Computer Vision and Pattern Recognition 196
☆ EventNeuS: 3D Mesh Reconstruction from a Single Event Camera
Event cameras offer a considerable alternative to RGB cameras in many scenarios. While there are recent works on event-based novel-view synthesis, dense 3D mesh reconstruction remains scarcely explored and existing event-based techniques are severely limited in their 3D reconstruction accuracy. To address this limitation, we present EventNeuS, a self-supervised neural model for learning 3D representations from monocular colour event streams. Our approach, for the first time, combines 3D signed distance function and density field learning with event-based supervision. Furthermore, we introduce spherical harmonics encodings into our model for enhanced handling of view-dependent effects. EventNeuS outperforms existing approaches by a significant margin, achieving 34% lower Chamfer distance and 31% lower mean absolute error on average compared to the best previous method.
comment: 13 pages, 10 figures, 3 tables; project page: https://4dqv.mpi-inf.mpg.de/EventNeuS/
☆ PrevizWhiz: Combining Rough 3D Scenes and 2D Video to Guide Generative Video Previsualization
In pre-production, filmmakers and 3D animation experts must rapidly prototype ideas to explore a film's possibilities before fullscale production, yet conventional approaches involve trade-offs in efficiency and expressiveness. Hand-drawn storyboards often lack spatial precision needed for complex cinematography, while 3D previsualization demands expertise and high-quality rigged assets. To address this gap, we present PrevizWhiz, a system that leverages rough 3D scenes in combination with generative image and video models to create stylized video previews. The workflow integrates frame-level image restyling with adjustable resemblance, time-based editing through motion paths or external video inputs, and refinement into high-fidelity video clips. A study with filmmakers demonstrates that our system lowers technical barriers for film-makers, accelerates creative iteration, and effectively bridges the communication gap, while also surfacing challenges of continuity, authorship, and ethical consideration in AI-assisted filmmaking.
comment: 21 pages, 13 figures; accepted and to appear at CHI 2026
☆ AutoFigure: Generating and Refining Publication-Ready Scientific Illustrations ICLR 2026
Minjun Zhu, Zhen Lin, Yixuan Weng, Panzhong Lu, Qiujie Xie, Yifan Wei, Sifan Liu, Qiyao Sun, Yue Zhang
High-quality scientific illustrations are crucial for effectively communicating complex scientific and technical concepts, yet their manual creation remains a well-recognized bottleneck in both academia and industry. We present FigureBench, the first large-scale benchmark for generating scientific illustrations from long-form scientific texts. It contains 3,300 high-quality scientific text-figure pairs, covering diverse text-to-illustration tasks from scientific papers, surveys, blogs, and textbooks. Moreover, we propose AutoFigure, the first agentic framework that automatically generates high-quality scientific illustrations based on long-form scientific text. Specifically, before rendering the final result, AutoFigure engages in extensive thinking, recombination, and validation to produce a layout that is both structurally sound and aesthetically refined, outputting a scientific illustration that achieves both structural completeness and aesthetic appeal. Leveraging the high-quality data from FigureBench, we conduct extensive experiments to test the performance of AutoFigure against various baseline methods. The results demonstrate that AutoFigure consistently surpasses all baseline methods, producing publication-ready scientific illustrations. The code, dataset and huggingface space are released in https://github.com/ResearAI/AutoFigure.
comment: Accepted at the ICLR 2026
☆ Continuous Control of Editing Models via Adaptive-Origin Guidance
Diffusion-based editing models have emerged as a powerful tool for semantic image and video manipulation. However, existing models lack a mechanism for smoothly controlling the intensity of text-guided edits. In standard text-conditioned generation, Classifier-Free Guidance (CFG) impacts prompt adherence, suggesting it as a potential control for edit intensity in editing models. However, we show that scaling CFG in these models does not produce a smooth transition between the input and the edited result. We attribute this behavior to the unconditional prediction, which serves as the guidance origin and dominates the generation at low guidance scales, while representing an arbitrary manipulation of the input content. To enable continuous control, we introduce Adaptive-Origin Guidance (AdaOr), a method that adjusts this standard guidance origin with an identity-conditioned adaptive origin, using an identity instruction corresponding to the identity manipulation. By interpolating this identity prediction with the standard unconditional prediction according to the edit strength, we ensure a continuous transition from the input to the edited result. We evaluate our method on image and video editing tasks, demonstrating that it provides smoother and more consistent control compared to current slider-based editing approaches. Our method incorporates an identity instruction into the standard training framework, enabling fine-grained control at inference time without per-edit procedure or reliance on specialized datasets.
comment: Project page at https://adaor-paper.github.io/
☆ Deep-learning-based pan-phenomic data reveals the explosive evolution of avian visual disparity
The evolution of biological morphology is critical for understanding the diversity of the natural world, yet traditional analyses often involve subjective biases in the selection and coding of morphological traits. This study employs deep learning techniques, utilising a ResNet34 model capable of recognising over 10,000 bird species, to explore avian morphological evolution. We extract weights from the model's final fully connected (fc) layer and investigate the semantic alignment between the high-dimensional embedding space learned by the model and biological phenotypes. The results demonstrate that the high-dimensional embedding space encodes phenotypic convergence. Subsequently, we assess the morphological disparity among various taxa and evaluate the association between morphological disparity and species richness, demonstrating that species richness is the primary driver of morphospace expansion. Moreover, the disparity-through-time analysis reveals a visual "early burst" after the K-Pg extinction.
While mainly aimed at evolutionary analysis, this study also provides insights into the interpretability of Deep Neural Networks. We demonstrate that hierarchical semantic structures (biological taxonomy) emerged in the high-dimensional embedding space despite being trained on flat labels. Furthermore, through adversarial examples, we provide evidence that our model in this task can overcome texture bias and learn holistic shape representations (body plans), challenging the prevailing view that CNNs rely primarily on local textures.
comment: Readers from the field of computer science may be interested in section 2.1, 2.2, 3.1, 4.1, 4.2. These sections discussed the interpretability and representation learning, especially the texture vs shape problem, highlighting our model's ability of overcoming the texture biases and capturing overall shape features. (Although they're put here to prove the biological validity of the model.)
☆ Fast-Slow Efficient Training for Multimodal Large Language Models via Visual Token Pruning
Multimodal Large Language Models (MLLMs) suffer from severe training inefficiency issue, which is associated with their massive model sizes and visual token numbers. Existing efforts in efficient training focus on reducing model sizes or trainable parameters. Inspired by the success of Visual Token Pruning (VTP) in improving inference efficiency, we are exploring another substantial research direction for efficient training by reducing visual tokens. However, applying VTP at the training stage results in a training-inference mismatch: pruning-trained models perform poorly when inferring on non-pruned full visual token sequences. To close this gap, we propose DualSpeed, a fast-slow framework for efficient training of MLLMs. The fast-mode is the primary mode, which incorporates existing VTP methods as plugins to reduce visual tokens, along with a mode isolator to isolate the model's behaviors. The slow-mode is the auxiliary mode, where the model is trained on full visual sequences to retain training-inference consistency. To boost its training, it further leverages self-distillation to learn from the sufficiently trained fast-mode. Together, DualSpeed can achieve both training efficiency and non-degraded performance. Experiments show DualSpeed accelerates the training of LLaVA-1.5 by 2.1$\times$ and LLaVA-NeXT by 4.0$\times$, retaining over 99% performance. Code: https://github.com/dingkun-zhang/DualSpeed
☆ Progressive Checkerboards for Autoregressive Multiscale Image Generation
A key challenge in autoregressive image generation is to efficiently sample independent locations in parallel, while still modeling mutual dependencies with serial conditioning. Some recent works have addressed this by conditioning between scales in a multiscale pyramid. Others have looked at parallelizing samples in a single image using regular partitions or randomized orders. In this work we examine a flexible, fixed ordering based on progressive checkerboards for multiscale autoregressive image generation. Our ordering draws samples in parallel from evenly spaced regions at each scale, maintaining full balance in all levels of a quadtree subdivision at each step. This enables effective conditioning both between and within scales. Intriguingly, we find evidence that in our balanced setting, a wide range of scale-up factors lead to similar results, so long as the total number of serial steps is constant. On class-conditional ImageNet, our method achieves competitive performance compared to recent state-of-the-art autoregressive systems with like model capacity, using fewer sampling steps.
☆ FullStack-Agent: Enhancing Agentic Full-Stack Web Coding via Development-Oriented Testing and Repository Back-Translation
Assisting non-expert users to develop complex interactive websites has become a popular task for LLM-powered code agents. However, existing code agents tend to only generate frontend web pages, masking the lack of real full-stack data processing and storage with fancy visual effects. Notably, constructing production-level full-stack web applications is far more challenging than only generating frontend web pages, demanding careful control of data flow, comprehensive understanding of constantly updating packages and dependencies, and accurate localization of obscure bugs in the codebase. To address these difficulties, we introduce FullStack-Agent, a unified agent system for full-stack agentic coding that consists of three parts: (1) FullStack-Dev, a multi-agent framework with strong planning, code editing, codebase navigation, and bug localization abilities. (2) FullStack-Learn, an innovative data-scaling and self-improving method that back-translates crawled and synthesized website repositories to improve the backbone LLM of FullStack-Dev. (3) FullStack-Bench, a comprehensive benchmark that systematically tests the frontend, backend and database functionalities of the generated website. Our FullStack-Dev outperforms the previous state-of-the-art method by 8.7%, 38.2%, and 15.9% on the frontend, backend, and database test cases respectively. Additionally, FullStack-Learn raises the performance of a 30B model by 9.7%, 9.5%, and 2.8% on the three sets of test cases through self-improvement, demonstrating the effectiveness of our approach. The code is released at https://github.com/mnluzimu/FullStack-Agent.
☆ 3D-Aware Implicit Motion Control for View-Adaptive Human Video Generation
Existing methods for human motion control in video generation typically rely on either 2D poses or explicit 3D parametric models (e.g., SMPL) as control signals. However, 2D poses rigidly bind motion to the driving viewpoint, precluding novel-view synthesis. Explicit 3D models, though structurally informative, suffer from inherent inaccuracies (e.g., depth ambiguity and inaccurate dynamics) which, when used as a strong constraint, override the powerful intrinsic 3D awareness of large-scale video generators. In this work, we revisit motion control from a 3D-aware perspective, advocating for an implicit, view-agnostic motion representation that naturally aligns with the generator's spatial priors rather than depending on externally reconstructed constraints. We introduce 3DiMo, which jointly trains a motion encoder with a pretrained video generator to distill driving frames into compact, view-agnostic motion tokens, injected semantically via cross-attention. To foster 3D awareness, we train with view-rich supervision (i.e., single-view, multi-view, and moving-camera videos), forcing motion consistency across diverse viewpoints. Additionally, we use auxiliary geometric supervision that leverages SMPL only for early initialization and is annealed to zero, enabling the model to transition from external 3D guidance to learning genuine 3D spatial motion understanding from the data and the generator's priors. Experiments confirm that 3DiMo faithfully reproduces driving motions with flexible, text-driven camera control, significantly surpassing existing methods in both motion fidelity and visual quality.
comment: Project Page: https://hjrphoebus.github.io/3DiMo/
☆ BridgeV2W: Bridging Video Generation Models to Embodied World Models via Embodiment Masks
Yixiang Chen, Peiyan Li, Jiabing Yang, Keji He, Xiangnan Wu, Yuan Xu, Kai Wang, Jing Liu, Nianfeng Liu, Yan Huang, Liang Wang
Embodied world models have emerged as a promising paradigm in robotics, most of which leverage large-scale Internet videos or pretrained video generation models to enrich visual and motion priors. However, they still face key challenges: a misalignment between coordinate-space actions and pixel-space videos, sensitivity to camera viewpoint, and non-unified architectures across embodiments. To this end, we present BridgeV2W, which converts coordinate-space actions into pixel-aligned embodiment masks rendered from the URDF and camera parameters. These masks are then injected into a pretrained video generation model via a ControlNet-style pathway, which aligns the action control signals with predicted videos, adds view-specific conditioning to accommodate camera viewpoints, and yields a unified world model architecture across embodiments. To mitigate overfitting to static backgrounds, BridgeV2W further introduces a flow-based motion loss that focuses on learning dynamic and task-relevant regions. Experiments on single-arm (DROID) and dual-arm (AgiBot-G1) datasets, covering diverse and challenging conditions with unseen viewpoints and scenes, show that BridgeV2W improves video generation quality compared to prior state-of-the-art methods. We further demonstrate the potential of BridgeV2W on downstream real-world tasks, including policy evaluation and goal-conditioned planning. More results can be found on our project website at https://BridgeV2W.github.io .
☆ From Pre- to Intra-operative MRI: Predicting Brain Shift in Temporal Lobe Resection for Epilepsy Surgery
Jingjing Peng, Giorgio Fiore, Yang Liu, Ksenia Ellum, Debayan Daspupta, Keyoumars Ashkan, Andrew McEvoy, Anna Miserocchi, Sebastien Ourselin, John Duncan, Alejandro Granados
Introduction: In neurosurgery, image-guided Neurosurgery Systems (IGNS) highly rely on preoperative brain magnetic resonance images (MRI) to assist surgeons in locating surgical targets and determining surgical paths. However, brain shift invalidates the preoperative MRI after dural opening. Updated intraoperative brain MRI with brain shift compensation is crucial for enhancing the precision of neuronavigation systems and ensuring the optimal outcome of surgical interventions. Methodology: We propose NeuralShift, a U-Net-based model that predicts brain shift entirely from pre-operative MRI for patients undergoing temporal lobe resection. We evaluated our results using Target Registration Errors (TREs) computed on anatomical landmarks located on the resection side and along the midline, and DICE scores comparing predicted intraoperative masks with masks derived from intraoperative MRI. Results: Our experimental results show that our model can predict the global deformation of the brain (DICE of 0.97) with accurate local displacements (achieve landmark TRE as low as 1.12 mm), compensating for large brain shifts during temporal lobe removal neurosurgery. Conclusion: Our proposed model is capable of predicting the global deformation of the brain during temporal lobe resection using only preoperative images, providing potential opportunities to the surgical team to increase safety and efficiency of neurosurgery and better outcomes to patients. Our contributions will be publicly available after acceptance in https://github.com/SurgicalDataScienceKCL/NeuralShift.
☆ QVLA: Not All Channels Are Equal in Vision-Language-Action Model's Quantization ICLR2026
The advent of Vision-Language-Action (VLA) models represents a significant leap for embodied intelligence, yet their immense computational demands critically hinder deployment on resource-constrained robotic platforms. Intuitively, low-bit quantization is a prevalent and preferred technique for large-scale model compression. However, we find that a systematic analysis of VLA model's quantization is fundamentally lacking. We argue that naively applying uniform-bit quantization from Large Language Models (LLMs) to robotics is flawed, as these methods prioritize passive data fidelity while ignoring how minor action deviations compound into catastrophic task failures. To bridge this gap, we introduce QVLA, the first action-centric quantization framework specifically designed for embodied control. In a sharp departure from the rigid, uniform-bit quantization of LLM-based methods, QVLA introduces a highly granular, channel-wise bit allocation strategy. Its core mechanism is to directly measure the final action-space sensitivity when quantizing each individual channel to various bit-widths. This process yields a precise, per-channel importance metric that guides a global optimization, which elegantly unifies quantization and pruning (0-bit) into a single, cohesive framework. Extensive evaluations on different baselines demonstrate the superiority of our approach. In the LIBERO, the quantization version of OpenVLA-OFT with our method requires only 29.2% of the original model's VRAM while maintaining 98.9% of its original performance and achieving a 1.49x speedup. This translates to a 22.6% performance improvement over the LLM-derived method SmoothQuant. Our work establishes a new, principled foundation for compressing VLA models in robotics, paving the way for deploying powerful, large-scale models on real-world hardware. Code will be released.
comment: ICLR2026
☆ FOVI: A biologically-inspired foveated interface for deep vision models
Human vision is foveated, with variable resolution peaking at the center of a large field of view; this reflects an efficient trade-off for active sensing, allowing eye-movements to bring different parts of the world into focus with other parts of the world in context. In contrast, most computer vision systems encode the visual world at a uniform resolution, raising challenges for processing full-field high-resolution images efficiently. We propose a foveated vision interface (FOVI) based on the human retina and primary visual cortex, that reformats a variable-resolution retina-like sensor array into a uniformly dense, V1-like sensor manifold. Receptive fields are defined as k-nearest-neighborhoods (kNNs) on the sensor manifold, enabling kNN-convolution via a novel kernel mapping technique. We demonstrate two use cases: (1) an end-to-end kNN-convolutional architecture, and (2) a foveated adaptation of the foundational DINOv3 ViT model, leveraging low-rank adaptation (LoRA). These models provide competitive performance at a fraction of the computational cost of non-foveated baselines, opening pathways for efficient and scalable active sensing for high-resolution egocentric vision. Code and pre-trained models are available at https://github.com/nblauch/fovi and https://huggingface.co/fovi-pytorch.
☆ RAWDet-7: A Multi-Scenario Benchmark for Object Detection and Description on Quantized RAW Images
Most vision models are trained on RGB images processed through ISP pipelines optimized for human perception, which can discard sensor-level information useful for machine reasoning. RAW images preserve unprocessed scene data, enabling models to leverage richer cues for both object detection and object description, capturing fine-grained details, spatial relationships, and contextual information often lost in processed images. To support research in this domain, we introduce RAWDet-7, a large-scale dataset of ~25k training and 7.6k test RAW images collected across diverse cameras, lighting conditions, and environments, densely annotated for seven object categories following MS-COCO and LVIS conventions. In addition, we provide object-level descriptions derived from the corresponding high-resolution sRGB images, facilitating the study of object-level information preservation under RAW image processing and low-bit quantization. The dataset allows evaluation under simulated 4-bit, 6-bit, and 8-bit quantization, reflecting realistic sensor constraints, and provides a benchmark for studying detection performance, description quality & detail, and generalization in low-bit RAW image processing. Dataset & code upon acceptance.
comment: *Equal Contribution
☆ Test-Time Conditioning with Representation-Aligned Visual Features
While representation alignment with self-supervised models has been shown to improve diffusion model training, its potential for enhancing inference-time conditioning remains largely unexplored. We introduce Representation-Aligned Guidance (REPA-G), a framework that leverages these aligned representations, with rich semantic properties, to enable test-time conditioning from features in generation. By optimizing a similarity objective (the potential) at inference, we steer the denoising process toward a conditioned representation extracted from a pre-trained feature extractor. Our method provides versatile control at multiple scales, ranging from fine-grained texture matching via single patches to broad semantic guidance using global image feature tokens. We further extend this to multi-concept composition, allowing for the faithful combination of distinct concepts. REPA-G operates entirely at inference time, offering a flexible and precise alternative to often ambiguous text prompts or coarse class labels. We theoretically justify how this guidance enables sampling from the potential-induced tilted distribution. Quantitative results on ImageNet and COCO demonstrate that our approach achieves high-quality, diverse generations. Code is available at https://github.com/valeoai/REPA-G.
☆ Zero-shot large vision-language model prompting for automated bone identification in paleoradiology x-ray archives
Owen Dong, Lily Gao, Manish Kota, Bennett A. Landmana, Jelena Bekvalac, Gaynor Western, Katherine D. Van Schaik
Paleoradiology, the use of modern imaging technologies to study archaeological and anthropological remains, offers new windows on millennial scale patterns of human health. Unfortunately, the radiographs collected during field campaigns are heterogeneous: bones are disarticulated, positioning is ad hoc, and laterality markers are often absent. Additionally, factors such as age at death, age of bone, sex, and imaging equipment introduce high variability. Thus, content navigation, such as identifying a subset of images with a specific projection view, can be time consuming and difficult, making efficient triaging a bottleneck for expert analysis. We report a zero shot prompting strategy that leverages a state of the art Large Vision Language Model (LVLM) to automatically identify the main bone, projection view, and laterality in such images. Our pipeline converts raw DICOM files to bone windowed PNGs, submits them to the LVLM with a carefully engineered prompt, and receives structured JSON outputs, which are extracted and formatted onto a spreadsheet in preparation for validation. On a random sample of 100 images reviewed by an expert board certified paleoradiologist, the system achieved 92% main bone accuracy, 80% projection view accuracy, and 100% laterality accuracy, with low or medium confidence flags for ambiguous cases. These results suggest that LVLMs can substantially accelerate code word development for large paleoradiology datasets, allowing for efficient content navigation in future anthropology workflows.
☆ See-through: Single-image Layer Decomposition for Anime Characters
Jian Lin, Chengze Li, Haoyun Qin, Kwun Wang Chan, Yanghua Jin, Hanyuan Liu, Stephen Chun Wang Choy, Xueting Liu
We introduce a framework that automates the transformation of static anime illustrations into manipulatable 2.5D models. Current professional workflows require tedious manual segmentation and the artistic ``hallucination'' of occluded regions to enable motion. Our approach overcomes this by decomposing a single image into fully inpainted, semantically distinct layers with inferred drawing orders. To address the scarcity of training data, we introduce a scalable engine that bootstraps high-quality supervision from commercial Live2D models, capturing pixel-perfect semantics and hidden geometry. Our methodology couples a diffusion-based Body Part Consistency Module, which enforces global geometric coherence, with a pixel-level pseudo-depth inference mechanism. This combination resolves the intricate stratification of anime characters, e.g., interleaving hair strands, allowing for dynamic layer reconstruction. We demonstrate that our approach yields high-fidelity, manipulatable models suitable for professional, real-time animation applications.
comment: 23 pages, 20 figures, preprint version only
☆ LIVE: Long-horizon Interactive Video World Modeling
Autoregressive video world models predict future visual observations conditioned on actions. While effective over short horizons, these models often struggle with long-horizon generation, as small prediction errors accumulate over time. Prior methods alleviate this by introducing pre-trained teacher models and sequence-level distribution matching, which incur additional computational cost and fail to prevent error propagation beyond the training horizon. In this work, we propose LIVE, a Long-horizon Interactive Video world modEl that enforces bounded error accumulation via a novel cycle-consistency objective, thereby eliminating the need for teacher-based distillation. Specifically, LIVE first performs a forward rollout from ground-truth frames and then applies a reverse generation process to reconstruct the initial state. The diffusion loss is subsequently computed on the reconstructed terminal state, providing an explicit constraint on long-horizon error propagation. Moreover, we provide an unified view that encompasses different approaches and introduce progressive training curriculum to stabilize training. Experiments demonstrate that LIVE achieves state-of-the-art performance on long-horizon benchmarks, generating stable, high-quality videos far beyond training rollout lengths.
comment: 18 pages, 22 figures
☆ Edge-Optimized Vision-Language Models for Underground Infrastructure Assessment
Autonomous inspection of underground infrastructure, such as sewer and culvert systems, is critical to public safety and urban sustainability. Although robotic platforms equipped with visual sensors can efficiently detect structural deficiencies, the automated generation of human-readable summaries from these detections remains a significant challenge, especially on resource-constrained edge devices. This paper presents a novel two-stage pipeline for end-to-end summarization of underground deficiencies, combining our lightweight RAPID-SCAN segmentation model with a fine-tuned Vision-Language Model (VLM) deployed on an edge computing platform. The first stage employs RAPID-SCAN (Resource-Aware Pipeline Inspection and Defect Segmentation using Compact Adaptive Network), achieving 0.834 F1-score with only 0.64M parameters for efficient defect segmentation. The second stage utilizes a fine-tuned Phi-3.5 VLM that generates concise, domain-specific summaries in natural language from the segmentation outputs. We introduce a curated dataset of inspection images with manually verified descriptions for VLM fine-tuning and evaluation. To enable real-time performance, we employ post-training quantization with hardware-specific optimization, achieving significant reductions in model size and inference latency without compromising summarization quality. We deploy and evaluate our complete pipeline on a mobile robotic platform, demonstrating its effectiveness in real-world inspection scenarios. Our results show the potential of edge-deployable integrated AI systems to bridge the gap between automated defect detection and actionable insights for infrastructure maintenance, paving the way for more scalable and autonomous inspection solutions.
☆ RegionReasoner: Region-Grounded Multi-Round Visual Reasoning ICLR 2026
Large vision-language models have achieved remarkable progress in visual reasoning, yet most existing systems rely on single-step or text-only reasoning, limiting their ability to iteratively refine understanding across multiple visual contexts. To address this limitation, we introduce a new multi-round visual reasoning benchmark with training and test sets spanning both detection and segmentation tasks, enabling systematic evaluation under iterative reasoning scenarios. We further propose RegionReasoner, a reinforcement learning framework that enforces grounded reasoning by requiring each reasoning trace to explicitly cite the corresponding reference bounding boxes, while maintaining semantic coherence via a global-local consistency reward. This reward extracts key objects and nouns from both global scene captions and region-level captions, aligning them with the reasoning trace to ensure consistency across reasoning steps. RegionReasoner is optimized with structured rewards combining grounding fidelity and global-local semantic alignment. Experiments on detection and segmentation tasks show that RegionReasoner-7B, together with our newly introduced benchmark RegionDial-Bench, considerably improves multi-round reasoning accuracy, spatial grounding precision, and global-local consistency, establishing a strong baseline for this emerging research direction.
comment: Accepted by ICLR 2026
☆ Referring Industrial Anomaly Segmentation
Industrial Anomaly Detection (IAD) is vital for manufacturing, yet traditional methods face significant challenges: unsupervised approaches yield rough localizations requiring manual thresholds, while supervised methods overfit due to scarce, imbalanced data. Both suffer from the "One Anomaly Class, One Model" limitation. To address this, we propose Referring Industrial Anomaly Segmentation (RIAS), a paradigm leveraging language to guide detection. RIAS generates precise masks from text descriptions without manual thresholds and uses universal prompts to detect diverse anomalies with a single model. We introduce the MVTec-Ref dataset to support this, designed with diverse referring expressions and focusing on anomaly patterns, notably with 95% small anomalies. We also propose the Dual Query Token with Mask Group Transformer (DQFormer) benchmark, enhanced by Language-Gated Multi-Level Aggregation (LMA) to improve multi-scale segmentation. Unlike traditional methods using redundant queries, DQFormer employs only "Anomaly" and "Background" tokens for efficient visual-textual integration. Experiments demonstrate RIAS's effectiveness in advancing IAD toward open-set capabilities. Code: https://github.com/swagger-coder/RIAS-MVTec-Ref.
☆ Efficient Sequential Neural Network with Spatial-Temporal Attention and Linear LSTM for Robust Lane Detection Using Multi-Frame Images IEEE
Lane detection is a crucial perception task for all levels of automated vehicles (AVs) and Advanced Driver Assistance Systems, particularly in mixed-traffic environments where AVs must interact with human-driven vehicles (HDVs) and challenging traffic scenarios. Current methods lack versatility in delivering accurate, robust, and real-time compatible lane detection, especially vision-based methods often neglect critical regions of the image and their spatial-temporal (ST) salience, leading to poor performance in difficult circumstances such as serious occlusion and dazzle lighting. This study introduces a novel sequential neural network model with a spatial-temporal attention mechanism to focus on key features of lane lines and exploit salient ST correlations among continuous image frames. The proposed model, built on a standard encoder-decoder structure and common neural network backbones, is trained and evaluated on three large-scale open-source datasets. Extensive experiments demonstrate the strength and robustness of the proposed model, outperforming state-of-the-art methods in various testing scenarios. Furthermore, with the ST attention mechanism, the developed sequential neural network models exhibit fewer parameters and reduced Multiply-Accumulate Operations (MACs) compared to baseline sequential models, highlighting their computational efficiency. Relevant data, code, and models are released at https://doi.org/10.4121/4619cab6-ae4a-40d5-af77-582a77f3d821.
comment: 14 pages, 9 figures, under review by IEEE T-ITS
☆ MVP-LAM: Learning Action-Centric Latent Action via Cross-Viewpoint Reconstruction
Learning \emph{latent actions} from diverse human videos enables scaling robot learning beyond embodiment-specific robot datasets, and these latent actions have recently been used as pseudo-action labels for vision-language-action (VLA) model pretraining. To make VLA pretraining effective, latent actions should contain information about the underlying agent's actions despite the absence of ground-truth labels. We propose \textbf{M}ulti-\textbf{V}iew\textbf{P}oint \textbf{L}atent \textbf{A}ction \textbf{M}odel (\textbf{MVP-LAM}), which learns discrete latent actions that are highly informative about ground-truth actions from time-synchronized multi-view videos. MVP-LAM trains latent actions with a \emph{cross-viewpoint reconstruction} objective, so that a latent action inferred from one view must explain the future in another view, reducing reliance on viewpoint-specific cues. On Bridge V2, MVP-LAM produces more action-centric latent actions, achieving higher mutual information with ground-truth actions and improved action prediction, including under out-of-distribution evaluation. Finally, pretraining VLAs with MVP-LAM latent actions improves downstream manipulation performance on the SIMPLER and LIBERO-Long benchmarks.
☆ MM-SCALE: Grounded Multimodal Moral Reasoning via Scalar Judgment and Listwise Alignment
Eunkyu Park, Wesley Hanwen Deng, Cheyon Jin, Matheus Kunzler Maldaner, Jordan Wheeler, Jason I. Hong, Hong Shen, Adam Perer, Ken Holstein, Motahhare Eslami, Gunhee Kim
Vision-Language Models (VLMs) continue to struggle to make morally salient judgments in multimodal and socially ambiguous contexts. Prior works typically rely on binary or pairwise supervision, which often fail to capture the continuous and pluralistic nature of human moral reasoning. We present MM-SCALE (Multimodal Moral Scale), a large-scale dataset for aligning VLMs with human moral preferences through 5-point scalar ratings and explicit modality grounding. Each image-scenario pair is annotated with moral acceptability scores and grounded reasoning labels by humans using an interface we tailored for data collection, enabling listwise preference optimization over ranked scenario sets. By moving from discrete to scalar supervision, our framework provides richer alignment signals and finer calibration of multimodal moral reasoning. Experiments show that VLMs fine-tuned on MM-SCALE achieve higher ranking fidelity and more stable safety calibration than those trained with binary signals.
☆ SPWOOD: Sparse Partial Weakly-Supervised Oriented Object Detection ICLR 2026
A consistent trend throughout the research of oriented object detection has been the pursuit of maintaining comparable performance with fewer and weaker annotations. This is particularly crucial in the remote sensing domain, where the dense object distribution and a wide variety of categories contribute to prohibitively high costs. Based on the supervision level, existing oriented object detection algorithms can be broadly grouped into fully supervised, semi-supervised, and weakly supervised methods. Within the scope of this work, we further categorize them to include sparsely supervised and partially weakly-supervised methods. To address the challenges of large-scale labeling, we introduce the first Sparse Partial Weakly-Supervised Oriented Object Detection framework, designed to efficiently leverage only a few sparse weakly-labeled data and plenty of unlabeled data. Our framework incorporates three key innovations: (1) We design a Sparse-annotation-Orientation-and-Scale-aware Student (SOS-Student) model to separate unlabeled objects from the background in a sparsely-labeled setting, and learn orientation and scale information from orientation-agnostic or scale-agnostic weak annotations. (2) We construct a novel Multi-level Pseudo-label Filtering strategy that leverages the distribution of model predictions, which is informed by the model's multi-layer predictions. (3) We propose a unique sparse partitioning approach, ensuring equal treatment for each category. Extensive experiments on the DOTA and DIOR datasets show that our framework achieves a significant performance gain over traditional oriented object detection methods mentioned above, offering a highly cost-effective solution. Our code is publicly available at https://github.com/VisionXLab/SPWOOD.
comment: The Fourteenth International Conference on Learning Representations (ICLR 2026)
☆ Multi-Objective Optimization for Synthetic-to-Real Style Transfer
Semantic segmentation networks require large amounts of pixel-level annotated data, which are costly to obtain for real-world images. Computer graphics engines can generate synthetic images alongside their ground-truth annotations. However, models trained on such images can perform poorly on real images due to the domain gap between real and synthetic images. Style transfer methods can reduce this difference by applying a realistic style to synthetic images. Choosing effective data transformations and their sequence is difficult due to the large combinatorial search space of style transfer operators. Using multi-objective genetic algorithms, we optimize pipelines to balance structural coherence and style similarity to target domains. We study the use of paired-image metrics on individual image samples during evolution to enable rapid pipeline evaluation, as opposed to standard distributional metrics that require the generation of many images. After optimization, we evaluate the resulting Pareto front using distributional metrics and segmentation performance. We apply this approach to standard datasets in synthetic-to-real domain adaptation: from the video game GTA5 to real image datasets Cityscapes and ACDC, focusing on adverse conditions. Results demonstrate that evolutionary algorithms can propose diverse augmentation pipelines adapted to different objectives. The contribution of this work is the formulation of style transfer as a sequencing problem suitable for evolutionary optimization and the study of efficient metrics that enable feasible search in this space. The source code is available at: https://github.com/echigot/MOOSS.
comment: Accepted in International Conference on the Applications of Evolutionary Computation (Part of EvoStar), April 2026 (EvoApplications 2026)
☆ Quasi-multimodal-based pathophysiological feature learning for retinal disease diagnosis
Retinal diseases spanning a broad spectrum can be effectively identified and diagnosed using complementary signals from multimodal data. However, multimodal diagnosis in ophthalmic practice is typically challenged in terms of data heterogeneity, potential invasiveness, registration complexity, and so on. As such, a unified framework that integrates multimodal data synthesis and fusion is proposed for retinal disease classification and grading. Specifically, the synthesized multimodal data incorporates fundus fluorescein angiography (FFA), multispectral imaging (MSI), and saliency maps that emphasize latent lesions as well as optic disc/cup regions. Parallel models are independently trained to learn modality-specific representations that capture cross-pathophysiological signatures. These features are then adaptively calibrated within and across modalities to perform information pruning and flexible integration according to downstream tasks. The proposed learning system is thoroughly interpreted through visualizations in both image and feature spaces. Extensive experiments on two public datasets demonstrated the superiority of our approach over state-of-the-art ones in the tasks of multi-label classification (F1-score: 0.683, AUC: 0.953) and diabetic retinopathy grading (Accuracy:0.842, Kappa: 0.861). This work not only enhances the accuracy and efficiency of retinal disease screening but also offers a scalable framework for data augmentation across various medical imaging modalities.
☆ KTV: Keyframes and Key Tokens Selection for Efficient Training-Free Video LLMs
Training-free video understanding leverages the strong image comprehension capabilities of pre-trained vision language models (VLMs) by treating a video as a sequence of static frames, thus obviating the need for costly video-specific training. However, this paradigm often suffers from severe visual redundancy and high computational overhead, especially when processing long videos. Crucially, existing keyframe selection strategies, especially those based on CLIP similarity, are prone to biases and may inadvertently overlook critical frames, resulting in suboptimal video comprehension. To address these significant challenges, we propose \textbf{KTV}, a novel two-stage framework for efficient and effective training-free video understanding. In the first stage, KTV performs question-agnostic keyframe selection by clustering frame-level visual features, yielding a compact, diverse, and representative subset of frames that mitigates temporal redundancy. In the second stage, KTV applies key visual token selection, pruning redundant or less informative tokens from each selected keyframe based on token importance and redundancy, which significantly reduces the number of tokens fed into the LLM. Extensive experiments on the Multiple-Choice VideoQA task demonstrate that KTV outperforms state-of-the-art training-free baselines while using significantly fewer visual tokens, \emph{e.g.}, only 504 visual tokens for a 60-min video with 10800 frames, achieving $44.8\%$ accuracy on the MLVU-Test benchmark. In particular, KTV also exceeds several training-based approaches on certain benchmarks.
★ A Lightweight Library for Energy-Based Joint-Embedding Predictive Architectures
Basile Terver, Randall Balestriero, Megi Dervishi, David Fan, Quentin Garrido, Tushar Nagarajan, Koustuv Sinha, Wancong Zhang, Mike Rabbat, Yann LeCun, Amir Bar
We present EB-JEPA, an open-source library for learning representations and world models using Joint-Embedding Predictive Architectures (JEPAs). JEPAs learn to predict in representation space rather than pixel space, avoiding the pitfalls of generative modeling while capturing semantically meaningful features suitable for downstream tasks. Our library provides modular, self-contained implementations that illustrate how representation learning techniques developed for image-level self-supervised learning can transfer to video, where temporal dynamics add complexity, and ultimately to action-conditioned world models, where the model must additionally learn to predict the effects of control inputs. Each example is designed for single-GPU training within a few hours, making energy-based self-supervised learning accessible for research and education. We provide ablations of JEA components on CIFAR-10. Probing these representations yields 91% accuracy, indicating that the model learns useful features. Extending to video, we include a multi-step prediction example on Moving MNIST that demonstrates how the same principles scale to temporal modeling. Finally, we show how these representations can drive action-conditioned world models, achieving a 97% planning success rate on the Two Rooms navigation task. Comprehensive ablations reveal the critical importance of each regularization component for preventing representation collapse. Code is available at https://github.com/facebookresearch/eb_jepa.
☆ Refer-Agent: A Collaborative Multi-Agent System with Reasoning and Reflection for Referring Video Object Segmentation
Referring Video Object Segmentation (RVOS) aims to segment objects in videos based on textual queries. Current methods mainly rely on large-scale supervised fine-tuning (SFT) of Multi-modal Large Language Models (MLLMs). However, this paradigm suffers from heavy data dependence and limited scalability against the rapid evolution of MLLMs. Although recent zero-shot approaches offer a flexible alternative, their performance remains significantly behind SFT-based methods, due to the straightforward workflow designs. To address these limitations, we propose \textbf{Refer-Agent}, a collaborative multi-agent system with alternating reasoning-reflection mechanisms. This system decomposes RVOS into step-by-step reasoning process. During reasoning, we introduce a Coarse-to-Fine frame selection strategy to ensure the frame diversity and textual relevance, along with a Dynamic Focus Layout that adaptively adjusts the agent's visual focus. Furthermore, we propose a Chain-of-Reflection mechanism, which employs a Questioner-Responder pair to generate a self-reflection chain, enabling the system to verify intermediate results and generates feedback for next-round reasoning refinement. Extensive experiments on five challenging benchmarks demonstrate that Refer-Agent significantly outperforms state-of-the-art methods, including both SFT-based models and zero-shot approaches. Moreover, Refer-Agent is flexible and enables fast integration of new MLLMs without any additional fine-tuning costs. Code will be released.
☆ TIPS Over Tricks: Simple Prompts for Effective Zero-shot Anomaly Detection ICASSP'26
Alireza Salehi, Ehsan Karami, Sepehr Noey, Sahand Noey, Makoto Yamada, Reshad Hosseini, Mohammad Sabokrou
Anomaly detection identifies departures from expected behavior in safety-critical settings. When target-domain normal data are unavailable, zero-shot anomaly detection (ZSAD) leverages vision-language models (VLMs). However, CLIP's coarse image-text alignment limits both localization and detection due to (i) spatial misalignment and (ii) weak sensitivity to fine-grained anomalies; prior work compensates with complex auxiliary modules yet largely overlooks the choice of backbone. We revisit the backbone and use TIPS-a VLM trained with spatially aware objectives. While TIPS alleviates CLIP's issues, it exposes a distributional gap between global and local features. We address this with decoupled prompts-fixed for image-level detection and learnable for pixel-level localization-and by injecting local evidence into the global score. Without CLIP-specific tricks, our TIPS-based pipeline improves image-level performance by 1.1-3.9% and pixel-level by 1.5-6.9% across seven industrial datasets, delivering strong generalization with a lean architecture. Code is available at github.com/AlirezaSalehy/Tipsomaly.
comment: This is the extended version of the paper accepted in ICASSP'26, which will be publicly available in May. Authors' contributions may vary among the versions
☆ High-Resolution Underwater Camouflaged Object Detection: GBU-UCOD Dataset and Topology-Aware and Frequency-Decoupled Networks
Underwater Camouflaged Object Detection (UCOD) is a challenging task due to the extreme visual similarity between targets and backgrounds across varying marine depths. Existing methods often struggle with topological fragmentation of slender creatures in the deep sea and the subtle feature extraction of transparent organisms. In this paper, we propose DeepTopo-Net, a novel framework that integrates topology-aware modeling with frequency-decoupled perception. To address physical degradation, we design the Water-Conditioned Adaptive Perceptor (WCAP), which employs Riemannian metric tensors to dynamically deform convolutional sampling fields. Furthermore, the Abyssal-Topology Refinement Module (ATRM) is developed to maintain the structural connectivity of spindly targets through skeletal priors. Specifically, we first introduce GBU-UCOD, the first high-resolution (2K) benchmark tailored for marine vertical zonation, filling the data gap for hadal and abyssal zones. Extensive experiments on MAS3K, RMAS, and our proposed GBU-UCOD datasets demonstrate that DeepTopo-Net achieves state-of-the-art performance, particularly in preserving the morphological integrity of complex underwater patterns. The datasets and codes will be released at https://github.com/Wuwenji18/GBU-UCOD.
☆ SlowFocus: Enhancing Fine-grained Temporal Understanding in Video LLM NeurIPS 2024
Large language models (LLMs) have demonstrated exceptional capabilities in text understanding, which has paved the way for their expansion into video LLMs (Vid-LLMs) to analyze video data. However, current Vid-LLMs struggle to simultaneously retain high-quality frame-level semantic information (i.e., a sufficient number of tokens per frame) and comprehensive video-level temporal information (i.e., an adequate number of sampled frames per video). This limitation hinders the advancement of Vid-LLMs towards fine-grained video understanding. To address this issue, we introduce the SlowFocus mechanism, which significantly enhances the equivalent sampling frequency without compromising the quality of frame-level visual tokens. SlowFocus begins by identifying the query-related temporal segment based on the posed question, then performs dense sampling on this segment to extract local high-frequency features. A multi-frequency mixing attention module is further leveraged to aggregate these local high-frequency details with global low-frequency contexts for enhanced temporal comprehension. Additionally, to tailor Vid-LLMs to this innovative mechanism, we introduce a set of training strategies aimed at bolstering both temporal grounding and detailed temporal reasoning capabilities. Furthermore, we establish FineAction-CGR, a benchmark specifically devised to assess the ability of Vid-LLMs to process fine-grained temporal understanding tasks. Comprehensive experiments demonstrate the superiority of our mechanism across both existing public video understanding benchmarks and our proposed FineAction-CGR.
comment: NeurIPS 2024
☆ ELIQ: A Label-Free Framework for Quality Assessment of Evolving AI-Generated Images
Xinyue Li, Zhiming Xu, Zhichao Zhang, Zhaolin Cai, Sijing Wu, Xiongkuo Min, Yitong Chen, Guangtao Zhai
Generative text-to-image models are advancing at an unprecedented pace, continuously shifting the perceptual quality ceiling and rendering previously collected labels unreliable for newer generations. To address this, we present ELIQ, a Label-free Framework for Quality Assessment of Evolving AI-generated Images. Specifically, ELIQ focuses on visual quality and prompt-image alignment, automatically constructs positive and aspect-specific negative pairs to cover both conventional distortions and AIGC-specific distortion modes, enabling transferable supervision without human annotations. Building on these pairs, ELIQ adapts a pre-trained multimodal model into a quality-aware critic via instruction tuning and predicts two-dimensional quality using lightweight gated fusion and a Quality Query Transformer. Experiments across multiple benchmarks demonstrate that ELIQ consistently outperforms existing label-free methods, generalizes from AI-generated content (AIGC) to user-generated content (UGC) scenarios without modification, and paves the way for scalable and label-free quality assessment under continuously evolving generative models. The code will be released upon publication.
☆ Cut to the Mix: Simple Data Augmentation Outperforms Elaborate Ones in Limited Organ Segmentation Datasets MICCAI 2024
Multi-organ segmentation is a widely applied clinical routine and automated organ segmentation tools dramatically improve the pipeline of the radiologists. Recently, deep learning (DL) based segmentation models have shown the capacity to accomplish such a task. However, the training of the segmentation networks requires large amount of data with manual annotations, which is a major concern due to the data scarcity from clinic. Working with limited data is still common for researches on novel imaging modalities. To enhance the effectiveness of DL models trained with limited data, data augmentation (DA) is a crucial regularization technique. Traditional DA (TDA) strategies focus on basic intra-image operations, i.e. generating images with different orientations and intensity distributions. In contrast, the interimage and object-level DA operations are able to create new images from separate individuals. However, such DA strategies are not well explored on the task of multi-organ segmentation. In this paper, we investigated four possible inter-image DA strategies: CutMix, CarveMix, ObjectAug and AnatoMix, on two organ segmentation datasets. The result shows that CutMix, CarveMix and AnatoMix can improve the average dice score by 4.9, 2.0 and 1.9, compared with the state-of-the-art nnUNet without DA strategies. These results can be further improved by adding TDA strategies. It is revealed in our experiments that Cut-Mix is a robust but simple DA strategy to drive up the segmentation performance for multi-organ segmentation, even when CutMix produces intuitively 'wrong' images. Our implementation is publicly available for future benchmarks.
comment: Accepted at MICCAI 2024
☆ AffordanceGrasp-R1:Leveraging Reasoning-Based Affordance Segmentation with Reinforcement Learning for Robotic Grasping
We introduce AffordanceGrasp-R1, a reasoning-driven affordance segmentation framework for robotic grasping that combines a chain-of-thought (CoT) cold-start strategy with reinforcement learning to enhance deduction and spatial grounding. In addition, we redesign the grasping pipeline to be more context-aware by generating grasp candidates from the global scene point cloud and subsequently filtering them using instruction-conditioned affordance masks. Extensive experiments demonstrate that AffordanceGrasp-R1 consistently outperforms state-of-the-art (SOTA) methods on benchmark datasets, and real-world robotic grasping evaluations further validate its robustness and generalization under complex language-conditioned manipulation scenarios.
comment: Preprint version
☆ Constrained Dynamic Gaussian Splatting
Zihan Zheng, Zhenglong Wu, Xuanxuan Wang, Houqiang Zhong, Xiaoyun Zhang, Qiang Hu, Guangtao Zhai, Wenjun Zhang
While Dynamic Gaussian Splatting enables high-fidelity 4D reconstruction, its deployment is severely hindered by a fundamental dilemma: unconstrained densification leads to excessive memory consumption incompatible with edge devices, whereas heuristic pruning fails to achieve optimal rendering quality under preset Gaussian budgets. In this work, we propose Constrained Dynamic Gaussian Splatting (CDGS), a novel framework that formulates dynamic scene reconstruction as a budget-constrained optimization problem to enforce a strict, user-defined Gaussian budget during training. Our key insight is to introduce a differentiable budget controller as the core optimization driver. Guided by a multi-modal unified importance score, this controller fuses geometric, motion, and perceptual cues for precise capacity regulation. To maximize the utility of this fixed budget, we further decouple the optimization of static and dynamic elements, employing an adaptive allocation mechanism that dynamically distributes capacity based on motion complexity. Furthermore, we implement a three-phase training strategy to seamlessly integrate these constraints, ensuring precise adherence to the target count. Coupled with a dual-mode hybrid compression scheme, CDGS not only strictly adheres to hardware constraints (error < 2%}) but also pushes the Pareto frontier of rate-distortion performance. Extensive experiments demonstrate that CDGS delivers optimal rendering quality under varying capacity limits, achieving over 3x compression compared to state-of-the-art methods.
☆ PnP-U3D: Plug-and-Play 3D Framework Bridging Autoregression and Diffusion for Unified Understanding and Generation
The rapid progress of large multimodal models has inspired efforts toward unified frameworks that couple understanding and generation. While such paradigms have shown remarkable success in 2D, extending them to 3D remains largely underexplored. Existing attempts to unify 3D tasks under a single autoregressive (AR) paradigm lead to significant performance degradation due to forced signal quantization and prohibitive training cost. Our key insight is that the essential challenge lies not in enforcing a unified autoregressive paradigm, but in enabling effective information interaction between generation and understanding while minimally compromising their inherent capabilities and leveraging pretrained models to reduce training cost. Guided by this perspective, we present the first unified framework for 3D understanding and generation that combines autoregression with diffusion. Specifically, we adopt an autoregressive next-token prediction paradigm for 3D understanding, and a continuous diffusion paradigm for 3D generation. A lightweight transformer bridges the feature space of large language models and the conditional space of 3D diffusion models, enabling effective cross-modal information exchange while preserving the priors learned by standalone models. Extensive experiments demonstrate that our framework achieves state-of-the-art performance across diverse 3D understanding and generation benchmarks, while also excelling in 3D editing tasks. These results highlight the potential of unified AR+diffusion models as a promising direction for building more general-purpose 3D intelligence.
comment: Yongwei Chen and Tianyi Wei contributed equally. Project page: https://cyw-3d.github.io/PnP-U3D/
☆ Robust Representation Learning in Masked Autoencoders
Masked Autoencoders (MAEs) achieve impressive performance in image classification tasks, yet the internal representations they learn remain less understood. This work started as an attempt to understand the strong downstream classification performance of MAE. In this process we discover that representations learned with the pretraining and fine-tuning, are quite robust - demonstrating a good classification performance in the presence of degradations, such as blur and occlusions. Through layer-wise analysis of token embeddings, we show that pretrained MAE progressively constructs its latent space in a class-aware manner across network depth: embeddings from different classes lie in subspaces that become increasingly separable. We further observe that MAE exhibits early and persistent global attention across encoder layers, in contrast to standard Vision Transformers (ViTs). To quantify feature robustness, we introduce two sensitivity indicators: directional alignment between clean and perturbed embeddings, and head-wise retention of active features under degradations. These studies help establish the robust classification performance of MAEs.
comment: 11 pages, 8 figures, and 3 tables
☆ Interpretable Logical Anomaly Classification via Constraint Decomposition and Instruction Fine-Tuning
Logical anomalies are violations of predefined constraints on object quantity, spatial layout, and compositional relationships in industrial images. While prior work largely treats anomaly detection as a binary decision, such formulations cannot indicate which logical rule is broken and therefore offer limited value for quality assurance. We introduce Logical Anomaly Classification (LAC), a task that unifies anomaly detection and fine-grained violation classification in a single inference step. To tackle LAC, we propose LogiCls, a vision-language framework that decomposes complex logical constraints into a sequence of verifiable subqueries. We further present a data-centric instruction synthesis pipeline that generates chain-of-thought (CoT) supervision for these subqueries, coupling precise grounding annotations with diverse image-text augmentations to adapt vision language models (VLMs) to logic-sensitive reasoning. Training is stabilized by a difficulty-aware resampling strategy that emphasizes challenging subqueries and long tail constraint types. Extensive experiments demonstrate that LogiCls delivers robust, interpretable, and accurate industrial logical anomaly classification, providing both the predicted violation categories and their evidence trails.
comment: 6 pages, 6 figures
☆ Semantic Routing: Exploring Multi-Layer LLM Feature Weighting for Diffusion Transformers
Bozhou Li, Yushuo Guan, Haolin Li, Bohan Zeng, Yiyan Ji, Yue Ding, Pengfei Wan, Kun Gai, Yuanxing Zhang, Wentao Zhang
Recent DiT-based text-to-image models increasingly adopt LLMs as text encoders, yet text conditioning remains largely static and often utilizes only a single LLM layer, despite pronounced semantic hierarchy across LLM layers and non-stationary denoising dynamics over both diffusion time and network depth. To better match the dynamic process of DiT generation and thereby enhance the diffusion model's generative capability, we introduce a unified normalized convex fusion framework equipped with lightweight gates to systematically organize multi-layer LLM hidden states via time-wise, depth-wise, and joint fusion. Experiments establish Depth-wise Semantic Routing as the superior conditioning strategy, consistently improving text-image alignment and compositional generation (e.g., +9.97 on the GenAI-Bench Counting task). Conversely, we find that purely time-wise fusion can paradoxically degrade visual generation fidelity. We attribute this to a train-inference trajectory mismatch: under classifier-free guidance, nominal timesteps fail to track the effective SNR, causing semantically mistimed feature injection during inference. Overall, our results position depth-wise routing as a strong and effective baseline and highlight the critical need for trajectory-aware signals to enable robust time-dependent conditioning.
☆ Decoupling Skeleton and Flesh: Efficient Multimodal Table Reasoning with Disentangled Alignment and Structure-aware Guidance
Reasoning over table images remains challenging for Large Vision-Language Models (LVLMs) due to complex layouts and tightly coupled structure-content information. Existing solutions often depend on expensive supervised training, reinforcement learning, or external tools, limiting efficiency and scalability. This work addresses a key question: how to adapt LVLMs to table reasoning with minimal annotation and no external tools? Specifically, we first introduce DiSCo, a Disentangled Structure-Content alignment framework that explicitly separates structural abstraction from semantic grounding during multimodal alignment, efficiently adapting LVLMs to tables structures. Building on DiSCo, we further present Table-GLS, a Global-to-Local Structure-guided reasoning framework that performs table reasoning via structured exploration and evidence-grounded inference. Extensive experiments across diverse benchmarks demonstrate that our framework efficiently enhances LVLM's table understanding and reasoning capabilities, particularly generalizing to unseen table structures.
☆ Scaling Continual Learning with Bi-Level Routing Mixture-of-Experts
Continual learning, especially class-incremental learning (CIL), on the basis of a pre-trained model (PTM) has garnered substantial research interest in recent years. However, how to effectively learn both discriminative and comprehensive feature representations while maintaining stability and plasticity over very long task sequences remains an open problem. We propose CaRE, a scalable {C}ontinual Le{a}rner with efficient Bi-Level {R}outing Mixture-of-{E}xperts (BR-MoE). The core idea of BR-MoE is a bi-level routing mechanism: a router selection stage that dynamically activates relevant task-specific routers, followed by an expert routing phase that dynamically activates and aggregates experts, aiming to inject discriminative and comprehensive representations into every intermediate network layer. On the other hand, we introduce a challenging evaluation protocol for comprehensively assessing CIL methods across very long task sequences spanning hundreds of tasks. Extensive experiments show that CaRE demonstrates leading performance across a variety of datasets and task settings, including commonly used CIL datasets with classical CIL settings (e.g., 5-20 tasks). To the best of our knowledge, CaRE is the first continual learner that scales to very long task sequences (ranging from 100 to over 300 non-overlapping tasks), while outperforming all baselines by a large margin on such task sequences. Code will be publicly released at https://github.com/LMMMEng/CaRE.git.
☆ Inlier-Centric Post-Training Quantization for Object Detection Models
Object detection is pivotal in computer vision, yet its immense computational demands make deployment slow and power-hungry, motivating quantization. However, task-irrelevant morphologies such as background clutter and sensor noise induce redundant activations (or anomalies). These anomalies expand activation ranges and skew activation distributions toward task-irrelevant responses, complicating bit allocation and weakening the preservation of informative features. Without a clear criterion to distinguish anomalies, suppressing them can inadvertently discard useful information. To address this, we present InlierQ, an inlier-centric post-training quantization approach that separates anomalies from informative inliers. InlierQ computes gradient-aware volume saliency scores, classifies each volume as an inlier or anomaly, and fits a posterior distribution over these scores using the Expectation-Maximization (EM) algorithm. This design suppresses anomalies while preserving informative features. InlierQ is label-free, drop-in, and requires only 64 calibration samples. Experiments on the COCO and nuScenes benchmarks show consistent reductions in quantization error for camera-based (2D and 3D) and LiDAR-based (3D) object detection.
☆ Contextualized Visual Personalization in Vision-Language Models
Despite recent progress in vision-language models (VLMs), existing approaches often fail to generate personalized responses based on the user's specific experiences, as they lack the ability to associate visual inputs with a user's accumulated visual-textual context. We newly formalize this challenge as contextualized visual personalization, which requires the visual recognition and textual retrieval of personalized visual experiences by VLMs when interpreting new images. To address this issue, we propose CoViP, a unified framework that treats personalized image captioning as a core task for contextualized visual personalization and improves this capability through reinforcement-learning-based post-training and caption-augmented generation. We further introduce diagnostic evaluations that explicitly rule out textual shortcut solutions and verify whether VLMs truly leverage visual context. Extensive experiments demonstrate that existing open-source and proprietary VLMs exhibit substantial limitations, while CoViP not only improves personalized image captioning but also yields holistic gains across downstream personalization tasks. These results highlight CoViP as a crucial stage for enabling robust and generalizable contextualized visual personalization.
comment: Project Page: https://github.com/oyt9306/CoViP
☆ Hierarchical Concept-to-Appearance Guidance for Multi-Subject Image Generation
Multi-subject image generation aims to synthesize images that faithfully preserve the identities of multiple reference subjects while following textual instructions. However, existing methods often suffer from identity inconsistency and limited compositional control, as they rely on diffusion models to implicitly associate text prompts with reference images. In this work, we propose Hierarchical Concept-to-Appearance Guidance (CAG), a framework that provides explicit, structured supervision from high-level concepts to fine-grained appearances. At the conceptual level, we introduce a VAE dropout training strategy that randomly omits reference VAE features, encouraging the model to rely more on robust semantic signals from a Visual Language Model (VLM) and thereby promoting consistent concept-level generation in the absence of complete appearance cues. At the appearance level, we integrate the VLM-derived correspondences into a correspondence-aware masked attention module within the Diffusion Transformer (DiT). This module restricts each text token to attend only to its matched reference regions, ensuring precise attribute binding and reliable multi-subject composition. Extensive experiments demonstrate that our method achieves state-of-the-art performance on the multi-subject image generation, substantially improving prompt following and subject consistency.
☆ HetroD: A High-Fidelity Drone Dataset and Benchmark for Autonomous Driving in Heterogeneous Traffic IEEE
Yu-Hsiang Chen, Wei-Jer Chang, Christian Kotulla, Thomas Keutgens, Steffen Runde, Tobias Moers, Christoph Klas, Wei Zhan, Masayoshi Tomizuka, Yi-Ting Chen
We present HetroD, a dataset and benchmark for developing autonomous driving systems in heterogeneous environments. HetroD targets the critical challenge of navi- gating real-world heterogeneous traffic dominated by vulner- able road users (VRUs), including pedestrians, cyclists, and motorcyclists that interact with vehicles. These mixed agent types exhibit complex behaviors such as hook turns, lane splitting, and informal right-of-way negotiation. Such behaviors pose significant challenges for autonomous vehicles but remain underrepresented in existing datasets focused on structured, lane-disciplined traffic. To bridge the gap, we collect a large- scale drone-based dataset to provide a holistic observation of traffic scenes with centimeter-accurate annotations, HD maps, and traffic signal states. We further develop a modular toolkit for extracting per-agent scenarios to support downstream task development. In total, the dataset comprises over 65.4k high- fidelity agent trajectories, 70% of which are from VRUs. HetroD supports modeling of VRU behaviors in dense, het- erogeneous traffic and provides standardized benchmarks for forecasting, planning, and simulation tasks. Evaluation results reveal that state-of-the-art prediction and planning models struggle with the challenges presented by our dataset: they fail to predict lateral VRU movements, cannot handle unstructured maneuvers, and exhibit limited performance in dense and multi-agent scenarios, highlighting the need for more robust approaches to heterogeneous traffic. See our project page for more examples: https://hetroddata.github.io/HetroD/
comment: IEEE International Conference on Robotics and Automation (ICRA) 2026
☆ ConsistentRFT: Reducing Visual Hallucinations in Flow-based Reinforcement Fine-Tuning
Xiaofeng Tan, Jun Liu, Yuanting Fan, Bin-Bin Gao, Xi Jiang, Xiaochen Chen, Jinlong Peng, Chengjie Wang, Hongsong Wang, Feng Zheng
Reinforcement Fine-Tuning (RFT) on flow-based models is crucial for preference alignment. However, they often introduce visual hallucinations like over-optimized details and semantic misalignment. This work preliminarily explores why visual hallucinations arise and how to reduce them. We first investigate RFT methods from a unified perspective, and reveal the core problems stemming from two aspects, exploration and exploitation: (1) limited exploration during stochastic differential equation (SDE) rollouts, leading to an over-emphasis on local details at the expense of global semantics, and (2) trajectory imitation process inherent in policy gradient methods, distorting the model's foundational vector field and its cross-step consistency. Building on this, we propose ConsistentRFT, a general framework to mitigate these hallucinations. Specifically, we design a Dynamic Granularity Rollout (DGR) mechanism to balance exploration between global semantics and local details by dynamically scheduling different noise sources. We then introduce a Consistent Policy Gradient Optimization (CPGO) that preserves the model's consistency by aligning the current policy with a more stable prior. Extensive experiments demonstrate that ConsistentRFT significantly mitigates visual hallucinations, achieving average reductions of 49\% for low-level and 38\% for high-level perceptual hallucinations. Furthermore, ConsistentRFT outperforms other RFT methods on out-of-domain metrics, showing an improvement of 5.1\% (v.s. the baseline's decrease of -0.4\%) over FLUX1.dev. This is \href{https://xiaofeng-tan.github.io/projects/ConsistentRFT}{Project Page}.
☆ Origin Lens: A Privacy-First Mobile Framework for Cryptographic Image Provenance and AI Detection
The proliferation of generative AI poses challenges for information integrity assurance, requiring systems that connect model governance with end-user verification. We present Origin Lens, a privacy-first mobile framework that targets visual disinformation through a layered verification architecture. Unlike server-side detection systems, Origin Lens performs cryptographic image provenance verification and AI detection locally on the device via a Rust/Flutter hybrid architecture. Our system integrates multiple signals - including cryptographic provenance, generative model fingerprints, and optional retrieval-augmented verification - to provide users with graded confidence indicators at the point of consumption. We discuss the framework's alignment with regulatory requirements (EU AI Act, DSA) and its role in verification infrastructure that complements platform-level mechanisms.
comment: Accepted at ACM TheWebConf '26 Companion
☆ Socratic-Geo: Synthetic Data Generation and Geometric Reasoning via Multi-Agent Interaction
Multimodal Large Language Models (MLLMs) have significantly advanced vision-language understanding. However, even state-of-the-art models struggle with geometric reasoning, revealing a critical bottleneck: the extreme scarcity of high-quality image-text pairs. Human annotation is prohibitively expensive, while automated methods fail to ensure fidelity and training effectiveness. Existing approaches either passively adapt to available images or employ inefficient random exploration with filtering, decoupling generation from learning needs. We propose Socratic-Geo, a fully autonomous framework that dynamically couples data synthesis with model learning through multi-agent interaction. The Teacher agent generates parameterized Python scripts with reflective feedback (Reflect for solvability, RePI for visual validity), ensuring image-text pair purity. The Solver agent optimizes reasoning through preference learning, with failure paths guiding Teacher's targeted augmentation. Independently, the Generator learns image generation capabilities on accumulated "image-code-instruction" triplets, distilling programmatic drawing intelligence into visual generation. Starting from only 108 seed problems, Socratic-Solver achieves 49.11 on six benchmarks using one-quarter of baseline data, surpassing strong baselines by 2.43 points. Socratic-Generator achieves 42.4% on GenExam, establishing new state-of-the-art for open-source models, surpassing Seedream-4.0 (39.8%) and approaching Gemini-2.5-Flash-Image (43.1%).
comment: 18pages
☆ UnHype: CLIP-Guided Hypernetworks for Dynamic LoRA Unlearning
Recent advances in large-scale diffusion models have intensified concerns about their potential misuse, particularly in generating realistic yet harmful or socially disruptive content. This challenge has spurred growing interest in effective machine unlearning, the process of selectively removing specific knowledge or concepts from a model without compromising its overall generative capabilities. Among various approaches, Low-Rank Adaptation (LoRA) has emerged as an effective and efficient method for fine-tuning models toward targeted unlearning. However, LoRA-based methods often exhibit limited adaptability to concept semantics and struggle to balance removing closely related concepts with maintaining generalization across broader meanings. Moreover, these methods face scalability challenges when multiple concepts must be erased simultaneously. To address these limitations, we introduce UnHype, a framework that incorporates hypernetworks into single- and multi-concept LoRA training. The proposed architecture can be directly plugged into Stable Diffusion as well as modern flow-based text-to-image models, where it demonstrates stable training behavior and effective concept control. During inference, the hypernetwork dynamically generates adaptive LoRA weights based on the CLIP embedding, enabling more context-aware, scalable unlearning. We evaluate UnHype across several challenging tasks, including object erasure, celebrity erasure, and explicit content removal, demonstrating its effectiveness and versatility. Repository: https://github.com/gmum/UnHype.
☆ From Vicious to Virtuous Cycles: Synergistic Representation Learning for Unsupervised Video Object-Centric Learning ICLR 2026
Unsupervised object-centric learning models, particularly slot-based architectures, have shown great promise in decomposing complex scenes. However, their reliance on reconstruction-based training creates a fundamental conflict between the sharp, high-frequency attention maps of the encoder and the spatially consistent but blurry reconstruction maps of the decoder. We identify that this discrepancy gives rise to a vicious cycle: the noisy feature map from the encoder forces the decoder to average over possibilities and produce even blurrier outputs, while the gradient computed from blurry reconstruction maps lacks high-frequency details necessary to supervise encoder features. To break this cycle, we introduce Synergistic Representation Learning (SRL) that establishes a virtuous cycle where the encoder and decoder mutually refine one another. SRL leverages the encoder's sharpness to deblur the semantic boundary within the decoder output, while exploiting the decoder's spatial consistency to denoise the encoder's features. This mutual refinement process is stabilized by a warm-up phase with a slot regularization objective that initially allocates distinct entities per slot. By bridging the representational gap between the encoder and decoder, SRL achieves state-of-the-art results on video object-centric learning benchmarks. Codes are available at https://github.com/hynnsk/SRL.
comment: ICLR 2026; Code is available at https://github.com/hynnsk/SRL
☆ Seeing Through the Chain: Mitigate Hallucination in Multimodal Reasoning Models via CoT Compression and Contrastive Preference Optimization
While multimodal reasoning models (MLRMs) have exhibited impressive capabilities, they remain prone to hallucinations, and effective solutions are still underexplored. In this paper, we experimentally analyze the hallucination cause and propose C3PO, a training-based mitigation framework comprising \textbf{C}hain-of-Thought \textbf{C}ompression and \textbf{C}ontrastive \textbf{P}reference \textbf{O}ptimization. Firstly, we identify that introducing reasoning mechanisms exacerbates models' reliance on language priors while overlooking visual inputs, which can produce CoTs with reduced visual cues but redundant text tokens. To this end, we propose to selectively filter redundant thinking tokens for a more compact and signal-efficient CoT representation that preserves task-relevant information while suppressing noise. In addition, we observe that the quality of the reasoning trace largely determines whether hallucination emerges in subsequent responses. To leverage this insight, we introduce a reasoning-enhanced preference tuning scheme that constructs training pairs using high-quality AI feedback. We further design a multimodal hallucination-inducing mechanism that elicits models' inherent hallucination patterns via carefully crafted inducers, yielding informative negative signals for contrastive correction. We provide theoretical justification for the effectiveness and demonstrate consistent hallucination reduction across diverse MLRMs and benchmarks.
☆ PlanTRansformer: Unified Prediction and Planning with Goal-conditioned Transformer IEEE
Trajectory prediction and planning are fundamental yet disconnected components in autonomous driving. Prediction models forecast surrounding agent motion under unknown intentions, producing multimodal distributions, while planning assumes known ego objectives and generates deterministic trajectories. This mismatch creates a critical bottleneck: prediction lacks supervision for agent intentions, while planning requires this information. Existing prediction models, despite strong benchmarking performance, often remain disconnected from planning constraints such as collision avoidance and dynamic feasibility. We introduce Plan TRansformer (PTR), a unified Gaussian Mixture Transformer framework integrating goal-conditioned prediction, dynamic feasibility, interaction awareness, and lane-level topology reasoning. A teacher-student training strategy progressively masks surrounding agent commands during training to align with inference conditions where agent intentions are unavailable. PTR achieves 4.3%/3.5% improvement in marginal/joint mAP compared to the baseline Motion Transformer (MTR) and 15.5% planning error reduction at 5s horizon compared to GameFormer. The architecture-agnostic design enables application to diverse Transformer-based prediction models. Project Website: https://github.com/SelzerConst/PlanTRansformer
comment: Submitted and accepted at IEEE IV 2026
☆ Unifying Watermarking via Dimension-Aware Mapping
Deep watermarking methods often share similar encoder-decoder architectures, yet differ substantially in their functional behaviors. We propose DiM, a new multi-dimensional watermarking framework that formulates watermarking as a dimension-aware mapping problem, thereby unifying existing watermarking methods at the functional level. Under DiM, watermark information is modeled as payloads of different dimensionalities, including one-dimensional binary messages, two-dimensional spatial masks, and three-dimensional spatiotemporal structures. We find that the dimensional configuration of embedding and extraction largely determines the resulting watermarking behavior. Same-dimensional mappings preserve payload structure and support fine-grained control, while cross-dimensional mappings enable spatial or spatiotemporal localization. We instantiate DiM in the video domain, where spatiotemporal representations enable a broader set of dimension mappings. Experiments demonstrate that varying only the embedding and extraction dimensions, without architectural changes, leads to different watermarking capabilities, including spatiotemporal tamper localization, local embedding control, and recovery of temporal order under frame disruptions.
comment: 29 pages, 25 figures
☆ SLIM-Diff: Shared Latent Image-Mask Diffusion with Lp loss for Data-Scarce Epilepsy FLAIR MRI
Mario Pascual-González, Ariadna Jiménez-Partinen, R. M. Luque-Baena, Fátima Nagib-Raya, Ezequiel López-Rubio
Focal cortical dysplasia (FCD) lesions in epilepsy FLAIR MRI are subtle and scarce, making joint image--mask generative modeling prone to instability and memorization. We propose SLIM-Diff, a compact joint diffusion model whose main contributions are (i) a single shared-bottleneck U-Net that enforces tight coupling between anatomy and lesion geometry from a 2-channel image+mask representation, and (ii) loss-geometry tuning via a tunable $L_p$ objective. As an internal baseline, we include the canonical DDPM-style objective ($ε$-prediction with $L_2$ loss) and isolate the effect of prediction parameterization and $L_p$ geometry under a matched setup. Experiments show that $x_0$-prediction is consistently the strongest choice for joint synthesis, and that fractional sub-quadratic penalties ($L_{1.5}$) improve image fidelity while $L_2$ better preserves lesion mask morphology. Our code and model weights are available in https://github.com/MarioPasc/slim-diff
comment: 6 pages, 2 figures, 1 table, conference paper
☆ Multi-Resolution Alignment for Voxel Sparsity in Camera-Based 3D Semantic Scene Completion
Camera-based 3D semantic scene completion (SSC) offers a cost-effective solution for assessing the geometric occupancy and semantic labels of each voxel in the surrounding 3D scene with image inputs, providing a voxel-level scene perception foundation for the perception-prediction-planning autonomous driving systems. Although significant progress has been made in existing methods, their optimization rely solely on the supervision from voxel labels and face the challenge of voxel sparsity as a large portion of voxels in autonomous driving scenarios are empty, which limits both optimization efficiency and model performance. To address this issue, we propose a \textit{Multi-Resolution Alignment (MRA)} approach to mitigate voxel sparsity in camera-based 3D semantic scene completion, which exploits the scene and instance level alignment across multi-resolution 3D features as auxiliary supervision. Specifically, we first propose the Multi-resolution View Transformer module, which projects 2D image features into multi-resolution 3D features and aligns them at the scene level through fusing discriminative seed features. Furthermore, we design the Cubic Semantic Anisotropy module to identify the instance-level semantic significance of each voxel, accounting for the semantic differences of a specific voxel against its neighboring voxels within a cubic area. Finally, we devise a Critical Distribution Alignment module, which selects critical voxels as instance-level anchors with the guidance of cubic semantic anisotropy, and applies a circulated loss for auxiliary supervision on the critical feature distribution consistency across different resolutions. The code is available at https://github.com/PKU-ICST-MIPL/MRA_TIP.
comment: 15 pages, 6 figures, accepted by TIP 2026
☆ Symbol-Aware Reasoning with Masked Discrete Diffusion for Handwritten Mathematical Expression Recognition
Handwritten Mathematical Expression Recognition (HMER) requires reasoning over diverse symbols and 2D structural layouts, yet autoregressive models struggle with exposure bias and syntactic inconsistency. We present a discrete diffusion framework that reformulates HMER as iterative symbolic refinement instead of sequential generation. Through multi-step remasking, the proposal progressively refines both symbols and structural relations, removing causal dependencies and improving structural consistency. A symbol-aware tokenization and Random-Masking Mutual Learning further enhance syntactic alignment and robustness to handwriting diversity. On the MathWriting benchmark, the proposal achieves 5.56\% CER and 60.42\% EM, outperforming strong Transformer and commercial baselines. Consistent gains on CROHME 2014--2023 demonstrate that discrete diffusion provides a new paradigm for structure-aware visual recognition beyond generative modeling.
☆ Z3D: Zero-Shot 3D Visual Grounding from Images
Nikita Drozdov, Andrey Lemeshko, Nikita Gavrilov, Anton Konushin, Danila Rukhovich, Maksim Kolodiazhnyi
3D visual grounding (3DVG) aims to localize objects in a 3D scene based on natural language queries. In this work, we explore zero-shot 3DVG from multi-view images alone, without requiring any geometric supervision or object priors. We introduce Z3D, a universal grounding pipeline that flexibly operates on multi-view images while optionally incorporating camera poses and depth maps. We identify key bottlenecks in prior zero-shot methods causing significant performance degradation and address them with (i) a state-of-the-art zero-shot 3D instance segmentation method to generate high-quality 3D bounding box proposals and (ii) advanced reasoning via prompt-based segmentation, which utilizes full capabilities of modern VLMs. Extensive experiments on the ScanRefer and Nr3D benchmarks demonstrate that our approach achieves state-of-the-art performance among zero-shot methods. Code is available at https://github.com/col14m/z3d .
☆ Tiled Prompts: Overcoming Prompt Underspecification in Image and Video Super-Resolution
Text-conditioned diffusion models have advanced image and video super-resolution by using prompts as semantic priors, but modern super-resolution pipelines typically rely on latent tiling to scale to high resolutions, where a single global caption causes prompt underspecification. A coarse global prompt often misses localized details (prompt sparsity) and provides locally irrelevant guidance (prompt misguidance) that can be amplified by classifier-free guidance. We propose Tiled Prompts, a unified framework for image and video super-resolution that generates a tile-specific prompt for each latent tile and performs super-resolution under locally text-conditioned posteriors, providing high-information guidance that resolves prompt underspecification with minimal overhead. Experiments on high resolution real-world images and videos show consistent gains in perceptual quality and text alignment, while reducing hallucinations and tile-level artifacts relative to global-prompt baselines.
comment: 13 pages, 7 figures
☆ Composable Visual Tokenizers with Generator-Free Diagnostics of Learnability
We introduce CompTok, a training framework for learning visual tokenizers whose tokens are enhanced for compositionality. CompTok uses a token-conditioned diffusion decoder. By employing an InfoGAN-style objective, where we train a recognition model to predict the tokens used to condition the diffusion decoder using the decoded images, we enforce the decoder to not ignore any of the tokens. To promote compositional control, besides the original images, CompTok also trains on tokens formed by swapping token subsets between images, enabling more compositional control of the token over the decoder. As the swapped tokens between images do not have ground truth image targets, we apply a manifold constraint via an adversarial flow regularizer to keep unpaired swap generations on the natural-image distribution. The resulting tokenizer not only achieves state-of-the-art performance on image class-conditioned generation, but also demonstrates properties such as swapping tokens between images to achieve high level semantic editing of an image. Additionally, we propose two metrics that measures the landscape of the token space that can be useful to describe not only the compositionality of the tokens, but also how easy to learn the landscape is for a generator to be trained on this space. We show in experiments that CompTok can improve on both of the metrics as well as supporting state-of-the-art generators for class conditioned generation.
☆ PWAVEP: Purifying Imperceptible Adversarial Perturbations in 3D Point Clouds via Spectral Graph Wavelets WWW 2026
Recent progress in adversarial attacks on 3D point clouds, particularly in achieving spatial imperceptibility and high attack performance, presents significant challenges for defenders. Current defensive approaches remain cumbersome, often requiring invasive model modifications, expensive training procedures or auxiliary data access. To address these threats, in this paper, we propose a plug-and-play and non-invasive defense mechanism in the spectral domain, grounded in a theoretical and empirical analysis of the relationship between imperceptible perturbations and high-frequency spectral components. Building upon these insights, we introduce a novel purification framework, termed PWAVEP, which begins by computing a spectral graph wavelet domain saliency score and local sparsity score for each point. Guided by these values, PWAVEP adopts a hierarchical strategy, it eliminates the most salient points, which are identified as hardly recoverable adversarial outliers. Simultaneously, it applies a spectral filtering process to a broader set of moderately salient points. This process leverages a graph wavelet transform to attenuate high-frequency coefficients associated with the targeted points, thereby effectively suppressing adversarial noise. Extensive evaluations demonstrate that the proposed PWAVEP achieves superior accuracy and robustness compared to existing approaches, advancing the state-of-the-art in 3D point cloud purification. Code and datasets are available at https://github.com/a772316182/pwavep
comment: Accepted by WWW 2026
☆ Pi-GS: Sparse-View Gaussian Splatting with Dense π^3 Initialization
Novel view synthesis has evolved rapidly, advancing from Neural Radiance Fields to 3D Gaussian Splatting (3DGS), which offers real-time rendering and rapid training without compromising visual fidelity. However, 3DGS relies heavily on accurate camera poses and high-quality point cloud initialization, which are difficult to obtain in sparse-view scenarios. While traditional Structure from Motion (SfM) pipelines often fail in these settings, existing learning-based point estimation alternatives typically require reliable reference views and remain sensitive to pose or depth errors. In this work, we propose a robust method utilizing π^3, a reference-free point cloud estimation network. We integrate dense initialization from π^3 with a regularization scheme designed to mitigate geometric inaccuracies. Specifically, we employ uncertainty-guided depth supervision, normal consistency loss, and depth warping. Experimental results demonstrate that our approach achieves state-of-the-art performance on the Tanks and Temples, LLFF, DTU, and MipNeRF360 datasets.
☆ MedSAM-Agent: Empowering Interactive Medical Image Segmentation with Multi-turn Agentic Reinforcement Learning
Shengyuan Liu, Liuxin Bao, Qi Yang, Wanting Geng, Boyun Zheng, Chenxin Li, Wenting Chen, Houwen Peng, Yixuan Yuan
Medical image segmentation is evolving from task-specific models toward generalizable frameworks. Recent research leverages Multi-modal Large Language Models (MLLMs) as autonomous agents, employing reinforcement learning with verifiable reward (RLVR) to orchestrate specialized tools like the Segment Anything Model (SAM). However, these approaches often rely on single-turn, rigid interaction strategies and lack process-level supervision during training, which hinders their ability to fully exploit the dynamic potential of interactive tools and leads to redundant actions. To bridge this gap, we propose MedSAM-Agent, a framework that reformulates interactive segmentation as a multi-step autonomous decision-making process. First, we introduce a hybrid prompting strategy for expert-curated trajectory generation, enabling the model to internalize human-like decision heuristics and adaptive refinement strategies. Furthermore, we develop a two-stage training pipeline that integrates multi-turn, end-to-end outcome verification with a clinical-fidelity process reward design to promote interaction parsimony and decision efficiency. Extensive experiments across 6 medical modalities and 21 datasets demonstrate that MedSAM-Agent achieves state-of-the-art performance, effectively unifying autonomous medical reasoning with robust, iterative optimization. Code is available \href{https://github.com/CUHK-AIM-Group/MedSAM-Agent}{here}.
comment: 23 Pages, 4 Figures
☆ Invisible Clean-Label Backdoor Attacks for Generative Data Augmentation
With the rapid advancement of image generative models, generative data augmentation has become an effective way to enrich training images, especially when only small-scale datasets are available. At the same time, in practical applications, generative data augmentation can be vulnerable to clean-label backdoor attacks, which aim to bypass human inspection. However, based on theoretical analysis and preliminary experiments, we observe that directly applying existing pixel-level clean-label backdoor attack methods (e.g., COMBAT) to generated images results in low attack success rates. This motivates us to move beyond pixel-level triggers and focus instead on the latent feature level. To this end, we propose InvLBA, an invisible clean-label backdoor attack method for generative data augmentation by latent perturbation. We theoretically prove that the generalization of the clean accuracy and attack success rates of InvLBA can be guaranteed. Experiments on multiple datasets show that our method improves the attack success rate by 46.43% on average, with almost no reduction in clean accuracy and high robustness against SOTA defense methods.
☆ PQTNet: Pixel-wise Quantitative Thermography Neural Network for Estimating Defect Depth in Polylactic Acid Parts by Additive Manufacturing
Defect depth quantification in additively manufactured (AM) components remains a significant challenge for non-destructive testing (NDT). This study proposes a Pixel-wise Quantitative Thermography Neural Network (PQT-Net) to address this challenge for polylactic acid (PLA) parts. A key innovation is a novel data augmentation strategy that reconstructs thermal sequence data into two-dimensional stripe images, preserving the complete temporal evolution of heat diffusion for each pixel. The PQT-Net architecture incorporates a pre-trained EfficientNetV2-S backbone and a custom Residual Regression Head (RRH) with learnable parameters to refine outputs. Comparative experiments demonstrate the superiority of PQT-Net over other deep learning models, achieving a minimum Mean Absolute Error (MAE) of 0.0094 mm and a coefficient of determination (R) exceeding 99%. The high precision of PQT-Net underscores its potential for robust quantitative defect characterization in AM.
comment: Under review
☆ RDT2: Exploring the Scaling Limit of UMI Data Towards Zero-Shot Cross-Embodiment Generalization
Vision-Language-Action (VLA) models hold promise for generalist robotics but currently struggle with data scarcity, architectural inefficiencies, and the inability to generalize across different hardware platforms. We introduce RDT2, a robotic foundation model built upon a 7B parameter VLM designed to enable zero-shot deployment on novel embodiments for open-vocabulary tasks. To achieve this, we collected one of the largest open-source robotic datasets--over 10,000 hours of demonstrations in diverse families--using an enhanced, embodiment-agnostic Universal Manipulation Interface (UMI). Our approach employs a novel three-stage training recipe that aligns discrete linguistic knowledge with continuous control via Residual Vector Quantization (RVQ), flow-matching, and distillation for real-time inference. Consequently, RDT2 becomes one of the first models that simultaneously zero-shot generalizes to unseen objects, scenes, instructions, and even robotic platforms. Besides, it outperforms state-of-the-art baselines in dexterous, long-horizon, and dynamic downstream tasks like playing table tennis. See https://rdt-robotics.github.io/rdt2/ for more information.
☆ Full end-to-end diagnostic workflow automation of 3D OCT via foundation model-driven AI for retinal diseases
Jinze Zhang, Jian Zhong, Li Lin, Jiaxiong Li, Ke Ma, Naiyang Li, Meng Li, Yuan Pan, Zeyu Meng, Mengyun Zhou, Shang Huang, Shilong Yu, Zhengyu Duan, Sutong Li, Honghui Xia, Juping Liu, Dan Liang, Yantao Wei, Xiaoying Tang, Jin Yuan, Peng Xiao
Optical coherence tomography (OCT) has revolutionized retinal disease diagnosis with its high-resolution and three-dimensional imaging nature, yet its full diagnostic automation in clinical practices remains constrained by multi-stage workflows and conventional single-slice single-task AI models. We present Full-process OCT-based Clinical Utility System (FOCUS), a foundation model-driven framework enabling end-to-end automation of 3D OCT retinal disease diagnosis. FOCUS sequentially performs image quality assessment with EfficientNetV2-S, followed by abnormality detection and multi-disease classification using a fine-tuned Vision Foundation Model. Crucially, FOCUS leverages a unified adaptive aggregation method to intelligently integrate 2D slices-level predictions into comprehensive 3D patient-level diagnosis. Trained and tested on 3,300 patients (40,672 slices), and externally validated on 1,345 patients (18,498 slices) across four different-tier centers and diverse OCT devices, FOCUS achieved high F1 scores for quality assessment (99.01%), abnormally detection (97.46%), and patient-level diagnosis (94.39%). Real-world validation across centers also showed stable performance (F1: 90.22%-95.24%). In human-machine comparisons, FOCUS matched expert performance in abnormality detection (F1: 95.47% vs 90.91%) and multi-disease diagnosis (F1: 93.49% vs 91.35%), while demonstrating better efficiency. FOCUS automates the image-to-diagnosis pipeline, representing a critical advance towards unmanned ophthalmology with a validated blueprint for autonomous screening to enhance population scale retinal care accessibility and efficiency.
☆ R1-SyntheticVL: Is Synthetic Data from Generative Models Ready for Multimodal Large Language Model?
In this work, we aim to develop effective data synthesis techniques that autonomously synthesize multimodal training data for enhancing MLLMs in solving complex real-world tasks. To this end, we propose Collective Adversarial Data Synthesis (CADS), a novel and general approach to synthesize high-quality, diverse and challenging multimodal data for MLLMs. The core idea of CADS is to leverage collective intelligence to ensure high-quality and diverse generation, while exploring adversarial learning to synthesize challenging samples for effectively driving model improvement. Specifically, CADS operates with two cyclic phases, i.e., Collective Adversarial Data Generation (CAD-Generate) and Collective Adversarial Data Judgment (CAD-Judge). CAD-Generate leverages collective knowledge to jointly generate new and diverse multimodal data, while CAD-Judge collaboratively assesses the quality of synthesized data. In addition, CADS introduces an Adversarial Context Optimization mechanism to optimize the generation context to encourage challenging and high-value data generation. With CADS, we construct MMSynthetic-20K and train our model R1-SyntheticVL, which demonstrates superior performance on various benchmarks.
☆ POP: Prefill-Only Pruning for Efficient Large Model Inference
Large Language Models (LLMs) and Vision-Language Models (VLMs) have demonstrated remarkable capabilities. However, their deployment is hindered by significant computational costs. Existing structured pruning methods, while hardware-efficient, often suffer from significant accuracy degradation. In this paper, we argue that this failure stems from a stage-agnostic pruning approach that overlooks the asymmetric roles between the prefill and decode stages. By introducing a virtual gate mechanism, our importance analysis reveals that deep layers are critical for next-token prediction (decode) but largely redundant for context encoding (prefill). Leveraging this insight, we propose Prefill-Only Pruning (POP), a stage-aware inference strategy that safely omits deep layers during the computationally intensive prefill stage while retaining the full model for the sensitive decode stage. To enable the transition between stages, we introduce independent Key-Value (KV) projections to maintain cache integrity, and a boundary handling strategy to ensure the accuracy of the first generated token. Extensive experiments on Llama-3.1, Qwen3-VL, and Gemma-3 across diverse modalities demonstrate that POP achieves up to 1.37$\times$ speedup in prefill latency with minimal performance loss, effectively overcoming the accuracy-efficiency trade-off limitations of existing structured pruning methods.
☆ LEVIO: Lightweight Embedded Visual Inertial Odometry for Resource-Constrained Devices IEEE
Accurate, infrastructure-less sensor systems for motion tracking are essential for mobile robotics and augmented reality (AR) applications. The most popular state-of-the-art visual-inertial odometry (VIO) systems, however, are too computationally demanding for resource-constrained hardware, such as micro-drones and smart glasses. This work presents LEVIO, a fully featured VIO pipeline optimized for ultra-low-power compute platforms, allowing six-degrees-of-freedom (DoF) real-time sensing. LEVIO incorporates established VIO components such as Oriented FAST and Rotated BRIEF (ORB) feature tracking and bundle adjustment, while emphasizing a computationally efficient architecture with parallelization and low memory usage to suit embedded microcontrollers and low-power systems-on-chip (SoCs). The paper proposes and details the algorithmic design choices and the hardware-software co-optimization approach, and presents real-time performance on resource-constrained hardware. LEVIO is validated on a parallel-processing ultra-low-power RISC-V SoC, achieving 20 FPS while consuming less than 100 mW, and benchmarked against public VIO datasets, offering a compelling balance between efficiency and accuracy. To facilitate reproducibility and adoption, the complete implementation is released as open-source.
comment: This article has been accepted for publication in the IEEE Sensors Journal (JSEN)
☆ A3-TTA: Adaptive Anchor Alignment Test-Time Adaptation for Image Segmentation IEEE
Test-Time Adaptation (TTA) offers a practical solution for deploying image segmentation models under domain shift without accessing source data or retraining. Among existing TTA strategies, pseudo-label-based methods have shown promising performance. However, they often rely on perturbation-ensemble heuristics (e.g., dropout sampling, test-time augmentation, Gaussian noise), which lack distributional grounding and yield unstable training signals. This can trigger error accumulation and catastrophic forgetting during adaptation. To address this, we propose \textbf{A3-TTA}, a TTA framework that constructs reliable pseudo-labels through anchor-guided supervision. Specifically, we identify well-predicted target domain images using a class compact density metric, under the assumption that confident predictions imply distributional proximity to the source domain. These anchors serve as stable references to guide pseudo-label generation, which is further regularized via semantic consistency and boundary-aware entropy minimization. Additionally, we introduce a self-adaptive exponential moving average strategy to mitigate label noise and stabilize model update during adaptation. Evaluated on both multi-domain medical images (heart structure and prostate segmentation) and natural images, A3-TTA significantly improves average Dice scores by 10.40 to 17.68 percentage points compared to the source model, outperforming several state-of-the-art TTA methods under different segmentation model architectures. A3-TTA also excels in continual TTA, maintaining high performance across sequential target domains with strong anti-forgetting ability. The code will be made publicly available at https://github.com/HiLab-git/A3-TTA.
comment: Accepted by IEEE Transactions on Image Processing
☆ Time Is All It Takes: Spike-Retiming Attacks on Event-Driven Spiking Neural Networks ICLR 2026
Yi Yu, Qixin Zhang, Shuhan Ye, Xun Lin, Qianshan Wei, Kun Wang, Wenhan Yang, Dacheng Tao, Xudong Jiang
Spiking neural networks (SNNs) compute with discrete spikes and exploit temporal structure, yet most adversarial attacks change intensities or event counts instead of timing. We study a timing-only adversary that retimes existing spikes while preserving spike counts and amplitudes in event-driven SNNs, thus remaining rate-preserving. We formalize a capacity-1 spike-retiming threat model with a unified trio of budgets: per-spike jitter $\mathcal{B}_{\infty}$, total delay $\mathcal{B}_{1}$, and tamper count $\mathcal{B}_{0}$. Feasible adversarial examples must satisfy timeline consistency and non-overlap, which makes the search space discrete and constrained. To optimize such retimings at scale, we use projected-in-the-loop (PIL) optimization: shift-probability logits yield a differentiable soft retiming for backpropagation, and a strict projection in the forward pass produces a feasible discrete schedule that satisfies capacity-1, non-overlap, and the chosen budget at every step. The objective maximizes task loss on the projected input and adds a capacity regularizer together with budget-aware penalties, which stabilizes gradients and aligns optimization with evaluation. Across event-driven benchmarks (CIFAR10-DVS, DVS-Gesture, N-MNIST) and diverse SNN architectures, we evaluate under binary and integer event grids and a range of retiming budgets, and also test models trained with timing-aware adversarial training designed to counter timing-only attacks. For example, on DVS-Gesture the attack attains high success (over $90\%$) while touching fewer than $2\%$ of spikes under $\mathcal{B}_{0}$. Taken together, our results show that spike retiming is a practical and stealthy attack surface that current defenses struggle to counter, providing a clear reference for temporal robustness in event-driven SNNs. Code is available at https://github.com/yuyi-sd/Spike-Retiming-Attacks.
comment: Accepted by ICLR 2026
☆ Global Geometry Is Not Enough for Vision Representations
A common assumption in representation learning is that globally well-distributed embeddings support robust and generalizable representations. This focus has shaped both training objectives and evaluation protocols, implicitly treating global geometry as a proxy for representational competence. While global geometry effectively encodes which elements are present, it is often insensitive to how they are composed. We investigate this limitation by testing the ability of geometric metrics to predict compositional binding across 21 vision encoders. We find that standard geometry-based statistics exhibit near-zero correlation with compositional binding. In contrast, functional sensitivity, as measured by the input-output Jacobian, reliably tracks this capability. We further provide an analytic account showing that this disparity arises from objective design, as existing losses explicitly constrain embedding geometry but leave the local input-output mapping unconstrained. These results suggest that global embedding geometry captures only a partial view of representational competence and establish functional sensitivity as a critical complementary axis for modeling composite structure.
☆ HypCBC: Domain-Invariant Hyperbolic Cross-Branch Consistency for Generalizable Medical Image Analysis
Robust generalization beyond training distributions remains a critical challenge for deep neural networks. This is especially pronounced in medical image analysis, where data is often scarce and covariate shifts arise from different hardware devices, imaging protocols, and heterogeneous patient populations. These factors collectively hinder reliable performance and slow down clinical adoption. Despite recent progress, existing learning paradigms primarily rely on the Euclidean manifold, whose flat geometry fails to capture the complex, hierarchical structures present in clinical data. In this work, we exploit the advantages of hyperbolic manifolds to model complex data characteristics. We present the first comprehensive validation of hyperbolic representation learning for medical image analysis and demonstrate statistically significant gains across eleven in-distribution datasets and three ViT models. We further propose an unsupervised, domain-invariant hyperbolic cross-branch consistency constraint. Extensive experiments confirm that our proposed method promotes domain-invariant features and outperforms state-of-the-art Euclidean methods by an average of $+2.1\%$ AUC on three domain generalization benchmarks: Fitzpatrick17k, Camelyon17-WILDS, and a cross-dataset setup for retinal imaging. These datasets span different imaging modalities, data sizes, and label granularities, confirming generalization capabilities across substantially different conditions. The code is available at https://github.com/francescodisalvo05/hyperbolic-cross-branch-consistency .
comment: Accepted to Transactions on Machine Learning Research (TMLR)
☆ LaVPR: Benchmarking Language and Vision for Place Recognition
Visual Place Recognition (VPR) often fails under extreme environmental changes and perceptual aliasing. Furthermore, standard systems cannot perform "blind" localization from verbal descriptions alone, a capability needed for applications such as emergency response. To address these challenges, we introduce LaVPR, a large-scale benchmark that extends existing VPR datasets with over 650,000 rich natural-language descriptions. Using LaVPR, we investigate two paradigms: Multi-Modal Fusion for enhanced robustness and Cross-Modal Retrieval for language-based localization. Our results show that language descriptions yield consistent gains in visually degraded conditions, with the most significant impact on smaller backbones. Notably, adding language allows compact models to rival the performance of much larger vision-only architectures. For cross-modal retrieval, we establish a baseline using Low-Rank Adaptation (LoRA) and Multi-Similarity loss, which substantially outperforms standard contrastive methods across vision-language models. Ultimately, LaVPR enables a new class of localization systems that are both resilient to real-world stochasticity and practical for resource-constrained deployment. Our dataset and code are available at https://github.com/oferidan1/LaVPR.
☆ InstaDrive: Instance-Aware Driving World Models for Realistic and Consistent Video Generation
Autonomous driving relies on robust models trained on high-quality, large-scale multi-view driving videos. While world models offer a cost-effective solution for generating realistic driving videos, they struggle to maintain instance-level temporal consistency and spatial geometric fidelity. To address these challenges, we propose InstaDrive, a novel framework that enhances driving video realism through two key advancements: (1) Instance Flow Guider, which extracts and propagates instance features across frames to enforce temporal consistency, preserving instance identity over time. (2) Spatial Geometric Aligner, which improves spatial reasoning, ensures precise instance positioning, and explicitly models occlusion hierarchies. By incorporating these instance-aware mechanisms, InstaDrive achieves state-of-the-art video generation quality and enhances downstream autonomous driving tasks on the nuScenes dataset. Additionally, we utilize CARLA's autopilot to procedurally and stochastically simulate rare but safety-critical driving scenarios across diverse maps and regions, enabling rigorous safety evaluation for autonomous systems. Our project page is https://shanpoyang654.github.io/InstaDrive/page.html.
☆ EventFlash: Towards Efficient MLLMs for Event-Based Vision
Event-based multimodal large language models (MLLMs) enable robust perception in high-speed and low-light scenarios, addressing key limitations of frame-based MLLMs. However, current event-based MLLMs often rely on dense image-like processing paradigms, overlooking the spatiotemporal sparsity of event streams and resulting in high computational cost. In this paper, we propose EventFlash, a novel and efficient MLLM to explore spatiotemporal token sparsification for reducing data redundancy and accelerating inference. Technically, we build EventMind, a large-scale and scene-diverse dataset with over 500k instruction sets, providing both short and long event stream sequences to support our curriculum training strategy. We then present an adaptive temporal window aggregation module for efficient temporal sampling, which adaptively compresses temporal tokens while retaining key temporal cues. Finally, a sparse density-guided attention module is designed to improve spatial token efficiency by selecting informative regions and suppressing empty or sparse areas. Experimental results show that EventFlash achieves a $12.4\times$ throughput improvement over the baseline (EventFlash-Zero) while maintaining comparable performance. It supports long-range event stream processing with up to 1,000 bins, significantly outperforming the 5-bin limit of EventGPT. We believe EventFlash serves as an efficient foundation model for event-based vision.
☆ Spiral RoPE: Rotate Your Rotary Positional Embeddings in the 2D Plane
Rotary Position Embedding (RoPE) is the de facto positional encoding in large language models due to its ability to encode relative positions and support length extrapolation. When adapted to vision transformers, the standard axial formulation decomposes two-dimensional spatial positions into horizontal and vertical components, implicitly restricting positional encoding to axis-aligned directions. We identify this directional constraint as a fundamental limitation of the standard axial 2D RoPE, which hinders the modeling of oblique spatial relationships that naturally exist in natural images. To overcome this limitation, we propose Spiral RoPE, a simple yet effective extension that enables multi-directional positional encoding by partitioning embedding channels into multiple groups associated with uniformly distributed directions. Each group is rotated according to the projection of the patch position onto its corresponding direction, allowing spatial relationships to be encoded beyond the horizontal and vertical axes. Across a wide range of vision tasks including classification, segmentation, and generation, Spiral RoPE consistently improves performance. Qualitative analysis of attention maps further show that Spiral RoPE exhibits more concentrated activations on semantically relevant objects and better respects local object boundaries, highlighting the importance of multi-directional positional encoding in vision transformers.
☆ PokeFusion Attention: Enhancing Reference-Free Style-Conditioned Generation IJCNN 2026
This paper studies reference-free style-conditioned character generation in text-to-image diffusion models, where high-quality synthesis requires both stable character structure and consistent, fine-grained style expression across diverse prompts. Existing approaches primarily rely on text-only prompting, which is often under-specified for visual style and tends to produce noticeable style drift and geometric inconsistency, or introduce reference-based adapters that depend on external images at inference time, increasing architectural complexity and limiting deployment flexibility.We propose PokeFusion Attention, a lightweight decoder-level cross-attention mechanism that fuses textual semantics with learned style embeddings directly inside the diffusion decoder. By decoupling text and style conditioning at the attention level, our method enables effective reference-free stylized generation while keeping the pretrained diffusion backbone fully frozen.PokeFusion Attention trains only decoder cross-attention layers together with a compact style projection module, resulting in a parameter-efficient and plug-and-play control component that can be easily integrated into existing diffusion pipelines and transferred across different backbones.Experiments on a stylized character generation benchmark (Pokemon-style) demonstrate that our method consistently improves style fidelity, semantic alignment, and character shape consistency compared with representative adapter-based baselines, while maintaining low parameter overhead and inference-time simplicity.
comment: 7 pages, 5 figures. Under review at IJCNN 2026
☆ FARTrack: Fast Autoregressive Visual Tracking with High Performance
Inference speed and tracking performance are two critical evaluation metrics in the field of visual tracking. However, high-performance trackers often suffer from slow processing speeds, making them impractical for deployment on resource-constrained devices. To alleviate this issue, we propose FARTrack, a Fast Auto-Regressive Tracking framework. Since autoregression emphasizes the temporal nature of the trajectory sequence, it can maintain high performance while achieving efficient execution across various devices. FARTrack introduces Task-Specific Self-Distillation and Inter-frame Autoregressive Sparsification, designed from the perspectives of shallow-yet-accurate distillation and redundant-to-essential token optimization, respectively. Task-Specific Self-Distillation achieves model compression by distilling task-specific tokens layer by layer, enhancing the model's inference speed while avoiding suboptimal manual teacher-student layer pairs assignments. Meanwhile, Inter-frame Autoregressive Sparsification sequentially condenses multiple templates, avoiding additional runtime overhead while learning a temporally-global optimal sparsification strategy. FARTrack demonstrates outstanding speed and competitive performance. It delivers an AO of 70.6% on GOT-10k in real-time. Beyond, our fastest model achieves a speed of 343 FPS on the GPU and 121 FPS on the CPU.
☆ ConsisDrive: Identity-Preserving Driving World Models for Video Generation by Instance Mask
Autonomous driving relies on robust models trained on large-scale, high-quality multi-view driving videos. Although world models provide a cost-effective solution for generating realistic driving data, they often suffer from identity drift, where the same object changes its appearance or category across frames due to the absence of instance-level temporal constraints. We introduce ConsisDrive, an identity-preserving driving world model designed to enforce temporal consistency at the instance level. Our framework incorporates two key components: (1) Instance-Masked Attention, which applies instance identity masks and trajectory masks within attention blocks to ensure that visual tokens interact only with their corresponding instance features across spatial and temporal dimensions, thereby preserving object identity consistency; and (2) Instance-Masked Loss, which adaptively emphasizes foreground regions with probabilistic instance masking, reducing background noise while maintaining overall scene fidelity. By integrating these mechanisms, ConsisDrive achieves state-of-the-art driving video generation quality and demonstrates significant improvements in downstream autonomous driving tasks on the nuScenes dataset. Our project page is https://shanpoyang654.github.io/ConsisDrive/page.html.
☆ VIRAL: Visual In-Context Reasoning via Analogy in Diffusion Transformers
Replicating In-Context Learning (ICL) in computer vision remains challenging due to task heterogeneity. We propose \textbf{VIRAL}, a framework that elicits visual reasoning from a pre-trained image editing model by formulating ICL as conditional generation via visual analogy ($x_s : x_t :: x_q : y_q$). We adapt a frozen Diffusion Transformer (DiT) using role-aware multi-image conditioning and introduce a Mixture-of-Experts LoRA to mitigate gradient interference across diverse tasks. Additionally, to bridge the gaps in current visual context datasets, we curate a large-scale dataset spanning perception, restoration, and editing. Experiments demonstrate that VIRAL outperforms existing methods, validating that a unified V-ICL paradigm can handle the majority of visual tasks, including open-domain editing. Our code is available at https://anonymous.4open.science/r/VIRAL-744A
☆ Spectral Evolution Search: Efficient Inference-Time Scaling for Reward-Aligned Image Generation
Inference-time scaling offers a versatile paradigm for aligning visual generative models with downstream objectives without parameter updates. However, existing approaches that optimize the high-dimensional initial noise suffer from severe inefficiency, as many search directions exert negligible influence on the final generation. We show that this inefficiency is closely related to a spectral bias in generative dynamics: model sensitivity to initial perturbations diminishes rapidly as frequency increases. Building on this insight, we propose Spectral Evolution Search (SES), a plug-and-play framework for initial noise optimization that executes gradient-free evolutionary search within a low-frequency subspace. Theoretically, we derive the Spectral Scaling Prediction from perturbation propagation dynamics, which explains the systematic differences in the impact of perturbations across frequencies. Extensive experiments demonstrate that SES significantly advances the Pareto frontier of generation quality versus computational cost, consistently outperforming strong baselines under equivalent budgets.
☆ WebSplatter: Enabling Cross-Device Efficient Gaussian Splatting in Web Browsers via WebGPU
We present WebSplatter, an end-to-end GPU rendering pipeline for the heterogeneous web ecosystem. Unlike naive ports, WebSplatter introduces a wait-free hierarchical radix sort that circumvents the lack of global atomics in WebGPU, ensuring deterministic execution across diverse hardware. Furthermore, we propose an opacity-aware geometry culling stage that dynamically prunes splats before rasterization, significantly reducing overdraw and peak memory footprint. Evaluation demonstrates that WebSplatter consistently achieves 1.2$\times$ to 4.5$\times$ speedups over state-of-the-art web viewers.
☆ Hand3R: Online 4D Hand-Scene Reconstruction in the Wild
For Embodied AI, jointly reconstructing dynamic hands and the dense scene context is crucial for understanding physical interaction. However, most existing methods recover isolated hands in local coordinates, overlooking the surrounding 3D environment. To address this, we present Hand3R, the first online framework for joint 4D hand-scene reconstruction from monocular video. Hand3R synergizes a pre-trained hand expert with a 4D scene foundation model via a scene-aware visual prompting mechanism. By injecting high-fidelity hand priors into a persistent scene memory, our approach enables simultaneous reconstruction of accurate hand meshes and dense metric-scale scene geometry in a single forward pass. Experiments demonstrate that Hand3R bypasses the reliance on offline optimization and delivers competitive performance in both local hand reconstruction and global positioning.
☆ From Single Scan to Sequential Consistency: A New Paradigm for LIDAR Relocalization
LiDAR relocalization aims to estimate the global 6-DoF pose of a sensor in the environment. However, existing regression-based approaches are prone to dynamic or ambiguous scenarios, as they either solely rely on single-frame inference or neglect the spatio-temporal consistency across scans. In this paper, we propose TempLoc, a new LiDAR relocalization framework that enhances the robustness of localization by effectively modeling sequential consistency. Specifically, a Global Coordinate Estimation module is first introduced to predict point-wise global coordinates and associated uncertainties for each LiDAR scan. A Prior Coordinate Generation module is then presented to estimate inter-frame point correspondences by the attention mechanism. Lastly, an Uncertainty-Guided Coordinate Fusion module is deployed to integrate both predictions of point correspondence in an end-to-end fashion, yielding a more temporally consistent and accurate global 6-DoF pose. Experimental results on the NCLT and Oxford Robot-Car benchmarks show that our TempLoc outperforms stateof-the-art methods by a large margin, demonstrating the effectiveness of temporal-aware correspondence modeling in LiDAR relocalization. Our code will be released soon.
comment: Nothing
☆ LSGQuant: Layer-Sensitivity Guided Quantization for One-Step Diffusion Real-World Video Super-Resolution
One-Step Diffusion Models have demonstrated promising capability and fast inference in video super-resolution (VSR) for real-world. Nevertheless, the substantial model size and high computational cost of Diffusion Transformers (DiTs) limit downstream applications. While low-bit quantization is a common approach for model compression, the effectiveness of quantized models is challenged by the high dynamic range of input latent and diverse layer behaviors. To deal with these challenges, we introduce LSGQuant, a layer-sensitivity guided quantizing approach for one-step diffusion-based real-world VSR. Our method incorporates a Dynamic Range Adaptive Quantizer (DRAQ) to fit video token activations. Furthermore, we estimate layer sensitivity and implement a Variance-Oriented Layer Training Strategy (VOLTS) by analyzing layer-wise statistics in calibration. We also introduce Quantization-Aware Optimization (QAO) to jointly refine the quantized branch and a retained high-precision branch. Extensive experiments demonstrate that our method has nearly performance to origin model with full-precision and significantly exceeds existing quantization techniques. Code is available at: https://github.com/zhengchen1999/LSGQuant.
comment: Code is available at: https://github.com/zhengchen1999/LSGQuant
☆ BinaryDemoire: Moiré-Aware Binarization for Image Demoiréing
Image demoiréing aims to remove structured moiré artifacts in recaptured imagery, where degradations are highly frequency-dependent and vary across scales and directions. While recent deep networks achieve high-quality restoration, their full-precision designs remain costly for deployment. Binarization offers an extreme compression regime by quantizing both activations and weights to 1-bit. Yet, it has been rarely studied for demoiréing and performs poorly when naively applied. In this work, we propose BinaryDemoire, a binarized demoiréing framework that explicitly accommodates the frequency structure of moiré degradations. First, we introduce a moiré-aware binary gate (MABG) that extracts lightweight frequency descriptors together with activation statistics. It predicts channel-wise gating coefficients to condition the aggregation of binary convolution responses. Second, we design a shuffle-grouped residual adapter (SGRA) that performs structured sparse shortcut alignment. It further integrates interleaved mixing to promote information exchange across different channel partitions. Extensive experiments on four benchmarks demonstrate that the proposed BinaryDemoire surpasses current binarization methods. Code: https://github.com/zhengchen1999/BinaryDemoire.
comment: Code is available at: https://github.com/zhengchen1999/BinaryDemoire
☆ Human-in-the-loop Adaptation in Group Activity Feature Learning for Team Sports Video Retrieval
This paper proposes human-in-the-loop adaptation for Group Activity Feature Learning (GAFL) without group activity annotations. This human-in-the-loop adaptation is employed in a group-activity video retrieval framework to improve its retrieval performance. Our method initially pre-trains the GAF space based on the similarity of group activities in a self-supervised manner, unlike prior work that classifies videos into pre-defined group activity classes in a supervised learning manner. Our interactive fine-tuning process updates the GAF space to allow a user to better retrieve videos similar to query videos given by the user. In this fine-tuning, our proposed data-efficient video selection process provides several videos, which are selected from a video database, to the user in order to manually label these videos as positive or negative. These labeled videos are used to update (i.e., fine-tune) the GAF space, so that the positive and negative videos move closer to and farther away from the query videos through contrastive learning. Our comprehensive experimental results on two team sports datasets validate that our method significantly improves the retrieval performance. Ablation studies also demonstrate that several components in our human-in-the-loop adaptation contribute to the improvement of the retrieval performance. Code: https://github.com/chihina/GAFL-FINE-CVIU.
comment: Accepted to Computer Vision and Image Understanding (CVIU)
☆ Fully Kolmogorov-Arnold Deep Model in Medical Image Segmentation
Deeply stacked KANs are practically impossible due to high training difficulties and substantial memory requirements. Consequently, existing studies can only incorporate few KAN layers, hindering the comprehensive exploration of KANs. This study overcomes these limitations and introduces the first fully KA-based deep model, demonstrating that KA-based layers can entirely replace traditional architectures in deep learning and achieve superior learning capacity. Specifically, (1) the proposed Share-activation KAN (SaKAN) reformulates Sprecher's variant of Kolmogorov-Arnold representation theorem, which achieves better optimization due to its simplified parameterization and denser training samples, to ease training difficulty, (2) this paper indicates that spline gradients contribute negligibly to training while consuming huge GPU memory, thus proposes the Grad-Free Spline to significantly reduce memory usage and computational overhead. (3) Building on these two innovations, our ALL U-KAN is the first representative implementation of fully KA-based deep model, where the proposed KA and KAonv layers completely replace FC and Conv layers. Extensive evaluations on three medical image segmentation tasks confirm the superiority of the full KA-based architecture compared to partial KA-based and traditional architectures, achieving all higher segmentation accuracy. Compared to directly deeply stacked KAN, ALL U-KAN achieves 10 times reduction in parameter count and reduces memory consumption by more than 20 times, unlocking the new explorations into deep KAN architectures.
comment: 11 pages, 5 figures, conference
☆ Diversity-Preserved Distribution Matching Distillation for Fast Visual Synthesis
Distribution matching distillation (DMD) aligns a multi-step generator with its few-step counterpart to enable high-quality generation under low inference cost. However, DMD tends to suffer from mode collapse, as its reverse-KL formulation inherently encourages mode-seeking behavior, for which existing remedies typically rely on perceptual or adversarial regularization, thereby incurring substantial computational overhead and training instability. In this work, we propose a role-separated distillation framework that explicitly disentangles the roles of distilled steps: the first step is dedicated to preserving sample diversity via a target-prediction (e.g., v-prediction) objective, while subsequent steps focus on quality refinement under the standard DMD loss, with gradients from the DMD objective blocked at the first step. We term this approach Diversity-Preserved DMD (DP-DMD), which, despite its simplicity -- no perceptual backbone, no discriminator, no auxiliary networks, and no additional ground-truth images -- preserves sample diversity while maintaining visual quality on par with state-of-the-art methods in extensive text-to-image experiments.
☆ FSOD-VFM: Few-Shot Object Detection with Vision Foundation Models and Graph Diffusion ICLR 2026
In this paper, we present FSOD-VFM: Few-Shot Object Detectors with Vision Foundation Models, a framework that leverages vision foundation models to tackle the challenge of few-shot object detection. FSOD-VFM integrates three key components: a universal proposal network (UPN) for category-agnostic bounding box generation, SAM2 for accurate mask extraction, and DINOv2 features for efficient adaptation to new object categories. Despite the strong generalization capabilities of foundation models, the bounding boxes generated by UPN often suffer from overfragmentation, covering only partial object regions and leading to numerous small, false-positive proposals rather than accurate, complete object detections. To address this issue, we introduce a novel graph-based confidence reweighting method. In our approach, predicted bounding boxes are modeled as nodes in a directed graph, with graph diffusion operations applied to propagate confidence scores across the network. This reweighting process refines the scores of proposals, assigning higher confidence to whole objects and lower confidence to local, fragmented parts. This strategy improves detection granularity and effectively reduces the occurrence of false-positive bounding box proposals. Through extensive experiments on Pascal-5$^i$, COCO-20$^i$, and CD-FSOD datasets, we demonstrate that our method substantially outperforms existing approaches, achieving superior performance without requiring additional training. Notably, on the challenging CD-FSOD dataset, which spans multiple datasets and domains, our FSOD-VFM achieves 31.6 AP in the 10-shot setting, substantially outperforming previous training-free methods that reach only 21.4 AP. Code is available at: https://intellindust-ai-lab.github.io/projects/FSOD-VFM.
comment: Accepted by ICLR 2026. Code is available at: \url{https://intellindust-ai-lab.github.io/projects/FSOD-VFM}
☆ SwiftVLM: Efficient Vision-Language Model Inference via Cross-Layer Token Bypass
Visual token pruning is a promising approach for reducing the computational cost of vision-language models (VLMs), and existing methods often rely on early pruning decisions to improve efficiency. While effective on coarse-grained reasoning tasks, they suffer from significant performance degradation on tasks requiring fine-grained visual details. Through layer-wise analysis, we reveal substantial discrepancies in visual token importance across layers, showing that tokens deemed unimportant at shallow layers can later become highly relevant for text-conditioned reasoning. To avoid irreversible critical information loss caused by premature pruning, we introduce a new pruning paradigm, termed bypass, which preserves unselected visual tokens and forwards them to subsequent pruning stages for re-evaluation. Building on this paradigm, we propose SwiftVLM, a simple and training-free method that performs pruning at model-specific layers with strong visual token selection capability, while enabling independent pruning decisions across layers. Experiments across multiple VLMs and benchmarks demonstrate that SwiftVLM consistently outperforms existing pruning strategies, achieving superior accuracy-efficiency trade-offs and more faithful visual token selection behavior.
☆ FinMTM: A Multi-Turn Multimodal Benchmark for Financial Reasoning and Agent Evaluation
The financial domain poses substantial challenges for vision-language models (VLMs) due to specialized chart formats and knowledge-intensive reasoning requirements. However, existing financial benchmarks are largely single-turn and rely on a narrow set of question formats, limiting comprehensive evaluation in realistic application scenarios. To address this gap, we propose FinMTM, a multi-turn multimodal benchmark that expands diversity along both data and task dimensions. On the data side, we curate and annotate 11{,}133 bilingual (Chinese and English) financial QA pairs grounded in financial visuals, including candlestick charts, statistical plots, and report figures. On the task side, FinMTM covers single- and multiple-choice questions, multi-turn open-ended dialogues, and agent-based tasks. We further design task-specific evaluation protocols, including a set-overlap scoring rule for multiple-choice questions, a weighted combination of turn-level and session-level scores for multi-turn dialogues, and a composite metric that integrates planning quality with final outcomes for agent tasks. Extensive experimental evaluation of 22 VLMs reveal their limitations in fine-grained visual perception, long-context reasoning, and complex agent workflows.
☆ Flexible Geometric Guidance for Probabilistic Human Pose Estimation with Diffusion Models
3D human pose estimation from 2D images is a challenging problem due to depth ambiguity and occlusion. Because of these challenges the task is underdetermined, where there exists multiple -- possibly infinite -- poses that are plausible given the image. Despite this, many prior works assume the existence of a deterministic mapping and estimate a single pose given an image. Furthermore, methods based on machine learning require a large amount of paired 2D-3D data to train and suffer from generalization issues to unseen scenarios. To address both of these issues, we propose a framework for pose estimation using diffusion models, which enables sampling from a probability distribution over plausible poses which are consistent with a 2D image. Our approach falls under the guidance framework for conditional generation, and guides samples from an unconditional diffusion model, trained only on 3D data, using the gradients of the heatmaps from a 2D keypoint detector. We evaluate our method on the Human 3.6M dataset under best-of-$m$ multiple hypothesis evaluation, showing state-of-the-art performance among methods which do not require paired 2D-3D data for training. We additionally evaluate the generalization ability using the MPI-INF-3DHP and 3DPW datasets and demonstrate competitive performance. Finally, we demonstrate the flexibility of our framework by using it for novel tasks including pose generation and pose completion, without the need to train bespoke conditional models. We make code available at https://github.com/fsnelgar/diffusion_pose .
☆ Feature, Alignment, and Supervision in Category Learning: A Comparative Approach with Children and Neural Networks
Understanding how humans and machines learn from sparse data is central to cognitive science and machine learning. Using a species-fair design, we compare children and convolutional neural networks (CNNs) in a few-shot semi-supervised category learning task. Both learners are exposed to novel object categories under identical conditions. Learners receive mixtures of labeled and unlabeled exemplars while we vary supervision (1/3/6 labels), target feature (size, shape, pattern), and perceptual alignment (high/low). We find that children generalize rapidly from minimal labels but show strong feature-specific biases and sensitivity to alignment. CNNs show a different interaction profile: added supervision improves performance, but both alignment and feature structure moderate the impact additional supervision has on learning. These results show that human-model comparisons must be drawn under the right conditions, emphasizing interactions among supervision, feature structure, and alignment rather than overall accuracy.
☆ Beyond Cropping and Rotation: Automated Evolution of Powerful Task-Specific Augmentations with Generative Models
Judah Goldfeder, Shreyes Kaliyur, Vaibhav Sourirajan, Patrick Minwan Puma, Philippe Martin Wyder, Yuhang Hu, Jiong Lin, Hod Lipson
Data augmentation has long been a cornerstone for reducing overfitting in vision models, with methods like AutoAugment automating the design of task-specific augmentations. Recent advances in generative models, such as conditional diffusion and few-shot NeRFs, offer a new paradigm for data augmentation by synthesizing data with significantly greater diversity and realism. However, unlike traditional augmentations like cropping or rotation, these methods introduce substantial changes that enhance robustness but also risk degrading performance if the augmentations are poorly matched to the task. In this work, we present EvoAug, an automated augmentation learning pipeline, which leverages these generative models alongside an efficient evolutionary algorithm to learn optimal task-specific augmentations. Our pipeline introduces a novel approach to image augmentation that learns stochastic augmentation trees that hierarchically compose augmentations, enabling more structured and adaptive transformations. We demonstrate strong performance across fine-grained classification and few-shot learning tasks. Notably, our pipeline discovers augmentations that align with domain knowledge, even in low-data settings. These results highlight the potential of learned generative augmentations, unlocking new possibilities for robust model training.
☆ Gromov Wasserstein Optimal Transport for Semantic Correspondences
Establishing correspondences between image pairs is a long studied problem in computer vision. With recent large-scale foundation models showing strong zero-shot performance on downstream tasks including classification and segmentation, there has been interest in using the internal feature maps of these models for the semantic correspondence task. Recent works observe that features from DINOv2 and Stable Diffusion (SD) are complementary, the former producing accurate but sparse correspondences, while the latter produces spatially consistent correspondences. As a result, current state-of-the-art methods for semantic correspondence involve combining features from both models in an ensemble. While the performance of these methods is impressive, they are computationally expensive, requiring evaluating feature maps from large-scale foundation models. In this work we take a different approach, instead replacing SD features with a superior matching algorithm which is imbued with the desirable spatial consistency property. Specifically, we replace the standard nearest neighbours matching with an optimal transport algorithm that includes a Gromov Wasserstein spatial smoothness prior. We show that we can significantly boost the performance of the DINOv2 baseline, and be competitive and sometimes surpassing state-of-the-art methods using Stable Diffusion features, while being 5--10x more efficient. We make code available at https://github.com/fsnelgar/semantic_matching_gwot .
☆ Neural Predictor-Corrector: Solving Homotopy Problems with Reinforcement Learning
Jiayao Mai, Bangyan Liao, Zhenjun Zhao, Yingping Zeng, Haoang Li, Javier Civera, Tailin Wu, Yi Zhou, Peidong Liu
The Homotopy paradigm, a general principle for solving challenging problems, appears across diverse domains such as robust optimization, global optimization, polynomial root-finding, and sampling. Practical solvers for these problems typically follow a predictor-corrector (PC) structure, but rely on hand-crafted heuristics for step sizes and iteration termination, which are often suboptimal and task-specific. To address this, we unify these problems under a single framework, which enables the design of a general neural solver. Building on this unified view, we propose Neural Predictor-Corrector (NPC), which replaces hand-crafted heuristics with automatically learned policies. NPC formulates policy selection as a sequential decision-making problem and leverages reinforcement learning to automatically discover efficient strategies. To further enhance generalization, we introduce an amortized training mechanism, enabling one-time offline training for a class of problems and efficient online inference on new instances. Experiments on four representative homotopy problems demonstrate that our method generalizes effectively to unseen instances. It consistently outperforms classical and specialized baselines in efficiency while demonstrating superior stability across tasks, highlighting the value of unifying homotopy methods into a single neural framework.
☆ A generalizable large-scale foundation model for musculoskeletal radiographs
Shinn Kim, Soobin Lee, Kyoungseob Shin, Han-Soo Kim, Yongsung Kim, Minsu Kim, Juhong Nam, Somang Ko, Daeheon Kwon, Wook Huh, Ilkyu Han, Sunghoon Kwon
Artificial intelligence (AI) has shown promise in detecting and characterizing musculoskeletal diseases from radiographs. However, most existing models remain task-specific, annotation-dependent, and limited in generalizability across diseases and anatomical regions. Although a generalizable foundation model trained on large-scale musculoskeletal radiographs is clinically needed, publicly available datasets remain limited in size and lack sufficient diversity to enable training across a wide range of musculoskeletal conditions and anatomical sites. Here, we present SKELEX, a large-scale foundation model for musculoskeletal radiographs, trained using self-supervised learning on 1.2 million diverse, condition-rich images. The model was evaluated on 12 downstream diagnostic tasks and generally outperformed baselines in fracture detection, osteoarthritis grading, and bone tumor classification. Furthermore, SKELEX demonstrated zero-shot abnormality localization, producing error maps that identified pathologic regions without task-specific training. Building on this capability, we developed an interpretable, region-guided model for predicting bone tumors, which maintained robust performance on independent external datasets and was deployed as a publicly accessible web application. Overall, SKELEX provides a scalable, label-efficient, and generalizable AI framework for musculoskeletal imaging, establishing a foundation for both clinical translation and data-efficient research in musculoskeletal radiology.
☆ Finding Optimal Video Moment without Training: Gaussian Boundary Optimization for Weakly Supervised Video Grounding IEEE
Weakly supervised temporal video grounding aims to localize query-relevant segments in untrimmed videos using only video-sentence pairs, without requiring ground-truth segment annotations that specify exact temporal boundaries. Recent approaches tackle this task by utilizing Gaussian-based temporal proposals to represent query-relevant segments. However, their inference strategies rely on heuristic mappings from Gaussian parameters to segment boundaries, resulting in suboptimal localization performance. To address this issue, we propose Gaussian Boundary Optimization (GBO), a novel inference framework that predicts segment boundaries by solving a principled optimization problem that balances proposal coverage and segment compactness. We derive a closed-form solution for this problem and rigorously analyze the optimality conditions under varying penalty regimes. Beyond its theoretical foundations, GBO offers several practical advantages: it is training-free and compatible with both single-Gaussian and mixture-based proposal architectures. Our experiments show that GBO significantly improves localization, achieving state-of-the-art results across standard benchmarks. Extensive experiments demonstrate the efficiency and generalizability of GBO across various proposal schemes. The code is available at \href{https://github.com/sunoh-kim/gbo}{https://github.com/sunoh-kim/gbo}.
comment: Accepted in IEEE TMM
☆ JRDB-Pose3D: A Multi-person 3D Human Pose and Shape Estimation Dataset for Robotics
Real-world scenes are inherently crowded. Hence, estimating 3D poses of all nearby humans, tracking their movements over time, and understanding their activities within social and environmental contexts are essential for many applications, such as autonomous driving, robot perception, robot navigation, and human-robot interaction. However, most existing 3D human pose estimation datasets primarily focus on single-person scenes or are collected in controlled laboratory environments, which restricts their relevance to real-world applications. To bridge this gap, we introduce JRDB-Pose3D, which captures multi-human indoor and outdoor environments from a mobile robotic platform. JRDB-Pose3D provides rich 3D human pose annotations for such complex and dynamic scenes, including SMPL-based pose annotations with consistent body-shape parameters and track IDs for each individual over time. JRDB-Pose3D contains, on average, 5-10 human poses per frame, with some scenes featuring up to 35 individuals simultaneously. The proposed dataset presents unique challenges, including frequent occlusions, truncated bodies, and out-of-frame body parts, which closely reflect real-world environments. Moreover, JRDB-Pose3D inherits all available annotations from the JRDB dataset, such as 2D pose, information about social grouping, activities, and interactions, full-scene semantic masks with consistent human- and object-level tracking, and detailed annotations for each individual, such as age, gender, and race, making it a holistic dataset for a wide range of downstream perception and human-centric understanding tasks.
☆ IVC-Prune: Revealing the Implicit Visual Coordinates in LVLMs for Vision Token Pruning ICLR 2026
Large Vision-Language Models (LVLMs) achieve impressive performance across multiple tasks. A significant challenge, however, is their prohibitive inference cost when processing high-resolution visual inputs. While visual token pruning has emerged as a promising solution, existing methods that primarily focus on semantic relevance often discard tokens that are crucial for spatial reasoning. We address this gap through a novel insight into \emph{how LVLMs process spatial reasoning}. Specifically, we reveal that LVLMs implicitly establish visual coordinate systems through Rotary Position Embeddings (RoPE), where specific token positions serve as \textbf{implicit visual coordinates} (IVC tokens) that are essential for spatial reasoning. Based on this insight, we propose \textbf{IVC-Prune}, a training-free, prompt-aware pruning strategy that retains both IVC tokens and semantically relevant foreground tokens. IVC tokens are identified by theoretically analyzing the mathematical properties of RoPE, targeting positions at which its rotation matrices approximate identity matrix or the $90^\circ$ rotation matrix. Foreground tokens are identified through a robust two-stage process: semantic seed discovery followed by contextual refinement via value-vector similarity. Extensive evaluations across four representative LVLMs and twenty diverse benchmarks show that IVC-Prune reduces visual tokens by approximately 50\% while maintaining $\geq$ 99\% of the original performance and even achieving improvements on several benchmarks. Source codes are available at https://github.com/FireRedTeam/IVC-Prune.
comment: Accepted to ICLR 2026
☆ SAFE-KD: Risk-Controlled Early-Exit Distillation for Vision Backbones IJCNN
Early-exit networks reduce inference cost by allowing ``easy'' inputs to stop early, but practical deployment hinges on knowing \emph{when} early exit is safe. We introduce SAFE-KD, a universal multi-exit wrapper for modern vision backbones that couples hierarchical distillation with \emph{conformal risk control}. SAFE-KD attaches lightweight exit heads at intermediate depths, distills a strong teacher into all exits via Decoupled Knowledge Distillation (DKD), and enforces deep-to-shallow consistency between exits. At inference, we calibrate per-exit stopping thresholds on a held-out set using conformal risk control (CRC) to guarantee a user-specified \emph{selective} misclassification risk (among the samples that exit early) under exchangeability. Across multiple datasets and architectures, SAFE-KD yields improved accuracy compute trade-offs, stronger calibration, and robust performance under corruption while providing finite-sample risk guarantees.
comment: Submitted to IJCNN
☆ HP-GAN: Harnessing pretrained networks for GAN improvement with FakeTwins and discriminator consistency
Generative Adversarial Networks (GANs) have made significant progress in enhancing the quality of image synthesis. Recent methods frequently leverage pretrained networks to calculate perceptual losses or utilize pretrained feature spaces. In this paper, we extend the capabilities of pretrained networks by incorporating innovative self-supervised learning techniques and enforcing consistency between discriminators during GAN training. Our proposed method, named HP-GAN, effectively exploits neural network priors through two primary strategies: FakeTwins and discriminator consistency. FakeTwins leverages pretrained networks as encoders to compute a self-supervised loss and applies this through the generated images to train the generator, thereby enabling the generation of more diverse and high quality images. Additionally, we introduce a consistency mechanism between discriminators that evaluate feature maps extracted from Convolutional Neural Network (CNN) and Vision Transformer (ViT) feature networks. Discriminator consistency promotes coherent learning among discriminators and enhances training robustness by aligning their assessments of image quality. Our extensive evaluation across seventeen datasets-including scenarios with large, small, and limited data, and covering a variety of image domains-demonstrates that HP-GAN consistently outperforms current state-of-the-art methods in terms of Fréchet Inception Distance (FID), achieving significant improvements in image diversity and quality. Code is available at: https://github.com/higun2/HP-GAN.
comment: Accepted manuscript. This is the accepted version of the article published in Neural Networks
☆ Bongards at the Boundary of Perception and Reasoning: Programs or Language?
Vision-Language Models (VLMs) have made great strides in everyday visual tasks, such as captioning a natural image, or answering commonsense questions about such images. But humans possess the puzzling ability to deploy their visual reasoning abilities in radically new situations, a skill rigorously tested by the classic set of visual reasoning challenges known as the Bongard problems. We present a neurosymbolic approach to solving these problems: given a hypothesized solution rule for a Bongard problem, we leverage LLMs to generate parameterized programmatic representations for the rule and perform parameter fitting using Bayesian optimization. We evaluate our method on classifying Bongard problem images given the ground truth rule, as well as on solving the problems from scratch.
comment: 6 pages, 5 figures
☆ MUSE: A Multi-agent Framework for Unconstrained Story Envisioning via Closed-Loop Cognitive Orchestration
Generating long-form audio-visual stories from a short user prompt remains challenging due to an intent-execution gap, where high-level narrative intent must be preserved across coherent, shot-level multimodal generation over long horizons. Existing approaches typically rely on feed-forward pipelines or prompt-only refinement, which often leads to semantic drift and identity inconsistency as sequences grow longer. We address this challenge by formulating storytelling as a closed-loop constraint enforcement problem and propose MUSE, a multi-agent framework that coordinates generation through an iterative plan-execute-verify-revise loop. MUSE translates narrative intent into explicit, machine-executable controls over identity, spatial composition, and temporal continuity, and applies targeted multimodal feedback to correct violations during generation. To evaluate open-ended storytelling without ground-truth references, we introduce MUSEBench, a reference-free evaluation protocol validated by human judgments. Experiments demonstrate that MUSE substantially improves long-horizon narrative coherence, cross-modal identity consistency, and cinematic quality compared with representative baselines.
☆ A Vision-Based Analysis of Congestion Pricing in New York City
We examine the impact of New York City's congestion pricing program through automated analysis of traffic camera data. Our computer vision pipeline processes footage from over 900 cameras distributed throughout Manhattan and New York, comparing traffic patterns from November 2024 through the program's implementation in January 2025 until January 2026. We establish baseline traffic patterns and identify systematic changes in vehicle density across the monitored region.
☆ Thinking inside the Convolution for Image Inpainting: Reconstructing Texture via Structure under Global and Local Side
Image inpainting has earned substantial progress, owing to the encoder-and-decoder pipeline, which is benefited from the Convolutional Neural Networks (CNNs) with convolutional downsampling to inpaint the masked regions semantically from the known regions within the encoder, coupled with an upsampling process from the decoder for final inpainting output. Recent studies intuitively identify the high-frequency structure and low-frequency texture to be extracted by CNNs from the encoder, and subsequently for a desirable upsampling recovery. However, the existing arts inevitably overlook the information loss for both structure and texture feature maps during the convolutional downsampling process, hence suffer from a non-ideal upsampling output. In this paper, we systematically answer whether and how the structure and texture feature map can mutually help to alleviate the information loss during the convolutional downsampling. Given the structure and texture feature maps, we adopt the statistical normalization and denormalization strategy for the reconstruction guidance during the convolutional downsampling process. The extensive experimental results validate its advantages to the state-of-the-arts over the images from low-to-high resolutions including 256*256 and 512*512, especially holds by substituting all the encoders by ours. Our code is available at https://github.com/htyjers/ConvInpaint-TSGL
comment: 17 pages, 17 figures
☆ VOILA: Value-of-Information Guided Fidelity Selection for Cost-Aware Multimodal Question Answering
Rahul Atul Bhope, K. R. Jayaram, Vinod Muthusamy, Ritesh Kumar, Vatche Isahagian, Nalini Venkatasubramanian
Despite significant costs from retrieving and processing high-fidelity visual inputs, most multimodal vision-language systems operate at fixed fidelity levels. We introduce VOILA, a framework for Value-Of-Information-driven adaptive fidelity selection in Visual Question Answering (VQA) that optimizes what information to retrieve before model execution. Given a query, VOILA uses a two-stage pipeline: a gradient-boosted regressor estimates correctness likelihood at each fidelity from question features alone, then an isotonic calibrator refines these probabilities for reliable decision-making. The system selects the minimum-cost fidelity maximizing expected utility given predicted accuracy and retrieval costs. We evaluate VOILA across three deployment scenarios using five datasets (VQA-v2, GQA, TextVQA, LoCoMo, FloodNet) and six Vision-Language Models (VLMs) with 7B-235B parameters. VOILA consistently achieves 50-60% cost reductions while retaining 90-95% of full-resolution accuracy across diverse query types and model architectures, demonstrating that pre-retrieval fidelity selection is vital to optimize multimodal inference under resource constraints.
☆ Video-OPD: Efficient Post-Training of Multimodal Large Language Models for Temporal Video Grounding via On-Policy Distillation
Reinforcement learning has emerged as a principled post-training paradigm for Temporal Video Grounding (TVG) due to its on-policy optimization, yet existing GRPO-based methods remain fundamentally constrained by sparse reward signals and substantial computational overhead. We propose Video-OPD, an efficient post-training framework for TVG inspired by recent advances in on-policy distillation. Video-OPD optimizes trajectories sampled directly from the current policy, thereby preserving alignment between training and inference distributions, while a frontier teacher supplies dense, token-level supervision via a reverse KL divergence objective. This formulation preserves the on-policy property critical for mitigating distributional shift, while converting sparse, episode-level feedback into fine-grained, step-wise learning signals. Building on Video-OPD, we introduce Teacher-Validated Disagreement Focusing (TVDF), a lightweight training curriculum that iteratively prioritizes trajectories that are both teacher-reliable and maximally informative for the student, thereby improving training efficiency. Empirical results demonstrate that Video-OPD consistently outperforms GRPO while achieving substantially faster convergence and lower computational cost, establishing on-policy distillation as an effective alternative to conventional reinforcement learning for TVG.
☆ SharpTimeGS: Sharp and Stable Dynamic Gaussian Splatting via Lifespan Modulation
Novel view synthesis of dynamic scenes is fundamental to achieving photorealistic 4D reconstruction and immersive visual experiences. Recent progress in Gaussian-based representations has significantly improved real-time rendering quality, yet existing methods still struggle to maintain a balance between long-term static and short-term dynamic regions in both representation and optimization. To address this, we present SharpTimeGS, a lifespan-aware 4D Gaussian framework that achieves temporally adaptive modeling of both static and dynamic regions under a unified representation. Specifically, we introduce a learnable lifespan parameter that reformulates temporal visibility from a Gaussian-shaped decay into a flat-top profile, allowing primitives to remain consistently active over their intended duration and avoiding redundant densification. In addition, the learned lifespan modulates each primitives' motion, reducing drift in long-lived static points while retaining unrestricted motion for short-lived dynamic ones. This effectively decouples motion magnitude from temporal duration, improving long-term stability without compromising dynamic fidelity. Moreover, we design a lifespan-velocity-aware densification strategy that mitigates optimization imbalance between static and dynamic regions by allocating more capacity to regions with pronounced motion while keeping static areas compact and stable. Extensive experiments on multiple benchmarks demonstrate that our method achieves state-of-the-art performance while supporting real-time rendering up to 4K resolution at 100 FPS on one RTX 4090.
☆ Aligning Forest and Trees in Images and Long Captions for Visually Grounded Understanding
Large vision-language models such as CLIP struggle with long captions because they align images and texts as undifferentiated wholes. Fine-grained vision-language understanding requires hierarchical semantics capturing both global context and localized details across visual and textual domains. Yet linguistic hierarchies from syntax or semantics rarely match visual organization, and purely visual hierarchies tend to fragment scenes into appearance-driven parts without semantic focus. We propose CAFT (Cross-domain Alignment of Forests and Trees), a hierarchical image-text representation learning framework that aligns global and local semantics across images and long captions without pixel-level supervision. Coupling a fine-to-coarse visual encoder with a hierarchical text transformer, it uses a hierarchical alignment loss that matches whole images with whole captions while biasing region-sentence correspondences, so that coarse semantics are built from fine-grained evidence rather than from aggregation untethered to part-level grounding. Trained on 30M image-text pairs, CAFT achieves state-of-the-art performance on six long-text retrieval benchmarks and exhibits strong scaling behavior. Experiments show that hierarchical cross-domain alignment enables fine-grained, visually grounded image-text representations to emerge without explicit region-level supervision.
comment: Preprint
☆ SceneLinker: Compositional 3D Scene Generation via Semantic Scene Graph from RGB Sequences IEEE
We introduce SceneLinker, a novel framework that generates compositional 3D scenes via semantic scene graph from RGB sequences. To adaptively experience Mixed Reality (MR) content based on each user's space, it is essential to generate a 3D scene that reflects the real-world layout by compactly capturing the semantic cues of the surroundings. Prior works struggled to fully capture the contextual relationship between objects or mainly focused on synthesizing diverse shapes, making it challenging to generate 3D scenes aligned with object arrangements. We address these challenges by designing a graph network with cross-check feature attention for scene graph prediction and constructing a graph-variational autoencoder (graph-VAE), which consists of a joint shape and layout block for 3D scene generation. Experiments on the 3RScan/3DSSG and SG-FRONT datasets demonstrate that our approach outperforms state-of-the-art methods in both quantitative and qualitative evaluations, even in complex indoor environments and under challenging scene graph constraints. Our work enables users to generate consistent 3D spaces from their physical environments via scene graphs, allowing them to create spatial MR content. Project page is https://scenelinker2026.github.io.
comment: Accepted as an IEEE TVCG paper at IEEE VR 2026 (journal track)
☆ Fisheye Stereo Vision: Depth and Range Error
Leaf Jiang, Matthew Holzel, Bernhard Kaplan, Hsiou-Yuan Liu, Sabyasachi Paul, Karen Rankin, Piotr Swierczynski
This study derives analytical expressions for the depth and range error of fisheye stereo vision systems as a function of object distance, specifically accounting for accuracy at large angles.
☆ Dynamic High-frequency Convolution for Infrared Small Target Detection
Infrared small targets are typically tiny and locally salient, which belong to high-frequency components (HFCs) in images. Single-frame infrared small target (SIRST) detection is challenging, since there are many HFCs along with targets, such as bright corners, broken clouds, and other clutters. Current learning-based methods rely on the powerful capabilities of deep networks, but neglect explicit modeling and discriminative representation learning of various HFCs, which is important to distinguish targets from other HFCs. To address the aforementioned issues, we propose a dynamic high-frequency convolution (DHiF) to translate the discriminative modeling process into the generation of a dynamic local filter bank. Especially, DHiF is sensitive to HFCs, owing to the dynamic parameters of its generated filters being symmetrically adjusted within a zero-centered range according to Fourier transformation properties. Combining with standard convolution operations, DHiF can adaptively and dynamically process different HFC regions and capture their distinctive grayscale variation characteristics for discriminative representation learning. DHiF functions as a drop-in replacement for standard convolution and can be used in arbitrary SIRST detection networks without significant decrease in computational efficiency. To validate the effectiveness of our DHiF, we conducted extensive experiments across different SIRST detection networks on real-scene datasets. Compared to other state-of-the-art convolution operations, DHiF exhibits superior detection performance with promising improvement. Codes are available at https://github.com/TinaLRJ/DHiF.
☆ TRACE: Temporal Radiology with Anatomical Change Explanation for Grounded X-ray Report Generation
Temporal comparison of chest X-rays is fundamental to clinical radiology, enabling detection of disease progression, treatment response, and new findings. While vision-language models have advanced single-image report generation and visual grounding, no existing method combines these capabilities for temporal change detection. We introduce Temporal Radiology with Anatomical Change Explanation (TRACE), the first model that jointly performs temporal comparison, change classification, and spatial localization. Given a prior and current chest X-ray, TRACE generates natural language descriptions of interval changes (worsened, improved, stable) while grounding each finding with bounding box coordinates. TRACE demonstrates effective spatial localization with over 90% grounding accuracy, establishing a foundation for this challenging new task. Our ablation study uncovers an emergent capability: change detection arises only when temporal comparison and spatial grounding are jointly learned, as neither alone enables meaningful change detection. This finding suggests that grounding provides a spatial attention mechanism essential for temporal reasoning.
☆ Nüwa: Mending the Spatial Integrity Torn by VLM Token Pruning
Vision token pruning has proven to be an effective acceleration technique for the efficient Vision Language Model (VLM). However, existing pruning methods demonstrate excellent performance preservation in visual question answering (VQA) and suffer substantial degradation on visual grounding (VG) tasks. Our analysis of the VLM's processing pipeline reveals that strategies utilizing global semantic similarity and attention scores lose the global spatial reference frame, which is derived from the interactions of tokens' positional information. Motivated by these findings, we propose $\text{Nüwa}$, a two-stage token pruning framework that enables efficient feature aggregation while maintaining spatial integrity. In the first stage, after the vision encoder, we apply three operations, namely separation, alignment, and aggregation, which are inspired by swarm intelligence algorithms to retain information-rich global spatial anchors. In the second stage, within the LLM, we perform text-guided pruning to retain task-relevant visual tokens. Extensive experiments demonstrate that $\text{Nüwa}$ achieves SOTA performance on multiple VQA benchmarks (from 94% to 95%) and yields substantial improvements on visual grounding tasks (from 7% to 47%).
☆ SRA-Seg: Synthetic to Real Alignment for Semi-Supervised Medical Image Segmentation
Synthetic data, an appealing alternative to extensive expert-annotated data for medical image segmentation, consistently fails to improve segmentation performance despite its visual realism. The reason being that synthetic and real medical images exist in different semantic feature spaces, creating a domain gap that current semi-supervised learning methods cannot bridge. We propose SRA-Seg, a framework explicitly designed to align synthetic and real feature distributions for medical image segmentation. SRA-Seg introduces a similarity-alignment (SA) loss using frozen DINOv2 embeddings to pull synthetic representations toward their nearest real counterparts in semantic space. We employ soft edge blending to create smooth anatomical transitions and continuous labels, eliminating the hard boundaries from traditional copy-paste augmentation. The framework generates pseudo-labels for synthetic images via an EMA teacher model and applies soft-segmentation losses that respect uncertainty in mixed regions. Our experiments demonstrate strong results: using only 10% labeled real data and 90% synthetic unlabeled data, SRA-Seg achieves 89.34% Dice on ACDC and 84.42% on FIVES, significantly outperforming existing semi-supervised methods and matching the performance of methods using real unlabeled data.
♻ ☆ MixGRPO: Unlocking Flow-based GRPO Efficiency with Mixed ODE-SDE
Although GRPO substantially enhances flow matching models in human preference alignment of image generation, methods such as FlowGRPO and DanceGRPO still exhibit inefficiency due to the necessity of sampling and optimizing over all denoising steps specified by the Markov Decision Process (MDP). In this paper, we propose $\textbf{MixGRPO}$, a novel framework that leverages the flexibility of mixed sampling strategies through the integration of stochastic differential equations (SDE) and ordinary differential equations (ODE). This streamlines the optimization process within the MDP to improve efficiency and boost performance. Specifically, MixGRPO introduces a sliding window mechanism, using SDE sampling and GRPO-guided optimization only within the window, while applying ODE sampling outside. This design confines sampling randomness to the time-steps within the window, thereby reducing the optimization overhead, and allowing for more focused gradient updates to accelerate convergence. Additionally, as time-steps beyond the sliding window are not involved in optimization, higher-order solvers are supported for faster sampling. So we present a faster variant, termed $\textbf{MixGRPO-Flash}$, which further improves training efficiency while achieving comparable performance. MixGRPO exhibits substantial gains across multiple dimensions of human preference alignment, outperforming DanceGRPO in both effectiveness and efficiency, with nearly 50% lower training time. Notably, MixGRPO-Flash further reduces training time by 71%.
♻ ☆ Model Optimization for Multi-Camera 3D Detection and Tracking
Outside-in multi-camera perception is increasingly important in indoor environments, where networks of static cameras must support multi-target tracking under occlusion and heterogeneous viewpoints. We evaluate Sparse4D, a query-based spatiotemporal 3D detection and tracking framework that fuses multi-view features in a shared world frame and propagates sparse object queries via instance memory. We study reduced input frame rates, post-training quantization (INT8 and FP8), transfer to the WILDTRACK benchmark, and Transformer Engine mixed-precision fine-tuning. To better capture identity stability, we report Average Track Duration (AvgTrackDur), which measures identity persistence in seconds. Sparse4D remains stable under moderate FPS reductions, but below 2 FPS, identity association collapses even when detections are stable. Selective quantization of the backbone and neck offers the best speed-accuracy trade-off, while attention-related modules are consistently sensitive to low precision. On WILDTRACK, low-FPS pretraining yields large zero-shot gains over the base checkpoint, while small-scale fine-tuning provides limited additional benefit. Transformer Engine mixed precision reduces latency and improves camera scalability, but can destabilize identity propagation, motivating stability-aware validation.
♻ ☆ Moonworks Lunara Aesthetic II: An Image Variation Dataset
We introduce Lunara Aesthetic II, a publicly released, ethically sourced image dataset designed to support controlled evaluation and learning of contextual consistency in modern image generation and editing systems. The dataset comprises 2,854 anchor-linked variation pairs derived from original art and photographs created by Moonworks. Each variation pair applies contextual transformations, such as illumination, weather, viewpoint, scene composition, color tone, or mood; while preserving a stable underlying identity. Lunara Aesthetic II operationalizes identity-preserving contextual variation as a supervision signal while also retaining Lunara's signature high aesthetic scores. Results show high identity stability, strong target attribute realization, and a robust aesthetic profile that exceeds large-scale web datasets. Released under the Apache 2.0 license, Lunara Aesthetic II is intended for benchmarking, fine-tuning, and analysis of contextual generalization, identity preservation, and edit robustness in image generation and image-to-image systems with interpretable, relational supervision. The dataset is publicly available at: https://huggingface.co/datasets/moonworks/lunara-aesthetic-image-variations.
♻ ☆ Seeing through Satellite Images at Street Views IEEE
This paper studies the task of SatStreet-view synthesis, which aims to render photorealistic street-view panorama images and videos given any satellite image and specified camera positions or trajectories. We formulate to learn neural radiance field from paired images captured from satellite and street viewpoints, which comes to be a challenging learning problem due to the sparse-view natural and the extremely-large viewpoint changes between satellite and street-view images. We tackle the challenges based on a task-specific observation that street-view specific elements, including the sky and illumination effects are only visible in street-view panoramas, and present a novel approach Sat2Density++ to accomplish the goal of photo-realistic street-view panoramas rendering by modeling these street-view specific in neural networks. In the experiments, our method is testified on both urban and suburban scene datasets, demonstrating that Sat2Density++ is capable of rendering photorealistic street-view panoramas that are consistent across multiple views and faithful to the satellite image.
comment: Accepted to IEEE TPAMI. Initially submitted in July 2024. Code is available on https://qianmingduowan.github.io/sat2density-pp/
♻ ☆ Towards Sustainable Universal Deepfake Detection with Frequency-Domain Masking
Universal deepfake detection aims to identify AI-generated images across a broad range of generative models, including unseen ones. This requires robust generalization to new and unseen deepfakes, which emerge frequently, while minimizing computational overhead to enable large-scale deepfake screening, a critical objective in the era of Green AI. In this work, we explore frequency-domain masking as a training strategy for deepfake detectors. Unlike traditional methods that rely heavily on spatial features or large-scale pretrained models, our approach introduces random masking and geometric transformations, with a focus on frequency masking due to its superior generalization properties. We demonstrate that frequency masking not only enhances detection accuracy across diverse generators but also maintains performance under significant model pruning, offering a scalable and resource-conscious solution. Our method achieves state-of-the-art generalization on GAN- and diffusion-generated image datasets and exhibits consistent robustness under structured pruning. These results highlight the potential of frequency-based masking as a practical step toward sustainable and generalizable deepfake detection. Code and models are available at https://github.com/chandlerbing65nm/FakeImageDetection.
comment: Accepted to ACM TOMM
♻ ☆ Rethinking Bottlenecks in Safety Fine-Tuning of Vision Language Models
Large Vision-Language Models (VLMs) have achieved remarkable performance across a wide range of tasks. However, their deployment in safety-critical domains poses significant challenges. Existing safety fine-tuning methods, which focus on textual or multimodal content, fall short in addressing challenging cases or disrupt the balance between helpfulness and harmlessness. Our evaluation highlights a safety reasoning gap: these methods lack safety visual reasoning ability, leading to such bottlenecks. To address this limitation and enhance both visual perception and reasoning in safety-critical contexts, we propose a novel dataset that integrates multi-image inputs with safety Chain-of-Thought (CoT) labels as fine-grained reasoning logic to improve model performance. Specifically, we introduce the Multi-Image Safety (MIS) dataset, an instruction-following dataset tailored for multi-image safety scenarios, consisting of training and test splits. Our experiments demonstrate that fine-tuning InternVL2.5-8B with MIS significantly outperforms both powerful open-source models and API-based models in challenging multi-image tasks requiring safety-related visual reasoning. This approach not only delivers exceptional safety performance but also preserves general capabilities without any trade-offs. Specifically, fine-tuning with MIS increases average accuracy by 0.83% across five general benchmarks and reduces the Attack Success Rate (ASR) on multiple safety benchmarks by a large margin.
♻ ☆ RANKVIDEO: Reasoning Reranking for Text-to-Video Retrieval
Reranking is a critical component of modern retrieval systems, which typically pair an efficient first-stage retriever with a more expressive model to refine results. While large reasoning models have driven rapid progress in text-centric reranking, reasoning-based reranking for video retrieval remains underexplored. To address this gap, we introduce RANKVIDEO, a reasoning-based reranker for video retrieval that explicitly reasons over query-video pairs using video content to assess relevance. RANKVIDEO is trained using a two-stage curriculum consisting of perception-grounded supervised fine-tuning followed by reranking training that combines pointwise, pairwise, and teacher confidence distillation objectives, and is supported by a data synthesis pipeline for constructing reasoning-intensive query-video pairs. Experiments on the large-scale MultiVENT 2.0 benchmark demonstrate that RANKVIDEO consistently improves retrieval performance within a two-stage framework, yielding an average improvement of 31% on nDCG@10 and outperforming text-only and vision-language reranking alternatives, while more efficient.
♻ ☆ Ground-R1: Incentivizing Grounded Visual Reasoning via Reinforcement Learning
Large Vision-Language Models (LVLMs) have become powerful general-purpose assistants, yet their predictions often lack reliability and interpretability due to insufficient grounding in visual evidence. The emerging thinking-with-images paradigm seeks to address this issue by explicitly anchoring reasoning to image regions. However, we empirically find that most existing methods suffer from a systematic scale-driven bias in optimization, where training rewards are dominated by large visual regions, suppressing learning from small but semantically critical evidence and leading to spurious grounding at inference time. To address this limitation, we propose Ground-R1, a de-biased thinking-with-images framework trained via a novel Scale Relative Policy Optimization (SRPO) objective that replaces standard GRPO. Specifically, our SRPO recalibrates reward learning across evidence regions of different sizes through scale-aware binning and intra-/inter-bin comparisons, enabling balanced credit assignment during training. Experimental results on general LVLM, high-resolution, and visual grounding benchmarks validate the effectiveness of Ground-R1 and show that SRPO yields consistent gains over standard GRPO in both response accuracy and evidence grounding.
♻ ☆ Mapping the Unseen: Unified Promptable Panoptic Mapping with Dynamic Labeling using Foundation Models
Panoptic maps enable robots to reason about both geometry and semantics. However, open-vocabulary models repeatedly produce closely related labels that split panoptic entities and degrade volumetric consistency. The proposed UPPM advances open-world scene understanding by leveraging foundation models to introduce a panoptic Dynamic Descriptor that reconciles open-vocabulary labels with unified category structure and geometric size priors. The fusion for such dynamic descriptors is performed within a multi-resolution multi-TSDF map using language-guided open-vocabulary panoptic segmentation and semantic retrieval, resulting in a persistent and promptable panoptic map without additional model training. Based on our evaluation experiments, UPPM shows the best overall performance in terms of the map reconstruction accuracy and the panoptic segmentation quality. The ablation study investigates the contribution for each component of UPPM (custom NMS, blurry-frame filtering, and unified semantics) to the overall system performance. Consequently, UPPM preserves open-vocabulary interpretability while delivering strong geometric and panoptic accuracy.
♻ ☆ Infinite-World: Scaling Interactive World Models to 1000-Frame Horizons via Pose-Free Hierarchical Memory
Ruiqi Wu, Xuanhua He, Meng Cheng, Tianyu Yang, Yong Zhang, Zhuoliang Kang, Xunliang Cai, Xiaoming Wei, Chunle Guo, Chongyi Li, Ming-Ming Cheng
We propose Infinite-World, a robust interactive world model capable of maintaining coherent visual memory over 1000+ frames in complex real-world environments. While existing world models can be efficiently optimized on synthetic data with perfect ground-truth, they lack an effective training paradigm for real-world videos due to noisy pose estimations and the scarcity of viewpoint revisits. To bridge this gap, we first introduce a Hierarchical Pose-free Memory Compressor (HPMC) that recursively distills historical latents into a fixed-budget representation. By jointly optimizing the compressor with the generative backbone, HPMC enables the model to autonomously anchor generations in the distant past with bounded computational cost, eliminating the need for explicit geometric priors. Second, we propose an Uncertainty-aware Action Labeling module that discretizes continuous motion into a tri-state logic. This strategy maximizes the utilization of raw video data while shielding the deterministic action space from being corrupted by noisy trajectories, ensuring robust action-response learning. Furthermore, guided by insights from a pilot toy study, we employ a Revisit-Dense Finetuning Strategy using a compact, 30-minute dataset to efficiently activate the model's long-range loop-closure capabilities. Extensive experiments, including objective metrics and user studies, demonstrate that Infinite-World achieves superior performance in visual quality, action controllability, and spatial consistency.
comment: project page: https://rq-wu.github.io/projects/infinite-world/index.html
♻ ☆ SEMNAV: Enhancing Visual Semantic Navigation in Robotics through Semantic Segmentation
Rafael Flor-Rodríguez, Carlos Gutiérrez-Álvarez, Francisco Javier Acevedo-Rodríguez, Sergio Lafuente-Arroyo, Roberto J. López-Sastre
Visual Semantic Navigation (VSN) is a fundamental problem in robotics, where an agent must navigate toward a target object in an unknown environment, mainly using visual information. Most state-of-the-art VSN models are trained in simulation environments, where rendered scenes of the real world are used, at best. These approaches typically rely on raw RGB data from the virtual scenes, which limits their ability to generalize to real-world environments due to domain adaptation issues. To tackle this problem, in this work, we propose SEMNAV, a novel approach that leverages semantic segmentation as the main visual input representation of the environment to enhance the agent's perception and decision-making capabilities. By explicitly incorporating this type of high-level semantic information, our model learns robust navigation policies that improve generalization across unseen environments, both in simulated and real world settings. We also introduce the SEMNAV dataset, a newly curated dataset designed for training semantic segmentation-aware navigation models like SEMNAV. Our approach is evaluated extensively in both simulated environments and with real-world robotic platforms. Experimental results demonstrate that SEMNAV outperforms existing state-of-the-art VSN models, achieving higher success rates in the Habitat 2.0 simulation environment, using the HM3D dataset. Furthermore, our real-world experiments highlight the effectiveness of semantic segmentation in mitigating the sim-to-real gap, making our model a promising solution for practical VSN-based robotic applications. The code and datasets are accessible at https://github.com/gramuah/semnav
♻ ☆ Accurate and Efficient World Modeling with Masked Latent Transformers
The Dreamer algorithm has recently obtained remarkable performance across diverse environment domains by training powerful agents with simulated trajectories. However, the compressed nature of its world model's latent space can result in the loss of crucial information, negatively affecting the agent's performance. Recent approaches, such as $Δ$-IRIS and DIAMOND, address this limitation by training more accurate world models. However, these methods require training agents directly from pixels, which reduces training efficiency and prevents the agent from benefiting from the inner representations learned by the world model. In this work, we propose an alternative approach to world modeling that is both accurate and efficient. We introduce EMERALD (Efficient MaskEd latent tRAnsformer worLD model), a world model using a spatial latent state with MaskGIT predictions to generate accurate trajectories in latent space and improve the agent performance. On the Crafter benchmark, EMERALD achieves new state-of-the-art performance, becoming the first method to surpass human experts performance within 10M environment steps. Our method also succeeds to unlock all 22 Crafter achievements at least once during evaluation.
♻ ☆ Driving on Registers
Ellington Kirby, Alexandre Boulch, Yihong Xu, Yuan Yin, Gilles Puy, Éloi Zablocki, Andrei Bursuc, Spyros Gidaris, Renaud Marlet, Florent Bartoccioni, Anh-Quan Cao, Nermin Samet, Tuan-Hung VU, Matthieu Cord
We present DrivoR, a simple and efficient transformer-based architecture for end-to-end autonomous driving. Our approach builds on pretrained Vision Transformers (ViTs) and introduces camera-aware register tokens that compress multi-camera features into a compact scene representation, significantly reducing downstream computation without sacrificing accuracy. These tokens drive two lightweight transformer decoders that generate and then score candidate trajectories. The scoring decoder learns to mimic an oracle and predicts interpretable sub-scores representing aspects such as safety, comfort, and efficiency, enabling behavior-conditioned driving at inference. Despite its minimal design, DrivoR outperforms or matches strong contemporary baselines across NAVSIM-v1, NAVSIM-v2, and the photorealistic closed-loop HUGSIM benchmark. Our results show that a pure-transformer architecture, combined with targeted token compression, is sufficient for accurate, efficient, and adaptive end-to-end driving. Code and checkpoints will be made available via the project page.
♻ ☆ Generating a Paracosm for Training-Free Zero-Shot Composed Image Retrieval
Composed Image Retrieval (CIR) is the task of retrieving a target image from a database using a multimodal query, which consists of a reference image and a modification text. The text specifies how to alter the reference image to form a ``mental image'', based on which CIR should find the target image in the database. The fundamental challenge of CIR is that this ``mental image'' is not physically available and is only implicitly defined by the query. The contemporary literature pursues zero-shot methods and uses a Large Multimodal Model (LMM) to generate a textual description for a given multimodal query, and then employs a Vision-Language Model (VLM) for textual-visual matching to search the target image. In contrast, we address CIR from first principles by directly generating the ``mental image'' for more accurate matching. Particularly, we prompt an LMM to generate a ``mental image'' for a given multimodal query and propose to use this ``mental image'' to search for the target image. As the ``mental image'' has a synthetic-to-real domain gap with real images, we also generate a synthetic counterpart for each real image in the database to facilitate matching. In this sense, our method uses LMM to construct a ``paracosm'', where it matches the multimodal query and database images. Hence, we call this method Paracosm. Notably, Paracosm is a training-free zero-shot CIR method. It significantly outperforms existing zero-shot methods on four challenging benchmarks, achieving state-of-the-art performance for zero-shot CIR.
♻ ☆ OptiPMB: Enhancing 3D Multi-Object Tracking with Optimized Poisson Multi-Bernoulli Filtering
Guanhua Ding, Yuxuan Xia, Runwei Guan, Qinchen Wu, Tao Huang, Weiping Ding, Jinping Sun, Guoqiang Mao
Accurate 3D multi-object tracking (MOT) is crucial for autonomous driving, as it enables robust perception, navigation, and planning in complex environments. While deep learning-based solutions have demonstrated impressive 3D MOT performance, model-based approaches remain appealing for their simplicity, interpretability, and data efficiency. Conventional model-based trackers typically rely on random vector-based Bayesian filters within the tracking-by-detection (TBD) framework but face limitations due to heuristic data association and track management schemes. In contrast, random finite set (RFS)-based Bayesian filtering handles object birth, survival, and death in a theoretically sound manner, facilitating interpretability and parameter tuning. In this paper, we present OptiPMB, a novel RFS-based 3D MOT method that employs an optimized Poisson multi-Bernoulli (PMB) filter while incorporating several key innovative designs within the TBD framework. Specifically, we propose a measurement-driven hybrid adaptive birth model for improved track initialization, employ adaptive detection probability parameters to effectively maintain tracks for occluded objects, and optimize density pruning and track extraction modules to further enhance overall tracking performance. Extensive evaluations on nuScenes and KITTI datasets show that OptiPMB achieves superior tracking accuracy compared with state-of-the-art methods, thereby establishing a new benchmark for model-based 3D MOT and offering valuable insights for future research on RFS-based trackers in autonomous driving.
♻ ☆ PISA: Piecewise Sparse Attention Is Wiser for Efficient Diffusion Transformers
Diffusion Transformers are fundamental for video and image generation, but their efficiency is bottlenecked by the quadratic complexity of attention. While block sparse attention accelerates computation by attending only critical key-value blocks, it suffers from degradation at high sparsity by discarding context. In this work, we discover that attention scores of non-critical blocks exhibit distributional stability, allowing them to be approximated accurately and efficiently rather than discarded, which is essentially important for sparse attention design. Motivated by this key insight, we propose PISA, a training-free Piecewise Sparse Attention that covers the full attention span with sub-quadratic complexity. Unlike the conventional keep-or-drop paradigm that directly drop the non-critical block information, PISA introduces a novel exact-or-approximate strategy: it maintains exact computation for critical blocks while efficiently approximating the remainder through block-wise Taylor expansion. This design allows PISA to serve as a faithful proxy to full attention, effectively bridging the gap between speed and quality. Experimental results demonstrate that PISA achieves 1.91 times and 2.57 times speedups on Wan2.1-14B and Hunyuan-Video, respectively, while consistently maintaining the highest quality among sparse attention methods. Notably, even for image generation on FLUX, PISA achieves a 1.2 times acceleration without compromising visual quality. Code is available at: https://github.com/xie-lab-ml/piecewise-sparse-attention.
comment: 17 pages
♻ ☆ SpecFLASH: A Latent-Guided Semi-autoregressive Speculative Decoding Framework for Efficient Multimodal Generation
Large language models and large multimodal models (LLMs and LMMs) deliver strong generative performance but suffer from slow decoding, a problem that becomes more severe when handling visual inputs, whose sequences typically contain many more tokens with lower information density than text. Speculative decoding accelerates LLM inference by letting a compact draft model propose candidate tokens that are selectively accepted by a larger target model, achieving speed-up without degrading quality. However, existing multimodal speculative decoding approaches largely ignore the structural characteristics of visual representations and usually rely on text-only draft models. In this paper, we introduce SpecFLASH, a speculative decoding framework tailored to LMMs that explicitly exploits multimodal structure when designing the draft model. We first mitigate redundancy in visual token sequences with a lightweight, latent-guided token compression module that compacts visual features while preserving semantics, and then leverage the co-occurrence and local correlations of visual entities via a semi-autoregressive decoding scheme that predicts multiple tokens in a single forward pass. Extensive experiments demonstrate that SpecFLASH consistently surpasses prior speculative decoding baselines, achieving up to $2.68\times$ speed-up on video captioning and $2.55\times$ on visual instruction tuning, relative to the original LMM. Our code is available here: https://github.com/ZihuaEvan/FlashSD/.
comment: Under review
♻ ☆ Understanding-informed Bias Mitigation for Fair CMR Segmentation
Tiarna Lee, Esther Puyol-Antón, Bram Ruijsink, Pier-Giorgio Masci, Louise Keehn, Phil Chowienczyk, Emily Haseler, Miaojing Shi, Andrew P. King
Artificial intelligence (AI) is increasingly being used for medical imaging tasks. However, there can be biases in AI models, particularly when they are trained using imbalanced training datasets. One such example has been the strong ethnicity bias effect in cardiac magnetic resonance (CMR) image segmentation models. Although this phenomenon has been reported in a number of publications, little is known about the effectiveness of bias mitigation algorithms in this domain. We aim to investigate the impact of common bias mitigation methods to address bias between Black and White subjects in AI-based CMR segmentation models. Specifically, we use oversampling, importance reweighing and Group DRO as well as combinations of these techniques to mitigate the ethnicity bias. Second, motivated by recent findings on the root causes of AI-based CMR segmentation bias, we evaluate the same methods using models trained and evaluated on cropped CMR images. We find that bias can be mitigated using oversampling, significantly improving performance for the underrepresented Black subjects whilst not significantly reducing the majority White subjects' performance. Using cropped images increases performance for both ethnicities and reduces the bias, whilst adding oversampling as a bias mitigation technique with cropped images reduces the bias further. When testing the models on an external clinical validation set, we find high segmentation performance and no statistically significant bias.
comment: Accepted for publication at the Journal of Machine Learning for Biomedical Imaging (MELBA) https://melba-journal.org/2025:036
♻ ☆ Material-informed Gaussian Splatting for 3D World Reconstruction in a Digital Twin IEEE
3D reconstruction for Digital Twins often relies on LiDAR-based methods, which provide accurate geometry but lack the semantics and textures naturally captured by cameras. Traditional LiDAR-camera fusion approaches require complex calibration and still struggle with certain materials like glass, which are visible in images but poorly represented in point clouds. We propose a camera-only pipeline that reconstructs scenes using 3D Gaussian Splatting from multi-view images, extracts semantic material masks via vision models, converts Gaussian representations to mesh surfaces with projected material labels, and assigns physics-based material properties for accurate sensor simulation in modern graphics engines and simulators. This approach combines photorealistic reconstruction with physics-based material assignment, providing sensor simulation fidelity comparable to LiDAR-camera fusion while eliminating hardware complexity and calibration requirements. We validate our camera-only method using an internal dataset from an instrumented test vehicle, leveraging LiDAR as ground truth for reflectivity validation alongside image similarity metrics.
comment: 8 pages, 5 figures. Accepted to IEEE Intelligent Vehicles Symposium (IV) 2026. Revised version (v3) presents camera-ready publication
♻ ☆ Patronus: Interpretable Diffusion Models with Prototypes
Uncovering the opacity of diffusion-based generative models is urgently needed, as their applications continue to expand while their underlying procedures largely remain a black box. With a critical question -- how can the diffusion generation process be interpreted and understood? -- we proposed Patronus, an interpretable diffusion model that incorporates a prototypical network to encode semantics in visual patches, revealing what visual patterns are modeled and where and when they emerge throughout denoising. This interpretability of Patronus provides deeper insights into the generative mechanism, enabling the detection of shortcut learning via unwanted correlations and the tracing of semantic emergence across timesteps. We evaluate Patronus on four natural image datasets and one medical imaging dataset, demonstrating both faithful interpretability and strong generative performance. With this work, we open new avenues for understanding and steering diffusion models through prototype-based interpretability.\\ Our code is available at https://github.com/nina-weng/patronus}{https://github.com/nina-weng/patronus.
♻ ☆ CAD-SLAM: Consistency-Aware Dynamic SLAM with Dynamic-Static Decoupled Mapping
Wenhua Wu, Chenpeng Su, Siting Zhu, Tianchen Deng, Jianhao Jiao, Guangming Wang, Dimitrios Kanoulas, Zhe Liu, Hesheng Wang
Recent advances in neural radiation fields (NeRF) and 3D Gaussian-based SLAM have achieved impressive localization accuracy and high-quality dense mapping in static scenes. However, these methods remain challenged in dynamic environments, where moving objects violate the static-world assumption and introduce inconsistent observations that degrade both camera tracking and map reconstruction. This motivates two fundamental problems: robustly identifying dynamic objects and modeling them online. To address these limitations, we propose CAD-SLAM, a Consistency-Aware Dynamic SLAM framework with dynamic-static decoupled mapping. Our key insight is that dynamic objects inherently violate cross-view and cross-time scene consistency. We detect object motion by analyzing geometric and texture discrepancies between historical map renderings and real-world observations. Once a moving object is identified, we perform bidirectional dynamic object tracking (both backward and forward in time) to achieve complete sequence-wise dynamic recognition. Our consistency-aware dynamic detection model achieves category-agnostic, instantaneous dynamic identification, which effectively mitigates motion-induced interference during localization and mapping. In addition, we introduce a dynamic-static decoupled mapping strategy that employs a temporal Gaussian model for online incremental dynamic modeling. Experiments conducted on multiple dynamic datasets demonstrate the flexible and accurate dynamic segmentation capabilities of our method, along with the state-of-the-art performance in both localization and mapping.
♻ ☆ video-SALMONN S: Memory-Enhanced Streaming Audio-Visual LLM
Long-duration streaming video understanding is fundamental for future AI agents, yet remains limited by ineffective long-term memory. We introduce video-SALMONN S, a memory-enhanced streaming audio-visual large language model that processes over 3-hour videos at 1 FPS and 360p resolution, outperforming strong non-streaming models under the same memory budget. In addition to token merging or downsampling, video-SALMONN S is the first to employ test-time training (TTT) as a streaming memory mechanism for video understanding. TTT continuously transforms short-term multimodal representations into long-term memory embedded in model parameters. To improve long-range dependency modeling and memory capacity, we propose (i) a TTT_MEM layer with an additional long-span prediction objective, (ii) a two-stage training scheme, and (iii) a modality-aware memory reader. We further introduce the Episodic Learning from Video Memory (ELViM) benchmark, simulating agent-like scenarios where models must learn from videos observed hours earlier. video-SALMONN S consistently outperforms both streaming and non-streaming baselines by 3-7% on long video benchmarks. Notably, video-SALMONN S achieves a 15% absolute accuracy improvement over strong non-streaming models on ELViM, demonstrating strong learning abilities from video memory.
♻ ☆ Reg4Pru: Regularisation Through Random Token Routing for Token Pruning
Transformers are widely adopted in modern vision models due to their strong ability to scale with dataset size and generalisability. However, this comes with a major drawback: computation scales quadratically to the total number of tokens. Numerous methods have been proposed to mitigate this. For example, we consider token pruning with reactivating tokens from preserved representations, but the increased computational efficiency of this method results in decreased stability from the preserved representations, leading to poorer dense prediction performance at deeper layers. In this work, we introduce Reg4Pru, a training regularisation technique that mitigates token-pruning performance loss for segmentation. We compare our models on the FIVES blood vessel segmentation dataset and find that Reg4Pru improves average precision by an absolute 46% compared to the same model trained without routing. This increase is observed using a configuration that achieves a 29% relative speedup in wall-clock time compared to the non-pruned baseline. These findings indicate that Reg4Pru is a valuable regulariser for token reduction strategies.
comment: 11 pages, 7 figures
♻ ☆ A Multicenter Benchmark of Multiple Instance Learning Models for Lymphoma Subtyping from HE-stained Whole Slide Images
Rao Muhammad Umer, Daniel Sens, Jonathan Noll, Sohom Dey, Christian Matek, Lukas Wolfseher, Rainer Spang, Ralf Huss, Johannes Raffler, Sarah Reinke, Ario Sadafi, Wolfram Klapper, Katja Steiger, Kristina Schwamborn, Carsten Marr
Timely and accurate lymphoma diagnosis is essential for guiding cancer treatment. Standard diagnostic practice combines hematoxylin and eosin (HE)-stained whole slide images with immunohistochemistry, flow cytometry, and molecular genetic tests to determine lymphoma subtypes, a process requiring costly equipment, skilled personnel, and causing treatment delays. Deep learning methods could assist pathologists by extracting diagnostic information from routinely available HE-stained slides, yet comprehensive benchmarks for lymphoma subtyping on multicenter data are lacking. In this work, we present the first multicenter lymphoma benchmarking dataset covering four common lymphoma subtypes and healthy control tissue. We systematically evaluate five publicly available pathology foundation models (H-optimus-1, H0-mini, Virchow2, UNI2, Titan) combined with attention-based (AB-MIL) and transformer-based (TransMIL) multiple instance learning aggregators across three magnifications (10x, 20x, 40x). On in-distribution test sets, models achieve multiclass balanced accuracies exceeding 80% across all magnifications, with all foundation models performing similarly and both aggregation methods showing comparable results. The magnification study reveals that 40x resolution is sufficient, with no performance gains from higher resolutions or cross-magnification aggregation. However, on out-of-distribution test sets, performance drops substantially to around 60%, highlighting significant generalization challenges. To advance the field, larger multicenter studies covering additional rare lymphoma subtypes are needed. We provide an automated benchmarking pipeline to facilitate such future research.
comment: 19 pages
♻ ☆ ECORE: Energy-Conscious Optimized Routing for Deep Learning Models at the Edge
Edge computing enables data processing closer to the source, significantly reducing latency, an essential requirement for real-time vision-based analytics such as object detection in surveillance and smart city environments. However, these tasks place substantial demands on resource-constrained edge devices, making the joint optimization of energy consumption and detection accuracy critical. To address this challenge, we propose ECORE, a framework that integrates multiple dynamic routing strategies, including a novel estimation-based techniques and an innovative greedy selection algorithm, to direct image processing requests to the most suitable edge device-model pair. ECORE dynamically balances energy efficiency and detection performance based on object characteristics. We evaluate our framework through extensive experiments on real-world datasets, comparing against widely used baseline techniques. The evaluation leverages established object detection models (YOLO, SSD, EfficientDet) and diverse edge platforms, including Jetson Orin Nano, Raspberry Pi 4 and 5, and TPU accelerators. Results demonstrate that our proposed context-aware routing strategies can reduce energy consumption and latency by 35% and 49%, respectively, while incurring only a 2% loss in detection accuracy compared to accuracy-centric methods.
♻ ☆ LazyDrag: Enabling Stable Drag-Based Editing on Multi-Modal Diffusion Transformers via Explicit Correspondence
The reliance on implicit point matching via attention has become a core bottleneck in drag-based editing, resulting in a fundamental compromise on weakened inversion strength and costly test-time optimization (TTO). This compromise severely limits the generative capabilities of diffusion models, suppressing high-fidelity inpainting and text-guided creation. In this paper, we introduce LazyDrag, the first drag-based image editing method for Multi-Modal Diffusion Transformers, which directly eliminates the reliance on implicit point matching. In concrete terms, our method generates an explicit correspondence map from user drag inputs as a reliable reference to boost the attention control. This reliable reference opens the potential for a stable full-strength inversion process, which is the first in the drag-based editing task. It obviates the necessity for TTO and unlocks the generative capability of models. Therefore, LazyDrag naturally unifies precise geometric control with text guidance, enabling complex edits that were previously out of reach: opening the mouth of a dog and inpainting its interior, generating new objects like a ``tennis ball'', or for ambiguous drags, making context-aware changes like moving a hand into a pocket. Additionally, LazyDrag supports multi-round workflows with simultaneous move and scale operations. Evaluated on the DragBench, our method outperforms baselines in drag accuracy and perceptual quality, as validated by VIEScore and human evaluation. LazyDrag not only establishes new state-of-the-art performance, but also paves a new way to editing paradigms.
comment: https://zxyin.github.io/LazyDrag
♻ ☆ Training-Free Text-Guided Color Editing with Multi-Modal Diffusion Transformer
Zixin Yin, Xili Dai, Ling-Hao Chen, Deyu Zhou, Jianan Wang, Duomin Wang, Gang Yu, Lionel M. Ni, Lei Zhang, Heung-Yeung Shum
Text-guided color editing in images and videos is a fundamental yet unsolved problem, requiring fine-grained manipulation of color attributes, including albedo, light source color, and ambient lighting, while preserving physical consistency in geometry, material properties, and light-matter interactions. Existing training-free methods offer broad applicability across editing tasks but struggle with precise color control and often introduce visual inconsistency in both edited and non-edited regions. In this work, we present ColorCtrl, a training-free color editing method that leverages the attention mechanisms of modern Multi-Modal Diffusion Transformers (MM-DiT). By disentangling structure and color through targeted manipulation of attention maps and value tokens, our method enables accurate and consistent color editing, along with word-level control of attribute intensity. Our method modifies only the intended regions specified by the prompt, leaving unrelated areas untouched. Extensive experiments on both SD3 and FLUX.1-dev demonstrate that ColorCtrl outperforms existing training-free approaches and achieves state-of-the-art performances in both edit quality and consistency. Furthermore, our method surpasses strong commercial models such as FLUX.1 Kontext Max and GPT-4o Image Generation in terms of consistency. When extended to video models like CogVideoX, our approach exhibits greater advantages, particularly in maintaining temporal coherence and editing stability. Finally, our method also generalizes to instruction-based editing diffusion models such as Step1X-Edit and FLUX.1 Kontext dev, further demonstrating its versatility.
comment: https://zxyin.github.io/ColorCtrl
♻ ☆ Thalia: A Global, Multi-Modal Dataset for Volcanic Activity Monitoring
Nikolas Papadopoulos, Nikolaos Ioannis Bountos, Maria Sdraka, Andreas Karavias, Gustau Camps-Valls, Ioannis Papoutsis
Monitoring volcanic activity is of paramount importance to safeguarding lives, infrastructure, and ecosystems. However, only a small fraction of known volcanoes are continuously monitored. Satellite-based Interferometric Synthetic Aperture Radar (InSAR) enables systematic, global-scale deformation monitoring. However, its complex data challenge traditional remote sensing methods. Deep learning offers a powerful means to automate and enhance InSAR interpretation, advancing volcanology and geohazard assessment. Despite its promise, progress has been limited by the scarcity of well-curated datasets. In this work, we build on the existing Hephaestus dataset and introduce Thalia, addressing crucial limitations and enriching its scope with higher-resolution, multi-source, and multi-temporal data. Thalia is a global collection of 38 spatiotemporal datacubes covering 7 years and integrating InSAR products, topographic data, as well as atmospheric variables, known to introduce signal delays that can mimic ground deformation in InSAR imagery. Each sample includes expert annotations detailing the type, intensity, and extent of deformation, ac- companied by descriptive text. To enable fair and consistent evaluation, we provide a comprehensive benchmark using state-of-the-art models for classification and segmentation. This work fosters collaboration between machine learning and Earth science, advancing volcanic monitoring and promoting data-driven approaches in geoscience. The code and latest version of the dataset are available through the github repository: https://github.com/Orion-AI-Lab/Thalia
♻ ☆ L2M-Reg: Building-level Uncertainty-aware Registration of Outdoor LiDAR Point Clouds and Semantic 3D City Models SP
Accurate registration between LiDAR (Light Detection and Ranging) point clouds and semantic 3D city models is a fundamental topic in urban digital twinning and a prerequisite for downstream tasks, such as digital construction, change detection, and model refinement. However, achieving accurate LiDAR-to-Model registration at the individual building level remains challenging, particularly due to the generalization uncertainty in semantic 3D city models at the Level of Detail 2 (LoD2). This paper addresses this gap by proposing L2M-Reg, a plane-based fine registration method that explicitly accounts for model uncertainty. L2M-Reg consists of three key steps: establishing reliable plane correspondence, building a pseudo-plane-constrained Gauss-Helmert model, and adaptively estimating vertical translation. Overall, extensive experiments on five real-world datasets demonstrate that L2M-Reg is both more accurate and computationally efficient than current leading ICP-based and plane-based methods. Therefore, L2M-Reg provides a novel building-level solution regarding LiDAR-to-Model registration when model uncertainty is present. The datasets and code for L2M-Reg can be found: https://github.com/Ziyang-Geodesy/L2M-Reg.
comment: Accepted version by ISPRS Journal of Photogrammetry and Remote Sensing
♻ ☆ DeepUrban: Interaction-Aware Trajectory Prediction and Planning for Automated Driving by Aerial Imagery
The efficacy of autonomous driving systems hinges critically on robust prediction and planning capabilities. However, current benchmarks are impeded by a notable scarcity of scenarios featuring dense traffic, which is essential for understanding and modeling complex interactions among road users. To address this gap, we collaborated with our industrial partner, DeepScenario, to develop DeepUrban-a new drone dataset designed to enhance trajectory prediction and planning benchmarks focusing on dense urban settings. DeepUrban provides a rich collection of 3D traffic objects, extracted from high-resolution images captured over urban intersections at approximately 100 meters altitude. The dataset is further enriched with comprehensive map and scene information to support advanced modeling and simulation tasks. We evaluate state-of-the-art (SOTA) prediction and planning methods, and conducted experiments on generalization capabilities. Our findings demonstrate that adding DeepUrban to nuScenes can boost the accuracy of vehicle predictions and planning, achieving improvements up to 44.1 % / 44.3% on the ADE / FDE metrics. Website: https://iv.ee.hm.edu/deepurban
♻ ☆ V2P-Bench: Evaluating Video-Language Understanding with Visual Prompts for Better Human-Model Interaction
Yiming Zhao, Yu Zeng, Yukun Qi, YaoYang Liu, Xikun Bao, Lin Chen, Zehui Chen, Qing Miao, Chenxi Liu, Jie Zhao, Feng Zhao
Large Vision-Language Models (LVLMs) have made significant strides in the field of video understanding in recent times. Nevertheless, existing video benchmarks predominantly rely on text prompts for evaluation, which often require complex referential language and diminish both the accuracy and efficiency of human model interaction in turn. To address this limitation, we propose V2P-Bench, a robust and comprehensive benchmark for evaluating the ability of LVLMs to understand Video Visual Prompts in human model interaction scenarios. V2P-Bench consists of 980 videos and 1172 well-structured high-quality QA pairs, each paired with manually annotated visual prompt frames. The benchmark spans three main tasks and twelve categories, thereby enabling fine-grained, instance-level evaluation. Through an in-depth analysis of current LVLMs, we identify several key findings: 1) Visual prompts are both more model-friendly and user-friendly in interactive scenarios than text prompts, leading to significantly improved model performance and enhanced user experience. 2) Models are reasonably capable of zero-shot understanding of visual prompts, but struggle with spatiotemporal understanding. Even o1 achieves only 71.8%, far below the human expert score of 88.3%, while most open-source models perform below 60%. 3) LVLMs exhibit pervasive Hack Phenomena in video question answering tasks, which become more pronounced as video length increases and frame sampling density decreases, thereby inflating performance scores artificially. We anticipate that V2P-Bench will not only shed light on these challenges but also serve as a foundational tool for advancing human model interaction and improving the evaluation of video understanding.
comment: Project Page: https://vlm-reasoning.github.io/V2P-Bench/
♻ ☆ No time to train! Training-Free Reference-Based Instance Segmentation
The performance of image segmentation models has historically been constrained by the high cost of collecting large-scale annotated data. The Segment Anything Model (SAM) alleviates this original problem through a promptable, semantics-agnostic, segmentation paradigm and yet still requires manual visual-prompts or complex domain-dependent prompt-generation rules to process a new image. Towards reducing this new burden, our work investigates the task of object segmentation when provided with, alternatively, only a small set of reference images. Our key insight is to leverage strong semantic priors, as learned by foundation models, to identify corresponding regions between a reference and a target image. We find that correspondences enable automatic generation of instance-level segmentation masks for downstream tasks and instantiate our ideas via a multi-stage, training-free method incorporating (1) memory bank construction; (2) representation aggregation and (3) semantic-aware feature matching. Our experiments show significant improvements on segmentation metrics, leading to state-of-the-art performance on COCO FSOD (36.8% nAP), PASCAL VOC Few-Shot (71.2% nAP50) and outperforming existing training-free approaches on the Cross-Domain FSOD benchmark (22.4% nAP).
comment: Preprint
♻ ☆ SurfSplat: Conquering Feedforward 2D Gaussian Splatting with Surface Continuity Priors ICLR 2026
Reconstructing 3D scenes from sparse images remains a challenging task due to the difficulty of recovering accurate geometry and texture without optimization. Recent approaches leverage generalizable models to generate 3D scenes using 3D Gaussian Splatting (3DGS) primitive. However, they often fail to produce continuous surfaces and instead yield discrete, color-biased point clouds that appear plausible at normal resolution but reveal severe artifacts under close-up views. To address this issue, we present SurfSplat, a feedforward framework based on 2D Gaussian Splatting (2DGS) primitive, which provides stronger anisotropy and higher geometric precision. By incorporating a surface continuity prior and a forced alpha blending strategy, SurfSplat reconstructs coherent geometry together with faithful textures. Furthermore, we introduce High-Resolution Rendering Consistency (HRRC), a new evaluation metric designed to evaluate high-resolution reconstruction quality. Extensive experiments on RealEstate10K, DL3DV, and ScanNet demonstrate that SurfSplat consistently outperforms prior methods on both standard metrics and HRRC, establishing a robust solution for high-fidelity 3D reconstruction from sparse inputs. Project page: https://hebing-sjtu.github.io/SurfSplat-website/
comment: ICLR 2026; Project Page: https://hebing-sjtu.github.io/SurfSplat-website/
♻ ☆ UniFGVC: Universal Training-Free Few-Shot Fine-Grained Vision Classification via Attribute-Aware Multimodal Retrieval
Few-shot fine-grained visual classification (FGVC) aims to leverage limited data to enable models to discriminate subtly distinct categories. Recent works mostly finetuned the pre-trained visual language models to achieve performance gain, yet suffering from overfitting and weak generalization. To deal with this, we introduce UniFGVC, a universal training-free framework that reformulates few-shot FGVC as multimodal retrieval. First, we propose the Category-Discriminative Visual Captioner (CDV-Captioner) to exploit the open-world knowledge of multimodal large language models (MLLMs) to generate a structured text description that captures the fine-grained attribute features distinguishing closely related classes. CDV-Captioner uses chain-of-thought prompting and visually similar reference images to reduce hallucination and enhance discrimination of generated captions. Using it we can convert each image into an image-description pair, enabling more comprehensive feature representation, and construct the multimodal category templates using few-shot samples for the subsequent retrieval pipeline. Then, off-the-shelf vision and text encoders embed query and template pairs, and FGVC is accomplished by retrieving the nearest template in the joint space. UniFGVC ensures broad compatibility with diverse MLLMs and encoders, offering reliable generalization and adaptability across few-shot FGVC scenarios. Extensive experiments on 12 FGVC benchmarks demonstrate its consistent superiority over prior few-shot CLIP-based methods and even several fully-supervised MLLMs-based approaches.
♻ ☆ MapDream: Task-Driven Map Learning for Vision-Language Navigation
Guoxin Lian, Shuo Wang, Yucheng Wang, Yongcai Wang, Maiyue Chen, Kaihui Wang, Bo Zhang, Zhizhong Su, Deying Li, Zhaoxin Fan
Vision-Language Navigation (VLN) requires agents to follow natural language instructions in partially observed 3D environments, motivating map representations that aggregate spatial context beyond local perception. However, most existing approaches rely on hand-crafted maps constructed independently of the navigation policy. We argue that maps should instead be learned representations shaped directly by navigation objectives rather than exhaustive reconstructions. Based on this insight, we propose MapDream, a map-in-the-loop framework that formulates map construction as autoregressive bird's-eye-view (BEV) image synthesis. The framework jointly learns map generation and action prediction, distilling environmental context into a compact three-channel BEV map that preserves only navigation-critical affordances. Supervised pre-training bootstraps a reliable mapping-to-control interface, while the autoregressive design enables end-to-end joint optimization through reinforcement fine-tuning. Experiments on R2R-CE and RxR-CE achieve state-of-the-art monocular performance, validating task-driven generative map learning.
♻ ☆ Beyond the Vision Encoder: Identifying and Mitigating Spatial Bias in Large Vision-Language Models
Yingjie Zhu, Xuefeng Bai, Kehai Chen, Yang Xiang, Youcheng Pan, Yongshuai Hou, Weili Guan, Jun Yu, Min Zhang
Large Vision-Language Models (LVLMs) have achieved remarkable success across a wide range of multimodal tasks, yet their robustness to spatial variations remains insufficiently understood. In this work, we conduct a systematic study of the spatial bias of LVLMs, examining how models respond when identical key visual information is placed at different locations within an image. Through controlled probing experiments, we observe that current LVLMs often produce inconsistent outputs under such spatial shifts, revealing a clear spatial bias in their semantic understanding. Further analysis indicates that this bias does not stem from the vision encoder, but rather from a mismatch in attention mechanisms between the vision encoder and the large language model, which disrupts the global information flow. Motivated by this insight, we propose Adaptive Global Context Injection (AGCI), a lightweight mechanism that dynamically injects shared global visual context into each image token. AGCI works without architectural modifications, mitigating spatial bias by enhancing the semantic accessibility of image tokens while preserving the model's intrinsic capabilities. Extensive experiments demonstrate that AGCI not only enhances the spatial robustness of LVLMs, but also achieves strong performance on various downstream tasks and hallucination benchmarks.
♻ ☆ CountZES: Counting via Zero-Shot Exemplar Selection
Object counting in complex scenes is particularly challenging in the zero-shot (ZS) setting, where instances of unseen categories are counted using only a class name. Existing ZS counting methods that infer exemplars from text often rely on off-the-shelf open-vocabulary detectors (OVDs), which in dense scenes suffer from semantic noise, appearance variability, and frequent multi-instance proposals. Alternatively, random image-patch sampling is employed, which fails to accurately delineate object instances. To address these issues, we propose CountZES, an inference-only approach for object counting via ZS exemplar selection. CountZES discovers diverse exemplars through three synergistic stages: Detection-Anchored Exemplar (DAE), Density-Guided Exemplar (DGE), and Feature-Consensus Exemplar (FCE). DAE refines OVD detections to isolate precise single-instance exemplars. DGE introduces a density-driven, self-supervised paradigm to identify statistically consistent and semantically compact exemplars, while FCE reinforces visual coherence through feature-space clustering. Together, these stages yield a complementary exemplar set that balances textual grounding, count consistency, and feature representativeness. Experiments on diverse datasets demonstrate CountZES superior performance among ZOC methods while generalizing effectively across domains.
♻ ☆ v1: Learning to Point Visual Tokens for Multimodal Grounded Reasoning
When thinking with images, humans rarely rely on a single glance: they revisit visual evidence while reasoning. In contrast, most Multimodal Language Models encode an image once to key-value cache and then reason purely in text, making it hard to re-ground intermediate steps. We empirically confirm this: as reasoning chains lengthen, models progressively lose focus on relevant regions. We introduce v1, a lightweight extension for active visual referencing via point-and-copy: the model selects relevant image patches and copies their embeddings back into the reasoning stream. Crucially, our point-and-copy mechanism retrieves patches using their semantic representations as keys, ensuring perceptual evidence remains aligned with the reasoning space. To train this behavior, we build v1, a dataset of 300K multimodal reasoning traces with interleaved grounding annotations. Across multimodal mathematical reasoning benchmarks, v1 consistently outperforms comparable baselines. We plan to release the model checkpoint and data.
♻ ☆ Imbalance-Robust and Sampling-Efficient Continuous Conditional GANs via Adaptive Vicinity and Auxiliary Regularization
Recent advances in conditional generative modeling have introduced Continuous conditional Generative Adversarial Network (CcGAN) and Continuous Conditional Diffusion Model (CCDM) for estimating high-dimensional data distributions conditioned on scalar, continuous regression labels (e.g., angles, ages, or temperatures). However, these approaches face fundamental limitations: CcGAN suffers from data imbalance due to fixed-size vicinity constraints, while CCDM requires computationally expensive iterative sampling. To address these issues, we propose CcGAN-AVAR, an enhanced CcGAN framework featuring (1) two novel components for handling data imbalance - an adaptive vicinity mechanism that dynamically adjusts vicinity size and a multi-task discriminator that enhances generator training through auxiliary regression and density ratio estimation - and (2) the GAN framework's native one-step generator, enable 30x-2000x faster inference than CCDM. Extensive experiments on four benchmark datasets (64x64 to 256x256 resolution) across eleven challenging settings demonstrate that CcGAN-AVAR achieves state-of-the-art generation quality while maintaining sampling efficiency.
♻ ☆ TreeLoc: 6-DoF LiDAR Global Localization in Forests via Inter-Tree Geometric Matching ICRA 2026
Reliable localization is crucial for navigation in forests, where GPS is often degraded and LiDAR measurements are repetitive, occluded, and structurally complex. These conditions weaken the assumptions of traditional urban-centric localization methods, which assume that consistent features arise from unique structural patterns, necessitating forest-centric solutions to achieve robustness in these environments. To address these challenges, we propose TreeLoc, a LiDAR-based global localization framework for forests that handles place recognition and 6-DoF pose estimation. We represent scenes using tree stems and their Diameter at Breast Height (DBH), which are aligned to a common reference frame via their axes and summarized using the tree distribution histogram (TDH) for coarse matching, followed by fine matching with a 2D triangle descriptor. Finally, pose estimation is achieved through a two-step geometric verification. On diverse forest benchmarks, TreeLoc outperforms baselines, achieving precise localization. Ablation studies validate the contribution of each component. We also propose applications for long-term forest management using descriptors from a compact global tree database. TreeLoc is open-sourced for the robotics community at https://github.com/minwoo0611/TreeLoc.
comment: An 8-page paper with 7 tables and 8 figures, accepted to ICRA 2026
♻ ☆ Happy Young Women, Grumpy Old Men? Emotion-Driven Demographic Biases in Synthetic Face Generation
Synthetic face generation has rapidly advanced with the emergence of text-to-image (T2I) and of multimodal large language models, enabling high-fidelity image production from natural-language prompts. Despite the widespread adoption of these tools, the biases, representational quality, and cross-cultural consistency of these models remain poorly understood. Prior research on biases in the synthetic generation of human faces has examined demographic biases, yet there is little research on how emotional prompts influence demographic representation and how models trained in different cultural and linguistic contexts vary in their output distributions. We present a systematic audit of eight state-of-the-art T2I models comprising four models developed by Western organizations and four developed by Chinese institutions, all prompted identically. Using state-of-the-art facial analysis algorithms, we estimate the gender, race, age, and attractiveness levels in the generated faces. To measure the deviations from global population statistics, we apply information-theoretic bias metrics including Kullback-Leibler and Jensen-Shannon divergences. Our findings reveal persistent demographic and emotion-conditioned biases in all models regardless of their country of origin. We discuss implications for fairness, socio-technical harms, governance, and the development of transparent generative systems.
comment: 23 pages, 11 figures
♻ ☆ Cross-Modal Alignment and Fusion for RGB-D Transmission-Line Defect Detection
Transmission line defect detection remains challenging for automated UAV inspection due to the dominance of small-scale defects, complex backgrounds, and illumination variations. Existing RGB-based detectors, despite recent progress, struggle to distinguish geometrically subtle defects from visually similar background structures under limited chromatic contrast. This paper proposes CMAFNet, a Cross-Modal Alignment and Fusion Network that integrates RGB appearance and depth geometry through a principled purify-then-fuse paradigm. CMAFNet consists of a Semantic Recomposition Module that performs dictionary-based feature purification via a learned codebook to suppress modality-specific noise while preserving defect-discriminative information, and a Contextual Semantic Integration Framework that captures global spatial dependencies using partial-channel attention to enhance structural semantic reasoning. Position-wise normalization within the purification stage enforces explicit reconstruction-driven cross-modal alignment, ensuring statistical compatibility between heterogeneous features prior to fusion. Extensive experiments on the TLRGBD benchmark, where 94.5% of instances are small objects, demonstrate that CMAFNet achieves 32.2% mAP@50 and 12.5% APs, outperforming the strongest baseline by 9.8 and 4.0 percentage points, respectively. A lightweight variant reaches 24.8% mAP50 at 228 FPS with only 4.9M parameters, surpassing all YOLO-based detectors while matching transformer-based methods at substantially lower computational cost.
♻ ☆ Object Fidelity Diffusion for Remote Sensing Image Generation
High-precision controllable remote sensing image generation is both meaningful and challenging. Existing diffusion models often produce low-fidelity images due to their inability to adequately capture morphological details, which may affect the robustness and reliability of object detection models. To enhance the accuracy and fidelity of generated objects in remote sensing, this paper proposes Object Fidelity Diffusion (OF-Diff), which effectively improves the fidelity of generated objects. Specifically, we are the first to extract the prior shapes of objects based on the layout for diffusion models in remote sensing. Then, we introduce a dual-branch diffusion model with diffusion consistency loss, which can generate high-fidelity remote sensing images without providing real images during the sampling phase. Furthermore, we introduce DDPO to fine-tune the diffusion process, making the generated remote sensing images more diverse and semantically consistent. Comprehensive experiments demonstrate that OF-Diff outperforms state-of-the-art methods in the remote sensing across key quality metrics. Notably, the performance of several polymorphic and small object classes shows significant improvement. For instance, the mAP increases by 8.3%, 7.7%, and 4.0% for airplanes, ships, and vehicles, respectively.
♻ ☆ MedFrameQA: A Multi-Image Medical VQA Benchmark for Clinical Reasoning
Suhao Yu, Haojin Wang, Juncheng Wu, Luyang Luo, Jingshen Wang, Cihang Xie, Pranav Rajpurkar, Carl Yang, Yang Yang, Kang Wang, Yannan Yu, Yuyin Zhou
Real-world clinical practice demands multi-image comparative reasoning, yet current medical benchmarks remain limited to single-frame interpretation. We present MedFrameQA, the first benchmark explicitly designed to test multi-image medical VQA through educationally-validated diagnostic sequences. To construct this dataset, we develop a scalable pipeline that leverages narrative transcripts from medical education videos to align visual frames with textual concepts, automatically producing 2,851 high-quality multi-image VQA pairs with explicit, transcript-grounded reasoning chains. Our evaluation of 11 advanced MLLMs (including reasoning models) exposes severe deficiencies in multi-image synthesis, where accuracies mostly fall below 50% and exhibit instability across varying image counts. Error analysis demonstrates that models often treat images as isolated instances, failing to track pathological progression or cross-reference anatomical shifts. MedFrameQA provides a rigorous standard for evaluating the next generation of MLLMs in handling complex, temporally grounded medical narratives.
comment: 27 pages, 15 Figures Benchmark data: https://huggingface.co/datasets/SuhaoYu1020/MedFrameQA
♻ ☆ FlyPrompt: Brain-Inspired Random-Expanded Routing with Temporal-Ensemble Experts for General Continual Learning ICLR 2026
General continual learning (GCL) challenges intelligent systems to learn from single-pass, non-stationary data streams without clear task boundaries. While recent advances in continual parameter-efficient tuning (PET) of pretrained models show promise, they typically rely on multiple training epochs and explicit task cues, limiting their effectiveness in GCL scenarios. Moreover, existing methods often lack targeted design and fail to address two fundamental challenges in continual PET: how to allocate expert parameters to evolving data distributions, and how to improve their representational capacity under limited supervision. Inspired by the fruit fly's hierarchical memory system characterized by sparse expansion and modular ensembles, we propose FlyPrompt, a brain-inspired framework that decomposes GCL into two subproblems: expert routing and expert competence improvement. FlyPrompt introduces a randomly expanded analytic router for instance-level expert activation and a temporal ensemble of output heads to dynamically adapt decision boundaries over time. Extensive theoretical and empirical evaluations demonstrate FlyPrompt's superior performance, achieving up to 11.23%, 12.43%, and 7.62% gains over state-of-the-art baselines on CIFAR-100, ImageNet-R, and CUB-200, respectively. Our source code is available at https://github.com/AnAppleCore/FlyGCL.
comment: 33 pages. Accepted by ICLR 2026
♻ ☆ Rethinking Efficient Mixture-of-Experts for Remote Sensing Modality-Missing Classification
Multimodal remote sensing classification often suffers from missing modalities caused by sensor failures and environmental interference, leading to severe performance degradation. In this work, we rethink missing-modality learning from a conditional computation perspective and investigate whether Mixture-of-Experts (MoE) models can inherently adapt to diverse modality-missing scenarios. We first conduct a systematic study of representative MoE paradigms under various missing-modality settings, revealing both their potential and limitations. Building on these insights, we propose a Missing-aware Mixture-of-LoRAs (MaMOL), a parameter-efficient MoE framework that unifies multiple modality-missing cases within a single model. MaMOL introduces a dual-routing mechanism to decouple modality-invariant shared experts and modality-aware dynamic experts, enabling automatic expert activation conditioned on available modalities. Extensive experiments on multiple remote sensing benchmarks demonstrate that MaMOL significantly improves robustness and generalization under diverse missing-modality scenarios with minimal computational overhead. Transfer experiments on natural image datasets further validate its scalability and cross-domain applicability.
comment: 11 pages, 5 figures
♻ ☆ What does really matter in image goal navigation?
Image goal navigation requires two different skills: firstly, core navigation skills, including the detection of free space and obstacles, and taking decisions based on an internal representation; and secondly, computing directional information by comparing visual observations to the goal image. Current state-of-the-art methods either rely on dedicated image-matching, or pre-training of computer vision modules on relative pose estimation. In this paper, we study whether this task can be efficiently solved with end-to-end training of full agents with RL, as has been claimed by recent work. A positive answer would have impact beyond Embodied AI and allow training of relative pose estimation from reward for navigation alone. In this large experimental study we investigate the effect of architectural choices like late fusion, channel stacking, space-to-depth projections and cross-attention, and their role in the emergence of relative pose estimators from navigation training. We show that the success of recent methods is influenced up to a certain extent by simulator settings, leading to shortcuts in simulation. However, we also show that these capabilities can be transferred to more realistic setting, up to some extent. We also find evidence for correlations between navigation performance and probed (emerging) relative pose estimation performance, an important sub skill.
♻ ☆ Beyond Random: Automatic Inner-loop Optimization in Dataset Distillation NeurIPS 2025
The growing demand for efficient deep learning has positioned dataset distillation as a pivotal technique for compressing training dataset while preserving model performance. However, existing inner-loop optimization methods for dataset distillation typically rely on random truncation strategies, which lack flexibility and often yield suboptimal results. In this work, we observe that neural networks exhibit distinct learning dynamics across different training stages-early, middle, and late-making random truncation ineffective. To address this limitation, we propose Automatic Truncated Backpropagation Through Time (AT-BPTT), a novel framework that dynamically adapts both truncation positions and window sizes according to intrinsic gradient behavior. AT-BPTT introduces three key components: (1) a probabilistic mechanism for stage-aware timestep selection, (2) an adaptive window sizing strategy based on gradient variation, and (3) a low-rank Hessian approximation to reduce computational overhead. Extensive experiments on CIFAR-10, CIFAR-100, Tiny-ImageNet, and ImageNet-1K show that AT-BPTT achieves state-of-the-art performance, improving accuracy by an average of 6.16% over baseline methods. Moreover, our approach accelerates inner-loop optimization by 3.9x while saving 63% memory cost.
comment: Accepted by NeurIPS 2025
♻ ☆ DiffVL: Diffusion-Based Visual Localization on 2D Maps via BEV-Conditioned GPS Denoising
Accurate visual localization is crucial for autonomous driving, yet existing methods face a fundamental dilemma: While high-definition (HD) maps provide high-precision localization references, their costly construction and maintenance hinder scalability, which drives research toward standard-definition (SD) maps like OpenStreetMap. Current SD-map-based approaches primarily focus on Bird's-Eye View (BEV) matching between images and maps, overlooking a ubiquitous signal-noisy GPS. Although GPS is readily available, it suffers from multipath errors in urban environments. We propose DiffVL, the first framework to reformulate visual localization as a GPS denoising task using diffusion models. Our key insight is that noisy GPS trajectory, when conditioned on visual BEV features and SD maps, implicitly encode the true pose distribution, which can be recovered through iterative diffusion refinement. DiffVL, unlike prior BEV-matching methods (e.g., OrienterNet) or transformer-based registration approaches, learns to reverse GPS noise perturbations by jointly modeling GPS, SD map, and visual signals, achieving sub-meter accuracy without relying on HD maps. Experiments on multiple datasets demonstrate that our method achieves state-of-the-art accuracy compared to BEV-matching baselines. Crucially, our work proves that diffusion models can enable scalable localization by treating noisy GPS as a generative prior-making a paradigm shift from traditional matching-based methods.
♻ ☆ From Frames to Sequences: Temporally Consistent Human-Centric Dense Prediction
In this work, we focus on the challenge of temporally consistent human-centric dense prediction across video sequences. Existing models achieve strong per-frame accuracy but often flicker under motion, occlusion, and lighting changes, and they rarely have paired human video supervision for multiple dense tasks. We address this gap with a scalable synthetic data pipeline that generates photorealistic human frames and motion-aligned sequences with pixel-accurate depth, normals, and masks. Unlike prior static data synthetic pipelines, our pipeline provides both frame-level labels for spatial learning and sequence-level supervision for temporal learning. Building on this, we train a unified ViT-based dense predictor that (i) injects an explicit human geometric prior via CSE embeddings and (ii) improves geometry-feature reliability with a lightweight channel reweighting module after feature fusion. Our two-stage training strategy, combining static pretraining with dynamic sequence supervision, enables the model first to acquire robust spatial representations and then refine temporal consistency across motion-aligned sequences. Extensive experiments show that we achieve state-of-the-art performance on THuman2.1 and Hi4D and generalize effectively to in-the-wild videos.
♻ ☆ Saliency-Guided DETR for Moment Retrieval and Highlight Detection
Existing approaches for video moment retrieval and highlight detection are not able to align text and video features efficiently, resulting in unsatisfying performance and limited production usage. To address this, we propose a novel architecture that utilizes recent foundational video models designed for such alignment. Combined with the introduced Saliency-Guided Cross Attention mechanism and a hybrid DETR architecture, our approach significantly enhances performance in both moment retrieval and highlight detection tasks. For even better improvement, we developed InterVid-MR, a large-scale and high-quality dataset for pretraining. Using it, our architecture achieves state-of-the-art results on the QVHighlights, Charades-STA and TACoS benchmarks. The proposed approach provides an efficient and scalable solution for both zero-shot and fine-tuning scenarios in video-language tasks.
comment: 8 pages, 2 figure, 6 tables
♻ ☆ Comprehensive Machine Learning Benchmarking for Fringe Projection Profilometry with Photorealistic Synthetic Data
Machine learning approaches for fringe projection profilometry (FPP) are hindered by the lack of large, diverse datasets and standardized benchmarking protocols. This paper introduces the first open-source, photorealistic synthetic dataset for FPP, generated using NVIDIA Isaac Sim, comprising 15,600 fringe images and 300 depth reconstructions across 50 objects. We apply this dataset to single-shot FPP, where models predict 3D depth maps directly from individual fringe images without temporal phase shifting. Through systematic ablation studies, we identify optimal learning configurations for long-range (1.5-2.1 m) depth prediction. We compare three depth normalization strategies and show that individual normalization, which decouples object shape from absolute scale, yields a 9.1x improvement in object reconstruction accuracy over raw depth. We further show that removing background fringe patterns severely degrades performance across all normalizations, demonstrating that background fringes provide essential spatial phase reference rather than noise. We evaluate six loss functions and identify Hybrid L1 loss as optimal. Using the best configuration, we benchmark four architectures and find UNet achieves the strongest performance, though errors remain far above the sub-millimeter accuracy of classical FPP. The small performance gap between architectures indicates that the dominant limitation is information deficit rather than model design: single fringe images lack sufficient information for accurate depth recovery without explicit phase cues. This work provides a standardized benchmark and evidence motivating hybrid approaches combining phase-based FPP with learned refinement. The dataset is available at https://huggingface.co/datasets/aharoon/fpp-ml-bench and code at https://github.com/AnushLak/fpp-ml-bench.
comment: 19 pages, 10 figures, 5 tables
♻ ☆ Understanding Representation Dynamics of Diffusion Models via Low-Dimensional Modeling NeurIPS 2025
Diffusion models, though originally designed for generative tasks, have demonstrated impressive self-supervised representation learning capabilities. A particularly intriguing phenomenon in these models is the emergence of unimodal representation dynamics, where the quality of learned features peaks at an intermediate noise level. In this work, we conduct a comprehensive theoretical and empirical investigation of this phenomenon. Leveraging the inherent low-dimensionality structure of image data, we theoretically demonstrate that the unimodal dynamic emerges when the diffusion model successfully captures the underlying data distribution. The unimodality arises from an interplay between denoising strength and class confidence across noise scales. Empirically, we further show that, in classification tasks, the presence of unimodal dynamics reliably reflects the generalization of the diffusion model: it emerges when the model generates novel images and gradually transitions to a monotonically decreasing curve as the model begins to memorize the training data.
comment: First two authors contributed equally. Accepted at NeurIPS 2025
♻ ☆ HAAP: Vision-context Hierarchical Attention Autoregressive with Adaptive Permutation for Scene Text Recognition
Scene Text Recognition (STR) is challenging in extracting effective character representations from visual data when text is unreadable. Permutation language modeling (PLM) is introduced to refine character predictions by jointly capturing contextual and visual information. However, in PLM, the use of random permutations causes training fit oscillation, and the iterative refinement (IR) operation also introduces additional overhead. To address these issues, this paper proposes the Hierarchical Attention autoregressive Model with Adaptive Permutation (HAAP) to enhance position-context-image interaction capability, improving autoregressive LM generalization. First, we propose Implicit Permutation Neurons (IPN) to generate adaptive attention masks that dynamically exploit token dependencies, enhancing the correlation between visual information and context. Adaptive correlation representation helps the model avoid training fit oscillation. Second, the Cross-modal Hierarchical Attention mechanism (CHA) is introduced to capture the dependencies among position queries, contextual semantics and visual information. CHA enables position tokens to aggregate global semantic information, avoiding the need for IR. Extensive experimental results show that the proposed HAAP achieves state-of-the-art (SOTA) performance in terms of accuracy, complexity, and latency on several datasets.
comment: 12 pages, 12 figures
♻ ☆ Embedding Compression via Spherical Coordinates
We present a compression method for unit-norm embeddings that achieves 1.5$\times$ compression, 25% better than the best prior lossless method. The method exploits that spherical coordinates of high-dimensional unit vectors concentrate around $π/2$, causing IEEE 754 exponents to collapse to a single value and high-order mantissa bits to become predictable, enabling entropy coding of both. Reconstruction error is below 1e-7, under float32 machine epsilon. Evaluation across 26 configurations spanning text, image, and multi-vector embeddings confirms consistent improvement.
♻ ☆ Data Augmentation for High-Fidelity Generation of CAR-T/NK Immunological Synapse Images
Xiang Zhang, Boxuan Zhang, Alireza Naghizadeh, Mohab Mohamed, Dongfang Liu, Ruixiang Tang, Dimitris Metaxas, Dongfang Liu
Chimeric antigen receptor (CAR)-T and NK cell immunotherapies have transformed cancer treatment, and recent studies suggest that the quality of the CAR-T/NK cell immunological synapse (IS) may serve as a functional biomarker for predicting therapeutic efficacy. Accurate detection and segmentation of CAR-T/NK IS structures using artificial neural networks (ANNs) can greatly increase the speed and reliability of IS quantification. However, a persistent challenge is the limited size of annotated microscopy datasets, which restricts the ability of ANNs to generalize. To address this challenge, we integrate two complementary data-augmentation frameworks. First, we employ Instance Aware Automatic Augmentation (IAAA), an automated, instance-preserving augmentation method that generates synthetic CAR-T/NK IS images and corresponding segmentation masks by applying optimized augmentation policies to original IS data. IAAA supports multiple imaging modalities (e.g., fluorescence and brightfield) and can be applied directly to CAR-T/NK IS images derived from patient samples. In parallel, we introduce a Semantic-Aware AI Augmentation (SAAA) pipeline that combines a diffusion-based mask generator with a Pix2Pix conditional image synthesizer. This second method enables the creation of diverse, anatomically realistic segmentation masks and produces high-fidelity CAR-T/NK IS images aligned with those masks, further expanding the training corpus beyond what IAAA alone can provide. Together, these augmentation strategies generate synthetic images whose visual and structural properties closely match real IS data, significantly improving CAR-T/NK IS detection and segmentation performance. By enhancing the robustness and accuracy of IS quantification, this work supports the development of more reliable imaging-based biomarkers for predicting patient response to CAR-T/NK immunotherapy.
♻ ☆ CIEC: Coupling Implicit and Explicit Cues for Multimodal Weakly Supervised Manipulation Localization
To mitigate the threat of misinformation, multimodal manipulation localization has garnered growing attention. Consider that current methods rely on costly and time-consuming fine-grained annotations, such as patch/token-level annotations. This paper proposes a novel framework named Coupling Implicit and Explicit Cues (CIEC), which aims to achieve multimodal weakly-supervised manipulation localization for image-text pairs utilizing only coarse-grained image/sentence-level annotations. It comprises two branches, image-based and text-based weakly-supervised localization. For the former, we devise the Textual-guidance Refine Patch Selection (TRPS) module. It integrates forgery cues from both visual and textual perspectives to lock onto suspicious regions aided by spatial priors. Followed by the background silencing and spatial contrast constraints to suppress interference from irrelevant areas. For the latter, we devise the Visual-deviation Calibrated Token Grounding (VCTG) module. It focuses on meaningful content words and leverages relative visual bias to assist token localization. Followed by the asymmetric sparse and semantic consistency constraints to mitigate label noise and ensure reliability. Extensive experiments demonstrate the effectiveness of our CIEC, yielding results comparable to fully supervised methods on several evaluation metrics.
♻ ☆ Rectification Reimagined: A Unified Mamba Model for Image Correction and Rectangling with Prompts AAAI 2026
Image correction and rectangling are valuable tasks in practical photography systems such as smartphones. Recent remarkable advancements in deep learning have undeniably brought about substantial performance improvements in these fields. Nevertheless, existing methods mainly rely on task-specific architectures. This significantly restricts their generalization ability and effective application across a wide range of different tasks. In this paper, we introduce the Unified Rectification Framework (UniRect), a comprehensive approach that addresses these practical tasks from a consistent distortion rectification perspective. Our approach incorporates various task-specific inverse problems into a general distortion model by simulating different types of lenses. To handle diverse distortions, UniRect adopts one task-agnostic rectification framework with a dual-component structure: a {Deformation Module}, which utilizes a novel Residual Progressive Thin-Plate Spline (RP-TPS) model to address complex geometric deformations, and a subsequent Restoration Module, which employs Residual Mamba Blocks (RMBs) to counteract the degradation caused by the deformation process and enhance the fidelity of the output image. Moreover, a Sparse Mixture-of-Experts (SMoEs) structure is designed to circumvent heavy task competition in multi-task learning due to varying distortions. Extensive experiments demonstrate that our models have achieved state-of-the-art performance compared with other up-to-date methods.
comment: AAAI 2026
♻ ☆ ReasonEdit: Editing Vision-Language Models using Human Reasoning
Model editing aims to correct errors in large, pretrained models without altering unrelated behaviors. While some recent works have edited vision-language models (VLMs), no existing editors tackle reasoning-heavy tasks, which typically require humans and models to reason about images. We therefore propose ReasonEdit, the first VLM editor to let users explain their reasoning during editing, introducing a new, practical model editing setup. ReasonEdit continuously stores human reasoning in a codebook, and retrieves only relevant facts during inference using a novel topology-balanced multimodal embedding method inspired by network science. Across four VLMs on multiple rationale-based visual question answering datasets, ReasonEdit achieves state-of-the-art editing performance, ultimately showing that using human reasoning during editing greatly improves edit generalization.
♻ ☆ Can 3D point cloud data improve automated body condition score prediction in dairy cattle?
Zhou Tang, Jin Wang, Angelo De Castro, Yuxi Zhang, Victoria Bastos Primo, Ana Beatriz Montevecchio Bernardino, Gota Morota, Xu Wang, Ricardo C Chebel, Haipeng Yu
Body condition score (BCS) is a widely used indicator of body energy status and is closely associated with metabolic status, reproductive performance, and health in dairy cattle; however, conventional visual scoring is subjective and labor-intensive. Computer vision approaches have been applied to BCS prediction, with depth images widely used because they capture geometric information independent of coat color and texture. More recently, three-dimensional point cloud data have attracted increasing interest due to their ability to represent richer geometric characteristics of animal morphology, but direct head-to-head comparisons with depth image-based approaches remain limited. In this study, we compared top-view depth image and point cloud data for BCS prediction under four settings: 1) unsegmented raw data, 2) segmented full-body data, 3) segmented hindquarter data, and 4) handcrafted feature data. Prediction models were evaluated using data from 1,020 dairy cows collected on a commercial farm, with cow-level cross-validation to prevent data leakage. Depth image-based models consistently achieved higher accuracy than point cloud-based models when unsegmented raw data and segmented full-body data were used, whereas comparable performance was observed when segmented hindquarter data were used. Both depth image and point cloud approaches showed reduced accuracy when handcrafted feature data were employed compared with the other settings. Overall, point cloud-based predictions were more sensitive to noise and model architecture than depth image-based predictions. Taken together, these results indicate that three-dimensional point clouds do not provide a consistent advantage over depth images for BCS prediction in dairy cattle under the evaluated conditions.
♻ ☆ Decipher-MR: A Vision-Language Foundation Model for 3D MRI Representations
Zhijian Yang, Noel DSouza, Istvan Megyeri, Xiaojian Xu, Amin Honarmandi Shandiz, Farzin Haddadpour, Krisztian Koos, Laszlo Rusko, Emanuele Valeriano, Bharadwaj Swaninathan, Lei Wu, Parminder Bhatia, Taha Kass-Hout, Erhan Bas
Magnetic Resonance Imaging is a critical imaging modality in clinical diagnosis and research, yet its complexity and heterogeneity hinder scalable, generalizable machine learning. Although foundation models have revolutionized language and vision tasks, their application to MRI remains constrained by data scarcity and narrow anatomical focus. We present Decipher-MR, a 3D MRI-specific vision-language foundation model trained on 200,000 MRI series from over 22,000 studies spanning diverse anatomical regions, sequences, and pathologies. Decipher-MR integrates self-supervised vision learning with report-guided text supervision to build robust representations for broad applications. To enable efficient use, Decipher-MR supports a modular design that enables tuning of lightweight, task-specific decoders attached to a frozen pretrained encoder. Following this setting, we evaluate Decipher-MR across disease classification, demographic prediction, anatomical localization, and cross-modal retrieval, demonstrating consistent improvements over existing foundation models and task-specific approaches. These results position Decipher-MR as a versatile foundation for MRI-based AI in clinical and research settings.
♻ ☆ SyNeT: Synthetic Negatives for Traversability Learning
Reliable traversability estimation is crucial for autonomous robots to navigate complex outdoor environments safely. Existing self-supervised learning frameworks primarily rely on positive and unlabeled data; however, the lack of explicit negative data remains a critical limitation, hindering the model's ability to accurately identify diverse non-traversable regions. To address this issue, we introduce a method to explicitly construct synthetic negatives, representing plausible but non-traversable, and integrate them into vision-based traversability learning. Our approach is formulated as a training strategy that can be seamlessly integrated into both Positive-Unlabeled (PU) and Positive-Negative (PN) frameworks without modifying inference architectures. Complementing standard pixel-wise metrics, we introduce an object-centric FPR evaluation approach that analyzes predictions in regions where synthetic negatives are inserted. This evaluation provides an indirect measure of the model's ability to consistently identify non-traversable regions without additional manual labeling. Extensive experiments on both public and self-collected datasets demonstrate that our approach significantly enhances robustness and generalization across diverse environments. The source code and demonstration videos will be publicly available.
♻ ☆ Mixture of Distributions Matters: Dynamic Sparse Attention for Efficient Video Diffusion Transformers
While Diffusion Transformers (DiTs) have achieved notable progress in video generation, this long-sequence generation task remains constrained by the quadratic complexity inherent to self-attention mechanisms, creating significant barriers to practical deployment. Although sparse attention methods attempt to address this challenge, existing approaches either rely on oversimplified static patterns or require computationally expensive sampling operations to achieve dynamic sparsity, resulting in inaccurate pattern predictions and degraded generation quality. To overcome these limitations, we propose a \underline{\textbf{M}}ixture-\underline{\textbf{O}}f-\underline{\textbf{D}}istribution \textbf{DiT} (\textbf{MOD-DiT}), a novel sampling-free dynamic attention framework that accurately models evolving attention patterns through a two-stage process. First, MOD-DiT leverages prior information from early denoising steps and adopts a {distributed mixing approach} to model an efficient linear approximation model, which is then used to predict mask patterns for a specific denoising interval. Second, an online block masking strategy dynamically applies these predicted masks while maintaining historical sparsity information, eliminating the need for repetitive sampling operations. Extensive evaluations demonstrate consistent acceleration and quality improvements across multiple benchmarks and model architectures, validating MOD-DiT's effectiveness for efficient, high-quality video generation while overcoming the computational limitations of traditional sparse attention approaches.
♻ ☆ ShotFinder: Imagination-Driven Open-Domain Video Shot Retrieval via Web Search
Tao Yu, Haopeng Jin, Hao Wang, Shenghua Chai, Yujia Yang, Junhao Gong, Jiaming Guo, Minghui Zhang, Xinlong Chen, Zhenghao Zhang, Yuxuan Zhou, Yufei Xiong, Shanbin Zhang, Jiabing Yang, Hongzhu Yi, Xinming Wang, Cheng Zhong, Xiao Ma, Zhang Zhang, Yan Huang, Liang Wang
In recent years, large language models (LLMs) have made rapid progress in information retrieval, yet existing research has mainly focused on text or static multimodal settings. Open-domain video shot retrieval, which involves richer temporal structure and more complex semantics, still lacks systematic benchmarks and analysis. To fill this gap, we introduce ShotFinder, a benchmark that formalizes editing requirements as keyframe-oriented shot descriptions and introduces five types of controllable single-factor constraints: Temporal order, Color, Visual style, Audio, and Resolution. We curate 1,210 high-quality samples from YouTube across 20 thematic categories, using large models for generation with human verification. Based on the benchmark, we propose ShotFinder, a text-driven three-stage retrieval and localization pipeline: (1) query expansion via video imagination, (2) candidate video retrieval with a search engine, and (3) description-guided temporal localization. Experiments on multiple closed-source and open-source models reveal a significant gap to human performance, with clear imbalance across constraints: temporal localization is relatively tractable, while color and visual style remain major challenges. These results reveal that open-domain video shot retrieval is still a critical capability that multimodal large models have yet to overcome.
comment: 28 pages, 7 figures
♻ ☆ TP-Blend: Textual-Prompt Attention Pairing for Precise Object-Style Blending in Diffusion Models
Current text-conditioned diffusion editors handle single object replacement well but struggle when a new object and a new style must be introduced simultaneously. We present Twin-Prompt Attention Blend (TP-Blend), a lightweight training-free framework that receives two separate textual prompts, one specifying a blend object and the other defining a target style, and injects both into a single denoising trajectory. TP-Blend is driven by two complementary attention processors. Cross-Attention Object Fusion (CAOF) first averages head-wise attention to locate spatial tokens that respond strongly to either prompt, then solves an entropy-regularised optimal transport problem that reassigns complete multi-head feature vectors to those positions. CAOF updates feature vectors at the full combined dimensionality of all heads (e.g., 640 dimensions in SD-XL), preserving rich cross-head correlations while keeping memory low. Self-Attention Style Fusion (SASF) injects style at every self-attention layer through Detail-Sensitive Instance Normalization. A lightweight one-dimensional Gaussian filter separates low- and high-frequency components; only the high-frequency residual is blended back, imprinting brush-stroke-level texture without disrupting global geometry. SASF further swaps the Key and Value matrices with those derived from the style prompt, enforcing context-aware texture modulation that remains independent of object fusion. Extensive experiments show that TP-Blend produces high-resolution, photo-realistic edits with precise control over both content and appearance, surpassing recent baselines in quantitative fidelity, perceptual quality, and inference speed.
♻ ☆ ObjEmbed: Towards Universal Multimodal Object Embeddings
Aligning objects with corresponding textual descriptions is a fundamental challenge and a realistic requirement in vision-language understanding. While recent multimodal embedding models excel at global image-text alignment, they often struggle with fine-grained alignment between image regions and specific phrases. In this work, we present ObjEmbed, a novel MLLM embedding model that decomposes the input image into multiple regional embeddings, each corresponding to an individual object, along with global embeddings. It supports a wide range of visual understanding tasks like visual grounding, local image retrieval, and global image retrieval. ObjEmbed enjoys three key properties: (1) Object-Oriented Representation: It captures both semantic and spatial aspects of objects by generating two complementary embeddings for each region: an object embedding for semantic matching and an IoU embedding that predicts localization quality. The final object matching score combines semantic similarity with the predicted IoU, enabling more accurate retrieval. (2) Versatility: It seamlessly handles both region-level and image-level tasks. (3) Efficient Encoding: All objects in an image, along with the full image, are encoded in a single forward pass for high efficiency. Superior performance on 18 diverse benchmarks demonstrates its strong semantic discrimination.
♻ ☆ MiTA Attention: Efficient Fast-Weight Scaling via a Mixture of Top-k Activations
The attention operator in Transformers can be viewed as a two-layer fast-weight MLP, whose weights are dynamically instantiated from input tokens and whose width equals sequence length N. As the context extends, the expressive capacity of such an N-width MLP increases, but scaling its fast weights becomes prohibitively expensive for extremely long sequences. Recently, this fast-weight scaling perspective has motivated the Mixture-of-Experts (MoE) attention, which partitions the sequence into fast-weight experts and sparsely routes the tokens to them. In this paper, we elevate this perspective to a unifying framework for a wide range of efficient attention methods by interpreting them as scaling fast weights through routing and/or compression. Then we propose a compress-and-route strategy, which compresses the N-width MLP into a narrower one using a small set of landmark queries and constructs deformable experts by gathering top-k activated key-value pairs for each landmark query. We call this strategy a Mixture of Top-k Activations (MiTA), and refer to the resulting efficient mechanism as MiTA attention. Preliminary experiments on vision tasks demonstrate the promise of our MiTA attention and motivate further investigation on its optimization and broader applications in more challenging settings.
♻ ☆ Proteus-ID: ID-Consistent and Motion-Coherent Video Customization SIGGRAPH
Video identity customization seeks to synthesize realistic, temporally coherent videos of a specific subject, given a single reference image and a text prompt. This task presents two core challenges: (1) maintaining identity consistency while aligning with the described appearance and actions, and (2) generating natural, fluid motion without unrealistic stiffness. To address these challenges, we introduce Proteus-ID, a novel diffusion-based framework for identity-consistent and motion-coherent video customization. First, we propose a Multimodal Identity Fusion (MIF) module that unifies visual and textual cues into a joint identity representation using a Q-Former, providing coherent guidance to the diffusion model and eliminating modality imbalance. Second, we present a Time-Aware Identity Injection (TAII) mechanism that dynamically modulates identity conditioning across denoising steps, improving fine-detail reconstruction. Third, we propose Adaptive Motion Learning (AML), a self-supervised strategy that reweights the training loss based on optical-flow-derived motion heatmaps, enhancing motion realism without requiring additional inputs. To support this task, we construct Proteus-Bench, a high-quality dataset comprising 200K curated clips for training and 150 individuals from diverse professions and ethnicities for evaluation. Extensive experiments demonstrate that Proteus-ID outperforms prior methods in identity preservation, text alignment, and motion quality, establishing a new benchmark for video identity customization. Codes and data are publicly available at https://grenoble-zhang.github.io/Proteus-ID/.
comment: SIGGRAPH Asia 2025
♻ ☆ SurgVidLM: Towards Multi-grained Surgical Video Understanding with Large Language Model
Guankun Wang, Junyi Wang, Wenjin Mo, Long Bai, Kun Yuan, Ming Hu, Jinlin Wu, Junjun He, Yiming Huang, Nicolas Padoy, Zhen Lei, Hongbin Liu, Nassir Navab, Hongliang Ren
Surgical scene understanding is critical for surgical training and robotic decision-making in robot-assisted surgery. Recent advances in Multimodal Large Language Models (MLLMs) have demonstrated great potential for advancing scene perception in the medical domain, facilitating surgeons to understand surgical scenes and procedures. However, these methods are primarily oriented towards image-based analysis or global video understanding, overlooking the fine-grained video reasoning that is crucial for analyzing specific processes and capturing detailed task execution within a surgical procedure. To bridge this gap, we propose SurgVidLM, the first video language model designed to address both full and fine-grained surgical video comprehension. To train our SurgVidLM, we construct the SVU-31K that is a large-scale dataset with over 31K video-instruction pairs, enabling both holistic understanding and detailed analysis of surgical procedures. Building on this resource, SurgVidLM incorporates a two-stage StageFocus mechanism: the first stage extracts global procedural context, while the second stage performs high-frequency local analysis guided by temporal cues. We also develop the Multi-frequency Fusion Attention to effectively integrate low- and high-frequency visual tokens, ensuring the preservation of critical task-specific details. Experimental results demonstrate that SurgVidLM significantly outperforms state-of-the-art Vid-LLMs of comparable parameter scale in both full and fine-grained video understanding tasks, showcasing its superior capability in capturing the context of complex robot-assisted surgeries. Our code and dataset will be publicly accessible soon.
♻ ☆ DuoGen: Towards General Purpose Interleaved Multimodal Generation
Min Shi, Xiaohui Zeng, Jiannan Huang, Yin Cui, Francesco Ferroni, Jialuo Li, Shubham Pachori, Zhaoshuo Li, Yogesh Balaji, Haoxiang Wang, Tsung-Yi Lin, Xiao Fu, Yue Zhao, Chieh-Yun Chen, Ming-Yu Liu, Humphrey Shi
Interleaved multimodal generation enables capabilities beyond unimodal generation models, such as step-by-step instructional guides, visual planning, and generating visual drafts for reasoning. However, the quality of existing interleaved generation models under general instructions remains limited by insufficient training data and base model capacity. We present DuoGen, a general-purpose interleaved generation framework that systematically addresses data curation, architecture design, and evaluation. On the data side, we build a large-scale, high-quality instruction-tuning dataset by combining multimodal conversations rewritten from curated raw websites, and diverse synthetic examples covering everyday scenarios. Architecturally, DuoGen leverages the strong visual understanding of a pretrained multimodal LLM and the visual generation capabilities of a diffusion transformer (DiT) pretrained on video generation, avoiding costly unimodal pretraining and enabling flexible base model selection. A two-stage decoupled strategy first instruction-tunes the MLLM, then aligns DiT with it using curated interleaved image-text sequences. Across public and newly proposed benchmarks, DuoGen outperforms prior open-source models in text quality, image fidelity, and image-context alignment, and also achieves state-of-the-art performance on text-to-image and image editing among unified generation models. Data and code will be released at https://research.nvidia.com/labs/dir/duogen/.
comment: Technical Report. Project Page: https://research.nvidia.com/labs/dir/duogen/
♻ ☆ EVODiff: Entropy-aware Variance Optimized Diffusion Inference NeurIPS 2025
Diffusion models (DMs) excel in image generation but suffer from slow inference and training-inference discrepancies. Although gradient-based solvers for DMs accelerate denoising inference, they often lack theoretical foundations in information transmission efficiency. In this work, we introduce an information-theoretic perspective on the inference processes of DMs, revealing that successful denoising fundamentally reduces conditional entropy in reverse transitions. This principle leads to our key insights into the inference processes: (1) data prediction parameterization outperforms its noise counterpart, and (2) optimizing conditional variance offers a reference-free way to minimize both transition and reconstruction errors. Based on these insights, we propose an entropy-aware variance optimized method for the generative process of DMs, called EVODiff, which systematically reduces uncertainty by optimizing conditional entropy during denoising. Extensive experiments on DMs validate our insights and demonstrate that our method significantly and consistently outperforms state-of-the-art (SOTA) gradient-based solvers. For example, compared to the DPM-Solver++, EVODiff reduces the reconstruction error by up to 45.5\% (FID improves from 5.10 to 2.78) at 10 function evaluations (NFE) on CIFAR-10, cuts the NFE cost by 25\% (from 20 to 15 NFE) for high-quality samples on ImageNet-256, and improves text-to-image generation while reducing artifacts. Code is available at https://github.com/ShiguiLi/EVODiff.
comment: NeurIPS 2025, 41 pages, 14 figures
♻ ☆ DDP-WM: Disentangled Dynamics Prediction for Efficient World Models
World models are essential for autonomous robotic planning. However, the substantial computational overhead of existing dense Transformerbased models significantly hinders real-time deployment. To address this efficiency-performance bottleneck, we introduce DDP-WM, a novel world model centered on the principle of Disentangled Dynamics Prediction (DDP). We hypothesize that latent state evolution in observed scenes is heterogeneous and can be decomposed into sparse primary dynamics driven by physical interactions and secondary context-driven background updates. DDP-WM realizes this decomposition through an architecture that integrates efficient historical processing with dynamic localization to isolate primary dynamics. By employing a crossattention mechanism for background updates, the framework optimizes resource allocation and provides a smooth optimization landscape for planners. Extensive experiments demonstrate that DDP-WM achieves significant efficiency and performance across diverse tasks, including navigation, precise tabletop manipulation, and complex deformable or multi-body interactions. Specifically, on the challenging Push-T task, DDP-WM achieves an approximately 9 times inference speedup and improves the MPC success rate from 90% to98% compared to state-of-the-art dense models. The results establish a promising path for developing efficient, high-fidelity world models. Codes will be available at https://github.com/HCPLab-SYSU/DDP-WM.
comment: Codes will be available at https://github.com/HCPLab-SYSU/DDP-WM
♻ ☆ DSKC: Domain Style Modeling with Adaptive Knowledge Consolidation for Exemplar-free Lifelong Person Re-Identification
Lifelong Person Re-identification (LReID) aims to continuously match individuals across camera views from sequential data streams. Existing LReID methods often ignore domain-specific style awareness and unified knowledge consolidation, which are crucial for mitigating forgetting when adapting to new information. We propose DSKC, a novel rehearsal-free and distillation-free framework for LReID. DSKC designs a domain-style encoder (DSE) to dynamically model domain-specific styles, and a unified knowledge consolidation (UKC) mechanism to adaptively integrate instance-level representations with domain-specific style into a cross-domain unified representation. By leveraging unified representation as a bridge, DSKC explicitly models inter-domain associations at both instance and domain levels to enhance anti-forgetting and generalization. Experimental results demonstrate that our DSKC outperforms state-of-the-art methods in two training orders and enhances the model's strong performance. Our code is available at https://github.com/LiuShiBen/DKUA.
comment: 11 papges, 6 figures
♻ ☆ SAIL-RL: Guiding MLLMs in When and How to Think via Dual-Reward RL Tuning
Fangxun Shu, Yongjie Ye, Yue Liao, Zijian Kang, Weijie Yin, Jiacong Wang, Xiao Liang, Shuicheng Yan, Chao Feng
We introduce SAIL-RL, a reinforcement learning (RL) post-training framework that enhances the reasoning capabilities of multimodal large language models (MLLMs) by teaching them when and how to think. Existing approaches are limited by outcome-only supervision, which rewards correct answers without ensuring sound reasoning, and by uniform thinking strategies, which often lead to overthinking on simple tasks and underthinking on complex ones. SAIL-RL addresses these challenges with a dual reward system: the Thinking Reward, which evaluates reasoning quality through factual grounding, logical coherence, and answer consistency, and the Judging Reward, which adaptively determines whether deep reasoning or direct answering is appropriate. Experiments on the state-of-the-art SAIL-VL2 show that SAIL-RL improves reasoning and multimodal understanding benchmarks at both 4B and 8B scales, achieving competitive performance against commercial closed-source models such as GPT-4o, and substantially reduces hallucinations, establishing it as a principled framework for building more reliable and adaptive MLLMs. The code will be available at https://github.com/BytedanceDouyinContent/SAIL-RL.
♻ ☆ TFFM: Topology-Aware Feature Fusion Module via Latent Graph Reasoning for Retinal Vessel Segmentation WACV 2026
Iftekhar Ahmed, Shakib Absar, Aftar Ahmad Sami, Shadman Sakib, Debojyoti Biswas, Seraj Al Mahmud Mostafa
Precise segmentation of retinal arteries and veins carries the diagnosis of systemic cardiovascular conditions. However, standard convolutional architectures often yield topologically disjointed segmentations, characterized by gaps and discontinuities that render reliable graph-based clinical analysis impossible despite high pixel-level accuracy. To address this, we introduce a topology-aware framework engineered to maintain vascular connectivity. Our architecture fuses a Topological Feature Fusion Module (TFFM) that maps local feature representations into a latent graph space, deploying Graph Attention Networks to capture global structural dependencies often missed by fixed receptive fields. Furthermore, we drive the learning process with a hybrid objective function, coupling Tversky loss for class imbalance with soft clDice loss to explicitly penalize topological disconnects. Evaluation on the Fundus-AVSeg dataset reveals state-of-the-art performance, achieving a combined Dice score of 90.97% and a 95% Hausdorff Distance of 3.50 pixels. Notably, our method decreases vessel fragmentation by approximately 38% relative to baselines, yielding topologically coherent vascular trees viable for automated biomarker quantification. We open-source our code at https://tffm-module.github.io/.
comment: Accepted in WACV 2026 @ P2P-workshop as a full paper and selected for oral presentation
♻ ☆ UniADC: A Unified Framework for Anomaly Detection and Classification
In this paper, we introduce a novel task termed unified anomaly detection and classification, which aims to simultaneously detect anomalous regions in images and identify their specific categories. Existing methods typically treat anomaly detection and classification as separate tasks, thereby neglecting their inherent correlations and limiting information sharing, which results in suboptimal performance. To address this, we propose UniADC, a model designed to effectively perform both tasks with only a few or even no anomaly images. Specifically, UniADC consists of two key components: a training-free Controllable Inpainting Network and an Implicit-Normal Discriminator. The inpainting network can synthesize anomaly images of specific categories by repainting normal regions guided by anomaly priors, and can also repaint few-shot anomaly samples to augment the available anomaly data. The implicit-normal discriminator addresses the severe challenge of the imbalance between normal and anomalous pixel distributions by implicitly modeling the normal state, achieving precise anomaly detection and classification by aligning fine-grained image features with anomaly-category embeddings. We conduct extensive experiments on three anomaly detection and classification datasets, including MVTec-FS, MTD, and WFDD, and the results demonstrate that UniADC consistently outperforms existing methods in anomaly detection, localization, and classification. The code is available at https://github.com/cnulab/UniADC.