific questions about what they cannot fully see. As a result, their visual questions are frequently ambiguous, and different users may interpret them in diverse ways. This leads to multiple valid answers, each grounded in different image regions-posing a mismatch with conventional VQA systems that assume a single answer and region. To bridge this gap, we present BLaVe-CoT, a VQA framework designed to reason about answer consistency in the face of ambiguity. Our method proposes diverse candidate answers using a LoRA-tuned BLIP-2 model, then grounds each answer spatially using PolyFormer, and finally applies a chain-of-thought reasoning module to assess whether the answers refer to the same or different regions. Evaluated on the VQA-AnswerTherapy benchmark, BLaVe-CoT outperforms previous methods and proves more robust to the ambiguity and visual noise common in assistive settings. This work highlights the need for VQA systems that can adapt to real human uncertainty and provide inclusive support for BLV users. To foster further research and accessibility applications, we have made the code publicly available at https://github.com/Accecwan/BLaVe-CoT.
☆ Khana: A Comprehensive Indian Cuisine Dataset
As global interest in diverse culinary experiences grows, food image models are essential for improving food-related applications by enabling accurate food recognition, recipe suggestions, dietary tracking, and automated meal planning. Despite the abundance of food datasets, a noticeable gap remains in capturing the nuances of Indian cuisine due to its vast regional diversity, complex preparations, and the lack of comprehensive labeled datasets that cover its full breadth. Through this exploration, we uncover Khana, a new benchmark dataset for food image classification, segmentation, and retrieval of dishes from Indian cuisine. Khana fills the gap by establishing a taxonomy of Indian cuisine and offering around 131K images in the dataset spread across 80 labels, each with a resolution of 500x500 pixels. This paper describes the dataset creation process and evaluates state-of-the-art models on classification, segmentation, and retrieval as baselines. Khana bridges the gap between research and development by providing a comprehensive and challenging benchmark for researchers while also serving as a valuable resource for developers creating real-world applications that leverage the rich tapestry of Indian cuisine. Webpage: https://khana.omkar.xyz
☆ Motion Aware ViT-based Framework for Monocular 6-DoF Spacecraft Pose Estimation
Monocular 6-DoF pose estimation plays an important role in multiple spacecraft missions. Most existing pose estimation approaches rely on single images with static keypoint localisation, failing to exploit valuable temporal information inherent to space operations. In this work, we adapt a deep learning framework from human pose estimation to the spacecraft pose estimation domain that integrates motion-aware heatmaps and optical flow to capture motion dynamics. Our approach combines image features from a Vision Transformer (ViT) encoder with motion cues from a pre-trained optical flow model to localise 2D keypoints. Using the estimates, a Perspective-n-Point (PnP) solver recovers 6-DoF poses from known 2D-3D correspondences. We train and evaluate our method on the SPADES-RGB dataset and further assess its generalisation on real and synthetic data from the SPARK-2024 dataset. Overall, our approach demonstrates improved performance over single-image baselines in both 2D keypoint localisation and 6-DoF pose estimation. Furthermore, it shows promising generalisation capabilities when testing on different data distributions.
☆ S-LAM3D: Segmentation-Guided Monocular 3D Object Detection via Feature Space Fusion SP 2025
Monocular 3D Object Detection represents a challenging Computer Vision task due to the nature of the input used, which is a single 2D image, lacking in any depth cues and placing the depth estimation problem as an ill-posed one. Existing solutions leverage the information extracted from the input by using Convolutional Neural Networks or Transformer architectures as feature extraction backbones, followed by specific detection heads for 3D parameters prediction. In this paper, we introduce a decoupled strategy based on injecting precomputed segmentation information priors and fusing them directly into the feature space for guiding the detection, without expanding the detection model or jointly learning the priors. The focus is on evaluating the impact of additional segmentation information on existing detection pipelines without adding additional prediction branches. The proposed method is evaluated on the KITTI 3D Object Detection Benchmark, outperforming the equivalent architecture that relies only on RGB image features for small objects in the scene: pedestrians and cyclists, and proving that understanding the input data can balance the need for additional sensors or training data.
comment: 6 pages. Accepted to MMSP 2025
☆ Multi-Strategy Guided Diffusion via Sparse Masking Temporal Reweighting Distribution Correction
Diffusion models have demonstrated remarkable generative capabilities in image processing tasks. We propose a Sparse condition Temporal Rewighted Integrated Distribution Estimation guided diffusion model (STRIDE) for sparse-view CT reconstruction. Specifically, we design a joint training mechanism guided by sparse conditional probabilities to facilitate the model effective learning of missing projection view completion and global information modeling. Based on systematic theoretical analysis, we propose a temporally varying sparse condition reweighting guidance strategy to dynamically adjusts weights during the progressive denoising process from pure noise to the real image, enabling the model to progressively perceive sparse-view information. The linear regression is employed to correct distributional shifts between known and generated data, mitigating inconsistencies arising during the guidance process. Furthermore, we construct a dual-network parallel architecture to perform global correction and optimization across multiple sub-frequency components, thereby effectively improving the model capability in both detail restoration and structural preservation, ultimately achieving high-quality image reconstruction. Experimental results on both public and real datasets demonstrate that the proposed method achieves the best improvement of 2.58 dB in PSNR, increase of 2.37\% in SSIM, and reduction of 0.236 in MSE compared to the best-performing baseline methods. The reconstructed images exhibit excellent generalization and robustness in terms of structural consistency, detail restoration, and artifact suppression.
☆ Imagining Alternatives: Towards High-Resolution 3D Counterfactual Medical Image Generation via Language Guidance
Vision-language models have demonstrated impressive capabilities in generating 2D images under various conditions; however the impressive performance of these models in 2D is largely enabled by extensive, readily available pretrained foundation models. Critically, comparable pretrained foundation models do not exist for 3D, significantly limiting progress in this domain. As a result, the potential of vision-language models to produce high-resolution 3D counterfactual medical images conditioned solely on natural language descriptions remains completely unexplored. Addressing this gap would enable powerful clinical and research applications, such as personalized counterfactual explanations, simulation of disease progression scenarios, and enhanced medical training by visualizing hypothetical medical conditions in realistic detail. Our work takes a meaningful step toward addressing this challenge by introducing a framework capable of generating high-resolution 3D counterfactual medical images of synthesized patients guided by free-form language prompts. We adapt state-of-the-art 3D diffusion models with enhancements from Simple Diffusion and incorporate augmented conditioning to improve text alignment and image quality. To our knowledge, this represents the first demonstration of a language-guided native-3D diffusion model applied specifically to neurological imaging data, where faithful three-dimensional modeling is essential to represent the brain's three-dimensional structure. Through results on two distinct neurological MRI datasets, our framework successfully simulates varying counterfactual lesion loads in Multiple Sclerosis (MS), and cognitive states in Alzheimer's disease, generating high-quality images while preserving subject fidelity in synthetically generated medical images. Our results lay the groundwork for prompt-driven disease progression analysis within 3D medical imaging.
☆ ConstStyle: Robust Domain Generalization with Unified Style Transformation ICCV 2025
Deep neural networks often suffer performance drops when test data distribution differs from training data. Domain Generalization (DG) aims to address this by focusing on domain-invariant features or augmenting data for greater diversity. However, these methods often struggle with limited training domains or significant gaps between seen (training) and unseen (test) domains. To enhance DG robustness, we hypothesize that it is essential for the model to be trained on data from domains that closely resemble unseen test domains-an inherently difficult task due to the absence of prior knowledge about the unseen domains. Accordingly, we propose ConstStyle, a novel approach that leverages a unified domain to capture domain-invariant features and bridge the domain gap with theoretical analysis. During training, all samples are mapped onto this unified domain, optimized for seen domains. During testing, unseen domain samples are projected similarly before predictions. By aligning both training and testing data within this unified domain, ConstStyle effectively reduces the impact of domain shifts, even with large domain gaps or few seen domains. Extensive experiments demonstrate that ConstStyle consistently outperforms existing methods across diverse scenarios. Notably, when only a limited number of seen domains are available, ConstStyle can boost accuracy up to 19.82\% compared to the next best approach.
comment: Accepted at ICCV 2025
☆ OmniStyle2: Scalable and High Quality Artistic Style Transfer Data Generation via Destylization
OmniStyle2 introduces a novel approach to artistic style transfer by reframing it as a data problem. Our key insight is destylization, reversing style transfer by removing stylistic elements from artworks to recover natural, style-free counterparts. This yields DST-100K, a large-scale dataset that provides authentic supervision signals by aligning real artistic styles with their underlying content. To build DST-100K, we develop (1) DST, a text-guided destylization model that reconstructs stylefree content, and (2) DST-Filter, a multi-stage evaluation model that employs Chain-of-Thought reasoning to automatically discard low-quality pairs while ensuring content fidelity and style accuracy. Leveraging DST-100K, we train OmniStyle2, a simple feed-forward model based on FLUX.1-dev. Despite its simplicity, OmniStyle2 consistently surpasses state-of-the-art methods across both qualitative and quantitative benchmarks. Our results demonstrate that scalable data generation via destylization provides a reliable supervision paradigm, overcoming the fundamental challenge posed by the lack of ground-truth data in artistic style transfer.
comment: Project Page: https://wangyephd.github.io/projects/omnistyle2.html
☆ Spatial-Aware Self-Supervision for Medical 3D Imaging with Multi-Granularity Observable Tasks
The application of self-supervised techniques has become increasingly prevalent within medical visualization tasks, primarily due to its capacity to mitigate the data scarcity prevalent in the healthcare sector. The majority of current works are influenced by designs originating in the generic 2D visual domain, which lack the intuitive demonstration of the model's learning process regarding 3D spatial knowledge. Consequently, these methods often fall short in terms of medical interpretability. We propose a method consisting of three sub-tasks to capture the spatially relevant semantics in medical 3D imaging. Their design adheres to observable principles to ensure interpretability, and minimize the performance loss caused thereby as much as possible. By leveraging the enhanced semantic depth offered by the extra dimension in 3D imaging, this approach incorporates multi-granularity spatial relationship modeling to maintain training stability. Experimental findings suggest that our approach is capable of delivering performance that is on par with current methodologies, while facilitating an intuitive understanding of the self-supervised learning process.
☆ Neural Bloom: A Deep Learning Approach to Real-Time Lighting
We propose a novel method to generate bloom lighting effect in real time using neural networks. Our solution generate brightness mask from given 3D scene view up to 30% faster than state-of-the-art methods. The existing traditional techniques rely on multiple blur appliances and texture sampling, also very often have existing conditional branching in its implementation. These operations occupy big portion of the execution time. We solve this problem by proposing two neural network-based bloom lighting methods, Neural Bloom Lighting (NBL) and Fast Neural Bloom Lighting (FastNBL), focusing on their quality and performance. Both methods were tested on a variety of 3D scenes, with evaluations conducted on brightness mask accuracy and inference speed. The main contribution of this work is that both methods produce high-quality bloom effects while outperforming the standard state-of-the-art bloom implementation, with FastNBL being faster by 28% and NBL faster by 12%. These findings highlight that we can achieve realistic bloom lighting phenomena faster, moving us towards more realism in real-time environments in the future. This improvement saves computational resources, which is a major bottleneck in real-time rendering. Furthermore, it is crucial for sustaining immersion and ensuring smooth experiences in high FPS environments, while maintaining high-quality realism.
☆ StripDet: Strip Attention-Based Lightweight 3D Object Detection from Point Cloud
The deployment of high-accuracy 3D object detection models from point cloud remains a significant challenge due to their substantial computational and memory requirements. To address this, we introduce StripDet, a novel lightweight framework designed for on-device efficiency. First, we propose the novel Strip Attention Block (SAB), a highly efficient module designed to capture long-range spatial dependencies. By decomposing standard 2D convolutions into asymmetric strip convolutions, SAB efficiently extracts directional features while reducing computational complexity from quadratic to linear. Second, we design a hardware-friendly hierarchical backbone that integrates SAB with depthwise separable convolutions and a simple multiscale fusion strategy, achieving end-to-end efficiency. Extensive experiments on the KITTI dataset validate StripDet's superiority. With only 0.65M parameters, our model achieves a 79.97% mAP for car detection, surpassing the baseline PointPillars with a 7x parameter reduction. Furthermore, StripDet outperforms recent lightweight and knowledge distillation-based methods, achieving a superior accuracy-efficiency trade-off while establishing itself as a practical solution for real-world 3D detection on edge devices.
☆ Dual Interaction Network with Cross-Image Attention for Medical Image Segmentation
Medical image segmentation is a crucial method for assisting professionals in diagnosing various diseases through medical imaging. However, various factors such as noise, blurriness, and low contrast often hinder the accurate diagnosis of diseases. While numerous image enhancement techniques can mitigate these issues, they may also alter crucial information needed for accurate diagnosis in the original image. Conventional image fusion strategies, such as feature concatenation can address this challenge. However, they struggle to fully leverage the advantages of both original and enhanced images while suppressing the side effects of the enhancements. To overcome the problem, we propose a dual interactive fusion module (DIFM) that effectively exploits mutual complementary information from the original and enhanced images. DIFM employs cross-attention bidirectionally to simultaneously attend to corresponding spatial information across different images, subsequently refining the complementary features via global spatial attention. This interaction leverages low- to high-level features implicitly associated with diverse structural attributes like edges, blobs, and object shapes, resulting in enhanced features that embody important spatial characteristics. In addition, we introduce a multi-scale boundary loss based on gradient extraction to improve segmentation accuracy at object boundaries. Experimental results on the ACDC and Synapse datasets demonstrate the superiority of the proposed method quantitatively and qualitatively. Code available at: https://github.com/JJeong-Gari/DIN
comment: 16pages
☆ Coefficients-Preserving Sampling for Reinforcement Learning with Flow Matching
Reinforcement Learning (RL) has recently emerged as a powerful technique for improving image and video generation in Diffusion and Flow Matching models, specifically for enhancing output quality and alignment with prompts. A critical step for applying online RL methods on Flow Matching is the introduction of stochasticity into the deterministic framework, commonly realized by Stochastic Differential Equation (SDE). Our investigation reveals a significant drawback to this approach: SDE-based sampling introduces pronounced noise artifacts in the generated images, which we found to be detrimental to the reward learning process. A rigorous theoretical analysis traces the origin of this noise to an excess of stochasticity injected during inference. To address this, we draw inspiration from Denoising Diffusion Implicit Models (DDIM) to reformulate the sampling process. Our proposed method, Coefficients-Preserving Sampling (CPS), eliminates these noise artifacts. This leads to more accurate reward modeling, ultimately enabling faster and more stable convergence for reinforcement learning-based optimizers like Flow-GRPO and Dance-GRPO. Code will be released at https://github.com/IamCreateAI/FlowCPS
comment: work in progress
☆ AttriPrompt: Dynamic Prompt Composition Learning for CLIP
The evolution of prompt learning methodologies has driven exploration of deeper prompt designs to enhance model performance. However, current deep text prompting approaches suffer from two critical limitations: Over-reliance on constrastive learning objectives that prioritize high-level semantic alignment, neglecting fine-grained feature optimization; Static prompts across all input categories, preventing content-aware adaptation. To address these limitations, we propose AttriPrompt-a novel framework that enhances and refines textual semantic representations by leveraging the intermediate-layer features of CLIP's vision encoder. We designed an Attribute Retrieval module that first clusters visual features from each layer. The aggregated visual features retrieve semantically similar prompts from a prompt pool, which are then concatenated to the input of every layer in the text encoder. Leveraging hierarchical visual information embedded in prompted text features, we introduce Dual-stream Contrastive Learning to realize fine-grained alignment. Furthermore, we introduce a Self-Regularization mechanism by applying explicit regularization constraints between the prompted and non-prompted text features to prevent overfitting on limited training data. Extensive experiments across three benchmarks demonstrate AttriPrompt's superiority over state-of-the-art methods, achieving up to 7.37\% improvement in the base-to-novel setting. The observed strength of our method in cross-domain knowledge transfer positions vision-language pre-trained models as more viable solutions for real-world implementation.
☆ Compression Beyond Pixels: Semantic Compression with Multimodal Foundation Models IEEE 35
Recent deep learning-based methods for lossy image compression achieve competitive rate-distortion performance through extensive end-to-end training and advanced architectures. However, emerging applications increasingly prioritize semantic preservation over pixel-level reconstruction and demand robust performance across diverse data distributions and downstream tasks. These challenges call for advanced semantic compression paradigms. Motivated by the zero-shot and representational capabilities of multimodal foundation models, we propose a novel semantic compression method based on the contrastive language-image pretraining (CLIP) model. Rather than compressing images for reconstruction, we propose compressing the CLIP feature embeddings into minimal bits while preserving semantic information across different tasks. Experiments show that our method maintains semantic integrity across benchmark datasets, achieving an average bit rate of approximately 2-3* 10(-3) bits per pixel. This is less than 5% of the bitrate required by mainstream image compression approaches for comparable performance. Remarkably, even under extreme compression, the proposed approach exhibits zero-shot robustness across diverse data distributions and downstream tasks.
comment: Published as a conference paper at IEEE 35th Workshop on Machine Learning for Signal Processing (MLSP)
☆ eKalibr-Inertial: Continuous-Time Spatiotemporal Calibration for Event-Based Visual-Inertial Systems
The bioinspired event camera, distinguished by its exceptional temporal resolution, high dynamic range, and low power consumption, has been extensively studied in recent years for motion estimation, robotic perception, and object detection. In ego-motion estimation, the visual-inertial setup is commonly adopted due to complementary characteristics between sensors (e.g., scale perception and low drift). For optimal event-based visual-inertial fusion, accurate spatiotemporal (extrinsic and temporal) calibration is required. In this work, we present eKalibr-Inertial, an accurate spatiotemporal calibrator for event-based visual-inertial systems, utilizing the widely used circle grid board. Building upon the grid pattern recognition and tracking methods in eKalibr and eKalibr-Stereo, the proposed method starts with a rigorous and efficient initialization, where all parameters in the estimator would be accurately recovered. Subsequently, a continuous-time-based batch optimization is conducted to refine the initialized parameters toward better states. The results of extensive real-world experiments show that eKalibr-Inertial can achieve accurate event-based visual-inertial spatiotemporal calibration. The implementation of eKalibr-Inertial is open-sourced at (https://github.com/Unsigned-Long/eKalibr) to benefit the research community.
☆ A Fine-Grained Attention and Geometric Correspondence Model for Musculoskeletal Risk Classification in Athletes Using Multimodal Visual and Skeletal Features
Musculoskeletal disorders pose significant risks to athletes, and assessing risk early is important for prevention. However, most existing methods are designed for controlled settings and fail to reliably assess risk in complex environments due to their reliance on a single type of data. This research proposes ViSK-GAT (Visual-Skeletal Geometric Attention Transformer), a novel multimodal deep learning framework designed to classify musculoskeletal risk using visual and skeletal coordinate-based features. In addition, a custom multimodal dataset is constructed by combining visual data and skeletal coordinates for risk assessment. Each sample is labeled into eight risk categories based on the Rapid Entire Body Assessment system. ViSK-GAT combines a Residual Block with a Lightweight Transformer Block to learn spatial and temporal dependencies jointly. It incorporates two novel modules: the Fine-Grained Attention Module (FGAM), which enables precise inter-modal feature refinement through cross-attention between visual and skeletal inputs, and the Multimodal Geometric Correspondence Module (MGCM), which enhances cross-modal coherence by aligning image features with coordinate-based representations. ViSK-GAT achieved strong performance with validation and test accuracies of 93.55\% and 93.89\%, respectively; a precision of 93.86\%; an F1 score of 93.85\%; and Cohen's Kappa and Matthews Correlation Coefficient of 93\%. The regression results also indicated a low Root Mean Square Error of the predicted probability distribution of 0.1205 and a corresponding Mean Absolute Error of 0.0156. Compared to nine popular transfer learning backbones, ViSK-GAT consistently outperformed previous methods. The ViSK-GAT model advances artificial intelligence implementation and application, transforming musculoskeletal risk classification and enabling impactful early interventions in sports.
comment: 16 pages, 6 figures, 8 tables
☆ BTCChat: Advancing Remote Sensing Bi-temporal Change Captioning with Multimodal Large Language Model ICASSP 2026
Bi-temporal satellite imagery supports critical applications such as urban development monitoring and disaster assessment. Although powerful multimodal large language models (MLLMs) have been applied in bi-temporal change analysis, previous methods process image pairs through direct concatenation, inadequately modeling temporal correlations and spatial semantic changes. This deficiency hampers visual-semantic alignment in change understanding, thereby constraining the overall effectiveness of current approaches. To address this gap, we propose BTCChat, a multi-temporal MLLM with advanced bi-temporal change understanding capability. BTCChat supports bi-temporal change captioning and retains single-image interpretation capability. To better capture temporal features and spatial semantic changes in image pairs, we design a Change Extraction module. Moreover, to enhance the model's attention to spatial details, we introduce a Prompt Augmentation mechanism, which incorporates contextual clues into the prompt to enhance model performance. Experimental results demonstrate that BTCChat achieves state-of-the-art performance on change captioning and visual question answering tasks.
comment: 5 pages, 2 figures Submitted to ICASSP 2026
☆ Challenges in Deep Learning-Based Small Organ Segmentation: A Benchmarking Perspective for Medical Research with Limited Datasets
Accurate segmentation of carotid artery structures in histopathological images is vital for advancing cardiovascular disease research and diagnosis. However, deep learning model development in this domain is constrained by the scarcity of annotated cardiovascular histopathological data. This study investigates a systematic evaluation of state-of-the-art deep learning segmentation models, including convolutional neural networks (U-Net, DeepLabV3+), a Vision Transformer (SegFormer), and recent foundation models (SAM, MedSAM, MedSAM+UNet), on a limited dataset of cardiovascular histology images. Despite employing an extensive hyperparameter optimization strategy with Bayesian search, our findings reveal that model performance is highly sensitive to data splits, with minor differences driven more by statistical noise than by true algorithmic superiority. This instability exposes the limitations of standard benchmarking practices in low-data clinical settings and challenges the assumption that performance rankings reflect meaningful clinical utility.
☆ Near Real-Time Dust Aerosol Detection with 3D Convolutional Neural Networks on MODIS Data
Dust storms harm health and reduce visibility; quick detection from satellites is needed. We present a near real-time system that flags dust at the pixel level using multi-band images from NASA's Terra and Aqua (MODIS). A 3D convolutional network learns patterns across all 36 bands, plus split thermal bands, to separate dust from clouds and surface features. Simple normalization and local filling handle missing data. An improved version raises training speed by 21x and supports fast processing of full scenes. On 17 independent MODIS scenes, the model reaches about 0.92 accuracy with a mean squared error of 0.014. Maps show strong agreement in plume cores, with most misses along edges. These results show that joint band-and-space learning can provide timely dust alerts at global scale; using wider input windows or attention-based models may further sharpen edges.
comment: 29th International Conference on Image Processing, Computer Vision, & Pattern Recognition (IPCV'25)
☆ Moment- and Power-Spectrum-Based Gaussianity Regularization for Text-to-Image Models NeurIPS 2025
We propose a novel regularization loss that enforces standard Gaussianity, encouraging samples to align with a standard Gaussian distribution. This facilitates a range of downstream tasks involving optimization in the latent space of text-to-image models. We treat elements of a high-dimensional sample as one-dimensional standard Gaussian variables and define a composite loss that combines moment-based regularization in the spatial domain with power spectrum-based regularization in the spectral domain. Since the expected values of moments and power spectrum distributions are analytically known, the loss promotes conformity to these properties. To ensure permutation invariance, the losses are applied to randomly permuted inputs. Notably, existing Gaussianity-based regularizations fall within our unified framework: some correspond to moment losses of specific orders, while the previous covariance-matching loss is equivalent to our spectral loss but incurs higher time complexity due to its spatial-domain computation. We showcase the application of our regularization in generative modeling for test-time reward alignment with a text-to-image model, specifically to enhance aesthetics and text alignment. Our regularization outperforms previous Gaussianity regularization, effectively prevents reward hacking and accelerates convergence.
comment: Submitted to NeurIPS 2025
♻ ☆ EdgeSAM: Prompt-In-the-Loop Distillation for SAM
This paper presents EdgeSAM, an accelerated variant of the Segment Anything Model (SAM), optimized for efficient execution on edge devices with minimal compromise in performance. Our approach involves distilling the original ViT-based SAM image encoder into a purely CNN-based architecture, better suited for edge devices. We carefully benchmark various distillation strategies and demonstrate that task-agnostic encoder distillation fails to capture the full knowledge embodied in SAM. To overcome this bottleneck, we include both the prompt encoder and mask decoder in the distillation process, with box and point prompts in the loop, so that the distilled model can accurately capture the intricate dynamics between user input and mask generation. To mitigate dataset bias issues stemming from point prompt distillation, we incorporate a lightweight module within the encoder. As a result, EdgeSAM achieves a 37-fold speed increase compared to the original SAM, and it also outperforms MobileSAM/EfficientSAM, being over 7 times as fast when deployed on edge devices while enhancing the mIoUs on COCO and LVIS by 2.3/1.5 and 3.1/1.6, respectively. It is also the first SAM variant that can run at over 30 FPS on an iPhone 14. Code and demo are available at https://www.mmlab-ntu.com/project/edgesam.
comment: IJCV 2025. Project page: https://www.mmlab-ntu.com/project/edgesam
♻ ☆ Semantic Discrepancy-aware Detector for Image Forgery Identification
With the rapid advancement of image generation techniques, robust forgery detection has become increasingly imperative to ensure the trustworthiness of digital media. Recent research indicates that the learned semantic concepts of pre-trained models are critical for identifying fake images. However, the misalignment between the forgery and semantic concept spaces hinders the model's forgery detection performance. To address this problem, we propose a novel Semantic Discrepancy-aware Detector (SDD) that leverages reconstruction learning to align the two spaces at a fine-grained visual level. By exploiting the conceptual knowledge embedded in the pre-trained vision language model, we specifically design a semantic token sampling module to mitigate the space shifts caused by features irrelevant to both forgery traces and semantic concepts. A concept-level forgery discrepancy learning module, built upon a visual reconstruction paradigm, is proposed to strengthen the interaction between visual semantic concepts and forgery traces, effectively capturing discrepancies under the concepts' guidance. Finally, the low-level forgery feature enhancemer integrates the learned concept level forgery discrepancies to minimize redundant forgery information. Experiments conducted on two standard image forgery datasets demonstrate the efficacy of the proposed SDD, which achieves superior results compared to existing methods. The code is available at https://github.com/wzy1111111/SSD.
comment: 10 pages, 5 figures
♻ ☆ MovieCORE: COgnitive REasoning in Movies EMNLP'2025
This paper introduces MovieCORE, a novel video question answering (VQA) dataset designed to probe deeper cognitive understanding of movie content. Unlike existing datasets that focus on surface-level comprehension, MovieCORE emphasizes questions that engage System-2 thinking while remaining specific to the video material. We present an innovative agentic brainstorming approach, utilizing multiple large language models (LLMs) as thought agents to generate and refine high-quality question-answer pairs. To evaluate dataset quality, we develop a set of cognitive tests assessing depth, thought-provocation potential, and syntactic complexity. We also propose a comprehensive evaluation scheme for assessing VQA model performance on deeper cognitive tasks. To address the limitations of existing video-language models (VLMs), we introduce an agentic enhancement module, Agentic Choice Enhancement (ACE), which improves model reasoning capabilities post-training by up to 25%. Our work contributes to advancing movie understanding in AI systems and provides valuable insights into the capabilities and limitations of current VQA models when faced with more challenging, nuanced questions about cinematic content. Our project page, dataset and code can be found at https://joslefaure.github.io/assets/html/moviecore.html.
comment: Accepted for EMNLP'2025 Main Conference. Project Page: https://joslefaure.github.io/assets/html/moviecore.html
♻ ☆ FAAGC: Feature Augmentation on Adaptive Geodesic Curve Based on the shape space theory
Deep learning models have been widely applied across various domains and industries. However, many fields still face challenges due to limited and insufficient data. This paper proposes a Feature Augmentation on Adaptive Geodesic Curve (FAAGC) method in the pre-shape space to increase data. In the pre-shape space, objects with identical shapes lie on a great circle. Thus, we project deep model representations into the pre-shape space and construct a geodesic curve, i.e., an arc of a great circle, for each class. Feature augmentation is then performed by sampling along these geodesic paths. Extensive experiments demonstrate that FAAGC improves classification accuracy under data-scarce conditions and generalizes well across various feature types.
♻ ☆ Kwai Keye-VL 1.5 Technical Report
In recent years, the development of Large Language Models (LLMs) has significantly advanced, extending their capabilities to multimodal tasks through Multimodal Large Language Models (MLLMs). However, video understanding remains a challenging area due to the dynamic and information-dense nature of videos. Existing models struggle with the trade-off between spatial resolution and temporal coverage when processing video content. We present Keye-VL-1.5, which addresses fundamental challenges in video comprehension through three key innovations. First, we introduce a novel Slow-Fast video encoding strategy that dynamically allocates computational resources based on inter-frame similarity, processing key frames with significant visual changes at higher resolution (Slow pathway) while handling relatively static frames with increased temporal coverage at lower resolution (Fast pathway). Second, we implement a progressive four-stage pre-training methodology that systematically extends the model's context length from 8K to 128K tokens, enabling processing of longer videos and more complex visual content. Third, we develop a comprehensive post-training pipeline focusing on reasoning enhancement and human preference alignment, incorporating a 5-step chain-of-thought data construction process, iterative GSPO-based reinforcement learning with progressive prompt hinting for difficult cases, and alignment training. Through extensive evaluation on public benchmarks and rigorous internal human assessment, Keye-VL-1.5 demonstrates significant improvements over existing models, particularly excelling in video understanding tasks while maintaining competitive performance on general multimodal benchmarks.
comment: Github page: https://github.com/Kwai-Keye/Keye
♻ ☆ Efficient and Accurate Pneumonia Detection Using a Novel Multi-Scale Transformer Approach
Pneumonia, a prevalent respiratory infection, remains a leading cause of morbidity and mortality worldwide, particularly among vulnerable populations. Chest X-rays serve as a primary tool for pneumonia detection; however, variations in imaging conditions and subtle visual indicators complicate consistent interpretation. Automated tools can enhance traditional methods by improving diagnostic reliability and supporting clinical decision-making. In this study, we propose a novel multi-scale transformer approach for pneumonia detection that integrates lung segmentation and classification into a unified framework. Our method introduces a lightweight transformer-enhanced TransUNet for precise lung segmentation, achieving a Dice score of 95.68% on the "Chest X-ray Masks and Labels" dataset with fewer parameters than traditional transformers. For classification, we employ pre-trained ResNet models (ResNet-50 and ResNet-101) to extract multi-scale feature maps, which are then processed through a modified transformer module to enhance pneumonia detection. This integration of multi-scale feature extraction and lightweight transformer modules ensures robust performance, making our method suitable for resource-constrained clinical environments. Our approach achieves 93.75% accuracy on the "Kermany" dataset and 96.04% accuracy on the "Cohen" dataset, outperforming existing methods while maintaining computational efficiency. This work demonstrates the potential of multi-scale transformer architectures to improve pneumonia diagnosis, offering a scalable and accurate solution to global healthcare challenges. https://github.com/amirrezafateh/Multi-Scale-Transformer-Pneumonia
♻ ☆ DiffOSeg: Omni Medical Image Segmentation via Multi-Expert Collaboration Diffusion Model
Annotation variability remains a substantial challenge in medical image segmentation, stemming from ambiguous imaging boundaries and diverse clinical expertise. Traditional deep learning methods producing single deterministic segmentation predictions often fail to capture these annotator biases. Although recent studies have explored multi-rater segmentation, existing methods typically focus on a single perspective -- either generating a probabilistic ``gold standard'' consensus or preserving expert-specific preferences -- thus struggling to provide a more omni view. In this study, we propose DiffOSeg, a two-stage diffusion-based framework, which aims to simultaneously achieve both consensus-driven (combining all experts' opinions) and preference-driven (reflecting experts' individual assessments) segmentation. Stage I establishes population consensus through a probabilistic consensus strategy, while Stage II captures expert-specific preference via adaptive prompts. Demonstrated on two public datasets (LIDC-IDRI and NPC-170), our model outperforms existing state-of-the-art methods across all evaluated metrics. Source code is available at https://github.com/string-ellipses/DiffOSeg .
♻ ☆ ADIR: Adaptive Diffusion for Image Reconstruction
Denoising diffusion models have recently achieved remarkable success in image generation, capturing rich information about natural image statistics. This makes them highly promising for image reconstruction, where the goal is to recover a clean image from a degraded observation. In this work, we introduce a conditional sampling framework that leverages the powerful priors learned by diffusion models while enforcing consistency with the available measurements. To further adapt pre-trained diffusion models to the specific degradation at hand, we propose a novel fine-tuning strategy. In particular, we employ LoRA-based adaptation using images that are semantically and visually similar to the degraded input, efficiently retrieved from a large and diverse dataset via an off-the-shelf vision-language model. We evaluate our approach on two leading publicly available diffusion models--Stable Diffusion and Guided Diffusion--and demonstrate that our method, termed Adaptive Diffusion for Image Reconstruction (ADIR), yields substantial improvements across a range of image reconstruction tasks.
comment: Project page https://shadyabh.github.io/ADIR/
♻ ☆ StreamMind: Unlocking Full Frame Rate Streaming Video Dialogue through Event-Gated Cognition
With the rise of real-world human-AI interaction applications, such as AI assistants, the need for Streaming Video Dialogue is critical. To address this need, we introduce StreamMind, a video LLM framework that achieves ultra-FPS streaming video processing (100 fps on a single A100) and enables proactive, always-on responses in real time, without explicit user intervention. To solve the key challenge of the contradiction between linear video streaming speed and quadratic transformer computation cost, we propose a novel perception-cognition interleaving paradigm named ''event-gated LLM invocation'', in contrast to the existing per-time-step LLM invocation. By introducing a Cognition Gate network between the video encoder and the LLM, LLM is only invoked when relevant events occur. To realize the event feature extraction with constant cost, we propose Event-Preserving Feature Extractor (EPFE) based on state-space method, generating a single perception token for spatiotemporal features. These techniques enable the video LLM with full-FPS perception and real-time cognition response. Experiments on Ego4D and SoccerNet streaming tasks, as well as standard offline benchmarks, demonstrate state-of-the-art performance in both model capability and real-time efficiency, paving the way for ultra-high-FPS applications, such as Game AI and interactive media. The code and data is available at https://aka.ms/StreamMind.
♻ ☆ Support or Refute: Analyzing the Stance of Evidence to Detect Out-of-Context Mis- and Disinformation EMNLP 2023
Mis- and disinformation online have become a major societal problem as major sources of online harms of different kinds. One common form of mis- and disinformation is out-of-context (OOC) information, where different pieces of information are falsely associated, e.g., a real image combined with a false textual caption or a misleading textual description. Although some past studies have attempted to defend against OOC mis- and disinformation through external evidence, they tend to disregard the role of different pieces of evidence with different stances. Motivated by the intuition that the stance of evidence represents a bias towards different detection results, we propose a stance extraction network (SEN) that can extract the stances of different pieces of multi-modal evidence in a unified framework. Moreover, we introduce a support-refutation score calculated based on the co-occurrence relations of named entities into the textual SEN. Extensive experiments on a public large-scale dataset demonstrated that our proposed method outperformed the state-of-the-art baselines, with the best model achieving a performance gain of 3.2% in accuracy. The source code and checkpoints are publicly available at https://github.com/yx3266/SEN.
comment: Accepted and published by EMNLP 2023. Details can be found in https://aclanthology.org/2023.emnlp-main.259
♻ ☆ MESTI-MEGANet: Micro-expression Spatio-Temporal Image and Micro-expression Gradient Attention Networks for Micro-expression Recognition
Micro-expression recognition (MER) is a challenging task due to the subtle and fleeting nature of micro-expressions. Traditional input modalities, such as Apex Frame, Optical Flow, and Dynamic Image, often fail to adequately capture these brief facial movements, resulting in suboptimal performance. In this study, we introduce the Micro-expression Spatio-Temporal Image (MESTI), a novel dynamic input modality that transforms a video sequence into a single image while preserving the essential characteristics of micro-movements. Additionally, we present the Micro-expression Gradient Attention Network (MEGANet), which incorporates a novel Gradient Attention block to enhance the extraction of fine-grained motion features from micro-expressions. By combining MESTI and MEGANet, we aim to establish a more effective approach to MER. Extensive experiments were conducted to evaluate the effectiveness of MESTI, comparing it with existing input modalities across three CNN architectures (VGG19, ResNet50, and EfficientNetB0). Moreover, we demonstrate that replacing the input of previously published MER networks with MESTI leads to consistent performance improvements. The performance of MEGANet, both with MESTI and Dynamic Image, is also evaluated, showing that our proposed network achieves state-of-the-art results on the CASMEII and SAMM datasets. The combination of MEGANet and MESTI achieves the highest accuracy reported to date, setting a new benchmark for micro-expression recognition. These findings underscore the potential of MESTI as a superior input modality and MEGANet as an advanced recognition network, paving the way for more effective MER systems in a variety of applications.
♻ ☆ LMM4Edit: Benchmarking and Evaluating Multimodal Image Editing with LMMs
The rapid advancement of Text-guided Image Editing (TIE) enables image modifications through text prompts. However, current TIE models still struggle to balance image quality, editing alignment, and consistency with the original image, limiting their practical applications. Existing TIE evaluation benchmarks and metrics have limitations on scale or alignment with human perception. To this end, we introduce EBench-18K, the first large-scale image Editing Benchmark including 18K edited images with fine-grained human preference annotations for evaluating TIE. Specifically, EBench-18K includes 1,080 source images with corresponding editing prompts across 21 tasks, 18K+ edited images produced by 17 state-of-the-art TIE models, 55K+ mean opinion scores (MOSs) assessed from three evaluation dimensions, and 18K+ question-answering (QA) pairs. Based on EBench-18K, we employ outstanding LMMs to assess edited images, while the evaluation results, in turn, provide insights into assessing the alignment between the LMMs' understanding ability and human preferences. Then, we propose LMM4Edit, a LMM-based metric for evaluating image Editing models from perceptual quality, editing alignment, attribute preservation, and task-specific QA accuracy in an all-in-one manner. Extensive experiments show that LMM4Edit achieves outstanding performance and aligns well with human preference. Zero-shot validation on the other datasets also shows the generalization ability of our model. The dataset and code are available at https://github.com/IntMeGroup/LMM4Edit.
♻ ☆ Self-Supervised Continuous Colormap Recovery from a 2D Scalar Field Visualization without a Legend IEEE VIS 2025
Recovering a continuous colormap from a single 2D scalar field visualization can be quite challenging, especially in the absence of a corresponding color legend. In this paper, we propose a novel colormap recovery approach that extracts the colormap from a color-encoded 2D scalar field visualization by simultaneously predicting the colormap and underlying data using a decoupling-and-reconstruction strategy. Our approach first separates the input visualization into colormap and data using a decoupling module, then reconstructs the visualization with a differentiable color-mapping module. To guide this process, we design a reconstruction loss between the input and reconstructed visualizations, which serves both as a constraint to ensure strong correlation between colormap and data during training, and as a self-supervised optimizer for fine-tuning the predicted colormap of unseen visualizations during inferencing. To ensure smoothness and correct color ordering in the extracted colormap, we introduce a compact colormap representation using cubic B-spline curves and an associated color order loss. We evaluate our method quantitatively and qualitatively on a synthetic dataset and a collection of real-world visualizations from the VIS30K dataset. Additionally, we demonstrate its utility in two prototype applications -- colormap adjustment and colormap transfer -- and explore its generalization to visualizations with color legends and ones encoded using discrete color palettes.
comment: Submitted to IEEE VIS 2025
♻ ☆ Leveraging Out-of-Distribution Unlabeled Images: Semi-Supervised Semantic Segmentation with an Open-Vocabulary Model
In semi-supervised semantic segmentation, existing studies have shown promising results in academic settings with controlled splits of benchmark datasets. However, the potential benefits of leveraging significantly larger sets of unlabeled images remain unexplored. In real-world scenarios, abundant unlabeled images are often available from online sources (web-scraped images) or large-scale datasets. However, these images may have different distributions from those of the target dataset, a situation known as out-of-distribution (OOD). Using these images as unlabeled data in semi-supervised learning can lead to inaccurate pseudo-labels, potentially misguiding network training. In this paper, we propose a new semi-supervised semantic segmentation framework with an open-vocabulary segmentation model (SemiOVS) to effectively utilize unlabeled OOD images. Extensive experiments on Pascal VOC and Context datasets demonstrate two key findings: (1) using additional unlabeled images improves the performance of semi-supervised learners in scenarios with few labels, and (2) using the open-vocabulary segmentation (OVS) model to pseudo-label OOD images leads to substantial performance gains. In particular, SemiOVS outperforms existing PrevMatch and SemiVL methods by +3.5 and +3.0 mIoU, respectively, on Pascal VOC with a 92-label setting, achieving state-of-the-art performance. These findings demonstrate that our approach effectively utilizes abundant unlabeled OOD images for semantic segmentation tasks. We hope this work can inspire future research and real-world applications. The code is available at https://github.com/wooseok-shin/SemiOVS
comment: Accepted for publication in Knowledge-Based Systems
♻ ☆ Flexible Coded Distributed Convolution Computing for Enhanced Straggler Resilience and Numerical Stability in Distributed CNNs
Deploying Convolutional Neural Networks (CNNs) on resource-constrained devices necessitates efficient management of computational resources, often via distributed environments susceptible to latency from straggler nodes. This paper introduces the Flexible Coded Distributed Convolution Computing (FCDCC) framework to enhance straggler resilience and numerical stability in distributed CNNs. We extend Coded Distributed Computing (CDC) with Circulant and Rotation Matrix Embedding (CRME) which was originally proposed for matrix multiplication to high-dimensional tensor convolution. For the proposed scheme, referred to as the Numerically Stable Coded Tensor Convolution (NSCTC) scheme, we also propose two new coded partitioning schemes: Adaptive-Padding Coded Partitioning (APCP) for the input tensor and Kernel-Channel Coded Partitioning (KCCP) for the filter tensor. These strategies enable linear decomposition of tensor convolutions and encoding them into CDC subtasks, combining model parallelism with coded redundancy for robust and efficient execution. Theoretical analysis identifies an optimal trade-off between communication and storage costs. Empirical results validate the framework's effectiveness in computational efficiency, straggler resilience, and scalability across various CNN architectures.
comment: 15 pages, 7 figures
♻ ☆ Can Machines Imitate Humans? Integrative Turing-like tests for Language and Vision Demonstrate a Narrowing Gap
As AI becomes increasingly embedded in daily life, ascertaining whether an agent is human is critical. We systematically benchmark AI's ability to imitate humans in three language tasks (image captioning, word association, conversation) and three vision tasks (color estimation, object detection, attention prediction), collecting data from 636 humans and 37 AI agents. Next, we conducted 72,191 Turing-like tests with 1,916 human judges and 10 AI judges. Current AIs are approaching the ability to convincingly impersonate humans and deceive human judges in both language and vision. Even simple AI judges outperformed humans in distinguishing AI from human responses. Imitation ability showed minimal correlation with conventional AI performance metrics, suggesting that passing as human is an important independent evaluation criterion. The large-scale Turing datasets and metrics introduced here offer valuable benchmarks for assessing human-likeness in AI and highlight the importance of rigorous, quantitative imitation tests for AI development.
comment: 83 pages, 4 main figures, 17 supp figures, and 4 supp tables
♻ ☆ Separate Motion from Appearance: Customizing Motion via Customizing Text-to-Video Diffusion Models
Motion customization aims to adapt the diffusion model (DM) to generate videos with the motion specified by a set of video clips with the same motion concept. To realize this goal, the adaptation of DM should be possible to model the specified motion concept, without compromising the ability to generate diverse appearances. Thus, the key to solving this problem lies in how to separate the motion concept from the appearance in the adaptation process of DM. Typical previous works explore different ways to represent and insert a motion concept into large-scale pretrained text-to-video diffusion models, e.g., learning a motion LoRA, using latent noise residuals, etc. While those methods can encode the motion concept, they also inevitably encode the appearance in the reference videos, resulting in weakened appearance generation capability. In this paper, we follow the typical way to learn a motion LoRA to encode the motion concept, but propose two novel strategies to enhance motion-appearance separation, including temporal attention purification (TAP) and appearance highway (AH). Specifically, we assume that in the temporal attention module, the pretrained Value embeddings are sufficient to serve as basic components needed by producing a new motion. Thus, in TAP, we choose only to reshape the temporal attention with motion LoRAs so that Value embeddings can be reorganized to produce a new motion. Further, in AH, we alter the starting point of each skip connection in U-Net from the output of each temporal attention module to the output of each spatial attention module. Extensive experiments demonstrate that compared to previous works, our method can generate videos with appearance more aligned with the text descriptions and motion more consistent with the reference videos.
comment: 8 pages,6 figures
♻ ☆ ElectroVizQA: How well do Multi-modal LLMs perform in Electronics Visual Question Answering?
Multi-modal Large Language Models (MLLMs) are gaining significant attention for their ability to process multi-modal data, providing enhanced contextual understanding of complex problems. MLLMs have demonstrated exceptional capabilities in tasks such as Visual Question Answering (VQA); however, they often struggle with fundamental engineering problems, and there is a scarcity of specialized datasets for training on topics like digital electronics. To address this gap, we propose a benchmark dataset called ElectroVizQA specifically designed to evaluate MLLMs' performance on digital electronic circuit problems commonly found in undergraduate curricula. This dataset, the first of its kind tailored for the VQA task in digital electronics, comprises approximately 626 visual questions, offering a comprehensive overview of digital electronics topics. This paper rigorously assesses the extent to which MLLMs can understand and solve digital electronic circuit questions, providing insights into their capabilities and limitations within this specialized domain. By introducing this benchmark dataset, we aim to motivate further research and development in the application of MLLMs to engineering education, ultimately bridging the performance gap and enhancing the efficacy of these models in technical fields.
♻ ☆ WMKA-Net: A Weighted Multi-Kernel Attention Network for Retinal Vessel Segmentation
Retinal vessel segmentation is crucial for intelligent ophthalmic diagnosis, yet it faces three major challenges: insufficient multi-scale feature fusion, disruption of contextual continuity, and noise interference. This study proposes a dual-stage solution to address these issues. The first stage employs a Reversible Multi-Scale Fusion Module (RMS) that uses hierarchical adaptive convolution to dynamically merge cross-scale features from capillaries to main vessels, self-adaptively calibrating feature biases. The second stage introduces a Vascular-Oriented Attention Mechanism, which models long-distance vascular continuity through an axial pathway and enhances the capture of topological key nodes, such as bifurcation points, via a dedicated bifurcation attention pathway. The synergistic operation of these two pathways effectively restores the continuity of vascular structures and improves the segmentation accuracy of complex vascular networks. Systematic experiments on the DRIVE, STARE, and CHASE-DB1 datasets demonstrate that WMKA-Net achieves an accuracy of 0.9909, sensitivity of 0.9198, and specificity of 0.9953, significantly outperforming existing methods. This model provides an efficient, precise, and robust intelligent solution for the early screening of diabetic retinopathy.
♻ ☆ NoisyNN: Exploring the Impact of Information Entropy Change in Learning Systems
We investigate the impact of entropy change in deep learning systems by noise injection at different levels, including the embedding space and the image. The series of models that employ our methodology are collectively known as Noisy Neural Networks (NoisyNN), with examples such as NoisyViT and NoisyCNN. Noise is conventionally viewed as a harmful perturbation in various deep learning architectures, such as convolutional neural networks (CNNs) and vision transformers (ViTs), as well as different learning tasks like image classification and transfer learning. However, this work shows noise can be an effective way to change the entropy of the learning system. We demonstrate that specific noise can boost the performance of various deep models under certain conditions. We theoretically prove the enhancement gained from positive noise by reducing the task complexity defined by information entropy and experimentally show the significant performance gain in large image datasets, such as the ImageNet. Herein, we use the information entropy to define the complexity of the task. We categorize the noise into two types, positive noise (PN) and harmful noise (HN), based on whether the noise can help reduce the task complexity. Extensive experiments of CNNs and ViTs have shown performance improvements by proactively injecting positive noise, where we achieved an unprecedented top 1 accuracy of 95$\%$ on ImageNet. Both theoretical analysis and empirical evidence have confirmed that the presence of positive noise, can benefit the learning process, while the traditionally perceived harmful noise indeed impairs deep learning models. The different roles of noise offer new explanations for deep models on specific tasks and provide a new paradigm for improving model performance. Moreover, it reminds us that we can influence the performance of learning systems via information entropy change.
comment: Task Entropy, ViT, CNN
♻ ☆ Bridging the Sim2Real Gap: Vision Encoder Pre-Training for Visuomotor Policy Transfer
Simulation offers a scalable and efficient alternative to real-world data collection for learning visuomotor robotic policies. However, the simulation-to-reality, or Sim2Real distribution shift -- introduced by employing simulation-trained policies in real-world environments -- frequently prevents successful policy transfer. We present an offline framework to evaluate the performance of using large-scale pre-trained vision encoders to address the Sim2Real gap. We examine a diverse collection of encoders, assessing their ability to extract features necessary for robot control (Action Score) while remaining invariant to task-irrelevant environmental variations (Domain Invariance Score). Evaluating 23 encoders, we reveal patterns across architectures, pre-training datasets, and parameter scales. Our findings show that manipulation-pretrained encoders consistently achieve higher Action Scores, CNN-based encoders demonstrate stronger domain invariance than ViTs, and the best-performing models combine both properties, underscoring DIS and AS as complementary predictors of Sim2Real transferability.
comment: 6 pages, 4 figures, 1 table, GitHub: https://github.com/yyardi/Bridging-the-Sim2Real-Gap
♻ ☆ LD-SDM: Language-Driven Hierarchical Species Distribution Modeling ICCV 2025
We focus on species distribution modeling using global-scale presence-only data, leveraging geographical and environmental features to map species ranges, as in previous studies. However, we innovate by integrating taxonomic classification into our approach. Specifically, we propose using a large language model to extract a latent representation of the taxonomic classification from a textual prompt. This allows us to map the range of any taxonomic rank, including unseen species, without additional supervision. We also present a new proximity-aware evaluation metric, suitable for evaluating species distribution models, which addresses critical shortcomings of traditional metrics. We evaluated our model for species range prediction, zero-shot prediction, and geo-feature regression and found that it outperforms several state-of-the-art models.
comment: Accepted at Computer Vision for Ecology (CV4E) Workshop, ICCV 2025
♻ ☆ QuadKAN: KAN-Enhanced Quadruped Motion Control via End-to-End Reinforcement Learning
We address vision-guided quadruped motion control with reinforcement learning (RL) and highlight the necessity of combining proprioception with vision for robust control. We propose QuadKAN, a spline-parameterized cross-modal policy instantiated with Kolmogorov-Arnold Networks (KANs). The framework incorporates a spline encoder for proprioception and a spline fusion head for proprioception-vision inputs. This structured function class aligns the state-to-action mapping with the piecewise-smooth nature of gait, improving sample efficiency, reducing action jitter and energy consumption, and providing interpretable posture-action sensitivities. We adopt Multi-Modal Delay Randomization (MMDR) and perform end-to-end training with Proximal Policy Optimization (PPO). Evaluations across diverse terrains, including both even and uneven surfaces and scenarios with static or dynamic obstacles, demonstrate that QuadKAN achieves consistently higher returns, greater distances, and fewer collisions than state-of-the-art (SOTA) baselines. These results show that spline-parameterized policies offer a simple, effective, and interpretable alternative for robust vision-guided locomotion. A repository will be made available upon acceptance.
comment: 14pages, 9 figures, Journal paper
♻ ☆ ComplicitSplat: Downstream Models are Vulnerable to Blackbox Attacks by 3D Gaussian Splat Camouflages
As 3D Gaussian Splatting (3DGS) gains rapid adoption in safety-critical tasks for efficient novel-view synthesis from static images, how might an adversary tamper images to cause harm? We introduce ComplicitSplat, the first attack that exploits standard 3DGS shading methods to create viewpoint-specific camouflage - colors and textures that change with viewing angle - to embed adversarial content in scene objects that are visible only from specific viewpoints and without requiring access to model architecture or weights. Our extensive experiments show that ComplicitSplat generalizes to successfully attack a variety of popular detector - both single-stage, multi-stage, and transformer-based models on both real-world capture of physical objects and synthetic scenes. To our knowledge, this is the first black-box attack on downstream object detectors using 3DGS, exposing a novel safety risk for applications like autonomous navigation and other mission-critical robotic systems.
comment: 7 pages, 6 figures
Artificial Intelligence 82
☆ Proof2Silicon: Prompt Repair for Verified Code and Hardware Generation via Reinforcement Learning
Large Language Models (LLMs) have demonstrated impressive capabilities in automated code generation but frequently produce code that fails formal verification, an essential requirement for hardware and safety-critical domains. To overcome this fundamental limitation, we previously proposed PREFACE, a model-agnostic framework based on reinforcement learning (RL) that iteratively repairs the prompts provided to frozen LLMs, systematically steering them toward generating formally verifiable Dafny code without costly fine-tuning. This work presents Proof2Silicon, a novel end-to-end synthesis framework that embeds the previously proposed PREFACE flow to enable the generation of correctness-by-construction hardware directly from natural language specifications. Proof2Silicon operates by: (1) leveraging PREFACE's verifier-driven RL agent to optimize prompt generation iteratively, ensuring Dafny code correctness; (2) automatically translating verified Dafny programs into synthesizable high-level C using Dafny's Python backend and PyLog; and (3) employing Vivado HLS to produce RTL implementations. Evaluated rigorously on a challenging 100-task benchmark, PREFACE's RL-guided prompt optimization consistently improved Dafny verification success rates across diverse LLMs by up to 21%. Crucially, Proof2Silicon achieved an end-to-end hardware synthesis success rate of up to 72%, generating RTL designs through Vivado HLS synthesis flows. These results demonstrate a robust, scalable, and automated pipeline for LLM-driven, formally verified hardware synthesis, bridging natural-language specification and silicon realization.
☆ PillagerBench: Benchmarking LLM-Based Agents in Competitive Minecraft Team Environments
LLM-based agents have shown promise in various cooperative and strategic reasoning tasks, but their effectiveness in competitive multi-agent environments remains underexplored. To address this gap, we introduce PillagerBench, a novel framework for evaluating multi-agent systems in real-time competitive team-vs-team scenarios in Minecraft. It provides an extensible API, multi-round testing, and rule-based built-in opponents for fair, reproducible comparisons. We also propose TactiCrafter, an LLM-based multi-agent system that facilitates teamwork through human-readable tactics, learns causal dependencies, and adapts to opponent strategies. Our evaluation demonstrates that TactiCrafter outperforms baseline approaches and showcases adaptive learning through self-play. Additionally, we analyze its learning process and strategic evolution over multiple game episodes. To encourage further research, we have open-sourced PillagerBench, fostering advancements in multi-agent AI for competitive environments.
comment: for the source code, see https://github.com/aialt/PillagerBench
☆ Distillation of CNN Ensemble Results for Enhanced Long-Term Prediction of the ENSO Phenomenon
The accurate long-term forecasting of the El Nino Southern Oscillation (ENSO) is still one of the biggest challenges in climate science. While it is true that short-to medium-range performance has been improved significantly using the advances in deep learning, statistical dynamical hybrids, most operational systems still use the simple mean of all ensemble members, implicitly assuming equal skill across members. In this study, we demonstrate, through a strictly a-posteriori evaluation , for any large enough ensemble of ENSO forecasts, there is a subset of members whose skill is substantially higher than that of the ensemble mean. Using a state-of-the-art ENSO forecast system cross-validated against the 1986-2017 observed Nino3.4 index, we identify two Top-5 subsets one ranked on lowest Root Mean Square Error (RMSE) and another on highest Pearson correlation. Generally across all leads, these outstanding members show higher correlation and lower RMSE, with the advantage rising enormously with lead time. Whereas at short leads (1 month) raises the mean correlation by about +0.02 (+1.7%) and lowers the RMSE by around 0.14 {\deg}C or by 23.3% compared to the All-40 mean, at extreme leads (23 months) the correlation is raised by +0.43 (+172%) and RMSE by 0.18 {\deg}C or by 22.5% decrease. The enhancements are largest during crucial ENSO transition periods such as SON and DJF, when accurate amplitude and phase forecasting is of greatest socio-economic benefit, and furthermore season-dependent e.g., mid-year months such as JJA and MJJ have incredibly large RMSE reductions. This study provides a solid foundation for further investigations to identify reliable clues for detecting high-quality ensemble members, thereby enhancing forecasting skill.
comment: 20 pages, 7 figures
☆ Beamforming-LLM: What, Where and When Did I Miss?
We present Beamforming-LLM, a system that enables users to semantically recall conversations they may have missed in multi-speaker environments. The system combines spatial audio capture using a microphone array with retrieval-augmented generation (RAG) to support natural language queries such as, "What did I miss when I was following the conversation on dogs?" Directional audio streams are separated using beamforming, transcribed with Whisper, and embedded into a vector database using sentence encoders. Upon receiving a user query, semantically relevant segments are retrieved, temporally aligned with non-attended segments, and summarized using a lightweight large language model (GPT-4o-mini). The result is a user-friendly interface that provides contrastive summaries, spatial context, and timestamped audio playback. This work lays the foundation for intelligent auditory memory systems and has broad applications in assistive technology, meeting summarization, and context-aware personal spatial computing.
☆ The Efficiency Frontier: Classical Shadows versus Quantum Footage
Interfacing quantum and classical processors is an important subroutine in full-stack quantum algorithms. The so-called "classical shadow" method efficiently extracts essential classical information from quantum states, enabling the prediction of many properties of a quantum system from only a few measurements. However, for a small number of highly non-local observables, or when classical post-processing power is limited, the classical shadow method is not always the most efficient choice. Here, we address this issue quantitatively by performing a full-stack resource analysis that compares classical shadows with ``quantum footage," which refers to direct quantum measurement. Under certain assumptions, our analysis illustrates a boundary of download efficiency between classical shadows and quantum footage. For observables expressed as linear combinations of Pauli matrices, the classical shadow method outperforms direct measurement when the number of observables is large and the Pauli weight is small. For observables in the form of large Hermitian sparse matrices, the classical shadow method shows an advantage when the number of observables, the sparsity of the matrix, and the number of qubits fall within a certain range. The key parameters influencing this behavior include the number of qubits $n$, observables $M$, sparsity $k$, Pauli weight $w$, accuracy requirement $\epsilon$, and failure tolerance $\delta$. We also compare the resource consumption of the two methods on different types of quantum computers and identify break-even points where the classical shadow method becomes more efficient, which vary depending on the hardware. This paper opens a new avenue for quantitatively designing optimal strategies for hybrid quantum-classical tomography and provides practical insights for selecting the most suitable quantum measurement approach in real-world applications.
comment: 23 pages, many figures
☆ Agentic Software Engineering: Foundational Pillars and a Research Roadmap
Agentic Software Engineering (SE 3.0) represents a new era where intelligent agents are tasked not with simple code generation, but with achieving complex, goal-oriented SE objectives. To harness these new capabilities while ensuring trustworthiness, we must recognize a fundamental duality within the SE field in the Agentic SE era, comprising two symbiotic modalities: SE for Humans and SE for Agents. This duality demands a radical reimagining of the foundational pillars of SE (actors, processes, tools, and artifacts) which manifest differently across each modality. We propose two purpose-built workbenches to support this vision. The Agent Command Environment (ACE) serves as a command center where humans orchestrate and mentor agent teams, handling outputs such as Merge-Readiness Packs (MRPs) and Consultation Request Packs (CRPs). The Agent Execution Environment (AEE) is a digital workspace where agents perform tasks while invoking human expertise when facing ambiguity or complex trade-offs. This bi-directional partnership, which supports agent-initiated human callbacks and handovers, gives rise to new, structured engineering activities (i.e., processes) that redefine human-AI collaboration, elevating the practice from agentic coding to true agentic software engineering. This paper presents the Structured Agentic Software Engineering (SASE) vision, outlining several of the foundational pillars for the future of SE. The paper culminates in a research roadmap that identifies a few key challenges and opportunities while briefly discussing the resulting impact of this future on SE education. Our goal is not to offer a definitive solution, but to provide a conceptual scaffold with structured vocabulary to catalyze a community-wide dialogue, pushing the SE community to think beyond its classic, human-centric tenets toward a disciplined, scalable, and trustworthy agentic future.
☆ Toward a Metrology for Artificial Intelligence: Hidden-Rule Environments and Reinforcement Learning
We investigate reinforcement learning in the Game Of Hidden Rules (GOHR) environment, a complex puzzle in which an agent must infer and execute hidden rules to clear a 6$\times$6 board by placing game pieces into buckets. We explore two state representation strategies, namely Feature-Centric (FC) and Object-Centric (OC), and employ a Transformer-based Advantage Actor-Critic (A2C) algorithm for training. The agent has access only to partial observations and must simultaneously infer the governing rule and learn the optimal policy through experience. We evaluate our models across multiple rule-based and trial-list-based experimental setups, analyzing transfer effects and the impact of representation on learning efficiency.
☆ Grasp-MPC: Closed-Loop Visual Grasping via Value-Guided Model Predictive Control
Grasping of diverse objects in unstructured environments remains a significant challenge. Open-loop grasping methods, effective in controlled settings, struggle in cluttered environments. Grasp prediction errors and object pose changes during grasping are the main causes of failure. In contrast, closed-loop methods address these challenges in simplified settings (e.g., single object on a table) on a limited set of objects, with no path to generalization. We propose Grasp-MPC, a closed-loop 6-DoF vision-based grasping policy designed for robust and reactive grasping of novel objects in cluttered environments. Grasp-MPC incorporates a value function, trained on visual observations from a large-scale synthetic dataset of 2 million grasp trajectories that include successful and failed attempts. We deploy this learned value function in an MPC framework in combination with other cost terms that encourage collision avoidance and smooth execution. We evaluate Grasp-MPC on FetchBench and real-world settings across diverse environments. Grasp-MPC improves grasp success rates by up to 32.6% in simulation and 33.3% in real-world noisy conditions, outperforming open-loop, diffusion policy, transformer policy, and IQL approaches. Videos and more at http://grasp-mpc.github.io.
comment: 14 pages, 17 figures
☆ Language Bias in Information Retrieval: The Nature of the Beast and Mitigation Methods EMNLP
Language fairness in multilingual information retrieval (MLIR) systems is crucial for ensuring equitable access to information across diverse languages. This paper sheds light on the issue, based on the assumption that queries in different languages, but with identical semantics, should yield equivalent ranking lists when retrieving on the same multilingual documents. We evaluate the degree of fairness using both traditional retrieval methods, and a DPR neural ranker based on mBERT and XLM-R. Additionally, we introduce `LaKDA', a novel loss designed to mitigate language biases in neural MLIR approaches. Our analysis exposes intrinsic language biases in current MLIR technologies, with notable disparities across the retrieval methods, and the effectiveness of LaKDA in enhancing language fairness.
comment: Accepted at EMNLP MRL 2024
☆ AI Governance in Higher Education: A course design exploring regulatory, ethical and practical considerations
As artificial intelligence (AI) systems permeate critical sectors, the need for professionals who can address ethical, legal and governance challenges has become urgent. Current AI ethics education remains fragmented, often siloed by discipline and disconnected from practice. This paper synthesizes literature and regulatory developments to propose a modular, interdisciplinary curriculum that integrates technical foundations with ethics, law and policy. We highlight recurring operational failures in AI - bias, misspecified objectives, generalization errors, misuse and governance breakdowns - and link them to pedagogical strategies for teaching AI governance. Drawing on perspectives from the EU, China and international frameworks, we outline a semester plan that emphasizes integrated ethics, stakeholder engagement and experiential learning. The curriculum aims to prepare students to diagnose risks, navigate regulation and engage diverse stakeholders, fostering adaptive and ethically grounded professionals for responsible AI governance.
☆ From Long to Short: LLMs Excel at Trimming Own Reasoning Chains
O1/R1 style large reasoning models (LRMs) signal a substantial leap forward over conventional instruction-following LLMs. By applying test-time scaling to generate extended reasoning paths, they establish many SOTAs across a wide range of complex reasoning tasks. However, recent studies show that LRMs are prone to suffer from overthinking -- the tendency to overcomplicate simple problems, leading to excessive strategy switching and long, convoluted reasoning traces that hinder their interpretability. To mitigate this issue, we conduct a systematic investigation into the reasoning efficiency of a broad set of LRMs and uncover a common dilemma: the difficulty in balancing multiple generation objectives such as correctness and brevity. Based on this discovery, we propose a test-time scaling method, EDIT (Efficient Dynamic Inference Trimming), which efficiently guides LRMs to identify the shortest correct reasoning paths at test time. EDIT employs constraint-guided generation while jointly tracking length and answer distributions under varying constraints, allowing it to select responses that strike an optimal balance between conciseness and correctness. Extensive experiments across diverse models and datasets show that EDIT substantially enhance the reasoning efficiency, producing compact yet informative outputs that improve readability and user experience.
comment: 21 pages, 5 figures, 7 tables
☆ Reasoning Language Model for Personalized Lung Cancer Screening
Accurate risk assessment in lung cancer screening is critical for enabling early cancer detection and minimizing unnecessary invasive procedures. The Lung CT Screening Reporting and Data System (Lung-RADS) has been widely used as the standard framework for patient management and follow-up. Nevertheless, Lung-RADS faces trade-offs between sensitivity and specificity, as it stratifies risk solely based on lung nodule characteristics without incorporating various risk factors. Here we propose a reasoning language model (RLM) to integrate radiology findings with longitudinal medical records for individualized lung cancer risk assessment. Through a systematic study including dataset construction and distillation, supervised fine-tuning, reinforcement learning, and comprehensive evaluation, our model makes significant improvements in risk prediction performance on datasets in the national lung screening trial. Notably, RLM can decompose the risk evaluation task into sub-components, analyze the contributions of diverse risk factors, and synthesize them into a final risk score computed using our data-driven system equation. Our approach improves both predictive accuracy and monitorability through the chain of thought reasoning process, thereby facilitating clinical translation into lung cancer screening.
☆ UNO: Unifying One-stage Video Scene Graph Generation via Object-Centric Visual Representation Learning
Video Scene Graph Generation (VidSGG) aims to represent dynamic visual content by detecting objects and modeling their temporal interactions as structured graphs. Prior studies typically target either coarse-grained box-level or fine-grained panoptic pixel-level VidSGG, often requiring task-specific architectures and multi-stage training pipelines. In this paper, we present UNO (UNified Object-centric VidSGG), a single-stage, unified framework that jointly addresses both tasks within an end-to-end architecture. UNO is designed to minimize task-specific modifications and maximize parameter sharing, enabling generalization across different levels of visual granularity. The core of UNO is an extended slot attention mechanism that decomposes visual features into object and relation slots. To ensure robust temporal modeling, we introduce object temporal consistency learning, which enforces consistent object representations across frames without relying on explicit tracking modules. Additionally, a dynamic triplet prediction module links relation slots to corresponding object pairs, capturing evolving interactions over time. We evaluate UNO on standard box-level and pixel-level VidSGG benchmarks. Results demonstrate that UNO not only achieves competitive performance across both tasks but also offers improved efficiency through a unified, object-centric design.
comment: 11 pages, 7 figures
☆ Benchmarking Gender and Political Bias in Large Language Models
We introduce EuroParlVote, a novel benchmark for evaluating large language models (LLMs) in politically sensitive contexts. It links European Parliament debate speeches to roll-call vote outcomes and includes rich demographic metadata for each Member of the European Parliament (MEP), such as gender, age, country, and political group. Using EuroParlVote, we evaluate state-of-the-art LLMs on two tasks -- gender classification and vote prediction -- revealing consistent patterns of bias. We find that LLMs frequently misclassify female MEPs as male and demonstrate reduced accuracy when simulating votes for female speakers. Politically, LLMs tend to favor centrist groups while underperforming on both far-left and far-right ones. Proprietary models like GPT-4o outperform open-weight alternatives in terms of both robustness and fairness. We release the EuroParlVote dataset, code, and demo to support future research on fairness and accountability in NLP within political contexts.
comment: The 8th International Conference on Natural Language and Speech Processing (Oral)
☆ Tracking daily paths in home contexts with RSSI fingerprinting based on UWB through deep learning models
The field of human activity recognition has evolved significantly, driven largely by advancements in Internet of Things (IoT) device technology, particularly in personal devices. This study investigates the use of ultra-wideband (UWB) technology for tracking inhabitant paths in home environments using deep learning models. UWB technology estimates user locations via time-of-flight and time-difference-of-arrival methods, which are significantly affected by the presence of walls and obstacles in real environments, reducing their precision. To address these challenges, we propose a fingerprinting-based approach utilizing received signal strength indicator (RSSI) data collected from inhabitants in two flats (60 m2 and 100 m2) while performing daily activities. We compare the performance of convolutional neural network (CNN), long short-term memory (LSTM), and hybrid CNN+LSTM models, as well as the use of Bluetooth technology. Additionally, we evaluate the impact of the type and duration of the temporal window (future, past, or a combination of both). Our results demonstrate a mean absolute error close to 50 cm, highlighting the superiority of the hybrid model in providing accurate location estimates, thus facilitating its application in daily human activity recognition in residential settings.
comment: 25 pages, 14 figures
☆ Reverse-Engineered Reasoning for Open-Ended Generation
While the ``deep reasoning'' paradigm has spurred significant advances in verifiable domains like mathematics, its application to open-ended, creative generation remains a critical challenge. The two dominant methods for instilling reasoning -- reinforcement learning (RL) and instruction distillation -- falter in this area; RL struggles with the absence of clear reward signals and high-quality reward models, while distillation is prohibitively expensive and capped by the teacher model's capabilities. To overcome these limitations, we introduce REverse-Engineered Reasoning (REER), a new paradigm that fundamentally shifts the approach. Instead of building a reasoning process ``forwards'' through trial-and-error or imitation, REER works ``backwards'' from known-good solutions to computationally discover the latent, step-by-step deep reasoning process that could have produced them. Using this scalable, gradient-free approach, we curate and open-source DeepWriting-20K, a large-scale dataset of 20,000 deep reasoning trajectories for open-ended tasks. Our model, DeepWriter-8B, trained on this data, not only surpasses strong open-source baselines but also achieves performance competitive with, and at times superior to, leading proprietary models like GPT-4o and Claude 3.5.
comment: Preprint
☆ FASL-Seg: Anatomy and Tool Segmentation of Surgical Scenes ECAI
The growing popularity of robotic minimally invasive surgeries has made deep learning-based surgical training a key area of research. A thorough understanding of the surgical scene components is crucial, which semantic segmentation models can help achieve. However, most existing work focuses on surgical tools and overlooks anatomical objects. Additionally, current state-of-the-art (SOTA) models struggle to balance capturing high-level contextual features and low-level edge features. We propose a Feature-Adaptive Spatial Localization model (FASL-Seg), designed to capture features at multiple levels of detail through two distinct processing streams, namely a Low-Level Feature Projection (LLFP) and a High-Level Feature Projection (HLFP) stream, for varying feature resolutions - enabling precise segmentation of anatomy and surgical instruments. We evaluated FASL-Seg on surgical segmentation benchmark datasets EndoVis18 and EndoVis17 on three use cases. The FASL-Seg model achieves a mean Intersection over Union (mIoU) of 72.71% on parts and anatomy segmentation in EndoVis18, improving on SOTA by 5%. It further achieves a mIoU of 85.61% and 72.78% in EndoVis18 and EndoVis17 tool type segmentation, respectively, outperforming SOTA overall performance, with comparable per-class SOTA results in both datasets and consistent performance in various classes for anatomy and instruments, demonstrating the effectiveness of distinct processing streams for varying feature resolutions.
comment: 8 pages, 6 figures, Accepted at the European Conference on Artificial Intelligence (ECAI) 2025. To appear in the conference proceedings
☆ SpecSwin3D: Generating Hyperspectral Imagery from Multispectral Data via Transformer Networks
Multispectral and hyperspectral imagery are widely used in agriculture, environmental monitoring, and urban planning due to their complementary spatial and spectral characteristics. A fundamental trade-off persists: multispectral imagery offers high spatial but limited spectral resolution, while hyperspectral imagery provides rich spectra at lower spatial resolution. Prior hyperspectral generation approaches (e.g., pan-sharpening variants, matrix factorization, CNNs) often struggle to jointly preserve spatial detail and spectral fidelity. In response, we propose SpecSwin3D, a transformer-based model that generates hyperspectral imagery from multispectral inputs while preserving both spatial and spectral quality. Specifically, SpecSwin3D takes five multispectral bands as input and reconstructs 224 hyperspectral bands at the same spatial resolution. In addition, we observe that reconstruction errors grow for hyperspectral bands spectrally distant from the input bands. To address this, we introduce a cascade training strategy that progressively expands the spectral range to stabilize learning and improve fidelity. Moreover, we design an optimized band sequence that strategically repeats and orders the five selected multispectral bands to better capture pairwise relations within a 3D shifted-window transformer framework. Quantitatively, our model achieves a PSNR of 35.82 dB, SAM of 2.40{\deg}, and SSIM of 0.96, outperforming the baseline MHF-Net by +5.6 dB in PSNR and reducing ERGAS by more than half. Beyond reconstruction, we further demonstrate the practical value of SpecSwin3D on two downstream tasks, including land use classification and burnt area segmentation.
☆ Teaching Precommitted Agents: Model-Free Policy Evaluation and Control in Quasi-Hyperbolic Discounted MDPs
Time-inconsistent preferences, where agents favor smaller-sooner over larger-later rewards, are a key feature of human and animal decision-making. Quasi-Hyperbolic (QH) discounting provides a simple yet powerful model for this behavior, but its integration into the reinforcement learning (RL) framework has been limited. This paper addresses key theoretical and algorithmic gaps for precommitted agents with QH preferences. We make two primary contributions: (i) we formally characterize the structure of the optimal policy, proving for the first time that it reduces to a simple one-step non-stationary form; and (ii) we design the first practical, model-free algorithms for both policy evaluation and Q-learning in this setting, both with provable convergence guarantees. Our results provide foundational insights for incorporating QH preferences in RL.
☆ Language Native Lightly Structured Databases for Large Language Model Driven Composite Materials Research
Chemical and materials research has traditionally relied heavily on knowledge narrative, with progress often driven by language-based descriptions of principles, mechanisms, and experimental experiences, rather than tables, limiting what conventional databases and ML can exploit. We present a language-native database for boron nitride nanosheet (BNNS) polymer thermally conductive composites that captures lightly structured information from papers across preparation, characterization, theory-computation, and mechanistic reasoning, with evidence-linked snippets. Records are organized in a heterogeneous database and queried via composite retrieval with semantics, key words and value filters. The system can synthesizes literature into accurate, verifiable, and expert style guidance. This substrate enables high fidelity efficient Retrieval Augmented Generation (RAG) and tool augmented agents to interleave retrieval with reasoning and deliver actionable SOP. The framework supplies the language rich foundation required for LLM-driven materials discovery.
☆ Software Dependencies 2.0: An Empirical Study of Reuse and Integration of Pre-Trained Models in Open-Source Projects
Pre-trained models (PTMs) are machine learning models that have been trained in advance, often on large-scale data, and can be reused for new tasks, thereby reducing the need for costly training from scratch. Their widespread adoption introduces a new class of software dependency, which we term Software Dependencies 2.0, extending beyond conventional libraries to learned behaviors embodied in trained models and their associated artifacts. The integration of PTMs as software dependencies in real projects remains unclear, potentially threatening maintainability and reliability of modern software systems that increasingly rely on them. Objective: In this study, we investigate Software Dependencies 2.0 in open-source software (OSS) projects by examining the reuse of PTMs, with a focus on how developers manage and integrate these models. Specifically, we seek to understand: (1) how OSS projects structure and document their PTM dependencies; (2) what stages and organizational patterns emerge in the reuse pipelines of PTMs within these projects; and (3) the interactions among PTMs and other learned components across pipeline stages. We conduct a mixed-methods analysis of a statistically significant random sample of 401 GitHub repositories from the PeaTMOSS dataset (28,575 repositories reusing PTMs from Hugging Face and PyTorch Hub). We quantitatively examine PTM reuse by identifying patterns and qualitatively investigate how developers integrate and manage these models in practice.
comment: Submitted to Empirical Software Engineering (EMSE) Journal
☆ ARIES: Relation Assessment and Model Recommendation for Deep Time Series Forecasting
Recent advancements in deep learning models for time series forecasting have been significant. These models often leverage fundamental time series properties such as seasonality and non-stationarity, which may suggest an intrinsic link between model performance and data properties. However, existing benchmark datasets fail to offer diverse and well-defined temporal patterns, restricting the systematic evaluation of such connections. Additionally, there is no effective model recommendation approach, leading to high time and cost expenditures when testing different architectures across different downstream applications. For those reasons, we propose ARIES, a framework for assessing relation between time series properties and modeling strategies, and for recommending deep forcasting models for realistic time series. First, we construct a synthetic dataset with multiple distinct patterns, and design a comprehensive system to compute the properties of time series. Next, we conduct an extensive benchmarking of over 50 forecasting models, and establish the relationship between time series properties and modeling strategies. Our experimental results reveal a clear correlation. Based on these findings, we propose the first deep forecasting model recommender, capable of providing interpretable suggestions for real-world time series. In summary, ARIES is the first study to establish the relations between the properties of time series data and modeling strategies, while also implementing a model recommendation system. The code is available at: https://github.com/blisky-li/ARIES.
☆ PolicyEvolve: Evolving Programmatic Policies by LLMs for multi-player games via Population-Based Training
Multi-agent reinforcement learning (MARL) has achieved significant progress in solving complex multi-player games through self-play. However, training effective adversarial policies requires millions of experience samples and substantial computational resources. Moreover, these policies lack interpretability, hindering their practical deployment. Recently, researchers have successfully leveraged Large Language Models (LLMs) to generate programmatic policies for single-agent tasks, transforming neural network-based policies into interpretable rule-based code with high execution efficiency. Inspired by this, we propose PolicyEvolve, a general framework for generating programmatic policies in multi-player games. PolicyEvolve significantly reduces reliance on manually crafted policy code, achieving high-performance policies with minimal environmental interactions. The framework comprises four modules: Global Pool, Local Pool, Policy Planner, and Trajectory Critic. The Global Pool preserves elite policies accumulated during iterative training. The Local Pool stores temporary policies for the current iteration; only sufficiently high-performing policies from this pool are promoted to the Global Pool. The Policy Planner serves as the core policy generation module. It samples the top three policies from the Global Pool, generates an initial policy for the current iteration based on environmental information, and refines this policy using feedback from the Trajectory Critic. Refined policies are then deposited into the Local Pool. This iterative process continues until the policy achieves a sufficiently high average win rate against the Global Pool, at which point it is integrated into the Global Pool. The Trajectory Critic analyzes interaction data from the current policy, identifies vulnerabilities, and proposes directional improvements to guide the Policy Planner
☆ Empirical Study of Code Large Language Models for Binary Security Patch Detection
Security patch detection (SPD) is crucial for maintaining software security, as unpatched vulnerabilities can lead to severe security risks. In recent years, numerous learning-based SPD approaches have demonstrated promising results on source code. However, these approaches typically cannot be applied to closed-source applications and proprietary systems that constitute a significant portion of real-world software, as they release patches only with binary files, and the source code is inaccessible. Given the impressive performance of code large language models (LLMs) in code intelligence and binary analysis tasks such as decompilation and compilation optimization, their potential for detecting binary security patches remains unexplored, exposing a significant research gap between their demonstrated low-level code understanding capabilities and this critical security task. To address this gap, we construct a large-scale binary patch dataset containing \textbf{19,448} samples, with two levels of representation: assembly code and pseudo-code, and systematically evaluate \textbf{19} code LLMs of varying scales to investigate their capability in binary SPD tasks. Our initial exploration demonstrates that directly prompting vanilla code LLMs struggles to accurately identify security patches from binary patches, and even state-of-the-art prompting techniques fail to mitigate the lack of domain knowledge in binary SPD within vanilla models. Drawing on the initial findings, we further investigate the fine-tuning strategy for injecting binary SPD domain knowledge into code LLMs through two levels of representation. Experimental results demonstrate that fine-tuned LLMs achieve outstanding performance, with the best results obtained on the pseudo-code representation.
☆ BranchGRPO: Stable and Efficient GRPO with Structured Branching in Diffusion Models
Recent advancements in aligning image and video generative models via GRPO have achieved remarkable gains in enhancing human preference alignment. However, these methods still face high computational costs from on-policy rollouts and excessive SDE sampling steps, as well as training instability due to sparse rewards. In this paper, we propose BranchGRPO, a novel method that introduces a branch sampling policy updating the SDE sampling process. By sharing computation across common prefixes and pruning low-reward paths and redundant depths, BranchGRPO substantially lowers the per-update compute cost while maintaining or improving exploration diversity. This work makes three main contributions: (1) a branch sampling scheme that reduces rollout and training cost; (2) a tree-based advantage estimator incorporating dense process-level rewards; and (3) pruning strategies exploiting path and depth redundancy to accelerate convergence and boost performance. Experiments on image and video preference alignment show that BranchGRPO improves alignment scores by 16% over strong baselines, while cutting training time by 50%.
comment: 12 pages, 6 figures
☆ TinyDef-DETR:An Enhanced DETR Detector for UAV Power Line Defect Detection
Automated inspection of transmission lines using UAVs is hindered by the difficulty of detecting small and ambiguous defects against complex backgrounds. Conventional detectors often suffer from detail loss due to strided downsampling, weak boundary sensitivity in lightweight backbones, and insufficient integration of global context with local cues. To address these challenges, we propose TinyDef-DETR, a DETR-based framework designed for small-defect detection. The method introduces a stride-free space-to-depth module for lossless downsampling, an edge-enhanced convolution for boundary-aware feature extraction, a cross-stage dual-domain multi-scale attention module to jointly capture global and local information, and a Focaler-Wise-SIoU regression loss to improve localization of small objects. Experiments conducted on the CSG-ADCD dataset demonstrate that TinyDef-DETR achieves substantial improvements in both precision and recall compared to competitive baselines, with particularly notable gains on small-object subsets, while incurring only modest computational overhead. Further validation on the VisDrone benchmark confirms the generalization capability of the proposed approach. Overall, the results indicate that integrating detail-preserving downsampling, edge-sensitive representations, dual-domain attention, and difficulty-adaptive regression provides a practical and efficient solution for UAV-based small-defect inspection in power grids.
☆ DreamAudio: Customized Text-to-Audio Generation with Diffusion Models
With the development of large-scale diffusion-based and language-modeling-based generative models, impressive progress has been achieved in text-to-audio generation. Despite producing high-quality outputs, existing text-to-audio models mainly aim to generate semantically aligned sound and fall short on precisely controlling fine-grained acoustic characteristics of specific sounds. As a result, users that need specific sound content may find it challenging to generate the desired audio clips. In this paper, we present DreamAudio for customized text-to-audio generation (CTTA). Specifically, we introduce a new framework that is designed to enable the model to identify auditory information from user-provided reference concepts for audio generation. Given a few reference audio samples containing personalized audio events, our system can generate new audio samples that include these specific events. In addition, two types of datasets are developed for training and testing the customized systems. The experiments show that the proposed model, DreamAudio, generates audio samples that are highly consistent with the customized audio features and aligned well with the input text prompts. Furthermore, DreamAudio offers comparable performance in general text-to-audio tasks. We also provide a human-involved dataset containing audio events from real-world CTTA cases as the benchmark for customized generation tasks.
comment: Demos are available at https://yyua8222.github.io/DreamAudio_demopage/
☆ DCMI: A Differential Calibration Membership Inference Attack Against Retrieval-Augmented Generation
While Retrieval-Augmented Generation (RAG) effectively reduces hallucinations by integrating external knowledge bases, it introduces vulnerabilities to membership inference attacks (MIAs), particularly in systems handling sensitive data. Existing MIAs targeting RAG's external databases often rely on model responses but ignore the interference of non-member-retrieved documents on RAG outputs, limiting their effectiveness. To address this, we propose DCMI, a differential calibration MIA that mitigates the negative impact of non-member-retrieved documents. Specifically, DCMI leverages the sensitivity gap between member and non-member retrieved documents under query perturbation. It generates perturbed queries for calibration to isolate the contribution of member-retrieved documents while minimizing the interference from non-member-retrieved documents. Experiments under progressively relaxed assumptions show that DCMI consistently outperforms baselines--for example, achieving 97.42% AUC and 94.35% Accuracy against the RAG system with Flan-T5, exceeding the MBA baseline by over 40%. Furthermore, on real-world RAG platforms such as Dify and MaxKB, DCMI maintains a 10%-20% advantage over the baseline. These results highlight significant privacy risks in RAG systems and emphasize the need for stronger protection mechanisms. We appeal to the community's consideration of deeper investigations, like ours, against the data leakage risks in rapidly evolving RAG systems. Our code is available at https://github.com/Xinyu140203/RAG_MIA.
☆ Unified Interaction Foundational Model (UIFM) for Predicting Complex User and System Behavior
A central goal of artificial intelligence is to build systems that can understand and predict complex, evolving sequences of events. However, current foundation models, designed for natural language, fail to grasp the holistic nature of structured interactions found in domains like telecommunications, e-commerce and finance. By serializing events into text, they disassemble them into semantically fragmented parts, losing critical context. In this work, we introduce the Unified Interaction Foundation Model (UIFM), a foundation model engineered for genuine behavioral understanding. At its core is the principle of composite tokenization, where each multi-attribute event is treated as a single, semantically coherent unit. This allows UIFM to learn the underlying "grammar" of user behavior, perceiving entire interactions rather than a disconnected stream of data points. We demonstrate that this architecture is not just more accurate, but represents a fundamental step towards creating more adaptable and intelligent predictive systems.
☆ Rethinking Reasoning Quality in Large Language Models through Enhanced Chain-of-Thought via RL
Reinforcement learning (RL) has recently become the dominant paradigm for strengthening the reasoning abilities of large language models (LLMs). Yet the rule-based reward functions commonly used on mathematical or programming benchmarks assess only answer format and correctness, providing no signal as to whether the induced Chain-of-Thought (CoT) actually improves the answer. Furthermore, such task-specific training offers limited control over logical depth and therefore may fail to reveal a model's genuine reasoning capacity. We propose Dynamic Reasoning Efficiency Reward (DRER) -- a plug-and-play RL reward framework that reshapes both reward and advantage signals. (i) A Reasoning Quality Reward assigns fine-grained credit to those reasoning chains that demonstrably raise the likelihood of the correct answer, directly incentivising the trajectories with beneficial CoT tokens. (ii) A Dynamic Length Advantage decays the advantage of responses whose length deviates from a validation-derived threshold, stabilising training. To facilitate rigorous assessment, we also release Logictree, a dynamically constructed deductive reasoning dataset that functions both as RL training data and as a comprehensive benchmark. Experiments confirm the effectiveness of DRER: our 7B model attains GPT-o3-mini level performance on Logictree with 400 trianing steps, while the average confidence of CoT-augmented answers rises by 30%. The model further exhibits generalisation across diverse logical-reasoning datasets, and the mathematical benchmark AIME24. These results illuminate how RL shapes CoT behaviour and chart a practical path toward enhancing formal-reasoning skills in large language models. All code and data are available in repository https://github.com/Henryhe09/DRER.
☆ Khana: A Comprehensive Indian Cuisine Dataset
As global interest in diverse culinary experiences grows, food image models are essential for improving food-related applications by enabling accurate food recognition, recipe suggestions, dietary tracking, and automated meal planning. Despite the abundance of food datasets, a noticeable gap remains in capturing the nuances of Indian cuisine due to its vast regional diversity, complex preparations, and the lack of comprehensive labeled datasets that cover its full breadth. Through this exploration, we uncover Khana, a new benchmark dataset for food image classification, segmentation, and retrieval of dishes from Indian cuisine. Khana fills the gap by establishing a taxonomy of Indian cuisine and offering around 131K images in the dataset spread across 80 labels, each with a resolution of 500x500 pixels. This paper describes the dataset creation process and evaluates state-of-the-art models on classification, segmentation, and retrieval as baselines. Khana bridges the gap between research and development by providing a comprehensive and challenging benchmark for researchers while also serving as a valuable resource for developers creating real-world applications that leverage the rich tapestry of Indian cuisine. Webpage: https://khana.omkar.xyz
☆ S-LAM3D: Segmentation-Guided Monocular 3D Object Detection via Feature Space Fusion SP 2025
Monocular 3D Object Detection represents a challenging Computer Vision task due to the nature of the input used, which is a single 2D image, lacking in any depth cues and placing the depth estimation problem as an ill-posed one. Existing solutions leverage the information extracted from the input by using Convolutional Neural Networks or Transformer architectures as feature extraction backbones, followed by specific detection heads for 3D parameters prediction. In this paper, we introduce a decoupled strategy based on injecting precomputed segmentation information priors and fusing them directly into the feature space for guiding the detection, without expanding the detection model or jointly learning the priors. The focus is on evaluating the impact of additional segmentation information on existing detection pipelines without adding additional prediction branches. The proposed method is evaluated on the KITTI 3D Object Detection Benchmark, outperforming the equivalent architecture that relies only on RGB image features for small objects in the scene: pedestrians and cyclists, and proving that understanding the input data can balance the need for additional sensors or training data.
comment: 6 pages. Accepted to MMSP 2025
☆ Operationalising AI Regulatory Sandboxes under the EU AI Act: The Triple Challenge of Capacity, Coordination and Attractiveness to Providers
The EU AI Act provides a rulebook for all AI systems being put on the market or into service in the European Union. This article investigates the requirement under the AI Act that Member States establish national AI regulatory sandboxes for testing and validation of innovative AI systems under regulatory supervision to assist with fostering innovation and complying with regulatory requirements. Against the backdrop of the EU objective that AI regulatory sandboxes would both foster innovation and assist with compliance, considerable challenges are identified for Member States around capacity-building and design of regulatory sandboxes. While Member States are early movers in laying the ground for national AI regulatory sandboxes, the article contends that there is a risk that differing approaches being taken by individual national sandboxes could jeopardise a uniform interpretation of the AI Act and its application in practice. This could motivate innovators to play sandbox arbitrage. The article therefore argues that the European Commission and the AI Board need to act decisively in developing rules and guidance to ensure a cohesive, coordinated approach in national AI regulatory sandboxes. With sandbox participation being voluntary, the possibility that AI regulatory sandboxes may prove unattractive to innovators on their compliance journey is also explored. Confidentiality concerns, the inability to relax legal rules during the sandbox, and the inability of sandboxes to deliver a presumption of conformity with the AI Act are identified as pertinent concerns for innovators contemplating applying to AI regulatory sandboxes as compared with other direct compliance routes provided to them through application of harmonised standards and conformity assessment procedures.
☆ TSPC: A Two-Stage Phoneme-Centric Architecture for code-switching Vietnamese-English Speech Recognition
Code-switching (CS) presents a significant challenge for general Auto-Speech Recognition (ASR) systems. Existing methods often fail to capture the subtle phonological shifts inherent in CS scenarios. The challenge is particularly difficult for language pairs like Vietnamese and English, where both distinct phonological features and the ambiguity arising from similar sound recognition are present. In this paper, we propose a novel architecture for Vietnamese-English CS ASR, a Two-Stage Phoneme-Centric model (TSPC). The TSPC employs a phoneme-centric approach, built upon an extended Vietnamese phoneme set as an intermediate representation to facilitate mixed-lingual modeling. Experimental results demonstrate that TSPC consistently outperforms existing baselines, including PhoWhisper-base, in Vietnamese-English CS ASR, achieving a significantly lower word error rate of 20.8\% with reduced training resources. Furthermore, the phonetic-based two-stage architecture enables phoneme adaptation and language conversion to enhance ASR performance in complex CS Vietnamese-English ASR scenarios.
☆ ConstStyle: Robust Domain Generalization with Unified Style Transformation ICCV 2025
Deep neural networks often suffer performance drops when test data distribution differs from training data. Domain Generalization (DG) aims to address this by focusing on domain-invariant features or augmenting data for greater diversity. However, these methods often struggle with limited training domains or significant gaps between seen (training) and unseen (test) domains. To enhance DG robustness, we hypothesize that it is essential for the model to be trained on data from domains that closely resemble unseen test domains-an inherently difficult task due to the absence of prior knowledge about the unseen domains. Accordingly, we propose ConstStyle, a novel approach that leverages a unified domain to capture domain-invariant features and bridge the domain gap with theoretical analysis. During training, all samples are mapped onto this unified domain, optimized for seen domains. During testing, unseen domain samples are projected similarly before predictions. By aligning both training and testing data within this unified domain, ConstStyle effectively reduces the impact of domain shifts, even with large domain gaps or few seen domains. Extensive experiments demonstrate that ConstStyle consistently outperforms existing methods across diverse scenarios. Notably, when only a limited number of seen domains are available, ConstStyle can boost accuracy up to 19.82\% compared to the next best approach.
comment: Accepted at ICCV 2025
☆ MapAgent: A Hierarchical Agent for Geospatial Reasoning with Dynamic Map Tool Integration
Agentic AI has significantly extended the capabilities of large language models (LLMs) by enabling complex reasoning and tool use. However, most existing frameworks are tailored to domains such as mathematics, coding, or web automation, and fall short on geospatial tasks that require spatial reasoning, multi-hop planning, and real-time map interaction. To address these challenges, we introduce MapAgent, a hierarchical multi-agent plug-and-play framework with customized toolsets and agentic scaffolds for map-integrated geospatial reasoning. Unlike existing flat agent-based approaches that treat tools uniformly-often overwhelming the LLM when handling similar but subtly different geospatial APIs-MapAgent decouples planning from execution. A high-level planner decomposes complex queries into subgoals, which are routed to specialized modules. For tool-heavy modules-such as map-based services-we then design a dedicated map-tool agent that efficiently orchestrates related APIs adaptively in parallel to effectively fetch geospatial data relevant for the query, while simpler modules (e.g., solution generation or answer extraction) operate without additional agent overhead. This hierarchical design reduces cognitive load, improves tool selection accuracy, and enables precise coordination across similar APIs. We evaluate MapAgent on four diverse geospatial benchmarks-MapEval-Textual, MapEval-API, MapEval-Visual, and MapQA-and demonstrate substantial gains over state-of-the-art tool-augmented and agentic baselines. We open-source our framwork at https://github.com/Hasebul/MapAgent.
comment: 27 Pages
☆ Meta-training of diffractive meta-neural networks for super-resolution direction of arrival estimation
Diffractive neural networks leverage the high-dimensional characteristics of electromagnetic (EM) fields for high-throughput computing. However, the existing architectures face challenges in integrating large-scale multidimensional metasurfaces with precise network training and haven't utilized multidimensional EM field coding scheme for super-resolution sensing. Here, we propose diffractive meta-neural networks (DMNNs) for accurate EM field modulation through metasurfaces, which enable multidimensional multiplexing and coding for multi-task learning and high-throughput super-resolution direction of arrival estimation. DMNN integrates pre-trained mini-metanets to characterize the amplitude and phase responses of meta-atoms across different polarizations and frequencies, with structure parameters inversely designed using the gradient-based meta-training. For wide-field super-resolution angle estimation, the system simultaneously resolves azimuthal and elevational angles through x and y-polarization channels, while the interleaving of frequency-multiplexed angular intervals generates spectral-encoded optical super-oscillations to achieve full-angle high-resolution estimation. Post-processing lightweight electronic neural networks further enhance the performance. Experimental results validate that a three-layer DMNN operating at 27 GHz, 29 GHz, and 31 GHz achieves $\sim7\times$ Rayleigh diffraction-limited angular resolution (0.5$^\circ$), a mean absolute error of 0.048$^\circ$ for two incoherent targets within a $\pm 11.5^\circ$ field of view, and an angular estimation throughput an order of magnitude higher (1917) than that of existing methods. The proposed architecture advances high-dimensional photonic computing systems by utilizing inherent high-parallelism and all-optical coding methods for ultra-high-resolution, high-throughput applications.
comment: 47 pages, 17 figures
☆ Challenges in Deep Learning-Based Small Organ Segmentation: A Benchmarking Perspective for Medical Research with Limited Datasets
Accurate segmentation of carotid artery structures in histopathological images is vital for advancing cardiovascular disease research and diagnosis. However, deep learning model development in this domain is constrained by the scarcity of annotated cardiovascular histopathological data. This study investigates a systematic evaluation of state-of-the-art deep learning segmentation models, including convolutional neural networks (U-Net, DeepLabV3+), a Vision Transformer (SegFormer), and recent foundation models (SAM, MedSAM, MedSAM+UNet), on a limited dataset of cardiovascular histology images. Despite employing an extensive hyperparameter optimization strategy with Bayesian search, our findings reveal that model performance is highly sensitive to data splits, with minor differences driven more by statistical noise than by true algorithmic superiority. This instability exposes the limitations of standard benchmarking practices in low-data clinical settings and challenges the assumption that performance rankings reflect meaningful clinical utility.
☆ Quantum spatial best-arm identification via quantum walks
Quantum reinforcement learning has emerged as a framework combining quantum computation with sequential decision-making, and applications to the multi-armed bandit (MAB) problem have been reported. The graph bandit problem extends the MAB setting by introducing spatial constraints, yet quantum approaches remain limited. We propose a quantum algorithm for best-arm identification in graph bandits, termed Quantum Spatial Best-Arm Identification (QSBAI). The method employs quantum walks to encode superpositions over graph-constrained actions, extending amplitude amplification and generalizing the Quantum BAI algorithm via Szegedy's walk framework. This establishes a link between Grover-type search and reinforcement learning tasks with structural restrictions. We analyze complete and bipartite graphs, deriving the maximal success probability of identifying the best arm and the time step at which it is achieved. Our results highlight the potential of quantum walks to accelerate exploration in constrained environments and extend the applicability of quantum algorithms for decision-making.
comment: 15 pages, 8 figures
☆ Multimodal Prompt Injection Attacks: Risks and Defenses for Modern LLMs
Large Language Models (LLMs) have seen rapid adoption in recent years, with industries increasingly relying on them to maintain a competitive advantage. These models excel at interpreting user instructions and generating human-like responses, leading to their integration across diverse domains, including consulting and information retrieval. However, their widespread deployment also introduces substantial security risks, most notably in the form of prompt injection and jailbreak attacks. To systematically evaluate LLM vulnerabilities -- particularly to external prompt injection -- we conducted a series of experiments on eight commercial models. Each model was tested without supplementary sanitization, relying solely on its built-in safeguards. The results exposed exploitable weaknesses and emphasized the need for stronger security measures. Four categories of attacks were examined: direct injection, indirect (external) injection, image-based injection, and prompt leakage. Comparative analysis indicated that Claude 3 demonstrated relatively greater robustness; nevertheless, empirical findings confirm that additional defenses, such as input normalization, remain necessary to achieve reliable protection.
comment: 8 pages, 4 figures, 2 tables
☆ Let's Roleplay: Examining LLM Alignment in Collaborative Dialogues
As Large Language Models (LLMs) integrate into diverse workflows, they are increasingly being considered "collaborators" with humans. If such AI collaborators are to be reliable, their behavior over multiturn interactions must be predictable, validated and verified before deployment. Common alignment techniques are typically developed under simplified single-user settings and do not account for the dynamics of long-horizon multiparty interactions. This paper examines how different alignment methods affect LLM agents' effectiveness as partners in multiturn, multiparty collaborations. We study this question through the lens of friction agents that intervene in group dialogues to encourage the collaborative group to slow down and reflect upon their reasoning for deliberative decision-making. Using a roleplay methodology, we evaluate interventions from differently-trained friction agents in collaborative task conversations. We propose a novel counterfactual evaluation framework that quantifies how friction interventions change the trajectory of group collaboration and belief alignment. Our results show that a friction-aware approach significantly outperforms common alignment baselines in helping both convergence to a common ground, or agreed-upon task-relevant propositions, and correctness of task outcomes.
☆ GeoAnalystBench: A GeoAI benchmark for assessing large language models for spatial analysis workflow and code generation
Recent advances in large language models (LLMs) have fueled growing interest in automating geospatial analysis and GIS workflows, yet their actual capabilities remain uncertain. In this work, we call for rigorous evaluation of LLMs on well-defined geoprocessing tasks before making claims about full GIS automation. To this end, we present GeoAnalystBench, a benchmark of 50 Python-based tasks derived from real-world geospatial problems and carefully validated by GIS experts. Each task is paired with a minimum deliverable product, and evaluation covers workflow validity, structural alignment, semantic similarity, and code quality (CodeBLEU). Using this benchmark, we assess both proprietary and open source models. Results reveal a clear gap: proprietary models such as ChatGPT-4o-mini achieve high validity 95% and stronger code alignment (CodeBLEU 0.39), while smaller open source models like DeepSeek-R1-7B often generate incomplete or inconsistent workflows (48.5% validity, 0.272 CodeBLEU). Tasks requiring deeper spatial reasoning, such as spatial relationship detection or optimal site selection, remain the most challenging across all models. These findings demonstrate both the promise and limitations of current LLMs in GIS automation and provide a reproducible framework to advance GeoAI research with human-in-the-loop support.
comment: 34 pages, 8 figures
☆ Uncertainty Quantification in Probabilistic Machine Learning Models: Theory, Methods, and Insights
Uncertainty Quantification (UQ) is essential in probabilistic machine learning models, particularly for assessing the reliability of predictions. In this paper, we present a systematic framework for estimating both epistemic and aleatoric uncertainty in probabilistic models. We focus on Gaussian Process Latent Variable Models and employ scalable Random Fourier Features-based Gaussian Processes to approximate predictive distributions efficiently. We derive a theoretical formulation for UQ, propose a Monte Carlo sampling-based estimation method, and conduct experiments to evaluate the impact of uncertainty estimation. Our results provide insights into the sources of predictive uncertainty and illustrate the effectiveness of our approach in quantifying the confidence in the predictions.
comment: Accepted to EUSIPCO 2025
☆ Learning to Construct Knowledge through Sparse Reference Selection with Reinforcement Learning
The rapid expansion of scientific literature makes it increasingly difficult to acquire new knowledge, particularly in specialized domains where reasoning is complex, full-text access is restricted, and target references are sparse among a large set of candidates. We present a Deep Reinforcement Learning framework for sparse reference selection that emulates human knowledge construction, prioritizing which papers to read under limited time and cost. Evaluated on drug--gene relation discovery with access restricted to titles and abstracts, our approach demonstrates that both humans and machines can construct knowledge effectively from partial information.
comment: 8 pages, 2 figures
♻ ☆ ResearchArena: Benchmarking Large Language Models' Ability to Collect and Organize Information as Research Agents
Large language models (LLMs) excel across many natural language processing tasks but face challenges in domain-specific, analytical tasks such as conducting research surveys. This study introduces ResearchArena, a benchmark designed to evaluate LLMs' capabilities in conducting academic surveys -- a foundational step in academic research. ResearchArena models the process in three stages: (1) information discovery, identifying relevant literature; (2) information selection, evaluating papers' relevance and impact; and (3) information organization, structuring knowledge into hierarchical frameworks such as mind-maps. Notably, mind-map construction is treated as a bonus task, reflecting its supplementary role in survey-writing. To support these evaluations, we construct an offline environment of 12M full-text academic papers and 7.9K survey papers. To ensure ethical compliance, we do not redistribute copyrighted materials; instead, we provide code to construct the environment from the Semantic Scholar Open Research Corpus (S2ORC). Preliminary evaluations reveal that LLM-based approaches underperform compared to simpler keyword-based retrieval methods, though recent reasoning models such as DeepSeek-R1 show slightly better zero-shot performance. These results underscore significant opportunities for advancing LLMs in autonomous research. We open-source the code to construct the ResearchArena benchmark at https://github.com/cxcscmu/ResearchArena.
♻ ☆ Advancing Scientific Text Classification: Fine-Tuned Models with Dataset Expansion and Hard-Voting
Efficient text classification is essential for handling the increasing volume of academic publications. This study explores the use of pre-trained language models (PLMs), including BERT, SciBERT, BioBERT, and BlueBERT, fine-tuned on the Web of Science (WoS-46985) dataset for scientific text classification. To enhance performance, we augment the dataset by executing seven targeted queries in the WoS database, retrieving 1,000 articles per category aligned with WoS-46985's main classes. PLMs predict labels for this unlabeled data, and a hard-voting strategy combines predictions for improved accuracy and confidence. Fine-tuning on the expanded dataset with dynamic learning rates and early stopping significantly boosts classification accuracy, especially in specialized domains. Domain-specific models like SciBERT and BioBERT consistently outperform general-purpose models such as BERT. These findings underscore the efficacy of dataset augmentation, inference-driven label prediction, hard-voting, and fine-tuning techniques in creating robust and scalable solutions for automated academic text classification.
comment: 6 pages, 1 figure, 8 tables
♻ ☆ Catapult Dynamics and Phase Transitions in Quadratic Nets
Neural networks trained with gradient descent can undergo non-trivial phase transitions as a function of the learning rate. In \cite{lewkowycz2020large} it was discovered that wide neural nets can exhibit a catapult phase for super-critical learning rates, where the training loss grows exponentially quickly at early times before rapidly decreasing to a small value. During this phase the top eigenvalue of the neural tangent kernel (NTK) also undergoes significant evolution. In this work, we will prove that the catapult phase exists in a large class of models, including quadratic models and two-layer, homogenous neural nets. To do this, we show that for a certain range of learning rates the weight norm decreases whenever the loss becomes large. We also empirically study learning rates beyond this theoretically derived range and show that the activation map of ReLU nets trained with super-critical learning rates becomes increasingly sparse as we increase the learning rate.
comment: 46 pages, many figures
♻ ☆ Unsupervised Evolutionary Cell Type Matching via Entropy-Minimized Optimal Transport
Identifying evolutionary correspondences between cell types across species is a fundamental challenge in comparative genomics and evolutionary biology. Existing approaches often rely on either reference-based matching, which imposes asymmetry by designating one species as the reference, or projection-based matching, which may increase computational complexity and obscure biological interpretability at the cell-type level. Here, we present OT-MESH, an unsupervised computational framework leveraging entropy-regularized optimal transport (OT) to systematically determine cross-species cell type homologies. Our method uniquely integrates the Minimize Entropy of Sinkhorn (MESH) technique to refine the OT plan, transforming diffuse transport matrices into sparse, interpretable correspondences. Through systematic evaluation on synthetic datasets, we demonstrate that OT-MESH achieves near-optimal matching accuracy with computational efficiency, while maintaining remarkable robustness to noise. Compared to other OT-based methods like RefCM, OT-MESH provides speedup while achieving comparable accuracy. Applied to retinal bipolar cells (BCs) and retinal ganglion cells (RGCs) from mouse and macaque, OT-MESH accurately recovers known evolutionary relationships and uncovers novel correspondences, one of which was independently validated experimentally. Thus, our framework offers a principled, scalable, and interpretable solution for evolutionary cell type mapping, facilitating deeper insights into cellular specialization and conservation across species.
♻ ☆ An LLM + ASP Workflow for Joint Entity-Relation Extraction
Joint entity-relation extraction (JERE) identifies both entities and their relationships simultaneously. Traditional machine-learning based approaches to performing this task require a large corpus of annotated data and lack the ability to easily incorporate domain specific information in the construction of the model. Therefore, creating a model for JERE is often labor intensive, time consuming, and elaboration intolerant. In this paper, we propose harnessing the capabilities of generative pretrained large language models (LLMs) and the knowledge representation and reasoning capabilities of Answer Set Programming (ASP) to perform JERE. We present a generic workflow for JERE using LLMs and ASP. The workflow is generic in the sense that it can be applied for JERE in any domain. It takes advantage of LLM's capability in natural language understanding in that it works directly with unannotated text. It exploits the elaboration tolerant feature of ASP in that no modification of its core program is required when additional domain specific knowledge, in the form of type specifications, is found and needs to be used. We demonstrate the usefulness of the proposed workflow through experiments with limited training data on three well-known benchmarks for JERE. The results of our experiments show that the LLM + ASP workflow is better than state-of-the-art JERE systems in several categories with only 10\% of training data. It is able to achieve a 2.5 times (35\% over 15\%) improvement in the Relation Extraction task for the SciERC corpus, one of the most difficult benchmarks.
comment: 13 pages, 1 figure, Accepted as Technical Communication, 41st International Conference on Logic Programming
♻ ☆ Precise Bayesian Neural Networks
Despite its long history, Bayesian neural networks (BNNs) and variational training remain underused in practice: standard Gaussian posteriors misalign with network geometry, KL terms can be brittle in high dimensions, and implementations often add complexity without reliably improving uncertainty. We revisit the problem through the lens of normalization. Because normalization layers neutralize the influence of weight magnitude, we model uncertainty \emph{only in weight directions} using a von Mises-Fisher posterior on the unit sphere. High-dimensional geometry then yields a single, interpretable scalar per layer--the effective post-normalization noise $\sigma_{\mathrm{eff}}$--that (i) corresponds to simple additive Gaussian noise in the forward pass and (ii) admits a compact, dimension-aware KL in closed form. We derive accurate, closed-form approximations linking concentration $\kappa$ to activation variance and to $\sigma_{\mathrm{eff}}$ across regimes, producing a lightweight, implementation-ready variational unit that fits modern normalized architectures and improves calibration without sacrificing accuracy. This dimension awareness is critical for stable optimization in high dimensions. In short, by aligning the variational posterior with the network's intrinsic geometry, BNNs can be simultaneously principled, practical, and precise.
comment: 11 pages, 6 figures
♻ ☆ Bridging Generalization and Personalization in Human Activity Recognition via On-Device Few-Shot Learning
Human Activity Recognition (HAR) with different sensing modalities requires both strong generalization across diverse users and efficient personalization for individuals. However, conventional HAR models often fail to generalize when faced with user-specific variations, leading to degraded performance. To address this challenge, we propose a novel on-device few-shot learning framework that bridges generalization and personalization in HAR. Our method first trains a generalizable representation across users and then rapidly adapts to new users with only a few labeled samples, updating lightweight classifier layers directly on resource-constrained devices. This approach achieves robust on-device learning with minimal computation and memory cost, making it practical for real-world deployment. We implement our framework on the energy-efficient RISC-V GAP9 microcontroller and evaluate it on three benchmark datasets (RecGym, QVAR-Gesture, Ultrasound-Gesture). Across these scenarios, post-deployment adaptation improves accuracy by 3.73\%, 17.38\%, and 3.70\%, respectively. These results demonstrate that few-shot on-device learning enables scalable, user-aware, and energy-efficient wearable human activity recognition by seamlessly uniting generalization and personalization. The related framework is open sourced for further research\footnote{https://github.com/kangpx/onlineTiny2023}.
♻ ☆ SenseCF: LLM-Prompted Counterfactuals for Intervention and Sensor Data Augmentation
Counterfactual explanations (CFs) offer human-centric insights into machine learning predictions by highlighting minimal changes required to alter an outcome. Therefore, CFs can be used as (i) interventions for abnormality prevention and (ii) augmented data for training robust models. In this work, we explore large language models (LLMs), specifically GPT-4o-mini, for generating CFs in a zero-shot and three-shot setting. We evaluate our approach on two datasets: the AI-Readi flagship dataset for stress prediction and a public dataset for heart disease detection. Compared to traditional methods such as DiCE, CFNOW, and NICE, our few-shot LLM-based approach achieves high plausibility (up to 99%), strong validity (up to 0.99), and competitive sparsity. Moreover, using LLM-generated CFs as augmented samples improves downstream classifier performance (an average accuracy gain of 5%), especially in low-data regimes. This demonstrates the potential of prompt-based generative techniques to enhance explainability and robustness in clinical and physiological prediction tasks. Code base: github.com/shovito66/SenseCF.
comment: Accepted at the IEEE-EMBS International Conference on Body Sensor Networks (IEEE-EMBS BSN) 2025, LA, CA, USA
♻ ☆ FinStat2SQL: A Text2SQL Pipeline for Financial Statement Analysis
Despite the advancements of large language models, text2sql still faces many challenges, particularly with complex and domain-specific queries. In finance, database designs and financial reporting layouts vary widely between financial entities and countries, making text2sql even more challenging. We present FinStat2SQL, a lightweight text2sql pipeline enabling natural language queries over financial statements. Tailored to local standards like VAS, it combines large and small language models in a multi-agent setup for entity extraction, SQL generation, and self-correction. We build a domain-specific database and evaluate models on a synthetic QA dataset. A fine-tuned 7B model achieves 61.33\% accuracy with sub-4-second response times on consumer hardware, outperforming GPT-4o-mini. FinStat2SQL offers a scalable, cost-efficient solution for financial analysis, making AI-powered querying accessible to Vietnamese enterprises.
comment: Accepted for The 18th International Natural Language Generation Conference (INLG)
♻ ☆ An Efficient Continuous-Time MILP for Integrated Aircraft Hangar Scheduling and Layout
Efficient management of aircraft MRO hangars requires the integration of spatial layout with time-continuous scheduling to minimize operational costs. We propose a continuous-time mixed-integer linear program that jointly optimizes aircraft placement and timing, overcoming the scalability limits of prior formulations. A comprehensive study benchmarks the model against a constructive heuristic, probes large-scale performance, and quantifies its sensitivity to temporal congestion. The model achieves orders-of-magnitude speedups on benchmarks from the literature, solving a long-standing congested instance in 0.11 seconds, and finds proven optimal solutions for instances with up to 40 aircraft. Within a one-hour limit for large-scale problems, the model finds solutions with small optimality gaps for instances up to 80 aircraft and provides strong bounds for problems with up to 160 aircraft. Optimized plans consistently increase hangar throughput (e.g., +33% serviced aircraft vs. a heuristic on instance RND-N030-I03), leading to lower delay penalties and higher asset utilization. These findings establish that exact optimization has become computationally viable for large-scale hangar planning, providing a validated tool that balances solution quality and computation time for strategic and operational decisions.
comment: 44 pages, 7 figures
♻ ☆ Convergence and Generalization of Anti-Regularization for Parametric Models
Anti-regularization introduces a reward term with a reversed sign into the loss function, deliberately amplifying model expressivity in small-sample regimes while ensuring that the intervention gradually vanishes as the sample size grows through a power-law decay schedule. We formalize spectral safety conditions and trust-region constraints, and we design a lightweight safeguard that combines a projection operator with gradient clipping to guarantee stable intervention. Theoretical analysis extends to linear smoothers and the Neural Tangent Kernel regime, providing practical guidance on the choice of decay exponents through the balance between empirical risk and variance. Empirical results show that Anti-regularization mitigates underfitting in both regression and classification while preserving generalization and improving calibration. Ablation studies confirm that the decay schedule and safeguards are essential to avoiding overfitting and instability. As an alternative, we also propose a degrees-of-freedom targeting schedule that maintains constant per-sample complexity. Anti-regularization constitutes a simple and reproducible procedure that integrates seamlessly into standard empirical risk minimization pipelines, enabling robust learning under limited data and resource constraints by intervening only when necessary and vanishing otherwise.
comment: v2: Clarity edits; toned-down phrasing; figures replaced by tables; results, formulas, reproducibility unchanged
♻ ☆ Safe and Economical UAV Trajectory Planning in Low-Altitude Airspace: A Hybrid DRL-LLM Approach with Compliance Awareness
The rapid growth of the low-altitude economy has driven the widespread adoption of unmanned aerial vehicles (UAVs). This growing deployment presents new challenges for UAV trajectory planning in complex urban environments. However, existing studies often overlook key factors, such as urban airspace constraints and economic efficiency, which are essential in low-altitude economy contexts. Deep reinforcement learning (DRL) is regarded as a promising solution to these issues, while its practical adoption remains limited by low learning efficiency. To overcome this limitation, we propose a novel UAV trajectory planning framework that combines DRL with large language model (LLM) reasoning to enable safe, compliant, and economically viable path planning. Experimental results demonstrate that our method significantly outperforms existing baselines across multiple metrics, including data collection rate, collision avoidance, successful landing, regulatory compliance, and energy efficiency. These results validate the effectiveness of our approach in addressing UAV trajectory planning key challenges under constraints of the low-altitude economy networking.
♻ ☆ Semantic Discrepancy-aware Detector for Image Forgery Identification
With the rapid advancement of image generation techniques, robust forgery detection has become increasingly imperative to ensure the trustworthiness of digital media. Recent research indicates that the learned semantic concepts of pre-trained models are critical for identifying fake images. However, the misalignment between the forgery and semantic concept spaces hinders the model's forgery detection performance. To address this problem, we propose a novel Semantic Discrepancy-aware Detector (SDD) that leverages reconstruction learning to align the two spaces at a fine-grained visual level. By exploiting the conceptual knowledge embedded in the pre-trained vision language model, we specifically design a semantic token sampling module to mitigate the space shifts caused by features irrelevant to both forgery traces and semantic concepts. A concept-level forgery discrepancy learning module, built upon a visual reconstruction paradigm, is proposed to strengthen the interaction between visual semantic concepts and forgery traces, effectively capturing discrepancies under the concepts' guidance. Finally, the low-level forgery feature enhancemer integrates the learned concept level forgery discrepancies to minimize redundant forgery information. Experiments conducted on two standard image forgery datasets demonstrate the efficacy of the proposed SDD, which achieves superior results compared to existing methods. The code is available at https://github.com/wzy1111111/SSD.
comment: 10 pages, 5 figures
♻ ☆ MovieCORE: COgnitive REasoning in Movies EMNLP'2025
This paper introduces MovieCORE, a novel video question answering (VQA) dataset designed to probe deeper cognitive understanding of movie content. Unlike existing datasets that focus on surface-level comprehension, MovieCORE emphasizes questions that engage System-2 thinking while remaining specific to the video material. We present an innovative agentic brainstorming approach, utilizing multiple large language models (LLMs) as thought agents to generate and refine high-quality question-answer pairs. To evaluate dataset quality, we develop a set of cognitive tests assessing depth, thought-provocation potential, and syntactic complexity. We also propose a comprehensive evaluation scheme for assessing VQA model performance on deeper cognitive tasks. To address the limitations of existing video-language models (VLMs), we introduce an agentic enhancement module, Agentic Choice Enhancement (ACE), which improves model reasoning capabilities post-training by up to 25%. Our work contributes to advancing movie understanding in AI systems and provides valuable insights into the capabilities and limitations of current VQA models when faced with more challenging, nuanced questions about cinematic content. Our project page, dataset and code can be found at https://joslefaure.github.io/assets/html/moviecore.html.
comment: Accepted for EMNLP'2025 Main Conference. Project Page: https://joslefaure.github.io/assets/html/moviecore.html
♻ ☆ GameGPT: Multi-agent Collaborative Framework for Game Development
The large language model (LLM) based agents have demonstrated their capacity to automate and expedite software development processes. In this paper, we focus on game development and propose a multi-agent collaborative framework, dubbed GameGPT, to automate game development. While many studies have pinpointed hallucination as a primary roadblock for deploying LLMs in production, we identify another concern: redundancy. Our framework presents a series of methods to mitigate both concerns. These methods include dual collaboration and layered approaches with several in-house lexicons, to mitigate the hallucination and redundancy in the planning, task identification, and implementation phases. Furthermore, a decoupling approach is also introduced to achieve code generation with better precision.
♻ ☆ Low-Confidence Gold: Refining Low-Confidence Samples for Efficient Instruction Tuning EMNLP
The effectiveness of instruction fine-tuning for Large Language Models is fundamentally constrained by the quality and efficiency of training datasets. This work introduces Low-Confidence Gold (LCG), a novel filtering framework that employs centroid-based clustering and confidence-guided selection for identifying valuable instruction pairs. Through a semi-supervised approach using a lightweight classifier trained on representative samples, LCG curates high-quality subsets while preserving data diversity. Experimental evaluation demonstrates that models fine-tuned on LCG-filtered subsets of 6K samples achieve superior performance compared to existing methods, with substantial improvements on MT-bench and consistent gains across comprehensive evaluation metrics. The framework's efficacy while maintaining model performance establishes a promising direction for efficient instruction tuning.
comment: Accepted to EMNLP Findings 2025
♻ ☆ CAREL: Instruction-guided reinforcement learning with cross-modal auxiliary objectives
Grounding the instruction in the environment is a key step in solving language-guided goal-reaching reinforcement learning problems. In automated reinforcement learning, a key concern is to enhance the model's ability to generalize across various tasks and environments. In goal-reaching scenarios, the agent must comprehend the different parts of the instructions within the environmental context in order to complete the overall task successfully. In this work, we propose CAREL (Cross-modal Auxiliary REinforcement Learning) as a new framework to solve this problem using auxiliary loss functions inspired by video-text retrieval literature and a novel method called instruction tracking, which automatically keeps track of progress in an environment. The results of our experiments suggest superior sample efficiency and systematic generalization for this framework in multi-modal reinforcement learning problems. Our code base is available here.
comment: Accepted to TMLR 2025
♻ ☆ Role-Playing LLM-Based Multi-Agent Support Framework for Detecting and Addressing Family Communication Bias
Well-being in family settings involves subtle psychological dynamics that conventional metrics often overlook. In particular, unconscious parental expectations, termed ideal parent bias, can suppress children's emotional expression and autonomy. This suppression, referred to as suppressed emotion, often stems from well-meaning but value-driven communication, which is difficult to detect or address from outside the family. Focusing on these latent dynamics, this study explores Large Language Model (LLM)-based support for psychologically safe family communication. We constructed a Japanese parent-child dialogue corpus of 30 scenarios, each annotated with metadata on ideal parent bias and suppressed emotion. Based on this corpus, we developed a Role-Playing LLM-based multi-agent dialogue support framework that analyzes dialogue and generates feedback. Specialized agents detect suppressed emotion, describe implicit ideal parent bias in parental speech, and infer contextual attributes such as the child's age and background. A meta-agent compiles these outputs into a structured report, which is then passed to five selected expert agents. These agents collaboratively generate empathetic and actionable feedback through a structured four-step discussion process. Experiments show that the system can detect categories of suppressed emotion with moderate accuracy and produce feedback rated highly in empathy and practicality. Moreover, simulated follow-up dialogues incorporating this feedback exhibited signs of improved emotional expression and mutual understanding, suggesting the framework's potential in supporting positive transformation in family interactions.
♻ ☆ Modular Recurrence in Contextual MDPs for Universal Morphology Control
A universal controller for any robot morphology would greatly improve computational and data efficiency. By utilizing contextual information about the properties of individual robots and exploiting their modular structure in the architecture of deep reinforcement learning agents, steps have been made towards multi-robot control. Generalization to new, unseen robots, however, remains a challenge. In this paper we hypothesize that the relevant contextual information is partially observable, but that it can be inferred through interactions for better generalization to contexts that are not seen during training. To this extent, we implement a modular recurrent architecture and evaluate its generalization performance on a large set of MuJoCo robots. The results show a substantial improved performance on robots with unseen dynamics, kinematics, and topologies, in four different environments.
♻ ☆ MV-Debate: Multi-view Agent Debate with Dynamic Reflection Gating for Multimodal Harmful Content Detection in Social Media
Social media has evolved into a complex multimodal environment where text, images, and other signals interact to shape nuanced meanings, often concealing harmful intent. Identifying such intent, whether sarcasm, hate speech, or misinformation, remains challenging due to cross-modal contradictions, rapid cultural shifts, and subtle pragmatic cues. To address these challenges, we propose MV-Debate, a multi-view agent debate framework with dynamic reflection gating for unified multimodal harmful content detection. MV-Debate assembles four complementary debate agents, a surface analyst, a deep reasoner, a modality contrast, and a social contextualist, to analyze content from diverse interpretive perspectives. Through iterative debate and reflection, the agents refine responses under a reflection-gain criterion, ensuring both accuracy and efficiency. Experiments on three benchmark datasets demonstrate that MV-Debate significantly outperforms strong single-model and existing multi-agent debate baselines. This work highlights the promise of multi-agent debate in advancing reliable social intent detection in safety-critical online contexts.
♻ ☆ Integrating Evidence into the Design of XAI and AI-based Decision Support Systems: A Means-End Framework for End-users in Construction
Explainable Artificial Intelligence seeks to make the reasoning processes of AI models transparent and interpretable, particularly in complex decision making environments. In the construction industry, where AI based decision support systems are increasingly adopted, limited attention has been paid to the integration of supporting evidence that underpins the reliability and accountability of AI generated outputs. The absence of such evidence undermines the validity of explanations and the trustworthiness of system recommendations. This paper addresses this gap by introducing a theoretical, evidence based means end framework developed through a narrative review. The framework offers an epistemic foundation for designing XAI enabled DSS that generate meaningful explanations tailored to users knowledge needs and decision contexts. It focuses on evaluating the strength, relevance, and utility of different types of evidence supporting AI generated explanations. While developed with construction professionals as primary end users, the framework is also applicable to developers, regulators, and project managers with varying epistemic goals.
comment: 74 pages, 5 figures and 3 tables
♻ ☆ Leveraging Out-of-Distribution Unlabeled Images: Semi-Supervised Semantic Segmentation with an Open-Vocabulary Model
In semi-supervised semantic segmentation, existing studies have shown promising results in academic settings with controlled splits of benchmark datasets. However, the potential benefits of leveraging significantly larger sets of unlabeled images remain unexplored. In real-world scenarios, abundant unlabeled images are often available from online sources (web-scraped images) or large-scale datasets. However, these images may have different distributions from those of the target dataset, a situation known as out-of-distribution (OOD). Using these images as unlabeled data in semi-supervised learning can lead to inaccurate pseudo-labels, potentially misguiding network training. In this paper, we propose a new semi-supervised semantic segmentation framework with an open-vocabulary segmentation model (SemiOVS) to effectively utilize unlabeled OOD images. Extensive experiments on Pascal VOC and Context datasets demonstrate two key findings: (1) using additional unlabeled images improves the performance of semi-supervised learners in scenarios with few labels, and (2) using the open-vocabulary segmentation (OVS) model to pseudo-label OOD images leads to substantial performance gains. In particular, SemiOVS outperforms existing PrevMatch and SemiVL methods by +3.5 and +3.0 mIoU, respectively, on Pascal VOC with a 92-label setting, achieving state-of-the-art performance. These findings demonstrate that our approach effectively utilizes abundant unlabeled OOD images for semantic segmentation tasks. We hope this work can inspire future research and real-world applications. The code is available at https://github.com/wooseok-shin/SemiOVS
comment: Accepted for publication in Knowledge-Based Systems
♻ ☆ Flexible Coded Distributed Convolution Computing for Enhanced Straggler Resilience and Numerical Stability in Distributed CNNs
Deploying Convolutional Neural Networks (CNNs) on resource-constrained devices necessitates efficient management of computational resources, often via distributed environments susceptible to latency from straggler nodes. This paper introduces the Flexible Coded Distributed Convolution Computing (FCDCC) framework to enhance straggler resilience and numerical stability in distributed CNNs. We extend Coded Distributed Computing (CDC) with Circulant and Rotation Matrix Embedding (CRME) which was originally proposed for matrix multiplication to high-dimensional tensor convolution. For the proposed scheme, referred to as the Numerically Stable Coded Tensor Convolution (NSCTC) scheme, we also propose two new coded partitioning schemes: Adaptive-Padding Coded Partitioning (APCP) for the input tensor and Kernel-Channel Coded Partitioning (KCCP) for the filter tensor. These strategies enable linear decomposition of tensor convolutions and encoding them into CDC subtasks, combining model parallelism with coded redundancy for robust and efficient execution. Theoretical analysis identifies an optimal trade-off between communication and storage costs. Empirical results validate the framework's effectiveness in computational efficiency, straggler resilience, and scalability across various CNN architectures.
comment: 15 pages, 7 figures
♻ ☆ Towards Urban Planing AI Agent in the Age of Agentic AI
Generative AI, large language models, and agentic AI have emerged separately of urban planning. However, the convergence between AI and urban planning presents an interesting opportunity towards AI urban planners. Existing studies conceptualizes urban planning as a generative AI task, where AI synthesizes land-use configurations under geospatial, social, and human-centric constraints and reshape automated urban design. We further identify critical gaps of existing generative urban planning studies: 1) the generative structure has to be predefined with strong assumption: all of adversarial generator-discriminator, forward and inverse diffusion structures, hierarchical zone-POI generative structure are predefined by humans; 2) ignore the power of domain expert developed tools: domain urban planners have developed various tools in the urban planning process guided by urban theory, while existing pure neural networks based generation ignore the power of the tools developed by urban planner practitioners. To address these limitations, we outline a future research direction agentic urban AI planner, calling for a new synthesis of agentic AI and participatory urbanism.
comment: more comprehensive version with our thinking with agentic tasking
♻ ☆ Robotic Fire Risk Detection based on Dynamic Knowledge Graph Reasoning: An LLM-Driven Approach with Graph Chain-of-Thought
Fire is a highly destructive disaster, but effective prevention can significantly reduce its likelihood of occurrence. When it happens, deploying emergency robots in fire-risk scenarios can help minimize the danger to human responders. However, current research on pre-disaster warnings and disaster-time rescue still faces significant challenges due to incomplete perception, inadequate fire situational awareness, and delayed response. To enhance intelligent perception and response planning for robots in fire scenarios, we first construct a knowledge graph (KG) by leveraging large language models (LLMs) to integrate fire domain knowledge derived from fire prevention guidelines and fire rescue task information from robotic emergency response documents. We then propose a new framework called Insights-on-Graph (IOG), which integrates the structured fire information of KG and Large Multimodal Models (LMMs). The framework generates perception-driven risk graphs from real-time scene imagery to enable early fire risk detection and provide interpretable emergency responses for task module and robot component configuration based on the evolving risk situation. Extensive simulations and real-world experiments show that IOG has good applicability and practical application value in fire risk detection and rescue decision-making.
comment: We have decided to withdraw this paper as the work is still undergoing further refinement. To ensure the clarity of the results, we prefer to make additional improvements before resubmission. We appreciate the readers' understanding
♻ ☆ DACAD: Domain Adaptation Contrastive Learning for Anomaly Detection in Multivariate Time Series
In time series anomaly detection (TSAD), the scarcity of labeled data poses a challenge to the development of accurate models. Unsupervised domain adaptation (UDA) offers a solution by leveraging labeled data from a related domain to detect anomalies in an unlabeled target domain. However, existing UDA methods assume consistent anomalous classes across domains. To address this limitation, we propose a novel Domain Adaptation Contrastive learning model for Anomaly Detection in multivariate time series (DACAD), combining UDA with contrastive learning. DACAD utilizes an anomaly injection mechanism that enhances generalization across unseen anomalous classes, improving adaptability and robustness. Additionally, our model employs supervised contrastive loss for the source domain and self-supervised contrastive triplet loss for the target domain, ensuring comprehensive feature representation learning and domain-invariant feature extraction. Finally, an effective Center-based Entropy Classifier (CEC) accurately learns normal boundaries in the source domain. Extensive evaluations on multiple real-world datasets and a synthetic dataset highlight DACAD's superior performance in transferring knowledge across domains and mitigating the challenge of limited labeled data in TSAD.
comment: 11 pages, 3 figures, 6 tables
♻ ☆ Categorical semantics of compositional reinforcement learning
Compositional knowledge representations in reinforcement learning (RL) facilitate modular, interpretable, and safe task specifications. However, generating compositional models requires the characterization of minimal assumptions for the robustness of the compositionality feature, especially in the case of functional decompositions. Using a categorical point of view, we develop a knowledge representation framework for a compositional theory of RL. Our approach relies on the theoretical study of the category MDP, whose objects are Markov decision processes (MDPs) acting as models of tasks. The categorical semantics models the compositionality of tasks through the application of pushout operations akin to combining puzzle pieces. As a practical application of these pushout operations, we introduce zig-zag diagrams that rely on the compositional guarantees engendered by the category MDP. We further prove that properties of the category MDP unify concepts, such as enforcing safety requirements and exploiting symmetries, generalizing previous abstraction theories for RL.
♻ ☆ A Review of Machine Learning Techniques in Imbalanced Data and Future Trends
For over two decades, detecting rare events has been a challenging task among researchers in the data mining and machine learning domain. Real-life problems inspire researchers to navigate and further improve data processing and algorithmic approaches to achieve effective and computationally efficient methods for imbalanced learning. In this paper, we have collected and reviewed 258 peer-reviewed papers from archival journals and conference papers in an attempt to provide an in-depth review of various approaches in imbalanced learning from technical and application perspectives. This work aims to provide a structured review of methods used to address the problem of imbalanced data in various domains and create a general guideline for researchers in academia or industry who want to dive into the broad field of machine learning using large-scale imbalanced data.
♻ ☆ Can Machines Imitate Humans? Integrative Turing-like tests for Language and Vision Demonstrate a Narrowing Gap
As AI becomes increasingly embedded in daily life, ascertaining whether an agent is human is critical. We systematically benchmark AI's ability to imitate humans in three language tasks (image captioning, word association, conversation) and three vision tasks (color estimation, object detection, attention prediction), collecting data from 636 humans and 37 AI agents. Next, we conducted 72,191 Turing-like tests with 1,916 human judges and 10 AI judges. Current AIs are approaching the ability to convincingly impersonate humans and deceive human judges in both language and vision. Even simple AI judges outperformed humans in distinguishing AI from human responses. Imitation ability showed minimal correlation with conventional AI performance metrics, suggesting that passing as human is an important independent evaluation criterion. The large-scale Turing datasets and metrics introduced here offer valuable benchmarks for assessing human-likeness in AI and highlight the importance of rigorous, quantitative imitation tests for AI development.
comment: 83 pages, 4 main figures, 17 supp figures, and 4 supp tables
♻ ☆ Separate Motion from Appearance: Customizing Motion via Customizing Text-to-Video Diffusion Models
Motion customization aims to adapt the diffusion model (DM) to generate videos with the motion specified by a set of video clips with the same motion concept. To realize this goal, the adaptation of DM should be possible to model the specified motion concept, without compromising the ability to generate diverse appearances. Thus, the key to solving this problem lies in how to separate the motion concept from the appearance in the adaptation process of DM. Typical previous works explore different ways to represent and insert a motion concept into large-scale pretrained text-to-video diffusion models, e.g., learning a motion LoRA, using latent noise residuals, etc. While those methods can encode the motion concept, they also inevitably encode the appearance in the reference videos, resulting in weakened appearance generation capability. In this paper, we follow the typical way to learn a motion LoRA to encode the motion concept, but propose two novel strategies to enhance motion-appearance separation, including temporal attention purification (TAP) and appearance highway (AH). Specifically, we assume that in the temporal attention module, the pretrained Value embeddings are sufficient to serve as basic components needed by producing a new motion. Thus, in TAP, we choose only to reshape the temporal attention with motion LoRAs so that Value embeddings can be reorganized to produce a new motion. Further, in AH, we alter the starting point of each skip connection in U-Net from the output of each temporal attention module to the output of each spatial attention module. Extensive experiments demonstrate that compared to previous works, our method can generate videos with appearance more aligned with the text descriptions and motion more consistent with the reference videos.
comment: 8 pages,6 figures
♻ ☆ MAPF-World: Action World Model for Multi-Agent Path Finding
Multi-agent path finding (MAPF) is the problem of planning conflict-free paths from the designated start locations to goal positions for multiple agents. It underlies a variety of real-world tasks, including multi-robot coordination, robot-assisted logistics, and social navigation. Recent decentralized learnable solvers have shown great promise for large-scale MAPF, especially when leveraging foundation models and large datasets. However, these agents are reactive policy models and exhibit limited modeling of environmental temporal dynamics and inter-agent dependencies, resulting in performance degradation in complex, long-term planning scenarios. To address these limitations, we propose MAPF-World, an autoregressive action world model for MAPF that unifies situation understanding and action generation, guiding decisions beyond immediate local observations. It improves situational awareness by explicitly modeling environmental dynamics, including spatial features and temporal dependencies, through future state and actions prediction. By incorporating these predicted futures, MAPF-World enables more informed, coordinated, and far-sighted decision-making, especially in complex multi-agent settings. Furthermore, we augment MAPF benchmarks by introducing an automatic map generator grounded in real-world scenarios, capturing practical map layouts for training and evaluating MAPF solvers. Extensive experiments demonstrate that MAPF-World outperforms state-of-the-art learnable solvers, showcasing superior zero-shot generalization to out-of-distribution cases. Notably, MAPF-World is trained with a 96.5% smaller model size and 92% reduced data.
♻ ☆ The Over-Certainty Phenomenon in Modern Test-Time Adaptation Algorithms
When neural networks are confronted with unfamiliar data that deviate from their training set, this signifies a domain shift. While these networks output predictions on their inputs, they typically fail to account for their level of familiarity with these novel observations. Prevailing works navigate test-time adaptation with the goal of curtailing model entropy, yet they unintentionally produce models that struggle with sub-optimal calibration-a dilemma we term the over-certainty phenomenon. This over-certainty in predictions can be particularly dangerous in the setting of domain shifts, as it may lead to misplaced trust. In this paper, we propose a solution that not only maintains accuracy but also addresses calibration by mitigating the over-certainty phenomenon. To do this, we introduce a certainty regularizer that dynamically adjusts pseudo-label confidence by accounting for both backbone entropy and logit norm. Our method achieves state-of-the-art performance in terms of Expected Calibration Error and Negative Log Likelihood, all while maintaining parity in accuracy.
comment: Published in Transactions on Machine Learning Research (TMLR), July 2025
♻ ☆ HierTOD: A Task-Oriented Dialogue System Driven by Hierarchical Goals VLDB 2025
Task-Oriented Dialogue (TOD) systems assist users in completing tasks through natural language interactions, often relying on a single-layered workflow structure for slot-filling in public tasks, such as hotel bookings. However, in enterprise environments, which involve rich domain-specific knowledge, TOD systems face challenges due to task complexity and the lack of standardized documentation. In this work, we introduce HierTOD, an enterprise TOD system driven by hierarchical goals that can support composite workflows. By focusing on goal-driven interactions, our system serves a more proactive role, facilitating mixed-initiative dialogue and improving task completion. Equipped with components for natural language understanding, composite goal retriever, dialogue management, and response generation, backed by a well-organized data service with domain knowledge base and retrieval engine, HierTOD delivers efficient task assistance as judged by human evaluators. Furthermore, our system implementation unifies two TOD paradigms: slot-filling for information collection and step-by-step guidance for task execution. Our user study demonstrates the effectiveness and helpfulness of HierTOD in performing both paradigms.
comment: Accepted to DaSH Workshop at VLDB 2025
♻ ☆ NoisyNN: Exploring the Impact of Information Entropy Change in Learning Systems
We investigate the impact of entropy change in deep learning systems by noise injection at different levels, including the embedding space and the image. The series of models that employ our methodology are collectively known as Noisy Neural Networks (NoisyNN), with examples such as NoisyViT and NoisyCNN. Noise is conventionally viewed as a harmful perturbation in various deep learning architectures, such as convolutional neural networks (CNNs) and vision transformers (ViTs), as well as different learning tasks like image classification and transfer learning. However, this work shows noise can be an effective way to change the entropy of the learning system. We demonstrate that specific noise can boost the performance of various deep models under certain conditions. We theoretically prove the enhancement gained from positive noise by reducing the task complexity defined by information entropy and experimentally show the significant performance gain in large image datasets, such as the ImageNet. Herein, we use the information entropy to define the complexity of the task. We categorize the noise into two types, positive noise (PN) and harmful noise (HN), based on whether the noise can help reduce the task complexity. Extensive experiments of CNNs and ViTs have shown performance improvements by proactively injecting positive noise, where we achieved an unprecedented top 1 accuracy of 95$\%$ on ImageNet. Both theoretical analysis and empirical evidence have confirmed that the presence of positive noise, can benefit the learning process, while the traditionally perceived harmful noise indeed impairs deep learning models. The different roles of noise offer new explanations for deep models on specific tasks and provide a new paradigm for improving model performance. Moreover, it reminds us that we can influence the performance of learning systems via information entropy change.
comment: Task Entropy, ViT, CNN
♻ ☆ COLLAGE: Adaptive Fusion-based Retrieval for Augmented Policy Learning
In this work, we study the problem of data retrieval for few-shot imitation learning: selecting data from a large dataset to train a performant policy for a specific task, given only a few target demonstrations. Prior methods retrieve data using a single-feature distance heuristic, assuming that the best demonstrations are those that most closely resemble the target examples in visual, semantic, or motion space. However, this approach captures only a subset of the relevant information and can introduce detrimental demonstrations, e.g., retrieving data from unrelated tasks due to similar scene layouts, or selecting similar motions from tasks with divergent goals. We present COLLAGE, a method for COLLective data AGgrEgation in few-shot imitation learning that uses an adaptive late fusion mechanism to guide the selection of relevant demonstrations based on a task-specific combination of multiple cues. COLLAGE follows a simple, flexible, and efficient recipe: it assigns weights to subsets of the dataset that are pre-selected using a single feature (e.g., appearance, shape, or language similarity), based on how well a policy trained on each subset predicts actions in the target demonstrations. These weights are then used to perform importance sampling during policy training, sampling data more densely or sparsely according to estimated relevance. COLLAGE is general and feature-agnostic, allowing it to combine any number of subsets selected by any retrieval heuristic, and to identify which subsets provide the greatest benefit for the target task. In extensive experiments, COLLAGE outperforms state-of-the-art retrieval and multi-task learning approaches by 5.1% in simulation across 10 tasks, and by 16.6% in the real world across 6 tasks, where we perform retrieval from the large-scale DROID dataset. More information at https://robin-lab.cs.utexas.edu/COLLAGE .
comment: Accepted at the Conference on Robot Learning (CoRL), 2025. Project page: https://robin-lab.cs.utexas.edu/COLLAGE
♻ ☆ QuadKAN: KAN-Enhanced Quadruped Motion Control via End-to-End Reinforcement Learning
We address vision-guided quadruped motion control with reinforcement learning (RL) and highlight the necessity of combining proprioception with vision for robust control. We propose QuadKAN, a spline-parameterized cross-modal policy instantiated with Kolmogorov-Arnold Networks (KANs). The framework incorporates a spline encoder for proprioception and a spline fusion head for proprioception-vision inputs. This structured function class aligns the state-to-action mapping with the piecewise-smooth nature of gait, improving sample efficiency, reducing action jitter and energy consumption, and providing interpretable posture-action sensitivities. We adopt Multi-Modal Delay Randomization (MMDR) and perform end-to-end training with Proximal Policy Optimization (PPO). Evaluations across diverse terrains, including both even and uneven surfaces and scenarios with static or dynamic obstacles, demonstrate that QuadKAN achieves consistently higher returns, greater distances, and fewer collisions than state-of-the-art (SOTA) baselines. These results show that spline-parameterized policies offer a simple, effective, and interpretable alternative for robust vision-guided locomotion. A repository will be made available upon acceptance.
comment: 14pages, 9 figures, Journal paper
♻ ☆ PLAME: Lightweight MSA Design Advances Protein Folding From Evolutionary Embeddings
Protein structure prediction often hinges on multiple sequence alignments (MSAs), which underperform on low-homology and orphan proteins. We introduce PLAME, a lightweight MSA design framework that leverages evolutionary embeddings from pretrained protein language models to generate MSAs that better support downstream folding. PLAME couples these embeddings with a conservation-diversity loss that balances agreement on conserved positions with coverage of plausible sequence variation. Beyond generation, we develop (i) an MSA selection strategy to filter high-quality candidates and (ii) a sequence-quality metric that is complementary to depth-based measures and predictive of folding gains. On AlphaFold2 low-homology/orphan benchmarks, PLAME delivers state-of-the-art improvements in structure accuracy (e.g., lDDT/TM-score), with consistent gains when paired with AlphaFold3. Ablations isolate the benefits of the selection strategy, and case studies elucidate how MSA characteristics shape AlphaFold confidence and error modes. Finally, we show PLAME functions as a lightweight adapter, enabling ESMFold to approach AlphaFold2-level accuracy while retaining ESMFold-like inference speed. PLAME thus provides a practical path to high-quality folding for proteins lacking strong evolutionary neighbors.
♻ ☆ Gravity Well Echo Chamber Modeling With An LLM-Based Confirmation Bias Model
Social media echo chambers play a central role in the spread of misinformation, yet existing models often overlook the influence of individual confirmation bias. An existing model of echo chambers is the "gravity well" model, which creates an analog between echo chambers and spatial gravity wells. We extend this established model by introducing a dynamic confirmation bias variable that adjusts the strength of pull based on a user's susceptibility to belief-reinforcing content. This variable is calculated for each user through comparisons between their posting history and their responses to posts of a wide range of viewpoints. Incorporating this factor produces a confirmation-bias-integrated gravity well model that more accurately identifies echo chambers and reveals community-level markers of information health. We validated the approach on nineteen Reddit communities, demonstrating improved detection of echo chambers. Our contribution is a framework for systematically capturing the role of confirmation bias in online group dynamics, enabling more effective identification of echo chambers. By flagging these high-risk environments, the model supports efforts to curb the spread of misinformation at its most common points of amplification.
Computation and Language 44
☆ Beamforming-LLM: What, Where and When Did I Miss?
We present Beamforming-LLM, a system that enables users to semantically recall conversations they may have missed in multi-speaker environments. The system combines spatial audio capture using a microphone array with retrieval-augmented generation (RAG) to support natural language queries such as, "What did I miss when I was following the conversation on dogs?" Directional audio streams are separated using beamforming, transcribed with Whisper, and embedded into a vector database using sentence encoders. Upon receiving a user query, semantically relevant segments are retrieved, temporally aligned with non-attended segments, and summarized using a lightweight large language model (GPT-4o-mini). The result is a user-friendly interface that provides contrastive summaries, spatial context, and timestamped audio playback. This work lays the foundation for intelligent auditory memory systems and has broad applications in assistive technology, meeting summarization, and context-aware personal spatial computing.
☆ MSLEF: Multi-Segment LLM Ensemble Finetuning in Recruitment CCS
This paper presents MSLEF, a multi-segment ensemble framework that employs LLM fine-tuning to enhance resume parsing in recruitment automation. It integrates fine-tuned Large Language Models (LLMs) using weighted voting, with each model specializing in a specific resume segment to boost accuracy. Building on MLAR , MSLEF introduces a segment-aware architecture that leverages field-specific weighting tailored to each resume part, effectively overcoming the limitations of single-model systems by adapting to diverse formats and structures. The framework incorporates Gemini-2.5-Flash LLM as a high-level aggregator for complex sections and utilizes Gemma 9B, LLaMA 3.1 8B, and Phi-4 14B. MSLEF achieves significant improvements in Exact Match (EM), F1 score, BLEU, ROUGE, and Recruitment Similarity (RS) metrics, outperforming the best single model by up to +7% in RS. Its segment-aware design enhances generalization across varied resume layouts, making it highly adaptable to real-world hiring scenarios while ensuring precise and reliable candidate representation.
comment: Accepted in AICCSA 2025
☆ Augmented Fine-Tuned LLMs for Enhanced Recruitment Automation CCS
This paper presents a novel approach to recruitment automation. Large Language Models (LLMs) were fine-tuned to improve accuracy and efficiency. Building upon our previous work on the Multilayer Large Language Model-Based Robotic Process Automation Applicant Tracking (MLAR) system . This work introduces a novel methodology. Training fine-tuned LLMs specifically tuned for recruitment tasks. The proposed framework addresses the limitations of generic LLMs by creating a synthetic dataset that uses a standardized JSON format. This helps ensure consistency and scalability. In addition to the synthetic data set, the resumes were parsed using DeepSeek, a high-parameter LLM. The resumes were parsed into the same structured JSON format and placed in the training set. This will help improve data diversity and realism. Through experimentation, we demonstrate significant improvements in performance metrics, such as exact match, F1 score, BLEU score, ROUGE score, and overall similarity compared to base models and other state-of-the-art LLMs. In particular, the fine-tuned Phi-4 model achieved the highest F1 score of 90.62%, indicating exceptional precision and recall in recruitment tasks. This study highlights the potential of fine-tuned LLMs. Furthermore, it will revolutionize recruitment workflows by providing more accurate candidate-job matching.
comment: Accepted in AICCSA 2025
☆ Language Bias in Information Retrieval: The Nature of the Beast and Mitigation Methods EMNLP
Language fairness in multilingual information retrieval (MLIR) systems is crucial for ensuring equitable access to information across diverse languages. This paper sheds light on the issue, based on the assumption that queries in different languages, but with identical semantics, should yield equivalent ranking lists when retrieving on the same multilingual documents. We evaluate the degree of fairness using both traditional retrieval methods, and a DPR neural ranker based on mBERT and XLM-R. Additionally, we introduce `LaKDA', a novel loss designed to mitigate language biases in neural MLIR approaches. Our analysis exposes intrinsic language biases in current MLIR technologies, with notable disparities across the retrieval methods, and the effectiveness of LaKDA in enhancing language fairness.
comment: Accepted at EMNLP MRL 2024
☆ Understanding the Influence of Synthetic Data for Text Embedders ACL
Recent progress in developing general purpose text embedders has been driven by training on ever-growing corpora of synthetic LLM-generated data. Nonetheless, no publicly available synthetic dataset exists, posing a barrier to studying its role for generalization. To address this issue, we first reproduce and publicly release the synthetic data proposed by Wang et al. (Mistral-E5). Our synthetic data is high quality and leads to consistent improvements in performance. Next, we critically examine where exactly synthetic data improves model generalization. Our analysis reveals that benefits from synthetic data are sparse and highly localized to individual datasets. Moreover, we observe trade-offs between the performance on different categories and data that benefits one task, degrades performance on another. Our findings highlight the limitations of current synthetic data approaches for building general-purpose embedders and challenge the notion that training on synthetic data leads to more robust embedding models across tasks.
comment: ACL Findings 2025
☆ From Long to Short: LLMs Excel at Trimming Own Reasoning Chains
O1/R1 style large reasoning models (LRMs) signal a substantial leap forward over conventional instruction-following LLMs. By applying test-time scaling to generate extended reasoning paths, they establish many SOTAs across a wide range of complex reasoning tasks. However, recent studies show that LRMs are prone to suffer from overthinking -- the tendency to overcomplicate simple problems, leading to excessive strategy switching and long, convoluted reasoning traces that hinder their interpretability. To mitigate this issue, we conduct a systematic investigation into the reasoning efficiency of a broad set of LRMs and uncover a common dilemma: the difficulty in balancing multiple generation objectives such as correctness and brevity. Based on this discovery, we propose a test-time scaling method, EDIT (Efficient Dynamic Inference Trimming), which efficiently guides LRMs to identify the shortest correct reasoning paths at test time. EDIT employs constraint-guided generation while jointly tracking length and answer distributions under varying constraints, allowing it to select responses that strike an optimal balance between conciseness and correctness. Extensive experiments across diverse models and datasets show that EDIT substantially enhance the reasoning efficiency, producing compact yet informative outputs that improve readability and user experience.
comment: 21 pages, 5 figures, 7 tables
☆ Benchmarking Gender and Political Bias in Large Language Models
We introduce EuroParlVote, a novel benchmark for evaluating large language models (LLMs) in politically sensitive contexts. It links European Parliament debate speeches to roll-call vote outcomes and includes rich demographic metadata for each Member of the European Parliament (MEP), such as gender, age, country, and political group. Using EuroParlVote, we evaluate state-of-the-art LLMs on two tasks -- gender classification and vote prediction -- revealing consistent patterns of bias. We find that LLMs frequently misclassify female MEPs as male and demonstrate reduced accuracy when simulating votes for female speakers. Politically, LLMs tend to favor centrist groups while underperforming on both far-left and far-right ones. Proprietary models like GPT-4o outperform open-weight alternatives in terms of both robustness and fairness. We release the EuroParlVote dataset, code, and demo to support future research on fairness and accountability in NLP within political contexts.
comment: The 8th International Conference on Natural Language and Speech Processing (Oral)
☆ Reverse-Engineered Reasoning for Open-Ended Generation
While the ``deep reasoning'' paradigm has spurred significant advances in verifiable domains like mathematics, its application to open-ended, creative generation remains a critical challenge. The two dominant methods for instilling reasoning -- reinforcement learning (RL) and instruction distillation -- falter in this area; RL struggles with the absence of clear reward signals and high-quality reward models, while distillation is prohibitively expensive and capped by the teacher model's capabilities. To overcome these limitations, we introduce REverse-Engineered Reasoning (REER), a new paradigm that fundamentally shifts the approach. Instead of building a reasoning process ``forwards'' through trial-and-error or imitation, REER works ``backwards'' from known-good solutions to computationally discover the latent, step-by-step deep reasoning process that could have produced them. Using this scalable, gradient-free approach, we curate and open-source DeepWriting-20K, a large-scale dataset of 20,000 deep reasoning trajectories for open-ended tasks. Our model, DeepWriter-8B, trained on this data, not only surpasses strong open-source baselines but also achieves performance competitive with, and at times superior to, leading proprietary models like GPT-4o and Claude 3.5.
comment: Preprint
☆ Orthogonal Low-rank Adaptation in Lie Groups for Continual Learning of Large Language Models
Large language models (LLMs) are prone to catastrophic forgetting in sequential multi-task settings. Parameter regularization methods such as O-LoRA and N-LoRA alleviate task interference by enforcing low-rank subspace orthogonality, but they overlook the fact that conventional additive fine-tuning disrupts the intrinsic geometric structure of LLM parameters, limiting performance. Our key insight is that the parameter space of LLMs possesses a geometric structure, which must be preserved in addition to enforcing orthogonality. Based on this, we propose Orthogonal Low-rank Adaptation in Lie Groups (OLieRA), which introduces Lie group theory into LLM fine-tuning: leveraging multiplicative updates to preserve parameter geometry while applying orthogonality constraints to task subspaces. Experiments demonstrate that OLieRA achieves state-of-the-art results on the Standard CL benchmark and remains among the top-performing methods in the Large Number of Tasks setting.
comment: 13 pages, 3 figures
☆ Language Native Lightly Structured Databases for Large Language Model Driven Composite Materials Research
Chemical and materials research has traditionally relied heavily on knowledge narrative, with progress often driven by language-based descriptions of principles, mechanisms, and experimental experiences, rather than tables, limiting what conventional databases and ML can exploit. We present a language-native database for boron nitride nanosheet (BNNS) polymer thermally conductive composites that captures lightly structured information from papers across preparation, characterization, theory-computation, and mechanistic reasoning, with evidence-linked snippets. Records are organized in a heterogeneous database and queried via composite retrieval with semantics, key words and value filters. The system can synthesizes literature into accurate, verifiable, and expert style guidance. This substrate enables high fidelity efficient Retrieval Augmented Generation (RAG) and tool augmented agents to interleave retrieval with reasoning and deliver actionable SOP. The framework supplies the language rich foundation required for LLM-driven materials discovery.
☆ Multimodal Reasoning for Science: Technical Report and 1st Place Solution to the ICML 2025 SeePhys Challenge
Multimodal reasoning remains a fundamental challenge in artificial intelligence. Despite substantial advances in text-based reasoning, even state-of-the-art models such as GPT-o3 struggle to maintain strong performance in multimodal scenarios. To address this gap, we introduce a caption-assisted reasoning framework that effectively bridges visual and textual modalities. Our approach achieved 1st place in the ICML 2025 AI for Math Workshop \& Challenge 2: SeePhys, highlighting its effectiveness and robustness. Furthermore, we validate its generalization on the MathVerse benchmark for geometric reasoning, demonstrating the versatility of our method. Our code is publicly available at https://github.com/OpenDCAI/SciReasoner.
☆ Multimodal Fine-grained Context Interaction Graph Modeling for Conversational Speech Synthesis EMNLP 2025
Conversational Speech Synthesis (CSS) aims to generate speech with natural prosody by understanding the multimodal dialogue history (MDH). The latest work predicts the accurate prosody expression of the target utterance by modeling the utterance-level interaction characteristics of MDH and the target utterance. However, MDH contains fine-grained semantic and prosody knowledge at the word level. Existing methods overlook the fine-grained semantic and prosodic interaction modeling. To address this gap, we propose MFCIG-CSS, a novel Multimodal Fine-grained Context Interaction Graph-based CSS system. Our approach constructs two specialized multimodal fine-grained dialogue interaction graphs: a semantic interaction graph and a prosody interaction graph. These two interaction graphs effectively encode interactions between word-level semantics, prosody, and their influence on subsequent utterances in MDH. The encoded interaction features are then leveraged to enhance synthesized speech with natural conversational prosody. Experiments on the DailyTalk dataset demonstrate that MFCIG-CSS outperforms all baseline models in terms of prosodic expressiveness. Code and speech samples are available at https://github.com/AI-S2-Lab/MFCIG-CSS.
comment: Accepted by EMNLP 2025
☆ KatotohananQA: Evaluating Truthfulness of Large Language Models in Filipino
Large Language Models (LLMs) achieve remarkable performance across various tasks, but their tendency to produce hallucinations limits reliable adoption. Benchmarks such as TruthfulQA have been developed to measure truthfulness, yet they are primarily available in English, leaving a gap in evaluating LLMs in low-resource languages. To address this, we present KatotohananQA, a Filipino translation of the TruthfulQA benchmark. Seven free-tier proprietary models were assessed using a binary-choice framework. Findings show a significant performance gap between English and Filipino truthfulness, with newer OpenAI models (GPT-5 and GPT-5 mini) demonstrating strong multilingual robustness. Results also reveal disparities across question characteristics, suggesting that some question types, categories, and topics are less robust to multilingual transfer which highlight the need for broader multilingual evaluation to ensure fairness and reliability in LLM usage.
comment: 14 pages, 1 figure, 9 tables, 1 listing. To appear in Proceedings of NLPIR 2025
☆ TSPC: A Two-Stage Phoneme-Centric Architecture for code-switching Vietnamese-English Speech Recognition
Code-switching (CS) presents a significant challenge for general Auto-Speech Recognition (ASR) systems. Existing methods often fail to capture the subtle phonological shifts inherent in CS scenarios. The challenge is particularly difficult for language pairs like Vietnamese and English, where both distinct phonological features and the ambiguity arising from similar sound recognition are present. In this paper, we propose a novel architecture for Vietnamese-English CS ASR, a Two-Stage Phoneme-Centric model (TSPC). The TSPC employs a phoneme-centric approach, built upon an extended Vietnamese phoneme set as an intermediate representation to facilitate mixed-lingual modeling. Experimental results demonstrate that TSPC consistently outperforms existing baselines, including PhoWhisper-base, in Vietnamese-English CS ASR, achieving a significantly lower word error rate of 20.8\% with reduced training resources. Furthermore, the phonetic-based two-stage architecture enables phoneme adaptation and language conversion to enhance ASR performance in complex CS Vietnamese-English ASR scenarios.
☆ Imagining Alternatives: Towards High-Resolution 3D Counterfactual Medical Image Generation via Language Guidance
Vision-language models have demonstrated impressive capabilities in generating 2D images under various conditions; however the impressive performance of these models in 2D is largely enabled by extensive, readily available pretrained foundation models. Critically, comparable pretrained foundation models do not exist for 3D, significantly limiting progress in this domain. As a result, the potential of vision-language models to produce high-resolution 3D counterfactual medical images conditioned solely on natural language descriptions remains completely unexplored. Addressing this gap would enable powerful clinical and research applications, such as personalized counterfactual explanations, simulation of disease progression scenarios, and enhanced medical training by visualizing hypothetical medical conditions in realistic detail. Our work takes a meaningful step toward addressing this challenge by introducing a framework capable of generating high-resolution 3D counterfactual medical images of synthesized patients guided by free-form language prompts. We adapt state-of-the-art 3D diffusion models with enhancements from Simple Diffusion and incorporate augmented conditioning to improve text alignment and image quality. To our knowledge, this represents the first demonstration of a language-guided native-3D diffusion model applied specifically to neurological imaging data, where faithful three-dimensional modeling is essential to represent the brain's three-dimensional structure. Through results on two distinct neurological MRI datasets, our framework successfully simulates varying counterfactual lesion loads in Multiple Sclerosis (MS), and cognitive states in Alzheimer's disease, generating high-quality images while preserving subject fidelity in synthetically generated medical images. Our results lay the groundwork for prompt-driven disease progression analysis within 3D medical imaging.
☆ Accelerating Large Language Model Inference via Early-Exiting Algorithms
Large language models have achieved remarkable capabilities, but their practical deployment is hindered by significant computational costs. While adaptive computation methods like early-exiting promise to reduce these costs, they introduce a fundamental conflict: the per-token dynamism intended to save computation often creates system-level bottlenecks that can paradoxically reduce throughput in batched inference. This dissertation resolves this conflict by co-designing adaptive algorithms and model architectures to strike an optimal balance between dynamism and efficiency. To this end, our work first addresses critical sources of overhead in conventional early-exiting by proposing an efficient parallel decoding mechanism. We then show that deep parameter sharing provides an architectural foundation that not only yields compact, parameter-efficient models but also inherently mitigates the critical synchronization issues affecting dynamic inference. Finally, this work presents a unified framework where lightweight routers are pretrained to dynamically assign an optimal recursion depth for each token. This approach establishes a new Pareto frontier between efficiency and performance by effectively optimizing for both adaptive computation and parameter efficiency within a single model.
comment: PhD Dissertation
☆ Enhancing the Robustness of Contextual ASR to Varying Biasing Information Volumes Through Purified Semantic Correlation Joint Modeling IEEE
Recently, cross-attention-based contextual automatic speech recognition (ASR) models have made notable advancements in recognizing personalized biasing phrases. However, the effectiveness of cross-attention is affected by variations in biasing information volume, especially when the length of the biasing list increases significantly. We find that, regardless of the length of the biasing list, only a limited amount of biasing information is most relevant to a specific ASR intermediate representation. Therefore, by identifying and integrating the most relevant biasing information rather than the entire biasing list, we can alleviate the effects of variations in biasing information volume for contextual ASR. To this end, we propose a purified semantic correlation joint modeling (PSC-Joint) approach. In PSC-Joint, we define and calculate three semantic correlations between the ASR intermediate representations and biasing information from coarse to fine: list-level, phrase-level, and token-level. Then, the three correlations are jointly modeled to produce their intersection, so that the most relevant biasing information across various granularities is highlighted and integrated for contextual recognition. In addition, to reduce the computational cost introduced by the joint modeling of three semantic correlations, we also propose a purification mechanism based on a grouped-and-competitive strategy to filter out irrelevant biasing phrases. Compared with baselines, our PSC-Joint approach achieves average relative F1 score improvements of up to 21.34% on AISHELL-1 and 28.46% on KeSpeech, across biasing lists of varying lengths.
comment: Accepted by IEEE Transactions on Audio, Speech and Language Processing, 2025 (https://ieeexplore.ieee.org/document/11150731). DOI: 10.1109/TASLPRO.2025.3606198
☆ Let's Roleplay: Examining LLM Alignment in Collaborative Dialogues
As Large Language Models (LLMs) integrate into diverse workflows, they are increasingly being considered "collaborators" with humans. If such AI collaborators are to be reliable, their behavior over multiturn interactions must be predictable, validated and verified before deployment. Common alignment techniques are typically developed under simplified single-user settings and do not account for the dynamics of long-horizon multiparty interactions. This paper examines how different alignment methods affect LLM agents' effectiveness as partners in multiturn, multiparty collaborations. We study this question through the lens of friction agents that intervene in group dialogues to encourage the collaborative group to slow down and reflect upon their reasoning for deliberative decision-making. Using a roleplay methodology, we evaluate interventions from differently-trained friction agents in collaborative task conversations. We propose a novel counterfactual evaluation framework that quantifies how friction interventions change the trajectory of group collaboration and belief alignment. Our results show that a friction-aware approach significantly outperforms common alignment baselines in helping both convergence to a common ground, or agreed-upon task-relevant propositions, and correctness of task outcomes.
☆ MedFactEval and MedAgentBrief: A Framework and Workflow for Generating and Evaluating Factual Clinical Summaries
Evaluating factual accuracy in Large Language Model (LLM)-generated clinical text is a critical barrier to adoption, as expert review is unscalable for the continuous quality assurance these systems require. We address this challenge with two complementary contributions. First, we introduce MedFactEval, a framework for scalable, fact-grounded evaluation where clinicians define high-salience key facts and an "LLM Jury"--a multi-LLM majority vote--assesses their inclusion in generated summaries. Second, we present MedAgentBrief, a model-agnostic, multi-step workflow designed to generate high-quality, factual discharge summaries. To validate our evaluation framework, we established a gold-standard reference using a seven-physician majority vote on clinician-defined key facts from inpatient cases. The MedFactEval LLM Jury achieved almost perfect agreement with this panel (Cohen's kappa=81%), a performance statistically non-inferior to that of a single human expert (kappa=67%, P < 0.001). Our work provides both a robust evaluation framework (MedFactEval) and a high-performing generation workflow (MedAgentBrief), offering a comprehensive approach to advance the responsible deployment of generative AI in clinical workflows.
☆ From Eigenmodes to Proofs: Integrating Graph Spectral Operators with Symbolic Interpretable Reasoning
We introduce Spectral NSR, a fully spectral neuro-symbolic reasoning framework that embeds logical rules as spectral templates and performs inference directly in the graph spectral domain. By leveraging graph signal processing (GSP) and frequency-selective filters grounded in the Laplacian eigenstructure of knowledge graphs, the architecture unifies the interpretability of symbolic reasoning with the scalability and adaptability of spectral learning. Beyond the core formulation, we incorporate a comprehensive set of extensions, including dynamic graph and basis learning, rational and diffusion filters for sharper spectral selectivity, mixture-of-spectral-experts for modular specialization, proof-guided training with spectral curricula, and uncertainty quantification for calibrated confidence. Additional enhancements such as large language model coupling, co-spectral transfer alignment, adversarial robustness, efficient GPU kernels, generalized Laplacians, and causal interventions further expand the versatility of the framework. Empirical evaluation on state-of-the-art reasoning benchmarks such as ProofWriter and CLUTRR demonstrates that Spectral NSR achieves superior accuracy, faster inference, improved robustness to adversarial perturbations, and higher interpretability compared to leading baselines including transformers, message-passing neural networks, and neuro-symbolic logic programming systems. Spectral attribution and proof-band agreement analyses confirm that model decisions align closely with symbolic proof structures, while transfer experiments validate effective domain adaptation through co-spectral alignment. These results establish Spectral NSR as a scalable and principled foundation for the next generation of reasoning systems, offering transparency, robustness, and generalization beyond conventional approaches.
♻ ☆ Fine-Tuning Large Language Models for Scientific Text Classification: A Comparative Study
The exponential growth of online textual content across diverse domains has necessitated advanced methods for automated text classification. Large Language Models (LLMs) based on transformer architectures have shown significant success in this area, particularly in natural language processing (NLP) tasks. However, general-purpose LLMs often struggle with domain-specific content, such as scientific texts, due to unique challenges like specialized vocabulary and imbalanced data. In this study, we fine-tune four state-of-the-art LLMs BERT, SciBERT, BioBERT, and BlueBERT on three datasets derived from the WoS-46985 dataset to evaluate their performance in scientific text classification. Our experiments reveal that domain-specific models, particularly SciBERT, consistently outperform general-purpose models in both abstract-based and keyword-based classification tasks. Additionally, we compare our achieved results with those reported in the literature for deep learning models, further highlighting the advantages of LLMs, especially when utilized in specific domains. The findings emphasize the importance of domain-specific adaptations for LLMs to enhance their effectiveness in specialized text classification tasks.
comment: 6 pages, 3 figures, 7 tables
♻ ☆ PlainQAFact: Retrieval-augmented Factual Consistency Evaluation Metric for Biomedical Plain Language Summarization
Hallucinated outputs from large language models (LLMs) pose risks in the medical domain, especially for lay audiences making health-related decisions. Existing automatic factual consistency evaluation methods, such as entailment- and question-answering (QA) -based, struggle with plain language summarization (PLS) due to elaborative explanation phenomenon, which introduces external content (e.g., definitions, background, examples) absent from the scientific abstract to enhance comprehension. To address this, we introduce PlainQAFact, an automatic factual consistency evaluation metric trained on a fine-grained, human-annotated dataset PlainFact, for evaluating factual consistency of both source-simplified and elaborately explained sentences. PlainQAFact first classifies sentence type, then applies a retrieval-augmented QA scoring method. Empirical results show that existing evaluation metrics fail to evaluate the factual consistency in PLS, especially for elaborative explanations, whereas PlainQAFact consistently outperforms them across all evaluation settings. We further analyze PlainQAFact's effectiveness across external knowledge sources, answer extraction strategies, answer overlap measures, and document granularity levels, refining its overall factual consistency assessment. Taken together, our work presents the first evaluation metric designed for PLS factual consistency evaluation, providing the community with both a robust benchmark and a practical tool to advance reliable and safe plain language communication in the medical domain. PlainQAFact and PlainFact are available at: https://github.com/zhiwenyou103/PlainQAFact
♻ ☆ ResearchArena: Benchmarking Large Language Models' Ability to Collect and Organize Information as Research Agents
Large language models (LLMs) excel across many natural language processing tasks but face challenges in domain-specific, analytical tasks such as conducting research surveys. This study introduces ResearchArena, a benchmark designed to evaluate LLMs' capabilities in conducting academic surveys -- a foundational step in academic research. ResearchArena models the process in three stages: (1) information discovery, identifying relevant literature; (2) information selection, evaluating papers' relevance and impact; and (3) information organization, structuring knowledge into hierarchical frameworks such as mind-maps. Notably, mind-map construction is treated as a bonus task, reflecting its supplementary role in survey-writing. To support these evaluations, we construct an offline environment of 12M full-text academic papers and 7.9K survey papers. To ensure ethical compliance, we do not redistribute copyrighted materials; instead, we provide code to construct the environment from the Semantic Scholar Open Research Corpus (S2ORC). Preliminary evaluations reveal that LLM-based approaches underperform compared to simpler keyword-based retrieval methods, though recent reasoning models such as DeepSeek-R1 show slightly better zero-shot performance. These results underscore significant opportunities for advancing LLMs in autonomous research. We open-source the code to construct the ResearchArena benchmark at https://github.com/cxcscmu/ResearchArena.
♻ ☆ Advancing Scientific Text Classification: Fine-Tuned Models with Dataset Expansion and Hard-Voting
Efficient text classification is essential for handling the increasing volume of academic publications. This study explores the use of pre-trained language models (PLMs), including BERT, SciBERT, BioBERT, and BlueBERT, fine-tuned on the Web of Science (WoS-46985) dataset for scientific text classification. To enhance performance, we augment the dataset by executing seven targeted queries in the WoS database, retrieving 1,000 articles per category aligned with WoS-46985's main classes. PLMs predict labels for this unlabeled data, and a hard-voting strategy combines predictions for improved accuracy and confidence. Fine-tuning on the expanded dataset with dynamic learning rates and early stopping significantly boosts classification accuracy, especially in specialized domains. Domain-specific models like SciBERT and BioBERT consistently outperform general-purpose models such as BERT. These findings underscore the efficacy of dataset augmentation, inference-driven label prediction, hard-voting, and fine-tuning techniques in creating robust and scalable solutions for automated academic text classification.
comment: 6 pages, 1 figure, 8 tables
♻ ☆ An LLM + ASP Workflow for Joint Entity-Relation Extraction
Joint entity-relation extraction (JERE) identifies both entities and their relationships simultaneously. Traditional machine-learning based approaches to performing this task require a large corpus of annotated data and lack the ability to easily incorporate domain specific information in the construction of the model. Therefore, creating a model for JERE is often labor intensive, time consuming, and elaboration intolerant. In this paper, we propose harnessing the capabilities of generative pretrained large language models (LLMs) and the knowledge representation and reasoning capabilities of Answer Set Programming (ASP) to perform JERE. We present a generic workflow for JERE using LLMs and ASP. The workflow is generic in the sense that it can be applied for JERE in any domain. It takes advantage of LLM's capability in natural language understanding in that it works directly with unannotated text. It exploits the elaboration tolerant feature of ASP in that no modification of its core program is required when additional domain specific knowledge, in the form of type specifications, is found and needs to be used. We demonstrate the usefulness of the proposed workflow through experiments with limited training data on three well-known benchmarks for JERE. The results of our experiments show that the LLM + ASP workflow is better than state-of-the-art JERE systems in several categories with only 10\% of training data. It is able to achieve a 2.5 times (35\% over 15\%) improvement in the Relation Extraction task for the SciERC corpus, one of the most difficult benchmarks.
comment: 13 pages, 1 figure, Accepted as Technical Communication, 41st International Conference on Logic Programming
♻ ☆ Concept Bottleneck Large Language Models ICLR 2025
We introduce Concept Bottleneck Large Language Models (CB-LLMs), a novel framework for building inherently interpretable Large Language Models (LLMs). In contrast to traditional black-box LLMs that rely on limited post-hoc interpretations, CB-LLMs integrate intrinsic interpretability directly into the LLMs -- allowing accurate explanations with scalability and transparency. We build CB-LLMs for two essential NLP tasks: text classification and text generation. In text classification, CB-LLMs is competitive with, and at times outperforms, traditional black-box models while providing explicit and interpretable reasoning. For the more challenging task of text generation, interpretable neurons in CB-LLMs enable precise concept detection, controlled generation, and safer outputs. The embedded interpretability empowers users to transparently identify harmful content, steer model behavior, and unlearn undesired concepts -- significantly enhancing the safety, reliability, and trustworthiness of LLMs, which are critical capabilities notably absent in existing models. Our code is available at https://github.com/Trustworthy-ML-Lab/CB-LLMs.
comment: Accepted to ICLR 2025
♻ ☆ Repetition Improves Language Model Embeddings ICLR 2025
Bidirectional models are considered essential for strong text embeddings. Recent approaches to adapt autoregressive language models (LMs) into strong text embedding models have largely had the requirement to modify the LM architecture to be bidirectional. We challenge this premise by introducing "echo embeddings" which converts autoregressive LMs into high quality text embedding models without changing the architecture or requiring fine-tuning. By repeating the input and extracting embeddings from the repeated tokens -- which have access to all original tokens -- echo embeddings improve over classical LM embeddings by over 5% in zero-shot settings. Our zero-shot embeddings nearly match those obtained by bidirectionally-converted LMs that undergo additional masked-language modeling training. Echo embeddings are also compatible with supervised fine-tuning, matching or outperforming bidirectionally-converted LMs in an apples-to-apples comparison, even with an identical compute budget during training and inference. Overall, repetition is a simple and effective strategy to circumvent the need for bidirectional attention in embedding models, paving the way towards a unified architecture for all NLP tasks.
comment: ICLR 2025
♻ ☆ EMNLP: Educator-role Moral and Normative Large Language Models Profiling EMNLP
Simulating Professions (SP) enables Large Language Models (LLMs) to emulate professional roles. However, comprehensive psychological and ethical evaluation in these contexts remains lacking. This paper introduces EMNLP, an Educator-role Moral and Normative LLMs Profiling framework for personality profiling, moral development stage measurement, and ethical risk under soft prompt injection. EMNLP extends existing scales and constructs 88 teacher-specific moral dilemmas, enabling profession-oriented comparison with human teachers. A targeted soft prompt injection set evaluates compliance and vulnerability in teacher SP. Experiments on 14 LLMs show teacher-role LLMs exhibit more idealized and polarized personalities than human teachers, excel in abstract moral reasoning, but struggle with emotionally complex situations. Models with stronger reasoning are more vulnerable to harmful prompt injection, revealing a paradox between capability and safety. The model temperature and other hyperparameters have limited influence except in some risk behaviors. This paper presents the first benchmark to assess ethical and psychological alignment of teacher-role LLMs for educational AI. Resources are available at https://e-m-n-l-p.github.io/.
comment: 29pages, 15 figures, Accepted by EMNLP Main Confrence
♻ ☆ MovieCORE: COgnitive REasoning in Movies EMNLP'2025
This paper introduces MovieCORE, a novel video question answering (VQA) dataset designed to probe deeper cognitive understanding of movie content. Unlike existing datasets that focus on surface-level comprehension, MovieCORE emphasizes questions that engage System-2 thinking while remaining specific to the video material. We present an innovative agentic brainstorming approach, utilizing multiple large language models (LLMs) as thought agents to generate and refine high-quality question-answer pairs. To evaluate dataset quality, we develop a set of cognitive tests assessing depth, thought-provocation potential, and syntactic complexity. We also propose a comprehensive evaluation scheme for assessing VQA model performance on deeper cognitive tasks. To address the limitations of existing video-language models (VLMs), we introduce an agentic enhancement module, Agentic Choice Enhancement (ACE), which improves model reasoning capabilities post-training by up to 25%. Our work contributes to advancing movie understanding in AI systems and provides valuable insights into the capabilities and limitations of current VQA models when faced with more challenging, nuanced questions about cinematic content. Our project page, dataset and code can be found at https://joslefaure.github.io/assets/html/moviecore.html.
comment: Accepted for EMNLP'2025 Main Conference. Project Page: https://joslefaure.github.io/assets/html/moviecore.html
♻ ☆ Rhapsody: A Dataset for Highlight Detection in Podcasts
Podcasts have become daily companions for half a billion users. Given the enormous amount of podcast content available, highlights provide a valuable signal that helps viewers get the gist of an episode and decide if they want to invest in listening to it in its entirety. However, identifying highlights automatically is challenging due to the unstructured and long-form nature of the content. We introduce Rhapsody, a dataset of 13K podcast episodes paired with segment-level highlight scores derived from YouTube's 'most replayed' feature. We frame the podcast highlight detection as a segment-level binary classification task. We explore various baseline approaches, including zero-shot prompting of language models and lightweight fine-tuned language models using segment-level classification heads. Our experimental results indicate that even state-of-the-art language models like GPT-4o and Gemini struggle with this task, while models fine-tuned with in-domain data significantly outperform their zero-shot performance. The fine-tuned model benefits from leveraging both speech signal features and transcripts. These findings highlight the challenges for fine-grained information access in long-form spoken media.
comment: COLM 2025
♻ ☆ Through the Prism of Culture: Evaluating LLMs' Understanding of Indian Subcultures and Traditions
Large Language Models (LLMs) have shown remarkable advancements but also raise concerns about cultural bias, often reflecting dominant narratives at the expense of under-represented subcultures. In this study, we evaluate the capacity of LLMs to recognize and accurately respond to the Little Traditions within Indian society, encompassing localized cultural practices and subcultures such as caste, kinship, marriage, and religion. Through a series of case studies, we assess whether LLMs can balance the interplay between dominant Great Traditions and localized Little Traditions. We explore various prompting strategies and further investigate whether using prompts in regional languages enhances the models cultural sensitivity and response quality. Our findings reveal that while LLMs demonstrate an ability to articulate cultural nuances, they often struggle to apply this understanding in practical, context-specific scenarios. To the best of our knowledge, this is the first study to analyze LLMs engagement with Indian subcultures, offering critical insights into the challenges of embedding cultural diversity in AI systems.
♻ ☆ Affective Computing in the Era of Large Language Models: A Survey from the NLP Perspective
Affective Computing (AC) integrates computer science, psychology, and cognitive science to enable machines to recognize, interpret, and simulate human emotions across domains such as social media, finance, healthcare, and education. AC commonly centers on two task families: Affective Understanding (AU) and Affective Generation (AG). While fine-tuned pre-trained language models (PLMs) have achieved solid AU performance, they often generalize poorly across tasks and remain limited for AG, especially in producing diverse, emotionally appropriate responses. The advent of Large Language Models (LLMs) (e.g., ChatGPT and LLaMA) has catalyzed a paradigm shift by offering in-context learning, broader world knowledge, and stronger sequence generation. This survey presents an NLP-oriented overview of AC in the LLM era. We (i) consolidate traditional AC tasks and preliminary LLM-based studies; (ii) review adaptation techniques that improve AU/AG, including Instruction Tuning (full and parameter-efficient methods such as LoRA, P-/Prompt-Tuning), Prompt Engineering (zero/few-shot, chain-of-thought, agent-based prompting), and Reinforcement Learning. For the latter, we summarize RL from human preferences (RLHF), verifiable/programmatic rewards (RLVR), and AI feedback (RLAIF), which provide preference- or rule-grounded optimization signals that can help steer AU/AG toward empathy, safety, and planning, achieving finer-grained or multi-objective control. To assess progress, we compile benchmarks and evaluation practices for both AU and AG. We also discuss open challenges-from ethics, data quality, and safety to robust evaluation and resource efficiency-and outline research directions. We hope this survey clarifies the landscape and offers practical guidance for building affect-aware, reliable, and responsible LLM systems.
comment: Compared with the previous version, reinforcement learning has been added (as a new section), including RLHF, RLVR, and RLAIF
♻ ☆ Low-Confidence Gold: Refining Low-Confidence Samples for Efficient Instruction Tuning EMNLP
The effectiveness of instruction fine-tuning for Large Language Models is fundamentally constrained by the quality and efficiency of training datasets. This work introduces Low-Confidence Gold (LCG), a novel filtering framework that employs centroid-based clustering and confidence-guided selection for identifying valuable instruction pairs. Through a semi-supervised approach using a lightweight classifier trained on representative samples, LCG curates high-quality subsets while preserving data diversity. Experimental evaluation demonstrates that models fine-tuned on LCG-filtered subsets of 6K samples achieve superior performance compared to existing methods, with substantial improvements on MT-bench and consistent gains across comprehensive evaluation metrics. The framework's efficacy while maintaining model performance establishes a promising direction for efficient instruction tuning.
comment: Accepted to EMNLP Findings 2025
♻ ☆ CodeMixBench: Evaluating Code-Mixing Capabilities of LLMs Across 18 Languages EMNLP 2025
Code-mixing, the practice of switching between languages within a conversation, poses unique challenges for traditional NLP. Existing benchmarks are limited by their narrow language pairs and tasks, failing to adequately assess large language models' (LLMs) code-mixing abilities. Despite the recognized importance of code-mixing for multilingual users, research on LLMs in this context remains sparse. Additionally, current techniques for synthesizing code-mixed data are underdeveloped to generate code-mixing. In response, we introduce CodeMixBench, a comprehensive benchmark covering eight tasks, including three specific to LLMs and five traditional NLP tasks, and 18 languages across seven language families. We also propose a new method for generating large-scale synthetic code-mixed texts by combining word substitution with GPT-4 prompting. Our evaluation reveals consistent underperformance of LLMs on code-mixed datasets involving different language families. Enhancements in training data size, model scale, and few-shot learning could improve their performance. The code and dataset are available at https://github.com/Jeromeyluck/CodeMixBench.
comment: EMNLP 2025
♻ ☆ Improve LLM-as-a-Judge Ability as a General Ability
LLM-as-a-Judge leverages the generative and reasoning capabilities of large language models (LLMs) to evaluate LLM responses across diverse scenarios, providing accurate preference signals. This approach plays a vital role in aligning LLMs with human values, ensuring ethical and reliable AI outputs that align with societal norms. Recent studies have raised many methods to train LLM as generative judges, but most of them are data consuming or lack accuracy, and only focus on LLM's judge ability. In this work, we regard judge ability as a general ability of LLM and implement a two-stage training approach, comprising supervised fine-tuning (SFT) warm-up and direct preference optimization (DPO) enhancement, to achieve judge style adaptation and improve judgment accuracy. Additionally, we introduce an efficient data synthesis method to generate judgmental content. Experimental results demonstrate that our approach, utilizing only about 2% to 40% of the data required by other methods, achieves SOTA performance on RewardBench. Furthermore, our training method enhances the general capabilities of the model by constructing complicated judge task, and the judge signals provided by our model have significantly enhanced the downstream DPO training performance of our internal models in our test to optimize policy model with Judge Model. We also open-source our model weights and training data to facilitate further research.
♻ ☆ Assessing and Mitigating Medical Knowledge Drift and Conflicts in Large Language Models
Large Language Models (LLMs) have great potential in the field of health care, yet they face great challenges in adapting to rapidly evolving medical knowledge. This can lead to outdated or contradictory treatment suggestions. This study investigated how LLMs respond to evolving clinical guidelines, focusing on concept drift and internal inconsistencies. We developed the DriftMedQA benchmark to simulate guideline evolution and assessed the temporal reliability of various LLMs. Our evaluation of seven state-of-the-art models across 4,290 scenarios demonstrated difficulties in rejecting outdated recommendations and frequently endorsing conflicting guidance. Additionally, we explored two mitigation strategies: Retrieval-Augmented Generation and preference fine-tuning via Direct Preference Optimization. While each method improved model performance, their combination led to the most consistent and reliable results. These findings underscore the need to improve LLM robustness to temporal shifts to ensure more dependable applications in clinical practice. The dataset is available at https://huggingface.co/datasets/RDBH/DriftMed.
♻ ☆ Support or Refute: Analyzing the Stance of Evidence to Detect Out-of-Context Mis- and Disinformation EMNLP 2023
Mis- and disinformation online have become a major societal problem as major sources of online harms of different kinds. One common form of mis- and disinformation is out-of-context (OOC) information, where different pieces of information are falsely associated, e.g., a real image combined with a false textual caption or a misleading textual description. Although some past studies have attempted to defend against OOC mis- and disinformation through external evidence, they tend to disregard the role of different pieces of evidence with different stances. Motivated by the intuition that the stance of evidence represents a bias towards different detection results, we propose a stance extraction network (SEN) that can extract the stances of different pieces of multi-modal evidence in a unified framework. Moreover, we introduce a support-refutation score calculated based on the co-occurrence relations of named entities into the textual SEN. Extensive experiments on a public large-scale dataset demonstrated that our proposed method outperformed the state-of-the-art baselines, with the best model achieving a performance gain of 3.2% in accuracy. The source code and checkpoints are publicly available at https://github.com/yx3266/SEN.
comment: Accepted and published by EMNLP 2023. Details can be found in https://aclanthology.org/2023.emnlp-main.259
♻ ☆ Knowledge Editing through Chain-of-Thought
Knowledge Editing is a technique that updates large language models (LLMs) with new information to maintain their world knowledge. This approach avoids the need to rebuild the model from scratch, thereby addressing the high costs associated with frequent retraining. Among these, the in-context editing paradigm stands out for its effectiveness in integrating new knowledge while preserving the model's original capabilities. Despite its potential, existing in-context knowledge editing methods are often task-specific, focusing primarily on multi-hop QA tasks using structured knowledge triples. Moreover, their reliance on few-shot prompting for task decomposition makes them unstable and less effective in generalizing across diverse tasks. In response to these limitations, we propose EditCoT, a novel knowledge editing framework that flexibly and efficiently updates LLMs across various tasks without retraining. EditCoT works by generating a chain-of-thought (CoT) for a given input and then iteratively refining this CoT process using a CoT editor based on updated knowledge. We evaluate EditCoT across a diverse range of benchmarks, covering multiple languages and tasks. The results demonstrate that our approach achieves state-of-the-art performance while offering superior generalization, effectiveness, and stability compared to existing methods, marking a significant advancement in the field of knowledge updating. The code and data of EditCoT are available at: https://github.com/bebr2/EditCoT .
♻ ☆ Language Mixing in Reasoning Language Models: Patterns, Impact, and Internal Causes
Reasoning language models (RLMs) excel at complex tasks by leveraging a chain-of-thought process to generate structured intermediate steps. However, language mixing, i.e., reasoning steps containing tokens from languages other than the prompt, has been observed in their outputs and shown to affect performance, though its impact remains debated. We present the first systematic study of language mixing in RLMs, examining its patterns, impact, and internal causes across 15 languages, 7 task difficulty levels, and 18 subject areas, and show how all three factors influence language mixing. Moreover, we demonstrate that the choice of reasoning language significantly affects performance: forcing models to reason in Latin or Han scripts via constrained decoding notably improves accuracy. Finally, we show that the script composition of reasoning traces closely aligns with that of the model's internal representations, indicating that language mixing reflects latent processing preferences in RLMs. Our findings provide actionable insights for optimizing multilingual reasoning and open new directions for controlling reasoning languages to build more interpretable and adaptable RLMs.
♻ ☆ Reinforced Lifelong Editing for Language Models ICML2025
Large language models (LLMs) acquire information from pre-training corpora, but their stored knowledge can become inaccurate or outdated over time. Model editing addresses this challenge by modifying model parameters without retraining, and prevalent approaches leverage hypernetworks to generate these parameter updates. However, they face significant challenges in lifelong editing due to their incompatibility with LLM parameters that dynamically change during the editing process. To address this, we observed that hypernetwork-based lifelong editing aligns with reinforcement learning modeling and proposed RLEdit, an RL-based editing method. By treating editing losses as rewards and optimizing hypernetwork parameters at the full knowledge sequence level, we enable it to precisely capture LLM changes and generate appropriate parameter updates. Our extensive empirical evaluation across several LLMs demonstrates that RLEdit outperforms existing methods in lifelong editing with superior effectiveness and efficiency, achieving a 59.24% improvement while requiring only 2.11% of the time compared to most approaches. Our code is available at: https://github.com/zhrli324/RLEdit.
comment: Accepted by ICML2025
♻ ☆ Pierce the Mists, Greet the Sky: Decipher Knowledge Overshadowing via Knowledge Circuit Analysis EMNLP
Large Language Models (LLMs), despite their remarkable capabilities, are hampered by hallucinations. A particularly challenging variant, knowledge overshadowing, occurs when one piece of activated knowledge inadvertently masks another relevant piece, leading to erroneous outputs even with high-quality training data. Current understanding of overshadowing is largely confined to inference-time observations, lacking deep insights into its origins and internal mechanisms during model training. Therefore, we introduce PhantomCircuit, a novel framework designed to comprehensively analyze and detect knowledge overshadowing. By innovatively employing knowledge circuit analysis, PhantomCircuit dissects the function of key components in the circuit and how the attention pattern dynamics contribute to the overshadowing phenomenon and its evolution throughout the training process. Extensive experiments demonstrate PhantomCircuit's effectiveness in identifying such instances, offering novel insights into this elusive hallucination and providing the research community with a new methodological lens for its potential mitigation.
comment: Accepted by 2025 EMNLP Main
♻ ☆ ElectroVizQA: How well do Multi-modal LLMs perform in Electronics Visual Question Answering?
Multi-modal Large Language Models (MLLMs) are gaining significant attention for their ability to process multi-modal data, providing enhanced contextual understanding of complex problems. MLLMs have demonstrated exceptional capabilities in tasks such as Visual Question Answering (VQA); however, they often struggle with fundamental engineering problems, and there is a scarcity of specialized datasets for training on topics like digital electronics. To address this gap, we propose a benchmark dataset called ElectroVizQA specifically designed to evaluate MLLMs' performance on digital electronic circuit problems commonly found in undergraduate curricula. This dataset, the first of its kind tailored for the VQA task in digital electronics, comprises approximately 626 visual questions, offering a comprehensive overview of digital electronics topics. This paper rigorously assesses the extent to which MLLMs can understand and solve digital electronic circuit questions, providing insights into their capabilities and limitations within this specialized domain. By introducing this benchmark dataset, we aim to motivate further research and development in the application of MLLMs to engineering education, ultimately bridging the performance gap and enhancing the efficacy of these models in technical fields.
♻ ☆ HierTOD: A Task-Oriented Dialogue System Driven by Hierarchical Goals VLDB 2025
Task-Oriented Dialogue (TOD) systems assist users in completing tasks through natural language interactions, often relying on a single-layered workflow structure for slot-filling in public tasks, such as hotel bookings. However, in enterprise environments, which involve rich domain-specific knowledge, TOD systems face challenges due to task complexity and the lack of standardized documentation. In this work, we introduce HierTOD, an enterprise TOD system driven by hierarchical goals that can support composite workflows. By focusing on goal-driven interactions, our system serves a more proactive role, facilitating mixed-initiative dialogue and improving task completion. Equipped with components for natural language understanding, composite goal retriever, dialogue management, and response generation, backed by a well-organized data service with domain knowledge base and retrieval engine, HierTOD delivers efficient task assistance as judged by human evaluators. Furthermore, our system implementation unifies two TOD paradigms: slot-filling for information collection and step-by-step guidance for task execution. Our user study demonstrates the effectiveness and helpfulness of HierTOD in performing both paradigms.
comment: Accepted to DaSH Workshop at VLDB 2025
♻ ☆ A Survey on Training-free Alignment of Large Language Models EMNLP 2025
The alignment of large language models (LLMs) aims to ensure their outputs adhere to human values, ethical standards, and legal norms. Traditional alignment methods often rely on resource-intensive fine-tuning (FT), which may suffer from knowledge degradation and face challenges in scenarios where the model accessibility or computational resources are constrained. In contrast, training-free (TF) alignment techniques--leveraging in-context learning, decoding-time adjustments, and post-generation corrections--offer a promising alternative by enabling alignment without heavily retraining LLMs, making them adaptable to both open-source and closed-source environments. This paper presents the first systematic review of TF alignment methods, categorizing them by stages of pre-decoding, in-decoding, and post-decoding. For each stage, we provide a detailed examination from the viewpoint of LLMs and multimodal LLMs (MLLMs), highlighting their mechanisms and limitations. Furthermore, we identify key challenges and future directions, paving the way for more inclusive and effective TF alignment techniques. By synthesizing and organizing the rapidly growing body of research, this survey offers a guidance for practitioners and advances the development of safer and more reliable LLMs.
comment: Accepted to EMNLP 2025 (findings), camera-ready version
Machine Learning 74
☆ MCIGLE: Multimodal Exemplar-Free Class-Incremental Graph Learning KSEM 2025
Exemplar-free class-incremental learning enables models to learn new classes over time without storing data from old ones. As multimodal graph-structured data becomes increasingly prevalent, existing methods struggle with challenges like catastrophic forgetting, distribution bias, memory limits, and weak generalization. We propose MCIGLE, a novel framework that addresses these issues by extracting and aligning multimodal graph features and applying Concatenated Recursive Least Squares for effective knowledge retention. Through multi-channel processing, MCIGLE balances accuracy and memory preservation. Experiments on public datasets validate its effectiveness and generalizability.
comment: Accepted as a conference paper at KSEM 2025
☆ The Efficiency Frontier: Classical Shadows versus Quantum Footage
Interfacing quantum and classical processors is an important subroutine in full-stack quantum algorithms. The so-called "classical shadow" method efficiently extracts essential classical information from quantum states, enabling the prediction of many properties of a quantum system from only a few measurements. However, for a small number of highly non-local observables, or when classical post-processing power is limited, the classical shadow method is not always the most efficient choice. Here, we address this issue quantitatively by performing a full-stack resource analysis that compares classical shadows with ``quantum footage," which refers to direct quantum measurement. Under certain assumptions, our analysis illustrates a boundary of download efficiency between classical shadows and quantum footage. For observables expressed as linear combinations of Pauli matrices, the classical shadow method outperforms direct measurement when the number of observables is large and the Pauli weight is small. For observables in the form of large Hermitian sparse matrices, the classical shadow method shows an advantage when the number of observables, the sparsity of the matrix, and the number of qubits fall within a certain range. The key parameters influencing this behavior include the number of qubits $n$, observables $M$, sparsity $k$, Pauli weight $w$, accuracy requirement $\epsilon$, and failure tolerance $\delta$. We also compare the resource consumption of the two methods on different types of quantum computers and identify break-even points where the classical shadow method becomes more efficient, which vary depending on the hardware. This paper opens a new avenue for quantitatively designing optimal strategies for hybrid quantum-classical tomography and provides practical insights for selecting the most suitable quantum measurement approach in real-world applications.
comment: 23 pages, many figures
☆ Metric Embedding Initialization-Based Differentially Private and Explainable Graph Clustering KSEM 2025
Graph clustering under the framework of differential privacy, which aims to process graph-structured data while protecting individual privacy, has been receiving increasing attention. Despite significant achievements in current research, challenges such as high noise, low efficiency and poor interpretability continue to severely constrain the development of this field. In this paper, we construct a differentially private and interpretable graph clustering approach based on metric embedding initialization. Specifically, we construct an SDP optimization, extract the key set and provide a well-initialized clustering configuration using an HST-based initialization method. Subsequently, we apply an established k-median clustering strategy to derive the cluster results and offer comparative explanations for the query set through differences from the cluster centers. Extensive experiments on public datasets demonstrate that our proposed framework outperforms existing methods in various clustering metrics while strictly ensuring privacy.
comment: Accepted as a conference paper at KSEM 2025
☆ Toward a Metrology for Artificial Intelligence: Hidden-Rule Environments and Reinforcement Learning
We investigate reinforcement learning in the Game Of Hidden Rules (GOHR) environment, a complex puzzle in which an agent must infer and execute hidden rules to clear a 6$\times$6 board by placing game pieces into buckets. We explore two state representation strategies, namely Feature-Centric (FC) and Object-Centric (OC), and employ a Transformer-based Advantage Actor-Critic (A2C) algorithm for training. The agent has access only to partial observations and must simultaneously infer the governing rule and learn the optimal policy through experience. We evaluate our models across multiple rule-based and trial-list-based experimental setups, analyzing transfer effects and the impact of representation on learning efficiency.
☆ Repeating vs. Non-Repeating FRBs: A Deep Learning Approach To Morphological Characterization
We present a deep learning approach to classify fast radio bursts (FRBs) based purely on morphology as encoded on recorded dynamic spectrum from CHIME/FRB Catalog 2. We implemented transfer learning with a pretrained ConvNext architecture, exploiting its powerful feature extraction ability. ConvNext was adapted to classify dedispersed dynamic spectra (which we treat as images) of the FRBs into one of the two sub-classes, i.e., repeater and non-repeater, based on their various temporal and spectral properties and relation between the sub-pulse structures. Additionally, we also used mathematical model representation of the total intensity data to interpret the deep learning model. Upon fine-tuning the pretrained ConvNext on the FRB spectrograms, we were able to achieve high classification metrics while substantially reducing training time and computing power as compared to training a deep learning model from scratch with random weights and biases without any feature extraction ability. Importantly, our results suggest that the morphological differences between CHIME repeating and non-repeating events persist in Catalog 2 and the deep learning model leveraged these differences for classification. The fine-tuned deep learning model can be used for inference, which enables us to predict whether an FRB's morphology resembles that of repeaters or non-repeaters. Such inferences may become increasingly significant when trained on larger data sets that will exist in the near future.
comment: 26 pages, 17 figures, submitted to ApJ
☆ Grasp-MPC: Closed-Loop Visual Grasping via Value-Guided Model Predictive Control
Grasping of diverse objects in unstructured environments remains a significant challenge. Open-loop grasping methods, effective in controlled settings, struggle in cluttered environments. Grasp prediction errors and object pose changes during grasping are the main causes of failure. In contrast, closed-loop methods address these challenges in simplified settings (e.g., single object on a table) on a limited set of objects, with no path to generalization. We propose Grasp-MPC, a closed-loop 6-DoF vision-based grasping policy designed for robust and reactive grasping of novel objects in cluttered environments. Grasp-MPC incorporates a value function, trained on visual observations from a large-scale synthetic dataset of 2 million grasp trajectories that include successful and failed attempts. We deploy this learned value function in an MPC framework in combination with other cost terms that encourage collision avoidance and smooth execution. We evaluate Grasp-MPC on FetchBench and real-world settings across diverse environments. Grasp-MPC improves grasp success rates by up to 32.6% in simulation and 33.3% in real-world noisy conditions, outperforming open-loop, diffusion policy, transformer policy, and IQL approaches. Videos and more at http://grasp-mpc.github.io.
comment: 14 pages, 17 figures
☆ Learning in ImaginationLand: Omnidirectional Policies through 3D Generative Models (OP-Gen)
Recent 3D generative models, which are capable of generating full object shapes from just a few images, now open up new opportunities in robotics. In this work, we show that 3D generative models can be used to augment a dataset from a single real-world demonstration, after which an omnidirectional policy can be learned within this imagined dataset. We found that this enables a robot to perform a task when initialised from states very far from those observed during the demonstration, including starting from the opposite side of the object relative to the real-world demonstration, significantly reducing the number of demonstrations required for policy learning. Through several real-world experiments across tasks such as grasping objects, opening a drawer, and placing trash into a bin, we study these omnidirectional policies by investigating the effect of various design choices on policy behaviour, and we show superior performance to recent baselines which use alternative methods for data augmentation.
comment: Project webpage with robot videos: https://www.robot-learning.uk/op-gen
☆ Modeling shopper interest broadness with entropy-driven dialogue policy in the context of arbitrarily large product catalogs
Conversational recommender systems promise rich interactions for e-commerce, but balancing exploration (clarifying user needs) and exploitation (making recommendations) remains challenging, especially when deploying large language models (LLMs) with vast product catalogs. We address this challenge by modeling the breadth of user interest via the entropy of retrieval score distributions. Our method uses a neural retriever to fetch relevant items for a user query and computes the entropy of the re-ranked scores to dynamically route the dialogue policy: low-entropy (specific) queries trigger direct recommendations, whereas high-entropy (ambiguous) queries prompt exploratory questions. This simple yet effective strategy allows an LLM-driven agent to remain aware of an arbitrarily large catalog in real-time without bloating its context window.
☆ Robust Analysis for Resilient AI System
Operational hazards in Manufacturing Industrial Internet (MII) systems generate severe data outliers that cripple traditional statistical analysis. This paper proposes a novel robust regression method, DPD-Lasso, which integrates Density Power Divergence with Lasso regularization to analyze contaminated data from AI resilience experiments. We develop an efficient iterative algorithm to overcome previous computational bottlenecks. Applied to an MII testbed for Aerosol Jet Printing, DPD-Lasso provides reliable, stable performance on both clean and outlier-contaminated data, accurately quantifying hazard impacts. This work establishes robust regression as an essential tool for developing and validating resilient industrial AI systems.
comment: 10 pages, 3 figures
☆ Reasoning Language Model for Personalized Lung Cancer Screening
Accurate risk assessment in lung cancer screening is critical for enabling early cancer detection and minimizing unnecessary invasive procedures. The Lung CT Screening Reporting and Data System (Lung-RADS) has been widely used as the standard framework for patient management and follow-up. Nevertheless, Lung-RADS faces trade-offs between sensitivity and specificity, as it stratifies risk solely based on lung nodule characteristics without incorporating various risk factors. Here we propose a reasoning language model (RLM) to integrate radiology findings with longitudinal medical records for individualized lung cancer risk assessment. Through a systematic study including dataset construction and distillation, supervised fine-tuning, reinforcement learning, and comprehensive evaluation, our model makes significant improvements in risk prediction performance on datasets in the national lung screening trial. Notably, RLM can decompose the risk evaluation task into sub-components, analyze the contributions of diverse risk factors, and synthesize them into a final risk score computed using our data-driven system equation. Our approach improves both predictive accuracy and monitorability through the chain of thought reasoning process, thereby facilitating clinical translation into lung cancer screening.
☆ Exploring Urban Factors with Autoencoders: Relationship Between Static and Dynamic Features
Urban analytics utilizes extensive datasets with diverse urban information to simulate, predict trends, and uncover complex patterns within cities. While these data enables advanced analysis, it also presents challenges due to its granularity, heterogeneity, and multimodality. To address these challenges, visual analytics tools have been developed to support the exploration of latent representations of fused heterogeneous and multimodal data, discretized at a street-level of detail. However, visualization-assisted tools seldom explore the extent to which fused data can offer deeper insights than examining each data source independently within an integrated visualization framework. In this work, we developed a visualization-assisted framework to analyze whether fused latent data representations are more effective than separate representations in uncovering patterns from dynamic and static urban data. The analysis reveals that combined latent representations produce more structured patterns, while separate ones are useful in particular cases.
☆ Benchmarking Gender and Political Bias in Large Language Models
We introduce EuroParlVote, a novel benchmark for evaluating large language models (LLMs) in politically sensitive contexts. It links European Parliament debate speeches to roll-call vote outcomes and includes rich demographic metadata for each Member of the European Parliament (MEP), such as gender, age, country, and political group. Using EuroParlVote, we evaluate state-of-the-art LLMs on two tasks -- gender classification and vote prediction -- revealing consistent patterns of bias. We find that LLMs frequently misclassify female MEPs as male and demonstrate reduced accuracy when simulating votes for female speakers. Politically, LLMs tend to favor centrist groups while underperforming on both far-left and far-right ones. Proprietary models like GPT-4o outperform open-weight alternatives in terms of both robustness and fairness. We release the EuroParlVote dataset, code, and demo to support future research on fairness and accountability in NLP within political contexts.
comment: The 8th International Conference on Natural Language and Speech Processing (Oral)
☆ An Improved Template for Approximate Computing
Deploying neural networks on edge devices entails a careful balance between the energy required for inference and the accuracy of the resulting classification. One technique for navigating this tradeoff is approximate computing: the process of reducing energy consumption by slightly reducing the accuracy of arithmetic operators. In this context, we propose a methodology to reduce the area of the small arithmetic operators used in neural networks - i.e., adders and multipliers - via a small loss in accuracy, and show that we improve area savings for the same accuracy loss w.r.t. the state of the art. To achieve our goal, we improve on a boolean rewriting technique recently proposed, called XPAT, where the use of a parametrisable template to rewrite circuits has proved to be highly beneficial. In particular, XPAT was able to produce smaller circuits than comparable approaches while utilising a naive sum of products template structure. In this work, we show that template parameters can act as proxies for chosen metrics and we propose a novel template based on parametrisable product sharing that acts as a close proxy to synthesised area. We demonstrate experimentally that our methodology converges better to low-area solutions and that it can find better approximations than both the original XPAT and two other state-of-the-art approaches.
comment: 4 pages, 5 figures
☆ Tracking daily paths in home contexts with RSSI fingerprinting based on UWB through deep learning models
The field of human activity recognition has evolved significantly, driven largely by advancements in Internet of Things (IoT) device technology, particularly in personal devices. This study investigates the use of ultra-wideband (UWB) technology for tracking inhabitant paths in home environments using deep learning models. UWB technology estimates user locations via time-of-flight and time-difference-of-arrival methods, which are significantly affected by the presence of walls and obstacles in real environments, reducing their precision. To address these challenges, we propose a fingerprinting-based approach utilizing received signal strength indicator (RSSI) data collected from inhabitants in two flats (60 m2 and 100 m2) while performing daily activities. We compare the performance of convolutional neural network (CNN), long short-term memory (LSTM), and hybrid CNN+LSTM models, as well as the use of Bluetooth technology. Additionally, we evaluate the impact of the type and duration of the temporal window (future, past, or a combination of both). Our results demonstrate a mean absolute error close to 50 cm, highlighting the superiority of the hybrid model in providing accurate location estimates, thus facilitating its application in daily human activity recognition in residential settings.
comment: 25 pages, 14 figures
☆ Data-Efficient Time-Dependent PDE Surrogates: Graph Neural Simulators vs Neural Operators
Neural operators (NOs) approximate mappings between infinite-dimensional function spaces but require large datasets and struggle with scarce training data. Many NO formulations don't explicitly encode causal, local-in-time structure of physical evolution. While autoregressive models preserve causality by predicting next time-steps, they suffer from rapid error accumulation. We employ Graph Neural Simulators (GNS) - a message-passing graph neural network framework - with explicit numerical time-stepping schemes to construct accurate forward models that learn PDE solutions by modeling instantaneous time derivatives. We evaluate our framework on three canonical PDE systems: (1) 2D Burgers' scalar equation, (2) 2D coupled Burgers' vector equation, and (3) 2D Allen-Cahn equation. Rigorous evaluations demonstrate GNS significantly improves data efficiency, achieving higher generalization accuracy with substantially fewer training trajectories compared to neural operator baselines like DeepONet and FNO. GNS consistently achieves under 1% relative L2 errors with only 30 training samples out of 1000 (3% of available data) across all three PDE systems. It substantially reduces error accumulation over extended temporal horizons: averaged across all cases, GNS reduces autoregressive error by 82.48% relative to FNO AR and 99.86% relative to DON AR. We introduce a PCA+KMeans trajectory selection strategy enhancing low-data performance. Results indicate combining graph-based local inductive biases with conventional time integrators yields accurate, physically consistent, and scalable surrogate models for time-dependent PDEs.
comment: 21 pages including references. Supplementary Information provided
☆ Additive Distributionally Robust Ranking and Selection
Ranking and selection (R&S) aims to identify the alternative with the best mean performance among $k$ simulated alternatives. The practical value of R&S depends on accurate simulation input modeling, which often suffers from the curse of input uncertainty due to limited data. Distributionally robust ranking and selection (DRR&S) addresses this challenge by modeling input uncertainty via an ambiguity set of $m > 1$ plausible input distributions, resulting in $km$ scenarios in total. Recent DRR&S studies suggest a key structural insight: additivity in budget allocation is essential for efficiency. However, existing justifications are heuristic, and fundamental properties such as consistency and the precise allocation pattern induced by additivity remain poorly understood. In this paper, we propose a simple additive allocation (AA) procedure that aims to exclusively sample the $k + m - 1$ previously hypothesized critical scenarios. Leveraging boundary-crossing arguments, we establish a lower bound on the probability of correct selection and characterize the procedure's budget allocation behavior. We then prove that AA is consistent and, surprisingly, achieves additivity in the strongest sense: as the total budget increases, only $k + m - 1$ scenarios are sampled infinitely often. Notably, the worst-case scenarios of non-best alternatives may not be among them, challenging prior beliefs about their criticality. These results offer new and counterintuitive insights into the additive structure of DRR&S. To improve practical performance while preserving this structure, we introduce a general additive allocation (GAA) framework that flexibly incorporates sampling rules from traditional R&S procedures in a modular fashion. Numerical experiments support our theoretical findings and demonstrate the competitive performance of the proposed GAA procedures.
comment: Due to the 1,920-character limit imposed on the abstract field, the abstract presented here is a truncated version of the full abstract provided in the PDF. The only omitted sentence is: We also prove the additivity and consistency for GAA procedures
☆ If generative AI is the answer, what is the question?
Beginning with text and images, generative AI has expanded to audio, video, computer code, and molecules. Yet, if generative AI is the answer, what is the question? We explore the foundations of generation as a distinct machine learning task with connections to prediction, compression, and decision-making. We survey five major generative model families: autoregressive models, variational autoencoders, normalizing flows, generative adversarial networks, and diffusion models. We then introduce a probabilistic framework that emphasizes the distinction between density estimation and generation. We review a game-theoretic framework with a two-player adversary-learner setup to study generation. We discuss post-training modifications that prepare generative models for deployment. We end by highlighting some important topics in socially responsible generation such as privacy, detection of AI-generated content, and copyright and IP. We adopt a task-first framing of generation, focusing on what generation is as a machine learning problem, rather than only on how models implement it.
comment: To appear as a book chapter in a Springer book titled "Statistical Foundations and Applications of Artificial Intelligence, Machine Learning and Deep Learning" and edited by S. Ejaz Ahmed, Pierre Alquier, Yi Li, Shuangge Ma
☆ Using Reinforcement Learning to Optimize the Global and Local Crossing Number
We present a novel approach to graph drawing based on reinforcement learning for minimizing the global and the local crossing number, that is, the total number of edge crossings and the maximum number of crossings on any edge, respectively. In our framework, an agent learns how to move a vertex based on a given observation vector in order to optimize its position. The agent receives feedback in the form of local reward signals tied to crossing reduction. To generate an initial layout, we use a stress-based graph-drawing algorithm. We compare our method against force- and stress-based (baseline) algorithms as well as three established algorithms for global crossing minimization on a suite of benchmark graphs. The experiments show mixed results: our current algorithm is mainly competitive for the local crossing number. We see a potential for further development of the approach in the future.
☆ Teaching Precommitted Agents: Model-Free Policy Evaluation and Control in Quasi-Hyperbolic Discounted MDPs
Time-inconsistent preferences, where agents favor smaller-sooner over larger-later rewards, are a key feature of human and animal decision-making. Quasi-Hyperbolic (QH) discounting provides a simple yet powerful model for this behavior, but its integration into the reinforcement learning (RL) framework has been limited. This paper addresses key theoretical and algorithmic gaps for precommitted agents with QH preferences. We make two primary contributions: (i) we formally characterize the structure of the optimal policy, proving for the first time that it reduces to a simple one-step non-stationary form; and (ii) we design the first practical, model-free algorithms for both policy evaluation and Q-learning in this setting, both with provable convergence guarantees. Our results provide foundational insights for incorporating QH preferences in RL.
☆ A Surrogate model for High Temperature Superconducting Magnets to Predict Current Distribution with Neural Network
Finite element method (FEM) is widely used in high-temperature superconducting (HTS) magnets, but its computational cost increases with magnet size and becomes time-consuming for meter-scale magnets, especially when multi-physics couplings are considered, which limits the fast design of large-scale REBCO magnet systems. In this work, a surrogate model based on a fully connected residual neural network (FCRN) is developed to predict the space-time current density distribution in REBCO solenoids. Training datasets were generated from FEM simulations with varying numbers of turns and pancakes. The results demonstrate that, for deeper networks, the FCRN architecture achieves better convergence than conventional fully connected network (FCN), with the configuration of 12 residual blocks and 256 neurons per layer providing the most favorable balance between training accuracy and generalization capability. Extrapolation studies show that the model can reliably predict magnetization losses for up to 50% beyond the training range, with maximum errors below 10%. The surrogate model achieves predictions several orders of magnitude faster than FEM and still remains advantageous when training costs are included. These results indicate that the proposed FCRN-based surrogate model provides both accuracy and efficiency, offering a promising tool for the rapid analysis of large-scale HTS magnets.
☆ ARIES: Relation Assessment and Model Recommendation for Deep Time Series Forecasting
Recent advancements in deep learning models for time series forecasting have been significant. These models often leverage fundamental time series properties such as seasonality and non-stationarity, which may suggest an intrinsic link between model performance and data properties. However, existing benchmark datasets fail to offer diverse and well-defined temporal patterns, restricting the systematic evaluation of such connections. Additionally, there is no effective model recommendation approach, leading to high time and cost expenditures when testing different architectures across different downstream applications. For those reasons, we propose ARIES, a framework for assessing relation between time series properties and modeling strategies, and for recommending deep forcasting models for realistic time series. First, we construct a synthetic dataset with multiple distinct patterns, and design a comprehensive system to compute the properties of time series. Next, we conduct an extensive benchmarking of over 50 forecasting models, and establish the relationship between time series properties and modeling strategies. Our experimental results reveal a clear correlation. Based on these findings, we propose the first deep forecasting model recommender, capable of providing interpretable suggestions for real-world time series. In summary, ARIES is the first study to establish the relations between the properties of time series data and modeling strategies, while also implementing a model recommendation system. The code is available at: https://github.com/blisky-li/ARIES.
☆ A novel biomass fluidized bed gasification model coupled with machine learning and CFD simulation
A coupling model of biomass fluidized bed gasification based on machine learning and computational fluid dynamics is proposed to improve the prediction accuracy and computational efficiency of complex thermochemical reaction process. By constructing a high-quality data set based on experimental data and high fidelity simulation results, the agent model used to describe the characteristics of reaction kinetics was trained and embedded into the computational fluid dynamics (CFD) framework to realize the real-time update of reaction rate and composition evolution.
☆ PolicyEvolve: Evolving Programmatic Policies by LLMs for multi-player games via Population-Based Training
Multi-agent reinforcement learning (MARL) has achieved significant progress in solving complex multi-player games through self-play. However, training effective adversarial policies requires millions of experience samples and substantial computational resources. Moreover, these policies lack interpretability, hindering their practical deployment. Recently, researchers have successfully leveraged Large Language Models (LLMs) to generate programmatic policies for single-agent tasks, transforming neural network-based policies into interpretable rule-based code with high execution efficiency. Inspired by this, we propose PolicyEvolve, a general framework for generating programmatic policies in multi-player games. PolicyEvolve significantly reduces reliance on manually crafted policy code, achieving high-performance policies with minimal environmental interactions. The framework comprises four modules: Global Pool, Local Pool, Policy Planner, and Trajectory Critic. The Global Pool preserves elite policies accumulated during iterative training. The Local Pool stores temporary policies for the current iteration; only sufficiently high-performing policies from this pool are promoted to the Global Pool. The Policy Planner serves as the core policy generation module. It samples the top three policies from the Global Pool, generates an initial policy for the current iteration based on environmental information, and refines this policy using feedback from the Trajectory Critic. Refined policies are then deposited into the Local Pool. This iterative process continues until the policy achieves a sufficiently high average win rate against the Global Pool, at which point it is integrated into the Global Pool. The Trajectory Critic analyzes interaction data from the current policy, identifies vulnerabilities, and proposes directional improvements to guide the Policy Planner
☆ BranchGRPO: Stable and Efficient GRPO with Structured Branching in Diffusion Models
Recent advancements in aligning image and video generative models via GRPO have achieved remarkable gains in enhancing human preference alignment. However, these methods still face high computational costs from on-policy rollouts and excessive SDE sampling steps, as well as training instability due to sparse rewards. In this paper, we propose BranchGRPO, a novel method that introduces a branch sampling policy updating the SDE sampling process. By sharing computation across common prefixes and pruning low-reward paths and redundant depths, BranchGRPO substantially lowers the per-update compute cost while maintaining or improving exploration diversity. This work makes three main contributions: (1) a branch sampling scheme that reduces rollout and training cost; (2) a tree-based advantage estimator incorporating dense process-level rewards; and (3) pruning strategies exploiting path and depth redundancy to accelerate convergence and boost performance. Experiments on image and video preference alignment show that BranchGRPO improves alignment scores by 16% over strong baselines, while cutting training time by 50%.
comment: 12 pages, 6 figures
☆ DCMI: A Differential Calibration Membership Inference Attack Against Retrieval-Augmented Generation
While Retrieval-Augmented Generation (RAG) effectively reduces hallucinations by integrating external knowledge bases, it introduces vulnerabilities to membership inference attacks (MIAs), particularly in systems handling sensitive data. Existing MIAs targeting RAG's external databases often rely on model responses but ignore the interference of non-member-retrieved documents on RAG outputs, limiting their effectiveness. To address this, we propose DCMI, a differential calibration MIA that mitigates the negative impact of non-member-retrieved documents. Specifically, DCMI leverages the sensitivity gap between member and non-member retrieved documents under query perturbation. It generates perturbed queries for calibration to isolate the contribution of member-retrieved documents while minimizing the interference from non-member-retrieved documents. Experiments under progressively relaxed assumptions show that DCMI consistently outperforms baselines--for example, achieving 97.42% AUC and 94.35% Accuracy against the RAG system with Flan-T5, exceeding the MBA baseline by over 40%. Furthermore, on real-world RAG platforms such as Dify and MaxKB, DCMI maintains a 10%-20% advantage over the baseline. These results highlight significant privacy risks in RAG systems and emphasize the need for stronger protection mechanisms. We appeal to the community's consideration of deeper investigations, like ours, against the data leakage risks in rapidly evolving RAG systems. Our code is available at https://github.com/Xinyu140203/RAG_MIA.
☆ Unified Interaction Foundational Model (UIFM) for Predicting Complex User and System Behavior
A central goal of artificial intelligence is to build systems that can understand and predict complex, evolving sequences of events. However, current foundation models, designed for natural language, fail to grasp the holistic nature of structured interactions found in domains like telecommunications, e-commerce and finance. By serializing events into text, they disassemble them into semantically fragmented parts, losing critical context. In this work, we introduce the Unified Interaction Foundation Model (UIFM), a foundation model engineered for genuine behavioral understanding. At its core is the principle of composite tokenization, where each multi-attribute event is treated as a single, semantically coherent unit. This allows UIFM to learn the underlying "grammar" of user behavior, perceiving entire interactions rather than a disconnected stream of data points. We demonstrate that this architecture is not just more accurate, but represents a fundamental step towards creating more adaptable and intelligent predictive systems.
☆ Khana: A Comprehensive Indian Cuisine Dataset
As global interest in diverse culinary experiences grows, food image models are essential for improving food-related applications by enabling accurate food recognition, recipe suggestions, dietary tracking, and automated meal planning. Despite the abundance of food datasets, a noticeable gap remains in capturing the nuances of Indian cuisine due to its vast regional diversity, complex preparations, and the lack of comprehensive labeled datasets that cover its full breadth. Through this exploration, we uncover Khana, a new benchmark dataset for food image classification, segmentation, and retrieval of dishes from Indian cuisine. Khana fills the gap by establishing a taxonomy of Indian cuisine and offering around 131K images in the dataset spread across 80 labels, each with a resolution of 500x500 pixels. This paper describes the dataset creation process and evaluates state-of-the-art models on classification, segmentation, and retrieval as baselines. Khana bridges the gap between research and development by providing a comprehensive and challenging benchmark for researchers while also serving as a valuable resource for developers creating real-world applications that leverage the rich tapestry of Indian cuisine. Webpage: https://khana.omkar.xyz
☆ Imagining Alternatives: Towards High-Resolution 3D Counterfactual Medical Image Generation via Language Guidance
Vision-language models have demonstrated impressive capabilities in generating 2D images under various conditions; however the impressive performance of these models in 2D is largely enabled by extensive, readily available pretrained foundation models. Critically, comparable pretrained foundation models do not exist for 3D, significantly limiting progress in this domain. As a result, the potential of vision-language models to produce high-resolution 3D counterfactual medical images conditioned solely on natural language descriptions remains completely unexplored. Addressing this gap would enable powerful clinical and research applications, such as personalized counterfactual explanations, simulation of disease progression scenarios, and enhanced medical training by visualizing hypothetical medical conditions in realistic detail. Our work takes a meaningful step toward addressing this challenge by introducing a framework capable of generating high-resolution 3D counterfactual medical images of synthesized patients guided by free-form language prompts. We adapt state-of-the-art 3D diffusion models with enhancements from Simple Diffusion and incorporate augmented conditioning to improve text alignment and image quality. To our knowledge, this represents the first demonstration of a language-guided native-3D diffusion model applied specifically to neurological imaging data, where faithful three-dimensional modeling is essential to represent the brain's three-dimensional structure. Through results on two distinct neurological MRI datasets, our framework successfully simulates varying counterfactual lesion loads in Multiple Sclerosis (MS), and cognitive states in Alzheimer's disease, generating high-quality images while preserving subject fidelity in synthetically generated medical images. Our results lay the groundwork for prompt-driven disease progression analysis within 3D medical imaging.
☆ Code2MCP: A Multi-Agent Framework for Automated Transformation of Code Repositories into Model Context Protocol Services
The proliferation of Large Language Models (LLMs) has created a significant integration challenge in the AI agent ecosystem, often called the "$N \times M$ problem," where N models require custom integrations for M tools. This fragmentation stifles innovation and creates substantial development overhead. While the Model Context Protocol (MCP) has emerged as a standard to resolve this, its adoption is hindered by the manual effort required to convert the vast universe of existing software into MCP-compliant services. This is especially true for the millions of open-source repositories on GitHub, the world's largest collection of functional code. This paper introduces Code2MCP, a highly automated, agentic framework designed to transform any GitHub repository into a functional MCP service with minimal human intervention. Our system employs a multi-stage workflow that automates the entire process, from code analysis and environment configuration to service generation and deployment. A key innovation of our framework is an LLM-driven, closed-loop "Run--Review--Fix" cycle, which enables the system to autonomously debug and repair the code it generates. Code2MCP produces not only deployable services but also comprehensive technical documentation, acting as a catalyst to accelerate the MCP ecosystem by systematically unlocking the world's largest open-source code repository and automating the critical last mile of tool integration. The code is open-sourced at https://github.com/DEFENSE-SEU/MCP-Github-Agent.
☆ ALPHA: LLM-Enabled Active Learning for Human-Free Network Anomaly Detection IEEE
Network log data analysis plays a critical role in detecting security threats and operational anomalies. Traditional log analysis methods for anomaly detection and root cause analysis rely heavily on expert knowledge or fully supervised learning models, both of which require extensive labeled data and significant human effort. To address these challenges, we propose ALPHA, the first Active Learning Pipeline for Human-free log Analysis. ALPHA integrates semantic embedding, clustering-based representative sampling, and large language model (LLM)-assisted few-shot annotation to automate the anomaly detection process. The LLM annotated labels are propagated across clusters, enabling large-scale training of an anomaly detector with minimal supervision. To enhance the annotation accuracy, we propose a two-step few-shot refinement strategy that adaptively selects informative prompts based on the LLM's observed error patterns. Extensive experiments on real-world log datasets demonstrate that ALPHA achieves detection accuracy comparable to fully supervised methods while mitigating human efforts in the loop. ALPHA also supports interpretable analysis through LLM-driven root cause explanations in the post-detection stage. These capabilities make ALPHA a scalable and cost-efficient solution for truly automated log-based anomaly detection.
comment: Accepted at 44th IEEE International Performance Computing and Communications Conference (IPCCC 2025)
☆ Smoothed Online Optimization for Target Tracking: Robust and Learning-Augmented Algorithms
We introduce the Smoothed Online Optimization for Target Tracking (SOOTT) problem, a new framework that integrates three key objectives in online decision-making under uncertainty: (1) tracking cost for following a dynamically moving target, (2) adversarial perturbation cost for withstanding unpredictable disturbances, and (3) switching cost for penalizing abrupt changes in decisions. This formulation captures real-world scenarios such as elastic and inelastic workload scheduling in AI clusters, where operators must balance long-term service-level agreements (e.g., LLM training) against sudden demand spikes (e.g., real-time inference). We first present BEST, a robust algorithm with provable competitive guarantees for SOOTT. To enhance practical performance, we introduce CoRT, a learning-augmented variant that incorporates untrusted black-box predictions (e.g., from ML models) into its decision process. Our theoretical analysis shows that CoRT strictly improves over BEST when predictions are accurate, while maintaining robustness under arbitrary prediction errors. We validate our approach through a case study on workload scheduling, demonstrating that both algorithms effectively balance trajectory tracking, decision smoothness, and resilience to external disturbances.
comment: 10 pages, 14 pages appendix
☆ Machine learning magnetism from simple global descriptors
The reliable identification of magnetic ground states remains a major challenge in high-throughput materials databases, where density functional theory (DFT) workflows often converge to ferromagnetic (FM) solutions. Here, we partially address this challenge by developing machine learning classifiers trained on experimentally validated MAGNDATA magnetic materials leveraging a limited number of simple compositional, structural, and electronic descriptors sourced from the Materials Project database. Our propagation vector classifiers achieve accuracies above 92%, outperforming recent studies in reliably distinguishing zero from nonzero propagation vector structures, and exposing a systematic ferromagnetic bias inherent to the Materials Project database for more than 7,843 materials. In parallel, LightGBM and XGBoost models trained directly on the Materials Project labels achieve accuracies of 84-86% (with macro F1 average scores of 63-66%), which proves useful for large-scale screening for magnetic classes, if refined by MAGNDATA-trained classifiers. These results underscore the role of machine learning techniques as corrective and exploratory tools, enabling more trustworthy databases and accelerating progress toward the identification of materials with various properties.
comment: Main Text: 9 pages + 10 Figures & 3 Supplementary Tables
☆ X-SQL: Expert Schema Linking and Understanding of Text-to-SQL with Multi-LLMs
With Large Language Models' (LLMs) emergent abilities on code generation tasks, Text-to-SQL has become one of the most popular downstream applications. Despite the strong results of multiple recent LLM-based Text-to-SQL frameworks, the research community often overlooks the importance of database schema information for generating high-quality SQL queries. We find that such schema information plays a significant or even dominant role in the Text-to-SQL task. To tackle this challenge, we propose a novel database schema expert with two components. We first introduce X-Linking, an LLM Supervised Finetuning (SFT)-based method that achieves superior Schema Linking results compared to existing open-source Text-to-SQL methods. In addition, we innovatively propose an X-Admin component that focuses on Schema Understanding by bridging the gap between abstract schema information and the user's natural language question. Aside from better learning with schema information, we experiment with Multi-LLMs for different components within the system to further boost its performance. By incorporating these techniques into our end-to-end framework, X-SQL, we have achieved Execution Accuracies of 84.9% on the Spider-Dev dataset and 82.5% on the Spider-Test dataset. This outstanding performance establishes X-SQL as the leading Text-to-SQL framework based on open-source models.
☆ Quantum spatial best-arm identification via quantum walks
Quantum reinforcement learning has emerged as a framework combining quantum computation with sequential decision-making, and applications to the multi-armed bandit (MAB) problem have been reported. The graph bandit problem extends the MAB setting by introducing spatial constraints, yet quantum approaches remain limited. We propose a quantum algorithm for best-arm identification in graph bandits, termed Quantum Spatial Best-Arm Identification (QSBAI). The method employs quantum walks to encode superpositions over graph-constrained actions, extending amplitude amplification and generalizing the Quantum BAI algorithm via Szegedy's walk framework. This establishes a link between Grover-type search and reinforcement learning tasks with structural restrictions. We analyze complete and bipartite graphs, deriving the maximal success probability of identifying the best arm and the time step at which it is achieved. Our results highlight the potential of quantum walks to accelerate exploration in constrained environments and extend the applicability of quantum algorithms for decision-making.
comment: 15 pages, 8 figures
☆ Near Real-Time Dust Aerosol Detection with 3D Convolutional Neural Networks on MODIS Data
Dust storms harm health and reduce visibility; quick detection from satellites is needed. We present a near real-time system that flags dust at the pixel level using multi-band images from NASA's Terra and Aqua (MODIS). A 3D convolutional network learns patterns across all 36 bands, plus split thermal bands, to separate dust from clouds and surface features. Simple normalization and local filling handle missing data. An improved version raises training speed by 21x and supports fast processing of full scenes. On 17 independent MODIS scenes, the model reaches about 0.92 accuracy with a mean squared error of 0.014. Maps show strong agreement in plume cores, with most misses along edges. These results show that joint band-and-space learning can provide timely dust alerts at global scale; using wider input windows or attention-based models may further sharpen edges.
comment: 29th International Conference on Image Processing, Computer Vision, & Pattern Recognition (IPCV'25)
☆ SPINN: An Optimal Self-Supervised Physics-Informed Neural Network Framework
A surrogate model is developed to predict the convective heat transfer coefficient of liquid sodium (Na) flow within rectangular miniature heat sinks. Initially, kernel-based machine learning techniques and shallow neural network are applied to a dataset with 87 Nusselt numbers for liquid sodium in rectangular miniature heat sinks. Subsequently, a self-supervised physics-informed neural network and transfer learning approach are used to increase the estimation performance. In the self-supervised physics-informed neural network, an additional layer determines the weight the of physics in the loss function to balance data and physics based on their uncertainty for a better estimation. For transfer learning, a shallow neural network trained on water is adapted for use with Na. Validation results show that the self-supervised physics-informed neural network successfully estimate the heat transfer rates of Na with an error margin of approximately +8%. Using only physics for regression, the error remains between 5% to 10%. Other machine learning methods specify the prediction mostly within +8%. High-fidelity modeling of turbulent forced convection of liquid metals using computational fluid dynamics (CFD) is both time-consuming and computationally expensive. Therefore, machine learning based models offer a powerful alternative tool for the design and optimization of liquid-metal-cooled miniature heat sinks.
☆ Let's Roleplay: Examining LLM Alignment in Collaborative Dialogues
As Large Language Models (LLMs) integrate into diverse workflows, they are increasingly being considered "collaborators" with humans. If such AI collaborators are to be reliable, their behavior over multiturn interactions must be predictable, validated and verified before deployment. Common alignment techniques are typically developed under simplified single-user settings and do not account for the dynamics of long-horizon multiparty interactions. This paper examines how different alignment methods affect LLM agents' effectiveness as partners in multiturn, multiparty collaborations. We study this question through the lens of friction agents that intervene in group dialogues to encourage the collaborative group to slow down and reflect upon their reasoning for deliberative decision-making. Using a roleplay methodology, we evaluate interventions from differently-trained friction agents in collaborative task conversations. We propose a novel counterfactual evaluation framework that quantifies how friction interventions change the trajectory of group collaboration and belief alignment. Our results show that a friction-aware approach significantly outperforms common alignment baselines in helping both convergence to a common ground, or agreed-upon task-relevant propositions, and correctness of task outcomes.
☆ Uncertainty Quantification in Probabilistic Machine Learning Models: Theory, Methods, and Insights
Uncertainty Quantification (UQ) is essential in probabilistic machine learning models, particularly for assessing the reliability of predictions. In this paper, we present a systematic framework for estimating both epistemic and aleatoric uncertainty in probabilistic models. We focus on Gaussian Process Latent Variable Models and employ scalable Random Fourier Features-based Gaussian Processes to approximate predictive distributions efficiently. We derive a theoretical formulation for UQ, propose a Monte Carlo sampling-based estimation method, and conduct experiments to evaluate the impact of uncertainty estimation. Our results provide insights into the sources of predictive uncertainty and illustrate the effectiveness of our approach in quantifying the confidence in the predictions.
comment: Accepted to EUSIPCO 2025
☆ Learning to Construct Knowledge through Sparse Reference Selection with Reinforcement Learning
The rapid expansion of scientific literature makes it increasingly difficult to acquire new knowledge, particularly in specialized domains where reasoning is complex, full-text access is restricted, and target references are sparse among a large set of candidates. We present a Deep Reinforcement Learning framework for sparse reference selection that emulates human knowledge construction, prioritizing which papers to read under limited time and cost. Evaluated on drug--gene relation discovery with access restricted to titles and abstracts, our approach demonstrates that both humans and machines can construct knowledge effectively from partial information.
comment: 8 pages, 2 figures
♻ ☆ Any-Order Flexible Length Masked Diffusion
Masked diffusion models (MDMs) have recently emerged as a promising alternative to autoregressive models over discrete domains. MDMs generate sequences in an any-order, parallel fashion, enabling fast inference and strong performance on non-causal tasks. However, a crucial limitation is that they do not support token insertions and are thus limited to fixed-length generations. To this end, we introduce Flexible Masked Diffusion Models (FlexMDMs), a discrete diffusion paradigm that simultaneously can model sequences of flexible length while provably retaining MDMs' flexibility of any-order inference. Grounded in an extension of the stochastic interpolant framework, FlexMDMs generate sequences by inserting mask tokens and unmasking them. Empirically, we show that FlexMDMs match MDMs in perplexity while modeling length statistics with much higher fidelity. On a synthetic maze planning task, they achieve $\approx 60 \%$ higher success rate than MDM baselines. Finally, we show pretrained MDMs can easily be retrofitted into FlexMDMs: on 16 H100s, it takes only three days to fine-tune LLaDA-8B into a FlexMDM, achieving superior performance on math (GSM8K, $58\% \to 67\%$) and code infilling performance ($52\% \to 65\%$).
comment: Preprint
♻ ☆ Catapult Dynamics and Phase Transitions in Quadratic Nets
Neural networks trained with gradient descent can undergo non-trivial phase transitions as a function of the learning rate. In \cite{lewkowycz2020large} it was discovered that wide neural nets can exhibit a catapult phase for super-critical learning rates, where the training loss grows exponentially quickly at early times before rapidly decreasing to a small value. During this phase the top eigenvalue of the neural tangent kernel (NTK) also undergoes significant evolution. In this work, we will prove that the catapult phase exists in a large class of models, including quadratic models and two-layer, homogenous neural nets. To do this, we show that for a certain range of learning rates the weight norm decreases whenever the loss becomes large. We also empirically study learning rates beyond this theoretically derived range and show that the activation map of ReLU nets trained with super-critical learning rates becomes increasingly sparse as we increase the learning rate.
comment: 46 pages, many figures
♻ ☆ Unsupervised Evolutionary Cell Type Matching via Entropy-Minimized Optimal Transport
Identifying evolutionary correspondences between cell types across species is a fundamental challenge in comparative genomics and evolutionary biology. Existing approaches often rely on either reference-based matching, which imposes asymmetry by designating one species as the reference, or projection-based matching, which may increase computational complexity and obscure biological interpretability at the cell-type level. Here, we present OT-MESH, an unsupervised computational framework leveraging entropy-regularized optimal transport (OT) to systematically determine cross-species cell type homologies. Our method uniquely integrates the Minimize Entropy of Sinkhorn (MESH) technique to refine the OT plan, transforming diffuse transport matrices into sparse, interpretable correspondences. Through systematic evaluation on synthetic datasets, we demonstrate that OT-MESH achieves near-optimal matching accuracy with computational efficiency, while maintaining remarkable robustness to noise. Compared to other OT-based methods like RefCM, OT-MESH provides speedup while achieving comparable accuracy. Applied to retinal bipolar cells (BCs) and retinal ganglion cells (RGCs) from mouse and macaque, OT-MESH accurately recovers known evolutionary relationships and uncovers novel correspondences, one of which was independently validated experimentally. Thus, our framework offers a principled, scalable, and interpretable solution for evolutionary cell type mapping, facilitating deeper insights into cellular specialization and conservation across species.
♻ ☆ Precise Bayesian Neural Networks
Despite its long history, Bayesian neural networks (BNNs) and variational training remain underused in practice: standard Gaussian posteriors misalign with network geometry, KL terms can be brittle in high dimensions, and implementations often add complexity without reliably improving uncertainty. We revisit the problem through the lens of normalization. Because normalization layers neutralize the influence of weight magnitude, we model uncertainty \emph{only in weight directions} using a von Mises-Fisher posterior on the unit sphere. High-dimensional geometry then yields a single, interpretable scalar per layer--the effective post-normalization noise $\sigma_{\mathrm{eff}}$--that (i) corresponds to simple additive Gaussian noise in the forward pass and (ii) admits a compact, dimension-aware KL in closed form. We derive accurate, closed-form approximations linking concentration $\kappa$ to activation variance and to $\sigma_{\mathrm{eff}}$ across regimes, producing a lightweight, implementation-ready variational unit that fits modern normalized architectures and improves calibration without sacrificing accuracy. This dimension awareness is critical for stable optimization in high dimensions. In short, by aligning the variational posterior with the network's intrinsic geometry, BNNs can be simultaneously principled, practical, and precise.
comment: 11 pages, 6 figures
♻ ☆ GenAI-Powered Inference
We introduce GenAI-Powered Inference (GPI), a statistical framework for both causal and predictive inference using unstructured data, including text and images. GPI leverages open-source Generative Artificial Intelligence (GenAI) models -- such as large language models and diffusion models -- not only to generate unstructured data at scale but also to extract low-dimensional representations that are guaranteed to capture their underlying structure. Applying machine learning to these representations, GPI enables estimation of causal and predictive effects while quantifying associated estimation uncertainty. Unlike existing approaches to representation learning, GPI does not require fine-tuning of generative models, making it computationally efficient and broadly accessible. We illustrate the versatility of the GPI framework through three applications: (1) analyzing Chinese social media censorship, (2) estimating predictive effects of candidates' facial appearance on electoral outcomes, and (3) assessing the persuasiveness of political rhetoric. An open-source software package is available for implementing GPI.
♻ ☆ Concept Bottleneck Large Language Models ICLR 2025
We introduce Concept Bottleneck Large Language Models (CB-LLMs), a novel framework for building inherently interpretable Large Language Models (LLMs). In contrast to traditional black-box LLMs that rely on limited post-hoc interpretations, CB-LLMs integrate intrinsic interpretability directly into the LLMs -- allowing accurate explanations with scalability and transparency. We build CB-LLMs for two essential NLP tasks: text classification and text generation. In text classification, CB-LLMs is competitive with, and at times outperforms, traditional black-box models while providing explicit and interpretable reasoning. For the more challenging task of text generation, interpretable neurons in CB-LLMs enable precise concept detection, controlled generation, and safer outputs. The embedded interpretability empowers users to transparently identify harmful content, steer model behavior, and unlearn undesired concepts -- significantly enhancing the safety, reliability, and trustworthiness of LLMs, which are critical capabilities notably absent in existing models. Our code is available at https://github.com/Trustworthy-ML-Lab/CB-LLMs.
comment: Accepted to ICLR 2025
♻ ☆ Repetition Improves Language Model Embeddings ICLR 2025
Bidirectional models are considered essential for strong text embeddings. Recent approaches to adapt autoregressive language models (LMs) into strong text embedding models have largely had the requirement to modify the LM architecture to be bidirectional. We challenge this premise by introducing "echo embeddings" which converts autoregressive LMs into high quality text embedding models without changing the architecture or requiring fine-tuning. By repeating the input and extracting embeddings from the repeated tokens -- which have access to all original tokens -- echo embeddings improve over classical LM embeddings by over 5% in zero-shot settings. Our zero-shot embeddings nearly match those obtained by bidirectionally-converted LMs that undergo additional masked-language modeling training. Echo embeddings are also compatible with supervised fine-tuning, matching or outperforming bidirectionally-converted LMs in an apples-to-apples comparison, even with an identical compute budget during training and inference. Overall, repetition is a simple and effective strategy to circumvent the need for bidirectional attention in embedding models, paving the way towards a unified architecture for all NLP tasks.
comment: ICLR 2025
♻ ☆ Bridging Generalization and Personalization in Human Activity Recognition via On-Device Few-Shot Learning
Human Activity Recognition (HAR) with different sensing modalities requires both strong generalization across diverse users and efficient personalization for individuals. However, conventional HAR models often fail to generalize when faced with user-specific variations, leading to degraded performance. To address this challenge, we propose a novel on-device few-shot learning framework that bridges generalization and personalization in HAR. Our method first trains a generalizable representation across users and then rapidly adapts to new users with only a few labeled samples, updating lightweight classifier layers directly on resource-constrained devices. This approach achieves robust on-device learning with minimal computation and memory cost, making it practical for real-world deployment. We implement our framework on the energy-efficient RISC-V GAP9 microcontroller and evaluate it on three benchmark datasets (RecGym, QVAR-Gesture, Ultrasound-Gesture). Across these scenarios, post-deployment adaptation improves accuracy by 3.73\%, 17.38\%, and 3.70\%, respectively. These results demonstrate that few-shot on-device learning enables scalable, user-aware, and energy-efficient wearable human activity recognition by seamlessly uniting generalization and personalization. The related framework is open sourced for further research\footnote{https://github.com/kangpx/onlineTiny2023}.
♻ ☆ Cascading and Proxy Membership Inference Attacks NDSS
A Membership Inference Attack (MIA) assesses how much a trained machine learning model reveals about its training data by determining whether specific query instances were included in the dataset. We classify existing MIAs into adaptive or non-adaptive, depending on whether the adversary is allowed to train shadow models on membership queries. In the adaptive setting, where the adversary can train shadow models after accessing query instances, we highlight the importance of exploiting membership dependencies between instances and propose an attack-agnostic framework called Cascading Membership Inference Attack (CMIA), which incorporates membership dependencies via conditional shadow training to boost membership inference performance. In the non-adaptive setting, where the adversary is restricted to training shadow models before obtaining membership queries, we introduce Proxy Membership Inference Attack (PMIA). PMIA employs a proxy selection strategy that identifies samples with similar behaviors to the query instance and uses their behaviors in shadow models to perform a membership posterior odds test for membership inference. We provide theoretical analyses for both attacks, and extensive experimental results demonstrate that CMIA and PMIA substantially outperform existing MIAs in both settings, particularly in the low false-positive regime, which is crucial for evaluating privacy risks.
comment: Accepted by The Network and Distributed System Security (NDSS) Symposium, 2026
♻ ☆ Systematic Assessment of Tabular Data Synthesis CCS
Data synthesis has been advocated as an important approach for utilizing data while protecting data privacy. In recent years, a plethora of tabular data synthesis algorithms (i.e., synthesizers) have been proposed. Some synthesizers satisfy Differential Privacy, while others aim to provide privacy in a heuristic fashion. A comprehensive understanding of the strengths and weaknesses of these synthesizers remains elusive due to drawbacks in evaluation metrics and missing head-to-head comparisons of newly developed synthesizers that take advantage of diffusion models and large language models with state-of-the-art statistical synthesizers. In this paper, we present a systematic evaluation framework for assessing tabular data synthesis algorithms. Specifically, we examine and critique existing evaluation metrics, and introduce a set of new metrics in terms of fidelity, privacy, and utility to address their limitations. We conducted extensive evaluations of 8 different types of synthesizers on 12 real-world datasets and identified some interesting findings, which offer new directions for privacy-preserving data synthesis.
comment: Accepted by the ACM Conference on Computer and Communications Security (CCS) 2025
♻ ☆ Convergence and Generalization of Anti-Regularization for Parametric Models
Anti-regularization introduces a reward term with a reversed sign into the loss function, deliberately amplifying model expressivity in small-sample regimes while ensuring that the intervention gradually vanishes as the sample size grows through a power-law decay schedule. We formalize spectral safety conditions and trust-region constraints, and we design a lightweight safeguard that combines a projection operator with gradient clipping to guarantee stable intervention. Theoretical analysis extends to linear smoothers and the Neural Tangent Kernel regime, providing practical guidance on the choice of decay exponents through the balance between empirical risk and variance. Empirical results show that Anti-regularization mitigates underfitting in both regression and classification while preserving generalization and improving calibration. Ablation studies confirm that the decay schedule and safeguards are essential to avoiding overfitting and instability. As an alternative, we also propose a degrees-of-freedom targeting schedule that maintains constant per-sample complexity. Anti-regularization constitutes a simple and reproducible procedure that integrates seamlessly into standard empirical risk minimization pipelines, enabling robust learning under limited data and resource constraints by intervening only when necessary and vanishing otherwise.
comment: v2: Clarity edits; toned-down phrasing; figures replaced by tables; results, formulas, reproducibility unchanged
♻ ☆ FAAGC: Feature Augmentation on Adaptive Geodesic Curve Based on the shape space theory
Deep learning models have been widely applied across various domains and industries. However, many fields still face challenges due to limited and insufficient data. This paper proposes a Feature Augmentation on Adaptive Geodesic Curve (FAAGC) method in the pre-shape space to increase data. In the pre-shape space, objects with identical shapes lie on a great circle. Thus, we project deep model representations into the pre-shape space and construct a geodesic curve, i.e., an arc of a great circle, for each class. Feature augmentation is then performed by sampling along these geodesic paths. Extensive experiments demonstrate that FAAGC improves classification accuracy under data-scarce conditions and generalizes well across various feature types.
♻ ☆ FAIR Universe HiggsML Uncertainty Challenge Competition
The FAIR Universe -- HiggsML Uncertainty Challenge focuses on measuring the physics properties of elementary particles with imperfect simulators due to differences in modelling systematic errors. Additionally, the challenge is leveraging a large-compute-scale AI platform for sharing datasets, training models, and hosting machine learning competitions. Our challenge brings together the physics and machine learning communities to advance our understanding and methodologies in handling systematic (epistemic) uncertainties within AI techniques.
comment: Whitepaper for the FAIR Universe HiggsML Uncertainty Challenge Competition, available : https://fair-universe.lbl.gov
♻ ☆ Confirmation Bias in Gaussian Mixture Models
Confirmation bias, the tendency to interpret information in a way that aligns with one's preconceptions, can profoundly impact scientific research, leading to conclusions that reflect the researcher's hypotheses even when the observational data do not support them. This issue is especially critical in scientific fields involving highly noisy observations, such as cryo-electron microscopy. This study investigates confirmation bias in Gaussian mixture models. We consider the following experiment: A team of scientists assumes they are analyzing data drawn from a Gaussian mixture model with known signals (hypotheses) as centroids. However, in reality, the observations consist entirely of noise without any informative structure. The researchers use a single iteration of the K-means or expectation-maximization algorithms, two popular algorithms to estimate the centroids. Despite the observations being pure noise, we show that these algorithms yield biased estimates that resemble the initial hypotheses, contradicting the unbiased expectation that averaging these noise observations would converge to zero. Namely, the algorithms generate estimates that mirror the postulated model, although the hypotheses (the presumed centroids of the Gaussian mixture) are not evident in the observations. Specifically, among other results, we prove a positive correlation between the estimates produced by the algorithms and the corresponding hypotheses. We also derive explicit closed-form expressions of the estimates for a finite and infinite number of hypotheses. This study underscores the risks of confirmation bias in low signal-to-noise environments, provides insights into potential pitfalls in scientific methodologies, and highlights the importance of prudent data interpretation.
♻ ☆ Efficient and Accurate Pneumonia Detection Using a Novel Multi-Scale Transformer Approach
Pneumonia, a prevalent respiratory infection, remains a leading cause of morbidity and mortality worldwide, particularly among vulnerable populations. Chest X-rays serve as a primary tool for pneumonia detection; however, variations in imaging conditions and subtle visual indicators complicate consistent interpretation. Automated tools can enhance traditional methods by improving diagnostic reliability and supporting clinical decision-making. In this study, we propose a novel multi-scale transformer approach for pneumonia detection that integrates lung segmentation and classification into a unified framework. Our method introduces a lightweight transformer-enhanced TransUNet for precise lung segmentation, achieving a Dice score of 95.68% on the "Chest X-ray Masks and Labels" dataset with fewer parameters than traditional transformers. For classification, we employ pre-trained ResNet models (ResNet-50 and ResNet-101) to extract multi-scale feature maps, which are then processed through a modified transformer module to enhance pneumonia detection. This integration of multi-scale feature extraction and lightweight transformer modules ensures robust performance, making our method suitable for resource-constrained clinical environments. Our approach achieves 93.75% accuracy on the "Kermany" dataset and 96.04% accuracy on the "Cohen" dataset, outperforming existing methods while maintaining computational efficiency. This work demonstrates the potential of multi-scale transformer architectures to improve pneumonia diagnosis, offering a scalable and accurate solution to global healthcare challenges. https://github.com/amirrezafateh/Multi-Scale-Transformer-Pneumonia
♻ ☆ Grower-in-the-Loop Interactive Reinforcement Learning for Greenhouse Climate Control
Climate control is crucial for greenhouse production as it directly affects crop growth and resource use. Reinforcement learning (RL) has received increasing attention in this field, but still faces challenges, including limited training efficiency and high reliance on initial learning conditions. Interactive RL, which combines human (grower) input with the RL agent's learning, offers a potential solution to overcome these challenges. However, interactive RL has not yet been applied to greenhouse climate control and may face challenges related to imperfect inputs. Therefore, this paper aims to explore the possibility and performance of applying interactive RL with imperfect inputs into greenhouse climate control, by: (1) developing three representative interactive RL algorithms tailored for greenhouse climate control (reward shaping, policy shaping and control sharing); (2) analyzing how input characteristics are often contradicting, and how the trade-offs between them make grower's inputs difficult to perfect; (3) proposing a neural network-based approach to enhance the robustness of interactive RL agents under limited input availability; (4) conducting a comprehensive evaluation of the three interactive RL algorithms with imperfect inputs in a simulated greenhouse environment. The demonstration shows that interactive RL incorporating imperfect grower inputs has the potential to improve the performance of the RL agent. RL algorithms that influence action selection, such as policy shaping and control sharing, perform better when dealing with imperfect inputs, achieving 8.4% and 6.8% improvement in profit, respectively. In contrast, reward shaping, an algorithm that manipulates the reward function, is sensitive to imperfect inputs and leads to a 9.4% decrease in profit. This highlights the importance of selecting an appropriate mechanism when incorporating imperfect inputs.
♻ ☆ CAREL: Instruction-guided reinforcement learning with cross-modal auxiliary objectives
Grounding the instruction in the environment is a key step in solving language-guided goal-reaching reinforcement learning problems. In automated reinforcement learning, a key concern is to enhance the model's ability to generalize across various tasks and environments. In goal-reaching scenarios, the agent must comprehend the different parts of the instructions within the environmental context in order to complete the overall task successfully. In this work, we propose CAREL (Cross-modal Auxiliary REinforcement Learning) as a new framework to solve this problem using auxiliary loss functions inspired by video-text retrieval literature and a novel method called instruction tracking, which automatically keeps track of progress in an environment. The results of our experiments suggest superior sample efficiency and systematic generalization for this framework in multi-modal reinforcement learning problems. Our code base is available here.
comment: Accepted to TMLR 2025
♻ ☆ Randomized Quasi-Monte Carlo Features for Kernel Approximation
We investigate the application of randomized quasi-Monte Carlo (RQMC) methods in random feature approximations for kernel-based learning. Compared to the classical Monte Carlo (MC) approach \citep{rahimi2007random}, RQMC improves the deterministic approximation error bound from $O_P(1/\sqrt{M})$ to $O(1/M)$ (up to logarithmic factors), matching the rate achieved by quasi-Monte Carlo (QMC) methods \citep{huangquasi}. Beyond the deterministic error bound guarantee, we further establish additional average error bounds for RQMC features: some requiring weaker assumptions and others significantly reducing the exponent of the logarithmic factor. In the context of kernel ridge regression, we show that RQMC features offer computational advantages over MC features while preserving the same statistical error rate. Empirical results further show that RQMC methods maintain stable performance in both low and moderately high-dimensional settings, unlike QMC methods, which suffer from significant performance degradation as dimension increases.
♻ ☆ Deep Learning Model Predictive Control for Deep Brain Stimulation in Parkinson's Disease
We present a nonlinear data-driven Model Predictive Control (MPC) algorithm for deep brain stimulation (DBS) for the treatment of Parkinson's disease (PD). Although DBS is typically implemented in open-loop, closed-loop DBS (CLDBS) uses the amplitude of neural oscillations in specific frequency bands (e.g. beta 13-30 Hz) as a feedback signal, resulting in improved treatment outcomes with reduced side effects and slower rates of patient habituation to stimulation. To date, CLDBS has only been implemented in vivo with simple algorithms such as proportional, proportional-integral, and thresholded switching control. Our approach employs a multi-step predictor based on differences of input-convex neural networks to model the future evolution of beta oscillations. The use of a multi-step predictor enhances prediction accuracy over the optimization horizon and simplifies online computation. In tests using a simulated model of beta-band activity response and data from PD patients, we achieve reductions of more than 20% in both tracking error and control activity in comparison with existing CLDBS algorithms. The proposed control strategy provides a generalizable data-driven technique that can be applied to the treatment of PD and other diseases targeted by CLDBS, as well as to other neuromodulation techniques.
♻ ☆ StreamMind: Unlocking Full Frame Rate Streaming Video Dialogue through Event-Gated Cognition
With the rise of real-world human-AI interaction applications, such as AI assistants, the need for Streaming Video Dialogue is critical. To address this need, we introduce StreamMind, a video LLM framework that achieves ultra-FPS streaming video processing (100 fps on a single A100) and enables proactive, always-on responses in real time, without explicit user intervention. To solve the key challenge of the contradiction between linear video streaming speed and quadratic transformer computation cost, we propose a novel perception-cognition interleaving paradigm named ''event-gated LLM invocation'', in contrast to the existing per-time-step LLM invocation. By introducing a Cognition Gate network between the video encoder and the LLM, LLM is only invoked when relevant events occur. To realize the event feature extraction with constant cost, we propose Event-Preserving Feature Extractor (EPFE) based on state-space method, generating a single perception token for spatiotemporal features. These techniques enable the video LLM with full-FPS perception and real-time cognition response. Experiments on Ego4D and SoccerNet streaming tasks, as well as standard offline benchmarks, demonstrate state-of-the-art performance in both model capability and real-time efficiency, paving the way for ultra-high-FPS applications, such as Game AI and interactive media. The code and data is available at https://aka.ms/StreamMind.
♻ ☆ Autoencoders in Function Space
Autoencoders have found widespread application in both their original deterministic form and in their variational formulation (VAEs). In scientific applications and in image processing it is often of interest to consider data that are viewed as functions; while discretisation (of differential equations arising in the sciences) or pixellation (of images) renders problems finite dimensional in practice, conceiving first of algorithms that operate on functions, and only then discretising or pixellating, leads to better algorithms that smoothly operate between resolutions. In this paper function-space versions of the autoencoder (FAE) and variational autoencoder (FVAE) are introduced, analysed, and deployed. Well-definedness of the objective governing VAEs is a subtle issue, particularly in function space, limiting applicability. For the FVAE objective to be well defined requires compatibility of the data distribution with the chosen generative model; this can be achieved, for example, when the data arise from a stochastic differential equation, but is generally restrictive. The FAE objective, on the other hand, is well defined in many situations where FVAE fails to be. Pairing the FVAE and FAE objectives with neural operator architectures that can be evaluated on any mesh enables new applications of autoencoders to inpainting, superresolution, and generative modelling of scientific data.
comment: 54 pages, 24 figures
♻ ☆ Playing Markov Games Without Observing Payoffs
Optimization under uncertainty is a fundamental problem in learning and decision-making, particularly in multi-agent systems. Previously, Feldman, Kalai, and Tennenholtz [2010] demonstrated the ability to efficiently compete in repeated symmetric two-player matrix games without observing payoffs, as long as the opponents actions are observed. In this paper, we introduce and formalize a new class of zero-sum symmetric Markov games, which extends the notion of symmetry from matrix games to the Markovian setting. We show that even without observing payoffs, a player who knows the transition dynamics and observes only the opponents sequence of actions can still compete against an adversary who may have complete knowledge of the game. We formalize three distinct notions of symmetry in this setting and show that, under these conditions, the learning problem can be reduced to an instance of online learning, enabling the player to asymptotically match the return of the opponent despite lacking payoff observations. Our algorithms apply to both matrix and Markov games, and run in polynomial time with respect to the size of the game and the number of episodes. Our work broadens the class of games in which robust learning is possible under severe informational disadvantage and deepens the connection between online learning and adversarial game theory.
♻ ☆ Flexible Coded Distributed Convolution Computing for Enhanced Straggler Resilience and Numerical Stability in Distributed CNNs
Deploying Convolutional Neural Networks (CNNs) on resource-constrained devices necessitates efficient management of computational resources, often via distributed environments susceptible to latency from straggler nodes. This paper introduces the Flexible Coded Distributed Convolution Computing (FCDCC) framework to enhance straggler resilience and numerical stability in distributed CNNs. We extend Coded Distributed Computing (CDC) with Circulant and Rotation Matrix Embedding (CRME) which was originally proposed for matrix multiplication to high-dimensional tensor convolution. For the proposed scheme, referred to as the Numerically Stable Coded Tensor Convolution (NSCTC) scheme, we also propose two new coded partitioning schemes: Adaptive-Padding Coded Partitioning (APCP) for the input tensor and Kernel-Channel Coded Partitioning (KCCP) for the filter tensor. These strategies enable linear decomposition of tensor convolutions and encoding them into CDC subtasks, combining model parallelism with coded redundancy for robust and efficient execution. Theoretical analysis identifies an optimal trade-off between communication and storage costs. Empirical results validate the framework's effectiveness in computational efficiency, straggler resilience, and scalability across various CNN architectures.
comment: 15 pages, 7 figures
♻ ☆ Robust Bandwidth Estimation for Real-Time Communication with Offline Reinforcement Learning IEEE
Accurate bandwidth estimation (BWE) is critical for real-time communication (RTC) systems. Traditional heuristic approaches offer limited adaptability under dynamic networks, while online reinforcement learning (RL) suffers from high exploration costs and potential service disruptions. Offline RL, which leverages high-quality data collected from real-world environments, offers a promising alternative. However, challenges such as out-of-distribution (OOD) actions, policy extraction from behaviorally diverse datasets, and reliable deployment in production systems remain unsolved. We propose RBWE, a robust bandwidth estimation framework based on offline RL that integrates Q-ensemble (an ensemble of Q-functions) with a Gaussian mixture policy to mitigate OOD risks and enhance policy learning. A fallback mechanism ensures deployment stability by switching to heuristic methods under high uncertainty. Experimental results show that RBWE reduces overestimation errors by 18% and improves the 10th percentile Quality of Experience (QoE) by 18.6%, demonstrating its practical effectiveness in real-world RTC applications. The implementation is publicly available at https://github.com/jiu2021/RBWE_offline.
comment: Accepted by IEEE GLOBECOM 2025
♻ ☆ Towards a General Time Series Forecasting Model with Unified Representation and Adaptive Transfer ICML2025
With the growing availability of multi-domain time series data, there is an increasing demand for general forecasting models pre-trained on multi-source datasets to support diverse downstream prediction scenarios. Existing time series foundation models primarily focus on scaling up pre-training datasets and model sizes to enhance generalization performance. In this paper, we take a different approach by addressing two critical aspects of general forecasting models: (1) how to derive unified representations from heterogeneous multi-domain time series data, and (2) how to effectively capture domain-specific features to enable adaptive transfer across various downstream scenarios. To address the first aspect, we propose Decomposed Frequency Learning as the pre-training task, which leverages frequency-based masking and reconstruction to decompose coupled semantic information in time series, resulting in unified representations across domains. For the second aspect, we introduce the Time Series Register, which captures domain-specific representations during pre-training and enhances adaptive transferability to downstream tasks. Our model achieves the state-of-the-art forecasting performance on seven real-world benchmarks, demonstrating remarkable few-shot and zero-shot capabilities.
comment: Accepted by the Forty-second International Conference on Machine Learning (ICML2025)
♻ ☆ DACAD: Domain Adaptation Contrastive Learning for Anomaly Detection in Multivariate Time Series
In time series anomaly detection (TSAD), the scarcity of labeled data poses a challenge to the development of accurate models. Unsupervised domain adaptation (UDA) offers a solution by leveraging labeled data from a related domain to detect anomalies in an unlabeled target domain. However, existing UDA methods assume consistent anomalous classes across domains. To address this limitation, we propose a novel Domain Adaptation Contrastive learning model for Anomaly Detection in multivariate time series (DACAD), combining UDA with contrastive learning. DACAD utilizes an anomaly injection mechanism that enhances generalization across unseen anomalous classes, improving adaptability and robustness. Additionally, our model employs supervised contrastive loss for the source domain and self-supervised contrastive triplet loss for the target domain, ensuring comprehensive feature representation learning and domain-invariant feature extraction. Finally, an effective Center-based Entropy Classifier (CEC) accurately learns normal boundaries in the source domain. Extensive evaluations on multiple real-world datasets and a synthetic dataset highlight DACAD's superior performance in transferring knowledge across domains and mitigating the challenge of limited labeled data in TSAD.
comment: 11 pages, 3 figures, 6 tables
♻ ☆ A Review of Machine Learning Techniques in Imbalanced Data and Future Trends
For over two decades, detecting rare events has been a challenging task among researchers in the data mining and machine learning domain. Real-life problems inspire researchers to navigate and further improve data processing and algorithmic approaches to achieve effective and computationally efficient methods for imbalanced learning. In this paper, we have collected and reviewed 258 peer-reviewed papers from archival journals and conference papers in an attempt to provide an in-depth review of various approaches in imbalanced learning from technical and application perspectives. This work aims to provide a structured review of methods used to address the problem of imbalanced data in various domains and create a general guideline for researchers in academia or industry who want to dive into the broad field of machine learning using large-scale imbalanced data.
♻ ☆ ElectroVizQA: How well do Multi-modal LLMs perform in Electronics Visual Question Answering?
Multi-modal Large Language Models (MLLMs) are gaining significant attention for their ability to process multi-modal data, providing enhanced contextual understanding of complex problems. MLLMs have demonstrated exceptional capabilities in tasks such as Visual Question Answering (VQA); however, they often struggle with fundamental engineering problems, and there is a scarcity of specialized datasets for training on topics like digital electronics. To address this gap, we propose a benchmark dataset called ElectroVizQA specifically designed to evaluate MLLMs' performance on digital electronic circuit problems commonly found in undergraduate curricula. This dataset, the first of its kind tailored for the VQA task in digital electronics, comprises approximately 626 visual questions, offering a comprehensive overview of digital electronics topics. This paper rigorously assesses the extent to which MLLMs can understand and solve digital electronic circuit questions, providing insights into their capabilities and limitations within this specialized domain. By introducing this benchmark dataset, we aim to motivate further research and development in the application of MLLMs to engineering education, ultimately bridging the performance gap and enhancing the efficacy of these models in technical fields.
♻ ☆ The Over-Certainty Phenomenon in Modern Test-Time Adaptation Algorithms
When neural networks are confronted with unfamiliar data that deviate from their training set, this signifies a domain shift. While these networks output predictions on their inputs, they typically fail to account for their level of familiarity with these novel observations. Prevailing works navigate test-time adaptation with the goal of curtailing model entropy, yet they unintentionally produce models that struggle with sub-optimal calibration-a dilemma we term the over-certainty phenomenon. This over-certainty in predictions can be particularly dangerous in the setting of domain shifts, as it may lead to misplaced trust. In this paper, we propose a solution that not only maintains accuracy but also addresses calibration by mitigating the over-certainty phenomenon. To do this, we introduce a certainty regularizer that dynamically adjusts pseudo-label confidence by accounting for both backbone entropy and logit norm. Our method achieves state-of-the-art performance in terms of Expected Calibration Error and Negative Log Likelihood, all while maintaining parity in accuracy.
comment: Published in Transactions on Machine Learning Research (TMLR), July 2025
♻ ☆ Online Identification of IT Systems through Active Causal Learning
Identifying a causal model of an IT system is fundamental to many branches of systems engineering and operation. Such a model can be used to predict the effects of control actions, optimize operations, diagnose failures, detect intrusions, etc., which is central to achieving the longstanding goal of automating network and system management tasks. Traditionally, causal models have been designed and maintained by domain experts. This, however, proves increasingly challenging with the growing complexity and dynamism of modern IT systems. In this paper, we present the first principled method for online, data-driven identification of an IT system in the form of a causal model. The method, which we call active causal learning, estimates causal functions that capture the dependencies among system variables in an iterative fashion using Gaussian process regression based on system measurements, which are collected through a rollout-based intervention policy. We prove that this method is optimal in the Bayesian sense and that it produces effective interventions. Experimental validation on a testbed shows that our method enables accurate identification of a causal system model while inducing low interference with system operations.
♻ ☆ Machine Learning Mutation-Acyclicity of Quivers
Machine learning (ML) has emerged as a powerful tool in mathematical research in recent years. This paper applies ML techniques to the study of quivers -- a type of directed multigraph with significant relevance in algebra, combinatorics, computer science, and mathematical physics. Specifically, we focus on the challenging problem of determining the mutation-acyclicity of a quiver on 4 vertices, a property that is pivotal since mutation-acyclicity is often a necessary condition for theorems involving path algebras and cluster algebras. Although this classification is known for quivers with at most 3 vertices, little is known about quivers on more than 3 vertices. We give a computer-assisted proof of a theorem to prove that mutation-acyclicity is decidable for quivers on 4 vertices with edge weight at most 2. By leveraging neural networks (NNs) and support vector machines (SVMs), we then accurately classify more general 4-vertex quivers as mutation-acyclic or non-mutation-acyclic. Our results demonstrate that ML models can efficiently detect mutation-acyclicity, providing a promising computational approach to this combinatorial problem, from which the trained SVM equation provides a starting point to guide future theoretical development.
comment: 34 pages, 16 figures, 7 tables. To be published in the Journal of Computational Algebra. This version has improved exposition and additional figures. Some of the machine learning background was moved to the appendix
♻ ☆ A Survey on Training-free Alignment of Large Language Models EMNLP 2025
The alignment of large language models (LLMs) aims to ensure their outputs adhere to human values, ethical standards, and legal norms. Traditional alignment methods often rely on resource-intensive fine-tuning (FT), which may suffer from knowledge degradation and face challenges in scenarios where the model accessibility or computational resources are constrained. In contrast, training-free (TF) alignment techniques--leveraging in-context learning, decoding-time adjustments, and post-generation corrections--offer a promising alternative by enabling alignment without heavily retraining LLMs, making them adaptable to both open-source and closed-source environments. This paper presents the first systematic review of TF alignment methods, categorizing them by stages of pre-decoding, in-decoding, and post-decoding. For each stage, we provide a detailed examination from the viewpoint of LLMs and multimodal LLMs (MLLMs), highlighting their mechanisms and limitations. Furthermore, we identify key challenges and future directions, paving the way for more inclusive and effective TF alignment techniques. By synthesizing and organizing the rapidly growing body of research, this survey offers a guidance for practitioners and advances the development of safer and more reliable LLMs.
comment: Accepted to EMNLP 2025 (findings), camera-ready version
♻ ☆ COLLAGE: Adaptive Fusion-based Retrieval for Augmented Policy Learning
In this work, we study the problem of data retrieval for few-shot imitation learning: selecting data from a large dataset to train a performant policy for a specific task, given only a few target demonstrations. Prior methods retrieve data using a single-feature distance heuristic, assuming that the best demonstrations are those that most closely resemble the target examples in visual, semantic, or motion space. However, this approach captures only a subset of the relevant information and can introduce detrimental demonstrations, e.g., retrieving data from unrelated tasks due to similar scene layouts, or selecting similar motions from tasks with divergent goals. We present COLLAGE, a method for COLLective data AGgrEgation in few-shot imitation learning that uses an adaptive late fusion mechanism to guide the selection of relevant demonstrations based on a task-specific combination of multiple cues. COLLAGE follows a simple, flexible, and efficient recipe: it assigns weights to subsets of the dataset that are pre-selected using a single feature (e.g., appearance, shape, or language similarity), based on how well a policy trained on each subset predicts actions in the target demonstrations. These weights are then used to perform importance sampling during policy training, sampling data more densely or sparsely according to estimated relevance. COLLAGE is general and feature-agnostic, allowing it to combine any number of subsets selected by any retrieval heuristic, and to identify which subsets provide the greatest benefit for the target task. In extensive experiments, COLLAGE outperforms state-of-the-art retrieval and multi-task learning approaches by 5.1% in simulation across 10 tasks, and by 16.6% in the real world across 6 tasks, where we perform retrieval from the large-scale DROID dataset. More information at https://robin-lab.cs.utexas.edu/COLLAGE .
comment: Accepted at the Conference on Robot Learning (CoRL), 2025. Project page: https://robin-lab.cs.utexas.edu/COLLAGE
♻ ☆ PLAME: Lightweight MSA Design Advances Protein Folding From Evolutionary Embeddings
Protein structure prediction often hinges on multiple sequence alignments (MSAs), which underperform on low-homology and orphan proteins. We introduce PLAME, a lightweight MSA design framework that leverages evolutionary embeddings from pretrained protein language models to generate MSAs that better support downstream folding. PLAME couples these embeddings with a conservation-diversity loss that balances agreement on conserved positions with coverage of plausible sequence variation. Beyond generation, we develop (i) an MSA selection strategy to filter high-quality candidates and (ii) a sequence-quality metric that is complementary to depth-based measures and predictive of folding gains. On AlphaFold2 low-homology/orphan benchmarks, PLAME delivers state-of-the-art improvements in structure accuracy (e.g., lDDT/TM-score), with consistent gains when paired with AlphaFold3. Ablations isolate the benefits of the selection strategy, and case studies elucidate how MSA characteristics shape AlphaFold confidence and error modes. Finally, we show PLAME functions as a lightweight adapter, enabling ESMFold to approach AlphaFold2-level accuracy while retaining ESMFold-like inference speed. PLAME thus provides a practical path to high-quality folding for proteins lacking strong evolutionary neighbors.
♻ ☆ ComplicitSplat: Downstream Models are Vulnerable to Blackbox Attacks by 3D Gaussian Splat Camouflages
As 3D Gaussian Splatting (3DGS) gains rapid adoption in safety-critical tasks for efficient novel-view synthesis from static images, how might an adversary tamper images to cause harm? We introduce ComplicitSplat, the first attack that exploits standard 3DGS shading methods to create viewpoint-specific camouflage - colors and textures that change with viewing angle - to embed adversarial content in scene objects that are visible only from specific viewpoints and without requiring access to model architecture or weights. Our extensive experiments show that ComplicitSplat generalizes to successfully attack a variety of popular detector - both single-stage, multi-stage, and transformer-based models on both real-world capture of physical objects and synthetic scenes. To our knowledge, this is the first black-box attack on downstream object detectors using 3DGS, exposing a novel safety risk for applications like autonomous navigation and other mission-critical robotic systems.
comment: 7 pages, 6 figures
Multimedia 3
☆ MCIGLE: Multimodal Exemplar-Free Class-Incremental Graph Learning KSEM 2025
Exemplar-free class-incremental learning enables models to learn new classes over time without storing data from old ones. As multimodal graph-structured data becomes increasingly prevalent, existing methods struggle with challenges like catastrophic forgetting, distribution bias, memory limits, and weak generalization. We propose MCIGLE, a novel framework that addresses these issues by extracting and aligning multimodal graph features and applying Concatenated Recursive Least Squares for effective knowledge retention. Through multi-channel processing, MCIGLE balances accuracy and memory preservation. Experiments on public datasets validate its effectiveness and generalizability.
comment: Accepted as a conference paper at KSEM 2025
☆ DeepStream: Prototyping Deep Joint Source-Channel Coding for Real-Time Multimedia Transmissions
Deep learning-based joint source-channel coding (DeepJSCC) has emerged as a promising technique in 6G for enhancing the efficiency and reliability of data transmission across diverse modalities, particularly in low signal-to-noise ratio (SNR) environments. This advantage is realized by leveraging powerful neural networks to learn an optimal end-to-end mapping from the source data directly to the transmit symbol sequence, eliminating the need for separate source coding, channel coding, and modulation. Although numerous efforts have been made towards efficient DeepJSCC, they have largely stayed at numerical simulations that can be far from practice, leaving the real-world viability of DeepJSCC largely unverified. To this end, we prototype DeepStream upon orthogonal frequency division multiplexing (OFDM) technology to offer efficient and robust DeepJSCC for multimedia transmission. In conforming to OFDM, we develop both a feature-to-symbol mapping method and a cross-subcarrier precoding method to improve the subcarrier independence and reduce peak-to-average power ratio. To reduce system complexity and enable flexibility in accommodating varying quality of service requirements, we further propose a progressive coding strategy that adjusts the compression ratio based on latency with minimal performance loss. We implement DeepStream for real-time image transmission and video streaming using software-defined radio. Extensive evaluations verify that DeepStream outperforms both the standard scheme and the direct deployment scheme. Particularly, at an SNR of 10 dB, DeepStream achieves a PSNR of 35 dB for image transmission and an MS-SSIM of 20 dB for video streaming, whereas the standard scheme fails to recover meaningful information.
comment: 13 pages, 43 figures
♻ ☆ LMM4Edit: Benchmarking and Evaluating Multimodal Image Editing with LMMs
The rapid advancement of Text-guided Image Editing (TIE) enables image modifications through text prompts. However, current TIE models still struggle to balance image quality, editing alignment, and consistency with the original image, limiting their practical applications. Existing TIE evaluation benchmarks and metrics have limitations on scale or alignment with human perception. To this end, we introduce EBench-18K, the first large-scale image Editing Benchmark including 18K edited images with fine-grained human preference annotations for evaluating TIE. Specifically, EBench-18K includes 1,080 source images with corresponding editing prompts across 21 tasks, 18K+ edited images produced by 17 state-of-the-art TIE models, 55K+ mean opinion scores (MOSs) assessed from three evaluation dimensions, and 18K+ question-answering (QA) pairs. Based on EBench-18K, we employ outstanding LMMs to assess edited images, while the evaluation results, in turn, provide insights into assessing the alignment between the LMMs' understanding ability and human preferences. Then, we propose LMM4Edit, a LMM-based metric for evaluating image Editing models from perceptual quality, editing alignment, attribute preservation, and task-specific QA accuracy in an all-in-one manner. Extensive experiments show that LMM4Edit achieves outstanding performance and aligns well with human preference. Zero-shot validation on the other datasets also shows the generalization ability of our model. The dataset and code are available at https://github.com/IntMeGroup/LMM4Edit.
Computer Vision and Pattern Recognition 58
☆ Performance of Conformal Prediction in Capturing Aleatoric Uncertainty
Conformal prediction is a model-agnostic approach to generating prediction sets that cover the true class with a high probability. Although its prediction set size is expected to capture aleatoric uncertainty, there is a lack of evidence regarding its effectiveness. The literature presents that prediction set size can upper-bound aleatoric uncertainty or that prediction sets are larger for difficult instances and smaller for easy ones, but a validation of this attribute of conformal predictors is missing. This work investigates how effectively conformal predictors quantify aleatoric uncertainty, specifically the inherent ambiguity in datasets caused by overlapping classes. We perform this by measuring the correlation between prediction set sizes and the number of distinct labels assigned by human annotators per instance. We further assess the similarity between prediction sets and human-provided annotations. We use three conformal prediction approaches to generate prediction sets for eight deep learning models trained on four datasets. The datasets contain annotations from multiple human annotators (ranging from five to fifty participants) per instance, enabling the identification of class overlap. We show that the vast majority of the conformal prediction outputs show a very weak to weak correlation with human annotations, with only a few showing moderate correlation. These findings underscore the necessity of critically reassessing the prediction sets generated using conformal predictors. While they can provide a higher coverage of the true classes, their capability in capturing aleatoric uncertainty remains limited.
☆ Brain Tumor Detection Through Diverse CNN Architectures in IoT Healthcare Industries: Fast R-CNN, U-Net, Transfer Learning-Based CNN, and Fully Connected CNN
Artificial intelligence (AI)-powered deep learning has advanced brain tumor diagnosis in Internet of Things (IoT)-healthcare systems, achieving high accuracy with large datasets. Brain health is critical to human life, and accurate diagnosis is essential for effective treatment. Magnetic Resonance Imaging (MRI) provides key data for brain tumor detection, serving as a major source of big data for AI-driven image classification. In this study, we classified glioma, meningioma, and pituitary tumors from MRI images using Region-based Convolutional Neural Network (R-CNN) and UNet architectures. We also applied Convolutional Neural Networks (CNN) and CNN-based transfer learning models such as Inception-V3, EfficientNetB4, and VGG19. Model performance was assessed using F-score, recall, precision, and accuracy. The Fast R-CNN achieved the best results with 99% accuracy, 98.5% F-score, 99.5% Area Under the Curve (AUC), 99.4% recall, and 98.5% precision. Combining R-CNN, UNet, and transfer learning enables earlier diagnosis and more effective treatment in IoT-healthcare systems, improving patient outcomes. IoT devices such as wearable monitors and smart imaging systems continuously collect real-time data, which AI algorithms analyze to provide immediate insights for timely interventions and personalized care. For external cohort cross-dataset validation, EfficientNetB2 achieved the strongest performance among fine-tuned EfficientNet models, with 92.11% precision, 92.11% recall/sensitivity, 95.96% specificity, 92.02% F1-score, and 92.23% accuracy. These findings underscore the robustness and reliability of AI models in handling diverse datasets, reinforcing their potential to enhance brain tumor classification and patient care in IoT healthcare environments.
☆ A Probabilistic Segment Anything Model for Ambiguity-Aware Medical Image Segmentation
Recent advances in promptable segmentation, such as the Segment Anything Model (SAM), have enabled flexible, high-quality mask generation across a wide range of visual domains. However, SAM and similar models remain fundamentally deterministic, producing a single segmentation per object per prompt, and fail to capture the inherent ambiguity present in many real-world tasks. This limitation is particularly troublesome in medical imaging, where multiple plausible segmentations may exist due to annotation uncertainty or inter-expert variability. In this paper, we introduce Probabilistic SAM, a probabilistic extension of SAM that models a distribution over segmentations conditioned on both the input image and prompt. By incorporating a latent variable space and training with a variational objective, our model learns to generate diverse and plausible segmentation masks reflecting the variability in human annotations. The architecture integrates a prior and posterior network into the SAM framework, allowing latent codes to modulate the prompt embeddings during inference. The latent space allows for efficient sampling during inference, enabling uncertainty-aware outputs with minimal overhead. We evaluate Probabilistic SAM on the public LIDC-IDRI lung nodule dataset and demonstrate its ability to produce diverse outputs that align with expert disagreement, outperforming existing probabilistic baselines on uncertainty-aware metrics. Our code is available at: https://github.com/tbwa233/Probabilistic-SAM/.
comment: Preprint
☆ Dual-Mode Deep Anomaly Detection for Medical Manufacturing: Structural Similarity and Feature Distance
Automating visual inspection in medical device manufacturing remains challenging due to small and imbalanced datasets, high-resolution imagery, and stringent regulatory requirements. This work proposes two attention-guided autoencoder architectures for deep anomaly detection designed to address these constraints. The first employs a structural similarity-based anomaly score (4-MS-SSIM), offering lightweight and accurate real-time defect detection, yielding ACC 0.903 (unsupervised thresholding) and 0.931 (supervised thresholding) on the - Surface Seal Image - Test split with only 10% of defective samples. The second applies a feature-distance approach using Mahalanobis scoring on reduced latent features, providing high sensitivity to distributional shifts for supervisory monitoring, achieving ACC 0.722 with supervised thresholding. Together, these methods deliver complementary capabilities: the first supports reliable inline inspection, while the second enables scalable post-production surveillance and regulatory compliance monitoring. Experimental results demonstrate that both approaches surpass re-implemented baselines and provide a practical pathway for deploying deep anomaly detection in regulated manufacturing environments, aligning accuracy, efficiency, and the regulatory obligations defined for high-risk AI systems under the EU AI Act.
comment: 18 pages, 5 figures, 13 tables
☆ CRAB: Camera-Radar Fusion for Reducing Depth Ambiguity in Backward Projection based View Transformation ICRA 2025
Recently, camera-radar fusion-based 3D object detection methods in bird's eye view (BEV) have gained attention due to the complementary characteristics and cost-effectiveness of these sensors. Previous approaches using forward projection struggle with sparse BEV feature generation, while those employing backward projection overlook depth ambiguity, leading to false positives. In this paper, to address the aforementioned limitations, we propose a novel camera-radar fusion-based 3D object detection and segmentation model named CRAB (Camera-Radar fusion for reducing depth Ambiguity in Backward projection-based view transformation), using a backward projection that leverages radar to mitigate depth ambiguity. During the view transformation, CRAB aggregates perspective view image context features into BEV queries. It improves depth distinction among queries along the same ray by combining the dense but unreliable depth distribution from images with the sparse yet precise depth information from radar occupancy. We further introduce spatial cross-attention with a feature map containing radar context information to enhance the comprehension of the 3D scene. When evaluated on the nuScenes open dataset, our proposed approach achieves a state-of-the-art performance among backward projection-based camera-radar fusion methods with 62.4\% NDS and 54.0\% mAP in 3D object detection.
comment: Accepted by ICRA 2025
☆ 3DPillars: Pillar-based two-stage 3D object detection
PointPillars is the fastest 3D object detector that exploits pseudo image representations to encode features for 3D objects in a scene. Albeit efficient, PointPillars is typically outperformed by state-of-the-art 3D detection methods due to the following limitations: 1) The pseudo image representations fail to preserve precise 3D structures, and 2) they make it difficult to adopt a two-stage detection pipeline using 3D object proposals that typically shows better performance than a single-stage approach. We introduce in this paper the first two-stage 3D detection framework exploiting pseudo image representations, narrowing the performance gaps between PointPillars and state-of-the-art methods, while retaining its efficiency. Our framework consists of two novel components that overcome the aforementioned limitations of PointPillars: First, we introduce a new CNN architecture, dubbed 3DPillars, that enables learning 3D voxel-based features from the pseudo image representation efficiently using 2D convolutions. The basic idea behind 3DPillars is that 3D features from voxels can be viewed as a stack of pseudo images. To implement this idea, we propose a separable voxel feature module that extracts voxel-based features without using 3D convolutions. Second, we introduce an RoI head with a sparse scene context feature module that aggregates multi-scale features from 3DPillars to obtain a sparse scene feature. This enables adopting a two-stage pipeline effectively, and fully leveraging contextual information of a scene to refine 3D object proposals. Experimental results on the KITTI and Waymo Open datasets demonstrate the effectiveness and efficiency of our approach, achieving a good compromise in terms of speed and accuracy.
comment: 19 pages, 11 figures
☆ Posterior shape models revisited: Improving 3D reconstructions from partial data using target specific models
In medical imaging, point distribution models are often used to reconstruct and complete partial shapes using a statistical model of the full shape. A commonly overlooked, but crucial factor in this reconstruction process, is the pose of the training data relative to the partial target shape. A difference in pose alignment of the training and target shape leads to biased solutions, particularly when observing small parts of a shape. In this paper, we demonstrate the importance of pose alignment for partial shape reconstructions and propose an efficient method to adjust an existing model to a specific target. Our method preserves the computational efficiency of linear models while significantly improving reconstruction accuracy and predicted variance. It exactly recovers the intended aligned model for translations, and provides a good approximation for small rotations, all without access to the original training data. Hence, existing shape models in reconstruction pipelines can be adapted by a simple preprocessing step, making our approach widely applicable in plug-and-play scenarios.
☆ PictOBI-20k: Unveiling Large Multimodal Models in Visual Decipherment for Pictographic Oracle Bone Characters
Deciphering oracle bone characters (OBCs), the oldest attested form of written Chinese, has remained the ultimate, unwavering goal of scholars, offering an irreplaceable key to understanding humanity's early modes of production. Current decipherment methodologies of OBC are primarily constrained by the sporadic nature of archaeological excavations and the limited corpus of inscriptions. With the powerful visual perception capability of large multimodal models (LMMs), the potential of using LMMs for visually deciphering OBCs has increased. In this paper, we introduce PictOBI-20k, a dataset designed to evaluate LMMs on the visual decipherment tasks of pictographic OBCs. It includes 20k meticulously collected OBC and real object images, forming over 15k multi-choice questions. We also conduct subjective annotations to investigate the consistency of the reference point between humans and LMMs in visual reasoning. Experiments indicate that general LMMs possess preliminary visual decipherment skills, and LMMs are not effectively using visual information, while most of the time they are limited by language priors. We hope that our dataset can facilitate the evaluation and optimization of visual attention in future OBC-oriented LMMs. The code and dataset will be available at https://github.com/OBI-Future/PictOBI-20k.
comment: 6 pages, 6 figures
☆ Tell-Tale Watermarks for Explanatory Reasoning in Synthetic Media Forensics
The rise of synthetic media has blurred the boundary between reality and fabrication under the evolving power of artificial intelligence, fueling an infodemic that erodes public trust in cyberspace. For digital imagery, a multitude of editing applications further complicates the forensic analysis, including semantic edits that alter content, photometric adjustments that recalibrate colour characteristics, and geometric projections that reshape viewpoints. Collectively, these transformations manipulate and control perceptual interpretation of digital imagery. This susceptibility calls for forensic enquiry into reconstructing the chain of events, thereby revealing deeper evidential insight into the presence or absence of criminal intent. This study seeks to address an inverse problem of tracing the underlying generation chain that gives rise to the observed synthetic media. A tell-tale watermarking system is developed for explanatory reasoning over the nature and extent of transformations across the lifecycle of synthetic media. Tell-tale watermarks are tailored to different classes of transformations, responding in a manner that is neither strictly robust nor fragile but instead interpretable. These watermarks function as reference clues that evolve under the same transformation dynamics as the carrier media, leaving interpretable traces when subjected to transformations. Explanatory reasoning is then performed to infer the most plausible account across the combinatorial parameter space of composite transformations. Experimental evaluations demonstrate the validity of tell-tale watermarking with respect to fidelity, synchronicity and traceability.
☆ Unleashing Hierarchical Reasoning: An LLM-Driven Framework for Training-Free Referring Video Object Segmentation
Referring Video Object Segmentation (RVOS) aims to segment an object of interest throughout a video based on a language description. The prominent challenge lies in aligning static text with dynamic visual content, particularly when objects exhibiting similar appearances with inconsistent motion and poses. However, current methods often rely on a holistic visual-language fusion that struggles with complex, compositional descriptions. In this paper, we propose \textbf{PARSE-VOS}, a novel, training-free framework powered by Large Language Models (LLMs), for a hierarchical, coarse-to-fine reasoning across text and video domains. Our approach begins by parsing the natural language query into structured semantic commands. Next, we introduce a spatio-temporal grounding module that generates all candidate trajectories for all potential target objects, guided by the parsed semantics. Finally, a hierarchical identification module select the correct target through a two-stage reasoning process: it first performs coarse-grained motion reasoning with an LLM to narrow down candidates; if ambiguity remains, a fine-grained pose verification stage is conditionally triggered to disambiguate. The final output is an accurate segmentation mask for the target object. \textbf{PARSE-VOS} achieved state-of-the-art performance on three major benchmarks: Ref-YouTube-VOS, Ref-DAVIS17, and MeViS.
☆ InterAct: A Large-Scale Dataset of Dynamic, Expressive and Interactive Activities between Two People in Daily Scenarios
We address the problem of accurate capture of interactive behaviors between two people in daily scenarios. Most previous works either only consider one person or solely focus on conversational gestures of two people, assuming the body orientation and/or position of each actor are constant or barely change over each interaction. In contrast, we propose to simultaneously model two people's activities, and target objective-driven, dynamic, and semantically consistent interactions which often span longer duration and cover bigger space. To this end, we capture a new multi-modal dataset dubbed InterAct, which is composed of 241 motion sequences where two people perform a realistic and coherent scenario for one minute or longer over a complete interaction. For each sequence, two actors are assigned different roles and emotion labels, and collaborate to finish one task or conduct a common interaction activity. The audios, body motions, and facial expressions of both persons are captured. InterAct contains diverse and complex motions of individuals and interesting and relatively long-term interaction patterns barely seen before. We also demonstrate a simple yet effective diffusion-based method that estimates interactive face expressions and body motions of two people from speech inputs. Our method regresses the body motions in a hierarchical manner, and we also propose a novel fine-tuning mechanism to improve the lip accuracy of facial expressions. To facilitate further research, the data and code is made available at https://hku-cg.github.io/interact/ .
comment: The first two authors contributed equally to this work
☆ Depth-Aware Super-Resolution via Distance-Adaptive Variational Formulation
Single image super-resolution traditionally assumes spatially-invariant degradation models, yet real-world imaging systems exhibit complex distance-dependent effects including atmospheric scattering, depth-of-field variations, and perspective distortions. This fundamental limitation necessitates spatially-adaptive reconstruction strategies that explicitly incorporate geometric scene understanding for optimal performance. We propose a rigorous variational framework that characterizes super-resolution as a spatially-varying inverse problem, formulating the degradation operator as a pseudodifferential operator with distance-dependent spectral characteristics that enable theoretical analysis of reconstruction limits across depth ranges. Our neural architecture implements discrete gradient flow dynamics through cascaded residual blocks with depth-conditional convolution kernels, ensuring convergence to stationary points of the theoretical energy functional while incorporating learned distance-adaptive regularization terms that dynamically adjust smoothness constraints based on local geometric structure. Spectral constraints derived from atmospheric scattering theory prevent bandwidth violations and noise amplification in far-field regions, while adaptive kernel generation networks learn continuous mappings from depth to reconstruction filters. Comprehensive evaluation across five benchmark datasets demonstrates state-of-the-art performance, achieving 36.89/0.9516 and 30.54/0.8721 PSNR/SSIM at 2 and 4 scales on KITTI outdoor scenes, outperforming existing methods by 0.44dB and 0.36dB respectively. This work establishes the first theoretically-grounded distance-adaptive super-resolution framework and demonstrates significant improvements on depth-variant scenarios while maintaining competitive performance across traditional benchmarks.
☆ Multi-LVI-SAM: A Robust LiDAR-Visual-Inertial Odometry for Multiple Fisheye Cameras
We propose a multi-camera LiDAR-visual-inertial odometry framework, Multi-LVI-SAM, which fuses data from multiple fisheye cameras, LiDAR and inertial sensors for highly accurate and robust state estimation. To enable efficient and consistent integration of visual information from multiple fisheye cameras, we introduce a panoramic visual feature model that unifies multi-camera observations into a single representation. The panoramic model serves as a global geometric optimization framework that consolidates multi-view constraints, enabling seamless loop closure and global pose optimization, while simplifying system design by avoiding redundant handling of individual cameras. To address the triangulation inconsistency caused by the misalignment between each camera's frame and the panoramic model's frame, we propose an extrinsic compensation method. This method improves feature consistency across views and significantly reduces triangulation and optimization errors, leading to more accurate pose estimation. We integrate the panoramic visual feature model into a tightly coupled LiDAR-visual-inertial system based on a factor graph. Extensive experiments on public datasets demonstrate that the panoramic visual feature model enhances the quality and consistency of multi-camera constraints, resulting in higher accuracy and robustness than existing multi-camera LiDAR-visual-inertial systems.
☆ LiDAR-BIND-T: Improving SLAM with Temporally Consistent Cross-Modal LiDAR Reconstruction
This paper extends LiDAR-BIND, a modular multi-modal fusion framework that binds heterogeneous sensors (radar, sonar) to a LiDAR-defined latent space, with mechanisms that explicitly enforce temporal consistency. We introduce three contributions: (i) temporal embedding similarity that aligns consecutive latents, (ii) a motion-aligned transformation loss that matches displacement between predictions and ground truth LiDAR, and (iii) windows temporal fusion using a specialised temporal module. We further update the model architecture to better preserve spatial structure. Evaluations on radar/sonar-to-LiDAR translation demonstrate improved temporal and spatial coherence, yielding lower absolute trajectory error and better occupancy map accuracy in Cartographer-based SLAM (Simultaneous Localisation and Mapping). We propose different metrics based on the Fr\'echet Video Motion Distance (FVMD) and a correlation-peak distance metric providing practical temporal quality indicators to evaluate SLAM performance. The proposed temporal LiDAR-BIND, or LiDAR-BIND-T, maintains plug-and-play modality fusion while substantially enhancing temporal stability, resulting in improved robustness and performance for downstream SLAM.
☆ Towards Meta-Cognitive Knowledge Editing for Multimodal LLMs
Knowledge editing enables multimodal large language models (MLLMs) to efficiently update outdated or incorrect information. However, existing benchmarks primarily emphasize cognitive-level modifications while lacking a focus on deeper meta-cognitive processes. To bridge this gap, we introduce CogEdit, a novel benchmark designed to evaluate MLLMs' meta-cognitive knowledge editing abilities across three levels: (1) Counterfactual-Driven Editing, assessing self-awareness of knowledge correctness changes; (2) Boundary Constraint Editing, ensuring appropriate generalization without unintended interference; and (3) Noise-Robust Editing, promoting reflective evaluation of uncertain information. To advance meta-cognitive editing, we propose MIND (Meta-cognitive INtegrated Dynamic Knowledge Editing), a framework that constructs a meta-knowledge memory for self-awareness, employs game-theoretic interactions to monitor knowledge activation, and incorporates label refinement for noise-robust updates. Extensive experiments show that MIND significantly outperforms existing cognitive editing approaches, achieving strong performance on both traditional and meta-cognitive knowledge editing benchmarks.
comment: 15 pages, 6 figures
☆ Knowledge-Augmented Vision Language Models for Underwater Bioacoustic Spectrogram Analysis
Marine mammal vocalization analysis depends on interpreting bioacoustic spectrograms. Vision Language Models (VLMs) are not trained on these domain-specific visualizations. We investigate whether VLMs can extract meaningful patterns from spectrograms visually. Our framework integrates VLM interpretation with LLM-based validation to build domain knowledge. This enables adaptation to acoustic data without manual annotation or model retraining.
☆ JRN-Geo: A Joint Perception Network based on RGB and Normal images for Cross-view Geo-localization
Cross-view geo-localization plays a critical role in Unmanned Aerial Vehicle (UAV) localization and navigation. However, significant challenges arise from the drastic viewpoint differences and appearance variations between images. Existing methods predominantly rely on semantic features from RGB images, often neglecting the importance of spatial structural information in capturing viewpoint-invariant features. To address this issue, we incorporate geometric structural information from normal images and introduce a Joint perception network to integrate RGB and Normal images (JRN-Geo). Our approach utilizes a dual-branch feature extraction framework, leveraging a Difference-Aware Fusion Module (DAFM) and Joint-Constrained Interaction Aggregation (JCIA) strategy to enable deep fusion and joint-constrained semantic and structural information representation. Furthermore, we propose a 3D geographic augmentation technique to generate potential viewpoint variation samples, enhancing the network's ability to learn viewpoint-invariant features. Extensive experiments on the University-1652 and SUES-200 datasets validate the robustness of our method against complex viewpoint ariations, achieving state-of-the-art performance.
☆ Leveraging Vision-Language Large Models for Interpretable Video Action Recognition with Semantic Tokenization
Human action recognition often struggles with deep semantic understanding, complex contextual information, and fine-grained distinction, limitations that traditional methods frequently encounter when dealing with diverse video data. Inspired by the remarkable capabilities of large language models, this paper introduces LVLM-VAR, a novel framework that pioneers the application of pre-trained Vision-Language Large Models (LVLMs) to video action recognition, emphasizing enhanced accuracy and interpretability. Our method features a Video-to-Semantic-Tokens (VST) Module, which innovatively transforms raw video sequences into discrete, semantically and temporally consistent "semantic action tokens," effectively crafting an "action narrative" that is comprehensible to an LVLM. These tokens, combined with natural language instructions, are then processed by a LoRA-fine-tuned LVLM (e.g., LLaVA-13B) for robust action classification and semantic reasoning. LVLM-VAR not only achieves state-of-the-art or highly competitive performance on challenging benchmarks such as NTU RGB+D and NTU RGB+D 120, demonstrating significant improvements (e.g., 94.1% on NTU RGB+D X-Sub and 90.0% on NTU RGB+D 120 X-Set), but also substantially boosts model interpretability by generating natural language explanations for its predictions.
☆ MeshMetrics: A Precise Implementation of Distance-Based Image Segmentation Metrics
The surge of research in image segmentation has yielded remarkable performance gains but also exposed a reproducibility crisis. A major contributor is performance evaluation, where both selection and implementation of metrics play critical roles. While recent efforts have improved the former, the reliability of metric implementation has received far less attention. Pitfalls in distance-based metric implementation can lead to considerable discrepancies between common open-source tools, for instance, exceeding 100 mm for the Hausdorff distance and 30%pt for the normalized surface distance for the same pair of segmentations. To address these pitfalls, we introduce MeshMetrics, a mesh-based framework that provides a more precise computation of distance-based metrics than conventional grid-based approaches. Through theoretical analysis and empirical validation, we demonstrate that MeshMetrics achieves higher accuracy and precision than established tools, and is substantially less affected by discretization artifacts, such as distance quantization. We release MeshMetrics as an open-source Python package, available at https://github.com/gasperpodobnik/MeshMetrics.
☆ Context-Aware Multi-Turn Visual-Textual Reasoning in LVLMs via Dynamic Memory and Adaptive Visual Guidance
Current Large Language Models (LLMs) and Vision-Language Large Models (LVLMs) excel in single-turn tasks but face significant challenges in multi-turn interactions requiring deep contextual understanding and complex visual reasoning, often leading to fragmented reasoning, context loss, and hallucinations. To address these limitations, we propose Context-Aware Multi-Turn Visual Reasoning (CAMVR), a novel framework designed to empower LVLMs with robust and coherent multi-turn visual-textual inference capabilities. CAMVR introduces two key innovations: a Visual-Textual Context Memory Unit (VCMU), a dynamic read-write memory network that stores and manages critical visual features, textual semantic representations, and their cross-modal correspondences from each interaction turn; and an Adaptive Visual Focus Guidance (AVFG) mechanism, which leverages the VCMU's context to dynamically adjust the visual encoder's attention to contextually relevant image regions. Our multi-level reasoning integration strategy ensures that response generation is deeply coherent with both current inputs and accumulated historical context. Extensive experiments on challenging datasets, including VisDial, an adapted A-OKVQA, and our novel Multi-Turn Instruction Following (MTIF) dataset, demonstrate that CAMVR consistently achieves state-of-the-art performance.
☆ WIPUNet: A Physics-inspired Network with Weighted Inductive Biases for Image Denoising
In high-energy particle physics, collider measurements are contaminated by "pileup", overlapping soft interactions that obscure the hard-scatter signal of interest. Dedicated subtraction strategies exploit physical priors such as conservation, locality, and isolation. Inspired by this analogy, we investigate how such principles can inform image denoising by embedding physics-guided inductive biases into neural architectures. This paper is a proof of concept: rather than targeting state-of-the-art (SOTA) benchmarks, we ask whether physics-inspired priors improve robustness under strong corruption. We introduce a hierarchy of PU-inspired denoisers: a residual CNN with conservation constraints, its Gaussian-noise variants, and the Weighted Inductive Pileup-physics-inspired U-Network for Denoising (WIPUNet), which integrates these ideas into a UNet backbone. On CIFAR-10 with Gaussian noise at $\sigma\in\{15,25,50,75,100\}$, PU-inspired CNNs are competitive with standard baselines, while WIPUNet shows a \emph{widening margin} at higher noise. Complementary BSD500 experiments show the same trend, suggesting physics-inspired priors provide stability where purely data-driven models degrade. Our contributions are: (i) translating pileup-mitigation principles into modular inductive biases; (ii) integrating them into UNet; and (iii) demonstrating robustness gains at high noise without relying on heavy SOTA machinery.
comment: 13 pages, 4 figures
☆ OOTSM: A Decoupled Linguistic Framework for Effective Scene Graph Anticipation
A scene graph is a structured represention of objects and their relationships in a scene. Scene Graph Anticipation (SGA) involves predicting future scene graphs from video clips, enabling applications as intelligent surveillance and human-machine collaboration. Existing SGA approaches primarily leverage visual cues, often struggling to integrate valuable commonsense knowledge, thereby limiting long-term prediction robustness. To explicitly leverage such commonsense knowledge, we propose a new approach to better understand the objects, concepts, and relationships in a scene graph. Our approach decouples the SGA task in two steps: first a scene graph capturing model is used to convert a video clip into a sequence of scene graphs, then a pure text-based model is used to predict scene graphs in future frames. Our focus in this work is on the second step, and we call it Linguistic Scene Graph Anticipation (LSGA) and believes it should have independent interest beyond the use in SGA discussed here. For LSGA, we introduce an Object-Oriented Two-Staged Method (OOTSM) where an Large Language Model (LLM) first forecasts object appearances and disappearances before generating detailed human-object relations. We conduct extensive experiments to evaluate OOTSM in two settings. For LSGA, we evaluate our fine-tuned open-sourced LLMs against zero-shot APIs (i.e., GPT-4o, GPT-4o-mini, and DeepSeek-V3) on a benchmark constructed from Action Genome annotations. For SGA, we combine our OOTSM with STTran++ from, and our experiments demonstrate effective state-of-the-art performance: short-term mean-Recall (@10) increases by 3.4% while long-term mean-Recall (@50) improves dramatically by 21.9%. Code is available at https://github.com/ZhuXMMM/OOTSM.
☆ EditIDv2: Editable ID Customization with Data-Lubricated ID Feature Integration for Text-to-Image Generation
We propose EditIDv2, a tuning-free solution specifically designed for high-complexity narrative scenes and long text inputs. Existing character editing methods perform well under simple prompts, but often suffer from degraded editing capabilities, semantic understanding biases, and identity consistency breakdowns when faced with long text narratives containing multiple semantic layers, temporal logic, and complex contextual relationships. In EditID, we analyzed the impact of the ID integration module on editability. In EditIDv2, we further explore and address the influence of the ID feature integration module. The core of EditIDv2 is to discuss the issue of editability injection under minimal data lubrication. Through a sophisticated decomposition of PerceiverAttention, the introduction of ID loss and joint dynamic training with the diffusion model, as well as an offline fusion strategy for the integration module, we achieve deep, multi-level semantic editing while maintaining identity consistency in complex narrative environments using only a small amount of data lubrication. This meets the demands of long prompts and high-quality image generation, and achieves excellent results in the IBench evaluation.
☆ Evaluating YOLO Architectures: Implications for Real-Time Vehicle Detection in Urban Environments of Bangladesh
Vehicle detection systems trained on Non-Bangladeshi datasets struggle to accurately identify local vehicle types in Bangladesh's unique road environments, creating critical gaps in autonomous driving technology for developing regions. This study evaluates six YOLO model variants on a custom dataset featuring 29 distinct vehicle classes, including region-specific vehicles such as ``Desi Nosimon'', ``Leguna'', ``Battery Rickshaw'', and ``CNG''. The dataset comprises high-resolution images (1920x1080) captured across various Bangladeshi roads using mobile phone cameras and manually annotated using LabelImg with YOLO format bounding boxes. Performance evaluation revealed YOLOv11x as the top performer, achieving 63.7\% mAP@0.5, 43.8\% mAP@0.5:0.95, 61.4\% recall, and 61.6\% F1-score, though requiring 45.8 milliseconds per image for inference. Medium variants (YOLOv8m, YOLOv11m) struck an optimal balance, delivering robust detection performance with mAP@0.5 values of 62.5\% and 61.8\% respectively, while maintaining moderate inference times around 14-15 milliseconds. The study identified significant detection challenges for rare vehicle classes, with Construction Vehicles and Desi Nosimons showing near-zero accuracy due to dataset imbalances and insufficient training samples. Confusion matrices revealed frequent misclassifications between visually similar vehicles, particularly Mini Trucks versus Mini Covered Vans. This research provides a foundation for developing robust object detection systems specifically adapted to Bangladesh traffic conditions, addressing critical needs in autonomous vehicle technology advancement for developing regions where conventional generic-trained models fail to perform adequately.
☆ Stereovision Image Processing for Planetary Navigation Maps with Semi-Global Matching and Superpixel Segmentation
Mars exploration requires precise and reliable terrain models to ensure safe rover navigation across its unpredictable and often hazardous landscapes. Stereoscopic vision serves a critical role in the rover's perception, allowing scene reconstruction by generating precise depth maps through stereo matching. State-of-the-art Martian planetary exploration uses traditional local block-matching, aggregates cost over square windows, and refines disparities via smoothness constraints. However, this method often struggles with low-texture images, occlusion, and repetitive patterns because it considers only limited neighbouring pixels and lacks a wider understanding of scene context. This paper uses Semi-Global Matching (SGM) with superpixel-based refinement to mitigate the inherent block artefacts and recover lost details. The approach balances the efficiency and accuracy of SGM and adds context-aware segmentation to support more coherent depth inference. The proposed method has been evaluated in three datasets with successful results: In a Mars analogue, the terrain maps obtained show improved structural consistency, particularly in sloped or occlusion-prone regions. Large gaps behind rocks, which are common in raw disparity outputs, are reduced, and surface details like small rocks and edges are captured more accurately. Another two datasets, evaluated to test the method's general robustness and adaptability, show more precise disparity maps and more consistent terrain models, better suited for the demands of autonomous navigation on Mars, and competitive accuracy across both non-occluded and full-image error metrics. This paper outlines the entire terrain modelling process, from finding corresponding features to generating the final 2D navigation maps, offering a complete pipeline suitable for integration in future planetary exploration missions.
comment: 8 pages, 6 figures, 2 tables. ESA ASTRA 2025
Self-supervised Learning for Hyperspectral Images of Trees
Aerial remote sensing using multispectral and RGB imagers has provided a critical impetus to precision agriculture. Analysis of the hyperspectral images with limited or no labels is challenging. This paper focuses on self-supervised learning to create neural network embeddings reflecting vegetation properties of trees from aerial hyperspectral images of crop fields. Experimental results demonstrate that a constructed tree representation, using a vegetation property-related embedding space, performs better in downstream machine learning tasks compared to the direct use of hyperspectral vegetation properties as tree representations.
☆ SuMa: A Subspace Mapping Approach for Robust and Effective Concept Erasure in Text-to-Image Diffusion Models
The rapid growth of text-to-image diffusion models has raised concerns about their potential misuse in generating harmful or unauthorized contents. To address these issues, several Concept Erasure methods have been proposed. However, most of them fail to achieve both robustness, i.e., the ability to robustly remove the target concept., and effectiveness, i.e., maintaining image quality. While few recent techniques successfully achieve these goals for NSFW concepts, none could handle narrow concepts such as copyrighted characters or celebrities. Erasing these narrow concepts is critical in addressing copyright and legal concerns. However, erasing them is challenging due to their close distances to non-target neighboring concepts, requiring finer-grained manipulation. In this paper, we introduce Subspace Mapping (SuMa), a novel method specifically designed to achieve both robustness and effectiveness in easing these narrow concepts. SuMa first derives a target subspace representing the concept to be erased and then neutralizes it by mapping it to a reference subspace that minimizes the distance between the two. This mapping ensures the target concept is robustly erased while preserving image quality. We conduct extensive experiments with SuMa across four tasks: subclass erasure, celebrity erasure, artistic style erasure, and instance erasure and compare the results with current state-of-the-art methods. Our method achieves image quality comparable to approaches focused on effectiveness, while also yielding results that are on par with methods targeting completeness.
☆ SpecPrune-VLA: Accelerating Vision-Language-Action Models via Action-Aware Self-Speculative Pruning
Pruning accelerates compute-bound models by reducing computation. Recently applied to Vision-Language-Action (VLA) models, existing methods prune tokens using only local info from current action, ignoring global context from prior actions, causing >20% success rate drop and limited speedup. We observe high similarity across consecutive actions and propose leveraging both local (current) and global (past) info for smarter token selection. We introduce SpecPrune-VLA, a training-free method with two-level pruning and heuristic control: (1) Static pruning at action level: uses global history and local context to reduce visual tokens per action; (2) Dynamic pruning at layer level: prunes tokens per layer based on layer-specific importance; (3) Lightweight action-aware controller: classifies actions as coarse/fine-grained (by speed), adjusting pruning aggressiveness since fine-grained actions are pruning-sensitive. Experiments on LIBERO show SpecPrune-VLA achieves 1.46 times speedup on NVIDIA A800 and 1.57 times on NVIDIA GeForce RTX 3090 vs. OpenVLA-OFT, with negligible success rate loss.
comment: 8pages, 10 figures,
☆ Patch-level Kernel Alignment for Self-Supervised Dense Representation Learning
Dense representations are essential for vision tasks that require spatial precision and fine-grained detail. While most self-supervised representation learning methods focus on global representations that summarize the image as a whole, such approaches often fall short in capturing the localized semantics necessary for dense prediction tasks. To overcome these limitations, we propose a framework that builds on pretrained representations through additional self-supervised learning, aiming to transfer existing semantic knowledge into the dense feature space. Our method aligns the distributions of dense features between a teacher and a student model. Specifically, we introduce Patch-level Kernel Alignment (PaKA), a simple yet effective alignment objective that captures statistical dependencies, thereby matching the structural relationships of dense patches across the two models. In addition, we investigate augmentation strategies specifically designed for dense representation learning. Our framework achieves state-of-the-art results across a variety of dense vision benchmarks, demonstrating the effectiveness of our approach.
☆ Language-guided Recursive Spatiotemporal Graph Modeling for Video Summarization
Video summarization aims to select keyframes that are visually diverse and can represent the whole story of a given video. Previous approaches have focused on global interlinkability between frames in a video by temporal modeling. However, fine-grained visual entities, such as objects, are also highly related to the main content of the video. Moreover, language-guided video summarization, which has recently been studied, requires a comprehensive linguistic understanding of complex real-world videos. To consider how all the objects are semantically related to each other, this paper regards video summarization as a language-guided spatiotemporal graph modeling problem. We present recursive spatiotemporal graph networks, called VideoGraph, which formulate the objects and frames as nodes of the spatial and temporal graphs, respectively. The nodes in each graph are connected and aggregated with graph edges, representing the semantic relationships between the nodes. To prevent the edges from being configured with visual similarity, we incorporate language queries derived from the video into the graph node representations, enabling them to contain semantic knowledge. In addition, we adopt a recursive strategy to refine initial graphs and correctly classify each frame node as a keyframe. In our experiments, VideoGraph achieves state-of-the-art performance on several benchmarks for generic and query-focused video summarization in both supervised and unsupervised manners. The code is available at https://github.com/park-jungin/videograph.
comment: Accepted to IJCV, 29 pages, 14 figures, 11 tables
☆ MFFI: Multi-Dimensional Face Forgery Image Dataset for Real-World Scenarios
Rapid advances in Artificial Intelligence Generated Content (AIGC) have enabled increasingly sophisticated face forgeries, posing a significant threat to social security. However, current Deepfake detection methods are limited by constraints in existing datasets, which lack the diversity necessary in real-world scenarios. Specifically, these data sets fall short in four key areas: unknown of advanced forgery techniques, variability of facial scenes, richness of real data, and degradation of real-world propagation. To address these challenges, we propose the Multi-dimensional Face Forgery Image (\textbf{MFFI}) dataset, tailored for real-world scenarios. MFFI enhances realism based on four strategic dimensions: 1) Wider Forgery Methods; 2) Varied Facial Scenes; 3) Diversified Authentic Data; 4) Multi-level Degradation Operations. MFFI integrates $50$ different forgery methods and contains $1024K$ image samples. Benchmark evaluations show that MFFI outperforms existing public datasets in terms of scene complexity, cross-domain generalization capability, and detection difficulty gradients. These results validate the technical advance and practical utility of MFFI in simulating real-world conditions. The dataset and additional details are publicly available at {https://github.com/inclusionConf/MFFI}.
☆ ProfilingAgent: Profiling-Guided Agentic Reasoning for Adaptive Model Optimization
Foundation models face growing compute and memory bottlenecks, hindering deployment on resource-limited platforms. While compression techniques such as pruning and quantization are widely used, most rely on uniform heuristics that ignore architectural and runtime heterogeneity. Profiling tools expose per-layer latency, memory, and compute cost, yet are rarely integrated into automated pipelines. We propose ProfilingAgent, a profiling-guided, agentic approach that uses large language models (LLMs) to automate compression via structured pruning and post-training dynamic quantization. Our modular multi-agent system reasons over static metrics (MACs, parameter counts) and dynamic signals (latency, memory) to design architecture-specific strategies. Unlike heuristic baselines, ProfilingAgent tailors layer-wise decisions to bottlenecks. Experiments on ImageNet-1K, CIFAR-10, and CIFAR-100 with ResNet-101, ViT-B/16, Swin-B, and DeiT-B/16 show pruning maintains competitive or improved accuracy (about 1% drop on ImageNet-1K, +2% gains for ViT-B/16 on smaller datasets), while quantization achieves up to 74% memory savings with <0.5% accuracy loss. Our quantization also yields consistent inference speedups of up to 1.74 times faster. Comparative studies with GPT-4o and GPT-4-Turbo highlight the importance of LLM reasoning quality for iterative pruning. These results establish agentic systems as scalable solutions for profiling-guided model optimization.
comment: 13 pages, 3 figures, 5 tables, 1 algorithm
Reconstruction and Reenactment Separated Method for Realistic Gaussian Head
In this paper, we explore a reconstruction and reenactment separated framework for 3D Gaussians head, which requires only a single portrait image as input to generate controllable avatar. Specifically, we developed a large-scale one-shot gaussian head generator built upon WebSSL and employed a two-stage training approach that significantly enhances the capabilities of generalization and high-frequency texture reconstruction. During inference, an ultra-lightweight gaussian avatar driven by control signals enables high frame-rate rendering, achieving 90 FPS at a resolution of 512x512. We further demonstrate that the proposed framework follows the scaling law, whereby increasing the parameter scale of the reconstruction module leads to improved performance. Moreover, thanks to the separation design, driving efficiency remains unaffected. Finally, extensive quantitative and qualitative experiments validate that our approach outperforms current state-of-the-art methods.
☆ Sensitivity-Aware Post-Training Quantization for Deep Neural Networks
Model quantization reduces neural network parameter precision to achieve compression, but often compromises accuracy. Existing post-training quantization (PTQ) methods employ iterative parameter updates to preserve accuracy under high compression ratios, incurring significant computational complexity and resource overhead, which limits applicability in resource-constrained edge computing and real-time inference scenarios. This paper proposes an efficient PTQ method guided by parameter sensitivity analysis. The approach prioritizes quantization of high-sensitivity parameters, leveraging unquantized low-sensitivity parameters to compensate for quantization errors, thereby mitigating accuracy degradation. Furthermore, by exploiting column-wise clustering of parameter sensitivity, the method introduces a row-parallel quantization framework with a globally shared inverse Hessian matrix update mechanism, reducing computational complexity by an order of magnitude. Experimental results on ResNet-50 and YOLOv5s demonstrate a 20-200-fold quantization speedup over the Optimal Brain Quantization baseline, with mean accuracy loss below 0.3%, confirming the method's efficacy in balancing efficiency and accuracy.
comment: Accepted by PRCV 2025
☆ RED: Robust Event-Guided Motion Deblurring with Modality-Specific Disentangled Representation
Event cameras provide sparse yet temporally high-temporal-resolution motion information, demonstrating great potential for motion deblurring. Existing methods focus on cross-modal interaction, overlooking the inherent incompleteness of event streams, which arises from the trade-off between sensitivity and noise introduced by the thresholding mechanism of Dynamic Vision Sensors (DVS). Such degradation compromises the integrity of motion priors and limits the effectiveness of event-guided deblurring. To tackle these challenges, we propose a Robust Event-guided Deblurring (RED) network with modality-specific disentangled representation. First, we introduce a Robustness-Oriented Perturbation Strategy (RPS) that applies random masking to events, which exposes RED to incomplete patterns and then foster robustness against various unknown scenario conditions.Next, a disentangled OmniAttention is presented to explicitly model intra-motion, inter-motion, and cross-modality correlations from two inherently distinct but complementary sources: blurry images and partially disrupted events. Building on these reliable features, two interactive modules are designed to enhance motion-sensitive areas in blurry images and inject semantic context into incomplete event representations. Extensive experiments on synthetic and real-world datasets demonstrate RED consistently achieves state-of-the-art performance in both accuracy and robustness.
♻ ☆ Diffusion-Based Image-to-Brain Signal Generation with Cross-Attention Mechanisms for Visual Prostheses
Visual prostheses have shown great potential in restoring vision for blind individuals. However, while researchers have successfully utilized M/EEG signals to evoke visual perceptions during the brain decoding stage of visual prostheses, the complementary process-converting images to M/EEG signals in the brain encoding stage-remains largely unexplored. Thus, we present the first image-to-brain signal (M/EEG) framework based on denoising diffusion probabilistic models enhanced with cross-attention mechanisms. Our framework consists of two key architectural components: a pre-trained CLIP visual encoder that extracts rich semantic representations from input images, and a cross-attention enhanced U-Net diffusion model that learns to reconstruct biologically plausible brain signals through iterative denoising. Unlike conventional generative models that rely on simple concatenation for conditioning, our cross-attention modules enable dynamic interaction between visual features and brain signal representations, facilitating fine-grained alignment during the generation process. Furthermore, we evaluate our framework on two multimodal datasets (THINGS-EEG2 and THINGS-MEG) to demonstrate its effectiveness in generating biologically plausible brain signals. Additionally, we pioneer the visualization of M/EEG topographies across all subjects in both datasets, providing intuitive demonstrations of intra-subject and inter-subject variations in brain signals.
♻ ☆ Exploring the Landscape of Non-Equilibrium Memories with Neural Cellular Automata
We investigate the landscape of many-body memories: families of local non-equilibrium dynamics that retain information about their initial conditions for thermodynamically long time scales, even in the presence of arbitrary perturbations. In two dimensions, the only well-studied memory is Toom's rule. Using a combination of rigorous proofs and machine learning methods, we show that the landscape of 2D memories is in fact quite vast. We discover memories that correct errors in ways qualitatively distinct from Toom's rule, have ordered phases stabilized by fluctuations, and preserve information only in the presence of noise. Taken together, our results show that physical systems can perform robust information storage in many distinct ways, and demonstrate that the physics of many-body memories is richer than previously realized. Interactive visualizations of the dynamics studied in this work are available at https://memorynca.github.io/2D.
comment: 4+9 pages; v2: expanded discussion, typos fixed
♻ ☆ HumaniBench: A Human-Centric Framework for Large Multimodal Models Evaluation
Large multimodal models (LMMs) have been widely tested on tasks like visual question answering (VQA), image captioning, and grounding, but lack rigorous evaluation for alignment with human-centered (HC) values such as fairness, ethics, and inclusivity. To address this gap, we introduce \textbf{HumaniBench}, a novel benchmark of 32,000 real-world image-question pairs and an evaluation suite. Labels are generated via an AI-assisted pipeline and validated by experts. HumaniBench assesses LMMs across seven key alignment principles: fairness, ethics, empathy, inclusivity, reasoning, robustness, and multilinguality, through diverse open-ended and closed-ended VQA tasks. Grounded in AI ethics and real-world needs, these principles provide a holistic lens for societal impact. Benchmarking results on different LMM shows that proprietary models generally lead in reasoning, fairness, and multilinguality, while open-source models excel in robustness and grounding. Most models struggle to balance accuracy with ethical and inclusive behavior. Techniques like Chain-of-Thought prompting and test-time scaling improve alignment. As the first benchmark tailored for HC alignment, HumaniBench offers a rigorous testbed to diagnose limitations, and promote responsible LMM development. All data and code are publicly available for reproducibility. Keywords: HumaniBench, vision-language models, responsible AI benchmark, AI alignment evaluation, AI ethics assessment, fairness in AI models, visual question answering (VQA) benchmark, image captioning evaluation, visual grounding tasks, trustworthy AI models, Chain-of-Thought prompting, test-time scaling, ethical AI development tools.
♻ ☆ Unsupervised cell segmentation by fast Gaussian Processes
Cell boundary information is crucial for analyzing cell behaviors from time-lapse microscopy videos. Existing supervised cell segmentation tools, such as ImageJ, require tuning various parameters and rely on restrictive assumptions about the shape of the objects. While recent supervised segmentation tools based on convolutional neural networks enhance accuracy, they depend on high-quality labeled images, making them unsuitable for segmenting new types of objects not in the database. We developed a novel unsupervised cell segmentation algorithm based on fast Gaussian processes for noisy microscopy images without the need for parameter tuning or restrictive assumptions about the shape of the object. We derived robust thresholding criteria adaptive for heterogeneous images containing distinct brightness at different parts to separate objects from the background, and employed watershed segmentation to distinguish touching cell objects. Both simulated studies and real-data analysis of large microscopy images demonstrate the scalability and accuracy of our approach compared with the alternatives.
♻ ☆ VisBias: Measuring Explicit and Implicit Social Biases in Vision Language Models EMNLP 2025
This research investigates both explicit and implicit social biases exhibited by Vision-Language Models (VLMs). The key distinction between these bias types lies in the level of awareness: explicit bias refers to conscious, intentional biases, while implicit bias operates subconsciously. To analyze explicit bias, we directly pose questions to VLMs related to gender and racial differences: (1) Multiple-choice questions based on a given image (e.g., "What is the education level of the person in the image?") (2) Yes-No comparisons using two images (e.g., "Is the person in the first image more educated than the person in the second image?") For implicit bias, we design tasks where VLMs assist users but reveal biases through their responses: (1) Image description tasks: Models are asked to describe individuals in images, and we analyze disparities in textual cues across demographic groups. (2) Form completion tasks: Models draft a personal information collection form with 20 attributes, and we examine correlations among selected attributes for potential biases. We evaluate Gemini-1.5, GPT-4V, GPT-4o, LLaMA-3.2-Vision and LLaVA-v1.6. Our code and data are publicly available at https://github.com/uscnlp-lime/VisBias.
comment: Accepted to EMNLP 2025 (Main)
♻ ☆ ShapeSplat: A Large-scale Dataset of Gaussian Splats and Their Self-Supervised Pretraining 3DV'25
3D Gaussian Splatting (3DGS) has become the de facto method of 3D representation in many vision tasks. This calls for the 3D understanding directly in this representation space. To facilitate the research in this direction, we first build ShapeSplat, a large-scale dataset of 3DGS using the commonly used ShapeNet, ModelNet and Objaverse datasets. Our dataset ShapeSplat consists of 206K objects spanning over 87 unique categories, whose labels are in accordance with the respective datasets. The creation of this dataset utilized the compute equivalent of 3.8 GPU years on a TITAN XP GPU. We utilize our dataset for unsupervised pretraining and supervised finetuning for classification and segmentation tasks. To this end, we introduce Gaussian-MAE, which highlights the unique benefits of representation learning from Gaussian parameters. Through exhaustive experiments, we provide several valuable insights. In particular, we show that (1) the distribution of the optimized GS centroids significantly differs from the uniformly sampled point cloud (used for initialization) counterpart; (2) this change in distribution results in degradation in classification but improvement in segmentation tasks when using only the centroids; (3) to leverage additional Gaussian parameters, we propose Gaussian feature grouping in a normalized feature space, along with splats pooling layer, offering a tailored solution to effectively group and embed similar Gaussians, which leads to notable improvement in finetuning tasks.
comment: Accepted as 3DV'25 Oral, project page: https://unique1i.github.io/ShapeSplat_webpage/
♻ ☆ Motion-enhanced Cardiac Anatomy Segmentation via an Insertable Temporal Attention Module
Cardiac anatomy segmentation is useful for clinical assessment of cardiac morphology to inform diagnosis and intervention. Deep learning (DL), especially with motion information, has improved segmentation accuracy. However, existing techniques for motion enhancement are not yet optimal, and they have high computational costs due to increased dimensionality or reduced robustness due to suboptimal approaches that use non-DL motion registration, non-attention models, or single-headed attention. They further have limited adaptability and are inconvenient for incorporation into existing networks where motion awareness is desired. Here, we propose a novel, computationally efficient Temporal Attention Module (TAM) that offers robust motion enhancement, modeled as a small, multi-headed, cross-temporal attention module. TAM's uniqueness is that it is a lightweight, plug-and-play module that can be inserted into a broad range of segmentation networks (CNN-based, Transformer-based, or hybrid) for motion enhancement without requiring substantial changes in the network's backbone. This feature enables high adaptability and ease of integration for enhancing both existing and future networks. Extensive experiments on multiple 2D and 3D cardiac ultrasound and MRI datasets confirm that TAM consistently improves segmentation across a range of networks while maintaining computational efficiency and improving on currently reported performance. The evidence demonstrates that it is a robust, generalizable solution for motion-awareness enhancement that is scalable (such as from 2D to 3D).
comment: Accepted for oral presentation in the 6th International Workshop of Advances in Simplifying Medical Ultrasound (ASMUS). The code is available at https://github.com/kamruleee51/TAM
♻ ☆ SemLayoutDiff: Semantic Layout Generation with Diffusion Model for Indoor Scene Synthesis
We present SemLayoutDiff, a unified model for synthesizing diverse 3D indoor scenes across multiple room types. The model introduces a scene layout representation combining a top-down semantic map and attributes for each object. Unlike prior approaches, which cannot condition on architectural constraints, SemLayoutDiff employs a categorical diffusion model capable of conditioning scene synthesis explicitly on room masks. It first generates a coherent semantic map, followed by a cross-attention-based network to predict furniture placements that respect the synthesized layout. Our method also accounts for architectural elements such as doors and windows, ensuring that generated furniture arrangements remain practical and unobstructed. Experiments on the 3D-FRONT dataset show that SemLayoutDiff produces spatially coherent, realistic, and varied scenes, outperforming previous methods.
comment: Project page: https://3dlg-hcvc.github.io/SemLayoutDiff/
♻ ☆ AI Sees Your Location, But With A Bias Toward The Wealthy World EMNLP 2025
Visual-Language Models (VLMs) have shown remarkable performance across various tasks, particularly in recognizing geographic information from images. However, VLMs still show regional biases in this task. To systematically evaluate these issues, we introduce a benchmark consisting of 1,200 images paired with detailed geographic metadata. Evaluating four VLMs, we find that while these models demonstrate the ability to recognize geographic information from images, achieving up to 53.8% accuracy in city prediction, they exhibit significant biases. Specifically, performance is substantially higher for economically developed and densely populated regions compared to less developed (-12.5%) and sparsely populated (-17.0%) areas. Moreover, regional biases of frequently over-predicting certain locations remain. For instance, they consistently predict Sydney for images taken in Australia, shown by the low entropy scores for these countries. The strong performance of VLMs also raises privacy concerns, particularly for users who share images online without the intent of being identified. Our code and dataset are publicly available at https://github.com/uscnlp-lime/FairLocator.
comment: Accepted to EMNLP 2025 (Main)
♻ ☆ Dita: Scaling Diffusion Transformer for Generalist Vision-Language-Action Policy ICCV2025
While recent vision-language-action models trained on diverse robot datasets exhibit promising generalization capabilities with limited in-domain data, their reliance on compact action heads to predict discretized or continuous actions constrains adaptability to heterogeneous action spaces. We present Dita, a scalable framework that leverages Transformer architectures to directly denoise continuous action sequences through a unified multimodal diffusion process. Departing from prior methods that condition denoising on fused embeddings via shallow networks, Dita employs in-context conditioning -- enabling fine-grained alignment between denoised actions and raw visual tokens from historical observations. This design explicitly models action deltas and environmental nuances. By scaling the diffusion action denoiser alongside the Transformer's scalability, Dita effectively integrates cross-embodiment datasets across diverse camera perspectives, observation scenes, tasks, and action spaces. Such synergy enhances robustness against various variances and facilitates the successful execution of long-horizon tasks. Evaluations across extensive benchmarks demonstrate state-of-the-art or comparative performance in simulation. Notably, Dita achieves robust real-world adaptation to environmental variances and complex long-horizon tasks through 10-shot finetuning, using only third-person camera inputs. The architecture establishes a versatile, lightweight and open-source baseline for generalist robot policy learning. Project Page: https://robodita.github.io.
comment: Preprint; https://robodita.github.io; To appear in ICCV2025
♻ ☆ Parameter-Efficient Adaptation of mPLUG-Owl2 via Pixel-Level Visual Prompts for NR-IQA
In this paper, we propose a novel parameter-efficient adaptation method for No- Reference Image Quality Assessment (NR-IQA) using visual prompts optimized in pixel-space. Unlike full fine-tuning of Multimodal Large Language Models (MLLMs), our approach trains only 600K parameters at most (< 0.01% of the base model), while keeping the underlying model fully frozen. During inference, these visual prompts are combined with images via addition and processed by mPLUG-Owl2 with the textual query "Rate the technical quality of the image." Evaluations across distortion types (synthetic, realistic, AI-generated) on KADID- 10k, KonIQ-10k, and AGIQA-3k demonstrate competitive performance against full finetuned methods and specialized NR-IQA models, achieving 0.93 SRCC on KADID-10k. To our knowledge, this is the first work to leverage pixel-space visual prompts for NR-IQA, enabling efficient MLLM adaptation for low-level vision tasks. The source code is publicly available at https: // github. com/ yahya-ben/ mplug2-vp-for-nriqa.
♻ ☆ ER-LoRA: Effective-Rank Guided Adaptation for Weather-Generalized Depth Estimation
Monocular depth estimation under adverse weather conditions (e.g.\ rain, fog, snow, and nighttime) remains highly challenging due to the lack of reliable ground truth and the difficulty of learning from unlabeled real-world data. Existing methods often rely on synthetic adverse data with pseudo-labels, which suffer from domain gaps, or employ self-supervised learning, which violates photometric assumptions in adverse scenarios. In this work, we propose to achieve weather-generalized depth estimation by Parameter-Efficient Fine-Tuning (PEFT) of Vision Foundation Models (VFMs), using only a small amount of high-visibility (normal) data. While PEFT has shown strong performance in semantic tasks such as segmentation, it remains underexplored for geometry -- centric tasks like depth estimation -- especially in terms of balancing effective adaptation with the preservation of pretrained knowledge. To this end, we introduce the Selecting-Tuning-Maintaining (STM) strategy, which structurally decomposes the pretrained weights of VFMs based on two kinds of effective ranks (entropy-rank and stable-rank). In the tuning phase, we adaptively select the proper rank number as well as the task-aware singular directions for initialization, based on the entropy-rank and full-tuned weight; while in the maintaining stage, we enforce a principal direction regularization based on the stable-rank. This design guarantees flexible task adaptation while preserving the strong generalization capability of the pretrained VFM. Extensive experiments on four real-world benchmarks across diverse weather conditions demonstrate that STM not only outperforms existing PEFT methods and full fine-tuning but also surpasses methods trained with adverse synthetic data, and even the depth foundation model
♻ ☆ VSI: Visual Subtitle Integration for Keyframe Selection to enhance Long Video Understanding
Long video understanding presents a significant challenge to multimodal large language models (MLLMs) primarily due to the immense data scale. A critical and widely adopted strategy for making this task computationally tractable is keyframe retrieval, which seeks to identify a sparse set of video frames that are most salient to a given textual query. However, the efficacy of this approach is hindered by weak multimodal alignment between textual queries and visual content and fails to capture the complex temporal semantic information required for precise reasoning. To address this, we propose Visual-Subtitle Integeration(VSI), a multimodal keyframe search method that integrates subtitles, timestamps, and scene boundaries into a unified multimodal search process. The proposed method captures the visual information of video frames as well as the complementary textual information through a dual-stream search mechanism by Video Search Stream as well as Subtitle Match Stream, respectively, and improves the keyframe search accuracy through the interaction of the two search streams. Experimental results show that VSI achieve 40.00% key frame localization accuracy on the text-relevant subset of LongVideoBench and 68.48% accuracy on downstream long Video-QA tasks, surpassing competitive baselines by 20.35% and 15.79%, respectively. Furthermore, on the LongVideoBench, VSI achieved state-of-the-art(SOTA) in medium-to-long video-QA tasks, demonstrating the robustness and generalizability of the proposed multimodal search strategy.
comment: 9 pages,3 figures
♻ ☆ Diagram-Driven Course Questions Generation
Visual Question Generation (VQG) research focuses predominantly on natural images while neglecting the diagram, which is a critical component in educational materials. To meet the needs of pedagogical assessment, we propose the Diagram-Driven Course Questions Generation (DDCQG) task and construct DiagramQG, a comprehensive dataset with 15,720 diagrams and 25,798 questions across 37 subjects and 371 courses. Our approach employs course and input text constraints to generate course-relevant questions about specific diagram elements. We reveal three challenges of DDCQG: domain-specific knowledge requirements across courses, long-tail distribution in course coverage, and high information density in diagrams. To address these, we propose the Hierarchical Knowledge Integration framework (HKI-DDCQG), which utilizes trainable CLIP for identifying relevant diagram patches, leverages frozen vision-language models for knowledge extraction, and generates questions with trainable T5. Experiments demonstrate that HKI-DDCQG outperforms existing models on DiagramQG while maintaining strong generalizability across natural image datasets, establishing a strong baseline for DDCQG.
♻ ☆ 4D Visual Pre-training for Robot Learning
General visual representations learned from web-scale datasets for robotics have achieved great success in recent years, enabling data-efficient robot learning on manipulation tasks; yet these pre-trained representations are mostly on 2D images, neglecting the inherent 3D nature of the world. However, due to the scarcity of large-scale 3D data, it is still hard to extract a universal 3D representation from web datasets. Instead, we are seeking a general visual pre-training framework that could improve all 3D representations as an alternative. Our framework, called FVP, is a novel 4D Visual Pre-training framework for real-world robot learning. FVP frames the visual pre-training objective as a next-point-cloud-prediction problem, models the prediction model as a diffusion model, and pre-trains the model on the larger public datasets directly. Across twelve real-world manipulation tasks, FVP boosts the average success rate of 3D Diffusion Policy (DP3) for these tasks by 28%. The FVP pre-trained DP3 achieves state-of-the-art performance across imitation learning methods. Moreover, the efficacy of FVP adapts across various point cloud encoders and datasets. Finally, we apply FVP to the RDT-1B, a larger Vision-Language-Action robotic model, enhancing its performance on various robot tasks. Our project page is available at: https://4d-visual-pretraining.github.io/
♻ ☆ Hessian-Based Lightweight Neural Network HessNet for State-of-the-Art Brain Vessel Segmentation on a Minimal Training Dataset
Accurate segmentation of blood vessels in brain magnetic resonance angiography (MRA) is essential for successful surgical procedures, such as aneurysm repair or bypass surgery. Currently, annotation is primarily performed through manual segmentation or classical methods, such as the Frangi filter, which often lack sufficient accuracy. Neural networks have emerged as powerful tools for medical image segmentation, but their development depends on well-annotated training datasets. However, there is a notable lack of publicly available MRA datasets with detailed brain vessel annotations. To address this gap, we propose a novel semi-supervised learning lightweight neural network with Hessian matrices on board for 3D segmentation of complex structures such as tubular structures, which we named HessNet. The solution is a Hessian-based neural network with only 6000 parameters. HessNet can run on the CPU and significantly reduces the resource requirements for training neural networks. The accuracy of vessel segmentation on a minimal training dataset reaches state-of-the-art results. It helps us create a large, semi-manually annotated brain vessel dataset of brain MRA images based on the IXI dataset (annotated 200 images). Annotation was performed by three experts under the supervision of three neurovascular surgeons after applying HessNet. It provides high accuracy of vessel segmentation and allows experts to focus only on the most complex important cases. The dataset is available at https://git.scinalytics.com/terilat/VesselDatasetPartly.
comment: 11 pages, 2 figures
♻ ☆ Making Rotation Averaging Fast and Robust with Anisotropic Coordinate Descent
Anisotropic rotation averaging has recently been explored as a natural extension of respective isotropic methods. In the anisotropic formulation, uncertainties of the estimated relative rotations -- obtained via standard two-view optimization -- are propagated to the optimization of absolute rotations. The resulting semidefinite relaxations are able to recover global minima but scale poorly with the problem size. Local methods are fast and also admit robust estimation but are sensitive to initialization. They usually employ minimum spanning trees and therefore suffer from drift accumulation and can get trapped in poor local minima. In this paper, we attempt to bridge the gap between optimality, robustness and efficiency of anisotropic rotation averaging. We analyze a family of block coordinate descent methods initially proposed to optimize the standard chordal distances, and derive a much simpler formulation and an anisotropic extension obtaining a fast general solver. We integrate this solver into the extended anisotropic large-scale robust rotation averaging pipeline. The resulting algorithm achieves state-of-the-art performance on public structure-from-motion datasets. Project page: https://ylochman.github.io/acd
♻ ☆ Osprey: Pixel Understanding with Visual Instruction Tuning CVPR2024
Multimodal large language models (MLLMs) have recently achieved impressive general-purpose vision-language capabilities through visual instruction tuning. However, current MLLMs primarily focus on image-level or box-level understanding, falling short in achieving fine-grained vision-language alignment at pixel level. Besides, the lack of mask-based instruction data limits their advancements. In this paper, we propose Osprey, a mask-text instruction tuning approach, to extend MLLMs by incorporating fine-grained mask regions into language instruction, aiming at achieving pixel-wise visual understanding. To achieve this goal, we first meticulously curate a mask-based region-text dataset with 724K samples, and then design a vision-language model by injecting pixel-level representation into LLM. Specifically, Osprey adopts a convolutional CLIP backbone as the vision encoder and employs a mask-aware visual extractor to extract precise visual mask features from high resolution input. Experimental results demonstrate Osprey's superiority in various region understanding tasks, showcasing its new capability for pixel-level instruction tuning. In particular, Osprey can be integrated with Segment Anything Model (SAM) seamlessly to obtain multi-granularity semantics. The source code, dataset and demo can be found at https://github.com/CircleRadon/Osprey.
comment: CVPR2024, Code and Demo link:https://github.com/CircleRadon/Osprey
♻ ☆ Pushing Trade-Off Boundaries: Compact yet Effective Remote Sensing Change Detection
Remote sensing change detection is essential for monitoring urban expansion, disaster assessment, and resource management, offering timely, accurate, and large-scale insights into dynamic landscape transformations. While deep learning has revolutionized change detection, the increasing complexity and computational demands of modern models have not necessarily translated into significant accuracy gains. Instead of following this trend, this study explores a more efficient approach, focusing on lightweight models that maintain high accuracy while minimizing resource consumption, which is an essential requirement for on-satellite processing. To this end, we propose FlickCD, which means quick flick then get great results, pushing the boundaries of the performance-resource trade-off. FlickCD introduces an Enhanced Difference Module (EDM) to amplify critical feature differences between temporal phases while suppressing irrelevant variations such as lighting and weather changes, thereby reducing computational costs in the subsequent change decoder. Additionally, the FlickCD decoder incorporates Local-Global Fusion Blocks, leveraging Shifted Window Self-Attention (SWSA) and Efficient Global Self-Attention (EGSA) to effectively capture semantic information at multiple scales, preserving both coarse- and fine-grained changes. Extensive experiments on four benchmark datasets demonstrate that FlickCD reduces computational and storage overheads by more than an order of magnitude while achieving state-of-the-art (SOTA) performance or incurring only a minor (<1% F1) accuracy trade-off. The implementation code is publicly available at https://github.com/xulsh8/FlickCD.
comment: 12 pages
♻ ☆ Efficient Alignment of Unconditioned Action Prior for Language-conditioned Pick and Place in Clutter
We study the task of language-conditioned pick and place in clutter, where a robot should grasp a target object in open clutter and move it to a specified place. Some approaches learn end-to-end policies with features from vision foundation models, requiring large datasets. Others combine foundation models in a zero-shot setting, suffering from cascading errors. In addition, they primarily leverage vision and language foundation models, focusing less on action priors. In this paper, we aim to develop an effective policy by integrating foundation priors from vision, language, and action. We propose A$^2$, an action prior alignment method that aligns unconditioned action priors with 3D vision-language priors by learning one attention layer. The alignment formulation enables our policy to train with less data and preserve zero-shot generalization capabilities. We show that a shared policy for both pick and place actions enhances the performance for each task, and introduce a policy adaptation scheme to accommodate the multi-modal nature of actions. Extensive experiments in simulation and the real-world show that our policy achieves higher task success rates with fewer steps for both pick and place tasks in clutter, effectively generalizing to unseen objects and language instructions. Videos and codes are available at https://xukechun.github.io/papers/A2.
comment: Accepted by T-ASE and CoRL25 GenPriors Workshop
♻ ☆ A Literature Review of Literature Reviews in Pattern Analysis and Machine Intelligence
The rapid growth of research in Pattern Analysis and Machine Intelligence (PAMI) has rendered literature reviews essential for consolidating and interpreting knowledge across its many subfields. In this work, we present a comprehensive tertiary analysis of PAMI reviews along three complementary dimensions: (i) identifying structural and statistical regularities in existing surveys; (ii) developing quantitative strategies that help researchers navigate and prioritize within the expanding review corpus; and (iii) critically assessing emerging AI-generated review systems. To support this study, we construct RiPAMI, a large-scale database containing more than 3,000 review articles, and combine narrative synthesis with statistical analysis to capture structural and content-level features. Our analyses reveal distinctive organizational patterns as well as persistent gaps in current review practices. Building on these insights, we propose practical, article-level strategies for indicator-guided navigation that move beyond simple citation counts. Finally, our evaluation of state-of-the-art AI-generated reviews indicates encouraging advances in coherence and organization, yet also highlights enduring weaknesses in reference retrieval, coverage of recent work, and the incorporation of visual elements. Together, these findings provide both a critical appraisal of existing review practices and a forward-looking perspective on how AI-generated reviews can evolve into trustworthy, customizable, and transformative complements to traditional human-authored surveys.
comment: V2, V3, and V4 with incremental quality improvements. V5, V6 introduce major updates
♻ ☆ PractiLight: Practical Light Control Using Foundational Diffusion Models
Light control in generated images is a difficult task, posing specific challenges, spanning over the entire image and frequency spectrum. Most approaches tackle this problem by training on extensive yet domain-specific datasets, limiting the inherent generalization and applicability of the foundational backbones used. Instead, PractiLight is a practical approach, effectively leveraging foundational understanding of recent generative models for the task. Our key insight is that lighting relationships in an image are similar in nature to token interaction in self-attention layers, and hence are best represented there. Based on this and other analyses regarding the importance of early diffusion iterations, PractiLight trains a lightweight LoRA regressor to produce the direct irradiance map for a given image, using a small set of training images. We then employ this regressor to incorporate the desired lighting into the generation process of another image using Classifier Guidance. This careful design generalizes well to diverse conditions and image domains. We demonstrate state-of-the-art performance in terms of quality and control with proven parameter and data efficiency compared to leading works over a wide variety of scenes types. We hope this work affirms that image lighting can feasibly be controlled by tapping into foundational knowledge, enabling practical and general relighting.
comment: Project page: https://yoterel.github.io/PractiLight-project-page/
♻ ☆ AIM: Adaptive Intra-Network Modulation for Balanced Multimodal Learning
Multimodal learning has significantly enhanced machine learning performance but still faces numerous challenges and limitations. Imbalanced multimodal learning is one of the problems extensively studied in recent works and is typically mitigated by modulating the learning of each modality. However, we find that these methods typically hinder the dominant modality's learning to promote weaker modalities, which affects overall multimodal performance. We analyze the cause of this issue and highlight a commonly overlooked problem: optimization bias within networks. To address this, we propose Adaptive Intra-Network Modulation (AIM) to improve balanced modality learning. AIM accounts for differences in optimization state across parameters and depths within the network during modulation, achieving balanced multimodal learning without hindering either dominant or weak modalities for the first time. Specifically, AIM decouples the dominant modality's under-optimized parameters into Auxiliary Blocks and encourages reliance on these performance-degraded blocks for joint training with weaker modalities. This approach effectively prevents suppression of weaker modalities while enabling targeted optimization of under-optimized parameters to improve the dominant modality. Additionally, AIM assesses modality imbalance level across network depths and adaptively adjusts modulation strength at each depth. Experimental results demonstrate that AIM outperforms state-of-the-art imbalanced modality learning methods across multiple benchmarks and exhibits strong generalizability across different backbones, fusion strategies, and optimizers.
comment: 13pages,7 figures
Artificial Intelligence 59
☆ ZhiFangDanTai: Fine-tuning Graph-based Retrieval-Augmented Generation Model for Traditional Chinese Medicine Formula
Traditional Chinese Medicine (TCM) formulas play a significant role in treating epidemics and complex diseases. Existing models for TCM utilize traditional algorithms or deep learning techniques to analyze formula relationships, yet lack comprehensive results, such as complete formula compositions and detailed explanations. Although recent efforts have used TCM instruction datasets to fine-tune Large Language Models (LLMs) for explainable formula generation, existing datasets lack sufficient details, such as the roles of the formula's sovereign, minister, assistant, courier; efficacy; contraindications; tongue and pulse diagnosis-limiting the depth of model outputs. To address these challenges, we propose ZhiFangDanTai, a framework combining Graph-based Retrieval-Augmented Generation (GraphRAG) with LLM fine-tuning. ZhiFangDanTai uses GraphRAG to retrieve and synthesize structured TCM knowledge into concise summaries, while also constructing an enhanced instruction dataset to improve LLMs' ability to integrate retrieved information. Furthermore, we provide novel theoretical proofs demonstrating that integrating GraphRAG with fine-tuning techniques can reduce generalization error and hallucination rates in the TCM formula task. Experimental results on both collected and clinical datasets demonstrate that ZhiFangDanTai achieves significant improvements over state-of-the-art models. Our model is open-sourced at https://huggingface.co/tczzx6/ZhiFangDanTai1.0.
☆ GenAI on Wall Street -- Opportunities and Risk Controls
We give an overview on the emerging applications of GenAI in the financial industry, especially within investment banks. Inherent to these exciting opportunities is a new realm of risks that must be managed properly. By heeding both the Yin and Yang sides of GenAI, we can accelerate its organic growth while safeguarding the entire financial industry during this nascent era of AI.
comment: 30 pages, 8 figures
☆ Decoding Latent Attack Surfaces in LLMs: Prompt Injection via HTML in Web Summarization
Large Language Models (LLMs) are increasingly integrated into web-based systems for content summarization, yet their susceptibility to prompt injection attacks remains a pressing concern. In this study, we explore how non-visible HTML elements such as , aria-label, and alt attributes can be exploited to embed adversarial instructions without altering the visible content of a webpage. We introduce a novel dataset comprising 280 static web pages, evenly divided between clean and adversarial injected versions, crafted using diverse HTML-based strategies. These pages are processed through a browser automation pipeline to extract both raw HTML and rendered text, closely mimicking real-world LLM deployment scenarios. We evaluate two state-of-the-art open-source models, Llama 4 Scout (Meta) and Gemma 9B IT (Google), on their ability to summarize this content. Using both lexical (ROUGE-L) and semantic (SBERT cosine similarity) metrics, along with manual annotations, we assess the impact of these covert injections. Our findings reveal that over 29% of injected samples led to noticeable changes in the Llama 4 Scout summaries, while Gemma 9B IT showed a lower, yet non-trivial, success rate of 15%. These results highlight a critical and largely overlooked vulnerability in LLM driven web pipelines, where hidden adversarial content can subtly manipulate model outputs. Our work offers a reproducible framework and benchmark for evaluating HTML-based prompt injection and underscores the urgent need for robust mitigation strategies in LLM applications involving web content.
☆ Chatbot To Help Patients Understand Their Health EMNLP 2025
Patients must possess the knowledge necessary to actively participate in their care. We present NoteAid-Chatbot, a conversational AI that promotes patient understanding via a novel 'learning as conversation' framework, built on a multi-agent large language model (LLM) and reinforcement learning (RL) setup without human-labeled data. NoteAid-Chatbot was built on a lightweight LLaMA 3.2 3B model trained in two stages: initial supervised fine-tuning on conversational data synthetically generated using medical conversation strategies, followed by RL with rewards derived from patient understanding assessments in simulated hospital discharge scenarios. Our evaluation, which includes comprehensive human-aligned assessments and case studies, demonstrates that NoteAid-Chatbot exhibits key emergent behaviors critical for patient education, such as clarity, relevance, and structured dialogue, even though it received no explicit supervision for these attributes. Our results show that even simple Proximal Policy Optimization (PPO)-based reward modeling can successfully train lightweight, domain-specific chatbots to handle multi-turn interactions, incorporate diverse educational strategies, and meet nuanced communication objectives. Our Turing test demonstrates that NoteAid-Chatbot surpasses non-expert human. Although our current focus is on healthcare, the framework we present illustrates the feasibility and promise of applying low-cost, PPO-based RL to realistic, open-ended conversational domains, broadening the applicability of RL-based alignment methods.
comment: Accepted in EMNLP 2025 Findings
☆ time2time: Causal Intervention in Hidden States to Simulate Rare Events in Time Series Foundation Models
While transformer-based foundation models excel at forecasting routine patterns, two questions remain: do they internalize semantic concepts such as market regimes, or merely fit curves? And can their internal representations be leveraged to simulate rare, high-stakes events such as market crashes? To investigate this, we introduce activation transplantation, a causal intervention that manipulates hidden states by imposing the statistical moments of one event (e.g., a historical crash) onto another (e.g., a calm period) during the forward pass. This procedure deterministically steers forecasts: injecting crash semantics induces downturn predictions, while injecting calm semantics suppresses crashes and restores stability. Beyond binary control, we find that models encode a graded notion of event severity, with the latent vector norm directly correlating with the magnitude of systemic shocks. Validated across two architecturally distinct TSFMs, Toto (decoder only) and Chronos (encoder-decoder), our results demonstrate that steerable, semantically grounded representations are a robust property of large time series transformers. Our findings provide evidence for a latent concept space that governs model predictions, shifting interpretability from post-hoc attribution to direct causal intervention, and enabling semantic "what-if" analysis for strategic stress-testing.
☆ Hybrid Fourier Neural Operator-Plasma Fluid Model for Fast and Accurate Multiscale Simulations of High Power Microwave Breakdown
Modeling and simulation of High Power Microwave (HPM) breakdown, a multiscale phenomenon, is computationally expensive and requires solving Maxwell's equations (EM solver) coupled with a plasma continuity equation (plasma solver). In this work, we present a hybrid modeling approach that combines the accuracy of a differential equation-based plasma fluid solver with the computational efficiency of FNO (Fourier Neural Operator) based EM solver. Trained on data from an in-house FDTD-based plasma-fluid solver, the FNO replaces computationally expensive EM field updates, while the plasma solver governs the dynamic plasma response. The hybrid model is validated on microwave streamer formation, due to diffusion ionization mechanism, in a 2D scenario for unseen incident electric fields corresponding to entirely new plasma streamer simulations not included in model training, showing excellent agreement with FDTD based fluid simulations in terms of streamer shape, velocity, and temporal evolution. This hybrid FNO based strategy delivers significant acceleration of the order of 60X compared to traditional simulations for the specified problem size and offers an efficient alternative for computationally demanding multiscale and multiphysics simulations involved in HPM breakdown. Our work also demonstrate how such hybrid pipelines can be used to seamlessly to integrate existing C-based simulation codes with Python-based machine learning frameworks for simulations of plasma science and engineering problems.
☆ Dual-Mode Deep Anomaly Detection for Medical Manufacturing: Structural Similarity and Feature Distance
Automating visual inspection in medical device manufacturing remains challenging due to small and imbalanced datasets, high-resolution imagery, and stringent regulatory requirements. This work proposes two attention-guided autoencoder architectures for deep anomaly detection designed to address these constraints. The first employs a structural similarity-based anomaly score (4-MS-SSIM), offering lightweight and accurate real-time defect detection, yielding ACC 0.903 (unsupervised thresholding) and 0.931 (supervised thresholding) on the - Surface Seal Image - Test split with only 10% of defective samples. The second applies a feature-distance approach using Mahalanobis scoring on reduced latent features, providing high sensitivity to distributional shifts for supervisory monitoring, achieving ACC 0.722 with supervised thresholding. Together, these methods deliver complementary capabilities: the first supports reliable inline inspection, while the second enables scalable post-production surveillance and regulatory compliance monitoring. Experimental results demonstrate that both approaches surpass re-implemented baselines and provide a practical pathway for deploying deep anomaly detection in regulated manufacturing environments, aligning accuracy, efficiency, and the regulatory obligations defined for high-risk AI systems under the EU AI Act.
comment: 18 pages, 5 figures, 13 tables
☆ DCV-ROOD Evaluation Framework: Dual Cross-Validation for Robust Out-of-Distribution Detection
Out-of-distribution (OOD) detection plays a key role in enhancing the robustness of artificial intelligence systems by identifying inputs that differ significantly from the training distribution, thereby preventing unreliable predictions and enabling appropriate fallback mechanisms. Developing reliable OOD detection methods is a significant challenge, and rigorous evaluation of these techniques is essential for ensuring their effectiveness, as it allows researchers to assess their performance under diverse conditions and to identify potential limitations or failure modes. Cross-validation (CV) has proven to be a highly effective tool for providing a reasonable estimate of the performance of a learning algorithm. Although OOD scenarios exhibit particular characteristics, an appropriate adaptation of CV can lead to a suitable evaluation framework for this setting. This work proposes a dual CV framework for robust evaluation of OOD detection models, aimed at improving the reliability of their assessment. The proposed evaluation framework aims to effectively integrate in-distribution (ID) and OOD data while accounting for their differing characteristics. To achieve this, ID data are partitioned using a conventional approach, whereas OOD data are divided by grouping samples based on their classes. Furthermore, we analyze the context of data with class hierarchy to propose a data splitting that considers the entire class hierarchy to obtain fair ID-OOD partitions to apply the proposed evaluation framework. This framework is called Dual Cross-Validation for Robust Out-of-Distribution Detection (DCV-ROOD). To test the validity of the evaluation framework, we selected a set of state-of-the-art OOD detection methods, both with and without outlier exposure. The results show that the method achieves very fast convergence to the true performance.
comment: 20 pages and appendix
☆ Decision-Focused Learning Enhanced by Automated Feature Engineering for Energy Storage Optimisation
Decision-making under uncertainty in energy management is complicated by unknown parameters hindering optimal strategies, particularly in Battery Energy Storage System (BESS) operations. Predict-Then-Optimise (PTO) approaches treat forecasting and optimisation as separate processes, allowing prediction errors to cascade into suboptimal decisions as models minimise forecasting errors rather than optimising downstream tasks. The emerging Decision-Focused Learning (DFL) methods overcome this limitation by integrating prediction and optimisation; however, they are relatively new and have been tested primarily on synthetic datasets or small-scale problems, with limited evidence of their practical viability. Real-world BESS applications present additional challenges, including greater variability and data scarcity due to collection constraints and operational limitations. Because of these challenges, this work leverages Automated Feature Engineering (AFE) to extract richer representations and improve the nascent approach of DFL. We propose an AFE-DFL framework suitable for small datasets that forecasts electricity prices and demand while optimising BESS operations to minimise costs. We validate its effectiveness on a novel real-world UK property dataset. The evaluation compares DFL methods against PTO, with and without AFE. The results show that, on average, DFL yields lower operating costs than PTO and adding AFE further improves the performance of DFL methods by 22.9-56.5% compared to the same models without AFE. These findings provide empirical evidence for DFL's practical viability in real-world settings, indicating that domain-specific AFE enhances DFL and reduces reliance on domain expertise for BESS optimisation, yielding economic benefits with broader implications for energy management systems facing similar challenges.
comment: 22 pages, 10 figures, journal-based paper
☆ Real-E: A Foundation Benchmark for Advancing Robust and Generalizable Electricity Forecasting CIKM 2025
Energy forecasting is vital for grid reliability and operational efficiency. Although recent advances in time series forecasting have led to progress, existing benchmarks remain limited in spatial and temporal scope and lack multi-energy features. This raises concerns about their reliability and applicability in real-world deployment. To address this, we present the Real-E dataset, covering over 74 power stations across 30+ European countries over a 10-year span with rich metadata. Using Real- E, we conduct an extensive data analysis and benchmark over 20 baselines across various model types. We introduce a new metric to quantify shifts in correlation structures and show that existing methods struggle on our dataset, which exhibits more complex and non-stationary correlation dynamics. Our findings highlight key limitations of current methods and offer a strong empirical basis for building more robust forecasting models
comment: 4 pages, CIKM 2025
☆ DRF: LLM-AGENT Dynamic Reputation Filtering Framework ICONIP 2025
With the evolution of generative AI, multi - agent systems leveraging large - language models(LLMs) have emerged as a powerful tool for complex tasks. However, these systems face challenges in quantifying agent performance and lack mechanisms to assess agent credibility. To address these issues, we introduce DRF, a dynamic reputation filtering framework. DRF constructs an interactive rating network to quantify agent performance, designs a reputation scoring mechanism to measure agent honesty and capability, and integrates an Upper Confidence Bound - based strategy to enhance agent selection efficiency. Experiments show that DRF significantly improves task completion quality and collaboration efficiency in logical reasoning and code - generation tasks, offering a new approach for multi - agent systems to handle large - scale tasks.
comment: This paper has been accepted by ICONIP 2025 but not published
☆ Hyperbolic Large Language Models
Large language models (LLMs) have achieved remarkable success and demonstrated superior performance across various tasks, including natural language processing (NLP), weather forecasting, biological protein folding, text generation, and solving mathematical problems. However, many real-world data exhibit highly non-Euclidean latent hierarchical anatomy, such as protein networks, transportation networks, financial networks, brain networks, and linguistic structures or syntactic trees in natural languages. Effectively learning intrinsic semantic entailment and hierarchical relationships from these raw, unstructured input data using LLMs remains an underexplored area. Due to its effectiveness in modeling tree-like hierarchical structures, hyperbolic geometry -- a non-Euclidean space -- has rapidly gained popularity as an expressive latent representation space for complex data modeling across domains such as graphs, images, languages, and multi-modal data. Here, we provide a comprehensive and contextual exposition of recent advancements in LLMs that leverage hyperbolic geometry as a representation space to enhance semantic representation learning and multi-scale reasoning. Specifically, the paper presents a taxonomy of the principal techniques of Hyperbolic LLMs (HypLLMs) in terms of four main categories: (1) hyperbolic LLMs through exp/log maps; (2) hyperbolic fine-tuned models; (3) fully hyperbolic LLMs, and (4) hyperbolic state-space models. We also explore crucial potential applications and outline future research directions. A repository of key papers, models, datasets, and code implementations is available at https://github.com/sarangp2402/Hyperbolic-LLM-Models/tree/main.
comment: 32 pages, 6 figures
☆ Exploit Tool Invocation Prompt for Tool Behavior Hijacking in LLM-Based Agentic System
LLM-based agentic systems leverage large language models to handle user queries, make decisions, and execute external tools for complex tasks across domains like chatbots, customer service, and software engineering. A critical component of these systems is the Tool Invocation Prompt (TIP), which defines tool interaction protocols and guides LLMs to ensure the security and correctness of tool usage. Despite its importance, TIP security has been largely overlooked. This work investigates TIP-related security risks, revealing that major LLM-based systems like Cursor, Claude Code, and others are vulnerable to attacks such as remote code execution (RCE) and denial of service (DoS). Through a systematic TIP exploitation workflow (TEW), we demonstrate external tool behavior hijacking via manipulated tool invocations. We also propose defense mechanisms to enhance TIP security in LLM-based agentic systems.
☆ Tell-Tale Watermarks for Explanatory Reasoning in Synthetic Media Forensics
The rise of synthetic media has blurred the boundary between reality and fabrication under the evolving power of artificial intelligence, fueling an infodemic that erodes public trust in cyberspace. For digital imagery, a multitude of editing applications further complicates the forensic analysis, including semantic edits that alter content, photometric adjustments that recalibrate colour characteristics, and geometric projections that reshape viewpoints. Collectively, these transformations manipulate and control perceptual interpretation of digital imagery. This susceptibility calls for forensic enquiry into reconstructing the chain of events, thereby revealing deeper evidential insight into the presence or absence of criminal intent. This study seeks to address an inverse problem of tracing the underlying generation chain that gives rise to the observed synthetic media. A tell-tale watermarking system is developed for explanatory reasoning over the nature and extent of transformations across the lifecycle of synthetic media. Tell-tale watermarks are tailored to different classes of transformations, responding in a manner that is neither strictly robust nor fragile but instead interpretable. These watermarks function as reference clues that evolve under the same transformation dynamics as the carrier media, leaving interpretable traces when subjected to transformations. Explanatory reasoning is then performed to infer the most plausible account across the combinatorial parameter space of composite transformations. Experimental evaluations demonstrate the validity of tell-tale watermarking with respect to fidelity, synchronicity and traceability.
☆ Unleashing Hierarchical Reasoning: An LLM-Driven Framework for Training-Free Referring Video Object Segmentation
Referring Video Object Segmentation (RVOS) aims to segment an object of interest throughout a video based on a language description. The prominent challenge lies in aligning static text with dynamic visual content, particularly when objects exhibiting similar appearances with inconsistent motion and poses. However, current methods often rely on a holistic visual-language fusion that struggles with complex, compositional descriptions. In this paper, we propose \textbf{PARSE-VOS}, a novel, training-free framework powered by Large Language Models (LLMs), for a hierarchical, coarse-to-fine reasoning across text and video domains. Our approach begins by parsing the natural language query into structured semantic commands. Next, we introduce a spatio-temporal grounding module that generates all candidate trajectories for all potential target objects, guided by the parsed semantics. Finally, a hierarchical identification module select the correct target through a two-stage reasoning process: it first performs coarse-grained motion reasoning with an LLM to narrow down candidates; if ambiguity remains, a fine-grained pose verification stage is conditionally triggered to disambiguate. The final output is an accurate segmentation mask for the target object. \textbf{PARSE-VOS} achieved state-of-the-art performance on three major benchmarks: Ref-YouTube-VOS, Ref-DAVIS17, and MeViS.
☆ InterAct: A Large-Scale Dataset of Dynamic, Expressive and Interactive Activities between Two People in Daily Scenarios
We address the problem of accurate capture of interactive behaviors between two people in daily scenarios. Most previous works either only consider one person or solely focus on conversational gestures of two people, assuming the body orientation and/or position of each actor are constant or barely change over each interaction. In contrast, we propose to simultaneously model two people's activities, and target objective-driven, dynamic, and semantically consistent interactions which often span longer duration and cover bigger space. To this end, we capture a new multi-modal dataset dubbed InterAct, which is composed of 241 motion sequences where two people perform a realistic and coherent scenario for one minute or longer over a complete interaction. For each sequence, two actors are assigned different roles and emotion labels, and collaborate to finish one task or conduct a common interaction activity. The audios, body motions, and facial expressions of both persons are captured. InterAct contains diverse and complex motions of individuals and interesting and relatively long-term interaction patterns barely seen before. We also demonstrate a simple yet effective diffusion-based method that estimates interactive face expressions and body motions of two people from speech inputs. Our method regresses the body motions in a hierarchical manner, and we also propose a novel fine-tuning mechanism to improve the lip accuracy of facial expressions. To facilitate further research, the data and code is made available at https://hku-cg.github.io/interact/ .
comment: The first two authors contributed equally to this work
☆ Reasoning Introduces New Poisoning Attacks Yet Makes Them More Complicated
Early research into data poisoning attacks against Large Language Models (LLMs) demonstrated the ease with which backdoors could be injected. More recent LLMs add step-by-step reasoning, expanding the attack surface to include the intermediate chain-of-thought (CoT) and its inherent trait of decomposing problems into subproblems. Using these vectors for more stealthy poisoning, we introduce ``decomposed reasoning poison'', in which the attacker modifies only the reasoning path, leaving prompts and final answers clean, and splits the trigger across multiple, individually harmless components. Fascinatingly, while it remains possible to inject these decomposed poisons, reliably activating them to change final answers (rather than just the CoT) is surprisingly difficult. This difficulty arises because the models can often recover from backdoors that are activated within their thought processes. Ultimately, it appears that an emergent form of backdoor robustness is originating from the reasoning capabilities of these advanced LLMs, as well as from the architectural separation between reasoning and final answer generation.
☆ Offline vs. Online Learning in Model-based RL: Lessons for Data Collection Strategies
Data collection is crucial for learning robust world models in model-based reinforcement learning. The most prevalent strategies are to actively collect trajectories by interacting with the environment during online training or training on offline datasets. At first glance, the nature of learning task-agnostic environment dynamics makes world models a good candidate for effective offline training. However, the effects of online vs. offline data on world models and thus on the resulting task performance have not been thoroughly studied in the literature. In this work, we investigate both paradigms in model-based settings, conducting experiments on 31 different environments. First, we showcase that online agents outperform their offline counterparts. We identify a key challenge behind performance degradation of offline agents: encountering Out-Of-Distribution states at test time. This issue arises because, without the self-correction mechanism in online agents, offline datasets with limited state space coverage induce a mismatch between the agent's imagination and real rollouts, compromising policy training. We demonstrate that this issue can be mitigated by allowing for additional online interactions in a fixed or adaptive schedule, restoring the performance of online training with limited interaction data. We also showcase that incorporating exploration data helps mitigate the performance degradation of offline agents. Based on our insights, we recommend adding exploration data when collecting large datasets, as current efforts predominantly focus on expert data alone.
comment: Accepted at Reinforcement Learning Conference (RLC 2025); Code available at: https://github.com/swsychen/Offline_vs_Online_in_MBRL
☆ Simulation Priors for Data-Efficient Deep Learning
How do we enable AI systems to efficiently learn in the real-world? First-principles models are widely used to simulate natural systems, but often fail to capture real-world complexity due to simplifying assumptions. In contrast, deep learning approaches can estimate complex dynamics with minimal assumptions but require large, representative datasets. We propose SimPEL, a method that efficiently combines first-principles models with data-driven learning by using low-fidelity simulators as priors in Bayesian deep learning. This enables SimPEL to benefit from simulator knowledge in low-data regimes and leverage deep learning's flexibility when more data is available, all the while carefully quantifying epistemic uncertainty. We evaluate SimPEL on diverse systems, including biological, agricultural, and robotic domains, showing superior performance in learning complex dynamics. For decision-making, we demonstrate that SimPEL bridges the sim-to-real gap in model-based reinforcement learning. On a high-speed RC car task, SimPEL learns a highly dynamic parking maneuver involving drifting with substantially less data than state-of-the-art baselines. These results highlight the potential of SimPEL for data-efficient learning and control in complex real-world environments.
☆ LiDAR-BIND-T: Improving SLAM with Temporally Consistent Cross-Modal LiDAR Reconstruction
This paper extends LiDAR-BIND, a modular multi-modal fusion framework that binds heterogeneous sensors (radar, sonar) to a LiDAR-defined latent space, with mechanisms that explicitly enforce temporal consistency. We introduce three contributions: (i) temporal embedding similarity that aligns consecutive latents, (ii) a motion-aligned transformation loss that matches displacement between predictions and ground truth LiDAR, and (iii) windows temporal fusion using a specialised temporal module. We further update the model architecture to better preserve spatial structure. Evaluations on radar/sonar-to-LiDAR translation demonstrate improved temporal and spatial coherence, yielding lower absolute trajectory error and better occupancy map accuracy in Cartographer-based SLAM (Simultaneous Localisation and Mapping). We propose different metrics based on the Fr\'echet Video Motion Distance (FVMD) and a correlation-peak distance metric providing practical temporal quality indicators to evaluate SLAM performance. The proposed temporal LiDAR-BIND, or LiDAR-BIND-T, maintains plug-and-play modality fusion while substantially enhancing temporal stability, resulting in improved robustness and performance for downstream SLAM.
☆ Universality of physical neural networks with multivariate nonlinearity
The enormous energy demand of artificial intelligence is driving the development of alternative hardware for deep learning. Physical neural networks try to exploit physical systems to perform machine learning more efficiently. In particular, optical systems can calculate with light using negligible energy. While their computational capabilities were long limited by the linearity of optical materials, nonlinear computations have recently been demonstrated through modified input encoding. Despite this breakthrough, our inability to determine if physical neural networks can learn arbitrary relationships between data -- a key requirement for deep learning known as universality -- hinders further progress. Here we present a fundamental theorem that establishes a universality condition for physical neural networks. It provides a powerful mathematical criterion that imposes device constraints, detailing how inputs should be encoded in the tunable parameters of the physical system. Based on this result, we propose a scalable architecture using free-space optics that is provably universal and achieves high accuracy on image classification tasks. Further, by combining the theorem with temporal multiplexing, we present a route to potentially huge effective system sizes in highly practical but poorly scalable on-chip photonic devices. Our theorem and scaling methods apply beyond optical systems and inform the design of a wide class of universal, energy-efficient physical neural networks, justifying further efforts in their development.
☆ A Survey of the State-of-the-Art in Conversational Question Answering Systems
Conversational Question Answering (ConvQA) systems have emerged as a pivotal area within Natural Language Processing (NLP) by driving advancements that enable machines to engage in dynamic and context-aware conversations. These capabilities are increasingly being applied across various domains, i.e., customer support, education, legal, and healthcare where maintaining a coherent and relevant conversation is essential. Building on recent advancements, this survey provides a comprehensive analysis of the state-of-the-art in ConvQA. This survey begins by examining the core components of ConvQA systems, i.e., history selection, question understanding, and answer prediction, highlighting their interplay in ensuring coherence and relevance in multi-turn conversations. It further investigates the use of advanced machine learning techniques, including but not limited to, reinforcement learning, contrastive learning, and transfer learning to improve ConvQA accuracy and efficiency. The pivotal role of large language models, i.e., RoBERTa, GPT-4, Gemini 2.0 Flash, Mistral 7B, and LLaMA 3, is also explored, thereby showcasing their impact through data scalability and architectural advancements. Additionally, this survey presents a comprehensive analysis of key ConvQA datasets and concludes by outlining open research directions. Overall, this work offers a comprehensive overview of the ConvQA landscape and provides valuable insights to guide future advancements in the field.
comment: 42 pages, 12 figures, 4 tables
☆ Towards Meta-Cognitive Knowledge Editing for Multimodal LLMs
Knowledge editing enables multimodal large language models (MLLMs) to efficiently update outdated or incorrect information. However, existing benchmarks primarily emphasize cognitive-level modifications while lacking a focus on deeper meta-cognitive processes. To bridge this gap, we introduce CogEdit, a novel benchmark designed to evaluate MLLMs' meta-cognitive knowledge editing abilities across three levels: (1) Counterfactual-Driven Editing, assessing self-awareness of knowledge correctness changes; (2) Boundary Constraint Editing, ensuring appropriate generalization without unintended interference; and (3) Noise-Robust Editing, promoting reflective evaluation of uncertain information. To advance meta-cognitive editing, we propose MIND (Meta-cognitive INtegrated Dynamic Knowledge Editing), a framework that constructs a meta-knowledge memory for self-awareness, employs game-theoretic interactions to monitor knowledge activation, and incorporates label refinement for noise-robust updates. Extensive experiments show that MIND significantly outperforms existing cognitive editing approaches, achieving strong performance on both traditional and meta-cognitive knowledge editing benchmarks.
comment: 15 pages, 6 figures
☆ Knowledge-Augmented Vision Language Models for Underwater Bioacoustic Spectrogram Analysis
Marine mammal vocalization analysis depends on interpreting bioacoustic spectrograms. Vision Language Models (VLMs) are not trained on these domain-specific visualizations. We investigate whether VLMs can extract meaningful patterns from spectrograms visually. Our framework integrates VLM interpretation with LLM-based validation to build domain knowledge. This enables adaptation to acoustic data without manual annotation or model retraining.
☆ Revealing the Numeracy Gap: An Empirical Investigation of Text Embedding Models
Text embedding models are widely used in natural language processing applications. However, their capability is often benchmarked on tasks that do not require understanding nuanced numerical information in text. As a result, it remains unclear whether current embedding models can precisely encode numerical content, such as numbers, into embeddings. This question is critical because embedding models are increasingly applied in domains where numbers matter, such as finance and healthcare. For example, Company X's market share grew by 2\% should be interpreted very differently from Company X's market share grew by 20\%, even though both indicate growth in market share. This study aims to examine whether text embedding models can capture such nuances. Using synthetic data in a financial context, we evaluate 13 widely used text embedding models and find that they generally struggle to capture numerical details accurately. Our further analyses provide deeper insights into embedding numeracy, informing future research to strengthen embedding model-based NLP systems with improved capacity for handling numerical content.
☆ MSRFormer: Road Network Representation Learning using Multi-scale Feature Fusion of Heterogeneous Spatial Interactions
Transforming road network data into vector representations using deep learning has proven effective for road network analysis. However, urban road networks' heterogeneous and hierarchical nature poses challenges for accurate representation learning. Graph neural networks, which aggregate features from neighboring nodes, often struggle due to their homogeneity assumption and focus on a single structural scale. To address these issues, this paper presents MSRFormer, a novel road network representation learning framework that integrates multi-scale spatial interactions by addressing their flow heterogeneity and long-distance dependencies. It uses spatial flow convolution to extract small-scale features from large trajectory datasets, and identifies scale-dependent spatial interaction regions to capture the spatial structure of road networks and flow heterogeneity. By employing a graph transformer, MSRFormer effectively captures complex spatial dependencies across multiple scales. The spatial interaction features are fused using residual connections, which are fed to a contrastive learning algorithm to derive the final road network representation. Validation on two real-world datasets demonstrates that MSRFormer outperforms baseline methods in two road network analysis tasks. The performance gains of MSRFormer suggest the traffic-related task benefits more from incorporating trajectory data, also resulting in greater improvements in complex road network structures with up to 16% improvements compared to the most competitive baseline method. This research provides a practical framework for developing task-agnostic road network representation models and highlights distinct association patterns of the interplay between scale effects and flow heterogeneity of spatial interactions.
☆ SEASONED: Semantic-Enhanced Self-Counterfactual Explainable Detection of Adversarial Exploiter Contracts
Decentralized Finance (DeFi) attacks have resulted in significant losses, often orchestrated through Adversarial Exploiter Contracts (AECs) that exploit vulnerabilities in victim smart contracts. To proactively identify such threats, this paper targets the explainable detection of AECs. Existing detection methods struggle to capture semantic dependencies and lack interpretability, limiting their effectiveness and leaving critical knowledge gaps in AEC analysis. To address these challenges, we introduce SEASONED, an effective, self-explanatory, and robust framework for AEC detection. SEASONED extracts semantic information from contract bytecode to construct a semantic relation graph (SRG), and employs a self-counterfactual explainable detector (SCFED) to classify SRGs and generate explanations that highlight the core attack logic. SCFED further enhances robustness, generalizability, and data efficiency by extracting representative information from these explanations. Both theoretical analysis and experimental results demonstrate the effectiveness of SEASONED, which showcases outstanding detection performance, robustness, generalizability, and data efficiency learning ability. To support further research, we also release a new dataset of 359 AECs.
☆ GraMFedDHAR: Graph Based Multimodal Differentially Private Federated HAR
Human Activity Recognition (HAR) using multimodal sensor data remains challenging due to noisy or incomplete measurements, scarcity of labeled examples, and privacy concerns. Traditional centralized deep learning approaches are often constrained by infrastructure availability, network latency, and data sharing restrictions. While federated learning (FL) addresses privacy by training models locally and sharing only model parameters, it still has to tackle issues arising from the use of heterogeneous multimodal data and differential privacy requirements. In this article, a Graph-based Multimodal Federated Learning framework, GraMFedDHAR, is proposed for HAR tasks. Diverse sensor streams such as a pressure mat, depth camera, and multiple accelerometers are modeled as modality-specific graphs, processed through residual Graph Convolutional Neural Networks (GCNs), and fused via attention-based weighting rather than simple concatenation. The fused embeddings enable robust activity classification, while differential privacy safeguards data during federated aggregation. Experimental results show that the proposed MultiModalGCN model outperforms the baseline MultiModalFFN, with up to 2 percent higher accuracy in non-DP settings in both centralized and federated paradigms. More importantly, significant improvements are observed under differential privacy constraints: MultiModalGCN consistently surpasses MultiModalFFN, with performance gaps ranging from 7 to 13 percent depending on the privacy budget and setting. These results highlight the robustness of graph-based modeling in multimodal learning, where GNNs prove more resilient to the performance degradation introduced by DP noise.
☆ Llama-GENBA-10B: A Trilingual Large Language Model for German, English and Bavarian
We present Llama-GENBA-10B, a trilingual foundation model addressing English-centric bias in large language models. Built on Llama 3.1-8B and scaled to 10B parameters, Llama-GENBA-10B is continuously pretrained on 164B tokens (82B English, 82B German, and 80M Bavarian), balancing resources while preventing English dominance. Targeted at the German NLP community, the model also promotes Bavarian as a low-resource language. Development tackled four challenges: (1) curating a multilingual corpus despite Bavarian scarcity, (2) creating a unified tokenizer for English, German, and Bavarian, (3) optimizing architecture and language-ratio hyperparameters for cross-lingual transfer, and (4) establishing the first standardized trilingual evaluation suite by translating German benchmarks into Bavarian. Evaluations show that Llama-GENBA-10B achieves strong cross-lingual performance, with the fine-tuned variant surpassing Apertus-8B-2509 and gemma-2-9b in Bavarian and establishing itself as the best model in its class for this language, while also outperforming EuroLLM in English and matching its results in German. Training on the Cerebras CS-2 demonstrated efficient large-scale multilingual pretraining with documented energy use, offering a blueprint for inclusive foundation models that integrate low-resource languages.
comment: Michael Hoffmann and Jophin John contributed equally to this work
☆ LM-Searcher: Cross-domain Neural Architecture Search with LLMs via Unified Numerical Encoding EMNLP2025
Recent progress in Large Language Models (LLMs) has opened new avenues for solving complex optimization problems, including Neural Architecture Search (NAS). However, existing LLM-driven NAS approaches rely heavily on prompt engineering and domain-specific tuning, limiting their practicality and scalability across diverse tasks. In this work, we propose LM-Searcher, a novel framework that leverages LLMs for cross-domain neural architecture optimization without the need for extensive domain-specific adaptation. Central to our approach is NCode, a universal numerical string representation for neural architectures, which enables cross-domain architecture encoding and search. We also reformulate the NAS problem as a ranking task, training LLMs to select high-performing architectures from candidate pools using instruction-tuning samples derived from a novel pruning-based subspace sampling strategy. Our curated dataset, encompassing a wide range of architecture-performance pairs, encourages robust and transferable learning. Comprehensive experiments demonstrate that LM-Searcher achieves competitive performance in both in-domain (e.g., CNNs for image classification) and out-of-domain (e.g., LoRA configurations for segmentation and generation) tasks, establishing a new paradigm for flexible and generalizable LLM-based architecture search. The datasets and models will be released at https://github.com/Ashone3/LM-Searcher.
comment: EMNLP2025
☆ OptiProxy-NAS: Optimization Proxy based End-to-End Neural Architecture Search
Neural architecture search (NAS) is a hard computationally expensive optimization problem with a discrete, vast, and spiky search space. One of the key research efforts dedicated to this space focuses on accelerating NAS via certain proxy evaluations of neural architectures. Different from the prevalent predictor-based methods using surrogate models and differentiable architecture search via supernetworks, we propose an optimization proxy to streamline the NAS as an end-to-end optimization framework, named OptiProxy-NAS. In particular, using a proxy representation, the NAS space is reformulated to be continuous, differentiable, and smooth. Thereby, any differentiable optimization method can be applied to the gradient-based search of the relaxed architecture parameters. Our comprehensive experiments on $12$ NAS tasks of $4$ search spaces across three different domains including computer vision, natural language processing, and resource-constrained NAS fully demonstrate the superior search results and efficiency. Further experiments on low-fidelity scenarios verify the flexibility.
☆ Orchestrator: Active Inference for Multi-Agent Systems in Long-Horizon Tasks
Complex, non-linear tasks challenge LLM-enhanced multi-agent systems (MAS) due to partial observability and suboptimal coordination. We propose Orchestrator, a novel MAS framework that leverages attention-inspired self-emergent coordination and reflective benchmarking to optimize global task performance. Orchestrator introduces a monitoring mechanism to track agent-environment dynamics, using active inference benchmarks to optimize system behavior. By tracking agent-to-agent and agent-to-environment interaction, Orchestrator mitigates the effects of partial observability and enables agents to approximate global task solutions more efficiently. We evaluate the framework on a series of maze puzzles of increasing complexity, demonstrating its effectiveness in enhancing coordination and performance in dynamic, non-linear environments with long-horizon objectives.
♻ ☆ Supervised Fine Tuning on Curated Data is Reinforcement Learning (and can be improved)
Behavior Cloning (BC) on curated (or filtered) data is the predominant paradigm for supervised fine-tuning (SFT) of large language models; as well as for imitation learning of control policies. Here, we draw on a connection between this successful strategy and the theory and practice of finding optimal policies via Reinforcement Learning (RL). Building on existing literature, we clarify that SFT can be understood as maximizing a lower bound on the RL objective in a sparse reward setting. Giving support to its often observed good performance. From this viewpoint, we realize that a small modification to SFT leads to an importance weighted variant that behaves closer to training with RL as it: i) optimizes a tighter bound to the RL objective and, ii) can improve performance compared to SFT on curated data. We refer to this variant as importance weighted supervised fine-tuning (iw-SFT). We show that it is easy to implement and can be further generalized to training with quality scored data. The resulting SFT variants are competitive with more advanced RL algorithms for large language models and for training policies in continuous control tasks. For example achieving 66.7% on the AIME 2024 dataset.
comment: See project website for details and code at: https://independentresearch.ai/posts/iwsft
♻ ☆ Neural Port-Hamiltonian Differential Algebraic Equations for Compositional Learning of Electrical Networks
We develop compositional learning algorithms for coupled dynamical systems, with a particular focus on electrical networks. While deep learning has proven effective at modeling complex relationships from data, compositional couplings between system components typically introduce algebraic constraints on state variables, posing challenges to many existing data-driven approaches to modeling dynamical systems. Towards developing deep learning models for constrained dynamical systems, we introduce neural port-Hamiltonian differential algebraic equations (N-PHDAEs), which use neural networks to parameterize unknown terms in both the differential and algebraic components of a port-Hamiltonian DAE. To train these models, we propose an algorithm that uses automatic differentiation to perform index reduction, automatically transforming the neural DAE into an equivalent system of neural ordinary differential equations (N-ODEs), for which established model inference and backpropagation methods exist. Experiments simulating the dynamics of nonlinear circuits exemplify the benefits of our approach: the proposed N-PHDAE model achieves an order of magnitude improvement in prediction accuracy and constraint satisfaction when compared to a baseline N-ODE over long prediction time horizons. We also validate the compositional capabilities of our approach through experiments on a simulated DC microgrid: we train individual N-PHDAE models for separate grid components, before coupling them to accurately predict the behavior of larger-scale networks.
♻ ☆ MEAL: A Benchmark for Continual Multi-Agent Reinforcement Learning
Benchmarks play a crucial role in the development and analysis of reinforcement learning (RL) algorithms, with environment availability strongly impacting research. One particularly underexplored intersection is continual learning (CL) in cooperative multi-agent settings. To remedy this, we introduce MEAL (Multi-agent Environments for Adaptive Learning), the first benchmark tailored for continual multi-agent reinforcement learning (CMARL). Existing CL benchmarks run environments on the CPU, leading to computational bottlenecks and limiting the length of task sequences. MEAL leverages JAX for GPU acceleration, enabling continual learning across sequences of 100 tasks on a standard desktop PC in a few hours. We show that naively combining popular CL and MARL methods yields strong performance on simple environments, but fails to scale to more complex settings requiring sustained coordination and adaptation. Our ablation study identifies architectural and algorithmic features critical for CMARL on MEAL.
♻ ☆ HumaniBench: A Human-Centric Framework for Large Multimodal Models Evaluation
Large multimodal models (LMMs) have been widely tested on tasks like visual question answering (VQA), image captioning, and grounding, but lack rigorous evaluation for alignment with human-centered (HC) values such as fairness, ethics, and inclusivity. To address this gap, we introduce \textbf{HumaniBench}, a novel benchmark of 32,000 real-world image-question pairs and an evaluation suite. Labels are generated via an AI-assisted pipeline and validated by experts. HumaniBench assesses LMMs across seven key alignment principles: fairness, ethics, empathy, inclusivity, reasoning, robustness, and multilinguality, through diverse open-ended and closed-ended VQA tasks. Grounded in AI ethics and real-world needs, these principles provide a holistic lens for societal impact. Benchmarking results on different LMM shows that proprietary models generally lead in reasoning, fairness, and multilinguality, while open-source models excel in robustness and grounding. Most models struggle to balance accuracy with ethical and inclusive behavior. Techniques like Chain-of-Thought prompting and test-time scaling improve alignment. As the first benchmark tailored for HC alignment, HumaniBench offers a rigorous testbed to diagnose limitations, and promote responsible LMM development. All data and code are publicly available for reproducibility. Keywords: HumaniBench, vision-language models, responsible AI benchmark, AI alignment evaluation, AI ethics assessment, fairness in AI models, visual question answering (VQA) benchmark, image captioning evaluation, visual grounding tasks, trustworthy AI models, Chain-of-Thought prompting, test-time scaling, ethical AI development tools.
♻ ☆ Planning with Reasoning using Vision Language World Model
Effective planning requires strong world models, but high-level world models that can understand and reason about actions with semantic and temporal abstraction remain largely underdeveloped. We introduce the Vision Language World Model (VLWM), a foundation model trained for language-based world modeling on natural videos. Given visual observations, the VLWM first infers the overall goal achievements then predicts a trajectory composed of interleaved actions and world state changes. Those targets are extracted by iterative LLM Self-Refine conditioned on compressed future observations represented by Tree of Captions. The VLWM learns both an action policy and a dynamics model, which respectively facilitates reactive system-1 plan decoding and reflective system-2 planning via cost minimization. The cost evaluates the semantic distance between the hypothetical future states given by VLWM roll-outs and the expected goal state, and is measured by a critic model that we trained in a self-supervised manner. The VLWM achieves state-of-the-art Visual Planning for Assistance (VPA) performance on both benchmark evaluations and our proposed PlannerArena human evaluations, where system-2 improves the Elo score by +27% upon system-1. The VLWM models also outperforms strong VLM baselines on RoboVQA and WorldPrediction benchmark.
♻ ☆ Transit for All: Mapping Equitable Bike2Subway Connection using Region Representation Learning SP
Ensuring equitable public transit access remains challenging, particularly in densely populated cities like New York City (NYC), where low-income and minority communities often face limited transit accessibility. Bike-sharing systems (BSS) can bridge these equity gaps by providing affordable first- and last-mile connections. However, strategically expanding BSS into underserved neighborhoods is difficult due to uncertain bike-sharing demand at newly planned ("cold-start") station locations and limitations in traditional accessibility metrics that may overlook realistic bike usage potential. We introduce Transit for All (TFA), a spatial computing framework designed to guide the equitable expansion of BSS through three components: (1) spatially-informed bike-sharing demand prediction at cold-start stations using region representation learning that integrates multimodal geospatial data, (2) comprehensive transit accessibility assessment leveraging our novel weighted Public Transport Accessibility Level (wPTAL) by combining predicted bike-sharing demand with conventional transit accessibility metrics, and (3) strategic recommendations for new bike station placements that consider potential ridership and equity enhancement. Using NYC as a case study, we identify transit accessibility gaps that disproportionately impact low-income and minority communities in historically underserved neighborhoods. Our results show that strategically placing new stations guided by wPTAL notably reduces disparities in transit access related to economic and demographic factors. From our study, we demonstrate that TFA provides practical guidance for urban planners to promote equitable transit and enhance the quality of life in underserved urban communities.
comment: SIGSPATIAL 25
♻ ☆ Real-Time Analysis of Unstructured Data with Machine Learning on Heterogeneous Architectures
As the particle physics community needs higher and higher precisions in order to test our current model of the subatomic world, larger and larger datasets are necessary. With upgrades scheduled for the detectors of colliding-beam experiments around the world, and specifically at the Large Hadron Collider at CERN, more collisions and more complex interactions are expected. This directly implies an increase in data produced and consequently in the computational resources needed to process them. At CERN, the amount of data produced is gargantuan. This is why the data have to be heavily filtered and selected in real time before being permanently stored. This data can then be used to perform physics analyses, in order to expand our current understanding of the universe and improve the Standard Model of physics. This real-time filtering, known as triggering, involves complex processing happening often at frequencies as high as 40 MHz. This thesis contributes to understanding how machine learning models can be efficiently deployed in such environments, in order to maximize throughput and minimize energy consumption. Inevitably, modern hardware designed for such tasks and contemporary algorithms are needed in order to meet the challenges posed by the stringent, high-frequency data rates. In this work, I present our graph neural network-based pipeline, developed for charged particle track reconstruction at the LHCb experiment at CERN. The pipeline was implemented end-to-end inside LHCb's first-level trigger, entirely on GPUs. Its performance was compared against the classical tracking algorithms currently in production at LHCb. The pipeline was also accelerated on the FPGA architecture, and its performance in terms of power consumption and processing speed was compared against the GPU implementation.
comment: PhD thesis, Chapters 8 and 9 include results from work performed in collaboration with Anthony Correia
♻ ☆ Position: LLMs Can be Good Tutors in English Education EMNLP 2025
While recent efforts have begun integrating large language models (LLMs) into English education, they often rely on traditional approaches to learning tasks without fully embracing educational methodologies, thus lacking adaptability to language learning. To address this gap, we argue that LLMs have the potential to serve as effective tutors in English Education. Specifically, LLMs can play three critical roles: (1) as data enhancers, improving the creation of learning materials or serving as student simulations; (2) as task predictors, serving as learner assessment or optimizing learning pathway; and (3) as agents, enabling personalized and inclusive education. We encourage interdisciplinary research to explore these roles, fostering innovation while addressing challenges and risks, ultimately advancing English Education through the thoughtful integration of LLMs.
comment: Accepted to EMNLP 2025 Main. 20 pages, 4 figures
♻ ☆ Reinforcement Learning for Robust Ageing-Aware Control of Li-ion Battery Systems with Data-Driven Formal Verification
Rechargeable lithium-ion (Li-ion) batteries are a ubiquitous element of modern technology. In the last decades, the production and design of such batteries and their adjacent embedded charging and safety protocols, denoted by Battery Management Systems (BMS), has taken central stage. A fundamental challenge to be addressed is the trade-off between the speed of charging and the ageing behavior, resulting in the loss of capacity in the battery cell. We rely on a high-fidelity physics-based battery model and propose an approach to data-driven charging and safety protocol design. Following a Counterexample-Guided Inductive Synthesis scheme, we combine Reinforcement Learning (RL) with recent developments in data-driven formal methods to obtain a hybrid control strategy: RL is used to synthesise the individual controllers, and a data-driven abstraction guides their partitioning into a switched structure, depending on the initial output measurements of the battery. The resulting discrete selection among RL-based controllers, coupled with the continuous battery dynamics, realises a hybrid system. When a design meets the desired criteria, the abstraction provides probabilistic guarantees on the closed-loop performance of the cell.
♻ ☆ Deep Learning-driven Community Resilience Rating based on Intertwined Socio-Technical Systems Features
Community resilience is a complex and muti-faceted phenomenon that emerges from complex and nonlinear interactions among different socio-technical systems and their resilience properties. However, present studies on community resilience focus primarily on vulnerability assessment and utilize index-based approaches, with limited ability to capture heterogeneous features within community socio-technical systems and their nonlinear interactions in shaping robustness, redundancy, and resourcefulness components of resilience. To address this gap, this paper presents an integrated three-layer deep learning model for community resilience rating (called Resili-Net). Twelve measurable resilience features are specified and computed within community socio-technical systems (i.e., facilities, infrastructures, and society) related to three resilience components of robustness, redundancy, and resourcefulness. Using publicly accessible data from multiple metropolitan statistical areas in the United States, Resili-Net characterizes the resilience levels of spatial areas into five distinct levels. The interpretability of the model outcomes enables feature analysis for specifying the determinants of resilience in areas within each resilience level, allowing for the identification of specific resilience enhancement strategies. Changes in community resilience profiles under urban development patterns are further examined by changing the value of related socio-technical systems features. Accordingly, the outcomes provide novel perspectives for community resilience assessment by harnessing machine intelligence and heterogeneous urban big data.
♻ ☆ RecPS: Privacy Risk Scoring for Recommender Systems RecSys 2025
Recommender systems (RecSys) have become an essential component of many web applications. The core of the system is a recommendation model trained on highly sensitive user-item interaction data. While privacy-enhancing techniques are actively studied in the research community, the real-world model development still depends on minimal privacy protection, e.g., via controlled access. Users of such systems should have the right to choose \emph{not} to share highly sensitive interactions. However, there is no method allowing the user to know which interactions are more sensitive than others. Thus, quantifying the privacy risk of RecSys training data is a critical step to enabling privacy-aware RecSys model development and deployment. We propose a membership-inference attack (MIA)- based privacy scoring method, RecPS, to measure privacy risks at both the interaction and user levels. The RecPS interaction-level score definition is motivated and derived from differential privacy, which is then extended to the user-level scoring method. A critical component is the interaction-level MIA method RecLiRA, which gives high-quality membership estimation. We have conducted extensive experiments on well-known benchmark datasets and RecSys models to show the unique features and benefits of RecPS scoring in risk assessment and RecSys model unlearning.
comment: Accepted by ACM RecSys 2025; to appear
♻ ☆ Membership Inference Attacks on LLM-based Recommender Systems
Large language models (LLMs) based Recommender Systems (RecSys) can flexibly adapt recommendation systems to different domains. It utilizes in-context learning (ICL), i.e., the prompts, to customize the recommendation functions, which include sensitive historical user-specific item interactions, e.g., implicit feedback like clicked items or explicit product reviews. Such private information may be exposed to novel privacy attack. However, no study has been done on this important issue. We design four membership inference attacks (MIAs), aiming to reveal whether victims' historical interactions have been used by system prompts. They are \emph{direct inquiry, hallucination, similarity, and poisoning attacks}, each of which utilizes the unique features of LLMs or RecSys. We have carefully evaluated them on three LLMs that have been used to develop ICL-LLM RecSys and two well-known RecSys benchmark datasets. The results confirm that the MIA threat on LLM RecSys is realistic: direct inquiry and poisoning attacks showing significantly high attack advantages. We have also analyzed the factors affecting these attacks, such as the number of shots in system prompts and the position of the victim in the shots.
♻ ☆ Motion-enhanced Cardiac Anatomy Segmentation via an Insertable Temporal Attention Module
Cardiac anatomy segmentation is useful for clinical assessment of cardiac morphology to inform diagnosis and intervention. Deep learning (DL), especially with motion information, has improved segmentation accuracy. However, existing techniques for motion enhancement are not yet optimal, and they have high computational costs due to increased dimensionality or reduced robustness due to suboptimal approaches that use non-DL motion registration, non-attention models, or single-headed attention. They further have limited adaptability and are inconvenient for incorporation into existing networks where motion awareness is desired. Here, we propose a novel, computationally efficient Temporal Attention Module (TAM) that offers robust motion enhancement, modeled as a small, multi-headed, cross-temporal attention module. TAM's uniqueness is that it is a lightweight, plug-and-play module that can be inserted into a broad range of segmentation networks (CNN-based, Transformer-based, or hybrid) for motion enhancement without requiring substantial changes in the network's backbone. This feature enables high adaptability and ease of integration for enhancing both existing and future networks. Extensive experiments on multiple 2D and 3D cardiac ultrasound and MRI datasets confirm that TAM consistently improves segmentation across a range of networks while maintaining computational efficiency and improving on currently reported performance. The evidence demonstrates that it is a robust, generalizable solution for motion-awareness enhancement that is scalable (such as from 2D to 3D).
comment: Accepted for oral presentation in the 6th International Workshop of Advances in Simplifying Medical Ultrasound (ASMUS). The code is available at https://github.com/kamruleee51/TAM
♻ ☆ Group Expectation Policy Optimization for Heterogeneous Reinforcement Learning
As single-center computing approaches power constraints, decentralized training is becoming essential. Reinforcement Learning (RL) post-training enhances Large Language Models (LLMs) but faces challenges in heterogeneous distributed environments due to its tightly-coupled sampling-learning alternation. We propose HeteroRL, an asynchronous RL architecture that decouples rollout sampling from parameter learning, enabling robust deployment across geographically distributed nodes under network delays. We identify that latency-induced KL divergence causes importance sampling failure due to high variance. To address this, we propose Group Expectation Policy Optimization (GEPO), which reduces importance weight variance through a refined sampling mechanism. Theoretically, GEPO achieves exponential variance reduction. Experiments show it maintains superior stability over methods like GRPO, with less than 3% performance degradation under 1800-second delays, demonstrating strong potential for decentralized RL in heterogeneous networks.
♻ ☆ VSI: Visual Subtitle Integration for Keyframe Selection to enhance Long Video Understanding
Long video understanding presents a significant challenge to multimodal large language models (MLLMs) primarily due to the immense data scale. A critical and widely adopted strategy for making this task computationally tractable is keyframe retrieval, which seeks to identify a sparse set of video frames that are most salient to a given textual query. However, the efficacy of this approach is hindered by weak multimodal alignment between textual queries and visual content and fails to capture the complex temporal semantic information required for precise reasoning. To address this, we propose Visual-Subtitle Integeration(VSI), a multimodal keyframe search method that integrates subtitles, timestamps, and scene boundaries into a unified multimodal search process. The proposed method captures the visual information of video frames as well as the complementary textual information through a dual-stream search mechanism by Video Search Stream as well as Subtitle Match Stream, respectively, and improves the keyframe search accuracy through the interaction of the two search streams. Experimental results show that VSI achieve 40.00% key frame localization accuracy on the text-relevant subset of LongVideoBench and 68.48% accuracy on downstream long Video-QA tasks, surpassing competitive baselines by 20.35% and 15.79%, respectively. Furthermore, on the LongVideoBench, VSI achieved state-of-the-art(SOTA) in medium-to-long video-QA tasks, demonstrating the robustness and generalizability of the proposed multimodal search strategy.
comment: 9 pages,3 figures
♻ ☆ Efficient Virtuoso: A Latent Diffusion Transformer Model for Goal-Conditioned Trajectory Planning
The ability to generate a diverse and plausible distribution of future trajectories is a critical capability for autonomous vehicle planning systems. While recent generative models have shown promise, achieving high fidelity, computational efficiency, and precise control remains a significant challenge. In this paper, we present the Efficient Virtuoso, a conditional latent diffusion model for goal-conditioned trajectory planning. Our approach introduces a novel two-stage normalization pipeline that first scales trajectories to preserve their geometric aspect ratio and then normalizes the resulting PCA latent space to ensure a stable training target. The denoising process is performed efficiently in this low-dimensional latent space by a simple MLP denoiser, which is conditioned on a rich scene context fused by a powerful Transformer-based StateEncoder. We demonstrate that our method achieves state-of-the-art performance on the Waymo Open Motion Dataset, achieving a minimum Average Displacement Error (minADE) of 0.25. Furthermore, through a rigorous ablation study on goal representation, we provide a key insight: while a single endpoint goal can resolve strategic ambiguity, a richer, multi-step sparse route is essential for enabling the precise, high-fidelity tactical execution that mirrors nuanced human driving behavior.
♻ ☆ SoloSpeech: Enhancing Intelligibility and Quality in Target Speech Extraction through a Cascaded Generative Pipeline
Target Speech Extraction (TSE) aims to isolate a target speaker's voice from a mixture of multiple speakers by leveraging speaker-specific cues, typically provided as auxiliary audio (a.k.a. cue audio). Although recent advancements in TSE have primarily employed discriminative models that offer high perceptual quality, these models often introduce unwanted artifacts, reduce naturalness, and are sensitive to discrepancies between training and testing environments. On the other hand, generative models for TSE lag in perceptual quality and intelligibility. To address these challenges, we present SoloSpeech, a novel cascaded generative pipeline that integrates compression, extraction, reconstruction, and correction processes. SoloSpeech features a speaker-embedding-free target extractor that utilizes conditional information from the cue audio's latent space, aligning it with the mixture audio's latent space to prevent mismatches. Evaluated on the widely-used Libri2Mix dataset, SoloSpeech achieves the new state-of-the-art intelligibility and quality in target speech extraction while demonstrating exceptional generalization on out-of-domain data and real-world scenarios.
♻ ☆ Flash STU: Fast Spectral Transform Units
Recent advances in state-space model architectures have shown great promise for efficient sequence modeling, but challenges remain in balancing computational efficiency with model expressiveness. We propose the Flash STU architecture, a hybrid model that interleaves spectral state space model layers with sliding window attention, enabling scalability to billions of parameters for language modeling while maintaining a near-linear time complexity. We evaluate the Flash STU and its variants on diverse sequence prediction tasks, including linear dynamical systems, robotics control, and language modeling. We find that, given a fixed parameter budget, the Flash STU architecture consistently outperforms the Transformer and other leading state-space models such as S4 and Mamba-2.
♻ ☆ Lessons from Studying Two-Hop Latent Reasoning
Large language models can use chain-of-thought (CoT) to externalize reasoning, potentially enabling oversight of capable LLM agents. Prior work has shown that models struggle at two-hop question-answering without CoT. This capability is so basic that if it was a fundamental limitation, it would imply that many complex agentic tasks would similarly require CoT. We investigate LLM latent reasoning capabilities using two-hop question answering as a case study. Previous work on the gap between latent and externalized two-hop reasoning produced mixed evidence with inconclusive results. In this paper, we introduce a controlled setting for investigating two-hop reasoning in LLMs, where a positive result provides definitive evidence for latent reasoning. We fine-tune LLMs (including Llama 3 8B and GPT-4o) on synthetic facts and test two-hop reasoning over these facts. By using synthetic facts, we rule out memorization and reasoning shortcuts as explanations for two-hop performance. We observe a nuanced picture: Models fail to compose two synthetic facts, but can succeed when one fact is synthetic and the other is natural. These results demonstrate that LLMs are undeniably capable of latent two-hop reasoning, although it remains unclear how this ability scales with model size. Finally, we highlight a lesson for researchers studying LLM reasoning: when drawing conclusions about LLM latent reasoning, one must be careful to avoid both spurious successes (that stem from memorization and reasoning shortcuts) and spurious failures (that may stem from artificial experimental setups, divorced from training setups of frontier LLMs).
♻ ☆ Uncertainty-Driven Reliability: Selective Prediction and Trustworthy Deployment in Modern Machine Learning
Machine learning (ML) systems are increasingly deployed in high-stakes domains where reliability is paramount. This thesis investigates how uncertainty estimation can enhance the safety and trustworthiness of ML, focusing on selective prediction -- where models abstain when confidence is low. We first show that a model's training trajectory contains rich uncertainty signals that can be exploited without altering its architecture or loss. By ensembling predictions from intermediate checkpoints, we propose a lightweight, post-hoc abstention method that works across tasks, avoids the cost of deep ensembles, and achieves state-of-the-art selective prediction performance. Crucially, this approach is fully compatible with differential privacy (DP), allowing us to study how privacy noise affects uncertainty quality. We find that while many methods degrade under DP, our trajectory-based approach remains robust, and we introduce a framework for isolating the privacy-uncertainty trade-off. Next, we then develop a finite-sample decomposition of the selective classification gap -- the deviation from the oracle accuracy-coverage curve -- identifying five interpretable error sources and clarifying which interventions can close the gap. This explains why calibration alone cannot fix ranking errors, motivating methods that improve uncertainty ordering. Finally, we show that uncertainty signals can be adversarially manipulated to hide errors or deny service while maintaining high accuracy, and we design defenses combining calibration audits with verifiable inference. Together, these contributions advance reliable ML by improving, evaluating, and safeguarding uncertainty estimation, enabling models that not only make accurate predictions -- but also know when to say "I do not know".
comment: PhD Thesis
♻ ☆ Complementary Learning System Empowers Online Continual Learning of Vehicle Motion Forecasting in Smart Cities
Artificial intelligence underpins most smart city services, yet deep neural network (DNN) that forecasts vehicle motion still struggle with catastrophic forgetting, the loss of earlier knowledge when models are updated. Conventional fixes enlarge the training set or replay past data, but these strategies incur high data collection costs, sample inefficiently and fail to balance long- and short-term experience, leaving them short of human-like continual learning. Here we introduce Dual-LS, a task-free, online continual learning paradigm for DNN-based motion forecasting that is inspired by the complementary learning system of the human brain. Dual-LS pairs two synergistic memory rehearsal replay mechanisms to accelerate experience retrieval while dynamically coordinating long-term and short-term knowledge representations. Tests on naturalistic data spanning three countries, over 772,000 vehicles and cumulative testing mileage of 11,187 km show that Dual-LS mitigates catastrophic forgetting by up to 74.31\% and reduces computational resource demand by up to 94.02\%, markedly boosting predictive stability in vehicle motion forecasting without inflating data requirements. Meanwhile, it endows DNN-based vehicle motion forecasting with computation efficient and human-like continual learning adaptability fit for smart cities.
comment: 19 pages, 6 figures
♻ ☆ BadPromptFL: A Novel Backdoor Threat to Prompt-based Federated Learning in Multimodal Models
Prompt-based tuning has emerged as a lightweight alternative to full fine-tuning in large vision-language models, enabling efficient adaptation via learned contextual prompts. This paradigm has recently been extended to federated learning settings (e.g., PromptFL), where clients collaboratively train prompts under data privacy constraints. However, the security implications of prompt-based aggregation in federated multimodal learning remain largely unexplored, leaving a critical attack surface unaddressed. In this paper, we introduce \textbf{BadPromptFL}, the first backdoor attack targeting prompt-based federated learning in multimodal contrastive models. In BadPromptFL, compromised clients jointly optimize local backdoor triggers and prompt embeddings, injecting poisoned prompts into the global aggregation process. These prompts are then propagated to benign clients, enabling universal backdoor activation at inference without modifying model parameters. Leveraging the contextual learning behavior of CLIP-style architectures, BadPromptFL achieves high attack success rates (e.g., \(>90\%\)) with minimal visibility and limited client participation. Extensive experiments across multiple datasets and aggregation protocols validate the effectiveness, stealth, and generalizability of our attack, raising critical concerns about the robustness of prompt-based federated learning in real-world deployments.
♻ ☆ FinAgentBench: A Benchmark Dataset for Agentic Retrieval in Financial Question Answering
Accurate information retrieval (IR) is critical in the financial domain, where investors must identify relevant information from large collections of documents. Traditional IR methods-whether sparse or dense-often fall short in retrieval accuracy, as it requires not only capturing semantic similarity but also performing fine-grained reasoning over document structure and domain-specific knowledge. Recent advances in large language models (LLMs) have opened up new opportunities for retrieval with multi-step reasoning, where the model ranks passages through iterative reasoning about which information is most relevant to a given query. However, there exists no benchmark to evaluate such capabilities in the financial domain. To address this gap, we introduce FinAgentBench, the first large-scale benchmark for evaluating retrieval with multi-step reasoning in finance -- a setting we term agentic retrieval. The benchmark consists of 3,429 expert-annotated examples on S&P-100 listed firms and assesses whether LLM agents can (1) identify the most relevant document type among candidates, and (2) pinpoint the key passage within the selected document. Our evaluation framework explicitly separates these two reasoning steps to address context limitations. This design enables to provide a quantitative basis for understanding retrieval-centric LLM behavior in finance. We evaluate a suite of state-of-the-art models and further demonstrated how targeted fine-tuning can significantly improve agentic retrieval performance. Our benchmark provides a foundation for studying retrieval-centric LLM behavior in complex, domain-specific tasks for finance.
comment: 6 pages
♻ ☆ Diffusion on language model encodings for protein sequence generation
Protein sequence design has seen significant advances through discrete diffusion and autoregressive approaches, yet the potential of continuous diffusion remains underexplored. Here, we present DiMA, a latent diffusion framework that operates on protein language model representations. Through systematic exploration of architectural choices and diffusion components, we develop a robust methodology that generalizes across multiple protein encoders ranging from 8M to 3B parameters. We demonstrate that our framework achieves consistently high performance across sequence-only (ESM-2, ESMc), dual-decodable (CHEAP), and multimodal (SaProt) representations using the same architecture and training approach. We extensively evaluate existing methods alongside DiMA using multiple metrics across two protein modalities, covering quality, diversity, novelty, and distribution matching of generated proteins. DiMA consistently produces novel, high-quality and diverse protein sequences and achieves strong results compared to baselines such as autoregressive, discrete diffusion and flow matching language models. The model demonstrates versatile functionality, supporting conditional generation tasks including protein family-generation, motif scaffolding and infilling, and fold-specific sequence design. This work provides a universal continuous diffusion framework for protein sequence generation, offering both architectural insights and practical applicability across various protein design scenarios. Code is released at \href{https://github.com/MeshchaninovViacheslav/DiMA}{GitHub}.
♻ ☆ Building Self-Evolving Agents via Experience-Driven Lifelong Learning: A Framework and Benchmark
As AI advances toward general intelligence, the focus is shifting from systems optimized for static tasks to creating open-ended agents that learn continuously. In this paper, we introduce Experience-driven Lifelong Learning (ELL), a framework for building self-evolving agents capable of continuous growth through real-world interaction. The framework is built on four core principles: (1) Experience Exploration: Agents learn through continuous, self-motivated interaction with dynamic environments, navigating interdependent tasks and generating rich experiential trajectories. (2) Long-term Memory: Agents preserve and structure historical knowledge, including personal experiences, domain expertise, and commonsense reasoning, into a persistent memory system. (3) Skill Learning: Agents autonomously improve by abstracting recurring patterns from experience into reusable skills, which are actively refined and validated for application in new tasks. (4) Knowledge Internalization: Agents internalize explicit and discrete experiences into implicit and intuitive capabilities as "second nature". We also introduce StuLife, a benchmark dataset for ELL that simulates a student's holistic college journey, from enrollment to academic and personal development, across three core phases and ten detailed sub-scenarios. StuLife is designed around three key paradigm
♻ ☆ Kolmogorov-Arnold Fourier Networks
Although Kolmogorov-Arnold based interpretable networks (KAN) have strong theoretical expressiveness, they face significant parameter explosion and high-frequency feature capture challenges in high-dimensional tasks. To address this issue, we propose the Kolmogorov-Arnold-Fourier Network (KAF), which effectively integrates trainable Random Fourier Features (RFF) and a novel hybrid GELU-Fourier activation mechanism to balance parameter efficiency and spectral representation capabilities. Our key technical contributions include: (1) merging KAN's dual-matrix structure through matrix association properties to substantially reduce parameters; (2) introducing learnable RFF initialization strategies to eliminate spectral distortion in high-dimensional approximation tasks; (3) implementing an adaptive hybrid activation function that progressively enhances frequency representation during the training process. Comprehensive experiments demonstrate the superiority of our KAF across various domains including vision, NLP, audio processing, and differential equation-solving tasks, effectively combining theoretical interpretability with practical utility and computational efficiency.
comment: Code:https://github.com/kolmogorovArnoldFourierNetwork/KAF
♻ ☆ KABB: Knowledge-Aware Bayesian Bandits for Dynamic Expert Coordination in Multi-Agent Systems ICML 2025
As scaling large language models faces prohibitive costs, multi-agent systems emerge as a promising alternative, though challenged by static knowledge assumptions and coordination inefficiencies. We introduces Knowledge-Aware Bayesian Bandits (KABB), a novel framework that enhances multi-agent system coordination through semantic understanding and dynamic adaptation. The framework features three key innovations: a three-dimensional knowledge distance model for deep semantic understanding, a dual-adaptation mechanism for continuous expert optimization, and a knowledge-aware Thompson Sampling strategy for efficient expert selection. Extensive evaluation demonstrates KABB achieves an optimal cost-performance balance, maintaining high performance while keeping computational demands relatively low in multi-agent coordination.
comment: Accepted by the Main Conference of ICML 2025. Code: https://github.com/HCP-AI-Research-Lab/KABB
Computation and Language 47
☆ ZhiFangDanTai: Fine-tuning Graph-based Retrieval-Augmented Generation Model for Traditional Chinese Medicine Formula
Traditional Chinese Medicine (TCM) formulas play a significant role in treating epidemics and complex diseases. Existing models for TCM utilize traditional algorithms or deep learning techniques to analyze formula relationships, yet lack comprehensive results, such as complete formula compositions and detailed explanations. Although recent efforts have used TCM instruction datasets to fine-tune Large Language Models (LLMs) for explainable formula generation, existing datasets lack sufficient details, such as the roles of the formula's sovereign, minister, assistant, courier; efficacy; contraindications; tongue and pulse diagnosis-limiting the depth of model outputs. To address these challenges, we propose ZhiFangDanTai, a framework combining Graph-based Retrieval-Augmented Generation (GraphRAG) with LLM fine-tuning. ZhiFangDanTai uses GraphRAG to retrieve and synthesize structured TCM knowledge into concise summaries, while also constructing an enhanced instruction dataset to improve LLMs' ability to integrate retrieved information. Furthermore, we provide novel theoretical proofs demonstrating that integrating GraphRAG with fine-tuning techniques can reduce generalization error and hallucination rates in the TCM formula task. Experimental results on both collected and clinical datasets demonstrate that ZhiFangDanTai achieves significant improvements over state-of-the-art models. Our model is open-sourced at https://huggingface.co/tczzx6/ZhiFangDanTai1.0.
☆ LatinX: Aligning a Multilingual TTS Model with Direct Preference Optimization
We present LatinX, a multilingual text-to-speech (TTS) model for cascaded speech-to-speech translation that preserves the source speaker's identity across languages. LatinX is a 12-layer decoder-only Transformer trained in three stages: (i) pre-training for text-to-audio mapping, (ii) supervised fine-tuning for zero-shot voice cloning, and (iii) alignment with Direct Preference Optimization (DPO) using automatically labeled pairs based on Word Error Rate (WER) and speaker-similarity metrics. Trained on English and Romance languages with emphasis on Portuguese, LatinX with DPO consistently reduces WER and improves objective similarity over the fine-tuned baseline. Human evaluations further indicate stronger perceived speaker similarity than a strong baseline (XTTSv2), revealing gaps between objective and subjective measures. We provide cross-lingual analyses and discuss balanced preference signals and lower-latency architectures as future work.
☆ Enhancing Factual Accuracy and Citation Generation in LLMs via Multi-Stage Self-Verification
This research introduces VeriFact-CoT (Verified Factual Chain-of-Thought), a novel method designed to address the pervasive issues of hallucination and the absence of credible citation sources in Large Language Models (LLMs) when generating complex, fact-sensitive content. By incorporating a multi-stage mechanism of 'fact verification-reflection-citation integration,' VeriFact-CoT empowers LLMs to critically self-examine and revise their intermediate reasoning steps and final answers. This process significantly enhances the objective accuracy, trustworthiness, and traceability of the generated outputs, making LLMs more reliable for applications demanding high fidelity such as scientific research, news reporting, and legal consultation.
☆ QCSE: A Pretrained Quantum Context-Sensitive Word Embedding for Natural Language Processing
Quantum Natural Language Processing (QNLP) offers a novel approach to encoding and understanding the complexity of natural languages through the power of quantum computation. This paper presents a pretrained quantum context-sensitive embedding model, called QCSE, that captures context-sensitive word embeddings, leveraging the unique properties of quantum systems to learn contextual relationships in languages. The model introduces quantum-native context learning, enabling the utilization of quantum computers for linguistic tasks. Central to the proposed approach are innovative context matrix computation methods, designed to create unique, representations of words based on their surrounding linguistic context. Five distinct methods are proposed and tested for computing the context matrices, incorporating techniques such as exponential decay, sinusoidal modulation, phase shifts, and hash-based transformations. These methods ensure that the quantum embeddings retain context sensitivity, thereby making them suitable for downstream language tasks where the expressibility and properties of quantum systems are valuable resources. To evaluate the effectiveness of the model and the associated context matrix methods, evaluations are conducted on both a Fulani corpus, a low-resource African language, dataset of small size and an English corpus of slightly larger size. The results demonstrate that QCSE not only captures context sensitivity but also leverages the expressibility of quantum systems for representing rich, context-aware language information. The use of Fulani further highlights the potential of QNLP to mitigate the problem of lack of data for this category of languages. This work underscores the power of quantum computation in natural language processing (NLP) and opens new avenues for applying QNLP to real-world linguistic challenges across various tasks and domains.
☆ Exploring Subjective Tasks in Farsi: A Survey Analysis and Evaluation of Language Models
Given Farsi's speaker base of over 127 million people and the growing availability of digital text, including more than 1.3 million articles on Wikipedia, it is considered a middle-resource language. However, this label quickly crumbles when the situation is examined more closely. We focus on three subjective tasks (Sentiment Analysis, Emotion Analysis, and Toxicity Detection) and find significant challenges in data availability and quality, despite the overall increase in data availability. We review 110 publications on subjective tasks in Farsi and observe a lack of publicly available datasets. Furthermore, existing datasets often lack essential demographic factors, such as age and gender, that are crucial for accurately modeling subjectivity in language. When evaluating prediction models using the few available datasets, the results are highly unstable across both datasets and models. Our findings indicate that the volume of data is insufficient to significantly improve a language's prospects in NLP.
☆ A Survey of the State-of-the-Art in Conversational Question Answering Systems
Conversational Question Answering (ConvQA) systems have emerged as a pivotal area within Natural Language Processing (NLP) by driving advancements that enable machines to engage in dynamic and context-aware conversations. These capabilities are increasingly being applied across various domains, i.e., customer support, education, legal, and healthcare where maintaining a coherent and relevant conversation is essential. Building on recent advancements, this survey provides a comprehensive analysis of the state-of-the-art in ConvQA. This survey begins by examining the core components of ConvQA systems, i.e., history selection, question understanding, and answer prediction, highlighting their interplay in ensuring coherence and relevance in multi-turn conversations. It further investigates the use of advanced machine learning techniques, including but not limited to, reinforcement learning, contrastive learning, and transfer learning to improve ConvQA accuracy and efficiency. The pivotal role of large language models, i.e., RoBERTa, GPT-4, Gemini 2.0 Flash, Mistral 7B, and LLaMA 3, is also explored, thereby showcasing their impact through data scalability and architectural advancements. Additionally, this survey presents a comprehensive analysis of key ConvQA datasets and concludes by outlining open research directions. Overall, this work offers a comprehensive overview of the ConvQA landscape and provides valuable insights to guide future advancements in the field.
comment: 42 pages, 12 figures, 4 tables
☆ Revealing the Numeracy Gap: An Empirical Investigation of Text Embedding Models
Text embedding models are widely used in natural language processing applications. However, their capability is often benchmarked on tasks that do not require understanding nuanced numerical information in text. As a result, it remains unclear whether current embedding models can precisely encode numerical content, such as numbers, into embeddings. This question is critical because embedding models are increasingly applied in domains where numbers matter, such as finance and healthcare. For example, Company X's market share grew by 2\% should be interpreted very differently from Company X's market share grew by 20\%, even though both indicate growth in market share. This study aims to examine whether text embedding models can capture such nuances. Using synthetic data in a financial context, we evaluate 13 widely used text embedding models and find that they generally struggle to capture numerical details accurately. Our further analyses provide deeper insights into embedding numeracy, informing future research to strengthen embedding model-based NLP systems with improved capacity for handling numerical content.
☆ Llama-GENBA-10B: A Trilingual Large Language Model for German, English and Bavarian
We present Llama-GENBA-10B, a trilingual foundation model addressing English-centric bias in large language models. Built on Llama 3.1-8B and scaled to 10B parameters, Llama-GENBA-10B is continuously pretrained on 164B tokens (82B English, 82B German, and 80M Bavarian), balancing resources while preventing English dominance. Targeted at the German NLP community, the model also promotes Bavarian as a low-resource language. Development tackled four challenges: (1) curating a multilingual corpus despite Bavarian scarcity, (2) creating a unified tokenizer for English, German, and Bavarian, (3) optimizing architecture and language-ratio hyperparameters for cross-lingual transfer, and (4) establishing the first standardized trilingual evaluation suite by translating German benchmarks into Bavarian. Evaluations show that Llama-GENBA-10B achieves strong cross-lingual performance, with the fine-tuned variant surpassing Apertus-8B-2509 and gemma-2-9b in Bavarian and establishing itself as the best model in its class for this language, while also outperforming EuroLLM in English and matching its results in German. Training on the Cerebras CS-2 demonstrated efficient large-scale multilingual pretraining with documented energy use, offering a blueprint for inclusive foundation models that integrate low-resource languages.
comment: Michael Hoffmann and Jophin John contributed equally to this work
☆ Cross-Question Method Reuse in Large Language Models: From Word-Level Prediction to Rational Logical-Layer Reasoning
Large language models (LLMs) have been widely applied to assist in finding solutions for diverse questions. Prior work has proposed representing a method as a pair of a question and its corresponding solution, enabling method reuse. However, existing approaches typically require the questions to be highly similar. In this paper, we extend the scope of method reuse to address questions with low similarity or with hidden similarities that are not explicitly observable. For questions that are similar in a general-specific sense (i.e., broader or narrower in scope), we propose to first separate the question and solution, rather than directly feeding the pair to the LLM. The LLM is then guided to adapt the solution to new but related questions, allowing it to focus on solution transfer rather than question recognition. Furthermore, we extend this approach to cases where questions only share partial features or hidden characteristics. This enables cross-question method reuse beyond conventional similarity constraints. Experimental verification shows that our scope-extension approach increases the probability of filtering out reusable solutions, thereby improving the effectiveness of cross-question method reuse.
☆ LM-Searcher: Cross-domain Neural Architecture Search with LLMs via Unified Numerical Encoding EMNLP2025
Recent progress in Large Language Models (LLMs) has opened new avenues for solving complex optimization problems, including Neural Architecture Search (NAS). However, existing LLM-driven NAS approaches rely heavily on prompt engineering and domain-specific tuning, limiting their practicality and scalability across diverse tasks. In this work, we propose LM-Searcher, a novel framework that leverages LLMs for cross-domain neural architecture optimization without the need for extensive domain-specific adaptation. Central to our approach is NCode, a universal numerical string representation for neural architectures, which enables cross-domain architecture encoding and search. We also reformulate the NAS problem as a ranking task, training LLMs to select high-performing architectures from candidate pools using instruction-tuning samples derived from a novel pruning-based subspace sampling strategy. Our curated dataset, encompassing a wide range of architecture-performance pairs, encourages robust and transferable learning. Comprehensive experiments demonstrate that LM-Searcher achieves competitive performance in both in-domain (e.g., CNNs for image classification) and out-of-domain (e.g., LoRA configurations for segmentation and generation) tasks, establishing a new paradigm for flexible and generalizable LLM-based architecture search. The datasets and models will be released at https://github.com/Ashone3/LM-Searcher.
comment: EMNLP2025
☆ Few-Shot Query Intent Detection via Relation-Aware Prompt Learning
Intent detection is a crucial component of modern conversational systems, since accurately identifying user intent at the beginning of a conversation is essential for generating effective responses. Recent efforts have focused on studying this problem under a challenging few-shot scenario. These approaches primarily leverage large-scale unlabeled dialogue text corpora to pretrain language models through various pretext tasks, followed by fine-tuning for intent detection with very limited annotations. Despite the improvements achieved, existing methods have predominantly focused on textual data, neglecting to effectively capture the crucial structural information inherent in conversational systems, such as the query-query relation and query-answer relation. To address this gap, we propose SAID, a novel framework that integrates both textual and relational structure information in a unified manner for model pretraining for the first time. Building on this framework, we further propose a novel mechanism, the query-adaptive attention network (QueryAdapt), which operates at the relation token level by generating intent-specific relation tokens from well-learned query-query and query-answer relations explicitly, enabling more fine-grained knowledge transfer. Extensive experimental results on two real-world datasets demonstrate that SAID significantly outperforms state-of-the-art methods.
☆ On the Contribution of Lexical Features to Speech Emotion Recognition
Although paralinguistic cues are often considered the primary drivers of speech emotion recognition (SER), we investigate the role of lexical content extracted from speech and show that it can achieve competitive and in some cases higher performance compared to acoustic models. On the MELD dataset, our lexical-based approach obtains a weighted F1-score (WF1) of 51.5%, compared to 49.3% for an acoustic-only pipeline with a larger parameter count. Furthermore, we analyze different self-supervised (SSL) speech and text representations, conduct a layer-wise study of transformer-based encoders, and evaluate the effect of audio denoising.
comment: Accepted to 13th Conference on Speech Technology and Human-Computer Dialogue
☆ From Joy to Fear: A Benchmark of Emotion Estimation in Pop Song Lyrics
The emotional content of song lyrics plays a pivotal role in shaping listener experiences and influencing musical preferences. This paper investigates the task of multi-label emotional attribution of song lyrics by predicting six emotional intensity scores corresponding to six fundamental emotions. A manually labeled dataset is constructed using a mean opinion score (MOS) approach, which aggregates annotations from multiple human raters to ensure reliable ground-truth labels. Leveraging this dataset, we conduct a comprehensive evaluation of several publicly available large language models (LLMs) under zero-shot scenarios. Additionally, we fine-tune a BERT-based model specifically for predicting multi-label emotion scores. Experimental results reveal the relative strengths and limitations of zero-shot and fine-tuned models in capturing the nuanced emotional content of lyrics. Our findings highlight the potential of LLMs for emotion recognition in creative texts, providing insights into model selection strategies for emotion-based music information retrieval applications. The labeled dataset is available at https://github.com/LLM-HITCS25S/LyricsEmotionAttribution.
comment: 5 pages, 2 figures
☆ New Insights into Optimal Alignment of Acoustic and Linguistic Representations for Knowledge Transfer in ASR
Aligning acoustic and linguistic representations is a central challenge to bridge the pre-trained models in knowledge transfer for automatic speech recognition (ASR). This alignment is inherently structured and asymmetric: while multiple consecutive acoustic frames typically correspond to a single linguistic token (many-to-one), certain acoustic transition regions may relate to multiple adjacent tokens (one-to-many). Moreover, acoustic sequences often include frames with no linguistic counterpart, such as background noise or silence may lead to imbalanced matching conditions. In this work, we take a new insight to regard alignment and matching as a detection problem, where the goal is to identify meaningful correspondences with high precision and recall ensuring full coverage of linguistic tokens while flexibly handling redundant or noisy acoustic frames in transferring linguistic knowledge for ASR. Based on this new insight, we propose an unbalanced optimal transport-based alignment model that explicitly handles distributional mismatch and structural asymmetries with soft and partial matching between acoustic and linguistic modalities. Our method ensures that every linguistic token is grounded in at least one acoustic observation, while allowing for flexible, probabilistic mappings from acoustic to linguistic units. We evaluate our proposed model with experiments on an CTC-based ASR system with a pre-trained language model for knowledge transfer. Experimental results demonstrate the effectiveness of our approach in flexibly controlling degree of matching and hence to improve ASR performance.
☆ Cross-Service Threat Intelligence in LLM Services using Privacy-Preserving Fingerprints
The widespread deployment of LLMs across enterprise services has created a critical security blind spot. Organizations operate multiple LLM services handling billions of queries daily, yet regulatory compliance boundaries prevent these services from sharing threat intelligence about prompt injection attacks, the top security risk for LLMs. When an attack is detected in one service, the same threat may persist undetected in others for months, as privacy regulations prohibit sharing user prompts across compliance boundaries. We present BinaryShield, the first privacy-preserving threat intelligence system that enables secure sharing of attack fingerprints across compliance boundaries. BinaryShield transforms suspicious prompts through a unique pipeline combining PII redaction, semantic embedding, binary quantization, and randomized response mechanism to potentially generate non-invertible fingerprints that preserve attack patterns while providing privacy. Our evaluations demonstrate that BinaryShield achieves an F1-score of 0.94, significantly outperforming SimHash (0.77), the privacy-preserving baseline, while achieving 64x storage reduction and 38x faster similarity search compared to dense embeddings.
☆ Beyond Keywords: Driving Generative Search Engine Optimization with Content-Centric Agents
The paradigm shift from traditional ranked-based search to Generative Search Engines has rendered conventional SEO metrics obsolete, creating an urgent need to understand, measure, and optimize for content influence on synthesized answers. This paper introduces a comprehensive, end-to-end framework for Generative Search Engine Optimization (GSEO) to address this challenge. We make two primary contributions. First, we construct CC-GSEO-Bench, a large-scale, content-centric benchmark, and propose a multi-dimensional evaluation framework that systematically quantifies influence, moving beyond surface-level attribution to assess substantive semantic impact. Second, we design a novel multi-agent system that operationalizes this framework, automating the strategic refinement of content through a collaborative analyze-revise-evaluate workflow. Our empirical analysis using this framework reveals novel insights into the dynamics of content influence, offering actionable strategies for creators and establishing a principled foundation for future GSEO research.
comment: Technical Report
☆ Icon$^{2}$: Aligning Large Language Models Using Self-Synthetic Preference Data via Inherent Regulation EMNLP 2025
Large Language Models (LLMs) require high quality preference datasets to align with human preferences. However, conventional methods for constructing such datasets face significant challenges: reliance on pre-collected instructions often leads to distribution mismatches with target models, while the need for sampling multiple stochastic responses introduces substantial computational overhead. In this work, we explore a paradigm shift by leveraging inherent regulation of LLMs' representation space for efficient and tailored preference dataset construction, named Icon$^{2}$. Specifically, it first extracts layer-wise direction vectors to encode sophisticated human preferences and then uses these vectors to filter self-synthesized instructions based on their inherent consistency. During decoding, bidirectional inherent control is applied to steer token representations, enabling the precise generation of response pairs with clear alignment distinctions. Experimental results demonstrate significant improvements in both alignment and efficiency. Llama3-8B and Qwen2-7B achieve an average win rate improvement of 13.89% on AlpacaEval 2.0 and 13.45% on Arena-Hard, while reducing computational costs by up to 48.1%.
comment: EMNLP 2025 Main
☆ Mitigating Spurious Correlations Between Question and Answer via Chain-of-Thought Correctness Perception Distillation
Large language models (LLMs) excel at reasoning tasks but are expensive to deploy. Thus small language models (SLMs) are fine-tuned on CoT data generated by LLMs to copy LLMs' abilities. However, these CoT data may include noisy rationales that either fail to substantiate the answers or contribute no additional information to support answer prediction, which leads SLMs to capture spurious correlations between questions and answers and compromise the quality of reasoning. In this work, we propose Chain-of-Thought Correctness Perception Distillation (CoPeD), which aims to improve the reasoning quality of the student model from the perspectives of task setting and data utilization. Firstly, we introduce a correctness-aware task setting that encourages the student model to predict answers based on correct rationales and revise them when they are incorrect. This setting improves the faithfulness of reasoning and allows the model to learn from its mistakes. Then, we propose a Correctness-Aware Weighted loss, which dynamically adjusts the contribution of each training instance based on the combined loss of the rationale and the answer. This strategy encourages the model to focus more on samples where the rationale offers stronger support for the correct answer. Experiments have shown that CoPeD is effective on both in-distribution (IND) and out-of-distribution (OOD) benchmark reasoning datasets.
comment: PrePrint
☆ Ad hoc conventions generalize to new referents
How do people talk about things they've never talked about before? One view suggests that a new shared naming system establishes an arbitrary link to a specific target, like proper names that cannot extend beyond their bearers. An alternative view proposes that forming a shared way of describing objects involves broader conceptual alignment, reshaping each individual's semantic space in ways that should generalize to new referents. We test these competing accounts in a dyadic communication study (N=302) leveraging the recently-released KiloGram dataset containing over 1,000 abstract tangram images. After pairs of participants coordinated on referential conventions for one set of images through repeated communication, we measured the extent to which their descriptions aligned for undiscussed images. We found strong evidence for generalization: partners showed increased alignment relative to their pre-test labels. Generalization also decayed nonlinearly with visual similarity (consistent with Shepard's law) and was robust across levels of the images' nameability. These findings suggest that ad hoc conventions are not arbitrary labels but reflect genuine conceptual coordination, with implications for theories of reference and the design of more adaptive language agents.
☆ Using Contrastive Learning to Improve Two-Way Reasoning in Large Language Models: The Obfuscation Task as a Case Study
This research addresses a fundamental question in AI: whether large language models truly understand concepts or simply recognize patterns. The authors propose bidirectional reasoning,the ability to apply transformations in both directions without being explicitly trained on the reverse direction, as a test for genuine understanding. They argue that true comprehension should naturally allow reversibility. For example, a model that can change a variable name like userIndex to i should also be able to infer that i represents a user index without reverse training. The researchers tested current language models and discovered what they term cognitive specialization: when models are fine-tuned on forward tasks, their performance on those tasks improves, but their ability to reason bidirectionally becomes significantly worse. To address this issue, they developed Contrastive Fine-Tuning (CFT), which trains models using three types of examples: positive examples that maintain semantic meaning, negative examples with different semantics, and forward-direction obfuscation examples. This approach aims to develop deeper understanding rather than surface-level pattern recognition and allows reverse capabilities to develop naturally without explicit reverse training. Their experiments demonstrated that CFT successfully achieved bidirectional reasoning, enabling strong reverse performance while maintaining forward task capabilities. The authors conclude that bidirectional reasoning serves both as a theoretical framework for assessing genuine understanding and as a practical training approach for developing more capable AI systems.
☆ ArGen: Auto-Regulation of Generative AI via GRPO and Policy-as-Code
This paper introduces ArGen (Auto-Regulation of Generative AI systems), a framework for aligning Large Language Models (LLMs) with complex sets of configurable, machine-readable rules spanning ethical principles, operational safety protocols, and regulatory compliance standards. Moving beyond just preference-based alignment, ArGen is designed to ensure LLMs adhere to these multifaceted policies through a novel synthesis of principle-based automated reward scoring, Group Relative Policy Optimisation (GRPO), and an Open Policy Agent (OPA) inspired governance layer. This approach provides the technical foundation for achieving and demonstrating compliance with diverse and nuanced governance requirements. To showcase the framework's capability to operationalize a deeply nuanced and culturally-specific value system, we present an in-depth case study: the development of a medical AI assistant guided by principles from Dharmic ethics (such as Ahimsa and Dharma), as derived from texts like the Bhagavad Gita. This challenging application demonstrates ArGen's adaptability, achieving a 70.9% improvement in domain-scope adherence over the baseline. Through our open-source repository, we show that ArGen's methodology offers a path to 'Governable Al' systems that are technically proficient, ethically robust, and verifiably compliant for safe deployment in diverse global contexts.
comment: 53 pages, 7 figures, 8 tables. Open-source implementation available at: https://github.com/Principled-Evolution/argen-demo. Work explores the integration of policy-as-code for AI alignment, with a case study in culturally-nuanced, ethical AI using Dharmic principles
☆ MoLoRAG: Bootstrapping Document Understanding via Multi-modal Logic-aware Retrieval EMNLP
Document Understanding is a foundational AI capability with broad applications, and Document Question Answering (DocQA) is a key evaluation task. Traditional methods convert the document into text for processing by Large Language Models (LLMs), but this process strips away critical multi-modal information like figures. While Large Vision-Language Models (LVLMs) address this limitation, their constrained input size makes multi-page document comprehension infeasible. Retrieval-augmented generation (RAG) methods mitigate this by selecting relevant pages, but they rely solely on semantic relevance, ignoring logical connections between pages and the query, which is essential for reasoning. To this end, we propose MoLoRAG, a logic-aware retrieval framework for multi-modal, multi-page document understanding. By constructing a page graph that captures contextual relationships between pages, a lightweight VLM performs graph traversal to retrieve relevant pages, including those with logical connections often overlooked. This approach combines semantic and logical relevance to deliver more accurate retrieval. After retrieval, the top-$K$ pages are fed into arbitrary LVLMs for question answering. To enhance flexibility, MoLoRAG offers two variants: a training-free solution for easy deployment and a fine-tuned version to improve logical relevance checking. Experiments on four DocQA datasets demonstrate average improvements of 9.68% in accuracy over LVLM direct inference and 7.44% in retrieval precision over baselines. Codes and datasets are released at https://github.com/WxxShirley/MoLoRAG.
comment: EMNLP Main 2025
♻ ☆ Premise-Augmented Reasoning Chains Improve Error Identification in Math reasoning with LLMs ICML 2025
Chain-of-Thought (CoT) prompting enhances mathematical reasoning in large language models (LLMs) by enabling detailed step-by-step solutions. However, due to the verbosity of LLMs, the resulting reasoning chains can be long, making it harder to verify the reasoning steps and trace issues resulting from dependencies between the steps that may be farther away in the sequence of steps. Importantly, mathematical reasoning allows each step to be derived from a small set of premises, which are a subset of the preceding steps in the reasoning chain. In this paper, we present a framework that identifies the premises for each step, to improve the evaluation of reasoning. We restructure conventional linear reasoning chains into Premise Augmented Reasoning Chains (PARC) by introducing premise links, resulting in a directed acyclic graph where the nodes are the steps and the edges are the premise links. Through experiments with a PARC-based dataset that we built, namely PERL (Premises and ERrors identification in LLMs), we demonstrate that LLMs can reliably identify premises within complex reasoning chains. In particular, even open-source LLMs achieve 90% recall in premise identification. We also show that PARC helps to identify errors in reasoning chains more reliably. The accuracy of error identification improves by 6% to 16% absolute when step-by-step verification is carried out in PARC under the premises. Our findings highlight the utility of premise-centric representations in addressing complex problem-solving tasks and open new avenues for improving the reliability of LLM-based reasoning evaluations.
comment: Accepted at ICML 2025
♻ ☆ Causal Representation Learning with Generative Artificial Intelligence: Application to Texts as Treatments
In this paper, we demonstrate how to enhance the validity of causal inference with unstructured high-dimensional treatments like texts, by leveraging the power of generative Artificial Intelligence (GenAI). Specifically, we propose to use a deep generative model such as large language models (LLMs) to efficiently generate treatments and use their internal representation for subsequent causal effect estimation. We show that the knowledge of this true internal representation helps disentangle the treatment features of interest, such as specific sentiments and certain topics, from other possibly unknown confounding features. Unlike existing methods, the proposed GenAI-Powered Inference (GPI) methodology eliminates the need to learn causal representation from the data, and hence produces more accurate and efficient estimates. We formally establish the conditions required for the nonparametric identification of the average treatment effect, propose an estimation strategy that avoids the violation of the overlap assumption, and derive the asymptotic properties of the proposed estimator through the application of double machine learning. Finally, using an instrumental variables approach, we extend the proposed GPI methodology to the settings in which the treatment feature is based on human perception. The GPI is also applicable to text reuse where an LLM is used to regenerate existing texts. We conduct simulation and empirical studies, using the generated text data from an open-source LLM, Llama~3, to illustrate the advantages of our estimator over state-of-the-art causal representation learning algorithms.
♻ ☆ Synth-SBDH: A Synthetic Dataset of Social and Behavioral Determinants of Health for Clinical Text EMNLP 2025
Social and behavioral determinants of health (SBDH) play a crucial role in health outcomes and are frequently documented in clinical text. Automatically extracting SBDH information from clinical text relies on publicly available good-quality datasets. However, existing SBDH datasets exhibit substantial limitations in their availability and coverage. In this study, we introduce Synth-SBDH, a novel synthetic dataset with detailed SBDH annotations, encompassing status, temporal information, and rationale across 15 SBDH categories. We showcase the utility of Synth-SBDH on three tasks using real-world clinical datasets from two distinct hospital settings, highlighting its versatility, generalizability, and distillation capabilities. Models trained on Synth-SBDH consistently outperform counterparts with no Synth-SBDH training, achieving up to 63.75% macro-F improvements. Additionally, Synth-SBDH proves effective for rare SBDH categories and under-resource constraints while being substantially cheaper than expert-annotated real-world data. Human evaluation reveals a 71.06% Human-LLM alignment and uncovers areas for future refinements.
comment: Accepted at EMNLP 2025 (main) Github: https://github.com/avipartho/Synth-SBDH
♻ ☆ Position: LLMs Can be Good Tutors in English Education EMNLP 2025
While recent efforts have begun integrating large language models (LLMs) into English education, they often rely on traditional approaches to learning tasks without fully embracing educational methodologies, thus lacking adaptability to language learning. To address this gap, we argue that LLMs have the potential to serve as effective tutors in English Education. Specifically, LLMs can play three critical roles: (1) as data enhancers, improving the creation of learning materials or serving as student simulations; (2) as task predictors, serving as learner assessment or optimizing learning pathway; and (3) as agents, enabling personalized and inclusive education. We encourage interdisciplinary research to explore these roles, fostering innovation while addressing challenges and risks, ultimately advancing English Education through the thoughtful integration of LLMs.
comment: Accepted to EMNLP 2025 Main. 20 pages, 4 figures
♻ ☆ VisBias: Measuring Explicit and Implicit Social Biases in Vision Language Models EMNLP 2025
This research investigates both explicit and implicit social biases exhibited by Vision-Language Models (VLMs). The key distinction between these bias types lies in the level of awareness: explicit bias refers to conscious, intentional biases, while implicit bias operates subconsciously. To analyze explicit bias, we directly pose questions to VLMs related to gender and racial differences: (1) Multiple-choice questions based on a given image (e.g., "What is the education level of the person in the image?") (2) Yes-No comparisons using two images (e.g., "Is the person in the first image more educated than the person in the second image?") For implicit bias, we design tasks where VLMs assist users but reveal biases through their responses: (1) Image description tasks: Models are asked to describe individuals in images, and we analyze disparities in textual cues across demographic groups. (2) Form completion tasks: Models draft a personal information collection form with 20 attributes, and we examine correlations among selected attributes for potential biases. We evaluate Gemini-1.5, GPT-4V, GPT-4o, LLaMA-3.2-Vision and LLaVA-v1.6. Our code and data are publicly available at https://github.com/uscnlp-lime/VisBias.
comment: Accepted to EMNLP 2025 (Main)
♻ ☆ Membership Inference Attacks on LLM-based Recommender Systems
Large language models (LLMs) based Recommender Systems (RecSys) can flexibly adapt recommendation systems to different domains. It utilizes in-context learning (ICL), i.e., the prompts, to customize the recommendation functions, which include sensitive historical user-specific item interactions, e.g., implicit feedback like clicked items or explicit product reviews. Such private information may be exposed to novel privacy attack. However, no study has been done on this important issue. We design four membership inference attacks (MIAs), aiming to reveal whether victims' historical interactions have been used by system prompts. They are \emph{direct inquiry, hallucination, similarity, and poisoning attacks}, each of which utilizes the unique features of LLMs or RecSys. We have carefully evaluated them on three LLMs that have been used to develop ICL-LLM RecSys and two well-known RecSys benchmark datasets. The results confirm that the MIA threat on LLM RecSys is realistic: direct inquiry and poisoning attacks showing significantly high attack advantages. We have also analyzed the factors affecting these attacks, such as the number of shots in system prompts and the position of the victim in the shots.
♻ ☆ Self-Critique and Refinement for Faithful Natural Language Explanations EMNLP 2025
With the rapid development of Large Language Models (LLMs), Natural Language Explanations (NLEs) have become increasingly important for understanding model predictions. However, these explanations often fail to faithfully represent the model's actual reasoning process. While existing work has demonstrated that LLMs can self-critique and refine their initial outputs for various tasks, this capability remains unexplored for improving explanation faithfulness. To address this gap, we introduce Self-critique and Refinement for Natural Language Explanations (SR-NLE), a framework that enables models to improve the faithfulness of their own explanations -- specifically, post-hoc NLEs -- through an iterative critique and refinement process without external supervision. Our framework leverages different feedback mechanisms to guide the refinement process, including natural language self-feedback and, notably, a novel feedback approach based on feature attribution that highlights important input words. Our experiments across three datasets and four state-of-the-art LLMs demonstrate that SR-NLE significantly reduces unfaithfulness rates, with our best method achieving an average unfaithfulness rate of 36.02%, compared to 54.81% for baseline -- an absolute reduction of 18.79%. These findings reveal that the investigated LLMs can indeed refine their explanations to better reflect their actual reasoning process, requiring only appropriate guidance through feedback without additional training or fine-tuning.
comment: EMNLP 2025 Main
♻ ☆ AI Sees Your Location, But With A Bias Toward The Wealthy World EMNLP 2025
Visual-Language Models (VLMs) have shown remarkable performance across various tasks, particularly in recognizing geographic information from images. However, VLMs still show regional biases in this task. To systematically evaluate these issues, we introduce a benchmark consisting of 1,200 images paired with detailed geographic metadata. Evaluating four VLMs, we find that while these models demonstrate the ability to recognize geographic information from images, achieving up to 53.8% accuracy in city prediction, they exhibit significant biases. Specifically, performance is substantially higher for economically developed and densely populated regions compared to less developed (-12.5%) and sparsely populated (-17.0%) areas. Moreover, regional biases of frequently over-predicting certain locations remain. For instance, they consistently predict Sydney for images taken in Australia, shown by the low entropy scores for these countries. The strong performance of VLMs also raises privacy concerns, particularly for users who share images online without the intent of being identified. Our code and dataset are publicly available at https://github.com/uscnlp-lime/FairLocator.
comment: Accepted to EMNLP 2025 (Main)
♻ ☆ Efficient Large Language Models with Zero-Shot Adjustable Acceleration
Using Large Language Models (LLMs) in real-world applications presents significant challenges, particularly in balancing computational efficiency with model performance. Optimizing acceleration after fine-tuning and during inference is critical for building efficient architectures. This paper introduces Zero-Shot Adjustable Acceleration, a novel training and inference method that dynamically adjusts hardware utilization during inference without requiring additional fine-tuning. The proposed approach is applied to recent LLMs and evaluated across multiple classification and text generation tasks. Experimental results demonstrate that the method supports a wide range of zero-shot acceleration and achieves up to 11x speedup compared to the baseline.
♻ ☆ Step-level Verifier-guided Hybrid Test-Time Scaling for Large Language Models EMNLP 2025
Test-Time Scaling (TTS) is a promising approach to progressively elicit the model's intelligence during inference. Recently, training-based TTS methods, such as continued reinforcement learning (RL), have further surged in popularity, while training-free TTS methods are gradually fading from prominence. However, the additional computation overhead of training amplifies the burden on test-time scaling. In this paper, we focus on training-free TTS methods for reasoning. We first design Conditional Step-level Self-refinement, a fine-grained sequential scaling method guided by process verification. On top of its effectiveness, we further combine it with other classical parallel scaling methods at the step level, to introduce a novel inference paradigm called Hybrid Test-Time Scaling. Extensive experiments on five instruction-tuned LLMs across different scales (3B-14B) and families demonstrate that hybrid strategy incorporating various training-free TTS methods at a fine granularity has considerable potential for expanding the reasoning performance boundaries of LLMs.
comment: Accepted by EMNLP 2025. Code: https://github.com/Lucky-259/Hybrid_TTS
♻ ☆ Lessons from Studying Two-Hop Latent Reasoning
Large language models can use chain-of-thought (CoT) to externalize reasoning, potentially enabling oversight of capable LLM agents. Prior work has shown that models struggle at two-hop question-answering without CoT. This capability is so basic that if it was a fundamental limitation, it would imply that many complex agentic tasks would similarly require CoT. We investigate LLM latent reasoning capabilities using two-hop question answering as a case study. Previous work on the gap between latent and externalized two-hop reasoning produced mixed evidence with inconclusive results. In this paper, we introduce a controlled setting for investigating two-hop reasoning in LLMs, where a positive result provides definitive evidence for latent reasoning. We fine-tune LLMs (including Llama 3 8B and GPT-4o) on synthetic facts and test two-hop reasoning over these facts. By using synthetic facts, we rule out memorization and reasoning shortcuts as explanations for two-hop performance. We observe a nuanced picture: Models fail to compose two synthetic facts, but can succeed when one fact is synthetic and the other is natural. These results demonstrate that LLMs are undeniably capable of latent two-hop reasoning, although it remains unclear how this ability scales with model size. Finally, we highlight a lesson for researchers studying LLM reasoning: when drawing conclusions about LLM latent reasoning, one must be careful to avoid both spurious successes (that stem from memorization and reasoning shortcuts) and spurious failures (that may stem from artificial experimental setups, divorced from training setups of frontier LLMs).
♻ ☆ Extracting and Combining Abilities For Building Multi-lingual Ability-enhanced Large Language Models EMNLP 2025
Multi-lingual ability transfer has become increasingly important for the broad application of large language models (LLMs). Existing work highly relies on training with the multi-lingual ability-related data, which may not be available for low-resource languages. To solve it, we propose a Multi-lingual Abilities Extraction and Combination approach, named as MAEC. Our key idea is to decompose and extract language-agnostic ability-related weights from LLMs, and combine them across different languages by simple addition and subtraction operations without training. Specifically, our MAEC consists of the extraction and combination stages. In the extraction stage, we firstly locate key neurons that are highly related to specific abilities, and then employ them to extract the transferable ability-related weights. In the combination stage, we further select the ability-related tensors that mitigate the linguistic effects, and design a combining strategy based on them and the language-specific weights, to build the multi-lingual ability-enhanced LLM. To assess the effectiveness of our approach, we conduct extensive experiments on LLaMA-3 8B on mathematical and scientific tasks in both high-resource and low-resource lingual scenarios. Experiment results have shown that MAEC can effectively and efficiently extract and combine the advanced abilities, achieving comparable performance with PaLM. Resources are available at https://github.com/RUCAIBox/MAET.
comment: EMNLP 2025 Main Conference
♻ ☆ REVS: Unlearning Sensitive Information in Language Models via Rank Editing in the Vocabulary Space ACL 2025
Language models (LMs) risk inadvertently memorizing and divulging sensitive or personally identifiable information (PII) seen in training data, causing privacy concerns. Current approaches to address this issue involve costly dataset scrubbing, or model filtering through unlearning and model editing, which can be bypassed through extraction attacks. We propose REVS, a novel non-gradient-based method for unlearning sensitive information from LMs. REVS identifies and modifies a small subset of neurons relevant for constituent tokens that form sensitive information. To adequately evaluate our method on truly sensitive information, we curate three datasets: email and URL datasets naturally memorized by the models, and a synthetic social security number dataset that we tune the models to memorize. Compared to other methods, REVS demonstrates superior performance in unlearning sensitive information and robustness to extraction attacks, while retaining underlying model integrity.
comment: ACL 2025 Findings, 24 pages, 4 figures
♻ ☆ GASE: Generatively Augmented Sentence Encoding EMNLP
We propose a training-free approach to improve sentence embeddings leveraging test-time compute by applying generative text models for data augmentation at inference time. Unlike conventional data augmentation that utilises synthetic training data, our approach does not require access to model parameters or the computational resources typically required for fine-tuning state-of-the-art models. Generatively Augmented Sentence Encoding variates the input text by paraphrasing, summarising, or extracting keywords, followed by pooling the original and synthetic embeddings. Experimental results on the Massive Text Embedding Benchmark for Semantic Textual Similarity (STS) demonstrate performance improvements across a range of embedding models using different generative models for augmentation. We find that generative augmentation leads to larger performance improvements for embedding models with lower baseline performance. These findings suggest that integrating generative augmentation at inference time adds semantic diversity and can enhance the robustness and generalisability of sentence embeddings for embedding models. Our results show that performance gains depend on the embedding model and the dataset.
comment: EMNLP Findings 2025
♻ ☆ FinAgentBench: A Benchmark Dataset for Agentic Retrieval in Financial Question Answering
Accurate information retrieval (IR) is critical in the financial domain, where investors must identify relevant information from large collections of documents. Traditional IR methods-whether sparse or dense-often fall short in retrieval accuracy, as it requires not only capturing semantic similarity but also performing fine-grained reasoning over document structure and domain-specific knowledge. Recent advances in large language models (LLMs) have opened up new opportunities for retrieval with multi-step reasoning, where the model ranks passages through iterative reasoning about which information is most relevant to a given query. However, there exists no benchmark to evaluate such capabilities in the financial domain. To address this gap, we introduce FinAgentBench, the first large-scale benchmark for evaluating retrieval with multi-step reasoning in finance -- a setting we term agentic retrieval. The benchmark consists of 3,429 expert-annotated examples on S&P-100 listed firms and assesses whether LLM agents can (1) identify the most relevant document type among candidates, and (2) pinpoint the key passage within the selected document. Our evaluation framework explicitly separates these two reasoning steps to address context limitations. This design enables to provide a quantitative basis for understanding retrieval-centric LLM behavior in finance. We evaluate a suite of state-of-the-art models and further demonstrated how targeted fine-tuning can significantly improve agentic retrieval performance. Our benchmark provides a foundation for studying retrieval-centric LLM behavior in complex, domain-specific tasks for finance.
comment: 6 pages
♻ ☆ Fast Quiet-STaR: Thinking Without Thought Tokens
Large Language Models (LLMs) have achieved impressive performance across a range of natural language processing tasks. However, recent advances demonstrate that further gains particularly in complex reasoning tasks require more than merely scaling up model sizes or training data. One promising direction is to enable models to think during the reasoning process. Recently, Quiet STaR significantly improves reasoning by generating token-level thought traces, but incurs substantial inference overhead. In this work, we propose Fast Quiet STaR, a more efficient reasoning framework that preserves the benefits of token-level reasoning while reducing computational cost. Our method introduces a curriculum learning based training strategy that gradually reduces the number of thought tokens, enabling the model to internalize more abstract and concise reasoning processes. We further extend this approach to the standard Next Token Prediction (NTP) setting through reinforcement learning-based fine-tuning, resulting in Fast Quiet-STaR NTP, which eliminates the need for explicit thought token generation during inference. Experiments on four benchmark datasets with Mistral 7B and Qwen2.5 7B demonstrate that Fast Quiet-STaR consistently outperforms Quiet-STaR in terms of average accuracy under the same inference time budget. Notably, Fast Quiet-STaR NTP achieves an average accuracy improvement of 9\% on Mistral 7B and 5.7\% on Qwen2.5 7B, while maintaining the same inference latency. Our code will be available at https://github.com/huangwei200012/Fast-Quiet-STaR.
comment: 10 pages, 6 figures
♻ ☆ Building Self-Evolving Agents via Experience-Driven Lifelong Learning: A Framework and Benchmark
As AI advances toward general intelligence, the focus is shifting from systems optimized for static tasks to creating open-ended agents that learn continuously. In this paper, we introduce Experience-driven Lifelong Learning (ELL), a framework for building self-evolving agents capable of continuous growth through real-world interaction. The framework is built on four core principles: (1) Experience Exploration: Agents learn through continuous, self-motivated interaction with dynamic environments, navigating interdependent tasks and generating rich experiential trajectories. (2) Long-term Memory: Agents preserve and structure historical knowledge, including personal experiences, domain expertise, and commonsense reasoning, into a persistent memory system. (3) Skill Learning: Agents autonomously improve by abstracting recurring patterns from experience into reusable skills, which are actively refined and validated for application in new tasks. (4) Knowledge Internalization: Agents internalize explicit and discrete experiences into implicit and intuitive capabilities as "second nature". We also introduce StuLife, a benchmark dataset for ELL that simulates a student's holistic college journey, from enrollment to academic and personal development, across three core phases and ten detailed sub-scenarios. StuLife is designed around three key paradigm
♻ ☆ Joint Information Extraction Across Classical and Modern Chinese with Tea-MOELoRA
Chinese information extraction (IE) involves multiple tasks across diverse temporal domains, including Classical and Modern documents. Fine-tuning a single model on heterogeneous tasks and across different eras may lead to interference and reduced performance. Therefore, in this paper, we propose Tea-MOELoRA, a parameter-efficient multi-task framework that combines LoRA with a Mixture-of-Experts (MoE) design. Multiple low-rank LoRA experts specialize in different IE tasks and eras, while a task-era-aware router mechanism dynamically allocates expert contributions. Experiments show that Tea-MOELoRA outperforms both single-task and joint LoRA baselines, demonstrating its ability to leverage task and temporal knowledge effectively.
comment: 9 pages, 3 figures
♻ ☆ KG-CQR: Leveraging Structured Relation Representations in Knowledge Graphs for Contextual Query Retrieval EMNLP 2025
The integration of knowledge graphs (KGs) with large language models (LLMs) offers significant potential to improve the retrieval phase of retrieval-augmented generation (RAG) systems. In this study, we propose KG-CQR, a novel framework for Contextual Query Retrieval (CQR) that enhances the retrieval phase by enriching the contextual representation of complex input queries using a corpus-centric KG. Unlike existing methods that primarily address corpus-level context loss, KG-CQR focuses on query enrichment through structured relation representations, extracting and completing relevant KG subgraphs to generate semantically rich query contexts. Comprising subgraph extraction, completion, and contextual generation modules, KG-CQR operates as a model-agnostic pipeline, ensuring scalability across LLMs of varying sizes without additional training. Experimental results on RAGBench and MultiHop-RAG datasets demonstrate KG-CQR's superior performance, achieving a 4-6% improvement in mAP and a 2-3% improvement in Recall@25 over strong baseline models. Furthermore, evaluations on challenging RAG tasks such as multi-hop question answering show that, by incorporating KG-CQR, the performance consistently outperforms the existing baseline in terms of retrieval effectiveness
comment: Accepted at Main EMNLP 2025
♻ ☆ ETF: An Entity Tracing Framework for Hallucination Detection in Code Summaries ACL 2025
Recent advancements in large language models (LLMs) have significantly enhanced their ability to understand both natural language and code, driving their use in tasks like natural language-to-code (NL2Code) and code summarisation. However, LLMs are prone to hallucination, outputs that stray from intended meanings. Detecting hallucinations in code summarisation is especially difficult due to the complex interplay between programming and natural languages. We introduce a first-of-its-kind dataset, CodeSumEval, with ~10K samples, curated specifically for hallucination detection in code summarisation. We further propose a novel Entity Tracing Framework (ETF) that a) utilises static program analysis to identify code entities from the program and b) uses LLMs to map and verify these entities and their intents within generated code summaries. Our experimental analysis demonstrates the framework's effectiveness, leading to a 73% F1 score. The proposed approach provides a method for detecting hallucinations by tracing entities from the summary to the code, allowing us to evaluate summary accuracy and localise the error within the summary.
comment: Accepted in ACL 2025 Main, 14 pages, 3 Figures, 5 Tables
♻ ☆ Large Language Models Might Not Care What You Are Saying: Prompt Format Beats Descriptions EMNLP 2025
With the help of in-context learning (ICL), large language models (LLMs) have achieved impressive performance across various tasks. However, the function of descriptive instructions during ICL remains under-explored. In this work, we propose an ensemble prompt framework to describe the selection criteria of multiple in-context examples, and preliminary experiments on machine translation (MT) across six translation directions confirm that this framework boosts ICL performance. But to our surprise, LLMs might not care what the descriptions actually say, and the performance gain is primarily caused by the ensemble format, since it could lead to improvement even with random descriptive nouns. We further apply this new ensemble framework on a range of commonsense, math, logical reasoning and hallucination tasks with three LLMs and achieve promising results, suggesting again that designing a proper prompt format would be much more effective and efficient than paying effort into specific descriptions.
comment: EMNLP 2025 Findings. 23 pages, 23 figures, 7 tables
♻ ☆ Evaluating the Robustness and Accuracy of Text Watermarking Under Real-World Cross-Lingual Manipulations EMNLP 2025
We present a study to benchmark representative watermarking methods in cross-lingual settings. The current literature mainly focuses on the evaluation of watermarking methods for the English language. However, the literature for evaluating watermarking in cross-lingual settings is scarce. This results in overlooking important adversary scenarios in which a cross-lingual adversary could be in, leading to a gray area of practicality over cross-lingual watermarking. In this paper, we evaluate four watermarking methods in four different and vocabulary rich languages. Our experiments investigate the quality of text under different watermarking procedure and the detectability of watermarks with practical translation attack scenarios. Specifically, we investigate practical scenarios that an adversary with cross-lingual knowledge could take, and evaluate whether current watermarking methods are suitable for such scenarios. Finally, from our findings, we draw key insights about watermarking in cross-lingual settings.
comment: Accepted by EMNLP 2025 Finding
♻ ☆ RADIANT: Retrieval AugmenteD entIty-context AligNmenT -- Introducing RAG-ability and Entity-Context Divergence
As Large Language Models (LLMs) continue to advance, Retrieval-Augmented Generation (RAG) has emerged as a vital technique to enhance factual accuracy by integrating external knowledge into the generation process. However, LLMs often fail to faithfully integrate retrieved evidence into their generated responses, leading to factual inconsistencies. To quantify this gap, we introduce Entity-Context Divergence (ECD), a metric that measures the extent to which retrieved information is accurately reflected in model outputs. We systematically evaluate contemporary LLMs on their ability to preserve factual consistency in retrieval-augmented settings, a capability we define as RAG-ability. Our empirical analysis reveals that RAG-ability remains low across most LLMs, highlighting significant challenges in entity retention and context fidelity. This paper introduces Radiant (Retrieval AugmenteD entIty-context AligNmenT), a novel framework that merges RAG with alignment designed to optimize the interplay between retrieved evidence and generated content. Radiant extends Direct Preference Optimization (DPO) to teach LLMs how to integrate provided additional information into subsequent generations. As a behavior correction mechanism, Radiant boosts RAG performance across varied retrieval scenarios, such as noisy web contexts, knowledge conflicts, and hallucination reduction. This enables more reliable, contextually grounded, and factually coherent content generation.
♻ ☆ ChinaTravel: An Open-Ended Benchmark for Language Agents in Chinese Travel Planning
Recent advances in LLMs, particularly in language reasoning and tool integration, have rapidly sparked the \emph{Language Agents} for real-world development. Among these, travel planning represents a prominent domain, combining complex multi-objective planning challenges with practical deployment demands. However, existing benchmarks often oversimplify real-world requirements by focusing on synthetic queries and limited constraints. We address the gap of evaluating language agents in multi-day, multi-POI travel planning scenarios with diverse and open human needs. Specifically, we introduce \emph{ChinaTravel}, the first open-ended benchmark grounded in authentic Chinese travel requirements collected from 1,154 human participants. We design a compositionally generalizable domain-specific language (DSL) for scalable evaluation, covering feasibility, constraint satisfaction, and preference comparison. Empirical studies reveal the potential of neuro-symbolic agents in travel planning, achieving a 37.0\% constraint satisfaction rate on human queries, a 10\times improvement over purely neural models. These findings highlight ChinaTravel as a pivotal milestone for advancing language agents in complex, real-world planning scenarios.
comment: Webpage: https://www.lamda.nju.edu.cn/shaojj/chinatravel
♻ ☆ Multiple Noises in Diffusion Model for Semi-Supervised Multi-Domain Translation
In this work, we address the challenge of multi-domain translation, where the objective is to learn mappings between arbitrary configurations of domains within a defined set (such as $(D_1, D_2)\rightarrow{}D_3$, $D_2\rightarrow{}(D_1, D_3)$, $D_3\rightarrow{}D_1$, etc. for three domains) without the need for separate models for each specific translation configuration, enabling more efficient and flexible domain translation. We introduce Multi-Domain Diffusion (MDD), a method with dual purposes: i) reconstructing any missing views for new data objects, and ii) enabling learning in semi-supervised contexts with arbitrary supervision configurations. MDD achieves these objectives by exploiting the noise formulation of diffusion models, specifically modeling one noise level per domain. Similar to existing domain translation approaches, MDD learns the translation between any combination of domains. However, unlike prior work, our formulation inherently handles semi-supervised learning without modification by representing missing views as noise in the diffusion process. We evaluate our approach through domain translation experiments on BL3NDT, a multi-domain synthetic dataset designed for challenging semantic domain inversion, the BraTS2020 dataset, and the CelebAMask-HQ dataset.
Multimedia 1
☆ Effectively obtaining acoustic, visual and textual data from videos
The increasing use of machine learning models has amplified the demand for high-quality, large-scale multimodal datasets. However, the availability of such datasets, especially those combining acoustic, visual and textual data, remains limited. This paper addresses this gap by proposing a method to extract related audio-image-text observations from videos. We detail the process of selecting suitable videos, extracting relevant data pairs, and generating descriptive texts using image-to-text models. Our approach ensures a robust semantic connection between modalities, enhancing the utility of the created datasets for various applications. We also discuss the challenges encountered and propose solutions to improve data quality. The resulting datasets, publicly available, aim to support and advance research in multimodal data analysis and machine learning.
Machine Learning 45
☆ The Measure of Deception: An Analysis of Data Forging in Machine Unlearning
Motivated by privacy regulations and the need to mitigate the effects of harmful data, machine unlearning seeks to modify trained models so that they effectively ``forget'' designated data. A key challenge in verifying unlearning is forging -- adversarially crafting data that mimics the gradient of a target point, thereby creating the appearance of unlearning without actually removing information. To capture this phenomenon, we consider the collection of data points whose gradients approximate a target gradient within tolerance $\epsilon$ -- which we call an $\epsilon$-forging set -- and develop a framework for its analysis. For linear regression and one-layer neural networks, we show that the Lebesgue measure of this set is small. It scales on the order of $\epsilon$, and when $\epsilon$ is small enough, $\epsilon^d$. More generally, under mild regularity assumptions, we prove that the forging set measure decays as $\epsilon^{(d-r)/2}$, where $d$ is the data dimension and $r
☆ Fisher Random Walk: Automatic Debiasing Contextual Preference Inference for Large Language Model Evaluation
Motivated by the need for rigorous and scalable evaluation of large language models, we study contextual preference inference for pairwise comparison functionals of context-dependent preference score functions across domains. Focusing on the contextual Bradley-Terry-Luce model, we develop a semiparametric efficient estimator that automates the debiased estimation through aggregating weighted residual balancing terms across the comparison graph. We show that the efficiency is achieved when the weights are derived from a novel strategy called Fisher random walk. We also propose a computationally feasible method to compute the weights by a potential representation of nuisance weight functions. We show our inference procedure is valid for general score function estimators accommodating the practitioners' need to implement flexible deep learning methods. We extend the procedure to multiple hypothesis testing using a Gaussian multiplier bootstrap that controls familywise error and to distributional shift via a cross-fitted importance-sampling adjustment for target-domain inference. Numerical studies, including language model evaluations under diverse contexts, corroborate the accuracy, efficiency, and practical utility of our method.
☆ Data-Driven Stochastic Modeling Using Autoregressive Sequence Models: Translating Event Tables to Queueing Dynamics
While queueing network models are powerful tools for analyzing service systems, they traditionally require substantial human effort and domain expertise to construct. To make this modeling approach more scalable and accessible, we propose a data-driven framework for queueing network modeling and simulation based on autoregressive sequence models trained on event-stream data. Instead of explicitly specifying arrival processes, service mechanisms, or routing logic, our approach learns the conditional distributions of event types and event times, recasting the modeling task as a problem of sequence distribution learning. We show that Transformer-style architectures can effectively parameterize these distributions, enabling automated construction of high-fidelity simulators. As a proof of concept, we validate our framework on event tables generated from diverse queueing networks, showcasing its utility in simulation, uncertainty quantification, and counterfactual evaluation. Leveraging advances in artificial intelligence and the growing availability of data, our framework takes a step toward more automated, data-driven modeling pipelines to support broader adoption of queueing network models across service domains.
☆ Benchmarking Robust Aggregation in Decentralized Gradient Marketplaces
The rise of distributed and privacy-preserving machine learning has sparked interest in decentralized gradient marketplaces, where participants trade intermediate artifacts like gradients. However, existing Federated Learning (FL) benchmarks overlook critical economic and systemic factors unique to such marketplaces-cost-effectiveness, fairness to sellers, and market stability-especially when a buyer relies on a private baseline dataset for evaluation. We introduce a comprehensive benchmark framework to holistically evaluate robust gradient aggregation methods within these buyer-baseline-reliant marketplaces. Our contributions include: (1) a simulation environment modeling marketplace dynamics with a variable buyer baseline and diverse seller distributions; (2) an evaluation methodology augmenting standard FL metrics with marketplace-centric dimensions such as Economic Efficiency, Fairness, and Selection Dynamics; (3) an in-depth empirical analysis of the existing Distributed Gradient Marketplace framework, MartFL, including the integration and comparative evaluation of adapted FLTrust and SkyMask as alternative aggregation strategies within it. This benchmark spans diverse datasets, local attacks, and Sybil attacks targeting the marketplace selection process; and (4) actionable insights into the trade-offs between model performance, robustness, cost, fairness, and stability. This benchmark equips the community with essential tools and empirical evidence to evaluate and design more robust, equitable, and economically viable decentralized gradient marketplaces.
☆ Finetuning LLMs for Human Behavior Prediction in Social Science Experiments
Large language models (LLMs) offer a powerful opportunity to simulate the results of social science experiments. In this work, we demonstrate that finetuning LLMs directly on individual-level responses from past experiments meaningfully improves the accuracy of such simulations across diverse social science domains. We construct SocSci210 via an automatic pipeline, a dataset comprising 2.9 million responses from 400,491 participants in 210 open-source social science experiments. Through finetuning, we achieve multiple levels of generalization. In completely unseen studies, our strongest model, Socrates-Qwen-14B, produces predictions that are 26% more aligned with distributions of human responses to diverse outcome questions under varying conditions relative to its base model (Qwen2.5-14B), outperforming GPT-4o by 13%. By finetuning on a subset of conditions in a study, generalization to new unseen conditions is particularly robust, improving by 71%. Since SocSci210 contains rich demographic information, we reduce demographic parity, a measure of bias, by 10.6% through finetuning. Because social sciences routinely generate rich, topic-specific datasets, our findings indicate that finetuning on such data could enable more accurate simulations for experimental hypothesis screening. We release our data, models and finetuning code at stanfordhci.github.io/socrates.
comment: 16 pages, 5 figures
☆ Performance of Conformal Prediction in Capturing Aleatoric Uncertainty
Conformal prediction is a model-agnostic approach to generating prediction sets that cover the true class with a high probability. Although its prediction set size is expected to capture aleatoric uncertainty, there is a lack of evidence regarding its effectiveness. The literature presents that prediction set size can upper-bound aleatoric uncertainty or that prediction sets are larger for difficult instances and smaller for easy ones, but a validation of this attribute of conformal predictors is missing. This work investigates how effectively conformal predictors quantify aleatoric uncertainty, specifically the inherent ambiguity in datasets caused by overlapping classes. We perform this by measuring the correlation between prediction set sizes and the number of distinct labels assigned by human annotators per instance. We further assess the similarity between prediction sets and human-provided annotations. We use three conformal prediction approaches to generate prediction sets for eight deep learning models trained on four datasets. The datasets contain annotations from multiple human annotators (ranging from five to fifty participants) per instance, enabling the identification of class overlap. We show that the vast majority of the conformal prediction outputs show a very weak to weak correlation with human annotations, with only a few showing moderate correlation. These findings underscore the necessity of critically reassessing the prediction sets generated using conformal predictors. While they can provide a higher coverage of the true classes, their capability in capturing aleatoric uncertainty remains limited.
☆ Volatility Modeling via EWMA-Driven Time-Dependent Hurst Parameters
We introduce a novel rough Bergomi (rBergomi) model featuring a variance-driven exponentially weighted moving average (EWMA) time-dependent Hurst parameter $H_t$, fundamentally distinct from recent machine learning and wavelet-based approaches in the literature. Our framework pioneers a unified rough differential equation (RDE) formulation grounded in rough path theory, where the Hurst parameter dynamically adapts to evolving volatility regimes through a continuous EWMA mechanism tied to instantaneous variance. Unlike discrete model-switching or computationally intensive forecasting methods, our approach provides mathematical tractability while capturing volatility clustering and roughness bursts. We rigorously establish existence and uniqueness of solutions via rough path theory and derive martingale properties. Empirical validation on diverse asset classes including equities, cryptocurrencies, and commodities demonstrates superior performance in capturing dynamics and out-of-sample pricing accuracy. Our results show significant improvements over traditional constant-Hurst models.
comment: 9 pages total
☆ Simple Optimizers for Convex Aligned Multi-Objective Optimization
It is widely recognized in modern machine learning practice that access to a diverse set of tasks can enhance performance across those tasks. This observation suggests that, unlike in general multi-objective optimization, the objectives in many real-world settings may not be inherently conflicting. To address this, prior work introduced the Aligned Multi-Objective Optimization (AMOO) framework and proposed gradient-based algorithms with provable convergence guarantees. However, existing analysis relies on strong assumptions, particularly strong convexity, which implies the existence of a unique optimal solution. In this work, we relax this assumption and study gradient-descent algorithms for convex AMOO under standard smoothness or Lipschitz continuity conditions-assumptions more consistent with those used in deep learning practice. This generalization requires new analytical tools and metrics to characterize convergence in the convex AMOO setting. We develop such tools, propose scalable algorithms for convex AMOO, and establish their convergence guarantees. Additionally, we prove a novel lower bound that demonstrates the suboptimality of naive equal-weight approaches compared to our methods.
☆ time2time: Causal Intervention in Hidden States to Simulate Rare Events in Time Series Foundation Models
While transformer-based foundation models excel at forecasting routine patterns, two questions remain: do they internalize semantic concepts such as market regimes, or merely fit curves? And can their internal representations be leveraged to simulate rare, high-stakes events such as market crashes? To investigate this, we introduce activation transplantation, a causal intervention that manipulates hidden states by imposing the statistical moments of one event (e.g., a historical crash) onto another (e.g., a calm period) during the forward pass. This procedure deterministically steers forecasts: injecting crash semantics induces downturn predictions, while injecting calm semantics suppresses crashes and restores stability. Beyond binary control, we find that models encode a graded notion of event severity, with the latent vector norm directly correlating with the magnitude of systemic shocks. Validated across two architecturally distinct TSFMs, Toto (decoder only) and Chronos (encoder-decoder), our results demonstrate that steerable, semantically grounded representations are a robust property of large time series transformers. Our findings provide evidence for a latent concept space that governs model predictions, shifting interpretability from post-hoc attribution to direct causal intervention, and enabling semantic "what-if" analysis for strategic stress-testing.
☆ Hybrid Fourier Neural Operator-Plasma Fluid Model for Fast and Accurate Multiscale Simulations of High Power Microwave Breakdown
Modeling and simulation of High Power Microwave (HPM) breakdown, a multiscale phenomenon, is computationally expensive and requires solving Maxwell's equations (EM solver) coupled with a plasma continuity equation (plasma solver). In this work, we present a hybrid modeling approach that combines the accuracy of a differential equation-based plasma fluid solver with the computational efficiency of FNO (Fourier Neural Operator) based EM solver. Trained on data from an in-house FDTD-based plasma-fluid solver, the FNO replaces computationally expensive EM field updates, while the plasma solver governs the dynamic plasma response. The hybrid model is validated on microwave streamer formation, due to diffusion ionization mechanism, in a 2D scenario for unseen incident electric fields corresponding to entirely new plasma streamer simulations not included in model training, showing excellent agreement with FDTD based fluid simulations in terms of streamer shape, velocity, and temporal evolution. This hybrid FNO based strategy delivers significant acceleration of the order of 60X compared to traditional simulations for the specified problem size and offers an efficient alternative for computationally demanding multiscale and multiphysics simulations involved in HPM breakdown. Our work also demonstrate how such hybrid pipelines can be used to seamlessly to integrate existing C-based simulation codes with Python-based machine learning frameworks for simulations of plasma science and engineering problems.
☆ Spectral Methods in Complex Systems
These notes offer a unified introduction to spectral methods for the study of complex systems. They are intended as an operative manual rather than a theorem-proof textbook: the emphasis is on tools, identities, and perspectives that can be readily applied across disciplines. Beginning with a compendium of matrix identities and inversion techniques, the text develops the connections between spectra, dynamics, and structure in finite-dimensional systems. Applications range from dynamical stability and random walks on networks to input-output economics, PageRank, epidemic spreading, memristive circuits, synchronization phenomena, and financial stability. Throughout, the guiding principle is that eigenvalues, eigenvectors, and resolvent operators provide a common language linking problems in physics, mathematics, computer science, and beyond. The presentation is informal, accessible to advanced undergraduates, yet broad enough to serve as a reference for researchers interested in spectral approaches to complex systems.
comment: Expanded and cleaned notes. Based on lectures given at the online school on spectral methods in complex systems (2019); 467 pages. Comments welcome
☆ Vector-based loss functions for turbulent flow field inpainting
When developing scientific machine learning (ML) approaches, it is often beneficial to embed knowledge of the physical system in question into the training process. One way to achieve this is by leveraging the specific characteristics of the data at hand. In the case of turbulent flows, fluid velocities can be measured and recorded as multi-component vectors at discrete points in space, using techniques such as particle image velocimetry (PIV) or computational fluid mechanics (CFD). However, the vectorised nature of the data is ignored by standard ML approaches, as widely-used loss functions such as the mean-square error treat each component of a velocity vector in isolation. Therefore, the aim of this work is to better preserve the physical characteristics of the data by introducing loss functions that utilise vector similarity metrics. To this end, vector-based loss functions are developed here and implemented alongside a U-Net model for a turbulent flow field inpainting problem, amounting to the prediction of velocity vectors inside large gaps in PIV images. The intention is for the inpainting task to pose a significant challenge for the ML models in order to shed light on their capabilities. The test case uses PIV data from the highly turbulent flow in the well-known Transparent Combustion Chamber III (TCC-III) engine. Loss functions based on the cosine similarity and vector magnitude differences are proposed; the results show that the vector-based loss functions lead to significantly improved predictions of multi-scale flow patterns, while a hybrid (vector and mean-square error) loss function enables a good compromise to be found between preserving multi-scale behaviour and pixel-wise accuracy.
☆ Select, then Balance: A Plug-and-Play Framework for Exogenous-Aware Spatio-Temporal Forecasting
Spatio-temporal forecasting aims to predict the future state of dynamic systems and plays an important role in multiple fields. However, existing solutions only focus on modeling using a limited number of observed target variables. In real-world scenarios, exogenous variables can be integrated into the model as additional input features and associated with the target signal to promote forecast accuracy. Although promising, this still encounters two challenges: the inconsistent effects of different exogenous variables to the target system, and the imbalance effects between historical variables and future variables. To address these challenges, this paper introduces \model, a novel framework for modeling \underline{exo}genous variables in \underline{s}patio-\underline{t}emporal forecasting, which follows a ``select, then balance'' paradigm. Specifically, we first construct a latent space gated expert module, where fused exogenous information is projected into a latent space to dynamically select and recompose salient signals via specialized sub-experts. Furthermore, we design a siamese network architecture in which recomposed representations of past and future exogenous variables are fed into dual-branch spatio-temporal backbones to capture dynamic patterns. The outputs are integrated through a context-aware weighting mechanism to achieve dynamic balance during the modeling process. Extensive experiments on real-world datasets demonstrate the effectiveness, generality, robustness, and efficiency of our proposed framework.
comment: 16 pages, 11 figures
☆ DCV-ROOD Evaluation Framework: Dual Cross-Validation for Robust Out-of-Distribution Detection
Out-of-distribution (OOD) detection plays a key role in enhancing the robustness of artificial intelligence systems by identifying inputs that differ significantly from the training distribution, thereby preventing unreliable predictions and enabling appropriate fallback mechanisms. Developing reliable OOD detection methods is a significant challenge, and rigorous evaluation of these techniques is essential for ensuring their effectiveness, as it allows researchers to assess their performance under diverse conditions and to identify potential limitations or failure modes. Cross-validation (CV) has proven to be a highly effective tool for providing a reasonable estimate of the performance of a learning algorithm. Although OOD scenarios exhibit particular characteristics, an appropriate adaptation of CV can lead to a suitable evaluation framework for this setting. This work proposes a dual CV framework for robust evaluation of OOD detection models, aimed at improving the reliability of their assessment. The proposed evaluation framework aims to effectively integrate in-distribution (ID) and OOD data while accounting for their differing characteristics. To achieve this, ID data are partitioned using a conventional approach, whereas OOD data are divided by grouping samples based on their classes. Furthermore, we analyze the context of data with class hierarchy to propose a data splitting that considers the entire class hierarchy to obtain fair ID-OOD partitions to apply the proposed evaluation framework. This framework is called Dual Cross-Validation for Robust Out-of-Distribution Detection (DCV-ROOD). To test the validity of the evaluation framework, we selected a set of state-of-the-art OOD detection methods, both with and without outlier exposure. The results show that the method achieves very fast convergence to the true performance.
comment: 20 pages and appendix
☆ Causal Clustering for Conditional Average Treatment Effects Estimation and Subgroup Discovery IEEE
Estimating heterogeneous treatment effects is critical in domains such as personalized medicine, resource allocation, and policy evaluation. A central challenge lies in identifying subpopulations that respond differently to interventions, thereby enabling more targeted and effective decision-making. While clustering methods are well-studied in unsupervised learning, their integration with causal inference remains limited. We propose a novel framework that clusters individuals based on estimated treatment effects using a learned kernel derived from causal forests, revealing latent subgroup structures. Our approach consists of two main steps. First, we estimate debiased Conditional Average Treatment Effects (CATEs) using orthogonalized learners via the Robinson decomposition, yielding a kernel matrix that encodes sample-level similarities in treatment responsiveness. Second, we apply kernelized clustering to this matrix to uncover distinct, treatment-sensitive subpopulations and compute cluster-level average CATEs. We present this kernelized clustering step as a form of regularization within the residual-on-residual regression framework. Through extensive experiments on semi-synthetic and real-world datasets, supported by ablation studies and exploratory analyses, we demonstrate the effectiveness of our method in capturing meaningful treatment effect heterogeneity.
comment: Pre-print for camera ready version for IEEE EMBS BHI 2025
☆ Risk-averse Fair Multi-class Classification
We develop a new classification framework based on the theory of coherent risk measures and systemic risk. The proposed approach is suitable for multi-class problems when the data is noisy, scarce (relative to the dimension of the problem), and the labeling might be unreliable. In the first part of our paper, we provide the foundation of the use of systemic risk models and show how to apply it in the context of linear and kernel-based multi-class problems. More advanced formulation via a system-theoretic approach with non-linear aggregation is proposed, which leads to a two-stage stochastic programming problem. A risk-averse regularized decomposition method is designed to solve the problem. We use a popular multi-class method as a benchmark in the performance analysis of the proposed classification methods. We illustrate our ideas by proposing several generalization of that method by the use of coherent measures of risk. The viability of the proposed risk-averse methods are supported theoretically and numerically. Additionally, we demonstrate that the application of systemic risk measures facilitates enforcing fairness in classification. Analysis and experiments regarding the fairness of the proposed models are carefully conducted. For all methods, our numerical experiments demonstrate that they are robust in the presence of unreliable training data and perform better on unknown data than the methods minimizing expected classification errors. Furthermore, the performance improves when the number of classes increases.
☆ Real-E: A Foundation Benchmark for Advancing Robust and Generalizable Electricity Forecasting CIKM 2025
Energy forecasting is vital for grid reliability and operational efficiency. Although recent advances in time series forecasting have led to progress, existing benchmarks remain limited in spatial and temporal scope and lack multi-energy features. This raises concerns about their reliability and applicability in real-world deployment. To address this, we present the Real-E dataset, covering over 74 power stations across 30+ European countries over a 10-year span with rich metadata. Using Real- E, we conduct an extensive data analysis and benchmark over 20 baselines across various model types. We introduce a new metric to quantify shifts in correlation structures and show that existing methods struggle on our dataset, which exhibits more complex and non-stationary correlation dynamics. Our findings highlight key limitations of current methods and offer a strong empirical basis for building more robust forecasting models
comment: 4 pages, CIKM 2025
☆ Ensemble of Precision-Recall Curve (PRC) Classification Trees with Autoencoders
Anomaly detection underpins critical applications from network security and intrusion detection to fraud prevention, where recognizing aberrant patterns rapidly is indispensable. Progress in this area is routinely impeded by two obstacles: extreme class imbalance and the curse of dimensionality. To combat the former, we previously introduced Precision-Recall Curve (PRC) classification trees and their ensemble extension, the PRC Random Forest (PRC-RF). Building on that foundation, we now propose a hybrid framework that integrates PRC-RF with autoencoders, unsupervised machine learning methods that learn compact latent representations, to confront both challenges simultaneously. Extensive experiments across diverse benchmark datasets demonstrate that the resulting Autoencoder-PRC-RF model achieves superior accuracy, scalability, and interpretability relative to prior methods, affirming its potential for high-stakes anomaly-detection tasks.
☆ Automating API Documentation with LLMs: A BERTopic Approach
Developers rely on API documentation, but official sources are often lengthy, complex, or incomplete. Many turn to community-driven forums like Stack Overflow for practical insights. We propose automating the summarization of informal sources, focusing on Android APIs. Using BERTopic, we extracted prevalent topics from 3.6 million Stack Overflow posts and applied extractive summarization techniques to generate concise summaries, including code snippets. A user study with 30 Android developers assessed the summaries for coherence, relevance, informativeness, and satisfaction, showing improved productivity. Integrating formal API knowledge with community-generated content enhances documentation, making API resources more accessible and actionable work.
☆ InterAct: A Large-Scale Dataset of Dynamic, Expressive and Interactive Activities between Two People in Daily Scenarios
We address the problem of accurate capture of interactive behaviors between two people in daily scenarios. Most previous works either only consider one person or solely focus on conversational gestures of two people, assuming the body orientation and/or position of each actor are constant or barely change over each interaction. In contrast, we propose to simultaneously model two people's activities, and target objective-driven, dynamic, and semantically consistent interactions which often span longer duration and cover bigger space. To this end, we capture a new multi-modal dataset dubbed InterAct, which is composed of 241 motion sequences where two people perform a realistic and coherent scenario for one minute or longer over a complete interaction. For each sequence, two actors are assigned different roles and emotion labels, and collaborate to finish one task or conduct a common interaction activity. The audios, body motions, and facial expressions of both persons are captured. InterAct contains diverse and complex motions of individuals and interesting and relatively long-term interaction patterns barely seen before. We also demonstrate a simple yet effective diffusion-based method that estimates interactive face expressions and body motions of two people from speech inputs. Our method regresses the body motions in a hierarchical manner, and we also propose a novel fine-tuning mechanism to improve the lip accuracy of facial expressions. To facilitate further research, the data and code is made available at https://hku-cg.github.io/interact/ .
comment: The first two authors contributed equally to this work
☆ Reasoning Introduces New Poisoning Attacks Yet Makes Them More Complicated
Early research into data poisoning attacks against Large Language Models (LLMs) demonstrated the ease with which backdoors could be injected. More recent LLMs add step-by-step reasoning, expanding the attack surface to include the intermediate chain-of-thought (CoT) and its inherent trait of decomposing problems into subproblems. Using these vectors for more stealthy poisoning, we introduce ``decomposed reasoning poison'', in which the attacker modifies only the reasoning path, leaving prompts and final answers clean, and splits the trigger across multiple, individually harmless components. Fascinatingly, while it remains possible to inject these decomposed poisons, reliably activating them to change final answers (rather than just the CoT) is surprisingly difficult. This difficulty arises because the models can often recover from backdoors that are activated within their thought processes. Ultimately, it appears that an emergent form of backdoor robustness is originating from the reasoning capabilities of these advanced LLMs, as well as from the architectural separation between reasoning and final answer generation.
☆ Offline vs. Online Learning in Model-based RL: Lessons for Data Collection Strategies
Data collection is crucial for learning robust world models in model-based reinforcement learning. The most prevalent strategies are to actively collect trajectories by interacting with the environment during online training or training on offline datasets. At first glance, the nature of learning task-agnostic environment dynamics makes world models a good candidate for effective offline training. However, the effects of online vs. offline data on world models and thus on the resulting task performance have not been thoroughly studied in the literature. In this work, we investigate both paradigms in model-based settings, conducting experiments on 31 different environments. First, we showcase that online agents outperform their offline counterparts. We identify a key challenge behind performance degradation of offline agents: encountering Out-Of-Distribution states at test time. This issue arises because, without the self-correction mechanism in online agents, offline datasets with limited state space coverage induce a mismatch between the agent's imagination and real rollouts, compromising policy training. We demonstrate that this issue can be mitigated by allowing for additional online interactions in a fixed or adaptive schedule, restoring the performance of online training with limited interaction data. We also showcase that incorporating exploration data helps mitigate the performance degradation of offline agents. Based on our insights, we recommend adding exploration data when collecting large datasets, as current efforts predominantly focus on expert data alone.
comment: Accepted at Reinforcement Learning Conference (RLC 2025); Code available at: https://github.com/swsychen/Offline_vs_Online_in_MBRL
♻ ☆ Supervised Fine Tuning on Curated Data is Reinforcement Learning (and can be improved)
Behavior Cloning (BC) on curated (or filtered) data is the predominant paradigm for supervised fine-tuning (SFT) of large language models; as well as for imitation learning of control policies. Here, we draw on a connection between this successful strategy and the theory and practice of finding optimal policies via Reinforcement Learning (RL). Building on existing literature, we clarify that SFT can be understood as maximizing a lower bound on the RL objective in a sparse reward setting. Giving support to its often observed good performance. From this viewpoint, we realize that a small modification to SFT leads to an importance weighted variant that behaves closer to training with RL as it: i) optimizes a tighter bound to the RL objective and, ii) can improve performance compared to SFT on curated data. We refer to this variant as importance weighted supervised fine-tuning (iw-SFT). We show that it is easy to implement and can be further generalized to training with quality scored data. The resulting SFT variants are competitive with more advanced RL algorithms for large language models and for training policies in continuous control tasks. For example achieving 66.7% on the AIME 2024 dataset.
comment: See project website for details and code at: https://independentresearch.ai/posts/iwsft
♻ ☆ Neural Port-Hamiltonian Differential Algebraic Equations for Compositional Learning of Electrical Networks
We develop compositional learning algorithms for coupled dynamical systems, with a particular focus on electrical networks. While deep learning has proven effective at modeling complex relationships from data, compositional couplings between system components typically introduce algebraic constraints on state variables, posing challenges to many existing data-driven approaches to modeling dynamical systems. Towards developing deep learning models for constrained dynamical systems, we introduce neural port-Hamiltonian differential algebraic equations (N-PHDAEs), which use neural networks to parameterize unknown terms in both the differential and algebraic components of a port-Hamiltonian DAE. To train these models, we propose an algorithm that uses automatic differentiation to perform index reduction, automatically transforming the neural DAE into an equivalent system of neural ordinary differential equations (N-ODEs), for which established model inference and backpropagation methods exist. Experiments simulating the dynamics of nonlinear circuits exemplify the benefits of our approach: the proposed N-PHDAE model achieves an order of magnitude improvement in prediction accuracy and constraint satisfaction when compared to a baseline N-ODE over long prediction time horizons. We also validate the compositional capabilities of our approach through experiments on a simulated DC microgrid: we train individual N-PHDAE models for separate grid components, before coupling them to accurately predict the behavior of larger-scale networks.
♻ ☆ Differentiable DG with Neural Operator Source Term Correction
Computational advances have fundamentally transformed the landscape of numerical simulations, enabling unprecedented levels of complexity and precision in modeling physical phenomena. While these high-fidelity simulations offer invaluable insights for scientific discovery and problem solving, they impose substantial computational requirements. Consequently, low-fidelity models augmented with subgrid-scale parameterizations are employed to achieve computational feasibility. We introduce an end-to-end differentiable framework for solving the compressible Navier--Stokes equations. This integrated approach combines a differentiable discontinuous Galerkin (DG) solver with a neural network source term. Through the implementation of neural ordinary differential equations (NODEs) for network parameter optimization, our methodology ensures continuous interaction with the governing equations throughout the training process. We refer to this approach as NODE-DG. This hybrid approach combines the accuracy of numerical methods with the efficiency of machine learning, offering the following key advantages: (1) improved accuracy of low-order DG approximations by capturing subgrid-scale dynamics; (2) robustness against nonuniform or missing temporal data; (3) elimination of operator-splitting errors; (3) total mass conservation; and (4) a continuous-in-time operator that enables variable time step predictions, which accelerate projected high-order DG simulations. We demonstrate the performance of the proposed framework through two examples: two-dimensional Kelvin--Helmholtz instability and three-dimensional Taylor--Green vortex examples.
comment: 24 figures, 2 tables, 37 pages
♻ ☆ Causal Representation Learning with Generative Artificial Intelligence: Application to Texts as Treatments
In this paper, we demonstrate how to enhance the validity of causal inference with unstructured high-dimensional treatments like texts, by leveraging the power of generative Artificial Intelligence (GenAI). Specifically, we propose to use a deep generative model such as large language models (LLMs) to efficiently generate treatments and use their internal representation for subsequent causal effect estimation. We show that the knowledge of this true internal representation helps disentangle the treatment features of interest, such as specific sentiments and certain topics, from other possibly unknown confounding features. Unlike existing methods, the proposed GenAI-Powered Inference (GPI) methodology eliminates the need to learn causal representation from the data, and hence produces more accurate and efficient estimates. We formally establish the conditions required for the nonparametric identification of the average treatment effect, propose an estimation strategy that avoids the violation of the overlap assumption, and derive the asymptotic properties of the proposed estimator through the application of double machine learning. Finally, using an instrumental variables approach, we extend the proposed GPI methodology to the settings in which the treatment feature is based on human perception. The GPI is also applicable to text reuse where an LLM is used to regenerate existing texts. We conduct simulation and empirical studies, using the generated text data from an open-source LLM, Llama~3, to illustrate the advantages of our estimator over state-of-the-art causal representation learning algorithms.
♻ ☆ AdaGrad Meets Muon: Adaptive Stepsizes for Orthogonal Updates
The recently proposed Muon optimizer updates weight matrices via orthogonalized momentum and has demonstrated strong empirical success in large language model training. However, it remains unclear how to determine the learning rates for such orthogonalized updates. AdaGrad, by contrast, is a widely used adaptive method that scales stochastic gradients by accumulated past gradients. We propose a new algorithm, AdaGO, which combines a norm-based AdaGrad-type stepsize with an orthogonalized update direction, bringing together the benefits of both approaches. Unlike other adaptive variants of Muon, AdaGO preserves the orthogonality of the update direction, which can be interpreted as a spectral descent direction, while adapting the stepsizes to the optimization landscape by scaling the direction with accumulated past gradient norms. The implementation of AdaGO requires only minimal modification to Muon, with a single additional scalar variable, the accumulated squared gradient norms, to be computed, making it computationally and memory efficient. Optimal theoretical convergence rates are established for nonconvex functions in both stochastic and deterministic settings under standard smoothness and unbiased bounded-variance noise assumptions. Empirical results on CIFAR-10 classification and function regression demonstrate that AdaGO outperforms Muon and Adam.
♻ ☆ Exploring the Landscape of Non-Equilibrium Memories with Neural Cellular Automata
We investigate the landscape of many-body memories: families of local non-equilibrium dynamics that retain information about their initial conditions for thermodynamically long time scales, even in the presence of arbitrary perturbations. In two dimensions, the only well-studied memory is Toom's rule. Using a combination of rigorous proofs and machine learning methods, we show that the landscape of 2D memories is in fact quite vast. We discover memories that correct errors in ways qualitatively distinct from Toom's rule, have ordered phases stabilized by fluctuations, and preserve information only in the presence of noise. Taken together, our results show that physical systems can perform robust information storage in many distinct ways, and demonstrate that the physics of many-body memories is richer than previously realized. Interactive visualizations of the dynamics studied in this work are available at https://memorynca.github.io/2D.
comment: 4+9 pages; v2: expanded discussion, typos fixed
♻ ☆ In-context Ranking Preference Optimization
Recent developments in Direct Preference Optimization (DPO) allow large language models (LLMs) to function as implicit ranking models by maximizing the margin between preferred and non-preferred responses. In practice, user feedback on such lists typically involves identifying a few relevant items in context rather than providing detailed pairwise comparisons for every possible item pair. Moreover, many complex information retrieval tasks, such as conversational agents and summarization systems, critically depend on ranking the highest-quality outputs at the top, emphasizing the need to support natural and flexible forms of user feedback. To address the challenge of limited and sparse pairwise feedback in the in-context setting, we propose an In-context Ranking Preference Optimization (IRPO) framework that directly optimizes LLMs based on ranking lists constructed during inference. To further capture flexible forms of feedback, IRPO extends the DPO objective by incorporating both the relevance of items and their positions in the list. Modeling these aspects jointly is non-trivial, as ranking metrics are inherently discrete and non-differentiable, making direct optimization difficult. To overcome this, IRPO introduces a differentiable objective based on positional aggregation of pairwise item preferences, enabling effective gradient-based optimization of discrete ranking metrics. We further provide theoretical insights showing that IRPO (i) automatically emphasizes items with greater disagreement between the model and the reference ranking, and (ii) links its gradient to an importance sampling estimator, yielding an unbiased estimator with reduced variance. Empirical results show IRPO outperforms standard DPO approaches in ranking performance, highlighting its effectiveness in aligning LLMs with direct in-context ranking preferences.
comment: 10 pages
♻ ☆ Transit for All: Mapping Equitable Bike2Subway Connection using Region Representation Learning SP
Ensuring equitable public transit access remains challenging, particularly in densely populated cities like New York City (NYC), where low-income and minority communities often face limited transit accessibility. Bike-sharing systems (BSS) can bridge these equity gaps by providing affordable first- and last-mile connections. However, strategically expanding BSS into underserved neighborhoods is difficult due to uncertain bike-sharing demand at newly planned ("cold-start") station locations and limitations in traditional accessibility metrics that may overlook realistic bike usage potential. We introduce Transit for All (TFA), a spatial computing framework designed to guide the equitable expansion of BSS through three components: (1) spatially-informed bike-sharing demand prediction at cold-start stations using region representation learning that integrates multimodal geospatial data, (2) comprehensive transit accessibility assessment leveraging our novel weighted Public Transport Accessibility Level (wPTAL) by combining predicted bike-sharing demand with conventional transit accessibility metrics, and (3) strategic recommendations for new bike station placements that consider potential ridership and equity enhancement. Using NYC as a case study, we identify transit accessibility gaps that disproportionately impact low-income and minority communities in historically underserved neighborhoods. Our results show that strategically placing new stations guided by wPTAL notably reduces disparities in transit access related to economic and demographic factors. From our study, we demonstrate that TFA provides practical guidance for urban planners to promote equitable transit and enhance the quality of life in underserved urban communities.
comment: SIGSPATIAL 25
♻ ☆ Real-Time Analysis of Unstructured Data with Machine Learning on Heterogeneous Architectures
As the particle physics community needs higher and higher precisions in order to test our current model of the subatomic world, larger and larger datasets are necessary. With upgrades scheduled for the detectors of colliding-beam experiments around the world, and specifically at the Large Hadron Collider at CERN, more collisions and more complex interactions are expected. This directly implies an increase in data produced and consequently in the computational resources needed to process them. At CERN, the amount of data produced is gargantuan. This is why the data have to be heavily filtered and selected in real time before being permanently stored. This data can then be used to perform physics analyses, in order to expand our current understanding of the universe and improve the Standard Model of physics. This real-time filtering, known as triggering, involves complex processing happening often at frequencies as high as 40 MHz. This thesis contributes to understanding how machine learning models can be efficiently deployed in such environments, in order to maximize throughput and minimize energy consumption. Inevitably, modern hardware designed for such tasks and contemporary algorithms are needed in order to meet the challenges posed by the stringent, high-frequency data rates. In this work, I present our graph neural network-based pipeline, developed for charged particle track reconstruction at the LHCb experiment at CERN. The pipeline was implemented end-to-end inside LHCb's first-level trigger, entirely on GPUs. Its performance was compared against the classical tracking algorithms currently in production at LHCb. The pipeline was also accelerated on the FPGA architecture, and its performance in terms of power consumption and processing speed was compared against the GPU implementation.
comment: PhD thesis, Chapters 8 and 9 include results from work performed in collaboration with Anthony Correia
♻ ☆ Membership Inference Attacks on LLM-based Recommender Systems
Large language models (LLMs) based Recommender Systems (RecSys) can flexibly adapt recommendation systems to different domains. It utilizes in-context learning (ICL), i.e., the prompts, to customize the recommendation functions, which include sensitive historical user-specific item interactions, e.g., implicit feedback like clicked items or explicit product reviews. Such private information may be exposed to novel privacy attack. However, no study has been done on this important issue. We design four membership inference attacks (MIAs), aiming to reveal whether victims' historical interactions have been used by system prompts. They are \emph{direct inquiry, hallucination, similarity, and poisoning attacks}, each of which utilizes the unique features of LLMs or RecSys. We have carefully evaluated them on three LLMs that have been used to develop ICL-LLM RecSys and two well-known RecSys benchmark datasets. The results confirm that the MIA threat on LLM RecSys is realistic: direct inquiry and poisoning attacks showing significantly high attack advantages. We have also analyzed the factors affecting these attacks, such as the number of shots in system prompts and the position of the victim in the shots.
♻ ☆ Flow-based generative models as iterative algorithms in probability space IEEE
Generative AI (GenAI) has revolutionized data-driven modeling by enabling the synthesis of high-dimensional data across various applications, including image generation, language modeling, biomedical signal processing, and anomaly detection. Flow-based generative models provide a powerful framework for capturing complex probability distributions, offering exact likelihood estimation, efficient sampling, and deterministic transformations between distributions. These models leverage invertible mappings governed by Ordinary Differential Equations (ODEs), enabling precise density estimation and likelihood evaluation. This tutorial presents an intuitive mathematical framework for flow-based generative models, formulating them as neural network-based representations of continuous probability densities. We explore key theoretical principles, including the Wasserstein metric, gradient flows, and density evolution governed by ODEs, to establish convergence guarantees and bridge empirical advancements with theoretical insights. By providing a rigorous yet accessible treatment, we aim to equip researchers and practitioners with the necessary tools to effectively apply flow-based generative models in signal processing and machine learning.
comment: IEEE Signal Processing Magazine, Special Issue on The Mathematics of Deep Learning, 2025
♻ ☆ Viability of perturbative expansion for quantum field theories on neurons
Neural Network (NN) architectures that break statistical independence of parameters have been proposed as a new approach for simulating local quantum field theories (QFTs). In the infinite neuron number limit, single-layer NNs can exactly reproduce QFT results. This paper examines the viability of this architecture for perturbative calculations of local QFTs for finite neuron number $N$ using scalar $\phi^4$ theory in $d$ Euclidean dimensions as an example. We find that the renormalized $O(1/N)$ corrections to two- and four-point correlators yield perturbative series which are sensitive to the ultraviolet cut-off and therefore have a weak convergence. We propose a modification to the architecture to improve this convergence and discuss constraints on the parameters of the theory and the scaling of N which allow us to extract accurate field theory results.
comment: Updated references
♻ ☆ M1: Towards Scalable Test-Time Compute with Mamba Reasoning Models
Effective reasoning is crucial to solving complex mathematical problems. Recent large language models (LLMs) have boosted performance by scaling test-time computation through long chain-of-thought reasoning. However, transformer-based models are inherently limited in extending context length due to their quadratic computational complexity and linear memory requirements. In this paper, we introduce a novel hybrid linear RNN reasoning model, M1, built on the Mamba architecture, which allows memory-efficient inference. Our approach leverages a distillation process from existing reasoning models and is further enhanced through RL training. Experimental results on the AIME and MATH benchmarks show that M1 not only outperforms previous linear RNN models but also matches the performance of state-of-the-art Deepseek R1 distilled reasoning models at a similar scale. We also compare our generation speed with a highly performant general purpose inference engine, vLLM, and observe more than a 3x speedup compared to a same size transformer. With throughput speedup, we are able to achieve higher accuracy compared to DeepSeek R1 distilled transformer reasoning models under a fixed generation time budget using self-consistency voting. Overall, we introduce a hybrid Mamba reasoning model and provide a more effective approach to scaling test-time generation using self-consistency or long chain of thought reasoning.
comment: Code is available https://github.com/jxiw/M1
♻ ☆ Group Expectation Policy Optimization for Heterogeneous Reinforcement Learning
As single-center computing approaches power constraints, decentralized training is becoming essential. Reinforcement Learning (RL) post-training enhances Large Language Models (LLMs) but faces challenges in heterogeneous distributed environments due to its tightly-coupled sampling-learning alternation. We propose HeteroRL, an asynchronous RL architecture that decouples rollout sampling from parameter learning, enabling robust deployment across geographically distributed nodes under network delays. We identify that latency-induced KL divergence causes importance sampling failure due to high variance. To address this, we propose Group Expectation Policy Optimization (GEPO), which reduces importance weight variance through a refined sampling mechanism. Theoretically, GEPO achieves exponential variance reduction. Experiments show it maintains superior stability over methods like GRPO, with less than 3% performance degradation under 1800-second delays, demonstrating strong potential for decentralized RL in heterogeneous networks.
♻ ☆ Failure Prediction Is a Better Performance Proxy for Early-Exit Networks Than Calibration
Early-exit models accelerate inference by attaching internal classifiers to intermediate layers of the network, allowing computation to halt once a prediction meets a predefined exit criterion. Most early-exit methods rely on confidence-based exit strategies, which has motivated prior work to calibrate intermediate classifiers in pursuit of improved performance-efficiency trade-offs. In this paper, we argue that calibration metrics can be misleading indicators of multi-exit model performance. Specifically, we present empirical evidence showing that miscalibrated networks can outperform calibrated ones. As an alternative, we propose using failure prediction as a more informative proxy for early-exit model performance. Unlike calibration, failure prediction captures changes in sample rankings and correlates strongly with efficiency gains, offering a more reliable framework for designing and evaluating early-exit models.
♻ ☆ Towards Synthesizing Normative Data for Cognitive Assessments Using Generative Multimodal Large Language Models
Cognitive assessments require normative data as essential benchmarks for evaluating individual performance. Hence, developing new cognitive tests based on novel image stimuli is challenging due to the lack of readily available normative data. Traditional data collection methods are costly, time-consuming, and infrequently updated, limiting their practical utility. Recent advancements in generative multimodal large language models (MLLMs) offer a new approach to generate synthetic normative data from existing cognitive test images. We investigated the feasibility of using MLLMs, specifically GPT-4o and GPT-4o-mini, to synthesize normative textual responses for established image-based cognitive assessments, such as the "Cookie Theft" picture description task. Two distinct prompting strategies-naive prompts with basic instructions and advanced prompts enriched with contextual guidance-were evaluated. Responses were analyzed using embeddings to assess their capacity to distinguish diagnostic groups and demographic variations. Performance metrics included BLEU, ROUGE, BERTScore, and an LLM-as-a-judge evaluation. Advanced prompting strategies produced synthetic responses that more effectively distinguished between diagnostic groups and captured demographic diversity compared to naive prompts. Superior models generated responses exhibiting higher realism and diversity. BERTScore emerged as the most reliable metric for contextual similarity assessment, while BLEU was less effective for evaluating creative outputs. The LLM-as-a-judge approach provided promising preliminary validation results. Our study demonstrates that generative multimodal LLMs, guided by refined prompting methods, can feasibly generate robust synthetic normative data for existing cognitive tests, thereby laying the groundwork for developing novel image-based cognitive assessments without the traditional limitations.
comment: Preprint
♻ ☆ Test-Time Scaling of Diffusion Models via Noise Trajectory Search
The iterative and stochastic nature of diffusion models enables test-time scaling, whereby spending additional compute during denoising generates higher-fidelity samples. Increasing the number of denoising steps is the primary scaling axis, but this yields quickly diminishing returns. Instead optimizing the noise trajectory--the sequence of injected noise vectors--is promising, as the specific noise realizations critically affect sample quality; but this is challenging due to a high-dimensional search space, complex noise-outcome interactions, and costly trajectory evaluations. We address this by first casting diffusion as a Markov Decision Process (MDP) with a terminal reward, showing tree-search methods such as Monte Carlo tree search (MCTS) to be meaningful but impractical. To balance performance and efficiency, we then resort to a relaxation of MDP, where we view denoising as a sequence of independent contextual bandits. This allows us to introduce an $\epsilon$-greedy search algorithm that globally explores at extreme timesteps and locally exploits during the intermediate steps where de-mixing occurs. Experiments on EDM and Stable Diffusion reveal state-of-the-art scores for class-conditioned/text-to-image generation, exceeding baselines by up to $164\%$ and matching/exceeding MCTS performance. To our knowledge, this is the first practical method for test-time noise trajectory optimization of arbitrary (non-differentiable) rewards.
♻ ☆ The Ground Cost for Optimal Transport of Angular Velocity
We revisit the optimal transport problem over angular velocity dynamics given by the controlled Euler equation. The solution of this problem enables stochastic guidance of spin states of a rigid body (e.g., spacecraft) over a hard deadline constraint by transferring a given initial state statistics to a desired terminal state statistics. This is an instance of generalized optimal transport over a nonlinear dynamical system. While prior work has reported existence-uniqueness and numerical solution of this dynamical optimal transport problem, here we present structural results about the equivalent Kantorovich a.k.a. optimal coupling formulation. Specifically, we focus on deriving the ground cost for the associated Kantorovich optimal coupling formulation. The ground cost is equal to the cost of transporting unit amount of mass from a specific realization of the initial or source joint probability measure to a realization of the terminal or target joint probability measure, and determines the Kantorovich formulation. Finding the ground cost leads to solving a structured deterministic nonlinear optimal control problem, which is shown to be amenable to an analysis technique pioneered by Athans et al. We show that such techniques have broader applicability in determining the ground cost (thus Kantorovich formulation) for a class of generalized optimal mass transport problems involving nonlinear dynamics with translated norm-invariant drift.
♻ ☆ MENSA: A Multi-Event Network for Survival Analysis with Trajectory-based Likelihood Estimation
Most existing time-to-event methods focus on either single-event or competing-risk settings, leaving multi-event scenarios relatively underexplored. In many real-world applications, the same patient may experience multiple events that are non-exclusive, and sometimes semi-competing. A common workaround is to train separate single-event models, but this approach fails to exploit dependencies and shared structure across events. To address these limitations, we propose MENSA (Multi-Event Network for Survival Analysis), a deep learning model that jointly models flexible time-to-event distributions for multiple events, whether competing or co-occurring. In addition, we introduce a novel trajectory-based likelihood that captures the temporal ordering between events. Across five benchmark datasets, MENSA consistently improves prediction performance over many state-of-the-art baselines. The source code is available at https://github.com/thecml/mensa.
♻ ☆ Quantum-inspired probability metrics define a complete, universal space for statistical learning
Comparing probability distributions is a core challenge across the natural, social, and computational sciences. Existing methods, such as Maximum Mean Discrepancy (MMD), struggle in high-dimensional and non-compact domains. Here we introduce quantum probability metrics (QPMs), derived by embedding probability measures in the space of quantum states: positive, unit-trace operators on a Hilbert space. This construction extends kernel-based methods and overcomes the incompleteness of MMD on non-compact spaces. Viewed as an integral probability metric (IPM), QPMs have dual functions that uniformly approximate all bounded, uniformly continuous functions on $\mathbb{R}^n$, offering enhanced sensitivity to subtle distributional differences in high dimensions. For empirical distributions, QPMs are readily calculated using eigenvalue methods, with analytic gradients suited for learning and optimization. Although computationally more intensive for large sample sizes ($O(n^3)$ vs. $O(n^2)$), QPMs can significantly improve performance as a drop-in replacement for MMD, as demonstrated in a classic generative modeling task. By combining the rich mathematical framework of quantum mechanics with classical probability theory, this approach lays the foundation for powerful tools to analyze and manipulate probability measures.
comment: 8 pages, 1 figure, 36-page appendix. v2: Corrected typos, matches journal submission
♻ ☆ Optimizing In-Context Learning for Efficient Full Conformal Prediction
Reliable uncertainty quantification is critical for trustworthy AI. Conformal Prediction (CP) provides prediction sets with distribution-free coverage guarantees, but its two main variants face complementary limitations. Split CP (SCP) suffers from data inefficiency due to dataset partitioning, while full CP (FCP) improves data efficiency at the cost of prohibitive retraining complexity. Recent approaches based on meta-learning or in-context learning (ICL) partially mitigate these drawbacks. However, they rely on training procedures not specifically tailored to CP, which may yield large prediction sets. We introduce an efficient FCP framework, termed enhanced ICL-based FCP (E-ICL+FCP), which employs a permutation-invariant Transformer-based ICL model trained with a CP-aware loss. By simulating the multiple retrained models required by FCP without actual retraining, E-ICL+FCP preserves coverage while markedly reducing both inefficiency and computational overhead. Experiments on synthetic and real tasks demonstrate that E-ICL+FCP attains superior efficiency-coverage trade-offs compared to existing SCP and FCP baselines.
comment: 5 pages, 3 figures
♻ ☆ Efficient Virtuoso: A Latent Diffusion Transformer Model for Goal-Conditioned Trajectory Planning
The ability to generate a diverse and plausible distribution of future trajectories is a critical capability for autonomous vehicle planning systems. While recent generative models have shown promise, achieving high fidelity, computational efficiency, and precise control remains a significant challenge. In this paper, we present the Efficient Virtuoso, a conditional latent diffusion model for goal-conditioned trajectory planning. Our approach introduces a novel two-stage normalization pipeline that first scales trajectories to preserve their geometric aspect ratio and then normalizes the resulting PCA latent space to ensure a stable training target. The denoising process is performed efficiently in this low-dimensional latent space by a simple MLP denoiser, which is conditioned on a rich scene context fused by a powerful Transformer-based StateEncoder. We demonstrate that our method achieves state-of-the-art performance on the Waymo Open Motion Dataset, achieving a minimum Average Displacement Error (minADE) of 0.25. Furthermore, through a rigorous ablation study on goal representation, we provide a key insight: while a single endpoint goal can resolve strategic ambiguity, a richer, multi-step sparse route is essential for enabling the precise, high-fidelity tactical execution that mirrors nuanced human driving behavior.
♻ ☆ Pruning Spurious Subgraphs for Graph Out-of-Distribution Generalization
Graph Neural Networks (GNNs) often encounter significant performance degradation under distribution shifts between training and test data, hindering their applicability in real-world scenarios. Recent studies have proposed various methods to address the out-of-distribution generalization challenge, with many methods in the graph domain focusing on directly identifying an invariant subgraph that is predictive of the target label. However, we argue that identifying the edges from the invariant subgraph directly is challenging and error-prone, especially when some spurious edges exhibit strong correlations with the targets. In this paper, we propose PrunE, the first pruning-based graph OOD method that eliminates spurious edges to improve OOD generalizability. By pruning spurious edges, PrunE retains the invariant subgraph more comprehensively, which is critical for OOD generalization. Specifically, PrunE employs two regularization terms to prune spurious edges: 1) graph size constraint to exclude uninformative spurious edges, and 2) $\epsilon$-probability alignment to further suppress the occurrence of spurious edges. Through theoretical analysis and extensive experiments, we show that PrunE achieves superior OOD performance and outperforms previous state-of-the-art methods significantly. Codes are available at: \href{https://github.com/tianyao-aka/PrunE-GraphOOD}{https://github.com/tianyao-aka/PrunE-GraphOOD}.
comment: 26 pages, 8 figures